PROGRAMMING MANUAL

Computer Laboratory
MICHIGAN STATE UNIVERSITY
East Lansing, Michigan

MISTIC PROGRAMMING MANUAL

Second Edition
September 15, 1959

Prepared by the Staff of the
COMPUTER LABORATORY

MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN

PREFACE

Perhaps one of the mostls‘igniﬁcant innovations of the century has been the
design and actual construction of electronic digital computers. It is true that
designs for computers had been considered as early as the first quarter of the
nineteenth century, but it is equally true that the then existing means of operating
such a computer were insufficient. It was only in the period following 1940 that
advancing electronic techniques made an automatic computer feasible. Among the
earliest conceived computers was the one at the Institute for Advanced Study at
Princeton University, followed by the initial phases of design of the ILLIAC at the
University of Illinois in 1948. The Illinois computer, modeled to a certain extent
after the Princeton machine, was completed in 1952.

In the decade following 1945, the number of digital computers in this country
increased from at most a dozen to more than a thousand. The applications of such
instruments have reached into almost every scientific field. As a result, it was
decided by Michigan State University, in order to provide access to such an
important aid to research, that a digital computer should be constructed on this
campus. With the generous assistance of the staff of the Computer Laboratory at
the University of Illinois, work on a duplicate of the ILLIAC was begun in the
summer of 1956. The machine, called MISTIC, went into opei'ation on
October 18, 1957.

This second edition of the MISTIC Programming Manual has been up-dated
and corrected following nearly two years of MISTIC operation. In particular,
information concerned with the use of punched cards and the core memory has
been added.

The manual is organized for use as a general reference for the experienced
programmer. It is used also as a text for programming courses taught on the
Michigan State University campus. It can also be used by those with little or no
background in the use of computers as an instruction manual. The index will aid
the experienced in finding detailed answers to specific questions. The use of the
manual by those working on their own remains to be explained.

For this latter group of users who are getting little or no outside help,
the following Comments and outline may be useful. In particular, it should be
emphasized that the manual has been written with a view towards being all-inclusive

and a lot of worthwhile use can be made of the computer without knowing all the

iii

details presented herein. Thus any chapters, or parts thereof, which present

difficulty should be skipped until later experience dictates their use, without any

fear of missing something important.

The following outline has been used successfully in individual situations:

A. 1.
B. 1
Cc. 1.

Chapter 2 - Read casually, refer back as
necessary.

Chapter 3 - Read, then use as a reference as
necessary.

Chapters 4 and 5 - Study in detail as a unit,
with reference to Chapter 3 when required.
Chapter 8 - Read thoroughly first, then reread
occasionally and note for reference.

Chapter 9 - Read and study as required.
Chapter 6 - Read and study as required.

Chapter 2 - Read before starting tape
preparation.

Several simple problems should be programmed and used on the computer

during the process of completing this outline. Individual needs will dictate

succeeding study and use of the manual.

iv

PREFACE .
CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CONTENTS

NUMBER SYSTEMS .

Positional Notation

Conversion Between Blnary and Sexadec1mal
MISTIC Representatlon of Binary Numbers
Arithmetic in the Binary System

Conversion Between Sexadecimal and Decn’nal

A DESCRIPTION OF THE MISTIC

Input .

Storage or Memory .
Arithmetic .

Control.

Output .

INTRODUCTION TO PROGRAMMING--ORDER CODE .

Orders and Numbers in Machine Language :
The Make-up of Orders .
The Order Code
Left-Right Shift (0, 1)
Control Transfer (2, 3)
Memory Access (4,5) . .
Divide and Multiply (6, 7)
Input-Output (8,9) . .
Increment Add {K, F) .
Add and Extract (S, L, J).
Order Code Summary .

DECIMAL ORDER INPUT .

Format for Words to be Input by the DOI .
Directives . . . Ce e e
Word Assembly by the DOI

'Fixed and Relative Addresses.

Input of Decimal Fractions and Integers

NON-ITERATIVE AND ITERATIVE PROGRAMMING
Non-Iterative Programming. . .o
Iterative Programming--No Changlng Addresses
Iterative Programming--Changing Addresses .

SUBROUTINES.

Types of Routines in the MISTIC lerary .
Entry Into and Exit From a Closed Subroutme .
Placing the Argument . ..
Parameters--Program and Preset

"Examples of Closed Subroutines

Interpretive Routines
Library Routine N2 .
Library Routine P1

Library Routine R2
MISTIC Library Categories .
Program Library Index .

e
H
[

SO0 VTUIUNUT AR BRBREBRE WOLWWWOWWWWWw NNNNNN = -

BN = NP W= OOUTW N —

B WN = =0 00 00 U1

= =0 00 ~] U1 W DN e bt m WO it

— O

CHAPTER 7

CHAPTER 8

CHAPTER 9

- CHAPTER 10

SPECIAL CODING TECHNIQUES
Interludes . .
Some Special N D1rect1ves
Bootstrap Input . .
Use of Input and Output Orders .
Summation of Products .
Reversing the Control Transfer
Binary Switches .

Special Tests

Marking .

Masks

CODE CHECKING .

Common Blunders .

Correcting Errors by Hand Punch or Reperforator
Tape Correction by Modification Tapes

Returning Control to the DOI for Tape Modlflcatlon .

Location of Errors--Programmed Stops .
Post Mortem Routines.

The Address Search Routme

Sequence Checking Routines.

Other Check Routines . .
Resume of Code Checking Routmes

FIXED POINT PROGRAMMING AND SCALING. . .
General Principles of Scaling
Arithmetic with Scaled Numbers

THE REPERTOIRE OF THE MISTIC . R
Order Codes v v v v v v v v e e e e e e
Order Types . : c e e
Order Variants . . .

The MISTIC Reperto1re of Instructlons .

Left Shift and Final Stop. e

Right Shift . .

Unconditional Control Transfer

Conditional Control Transfer . e e e e
Store the Contents of A
Lioad Q from Memory ' .
Divide e e

Multiply . . .

Four Hole Tape Input Output ..

Five Hole Tape and Card Input Output
Increment Add from Q ..

Add from Q -

Logical Product or Extract

Order Type N--Bank Control Order

Increment Add and Spec1a11y Used Stop

Add

Starting After Stops .

Starting After a Stop Transfer of Control
Starting By the White Switch Start

Another Use of the White Switch Start

vi

e i T I e B e R e e B S I N TS J S Sy VI S U PR W
[oleoeRoNoNoNoNoNoNoNoNeNoNoNoNoNoNoNeNoloNeNoNeNo
OO OCOCUTHR R = NN~ OO UTUTR W =0 U0 D W N e

OO0 0000 0000000000000 0 1=~~~

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

ARITHMETIC IN THE MISTIC
Number Representation . .
The MISTIC Arithmetic Unit
Addition .
Subtraction . .

Multiplication .

Division . .
The General Case of D1V1s1on

TAPE AND CARD PREPARATION .

Cards .
Care in Handlmg Cards .
Tape .

Printing Format Control
Teletype Perforator.
Teletype Reperforator
Printer. e e
Tape Comparer . .
High Speed Reperforator

CALCULATION OF RUNNING TIME

Estimating Time.
Calculating Time

USE OF CARDS AND CARD EQUIPMENT

The Cards .

Card Preparation .
Operation of the 528.
The Plugboard .
Card Orders .

Card Programs

vii

11,
.11
.11
. 11,
.11
. 11,
.11
.11,

.12,
.12,
.12,
.12,
.12,
. 12.
.12,
.12,
.12,
.12,

.13,
. 13,
. 13.

. 14.
. 14,
. 14,
. 14.
. 14.
. 14,
. 14,

ORIV == N 00~ ~d0 Ul e e U1 W N NN e e

CHAPTER 1

NUMBER SYSTEMS

Computers are machines which can add, subtract, multiply by certain
numbers, and divide by certain numbers; they can make decisions between possible
courses of action and, once started, can operate under their own control for a
period of time. Computers operate upon data which is expressed in numerical
form. Some computers, such as analogue computers, do not operate directly on
numbers. Analogue computers derive their name from the fact that problems are
solved in such a computer by setting up and solving an analogous problem in
electric circuits. If, however, the computer operates on numbers, then it is
called a digital computer. MISTIC is a digital computer, and it performs
operations on numbers expressed in a different fashion from that which one is
accustomed to using, for purposes of both speed and economy. The system used

is the binary number system, which is discussed here.

1.1. Positional Notation

A moment's reflection will reveal that when one uses the decimal number
system, one has really used a representation for a sum. Thus, for example, the
number 41, 978 really represents 40,000 + 1,000 + 900 + 70 + 8. Furthermore,
one can see that 41,978 = 40,000 + 1,000 + 900 + 70 + 8 = 4 x 10,000 + 1 x 1, 000 +
9x 100 + 7x 10 + 8. Finally, if one observes that 10,000 = 104, 1,000 = 103,

100 = 102, andle = 1019 then

41,978 =4 x 10% + 1x 102 +9x 102 + 7x 10} 4+ 8 x 10°

where 10O = 1. Likewise, for a decimal fraction, say .02796,

1 3 5

02796 =0x 1071 +2x107°+7x 1072 4+ 9x 107% 1 6x 10
The notation in which only the coefficients of the powers of ten are preserved

(the 41,978 of the above example) is called a positional notation. The number 10

is called the base of the decimal system. It is easy to convince oneself that the
base 10 is not the only base that could be used to represent numbers as a sum of
powers. Indeed, it can be shown that any integer N can be represented as a sum
of powers of any whole number r greater than one as

n-1

n ,
l)N—anr +an_lr +,,o+a1r+a0

where each a, is an integer in the range 0 < a, Lr,
2) For any fraction M,

M:blrml+b2r=2+”, +b r ™

where the bi are integers in the range 0 < bi Lr.

A digital computer in representing numbers provides a place to hold each
coefficient of the power-sum representation for that number. If the computer
operated in decimal, each such coefficient position would have to be able to assume
one of ten states--namely, states corresponding to 0, 1, 2, ..., 9. It is not
difficult to imagine that it would be easier to represent fewer states, so that an
optimum arrangement would be one in which only two states need be represented in
each coefficient position. This means then that the a, and the bi of representations
1 and 2 need to assume only the values 0 and 1 and that r is 2. Such a system is
called the binary number system.

Some examples of numbers in the binary system follow.

25=16+8+1=1x2¥+1x23+0x2%2+0x2l+1x2°
502 = 256 + 128+ 64 + 32+ 164+ 4+2-1x28+1x2 +1x2%+1x2°+
lx24+0x23+1x22+1x21+0x20

25=0x2t4+1x272

If positional notation is used for the binary numbers on the right side of the equation,

then
2510 = 11(1*012
50210 = 1111101102
°2.510 = °012

(Notice that the subscript in the last three equations denotes the base used.)
The MISTIC operates in binary, and each number is assumed to be a

fraction and to be exactly 40 binary digits (or bits) long.

1.2. Conversion Between Binary and Sexadecimal

Since a number 40 bits long represents the same information as one
12-digit decimal number at most, it is apparent that though binary may be
economical for a computer to use, it is not convenient for the human being to use.
It would be better to abbreviate the binary number in some way, preferably an
easy way. The device used with the MISTIC is to start at the binary point
(binary point in binary is the equivalent of the decimal point in decimal) and group
bits into sets of four, working to the left on the integer part and to the right on the
fractional part. Thus, if the number M is given by

M =10110110001101010011.0110111011011
then M = 1011 0110 0011 0101 0’011 . 0110 11(10 1101 1000
Give each group of four bits its equivalent value in decimal. Since
1011 = 11
0110 6
0011 = 3 etc.,

-1.2-

then M = 11, 6, 3, 5, 3. 6, 14, 13, 8

If the commas were removed, confusion as to the meaning of 11, 6, for
example, would arise. If, instead, it were possible to guarantee that each set of
four bits translates to a single digit, such confusion would not arise. Since the
maximum number representable by four bits is 1111 = 15103 single symbols for 10,

11, 12, 13, 14 and 15 are needed. The symbols used are

10 = K
11=S
12 =N
13=17
14 =F
15 =1,

To complete the example, M converts to
M = S6353.6FJ8
To convert from this kind of notation to binary one needs simply to replace each
symbol by its four bit representation. To illustrate, if M = 4F61.. 21K, then
M =0100 1110 0110 1111 . 0010 0001 1010
It is to be observed that the system using the 16 distinct symbols, 0, 1, ...,
L, is nothing more than a base 16 system, which is called the sexadecimal system.

That is, r = 16 and each a; ranges from 0 to L.

1.3. MISTIC Representation of Binary Numbers--2's Complement

MISTIC represents every number by a 40 bit number assumed to be a
fraction. Since numbers are either positive or negative, some provision must be
made within the 40 bits to allow for the sign. There are actually several methods
of sign representation available in addition to the way which the human being is
accustomed to seeing. For certain engineering reasons, the method selected for
the MISTIC is the so-called 2's complement system.

Definition 1.3.1. E-very MISTIC 40 bit word is made up of one sign bit and

39 bits representing a fraction in the format DD R, g, where n, is the sign
bit, n, represents the coefficient of Z-ly n, represents the coefficient of 252, and
in general, n, represents the coefficient of 2.5'1’y in the binary representation of a
number.

Definition 1.3.2. The 2's complement of a 39 bit fraction N is 2 + N.

The sign bit actually leads a double life, since it is interpreted as a sign
but is really a number. Thus, if the sign of a number is plus, the sign bit is 0;
if the sign if minus, the sign bit is 1. This is the case since the number 2 in
binary is 10.000..., while the computer, according to definition 1.3.1, can

represent only the 0.00... of 10.000... Consequently, 2 + N for a positive
-1.3-

fraction N where N = cnlnzngo .. 1s

2+ N =10.0000... + ,nln2n3, ..

= 10,n1n2n3, ..
which in the computer would appear as Oonlnzn?). .. 1f, on the other hand, N is a
negative fraction, a borrow must be made from the 1 in 10.000..., thus placing

a 1 in the 20 position.
Example 1.3.1. If N =.11010...0 = 13/16,
then in the complement form,

2+ N =10.0000....0
+ .11010...0

= 10.11010...0
But in the computer the first 1 does not appear so that the 2's complement

representation of 13/16 is 0.11010...0

But if N is negative, say N = -.11010...0 = -13/16, then
2 +N =10.0000....0
- .11010...0
= 1.00110...0

The machine representation then for -13/16 is 1.00110...0

It is to be observed that the 2's complement of a negative fraction N can be

formed by the following steps:
1) Represent BNI in its 40 bit form.
2) Change each zero to a one and each one to a zero.
3) Add 1 in the least significant position.
Example 1.3.2. LetN = -13/32
Step 1. |N| =]-13/32] = 13/32 = 0.01101000...0
Step 2. Change 0O's to 1's and 1's to O's:

1.100101111...1

Step 3. Add 1 to the last place: 1.10011000...00
Hence, -13/32 is represented by 1.100110...0

To change a negative fraction represented by a 2's complement number, M,

to sign and absolute value form, use the following method:
1) Subtract 1 from the least significant digit of M.
2) Change 0's to 1's and 1's to O's.
3) Place a minus sign in front of the result.

Example 1.3.3. Suppose it is desired to change 1.01101010...0 to a signed

decimal fraction, following the above steps:

Step 1. M =1.01101010...0
. - 1

1.01101001. .11

-1.4-

Step 2. 0.10010110..00
Step 3. -.10010110 = -75/128

1.4. Arithmetic in the Binary System

Since binary and sexadecimal are essentially equivalent, one should try to
learn how arithmetic is performed in one of these systems. Since the machine
operates in binary, arithmetic in that system is presented here by means of the -

following table.

0+40=0 0-0=0 0x0=0 030 = %%
0+1=1 0-1=1% 0x1=0 0:1=0
1+0=1 1-0=1 1x0=0 120 = %%
1+1=10 1-1=0 1x1=1 1:1=1

*indicates a borrow from the next bit
* *meaningless

Table 1.4.1.

An example of addition is: 01010011 + 01011101. Using the same form for
addition as in the decimal system, one has, starting from the right

01010011
01011101

10110000
Starting from the right, 1 4+ 1 = 10--that is, 0 and 1 to carry. The next column
gives 1 + 0 = 1, and then adding the carry from the previous column, 1 + 1 = 0 and
1 to carry, etc.
An example of subtraction is:
01011011
-00101010
00110001
Here, the right column gives 1 - 0 = 1. The next gives 1 - 1 = 0; the next, 0-0=0,
and so on. In the third column from the left there is 0 - 1 = 1 and 1 to borrow.
Then the second column is 1 - 0 = 1, then less the one borrowed, 1 -0 - 1 = 0.
An example of multiplication is:

010110
x 001101

010110
000000
010110
010110
000000
000000

00100011110

The only difficulty encountered in multiplication is adding several 1's together.

-1.5-

This may be alleviated if one adds the bits in decimal;e.g., 1 +1+ 1+ 14+ 1 =5,
Then correct the sum to binary; i.e., 5 = 101; and write the right-most 1 of 101
as the sum of the five 1's and the 10 as the carry. Thus the carry can affect

several columns at once.

An example of division is:

; 101010 + remainder of 100/101
101 /TI0I0II0
101
—T10
101
T 111
101
~100

1.5. Conversion Between Sexadecimal and Decimal

Since it is often necessary to convert fractions or integers from sexadecimal
to decimal, methods of conversion are introduced here. In general, if N is an

integer expressed in the base r system as

Nr = anrx1 + an_lrn-1 + ... +ta T +ag,
where 0 Sai <r fori=0, 1, ..., n; and it is desired to represent N in the base s
system as

N_=b_s™4b_sMh oy bys + by,

the following procedure applies:

Divide N by s. (This means divide Nr by s. Hence, in order for this
division to mean anything, s must be expressed in the base r system. For example,
if N is given in the sexadecimal as N16’ and N10 is wanted, divide N16 by 10, which
when expressed in the sexadecimal is lOlo = K.) Since, except for notational

difference, N = Nr = Ns, then

N N N
- r__S8
s s s
N R N b
and — =1 + — and —= =b_s 14y I S
s 1 s s m m-1 1 s
where Il and Rl are integers, Rl being the remainder. It can be shown that N/s

produces a unique quotient and a unique remainder for a given N and s. Hence, Rl’
the remainder of Nr/s, must be the same as bO’ the remainder of Ns/s. Hence,
the least significant digit in the representation of N in the base s system is then the
first remainder obtained by dividing Nr by s.

Since

I.=Db s +,.,+b‘2s+b1

a repitition of the division process gives

-1.6-

I R ' b
B Y 1t |
s 2 s m 2 s
so that the next significant digit of N is the remainder of Il/s-—namely, R,.
Since m is finite, this process can be repeated a finite number of times to produce
N _.
s

Example 1.5.1. Convert 106910 to sexadecimal (and then to binary). Divide
1069 by 16 expressed in decimal. But 16 in decimal is 16. Hence,
1069

16 = 66+"6
66 2
—TE = 4+-T6
4 4
6 = Ot71p

Since 13 = J, it follows that 106910': 42J16 = 01(30001011012
Example 1.5.2. Convert 3LF16 to decimal. It is necessary to divide by 10

expressed in sexadecimal as K. In order to divide by K, a multiplication table in

sexadecimal for K is useful.

Kx1=K Kx5= 32 Kx9 = 5K KxJ=8
Kx2=14 Kx 6 = 3N Kx K = 64 KxF=8N
Kx3=1F Kx 7= 46 KxS = 6F KxL =96
Kx4=28 Kx 8 =50 KxN= 178
Then we divide as follows:
66 ‘ K 1 0
K/3LF K/66 K/K K/T
3N 64 K 0
“3F 2 0 T
3N
2
Hence, SLFléz 10221O°

Finally, a method for converting fractions from one base to another is also
available. The method is so similar to that for converting 1ntegers that only the
end result is given here.

To convert a base s fraction to a base r fraction, multiply the base s

fraction by r; the integer part of the product is the most significant digit of the

base r number. Then repeat this process with the fractional part of the product.

Example 1.5.3. Convert . ()76510 to sexadecimal and then to binary.

Multiply by 16, getting

0765 x 16 = 1 + .2240
2240 x 16 = 3 + . 5840
5840 x 16 = 9 + .,3440
3440 x 16 = 5 + . 5040, etc.

so that
0076510 = ,1395... 16 = .0001 0011 1001 0101...

-1.7-

Example 1.5.4. Convert .K5716 to. decimal. Multiply by K:

K57x K =6+ .766

. 766 x K =4 + .9LN

.9LNx K =6 +.3J8

.3J8 x K =2+ .670

670 x K =4 + .060

.060 x K = 0 +.3NO, etc.

Then, .K5716 can be written as
°K5716 = .646240. .. 10

Of course, one could notice that for short numbers, a direct conversion is
always possible, particularly from sexadecimal to decimal. This conversion is
based on the expanded sum of powers form for any number. For instance, let the

problem be to convert 0L516 to decimal. This number could be written

0L516=0x162+15x161+5x160:240+5=245

-1. 8-

CHAPTER 2

A DESCRIPTION OF THE MISTIC

The MISTIC. like most digital computers, is composed of five sections:
input, storage or memory, arithmetic, control and output. A knowledge of certain
characteristics of these sections is indispensable to the programmer. A collection

of such characteristics is presented here.

2.1. Input

The input section of the MISTIC is an electro-mechanical device for
translating information presented to it into the language of electrical pulses
accepted by the computer. Since the computer operates on binary numbers, the
input accepted is binary. The input media now available are perforated tape and
punched cards. The former is a long tape in which holes have been punched by an
operator using a perforator, a machine similar to a typewriter. Across the width
of the paper there is room for six holes, one of which is smaller than the other
five. This small hole is a sprocket hole used for pulling the tape along through
the tape punch and for providing the tape reader with the information that a
character is present. Only the five larger holes have any information content as
far as the programmer is concerned. There are ten such vertical lines per inch.
The information on the tape is translated to the computer by means of a tape reader.
A tape reader operates on the following principle: A bright light is allowed to shine
above the tape. If there is a hole in the tape, the light shines through to a light
sensitive surface. The configuration of spots of light corresponding to the holes
in one line {called a character or frame) perpendicular to the length of the tape is
then translated into electrical pulses which in turn are equivalent to the number
represented by that frame. The reader pulls the tape under the beam of light,
thus translating each frame as it passes by. The reader available for use with
the MISTIC has a maximum speed of approximately 300 characters translated per
second.

As mentioned above, there are five information bearing spaces per frame.
Each space can be in one of two states, perforated or not. This implies that, used
singly, these spaces could represent binary coefficients, which is indeed the way
they are used for MISTIC. The binary numbers representable by five bit positions
are 00000 to 11111, or O to 31. If only four of these five bit positions were used,
there would result a number range from 0000 to 1111, or O to 15. But these are
exactly the sexadecimal coefficients, so that if the tape preparation equipment had

-2.1-

keys for the 16 sexadecimal coefficients, one could perforate an entire frame by the
use of a single key. Furthermore, ten such frames constitute one MISTIC 40 bit
number. Finally, the fifth bit space could be used to change the meaning of the other
four bit spaces, thus, for example, allowing alphabetic information to be prepared
for computer input. For many convenient reasons, then, it is commonly the case
that only four of the five bit spaces are used for numerical input.
Example 2.1.1. If one wished to punch a tape which would input

0100 0110 1011 1010 0000 0000 1000 0010 1101 1111
it would be necessary to strike the keys labeled

4, 6, S, K, 0,0, 8,2,J, L
in that order. These would then appear on tape as

Positions 5 8 4 2 1

4 0O OoO-® O O
6 O 0-® ® O
S O -0 © ®©
K o -0 ® o etc.

where the blackened circles indicate perforations and the unblackened ones indicate
no perforation. The small perforations are the sprocket holes. The various
columns are given the names fifth hole, eight hole, four hole, two hole and one
hole. ;

When a tape has been prepared, it is often desirable to have its contents
printed out for inspection. Likewise, tapes which ha;fe been prepared by the
computer (which will be discussed in the section on output) are frequently printed
out. The printing device is similar to a typewriter and requires format controls
such as carriage return, line feed, space, delay. etc. These printer format
contfols are also punched on the tape, and are all characterized by having a fifth
hole. Furthermore, under the standard form of input, such frames with a
perforated fifth hole are ignored by the reader and never sent to the computer. As
a result, one can generally use characters with perforated fifth holes as he needs,
The use of the tape preparation equipment is discussed in detail in Chapter 12.

The punched cards used are IBM 80 column cards, with 12 rows. The top
row is called the 12 row, the next row is called the 11 row, the next row is called
the 0 row, and then on to the last row, which is called the 9 row. Used numerically,
each column represents one decimal digit, indicated by a perforation in one of the
corresponding rows 0 through 9.

The 11 and 12 rows are used to change numerical coding into alphabetic or
contreol data, and also for algebraic sign data.

The structure and use of punched cards is presented in greater detail in

Chapter 14.
-2.2-

2.2. Storage or Memory

Information is transmitted from the input reader to a register in the
arithmetic section. From there the number assembled can be sent to storage.
Storage or memory is that part of the computer which holds information for
a period of time, to be used by other parts of the computer. Theoretically,
information will remain in storage indefinitely, but actually the reliability of data
diminishes as the length of time that it is stored increases. '
Memory is composed of 40 cathode ray tubes and associated circuitry.
Cathode ray tubes are similar in appearance to television picture tubes, except
that they have faces only a couple of inches in diameter. On the face of each tube
is a square grid or coordinate system, composed of 1024 points, 32 points on a
side. Each spot on the face of one tube represents one bit of the number in each
memory position. The 40 tubes taken together then give the 40 bits of every
number in memory. Since there are 1024 points on the face of each tube, then
there are 1024 memory positions each capable of holding 40 bit numbers. As we
shall see, each number may possess several meanings, roughly categorized as
numbers which represent numbers and numbers which are codes for non-numeric
information such as orders. Due to the double use of numbers, it has become the
custom to speak of each 40 bit number as a word, to indicate that it may represent
non-numeric data. In this terminology, the memory can hold 1024 forty bit words.
Each grid point on the face of a tube is assigned a number from 0 to 1023,
with corresponding points on the other 39 tubes being assigned the same number.
These numbers are called the addresses of memory locations. When the computer,
under the direction of the programmer, wishes to obtain a word stored at a given

memory location, it calls for the contents of a memory location with a given

address. Thus, if at memory location 146 (the memory location whose address is
146), is stored the number L0 495 40 205 {in sexadecimal), then the contents of
146 is 1.0 495 40 205. The contents of a memory register can be acquired for
use in about 18 microseconds (i.e., 18 one-millionths of a second).

Since the computer operates in binary, the addresses it uses are expressed
inside the computer in binary (though as the reader will see later, the programmer
thinks of these addresses as decimal). A moment's reflection will suffice to show
that 102310 = 11111111112., Consequently, the addresses range from 0 to
1111111111, so that if all addresses are 10 bits long, then every address is
representable. For convenience, these addresses are referred to outside the
computer in sexadecimal, to give addresses ranging from 000 to 3LL in that

system. By means of a certain mode of input, addresses will be considered

decimal.

-2.3-

2.3. Arithmetic

The arithmetic section is that part of the computer in which addition,
subtraction, multiplication, division and certain logical operations are performed.
The MISTIC's arithmetic section is composed of three 40 bit registers and an
adder. The registers are the accumulator, called the A register; the quotient
register, called the Q register; and a third register, called R. (Also, A is called
RI, Q is called RIIL, and R is called RIII, but this terminology will not be used here.)
Each bit position of each of these three registers is composed of a flipflop, a
certain two-stable-state device, and associated circuitry. Each register has
specific functions to perform. ‘

Words coming from memory to the arithmetic section have direct access to
the R register and to the Q register. Transmission is parallel, meaning all 40 bits

in 2 memory location are copied into R simultaneously, and similarly for Q. It is

important to note that whenever a word is sent from a memory location to an

arithmetic register, the contents of the memory location are not altered. Thus,

at the end of such a transmission, both the arithmetic register and the memory
register contain the same number. The Q register can be directly called into use
while the R register is only an intermediate storage register over which the
programmer has only indirect control. Actually, the programmer can ignore the
R register for purposes of programming.

To send a word from the R register to the accumulator, the word must pass

through a set of complement gates, whose function is to change the sign of the

number passing through or to leave the sign unchanged depending upon the operation
concerned. (The change of sign is accomplished by taking the 2's complement.)
From there the number is added into the adder together with the contents of A, and
the result is sent to A. If it is desired to send a word from memory intoc A, it is
necessary to clear A first, meaning that A is made to contain 40 zeros. This is
accomplished automatically by calling for the proper order (orders are discussed
in Chapter 3).

The A and Q registers can be made to act like a 79 bit shifting register,

called AQ. A left shift of one place means that the set of bits
20212223 - - 237238%39 9099293 - - 937938939
is replaced by
#1%2%3%4 - - 2387399 9092939 - - 938939°
A left shift of n places means that AQ is shifted one place, and that result shifted

one place, until a total of n shifts has been completed. At that time asg will have

shifted over to the 239_n position, and all the other bits will be associated in order

with a .
39-n 2 4.

A right shift of one place means that
F0%1%2%3" " *%38%39 909192 - - 938939
is replaced by
#0%0%1%2" " ~%37%38 d0%3991" - - 437938

An n place right shift sends a, to a provided n is less than 38).

1 l+n (

Note that: (1) 4 is unaffected by a shift, (2) right shifts propagate ags and
(3) left shifts generate zeros in the right-most bit of Q.

This ability to shift is used as another means of transmitting words to the
arithmetic section. Words are sent, four bits at a time, from the input reader
directly to a36a37a38a39 in the accumulator. Then, if more bits are to be sent to
A from the reader, the accumulator is left shifted four places and the new four bits
sent to 2136a37a38a39°

‘The only ways, then, that words can be sent into the arithmetic section are
to R, to Q and to A from the input tépe reader, and to AQ from the card reader.

When a word is to be sent from the arithmetic section, it usually leaves
from A. Five sﬁch exits are possible.

1) For output to the tape punch (see the section on output), bits are sent
four at a time from aoa 12223 followed by a four-place left shift.

2) An entire forty bit word can be transmitted in parallel to any memory
location.

3) The contents of bit locations ajpr- -39 can be sent to the corresponding
bit positions of any memory location.

4) The contents of bit locations a3p- - 239 can be sent to the corresponding
bit positions of any memory location.

5) The contents of A and Q can be punched on a card.

In transmitting words from A to memory, the contents of A are left
unchanged.

Some of the uses of the various registers in arithmetic operation are
listed here.

A Register

1) Holds one summand in an addition.

2) Holds the minuend in a subtraction.

3) Holds part of the dividend in division.
4) Receives the sum in addition.

5) Receives the difference in subtraction.

6) Receives part’of a product.

7) Receives a "remainder" in division.

-2.5-

Q Register
1) Holds one factor in multiplication.
2) Holds half the dividend in division.
3) Receives the quotient in division.
4) Receives part of a product in multiplication.
The R register holds the remaining parts for each opération,
It is interesting to notice that an addition requires 100 microseconds and a
multiplication 1000 microseconds.

Each arithmetic operation is called for by the control section.

2.4, Control

The entire computer must be given explicit directions as to how to perform,
and the control section is that part of the computer which must accept, interpret
and execute these directions. The directions that the control section uses are éalled
orders or instructions, and the collection of orders (called a program) which a
programmer wants the control to act on are available to control in the memory
section. The orders are of four types: arithmetic, decisions, logical and
manipulative. These orders are discussed in detail later, but it is important to
know that each order is coded as a number. Some typical orders would be 40 205,
L5 143, 26 065, and so on. There is no special place in memory reserved for
orders, so that the oknly distinction made between orders and data is relative
position, which is known to the programmer. However, once control knows where
the’ first order of a set of orders is located, control will acquire each order from
successive locations. If the programmer has written his orders well, the control
will not try to acquire a data word as an order.

As will be seen later in this manixal, orders are stored two to a word.
Each order pair is transferred in its turn to the control section for execution.
While in the control section, the pair of orders being executed is in a 40 bit
flipflop register called the Instruction Register or R3° The control section exécutes

the left-hand order first, then the right-hand order. When a pair of orders has

been performed, the control section must discover where the next order pair is
located. The address of the next order pair to be acquired is in a ten bit flipflop

register called the control counter. These two control registers are very

important to the programmer in code checking a problem, and for that reason,
their contents are displayed on the computer operator's console.

It is important to understand that the computer will do nothing until it has
an order pair in its instruction register and an address in the control counter.
This means that nothing can be inputvunless an order pair in the instruction

register directs input to send in data. The dilemma of how to start the machine is

-2.6-

resolved, however, in the following manner: There is a white three-way switch on
the control panel which has the settings FETCH, EXECUTE and RUN. There are
also two push buttons, one labeled CONTROL COUNTER, the other, SET R3, By
setting the white switch toc FETCH, and then depressing the two push buttons
mentioned, the order pair 80 028 40 000 is automatically placed in the instruction
register and the address 000 is put in the control counter. If a tape is inserted in
the reader and the white switch moved to EXECUTE and then to RUN, the first
order pair on tape is brought into the computer ready to be executed. This method

of starting the computer is called a '"bootstrap start' about which more will be said

later.

2.5. Output

When the control section has executed a number of orders which have
caused, for example, input, storage in memory and the execution of certain
arithmetic steps, then it may be desired to send some of the information out of
the computer. The section which translates from the machine language of electrical
pulses representing binary digits to some mechanical medium is called the output
section. There are three kinds of output available now for MISTIC. The first is a
paper tape perforator which punches a tape which is entirely similar to, and in
fact useful as, an input tape. The second kind of output is the Teletype printer,
The tape punch operates at 60 characters per second. (Since these characters
also include printing format controls, this is not necessarily 60 information
characters per second.) The printer operates at the rate of 10 characters per
second. The third kind of output available is a card punch. Maximum speed for
this is 100 cards per minute. See Chapter 14 for details on the use of card

equipment.

-2. 7~

CHAPTER 3

INTRODUCTION TO PROGRAMMING--ORDER CODE |

Programming for a computer is a two-fold operation. The first step in
programming is the selection of the mathematical procedure to be used. This
phase of programming is essentially a problem in numerical or statistical analysis
and not within the scope of this manual.

The second step in programming, perhaps more properly called "coding",
is that of translating the numerical method selected into machine language. It is

this coding which is the concern of this manual.

3.1. Orders and Numbers in Machine Language

Information enters MISTIC in 40 bit units called words. A word may be

intended as a number on which some arithmetic operation is to be performed. This

use of a word is illustrated in Chapter 1.

Another use of a word is to contain instructions or orders for the various

arithmetic operations to be performed.

The binary form of a word is exactly the same whether the word is to be
interpreted as a number or as an instruction. Whether the machine acts on the
word as a number or as an order depends only upon the way in which the word is
encountered--i.e., as one of a sequence of instructions being obeyed or as an

operand for an instruction.

3.2. The Make-up of Orders

An instruction in a digital computer involves the following five factors:

1) where to find the first operand,
2) where to find the second operand,
3) what to do with the two quantities,
4) where to put the result, and
5) where to go for the next instruction.
Thus, each instruction must contain, either explicitly or by implication,
four addresses and an operation order.
MISTIC is a sequential machine; i.e., the next order to be obeyed is
usually the next order in sequence. Hence, the fifth factor is automatically
determined and need not be supplied in the instruction.

MISTIC is a single address machine; i.e., each instruction carries only

one address (memory location identification number), which is that of the first

-3.1-

operand. The location of the second operand and where to put the answer must,
therefore, be carried by implication in the instruction itself. In MISTIC these two
locations are always one of the two registers, A and Q. The part of the instruction
which specifies what operation to perform also specifies, by implication, in which
register the second operand is found and in which register the answer is to be left.
An instruction may say, for example, '"Add the number in memory location 10 to
the contents of A and leave the sum in A."

An order for MISTIC contains two symbols chosen from the decimal digits
0, 1, 2,
digits) K, S, N, J, F, L and one decimal number n in the range 0 S n < 1023, The
two symbols form what is called the operation code (op code). The number is an

identification number (address) for one of the 1024 electrostatic memory locations

.» 9 and the letters (sexadecimal digits and hereafter called simply

in MISTIC; or, in some cases, a number is used for some purpose such as to
indicate the number of times an operation is to be performed, to change addresses,
The two-digit op code carries the information needed for factors
Thus the order

as a counter, etc.
2, 3 and 4; the number carries the information for factor 1.
1.4 120

says: '""Add the number in memory location 120 to the number in A, leaving the
result in A. "

Each of the 16 digits 0, 1,
four bits since K, S, N, J, F, and L can be taken as representing’ 10, 11, 12, 13,
14 and 15. 210

An order, therefore, requires at most 18 bits.

.» 9, K, S, N, J, F, L can be represented by

The addresses range from 0 to 1023 and hence are less than 1024=

Since MISTIC has 40 bits per word,

a word can contain two such orders, or an order pair.
The two orders of an order pair are referred to as the left-hand order and
the right-hand order and are obeyed in the sequence left to right. The digit or bit

make-up of an order pair is as shown in Figure 3.2.1.

8 bits 2 bits 10 bits 8 bits 2 bits 10 bits
op code waste address op code waste address
- left-hand order = % right-hand order -
=< bits 0 - 19 P < bits 20 - 39

Figure 3.2.1.

3.3. The Order Code

A particular combination of two of the 16 digits 0, 1, 2,

° 3 9}1 K? S’ N? J9
F, L was defined as an op code or simply a code, and the totality of such
combinations which are accepted by the computer is called the order code of the

machine. 23,2

MISTIC op codes are formed in such a way that all orders with a common
first code letter are related. The format of the tabulated order code is, therefore,
the following: | | |

1) first code letter and descriptive title of orders;
2) codes and de’finitions;
3) explanatory discussion and special comments.

The letter n represents the memory location identification number unless
specifically defined otherwise. In all cases, n is called an address. Thé letters
A and Q stand for the accumulator and quotient registers, respectively. The
symbeols (n), (A), etc., are to be read ''contents of memory location n'", '"contents
of accumulato»r register'', etc.

In all cases, "put (n) into A", "put (A) into n'"', etc., leaves the contents of

n or A, respectively, undisturbed; i.e., it merely duplicates the contents of nin A,

the contents of A in n, respectively.

The total number of possible combinations in the MISTIC order code is 256,
A detailed discussion of each of these is presented in Chapter 10,

More than 100 out of the 256 possible codes will be accepted by MISTIC as
legitimate instructions. These codes are explained in detail on the following pages.
Following the detailed listing is a one page condensation of all usable order pairs,
which'is satisfactory for quick reference after the details of the orders have‘been '
learned.

Although there are over 100 instructions which MISTIC will obey, mariy of
these are just duplications or minor variations of others and in some cases are not
useful at all, occurring only as a by-product of the design logic necessary to provide
a more fundamental order. Consequently, most problems can be programmed using
as few as 20 op codes. Table 3.3.1 contains a list of op codes which will provide
the user with a good fundamental set of orders, sufficient for writing most programs

and a good basis on which to build a more complete working set of orders.

OP CODE FUNCTION
26 ... Transfer Control
36 .. Conditional Transfer Control
40 Store (A) in Memory
50 o Load Q from Memory
66 ... Divide
A Multiply
S5 .ttt Transfer (Q) to A
LO........... Subtract
14........... Add
L5........... Load A

Table 3.3.1.

-3.3-

0--Left Shift (Multiplication by 2)

00 n Left shift contents of double
register AQ n places

0l n Clear A, then execute 00 n

09 n Clear A, insert 1/2 in A,
then execute 00 n

Left shift replaces the contents of AQ

a

021 " %39 991 -+ 939
by :

aja, ... 2399; 999, - q390

leaving q unchanged.

0 AND 1

1--Right Shift (Division by 2)

10 n Right shift contents of double

register AQ n places
11 n Clear A, then execute 10 n

19 n Clear A, insert 1/2 in A,
then execute 10 n

Right shift replaces the contents of AQ

a0 %1 - %39 909 - 939
by '
agagay ... azg 4g 23399 - - d3g

leavin unchanged and propagating a,.
g€ 99 g g g 29

The operation is repeated n times where n is interpreted modulo 64; i.e., if n Z 64,

n is replaced by the remainder when n is divided by 64. If n = 0, the machine will

stop.

2--Unconditional Control Transfer

2 AND 3

3--Conditional Control Transfer

20 n Stop. Transfer control to
right-hand order in memory
Tocation n after start.

Stop can be ignored by
black switch setting.

22 n Transfer control to right-
hand order at n.

24 n Stop. Transfer control to
left-hand order in memory
Iocation n after start.

Stop can be ignored by
black switch setting.

26 n Transfer control to left-
hand order at n

21 n , 20 n
23 n\Clear A, then 22 n
25 n | execute ' 24 n
27 n 26 n
29 n | Clear A, then 20 n
2S n VLinsert 1/2 in 22 n
2] n| A, then execute |24 n
2Ln 26 n

30n If (A)= 0, execute 20 n
If (A) << 0, take next order in
sequence.

32 n If (A)= 0, execute 22 n
If (A)<< 0, take next order
in sequence.

34 n If (A)= 0, execute 24 n
If (A)<< 0, take next order
in sequence.

36 n If (A){}_ 0, execute 26 n
If (A)<< 0, take next order
in sequence.

31 n 21 n
33 n\ Execute 23 n
35 n 25 n
37 n 27 n
39 n 29 n
3S ni{ Execute 2S n
3Jn 2 n
3Ln 2Ln

See Sections 10.5--10. 8 for discussion of starting after stop in 20 n, 24 n,

30 n, and 34 n.

4 AND 5

4--Store

40 n Replace (n) by (A)

41 n Replace (n) and (A) by 0

49 n Replace (n) and {(A) by 1/2

42 n Replace address digits of 46 n Replace address digits
right-hand order at n by of left-hand order atn
corresponding digits of A by corresponding digits of A

43 n Clear A, then execute 42 n 47 n Clear A, then execute 46 n

4S n Replace (A) by 1/2 and the 41,n Replace (A) by 1/2 and address
address digits of right-hand digits of left-hand order atn by 0

order at n by 0

5--Memory to Q
50 n Replace {Q) with (n)
51 n Clear A, then execute 50 n
59 n Put 1/2 in A, then execute 50 n

6 AND 7
6--Divide

66 n Divide (AQ) by (n), put rounded quotient in Q, residue in A
67 n Clear A, then execute 66 n ,
6L.n Put 1/2 in A, then execute 66 n

After dividing, the least significant bit in Q (the quotient) is always 1 for round off.
The residue is in A.

If {A)l = I{n)] , the MISTIC will stop after dividing.

If |(A)] I{n)] and (A)= 0, the MISTIC will stop after dividing.
If [{A)] [(n)] and (A)<< 0, the MISTIC will not stop after dividing.

(I

7--Multiply »
Negative Multiply Positive Multiply

70 n Put _<n),,Q+2'39Ain AQ ~ 74n Put(n).(Q) +Z—3?Ain AQ

71 n Clear A, then execute 70 n 75 n Clear A, then execute 74 n
72n Put -|(n)] .(Q) + 2739 A into AQ 76 n Put |(n)] .(Q) + 2737 A into AQ
73 n Clear A, then execute 72 n 77 n Clear A, then execute 76 n

79 n Put 1/2 in A, execute 70 n 7J n Put (n).(Q) + 2740 in A

7S n Put 1/2 in A, execute 72 n 7Ln Put 1/2 in A, execute 76 n

The product is in AQ, the least significant 39 bits in Q with qq = 0.
Orders 71 n and 75 n are used as "unrounded multiply'" orders.

Orders 79 n and 7J n are used as "rounded multiply' orders.

-3.5-

8 AND 9

8- -Input- Output

80 n Shift AQ four places left and replace azqs 2370 23go a.39 by the binary -
digits corresponding to a sexadecimal character on tape. This is repeated
n/4 times

8ln Clear A, then execute 80 n

82 n Punch the digits agr aps @y 2g
AQ four places left. This is repeated n/4 times

83 n Clear A, then execute 82 n

86 n Put 1/2in A, then execute 82 n

as one sexadecimal character and shift

The address n is the number of bits to be read or punched and must be a multiple
of 4.

The 80 orders by-pass any character with perforated fifth hole.

All 80 orders change the contents of A and Q.

9--Special Input-Output

91 4 Five hole input. Clear A, shift AQ four places right, replace azgr 2377
asg: 239 by the binary digits corresponding to the four least significant

holes in one tape character. Place the contents of the fifth hole in

position 2,

92 n Letter output. Punch on tape or print a character depending upon the
address digits n

94 n Card input. Each of the 80 bits of A and Q are replaced by 1 if the
corresponding card column{determined by the plugboard)of the row being
read is punched, otherwise by a 0. The address n must be zero. See
Chapter 14.

96 n Card output. Each of the 80 columns of the card now under the punch
head is punched if a 1 is in the corresponding bit in AQ (determined by
plugboard), otherwise there is no punch. The address n must be zero.
See Chapter 14.

91, 92 orders change A and Q. A 96 order leaves both A and Q unchanged.

-3.6-

The following tabulation gives the complete orders for output of letters,

numbers, symbols, and print format characters.

92 963F Space

92 131F Carriage return and line feed
92 515F Delay--2 hole
92 3F Delay--1 hole
92 707F - Numbers shift
92 259F Letters shift

After letters shift After numbers shift
92 387F . . A -)
92 195F . . B . < |
92 835F . . C. .
92 67F . . D. tab
92 194F . . E - 3
92 898F . . F . - F
92 579F . . G . . =
92 7T71F . . H . apostrophe
92 514F . I . 8
92 834F . . J J
92 642F . . K. +
92 962F . . L . L
92 643F . . M.
92 7T70F . . N . N
92 578F . . 0. 9
92 2F. . P 0
92 66F . - Q. 1
92 258F . - R . 4
92 706F . - S . -
92 322F - - T . 5
92 450F . - U . 7
92 323F . -V <
92 130F . . W .2
92 451F . . X . -/
92 386F - - Y - . 6
92 899F - . Z - . X

To output any character k times, add 4(k - 1) to the address of the appropriate
order, k = 16.

-3.7-

K--Increment Add from Q

KOn Add -(Q)-2"27

39

to (A)

Kln Put-{(Q)-2 ~"inA

K2n If (Q) > 0, add -(Q)-2">?
to (A) -39
If (Q)<< 0, add (Q)+2
to (A)

, -39

K3n If (Q)=> 0, put -(Q)-2

in A -39

If (Q) < 0, put (Q)+2~

in A

39

K4n Add (Q)+2°7 to (A)

K5n Put (Q)42 > in A

Kén If (Q)= 0, add (Q)+2">?
to (A)
If (Q)<< 0, add -(Q)-2"
to (A) ’

39

K7n If (Q) = 0, put (Q)+2 >

in A L
If (Q)< 0, put -{(Q)-2
in A

39, 1/2in A

K9n Put-(Q)-2"

KSn If(Q)=_0, put
-(Q)-2"39+1/2in A
If (Q)< 0, put
(Q)+2-39 +1/2in A

KIn Put(QM2 >0 +1/2inA

KLn If (Q)=. 0, put
@+2°3%2 +1/2in A
If (Q)<_0, put
-(Q)-2-39 +'1/2in A

“(n) - 27

KAND F

F--Inc renient Add

39

is the digitwise complement of (n).

39

FOn Add-(n)-2""" to (A)

Fln Put-(n)-2"°"inA
F2n If (n) = 0, add -(n)-2" 3
to (A) .39
If (n) << 0, add (n)+2 '
to (A) :
-39
F3n If (n) = 0, put -(n)-2
in A -39
If (n) < 0, put (n)+2
in A

39

F4n Add (n)+2"°7 to (A)

F5n Put (n)+2~ 39 in A

Fén If (n)> 0, add (n)+2 >7
to (A) -
If (n) < 0, add -(n)-2
to (A)

39

F7n If (n)= 0, put (n)+2" 39
in A -39
If (n) << 0, put -(n)-2
in A

39 4 1/2 in A

F9n Put-(n)-2

FSn If (n)= 0, put
-(n)-2"39 +'1/2in A
If (n)<< 0, put
(n)+2-39 + 1/2 in A

39

FIn Put(n)+2" "’ +1/2inA

. FLn H (n)z 0, put

(n)+2-39 + 1/2in A
If (n) < 0, put
-(n)-2"39 +1/2in A

FFn Stop. Used to indicate
failure in program check.

The term 'increment add' means the right-hand address of n is increased

by 1 before the '""add' order is executed.

N: ‘S: Jand L

N--Change Memory Banks

NOn Go to next order

N2 n Change the, bank number from which operands are coming to that indicated by
the last two bits of n '

N4 n Change the tank number from which orders are coming to that indicated by
the last two bits of n ;

N6 n Change both bank numbers from which operands and orders are coming to

that indicated by the last two bits of n

N1 o 0 N9 NO

N3({ . i N2 NS { . Clear/f.’ N2

N5 Clear A, then execute N4 NJ insert 1 in A, N4

N7 N6 NL execute N6

L.--Add S--Add from Q

LLOn Subtract (n) from (A) SO0 n Subtract (Q) from (A)

Lin Put -(n)in A Sln Put -(Q) in A

1.2 n Subtract [(n)| from (A) S2 n Subtract {{Q)| from (A)

I.3n Put -|(n)] in A S3n Put - [{Q)| in A

IL4n Add (n) to (A) S4 n Add {Q) to (A)

L5n Put(n)in A o S5n Put(Q) in A

L6n Add I(n)l to (A) Sén Add [(Q)l to (A)

L7n Put I(n)l in A S7n Put [{Q)] in A

1L9n Putl/2 - (n)in A ~ S9n Putl/2 - (Q) in A

LSn Put 1/2 - l(n)! in A SSn Put 1/2 - |(Q)I in A

LIn Putl/2+4(n)inA SIn Putl/2 +{ Q) in A

LLn Put 1/2 + I{n)| in A SLn Put 1/2 + [{Q)] in A
J--Extract

JO n If corresponding digits of (n) and (Q) are both 1, put 1 in that place in Q;

otherwise, put ‘O
Jln Clear A, execute JO n
J9n Put 1/2 in A, execute JO n

JO forms the logical product of '(n) and (Q).

-3.9-

00
01
09
OF

10
11
19

20
21
22

23

24
25
26
27
29
25
2J
2L,
3V
40
41
42
43
46
47
4S
4L,

50
51
59

66
67
6L

70
71
72
73
74
75
76
77
793

N2
N4
N6

7S,

‘MISTIC ORDER CODE

Shift AQ left n € 63 places.
A=0, shift AQ Ieft n places.
A=1/2, shift AQ left n places.
Final stop

Shift AQ right n places.
A=0, shift AQ right n places.
A=1/2, shift AQ right n places.

STOP, transfer control to n'.
STOP, A=0, execute 20.
Transfer control to n'.

A=0, transfer control to n'.-
STOP, transfer control to n.
STOP, A=0, execute 24.
Transfer control to n.

A=0, transfer control to n.
STOP, A=1/2, execute 20.
A=1/2, transfer control to n'.
STOP, A=1/2, execute 24.
A=1/2, transfer control to n.

A?O, do 2V A< 0, go on.

(A) —N(n).

0—=A and N(n).

Replace address of n' by A.
A=0, execute 42.

Same as 42 except I..H. order.
A=0, same as 43 except L..H.
A=1/2, 0 to n' address digits.
A:l/Z, 0 to n address digits.

N(n)—=Q.
A=0, N(n)—Q.
A=1/2, N(n)—Q.

Divide AQ by N(nj}, rounded
Divide AQ by N(n), not rounded
A=1/2, execute 66

Nn) Q +23% A—=a0.

-N(n) Q—=AQ.

-IN(n)| Q + 2-39 A—AQ.
-IN(n)] Q—AQ.

N(n) Q + 2-39 A—AQ.

N(n) Q—>AQ.

IN(D)I Q +2-39 A—AQ.

IN(n)| Q—AQ.

7J, 7L same as 70, 72, 74, 76
except A = 1/2.

Change OPERAND bank.
Change ORDER bank.
Change BOTH banks.

-3.10-

80
82
81, 383
8S

91
92
94
96

KO

Kl

K4

K5

K9

KJ

K2, K3

Read n/4 numbers from tape.
Punch n/4 numbers on tape.
A=0then 80, 82.

A=1/2 then 82.

Read 1 tape character .
Punch 1 tape character.
Read from card.

Punch on card.

-Q-2-39+Ato A
-Q-2-3%to A. {complement)
Q+239+AtoA.

O+ 2-39%t0 A.

-Q -2-39+1/2to A.
0+2°39+1/2t0A.

, Kb, K7, KS, KL same as KO,
Kl, K4, K5, K9, KJif Q> 0.

‘Same as K4, K5, KO0, K1, KJ,

SO
S1
S4
S5
S9
SJ
S2, S3,

JO
J1
J9

FO
Fl
F4
F5
Fo
FJ

K9 if Q< 0.

A -QtoA.

-Q to A.

A +QtoA.

Q to A.

1/2 - Q to A.

1/2 + Q to A.

S6, S7, SS, SL same as SO,
Si, S4, S5, S9, SJ except
use |Ql.

Logical Q. N(n)—/Q.
A=0, execute JO.
A=1/2, execute JO.

-N(n) - 2-39 + A to A.
“N(n) - 273%t0 A.

N(n) + 2739 + A to A.
N(n) + 2~ to A.

“N(n) - 2739+ 1/2 to A.
N(n) + 2739 + 1/2 to A.

F2, F3, F6, F7, FS, FL same as FO,

Lo
L1
L4
L5
L9
LJ

Fl, F4, F5, F9, FJ, if N(n)
>0. Same as F4, F5, FO, F1,

A - N(n) to A.
-N{n) to A.

A + N(n) to A.
N(n) to A.

1/2 - N(n) to A.
1/2 + N(n) to A.

.2, L3, L6, L7, LLS, LLL same as L0,

L1, L4, L5, L9, LJ except
use | N(n)|.

CHAPTER 4

- DECIMAL ORDER INPUT

In the description of the make-up of orders, the ""address' was described as
a decimal number. Since MISTIC is a binary machine, obviously this decimal
address must be converted to binary before entering the machine. This can, of
course, be done by the programmer by converting all decimal addresses to
sexadecimal, each of which is read as four b'its by MISTIC.

Fortunately, this is not always necessary, due to a special iriput program
called the Decimal Order Input (DOI). V

The Decimal Order Input is a program which, when read into and stored in

MISTIC, reads in any program written in a prescribed format, changes the orders

to ordinary MISTIC format, and stores this program in specified locations in the

machine.

4.1. Format for Words to be Input by the DOI

The preécribed format in which a program must be written to be acéepted by
the DOI involves the following: ' | |

1) Every half word must contain a two-digit op code whether the word is an
order pair or a number. ,

2) Every address (second part of each half word) must be a decimal number,
of zero or more digits.

3) Every half word must terminate in one of the six symbols: K, S, N, J,
F or L.

The required format for a word is thus

2 digit
op code

decimal
digits

1 digit
term.

2 digit
op code

decimal
digits

1 digit
term.

Figure 4.1.1

To illustrate:

L5 150F L4 200L
50 F 26 200F

are order pairs in acceptable DOI format. The termination symbols are not stored

but are used by the DOI.

4.2. Directives

A directive is a half word (one order) which is read by the DOI and

executed but not stored in memory.

-4.1-

Terminations N and K indicate that the order is a directive. These orders

must follow a right-hand order. The first order following a K directive is treated

as a left-hand order. A waste order must be inserted if necessary to insure that
the directive does follow a right-hand order.

A directive of the form

op coder m K
causes the following to occur:

1) The next order pair read from tape by the DOI is stored at address m,
with the following words stored in sequence.

2) In following orders which are terminated in L, the address is increased
by m before the word is stored.

Both the sequential storing and the address increase will continue until a
new directive (K'or N termination) is encountered. The particular K-terminated
order usually is 00 mK'although any op code will work.

A directive terminated by N will usually have an unconditional transfer order
(20, 22, 24 or 26) as the op code, the address associated being the address of the
first order to be obeyed in the program. This directive indicates the end of the

input and transfers control from the DOI to the program now stored in the computer.

4.3. Word Assembly by the DOI

The format of orders permits the DOI to separate words into order pairs,

since each decimal address is terminated by a letter and since each op code contains
exactly two digits.

A word is assembled by the DOI in the following manner: two digits (op
code) are read from tape, shifted to the right-hand order op code position (bits 20
through 27), and placed in location 1. The decimal digits are read and converted
to binary. These digits are stored in location 0 during and at the end of the
conversion process. When the terminating symbol is read, the address in location
0 is added to‘the op code in location 1, the whole stored iﬁ 1. At this point, the
next step depends on the terminating symbol. The effect of the various terminating
symbolsl is given in tabulated form in Table 4.3.1.

It should be noted that during order assembly, when a left-hand order has
been assembled and stored, it is stored in the _I_'_i__g_}i_t half of 1 and location n.
Location 1 always contains two orders, but it is only after a right-hand order has
been assembled that the two orders in location 1 constitute a proper order pair.
Also, only after a right-hand order has been assembled does the memory location
being loaded contain a complete word or order pair. If an N directive follows a

left-hand order, control is sent to the right-hand side of 0 which contains the

-4.2-

address of the directive with a 00 op code. Hence if the left-hand order in 1 does
not stop the computer, control will then pass to the right-hand side of 1. However,

the order preceding the N directive will not be stored in the correct place.

Te rminating
Symbol Procedure

K............. Address is stored in location 2 and next order
read.

F.o...o.oooooo... Address is added to op code, whole stored in
location 1 and also in the desired address n.
This address is determined by the address in
the last K directive plus the number of orders
betweenthis directive and the present order.

If the order is a left-hand order, the
word in location 1 is shifted 20 places left,
the next order is read and assembled and
added to the contents of 1, the whole word
stored in the proper location. The store
address is raised by 1 at the end of each order
pair. :

I The address is increased by the number in
location 2, determined by the last K directive,
and the procedure under F followed.

N.....o.o....... The order in the right side of 1, which is the
order terminated by N, will be executed. This
is the order which transfers control from the
DOI to the stored program.

N The general procedure under F is followed in
this case except that the address is multiplied
by 239/1012 pefore adding to op code and
storing. This is a decimal fraction input and
is discussed in Section 4. 5.

S. oo The termination S is always followed by a
digit--one of the digits 3, 4, ..., K, S, N,
J, F, L. This termination causes the contents
of the location whose address is the particular
terminating digit to be added to the order
address before storing. This termination
provides for preset parameters and is discussed
in detail in Section 6. 4.

Table 4.3.1

4.4, Fixed and Relative Addresses

The F and L terminations in the DOI format are used to distinguish

between a fixed address and a relative address.

A fixed address is an address which is a definite memory location or a

fixed number and is designated by an F termination.

-4, 3-

A relative address is one which is not a memory location number but which

is transformed into a memory location number during the read-in of the program.

In particular, the relative addresses in a program written for DOI input, spécified

by a terminating 1., refer to the order number in the program starting with OL for

the first order,

11, for the second order, etc.

For example, consider the following sequence of orders, where the addresses

underlined are the ones different for the different methods of writing the program.

100)
101)

102)

L5 200F
L4 300F
40 400F
L5 100F
L4 105F
40 100F

The same program beginning at location 14 would be:

14)
15)

16)

L5 200F
L4 300F
40 400F
L5 14F
L4 19F
40 14F

Written using relative addresses this program would be:

0)
1)

2)

(The zeros in orders 1 and 2, i.e., L5 0L and 40 0L, need not be inserted.

and 40 L suffice.)

L5 200F
L4 300F
40 400F
L5 0L
L4 5L
40 0L

L5 L

An obvious advantage of relative addresses is that it is unnecessary to

decide where a program or part of a program is to be stored in the computer before

the program is written. Relative addresses also facilitate writing a program in

parts, to be éombined later into a complete program.

4.5. Input of Decimal Fractions and Integers

The DOI forms an address from the decimal digits on tape and adds that

address to the op code.

into the sign digit.

This address could be as large as 2

Thus, any positive integer can be input by the DOI as n x 2

39 _ 1 without getting

-39

by letting the left-hand order and the right-hand op code be zero and the right-hand

address be n, with terminations F on both orders.

Thus,

39

will cause 520 x 27”7 to be input.

Since numbers are input as n x 2

00 F 00 520F

39, a 12-digit right-hand address smaller

-4.4-

than Z39 =5.5x 1011 can be converted to a decimal fraction by multiplying it by
239/101‘2., The terminating symbol J causes this multiplication to be effected. For
example,

00 F 00 2765 0000 00007
causes 0.2765 to be placed in the memory in binary form.

Since .239 = 5.5x 10“, positive fractions not greater than .5 can be input
by the DOI in this manner. To input decimal fractions in the range .5<d<]1,
replace the left-hand op code by 40. Thus,

40 F 004dJ
will cause 1/2 + d to be input.

To input negative decimal fractions, the op codes 80 and NO may be used.
Since 80 F represents -1 and NO F represents -1/2, the orders

80F 00dJ
and NOF 00dJ
will cause -1 + d and —1/*2 + d, respectively, to be input. Thus, -.2376 is input by
NO F 00 2624 0000 0000 J
-. 7862 is input by
‘ 80 F 00 2138 0000 0000 J
and . 7765 is input by
40 F 00 2765 0000 0000 J

Both 6p codes must be included and terminating zeros, but not leading zeros.

Thus, the number .003769 will be input by
00 F 00 37 6900 0000 J

Table 4.5. 1 shows the relationship between the range of the number, the op

code, and the right-hand address digits.

If range of decimal The DOI format Where w is found
‘number B is is by
0 <B<1/2 00F 00 wJ w=B. 10/%
1/2< B< 1 40F 00 wJ w = (B-1/2) - 10!%
-1 £ BL -1/2 80F 00 wJ w=(1+B) - 10'% or
| (1-1B]) - 102
-1/2£ BL 0 NOF 00 wJ w = (1/24B) - 102 or

(1/2-]B|) - 1012

Table 4.5.1

Use of the J termination to input decimal fractions is not recommended for

more than a few numbers. Special input programs are available when large

-4, 5-

amounts of data are needed. (See Chapter 6).

The use of the remaining termination, S, will be discussed in Chapter 6.

-4.6-

CHAPTER 5

NON-ITERATIVE AND ITERATIVE PROGRAMMING

Use of the order code to construct a program unit is a relatively simple
matter. The best way to describe the process of program construction is by

examples.

5.1. Non-iterative Programming

Consider the problem of constructing a program to compute the quantity
ab+c=4d
Written first in terms of the quantities a, b and ¢ rather than addresses, this

program would be

50 a Put a into Q

77 b Form a-b in AQ (rounded product)

L4 c Add c to most significant part of AQ in A
40 d Store d

If the quantities a, b and ¢ are now assumed to be in locations 100, 101 and 102

and the answer is to be placed in 103, the program in DOI format will be

0) 50 100F (100)=a—Q
77 101F a-b—>AQ

1) L4 102F a*b + ¢c —A
40 103F a‘b + ¢c—=103

This program, written in DOI format, is numbered with the first order given the
number 0. The actual address of these orders in MISTIC would be determined by
a K directive.

As a further example, consider the same problem--ab + ¢ = d--where
a=.3276, b= .8542, and c = -.2864. These numbers are to be input as part of
the program, the whole to be written in DOI format to be stored at memory
location 96 and following. The answer is to be stored in 200. The program is

as follows:

00 96K
0)50 3L a—=Q
7J 4L, ab—=AQ
1)1L.4 5. abt+tc—=A
40 200F ab +c—=200
2)0F F Stop
OoF Waste
3) 00 F 00 3276 0000 0000J .
4) 40 F 00 8542 0000 0000J .¢Constants
5) NO F 00 2136 0000 00007 .
26 96N Stops input, starts execution
of program
Table 5.1.1

-5.1-

5.2. Iterative Programming--No Changing Addresses

A somewhat more difficult but much more useful type of programming is

made possible by the coritrol transfer orders. Use of these control transfer orders
permits the construction of loops, by means of which one set of orders may be used
for any number of iterations, with or without alteration.

Such an iterative program involves a counter, which may be either a
constant entered for the purpose or an order which has a changing address. In
either case, a constant, usually a 1 in either the 19th or 39th bit position, is

required for decreasing or increasing the counter. As an illustration, consider the

following examples, 10
Example 5.2.1. Construct a program which will form le a*, where a, a

number in the range -.1<a< .1, is in address 100. The result is to be stored in

address 101.

Solution: Constants 8 x 2_39 and 1 x 2_39 are input for counting. The

program is as follows:

i) L5 100F a—=A
40 101F a—101
2) 40 F A——=0 (working space)
50 100F a—=Q
3) 77 F a-ai"t —=AQ
40 F al —=0
. i-1
4) L4 101F at+ > af—sA
' x=1
i X
40 101F > at —101
x=1
5) L5 8L Counter to A
L0 9L Decrease counter
6) 40 8L Restore counter
32 2L Loop if counter is > 0
7y OF F Stop if counter is < 0
OF F Waste 9
8) 00 .F 00 [8]F 8 x 2 ~’--counter
9) 00 F 00 1F 1 x 2739 _constant
Table 5.2.1

In order to assure that the counter is properly set at the beginning of the
loop, it is good practice to make all loops self-restoring. In the above program,
this will involve adding an order at the beginning and a constant at the end, namely,

0y L5 10L and 10) 00 F
40 8L 008 F

Another counting method, using the order F5 n, is illustrated in Table 5. 2.2,

-5.2-

which is another program for the problem of example 5.2.1.

0) 41 9L Clear counter
L5 100F a—-sA
1) 40 101F a— 101
40 F a—0
2) 50 100F a—=Q
3 F a"al'_l——bAQ
3) 40 F al—=0
L4 101F i x o
4) 40 lOlF}, L et e A=l
: x=1
F5 9L
5) 40 SL c, i—=9
1.0 8L P c,+1-(9—A
6) 36 7L Transfer control to 7L
26 2L Reloop if c; + 1<¢g
7 UF F Stop when c, + i =9
OF F Waste
8) 00 F 00 9F
9) 00 F 00 F

Table 5.2.2

5.3. Iterative Programming--Changing Addresses

A second type of loop is one in which some addresses are changing. In the
following example, the loop has been made self-restoring and a changing address is

used as a counter.

~Example 5.3.1. Construct a self-restoring program which will evaluate the
i2 . ‘ ,
poly‘nomial Zo aixls where the a, and x are assumed to be scaled so as to assure
i- :
that the sum lies always in machine range, i.e., between -1 and +1. The ai's are
stored in 101, ..., 113, x in 100, and the final answer is to be in 99. Use a nested
form of factoring. -

Solution: Using the form

12 .
1 - .
i_iai‘x = [ma-[([(aizx +ag)x + a10]X + ag)x + a8]--- + al]x +a,
b
= (S X+ an, L)
720 12-j 11-j

‘and S S1 X + all—j

12-j-1 7
for j=0, 1, ..., 11

the desired program might be the following:

-5.5%-

0) L5 9L
40 3L Preset order 3
1) L5 113F} a.,—0, workin
40 F 1277 g space
2) 50 F 81,50
77 100F SlZ-'jX —=AQ
3) L4 [l12]F Slz_j_l—>A—>O
40 F
4) L5 3L
LLO 8L Decrease address in 3
5) 40 31,
L0 7L Test for end
6) 36 2L Loop if (A) > 0
OF F Stop if (A)< 0
7y L.4 101F
40 F Test constant
8) 00 IF}
00 F Constant
9) L4 112F
40 F , For presetting order 3
Table 5.3.1

In this program, the order pair at 3L with a decreasing address was used
as the counter with the test constant in 71.. Using a changing address in this
manner eliminates at least one order pair from the program.
| When writing a program which has several changing addresses, it is
sometimes difficult to write the program with the ""housekeeping'' or program-
res’toring‘ orders at the beginnihg of a program without upsetting the order numbers.
This difficulty may be avoided by making the address-setting orders into a
separate program part, with its own 00 mK directive and with the last order a
control transfer to the main program. The N directive will then send control to
the address-setting program or to the first of a sequence of orders in the main

program which, in turn, sends control to the address-setting routine.

-5.4-

CHAPTER 6

SUBROUTINES

A problem to be programmed may often be broken into several semi-
independent steps, each of which can be programmed separately. Thus, the
programmer is able to concentrate on one step at a time and to test each part of the
program separately before incorporating it in the total program.

Since certain computations are common to many problems, programs can be
prepared for these computations and a program used whenever a particular
computation is called for. Such programs are called routines, or subroutines when
used as part of a larger routine or program. The collection of routines and
subroutines which is available for use on the MISTIC is called the Library of
routines. A complete listing of MISTIC library routines is included at the end of

this chapter.

6.1. Types of Routines in the MISTIC Library
The Routine Library for MISTIC consists of four types of routines: complete

programs, open subroutines, closed subroutines, and interpretive routines.

A complete program is just what the name implies--a program which will

perform a complete set of operations and for which the user need supply only a data
tape and perhaps a parameter tape.

An open subroutine is a set of orders which performs a certain operation

and which may be inserted at an appropriate place in the program.

A closed subroutine is also a set of orders which performs a specified

operation but which is not inserted in the program but placed at some arbitrary
section of memory. Control is transferred to the closed subroutine by a control

transfer order in the main program or master routine.

The closed subroutine is probably the most useful since control may be
transferred to the subroutine many times in a particular program, either as one

part of a loop or by separate instructions.

6.2. Entry into and Exit from a Closed Subroutine

To be useful, a closed subroutine must be written in such a way as to be
applicable in a variety of programs. The closed subroutines in the MISTIC Library

are entered by means of two half-word orders, called a standard entry. These two

orders are:

p) any
50 p

p+l) 26 m m is the address of the first order
any in the subroutine

-6.1-

The first order puts the order 50 p in the right-hand half of Q; the second
order transfers control to the subroutine. These two orders must be located in the

right-hand half of one word and the left-hand half of the following word even if a

waste order is required to do so.

Any variation of this standard entry in a library subroutine is explained in
the program description.

Control is automatically transferred back to the master routine by the
subroutine. This control transfer is usually accomplished by the two orders in the

subroutine

K5 F
42 n L

where n is the number of an order in the subroutine which contains, in the right-
hand half, a control transfer order

' - 22 ()
The K5 order puts 50 p+1 in the right-hand half of A; the 42 n order puts p+l in the
address part of the 22 order in the right-hand half of m+n (m is the location of the

first order of the subroutine). This process is called "planting the link''.

6.3. Placing the Argument

Since a subroutine usually performs an operation on one or more quantities,
these quantities must be provided by the master routine. If only one such quantity
is required, it is usually placed in A before entry into the subroutine. In this case,
the K5 order is preceded by a 40 q order to preserve the quantity in A, which would
otherwise be destroyed by the K5 order.

6.4. Parameters--Program and Preset

Many subroutines require certain parameters. For example, a routine
which finds the nth root of a number, where n is any positive integer, requires
that the number n be supplied by the master routine. Or a subroutine may operate
on more than one quantity, so that either the number of such quantities or the
address of the first of a sequence of such quantities must be supplied. There are
two standard ways of supplying parameters.

A program parameter is specified in one of the orders in the master

routine. If only one such parameter is required, it is specified in the first half of
the word containing the 50 order in the standard entry to a subroutine. For
example, Library Routine R2 is a closed routine for replacing (A) by its nth root.

The entry to R2 is

p) 50n program parameter
50 p
pt+l) 26 m

-6.2-

A second method of supplying parameters leads to what are called preset
parameters.

A preset parameter is one which is usually set during the input of the
routine. The S termination symbol of the DOI is used for this parameter setting.
The parameter, which may represent either a constant or an address, is placed by
the master routine in one of the addresses 3, 4, ..., K, ..., L. The subroutine is
written with kS3, kS4, ..., as the address of the orders which use the constant or
address thus placed. As the program is read in, the kS3, kS4, ... will be
replaced by the constants at address 3, 4, ... plus k. Thus, the order L5 S3 will
go into the computer as L5 100 if (3) is 100, whereas the order L5 6S3 will go into
the computer as L5 106 if (3) is 100.

6.5. Examples of Closed Subroutines

n
Example 6.5.1. Write a closed subroutine which will form Z aibi in A.
i=0

Solution: Let the address of a, be specified by S3, and the address of b0 by
S4. The Tprog‘ram parameter is n. On entry to the subroutine, 50 n 50 P is in Q.

The subroutine: is

0) K5 F
42 9L Link , :
1) 46 12L Program parameter--for test
L5 10L '
2) 40 3L Preset order 3L
41 F Clear 0--working space
3) 50 S3 a.b. |
77 S4 =Y
4) L4 F > a;by + a;b,—>0
40 F j=0
5) L5 3L
L4 11L Raise address in 3L
6) 40 3L
L5 12L
7) LO 13L Test constant
40 12L
8) 36 3L N
L5 F > a.b,—=A
o ii
9) 22 9L Waste
22 ()F Set by OL
10) 50 S3
7J S4 For preset 3L
11) 00 1IF
00 1F Constant
12) 00 (n)F o
00 F Set by 1L
13) 00 1F
00 F Constant
Table 6.5.1

-6.3-

" The following must be on the program tape at some point preceding the

subroutine:
00 3K
00 F ‘OO‘mlF my is address of a
00 F 00 mZF m, is address of bO

Example 6.5.2. Write a program to compute the cube root of each of a

sequence of six numbers:

+.127632

-. 027543

-.987653

+.002764

+.756532

-.000376
The numbers are to be read in by Library Routine NZ. Library Routine P1 is to be
used to print out the numbers and the answers. Numbers are to be printed as six
digits with a space after the first three. The answers are to be printed as nine
digits with a space after the first digit. The print format is to be

‘ "~ number 2 spaces answer
number 2 spaces answer, etc.

Descriptions of the three l‘ibrary routines needed are given at the end of the chapter.

Solution:

The Tape Format

DOI

00 10K
Master Routine
00 150K
N2

00 176K
Pl ‘
- 00 205K
R2

24 10N
4127632
-027543
-987653
+002764
+756532
-000376N

Table 6.5.2

-6.4-

Master Routine
0) L5 16L N
42 6L Preset changing orders
1) 42 3L
92 131F Carriage return
2) 50 100F
50 2L Entry to N2
3) 26 150F
L5 [100]F
4) 52 63F : ~
50 4L Print number
5) 26 176F '
92 967F Print 2 spaces
6) 22 6L Waste
L5 [100]F ‘
7y 50 3F Program parameter
50 7L
8) 26 205F Entry to R2
26 9L Waste
9) 52 91F
50 9L Print answer
10) 26 176F
92 131F L.F. and C.R.
11) 92 515F Delay
F5 3L
12) 40 3L Increase address in 3L and 6L
42 6L
13) L.LO 15L
32 14L Test for end
14) 22 3L Loop
OF F
15) 26 150F
L5 106F Test constant
16) 26 150F
L5 100F Constant for preset changing orders

Table 6.5.3

Notice the use of the 92 131F order in 1L.. This assures that the carriage is in the
proper position at the beginning of print-out. In address 11L, the order 92 515F
after the 92 131F is used to allow time for the carriage return to be completed

before the next print-out starts.

6.6. Interpretive Routines

The fourth type of routine in the program library is the interpretive routine.

An interpretive routine is a routine which reads an order which is not in

MISTIC format, then interprets and executes the order before reading the next

order. The orders, or pseudo-orders since they are not orders found in the

ordinary MISTIC order code, may be either on tape or in memory. The operations

performed in executing the pseudo-order are performed by obeying certain blocks

-6.5-

of orders in the interpretive routine which are orders in the regular MISTIC order
code.

An interpretive routine is commonly entered by a standard entry.
Following the entry the master roﬁtine must have the pseudo-orders to be read by
the interpretive routine. A special pseudo-order will transfer control back to the
master routine.

Interpretive routines may be used in programs which involve actual
operations on elements which are not numbers stored in the usual way but may be
numbers stored in some special form. The most common application is to
numbers stored in 'floating point" and to complex numbers.

Interpretive routines are also used to permit programs written for one

computer to be read and executed by a different computer.

-6.6-

6.7. Library Routine N2

TITLE .

TYPE

NUMBER OF WORDS .
PURPOSE

TEMPORARY STORAGE
ACCURACY

DURATION
DESCRIPTION .

. Input a Sequence of Decimal Fractions
. Closed with one program parameter
. 26

. To read a set of signed fractions and store them in

successive locations

. 0,1, 2

-40

.t 2
. 4 ms per digit (input time)

. This routine at location p is called into use by the

orders

-- nF n is the first of the sequence
50 qF of locations at which the
q+l | 26 pF decimal fractions are stored.

It reads a sequence of decimal fractions from the tape. Each fraction is punched on

the tape as sign, K(+) or S(-), followed by up to 12 decimal digits; the final fraction

in the sequence is terminated by an N, J, F or L. When this subroutine reads one

of these terminating symbols, it returns control to the main routine. Upon leaving

-39

this routine, 0 x 2 , 1 x

2—39’ 2 % 2—39

39

, or 3x 2 ~71is left in the accumulator

according to whether the terminating symbol is N, J, F or L.

- This program works by bringing in the decimal fraction ags @15 @y, -0-, @

one digirt at a time. Now this number ags ays 2y,

p
., a_=N_/D_where a, is the
p PP 0

is the sign of the number and p < 12.

When the i+1 digit is read, we have stored Di/Z = Di_l/z x 10 in location 1
and M. = N. =-D./Z in location 0 where N. = 10 N.-1 +a.. D /2:5, M, =a, - 5,
i i i i i i 0 0 0

N, =a,.

0 0

-6.7-

6.8. Library Routine P1

TITLE .

TYPE

PURPOSE

NUMBER OF WORDS .
TEMPORARY STORAGE
ACCURACY
DURATION.
DESCRIPTION .

. Print One Number Fractional or Integer in a Manner

Determined by a Program Parameter

. Closed with one program parameter. If the routine

starts at x, then it is called into use by the orders

P XY dF
50 pF

p+l | 26 xF

. To print decimal integers or fractions, with or

without sign, to a specified number of places with
simulated decimal point

. 28

. 0,1, 2

. Will print a fraction to 11 significant figures
. Determined by punch speed

. When the subroutine is called into use, it punches one

space and then A in a manner determined by XY dF.

If X = 5, a minus sign is punched if A is negative,
a space is punched if A is positive.

If X = J, a spaceis punched.

If Y = 0, the integer A x 2~

39

is punched.

If Y = 2, the fraction A is punched correctly rounded off.

The number of digits punched and the location of extra space (decimal point)

is determined by d = q x 10 + s.

lfsf_lo

1<qg< 11

q is the number of digits punched. s is the number of digits punched before the

extra space; e.g., 52 95F would cause the fraction in A to be punched to 9 figures

with a space after the 5th figure. A minus sign would be punched if necessary.

JO 105F would cause the integer in A to be punched to 10 figures with a

space after the 5th figure.

JO 33F would cause the integer in A to be punched to 3 figures followed by

one space.

-6. 8-

6.9. Library Routine R2

TITLE Integral Root Al/p
TYPEClosed with one program parameter.
PURPOSE To calculate the pth root of a fraction when p is an
integer.
NUMBER OF WORDS 24
TEMPORARY STORAGE . . 0 -3
ACCURAGCY 12739
PARAMETER If the "Integral Root" subroutine starts at location t,
then it is entered (with A in the ac'cumula_to:r) by the following:
S 50 pF
50 sF
s +1 I 26 tF
DURATION. Negligible for the special cases A = 0 and |A|>p x 2739
A table of typical times (in milliseconds) follows:
p/A 1 .2 .3 .5 .8
2 35 30 35 25 30
3 55 45 40 40 30
4 55 60 50 50 40
10 120 105 120 105 90
For large p and small A the times are considerably
greater.
DESCRIPTION. This routine computes the pth root {p, a positive

integer, 2 <p <1023) of a 39 binary digit real argument A, -1 <AL 1 If

|A|>1 -px 2"39, then i’(1-2_-39) is taken as Al/po Another special case is A = 0,
in which case A1 P_ o, Otherwise, Al P is found by Newton's iteration method in
which

-39

X 1 -2

i

0
X =%, 4 l/p[(A/an_l) - xn]

1/p

is assumed when

1/p [(A/x P7h - x]>0.

If p is even, of course, A must be non-negative and in this case the non-negative

Convergence of x to A

real pth root is found. At the end of the routine the accumulator contains the

signed pth root of A.

-6.9-

6.10. MISTIC Library Categories

Programmed Arithmetic

A. Floating Point
B. Other programmed arithmetic

Code Checking

C. Post Mortem checks
D. Dynamic code checks

Integration

E. Quadrature
F. Ordinary differential equations
G. Partial differential equations

Operations on Functions

H. Zeros and minima

I. Interpolation

J. Operations on polynomials and power series
K. Approximations and statistics

Linear Algebra

:Li. Simultaneous linear equations
M. Other operations on matrices and vectors

Input and Outplit

N. Number input
O. Scope output
P. Printing and punching

Mathematical Logic

Q. Mathematical logic

Particular Functions

R. Roots and fractional powers

S. Logarithmic, exponential and hyperbolic functions
T. Trigonometric functions

V. Other special functions

Organizational

W. Counting, sorting and selecting
X. Program preparation

Miscellaneous

Z.: Miscellaneous complete programs

-6.10-

6.11. MISTIC Library Index

Programs in the MISTIC library are derived from three sources. The

origin of a particular program is indicated by the program label as follows: a) an
M suffix, Michigan State University, b) an S suffix, SILLIAC library, University of
Sydney, and c) no suffix, ILLIAC 1i“brai'y, University of Illinois. Some programs
have been obtained from University of Illinois sources other than the ILLIAC library
itself and have been submitted to the MISTIC library, and these‘carry an M suffix
also.

The number in parentheses following the title indicates the number of words
in the program. o

Complete descriptions of any of these programs are available upon request

through the Computer Laboratory.

LABEL TITLE

Al Floating Decimal Arithmetic Routine (168)

A1M Standard Entry Floating Point Arithmetic (86)

A2M Floating Point Error Analyses (A1M) (600)

A3 Convert a Floating Decimal Number to Standard Form (27)
A3M Interpretive Routine Entered as a Closed Subroutine (524)
A4 1.7 Precision Floating Binary Arithmetic (280)

A4M Simply Programmed Computer for Amateurs (complete)
A5 Complex Number Arithmetic {248)

A5M Floating Point Complex Arithmetic (160)

A6 Floating Decimal Routine and Auxiliaries (467)*

ATS Semi-interpretive Floating Binary Arithmetic Routines (100)
B2 Complex Number Operations (54)

Cl Post Mortem Version of the DOI (37 + 25 of DOI)

CIM Plugboard Wiring Check (complete)

C2M Sexadecimal Post Mortem (complete)

C3 Print Signed Fractions and their Locations (31)

C3M Sexadecimal Input (Miniature Bootstrap) (4)

c4 Print Sets of Decimal Integers and their I.ocations (38)
Cc4M Sexadecimal Input Routine (6)

C5 Print Sets of Order Pairs and their Locations (32)

C5M Print Out Decimal Order Input

Cb6 Address Search Routine (23)

Cc6M Sexadecimal Card Post Mortem (37)

C9 Print Floating Decimal Numbers and Locations (36)
c1lz2s Post Mortem Version of Sum Checking DOI (X 12S) (74)
CAIM Print Set of Floating Point Numbers {A1M) (90)

Dl Check Point Code II* ‘

D1M Dynamic Trace (180)%*

D3 ‘Sequence Checking Routine (30)

D4 Control Transfer Check Routine (41)

D5 Iteration Counter (35)

DAIM Check Point Print Out {A1M)*

*See Description

-6.11-

LLABEL TITLE

El Integration of f(x) for Equal Increments of x (45)

EZ2 Integration by Simpson's Rule (Tabulated Values) (21)
E3 Integration by Simpson's Rule (Function Values) (38)
E4 Numerical Differentiation with Interpolation (103)

E5 Quadrature by Gauss' Method*

E6 Integration Over a Single Interval (32)

E6S Inverse La Place and Mellin Integration (64)

EAIM Floating Point Integration (Al) (27)
EA2M Integration in Floating Point (A1M) (67)

Fl Solution of a System of Ordinary Differential Equations (41)

F2 " Solution of a System of Differential Equations (126)

F3 Integration Second Order Differential Equations (40)

F4 'Numerical Solution of the Schroedinger Equation (complete)

F5 Integration of a System of Ordinary Differential Equations (60)
Fb6 Integration -- Differential Equations -- Control of Interval (129)
FAl Second Order Linear Differential Equation (Al)(101)

FA2 Solution of a System of Ordinary Differential Equations (45)

Gl La Place's Equation -- Liebmann Method (42)

G2 Poisson's Equation, Liebmann-Frankel Method (59)

H1 Inverse Interpolation, a Real Root of f(x) = 0 (33)

H2 A Search for the Real Roots of f(x) = 0 (80)

H3 Minimization of a Function of Two Variables (46)

H4 Minimization of a Function of Four Variables (75)

H5 Minimization of a Function of N Variables (89)

H6 Minimization of a Function of N Variables (46)

H7S Minimization of a Badly Conditioned Function (99)

HF1 Zero of a Solution of a Differential Equation (16)

11 Interpolation (51)

J2 Roots of a Polynomial (complete)

J3M Plot of P (jw)/Q(jw) (complete)

J4M Partial Fraction Expansion (complete)

KiM Frequency Distribution (complete)

K2 Correlations, Means, Standard Deviations, Covariances (complete)
KzM Multiple Correlation (complete)

K3 Least Squares (complete)

K3M D Statistic (complete)

K4 Intercorrelation of Scores Based on Paired Comparisons (complete)
K4M Analysis of Variance for Completely Randomized Design (complete)
K5 Autocorrelations (complete)

K5M Correlation, Means, Standard Deviation, Variance, Card Input
K6 Chi-squared (23)

K6M Chi-square for kx2Tables (complete)

K7 iterative Estimation of Communalities (complete)

K7™ Correlations in Logarithmic Scale, Card Input (complete)

K8M Sequential Multiple Range Test (complete)

K9 Product Moment Correlations, in Logarithmic Scale {complete)
K10 Calculate Autocorrelation of a Time Series (85)

K1l Quartimax Orthogonal Rotation of Factors (complete)

#See Description

-6.12-

LABEL

Li
L1IM
L3
1.4
L5
L7S

MO
MIM
M2
M2M
M3
M3M
M4
M4iM
M5
M5M
M6
M6M
M7
M7™™M
M8
M8M
M9
M9IM
M10
MiOM
Mll
MilM
Miz
Ml1zZM
MI13
M13M
Mi4
M14M
M15
MI15M
Mi6
M16M
M1i7
MI7"™M
MisM
M19M
M20M
M2 1M
MA1
MAIM

N1
NiM
N2
N3
N3M
N4
N4M

TITLE

Solution of Simultaneous Linear Algebraic Equations (83)

" Solution of a Set of Linear Equations {complete)

The Complete Linear Equation Solver {complete)
Half-precision Solution of a Set of n Simultaneous Equations (159)
Half-precision Automatic Linear Equation Solver (complete)

Solution of Linear Simultaneous Equations (compléte)

- Eigenvalues and Eigenvectors of a Symmetric Matrix (113)

Matrix Row and Column Deletion (complete)

Automatic Inversion of a Symmetric Matrix (complete)

Mass Production Matrix Multiplication with Rescaling (complete)
Automatic Eigenvalue-Eigenvector Program (complete)

Form Square Matrix from its Triangular Representation {complete)
Closed Eigenvalues-Eigenvectors (163)

Multiplication of a Matrix andits Transpose {complete)

Solution of Determinantal Equation A - \f = 0 {complete)
Triangular Representation of a Square Matrix {complete)

Matrix Multiplication {complete)

Add Columns to a Matrix {complete)

Principal Axes Factor Analysis (complete)

Matrix Transposition {complete)

Sums of Squares of Rows and Columns (complete)

Matrix Element Scaling {complete)

Square Root Factorization {(complete)

Form Matrix of Signed Numbers from Unsigned Numbers {complete)
Estimation of Communalities by Maximum ILikelihood

Square Root of the Elements of a Matrix {complete)

Matrix Multiplication (77)

Linear Equation Sclver; Error Analysis Routine ({complete)
Matrix Triangularization and Determinant Computation (complete)
Complex Determinant Calculator (94)

Linear Matrix Equation Solver and Matrix Inversion {complete)
Rescale M 13 Output {complete)

'Linear Matrix Equation Solver and General Matrix Inversion (115)

Real Determinant Calculators (74)

Linear Programming (complete)

Simplex Codes for Linear Programming Modified for Cj {complete)
Matrix Multiplication for Large Common Dimension {complete)
Simplex Code for Linear Programming Modified for b; {complete)
Post Multiplication of a Matrlx by a Vector {45)

Characteristic Polynomaial; N4 Method {complete)

Characteristic Polynomial; N + 1 Points Method (complete)

Form a Diagonal Matrix of Square Roots {(complete)

Iterating Eigenvalue - Factor Loading Program (complete)

Replace Diagonals of a Symmetric Matrix and Scale Output {complete)
Matrix Multiplication Floating Decimal Auxiliary (Al) (26)

General Matrix Multiply in Floating Point (A1M) (35)

Input One Number from Tape, Integer or Fraction (19)
Integer or Fraction Card Input, Variable Format (161)
Input a Sequence of Decimal Fractions (26)

Decimal Number Sequence Input Routine (21)

Card Input: Fixed Format, Variable Field Length (187)
Input a Sequence of Integers {17)

Card Input: Fixed Format, Uniform Fields (173)

-6.13-

LABEL

N5M
N8
N9
N10
N1l
N1iz2
N13
N13S
N14
NAIM
NAZM
NA26S
NPIM

Pl
P2
P3
P3M
P4
P4M

P5M

TITLE

Integer Card Input, Fixed Format (X2M) (185)

Read One Number from Tape, as Integer or Fraction (22)
Matrix Modifying Input (69)

Input a Sequence of Integers with Sum Check (36)

Input a Sequence of Fractions or Integers (25)

Infraput (39) ,

Input Sequence of Fractions, Having Same Number of Digits (21)
Input a Sequence of Fractions or Integers (49)

Input 2 Sequence of Integers (18)

Input a Sequence of Numbers for (A1M) (107)

Input One Floating Point Number (A1M) (58)

Input a Sequence of Decimal Numbers (A7S) (39)

Fraction Card to Tape Conversion in N2 Format (complete)

Print One Number Fraction or Integer (28)

Print Fraction with or without Sign to n Places (18)
Print Integer with or without Sign (20)

Card Output: Fixed Format (155)

Zero Suppression Integer Print (27)

Print Fraction or Integer (34)

Print One Number in a Parameter Set Layout (24)
Print Sequence of Fractions or Integers (45)
Single Column Print (14)

Letter Printing (32)

Tape Lettering (110)

' Decimal Order Print Routine (23)

Print Headings Interlude (8)

Rounded or Unrounded Print (18)

Single Column Print

Combined Integer Print (35)

Multiple Precision Integer Conversion (32)

Infraprint (56) v

Maximum Speed Fraction Print to Twelve Places (59)

Floating Decimal Print for Floating Binary Numbers (A7S) (57)
Single Column Prints from Successive Locations (18)

Output a Sequence of Numbers for (A1M) (60)

Logical Algebra Subroutine (87)
Logical Input Variable Subroutine (33)
Complete Circuit Analyzer (complete)
Single Circuit Analyzer

Square Root (-9)1/P
Integral Root A (24)

Fractional Power Routine (18)

Cube Root (15)

Reciprocal (17)

Fast Square Root (19)

Floating Decimal Square Root Auxiliary (Al) (16)
Square Root in Floating Point (31)

1.7 Precision Floating Point Square Root (A7S) (17)

Natural Logarithm (45)
Exponential (33)
Logarithm (14)
Exponential (21)

-6. 14-

LABEL

S5
S10S
S11S
S12S
S13S
SA2
SAZM
SA3
SA3M
SA5M
SA6M
SA6S
SATS

T1
T3
T4
T5

T6S
T7S
TA1l
TAIM
TAZ2
TAZ2M

Vi
vV
V3
V4
V5
V5S
vVé
V7
V8
V9

Wil
WIiM
w2

X1
X1IM
XM
X2S
X3
X3M
X4
X4M
X5M
X6M
X7
X7™
X8
X9
X10

TITLE

1/32 Natural Logarithm (36)

Fast Low Accuracy Logarithm Routine (20)

Fast Exponential Routine (28)

Integral of Exponential (65)

Fast Low Accuracy Exponential Routine (28)
Exponential Auxiliary for Floating Decimal (A1) (26)
Hyperbolic Sine and Cosine Auxiliary (A3) (18)
Natural Logarithm (A1) (30) ;
Natural Logarithm in Floatmg Pomt (AIM) (83)
Exponential (AlM) (84) -

Sinh and Cosh in Floating Point (A1M) (17)
Floating Binary Point Natural Logarithm (A7S) (31)
Floating Binary Point Exponentials (A7S) (39)

Sine, Cosine Subroutine (30)
Arctangent in Degrees (15)
Arctan X Subroutine (25)
Sine-Cosine Routine (21)

Fast Arcsine (10)

Fast Sine-Cosine Routine (30)
Inverse Tangent (36)

Sine Auxiliary for Floating Decimal (A1)(26)
Sine in Floating Point (AIM) (50)
Arc Tangent Auxiliary (Al) (48)
Arctangent Auxiliary (A 1M) (85)

Legendre Polynomials, Pp(x) (25)

Tchebyscheff Polynomials (15)

Generate a Sequence of Random Numbers (13)

Fourier Analysis (52)

Spherical Bessel Functions (59)

Fourier Analysis (complete)

Associated Legendre Functions (80)

Provide Sets of Random Numbers from 1 to N (complete)
Ordinary Bessel Functions (257)

Generate 40-bit Random Numbers (32)

Loop Cycling Control (21)
Decimal Scaling (32)
Word Sorting According to an Ordering Relation (25)

Decimal Order Input (25)

The Symbolic Address Input Converter (196)

650 Interpretive Routine (358)

Decimal Order Input with Sum Check (37)
Constant-listing Auxiliary (21)

Clear Memory (6)

Standard Subroutines (155) :

Decimal Order Input for Core Memory (32)
Decimal Order Input Format for DOI Core

Data Tape Check for K3M or MIM (complete)

Sum Check (11)

Card Bootstrap

Assemble Blocks (4)

Program Interruption Routine (without Sum Check) (34)
Program Interruption Routine with Sum Check (49)

-6.15-

LABEL

X1l

X11S
X128
X13S
X158
X168
XAl

Y 1M

Z2M
Z3M
Z4M
Z5M
Z6M

TITLE

Data Tape Checking for K2 and K9 (complete)
Periodic Sum Check (15)

Sum Checking DOI (41)

Tag Address Decimal Order Input (46)* .
Decimal Data Input (19) ,
Sexadecimal Program Dump with Sum Check (24)
Constant Listing Auxiliary (A1) (18)

Paper Tape Memory (30)*

Frequency Response of an R-C Coupled Amplifier
Ladder Network Analysis

Root Locus Plotter

Pulse Response of an R-C Coupled Amplifier (complete)
General Network Analysis for Passive Networks (complete)

*See Description

-6.16-

CHAPTER 7

SPECIAL CODING TECHNIQUES

This chapter deals with some elements of programming which were not
covered in earlier chapters as well as some special techniques which result from
particular orders or combinations of orders in the MISTIC order code. The chapter
is therefore made up of a number of relatively unrelated sections having to do with

operations which frequently arise in programming.

7.1. Interludes

An interlude is a computation performed during the input of a program, the

input being interrupted and then resumed.

A tape bearing a routine may contain an interlude which is placed in
locations which may later be used to hold the routine or data. When the words of an
interlude have been read, control is then directed to'the interlude by means of an N
directive, and the interlude is executed. Control is then transferred back to the
input routine and the rest of the program input. The purpose of an interlude is
usually to prepare some orders or constants required for the routine.

When the program is being read in by the DOI, input is resumed after the
interlude by transferring control to the left side of location 999. The first word on
tape after the interlude must be a K directi{ie, or Q must contain, in the right-hand
addresé position, the address at which the storage of the following routine is to
‘start. k

If, upon resuming input, it is desired to retain the last used K directive,

-39 in A. The

control should be transferred to the right side of 1014 with m x 2
next words on tape will be placed at m, m + 1, ... retaining the previous relative

address.

7.2. Some Special N Directives

The directive 20 1019N on a tape being input by means of the DOI causes the
computer to stop and has no other effect. Upon being started, the tape will continue
being read from where it stopped. This order cah thus be used to stop the computer
for inserting a new tape without a directive.

Other programmed stops are discussed in Section 8. 5.

The N directive which stops input and starts the program is, in its simplest
form, an order which transfers control directly to the desired order in the program.

If the address to which control is to be sent is not known, as for example in a

-7.1-

subroutine which may be located arbitrarily, use can be made of the way in which

the DOI operates to fix the address of the N directive. When a new order is read by
the DOI and placed in the right-hand half of location 1, the left-hand half of 1 always
contains the last previous order. If the last order pair before the N directive
contains, as its right-hand order, a control transfer to the first order to be executed,

written with relative address, the directive 26 IN will cause this control transfer to

be obeyed. For example,

p) --- 0 ---
OF F : :

pt+l) 22p+1 Waste or p+1) any
26 L 26 L,
26 IN 26 1IN

will cause the order 26 L to be executed since the contents of 001 are 26L. 26 1 at

this point.

7.3. Bootstrap Input

The Decimal Order Input is used to input other programs, but nothing has yet

been said about how this program’ itself is put in. The DOI is written in sexadecimal,
occupies locations 999 to 1023, é.nd is input by a bootstrap input routine. .

The bootstrap is itself a program, on tape, which is used in conjunction with
panel switches to put a three-word program into the machine. This three-word
program in turn causes the DOI to be read and stored.

By panel switches, the control counter is cleared to zero and the sexadecimal
equivalent of the order pair 80 40F 40 F is put in the order reglster, i.e., the
"bootstrap start' described in Section 2.4 is executed. The bootstrap program is as

shown in Table 7. 3.1; decimal equivalents of addresses are in parentheses.

80 028 (40)
40 001

80 028 (40)
40 002

19 026 (38)
26 000

80 028 (40)
40 [000]

1.4001

40 001

80 028 (40)
40 [3F6] (998)

Table 7.3.1

This program causes the three-word program shown in Tabie 7.3.2, with

decimal addresses in parentheses, to be stored and control sent to location 1.

-7.2-

This three-word program, in turn, causes the DOI tape to be read and stored in
location 999 and consecutive locations. The order pair

22 3LS (1019F)

00 001 (1F)
is the last order on the DOI tape and is stored at location 0. This order sends
control to the right side of 1019 and the DOI is started. If 20 3LLS 00 001 is used
in place'of 22 3LLS 00001, the computer will stop on the 20 3L.S. The black switch
then causes the DOI to be started. With this variation, the DOI need not be on a

program tape but may be read in separately.

0) L4 001
40 001

1) 80 028 (40)
40 [3F7] (999

2) 19 026 (38)
26 000
Table 7.3.2

The term bootstrap start is often used for tapes which are started by

setting the order register to 80 028 40 000 and the control counter to zero.

7.4. Use of Input and Output Orders

- If input orders are to be stored in memory by means of the DOI, the input
orders are written and entered as part of the program. The characters to be read
in responée to 80 n or 81 n must be on the tape :a,_fi?: the N directive which starts
the program.

Characters read ih by the 80 n or 81 n orders are interpreted as sexadecimal
characters. Hence, if a number is beingkinput by means of an 80 n or 81 n, that
number must be in sexadecimal. Likewise, if an order pair is being input by means
of these orders, the address as well as the op code must be in sexadecimal.

As noted in the tabulation of the 80 orders, these orders by-pass all
characters with a fifth hole. Therefore, if a fifth hole character is to be read, the
91 4 order must be used.

The output orders in the 80 series (82 n, 83 n, 8S n) will output numbers

from the computer as sexadecimal characters. These orders are convenient to

output a small number of intermediate results, such as the results of a sum check,
for example. The 92 n order, on the other hand, is used to output characters which
are predetermined by the programmer.

It is particularly important to note that all 80 and 90 orders involve shifts of

both A and Q. Hence, the contents of both A and Q are altered when these orders are

7.3~

used and if either (A) or (Q) is needed later, it must be stored before the 80 or 90
orders are used.

Use of the 92 n orders is illustrated in example 6.5.2. Use of the 80 n
orders is illustrated in the bootstrap discussion of Section 7.3. A second use of the
80 n order is as follows: if it is desired to make a 1, 2 or 3 place left shift of A
without shifting Q into A, one can use the order 80 1F, 80 2F or 80 3F respectively.
No input occurs and the input tape does notmove.

One use of the 91 4 order is where a fifth hole character is used as a

marker. Thus,

91 4F
36 kF

will read one character and test for fifth hole. If the character is a fifth hole
character, ay will contain a 1; if the character is a sexadecimal digit, ag will
contain 0. The 36 kF will thus transfer control to k if the character is a

sexadecimal digit and take the next order if the character is a fifth hole character.

7.5. Summation of Products

It is often necessary to form sums of products, e.g., in matrix multiplications.
Accuracy can be increased by performing such a summation either exactly or with one
round-off. This can be done on MISTIC by the use of a 74 n order. To accomplish
this summation by a 74 n order, it is necessary only to place the least significant
half of the partially summed products into the accumulator before performing the
74 n order. This can usually be done by an S5 order because Q usually holds the
least significant part of a summed product. Since 74 n gives (n)-(Q) + 2—39 A, a
double length product is formed in AQ. To this, the most significant part of the
previously summed product can be added by an L.4 n order. If A is setto 1/2 before
the first execution of the 74 n order, one rounding is effected.

The following example illustrates this procedure.

Example 7.5.1. Place the rounded sum

30
a.b.
ii
i=1
in location 99, where the a; are in locations 100...129, the bi in locations 130...159.

-7.4-

Solution
0) 41 99F Clear 99 for sum
26 1L ' Waste
1) 50 8L Put 1/2 in Q
L5 11L
2) 40 3L ' Preset 3L
S5 F (Q) —> A
3) 50 [100]F a.b,
74 [130]F vl
4) L4 99F i-
) 40 99F | i ajbj + aibi—‘lb 99
5) L5 9L j=1
L4 SL} Increase addresses of a, and b, by 1
6) 40 3L . t
L0 10L
7) 32 2L Test for end
OF F
8) 40 F}
00 F ' Round off constant = 1/2
9) 00 1F
00 1F - Increment
10) JO 130F
74 160F Test constant
11) 50 100F
74 130F Starting constant
‘Table 7.5.1

7.6. Reversing the Control Transfer

Ekample 7.5.1 illustrates another coding trick. If the test constant in
order 10 ’werke
50 130F 74 160F
the result of order 6 would be negative until the end. This would necessitate a
""double control transfer' order; i.e., a 32 nl. 22 ZL, since in this case the lobp
is re-entered on a negative. By adding -1 to the test constant, i.e., using
JO 130F 74 160F

the sign of the result of order 6 is reversed and the 32 2L order can be used.

7.7. Binary Switches

A program may involve two orders which are to be used alternately at a
particular point in the computation. To accomplish this alternation, a number in
memory which is alternately plus and minus, together with a conditional control
transfer, can be used. The sign alternation is accomplished by the order pair:
Llm 40 m, where m is the address of the number; and the order alternation by
the order pair: p) L5m 36 k, where k is the address of one of the alternate
orders, and p + 1 is the address of the second, and m is the address of the

alternating number,

-7.5-

If an order or order pair is to take on two values alternately, this can be
accomplished by storing the sum of the two orders at some location, m, and using
the orders LB m, L0 k, 40 k where k is the address of the order to be alternated.
This technique can be used to alternate either addresses or op codes, or both
together.

For alternating addresses only, the alternation can also be effected by the

sequence of orders:

m) 50 {(a+b)F
L5 mF

m+1) LO kF
46 kF

where k is the location of the order with alternating left-hand address and a + b is
‘the sum of the two addresses. If the alternating address is a right-hand address,
the two orders at m are reversed, and the right-hand order at m + 1 is changed to
42 kF. If the op code of the order at k which contains the alternating address is
larger than L5 or if the op code is equal to L5 and the address in k is larger than

m, a + b + 1 must be used in m in place of a + b to allow for overflow.

7.8. Special Tests

Because the only test orders are the 30 orders which take one of two

alternatives for (A) >0, and the other alternative if (A) <0, two tests are usually

required to test for a particular number value in memory. The numbers 0 and -1
can be tested for by using absolute values and a single test because of the special
form of these two numbers. In machine language, 0 is the only number whose
négative absolute value is positive énd -1 is the only number whose positive absolute
value is negative. Thus,
lof o0=0.0...0
- 10| = comp. of 0.0...0=1.111...1111 +0.00...001 = 0.0000...0000
which is positive, and
-1 =1.000...000
+|-1] = comp. 1.00...000=0.111...1 + 0.00...001 = 1.000...0000
which in machine language is negative.
The test for 0 is, therefore, accomplished by an L3 n order followed by a
conditional control transfer. Likewise, the test for -1 is an L7 order followed by a

conditional control transfer.

In 2 similar manner, a test for 273%nd 1 - 2737 can be made by using F3
and F7 respectively, followed by a conditional control transfer; i.e., F3 n gives
ag = 0 for (n) = =2g39, ag = 1 for any other value of (n) and F7 n gives ag = 1 for
(n) =1 —2_39, a, = 0 for (n) any other value.

0

-7.6-

When scaling numbers, it is very often necessary to test when numbers are
larger in magnitude than one-half. This can be done by appropriate L. or S orders.
Thus, LL n followed by a conditional control transfer order forms 1/2 + l (n)! and

tests for overflow.

7.9. Marking

It is often possible to use a marking technique in place of other counting
processes. A sequence of decimal numbers can be terminated by one of the
sexadecimal characters. This is common in decimal number input routines and in
programs using sequences of decimal numbers, such as matrix programs and
statistical correlation programs.

A fifth hole character in a certain position is sometimes used as a marker.
For example, in the complex number routine A5, a fifth hole character is used to
indicate the end of the exponent of a complex number.

A binary digit is sometimes shifted as a marker. The digit is so located

that its shift into the sign bit indicates the end of a repetitive loop.

7.10. Masks

It is sometimes desirable to pick out certain of the digits in a particular
word without including the rest of the digits. This can be accomplished by proper
use of the JO n order. The order JO n puts in Q a 1 in each digit position in which
(n) and (Q) both contain 1, 0 elsewhere. Thus, if certain digits of (n) are to be
isolated, a word containing 1's in the positions of the desired digits, O elsewhere,
is stored in memory. The orders

50 m m is address of word some of whose
digits are to be isolated

JOn n is address of stored word
will cause the desired digits of m to be generated in Q, with zeros in all other
digit positions.

The word in n is called a mask.

7. 7=

CHAPTER 8

CODE CHECKING

After a program is written, it is necessary to find and remove all coding
errors. While many of the errors can be found by a careful visual check, it is
usually necessary to use the machine as a final check. There are several library

routines designed for code checking.

8.1. ' Common Blunders

Many coding mistakes are familiar ones which are made over and over.
Table 8.1.1 gives a list of some of these common blunders, to which each

programmer will probably have other items to add from his personal experience.

8.2. Correcting Errors by Hand Punch or Reperforator

After a program has been punched on tape, it should be printed and
carefully proofread. Some errors thus located can be corrected by means of the
hand punch. Thus, an F can be changed to an L by punching the one hole, or
extraneous characters can be turned into fifth hole characters by means of the hand
punch though considerable care must be taken to insure a cleanly cut hole.

Errors located either before the program goes on the computer or as a
result d,f a code check on the computer may be removed by reperforating. Correcting
by reperforating involves first locating and marking errors on the original tape and
punching the correct characters on separate tapes. The original tape is duplicated
until a marked character is reached. The tape is then removed from the
reperforator and the correction tape inserted and duplicated, after which the
original tape is reinserted and duplication resumed.

The method of perforation is particularly well adapted to data tapes. In a
program, only corrections which do not change the order numbering can be made by

this method.

8.3. Tape Correction by Modification Tapes

Another method of making corrections is by means of program modification
tapes. By this method, control is sent to the DOI at the end of read-in of the
original program and a modification tape is read. This modification tape may
simply replace incorrect orders by the correct ones. For example, if at location
125 the order pair L5 175F L4 4L should have been L5 175F 14 4F, a

modification tape could contain

-8.1~

~N O~ U1 o DN

co

10,
1.
i2.

i4.
15.

16.

i7.

19.

20,
21.

Typical Blunders

L5 orders used instead of L4 orders.

S5 orders omitted after divisions.

Orders terminated by L instead of F and vice-versa.

The renumbering of a code not completed after a modification has been made.
Rounded multiplication used when dealing with integers.

Control transfers to the wrong address or wrong order of an order pair.
Accumulating storage registers not cleared pefore a cycle of orders is
entered.

The end condition for a cycle of orders not correct.

Allowing temporary storage of a subroutine to erase useful data.

Using a 46 order instead of a 42 order and vice-versa.

Omitting directives and starting orders on the program tape.

Incorrectly remembering the specifications of a subroutine.

Forgetting to reset addresses when coming pack to a cycle of orders.

Making corrections incorrectly.

Using the same relative address on correction words although the preceding
directive is different from that of the program.

Overlooking the digits shifted from the quotient register to the accumulator on
a left shift.

Attempting to convert fractions greater than one-half by using the J termination
symbol.

Failure to make an L symbol relative to the correct address.

Failure to clear ¢ before a single length division.

Failure to store address or counter after modification.

Use of letter O instead of the number zero.

Table 8. 1.1

-8.2-

00 125K
L5 175F
L4 4F

24 100N

where 100 is the location of the first order to be obeyed in the program.

‘ If the correction involves addition of orders, the modification tape must
change one order in the original program to a control transfer to an address outside
the program' and place at the addres’s the appropriate orders. For example,
suppose a program Which starts at location 100 has the following sequence of orders:

125) L5 200F

L4 13L
126) 77 12F
S5 F

where the orders 40 F 50 F should have been between these two order pairs. The

modification tape in this case should be:

00 125K

0) L5 200F
26 mF
00 mK

1) L4 113F
40 F

2) 50 F
26 126F
24 100N

Note particularly that the 13L of order 125 is 113F in the modification tape, since
an L on this tape refers to a different relative address base than that of the original
tape.

After all corrections have been made and the program is working, one
correct tape should be prepared. This final tape should have all unnecessary stops

removed.

8.4. Returning Control to the DOI for Tape Modification

The modification tapes described in Section 8.3 are effective only if control

has been transferred to the DOI at the end of the program read-in. A program
which is at all complex, and hence likely to require modification, should be written
with the directives

24 999N 26 kN
where k is the address of the first order to be executed in the program. When the
computer stops on the 24 999N, the modification tape is inserted and the
modification read. If no modification is necessary, a black switch start after the

stop will cause the 26 kN to be executed. If this precaution has not been taken, it

-8.3-

is sometimes possible to change the address of the N directive to 999 by hand
punch. Otherwise, a reperforation of the original tape can be made, changing the
address of the N directive to 999 and including the modification tape.

Still another method of transferring control to the DOI for a modification is
by a bootstrap start. The sexadecimal order pair 26 3F7 00 000 is punched at the
head of the modification tape followed by a K directive. This tape is put into the
reader when the computer stops on the N directive which must be a stop-control
transfer order, the order register is set to 80 40F 40 F, and the control counter
to zero, i.e., normal bootstrap vstart, without clearing the machine. The order
26 3F7 is then obeyed and the modification tape read in. This method may be

useful during code checking but is not to be left in the final program whereas other

methods may 2 part of a final complete tape.

8.5. Location of Errors--Programmed Stops

If a program runs but the answers are incorrect, an analysis of the results
may yield some clue as to the fault. If such is not the case, the program will need
to be examined by means of some of the various checking routines.

If the program hangs up, the cause may sometimes be located by an
inspection of the order register and control counter. The order register contains
the order on which the program hung up and the control counter contains a number
one greater than the storage location from which the order came, thus locating the
hang-up. Examination of the program in the light of this information may reveal
the difficulty.

Stop-control transfer orders written into a program are a valuable aid in
locating errors. The stop initiated by the N directives at the end of the program
read-in, described in Section 7.2, serves to indicate that the program has been
input and that any subsequent hang-up is not a program input hang-up.

Simple stop-transfer control orders at strategic locations in the program,
for example at the end of a loop, aid in program checking since they serve to mark
progress through the program execution and thus help pinpoint a program failure.

In general, after a program has been checked and is running, these stops
are turned into non-stop-transfer control orders before production runs.

A special program stop order, the FF n order, is sometimes used to
indicate the failure of a programmed check. For example, a sum check may be
inserted at the end of a program read-in with an FF n order which causes the
MISTIC to stop if the sum is incdrrecto The FF n order may be used in connection
with any progvrammedr check the program writer may care to include in his

program.

-8.4-

When the relatively simple methods of program checking fail to reveal the

difficulty, it is necessary to resort to checking routines.

8.6. Post Mortem Routines

A post mortem routine is a routine which prints out the contents of certain
specified memory locations after a program has stopped. This is the simplest type
of checking routine to use, especially from the standpoint of the programmer, since
it requires no preparation on the part of the programmer except a record of s(torage
locations used by the program.

The post mortem routines C3, C4 and C5, in the MISTIC Library, are read
into memory with a bootstrap input routine and are located in storage locations at
the end of memory, overwriting the DOI. The longest of these occupies locations
986 to 1023, and all use locations 0, 1 and 2 as temporary storage.

The end of each of these post mortem tapes contains 100 two-decimal-digit
numbers used to specify the location from which printing will occur. Routines C3
and C4 cause decimal fractions and integers, respectively, to be printed out of
specified locations. Routine C5 causes order pairs to be printed.

Examination of the print out from these post mortem routines yields
information such as whether numbers were properly stored and what addresses have
changed.

Library Routine C1, which is the post mortem version of the DOI, is a very
useful checking routine. It uses locations 962-1023 and locations 0, 1 and 2.

The C1 routine is input; then the original tape is inserted in the reader. The
routine C1 compares the contents of memory with the contents of the input tape,
printing out discrepancies in the following format: location of discrepancy,b word
from tape as an order pair, word in memory as an order pair.

Examination of the results of Cl gives such information as whether addresses
and constants are changing as expected, whether links in closed subroutines are
properly set, number of times certain loops have been executed, etc.

It should be noted that routine C1 restores the original program in MISTIC
as it is executed so the program may be rertin;immediately following the use of C1

without rereading it.

8.7. The Address Search Routine--Library Routine C6

A second useful type of checking routine is the address search routine,
routine C6 in the MISTIC Library. This routine is read into MISTIC, overwriting
the DOI. The address sought is then read into the machine as a three-character
sexadecimal address. The routine then searches the memory for order pairs

containing this address. When found, these order pairs are printed out, together

-8.5-

with their locations, all in sexadecimal.

Programs often fail because control has been transferred to a location which
causes the machine to stop. By use of the routine C6, together with the address
supplied by the control counter, the source of the offending control transfer order
can be located.

Another use of routine C6 is to locate the order which causes a number to be

incorrectly modified.

8.8. Sequence Checking Codes--Library Routines D2 and D3

Sequence checking routines are routines which control a program, order by

order, and print out information about the execution of each order. This enables
the action of a program to be traced, order by order. These routines use a
blocking order technique which enables selected parts of a program to be checked.
Because of the printing involved, these programs are very slow and should not be
used indiscriminately.

Routine D2 prints in full each order that is obeyed, having one order pair
per line of printing. After each store or address order, the number transferred to
memory is also printed.

Routine D3 prints the op code of the orders which are actually obeyed,

starting a new line of printing whenever a control transfer has been obeyed.

8.9. Other Check Routines--Library Routines D1 and D4

Library Routine D1 is a check point routine. This routine is designed to

print out intermediate information about a program in store. It uses a blocking
order principle, and the programmer prepares a specification tape to describe the
kinds of information desired. It is possible to go through iterative loops and print
out results on passage through the loops. Data can be obtained as an order pair,
a right-hand address, a left=hand address, a 10-character sexadecimal word, a
signed 12 decimal place fraction, or a signed three-decimal place fraction.
Routine D1 is \}ery powerful because of the great latitude given the
programmer in choosing the type and form of information to be obtained.

Library Routine D4 is a control transfer check. This routine causes a

program to be obeyed order by order. Each transfer of control that is obeyed is
placed in a list kept in a specified place. This list is cyclic in that later entries
overwrite the earlier ones in a cyclic fashion. The final list printed out,
therefore, shows how the program reached its final end. This routine requires
no printing during execution and hence is much faster than the routines D2 and

D3.

-8.6-

8.10. Resume of Code Checking Routines
The following tabulation gives the code checking routines in the MISTIC

Library, their general form, and a brief resume of what each routine accomplishes.

Cl--Post Mortem--Prints out discrepancies between original program
and memory contents.

C3--Post Mortem--Prints decimal fractions at specified locations in
memory.

C4--Post Mortem--Prints decimal integers at specified locations in
memory.

Cb5--Post Mortem--Prints order pairs at specified memory locations.

C6--Address Search--Locates all orders which contain a specified
address.

D1--Check Point---Prints out intermediate information as specified
by programmer.

DZ2--Sequence Checking--Prints each order that is obeyed.
D3--Sequence Checking--Prints op code of each order that is obeyed.

D4--Control Transfer--Prints a list of control transfer orders which
are obeyed.

Table 8.10. 1

-8, 7~

CHAPTER 9

FIXED POINT PROGRAMMING AND SCALING

Whenever an arithmetic operation is performed on two numbers, special
attention must be given to the location of the decimal or binary points of the two
original numbers. In addition and subtraction, the decimal points of the two
numbers must be aligned with the decimal point of the sum or difference. For
multiplication and division, alignment' is of course no problem, but location of the
decimal point in the result is a problem. In multiplication, the number of places
following the decimal point is the sum of the number of places following the
decimal point in the two factors. For division, the decimal point of the quotient
must be first aligned with the decimal point of the dividend and then moved right as
many places as there were behind the decimal point in the divisor.

The above needs are complicated in a computer since there is no decimal or
binary point represented there, and even the sign bits are acceptable as numbers.
The problem of decimal point location is then entirely the programmer's, who
must anticipate every operation. In some cases it is not entirely possible to keep
accurate knowledge of the decimal point location {such as in linear programming),
sc that the programmer must use a special form of programming called floating
point programming. Such a program causes the computer itself to maintain the
decimal point. More will be said about floating point operation. If, however, the
programmer has anticipated evei‘y decimal point change by programming, then the

program is called fixed point (even though the point may not remain fixed).

9.1. General Principles of Scaling

There are five problems connected with fixed point programming which arise
because of the fractional representations used in the MISTIC. Since every number,
N, in the MISTIC is in the range -1 fN <1, then:

1) Every number, N, input to the computer must be in
the range -1 < N < 1;
2) The result of every addition or subtraction must be
in that range; |
3) Quotients must be in the above range; and
4) The result of a left shift must be in the above range.
The fifth problem is not due to the number representation and in fact is a general
problem for all computers. '
5) The programmer must know the location of the binary

point or decimal point at all times.

-9.1-

Problems 1, 2, 3 and 5 are generally disposed of by use of a process called

scaling. Suppose a number, N, is in the range thl f N < Zm, or in the range
10”'1 <N < 10" for positive integers m and n. In order to use this number in the
computer, N could be represented by N where
N =nN.27™
or a
N =N-*10
respectively. Notice then that 1/2 <N <1 or 1/10 <N <1. Of course there are

other représe‘ntations for N which will fit in the computer, for if N = N- 2™ will
fit into the computer, so also will N = N:277 where r is greater than m. The
following definition can be used:
The machine representation of N with a binary scaling of m
is a number N = N-2™™ where -1< N < 1.
The machine representation of N with a decimal scaling of m
is a number N = N-10™™ where -1 <N <1.

Example 9.1.1. Give a machine representation of 407.98 with a binary

scaling. ‘Since 28 <407.98 < 29; some possible machine representations of 407. 98

Z07798 = 407.98x 2”0 = . 7968359
Z07.98 = 407.98 x 2710 = 39841796, etc.

Binary scaling of a large set of numbers becomes tedious since each representation

or

must be obtained by dividing by a power of two. As a result, binary scaling is
seldom desirable. It does have the advantage of greater accuracy, as will be seen.

Example 9 1.2, Give a machme representation of 407,98 with a dec1ma1

scaling. Since 10 < 407.98 < 103, some possible machine representations are:

0798 = 407.98x 10°° = . 40798
or
707798 = 407.98 x 10”F = . 040798, etc.

Decimal scaling amounts to shifting the decimal point and does not involve any
actual division.

It is generally desirable to choose the exponent or scale as small as possible.
This is particularly true if one is seeking extreme accuracy in the computed result.
Each increase in scale introduces more insigniﬁcant zeros at the most significant
part of the number, at the same time causing digits to be lost off the least

significant end.

9.2. Arithmetic with Scaled Numbers

If machine representations for two numbers, say a and b, have been

selected as a and b where

-9.2-

then a and b can be multiplied to give -(m+n)
ab=ab * 10

As a result of multiplication, the product has a scaling equal to the sum of the

original scales. Similarly for division,

2/B =ab: lo'(m"n)

Care must be exerciséd in this case, however, that -1 55/’5 <1.

In the case of an addition, a + b has no useful connection with a + b since the
exponents m and n may be uncqual. Assuming this to be the case, and that m is
greater than n, it will be found expedient to choose a new representation for a or b.
Either the exponent n can be increased, or the exponent m can be decreased. If m
is decreased, the new a might become greater than 1. It is usually safer to increase
n to m, thﬁs giving

ZT=a - 107"
B=b- 1077
and a + b = (a+b)- 10°™, The scaling m is satisfactory to this point provided
-1 < a+b < 1; that is, provided -10™ < a+b < 10™,

Example 9.2.1. Choose machine representations for the numbers a, b, c,

d, e and f, which will be used to compute
(ab +c)d +ef + b

where
10 <a <10

104 <b <10
10 <c <10
10 <d <10
10°< e <10
104< £ <10

A first approximation to machine representations for these numbers is

W W v v W

provided by

a=a - 10-2
B=b -10°3
E:C ° 10-2
-2
d=4d - 10
e=e ° 10_3
T=f- 103

These representations will not be adequate, for when the machine representation of
ab + c is formed, the decimal points of the summands are not aligned. That is,
5 +T=abx 107> +cx 1072

-9.3-

This difficulty can be avoided by choosing a new machine representation for c, say
c=cx 10-5., Then
F5+T=(ab+c)x 107°

However, ab + ¢ < 10%+ 10° + 10% = 10° + 102, so that 35 + € <1.01, which might
"overflow'. By this is meant that ab + c may not remain in the range -1<Cab + c<1.
To avoid the overflow, it is necessary to change the scaling on a or b, and also on c.
For example, the scaling can be changedtob=b - 10" "andc=c - 10-6.

Then, the representation of (ab + c)d will be
(35 +S)d = (ab + c)d x 10°8

while that of ef is
ef = ef x 10-6
In order to add the machine representation of (ab + c)d to that of ef, the
representation of ef needs to be changed to ef = ef x 10-8° This can be
accomplished by changing the machine representation of e toe = e x 10_5. Then,
(ab + ¢c)d + ef = [(ab + c)d + ef] x 10”8

This machine representation is not in danger of overflowing since

(ab + c)d + ef <(10° + 10%)10% + 10% = 107 + 10* + 10°
and @5+ T +ef<(10 + 10% + 1091078 = . 1101
In order to add b to this machine number there are two options: either

represent b by b x 10°% and also by b x 10_8, or divide 5 =bx 10°% by 10% in the

computer. In either case the result is
@5+ T+eT+B5x 10" %= [(ab+ c)d + ef + b] x 10

The final machine representations for a, b, c, d, e and f are

8

T-ax10?
b=bx 10—4
=C_:CX10—6
d=dx 10_2’
E:exl()-5

3

i
i
Hh
"
bt
o
i

This example is a case in which the problem, once scaled, can be programmed
with no further regard for scaling. This is not always the case, however. The
following example illustrates a more complex situation.

Example 9.2.2. Find the positive real root accurate to ten decimal places

of f(x) = x3 - X2 - 1 =0, using the Newton Raphson iteration
. f(xn)
*n+l T %0 T (X)))
Since f(2) = 3 and f(1) = -1, there is a root betweenx = 1 and x = 2. For a

-9.4-

first approximation X to that root select x, = 1.2. The problem then to be

w O

programmed is

*n+l " %0 T2 S
n -

[(2x - l)xn]xn+1
T (3%_-2)%
n n

The root r being sought is in the range 1< r <2, while the first approximation is

Xg = 1.2. This should indicate that 1<< X <<2 at each iteration. Evidently, the

machine representation of xq can be
— - |
Xy =%p°2 "= 6
The numerator has an upper bound of 13, while the denominator has an upper

bound of 8. This means that the final scaling for the numerator must be at least
' 3

2_-49 while for the denominator it must be 2~ If the routine is entered with

X =X 2'1, notice that the result of one application of the Newton Raphson method
— -1
n+l - *n+l z " 3 1
In forming 2x_-1, ifx_=x *2 ~, then 2x_=2x -2 =z x_, and the result
n n n “n n n

with this scaling is

can overflow. Instead of changing the scaling for X notice that ;{—n =X 2'1 =

an°2-2, so that if T = 1- 2_2, then
2

X -T=(2x_-1)-2"
n n
— - ; 53
Next (x, —T)xn =(2x -1):x 2
- = = -4
and [(xn— l)xn]xn = [(an—l)xn]xn 2
Now if 1 is represented also by 1 = 1° 2-4, the numerator becomes

(&, -D%_ % 4T = ([2x_-1)x_Jx_+1)-27%

(9.2.1)

Making use of the two relationships

% =x 27 - 2x c27%
n n n
%-}En:xnoz-z

the denominator can be treated as follows.

Let 2=2 Z_Z
1o > _ -2
Then 5% 7= (x_-2)2
—_ 1— -2 -2 -2
and x + (an--Z) =2x 2 7 4 (x -2)-2 " =(3x_-2)2

-9.5-

(Notice that §n+ %‘}Zn: 3xn° 2“‘2, which can overflow. As a result, not even addition
is necessarily commutative or associative in a computer.)

Finally, the denominator is given by
1— - ‘ \ -3
[(fxn—7)+xn1§n = (3% -2)x -2 (9.2.2)

The program for the above problem could be as displayed in Table 9.2.1.
The numerator and denominator are formed using the left side of equations 9.2.1
and 9.2.2, respectively.

The result of this program will be an approximation to the real positive root
of the equation x3 - x‘2 -1=0, and this approximation is in the accumulator scaled
by a factor of 271, ’

' In order pairs 4 and 7 in Table 9.2.1, the multiplication used was a 7J, while
in order pair 8, the multiplication used was a 75. This suggests that a set of (not
necessarily inflexible) rules can be stated for the use of the 7 orders, particularly
the 74, 75 and 7J orders, as follows.

If a single length rounded product is desired, use the 7J order provided no
shifting is needed to obtain the single length result. If, however, a shift is required
following the multiplication, use the 74 order with a 1 in location N if an m place
left shift is to follow the 74.

If a double length product is desired, particularly preceding a division, use

the 75 order.

-9.6-

Table 9.2.1

0)

1)

2)

3)
4)
5)
6)
7)

8)

9)

10)

11)

12)

13)

14)
15)

16)
17)

18)
19)

20)

21)
22)

23)

41
50
L5

10
L.O

1.4

40
50
7J
40
L5

L0

40
50

7J

40
50

75

L4
66
S5
L0
40
L7
L0

36
S5
oF

141,
141,
15L

1¥F
16L

15L

17L
15L,
171
17L,
151,

18L

19L
15L

19L

19L
15L

19L

20L
17L
F

15L
19L
19L
21L

22L
F
F

00F 00F
[40 F

00 100000000007

40F OOF

[00F 00F]

20F OOF

[00F 00F]

08F OOF

00F 0050J

S5

40
26
OF

F

15L
L
F

0—=14L

0—=Q

Xt A

1=

- X—sA
n

2

— 171

Rounded multiply: (3xn-2)xn=

Denominator —=17L
X = A

'§n-l-——m>A
X —= A
n

(x_-T)x_ —== A
n n

2

®,-T)%_“—=AQ

™
|

Root in A

Zero

Xy=l.2x2"!
= -2
2=2x2
Working space

T:lxz‘z

Working space

3

-9.7-

CHAPTER 10

THE REPERTOIRE OF THE MISTIC

It is the purpose of this chapter to present in detail the description of

MISTIC orders, with explanations about their functions.

10. 1. Order Codes

The control section, as was mentioned previously, provides the computer

with directions, while the control section itself receives its own directions in the
form of a routine composed of orders or instructions. Each instruction is found
occupying one-half of a word location in memory; i.e., instructions are packed two
per word. The instruction is composed of two sections, the order code and the
address. The use to be made of the address depends upon the order code
associated with it.

Each order code is an eight bit number, with the first four bits called the
order type and the second four bits called the order variant. This provides 28 or
256 order codes for the MISTIC, all of which cause the MISTIC to perform

operations, some of which may be undesirable for a given program.

10.2. Order Types

The meaning of each order type is given in Table 10.1.1, where the

sexadecimal representation of the four bit order type is used.

In every order whose execution requires a shift, the shift is a left shift
when the order type is an even number, and it is a ribght shift when the order type
is an odd number. In particular, order types 1, 7 and 9 involve right shifts of AQ,

while order types 0, 6 and 8 involve left shifts of AQ in their execution.

10.3. Order Variants

The order types listed above are further amplified by the order variants
and the addresses listed with them. The order variant bits are each used to
specify certain modifications of the order. Order variant bits are denoted by v8,
v4, vZ2 and v1, representing the 23, 22, Z1 and 20 bit positions. The bits vl and
v8 operate with all order types in the same way. If vl = 1, the accumulator is
cleared before the operation corresponding to the order type is executed. If vl = 0,
the accumulator is not cleared prior to execution of the order corresponding to the
order type.

If v8 =1, 1/2 is added to the contents of A prior to the execution of the

rest of the order. If (A) is not zero, an overflow could easily occur when v8 = 1.

-10.1-

To avoid this possibility, the computer has been designed to stop when (A) is not

cleared previous to the addition of the 1/2.
computer stops without executing the order.

the next order in sequence is executed.

That is, when v8 = 1 and vl = 0, the
When the computer is again started,

This means that any order code whose

order variant is 8, K, N or F will cause the computer to stop. No special

indication of the cause of stoppage is made on the operator's panel, other than that

the instruction register contains an operation code with the order variant 8, K,

N or F.
Order Meaning of Address
Type Associated with
Digit Function Order Type
0 Left shift AQ as a 79 bit register Number of places to shift
1 Right shift AQ as a 79 bitregister Number of places to shift
2 Transfer control unconditionally Address of next order pair to be
executed
3 Conditional control transfer Address of location in memory
from which next order pair may
be taken
4 Copy the contents of A into Address of location in memory
memory from which to copy
5 Copy the contents of a memory Address of location in memory
location into Q from which to copy
6 Divide Address of location in memory
of divisor
7 Multiply Address of location in memory
of the multiplicand
8 Four bit character input and Number of four bit characters
output input and output
9 Five bit character input and See the 9 order type discussion
output which follows
K Increment add Q and A The address is arbitrary and
meaningless
S Add Q and A The address is arbitrary and
meaningless
N Bank control order Number of memory bank to be
used
J Logical Product Address of location in memory
containing one factor
F Increment add memory and A Address of location in memory
containing one summand
L Add Address of location in memory

Table 10.1.1

containing one summand

-10.2-

The order variant bits v2 and v4 act in the way displayed in Table 10.3.1.

Order Type | v2 Effect of v2 v4 Effect of v4
Oorl None None
2or3 0 STOP if black switch |0 Select right hand
is set to OBEY order
1 Do not STOP 1 Select left hand
order
4 0 Store entire word 0
1
1 Store right hand 0
address
1 Store left hand 1
address
50rJ None None
6 _ Must be 1 Must be 1
7, Sor L 0 Use signed number 0 Complement the
number added
into A
1 Use absolute value 1 Do not complement
of number number added
into A
8 0 Input 0 Tape
1 Output 1 Hang-up
9 0 Input 0 Tape
1 Output 1 Cards
Kor F 0 Subtract (R3) from 0
(A)
0 Add (R’) to A 1
1 Subtract I.(R3)| from 0
A
1 Add [(RY)] to A 1

Table 10.3.1

Besides the special meanings assigned to the v2 and v4 bits by being
associated with a given order type, v2 and v4 usually have the following meanings.

If v2 = 0, the number in R3 is treated as a sighed number. If v2 = 1, the
number in R3, is used in its absolute value. For example, the order L0 n causes (n)
to be subtracted from (A), whereas L2 n causes |(n)| to be subtracted from (A).

If v4 = 0, whenever »R3 is used it is used in its complemented (or negative)

form. If v4 = 1, whenever R3 is used it is used in its original form. Thus, L1 n-

-10. 3~

causes -(n) to be put into A, whereas L5 n causes (n) to be put into A.

As a further example, compare the orders L7 n, L3 n, Lhbnand Ll n. L7 n,
with v4 = v2 = 1, causes (n) to be putin A; L3 n, with v4 =0, v2 =1, causes - (n)
to be put in A; L5 n, with v4 = 1, v2 = 0, causes (n) to be put in A; and finally, L1 n,
with v4 = v2 = 0, causes -(n) to be put in A. v

However, if no arithmetic is being performed in a given order, these
general meanings of v2 and v4 are not significant. Thus, order types 0, 1, 2, 3, 4,
5, 8, 9 and J do not involve arithmetic and the general meanings of v2 and v4 do not
apply. However, in order types 6, 7, K, S, F and L the general meaning does
apply. Desirable effects are achieved in these latter cases except for the 6 order

type which is a divide order. More will be said about these orders in the

following pages.

10.4. The MISTIC Repertoire of Instructions

In Chapter 3, listings of the most commonly used orders under each order

type are given, along with a minimum of explanatory discussion. In many cases,
the same results can be obtained by any one of several orders. In such cases, only
one of the several possible orders appears in the listings in Chapter 3.
In this section, a detailed explanatory discussion of each order type is given.
Each such discussion is followed by a complete table of orders of the given type.
While the material in Chapter 3 is adequate for most programming, this
chapter presents a ‘more technical aspect and makes possible a somewhat more

sophisticated approach to programming.

Order Type 0--Left Shift and Final Stop

These are orders of the form Ovn where v is the order variant and n is the
"address', which in this case is used to specify the number of shifts to occur.
The count, n, is interpreted modulo 64.

If n = 0, the computer will stop with the Ov 0 order displayed in the
instruction register. If not, repeat n times the operation which replaces the

contents

agaj3,- - 338239 99919, - - 938939

of AQ by
ajayaz..-a39q; 99993 - - 939°

After an n place left shift, a_ has been placed in the position previously
occupied by a_ o where if m-n is negative, a has been shifted off the end of A
and lost. Likewise, 9, has been shifted to 9non if m-n is positive; when m-n is

not positive, ., has been moved into the position formerly occupied by a394m-n’

-10.4-

Here again a negative subscript on a, means that the bit has been lost off the end of

A. In every case, q, is not changed.

00
02
04
06
01
03
05
07
09
0S
0J
0L
08
)¢
ON
oF

DDbl

Left shift AQ n places.

i1

Clear A, then left shift AQ n places.

S BB BB

Clear A, insert 1/2 in A, and then left shift AQ n places.

The computer will stop with the order in the instruction
register.

S BBB5 B8

Order Type 1--Right Shift

These are orders of the form 1lv n where v is the order variant and n is the
""address' which in this case is used to specify the number of shifts to occur. The
count, n, is interpreted modulo 64.

If n = 0, the computer will stop with the lv 0 order displayed in the
instruction register. If not, repeat n times the operation which replaces the
contents

F0%1%2° - -®38%39 909192 - 938939
of AQ by
20%0%1 " ~#37%38 90*399;" - - 937938
After an n place right shift, a_ has been placed in the position previously

if m+4n is not'greater than 39, whereas when m+n is greater than

Also,

occupied by 2 h4n

39, a2, has been moved into the position previously occupied by qm+n=39°

9 has been shifted to 9 4n if m+n is not greater than 39, whereas when m+n is

greater than 39, 4, has been shifted off the right end of Q and lost. In every case,

9 is not changed.

10 -

i2 2 ics; 2 Clear A, insert 1/2 in A and
14 n Right shift AQ n places . 17 nl— then right shift AQ n places.
16 n_| 1L, n_

i?l) 2 i; 2 The computer will stop with
15 n I Clear A and then right shift IN n ——the order in the instruction
17 n AQ n places. IF n register.

-10.5-

Order Type 2--Unconditional Control Transfer

These are orders of the form 2v n where v is the order variant and n is the
address of the next order pair to be put into the instruction register. By choosing
the variant v in the 2v n order correctly, the right or left-hand order at n will be
executed with an optional stop beforehand. The stop can be ignored by setting the
black switch to IGNORE.

20 n The computer will stop with this order in the instruction
register. The first order after starting the computer
with a black switch start will be the right-hand order at
memory location n.

22 n Transfer control to the right-hand order at location n.

24 n The computer will stop with this order in the instruction
register. The first order after starting the computer
with a black switch start will be the left-hand order at
at memory location n.

26

n Transfer control to the left-hand order at location n.

21 o 20 n
23 n . 22 n
25 1 Clear A, then do exactly as in 124 o
27 nl 126 n
29 0] [20 n
25 Clear A, insert 1/2 in A, then d tly asin {22 B
27 n ear A, inser in A, then do exactlyasin—,,
2L, nj 126 n
28 n]

iK n The computer will stop with the order displayed in the
N n : . . . « -

2F n instruction register and will not start with a black

switch start.

See page 10.17 for starting after stops.

Order Type 3--Conditional Transfer of Control

These are orders of the form 3v n where v is the order variant and n is the
address from which the next order may be selected.

If ag = 0, i.e., if (A) 2 0, the next order to be executed will be taken from
location n.

If ag = 1, i.e., if (A) € 0, the next order is taken in normal sequence.

By selecting v properly, the next order in the case of ag = 0 will be the left
or right-hand order with a stop before the transfer or not. This stop can be

ignored by setting the black switch to IGNORE.

-10. 6-

30

31

32

33

34

35

36

37
39
3S

3J

3L

38
3K
3N
3F

n If ag = 0, i.e., if (A) > 0, the computer will stop with this order in the
lnstructlon register. The first order after starting the computer by a
black switch start will be the right-hand order at memory location n.

Ifa, = 1, the computer does not stop but goes on to the next order in
sequence.
n Clear A and then the computer will stop with this order in the instruction

register. The first order after starting with a black switch start is the
right ~-hand order at location n.

n ifa, =0, i.e., if (A) > 0, the next order will be the right-hand order at
memory locatlon n.
If a, = 1, the computer goes on to the next order in sequence.

n Clear A and transfer control to the right-hand order at memory locationn.

n Ifa, =0, i.e., if {A) > 0, the computer will stop with this order in the
instruction register. The first order after starting with a black switch
start will be the left-hand order at memory location n.
If a, = 1, the computer does not stop but goes on to the next order in
sequence. ~ : : ,

n Clear A, then the computer will stop with this order in the instruction
register. The first order after starting with a black switch start will be
the left-hand order at memory location n.

n If ag = 0, i.e., if (A) > 0, the next order will be the left-hand order at
memory location n. ‘
If a, = 1, the computer goes on to the next order in sequence.

n Clear A. The next order will be the left-hand order at memory locationn.

n Clear A, insert 1/2 in A, and then the computer will stop with this order
in the instruction register. The first order after starting with a black
switch start will be the right-hand order at memory location n.

n Clear A and insert 1/2 in A. The next order will be the right-hand order
at memory location n.

n Clear A, insert 1/2 in A, and then the computer will stop. The next

order after starting with a black switch start will be the left-hand order

at memory location n.

Clear A and insert 1/2 in A. The next order will be the left-hand order

at memory location n.

B

The computer will stop with the order in the instruction register and w1ll
not start with a black switch start.

BB BB

Summary

Stop orders restarted by black switch 2. Non-stop orders

a. Left-hand orders a. Left-hand orders
24 n 34 n : 26 n 36 n
25 n 35 n 27 n 37n
2] n 3 n 2L n 3Li)n

b. Right-hand orders b. Right-hand orders
20 n 30 n 22 n 32 n
21 n 31 n 23 n 33 n
29 n 39 n 2Sn 38 n

See page 10. 17 for starting after stops.

-10.7-

Order Type 4--Store the Contents of A

These are orders of the form 4v n where v is the order variant and n is the
address of the locatioh in membry' all of which is cleared and into which (A) is
copied, or part of which is cleared and into which the corresponding part of (A) is
copied, | depending upon the digit v. As the result of a 4v order with even order
variant digit, the contents of A are left unchanged. In the descriptions below, 2~ 10
and 2_30 should be replaced by 2,~8 and 2-28 respectively when referring to the

core memory.

40 n7 Copy (A) into memory location n.

44 n

41 n7 Clear A, then copy (A) into memory location n. This order sets (A) and

45 n | (rn) to zero. ' ' k :

42 n Copy the right-hand address part of (A) into the right-hand address part
of memory location n. The only bit positions affected are 277V, .. 2-39.

43 n Clear A, then copy the right-hand address part of (A) into the right-hand
address part of memory location n. This order clears A and sets bit
positions 2-30..2-39 in n to zero.

46 n Copy the left-hand address part of (A) into the left-hand address part of
memory location n. The only bit positions affected are 2-10 2-19

47 n Clear A, then copy the left-hand address part of (A) into the left-hand
address part of memory location n. This order clears A and sets bit
positions 27V, .. 2-19 in n to zero.

49 n Clear A, insert 1/2 in A, and then copy (A) into memory location n. This

47 n order sets (A) and (n) to 1/2.

4S5 n Clear A, insert 1/2 in A, and then copy the right-hand address part of
(A) into the left-hand address part of memgry location n. This order sets
(A) to 1/2 and sets bit positions 2~ 0 2- in memory location n to zero.

41, n Clear A, insert 1/2 in A, and then copy the left-hand address part of (A)
into the left-hand address part of mem?ry location n. This order sets (A)
to 1/2 and sets bit positions 2-10 2-19%, memory location n to zero.

48 n

iﬁ 2 The computer will stop with the order in the instruction register.

4F n

Order Type 5--Locad Q from Memory

These are orders of the form 5v n where v is the order variant and n is the

address of a memory location, the contents of which are copied into Q. The contents

of location n are left unchanged by these orders.

50 n 59 nT]

52 n) 5 n Clear A, insert 1/2 in A,
54 n Copy (n) into Q. 5 n then copy (n) into Q.

56 n 5L, n_|

g_,l) 2 218{ 2 The computer will stop with
55 | Clear A and copy (n) into Q. 5N n the order in the instruction
57 n 5F n register.

-10. 8-

Order Type 6--Divide

These are orders of the form 6v n where v is the order variant and n is the
address of a word in memory used as the divisor. The divide instruction divides
the contents of AQ by the contents of n, leaving a quotient in Q and a ""remainder"

in A. The quotient is always a rounded quotient, the rounding being accomplished

by setting 439 to 1.

The computer will stop after dividing if |{A)] > |(n)l, or if |(A)l = |(n)| and
(A) > 0.

An unrounded quotient can be obtained if it is possible to left shift AQ one
place prior to division. Then after division, right shift AQ one place. The bit in
a39 is a zero due to the left shift, so that Q is not affected by the right shift.

The divide order has been made so as to make 66 n work correctly. As a
result, most of the other 6v n orders have little usefulness. The 66, 67 and 6L

orders are listed here, followed by a general discussion of the 6v orders.

66 n Divide (AQ) by (n), leaving a rounded quotient in Q and a remainder in A.
67 n Clear A and then divide (AQ) by (n), leaving a rounded quotient in Q and a
remainder in A. :

6L n Clear A, insert 1/2 in A, then divide (AQ) by (n), leaving a rounded
quotient in Q and a remainder in A. ,

The divide order in MISTIC. The 66 order operates in the following way.

The divisor is sent to R3c The sign of the dividend and the sign of the divisor are
compared. If they agree, the complement gate is set to subtract throughout the
division. If th‘ey do not agree, the complement gate is set to add throughout the
division.

A temporary partial remainder (TPR) is formed by adding the divisor to or
subtracting it from the quantity in A, according to the setting of the complement
gate.

If the sign of the TPR agrees with the sign of the dividend, the TPR will be
left in A. If not, the previous contents of A will be restored to A.

If the sign of the TPR agrees with the sign of the divisor, a 1 is sent to
d39; if they do not agree, a 0 is sent to d39- Then AQ is left shifted one place and
another subtraction takes place. This is done 40 times. The sign in d, is the first
quotient digit.

In general, however, the division depends on the following quantities:

A--the sign bit of the dividend. Here A = 0 means +,
A = 1 means -.

B--the sign bit of the divisor

-10.9-

D--the v4 bit
E--the v2 bit
F--the sign bit of the TPR
U--the setting of the complement gate
If U = 0, the complement gate is set to add, and
if U = 1, the complement gate is set to subtract.
a--If x = 0, restore to A the contents of A prior to
forming of a TPR
If & = 1, do not restore.

q39'——the last bit of Q

U, & and q39 are functions of A, B, D, E and F given by the following

Boolean equation:
- U =ABE + BDE + ABD + ADE

& = BE(ADUF + AD U F)
+ EB(AD UF + ADUF)
and d3q = BF + BT

Thus, 439 is always selected in the same manner, regardless of the variant digit of
the order (since 439 does not depend upon D and E). The setting of the complement
gate and the decision about restoring (A), however, depend upon D and E and,
therefore, change depending upon the variant digit. The formulas for U and & for

each of the variant digits are presented here.

60 and 61 U=1,a=F

62 and 63 U=B,&=F

64 and 65 U=A,X=ATF + AF

66 and 67 U=AB +AB,& =AF + AF
69 U=1,@=F

6S U=B,=F

6J U=A,&=ATF + AF

6L U=AB +AB, & =ATF +AF

Order Type 7--Multiply

These are orders of the form 7v n where v is the order variant and n is the
address of a location in memory which contains the multiplier. These orders form
2 (Q)(n) + (A) - 2—39 or +(Q) |(n)] + (A) - 2—39 in AQ, the least significant 39 bits
being in Q with q0'= 0.

The orders can be considered to form the product (Q)(n) in AQ followed by

adding the original contents of A (as it was just before the multiplication) into Q.
The orders 79 n, 7J n and 7L n are rounded multiplications since (A) = 1/2
in each case so that (A) x 27392 2740 gyt 2740 Ldded to AQ is a 1 added to the

-10.10-

q, position. If q; = L initially, the effect of adding 2_49 is to increase 239 by 1. 1If
q; = 0 initially, there is no effect on A in adding 2“40 to AQ.

If it is desired to form a product followed by a left shift of n places and then
to round to 239; the initial contents of A should be Z—n_l, and the multiplication
order should be one of 70 n, 72 n, 74 n or 76 n.

39

70 n Form -(n){(Q) + (A) x 2™ "7 in AQ

71 n Clear A and then form -(n){Q) in AQ

72 n Form - |(n)] (Q) + (A) x 2739 in AQ

73 n Clear A and then form - [(n)| (Q) in AQ

74 n Form (n)(Q) + (A) x 27°7 in AQ

75 n Clear A and then form (n){Q) in AQ

76 n Form |(n)] (Q) + (A) x 273% in AQ

77 n Clear A and then form |[(n)](Q) in AQ

79 n Clear Af), insert 1/2 in A and then form - (n)}{Q) +
{A)y x 27 9

7S n Clear A3 insert 1/2 in A and then form - |(n)] (Q) +

: (A) x 2~ 9 in AQ. This is a rounded multiplication.

7J n Clear Af), insert 1/2 in A and then form (n)(Q) +
{AYy x 27 9 in AQ. This is a commonly used rounded
multiplication. '

L. n Clear Afg insert 1/2 in A, then form I {n)] (Q) +
(A) x 2~ 9 in AQ. This is a rounded multiplication.

78 n

TK n The computer will stop with the order in the

N n instruction register.

7F n

-10.11-

Order Type 8--Four Hole Tape Input-Output

These are orders of the form 8v n where v is the order variant and n has the

meanings given below. Thyese orders transfer only four hole characters to the A

regiéter and tape. The input orders cause all characters with a perforated fifth

hole to be bypassed and the tape will advance until the appropriate number of four

hole characters has been input.

0<n'<64. Let .

Basic input step. Reduce the address n to n' where n'=n (i'nodulo 64) and

ERERS:

Perform the following operation q times.

tape to a36a37a38a39°

Left shift AQ four places.

are cleared prior to input.)

Then left shift AQ r places.

performs an end off shift.
If n'< 4, no input takes place, but A and Q each shift left n' places, but Q

does not shift into A. This is a means of obtaining a 1, 2 or 3 place shift of A

without shifting Q into A.

corresponding to apaayas
out the q characters.

the computer.

If n' = 0, the computer will stop.

- where 0§r<4

Transfer the four hole character being read from

(This input is a ''logical or'" type; however, those four bits

However, Q does not shift into A but rather

!
Basic output step. Let%— =q +£— as before. Do the following q times.

Punch on tape the four hole character corresponding to aga aras.

Left shift four places. Then if r 7-‘ 0,

and left shift AQ r places.
Q always shifts into A for output orders which do not stop

If n' = 0, the computer will stop.

punch on tape the four hole character

If r = 0, stop after punching

If 0 <n'< 4, one character is

output corresponding to agadajay and an n' place left shift follows, Q shiftinginto A.

80
81

89

82
83

8S

84

85

n
n

n

Perform the basic input step. 8J
Clear A, then perform the basic
input step.

Clear A, insert 1/2 in A, then
perform the basic input step.
Perform the basic output step.

Clear A, then perform the basic

86
87

output step. 8L
Clear A, insert l/Z in A, then

perform the basic output step. 88
Left shift A and Q one place, 8K
but Q does not shift into A. 8N
Then the computer will stop. 8F

Clear A, then left shift A and Q
one place, but Q does not shift

into A. Then the computer will
stop.

n Clear A, insert 1/2 in A, then

left shift A and Q one place, but

Q does not shift into A. Then the

computer will stop.

The computer will stop.

n Clear A, then the computer will
stop.

o]

n Clear A, insert 1/2 in A. Then
the computer will stop.

E The computer will stop with the

n order in the instruction register.

n

-10.12-

Order Type 9--Five Hole and Card Input-Output

These orders are of the form 9v n and are concerned with reading and
punching alphanumeric information and punched cards. Whether tape or cards are
used is determined by the variant bit v4. That is, if v4 = 0, tape will be read or
punched while if v4 = 1, cards will be read or punched.

Basic tape input step. Reduce n to n' where n'= n (modulo 64) and

[
0< n' <64. Let 34_ =q +§ where 0 < r < 4. Do the following q times:

Right shift AQ four places (bypassing qo)h Insert the four least significant
bits of the character being input into azg a37a38a39 and insert the most significant
bit into ag-

Then right shift AQ r places. If q = 0 initially, i.e., if n' < 4, there is no
input. If n' = 0, the computer will stop. ‘ k

These inputs are of the ''logical or' type. That is, if there is a one in any
of 234837238239 OF in the four pits being read, then in the corresponding place in A
will be a one.

Basic tape output step. Letn = NN N,NaN NN N NNy in binary. Punch on

the tape a character whose fifth hole is Ny, and whose remaining four holes are
ngnn,ng in that order; and punch that character n4n5n6n7 times if ‘both ng and ng
are zero and n4n5n6n7+l times otherwise; right shift AQ n4n5n6n7n8n9 times.
One formula which will give n is

n=64a + 4b + ¢ - 2
where a is the four hole character to be punched,; b is the number of times to punch
the character, c is the fifth hole, and 4b + c - 2 is the number of right shifts of AQ.

[_ :)

Ifn'= nyNgn N ngny = 0, the computer will stop.

Basic card input step. For this order, n must be zero. The 80 columns of

a card row will then be read into the 80 bits of AQ, the exact location being
dependent on the plugboard wiring, thus allowing columns to be read into AQ in
whatever order desired. One row at a time is read and a check circuit in the
computer precludes a card row going by without being read. If this should happen,
the computer will hang up on the su'cce‘eding card read order. Since the first read
order initiates a card cycle and all twelve rows will pass the reading station, read
orders must occur in groups of 12 within a specified time, i.e., with less than 8.7
milliseconds between read orders. Additional information concerning card handling
is included in Chapters 13 and 14.

Basic card output step. Here also n must be zero. When the punch order

occurs, the contents of AQ are punched in the 80 columns of a card row, the exact

column depending on the plugboard wiring. Again, the first punch order initiates

-10.13-

a card cycle and all twelve rows must be punched within a specified time, i.e.,
with less than 17.4 milliseconds between rows. Further discussion of the card

punching procedure is included in Chapters 13 and 14.

90 =n Perform the basic tape input step.

91 n Clear A, perform the basic tape input step. tape input
99 n Clear A, insert 1/2 in A, perform the basic tape input step._|

92 n Perform the basic tape output step.]

93 n Clear A, perform the basic tape output step. tape output
9S n Clear A, insert 1/2 in A, perform the basic tape output step_| .

94 n "Perform the basic card input step.

95 n Clear A, perform the basic card input step. card input
9 n Clear A, insert 1/2 in A, perform the basic card input step. |

96 n Perform the basic card output step.]

97 n Clear A, perform the basic card output step. card output
9. n Clear A, insert 1/2 in A, perform the basic card output step |

98 n

?)g 2 The computer will stop with the order in the instruction register.

9F n |

Order Type K--Increment Add from Q

These are orders of the form Kv n where v is the order variant and n is

meaningless and can be any address. These orders make use of + [(Q) + 2 It

is to be noticed that -(Q) - 2’39
which is the one's complement of (Q). (Q) is left unchanged.
KO n Add -{Q) - 2"39 to (A).

Kl n Clear A and add -(Q) - 227
complement of Q in A. 39

is represented in the computer by 2 - (Q) - 2~

to (A). This order puts the one's

K2 n If (Q)> 0, add -(Q) - 239 o (A).
If (Q)< 0, add (Q) + to (A). 39
K3 n Clear A. If (Q) >0, add -(Q) - 2”77 to (A).

If (Q) <0, add (Q) +2°°7 to (A).
K4 n Add (Q) + 2739 to (A). 39
K5 n Clear A and add (Q) + 2 7 to (A).
K6 n If (Q) 20, add (Q) + 2-3290 (A).
If (Q) <0, add -(Q) - 2777 to (A).
K7 n Clear A. If (Q) >0, add (Q) + 2-39 to (A).
If (Q) <0, add -(Q) - 2-39 to (A). 39
K9 n Clear A, insert 1/2 in A, then add -(Q) - 2~ o (A).
KS n Clear A, insert 1/2 in A. If (Q) > O, add —(Q) -2-3% to (A).
: £(Q) <0, add (Q) + 2739 to (A).
KJ

n Clear A, insert 1/2 in A. Then add (Q) + 2~ éA
KL n Clear A, insert 1/2in A. If (Q) > 0, add (Q) + 2~
If (Q) <0, add -(Q) - 2739 to (A).
K8 n
ﬁSN 2 The computer will stop with the order in the instruction register.
KF n

-10. 14-

Order Type S--Add from Q

These are orders of the form Sv n where v is the order variant and n is

meaningless and can be any address. The contents of Q are left unchanged.

SO n Subtract (Q) from (A). ; _ o

S1 n Clear A and subtract (Q) from (A). This order puts -(Q) into A.

S2 n Subtract |(Q)| from A.

S3 n Clear A and subtract |(Q)| from A. This order puts - |{Q)| into A.

S4 n Add (Q) to (A). ‘ :

S5 n Clear A and add (Q) to (A). This order puts (Q) into A.

S6 n Add [(Q)| to (A).

S7 n Clear A and add |{(Q)] to (A). This order puts |(Q)| into A,

S9 n Clear A and insert 1/2 in A. Then subtract (Q) from (A). This order
forms 1/2 - (Q) in A. N ,

SS n Clear A and insert 1/2 in A. Then subtract |(Q)| from (A). This order
puts 1/2 - |(Q)| into A. ; :

ST n Clear A and insert 1/2 in A. Then add (Q) to (A). This order puts 1/2 +
(Q) into A. o ‘

SLL n Clear A and insert 1/2 in A. Then add |(Q)| to (A). This order puts 1/2
+ |(Q)| into A.

S8 n

§§ 2 The computer will stop with the order in the instruction register.

SF n

Order Type J--Logical Product or Extract

These are orders of the form Jv n where v is the order variant and n is the
address of a word in memory. If two corresponding bits of (n) and (Q) are both 1's,
put a 1 into that place in Q. Otherwise, put a 0 in that place in Q. This order gives
the bit-wise logical product of (Q) and (n). |

JO n

gi Iri“— Form the bit-wise logical product of (Q) and (n) in Q.

J6 n|

J1l n

g?, -2 +—— Clear A, then form the bit-wise logical product of (Q) and (n) in Q.
J? n |

J9 n7 '

JS n| Clear A, insert 1/2 in A, and then form the bit-wise logical product of
JJ n (Q) and (n) in Q.

JL n]

J8 n7

gﬁ E,v"————-—The computer will stop with the order in the instruction register.
JE n]|

-10. 15-

Order Type N--Bank Control Order

Orders of the form Nv n where v is the order variant are used to change the
bank number (0, 1, 2, 3) from which ensuing orders and operands will be taken.

The bank which is to be used is determined by the last two bits of the address n.

NO n Go to the next order in sequence.

NI n Clear A. Go to the next order in sequence.

N2 n Change the bank number from which operands are coming to that indicated
by the last two bits of n.

N3 n Clear A. Change the bank number from which operands are coming to
that indicated by the last two bits of n.

N4 n Change the bank number from which orders are commg to that indicated
by the last two bits of n.

N5 n Clear A. Change the bank number from which orders are coming to that
indicated by the last two bits of n.

N6 n Change the bank numbers for both orders and operands to that indicated
by the last two bits of n.

N7 n Clear A. Change the bank numbers for both orders and operands to that
indicated by the last two bits of n.

N9 n Clear A, insert 1/2 in A. Go to the next order in sequence.

NS n Clear A, insert 1/2 in A. Change the bank number from which operands
are coming to that indicated by the last two bits of n.

NJ n Clear A, insert 1/2 in A. Change the bank number from which orders are

coming to that indicated by the last two bits of n.

NL n Clear A, insert 1/2 in A. Change the bank numbers for both orders and
operands to that indicated by the last two bits of n.

N8 n

ﬁg 2 The computer will stop with the order in the instruction register.

NF n

Order Type F--Increment Add and Specially Used Stop

These are orders of the form Fv n where v is the order variant and n is the

address of a word in memory. These orders make use of +[(n) + 2“39]° It is to be
noticed that -(n) - 2’39 is the one's complement of (n).
FO n Add -(n)- 2739 1o (A). F9 n Clear A and insert 1/2 in A. Then
Fl n Clear A, then add -(n)-2"3%to add -(n)-2-39 to (A).
{A). FS n Clear A and insert 1 2 in A. If
F2 n If (n)20, add -{n)-2-3% to (A). (n) >0, add -(n)-2327 to (A). If
If (n) < 0, add (n)+2-39 to (A). (n) < 0, add (n)+2~ 39 to (A).
F3 n Clear A. If (n) >0, add ~(n)-2- 39F7 n Clear fx and insert 1/2 in A. Add
to (A). If (n) <0, add (n)+2-39 (n)+2-37 to (A).
to {A). FL n Clear A and insert 1/2 in A. If
F4 n Add (n)+2739 to (A). (n) >0, add (n)+273% to (A). If
F5 n Clear A, then add (n)+2°3%to (A). ~ (n) <0, add -(n)-2-3% to (A).
This order is useful for F8 n . ‘ .
increasing a rlght -hand address. FK n The computer will stop WIth. the
a3r2? order in the instruction register.
F6 n If (n)> 0, add { to (A). FN n The FF n order i od fr i
If (n)< 0, add - (n) 2-39 to (A). FF n] e ° 1s us equently

to give an indication of why the
computer stopped. The address, n,
is assigned meanings by the
programmer. Then when this stop
occurs with a specific address, the
programmer can determine the
cause of the stop.

F7 n Clear A. If (n)> 0, add (n)+2-39
to (A). If (n) <0, add -(n)-2-39
o {(A).

-10. 16-

Order Type L--Add

These are orders of the form Lv n where v is the order variant and n is the
address of a word in memory. Either + (n) or + |[(n)| is added to (A). The contents

of n are left unchanged.

1.0 n Subtract {n) from (A).

Ll n Clear A and subtract (n) from (A). This order puts -(n) into A.

L2 n Subtract |{n)] from (A).

L3 n Clear A and subtract l{n)| from (A). This order puts - [(n)| into A.

L4 n Add (n) to {A).

L5 n Clear A and add (n) to (A). This order puts (n) into A.

1.6 n Add |{n)| to {(A).

L7 n Clear A and add |[{n)} to (A).

L9 n Clear A and insert 1/2 in A. Then subtract (n) from (A). This order
puts 1/2 -(n) into A.

LS n Clear A and insert 1/2 in A. Then subtract |(n)| from (A). This order
puts 1/2 - |{n)| into A.

LT n Clear A and insert 1/2 in A. Then add (n) to (A). This order puts 1/2 +
{n) into A.

Ll n Clear A and insert 1/2 in A. Then add |(n)| to (A). This order puts
1/2 + |{n)} into A.

L8 n

tg ‘2\ The computer will stop with the order in the instruction register.

LF n

10.5. Starting After Stops
There are two kinds of stops in the MISTIC: those which the black switch

can restart and those which the black switch cannot restart. The orders which
cause the computer to stop which allow the computer to be restarted by the black
switch are 20, 21, 24, 25, 29, 2J, 30, 31, 34, 35, 39 and 3J. The orders which
cause a stop not restartable by the black switch are all orders with order variant
8, K, Nor F; orders with order type 0, 1, 8 or 9 and an address congruent to zero

modulo 64; orders 84, 85, 86, 87, 8J, 8L or 9J.

10. 6. Starting After a Stop Transfer of Control

When the computer has stopped because of one of the above listed stop
transfers of control, it is usually restarted by moving the black switch to START
from which it automatically returns to OBEY. The stop occurs before the entire
transfer order has been executed. If the black switch is set to IGNORE, the stop

will not occur.

10.7. Starting by the White Switch

When the computer has stopped due to any of the orders listed above, it can

be restarted by moving the white switch to FETCH (which advances the left-right
count to the next order in sequence), then down to EXECUTE and RUN. If the stop

-10.17-

was a left-hand order, the next order obeyed will be in the right-hand position of
that order pair. If the stop was a right-hand order, the next order obeyed will be
the left-hand order from the next order pair. Transfer of control orders are

yignored with one exception. If the stop was caused by a right-hand order which is

one of the control transfer orders restartable by the black switch, and which
transfers control to the right side of an order, then the next order obeyed upon
setting the white‘switch to FETCH, EXECUTE and RUN will be the right-hand
order of the next order pair instead of the left-hand order. It should be observed
that 28 and 38 are not restarted by the black switch, so that this exception does not
apply. For example, when the stop occurs at the right side of location n in the
following example, control is sent to the right side of m by the black switch start,
but to the right side of n+l by a white switch start.

n) -
20 m
n+l) ---

10. 8. Another Use of the White Switch Start
If it is desired after any stop to transfer control to some arbitrary location,

n, a tape with 26 n 00 000 or 22 n 00 000, all in sexadecimal, should be inserted in

the reader and a bootstrap start given. By a bootstrap start is meant setting the

instruction register to 80 028 40 000 and the control counter to 000.

-10.18-

CHAPTER 11

ARITHMETIC IN THE MISTIC

Computers generally present a compromise between what is mathematically
desirable and what is feasible engineering-wise. As a result, certain features of a
computer may seem peculiar. This chapter will try to explain the peculiarities of

the MISTIC.

11.1. Number Representation

Every word in the MISTIC is forty bits long with the first bit being a sign bit

and the next thirty-nine being the representation of a fraction. If the bits are
denoted X% 1%, - X3gs then X is the sign bit and a binary point is assumed to lie

between X and X To accommodate negative numbers without providing special

handling for the sign, the MISTIC uses a 2's complement system. As a result, a

number in the MISTIC format represents

39
-Xq + n§_1 X 2

-n

This implies that all numbers x represented in the MISTIC must lie in the range
«=1£ x 1. Any number manufactured by the computer outside that range is said

to overflow.

11.2. The MISTIC Arithmetic Unit

A Q

[}
A
A Q
ADDER T
Y
Output Input From memory

v 3

To memory R

COMPLEMENT |

CIRCUIT From memory

T Figure 11.2.1
U

-11.1-

A is called the accumulator and Q, the quotient register. A is the temporary
accumulator and Q, the temporary quotient register.

A can transfer straight up to A (no shift), and Q, straightup to Q. Q
transfers down to Q either with a left shift of one place or a right shift of one place.
A can shift straight down or with a one place left or right shift.

The complement circuit is set to complement if U = 1 (v4 = 0) and it is set
to non-complement if U = 0 (v4 = 1).

Each of the above registers performs certain functions in the various

operations of which the computer is capable.

11.3. Addition

An addition is called for by the order type L with an order variant whose v4
bit is 1. When an Liv n order is given, the state of v4 is sensed. If v4is 1, the
complement circuit is set to add (i.e., U = 0). Then the number in memory
location n is copied into R3, and is sent from there to the adder through the
complement gate. Likewise, the number in A is sent to the adder, and the result

is placed in A, then in A.

11.4. Subtraction
A subtraction is called for by an L order type with an order variant in which
v4 = 0. In this case, the complement circuit is set to subtract (U = 1). Then the

rest of the operation is the same as the addition.

11.5. Multiplication

Initially, the multiplier y lies in Q while the multiplicand x is copied from

memory location to R3° The multiplication is then a series of additions and right
shifts with a partial product left in A at the end of each step, as follows:

The bit in d3q is sensed. If d3q = 1) the sum of (A) and (R3} is sent to A.
If d39 = 0, (A) is sent to A. Then in either case A is sent down with a right shift
to A, the right most bit of A being sent to q;; and the rest of Q shifting right one
place. This process is done 39 times.

If the ith partial product formed in A at the end of the ith iteration is

denoted by p., i =0, 1, ..., 39 where is the initial content of A, then
i Pg
- 2 (p, + x)

Piy1 72 'P5 T V39,4
Then if i = 38, 1 (+ x)

P39 =2 P37 V)

1 1

and p39 =5 ¥X + 7{1337 + yzx)

1
39
-39 -n
P3g = 2 Py t % nE_l ynz

-11.2-

39
Since Y= -ygt > ynz—n
n=]

as shown in Section 11.1, then

-3
=277 by +xlygt v) (11.5.1)

P39
The correct result in multiplying x by y should, of course, be xy. This is the
result obtained in equation 11.5.1 provided Yo = 0, i.e., provided y is non-
negative. - If, however, Yo = 1 (when y is negative), then equation 11.5.1 is in

excess of xy by XYq- In this case, the control circuitry is made to subtract out the
XYy
11.6. Division (66)

The divide algorithm for the MISTIC is designed so as to make the 66, 67,

and 6L orders produce correct quotients. As a result, the other 6v orders produce
predictable but generally useless results. This section will present the divide
algorithm for the 6v order with v4 = v2 = 1.

The method used is the same as long division at least in the case when the
dividend and divisor are pbsitive ,v In that case the divisor is subtracted from the
dividend. If the result is non-negative, a quotient digit of 1 is produced; if not,

a quotient digit of 0 is produced. Then, if the difference is negative, the dividend
is restored to its previous value. In either case, the dividend shifts left one place
and the process is repeated. A total of 40 shifts takes place.

The dividend occupies AQ and the divisor, R3. The quotient digits are
formed in Q. Each left shift sends q into 49 and into asg; thus leaving a sign bit
in qq- A remainder of sorts is found in A.

The precise algorithm for 6v n with v4 = 1 and v2 = 1 will be given after
some definitions are made.

Let the dividend in AQ be called rg with a sign bit Py The divisor in R3
is called y with a sign bit Yo The partial remainder in AQ after the division
starts is called r at the nth step. Then,

1) Compare Yo and Pg-

If Yo = Py set the complement circuit to subtract throughout the division. « If

Yo £ Pys set the complement circuit to add. Define

CV:(=1)pO+YO (11.6.1)
Do the following 40 times:
2) Form a tentative partial remainder s, with: sign bit tn by
s =r_ - oy (11.6.2)

n n

-11.3-

3y If tn = Py send s, to A from the adder. If tn £ Pgy send r to A from A.

Notice that tO £ Py-

4) Ift = Yo send 1 to 639 (the last bit of Q). If t £ Yo» send 0 to 5397

quotient bit thus formed is called q4, and
-1 Yotty
=2 "[1+(-1) 1

q, =

5) Send (A)and (Q) to AQ with a one place left shift. Now the new partial

remainder in A is
po-H:n
rog= 2t -0 [1+(-1) Ty
6) Set d3q to 1 and go to step 2.

Using equation (11.6.4) with n = 38, it follows that
38

- P LA
39 = ro-o'y[(l-z‘39)+2 Loy 0 %(-1) "2

2—39r

The quotient which is being formed a bit at a time is

38 38

E - -3 2 - -39
q=-q,*+ qn-Z B2 9:—2.q0+ 5 qn'Z T2

1

The quantity in Q is the quotient of ro/y according to the formula

r S

fo g 239 ,-39
y y
This will be proved by showing that
39 _
(ro"q}’) 2 - 539

It is true that

38 v+t
(xo-ay) 2%%=2 91”0‘2393’[-2‘¢10+2'39+Z2-1{1+(-1) ° n}Z'n]
0

Since tO;!pO, then

_ Yatt _ YotP _
ap=2" (-1 0 =271-(-p 0 %2l o

Then using this in equation (11.6.9), it follows that

39,39, 39},[,_7Jrz (1) Z

(rg-ay)- 2
or p 38 ¢
3 -1 0 -
(rg-ay) 27%=2% - 23 % y[(1-272%) 127} (1) }_6_.<-1>n-2 "oy
Hence,

-11.4-

The

(11.6.3)

(11.6.4)

(11.

(11.

(11.

(11.

(11.

(11.

(11.

(11.

(11.

. 6)

.7

. 8)

.10)

J11)

.12)

.13)

11.7. The General Case of Division

The algorithm for the 66 division is replaced in the general case by a
different one which is presented here. The quotient obtained is a Boolean function
of the signs of the dividend and divisor, the v4 and v2 bits of the order variant and
of the complement gate setting, U, and finally of the sign of the tentative partial
remainder.

Let:
denote the sign bit of the dividend.
denote the sign bit of the divisor.
denote the v4 bit.
denote the v2 bit.

denote the sign bit of the tentative partial remainder.

a1 09w e

denote the setting of the comp].ement gate.

IfU
ifU
& indicate whether the tentative partial remainder is sent from the

adder A (X = 1) or whether (A) is sent to A (& = 0).

0, the gate is set to add, and
1, the gate is set to subtract.

1o

The setting of the complement gate is given by the equation
U = ABE + BDE + ABD + ADE (11.7.1)
Then 439 is set to a 1 or a 0 after the formation of a tentative partial remainder
according to the following equation:

A3 = BF + BF (11.7.2)

Finally, & is given by

X = BE(ADUF + AD U F) + EB(ADUF + ADUF) (11.7.3)
It can be noticed that 439 is independent of v4 and v2.

-11.5-

CHAPTER 12

TAPE AND CARD PREPARATION

Most of the information that is to be transmitted to or from MISTIC is
handled on either punched tape or punched cards. The purpose of this chapter is to
outline the procedures for preparing cards and tape for MISTIC use and for printing

results from the computer.

12.1. Cards
In order to process punched cards on MISTIC, an IBM 528 Reproducer has

been installed. The 528 provides for either reading or punching cards under
control of the computer and therefore any card—héndling procedure is carried out by
means of a program. Several subroutines have been written for handling cards and
are part of the MISTIC Library.

No other card equipment is maintained by the Computer Laboratory; however,
upon request, any services such as key-punching, tabulating, etc., will be handled
by the Research Division of the Tabulating Department, located on the fifth floor of
the Electrical Engineering Building.

Information regarding the use of punched cards is contained in Chapter 14.
Card users should refer both to this chapter and to the card subroutines in the
MISTIC Library. The latter are available upon request through the Computer
Laboratory office.

Anyone contemplating use of cards in conjunction with MISTIC would be well
advised to examine these programs and/or discuss the problem with someone on the
MISTIC staff, as correct organization of the problem originally can provide much

cheaper and faster computation in many cases.

12.2. Care in Handling Cards

When using punched cards, some care should be exercised in handling them.
In particular, they should be kept dry to prevent swelling and the edges should be |
kept free from mutilation. To assist the Computer Laboratory staff in handling
cards, they should be submitted in a suitable box, free of rubber bands, paper

clips, etc.

12.3. Tape
A first step in using punched tape is to learn to ""read'' the tape. MISTIC
equipment uses a ''5 level' or ''5 hole" tape; that is, there are five positions

across the kwwidth of the tape which can be punched to represent symbols. In

-12.1-

addition to these five positions, there is a sixth and smaller position near the center
of the tape which is always punched. This is a sprocket hole or feed hole and is used
by the readers to advance the tape.

Each combination of the five holes that is punched determines a particular
character. Figure 12. 1 shows the code used by the MISTIC. Of particular interest
are the code combinations for the sexadecimal digits and for the format control
characters.

In normal operation, the computer will accept only characters (frames)
which do not have the fifth hole punched. Only under control of 91 orders will "5th
hole'' characters be accepted.

For MISTIC purposes, it is useful to designate the holes on the tape as the
yn, ongn, ongn o 1@ and '"5th't holes, reading from bottom to top, corresponding to
209 21, 22 and 23 in the binary system, plus a "5th' hole. It is easy to ''read" these
numbers from tape since no numbers have the fifth hole punched, and one can look
at the holes that are punched and add 1, 2, 4 and 8 accordingly. For example, note
the code for the numbers in Figure 12. 1.

In addition to the numbers, the printer format control characters are
frequently used, and these are grouped separately in Figure 12.1. These characters
then are the ones most commonly used; after some experience, they will be
memorized. The other characters, letters and miscellaneous symbols are used
much less often; if needed, they can be interpreted from Figure 12.1.

Examination of Figure 12.1 will show two symbols listed for each code
character, except the printer format control characters. These correspond to the
upper and lower case symbols on a typewriter. The symbol that will be printed is
determined by whether the ''letters shift'' character or the '"numbers shift"
character was most recently 'fread" by the printer. Thus, the same piece of tape
will print out either group of symbols depending upon which "'shift'' character
precedes the tape. The computer, however, interprets all characters as though
they were numbers. For example, if none of the holes on the tape are punched,
the computer will interpret a zero; but the printer will print a 0 if preceded by a.
letters shift character. Similarly, if the "'2" and "8 holes are punched, the
printe? will supply a + if a figlires shift preceded the character, but the computer
will interpret this as a K, or sexadecimal 10.

In using the computer, it is usually necessary to supply only numbers
(characters without the '"5th'" hole punched) to the machine since it fails to
recognize any other characters anyway, but it is convenient for certain man-
imposed purposes to print out the results in a particular format. In making up

tapes, then, characters are put on the tape which control the printer and which

-12. 2~

1721 @an8tg
opoD ade], 93ordwon)

"LATHS SHYNDIA 1933e pajuiad mox 1omor]
"LATHS SYALLAT 1933e pajutad mox xaddn

s 1J1ys
x \ ¢ . = qel,) { s191397 saandr g
4 ¥

® © ® & e ¢ ® ®
® o ® ® © ® ® @
® & o ® ® ® o e
° [L4 © [® ® L e e [e L L] ®)
® ® & o ® ® © ®
® & 6 © ¢ ¢ © o © o © o © o o o

, k f 4 N
A X A N H D a D d v Aers@ oowmdg peed aurg pue
uiniaoy oa3terxenD)
SHYHIINANN TVINIDIAVXHS

! g r N - + 6 8 L 9 S 14 € Z I 0
® @ ® ® ® ® ® ®
¢ @ ® @ ® O ® o
® O o o e &6 e o
® (] L J ® [] [] e [] L] ® [[] ® [] [] []
® &6 e o & o o ¢
T K| r N S P! O I n A L a C1 M (o] d

have no effect on the computer. These are known as the printer format control
characters.

With this introduction, it is now possible to explain the use of the equipment
available in the Tape Prépération Room and some of the mechanics of tape
preparation.

The paper tape used for most of the work in the Computer Laboratory is an
oil-impregnated paper. Consequently some care should be exercised in using the
tape to keep it away from clothes and important papers which might be ruined by
oil spots.

A second consequence of the oil is that it will pick up dirt very easily. This
leads to two difficulties: (a) some holes on the tape may be at least partially
covered, and (b) the dirt will be carried to a reader and deposited. The first
difficulty is of consequence any time a photoelectric reader is being used, since
even partial blocking of a hole may cause the reader to misinterpret this bit. The
second difficulty affects any reader because dirt clogs up the reading holes of the
photoelectric reader and sane of the moving parts of the mechanical readers.

There are some general procedures in tape handling that should be followed,
then, in order to insure error-free operation of the equipment. Tapes should be
handled carefully with particular attention to the following items.

1) Keep tapes clean. Baskets have been provided and these should be used
to keep the tape off the floor. Only one error in the tape caused by dirt is necessary
to make radical changes in the program.

2) Be sure tapes are ''free'' when going through a reader so that they will
not be torn. Any torn tapes should be reperforated and a good copy obtained to use
on the computer.

3) Some corrections can be made on a tape by using a hand punch to punch
holes which have been omitted. This is particularly valuable for adding the ''2"
hole when changing 20" and ''24'" orders to ''22' and '"26'" after a program has been
code checked. However, care should be taken that the holes are ''clean''--that is,
no fuzzy edges should appear where holes are punched.

4) A tape splicer is available in the Tape Preparation Room and may be

used for editing and combining tapes.

12.4. Printing Format Control

Teletypewriters are used for printing on paper the symbols represented by
the punched tape. The printers are set up so that they will print about 80
characters per line. Print-out format is controlled by tape characters also.

Format control characters are space, carriage return and line feed, figures

-12.4-

(numbers) shift, letters shift, and two different delay characters. The printer
performs the above functions when the proper tape code comes along regardless of
whether a figures shift or a letters shift has preceded it. In addition, a tabulator
feature is available, but the tab character must be preceded by a figures shift
character.

Most of the above controls are self-explanatory. The space character
simply moves the printer along one space without printing a character. Carriage
return and line feed are accomplished by a single character, and this simply means
returning the carriage to begin printing at the left-hand margin and feeding the paper
up one line. Letters shift and figures shift characters cause the printer to print the
upper and lower case symbols respectively, similar to an ordinary typewriter.
Unlike the typewriter, however, the particular shift character used retains control
until the opposite one comes along. So, for most usage, it is sufficient to have a
figures shift at the beginning of the tape only. The two delay characters perform the
same function; that is, they cause the printer to take a one-count rest. In particular,
one delay character is usually needed following a carriage return-line feed
character or tabulator character in order to give the carriage mechanism time to
function before the next character to be printed comes along. Without it, some
overpﬁnting may occur on the left-hand side of the page, a character may be
printed as the carriage returns, or columns will fail to line up properly. The tab
feature causes the printer to move to the next tab stop. These stops are set at 10,
25, 40 and 55 characters from the left-hand side.

Several pieces of equipment are available for the various operations
required in getting information into and out of the computer. The functions of these

units are described below along with operating instructions.

12.5. Teletype Perforator

The first operation after writing a program is to translate it to punched tape.

The keyboard perforators are for this purpose. With the unit plugged into a wall
receptacle it is ready to use. An ON-OFF switch is located on the left side, and
the unit is ON when the switch is in the '"'up'' position. A roll of blank tape feeds
through a punch block and out the left side of the perforator. As each character is
punched, the tape advances one character space which allows this character to be
seen just emerging from the punch block. If, at any time, a mistake is made in
punching a character, the tape may be backspaced by using the lever located just
above the ON-OFF switch. A space character (all five holes) is now punched, and
then the correct character is punched. A fast feed (or repeat) button is located to

the right of the keyboard. If a key is held down along with this button, the

-12.5-

character corresponding to that key will be repeated until the repeat button is

released. Care should be taken to push the repeat button after the selected key has

been held down and to release it before releasing the selected key. Otherwise, the
perforator may fail to punch correctly.

When starting to punch a tape, it is usually well to punch a series of delay
characters first to provide a leader at least six inches long. This will leave some
room on the tape on which to write so that it may be labeled, and it also leaves some
"handling' room. Then a carriage return-line feed character and an appropriate
shift (usually figures shift) character should be punched. These will insure that the
printer is correctly set up when the tape is printed out. After any other carriage
return a delay character should be punched to insure time for the carriage to
completely return. When the tape has been completed, four or five inches of 5th

hole characters (delays or spaces will do) should be punched outfor a tail.

12.6. Teletype Reperforator

The teletype reperforator is a standard piece of teletype equipment. It is

used in conjunction with a transmitter-distributor (teletype language) or reader.
These two form a unit which reads a tape and punches an exact duplicate. The
reperforator will reproduce at the rate of six characters per second. Two major
operations are thus made possible: (a) combming two or more tapes into one
continuous tape (for ease in handling), and (b) editing.

The units are served by a common power supply, and this can be turned on
by a switch located under the table near the left side. This switch should be turned
ON first, and the reader ON-OFF switch (located on the front of the reader) should
be OFF. If the tape is long encugh to be rolled up, drop the coil of tape on a reel
so that it will feed from the reel to the reader. On the reader is a hinged gate which
latches to hold the tape down against the reading fingers. This can be lifted by
raising the protruding lever at the front of the gate. The tape should now be placed
under the tight-tape stop (the mcvable arm at the right side of the reader). Make
sure the sprocket holes are lined up and laying down correctly over the sprocket
wheel, hold the tape securely in this position, and close the ''gate''. Then turn the
reader ON.

For editing purposes it is necessary to skip and insert other characters as '
the tape is read. The reader may be stopped by using the reader ON-OFF switch or
by lifting the tight-tape stop. The tape can then be shifted or another tape inserted
as required. The holes in the tape are sensed by five ''fingers' which can be seen
on the reader. The character which is directly over these fingers will be the next

one read and punched by the reperforator. A tail of space characters can be punched

-12.6-

on the tape when it has been completed by pushing down on the lever which is

available through a hole in the lid of the reperforator.

12.7. Printer

Once information has been punched on tape, it is desirable to find some
painless way of reading this--ergo, printer. There are three printers available,
one of which is portable and can be used for output directly from the computer.
Otherwise, the printers along with a TD (tranémitter-distributor), or reader,
constitute a unit which will print out the contents of a tape. As with the teletype
reperforator, a common power supply operates both the reader and the printer.
The switch for this is located under the table and this should be switched ON first.
The reader should be turned OFF, the tape placed on a reel and fed under the tight-
tape stop onto the reader, taking care that the sprocket holes correctly fit down over
the sprocket wheel. The reader can then be turned ON and the tape will be printed
out.

Two buttons on the front of the printer will feed the paper and return the
carriage independently of the reader. The printers also have an automatic carriage
return and line feed which will operate when the carriage reaches the right-hand

limit. Printing is at the rate of 10 characters per second.

12. 8. Tape Comparer

When reproducing the tape, it is essential to know that the copy is exactly -
like the original. For short tapes, visual comparison, accomplished by holding the
tapes in a superimposed position and examining against a light background, is
perhaps the fastest and easiest. For long tapes, the comparer is better. This unit-
has two high-speed photoelectric readers which are connected to comparison circuits.
The tapes to be compared are placed in the two readers and the comparer then
checks one against the other. As long as the tapes agree, the comparer operates
at 300 characters per second. When an error is detected, the unit stops and the
""compared' characters are displayed on the contrdl panel. The tape can then be
corrected or marked appropriately and the coinpafison continued. The readers
can be set for one of three modes of operation: (a) skip no characters, (b) skip
é,ll 5th hole characters, and (c) skip all space characters.

This unit has ipowe'r supplied to it always to avoid a delay while waiting for
it to warm'up,' After pushing the SET button and selecting the mode of operation,
the tapes to be compared are placed in the appropriate readers and started.

Another switch is available to permit advancement of the tape one character at a

time when such an operation is desirable.

-12.7-

12.9. High-speed Reperforator
The high-speed reperforator performs the same function as the teletype

reperforator but is much faster and consequently of particular value in preparing
long tapes. The unit consists of two photoelectric readers and a punch. Operation
at full speed is 60 characters per second. Since there are two readers, it is
possible to handle two different tapes, alternately selecting the tape which is to be
copied. The neon lights on the control panel indicate the last character read from
tape, whether punched or bypassed. Four switches and a push button are used to
control the reperforator. Their use is outlined below.

STOP-RUN Switch. This is a two-position switch which determines
whether the unit is stopped or running. It should be in the STOP position before
changing the position of any other switch except the START-OBEY -IGNORE switch.

FRONT-REAR-CRLF Switch. This is a three-position switch, and with it
the following operations are enabled.

a) Read the tape in the front reader.
b) Read the tape in the rear reader.

c) Punch carriage return-line feed characters without
operating the readers.

MODE CONTROL Switch. This four-position switch works in conjunction
with the START-OBEY -IGNORE switch to determine the way to read a tape, as
follows:

a) SINGLE CHARACTER PUNCH--Punch one character
and stop. :

b) STOP PUNCH ON CRLF --Punch up to and including
the next carriage return-line feed character, and

stop.
c) SINGLE BYPASS--Skip one character and stop.

d) STOP BYPASSING ON CRLF --Skip all characters up
to and including next carriage return-line feed
character, then stop.

START-OBEY -IGNORE Switch. This is a three-position switch, with the
START position being a momentary contact; that is, the switch will return itself to
the OBEY position. If the switch is moved to START after a stop, the instruction of
the Mode Control switch will be obeyed oncke and another stop will occur. If it is
set to IGNORE, it will cause all of the stops s_becz‘ified by the Mode Control switch

to be ignoreda

-12. 8-

CHAPTER 13

CALCULATION OF RUNNING TIME

There are several good reasons for knowing how long it will take MISTIC to
perform a particular computation, First of all, when using a computer which costs
up to a few hundred dollars per hour to operate, it is necessary that it be scheduled
efficiently and this requires knowledge of the time required for each problem.
Secondly, there must be some idea of how long to let the machine run before
expecting an answer, since mistakes eithef in the program or in the machine could
allow the computer to ""loop' indefinitely. Again, when using the card reader-punch,
it is necéssary to limit computation time between éard rows in order to prevent a

hang-up.

13.1. Estimating Time

There are several ways to estimate the required time. All library routines
indicate the amount of time required so that the estimate for a program using
library routines exclusively can be determined by these formulas.

When running the same program several times with only changes in data, the
time required for one run serves as a good estimate for further runs. Of course,
this does not solve the time problem for the first run, but it will prove to be a very
good estimate for succeeding runs.

Another way to estimate time is to note the time required for code checking
and use this as a gﬁide to determine timé requirements for production runs.

Finally, a simple formula for estimating running time is given by

N N N__+N
o s

m 17
T =15 t 730 * T milliseconds
where N0 = number of orders obeyed
Nm:: number of multiplications obeyed
Na
Ns = number of shifts obeyed

= number of divisions obeyed

This formula allows for running time only, so input and output time must be
added to this. Input and output time will be determined by the routines used, and it
can be calculated from formulas given by these routines, or a rough estimate can be
made using the times indicated in Table 13.1.

Some additional information regarding time for the card reader-punch is

necessary. The reader operates at a maximum speed of 200 cards per minute and

-13.1-

the punch at 100 cards per minute. The maximum speeds may be reduced
considerably by particular input and output routines, and reference must be made
to these routines for more specific information.

When programming for card operations, there are some particular time
conditions which must be met. Once a card cycle has been initiated, the entire
card must be processed. It requires twelve 94 orders to read a card or twelve 96
orders to punch a card, one for each row. Between cards, any amount of
computation time is permissible, but between rows the Computation time islimited
to 8.7 milliseconds when reading and 17.4 milliseconds when punching. If inter-
row computation is not completed in this time, the card row will have passed the
read or punch station. To prevent errors when this might happen without the user's
knowledge, MISTIC will hang up on the 94 or 96 order which should have operated

on the bypassed row. A light on the card reader console indicates this condition.

ORDER TYPE EXECUTION TIME
On, In , 24n microseconds
2, 3, 4, 5,7 55 microseconds
3, not executed 18 microseconds
6 1,200 microseconds
7 1,000 microseconds
80n, 8ln, 91n
‘ (n is a multiple 1,000n microseconds
of 4)
82n ' 4,200n microseconds by punch
25,000n microseconds by printer
92 17,000 microseconds per character by punch
100,000 microseconds per character by printer
K, S, F, L 100 microseconds '
N 30 microseconds
Table 13.1

13.2. Calculating Time

There are times when it is desirable to have a better estimate than is given
by the methods of the previous section as, for example, when making up the
formulas for a library program. Table 13.1 gives the approximate amount of time
necessary for each of the orders.

In most cases, it will probably be found that an estimate is not very close to
the actual time; a factor of 2:1 may even indicate a ''good' estimate. Even the use
of Table 13.1 will not permit a perfect estimate, since some of the times listed
are only approximate. For example, a multiplic’ation may take as little as 900
microseconds, the exact time depending upon the multiplier. However, it is in
the best interests of the programmer to have an estimate as accurate as possible,
and the methods outlined will lead to usable results.

-13.2-

CHAPTER 14

THE USE OF CARDS AND CARD EQUIPMENT FOR MISTIC

The cards acceptable to the MISTIC for input and output are what are known
as IBM 80 column cards. The means of inputting and outputting the cards is an
IBM 528 Accumulating Reproducer. The use of card input and output does not
preclude the use of paper tape input or output, and in fact, both methods of

transmission are frequently used in certain problems.

14. 1. The Cards

An eighty column card is illustrated in Figure 14.1.

Columns
1 2:-3 4 56 7 8 9 1011 12 75 76 77 78 79 80

12’// { /

11 (

0 \

1 \
2 / \
1K \
&,)

5 ~ /

6 \

7

8 N

9 \

Figure 14.1

The digits 0, 1, 2, 3, 4, 5, 6, 7, 8and 9 are indicated by a perforation in
the corresponding row. For example, if the first three columns of a card should
denote the number 407, then in column 1, row 4 should be perforatedy; in column 2,
row 0 should be perfora’cedy and in column 3, row 7 should be perforated. For the
uses of the 11 and 12 rows, one should consult the specific library programs.

| One can observe that an eighty column card could represent an eighty digit
number. Since there is seldom need er such a number, the card is divided into
allotted sets of columns, called fields. ’Thus, if one wished to use ten digit

numbers, eight such numbers would fit on a card, and the card would then be said

-14. 1-

to have eight 10-column fields. Of course, the length of the various fields on a
card need not be constant. Thus, on one card there could be fields of length 2, 7,

9, 8, 4 and 3, for example. Such a card is said to possess variable field length.

A set of cards, all bearing data related to the same problem, is called a
deck. Two possibilities concerning field structure throughout a deck prevail.

1.) It is possible that the exact field structure of one
card is the same as the field structure of all the
other cards in the deck. Such a situation is
referred to as a deck with fixed format.

2.) It is possible that the field structure of some
cards in the deck is not the same as the field
structure of other cards in the deck. This
situation is called a deck with variable format.

14.2. Card Preparation

The Computer Laboratory does not in general provide the card stock for
individual users. The only piece of card preparation equipment maintained by the
Laboratory is a hand punch, suitable for small scale use. In order to acquire card
stock and to prepare cards, the user may contact the Tabulating Department,

Research Division.

14.3. The Operation of the IBM Type 528 in Conjunction with the MISTIC

For input, each card is read, row by row, with the 12 row normally being

read first. Each row is translated as an 80 binary digit number and transmitted to
the AQ register. For output, 80 binary digit numbers are transferred from the AQ

register to a card, a row at a time, 12 row normally first.

14.4. The Plugboard
The reading and punching of cards is controlled by a plugboard and the card

instructions.

The plugboard is a device which may be wired in various patterns, so as to
determine which bit position of AQ will correspond to a particular column on the
card. The pertinent features of a plugboard are shown in Figure 14.2. Each row
has holes in it, which are not drawn in. Thus, there are 40 holes in the PUNCH
DIRECT rows, 8 holes in the short PUNCH rows, and 20 in the longer PUNCH rows.

The holes in the PUNCH rows, and in the READ rows, refer to the bit
positions of A and Q; thus, the first hole in the PUNCH row refers to agy the next
toa,, the fortieth to ajg; the forty-first to 40 and so onsimilarly for READ. The
holes in PUNCH DIRECT refer to the columns of a card to be punched. Thus, the
first hole in the PUNCH DIRECT refers to column 1 of the card, the second hole to
column 2, etc. By connecting a PUNCH hole (by means of a wire) to a PUNCH
DIRECT hole, one establishes that a given bit position of AQ is transferred to a

-14.2-

2 %1 2an3tg

6¢
44

43
61
H¢
61
b¢
£3
X4
G 1
.Nz,

R R s R SR A
+++++0 peoy +++ + 4

tH+ bttt HF A

R o e A A

+++++++V peod+++++ 4+

B e o B e A A e A R

+t+++++ O young ++++++

tEF+ A+
+tH++H+++
tHt+ 4
+ V yosund +
tH+t+ e+

tH++ 4+ bbb+t
08 —B3urpeoy puod9g—Gg—
R e
08 GL30911Q ydundgg9 —

t+++++++ 4
0% —3urpesay puodeg-—gz—
R A AR b TR S R A S
0¥ Gg1o9IIq YdunNggy —

R O A e T o a1
(09 —JuIpesay puod9g —Ggf ——
R o o e R o
—09 §G10911Q Yo UNg g ————

R e e
—(Z—S8uipesy puod9g— G——
R e ok S R N N SR S A AR AR S
—0¢ GHo9IIq yound-g—

-14.3-

given column position of the card. Reading is handled in the same way.

For example, suppose we wish to read a card so that column 1 goes to ag,
column 2 to ag and column 13 to ag- We would then wire SECOND READING and
READ so that the first hole of SECOND READING is connected to the eighth hole in
READ, the second hole of SECOND READING is connected to the ninth hole of READ,
and the 13th hole of SECOND READING is connected to the first hole of READ.

If a user intends to use card equipment, it is well for him to consult with a
member of the Computer Laboratory staff concerning his card format. It may be
that his format can be adapted to a certain fixed format in use in the Laboratory,

thus bypassing the problems of obtaining and wiring a second plugboard. The fixed

format plugboard makes the following assignments:

Bit Position to Card Column
ag 1
a, 2
a, 3
ajg 4
ay - azg 9 - 44
qq 5
q 6
q, 7
a3 8
94 - 939 45‘- 80

Table 14.1

14.5. Card Orders

The card input order is 94 with an address of zero. The output order is

96 with an address of zero. There are separate card feed hoppers for input and
output. There is a card read station, capable of reading one row, and a card punch
station, capable of punching one row. When a 94F is issued, if no card is in the
read station, one card advances to the read station from the hopper, and the first
row (normally the 12 row) is read; the card conti’nues to advance. If another 94F
order is given before the 11 row enters the read station, the 11 row will be read.
Otherwise, the computer will stop and the program will have to be corrected.
Thus, in order to read the contents of one card, twelve 94F orders must be given.
Similar statements apply to output and 96F orders.

The cards are input to the read station at the rate of 200 cpm (cards per
minute), which means 300 milliseconds per card. After a 94F order has been

executed and if the card has not been entirely read, the next 94F must be executed

-14.4-

within about 8.7 milliseconds to avoid the computer stop mentioned above. When a
card has been entirely read, the next 94F order can be given at any time with no
hang-up occurring. However, to achieve the maximum read-in of 200 cards per
minute, the next 94F order after the completion of a card read must occur within
17.4 milliseconds. Otherwise the next card can not advance until 300 milliseconds
have elapsed since the previous card was read. This last option is the one
ordinarily used, so that the read-in rate generally is only 100 cpm.

The 96F order obeys the same rules as above, except that all times for

96F orders are twice those of the 94F orders.

14.6. Card Programs in the Library

At present there are programs (N1M, N3M) for inputting variable format

decks and fixed format decks. There is an output program (P3M) for fixed format

decks. There is a program (NP1M) for converting card data to tape for use with

K2 and K9. Many other versions of input and output can be constructed around these

programs. Finally, K2 and K9 have been converted to accept direct card input.

-14.5-

INDEX

-A-
A register, 2.4, 2.5, 2.8, 11.2 Bootstrap, 8.4
change under input and output input, 7.2, 7.3
orders, 7.3 start, 2.7
Access time, 2.3 C
Accumulator (A), 2.4, 11.2 T
change under input and output Calculation of running time, 13.1
orders, 7.3 formula for, 13.1
Add from Q, 3.9, 10.15 Cards, 2.2, 12.1, 13.1, 14.1
Add, increment orders, 3.8, 10. 14, input, 12.1, 13.1, 14.1
10. 16 orders, 3.6, 14.4
Add orders, 3.9, 10.17 output, 2.7, 12.1, 13.1, 14.1
Addition, 11.2 plugboard, 14.2
binary, 1.5 preparation, 14.2
time, 13.2 programs, 14.5
Address punch, 12.1, 14.2
changing, 5.3 punched, 12.1, 14.1
fixed, 4.3 reader, 12.1, 14.2
length, 2.3 speed, 14.4
memory, 2.3, 3.2, 3.3, 3.5 Carriage return-line feed, 12.5
relative, 4.3, 4.4 Cathode ray tube, 2.3
search routine, 8.5 Character, 12.2
single, machine, 3.1 Check point routine, 8.6
Analogue computer, 1.1 Closed routine, 6.1
Argument in closed subroutine, 6.2 argument placing in, 6.2
Arithmetic, 11.1 control transfer to, 6.1, 6.2
section of computer, 2.4, 11.1 entry to, 6.1
with scaled numbers, 9.2 example of, 6.3
“B- planting link in, 6.2
Code
Base of number system, 1.1 checking, 8.1
Basic input step, 10.12, 10.13 operation (op), 3.2
Basic output step, 10.12, 10.13 Coding, introduction to, 3.1
Binary , common blunders in, 8.1
arithmetic, 1.5 Comparer, tape, 12.7
digit, 1.2 ; Complete program, 6.1
marking with, 7.7 Complement
number gate, 2.4
computer representation, 1.3 two's, 1.3, 11.1
~system, 1.1 , , Computer
switches, 7.5 analogue, 1.1
to decimal conversion, 1.6 digital, 1.1
to sexadecimal conversion, 1.2 Conditional control transfer, 3.4
Bit Control
definition, 1.2 counter, 8.4
sign, 1.3 return tc DOI, 8.3
make up of order pair, 3.2 transfer
Black switch start, 10.17 checking routine, 8.6
Blunders conditional, 3.4, 10.6
common, 8.1 orders, 3.4, 10.6

typical, 8.2 reversing, 7.5

Core memory -H-
execution time, 13.2 Hand punch, 8.1

orders (N}, 3.9 Housekeeping instructions, 5.4

Correcting
errors, 8.1 -I-
tapes by reperforation, 8.1 Increment add orders, 3.8, 10.14, 10.16

Counter, 5.3

Input
control, 2.6 bootstrap, 7.2
-D- decimal fractions, 4.4

Data, 2.6 from cards, 12.1, 13.1, 14.1

. from tape, 2.5
Decimal .

binary to -- conversion, 1.2 integers, 4.4

£ . . o orders, 3.6, 10.1, 10.12, 10.13

raction, print out post £ 7.3

mortem, 8.5 bt
’ -output orders, 3.6, 10.12, 10.13

number notation, 1.1
order input (DOI), 4.1
format, 4.1
sexadecimal to --
conversion, 1.2, 1.6
Digit make-up of order pairs, 3.2
Digital computer, 1.1

section, 2.1
Instructions, 2.6, 3.1
Instruction register (R3), 2.6, 8.4
Integer

print out, post mortem, 8.5
Interpretive routine, 6.5
Iterative programming,

Dlrggcllvz 1 71 introduction to, 5.2, 5.3
K, 4.2, 7.1 -J-
N, 4.2, 7.1 . .

Divide orders, 3.5 J termination, 4.3, 4.5

Division, 10.9, 11.3, 11.5 -K-

DO]I?’mjr;” 1.5, 1.6 K directive, 4.2

v ~ K termination, 4.3
-E - Lo

giﬁitrostatlc memory, 3.2 L termination, 4.3
st};ndard9 6.1 L.efth.ft 24 3.4 10. 4
to closed routine, 6.1 SHOLL, &. %, 3. %, ’

Errors hand order, 3.2
common. 8. 1 Letters, on tape, 12.3
location ,;by Eprogrammed stops; 8.4 Letter shift, 3.7, 12.4

P on tape, 12.3

typical, 8.2
. . ; Level, 5th, 12.1
Execution time for order types, 13.2 Library, 6.1

Extract, order, 10.15 .
routine 6.1

-F- Link, planting the, 6.2
Logical product orders, 3.9, 10.15

F termination, 4.3 Loop, 5.2

Fifth hole character, 7.3, 12.2
marking by use of, 7.7 -M-

Figure shift on tape, 12.3, 12.4

Fixed address, 4.3

Fixed point programming, 9.1

Flipflop, 2.4

Machine representation of
binary numbers, 1.3
negative numbers, 1.4
numbers, 9.1 =

Floating point, 6.6
Format, DOI, 4.1 Make:—up of orders, 3.2
Marking, 7.7

Formula for calculating running by 5th hole character, 7.7
time, 13.1

Fraction, decimal input, 4.4

Frame, 2.1, 12.2

by binary digit, 7.7
by termination symbol, 7.7
Masks, 7.7

Master routine, 6.1 Order (cont'd.)

Memory, 2.3 right hand, 3.2
address, 2.3 sequence of, 2.6
capacity, 2.3 summary, 3.10
core, 3.9, 13.2 types, 3.4, 10.1
electrostatic, 3.2 0, 3.4, 10.4
locations, 3.3 1, 3.4, 10.5
to Q orders, 3.5, 10.8 2, 3.4, 10.6
Multiplication, 11.2 3, 3.4, 10.6
binary, 1.5 4, 3.5, 10.8
orders, 3.5, 10.10 5, 3.5, 10.8
table, sexadecimal, 1.7 6, 3.5, 10.9, 11.3, 11.5
time, 2.6 7, 3.5, 7.4, 10.10
Multiply orders, 3.5, 10.10 8, 3.6, 7.3, 10.12
-N- 9, 3.6, 7.3, 10.13
, K, 3.8, 10.14
N directive, 4.2, 7.1 S, 3.9, 10.15
N termination, 4.3 J, 3.9, 7.7, 10.15
Negative number N, 3.9, 10.16
conversion to machine form, 1.4 F, 3.8, 10.16
machine representation, 1.4 L, 3.9, 10.17, 11.2
Negative one, test for, 7.6 variants, 10.1
Non-iterative programming, 5.1 Orders, 2.3, 2.6, 3.1
Notation, positional, 1.1 : card, 3.6
Number ; execution time for, 13.2
representation, 11.1 in machine language, 3.1
on tape, 2.2 : - make-up of, 3.1
on cathode ray tube, 2.3 Output
shifts, 12.4 cards, 2.7, 12.1, 13.1, 14.1
on tape, 12.3 orders, 3.6, 10.12, 10.13
system, 1.1 use of, 7.3
base of, 1.1 punéh, 2.7
binary, 1.2 section of computer, 2.7
conversion, 1.2, 1.4, 1.6 speed, 2.7
decimal, 1.1 teletype printer, 2.7
sexadecimal, 1.2 to tape from A, 2.7
two's complement of, 1.3 Overflow, 9.4, 11.1
Numbers p.
greater than 1/2, test for, 7.6 Il
in machine language, 3.1 Paper tape, 2.1
machine representation of, 9.1 Parameters
on tape, 12.2 preset, 6.2
range of -- in computer, 9.1 program, 6.2
_O- Perforator, 12.5
Planting the link, 6.2
Op code, 3.2 Plugboard, 14.2
Operand for an instruction, 3.1 Positional notation of numbers, 1.1
Open subroutine, 6.1 Post mortem routines, 8.5, 8.7
Operation code, 3.2 Preparation, card, 14.2
Order Preset parameters, 6.2
code, 10.1, 3.3, 3.10 Print format control, 2.7
format, DOI, 4.1 characters, 12.4
left hand, 3.2 on tape, 12.3
pair, 2.6 Printer, 12.7
register, 2.6 operating time, 2.7

repertoire, 10.4 teletype, 2.1

Printing speed, 12.7 -S-

Product, logical, 3 9, 10.15 Scaled numbers, arithmetic with, 9.2
Products, summation of, 7.4 Scali 7.7. 9.1

Program, 2.6 caling, (.1, 7.

complete, 6.1 Sequence checking routine, 8.6

Sequence of orders, 2.6

parameter, 6.2 . .
Programmed stop, 7.1, 8.4, 10.16 Sequentl‘al machine, 3.1
Sexadecimal

o locatlon.of errors by, 8.4 digits, 1.2

rogramming
introduction to, 3.1
iterative, 5.2, 5.3
non-iterative, 5.2, 5.3

Programs, card, 14.5

multiplication table, 1.7
numbers on tape, 12.3

symbols, 1.3

to binary conversion, 1.2

to decimal conversion, 1.2, 1.6

Punch
Shift
ﬁizi’ ézil’ 14.2 left, 2.4, 3.4, 10.4
output. 2.7 right, 2.5, 3.4, 10.5
R print characters, 12.2

Punched cards, 12.1, 14.1 Shifting register, 2.4

-Q- Sign bit, 1.3
Q register, 11.2 Single-address machine, 3.1
. Speed, card, 14.4
change under input and output
Sprocket hole, 12.2
orders, 7.3
loading, input, 10. 8 Standard entry, 6.1
’ ’ ° Start
-R- black switch, 10.17
: bootstrap, 2.7
RI register, 2.4 white switch, 2.7, 10.17

RII register, 2.4
RIII (R) register, 2.4
R3, 2.6
Range of numbers in computer, 9.1
Reader, 12.2, 12.7
card, 12.1, 14.2

Starting the computer, 2.7
Stop-control transfer orders, 8.4
Stops
programmed, 7.1
location of errors by, 8.4
starting after, 10.17

Zazee,dz.zl 1 Storage, 2.3

p T Store orders, 3.5, 10.8
Reading from tape, 12.2 :

. Subroutine, 6.1 :
Register , oven. 6. 1

Accumulator (A)(RI), 2.4, 2.5 cfoséd o1

Instruction (order)(R3), 2.6 . ‘
Order (R3), 2.6 Subgirr?:;;;oni 151. 2
Quotient (Q)(RIII), 2.4, 2.6 b
Shifting, 2.4 Sum check, 8.4

Relative address, 4.3, 4.4 Summation of products, 7.4

Reperforator, 8.2, 12.5 SWléicrlfary s
hlg}; sepeede(ch 1122 88 | black, start, 10,17
s eelii" 12.6 n : white, start, 2.7, 10.17
3 . : Symbols,

Repertoire, order, 10.4
Representation of numbers, 11.1

in computer, 9.1
Reversing of control transfer, 7.5 -T-
Right hand order, 3.2
Right shift, 2.5, 3.4, 10.5
Routine, 6.1

" library, 6.1, 6.2

master, 6.2

Running time, calculation of, 13.1

sexadecimal, 1.3
terminating, 4.3

Tape
comparer, 12.7
correction, 8.1
input from, 2.5
output to, 2.5

Tape (cont'd.)
paper, 2.1
preparation, 2.2, 12.1
reader, 2.1
representation of numbers on

tape, 2.2
Tapes, modification, 8.1
Teletype

perforator, 12.5

printer, 2.7

reperforator, 12.6
Teletypewriter, 12.4, 12.7
Termination symbols

DOI, 4.3
marking by, 7.7
Test

for negative one, 7.6
for numbers greater than 1/2, 7.6
for zero, 7.6
special, 7.6
Tight-tape stop, 12.6, 12.7
Time
access, 2.3
addition, 2.6
multiplication, 2.6
running
calculation of, 13.1, 13.2
for execution of order types, 13.2
Transfer control, 3.4, 10.6
checking routines, 8.6, 8.7
reversing, 7.5
Transmitter-distributor (TD), 12.6,
12.7
Tubes, cathode ray, 2.3
Two's complement of a number,
1.3, 11.1
Typical blunders, 8.2
Types, order, 3.4, 10.1

-U-
Unconditional control transfer, 3.4
-V -
Variants, order, 10.1
-W -

White switch, 2.7, 10.17
Word, 1.3, 2.3, 3.1
assembly, DOI, 4.2
-7 -
Zero test, 7.6

	Front Cover
	Title Page
	i
	ii
	Preface
	iii
	iv
	Contents
	v
	vi
	vii
	viii
	Number Systems
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8
	A Description of the MISTIC
	2.1
	2.2
	2.3
	2.4
	2.5
	2.6
	2.7
	2.8
	Introduction to Programming--Order Code
	3.1
	3.2
	3.3
	3.4
	3.5
	3.6
	3.7
	3.8
	3.9
	3.10
	Decimal Order Input
	4.1
	4.2
	4.3
	4.4
	4.5
	4.6
	Non-Iterative and Iterative Programming
	5.1
	5.2
	5.3
	5.4
	Subroutines
	6.1
	6.2
	6.3
	6.4
	6.5
	6.6
	6.7
	6.8
	6.9
	6.10
	6.11
	6.12
	6.13
	6.14
	6.15
	6.16
	Special Coding Techniques
	7.1
	7.2
	7.3
	7.4
	7.5
	7.6
	7.7
	7.8
	Code Checking
	8.1
	8.2
	8.3
	8.4
	8.5
	8.6
	8.7
	8.8
	Fixed Point Programming and Scaling
	9.1
	9.2
	9.3
	9.4
	9.5
	9.6
	9.7
	9.8
	The Repertoire of the MISTIC
	10.1
	10.2
	10.3
	10.4
	10.5
	10.6
	10.7
	10.8
	10.9
	10.10
	10.11
	10.12
	10.13
	10.14
	10.15
	10.16
	10.17
	10.18
	Arithmentic In the Mistic
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6
	Tape and Card Preparation
	12.1
	12.2
	12.3
	12.4
	12.5
	12.6
	12.7
	12.8
	Calculation of Running Time
	13.1
	13.2
	Use of Cards and Card Equipment
	14.1
	14.2
	14.3
	14.4
	14.5
	14.6
	Index
	
	
	
	

