

Ccomputer Laboratory

MISTIC PROGRAMMING MANUAL

Second Edition
September 15, 1959

Prepared by the Staff of the
COMPUTER LABORATORY

MICHIGAN STATE UNIVERSITY
- EAST LANSING, MICHIGAN

PREFACE _

Perhaps one of the most significant innovations of the century has been the

design and actual construction of electronic digital computers. It is true that

designs for computers had been considered as early as the first quarter of the

nineteenth century, but it is equally true thatthe then existing means of operating

such a computer were insufficient. It was onlyin the period following 1940 that

advancing electronic techniquesmade an automatic computer feasible. Among the

earliest conceived computers was the one at the Institute for Advanced Study at

Princeton University, followedby the initial phases of de sign of the ILLIACat the

University of Illinois in 1948. The Illinoiscomputer, modeled to a certain extent

after the Princeton machine, was completed in 1952.

In the decade following 1945, the number of digital computers in this country

increased fromat most a dozen to more thana thousand. The applications of such

instruments have reached into almost every scientific field. Asa result,itwas |

decided by Michigan State University, in order to provide access to suchan

important aid to research, thata digital computer should be constructed on this

campus. With the generous assistance of the staff of the Computer Laboratory at

the University of Illinois, work on a duplicate of the ILLIAC was begun in the

summer of 1956. The machine, called MISTIC, went into operation on

October 18, 1957. |

This second edition of the MISTIC Programming Manual has been up-dated ©

and corrected following nearly two years of MISTIC operation. In particular,

information concerned with the use of punched cards and the core memory has

been added. -

The manual is organized for use as a general reference for the experienced

programmer. [tis used also as a text for programming courses taught on the

Michigan State University campus. It can also be used by those with little or no

background in the use of computers as an instruction manual. The index will aid

the experienced in finding detailed answers to specific questions. The use of the

manual by those working on their own remains to be explained. :

For this latter group of users who are getting little or no outside help,

the following comments and outline may be useful. In particular, it should be

emphasized that the manual has been written with a view towards being all-inclusive

and a lot of worthwhile use can be made of the computer without knowing all the

‘iii

details presented herein. Thus any chapters, or parts thereof, which present

difficulty should be skipped until later experience dictates their use, without any

fear of missing something important.

The following outline has been used successfully in individual situations:

A.

Cc. 1.

Chapter 2 - Read casually, refer backas

necessary. |

. Chapter 3 - Read, then use as a referenceas
necessary.

Chapters 4 and 5 - Studyin detail as a unit,
with reference to Chapter 3 when required.

Chapter 8 - Read thoroughlyfirst, then reread
occasionally and note for reference.

Chapter 9 - Readand study as required.

. Chapter 6 - Read andstudy as required.

Chapter2 - Read before starting tape
preparation. |

Several simple problems should be programmed and used on the computer

during the process of completing thisoutline. Individual needs will dictate ©

succeeding study and use of the manual.

1v

PREFACE . .

CHAPTER |

CHAPTER2

CHAPTER 3

CHAPTER4

CHAPTER5

CHAPTER6

CONTENTS

NUMBER SYSTEMS... 6.5 2 eee ee eg
Positional Notation es
Conversion Between Binary and ‘Sexadecimal | ,
MISTIC Representation of Binary Numbers |
Arithmetic in the Binary System
Conversion Between Sexadecimal and Decimal.

A DESCRIPTION OF THE MISTIC s a * a

Input 9 & s o e « ee em . ¢. ad , eS eG @ A a nn # e . oo. 9 @

Storage or Memory. ewe ee ee ek

Arithmetic.

Control.

Output

INTRODUCTIONTO PROGRAMMING--ORDER CODE
Orders and Numbers in Machine Language .
The Make-up of Orders. pty -

The Order Gode.....
Left-Right Shift. (0,1)
Control Transfer (2, 3)
Memory Access (4,5).

- Divide and Multiply(6,Ne.
Input-Output (8,9).
Increment.Add (K, F)
Add and Extract (S,L,J).
Order Code Summary .

DECIMAL ORDER INPUT.
Format for Wordsto be mputby the DOI.
Directives .. . ae
Word Assembly by‘the DOL
Fixed and Relative Addresses.

Input of Decimal Fractions and Integers-

NON-ITERATIVE AND ITERATIVE PROGRAMMING
Non-Iterative Programming. Le
Iterative Programming--NoChanging Addresses
Iterative Programming--Changing Addresses .

SUBROUTINES.
Types of Routines in the MISTIC.Library ee
Entry Into and Exit Froma Closed Subroutine Dok
Placing the Argument .
Parameters--Program and Preset
Examples of Closed Subroutines
Interpretive Routines.
Library Routine N2........
Library RoutinePl...,
Library Routine R2.....
MISTIC Library Categories.
Program Library Index . N

N
A
N
A
N
D
A
A
D

N
H
A
T
T
P
R
R
E
E
R
W
W
W
W
W
W
W
W
W
W
W
W
N
N
N
N
N
N
B
e
e
n
e

p
e
t
e

- f
e
d
e

H
R
W
e
e

O
O
W
N
e
S

a
)

M
R
M
O
O
N
M
N
W
N
N
E
e
e

W
N
e
e

m
m
O

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

SPECIAL CODING TECHNIQUES.
Interludes ,
Some Special N Directives
Bootstrap Input .
Use of Input and Output Orders .
Summation of Products

Reversing the Control Transfer
Binary Switches.
Special Tests
Marking .
Masks we

CODE CHECKING .
Common Blunders.
Correcting Errors by Hand Punch or Reperforator -

- Tape Correction by Modification Tapes ,
Returning Control to the DOI for Tape Modification ,
Location of Errors --Programmed Stops .
Post Mortem Routines.
The Address Search Routine a

Sequence Checking.Routines.
Other Check Routines . :
Resume of Code Checking Routines.

FIXED POINT PROGRAMMING AND SCALING.
General Principles of Scaling.
Arithmetic with Scaled Numbers

THE REPERTOIRE OF THE MISTIC.

Order Codes..... woe se esa, ene ew ee

Order Types.
Order Variants

The MISTIC Repertoire of Instructions .
Left Shift and Final Stop.
Right Shift .
Unconditional Control Transfer .
Conditional Control Transfer .
Store the Contents of A .
Load Q from Memory.
Divide
Multiply . ,

Four Hole Tape Input -Output -
Five HoleTape and Card Input-Output «
Increment Add from Q oe

Add from Q ee
Logical Productor‘Extract .
Order Type N--BankControl Order
Increment Add and Specially UsedStop.
Add , :
Starting After Stops , .
Starting After a Stop Transferof Control. a
starting By the White Switch Start
Another Use of the White Switch Start .

v1

D
O
O
D

W
D
D
D
M
D
D
M
D
M
D
D
B
A
D
N
M
D
O
M
O
M
O
O
T
Y
N
A
I
N
N
V
N
A
N
Y
N
A
N

O
M
O
R
A
O
U
N
A
B
R
H
E

RE
H
E
H
N
N

T
R
R
U
N
B
R
W
R
E
R
Y
T
N
R
A
W
N
e
e

CHAPTER 11 ARITHMETIC IN THE MISTIC

CHAPTER 12

CHAPTER 13

CHAPTER 14

Number Representation .
The MISTIC Arithmetic Unit
Addition .

Subtraction. .

Multiplication .
Division .

The General Case of ‘Division .

TAPE AND CARD PREPARATION
Cards

Tape .

2

Care in Handling Cards

Printing Format Control
Teletype Perforator.
Teletype Reperforator
Printer. toe
Tape Comparer
High Speed Reperforator

CALCULATION OF RUNNING TIME
Estimating Time. se ee ee
Calculating Time

USE OF CARDS AND CARD EQUIPMENT
The Cards. .
Card Preparation
Operation of the 528.
The Plugboard.
Card Orders.
Card Programs

Vil

1.
. Il.
J Ii.
. Ii.
1.
_ It.
il.
. 1.

. 12.

. 12,

. l2.

. 12.

. 12.

. 12.

. 2.

. l2.

. l2,

. l2,

. 13.

. 13.

. 13.

. 14,

. 14,

. 14,

. 14,

. 14,

. 14,

. 14, S
O
P
N
N
N
K
E

HE
Y
N
B
e
O
N
N
O
O
R
e
e
e

Q
W
N
N
N
e
e

ee

CHAPTER 1

NUMBER SYSTEMS

Computers are machines which can add, subtract, multiply by certain

numbers, and divide by certain numbers; they can make decisions between possible

‘courses of action and, once started, can operate under their own control fora.

period of time. Computers operate upon data whichis expressed in numerical

form. Some computers, such as analogue computers, do not operate directly on

numbers. Analogue computers derive their name from the fact that problems are

solved in such a computer by setting up and solving an analogous problem in

electric circuits. If, however, the computer operates on numbers, then it is

called a digital computer. MISTIC is a digital computer, and it performs

operations on numbers expressed inadifferent fashion from that which one is

accustomed to using, for purposes of both speed and economy. The system used —

is the binary number system, which is discussed here.

I.1. Positional Notation

A moment's reflection will reveal that when one usesthe decimal number

system, one has really used a representation for a sum. Thus, for example, the

number 41,978 really represents 40 ,000 + 1,000 + 900 + 70 + 8. Furthermore,

one can see that 41,978 = 40,000 + 1,000 + 900 + 70+ 8=4x 10, 000 +1x1, 000 +

9x 100+ 7x 1048. Finally, if one observes that 10,000 - 10%, 1,000 = 102,
100 = 10°, and 10 = 10!, then

41,978 = 4x 10*41x«10°+9x 107 +7x10!48x 10°
where 10% = 1. Likewise, for a decimal fraction, say .02796,

02796 = Ox 107° +2x 10° 47x 107° 4+9x 1044+ 6x 10

The notation in which only the coefficients of the powers of ten are preserved

-5

(the 41,978 of the above example) is called apositional notation. The number 10

is called the base of the decimal system. It is easy to convince oneself that the

base 10 is not the only base that could be used to representnumbers as a sum of

powers. Indeed, it can be shown that any integer N can be represented as a sum.

of powers of any whole number r greater than one as
n-1n

1) N=a_r tal iit Fee. Fajr tag

where each a. is an integer in the range 0<a,<r,

2) For any fraction M,
1 -2 -m

M=b.r +¢b.ir +...¢4¢b fr
1 oC m

-l.1-

where the b. are integers in the range 0 < b, <r.

A digital computer in representing numbers provides a place to hold each

coefficient of the power-sum representation for that number. If the computer

operatedin decimal, each such coefficient position would have to be able to assume

one of ten states--namely, states corresponding to 0, 1, 2, ..., 9. It is not

difficult to imagine that it would be easier to represent fewer states , so that. an

optimum arrangement would be one in which only two states need be represented in

eachcoefficient position. This means then that the a. and the b;of representations

l and 2 need toassume only the values 0 and1 and that ris 2. Such a system is

called the binary number system. oO

Someexamples of numbersin the binary system follow.

25=164+8+1=1x2*+1x2° 40x 2°40x 2p4.x% 2°

502 = 256+ 128+ 64432416444 2=1x224¢1x241x 2°41 x2°4

1x 2740x272? 4127412! 40x 2° |
] 57-2.25=0x2 41x27

If positional notation is used for the binary numbers on the right side of the equation,

then

210 = 11001,

30254 = 111110110,

“2549 = -Ol,

(Notice that the subscript in the last three equations denotes the base used.)

The MISTIC operates in binary, and each numberis assumed to be a

fraction and to be exactly 40 binary digits (or bits) long.

1.2. Conversion Between Binary and Sexadecimal |

Since a number 40 bits long representsthe same information as one

12-digit decimal number at most, it is apparent that though binary may be |

economical for a computerto use, it is not convenient for the human being touse.

It would be better to abbreviate the binary number in some way, preferably an

easy way. ‘The device used with the MISTIC is to start at the binary point

(binary point in binary is the equivalent of the decimal point in decimal) and group

bits into setsof four, working to the left on the integer part andto the right.on the

fractional part. Thus, if the number M is given by

M =- 10110110001101010011. 0110111011011

then M= 1011 0110 0011 0101 0011 . 0110 1110 1101 1000

Give each group of fourbits its equivalent value in decimal. Since

lOll=1ll oe
0110 = 6

OOll = 3etc.,

-l.2-

then M = 11, 6, 3, 5, 3. 6, 14, 13, 8

If the commas were removed, confusion as to the meaning of 11, 6, for

example, would arise. If, instead, it were possible to guarantee that each set of

fourbits translates to a single digit, such confusion would not arise. Since the

maximum number representable by four bits is 1111 = ‘15,0: single symbols for 10,

Il, 12, 13, 14 and 15 are needed. The symbols used are

10 =K~

ll=s

12=N

1323

l4=F

15=L
To complete the example, M converts to

M = S6353.6FJ8

To convert from this kind of notation to binary one needs simplyto replace each

symbol by its four bit representation. To illustrate, if M - AF6L.21K, then —

M = 0100 1110 0110 1111. 0010 0001 1010
It is to be observed that the system using the 16 distinct symbols, 0, 1,...,

L5 is nothing more than a base 16 system, which is called the sexadecimal system.

That is, r= 16 and each a. ranges from 0 to L.

1.3. MISTIC Representation of Binary Numbers--2's Complement

| MISTIC represents every number by a 40 bit number assumed to be a

fraction. Since numbers are either positive or negative, some provision must be

made within the 40 bits to allow for the sign. There are actually several methods

of sign representation available in addition to the way which the human being is

accustomedto seeing. For certain engineering reasons, the method selected for

the MISTIC is the so-called 2's complement system.

Definition 1,3. 1. Every MISTIC 40 bit word is made up of one sign bit and

39bits representing a fraction in the format Non)N>-- N39) where No is the 528m

bit, n, represents the coefficient of 2 -, n> represents the coefficient of 2°", and

in general, n, represents the coefficient of 2~*, in the binary representation ofa

number.

Definition 1.3.2. The 2's complement of a 39 bit fraction Nis 24+N.

The sign bit actually leads a double life, since it is interpreted as a sign

but is really a number. Thus, if the sign of a number is plus, the Sign bit is Q;

if the sign if minus, the sign bit is 1. This is the case since the number2 in

binary is 10.000..., while the computer, according to definition 1.3.1, can

represent only the 0.00... of 10.000... Consequently, 2 +N for a positive

21,3-

fraction N where N = -n njn,. .. 1s

2+ N = 10.0000... + -N,N5N.. os

= 10. np R5D3..

which in the computer would appear as 0. Mn N{N3-- If, on the other hand, N isa

negative fraction, a borrow must be madefrom the 1] in 10.000..., thus placing —

a 1 in the 2° position. — |

Example 1.3.1. If N= .11010...0 = 13/16,

then in the complement form, |

2+N = 10.0000....0
+ .11010.,.0°

= 10.11010...0

But in the computer the first 1 does not appear so that the 2's complement

representation of 13/16 is 0.11010...0-

But ifN is negative, say N = -.11010...0 =-13/16, then

2+WN= 10. 0000. . 0
- 11010. .Q

= 1.00110...0

The machine representation then for “13/16.is 1.00110...0

It is to be observed that the 2's complement ofanegative fraction N can be

formed by the following steps: |

1) Represent IN| in its 40 bitform. _

2) Change eachzero to a one andeach one to a zero.

3) Add 1 in the leastsignificant position.

Example 1.3.2. Let N= 13/32

Step 1. |N| = |-13/32| = 13/32 = 0.01101000...0
Step 2. Change 0's to 1's and 1'sto 0's:

1.100101111...1 —
Step 3. Add 1 to the last place: 1.10011000...00

Hence, -13/32 is represented by 1.100110...0-

Tochange a negative fraction represented by a 2's complement number, M,

to sign and absolute value form, use the following method:

1) Subtract 1 from the least significant digit of M.

2) Change 0's to 1's and I's to 0's. |

3) Place a minussign in front of the result.

Example 1.3.3. Suppose it is desired to change 1.01101010...0 toa signed

decimal fraction, following the above steps:

Step 1. M = 1.01101010...0—
oo - 1

1.01101001..11

-1.4-

Step 2. 0.10010110..00 |

Step 3. =. 10010110 = -75/128

1.4. Arithmetic in the Binary System

Since binary and sexadecimal are essentially equivalent, one should try to

learn how arithmetic is performed in one of these systems. Since the machine

operates in binary, arithmetic in that systemis presented here by means of the |

followingtable.

0 +0 = Q 0-0-0 Ox0-=-0. 03 0 = *%

O+1=1 O-1=1* Ox1=0 0z1=0
1+0c2=] 1-02 1 l1xQ=0] : 0 = 3K 3

P+le= 10 l-1]2=90 lxl-=les lelez]

*indicates a borrow from the next bit

i “meaningless | :

Table 1. 4.]

An example of addition is; 01010011 + 01011101. Using the sameformfor

addition as in the decimal system, one has, starting from the right

01010011
01011101

10110000 :
Starting from the right, 1+ 1.= 10--that is, 0 and 1tocarry. The next column

gives 1+0:= 1, and then adding the carry from the previous column, 1 + ie- 0 and

I to carry, etc. |

An example of subtraction is:

01011011
-00101010

00110001 |
Here, the right column gives 1 -0= 1. The next gives 1 - 1 = 0; the next,0- O0=0,

and soon. In the third column from the left there is 0 - 1 = 1 and 1 to borrow.

Then the second column is 1 - 0 = 1, then less the «one borrowed, 1-0-1= 0.

An example of multiplicationis:

010110
x 001101

010110
000000

010110

010110

000000
000000

00100011110

The only difficulty encountered in multiplication is adding several 1's together.

-l. 5-

This may be alleviated if one adds the bits in decimal; e.g., 1+1+1+1+4+12=5.

Then correct the sum to binary; i.e., 5 =101; and write the right --most1 of 101

as the sum of the five 1's and the 10 as the carry. Thus the carry can affect

several columnsat once. | Oo |

An example of division :is:

a 101010 + remainder of 100/101.101 /TTOTOTIO

101
~110

10]
11)

101
100

1.5. Conversion Between Sexadecimal and Decimal

Since it is often necessaryto convert fractions or integers from sexadecimal

to decimal, methods of conversion are introduced here. In general, if Nis an

integer expressed in the base r system as

N=ar ¢a pet +a ri+ag,,
| r n n- 1] 0 |

where 0 <a, <r fori=0, 1, ..., n; and it is desired to represent N in the base s

system as | |

N_=b os” 4b sot abs + bp,
Ss m m-1]l 1 0°

the following procedure applies: |

| -. Divide N by s. (This means divide N. bys. Hence, in order for this

division to mean anything, s must be expressed in the base r system. For example,

if N is givenin the sexadecimal as No: and Nio is wanted, divide Ni6 by 10, which

when expressed in the sexadecimal 1s 10,6 = K.) Since, except for notational

difference, N = N.. = Ny: then

_ rs
OO BTSS
N OR N | : ee bR : De

and — =I] +and S% =p s™ lab gee a ak +2
5] S - S m m-l a | 1 ~S

where I, and R, are integers, R, being the remainder. It can be shownthat N/s_

produces a unique quotient and a unique remainder for agiven Nands. Hence, Ry>

the remainder of N/8: must be the same as bo; the remainder of N,/8- Hence,

the least significant digit in the representation of N-in the base s system is then the

first remainder obtained by dividing N, by s.

Since | | |

I, =bsm ti.. 4 bos +b,

a repitition of the division processgives | a

-], 6-

iL; 4% ab seme ab +—s 2 Ss m 2 S

so that the next significant digit of N. is the remainderof I,/s--namely, R,.

Since m is finite, this process canbe repeated a finite numberof times to produce
N ; /

Ss

Example 1.5.1. Convert 1069, to sexadecimal (and then to binary). Divide

1069 by 16 expressed in decimal. But 163in decimal is16. Hence,

1069
“Te = 6 ig
66 , |
16 = 4 + 7g

4 4

Te = ° +76
Since 13 = J, it follows that. 1069, 0 = 425 167= 010000101 101,

Example 1.5.2. Convert SLE, to decimal. It is neceasary to divide by 10

expressed in sexadecimal asK. In order to divide by K, a multiplication table in

sexadecimal for K is useful.

Kxl=K Kx5= 32 Kx9= 5K KxJ= 82
Kx2=14 Kx6=3N KxK=64 £KxF= 8N
Kx3e2+I1F Kx 7=46 KxS = 6F KxLe= 96
Kx4= 28 Kx 8 = 50 K x |

Then we divide as follows:

_f ol 07
K/3LF K/66 K/K K/1T

»N K
~3F <7 I
3N

Hence, SLF Ug 1022, 4. |

Finally, a method for converting fractions from one base to another is also

available. The method is so similar to that for converting integers that only the

end result is given here.

To convert a base s fraction to a base r fraction, multiply the base s

fraction by r; the integer part of the product is the most significant digit of the

base rnumber. Then repeat this process with the fractional part of the product.

Example 1.5.3. Convert -0765, g te sexadecimal and then to binary.

Multiply by 16, getting

.0765 x 16= 14 .2240

.2240 x 16 = 3 + . 5840

.5840 x 16=9 + .3440

.3440 x 16 = 5 + .5040, etc.

so that | | | |

. 076554 sy 1395. gs: 0001 0011 1001 0101... >

—-1.7-

Example 1.5.4. Convert -K57)¢ to decimal. Multiply by K:

.K57xK=6+4+ .766
,766xK=2=4+4+.9LN .
.9LNx K = 64+.338

.338 xK=2+ .670 —

.670 x K = 4 + .060
= 0 + .3N0, etc.| | .060 x K

Then, .K57)¢ can be written as -

| "10 — | |

Of course, one could notice that for short numbers, a direct conversion is

always possible, particularly from sexadecimal to decimal. This conversion is

based on the expanded sum of powers form for any number. For instance, letthe

problem be to convert OLS, ¢ to decimal. This number could be written

0L5,, = 0x 16° +15x 16 45x 169 = 2404 5 = 245

-l. 8-

CHAPTER 2

A DESCRIPTIONOF THE MISTIC

The MISTIC, like mostdigital computers, is composed of five sections:

input, storage or memory, arithmetic, control and output. A knowledge of certain

characteristics of these sections is indispensable to the programmer. A collection

of such characteristics is presented here.

2.1. Input

The input section of the MISTIC is an electro-mechanical device for

translating information presented to it into the language ofelectrical pulses

accepted by the computer, Since the computer operates on binary numbers, the

input accepted is binary. The input media now available are perforated tape and

punched cards. The formeris a long tape in which holes have been punched byan

operatorusing a perforator,a machine similar to a typewriter. Across the width —

of the paper the re is room for six holes, one of which is smaller than the other

five. This small hole is a sprocket hole used for pulling the tape along through

the tape punch and for providing the tape reader with the information thata

character is present. Only the five larger holes have any information content as

far as the programmer is concerned. There are ten such vertical lines per inch.

The information on the tape is translated to the computer by means of a tape reader.

A tape reader operates on the following principle: Abright light is allowed to shine

above the tape. | if there is a hole in the tape, the light shines through to a light

sensitive surface. The configuration of spotsof light corresponding to the holes

in one line (called a character or frame) perpendicular to the length of the tape is

then translated into electrical pulses which in turnare equivalent to the number

represented by that frame. The reader pulls the tape under the beam of light,

thus translating each frameasit passes by. The reader available for use with

the MISTIC has amaximum speed of approximately 300characters translated per

second. |

As mentioned above, there are five information bearing spaces per frame.

Each space can be in one of two states, perforated or not. This implies that, used

singly, these spaces could represent binary coefficients, which is indeed the way

they are usedfor MISTIC. The binary numbers representable by five bit positions

are 00000 to 11111, or 0 to 31. If only four of these five bit positions were used,

there would result a number range from0000 to 1111, or Oto 15. Butthese are

exactly the sexadecimal coefficients, so that if the tape preparation equipment had.

-2.1-

keysfor the 16 sexadecimal coefficients, one could perforate an entire frame by the

use of asingle key. Furthermore, ten such frames constitute one MISTIC 40 bit

number. Finally, the fifth bit space could be usedto change the meaning of the other

four bit spaces, thus, for example, allowing alphabetic information to be prepared

for computer input. For many convenient reasons, then, it is commonly the case

that only four of the five bit spacesare used for numerical input.

Example 2.1.1. If one wished to punch a tape whichwould input ©

0100 0110 1011 1010 0000 0000 1000 0010 1101 1111

it would be necessary to strike the keys labeled

4, 6, S, K, 0, 0, 8, 2, J, L
in that order. These would then appear on tape as

Positions 5 8 4 2 1

QO4 CO O°-®6 O
6 0 0°@ ® Oo

Zr) 0 @:0 ©@
K oO @-O © oOo etc.

where the blackened circles indicate perforations and the unblackened ones indicate |

no perforation. The small perforations are the sprocket holes. The various

columns are given the names fifth hole, eight hole, four hole, two hole andone

hole. | = | | |

| When a tape has been prepared, it is often desirable to have its contents

printed out for inspection. Likewise, tapes which have been prepared by the

computer (which will be discussed in the section on output) are frequently printed

out. The printing device is similar to a typewriter and requires format controls

such as Carriage return, line feed, space, delay. etc. These printer format |

controls are also punched on the tape, and are all characterized byhaving a fifth |

hole. Furthermore, under the. standard formof input, such frames with a

pe rforatedfifth hole are ignored by the readerand never sent to the computer. As

a result, one can generally use characters with perforated fifth holes as he needs.

The use of the tape preparation equipment is discussed in detail in Chapter 12.

The punched cards used are IBM 80column cards, with 12 rows. | The top

row is called the 12 row, the next row is called the 11 row, the next row is called

the 0 row, and then on to the last row, which is called the &9 row. Used numerically,

each column represents one decimal digit, indicated by a perforation in one of the —

corresponding rows 0 through 9.

| The 11 and 12 rows are used to change numerical coding into alphabetic or

control data, and also for algebraic sign data.

The structure and useof punched cards is presented in greater detailin

Chapter 14.

-2.2-

2.2. Storage or Memory

| Information is transmitted from the input reader to a register in the

arithmetic section. From there the number assembled can be sent to storage.

Storage or memoryis that part of the computer which holds information for

a period of time, to be used by other parts of the computer. Theoretically,

information will remain in storage indefinitely, but actually the reliability of data

diminishes as the length of time that it is stored increases.

Memory is composed of 40 cathoderay tubes and associated circuitry.

Cathode ray tubes are similar in appearance to television picture tubes, except

that they have faces only a couple of inches in diameter. On the face of each tube

is a square grid or coordinate system, composed of 1024 points, 32 points ona

side. Each spot on the face of one tube represents one bit of the numberin each

memory position. The 40 tubes takentogether then give the 40 bits of every

number in memory. Since there are 1024 points on the face of each tube, then

there are 1024 memory positions each capable of holding 40 bit numbers. As we

shall see, each number may possess several meanings, roughly categorized as

numbers which represent numbersand numbers which are codes for non-numeric

information such as orders. Due to the double use of numbers, it has become the

custom to speak of each 40 bit number as a word, to indicate that it may represent

non-numeric data. In this terminology, thememory can hold 1024 forty bit words.

Each grid point on the face of a tube is assigned a number from 0 to 1023,

with corresponding points on the other 39 tubes being assigned the same number.

‘These numbers are called the addresses of memory locations. When the computer,

under the direction of the programmer, wishes to obtain a word stored ata given

memory location, it calls for the contents of a memory location with a given

address. Thus, if at memory location 146 (thememorylocation whose address is

146), is stored the number LO 495 40 205 (in sexadecimal}, then the contents of

146 is LO 495 40 205. The contents of a memory register can be acquired for

use in about 18 microseconds (i.e., 18 one-millionths of a second). ©

Since the computer operates in binary, the addresses it uses are expressed

inside the computer in binary (though as the reader will see later, the programmer

thinks of these addresses as decimal). A moment's reflection will suffice to show

that 10234 = Pilli1jii1,. Consequently, the addresses range from 0 to

Lll1ll11111, so that if all addresses are 10 bits long, then every address is

representable. For convenience, these addresses are referredto outside the

computerin sexadecimal, to give addresses ranging from 000 to 3LL in that

system. By means of a certainmode of input, addresses will be considered

decimal.

-2.3-

2.3. Arithmetic

The arithmetic section is that part of the computer in which addition,

subtraction, multiplication, division and certain logical operations are performed.

The MISTIC's arithmetic section is composed of three 40 bit registers and an

adder. The registers are the accumulator, called the A register; the quotient

register, called the Q register; and a third register, called R. (Also, A is called |

RI, Q is called RII, and R is called RII, butthis terminology will not be used he re.)

Each bit position of each of these three registers is composed of a flipflop, a

certain two-stable-state device, and as sociated circuitry. Each register has

specific functions to perform. |

Words coming from memoryto the arithmetic section have direct access to

the R register and to the Q register. Transmission is parallel, meaning all 40 bits

in a memory location are copied into R simultaneously, and similarly for Q. Itis

important to note that whenever a word is sent from a memory location to an |

arithmetic register, the contents of the memory location are not altered. Thus,

at the end of such a transmission, both the arithmetic register and the memory

register contain the same number. The Q register can be directly called into use

while the R register is only anintermediate storage register over which the

programmer has only indirect control. Actually, the programmer can ignore the

R register for purposes of programming.

To senda word from the R register to the accumulator, the word must pass

through a set of complement gates, whose function is to change the sign of the

number passing through or to leave the sign unchanged depending upon the operation

concerned. (The change of sign is accomplished by taking the 2's complement.)

From there the number is added into the adder together withthe contents of A, and

the result is sent to A. If it is desired to send a word from memory into A, it is

necessary to clear A first, meaning that A is made to contain 40 zeros. This is

accomplishedautomatically by calling for the proper order (orders are discussed

in Chapter 3), | a

The A and Q registers can be madeto act like a 79 bit shifting register,

called AQ. A left shift of one place means that.the setof bits .

“0% 1%23° °° 23793 9% 39 499 14293° > - 437938939
1s replaced by

#1929394) °° 9384399) 19424344- -- 4384399
A left shift of n places means that AQ is shifted one place, and that result shifted

one place, until a total of n shifts has been completed. At that time aA 39 will have

shifted over to the 239_n position, and all the other bits will be associated in order

with a .

$9-n. -2.4-

A right shift of one place means that

ag?) A543: 72 ay 8°39 — 994192° - 138139

is replacedby OO

29292 122°+-43783g -I92394]° 137938

Ann place right shift sends a, toa (provided n is lessthan 38).

Note that: (1) Ao is anatfected by a shift, (2) right shifts propagate Ag: and

(3) left shifts generate zeros inthe right-most bit of Q.

This ability to shift is used as another meansoftransmitting wordsto. the

arithmetic section. Words are sent, four bits at a time, from the input reader

directly to 236237238239 |in the accumulator. Then, if more bits are to be sent to

A from the reader, the accumulator Ls left shifted four places and the newfour bits

sentto a,¢a,7a 38739:
~The only ways, then, that words can be sent into the arithmetic section are

to R, to QandtoA from the input tape reader, and to AQ from the card reader.

Whena word is to be sent from the arithmetic section, it usually leaves

from A. Five such exits are -possible.

1) For output to the tape punch. (see the section onoutput) , bitsare sent

four at a time from 29212523 followed by a four-place left shift.

2) An entireforty bit wordcan be transmitted in‘parallel to any memory

location. |

3) The contents of bit locations 219: ae can ve sent to the corresponding

bitpositions of any memory location.

4) The contents of bit locations a29: 1. 23q can be sentto the corresponding

bit positions of any memory location, |

5) The contents of A and Q can be punchedcon a card.

In transmitting words from A to memory, the contents of A are left

unchanged.

| Some of the uses of the various registers inarithmetic operation are

listed here. -

ARegister.

1) Holds one summandin an addition.

2) Holds the minuend ina subtraction.

3) Holds part of the dividend in division.

4) Receives the sum in addition. /

5) Receives the difference in subtraction.

6) Receives part of a product.

7) Receives a "remainder"in division.

-2.5-

Q Register

1) Holds one factor in multiplication.

I
V Holds half the dividend in division.

a
W
w

)
) Receives the quotient in division.

) Receives part of a product in multiplication.

The R register holds the remaining parts for each operation.

It is interesting to notice that anaddition requires 100 microseconds and a

multiplication 1000 microseconds.

Each arithmeticoperation is called.for by the control section.

2.4.. Control |

The entire computer must be given explicit directions as to howto perform,

and the control sectionis that part of the computer which must accept, interpret

and execute these directions. The directions that the control section uses are called

orders or instructions, and the collection of orders (called a program) which a

programmer wants the control to act onare available to control in the memory

section. The orders are of four types: arithmetic, decisions, logical and

manipulative. These orders arediscussedin detail later, but it is important to

know that eachorder is coded as a number. Some typical orders would be 40 205,

L5 143, 26 065, and so on. There is no special place in memory reserved for

orders, so that the only distinction made between orders and data is relative .

position, which is known to the programmer. However, once control knows where

the first order of a set of orders is located, control will acquire each order from

successive locations. If the programmer has written his orders well, the control

will not try to acquire a data word as an order.

As will be seen later in this manual, orders are stored two to a word.

Each order pair is transferred inits turn to the control section for execution.

While in the control section, the pair of orders being executed is in a 40 bit

flipflopregister called the Instruction Register or R32: Thecontrol section executes

the left-hand order first, then the right-hand order. When pair of orders has

been performed, the control section must discover where the next order pair is

located. The address of the next order pair to be acquired is ina tenbit flipflop

register called the control counter. These two control registers are very

importantto the programmer in code checking a problem, and for that reason,

their contents are displayed on the computer operator's console.

It is important to understand that the computer will do nothing until it has

an order pair in its instruction register andan address in the control counter.

This means that nothing can be input unless an order pair in the instruction

register directs input to send in data. The dilemma of how to start the machineis

-2. 6-

resolved, however, in the following manner: There is a white three-way switch on

the control panel which has the settings FETCH, EXECUTE and RUN. There are

also two push buttons, onelabeled CONTROL COUNTER, the other, SET R.. By

setting the white switch to FETCH, and then depressing the two push buttons |

mentioned, the order pair 80 028 40 000 is automatically placed in the instruction

register and the address 000 is put in the control counter. If a tape is inserted in

the reader andthe white switch moved to EXECUTEand then to RUN,the first

order pair on tape is brought into the computer ready to be executed. This method

of starting the computer is called a "bootstrap start'! about which more will be said

later.

2.5. Output

When the control section has executed a number of orders which have

caused, for example,input, storage in memory and the execution of certain

arithmetic steps, then it may be desired to send some of the information out of

the computer. The section which translates from the machine language of electrical

pulses representing binary digits to some mechanical medium is called the output

section. There are three kinds of output available now for MISTIC. The first isa.

paper tape perforator which punches a tape which is entirely similar to, and in

fact useful as, an input tape. The second kind of output is the Teletype printer.

The tape punch operates at 60 characters per second. (Since these characters

also include printing format controls, this is not necessarily 60 information

characters per second.) The printer operates at the rate of 10 characters per

second. The third kind of output available is a card punch. Maximum speed for

this is 100 cards per minute. See Chapter 14 for details on the use of card

equipment.

-2.4-=

CHAPTER3

_ INTRODUCTIONTO PROGRAMMING--ORDER CODE |

| Programming fora computer isa two-fold operation. ‘The first step in

programmingis‘the selection of the mathematical procedure to be used. This

phase of programming is essentially a problem in numerical or statistical analysis

and not within the scope of this manual. | | |

‘The second step in. programming, perhaps moreproperly called coding",

is that of translating the numerical method selectedinto machinelanguage. It is

thiscoding which is the concernof thismanual,

3.1. Orders and Numbers in Machine Language

Information enters MISTIC in40 bit units called words. A word may be.

intended as a number on which some arithmetic operation is to be performed. This

use of a word is illustrated in Chapter 1.

Another use of a word is to containinstructions or orders for the various

arithmetic operations to be performed. |

The binary form of a word is exactly the same whether the word isto be

interpreted as a number oras an instruction. Whether the machine acts on the

word as a number orasan order depends only uponthe way in whichthe word is

encountered--i. e., as one of a sequence of instructions being obeyed or asan.

operand foran instruction.

3.2. The Make-up of Orders

An instruction ina digital computer involves the following five factors:

1) where to find the first operand,

2) where to find the second operand,

3) what to do with the two quantities,

4) where to put the result, and | |

5) where to gofor the next instruction.

Thus, each instruction must contain, either explicitly or by implication,

four addresses and an operation order.

MISTIC is a sequential machine; i.e., the next order to be obeyed is

usualiy the next order in sequence. Hence, the fifth factor is automatically

determined and need not be supplied in the instruction. |

MISTIC is a single address machine; i.e., eachinstruction carries only

one address (memory location identification number), which is that ofthe first

~3,]-_

operand. The location of the second operand and where to put the answer must,

therefore, be carried by implication in the instruction itself. In MISTIC these two

locations are always one of the two registers, AandQ. The part of the instruction

which specifies what operation to performalso specifies, by implication, in which

register the second operand is found and in which register the answer is to be left.

An instruction may say, for example, "Add the number in memory location 10 to

the contents of A and leave the sum in A."

An order for MISTIC contains two symbols chosen from the decimal digits

0, 1, 2, ..., 9 and the letters (sexadecimal digits and hereafter called simply

digits) K, S, N, J, F, Land one decimal number n in the range < n< 1023. The

two symbols form what is called the operation code (op code). The number is an

identification number (address) for one of the 1024 electrostatic memory locations

in MISTIC; or, in some cases, a number is used for some purpose such as to

indicate the number of times an operation is to be performed, to change addresses,

as a counter, etc. The two-digit op code carries the information needed for factors

2, 3 and 4; the number carries the information for factor 1. Thus the order

- L4 120

says: ‘Add the number in memory location 120 to the number in A, leaving the

result in A.! |

_ Each of the 16 digits 0, 1, ..., 9, K, S, N, J, F, L can be represented by

four bits since K, S, N, J, F, and L can be taken as representing’ 10, 11, 12, 13,

14 and 15. The addresses range from 0 to 1023 and hence are less than 1024= 210

An order, therefore, requires at most 18 bits. Since MISTIC has 40 bits per word,

a word can contain two such orders, or an order pair. :

The two orders of an order pair are referred to as the left-hand order and

the right-hand order and are obeyed in the sequence left to right. The digit or bit

make-up of an order pair is as shown in Figure 3.2.1.

8 bits 2 bits 10 bits | 8 bits 2 bits 10 bits
op code — waste | address op code waste address

<e left-hand order. St ———right-hand order =

“<< bits 0 - 19 a on bits 20 - 39 >

Figure 3.2.1.

3.3. The Order Code

A particular combination of two of the 16 digits 0, 1, 2, ..., 9, K, 8S, N, J,

F, Lewas defined as anop code or simply a code,and the totality of such

combinations which are accepted by the computer is called the order code of the

machine.
= 3 ° Z —

MISTIC op codes are formed in such a way that all orders with a common

first code letter are. related. The format of the tabulated order codeis, ‘the refore,

the following: | OO - OO

1) first codeletter and descriptive title of orders;

2) codes and definitions;

3) explanatory discussion and special comments.

The letter n represents thememory location identification number unless

specifically defined otherwise. In all cases, n is called an address. ‘The letters

A and Q stand for the accumulator andquotient registers, respectively. The

symbols (n), (A), etc., are to be read "contents of memory location n", "contents |

of accumulator register", etc. op a —

In all cases, “put (n) into AN, | "put (A) into n"', etc., leaves the contents of |

nor A; respectively, undisturbed; i.e., it merely duplicates the contents of nin A,

the contents of A inn, respectively.

The total numberof possible combinations in theMISTIC order code is 256.

A detailed discussion of each of these is presented in Chapter 10. | |

- More than 100 out of the 256 possible codes will be accepted by MISTIC as

legitimateinstructions. Thesecodes are explained in detail on the followingpages.

Following the detailed listing isa one‘page condensation of all usable order pairs, |

whichis satisfactory for quick reference after the details of the orders have been

learned.

Although there are over 100 instructions which MISTIC will obey, many of

these are just duplications or minor variations of others and in somecases are not

useful atall, occurring only as a by-product of the design logic necessary to provide

a more fundamental order. Consequently, most problems can be programmed using

as few as 20 op codes. Table 3.3.1 contains a list of op codes which will provide

the user with a good fundamentalset of orders, sufficient for writing most programs

and a good basis on which to build a more complete working set of orders.

OP CODE _ FUNCTION

20 ...e2008...TransferControl
36 1. we oe .. Conditional Transfer Control |
~40...........Store (A) inMemory | -
(50 ww we ee eeLoad Q from Memory
BB occ we weDivide |
TSI ow ee eee ee »Multiply
S5...........bransfer (Q) t
LO.......... 9ubtract

LA4.....eee eeAdd
L5..........dload A

Table 3.3.1.

-3,3-

0 AND 1

O0--Left Shift (Multiplication by 2)” 1--Right Shift (Division by 2)

00 n Left shift contents of double | 10n_ Right shift contents of double
register AQ n places | register AQn places

Oln Clear A, then execute 00 n- | lin Clear A, then execute 10 n

O9n Clear A, insert 1/2 in A, | - 19 n Clear A, insert 1/2 in A,

then execute 00 n> Oo then execute 10 n

Left shift replaces the contents of AQ Right shift replaces the contents of AQ.

ao ay ceo A29 do qj oe I39 Oo ag a) see A249 do qy eee 139

A, A> ++ agg 4, Ag da --- d39 9 ay apg a) --: 23g Io A394, +++ 43g

leaving qo unchanged. oe leaving do unchanged andpropagating ag:

The operation is repeated n times where n is interpreted modulo 64; i.e., ifn = 64,

nis replaced by the remainder whenn is divided by 64. If n= 0, the machine will

stop. OO .

| | 2 AND 3 | |

2--Unconditional Control Transfer= #3--Conditional Control Transfer

20n Stop. Transfer control to | - 30n If (A)= 0, execute 20 n
right-hand orderin memory If (A) < 0, take next order in
Tocation n afterstart. | | sequence.

Stop can be ignored by
_ black switch setting. |

22n- ‘Transfer control to right- | | 32 n If (A)> 0, execute 22 n

handorderatn. | | Tf (A)=— 0, take next order
SC - ee ce in sequence. |

24n Stop. Transfercontrol to 34n If (A) 0, execute 24n
left-hand order in memory | If (A) < 0, take next order
Tocation n after start. = © in sequence.

_ Stop can beignored by | |
black switch setting. |

26n Transfer control to left- oe 36n If (A) 0, execute 26n
hand order atn ST(ADK 0, take next order

| in sequence.

Zln | . 20n © 31 n | 2Zln
23n\Clear A, then 22n . | 33 n\ Execute 23n

25 n execute | 24n oo BB .)25n
27n —\26n 37 n 27 n

29n)Clear A, then (20n 39 nn) 29 n
2S n\hinsert 1/2 in 22n | 35 n\ Execute © 25 n
23 n}] A, then execute 24n 33 n 2J n

2Ln | 26n 3Ln | 2Ln

See Sections 10.5--10.8 for discussion of starting after stop in 20 n, 24n,

30 n, and 34n

-3.4-

4 AND 5

4--Store

40 n Replace (n) by (A) |

41n Replace (n) and (A) by 0

49 n Replace (n} and (A) by 1/2

42 n- Replace addressdigits of — - 460 Replace address digits |
right-hand order atn by | of left-hand order atn

- corresponding digits of A a by corresponding digits of A

43n Clear A, then execute 42 n © _ 47 n Clear A, then execute 46 n

4S n Replace {A) by 1/2 and the | - 4In Replace (A) by 1/2 and address

address digits of right--hand | a digits of left-hand order atn by 0
order atn by0 | 7 |

5--Memory to Q

50 xn Replace (Q) with (n)
5l1n Clear A, then execute 50 n

59n Put 1/2 in A, then execute 50n_

6 AND 7

6--Divide

66 n Divide (AQ) by (n), put rounded quotient in Q, residue in A
67n Clear A, then execute 66n |
6Ln Put 1/2 in A, then execute 66n

After dividing, the leastsignificant bit in Q (the quotient) :is always 1 for round off.
The residue is in A. |

If {KA)l =>in) , the MISTIC will stop after dividing.

If (A)| = nj} and (A)=& 0, theMISTIC willstop after dividing.
Tf (A)] = |{njp and (A)< 0, the MISTIC will not stop after cividing.

| 7--Multiply|

Negative Multiply Positive Multiply

70n Put-(n).Q+2-°? Ain AQ — 74n Put (n).(Q) +27°? Ain AQ
“ln Clear A, then execute 70 n 75n Clear A, then execute 74n

72n Put -| {nj} .(Q)+27°7 Ainto AQ 76n Put {(n)| .(Q) +27°? A into AQ
73 n Clear A, then execute 72 n 77 n Clear A, then execute 76n

79n Put 1/2 in A, execute 70n Wh Put (n). (Q) + 2749 in A

7S n Put 1/2 in A, execute 72n 7Ln Put 1/2 in A, execute 76 n

The product is in AQ, the least significant 39 bits in Q with do = 0.

Orders 71 n and 75 nare used as “unrounded multiply" orders.

Orders 79 n and 7J n are used as "rounded multiply" orders.

-3.5-

80 n

8ln

82n

8S n

8 AND9

8 ~ - Input-Output

Shift AQ four places left and replace a36° 237° 23g 239 by the binary —

digits corresponding to a sexadecimal character on tape. This is repeated

n/4 times.

Clear A, then execute 80n

Punch the digits ay a as: a, as one sexadecimal character and shift

| . AQ four places.left. This is repeated n/4 times

83n Clear A, then execute 82n

Put 1/2 in A, then execute 82n

The addressn is the numberof bits to be read or punched and must be a multiple

of 4,

The 80 orders by-pass any character with perforated fifth hole.

All 80 orders change the contents of A andQ.

914

92 n

94 n

96 n

9--Special Input-Output

Five hole input. Clear A, shift AQfour places right, replace 236: a 37:

239: 229 by the binary digits correspondingto the four least significant

holes in one tape character. Placethe contents of the fifth hole in

position ay / |

Letter output. Punch ontape or print a character depending uponthe _

address digits: n

Cardinput. Each of the 80 bits of A and Q are replaced by l if the

corresponding card column(determined by the plugboard)of the row being

read is punched, otherwise by a 0. The address n must be zero. See

Chapter 14.

Card output. Each of the 80 columnsof the card now under the punch

head is punched if a l is in the corresponding bit in AQ (determined by

plugboard), otherwise there is no punch. The address n must be zero.

See Chapter 14.

91, 92 orders change AandQ. A 96 order leaves both A and OQ unchanged.

-3, b=

The following tabulation gives the complete orders for output of letters,

numbers, symbols, and print format characters.

92963F _ Space

92 131F — - Carriage return and line feed

92515F Delay--2hole
92 3F _ Delay--1 hole

92 707F Numbers shift
92 259F Letters shift

After letters shift .-~»-« Afternumbersshift

92 387F.

92 195F.
92 835F .
92 O67F.
92 194F .
92 898F.
92 579F .
92 771F .
92 514F.

92 834F .

92 642F .

92 962F.

92 643F .
92 770F .
92578F. .

92 2F...

92 66F.
92 258F .

92 706F .
92 322F .
92 450F. .

92 323F. .
92130F. .
92 451F.

92 386F .-

92 899F .

tab
7 3
- FO

apostrophe

C
O

N
4
M

SE
<
C
H
O
W
O
V
O
Z
E
E
R
U
M
T
O
y
N
U
A
M
D

4
O
N

~

To output any characte rktimes, add 4(k - 1) to the address of the appropriate

order, k=16.

~3. T-

K--Increment Add from Q

KO n

Klo

K2n

K3 n

K4 n

K5n

K6 n-

K7n

K9 n

KI n

KLn

-(n) - 2

“Add -(Q)-2

If (Q)< 0, add(Q)#2

i (Q)>> 0, put -(Q)-2-

Add(Q)+2

If (Q)= 0, add (Q)+2
to (A) | 39

If (Q) = 0, put(Q)+2

If (Q)< 0, put-(Q)-2

“(Q)-2°

“99 0 (A)
-39

Put -(Q)-2 in A

If (Q) => 0, add- (Q)-2° 39
to (A)

to (A) |

39

in A. 239

If (Q) < 0, put (Q)+27
in A

“7? to (A)
Put(Q)+2> 3) in A

-39

If (Q)< 0, add-(Q)-2°>~

to {A) 39

in A.

in A

1 (Q)= 0, put a
+1/2inA

If (Q)<_ 0, put
(Q)+2739 4.1/2in A

39Put (Q)+277” + 1/2 in A

If (Q)=a5 0; put
(Q)+2° 9 4 1/2inA
If (Q)<_0, put
~(2)-299 +1/2inA

39

_ F--Increment Add

39

39,

is the digitwise complementof (n).

FO n

Fin

Fan

F4n

F5 n-

F9n

FSn

. FLon

FF n

If (n) > 0, put -(n)-2
in A | |

If (n) < 0, put (n)+2

Add (n)+2~

If (n) = 0, put (n)+2

Put (n)+27:

“Add -(n)-27?? to(A)
Put -(n)- 2739 in A

If (n) =0,add -(n)-339
to (A) 389)
If (n) < 0, add (n)+27°
to (A) | :

-39

- 39

in A

39 to (A)

~ 39
Put(n)+2°~’ inA’

If (n) >. 0, add (n)+2" >’
to (A) 239

if (n) <= 0, add -(n)- 2

to (A)

-39

in A 39

If (n) < 0, put -(n)-2°~
in A

|

Put-(n)-27°? +1/2in A

If (n) == 8: put
-(n)-2739

If(n) <_0, put
_(n)+2° 3941/2 inA

+ 1/2 in AL

3 + 1/2iinA

“If (n) =. 0, put -
(n)+2739 +1/2inA
If (n) <— 0, put

-(n)-27 39 +1/2inA

Stop. Used to indicate

failure in program check.

The term "increment add" means the right-hand address of n is increased

by l before the "add" orderis executed. ~

N,S, J and L

N- -Change Memory Banks

JO forms the logical product of(an) and (Q).

-3,.9-

NO n_ Goto next order | |

N2n Change the bank number from which operands are coming to that indicated by

the last twobits of n

N4n Change the oank number from which orders are coming to that indicated by

the.last two pits ofn |

N6 n Changeboth bank numbersfrom which operands and orders are coming to

that indicatedpy the last two bits of n

Nt) : a .« Clear A, Ne

N5(Clear A, then execute Jn insert 1/2 in A, N4

N7 - N6 en N6

L--Add S--Add fromQ

LOn Subtract (n) from (A) SO n- Subtract (Q) from (A) ©
Lin Put -(n)inA | | : Sln Put -(Q) in A
L2n Subtract |(n)| from(A) S2n Subtract |(Q)| from (A)
L3n Put - inl in A. | S3nPut -|(Q)} in A

L4n Add (n) to (A) S4n Add (Q) to (A)
L5n Put (n)in AD a S5n Put (Q)inA
L6n Add [(n) |to (A)| Son Add {(Q)Ito (A)
L?n Put I(n)l inA| S7n Put 1[(Q)|in A ©
L9n Puti/2-(n)inA- S9n Put 1/2 -(Q)inA
LSn Put 1/2 - [(n)i in A SSn Put 1/2 - |(Q)| in A
LJ n Put1/2+(n)inA. SJ n Put 1/2+(Q)inA
LLn Put 1/2 + I{nj] in A SLn Put 1/2 + {{Q)] inA

J--Extract

JOn If corresponding digits of (n) and (Q) are both 1, put 1 in that place in Q;

otherwise, put 0-

Jin Clear A, execute JO. n

J9n Put 1/2 inA; execute JOn

00
Ol
09
OF

10
il
19

20
21
22
23
24
25
26
27
29
2S
2J
2L

3V
40
4
42
43
46
47
4S
41,

50
5]
59

66
67
6L

70
¢1
72
73
74
75
76
77

79, WS,

N2
N4
N6

~MISTIC ORDER CODE

Shift AQ left n < 63 places.
A=0, shift AQ Ieft n places.
A=1/2, shift AQ left n places. ~
Final stop

Shift AQ right n places.
A=0, shift AQ right n places.
A=i/2, shift AQ right n places.

STOP, transfer control to n!

STOP, A=0, execute 20.
Transfer control to n'.

A=0, transfer control to n'.”
STOP, transfer control to n.

STOP, A=0, execute 24.

Transfer control to n.
A=-0, transfer controlton.

STOP, A=1/2, execute 20.
A=1/2, transfer control to n'.
STOP, A=1/2, execute 24.
A=1/2, transfer control to n.

A> 0, do 2V A< 0, go on.

(A) —>N(n).
O—>A and N(n).
Replace address of n' by A.
A=0, execute 42. |

Same as 42 except L.H. order.
A=0, same as43 except L.H.
A=1/2, 0 to n' address digits.
A=1/2, 0 to n address digits.

N(n)—=Q. |
A=0, N(n)—~Q.

A=1/2, N(n)—+Q.
Divide AQ by N(n), rounded
Divide AQby N(n), not rounded
A=1/2, execute 66 |

-N(n) Q + 277? A—+AQ.
-N(n) Q—2AQ.

-|N(n)| Q + 2739 A—»AQ.
-|N(n)} Q-—FAQ.
N(n) Q + 2779 A—+AQ.
N(n) Q—* AQ. |
IN(n)| Q + 2739 A—»AQ.
IN (n)| Q—AQ.
7J, 7L, same as 70, 72, 74, 76
except A = 1/2.

Change OPERAND bank.
Change ORDERbank.
Change BOTH banks.

-3. 10-

80 Read n/4 numbers from tape.
82 Punch n/4 numbers on tape.

81, 83 A=OQOthen 80, 82.
8S A= 1/2 then 82.

91 Read 1 tape character.
92 Punch1] tape character.
94 Read from card..
96 Punch on card.

KO -Q-2-39+AtoA
Kl -Q - 2739 to A. (complement)
K4 Q+27°357+ Ato A.
K5 Q+4+2739 to A.
K9 —-_--Q - 2739 4+ 1/2 to A.
KJ Q+42739941/2toA
K2, K3, K6, K7, KS, KL same as KO,

Kil, K4, K5, KI, KJ if QO> 0.

‘Same as K4, K5, KO, Kl,KJ,
K9 ifQ<0.

$0 A-Qto A.

Sl -Q to A.

S4 A+QtoA

S5 Q to A.

S9 1/2 -QtoA.
SJ 1/2+QtoA.
S2, S3, S6, S7, SS, SL same as SQ,

Si, S4, $5, S9, SJexcept

use |Q|.

JO Logical Q. N(n)—~Q.
Jl Az=0, execute JO.

J9 A=1/2, execute JO.

FO -N(n) - 27379 + Ato A.
Fl -N(n) - 27379 to A.
F4 N(n) + 27379 +A to A.
F5 N(n) + 2737 to A.
F9 -Nin) - 2729 41/2 to A
FJ N(n) + 2739 + 1/2 to A.
F2, F3, F6, F7, FS, FL same as FO,

Fl, F4, F5, F9, FJ, if N(n)
>0. Same as F4, F5, FO, Fl,
FJ, F9 if N(n) < 0.

LO A - N(n) to A.
Ll -N(n) to A.
L4 A +N(n) to A.
L5 N(n) neA.
L9 ~=1/2 - N(n) to A.
LJ 1/2 + N(n) to A.
2, L3, L6, L7, LS, LL same as LO,

L1, L4, L5, L9, LJ except
use |N(n){.

CHAPTER4
DECIMAL ORDER INPUT.

In the descriptionof the make-up of orders, the Naddress'! was described as

a decimal number. Since MISTIC is a binary machine, obviously this decimal

address must be converted to binary before entering the machine. This can, of ©

course,be done by the programmer by convertingall decimal addresses to

sexadecimal, each of which is read as fourbits by MISTIC.

Fortunately, tthis is not always necessary, due toaspecial input program

called the Decimal Order Input (DOI). | Oo | |

The Decimal Order Input is aprogram which, whenread into” and stored in

MISTIC, readsinany program written ina prescribed format, _changes”the orders

to ordinary MISTIC format, and stores this program in specified locationsin the

machine.

4.1.Format for Words to beInput by the Do!

‘Theprescribed format in which a program must be written to be acceptedby

the DOI involvesthe following: |

Il) Every halfword must contain a two-digitop code whether the word isan

order pair or a:‘number. - - |

2) Everyaddress(second part of each half word) must be a decimal number,

of zero or more digits. | | oe _ :

3) Every halfword must terminate in one of the six symbols: K, S, N, J;

Foor lhl.

The required formatfor a word is thus

2digit | decimal | 1digit || 2digit | decimal | 1 digit
op code _ digits term. opcode | digits | term.

Figure4.1.1

To illustrate:

L5°150F L4 200L
50 -F 26 200F

areorder pairs in acceptable DOI format. _ The termination symbols are not stored

but are usedby the DOL.

4.2. . Directives

A directive is.ahalt word(one order) which is read by¢the DOI and

executed but not. stored in memory.

-4,.]-

Terminations N and K indicate that the order is a directive. These orders

must follow aright-hand order. The first order following a K directive is treated

as a left-hand order. A waste order must beinsertedif necessary to insure that

the directive doesfollow a right-hand order.

A directive of the form

a _ | op code. m K

causes the following to occur:

1) The next order pair read fromtape by the DOI is stored at address m,

with the following wordsstored in sequence.

2) In following orders which are terminated in L, the address is increased

bym before the word is stored.

| Boththe sequential storing and the address increase will continue until a

new directive (Kor N termination) is encountered. The particular K-terminated

orderusually is00 mKalthough any op code will work.

A directive terminated by N will usually have an unconditional transfer order

(20, 22, 24 or 26) as the op code, the address associated being the address ofthe

first order to be obeyed in the program. This directive indicates theend of the

input and transfers control from the DOIto the program now stored in the computer.

4.3. Word Assembly bythe DOI

‘The format of orders permits the DOI to separate words into order pairs, |

since each decimal addressis terminated by a letter and since eachop code contains

exactly two digits.

A wordis assembledby the DOI in the following manner: twodigits (op

code) are read from tape, shifted to the right-hand order op code position (bits 20.

through 27), and placed in location 1. The decimal digits are read and converted

to binary. These digits are stored in location 0 during and at the end of the

conversion process. When the terminating symbolis read, the address inlocation

0 isadded to the op codein location 1, the whole stored in 1. At this point, the

next step depends on the terminating symbol. The effect of the various terminating

symbols is given in tabulated form in Table 4.3.1. —

It should be noted that during order assembly, when a left-hand order has

been assembled and stored, itis stored in the right half of 1 and locationn.

Location 1 always contains two orders, but it is only after a right-hand orderhas

been assembled that the two orders in location 1 constitute a proper order pair.

Also, only after a right-hand order has been assembled does the memory location |

being loaded contain a complete wordororder pair.itt an N directive follows a

left-hand order, control is sent to the right -hand side of 0 whichcontains the

-4,2-

address of the directive with a 00 op code. Hence if the left-hand orderin | does

not stop the computer, |‘control will then pass to the right-hand side of 1. However,

the order preceding the N directivewill not be stored in the correct place.

Tecutie | |
Symbol Procedure

Ki.cc ec wc we- Addressis stored in location 2 and next order |

| read. . .

F..... cece ee.,. Addressis added to op code, whole stored in

location 1 andalso in the desired address n.

This address is determined by the address in
the last K directive plus the number of orders
betweenthis directive and the present order.

If the order is a left-hand order, the

wordin location 1] is shifted 20 placesleft,
the next orderis read and assembled and
added to thecontents of 1, the whole word

stored in the proper location. The store
address is raised by 1 at the end of each order
pair.

Lin. ee ee ec ce ee The address.is increased by the number in
location 2, determined by the last K directive,

and the procedure under F followed.

N.......5.-.-..- Lhe order in the right side of 1, which is the
| | order terminated by N, will be executed. This

is the order which transfers control from the
DOI to the stored program.

J...e.ee22e.+. The general procedure under F is followed in
this ese except that the address is multiplied
by 23 9/1014 before adding to op code and |
storing. This is a decimal fraction input|and |
is discussed in Section 4.5.

Si. esa.......The terminationS is always.followed by a
digit--one of the digits 3, 4, ..., K, S, N,
J, F, L. This termination causes. the contents.
of the location whose address is the particular
terminatingdigit to be added to the order ©
address before storing. This termination
provides for preset parameters and is discussed
in detail in Section 6. 4.

Table 4.3.1

4.4, Fixed andRelative Addresses |

The F and L terminations inthe DOI format are used to distinguish

betweena fixed address anda relative address.

A fixed address is an address. which is a definite memory location or a

fixednumber and is designated by an F te rmination.

-4, 3-

A relative address is one which is notamemory location number but which

istransformed into a memory location number during theread-in of the.program.

In particular, the relative addresses ina program written forDOLinput, specified

by a terminating L, refer to the order numberin the programstarting with OL for

the first order, 1L for the secondorder, etc.

For example, considerthe following sequence of orders, where the addresses

underlined are the ones different for the different methods of writing the program.

100) L5 200F
«LA300F
101) 40 400F

‘L5 100F
102). L4 105F
40 100F

The same program beginning at location 14 would be:

14) L5 200F
. L4 300F

15) 40 400F
L5 14F

16) L4 19F
40 14F

Written using relative addresses this program would be:

0) L5 200F

 L4300F.

1) 40 400F
 L5 0.

2) L4 5L
40 OL

(The zeros in orders 1] and 2, i.e., L50L and 40 OL, need not be inserted.L5 L

and 40 L suffice.) - |

An obvious advantage of relative addresses is that it is unnecessaryto

decide where aprogram or part. ofa program is to be storedin the computer before

the program is written. Relative addresses also facilitate writing a program in

parts, to be combinedlater into a complete program.

4. 5. Input. ofDecimal Fractions and integers

The DOI forms an addressfrom the decimal digits on tape and adds that

address to the.op code. This addresscouldbe aslarge as 239 - 1 without getting

into the sign digit. Thus, any positive integer<can be input by the DOI as nx 239

by letting the left-hand order and the right-hand OP code be zero and the right-hand |

address be n, with terminationsFE on both orders. Thus,

00 F 00 520F
~39

will cause 520 x 2 to be input. -

Since numbers are input as nx 2737, a 12-digit right-hand addresssmaller

-4,4-

than 279 x= 5.5 x iot! can be converted toa decimal fractionby multiplying itby

2°77/1944, ‘The terminating symbol Jcausesthis.multiplication to be effected. For

example, -

00 F 00 2765 0000 00005

causes 0.2765 to be placed in the memoryin binary form.

| 99% 55x10)
by the DOI in this manner. To input decimal fractions in the range .5<d<l,

Since 2 ; positive fractions not greater than .5 can be input

replace the left-hand| op code by 40. Thus,

40 F O00dJ

will cause 1/2 + d to be input.

To inputnegative decimal fractions, the op codes 80 and NO may be used.

Since 80 F represents -1 and NO F represents -1/2, the orders

s0F 00ds
and NOF 004g
will cause -l + d and -1/2 +d, respectively, to be input. Thus, _. 2376 is input by

- NOF 00 2624 0000 00003

-. 7862 is inputby

a 80 F 00 2138 0000 00005
and 7765is input by |

a 40 F 002765 0000 0000J
Both op codes must be included and terminating zeros, but not leading zeros.

Thus, the number .003769 will be input by

00 F 00 37 6900 0000 J

Table 4. 5. 1 showsthe relationship between the range of the number, the op

code, and the right-hand address digits.

if range of decimal The DOI format | Where w is found
‘number B is is by

0 <Bel/2 | 00F 00 wJ oweB- 10%
/2<B<l 40F 00 wJ w = (B-1/2) - 104
-1 <Be-1/2 80 F 00 wi w= (1+B) °ee
oe, Oo (1-|B])

-

1074
-1/2< BS 0 NOF 00ws owe vem 0

a (1/2-|B)) - ye,

Table 4.5.1

Use of the J termination to input decimal fractions is notrecommended for

more than a few numbers. Special input programs are available when large

amounts of data are needed. (See Chapter 6).

The use of the remaining termination, S,will be discussedin Chapter 6.

CHAPTER 5

NON-ITERATIVE AND ITERATIVE PROGRAMMING

Use of the order code to construct a program unit is a relatively simple

matter. The best way to describe the process of program construction isby

examples.

5.1. Non-iterative Programming

Consider the problem of constructing a program to compute the quantity

ab+c=d

Written first in terms of the quantities a,b and c rather than addresses, this

program would be

50 a Put a into Q
73 ob Forma:b in AQ(rounded product)
L4 ¢ Add cto most significant part of AQvinA
40 d Store d |

If the quantities a, bandc are now assumed to be in. locations 100, 101 and 102

and the answeris to. be placed in1 103, the programin DOI formatwill be

0) 50 i00F (100)=a—+Q
73 #10IF a-b-—>AQ_

1l)L4 102F atb+c—+A
40 #103F asb+c—103

This program, written inDOI format, is numbered with the first order given the

number 0. The actual address of these orders in MISTIC would be determined by

a K directive.

As a further example, consider the same problem--ab +c = d--where

= .3276, b=. 8542, and c - =. 2864. These numbers are to be input as part of

the program, the whole to be written in DOI format to be stored at memory

location 96 and following. ‘The answer is to be stored in 200. The program is

as follows:

00 96K©

0)50 3L a—*Q
7J 422. 2.2... . ab-—.AQ

1) L4 52... 5.ab+c— eA
40 200F ab+c—— 200

2)O0OF F...... 5... « » » Stop
OF F......... ss s Waste >

3) 00 $F OO 3276 0000 0000S. . |

4) 40 F 00 8542 0000 0000J .¢ Constants
5) NO F 0021360000 00003 .} —s—CSts

26 96N........ .. . Stops input, starts execution
of program |

Table 5.1.1

-5.1-

5.2. Iterative Programming--No Changing Addresses

A somewhat more difficult but much more useful type of programming is_

made possible bythe controltransfer orders. Use of these control transfer orders

permits the construction of loops, by means of which oneset of orders may be used

for any numberof iterations, with or without alteration.

Such an iterative program involves a counter, which may beeither a

constant entered for the purpose or an order which has a changing address. [n>

either case, a constant, usually a 1 in either the 19th or 39th bit position, is

required for decreasing or increasing the counter. As an illustration, consider the

following example Ss. | 10

Example 5.2.1. Construct a program which will form =, a, where a, a

number in the range -.l<a <.1, is in address 100. The result is to be stored in

address 101. -
39

37 are input for counting. The

Solution; Constants 8x2 ~° and1x2-

program is as follows:

i)L5 100F a—»A

40 101F a——=101 —_
2) 40 F A——~0 (working space)

50 100F a——=Q |

3) 73 OF a-a —=AQ

40 F a’ —»0
a del

4) L4 101F- a + >. a—A
ae ee

i

40 101F 7 a —101
- x=1l |

5) Lb 8L Counter to A

LO 9L Decrease counter
6) 40 8L Restore counter

32 21 Loop if counter is > 0

7)0F *F Stop if counter is < 0
OF F Waste 39

8) 00 F 00 [8]F 8x 2 ~“--counter

9) 00 F OO I1F 1x 2739__constant |

Table 5.2.1

In order to assure that the counter is properly set at the beginning of the

loop, it is good practice to make all loops self-restoring. In the above program,

this will involve adding an order at the beginning and a constant at the end, namely,

0) L5 10L 10) 00 F
40 8L 008 F

Another counting method, ‘using the order F5n, is illustrated in Table 5.2.2,

and

-5,2-

which is another program for the problem of example 5.2.1.

Clear counter0) 41 OL

i) 40 101F a—+101

2) 50 i00F a—eQ

73 F aa +—saQ

3)40 Fo a—=0
L4 101F i S 4x ae

“) 40 oe * "*—?A101 |
 F5 9120
5) 400 OL

6) 36 7L
26 2L

cotiho
C, + 1 - (9)—eA

| Transfer control to 7L |

Reloopif c, +1 <G 7)0F F Stop when c. +1 = 9
OF Fo Waste oo8)00 F 009F

9) 00 F OOF ©

Table 5.2.2

5.3. Iterative Programming--Changing Addresses

_ A second type of loop is one in which some addresses are changing. In the

following example, the loop has been madeself-restoring and a changing addressis

usedasa counter. | . | a

Example 5.3.1. Construct a self-restoring program which will evaluate the

; ol aL _ , Loe a
polynomial > ax, where the a. and x are assumed to be scaled so as to assure

that the sum lies always in machine range, i.e., between -l and+l.The a's are

stored in i0i, ...,113,x in 100, and the finalansweris to be in 99. Usea nested

formof factoring. ©

Solution: Using the form

i2 ., wt ff fifia . | | _— | .
2 a,x = [L(L(a | 5 + a4) + 410) + a.) + a 2| + a,|x + ap

= {Ss x +a, :)ay 12-3 ll-j

where S32 =a)

and Sy 2 5-1 ° 212-3 + Au;
for j= 0, 1,..., 11

the desired program might be the following:

~-5.3-

0) L5 9 - |
40 3L Preset order 3

1) L5 1138} a, Jes
40 F 12 J, working space

2) 50 F 512-378

7J lOOF S12 -5% —»AQ

3) L4 [112]F Si2-j-17°4 —»()

40 F- a
4) L5 | a

LO 8L Decrease address in 3 |

5} 40 3L an

LO 7L Test for end

6) 36 2L Loop if (A) > 0
OF F Stop if (A)<0

7) L4 Or |
40 F. Test constant

8) 00 LF
00 F. Constant

9) L4 112F oe
40 F | For presetting order 3

Table 5.3.1

In this program, the order pair at 3L witha decreasing address was used

as the counter with the test constant in 7L. - Using a changing address in this

‘manner eliminates at least one order pair from theprogram.

os When writing a programwhich has several changing addresses, it is

sometimes difficult to write the program with the "housekeeping"! or program-

restoringorders at the beginning of a program without upsetting the order numbers.

This difficultymay be avoided by making the address -~setting orders into a

separate program part, with its own 00 mK directive and with the last order a

control transfer to the mainprogram. The N directive will then send control to

the address --setting program or to the first of a sequence of ordersin the main

program which, in turn, sends control to the address-setting routine.

-5. 4-

CHAPTER6

SUBROUTINES

Aproblem.to be programmed may oftenbe brokeninto several semi-

independent steps, each of which can be programmed separately. Thus, the

programmer is able to concentrate on one stepat a time andto test each part of the

programseparately before incorporatingit in the total program.

Since certain computations are common to many problems, programs can be

prepared for these computations anda program used whenever a particular |

computation is called for. Such programs are called routines, or subroutines when

usedas part of a larger routine or program. The collection of routines and

subroutines which is available for use on the MISTIC is called the Library of

routines. A complete listing of MISTIC library routines is included at the end of

this chapter.

6.1. Types of Routines inthe MISTIC Library

The RoutineLibrary for MISTIC consists of four types of routines: complete

programs, open subroutines, closed subroutines, and interpretive routines.

A complete program isjust what the name implies--a program which will

perform a complete set of operations and for which the user need supply only adata

tape and perhaps a parameter tape.

An opensubroutine is a set of orders which performs a certain operation

and which may be inserted at an appropriate placein the program.

A closed subroutineis also a set of orderswhich performs a specified

operation but whichis not insertedin the programbut placed at some arbitrary

section of memory. Control is transferred to the closed subroutine by acontrol

transfer order in the main program or master routine.

_ The closed subroutine is probably the mostuseful since control may be.

transferred to the subroutine many times ina particular program, either as one

part of a loop or by separate instructions.

6.2. Entry into and Exit from a Closed Subroutine

Tobeuseful, a closed subroutine must be written in such a way as to be

applicable in a variety of programs. The closed subroutines in the MISTIC Library

are entered by meansoftwohalf-word orders, called a standard entry. These two

orders are: pp) any

30 p OO
ptl) 26m m is the address of the first order

any in the subroutine

=6, l-.

The first order puts the order 50 p in the right-hand half of Q; the second

order transfers control to the subroutine. These two orders must be located in the

right-hand half of one word and the left-hand half of the following word even ifa

waste order is required to do so.

Any variation of this standard entry ina library subroutine is explained in

the program description.

Control is automatically transferred backto the master routine bythe

subroutine. This control transfer is usually accomplished by the two orders in the

subroutine

K5 =F

42 n L

where nis the number of an order in the subroutine which contains, in the right-

hand half, a controln eaefesorder — |

The KS order puts 50pal in the right--hand half of A; the 42 n order puts ptl in the

address part of the 22 order in the right--hand half of m+n (m is the locationof the

first order of the subroutine). Thisprocess is-called "planting the link",

6.3. Placing the Argument

Sincea subroutine usually performs an operation on one or more quantities,

these quantities must be provided by the master routine. If only one such quantity

is required, it is usually placed inA before entry into the subroutine. In this case,

the K5 order is precededby a 40 q orderto preserve the quantity in A, which would

otherwisebe destroyed by the K5order.

6.4. Parameters--Program and Preset

Manysubroutines require certain parameters. For example,a routine

whichfinds the nth root of a number, where nis any positive integer, requires

that the number n be suppliedby the master routine. Orasubroutine mayoperate

on more thanone quantity, so that either the numberof such quantities or the

address of the first of a sequence of such quantities must be supplied. There are

two standard ways of supplying parameters.

A program parameter is specified in one of the orders in the master

routine. If only one such parameter is required, it is specified in the first half of

the word containing the 50 order in the standard entry toa subroutine. For

example,Library Routine R2 is a closed routine for replacing (A) by its nth root.

The entry to R2 is
p) 50n program parameter

50 p |

ptl) 26m

-6.2-

A second method of supplying parameters leads to whatare calledpreset

paramete ra :

A preset parameter is one which is usually set during the input of the

routine. The S termination symbol of the DOI is used for this parametersetting.

The parameter, whichmay represent either a constant or an address, is placed by

the master routine in one of the addresses 3, 4, ..., K, ..., L. The subroutine is

written with kS3, kS4, ., as the address of the orders which use the constant or

address thus placed. As the programis readin, the kS3, kS4, ..._ willbe

. plus k. Thus, the order L5 $3 will

go into the computer as L5 100if (3) is 100, whereas the order L5 683 will go into ©

the computer as L5 106 if (3) is 100.

replaced by the constants at address 3, 4,

6.5. Examples of Closed Subroutines

Example 6.5.1.

Write aclosed subroutine which will form > > a.,b; in A.

i=0

bespecified by S3, and the address of b

Solution: Let the address of 29 0 by

S4. The program parameter isn. On entryto the subroutine, 50n 50pis inQ.

The subroutine:is

~O)K5F |
42. 9L Link | . 7

1) 46 12L Program parameter--for1test
L5 10L

2) 40 3L Preset order 3L
| 41 F Clear 0--working space
3) 50 §3 a..b. -

73 S4 1

4)L4 F 2 ajd; + a;b,—>0

40 F jeQ
5) L5 3 OO
L4 11L Raise address in 3L

6) 40 3L | -
L5 12L |

7) LO 13L Test constant
40 12L a

8) 36 3L oo

L5 F >_ a,b, >A
7 0 fil

9) 22 9L Waste
22 ()F Set by 0L

10) 50 $3 -
7J S4 Forpreset 3L

11)00 IF oe
00 I1F Constant

12) 00 (n)F a
00 F Set by lL

13) 00 IF a
00 F Constant

Table 6.5.1

26, 3-

The following must be onthe programtape atsome point preceding the

subroutine: |

00 3K

00 F O0msF —m, is addressof ag
00 F 00 m>F ms isaddress of By

Example 6.5.2. Write a program to compute the cube root of each ofa -

sequence of six . numbe rs:

+. 127632
~. 027543

-. 987653

+, 002764

+. 756532

=, 000376

The numbers are to be read in by LibraryRoutine N2. Library Routine Pi is to be

used to print out the numbers and the answers. Numbers areto be printed as six >

digits with a space after the first three. Theanswers are to be printedas nine

digits with a spaceafter the first digit. The print format is to be

number—-2: spaces” answer >

number 2spaces answer, etc.

Descriptions of the three library routines needed are given at the end of the chapter.

Solution:

The Tape Format

DOI |

00 10K

Master Routine

00 150K
No!”

OO 176K

Pil a

~ 00 205K
R22

24 10N

+127632

-027543

- -987653

+002764
+756532.

-000376N
‘Table 6.5.2

-6, 4-

Master Routine

0) LS 16L Ce
420«66L - Preset changing orders.

7 92 #4131F Carriage return
2) 50 100F oe

50 2L Entry to NZ

3) 26 150F — |
~L5 [100]F

4) 52.63F

50 4L Printnumber
5)26 176F OO |

92 967F Print 2.spaces
6) 22 61, —— Waste |
~-L5 [100jF =
7} 50 3F Program parameter.

50 7L |
8) 26 205F Entry to R2

26 9L Waste
9) 52 91F

50 9L Print answer
10) 26 =176F |

. 92 I131F L.F. andC.R.
11) 92 515F Delay

F5 3h
12) 40 3L Increase address in 3L and 6L

42 6L ,
13) LO I15L

32 14h Test for end
14) 22 3L Loop

OF F
15) 26 150F
L5 106F Test constant

16) 26 150F |
L5 100F Constant for preset changing orders

Table 6.5.3

Notice the use of the 92 131F order in 1L. This assures thatthe carriage is in the

proper position at the beginning of print-out. In address 11L, the order 92 515F

after the 92 131F is used to allow time for the carriage return to be completed

before the next print-out starts.

6.6. Interpretive Routines

The fourth type of routine in the program library is the interpretive routine.

An interpretive routine is a routine which reads an order which is not in

MISTIC format, then interprets and executes the order before reading the next

order. The orders, or pseudo-orders since they are not orders found in the

ordinary MISTIC order code, may be either on tape or in memory. The operations

performed in executing the pseudo-order are performed by obeying certainblocks

-6. 5-

of orders in the interpretive routine which are ordersin the regular MISTIC order

code.
An interpretive routine is commonly entered by a standard entry.

Following the entry the master routine must have the pseudo-orders to be read by

the interpretive routine. A special pseudo-order will transfer control back to the

master routine.

Interpretive routines may be used in programs which involve actual

operations on elements which are not numbers stored in the usual way but may be

numbers stored in some special form. The most common application is to

numbers stored in ''floating point'' and to complex numbers.

| Interpretive routines are also used to permit programs written for one

computer to be read and executed by a different computer.

-6. 6-

6.7. Library Routine N2

TITLE .
TYPE ,
NUMBER OF WORDS.
PURPOSE

TEMPORARY STORAGE ..

$27ACCURACY

DURATION

DESCRIPTION.

. Input a Sequence of Decimal Fractions

. Closed with one program parameter

. . 26

. . To reada set of signed fractions and store them in
successive locations

0, 1, 2
,-40

_.4ms per digit (input time)

. This routine at location p is called into use by the

orders --~ nF nis the first of the sequence

50qF of locations at which the
atl|26 pF de cimal fractions are stored,

It reads a sequence of decimal fractions fromthe tape. Each fraction is punched on

the tape as sign, K(+) or S(-), followed byupto 12 decimal digits; the final fraction

in the sequence is terminated by anN, J,For Le When this subroutine reads one

of these terminating symbols: it returns control tothe main routine. Upon leaving

-39
this routine, 0x 2 ; lx

39 +32 -39.
, or 3 x 2-39is left in the accumulator

according to whether the terminating symbolis N, s, iF or L.

This program works by bringing in the decimal fraction Ag» A,» Ags «++, a

onedigit at atime. Now this number ay:
Pp

a_=N_/D_ where a, is the
pppa 0ay: 2? °° °3

is thesign of the number and p< 12.

Whenthe i+] digit is read, we have stored D./2 == D, /2 x 10 in location |1

and M, == N, ~ D,/2 in location 0 where N.

No = 20:

= 10N,-lta,. D,/2 = 5, Ma, = a, - 5;
0~ *0

-6, 7=

6.8. Library Routine Pl

TITLE............ . Print One Number Fractional or Integer ina Manner
Determined by a Program Parameter

TYPE Closed with one program parameter. If the routine
starts at x, then it is called into use by the orders

P XY dF
50 pF

ptl | 260 xF

PURPOSE To print decimal integers or fractions, with or
without sign, to a specified numberof places with |
Simulated decimal point

NUMBER OF WORDS.... 28

TEMPORARY STORAGE . .0,1,2
ACCURACY. . -. +. . . . Will print a fraction to 11 significant figures

DURATION. 2 so so « « « « « « Determined by punch speed

DESCRIPTION When the subroutine is called into use, it punches one

space and then A in a manner determined by XY dF.

if X = 5, a minus sign is punched if A is negative,
a space is punchedif A is positive.

If X = J, a spaceis punched.

If Y = 0, the integer Ax2 ~37 is punched.

If Y =2, the fraction A is punched correctly roundedoff.

The number of digits punched and the location of extra space (decimal point)

is determined byd=qx 10+ 5s.

l1<s< 10 l<q<ll

q is the numberof digits punched. s is the numberof digits punched before the

extra space; e.g., 52 95F would cause the fraction in A to be punched to 9 figures

with a space after the 5th figure. A minus sign would be punched if necessary.

JO 105F would cause the integer in A to be punched to 10 figures witha

space after the 5th figure.

JO 33F would cause the integer in A to be punched to 3 figures followed by

one space.

-6. 8-

6.9. Library Routine R2

TITLE Integral Root al/P

TYPE Closed with one programparameter.

PURPOSE To calculate the pth root of a fraction when p is an
| integer.

NUMBER OF WORDS....24
TEMPORARY STORAGE . . 0-3
ACCURACY 4273?
PARAMETER if the "Integral Root!' subroutine starts at location t,

then it is entered (with A in the accumulator) by the following:

50 pF
50 sF

s+1]26tF

DURATION. Negligible for the special cases A = 0and |JAl>px2-

A tableoftypical times(in milliseconds)follows:

Ss

39

p/A 1 2 13 45 8
“235 30”s—iH“ tts« 30
3: 55 45 40 }°}8#40 30

4 55 60 50 50 40.
10 120 «105 120° ~©105 90

For large p and small A the times are considerably
greater.

DESCRIPTION. This routine computes the pth root (p, a positive

integer, 2 <p < 1023) of a 39 binary digit real argumentA, -1<A< 1. If
|A| > 1 -px2>°’, then t(1-27°?
in which case At P_9, Otherwise, A} Pis found by Newton's iteration method in

which

) is taken as Al/p. Another special case is A = 0,

12739
x

m
L

0

Uf x + 1/p[(A/x,P>*) - x!*n4+]

1/p is assumedwhen

ty p-1,_1/p [(A/x,)- x] > 0.

If pis even, of course, A must be non-negativeand in this case the non-negative

Convergence of x, to A

real pth root is found. At the end of the routine the accumulator contains the

signed pth root of A.

76. 9-

6. 10. MISTIC Library Categories

Programmed Arithmetic

A. Floating Point
B. Other programmedarithmetic.

Code Checking

C. Post Mortem checks
D. Dynamic code checks

Integration

E. Quadrature Oo
F. Ordinary differential equations
G. Partial differential equations

Operations on Functions

H. Zeros and minima

I. Interpolation
J. Operationsonpolynomials and power series

K. Approximations and statistics

Linear Algebra

-L. Simultaneous linear equations
M. Other operations on matrices and vectors

Input and Output

N. Number input
O. Scope output
P. Printing and punching

Mathematical Logic

Q. Mathematical logic ©

Particular Functions

R. Roots and fractional powers
S. Logarithmic, exponential and hyperbolic functions
T. Trigonometric functions
V. Other special functions

Organizational

W. Counting, sorting and selecting
X. Program preparation

Miscellaneous

Z.Miscellaneous complete programs

-6. 10-

6.11. MISTIC Library Index

Programs in the MISTIC libraryare derived from three sources. The

origin of a particular program isindicated by the program.label as follows: a) an

M suffix, Michigan State University, b) an § suffix, SILLIAC library, University of

Sydney, and c) no suffix, ILLIAC library, University of Illinois. / Some programs

have been obtained from University of Illinois sources other than the ILLIAC library

itself and have been submitted to the MISTIClibrary, and thesecarry an M suffix

also.

The number in parentheses following the title indicates thenumberof words

in the program.

Complete descriptions ofanyof these programs areavailable upon request

through the Computer Laboratory.

LABEL

Al
AlM
A2M
A3
A3M
A4
A4M
Ad
A5M
Ab
AS

B2

Cl
C1M
C2M
C3
C3M
C4
C4M
C5
C5M
C6
C6M
C9
C12s
CAIM

Di
DIM
D3
D4
D5
DAIM

TITLE

Floating Decimal Arithmetic Routine (168)
Standard Entry FloatingPoint Arithmetic (86)
Floating Point Error Analyses (AIM) (600)
Convert a Floating Decimal Numberto Standard Form (27)
Interpretive Routine Entered asa Closed Subroutine (524)
1.7 Precision Floating Binary Arithmetic (280) |
Simply ProgrammedComputer for Amateurs (complete) >
Complex NumberArithmetic (248)
Floating Point Complex Arithmetic(160) — |
Floating DecimalRoutine and Auxiliaries (467) *
Semi-interpretive Floating Binary Arithmetic Routines (100)

Complex Number Operations (54)

Post Mortem Version of the DOI(37 + 25 of DOI)
Plugboard Wiring Check (complete)
Sexadecimal Post Mortem (complete)
Print Signed Fractions and their Locations(31)

Sexadecimal Input (Miniature Bootstrap) (4)
Print Sets of Decimal Integers and their Locations (38)
Sexadecimal Input Routine (6)
Print Sets of Order Pairs and their Locations (32)
Print Out. Decimal Order [Input. .

Address Search Routine (23) ©
Sexadecimal Card Post Mortem (37).
Print Floating Decimal Numbersand Locations (36)
Post Mortem Version of Sum Checking DOI (X 12S) (74)
Print Set of Floating Point Numbers (AIM) (90)

Check Point CodeII*
Dynamic Trace (180)*
Sequence Checking Routine (30)
Control Transfer Check Routine(41)
Iteration Counter (35)
Check Point Print Out (A 1M) *

*See Description

-6.11-

LABEL
El
EZ
3
E4
E5
E6
-E6S
EAIM—
EA2M

Fl
F2
F3
F4
F5
F6
FAI
FA2

Gl
G2

Hl
H2
H3
H4
H5
H6.
HS
HF 1

Tl

J2
J3M
J4M

KiM
K2
K2M
K3
K3M
K4
K4M
K5_
K5M
K6
K6M
K?
K?7M
K8M
K9
K10
K1ll

TITLE
‘Integration of f(x) for Equal Increments of x (45)

Integration by Simpson's Rule (Tabulated Values) (21)

Integration by Simpson's Rule (Function Values) (38)

Numerical Differentiation with Interpolation (103) |

Quadrature byGauss' Method* |
Integration Overa Single Interval (32)
Inverse La Place andMellin Integration (64)
Floating Point Integration (Al) (27)
Integration in Floating Point (A1M) (67)

Solution of a System of Ordinary Differential Equations (41)

“Solution of a System of Differential Equations (126)

Integration Second Order Differential Equations (40)

_Numerical Solution of theSchroedinger Equation (complete)

Integration of a System of Ordinary Differential Equations (60)

Integration -- Differential Equations -- ControlofInterval (129)

Second Order Linear Differential Equation (A1)(101)

Solution of a System of Ordinary Differential Equations (45)

La Place's Equation -- Liebmann Method (42) ©

Poisson's Equation, Liebmann-Frankel Method (59)

InverseInterpolation, a Real Root of f(x) = 0 (33)

A Search for the Real Roots of f(x) =0(80) |

Minimization of a Functionof Two Variables (46)

Minimization of a Function of FourVariables (75)

Minimization of a Function of N Variables (89)
Minimization of a Function of NVariables (46) |

Minimization ofa Badly ConditionedFunction (99)

Zero of aSolution of a Differential Equation (16)

Interpolation (51)

Roots of a Polynomial (complete)

Plot of P (jw)/Q(jw) (complete)—
Partial Fraction Expansion (complete)

Frequency Distribution (complete)

Correlations, Means, Standard Deviations, Covariances (complete)

Multiple Correlation (complete) |

Least Squares (complete)
D Statistic (complete)
Intercorrelation of Scores Based on Paired Comparisons (complete)

Analysis of Variance for Completely Randomized Design (complete)

Autocorrelations (complete)

Correlation, Means, Standard Deviation, Variance, Card Input

Chi-squared (23) . |

Chi-square for kx£Tables (complete)
Iterative Estimation of Communalities (complete) |

Correlations in Logarithmic Scale, Card Input (complete) |

Sequential Multiple Range Test (complete) |

Product Moment Correlations, in Logarithmic Scale (complete)
Calculate Autocorrelation of a Time Series (85)

Quartimax Orthogonal Rotation of Factors (complete)

*See Description

-6.12-

LABEL

Ll
L1M
L3

L5
L7s

MO
M1M-
M2
M2M
M3
M3M
M4
M4M
M5
M5M
M6
MoM
M7
M7M
M8
M8M
M9
M9M
M10
Mi0M
Mil
MilM
M12
M12M
M13
M13M
M14
M14M
M15
M15M
Mi6
M16M
Mi7
M17M
Mi8M
M19M
M20M
M21M
MA1
MA IM

Nl
NiM
N2
N3
N3M
N4
N4M

TITLE

Solution of Simultaneous Linear Algebraic Equations (83)
| Solution ofa Set of LinearEquations (complete)
The Complete Linear Equation Solver (complete)
Half-precisionSolutionofa Set of n SimultaneousEquations (159)
Half-precision Automatic LinearEquation Solver (complete)

Solution of Linear SimultaneousEquations (complete)

Eigenvalues and Eigenvectorsof a Symmetric Matrix (113)
Matrix Row and Column Deletion (complete)
Automatic Inversion of a Symmetric Matrix (complete)
Mass Production MatrixMultiplication with Rescaling (complete)
Automatic Eigenvalue-Eigenvector Program (complete)
Form Square Matrix from its Triangular Representation (complete)
Closed Eigenvalues-Eigenvectors (163) |
Multiplication of a Matrixandits Transpose (complete)
Solution of Determinantal Equation A - 6 = 0 (complete)
Triangular Representationof a‘Square Matrix (complete)
Matrix Multiplication (complete) oo
Add Columns to a Matrix (complete)
Principal Axes Factor Analysis (complete)
Matrix Transposition (complete) :
Sums of Squares ofRowsand Columns (complete)
Matrix Element Scaling (complete)
Square Root Factorization (complete)
Form Matrix of Signed Numbers from Unsigned Numbers (complete)
Estimation of Communalities by Maximum Likelihood
Square Root of the Elements of a Matrix (complete)
Matrix Multiplication (77) Se

Linear Equation Solver; Error Analysis Routine (complete)
Matrix Triangularization and Determinant Computation (complete)
Complex Determinant Calculator(94)
Linear Matrix Equation Solver and Matrix Inversion (complete)
Rescale M13 Output (complete) | |
-LinearMatrix Equation Solver and General Matrix Inversion (115)
Real Determinant Calculators (74)
LinearProgramming (complete)
Simplex Codes for Linear Programming Modified for Cj (complete)
Matrix Multiplication for LargeCommon Dimension (complete)
Simplex Code for Linear Programming Modified for b; (complete)
Post Multiplication of a Matrix by a Vector (45)

Characteristic Polynomial; N* Method (complete)
Characteristic Polynomial; N + 1 Points Method (complete)
Form a Diagonal Matrix of Square Roots (complete)
Iterating Eigenvalue - Factor Loading Program (complete)
Replace Diagonals of a Symmetric Matrix and Scale Output (complete)
Matrix Multiplication Floating Decimal Auxiliary (Al)(26)
General Matrix Multiply in Floating Point (AIM) (35) a

Input One Number from Tape, Integer or Fraction (19)
Integer or Fraction CardInput, Variable Format (161)
Input a Sequence of Decimal Fractions (26)

Decimal NumberSequence Input Routine (21)
Card Input: Fixed Format, Variable Field Length (187)
Input a Sequence of Integers (17) |
Card Input: Fixed Format, Uniform Fields (173)

-6.13-

LABEL

N5M
N&

NI
N10
Nil
N12
N13
N138S
N14
NAIM
NAZM
NA2Z6S
NP1M ©
Pil
P2
P3
P3M
P4
P4M
P5
P5M
P6
P7
P8

P9
P10
Pili
Plz

P13
P15
P16
P17
P26S
P27S
PA2M

TITLE

Integer Card Input, Fixed Format (X2M) (185)

Read One Number from Tape,as Integer or Fraction (22)

Matrix Modifying Input (69) ©
Inputa Sequence of Integers with Sum Check (36)
Input a Sequence of Fractions or Integers (25)

Infraput (39) |

Input Sequence of Fractions, Having Same Number of Digits (21)

Input a Sequence of Fractions or Integers (49)

Input a Sequence of Integers (18) |

Input a Sequence of Numbers for (A1M) (107)

- Input OneFloating Point Number (A1M) (58)

Input a Sequenceof DecimalNumbers (A7S) (39)

| Fraction Card to Tape Conversion in NZ Format (complete)

Print One Number Fraction or Inte ger (28)

Print Fraction with or without Sign to n Places (18)

Print Integer with or without Sign (20)

Card Output: Fixed Format (155) |

Zero Suppression Integer Print (27)

Print Fraction or Integer (34)

Print One Number in a ParameterSetLayout (24)

Print Sequence of Fractions or Integers (45)

Single Column Print (14) |

Letter Printing (32)

Tape Lettering (110) |
Decimal Order Print Routine (23)

Print Headings Interlude (8)

Rounded or Unrounded Print (18)
SingleColumn Print © |
Combined Integer Print (35) |

Multiple Precision Integer Conversion (32)

Infraprint (56)|
Maximum.Speed Fraction Print to Twelve Places (59)

- Floating Decimal Print for Floating Binary Numbers (A7S) (57)

Single Column Prints from Successive Locations (18) _

Output a Sequence of Numbers for (A1M) (60)

Logical Algebra Subroutine (87)
Logical Input Variable Subroutine (33)

' -Complete Circuit Analyzer (complete)

Single Circuit~r

Square Root(pp,
Integral RootA (24).
Fractional Power Routine (18)

_ Cube Root (15)
- Reciprocal (17)
Fast Square Root (19) |

Floating Decimal Square Root Auxiliary (Al) (16)

Square Root in Floating Point(31) _

1.7 PrecisionFloating Point Square Root (A7S) (17)

Natural Logarithm (45)
Exponential (33)
Logarithm (14) _
Exponential (21) —

-6. 14-

LABEL

55
S10S
S118
5128S
S13S
SA’
SAZM
SA3
SA3M
SA5M
SA6M
SA6S
SA7S

Ti
T3
T4
T5

T6S
T7S
TA 1
TA1M
TA2
TA2M

Vio
V2
V3
V4
V5
V5S
V6
V7
V8
V9

Wi
W 1M
W2

Xi
X 1M
X2M
X2S
X3-
X3M
X4
X4M

X5M |
X6M
xX?
xX 7M
X8
x9
X10

TITLE
1/32 Natural Logarithm(36)
Fast Low Accuracy Logarithm Routine (20)
Fast Exponential Routine (28)
Integral of Exponential (65) _
Fast Low Accuracy Exponential Routine(28)
Exponential Auxiliary for FloatingDecimal (Al)(26) |
Hyperbolic Sine and Cosine Auxiliary(A3) (18).
Natural Logarithm (Al)(30)
Natural Logarithm in Bloating Point (A1M)(83)
Exponential (AIM)(84) . oo.
Sinh and Cosh in Floating Point (A1M)(17)
Floating Binary Point Natural Logarithm(A7S) (31)
Floating Binary Point Exponentials (A7S) (39) —

Sine, Cosine Subroutine (30)
Arctangent in Degrees (15)
Arctan X Subroutine (25)
Sine-Cosine Routine (21)
Fast Arcsine (10)
Fast Sine-Cosine Routine (30)
Inverse Tangent (36)
Sine Auxiliary for Floating Decimal(A])(26)
Sine in Floating Point (AIM) (50).
Arc Tangent Auxiliary (Al) (48)
Arctangent Auxiliary (A1M)(85)

Legendre Polynomials, Py(x) (25)
Tchebyscheff Polynomials (15)
Generate a Sequence of Random Numbers (13)
Fourier Analysis (52)

Spherical Bessel Functions (59)
Fourier Analysis (complete)
Associated Legendre Functions (80)
Provide Sets of Random Numbers from 1 to N (complete)
Ordinary Bessel Functions (257)
Generate 40-bitRandomNumbers (32)

Loop Cycling Control (21)
Decimal!Scaling (32)
Word Sorting According to an Ordering Relation(25)

Decimal Order Input (25)
The Symbolic AddressInput Converter (196)
650 Interpretive Routine(358) |
Decimal Order Input with Sum Check (37)
Constant-listing Auxiliary (21) |
Clear Memory(6) |
Standard Subroutines (155)
Decimal Order Input for Core Memory (32)
Decimal Order Input Format for DOI Core
Data Tape Check for K3M or MIM (complete)
Sum Check (11)
Card Bootstrap
Assemble Blocks (4) | -
Program Interruption Routine (without Sum Check) (34)

Program Interruption Routine with Sum Check (49)

-6. 15+

LABEL

X11
X11S
X12s
X138
X15S
xX 16S
XA!

YIM

Z2M
Z3M
Z4M
Z5M
Z6M

TITLE

Data Tape Checking for K2 and K9(complete)
Periodic Sum Check (15)
Sum Checking DOI(41) _
Tag Address Decimal Order Input (46) * .
Decimal Data Input (19) —
Ssexadecimal Program Dump withSumCheck (24)

Constant Listing Auxiliary(Ai) (18) ©

Paper Tape Memory (30) *

“FrequencyResponse of an R-CCoupledAmplifier —
Ladder Network Analysis
Root Locus Plotter .
Pulse Responseof anR-C Coupled Amplifier (complete)
General Network Analysis for Passive Networks (complete).

*See Description.

-6. 16-

CHAPTER7
SPECIAL CODING TECHNIQUES

This chapter deals with some elementsof programming. whichwere not

covered in earlier chapte rs as wellas some special techniques whichresult from©

particular orders or combinations of orders in the MISTICordercode. The chapter

is therefore made up of.a number ofrelatively unrelated sections having to do with

operations which frequentlyarise inprogramming.

¢.1. Interludes.

An interlude is a computation pe rformed during theinput of a_program, the

input being interruptedand then resumed.

A tape bearing a routine may containan interlude which is placed in

locations which may jater be used to hold the routine or data. When the words of an

interlude have been read, control is then directed to the interlude bymeans of an N

directive, and the interlude is executed. “Control is thentransferred back to. the

input routine and the rest of the program input. The purpose of an interlude is

usually to prepare some orders or constants required for the routine.

- Whenthe program is being read inby the DOI, input is resumed after thee

interlude by transferring control to the left side of location 999. The first word on

tapeafter the interludemust be a Kdirective, or Q must contain, in the right--hand

address position, ‘theaddress at which the storage of the following routine is to

‘start. - |

If, upon resuming input, it is desired to retainthe last used K directive,

-39in A. The

control should be transferred to. the right side of 1014 with mx 2

next words on tape willbe placed atm, mil, ... retaining the previous relative

address.

¢.2. Some Special NDirectives

The directive 20 1019N on a tape being input by means of the DOI causes the

computer to stop and has no othe r effect. Upon beingstarted, the tape will continue

being read from where it stopped. This order can thus beusedto stop the computer

for inserting a new tape without a directive.

Other programmed stopsare discussed in Section 8.5.

The N directive which stops inputand starts the program is, in its simplest

form, an order which transfers control directly to the desired order inthe program.

If the address to which control is to be sent is not known, as for example ina

-(,]-

subroutine which may be located arbitrarily, use can be made of the way in which

the DOI operates to fix the address of the N directive. When a new order is read by

the DOI and placed in the right-handhalf of location 1, the left-hand half of 1 always

contains the last previous order. If the last order pair before the N directive

contains, as its right-handorder, a control transfer to the first orderto be executed,

written with relative address, the directive 26 1N will cause this control transfer to

be obeyed. For example,

P) --- Oh) are
OF F DO SO

pt+l) 22pe41 Waste or pt+l1) any

26 L 26 L
26 1N 26 1N

will cause the order 26L to be executed sincethe contents of 001 are 26L 26 at

this point.

7.3. Bootstrap Input.

The Decimal Order Input |is used to input other programs, but nothing hasyet

been said about how this program itself is putin. The DOI is written in sexadecimal,

occupies locations 999 to 1023, andis input by abootstrap input routine.

The bootstrap is itself a program, on tape, which is used in conjunction with

panel switches to put a three - word program into the machine. This three-word

program in turn causes the DOI to be read and stored.

By panel switches, the control counter is cleared tozero and the sexadecimal

equivalent of the order pair 30 40F 40 F is put in the order register; 1.€., the |

"bootstrap start" described in Section 2.4 is executed. The bootstrap program is as

shown in Table 7. 3.1; decimal equivalents of addresses are in parentheses.

80 028 (40)
40 001
(80 028 (40)
40 002
19 026 (38)
26 000
80 028 (40)
40 [000]
L4 001.
40 001
80 028 (40)
40 [3F6] (998)

Table 7.3.1
This program causes the three - word program shown in Table 7.3. 2, with

decimal addresses in parentheses, to be stored and control sent to location].

-7.2-

This three-word program, in turn, causes the DOI tape to be read and stored in

location 999 and consecutive locations. The order pair

22 3L5S (1019F)
00001 (IF) |

‘is the last order on the DOL tape |and is stored at location 0, This order sends |

control to the right side of ‘1019 andtheDO! is started. If 20 3LS 00 001 isused

in place of 22 3LS 00 001, the computer will stop on the 20 3LS. The black switch

then causes the DOI to be started. With this variation, the DO! need not be ona

programtape but may be read in separately.

0) L4 001
40 001.

1)80 028 = (40) ©
40 [3F7] (999)

2) 19 026= (38)
26 000,

Table 7.3.2 —
The term bootstrap start is often used for tapes which are st arted by

setting the order register to 80 028 40 000 and thecontrolcounter to zero.

7.4 Use of Input and Output Orders

If input orders are to be stored inmemory bymeans ofthe DO!, the input —

orders: are written and entered as part of the‘program. Thecharacters to be read

in response to 80 nor 81 n must be on the tape after the N directive whichstarts

the program.

Characters read:in1 by the 80 nor 81n orders are inte rpreted as sexadecimal

characters. Hence, ifa number is being input by means of an 80 nor 81 n, that —

| number must be in sexadecimal, Likewise, if an order pair is. being input by means

of these orders, the address as well as the op code must be in sexadecimal.

As noted in the tabulation of the 80 orders 1 these orders by-pass all

characters with a fifth hole. The refore, ifa fifth hole character is to be read, the

91 4 order must be used.

The output orders in the 80 series (82 n, 83 n, 8S n) will output numbers

from the computer as sexadecimal characters. These orders are convenient to

output a small number of intermediate results, such as the results of a sum check,

for example. The 92n order, on the other hand, is used to output characters which

are predetermined by the programmer. |

It is particularly important to note that all 80 and 90 orders involve shifts of

both AandQ. Hence, the contents of both A and Q are altered when these orders are

~7.3-

used and if either (A) or (Q) is needed later, it must be stored before the 80 or 90

orders are used.

Use of the 92 n orders is illustrated in example 6.5.2. Use of the 80 n

orders is illustrated in the bootstrap discussion of Section 7.3. A second use of the

80 n order is as follows: if it is desired to make a l, 2 or 3 place left shift of A

without shifting Qinto A, one can use the order 80 1F, 80 2F or 80 3F respectively.

No input occurs and the input tape does not move.

One use of the 91 4 order is where afifth hole character is usedasa

marker. Thus, a

91 4F
36 kF

will read one character and te st for fifth hole. If the character is a fifth hole

character, ao will contain a 1; if the character is a sexadecimaldigit, ao will

contain Q. The 36 kF will thus transfer control to k if the character isa

sexadecimal digit and take the next order if the characteris a fifth hole character.

7.5. Summation of Products

It is often necessary to form sums of products, e.g., in matrix multiplications.

Accuracy«can be increased bype rforming such a summationeither exactly or with one

round-off. This can be doneon MISTIC by the use of a 74n order. To accomplish

this summation bya 74n order, itis necessary only to place the least significant |

half of the partially summed products into the accumulator before performing the

74 norder. This can usually be doneby an S5 order because Q usually holds the

least significant part of a summed product. Since 74 n gives (n)-: (Q) + 2 ~39 A,a

double length product is formed in AQ. To this, the most significant part of the

previously summedproduct can be added by an L4 n order. If A is set to 1/2 before

the first execution of the 74 n order, one rounding is effected.

The following example illustrates this procedure :

Example 7.5.1. Place the rounded sum

30
a:b.
Lol

i=]

in location 99, where the a, are in locations 100...129,the b, in locations 130.. .159,

-7.4-

Solution

0) 41 99F | - Clear99 for sum
— 26la Waste |
1) 50 84© Put 1/2 in Q
“LS lL.

2) 40 3LJ Preset 3L
$5 F | (Q)—~> A

3) 50 [100]F — a,b,
74 [130]F RE

4) L4 99F ie a
| 40 99F a > ajbj + abi 99

5) L5 9L) jel
 L4 | _ Increase addressesofa,and b, by 1
6) 40 3L) Oo

LO 10L |
%) 32 2L Test for end

OF F. oe
6) 40 F) _

00 FJ) ~——s Round off constant = 1/2

00 1F) ss Increment
(10) JO 130F). So oe
74 160F ‘Test constant

11) 50 100F) | :
74 130F) © Starting constant

Table 7.5.1

7.6. Reversing the Control,Transfer a

—Example 7. 5.] illustrates another coding trick. If the test constantin|

order 10 were

50 130F 74 160F

the result of order 6 wouldbe negative until the end. This would neces sitate a

"double control transfer"! orders i. e. »a32nkL 22 2L, since in this case the loop

is re-enteredon a negative. By adding -1 to the test constant, i.e., using

JO 130F 74 160F

the sign of the result of order 6 is reversed and the 32 2Lorder canbe used.

7.7. Binary Switches _

A program may involve two orders whichareto be used alternately ata _

particular point in the computation. To accomplishthis alternation, a number in

memory which is alte rnately plus andminus, together with a conditional control

transfer, canbe used. Thesign alternation is accomplished bythe order pair:

Lim40m, where mis the address of the number; and theorder alternation by

the order pair: p) L5m36k, wherekisthe address of one of the alternate

orders, and p + 1 is theaddressof the second, and m is the address of the

alternating number.

-7. 5-

If an order or order pair is to take on two values alternately, this can be

accomplished by storing the sum of the two orders at some location, m, and using

the orders L5m, LO k, 40 k where k is the address of the order to be alternated.

This technique can be used to alternate either addresses or opcodes, or both

together.

For alternating addresses only, the alternation canalso be effected by the

sequence of orders:

m) 50 (at+b)F
| L5 mF
m+l) LO kF

46 kF

where k is the location of the order with alternating left-hand address anda+bis

the sum of the two addresses. If the alternating address is aright-hand address,

the two orders atm are reversed, and the right-hand order atm +1 is changed to

42 kF. If the op code of the order at k whichcontains the alternating address is |

larger than L5 or if the op code is equal to L5 and the address in kis larger than —

m, a+b+1 must be used in m in place of a + b to allow for overflow.

7.8. Special Tests

Because the only test orders are the 30 orders which take one of two

alternatives for (A) >0, and the otheralternative if (A) <0, two tests are usually

required to test for a particular number value in memory. The numbers and -1

can be tested for by using absolute values anda single test because of the special -

form of these two numbers. In machine language, is the only number whose

negative absolute value is positive and -l is the only number whose positive absolute

value is negative. Thus, -

fol o=0.0...0
-|0| = comp. of 0.0...0=1.111...1111 + 0.00.,.001 = 0.0000... 0000

whichis positive, and

-l1 = 1.000...000 |

+|-1| = comp. 1.00...000=0.111...1+40.00...001 = 1.000...0000

which in machine language is negative.

The test for 0 is, therefore, accomplished by an L3 n orderfollowedby a_

conditional control transfer. Likewise, the test for -lis an L7? order followed by a

conditional c ontrol transfer.
-39can be madeby using F3_“39and 1-2

and F7 respectively, followed by a conditional control transfer; i.e., F3 n gives

-39
== 0 for (n) = -2 ~’, a

#0 39 0°
(n) = 1-2 °°, ag = QO for (n) any other value.

In a similar manner, a test for -2

=] for any other value of (n) and F7 n gives ag = 1 for

-7. 6-

When scaling numbers, it is very often necessary to test when numbers are

larger in magnitude than one-half. This can be done by appropriate L or S orders.

Thus, LL n followedby a conditional control transfer order forms 1/2 + | (n) | and

tests for overflow.

7.9. Marking |

| It is often possible to use a marking technique in place ofother counting

processes. A sequence of decimal numbers can be terminated by one of the

sexadecimal characters. This is commonin decimal number input routines and in

programs using sequences of decimal numbers, such as matrix programs and

statistical correlation programs. oe

A fifth hole character in a certain position issometimes usedas a marker.

For example, in the complex number routine A5, a fifth hole character is used to

indicate the end of the exponent of a complex number.

A binarydigit is sometimes shifted as a marker. The digit is so located

that its shift into the sign bit indicates the end ofa repetitive loop.

7.10. Masks |

It is sometimes desirable to pick out certain of the digits ina particular 7

word without including the rest of the digits. This can be accomplished byproper

use of the JO norder. The order JO n puts inQa_l] in each digit position in which

(n) and (Q) both contain 1, 0 elsewhere. Thus, if certain digits of (n) areto be

isolated, a word containing l's in the positions of the desired digits, 0 elsewhere,

is stored in memory. The orders.

50 m | m is address of word some of whose

digits are to be isolated

Jon nis address of stored word

will cause the desired digits of m to be generated in Q, with zeros in all other

digit positions.

The word inn is called a mask.

~~, (-

CHAPTER 8

CODE CHECKING

After a program is written, it is necessary to find and removeall coding

errors. While many of the errors can be foundby a careful visual check, it is

usually necessary to use the machine as a final check. There are several library

routines designed for code checking.

8, Le Common Blunders

. Many coding mistakes are familiarones: which are made over and over.

Table 8. 1.1 gives a list of some of these common blunders, to which each

programmer will probably have other items to add from his personal experience.

8.2. Corre cting Errors by Hand Punch orRepe rforator

: After a program has beenpunched ontape, itshould be printedand.

carefully proofread. Some errors thus located can be corrected by means of the

hand punch. Thus, an F can bechanged to an L by punching the one hole, or

extraneous characters canbe turned into fifth hole characters bymeans of the hand

punch though considerable care must be taken to insure a cleanlycuthole.

Errors located either before the program goes onthe computer orasa

result of a code check on the computer may beremoved by reperforating. Correcting

by reperforating involves first locating and marking e rrors on the originaltape and

punchingthe correct characterson separate tapes. The original tape is duplicated |

‘until a marked character is reached. The tape is then removed from the

repe rforator andthe correction tape inserted and duplicated, after whichthe

original tape is reinserted and duplication resumed.

The method of perforation is particularly well adapted to data tapes. Ina

program, only corrections which do not change theorder numbering can be. made by

this method.

8.3. Tape Correction by Modification Tapes

Another method of making corrections is by means of program modification

tapes. Bythis method, control is sent tothe DOI at the end of read-in of the

Original program anda modification tape is read. This modification tape may

simply replace incorrect orders by the correct ones. For example, if at location

125 the order pair L5 175F L4 4L should have been L5175F L4 4F, a

modification tape could contain

-8.1-

N
O

OT
Be
W
N

id.

il.

i2.

is.

i4.

15.

16.

iv.

ig.

21.

Typical Blunders

L5 orders used instead of L4 orders.

S5 orders omitted after divisions.

Orders terminated by L instead of F and vice-versa.

The renumbering of a code not completed after a modification has been made.

Rounded multiplication used when dealing with integers. |

Control transfersto the wrong address or wrong order of an order pair.

Accumulating storage registers not cleared before a cycle of orders is

entered.

The endcondition for a cycle of orders notcorrect.

Allowing temporarystorage of a suproutine to erase useful data.

Using a 46 order instead ofa 42 order and vice-versa. |

Omitting directives and starting orders on the program tape.

Incorrectly remembering the specifications of a subroutine.

Forgetting to reset addresses when coming back to a cycle oforders.

Making corrections incorrectly.

Using the samerelative address oncorrection words although the preceding

directive is different from that of the program. |

Overlooking the digits shifted from the quotient register to the accumulator on

a left shift.

Attempting to convert fractions greater than one-half by using the J termination

symbol.

Failure to make an L symbol relative to the correct address. —

Failure to clear © before a single length division.

Failure to store address or counter after modification.

Useof letter O instead of the number zero.

Table 8.1.i

-8.2-

00 125K
L5 175F
L4 4F —
24 100N

whe re‘100 is the location of the first order to be obeyedin the program.

| . Lf the correction involves addition of orders, the modification tape must _

changeoone order in the original program to a control transfer to an address outside

the program and place at the address the appropriate orders. For example, —

suppose a program which starts at location 100 has the following sequence of orders:

125) L5 200F
L4 13L

126) 73 12F
S5 F

where the orders 40 F 50 F should have been betweenthesetwo order pairs. The

modification tape in this case should be.

00 125K

0) L5 200F
26 mE

00 mK

1) L4 113F
40 F
2) 50 F |

26 126F

24 100N

Note particularly that the 13L of order 125 is 113F in the modification tape, since

an L on this tape refers to a different relative address base than that of the original

tape. | |

After all corrections have been made and the program is working, one ©

correct tape should be prepared. This final tape should have all unnecessary stops

removed.

8.4. Returning Control to the DOIfor Tape Modification

The modification tapes described in Section 8.3 are effective only if control

has‘been transferredto theDOI atthe end of the programread-in. A program

which is at all complex, and hence likely torequire modification, should be written

with the directives

24999N 26 kN
where k is the address of the first order to be executed in the program. When the

computer stopsonthe 24 999N, the modification tape is inserted andthe

modification read. if no modification is necessary, a black switch start after the

stop will cause the 26 KN to be executed. If this precaution has not been taken, it

-8, 3-

is sometimes possibleto change the address of the N directive to 999 by hand

punch. Otherwise, a reperforation of the original tape can be made, changing the

address of the Ndirective to 999 and including the modification tape. |

Still another method of transferring control to the DOI for a modification is

by a bootstrap start. The sexadecimal order pair 26 3F7 00 000 is punched at the

head of the modification tape followed by aK directive. Thistapeis ‘put into the

reader whenthe computer stops on the N directive which mustbe a stop--control

transferorder, the order register is set to 80 40F 40 F, and the control counter

to zero, i.e., normal bootstrap start, without clearing the machine. The order

26 3F7 is then obeyed and the modification tape readin. This method may be

useful during code checking but is not to be left in the final program whereas other

methods may b2 part of a final complete tape.

8.5. Location of Errors--ProgrammedStops

If a program runs but the answers are incorrect, an analysis of the results

may yield some clue as to the fault. lf suchis not the case, the program will need

to be examined by means of some ofthe various checking routines. |

If the program hangs up, the cause may sometimes be located by an >

inspection of the order register and control counter. The order registercontains

the order on whichthe program hung upandthe control counter contains a number

one greater than the storage location from which the order came, thus locating the

hang-up. Examination of the program in the light of this information may reveal

the difficulty.

Stop-control transfer orders written into a program are a valuable aid in

locating errors. The stopinitiatedby the N directives at the end of the program

read-in, described in Section 7.2, serves to indicate that the program has been

input and that any subsequent hang-upis not a program inputhang-up.

7 Simple stop-transfer control orders at strategic locations in the program,

for example at the end ofaloop, aidin program checking since they serve to mark

progress through the program execution and thus help pinpointa program failure.

In general, after a program has been checked and is running, these stops

are turned into non-stop-transfer control orders before production runs.

A special program stop order, the FF n order, is sometimesused to

indicate the failure ofa programmed check. For example, a sum check may be

inserted at the end of a program read-in with an FF n order which causes the

MISTIC to stop if the sum is incorrect. The FF n order may be used in connection

with any programmedcheck the program writer may care to include inhis

program.

-8.4-

When the relatively simple methodsof program checkingfail to revealthe

difficulty, it is necessary to resort to checkingroutines.

AortemRoutines

8.6. Post N

Apostmortem routine is aroutine which prints out thecontents of certain |

specified memory locations after a program hasstopped. This is the simplest type

of checking routinetouse, especially fromthe standpoint of theprogrammer, since

it requires no preparation on the partof the programmer except a record of storage

locations used by the program.

The post.mortem routines C3, C4.and C5,inthe MISTICLibrary,are read

into memorywitha bootstrap inputroutine andare located in storage locations at

the end of memory, overwriting the DOI. | The longest of these occupies locations

986 to 1023, and all use locations 0,1 and2 as temporary storage.

Theend of each of thesepost mortem tapes, contains 100 two-decimal-digit

numbers used to specify the location from which printing will occur. Routines C3

and C4cause decimalfractions, and integers, respectively, to be printedoutof

specified locations. Routine C5 causesorderpairstobe printed.

Examination of the print out from these post mortem routinesyields

information such as whether numbers were properly storedand what addresses have

changed,

Library Routine Cl, which is the post mortem versionof the DOI,. is a very

useful checking routine. It uses locations962- 1023 andlocations 0, 1 and2.

The Cl routine is input; then the original tapeis inserted in the reader. The

routine Cl compares the contents of memory with the contents of the input tape, |

printing out discrepancies in the following format: locationof discrepancy, word.

from tape as an order pair, wordin memory as an orderpair.

Examination of the results of Cl gives such information as whetheraddresses

and constants are changing as expected, whether links, in closedsubroutines are

properly set, numberoftimescertain loops have been executed, etc.

It should be noted that routine Cl restores the original program in MISTIC

as it is executed so the program may be rerun.immediately following the useof Cl

without rereading it.

8.7. The Address Search Routine--LibraryRoutine C6.
A seconduseful type of checkingroutine is theaddress searchroutine,

routine C6inthe MISTICLibrary. This. routine is read into MISTIC, overwriting

the DOI. The addresssought is thenread into the machineasa three -character

sexadecimal address. The routine then searchesthe memoryfor order pairs

containing this address. When found, these order pairsare printed out, together

with theirlocations, all in sexadecimal.

Programs often fail because control has beentransferred toa lo cation which

causes the machine to stop. By use of the routine C6, together with the address

supplied bythe control counter, the sourceof the offending control transfer order

can be located.

‘Another use of routine C6is to locatethe order which causes a numberto be

incorrectly modified.

8.8. Sequence Checking Codés--Library Routines D2 and D3

Sequence checking routines are routines which control a program, order by

order, and print out information aboutthe execution of each order. This enables

the action ofa programto be traced, order byorder. These routines usea

blocking order technique which enables selected parts of a program to be checked.

Becauseof the printinginvolved, these programs are very slowand should not be

used indiscriminately.

RoutineD2 printsin full each order that is obeyed, having one orderpair

per line of printing. After each store or address order, the number transferred to

‘memory is also printed.

Routine D3prints the op code of the orders which are actually obeyed,

starting a new line of printing whenever a control transfer has been obeyed.

8.9. Other Check Routines --Library Routines D1 and D4

‘Library Routine Diisa check point routine. ‘This routine is designed to

‘print out intermediate information about a program in store. It uses a blocking

order principle, and the programmer prepares a specification tape to describe the

kinds of information desired. It is possible to go through iterative loops and print

out results on pas sage through the loops. Data can be obtained as an order pair,

a right-handaddress, a left -hand address, a 10- character sexadecimal word, a

signed 12 decimal place fraction, ora signed three-decimal place fraction.

Routine Dl is very powerful because of the great latitude given the

programmer in choosingthe type and form of information to be obtained.

Library Routine D4 isa control transfer check. This routine causes a

program to be obeyed order by order. Each transfer of control that is obeyed is

placed in a list kept in a specified place. This list is cyclic in that later entries

overwrite the earlier ones in a cyclic fashion. The final list printed out,

therefore, shows howthe program reached its final end. This routine requires

no printing duringexecution and hence is much faster thanthe routines D2 and

D3.

~8,.6-

8.10. Resume of Code Checking Routines

The following tabulation gives the code checking routines in the MISTIC

Library, their general form, and a brief resume of what each routine accomplishes.

C 1--Post Mortem--Prints out discrepancies between original program
and memory contents. |)

C3--Post Mortem --Prints decimal fractions at specified locations in
memory.

C4--Post Mortem--Prints decimalintegers at specified locations in
memory. | |

C5--Post Mortem--Prints order pairs at specified memory locations.

C6--Address wearchieee orders which contain a specified
address.

D1--Check Point---Prints out intermediate. information as specified
by programmer.

D2--Sequence Checking--Prints each order thatis obeyed.

D3--Sequence Checking--Prints op code of each order that is obeyed.

D4--Control Transfer--Prints a list of control transfer orders which

are obeyed.

Table 8.10.1

-~8. 7-

CHAPTER 9

FIXED POINT PROGRAMMING ANDSCALING

Wheneveran arithmetic operation is performed on two numbers, special

attention must be given to the location of the decimal or binary points of the two

original numbers. In addition and subtraction, the decimalpoints of the two —

numbers must be aligned with the decimal point of the sum or difference. For | -

multiplication and divission, alignment is ofcourse no problem, but location of the

decimal point in the result isa problem. In multiplication, the number of places

following thede cimal point is the sumof the number ofplaces following the

decimal pointin the two factors. For division, thedecimal point of the quotient

must be first aligned with the decimal point of the dividend and then moved right as

many places as there were behind the decimal point in the divisor. |

- The above needsare complicated ina computer since there is no decimal or

binary point represented there, and even the sign bits are acceptableas numbers.

The problem of decimal point location is then entirely the programmer's, who.

must anticipate every operation. In some cases it is not entirely possible to keep

accurate knowledge of the decimal‘point: location(such as in linear programming),

So that the‘programmer must usea special form of programming called floating

point programming. Sucha program causes the computer itself to maintain the

decimal point. | More will be said about floating point operation. If, however, the

programmer has anticipated eve ry decimal point change by programming, thenthe

program is called fixed point (even though the point may notremain fixed).

9.1. General Principlesof Scaling

There are five problems connected with fixed point programming which arise

because of the fractional representations used in the MISTIC. Since every number,

N, in the MISTIC is in the range -] < N < 1, then:

1) Every number, Nyinput, to the computer must be in

- the range -1<N <1; |

2) The re sult of every addition or subtraction must be

in that range; — -

3) Quotients must be in the above range;“and

4) The result of a left shift must be in the above range.

The fifth problem is not due to the number representation and in fact is a general

problem for all computers. — - |

5) The programmer must know the location of the binary

point or decimal point at all times.

-9,]-

Problems 1, 2, 3 and 5are- generally disposed of by useof a processcalled

scaling. Suppose a number, N, is in the range 2m } aN< 2°", or in the range

10°" } <N < 10°" forpositive integers m and n. In order to use this number in the

computer, N could be represented by N where

or lay
WN =N-10

respectively. Notice then that 1/2 <N <1 or 1/10 <N <1, Of course there are

other representations for N whichwill fit in the computer, for if N=n-2°™™ will

fit intothe computer, so also will N=N 2 “r where ris greater than m. The

following definition can be used: OO

The machine representation of N with a binary scaling ofm

is a number N=Ne é“M vhere-1<N <1.

| The machinerepresentation ofN witha decimal scaling of m

isa numberN=N- 10 “mm where -1 <WN <1.

Example 9. 1.1. Give a machine representation of 407.98 with a binary

scaling. Since 2° < 407. 98 < 27, some possible machine representations of 407. 98

5 = 407.98x 2°? = . 7968359

407.98x2 . 39841796, etc.

Binary scaling of a large set of numbers becomes tedious since each representation

or

i

must be obtained by dividing by a power of two. As a result, binary scaling is

seldom desirable. It does have the advantage of greater accuracy, as will be seen.

Example 9.1.2. Give a machine representation of 407.98 with a decimal

scaling. Since 102< 407.98 <10°, some possible machine representations are:

= 407.98x 107° = .40798
or | / -4 | a

407-98 = 407.98 x 10°~ = . 040798,etc.
Decimal scaling amounts to shifting the decimal point and does not involve any

actual division.

It is generally desirable to choose the exponent or scale as small as possible.

This is particularly true if one is seeking extreme accuracy in the computed result.

Each increase in scale introduces more insignificant Zeros at the most significant

part of the number, at the same time causing digits to be lost off the least

significant end.

9.26 Arithmetic with Scaled Numbers

If machine representations for two numbers, say a and b, have been

selected as a and b where

-9.2-

then a and Bcan be multiplied to give a
ab=ab° omtn)

As a result of multiplication, the product has a scaling equal to the sum of the

original scales. Similarly for division,

a/b=a/o: 197 (=F)

Care must be exercised in this case, however, that -] < a/b <1.

In the case of an addition, a+b has no useful connection with a + b since the

exponents m and n may be unequal. Assuming this to be the case, and that mis

greater thann, it will be found expedientto choose a new representation fora or b.

Either the exponent n can be increased, or the exponent m can be decreased. If m

is decreased, the new a might become greater than 1. Itis usually safer to increase

n to m, thus giving

| a asa - 107°

b=b- 10°-™ a

anda+b= (a+b): 10°™, The scaling m is satisfactory to this ‘point provided

-1< atb <1: that is, provided -10"™"“< atb < 10°"

Example 9.2.1. Choose machine representations for the numbers a, b, ¢c,

d, e> and f, which will be used to compute

(ab +e)d + ef +b

where _ 2
| 10 <a < 10

10° <b <10°

10<c <10°
10, <4 <107
10°< e <10°

—10°< £<10°
A first approximation to machine representations for these numbersis

provided by

az=a- 107°

Be=eb- 107?

c=c° 107°

d=d-°10

@=e°107“3
3

f =f "10

These representations will not be adequate, for when the machine representation of

ab + c is formed, the decimal points of the summands are not aligned. That is,

ab+0=abx 107° +cx 107%

-9.3-

This difficulty can be avoided by choosing a new machine representation for c, say
_ eB
c=cx10°. Then

ab += (ab+c)x 107°
However, ab +c<10°* 10° + 10° = 10° + 10%, sothat ab + © <1.01, which might
'overflow''. By this is meant that ab + c may not remain in therange - l<tab +c<l.

To avoid the overflow, it is necessary to change the scaling on a or b, and also onc.

For example, the scaling can be changed to B=b-:10°*andt=c- 107°.

Then, the representation of (ab + c)d will be |

(ab +a == (ab+c)dx 107°
while that of ef is

| Cf = efx 107°

In order to add the machine representation of (ab + c)d to that of ef, the

representation of ef needs to be changed to ef = ef x 10 “8 This canbe

accomplished by changing the machine representation of e toe =e x 107. Then,

(ab + Od + ef=[(ab + c)d + ef] x 1078
This machine representation is not in danger °F overtowing since |

(ab + c)d + ef <(10° + 107)10% + 10° = 10” + 107 + 10°
and (ab + Ga + F< (10" + 10% + 10%)10°8 = . 1101

In order to add b to this machine number there are two options: either

represent b by bx 107* and also by bx 107% or divide B= bx 107* by 10* in the

computer. In either case the result is |

(Ab + d+ CF+Bx 10°* = [(ab + c)d + ef + b] x 10
The final machine representations fora, b, c, d, e and f are

-8

azax 10 “4

— | -4
b= bx 10

C=cx i078

d=dx 107¢

é=ex10>

f=fx 107?

This example is a case in which the problem, once scaled, can be programmed

with no further regard for scaling. This is not always the case, however. The

following example illustrates a more complex situation.

Example 9.2.2. Find the positive real rootaccurate to ten decimal places

of f(x) = x ~ x" - l= 0, using the Newton Raphson iteration

- . f(x)

“ntl ~ *n 7 £G)

‘Since f(2) = 3 and f(1) = -1, there is a root between x = landx=2. Fora

-9.4-

first approximation Xo to that root select Xo <= 1.2. The problem thento be

programmedis 3 & “1

“n+1~ ~n

[(2x, -1)x,1%,+]

7 (3x,-2)x,

The root r being soughtis in the range l<r<2, while the first approximation is

XQ == 1.2. This should indicate that i= x,_—4 at each iteration. Evidently, the

machine representation of Xo can be:

x.=-x.-271- .6

The numerator has an upper bound of 13, while the denominator has an upper

boundof 8. This means that the final scaling for the numerator mustbe at least

| 274, while for the denominator it must be2 73, If the routine is enteredwith

x==x"at, notice that the resultof one application of the Newton Raphsonmethod

with this scaling is x 272.
| n+] ~ n+1 -] _ Ly |
In forming.2x-l, ifx =x °2°, then 2x = 2x :2 ~ =x_, and theresult

nn “a n n? |
can overflow. Instead of changing the scaling for x notice that x =X, 2 =

2x °2 ee so that if 1 = 1° 27%. then |

X_-T = (2x_-1)-27%
n n

Next (x -T)x_ = (2x_-1l)-x_: 27?
| n “nN no" "n

TS LT Ke - - lise le 3 27and L(x- I)x,Je, = [(2x,- 1),}, 2

Now if 1 is represented also by T=1: 274, the numerator becomes
- a COFFS. | | | _ , 4-4 — |

L(x,- Dx)e+1 = ([2x_-1)x,jx+1) 2 (9.2.1)

Making use of the two relationships

x =x 271 = 2x 274n n. n

the denominator can be treated as follows.

Let 2 = 2° 2 “é

a. l- 5, -2Then 5 %,-2 = (x,-2)-2
—]— 2 -2 2

and x, + (>x,,-2) = 2x72 + (x, -2)°2 (3x -2)°2

-9.5-

; , ° ae] —- -2 2 | : : a4 8(Notice that xt xX, = 3x2 —, Which can overflow..,Asa result,not evenaddition

is necessarily commutative or associative ina computer.)

Finally, the denominator is given by

(>=,-2) +xas = (3x,-2)x_° 273 (9.ro 2)

The program for the above problem, could be as displayed in Table 9.2.1.

The numerator and denominator are formed usingthe left side of equations 9. 2.i]

and 9. 2.2, respectively. |

The result of this program will be an approximationto the real positive root

of the equation x? 4 x" -l= and this approximationis in the accumulator scaled

by a factor of 27}, a 7

‘In order pairs 4 and 7 in Table 9. 2.1, the multiplication used was a 7J, while
in order pair 8, the multiplication used was a 75. This suggests that a set of (not

necessarily inflexible) rules can bestated for the use of the 7 orders, particularly

the 74, 75 and 7J orders, as follows. | | a |

If asingle length rounded productis desired, usethe 7J order provided no

shifting is needed to obtainthe single length result. If, however, a shift is required

following the multiplication, use the 74 order with alinlocation a4] if an mplace

left shift is to follow the 74. | a |

If a double length product is desired, particularly preceding a divis ion, use

the 75 order.

-9.6-

Table 9.2.1

0) 41 141 O—> 141
50 141, 0—>Q

1) L5 15L xeA

10 IF igea
aon

2) LO 16L 5x -2—eA

L4 15L Iz 245 eA
2n n

3) 40 17L
50 15L ht og

4) 73 17L Rounded multiply: (3x, -2)x,° 2
40 17 Denominator —©17L

(5) L5 15h xeA

LO 18L x-l—=A

6) 40 19L —e 191,
50 «15L xeA |

7) 77 19L (x, -T)k, —=A

40 19L
8) 50 15L

75 19L (E,-T)x“=AQ

9) L4 20L (z,-TN,“ +Tao
66 17L *ir Q

10) S5 F xr CS

LO 15L x -x —©A
| n+l n-

11) 40 19L _ om 19L
L7 19L IXn417*n|A

12) LO 21L = 417*nt -i.j97Pea
| n+l] on 2,

360 -.22L
13) S5 F Root in A
OF F

14) 00F 00F Zero
15) [40 F oe 4

00 100000000005 x, = 1.2x2

16) 40F 00F Z=22x27°
17) [OOF OOF] Working space

18) 20F 00F Telx2* |
19) [OOF OOF] Working space

20) O8F 00F | T=1x274
21) OOF 00503 1/2x 10719
22) S5 F Xap

40 15L —15.
23) 26 L

OF F

~9.7-

_ THE REPERTOIRE OFTHE MISTIC _

It is the purpose of thischapter to presentin detail the description of |

MISTICorders, with explanations about their functions. |

10.1. Order Codes

The control section, as was mentioned previously, provides the computer

with directions, while the control section itself receives its own directions in the

form ofa routine composed of orders or instructions. Each instruction is found —

occupying one-half ofa word location in memory; i.e., instructions are packed two

perword. The instructionis composed of two sections, the ordercode and the

address. - The use to be made of the address depends upon the order code

associated with it.

Eachordercode is an eight bit number, with the first four bits called the

order type and the second four bits called the order variant. This provides 2° or

256 order codes for the MISTIC, all of which cause the MISTIC to perform

operations, some of which may be undesirable fora given program.

10.2. Order Types |

The meaning of each order type is given in Table 10.1.1, where the

sexadecimal repre sentation of the four bit order type is used.

In every order whose execution requires a shift, the shift is a left shift

when the order type is aneven number, and itisa right shift when the order type

is an odd number. In particular, order types 1, 7 and 9 involve right shifts of AQ, |

while order types 0, 6 and 8 involve left shifts of AQ in their execution.

10,3. Order Variants

The order types listed above are further amplified by the order variants —

and the addresses listed with them. The order variant bits are each used to

specify certain modifications of the order. Order variant bits are denoted by v8,

v4, v2 and vl, representing the 2?) 2° 21 and 2° bit positions. The bits vl and

v8 operate with all order types in the same way. If vl = 1, the accumulatoris

cleared before the operation correspondingto the order type is executed. If vl = 0,

the accumulator is not cleared prior to execution of the order corresponding to the

order type. |

If v8 = 1, 1/2 is added to the contents of A prior to the execution of the

rest of the order. If (A) is not zero, an overflow could easily occur when v8 = 1.

-10. l-

To avoid this possibility, the computer has been designed to stop when(A) is not

cleared previous to the addition of the 1/2.

computer stops without executing the order.

That is, when v8= 1 and vl = 0, the

When the computer is again started,

the next order in sequence is executed. This meansthatany order code whose

order variant is 8, K, N or F will cause the computer to stop. No special

indication of the causeof stoppage is made on the operator's panel, other than that

the instruction register contains an operation code withthe order variant 8, K,

 Table 10.1.1

N or F.

Order Meaning of Address
Type Associated with
Digit Function Order Type

0 Left shift AQ as a 79 bit register Numberof places to shift

1 Rightshift AQ as a 79bitregister Number of placesto shift

2 Transfer control unconditionally Address of next order pair to be
executed

3 Conditional control transfer Address of location in memory
from which next order pair may

| be taken

4. Copy the contents of A‘into Address of location in memory
| memory fromwhich to copy

5 Copy the contentsof a memory Address of location in memory
location into Q from which to copy.

6 Divide Address of location in memory
| of divisor |

7 Multiply Address of location in memory
of the multiplicand

8 Four bit character input and Numberof fourbit characters
output input and output

9 Five bit character input and Seethe 9 order type discussion
output which follows |

K Increment add OQ and A The address is arbitraryand

meaningless

S Add Q and A The address is arbitrary and
meaningless 7

N Bank. control order Number of memory bank to be
used

J Logical Product Address of location in memory
containing one factor

F Increment addmemory and A Address of location in memory

containing one summand

L Add Address of location in memory
containing one summand

-10.2-

The ordervariantbits v2 and v4act in'the way displayed in Table10.3.1.

lOrder Type | v2 Effect of v2 va Effect of v4_

Oor 1 None None
2or 3 0 STOP if black switch 0 Select right hand ©

is set toOBEY | order

1 Do notSTOP — {1 Select left hand
order

\4 TQ Store entire word 0

1 Store right hand | 0
address

L Store left hand _ l
address

5or J None | None

[7%Sor L 0 Usesigned number |0 Complement the

Be | number added
into A

1 Use absolutevalue [1 Donotcomplement

of number number added
into A

Input

Output _

Tape

Hang-up

Tape
Cards

Input

Output

Subtract (R>) from

(A)

Add(R°) to A
d Subtract IR?) from |

A

1 Add |(R°)| to A ol

s
o

K or F

o
O

©
Table 10.3.1

Besides the specialmeanings assigned tothe v2 and v4 bits bybeing

associated with a given order type, v2 and v4 usually have the following meanings.

If v2 = 0, the numberin R” is treated as a signed number. If v2 = 1, the
number in R°is usedinitsabsolute value. For example,the orderLO ncauses (n)

to be subtracted from(A), whereas L2 n causes 1 (n) | to be subtracted from(A). ~

If v4 = 0, whenever R° is usedit is used inits complemented (ornegative)

form. If v4= 1, wheneverR” isusedit is usedin its original form. Thus, Ll n.

-10. 3-

causes -(n) to be put intoA, whereasL5On causes (nn) to be put into A.

As a further example, compare the orders L7n, L3 n, Ldn and Lin. L7n,

with v4 = v2 = 1, causes ({n) to be put in A;L3 n, with v4 = 0, v2= 1, causes - (n)

to be putin A; L5n,with v4=1, v2 = 0, causes(n) to be put in A; and finally, Lin,

with v4 = v2 = 0, causes -(n) to be put in A.
However, if no arithmetic is being performed ina given order, these

general meanings of v2 and v4 are not significant. Thus, order types 0, 1, 2, 3, 4,

5, 8, 9 andJdo not involve arithmetic and the general meanings of v2 and v4 do not

apply. However, in order types 6, 7, K, S, F and L the general meaning does

apply. Desirable effects are achievedin theselatter cases except for the 6 order

type whichisa divide order. More will be said about these orders in the

following page Ss.

10.4. The MISTIC Repertoire of Instructions

In Chapter 3, listings of the most commonly used orders under each order

type are given, along with a minimum ofexplanatory discussion. In many cases,

the same results can be obtained by any one of several orders. In such cases, only

one of the several possible orders appears in the listings in Chapter 3.

In this’section, a detailed explanatorydiscussion of each order type is given.

Each such discussion is followed bya complete tableof orders of the given type.

While the material in Chapter 31s adequate for most programming, this

chapter presents a more technical aspect and makes pos sible a somewhat more

sophisticated approach to programming.

Order Type 0--Left Shift and Final Stop

These are orders of the form Ovin where V. is the order variant and nis the

'taddress", which in this case is used to specify the number of shifts to occur.

The count, n, is interpreted modulo 64. |

If n = 0, the computer will stop with the Ov 0 order displayed in the—

instruction register. If not, repeat n times the operation which replaces the

contents

of AQ by. | |

214243---9394) g4243°- 439°

After an n place left shift, aon has been placed inthe position previously :

occupied bya,_, where if m-n is negative, a, has beenshiftedoff the end of A |

and lost. Likewise, dion has been shifted to q nit m-n is positive;.when m-n is

not positive, dn has been moved into the position, formerly occupied by 2394m-n"

-10. 4-

Here again a negative subscript on a, means that the bit has been lost off the end of

A. In every case, q, is notchanged.

00
02.
04.
06
01
03
05
07
09°
os”

OJ
OL
08
OK|
ON
OF

————_—— Left shift AQ nplaces.

Clear A, then left shift AQ n places.

nonClear A, insert 1/2 in A, andthen left shift AQ n places.

The computerwill stop with the orderin the instruction
register. m= S AP

>
pS
A
e

3
Dp
P
e

,
S
S

Order Type 1--Right shift

These are orders of the form Iv n where vis the order variant and nisthe

'Naddress'' which inthis case isused to specify the number of shifts to occur. The

count, n, is interpreted modulo 64.

Ifn= 0, the computer will stop with the lv 0 order displayed inthe —

instruction’register. Ifnot, repeat n timesthe operation which. replaces the

contents

“07 1%2° °° 438739 ©=499192°- 438439
of AQ by

0%0%1°°°%37%38 40%3991- +437938
After ann place right shift, am has been placed in the position previously

occupied by amtn if m+nis not greater than 39, whereas when m+n is greater than

39, aon has been moved into the position previously occupied by qm+n-39° Also,

dan has been shifted to q_m+n if,min is not greater than 39, whereas when min is

greater than 39, danhas been shifted off the right end ofQ andlost. In every case,

do is notchanged.

o - | | 2 Clear A, insert 1/2 in A and
i14 on Right shift AQ n places. iJ oo then right shift AQ n places.

16 on. lL nJ

z | _ ~ | The computer will stop with
id on r—— Clear A andthenright shift INnithe order intheinstruction
1? on AQ places. iF n register.

~10. 5-

OrderType 2--Unconditional Control T ransfer

These are orders of the form2v n where v is the order variant and n is the

address of the next order pair to be put into the instruction register. - By choosing

the variantv in the 2vn order correctly, the right or left-handorder at n will be

executed with an optional stop beforehand. The stop can be ignored by setting the

black switch to IGNORE.

20 n The computer will stop with this order in the instruction
register. The first order after starting the computer
with a black switch start will be the right-hand order at
memory location n. _

22 n Transfer control to the right-hand order at location n.

24 n The computer will stop with this orderinthe instruction
register. The first order after starting the computer
with a blackswitch start will be the left-hand order at
at memory locationn.

2.6 Transfercontrol to the left-hand order at location n.

n
2loen 720 on

23 n , 22 n
25 nl Clear A, then do exactly as in , 54

27 (26 n

29 n (20 n
25 n A. . | . 22 n
27 ont Clear A, insert 1/2 in A, then do exactly asin +54 n

2L, nf} [26 n

28 ni

~ = The computer will stop with the order displayed in the
N n | . ; - _ _ 4
2F on instruction register and will not start with a black

= switch start. |

See page10.17 for starting afterstops.

Order Type 3--Conditional Transfer of Control

These are orders of the form 3v n where v is the order variant and nis the

address from which the next order may be selected.

Ifa, = 0, i.e., if (A) >0, the next order to be executed will be taken from
0

location n.

If ag

By selecting v properly, the next order in the case of ay = O will be the left

= 1, i.e., if (A) <0, the next order is taken in normal sequence.

or right-hand order witha stop before the transfer or not. This stop can be

ignored by setting the black switch to IGNORE.

- 10. 6-

30

31

32

33
34

35

36

37

39

3S

3J .

3L

33°
3K
3N
3F

Ifa, = 0, i.e.,if (A) > 0, the computer will stop with this order in the
instruction register. ‘The first order after starting the computer by a
blackSwitch start will be the right-hand order at memory location n.
Tfa, = 1, the computer does not stop but goes on to the next order in
sequence. |

n Clear A and then the computer will stop with this order in the instruction
register. The first order after starting witha black switch start is the
right-pane. order at locationn.

n ifa,=0, , if (A) 7 0, ‘the next order will be the right--hand order at

- - memory location n.
Ifa, = 1, the computer goes on to the next order in sequence. _

n ClefA and transfer control to the right-hand order at memory location n.
n If ay = 0, i.e., if (A) >0, the computer will stop with this order in the

instruction register. “The first order after starting with a black switch
startwill be the left-hand order at memory location n. | }
Ifa, = 1, the computer does not stop but goes on to the next order in

-.. sequence. , :
n Clear A, then the computer.will stop with this.order in the instruction

: register. The first order after starting witha black switch start will be
the left-nane order-at memorylocation n. |

n Lf ao = 0, i.e., if (A) ? 0, the next order will be the left-hand orderat

memory ‘location n. |

, Ifa, = 1, the computer goes on to the next order in sequence.
n Clear A. The next orderwill be the left-hand order at memory locationn.
n Clear A,insert 1/2 in A, and thenthe computer will stop with this order

in the instruction register. The first order after starting with a black
) switch startwill be the right-hand order at memory location n.
n Clear A and insert 1/2 in A. The next order will be the right-hand order
7 at memorylocation n.
n Clear A, insert i/2 in A, and then the.computer will stop. The next

orderafter starting with a black switch start will bethe left-hand order
at memorylocation n.
Clear A andinsert 1/2 in A. “The next order.will be the‘left-hand order

mS

S
O

at memory location n.

The computer will stop with the order inthe instruction register and will
not start with a black switch start. a

(
P
B
S

Summary

Stop orders restarted by black switch 2. Non-stop orders.
a. Left-hand orders a. Left-handorders

24 n 34 n | 26 n 36n
25n 35n 27 n 37 n
 2Fn 33 n a 2Ln 3Ln

b. Right-hand orders b. Right-hand orders
: 20 n 30 n | 22n 32n

2Zln. 31 n | | 23 on 33 n

29 n 39 n ~ | 25 n 385 n-

See page 10.17 for starting after stops.

-10. 7-

Order Type 4--Store the Contents of A

These are orders of the form 4v n wherevis the order variant and n is the

addressof the location inmemoryall of which is cleared and into which (A)is

copied, or part of which is cleared and into which the corresponding part of (A) is

copied, ‘depending uponthedigit v. As the result of a 4v orderwith even order

variant digit, the contents of A areleftunchanged. In the descriptions below, 2“10

and 2 ~30 shouldbereplaced by 2 -8and 2 “280respectively whenreferring to the

core memory.

40 n —Copy(A) into memory locationn.
44 nn

41 mn]Clear A, then copy (A) into memory location n. This order sets (A) and
45 ni](inn) to zero. | |
42 n Copy the right-hand address part of (A) intothe right--hand address part

_ of memory location n. Theonly bit positions affected are 27 £2739,
43 n ClearA,thencopy the right-hand addresspart of (A) into the right-hand

address part of memorylocation n.- ‘This order clears A-and sets bit
positions 2-30. .2739 inn to zero.

46 n Copy the left-hand address part of (A) into the left-hand address part of
memorylocation n. The onlybit positions affected are 2-!9... 2-19.

47n ClearA, then copy the left-hand address partof (A) into the left-hand
a address partoff memery location n..This order clears A and sets bit
a positions 27 .2719 innto zero. |

49 n Clear A, insert.‘1/2 in A, and then copy (A) into memory location n. This
4J n order sets(A)and(n) to 1/2. |
4S n Clear A, insert 1/2 in A, and then copy the right--hand address part of

(A) into the left-handaddresspart ofmemgty location n. This order sets
(A) to1/2and setsbit positions 2°~" .2 ~*’ in memorylocation n to zero.

4L n Clear A, insert 1/2 in A, and then copy the left-hand address part of(A)
into the left-hand address part of memory location n. This order sets (A)
to 1/2 and sets bit positions 2710 2- in memory location n to zero. ©

48 n

in . -The computerwill stop with the order inthe instruction register.

n4F

Order Type 5--Load Q from Memory

These are orders of the form DV n where vy is the order variant and n is the

address of a memory location, the contents of which are/ copied into Q. The contents

of Location |nare left unchanged by these orde rs.

|50 ond oO 59

n
52 on a ra 5S on Clear A, insert 1/2 in A,
54 n {COPY (9) into Q. 5J_n [then copy (n) into Q.

n| lm on

° - ~ . | The computerwill stop with
55 On Clear A and copy (n) into Q. BN on the order in the instruction
57 On SF on] register.

-10. 8-

Order Type 6- -Divide

These are orders of the form 6v n where v is the order variant and nis the

address of a word in memoryusedasthe divisor. The divide instruction divides.

the contents of AQ by the contents ofn, ‘leaving a quotient in Q and a "remainder'!

in A. The quotient is always a rounded quotient, the rounding being accomplished

by setting 139to 1. | | |

_ The computer will stop after dividing if |(AI > |(nyl, or if |(A)] = [(n)] and

(A) >0.
An unrounded quotient can be obtained if it is possible to left shiftAQ one

place prior to division. Then after division, right shift AQ one place. The bit in :

239 is a zero due to the left shift, so that Qis not affected by the right shift.

The divide order has been made soas to make 66 n work correctly. Asa

result, most of the other 6vn orders have little usefulness. The 66, 67 and 6L

orders arelisted here, followed by a general discussion of the 6v orders.

66 n Divide (AQ) by (n), leaving 2a rounded quotient inQ anda remainder in A.

67 on Clear A and then divide (AQ) by (n), leaving a rounded quotient in Q and a

remainder in A. | a ; oe

6L on Clear A, insert 1/2 in A, then divide (AQ) by (n), leaving a rounded
quotient in Q and a remainder in A.

The divide order.in MISTIC. The 66 order operates inthe following way.

The divisor is sent to R° The sign of the dividend and the sign of the divisor are

compared. If they agree, the complement gate is set to subtract throughout the

division. if they do not agree, the complement gate is set to add throughout the

division. -

A temporary partial remainder (TPR) is formed by adding the divisor to or

subtracting it from the quantity in A, according to the setting of the complement

gate.

If the sign of the TPR agrees with the sign of the dividend, the TPR will be

left in A. If not, the previous contents of A will be restored to A.

| Lf the sign of the TPR agrees with the sign of the divisor, a lis sent to

1393 if they do not agree, a 0 is sent to G39: Then AQ is left shifted one place and

another subtraction takes place. This is done 40 times. The sign in do is the first

quotientdigit.

In general, however, the division depends on the following quantities:

A--the sign bit of the dividend. Here A = 0 means +,
| A = 1 means -.

B--the sign bit of the divisor

-10.9-

D--the v4 bit
E--the v2 bit

F--the sign bit of the TPR
U--thesetting of the complement gate

If U = 0, the complement gate is set to add, and

if U = 1, the complement gate is set to subtract.

W--If & = 0, restore to A the contents of A prior to

forming ofaTPR © |
If& = 1, do not restore.

d39~~the last bit of Q

U, Oe and d3q are functions of A, B, D, E and F given by the following

Boolean equation: _

| U== ABE + BDE + ABD + ADE

| @ = BE(ADUF + ADU F)
+ EB(ADU F+ ADUF)

and d39= BF +BF

Thus, 439 is always selected in the same manner, regardless of the variant digit of

‘the order (since 439 doesnot depend upon D and E). The setting of the complement

gate and the decisionabout restoring (A), however, depend upon D and E and,

therefore, change depending upon the variant digit. The formulas for U and for

each of the variant digits are presented here.

60 and 61 U=1,@=F

62 and 63 U=B,@=F

64 and 65 U=A,@®=AF+4+AF

66 and 67 U=AB+AB,@=AKF+ AF

69 U=1,@%=F

6S U=B,@=F

63 U=A,@=ARF+AF

6L U=-AB+AB,@=-AF+AF

Order Type 7--Multiply

These are orders of the form 7v n where v is the order variant and n is the

address of a location in memory which contains the multiplier. These orders form

x (Q)(n) + (A) > 39or +(Q) I(n)| + 39 |in AQ, the least significant 39 bits

being in Q with dg = 0.

The orders can be considered to form the product (Q)(n) in AQfollowed by

adding the original contents of A (as it wasjust before the multiplication) into Q.

The orders 79 n, 7J nand 7L n are rounded multiplications since (A) =1/2

-39 ,-40 -40
in each case so that (A) x 2 2 . But 2 added to AQ is a 1 added to the

-10. 10-

qd) position. If q)= l initially,the effect ofadding2 ~40 is to increase 39 by l. If

qj) =0 initially, there is no effect on A in adding 2“20 to AQ.

If it is desired to form a product followed by¢a left shift of n places and then
-~n-]

to round to a the initial contents of A should be 2 ; and the multiplication
39’

order should be one of70 n, 72 n, 74n or 76 n.

-39
70 on Form-(n)(Q) + (A}x 2 in AQ

71 on Clear A and then form -(n)(Q) in AQ

72 =n Form- {(n)|(Q) + (A) x 2 7°? in AQ

73 on Clear A andthen form = [(n)| (Q) in AQ

74 on Form (n)(Q) + (A) x 27>? inAQ”
75 on Clear A and then formtye) in AQ

76 n Form |(n)| (Q) + (A) x -39 ;in AQ

77 on Clear A and then form [(n)| (Q) in AQ

79 on Clear Agsinsert 1/2 in A and then form - (n}(Q) +

(A) x 2 | |
7S on Clear Axginsert 1/2 in A andthen form - I(n)| (Q) +

a (A) x 2°>°7 in AQ. This is a rounded multiplication.

“J on Clear An.insert 1/2 in A and then form (n)(Q) to
(A) x 2 in AQ. This is a‘commonly used rounded
multiplication. . . , |

7TLon Clear A, insert 1/2 in A, then form |(n)|(Q) +
(A) x 27 9 in AQ.Thisis a rounded multiplication.

18 oe
7K The computer will stop with the order in the
TN instruction register.

(E

-10. 11-

Order Type 8--FourHole Tape Input-Output

_ These are orders of the form By n where v is the order variant and n has the

meanings given below. These orde rs transfer only four hole characters to the A

register and tape. The input orders caus e all characterswith a perforated fifth -

hole to be bypassed and thetape will advance until the appropriate number of four

hole characters has been input. | / |

Basic input step. Reduce the address n ton! where n'=n (modulo 64) and

O<n'< 64. Let

ae q tz where 0< r<4

Perform the following operation «q times.

Left shift AQ four places. Transfer the four hole character being read from

tape to 236237239439: (This input isa "logical or'' type; however, those four bits

are cleared prior to input.)

Then left shift AQ r places. However, Q does not shift into A butrather

performs anend off shift. |

If.n'< 4, no input takes place, but A and Q each shift left n' places, but Q

does not shift into A. This is a means of obtaining a 1, 2 or 3 place shift of A

without shifting Q into A.

If n' = 0, the computer we stop.

Basic outputste Let =qt as before. Do the following g times.p: a q z 8

Punchon tape thefour hole character corresponding to Apa 14543.

Left shift four places. Then if r # 0, punch on tape the four hole character

corresponding to Aga |452, and left shift AQ r places. If r= 0, stop after punching

out the q characters. Q always shifts into A for output orders which do not stop

the computer. Ifn'=0, the computer will stop. If 0O<n'< 4, one character is

output corresponding to Aga)a7a2 and an n' place left shift follows, Q shiftingintoA.

80 n Perform the basic input step. 8J n Clear A, insert 1/2 in A, then

8l n Clear A, then performthe basic left shift A and Q one place, but

input step. Q does not shift into A. Then the
89 n Clear A, insert 1/2 in A, then computer will stop.

perform the basic inputstep. 86 n The computer will stop.
82 n Perform the basic output step. 87 n Clear A, then the computer will
83 n Clear A, then perform the basic stop. a |

output step. _ 8L n Clear A, insert 1/2 in A. Then
8S n Clear A, insert 1/2 in A, then the computer will stop.

perform the basic output step. 88 n . _,
84 n Left shift A and Q one place, 8K n ses compet an ene with fe

but Q does not shift into A. BN nf CPOE EE ANS EDC MOR BEBISTCL.
nThen the computer will stop. 8F

85 n Clear A, then left shift A and Q |

one place, but Q does not shift
into A. Then the computer will
stop.

- 10. l2-

Order Type 9--Five Hole andCard Input-Output

These ordersareof the form9v n and are concerned with reading and

punching alphanumeric information and punchedcards. Whether tape orcards are

used is determined by the variant bit v4. _ Thatis, if v4= 0, tape will be read or .

punchedwhile if v4 = 1, cards will be reador punched.

Basic tape input step. Reduce n to n' where nis n (modulo 64) and

O<n! < 64. Let a= q + >q whereO<r<4. Do the following qtimes:

Right shift AQfourplaces (bypassing do)- Insert the four least significant

bits of the character being input into a36a37238 azq and inse rt the mostsignificant

bit into A:

‘Then right shift AQ rplaces. ‘Tfq=Bs0) initially, i.e., ifn'< 4, there is no

input. If n'= 0, the computer will stop. a _ 7

These inputs are of the "logical or'! type. That is, if there is a one in any

ofa or in the four pits being read, then in the corresponding place in A
36°37° 38°39 —

will be a one.

Basic tape outputstep. ‘Let n==NpnpPeMangnen627MNg in binary. Punch on

the tape acharacter whose fifth hole 18 Ng, and whose remaining four holes are ©

Nonnon3 in that order;and punch that character nyn5npn, times if both Ng and Ng

are zero andngmengnstl times otherwise; right shiftAO nynpngnnen times.

One formula which willgive n is

n= 64a+ 4b+c- 2

where a is the four hole characterto be punched, b is the numberof times to punch

the character,cis the fifth hole, and 4b+c - 2 is ‘the number of right shifts of AQ.

If n'=n,n-n,n non the computer willstop. |
4°5° 67° 8°97 ae coe So |
Basic card input step. For this order, n must be zero. The 80 columns of

a card row will then be read into the 80 bits of AQ, the exact location being

dependent on the plugboard wiring, thus allowing columns tobe read into AQ in

whatever order desired. One row ata time is read anda check circuitin the

computer precludes a card row going by without.being read. Ifthis should happen,

the computer will hangup on ‘the succeeding card read order. ‘Since the first read

order initiates a card cycle and all twelve rows will pass the reading station, read

orders must occur in groups of 12 withina ‘specified time, i.e., with less than8. 7

milliseconds between read orders. Additionalinformation concerning card handling

is included in Chapters 13 and 14.

Basic cardoutputstep. Here also nmust be zero. When the punch order.

occurs, the contents of AQ are punched in the 80 columns of a card row, theexact

column depending on the plugboard wiring. Again, the first punch order initiates

a card cycle andalltwelve rows must be punched within a specified time, i.e.,

with less than 17.4 milliseconds between rows. Further discussion of the card

punching procedure is included in Chapters 13 and 14.

Perform the basic tape input step.
90

n |
91 on Clear A, perform the basic tape input step. | Oo tape input
99 n Clear A, insert 1/2 in A, perform the basic tape input step_}
92 on Perform the basic tape output step.
93 on Clear A, perform the basic tape output step. | tape output
9S on Clear A, insert 1/2 in A, perform the basic tapeoutput step. . oe
94 n Perform the basic card input step. | |

95 n Clear A, perform the basic card input step. card input
9FT on Clear A, insert 1/2 in A, perform the basic card input step.
96 n Perform the basic card output step. oo a
97 n Clear A, perform the basic card output step. © | card output
9L on Clear A, insert 1/2 in A, perform the basic card output step. "
98 n - | | | |

on - 2 The computer will stop with the order in the instruction register.

9F ny}
Order Type K--Increment Add from Q

These are orders of the form Kvn where vis the order variant and nis

39), It

-39

meaningless and can be any address. These orders make use of + [(Q) +2

is to be noticed that -(Q)- 273? |

which is the one's complement of (Q). (Q) is left unchanged.

KO n Add -(Q) - 27?” to (A). 30
Kl n- Clear A and add -(Q) - 2
. complement of Q in A. 39
K2 n If (Q) > 0, add -(Q)-239, to (A).

If (Q) < 0, add (Q) + 0 (A). _39
K3 n Clear A. If (Q)2> 0, add 4}. 2

f (Q)< 0, add (Q) + 2°°7 to (A).
K4 n Add (Q) +2739 to (A). 3900
K5 n Clear A and add (Q) + 2 ~” to (A).
K6 n If (Q) > 0, add (Q) + 27°23foo (A).

«Tf (Q) <0, add -(Q) - 2 to (A).
K7 n Clear A. If (Q) >0, add (Q) + 2-39 to(A).

is represented in the computer by 2 - (9) - 2

to (A). This orderputs the one's

to (A).

If (Q) <0, add -(Q) - 2-39 to (A). 7 39
K9 n . £Clear A, insert 1/2 inA, then add -(Q) - 2 to (A).

KS n Clear A, insert 1/2 in A. If (Q)>0, add -(Q” - 2-37 to (A).
If (Q) <0, add (Q) + 2729to(A).

KJ n Clear A, insert 1/2 in A. teu add (Q) +2. to (A).
KL n Clear A, insert 1/2 in A. If (Q) 7 0, add a+ 2739 to (A).

If (Q) <0, add -(Q) - 273? to(A)
K8 n

a The computer will stop with the order in the instruction register.

KF on.

-10. 14-

OrderType S--Add from Q

Theseare orders of the form Svn where v is the order variant and n is

meaningless and can be any address. Thecontents of Q are left unchanged.

SO
Sl
S2
53
S4
S5-
S6-
of
So

Ss

SL
S8
Sk
SN
SF

D
P
S
S

B
H
E
S
S

SP
BS

3
B

Subtract (Q) from(A).
‘ClearA andsubtract (Q) from (A). This orderputs -(Q) into A.
Subtract {(Q)| fromA. |

Clear Aane subtract |(Q)|from A. ‘This order puts - |1(Q)| into A.
Add (Q) to (A). | a
Clear A and add(Q) to(A). ‘This order puts (OQ) into A.

_ Add |(Q)| to (A).
ClearA and add |(Q)| to (A). This order puts [(Q)| into A. a
Clear A and insert 1/2 in A. Thensubtract (Q) from (A). This order
forms1/2- (QQ)inA. ee Oo
Clear A and insert 1/2 inA. Then subtract [(Q)| from (A). This order
puts 1/2 - |(Q)| into A. a oo
ClearA and insert 1/2 in A. Then add(Q) to (A). This order puts a2+
(Q) into A. | a —
Clear A andinsert 1/2.inA. Then add |(Q)| to(A). This order puts 1/2
+ |(Q)| into A.

The computer will stop with the order inthe instructionregister.

‘Order TypeJ--Logical ProductorExtract

These are orders of the form Jv nwhere v is the order variant and n is the

address of a word in memory. If two correspondingbits of (n) and(Q) are bothI's,

putal into that place in Q. Otherwise, puta 0 in that place inQ. This order gives

the bit-wise logical product of (Q) and (n).

JO.
J2-

J4
JO
Jl

J3-
J5_
J7
Jo
JS
JJ
JL
Ja
JK
JN
JF

J
P
B
B
P

B
S
B
,

 BBB B
D
1

Bo
o

Form thebit-wiselogical product of (Q) and (n) in Q.

|Clear A, then form thebit-wise logical product of (Q) and (n) in Q.

Clear A, insert 1/2in A, and thenform the bit-wise logical productof
(QQ) and (n) in Q.

The computer will stop with the order in the instruction register.

-10. 15-

Order Type N--Bank Control Order

Orders of the form Nv n wherevis: the order variant are used to change the

bank number (0, I, 2, 3) from which ensuing orders and operands will be taken.

The bank which is to be usedisdeterminedby thelast two bits of the address n.

NO n Go to the next order in sequence.
Ni on Clear A. Go to the next order in sequence.

N2 n Changethe bank numberfromwhich operands are coming to that indicated
bythe last two bits of n.

N3 n Clear A. Change the bank number from which operands are coming to
that indicated by the last two bitsof n.

N4 n Change the bank number from which orders are“comingto that indicated
by the last two bits of n. ©

N5 n Clear A. Change the bank number from which orders are coming to that
indicated bythelast two bits of n. |

N6 n Change the bank numberrsfor both orders and ope rands to that indicated
by the last twobits of n

N? on Clear A. Change the bank numbersfor both orders and operands to that
: indicated by the last two bits of n. ©

N9 n Clear A, insert 1/2 in A. Go to the next order in sequence.
NS n Clear A, insert 1/2 in A. Change the bank number from which operands

are coming to that indicated by the last two bits of n.
NJ n Clear A, insert 1/2 in A. Change the bank number from which orders are

comingto that indicated by the last two bits of n. |
NL n ‘Clear A, insert 1/2 in A. Change the bank numbers for both orders and

| operands to that indicated by the last twobits of n.
N8 n | ,
NK n ; _. . . ; .
NN n The computer will stop with the order in the instruction register.

NF n

Order Type F--IncrementAdd andSpecially Used Stop

These are orders of the form Fv nwhere Vv is the order variant and nis the

address of a word in memory. These orders make use of +1 ((n) + 2 “39 It is to be

noticed that -(n) - 2 “39 |is the one's complement of (n).

FO n_ Add -(n)- 2-39 to (A). -F9 n ClearA and insert 1/2 in A. Then
Flon Clear A, then add -(n)-2739to .~=add =(n)j- 2-39 to (A).

(A). FS n Clear A and insert 1/2 in A. If |
F2 n_ If (n) > 0, add -(n)-2739 to (A). (n) > 0, add -(n)-272? to (A). If

If (n) < 0, add (n)+2739 to (A). (n) < 0, add (n)+27>? to (A).
F3 n Clear A. If (n)>0, add (n)-2-39 FJ n Clear #aand insert 1/2 in A. Add

‘to (A). If (n) <0, add (n)+2739 (n)+27?9 to (A).
to (A). FLn Clear A and insert_1/2 in A. If -

F4 n Add (n)+2739 to(A). - (n) > 0, add (n)+2739 to (A). If |
F5 n Clear’A, thenadd(n)+2737 to (A). = (n) < 0, add -(n)-2739 to (A).

This order is useful for F8 n ; | ,
increasing a re-hand ann FK on The computer will stop with the

5230, order in the instruction register.
F6 n_ If (n)> 0, add (A). FN n The FF der ; dfr +

If (n)< 0, addin)-2-394to (A). FF on} oe eee eee pen eey
to give an indication of why the
computer stopped. The address, n,
is assigned meanings by the
programmer. Then when this stop
occurs with a specific address, the
programmer can determine the
cause of the stop.

F7 n Clear A. If (n)> 0, add (n)+2-3
to (A). If (n) <0, add -(n)-cd
to (A).

-10. 16-

Order Type L--Add

_ These are orders of the form Lv n where v is the order variant andnis the

address ofa word in memory. Either + (n) or4 |(n)| is addedto (A). The contents

of n are left unchanged.

Subtract (n) from (A).LO n-
Lion Clear A and subtract (n) from (A). This order puts -(n) into A.
L2 on Subtract |(n)| from(A). a Oe oo
L3 on Clear A and subtract Layfrom(A). Thisorderputs - |{n)| into A.

L4 n Add (n) to (A).
L5 n Clear A and add {n) to (A). This order puts (n)into A.

L6 on Add |(n)| to (A).
Lv?’ on Clear A and add |(n)] to (A).
L9 on Clear A and insert 1/2 in A. Thensubtract (n) from (A). This order

puts 1/2-(n) into A. a a a
LS n Clear A and insert 1/2 in A. Then subtract |(n)| from (A). This order

puts 1/2- |(n)! into A. © |
LJ on Clear A and insert 1/2 in A. Then add (n) to (A). This order puts V2 +

(n) into A. a
LL n Clear 7 and insert 1/2 in A. Then add |(n) / to (A). This order puts

1/2 + |(n)f into A.
L8 on

_~ . +— The computer will stop with the orderin the instruction register.

LF n

10.5. Starting After Stops

There are two kinds of stops in the MISTIC: those which the black switch

can restart and those which the black switch cannot restart. The orders which

cause the computer to stop which allow the computer to be restarted by the black

switch are 20, 21, 24, 25, 29, 23, 30, 31, 34, 35, 39 and 3J. The orders which

cause a stop not restartable by the black switch are all orders with order variant

8, K, N or F; orders with ordertype 0, 1, 8or 9 and an address congruent to zero

modulo 64; orders 84, 85, 86, 87, 8J, 8Lor 9J.

10.6. Starting After a Stop Transfer of Control

When the computer has stopped becauseofone of the above listed stop

transfers of control, it is usually restarted by moving the black switch to START.

from which it automatically returns to OBEY. The stopoccurs before the entire

transfer order has been executed. If the black switch is set to IGNORE, the stop

will not occur.

10.7. Starting by the White Switch

When the computer has stopped due to any of the orders listed above, it can

be restarted by moving the white switch to FETCH (which advances the left-right

count to the next order in sequence), then down to EXECUTE and RUN. If the stop

-10.17-

was a left-hand order, the next order obeyed will be in the right-hand position of

that order pair. If the stop was a right-hand order, the next orderobeyed will be

the left-hand order from the next order pair. Transfer of control orders are

ignored with one exception. If the stop was caused by a right-hand order whichis

one of the control transfer orders restartable by the black switch, and which

transfers control to the right side of an order, then the next order obeyed upon

setting the white switch to FETCH, EXECUTE and RUN will be the right-hand

order of the next order pairinstead of the left-hand order. It should be observed

that 28 and 38 are not restarted by the black switch,so that this exception doesnot

apply. For example, when the stop occurs at the right side of location n in the

following example, control is sentto the right side of m by the black switch start.

but to the right side of n+l by a white switch start.

n) —_

20m
n+l) ---

10.8. Another Use of the White SwitchStart

Lf it is desired after any stop to transfer control to some arbitrary location,

n, a tape with 26n 00 000 or 22n 00 000, all in sexadecimal, should be inserted in

the reader and a bootstrap start given. By a bootstrap start is meant setting the

instruction register to 80 028 40 000 and the control counter to 000.

-10.18-

CHAPTER 11

ARITHMETIC IN THE MISTIC

Computers generallypresent a compromise between what is mathematically

desirable and whatis feasible engineering--wise. Asa result, certain features ofa

computer may seem peculiar. This chapter will try to explain the peculiarities of

the MISTIC.

11.1. Number Representation

Every word in the MISTIC is forty bits long with the first bit being a sign bit

and the next thirty-nine being the repre sentation of a fraction. If the bits are

denoted KX1X-- X39: then X is the sign bit and a binary point is assumedto lie.

between Xo and x To accommodate negative numbers without providing special
lo

handlingfor the sign, the MISTIC uses a 2's complement system. Asa result, a

numberin the MISTIC format represents

39

“Xo +2a x 2
~TL

This implies that all numbersx representedinthe MISTIC must lie in the range

-1< x <1. Any number manufactured by the computer outside that.range is said

to overflow.

11.2. The MISTIC Arithmetic Unit

Q

y

— A — Q
ADDER | # |

Output Input | From memory

|
To memory R?

COMPLEMENT ke.

From memory
 CIRCUIT

I Figure 11.2.1
U .

-ll.1l-

A is called the accumulator and Q, the quotient register. A is the temporary

accumulator and Q, the temporary quotient register.

A can transfer straight up to A (no shift), and Q, straight up toQ. OQ

transfers down to Q either with a left shift of one place ora right shift of one place.

A can shift straight downor with a one place left or right shift. |

| The complement circuit is set to complement ifU = 1 (v4= 0) and itis set

to non-complement ifU =0 (v4 = 1).

Each of the above registers performs certain functions in the various |

operations of which the computer is capable.

Il.3. Addition

An addition is called for by the order type L with an order variant whose v4

bitis 1. Whenan Ly n order is given, the state of v4 is sensed. If v4is 1, the

complement circuit is set to add (i.e., U=0). Then the number in memory

location n is copied into R°, and is sent from there to the adder through the

complement gate. Likewise, the number in A is sent to the adder, and the result

is placedin A, then in A.

11.4. Subtraction

A subtraction is called for byan L order type with an order variant in which

v4 =0. In this case, the complement circuit is set to subtract (U == 1). Then the |

restof the operation is the sameas the addition.

11.5. Multiplication

Initially, the multiplier y lies in Q while the multiplicandx is copied from

memory location to R?. The multiplication is then a series of additions and right

shifts with a partial product left in Aat the end of each step, as fosowss

The bit in 139 is sensed. If G39 = 1, the sum of (A) and (R™>) is sent to A.

if 439 == 0, (A) is sent to A. Then in either case A is sent down with a right shift

to A, the right most bit of A being sent to dy): and the rest of Q shifting right one

place. This process is done 39 times.

If the ith partial product formed in Aat the end of the ith iteration is

denoted by P;: i= O, 1, ..., 39 where Po is the initial content of A, then

_lay
Pi4, ~ 3 NPY Y39-i*

Then if i = 38, d

P39" 7 'P3g + ¥) *)

and prgzty.xtsp + ¥5x)39 271] 2* 37 2

—— 39
-39 -n

P39 = ¢ Po t¥2_ Vy?
n=

Since yY=-Yot> ~ V2.

-as showninSection 11.1, then

-39= 2 Po + ¥(¥gt y) (11.5.1)| P39
The correct result in multiplying x by y should, of course, be xy. This is the

result obtained in equation 11.45.1 provided Yo == 0, i.e., ‘providedyis non-

negative. If, however, Yo =] (when. yis negative), then equation 1]. 5.1lisin

excess of xy by XYQ- In this case, the control circuitry is made to subtract out the

XVQ:

ll. 6. Division (66)

The divide algorithmforthe MISTIC is designed so as to make the 66, 67,

and6L orders produce correct quotients. Asa result, the other 6v orders produce

predictable but generally useless results.. Thissection will present the divide

algorithm for the 6v order withv4 = v2 = 1.

-. The method.used is thesameaslong division atleast in the case when the

dividend and divisor are positive. In that case the divisoris subtracted from the

dividend. If the resultis non=ne gative, a quotient digitof 1 is produced ; if not, 7

a quotient digit of 0 is produced. Then,if the difference is negative, the dividend

is restored to its previous value. In either case, the dividend shifts left one place

and the process is repeated. A total of 40 shifts takes place.

The dividend occupies AQ and the divisor, R?. The quotient digits are

formed in Q. Each left shift sends qj into do and into 239: thus leaving a sign bit

in dg: A remainder of sorts is found in A.

The precise algorithm for 6v n with v4 = 1 and v2 = 1 will be given after

some definitions are made.

Let the dividend in AQbe called ro with a sign bit Po: The divisor in R°

is called y with a sign bit Yo: The partial remainder in AQ after the division

starts is called rh at the nth step. Then,

1} Compare Yo and Po:

If Yo = Po: set the complement circuit to subtract throughout the division. If

Yo £ Po set the complement circuit to add. Define

(-1)PotYo (11.6.1)

Do the following 40 times:

2) Forma tentativepartial remainder sy withsign bit tby

"n * *n © vy oo ee - (11.6.2)

-1l1.3-

3) If t= Po: send s_, to A from the adder.If t# Po: send rh to A from A.

Notice that ty Z Po:

4) If*. = Yo: send 1 to I39 (the last bit ofOD). If th f Yo: send 0 to 139: The

- quotient bit thus formed is called q_ and

-l,. Yott,q,=2 [1+ (=1) 7 (11. 6. 3)
5) Send (A)and (0) to AQ with a one place left shift. Now the new partial

remainder in A is —

A | Potty gaTaye try7+ “ly (11.6.4)
6) Set d39 to 1 and go to step 2.

Using equation (11.6.4) with n = 38, it follows that

38
_ _ Py te _

2739n =e -oy[(1-273% 4274-1) OD (ey B27 (1.6.5)

The quotient which is being formed a bit at a time is

38 — 38

q=-do4 > g277427392 -2qn+ > q.-277427°7 (11. 6.6)

The quantity in Q is the quotient of To/¥ according to the formula

ro s_. a
0 39 -39— =qt “2 11.6.7

This will be proved by showing that

(9-4) 23? - S. (11.6. 8)
39

It is true that |

_ 38 — V¥qtt.)
(ry -ay):277=2°72,-2°7y[-2q42°74) 2the1% he(11.6.

0
Since to#Pg ; then

Yot*o Yo*Po
qg=27[L4(-1)] =27"[1-(-1) 0 j=2 741- o-) (11.6.

Then using this in equation (11.6.9), it follows that

(ry-qy)2°%2°7rTon-2°*yforr27*(-1) ° Ya (11.6.

or . ——

0 o7n
(Ty-ay)" 3, an-2°’ey[(1- 2° 7) 427 Ye)-1)" (11.6.

Hence, 39 _ | |

(ro - qy)°2 I 3g -6Y = 83g (11.6.

~11.4-

9)

10)

11)

12)

13)

11.7. The General Case of Division

The algorithm for the 66 division is replaced in the general case by a

different one which is presented here. The quotient obtained is a Boolean function

of the signs of the dividend and divisor, the v4 and v2bits of the order variant and

of the complement gate setting, U, and finally of the sign ofthe tentative partial

remainder.

Let:

denote the sign bit of the dividend.

denote the sign bit of the divisor.

denote the v4 bit.

denote the v2 bit.

denote the sign bit of the tentative partial remainder.

GCG
i
H
U
w
W
w

Pp

denote the setting of the complement gate.

If U = 0, the gate is set to add, and
if U = 1, the gate is set to subtract.

O& indicate whether the tentative partial remainder is sent from the

adder A (@ = 1) or whether (A) is sent to A (& = QO).

The setting of the complement gate is given by the equation

U = ABE + BDE + ABD+ ADE. (11.7.1)
Then 139 is set toa l ora O after the formation of a tentative partial remainder

according to the following equation:

d39>BF+ BF (11.7.2)

Finally, @ is given by

® = BE(ADUF + AD U F) + EB(ADUF + ADUF) (11.7.3)

It can be noticed that d39 is independent of v4 and v2.

~11.5-

CHAPTER 12

TAPE AND CARD PREPARATION

Most of the information that is to be transmitted to or from MISTIC is

handled on either punched tape or‘punched cards. The purpose of this chapteris to

outline the procedures for preparing:cardsandtapefor MISTIC useand for printing

results from the computer.

12.1. Cards

Inorder to process punchedcards on MISTIC, anIBM 528Reproducer has

been installed. The528provides for either reading orpunching cards under

‘control of the computer andtherefore any card-handling procedure is carried out by

means of a program. Seve ral subroutines have been writtenfor handlingcards and

are part ofthe MISTICLibrary.

No other card equipment is maintainedbythe Computer Laboratory; however,

upon request, any services such askey-punching, tabulating, etc. , will be handled

bythe ResearchDivision: of theTabulating Department, locatedon the fifth floor of

the Electrical Engineering Building.

Information regardingthe use of punched cards is containedin Chapte r ‘14,

Card users should refer both to this chapter andto the card subroutines in the

MISTICLibrary. Thelatter are available upon request throughthe Computer

Laboratoryoffice.

Anyone contemplating use of cardsin conjunction with MISTICwould be well

advised to examine these programs and/or discuss the problem with someoneonthe

MISTIC staff, as correct organization ofthe problem originally can provide much

cheaperandfastercomputation in many cases.

12.2. CareinHandling Cards

When usingpunched cards, some care should be exercised in handling them.

In particular, they shouldbe kept dryto prevent swelling and the edges should be

kept free frommutilation. To assist the ComputerLaboratory staff in handling

cards, they should be submitted in a suitable box, free of rubber bands ; paper

clips, etc.

12.3. Tape
Afirst step in using punched tape is to learn to ''read'' the tape. MISTIC

equipment uses a "5 level! or "5 hole" tape; that is, there arefive‘positions

across the width of the tape which can be punched torepresent symbols. In

-12.1-

addition to these five positions, there is a sixthandsmaller position nearthecenter

of the tape which is always punched. This isa sprocket hole or feed hole andis used

by the readers to advance the tape.

Each combination of thefive holes that is punched dete rmines a particular

character. Figure 12. 1 shows the code used by the MISTIC. Of particular interest

are the code combinationsfor the sexadecimal digits andfor the format control

characters.

In normal operation,the computer will accept only characters (frame s)

which do not have the fifth holepunched. Only under control of 91 orde rs will "5th

hole" characters be accepted.

For MISTIC purposes, it isuseful to designatethe holeson the tape as the

"] Mo QT Ate, "8" and Nth" holes, reading from bottom to top, corresponding to

2°, 2). 2° and 2? in the binary system, plus a ''Sth'"! hole. It is easy to "read"these

numbers fromtape since no numbershave the fifth hole punched, and one canlook ©

atthe holes that are punched and add 1, 2, 4 and 8 accordingly. For example, note

the code for the numbers in Figure 12.1.

In addition to the numbers,the printer format control characters are

frequently used, and these are grouped separately in Figure 12.1. ‘These characters

thenare the ones most commonly used; after someexperience,theywill be

memorized. The other characters, letters and miscellaneous symbols are used

muchless often; if needed, they canbe interpreted from Figure 12. 1.

Examination of Figure 12.1 will show two symbols listed for each code

character, except the printer format control characters. These correspond tothe

upper and lower case symbols ona typewriter. The symbol that will be printed is

determined by whether the "letters shift'' characteror the “numbersshift"

character was most recently "read! by the printer. Thus, the same piece of tape

will print out either group of symbols depending upon which "shift!character .

precedes the tape. The computer, however, interprets all characters as though

they were numbers. For example, if none of the holes on the tape are punched,

the computer will interpret a zero; but the printer will print a 0if preceded by a.

letters shift character. Similarly, if the nan and ''8'' holes are punched,the

printer will supply a + ifa figures shift preceded the character, but the computer

will interpret this as a K, or sexadecimal 10.

In using the computer, it is usually necessary to supply only numbers __

(characters without the "5th" hole punched) to the machine since it fails to

recognize any other characters anyway, but it is convenient for certain man-

imposed purposes toprint out the re sults ina particular format. In making up

tapes, then, characters are put onthe tape which control the printer and which

~]2.2-

x
e
p
o
g
e
d
e
y
a
z
e
t
d
u
i
o
p

43stys
a
y
r
U
S

s
z
o
y
e
y
T

s
o
i
n
s
i
g

Y
o

Soe"

=
C
e
L

-ee0e | ~-

,

@

|@e@°-@ @

@

N

befo

= |@@°

Gi

o
t

6
8

L
9

kejeq
 eoedg

p
e
e
o
u
r
y
p
u
e

U
I
N
J
S
Y
s
s
t
e
r
s
r
e

&

< @

7 @

O

A

0

a

S
U
A
G
W
O
A
N
T
V
W
I
O
R
C
V
X
A
S

@° @e6@ | -

@:-66

@-e@

e

=

Fy :

have no effect on the computer. These are known as the printer format control

characters.

Withthis introduction, it is now possible to explain the use of the equipment

available in the Tape Preparation Room and someof the mechanics of tape

preparation.

The paper tape used for most of the workin the Computer Laboratory is an

oil-impregnated paper. Consequently some care should be exercised in using the

tape to keep it away from clothes and important papers which might be ruined by

oil spots.

A second consequence of the oil is that it will pick up dirt very easily. This

leads to two difficulties: (a) some holes on the tape may be at least partially

covered, and (b) the dirt will be carried toa reader and deposited. The first

difficulty is of consequence any time a photoelectric reader is being used, since

even partial blocking of a hole may cause the reader to misinte rpret this bit. The

second difficulty affects any reader because dirt clogs upthe reading holes of the

photoelectric readerand same of the moving parts of the mechanical readers.

There are some> general procedures in tape handling that should be followed,

then, in order to insure error-free operation of the equipment. Tapes should be

handled carefully with particular attention to the following items.

1) Keep tapes clean. Baskets have been provided and these should be used

to keep the tape off the floor. Only one error in the tape caused by dirt is necessary

to make radical changes inthe program.

2) Be sure tapes are "free! when going through a reader so that they will

not be torn. Any torn tapes should be reperforated anda ‘good copy obtained to use

on the computer.

3) Some corrections can be made ona tape by using a hand punch to punch

holes which have been omitted. This is particularly valuablefor adding the '"'2"!

hole when changing M20" and 124" orders to '22" and ''26" after a program has been

code checked. However, care should be taken that the holes are "'clean''--that is,

no fuzzy edges should appear where holes are punched.

4) A tape splicer is available in the Tape Preparation Room and may be

used for editing and combining tapes.

12.4. Printing Format Control

Teletypewriters are used for printing on paper the symbols represented by

the punched tape. Theprinters are set up so that they will print about 80

characters per line. Print-out format is controlled by tape characters also.

Format control characters are space, carriage return and line feed, figures

~12.4-

(numbers) shift, letters shift, and two different delay characters. The printer

performsthe above functions when the proper tape code comes along regardless of

whether a figures shift or a letters shift has preceded it. In addition, a tabulator

feature is available, but the tab character must be preceded by a figures shift |

character. ae 7

Most of the abovecontrols are self-explanatory. The spacecharacter

simply movesthe printer along one space without printing a character. Carriage

return andline feed are accomplished by a single character, and this simply means

returning the carriage to beginprinting at the left-hand margin and feeding the paper

up one line. Letters shift and figures shift characters cause the printerto print the

upper and lower case symbols respectively, similar to an ordinary typewriter.

Unlike the typewriter, however, the particular shift character used retains control

until the opposite one comes along. So, for mostusage, it is sufficient to have a

figures shift at the beginning of the tape only. The two delay characters perform the

same function; that is, they cause the printer totake aone-count rest. In particular,

one delay character is usually neededfollowing a carriage return-line feed ©

character or tabulator character in order to give the carriage mechanism timeto

function before the next character to be printed comes along. Without it, some

overprinting may occur on the left-hand side of the page,a character may be a

printed as the carriage returns, or columns will fail to line up properly. - The tab

feature causesthe printer to moveto the nexttab stop. These stops are set at 10,

25, 40 and55 characters from the left-hand side.

7 Several pieces of equipment are available for the various operations |

required in getting information into and out of thecomputer. The functions of these

units are describedbelowalong with operating instructions.

12.5. Teletype Perforator _

_The first operation after writing a program is to translate it to punched tape.

The keyboard perforators are for this purpose. “With theunit plugged into a wall

receptacle it is ready to use. An ON-OFF switch is located on the left side, and

the unit is ON when the switch is in the "up" position. A roll of blank tapefeeds 7

through a punch block and out the left side of the perforator. As each character is

punched, the tape advances one character space whichallows this character to be

seen just emerging from the punch block. If, at any time, a mistake is made in

punching a character, the tape may bebackspaced by using the lever located just

above the ON-OFF switch. Aspace character(all five holes) is now punched, and

then the correct character is punched. A fast feed(or repeat) button is located to

the right of the keyboard. Ifa key is held down along with this button, the

-12. 5-

character corresponding to that key will be repeated until the repeat buttonis

released. Care should be taken to pushthe repeatbutton after the selectedkey has

been held down and to release it before releasing the selected key. | Otherwise, the

perforator may fail to punch correctly. | a

When starting to punch a tape, it is usually well to punch a series of delay

characters first to provide a leader at least six inche Ss long. This will leave some

room on the tape on which to write sothat it may be labeled, and it alsoleaves some

"handling" room. Then acarriage return-linefeed character and an appropriate

shift (usually figures shift) character should be punched.; These willinsure that the |

printeris correctly set up when the tape is printed out. After any othercarriage —

returna delay character should be punched to insure time for the carriage to

completely return. When the tape has been completed, four or five inches of 5th

hole characters (delays or spaceswill do) should be punched out fora tail.

(12.6. “Teletype Reperforator

The teletype reperforator:is a standard piece of teletype equipment. It is.

used in conjunction with atransmitter-distributor (teletype language) or reader.

These two form a unit which reads a tape and punchesan exact duplicate. The

reperforator will reproduce at the rate of six characters per second. Two major

operations are thus madepossible: (a) combining two or more tapes into one

continuous tape(for ease in handling},and (b) editing. /

The units are servedby a common power supply, and this can be turned on

by a switch located underthetable neartheleft side. This switch should beturned

ON first, and the reader ON-OFF switch(locatedon the front of the reader) should

be OFF. If the tape is long enough to be rolledup, drop the coil of tape on a reel

so that it will feed from the reelto the reader. Onthe reader is ahinged gate which

latches to hold the tape down against the reading fingers. ‘This can be lifted by

raising the protruding lever at the front of the gate. The tape should now be placed

under the tight-tape stop (the movable arm at the right side of the reader). Make.

sure the sprocket holes are lined up and laying down correctlyover the sprocket

wheel, hold the tape securely in this position, and close the "gate". Then turn the

reader ON. 7

| For. editing purposes itis necessary to skip and insert other characters:as |

the tape is read. The reader may be stoppedby using the reader ON-OFF switchor

by lifting the tight-tape stop. The tape can then be shifted or another tape inserted

as required. Theholes in the tape are sensed byfive "fingers" whichcan be seen >

on the reader. The character which is directly over these finge rs will be the next

one read and punched by the reperforator.A tail of space characters can be punched

-12. 6-

on the tape when it has beencompleted by pushing down onthelever which is

available througha hole inthe lidof the repe rforator.

12.7. Printer

Once’information has been punched on tape, it is desirable to findsome

painless wayof reading this--ergo, printer. There are three printersavailable,

one of which is portable andcan be used for output directly from the computer.

Otherwise, the printers along witha TD (transmitter-distributor), or reader,
constitute a unit which willprint out the contents of a tape. Aswiththe teletype

reperforator, a common power supplyoperates both the reader and the printer.

The switch for this is located under the table and this should be switched ONfirst.

The reader should be turned OFF, the tape placed ona reeland fed under the tight-

tape stop ontothe reader, taking carethat the sprocket holes correctlyfit downover

the sprocket wheel. The reader canthen be turned ONand the tape will be printed

out.

Two buttons on thefront of the printer will feed the paper and return the

carriage independently of the reader.The printers also havean automatic carriage

return and line feed which will’operate when the carriage reaches the right-hand

limit. Printing is at the rate of 10 characters per second.

12.8. Tape Comparer

When reproducing the tape, it is essential to know that the copy is exactly

like the original. For short tapes, visual comparison, accomplished by holding the

tapes ina superimposed position and examining against a light background, is

perhaps the fastest and easiest. For longtapes, the compareris better. This unit -

has two high- speed photoelectric readers which are‘connected to comparison circuits.

The tapes to be compared are placed in the two readers and the comparer then

checks one against the other. As long as thetapesagree, the comparer operates

at 300 characters per second. Whenan erroris detected, | the unitstops and the

"compared"! characters are displayed on the control panel. The tape can then be

corrected ormarkedappropriately and the comparison continued. The reade rs

can.be setfor one of three modes of operation: (a) skip no characters, (b) skip

all55thhole characters,and (c) skip all space characters.

Thisunit has power supplied to it always to avoid a delay while waiting for

it to warm up. After pushing the SET button and selecting the mode of operation,

the tapes to be compared are placed in the appropriate readers and started.

Another switch is available to permit advancement of the tape one character ata

time when such an operation is desirable.

-12.7-

12.9. High-speed Reperforator

The high-speed reperforator performs thesame function as theteletype

reperforator but is much faster and consequently of particular value in preparing

long tapes. The unit consistsof two photoelectric readers anda punch. Operation

at full speed is 60 characters per second. Since there are two readers, it is

possible tohandle two different tapes, alternately selecting the tape which is to be

copied. The neonlights on the control panel indicate the last character readfrom

tape, whether punched or bypassed. Four switches and a push button are used to

control the reperforator. Their use is outlined below.

STOP-RUN Switch. This is a two-position switch which determines

whether the unit is stopped or running. It shouldbe in the STOP position before

changing the position of any other switch except the START-OBEY-IGNORE switch.

FRONT-REAR-CRLFSwitch. This is a three-position switch, andwith it |

the following operations are enabled.

a) Read the tape in the front reader.

b) Read the tape in the rear reader.

c) Punch carriage return-line feed characters without
operating the readers.

MODE CONTROLSwitch. This four--position switch works in conjunction

with theSTART-OBEY-IGNORE switch to determine the way to read a tape, as

follows:

a) SINGLE CHARACTER PUNCH--Punch one character

andstop.

b) STOP PUNCH ON CRLF--Punch up to and including
the next carriage return-line feed character, and
stop.

c) SINGLE BYPASS--Skip one character and stop.

d) STOP BYPASSINGON CRLF--Skip all characters up
to and includingnext carriage return-line feed
character, then stop.

START-OBEY-IGNORE Switch. This is a three-position switch, withthe
START position being a momentary contact; that is, the switch will return itself to

the OBEY position. If the switch is moved to START after a stop, the instruction of

the Mode Control switch will be obeyed once and another stop will occur. If itis

set to IGNORE, it will cause all of the stops specified by the Mode Control switch

to be ignored,

-12. 8-

CHAPTER 13

CALCULATION OF RUNNING TIME

There are several good reasons for Knowing how long it will take MISTIC to

perform a particular computation. First of all, when using a computer which costs

up toa few hundred dollars per hour to operate, it is neces sary that it be scheduled

efficiently and this requires knowledge of the time required for each problem.

Secondly, there must be some idea of how long to let the machine run before

expecting an answer, since mistakes either inthe program or in the machine could

allow the computer to "loop" indefinitely. Again, when using the card reader-punch,

it is necessary to limit computation time between card. rows in order to prevent a

hang-up.

13.1. Estimating Time

There are several ways to estimate the required time. All library routines

indicate the amount of time requiredso that theestimate for a program using

library routines exclusively can be determined by these formulas.

When running the same program several times with only changesin data, the

time required for one run serves as a good estimatefor further runs. Ofcourse,

this does not solve the time problem for the first run, but it will prove to be a very

good estimate for succeeding runs.

Another way toestimatetime is to note the time required for code checking

and use. this asa guide to determine time requirements for production runs.

Finally, a simple formula for estimating running time is given by

No 5 NmtNg
T = 7% + + —Ts7 milliseconds

where Ny = number of orders obeyed

NO numberof multiplications obeyed

N,= number of divisions obeyed

N_ = number of shifts obeyed |

This formulaallows for running time only, so input and output time must be

added to this. Input and output time will be determinedby the routines used, and it

can becalculated from formulas given by these routines, ora rough estimate can be

madeusing the times indicatedin Table 13.1.

Some additional information regarding time for the card reader-punchis

necessary. The reader operates at a maximum speed of 200 cards per minute and

-13. 1-

the punch at 100 cards per minute. The maximum speeds may be reduced

considerably by particular input and output routines, and reference must be made

to these routines for more specific information.

When programming for card operations, there are some particular time

conditions which must be met. Once a card cycle has been initiated, the entire

card must be processed. It requires twelve94 orders to read a card or twelve 96

orders to punch a card,onefor each row. ‘Between cards, any amount of

‘computation time ispermissible, but between rows the computation timeis limited

to 8.7 milliseconds when reading and17.4 milliseconds when punching. If inter-

row computationis not completed in this time, the card row will have passed the

reador punch station. To prevent errors when this might happen without the user!'s

knowledge, MISTIC will hang up on the94 or 96 order which should have operated

onthe bypassed row.A light on the card reader console indicates this condition.

ORDER TYPE EXECUTION TIME

~~ On, In 7 24n microseconds

4, 3, 4,5, 5 | 55 microseconds
3, not executed | 18 microseconds
6 12000 microseconds

oe on, — 1,000 microseconds
—80n, 81n, Jln | _ BO

(nis a multiple -I,000n microseconds

of 4) . Oe
82n — — 4,200n microseconds’ by punch

oo 25,000n microseconds byprinter
92 17,000 microseconds per character bypunch
oe 100,000 microseconds per characterby printer
K, S, F, L ~100 microseconds ;
N | | 30 microseconds

Table 13.1

13.2. Calculating Time

There are times when it is desirableto havea betterestimate than is given

by the methods of the previous section as, for example, when making up the

formulas for a library program. -Table 13.1gives the approximate amount of time

necessaryfor each of the orders.

In most cases, it will probably be found that an estimate is notveryclose to

the actual time; afactor of 2:1 may even indicate a ''good'' estimate. Even theuse

ofTable 13. l will not permit aperfect estimate, since some of the times listed

are only approximate. For example, a multiplication may take as little as 900

microseconds, the exact time dependinguponthe multiplier. However,it is in

the best interestsof the programmer to have anestimate asaccurate as possible,

and the methods outlined will lead to usable results.

-~-13.2-

CHAPTER 14

THE USE OF CARDS AND CARD EQUIPMENT FORMISTIC

The cards acceptable tothe MISTICfor input and output are what are known

as IBM 80 column cards. The meansof inputting and outputting the cards is an

IBM 528 Accumulating Reproducer. ‘The use of card input and output does not

preclude the use of papertape input or output, and in fact, both methods of

transmission are frequentlyused in certain problems.

14.1. The Cards

An eighty column card is illustrated in Figure 14.1.

Columns
JP 2-3 4 5:°67 8 9 10 ll l2. 75 76 77 78 79 80

2 f [
at 4

QO

\
2] \l

6 }
a]

al | Ch
: \

Figure 14.1

Thedigits0, 1, 2, 3, 4, 5, 6, 7, 8and 9 are indicated by a perforation in

the corresponding row. For example, if the first three columns ofa card should

denote the number 407, then in column l, row 4 should be perforated; in column 2,

row 0 should be perforated, and in column 3,‘row ¢ should be perforated. For the

uses of the 11 and 12 rows, one should consult the specific library programs.

a One can observe that an eighty column card couldrepresent an eighty digit

number. Since there is seldom need for such a number, ‘the card|is divided into

allotted sets of columns, called fields. ‘Thus, if one wished to use ten digit |

numbers, eight such numbers wouldfit ona card, and the card would then be said

-14, 1-

to have eight 10-column fields. Of course, the length of the various fields on a_

card need not be constant. Thus, on one card there could be fields of length 2, 7,

9, 8, 4.and 3, for example. Such a card is said to possessvariable field length.

A set of cards, all bearing data ‘relatedto the sameproblem, is called a

deck. Two possibilities concerning field structure throughout a deck prevail.

1.) It is possible that the exact field structure of one
card is the same as the field structure of all the
other cards in the deck. Such situationis

referred to as a deck with fixed format.

2.) It is possible that the field structure of some
cards in the deck is not the same as thefield
structure of other cards in the deck. This
situation is called a deck with variable format.

14.2. Card Preparation

The Computer Laboratory does not in general provide the card stockfor

individual users. The only piece of card preparation equipment maintained by the

Laboratory is a hand punch, suitable for small scale use. In order toacquire card

stock and to preparecards, the user may contact the Tabulating Department,

Research Division.

14.3. The Operation of the IBM Type528 in Conjunction with the MISTIC ©

For input, each card is read, rowby row, with the 12 row normally being

read first. ‘Each. row is translated as an80binary digit number and transmitted to

the AQregister. For output, 80 binary digit numbers are transferred from the AQ

register toa card, arowata‘time, 12 row normally first.

14. 4, The Plugboard

| The reading and punching of cards is controlled by a plugboard and the card

instructions.

‘The plugboard is a device which may be wired in various patterns, so as to

determine which bit position of AQ will correspond toa particular column on the

card. The pertinent features of a plugboard are shown in Figure (14.2. Each row

has holes in it, which arenot drawnin. Thus, there are 40 holes in the PUNCH

DIRECT rows, 8 holes in the short PUNCH rows, and 20 inthe longer PUNCH rows.

~The holesinthe PUNCHrows, and in the READ rows, refer to the bit»

positions of A and Q; thus, the first hole in the PUNCH rowrefers to Ag: the next

toa the fortieth to a the forty-first to do? and so on similarly for READ. The
(]? 39’

holes in PUNCH DIRECT refer to the columns of a card tobe punched. Thus, the

first holein the PUNCH DIRECT refers to column 1 of the card, the second holeto

column 2, etc. By connecting a PUNCH hole (by means of a wire) to aPUNCH

DIRECT hole,one establishes that a given bit position of AQ is transferred toa

-14.2-

Z
p

e
a
n
s
i
g

 b¢v
e

oT61b€
T
e
c
c

G
T

 Ft
t
t
t
t
e
e
e
t
t
t
e
t
t
e
s
t

j
t
+
+
+
+
+
O
p
e
o
w
+
+
4
+
4
+
+

Ft
t
t
t
t
+
t
e
t
d
e
e
r

F
+
t
t
t
e
e
t
e
e
t
t
e
e
t
e
s

t
t
t
e
t
+
4
4
V

pROUt+Eet+e
t
e
t

a
l

Bch
F
+
t
t
+
+
+
H
t
H
F
e
e
e
e
e
s
e
e
e
s

t
t
t
¢
4
t

O
y
o
u
n
d
+
+
+
+
+
+

 +
+
e
t
t
e
e
t
t

+
+
+
4
4
+
4
4
4

+
t
+
t
t
e
4
t
t

+
V
y
o
u
n
d
+

t
H
t
t
t
+
t
+
+
+
+
e
+
e
4
+
4
4
4
4

0
8
—
s
u
i
p
e
s
y
p
u
o
s
s
g
c
—
G
9
-
—
-

t
t
t
t
+
e
+
t
+
e
t
t
g
t
e
+
e
t
e
s

0
8
=

G
L
}
9
e
a
T
q
y
o
u
n
g
g
g
9
—

t
+
t
t
t
t
+
t
t
t
t
e
t
e
e
e
e
s
t

0
7
—
s
u
t
p
e
s
y
p
u
o
s
s
g
—
g
7
—

t
h
e
t
e
t
e
t
t
e
t
e
t
a
t
e
s
t

0
%
—
—
—

¢
e
}
9
a
4
T
q
Y
o
u
N
n
g
g
7
—

F
H
F
F
t
t
H
e
t
e
e
t
e
s
t
e
s

—
0
9
-
~
s
u
I
p
e
s
y
p
u
o
s
s
s
—
G
g
p
—
—
—

F
e
t
e
t
t
e
t
e
e
e
e
t
e
a
t
t
e
a
t
s

—
09
=
=

g
g
}
B
A
T
Y
o
u
n
g
g
Z
—
—

t
e
t
t
e
e
t
e
t
t
t
t

t
e
t
t
e
t
t
e
t

—
Q
7
—
S
3
u
i
p
e
s
y
p
u
o
s
s
g
—
g
—
—
—
—

H
H
t
t
t
t
t
t
t
t
t
t
t
h
e
t
t
e
t
e
e
y

—
0
%

§
H
o
e
a
T
d
y
o
u
n
g
-
¢
4
-
—
—
—
—

- 14. 3-

given columnposition of the card. Reading is handledin the same way.

For example, suppose we wish to reada card so that column 1 goes to an;

column 2 to.as and column 13 to AQ° We would then wire SECOND READING and

READ so that the first hole ofSECOND READING is connected to the eighth hole in

READ, the second hole of SECOND READINGis connected to the ninth holeof READ,

and the 13th hole of SECOND READING is connected to the first hole of READ.

If a user intends to use card equipment, it is well for him to consult with a

member of the Computer Laboratory staff concerning his card format. It may be

that his format can be adapted to a certain fixed format in use in the Laboratory,

thus bypassing the problemsof obtaining and wiring a second plugboard. The fixed

format plugboard makes the following assignments:

Bit Position to Card Column

aq l

a VA

a5 3

a. 4

ay - a29 9 - 44

do 5

qd) 6

d> ?

d3 a —68

14-7 439 45 - 80

Table 14.1

14.5. Card Orders

Thecard input orderis 94 with an address of zero. The output order is

96. with an address of zero. There are separate card feed hoppers for input and

output. There is a cardread station, capable of reading one row, and a card punch

station, capable of punching one row. Whena 94F is issued, if no card is in the

read station, one card advances to the read station from the hopper, and the first

row (normally the 12 row) is read; the card continues to advance. If another 94F

order is given before the ll row enters the read station, the 11 row will be read.

Otherwise, the computer will stop and the program will have to be corrected.

Thus, in order to read the contents of one card, twelve 94F orders mustbe given.

Similar statements apply to output and 96F orders.

The cards are input to the read station at the rate of 200 cpm (cards per

minute), which means 300 milliseconds per card. After a 94F order has been

executed and if the card has not been entirely read, the next 94F must be executed

- 14, 4-

within about 8.7 milliseconds to avoid the computerstop mentioned above. Whena

card has been entirely read, the next 94F order can be given at any time with no

hang-up occurring. However, to achieve the maximum read-in of 200 cards per

minute, the next 94F order after the completion of a card readmust occur within

17.4 milliseconds. Otherwise the next card can not advance until 300 milliseconds

have elapsed since the previous card was read. This last option is the one

ordinarily used, so that the read-in rate generallyis only 100 cpm.

The 96F order obeys the same rules as above, except that all times for

96F orders are twice those of the 94F orders.

14.6. Card Programs in the Library

At present there are programs (NIM, N3M) for inputting variable format

decks and fixed format decks. There is an output program (P3M) for fixed format

decks. There is a program (NP1M) for converting card data to tape for use with

K2 and K9. Many other versions of input and output can be constructed around these

programs. Finally, K2 and K9 have been converted to accept direct card input.

-A-

A register, 2.4, 2.5, 2.8, ll.2
change under input and output

orders, 7.3 |

Access time, 2.3 -
Accumulator (A), 2.4, 11, 2

change under input and output
orders, 7.3 | |

Add from Q, 3.9, 10.15
Add, increment orders,
10.16

Add orders, 3.9,

Addition, 11.2 |
binary, 1.5
time, 13.2

Address
changing, 5.3
fixed, 4.3 .
length, 2.3
memory, 2.3, 3.2

relative, 4.3, 4.4

search routine, 8.5
single, machine, 3. l

Analogue computer, !.1
Argument in closed subroutine, 6.2.
Arithmetic, 11.1 |

- gection of computer,

3.8, 10.14,

10.17

, 3.3, 3.5

(2.4, ll.
with scaled numbers, 9.2

-B-

Base of numbersystem, 1.1

Basic input step, 10.12, 10.13 |

Basic output step, 10.12, 10.13 |

Binary -
arithmetic,1.5

digit, 1.2
marking with, 7, 7

number

computer representation, 1.3)
system, !|.1 ;

switches, 7.5
to decimal conversion, 1.6
to sexadecimal conversion, 1.2

Bit
- definition, 1.2

sign, 1.3 |
make up of order pair,

Black switch start, 10.17
Blunders

common, 8. 1
typical, 8.2

3.2

INDEX

Bootstrap, 8.4
input, 7.2, 7.3
start, 2.7

-C-

Calculation of running time, 13.1
formula for, 13.1

Cards, 2.2, 12.1, 13.1, 14.1
input, 12.1, 13.1, 14.1

orders, 3.6, 14.4 |
output, 2.7, 12.1, 13.1, 14.1

plugboard, 14.2.
preparation, 14.2.
programs, 14.5

- punch, 12.1, 14.2.
punched, 12.1, 14.1
reader, 12.1, 14.2

speed, 14.4

Carriage return-line feed, 12.5

Cathode ray tube, 2.3.
Character, 12.2
Check point routine, 8. 6
Closed routine, 6. 1

argument placing in, 6.2
control transfer to, 6.1,
entry to, 6.1
example of, 6.3
planting link in, 6.2

Code |
checking, 8.1
operation(op), 3.2.

Coding, introduction to, 3. l

- common blunders in, 8.1
Comparer, tape, 12.7 ©
Complete program, 6.1
Complement

gate, 2.4
two's, 1.3, 11.1

Computer
analogue, |. 1!
digital, 1.1

Conditional control transfer,
Control ?

counter, 8.4
return to DOI, 8. 3
transfer

checking routine, 8.6
conditional, 3.4, 10.6
orders, 3.4, 10.6
reversing, 7.5

6.2

3.4

Core memory
execution time, 13.2

orders (N), 3.9
Correcting

errors, 8.1

tapes by reperforation, 8.1
Counter, 5.3

control, 2.6
_D.-

Data, 2.6
Decimal | |

binary to -- conversion, 1.2
fraction, print out post

mortem, 8.5

number notation, 1.1

order input (DOI), 4
format, 4.1

sexadecimal to --

conversion, 1.2, 1.6.
Digit make-up of order pairs, 3.2

Digital computer, 1.1
Directive

DOI, 4.1, 7.1
K, 4.2, 7.1
N, 4.2, 7.1.

Divide orders, 3.5

Division, 10.9, 11.3, 11.5
binary, 1.5, 1.6. |

DOI, 4.1 | oe

~E.

Electrostatic memory, 3. 2
Entry

standard, 6.1
to closed routine, 6.1

Errors | |
common, 8. l
location by programmed stops, 8.4

typical, 8.2 —
Execution time for order types, 13.2.

10.15

.~F-

Extract, order,

F termination, 4.3 |

Fifth hole character, 7.3, 12.2.
marking by use of, 7.7.

Figure shift on tape, 12.3, 12.4
Fixed address, 4. 3 :

Fixed point programming, 9.1
Flipflop, 2.4
Floating point, 6.6
Format, DOI, 4.1
Formula for calculating running

time, 13.1
Fraction, decimal input, 4. 4
Frame, 2.1, 12.2

-H-

Hand punch, 8. l
Housekeeping instructions, 5.4

~J-

Increment add orders, 3. 8,

Input _— |
bootstrap, 7.2
decimal fractions, 4.4

10.14, 10.16

from cards, 12.1, 13.1, 14.1
from tape, 2.5 | |
integers, 4.4 ,

orders, 3.6, 10.1, 10.13‘10. 12,

use of, 7.3 oe
-output orders, 3.6,
section, 2.1.

Instructions, 2.6, 3.1 .
Instruction register (R3), 2.6, 8.4
Inte ger |

print out, post mortem, 8.5
Interpretive routine, 6.5
Iterative programming,

introduction to, 5.2, 5.3

10.12, 10.13

-jJ-

J termination, 4.3, 4.5| kK.

K directive, 4.2
K termination, 4. 3

_L-

L termination, 4,3

Left

shift, 2. 4, 3.4, 10.4

hand order, 3. 2

Letters, on tape, 12.3
Letter shift, 3.7, 12.4

on tape, 12.3

Level, 5th, 12.1 |

Library, 6.1
routine 6. 1

Link, planting the, 6.2.
Logical productorders, 3.9,
Loop, 5.2. |

10.15

-~M-

Machine representation of
binary numbers, 1.3
negative numbers, 1.4
numbers, 9.1 :

Make-up of orders, 3.2
Marking, 7.7 | | -

by 5th hole character, 7.7
by binary digit, 7.7
by termination symbol, 7.7

Masks, 7.7

Master routine, 6.1 Order (cont'd.)
Memory, 2.3 — right hand, 3.2

address, 2.3 sequence of, 2.6
capacity, 2.3 | summary, 3.10
core, 3.9, 13.2 types, 3.4, 10.1
electrostatic, 3:2 0, 3.4, 10.4
locations, 3.3.» 1, 3.4, 10.5
to Q orders, 3.5, 10.8 2, 3.4, 10.6

Multiplication, 11.2 3, 3.4, 10.6
binary, 1.5. 4, 3.5, 10. 8

orders, 3.5, 10.10 5, 3.5, 10.8.
table, sexadecimal, 17 6, 3.5, 10.9, 11.3, 11.5
time, 2.6 . 7, 3.5, 7.4, 10.10

Multiply orders, 3.5, 10.10 8, 3.6, 7.3, 10.12
N- 9, 3.6, 7.3, 10.13

eS K, 3.8, 10.14 |
N directive, 4.2, 7.1 S, 3.9, 10.15

Ntermination, 4.3 J, 3.9, 7.7, 10. 15)
Negative number | | N, 3.9,10. 16

conversion to machine form, 1.4 F, 3.8, 10.16
machine representation, 1. 4 L, 3.9, 10.17, 11.2

Negative one, test for, 7.6 = © variants, 10.1.
Non-iterative programming, 5.1) Orders, 2.3, 2:6, 3.1
Notation, positional, 1.1 we card, 3. 6
Number | So execution time for, 13.2

representation, 1l.] = | in machine language, 3. 1
on tape, 2.2 Oe make-up of, 3.1

on cathode ray tube, 2.3. Output a |
shifts,12.4 — cards, 2.7, 12.1, 13.1, 14.1
ontape,12.3 orders, 3.6, 10.12, 10.13
system, l|.1. useof, 7.3

base of, 1.1 punch, 2.7
binary, 1.2 section of computer, 2.7
conversion, 1.2, 1.4, 1.6 speed, 2.7 .
decimal, 1.1 teletype printer, 2.7
sexadecimal, 1.2 | to tape from A, 2.7

two's complement.of, L, 3 Overflow, 9.4, 11.1
Numbers Pp.

greater than 1/2, test for, 7.6 ov
in machine language, 3.1 ~~ Paper tape, 2.1
machine representation of, 9.] Parameters
on tape, 12.2 a | preset, 6.2
rangeof--.incomputer; 9.q program, 6.2

O Perforator, 12.5
i Planting the link, 6.2

Op code, 3.2 —— | Plugboard, 14.2
Operand for an instruction, 3.1 Positional notation of numbe rs, l.l

Open subroutine, 6.1 Post mortemroutines, 8.5, 8.7
Operation code, 3. a Preparation, card, 14.2
Order Preset parameters, 6.2

code, 10.1, 3. 3, 3.10 Print format control, 2.7

format, DOI, 4.1 characters, 12.4©
left hand, 3.2 on tape, 12.3
pair, 2.6 Printer, 12.7 |
register, 2.6 operating time, 2.7
repertoire, 10.4. teletype, 2.1

Printing speed, 12.7

Product, logical, 3.9, 10.15 —

Products, summation of, 7.4
Program, 2.6

complete, 6. 1.
parameter, 6.2

Programmed stop, 7.1, 8.4, 10. 16
location of errors by, |8. 4 |

Programming
introduction to, 3.1.

iterative, 5.2, 5.3 |

non-iterative, 5.2, 5,3
Programs, card, 14.5
Punch .

card, 12. 1, 14.2

hand, 8.1
output, 2.7 oe

Punched cards, 12.1, 14.1

-Q-

Q register, ll. 2 . |
change under input and output

orders, 7.3.
loading, input, 10.8

“R-

RI register, 2.4 |
RII register, 2.4
RIII (R) register, 2.4
R3, 2.6 | _
Range of numbers in computer, 9.1
Reader, 12.2, 12.7 |

card, 12. 1, 14.2
tape, 2.1
speed, 2.1. 7

Reading fromtape, 12.2.
Register | |

Accumulator (A)(RI), 2.4, 2.5
Instruction (order)(R3), 2.6
Order(R3), 2.6 |
Quotient (Q)(RIII), 2.4, 2. 67
Shifting, 2.4

Relative address, 4.3, 4. 4

Reperforator, 8.2, 12.5
high speed, l2. 8 |

speed of, 12.8

speed, 12.6 -
Repertoire, order, 10.4
Representation of numbers, 11.1

in computer, 9. 1
Reversing of control transfer, 7.5
Right hand order, 3.2
Right shift, 2.5, 3.4, 10.5
Routine, 6.1 ,

library, 6.1, 6.2
master, 6.2

Running time, calculation of, 13.1

-S-

Scaled numbers, arithmetic with,
Scaling, 7.7, 9.1 |
Sequence checking routine, 8. 6
Sequence of orders, 2.6
Sequential machine, 3.1
Sexadecimal

digits, 1.2
multiplication table, d, 7
numbers on tape, 12. 3
symbols, 1.3
to binary conversion, 1.2
to decimal conversion, 1.2, 1

Shift |
left, 2.4, 3.4,
right, 2.5, 3.4,
print characters,

10.4
10.5 ©
12.2

Shifting register, 2.4
Sign bit, 1.3. |
Single-address machine, 3.1
Speed, card, 14.4 ©
Sprocket hole, 12.2
Standard entry, 6.1
Start | | |

black switch, 10.17
bootstrap, 2.7 |
white switch, 2.7, 10.17

Starting the computer,2.7
Stop-control transfer orders, 8.4
Stops =

programmed, 71
location of errors by, 8.4

starting after, 10.17
Storage, 2.3 On
Store orders, 3.5, 10.8
Subroutine, 6.1 7
open, 6.1
closed, 6.1

Subtraction, ‘li. 20 |

binary, 1.5
Sum check, 8.4 |
Summationof products,7.4
Switch |

binary, 7.5
black, start, 10.17 a

_ white, start, 2.7, 10.17 —
Symbols, :

sexadecimal, 1.3
terminating, 4.3

/ pe

Tape |
comparer, 12.7
correction, 8.1

input from, 2.5
output to, 2.5

9.2

.6

Tape (cont'd.)
paper, 2.1
preparation, 2.2, 12.1
reader, 2.1 |
representation of numbe rs on

tape, 2.2
Tapes, modification, 8. 1
Teletype

perforator, 12.5
printer, 2.7
reperforator, 12.6

Teletypewriter, 12.4, 12.7
Termination symbols
DOT, 4.3
marking by, 7. 7

Test
for negative one, 7.6
for numbers greater than 1/2, 7.6
for zero, 7.6
special, 7.6

Tight-tape stop, 12.6, 12.7
Time

access, 2.3
addition, 2.6
multiplication, 2.6
running

calculation of, 13.1, 13.2

for execution of order types, 13.2
Transfer control, 3.4, 10.6

checking routines, 8.6, 8.7
reversing, 7.5 |

Transmitter-distributor (TD), 12.6,
2.7

Tubes, cathode ray, 2.3
Two's complement of a number,

1.3, ll.l |
Typical blunders, 8.2
Types, order, 3.4, 10.1

-U-

Unconditional control transfer, 3.4

-V -

Variants, order, 10.1

-W -

White switch, 2.7, 10.17

Word, 1.3, 2.3, 3.1
assembly, DOI, 4.2

-Z-
Zero test, 7.6

	Front Cover
	Title Page
	i
	ii
	Preface
	iii
	iv
	Contents
	v
	vi
	vii
	viii
	Number Systems
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8
	A Description of the MISTIC
	2.1
	2.2
	2.3
	2.4
	2.5
	2.6
	2.7
	2.8
	Introduction to Programming--Order Code
	3.1
	3.2
	3.3
	3.4
	3.5
	3.6
	3.7
	3.8
	3.9
	3.10
	Decimal Order Input
	4.1
	4.2
	4.3
	4.4
	4.5
	4.6
	Non-Iterative and Iterative Programming
	5.1
	5.2
	5.3
	5.4
	Subroutines
	6.1
	6.2
	6.3
	6.4
	6.5
	6.6
	6.7
	6.8
	6.9
	6.10
	6.11
	6.12
	6.13
	6.14
	6.15
	6.16
	Special Coding Techniques
	7.1
	7.2
	7.3
	7.4
	7.5
	7.6
	7.7
	7.8
	Code Checking
	8.1
	8.2
	8.3
	8.4
	8.5
	8.6
	8.7
	8.8
	Fixed Point Programming and Scaling
	9.1
	9.2
	9.3
	9.4
	9.5
	9.6
	9.7
	9.8
	The Repertoire of the MISTIC
	10.1
	10.2
	10.3
	10.4
	10.5
	10.6
	10.7
	10.8
	10.9
	10.10
	10.11
	10.12
	10.13
	10.14
	10.15
	10.16
	10.17
	10.18
	Arithmentic In the Mistic
	11.1
	11.2
	11.3
	11.4
	11.5
	11.6
	Tape and Card Preparation
	12.1
	12.2
	12.3
	12.4
	12.5
	12.6
	12.7
	12.8
	Calculation of Running Time
	13.1
	13.2
	Use of Cards and Card Equipment
	14.1
	14.2
	14.3
	14.4
	14.5
	14.6
	Index
	
	
	
	

