= Dyime.

System Architecture
Reference Guide

Rev. 21.0

DOC9473-2LA

System Architecture
Reference Guide

Second Edition

by
Marilyn Hammond

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
TNFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,
PST 100, PT25, PT45, PI65, PTR00, PW153, PW200, PWRB0, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
9650, 9655, 9750, 9755, 9950, 9955, and 9955II are trademarks of Prime
Computer, Inc.

PRINTING HISTORY

First Edition (DOC9473-1l1A) January 1985
Update 1 (UPD473-11A) October 1985
Update 2 (UPD2473-12A) February 1986
Update 3 (UPDA4AT3-13A) April 1986
Second Edition (DOCO473-2LA) August 1987

CREDITS

Editorial: Thelma Henner

Project Support: The CPU Group

Tllustration: Mingling Chang and Anna Spoerri

Document Preparation: Mary Mixon and Kathy Normington
Production: Judy Gordon

ii

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 0Old Connecticut Path
Framingham, MA 01701

iii

ABQUT THIS BOOK
SYSTEM OVERVIEW

Single-stream Architecture
Instruction Pipeline Use
Special Features of the 6350

PHYSICAL AND VIRTUAL MEMORY

Physical Memory
Virtual Memory
Summary

ADDRESSING

Units

Components of a Virtual Address
Components of an Instruction
Forming an Address

Addressing Modes

Sumary of Addressing Modes
Address Traps

Summary

4 MEMORY MANAGEMENT

The Virtual Address

Memory Management Data Structures
Accessing the STLB and Cache
Address Translation

Summary

5 OONTRAL INFORMATION AND RESTRICTED
INSTRUCTIONS

Other System Data Structures
Restricted Instructions
Summary

Contents

1-2
1-7
1-10

4-1

4-19
4-26
4-31

5-1
5-11
5-12

6 DATATYPES

Fixed-point Data 6-1
Floating—point Numbers 6-19
Decimal Data 6-32
Character Strings 6-38
Queues 641
Summary of Datatypes and

Applicable Instructions 6-46

Summary 6-51
7 ALTERING SEQUENTTAL FLOW

Branch and Skip Instructions 7-1
Jump Instructions 76
Summary -7

8 STACKS AND PROCEDURE CALLS

Definition of Terms 8-1
Stacks and Stack Management 82
Entry Control Blocks 8-5
Indirect Pointers 86
Gate Access 8-7
Making a Procedure Call 8-7
The ARGT Instruction 8-14
The PRTN Instruction 8-15
Programming Notes 8-15

9 PROCESS EXCHANGE

Introduction -1
Elements of the PXM 9-1
Process Control Blocks 92
Ready List 92
Wait Lists -7
PXM Instructions 9-9
Dispatcher 9-16
Register Files 9-16
Process Interval Timer 9-25
Dispatcher Operation o7
Fetch Cycle Traps 9-30
Summary 9-30
10 INTERRUPTS, FAULTS, CHECKS, AND TRAPS
Breaks 10-1
Interrupts 10-3
Faults 106
Checks 10-18
Traps 10-37
Interval Clock 1046
Summary 1047

11 INPUT-OUTPUT

Programmed I/0 11-2
DMx 11-10
IMA 11-16
DMC 11-19
DMT 11-20
M 11-21
IMx Address Formation 11-21
APPENDIXES
A POWER-UP A-1
B EARLIER PROCESSORS B-1
System Overview B2
Physical and Virtual Memory B-5
Addressing B-6
Memory Management B-8
Control Information and
Restricted Instructions B-11
Data Types B-11
Altering Sequential Flow B-16
Stacks and Procedure Calls B-17
Process Exchange B-17
Interrupts, Checks, Faults,
and Traps B-19
Input-Output B-27
C PROCESS EXCHANGE ON THE 850 C-1
Instruction Stream Units C-1
850 Process Exchange Elements c2
Dispatcher Operation C-11
D INSTRUCTION SUMMARY CHARTS D-1
E 2455 ARCHITECTURE E-1
INDEX X-1

About
This Book

Prime’s 50 Series™family is a sophisticated group of totally
compatible supermini computers. Its members are the Prime:

6350™ 9955 II™ 9955™ 9950™

gre5™ gr50™ 9655™ 9650™

_2755™ 2655™ 2550™ 2450™

2350™ 2250™ 850™ 750™
650™ 550-II™ 550™ 500™
450™ I450™ 400™ 350™
250-I1™ 250™ 150™

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and
quickly. This document describes the 50 Series architecture from a
functional point of view.

NOTES TO THE READER

Groups of people will find this document useful: engineers,
programmers, designers, and technicians. To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the irnformation
contained in this book to other Prime machines, as well as to the 50
Series machines.

ORGANIZATION OF THIS GUIDE

Because this guide stresses the functional aspects of the 50 Series
processors, the topics are organized according to function. Chapter 1
presents a general overview. Chapters 2 through 11 each describe one
aspect of the system, beginning with memory configuration and
addressing and ending with the I/O system. Each chapter builds on the
information contained in the previous one. Chapters 1 through 11 may
be summarized as follows:

e Chapter 1 gives an overview of the 50 Series systems.

e Chapter 2 presents the configuration of the 50 Series physical
and virtual memory.

e Chapter 3 discusses virtual addressing, modes and formats, and
address traps.

e Chapter 4 describes memory management and its data structures.

e Chapter 5 gives the control data structures and restricted
instructions.

e Chapter 6 specifies the datatypes supported on the 50 Series
systems.

e Chapter 7 presents the branch, skip, and jump instructions.

e Chapter 8 defines procedure calls, the stack, and argument
transfers.

e Chapter 9 describes single-stream process exchange and its data
structures.

e Chapter 10 deals with interrupts, faults, checks, and traps.

e Chapter 11 discusses the I/O system (IMA, IMC, IMT, and IMQ).
Throughout these chapters are lists of Prime assembly language
instructions that pertain to the topics under discussion. These lists

briefly define the instructions’ actions and show how they relate to
the topics.

Appendix A discusses system power-up and the initialization of
registers.

Appendix B presents the characteristics of the following earlier
processors: 2250, 850, 750, 650, 550-II, 450/550, 500, I450, 400, 350,
250-II, 250, and 150.

Appendix C describes process exchange on the 850, a processor with
dual-stream architecture.

Appendix D contains instruction summaries for all modes.

Appendix E describes the system architecture for the 2455.

PRIME DOCUMENTATICN CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.

Convention Explanation Example

UPPERCASE In command formats, words CRL
in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in uppercase.

lowercase In command formats, words LDA address
in lowercase indicate vari-
ables for which you must
substitute a suitable value.

Apostrophe An apostrophe preceding a ‘200
number indicates that the
number is in octal.

System Overview

The CPUs of all 50 Series systems share a common architecture and one
operating system. This commonality is what makes the 50 Series a 1line
of completely upward-compatible and downward-compatible systems. The
implementation of the common architecture, however, is slightly
different for each member, allowing the 50 Series systems to address a
wide variety of user needs as well as to remain compatible. The first
part of this chapter explores the single-stream CPU implemented on the
2350 to 9955 II. The second part of this chapter discusses special
features of the 6350, the newest processor.

Note

The earlier processors 2250, 750, 650, 550-II, 550, 500, 450,
I450, 400, 350, 250-II, 250, and 150 are also single-stream CPU
processors. This chapter identifies where their single-stream
implementation differs from the current processors. For a
detailed discussion of these differences, refer to Appendix B.
The 850, another earlier processor, is the only system with a
dual-stream architecture that is discussed in Appendix B also.

1-1 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

SINGLE-STREAM ARCHITECTURE

The CPU can be divided into four major units. The first three of these
are implemented on all single-stream members of the 50 Series family:

e Cache, STILB, and IOTLB
e Control store

e Execution unit

o Instruction unit

The instruction unit is a feature of the systems and serves as a
mechanism to process instructions at a greater speed. Of the earlier
processors, only the 750 and 850 have a fourth unit also, called the
Instruction Preprocessor Unit and discussed in Appendix B.

Figure 1-1 diagrams this architecture. This figure also shows the
diagnostic processor which, among other functions, can load the control
store and operate as the system terminal. The diagnostic processor
also provides support for environmental sensors and the uninterruptable
power supply. For the 6350, the diagnostic processor supports battery
backup capability.

Cache, STLB, and TOTLB

The 50 Series uses a virtually addressed, write-through cache. Each
cache entry contains the contents of 32 bits of recently accessed
physical memory. Each entry also contains parity and wvalid bits as
well as the physical page number that contains the 32 bits. (For the
cache entry format on the earlier processors, see Appendix A.)

The 6350 has a two-set associative cache that is accessed in parallel
to return two cache entries, each for the contents of 32 bits. Thus,
two virtual addresses with the same cache index address can be used
together without references to the one virtual address forcing the data
for the other virtual address to be overwritten. This effectively
eliminates two-way thrashing that could reduce performance.

If the contents of a specified location can be found in the cache, the
system saves a great deal of time: it takes only 0.25 to 0.5 of the
minimum instruction time to access the cache and get a cache hit, a
vast improvement over the approximately 2 to 6 times the minimum
instruction time needed to access physical memory. The time saved can
be spent performing other operations rather than waiting for a memory
reference to complete.

Second Edition 1-2

SYSTEM OVERVIEW

I/0 Bus g

—

T r A
| = —— Diagnostic System |
DMx : Execution Unit ‘o Processor I Terminal |
| | I, J
FT T 1§ T
Instru(;tion Control Store
Unit
I0TLB
and Cache
SLTB

W<

Memory Bus é

Block Diagram of Single-processor Architecture
Figure 1-1

1-3 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

To speed up the virtual to physical address translation, the STLB
(Segmentation Table ILookaside Buffer) contains the results of the last
translations: 1024 translations on the 6350; 512 translations on the
2350 to 2765, 9650, and 9655; and 128 translations on the 9750 to
9950.

The 6350 has a two-set associative STLB that is accessed in parallel to
return two STLB entries. Thus, two virtual addresses with the same
STLB entry address can be used together without references to the one
forcing the mapping for the other virtual address to be overwritten.
This effectively eliminates two-way thrashing that could reduce
performance.

Because programs tend to reference the same set of locations during
their execution, the system can perform a translation once, store the
result in the STLB, and then have it for reference the next time the
user specifies the same location. Because the STIB has a much faster
access time than physical memory does, referencing it saves translation
time as well as access time.

Mapped I/0 allows the limited addressing range of IMx input/output
transfers to address all of physical memory. It is especially useful
when the processor is transferring several contiguous pages in wvirtual
memory to physical locations that may not be contiguous. The IOTIB
contains the information needed to map the transfer addresses to
physical memory locations. The IOTLB, with the STLB, forms the
virtual-to-physical address mapping hardware and contains 256 entries
for the 6350, and 128 entries for the 2350 to 2755, 9650 to 9955 II.

See Chapter 4, MEMORY MANAGEMENT, for more information about cache,

STLB, arnd address translation. See Chapter 11, INPUT-OUTPUT, for a
description of the IOTLB.

The Control Store Unit

To speed up execution, the 50 Series systems implement many functions,
such as procedure calls, in hardware and firmware. (Procedure calls
are explained in Chapter 8.) The firmware that governs instruction
execution is contained in the control store RAM: 80 Kbytes for the
6350; 580 Kbytes for the 9750 to 9955 II; 128 Kbytes for the 2755;
and 64 Kbytes for the 2350 to 2655, 9650, and 9655.

Second Edition 14

SYSTEM OVERVIEW

The Execution Unit

This unit performs the computation required during instruction
execution. Elements of the processor execution unit include:

® Integer arithmetic logic unit (ALU)

® Decimal AIU

Floating point unit
® Register file

Figure 1-2 shows a diagram of the processor execution unit.

AlUs: The integer arithmetic logic unit (ALU) performs the desired
operation on the wuser’'s two’'s complement data. In a similar fashion,
the decimal ALU and the floating-point unit handle decimal and
floating-point operations, respectively. These units can perform tests
and checks as well as arithmetic operations.

Register File: The register file contains up to eleven sets of
registers, depending on the processor model. Each set contains 32
32-bit registers. There are three types of register sets: user,
microcode scratch and system status, and IMA. User register sets
contain information about a process and about the system as the process
sees it. Specifically, wuser register sets contain information about
the general registers a process can use, addresses of fault handlers,
contents of system registers, and other useful information.

Direct memory registers contain direct memory access (IMA) channels to
speed I/0 operations as discussed in Chapter 11.

The 6350 and 9750 to 9955 II have eight register sets: four sets of
user registers, two sets of microcode scratch and system status
registers, one set of direct memory access registers, and one reserved.

The 2350 to 2755, 9650, and 9655 have eleven register sets: eight sets
of user registers, three sets of microcode scratch and system status
registers, and one set of direct memory access registers.

See Appendix B for the registers sets of the earlier processors listed
on page 1-1.

1-5 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

\ \
Register - L ’ "o

. : S
File ALU h
i
Decimal, f
Integer, t
e
r

Floating-point

Cache >

"_+— > Memory

Execution Unit
Figure 1-2

Second Edition 1-6

SYSTEM OVERVIEW

The Instruction Unit

The 2350 to 9955 II have an instruction unit designed to speed up
execution by processing information about instructions before
execution. The instructions are read from cache and decoded to provide
the information necessary for effective address formation and for
execution of the instruction.

INSTRUCTION PIPELINE USE

The 2350 to 9955 II use a pipeline to speed up instruction decoding and
execution. The pipeline of the 6350 and 9750 to 9955 II has five
stages. The pipeline of the 2350 to 2755, 9650, and 9655 has two
phases. Both pipelines are discussed below.

The Five-Stage Pipeline

The 6350 and 9750 to 9955 II use a five-stage pipeline technique for
executing instructions in parallel, thus speeding up instruction
execution considerably. The execution of each instruction for this
pipeline through the five stages is shown in Table 1-1. Each stage
takes two beats to complete, where a beat is a certain constant of
time. The beat rate is the minimal time interval that the processor
requires to perform some useful task.

A processor using the five-stage pipeline executes instructions in
parallel. This means that the processor does not have to complete the
entire five-stage sequence for one instruction before it can begin
executing the next. Rather, instructions are processed somewhat like
cars in a factory assembly line. The cars travel past a number of
specialized stations. At each station a specific operation takes
place. Then the car moves on. After a certain length of time the next
car arrives at the same station where the same operation occurs.

The five-stage pipeline processes instructions in a similar fashion.
After every other beat, a new instruction arrives at a station, and
that station’s operation is performed on it.

Using the pipeline in this fashion, a processor executes Stage 1 of the
first instruction. When it begins on Stage 2 (Beat 3) of the first
instruction, that processor can also begin Stage 1 (Beat 1) of the
second instruction. Likewise, when a processor begins Stage 2 (Beat 3)
of the second instruction, it can also begin Stage 1 (Beat 1) of the
third, and so on. This means that the pipeline can begin a new
instruction every other beat.

1-7 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 1-1
The Five-Stage Instruction Pipeline

Stage | Beat | Action

I I
| |
! 1 1 | Send the contents of the lookahead program !
[| I register to the memory address register. l
[! [|
[1 I 2 | Read the next instruction from the cache. |
| | | l
Il 2 | 3 | Start decoding the address of the next I
| I I instruction. I
! I | I
I 2 1 4 | Read the contents of the base and index I
[! | registers. !
| [| !
I 3 | 5 | Form the effective address and the control |
| [| store address. I
| [| |
[3 | 6 | BSend the contents of the effective address !
I [| register to the memory address register and I
| [I fetch the contents of the next microword. I
[! | I
i 4 1 7 | Read the operand from the cache and register |
[| I file. I
| | | |
I 4 | 8 | Execution, phase 1 (ALU). |
| I | |
[5 | 9 | Execution, phase 2. (Transfer results to RS.) |
I I I I
I8 1 10 | Store the results of the operation. |

The rate of instruction-flow through the pipeline is determined by the
processor’'s use of system elements at each beat. As shown in Table
1-1, Beats 2 and 7 both use the cache, and Beats 7 and 10 both use the
register file. When two instructions in the pipeline request the same
element at the same time, a conflict occurs. Starting a new
instruction every other beat minimizes this type of conflict.

Vhen there are no conflicts in the pipeline, simple instructions
complete execution every two beats. Some instructions, however,
require more than two beats to complete execution. When this occurs,
the pipeline holds wup operations on the subsequent instructions until
it has completed the extra operation for the first instruction. During
the holdup, the processor still forms control store addresses and
fetches microcode words, but it performs no prefetch or effective
address calculations.

Second Edition 1-8

SYSTEM OVERVIEW

The Branch Cache and the Five-Stage Pipeline: The 6350 and 9750 to
9955 II use a memory called the branch cache to record and predict the
target address for jump and branch instructions. The branch cache
contains 256 to 1024 entries, depending on the processor model.

Because these processors execute instructions in parallel in their
pipeline, they might begin to execute instructions down an incorrect
path, following a branch, before they had determined the correct branch
address. If this occurs, the processor must flush the pipeline of all
instructions from the wrong branch path, and then must begin execution
down the correct branch path. This sequence of steps causes a delay.

To minimize the chance of such an occurrence, the branch cache contains
information about the branches that have previously occurred in the
program. The processor uses this information to determine which branch
was most recently taken for each conditional instruction. The
processor then assumes that the same branch will be taken this time.
If the prediction is wrong, the processor adds a new entry in the
cache, specifying the correct branch for future use.

Flushing the Five-Stage Pipeline: If an instruction stores data into
the stream of instructions that follows it, the five-stage pipeline may
have to be flushed before further calculations take place.
Store-instructions in S and R modes automatically flush the pipeline;
therefore, no further actions are required and performance is reduced
substantially. V mode and I mode store instructions, however, do not
automatically flush the pipe. Either an E64V (V mode) or an E32I
(I mode) instruction will perform the flush.

Prime systems are designed for pure procedure. All
translator-generated code avoids storing into the instruction stream.

The Two-Phase Pipeline

The 2350 to 2755, 9650, and 9655 use a two-phase pipeline technique for
decoding and executing instructions in parallel, thus speeding up
instruction execution. While these processors perform the effective
address formation and execution of one instruction, the next
instruction is read from cache and decoded.

1-9 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

SPECIAL FEATURES OF THE 6350

Although the 6350 follows the general architecture of the 50 Series as
shown in the previous discussions, it contains several <features
designed for outstanding performance in a multiuser environment.

Two-Set Associative STLB

The two-set associative STLB increases the likelihood that the physical
translation of a virtual address is in the STIB. This lessens the
chance that the slower virtual-to-physical address translation
mechanism has to be used.

Two-Set Associative Cache

The two-set associative cache increases the probability that the cache
will contain the correct data. This feature increases the likelihood
that the physical translation of a virtual address is in the STLB. The
combination of the two-set associative cache and the two-set
associative STLB adds up to increased performance for the 6350.

10KH ECL Design

For swift execution of instructions, the 6350 uses 10KH ECL (emitter
coupled logic). Memory parts using 10KH ECL are about twice as fast as
those made of ECL at the same power level. Most of the logic is
contained in semi-custom gate arrays.

Barrel Shifter

To speed up floating-point operations, the 6350 uses a barrel shifter.
Moreover, this feature provides more power for manipulations performed
in shift and rotate instructions.

Expanded I/0 System

The 6350's I/0 system has been expanded to speed up I/0 performance and
permit the parallel operation of a greater number of controllers. This
feature is achieved through the use of new IMx operations and four I/0
segments (0 to 3).

The 6350's new IMx operations are extended IMA, 32-bit single transfer
IMA, 32-bit burst mode IMA, and 16-bit burst IMT.

Second Edition 1-10

SYSTEM OVERVIEW

In extended IMA, theIMA control words can be located anywhere in the
I/0 segments in memory, not just in the DIMA register file, as long as
the control word is 32-bit aligned. Single 32-bit I[MA transfers 32
bits at a time instead of 16, and 32-bit burst mode transfers four
32-bit quantities at a time rather than four 16-bit ones.

DMT has been expanded on the 6350 to allow 16-bit burst IMT, whereby

the CPU receives a main memory address and then reads or writes four
16-bit quantities at a time rather than just one.

Ambient Temperature Environmental Sensor

The 6350 now has an ambient temperature environmental sensor that
detects when the air surrounding the processor has exceeded a certain
temperature. Chapter 10 discusses this in further detail.

Battery Backup Capability

In the event of a power failure, the 6350 has a battery backup
capability that keeps powered the memories, maintenance processor, and
memory refresh logic of the CPU.

1-11 Second Edition

Physical and Virtual
Memory

The 50 Series processors are virtual memory systems. This means that a
very large, protected, virtual address space is available to each user
who is logged onto the system. This virtual address space is supported
by a much smaller physical address space invisible to the user.

Virtual memory has several advantages. To the user logged onto the
system, there appears to be an address space of almost unlimited size,
which can support very large applications without using overlays. This
address space is protected against unauthorized accesses in hardware.
To the system owner, a virtual memory scheme provides the ease of use
of a large memory at the cost of a much smaller amount of hardware.

The three key parts to a virtual memory scheme are physical memory,
virtual memory, and a manager to control the virtual memory scheme.
The manager is the operating system, PRIMOS, and its attendant hardware
and firmware support. This chapter describes the characteristics of
the 50 Series physical and virtual memory, and shows how PRIMOS
coordinates the 50 Series virtual memory scheme. It also describes
some of the hardware protection mechanisms implemented in the 50 Series
virtual memory.

2-1 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

PHYSICAL MEMORY

Physical memory encompasses all hardware parts of the system used to
store large blocks of information. There are three types of physical
memory':

e Cache

e Main memory

e Disk

Figure 2-1 shows the relationship between the three elements of
physical memory.

Disk \

upto 64 770-Megabyte
Disk Drives

Main Memory
up to 64 Megabytes

Cache
up to 64 Kilobytes

Elements of Physical Memory
Figure 2-1

Second Edition 2-2

PHYSICAL AND VIRTUAL MEMCRY

Cache

The cache is a data buffer that stores copies of the information
contained in the most frequently referenced memory locations. Its size
varies from system to system as shown in Table 2-1. During program
execution, this buffer is used to speed up memory references.

Consider the following. Since cache is a form of very high speed
memory, it takes only 0.25 to 0.5 of a minimum instruction time to
access data stored there. In contrast, it takes about 2 to 5 times a
minimum instruction time to access data stored in main memory. This
difference in access times makes it very advantageous to access cache
whenever possible.

Three factors determine how often the cache contains the correct data
(known as the cache hit rate):

e The size of the cache (16 to 64 Kbytes)
e The organization of the cache (two-set associative or one-set)

e The information fetch rate (block size) of 32 to 64 bits,
depending on the system and the amount of memory interleaving

o Iocality of reference (the tendency of a program to execute
within a small part of itself at any time)

The 50 Series cache hit rate varies from system to system. See Table
2-1 for details.

Table 2-1
Cache Sizes and Hit Rates*

| System | No. Sets | Size Per Set | Total Size | Rate [
! |
I 2350 to 2655 and | 1 I 16 Kbytes | 16 Kbytes | 95% |
I 9650 to 9950 | | | | !
| 2755, 9955, and | 1 | 64 Kbytes | 64 Kbytes | >98% |
I 9955 II [| | I I
| 6350 | 2 | 16 Kbytes | 32 Kbytes | >98% |

*For earlier systems (listed on page 1-1), see Appendix B.

2-3 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Main Memory

Packaged onto printed circuit boards, the main memory uses dynamic
random access storage devices for data retention. All memory
incorporates error detection and correction ‘techniques and the

capability of performing two-way interleaving.

Error detection and correction allows the memory to remain functional
and to output correct data when a single bit in a 16-bit or 32-bit
quantity (depending on processor model) has become faulty. This type
of error is referred to as an ECCC. If more than a single bit in a
single 16-bit quantity is in error, the fault is uncorrectable, an
ECCU. All two-bit errors are detected as well as many multi-bit
€rTrors.

Interleaving effectively decreases the memory cycle time, increases
memory accessibility, and allows more efficient use of the I/0 bus.

There are two types of memory for all 50 series processors: the array
card driven by a memory controller for the 6350 and 9750 to 9955 II;
and the standalone memory subsystem for all other 50 Series processors.

The memory array cards used on the 6350 and 9750 to 9955 II require a
memory control unit to supply commands, error detection and correction,
and all interaction to and from the central processing unit. The
8-megabyte board has a 64-bit-wide storage capability that interacts
directly with the memory bus. The total main memory capacity of the
6350 and 9750 to 9955 IT is as follows.

o750 and 9755: 12 megabytes
9950 and 9955: 16 megabytes
9955 II: 32 megabytes
6350: 64 megabytes

Each standalone memory board used by the 2350 to 2765, 9650, and 9655
has a memory capacity of 2 or 4 megabytes to provide a maximum storage
capacity as follows:

2350 to 2655: 8 megabytes

9650 and 9655: 8 megabytes
2755: 16 megabytes

The board itself has a 32-bit-wide storage capability that interacts
directly with the memory bus.

Appendix B contains a description of the standalone memory subsystem
for the earlier processors listed on page 1-1.

Second Edition 24

PHYSICAL AND VIRTUAL MEMORY

Disk

Disks provide storage for all virtual memory. With the proper access
rights, the system or user can access this information. When the disk
is accessed, a copy of the information is moved from disk to main
Nemory.

VIRTUAL MEMORY

Virtual memory is divided into units called segments that contain up to
128 Kbytes each. Segments are virtual units, not physical ones, that
aid the user and the system in organizing their virtual address spaces.
For example, the user can organize program code in one segment and
program data in a second one. Segments make it possible to allow extra
roam in a program for variable length data structures, such as arrays
whose dimensions can change each time the program runs. Segments also
allow the user to build modular programs, one module to a segment .
PRIMOS uses segments similarly to organize its own code into modules.

The virtual address space of each user contains 4096 segments. These
are subdivided into four groups of 1024 segments each. The segments
are subdivided to make address translation and segment sharing easier.
(See the next section and Chapter 4, MEMORY MANAGEMENT.)

Shared and Unshared Segments

In the Prime virtual memory scheme (diagrammed in Figure 2-2), each
user address space of 4096 segments is divided into shared and unshared
space. The first 2048 segments are shared with all other users. This
allows the operating system, shared libraries, and shared subsystems to
be seen by all users. This means that if two users reference segment
2000, they are specifying the same location.

The second 2048 segments are private, containing information unique to
each user. This means that if two users reference segment 4000, they
are specifying completely different locations.

This arrangement of shared and unshared segments means that there is no
possibility of one user's private space conflicting with that of
another user. It also means that only one copy of PRIMOS and the
shared system software need be maintained, and thus reduces memory use.
Moreover, it means that PRIMOS is embedded in the virtual address space
of each user and is directly accessible via a normal procedure call.
(See Chapter 8, STACKS AND PROCEDURE CAIIS.) No interrupts, special
supervisor calls, or system traps are necessary when the user acoesses
PRIMOS or any utility, library, or subsystem residing in shared Space.

2-5 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Private
User-2's
2048 Segments.

Shared
by All Users.

2048 Segments for
PRIMOS, Shared Libraries,
and Subroutines.

Private
User-1's
2048 Segments.

Private
User-n's
2048 Segments.

80 Series Virtual Memory Space
Figure 2-2

Protection Rings

Designating shared and unshared segments is not the only form of
protection available to the 50 Series virtual memory. Three hardware
implemented rings provide a simple, unbreakable form of security that
checks each memory reference for its right to access the specified part
of memory.

The rings represent levels of privilege, and are diagrammed in Figure
2-3. All executing procedures run with a given ring number. This ring
value represents the rights, or privilege, of access in virtual memory.
A process rumnning under Ring 3 has the most restrictions, while a
process running under Ring O has no restrictions.

Second Edition 2-6

PHYSICAL AND VIRTUAI, MEMORY

Code that is executed under Ring O privilege must also have the
greatest protection to prevent accidental or intentional misuse. The
protection rings serve to provide this kind of protection so that a
Ring 3 program is restricted from reading, writing, and/or executing
Ring O data or code. Access is only provided to Ring O operating
system routines through the use of special gates set up for that

purpose.

/Fm
Inward Call

Inward Call

Inward Call

Outward Calls

Protection Rings
Figure 2-3

A Ring 3 program can therefore make a gated call to a Ring O routine.
This is referred to as an inward call. Procedures that require greater
access than is provided under Ring 3, but not as much as granted under
Ring O, operate under Ring 1 protection. Ring 1 procedures can also
perform inward calls to Ring O procedures. See Chapter 8 for more
information on procedure calls and gates.

See Chapter 4, MEMORY MANAGEMENT, for information about how rings

govern the virtual-to-physical address translation to prevent invalid
accesses.

-7 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Segmentation Table Lookaside Buffer

uses this buffer with the cache to reduce the time needed to access
information. Where a cache entry contains information about a recently
accessed physical memory location, an STLB entry contains the
information the system needs to find the physical location from the
virtual address the user specified. Each entry also specifies the
protection attributes associated with the location. Chapter 4
describes more about how the STLB is used.

SUMMARY

This chapter describes the configuration of the 50 Series physical and
virtual memories. Chapter 3, ADDRESSING, shows how to form a virtual
address that references a location within the virtual address space.
Chapter 4, MEMORY MANAGEMENT, shows how the B0 Series systems use the
virtual address and the virtual-to-physical address translation process
to integrate virtual and physical memory.

Second Edition 2-8

Addressing

The 50 Series processors support several kinds of addressing: direct
addressing, indexed addressing, indirect addressing, indirect indexed
addressing, and general register relative (GRR) addressing (unavailable
for the earlier processors listed on page 1-1). They also support
several modes of addressing, each with its own uses and benefits. This
chapter:

® Provides an overview of virtual addressing and of effective
address calculation.

® Explains how effective address calculation is done for each type
of addressing, and what registers are involwved.

o Explains the various modes of addressing.

® Provides summaries of instruction forms for each type of
addressing in each mode.

UNITS

The basic units of information are bits, bytes, halfwords, and words.
A byte contains eight bits. One halfword contains two bytes; the bits
are labelled from 1 (most significant bit) to 16 (least significant
bit). A word contains four bytes. The bits are labelled from 1 to 32.

Memory is measured in bytes. The 50 Series physical memory size can be
up to 64 Mbytes; the virtual address space contains 512 Mbytes.

3-1 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

COMPONENTS OF A VIRTUAL ADRESS

A virtual address refers to a unique location in a wuser’'s virtual
address space. The 1location is characterized by three elements: a
ring number, a segment number, and an offset within that segment. (All
offsets are relative to the first location within a segment, and are
expressed in units of halfwords.) The format of a virtual address is
shown in Figure 3-1.

When an instruction makes a memory reference, it provides information
from which the wvirtual address can be calculated. This is frequently
referred to as calculating the effective address. Depending on the
type of instruction, the information can be provided in several
different formats, and the calculation done in various ways. This
section explains the various ways in which the ring number, segment
number, and offset can be specified. It also explains the use of the
indirect bit. The section Forming an Address explains how each of the
four types of addressing uses these components to calculate the
effective address.

Ring Number

Ring numbers are found in the program counter, in the base register,
within indirect addresses, and also in data blocks such as ECBs. VWhen
an effective address is calculated, the highest numbered ring
referenced in any of these locations is chosen as the ring field for
the effective address. (For more information on rings, and on the
process of calculating ring numbers, see Chapter 4.)

Segment Number

The segment number is generally provided in one of four ways:

e If the instruction contains a base register field, the segment
number is found in the specified base register.

e If the instruction does not contain a base register field, the

e I 3 £ " 4 Va'e
segment number is found in the program counter.

e In indirect addressing, the segment number field contains the
segment number.

e In I mode general register relative (GRR), bits 5 to 16 of the
specified source register contain the segment number. (GRR is
unavailable for the earlier processors listed on page 1-1.)

Second Edition 3~

v}

Base Registers:

address calculation:

The procedure base register (PB)

The stack base register (SB)

The link base register (LB)

The auxiliary base register (XB)

The format of these registers is shown in Figure 3-1.

1 23 4 5

16 17 32

| O IRINGI O | SEGMENT | OFFSET [

ATTRESSING

Four 32-bit base registers are available for use in

Bits | Name

Description

|
|
|
|
|
|
| Ring
|
|
|
|
|
|
|
|

Segment
|
17 to 32 | Offset

Must be 0. (See the F bit in
the section on Calculating

Indirect Pointers, in
Chapter 8, for the
explanation of this.)

Specifies the ring number.

Must be 0. (See the E bit in
the section on Calculating

Indirect Pointers, in
Chapter 8, for the
explanation of this.)

Specifies the segment number.

Specifies the offset value.

Format of Virtual Addresses and Base Registers

Figure 3-1

The PB contains the address of the currently active procedure. It is
unique among the four base registers because its offset is always O.

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

The program counter always contains a trusted copy of the segment
number in the PB. Therefore, an instruction that contains no base
register field uses the same segment number as one that specifies the
PB.

SB contains the starting address of the stack for the currently active
stack frame. LB contains the starting address of a save area for
static variables, such as an entry control block. Because short
instructions reference IB-based variables starting from ‘400, the value
loaded into LB is usually ‘400 less than the start of the save area.
References then add an extra ‘400 to their displacement. (See Chapter
8.) XB usually contains a temporary pointer, such as that to a FORTRAN
common block. These three registers usually have nonzero offsets.
Thus, they supply not only the segment number but also an offset
address relative to that number.

Offset

The offset portion of an effective address is supplied by one or more
of the following components:

e Displacement: a 16-bit number given explicitly within the
instruction. In S, R, and V modes, the displacement can be 9
bits of the instruction that is added to or concatenated with
the program counter.

® Base register: if the base register is SB, LB, or XB, it will
contain an offset to be added to the displacement given within
the instruction.

e Index register: if an index register is used, then the contents
of that index register are to be added to whatever other offset
has been calculated. When an I mode general register is used as
an index register, only the contents of bits 1 to 16 are added
to the offset.

o Indirect address: if indirect addressing is used, the indirect
address contains the offset. Short form offsets are 16 bits.
Long forms are 20 bits (bit pointers). Short form C language
pointers are 17-bit offsets (byte pointers). (C language
pointers are not available for the earlier processors listed on
page 1-1.)

e Source register: if general register relative (GRR) is wused,
bits 17 to 32 of the source register will normally contain the
offset. This is interpreted as the following C language pointer
bits: the contents of bits 17 to 32 concatenated with the
content of bit 4. (GRR is not available for the earlier
processors listed on page 1-1.)

Second Edition 34

ADTRESSING

In summary, an offset can be calculated in any of the following ways:

Displacement

Displacement + offset from BR

Displacement + index register (or source register low for GRR)
Displacement + offset from BR + index register

Indirect address

Indirect address + index register

The instruction format tells the processor which method to use.

COMPONENTS OF AN INSTRUCTION

Instruction Format

Figure 3-2 diagrams a typical instruction format. Thus, it shows how
all the fields described in this chapter fit together into a single
instruction.

3-5 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

1 2 3 67 11 12 1314 15 16 17 32

T 1 X1 0P | 110001 ¥Y!I OP | BR | DISP l
| Bits | Mnem | Name _T_I_Jescri];;on - [
: 1 I | Indirect bit | Specifies indirect addressing. :
: 2 : X : Index field : Specifies use of an index register. :
: 3 to 6 : OoP : Opcode : Specifies the operation to perform.:
: 7 to 11 : - : ——— : Specifies instruction format. :
: 12 i Y : Index field : Specifies use of an index register. :
: 13 to 14 : op : Opcode 1 Specifies the operation to perform.:
: 15 to 16 : ER : Base register: Specifies the base register to use:
: 17 to 32 : DISP : Displacement : Specifies a 16-bit offset. :

Format of a Typical Instruction (V Mode, Long)
Figure 3-2

The figure shown above explains the parts of a typical instruction.
Instruction formats for all addressing modes, such as 64V short form or
3RI, are provided later in this chapter.

Indirect Bit

ractlion aln an

signifies that the address being calculated is an indirect address. If
this bit is 0, the address is a direct address. (Indirect addresses
are explained in the section Forming an Address, later in this
chapter.)

An instruction may contain an indirect bit. If this bit is 1, it

Second Edition 3-6

ATDRESSING

Index Register Field

An instruction may specify two index registers by using the X and Y
fields. Each of these fields is one bit long. These fields are
encoded with the contents of the I field to specify the type of
indexing to be performed. (See Table 34 for the encoding.) If an
index register is specified, then the contents of that index register
are added to whatever other offset has been calculated.

Base Register Field

The base register field of an instruction may contain one of the
following four values:

Value Base Register
00 PB (Procedure Base)
01 SB (Stack Base)
10 IB (Link Base)
11 XB (Auxiliary Base)

The value tells the processor which base register to check for the
correct segment number (and, perhaps, offset).

Displacement

The displacement field contains a 16-bit number representing an offset
within a segment. As the section on Offset explained, the value given
by the displacement may either stand alone or have other values added
to it to provide the actual offset for the effective address.

3-7 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

FORMING AN AIDRESS

The processor uses the contents of the fields in a memory reference
instruction to select which of the four types of address formations to
use:

e Direct

o Indexed

e Indirect

o Indirect indexed

e General register relative (for the 2350 to 9955 IT only)

Direct Addressing

In direct addressing, the processor forms the effective address by
adding the contents of the base register to the displacement.

Indexed Addressing

The processor adds the contents of the base register, index register,
and displacement to produce the effective address.

S, R, and V mode instructions that contain 1101 in bits 3 to 6 cannot

specify indexing. See the tables at the end of this chapter for
specific information.

Indirect Addressing

Short Form Indirection: Depending on the addressing mode, indirect
addressing takes one of two forms. In the first, the processor treats
the displacement as the address of a location in the procedure segment.
The processor uses the contents of the addressed location as the
effective address. This is called short form, or 16-bit, indirection.

Some addressing modes allow more than one level of indirection. (See
the 165, 32S, and 32R sections at the end of this chapter.) In these
cases, the processor uses the displacement as the address of some
location in the address space. If this addressed location contains
another indirect address, then the processor uses these contents as the
address of another location in memory. This indirection chain is
followed until one addressed location does not contain an indirect
address; these contents are called the result of the chain. The
processor uses the result of the chain as the effective address.

Second Edition 3-8

AIIDRESSING

The tables at the end of this chapter specify the number of levels of
indirection supported by each addressing mode.

Long Form Indirection: In long form indirect addressing, the
instruction points to a location in memory that contains a 32-bit (or,
more rarely, 48-bit) pointer. These long pointers contain not only
addresses but also 2 or 3 fields that provide additional information.

Figure 3-3 shows the format of those pointers. The bits of special
interest are the extension bit (or E bit), the fault bit (or F bit),
and the bit number field.

The functions of these three fields are as follows:

F bit If F =1, a pointer fault is generated when this
indirect address is used. (See Chapter 10 for
information on pointer faults.)

E bit If E = 0, the pointer is a 32-bit pointer. If E =1,
the pointer is a 48-bit pointer. (Throughout the
rest of the chapter, discussions assume that the
32-bit format is being used.)

Bit number Permits you to specify (or point to) a particular bit
within an address offset.

1 2 3 4 5 16 17 3R

'F 1 RING | E | SEGMENT | OFFSET I

Indirect Pointer Format, Long Form (32-bit)
(E is always 0.)

1 2 3 4 5 16 17 32 33 36 37 48

I'F I RING | E | SEGMENT | OFFSET | BIT# | RESERVED |

Indirect Pointer Format, Long Form (48-bit)

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
[(E is always 1.)
I

Pointer Formats for Long Form Indirection
Figure 3-3

3-9 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

Indirect Indexed Addressing

This type of addressing takes one of two forms: indirect preindexed,
or indirect postindexed.

When calculating a preindexed indirect address, the processor adds the
value of the index register to the contemts of the Dbase register and
displacement and uses the sum as an indirect address. It resolves any
indirection chain and uses the result of the chain (or the indirect
address itself, if there was no chain to follow) as the effective
address.

When calculating a postindexed indirect address, the processor adds the
contents of the base register and displacement and uses the result as
an indirect address. It resolves any indirection chain, then adds the
result of the chain (or the indirect address itself, if there was no
chain to follow) to the contents of the specified index register to
form the effective address.

General Register Relative Addressing

General register relative (GRR) is an addressing capability added to
32T mode that speeds up big array accesses and often gives the effect
of using general registers as base registers. The segment number is
formed from Dbits 5 to 16 of the specified source register. The offset
is formed in GRR by adding the displacement to bits 17 to 32 of the
specified source register. GRR is used by the I mode instructions AIP
and LTP. (GRR is not available for the earlier processors listed on

page 1-1.)

ADDRESSING MOCES

The first part of this chapter describes several ways to specify an
address with information contained within an instruction. Once the
processor calculates the effective address, it can reference whatever
information is contained in the location specified by the effective
address. This section describes the ways to specify an address in an

instruction and how the processor forms the effective address.

The 50 Series processors support four modes of addressing, each of
which forms addresses differently. Depending on the program and
personal preference, one or two of these modes may be more useful than
another. The three most important modes are:

e V, or virtual

e I, or general register

e R, or relative

Second Edition 3-10

ATCRESSING

The fourth mode -- S, or sectored, mode —- is supported for historical
reasons.

V Mode

V mode performs short and long operations and has a wide variety of
registers to use. A short (16-bit) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (32-bit) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumlators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use immediate forms and five
additional index registers. (This makes a total of 7 index registers
that I mode long operations can use.) The index registers are
specified by the source register field. General register O, however,
cannot be used for indexing.

General register relative (GRR) addressing is available only in I mode,
and is used by the I mode instructions AIP and LIP. This form of
addressing speeds up big array accesses and often gives the effect of
using general registers as base registers. (GRR is not available for
the earlier processors listed on page 1-1.)

The C language pointer is wused by the I mode instructions ACP, CCP,
DCP, ICP, LCC, SCC, and TCNP. The format of this pointer is the same
as the indirect pointer, except that bit 4 is redefined as the B (byte)
bit. When this bit contains O, it indicates that bits 1 to 8 (the left
byte) of an address contain the character to be used; when this bit
contains 1, bits 9 to 16 (the right byte) of an address contain the
character. A null pointer is represented by zeroes in bits 4 to 32.
(The C language pointer and its instructions are not available for the
earlier processors listed on page 1-1.)

Normal effective address formation uses either a base register,
indirect pointer (IP) or a general register (for GRR addressing) as the
source of the ring field, B bit, and segment number. The C language
pointer is well defined for the IP and GRR form. When the base
register is the source of the B bit, software depends on finding it
reset to =zero, pointing to the leftmost byte. While it is possible to
set the E bit in a base register using 48-bit IPs to specify 32-bit
addresses, this practice is not now done. Future implementations of V
and I modes will force bit 4 to zero during effective address formation

3-11 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

when the source of the segment is a base register; otherwise it will
copy bit 4.

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector O starts on location O and ends on location ‘777; Sector 1
begins on location ‘1000 and ends on location ‘1777; and SO On.

An R mode instruction can reference any location in Sector O, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is O, the
instruction can only reference locations in Sector 0. VWhen S is 1, the
instruction references locations relative to the current value of the
program counter. The range of these relative locations is PC - '360 to
PC + '377, inclusive.

An R mode instruction that specifies a location in the range PC - ‘361
to PC - '400, inclusive, selects a special addressing code, such as
stack register. These special codes are explained in more detail in
Tables 3-7 and 3-8.

S Mode

Like R mode instructions, S mode instructions contain a sector bit.
When S is 0O, references are to Sector O. VWhen S is 1, however,
references are only to those locations within the sector containing the
instruction.

Note that S mode is a holdover from early Prime machines that were
based on the Honeywell 316 and 516 minicomputers. When operating in
S mode, the 50 Series processors act exactly as these early machines
do.

SUMMARY OF ADDRESSING MODES

The figures and tables in the rest of this chapter present summaries of
each addressing mode. Table 3-1 is a list of the mnemonics used in
these addressing mode summaries. Table 3-2 summarizes useful
information about all the modes.

Second Edition 3-12

Table 3-1
Mnemonics Used in Summaries of Addressing Modes*

ATTRESSING

Mnem | Explanation Il Mnem | Explanation [
BR | Base register It RBEG | A location in the I'
| Il I register file. See [

CB | Class bit I I Address Traps. [
D : Displacement : : S : Sector bit :
R : Destination register : : SB : Stack base register II
F : Fault bit : : SP : Stack pointer :
I : Indirect bit : : SR : Source register :
LB : Link base register : : ™ : Tag modifier :
OP : Opcode :: X : X index register :
P : PC+1 || |l XB : Auxiliary base register :
PB : Procedure base reg:'Lster"‘*lI : XX || Opcode extension :
PC E Program counter** : : Y : Y index register :
[[

* An H appended to a register mnemonic refers to bits 1 to 16 of that

register;

an L so appended refers to bits 17 to 32.

** The PB segment number equals the PC segment number. The PB offset
number is O, but the PC offset number is the next instruction.

3-13

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

Table 3-2

Summary of Addressing Modes

| Mode | Address | Addressing Range |# Index! Indirection!
| | Length | | Regs | Levels [
: e 1
| 16S direct | 14 bits | 1024 halfwords | One I I
1 | | [| [
I 16S indirect | 14 bits | 16K halfwords | One | Multiple |
l | [| | |
| 32S direct | 15 bits | 1024 halfwords | One | I
l | [| | [
| 32S indirect | 15 bits | 32K halfwords | One | Multiple |
[| | | | |
I 32R direct | 15 bits | 1008 halfwords | One | [
t [| | I [
| 32R indirect | 15 bits | 32K halfwords | One | Multiple |
[[| | | I
| B4R direct | 16 bits | 1008 halfwords | One | [
! | | | | I
| 64R indirect | 16 bits | 64K halfwords | One | One |
! [| [I |
| 64V 16-bit | 16 bits | 64K halfwords: | One | One |
| instructions! | +256 SB relative | i |
t | | +256 LB relative | | |
| ! | +/-256 PC relativel I [
I | | +512 PB absolute | | I
I | | | [|
| 64V 32-bit | 28 bits | 4 segments* | Two | One |
[instructions| | | ! |
[[| I | [
| 64V indirect | 28 bits | 4096 segments* | Two | One |
| | | [| [
I 32T all | 28 bits | 12 segments* | Seven | One I
l ! | with GRR** | i [
| | | | | [
I 321 indirect | 28 bits | 4096 segments* | Seven | One [

* A1l segments contain 128 Kbytes.

** Four segments for the earlier processors listed on page 1-1
because they have no GRR capability.

Second Edition

3-14

64V Mode Short Form

ATTRESSING

Figure 34 and Table 3-3 display and explain 64V mode short form

instructions.
| 1 2 3 6 7 8 16 |
| |
{ ' T 1T X1 OP | S| DISPLACEMENT | I
| |
| Instruction Format |
| [
I 1 16 |
[I
| I ATTRESS ! I
I I
| Indirect Pointer Format |
64V Mode Formats, Short Form
Figure 34
Table 3-3
64V Mode Short Form Summary
' T 1 X1 S 1 Disp | Inst Type | Example I Form of EA |
I i
0101 0| O-'7@ ! Direct | IDA ATR | REG |
I | ! I "10-'377 | Direct | | SB+D I
| | I | '400-'777 | Direct@e@ | | LB+D |
011101 O-'7@ | Indexed | IDA ATR,X | REG, if D+X<'7;@ I
|] | I [[| SB+D+X, if D+X>'7@ |
| | [I '10-'377 | Indexed | | SB+D+X I
| [| | '400-'777 | Indexed@@ | | LB+D+X |
110101 O-'7@ | Indirect | IDA ATR,* | I(REG) [
| | [I "10-'7?7 | Indirect | | I(PB+D) |
I'1 11101 o-'7 I Indirect, | LDA ADR,X* | I(REG), if D+X<'7;@!
o Ipreindexed | | I(PB+D+X), |
| ! | [| | I if D+X>'7@ |
| I [I "10-'7? | Indirect, | ILDA ATR,X* | I(PB+D+X) |
[[[| I preindexed | | t
[| [I "100-'77? | Indirect, | IDA AR, *1 | I(PB+D)+X !
[| | | I postindexed | [|
01 01 1 1'-340-'+377! Direct | LDA ATR | P+D |
01 111 1'-340-'+377! Indexed | LDA ADR,1 | P+D+X |
11101 1 1'-340-'+3771 Indirect | ILDA AIR,* | I(P+D) |
11111 1'-340-'+377! Indirect, | ILDA ADR,1* | I(P+D+X) |
| [! [preindexed | | !
3-15 Second Edition

SYSTEM ARCHTTECTURE REFERENCE GUIDE

Notes to Table 3-3

@ This table assumes segmented mode (modals bit 14 = 1). For
nonsegmented mode, the displacement range is O to '37,
rather than O to '?. This means that the range ‘10 to '377
changes to ‘40 to ‘377 in nonsegmented mode. The range ‘400
to ‘777 remains unchanged.

@ In these address forms, the displacement offsets the
contents of LB by '400 (bit 8=1). To compensate for this,
set the contents of IB to the current wvalue of the 1link
frame minus ‘400. For example, if the segment number in LB
is ‘4002 and the offset number in the displacement is
‘177400, the offset of ‘400 gives the location of the link
frame as segment number ‘4002, offset number O.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions DFIX, FILX, JSX, LDX, LDY, QFLX, STX, and STY

do not do indexing. The effective address is formed as if
bit 2 = 0.

Second Edition 3-16

ATCRESSING

64V Mode, ILong Form and Indirect Form

Figure 3-5 and Table 34 display and explain 64V mode long and indirect
form instructions.

1 2 3 6 7 1112131415168 17 32

I'T 1 X1 OP1| 11000 | Y| XX | BR | DISP |

33 48

I AUGMENT CCDE* |

Instruction Format

I'F | RING | O | SEGMENT | OFFSET |

32-bit Indirect Pointer Format

1 2 3 4 5 16 17 32 33 36 37 48

I'F | RING | 1 | SEGMENT | QFFSET | BIT# | RESERVED |

48-bit Indirect Pointer Format**

I
I
|
I
|
|
I
I
]
I
|
|
I
|
I
I 1 2 3 4 5 16 17 32
|
|
I
]
|
I
I
I
I
I
I
I
!

* For quad operations only.

** This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure 3-5

3-17 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 34
64V Mode Long Form, Indirect Summary

| T 1 X1 Y ! BRI Instruction Type | Example | Form of EA
| — e
0101 01! 00 | Direct i 1LDA AR | PB/D

[[| | 01 | ! | SB+D

[| | I 10 | [| LB+D

| | : [11 | [| XB+D
010111 00! Indexed by Y | IDA ADR,Y | PB/D+Y
[1 [| 01 | [| SB+D+Y

s | [| 10 | ! | LB+D+Y

| | | I 11 | | | XB+D+Y
I0O1' 1101 00 | Indexed by X | IDA ATR,X | PB/D+X
[[1 I 01 | | | SB+D+X

[[| I 10 | | | LB+D+X

[| 1 I 11 | | | XB+D+X
011111 00 | Indirect | IDA AIR,* | I(PB/D)
[[x | O1 | | | I(SB+D)

| | | [10 | | | I(LB+D)

| | | 111 | [| I(XB+D)

' 110101 00 | Preindexed by Y | LDA ATR,Y* | I(PB/D+Y)
r [s I 01 | ! | I(SB+D+Y)
l | | I 10 | I | I(IB+D+Y)
| | | 111 | [I I(XB+D+Y)
' 110111 00 | Postindexed by Y | LDA AR, *Y | T(PB/D)+Y
| | | | 01 | | | I(SB+D)+Y
| { | | 10 ! ! | T(ILB+D)+Y
[i | 111 | | I(XB+D)+Y
1111101 00! Preindexed by X | LDA ATR,X* | I(PB/D+X)
| [| | 01 | | | I(SB+D+X)
[| [I 10 | | | I(IB+D+X)
[[[|11 | [I I(XB+D+X)
111111 00| Postindexed by X | LDA AIR,*X | I(PB/D)+X
| | | {01 1 | I I(SB+D)+X
f | ! | 10 | | | I(IB+D)+X
[| [I 11 | 1 | I(XB+D)+X

Notes to Table 34

The processor performs X and Y indexing and 32-bit word
(inter-segment) indirection.

PB/D indicates that the displacement is relative to the origin
of PB. PB specifies the segment number (the offset must be 0);
the displacement specifies the offset.

All displacements are within the range O to '17777Y.

Second Edition 3-18

ADDRESSING

The instructions DFLX, FILX, JSX, LDX, LDY, QFLX, STX, and STY
do not do indexing. The effective address is formed as shown
in Table 3-5. Bit 2, the X bit, is used as part of the opcode

in these instructions.

Table 3-5
Address Formation for Nonindexing Instructions

I 1 X1y

|

0101 01
o101 11
1011101
P01 11 11
1101 01
11101 11
1+t 1101
P11 1111

Direct
Direct
Direct
Direct
I(A)
I(A)
I(A)
I(a)

| Instruction Type |

Notes to Table 3-5

For the earlier processors listed on page 1-1, see Apperdix B
for information on their address formation for nonindexing

instructions.

The symbol A in Table 3-5 represents the value calculated from
the base register (PB, SB, LB, or XB) and displacement in the

instruction.

3-19

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

321 Mode

Figure 3-6 and Table 3-6 display and explain 321 mode instructions.

1 67 910 11 12 14 15 16 17 3R

I OP | IR | T | SR | BR | DISPLACEMENT |

Instruction Format*

1 2 3 4 b 16 17 32

I'F 1 RING| O SEGMENT | OFFSET [

Indirect Pointer Format (Short Form)

1 2 3 4 5 16 17 32 33 36 37 48

| F 1 RING | 1 | SEGMENT ! OFFSET | BIT# | RESERVED |

Indirect Pointer Format (Long Form)

1 2 3 4 5 16 17 32

| F | RING | B | SEGMENT | OFFSET I

C Language Pointer**

1 16 17 32

[INSTRUCTION BITS 17 TO 32 [ZERCES I

Tmmediate Type 1***

1 16 17 32

| SIGN EXTENSION | INSTRUCTION BITS 17 TO 32 !

Imediate Type 2***

1 8 9 56 57 64

I BITS 17 TO 24 | ZEROES | BITS 25 TO 32 |

Immediate Type 3 (Floating Point)***, *¥xx

321 Mode Formats
Figure 36

Second Edition 3-20

ATDRESSING

Notes to Figure 3-6

* TM is the tag modifier which, in combination with the SR
and BR fields, specifies the instruction type.

** The C language pointer is not available for the earlier
processors listed on page 1-1.

*** The instruction specifies the immediate type to use.
During instruction execution, the processor forms the
immediate in the appropriate format and stores it
internally for use in the operation as shown in Figure 3-6.

**xx Bits 1 to 8 of Immediate Type 3 are formed from I mode
instruction bits 17 to 24; Dbits 57 to 64 from I mode
instruction bits 25 to 32.

Table 3-6
321 Mode Summary

| BR | Instruction Type | EA (Segment)! EA (Offset)

Indirect

Indirect postindexed

Indirect

Indirect preindexed

Direct

Indexed

Register-to-register

Immediate type 1

Immediate type 2

Immediate type 3

Floating register
source (FRO)

[I I(5 to 16) |
| | |
| [|
| [|
| | |
[| |
[| |
| | [
| | |
| | |
| [|
| | |
| Undefined; generates | ——- |-
| ! |
| | |
| | 1
[| |
[| |
[| |
| | |
| [|
[| |
| | |
| | |

I(5 to 18)
I(5 to 16)
I(5 to 18)
BrR(5 to 16)
BR(5 to 16)

I(D+BR)
(I(D+BR))+SRH
I(D+BR)
I(D+BR+SRH)
D+BR

D+BR+SRH

bo0b0db0 | B

O OCOOOOREDdMG | B
o

» ~rodo’
q

[4v] VDOHHO |

UII (unimplemented
instruction) fault

Floating register
source (FR1)

Undefined; generates
UII fault

General register
relative (undefined
for the earlier
processors listed
on page 1-1)

(@
£A0)

4-7

0-7 SR(5 to 18)

Note to Table 36

Displacements are within the range O to '17vv77, inclusive.

321 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

32R Mode

Figure 3-7 and Table 3-7 display and explain 32R mode instructions.

1 2 3 6 7 8 16

' T 1 X1 OP | S| DISPLACEMENT |

Short Instruction Format

1 2 3 6 7 12 13 14 15 16

I 1 X1 OP 1 110000 | OP | CB |

16-bit Long Instruction Format

1 2 3 6 7 12 13 14 15 16 17 32

I 1T X1 OP |1 110000 | OP | CB | DISP |

32-bit Long Instruction Format

1 2 16

I ATTRESS [

Indirect Pointer Format

1 2 16

01 ADDRESS |

Final Effective Address Format*

32R Mode Formats
Figure 3-7

Second Edition 3-22

Note to Figure 3-7

ADCRESSING

The final form of an effective address in 32R mode is only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however,
full 16 bits wide. Multilevel indirection is a feature of

is a

stack relative

32R mode.
Table 37
32R Mode Summary

t I 1 X1 S 1 CB I Displacement | Instruction Type IForm of EA|
[|
0101 01 — | 0 to 77 | Direct | 0/D I
011101 — | 0 to ‘777 | Indexed | O/D+X |
110101 — | 0 to '777 | Indirect I I(0/D) |
111101 — | 0 to ‘77 | Indirect, preindexed I I(O/D+X) |
111101 — 1 '100 to'7?7 | Indirect, postindexed I I(O/D)+X |
010111 — 1'-30 to '+377! Direct | P+D I
011111 — 1'-380 to '+3771 Indexed | P+D+X [
110111 — 1'-360 to '+377! Indirect | I(P+D) |
1111111 — 1'-380 to '+377! Indirect postindexed | I(P+D)+X |
0101112 1 — | @Postincrement i SP |
F0o 111112 | — | @Postincrement, indirect,!| I(SP)+X |
| [| 1 I | postindexed | [
1101112 | — | @Postincrement, indirect | I(SP) |
o100t 113 1 — | #Predecrement I SP-1 I
0111113 1 —_— | #Predecrement, indirect, | I(SP-1)+XI
! ! | [[| postindexed [|
11101113 | —_— | #Predecrement, indirect | I(SP-1) |
0101110 | 0to "17777? | *Direct, long reach I D !
PO 1T 11110 1 0to "177777 | *Indexed, long reach | D+X I
1101110 | 0to "177777 | *Indirect, long reach | I(D) 1
1111110 | 0to '"177777 | *Indirect, preindexed, | I(D+X) |
| | | | I | long reach | !
I'1 111112 1 0to '177777 | *Indirect, postindexed, | I(D)+X |
| [| | | | long reach | !
0101111 | 0to "1v77v? | *Direct, stack relative | D+SP !
F0O1 11111 1 0to "'17vv? | *Indexed, stack relative | D+SP+X I
F1 101111 1 0to "1v77re | *Indirect, stack relative! I(D+SP) |
1111111 1 0to "177777 | *Indirect, preindexed | I(D+SP+X) |
] | i | | | stack relative I |
1111113 1 0to '17777 | *Indirect, postindexed | I(D+SP)+XI
| | | [[| |

3-23

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Notes to Table 3-7

* These instruction types use the 32-bit long format shown in
Figure 3-7.

@ These instruction types use the 16-bit long format shown in
Figure 3-7. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure 3-7. They also decrement the contents of SP by 1
during EA formation.

For all instruction types listed above, address traps can occur
when any part of the EA formation results in an address in the
range O to '7 (segmented mode) or O to ‘37 (unsegmented mode).
See the end of this chapter for more information.

The processor performs one level of indexing and multiple
levels of indirection.

0/D indicates that the displacement is within Sector O.

The instructions DFLX, FLX, JSX, IDX, IDY, QFLX, STX, and STY
do not do indexing. The processor treats the X bit as a 0 to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as 0113, the
processor interprets it as 0013.

Second Edition 3-24

ATIDRESSING

64R Mode
Figure 3-8 and Table 3-8 display and explain 64R mode instructions.

1 2 3 6 7 8 16

I +tX1 OP | 81 DISP I

Short Instruction Format

1 2 3 6 7 12 13 1415 16

T 1 X1 OP | 1100001 OP | CB |

16-bit Long Instruction Format

1 2 3 6 7 1213 1415 16 17 32

T 1 X1 OP | 110000 | OP | CB | DISP |

32-bit Long Instruction Format

[ADCRESS |

Indirect Pointer Format*

*Only a single level of indirection is possible in 64R mode.

84R Mode Formats
Figure 3-8

3-25 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 3-8
64R Mode Summary

T 1 X1 S 1 CB I Displacement | Instruction Type IForm of EAl
[|
FO1T 0101t — 1 0 to ‘777 | Direct i 0/D i
011101 — | 0 to 777 | Indexed I O/D+X [
110101 — | 0 to ‘777 | Indirect | I(0/D) [
P11 1101 — | 0 to '7? | Indirect, preindexed I I(0/D+X) |
111101 — 1 '100 to 777 | Indirect, postindexed I I(0/D)+X |
010111 — 1'-30 to '+377! Direct | P+D I
10t 1111 — 1'-360 to '+3771 Indexed | P+D+X |
110111 - 1'-360 to '+3771 Indirect | I(P+D) I
111111 — 1'-30 to '+377! Indirect postindexed | I(P+D)+X |
0101112 1 - | @Postincrement | SP |
0111112 | — | @Postincrement, indirect,! I(SP)+X |
! | [[| | postindexed [[
1101112 | _— | @Postincrement, indirect | I(SP) |
0101113 | — | #Predecrement I SP-1 I
o1 11113 | — | #Predecrement, indirect, | I(SP-1)+XI
[| 1 [| | postindexed [[
1101113 | — | #Predecrement, indirect | I(SP-1) |
0101110 | 0to "17777 | *Direct, long reach | D |
01111210 1 0to "1777?7 | *Indexed, long reach | D+X |
12101110 1| Oto "1777?7 | *Indirect, long reach I I(D) |
P11 11110 | 0to 177777 | *Indirect, preindexed, | I(D+X) |
I | | | | | long reach [|
1111112 | 0to '177r7 | *Indirect, postindexed, | I(D)+X !
| | | | [[long reach [|
P01 O0O1 111 1 0to '177rr? | *Direct, stack relative | D+SP |
10111111 1 0%o '177777 | *Indexed, stack relative | D+SP+X l
(1101111 1 0to '17vrr | *Indirect, stack relativel I(D+SP) |
1111111 1 0%to 177777 | *Indirect, preindexed | I(D+SP+X) |
I | l | I | stack relative I |
11111113 1| 0to ‘177777 | *Indirect, postindexed | I(D+SP)+XI
| s | [| [t

stack relative [

Second Edition 3-26

ADTRESSING

Notes to Table 3-8

For all the instruction types listed in Table 3-7, address
traps can occur when any part of the EA formation results in an
address in the range O to ‘? (segmented mode) or O to ‘37
(unsegmented mode). See the end of this chapter for more
information.

* These instruction types use the 32-bit long format shown in
Figure 3-8.

@ These instruction types use the 16-bit long format shown in
Figure 3-8. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure 3-8. They also decrement the contents of SP by 1
during EA formation.

The processor performs one level of indexing and multiple
levels of indirection.

.

0/D indicates that the displacement is within Sector O.

The instructions DIFLX, FILX, JSX, LDK, LDY, QFLX, STX, and STY
do not do indexing. The processor treats the X bit as a 0O to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as O0l13, the
processor interprets it as 0013.

3-27 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

16S Mode

Figure 3-9 and Table 3-9 display and explain 165 mode instructions.

1l 2 3 6 7 8 16

I T 1 X1 OP | S| DISPLACEMENT !

Instruction Format

1 2 3 16

P I 1 X1 ATDRESS I

Indirect Pointer Format

1 2 3 16

101 0| ADIRESS |

Final Effective Address Format

16S Mode Formats
Figure 3-9

Note to Figure 3-9

The final form of effective addresses in S mode are only 14
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

Second Edition 3-28

ADTRESSING

Table 3-9

16S Mode Summary
I'T 1T X1 S Disp I Instruction Type | Example IEA Form |
| |
01010t Oto 7?77 | Direct | LDA ATR | 0/D |
01 0t1t11 O%o " | Direct | LDA AR I C/D I
011101 O¢t%to 7 | Indexed | LDA AIR,1 | O/D+X |
011111 Oto 77 | Indexed | LDA ATR,1 | C/D+X |
110101 Oto 7 | Indirect | IDA AIR,* | I(0/D) |
110111 Oto 7 | Indirect | LDA ATR,* | I(C/D) |
111101 Oto 77 | Indirect preindexed | LDA ATR,1* | I(D+X) |
111111 O0to 777 | Indirect preindexed | LDA AIR,1* | I(D+X) |

Notes to Table 3-9

The processor performs indexing before resolving each level of
indirection.

This mode allows multiple levels of both indexing and
indirection.

The instructions, LIX and STX, cannot do indexing. The
effective address is formed as if bit 2 = O.

O/D indicates that the displacement is within Sector 0; C/D,
within the current sector.

3-29 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

325 Mode

Figure 3-10 and Table 3-10 display and explain 325 mode instructions.

1 2 3 6 7 8 16

T 1 X1 OP | S I DISPLACEMENT I

Instruction Format

Indirect Pointer Format

1 2 16

I O | ATDRESS [

| !
! f
[|
| I
| |
| I
| |
| I
I I
| I
| |
! | I 1 ATDRESS | I
| I
f I
| I
| I
| I
I I
I I
| !
| |
{ Final Effective Address Format |
| I

328 Mode Formats
Figure 3-10

Note to Figure 3-10

The final form of effective addresses in S mode are only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

Secord Edition 3-30

ATDRESSING

Table 3-10

32S Mode Summary
I 1 X1 81 Disp I Instruction Type | Example |EA Form |
[|
010101 Oto "7 | Direct | LDA ADR | O/D [
o101 11 0 to '77? | Direct | LDA AR ! C/D I
011101 Oto '"77 | Indexed | ILDA ATR,1 | O/D+X |
F0+1 1111 0 to 777 | Indexed | ILDA ADR,1 | C/D+X |
110101 Oto 7 | Indirect | ILDA AIR,* | I(O/D) |
110111 Oto "7 | Indirect | IDA AIR,* | I(C/D) |
1T +1101 Oto '?r | Indirect preindexed | LDA AIR,1* | I(D+X) |
111101100 to "7 | Indirect postindexed! IDA AIR,*1 | I(D)+X |
111111 0 to '7r7 | Indirect postindexed! LDA ATR,*1 | I(D)+X |

Notes to Table 3-10

The processor performs indexing before resolving each level of
indirection.

This mode allows one level of indexing, and multiple levels of
indirection.

The instructions, IDX and STX, camnot do indexing. The
effective address is formed as if bit 2 = O.

AITRESS TRAPS

Several of the summaries in the last section specifyd special cases of
EA formation when the address is within a particular range. This range
of addresses corresponds to registers within the current user register
set in the register file. (See Chapter 9.) In segmented mode, this
range is ‘O to '7; in nonsegmented mode, 'O to '37. This range of
addresses for segmented and nonsegmented modes is referred to as the
ATR, or address trap range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and system status
and control information. Each time any part of the EA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific
register.

Table 3-11 summarizes when address traps occur for all modes of
addressing and instruction types.

3-31 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

Table 3-11
Address Trap Information

Mode | Inst Type | Action

[i
! |
I 16S | Memory | Address trap occurs if the EA falls |
| 328 | reference!l within the ATR (address trap range). |
| 82R | I The instruction format or length has |
| 64R | I no bearing. [
l ! | [
| | Generic | Address traps never occur. |
! | I |
[| Generic AP | Address traps do not occur when the [
[| I processor is fetching the address |
[! I pointer. [
[| | [
| 64V | 32-bit | Address traps never occur. |
| | memory | |
| I referencel !
| [[[
| | Short | See Table 3-12. [
I I format I i
! I I |
! | 16-bit | Address traps occur if the EA falls I
| | indirect | within the AIR. |
| ! I [
| | 32-bit | Address traps never occur. |
! | indirect | !
I | | |
| ! !

Address traps never occur.

When bits 17 to 32 of the program counter contain a value within the
ATR and the processor is reading an instruction, an address trap always
occurs. The only exception to this is if the machine is operating in
321 mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table 3-12 lists the conditions that must be present for an address
trap to occur.

Second Edition 3-32

ADTRESSING

Table 3-12

Address Trap Action for Short Format
Instructions, 64V Mode

| Disp | Action

0Oto 7
‘10 to ‘37

Takes address trap.

Takes address trap only if
segmentation is off.

Cannot take address trap.

Takes address trap if EA (P+D) is
within the ATR.

Takes address trap if D+X is
within the ATR. If D+X is
outside the ATR, the EA is
SB (seg #) | D+X (for the 750,
850, and 2350 to 9955 II; or
SB (seg #) | D+X+SB (offset #)
(for all other machines).

Cannot take address trap; EA is
SB+D+X (for 750, 850, and
2350 to 9955 II).

All other machines take address
trap if D+X is within the ATR.

Cannot take address trap.

Takes address trap if EA (P+D+X)
is within the ATR.

Takes address trap if D is
within the ATR.*

Takes address trap if EA
((P+D)) is within the ATR.*

Takes address trap if D<’'100 and
D+X is within the ATR.*

Takes address trap if EA (P+D)
is within the ATR.*

‘40 to ‘377
-'340 to +'377

OO OO0 | M

- O [oNe) [7]

O OO0 OO0

(@]

0 to ATR

‘400 to 'YV
-'340 to +'877

0 to ‘7

o O

-'340 to +'377
0 to "7

-'340 to +'877

!
|
I
[
i
I
I
f
I
I
I
I
|
|From ATR to ‘377
|
I
I
|
I
|
|
|
|
J
{
I
f
|
|

Note to Table 3-12

* The indirect address also takes an address trap if EA is
within the ATR.

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be writtemn
into a temporary register. If a trap occurs, the routine aborts the
write to memory. It loads the specified register file 1location with
the contents of the temporary register.

3-33 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

If the instruction specifies a read operation that causes an address
trap, the trap routine aborts the memory read and fetches the contents

of a register file location.

The trap routine loads the cache from the
register file data and allows the processor one cache access before

invalidating the cache location.

Table 3-13 shows the address trap locations and the registers to which
For more information on the register file, see

they correspond.
Chapter 9.

Address Trap/Register File Correspondence

Table 3-13

| AT | S and R Modes | V Mode [
| |
I '0 1 X I X [
'l 1A | A, IH |
I ‘2 | B | LL |
'3 1S Y [
| ‘4 | FAC bits 1 to 16 | FAC bits 1 to 16 |
| ‘6 | FAC bits 17 to 32 | FAC bits 17 to 32 !
| ‘6 | FAC exponent I FAC exponent [
| '? | PC, LSBs | PC, ISBs I
{ '10* | DTAR3H | DTAR3H l
| '11* | FCODEH | FCODEH |
| ‘12* | FADIRL | FADDRL [
I 118* | | !
(I | SBH [
I'15% | | SBL [
Ir1e* | | LBH |
Ir1e* | LBL [
| ‘20* | IMA cell 'Q0H | TMA cell '20H [
| ‘21* | IMA cell '20L | TMA cell '20L |
| '22* | IMA cell 'QQH | DMA cell '22H [
| '23* | IMA cell 'Q2L | IMA cell '22L I
| '24* | DMA cell '24H | IMA cell '24H [
| '25*% | IMA cell '24L | IMA cell '24L !
| '26*% | MA cell 'Q6H | IMA cell '26H I
| '27* | MA cell 'Q06L i IMA cell '26L [
| '30* | IMA cell '30H | IMA cell '30H l
| '31l* | IMA cell '30L | IMA cell ‘30L I
| '32* | IMA cell '3QH | IMA cell '32H [
| '33* | IMA cell '32L | IMA cell '32L [
| '34* | IMA cell '34H | IMA cell '34H [
| '35* | IMA cell '34L | IMA cell '34L [
| '36* | IMA cell '36H | IMA cell '36H I
| '37* | DMA cell ‘36L | TMA cell '36L [
Second Edition 3-34

ADDRESSTNG

Note to Table 3-13

* These correspond to user register file
locations only in nonsegmented mode.

SUMMARY

The fields of a memory reference instruction specify information used
to form an effective address. These fields specify which information
is to be used in the formation, how the formation is to be done,
and —- in conjunction with the rest of the program — the addressing
mode under which the address is to be formed. Depending on the
segmentation mode and the EA formation, addresses can reference
registers within the current user register file as well as memory
locations.

3-35 Second Edition

Memory Management

The last chapter showed how the 50 Series systems use information
contained in an instruction to form a virtual address. This address
specifies a location in the virtual address space, which may or may not
correspond to a location currently loaded in physical memory. This
means that the processor must find some way to convert the virtual
address into something that can address a physical memory location, and
must then search physical memory for that location. This chapter
describes how the processor uses a virtual address to address nemory,
and describes the data structures (registers and tables) that
facilitate the reference.

THE VIRTUAL ADDRESS

A virtual address is a reflection of the segmented virtual address
Space the user sees. A physical address, similarly, must reflect the
pages that make up physical memory. How does the processor make the
transition from a segment-oriented address to a page-oriented one? The
virtual address (diagrammed in Figure 4-1) is the starting point. (As
this figure shows, the page number and DTAR are generally transparent
to the user. They are seen only by the mapping hardware.)

4-1 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

1 2 3 4 65 16 17 32

| O | RING | O | SEGMENT | OFFSET |

virtual Address Format

1 23 4 5 16 17 22 23 32

| O | RING | O | DTAR and SEGMENT # | PAGE # | OFFSET # |

[
|
|
|
[
I
|
|
|
|
[
|
t
|
|

DTAR and Page Numbers in Virtual Address Format [
|
(

Virtual Address Format as Seen by
the Mapping Hardware

Figure 4-1

The steps the processor takes to convert this virtual address into a
physical address are:

1.

Check the STIB and the cache. If both of these contain the
correct information, the reference can be completed. If the
STIB contains the correct information but the cache does not,
read the information from memory into cache and complete the
reference. If the STIB does not contain the correct
information, go on to the next step.

Translate the virtual address into a physical address. During
the transiation, identify if the virtual page containing the
information is currently loaded J_nto main memory. If it is,

load the physical page address (the result of the translation)
into the STIB and retry the access. If main memory does not
contain the page, go on to the next step.

Y

Find the correct virtual page on disk and move it into main
memory. After the virtual page is loaded into a physical page,
the reference is retried.

The first task is completely performed in hardware; the second, by a
microcode routine. A software page fault handler performs all aspects

of paging.

Second Edition 42

MEMORY MANAGEMENT

MEMCRY MANAGEMENT DATA STRUCTURES

All three of the steps in the memory reference operation use several
data structures to maintain needed information:

e Segmentation table lookaside buffer (STLB)
e Cache

® Descriptor table address registers (DTARs)
e Segment descriptor tables (SDTs)

e Page map tables (PMTs) for the 2755, 6350, and 9750 to
9955 II

¢ Hardware page map tables (HMAPs) for all other processors

Table 4-1 shows the steps in which each structure is used.

Table 4-1
Use of Memory Management Data Structures

Structure | When Used

| |
: STLB | STLB/cache access, address translation :
: Cache : STLB/cache access, address translation :
|| DTARs : STLB/cache access, address translation :
: SDTs I| Address translation :
: PMTs : Address translation, paging (2755, 6350, and 9750 :
| | to 9955 IT) l
: HMAPs I| Address translation, paging (all other processors) :
The STLB

To speed up the virtual to physical address process, the system uses
the STLB to store the result of a translation in an STLB entry so that
it will have it for reference the next time that the user Specifies the
same location. Since the STLB has a much faster access time than
physical memory does, referencing the STLB saves translation time as
well as access time.

4-3 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

The number of entries in the STLB varies according to processor model
as shown in Table 4-2. (Appendix B describes the STLB of the earlier
processors listed on page 1-1.)

Table 4-2
Number of STLB Entries

i Number of | Entries | Total |
| STLB Sets | Per Set | Entries | Processors

|

[

I

|

|

2350 to 2755, 9650, [
[

I

|

|

I

! 1 [128 | 128 | 9750 to 9950

| | | |

| 1 I 512* | 512* |

! ! [| 9655, 9955, and 9955 II
I [| I

| 2 I 512 | 102¢ | 6350

! I | I

* The 0955 and 9955 II reserve 384 additional entries for
segments O to 7. Thus, references %o these segments are
always resident in these processors.

Each STLB entry specifies one virtual address and one physical page
address. Since each entry specifies a physical page address, each STLB
entry is valid for a 2-Kbyte block (one physical page) of physical
memory locations. Figure 4-2 and Table 4-3 show the format and content
of each STLB entry.

Second Edition 4-4

MEMORY MANAGEMENT

1234 6 7 9 10 1920 31 32 a7

IVIMISI RING 1 | RING 3 |PROC IDI SEG | PHYS AIR |

6350 STLB Entry Format

1234 6 7 9 10 21 22 33 34 47

IVIMIS| RING 1 | RING 3 |PROC ID! SEG | PHYS AR |

9955 II STLB Entry Format

1234 6 7 9 10 212233 3 46

IVIMISI RING 1 | RING 3 |PROC ID! SEG | PHYS ATR |

9750 to 99556 STLB Entry Format

1234 6 7 9 10 19 20 28 29 41

IVIMIS| RING 1 | RING 3 IPROC IDI SEG | PHYS ATR |

_755 STLB Entry Format

1234 6 7 9 10 19 20 28 29 40

IVIMIS! RING 1 | RING 3 IPROC ID! SEG | PHYS AIR |

2350 to 2655, 9650, and 9655 STLB Entry Format

Figure 4-2
STLB Entry Format

4-5 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

Table 4-3
STIB Entry Contents

memory reference. In process exchange,
these are the first bits of the offset in
segment OWNERH where the process resides.

12 or 9* | SEG
| [
12 to 16**| PHYS AIR | The physical page address (from translation).

The segment number from the virtual address.

| No. Bits | Mnem | Description |
| I
| 1 [v | Valid bit. Indicates if the STLB contains [
I | ! valid data. I
I | | I
| 1 I M | Modified bit. Specifies if the physical page |
! | | has been modified since its contents were I
[l | loaded from disk. (O means modified; [
| [| 1 means not modified.) |
| | l I
! 1 | S | Shared bit. Inhibits cache. |
| | | [
I3 | RING 1 | The Ring 1 access rights that are to govern |
| | I the reference. [
| i [|
I3 | RING 3 | The Ring 3 access rights that are to govern |
I I l the reference. |
| | | I
| 10 or 12 | PROC ID | The process ID of the process making the |
I | | !
i [1 I
I [[|
! | |
I | [
| |
! {

* Bits 20 to 28 for the 2350 to 2755, 9650, and 9655
(the upper 9 bits of the segment number).

** Bits 32 to 47 for the 6350.
Bits 34 to 47 for the 9955 II.
Bits 34 to 46 for the 9750 to 9955.
Bits 29 to 41 for the 2755.
Bits 29 to 40 for the 2350 to 2655, 9650, and 9655.

Second Edition 4-6

MEMORY MANAGEMENT

To access an entry in the STLB, the processor uses a hashing algorithm.
The precise algorithm varies according to processor as shown in the
rest of this section.

The 6350, 9955, and 9955 II use eleven bits from the virtual address in
the hashing algorithm, as shown in Table 4<4. This table also
identifies the names that will be used for these bits in the
explanation of the algorithm.

Table 44

Bits Used in the Hashing Algorithm
For the 6350, 99565, and 9955 IT

| Bits | Name l
I I
Bits 5 and 6 of the virtual address.	DTAR Bit 1
This specifies one of the four DTARS.	and
	DTAR Bit 2
I [!	
! Bits 14 to 16 of the virtual address.	Seg Bit 8
These are the three least significant	to I
I Dbits of the segment field.	Seg Bit 10
I I	
Bits 17 to 22 of the virtual address.	Page Bit 1
I These are all of the bits in the [to !
I page field. | Page Bit 6 |

From Table 44, the hashing algorithm exclusively ORs pairs of bits to
form a 9-bit address into the STLB. Figure 4-3 shows how these bits
are used to form the STIB entry address for the 6350; Figure 44
provides this information for the 9955 and 9955 II.

The 6350, however, has a two-set associative STLB as described in
Chapter 1. When the processor has formed the STLB entry address, this
address is at the same offset in both parts of the STIB. Therefore,
for the 6350, one STLB entry address is used to access two STIB
entries. This method minimizes two-way thrashing, which is be
described in further detail in the section "Accessing the STLB and

4-7 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

| DTAR Bit 1 ———— | |
| XCR |-—— STLB Address Bit 1 |
| Page Bit 1 —— I [
| I
| DTAR Bit 2 —— I |
! XOR |——— STLB Address Bit 2 |
| Page Bit 2 ———- [|
| |
| Seg Bit 8 ———————— STIB Address Bit 3 |
[l
| Seg Bit 9 ————— STLB Address Bit 4 |
| [
{ Seg Bit 10 ————— STLB Address Bit § |
I |
| Page Bit & —————— STLB Address Bit 6 |
I |
| Page Bit 4 ——————- STLB Address Bit 7 |
| |
| Page Bit 5 —————- STLB Address Bit 8 |
| !
| Page Bit 6 —————- STLB Address Bit 9 |

Hashing Algorithm for the STLB of the 6350

Figure 4-3
| Seg Bit 10 ————- STLB Address Bit 1 |
| I
| Seg Bit 9 ———- STIB Address Bit 2 |
| [
| Seg Bit 8 —————- STLB Address Bit 3 |
| |
| Page Bit 6 ———————— STLB Address Bit 4 |
| |
| Page Bit 5 ————— STLB Address Bit 5 |
| [
| Page Bit 4 ———— STLB Address Bit 6 |
| |
| Page Bit 3 —————- STLB Address Bit 7 |
1 I
| Page Bit 8 —— [I
| XOR |——— STLB Address Bit 8 |
| DTAR Bit 2 ————— [|
[[
| Page Bit 1 ——— n |
| XOR |——- STLB Address Bit 9 |
| DTAR Bit 1 ———— ! |

FEEN o 1 e R A

Hashing Algorithm for the 9955 and 9955 IT STLB
Figure 44

Second Edition 4-8

MEMORY MANAGEMENT

For the 9750 to 9950, ten bits from the virtual address are used in the
hashing algorithm as shown in Table 4-5. This table also contains the
names used for these bits in the illustration of the algorithm. From
this table, the hashing algorithm exclusively ORs pairs of the bits to
form a 7-bit address into the STLB as shown in Figure 4-5.

Table 4-5
Bits Used in the Hashing Algorithm for the 9750 to 9950

Bits I Name
Bits 5 and 6 of the virtual address. DTAR Bit 1
These specify one of the four and
DTARs. DTAR Bit 2
Seg Bit 8

|

|

[|
| |

[|

[|

| Bits 14 and 15 of the virtual address. |

I These are two of the three least sig- | and
[|

| |

[!

| |

[l

nificant bits of the segment field. Seg Bit 9
Bits 17 to 22 of the virtual address. Page Bit 1

These are all of the bits in the to
page field. Page Bit 6 |

| Page Bit 1 ——— | I

[XOR |-—- STLB Address Bit 1 |

| DIAR Bit 1 —— I l

| !

| Page Bit 2 —— [[

| XOR |-—- STLB Address Bit 2 |

| DIAR Bit 2 ——— | [

[!

| Page Bit 3 ——————— STLB Address Bit 3 |

| !

| Seg Bit 9 ——-— STLB Address Bit 4 |

| [

| Page Bit 4 ——— | |

[XOR |--- STLB Address Bit 5 |

I Seg Bit 8 ——— [[

| I

| Page Bit 5 —————-—- STLB Address Bit 6 |

[[

| Page Bit 6 —————— STLB Address Bit 7 |

Hashing Algorithm for the 9750 to 9950
Figure 4-5

4-9 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

The 2755 uses eleven bits from the virtual address in the hashing
algorithm, as shown in Table 4-6. This table also identifies the names
that will be used for these bits in the explanation of the algorithm.

Table 4-6
Bits Used in the Hashing Algorithm for the 2755

Bits | Name
Bits 5 and 6 of the virtual address. DTAR Bit 1
This specifies one of the four DTARS. and
DTAR Bit 2
Bits 14 to 16 of the virtual address.

!
|
[|
| |
| |
[[
| Seg Bit 8 |
These are the three least significant | to |
| I
| |
| |
| [
i

bits of the segment field. Seg Bit 10
Bits 17 to 22 of the virtual address. Page Bit 1

These are all of the bits in the to

page field. Page Bit 6 |

From Table 4-6, the hashing algorithm exclusive ORs pairs of these bits
to form a 9-bit address into the STIB as shown in Figure 4-6.

Second Edition 4--10

MEMCRY MANAGEMENT

Page Bit 6 —————— STLB Address Bit 1
Page Bit 5 ———— STLB Address Bit 2
Page Bit 4 ——— |

XOR |—— STIB Address Bit 3
DTAR Bit 1 —— |
Page Bit 3 ——— |

XCR |—— STLB Address Bit 4
DIAR Bit 1 ~—— |
Page Bit 2 ——- |

XR t-—— STLB Address Bit 5
DTAR Bit 2 —— |
Page Bit 1 ——— |

XOR |-— STLB Address Bit 6
DIAR Bit 1 ———— !
Seg Bit 10 ——— I

XOR |—- STIB Address Bit 7
DIAR Bit 1 ——— |
Seg Bit 9 ——— |

XOR |-—— STLB Address Bit 8
DTAR Bit 1 —— |
Seg Bit 8 ——1|

XOR |——— STILB Address Bit 9
DIAR Bit 1 ———- I

Hashing Algorithm for the STIB of the 2755
Figure 46

4-11

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

The processors 2350 to 2655, 9650, and 9655 use eleven bits from the
virtual address and five bits from the process ID in the hashing
algorithm, as shown in Table 4-7. This table also identifies the names
that will be used for these bits in the explanation of the algorithm.

Table 4-7

Bits Used in the Hashing Algorithm
For the 2350 to 2655, 9650, and 9655

[Bits | Name l
| l
| Bits 6 to 10 of the process ID. | RPID Bits |
| These are the five least significant | 6 to 10 |
| bits of the process ID. ! |
| [|
Bits 5 and 6 of the virtual address.	DTAR Bit 1
This specifies one of the four DIARS.	and
.	DTAR Bit 2
Bits 14 to 16 of the virtual address.	Seg Bit 8
These are the three least significant	to [
I bits of the segment field.	Seg Bit 10
	I
Bits 17 to 22 of the virtual address.	Page Bit 1
These are all of the bits in the	to
page field.	Page Bit 6

From Table 4-7, the hashing algorithm CRs and exclusive ORs pairs of
these bits to form a O-bit address into the STLB as shown in Figure
4-7.

Second Edition 4-12

MEMORY MANAGEMENT

RPID Bit

DTAR Bit

Seg Bit
RPID Bit

DTAR Bit

Page Bit

RPID Bit

Seg Bit
RPID Bit

DTAR Bit

Page Bit
RPID Bit

DTAR Bit

Seg Bit
DTAR Bit

Page Bit

Page Bit

Page Bit
Page Bit

10 ——— |

XOR |—— STIB Address Bit 1

!
Y |

XOR |—— STILB Address Bit 2

XOR |—— STIB Address Bit 3

XOR |-— STIB Address Bit 4

XOR |-— STIB Address Bit 5

XOR |—— STIB Address Bit 6

XOR |——— STLB Address Bit 7

6 STLB Address Bit 8

5 STLB Address Bit 9

Of the 2350 to 2655, 9650, and 9655

Algorithm for the STLB

Figure 4-7

4-13

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Cache

Like the STLB, the cache specifies the page number of the desired
physical location. In addition, it contains the contents of that
physical location. Figure 4-8 describes the format of each cache
entry. The 6350 has a two-set associative cache, as described later in
the section Accessing the STIB and Cache. (See Appendix B for cache
entry formats for the earlier processors listed on page 1-1).

1 1 16 1 32

| V | PHYSICAL PAGE NUMBER | DATA [

6350 Cache Entry Format

1 1 14 1 32

| V | PHYSICAL PAGE NUMBER | DATA I

9955 II Cache Entry Format

11 13 1 32

| V | PHYSICAL PAGE NUMBER | DATA [

2755 and 9750 to 9955 Cache Entry Format

1 1 12 1 32

| V | PHYSICAL PAGE NUMBER | DATA [

2350 to 2655, 9650, and 9655 Cache Entry Format

| Number | |
| of Bits | Mnemonic | Description

!

|

! |
| 1 | Valid | The cache holds valid data when this bit |
l 1 | contains 1. I
| | | [
| 12 to 16 | Physical | Specifies the number of the physical page |
[| Page | that contains the specified location. !
[| Number | This is the cache index. |
I | | I
| 32 | Data | Contains a copy of the contents of two |
[[[[

consecutive locations in physical memory.

Cache Entry Format
Figure 4-8

Second Edition 4-14

MEMORY MANAGEMENT

DTARs

As described in Chapter 2, the 50 Series virtual address space is
divided into four groups of 1024 segments each. Each group is
referenced through a descriptor table address register (DTAR)
associated with it. The public (shared) segments are referenced
through DTARO and DTARl; +the private (unshared) segments are
referenced through DTAR2 and DTAR3. Figure 4-9 shows the format of the
DTARS.

1 101 16 17 18 32
| SIZE | A P =1 B [
Bits | Mnem | Description

1 to 10 | SIZE | Specifies 1024 minus the size of the
| segment descriptor table.

|

[|

1l1to16 1 A | Bits 1 to 6 of the segment descriptor
| I table physical address.
s |

17 | —— | Must have the same value as bit 18.

[|

18 to 3 | B | Bits 7 to 21 of the segment descriptor
| !
| |

table physical address. (Bit 22
of the SDT physical address is 0.)

DTAR Format
Figure 4-9

4-15 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Segment Descriptor Tables

Each of the four DTARs described above points to a segment descriptor

table (SDT).

These SDTs contain from 1 to 1024 32-bit entries called

segment descriptor words (SDWs). Each SDW describes one segment. The

table must begin on an even 16-bit boundary, and must not cross a
segment boundary. It

physical memory, since the DTAR can specify only a 22-bit address.

must also be located in the first 8 Mbytes of
The

format of the SDWs is shown in Figure 4-10.

1

16 17 18 20 21 23 24 26 27 32

| PHYSICAL AITRESS | F | Al | —— | A3 | PHYSICAL ADDRESS |

| Mnem |

Description |

17

18 to

2l to

V]

¥

ot
(@]

27 to

20

23

32

|
I
|
1
|
|
|
]
{
|
f
I
I
I
|
I
!
|
i
|
|
|
!

| PHYSICAL |
| ADCRESS |

l

Bits 7 to 22 of the physical starting addressl|
of a PMT or HMAP. Bits 17 to 22 of this |
physical starting address must be O.

Fault bit.
Specifies the access rights for Ring 1:

000
001
010
011
100
101
110
111

|

|

I

|

!

|

no access |
gate [
read access |
read, write access I
reserved f
reserved |
read, execute access I
read, write, execute access |
I

|

[

f

{

|

|

|

|

| S IO O

Reserved.

Specifies the access rights for Ring 3.
See Dbits 18 to 20 for a 1list of the
available access codes.

Bits 1 to 6 of the physical starting address
of a PMT or HMAP.

Segment Descriptor Word Format

Second Edition

Figure 4-10

4-16

MEMORY MANAGEMENT

Page Map Tables (2755, 6350, and 9750 to 9955 II)

Bits 1 to 16 and bits 27 to 32 of each SDW contain the starting address
of a page map table (PMT). These tables contain 64 32-bit entries,
each of which contains information about one page. A page map table
cannot cross a ‘200000 (65,536) boundary. Figure 4-11 shows the format
of each page map table entry.

1l 2 3 4 5 16 17 32

'R 1 UI MI S| SOFIWARE | PAGE ADDRESS* [

Bits | Mnem | Name | Description

Resident | Indicates if the page resides in

I [
| [
I | [[|
i ! | Bit | physical memory. 1 indicates |
i | | | residency. [
I | | [|
2 I U	Used bit	Hardware sets U to 1 when a page
		I is used.
l		
3 I M	Modified	Hardware resets M to O when a page
		Bit I is modified.
1		l !
[4 IS	Shared	Inhibits use of cache.
I		Bit
!	[l
I 5 to 16	SOFTWARE	Software
I [1 [
17 to 32*	PAGE	Page
	ADDRESS	Address

* Bits 17 to 18 must be zero for the 9955 II.
Bits 17 to 19 must be zero for the 2755 and 9750 to 9955.

PMT Entry Format (2755, 6350, and 9750 to 9955 II)
Figure 4-11

4-17 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Hardware Page Map Tables (All Other 50 Series Processors)

Bits 1 to 16 and bits 27 to 32 of each SDW contain the starting address
of a hardware page map table (HMAP). Each table contains 64 16-bit
entries, each of which contains information about one virtual page. An
HMAP cannot cross a ‘200000 (65,536) boundary. Figure 4-12 shows the
format of each HMAP entry. This entry is also valid for the earlier
systems listed on page 1-1.

1 232 3 4 5 16

I'R1 U I M| S| PAGE ALIRESS |

| Bits ! Mnem | Name ! Description [
| [
| 1 I R | Resident | Indicates if the page resides in |
I | | Bit | physical memory. 1 indicates |
[[[| residency. l
l 1 ! | I
! 2) | Used Bit | Hardware sets U to 1 when a page |
| | | I is used. |
I | | l |
| 3 I M | Modified | Hardware resets M to O when a |
| I I Bit I page is modified. !
| | | ! [
[4 I8 | Shared | Inhibits use of cache. !
| l | Bit | |
| | | | I
I 5 to 16 | PAGE | Page | Specifies high-order 12 bits of |
| | ALDRESS | Address | physical page address. |
| [[| [

HMAP Entry Format (All Other 80 Series Processors)
Figure 4-12

Additional Data Structures

When a referenced virtual page is not in memory, software uses
additional mapping data structures to process the resulting page fault.
This activity basically includes locating the referenced page on disk,
making room for the page in physical memory if necessary by

transferring some pages to disk, loading the page intc memory, and
updating the PMT/HMAP entry for that page. The hardware updates the

STLB entry for that page.

Second Edition 4-18

MEMORY MANAGEMENT

ACCESSING THE STLB AND CACHE

As described in Chapter 1, the STIB and the cache are high-speed
buffers. If these buffers contain valid information for the process
making a reference to a piece of data, the processor can access them in
very little time instead of having to make a long memory access.

The hardware accesses both the STLB and the cache in parallel to speed
up the reference. A slightly different set of actions is performed,
depending on whether the operation is a read or a write. Refer to
Figures 4-13 and 4-14 when reading the text in these sections.

Read Memory Access

As shown in Figure 4-13, the hardware performs three tasks in parallel:
it references the STILB, references the cache, and validates the
reference’'s access rights. The priority among these three tasks is
also illustrated in the figure: the leftmost task (checking the STLB
entry) has a higher priority than the access check, and the access
check has a higher priority than the cache entry step. This means that
if a problem arises in the STLB entry step, that is solved first; then
the whole access is retried from the beginning. The text in this
section describes the access according to this priority.

Step 1. Accessing an STLB Entry

The hashing algorithm described above uses bits from the wvirtual
address to choose an STLB entry. To meke sure that this entry contains
valid data, the hardware checks the entry’s valid bit. If it contains
1, the entry is valid; O, invalid. The bits in the wvirtual address’
segment number not used to select the STLB entry are compared to the
segment number bits for the STLB entry. The hardware must also check
that the process ID in the STIB entry is identical to that of the
process making the reference. This is done only if the segment number
specified in the virtual address is greater than or equal to
‘4000 -- that is, if the segment specified is in process private
address space. If all of these conditions are met, the STLB entry
contains valid data and can be used.

For the 6350 processor, the access to the STLB returns two entries.
Each entry’s segments bits, etc., that are not used in the STLB access
described above are compared to the bits in the wvirtual address. If
either of the two entries matches, the valid data from the matching
entry is used.

This is called a two-set associative STLB. Each virtual addressing
mapping can be in one of two different STLB locations. Two virtual
addresses that map to the same STLB address can be used together
without references to the one forcing the mapping for the other to be
overwritten. When such a conflict occurs, it’'s called a collision.

4-19 Second Edition

SYSTEM ARCHTTECTURE REFERENCE GUIDE

Read
Memory
Access

Proper
Access?

Use Data
from Cache

l

Find Page Start Memory
Map Entry and Read Data
into Cache
Page Yes Set Used Bit \
Resident ;
5 in Page Map
Invoke Page Load STLB
Fault Handler Entry
o l - l < y
~ 40,000 usecs 4 yusecs 1.2 usecs .08 usecs
<.001% 5-1% 14.5% 85%

Read Memory Access
Figure 4-13

Second Edition 4-20

MEMORY MANAGEMENT

Many collisions can drastically reduce performance; this reduction is
called thrashing. The two sets of STLB entries in the 6350 effectively
eliminate two-way thrashing.

If the conditions are not met, the STLB needs to be loaded with the
correct data. Therefore, the address translation microcode is invoked.
(See Address Translation, below.) Assuming no page faults occur, the
new translation is loaded into the STIB entry, and the used bit in that
entry is set to 1. The reference is then retried from the beginning.

Step 2. Choosing an Access Field

If the STIB entry contains valid data, the hardware must determine what
access rights should govern the reference. This requires two steps:
first, isolating the ring number that specifies what access field to
use; and second, using the access field contents to determine whether
the reference is valid or not. STLB entries for segment O have no ring
field entry and can be accessed only by Ring O.

To isolate the ring number, the processor weakens the ring number
contained within the program counter by logically ORing it with the
ring number contained in the effective address. This screens out all
invalid references to lower-numbered rings (inward references), but
allows references to higher-numbered rings (outward references) to be
made.

This screening process makes sure that the access rights of the
referencing procedure are weaker than those of the referenced
procedure. If this were not done, then a Ring 3 procedure could call a
Ring O procedure, which in turn could call several procedures for which
the Ring 3 procedure had no access rights. Screening out such
references protects the integrity of the entire system.

Once the FA ring number has been weakened, the processor uses the
weakened ring number to select an access field. If the ring number is
00, the hardware assumes that the reference has unlimited access and no
further access checking is done. If the ring number is Ol or 11, the
hardware uses the Ring 1 or Ring 3 access fields, respectively, in the
STLB entry as the access field. If the ring number is 10, undefined
results occur.

The access fields in the STIB entry specify the operations that

references using this entry can legitimately perform. Table 4-8 lists
the values these fields can contain and their meanings.

4-21 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 4-8
Access Field Values and Their Meanings

Value | Description

000 No access
001 | Gate (See Chapter 8.)
010

Read, write access

| I
I |
I I |
I I |
| | Read access !
I 011 | |
| 100 | Reserved |
I I |
| | |
I | I

101 Reserved
110 Read, execute access
111 Read, write, execute access

The hardware checks the operation specified in the instruction, making
the reference against the selected access field to ensure that the
operation is wvalid. For example, if the instruction specifies a read
operation and the selected access field allows reads, then the read
operation is valid. If, however, the instruction specifies a write and
the access field allows only reads, then the operation is invalid. In
the first case, the processor performs the valid operation and program
execution continues. In the latter case, an access fault occurs and
control transfers to the access fault handler. See Chapter 10 for more
information about faults.

A reference must have read access to perform either a write or an
execute operation. If an instruction specifies either a write or an
execute and the access field does not allow reads, an access fault
occurs.

Step 3. Accessing the Cache

If the access check is successful, the hardware references the cache.
To do this, the hardware must form an address that references an entry
in the cache index, which in turn specifies an entry in the cache data.
The way that the cache index address is formed depends on the processor
as shown in Table 4-9.

Second Edition 4-22

MEMORY MANAGEMENT

Table 4-9
Virtual Address Bits Used in Forming a Cache Index Address

| Processors | Virtual Address Bits Used and Significance
I
| 2380 to 2655 and | 20 to 32: the 3 least significant page bits
I 6350 to 9950 | and the 10-bit offset field

! |

| 2735, 9085, and | 18 to 32: the 5 least significant page bits
| 9955 II [and the 10-bit offset field

The 3 and 5 least significant page bits from the virtual address create
a virtually mapped cache. See Mapped I/0 and IMA in Chapter 11 for
information about how the MBIO bits in the IOTLB reconstruct this
virtual mapping.

For the earlier processors listed on page 1-1, see Appendix B for cache
access information.

When the hardware has an address, it uses it to select an entry, j, in
the cache index. Entry j contains a physical page address, which the
hardware compares to the physical page address specified in the STLB
entry. If the page numbers are the same, then the jth entry in the
cache data area contains the contents of the desired physical location.
These contents are used in the specified operation.

For the 6350 processor, the access to the cache returns two entries in
the cache index. Each of these two entries contains a physical page
address, which the hardware compares to the physical page address
specified in the STLB entry. If the physical page address contained in
either of the two entries matches that specified in the STLB entry,
then the data associated with that entry in the cache data area
contains the contents of the desired physical location. These contents
are used in the specified operation.

This is called a two-set associative cache. The data associated with
each virtual address can be in one of two different cache locations.
Two virtual addresses with the same cache index address can be used
together without references to the one forcing the data for the other
to be overwritten. When such a conflict occurs, it‘s called a
collision. Many collisions can drastically reduce performance; this
reduction is called thrashing. The two sets of cache entries in the
6350 effectively eliminate two-way thrashing.

If the page numbers are not the same, the hardware must read the data
from the physical location specified in the STIB into the cache. It
starts memory, reads the data into the cache, and then retries the
access from the beginning.

4-23 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Step 4. Timing Considerations

Figure 4-13 lists the time taken by each step of the read memory
access. These figures are based on a 1-MIPS machine. The figure also
notes the percentage of times each step is likely to occur. As shown,
the cache and STLB contain the needed information 85% of the time, and
so the access requires only 80 nanoseconds. In addition, even though a
page fault requires 40,000 microseconds it occurs very rarely (on the
order of 10 per second). The other three steps occur the majority of
the time, and give the system an average read memory access time of .24
to .26 microseconds.

Write Memory Access

Figure 4-14 describes the general steps that occur in a write memory
access. The hardware references the STLB, validates the reference’'s
access rights, and checks the STLB modified bit in parallel. The
access validation, however, takes precedence over checking the modified
bit, and the STLB entry access takes precedence over the access
validation. This means that if problems occur in one of the steps with
higher precedence, the problem is corrected and the access 1is retried
from the beginning, even if no problems occur with other steps.

Step 1. Accessing the STLB

The hardware uses the hashing algorithm described above to select an
STLB entry. The entry is validated in the same way as that described
in the Read Memory Access section.

Step 2. Checking the Access Rights

This step is identical to that described in the Read Memory Access
section above.

Step 3. Checking the STLB Modified Bit

If the STLB entry is valid and if the reference has the proper access,
the hardware checks the STIB entry’'s modified bit. If this bit
contains 1, the page is being modified for the first time since this
STLB entry was last used. This means that hardware must reset the
modified bit in the page map table (PMT or HMAP) and the STLB using the
address translation mecha,nlsm Once the new translation is loaded into

. |

L oy e Ay o
is retried from the begir

the STLB entry, the reference

-~ O E aman O

Second Edition 4-24

MEMORY MANAGEMENT

TLB
Yes Proper g h Write Into
Access ntry Cache and ———
a Mocimed Memory
No No
Translate Translate
Address Address
Y
Page
; Mark Page Mark Page
Res;dent as Used as Modified
Y Y
Invoke Page Load STLB Reload
Fault Handler Entry STLB Entry 8 usecs
(Not Overlapped)
+ + + 35%
~ 33000 psecs 4 usecs 4 usecs 28 usecs
(Overlapped)
.004% 1% 1% 64%

Vrite Memory Access
Figure 4-14

4-25 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

If the STLB entry’'s modified bit is O (meaning this page has Dbeen
modified), the hardware forms the address of a cache entry (see
Accessing the Cache, above), starts memory, and writes the contents of
the referenced location into memory. The data is also written to cache
in all cases on some processors. On other processors, the data is
written to cache only if there is a cache hit.

Step 4. Timing Considerations

Figure 4-14 lists the time each step of the write memory access takes.
These figures are based on a 1-MIPS machine. The figure also notes the
percentage of times each step is likely to occur. As shown, the STLB
contains the needed information 35% to 64% of the time, depending on
wvhether the accesses are overlapped or not. In the case of overlapped
transfers, the system’s average write access time varies from one
processor to another, but ranges from about 0.22 to 0.28 microseconds;
for transfers that are not overlapped, the average time ranges from
about 0.32 to 0.8 microseconds.

ADDRESS TRANSLATION

When the STIB does not contain information about the
virtual-to-physical translation, a microcoded part of PRIMOS (called
the address translation mechanism, or ATM) must perform the
translation. The DIARS, the segment descriptor tables, and the
hardware/page map tables allow the ATM to make the correct reference.

¥hen reading the detailed description of the translation process, refer
to Figures 4-15 and 4-16. Figure 4-15 depicts address translation on
the 2755, 6350, and 9750 to 9955 II. Figure 4-16 shows address
translation on all other processors. The numbers labelling the
discussion match the numbers on the diagram.

1. Interpreting the Virtual Address

The virtual address derived from the information contained in an
instruction is a 32-bit quantity. When the translation occurs, the
virtual address is interpreted as shown in Figure 4-1. Bits 2 to 3
contain protection information and will be described in the next
chapter. Bits 5 to 16 contain a segment number; bits 17 to 22, a page
number; and bits 23 to 32, an offset. The ATM looks at bits 5 to 6
first, since they specify one of the four DTARs. The ATM references
the specified DTAR.

Second Edition 4-26

L%

UOT3TPE PuOOSS

g1-v aandtd
II GS66 03 0S26 PUB ‘0GE9 ‘GGle U3 U0 UOTHIRTSURL], SSOIPDV

Virtual Address

12 3 4 5

16 17 22 23

32

LOJ Ring]o lSegment#l Page # l Offset]
L

'_®__l

DTARO
DTAR1

DTAR 2

DTAR 3

e A o] 5]
| S
@)

1 101116 17 1832

\J

167 21 22

Al 8 Jof

of Table

Segment
Descriptor
I_[__l Table
—
Points to Start i
SDWN

©)
Table

Starting
Address

Plus Rest of
Segment Number X 2

1 16

17 18 20 2123 24 26 27

32

»{Physadr[F] a1 T Tas

Phys Adr |

Page Map
L]'h—' Table
Starting Address
Entry M

*For 9955 |, bits 17 and 18 must be zero.
For 2755, 9750 to 9955, bits 17 to 19 must be zero.

**14 for 9955 II; 13 for 2755, 9750 to 9955.

Table
Starting
Address
Plus Page
Number X 2

2 3 4 5 16

®

17

32

» | R]U[M] s]sFrwa]

PhysAdr*]

Final
Physical
Address

© 3

16" 1 10

1
I Phys Page

Aar | Offset |

TNAWEIRNV K30

UOT3TPd PuUoOss

8%

o1-% ammgTd

SOUTUORR SOTIes 0G J9U30 U0 UOTYRISURILL, SSOIPPV

Virtual Address
1 5 16 17 22 23

[O l Ring] OlSegmen #] Page # I OffsJ
® l

DTAR O
1 71
DTAR 1 1011161 8 32

DTAR 2 A n“

DTAR 3

167 21 22 ®
Segment Tabl
“n Descriptor able

L J . Starting
> Table Address
Points to Start Plus Rest of
of Table Segment Number X 2
SDW N 1 16 17 18 20 21 23 24 26 27 32
— . Hardware
{ Prysaar | F] a1] [A3 | Phys Adr Page Man
) Table
Starting Address
Entry M

Table
Starting
Address
Plus Page
Number

py
-

@
onooETa

l@"

Final 12 13 22

Physical Phys Page Ad off
Address L ARk rl Se'I

JITND FONTILLD FINLOALTHOYY WEISAS

MEMORY MANAGEMENT

2. Referencing the DTAR

The specified DTAR contains the address of a segment descriptor table,
as well as the size of the table. The ATM uses the contents of bits 11
to 32 of the DIAR to form the starting address of the SDT.

3. Validating the Segment Number

After forming the table’s starting address, the ATM uses bits 7 to 16
of the virtual address as an offset into the table. It first compares
the segment number contained in these bits to bits 1 to 10 of the DTAR
to check if the virtual address specifies an invalid segment. If the
segment number is greater than the maximum allowable table size, the
segment number is invalid and a segment fault occurs (segment number
too large). If the segment number is less than or equal to the maximum
allowable table size, the segment number is valid and the ATM adds
twice the value of virtual address bits 7 to 16 to the starting address
of the SDT. The sum specifies an entry, n, in the SDT.

4. Referencing the SDT

Entry n in the SDT contains a segment fault bit, access information
(see next chapter), and the address of a Page Map Table (FMT) or a
Hardware Page Map Table (HMAP). The ATM checks bit 17, the fault bit,
for an invalid segment. If F contains a 1, the segment is invalid or a
PMI/HMAP is missing, and a segment fault occurs. If F contains a O,
the segment is wvalid, and the ATM uses bits 1 to 16 and 27 to 32 of
entry n as the starting address of a PMT or an HMAP.

To access the PMT, the ATM adds twice the value of bits 17 to 22 of the
virtual address to reference the correct entry, m. To access the HMAP
entry m, the ATM adds the contents of bits 17 to 22 of the virtual
address to the starting address of the HMAP.

5. Checking Page Status

Bits 1 to 4 of PMI/HMAP entry m contain status information about a, page
of memory. Vhen the entry is obtained from memory, the ATM examines
the used (U) bit. 1If the content is 1, the page is assumed to be
resident (R bit=1). If the U bit content is O, the resident (R) bit is
examined. If R contains 1, the page is resident but unused; the ATM
sets the U bit in the PMT/HMAP entry and loads the translation into the
STLB. If R contains O, the page is not resident and a page fault
occurs. (Chapter 10 contains more information about faults.) This
ordering of the examination of the U and R bits maximizes the speed of
the ATM.

4-29 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Note

The combination of R=0 and U=1 is illegal and will cause

undefined results.

6. Forming the Address and Loading the STLB

After determining that no page fault exists, the ATM combines the
physical page address in the PMI/HMAP with the 10-bit offset fram the
virtual address to form a final physical address as shown in Table

4-10.
Table 4-10
Forming the Final Physical Address
| | | Final Physical |
| Processors | Bits Used by ATM | Address Length |
| I
| 6350 | PMT bits 17 to 32 and | 26 Bits l
[| VA bits 23 to 32 I [
| | | |
| 9955 II | PMT bits 19 to 32 and | 24 Bits I
| I VA bits 23 to 32 ! I
[| | |
| 2755 and 9750 to 9955 | PMT bits 20 to 32 and | 23 Bits [
I VA bits 23 to 32		
All other processors	HMAP bits 5 to 16 and	22 Bits
I | I I

VA bits 23 to 32

The ATM loads this final physical address, plus its associated access
information, into the STIB. The translation process for any address
has to be done only the first time that any location on the page is

referenced, because after that the STIB cont

Second Edition

4-30

A

ains the translated value.

MEMORY MANAGEMENT

SUMMARY

This chapter described how a 50 Series system uses a virtual address to
locate information in physical memory. The cache and STLB provide
rapid means of locating commonly referenced information without
requiring memory access. When these buffers do not contain the desired
information, a combination of processor hardware, firmware, and PRIMOS
software can translate the user's virtual address into a physical one
through the use of specialized data structures and algorithms. The
software page fault handler ensures that information currently on disk
is moved in a controlled fashion into main memory when it is needed.

4-31 Second Edition

Control Information and
Restricted Instructions

The previous three chapters have described physical and virtual nemory,
how they are manipulated, and the data structures used in their
manipulation. These data structures, like many parts of PRIMOS, are
essential to system operation and so are protected against use by the
casual user. However, a set of restricted instructions is available
for situations that require manipulation of these and other system
structures.

This chapter describes some of these other data structures, especially
the keys and modals, and 1lists the restricted instructions and
describes what they do. Restricted instructions can be executed in
Ring O, and many of them perform system functions, such as purging an
STLB entry. Others manipulate some of the other system data
structures, such as the keys register or the sense switches. For more
detailed information about these instructions, refer to the appropriate
entries in the Instruction Sets Guide.

OTHER SYSTEM DATA STRUCTURES

There are other data structures the system uses:
¢ Modals
o Keys
e CBIT, LINK, and condition code bits

5-1 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Modals

The 16-bit register called the modals contains information about the
state of the processor. This register specifies information needed by
the hardware and the operating system, such as the type of process
control the system uses and which user register set is currently
active. (See Chapter 9.) This register is directly accessible only in
V and I modes.

Figure 5-1 shows the normal setting of the modals that PRIMOS uses.
Figure 5-2 shows the format of the modals. Table 5-1 lists the
instructions that modify the modals. Never modify the modals with the
STIR instruction; wuse only the instructions listed in Table 5-1. 1In
addition, never use LPSW to change bits 9 to 11 of the modals. For
more information, refer to individual instruction descriptions in the
Instruction Sets Guide.

1 89 1112 16

I 11000000 | GRS | 11111 |

Normal Modals Setting
Figure 5-1

Second Edition 5-2

CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

1 2 3 89 11 12 13 14 15 16

I'E 1 V1000000 | CRS | MIO | PXM | S | MM |

Bits | Mnem | Description

Enable interrupts:
0 = interrupts disabled
1 = interrupts enabled

Vectored interrupt mode:
O = standard interrupt mode
1 = vectored interrupt mode

Must be zero.

Specifies the current register set.
Only the PXM can alter these bits.
(See Chapter 9.)

12

MIO Speclfles the current mode of I/0:

!
|
[
I
|
I
|
I
!
|
I
I
[
|
I
|
|
unmapped mode [
|
I
!
[
[
|
!
|
[
|
|
!
!
!
!
I
[

mapped mode

Process exchange enable/disable:
0 = process exchange disabled
= process exchange enabled
14 Specif:Les the mode of segmentation:
no segmentation

segmentation

o

1

15 to 16 | MCM Machine check mode:
00

01

no reporting

report only uncorrected memory
parity errors

10 = report only unrecovered errors
11 = report all errors

See Chapter 10 for more information.

(|

I
I
I !
I I
! |
! I
I I
| !
I !
I I
| |
l !
! I
I I
I I
I I
I |
[I
| ! 1
{ |
| I
I I
I !
l I
f !
I !
I I
| |
[|
! |
I J
{ I
I !
| !
I I

Modals Format
(V and I Modes Only)

Figure 5-2

5-3 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 5-1
Modals Instructions

Interrupt Mode

Mnem | Name | Modes | Description
EMCM | Enter Machine ! S,R,V,I! Enters machine check mode.
Check Mode I |
| |
ENB Enable | S,R,V,I! Sets bit 1 of the modals to i.
Interrupts [[
| I
ESIM | Enter Standard | S,R,V | Resets bit 2 of the modals to 0.
Interrupt Mode | l
|
EVIM | Enter Vectored | S,R,V | Sets bit 2 of the modals to 1.
|
|

f
[
|
i
[
[
|
i
l
I
I
|
f
{

S,R,V,I! Resets bit 1 of the modals to 0.1l

|

[

|

[

|

i

i

]

|

|

!

f

!
|
|
!
I
I
|
I
I
I
|
|
INH | Inhibit
|
I
|
|
!
|
I
|
!
|
I
I

|
|
|
[
|
Interrupts I |
| |
IMCM | Ieave Machine | S,R,V,I! leaves machine check mode.
Check Mode | |
| |
LPSW | Load Program | V,I | Loads the PSW with the contents
Status Word | | of a location in memory.
| I
RMC Reset Machine | S,R,V,Il Resets bits 15 to 16 of the
Check Flag to Ol | modals to O and inhibits
[| interrupts for the next
i [instruction.
Keys

The other 16-bit register, the keys, describes the currently running
process and the procedure that process is executing. The keys contain
status information (such as the mode of addressing curremtly enabled)
and specify fault handling information. Figure 5-3 shows the format of
the keys for S mode and R mode. Figure 54 shows the format for V and
I modes, and Figure 5-5 displays the normal settings for the V and
I mode keys. Table 5-2 lists the instructions that modify the keys.

Never modify the keys or modals with the STIR instruction; use only
the instructions listed in Table 5-2. In addition, never use LPSW to
change bits 15 to 16 of the keys. For more information, refer to
individual instruction descriptions in the Instruction Sets Guide.

Second Edition 54

CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

1 2 3 4 6 7 8 9 16
| CBIT | DBL | - | MODE | FEX | IEX | VISIBLE SHIFT COUNT |
Bits | Mnem ! Description
1 | CBIT I Reflects arithmetic conditions of

some instructions.

Reflects arithmetic mode:
0 = single precision
1 = double precision

Reserved for future use.

[

|

|

!

|

!

|

|

| Specifies the current mode of addressing:
I 000 = 168

I 001 = 328

I 010
I 011
I 100
I 101
I 110
|
l
|
|
[
!
|
|
|
|
[
|
!
|
|

S

31

[| R | A ' 1 I

111

Floating-point exception enable/disable:
O = set CBIT to 1 and invoke fault

handler on error

1 = set CBIT to 1 only on error

Integer exception enable/disable:

O = set CBIT to 1 only on error

1 = set CBIT to 1 and invoke fault
handler on error

Bottom half of the floating-point
exponent.

Keys Format, S and R Modes
Figure 5-3

5-5 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

1 23 4 6 7 8 9 10 1 12 13 14 15 16

ICBITIOILINK! MODE IFEXIIEX! LT| BQIDEX| ASCII-8 IRNDIP85OIINI SDI

Bits | Mnem | Description

Reflects arithmetic conditions of
some instructions.

Must be zero.

Reflects arithmetic conditions of
some instructions.

Specifies the current mode of addressing:
000 = 168
001 = 328
010 = 64R
011 = 32R
100 = 321
101 = unused
110 = 64V
111 = unused

oo owonn

0 = set CBIT to 1 and invoke
fault handler on error
1 = set CBIT to 1 only on error

Integer exception enable/disable:
0 = set CBIT to 1 only on error
1 = set CBIT to 1 and invoke
fault handler on error

less Than condition code:
1 reflects a less than O condition.

To condition code:
1 reflects an equal to O condition.

Decimal exception enable/disable:
0]
1

o

set CBIT to 1 only on error
set CBIT to 1 and invoke

[

|

| I [
l ! [
[| |
| [|
[[|
| ! [
| I [
[| |
| | I
| I [
[! |
[[|
| I I
| | |
I | [
| | [
I l |
[! l
? | FEX | Floating-point exception enable/disable: [
| | I
| | [
| I |
[! |
| | |
| | |
| I [
! ! |
| ! !
| | [
[[|
| I |
| | [
I | [
I | !
[| [
| [|
[| I
| | fault handler on error [

Keys Format, V and I Modes
Figure 54

Second Edition 5-6

CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

Description

13

14

15

16

P850

ASCII character representation:

specifies whether set or reset ASCII

characters are to be generated.

O = most significant bit of characters
is 1 (set format)

1 = most significant bit of characters
is O (reset format)

Disregarded on the earlier Prime systems

(listed on page 1-1)

Floating-point round: specifies the form
of rounding to use in floating-point
operations.

O = no rounding

1 = rounding

Disregarded on the earlier Prime systems
(listed on page 1-1)

(See Appendix C for P850 information.)
This bit may be used for other
processor-specific features.

In dispatcher: specifies if the current
process associated with the register
is in the dispatcher.
0 = process is not in the dispatcher
1 = process is in the dispatcher
Only the PXM (process exchange mechanism)
alters this bit.

Save done bit: specifies if PXM has saved
values of current register set.
0 = save must be done before this
register set can be used
1 = save has been done and this
register set is available

[
[
[
[
[
[
[
[
|
[
[
[
[
[
[
|
|
[
[
[
P850 bit: used by the P850 processor. [
[
|
[
[
|
|
[
!
I
[
[
[
[
|
[
[
[
!
Only the PXM alters this bit. [

Keys Format, V and I Modes
Figure 54 (continued)

5-7 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

1 34

6 7 16

| ACA | 110 or 100* | OOCAAOOOOQQ |

* Bits 4 to 6 are 110 (V mode) or 100 (I mode).

A - The value can be altered by an instruction.

Normal Keys Setting in V and I Modes
Figure 5-5

Table 5-2
Keys Instructions

| Mnem | Name | Modes | Description |
l |
| DBL | Enter Double I S,R | Sets bit 2 in the keys to 1. I
i i Precision Mode! ! !
| E16S | Enter 16S Mode | S,R,V,I | Sets bits 4 to 6 of the keys !
| | I | to 000. I
| E32I | Enter 32I Mode | S,R,V,I | Sets bits 4 to 6 of the keys I
[[I I to 100. I
| E32S | Enter 32S Mode ! S,R,V,I | Sets bits 4 to 6 of the keys [
[[| | to OO0l. I
| E32R | Enter 32R Mode | S,R,V,I | Sets bits 4 to 6 of the keys |
| | [I to Ol1. [
| EG4R | Enter 64R Mode | S,R,V,I | Sets bits 4 to 6 of the keys l
| | | I to 010. I
| EG4V | Enter 64V Mode | S,R,V,I | Sets bits 4 to 6 of the keys |
I I | I to 110. |
| INK | Input Keys | S,R,I | Reads the keys into the I
[| | | specified register. |
| OTK | Output Keys | S,R,I | Loads the keys with the contents |
| | I | of the specified register. I
| RCB | Reset CBIT | S,R,V,I | Resets the value of CBIT in I
I | | I the keys to O. [
| SCA | Load Shift I S,R | Loads bits 9 to 16 of the keys |
| | Count into A | | into bits 9 to 16 of A. |
| SCB | Set CBIT | S,R,V,I | Sets the value of CBIT in [
[[| | the keys to 1. [
| SGL | Enter Single | S,R | Sets bit 2 in the keys to O. |
| [Precision Model ! |
| LPSW | Load PSW | V,I | Loads new data into the keys, |
| [| | modals, and program counter. I
| TAK | Transfer A | S,R,V | Transfers the contents of A |
| I to Keys ! i into the keys. !
| TKA | Transfer | S,R,V | Transfers the contents of |
! I Keys to A [| the keys into A. f
Second Edition 5-8

CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

CBIT, LINK, and the Cordition Codes

Some of the bits in the keys merit extra discussion. Bit 1, CBIT, and
bit 3, LINK, are set by many instructions to indicate conditions under
which the instruction completed execution. Several instructions
performing arithmetic operations, for example, set CBIT to 1 to
indicate that the operation has resulted in an overflow (a result 100
large to fit in the specified number of bits). Others set LINK to 1 to
reflect a carry out condition. Still others set CBIT to indicate a
fault condition. The instruction entries in the Instruction Sets Guide
state how each instruction affects the values of these bits.

Also note that bits 9 and 10 of the keys contain the condition codes.
Many arithmetic, branch, skip, jump, and other instructions set these
bits to indicate the result of a test (a result is less than 0, for
example), to indicate whether a value is positive or negative, and so
on. Other instructions use the condition code wvalues as Boolean
values. The instruction entries in the Instruction Sets Guide also
describe how an instruction affects the state of these bits.

BEQ shows whether or not a 16-bit or 32-bit result is equal to 0. LT
contains the extended sign for arithmetic and comparison operations.
The extended sign is the sign of the result as if the operation had
been done on a machine of infinite precision; thus, LT shows the
correct sign of the result despite any overflow. For logic operations,
LT reflects the sign of the result. Table 5-3 shows condition code
interpretation for comparison, arithmetic, and logic operations.

The state of the CBIT, LINK, and condition codes is recorded in special
hardware after each instruction that modifies them. These are referred
to as the 1live keys and are the values tested by instructions. The
keys register obtains a copy of the live keys upon updates, but may not
reflect the actual state of the CBIT, LINK, or condition codes. The
state of these bits should only be tested for with the appropriate
instruction.

5-9 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUITE

Table 5-3
Interpretation of Condition Codes

largest negative

number is added to
itself. (CBIT is
set to 1 as well to |
show overflow, or isl
loaded with this |
state by TAK, LPSW, |
process exchange, |
PCL, etc. i

| LT, BEQ | | |

| Values | Comparison | Arithmetic I Logic

| e ——————— e e
I 00 | Register >0 | Signed result > O I Result <> O,

! | Register > EA | Unsigned result <> 0 | High-order bit =0
| | Reg 1 >Reg 2 |

| + + +

I 01 | Register =0 | Result =0 | Result = O,

[I Register = EA | | High-order bit = O
| | Reg 1 = Reg 2 | !

| + + +

I 10 | Register <O | Result <O | Result <> O,

| | Register < EA | | High-order bit =1
| | Reg 1 <Reg 2 | |

l +

| 11 Not working Happens only when the | Not working

I |

I |

l !

[

|

I

I

|

|

-_—_——_———_-—— - — =+
S

Second Edition 5-10

CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

RESTRICTED INSTRUCTIONS

Table 54 lists the restricted instructions and briefly describes their
actions. Refer to the Instruction Sets Guide for more information
about these instructions.

Table 54
Restricted Instructions

| Mnem | Name | Modes | Description !
[!
I EI0O | Execute I/0 | V,I I Executes an effective address |
I I | | as an I/0 instruction. !
! ! I | [
| ENB | Enable I S,R,V,I | Enables interrupts so that |
| | Interrupts | | devices can request service. I
! ! [! [
| HLT | Halt I S,R,V,I | Halts the processor. I
| INA | Input to A I S,R | Loads data from the specified [
I | | I device into A. |
| INBC | Interrupt I v,I | Notifies during the interrupt I
| | Notify | I code. Uses LIFO queuing. I
| I | I Clears the currently active |
| I [I interrupt. |
| INBN | Interrupt Iv,I | Notifies during the interrupt [
| I Notify I I code. Uses LTFO queuing. [
! | ! | Does not clear the currently |
[[I | active interrupt. [
t INEC | Interrupt I v,I | Notifies during the interrupt I
| | Notify ! I code. Uses FIFO queuing. I
I [| | Clears the currently active I
I [! I interrupt. [
| INEN | Interrupt I v,I | Notifies during the interrupt |
I | Notify | | code. Uses FIFO queuing. I
| ! [I Does not clear the currently I
l ! [I active interrupt. |
| INH | Inhibit | S,R,V,I | Disables interrupts so that I
| | Interrupts | | devices cannot request service. |
I IRTC | Interrupt IV, I | Returns control from an interrupt |
I I Return I I and clears the currently [
I [I | active interrupt. |
I IRTN | Interrupt Iv,I | Returns control from an interrupt |
I I Return ! I and does not clear the currently !
! [! I active interrupt. [
| ITLB | Invalidate I v,I | Invalidates the STLB entry I
I | STLB Entry | I specified by L. |
| LIOT | Load I/0 TLB | V,I | Loads an entry in the IOTLB. I
[| | | |

5-11

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

Table 54 (continued)

Restricted Instructions

| Mnem | Name | Modes | Description |
| - t
| LPID | Load Process | V,I | Loads the process ID contained in |
[I ID [| A into RPID. l
| LPSW | Load PSW Iv,I | Loads new values into the program |
I [| | counter, keys, and modals. I
I 1			
NFYE	Notify End of	V,I	Notifies on the specified
I Queue [semaphore. Uses LIFO queuing.		
	I	Does not clear the currently	
l [active interrupt.		
NFYB	Notify Head	V,I	Notifies on the specified
[of Queue [semaphore. Uses FIFO queuing.		
I	I Does not clear the currently		
	l I active interrupt.		
OCP	Output Control! S,R	Sends a control pulse to a device.	
OTA	Output from A	S,R	Transfers data from A to the [
I	[specified device. I	
PTLB	Purge TLB v, I	Purges either an entry or a [
I [[page in the translation		
I !	I lookaside buffer. [
RMC	Clear Machine	S,R,V,I	Clears the machine check flag. [
[Check [
I RTS	Reset Time	V,I	Resets the value of the interval
I I Slice	I timer. l		
SKS	Skip on I S,R	When the specified condition is [
	Satisfied		satisfied, the specified device
I Condition	I responds ready and SKS skips the !		
			next 16 bits. I
		[[
i STPM	Store I V,I	Stores the CPU model number and I	
	Processor	I microcode revision number	
[I Model Numberl!	into memory.		
[[[
WAIT	Wait I v,I	Waits until the specified	
[[semaphore is notified.		
SUMMARY

In this chapter you have read about more of the system registers and
data structures that aid in controlling system operation.

chapter, Datatypes,

anirmaTt
W

DUppAIL

you can use to manipulate the various types of data.

Second Edition

5-12

The next
presents the data representations and formats

1 on the B0 Series processors. It also lists the instructions

Datatypes

The 50 Series systems support several data representations. These
representations fall into the major groups:

e Fixed-point data

o Floating-point numbers
® Decimal integers

e Character strings

® Queues

This chapter describes each of these data representations, and the
operations and instructions available to manipulate each type.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1 to 16 of a 32-bit I mode
general register. In addition, A and B represent S and R mode 16-bit
registers; L and E represent V mode 32-bit registers.

FIXED-POINT DATA

Fixed-point data can be a logical value, a signed or unsigned integer,
or an address. Addresses are treated as unsigned integers.

6-1 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Logical Values

A logical value is a 16-bit or 32-bit value that is interpreted as a
string of bits. Table 6-1 lists the instructions that perform logical
operations, such as OR and AND. The 50 Series processors treat each
bit in a bit string separately: the value of one bit does not affect
the value of another.

There are several instructions available that test logical values and
perform an action depending on the result of the test. Chapter 7
discusses these instructions.

Table 6-1
Logic Instructions

I Name | Modes | Description |
|

AND to A | S,R,V | Logically ANDs the contents of A and |
[the contents of a memory location. |

AND Long v Logically ANDs the contents of L and |
[the contents of a memory location. |

Complement Al S,R,V | Forms the one’'s complement of the [
[contents of A. [

Complement | I Forms the one's complement of the |
Halfword | contents of r. |
Complement | I Forms the one’'s complement of the |
Fullword | contents of R. |
Exclusive ORI S,R,V | Exclusively ORs the contents of A andl
to A ! the contents of a memory location. |

Exclusive QRI V Exclusively ORs the contents of L and!

Hrgec°E"HIEREEE]

f

[!
! I
I |
| |
I !
| [
| I
I I
i !
[[
I I
! |
| Long I [
| [
I !
I I
| !
I I
I I
I I
| |
| |
| !
I I
| |
[|
I I

the contents of a memory location. |

AND Fullword! I Logically ANDs the contents of R and |
I the contents of a memory location. |

AND Halfword! I Logically ANDs the contents of r and |
I the contents of a memory location. !

CR Fullword | I Logically ORs the contents of R and |
[the contents of a memory location. |

OR Halfword | I Logically ORs the contents of r and |
! ! the contents of a memory location. |

Inclusive ORI V Logically ORs the contents of A and |
to A I the contents of a memory location. |
Exclusive CR! I Exclusively ORs the contents of R and!
Fullword | the contents of a memory location. |
Exclusive ORI I Exclusively ORs the contents of r andl
Halfword | the contents of a memory location. |

Second Edition

DATATYPES

Signed Integers

Deperding on the addressing mode, there are a variety of signed integer
formats to use. Each is based on a magnitude field that represents a
two’'s complement value. Figure 6-1 shows the formats and data sizes
available for each addressing mode.

| Size i Modes! Format I
| I
| ! . | 16 I
| 16 bits | S,R, | I
| bov,I o MAGNITUDE [I
| | I I
| | | I
| | 1 32 [
| 32 bits | V,I | |
I I I MAGNITUDE | I
I | | I
I | | I
I | 1 64 |
| 64 bits | V,I | I
|] (| MAGNITUDE [
I [!]
I | ! |
I | . | 16 17 18 32 |
| 31 bits | S,R | !
| | [MAGNITUDE (O | MAGNITUDE | |
| ! | !

Signed Integer Formats
Figure 6-1

Unsigned Integers

Unsigned integers can be 16, 32, or 64 bits long. Regardless of length
or addressing mode, all of the bits in the unsigned integer represent
the magnitude of the number.

Most operations work for both signed and unsigned numbers. Special
unsigned support is provided only for those magnitude branch
instructions that allow results to be evaluated as unsigned integers.
Multiply and divide instructions do not work correctly for unsigned
integers.

Table 6-2 lists the instructions that operate on signed and unsigned
integers.

6-3 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

Table 6-2

Integer Arithmetic Instructions

e e et e et e o e e e e e e s e . mt — —— — — o m——— m—— — = mem e - m— —— —— — o a—— — — — o— — — —

Mnem | Name | Modes | Description
A i Add I I I Adds the 32-bit contents of a memory
I Fullword | | location to the contents of R.
AlA | AMdd1toA | SR,V | Adds one to the contents of A.
A2A | Add 2 to A | S,R,V | Adds two to the contents of A.
ACA | Add CBIT I S,R,V | Adds the value of CBIT to the
I to A [| contents of A.
ADD | Add I S,R,V | Adds the contents of a 16-bit
l | | memory location to the 16-bit
[| I contents of A.
ADL | Add Long v | Adds the 32-bit contents of a memory
[[| location to the 32-bit contents
[! [of L.
ADLL | Add LINK Y | Adds the value of LINK to the
I tolL [I contents of L.
ADIR | Add LINK I I | Adds the value of LINK to the
I toR | | contents of R.
AH | Add I | Adds the 16-bit contents of a memory
I Halfword | I location to the contents of r.
C | Compare I I | Compares the contents of R to the
| Fullword | | contents of a memory location and
| [I sets the condition codes to
| [| reflect the result of the compare.
CH | Compare | I | Compares the contents of r to the
I Halfword | | contents of a memory location and
I ! | sets the condition codes to
| [| reflect the result of the compare.
CHS | Change Sign | I I Complements bit 1 of R.
[| [
CHS | Change Sign | S,R,V | Complements bit 1 of A.
| | |
CSA | Copy Sign | S,R,V | Sets CBIT to the value of bit 1
I of A [I in A, then sets bit 1 of A to O.
CSR | Copy Sign | I | Copies bit 1 of R into CBIT and
| | | resets bit 1 of R to O.
D | Divide I I | Divides the 64-bit contents of R
t Fullword ! i and R+l by the 32-bit contents
| I I of of a memory location.
DAD | Double Add | S,R | Adds the 31-bit contents of a
[| I memory location to the 3l-bit
| | I contents of A and B.
DH | Divide I I i Divides the 32-bit contents of R
I Halfword | | by the 16-bit contents of a memory
[| | location.
DH1 | Decrement | I | Decrements r by 1 and stores the
i Thyl i i results in r.
THZ | Decrement | I | Decrements r by 2 and stores the
I rby2 [| results in r.

Second Edition

64

DATATYPES

Table 6-2 (continued)
Integer Arithmetic Instructions

Mnem | Name | Modes | Description

DIV Divide S,R Divides the 31-bit contents of A
anrd B by the 16-bit contents

of a memory location.

memory location to get a 32-bit
result.

[

|

| I | |

| | | |

| | | !

DIV | Divide v | Divides the 32-bit contents of L |
([I by the 16-bit contents of a [

l ! | memory location. [

IM | Decrement | I | Decrements the contents of the |
| Memory | | specified memory location by 1. [

| Fullword | | |

IMH | Decrement | I | Decrements the contents of the |
I Memory ! | specified memory location by 1. |

I Halfword | | [

IRl | Decrement b I | Decrements R by 1 and stores the [
|l Rbyl [I result in r. [

IR2 | Decrement | I | Decrements R by 2 and stores the [
' Rby? | i result in r. [

DSB | Double I S,R | Subtracts the 31-bit contents of a |
I Subtract | | memory location from the 31-bit |

[| I contents of A and B. [

DVL | Divide Long | V | Divides the 64-bit contents of E |
| l | and L by the 32-bit contents |

| I I of a memory location. [

IH1 | Increment | I | Increments r by 1 and stores the [
| byl [I result in r. i

IH2 | Increment | I | Increments r by 2 and stores the [
| rby2 | | result in r. [

IM | Increment | I | Increments the contents of the !
I Memory | I specified memory location by 1. |

| Fullword | | |

IMH | Increment I I I Increments the contents of the |
| Memory [I specified memory location by 1. [

| Halfword | | [

IRl | Increment | I | Increments R by 1 and stores the |
I Rbyl l | result in R. !

IR2 | Increment | I | Increments R by 2 and stores the |
I Rby2 | | result in R. [

M | Multiply I I | Multiplies the 32-bit contents of R |
I Fullword | I by the 32-bit contents of a !

([| memory location to get a 64-bit [

| | I result. I

MO | Multiply I I | Multiplies the 16-bit contents of r |
| Halfword | I by the 16-bit contents of a |

| | | |

I | | [

6-5 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 6-2 (continued)
Integer Arithmetic Instructions

| Mnem | Name | Modes | Description

|

| MPL. | Multiply Y | Multiplies the 32-bit contents

[| Long l I of L by the 32-bit contents

I ! I I of a memory location to get a

I | | I 64-bit result.

| MPY | Multiply I S,R | Multiplies the 16-bit contents

I | [I of A by the 16-bit contents

[1 | I of a memory location to get a

| | l I 3l-bit result.

| MPY | Multiply IV | Multiplies the 16-bit contents

| | l | of A by the 16-bit contents

t | | | of a memory location to get a

! | I I 32-bit result.

| MPY | Multiply I I | Multiplies the 16-bit contents of r
| | | | by the 16-bit contents of a

| | | I memory location to get a 32-bit

| I I ! result.

| | | I

| PID | Position I S,R | Converts the 16-bit integer in A to
[i for [i to a 31-bit integer in A and B.

I I Integer | |

I | Divide I I

| PID | Position I I | Converts the 32-bit integer in R to
[| for I | to a 64-bit integer in R and R+1.

| [Integer | !

| | Divide | |

| PIDA | Position Y | Converts the 16-bit integer in A to
[I for [| to a 31-bit integer in L.

I | Integer | [

! i Divide ! [

| PITH | Position I I | Converts the 16-bit integer in r

| i for [| to a 32-bit integer in R.

! I Integer | |

| | Divide I I

| PIDL | Position v | Converts the 32-bit integer in L to
| I for [| to a 64-bit integer in L and E.

i i Integer i i

| | Divide ! I

| PIM | Position I S,R | Converts the 31-bit integer in A

! | After l I and B to a 16-bit integer in A.

| I Integer | I

| I Multiply | [

| PIM | Position I I | Converts the 64-bit integer in R

| | After I I and R+l to a 32-bit integer in R.

[[Integer | |

[| Multiply | !

Second Edition

66

DATATYPES

Table 6-2 (continued)
Integer Arithmetic Instructions

Mnem | Name | Modes | Description

PIMA | Position v I Converts the 32-bit integer in L
I After I I toa 16-bit integer in A.
| Integer | |
I Multiply | I

PIMH | Position I I | Converts the 32-bit integer in R
I for I I to a 16-bit integer in r.
| Integer | [
| Multiply | I

PIML | Position v | Converts the 64-bit integer in L
| After ! | and E to a 32-bit integer in L.
| Integer | [
I Maltiply | [
| Long | |

S1A | Subtract 1 | S,R,V | Subtracts 1 from the contents of A.
| From A | I

SRA | Subtract 2 | S,R,V | Subtracts 2 from the contents of A.
| From A [[

S | Subtract I I | Subtracts the 32-bit contents of a
| Fullword | | memory location from the 32-bit
[[| contents of R.

SBL | Subtract IV | Subtracts the 32-bit contents of a
I Long | | memory location from the 32-bit
l | I contents of L.

SH | Subtract I I | Subtracts the 16-bit contents of a
| Halfword | | memory location from the 16-bit
[| | contents of r.

SSM | Set Sign | S,R,V | Sets bit 1 of A to 1.
| Minus | [

SSM | Set Sign I I | Sets bit 1 of R to 1.
| Minus I |

SSP | Set Sign I S,R,V | Sets bit 1 of A to O.
I Plus [[

SSP | Set Sign I I | Sets bit 1 of R to O.
| Plus [[

SUB | Subtract I S,R,V | Subtracts the 16-bit contents of a
| [I memory location from the 16-bit
i ! I contents of A.

TCA | Two's I S,R,V | Forms the two’'s complement of the
I Complement | I contents of A.
I A [|

TCL | Two's Y | Forms the two's complement of the
| Complement ! I contents of L.
I L I I

6-7 Second Edition

SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 6-2 (continued)

Integer Arithmetic Instructions

| Mnem | Name | Modes | Description |
| 1
I TC | Two's I I | Forms the two's complement of the !
| | Complement! ! contents of R. l
t I R | | !
i TCH | Two's I I | Forms the two’'s complement of the [
| | Complement | | contents of r. !
| . x ! [
I'TM | Test Memory | I | Tests the contents of a memory |
| I Fullword | | location and sets the condition I
| | | | codes to reflect the result of [
l		the test.	
TMH	Test Memory	I	Tests the contents of a memory
I Halfword		location and sets the condition	
[[codes to reflect the result of		
	[I the test. l		
Second Edition 6-8

Addresses

DATATYPES

The 50 Series processors manipulate addresses as if they were unsigned

integers. Table 6-3 lists the instructions that handle addresses.
Table 6-3
Address Manipulation Instructions
| Mnem | Name | Modes | Description [
I [
| EAFA | EA to FAR I V,I I Calculates an effective address |
I ! [[and loads it into the I
I | | | specified FAR. l
| FIX, | Load I R,V | Loads X with a multiple of the |
| DFLX,| Floating I I contents of a memory [
QFLX	Index	I location.
CEA	Compute EA I S,R	Uses the contents of A as an
I	I indirect address, calculates	
I I I I an effective address from the		
I [I referenced location and I		
	! I loads the FA into A. I	
i EAA	Effective I R	Loads an effective address I
I Address to A	I into A. I	
I EAL	Effective (Y	Loads an effective address
I Address to L	I into L. I	
FALB	Effective I v,I I Loads an effective address I	
l I Address to LBI	into 1IB. I	
I EAR	Effective I I I Loads an effective address I	
I Address to R	l into R. I	
EAXB	Effective I v,I	Loads an effective address
I I Address to XBI | into XB. I

Second Edition

SYSTEM ARCHITECTURE REFERENCE GUILE

Fixed-point Operations

The 50 Series processors can perform several kinds of operations on
fixed-point data. Some examples are setting or resetting a single Dbit
in a logical wvalue, or storing an unsigned integer into a memory
location. Table 6-4 lists the instructions that move fixed-point data
from one place to another. Table 6-5 describes a group of special
load/store instructions. Table 6-6 lists the instructions that shift
the contents of a 16-bit or 32-bit register. Table 6-7 shows
instructions that can be used to set or reset all or part of a piece of
data.

Table 64
Data Movement Instructions

Mnem | Name | Modes | Description

Double Load S,R Ioads A and B with the contents

of two 16-bit memory locations.

[|
[[
| | | [l
I [I | |
| DST | Double Store ! S,R | Stores the contents of A and B !
| | | | into two 16-bit memory locations. |
I I | Interchange | I | Interchanges the contents of |
[I R and [I R and a memory location. [
	Memory I [
	Fullword [,	
TAB	Interchange	S,R,V	Interchanges the values of A
[I AandB I i and B.			
ICA	Interchange	S,R,V	Interchanges the contents of
I	Characters	I the two bytes in A. I	
I in A	[[
ICBL	Interchange	I	Interchanges the contents of the
i and Clear		bytes in r, then loads zeroes t	
I Left [into the leftmost byte of r.		
ICBR	Interchange	I	Interchanges the contents of the
	and Clear	I bytes in r, then loads zeroes	
	Right !	into the rightmost byte of r. l	
ICHL	Interchange	I	Interchanges the contents of bits
[Halfwords	I 1 to 16 and bits 17 to 31 of R,	
! ! and Clear ! I then loads bits 1 to 16 of R !			
I Left		with zeroes. [
I ICHR	Interchange	I	Interchanges the contents of bits
	Halfwords	I 1 to 16 and bits 17 to 31 of R,	
l I and Clear		then loads bits 17 to 31 of R	
I I Right I	with zeroes. [
ICL	Interchange	S,R,V	Interchanges the contents of the [
	and Clear	I bytes in A, then loads zeroes :	
[I Left I [into the leftmost byte of A. |
i ICR | <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>