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About

This Book

Prime's 50 Series™family is a sophisticated group of totally
compatible supermini computers. Its members are the Prime:

6350™ 9955 II™ 9955™ 9950™
9755™ 9750™ 9655™ 9650™
2755'™ 2655™ 2550™ 2450"
2050™ 2a00™ 850™ 750™
650™ 550-II™ 550™ 500™
450™ I450™ 400™ 350™
200-II™ 250™ 150™

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and
quickly. This document describes the 50 Series architecture from a
functional point of view.



NOTES TO THE READER
 

Groups of people will find this document useful: engineers,
programmers, designers, and technicians. To read this book, you should
have a basic understanding of computers, but not necessarily of Prime
computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information
contained in this book to other Prime machines, as well as to the 50
series machines.

ORGANIZATION OF THIS GUIDE
 

Because this guide stresses the functional aspects of the 50 Series
processors, the topics are organized according to function. Chapter 1
presents a general overview. Chapters 2 through 11 each describe one
aspect of the system, beginning with memory configuration and
addressing and ending with the I/O system. Each chapter builds on the
information contained in the previous one. Chapters 1 through 11 may
be summarized as follows:

e Chapter 1 gives an overview of the 50 Series systems.

@ Chapter 2 presents the configuration of the 50 Series physical
and virtual memory.

@ Chapter 3 discusses virtual addressing, modes and formats, and
address traps.

@ Chapter 4 describes memory management and its data structures.

@ Chapter 5 gives the control data structures and restricted
instructions.

e Chapter 6 specifies the datatypes supported on the 50 Series
systems.

@ Chapter 7 presents the branch, skip, and jump instructions.

e Chapter 8 defines procedure calls, the stack, and argument
transfers.

e@ Chapter 9 describes single-stream process exchange and its data
structures.

e@ Chapter 10 deals with interrupts, faults, checks, and traps.

e Chapter 11 discusses the I/O system (DMA, DMC, DMT, and DMQ).

Throughout these chapters are lists of Prime assembly language
instructions that pertain to the topics under discussion. These lists
briefly define the instructions’ actions and show how they relate to

the topics.



Appendix A discusses system power-up and the initialization of
registers.

Appendix B presents the characteristics of the following earlier
processors: 2250, 850, 750, 650, 550-II, 450/550, 500, 1450, 400, 350,
250-II, 250, and 150.

Appendix C describes process exchange on the 850, a processor with
dual-stream architecture.

Appendix D contains instruction summaries for all modes.

Appendix E describes the system architecture for the 2455.



PRIME DOCUMENTATION CONVENTIONS
 

The following conventions are used in command formats, statement

formats, and in examples throughout this document. Examples illustrate

the uses of these commands and statements in typical applications.

Convention Explanation Example

UPPERCASE In command formats, words CRL

in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in uppercase.

lowercase In command formats, words LDA address

in lowercase indicate vari-

ables for which you must
substitute a suitable value.

Apostrophe An apostrophe preceding a ‘200
number indicates that the
number is in octal.



System Overview

The CPUs of all 50 Series systems share a common architecture and one
operating system. This commonality is what makes the 50 Series a line
of completely upward-compatible and downward-compatible systems. The
implementation of the common architecture, however, is slightly
different for each member, allowing the50 Series systems to address a
wide variety of user needs as well as to remain compatible. The first
part of this chapter explores the single-stream CPU implemented on the
2550 to 9955 II. The second part of this chapter discusses special
features of the 6550, the newest processor.

Note

The earlier processors 2250, 750, 650, 550-II, 550, 500, 450,
I450, 400, 350, 250-II, 250, and 150 are also single-stream CPU
processors. This chapter identifies where their single-stream
implementation differs from the current processors. For a
detailed discussion of these differences, refer to Appendix B.
The 850, another earlier processor, is the only system with a
dual-stream architecture that is discussed in Appendix B also.

1-1 Second Edition
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SINGLE-STREAM ARCHITECTURE
 

The CPU can be divided into four major units. The first three of these
are implemented on all single-stream members of the 50 Series family:

@ Cache, STLB, and IOTLB

e Control store

@ Execution unit

@e Instruction unit

The instruction unit is a feature of the systems and serves as a
mechanism to process instructions at a greater speed. Of the earlier
processors, only the 750 and 850 have a fourth unit also, called the
Instruction Preprocessor Unit and discussed in Appendix B.

Figure 1-1 diagrams this architecture. This figure also shows the
diagnostic processor which, among other functions, can load the control
store and operate as the system terminal. The diagnostic processor
also provides support for environmental sensors and the uninterruptable
power supply. For the 6350, the diagnostic processor supports battery
backup capability.

Cache, STLB, and IOTLB
 

The 50 Series uses a virtually addressed, write-through cache. Each
cache entry contains the contents of 32 bits of recently accessed
physical memory. Each entry also contains parity and valid bits as
well as the physical page number that contains the 32 bits. (For the
cache entry format on the earlier processors, see Appendix A.)

The 6350 has a two-set associative cache that is accessed in parallel
to return two cache entries, each for the contents of 32 bits. Thus,
two virtual addresses with the same cache index address can be used
together without references to the one virtual address forcing the data
for the other virtual address to be overwritten. This effectively
eliminates two-way thrashing that could reduce performance.

If the contents of a specified location can be found in the cache, the
system saves a great deal of time: it takes only 0.25 to 0.5 of the
minimum instruction time to access the cache and get a cache hit, a
vast improvement over the approximately 2 to 6 times the minimum
instruction time needed to access physical memory. The time saved can
be spent performing other operations rather than waiting for a memory
reference to complete.
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To speed up the virtual to physical address translation, the STLB
(Segmentation Table lLookaside Buffer) contains the results of the last
translations: 1024 translations on the 6350; 512 translations on the
2050 to 2755, 9650, and 9655; and 128 translations on the 9750 to
9950.

The 6350 has a two-set associative STLB that is accessed in parallel to
return two STLB entries. Thus, two virtual addresses with the same
STLB entry address can be used together without references to the one
forcing the mapping for the other virtual address to be overwritten.
This effectively eliminates two-way thrashing that could reduce
performance.

Because programs tend to reference the same set of locations during
their execution, the system can perform a translation once, store the
result in the STLB, and then have it for reference the next time the
user specifies the same location. Because the STLB has a much faster
access time than physical memory does, referencing it saves translation
time as well as access time.

Mapped I/O allows the limited addressing range of DMx input/output
transfers to address all of physical memory. It is especially useful
when the processor is transferring several contiguous pages in virtual
memory to physical locations that may not be contiguous. The IOTLB
contains the information needed to map the transfer addresses to
physical memory locations. The JIOTLB, with the STLB, forms the
virtual—to-physical address mapping hardware and contains 256 entries
for the 6350, and 128 entries for the 2350 to 2755, 9650 to 9955 II.

see Chapter 4, MEMORY MANAGEMENT, for more information about cache,
STLB, and address translation. See Chapter 11, INPUT-OUTPUT, for a
description of the IOTLB.

The Control Store Unit
 

To speed up execution, the 50 Series systems implement many functions,
Such as procedure calls, in hardware and firmware. (Procedure calls
are explained in Chapter 8.) The firmware that governs instruction
execution is contained in the control store RAM: 80 Kbytes for the
63550; 50 Kbytes for the 9750 to 9955 [I; 1288 Kbytes for the 2755;
and 64 Kbytes for the 2350 to 2655, 9650, and 9655.
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SYSTEM OVERVIEW

The Execution Unit
 

This unit performs the computation required during instruction
execution. Elements of the processor execution unit include:

e Integer arithmetic logic unit (ALU)

@ Decimal ALU

@ Floating point unit

e Register file

Figure 1-2 shows a diagram of the processor execution unit.

ALUs: The integer arithmetic logic unit (ALU) performs the desired
operation on the user's two’s complement data. In a similar fashion,
the decimal ALU and the floating-point unit handle decimal and
floating-point operations, respectively. These units can perform tests
and checks as well as arithmetic operations.

 

 

 

Register File: The register file contains up to eleven sets of
registers, depending on the processor model. Each set contains 32
oe-bit registers. There are three types of register sets: user,
microcode scratch and system status, and DMA. User register sets
contain information about a process and about the system as the process
sees it. Specifically, user register sets contain information about
the general registers a process can use, addresses of fault handlers,
contents of system registers, and other useful information.

Direct memory registers contain direct memory access (DMA) channels to
speed I/O operations as discussed in Chapter 11.

The 6350 and 9750 to 9955 II have eight register sets: four sets of
user registers, two sets of microcode scratch and system status
registers, one set of direct memory access registers, and one reserved.

The 2350 to 2755, 9650, and 9655 have eleven register sets: eight sets
of user registers, three sets of microcode scratch and system status
registers, and one set of direct memory access registers.

See Appendix B for the registers sets of the earlier processors listed
on page 1-1.
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SYSTEM OVERVIEW

The Instruction Unit
 

The 2350 to 9955 II have an instruction unit designed to speed up
execution by processing information about instructions before
execution. The instructions are read from cache and decoded to provide
the information necessary for effective address formation and for
execution of the instruction.

INSTRUCTION PIPELINE USE
 

The 2350 to 9955 II use a pipeline to speed up instruction decoding and
execution. The pipeline of the 6350 and 9750 to 9955 II has five
stages. The pipeline of the 2350 to 2755, 9650, and 9655 has two
phases. Both pipelines are discussed below.

The Five-Stage Pipeline
 

The 6350 and 9750 to 9955 II use a five-stage pipeline technique for
executing instructions in parallel, thus speeding up instruction
execution considerably. The execution of each instruction for this
pipeline through the five stages is shown in Table 1-1. Each stage
takes two beats to complete, where a beat is a certain constant of
time. The beat rate is the minimal time interval that the processor
requires to perform some useful task.

A processor using the five-stage pipeline executes instructions in
parallel. This means that the processor does not have to complete the
entire five-stage sequence for one instruction before it can begin
executing the next. Rather, instructions are processed somewhat like
cars in a factory assembly line. The cars travel past a number of
Specialized stations. At each station a specific operation takes
place. Then the car moves on. After a certain length of time the next
car arrives at the same station where the same operation occurs.

The five-stage pipeline processes instructions in a similar fashion.
After every other beat, a new instruction arrives at a station, and
that station's operation is performed on it.

Using the pipeline in this fashion, a processor executes Stage 1 of the
first instruction. When it begins on Stage 2 (Beat 3) of the first
instruction, that processor can also begin Stage 1 (Beat 1) of the
second instruction. Likewise, when a processor begins Stage 2 (Beat 3)
of the second instruction, it can also begin Stage 1 (Beat 1) of the
third, and so on. This means that the pipeline can begin a new
instruction every other beat.
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Table 1-1
The Five-Stage Instruction Pipeline

 

Stage | Beat | Action
 

| |
| |
| 1 | 1 | Send the contents of the lookahead program |
| | | register to the memory address register. |

| | |
| 1 | 2 | Read the next instruction from the cache.
| | | |
| 2 Jt 8 | Start decoding the address of the next
| | | instruction. |
| | |
| 2 | 4 | Read the contents of the base and index
| | | registers.
| | | |
| 3&8 I! 8 | Form the effective address and the control |
| | | store address. |
| | | |
i 38 | 6 | Send the contents of the effective address |
| | | register to the memory address register and |
| | fetch the contents of the next microword. |
| | | |
i 4 i % | Read the operand from the cache and register |

| | file. |
| | | |
| 4 | 8 | Execution, phase 1 (ALU).
| | |
| 5 | 9 | Execution, phase 2. (Transfer results to RS.) |
| | | |
| 5 | 10 | Store the results of the operation. |
 

The rate of instruction-flow through the pipeline is determined by the
processor's use of system elements at each beat. As shown in Table
l-1, Beats 2 and 7 both use the cache, and Beats 7 and 10 both use the
register file. When two instructions in the pipeline request the same
element at the same time, a conflict occurs. Starting a new
instruction every other beat minimizes this type of conflict.

When there are no conflicts in the pipeline, simple instructions
complete execution every two beats. Some instructions, however,
require more than two beats to complete execution. When this occurs,
the pipeline holds up operations on the subsequent instructions until
it has completed the extra operation for the first instruction. During
the holdup, the processor still forms control store addresses and
fetches microcode words, but it performs no prefetch or effective
address calculations.
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SYSTEM OVERVIEW

The Branch Cache and the Five-Stage Pipeline: The 6350 and 9750 to
9955 II use a memory called the branch cache to record and predict the
target address for jump and branch instructions. The branch cache
contains 256 to 1024 entries, depending on the processor model.

 

 

Because these processors execute instructions in parallel in their
pipeline, they might begin to execute instructions down an incorrect
path, following a branch, before they had determined the correct branch
address. If this occurs, the processor must flush the pipeline of all
instructions from the wrong branch path, and then mst begin execution
down the correct branch path. This sequence of steps causes a delay.

To minimize the chance of such an occurrence, the branch cache contains
information about the branches that have previously occurred in the
program. The processor uses this information to determine which branch
was most recently taken for each conditional instruction. The
processor then assumes that the same branch will be taken this time.
If the prediction is wrong, the processor adds a new entry in the
cache, specifying the correct branch for future use.

Flushing the Five-Stage Pipeline: If an instruction stores data into
the stream of instructions that follows it, the five-stage pipeline may
have to be flushed before further calculations take place.
Store-instructions in S and R modes automatically flush the pipeline;
therefore, no further actions are required and performance is reduced
substantially. V mode and I mode store instructions, however, do not
automatically flush the pipe. Either an EG4V (V mode) or an E321
(I mode) instruction will perform the flush.

 

Prime systems are designed for pure procedure. All
translator-generated code avoids storing into the instruction stream.

The Two-Phase Pipeline
 

The 2350 to 2755, 9650, and 9655 use a two-phase pipeline technique for
decoding and executing instructions in parallel, thus speeding up
instruction execution. While these processors perform the effective
address formation and execution of one instruction, the next
instruction is read from cache and decoded.
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SPECIAL FEATURES OF THE 6350
 

Although the 6350 follows the general architecture of the 50 Series as
Shown in the previous discussions, it contains several features
designed for outstanding performance in a multiuser environment.

Two-Set Associative STLB
 

The two-set associative STLB increases the likelihood that the physical
translation of a virtual address is in the STLB. This lessens the
Chance that the slower virtual-to-physical address translation
mechanism has to be used.

Two-Set Associative Cache
 

The two-set associative cache increases the probability that the cache
will contain the correct data. This feature increases the likelihood
that the physical translation of a virtual address is in the STLB. The
combination of the two-set associative cache and the  two-set
associative STLB adds up to increased performance for the 6350.

10KH ECL Design
 

For swift execution of instructions, the 6350 uses 10KH ECL (emitter
coupled logic). Memory parts using 10KH ECL are about twice as fast as
those made of ECL at the same power level. Most of the logic is
contained in semi-custom gate arrays.

Barrel Shifter

To speed up floating-point operations, the 6350 uses a barrel shifter.
Moreover, this feature provides more power for manipulations performed
in shift and rotate instructions.

Expanded I/O System

The 6350's I/O system has been expanded to speed up I/O performance and
permit the parallel operation of a greater number of controllers. This
feature is achieved through the use of new DMx operations and four 1/0
segments (0 to 3).

6350's neoO
DMA, 32-bit burst

~ot
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SYSTEM OVERVIEW

In extended DIMA, theDMA control words can be located anywhere in the
I/O segments in memory, not just in the DMA register file, as long as
the control word is 32-bit aligned. Single 32-bit DMA transfers 32
bits at a time instead of 16, and 32-bit burst mode transfers four
oe-bit quantities at a time rather than four 16-bit ones.

DMT has been expanded on the 6350 to allow 16-bit burst LMT, whereby
the CPU receives a main memory address and then reads or writes four
16-bit quantities at a time rather than just one.

Ambient Temperature Environmental Sensor
 

The 6350 now has an ambient temperature environmental sensor that
detects when the air surrounding the processor has exceeded a certain
temperature. Chapter 10 discusses this in further detail.

Battery Backup Capability
 

In the event of a power failure, the 6350 has a battery backup
capability that keeps powered the memories, maintenance processor, and
memory refresh logic of the CPU.

1-11 Second Edition



Physical and Virtual

Memory

The 50 Series processors are virtual memory systems. This means that a
very large, protected, virtual address space is available to each user
who is logged onto the system. This virtual address space is supported
by a much smaller physical address space invisible to the user.

Virtual memory has several advantages. To the user logged onto the
system, there appears to be an address space of almost unlimited size,
which can support very large applications without using overlays. This
address space is protected against unauthorized accesses in hardware.
To the system owner, a virtual memory scheme provides the ease of use
of a large memory at the cost of a much smaller amount of hardware.

The three key parts to a virtual memory scheme are physical memory,
virtual memory, and a manager to control the virtual memory scheme.
The manager is the operating system, PRIMOS, and its attendant hardware
and firmware support. This chapter describes the characteristics of
the 50 Series physical and virtual memory, and shows how PRIMOS
coordinates the 50 Series virtual memory scheme. It also describes
Some of the hardware protection mechanisms implemented in the 50 Series
virtual memory.
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PHYSICAL MEMORY

Physical memory encompasses all hardware parts of the system used to

store large blocks of information. There are three types of physical

memory :

e@ Cache

e Main memory

e Disk

Figure 2-1 shows the relationship between the three elements of

physical memory.

 

 

  

 

 

 Disk A
up to64 770- Megabyte
Disk Drives

    
Main Memory
up to 64 Megabytes

 

Cache
up to 64 Kilobytes

Elements of Physical Memory
Figure 2-1
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PHYSICAL AND VIRTUAL MEMORY

Cache

The cache is a data buffer that stores copies of the information
contained in the most frequently referenced memory locations. Its size
varies from system to system as shown in Table 2-1. During program
execution, this buffer is used to speed up memory references.

Consider the following. Since cache is a form of very high speed
memory, it takes only 0.25 to 0.5 of a minimum instruction time to
access data stored there. In contrast, it takes about 2to5 times a
minimum instruction time to access data stored in main memory. This
difference in access times makes it very advantageous to access cache
whenever possible.

Three factors determine how often the cache contains the correct data
(known as the cache hit rate):

e The size of the cache (16 to 64 Kbytes)

e The organization of the cache (two-set associative or one-set)

e The information fetch rate (block size) of 32 to & bits,
depending on the system and the amount of memory interleaving

Locality of reference (the tendency of a program to execute
within a small part of itself at any time)

The 50 Series cache hit rate varies from system to system. See Table
2-1 for details.

Table 2-1

Cache Sizes and Hit Rates*

 

 

| System | No. Sets | Size Per Set | Total Size | Rate |
| |
| 2350 to 2655 and | 1 | 16 Kbytes | 16 Kbytes | 95% |
| 9650 to 9950 | | | | |
| 2755, 9955, and | 1 | 64 Kbytes | @ Kbytes | >98% |
| 9955 II | | | | |
| 6350 | 2 | 16 Kbytes | 32 Kbytes | >98% |
 

*For earlier systems (listed on page 1-1), see Appendix B.
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Main Memory

Packaged onto printed circuit boards, the main memory uses dynamic

random access storage devices for data retention. All memory
incorporates error detection and correction techniques and the
capability of performing two-way interleaving.

Error detection and correction allows the memory to remain functional
amd to output correct data when a single bit in a 16-bit or 52-bit

quantity (depending on processor model) has become faulty. This type
of error is referred to as an ECCC. If more thana single bit in a
single 16-bit quantity is in error, the fault is uncorrectable, an

ECCU. All two-bit errors are detected as well as many multi-bit

errors.

Interleaving effectively decreases the memory cycle time, increases
memory accessibility, and allows more efficient use of the I/O bus.

There are two types of memory for all 50 series processors: the array

card driven by a memory controller for the 6350 and 9750 to 9955 IT;

and the standalone memory subsystem for all other 50 Series processors.

The memory array cards used on the 6350 and 9750 to 9955 II require a

memory control unit to supply commands, error detection and correction,

and all interaction to and from the central processing unit. The

8-megabyte board has a 64-bit-wide storage capability that interacts
directly with the memory bus. The total main memory capacity of the

6350 and 9750 to 9955 II is as follows.

9750 and 9755: 12 megabytes
9950 and 9955: 16 megabytes
9955 II: oe Inegabytes
6350: 64 megabytes

Each standalone memory board used by the 2350 to 2755, 9650, and 9655

has a memory capacity of 2 or 4 megabytes to provide a maximum storage

capacity as follows:

2550 to 2655: 8 megabytes
9650 and 9655: 8 megabytes
2755: 16 megabytes

The board itself has a 32-bit-wide storage capability that interacts

directly with the memory bus.

Appendix B contains a description of the standalone memory subsystem

for the earlier processors listed on page 1-1.
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PHYSICAL AND VIRTUAL MEMORY

Disk

Disks provide storage for all virtual memory. With the proper access
rights, the system or user can access this information. When the disk
is accessed, a copy of the information is moved from disk to main
memory.

VIRTUAL MEMORY

Virtual memory is divided into units called segments that contain up to
128 Kbytes each. Segments are virtual units, not physical ones, that
aid the user and the system in organizing their virtual address spaces.
For example, the user can organize program code in one segment and
program data in a second one. Segments make it possible to allow extra
room in a program for variable length data structures, such as arrays
whose dimensions can change each time the program runs. Segments also
allow the user to build modular programs, one module to a segment.
PRIMOS uses segments similarly to organize its own code into modules.

The virtual address space of each user contains 4096 segments. These
are subdivided into four groups of 1024 segments each. The segments
are subdivided to make address translation and segment sharing easier.
(See the next section and Chapter 4, MEMORY MANAGEMENT.)

Shared and Unshared Segments
 

In the Prime virtual memory scheme (diagrammed in Figure 2-2), each
user address space of 4096 segments is divided into shared and unshared
Space. The first 2048 segments are shared with all other users. This
allows the operating system, shared libraries, and shared Subsystems to
be seen by all users. This means that if two users reference segment
2000, they are specifying the same location.

The second 2048 segments are private, containing information unique to
each user. This means that if two users reference segment 4000, they
are specifying completely different locations.

This arrangement of shared and unshared segments means that there is no
possibility of one user’s private space conflicting with that of
another user. It also means that only one copy of PRIMOS and the
Shared system software need be maintained, and thus reduces memory use.
Moreover, it means that PRIMOS is embedded in the virtual address Space
of each user and is directly accessible via a normal procedure call.
(See Chapter 8, STACKS AND PROCEDURE CALLS.) No interrupts, special
Supervisor calls, or system traps are necessary when the user accesses
PRIMOS or any utility, library, or subsystem residing in shared space.
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PRIMOS, SharedLibraries,
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Private

User-n’s
2048 Segments.
  

50 Series Virtual Memory Space
Figure 2-2

Protection Rings
 

Designating shared and unshared segments is not the only form of
protection available to the 50 Series virtual memory. Three hardware
implemented rings provide a simple, unbreakable form of security that
checks each memory reference for its right to access the specified part
of memory.

The rings represent levels of privilege, and are diagrammed in Figure
2-3. All executing procedures run with a given ring number. This ring
value represents the rights, or privilege, of access in virtual memory.
A process running under Ring 3 has the most restrictions, while a
process running under Ring 0 has no restrictions.
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Code that is executed under Ring O privilege must also have the
greatest protection to prevent accidental or intentional misuse. The
protection rings serve to provide this kind of protection so that a
Ring 3 program is restricted from reading, writing, and/or executing
Ring O data or code. Access is only provided to Ring 0 operating
System routines through the use of special gates set up for that
purpose.

Inward Call
Inward Call

Inward Call

Outward Calls

 

Protection Rings
Figure 2-3

A Ring 5 program can therefore make a gated call to a Ring O routine.
This is referred to as an inward call. Procedures that require greater
access than is provided under Ring 3, but not as much as granted under
Ring 0, operate under Ring 1 protection. Ring 1 procedures can also
perform inward calls to Ring O procedures. See Chapter 8 for more
information on procedure calls and gates.

See Chapter 4, MEMORY MANAGEMENT, for information about how rings
govern the virtual-to-physical address translation to prevent invalid
accesses.
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Segmentation Table Lookaside Buffer
 

Virtual memory has its counterpart of the cache, the STLB. The system

uses this buffer with the cache to reduce the time needed to access

information. Where a cache entry contains information about a recently

accessed physical memory location, an STLB entry contains the

information the system needs to find the physical location from the

virtual address the user specified. Each entry also specifies the

protection attributes associated with the location. Chapter 4

describes more about how the STLB is used.

SUMMARY

This chapter describes the configuration of the 50 Series physical and

virtual memories. Chapter 3, ADDRESSING, shows how to form a virtual

address that references a location within the virtual address space.

Chapter 4, MEMORY MANAGEMENT, shows how the 50 Series systems use the

virtual address and the virtual-to-physical address translation process

to integrate virtual and physical memory.
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Addressing

The 50 Series processors support several kinds of addressing: direct
addressing, indexed addressing, indirect addressing, indirect indexed
addressing, and general register relative (GRR) addressing (unavailable
for the earlier processors listed on page 1-1). They also support
several modes of addressing, each with its own uses and benefits. This
chapter:

e Provides an overview of virtual addressing and of effective
address calculation.

e Explains how effective address calculation is done for each type
of addressing, and what registers are involved.

@ Explains the various modes of addressing.

@ Provides summaries of instruction forms for each type of
addressing in each mode.

UNITS

The basic units of information are bits, bytes, halfwords, and words.
A byte contains eight bits. One halfword contains two bytes; the bits
are labelled from 1 (most significant bit) to 16 (least significant
bit). A word contains four bytes. The bits are labelled from 1 to 22.

 

Memory is measured in bytes. The 50 Series physical memory size can be
up to 64 Mbytes; the virtual address space contains 512 Mbytes.
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COMPONENTS OF A VIRTUAL ADDRESS
 

A virtual address refers to a unique location in a user’s virtual
address space. The location is characterized by three elements: a
ring number, a segment number, and an offset within that segment. (All
offsets are relative to the first location within a segment, and are
expressed in units of halfwords.) The format of a virtual address is
shown in Figure 3-1.

When an instruction makes a memory reference, it provides information
from which the virtual address can be calculated. This is frequently
referred to as calculating the effective address. Depending on the
type of instruction, the information can be provided in several
different formats, and the calculation done in various ways. This
section explains the various ways in which the ring number, segment
number, and offset can be specified. It also explains the use of the
indirect bit. The section Forming an Address explains how each of the
four types of addressing uses these components to calculate the
effective address.

 

 

Ring Number

Ring numbers are found in the program counter, in the base register,
within indirect addresses, and also in data blocks such as ECBs. When
an effective address is calculated, the highest numbered ring
referenced in any of these locations is chosen as the ring field for
the effective address. (For more information on rings, and on the
process of calculating ring numbers, see Chapter 4.)

Segment Number

The segment number is generally provided in one of four ways:

e If the instruction contains a base register field, the segment
number is found in the specified base register.

e If the instruction does not contain a base register field, the
+ ha + f rA 4 neysegment number is found in the program counter.

e In indirect addressing, the segment number field contains the
segment number.
 

e In I mode general register relative (GRR), bits 5 to 16 of the
specified source register contain the segment number. (GRR is
unavailable for the earlier processors listed on page 1-1.)
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Base Registers:

address calculation:

The procedure base register (PB)

The stack base register (SB)

The link base register (LB)

The auxiliary base register (XB)

The format of these registers is shown in Figure 3-l.

12385 4 5 16 17 on
 

| O |RING! O | SEGMENT | OFFSET |
 

ADDRESSING

Four 32-bit base registers are available for use in

 

Bits | Name Description
 

|

|

|

|

|

|

| Ring
|

|

|

|

|

|

|

| segment
|

17 to 32 | Offset

Must be 0. (See the F bit in

the section on Calculating

Indirect Pointers, in
Chapter 8, for the
explanation of this. )

 

Specifies the ring number.

Must be 0. (See the E bit in
the section on Calculating

Indirect Pointers, in
Chapter 8, for the
explanation of this. )

 

Specifies the segment number.

Specifies the offset value.
 

Format of Virtual Addresses and Base Registers
Figure 3-1

The PB contains the address of the currently active procedure. It is
unique among the four base registers because its offset is always 0.
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The program counter always contains a trusted copy of the segment
number in the PB. MTherefore, an instruction that contains no base
register field uses the same segment number as one that specifies the
PB.

SB contains the starting address of the stack for the currently active
Stack frame. LB contains the starting address of a save area for
static variables, such as an entry control block. Because short
instructions reference LB-based variables starting from ‘400, the value
loaded into LB is usually ‘400 less than the start of the save area.
References then add an extra ‘400 to their displacement. (See Chapter
8.) XB usually contains a temporary pointer, such as that to a FORTRAN
common block. These three registers usually have nonzero offsets.
Thus, they supply not only the segment number but also an offset
address relative to that number.

Offset 

The offset portion of an effective address is supplied by one or more
of the following components:

@ Displacement: a 16-bit number given explicitly within the
instruction. In 5S, R, and V modes, the displacement can be 9
bits of the instruction that is added to or concatenated with
the program counter.

e Base register: if the base register is SB, LB, or XB, it will
contain an offset to be added to the displacement given within
the instruction.

e Index register: if an index register is used, then the contents
of that index register are to be added to whatever other offset
has been calculated. When an I mode general register is used as
an index register, only the contents of bits 1 to 16 are added
to the offset.

e Indirect address: if indirect addressing is used, the indirect
address contains the offset. Short form offsets are 16 bits.
Long forms are 20 bits (bit pointers). Short form C language
pointers are 17-bit offsets (byte pointers). (C language
pointers are not available for the earlier processors listed on
page 1-1.)

e Source register: if general register relative (GRR) is used,
bits 17 to 382 of the source register will normally contain the
offset. This is interpreted as the following C language pointer
bits: the contents of bits 17 to 382 concatenated with the
content of bit 4. (GRR is not available for the earlier
processors listed on page 1-1.)

 

 

Second Edition 3-4



ADDRESSING

In summary, an offset can be calculated in any of the following ways:

Displacement

Displacement + offset from BR

Displacement + index register (or source register low for GRR)

Displacement + offset from BR + index register

Indirect address

Indirect address + index register

The instruction format tells the processor which method to use.

COMPONENTS OF AN INSTRUCTION
 

Instruction Format
 

Figure 5-2 diagrams a typical instruction format. Thus, it shows how
all the fields described in this chapter fit together into a single
instruction.

3-5 Second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

 

 

 
 

 

1 2 3 67 11 12 1381415 1617 oe

| I |X 1 OP 1! 11000! Y! OP | RR ! DISP |

| Bits | Mnem | Name “|Description—
! 1 | I | Indirect bit | Specifies indirect addressing.

! 2 ! xX ! Index field : Specifies use of an index register.

: 3 to 6 ! OP Opeode Specifies the operation to perform.|

! 7 to ll ——— ! ———— ! Specifies instruction format.

: 12 ! Y ! Index field Specifies use of an index register.

! 13 to 14 OP Opcode ! Specifies the operation to perform.

! 15 to 16 BR Base register | Specifies the base register to use.

! 17 to 32 DISP ! Displacement ! Specifies a 16-bit offset.
 

Format of a Typical Instruction (V Mode, Long)
Figure 3-2

The figure shown above explains the parts of a typical instruction.
Instruction formats for all addressing modes, such as 64V short form or
Sel, are provided later in this chapter.

Indirect Bit

An instruction may contain an indirect bit. If this bit is 1, it
signifies that the address being calculated is an indirect address. If
this bit is 0, the address is a direct address. (Indirect addresses
are explained in the section Forming an Address, later in this
chapter.)
 

Second Edition 3-6



ADDRESSING

Index Register Field
 

An instruction may specify two index registers by using the K and Y
fields. Each of these fields is one bit long. These fields are
encoded with the contents of the I field to specify the type of
indexing to be performed. (See Table 3-4 for the encoding.) If an
index register is specified, then the contents of that index register
are added to whatever other offset has been calculated.

Base Register Field
 

The base register field of an instruction may contain one of the
following four values:

Value Base Register

00 PB (Procedure Base)
O01 SB (Stack Base)
10 LB (Link Base)
11 XB (Auxiliary Base)

The value tells the processor which base register to check for the
correct segment number (and, perhaps, offset).

Displacement

The displacement field contains a 16-bit number representing an offset
within a segment. As the section on Offset explained, the value given
by the displacement may either stand alone or have other values added
to it to provide the actual offset for the effective address.
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FORMING AN ADDRESS 

The processor uses the contents of the fields in a memory reference
instruction to select which of the four types of address formations to
use:

e Direct

e Indexed

e Indirect

e Indirect indexed

@ General register relative (for the 2350 to 9955 II only)

Direct Addressing 

In direct addressing, the processor forms the effective address by
adding the contents of the base register to the displacement.

Indexed Addressing 

The processor adds the contents of the base register, index register,
and displacement to produce the effective address.

S, R, and V mode instructions that contain 1101 in bits 3 to 6 cannot

Specify indexing. See the tables at the end of this chapter for
specific information.

Indirect Addressing 

Short Form Indirection: Depending on the addressing mode, indirect
addressing takes one of two forms. In the first, the processor treats
the displacement as the address of a location in the procedure segment.
The processor uses the contents of the addressed location as the
effective address. This is called short form, or 16-bit, indirection.

 

Some addressing modes allow more than one level of indirection. (See
the 16S, 32S, and 32R sections at the end of this chapter.) In these
cases, the processor uses the displacement as the address of some
location in the address space. If this addressed location contains
another indirect address, then the processor uses these contents as the
address of another location in memory. MThis indirection chain is
followed until one addressed location does not contain an indirect
address; these contents are called the result of the chain. The
processor uses the result of the chain as the effective address.
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The tables at the end of this Chapter specify the number of levels ofindirection supported by each addressing mode.

Long Form Indirection: In long form indirect addressing, theinstruction points to a location in memory that contains a 32-bit (or,more rarely, 48-bit) pointer. These long pointers contain not onlyaddresses but also 2 or 3 fields that provide additional information.

 

Figure 3-3 shows the format of those pointers. The bits of specialinterest are the extension bit (or E bit), the fault bit Cor F bit),and the bit number field.
 

The functions of these three fields are as follows:

F bit If F = 1, a pointer fault is generated when this
indirect address is used. (See Chapter 10 for
information on pointer faults. )

E bit If E = 0, the pointer is a 32-bit pointer. If E=1,
the pointer is a 48-bit pointer. (Throughout the
rest of the chapter, discussions assume that the
d2-bit format is being used.)

Bit number Permits you to specify (or point to) a particular bit
within an address offset.

 

1 2 oe a) 16 17 on
 

| F | RING! E |! SEGMENT | OFFSET |
 

Indirect Pointer Format, Long Form (32-bit)
(E is always 0.)

1 2 3 4 5 16 17 be 35 8 37 48
 

| F | RING! E | SEGMENT | OFFSET | BIT# | RESERVED |
 

Indirect Pointer Format, Long Form (48-bit)
(E is always 1.)

 

Pointer Formats for Long Form Indirection
Figure 3-3

o-9 Second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

Indirect Indexed Addressing
 

This type of addressing takes one of two forms: indirect preindexed,

or indirect postindexed.
 

 

When calculating a preindexed indirect address, the processor adds the

value of the index register to the contents of the base register and

displacement and uses the sum as an indirect address. It resolves any

indirection chain and uses the result of the chain (or the indirect

address itself, if there was no chain to follow) as the effective

address.

When calculating a postindexed indirect address, the processor adds the

contents of the base register and displacement and uses the result as

an indirect address. It resolves any indirection chain, then adds the

result of the chain (or the indirect address itself, if there was no

Chain to follow) to the contents of the specified index register to

form the effective address.

General Register Relative Addressing
 

General register relative (GRR) is an addressing capability added to

32I mode that speeds up big array accesses and often gives the effect

of using general registers as base registers. The segment number is

formed from bits 5 to 16 of the specified source register. The offset

is formed in GRR by adding the displacement to bits 17 to 32 of the

specified source register. GRR is used by the I mode instructions ATP

and LIP. (GRR is not available for the earlier processors listed on

page 1-1.)

ADDRESSING MODES
 

The first part of this chapter describes several ways to specify an

address with information contained within an instruction. Once the

processor calculates the effective address, it can reference whatever

information is contained in the location specified by the effective

address. This section describes the ways to specify an address in an

instruction and how the processor forms the effective address.

The 50 Series processors support four modes of addressing, each of

which forms addresses differently. Depending on the program and

personal preference, one or two of these modes may be more useful than

another. The three most important modes are:

e V, or virtual

e iI, or general register

e R, or relative
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The fourth mode -- S, or sectored, mode -- is supported for historical
reasons.

V Mode
 

V mode performs short and long operations and has a wide variety of
registers to use. A short (16-bit) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (32-bit) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode
 

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumulators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use immediate forms and five
additional index registers. (This makes a total of 7 index registers
that I mode long operations can use.) The index registers are
Specified by the source register field. General register 0, however,
cannot be used for indexing.

General register relative (GRR) addressing is available only in I mode,
and is used by the I mode instructions AIP and LIP. This form of
addressing speeds up big array accesses and often gives the effect of
using general registers as base registers. (GRR is not available for
the earlier processors listed on page 1-1.)

The C language pointer is used by the I mode instructions ACP, COP,
DCP, ICP, 10C, SCC, and TCNP. The format of this pointer is the same
as the indirect pointer, except that bit 4 is redefined as the B (byte)
bit. When this bit contains 0, it indicates that bits 1 to 8 (the left
byte) of an address contain the character to be used: when this bit
contains 1, bits 9 to 16 (the right byte) of an address contain the
Character. A null pointer is represented by zeroes in bits 4 to 32.
(The C language pointer and its instructions are not available for the
earlier processors listed on page 1-1.)

Normal effective address formation uses either a base register,
indirect pointer (IP) or a general register (for GRR addressing) as the
source of the ring field, B bit, and segment number. The C language
pointer is well defined for the IP and GRR form. When the base
register is the source of the B bit, software depends on finding it
reset to zero, pointing to the leftmost byte. While it is possible to
set the E bit in a base register using 48-bit IPs to specify 32-bit
addresses, this practice is not now done. Future implementations of V
and I modes will force bit 4 to zero during effective address formation
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when the source of the segment is a base register; otherwise it will
copy bit 4.

R Mode
 

A sector is a block of 512 (1000 octal) contiguous memory locations.
Sector O starts on location 0 and ends on location ‘777; Sector 1
begins on location ‘1000 and ends on location ‘1777; and so on.

 

An R mode instruction can reference any location in Sector 0, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is 0, the
instruction can only reference locations in Sector 0. When S is 1, the
instruction references locations relative to the current value of the
program counter. The range of these relative locations is PC - ‘360 to
PC + ‘377, inclusive.

An R mode instruction that specifies a location in the range PC - ‘él
to PC - ‘400, inclusive, selects a special addressing code, such as
stack register. These special codes are explained in more detail in
Tables 5-7 and 3-8.

S Mode
 

Like R mode instructions, S mode instructions contain a sector bit.
When S is O, references are to Sector O. When is 1, however,
references are only to those locations within the sector containing the
instruction.

Note that S mode is a holdover from early Prime machines that were
based on the Honeywell 316 and 516 minicomputers. When operating in
S mode, the 50 Series processors act exactly as these early machines
do.

SUMMARY OF ADDRESSING MODES
 

The figures and tables in the rest of this chapter present summaries of
each addressing mode. Table 3-1 is a list of the mnemonics used in
these addressing mode summaries. Table 3-2 summarizes useful
information about all the modes.
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Table 3-1
Mnemonics Used in Summaries of Addressing Modes*

ADDRESSING

 

 

Mnem | Explanation |! Mnem | Explanation |

BR | Base register |! REG | A location in the :
| [| | register file. See |

CB | Class bit I | Address Traps. |

D : Displacement ! : 5 ! Sector bit :

DR : Destination register ! SB ! Stack base register !

F ! Fault bit ! SP Stack pointer !

I ! Indirect bit : ! SR Source register !

LB ! Link base register : ! ™ ! Tag modifier :

OP | Opcode : ! x ! X index register !

P : PO +1 : | XB : Auxiliary base register :

PB : Procedure base register**| ! XX : Opcode extension !

PC ! Program counter** : | Y ! Y index register |
| |
 

* An H appended to a register mnemonic refers to bits 1 to 16 of that
register; an L so appended refers to bits 17 to 32.

** The PB segment number equals the PC segment number. The PB offset
number is 0, but the PC offset number is the next instruction.
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Table 3-2
Summary of Addressing Modes

 

 
 

| Mode | Address | Addressing Range i# Index! Indirection!
| | Length | | Regs | Levels

| 168 direct | 14 bits | 1024 halfwords | One |
| | | | |
| 16S indirect | 14 bits | 16K halfwords | One | Multiple
| | | | |
| 32S direct | 15 bits | 1024 halfwords | One |
| | | | |
| 325 indirect | 15 bits | 32K halfwords | One | Multiple
| | | | |
| 32R direct | 15 bits | 1008 halfwords | One |
| | | | |
| 32R indirect | 15 bits | 32K halfwords | One | Multiple
| | | | |
| 64R direct | 16 bits | 1008 halfwords | One |
| | | | |
| 64R indirect | 16 bits | 64K halfwords | One | One
| | | |
| 64V 16-bit | 16 bits | 64K halfwords: | One | One

instructions | | +256 SB relative i
| | | +256 LB relative | |
| | | +/-256 PC relative! |
| | | +512 PB absolute | |
| | | | |
| CAV 32-bit | 28 bits | 4 segments* | Two | One
| instructions | | | |
| | | | |
| 64V indirect | 28 bits | 4096 segments* | Two | One
| | | | |
| 82I all | 28 bits | 12 segments* | Seven | One
| | | with GRR** | |
| | | | |
| 32I indirect | 28 bits | 4096 segments* | Seven | One

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

 

* All segments contain 128 Kbytes.

** Four segments for the earlier processors listed on page 1-1
because they have no GRR capability.

Second Edition o-14



64V Mode Short Form
 

Figure 5-4 and Table 3-3 display and explain

ADDRESSING

64V mode short form

 

 

 

 

 

 

 

 

 

instructions.

| 1 2 3 6 7 8 16 |
| |
| 1 ItixXi OP 1!S§s 1 DISPLACEMENT | |
| |
| Instruction Format |

| |
| 1 16 |
| |
| | ADDRESS | |
| |

Indirect Pointer Format |

GAV Mode Formats, Short Form

Figure 3-4

Table 3-3
64V Mode Short Form Summary

| I | X18 1 Disp | Inst Type | Example | Form of EA |
| |
1}OoO!1oto! O-'7@ | Direct | LDA ADR | REG |
| | | | §6©‘'10-'377 | Direct | | SB+D |
| | | | '400-'777 | Direct@@ | | LB+D |
-OoOtr1itiotl O-'7@ | Indexed i LDA ADR,X | REG, if DX<'7;@ |
| | | | | | | SB+D+X, if Dt+X>’7@ |
| | | | ‘'10-'377 | Indexed | | SB+D+X |
| | | | '400-'777 | Indexed@@ | | LB+D+X |
!-liorol O-'7@ | Indirect {| LDA AP,* | ICREG) |
| | | | ‘'10-'777 | Indirect | | ICPB+tD) |
rlilisiot O-'7 | Indirect, | LDA ADR,X* | ICREG), if DX<'7:@
ee ipreindexed | | ICPB+D+X), |
| | | | | | | if D+xX>'7@ |
| | | | ‘'10-'77 | Indirect, | LDA ADR,X* | I(CPB+D+X) |
| | | | | preindexed | | |
| | | ‘100-'777 | Indirect, | LDA ADR,*1 | ICPB+D)+X |
| | | | | postindexed | | |
| Ot Ot 1 |'-&40-'+377! Direct | LDA APR | P+D |
| O!1 141 |'-340-'+377! Indexed | LDA ADR,1 | P+D+X |

| 1101 1 1|'-340-'+3771 Indirect | LDA Am,* | I(P+D) |
| 1 i141 |'-&40-’+377! Indirect, | LDA ADR,1* | ICP+D+X) |
| | | | lpreindexed | | |
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Notes to Table 3-3
 

@ This table assumes segmented mode (modals bit 14 = 1). For
nonsegmented mode, the displacement range is O to ‘37,
rather than 0 to ‘7. This means that the range ‘10 to ‘S77
changes to ‘40 to ‘377 in nonsegmented mode. The range ‘400
to ‘777 remains unchanged.

@@ In these address forms, the displacement offsets the
contents of LB by '400 (bit 8=1). To compensate for this,
set the contents of LB to the current value of the link
frame minus ‘400. For example, if the segment number in LB
is ‘4002 and the offset number in the displacement is
‘177400, the offset of ‘400 gives the location of the link
frame as segment number ‘4002, offset number O.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STX, and SIY
do not do indexing. The effective address is formed as if
bit 2 = 0.
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64V Mode, Long Form and Indirect Form
 

Figure 5-5 and Table 3-4 display and explain 64V mode long and indirect
form instructions.

 

1 28 6 7% 1112131415 1617 32
 

| I | X¥ | OP | 11000 | Y | XX! BR I DISP |
 

oo 48
 

| AUGMENT CODE* |
 

Instruction Format

1 2 o 4 5 16 17 oy)
 

| F | RING | O01 SEGMEXT | OFFSET |
 

oe-bit Indirect Pointer Format

1 2 &o 4 5 16 17 32 35 SH B7 48
 

| F | RING | 1 | SEGMENT | OFFSET | BIT# | RESERVED |
 

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| 48-bit Indirect Pointer Format**
|

 

* For quad operations only.

** This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure 3-5
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Table 3-4
64V Mode Long Form, Indirect Summary

| I |X 1 Y |! BR! Instruction Type | Example | Form of EA |
 | —----- ---555-|

'ot!otdod st! 01} Direct | LDA ADR | PB/D |

| | | | Ol |! | | SB+D |

| | i 10 | | | LB+D |

| | | f ll | | XB+D l

| O!01 11 00 | Indexed by Y | LDA AIR, Y | PB/DY |

| | | | Ol | | | SBtDt+Y |

| | | | 10 | | | LB+Dt+Y |

| | | | 11 | | XB+D+Y |
|O!1 101 OO |! Indexed by X | LDA ArR,X =| :«CPB/DIK |

| | | O1 | | | SB+D+X |

| | { 10 | | | LB+D+X |

| | | | 11 | XB+D+X |

(Ot111 1! OO | Indirect | LDA ADR, * | ICPB/D) |

| | | | O1 | | ICSB+D) l

| | | | 10 | | | ICLB+D) |

| | | | 111 | | IC(XB+D) |

| 110101 001 Preindexed by Y i LDA AD,Y* | I(PB/DY) |
| | | {| Ol | | | ICSB+D+Y) |

| | | | 10 | | | I(LB+D+Y) |

| | | | 111 | | ICXB+D+Y) |

1110111 001! Postindexed by Y | LDA AI,*Y | I(PB/D)+Y |

| | | | O1 | | | ICSB+HD)+Y |

| | 1 10 ! | ICLB+D)+Y |

| | | | 11 1 | | ICXB+D)+Y |

| 111101 001 Preindexed by X | LDA AR,X* | I(PB/DX) |

| | {| Ol | | | ICSB+D+X) |

| | | | 10 | | | I(LB+D+X) |

| | | | 111 | | T(XB+D+X) |

i 1121111 00 | Postindexed by X | LDA AR,*X | I(PB/D)+K |

| | | { Ol | | | ICSB+D)+X |

| | | | 10 | | | ICLB+D)+X |

| | | 11 1 | | ICXB+D)+X |
 

Notes to Table 3-4
 

The processor performs X and Y indexing and 32-bit word

(inter-segment) indirection.

PB/D indicates that the displacement is relative to the origin

of PB. PB specifies the segment number (the offset must be 0);
the displacement specifies the offset.

All displacements are within the range 0 to ‘177777.
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The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STX, and STY
do not do indexing. The effective address is formed as shown
in Table 5-5. Bit 2, the X bit, is used as part of the opcode
in these instructions.

Table 5-5
Address Formation for Nonindexing Instructions

 

 

| TixlyY
|
'-Or+olrdol
roIiolrdli
1oOtrlidot
roOrlidlil
110101
f1lioltdli
flidiot
Flididil

Direct
Direct

Direct

Direct

T(A)
I(A)
I(A)

I(A)

| Instruction Type |

 

Notes to Table 3-5 

For the earlier processors listed on page 1-1, see Appendix B
for information on their address formation for nonindexing
instructions.

The symbol A in Table 3-5 represents the value calculated from
the base register (PB, SB, LB, or XB) and displacement in the
instruction.
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del Mode

Figure 3-6 and Table 3-6 display and explain 32I mode instructions.

 

1 67 910 1112 1415 1617 On
 

| OP ji IR ! T™ | SR | BR! DISPLACEMENT |
 

Instruction Format*

1 2 o 4 5 16 17 oR
 

| F | RING! O|} SEGMENT | OFFSET |
 

Indirect Pointer Format (Short Form)

1 2 &o 4 5 16 17 on 35 5 OF 48
 

| F | RING ! 1 | SEGMENT |! OFFSET | BIT# | RESERVED |
 

Indirect Pointer Format (Long Form)

1 2 o 4 5 16 17 oe
 

| F | RING | Bil SEGMENT | OFFSET |
 

C Language Pointer**

1 16 17 On
 

| INSTRUCTION BITS 17 TO 32 | ZEROES |
 

Immediate Type 1***

1 16 17 OR
 

| SIGN EXTENSION | INSTRUCTION BITS 17 TO 32 |
 

Immediate Type 2***

1 89 56 57 64
 

| BITS 17 TO 24 | ZEROES | BITS 25 TO 32 |
 

Immediate Type 3 (Floating Point)***, ****

 

oel Mode Formats

Figure 3-6
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Notes to Figure 3-6
 

* T™ is the tag modifier which, in combination with the SR
and BR fields, specifies the instruction type.

** The C language pointer is not available for the earlier
processors listed on page 1-1.

*** The instruction specifies the immediate type to use.
During instruction execution, the processor forms the
immediate in the appropriate format and stores it
internally for use in the operation as shown in Figure 5-6.

x*** Bits 1 to 8 of Immediate Type 3 are formed from I mode
instruction bits 17 to 24; bits 57 to 6 from I mode
instruction bits 25 to 32.

Table 3-6
del Mode Summary

 

| BR | Instruction Type | EA (Segment)! EA (Offset)
 

m
e

e
e

e
a

e
e
l

I(D+BR)
(ICD+BR) )+SRH
I(D+BR)
I(D+BR+SRH)
D+BR
D+BR+SRH

Indirect
Indirect postindexed
Indirect
Indirect preindexed
Direct
Indexed
Register—to-register
Immediate type 1
Immediate type 2
Immediate type 3
Floating register

source (FRO)

| | I(5 to 16) |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| Undefined; generates | --- | --—
| | |
| | |

| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

I(5 to 16)
I(5 to 16)
I(5 to 16)
BR(5 to 16)
BR(5 to 16)

0
C
O
0
0
O
O
H
P
H
E
N
D
D
A
N
!

B

r
o
s
o
L
T
s
o
d
s
o
s
o

9
w ra

)
N
Y
O
N
D
N
O
e
r
r
R
O

|

UII (unimplemented
instruction) fault

Floating register
source (FR1)

Undefined; generates
UII fault

General register
relative (undefined
for the earlier
processors listed
on page 1-1)

o
O

no

4-7

0-7 SR(5 to 16)

 

Note to Table 3-6
 

Displacements are within the range 0 to ‘177777, inclusive.
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oeR Mode

Figure 3-7 and Table 3-7 display and explain 32R mode instructions.

 

1 2 8 6 7 8 16
 

| ItX!} OP 181 DISPLACEMENT |
 

Short Instruction Format

1 2 3 6 7 1215 1415 16
 

| Ii Xt OP t 110000 | OP |! CB |
 

16-bit Long Instruction Format

1 2 38 6 7 1215 1415 1617 388
 

| I} Xt OP | 110000 | OP | CB 1 DISP |
 

oe-bit Long Instruction Format

1 2 16
 

| I | ADDRESS |
 

Indirect Pointer Format

l 2 16
 

| O| ADDRESS |
 

Final Effective Address Format*

 

oak Mode Formats

Figure 3-7
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Note to Figure 3-7
 

The final form of an effective address in 32R mode is only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide. Multilevel indirection is a feature of
SeR mode.

 

 

Table 3-7
oeR Mode Summary

i Ii X¥ 18 | CBI Displacement | Instruction Type |Form of EAI
| |
'orolrot-- | 0 to ‘777 | Direct | O/D |
'oO!r1riotl-- | 0 to ‘777 | Indexed | O/D+X |
f'liotrol-t O to '777 | Indirect | ICO/D) |
blid’ioit-- | Oto ‘77 | Indirect, preindexed | ICO/D+X) |
f1lti1s101-— 1 ‘100 to'777 | Indirect, postindexed | I(O/D)+X |
1OtQot1 1 — 1'-360 to ‘+377! Direct | P+D |
| oOtdl1ti1s— ''-860 to ‘+377! Indexed | P+D+X |

'11041 11 — 1'-860 to ‘+377! Indirect | ICP+D) |
! ltatdilis— |'-360 to ‘+377! Indirect postindexed | ICP+D)+xX |

'-orolrl1li2 | —-— | @Postincrement | SP |
'oOlrllilsi2 | ——— | @Postincrement, indirect,| I(SP)+x |
| | | | | | postindexed | |
llior1ie2 | -—- | @Postincrement, indirect | I(SP) |
'ororl1lits | ——— | #Predecrement | SP-1 |

rOlrtrlril1ss | —-— | #Predecrement, indirect, | I(SP-1)+XI
| | | | | | postindexed |
Pliorilais3 | oe | #Predecrement, indirect | I(SP-1) |
'O!otilio | Oto ‘177777 | *Direct, long reach | D |
'O!l1i!ii110 | Oto ‘177777 | *Indexed, long reach | Dex |
'l!oOt2l10 1 Oto ‘177777 | *Indirect, long reach | ICD) |
fliaiadilio | Oto ‘177777 | *Indirect, preindexed, | I(DX) |
| | | | | | long reach | |
!lildiili2 1 Oto ‘177777 | *Indirect, postindexed, | I(D)+X |
| | | | | | long reach | |
|'Ototdl1ti1 1! Oto ‘177777 | *Direct, stack relative | D+SP
'Ot!t2ltil1t1 #! Oto ‘177777 | *Indexed, stack relative | D+SP+X |
!'li1oid21t11 =! O to ‘177777 | *Indirect, stack relative! I(D+SP)
l!lididliil1£ | Oto ‘177777 | *Indirect, preindexed | ICD+SP+X)|
| | | | | | stack relative |
flliltdilis | Oto ‘177777 | *Indirect, postindexed | I(D+SP)+X!
| | | | | |stack relative |
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Notes to Table 3-7
 

* These instruction types use the 32-bit long format shown in
Figure 3-7.

@ These instruction types use the 16-bit long format shown in
Figure 3-7. They also increment the contents of SP by l
during EA formation.

# These instruction types use the 16-bit long format shown in
Figure 3-7. They also decrement the contents of SP by 1

during EA formation.

For all instruction types listed above, address traps can occur
when any part of the EA formation results in an address in the
range 0 to ‘7 (segmented mode) or 0 to ‘37 (unsegmented mode).
See the end of this chapter for more information.

The processor performs one level of indexing and multiple
levels of indirection.

O/D indicates that the displacement is within Sector 0.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, SIX, and SITY
do not do indexing. The processor treats the X bit asa O to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, 5S, and CB as 0115, the
processor interprets it as 0015.
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64R Mode

Figure 3-8 and Table 3-8 display and explain 64R mode instructions.

 

1 2 3 6 7 8 16
 

| IixX!t OP | S81 DISP |
 

Short Instruction Format

1 2 38 6 7 1215 1415 16
 

| Ii X11! OP | 110000 | OP | CB |
 

16-bit Long Instruction Format

1 2 38 6 7 122135 1415 1617 382
 

| I! Xt OP | 110000 | OP | CB 1 DISP |
 

S2-bit Long Instruction Format

 

| ADDRESS |
 

Indirect Pointer Format*

 

*Only a single level of indirection is possible in 64R mode.

64R Mode Formats

Figure 3-8

3-25 Second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

 

 

 

Table 3-8

64R Mode Summary

| I | ¥ 18 | CB! Displacement | Instruction Type \Form of EAI
| |
i;or+orot-- 4} 0 to ‘V7? | Direct | O/D
'oOr1aio!-| 0 to '777 | Indexed | O/D+XK |
'liorot--J O to '777 | Indirect | ICO/D) |
Fliavioi-- J O to ‘77 | Indirect, preindexed | I(O/D+X) |
'lii1li0Ot-—-— J! '100 to ‘777 | Indirect, postindexed | I(O/D)+X |
!O!otdl1i — |’'-860 to ‘+377! Direct | P+D |
1'Otdtitilist— !'-860 to '+38771 Indexed | P+D+X |
| 110111 -- |'-860 to ‘+3771 Indirect | ICP+D) |
| 11211211 — |'-860 to ‘+3771 Indirect postindexed | ICP+D)+X |
'-o!rori1iéiea2 | ——— | @Postincrement | §P |
roOorrirsea | —-- | @Postincrement, indirect,! ICSP)+xX |
| | | | | | postindexed | |
rliIiorlvie2 | -—— | @Postincrement, indirect | I(SP) |
'orotrl1liss | ——- | #Predecrement | SP-1 |
;-ortr1lil1liss3 | --- | #Predecrement, indirect, | I(CSP-1)+XI
| | | | | postindexed | |
flior1is | --- | #Predecrement, indirect | I(SP-1) |
'O!rtot2l1ltoO 10to ‘177777 | *Direct, long reach | D |
|O!lt212!0 | 0 to ‘1”7?777 | *Indexed, long reach | D+X |
|1101110 10to ‘177777 | *Indirect, long reach | ICD) |
!liti1i2i1t0 1! Oto ‘177777 | *Indirect, preindexed, | I(D+X) |
| | | | | | long reach | |
fliadtdil1ti2 1 Oto ‘177777 | *Indirect, postindexed, | I(D)+xX |

| | | | | | long reach | |
1!O!otltiti1 £10to ‘177777 | *Direct, stack relative | D+SP |

1'oOt!l12t11i1 =4'1 Oto ‘177777 | *Indexed, stack relative | D+SP+xX |
fl11011211 | Oto ‘177777 | *Indirect, stack relative! I(D+SP)
'lii1ii21ti1£$10to ‘177777 | *Indirect, preindexed | IC(D+SP+X)|
| | | | | | stack relative | |
|li2lti11383 | Oto ‘177777 | *Indirect, postindexed { I(D+SP)+XI
| | | | | | stack relative | |
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Notes to Table 3-8
 

For all the instruction types listed in Table 5-7, address
traps can occur when any part of the EA formation results in an
address in the range 0 to ‘7 (segmented mode) or O to '37
Cunsegmented mode). See the end of this chapter for more
information.

* These instruction types use the 32-bit long format shown in
Figure 3-8.

@ These instruction types use the 16-bit long format shown in
Figure 3-8. They also increment the contents of SP by l
during EA formation.

# These instruction types use the 16-bit long format shown in
Figure 3-8. They also decrement the contents of SP by 1
during EA formation.

The processor performs one level of indexing and multiple
levels of indirection.
a

O/D indicates that the displacement is within Sector 0.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STIX, and STY
do not do indexing. The processor treats the X bit asa O to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, 5S, and CB as 0Q113, the
processor interprets it as 0013.
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16S Mode

Figure 3-9 and Table 3-9 display and explain 165 mode instructions.

 

1 2 38 6 7 8 16
 

i Ii Xi OP ! S51 DISPLACEMENT |
 

Instruction Format

1 2 38 16
 

 

Indirect Pointer Format

1 2 3 16
 

1O!1O1 ADDRESS |
 

|
|
|
|
|
|
|
|
|
|
|
| 1rTixi ADDRESS |

|
|
|

|
|
|
|
| Final Effective Address Format
|
 

16S Mode Formats
Figure 35-9

Note to Figure 3-9
 

The final form of effective addresses in S mode are only 14
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.
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Table 3-9
16S Mode Summary

!IT'ixi1si Disp | Instruction Type | Example [ERA Form |
| |
1!O!otodt Oto ‘777 | Direct | LDA ADR | O/D |
|'O!otdlt Oto ‘777 | Direct | LDA ADR | C/D |
'QOt1l1lt0Ot Oto ‘777 | Indexed | LDA ADR,1 =| O/DX |
|!QOtliilt Oto ‘777 | Indexed | LDA AIR,1 | C/DX |
'110101 Oto ‘777 | Indirect | LDA ARR,* | ICO/D) |
|1l1!10O11t Oto ‘777 | Indirect | LDA ADR,* | ICC/D) |
|lii!0O4l Oto ‘777 | Indirect preindexed | LDA ADR,1* | I(D+X) |
| lii2it1211 Oto ‘777 | Indirect preindexed | LDA ADR,1* | I(D+X) |
 

Notes to Table 3-9
 

The processor performs indexing before resolving each level of
indirection.

This mode allows multiple levels of both indexing and
indirection.

The instructions, LOX and STX, cannot do indexing. The
effective address is formed as if bit 2 =0.

O/D indicates that the displacement is within Sector 0: C/D,
within the current sector.
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Sen Mode

Figure 3-10 and Table 3-10 display and explain 325 mode instructions.

 

1 2 3 6 7 8 16
 

| Ii Xt OP |! S51 DISPLACEMENT |
 

Instruction Format

l 2 16
 

 

Indirect Pointer Format

 

| 0 | ADDRESS |
 

Final Effective Address Format

t
H

|

|

|

|

|

|

|

|

|

ADDRESS | |
|

|

|

|

|

|

|

|

|

|

|
 

625 Mode Formats

Figure 3-10

Note to Figure 3-10
 

The final form of effective addresses in 5 mode are only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.
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Table 3-10
oes Mode Summary

|'II xis) Disp | Instruction Type | Example 1EA Form |
| |
!-Orolrot 0 to ‘777 | Direct | LDA ADR | O/D |
'O!toitlt 0 to ‘777 | Direct | LDA AR | C/D |
|'Oltltiot Oto ‘777 | Indexed | LDA AIR,1 =| <O/DX |
!O!rlidlt O to ‘777 | Indexed | LDA ADR,1 | C/DX |
|'l!10101 Oto ‘777 | Indirect | LDA AMR,* | ICO/D) |
'l!iotlt Oto ‘777 | Indirect | LDA ADR,* | I(C/D) |
fiti’tot Oto ‘7? | Indirect preindexed | LDA ADR,1* | I(D+X) |
| 1 | 110 1‘'100 to ‘777 | Indirect postindexed! LDA ADR,*1 | I(D)+X |
Pliditidlt O to ‘777 | Indirect postindexed! LDA AMR,*1 | I(D)+X |
 

Notes to Table 3-10
 

The processor performs indexing before resolving each level of
indirection.

This mode allows one level of indexing, and multiple levels of
indirection.

The instructions, LDX and STX, cannot do indexing. The
effective address is formed as if bit 2 = 0.

ADDRESS TRAPS

Several of the summaries in the last section specifyd special cases of
EFA formation when the address is within a particular range. This range
of addresses corresponds to registers within the current user register
Set in the register file. (See Chapter 9.) In segmented mode, this
range is ‘0 to ‘7; in nonsegmented mode, ‘0 to ‘37. This range of
addresses for segmented and nonsegmented modes is referred to as the
ATR, or address trap range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and system status
and control information. Each time any part of the FA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific
register.

Table 5-11 summarizes when address traps occur for all modes of
addressing and instruction types.
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Table 3-11
Address Trap Information

 

 

| Mode | Inst Type | Action
|
| 16S | Memory | Address trap occurs if the EA falls
| 328 | reference! within the ATR (address trap range).
| 32R | | The instruction format or length has
| 64R | | no bearing.

| |

| | Generic | Address traps never occur.
| | |
| | Generic AP | Address traps do not occur when the
| | | processor is fetching the address
| | | pointer.
| | |
| 64V | 32-bit | Address traps never occur.
| | memory |
| | reference!
| |

| | Short | See Table 3-12.
| | format |
| | |
| | 16-bit | Address traps occur if the EA falls
| | indirect | within the ATR.
| | |
| | 32-bit | Address traps never occur.
| | indirect |
| | |
| 32I | All types | Address traps never occur.
 

When bits 17 to 32 of the program counter contain a value within the
ATR and the processor is reading an instruction, an address trap always
occurs. The only exception to this is if the machine is operating in
oel mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table 3-12 lists the conditions that must be present for an address
trap to occur.
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Table 3-12

Address Trap Action for Short Format
Instructions, 64V Mode

 

| Disp | Action
 

Oto ‘'%
‘10 to ‘37

Takes address trap.
Takes address trap only if

segmentation is off.
Cannot take address trap.
Takes address trap if EA (P+D) is
within the ATR.

Takes address trap if D+X is
within the ATR. If D+X is
outside the ATR, the EA is
SB (seg #) | D+X (for the 750,
850, and 2350 to 9955 II; or
SB (seg #) | D+X+SB (offset #)
(for all other machines).

Cannot take address trap; EA is

|
|
|

‘40 to ‘377 |
|
|
|
|
|
|
|
|
|
|

| SB+D+X (for 750, 850, and
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-—'340 to +'377o
O
o

O
o

b¢

m
—
O

o
O
o

f
a

O
o
O
O

O
O

o
O O to ATR

2350 to 9955 II).
All other machines take address
trap if D+X is within the ATR.

Cannot take address trap.
Takes address trap if EA (P+D+X)

is within the ATR.
Takes address trap if D is
within the ATR. *

Takes address trap if EA
( (P+D) ) is within the ATR.*

Takes address trap if D<‘100 and
D+X is within the ATR.*

Takes address trap if EA (P+D)
is within the ATR.*

‘400 to ‘777
—'340 to +'377

0 to ‘77

O
o

oO
o

~'340 to +'377

0 to ‘VV?

~—'340 to +'377

|

|

|

|

|

|

|

|

|

|

|

|

|

IFrom ATR to ‘377
|

|

|

|

|

|

|

|

|

|

|

|

|

|
 

Note to Table 3-12 

* The indirect address also takes an address trap if EFA is
within the ATR.

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be written
into a temporary register. If a trap occurs, the routine aborts the
write to memory. It loads the specified register file location with
the contents of the temporary register.
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If the instruction specifies a read operation that causes an address

trap, the trap routine aborts the memory read and fetches the contents

of a register file location. The trap routine loads the cache from the

register file data and allows the processor one cache access before

invalidating the cache location.

Table 3-13 shows the address trap locations and the registers to which

For more information on the register file, seethey correspond.
Chapter 9.

Address Trap/Register File Correspondence
Table 3-135

 

 

  

| AT | S and R Modes | V Mode |

| |

| ‘O It | X |

| ‘1 1A | A, LH |

| ‘2 IB | LL |

| ‘3 185 4 |

| ‘4 | FAC bits 1 to 16 | FAC bits 1 to 16 |

| ‘5 | FAC bits 17 to 32 | FAC bits 17 to 32 |

| ‘6 | FAC exponent | FAC exponent

| ‘7 | PC, LSBs | PC, LSBs |

| ‘10* | DIAR&H | DIARSH |

| ‘11* | FOODEH | FCODEH |

| ‘12* | FADORL | FADDORL |

| '13* | |

| ‘14* | | SBH |

| ‘15* | | SBL |

| '16* | | LBH |

| '17* | | LBL

| ‘20* | DMA cell ‘20H | DMA cell ‘20H |

| ‘21* | DMA cell ‘20L | DMA cell ‘20L |

| '22* | DMA cell ‘22H | DMA cell ‘22H |

| ‘23* | DMA cell ‘eel | DMA cell ‘2eaL |

| '24* | DMA cell ‘24H | DMA cell ‘24H |

| ‘25* | DMA cell ‘'24L | DMA cell ‘24L |

| ’26* | DMA cell ‘26H | DMA cell ‘26H |

| ‘27* | DMA cell ‘26L i DMA cell ‘26L

| ‘30* | DMA cell ‘30H | DMA cell ‘30H |

| ‘31* | DMA cell ‘SOL | DMA cell ‘30L |

| ‘32* | DMA cell ‘32H | DMA cell ‘32H |

| ‘33* | DMA cell ‘deL | DMA cell ‘32L

| '34* | DMA cell ‘S4H | DMA cell ‘34H |

| ‘35* | DMA cell ‘SL | DMA cell ‘34L |

| ‘36* | DMA cell ‘36H | DMA cell ‘36H |

| ‘37* | DMA cell ‘36L | DMA cell ‘S6L |
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Note to Table 3-13
 

* These correspond to user register file
locations only in nonsegmented mode.

SUMMARY

The fields of a memory reference instruction specify information used
to form an effective address. These fields specify which information
is to be used in the formation, how the formation is to be done,
and -- in conjunction with the rest of the program -- the addressing
mode under which the address is to be formed. Depending on the
Segmentation mode and the EA formation, addresses can reference
registers within the current user register file as well as memory
locations.
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The last chapter showed how the 50 Series systems use information
contained in an instruction to form a virtual address. This address
Specifies a location in the virtual address Space, which may or may not
correspond to a location currently loaded in physical memory. This
means that the processor mst find some way to convert the virtual
address into something that can address a physical memory location, and
must then search physical memory for that location. This Chapter
describes how the processor uses a virtual address to address memory,
and describes the data structures (registers and tables) that
facilitate the reference.

THE VIRTUAL ADDRESS
 

A virtual address is a reflection of the segmented virtual address
Space the user sees. A physical address, Similarly, must reflect the
pages that make up physical memory. How does the processor make the
transition from a segment-oriented address to a page-oriented one? The
virtual address (diagrammed in Figure 4-1) is the Starting point. (As
this figure shows, the page number and DTAR are generally transparent
to the user. They are seen only by the mapping hardware.)
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|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

 

1 238 4 #5 16 17 38
 

| O | RING |! O | SEGMENT | OFFSET |
 

Virtual Address Format

12383 4 5 16 17% 22 26 oR

 

| O | RING |! O | DTAR and SEGMENT # | PAGE # | OFFSET # |

 

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

DTAR and Page Numbers in Virtual Address Format |
|

 

Virtual Address Format as Seen by
the Mapping Hardware

Figure 4-1

The steps the processor takes to convert this virtual address into a

physical address are:

l. Check the STLB and the cache. If both of these contain the

correct information, the reference can be completed. If the

STTB contains the correct information but the cache does not,

read the information from memory into cache and complete the

reference. If the STIB does not contain the correct

information, go on to the next step.

 

Translate the virtual address into a physical address. During

the translation, identify if the virtual page containing the

information is currently loaded into main memory. If it is,

load the physical page address (the result of the translation)

into the STLB and retry the access. If main memory does not

contain the page, go on to the next step.

 

Find the correct virtual page on disk and move it into main

memory. After the virtual page is loaded into a physical page,

the reference is retried.

 

The first task is completely performed in hardware; the second, by a

microcode routine. A software page fault handler performs all aspects

of paging.
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MEMORY MANAGEMENT DATA STRUCTURES
 

All three of the steps in the memory reference Operation use several
data structures to maintain needed information:

e Segmentation table lookaside buffer (STLB)

@ Cache

e Descriptor table address registers (DTARs)

e Segment descriptor tables (SDIs)

@ Page map tables (PMTs) for the 2755, 6350, and 9750 to
9955 IT

e Hardware page map tables (HMAPs) for all other processors

Table 4-1 shows the steps in which each structure is used.

Table 4-1
Use of Memory Management Data Structures

 

Structure | When Used

 

 

| |

! STLB | STLB/cache access, address translation |

: Cache ! STLB/cache access, address translation :

! DTARS ! STLB/cache access, address translation |

! SDTs : Address translation !

! PMTs : Address translation, paging (2755, 6350, and 9750 |
| | to 9955 IT) |

! HMAPs : Address translation, paging (all other processors) :

The STLB

To speed up the virtual to physical address process, the system uses
the STLB to store the result of a translation in an STIB entry so that
it will have it for reference the next time that the user Specifies the
Same location. Since the STLB has a much faster access time than
physical memory does, referencing the STLB saves translation time as
well as access time.
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The number of entries in the STLB varies according to processor model

as shown in Table 4-2. (Appendix B describes the STLB of the earlier

processors listed on page 1-1.)

Table 4-2

Number of STLB Entries

  

| Number of | Entries | Total |

| STLB Sets | Per Set | Entries | Processors

 

|
|
|
|
|

2350 to 2755, 9650,
|
|
|
|

|

| 1 | 128 | 128 | 9750 to 9950

| | | |

| 1 | 512* | 512* |

| | | | 9655, 9955, and 9955 IT

| | | |

| 2 | 512 | 1024

#

«| 6350

| | | |
 

* The 9955 and 9955 II reserve 384 additional entries for

segments 0 to 7. Thus, references to these segments are

always resident in these processors.

Fach STLB entry specifies one virtual address amd one physical page

address. Since each entry specifies a physical page address, each SILB

entry is valid for a 2Kbyte block (one physical page) of physical

memory locations. Figure 4-2 and Table 4-3 show the format and content

of each STLB entry.
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1234 6 7 9 10 19 20 31 32 47
 

IVIMIS| RING 1 | RING 3 | PROC ID! SEG |! PHYS AR|
 

6550 STLB Entry Format

1234 6 7 9 10 21 22 33 4 47
 

IVIMIS! RING 1 | RING 3 | PROC ID! SEG | PHYS AR|
 

9955 II STLB Entry Format

1234 6 7 9 10 21 22 33 & 46
 

IVIMIS| RING 1 | RING 3 |PROC ID! SEG! PHYS ARR|
 

9750 to 9955 STLB Entry Format

12354 6 7 9 10 19 20 28 29 41
 

IVIMIS! RING 1 | RING 3 | PROC ID! SHG! PHYS AR |
 

e755 STLB Entry Format

1234 6 7 9 10 19 20 28 29 40
 

IVIMIS! RING 1 | RING 3 | PROC ID! SEG! PHYS ARR|
 

2550 to 2655, 9650, and 9655 STIB Entry Format

Figure 4-2
STLB Entry Format

4-5 second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 4-3
STLB Entry Contents

   

 

memory reference. In process exchange,

these are the first bits of the offset in

segment OWNERH where the process resides.

|
12 or 9* | SEG

| |
12 to 16**| PHYS ADR | The physical page address (from translation).

The segment number from the virtual address.

| No. Bits | Mnem | Description |

|
|

{ 1 | Vv | Valid bit. Indicates if the STLB contains |

| | | valid data. |

| | | |

| 2 | MM | Modified bit. Specifies if the physical page |

| | | has been modified since its contents were |

| | | loaded from disk. (O means modified; |

| | | 1 means not modified. ) |

| | | |

| ol an) | Shared bit. Inhibits cache. |

| | |

| 38 | RING 1 | The Ring 1 access rights that are to govern |

| | | the reference. |

| | | |

| 38 | RING 3. | The Ring 3 access rights that are to govern |

| | | the reference. |

| | | |

| 10 or 12 | PROC ID | The process ID of the process making the |

| | | |

| | |

| | | |

| | |

| | |

|
|

|
|

 

* Bits 20 to 28 for the 2350 to 2755, 9650, and 9655

(the upper 9 bits of the segment number) .

** Bits 32 to 47 for the 6350.

Bits 34 to 47 for the 9955 IT.

Bits 34 to 46 for the 9750 to 9955.

Bits 29 to 41 for the 2755.

Bits 29 to 40 for the 2350 to 2655, 9650, and 9655.
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To access an entry in the STLB, the processor uses a hashing algorithm.
The precise algorithm varies according to processor as shown in the
rest of this section.

The 6350, 9955, and 9955 II use eleven bits from the virtual address in
the hashing algorithm, as shown in Table 4-4. This table also
identifies the names that will be used for these bits in the
explanation of the algorithm.

Table 4-4

Bits Used in the Hashing Algorithm
For the 6350, 9955, and 9955 II

 

 

| Bits | Name |
| |
| Bits 5 and 6 of the virtual address. | DTAR Bit 1 |!
| This specifies one of the four DTARS. | and |
| | DIAR Bit 2 |
| | |
| Bits 14 to 16 of the virtual address. | Seg Bit 8 |
| These are the three least significant | to |
| bits of the segment field. | Seg Bit 10 |!
| | |
| Bits 17 to 22 of the virtual address. | Page Bit 1 |
| These are all of the bits in the | to |
| page field. | Page Bit 6 |
 

From Table 4-4, the hashing algorithm exclusively ORs pairs of bits to
form a 9-bit address into the STLB. Figure 4-3 shows how these bits
are used to form the SILB entry address for the 6350; Figure 4-4
provides this information for the 9955 and 9955 ITI.

The 6350, however, has a two-set associative STLB as described in
Chapter 1. When the processor has formed the STIB entry address, this
address is at the same offset in both parts of the STLB. Therefore,
for the 6350, one STLB entry address is used to access two STIB
entries. This method minimizes two-way thrashing, which is be
described in further detail in the section "Accessing the STLB and
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DTAR

Page

DTAR

Page

Seg

Seg

Seg

Page

Page

Page

Page

Bit 1 ----- | |

XOR |--- STLB Address Bit 1 |

Bit 1 ----- | |

|

Bit 2 ----- | |

XxOR |--- STLB Address Bit 2 |

Bit 2 ----- | |

|

Bit 8 --------- STLB Address Bit 3 |

|

Bit 9 --------- STLB Address Bit 4 |

|

Bit 10 --------- STLB Address Bit 5 |

|

Bit 3 --------- STLB Address Bit 6 |

|

Bit 4 ------~--- STLB Address Bit 7 |

|

Bit 5 --------- STLB Address Bit 8 |

|

Bit 6 --------—- STLB Address Bit 9 |

 

Hashing Algorithm for the STLB of the 6350

 

 

Figure 4-35

| Seg Bit 10 --------—- STLB Address Bit 1 |

| |

| Seg Bit 9 --------- STLB Address Bit 2 |

| |

| Seg Bit 8 -------—— STLB Address Bit 3 |!

| |

| Page Bit 6 --------- STLB Address Bit 4 |

| |

| Page Bit 5S -------—- STLB Address Bit 5 |

|
| Page Bit 4 --------- STLB Address Bit 6 |

| |

| Page Bit 3 --------- STLB Address Bit 7 |

| |

| Page Bit 2 ----- | |

| XOR |--- STLB Address Bit 8 |

| DTAR Bit 2 ----- | |

|

| Page Bit 1 ----- |

| XOR |--- STLB Address Bit 9 |

| DTAR Bit 1 ----- | |

Hashing Algorithm for the 9955 and 9955 IT STLB

Second Edition
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For the 9750 to 9950, ten bits from the virtual address are used in thehashing algorithm as shown in Table 4-5. This table also contains thenames used for these bits in the illustration of the algorithm. Fromthis table, the hashing algorithm exclusively ORs pairs of the bits toform a 7-bit address into the STLB as shown in Figure 4-5.

Table 4-5
Bits Used in the Hashing Algorithm for the 9750 to 9950

 

 

 

 

| Bits | Name |
|

|
| Bits 5 and 6 of the virtual address. | DTAR Bit 1 |
| These specify one of the four | and |
|  DTARs. | DIAR Bit 2 |
| | |
| Bits 14 and 15 of the virtual address. | Seg Bit 8 |
| These are two of the three least sig- | and |
| nificant bits of the segment field. | Seg Bit 9 |
| | |
| Bits 17 to 22 of the virtual address. | Page Bit 1 |
| These are all of the bits in the | to
| page field. | Page Bit 6 |

| Page Bit 1 ----- | |
| XOR |--- STLB Address Bit 1 |
| DITAR Bit 1 ---— | |
| |
| Page Bit 2 ----- | |
| XOR |--- STLB Address Bit 2 |
| DTAR Bit 2 --~-- | |
|

|
| Page Bit 3 ---~----- STLB Address Bit 3 |
| |
| Seg Bit g -------~- STLB Address Bit 4 |
| |
| Page Bit 4 ---—- | |
| XOR |--- STLB Address Bit 5 |
| Seg Bit 8 ----- | |
| |
| Page Bit § ~-------- SILB Address Bit 6 |
| |
| Page Bit 6 ------~-- STLB Address Bit 7 |
   

Hashing Algorithm for the 9750 to 9950
Figure 4-5
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The 2755 uses eleven bits from the virtual address in the hashing

algorithm, as shown in Table 4-6. This table also identifies the names

that will be used for these bits in the explanation of the algorithn.

Table 4-6

Bits Used in the Hashing Algorithm for the 2755

 

 

Bits | Name

Bits 5 and 6 of the virtual address. DIAR Bit 1

This specifies one of the four DTARS. and
DIAR Bit 2

Bits 14 to 16 of the virtual address.

|
|

| |
| |
| |

|
| Seg Bit 8 |

These are the three least significant | to |
| |
| |
| |
| |
|

bits of the segment field. Seg Bit 10

Bits 17 to 22 of the virtual address. Page Bit 1

These are all of the bits in the to

page field. Page Bit 6 |
  

From Table 4-6, the hashing algorithm exclusive ORs pairs of these bits

to form a 9-bit address into the STLB as shown in Figure 4-6.
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Page Bit 6

Page Bit 5

Page Bit 4

Page Bit 2

DTAR Bit 2

Page Bit 1

DTAR Bit 1

Seg Bit 8

—----+--~- STLB Address Bit

——-—~-~—~ STLB Address Bit

---~- |
XOR |--- STLB Address Bit
——-—— |

—-—-- |
XOR |--- STLB Address Bit
~———— |

--—~- |
XOR |--— STLB Address Bit
~—--- |

---~- |
XOR |~-- STLB Address Bit
—----

--—-~ |
XOR |--- STLB Address Bit
—---- |

—~--- |
XOR |--- STLB Address Bit
—-~-— |

—-~—|
XOR |--- STLB Address Bit
—---- |

 

Hashing Algorithm for the STLB of the 2755
Figure 4-6
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The processors 2350 to 2655, 9650, and 9655 use eleven bits from the

virtual address and five bits from the process ID in the hashing

algorithm, as shown in Table 4-7. This table also identifies the names

that will be used for these bits in the explanation of the algorithm.

Table 4-7

Bits Used in the Hashing Algorithm
For the 2350 to 2655, 9650, and 9655

 

 

| Bits | Name |

| |

| Bits 6 to 10 of the process ID. | RPID Bits |

| These are the five least significant | 6to10 |

| bits of the process ID. | |

| | |

| Bits 5 and 6 of the virtual address. | DTAR Bit 1 |

| This specifies one of the four DIARS. | and |

| | DTAR Bit 2 |

| | |

| Bits 14 to 16 of the virtual address. | Seg Bit 8 |!

| ‘These are the three least significant | to |

| bits of the segment field. | Seg Bit 10 |

| |

| Bits 17 to 22 of the virtual address. | Page Bit 1 |

| These are all of the bits in the | to |

| page field. | Page Bit 6 |
 

From Table 4-7, the hashing algorithm ORs and exclusive ORs pairs of

these bits to form a Q-bit address into the STLB as shown in Figure

4-7.
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RPID Bit 10

DTAR Bit

Seg Bit

RPID Bit

DIAR Bit

Page Bit

RPID Bit

DIAR Bit

Seg Bit

RPID Bit

DIAR Bit

Page Bit

RPID Bit

DTAR Bit

Seg Bit

DIAR Bit

Page Bit

DTAR Bit

Page Bit

Page Bit

Page Bit 5

——— STLB Address Bit 8

|
-— | |
OR |----- | |

—_—~—~— | | |

XOR |--- STLB Address Bit 1 |
| |

~~| |

|
—_—-—~ | |
QR |----- | |

_—- | | |

XOR |--- STLB Address Bit 2 |
| |

——-| |

————— | |
OR |----- | |

—_———— | | |

XOR |---— STLB Address Bit 3 |
| |

a| |

|
——- | |
OR |----- | |

————— | | |

XOR |--- STLB Address Bit 4 |
| |

——-— | |

|
-———~ |

OR |----- |
~~ | | |

XOR |--~— STLB Address Bit 5 |
|

————— | |

|
a| |

XOR |-~- STLB Address Bit 6 |
~~| |

|
———| |

XOR |--- STLB Address Bit 7 |
|
|

|

|

|——— STLB Address Bit 9
 

Hashing Algorithm for the STLB
Of the 2350 to 2655, 9650, and 9655

Figure 4-7
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Cache 

Like the STLB, the cache specifies the page number of the desired
physical location. In addition, it contains the contents of that
physical location. Figure 4-8 describes the format of each cache
entry. The 6350 has a two-set associative cache, as described later in
the section Accessing the STLB and Cache. (See Appendix B for cache
entry formats for the earlier processors listed on page 1-1).
 

1 1 16 1 on
 

| V | PHYSICAL PAGE NUMBER | DATA |
 

6350 Cache Entry Format

11 14 #1 oR
 

| V | PHYSICAL PAGE NUMBER | DATA |
 

9955 II Cache Entry Format

1 1 15 #1 32
 

| V | PHYSICAL PAGE NUMBER | DATA |
 

2755 and 9750 to 9955 Cache Entry Format

1 1 12 1 on
 

| V | PHYSICAL PAGE NUMBER | DATA |
 

2350 to 2655, 9650, and 9655 Cache Entry Format

 

| Number | |
| of Bits |! Mnemonic | Description
 

|
|

| |
| 1 | Valid | The cache holds valid data when this bit |
| | | contains 1. |
| | |
| 12 to 16 | Physical | Specifies the number of the physical page |
| | Page | that contains the specified location.
| | Number | This is the cache index. |
| | | |
| oa | Data | Contains a copy of the contents of two |
| | | |consecutive locations in physical memory.
 

Cache Entry Format
Figure 4-8
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DIARS

As described in Chapter 2, the 50 Series virtual address space is
divided into four groups of 1024 segments each. Each group is
referenced through a descriptor table address register (DTAR)
associated with it. The public (shared) segments are referenced
through DIARO and DTAR1; the private (unshared) segments are
referenced through DIAR2 and DIARS. Figure 4-9 shows the format of the
DTARS.

 

 

 

 

 

1 1011 1617 18 3A

| SIZE | A 1 - | B |

Bits | Mnem | Description

1 to 10 SIZE Specifies 1024 minus the size of the
segment descriptor table.

11 to 16 A Bits 1to6 of the segment descriptor

17 —-- Must have the same value as bit 18.

18 to 32 B Bits 7 to 21 of the segment descriptor

|
| |
| | | |
| | | |
| | | |
| | | |
| | | table physical address. |
| | | |
| | | |
| | |
| | | |
| | | |
| | | |

table physical address. (Bit 22
of the SDT physical address is 0.)
 

DIAR Format

Figure 4-9
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Segment Descriptor Tables

Each of the four DIARs described above points to a segment descriptor

table (SDT).
 

 

These SDTs contain from 1 to 1024 32-bit entries called

segment descriptor words (SDWs). Each SDW describes one segment. The
table must begin on an even 16-bit boundary, and must not cross a

boundary. It must also be located in the first 8 Mbytes ofsegment
physical memory, since the DTAR can specify only a 22-bit address.
format of the SDWs is shown in Figure 4-10.

1 16 17 18 20 21 25 24 2 av oe
 

| PHYSICAL ADDRESS | F ! Al |! --- | Ad _| PHYSICAL ADORESS |
 

 

| Mnem Description |
 

1?

18 to

el to

%o t c
t

Oo

ev to

16 | PHYSICAL
| ADDRESS

20 Al

20

|

oe | PHYSICAL
| ADDRESS

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
Bits 7 to 22 of the physical starting address!

of a PMT or HMAP. Bits 17 to 22 of this |
physical starting address must be 0.

Fault bit.

Specifies the access rights for Ring 1:

000
001
010
O11
100
101
110
111

|
|
|
|
|
|

no access
gate |
read access |
read, write access
reserved |
reserved |

read, execute access |

read, write, execute access |
|
|
|
|
|
|
|
|
|

i
o
e

t
w
o
o
t

Reserved.

Specifies the access rights for Ring 5.
See bits 18 to 20 for a list of the

available access codes.

Bits 1 to 6 of the physical starting address
of a PMT or HMAP.
 

Segment Descriptor Word Format
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Page Map Tables (2755, 6350, and 9750 to 9955 II)
 

Bits 1 to 16 and bits 27 to 32 of each SDW contain the starting address
of a page map table (PMT). These tables contain 64 32-bit entries,
each of which contains information about one page. A page map table
cannot cross a ‘200000 (65,536) boundary. Figure 4-11 shows the format
of each page map table entry.

12 8 4 5 16 17 on
 

|RiUtMtiS§ | SOFTWARE | PAGE ADDRESS* |
 

 

Bits | Mnem | Name | Description
 

Resident Indicates if the page resides in

| |
| |
| | | | |
| | | Bit | physical memory. 1 indicates |
| | | | residency. |
| | | | |
| 2 | U | Used bit | Hardware sets U to 1 when a page i

| | | is used. |
| | | |
| 3 | M | Modified | Hardware resets M to O when a page |
| | | Bit | is modified. |
| | | | |
| 4 | S | Shared | Inhibits use of cache. |
| | | Bit | |

| | | |
| § to 16 ! SOFTWARE | Software | Reserved for software use.
| | | | |
| 17 to 32*| PAGE | Page | Specifies high order bits of a
| | ADDRESS | Address | physical page address. |
 

* Bits 17 to 18 must be zero for the 9955 II.

Bits 17 to 19 must be zero for the 2755 and 9750 to 9955.

PMT Entry Format (2755, 6350, and 9750 to 9955 IT)
Figure 4-11
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Hardware Page Map Tables (All Other 50 Series Processors)

Bits 1 to 16 and bits 27 to 32 of each SDW contain the starting address
of a hardware page map table (HMAP). Each table contains 6 16-bit
entries, each of which contains information about one virtual page. An
HMAP cannot cross a ‘200000 (65,536) boundary. Figure 4-12 shows the
format of each HMAP entry. This entry is also valid for the earlier
systems listed on page 1-1.

 

1 2 8 4 5 16
 

| R1|UsM J! S | PAGE ADDRESS |
 

 

Bits | Mnem | Name | Description
 

Resident Indicates if the page resides in

| |
| |
| | | | |
| | | Bit | physical memory. 1 indicates |
| | | | residency. |
| | | | |
| 2 | U | Used Bit | Hardware sets U to 1 when a page |
| | | | is used. |
| | | | |
| 3 | MM | Modified | Hardware resets M to O when a |
| | | Bit | page is modified. |
| | | | |
| 4 | 5 | Shared | Inhibits use of cache. |
| | | Bit | |
| | | |
| 5 to 16 | PAGE | Page | Specifies high-order 12 bits of |
| | ADDRESS | Address | physical page address. |
| | | | |
 

HMAP Entry Format (All Other 50 Series Processors)
Figure 4-12

Additional Data Structures
 

When a referenced virtual page is not in memory, software uses
additional mapping data structures to process the resulting page fault.
This activity basically includes locating the referenced page on disk,
making room for the page in physical memory if necessary by
transferring some pages to disk, loading the page into memor3> and

updating the PMT/HMAP entry for that page. The hardware updates the
STLB entry for that page.
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ACCESSING THE STLB AND CACHE 

As described in Chapter 1, the STLB and the cache are high-speed
buffers. If these buffers contain valid information for the process
making a reference to a piece of data, the processor can access them in
very little time instead of having to make a long memory access.

The hardware accesses both the STLB and the cache in parallel to speed
up the reference. A slightly different set of actions is performed,
depending on whether the operation is a read or a write. Refer to
Figures 4-13 and 4-14 when reading the text in these sections.

Read Memory Access 

As shown in Figure 4-15, the hardware performs three tasks in parallel:
it references the STLB, references the cache, and validates the
reference's access rights. The priority among these three tasks is
also illustrated in the figure: the leftmost task (checking the STLB
entry) has a higher priority than the access check, and the access
check has a higher priority than the cache entry step. This means that
if a problem arises in the STLB entry step, that is solved first; then
the whole access is retried from the beginning. The text in this
section describes the access according to this priority.
 

step 1. Accessing an STLB Entry 

The hashing algorithm described above uses bits from the virtual
address to choose an STLB entry. To make sure that this entry contains
valid data, the hardware checks the entry's valid bit. If it contains
1, the entry is valid; 0, invalid. The bits in the virtual address’
segment number not used to select the STLB entry are compared to the
segment number bits for the STLB entry. The hardware must also check
that the process ID in the STLB entry is identical to that of the
process making the reference. This is done only if the segment number
specified in the virtual address is greater than or equal to
‘4000 -- that is, if the segment specified is in process private
address space. If all of these conditions are met, the STLB entry
contains valid data and can be used.

For the 6350 processor, the access to the STLB returns two entries.
Each entry’s segments bits, etc., that are not used in the STLB access
described above are compared to the bits in the virtual address. If
either of the two entries matches, the valid data from the matching
entry is used.

This is called a two-set associative STLB. Each virtual addressing
mapping can be in one of two different STLB locations. Two virtual
addresses that map to the same STLB address can be used together
without references to the one forcing the mapping for the other to be
overwritten. When such a conflict occurs, it’s called a collision.
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Many collisions can drastically reduce performance; this reduction is
Called thrashing. The two sets of STLB entries in the 6350 effectively
eliminate two-way thrashing.

If the conditions are not met, the STLB needs to be loaded with the
correct data. Therefore, the address translation microcode is invoked.
(See Address Translation, below.) Assuming no page faults occur, the
new translation is loaded into the STLB entry, and the used bit in that
entry is set to 1. The reference is then retried from the beginning.

 

Step 2. Choosing an Access Field
 

If the SILB entry contains valid data, the hardware must determine what
access rights should govern the reference. This requires two steps:
first, isolating the ring number that specifies what access field to
use; and second, using the access field contents to determine whether
the reference is valid or not. STLB entries for segment O have no ring
field entry and can be accessed only by Ring 0.

To isolate the ring number, the processor weakens the ring number
contained within the program counter by logically ORing it with the
ring number contained in the effective address. This screens out all
invalid references to lower-numbered rings (inward references), but
allows references to higher-numbered rings (outward references) to he
made.

This screening process makes sure that the access rights of the
referencing procedure are weaker than those of the referenced
procedure. If this were not done, then a Ring 3 procedure could call a
Ring O procedure, which in turn could call several procedures for which
the Ring 5S procedure had no access rights. Screening out such
references protects the integrity of the entire system.

Once the EA ring number has been weakened, the processor uses the
weakened ring number to select an access field. If the ring number is
OO, the hardware assumes that the reference has unlimited access and no
further access checking is done. If the ring number is Ol or 11, the
hardware uses the Ring 1 or Ring 3 access fields, respectively, in the
STLB entry as the access field. If the ring number is 10, undefined
results occur.

The access fields in the STLB entry specify the operations that
references using this entry can legitimately perform. Table 4-8 lists
the values these fields can contain and their meanings.
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Table 4-8
Access Field Values and Their Meanings

 

Value | Description
 

| |
| |
| QOO i No access |
| O01 | Gate (See Chapter 8.) |
| O10 | Read access |

| O11 | Read, write access |

| 100 | Reserved |
| 101 | Reserved |
! 110 1! Read, execute access |
| 111 | Read, write, execute access |
 

The hardware checks the operation specified in the instruction, making
the reference against the selected access field to ensure that the
Operation is valid. For example, if the instruction specifies a read
operation and the selected access field allows reads, then the read
operation is valid. If, however, the instruction specifies a write and
the access field allows only reads, then the operation is invalid. In
the first case, the processor performs the valid operation and program
execution continues. In the latter case, an access fault occurs and
control transfers to the access fault handler. See Chapter 10 for more
information about faults.

A reference must have read access to perform either a write or an
execute operation. If an instruction specifies either a write or an
execute and the access field does not allow reads, an access fault
occurs.

Step 3. Accessing the Cache
 

If the access check is successful, the hardware references the cache.
To do this, the hardware must form an address that references an entry
in the cache index, which in turn specifies an entry in the cache data.
The way that the cache index address is formed depends on the processor
as shown in Table 4-9.
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Table 4-9
Virtual Address Bits Used in Forming a Cache Index Address

 

| Processors | Virtual Address Bits Used and Significance
|
| 2350 to 2655 and | 20 to 32: the 3 least significant page bits
| 6350 to 9950 | and the 10-bit offset field
| |
| 2755, 9955, and | 18 to 32: the 5 least significant page bits
| 9955 IT | and the 10-bit offset field

 

 

The 5 and 5 least significant page bits from the virtual address create
a virtually mapped cache. See Mapped I/O and DMA in Chapter 11 for
information about how the MBIO bits in the IOTLB reconstruct this
virtual mapping.

For the earlier processors listed on page 1-1, see Appendix B for cache
access information.

When the hardware has an address, it uses it to select an entry, j, in
the cache index. Entry j contains a physical page address, which the
hardware compares to the physical page address specified in the STLB
entry. If the page numbers are the same, then the jth entry in the
cache data area contains the contents of the desired physical location.
These contents are used in the specified operation.

For the 6350 processor, the access to the cache returns two entries in
the cache index. Each of these two entries contains a physical page
address, which the hardware compares to the physical page address
Specified in the STLB entry. If the physical page address contained in
either of the two entries matches that specified in the STIB entry,
then the data associated with that entry in the cache data area
contains the contents of the desired physical location. These contents
are used in the specified operation.

This is called a two-set associative cache. The data associated with
each virtual address can he in one of two different cache locations.
Two virtual addresses with the same cache index address can be used
together without references to the one forcing the data for the other
to be overwritten. When such a conflict occurs, it’s called a
collision. Many collisions can drastically reduce performance; this
reduction is called thrashing. The two sets of cache entries in the
6350 effectively eliminate two-way thrashing.

If the page numbers are not the same, the hardware must read the data
from the physical location specified in the STLB into the cache. It
Starts memory, reads the data into the cache, and then retries the
access from the beginning.
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Step 4. Timing Considerations
 

Figure 4-13 lists the time taken by each step of the read memory
access. These figures are based on a 1-MIPS machine. The figure also
notes the percentage of times each step is likely to occur. As_ shown,
the cache and STLB contain the needed information 85% of the time, and
so the access requires only 80 nanoseconds. In addition, even though a
page fault requires 40,000 microseconds it occurs very rarely (on the
order of 10 per second). The other three steps occur the majority of
the time, and give the system an average read memory access time of .24

to .26 microseconds.

Write Memory Access
 

Figure 4-14 describes the general steps that occur in a write memory
access. The hardware references the STLB, validates the reference’s
access rights, and checks the STLB modified bit in parallel. The
access validation, however, takes precedence over checking the modified
bit, and the STLB entry access takes precedence over the access
validation. This means that if problems occur in one of the steps with
higher precedence, the problem is corrected and the access is retried
from the beginning, even if no problems occur with other steps.

Step 1. Accessing the STLB
 

The hardware uses the hashing algorithm described above to select an
STLB entry. The entry is validated in the same way as that described
in the Read Memory Access section.
 

Step 2. Checking the Access Rights
 

This step is identical to that described in the Read Memory Access
section above.

 

Step 3. Checking the STLB Modified Bit
 

If the STLB entry is valid and if the reference has the proper access,
the hardware checks the STLB entry’s modified bit. If this bit
contains 1, the page is being modified for the first time since this
STLB entry was last used. This means that hardware must reset the
modified bit in the page map table (PMT or HMAP) and the STLB using the
address translation mechanism. Once the new translation is loaded into
the STLB entry, the ref jerenc ed from the beginningrence is retr
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If the STLB entry's modified bit is O (meaning this page has been

modified), the hardware forms the address of a cache entry (see
Accessing the Cache, above), starts memory, and writes the contents of

the referenced location into memory. The data is also written to cache

in all cases on some processors. On other processors, the data is
written to cache only if there is a cache hit.

 

Step 4. Timing Considerations
 

Figure 4-14 lists the time each step of the write memory access takes.

These figures are based on a 1-MIPS machine. The figure also notes the

percentage of times each step is likely to occur. As shown, the STLB

contains the needed information 35% to 64% of the time, depending on

whether the accesses are overlapped or not. In the case of overlapped

transfers, the system's average write access time varies from one

processor to another, but ranges from about 0.22 to 0.28 microseconds;

for transfers that are not overlapped, the average time ranges from

about 0.32 to 0.8 microseconds.

ADDRESS TRANSLATION
 

When the STIB does not contain information about the

virtual-to-physical translation, a microcoded part of PRIMOS (called
the address translation mechanism, or ATM) must perform the
translation. The DTARS, the segment descriptor tables, and the

hardware/page map tables allow the ATM to make the correct reference.

 

 

When reading the detailed description of the translation process, refer

to Figures 4-15 and 4-16. Figure 4-15 depicts address translation on

the 2755, 6350, and 9750 to 9955 II. Figure 4-16 shows address

translation on all other processors. The numbers labelling the

discussion match the numbers on the diagram.

1. Interpreting the Virtual Address

The virtual address derived from the information contained in an

instruction is a 32-bit quantity. When the translation occurs, the

virtual address is interpreted as shown in Figure 4-1. Bits 2 to 5

contain protection information and will be described in the next

chapter. Bits 5 to 16 contain a segment number; bits 17 to 22, a page

number; and bits 23 to 32, an offset. The ATM looks at bits 5 to 6

first, since they specify one of the four DIARs. The ATM references

the specified DTAR.
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2. Referencing the DIAR
 

The specified DTAR contains the address of a segment descriptor table,
aS well as the size of the table. The ATM uses the contents of bits 11
to 32 of the DIAR to form the starting address of the SDI.

Oo. Validating the Segment Number
 

After forming the table’s starting address, the ATM uses bits 7 to 16
of the virtual address as an offset into the table. It first compares
the segment number contained in these bits to bits 1 to 10 of the DTAR
to check if the virtual address specifies an invalid segment. If the
segment number is greater than the maximum allowable table size, the
Segment number is invalid and a segment fault occurs (segment number
too large). If the segment number is less than or equal to the maximum
allowable table size, the segment number is valid and the ATM adds
twice the value of virtual address bits 7 to 16 to the starting address
of the SDT. The sum specifies an entry, n, in the SDI.

4. Referencing the SDT
 

Entry n in the SDI contains a segment fault bit, access information
(see next chapter), and the address of a Page Map Table (PMT) or a
Hardware Page Map Table (HMAP). The ATM checks bit 17, the fault bit,
for an invalid segment. If F contains al, the segment is invalid or a
PMT/HMAP is missing, and a segment fault occurs. If F contains a 0,
the segment is valid, and the ATM uses bits 1 to 16 and 27 to 32 of
entry n as the starting address of a PMT or an HMAP.

To access the PMT, the ATM adds twice the value of bits 17 to 22 of the
virtual address to reference the correct entry, m. To access the HMAP
entry m, the ATM adds the contents of bits 17 to 22 of the virtual
address to the starting address of the HMAP.

5. Checking Page Status
 

Bits 1 to 4 of PMI/HMAP entry m contain status information about a page
of memory. When the entry is obtained from memory, the ATM examines
the used (U) bit. If the content is 1, the page is assumed to be
resident (R bit=1). If the U bit content is 0, the resident (R) bit is
examined. If R contains 1, the page is resident but unused; the AIM
sets the U bit in the PMT/HMAP entry and loads the translation into the
STLB. If R contains 0, the page is not resident anda page fault
occurs. (Chapter 10 contains more information about faults.) This
ordering of the examination of the U and R bits maximizes the Speed of
the ATM.
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Note

The combination of R-0 amd U=1 is illegal and will cause

undefined results.

6. Forming the Address and Loading the STLB

After determining that no page fault exists, the ATM combines the

physical page address in the PMT/HMAP with the 10-bit offset from the

virtual address to form a final physical address as shown in Table

4-10.

Table 4-10
Forming the Final Physical Address

 

| | Final Physical |

 

|
| Processors | Bits Used by AIM | Address Length |

| |

| 6350 | PMT bits 17 to 32 and | 26 Bits |

| | VA bits 25 to 32 | |

| | | |

| 9955 II | PMT bits 19 to 32 and | 24 Bits |

| VA bits 23 to 32 | |

| | | |

| 2755 and 9750 to 9955 | PMT bits 20 to 32 and | 25 Bits |

| | VA bits 235 to 32 | |

| | | |

| All other processors | HMAP bits 5 to 16 and | 22 Bits |

| | |VA bits 23 to 32 |
 

The ATM loads this final physical address, plus its associated access

information, into the STLB. The translation process for any address

has to be done only the first time that any location on the page is

referenced, because after that the STLB contains the translated value.
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SUMMARY

This chapter described how a 50 Series system uses a virtual address to
locate information in physical memory. The cache and STIB provide
rapid means of locating commonly referenced information without
requiring memory access. When these buffers do not contain the desired
information, a combination of processor hardware, firmware, and PRIMOS
software can translate the user's virtual address into a physical one
through the use of specialized data structures and algorithms. The
software page fault handler ensures that information currently on disk
is moved in a controlled fashion into main memory when it is needed.
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Control Information and

Restricted Instructions

The previous three chapters have described physical and virtual memory,
how they are manipulated, and the data structures used in their
manipulation. These data structures, like many parts of PRIMOS, are
essential to system operation and so are protected against use by the
casual user. However, a set of restricted instructions is available
for situations that require manipulation of these and other system
structures.

 

This chapter describes some of these other data structures, especially
the keys and modals, and lists the restricted instructions and
describes what they do. Restricted instructions can be executed in
Ring 0, and many of them perform system functions, such as purging an
STLB entry. Others manipulate some of the other system data
structures, such as the keys register or the sense switches. For more
detailed information about these instructions, refer to the appropriate
entries in the Instruction Sets Guide.
 

OTHER SYSTEM DATA STRUCTURES
 

There are other data structures the system uses:

@ Modals

@ Keys

@ CBIT, LINK, and condition code bits
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Modals

The 16-bit register called the modals contains information about the

state of the processor. This register specifies information needed by

the hardware and the operating system, such as the type of process

control the system uses and which user register set is currently

active. (See Chapter 9.) This register is directly accessible only in

V and I modes.

 

Figure 5-1 shows the normal setting of the modals that PRIMOS uses.

Figure 5-2 shows the format of the modals. Table 5-1 lists the

instructions that modify the modals. Never modify the modals with the

STIR instruction; use only the instructions listed in Table 5-1. Im

addition, never use LPSW to change bits 9 to 11 of the modals. For
more information, refer to individual instruction descriptions in the

Instruction Sets Guide.
 

1 89 1112 16
 

| 11000000 | CRS |! 11111 |
 

Normal Modals Setting
Figure 5-1
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1 2 3 89 11 12 13 1415 16
 

| E | V | Q00000 | CRS | MIO! PXM! Si MM |
 

 

Bits | Mnem | Description
 

Enable interrupts:
O = interrupts disabled
1 =interrupts enabled

Vectored interrupt mode:
O standard interrupt mode
1 vectored interrupt mode

Must be zero.

|
|

|
|
|

|
|
|
| Specifies the current register set.
| Only the PXM can alter these bits.
| (See Chapter 9.)

12 MIO |
| = unmapped mode
| t = Iapped mode
|

13 | Pmpoess exchange enable/disable:
| = process exchange disabled
| = process exchange enabled
|

14 | Specifies the mode of segmentation:
| no segmentation
| segmentation
|
|
|
|
|
|
|
|

1

15 to 16

|

MCM Machine check mode:
00
Ol

no reporting
report only uncorrected memory
parity errors

10 =report only unrecovered errors
ll =report all errors
See Chapter 10 for more information.

|

| |
| |
| |
| |
| |
| |
| |
| |
| |

|
| |
| |
| |
| |
| |
| |
| Specifies the current mode of I/0: |
| |
| |

|
| |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
| |
| |
| |
 

Modals Format
(V and I Modes Only)

Figure 5-2
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Table 5-1

Modals Instructions

 

 

 

| Mnem | Name | Modes | Description |

|
|

| EMCM | Enter Machine | S,R,V,I! Enters machine check mode. |

| | Check Mode | |

| | | | |

| ENB |! Enable | S,R,V,I! Sets bit 1 of the modals tol. |

| | Interrupts | |

| | | |

| ESIM | Enter Standard | S,R,V | Resets bit 2 of the modals to 0.|

| | Interrupt Mode | | |

| | | | |

| EVIM | Enter Vectored | §,R,V | Sets bit 2 of the modals tol. |

| | Interrupt Mode | | |

| | | | |

| INH | Inhibit | S,R,V,I! Resets bit 1 of the modals to 0. |

| | Interrupts | | |

| | | | |

| IMCM | Leave Machine | S,R,V,I! Leaves machine check mode.

| | Check Mode | | |

| | | | |

| LPSW | Load Program i V,I | Loads the PSW with the contents |

| | Status Word | i of a location in memory.

| | | | |

| RMC | Reset Machine | S,R,V,I! Resets bits 15 to 16 of the

| | Check Flag to 0! | modals to O and inhibits

| | | | interrupts for the next

| | | | instruction. |

Keys

The other 16-bit register, the keys, describes the currently running

process and the procedure that process is executing. The keys contain

status information (such as the mode of addressing currently enabled)

and specify fault handling information. Figure 5-3 shows the format of

the keys for S mode and R mode. Figure 5-4 shows the format for V and

I modes, and Figure 5-5 displays the normal settings for the V and

I mode keys. Table 5-2 lists the instructions that modify the keys.

Never modify the keys or modals with the STIR instruction; use only

the instructions listed in Table 5-2. In addition, never use LPSW to

Change bits 15 to 16 of the keys. For more information, refer to

individual instruction descriptions in the Instruction Sets Guide.
 

Second Edition 5-4



CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

 

 

 

 

1 2 5 4 6 7 8 9 16

| CBIT | DBL ! -- | MODE | FEX | IEX | VISIBLE SHIFT COUNT |

Bits | Mnem | Description

1 | CBIT | Reflects arithmetic conditions of
some instructions.

Reflects arithmetic mode:
O single precision
1 double precision

Reserved for future use.

|
|
|
|

| |
| |
| |
| |
| |
| |
| |
| Specifies the current mode of addressing: |
| 000 = 16S |
| QO1 328 |
| O10 64R |
| O11 32R |
| =100 32aI |
| 101 unused |
| 110 64V |
| |
] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

111 =unused

Floating-point exception enable/disable:

O = set CBIT to 1 and invoke fault
handler on error

1 = set CBIT to 1 only on error

Integer exception enable/disable:
O = set CBIT to 1 only on error
1 = set CBIT to 1 and invoke fault

handler on error

Bottom half of the floating-point
exponent.

 

Keys Format, S and R Modes
Figure 5-3
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123 4 6 7% 8 9 10 11 12 13 14 15 16

 

ICBIT|O!LINK! MODE |FEX!IEX! LT! BQIDEX! ASCII-8 |RND!IP8SO/IN! SDI

 

 

Bits | Mnem | Description
 

Reflects arithmetic conditions of

some instructions.

Must be zero.

Reflects arithmetic conditions of

some instructions.

Specifies the current mode of addressing:

000 = 165
O01 32S
010 =GAR
O11 =3ak
100 sal
101 unused
110 G4V
111 unusedi

o
u
d
t

t
t

d
o
t

O = set CBIT to 1 and invoke
fault handler on error

1 = set CBIT to 1 only on error

Integer exception enable/disable:
0
1

set CBIT to 1 only on error
set CBIT to 1 and invoke

fault handler on error

Less Than condition code:

1 reflects a less than O condition.

To condition code:
1 reflects an equal to O condition.

Decimal exception enable/disable:
O = set CBIT to 1 only on error

1 set CBIT to 1 and invoke

|
|

| |

| |

| |

| |

| |

|
| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

FEX | Floating-point exception enable/disable: |

| |

| |

|
| |

| |

| |

| |
|
|

| |

| |
] |
| |

| |

| |

| |

| |

| |

fault handler on error |
 

feys Format, V and I Modes
Figure 5-4

Second Edition 5-6



CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

 

Description
 

13

15

16

ASCII character representation:
Specifies whether set or reset ASCII
characters are to be generated.
O = most significant bit of characters

is 1 (set format)
1 = most significant bit of characters

is O (reset format)
Disregarded on the earlier Prime systems

(listed on page 1-1)

Floating-point round: specifies the form
of rounding to use in floating-point
Operations.
O = no rounding
1 = rounding
Disregarded on the earlier Prime systems

(listed on page 1-1)

(See Appendix C for P850 information.)
This bit may be used for other
processor-specific features.

In dispatcher: specifies if the current
process associated with the register
is in the dispatcher.
O = process is not in the dispatcher
1 = process is in the dispatcher
Only the PXM (process exchange mechanism)

alters this bit.

Save done bit: specifies if PXM has saved
values of current register set.
O = save must be done before this

register set can be used
1 = save has been done and this

register set is available

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
P850 bit: used by the P850 processor. |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
Only the PXM alters this bit. |
 

Keys Format, V and I Modes
Figure 5-4 (continued)
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1 34 67 16
 

| AOA | 110 or 100* | OQAAQO0000 |
 

* Bits 4 to 6 are 110 (V mode) or 100 (I mode).

A - The value can be altered by an instruction.

Normal Keys Setting in V and I Modes
Figure 5-5

Table 5-2
Keys Instructions

 

 

 

| Mnem | Name | Modes | Description |

| |

| DBL | Enter Double | §,R | Sets bit 2 in the keys to 1. |

Precision Mode! | |

| E16S | Enter 16S Mode | S,R,V,I | Sets bits 4 to 6 of the keys |

| | | | to 000. |

| E32I | Enter 32I Mode | S,R,V,I | Sets bits 4 to 6 of the keys |

| | | | to 100. |

| EB2S | Enter 32S Mode | S,R,V,I | Sets bits 4 to 6 of the keys |

| | | | to OOl. |

| EZQR | Enter 32R Mode | S,R,V,I | Sets bits 4 to 6 of the keys |

| | | | to Ql1. |

| EG4R | Enter 6G4R Mode | S,R,V,I | Sets bits 4 to 6 of the keys |

| | | | to O10. |

| E64V | Enter 64V Mode | S,R,V,I |! Sets bits 4 to 6 of the keys |

| | | to 110. |

| INK | Input Keys | S,R,I | Reads the keys into the |

| | | specified register. |

| OTK | Output Keys | S,R,I | Loads the keys with the contents |

| | | | of the specified register. |

| RCB | Reset CBIT | §,R,V,I | Resets the value of CBIT in |

| | | the keys to 0. |

| SCA | Load Shift | §,R | Loads bits 9 to 16 of the keys |

| | Count into A |! | into bits 9 to 16 of A. |

| SCB | Set CBIT | S,R,V,I | Sets the value of CBIT in |

| | | | the keys to l. |

| SGL | Enter Single | §,R | Sets bit 2 in the keys to 0. |

| | Precision Mode! | |

| LPSW | Load PSW | V,I | Loads new data into the keys, |

| | | | modals, and program counter. |

| TAK | Transfer A | S.R,V | Transfers the contents of A |

| | to Keys | | into the keys.

| TKA | Transfer | S,R,V | Transfers the contents of |

| | Keys to A | | the keys into A. |
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CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS

CBIT, LINK, and the Condition Codes
 

Some of the bits in the keys merit extra discussion. Bit 1, CBIT, am
bit 5, LINK, are set by many instructions to indicate conditions under
which the instruction completed execution. Several instructions
performing arithmetic operations, for example, set CBIT to 1 to
indicate that the operation has resulted in an overflow (a result too
large to fit in the specified number of bits). Others set LINK to 1 to
reflect a carry out condition. Still others set CBIT to indicate a
fault condition. The instruction entries in the Instruction Sets Guide
state how each instruction affects the values of these bits.

 

Also note that bits 9 and 10 of the keys contain the condition codes.
Many arithmetic, branch, skip, jump, and other instructions set these
bits to indicate the result of a test (a result is less than 0, for
example), to indicate whether a value is positive or negative, and so
on. Other instructions use the condition code values as Boolean
values. The instruction entries in the Instruction Sets Guide also
describe how an instruction affects the state of these bits.

 

EQ shows whether or not a 16-bit or 32-bit result is equal to 0. LT
contains the extended sign for arithmetic and comparison operations.
The extended sign is the sign of the result as if the operation had
been done on a machine of infinite precision; thus, LT shows the
correct sign of the result despite any overflow. For logic operations,
LT reflects the sign of the result. Table 5-3 shows condition code
interpretation for comparison, arithmetic, and logic operations.

The state of the CBIT, LINK, and condition codes is recorded in special
hardware after each instruction that modifies them. These are referred
to as the live keys and are the values tested by instructions. The
keys register obtains a copy of the live keys upon updates, but may not
reflect the actual state of the CBIT, LINK, or condition codes. The
state of these bits should only be tested for with the appropriate
instruction.
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Table 5-3
Interpretation of Condition Codes

 

 

 

 

 

largest negative
number is added to
itself. (CBIT is
set to 1 as well to |

show overflow, or is!

loaded with this |
state by TAK, LPSW,

| LT, EQ | | |
| Values | Comparison | Arithmetic | Logic
i wee

| OO | Register >O |! Signed result > 0 | Result <> O,

| | Register > EA | Unsigned result <> O | High-order bit =
| | Reg 1 > Reg 2 | |
| + + +

| O01 | Register = 0 |! Result = 0 | Result = O,

| | Register = EA | | High-order bit =

| | Reg 1 = Reg 2 | |

|— + + +

| 10 | Register <O | Result <0 | Result <> 0,

| | Register < EA | | High-order bit =

| | Reg 1 < Reg 2 | |

| +

| 11 Not working Happens only when the | Not working

| |

| |

| |

|
|
|
|
|
| —

-
-
-
—
-
e
e
r
o
r
O
t

|
process exchange, |
PCL, etc. |
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RESTRICTED INSTRUCTIONS
 

Table 5-4 lists the restricted instructions and briefly describes their
actions. Refer to the Instruction Sets Guide for more information

about these instructions.
 

Table 5-4

Restricted Instructions

 

Mnem | Name | Modes |! Description
 

EIO Execute I/O V,1 Executes an effective address

aS an I/O instruction.

| |
| |

| | | | |
| | | | |
| | | | |
| ENB | Enable | §,R,V,I | Enables interrupts so that |
| | Interrupts | | devices can request service. |
| | | | |
| HLT | Halt | §,R,V,I | Halts the processor. |
| INA | Input to A | S,R | Loads data from the specified |
| | | | device into A. |
| INBC | Interrupt | V,I | Notifies during the interrupt |
| | Notify | | code. Uses LIFO queuing. |
| | | | Clears the currently active |
| | | | interrupt. |
| INBN | Interrupt | V,I | Notifies during the interrupt |

| Notify | | code. Uses LIFO queuing. |
| | | | Does not clear the currently |
| | | | active interrupt. |
| INEC | Interrupt | V,I | Notifies during the interrupt |
| | Notify | | code. Uses FIFO queuing. |

| Clears the currently active |
| | | | interrupt. |
| INEN | Interrupt | V,I | Notifies during the interrupt |
| | Notify | | code. Uses FIFO queuing. |
| | | | Does not clear the currently |
| | | | active interrupt. |
| INH | Inhibit | §,R,V,I | Disables interrupts so that |
| | Interrupts | | devices cannot request service. |
| IRTC | Interrupt | Vir | Returns control from an interrupt |
| | Return | | and clears the currently |
| | | | active interrupt. |
| IRIN | Interrupt | V,I | Returns control from an interrupt |
| | Return | | and does not clear the currently |
| | | | active interrupt. |
| ITLB | Invalidate | V,I | Invalidates the STLB entry |
| | $§TLB Entry | | specified by L. |
| LIOT | Load I/O TLB | V,I | Loads an entry in the IOTLB. |
| | | | |
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Table 5-4 (continued)

 

 

 

 

Restricted Instructions

| Mnem | Name | Modes | Description |
| ~--~~--—--—-----~~-~----------------- |
| LPID | Load Process ! V,I | Loads the process ID contained in |

| ID | | A into RPID. |
| LPSW | Load PSW | V,I | Loads new values into the program |
| | | | counter, keys, and modails. |
| | | | |
| NFYE | Notify End of ! V,I | Notifies on the specified |
| | Queue | | semaphore. Uses LIFO queuing. |
| | | | Does not clear the currently
| | | | active interrupt. |
| NFYB | Notify Head | V,I | Notifies on the specified |
| | of Queue | | semaphore. Uses FIFO queuing. |
| | | | Does not clear the currently |
| | | | active interrupt. |
| OCP | Output Control! §,R | Sends a control pulse to a device. |
| OTA | Output from A | §,R | Transfers data from A to the |
| | | | specified device. |
| PTLB | Purge TLB | V,I | Purges either an entry or a
| | | | page in the translation |
| | | | lookaside buffer. |
| RMC | Clear Machine | S,R,V,I | Clears the machine check flag. |
| | Check | | |
| RTS | Reset Time | V,I | Resets the value of the interval |
| |  $lice | | timer. |
| SKS | Skip on | §,R | When the specified condition is |
| | Satisfied | | satisfied, the specified device |
| | Condition | | responds ready and SKS skips the |!
| | | | next 16 bits. |
| | | | |
| STPM | Store | V,I | Stores the CPU model number and |
| | Processor | ! microcode revision number
| {| Model Number | | into memory. |
| | | | |
| WAIT | Wait | V,I | Waits until the specified |
| | | | semaphore is notified. |

SUMMARY

In this chapter you have read about more of the system registers and
data structures that aid in controlling system operation.
chapter, Datatypes,
Supported on the 50 Seri
you can use to manipula
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act vy ors. It also lists the instructions
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Datatypes

The 50 Series systems support several data representations. These
representations fall into the major groups:

@ Fixed-point data

@ Floating-point numbers

e Decimal integers

e Character strings

@® Queues

This chapter describes each of these data representations, and the
operations and instructions available to manipulate each type.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1 to 16 of a 32-bit I mode
general register. In addition, A and B represent S and R mode 16-bit
registers; L and E represent V mode 32-bit registers.

FIXED-POINT DATA
 

Fixed-point data can be a logical value, a signed or unsigned integer,
or an address. Addresses are treated as unsigned integers.
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Logical Values

A logical value is a 16-bit or 32-bit value that is interpreted as a
string of bits. Table 6-1 lists the instructions that perform logical

operations, such as OR and AND. The 50 Series processors treat each

bit in a bit string separately: the value of one bit does not affect
the value of another.

There are several instructions available that test logical values and
perform an action depending on the result of the test. Chapter 7

discusses these instructions.

Table 6-1
Logic Instructions

 

 

| Mnem | Name | Modes | Description |
| |

| ANA | AND to A i S,R,V | Logically ANDs the contents of A and |

| | | | the contents of a memory location. |

| ANL | AND Long | Vv | Logically ANDs the contents of L and |

| | | | the contents of a memory location. |

| CMA | Complement A! S,R,V | Forms the one’s complement of the |

| | | | contents of A. |

| CMH | Complement iI | Forms the one’s complement of the |

| |  Halfword | | contents of r. |

| CMR |! Complement | I | Forms the one’s complement of the |

| FPullword | | contents of R. |

| ERA | Exclusive OR! S,R,V | Exclusively ORs the contents of A and!
| | toA | | the contents of a memory location. |
| ERL | Exclusive OR! V | Exclusively ORs the contents of L and!
| | Long | | the contents of a memory location. |
| N | AND Fullword! I | Logically ANDs the contents of R and |

| | | | the contents of a memory location. |

| NH | AND Halfword! I | Logically ANDs the contents of r and |

| | | the contents of a memory location. |

| O | OR Fullword | I | Logically ORs the contents of R and |

| | | | the contents of a memory location. |

| OX | OR Halfword ! I | Logically ORs the contents of r and |

| the contents of a memory location. |

| ORA | Inclusive OR! V | Logically ORs the contents of A and |
| | to A | | the contents of a memory location. |

| Xx | Exclusive OR! I | Exclusively ORs the contents of R and!

| Fullword |! | the contents of a memory location. |

| XH | Exclusive ORI I | Exclusively ORs the contents of r ail!

| | Halfword | the contents of a memory location. |
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Si Integers

Depending on the addressing mode, there are a variety of signed integer
formats to use. Each is based on a magnitude field that represents a
two's complement value. Figure 6-1 shows the formats and data sizes
available for each addressing mode.

 

 

 

 

 

 

 

 

 

| Size | Modes! Format |

| |
| | | 2 16 |
| 16 bits | S,R, | |
{ | V,I tl MAGNITUDE | |
| | | |
| | | |
| | | 1 on |

i 32 bits | V,I | |
| | | | MAGNITUDE | |
| | | |
| | | |
| | | 1 64 |
| 64 bits | V,I | |

| | 1 | MAGNITUDE | |
| | | |
| | | |
| | 2 16 17 18 oa |
| 31 bits | S,R | |
{ | | | MAGNITUDE | O | MAGNITUDE |

{ | | 

 

signed Integer Formats
Figure 6-1

Unsigned Integers 

Unsigned integers can be 16, 32, or & bits long. Regardless of length
or addressing mode, all of the bits in the unsigned integer represent
the magnitude of the number.

Most operations work for both signed and unsigned numbers. Special
unsigned support is provided only for those magnitude branch
instructions that allow results to be evaluated as unsigned integers.
Multiply and divide instructions do not work correctly for unsigned
integers.

Table 6-2 lists the instructions that operate on signed and unsigned
integers.
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Table 6-2
Integer Arithmetic Instructions

 

 

| Mnem | Name | Modes | Description
|
iA i Add i I | Adds the 32-bit contents of a memory
| | Fullword | | location to the contents of R.
| AIA | Add 1 to A | S,R,V | Adds one to the contents of A.
| ABA | Add 2toA ! §,R,V ! Adds two to the contents of A.
| ACA | Add CBIT | S,R,V | Adds the value of CBIT to the
| | toA | | contents of A.
| ADD | Add | §,R,V | Adds the contents of a 16-bit
| | | | memory location to the 16-bit
| | | | contents of A.
| ADL | Add Long 1 Vv | Adds the 32-bit contents of a memory
| | | | location to the 32-bit contents
| | | | of L.
| ADLL | Add LINK | Vv | Adds the value of LINK to the
| | tolL | | contents of L.
| ADLR | Add LINK | I | Adds the value of LINK to the
| | toR | | contents of R.
i AH | Add | I | Adds the 16-bit contents of a memory
| | Halfword | | location to the contents of r.
| CG | Compare | I | Compares the contents of R to the

| Fullword | | contents of a memory location and
| | | | sets the condition codes to

| | | reflect the result of the compare.
| CH | Compare | I | Compares the contents of r to the
| | Halfword | | contents of a memory location and
| | | | sets the condition codes to
| | | | reflect the result of the compare.
| CHS | Change Sign | I | Complements bit 1 of R.

| | |
| CHS | Change Sign | S,R,V | Complements bit 1 of A.
{ | | |
| CSA | Copy Sign |! S,R,V | Sets CBIT to the value of bit 1
| | of A | | in A, then sets bit 1 of A to 0.
| CSR | Copy Sign ITI | Copies bit 1 of R into CBIT and
| | | | resets bit 1 of R to 0.
| D | Divide | I | Divides the 64-bit contents of R

| Fullword | i and R+l by the 32-bit contents
| | | | of of a memory location.
| DAD | Double Add | S,R_ | Adds the 31-bit contents of a
| | | | memory location to the 31-bit
| | | | contents of A and B.
| DH | Divide i I | Divides the 32-bit contents of R
| | Halfword | | by the 16-bit contents of a memory
| | | | location.
| DH1 | Decrement | I | Decrements r by 1 and stores the
i i wrbyl i i results in r.
| DHe | Decrement i I | Decrements r by 2 and stores the
| | rbye | | results in r.
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Table 6-2 (continued)
Integer Arithmetic Instructions

 

Mnem | Name | Modes | Description
 

DIV Divide Divides the 31-bit contents of A
and B by the 16-bit contents
of a memory location.

5,R

memory location to get a 32-bit
result.

|
|

| | | |
| | | |
| | | |

DIV | Divide | Vv | Divides the 52-bit contents of L |
| | | by the 16-bit contents of a |
| | | memory location. |

IM | Decrement i! I | Decrements the contents of the |
| Memory | | gpecified memory location by 1. |
| FPullword | | |

DMH | Decrement | I | Decrements the contents of the |
| Memory | | specified memory location by 1. |
| Halfword | | |

TR1 | Decrement | I | Decrements R by 1 and stores the |
| Rbyl | | ypesult inr. |

IR2 | Decrement | I | Decrements R by 2 and stores the |
| Rby 2 | | result in r. |

DSB | Double | S,R | Subtracts the 31-bit contents of a |
| Subtract | | memory location from the 31-bit |
| | | contents of A and B. |

DVL | Divide Long | V | Divides the 64-bit contents of E |
| | | and L by the 32-bit contents |
| ! | of a memory location. |

IH1 | Increment | I | Increments r by 1 and stores the |
| rbl | | result in r. |

ITH2 | Increment | I | Increments r by 2 and stores the |
| rbye | | result in r. |

IM | Increment |! I | Increments the contents of the |
| Memory | | specified memory location by 1. |
| Fullword | | |

IMH ! Increment | I | Increments the contents of the |
| Memory | | specified memory location by 1. |
| Halfword | | |

IR1 | Increment | I | Increments R by 1 and stores the |
| Rbyl | | result in R. |

IRR | Increment ! I | Increments R by 2 and stores the |
| Rby@2 | | result in R. |

M | Multiply | I | Multiplies the 32-bit contents of R |
| Fullword | | by the 32-bit contents of a |
| | | memory location to get a 44-bit |
| | | result. |

MH | Multiply | I | Multiplies the 16-bit contents of r |
| Halfword | | by the 16-bit contents of a |
| | | |
| | | |
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Table 6-2 (continued)
Integer Arithmetic Instructions

 

 

| Mnem | Name | Modes | Description
|
| MPL | Multiply | V | Multiplies the 32-bit contents
| | Long | | of L by the 32-bit contents
| | | | of a memory location to get a
| | | 64-bit result.
| MPY | Multiply | $,R | Multiplies the 16-bit contents
| | | | of A by the 16-bit contents
| | | | of a memory location to get a
| | | | 31-bit result.
| MPY | Multiply | V | Multiplies the 16-bit contents
| | | | of A by the 16-bit contents
| | | | of a memory location to get a
| | | | 82-bit result.
| MPY | Multiply | I | Multiplies the 16-bit contents of r
| | | | by the 16-bit contents of a
| | | | memory location to get a 32-bit
| | | | result.

| | |
| PID | Position | S,R | Converts the 16-bit integer in A to
| | for | i to a 51-bit integer in A and B.

| Integer | |
| | Divide |
| PID |! Position | I | Converts the 32-bit integer in R to

| for | | to a 64-bit integer in R and Ril.
| | Integer | |
| | Divide | |
| PIDA | Position | V | Converts the 16-bit integer in A to
| | for | | toa 31-bit integer in L.
| | Integer | |
| | Divide | |
| PIDH | Position | I | Converts the 16-bit integer in r
| | for | | to a 32-bit integer inR.
| | Integer | |
| | Divide | |
| PIDL ! Position | V | Converts the 32-bit integer in L to
| | for | | to a 64-bit integer in L and E.

i Integer |
| | Divide | |
| PIM | Position | S,R | Converts the 31-bit integer in A
| | After | | and B to a 16-bit integer in A.
| | Integer | |
| | Multiply | |
| PIM | Position | I | Converts the 64-bit integer in R
| | After | | and R+1l to a 32-bit integer in R.
| | Integer | |
| | Multiply | |
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Table 6-2 (continued)
Integer Arithmetic Instructions

 

 

| Mnem | Name | Modes | Description
|
| PIMA | Position | V | Converts the 32-bit integer in L

| After | | toa 16-bit integer in A.
| | Integer | |
| | Multiply | |
| PIMH | Position | I | Converts the 32-bit integer in R
| | for | i toa 16-bit integer in r.
| | Integer | |
| | Multiply | |
| PIML | Position | V | Converts the 64-bit integer in L
| | After | | and E to a 32-bit integer in L.
| | Integer | |
| | Multiply | |
| | Long | |
| SIA | Subtract 1 ! S,R,V | Subtracts 1 from the contents of A.
| | From A | |
| S2A | Subtract 2 | §,R,V | Subtracts 2 from the contents of A.
| | From A | |
| § | Subtract | I | Subtracts the 32-bit contents of a
| {| Pullword | | memory location from the 32-bit
| | | | contents of R.
| SBL | Subtract | V | Subtracts the 32-bit contents of a
| | Long | | memory location from the 32-bit
| | | | contents of L.
| SH | Subtract | I | Subtracts the 16-bit contents of a
| | Halfword | | memory location from the 16-bit
| | | | contents of r.
| SSM | Set Sign | §,R,V | Sets bit 1 of A to l.
| | Minus | |
| SSM | Set Sign | I | Sets bit 1 of R to 1.
| | Minus | |
| SSP | Set Sign | $,R,V | Sets bit 1 of A to O.
| | Plus | |
| SSP | Set Sign | I | Sets bit 1 of R to 0.
| | Plus | |
| SUB | Subtract | $,R,V | Subtracts the 16-bit contents of a
| | | | memory location from the 16-bit
| | | contents of A.
| TCA | Two's | §,R,V | Forms the two's complement of the
| | Complement| | contents of A.
| | A |
| TCL | Two's | V | Forms the two's complement of the
| | Complement| | contents of L.
| | L | |
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Table 6-2 (continued)
Integer Arithmetic Instructions

 

 

codes to reflect the result of

the test.

| Mnem | Name | Modes | Description
|
| TC | Two's | I | Forms the two's complement of the
| | Complement| | contents of R.
| | R | |
| TCH | Two's | I i Forms the two's complement of the
| | Complement | | contents of r.
| | or | |
| TM | Test Memory | I | Tests the contents of a memory
| | Fullword | | location and sets the condition
| | | | codes to reflect the result of
| | | | the test.
| TMH | Test Memory | I | Tests the contents of a memory
| | Halfword | | location and sets the condition
| | | |
| | |
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Addresses

The 50 Series processors manipulate addresses as if they were unsigned
integers. Table 6-3 lists the instructions that handle addresses.

Table 6-3
Address Manipulation Instructions

 

 

| Mnem | Name | Modes ! Description |
| |
| EAFA | EA to FAR | V,I | Calculates an effective address |
| | | | and loads it into the |
| | | | specified FAR. |
| FLX, | Load | R,V | Loads X with a multiple of the |
| DFLX,! Floating | | contents of a memory |
| QFLX | Index | | location. |
| CEA | Compute EA | S,R | Uses the contents of A as an |
| | | | indirect address, calculates |
| | | | an effective address from the |
| | | | referenced location and |
| | | | loads the EA into A. |
| EAA | Effective | R | Loads an effective address |
| | Address to A | | into A. |

| EAL | Effective | V | Loads an effective address |
| | Address to L | | into L. |

| EALB | Effective | V,I | Loads an effective address |
| Address to LB! | into LB. |

| FAR | Effective iI | Loads an effective address
| Address to R ! | into R. |

| EFAXB | Effective | V,I | Loads an effective address
| | Address to XB! | into XB. |
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Fixed-point Operations
 

The 50 Series processors can perform several kinds of operations on
fixed-point data. Some examples are setting or resetting a single bit
ina logical value, or storing an unsigned integer into a memory
location. Table 6-4 lists the instructions that move fixed-point data
from one place to another. Table 6-5 describes a group of special
load/store instructions. Table 6-6 lists the instructions that shift
the contents of a 16-bit or 32-bit register. Table 6-7 shows
instructions that can be used to set or reset all or part of a piece of
data.

Table 6-4

Data Movement Instructions

 

Mnem | Name | Modes | Description
   

Double Load S,R Loads A and B with the contents

of two 16-bit memory locations.

| |
| |
| | | | |
| | | |
| DST |! Double Store |! 5S,R | Stores the contents of A and B |
| | | | into two 16-bit memory locations. |
| I | Interchange | TI | Interchanges the contents of |
| | Rand | | R and a memory location. |
| | Memory | | |
| | Fullword | | . |
| TAB | Interchange | S,R,V ! Interchanges the values of A |
| | A and B | | and B.
| ICA | Interchange | S,R,V | Interchanges the contents of |
| | Characters | | the two bytes in A. |
| | inA | | |
| ICBL ! Interchange | I | Interchanges the contents of the |
| | and Clear | | bytes in r, then loads zeroes |
| | Left | into the leftmost byte of r. |
| ICBR | Interchange | I | Interchanges the contents of the |
| | and Clear | | bytes in r, then loads zeroes |
| | Right | | into the rightmost byte of r. |
| ICHL | Interchange | I | Interchanges the contents of bits |
| | Halfwords | | 1 to 16 and bits 17 to 31 of R, |
| | andClear | ! then loads bits 1 to 16 of R |
| | Left | | with zeroes. |
| ICHR | Interchange | TI | Interchanges the contents of bits |
| | Halfwords | | 1 to 16 and bits 17 to 31 of R, |
| | and Clear | | then loads bits 17 to 31 of R |
| | Right | | with zeroes. |
| ICL | Interchange | S,R,V | Interchanges the contents of the |
| | and Clear | | bytes in A, then loads zeroes |
| | Left | | into the leftmost byte of A. |
| ICR i Interchange | 5,R,V | Interchanges the contents of the |
| | and Clear | | bytes in A, then loads zeroes |
| | Right | | into the rightmost byte of A. |
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Table 6-4 (continued)
Data Movement Instructions

 

 

| Name | Modes | Description |
|

| Interchange | TI | Interchanges the contents of |
| rand | | Yr and a memory location. |
| Memory | | |
| Interchange | V | Interchanges the contents of |
| E and L | | E and L. |
| Halfword | | |
| Interchange | 5,R,V | Interchanges the contents of A and a |
| A and | | memory location. |
| Memory | | |
| Interchange | I | Interchanges the contents of bits |
| Register | | 1 to 8 amd bits 9 to 16 of r. |
| Bytes | | |
| Interchange | I | Interchanges the contents of bits |
| Register | | 1 to 16 and bits 17 to 32 of R. |
| Halves | | |
| Load | I | Loads the contents of a memory |
| Pullword | | location into R. |
| Load A | §,R,V | Loads the contents of a memory |
| | | location into A. |
| Load long | V | Loads the contents of a memory |
| | | location into L. |
| Load X | §,R,V | Loads the contents of a memory |
| | | location into X. |
| Load Y | Vv | Loads the contents of a memory |
| | | location into Y. |
| Load Halfword | I | Loads the contents of a memory |
| | | location into r. |
| Load Halfword | I | Shifts the contents of a memory |
| Left | | location left one bit and |
| Shifted | | loads the result into r. |
| Byl | | |
| Load Halfword | I | Shifts the contents of a memory |
| Left | | location left two bits and |
| Shifted | | loads the result into r. |
| By2 | | |
| Load Halfword | I | Shifts the contents of a memory |
| §6Left | | location left three bits and |
| Shifted | | loads the result into r. |
| By 3 | | |
| Store | I | Stores the contents of R into a |
| Fullword | | memory location. |
| Store A | 5,R,V | Stores the contents of A into memory.|
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Table 6-4 (continued)
Data Movement Instructions

 

 

| Mnem | Name | Modes! Description |
| |
| STAC | Store A | Vv | Stores the contents of A into memory|
| | Conditionally! | if the contents of the specified |
| | | memory location equal the contents |
| | | | of B. |
| STCD | Store | I | Stores the contents of R into the |
| | Conditional | | location specified by EA if the |
| |  Pullword | | contents of R+1 equal the contents |
| | | | of the location specified by EA. |
| STCH | Store i I | Stores the contents of r into the |
| | Conditional | | location specified by EA if the |
| | Halfword | | contents of bits 17 to 32 equal the!
| | | | contents of the location specified |
| | | | by EA. |
| STH | Store Halfword | I | Stores the contents of r into a
| | | | memory location. |
| STL | Store Long | Vv | Stores the contents of L into memory.|
| STLC | Store L | Vv | Stores the contents of L into memory |!
| | Conditionally | | aif the contents of the specified |
| | | | memory location equal the contents |
| | | | of E. |
| STX 1! Store X | §,R,VI Stores the contents of X into memory.|
| STY | Store Y | Vv | Stores the contents of Y into memory.|
| TAB ! Transfer | Vv | Transfers the contents of A into B. |!

| AtoB | | |
| TAX | Transfer 1 Vv | Transfers the contents of A into x. |
| | AtoxX | | |
| TAY | Transfer | Vv | Transfers the contents of A into Y. |
| | AtoyY | | |
| TBA | Transfer | V |! Transfers the contents of B into A. |
| | BtoA | | |
| TXA | Transfer | Vv | Transfers the contents of X into A. |

| XtoA | | |
| TYA | Transfer | Vv | Transfers the contents of Y into A. |

| YtoA | | |
| KCA | Exchange and | S,R,V! Exchanges the contents of A and B, |

| Clear A | then loads zeroes into A. |
| XCB | Exchange and | S,R,Vi Exchanges the contents of B and A, |
| | Clear B | | then loads zeroes into B. |
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Table 6-5
Special Load/Store Instructions

 

 

Mnem | Name | Modes | Description |
|

RSAV | Save Registers | V,I | Saves the contents of the general, |
| | | floating, temporary, and base |
| | | registers in a block of |
| | | consecutive memory locations. |

RRST | Restore | V,I. | Restores the values of the general, |
| Registers | | floating, temporary, and base |
| | | registers with information |
| | | contained in a block of |
| | | consecutive memory locations.

LDAR | Load Addressed | I | Loads the contents of a register |
| Register | | file location into R. |

LDLR | Load L from | V | Loads the contents of a register |
| Register Filel | file location into L. |

STAC | Store A | V | Stores the contents of A at the |
| Conditionally | | specified address if the contents!
| | | of the specified address are |
| | | equal to the contents of B. |

STAR | Store | I | Stores the contents of the |
| Addressed | | specified Rina register file |
| Register | | location. |

STLC | Store L i V | Stores the contents of L into the |
| Conditionally! | specified address if the contents!
| | | of the specified address are |
| | | equal to the contents of E. |

STLR |! Store L Into !| V | Loads the contents of L into a |
| | |Register File | register file location.
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Table 6-6
Shift Instructions

 

 

| Mnem | Name | Modes | Description
|

| AIL | A Left | $,R,V | Shifts the contents of A
| | Logical | | left a specified number of bits.
| AIR | A Left | §,R,V | Shifts the contents of A
| | Rotate | | left a specified number of bits,
| | | | rotating bit 1 into bit 16.
| ALS | A Left | §,R,V | Shifts the contents of A
| | Shift | | left a specified number of bits.
| ARL | A Right | 5,R,V | Shifts the contents of A
| | Logical | | right a specified number of bits.
| ARR | A Right 1 5,R,V ! Shifts the contents of A
| | Rotate | | right a specified number of bits,
| | | | rotating bit 16 into bit l.
| ARS | ARight ! §,R,V | Shifts the contents of A
| | Shift | | right a specified number of bits.
| LLL | L left | §,R,V | Shifts the contents of L
| | Logical | | left a specified number of bits.
| LR | L left | §,R,V | Shifts the contents of L
| | Rotate | | left a specified number of bits,
| i rotating bit 1 into bit 16.
| LLS | L Left | §,R | Shifts the contents of A and B left a
| | Shift | | specified number of bits, bypassing
| | | | bit 1 of B.
| LES | L left | V | Shifts the contents of L
| | Shift | | left a specified number of bits.
| IRL | L Right | §,R,V |! Shifts the contents of L
| | Logical | | right a specified number of bits.
| IRR | L Right |! §,R,V | Shifts the contents of L
| | Rotate | | right a specified number of bits,
| | | | rotating bit 16 into bit l.
| IRS ! LRight I! V | Shifts the contents of L right a
| | Shift | | specified number of bits.
| IRS | LRight | S§,R_ | Shifts the contents of A and B right
| | Shift | | a specified number of bits,
| | | | bypassing bit 1 of B.
| ROT | Rotate | I | Rotates the contents of R a specified

i number of bits in a specified
| | | | direction.
| SHA | Arithmetic! I | Shifts the contents of R a specified
| | Shift | i number of bits in a specified
| | | | direction.
| SHL | Logical iI | Shifts the contents of R a specified
| | Shift | | number of bits in a specified
| | | | direction.
| SL1 | Shift R HHI | Shifts the contents of R left
| | left 1 |! | one bit.
i S42 i Shift R if i Shifts the contents of R left
| | left 2 | | two bits.

|

|

|

|

|

|

|

|

|

|

|
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Table 6-6 (continued)
Shift Instructions

 

 

Mnem | Name | Modes | Description

SRl | Shift R IT | Shifts the contents of R right
| Right 1 | | one bit.

SR2 | Shift R #JftTI | Shifts the contents of R right
| Right 2 | | two bits.

SHL1 | Shift r 11 | Shifts the contents of r left
| left l | | one bit.

SHL2 | Shift r iT | Shifts the contents of r left
| lTeft2 | | two bits.

SHR1 | Shift r 1TI | Shifts the contents of r right
| Right 1 | | one bit.

SHR2 | Shift r | I | Shifts the contents of r right
| Right 2 | | two bits.
 

Notes to Table 6-6
 

The instructions in Table 6-6 specify three types of shift
operations. An instruction that performs a logical shift
treats the data to be shifted as a logical string of bits,
shifting zeroes into the vacated bits. The CBIT and LINK
reflect the state of the last bit shifted out.

An instruction performing an arithmetic shift treats the data
as a signed number. For a right arithmetic shift, the
instruction shifts in copies of the sign bit into the vacated
bits; the CBIT and LINK reflect the state of the last bit
Shifted out. Fora left arithmetic shift, the instruction
shifts zeroes into the vacated bits. If there is a sign change
in bit 1 (interpreted as an overflow condition), an integer
exception occurs. (See Chapter 10.)

 

An instruction that performs a rotate shifts bits out of one
Side of the data word and loads them into vacated bits on the
other side. The CBIT and LINK contain a copy of the last bit
rotated.

 

6-15 Second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 6-7
Clear Register/Memory Instructions

 

 

| Mnem | Name | Modes | Description
|
| CAL | Clear A left | S,R,V | Sets bits 1 to 8 of A to 0.
| | Byte |
| CAR | Clear A Right | S,R,V | Sets bits 9 to 16 of A to O.
| | Byte |
| CR | Clear Register! I | Sets the specified register to
| | | | 60.
| CRA | Clear A | S,R,V | Resets the contents of A to 0.
| CRB | Clear B | S,R,V | Resets the contents of B to 0.
| CRBL | Clear High | I | Sets bits 1 to 8 of the
| | Byte 1 left | | specified register to 0.
| CRBR | Clear High | I | Sets bits 9 to 16 of the
| | Byte l | | specified register to 0.
| | Right | |
| CRE | Clear E | Vv | Resets the contents of E to 0.
| CRHL | Clear Left | I | Sets bits 1 to 16 of the
| |  Halfword | | specified register to 0.
| CRHR | Clear Right ! TI | Sets bits 17 to 32 of the
| | Halfword | | specified register to 0.
| CRL | Clear L | S,R,V | Resets the contents of L to 0.
| CRLE | Clear LandE! V | Resets the contents of L and E
| | | | =6to O.
| ZM | Zero Memory |! TI | Resets the 32-bit contents of
| | Fullword | | the specified memory location
| | i to 0.
| ZMH | Zero Memory =! I | Resets the 16-bit contents of
| | Halfword | | the specified memory location
| | | | to O.

|

|

|

|

|
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|

|

|
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Field Operations
 

The 50 Series processors support a group of instructions that perform
field operations. These instructions use the field address and length
registers in their manipulations. These registers are abbreviated as
FAR, for field address register, or FIR, for field length register;
but both are specified in the same 64-bit register shown in Figure 6-2.

 

The field address and length registers overlap the floating
accumulators aS shown in Figures 6-2 and 6-3. The precise format and
overlap, however, varies from one Prime machine to another. Table 6-8
lists the field operation instructions.

Table 6-8
Field Operation Instructions

 

 

| Mnem | Name | Modes | Description |
| |
| ALFA | Add Long ! V | Adds the contents of L to the contents |
| | to FAR | | of the specified FAR. |
| ARFA | Add Rto II | Adds the contents of the specified R |
| | FAR | | to the contents of the specified |
| | | | FAR. |
| EAFA | EA to FAR | V,I- | Calculates an effective address and |
| | | | loads it into the specified FAR. |
| LDC |! Load | V,I. | Calculates an effective address. |

| Character| | Loads the character in the specified |
| | | | field into the addressed location. |
| LFLI | Load | V,I. | Loads an immediate value into the |
| | Immediate | | specified FLR. |
| | to FIR | | |
| STFA | Store FAR | V,I | Calculates an effective address and |

| | | stores the contents of the specified |
| | | | FAR into the addressed location. |
| STC | Store | V,I. | Stores the contents of a register into |
| | Character| | the specified field. |
| | into | | |
| | Field | |
| TFLL | Transfer | V | Transfers the contents of the |
| | Long | | specified FLR to L. |
| | from FLR | | |
| TLFL | Transfer | V | Transfers the contents of L into the |
| | Long to | | specified FLR. |
| | FLR | | |
| TFLR | Transfer ! I | Transfers the contents of the |
| | FLR to R | | specified FLR to the specified R. |
| TRFL | Transfer | I | Transfers the contents of the |
| | R to FIR |! | specified R to the specified FIR. |
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1 2 o 4 5 16 17 d2 00 3 37 435 44 64
 

| O | RING | O | SEGMENT | OFFSET ! BIT | 0000000 | LENGTH |
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|

|

 

  

Bits | Mnem | Description

2to3s ! RING | Specifies the ring number of the field
| | address.
| |

5 to 16 | SEGMENT | Specifies the segment number of the
| | field address.
| |

17 to 32 | OFFSET | Specifies the offset number of the field
| | address.
| |

oo to 36 | BIT | Specifies the bit number of the field
| | address.
| |

37 to 45 | --- | Must be 0.
|
|| Specifies 21 bits of field length.
 

Format of Field Address and Length Register (FAR, FLR)

 

 

 

   

EXP | Specifies the exponent of a floating-
NOint numerperresee

Figure 6-2

1 48 49 64

| DOUBLE PRECISION FRACTION | EXP |

| Bits | Mnem | Description |

| |

| 1 to 48 | DOUBLE | Specifies the sign and magnitude of a |

| | PRECISION | floating-point number. |

| | FRACTION | |

| | | |

| 49 to 6 | |

| |
 

Second Edition

Format of Floating Register (F)
Figure 6-3
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FLOATING-POINT NUMBERS
 

Floating-point numbers are made up of two fields:

e A fraction containing the two's complement value of the number

@ An exponent

Bits 1 to 24 (single precision), bits 1 to 48 (double precision), or
bits 1 to 48 and bits 65 to 112 (quad precision, not applicable to the
earlier processors listed on page 1-1) contain the two’s complement
value representing the fraction of the number. Bit 1 indicates whether
the number is positive (bit 1 contains 0) or negative (bit 1 contains
1). The binary point lies between bits 1 and 2.

Bits 25 to 32 (single precision) or bits 49 to 64 (double and quad
precision) contain the exponent of the floating-point number. The
exponent, in excess 128 form, is the power of 2 that is to mltiply the
fraction. The true value of the exponent is always 128 less than the
value contained in the exponent field.

In other words:

Floating-point Number = (fraction) * (2**(exponent-128))

Figure 6-4 shows the format of single (SP), double (DP), and quad
precision (QP) numbers. The abbreviated names of the SP, DP, and @P
floating-point accumulators are FAC, DAC, and QAC, respectively. The
number of floating accumulators for each mode and precision type
appears in Table 6-9. These accumulators are overlapped, sharing the
Same storage.

Table 6-9
Number of Floating-point Accumlators

 

 

| Name | R Mode | V Mode | I Mode |

| FAC 1 | 1 | 2 :

mci 61 ik
Qc imme fa
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| Location | Size | Format
|

—

| | | 1 24 25 oe

| Memory | Single |
| | Precision | | FRACTION | EXPONENT |

| |

| | |

| | | 1 48 49 64

| Memory | Double |

| | Precision 1 | FRACTION | EXPONENT |

| | |

| | |

| | | 1 48 49 64

| Memory | Quad |

| | Precision | | FRACTION | EXPONENT |

| |

| | |

| | | 65 112 113 128

| | |

| | | | FRACTION | UNUSED |

| | |

| | |

| | | 1 48 49 64*

| Accumulator | Single |
| | Precision 1 | FRACTION | EXPONENT

| | |

| | |

\ | | 1 48 49 64

| Accumulator | Double |

| | Precision | | FRACTION | EXPONENT |

| | |

| | |

| | | 1 48 49 64

| Accumlator | Quad |

| | Precision | | FRACTION | EXPONENT |

| | |

| | |

| | | 65 112 113 128

| | |

| | | | FRACTION | UNUSED |

| | | 

 

* The format of the FAC for the earlier systems (listed on page 1-1)
appears in Appendix B.

Floating-point Formats
Figure 6-4
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Floating Accumlators
 

In R and V modes, FAC or DAC occupies locations ‘12 to ‘13 in the
current register file set. I mode has two FAC or DAC accumulators
labeled O and 1 that occupy locations ‘10 to ‘13. For all modes, QAC
combines floating accumulators O and 1 into one accumlator occupying
locations ‘10 to ‘13. The high-order fraction bits and the exponent of
@ quad precision floating-point number are found in DAC] in I mode.

The field address and length registers overlap the floating-point
registers. Using FARO, FLRO, and FACO instructions will not modify the
contents of FAC1, FLR1, or FAC], and vice versa. However, mixing FARO
and FLRO instructions with FACO (32I mode), or combining FAR1 or FIRI1
instructions with FAC] (32I mode or FAC 64V mode), produces variable
results from machine to machine and attempt to attempt.

There is no particular implied overlap amongst DIR and STIR
intructions. Extracting the exponent can best be done with either an
LDA 6 (address trap) or a DFST T followed by an LDA T43.

Floating-point Operations
 

In R, V, and I modes, floating-point has instructions that operate from
memory to register or on a register alone. I mode also has some
floating-point instructions that operate in a register to register and
immediate fashion. Table 6-10 lists all floating-point operations.
The first letter of a floating-point instruction shows its data type:

e F for single precision

e D for double precision

@e Q for quad precision
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Floating-point Instructions
Table 6-10

 

 

| Mnem | Name | Modes |

| FAD, DFAD | Floating Add | R, V |
| QFAD | | Vv |
| FA, DFA, QFA | | I |
| | |
| FC, DFC, QFC | Floating Compare | I |
| | | |
| FCM, DFCM | Floating Complement | R, V, I |
| QFCM | iV, I |
| | | |

| FCS, DFCS | Floating Compare IR, Vv |
| QFCS | and Skip | Vv
| | | |
| FDV, DFDV | Floating Divide | R, V |
| QFDV | 1 Vv |
| FD, DFD, QFD | | I |
| | | |

| FLD, DFLD | Floating Load | R, V |
| QFLD | | Vv |
| FL, DFL, QFL | | I
| | | |
| FMP, DFMP | Floating Multiply | R, V |
| QFMP | IV |
| FM, DFM, QFM | | I |
| | |
| FSB, DFSB | Floating Subtract | R, V |
| QFSB | | V |
| FS, DFS, QFS | | I |
| | | |
| FST, DFST | Floating Store | R, V, I
| QFST | | Vv, I |
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Manipulating Floating-point Numbers
 

The following topics are pertinent for many Operations since they deal
with some aspect of handling the accumulator results: overflow or
underflow, normalization, zero, and rounding.

Overflow and Underflow: Overflow occurs when the number of bits in the
exponent of a result exceeds the capacity of its destination’s
exponent. Underflow happens when the exponent of a result is too small
to be represented in a specified register or memory location. For all
SO Series systems, upon overflow or underflow, the fraction is
incorrect and the exponent has the incorrect Sign. Underflow can be
distinguished from overflow by checking the sign of the exponent .

 

A floating-point exception occurs upon overflow or underflow. When
this happens the processor checks the content of bit 7 of the keys for
the prescribed action. If bit 7 contains 1, the processor merely sets
CBIT to 1. If bit 7 contains 0, the processor sets CBIT to 1 and also
loads the FADDR, FOODEH, and FCODEL registers of the user register file
as described in Chapter 10.

Because the FAC has a much greater exponent range than the memory
format, overflow in single precision is detected only when a store
Operation is performed. This situation produces a_ store exception.
See Chapter 10 for more information.

Normalization: All numbers generated by arithmetic floating-point
operations are normalized by the processor. A number is defined as
being normalized either when bits 1 and 2 contain different values or
when the number is a zero with both fraction and exponent equal to
zero. If this is not the case when a result is first generated, the
processor shifts the fraction to the left and adjusts the exponent
appropriately until bits 1 and 2 do have different values.

All systems but the earlier ones (listed on page 1-1) retain two extra
least significant bits of precision, called guard bits, that are
Shifted into the right side of the fraction during the first two left
bit shifts. If more bit shifts are needed, the processor shifts in
zeroes.

For the earlier systems listed on page 1-1, see Appendix B for
information concerning normalization and their guard bits.

Zero: A proper Prime floating-point zero has every bit reset to zero.
Any floating-point value, however, that contains a zero fraction (all
fraction bits reset to zero) is interpreted as a zero. value.
Specifically, non-zero exponents are ignored in all Operations when the
fraction is zero, and such a value is called a "dirty zero".
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: Table 6-11 lists the prerequisites and procedures for

rounding. (See Appendix B for rounding on the earlier systems listed

on page 1-1.) Rounding is done after the result is normalized;

rounding in turn may produce a result that needs to be normalized

again.

Table 6-11
Rounding Prerequisites and Procedures*

 

Type | Operation | Rounding Description
 

| |

|
|

| SP | Add, | In rounding mode (bit 13 of keys is 1), add |

| | gubtract, | guard bit 1 to FAC bit 48 and normalize. |

| | multiply | FRN may be done in rounding mode and a |

| | | double round will not occur. |

| | | |

| | Divide | Always rounds. 49 fraction bits are |

| | | generated for rounding to 48. |

| | | |

| Store | In rounding mode, add 1 to FAC bit 25, |

| | | normalize result, but leave original FAC |

| | fraction unchanged. |

| | | |

| | Compare | In rounding mode, add 1 to FAC bit 25, |

| | and Skip ! normalize result, store in temp register |

| | | for compare, but do not load back into FAC;|

| | | original FAC fraction left unchanged. |

| | |

| DP | Arithmetic | Rounding is the same as in SP. |

| |  operations| |

| | | |

| | Others | Rounding never done. |

| | |

1 QP 1 Divide | Always rounds. 97 fraction bits are |

| | | generated for rounding to %. |

| | | |

| | Others | Rounding never done. |

 

*See Appendix B for rounding on the earlier systems listed on page 1-1.
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Normalized Versus Unnormalized Operands
 

Floating-point operations in Prime processors always produce normalized
results. Hence, an unnormalized number can only enter the system as an
external input operand. Instructions assume normalized floating-point
operands; however, no exception results from unnormalized operands
apart from those in a divide. To ensure accurate floating-point
results, use normalized numbers.

There are several ways of obtaining normalized numbers. FAD, DFAD, or
QFAD instructions normalize an unnormalized memory argument when the
other value is a floating-point zero (defined as having both fraction
and exponent equal to zero). The instruction sequence DFLD, DFCM, and
DFCM also normalizes an operand. Data conversion instructions FIOT,
FLT, FLTA, and FLIH convert integers to normalized floating-point
numbers. Lastly, standard Prime compilers and assemblers produce
normalized constants.

Floating-point branch, skip, and logicize (logical test) instructions
work correctly on normalized or nearly normalized numbers because these
instructions check the first 32 fraction bits only for equal to zero
and less than zero. (A normalized number has different values for bits
land 2; ina nearly normalized number as defined here, at least one
of the examined bits has a different value from the rest, for a
positive value. )

When floating-point instructions are performed on unnormalized numbers,
the following guarantees apply. The instructions do not hang or
deviate from the processor's normal flow of control. Add, subtract,
complement, and compare and skip instructions produce approximately
correct answers. Bit for bit identical values will compare equal or
Subtract to zero by using either a subtract instruction, or a
complement instruction that is followed by an add. All floating load
and store instructions copy 32-bit, 64-bit, or 128-bit quantities from
place to place as appropriate without faulting or normalizing unless
Single precision is used and rounding mode is enabled. Because single
precision rounding mode rounds and normalizes on a compare and store,
the single precision numbers will always be normalized before a store,
causing a bit pattern change.

Using unnormalized numbers for some floating-point operations causes
problems in the following cases. Compare and skip instructions fail on
machines that look first at the sign, then the exponent, and finally
the fraction for possible inequality. Divide produces indeterminate
results on all processors but the earlier ones (listed on page 1-1)
when confronted with unnormalized numbers. Accuracy loss is probable
for all other operations on all other systems.

6-25 second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

Programming Notes: FORTRAN 66 programmers often use floating-point to

store character strings. To the processor, these character strings are

unnormalized floating-point values. REAL*8 values work for copy and

identity comparison operations, but make sorted ordering impossible.

REAL*4 values work in a similar fashion if rounding mode is not

enabled. For storing character strings, use INTEGER*4 since they work

faster and permit sorting.

 

Floating-point Accuracy and Precision
 

For the earlier systems listed on page 1-1, see Appendix B for

discussions amd tables concerning their floating-point accuracy and

precision.

Table 6-12 shows the accuracy of floating-point arithmetic instructions

as performed on normalized numbers. The number of guard bits preserved

need be no greater than two to similate infinite precision if

normalized numbers are used and the algorithm is carefully designed.

The values in Table 6-12 refer to the number of fraction bits

guaranteed to be accurate for the indicated processor. This number

includes the sign bit because the fraction represents a two's

complement value. Other manuals may emulate a sign-magnitude

representation in statements about accuracy. A sign-magnitude

representation requires a 1 to be subtracted from all entries in this

table. Worst case normalization is included in all results. The

accuracy of an infinite precision result lies closer to the number

indicated than to either of its neighboring representations.

Table 6-13 shows floating-point precision for all 50 Series systems

when performed with normalized numbers. The degree of floating-point

precision and accuracy varies among these systems due to their

differences in implemention, as discussed in the following paragraphs.

The fraction values in Table 6-13 refer to the number of fraction bits

for the indicated processor. This number includes the sign bit because

the fraction represents a two's complement value; other manuals may

emulate a sign-magnitude representation. A sign-magnitude

representation requires a 1 to be subtracted from all fraction entries

in this table.
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Table 6-12
Floating-point Instruction Accuracy

 

 

| Instruction | Accuracy

: FAD | 48++ :

| Dt ak
: FSB : 48++# :

: DFSB : 48++# !

mt aa
: DFMP : 48++# :

: FDV : 48+* :

: DFDV : 48+* !

| gD tgs
| ge 96
! QFMP ! 96 :

! QFDV ! 96 :
 

Notes to Table 6-12
 

+ means 2 extra guard bits are used.

# means rounding mode can be used.

* means rounding is always performed.

See Appendix B for the earlier systems listed on page 1-1.
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Table 6-15
Floating-point Precision

 

 

For rest of SP or DP

instructions in

rounding mode only.

| Structure | Precision |
| |
i Fraction Bits: | |
| Memory | 24/48/96 |

| Accumulator | 48/48/96 |

| | |
| Exponent Bits: | |

| Memory | 8/16/16 |

| Accumulator | 16/16/16 |

| | |
| Guard Bits | 2 for all, excepting |

| =§=©quad
| | |
| Rounds | For divide regardless |
| Automatically |! of mode or precision. |
| | |
| | |
| | |

 

Notes to Table 6-13
 

The number of fraction and exponent bits is shown in SP/DP/QP

form.

See Appendix B for the earlier systems listed on page 1-1.
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The following disussion applies only for the 2350 to 9955 II. For the
earlier processors listed on page 1-1, see Appendix B.

All SP and DP arithmetic operations generate at least 48 fraction bits
plus two guard bits to safeguard accuracy during normalization. If
more than two bit shifts are needed during normalization, the processor
Shifts in zeroes. After normalization, the processor rounds if in
rounding mode (as explained in Table 6-13), and then renormalizes the
result.

To store the number in SP memory while in non-rounding mode, the
processor truncates the result to 24 bits. In rounding mode, the
processor rounds the stored value to 2 bits.

Quad precision divide instructions generate 97 fraction bits for
rounding to 96. All other operations produce 9% fraction bits of
fraction; guard bits are not used.

The quad floating point accumulator and memory is 128 bits long. Bits
1 to 112 of this are used for calculations. Bits 113 to 128 are unused
but are subject to the following restrictions. QFLD loads bits 1 to
112 into QAC and zeroes QAC bits 113 to 128, or QFLD loads 128 bits
into QAC. QFLD followed by QFST does not reliably copy 128 bits of
data. All arithmetic operations zero bits 113 to 128 on completion.

Converting Datatypes
 

Several 50 Series system instructions convert floating-point numbers to
integers and vice versa. Table 6-14 lists these instructions and gives
a brief description of each.
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Table 6-14

Conversion Instructions

  

Name Description
 

t

Convert

Single to
Double

Double Round
from Quad

Double Round

from Quad
to Minus
Infinity

Double Round
from Quad
to Plus
Infinity

Double Round
from Quad
to Zero

Floating
Convert
Double

to Quad
Floating

Point

Convert
Single to
Double

Convert
Integer to
Floating
Point

Convert
Integer to
Floating
Point

Convert‘ Tey ee we

Integer to
Floating
Point

Convert
Halfword
Integer to
Floating
Point

1 Camere
UCnvert

Tntesger to
hes ches SINDByNeete

Floating
Point
 

Second Edition

Vit.

V,I

V,1

V,1

| ViI

R,V

Converts the single precision
floating-point number to a double
precision floating-point number.

Converts a quad precision floating-
point accumulator value to a double
precision floating-point number.

Converts a quad precision floating-
point accumulator value to a double
precision floating-point number.

Converts a quad precision floating-—
point accumulator value to a double
precision floating-point number.

Converts a quad precision floating-—
point accumulator value to a double
precision floating-point number.

Converts a double precision floating-
point accumlator number to a quad
precision floating-point number.

Converts a Single precision floating-
point accumulator number to a
double precision floating-point
number .

Converts the 31-bit contents of A and
B to a normalized floating-point
number and stores the 31-bit result
in the floating accumlator.

Converts the contents of the specified
R to a normalized floating-point
number and stores the result in the
floating accumulator.

| Converts the 16-bit contents of A to

normalized floating-point number
and stores the result in the
floating accumulator.

Converts the 16-bit integer contained
in the specified r to a normalized
floating-point number and stores it
in the floating accumulator.

| Converts the 32-bit contents of L toi NAAVO UR OY

a floating-point number and stores
the result in the floating

accumulator.
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Table 6-14 (continued)
Conversion Instructions

DATATYPES

 

 

Mnem | Name | Modes | Description

FRN | Floating | R,V,I | Rounds the fraction of a floating-
| Round | | point accumulator number to the
| | nearest 24-bit fraction.

FRNM | Floating | V,I. | Converts a double precision floating-
| Round from | | point accumulator value to a single
| DP to Minus! | floating-point number.
| Infinity |

FRNP | Floating | V,I. | Converts a double precision floating-
| Round from | | point accumulator value to a single
| DP to Plus | | precision floating-point number.
| Infinity | |

FRNZ | Floating | V,I. | Converts a double precision floating-
| Round from | | point accumulator value to a single
| DP to Zero | | precision floating-point number.

INT | Convert | R | Converts the DP number in a floating
| Floating | | accumulator to a 31-bit integer and
| Point to | | stores it in A and B.
| Integer |

INT | Convert | I | Converts the DP number in a floating
| Floating | | accumulator to a 32-bit integer
| Point to | | and stores it in GR2.
| Integer | |

INTA | Convert | V | Converts the DP number in a floating
| Floating | | accumulator to a 16-bit integer and
| Point to | | stores it in A.
| Integer | |

INTH | Convert | I | Converts the DP number in a floating
| Floating | | accumulator to a 16-bit integer and
| Point to | | stores it inr.
| Halfword | |
| Integer | |

INTL | Convert | V | Converts the DP number in the floating
| Floating | | accumulator to a 32-bit number and
| Point to | | stores it in L.
| Long | |
| Integer | |

QINQ | Floating | V,I | Converts the truncated integer
| Convert | | portion of the floating-point
| Integer to | | accumulator to a quad precision
| | | floating-point number.

@IQR | Floating | V¥,I. | Converts the rounded integer portion
| Convert | | of the floating-point accumlator
| Integer | | to a quad precision floating-point
| to Quad | | number.
| Rounded | |
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DECIMAL DATA

Decimal data can be represented in packed or unpacked forms.
 

Unpacked Decimal
 

There are four forms of unpacked decimal numbers, as shown in Figure

6-5. In this figure, A indicates the ASCII-8 bit that is determined by

bit 12 of the keys. (The keys are discussed in Chapter 5.)

 
  

 

 

 

 

 

 

 

 

 

| Type | Format | Example |

| |

| Leading | First byte | ~~ |

| Sign, | contains sign | AO1010111!A01100111!A01100001A0110101 |

| not | only. | |

| embedded | | + | 3 |! O | 65 |

| | | |

| Trailing | Last byte | |

i Sign, | contains sign | AQ110010!A0110110!A0110001!A0101101 |

| not | only. |
| embedded | | 2 | 6 | 1 oio- |

| | | |

| Leading | First byte | |

| Sign, | contains sign !| AQ110110!A0110110!40111001!A0111001 |

| embedded | and first | |

| | digit. | +6(6)! 6 | 9 | Q |

| | | |

| Trailing | Last byte | |

| Sign, | contains sign | AO110100/A01101101!A01110001A1001010|

| embedded | and last | |

| | digit. | 4 | 6 | 68 | -1(d) |
 

Unpacked Decimal Formats
Figure 6-5

In the first two cases listed in Figure 6-5, a plus sign represents a

positive number, and a minus sign a negative number. You can use a

space character to represent a positive sign, and the processor will

interpret it correctly. Numerical operations, however, cannot produce

positive numbers that contain a space character.

Tn the two cases where the sion is embedded, a si e characterr+6+ AdeOL

represents the appropriate sign and digit. Table 6-15 shows the
pe

Characters that you use to represent sign/digit combinations.
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Table 6-15
Sign/Digit Representations for Unpacked Decimal

 

Digit | Positive Rep. | Negative Rep.
 

| |

| |

| O | 0, space, +, { | }, - |
| | | |

' 1 s6i1,A | J |
| | | |

| 2 12,8 | K |
| | | |

i 3 138,C | L |
| | | |

| 4 14, D | M |
| | | |

| 5 | 5, E | N |

| | | |

| 6 i 6, F | O i

| | | |

| 7 %19%,G | P |
| | | |

| 8 18, H | Q |
| | | |

| 9 19,1 | |
 

There are several multiple representations listed above. The processor
recognizes all of the representations, but it generates only the first
character as the result of an operation. For example, the processor
will generate a } to represent a negative zero with embedded sign.

Packed Decimal

The fifth way to represent decimal numbers is called packed decimal. A
number in this form uses four bits to represent each digit in the
number; the last four bits of the number represent the sign. (Packed
decimal numbers are always in trailing sign format.) A decimal number
must contain an odd number of digits (excluding the sign digit). It
must also begin on a byte boundary.

The sign digit of a decimal result contains a hex C if the sign is
positive or a hex Dif it is negative. The processor interprets the
Sign digits of a decimal operand as positive if it contains anything
other than a hex C or D.
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Control Word Format
 

Unlike the instructions already listed in this chapter, decimal
arithmetic instructions require more information to execute than they
can contain. They require a control word to specify the
characteristics of the operations to be performed. When a decimal
instruction is executing in V mode, L contains a copy of the control
word; in I mode, General Register 2 contains the copy. Figure 6-6
shows the format of the control word. Within this figure, Fl and Fe
stand for field 1 and field 2, respectively.

1 678 9 10 11 12 138141617 22235 298 38
 

 

 

 

| A 'UIBicivuitiTiDt! E |! F | G | H |

| Field | Bits | Contents or Meaning |
| |
| A | 1to6 | Number (0 to '77) of digits in Fl |

| | |
| U 1 %¥ to 8 | Unused; must be zero |
| | | |
| BI 9 | Sign of Fl: |
| | | B=l: sign of Fl is inverse of specified value |
| | | O: sign of Fl is as specified |
| | | |
| Cc | 10 | Sign of Fa: |
| | | C=1: sign of F2 is inverse of specified value |
| | | O: sign of F2 is as specified |
| | | |
| U | 11 | Unused; must be zero |
| | | |
| T I 12 | Sign of result: |
| | | T=1: result is forced positive |
| | | O: instruction operation dictates the sign |
| | | |
| Df 13 | Round flag (used only by XMV) |

| | |

| E | 14 to 16 |! Decimal data type of Fl |
| | | |

| F | 1% to 22 1 Number (0 to '77) of digits in F2 |
| | | |
' G | 28 to 29 ! Scale differential |
| | | |
| H 1 30 to 32 ! Decimal data type of Fe |
 

Decimal Control Word Format

Figure 6-6
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Most of the fields are self-explanatory. Fields D, E, G, H, and T,
however, merit extra discussion.

Field D is used only by the XMV instruction. This field tells the
processor whether to round the decimal number in Fl or not. If D
contains a O, no rounding occurs. If D contains 1 and the scale
differential, the G field, is positive, rounding is performed. The
rounding is accomplished by adding a 1 to the (scaled) results field if
the last digit scaled over is 5 or greater when XMV moves the contents
of Fl into F2.

Control word fields E and H specify the decimal data types of the
operands. Table 6-16 lists the available data types and the codes used
to represent them in the control word fields.

Table 6-16
Decimal Data Types

 

Code | Decimal Data Type
 

| |
| |

| QO | Leading separate |
| | |
| 1 | Trailing separate |
| | |
| & | Packed decimal |
| | |
| 4 | Leading embedded |
| | |
| §& | Trailing embedded |
 

Control word field G specifies the scale differential.

For XAD, XCM, and XMV, G specifies the difference in magnitude between
the operators of an instruction. This field contains a 77-bit, two's
complement number with the value:

Fx = magnitude(Fl) - magnitude(F2).

If Fx is positive, then Fl must be shifted right so that it aligns with
Fe; if negative, Fl must be shifted left to be aligned with F2.

For example, suppose Fl contains 999V99, and F2 contains 999. The
scale differential for these operands would be +2, since Fl must he
Shifted to the right two digits to align with Fe.

For XMP, the scale differential is the length of the multiplicand.
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The T bit is used by the decimal instructions XAD, XDV, XMP, and XMV.
For all these instructions, results are forced positive if the T hit
contains 1.

The descriptions of the decimal instructions (see the Instruction Sets
Guide) list the control word fields required for instruction execution.
Any unused fields must contain zeroes for proper execution to occur.

 

Decimal Operations
 

Decimal results are correct for all the digits shown in the result
field. The processor calculates the result to all its bits of
precision, then loads as many as can fit into the result field. If the
portion stored does not contain the most significant bits of the
result, an overflow occurs that causes a decimal exception. (See
Chapter 10.)

Register Use

In general, all decimal instructions use GRO, GR1, GR3, GR4, and GR6 in
both V and I modes. On the 6350 and 9750 to 9955 II, all decimal
instructions use L (GR2 in I mode), FARO, and FAR]. XDITB and XBTD do

not use FAR1, but also use GR4.

Table 6-17 lists the decimal instructions.
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Decimal Instructions

DATATYPES

 

mo
ve
r

mm
rr

e
m
m
m

m
m
m
e
m
m
y
y
m

m
e
m
y

e
m

m
m
m
e
s

c
e
m
m
c

 

Mnem | Name \Modes! Description

XAD ! Decimal Add | V,I | Adds the contents of two decimal
| | | fields together and stores the
| | | result in the destination field.
| | |

XMV | Decimal | V,I | Moves the contents of the source
| Move | | field into the destination field.
| | |

XCM | Decimal | V,I | Compares the contents of the source
| Compare | | and destination fields and sets
| | the condition codes depending
| | | on the outcome of the compare.
| | |

XMP | Decimal ! V,I | Multiplies the contents of the source
| Multiply | | and destination fields and stores the
| | | result in the destination field.
| | |

XDV | Decimal | V,I | Divides the contents of the destination
| Divide | | field by the contents of the source
| | | field and stores the result and the
| | | remainder in the destination field.
| | |

XBID | Binary to | V,I | Converts a binary number contained in a
| Decimal | | register to a decimal number and
| Conversion| | stores the result in a memory
| | | location.
| | |

XDIB | Decimal to |! V,I ! Converts a decimal number in memory to
| Binary | | @ binary number and stores the
| Conversion | | result in a register.
| | |

XED | Decimal | V,I | Edits a decimal string under control
| Edit | | of an edit subprogram.
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CHARACTER STRINGS
 

Character strings are made up of bytes, with each byte representing one
ASCII character. A character string can contain from 1 to 2**17 bytes.
Table 6-18 lists the character instructions.

Table 6-18

Character Instructions

 

 

| Mnem | Name | Modes | Description |
| |
| LDC |! Load | V,I | Calculates an effective address. Loads!

| | Character | | the character in the specified field |
| | | | into bits 9 to 16 of a register. |
| | | | Clears bits 1 to 8. |

| | | | |
i STC | Store | VI | Stores the contents of bits 9 to 16 |
| | Character | | of A into the specified field. |
| | | | |
| ZCM | Compare | V,I | Compares two character fields and sets |
| | Character | | the condition codes depending on the |
| | Fields | | outcome of the compare. |
| | | | |

| ZED | Edit | V,I | Moves characters from one field to |

| | Character | | another under control of an edit |

| | Fields | | subprogram. |
| | | | |
| ZFIL | Fill Field | V,I | Stores a character into each |

| | | | byte of the specified field. |
| | | |

| ZMV | Move | V,I | Moves characters from one field to |

| | Characters| | another. |

| | | | |
| ZMVD | Move Equal | V,I |! Moves characters from one field to |
| | Length | | another of equal length. |
| | | | |
| ZTRN | Translate | V,I | Uses one field to reference a |

| | Character | | translation table and construct a |

| | Field | second field. |
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The 2Z-prefix character instructions (that is, all character
instructions except LDC and SIC) move data in the source string
starting from the lowest addressed byte (ascending order). ZED and
ZTIRN move one byte at a time; ZCM, ZFIL, ZMV, and ZMVD always move
four bytes at a time (unless there are fewer than six bytes to move and
the source and destination are not aligned).

The Z-prefix character instructions may produce unexpected results if
the source and destination strings overlap. For example, suppose ZMV
is to move the contents of a large source string into a destination
string. Figure 6-7 shows how the source and destination strings
overlap; S represents the first byte in the source string (labelled 6)
and D represents the first byte in the destination string (labelled 1).

After ZMV moves the first four characters, the strings are as shown in
the second part of Figure 6-7. The last part shows how the second move
affects the string. The third and subsequent moves would work in the
same way. In this case ZMV simply moves all characters in the source
string into the destination string straightforwardly, without
deviation.

1 2 383 4 5 6 *% 8 9 10 11 #12 #13
 

 

 

 

 

 

| |

| |

| Strings |
| |AILBtCiDtE!IFtItIG!itHiItidtikiIiLiMi before |

| move |

| “ * |

| D S |

| |

| 1 2] o 4 5 6 7 8 9 10 11 182 13 |

| After |

| |!F|1G@!IHittiEtPFtiGiHitrtigikiLinMit first |

| move |

| * “

| D S |

| |

| 1 2 o 4 5 6 7 8 9 10 11 12 13 |

| After |

| |PFtG@iHitrtigtikKibLbiIiMitztidgtitxkK Ibi Mi second |

| move |

|

|

|

| |

 

Overlapping String Manipulation
Figure 6-7
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Suppose, however, that the starting addresses of the two strings are
switched. The first five bytes in the source string will be correctly
moved, but the rest of the string will have been overwritten by copies
of the first five bytes. These same five characters will propagate
through the rest of the destination string, as shown in Figure 6-8.

 

 

 

 

 

|

|

jo eee ne strings |
| | AlLBtCcCtbDiE!tFiIG@tHitrtIidtkitbit before |

J ----—---------+- move |

| * “ |

| s D

| |

| 1 2 56 4 5 6 FT 8 9 10 11 12 |

| ———------- After |

i |AlLBICtDIE!: AlBICI!IDId!KiI LI first |

J +--+ move |

| * “ |

| s D |

|

1 2 5 4 5 6 7 8 9 10 11 12 |

| Wa After |

| |! AlLBtICGt!bDtIE!AILBICIDIE! Al Bi second |

| — ——— move |

| |

|

| |

| |
 

String Manipulation
Figure 6-8

While the move shown in Figure 6-8 is useful, it may not be the action
that was intended. Overlapping strings produce arbitrarily different
results for each Prime machine. For this reason, avoid usin

overlapping strings in any situation.
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QUEUES

A queve is a fixed length, double-ended, circular word buffer. Figure
6-9 shows the format of a typical queue with wrapped and unwrapped
data.

 

QUEUE DATA BLOCK, DATA NOT WRAPPED

 

|<--Origin = M*2**K

 

|
| Cempty) | |

| |
TOP-—>| (head) | |

| | Length = 2**K
| (data) | |
| | |
|(tail) |

BOTTOM--— >! |

| Cempty) | V
| |<--End = (M+1)*2**K-1
 

QUEUE DATA BLOCK, DATA WRAPPED

 

 

| (data) |<--Origin = M*2**K
| | |
|(tail) |

BOTTOM-—- >| | |

| Cempty) | Length = 2**K
| | |
| | |

TOP-->| (head) | |
| | |
| (data) | V
| |<--End = (M+1)*2**K-1
 

 

Queues With Wrapped and Unwrapped Data
Figure 6-9

QCBs

Each queue in the system is controlled by a queue control block (QCB).
This QCB contains information about the queue’s size and location in
memory, aS well as data used to manipulate the elements. In addition,
the @CB defines the queue’s type. If the value of the QCB’s V bit is
O, then the QCB contains physical addresses and the associated queue is
called a physical queue. These types of queues are the only ones used
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for DMQ operations. If the value of the QCB’s V bit is 1, then the QCB
contains a virtual segment number and offset rather than a physical
address, and the queue is called a virtual queue. Queues of this type
are never used for I/O operations.

Try to align QCBs on 8-byte boundaries. DMQ operations (discussed in
Chapter 11) require this alignment. For program queue manipulation via
the queue instructions, alignment is not necessary but does produce
faster queue operations.

Figure 6-10 Shows the format of the QCB.

 

 

 

 

1 | TOP POINTER | 16
17 | BOTTOM POINTER | 32
36 | V | OOO | HIGH ORDER ADDRESS | 48
49 | SIZE MASK | 64

| Bits | Name | Description |
| ----~----- —- |
| 1to 161 Top Pointer | Points to first filled location |
| | | (the head) in the queue. |
| | | |
i 17 to 32 i Bottom i Points to one past the last filled |
| | Pointer | location (the tail) in the queue. |
| | | |
| oo | V | Virtual/physical control bit: |
| | | 0 = physical queue, |
| | | 1 = virtual queue. |
| | | |
| 4 to 3% | ------ | Reserved; must be 0. |
| | | |
| 37 to 48 | High Order | High order queue address (if V = 0) |
| | Address | or segment number (if V = 1). |
| | | |
| | | |

Figure 6-10
Format of the QCB

When addressing a QCB, the ring number in the reference specifies the
access privileges that wiil govern the reference. Physical queues Can
maamter hn an nmnacnnm| Penem DawrwXt 0.
Olli Le deeee LLUAdtliy UV
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Queue Specifications
 

A queue must be 2**K words long, where K is an integer between 4 and 16
inclusive. In addition, the queve’s starting address must be M(2**K),
where M is an integer value. These restrictions allow the firmware to
easily identify and locate a queue. Two queues in the system do not
have to have the same K in common.

The 50 Series processors use a mask word to add elements to or delete
elements from a queue. This mask specifies the size of the queue, and
is 16 bits wide. The least significant K bits contain 1 and all other
bits contain 0. This means that the numerical value of the mask is
(2**K)-1. Figure 6-11 contains an example of calculating a mask.

|
5. |
O000000000011111 |

= '37 |
|
|

& OQ 6 rm

ol decimal

= (2**5)-1, QED.

Calculating a Mask
Figure 6-11

The mask also makes it easy to determine the starting and ending
addresses of the queue. If P is a pointer to some location within a
queue, the address of the queue’s origin is:

origin = P AND (NOT mask)

and the address of the queue’s last location is:

end = P OR mask.

Figure 6-12 contains an example of calculating the starting and ending
addresses of a queue.
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queue origin + queue length
‘200 + ‘37, QED.

| |
| Suppose K = 5, P= ‘204, and M = 4. |
| mask = ‘37 and queue length = 2**5 = ‘57. |
| |
| origin = ‘204 AND (NOT ‘37) |
| = 10000100 AND 1111111111100000 |
| = 10000000 |
| = ‘200 |
| = 128 decimal |
| = 4(2**5), QED. |
| |
| end = ‘204 OR ‘37 |

= 10000100 OR 11111 |
| = 10011111 |

= ‘237 |
| = |
| = |
| |
 

Calculating the Origin and End of a Queue
Figure 6-12

Queues operate under one final restriction. They are defined to be
empty when the contents of the top pointer equal the contents of the
bottom pointer. This means that the maximum number of elements ina
queue is (2**K)-1.

Queue Algorithms
 

The 50 Series processors use four algorithms to insert or delete queue
elements (depending on the specified operation). Table 6-19 shows the
algorithms used for specific operations. The symbols Tl to fT
represent temporary storage registers.
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Table 6-19
Queue Algorithms

 

 

 

 

 

Inst | Algorithm |
|

RI | Tl < TOP |
and | T2 <- BOTTOM |
DM |iIfTl=T2thenA <-O |
Output| CC <- & |
(I/O) | else T3 <-— SEGMENT |

| T4 <-— MASK |
| A <- (SEGMENT | T1) (16 bits) |
| TOP <- Tl AND NOT T4 OR (Tl + 1) AND T4 |

|
ABQ | Tl <- TOP |
and i T2 <- BOTTOM |
DM) | TS <— SEGMENT |
Input | T4 <— MASK |
(I/O) | TS <- T2 AND NOT T4 OR (T2 + 1) AND T4 |

| If Tl = T5 then CC <- |
| else location(SEHGMENT | T2) <-A |
| BOTTOM <- T5 |

|
ATO | Tl <~ TOP |

| T2 <- BOTTOM |
| TS <— SEGMENT |
| T4 <— MASK |
| Tl <~ Tl AND NOT T4 OR (T1 - 1) AND T4 |
| If Tl = T2 then CC <- |
l else location(SEGMENT | Tl) <-A |
| TOP <- Tl |

|
RBQ | Tl <- TOP |

| T2 <— BOTTOM
| If Tl =T2 thenA <-0O |
| cc < & |
| else T3 <— SEGMENT ]
| T4 <— MASK |
|
| |
| |

Tea <- T2 AND NOT T4 OR (T2 - 1) AND T4
A <- (SEGMENT | T2) (16 bits)
BOTTOM <- Te
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The instructions provided for programmed queue manipulation are shown
in Table 6-20. The pointer in the instructions references the QCB for
that queue. An RIQ instruction is equivalent to a DMQ output
operation, and an ABQ is equivalent to a DMQ input, as noted in Chapter
11, INPUT-OUTPUT.

Table 6-20
Queue Instructions

 

Mnem | Name | Description
 

to the number of items ina
specified queue and sets the
condition codes depending on the
new value of r or A.

| |
| |
| RTQ | Remove from | Removes a 16-bit quantity from the |
| and! Top of Queve | top of a queue and places it in |
| DMQ | | xr (I mode) or A (other modes) |
| | | |
| RBQ | Remove from | Removes a 16-bit quantity from the |
| | Bottom of | bottom of a queue and places it |
| | Queue | in r (ZI mode) or A (other modes). |
| | | |
| ABQ |! Add to the | Adds the contents of r (I mode) or |
| and! Bottom of | A (other modes) to the bottom of |
| DMQ | Queue | the specified queue. |
| | | |
| ATQ | Add to the | Adds the contents of r (I mode) or |
| | Top of Queve | A (other modes) to the top of |
| | | the specified queue. |
| | |
| TSTQ | Test Queue | Sets r (I mode) or A (other modes) |
| | | |
| | | |
| | | |
| | | |
 

SUMMARY OF DATATYPES AND APPLICABLE INSTRUCTIONS
 

various operations available. The body of each table shows which
instructions perform a specific operation on a specific datatype. For
detailed information about each instruction, refer to the instruction
dictionaries in the Instruction Sets Guide.

Tables 6-21 and 6-22 summarize the different datatypes and list the

 

In Table 6-21, the variable aa represents the set of arithmetic
conditions [ EQ, GE, GT, LE, LT, NE]. Also, Tables 6-21 and 6-22 do
not include instructions that operate on CBIT, LINK, the condition

PLEA IV LRTarmaac Rr smaguias
WSS, Vi YUOUDD.
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Table 6-21
Datatypes Summary and Instructions in S, R, and V Modes

 

Size of Datatype (in Bits) |
 

|
|
| 16131 | 382 1 64 I82FP I64FP 1128FP! Dec!
| (A) 1(A4/B)! (L) 1(L/E)1 CFAC) 1 (DAC)! (QAC)! (-)!

| 
Load from memory | LDA | DOLD | LO | | FLD | DFLDI QFLD! XMVI

| | | | | | | | |
Store to memory | STA | DST | STL | | FST | DFST! QFST! |

| | | | | | | | |
Add | ADD | DAD | ADL | | FAD | DFAD! QFAD! XAD!

| | | | | | | | |
Subtract | SUB | DSB ! SBL | | FSB | DFSB! QFSB! XADI

| | | | | | | | |
Multiply | MPY | | MPL | | FMP | DFMP| QFMP! XMPI

| | | | | | | | |
Divide | DIV | | DVL | | FDV | DFDV! QFDV! XDV!

| | | | | | | | |
Increment | IRS, | | | | | | | |

| AlA,| | | | | | |
| AZA | | | | | | |
| | | | | | | | |

Decrement | SIA,| | | | | | | |
| S2A | | | | | | |
| | | | | | | | |

AND | ANA | | ANL | | | | | |
| | | | | | | | |

OR | ORA | | | | | | |
| | | | | | | | |

XOR | ERA | | ERL | | | | | |
| | | | | | | | |

Complement | CMA | | | | | | | |
| | | | | | | |

Compare | CAS, | | CLS | | FCS | DFCS! QFCS! XCMI
| CAZ | | | | | | | |
| | | | | | | | |

Logical test | Laa | | Lhaa! | LFaal LFaa!| | |
| | | | | | | | |

Branch | Baa | | Blaa! | BFaal BFaa! | |
| | | | | | | | |

Logical left shift | ALL | | LLL | | | | | |
| | | | | | | | |

Logical right shift | ARL | | LRL | | | | | |
| | | | | | | | |

Arithmetic left shift! ALS | LLS | LLS | | | | | |
| | | | | | | | |

Arithmetic right | ARS | LRS | LRS | | | | | |
shift | | | | | | | | |

| | | | | | | | |
Rotate left shift | ALR | | LIR | | | | | |
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Table 6-21 (continued)

Datatypes Summary and Instructions in §, R, and V Modes

 
  

 

 

| Size of Datatype (in Bits) |

Operation | |

i 161 31 | 32 1 64 182FP |\64FP !128FP! Dec!

| (A) 1(A/B)! CL) |(L/E)1 CRAC) | CDAC) | (QAC)! (-)!
|

Rotate right shift | ARR | | LRR ! | | | | |

| | | | | | | | |

Clear | CRA | CRL | CRL ICRLE | | | | |

| | | | | | | | |

Clear left | CAL | CRA | CRA | CRL | | | | |

| | | | | | | | |

Clear right | CAR | CRB | CRB |! CRE | | | | |

| | | | | | | | |

Interchange halves | ICA | IAB | IAB |! IL& | | | | |

| | | | | | | | |

Interchange and | ICL | XCA | XCA | | | | |

clear left | | | | | | | | |

| | | | | | | |

Interchange and i ICR | XCB | XCB | | | |

clear right | | | | | |

| | | | | | | | |

Two's complement | TCA | | TCL | | FCM | DFCM! QFCMI! |

| | | | | | | |

Set sign | SSM | SSM | SSM | | | | | |
| | | | | | | | |

Clear sign | SSP | SSP | SSP i | i |

| | | | | | | | |

Change sign | CHS | | CHS | | | | | |

| | | | | | | | |

Convert datatypes: | | | | | | | | |

| | | | | | | |

Integer to | FLTA! FLOT! FLIL! | | | |

floating point | | | | | | | | |

| | | | | | | |

Floating point | INTA! INT | INIL! | | QINQ! |

to integer | | | | | | | QIQR! |

| | | | | | | | |

Binary to decimal i XBTD! | XBID! XBTD! | | |

| | | | | | |

Decimal to binary | XDIBI | XDTB! XDIB! | | | |

| | | | | | | | |

Position for integer | PIDA! PID | PIDL! PI! | | | |

divide | | | | | | | | |

| | | | | | | | |

Position after | PIMA! PIM | PIML! PIML! | | | |

multiply | | | | | | | | |

| | i i |

Skips i Saa | | | FSaal FSaa! | |
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DATATYPES

Datatypes Summary and Instructions in I Mode

 

 

 

| Size of Datatype (in Bits) |
Operation | |

| 16! 8381 64 I32FP I64FP |128FPi Dec!
| (r) | CR) 1CR/R+1)1 CPAC)! (DAC) 1 (Qa)! (-)|

|
Load from memory |lH IL | | FL | DFL | QFLDI XMV!

| | | | | | | |
Store to memory | STH | ST |! | FST | DFST! QFST! |

| | | | | | | |
Add | AH | A | | FA | DFA | QFADI XADI

| | | | | | | |
Subtract | SH 1S | | FS | DFS | QFSBI XADI

| | | | | | | |
Multiply | MH | M | | FM | DFM | QFMP! XMP!

| | | | | | |
Divide | DH | D | | FDV | DFDV! QFDV! XDV!

| | | | | | | |
Increment | IMH,! IM, | | | | | |

| ITH1,! IR1,! | | | | |
| TH#2 | IR2 | | | | | |
| | | | | | |

Decrement | DMH,! DM, | | | | |
| DH1,! DR, | | | | | |
| DH2 | DR2 | | | | |
| | | | | | |

AND | NH IN |} | | | |
| | | | | | | |

OR |!OQH !|!O | ] | | | |
| | | | | | |

XOR i XH |X | | | | |
| | | | | | | |

Complement | CMH | CMR | | | | | |
| | | | | |

Compare | CH 1c | | FC | DFC | QFC | XCM!
| | | | | | | |

Logical test | LHaal Laa | | LFaa! LFaa! | |
| | | | | | |

Branch | BHaal BRaal | BFaal BFaal |

| | | | | | | |
Logical shift | | SHL | | | | | |

| | | | | | | |
Arithmetic shift | | SHA | | | | | |

| | | | | | | |
shift right 1 | SHR1! SR1 | | | | | |

| | | | | | |
Shift right 2 | SHR2! SR2 | | | | |

| | | | | | |
shift left 1 | SHL1! SL1 | | | | | |

| LHL1! | | | | | |
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Table 6-22 (continued)
Datatypes Summary and Instructions in I Mode

 

 

 

| | Size of Datatype (in Bits) |

| Operation | |

| | 16! 32! @& 182FP 164FP 1128FP! Dec!

| | (r) 1 (R) 1 CR/R+1)1CFAC)! (DAC) 1 (QAC)! (-)!

| -

| Shift left 2 | SHL2! SL2 | | | | | |

| | LHL2! | | | | |

| | | | | | | | |

| Shift left 3 | LHL3! | | | | |

| | | | | | | | |

| Rotate | | ROT | | | | | |

| | | | | | | | |

| Clear | | CR | | | | | |

| | | | | | | |

| Clear left | CRBL! CRHL!| | | | | |

| | | | | | | | |

| Clear right | CRBR| CRHRI| | | | | |

| | | | | | | | |

| Interchange halves | IRB | IRHi TI | | | | |

| | | | | | | | |

| Interchange and | ICBL! ICHLI | | | | |

| clear left | | | | | | | |

| | | | | | | | |

| Interchange and | ICBR! ICHRI | | | | |

| clear right | | | | | | | |

| | | | | | | | |

| Two's complement i TCH | TC | | FCM | DFCM! QFCMI |

| | | | | | | |

| Set sign | SSM | SSM | | | | | |

| | | | | | | |

| Clear sign | SSP | SSP | | | | |

| | | | | | | |

| Change sign | CHS | CHS | | | | | |

| | | | | | | | |

| Convert datatypes: | | | | | | | |

Integer to | FLTH! FLT | | | | | |

| floating point | | | | | | | |

| | | | | | | |

| Floating point | INTH! INT | | | | QINQ| |

| to integer | | | | | QIQR| |

| | | | | | | | |

| Binary to decimal | XBTD! XBTDi XBIDI | | | |

| | | | CDACO)| | | | |
| Decimal to binary | XDTB! XDTB! XDIBI | | | |

| | | (DACO)| | | | |

| Position for integer | PIDH! PID! PID | | | |

| divide | | | | | | | |

| | | | | | | | |

| | PIMH! PIM! PIM | | | | |Position after multiply
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SUMMARY

This chapter has introduced the datatypes supported on the 50 Series
processors and has listed the instructions you can use to manipulate
them. The next chapter, Altering Sequential Flow, lists instructions
that allow you to test for a condition and perform actions depending on
the outcome of the test.
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Altering Sequential

Flow

So far this document has confined its discussions mostly to arithmetic
Operations. This chapter describes instructions that can alter the
normally sequential flow of control within a program.

BRANCH AND SKIP INSTRUCTIONS
 

The simplest way to change the flow of control ina program is to use a
branch or a skip instruction. These instructions may directly load a
new value into the program counter, or they may first test some value
and then load the program counter according to the outcome of the test.
Note that branch and skip instructions always load the program counter
with an address contained within the current segment. (To transfer
control to an address outside the current segment, use a jump
instruction, explained in the second half of this chapter.)

Table 7-1 lists the branch instructions. Table 7-2 lists the logic
test instructions. Table 7-3 contains information about the
conditional skip instructions. Table 7-4 describes the floating-point
skip instructions.
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Table 7-1

Branch Instructions

  

 

   

 

   

 

 

 

 

 

 

Second Edition

by Value |

| Mnem | Name \Modes! Description |

| |

| BEQ, BGE, | Branch on A! V_ |! Branches if the contents of A |

| BGT, BLE, | Set With | meet the specified condition |

| BLT, BNE | Respect to O! | with respect to O. |

| |

| BCEQ, BOGE, | Branch on | V,I! Branches if the condition code |

| BOGT, BCLE, | CC Set With | | reflects the specified |

| BCLT, BCNE | Respect to 0! | condition with respect to 0. |

| |

| BFEQ, BFGE, | Branch on | V,I | Branches if the contents of the |

| BFGT, BFLE, | FA With | | floating accumulator reflect |

| BFLT, BFNE | Respect to 0! | the specified condition with |

| | | | respect to 0. |

| |

| BHEQ, BHGE, | Branch on !1I_ | Branches if the contents of the |

| BHGT, BHLE, ! r With | | specified r meet the specified!

| BHLT, BHNE ! Respect to 0! | condition with respect to0O. |

| |

| BLEQ, BLGE |! Branch on | V_

|!

Branches if the contents of L_ |

| BLGT, BLLE, | L With | | meet the specified condition |

| BLLT, BLNE | Respect to 0! | with respect to 0. |

| |

| BMEQ, BMGE, | Branch on | V,I | Branches if LINK and the |

| BMGT, BMLE, | Magnitude | | condition codes meet the |

| BMLT, BMNE | Condition | | the specified condition with |

| | Set With | | respect to 0. |

| | Respect to O! | |

| |

| BREQ, BRGE, | Branch on |1I_ ! Branches if the contents of the |

| BRGT, BRLE, | R Set With | | specified R meet the specified!

| BRLT, BRNE | Respect to 0! | condition with respect to 0. |

|
| BRBR | Branch on |I_ | Branches if the specified bit in!

| | R Bit Reset | | Ris QO. |

| BRBS | Branch on | I

_

| Branches if the specified bit inl

| | R Bit Set | | Ris l. |

| BHD1, BHD2, | Branch onr!I_ | Decrements r by the specified

| BHD4 | Decremented | | value and branches if the

| | by Value | | value is not equal to 0.

|
| BHI1, BHI2, | Branch onriti | Increments r by the specified

| BHI4 | Incremented | | value and branches if the

| | | values is not equal to 0.
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Table 7-1 (continued)
Branch Instructions

 

 

 

 

 

 

Mnem | Name \Modes! Description

BRD1, BRD2, | Branch onR!I_ | Decrements R by the specified
BRD4 | Decremented | | value and branches if the

| by Value | | value is not equal to 0.

BRI1, BRI2, | Branch onR!I_ | Increments R by the Specified
BRI4 | Incremented | | value and branches if the

| by Value | | values is not equal to 0.

BCS | Branch if | V,I | Branches if the value of CBIT
| CBIT is Set | | is l.

BCR | Branch if | V,I | Branches if the value of CBIT
| CBIT is | | is O.
| Reset | |

BLS | Branch if | V,I | Branches if the value of LINK
| LINK is Set | | isl.

BIR | Branch if | V,I | Branches if the value of LINK
| LINK is | | is 0.
| Reset | |

BOX | Branch on | V_ | Decrements the contents of xX by
| Decremented | | 1 and branches if the
| X | | decremented value equals 0.

BDY | Branch on | V_ ! Decrements the contents of Y
| Decremented | | by 1 and branches if the
| ¥ | | decremented value equals 0.

BIX | Branch on | V_ |! Increments the contents of xX
| Incremented | | by 1 and branches if the
| X | | incremented value equals 0.

BIY | Branch on | V_ | Increments the contents of Y
| Incremented | | by 1 and branches if the
| Y | | incremented value equals 0.

CoT Computed V,I

|

Branches if the contents of A
GOTO are greater than 1 and less

than a specified integer;
otherwise, executes the next

instruction.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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Table 7-2

Logic Test Instructions

 

 

 

   

 

 

 

 

| Mnem | Name | Modes | Description

|
| LEQ, | Load on | S,R,V,I | Loads a register with a 1 if

| LGE, | Register | | the register reflects the

| LGT, | With Respect | | specified condition with

| LLE, | to O | | respect to 0; otherwise,

| LUT, | | | clears the register to 0.

| INE | | |
| ~---~-———----—------

| LCEQ,! Load | S,R,V,I | Loads a register with a 1 if

| LOGE,| Register on | | the condition codes reflect

| LOGT,! Condition | the specified condition with

| LCLE,| Codes Set | | respect to 0; otherwise,

| LCLT,| With Respect | | clears the register to 0.

| LONE | to 0 | |

|
| LFEQ,! Load Register | S,R,V,I | Loads a register with a 1 if

| LFGE,! on FAC | | the contents of the floating

| LFGT,! With Respect | i accumlator reflect the

| LFLE,! to 0 | specified condition with

| LFLT, | | | respect to 0; otherwise,

| LFNE | | | clears the register to 0.

|
| LHEQ,! Load Ronr HII | Loads R with a 1 if the contents

| LHGE,! With Respect | | of r reflect the specified

| LHGT,! to O | | condition with respect to 0,

| LHLE, | | | or with a O if another

| LHLT, | | | condition exists.

| LHNE | |
|
| LLEQ,!| Load AonL 1 5,R,V | Loads A witha 1 if the contents

| LLGE,| With Respect | | of L reflect the specified

| LLGT,!| to O | | condition with respect to 0,

| LOL, | | | or with a O if another

| L&T,| | | condition exists.

| LiLNE | | |
|
| LT | Load True | S,R,V,I | Loads a register with a 1.

| LF | Load False | | Loads a register with a 0.
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Table 7-3

Conditional Skip Instructions

 

 

Mnem | Name | Modes | Description |
|

CAS | Compare A and | S,R,V | Compares the contents of A to the |
| Skip | | contents of a memory location and |
| | | skips depending on the outcome. |

CAZ | Compare A to | S,R,V ! Compares the contents of A to0O am |
| O | | skips depending on the outcome. |

CLS |! Compare L and ! V | Compares the contents of L to the |
| Skip | contents of a memory location |
| | | and skips depending on the outcome. |

DRX i Decrement and | S,R,V | Decrements the contents of Xx by 1
| Replace X | | and skips the next 16 bits if the |
| | | decremented value is 0. |

IRS | Increment and ! §,R,V | Increments the contents of a memory |
| Replace Memory! | location and skips the next 16 |
| | | bits if the incremented value is 0. |

IRX | Increment and | §,R,V | Increments the contents of X and |
| Replace X | | skips the next 16 bits if the |
| | | incremented value is 0. |

SAR | Skip on A | §,R,V | Skips the next 16 bits if the |
| Register Bit Ol! | specified bit in A contains 0. |

SAS | Skip on A | S,R,V | Skips the next 16 bits if the |
| Register Bit 1! | specified bit in A contains 1. |

SGI | Skip on A | S,R,V ! Skips the next 16 bits if the |
| Greater than 0! | contents of A are greater than 0. |

SLE | Skip on A Less! §,R,V | Skips the next 16 bits if the |
| Than O | | contents of A are less than 0. |

SLN | Skip on LSB of! S,R,V | Skips the next 16 bits if bit 16 of |
| A Nonzero | | A contains 1. |

SLZ | Skip on LSB of! S,R,V | Skips the next 16 bits if bit 16 of |
| A Zero | | A contains 0. |

SMCR |Skip on Machine! S,R,V | Skips the next 16 bits if the |
| Check Zero | | machine check flag contains 0. |

SMCS |Skip on Machine! S,R,V | Skips the next 16 bits if the |
| Check Set to 1! | machine check flag contains 1. |

SMI | Skip on A | S,R,V | Skips the next 16 bits if the |
| Minus | | contents of A are less than 0. |

SNZ | Skip on A | | Skips the next 16 bits if the |
| Nonzero | | contents of A are not equal to0. |

SPL | Skip on A Plus! §,R,V ! Skips the next 16 bits if the |
| | | contents of A are greater than |
| | | or equal to 0. |

SRC | Skip on CBIT O! S,R,V | Skips the next 16 bits if the value |
| | | of CBIT is 0. |

SSC | Skip on CBIT 1! S,R,V | Skips the next 16 bits if the value |
| | | of CBIT is 1. |

SZE | Skip on A Zero! S,R,V | Skips the next 16 bits if the |
| | |contents of A are equal to 0.
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Table 7-4
Floating-point Skip Instructions

  

 

| Mnem | Name | Modes | Description |

| |

| FSGT | Floating Skip | R,V | Skips the next location if the |

| If Greater | | contents of the floating |

| | Than 0 | | accumulator are greater

| | | | than 0. |

| FSLE | Floating Skip | R,V | Skips the next location if the |

| | If Less Than | | contents of the floating |

| | or Equal to 0 | |  accumilator are less than |

| | | | or equal to 0. |

| FSMI | Floating Skip | R,V | Skips the next location if the |

| | If Minus | | contents of the floating |

| | | | accumulator are less than 0. |

| FSNZ | Floating Skip | R,V | Skips the next location if the |

| | If Not Zero | | contents of the floating |

| | | | accumulator are not equal |

| | | | tod. |

| FSPL | Floating Skip | R,V | Skips the next location if the |

| | If Plus | i contents of the floating

| | | | accumilator are greater |

| | | | than O.

| FSZE | Floating Skip | R,V | Skips the next location if the |

| | If Zero | | contents of the floating |

| | | | |accumulator are equal to 0.
 

JUMP INSTRUCTIONS
 

Like the instructions listed in the tables above, jump instructions can

load new addresses into the program counter. The difference is that

jump instructions can transfer control to addresses outside the current

segment of execution. Table 7-5 lists these instructions.
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Table 7-5
Jump Instructions

 

 

Mnem | Name | Modes | Description

JDX Jump on | R Decrements the contents of X by
Decremented X | 1 and jumps if the

decremented value is 0.

 

| |
| |
| | | |
| | | |
| | | | |
| | | | |
| JIX | Jump on | R | Increments the contents of X by |
| | Incremented X | | 1 and jumps if the |
| | | | incremented value is 0. |
| | | | |
| JMP | Unconditional | 5,R,V,I | dumps to the specified |
| | Jump | | effective address. |
| | | | |
{| JSR | dump to | I | Jumps to the specified |
| | Subroutine | | effective address and saves |
| | | | the return address in r. |
| JST | Jump and Store! §,R,V | Stores the current contents of |
| | | | the program counter into |
| | | | memory and jumps to the |
| | | | specified effective address. |
| JSX | Jump and Save | R,V | Increments the contents of the |
| | in Xx | | program counter by 1 and |
| | | | stores the result in X, then |
| | | | jumps to the specified |
| | | | effective address. |
| JSXB | Jump and Save | V,I | Stores the current contents of |
| | in XB | | the program counter in XB and |
| | | | jumps to the specified |
| | | | effective address. |
| JSY | Jump and Save | V | Increments the contents of the |
| | iny | | program counter by 1 and |
| | | | stores the result in Y, then |
| | | | jumps to the specified |
| | | | effective address. |

SUMMARY

The 50 Series supports branch, skip, and jump instructions that you can
use to transfer control from one part of your program to another. The
next chapter begins the discussion of more complex methods of control
transfers.
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Stacks and Procedure

Calls

This chapter describes how to transfer control from one procedure to
another. This type of control transfer, the procedure call, can:

@ Call inward rings from outward rings.

e@ Invoke reentrant procedures.

@ Invoke recursive procedures.

e Use an embedded operating system.

Before describing how procedure calls work, however, this chapter
defines several key terms. It also describes the stack, the data
blocks that contain information about a call, and the Special access
rights that govern a call.

DEFINITION OF TERMS
 

Process and Procedure
 

A procedure is a set of instructions, such as the body of a text editor
or diagnostic program. A process is the execution of a procedure, such
aS the process that the system assigns to auser. A process may
execute several procedures throughout its life.
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A procedure may call other procedures by using the Procedure Call (PCL)
instruction. A processor may exchange one process for another by

invoking the process exchange mechanism (PXM). For information about
the PXM, refer to Chapter 9 and Appendix C.
 

Note the use of the terms caller, callee, calling procedure, and called
procedure. The procedure making the call is the calling procedure, or

caller. The procedure answering the call is the called procedure, or
Callee. These terms are used throughout this and later chapters.

 

 

 

STACKS AND STACK MANAGEMENT
 

The more sophisticated methods of altering sequential program flow use

stacks as temporary storage areas. Procedure calls use the stack to

save the state of the machine before altering program flow and to

contain the parameters of the call. When the specified operation is

complete, information in the stack is used to restore the machine state
to what it was before the procedure call took place.

Stacks 

A stack is a group of one or more segments. Since a 50 Series

processor can support more than one stack at a time, the segment number

of the first segment in each stack (the stack root) serves as a unique
identifier. Stack segments following the stack root segment are called
stack extension segments. A stack can contain many stack extension

segments.

 

 

Stack Header

The first four locations of the stack root segment contain the stack

header. These locations contain information needed by the processor to

manage the stack. Table 8-1 shows the format of these locations.

 

Fach stack extension segment also has a header. Offsets 0 to 1 of each

extension segment must contain 0. Offsets 2 to 3 contain an extension

pointer that references the next stack extension segment. This pointer
contains 0 if this segment is the last stack extension segment.
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Table 8-1
Stack Header Format for the Initial Stack Segment

 

| Offset | Name | Description | |
| |
| O, 1 Free Pointer to first offset of next free space in|

 

Pointer the current stack segment (segment number/ |
offset number). This value must be even. |

2, 3 Stack Pointer to first location of extension
Extension segment, if one has been allocated. If

frame in the current segment referenced by
the free pointer, the processor uses the
extension pointer to reference the next
Segment. If the extension pointer contains!
O, no extension segment has been allocated |

| |
| |
| |
| | |
| | |
| | |
| Pointer | there is not enough room to allocate a new |
| | |
| | |
| | |
| |
| |

| anda stack overflow fault occurs. |
 

Stack Frames

The 50 Series processors store information on the stack in blocks
Called stack frames. They allocate the frames in a last in first out
(LIFO) manner. Each time the PCL instruction executes, a new frame is
allocated; a PRIN instruction deallocates the frame when the procedure
Specified by PCL completes execution. An unextended frame cannot cross
a segment boundary. (See STEX in the Instruction Sets Guide.)
 

The stack frames allocated at any time are backward threaded only.
This means that each frame points back to the frame of the procedure
that previously used this stack.

 

The information contained in a frame header defines the state of the
machine that was in effect when the calling procedure executed the PCL
instruction. This arrangement permits calls to or returns from a
procedure without having to reference the frame of the calling
procedure.

Figure 8-1 shows the format of the stack frame header. All procedures
in the same ring can use the same stack for storage. Different
processes, however, usually do not share stack segments.
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FLAG BITS | O
STACK ROOT SEGMENT # | 1

RETURN POINTER | 8
RETURN POINTER | 863

STACK BASE | 4
STACK BASE | 86§
LINK BASE | 6
LINK BASE | 7
KEYS | 8

ARGUMENT OFFSET # | 9
 

 

Offsets | Contents Description

 

|

|
| 0 | Flag Bits
| |
| 1 | Stack Root
| | Segment +
| |

| 2to 3s | Return

| | Pointer

| |

| |
|
| 4toS5 | Stack Base
| |
| |
| 6 to | Link Base
| |
| 8 | Keys
| |
| 9 | Argument
| | Offset #

PCL always sets these bits to 0.

Address of the free pointer.

Pointer to return location (that
following the last argument template
of the PCL instruction that created
this frame).

Contents of caller’s SB (pointer to
previous frame).

Contents of caller's LB.

Contents of caller's keys.

Offset number of the location following
the PCL that created this frame.
 

Second Edition
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ENTRY CONTROL BLOCKS
 

The entry control block (ECB) identifies a procedure. When PCL
executes, it forms the effective address of the called procedure’s ECB,
not of the procedure itself. The ECB contains information about the
called procedure, as well as about the expected parameters (such as
number of expected arguments, size of stack frame, and soon). Figure
8-2 shows the format and contents of the ECB.

 

1 16 17 oe
 

ECB. PBH | ECB. PBL
ECB.SFSIZE | ECB.ROOTSN
ECB.ARGDISP | ECB.NARGS

 

 

 

| |
| |
| |
| ECB. LBH | ECB.LBL |
| ECB.KEYSH | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

| Offset | Name | Description |
| In Block! | |
| |
| Oto 1 | ECB.FB | Pointer (ring, segment, offset number) |

| | to the first executable instruction |
| | | of the called procedure.
| | | |
| 2 | ECB.SFSIZE | Stack frame size to create (in half- |
| | | words). Must be even. |
| | | |
| 3 | ECB.ROOTSN | Stack root segment number. If zero, |
| | | keep same stack. |
| | | |
| 4 | ECB.ARGDISP! Displacement in new frame of where |
| | | to build argument list. |
| | | |
| 5 | ECB.NARGS | Number of arguments expected. |
| | | |
| 6 to 7 | ECB.LB | Pointer (ring, segment, offset) to be |
| | | loaded as called procedure’s linkage |
| | | base (location of called procedure's |
| | | linkage frame less ‘400).
| | |
| 8 | ECB.KEYS | Keys desired by called procedure. |
| | | |
| 9 to 15 | | Reserved, must be zero. |
 

Entry Control Block Format
Figure 8-2
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INDIRECT POINTERS
 

If the callee expects arguments, several pointers to the arguments
should follow the PCL instruction. These pointers are called argument
templates (or argument pointers), and contain orders which PCL uses to
form indirect pointers to the actual arguments. Indirect pointers are
Saved in a stack frame that the callee uses to reference the arguments.

 

 

Several templates may be used in succession to form one indirect
pointer. One template may specify a level of indirection; the next, a
base register. Each template contains an S bit that determines if that
template is the last one to be used to form a single indirect pointer.
If this S bit contains a 1, then the argument is the last one to be
used for this indirect pointer, and the processor should store it into
the current stack frame. If the S bit contains a 0, then the indirect
pointer requires more templates.

Each template also contains an L bit to indicate if it is the last one
for the last indirect pointer. When Land S are both 1, then this
argument is the last one for the last pointer. When L is O, other
arguments follow it. When Lis 1 and § is O, the processor stores the
results of the current AP (argument pointer) into XB and (if necessary)
in X. (See Storing Indirect Pointers, below, for information about
these pointers.) In all cases, when the L bit is set to 1, no further
APs are processed, and control is transferred to the called procedure.
Figure 8-3 shows the format of all argument templates. Figure 5-3 in
Chapter 3 shows the format of 32-bit and 48-bit indirect pointers.

 

1 465 6% 8 9 10 11 1617 oR
 

| BIT | IT |0O1! BRILL! § |000000! OFFSET |!
 

 

 

Bits | Mnem | Contents

1 to 4 BIT Bit number

5 I i Indirect

6 -—— Reserved; must be 0

Base register

10 Last template for this argument.
If 1, store argument address to memory.
If 0, store argument address to XB amd X.

Reserved; must be zero
Offset number

|

|

| |

i

| |

| % to 8 | ER
| 9 | L

| | §

| |

| |

|

|

|
|

|
|
| Last template for this call
|
|
|
|
|

1
17 to 32 | OFFSET
 

Argument Template Format
Figure 8-3
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GATE ACCESS

There are some Ring O or Ring 1 procedures that procedures in
higher-numbered rings will want to call. Since normal read, write, and
execute access Tights will not allow such inward references, these Ring
O or Ring 1 procedures must specify a special access right called gate
access. Gate access allows a Ring 3 procedure to safely use a specific
set of Ring O and Ring 1 procedures without harming the rest of the
system.

For identification, the ECBs of the procedures that allow gate accesses
are grouped in a special gate access segment. These ECBs must all have
starting addresses of O(modl6) in this segment. If a procedure
references an improperly aligned ECB, an access fault occurs.

To call any of the procedures allowing gate accesses, the caller must
execute a PCL instruction that points to an ECB in the gate access
Segment. There is no other way to call these procedures.

MAKING A PROCEDURE CALL
 

When PCL executes, it:

@ Calculates the callee'’s ring number.

e Allocates a new stack frame for the callee.

@ Saves the caller's state.

e Loads the callee’s state.

e Calculates and stores indirect pointers for the callee’s use.

This sequence of events is summarized in Figure 84 and described
below.

Calculating a Ring Number
 

When PCL begins execution, it calculates the ring number of the call.
PCL looks at the appropriate STLB entry, since it contains access
rights for the calling procedure. PCL uses these access rights to
determine if the caller has access to the callee’s ECB. If the STIB
Specifies read access, PCL weakens the ring number contained in the
Callee’s ring field to that of the caller. If the callee’s KCB is ina
gate segment, PCL uses the ring field contained in offsets 0 to 1 of
the callee’s ECB as the ring number.
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Allocating a Stack
 

PCL looks at the contents of ECB.ROOTSN (offset 3 of the ECB) to
determine the stack root segment. If ECB.ROOTSN contains zeroes, the
processor fetches the stack root number from the stack frame of the
caller. (Gate ECBs must have a nonzero stack root segment indicated in
ECB.ROOTSN.) The first two offsets of the stack root segment contain
the free pointer; PCL compares the number of available locations in
the segment to the contents of ECB.SFSIZE (the number of 16-bit
quantities contained ina frame). Stack frame sizes and free pointers
are always rounded upwards to form an even value.

If the frame will fit into the locations remaining in the stack
segment, PCL starts the new frame at the location specified by the free
pointer. It also updates the contents of the free pointer so that they
point past the new frame.

If the new frame is too large to fit in the current segment, PCL
examines the contents of offsets 2 to 3 in the segment referenced by
the free pointer. If offsets 2 to 3 contain 0, a stack overflow fault
occurs.

If offsets 2 to 3 contain a nonzero value, this value becomes the new
free pointer. PCL rechecks for available segment locations as it did
the first segment. If this segment cannot contain the whole frame, a
stack fault occurs. If there are enough available locations, PCL
starts the frame at the first available location.

Saving the Caller's State
 

The processor clears the flag field of the new frame and stores the
contents of the caller's program counter, stack base and link base
registers, and keys into the new frame. The contents of the saved
program counter specify the ring and segment of the caller. These
Saved contents point to the location immediately following PCL.

Loading the Callee’s State
 

At this point, no faults are possible and the basic call must ble
finished. PCL loads the program counter with the contents of ECB.PB
and LB with the contents of ECB.LB. The keys are loaded with the
contents of ECB.KEYS; note, however, that bits 15 to 16 of the keys
are reset to 0. PCL also loads the address of the new frame into SB.
This is the end of the basic call. If there are any arguments, PCL
must calculate and store the argument pointers before beginning
execution of the procedure.
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Calculating Indirect Pointers
 

Figure 8-5 shows how the indirect pointers are formed. The text that
follows elaborates on this figure.

To form an indirect pointer, PCL first forms the ring field. It
compares the contents of the program counter’s ring field and that of
the base register specified in the caller. The larger value of these
two fields becomes the ring field of the indirect pointer.

The contents of the segment field of the caller’s specified base
register become the contents of the indirect pointer’s segment field.

The contents of the base register’s offset is added to the offset field
of the argument template. If the specified base register is not XB,
the contents of the bit field of the argument template become the bit
field of the indirect pointer. When the specified base register in the
argument template is XB, the bit field of the template is added to the
bit field of the argument pointer saved in the XB and X registers, and
any carryout goes to the offset field of the indirect pointer. The bit
field is ignored if the indirect bit contains a 1 in the argument
template.

If the argument template indirect bit contains a 0, the value just
calculated is the final value.

If the argument template indirect bit contains a1, the value just
calculated is not the final value. PCL uses this calculated value to
fetch the indirect pointer. PCL compares the calculated value’s ring
field to the caller’s ring field (found in the program counter) and
takes the larger of the two as the new ring field. The contents of the
segment, offset, and bit fields are the same as the contents of those
in the fetched indirect pointer.

When an indirect pointer’s fault bit contains a 1, the contents of the
argument template § bit and the pointer’s first 16 bits determine the
action to be taken. If the S bit contains a 1 and the pointer’s first
16 bits are ‘100000, the indirect pointer is loaded onto the callee’s
Stack frame; all other cases result in a pointer fault.

Once PCL finds the final value generated by the template, it examines
the S§ bit to determine if it should store the pointer in the stack
frame aS an indirect pointer, or if it should store the pointer in XB.

If S contains a O, PCL must use at least one more template to complete
the formation of the pointer. The value calculated so far is stored in
XB. (If there is a bit field, the value is also stored in X. Bit 4 of
XB, the E bit, contains 1 when X is used.) The value calculated for
the next template is stored in XB and X again. XB is only updated
whenever the § bit contains a O. Otherwise, XB remains unchanged.
This continues until the § bit or the L bit of one of the templates
contains a 1.
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Storing Indirect Pointers
 

If § contains a1, PCL stores the calculated indirect pointer in the
next stack frame location. If L also contains a 1, then there are no
more indirect pointers to be calculated. AO in L indicates that there
are more arguments to follow, so PCL proceeds with the next one.

If the number of indirect pointers produced is greater than the number
the callee expects, PCL ignores the extras.

If the number of indirect pointers produced is less than the number the
callee expects, PCL creates dummy indirect pointers and stores them in
the current frame. The format of these dummy pointers is ‘100000,
where bit 1 = 1 indicates a pointer fault (omitted argument pointer).
PCL stores one dummy pointer for each omitted one.

The callee can reference omitted indirect pointers only to pass them on
to other new procedures; if such a reference occurs, the new procedure
will see such indirect pointers as omitted. Any use of an omitted
indirect pointer other than to pass it on causes a pointer fault.

PCL always allocates three 16-bit quantities in the current stack frame
to store each indirect pointer. An indirect pointer occupies all three
16-bit quantities, however, only if it has a nonzero bit field. If
this is the case, PCL sets the E bit for that indirect pointer to 1.
If an indirect pointer has a bit field containing 0, PCL sets the
argument ’s E bit to O and loads the indirect pointer into the first two
allocated locations; when PCL loads the next indirect pointer, it
skips the third location.

THE ARGT INSTRUCTION
 

PCL is resumable if any interruption occurs while it is transferring
arguments. When such an interruption occurs, the program counter in
the return block contains the address of the first instruction in the
callee. If the callee does not expect arguments, its first instruction
can be anything. If arguments are expected, however, the first
instruction of the callee must always be the Argument Transfer (ARGT)
instruction. After the processor services the interrupt, control

Bam heer wearer Semele mn
returns to ARGT, which identifies how many indirect pointers have yet

to be transferred, and begins the transfer anew at that point.

 

ARGT transfers arguments only if an interrupt occurs during PCL’s
execution. If this happens, ARGT completes the transfer that PCL
began. If no interrupt occurs, ARGT is not executed.
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THE PRIN INSTRUCTION
 

After all arguments are transferred, control transfers to the called
procedure. The last instruction of the called procedure must be a
procedure return instruction, PRIN. When this called procedure
completes execution, PRIN transfers control back to the calling
procedure. The calling procedure picks up execution at the instruction
immediately following PCL and its arguments.

PRIN also deallocates the stack frame created when the procedure call
was first made. To deallocate the frame, the instruction stores the
current value of the stack base register into the free pointer. It
then restores the caller's state by loading the caller’s stack base and
link base registers with the values contained in the frame being
deallocated. The keys are similarly loaded, but bits 15 to 16 of the
keys are reset to 0. PRIN also loads the program counter with the
appropriate address contained in the frame, but loads the program
counter’s ring field with the logical OR (weaker) of the saved program
counter ring number and the current ring number. This prevents inward
returns, yet allows returns from gated calls to work properly.

PROGRAMMING NOTES
 

When making a procedure call, make sure that the caller, callee, and
associated ECB all contain consistent information about arguments. If
the ECB specifies no arguments, then no argument templates should
follow PCL, nor should the callee begin with ARGT. Similarly, if the
ECB specifies arguments, the associated callee must begin with ARGT,
ia PCL should be followed by the correct number of argument templates
or fewer).

Also, PCL without argument pointers does not change the contents of any
general registers or XB. PCL with argument pointers may alter the
contents of some general registers, so do not rely on them to be the
same aS they were before PCL executed. Specifically, when calling an
inner-ring procedure, do not use an indexed or an XB-relative PCL
instruction. If an asynchronous interrupt condition occurs, the
software restarts the interrupted call at the location specified by the
calling PCL. Since neither XB nor the general registers were saved
during the first try of PCL, the processor may calculate an invalid
effective address.

In addition, do not specify an XB-relative argument template unless it
is immediately preceded by at least one other template whose S bit
contains aQ. The previous template’s S bit tells the processor that
another template is to follow, and to save the current template in XB,
not to store it in memory. The processor reads in the XB-relative
template, and uses the saved contents of XB in the manipulation. If
the XB-relative template were not immediately preceded by another
template whose S bit contains a 0 and if the processor were to retry
PCL, XB would not contain valid contents; the calculated template
would be invalid.
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Process Exchange

INTRODUCTION

You read in the previous chapter how to transfer control from one
procedure to another. This chapter and the next discuss the Process
Exchange Mechanism (PXM) and how it transfers control from one process
to another. This chapter describes the PXM implemented on all
Single-stream processors. Appendix C describes the PXM implemented on
a dual-stream processor, the 850.

 

As defined in the previous chapter, a process is a dynamic state of
execution, such as a user in a time-sharing system. To quickly service
as Many processes as possible (up to approximately 1000 at once), the
50 Series PXM executes one process for a given length of time. If a
resource is not available or time for this process is up, the PXM
exchanges this process for another, and so on. This allows many
processes to work towards completion at the same tine.

ELEMENTS OF THE PXM
 

The main elements of the process exchange mechanism (PXM) are:

e Three data structures:

Process control blocks
Ready list
Wait lists
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@e Two PXM instructions:

WAIT
NOTIFY

@e The dispatcher

In addition to these elements, the PXM manipulates the register file
and the process interval timer during process exchange.
 

PROCESS CONTROL BLOCKS
 

Fach process has a process control block (PCB) that describes it. Each
PCB contains a minimum of 64 halfwords and completely specifies its
process from a hardware point of view. Table 9-1 shows the format of
the PCB.

A single segment contains the PCBs of all processes running throughout
the system. Bits 1 to 16 of register ‘25 in the current register set
specify the number of this segment, OWNERH. (See Table 9-5 later in
this chapter for the format of the current register set.) The pointers
and addresses in a PCB (except fault vectors and wait list pointers)
are 16 bits long and are assumed to be relative to OWNERH. Note that
for the 6350, the contents of the concealed stack can go anywhere in
segment OWNERH + 1; for the rest of the 50 Series, those contents can
go anywhere in OWNERH. (For more information on OWNERH, see the
section on User Register Files, later in this chapter.)
 

PCBs generally start on O(mod64) boundaries, but must start on at least
O(m0d32) boundaries.

READY LIST

The PXM uses the ready list to indicate priorities and dispatch
processes. The elements of the ready list are:

e A series of headers that make up the actual ready list

e A data base made up of PCBs

@ Two 32-bit registers, PPA and PPB

Figure 9-1 and the text in the following section show the relationships
between the ready list elements.
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Table 9-1

PCB Format

 

| Section |! Offset | Contents

 

Control | 0
1

2 to 3

6 to 7
‘10 to ‘11!

‘12 to ‘15!

‘16 to 17'|

‘Ql
‘22 to ‘61!

‘62 to ‘63!

‘64 to ‘65!

‘66 to ‘67!
‘70 to ‘711

‘72 to '73l

'74 to ‘76!

‘77
see note

to the
right

|
|

Level pointer to BOL in ready list. |
Link pointer to next PCB, or 0. |
Segment number/offset number of the semaphore |
whose wait list is currently pointing to this!
PCB. A segment number of O indicates that |
this PCB is on the ready list. |

Abort flags used to generate a process fault |
when this PCB is dispatched. |
Bits 1 to 15: set by the software |
Bit 16: process interval timer overflow |

Pointer to the register set that this process |
used last. |

Reserved for future use. |
Elapsed timer. Must be maintained by the |

software that resets the live interval timer.|
Discussed further in Table 9-11. |

DIAR2 and DIARS. These are never saved, only |
restored. See Figure 4-9 and Table 95. |

Interval timer (copy of TIMER, shown in Table |
9-5). Discussed further in Table 9-11. |

Save mask. PXM uses this to avoid saving or |
restoring registers containing zeroes. |
The format of the save mask is: |

1 to 8: GRO-GR7 (see Table 9-5) |
9 to 12: FACO-FAC] (see Tables 6-9 and 9-5)!
13 to 16: PB, SB, LB, XB (see Table 9-5 and |

Figure 3-1). |
Keys. (See Figures 5-3 and 5-4, Table 9-5.) |
Storage for nonzero registers. (See Save |
mask, above. ) |

Fault vector. Segment number/offset number to |
fault table for Ring 0. |

Fault vector. Segment number/offset number to |
fault table for Ring 1. |

Reserved for future use. |
Fault vector. Segment number/offset number to |

fault table for Ring 3. |
Fault vector. Segment number/offset number to |

fault table for page fault. |
Concealed fault stack header (FIRST, NEXT, and |
LAST pointers). (See Table 10-7.) |

Reserved. |
Concealed stack, whose contents can go anywhere!

in segment OWNERH + 1 (6350 only) or OWNERH |
(rest of 50 series) and can contain as many |
frames aS desired. See the Concealed Stack |
section in Chapter 10. |
 

 

9-3 second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

Ready

List

 

          
 

 

 

 

 

 

 

 

 

  
 

     

 

 

 

 

  
 

    
 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

   
 

Level 600 Level 602 Level 604 Level 606 Level 610

Header Header Header Header Header

BOL

|

EOL

|

BOL

|

EOL

|

BOL

|

EOL

|

BOL

{

EOL BOL

|

EOL

A|C DIE 0 0 F F GikK

A D F G

600 el 602 606 La 610
— B — E 0 —

B E H

600 602 ~€ 610

C J

| 600 610

0 m1 K

K

610 j=

0

Second Edition

Ready List and Associated PCB Lists
Figure 9-1

9-4

    

 



PROCESS EXCHANGE

Headers

The ready list itself is made up of headers, one header for each level
of priority. These headers are allocated in contiguous memory
locations, with the highest priority header contained in the lowest
numbered memory location. Each header, in turn, is made up of two
16-bit pointers. The pointers are called the beginning of list (BOL)
pointer and the end of list (EOL) pointer, and each contains the
address of a PCB in segment OWNERH.

 

The PCB referenced by a BOL pointer is associated with the first
process having a particular priority. The BOL pointer points to the
PCB of the last process with that particular priority.

A BOL pointer containing a 1 signals the end of the ready list, since
PCB addresses must be even. A BOL pointer containing a 0 signals an
empty level.

Ready List Data Base
 

The ready list data base is made up of linked lists of PCBs whose
associated processes are ready to execute. There is one list defined
for each level of priority; all PCBs contained in that list have the
same level of priority. A list can contain as many processes as can
exist in the system at a time.

The first location in each PCB specifies the process’ priority level by
pointing to one of the BOL pointers in the ready list. The second
location contains a forward link to the next PCB in the linked list.
For the last PCB in the linked list (that is, the last PCB in the ready
list with this level of priority), the second location contains 0.

PPA and PPB Registers
 

The PXM uses the pointer to process A (PPA) and pointer to process B
(PPB) registers to locate the next process to dispatch. Both registers
are 32 bits wide.

 

 

PPA always contains information about the currently active process.
Bits 17 to 32 contain PCBA, the address of the process’ PCB. Bits 1 to
16 contain the level of priority, called Level A. Level A always
Specifies the system’s highest priority level that has an associated
PCB ready to run. This is because the system’s currently running
process is always the highest priority process that is capable of
running.

PPB contains Level B and PCBB, which specify the priority level and the
PCB address, respectively, of the next process to run when execution of
the current process terminates.
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Using PPA, PPB, and the Ready List
 

To show how PPA and PPB are used, suppose Process H is running when

Process J, whose priority is higher than that of Process H, needs to be

serviced. This means that Process J preempts Process H. The PXM

suspends Process H, saves the contents of PPA (which reference Process

H) in PPB, and then services Process J. When Process J completes, the

PXM checks PPB to see what process to run next. PPB identifies Process

H, and so the PXM resumes execution of Process H.

Except when bringing the system up from a cold start, software should

never alter the contents of PPA or PPB. This holds even if PCBA or

PCBB contains 0, indicating invalid register contents. Even if PCBA is

invalid, Level A specifies the highest level of priority that was

executing in the system, and this determines the starting point of a

scan to find the next process to run. When PCBA is invalid, PCBB is

guaranteed to be invalid. Note that PCBB is also invalid when the

system is idle.

Upon cold start, the cold start software loads the PPA register with

the highest level of priority in the ready list. At all other times,

however, Level A specifies the highest level of priority that was last

known to contain a process. All scans of the ready list can begin at

this last known level. Whenever the PXM needs to run a process of

higher priority than that specified in Level A, the PXM loads PPA with

that higher level.

The PXM does not maintain a pointer to the highest priority level of

the ready list. The ready list allocator that starts the PXM, however,

knows the starting address of the ready list. In addition, level A

always points to either the highest priority level currently in the

system, or the last known highest level. This means that Level A can

be a pointer into the ready list.

If PCBB is valid, Level B points to the next process to be executed

when the current process completes. The priority level of this next

process is lower than or equal to that of the currently executing

process. If PCBB is invalid, the contents of level B are

unpredictable.
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WAIT LISTS

Wait lists specify a group of processes that are waiting for an event
to occur. There are two major elements of each wait list:

@ A semaphore

e A data base made up of PCBs

Figure 9-2 and the text in the following section describe the
relationship between a semaphore and the wait list PCBs.

Semaphores

Semaphores define an event, such as the completion of a task. The
definition of the semaphore is known by at least two processes, or by
one process and phantom interrupt code. Upon completion of the event,
a NOTIFY instruction changes the value of the semaphore. This Change
in value may cause the PXM to run a new process.

A semaphore consists of two sequential 16-bit memory locations. The
first location contains a WAIT counter, C. If C is greater than zero,
then it specifies the number of PCBs on the associated wait list. If C
is negative, it specifies the number of times the event has occurred
without running a process.

The second location contains the address of the first PCB awaiting
completion of the specified event. Since all PCBs are contained in
Segment OWNERH, a 16-bit pointer is all that is needed to identify a
Specific PCB.

Semaphores can reside anywhere in memory but segment 0.

Wait List Data Base
 

Each wait list has associated with it a linked list of PCBs. The
processes represented by the PCBs all share the same semaphore; this
means that they are all waiting for the same event to occur.

The PCBs in a wait list need not have the same level of priority, since
the wait list uses a priority-based queuing algorithm. This means that
processes with higher priorities are queued ahead of those with lower
priorities.
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PXM INSTRUCTIONS
 

The two notify instructions, NFYE and NFYB, and the wait instruction,
WAIT, are restricted instructions. Therefore, they must be executed in
Ring 0. All three instructions are 48 bits long: bits 1 to 16 contain
an instruction code, and bits 17 to 48 contain a 32-bit address pointer
to a semaphore.

The WAIT Instruction
 

Figures 9-3 and 94 show the actions of the WAIT instruction.

As the name indicates, WAIT signals the PXM to wait for an event before
executing any more of the currently running process. When WAIT
executes, the processor uses the address pointer contained in the
instruction to reference a particular semaphore. The processor
increments the counter contained in the addressed Semaphore, then looks
at the result.

If the result is less than or equal to 0, there are no other processes
waiting for the event defined by the semaphore. In this case, the
currently executing process can continue.

If the result is greater than 0, either the expected result has not
occurred, or the desired resource is not available. The processor
stops executing the current process, removes the associated PCB from
the ready list, and places the PCB on the wait list associated with the
Semaphore. The PCB’s priority level dictates where on the wait list
the PCB should go. If the wait list already contains PCBs with the
Same priority level, the new PCB is placed after the ones already
there.

A semaphore overflow fault occurs if the result is greater than +32767.
See Chapter 10 for details. This fault does not occur, however, for
the earlier processors listed on page 1-1.

Note

The processor saves only the contents of the keys, base
registers, program counter, and the interval timer (down to the
microsecond) when it adds a PCB to the wait list. It does not
Save the contents of the general registers or floating
registers. After this short save the processor makes the
register set used by the exchanged process available to the
next process to run. For this reason, never assume that the
contents of the general registers after a WAIT instruction
executes are the same as they were before WAIT executed.
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The NOTIFY Instructions
 

Figure 9-5 shows the actions of NOTIFY.

The two notify instructions, NFYE and NFYB, perform the same sequence
of events. They differ only in the queuing algorithm used: NFYE
queues PCBs at the end of the appropriate ready list priority level,
While NFYB queues PCBs at the beginning of the appropriate priority
level. In the discussion that follows, NOTIFY encompasses the
Operation of both instructions.

NOTIFY signals the PXM that some awaited event has occurred. when
NOTIFY executes, the processor uses the address pointer contained in
the instruction to reference a semaphore. The processor decrements the
counter contained in the semaphore by 1 and checks the result.

If the result is less than 0, no process is waiting for this event, so
the processor continues the currently executing process. If the result
is less than -32768, a semaphore undeflow fault occurs. This fault,
however, does not occur for the earlier processors listed on page 1-1.

If the result is greater than or equal to 0, the processor removes the
PCB at the head of the specified wait list and places it on the ready
list. If the process associated with the PCB moved to the ready list
has a higher level of priority than that of the currently executing
process, the processor will preempt the current one. However, it does
not remove the current process’ PCB from the ready list. In addition,
the processor saves the contents of the preempted process’ registers
before starting to execute the new process.

As the above explanation shows, NOTIFY does not always interrupt the
currently executing procedure. However, it does always make a change
in the specified semaphore.
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DISPATCHER

The operations performed by the PXM are mostly governed by the

dispatcher. This microcoded routine is responsible for:

@ Deciding which process to run next

e Assigning that process a register set

@ Managing the register file, including saves and restores

e Turning the process timer on and off

The section Dispatcher Operation below describes the details of the

dispatcher’s actions.

REGISTER FILES

The number of register files varies according to the processor as shown

below.

e For 6350 and 9750 to 9955 IT: 8 register files

e For 2350 to 2755, 9650, and 9655: 11 register files

Each register file contains 32 32-bit registers that each have a high

half and a low half. Tables 9-2 and 9-3 show the allocation of the

register files and the absolute memory locations each occupies.

(Appendix B discusses the register files of the earlier systems listed

on page 1-1.)

Table 9-2
Register File Allocation for 6350 and 9750 to 9955 IT

 

Register File | Absolute Locs | Use
 

RFO 0 to ‘37 Microcode scratch and system
registers (set 1)

RF1 ‘40 to ‘77 32 DMA channels
‘100 to ‘137

| |

| |

i | |

| | | |

| | | |

| RF2 | | User register set 2 |
| RFS | ‘140 to ‘177 | User register set 35 |
| | | |

| | | |

| | | |

| | | |

| | |

RF4 ‘200 to 237 User register set 4
RFS ‘240 to ‘277 User register set 5
RFG ‘S00 to ‘337 Microcode scratch and system

registers (set 2)
RE? M0 to ‘S77 Spare register set
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The four user register sets listed in this table are called
user register sets 2 to 5 to correspond with their register
file numbers RF2 to RF5.

For

Table 9-3

Register File Allocation
the 2350 to 2755, 9650, and 9655

 

Register File | Absolute Locs| Use
 

RFO

|
|

|
| RF1
| RF2
| RFS
| RF4
| RFS
| RF6
| RF?
| RF8
| RFQ
|

|
RF10

0 to

‘40 to
‘100 to
‘140 to

‘200 to
‘240 to

—_—— *

‘3? |

|
‘ 77 |

‘137 |
‘17? |
‘207 |
‘arr
‘S37 |
‘OV? |
‘457 |
‘a7? |

|

|

Microcode scratch and system
registers (set 1)

oe DMA channels
User

User

User

User

User

User

User

User

Microcode scratch and system

register
register
register
register
register
register
register
register

set
set
set
set
set
set
set

set O
A
N
O
A
I
A
W
W

registers (set 2)
 

*For system use only.

Note to Table 9-3
 

The eight user register sets in this table are called user
register sets 2 to 9 to correspond with their register file
numbers RF2 to RFQ.

User Register Files
 

Table 9-4 defines the register mnemonics used in the user register
sets.

and S modes.
Table 9-5 shows the format of a user register set for V, I, R,

All user register sets have the same structure.
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Table 9-4
User Register Set Mnemonics*

 

 

| Mnem | Name (1 Mnem | Name |
| |
| A | Accumulator |! FLR1 | Field length register 1 |
| B | Double-precision long || GRO | General register 0 |
| | accumulator extension.!! GR1 | General register 1 |
| DTARO | Descriptor table addressi!| GR2 | General register 2 |
| | register O. {| GR3 | General register 3 |
| DIAR1 | Descriptor table address!! GR4 | General register 4 |
| | register 1 (| GR5 =| General register 5
| DIAR2 | Descriptor table address!!! GR6 | General register 6 |
| | register 2 |\| GR | General register 7 |
| DTARS | Descriptor table address!! KEYS 1! Keys |
| | register 3. lt L | Double—precision |
| E | Accumulator extension I! | accumulator |
| | for MPL and DVL || LB | Link base register |
| FAC | Floating-point accumu- |! MODALS! Modals |
| | lator (R and V modes) || OWNER | PCB address of the |
| FACO | Floating-point LI | process that owns the |
| | accumulator O (I mode) | | register contents
| FAC] | Floating-point |! PB | Procedure base register |
| | accumulator 1 (I mode)ii § | Stack, alternate index |
| FADDR | Fault address register |! SB | Stack base register |
| FARO | Field address register Ol! xX | X index register |
| FARL | Field address register 11! XB | Auxiliary base register |
| FOODE | Fault code register a 4 | Y index register |
| FLRO | Field length register O |! | |
 

* An H appended to a register mnemonic refers to bits 1 to 16 of that
register; an L so appended refers to bits 17 to 32.
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User Register File Structure*

 

 

 

 

 

Reg | | | |
Num**! V Mode! I Model S, R Modes | Comments

O !--- |GRO | -—- |
1 | -—-- | GR1 | —-- |

2 141,A4,B | GR | A, B (1,2) | A occupies L bits 1 to 16;
| | | | B occupies L bits 17 to 32.

3 | E | GRS | -—-- |

4 1|--- | GRA | --- |
5 l1Y | GR5 1S (8) | § and Y are 16 bits long.
6 | --- | GR |! -- |
7 IX | GR | X (O) | X is 16 bits long.

‘10 to | FARO, | FARO, | ('13) | Discussed in the Floating-
‘ll | FLRO,! FLRO,!| | Point section in Chapter 6.

| | FACO | | Also, important cautions
‘12 to | FARI, | FAR1 | FAC | appear in the section

‘13 | FIR1,!| FIR1,! (4,5,6) | Overlap Between Floating-
| FAC | FACI | | point and Field Registers
| | | | of Chapter 9.

‘14 | FB | PB | PB | These are base registers
‘15 | SB | SB | SB ('14,‘15)! discussed in Chapter 3.
‘16 | LB | LB | LB ('16,‘17)| Their format appears in
‘17 | XB | XB | XB | Figure 3-1.
"20 | DIARS | DITARS | DTARS ('10) ! The format appears in Figure
‘21 | DTAR2 | DTAR2 | DTAR2 | 4-9. The segment group of
‘g2 | DIAR] | DIAR] | DTAR1 | each DIAR is as follows.
‘25 | DTARO | DTARO | DTARO | DIARO: Segs 0 to 10235

| | | | DIAR1: Segs 1024 to 2047
| | | DIAR2: Segs 2048 to 3071
| | | | DIARS: Segs 3072 to 4095

‘24 | KEYS, | KEYS, | KEYS, | The keys occupy bits 1 to 16;
| MODALS! MODALS!| MODALS | the modals occupy bits 17
| | | | to 32. The keys format
| | | | appears in Figures 5-3 and
| | | | 5-4. The modals format
| | | | appears in Figure 5-2.

‘25 | OWNER | OWNER | OWNER | Discussed in Chapter 9.
‘26 | FCODE | FOODE | FOODE (11) |! Discussed in the Fault
‘ea’ | FADOR,! FADDR | FADOR ('12) | section of Chapter 10.
‘S30 | TIMER | TIMER | TIMER | Discussed in the Process

| | | | Interval Timer section
| | | | later in Chapter 9.

‘Sl to} -—- | -- | -- |
‘ST | | |
 

* All registers are 32 bits long unless otherwise indicated. Numbers
in parentheses represent address traps listed in Table 3-13.

** Register number within a user register file.
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The ‘25th location in each user register set specifies OWNER, the
address of the PCB associated with the process that owns the register
set. Bits 1 to 16 of OWNER specify OWNERH, the number of the segment
containing the ready list and the PCBs. Make sure that OWNERH contains
the proper value in all user register sets before entering process
exchange mode.

 

 

Overlap Between Floating-point and Field Registers
 

Floating-point accumulators and field registers occupy the same
locations in user register files, as noted in Chapter 6. The precise
degree of overlap varies among the 50 Series processors since the
16-bit exponent of the floating-point accumulator can be in one of
several places. The guaranteed overlap between the floating-point and
field registers is limited to only the following: field register O and
floating-point accumulator O occupy RF2 ‘110, ‘111; field register 1
and floating-point accumlator 1 occupy RF2 ‘112, ‘113. (These
registers occupy similar locations in RF3 through RF9.)

In addition, some processor models (such as the earlier processors 750
and 850) store the floating-point accumulator and the field registers
in separate places. Due to this situation, special tracking hardware
enforces the following guarantees for all 50 Series processors.

@ Floating-point accumulators 0 and 1 are handled independently.
Changes to one do not affect the state of the other.

e Any floating-point update sets the register acted upon to the
floating-point type.

e Any field update sets the register acted upon to the field type.

@ Type-specific stores save from only their type of accumlators.
For example, FST looks always to the floating-point storage.

@ Type-independent operations take information from the most
recently used register type. Examples: LDLR, RSAV, process
exchange register Save.

@ Type-independent operations place information into both types of
registers. Examples: STLR, RRST, PX register restore.

The consequences of these guarantees for all 50 Series processors are:

e@ ADFST following an EAFA may or may not store the EAFA
information, depending on an intervening interrupt. (Information
is captured if an interrupt occurs. )

e Using anything to save these registers is guaranteed under only
the following two circumstances.
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- Only one type is used. Examples: DFLD, DFST; EAFA, STFA.

or

— Type-independent instructions are used for the save.
Examples: LDOLR or RSAV.

IMA Channel Register File
 

The DMA register file, RF1, contains 32 channel registers. Table 96
shows the format of this register file.

Table 9-46
DMA Register File (RF1) Format

 

 

| Iloe | Contents |! Loe | Contents |

| |

| ‘40 | DMA cell OO |! ‘60 |! DMA cell 20 |
| '41 | DMA cell O11! ‘61 =| DMA cell 21 |
| ‘42 | DMA cell 02 || ‘62 | DMA cell 22 |
| '43 | DMA cell 03 |! ‘63 | DMA cell 23 |
| ‘44 | DMA cell 04 |! '& | DMA cell 24 |
| ‘45 | DMA cell 05 1! ‘65 | DMA cell 25 |
| ‘46 | DMA cell 06 1! ‘66 | DMA cell 26 |
| ‘47 | DMA cell O07 || ‘67 | DMA cell 27 |
| ‘50 | DMA cell 10 1! ‘70 | DMA cell 30!
| ‘51 | DMA cell 1111 ‘71 =| DMA cell 31 |
| ‘52 | DMA cell 121! ‘72 =| DMA cell 22 |
| ‘53 | DMA cell 131! ‘73 | DMA cell 33 |
| '54 | DMA cell 14 11 ‘74 =| DMA cell & |
| ‘65 | DMA cell 15 || ‘75 | DMA cell 35 |
| ‘56 | DMA cell 16 1! ‘76 | DMA cell @ |
| ‘57% | DMA cell 17 |! ‘77 | DMA cell 37 |
 

Directly Addressing a Register Set
 

To address the register file directly, you must use the LDIR/STIR
instructions. For more information, refer to the descriptions of LDIR
and STIR in the Instruction Sets Guide. Some register set locations
can be addressed as memory locations in some addressing modes as well.
See the Address Traps section in Chapter 3 for more information on this
topic.
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Microcode Register Files
 

RFO, RF6, and RF1O are reserved for microcode use. These registers can
hold temporary data, control information, or other such items for the
microcode to use. Some are defined for microdiagnostic use.
9-7 through 9-10 define the microcode register files.

processors listed on page 1-1.)

Table 9-7

Microcode Register File Set 1, RFO,
For the 6350 and 9750 to 9955 IT

(See Appendix B
for a definition of the microcode register file for the earlier

 

 

| Loe | Contents 11 Loc | Contents

|

| O | TRO || ‘20 | RMASAVE

| 1 | TRI 11 ‘21 | —-—
| 2 | TR2 || ‘22 1 PARREG1
| 3 | TRd || ‘23 | PARREG2
| 4 | TR4 || ‘24 | DSWPARITYe2*
| 5 | TRS || ‘25 | PBSAVE
| 6 | TR6 |! ‘26 | SYSREG1
| 7 | TR? (| ‘2% | DSWPARITY
| ‘10 | FROS2, TR8 11 ‘30 | PSWPB
| ‘11 | TRO || ‘31 | PSWKEYS
| ‘12 | FR132, TR1O 11 ‘82 | PLA, PPA
| ‘13 | TRIl 11 ‘33 | PLB, PPB
| ‘14 | RBOIV, UCSADDOR!! ‘34 | DSWRMA
| ‘15 | RDSAVE |i ‘385 | DSWSTAT
| ‘16 | CFFOO, COOFF |! ‘36 | DSWPB
| ‘1% | RATMP 11 ‘387 | RSAVPTR
 

* For the 9750 to 9955 II, location ‘24 contains PARREGS.
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Table 9-8

Microcode Register File Set 2, RF6,
For the 6350, and 9750 to 9955 II

 

 

Loc | Contents || Loe | Contents

‘300 | DGRO/STLBRF1 |! ‘316 | C800008 (6350); DGRI16
‘301 | DGR1/STLBRF2 |! ‘317 | DGR17
‘302 | DGR2/RDOMX1 |! ‘320 | MINUS1
‘303 | DGR3/RDMK2 |! ‘321 | ONE32
‘304 | DGR4/RDMX3 || ‘322 | IUART, KMASK
‘305 | DGRS5/MINKBUF1 || ‘323 | C3FF, C3F
‘306 | DGR6/MINKBUF2 (6350); 11 ‘324 | C8000

| RSSAV (9955, 9955 IIT) |! ‘325 | CODOD, CBOBOL
‘307 | DGR? 11 ‘326 | C9C00, C0080
‘310 | DGR10O |! ‘327 | CB1EO, PICSTAT (6350)
‘311 | DGR1l || ‘830 | C6666
‘312 | ISDIAGRF (6350); || ‘331 | ClOK, ACK2

|  DGRI12 (see note) |! ‘332 | DP6 (6350); FERRETG
‘S13 | MCDIAGRF (6350); || ‘333 | DP5 (6350); FERRETS

| FF8O (9955, 9955 II); || ‘334 | DP4 (6350): FERRET4
|  DGR13 (975x) || ‘335 | DPS (6350); FERRETS

‘S14 | MCTEMP] (6350); DGR14 || ‘336 | DP2 (6350): FERRET2
‘315 | MCTEMP2 (6350); DGRI5 |! ‘337 | DPl (6350); FERRET1
 

Notes to Table 9-8
 

For the 9955 and 9955 II, location ‘312 is nonzero when a
recoverable machine check has occurred. In this case, the
value and meaning of bits 29 to 32 of ‘312 are the same as
those in bits 29 to 32 of the DSWPARITY for the 9955 and 9955
II. (Chapter 10 discusses the recoverable machine check as
well as the DSWPARITY.) The meanings of bits 29 to 32 are as

 

follows.

Bits Meaning

29 If 1, the S unit detected an error.

Bits 30 to 32 describe the error.

30 to 32 For the 9955 and 9955 II only:

000: no error

001: LPID out of STLB in error
010: LBPA out of STLB in error
O11: LBVA out of STLB in error
100: ARR out of STLB in error

101: cache index
110: cache data high side
111: cache data low side
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Table
Microcode Register File Set 1, RFO,

9-9
for the 2350 to 2755, 9650, 9655

 

 

 

| Ioe | Contents |! Loe ! Contents |

| |
| O ji TRO [| ‘20 | ONES2 |
| 1 | TRi 1! ‘21 | PBSAVE |
| 2 | TR2 || ‘22 | RDMXS |
| & | TR || ‘23 | RDMX4 |
| 4 | TR4 \| ‘24 | C377 |
| 5 | TRS || ‘25 | MINUS1 |
| 6 | TRE || ‘26 | LREGSET,CHKREG |

7 | TR7 || ‘27 | DSWPARITY |
| ‘10 | RDMX1 || ‘30 | PSWPB |
| ‘11 | RDMX2 || ‘31 | PSWKEYS |
| ‘12 1 USCADDR, REOIV |! ‘32 | PPA |
| ‘13 | RSGTl || ‘33 | PPB |
| ‘14 | RSGT2 || ‘34 | DSWRMA |
| ‘15 | RECO] 11 ‘35 | DSWSTAT |
| ‘16 | RECC2 {| ‘36 | DSWPB |
| ‘1% | TEMPCAC i! ‘3% | RSAVPTR |

Table 9-10
Microcode Register File Set 2, RF10, for the 2350 to 2755, 9650, 9655

 

 

| Loc | Contents |! Loe | Contents
| |
| ‘500 | DECOO || ‘521 1 ADRREG2 |
| ‘501 | DECOI] || ‘522 | ADRREG |
| ‘502 | DECO2 || ‘583 | LIGHTS, INIVEC |
| ‘503 | DECOS || ‘524 | QPTR, BYTFLG |
| ‘504 | DECO4 (1 ‘525 | WSLFLG |
| ‘505 | DECOS || ‘526 | RDMX5; SCR26 (2755 only) |
| ‘506 | DECO6 11 ‘527 | UMASK1, SCR27L; |
| ‘507 | DECO? 1 | |  $CRev (2755 only) |
| ’§10 | DEC1O 11 ‘530 | UMASK2, SCR3OL; |
| ‘511 | RECCS 1 | SCR&3O (2755 only) |
| ‘512 | TMRSAVE || ‘531 | URDRXH, SCR31L; |
| '513 | CTRLBYTE, QFDIDK; || | SCR31 (2755 only) |
| | $CR13 (2755 only) || ‘532 | BFRO4 |
| ‘514 | CMDBYTE, SCRI14L; || ‘533 | DSSW |
| | SCR14 (2755 only) || ‘534 | RSTLB1L |
| ‘515 | EXP32 || ‘535 | RSTLB2 |
| ‘516 | SSN; RDMX5 (2755 only) 1/1! ‘536 | RSTLBS |
| ‘517 | SWITCHES, PICSTAT || ‘537 | RSTLB4 |
i ‘S20 | WWADTR; IDREG (2755 yi |
   

Second Edition 9-24



PROCESS EXCHANGE

PROCESS INTERVAL TIMER 

The process interval timer is a 48-bit number that represents the time
that has passed since this process began executing (or, for system
processes, the time since cold start). The timer represents time in
units of 1.024 milliseconds. Bits 1 to 42 of the timer represent the
time; bits 43 to 48 are reserved for future use.

Four PCB locations contain timer information; the TIMER register is in
the User Register File at relative location ‘30. Table 9-11 describes
the PCB locations and their contents.

Table 9-11

Timer Control Information

 

| PCB Loc | Name | Contents
 

‘10 to ‘11 Elapsed Timer | Total time used by this process in
| units of 1.024 msecs.

Interval Timer ! Copy of TIMERH from location ‘30 in
High | the current register set. This

| value is the two's complement of
| the number of 1.024 msec intervals
| left before the end of the time
| Slice.

Interval Timer | Bits 1 to 10 contain a copy of TIMERL
|
|
|
|
|

‘16

‘17
Low from location ‘30 in the current

register set. This value is the
amount of process time used in
units of one usec. Bits 11 to 16

|
|
|

|
|
|
|
|
|
|
|
|
| are reserved.
 

Timers are accurate to the microsecond. (For some earlier processors
listed on page 1-1, however, timers are accurate to the millisecond;
see Appendix B.) The process timer represents the amount of time that
has passed in the current timeslice. The interval timer contained in
the register file locations represents the amount of time remaining in
this timeslice. Figure 9-6 shows how to use these two values to
calculate the time that has passed since the last reset.
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IDL E:T /* load L with value of ET
STL SET /* save the current value of ET at location SET
LDA RESET /* load A with the reset value
RTS /* reset the timeslice

|
|
|
|

IMA CURRTS §£/* save the reset value in CURRTS, load A with |
/* previous reset value |

RESET /* find difference between new, old reset values |
|

|
|
|

TCA /* form two's complement of contents of A
PIDA /* position for addition
ADL E:T /* add difference of reset values to contents of ET
SBL SET /* gubtract old value of ET from contents of L

/* L now specifies the time that has passed since
/* the last timer reset.~

g
p
a
a
e
e
a
u
a
e

 

Microsecond Timer Example
Figure 96

Two instructions, RTS and STIM, manipulate the process timer. Table
9-12 describes these instructions. (See Appendix B for a discussion of
RTS, STIM, and the earlier processors listed on page 1-1.)

Table 9-12

Process Timer Instructions

 

 

Mnem | Name | Modes | Description |
|

RTS Reset | V,I | Adds the contents of A, the interval!
Timeslice timer, and the elapsed timer and| |

| gtores the result in the elapsed |
| timer. Loads the contents of A |
| into the interval timer. |
| |

V,I | Stores the contents of the process |
| timer into memory. |
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DISPATCHER OPERATION
 

As mentioned earlier, the dispatcher governs most of the actions of the
PXM. These can be divided into the following steps:

l. Turning off the process interval timer

e. Choosing a process to run

&. Selecting a user register set for that process

4. Turning the process interval timer back on

The paragraphs below elaborate on each of these steps.

Step 1. Turning off the Process Interval Timer
 

AS soon as the dispatcher begins to execute, it turns off the process
interval timer. This timer is located in bits 1 to 26 of location ‘30
in the current register set. (See Appendix B for this timer’s location
in the earlier systems listed on page 1-1.) It contains a negative
number specifying the amount of time left in the current time slice.
On each tick, this negative value is incremented by 1; when the
incremented value reaches 0, bit 16 of the PCB's abort flags is set to
1. When a process is dispatched and bit 16 of the abort flags in its
PCB is set to 1, a process fault is taken. The abort is only effective
after a process is stopped. This stoppage must be guaranteed by some
high priority, high frequency process usurping the machine. In PRIMOS,
the clock process (and frontstop on multi-stream processors) perform
this function.

Step 2. Choosing the Next Process to Run
 

PCBA, contained in PPA, holds information about which process the
dispatcher should dispatch next. When the dispatcher is first
activated, it checks PCBA; if PCBA contains a nonzero value, it
specifies a valid PCB and the dispatcher will dispatch the associated
process.

If PCBA contains zero, it is invalid and the dispatcher checks PPB for
a@ nonzero value. If PPB is valid, the dispatcher will dispatch that
associated process.

If PPB is invalid, the dispatcher must scan the ready list for the PCB
of the next process to dispatch. The scan begins at the level
Specified by Level Ain PPA. If the dispatcher finds a PCB, it changes
level A to reflect the level of the found PCB and dispatches that
process next. If it finds no PCB, the ready list is empty and the
dispatcher idles.
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Step 3. Manipulating User Register Sets
 

Once the dispatcher has identified the next process to dispatch, it
must allocate a user register set to the process. Since there are only
a finite number of register sets, the dispatcher may have to swap one
register set for another; the new process will require a register set
other than that used by the last process. Figure 97 shows the
allocation algorithm that the dispatcher uses for all systems but the
earlier processors listed on page 1-1. The text in this section
elaborates on the figure. (Appendix B presents the allocation
algorithm for these earlier systems. )

The dispatcher first checks whether the process to be dispatched owns
the current register set. It looks at the contents of bits 17 to 32 of
OWNER (location ‘25 in the current register file). These specify the
address of the PCB whose associated process owns that register set. If
OWNERL specifies the address of the PCB associated with the next
process to run, then this process owns the current register set. The
dispatcher makes no changes in the current register set before
dispatching the next process.

If OWNERL specifies the address of some other PCB, the next process to
be dispatched does not own the current register set.

The dispatcher reads the contents of offset 5 in the PCB associated
with the next process to run to find the number of the register set
this process used last. The dispatcher checks OWNER in the register
set specified by PCB offset 5 to see if the next process to run owns
this register set. If it does, the dispatcher must make this register
set the current one. If the next process to run does not own the last
register set it used, the dispatcher must choose one for it. It
increments the number of the current register set by 1 (modulo 4 for
the 6350 and 9750 to 9955 II, and modulo 8 for the 23550 to 2755, 9650,
and 9655) to form the number of the new register set, then makes this
register set the current one.

3A. The Save Done Bit: In the case where the process does not own the
current register set, the dispatcher must load the values of the new
process' registers into the current register set. Before it can do
this, it must determine whether it must save the old contents of the
current register set. Bit 16 of the keys contains the Save Done bit.
If this bit contains a 0, the dispatcher must save the old contents of
the current register set before restoring the new process to run.
After the save, the dispatcher loads the new data into the current
register set, resets bits 15 and 16 of the keys (the In Dispatcher bit
and the Save Done bit) to 0, and loads the program counter with the
contents of PB.
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If the Save Done bit contains a1, the old contents of the current
register set have been saved in the PCB and register file memory
locations, so no further save needs to be done before the new data is
loaded. After loading the registers, the dispatcher resets bits 15 and
16 of the keys and loads the program counter from PB.

3B. Saving the Current Register Set: When the dispatcher must save
the current register set before loading in new data, it saves only the
registers that contain nonzero values. The contents of these nonzero
registers are packed together and loaded into the save area. The save
mask determines which registers have had their contents saved and the
exact location of those contents in the PCB.

 

Only the currently active register set contains valid information in
the modals field. Whenever the processor switches register sets, the
microcode automatically copies the contents of the current modals field
into the new register set.

Step 4. Turning On the Process Interval Timer
 

The last thing the dispatcher must do before dispatching a process is
to turn on the process interval timer. The dispatched process begins
execution immediately after.

FETCH CYCLE TRAPS
 

At various points during dispatcher execution, the processor checks for
fetch cycle traps, to allow the system to handle external interrupts.
For more information about this topic, refer to Chapter 10, INTERRUPIS,
FAULTS, CHECKS, AND TRAPS.

SUMMARY

This chapter described the actions that occur during process exchange
for all single-stream processors.
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Checks, and ‘Traps

Most of the time, the processor executes instructions contained in one
process, then goes on to those contained in another. At some point,
however, another part of the system may require service; when this
happens, the processor has to break the flow of control within the
currently running process and service whatever has interrupted. This
Chapter describes the types of breaks that can occur, and how the 50
Series processors service then.

BREAKS
 

Breaks in execution can be caused by four events:

@e An interrupt

e@ A fault

@ A check

e A trap

The first three types of events are breaks in software execution. The
last, the trap, is a break in microcode execution.
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The way in which the processor services a break depends on its type and
on the current process exchange mode of the machine. When the PXM is
disabled, the processor handles all software breaks in the same way.
Interrupts, checks, and faults all vector through a dedicated Sector 0

location to reach their handlers.

When the PXM is enabled, the processor handles each software break with
a different protocol. Table 10-1 defines the software breaks and
briefly describes the protocols that the machine uses to service them.

Microcode breaks are handled differently. When a trap occurs, it may
cause a software break, which the processor services to clear the
microcode break. If no software break is necessary, the processor
handles the microcode break in a fashion transparent to the currently
executing process.

Table 10-1
Summary of Software Breaks

 

Break | Definition | How Serviced
 

|
|

Interrupt The processor receives | The currently executing |
a signal from an | software does not usually |
external device | cause an interrupt. Code |
requiring service. | especially designed for the!

| purpose services the |
| interrupt outside the |
| context of the currently |
| executing process. |
| |

Fault The currently executing | The currently executing |
software requires | software usually handles a |
software intervention. | fault by mirroring a |

| procedure call to fault |
| code. This code services |
| the fault within the |
| context of the current |
| process. |
| |

Check The processor detects | As with interrupts, code |
an internal consis- | designed especially for |
tency problem requiring! the purpose services the |

|
|
|
|
|
|

software intervention, | check outside the context
such aS an integrity | of the currently executing
violation, a reference | process.
to a nonexistent memory!
module, or a power |
failure.
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INTERRUPTS

Interrupts take the form of external interrupts. As mentioned above,
actions depend on whether the PXM is enabled or disabled. (The earlier
processors listed on page 1-1 also have memory increment interrupts as
discussed in Appendix B. )

 

External Interrupts, PXM Disabled
 

If an external interrupt occurs when the PXM is disabled, the processor
uses the address specified by the controller (vectored interrupt mode)
to build a vector as described below. This vector points to the
interrupt response code (IRC).
 

The I/O bus address lines received by the CPU are interpreted and used
differently based on whether mapped I/O is enabled or not. (The
controller has no knowledge of which of these modes the CPU is
operating in or of the CPU type.)

The CPU reaches the IRC by performing an indirect JST through the
address that is calculated in the ways shown below.

When the CPU is not in mapped I/O mode, the processor forms bits 1 to
16 of the address from the contents of the location specified by 0
concatenated with BPA 99, 00, and 1to16. In this mode, the CPU reads
physical memory.

When the CPU is in mapped I/O mode, the processor forms bits 17 to 32
of the virtual address from the contents of the location specified by 0
concatenated with BPA 1 to 16. In this mode, the CPU reads Segment 0,
offset BPA 1 to 16.

Whether the CPU is in mapped I/O or not, the following rules apply. If
the address is 0, then a halt occurs and the program counter contains
the address that it had when the interrupt was processed. Otherwise,
the following actions occur in this order: bits 1 to 16 of the address
are Cleared; the contents of the program counter are saved at the
location specified by the 32-bit address; this address is incremented
by 1 and loaded in the program counter; interrupts are inhibited.
Note that the Segmentation Modal determines whether the program is in
physical memory or in Segment 0.

Interrupts are disabled when the IRC begins execution, but all other
keys and modals remain unchanged. In vectored mode, the IRC must clear
the active interrupt before reenabling interrupts. After the clear,
the IRC reenables interrupts, saves the current contents of any
register it intends to use, and completes the rest of its operation.
When it is done, it transfers control back to the location whose
address is contained in the first IRC location.
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External Interrupts, PXM Enabled
 

If an external interrupt occurs when the PXM is enabled, the processor
uses the address sent by the controller as a 16-bit offset into a

sepment as described below.

When PXM is enabled, the processor assumes that segmentation is also
enabled. The CPU forms the 32-bit address from 4 concatenated with BPA

1 to 16. (This is Segment 4, offset BPA 1 to 16.) The contents of the
program counter are saved in PSWPB, and the contents of the keys are
Saved in PSWKEYS. (PSWPB and PSWKEYS are the phantom code scratch
registers.) The microsecond timer is turned off, and the keys are set
to reflect 64V mode. Interrupts are inhibited, the program counter is
loaded with the 32-bit address. The IRC (called the immediate IRC, or
phantom interrupt code) begins to execute.
 

Phantom Interrupt Code: Phantom interrupt code gives the processor a

Chance either to perform a trivial task to service the interrupt, or,

as happens most often, merely to notify the real interrupt handler. It

is usually only a few instructions long. An example of what the

phantom interrupt code might look like is shown in Figure 10-1.

 

 

 

 

| | up the I/O bus, and
| i enable interrupts.

| Code Purpose | Code Sequence | Comments |
| |

| Perform trivial | STA address | Save A register. |
| task | EIO address | Read a 16-bit quantity |
| | | from a device. |
| | ABQ address | Add entry to the bottom |
| | | of a queue. |
| | LDA address | Restore A register. |
| | IRTC | Clear interrupt from I/O |
| | | bus, enable interrupts, |
| | | and return to normal |

| | | execution. |

| |
| Notify | INBC address | Notify a process, clean |

| |
| |
 

Sample Phantom Interrupt Code Sequences
Figure 10-1

Some restrictions govern phantom interrupt code. Since it has no PCB

that PPA can reference, it does not belong to a process. Also, phantom

interrupt code saves only PB and the keys. If another interrupt were
to occur before the phantom interrupt code completed service to a

previous interrupt, the contents of PSWPB and PSWKEYS would be
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overwritten, destroying information about the first interrupt.
Therefore, interrupts mst remain inhibited until the phantom interrupt
code completes. Furthermore, the microsecond timer is suspended during
phantom interrupt code, so the time spent in this code is not accounted
for.

Because of these restrictions, the phantom interrupt code can
completely service only very simple interrupts. If more complete
Service is required, the phantom interrupt code only turns off the
controller's interrupt mask, clears the currently active interrupt, and
notifies the process that will perform the action requested by the
interrupt.

Returning From an External Interrupt: When the IRC completes, it
issues either an interrupt return (IRIN, IRTC) if completely finished
or an interrupt notify CINEN, INEC, IN&N, INEC) to notify the real
interrupt handler. The IRIN restores the keys and PB with the saved
contents of PSWKEYS and PSWPB, respectively, and enables interrupts,
leaving the machine state as it was before the interrupt. (Restoring
the keys also restores the addressing mode to what it was before the
interrupt.) The interrupt notify (INOTIFY) instructions put the
machine back to the pre-interrupt state by reloading PB and the keys
from PSWPB and PSWKEYS, enabling interrupts, and executing the
appropriate notify instruction. This allows the process exchange
mechanism to work as if the phantom interrupt code did not happen,
returning to the code originally interrupted.

 

All phantom interrupt code sequences must clean up the I/O bus by
issuing a CAI signal before interrupts are reenabled. This can be done
by using IRTC, INEC, or MINEC instructions as appropriate.
Alternatively, a CAI can be issued in the IRC before exiting phantom
interrupt code through an IRIN, INEN, or INBN instruction as
appropriate.
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FAULTS

 

Faults occur when software tries to perform an action that cannot

complete without special help. Examples of faults are page faults

(where a reference is made to a page not currently loaded in physical
memory) and stack overflow or underflow. In all, there are twelve
classes of faults that can occur. Table 10-2 introduces these classes

and their subdivisions.

Table 10-2

Fault Classes

  

 

| Fault | 50 Series Systems

! RXM | Restrict mode violation

! Process ! Abort flags content does not equal O in PCB
| on dispatch

! Page : Page fault (page not in memory)

! SVC ! Supervisor call (superceded by direct entry calls)

! UIT ! Unimplemented instruction

! TLL ! Illegal instruction

! Semaphore* ! Semaphore overflow or underflow

! Access ! Violation of segment access rights

: Arithmetic ! All FLEX, DEX, and IEX (arithmetic exceptions)

! Stack ! Stack overflow/underflow

! segment ! 1: Segment number too big (SDT too short)
| 2: Missing segment (SDW fault bit set)

! Pointer ! Fault bit in pointer set

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

 

* Unavailable for the earlier systems listed on page 1-1.
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Fault Handler

The software routine that services faults is called the fault handler.
It is made up of two parts: a group of entrances (one entrance for
each type of fault) and a common fault routine. Whena fault occurs,
execution begins at the entrance for that fault type. The entrance
microcode sets up conditions applicable to the fault, then transfers
control to the common handler. This arrangement provides service for
several types of faults while avoiding the expense of many different
handlers.

There are four elements in the fault mechanism:

e Four fault vectors

e Four fault tables

@ The Call Fault Handler (CALF) instruction

@ The concealed stack

The microcode routine uses these four elements to convert faults into
procedure calls to the various service routines.

Fault Vectors

The fault vectors occupy locations ‘62 to '65 and '70 to ‘73 in the
PCB. Each vector contains the address of a fault table. (See Fault
Tables, below.) The format of the vectors is identical to that of a
é2-bit indirect pointer, as shown in Figure 3-3 in Chapter 3.
 

The vectors provide a choice of how to handle a particular fault. For
example, one process may need to have Ring O service a pointer fault,
while another process defines its own routines in the current ring to
do the service. Since the vectors are located in the process’ PCB,
different vectors can be specified for processes that need different
service. Table 10-3 describes the PCB locations that contain the
vectors.
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Table 10-3

PCB Fault Vector Locations

 

| PCB Loc | Contents
 

‘62 to ‘63 |Ring O fault vector
|
| |

| |

| ‘64 to ‘65 | Ring 1 fault vector
| |

| ‘70 to ‘71 | Ring 3 fault vector
| |

| ‘72 to '73 | Page fault fault vector
 

A separate vector is devoted to page faults, even though page faults

require Ring O service. This allows a system to specify a universal

page fault handler to handle all page faults that occur within the

system. If a system uses a universal page fault routine, make sure

that all page fault vectors for processes currently within the system

contain the address of this universal routine, rather than some other

Ring O routine.

When a fault occurs, the program counter is loaded with the fault

vector in the PCB, including the ring number. This means that fault

code is not automatically executed in either Ring O or the current

ring: the code in the fault tables may either weaken the ring or go

through a gate to strengthen the ring.

Fault Tables

Each fault vector points to a fault table. Each table contains 12

8-byte entries, each entry corresponding to one of the types of faults.

Table 10-4 lists information about the fault table. In this table, the

Offset column applies when process exchange is enabled; the Vector

location column applies when process exchange is disabled. FOODEH

(bits 1 to 16 of FOODE) and FADIR are in each user register file. The

Ring column shows the ring number at the time of the fault. The Saved.

PB colum tells whether or not the PB had to be backed up to the

instruction having the fault

The fault table for page faults must always be located in physical

memory. A page fault must never result in an unresolved chain of page

faults. For these reasons, the fault table for Ring 0 mst exist in a

defined segment. If it does not, it is possible to have an infinite

number of segment faults occurring recursively, since the Ring 0 fault

table for each fault never references a valid segment.
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Table 10-4

Fault Information

 

 

 

 

| Fault | Num | Offset | Vector | FOODEH | FADDR | Ring | Saved |
| | | | Loc | | | | PB |
| |
| RXM | O | OQ | ‘62 1 O | Addrl | Cur | Backed |
| Process oe 4 | ‘63 | ABFLAGS | --—- | O | Cur |
| Page | 2 !t ‘10 | ‘64 | 0 | Addr2 | O | Backed |
| SVC | & | ‘14 | ‘65 | 0 | -—— | Cur | Cur |
| UIT | 4 | ‘20 | ‘66 | Cur RPL | Addrl i Cur | Backed |
| Semaphore*| 5 | ‘24 | ‘67 |UnderflowiAddr of! O | Backed |
| | | | | $0; | Sema-— | | |
| | | | |Overflow | phore | ! |
| | | | |

=

$1 | | | |
| TLL | ‘10 | ‘40 | ‘72 | Cur RPL | Addrl | Cur | Backed |
| Access | ‘ll | ‘44 1 ‘73 1! QO | AddrS | O | Backed |!
| Arith. | ‘12 | ‘50 | ‘'%4 ISee Table! Addr4 | Cur | Cur |
| | | | | 10-10 | | | |
| Stack 1 ‘156 1 ‘54 | ‘75 | 0 | AddrsS | Cur | Backed |
| Segment |! ‘14! ‘60 {| ‘76 | DYAR: 1;1 Addr3 | O | Backed |
| | | | | SDW: 2 | | | |
| Pointer | ‘15 | ‘64 | ‘9% | PCL: | Pt Adr! Cur | Backed |
| | | | ‘100000; | | | |
| | | | |Else the | | | |
| | | thigh half! | | |
| | | | lof the | | | |
| | | | \faulting | | | |
| | | | lpointer | | | |

Notes to Table 10-4

* Unavailable for the earlier processors listed on page
1-1.

Addr 1: Find the effective address specified by the
instruction.

Addr 2: Virtual address pointing to the missing page. The low
order 9 bits of the address need not be the offset
used used by the reference causing the fault.

Addr 3: FADDOR contains the address generating the fault.

Addr 4: See Table 10-10.

Addr 5: Pointer to the last valid stack extension segment.
(Can be the root segment, offset 2.)
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The CALF Instruction
 

Each entry in the fault table can contain any type of instruction, but

usually the instruction is either a HLT or a CALF instruction. When

the entry contains a HLT, the machine stops every time the fault

corresponding to that entry occurs.

When the fault table entry contains a CALF instruction, the format of

the entry is as shown in Table 10-5. Bytes 3 to 6 of CALF contain a

pointer to the ECB of a fault routine. CALF uses this pointer to

transfer control to the fault routine as if the transfer were a normal

procedure call. The advantages of this are described in Servicing a

Fault, below.

Table 10-5

Format of Fault Table Entries

 

Byte | Contents
 

| CALF instruction. Bytes 5 to 6
| contain a pointer to the ECB
| of a software fault handler.

|
| Reserved.
 

CALF performs a normal procedure call where no arguments are expected

by the callee. If the callee’s ECB specifies arguments, then dummy

arguments are substituted and loaded into the stack frame. See Chapter

8 for information about dummy arguments.

The rest of this section describes how a fault is handled if the

associated fault vector contains a CALF instruction.

The Concealed Stack
 

When a fault occurs, the state of the system at the time of the fault

must be saved before the fault can be serviced. The processor uses the

concealed stack to save information about the system state at the time

of a fault.
 

Information is stored in the concealed stack in frames. Each frame

contains 12 bytes of information, as shown in Table 10-6.
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Table 10-6
Concealed Stack Frame Format

 

| Offset | Contents
 

|

: Otol! Program counter (segment +/offset) !

| ok | keys
| 3 : Fault code high (bits 1 to 16) |

: 4 to 5 | Fault address (segment #/offset) :
 

Six bytes of the PCB keep track of the concealed stack frames. These
bytes contain the addresses of the first, last and next available
frames in the concealed stack. Table 10-7 describes these locations.

Table 10-7
Contents of PCB Concealed Stack Locations

 

Loc |! Name | Description
 

they can go anywhere in segment OWNERH for all
other processors.

| |

| ‘74 | FIRST | Pointer to the first frame in the concealed stack. |

: '%5 ! NEXT | Pointer to the next frame to be used. !

: ‘6 : LAST : Pointer to the last frame in the concealed stack. |

! See ! ——— : Six 12-byte concealed stack frames that can go :
| dese | | anywhere in segment OWNERH + 1 for the 6350; !

| | |

 

The processor uses a separate stack for faults to Simplify handling
Chains of faults. Frequently the CALF instruction for one fault can
generate another fault, such as a segment fault, when it tries to call
the fault handler. The CALF for this fault may in turn cause another
fault, and so on. Instead of using the current segment’s stack to
contain the information about all of these faults, the concealed stack
is used. Since pointers to the concealed stack are located in the PCB,
the fault handler can easily access it, and there is no danger of using
data from anything other than a fault frame. (The architecture does
not support page faults when searching for a PCB or a concealed stack.)
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If a chain of faults occurs, the processor services them in reverse

order: the last fault to occur is the first to be serviced.

The concealed stack can accommodate a chain of up to n faults, (n = 6
in PRIMOS), one fault per concealed stack frame. Make sure that the

concealed stack contains enough frames to allow for the longest chain

of faults that can occur. Since the concealed stack is circular, if

one more fault occurs than there are concealed stack frames, the frame

for the latest fault will overwrite that of the first fault. For

example, suppose the concealed stack contains only four frames, and the

chain of faults that occurs is:

pointer (link) fault->segment fault->stack fault->segment—>page fault

The frame for the page fault overwrites that of the link fault frame.

The concealed stack no longer contains the proper information about the

link fault frame, so the link fault will never be serviced.

Servicing a Fault
 

As with interrupts, the type of fault service that the processor

performs depends on whether the PXM is enabled or not. If the PXM is

disabled, it handles all faults in the same way. It saves the contents

of the program counter into DSWPB, disables interrupts for one

instruction (if the fault is ultimately to be serviced by a Ring 0

handler only), and jumps indirectly (JST) through a fault vector to the

appropriate handler.

If the PXM is enabled, the processor must perform a more complex

routine:

1. Set up a concealed stack frame.

2. Change the addressing mode to 64V.

3. Select a fault vector.

4. Set PB so that it points to the proper fault table entry.

When a fault occurs, the processor identifies the fault’s type by

indexing into the fault table. (See Table 104.) After identifying

the type of fault, the processor uses NEXT to load the next available

concealed stack frame with information about the fault. It updates

NEXT to point to the next available frame, then sets the machine

addressing mode to 64V (if necessary), and references the appropriate
fault vector.

The fault vector contains the starting address of a fault table. The

processor adds the offset corresponding to the type of fault to this

starting address to form the address of a table entry. This entry
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contains a CALF instruction that points to the ECB of a fault routine.
If the fault is ultimately to be serviced by a Ring O fault handler,
interrupts are disabled for one instruction to allow the CALF
instruction to execute. If a handler in another ring is to service the
fault, no such interrupt disable occurs.

When the CALF instruction begins to execute, it allocates a stack frame
on the current segment 's stack and loads it with the information shown
in Table 10-8. CALF gets much of this information from the current
concealed stack frame.

After loading the concealed stack frame into the current segment’s new
procedure stack, CALF pops the most recent frame from the concealed
stack and sets the flag word to 1. Control is transferred to the
entrance specified in the ECB.

Table 10-8

Format of CALF Stack Frame

 

| Offset | Contents
 

|
|

| 0 | Flag bits. CALF sets this to 1. |
| | |
| 1 | Stack root segment number. |
| | |
| 2tos | Return pointer. This is the value |
| | of PB found in the current |
| | concealed stack frame. |
| | |
| 4to5 | SB. This value is unchanged. |
| | |
| 6 to? |! LB. This value is unchanged. |
| | |
| 8 | Keys. This is the value of the |
| | keys found in the current |
| | concealed stack frame. |
| | |
| 9 | Address of the location following |
| | the call. |
| | |
| 10 | Fault code. |
| | |
| 11 to 12 | Fault address. |
| | |
| 13 to 15 | Reserved. |
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When the handler completes, the PRIN instruction transfers control to

the location specified in offsets 2 to 3 in the current segment stack

frame. Offsets 2 to 3 contain the saved PB value shown in Table 10-4.

This value and the type of fault that occurred determine the actions of

the processor after it completes fault service. (For example, the

processor might retry the instruction that caused the fault.)

The ECB specified by the stack frame in the current segment’s stack

must not specify any arguments. It can bea gate or not.

Summary of Fault Classes
 

Table 10-4 listed the twelve types of faults. Table 10-9 briefly

describes what causes each type.
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Table 10-9
Summary of Fault Classes

 

r
e
e
n
n
e
e
e

e
a
e
e
e
a
a

 

Fault | Cause | Source of Fault |
|

RXM | Non-ring O process tries to exe- | Hardware: from |
| cute a restricted instruction | microcode |
| when restricted mode is enabled.!| independent |
| | action code. |

Process | Offset 4 in the PCB does not | Dispatch microcode |
| contain O upon dispatch. | test. |

Page | Reference made to page with | STLB update |
| missing bit reset to 0. This | microcode test. |
| usually indicates that the page | |
| is not in physical memory. |

UIT | Processor tries to execute an | Decode net or |
| instruction that is not | microcode branch.|
| implemented on this machine. | |

Semaphore* | A semaphore has either overflowed | NOTIFY or WAIT |
| due to many notifies, or has | microcode. |
|  underflowed due to too many | |
| waits. |

TLL | Processor tries to execute an | Decode net or |
| illegal instruction. | microcode branch.|

Access | Reference made to a segment with- | STLB update |
| out the proper access rights. | microcode test. |

Arithmetic | Integer, decimal, or floating- | If IEX, hardware; |
| point exceptions. | if not, explicit |
| | microcode test. |

Stack | Stack overflow or underflow has | PCL microcode. |
| occurred. | |

Segment | Either the specified segment | STLB update |
| number is too big, or the | microcode test. |
| segment is missing. | |

Pointer | The fault bit in the specified | IP processing in |
| | |
| | |

pointer is 1, indicating an
invalid pointer.

ARGT fetch
microcode.
 

* Unavailable for the earlier processors listed on page 1-1.
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Arithmetic Exceptions
 

The arithmetic exceptions (integer, floating-point, and decimal)
require more explanation than is given in Table 10-9. These three

exceptions determine what type of action occurs when an arithmetic

overflow, divide by zero, or other such condition exists. Three bits

in the keys select what action should occur:

e Bit 7 in the keys specifies the action that is to occur if a
floating-point exception occurs.

e Bit 8 determines the action that should follow an integer

exception.

e Bit ll determines the action that should follow a decimal

exception.

When any of these exceptions occur, the processor checks the value of

the corresponding bit in the keys. In the case of integer and decimal

exceptions, a O in the corresponding bit tells the processor only to

set CBIT to 1. When the corresponding bit in the keys contains a 1,

the processor not only sets CBIT to 1, but also loads three

registers -- FOODEH, FOODEL, and FADDR —- with appropriate values, and

services the fault.

The processor takes the same actions when a floating-point exception

occurs, except that when bit 7 in the keys contains a1, the processor

only sets CBIT to 1. When bit 7 contains a 0, the processor both sets

CBIT to 1 and services the exception.

FADDR, FCODEH, and FCODEL are located in the user register file. When

the processor loads these registers, FOODEL always contains a ‘50,

which indicates that an arithmetic fault has occurred. FOODEH contains

a code that identifies the specific exception that has occurred. FADIR

contains a pointer to the instruction that caused the exception, a

pointer to the address used by the faulting instruction, or 0. Table

10-10 lists the codes and the faults they indicate.

For the earlier processors listed on page 1-1, see Appendix B for the

actions taken when an integer overflow exception occurs.
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Table 10-10

Arithmetic Exception Codes

 

 

Data, Type | Exception Type | FOCODEH | FADDR |
|

Single | Exponent overflow | $100 | Address of faulting |
precision | | | instruction |
floating- |! Divide by 0 | $101 | Address of faulting |
point | | | instruction |

| Store exception on | $102 | Memory address used |
| FST instruction | | by FST |
| INT exception | $103 | Address of faulting |

| | instruction |
| Intrinsic function | $500 | Address of faulting |
| exception | | instruction |
| | | |

Double | Overflow or | $200 | Address of faulting |
precision | underflow | | instruction |
floating- | Divide by 0 | $201 ! Address of faulting |
point | | | instruction |

| Intrinsic function | $600 | Address of faulting |
| exception | | instruction |
| ] |

Integer | Integer overflow | $300 | 0 |
| Divide by 0 | $301 | Address of faulting |
| | | instruction |
| | | |

Decimal | Decimal overflow* | $700 | Address of faulting |
| | | instruction |
| Divide by 0 | $701 | Address of faulting |
| | | instruction |
| Conversion | $702 | Address of faulting |
| exception | | instruction |
| | |

Quad | Overflow or | $800 | Address of faulting |
precision ! underflow | | instruction |
floating- | Divide by 0 | $801 |! Address of faulting |
point | | | instruction |

| @INQ exception | $803 | Address of faulting |
| | instruction |
 

* See Appendix B for decimal overflow FCODEH contents for the
earlier processors listed on page 1-1.
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CHECKS

 

The last section described how problems in a process or procedure cause

faults. When problems arise with the state of the system itself, a

check occurs. These problems may not be visible to the currently

executing procedure, or they may be serious enough to terminate the

entire system’s operation. There are six types of checks:

e Power failure

e Memory parity error

@ Machine check

@ Recoverable machine check (6350, 9955, and 9955 II only)

e Missing memory module

® Environmental (2350 to 9955 II only)

The power supply for the system initiates a power failure check when AC

power fails. The check indicates that 20 milliseconds of DC power

remains before all power is gone.

The memory error checking logic issues a memory parity error check when

it detects a memory parity error or an uncorrected error correction

code (ECCU) error.

 

The CPU issues a machine check when it detects an internal parity error

or (for the 6350 only) a problem in the microcode. For the 6350, 9955,

and 9955 II only, the CPU issues a recoverable machine check when it

detects a recoverable parity error in the STLB or cache.
 

The MCU initiates a missing memory module check when a program tries to

access nonexistent physical memory.
 

Environmental sensors are supported only by the 2350 to 9955 II and

consist of a diagnostic/maintenance processor system that supports

inputs from the UPS (uninterruptable power supply) system and

environmental sensors. This system allows the processor to be brought

to an orderly shutdom in the event of such things as an

overtemperature or a main AC power loss with messages appearing on the

supervisor terminal.

Several types of environmental sensors are listed in Table 10-11. An

environmental sensor check uses the same check vector and DSWSTAT as

power failures, which are presented later in this chapter. In

addition, each environmental sensor that produced the check has its own

Check code as shown in Table 10-11. An environmental check code is

stored in register 26L (CHKREG), which is valid only after a processor

check has been issued. (All other checks store 0 in that register. )
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Table 10-11
Environmental Check Codes*

 

 

Environmental Check | Processors | Code

Power supply temperature 6350 $00
Processor board temperature 2350 to 9955 II $01
Maintenance processor temperature

|

2350, 2450, and 6350 $01
Ambient temperature 6350 $02

9650 to 9955 II

| |
| |
| |
| |

Cabinet temperature** | 2350 to 2755, and | $02
| |
| |
| |
| |

Air flow 2500 to 9955 II $04
UPS/Battery backup*** 2550 to 9955 II $08
Soft system shutdown request 2550, 2450, and 6350 $10
 

Notes to Table 10-11
 

* Environmental sensors are not supported by the earlier
processors listed on page 1-1.

** For the 6350, the function provided by the cabinet
temperature sensor is combined with the airflow sensor, and
the check code is $04.

*** Battery backup capability is supported only for the 6350.

Power Supply Overtemperature (6350): When an overtemperature condition
is detected on the power supply, the maintenance processor initiates an
immediate system powerdown that includes powering down the processor.

 

Processor Board Overtemperature: When an overtemperature condition is
detected on the processor board, the maintenance or diagnostic
processor initiates an immediate system powerdown that includes
powering down the processor.

 

Maintenance Processor Overtemperature (2350, 2450, 6350): When an
overtemperature condition is detected on the maintenance processor, the
maintenance processor initiates an immediate system powerdown that
includes powering down the processor.
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Ambient Overtemperature (6350): When the temperature of the air

surrounding the 6350 is too high, the maintenace processor initiates an

orderly system shutdown by sending the processor an environmental check

code that initiates the PRIMOS system shutdown. The maintenance

processor waits for a CPU halted message or for a specified timeout: 5

minutes for the 2350, 2450, and 6350; 10 minutes for the 2550 to 2755,

and the 9650 to 9955 IT.

Cabinet Overtemperature and Airflow Sensors: When the cabinet

temperature is too high or the airflow sensor detects a failure in the

cabinet blowers, the maintenace or diagnostic processor initiates an

orderly system shutdown by sending the processor an appropriate

environmental check code that initiates the PRIMOS system shutdown.

The diagnostic processor waits for a CPU halted message or for a

specified timeout (10 minutes for cabinet overtemperature, 1 minute for

air blower failure). If an air blower failure occurs while there is

more than 1 minute to timeout, the timeout is set to 1 minute.

Uninterruptable Power Supply (UPS) Support: The UPS uses two signals,

UPS active and UPS battery low. UPS active means that main AC power

has been interrupted. The low battery condition means that several

minutes remain before system power is lost.

 

When the UPS is powering the entire system, including peripherals, and

a battery low condition occurs, the diagnostic processor semis a

processor check to the CPU, and waits for a CPU halt or for up to 5

minutes before powering down the system.

When a UPS active condition occurs and the UPS is powering only the

CPU, memory, and diagnostic processor, the diagnostic processor sends a

power failure signal to the processor, causing the processor to log the

power failure condition and then halt.

Battery Backup Capability (6350): When the 63550 experiences a power

failure, its battery backup capability is able to supply power to the

memories, maintenance processor, and memory refresh logic of the CPU.

Soft System Shutdown Request (2350, 2450, 6350): When a user powers

down the processor without first shutting down PRIMOS, the maintenance

processor shuts down PRIMOS in an orderly manner.

Check Handler

Like the fault handler, the check handler is made up of a group of

entrances, one for each type of check, and a common check routine. To

service checks, it uses a check header, check vectors, a diagnostic

status word, and the MCM field of the modals.
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Check Header: The 50 Series processors use a 16-byte save area in
memory to contain information about the system. This check header is
located in segment 4 (the interrupt segment). Table 10-12 shows the
format of the check block.

Table 10-12
Check Header Format

 

| Offset | Contents
 

l
|

| PBH, PBL |

|
2to3 | KEYSH, KEYSL (modals)

|
| |Software code (possibly a JST instruction)
 

Check Vectors: Segment O locations starting at ‘200 can contain the
four check vectors. Check vectors are 16-bit indirect pointers with
the format shown in Figure 3-4. The 50 Series processors use these
vectors in check handling only when PXM mode is disabled.

Diagnostic Status Words: The 50 Series processors also use a group of
oe-bit registers called the diagnostic status words (DSWs). The check
handler uses the DSWs as a source of information about the system as it
was when the check occurred. The format of the each DSW register is
Shown in the following tables. (For the DSWPARITYs and DSWSTATs of the
earlier systems listed on page 1-1, see Appendix B.)

 

 

 

DSW Register System Table

DSWPARITY 6350 10-13
DSWPARITY2 6350 10-14
DSWPARITY 9750 to 9955 II 10-15
DSWPARITY 2050 to 2755, 9650, and 9655 10-16
DSWSTAT 6350 10-17
DSWSTAT 9750 to 9955 II 10-18
DSWSTAT 2050 to 2755, 9650, and 9655 10-19
DSWRMA All 50 Series 10-20
DSWPB All 50 Series 10-21
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Table 10-135
Format of DSWPARITY Register for the 63550

 

Bits | Name | Description |
 

I/O Parity
Error

|
|

| | If 1, the control store reported an I/O |

| | parity error. Sets bits 2 to 7 to |

| | specify the location of the error: |

| | Bit 2: BPD high side, left byte |

| | Bit 3: BPD high side, right byte |

| | Bit 4: If DSWPARITY bit 11 set tol, |

| | BPA high left byte |

| | If DSWSTAT bit 15 set tol, |

| | BPA high left byte or |

| BPD low left byte |

| | Otherwise, BPD low left byte |
| Bit 5: If DSWPARITY bit 11 set tol, |

| | BPA high right byte |

| | If DSWSTAT bit 15 set to l, |

| BPA high right byte or |

| | BPD low right byte |

| | Otherwise, BPD low right byte |

| | Bit 6: BPA, detected by PIOS board |

| | Bit 7: BPD, detected by PIOS board |

| 2to 7 | I/O Parity | Specifies the location of the I/O parity |

| | Error Code | error. See bit 1 above for details. |

| 8 to 10! RCC Parity | If DSWSTAT bit 12 is set to 1, these three!

| | Error Code | bits contain the ROC parity error code: |

| | 000: FROCPE!] |

| | | 001: FRCCPE2
| | 010: FROCPES |

| | | 011: FRCCPE4 |

| | | 100: FRCCPES |

| | | 101: FRCCPE6 |

| | | 110: FRCCPEY |

| | | 111: FROCPE8 |

| | Interrupt | If 1, the parity error occurred in an |

| | Parity Error | interrupt. |

| 12 | Decode Net High! If 1, the control store reported a parity |

| | Parity Error | error in the decode net's high side.

| |

| | |

| | |

| |
| | |

| | |

| | |

| | |
| | |

| | |

| |

13 Decode Net Low | If 1, the control store reported a parity

Parity Error | error in the decode net’s low side.

14 to 16! E Unit Parity Describes the E unit parity error status:|
Error Code | 000: no error

| 001: no error
| 010: BAH parity error
| O11: BAL parity error
| 100: BAE parity error
| 101: BBH parity error
| 110: BBL parity error
| 111: BBE parity error
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Table 10-13 (continued)
Format of DSWPARITY Register for the 6350

 

 

Unit-Reported |
Errors

|

|

|

|

|

|

error reported by the memory control
unit:

Bit
Bit
Bit
Bit
Bit
Bit

er:
28:

29:
30:

ol:

oe:

BB parity error
BD parity error
BIP in parity error
BIP out parity error
memory time out error
CIT error

| Bits | Name | Description |
|

| 17? =| Lost Memory | If 1, the memory control unit reported a |
| | Error | lost error. |
| 18 | Memory Address |! Specifies the address size of a slot in |

| Shift Control! the memory backplane: |
| | | O: 8-megabyte slot decode |
| | | 1: 16-megabyte slot decode |
|19 to 261 Memory Array | Al in any of these bits specifies the |
| | Error | memory array that reported the error: |

| | Bit 19: Memory array number 1 |
| | | Bit 20: Memory array number 2 |
| | | Bit 21: Memory array number 3 |
| | | Bit 22: Memory array number 4 |
| | | Bit 23: Memory array number 5 |

| | Bit 24: Memory array number 6 |
| | | Bit 25: Memory array number 7 |
| | | Bit 26: Memory array number 8 |
\27 to 321 Memory Control | A 1 in any of these bits specifies the
| | |
| | |
| | |
| | |
| | |
| | |
| |
| | |
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Table 10-14
Format of DSWPARITY2 Register for the 6350

 

Bits | Name Description
 

IS Unit-Reported
Memory Errors

Fatal Cache
Parity Error

Branch Cache
Recoverable
Error

IS Unit-Reported

Cache Parity

Errors

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

A 1 in any of these bits specifies the
error reported by the IS unit:

Bit 1: BOH left parity error
Bit 2: BDH right parity error
Bit 3: BDL left parity error
Bit 4: BDL right parity error

Currently unused.
If 1, the control store reported a fatal

cache parity error.
If 1, the control store reported a
branch cache recoverable error.

A 1 in any of these bits specifies the
cache parity error reported by the IS
unit:
Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

ll:

le:

13:

14:

15:

16:

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|

|

cache data parity error on |
Element B even data low byte |
cache data parity error on |
Element B odd data low byte |
cache data parity error on |
Element A even data low byte |
cache data parity error on |
Element A odd data low byte |
cache index parity error on |
Element B low byte |
cache index parity error on |
Element B high byte |

|

|
|
|

|
|

|

|

i

|
|

|

: cache data parity error on
Element A even data high byte

: cache data parity error on
Element A odd data high byte

: cache data parity error on
Element B even data high byte

: cache data parity error on
Element B odd data high byte

: cache index parity error on
Element A high byte

: cache index parity error on
Element A low byte
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Table 10-14 (continued)
Format of DSWPARITY2 Register for the 6350

 

| Bits | Name | Description |
| |
\25 to 32! IS Unit-Reported | A 1 in any of these bits specifies the |

| $§TLB Parity | S§TLB parity error reported by the IS |
Errors | unit: |

| Bit 23: STLB parity error on Element BI
| physical address low byte |
| Bit 24: STLB parity error on Element Al
| physical address low byte |
| Bit 25: STLB parity error on Element BI
| access bits |
| Bit 26: STLB parity error on Element BI

process ID |
| Bit 27: STLB parity error on Element BI
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

 

>
wo

lve
)

w

virtual address tag
Bit 28: STLB parity error on Element

physical address high byte
Bit 29: STLB parity error on Element

physical address high byte
Bit 30: STLB parity error on Element

access bits
Bit 31: STLB parity error on Element

process ID
Bit 32: STLB parity error on Element A

virtual address tag

>
bo

>
>

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

|

| |

| |

|

| |

| |
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Table 10-15
Format of DSWPARITY Register for the 9750 to 9955 IT

 

Bits | Name | Description
 

If 1, the control store detected an RCC
parity error. Sets bits 3 to 8 of
DSWPARITY to reflect the state of the
parity error:

Bits 3 to 5: encoding of RCC parity
error bits 1 to 8

Bit 6: logical OR of RCC parity

|
|
| | |
| | |
| | |
| | |
\ | |

| |
| | |
| | | bits 1 to 8
| | | Bit 7: RCC parity error bit 9
| | | Bit 8: O

2 | IOPER | If 1, the control store detected an I/O
| | | parity error. Sets bits 3 to 8 of
| | | DSWPARITY to reflect the state of
| | | the I/O parity error:
| | | Bit 3: error is in left byte of
| | | either BPA or BPD
| | | Bit 4: error is in right byte of
| | | either BPA or BPD
| | | Bit 5: CPU detected a parity error

| | on BPD
| | | Bit 6: CPU detected a parity error
| | | on BPA

| | | Bit 7: controller detected a parity
| error on BPD
| | | Bit 8: controller detected a parity
| | | error on BPA
| 3to 81 Parity Error | Specifies information about the RCC or
| | Code | I/O parity error that occurred. See
| | | bits 1 and 2 above for specifics.
| 9 | —— | Currently unused.
| 10 | BBH Left Byte | If 1, the El board detected a parity
| | Parity Error | error on BEH, left byte.
| 11 | BBH right Byte | If 1, the El board detected a parity
| | Parity Error | error on BEH, right byte.
| 12 | BBL Left Byte | If 1, the El board detected a parity

| Parity Error | error on BBL, left byte.

| 13 | BBL Right Byte | If 1, the El board detected a parity
| | Parity Error |! error on BBL, right byte.
| 14 | BAH Parity | If 1, the El board detected a parity
| | Error | error on BAH.

| 15 | BAL Parity | If 1, the El board detected a parity
| | Error | error on BAL.

| 16 | BAE Parity | If 1, the El board detected a parity
| | Error | error on BAE.
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Table 10-15 (continued)
Format of DSWPARITY Register for the 9750 to 9955 II

 

Bits | Name | Description
 

1? | BD Parity
Error

If 1, the memory control unit detected
@ parity error on BD. Sets bits 20 to
25 to reflect the error’s location.
Bit 20: BDH, left byte
Bit 21: BDH, right byte
Bit 22: BDL, left byte
Bit 23: BDL, right byte

If 1, the memory control unit detected a
latched memory data error. Sets bits
20 to 25 of DSWPARITY to reflect the
error’s location:

Bit 20: LMDH, left byte
Bit 21: LMDH, right byte
Bit 22: LMDL, left byte
Bit 235: LMDL, right byte

If 1, the memory control unit detected
a latched memory address error. Sets
bits 20 to 23 of DSWPARITY to reflect
the error’s location:

|
|
|
|
|
|
|

Memory Data |
|
|
|
|
|
|
|
|
|
|
|
| Bit 20: MCADDR, high byte

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parity Error

Memory Address
Parity Error

Bit 21: MCADDR, low byte
Bit 22: MCADDR, extended byte
Bit 23: unused

specifies information about the BD,
memory data, or memory address parity
error that occurred. See bits 17, 18,
and 19 above for specifics.

If 1, the memory control unit detected
an ECC uncorrectable error.

If 1, the I unit detected an error.
Bits 26 to 28 describe the error.

000: no error
QO1: currently unused
010: currently unused
Oll: decode net, right byte
100: decode net, left byte
101: base register file high
110: base register file low
lll: index register file

Parity Error
Code

MC ECCU

Error

I Unit Error

I Unit Error

Code

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
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Table 10-15 (continued)
Format of DSWPARITY Register for the 9750 to 9955 II

 

| Bits | Name | Description
|

| 29 | F or § Unit

| | Error*

130 to 32! F or § Unit

| | Error Bits*

 

| If 1, the F or S unit detected an error.
| Bits 30 to 32 describe the error.
| For the 9955 and 9955 ITI only:

| 000: no error
| 001: LPID out of STLB in error

| 010: LBPA out of STLB in error

| 011: LBVA out of STLB in error

| 100: ARR out of STLB in error

| 101: cache index
| 110: cache data high side
| 111: cache data low side
| For the 9750 to 9950 only:
| 000: PID or STLB control bits

| 001: LBPA out of STLB in error
010: cache index, right 16 bits

| O11: cache index, left 16 bits
| 100: cache data high side
| 101: cache data low side

110: LBVA out of STLB in error

| 111: branch cache parity error

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

i |

| |

i

| |

|

| |
 

*The F board for the 9955 and 9955 II; the S unit for the 9750 to 9950.
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Table 10-16

Format of DSWPARITY Register
For the 2350 to 2755, 9650, and 9655*

 

 

Bits | Name | Description

1 | Wide Word Mode | If 1, then the last memory operation
| | performed was wide word.

2 | Interleaved | If 1, then the last memory operation
| | error.

& | STLB | If 1, an STLB parity error occurred.
4 | Cache Index | If 1, a cache index parity error

| | occurred.
5 |! Cache Data | If 1, a cache data even parity error

| Even | occurred.
6 | Cache Data Odd | If 1, a cache data odd parity error

| | occurred.
7 | BMD B Board | If 1, a BMD backplane parity error

| | occurred.
8 | BPD B Board | If 1, a BPD backplane parity error

| | occurred.
9 | RFH Left Byte | If 1, an RFH left byte parity error

| | occurred.
10 =| RFH Right Byte | If 1, an RFH right byte parity error

| | occurred.
ll | RFL Left Byte | If 1, an RFL left byte parity error

| | occurred.
12 | RFL Right Byte | If 1, an RFL right byte parity error

| | occurred.
13 | RFH Late | If 1, an RFH parity error occurred

| | during the late cycle.
14 | RFL Late | If 1, an RFL parity error occurred

| | during the late cycle.
15 =| BMD or BPD | If 1, a BMD or BPD parity error occurred

| A-Board | as read onto the A-board.
16 =| BMA or BPA | If 1, a BMA or BPA parity error occurred

|  A-Board | as read onto the A-board.
17 ~=| ROM** | If 1, an RCM parity error occurred.
18 | BMA** | If 1, a BMA parity error occurred.
19 =| BPA** | If 1, a BMA parity error occurred.

20 to sl ----- | Reserved for future use.
 

* All parity errors mentioned in this table are single bit.

** Unused by the 2350 to 2655, 9650, and 9655.
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Table 10-17
Format of DSWSTAT Register for the 6350

 

Bits | Name | Description
   

w
H
m
O
w

r
e

©
©

“I
0
)

O1

ol

oe

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

i

Check Immediate |
Machine Check
Memory Parity
Missing Memory

Module

E Unit
IS Unit
CS Unit

MC Unit

ECCU

ECOG

RCM Parity

RPBU

DMx Operation

I/O Operation

ECC Syndrome
Bits

Memory Module
Number

RMA Invalid

Recoverable

Parity Error
Hard Parity

Error

Internal Error

Dual Config

Slave Error

If 1, the check was taken immediately.
If 1, a machine check occurred.
If 1, a memory parity error occurred.
If 1, a missing memory module caused the

check.
If 1, the E unit reported a parity error.
If 1, the IS unit reported a parity error.
If 1, the control store board reported a
parity error.

If 1, the memory controller unit reported
a parity error.

If bits 3 and 9 are both 1, the memory
parity error was ECC uncorrectable.

If bits 3 and 10 are both 1, the memory
parity error was ECC correctable.

Currently unused.
If 1, an RCM parity error was detected by
the control store board.

Specifies the RP backup count at the time
of the error.

If 1, a DMx transfer was in progress when
the error occurred.

If 1, an I/O operation was in progress
when the error occurred.

A memory parity error occurred as encoded
in these bits; see Table 10-27.

If a memory error occurred, this bit
identifies the interleaved memory module
with the error (bit 15 of address).

If 1, the contents of DSWRMA are invalid.
If 1, a recoverable parity error occurred
in the cache, STLB, or branch cache.

If bit 26 is 1 and this bit is alsol, a
recoverable hard parity error occurred.
There is a permanent error in hardware.

Chaammamnt Ter saniaana
Currently ULLUDTAL

If 1, the microcode detected an internal

error. DSWRMA has a code that indicates

the failing microcode algorithm.
If 1, a dual processor had both CPUs
running at the time of the error.

If bit 30 is 1 and this bit is also l,
the slave processor reported the error.

Specifies the memory buswath the error
(bit 14 of the address
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Table 10-18
Format of DSWSTAT Register for the 9750 to 9955 II

 

 

Bits | Name | Description

1 | Check Immediate! If 1, the check was taken immediately.
2 | Machine Check | If 1, a machine check occurred.
& | Memory Parity | If 1, a memory parity error caused

| | the check.
4 | Missing Memory | If 1, a missing memory module caused

| Module | the check.
5 | El Unit | If 1, the El board reported a parity

| | error.
6 ! Fors Unit* | If 1, the F or § unit reported a parity

| | error.
7 | I Unit | If 1, the I unit reported a parity error.
8 | MC Unit | If 1, the memory controller unit reported

| | a parity error.

9 | ECU | If bits 3 and 9 are both 1, the memory
| | parity error was ECC uncorrectable.

10 | ECC | If bits 3 and 10 are both 1, the memory
| | parity error was ECC correctable.

11 =| CS Unit | If 1, the control store board reported
| | @ parity error.

12 =| ROM Parity | If 1, an RCM parity error was detected
| | by the control store board.

13 to 14! RPBU | Specifies the RP backup count at the
| | time of the error.

15 =| DMx Operation | If 1, a DMx transfer was in progress
| | when the error occurred.

16 | I/O Operation | If 1, an I/O operation was in progress
| | when the error occurred.

17 to 23! ECC Syndrome | If a memory parity error occurred,
| Bits | these bits describe the error.

| See Table 10-28.
24 | Memory Module | If a memory error occurred, this bit

| Number | identifies the interleaved memory
| | module that contained the error (bit
| | 15 of address at time of error).

25 | RMA Invalid | If 1, the contents of DSWRMA are invalid.
26 | Recoverable | For the 9955 and 9955 II: Ifl,a

| Machine Check | recoverable machine check occurred.
| | For the 9750 to 9950, this bit is
| | currently unused.

ev to 32 ~—— | Currently unused.
 

* The F board for the 9955 and 9955 II;

the S unit for the 9750 to 9950.
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Table 10-12

Format of DSWSTAT Register
For the 2350 to 2755, 9650, and 9655

 

Bits | Name | Description
 

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
| 1 | Check Immediate|
| 2 | Machine Check
| & | Memory Parity
| |
| 4 | Missing Memory
| | Module
| 5 to 7 | Machine Check

| Code
| |
|
| |

|
| |

|
|
|

8 | NOT RCM
| |

9 | ECU
| |
| 10 =| ECC
| |
| 11 | BUP INV

|
112 to 14! RP BAK
| |

|
| 15 | DMx Operation
| |
| 16 =| I/O Operation

|
117 to 21! ECC Syndrome
| | Bits
| |
| 22 | Overall Parity
| |
| |
| 25 ---
| 24 | Memory Module
| | Number
| 25 | RMA Invalid
126 to 332i ---

|
|

If 1, the check was taken immediately. |
If 1, a machine check occurred. |
If 1, a memory parity error caused the |

check. |
If 1, a missing memory module error |

caused the check. |

The hardware detected the cause of the |
trap as follows: |

000: none |
001: BPD parity |
010: BMD parity |
O11: cache data |
100: BPA parity |
101: STLB parity |
110: BMA parity |
111: A-board parity |

If 1, the error did not occur in the |
control unit memory. |

If bits 3 and 9 are both 1, the memory |!
parity error was ECC uncorrectable. |

If bits 3 and 10 are both 1, the memory |
parity error was ECC correctable. |

If 1, the RP backup count in bits 12 to |
14 is invalid. |

Specifies the RP backup count, whichis |
the amount DSWPB was incremented in |
the current instruction. |

If 1, a DMx transfer was in progress
when the error occurred. |

If 1, an I/O operation was in progress |
when the error occurred. |

If a memory parity error occurred, these |
bits describe the error. Used with the!
the overall parity bit in Table 10-29. |

The value of this bit indicates the |
overall parity. Used with the ECC |
syndrone bits in Table 10-29. |

Currently unused. |
The low order address bit of the module |

indicated in error. |
If 1, the contents of DSWRMA are invalid.|
Currently unused. |
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INTERRUPTS, FAULTS, CHECKS, AND TRAPS

Format of the DSWRMA Register for All 50 Series Systems

 

| Bits

e
m

m
e
a
a

a
a
o
n
a
a
a
a
a

e
i

e
e

e
i
e
a

e
e

e
e
s
e
e

s
e

l
l
e
l

Description
 

1 to 32 This is the DSW memory address register. Its validity
and format are presented below.

Validity for All 50 Series:
 

Valid if an ECCC, ECCU, recoverable machine check (6350,
9955, and 9955 II only), or missing memory module
Check occurred.

Invalid if any other checks occurred, or if no check
occurred.

Format If Valid:
 

Note: In the event of multiple checks, DSWRMA is the
RMA of the missing memory module check if there is
one. If not, it is the RMA of the machine or ECC-
uncorrected check (they are mutually exclusive) if

If not, it is the RMA of the ECC-there is one.

corrected check.

For 6350, 9955, and 9955 II Only:
For a recoverable machine check, DSWRMA contains a
de-bit virtual address at the time of an STLB parity
error; when a soft cache parity error is reported,
DSWRMA is cleared to 0; for a hard cache parity error
(6350 only), DSWRMA contains the cache index address
that corresponds to the cache data with the error.
When an internal error is reported (6350 only), DSWRMA
contains a code for the microcode error. For all
other checks, DSWRMA bits 4 to 16 contain bits 1 to
13 of a physical address at the time of the error.
Bits 17 to 32 of DSWRMA contain 0.

For 9750 to 9950:

DSWRMA bits 4 to 16 contain bits 1 to 13 of a physical
address at the time of the error.

contain 0.

For Rest of 50 Series:

DSWRMA contains a 32-bit virtual address at the time

of the error.

Bits 17 to 32
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Table 10-21
Format of the DSWPB Register for All 50 Series Systems

 

Bits | Description
 

| Always valid. The format is the extended program
| counter (ring, segment, offset). In the event of
| multiple checks, DSWPB is the program counter of the
| missing memory module check, if there is one. If
| not, it is the program counter of the machine or ECC-
| uncorrected check (which are mutually exclusive) if
| there is one. If not, it is the program counter of
| the ECC-corrected check.
 

Each time the processor performs a check (except for power failure), it
sets particular register file locations to reflect the contents of the
DSW, as shown in Table 10-22.

Table 10-22

DSW Value After Checks

 

RF Location* | Contents
 

| |
| |

| ‘24 | DSWPARTITY2** |
| | |
| ‘20 | DSWPARITY* **
| | |

| ‘34 | DSWRMA |
| | |

| ‘35 | DSWSTAT |
| | |

| ‘36 | DSWPB |
| | |
 

* These are absolute locations in the register file.

** DSWPARITY2 is used only on the 6350.

x** For the earlier systems listed on page 1-1, DSWPARITY is
used only on the 750 and 850 as presented in Appendix B.

MCM Field: The 50 Series processors use the MCM b
oFthe modals to determine what kind of check reporting
10-23 shows the possible modes of reporting.
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Table 10-23
Modes of Check Reporting

 

 

6350, 9955, and 9955 II, recoverable machine
Checks. (This state is called noisy mode. )

| Modals Bits | |
| 15 and 16 | Reporting Mode |
| |
| 00 | No reporting. |
| | ; |
| Ol | Report uncorrected memory errors (ECCU) only. |
| | |
| 10 | Report fatal (ECCU, machine checks, and |
| | missing memory module) errors only. |
| | (This state is called quiet mode.) |
| | |
| 11 | Report all errors, including ECCC and, for the |
| | |
| | |
 

Check Handler Operation
 

As with faults, the type of check service provided depends on whether
the PXM is enabled or not when the check occurs. If the PXM is
disabled, the processor sets the MCM field in the modals to 0, then
Jumps indirectly (JST) through the appropriate check vector to the
check routine.

If the PXM is enabled, the processor:

1. Sets up a check header.

2. Inhibits the machine.

3. Switches to 64V mode.

4. Sets the MCM field toO (2 if ECCC or recoverable machine
check).

5. Transfers control to the check handler.

The software must clear the DSW after each check. This ensures that
the processor does not use old data when servicing future checks.

The DSW is large enough to contain data about one of each type of check
before the handler takes control. However, the values of RMA and PB
for the last check only are saved.
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To determine which check stored RMA and PB, use DSWSTAT to determine

which checks have occurred:

e If a missing memory module check, machine check, or ECCU memory

check occurred, DSWRMA and DSWPB reflect values stored by that

check. These three checks are mutually exclusive, amd are

guaranteed to be the most recent check that occurred.

e If any other check occurred, DSWRMA and DSWPB reflect values

stored by the ECCC check or recoverable machine check that

occurred most recently.

Table 10-24 summarizes some information about each check.

Table 10-24
Types of Checks

 

 

| Type of Check | Header Loc* | Handler Loc* | Effect on DSW |

! Power failure | ‘200 "204 | Does not set DSW. !

: Environment ** ! ‘200 ! "204 : Does not set DOW. |

: Memory parity : ‘270 : 274 ! Sets DSW. |

! Machine check : ‘300 ! ‘304 ! Sets DSW. :

: Missing memory ! ‘310 ! ‘314 ! sets DoW. :

| module | | | |

RecoverabLe ‘320 ‘S24 Sets DSW.

 

* These are locations in Segment 4.

** Unavailable for the earlier processors listed on page 1-1.

Some checks cause a microcode trap when they occur. When this happens,
the action taken depends on the type of microcode that was trapped.
Table 10-25 shows the checks that can cause traps and the actions that

OCCUL’,

The first and second categories listed in Table 10-25 always leave the

I/O bus clean.

Second Edition 10-36



INTERRUPTS, FAULTS, CHECKS, AND TRAPS

Table 10-25
Check—produced Traps and Their Actions*

 

| Event | Actions
|
| Missing Memory Module,

ECC Uncorrectable, or
Machine Check during
I/O (DMx, PIO,
interrupt processing,
excepting machine
Check for ROM parity)

 

The error is ignored until all current
requests for DMx and I/O are processed,
and then the check is taken immediately.

Action is deferred until the next fetch
cycle, and then a check is taken.

|

|

|

|

|

| ECC Correctable Error
| (not during I/O)
|

| Recoverable machine
|
|
|
|

|

|
|
|

|

check (6350, 9955,
and 9955 II only)

For an SILB parity error, saves the RS
contents in RSSAV and forces an STLB
miss. If the parity error has gone
away, restores RS contents, causes a
fetch cycle trap, and then a check is
taken.

Action is deferred until the next fetch
fetch cycle, and then a check is taken.

Power Failure;

|

|

|

|

|

|

|

|

i

|

|

|

i

|

|

|

|

|

|

|

|

Environment |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|All other checks Software check occurs immediately.
 

* For the actions that can occur with the earlier processors
listed on page 1-1, see Appendix B.

TRAPS

Traps are breaks in microcode execution. When a trap occurs, the
processor takes the current microcode location where the trap occurred
and goes to the predetermined microcode location that handles traps.
The processor handles the trap, then retries the microcode location
where the trap originally occurred.

Traps are separated into two groups. Gl traps occur during references
to parts of memory. G2 traps are hardware related and encompass
several subgroups. Table 10-26 lists the traps in both groups and the
further subgroups.

The traps are listed in order of priority, from highest to lowest. G2
traps always have higher priority than Gl traps do. Within the G2
group, missing memory module traps have the highest priority. (See
Appendix B for the priority of the G2 traps for memory increment
ete Supported only on the earlier processors listed on page
1-1.
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Table 10-26
Types of Traps and Their Priorities

 
  

| Type | Individual Trap | Causes and Actions
   

Gl 32-bit or 16-bit! If a memory reference instruction forms an

read address | EA between 0 to ‘7 (V mode) or 0 to ‘57

trap (S and R modes), the addressed location
is in the current user register file, not
memory. When such an address is calcu-
lated, this trap aborts the memory read
and loads a cache entry with the contents
of the addressed register. The cache is
marked invalid but its Use Once bit is
set to 1 so that a cache hit occurs when
the microstep is retried. A cache miss
occurs on this entry's next reference.

STLB miss This trap aborts the step. The SILB miss
translates the virtual address to a
physical one, then puts the translation
into the STLB. The step is retried after
the translation is loaded into the SILB.

Access

violation

A procedure tries to reference a memory
location for which it has insufficient

access violation fault.

trap into a physical page whose modified bit
(in the page’s STLB entry) contains 0.
This trap sets the modified bit to 1 so
that future writes to this page do not
cause other traps.

G2 Missing memory
module

If no memory board responds to a memory
read or write request, this trap occurs.
Actions taken as a result of this trap
depend on the operating system.

|
|
|
|
|
|
|
j
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|

access rights. This trap causes an |
|

|
|
|
|
|
|
|
|
|
|
|

Indicates a parity error, ECCU, or (6350 =|
only) an internal (microcode) error. |
The parity error type is in DSWPARITY. |

See Checks in this chapter for more |

information. This is a fatal trap. |
|

Write address
trap

Specifying an address within the range 0 tol

'? (V mode) or O to ‘37 (S and R modes) |

as a write address causes this trap whichi

aborts the write to memory but otherwise |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| allows the operation to complete. |

|
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Page modified | This trap occurs in each step that writes
| |
| |
| |
|
| |
|
| |
| |
| |
| |
|
| |
| |
| |
| |
| |
| |
| |
| |

|
| |
| |
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Table 10-26 (continued)
Types of Traps and Their Priorities

 

| Type | Individual Trap | Causes and Actions
 

{Ccont) |

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Integer
exception

Branch cache
problem

DMx requests

Fetch cycle
traps:

—~- CPU timer

overflow

-— Diagnostic
processor
interrupts

-- FCCC

—— External
interrupts

The current instruction caused an integer
exception. This trap causes an integer
exception fault.

A branch cache hit occurs during execution
of something other than a branch
instruction.

If a controller wants to request a DMx
transfer, this trap transfers control to
the DMx microcode.

Allows the processor to perform several
Steps between microsteps.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
The microsecond timer overflows. This trap!

increments the contents of TIMER by 1.
If the incremented value of TIMER does

not overflow, execution continues. If it!
does overflow, this trap sets the process!
abort flag in the process’ PCB to l.

The diagnostic processor sends a command to!
the processor. The microcode reads the
command and decodes it. Invalid for
earlier processors 750 and 850.

Error correcting codes on the memory boards!
note when single bit errors in MOS memory!
occur. This trap notes the address where!
such an error occurred and the value of
that address’ syndrome bits. The
Syndrome bits show which bit in that
location is in error. See Tables 10-27
to 10-29 for information about syndrome
bit values for single bit errors.

Point where a device requested service.
This trap causes an external interrupt.
(See Interrupts, earlier in this chapter,
for more information.)
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Table 10-26 (continued)
Types of Traps and Their Priorities

| Type | Individual Trap | Causes and Actions |
|   

|
{

| (Cont ) |
|

|

{

|

|

|

|

|

|

1

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
{

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

—— Cache |

parity |
error* |

|
|

-- Program
interval

timer

—— §TLB

parity
error*

—- Hard parity
error**

—- End-of-
instruction
trap

-—— Power

failure

Restricted

instruction
tran
A ate “PY

| A cache parity error occurred. For the

9955 and 9955 II, this error is reported

at the next PIC interrupt to DSWPARITY,

DSWSTAT, DSWRMA, and DGR12. This error
then goes to the check handler. (See
Checks in this chapter.) When this
error occurs on a 6350, a cache portion

is scanned every PIC for a hard parity

error; if one is not found, the actions
taken are as for an STLB parity error
except that a cache parity error clears
DSWRMA.

 

|
|

|
|
|
|
|
|
|
|
|
|
|
|

If the timer is enabled, it causes an |

interrupt. The timer places a vector on |

the address bus for PRIMOS. |

|

Caused by an STLB recoverable parity error |

trap. The virtual address at the time |

of error is loaded in DSWRMA. Sets the |

REOIV and updates DSWPARITY, DSWSTAT, |
|
|
|
|
|
|
|

and (9955 and 9955 II only) DGR12.
Control goes to the check handler.

For STLB: detected and treated like a soft

(recoverable) STLB parity error, but the
Hard Parity Error bit is set in DSWSTAT

and the bad STLB location is mapped out
to limit performance degradation.

For cache: can be detected during a scan

of the cache upon a cache parity error;
maps out the bad cache location and sets
DSWSTAT’s Hard Parity Error bit.

A parity error occurred on an I/O transfer.

Not used by the 6350 and 9750 to 9955 II.

AC power failed. This trap causes a power
failure check. (See Checks. )

This trap causes a fault when a process
tries to execute a restricted instruction

in a ring other than Ring O.

 

* For the 6350, 9955,
** For the 6350 only.

secomd Edition

and 9955 II only.
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Read Address Trap
 

If the effective address calculated by a memory reference instruction
is within the range 0 to '7 (V mode) or O to ‘37 (S and R modes),
inclusive, the addressed location is in the current user register file,
not in memory. When such an address is calculated, this trap aborts
the memory read and loads a cache cell with the contents of the
addressed register. The cache is marked invalid but the cache’s use
once bit is set to 1 so that a cache hit occurs when the microstep is
retried. The cache miss occurs on the next reference to this cache
cell.

STLB Miss

When an STLB miss occurs, this trap aborts the step. The STLB miss
translates the virtual address to a physical one, then puts the
translation into the STLB. The step is retried after the translation
is loaded into the STLB.

Access Violation
 

If one procedure tries to call another and an access violation occurs,
this trap causes an access violation fault.

Page Modified

This trap occurs during each step that writes into a physical page
whose modified bit (in the page's STLB entry) contains a0. This trap
Sets the modified bit to 1 to indicate the presence of information that
must be saved.

Missing Memory Module
 

If no memory board responds to a memory read or write request, this
trap occurs. A missing memory module check alerts the operating system
to this trap’s occurrence; resulting actions depend on the operating
system.
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Error Correcting Code
 

Error correcting codes on the memory boards note when single bit errors

in MOS memory occur. This trap notes the address where such an error

occurred and the value of that address’ syndrome bits that tell which

bit in that location is in error. Tables 10-27 to 10-29 show the

values of the syndrome bits and the single bit errors they indicate.

Table 10-27
Syndrome Bits for the 63550

 

 

| Synd Bits | 11 Synd Bits | |

| 1234567 | Bit in Error || 1234567 ! Bit in Error|

| |

| oooo000 | No Error !1 1200100 | Word bit 15 |

|! 1000000 |! Check bit 1 !! O110100 | Word bit 14 |

{| 0100000 | Check bit 2 |! 0101100 | Word bit 15 |

| ©O10000 | Check bit 3 |! 0011100 ! Word bit 16 |

| QOO1000 |! Check bit 4 !! 1010010 | Word bit 17 |

i 0000100 | Check bit 5 |! 41111010 | Word bit 18 |

| Qo0o001l0 | Check bit 6 |! 1001010 | Word bit 19 |

| Qo00d0d01l | Check bit 7 !! 0011010 ! Word bit 20 |

| 1110011 | Word bit 01 |! 1000110 ! Word bit 21 |

| 1011011 | Word bit 02 !! OO10110 | Word bit 22 |

| 1101011 | Word bit 03 |! O0OO1110 | Word bit 25 |

| 0111011 ! Word bit 04 |! #0111110 |! Word bit 24 |

| 1100111 |! Word bit 05 |! 41010001 ! Word bit 25 |

| 0110111 | Word bit 06 |! #+41111001 |! Word bit 2 |

| 0101111 |! Word bit O7 |! #+:+1001001 | Word bit 27 |

| QO11111 |! Word bit 08 ij! 0011001 | Word bit 28 |

| 1110000 | Word bit 09 |! 1000101 |! Word bit 29 |

| 1011000 |! Word bit 10 |! 0010101 ! Word bit 30 |

| 1101000 |! Word bit 11 |! O0oO1101 |! Word bit 31 |

| 02111000 | Word bit 12 |! O111101 | Word bit 32 |

 

A mltiple error has occurred when the syndrome bits have a

Note to Table 10-27
 

pattern not shown above.
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Table 10-28
Syndrome Bits for the 9750 to 9955 II

 

| Check Bits! || Check Bits! |
| 6543210 | Bit in Error || 6543210 | Bit in Error |
|

|
! QQ00000 | No error 1! Q101100 |! Word bit 13 |
| 0000001 ! Check bit O |! 1101101 | Word bit 14 |
| 0000010 i Check bit 1 1! 1101110 | Word bit 15 |
| 0000100 |! Check bit 2 11 0101111 | Word bit 16 sO!
| 0001000 |! Check bit 3 |! 1110000 | Word bit 17 |
| 0010000 | Check bit 4 1! 0110001 | Word bit 18 |
| O0100000 |! Check bit 5 |! 0110010 | Word bit 19 |
| 1000000 |! Check bit 6 |! 1110011 | Word bit 20 |
| 0000111 |! Word bit 01 11 0110100 | Word bit 21 |
| 1100001 | Word bit 02 |! 41110101 | Word bit 22 |
| 1100010 |! Word bit 03 1! 41110110 | Word bit 23 |
| 0100011 |! Word bit 04 1! 0110111 | Word bit 24 |
| 1100100 |! Word bit 05 |! 0111000 | Word bit 25 |
| 0100101 ! Word bit 06 |1 1111001 | Word bit 2 Oi
| 0100110 |! Word bit O7 |! 1111010 | Word bit a7
| 1100111 ! Word bit 08 1!1! 0111011 |! Word bit 28 |
| 1101000 | Word bit 09 |! 1111100 | Word bit 29 |
| 0101001 |! Word bit 10 |! 0111101 | Word bit +O |
| 0101010 ! Word bit 11 |! 0111110 | Word bit 31 |
| 1101011 | Word bit 12 |! 1111111 |! Word bit 32 |

 

 

Note to Table 10-28
 

A multiple error has occurred when the Syndrome bits have a
pattern not shown above.
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Table 10-29
Syndrome Bits for the Rest of the 50 Series

  

 

 

 

| Check Bits | || Check Bits | |

| 123456 | Bit in Error |! 123456 | Bit in Error |

| |

| OO0000X | Multiple bits || 10000K | Multiple bits |

| 00001X | Multiple bits || 100011 | Word bit 07 |

| 00010X | Multiple bits | 10010X | Multiple bits |

| 000111 | Word bit 15 1 | 100111 | Word bit 03 |

| 00100X | Multiple bits || 10100XK | Multiple bits |

| 001011 | Word bit 14 | | 101011 | Word bit 02 |

| 001101 | Word bit 13 | | 101101 | Word bit Ol |

| 001111 | Word bit O09 1 | 101111 | Check bit 2 |

| 01000K | Multiple bits || 110001 | Word bit 08 |

| 01001X | Multiple bits || 110011 | Word bit 06

| 01010X | Multiple bits || 110101 | Word bit 05 |

| 010111 | Word bit 12 | | 110111 | Check bit 5 |

| 011001 | Word bit 16 1 | 111001 | Word bit 04 |

| 011011 | Word bit 11 1 | 111011 | Check bit 4 |

011101 | Word bit 10 1 | 111101 | Check bit 3 |

| 011111 | Right parity/ || 111111 | Overall parity!

| | check bit 1 || 111110 | No error |

Notes to Table 10-29

X means undefined.

In the 2350 to 2755, 9650, and 9655 DSWSTAT, bit 6 of this

table is not listed as the sixth ECC syndrome

the overall parity bit.

bit but is called

Machine Check

This trap, like that for missing memory module, indicates a serious

problem with the system. It may indicate faulty components, noise, or

a timing problem. For the 6350, it can also indicate problems in the

microcode. This is a fatal trap.

Write Address Trap
 

Specifying an address within the range O to ‘7 (V mode) or 0 to ‘37 (Ss

and R modes) as a write address causes this trap. This trap aborts the

write to memory but otherwise allows the operation to complete.
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DMx

Ifa controller wants to request a DMx transfer, this trap transfers
control to the DMx microcode.

Fetch Cycle Traps
 

Fetch cycle traps occur only at the end of the first microstep of a
Prime assembly language instruction. They are caused by a program
interval timer overflow, external interrupts, and power failures.

These traps occur only after the first step of an assembly language
instruction has completed. This guarantees that the previous assembly
language instruction has completed execution.

Restricted Instruction
 

This trap causes a fault when a process tries to execute a restricted
instruction in a ring other than Ring 0.

Summary of Software Breaks Caused by Traps
 

As mentioned above, some of the traps listed in Table 10-26 cause
software breaks. Table 10-30 shows which traps cause additional breaks
and the types of breaks that can occur.
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Table 10-30
Software Breaks Caused By Traps

  

Traps | Additional Software Break
 

No additional break occurs.

These traps are reported to
the operating system via a
check; the operating system

takes an appropriate action.

Missing memory module;

other parity errors

|
|
|
|
|
|

| External interrupt, Interrupt occurs.

| memory increment interrupt,
| program interval timer
| interrupt

|
|
|
|
|
|
|
|
|
|

Integer exception, Fault occurs.

access violation,
restrict mode violation

STLB miss Page fault, segment fault
may occur.

Power failure, ECCC Check occurs.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|All other traps No additional action occurs.
 

INTERVAL CLOCK

A 280 Hz interval clock is used for all processors but the earlier ones

listed on page 1-1 (see Appendix B). If the interval clock is enabled,

a fetch cycle trap occurs when a timing pulse occurs. The fetch cycle

trap causes an external interrupt. If interrupts are enabled on the

machine, the processor services the interrupt and updates the pointers

in the clock process. If interrupts are disabled, the interrupt is

ignored.

Table 10-31 lists the instructions that control the interval clock.
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Instructions Affecting the Interval Timer

 

 

| Mnem* | Name | Modes | Description |
| |
| INA ‘1120 | Input to A | S, R | Loads the ID of the |
| | | |! controller into A. |
| INA ‘13820 |! Input to A | S, R | Loads the contents of |
| | | | the interrupt vector |
| | | | into A.
| OCP ‘0020 | Output Control! S, R | Starts the interval |
| Pulse | | timer. |
| OCP ‘0120 | Clear PIC | §, R | Clears the phantom |
| | Interrupt | | interrupt code |
| | | | interrupt. |
| OCP ‘0220 | Output Control! S, R | Stops the interval |
| | Pulse | | timer. |
| OCP '1720 | Initialize | S, R | Initializes the interval!
| | Interval | | timer. |
| | Timer | | |
| OTA ‘0720 | Output from A! S, R | Transfers data from A |
| | | | into the control |
| | | | register. |
| OTA ‘1320 | Output from A | S, R | Transfers data from A |
| | | | into the interrupt |
| | | | vector. |
| SKS ‘0020 | Skip on | S, R | Skips if the interval |
| | Condition Met | | timer is not |
| | | | |interrupting.
 

* V and I modes execute EIO instructions with these instructions
as effective addresses.

SUMMARY

See Chapter 11 for more information.

You have read in this chapter about four kinds of breaks in execution
that can occur, and how the 50 Series processors handle them. Traps
are breaks in microcode execution.

consistency problems;
Checks indicate hardware

faults indicate software exception conditions.
External devices issue interrupts when they desire service. The next
Chapter, Input/Output, shows how external devices issue interrupts, and
how the 50 Series processors handle these requests for service.
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The previous chapter deals with the various types of breaks that can
occur in program execution. The I/O system is closely related to these
breaks, since data transfers between the processor and other parts of
the system usually include some type of break. Depending on the type
of transfers and the controller, the I/O system can perform a wide
variety of functions applicable to many situations.

I/O on the 50 Series processors is divided into three types:

@ Programmed I/O (PIO)

@ Direct memory (DMx)

e Interrupts

These three types of I/O differ in what initiates the action. For PIO,
the processor issues a command to a controller, which performs the
desired action. For DMx transfers, a controller requests service from
the processor, which provides the service on a priority basis. For
interrupts, the controller again alerts the processor to a situation
that requires the processor’s attention. Chapter 10 discusses
interrupts and how the processor deals with them. This Chapter
describes PIO and Dox.
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PROGRAMMED I/O

PIO is I/O performed by a program. This means that the instruments
used to perform PIO are instructions. These instructions:

@ Send control information to a peripheral controller.

e Test controllers for skip conditions.

e@ Move data between a controller and the CPU.

The PIO instructions use one of two formats. In S mode and R mode,

four PIO instructions (OCP, SKS, INA, OTA) are available for use. They

have the format shown in Figure 11-1.

1 25 6 7% 10 11 16
 

| TYPE | 1100 | FUNCTION | CONTROLLER ADDRESS |
 

INA, OCP, OTA, SKS Operative Format
Figure 11-1

For these four instructions, the operative (the part that the processor

actually executes to perform the desired action) is the instruction
itself. A different arrangement exists for V mode PIO.

In V mode, the processor cannot directly execute INA, OCP, OTA, or SKS.

Instead, it must use an EIO instruction, which forms an effective

address. The processor executes bits 17 to 32 of this effective

address as a PIO instruction. These bits (the operative of the EIO
instruction) should specify one of the four PIO instructions described
above. The upper drawing in Figure 11-2 shows the format of the EIO

instruction; the lower drawing shows the format the processor uses to

interpret the EIO operative.
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1 2 38 ll 1215 1415 1617 on
 

! I | X¥ ! 110011000 |! Y |! O1 | BR 1 ODISP |
 

EIO Instruction Format

1 2 8 6 7 10 11 16
 

| TYPE | EXTENSION | FUNCTION | CONTROLLER ADDRESS |
 

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| EIO Operative Format
|
 

EIO Formats

Figure 11-2

Both the S and R mode PIO operatives and the V mode operative have the
Same basic format. In both cases, bits 1 to 6 specify the Operation
that the processor is to perform. Bits 1 and 2 always identify the
basic type of operation to be performed, as shown in Table 11-1.

Table 11-1
Basic I/O Operations

 

| Type | Inst | Name
 |

| OO |! OCP | Output control pulse
| Ol 1! SKS | Skip if condition satisfied
| 10 |! INA | Input toA
| 11 | OTA | Output from A
 

Bits 3 to 6 have different meanings in different modes. These bits are
set to 1100 in S and Rmodes. In

V

mode, bits 5 to 6 specify an
extension to the type field. The processor may use this field to
distinguish between controllers that require different types of
service, or between different software implementations. This feature
has yet to be completely defined.
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In all three modes, the function field (bits 7 to 10) specifies one of
16 controller-dependent commands. Each controller defines the function

codes that it uses for each of the four basic PIO operations. For

example, the controller for one controller might use INA witha

function field of O to load data into A, INA with a function field of 1

to load a controller ID into A, and INA with a function field of 3 to

load status into A.

In all three modes, bits 11 to 16 specify a controller address that

identifies a controller and its implementation. Tables 11-2 and 11-3

show these controller addresses for PRIMOS Rev. al. Several

properties of Table 11-2 require emphasis:

@ No two controllers may have the same address in a given system.

Tf two controllers do have the same address, the system will

malfunction in unpredictable ways.

e General Purpose Interface Boards (GPIBs) have been assigned
controller addresses ‘60 through ‘67.

e The addresses ‘70 to ‘76 are reserved for manufacturing, special

systems, field service, and customers to make special

assignments on a system by system basis, because neither

standard software nor standard controllers use these addresses.

For example, magnetic tape controllers have two assigned

addresses, '13 and ‘14. If a customer wanted a third magnetic

tape controller, it could be assigned an address in the ‘70 to

‘'"6 range.

In the past, several controller addresses had been assigned to

both a special and a standard option before addresses ‘70 to ‘76

were reserved for specials. If a conflict occurs when assigning

controller addresses during a field upgrade, the conflict should

be resolved by moving the special controller address to one in

the ‘70 to ‘76 range.

Addresses '75 and '76 are reserved for controllers using the

T$GPPI software driver.

e Prime systems have a configuration list in the cabinet which

shows all of the controller addresses in that system and where

the boards are plugged in.

@ You can generally change controller addresses by inserting one

or two header dips in controllers.

e Addresses for the ICS1, ICS2, and ICSS communications

controllers are assigned from a pool of addresses. See Table

11-3.

@ Some controller boards such as the 2047 and 2882 disk/tape

controllers have separate controller addresses assigned to each

function.
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Table 11-2
Controller Address Assignments

 

| Address | Model
|

|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Controller Description
 

‘OO
‘Ol
‘02
‘03

‘04
‘OS

‘06
‘O7
‘10
‘11
‘12
‘13
‘14
"15
‘16
‘17
‘20

‘al
"R28
QO
‘24
‘29
‘26
‘Ra?
‘30
‘Sl
‘32
‘3d
‘4
‘35
‘36
‘3?
‘40
‘41
‘42
‘43
‘44
‘45
46
‘47

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

3000
3000
3100

3006
3100

7040
2034/2036
2034/2036
4300
4020
4020

2034/2036
2034/2036
2034/2036

3006

4004/5/6
4004/5/6
4004/5/6
4004/5/6
4004/5/6
4004/5/6

3007
3025

2034/2036
3009/3008
3009/3008
2034/2036
2034/2036
2054/2036

7040

|
|

Reserved |
Paper tape reader |
Paper tape punch |
URC #1 (unit record controller): |

line printer, card reader, card punch |
System terminal |
URC #2: line printer, card reader, |

card punch |
Reserved. |
Primenet node controller (PNC) #1 |
Communications controller (see Table 11-3) |
Communications controller (see Table 11-3) |
Floppy disk |
Magnetic tape #2 |
Magnetic tape #1 |
Communications controller (see Table 11-3) |
Communications controller (see Table 11-3) |
Communications controller (see Table 11-3) |
Control panel, RIC (realtime clock), Soc |

(system option controller) |
Reserved |
Disk controller #3 |
Disk controller #4 |
Disk controller #5 |
Disk controller #6 |
Disk controller #1 |
Disk controller #2 |
Buffered parallel I/O channel #1 |
Buffered parallel I/O channel #2 |
Communications controller (see Table 11-3) |
Versatec printer plotter #1 |
Versatec printer plotter #2 |
Communications controller (see Table 11-3) |
Communications controller (see Table 11-3) |
Communications controller (see Table 11-3) |
Reserved |
Reserved |
Reserved |
Reserved |
Reserved |
Disk controller #7 |
Disk controller #8 |
Primenet node controller (PNC) #2 |
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Table 11-2 (continued)
Controller Address Assignments

 

Address | Model Controller Description
 

|

|
| ‘50 | 2034/2036 |
| ‘Sl | 2034/2036 |
| ‘52 | 2034/2036 |
| ‘53 | 2034/2036 |
| ‘54 | 2034/2036 |
| ‘S55 | 5400 |

‘S56 | 2034/2036 |
| ‘S7 | -—-— |
| ‘60 | 000 |
| ‘6l | 7000 |
| ‘62 | 7000 |
| ‘63 | 7000 |
| ‘64 | 7000 |
| ‘6S | 7000 |
| ‘66 | 7000 |

‘67 | 7000
| ‘70 | ———— |
| ‘71 | —— |

‘72 | ———— |
| ‘7S | ———— |
| 74, | ———— |
| ‘75 | -—-— |
| ‘76 | -——— |
| ‘TC | —--— |

Communications controller (see Table

Communications controller (see Table

Communications controller (see Table

Communications controller (see Table

Communications controller (see Table

Multiple autocall

Communications controller (see Table

Reserved
General purpose
General purpose
General purpose
General purpose
General purpose
General purpose
General purpose
General purpose
Reserved for
Reserved for
Reserved for
Reserved for
Reserved for
Reserved. for
Reserved for
I/O bus tester

interface board

interface board
interface board
interface board
interface board
interface board
interface board
interface board

specials
specials
specials
specials
specials
specials using T$GPPI driver
specials using T$GPPI driver

11-3)
11-3)
11-3)
11-3)
11-3)

11-3)

 

Table 11-3 specifies the addresses that may be used for the various

types of communications controllers at PRIMOS Rev.

the controller types in this table are:
el.

AMLC —- Asynchronous Multiline Controller

SMG -
HSSMLC —
MDG -
ICS1
ICS2
ICSS3

Second Edition 114
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Table 11-3

Communications Controller PIO Addresses

 

| Communications Controllers
 

 

| |
| Assignable | |
| Addresses | AMIC | SMIC IHSSMIC! MDLC | ICS] | ICS2 | ICS3 | PYC |
| |
| ‘O7 | | | | | | | | #1 |
| | | | | | | | | |
| ‘10 | | | | | #5 | #1 #1 #21~«| |
| | | | | | | | | |
| ‘11 | | | | | #4 | #2 | #2 = |
| | | | | | | | | |
| ‘15 | #5* | | | | | | | |
| | | | | | | | | |
| ‘16 | #6* | | | | | | | |
| | | | | | | | | |
| ‘17 | #7* | | | | | | | |
| | | | | | | | | |
| ‘32 | #8* | | | | | | | |
| | | | | | | | | |
| ‘35 | #4* | | | | | | | |
| | | | | | | | | |
| ‘36 | | | | | #1 | #3 | #3 | |
| | | | | | | | | |
| ‘SO? | | | | | #2 | #4 | #4 =| |
| | | | | | | | | |
| ‘47 | | | | | | | | #2 |
| | | | | | | | | |
| ‘50 | | | #2 1 #1 «| | | | |
| | | | | | | | | |
| ‘51 | | | #2 | #2 | | | | |
| | | | | | | | | |
| ‘52 | #3* | | | | | | |
| | | | | | | | | |
| ‘33 | #2* | | | | | | | |
| | | | | | | | | |
| ‘54 | #1* | | | | | | | |
| | | | | | | | | |
| 56 | | #1 | | | | | | |
 

* The ordering of AMIC addresses is important. The ordering
of the other communications controllers is recommended.

Controller identification (ID) numbers are bits assigned to each
controller type. Two types of controller IDs are defined. The older
type is the single INA ‘ll ID. The newer one uses INAS ‘11 amd ‘12.
Bits 26 to S52 of INA ‘11 are either ‘100 or ‘077 for the two INA ID
implementation and are invalid in the single INA ‘11 ID. This allows a
differentiation between the two types of controllers from the software.
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Tables 114 and 11-5 show the ID numbers that are currently assigned
under both conventions. Some controllers implement both INA IDs for
compatability. All new controllers must use the two INA ID method.

Table 114
Controller Board Numbers for Controller IDs using INA ‘11

 

INA ‘11 ID Bits 9 and 10 |
 

 

 

| |

| --------—~--—————------~------—- ++--+ - | ID Bits |

| 00 | Ol | 10 | 1l | 11 to 16 |

| |
| * | * | * | * | ‘OO |
| * | SOC BPIOCI1 | * | * | ‘Ol |
| * | SOC BPIOC2 =| * | * | ‘02 |
| URC 3156 | * | URC 2294 | * | ‘03 |

| Option A | SOC ASLC/SSLC| * | * | ‘04 |

| * | * | * | * |‘'05 to ‘O7!
| * | iIcS2 5242, | ICSS 5725, | * | ‘10 |

| * | 5720, 5722 | 5730, 5735 | * | |

| * | * | * | * ‘11 to ‘121
| Tape 2295 | Tape D/T 20471 Tape 2382 | * | ‘18 |
| (4190) | | | | |

| Tape 2081 | Tape 2081 | Tape 2269/70 | Tape 2025 =| ‘14 |
| and 4020 =| | | |
| * | * | * | * 1/15 to ‘171
| | SOC LFC, PIC,! * | * | ‘20 |

| | and WDT | | |
| * | * | | * | ‘21 |
| Disk 4000 | * | | * | ‘22 |
| * | * | * | * |’'23 to ‘25!
| Disk 4004 iDisk 4005,6580! R D/T 2047 =O * | ‘26 |
| * | * | * | * |'27 to ‘'35l
| ICS1 5181 | * | * | * | ‘Sb
| * | * * | * | ‘S7 |
| PRIMAD A to DI * | * | * | ‘40 |

| * | * | * | * 1'41 to ‘421

| Digital Out | * | x | * | 143 |
| * * | * | * 1'44 to ‘47I
| morc 5602, |! * * | * | ‘BO |
| 5604/5622/562¢4| | | | |

| * | * * | * |‘51 to ‘53\

| QAMLC 5154, | * | x | * | ‘54 |
| 5274, 5475 | | | | |

| * | * | * | 1‘55 to ‘60l
| PNC 7041/42 | * | * | | ‘61
| * | * | | * 1'62 to ‘77!
 

Second Edition 11-8



INPUT-OUTPUT

Table 11-5

Controller Board Numbers for Controller IDs Using
INA ‘11 and ‘12

 

 

| | INA ‘11 | INA ‘12 | INA ‘12 |
| Controller | Long Word Bits | Bits | Bits |
| | 26 (27 to 32) 11 2 (3to8) 9 10! lltol6 |
| |
| | * | * | ‘00 to ‘13 |
| Tape 2382 | 1 ‘OO |O O ‘O01 O O01 ‘14
| | * | * | ‘15 to ‘25 |
| Disk 2382 | 1 ‘OO | 0 O ‘Ol 0 O| ‘26 |
| Disk 6508 | 1 ‘OO 1! OQ 0 ‘02 0 O01 ‘26 |
| | * | * | '27 to ‘77 |
 

PIO Operative Actions
 

The processor performs the same actions for each identical PIO
operative, regardless of the mode of the machine. This means that the
INA operation specified by EIO in V mode results in the same actions as
does the INA directly executed in S mode and R mode. After performing
the operation, however, the processor indicates the success or failure
of the operation in different ways, depending on the mode. The
descriptions below explain the actions of each operation, as well as
how the processor indicates success or failure for each mode.

INA: INA is enabled over BPA. If the specified controller is not
ready and does not have controller address ‘20, the instruction ends.
If the controller is ready or has controller address ‘20, the
controller responds ready and data is read over BPD. In V mode, the
condition codes reflect success or failure as shown in Table 11-6.

In S and R modes when the controller address is not ‘20, the processor
indicates success by incrementing the contents of the program counter
by 1; when the controller address is ‘20, no increment occurs.

For controller address ‘20 the data can have bad parity. INAs to
controller address ‘20 ignore the data parity and generate their ow
correct parity. INAs to controller addresses other than ‘20, however,
do check the data parity and indicate a BPD parity error if the parity
is incorrect.
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Table 11-6

Effect of EIO on Condition Codes

 

CC | Meaning |
|

EQ | Successful INA, OTA, or SKS instruction |

|

 

NE | Unsuccessful INA, OTA, OR SKS;

| any OCP
 

OTA: OTA is enabled over BPA. If the specified controller is not

ready and does not have controller address ‘20, the instruction ends.

If the controller is ready or has controller address ‘20, the

controller responds ready and data in A is sent over BPD to the

controller. In V mode, the condition codes reflect success or failure

as shown in Table 11-6.

In S and R modes when the controller address is not ‘20, the processor

indicates success by incrementing the contents of the program counter

by 1; when the controller address is ‘20, no increment occurs.

SKS: SKS is enabled over BPA. If the specified controller is not
ready, the instruction ends. If the controller is ready, the processor

indicates success in V mode by setting the condition codes, as shown in
Table 11-6, regardless of the controller address.

If the controller is ready, the processor indicates success in 5S am
R modes by incrementing the contents of the program counter by l,
regardless of the controller address.

OCP: OCP is enabled over BPA. The specified controller performs the
specified command and the instruction ends. OCP never indicates
success or failure.

DMX
While PIO operations are suitable to use when only small amounts of

data need to be transferred, they are typically not suitable for

multiple data transfers. Each time PIO transfers data, the processor

must execute several instructions for each 16-bit quantity transferred.

This ratio of control instructions to transferred data makes the
transfer of blocks of data rather slow. DMx operations allow
controllers to access memory directly, rather than by using software.

This cuts down on the amount of processor time required to perform the
transfer, and allows the transfer to occur without specific software
attention.
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IMx Transfers

There are several types of DMx transfers:

@ DMA, or direct memory access

e IM, or direct memory channel

e IMf?, or direct memory transfer

e DM), or direct memory queue

All of these transfers occur in three phases. The request to transfer
occurs during the request phase. The CPU receives the transfer address
during the address phase. The data is transferred during the data
phase.

To make any DMx request, the controller desiring the transfer sends a
DMx request to the processor. This request will be serviced when:

e The processor issues a DMx request enable.

e There are no other DMx requests pending from controllers with a
higher priority (a lower slot number).

If the request from this controller has the highest priority, the
processor recognizes it. The controller sends an address on BPA and
control information on the mode lines. The mode lines request the
Specific type of DMx transfer, which in turn defines how the adress
line information is to be interpreted. DMx address formation is
described at the end of this chapter.

After receiving the control information, the processor strobes the data
aS appropriate over BPD. The processor sends an end-of-range (HOR)
Signal, if appropriate, at the end of the block transfer.

The length of time between when a controller requests service and when
the processor responds depends on two things:

@ How many requests of higher priority are already pending

@ What the processor is doing when the controller makes its
request

A controller must wait until the processor services all requests of
higher priority. This means that the controller with the highest
priority in the system can preempt service to any other controller, and
may completely occupy the processor if it transfers data at the maximum
rate.

Though the processor can pause between instructions or at selected
points within instruction execution, it cannot stop immediately each
time a request for a transfer occurs. Also, the processor cannot
Service requests when servicing interrupts or phantom interrupt code.
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This means that even the highest priority controller in the system may
have to wait less than 7 microseconds if the processor is busy. Once
the processor transfers the first 16 bits, however, it transfers the
rest of the block as fast as possible. At the maximum speed,
processor cannot process anything else at the same time.

Maximum rates of transfer for DMA and the other DMx transfers are shown

the

 

 

 

in Table 11-7. Rates for the earlier processors listed on page 1-1 are
in Appendix B.

Table 11-7
DIMx Transfer Rates

| | | Maximum Speed |
| | | |

| | | | 2550 to 2755, |

| Type |Transfer| 6350 | 9750 to 9955 II! 9650, and 9655 |

| |

| DMA | Input | 3.0 Mbytes/sec | 2.4 Mbytes/sec | 2.2 Mbytes/sec |
| | Output | 1.9 Mbytes/sec | 2.0 Mbytes/sec | 2.5 Mbytes/sec |
| | | | |
| Extended! Input | 2.2 Mbytes/sec | *% * |

| DMA | Ouput | 1.6 Mbytes/sec | * * x |

| | | | |
| 16-Bit | Input | 9.7 Mbytes/sec | 9.4 Mbytes/sec 5.1 Mbytes/sec |
|Burst DMA!| Output | 6.6 Mbytes/sec | 6.0 Mbytes/sec 4.9 Mbytes/sec |
| | | | |

| 32-bit | Input 124.2 Mbytes/sec | ** * |
iBurst DMA! Output 111.0 Mbytes/sec | ** * x |
| | | | |
| DMC | Input | 1.8 Mbytes/sec | 1.2 Mbytes/sec*! 700 Kbytes/sec |
| | Output | 1.3 Mbytes/sec | 1.1 Mbytes/sec*! 700 Kbytes/sec |
| | | | |
| DMT | Input | 2.4 Mbytes/sec | 2.8 Mbytes/sec*! 2.2 Mbytes/sec |
| | Output ! 1.7 Mbytes/sec | 2.2 Mbytes/sec | 2.5 Mbytes/sec |
| | | | |
[Burst DMT! Input | 8.6 Mbytes/sec | * * x |
| | Output | 5.3 Mbytes/sec | * x |
| | |
| DMQ | Input | 1.1 Mbytes/sec | 300 Kbytes/sec*! 500 Kbytes/sec |
| | Output | 1.1 Mbytes/sec | 300 Kbytes/sec*! 500 Kbytes/sec |
| |
 

* This is an approximate value.

** Not available for this processor.
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Ma I/O

When a controller specifies the transfer starting address, it can
specify a virtual address or a physical one. The processor is using
absolute I/O when the address specified is a physical one. When the
controller specifies a virtual address, the processor is using mapped
I/O.

Mapped I/O allows the limited addressing range of DMx transfers to
address all of physical memory. It is especially useful when
transferring several contiguous pages in virtual memory to physical
locations that may not be contiguous. For example, suppose the
processor wants to transfer four contiguous pages of data in virtual
memory to a controller. As shown in Figure 11-3, mapped I/O allows the
system to map the four pages to any four available pages, instead of
requiring one four-page block.

Virtual Physical
Memory lOTLB Memory

Page 0 Page 0 Data

Page 1 Page 1 Data
Page 3

Page 2 Page 2 Data

Page 3 Page 3 Data

 

Mapped I/O
Figure 11-3
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The IOTLB contains the information needed to map the transfer addresses
to physical memory locations. The IOTLB, with the STLB, forms the
virtual-to-—physical address mapping hardware and contains 256 entries
for the 6350; there are 128 entries for the 2350 to 2755 and 9650 to
9955 II. (Appendix B discusses the IOTLB of the earlier processors
listed on page 1-1.)

An 8-bit address selects each IOTLB entry. This address is composed of
the I/O segment number and the page number in that I/O segment as shown
in Figure 11+.

1 2 38 8
 

| I/O Seg | Page Number |
 

Address Format of IOTLB Entry
Figure 11-4

Each IOTLB entry contains mapping information for one page of the I/O
sepments as shown in Table 11-8.

Table 11-8
IOTLB Mapping

 

IOTLB Entry | Corresponding Page in I/O Segments
 

| |

| |

| Oto 63 | Segment O, Pages 0 to 65 |
| 64 to 127 | Segment 1, Pages O to 63 (2350 to 9955 II only) |
| 128 to 191 | Segment 2, Pages O to 63 (6350 only) |
| 192 to 255 | Segment 3, Pages 0 to 63 (6350 only) |
 

The IOTLB allows the I/O address translation during IMx to be done
swiftly because information about the translation is always guaranteed
to be in the IOTLB. If the processor were to rely on the STILB, an STILB
miss could occur and the transfer would fail. Preloading the IOTLB is,
therefore, essential before initiating I/O.

The LIOT instruction loads the IOTLB entries with transfer information.
This instruction must be used before any transfer occurs so that the
processor maps virtual pages to the desired physical ones. (Appendix B
discusses LIOT for the earlier processors listed on page 1-1.)
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Table 11-9 shows the contents of each IOTLB entry. (Appendix B
discusses the IOTLB of the earlier processors listed on page 1-1.)

Table 11-9
IOTLB Entry Format

 

| Field | Number of Bits | Description
|
| Physical

 

16 for 6350 Specifies the physical

|
|

| | |
| page number | 14 for 9955 II | page address. |
| | 13 for 9750 to 9955 | |
| | 12 for 23550 to 2755, |
| | 9650, and 9655 | |
| | | |
| Valid bit | 1 for all processors | Indicates if this entry |
| | | contains old data. |
| | | |
| MBIO bits | 5 for 2755, 9955, and | Specifies the cache leaf |
| | 9955 II | to invalidate when |
| | 3& for 2350 to 2655 and | writing to memory. |
| | 6350 to 9950 sO |
 

Since the cache of the 2755, 9955, and 9955 II contains 64K bytes, it
Can contain mapping information for 32 entries of physical memory, each
having the same page offset. This is called a 32-leaf cache. MBIO
bits allow the information for only the modified entry to be
invalidated after a memory write, rather than each of the 32 possible
places. Thus, these MBIO bits determine which leaf of the cache to
invalidate after a memory write. Five MBIO bits are used for a 32-leaf
cache.

The 6350 has a 382K-byte two-set associative cache. This cache can
contain mapping information for 16 entries of physical memory, each
having the same page offset. Three MBIO bits are used to specify which
cache leaf contains an entry that may be invalidated after a memory
write. Since each cache access returns two cache index entries,
however, the 6350 invalidates only the entry whose physical page
address matches that of the IOTLB entry.

The 2350 to 2655 and 9650 to 9950 have a l16K-byte cache containing
mapping information for 8 entries of physical memory. Thus, these
processors have an 8-leaf cache that requires 3 MBIO bits to specify
which cache leaf to invalidate after a memory write.
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DMA

DMA is useful for bulk data transfers when speed is important, and can
also be operated in burst mode as described in a further section. Of
the earlier systems listed on page 1-1, burst mode is used only with

the 750 and 850.

Maximum rates of transfer for all forms of DMA are shown in Table 11-7,

located earlier in this chapter.

The register file contains the DMA register set occupying locations ‘40
to ‘77. These locations contain direct memory channels O to ‘37,
respectively, that allow controllers to access memory with a minimum of
processor intervention. Extended IMA, available only on the 6350,
allows any even 32-bit location in the I/O segments to operate as a DMA
channel pair.

Making a DMA Request
 

To perform a DMA transfer, a program must:

1. Set up a DMA cell

2. Tell the controller to perform the transfer

In regular DMA, a DMA cell is one 32-bit location in the register file,
as shown in Figure 11-5. Through Extended DMA (for the 6350 only), any
even 32-bit location in the I/O segments can also serve as a IMA cell.
Bits 1 to 12 of a DMA cell location contain the two's complement of the
total number of 16-bit quantities to be transferred. This means that
the largest block of 16-bit quantities that can be transferred on a
Single channel is 409; to transfer more requires more than one
channel .

DMA on the 6350 can transfer 32-bit quantities as well as 16-bit ones,
depending on the mode specified. The definition for bits 1 to 12 of a
DMA cell location, however, remains unchanged. Thus, after the 6050
performs a single 32-bit transfer, it increments the count by 2. After
a Single 16-bit transfer occurs, all processors increment the count by
1

The use of bits 13 to 32 depends on the machine and on whether mapped
I/O mode or physical I/O mode is being used. In physical I/O mode,
bits 13 and 14 are reserved but must be zero; bits 15 to 32 supply the
physical address of the first location to transfer.

When mapped I/O mode is being used on the 6350, bits 15 and 16 select
I/O segments O to 3; bits 17 to 32 specify the offset within the

ch the transfer is to begin. Bits 13 and 14 are reservedee
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For mapped I/O on the 23550 to 2755 and 9650 to 9955 II, bit 16 selects
I/O segment O orl. Bits 17 to 32 specify the offset in the segment,
and bits 13 to 15 are reserved but must be zero.

For the format of the DMA control word in mapped I/O mode for the
earlier systems listed on page 1-1, see Appendix B.

 

1 12135 14 15 3A
 

12's COMP WORD COUNT |! MBZ* | ADDRESS WHERE TRANSFER BEGINS |
 

Physical I/O Mode

1 1213 15 16 17 oe
 

12's COMP WORD COUNT | MBZ* | SEG NO | OFFSET FOR TRANSFER START |
 

Mapped I/O Mode for the 2350 to 2755 and 9650 to 9955 IT

1 12135 1415 16 17 oe
 

12's COMP WORD COUNT | MBZ* | SEG NO | OFFSET FOR TRANSFER START |
 

Mapped I/O Mode for the 6350

|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

 

* Must be zero.

Format of DMA Control Word

Figure 11-5

servicing a DMA Request
 

When a controller wants to make a DMA transfer, it asserts a DIMx
request line to the processor. It specifies the type of transfer on
the mode lines and the channel address on the BPA address lines.
Normally, the processor acts on the request one microstep after the
request arrives. If only one request is pending, the processor
services it immediately. If more than one is pending, the processor
services the request from the controller mounted in the lowest numbered
I/O slot first, then it services the request from the controller in the
next lowest slot, and so on.
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When the processor pauses to service a request, it services all pending
requests before resuming instruction execution or servicing an
interrupt.

Once the processor has selected a request for service, it fetches the
quantity to transfer and either sends them over the bus, or stores them
at the address specified by the channel control words. For single
16-bit transfers, the processor then increments the values of the
16-bit quantity count and transfer address by 1; for single 52-bit
transfers (6350 only), the count is incremented by 2. If the
incremented value of this count is 0, the processor issues an FOR (end
of range) signal. A count of any other value means that there is more
data to transfer.

At the end of each request, the count specifies the number of 16-bit

quantities left to transfer and the transfer address specifies the

address of the next quantity to transfer. At the normal end of the

transfer, the count contains a0 and the transfer address specifies

either: the address of the last 16 bits transferred plus 1, or the

address of the last 32 bits transferred plus @.

Burst Mode DMA

Burst mode DMA has two forms: 16-bit burst mode and 32-bit burst mode.

Only the 6350 supports 32-bit burst mode DMA. Of the earlier systems

listed on page 1-1, 16-bit burst mode is used only with the 750 and

850.

Burst mode DMA operations are similar to DMA transfers because they are
both set up the same way. Like regular DMA, burst mode DMA sets up a
DMA cell and tells the controller what to transfer. The difference is
that burst mode DMA sends four quantities of data in each transfer,
rather than just one. These may be four 16-bit quantities, or, for the
6350 only, four 32-bit quantities. This makes burst mode DMA efficient

for transferring large blocks of data. After each transfer, the DMA
range count and address are both incremented by either 4 (16-bit burst
mode DMA) or 8 (32-bit burst mode DMA).

The data to be transferred can be arbitrarily aligned in menory.

However, burst mode will operate at ordinary DMA rates unless the data

is aligned as follows: for 16-bit burst mode, aligned on a 64-bit

boundary with at least 64 bits left in the range; for 35e-bit burst

mode, aligned on a 128-bit boundary with at least 128 bits left in the

range.

Controllers designed to make 16-bit burst DMA transfers can make 16-bit

burst DMA requests via the mode lines at any time. On processors that
do not implement 16-bit burst DMA, single 16-bit DMA transfers will be
generated by the processor, instead of 16-bit burst DMA transfers.

On processors that do implement 16-bit burst DMA mode, a controller's
request for a 16-bit burst DMA transfer will result in a 16-bit burst
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IMA transfer if the data is 64-bit aligned and if there are at least 64
bits left to transfer. If both of these conditions are not met, the
processor will generate 16-bit DMA transfers. These 16-bit single
transfers may occur at the beginning of a transfer until 64-bit
alignment is achieved or at the end of a transfer because there are
less than 64 bits remaining to be transferred, or both.

The controller typically is not aware of the length of the transfer,
its alignment in memory, or the type of CPU in the system. Therefore,
the controller must be able to accept either 16-bit Single DMA
transfers or 16-bit burst DMA transfers from the CPU anytime that it
makes a 16-bit burst mode transfer request.

Extended DMA

Extended DMA operations, supported only by the 6350, are similar to
ordinary DMA transfers with the following difference. In extended DMA,
the DMA channel pair may be any even 32-bit location in memory in the
Supported I/O segments, rather than being restricted to the DMA
register file. After setting up the channel pair, extended DMA
operates in a manner identical to DMA. Burst and non-burst operations
are permitted in this mode.

IMC

DMC operates in much the same way as DMA does. The differences are
that DMC provides a total of 32,768 channels rather than just 32, and
that data blocks can contain up to 128K bytes. Also, the DMC transfer
rate is much slower than that for DMA since DMC performs three memory
operations per transfer versus one for DMA.

DMC operations require a control word just as DMA operations do. The
DMC control word, however, is not contained in the current register
file, but in a 32-bit location in an I/O segment. Transfers must be in
the same segment as the channel pair. Bits 1 to 16 of the control word
contain the 16-bit address of the next 16 bits to be transferred; bits
17 to 32, the 16-bit address of the last 16 bits to be transferred.
(See Figure 11-6.) The DMC control word must be aligned on an even
16-bit boundary.

1 16 17 on
 

| ADR OF NEXT WORD TO TRANSFER | ADR OF LAST WORD TO TRANSFER |
 

Format of DMC Control Word

Figure 11-6
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As in DMA service, a controller uses BPA to request the processor for

memory access via a specified channel. When the processor can break

its execution, it services any pending requests. If more than one

request is pending, the processor services the request of the

controller mounted in the lowest numbered slot first, then others in

order of their priority.

Once it has selected a request to service, the processor either reads

or writes the contents of the location specified in bits 1 to 16 of

that channel’s control word. After the read or write, the processor

increments the contents of bits 1 to 16 by 1. If the value before the

increment equals the contents of bits 17 to 32 in the control word, the

processor issues an EOR signal. If the two values are not equal, then

there is more data to transfer.

At the end of each request, bits 1 to 16 of the control word point to

the next 16 bits to transfer. At the normal end of the transfer, bits

1 to 16 point to the last transferred location plus 1.

DMT

DMT transfers are used by controllers that do not need an external

control word stored in memory or in the register file. Since the

controller specifies all the information necessary to perform the

transfer, all channel control functions can overlap with processor and

memory functions at a speed equivalent to that of DMA. DMT transfers

are useful when manipulating tumble tables and channel programs.

When a controller wants to request a DMT transfer, it uses BPA to ask

the processor for memory access. When the processor can service the

request, it transfers data to or from the controller. ‘the address

specified by the controller is either the source or the destination of

the data to transfer, depending on the transfer direction.

Burst Mode DMT

Supported by the 6350 only, 16-bit burst mode DMI? operations are

similar to single DMI transfers because the controller specifies all

information for the transfer, enabling channel control functions to

overlap with processor and memory functions. The difference is that

burst mode transmits four 16-bit quantities of data in each transfer,

rather than just one. This makes burst mode efficient for transferring

large blocks of data.

The controllers do not request burst mode transfer unless they have 64

bits or more of data to transfer. If the controllers have been doing a

burst mode transfer but have, for example, 32 bits left, they must

request ordinary DMT transfers. Controllers may only use this mode

when they have been told to use it by the Operating System. This is a

difference between burst DMT and burst DMA modes.
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DM)

Chapter 6, DATATYPES, defined queues, their parameters, and how they
are manipulated. As noted there, one of their uses is as a storage
device. DMQ operations use physical memory queues to hold data
traveling between device and processor.

To make a DMQ request, the controller uses BPA to ask the processor for
queue access via a selected QCB. (The QCB address specified over BPA
must be aligned on a 64-bit boundary.) For an input operation, the
processor adds the 16-bit contents of the specified address to the
bottom of the queue (equivalent to an ABQ), if there is room. If there
is no room, the processor sends an HOR signal to the controller.

For an output operation, the processor removes the first 16 bits from
the top of the queue (equivalent to an RIQ) ami transfers it to the
specified address. If the queue contains no data, the processor issues
an KOR to the controller, as well as 16 bits of zeroes. If the
processor removes the last 16 bits from a queue, however, it does not
Signal the controller.

DM@ is fully interlocked with the queue manipulation instructions shown
in Chapter 6.

DMX ADDRESS FORMATION
 

The process that results in the formation of the addresses of the data
during DMx transfers begins with a controller driving the I/O bus
address lines. When the addresses are received by the CPU, they are
interpreted and used differently based on whether the CPU is in mapped
or unmapped I/O mode and which DMx mode is being requested by the
controller. The controller, in general, has no knowledge of what modes
the CPU is operating in or of the CPU type.

Typically, there are two address formation processes that occur. The
first forms the address of the channel control words. The second uses
the channel control words to form the address of where the data is to
be read from or written to. Table 11-10 shows how these addresses are
formed and used in the the various DMx modes.

11-21 second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

Table 11-10

DMX Address Formation

 

 

 

 

 

| Mapped | Channel | |

DMx | or Not | Control Word | |

Mode! Mapped | (CW) Address | Current Data Address |
——------—-=|

DMT | Mapped | None | Virtual: Segment # = BPA 00, 99 |

| | | Offset = BPA 1 to 16 |

| | | Physical: Virtual mapped through |

| | | a TLB |

| | | |

DMT | Not | None | Physical: BPA (18 bits) |

| Mapped | | |
|

DMA | Mapped | If BPA < 32, in | Virtual: Seg # = CW bits 15, 16 |

| | reg addressed by! Offset = CW bits 17 to 32l

| | BPA + ‘40. | Physical: Virtual mapped through |

| | | a TLB

| | If BPA >= 32, | Virtual: Seg # = CW bits 15, 16 !

| | Virtual: BPA (18)! Offset = CW bits 17 to 32l

| | Physical: mapped | Physical: Virtual mapped through |

| | virt. through TLB! a TLB |

| | |

| Not | If BPA < 32, in |! Physical: CW bits 15 to 32 |

| Mapped | reg addressed by | |

| | BPA + ‘40 | |

| | | |

| If BPA >= 32, | Physical: CW bits 15 to 32 |

| | Physical: BPA | |

| | (18 bits) | |
|

DMC | Mapped | Virtual: BPA | Virtual: Seg # = Seg # of CW |

| | (18 bits); | Offset = CW bits 1 to 16 |

| | Physical: mapped | Physical: Virtual mapped through |

| | virt through TLB | a TLB

| | | |

DMC ! Not | Physical: BPA | Physical: CW bits 1 to 16 |

| Mapped | (18 bits) | |
|

DM) | Mapped | If QCB.V=0: | Physical: QCB bits 37 to 48 |

| | QCB virtual is | Top or ttom Pointer |

| | BPA (18 bits); | |

| | QCB physical is | |

| | virtual mapped | |

| | through TLB | |

| | | |

DMQ | Not | If QCB.V=0, phys.!| Physical: QCB bits 37 to 48 |

| Mapped | is BPA (18 bits) | Top or Bottom Pointer |

i | !
[IMQ | Mapped | If QCB. V=1 | |

| or Not | invalid operation| |
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Notes to Table 11-10

For DMA: In not mapped I/O, if BPA < 32, the control word is
ina register. In mapped I/O, if BPA >= 32, the control word
is in main memory.

For DMC: The control word is in main memory.
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Power-up

POWER-UP AND SYSTEM INITIALIZATION
 

All 50 Series processors perform the following steps in the sequence
Shown for power-up and system initialization.

1. Power becomes valid.

2. VCP (Virtual Control Panel) or maintenance processor conducts
self tests.

3. CPU micro-diagnostics perform processor validation.

4. CPU initializes to the state shown in Table A-1.

Note

The failure of step 2, 3, or 4 stops the entire process and
Causes aN error message to be displayed.
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Table A-1l

CPU Initialization Values

  

Element Initialized | Initialized Value

  

CRS (current register set) | O (specifies RF2,
the first user
register set)

Registers in CRS O, generally

All DMA (direct memory access)
I/O registers but 6

Undefined

DIMA register 6 O Cor 3)/'1000

|
|
|
|
|
|
|
|
|
|
|
|

(manufacturing |
|
|
|
|

|
|
|
|
|
|
|
|

test equipment )

Keys 0 (addressing
mode now 16S)

Modals 0

Program counter Ring 0, segment 0,

offset ‘1000

0

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RSAVPIR (register save pointer) |
|
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Earlier Processors

The earlier processors are the following.

2200 850 750

650 550-II 550

500 450 I450

400 350 e250-II

250 150

This appendix discusses the implementation of the 50 series
architecture on these earlier systems, so called because they were
produced earlier than the 9950.

The discussion of architectural topics in this appendix is presented in
the order that they were presented in Chapters 1 through 11 of this
guide. For example, the first section in this appendix is System
Overview, which is the title of Chapter 1; the last section is
Input—Ouput, the title of Chapter 11.
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SYSTEM OVERVIEW
 

Chapter 1 presented an overview of the major units of the architecture

common to all 50 Series processors. All 50 Series processors but the

850 have a single-stream architecture; the 850 has a dual-stream one.

Both single-stream and dual-stream architectures as implemented on the

earlier processors are discussed below.

Single-stream Architecture
 

A 50 Series processor with single-stream architecture can be divided

into four major units as shown in Figure 1-l. These units are the

cache and STLB, the control store, the execution unit, and the

instruction unit. The following paragraphs describe each of these

units as implemented in the earlier single-stream processors.

Cache and STLB: For the earlier processors, the cache and the STLB

vary only in the amount of information that they can contain. For the

750 and 850, each cache entry contains information about four bytes of

recently accessed physical memory, as do those of the 2350 to 9955 IT.

For the other earlier processors, each cache entry has information

about two bytes. The STLB of all earlier processors contains the

results of the last 64 virtual-to-physical address translations.

The Control Store Unit: The earlier processors support up to 64 Kbytes

of ROM control store address space.
 

The Execution Unit: The execution unit elements appear in Figure 1-2.

These elements are: an integer arithmetic logic unit (ALU), a decimal

ALU, a floating-point unit, and register files. Of these elements,

only the number of register files varies according to processor type.

The earlier processors have four register files: one microcode and

system status register file, two user register files, and one direct

memory access file.

 

The Instruction Unit: Of the earlier processors, only the 750 and 850

have an instruction unit, designed to speed up execution by processing

information about instructions before execution. When the execution

unit is performing an add or similar operation for instruction n, the

instruction unit is working on the next two instructions. This unit is

decoding instruction n+l, calculating its address, and determining what

registers, if any, are to be accessed. It is also fetching instruction

n+2 from the cache so that it can be decoded when instruction n+l

begins to execute. This means that, in most cases, when the execution

unit finishes one operation, the instruction unit has already done the

calculations necessary to allow the execution unit to perform the next

instruction without delay.
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Dual-stream Architecture
 

The 850 processor has a dual-stream version of the 50 Series
architecture. This dual-stream nature enables the 850 to provide 60%
to 80% more service than the 750. Figure B-1 shows a block diagram of
the 850 dual-stream architecture.

Instruction Stream Units: The 850 contains two Instruction Stream
Units (ISUs), each of which is similar in capabilities to a 750 CPU.
Each ISU executes an independent stream of instructions simultaneously,
Synchronized by a Stream Synchronization Unit (SSU). (See below.)
Each ISU is responsible for:

 

e Full instruction decode

e Effective address calculation

e instruction execution

e Calculating data for the anticipated next instruction

The four blocks shown in each ISU contain the same elements and perform
the same functions as those described in the first part of this
Chapter.

The two ISUs share one copy of the operating system. PRIMOS is
reentrant and can run on either ISU (as can any user program), so
duplicate copies are not needed. System actions are also simplified,
Since there is no need to check for or handle discrepancies caused by
different versions of the operating system.

Stream Synchronization Unit: The primary task of the SSU is to prevent
improper information from being loaded into the cache of either ISU.
It does this by maintaining a list of the contents of both caches.
When data is written into either cache, the SSU detects it and
invalidates the contents of the appropriate entry in its list of cache
contents. This means that the SSU always knows which cache locations
contain current information and which do not.

 

When a cache location in one of the ISUs contains information that is
out of date, the SSU notifies that ISU of the discrepancy. That ISU
invalidates the stale entry, thus forcing a memory read to the current
information the next time that location is referenced.

In addition to synchronizing cache references, the SSU also coordinates
references to memory and system handlers. The two ISUs share one main
memory, one operating system, and one copy of several system handlers.
To ensure that these resources are used effectively and efficiently,
the SSU contains four locks.
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The process exchange lock aids the process exchange mechanism (see
Appendix C) to transfer control smoothly between processes on both
Isus. The queue lock controls situations in which simultaneously
executing queue instructions (one on each ISU) are vying for access to
a Single queue. It ensures that both instructions get access, but that
neither one interrupts or interferes with the other. The check lock
allows only one ISU to signal a check at a time, thus guaranteeing that
the single set of check handlers services all checks. The fourth lock,
the mutual exclusion lock, can be used by software to prevent both ISUs
from trying to access a particular procedure or piece of data at the
same time.

 

 

Diagnostic operations and communications between ISUs are also handled
through the SSU. The former feature aids in system monitoring and
testing; the latter enhances the 850's ability to execute independent
instruction streams without high system overhead.

PHYSICAL AND VIRTUAL MEMORY
 

Chapter 2 discussed the characteristics of the 50 Series virtual and
physical memory. Virtual memory is the same for all 50 Series
processors. There are three types of physical memory on the 50 Series:
cache, main memory, and disk. As implemented in the earlier
processors, the cache size and hit rate vary according to processor
type as shown in Table B-1.

Table B-1

Cache Sizes and Hit Rates for Earlier Processors

 

 

| System | Cache Size | Hit Rate |
| |
| 150 to 500 | @Kbytes | 85% |
| 550-II to 650 | 8 Kbytes | O% |
| 750 | 16 Kbytes | 95% |
| 850 | 62 Kbytes | 95% |
| 2250 | @ Kbytes | 85% |
 

The Memory Management section in this appendix discusses the cache
entry format implemented on the earlier processors. The main memory of
the earlier processors is comprised of one-megabyte E Series memory
boards. Earlier processors such as the 2250 that have a 16-bit wide
data path require a minimum of one memory board. The earlier
processors such as the 750 that have a 32-bit wide data path require a
minimum of two memory boards. The total memory capacity of the earlier
processors, like that of the 2350 to 2655, 9650, and 9655, is 8
megabytes. Disk memory is the same for all 50 Series processors.
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ADDRESSING

Chapter 3 discussed the kinds and modes of addressing supported by the
50 Series processors. Virtual address components and instruction
formats are the same for all 50 Series processors. The earlier
processors support four of the five types of address formation:
direct, indexed, indirect, and indirect indexed. Neither general
register relative (GRR) address formation nor C language pointers are
supported on the earlier processors.

All addressing modes are supported by all 50 Series processors. For
the earlier processors, the addressing range of 32I mode long is four

segments because GRR is not supported.

In the tables of Chapter 3, only two vary according to processor type:
64V mode address formation for nonindexing instructions, and address
trap action for short 64V mode instructions.

Table B-2 shows G64V mode address formation performed by the earlier

processors for the nonindexing instructions DFLX, FLX, JSX, LDx, Ly,

Table B-2
64V Mode Address Formation for Nonindexing Instructions

 

 

| Ti xtIyYyi | Rest of Earlier |

| | | | 750 and 850 | Processors |

| |
'orolot Direct | *Direct |
|'or1roirlt Direct | Index by Y |
;or1siot Direct | *Direct |
(-ortrliili I(A) | I(A+X) |
r1iolrodt T(A) | I(A+tY) |
l1liorltl I(A) | *T(A) |
Plirviot I(A) | T(A+X)
flildidlil I(A) | *T(A) |
 

Notes to Table B-2
 

* These modes should be used to ensure consistent behavior

across processors.

The symbol A in Table B-2 represents the value calculated from
the base register (PB, SB, LB, or XB) and displacement in the
instruction.
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Table B-3 shows how the earlier processors take address trap action for
Short 64V Mode instructions.

Table B-3

Address Trap Action for Short Format
Instructions, 64V Mode

 

H | D | Action
 |

‘Oto ‘7% | Takes address trap. |
‘10 to ‘37 | Takes address trap only if |

| segmentation is off. |
‘40 to ‘377 | Cannot take address trap. |

—'340 to +'377 | Takes address trap if EA (P+D) is |
| within the ATR. |

‘O through ATR! Takes address trap if D+X is |
| within the ATR. If D+X is |

outside the ATR, the EA is |
SB(seg #) | D+X (750 and 850*), |
or SB(seg #) | D+X+SB(word #) |
(rest of earlier processors). |

Cannot take address trap; FAis |

|
|
|
|
|
|
|
|
|
|
|
|
|

O
O

O
O

PS

an
®
)

O
o

~

o
O

O
O
o

o
O
o

o
O

|
|
|
|
|
|  SB+D+X (750 and 850*). Rest of
| earlier processors take address
| trap if D+X is within the ATR.
| Cannot take address trap.

-'340 to +'S77 | Takes address trap if EA (P+D+X)
| is within the ATR.
| Takes address trap if D is
| within the ATR. **
| Takes address trap if EA
| ( (P+D) ) is within the ATR.**
| Takes address trap if D<'100 and
| DX is within the ATR.**
| Takes address trap if EA (P+D)
| is within the ATR.**

O
o

o
O

 

Notes to Table B-3
 

* Same action taken for the 2350 to 9955 ITI.

** The indirect address also takes an address trap if FEA is
within the ATR.
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MEMORY MANAGEMENT
 

Chapter 4 told how a virtual address is translated into a physical
address. This included a discussion of memory management data
structures, accessing the STLB and cache, and address translation. The
implementation of these items varies for the earlier processors as
described below.

Memory Management Data Structures
 

As discussed in Chapter 4, all 50 Series processors have the following
memory management data structures: an STLB, a cache, four DIARs, many
SDIs, and either HMAPs or PMTs. The earlier processors have HMAPs, as
do the 2350 to 2655, 9650, and 9655; all other 50 Series processors

have PMTs.

The STLB of the earlier processors has 64 entries whose format is shown
in Figure B-2. The meaning of the STLB entry contents is identical to
that contained in Table 4-5.

l1264 6 7 9 10 21 28 33 & 45
 

IVIMIS! RING 1 | RING 3 |PROC ID! SEG | PHYS AIR|
 

STLB Entry Format for the Earlier Processors
Figure B-2

The bits used by the earlier processor in their hashing algorithm are
DIAR bits 1 and 2, segment bits 9 and 10, and page bits 1 to 6. The
hashing algorithm of the earlier processors is shown in Figure B-3.
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| |

| Page Bit 1 ----- | |

| XOR |-- STLB Address Bit 1 |

| DTAR Bit 1 ----- | |

| |

| Page Bit 2 ----- | |

| XOR !-- STLB Address Bit 2 |

| DTAR Bit 2 ----—- | |

| |

| Page Bit 3 —---- | |

| XOR |-- STLB Address Bit 3 |

| Seg Bit 10 ----- | |

| |

| Page Bit 4 ----- | |

| XOR |-- STLB Address Bit 4 |

| Seg Bit 9 —---- | |

| |

| Page Bit 5 -------- STLB Address Bit 5 |
| |

| Page Bit 6 —------- STLB Address Bit 6 |
 

STLB Hashing Algorithm for the Earlier Processors
Figure B-3

The cache entry format of the earlier processors varies according to
processor type. The cache entry format of the 750 and 850 is the same
as that of the 2350 to 2655, 9650, and 9655 because it includes 22 bits
of data. For the rest of the earlier processors, the cache entry
format includes 16 bits of data. Both of these formats are shown in
Figure B-4.
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1 1 12 1 oe
   

| V | PHYSICAL PAGE NUMBER | DATA |
 

750 and 850 Cache Entry Format
(Like That of 2350 to 2655, 9650, and 9655)

1 1 12 1 16
 

i V | PHYSICAL PAGE NUMBER | DATA |
 

Cache Entry Format of Other Earlier Processors

 

 

| Number | | |

| of Bits | Mnemonic | Description
| |

| 1 | Valid | The cache holds valid data when this bit |

| | | contains 1. |

| | | |

| 12 | Physical | Specifies the number of the physical page |

| | Page i that contains the specified location. |

| | Number | |

| | | |

| 16 or 32 | Data | Contains a copy of the contents of a |

| | | |location in physical memory.
 

Cache Entry Format of the Earlier Processors
Figure B-4

The DIARs and SDIs are the same for all 50 Series processors.

The HMAPS used by the earlier processors are the same as those used by

the 2350 to 2655, 9650, and 9655. The HMAP format is shown in Figure

I—Leé.

Accessing the Cache and STLB
 

As discussed in Chapter 4, a slightly different set of actions is

performed to access the cache and STLB depending on whether the

operation is a read or awrite. Write memory access is the same for

all 50 Series processors. Read memory access varies only in the number

of virtual address bits used to reference an entry in the cache index.
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The 750 and 850 use bits 20 to 32 of the virtual address, as do the
2350 to 2655 and 6350 to 9950. These bits are the least significant
three bits of the page field and the 10-bit offset field.

The I450 and 550-II hardware uses virtual address bits 21 to 32. These
bits are the least significant two bits of the page field and the
10-bit offset field.

For the other earlier processors, the hardware uses virtual address
bits 23 to 352 as the address of a cache index entry. These bits are
the 10-bit offset field.

The few page field bits mentioned above create a virtually mapped cache
described in Chapter 11 and the Input-Output section of this Appendix.

Address Translation
 

Address translation for the earlier processors is the same as for the
2550 to 2655, 9650, and 9655. This process is diagrammed in Figure
4-16.

CONTROL INFORMATION AND RESTRICTED INSTRUCTIONS
 

Chapter 5 discussed the modals, keys, and restricted instructions. The
modals and restricted instructions are the same for all 50 Series
processors. The keys are also the same for all 50 Series systems, with
the exception of bits 12 to 14 of the V mode and I mode keys.

For the format of the V and I mode keys, see Figure 54. Bits 12 and
13 (ASCII-8 and RND, respectively) are disregarded on the earlier
processors. Bit 14, the P850 bit, is used only by the 850 processor.
(For further details of the P850 bit, see Appendix C which describes
process exchange on the 850. )

DATATYPES

Chapter 6 discussed the datatypes supported by the 50 Series
processors: fixed point data, floating-point numbers, decimal
integers, character strings, and queues. With the exception of
floating-point numbers, each of these datatypes is represented in the
same way for all 50 Series processors and has the same operations and
instructions available to manipulate each type.

Some aspects of floating-point representations and operations vary
according to processor type. The floating-point features for the
earlier processors are presented below.
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The earlier processors support single precision (SP) and double
precision (DP) operations, but not quad precision (QP).

The memory format of SP and DP floating-point numbers is the same for
all 50 series processors as is the double precision accumulator (DAC);
these are shown in Figure 64.

The single precision accumlator (FAC) format for the earlier
processors 750 and 850 is the same as shown in Figure 64. For the
rest of the earlier processors, however, the FAC format is as shown
below in Figure B-5.

l on OO 48
 

| FRACTION | EXPONENT |
 

SP Floating-point Accumulator Format for Earlier Processors
Figure B-5

Floating-point overflow and underflow are the same for all 50 Series
processors.

The use of guard bits during normalization varies according to
processor type. Floating-point multiply instructions for the 550-IT,
650, 750, and 850 keep guard bits for normalization use; for all other
floating-point instructions, however, these processors shift in only
zeroes during normalization of the results and do not use guard bits.
For the rest of the earlier processors, no guard bits are saved; this
processor shifts in only zeroes during normalization.

Floating-point rounding varies according to processor type. See Table
B-4+ below for rounding on the earlier processors.
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Table B-4
Rounding Prerequisites and Procedures of the Earlier Processors

 

| Type | S550-II, 650, 750, and 850 | Rest of Earlier Processors
 

SP Add, subtract, multiply:
FRN compiler option rounds
result just before store.
(See Store below.)

Add, subtract, multiply:
FRN compiler option rounds
result just before store.
(See Store below. )

Divide:
Always rounds. 33 fraction
bits are generated for
rounding to 32.

Divide:
Rounding never done.

|
|
|
|
|
|
|
|
|
|

Store: | Store:

FRN rounds and normalizes | FRN rounds and normalizes
just before the store. | just before the store.
If FAC bit 25 = 1, then | If FAC bit 25 = 1, then
add 1 to bit 24 and zero | add 1 to bit 24 and zero

|
|
|
|
|
|
|
|
|
|
|
|

rest of FAC fraction. rest of FAC fraction.

Compare and Skip:
Rounding never done.

Compare and Skip:
Rounding never done.

DP Divide: Divide:
49 fraction bits generated Rounding never done.
for rounding to 48.

Other instructions:
Rounding never done.

Other instructions:
Rounding never done.

m
e
e
e

e
e

e
e

e
e
e
e
e
l

 

The discussion of normalized versus unnormalized operands in Chapter 6
applies equally to all SO Series processors. Divide produces
indeterminate results on the 550-II, 650, 750, and 850 (as well as_ the
2350 to 9955 II) when confronted with unnormalized numbers.

Floating-point accuracy and precision vary according to processor type.
Tables B-5 and B-6 summarize floating-point accuracy and precision for
the earlier processors.
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Table B-5
Floating-point Instruction Accuracy for the Earlier Processors

 

 

| | 750 | 550-II | Rest of Earlier |
| Instruction | andés50 /! amdo6s0 | Systems |

- FAD | 48 | oe gya32 !

ee ee
| FSB 48 | 32 32 |

ee
| oP} ew
! DFMP | 48+ : 48+ | 45 !

en eeCeCe
! DFDV ! 47* : 47* 46 !
| | | | |
 

Notes to Table B-5
 

+ means 2 extra guard bits are used.

* means rounding is always performed.

The values in Table B-5 refer to the number of fraction bits
guaranteed to be accurate for the indicated processor. This
number includes the sign bit because the fraction represents a
two's complement value. Other manuals may emulate a
sign-magnitude representation in statements about accuracy. A
sign-magnitude representation requires a 1 to be subtracted
from all entries in this table. Worst case normalization is
included in all results. The accuracy of an infinite precision
result lies closer to the number indicated than to either of
its neighboring representations.
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Table B-6
Floating-point Precision for the Earlier Processors

 

 

| | 750 | 550-II | Rest of Earlier |

| Precision | and 8s50 ! and 650 =| Systems |
| |

| Fraction Bits: | | | |

| Memory | 24/48/-- | 24/48/-- | 24/48/-- |

| Accumulator |! 48/48/-- | 32/48/-- | 32/48/-- |

| | | | |

| Exponent Bits: | | | |
| Memory | 8/16/-- | 8/16/--__ | 8/16/-- |

| Accumulator | 16/16/-- | 16/16/-- | 16/16/-- |

| | | |

| Guard Bits | 8 for | 2 for | None |

| | multiply | multiply | |
| | | | |

| | | |

| Rounds | For divide | For divide | No |

| Automatically | | |
| | | | |
 

Notes to Table B-6
 

The number of fraction and exponent bits is shown in SP/DP/QP
form.

The fraction values in Table B-6 refer to the number of
fraction bits for the indicated processor. This number
includes the sign bit because the fraction represents a two's
complement value; other manuals may emlate a sign-magnitude
representation. A sign-magnitude representation requires a l
to be subtracted from all fraction entries in this table.

750 and 850 Systems: The 750 and 850 processors operate in DP even
when executing SP instructions. Floating load instructions zero
accumlator bits 25 to 48. SP add, subtract, and mltiply instructions
do not truncate accumlator fractions to 32 bits, resulting in an
additional 16 bits of precision. The multiply instruction keeps extra
bits of precision that are used during normalization.

 

In an SP divide instruction, one fraction is 48 bits and the other is
24 bits. This instruction generates 33 fraction bits and rounds to 32
before placing the result in the SP accumilator. A DP divide
instruction, however, generates 49 fraction bits and rounds to 48.

SSO-II and 650 Systems: A 550-II or 650 system has a separate
double-precision hardware floating-point unit. These systems insert
zeroes in fraction bits 25 to 48 of an SP memory argument before
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loading the accumilator. They also zero fraction bits 33 to 48 for
arguments from the SP accumulator. All arithmetic operations are then
performed in DP.

Fractions are truncated to 32 bits to place the results in the FAC,
leaving the low order 16 bits alone in the overlapped DAC. Storing a
number in SP memory truncates a number further to 24 bits. A multiply
instruction alone preserves two extra bits of precision for use in
normalization.

A divide instruction automatically generates an extra fraction bit for
rounding the result to 32 bits (SP) or 48 bits (DP).

A single precision floating load instruction always zeroes accumulator
bits 25 to 48 before actually loading the number for systems with
PRIMOS Rev. 18 or above.

Other Earlier Systems: When an SP number is loaded from memory to the
accumulator, zeroes are placed in FAC fraction bits 25 to 32. After
performing a floating-point operation, the FAC fraction contains a
de-bit result. To store this result in SP memory, the processor
truncates bits 25 to 32 but leaves bits 33 to 48 alone.

 

DP memory and accumulator fractions both have a capacity of 48 bits, so
no bits of precision disappear when transferring DP numbers from one
place to the other.

A single precision floating load instruction always zeroes accumulator
bits 25 to 48 before actually loading the number for systems with

PRIMOS Rev. 18 or above.

Converting Datatypes
 

The conversion of floating-point numbers to integers and vice versa is
the same for all 50 Series processors with the exception that the
earlier processors do not have quad precision. Therefore, the earlier
processors cannot convert quadprecision numbers to integers and vice

versa.

ALTERING SEQUENTIAL FLOW
 

Chapter 7 discussed the instructions that alter the sequential flow of
@ program: branch, skip, and jump. These instructions are the same
for all 50 Series processors.
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STACKS AND PROCEDURE CALLS
 

Chapter 8 discussed stacks and their management, entry control blocks,
indirect pointers, gate access, making a procedure call, and the ARGT
and PRIN instructions. All of these items are the same for all 50
Series processors.

PROCESS EXCHANGE 

Chapter 9, PROCESS EXCHANGE, discussed the process exchange mechanism
(PXM) on single-stream 50 Series processors. Since the 850 has a
dual-stream architecture, process exchange on this earlier processor is
discussed in Appendix C.

The main elements of the PXM are the same for all single-stream 50
Series processors. Thus, they have the same process control blocks,
ready list, wait lists, WAIT instruction, NOTIFY instructions, and
dispatcher.

As discussed in Chapter 9, three types of register files form the
register set: microcode and system status register files; user
register files; anda DMA channel register file. The number of
register files in a register set, however, varies according to
processor type.

There are four register files for the earlier processors: two user
register files, one microcode and system status register file, and one
DMA channel register file. The allocation for these register files
appears in Table B-7.

Table B-7
Register File Allocation for the Earlier Processors

 

Register File | Absolute Locs | Use
 

| |
| |
| RFO | O to '3% | Microcode scratch and system |
| | | registers |
| RF1 | ‘40 to ‘77 | 32 DMA channels |
| RF2 | ‘100 to ‘137 | User register set 2 |
| RFS | ‘140 to ‘177 | User register set 3 |
 

Note to Table B-7 

The two user register sets listed in this table are called user
register sets 2 and 3 to correspond with their register file
numbers RF2 and RFS.
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The format of each user register file is the same for all SO series
processors and is shown in Table 9-5. The DMA channel register file,
shown in Table 9-6, is also the same for all 50 Series processors. The
format of the single microcode scratch and system status register file
for the earlier processors appears in Table B-8.

Table B-8
Microcode Register File, RFO, for the Earlier Processors

 

 
| Loe | Contents (|! Loe | Contents |
| |
| O | TRO ii ‘20 1 ZERO, ONE |
| 1 {| TR '| ‘21 | PBSAVE |
| 2 | TR2 || ‘22 1 RDMXS |
| & | TR3 |! ‘23 | RDMx4 |
| 4 | TR4 1! ‘24 | Cav? |
| 5 | TRS || ‘25 | MINUS1, MINUS2!
| 6 | TR6 |! ‘26 | WWADTIR |
| 7 | TR7 || ‘27 | DSWPARITY |
| ‘10 | RDMX1 \|1 ‘30 | PSWPB |
| ‘11 | RDMX2 11 ‘31 | PSWKEYS |
| ‘12 | USCADDR* ,REOIV#!| ‘32 | PPA, PCBA |
| ‘13 | RSGT1 11 ‘33 | PPB, PCBB |
| ‘14 | RSGTe || ‘34 | DSWRMA |
| ‘15 | RECCl [1 ‘35 | DSWSTAT |
| ‘16 | RECC2 || ‘36 | DSWPB |
| ‘17 | ---, RATMPL# || ‘37 | RSAVPTR |
 

* Used only for the 750 and 850 systems.

# The locations for REOIV and RATMPL are

switched on the 2250, 250, 400, am
550-II.

The nature of the process interval timer varies according to processor
type. The 550-II, 1450, and 850 use a timer accurate to the
microsecond, as do the 23550 to 9955 II. These processors also support
the two instructions that manipulate the process timer as shown in
Table 9-12.

The process interval timer of the other earlier processors is accurate
to the millisecond.

As discussed in Chapter 9, the basic steps of the dispatcher operation
are the same for all 50 Series processors. These steps are as follows.
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1. Turn off the process interval timer.

2. Choose a process to run.

&. Select a user register set for that process.

4. Turn the process interval timer back on.

Step 1 varies only in the number of bits used for the process interval
timer in location ‘30 of the current register set. Bits 1 to 26 are
used for the I450, 550-II, and 850, as is the case for the 2350 through
9955 II. Bits 1 to 16 are used for the other earlier processors.

Step 2 is the same for all 50 Series processors.

The operation of Step 3 for the earlier processors is shown in Figure
B-6. For the earlier processors, the dispatcher makes the other user
register set the current register set.

Step 4 is the same for all 50 Series processors.

INTERRUPTS, CHECKS, FAULTS, AND TRAPS
 

Chapter 10 discussed interrupts, faults, checks, and traps. The
following paragraphs discuss the implementation of these breaks in
execution for the earlier processors.

Interrupts

The two types of interrupts are external and memory increment.
External interrupts are the same for all 50 Series processors. Memory
increment interrupts are supported only on the earlier processors, and
are described below.

Memory Increment Interrupt: Service for this interrupt is always the
Same, regardless of the process exchange mode. The processor uses the
address supplied by the controller as a 17-bit offset into either of
the I/O segments, 0 or 1 (if in mapped I/O). This offset addresses a
halfword whose contents the processor increments by 1. If the
incremented value does not equal 0, the processor does nothing more and
returns.

 

If the incremented value does equal O, the processor generates an
end-of-range (KOR) signal on the I/O bus and returns. The requesting
device typically generates an external interrupt when the EO is
generated.

 

Unlike the external interrupt, the memory increment interrupt cannot be
masked out and can occur at any fetch cycle break.
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Returning From a Memory Increment Interrupt: While the PXM mode does
not affect service of this interrupt, it does determine where the
processor returns to upon service completion. When the PXM is enabled,
the processor returns to the fetch cycle or the dispatcher, depending
on where the interrupt occurred. In the case of the dispatcher, the
processor always returns to the top of the dispatcher and does not
change the PB or KEYS.

 

When the PXM is disabled, the processor always returns to the fetch
cycle.

Standard Interrupt Mode: Standard mode interrupts, although supported
by all CPUs, are not used by PRIMOS. Current processors and
controllers support this interrupt mode, but future ones will not.
Obviously, the use of standard interrupt mode is strongly discouraged.

 

During standard mode I/O Interrupts, the I/O bus address lines received
by the CPU are interpreted and used differently based on the mode that
the CPU is in. The controller has no knowledge of which of these modes
the CPU is operating in or of the CPU type. The controller actions
during interrupt cycles are always the same.

When performing interrupts the CPU reaches the interrupt response code
by performing an indirect JMP or JST through offset ‘63 as shown in
Table B-9.

Table B-9
Address Formation for Standard Interrupt Mode

 

 

| Interrupt | PXM | Mapped | Indirect Jump | Instruction |
| Mode | Enabled?! I/0? | Address | Emulated |
| |
| Standard | No | No | Physical = ‘63 | JST ‘63,* |
| | | | | |
| #Standard | Yes | No | Physical = ‘63 | JMP ‘63,* |
| | | | |
| #Standard | No | Yes | Segment O, | JST ‘63,* |
| | | | offset = ‘63 | |
| | | | | |
| #Standard | Yes | Yes | Segment 4, | JMP ‘65,* |
| | | | offset = ‘63 | |
 

# means not recommended.

In standard interrupt mode, only one IRC can execute at a time, so the
IRC has nothing to clear or save (other than the contents of any
registers it intends to use) before reenabling interrupts. As in
vectored mode, the IRC completes the rest of its operation and
transfers control back to the location whose address is contained in
the first IRC location.
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Faults

Of the twelve types of faults, eleven are supported by all 50 Series
Systems: RXM, process, page, SVC, UII, ILL, access, arithmetic, stack,
Segment, and pointer. Only semaphore faults are not supported by the
earlier processors.

Fault handling is the same for all 50 Series processors, excluding the
handling of integer exceptions. For a 750 or 850, from one to four
instructions are executed before the integer overflow exception occurs
and the fault is taken. (The only exception to this is in the case of
divide by zero, which always points to the next instruction.)

For the other earlier processors, when an integer overflow exception
occurs, the resulting fault is taken before the next instruction is
started. The program counter points to the next instruction suitable
for execution. If, however, an ECCC check becomes pending at the same
time as the integer exception, that integer exception will be lost.

Table 10-10 shows arithmetic exception codes. In this table only the
FCODEH contents for a decimal overflow exception vary according to
processor type. These contents are $700 for the 750 and 850 as well as
the 2350 to 9955 II. For the other earlier processors, the FOODEH
content on a decimal overflow is $704.

Checks 

Four of the six types of checks apply to all 50 Series processors:
power failure, memory parity error, machine check, and missing memory
module. The earlier processors do not have environmental checks or
recoverable machine checks.

The check handler is the same for all 50 Series processors in that it
uses a check header, check vectors, diagnostic status words, and the
MCM field of the modals. Of these items, only the diagnostic status
words vary according to processor type. The DSWPARITY of the 750 and
850 appears in Table B-10. No other earlier processor has a DSWPARITY.
Table B-11 shows the DSWSTAT for the earlier processors. Tables 10-20
and 10-21 show the DSWRMA and DSWPB, respectively, for all 50 Series
processors.
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Table B-10
Format of DSWPARITY Register for the 750 and 850

 

 

Bits | Name | Description

1 | RPA Parity | If 1, the control store has detected a
| Error, Type 1! parity error as follows:
| | DMx input E6: BPD or Burst- RO, R2
| | DMx input E5: BPD or Burst-
| | RO, Rl, R2, RS
| | DMx output: BMD.

2 | RPA Parity | If 1, Dx input E6: BPD or Burst- Rl, R3
| Error, Type 2! DMx input E5: BPD
| | DMx output: BMA.

5 | Burst-mode DMx | If 1, the control store detected a
| Parity Error | Dx burst mode parity error.

4 | DMx I/O Parity | Setting specifies that the control store
| Error | detected a DMx parity error as follows:
| | O: DMx input
| | 1: DMx output.

5 to 7 | J Board Parity | The J board detected a parity error
| Errors | as follows:
| ] 000: peripheral reports BPD error
| | Coutput )
| | OOl: base register file high
| | 010: memory reports BMD error (write)
| | Oll: prefetch buffer address
| | 100: peripheral reports BPA error
| | Coutput )
| | 101: base register file low
| | 110: memory reports BMA error
| | 111: prefetch buffer instruction.

8 | RCM Parity | If 1 and no board reported an error, then
| Error | an RCM parity error has been detected.

9 | ECC Error | If 1, memory detected an ECC
| | uncorrectable error on read.

10 | Prefetch Board | If 1, prefetch board parity error.
| Parity Error |

11 =! BPA Input | If 1, BPA input parity error (DMx or
| Parity Error | interrupt).

l2 =| RDX Parity | If 1, RDX parity error when most
| Error | recently closed.

15 | Register File | If 1, register file parity error.
| Parity Error |

14 _~=s|:«REA Parity | If 1, REAH or REAL parity error.
| Error |
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Table B-10 (continued)
Format of DSWPARITY Register for 750 and 850

 

 

| Bits | Name | Description
|
| 15 | DMx Cycle | If 1, parity error occurred during
| | Parity Error |  UDMx cycle.
| 16 =| AP Board | If 1, AP board detected parity error.
| | Parity Error |
| 17 =| C Board | If 1, C board detected parity error.
| | Parity Error |
| 18 | BMD Input Even | If 1, BMD input even word parity error.
| | Parity Error |

19 =| BMD Input Odd | If 1, BMD input odd word parity error.
| | Parity Error |
| 20 | Missing Memory | If 1, missing memory module at cache

| Module | miss.
| 21 | BMA Parity | If 1, memory detected BMA parity error
| | Error | at cache miss.
| 22 | RMA Increment | If 1, RMA was incremented at time of
| | | parity error (cache miss).
| 238 | BMAI5 | Setting of BMA15 indicator at time of
| | Indicator | parity error (cache miss).
| 24 | BMAI6 | Setting of BMA16 indicator at time of
| | Indicator | parity error (cache miss).
| 26 | ECCU Error | If 1, memory reports an ECC
| | | uncorrectable error on a cache miss.
| 26 | ECCC Error | If 1, memory reports an ECC correctable
| | | error on a cache miss.
| 27 | Cache Index | If 1, cache index parity error on
| | Parity Error | cache read.
| 28 | Cache Data | If 1, cache data odd word parity error
| | Odd Word | on cache read.
| | Parity Error |
| 29 | Cache Data | If 1, cache data even word parity error
| | Even Word | on cache read.
| | Parity Error |

30 | Cache Cycle | Specifies the purpose of the cache cycle
| | Purpose | at the time of the error:
| | | O: prefetch
| | | 1: execute
131 to dai -—- | Currently unused.
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Table B-11
Format of DSWSTAT Register for All Earlier Processors

 

 

| Bits | Name | Description |
| |
| 1 | Check Immediate! If 1, the check was taken immediately. |
| 2 | Machine Check | If 1, a machine check occurred. |
| 3 | Memory Parity | If 1, a memory parity error caused the |

| | Check. |
| 4 | Missing Memory | If 1, a missing memory module error |
| | Module | caused the check. |
| 5 to 7 |! Machine Check | The hardware detected the cause of the |
| | Code | trap as follows: |
| | | 000: peripheral reports BPD error |
| | | (output) |
| | | O01: base register file high |
| | | O10: memory reports BMD error (write)!
| | | Oll: prefetch buffer address |
| | | 100: peripheral reports BPA error |
| | | Coutput) |
| | | 101: base register file low |
| | | 110: memory reports BMA error |
| | | 111: prefetch buffer instruction |
| 8 | RCM | Control unit memory —- this bit is reset |
| | | when an error is detected. |
| 9 | ECCU | If bits 3 and 9 are both 1, the memory |
| | | parity error was ECC uncorrectable. |
| §6.10 | ECCC | If bits 3 and 10 are both 1, the memory |
| | | parity error was ECC correctable. |
| 6.11 | BUNV | If 1, the RP backup count in bits 12 and |
| | | 135 is not valid. |
112 to 14 | RPBUP | Specifies the RP backup count, which is |
| | | the amount DSWPB was incremented in |
| | | the current instruction. |
| 15 | DMx Operation | If 1, a DMx transfer was in progress |
| | | when the error occurred. |
| 616 | I/O Operation | If 1, an I/O operation was in progress |
| | | when the error occurred. |
11? to 22 | ECC Syndrome | If a memory parity error occurred, |
| | Bits | these bits describe the error. |
| | | See Table 10-29 of Chapter 10. |
| 23 | ~—— | Currently unused. |
| 24 | Memory Module | If a memory error occurred, this bit |
| | Number | identifies the interleaved memory |
| | | module that contained the error (bit |

| | 15 of address at time of error). |
| §=6.25 | RMA Invalid | If 1, the contents of DSWRMA are invalid.|
| 26* | U-verify Pass | U-verify pass number as follows: |
| | | OQ: first pass (check mode off) |
| | | 1: second pass (check mode on) |
l27 to 52*!| U-verify Test | If set, contains the number of a failed |
| | Failure | u-verify test. |
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Note to Table B-1l
 

* Valid for 750 and 850. For rest of 50 Series: bit 2 is
unused, bit 27 is the u-verify pass number, and bits 28 to
32 are the u-verify test failure number.

Table B-12 lists those checks that cause a microcode trap and describes
the actions that occur for the earlier processors.

Table B-12
Check-produced Traps and Their Actions for the Earlier Processors

 

| Event | Actions
|
| Missing Memory Module, | Sets end-of—instruction flag to 1; sets

ECC Uncorrectable, or REOIV to the proper offset or vector;
Machine Check during sets MCM to 00; executes microcode
I/O (DMx, PIO, return to the trapped microcode step.
interrupt processing, Correctable memory errors are ignored
excepting machine during I/O.
check for RCM parity)

 

(not during I/O) REOIV to the proper offset or vector;
sets MCM to 2; executes microcode return
to the trapped microcode step.

Action is deferred until the next fetch
cycle, and then a check is taken.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Power Failure |
|
|
|

| |
| |
| |
| |
| |
| |
| |
| ECC Correctable Error | Sets end-of-instruction flag to 1; sets
| |
| |

|
| |
| |
| |
| |
| |All other checks Software check occurs immediately.
 

Traps

Traps and their priorities are described in Table 10-26. The operation

of these traps is the same for all 50 Series processors with the

following exceptions for the earlier processors. Diagnostic processor

interrupts are invalid for the 750 and 850. Memory increment interrupt

traps are used only on the earlier processors. (This trap occurs at

the point where a controller requested service.) Cache or STLB parity
error traps aS well as hard parity error traps are not used on the
ra YY aCariier processors.

The interpretation of syndrome bits used in identifying bit errors in

the earlier processors is shown in Table 10-29.
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For the earlier processors, the additional software break caused by
traps is the same as shown in Table 10-30. In addition, upon a memory
increment interrupt trap, the interrupt occurs. (Memory increment
interrupts are supported only on the earlier processors. )

Interval Clock

The earlier processors use a 500 Hz interval clock that generates a
timing pulse every 2 milliseconds.

INPUT-OUTPUT

Chapter 11, INPUT-OUTPUT, discussed Programmed I/O (PIO) and Direct
Memory I/O (DMx). PIO is the same for all 50 Series processors. DMx
for the earlier processors is like that of the 2350 to 2755 and 9650 to
9955 IT with the exception that a few details of mapped I/O vary
according to processor type. This variance is based on the IOTIB and
the size of the cache as described below.

The IOTLB forms part of the virtual-to-physical address mapping
hardware. (The STLB is the other part.) The IOTLB of all earlier
processors contains 64 entries. Table B-13 shows the contents of each
IOTLB entry for the earlier processors.

Table B-13
IOTLB Entry Format

 

Number of Bits
 

|

|

| | Rest of |

|

|
750, | I4650, | Earlier | |

|
 

to invalidate when
writing to memory.

| |
| |
| |
| |
| 850 | 550-II | Processors! Contents Description |
| |
| 1 | 12 | 12 | Physical | Specifies a physical page |
| | | | page number | in either of the I/0 |
| | | | | segments. |
| | | | | |
| 1 | 1 | 1 | Valid bit | Indicates if this entry |
| | | | | contains old data. |
| | | | | |
| 3 | 2 i 0 | MBIO bits | Specifies the cache leaf |
| | | | |
| | | | | |
 

B-27 Second Edition



SYSTEM ARCHITECTURE REFERENCE GUIDE

The earlier processors use Segment O only as an I/O segment. Each

IOTLB entry for the earlier processors contains mapping information for

one page of the I/O Segment O as shown below.

IOTLB Entry Corresponding Page in I/O Segments
 

0 to 63 Segment 0, Pages O to 63

As noted in Table B-13, 0 to 3 bits of the virtual address form the

MBIO bits for the earlier processors. As discussed in Chapter 11,

these bits determine which part (leaf) of the cache to invalidate after

a memory write. Three MBIO bits are used for an 8-leaf cache, 2 bits

for a 4-leaf cache, and O bits for a 1-leaf cache.

Since the cache of the 750 and 850 contains 16K bytes, it contains

mapping information about 8 entries of physical memory, each having the

same page offset. The cache of the 1450 and 550-IT contains 8K bytes

and contains mapping information about 8 entries of physical memory.

The MBIO bits allow the information for only the modified entry to be

invalidated after a memory write, rather than each of the 4 or 8

possible places.

The LIOT instruction loads the IOTLB entries with transfer information.

For the 2350 to 9955 II as well as the earlier processors 850, 750,

T450, and 550-II, the LIOT instruction must be used before any transfer

occurs so that the processor maps virtual pages to the desired physical

ones. The rest of the earlier processors load the IOTLB by accessing

the appropriate page in segment O by an instruction, such as LDA,

before any transfer since their cache is exactly the size of one page.

DIMx transfer rates for the earlier processors are shown in Table B-1¢4.
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Table B-14
DMx Transfer Rates for the Earlier Processors

EARLIER PROCESSORS

 

Transfer! Maximum Speed |
 |

2.5 Mbytes/sec |
2.5 Mbytes/sec |

|
1.0 Mbytes/sec*|
1.0 Mbytes/sec*|

|
2.5 Mbytes/sec*|
2.5 Mbytes/sec*|

|
280 Kbytes/sec*|
280 Kbytes/sec*|

 

| Type |
|

| DMA | Input |
| { Output |
| |
| IMC 61 Inputs |
| | Output |
| | |

| DMT | Input |
| | Output |
| | |

| TMQ ! Input |
| | Output |
| | |

| Burst! Input |
| mode | Output |

* This is an approximate value.

The format of a DMA control word in physical I/O mode is the same for
all systems and is shown in Figure 11-4. For mapped

the format of the DMA control word is asearlier systems, however,
Shown in Figure B-7.

1 12 13 14 15

I/O mode on the

oe
 

|2°s COMP WORD COUNT | RESERVED | OFFSET FOR START OF TRANSFER |
 

Control Word Format in Mapped I/O Mode
for the Earlier Processors

Figure B-7

All other aspects of DMx for the earlier processors are the same as
those for the 2350 to 2755 and 9650 to 9955 IT.
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Process Exchange on

the 850

Chapter 9 of this guide described process exchange for the
Single-stream members of the 50 Series family. On the dual-stream 850,
however, process exchange is more complex because:

@ There are two processing units, the ISUs

@ Iwo processes can execute at once (one per ISU)

e The two ISUs share one set of PCBs, one ready list,
and one set of wait lists

This chapter elaborates on each of these points. It also describes the
elements of the 850 PXM, and describes the actions of the 850
dispatcher.

INSTRUCTION STREAM UNITS
 

Before reading this appendix, note the use of two terms. This ISU
refers to the ISU on which a process of interest is currently
executing. The Other ISU designates the second system ISU.

As mentioned in Chapter 1, the 850 contains two instruction stream
units, or ISUs, each of which is equivalent to a 750 CPU. The ISuUs
operate independently of each other and are Capable of performing any
task any 750 processor can perform. The one exception is that only one
ISU performs I/O and is thereby designated the master ISU. Therefore,
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when a process running on the slave ISU wants to request I/0 service,

that process is moved to the master ISU for I/O service.

Two Executing Processes
 

Since there are two ISUs per system, two independent processes can ke

executing at the same time. These two processes are always the two

having the highest level of priority in the entire system. Ensuring

that the processes with the highest priority are the ones that are

selected to execute makes dual-stream process exchange more complicated

than its single-stream complement. It is further complicated by the

fact that a process can be locked to one ISU, which means that it can

only execute on a particular ISU (such as the backstop or supervisor).

See the section The PX Lock, below, for more information about this

topic.

One Set of Process Exchange Data Structures
 

To aid the ISUs in selecting the highest priority processes, the 850

uses one ready list, one group of wait lists, and one group of PCBs for

both IsUs. This means that an ISU has to scan only one list to

determine the processes available to execute. It also means the system

has to maintain only one set of information, eliminating the need to

check and update any duplicates. In addition, it means that a process

not locked to one ISU may execute faster, since whichever ISU becomes

available first can execute it.

850 PROCESS EXCHANGE ELEMENTS
 

The data structures of the 850 PXM include:

e FCBS

e Ready list

e Wait lists

e WAIT and NOTIFY instructions

e Dispatcher

Like its single-stream counterpart, the 850 PXM also manipulates the

register file and the process interval timer. In addition, the 850 PXM

uses the value CPUNUM and the PX lock to facilitate its operations.
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The CPUNUM

CPUNUM is a 16-bit number stored in bits 1 to 16 of location ‘33 of the
current register set. This number distinguishes the two ISUs. CPUNUM
contains ‘41004 to represent This ISU and ‘102010 to represent The
Other ISU.

 

The PX Lock

The PX lock ensures that only one ISU at a time has access to and can
modify the contents of the process exchange data structures. This lock
is a 16-bit number. When the lock contains 0, then either ISU can
Claim the right to access the structures. When it does not contain 0,
the lock contains the same value as CPUNUM; that is, the id for one of
the ISUs. Only the ISU specified by the lock can access. the
structures; the second ISU must wait until the first ISU is through
its current task before gaining access.

PCBS

The process control block format for the 850 is nearly identical to
that of the single-stream PCBs. Only a few locations contain added
information, as shown in Table C-1.

OWNERH (bits 1 to 16 of location 25 in the current register set)
Specifies the segment containing all the PCBs. Each PCB contains at
least 64 locations and mst be aligned on a 128-byte boundary. The
starting address of the PCB is also the process id.

No PCB (or any other data structure the PXM uses) should be contained
in locations 0 to ‘37 of a segment. Each addressing mode handles
address traps differently; avoiding these locations ensures that all
addressing modes handle process exchange in the same way.
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Table C-1
PCB Format for the 850

 

| Section | Offset # | Contents

| 

| Control 0 | Level pointer to BOL in ready list.

|
1 | Link pointer to next PCB, or 0.

|
2to3 | Segment #/offset of the semaphore on whose

wait list this process currently resides.

A segment + of O indicates that this PCB

is on the ready list.

Abort flags used to generate a process fault

when this PCB is dispatched.
Bits 1 to 15: Set by the software.

Bit 16: Process interval timer overflow.

|
|
|
|
|
|

|

|

|

| Bits 1 to 4: Temporarily restrict process

| from running on one of the ISUs:

| 0000 no restrictions
| 0100 =bar from This ISU
| 1000 = bar from The Other ISU
| Bit 5: Reserved for future use.
| Bits 6to 7: If 01, this process last ran

|

|

|
|

|
|
|
|
|
|
|
|
|
|

on This ISU; if 10, The Other ISU.

Bit 8: If 0, the registers for this
process have not been saved in
the PCB. If 1, the registers
have been saved in the PCB.

Bits 9 to 11: Indicate which register set
this process used last. Use
the same format as the modals

CRS field.
Bit 12: Reserved for future use.
Bits 13 to 16: Process is locked to:

0000
0100
1000

neither ISU

This ISU

The Other ISU

6 to 7 | Reserved for future use.

|
‘10 to ‘11! Process elapsed timers. This value is added

| to contents of PCB location ‘16 to give

| the number of msec this process has run.
| RIS can alter this location.

|
‘12 to ‘15! DTAR2 and DTARS. These are never saved,

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i

i

|

|

|

|

|

|

|

|

|

|

|

|

{

|

|

|

|

|

|

|

|

|

|
| i oniy restored
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Table C-1 (continued)
PCB Format for the 850

 

Contents
 

‘6l|

Interval timer, bits 1 to 16.

Interval timer, bits 17 to 32.

Save mask. PXM uses this to avoid saving or
restoring registers containing zeroes.
Format of the word is:

1 to 8: GRO to GR7 (8 32-bit registers)
9 to 12: FACO to FAC] (4 32-bit

registers)
135 to 16: base registers (4 32-bit

registers (PB, SB, LB, XB)

Keys.

Storage for nonzero registers. (See Save
mask, above. )

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fault vector. Segment #/offset to |
fault table for Ring 0. |

|
Fault vector. Segment +#/offset to |

fault table for Ring 1. |

|
Reserved for future use. |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fault vector. Segment #/offset to
fault table for Ring 3.

Fault vector. Segment +/offset to
fault table for page fault.

Concealed fault stack header (FIRST, NEXT,
and LAST pointers).

Reserved.

Concealed stack. These words can go anywhere
in segment OWNERH; i.e., they do not have
to start at location ‘100. The concealed
stack can contain as many frames as
desired.
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Ready List and Wait Lists
 

The wait lists used in the 850 are identical to those found in the

other 50 Series processors. The ready list is also identical except
for the process exchange registers it uses.

Each ISU contains four process exchange registers. Two specify
information about the currently running processes, and two specify
information about the next processes to run. All four are 32 hits

wide.

MYPPA and OTHERPPA define either the currently running process, or

the process that is about to run. MY_PPA represents this process for

This ISU; OTHER_PPA, for The Other ISU. Bits 1 to 16 of each register

contain the process’ level of priority; bits 17 to 32, the starting

address of that process’ PCB. Bits 1 to 16 of each register are

guaranteed to always point to the ready list priority level that

contains the highest priority process that is able to execute for the

appropriate ISU.

The MY_PPNEXT register specifies the next process to run on This ISU;

OTHERPPNEXT, for The Other ISU. Like their single-stream counterpart

(PPB), bits 1 to 16 specify the priority level of the next process to

run, and bits 17 to 32 identify the PCB of this process. A nonzero

value in bits 1 to 16 indicates valid contents.

WAIT and NOTIFY Instructions
 

These instructions perform the same basic functions as_ their

single-stream counterparts. However, their tasks also include

obtaining the PX lock and loading the PXM registers with the correct

information so that each ISU can correctly determine its own state and

that of the second ISU. Figures C-1 and C-2, together with the text in

this section, give simplified versions of how the 850 WAIT and NOTIFY

instructions work.

WAIT: WAIT tells the PXM to wait for an event to occur before

executing more of the currently active process. The address pointer
contained in WAIT specifies a semaphore on which the process is to
wait. WAIT obtains the PX lock, then increments the semaphore count by

1.

Tf the incremented value is less than or equal to O, WAIT releases the
PX lock and performs no other actions. If the incremented value is

greater than 0, WAIT removes the process’ PCB from the ready list and

places it on the appropriate wait list acording to the process’
priority. WAIT loads locations 2 and 5 of the process’ PCB with the
semaphore address and saves the process’ base registers into its PUB.

After the short save, WAIT either runs the next process, if it knows

it, or invokes the dispatcher to choose a new process to run.
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The 850 WAIT Instruction
Figure C-1
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Get PX Lock
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Release PX

Lock

   
Yes

 

Halt Execution

of Currently
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PCB From Wait List.

Put It on Ready List   

     

 

 

  

 

MY__PPXNEXT Call Dispatche
Valid? patener

 

Determine Highest
Priority Processes.

Run Them.

Y
   

The 850 NOTIFY Instruction

Figure C-2
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NOTIFY: The 850 NOTIFY is significantly more complex than the
Single-stream WAIT. Its purpose is deceptively easy to state: NOTIFY
ensures that the two currently running processes in the system are the
two highest priority processes that are able torun. To do this,
NOTIFY notifies the process that is at the top of the associated
semaphore’s wait list, then compares the priority level of this process
with those of the two processes currently running.

Step 1. Finding a Process to Notify: When it executes a NOTIFY
instruction, the PXM first acquires the PX lock. It then uses the
pointer contained in the NOTIFY to reference a semaphore and decrement
the semaphore count by 1. If the decremented value is less than 0, the
PXM releases the PX lock and the NOTIFY is done.

 

If the decremented value is greater than or equal to 0, then the PXM
must notify a process. It ceases to execute the current process and
removes the first PCB on the semaphore’s wait list. It places the PCB
at the beginning or end of the appropriate level of the ready list as
indicated by the NOTIFY.

Step 2. Choosing a Process to Run: The PXM must now choose a new
process to run. If the contents of MY_PPNEXT are invalid, control
transfers to the dispatcher, which determines the next process to run.

 

If the contents of MY_PPA are valid, the PXM mst decide if the process
it just notified is of higher priority than either of the processes
currently executing. Six cases exist:

A<C and B<C
C<B<A
C<A<B
C<A=B
A<C<B
B<C<A

where A is the process currently running on This ISU, B is the process
currently running on The Other ISU, and C is the process that was just
notified.

These cases can become quite involved, depending on where each of the
three processes can run, and depending on what actions the PXM has
taken previously. This discussion will explain two simple examples.

Suppose the first case were true. This means that C has the lowest
priority of the three processes and will not be run. All the PXM needs
to do is to decide on which ISU C is to be run.

If C can be run on only one ISU and has a higher priority than the
process that ISU is to execute next (as specified in that ISU’s
MY_PPNEXT register), the PXM updates that ISU’s MYPPNEXT register so
that it points to C. Therefore, that ISU will execute C next.
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If C can be run on either ISU, the PXM updates MY_PPNEXT and

OTHERPPNEXT on both ISUs so that C will execute as soon as either ISU

is free.

As another example, suppose case 2, C<B<A, were true. Here C has the
highest priority of all, and should run on This ISU, if possible. A
Simplified algorithm for this case is shown in Figure C-3s.

 

If C can run on This ISU
then if A can run on The Other ISU

then if OTHER_PPNEXT is of lower priority than A
then invalidate OTHER_PPNEXT

set MY_PPA to A
set PPA to C and go to the dispatcher.

If C can run on The Other ISU,
x*x* then if The Other ISU has received the most recent scan

then send this scan message. Scan identifies C as the
process to consider running;

else if priority of process in last scan is greater than C's
then return;
If priority of process in last scan is less than C's
then go to *** above;
If priority of process in last scan equals C's
then call dispatcher to scan ready list to

pick up the process queued first and return.

 

Sample NOTIFY Algorithm
Figure C-3

Dispatcher

Like its single-stream counterpart, the 850 dispatcher selects the next
process to run and sets up the registers and conditions that process
needs to run. ‘The section DISPATCHER OPERATION, below, explains its
actions.
 

Register Sets

Each ISU contains a register file identical to the single-stream
register file. Each contains two user register sets designated as the
current register set (CRS) and the other register set (ORS). Both of
these have the same format as the user register sets on the
single-stream processors.
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Microsecomd Timer
 

The 850 process timer is accurate to the microsecond. It is contained
in two registers, TIMERH and TIMERL. MTIMERH contains the two's
complement of the millisecond portion of the clock. Bits 1 to 10 of
TIMERL contain the microsecond part. Bits 11 to 16 of TIMERL are never
changed.

Every 1.024 milliseconds the microsecond time overflows, causing a
fetch cycle trap. The contents of TIMERH are incremented; upon
overflow, bit 16 of the PCB abort flags is set to 1; a process fault
occurs immediately and stops the current process from being executed.

DISPATCHER OPERATION
 

When a process completes execution or is aborted, the dispatcher begins
to execute to select the next process to run. This discussion assumes
that the PX lock contains the number of This ISU, so This ISU has the
right to access the PXM data structures.

Step 1. Finding a Process to Run
 

The dispatcher first checks the contents of MY_PPA. If bits 17 to 32
are 0, the contents are invalid, as are the contents of PPNEXT. To
find the next process to run, the dispatcher scans the ready list
beginning at the level specified in bits 1 to 16 of MY_PPA.

The dispatcher scans the ready list until it finds the first process
that is neither locked from This ISU, nor currently running on The
Other ISU. Any processes the dispatcher finds during the scan that are
temporarily locked from This ISU are unlocked by setting the lock field
in the process’ PCB location 5 to 0. If the ready list contains no
Suitable process, the dispatcher releases the PX lock.

If the dispatcher finds a process on the ready list to run, it next
checks for two things:

@ Does the OTHER_PPNEXT point to this process?

@ Has This ISU sent a scan message to The Other ISU suggesting
that The Other ISU run this process?

If the OTHER_PPNEXT points to this process, This ISU will not run this
process. It will be run at a later date on The Other ISU.

If a scan message was sent, the dispatcher invalidates the message so
that The Other ISU will not run this process. Once the message is
invalidated, or if no such message was sent, the dispatcher loads
MY_PPA with the level and PCB starting address of this process.
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Step 2. Locating Register Values and a Register Set

Once MYPPA contains valid information, the dispatcher must locate the
register values this process needs for execution, and must find a
register set to contain them. The values can be in one of three
places:

@ In a register set on This ISU

e Ina register set on the Other ISU

e iIn the process’ PCB

The dispatcher checks the CRS field in the process’ PCB to see if
either of This ISU's register sets or either of The Other ISU's
register sets already contain the process’ register values. If either
of This ISU's register sets do, the dispatcher makes that set the CRS.

If either of The Other ISU’s register sets contain the process’ values,
the dispatcher sends a message to The Other ISU telling it to save the
contents of that register set into the process’ PCB. The dispatcher
then releases the PX lock so that The Other ISU can save the values.
After a short time, This ISU regains the PX lock and tries to choose a
register set from the beginning.

If none of the register sets on either ISU already contains the
process’ register values, the dispatcher must load them from the
process’ PCB. The dispatcher chooses a register set on This ISU by
Checking the Save Done bit of both the CRS and ORS.

If the Save Done bit of the CRS contains a 1, the CRS is available.
The dispatcher loads the process’ values from the PCB into the CRS.

If the CRS is not available, the dispatcher checks the Save Done bit of
the ORS. If the Save Done bit contains a1, the dispatcher makes ORS
the CRS, then loads in the process’ register values.

If neither the CRS nor the ORS is available (both Save Done bits
contain 0), the dispatcher saves the contents of the ORS into the
appropriate PCB, makes ORS the CRS, then loads the process’ register
values into it.

Step 3. Updating Information and Running the New Process
 

After choosing and loading (if necessary) a register set, the
dispatcher loads location 5 of the process’ PCB with the id of the ISU
on which the process most recently ran. It also loads the PCB with the
location of the process’ register values, and sets bits 15 and 16 of
the keys to 0. The dispatcher then releases the PX lock and enables
the microsecond timer. The new process begins to execute.
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Instruction Summary

Charts

This appendix contains two instruction summary charts: one for § mode,
R mode, and V mode; another for I mode. Each chart contains a list of
instructions for the Prime 50 Series processors. (Appendix D lists
those instructions that have been archived.) Each instruction is
followed by its octal code, format, function, addressing mode, CBIT,
LINK, and condition code information, and a one-line description of the
instruction.

The columns in each chart are as follows:

R Restrictions:

Blank Regular instruction.
R Instruction causes a restricted mode fault if

executed in other than Ring 0.
P Instruction may cause a fault depending on

address.

Mnem A mnemonic name recognized by the assembler PMA.

Opeode Octal operation code portion of the instruction.

RI Register (R) and Immediate (I) forms, if available.
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Form Format of instruction:

Mnemonic Definition

AP Address Pointer
BRAN Branch
CHAR Character
DECI Decimal
GEN Generic
GR General Register —- non Memory Reference
IBRN I Mode Branch
MR Memory Reference -- Non I Mode
MRFR Memory Reference -- Floating Register
MRGR Memory Reference -- General Register
MRNR Memory Reference -- Non Register
PIO Programmed I/O
RGEN Register Generic
SHFT Shift

Func Function of instruction:

Mnemonic Definition

ADMOD Addressing Mode
BRAN Branch
CHAR Character
CLEAR Clear Field
CPIR C Language Pointer
DECI Decimal Arithmetic
FIELD Field Register
FLPT Floating Point Arithmetic
GRR General Register Relative
INT Integer
INTGY Integrity
IO Input/Output
KEYS Keys
LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control
MOVE Move
PCTLS Program Control and Jump
PRCEX Process Exchange
QUEUE Queue Control
SHIFT Register Shift
SKTP Skip

Second Edition D-2



INSTRUCTION SUMMARY CHARTS

M Addressing modes of instructions:

Mode Name

S sectored

R Relative

V Virtual (64V)
I Sel

C How instruction affects the CBIT and LIM.

Code Definition

CBIT and LINK are unchanged
CBIT unchanged; LINK = carry
CBIT overflow status; LINK = carry
CBIT overflow status; LINK indeterminate
CBIT shift extension; LINK shift extension
CBIT result; LINK = indeterminate
CBIT and LINK are indeterminate
CBIT and LINK are loaded by the instruction
CBIT = result; LINK = unchanged
CBIT = unchanged; LINK = indeterminate
CBIT and LINK values vary among processors;
see individual instruction description

*
~
O
O
N
O
O
K
R
A
D
V
D
E

|

CC How instruction affects the condition codes.

Code Definition

- Condition codes are unchanged.
1 Condition codes are set to reflect the result

of arithmetic operation or compare.
4 Condition codes are set to reflect result of

branch, compare, or logicize operand state.
Condition codes are indeterminate.
Condition codes are loaded by instruction.
Condition codes show special results for this
instruction.

~
“
I
O
)

O1

Description A brief description of the instruction.

Table D-1 contains a summary of Smode, Rmode, am mode
instructions. Table D2 is a summary of I mode instructions.
Instructions that have been archived are not in either of these tables;
see Appendix D for them.
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Table D-1l

S Mode, R Mode, and V Mode Instruction Summary

 

 

R Mnem Opeode Form Func M CGC CC Description

AlA 141206 GEN INT SRV 2 1 Add One toA
A2A 140304 GEN INT SRV 2 1 Add Two to A
ABQ 141716 AP QUEUE V - % Add Entry to Bottom of Queue
ACA 141216 GEN INT SRV 2 1 Add CBIT to A
ADD 06 MR INT SRV 28 1 Add
ADL 06 03 YR INT V 2 1 Add Long
ADLL 141000 GEN INT V 2 1 Add LIK toL
ALFA 0 001301 GEN FIELD V 6 - Add L to FAR O
ALFA 1 001311 GEN FIELD V 6 - Add L to FAR 1
ALL 0414XX SHFT SHIFT SRV 4 - A Left Logical
ALR 0416XK SHFT SHIFT SRV 4 - A Left Rotate
ALS O415XX SHFT SHIFT SRV 3 - A Arithmetic Left Shift
ANA 03 MR LOGIC SRV - - AND TOA
ANL 03 03 YR LOGIC V - — AND to A Long
ARGT 000605 GEN FCT V 6 5 Argument Transfer
ARL 0404XX SHFIT SHIFT SRV 4 - A Right Logical
ARR O406XK SHFT SHIFT SRV 4 - A Right Rotate
ARS O405XX SHFT SHIFT SRV 4 - A Arithmetic Right Shift
ATQ) 141717 AP QUEUE V - % Add Entry to Top of Queue
BCEQ) 141602 BRAN BRAN V - -— Branch on Condition Code &Q
BOGE 141605 BRAN BRAN V - - Branch on Condition Code GE
BOGT 141601 BRAN BRAN V —- - Branch on Condition Code GT
BCLE 141600 BRAN BRAN V —- - Branch on Condition Code LE
BCLT 141604 BRAN BRAN V —- -— Branch on Condition Code LT
BONE 141603 BRAN BRAN V —- - Branch on Comition Code NE
BCR 141705 BRAN BRAN V - -— Branch on CBIT Reset to 0
BCS 141704 BRAN BRAN V —- - Branch on CBIT Set to l
BOX 140734 BRAN BRAN V - - Branch on Decremented X
BDY 140724 BRAN BRAN V - - Branch on Decremented Y

BEQ) 140612 BRAN BRAN V - 4 Branch on A Equal to 0
BFEQ 141612 BRAN BRAN V - 4 Branch on F Equal to 0
BFGE 141615 BRAN BRAN V - 4 Branch on F Greater Than or

Equal to 0
BFGT 141611 BRAN BRAN V - 4 Branch on F Greater Than O
BFLE 141610 BRAN BRAN V - 4 Branch on F Less Than or

. Equal to O
BFLT 141614 BRAN BRAN V - 4 Branch on F Less Than 0
BFNE 141613 BRAN BRAN V - 4 Branch on F Not Equal to 0
BGE 140615 BRAN BRAN V - 4 Branch on A Greater Than or

Equal to 0
BGT 14061] BRAN BRAN V - 4 Branch on A Greater Than 0
BIX 141334 BRAN BRAN V - -— Branch on Incremented X

BIY 141324 BRAN BRAN V - -— Branch on Incremented Y

BLE 140610 BRAN BRAN V - 4 Branch on A Less Than or

Equal to 0
BLEQ 140702 BRAN BRAN V - Branch on L Equal to 0
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

 

R Mnem Opeode Form Func M C CC Description

BLGE 140615 BRAN BRAN V - 4 Branch on L Greater Than or
. Equal to 0

BLGT 140701 BRAN BRAN V - 4 Branch on L Greater Than 0
BLLE 140700 BRAN BRAN V - 4 Branch on L Less Than or

Equal to 0
BLLT 140614 BRAN BRAN V - 4 Branch on L Less Than 0
BLNE 140703 BRAN BRAN V - 4 Branch on L Not Equal to 0
BLR 141707 BRAN BRAN V - - Branch on LINK Reset to 0
BLS 141706 BRAN BRAN V - - Branch on LINK Set to l
BLT 140614 BRAN BRAN V - 4 Branch on A Less Than 0
BMEQ) 141602 BRAN BRAN V - - Branch on Magnitude

Condition EQ
BMGE 141706 BRAN BRAN V - - Branch on Magnitude

Condition GE
BMGT 141710 BRAN BRAN V - - Branch on Magnitude

Condition GT
BMLE 141711 BRAN BRAN V - - Branch on Magnitude

Condition LE
BMLT 141707 BRAN BRAN V - - Branch on Magnitude

Condition LT
BMNE 141603 BRAN BRAN V - - Branch on Magnitude

Condition NE
BNE 140613 BRAN BRAN V - 4 Branch on A Not Equal to 0
CAL 141050 GEN CLEAR SRV - - Clear A left Byte
CALF 000705 AP PCTILS V 6 5 Call Fault Handler
CAR 141044 GEN CLEAR SRV - - Clear A Right Byte
CAS 11 MR SKIP SRV 1 1 Compare A and Skip
CAZ 140214 GEN SKIP SRV 1 1 Compare A with 0
CEA 000111 GEN PCTid SR - - Compute Effective Address
CaT 0013514 GEN BRAN V 6 5 Computed GOTO
CHS 140024 GEN INT SRV - - Change Sign
CLS 1103 MR LOGIC V 1 1 Compare L and Skip
CMA 140401 GEN LOGIC SRV - - Complement A
CRA 140040 GEN CLEAR SRV - - Clear A to 0
CRB 140015 GEN CLEAR SRV - - Clear B to 0
CRE 141404 GEN CLEAR V - - Clear E to 0
CRL 140010 GEN CLEAR SRV - - Clear L to 0
CRLE 141410 GEN CLEAR V - - Clear L and E to 0
CSA 140320 GEN MOVE SRV 5 - Copy Sign of A
DAD 06 MR INT SR 2 1 Double Add
DBL Q00007 GEN INT SR - - Enter Double Precision Mode
DFAD 06 02 MR FLPT RV 3 5 Double Precision Floating

Add
DFCM 140574 GEN FLPT RV 3 S5 Double Precision Floating

Complement
DFCS 11 02 MR FLPT RV 6 5 Double Precision Floating

Compare and Skip
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

R Mnem Opeode Form Func M C CC Description

DFDV 17 02 MR FLPIT RV 3 5 Double Precision Floating

Divide
DFLD 02 02 MR FLPT RV - - Double Precision Floating

Load
DFLX 15 02 WR FLPT V - - Double Precision Floating

Load Index
DFMP 16 02 MR FLPT RV 3 5 Double Precision Floating

Multiply
DFSB O7 02 MR FLPT RV 3 S Double Precision Floating

Subtract
DFST 04 02 MR FLPIT RV - - Double Precision Floating

Store
DIV 17 MR INT V & 5 Divide
DIV 17 MR INT SR 3 5 Divide
DLD 02 MR MOVE SR - - Double Load
DRN 040300 GEN FLPT V & 5 Double Round From Quad
DRNM 140571 GEN FLPT V 8 5 Double Round From Quad

Towards Negative Infinity
DRNP 040301 GEN FLPT V & 5 Double Round From Quad

Towards Positive Infinity
DRNZ 040302 GEN FLPT V & 5S Double Round From Quad

Towards Zero
DRX 140210 GEN SKIP SRV - - Decrement and Replace X
DSB O7 MR INT SR 2 1 Double Subtract
DST 04 MR MOVE SR - - Double Store
DVL 17 03 MR INT V & 5 Divide Long
E168 000011 GEN ADMOD SRV - - Enter 165 Mode
Ed2I 001010 GEN ADMOD SRV - - Enter 32I Mode
ES2R 001013 GEN ADMOD SRV - - Enter 32R Mode
Ed28 000013 GEN ADMOD SRV - - Enter 325 Mode
EG4R 001011 GEN ADMOD SRV - - Enter 64R Mode
EG4V 000010 GEN ADMOD SRV - - Enter 64V Mode
EAA 0101 YR MOVE R - - Effective Address to A
EAFA O 001300 AP FIELD V - - Effective Address to FAR O
EAFA 1 001310 AP FIELD V - - Effective Address to FAR 1
FAL 01 01 MR PCTLJ V - - Effective Address to L
EALB 13 02 MR PCTLI V - - Effective Address to LB
EAXB 12 02 MR PCTLI V - - Effective Address to XB

R EIO 1401 MR IO Vv - 7 Execute I/0
R ENB 000401 GEN I0 SRV - - Enable Interrupts
R ENBL 000401 GEN [0 SRV - - Enable Interrupts (Local)
R ENBM 000400 GEN I0 SRV - - Enable Interrupts (Mutual)
R ENBP 000402 GEN IO SRV - - Enable Interrupts (Process)

ERA 05 MR LOGIC SRV - - Exclusive OR to A
ERL 05 03 MR LOGIC V - - Exclusive OR to L
FAD O06 01 MYR FLPT RV 3 5 Floating Add
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

R Mnem Opeode Form Func M C C Description

FCDQ) 140571 GEN FLPT V - - Floating Convert Double to
Quad

FCM 140530 GEN FLPr RV 3 5 Floating Complement
FCS 11 01 MR FLPr RV 6 5 Floating Compare and Skip
FDBL 140016 GEN FLPT V - - Floating Convert Single to

Double
FDV 17 01 MR FLPT RV 3 5 Floating Divide
FLD 02 01 MR FLPT RV - - Floating Load
FLOT 140550 GEN FLPT R 6 5 Convert Integer to Floating

Point
FLTA 140532 GEN FLPI V 6 5 Convert Integer to Floating

Point
FLTL 140535 GEN FLPT V 6 5 Convert Long Integer to

Floating Point
FLX 15 01 MR FLPI RV - - Floating Load Index
FMP 16 01 MR FLP. RV 3S 5 Floating Multiply
FRN 140534 GEN FLPI RV 3 5 Floating Round
FRNM 040320 GEN FLPT V & 5 Floating Round Towards

Negative Infinity
FRNP 040303 GEN FLPT V & 5 Floating Round Towards

Positive Infinity
FRNZ 040321 GEN FLPT V & 5 Floating Round Towards Zero
FSB O7 01 MR FLP. RV 3S 5 Floating Subtract
FSGT 140515 GEN FLPI RV - 5 Floating Skip If Greater

Than O
FSLE 140514 GEN FLPIT RV - 5 Floating Skip If Less Than

or Equal to 0
FSMI 140512 GEN FLPI RV - 5 Floating Skip If Minus
FSNZ 140511 GEN FLPI RV - 5 Floating Skip If Not Equal

to 0
FSPL 140513 GEN FLPT RV - 5 Floating Skip If Plus
FST 04 01 WR FLPT RV 3 5 Floating Store
FSZE 140510 GEN FLPI RV - 5 Floating Skip If Equal to 0

R HLT 000000 GEN MCTL SRV - - Halt
TAB 000201 GEN MOVE SRV -— -— Interchange A and B
ICA 141340 GEN MOVE SRV - - Interchange Bytes of A
ICL 141140 GEN MOVE SRV - - Interchange Bytes and Clear

Left
ICR 141240 GEN MOVE SRV - - Interchange Bytes and Clear

Right
TLE 141414 GEN MOVE V - - Interchange L and E
IMA 13 MR MOVE SRV - Interchange Memory and A

R INA 54 PIO I0 SR - - Input to A
R INEC 001217 AP PRCEX V 6 § Interrupt Notify Beginning,

Clear Active Interrupt
R INEN 001215 AP PRCEX V 6 5 Interrupt Notify Beginning
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

R Mnem Opcode Form Func M C Description

R INEC 001216 AP PRCEX V 6 5 Interrupt Notify End, Clear
Active Interrupt

R INEN 001214 AP PRCEX V 6 5 Interrupt Notify End
R INH 001001 GEN IO SRV - - Inhibit Interrupts
R INHL 001001 GEN I0 SRV - - Inhibit Interrupts (Local)
R INHM 001000 GEN I0 SRV - - Inhibit Interrupts (Mutual)
R INHP 001002 GEN IO SRV - - Inhibit Interrupts (Process)

INK 000043 GEN KEYS SR - - Input Keys
INT 140554 GEN FLPI R © § Convert Floating Point to

Integer
INTA 140531 GEN FLPI V © 5 Convert Floating Point to

Integer
INTL 140533 GEN FLPI V & 5 Convert Floating Point to

Integer Long
IRS 12 MR SKIP SRV - - Increment and Replace Memory

R IRTC 000605 GEN I0 V 7 6 Interrupt Return, Clear
Active Interrupt

R IRIN 000601 GEN I0 V 7 6 Interrupt Return
IRX 140114 GEN SKIP SRV - -— Increment and Replace xX

R ITLB 000615 GEN MCTL V 6 5 Invalidate STLB Entry
JDX 15 02 MR PCTILJ R - - dump and Decrement X
JIX 15 03 MR PCTLJ R - -— dJump and Increment xX
JMP Ol MR PCTLJ SRV - - dump
JST 10 MR PCTLJ SRV - - dump and Store
JSK 50 05 MR PCTLJ RV -—- - dump and Save in X
JSXB 1402 MR PCTLS V - - dump and Save in XB
JSY 14 MR PCTLJ V - -— dump and Save in Y
LCEQ 141503 GEN LISTS V - - Load A on Condition Code EQ
LOGE 141504 GEN LISTS V - - Load A on Condition Code GE
LOGT 141505 GEN LISTS V - - Load A on Condition Code GT
LCLE 141501 GEN LITSTS V - - Load A on Condition Code LE
LCLT 141500 GEN LISTS V - - Load A on Condition Code LT
LONE 141502 GEN LTSTS V - - Load A on Condition Code NE
LDA 02 MR MOVE SRV - - LoadA
LDC O 001302 CHAR CHAR V - % Load Character
LDC 1 001312 CHAR CHAR V - % Load Character
LOL 02 035 MR MOVE V - - Load Long

P LDR 05 01 YR MOVE V - 5 Load from Addressed Register
LDX 3o OO MR MOVE SRV - - Load X
LDY 50 Ol YR MOVE V - - Load Y
LEQ 140413 GEN LTSTS SRV - 4 Load A on Equal to 0
LF 140416 GEN LTSTS SRV - 5 Load False
LFEQ 141113 GEN LTSTS V - 4 load A on F Equal to 0
LFGE 141114 GEN LTSTS V -~ 4 Load A on F Greater Than or

Equal to 0
LFGT 141115 GEN LTSTS V - 4 Load A on F Greater Than 0
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

 

R Mnem Opcode Form Func M C C@ Description

LFLE 141111 GEN LTSsts V - 4 Load A on F Less Than or
Equal to O

LFLI QO 001303 BRAN FIELD V - - Load FIR O Immediate
LFLI 1 001313 BRAN FIELD V - - Load FIR 1 Immediate
LFLT 141110 GEN LISTS V - 4 Load A on F less Than 0
LFNE 141112 GEN LISTS V  - 4 Load Aon Not Equal to 0
LGE 140414 GEN LTSTS SRV - 4 Load A on A Greater Than or

Equal to 0
LGT 140415 GEN LTSTS SRV - 4 Load A onA Greater Than 0

R LIOT 000044 AP MCTIL V 6 5 Load IOTLB
LLE 140411 GEN LITSTS SRV - 4 Load Aon A less Than or

Equal to 0
LLEQ 141513 GEN LTSTS V - 4 Load L on A Equal to 0
LLGE 140414 GEN LTSTS V -~ 4 Load L on A Greater Than or

Equal to 0
LLGT 141515 GEN LTsTs V - 4 Load L on Greater Than 0
LLL O0410XX SHFT SHIFT SRV 4 - Long left Logical
LLLE 141511 GEN LISTS V - 4 Load L on A Less Than or

Equal to 0
LLLT 140410 GEN LISTS V - 4 Load L on A Less Than 0
LLNE 141512 GEN LTSTS V - 4 Load L on A Not Equal to 0
LLR O0412xKk SHFT SHIFT SRV 4 -— Long left Rotate
LLS O411XX SHFT SHIFT SRV 3 5 Long left Shift
LLT 140410 GEN LTSTS SRV - 4 Load A on A less Than 0
LNE 140412 GEN LISTS SRV - 4 Load A onA Not Equal to 0

R LPID 000617 GEN MCTL V - - Load Process ID
R_ LPSW 000711 AP MCTL V 7 6 Load Process Status Word

LRL O400XX SHFT SHIFT SRV 4 - Long Right Logical
LRR O402XX SHFT SHIFT SRV 4 - Long Right Rotate
LRS O401XX SHFT SHIFT SRV 4 - Long Right Shift
LT 140417 GEN LTSTS SRV - 5S Load True
MPL 16 035 MR INT V * — Multiply Long
MPY 16 MR INT V S - Multiply
MPY 16 MR INT SR 3S * Multiply

R NFYB 001211 AP PRCEX V 6 5 Notify
R NFYE 001210 AP PRCEX V 6 5 Notify

NOP 000001 GEN MCTL SRV - -— No Operation
R OCP 14 PIO 10 SR - - Output Control Pulse

ORA 03 02 MR LOGIC V - - Inclusive OR
R OTA 74 PIO IO SR - -— Output from A

OTK 000405 GEN KEYS SR 7 6 Output Keys
PCL 10 02 MR PCTIJ V 6 5 Procedure Call
PID 000211 GEN INT SR - - Position for Integer Divide
PIDA 000115 GEN MINT V - - Position for Integer Divide
PIDL 000305 GEN INT V - - Position for Integer Divide

Long
PIM 000205 GEN MINT SR - - Position after Multiply
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

x QD 8R Mnem Opecode Form Func Description
 

to 0

RRST 000717 MCTL V - ~- Restore Registers
RSAV 000715 MCIL V - - Save Registers
RTQ 141714 QUEUE V - % Remove Entry from Top of

Queue
R RTS 000511 MCTL V Reset Time Slice

S1A 140110
S2A 140310
SAR 1O0026X

Subtract 1 from A

Subtract 2 from A

Skip on A Register Bit Reset

a zg

SKIP SRV

PIMA 000015 GEN INT V 3 5 Position after Multiply
PIML 000301 GEN INT V 5 5 Position after Multiply Long
PRIN 000611 GEN fPCIIJ V 7% 6 Procedure Return

R PILB 000064 GEN MCTL V 6 5 Purge TLB
QFAD 522 MR FLPT V & 5 Quad Precision Floating Add
QFCM 140570 GEN FLPT V & 5 Quad Precision Floating

Complement
QFCS 526 YR FLPI V 6 5 Quad Precision Floating

Compare and Skip
QFDV 525 MR FLPr V & 5S Quad Precision Floating

Divide
QFLD 520 YR FLPT V - - Quad Precision Floating

Load
QFLX 6 7 MR FLPT V - - Quad Precision Floating

Load Index
QFMP 524 MR FLPT V & 5 Quad Precision Floating

Multiply
QFSB 523 MR FLPT V & 5 Quad Precision Floating

Subtract
QFsTt 521 R FLPT V - - Quad Precision Floating

Store
QO) 1405872 GEN FLPT V & 5 Quad to Integer, in Quad

Convert
QIQR 140573 GEN FLPT V & 5 Quad to Integer, in Quad

Convert Rounded
RBQ 141715 AP QUEUE V - % Remove Entry from Bottom of

Queue
RCB 140200 GEN KEYS SRV 8 - Reset CBIT to 0

R RMC 000021 GEN INTGY SRV - - Reset Machine Check Flag

AP
AP
AP

GEN
GEN
GEN
GEN

to 0
SAS 10126K GEN SKIP SRV - -— Skip on A Register Bit Set

to 1
SBL O7 035 MR INT V 2 1 Subtract Long
SCB 140600 GEN KEYS SRV 5 - Set CBIT tol
SGL 000005 GEN INT SR - - Enter Single Precision Mode
SGT 100220 GEN SKIP SRV - - Skip on A Greater Than 0
SKP 100000 GEN SKIP SRV - - Skip

R SKS o4 PIO 10 SR - - Skip on Condition Satisfied
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

R Mnem Opeode Form Func M C CC Description

SLE 101220 GEN SKIP SRV - - Skip on A Less Than or Equal
to 0

SLN 101100 GEN SKIP SRV - - Skip on LSB of A Nonzero
SLZ 100100 GEN SKIP SRV - - Skip on LSB of A Zero
SMCR 100200 GEN INTGY SRV - - Skip on Machine Check Reset

to O
SMCS 101200 GEN INTGY SRV - - Skip on Machine Check Set

to l
SMT 101400 GEN SKIP SRV - - Skip on A Minus
SNZ 101040 GEN SKIP SRV - -— Skip on A Nonzero
SPL 100400 GEN SKIP SRV - - Skip on Plus
SRC 100001 GEN SKIP SRV - - Skip on CBIT Reset to 0
SSC 101001 GEN SKIP SRV - - Skip on CBIT Set tol
SSM 140500 GEN INT SRV - - Set Sign of A Minus
SSP 140100 GEN INT SRV - - Set Sign of A Plus
SSSN 040310 GEN MCTL V 6 5 Store System Serial Number
STA O04 MR MOVE SRV - - Store A into Memory
STAC 001200 AP MOVE V - % Store A Conditionally
STC O 001322 CHAR CHAR V - % Store Character
STC 1 001332 CHAR CHAR V - % Store Character
STEX 001315 GEN PCIIJ V 6 5 Stack Extend
STFA O 001320 AP FIELD V - - Store FAR 0
STFA 1 001330 AP FIELD V - - Store FAR 1
STL 0403 MR MOVE V - - Store Long
STLC 001204 AP MOVE V - % Store L Conditionally
STLR O03 O01 MR MOVE V - § Store L into Addressed

Register
STPM 000024 GEN MCIL V - - Store Processor Model Number
STIM 000510 GEN MCTL V 6 5 Store Process Timer
STX 15 MR MOVE SRV - - Store X
STY 35 02 MR MOVE V - - §tore Y
SUB 07 MR INT SRV 2 1 Subtract
SVC 000505 GEN PCTLJ SRV - - Supervisor Call
SZE 100040 GEN SKIP SRV - - Skip on A Zero
TAB 140314 GEN MOVE V - - Transfer A to B
TAK 001015 GEN KEYS V 7 6 Transfer A to Keys
TAX 140504 GEN MOVE V - - Transfer A to xX

. TAY 140505 GEN MOVE V - - Transfer A to Y
TBA 140604 GEN MOVE V - - Transfer B to A
TCA 140407 GEN INT SRV 2 1 Two’s Complement A
TCL 141210 GEN INT V 2 1 Two's Complement Long
TFLL O 001323 GEN FIELD V - - Transfer FIR 0 to L
TFLL 1 001333 GEN FIELD V - - Transfer FLR 1 to L
TKA 001005 GEN KEYS V - - Transfer Keys to A
TLFL O 001321 GEN FIELD V - - Transfer L to FIR 0
TLFL 1 001331 GEN FIELD V - - Transfer L to FIR 1
TSTQ 141757 AP QUEUE V - % Test Queue
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Table D-1 (continued)
S Mode, R Mode, and V Mode Instruction Summary

 

 

R Mnem Opecode Form Func M CC Description

TXA 141034 GEN MOVE V - - Transfer X¥ to A
TYA 141124 GEN MOVE V - - Transfer Y to A

R WAIT 000315 AP PRCEX V - — Wait
XAD 001100 DECI DECI V 3 1 Decimal Add
XBID 001145 DECI DECI V & 5 Binary to Decimal Conversion
XCA 140104 GEN MOVE SRV - - Exchange and Clear A
XCB 140204 GEN MOVE SRV - - Exchange and Clear B
XCM 001102 DECI DECI V - 1 Decimal Compare
XDTB 001146 DECI DECI V 3 5 Decimal to Binary Conversion
XDV 001107 DECI DECI V 3 5 Decimal Divide
XEC 01 02 MR PCILJ RV —- —- Execute
XED 001112 DECI DECI V - -— Numeric Edit
XMP 001104 DECI DECI V 3 1 Decimal Multiply
XMV 001101 DECI DECI V 3 1 Decimal Move
ZCM 001117 CHAR CHAR V 6 % Compare Character Field
ZED 001111 CHAR CHAR V —- -— Character Field Edit
ZFIL 001116 CHAR CHAR V 6 5 Fill Field With Character
ZMV 001114 CHAR CHAR V 6 5 Move Character Field
ZMVD 001115 CHAR CHAR V 6 5 Move Characters Between

Equal Length Strings
ZTRN 001110 CHAR CHAR V - - Character String Translate
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Table D-2

INSTRUCTION SUMMARY CHARTS

I Mode Instruction Summary

 

 

 

R Mnem Opeode RI Form Func C CC Description

A 02 RI MRGR INT @ 1 Add Fullword
ABQ 134 AP QUEUE - Add Entry to Bottom of Queue
ACP 55 RI GR CPTR - - Add Pointer
ADLR 014 RGEN INT 2 1 Add LINK toR
AH 12 RI MRGR INT 2 1 Add Halfword
ATP 75 MRGR GRR 2 1 Add Indirect Pointer
ARFA O 161 RGEN FIELD - —-— Add R to FAR O
ARFA 1 171 RGEN FIELD - - Add R to FAR 1
ARGT 000605 GEN PCTLJ 6 5 Argument Transfer
ATQ 135 AP QUEUE 7 Add Entry to Top of Queue
BCEQ) 141602 BRAN BRAN - - Branch on Condition Code EQ
BOGE 141605 BRAN BRAN - -— Branch on Condition Code GE
BCGT 141601 BRAN BRAN - - Branch on Condition Code GT
BCLE 141600 BRAN BRAN - — Branch on Condition Code LE
BCLT 141604 BRAN BRAN - -— Branch on Condition Code LT
BCNE 141603 BRAN BRAN - - Branch on Condition Code NE
BCR 141705 BRAN BRAN - -— Branch on CBIT Reset to 0
BCS 141704 BRAN BRAN - -— Branch on CBIT Set tol
BFE) 122 IBRN BRAN - 4 Branch on F Equal to 0
BFGE 125 IBRN BRAN - 4 Branch on F Greater Than or

Equal to 0
BFGT lel IBRN BRAN - 4 Branch on F Greater Than 0
BFLE 120 IBRN BRAN - 4 Branch on F Less Than or

Equal to 0
BFLT 124 IBRN BRAN - 4 Branch on F Less Than 0
BFNE 125 IBRN BRAN - 4 Branch on F Not Equal to 0
BHD1 144 IBRN BRAN - - Branch on r Decremented by 1
BHD2 145 IBRN BRAN - - Branch on r Decremented by 2
BHD4 146 IBRA BRAN - - Branch on r Decremented by 4
BHEQ 112 IBRN BRAN - 4 Branch on r Equal to 0
BHGE 115 TBRN BRAN - 4 Branch on r Greater Than or

Equal to 0
BHGT 111 ITBRN BRAN - 4 Branch on r Greater Than 0
BHTI1 140 IBRN BRAN - - Branch on r Incremented by 1
BHI2 141 IBRN BRAN - - Branch on r Incremented by 2
BHI4 142 ITBRN BRAN - - Branch on r Incremented by 4
BHLE 110 IBRN BRAN - 4 Branch on r Less Than or

Equal to 0
BHLT 114 IBRN BRAN - 4 Branch on r Less Than 0
BHNE 113 IBRN BRAN - 4 Branch on r Not Equal to 0
BLR 141707 BRAN BRAN - -— Branch on LINK Reset to 0
BLS 141706 BRAN BRAN - -— Branch on LIM Set tol
BMEQ) 141602 BRAN BRAN - - Branch on Magnitude Condition

EQ)
BMGE 141706 BRAN BRAN - -— Branch on Magnitude Condition

GE
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Table D-2 (continued)
I Mode Instruction Summary

 

 

R Mnem Opeode RI Form Func C CC Description

BMGT 141710 BRAN BRAN - - Branch on Magnitude Condition
GT

BMLE 141711 BRAN BRAN - - Branch on Magnitude Condition
LE

BMLT 141707 BRAN BRAN - - Branch on Magnitude Condition
LT

BMNE 141603 BRAN BRAN - - Branch on Magnitude Condition
NE

BRBR 040-077 IBRN BRAN - - Branch on Register Bit Reset
to 0

BRBS 000-037 IBRN BRAN - - Branch on Register Bit Set
to l

BRD1 134 TBRN BRAN - - Branch on R Decremented by 1

BRD2 135 IBRN BRAN - - Branch on R Decremented by 1

BRD4 136 IBRN BRAN - - Branch on R Decremented by 4

BREQ 102 TBRN BRAN - 4 Branch on R Equal to 0
BRGE 105 IBRN BRAN - 4 Branch on R Greater Than or

Equal to 0
BRGT 101 IBRN BRAN - 4 Branch on R Greater Than O
BRI1 130 IBRN BRAN - -— Branch on R Incremented by 1

BRI2 131 IBRN BRAN - - Branch on R Incremented by 2

BRI4 132 TBRN BRAN - - Branch on R Incremented by 4

BRLE 100 TBRN BRAN - 4 Branch on R less Than or

Equal to 0
BRLT 104 IBRN BRAN - 4 Branch on R Less Than 0
BRNE 103 IBRN BRAN - 4 Branch on R Not Equal to 0
C 61 RI MRGR INT 1 1 Compare Fullword
CALF 000705 AP PCILJ 6 5 Call Fault Handler
CCP 45 R GR CPIR - 1 Compare C Pointer
aT 026 RGEN BRAN 6 5 Computed GOTO
CH 71 RI MRGR INT 1 1 Compare Halfword
CHS 040 RGEN INT - - Change Sign
CMH 045 RGEN LOGIC - - Complement r
CMR 044 RGEN LOGIC - - Complement R
CR 056 RGEN CLEAR - - Clear R to 0
CRBL 062 RGEN CLEAR - - Clear R High Byte 1 Right
CRER 063 RGEN CLEAR - - Clear R High Byte 2 Right
CRHL 054 RGEN CLEAR - - Clear R Left Halfword
CRHR 055 RGEN CLEAR - - Clear R Right Halfword
CSR 041 RGEN MOVE 5 - Copy Sign of R
D 62 RI MRGR INT 3 5 Divide Fullword
DBLE 106 RGEN FLPT - - Convert Single to Double

Precision Floating

DCP 160 RGEN CPIR - - Decrement C Pointer

DFA 15,17 RI MRFR FLPT 3 5 Double Precisicn Floating Add

DFC 05,07 RI MRFR FLPI - 1 Double Precision Floating
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Table D-2 (continued)
I Mode Instruction Summary

 

 

R Mnem Opeode RI Form Func C CC Description

DFCM 144 RGEN FLPI 3 § Double Precision Floating
Complement

DFD 51,55 RI MRFR FLPI 3 5 Double Precision Floating
Divide

DFL 01,03 RI MRFR FLPI - - Double Precision Floating
Load

DFM 25,27 RI MRFR FLPI 3 §& Double Precision Floating
Multiply

DFS 21.25 RI MRFR FLPI 3 5 Double Precision Floating
Subtract

DFST 11,13 MRFR FLPI - - Double Precision Floating
Store

DH 72 RI MRGR INT & 5S Divide Halfword
DH1 130 RGEN INT 2 1 Decrement r by l
DH2 131 RGEN INT 2 1 Decrement r by 2
DM 60 MRNR INT - 1 Decrement Memory Fullword
DMH 70 MRNR INT - 1 Decrement Memory Halfword
DR1 124 RGEN INT 2 1 Decrement R by 1
DR2 125 RGEN INT 2 1 Decrement R by 2
DRN 040300 GEN FLPI 3 5 Double Round From Quad
DRNM 140571 GEN FLPI 8 5 Double Round From Quad

Towards Negative Infinity
DRNP 040301 GEN FLPI 3 5 Double Round From Quad

Towards Positive Infinity
DRNZ 040302 GEN FLPT 3 5 Double Round From Quad

Towards Zero
E168 000011 GEN ADMOD - - Enter 16S Mode
Edel 001010 GEN ADMOD - - Enter 382I Mode
Ed2R 001013 GEN ADMOD - - Enter 32R Mode
Ed28 000013 GEN ADMOD - - Enter 32S Mode
E64R 001011 GEN ADMOD - - Enter 64R Mode
E64V 000010 GEN ADMOD - - Enter 64V Mode
FAFA 001300 AP FIELD - - Effective Address to FAR 0
FAFA 001310 AP FIELD - - Effective Address to FAR 1
FALB 42 MRNR PCTIJ - - Effective Address to LB
FAR 635 MRGR PCTILJ - - Effective Address to R
FAXB 52 MRNR FPCTLJ - - Effective Address to XB

R_ EIO o4 MRGR IO - % Execute I/O
R ENB 000401 GEN I0 - - Enable Interrupts
R ENBL 000401 GEN 10 - - Enable Interrupts (Local)
R ENEM 000400 GEN IO ~ - Enable Interrupts (Mutual)
R ENBP 000402 GEN IO - - Enable Interrupts (Process)

FA 014,16 RI MRFR FLPT 3 5 Floating Add
FC 04,06 RI MRFR FLPT - 1 Floating Compare
FCDQ) 140571 GEN FLPT - Floating Convert Double to

Quad
FCM 100 RGEN FLPI 3 5 Floating Complement
 

D-15 second Edition



P. ATLASTAT

Sioiat ARCHLIBCLURG REPOnGNOG GULL

Table D-2 (continued)
I Mode Instruction Summary

 

 

R Mnem Opeode RI Form Func C CC Description

FD 30,32 RI MRFR FLPT 3 5 Floating Divide
FL 00,02 RI MRFR FLPI - - Floating Load
FLT 105,11 RGEN FLPT 6 5 Convert Integer to Floating

Point
FLTH 102,11 RGEN FLPT 6 5 Convert Halfword Integer to

Floating Point
FM 24,26 RI MRFR FLPT 3 5 Floating Multiply
FRN 107 RGEN FLPT 3 5 Floating Round
FRNM 146 RGEN FLPT 3 5 Floating Round Towards

Negative Infinity
FRNP 145 RGEN FLPr 3 5 Floating Round Towards

Positive Infinity
FRNZ 147 RGEN FLPT 3 5 Floating Round Towards Zero
FS 20,22 RI MRFR FLPT 3 5 Floating Subtract
FST 10,12 MRFR FLPT 3 5 Floating Store

R HLT 000000 GEN MCTL - - Halt
I 41 R MRGR MOVE - - Interchange R and Memory

Fullword
ICBL 065 RGEN MOVE - - Interchange Bytes and Clear

Left
ICBR 066 RGEN MOVE - -— Interchange Bytes and Clear

Right
ICHL O60 RGEN MOVE - - Interchange Halfwords and

Clear Left
ICHR 061 RGEN MOVE - - Interchange Halfwords and

Clear Right
ICP 167 RGEN CPIR - - Increment C Pointer
IH 51 R MRGR MOVE - - Interchange r and and Memory

Halfword
IHl 126 RGEN INT 2 1 Increment r by l
THR 127 RGEN INT 2 1 Increment r by 2
IM 40 MRNR INT - 1 Increment Memory Fullword
IMH 50 MRNR INT - 1 Increment Memory Halfword

R INEC 001217 AP PRCEX 6 5 Interrupt Notify Beginning,
Clear Active Interrupt

R INBEN 001215 AP PRCEX 6 5 Interrupt Notify Beginning
R INEC 001216 AP PRCEX 6 5 Interrupt Notify End, Clear

Active Interrupt
R INEN 001214 AP PRCEX 6 5 Interrupt Notify End
R INH 001001 GEN I0 - - Inhibit Interrupts
R INHL~ 001001 GEN IO — - Inhibit Interrupts (Local)
R INHM-~ 001000 GEN IO ~ - Inhibit Interrupts (Mutual)
R INHP 001002 GEN I0 — -— Inhibit Interrupts (Process)

INK O70 RGEN KEYS - - Input Keys
INT 103,11 RGEN FLPT 3 5 Convert Floating Point to

Integer
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Table D-2 (continued)
I Mode Instruction Summary

 

 

Mnem Opeode RI Form Func C CC Description

INTH 101,11 RGEN FLPI 3 5 Convert Floating Point to
Halfword Integer

IR1 122 RGEN INT 2 1 Increment R by l
IR2 123 RGEN INT 2 1 Increment R by 2
IRB 064 RGEN MOVE - - Interchange r Bytes
TRH 057 RGEN MOVE - - Interchange R Halves
IRTC 000603 GEN IO 7 6 Interrupt Return, Clear

Active Interrupt
IRTN 000601 GEN I0 7% 6 Interrupt Return
ITLB 000615 GEN MCTL 6 5 Invalidate STLB Entry
JMP 51 MRNR PCILJ - -—- dump
JSR 73 MRGR PCTILJ - -— dump to Subroutine
JSXB 61 MRNR PCTIJ - Jump and Save in XB
L O01 RI MRGR MOVE - - Ioad
LCC 45 MRGR CPIR - Load C Character
LCEQ 153 RGEN LISTS - - Load r on Condition Code &Q
LOGE 154 RGEN LISTS - - Load r on Condition Code GE
LOGT 155 RGEN LISTS - - Load r on Condition Code GT
LCLE 151 RGEN LISTS - - Load r on Condition Code LE
LCLT 150 RGEN LISTS - - Load r on Condition Code LT
LONE 152 RGEN LISTS - - Load r on Condition Code NE
LDAR 44 MRGR MOVE - 5 load from Addressed Register
Ipc O- =—-:162 RGEN CHAR - YY Load Character
Ipc 1172 RGEN CHAR - 7 Load Character
LEQ 003 RGEN LISTS - 4 Load r on R Equal to 0
LF 016 RGEN LISTS - 5 Load False
LFEQ 023,03 RGEN LISTS - 4 Load r on F Equal to 0
LFGE 024,03 RGEN LISTS - 4 Load on F Greater Than or

Equal to 0
LFGT 025 ,03 RGEN LISTS - 4 Load r on F Greater Than 0
LFLE 021,03 RGEN LISTS - 4 Load on Less Than or

Equal to O
IFLI 0 001303 BRAN FIELD - - Load FIR O Immediate
LFLI 001313 BRAN FIELD - - Ioad FIR 1 Immediate
LFLT 020,03 RGEN LISTS - 4 Load r on Less Than 0
LFNE 022 ,03 RGEN LISTS - 4 Load r on F Not Equal to 0
LGE 004 RGEN LISTS - 4 Load on R Greater Than or

Equal to 0
LGT 005 RGEN LISTS - 4 Load r on R Greater Than 0
LH ll RI MRGR MOVE - - Load Halfword
LHEQ 013 RGEN LISTS - 4 Load r onr Equal to 0
LHGE 004: RGEN LISTS - 4 Load r on r Greater Than or

Equal to 0
LHGT 015 RGEN LISTS - 4 Load r on r Greater Than 0
LHL1 04 R MRGR MOVE - - Load Halfword Shifted left

by 1
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Table D-2 (continued)
I Mode Instruction Summary

 

 

R Mnem Opcode RI Form Func C @ Description

LHL2 14 R MRGR MOVE - Load Halfword Shifted Left
by 2

LHL3 3O R  MRGR MOVE — Load Halfword Shifted Left
by 3

LHLE Oll RGEN LTSTS 4 load r onr Less Than or
Equal to 0

LHLT 000 RGEN LTSTS 4 load r onr Less Than 0
LHNE 012 RGEN LISTS 4 Load r onr Not Equal to 0

R LIOT 000044: AP MCTL 6 5 Load IOTLB
LIP 65 MRGR GRR — Load Indirect Pointer
LLE 001 RGEN LISTS 4 load r on R Less Than or

Equal to 0
LLT 000 RGEN LISTS 4 Load r on R Less Than 0
LNE 002 RGEN LTSTS - 4 Load r on R Not Equal to 0

R LPID 000617 GEN MCTL - - ILoad Process ID
R LPSW 000711 AP MCIL 7 6 Load Process Status Word

LT 017 RGEN LISTS - 5 load True
M 42 RI MRGR INT * — Multiply Fullword
MH 52 RI MRGR INT & 5 Multiply Halfword
N 03 RI MRGR LOGIC - - AND Fullword

R NFYB 001211 AP PRCEX 6 5 Notify
R NFYE 001210 AP PRCEX 6 5 Notify

NH 13 RI MRGR LOGIC - -—- AND Halfword
NOP 000001 GEN MCTL - - No Operation
0 25 RI MRGR LOGIC - —- OR Fullword
OH 5) RI MRGR LOGIC - —- OR Halfword
OTK O71 RGEN KEYS 7 6 Output Keys
PCL 41 MRNR PCTLJ 6 5 Procedure Call
PID 052 RGEN INT - - Position for Integer Divide
PIDH 053 RGEN INT — - Position r for Integer

Divide
PIM 050 RGEN INT 3 5 Position after Multiply
PIMH 051 RGEN INT 3 5 Position r after Multiply
PRIN 000611 GEN PCTIJ 7 6 Procedure Return

R PILB O00064: GEN MCTL 6 5 Purge TLB
Q@FAD 36 MRFR FLPT 3 5 Quad Precision Floating Add
QFC 47 RI MRFR FLPT - 7% Quad Precision Floating

Compare
QFCM 140570 GEN FLPT 3 5 Quad Precision Floating

Complement
QFDV 46 MRFR FLPT 3 5 Quad Precision Floating

Divide
QFLD o4 MRFR FLPT - - Quad Precision Floating Load
QFMP 45 MRFR FLPT 3 5 Quad Precision Floating

Multiply
QFSB ov MRFR FLPT 3 5S Quad Precision Floating

Subtract
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Table D-2 (continued)
I Mode Instruction Sumnary

 

 

 

R Mnem Opcode RI Form Func C CC Description

QFsT oO MRFR FLPI - - Quad Precision Floating Store
QINQ 140572 GEN FLPIT 3 5 Quad to Integer, in Quad

Convert
QIQR 140573 GEN FLPT 3&3 5 Quad to Integer, in Quad

Convert Rounded
RBQ 133 AP QUEUE - 7% Remove Entry from Bottom

of Queue
RCB 140200 GEN KEYS 8 - Reset CBIT to 0
RMC 000021 GEN INTGY - - Reset Machine Check Flag to 0
ROT 24 MRGR SHIFT 4 - Rotate
RRST 000717 AP MCTIL - - Restore Registers
RSAV 000715 AP MCIL - - Save Registers
RTQ 132 RGEN QUEUE - 7 Remove Entry from Top of

Queue
RTS 000511 GEN MCTL - - Reset Time Slice
S 22 RI MRGR INT 2 1 Subtract Fullword
SCB 140600 GEN KEYS 5 - Set CBIT to 1
SCC 55 MRGR CPIR - - Store C Character
SH OR RI MRGR INT 2 1 Subtract Halfword
SHA 15 MRGR SHIFT 4 - Shift Arithmetic
SHL 05 MRGR SHIFT 4 - Shift Logical
SHL1 O76 RGEN SHIFT 4 - Shift R Left 1
SHL2 O77 RGEN SHIFT 4 - Shift R left 2
SHR1 120 RGEN SHIFT 4 - Shift R Right 1
SHR2 121 RGEN SHIFT 4 - Shift R Right 2
SL1 O72 RGEN SHIFT 4 - Shift R Left 1
SL2 O73 RGEN SHIFT 4 - Shift R Left 2
SR1 O74 RGEN SHIFT 4 - Shift R Right 1
SR2 075 RGEN SHIFT 4 - Shift R Right 2
SSM 042 RGEN INT - - Set Sign Minus
SSP 043 RGEN INT - - §et Sign Plus
SSSN 040310 GEN MCTL 6 5 Store System Serial Number
st el MRGR MOVE - - Store Fullword
STAR 54 MRGR MOVE - 5 Store into Addressed Register
STC 0 166 RGEN CHAR - 7 Store Character
sTc 1 176 RGEN CHAR - 7 Store Character
STCD 137 AP MOVE - 7 Store Conditional Fullword
STCH 136 AP MOVE - 7 Store Conditional Halfword
STEX 027 RGEN PCTIJ 6 5 Stack Extend
STFA O 001320 AP FIELD - -— Store FAR 0
STFA 1 001330 AP FIELD - - Store FAR 1
STH ol MRGR MOVE - - Store Halfword
STPM 000024 GEN MCTL - - Store Processor Model Number
STIM 000510 GEN MCTL 6 § Store Process Timer
SVG 000505 GEN PCTLJ - - Supervisor Call
TC 046 RGEN INT S 1 Two's Complement R
TCH 047 RGEN INT 3 1 Two's Complement r
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I Mode Instruction Summary

 

 

R Mnem Opeode RI Form Func C Description

TCNP 76 R MRNR CPIR - 1 Test C Null Pointer
TFIR O 163 RGEN FIELD - - Transfer FLR 0 to R
TFIR 1 173 RGEN FIELD - - Transfer FIR 1toR
T™ 44 MRNR MCTL - 1 Test Memory Fullword
TMH 54 MRNR INT - 1 Test Memory Halfword
TRFL O 165 RGEN FIELD - - Transfer R to FIR 0
TRFL 1 175 RGEN FIELD - - Transfer R to FIR 1
TSTQ 104 RGEN QUEUE - 7 Test Queue
WAIT 000315 AP PRCEX - - Wait
xX 43 RI MRGR LOGIC - - Exclusive OR Fullword
XAD 001100 DECI DECI 3 1 Decimal Add
XBID 001145 DECI DECI 3 5 Binary to Decimal Conversion
XCM 001102 DECI DECI - 1 Decimal Compare
XDTB 001146 DECI DECI 3 5 Decimal to Binary Conversion
XDV 001107 DECI DECI 3 5 Decimal Divide
XED 001112 DECI DECI - - Numeric Edit
XH 53 RI MRGR LOGIC - - Exclusive OR Halfword
XMP 001104 DECI DECI 3 1 Decimal Multiply
XMV 001101 DECI DECI 3 1 Decimal Move
ZCM 001117 CHAR CHAR 6 7% Compare Character Field
ZED 001111 CHAR CHAR - - Character Field Edit
ZFIL 001116 CHAR CHAR 6 5 Fill Field With Character
2M 43 MRNR CLEAR - -— Clear Fullword
ZMH 53 MRNR CLEAR - - Clear Halfword
ZMV 001114 CHAR CHAR 6 5 Move Character Field
ZMVD 001115 CHAR CHAR 6 5 Move Characters Between Equal

Length Strings
ZTRN 001110 CHAR CHAR - - Character String Translate
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2455 Architecture

The 2455 processor has now been added to the Prime 50 Series computers.
This new processor shares the architecture and operating system that is
common to all 50 Series processors and makes the 50 Series a line of
completely upward-compatible and downward-compatible systems.

The implementation of the common architecture, however, can be slightly
different for each member of the 50 Series, allowing the different
processors to address a wide variety of user needs while remaining
compatible.

The architectural implementation of the 2455 is identical to that of
the 2755 processor.
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Character strings,
as floating-point numbers,

6-38
6-39

instructions,
manipulation of,

Checks,
diagnostic status words, 10-21
discussion, 10-18
handler, 10-18
handler operation, 10-35
header format, 10-21
MCM field, 10-34
reporting modes,
traps, 10-36
traps produced by checks and

their actions, 10-37, B-26
types of, 10-18, 10-36
vectors, 10-21

10-35

Checksum instructions, 6-2

Clear register/memory
instructions, 6-16

Components of an instruction,
3-5

Concealed stack, 10-10

Concurrency control,
Prime 850 locks, B-3, B-5

Condition codes, 5-9

Control store, 1-4, B-2

Control word format for decimal

instructions, 6-34

Controller,

address, 11-4
discussion, 11-1

relationship to processor,
11-1

Controller address field, 11-4

CPUNUM, C-3

D

Data movement instructions, 6-10

Datatypes,
discussion, 6-1

summary with applicable I mode
instructions, 6-49

summary with applicable R mode
instructions, 6-47

summary with applicable S mode
instructions, 6-47

summary with applicable V mode
instructions, 6-47

Decimal data,
accuracy, 6-36
control word format,
packed, 6-353
precision, 6-36
register use, 6-36
Sign/digit representations for
unpacked, 6-33

types, 6-35
unpacked, 6-32

Descriptor Table Address
Register, 4-15, 4-29

6-34

Diagnostic status words,
list of, 10-21
setting by multiple checks,

10-35
value after checks, 10-34

Direct addressing, 35-8

Direct memory access (See DMA)

Direct memory access methods

(See DMx)
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Direct memory control, 11-19

Direct memory queue,
11-21

6-41, 6-45,

Direct memory transfer, 11-20

Dispatcher,
discussion, 9-16
Operation, 9-27, B-18
Operation on Prime 850, C-1l

Displacement, 34, 3-7

DMA,
burst-mode,
discussion, 11-16
extended, 11-19
register file, 9-21
servicing a request,

11-18

11-17

DMC,

TIM, 11-21
physical queues,
queue operations,

11-19

6-41
6-45

DMT, 11-20
burst-mode, 11-20

DMx,
address formation,

discussion, 11-10
DMA, 11-16
DMC, 11-19
IM, 11-21
DMT, 11-20
IOTLB, 11-14
mapped I/O,
transfer rates,

11-21

11-13, B-27
11-12

Double precision floating-point,
6-19

DSWPARITY,
format for Prime 2350 to 2755,

10-29
format for Prime 6350, 10-22

format for Prime 750, B-23

format for Prime 850, B-23
format for Prime 9650 and 9655,

10-29

format for Prime 9750 to 9955

II, 10-26

second Edition x4

DSWPARITY2,

format for Prime 6350, 10-24

DSWPB, 10-4

DSWRMA, 10-33

DSWSTAT,
discussion, 10-36
format for earlier processors,
B-25

format for Prime 2350 to 2755,
10-32

format for Prime 6350, 10-30
format for Prime 9650 and 9655,

10-32
format for Prime 9750 to 9955

II, 10-31

DTAR,
discussion, 4-15
format, 4-15
use during address translation,
4-29

Dual-stream architecture, B-3

E

Earlier processors,
address translation,

B-11
address trap action,
addressing, 3-1, B-6
altering sequential flow,
B-16

breaks, 10-1, B-19
cache, B-2
cache access,
cache entry format, B-i0
cache sizes and hit rates,
checks, 10-18, B-22
control store, B-2
datatypes, 6-1, B-ll
dispatcher operation,

B-18
DMA register file,
DSWPARITY, B-23
DSWPB, 10-34, B-22

DSWRMA, 10-33, B-22
DSWSTAT, B-25
DIAR, 4-15, B-10

4-26,

o-o1, B-7

7-1,

4-19, B-10

B-5

9-25,

9-21, B-18

2
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Earlier processors (continued)
dual-stream architecture, B-3
execution unit, 1-5, B-2

faults, 10-6, B-22

floating-point, 6-19, B-1l

HMAP, 4-18, B-10
input/output, 11-1, B-27
instruction stream units,
instruction unit, B-2
interrupts, 10-3, B-19
interval clock, B-27
IOTLB, B-27
keys, 5-4, B-11
list of, 1-1, B-1
memory management ,
microcode, B-2
microcode register files,
modals, 5-2, B-11
nonindexing 64V mode

instructions, B-6
physical and virtual memory,

2-1, B-5
procedure calls, 8-1, B-17
process exchange, 9-1, B-17
process exchange on Prime 850,

C-1

B-3

4-1, B-8

B-18

process interval timer, 925,
B-18

register files, B-17
restricted instructions, 65-11,

B-11
SDT and SDW, 4-16, B-10
single-stream architecture,

1-2, B-2
stacks, 8-1, B-17
STLB, B-2
STLB access, 4-19, B-10
STLB entry format, B-8
STLB hashing algorithm, B-9
stream synchronization units,
B-3

system overview, 1-1, B-2
traps, 10-37, B-26
user register files,

B-18
9-19,

KCB
CALF instruction, 10-13
discussion, 8-5
format, 8-5

gate segments, 8-7
ring numbers, 8-7
stack allocation, 8-10

ECL, 1-10

Effective address calculation

instructions, 6-9

Embedded operating system, 8-1

Emitter coupled logic, 1-10

End of list, 95

Entry control block (See ECB)

Environment sensor support,
check, 10-18
discussion, 10-18

Environmental checks, 10-18

Excess 128, 6-19

Execution unit, B-2
discussion, 1-5
introduction, 1-5
power-up initialization, A-1
relationship to I/O controller,

11-1

Exponent, 6-19

Extended DMA, 11-19

Extension segments, 8-2

F

FADOR, 10-16

FAR (See Field address register)

Fault address, 10-13

Fault bit, 4-16

Fault code, 10-13

Faults,

access, 4-22, 8-7

arithmetic exceptions, 10-16,
B-22

CALF instruction, 10-10

classes, 106
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Faults (continued) Floating-point numbers,
classes summary, 10-15 accumulators, 6-19
concealed stack, 10-10 accuracy, 6-26, B-14
decimal, 5-6 discussion, 6-19
discussion, 10-6 format, 6-20, B-12
floating-point, 5-46 FORTRAN 66 considerations,
handler, 10-7 6-26
integer, 5-6 instructions, 6-22
omitted argument pointer, 8-14 manipulation of, 6-23
page, 4-29 normalization, 6-23, 6-25,
PCB, 9-3 B-12
pointer, 35-9, 8-11, 8-14 precision, 6-26, B-15
process, 9-27, C-11 register overlap with field
SDW, 4-16 registers, 6-17, 6-21, 9-20
semaphore overflow, 9-9, 9-15, rounding, 6-24, B-136

10-6, 10-9, 10-15 Zero, 6-235
servicing, 10-12
stack overflow, 8-3, 8-10 FIR (See Field length register)
summary of, 10-6
tables, 10-8 FORTRAN 66 considerations, 6-26
vectors, 10-7

Fraction, 6-19

FOCODE, 10-16, B-22
Free pointer, 8-3

Field address register,
format, 6-18 Function field, 11-4

instructions, 6-17
introduction, 6-17
overlap with floating-point

registers, 6-17, 6-21, 9-20 G

Field length register, Gate access, 8-7
format, 6-18
instructions, 6-17 Gate segments, 8-7
introduction, 6-17
overlap with floating-point General register relative (See

registers, 6-17, 6-21, 9-20 GRR)

Field operations instructions, General registers,
6-17 alteration during procedure

call, 8-15

Firmware, 1-4
GRR, 3-2, 34, 35-10, 3-11, 5-14,

Fixed-point data, o-21
addresses, 6-9
discussion, 6-1 GRR addressing, 3-10
field operations, 6-17
instructions, 64, 6-10 Guard bits, 6-235, B-12
logical values, 6-2
Signed integers, 6-3

Flag bits in CALF stack frame, H
10-13

Halfwords, 3-1
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Hardware page map table, 4-18,
4-29

Hashing algorithm (See STLB:
hashing algorithm)

Hit rate, 2-3

HMAP,
discussion, 4-18
entry format, 4-18
use during address translation,
4-29

Honeywell 316 and 516, 3-12

I

I mode,
behavior relating to 5-stage

pipeline, 1-9
discussion, 3-11
performance, 1-9

I/O,
discussion, 11-1
mapped, 11-13

I/O Controller, 11-1, 114

Immediate types, 3-20

In Dispatcher bit, 929

INA action, 11-9

Index register,
discussion, 3-7
relationship to offsets, 3-4

Indexed addressing, 3-8

Indirect addressing,
argument templates, 8-6
calculation of pointers,
discussion, 3-8
format, 3-3, 34, 3-20
long form, 3-9
multiple levels, 3-8
pointers, 3-20, 8-6
relationship to offsets,
short form, 3-8

8-11

3-4

X-7

Indirect bit,
16S mode, 3-29
oeR mode, 3-24
oes mode, 3-31
64R mode, 3-27
discussion, 3-6

Indirect indexed address, 3-10

Indirection chain,
oek mode, 35-24
oes mode, 3-31
discussion, 3-8

involving indexing, 3-10

Input/output,
discussion, 11-1

mapped, 11-13

Instruction format,

16S mode, 3-28
cel mode, 3-20

oeR mode, 3-22
oes mode, 3-30
64R mode, 3-25
64V mode long and indirect,

3-17
64V mode short form,
typical, 346

5-15

Instruction set,
address manipulation, 6-9
argument transfer, 8-14
arithmetic overflow, 5-9
bit manipulation, 6-2
branches, 7-1
character strings,
checksum, 6-2
clear register/memory, 6-16
conditional store, 6-13
conversion between fixed- and

floating-point, 6-29
data movement, 6-10
datatypes, 6-1
deadlock prevention,
decimal, 6-37
decimal control word format,

6-34
effect address calculation,
6-9

EIO, 11-2
fast array reference, 6-9
fast decrement by one or two,
6-7

6-38

6-13
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Instruction set (continued)
fast increment by one or two,
6-4

fast setting of bits in A, 6-7
faults, 10-10
fixed-point data, 6-10
floating-point, 6-22
floating-point accuracy, 6-27
handling large integers, 6-4
input/output, 11-2
input/output operative actions,

11-9
interrupt handling,
interval clock, 1047
interval timer, 9-26
invalidating IOTLB,
jumps, 7-6
keys, 5-8
lock implementation,
logic instructions,
modals, 5-4
overlapping strings,
phantom interrupt,
PIO, 11-2
procedure call, 8-2
process exchange, 9-7, 9-9
process exchange on the Prime

850, C6
process timer, 9-26
queues, 6-45, 646
ready list, 9-13
restricted instructions, 5-11
results of comparisons, 5-9
returning from procedures,

8-15
semaphores, 9-7, 9-9
semaphores on the Prime 850,
C-6

10-4

11-15

6-13
6-2

6-39
10-4

shift instructions, 6-14
shifts versus rotates, 6-15
signed integers, 64
skips, 7-1
special load/store, 6-15
wait list, 9-9

Instruction stream,
altering sequential flow,
self-modifying code, 1-9
storing data into, 1-9

7-1

Instruction unit, 1-2, 1-7, B-2

second Edition Xx-8

Integers, 6-35

Integrity,
machine check,
protection rings,

5-4
2-6

Interrupt response code, 10-3

Interrupts,
disabling,
discussion,
enabling,
external, 10-3
inhibiting, 54
memory increment, B-19
response code, 11-11
response time, 11-11
standard, 5-4
standard interrupt mode,
vectored, 5-4

5-4
10-3

5-4

B-21

Interval clock, 1046, B-27

Interval timer, 9-25, B-18

Inward calls, 8-1, 8-7, 8-15

IOTLB,

address format, 11-14

discussion, 11-14, B-27

entry format, 11-15, B-27
mapping information, 11-14

IX mode (SeeGRR)

J

Jump instructions, 7-6

K

Keys,

CALF stack frame, 10-13

CBIT, 5-9

condition codes, 5-9

discussion, 5-4

ECB, 8-5

format in S and R modes, 5-5

format in V and I modes, 5-6

instructions, 5-8



Keys (continued)
LINK, 5-9
PCL, 8-10
PRIN, 8-15
stack frame, 84
undefined settings, 5-10

L

L bit, 8-6, 8-14

Last bit, 8-6, 8-14

LINK, 5-9

Link base (LB),
base register field, 35-7
CALF stack frame, 10-13
ECB, 8-5
introduction,
offset, 3-16
PCL instruction,
PRIN instruction,
stack frame, 8-4

3-4

8-10
8-15

Load/store special instructions,
6-13

Locks, B-3, B-5

Logic instructions, 6-2

Logical shift instruction, 6-14

Logical values, 6-2

Long form indirection, 35-9

M

Machine check,
discussion, 10-18
recoverable (See Recoverable
machine check)

Mapped I/O,

Mask word for queues,

11-15, 11-17, B-27

6-435

Master ISU, C-1l

Memory,
cache, (See also Cache memory)
data structures, 4-3

details of access, 4-19, B-10
details of address translation,

4-26
DTAR format, 4-15
hardware page map table, 4-18
interleaving, 24
management, 4-1, B-8
management data structures,
4-3

manager, 2-1
page faults, 4-29
parity error, 10-18
physical (See Physical memory)
segment descriptor word, 4-16
timing information, 4-24, 4-26
virtual (See Virtual memory)

Memory increment interrupt, B-19

Memory interleaving, 2-4

Memory manager, 2-1

Memory parity error, 10-18

Microcode, 1-4, B-2

Microcode register files,
for earlier processors,
for Prime 2350 to 2755,
for Prime 6350, 9-22
for Prime 9650 and 9655,
for Prime 9750 to 9955 IT,
9-22

B-18
9-24

9-22

Microsecond timer, C-1ll

Missing memory module, 10-18

Modals,
discussion,

format, 5-3

instructions, 5-4

MCM field, 10-34

5-2
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Nonindexing instructions,
16S mode, 3-29

oeR mode, 3-24

Seo mode, 3-dl

64R mode, 3-27

64V mode, 3-19, B-6

Normalization, 6-23, 6-25, B-12

Numbers, 6-3, 64

QO

OCP action, 11-10

Offsets, 3-2, 3-4

Operating system,
access via user programs,
automatic shutdown, 10-18
concealed stack, 10-12
embedded, 8-1, 8-7, 8-15
environment sensor support,

10-18
gate segments, 8-7
returning from inward calls,

8-15
segmentation, 2-5
UPS support, 10-18
virtual memory management ,

2-5

2-1

OTA action, 11-10

Overflow, 6-23

Overlap between field and
floating—point registers,eaeaAEFetn oe

6-17, 6-21, 9-20

OWNER, 9-20

OWNERH, 9-2, 9-20

| *
d

Packed decimal data, 6-33

AT A OO4-1 4-69Page map table,

Second Edition X-10

Pages,
discussion, 2-5
disk vs. memory, 4-2
hardware page map table,
page fault vector, 10-8
page faults, 4-29
status checking during address

translation, 4-29

4-18

PCB,

concealed stack,

discussion, 9-2

fault vectors,

format, 9-3
format for Prime 850,
interval timer,

OWNERH, 9-2, C-3
Prime 850 dispatcher,
Prime 850 format, C-3
PX lock, C6
wait list, 97

10-11

10-7

C4
9-25, B-18

C-12

PCBA and PCBB, 95

Performance,
burst-mode DMA, 11-18
burst-mode DMT, 11-20
Character manipulation

instructions, 6-38
fast array reference

instructions, 6-9
fast decrement instructions,
6-7

fast increment instructions,
6-4

fast setting of bits in A, 6-7
mapped I/O, 11-135, B-27
pipeline flushing, 1-9
public vs. private shared

segments, 4-21
Ring O memory access, 4-21

Phantom interrupt code, 104

Physical memory,
addressing, 3-1
conversion from virtual

address, 4-2

data structures, 4-3

details of access, 4-19, B-10

details of address translation,

4-26

discussion, 2-2

DTAR format, 4-15



Physical queues,

Physical memory (continued)
elements, 2-2
error detection and correction,

2-4, B-5
hardware page map table,
interleaving, 2-4, B-5
introduction, 2-1
packaging, 2-4, B-5
page faults, 4-29
pages, 2-35
Ssepment descriptor word, 4-16
size of, 3-1
STLB, 2-8
timing information, 4-24, 4-26
translation from virtual

memory, 4-1

4-18

6-41

PIO,
communications controller

addresses, 11-7

controller address assignments,
11-5

controller ID numbers, 11-7
discussion, 11-2

EIO effect on condition codes,
11-10

instructions, 11-2

Pipeline,
e-phase, 1-9
5-stage, 1-7
explicit flush by instruction

stream, 1-9
flushing, 1-9
handling invalidation via
branch cache, 1-9

introduction, 1-7

PMT,
discussion, 4-17
entry format, 4-17
use during address translation,
4-29

Pointer,

argument, 8-6
bit number, 3-9
discussion, 3-9
extension bit, 3-9
fault bit, 3-9
indirect, 8-6

X-11

Postindexed addressing, 3-10

Power-up,
initialization values,
process, A-l

A-2

PPA and PPB, 9-5

Preindexed addressing, 3-10

Prime 150 (See Earlier
processors)

Prime 2250 (See Earlier

processors)—

Prime 2350 (See individual
subjects)

Prime 2450 (See individual
subjects)

Prime 250 (See Earlier
processors)

Prime 250-II (See Earlier
processors)

Prime 2550 (See individual
subjects)

Prime 2655 (See individual
subjects)

Prime 2755 (See individual
subjects)

Prime 350 (See Earlier
processors)

Prime 400 (See Earlier
processors)

Prime 450 (See Earlier
processors)

Prime 500 (See Earlier
processors)

Prime 550 (See Earlier
processors)

Prime 550-II (See Earlier
processors)
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Prime 6350 (See individual
subjects)

Prime 650 (See Earlier
processors)

Prime 750 (See Earlier
processors)

Prime 850 (See Earlier
processors)

Prime 9650 (See individual
subjects)

Prime 9655 (See individual

subjects)

Prime 9750 (See individual
subjects)

Prime 9755 (See individual

subjects)

Prime 9950 (See individual
subjects)

Prime 9955 (See individual
subjects)

Prime 9955 II (See individual
subjects)

Prime 1450 (See Earlier
processors)—

PRIMOS (See Operating system)

Priority headers, 9-5

Procedure base (PB),
base register field, 3-7
CALF stack frame, 10-13

introduction, 3-3

PCL instruction, 8-10

Procedure control block (See
PCB)

Procedures ,
address of current link frame,

o-4
address of current stack frane,

5-4
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Procedures (continued)
address of currently active

procedure, 3-3
affected registers, 8-15
argument transfer instruction,
8-14

details of calling,
discussion, 8-1
ECB, 8-5
gate segments, 8-7
inward calls, 8-7
PCL instruction, 8-2
returning to caller, 68-15
stack management, 8-2
types of calls, 8-1

8-7

Process exchange mechanism,
affecting break handling, 10-2
affecting interrupt handling,

10-4
check handler operation, 10-35
discussion, 91, C-l
dispatcher, 916, 9-27, B-18
dispatcher operation, C-11
dual-stream processors, C-l
example of ready list use, 96
fault servicing, 10-12

instructions, 9-9

interval timer, 9-25, B-18

NOTIFY on Prime 850, C-9
OWNER, 9-20
OWNERH, 9-2, 9-20
PCB, 9-2
PCBA and PCBB, 9-5
PPA and PPB, 9-5
priority headers,
PX lock, C-3
ready list, 922
register files,
semaphores, 9-7
wait list, 9-7

9-5

9-17

Processes,
dispatcher, 9-16, 9-27, B-18
fault vectors, 10-7
implementation on single-stream

processors, 91
instructions for scheduling,

9-9
interval timer,
introduction,

PCB, 92
process exchange mechanism,

om|



Processes (continued)
process exchange on Prime 850,

C-1
register files (See User

register files)
semaphores, 9-7
wait list, 9

Processor board overtemperature
sensor, 10-18

Program counter,
relationship to PB, 34
transferring control, 8-1

Programmed I/O (See PIO)

Protection rings, 2-6, 3-2

Pure procedure, 1-9

PX lock, C-3, C4

PXM (See Process exchange
mechanism)

Q

QCB,
alignment, 6-42
discussion, 6-41

format, 6-42

Quad precision floating-point,
6-19

Queue control block, 6-41, 6-42

Queues,
algorithms, 6-44
discussion, 6-41
instructions, 6-45, 646
mask word, 6-43
maximum number of elements,

6-44
physical, 6-41
Prime 850 locks, B-5
virtual, 6-41

X-13

R

R mode,
behavior relating to 5-stage

pipeline, 1-9
discussion, 35-12
index limitations, 35-8
input/output, 11-2
introduction, 3-12
performance, 1-9

Ready list,
data base, 9-5
discussion, 9-2

example, 96
example with associated PCB

lists, 94
instructions, 9-13

Prime 850, C-6

Recoverable machine check,

10-18, 10-36, 10-37

Register file,
actions during interrupt

handling, 10-3
allocation for 2350 to e755,

9-17
allocation for 6350, 9-16
allocation for 9650 and 9655,

9-17
allocation for 9750 to 9955 II,

9-16
allocation for earlier

processors, B-17
arithmetic exceptions, 10-16,
B-22

check handling by processor,
10-34

decimal instructions, 6-36
direct addressing, 921
DMA channels, 9-21, 11-16
floating-point registers, 6-19
interval timer in dispatcher,

9-27, B-18
manipulation by dispatcher,

9-28
microcode scratch for earlier

processors, B-18
microcode scratch for Prime

2350 to 2755, 9-24
microcode scratch for Prime

6350, 9-22
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Register file (continued)
microcode scratch for Prime

9650 and 9655, 9-24
microcode scratch for Prime

9750 to 9955 II, 922
NOTIFY instruction, 9-13
Prime 850, C-10
Prime 850 dispatcher, C-12
register—to-register

instructions, 6-13
relationship to processor, 1-5
restoring, 6-13
save by NOTIFY instruction,

9-138
saving, 6-13
short save by WAIT instruction,

9-9
TIMERH and TIMERL, C-11l
use by dispatcher, 9-27, B-18
user processes (See User

register files)
WAIT instruction, 9-9

Register overlap between field
and floating-point registers,
6-17, 6-21, 9-20

Restricted instructions,

discussion, 5-1

list of, 5-11

Result of the chain, 3-8

Ring O,

queues, 6-42
restricted instructions, 5-1

Ring 2, 4-21

Ring numbers,
calculation during procedure

call, 8-7
calculation during procedure

return, 8-15
discussion, 3-2
queues, 6-42
restricted instructions, 5-1
undefined results, 4-21
weakening during memory access,

4-21

Rings of protection, 2-6, 3-2

Rotate instructions, 6-14

Second Edition X-14

Rounding, 6-24, B-13

[t
A

S bit, 8-6, 8-11, 8-15

S mode,

behavior relating to 5-stage
pipeline, 1-9

discussion, 3-12

index limitations, 3-8
input/output, 11-2

introduction, 35-12

performance, 1-9

Save Done bit, 928, C-12

SDT, 4-16, 4-29

SDW, 4-16

Sector,

addressing current, 35-29, 3-31
discussion, 3-12

security and protection rings,
2-6

Segment descriptor table,
discussion, 4-16
use during address translation,
4-29

Segment descriptor word,
discussion, 4-16
entry format, 4-16

Segment numbers,
discussion, 3-2
use during address translation,
4-29

Segment Table Lookaside Buffer
(See STLB)

Segment Table Origin Register,
4-15, 4-29

Sepsmentation and STLB, 1-4



Self-modifying code,

semaphores,

Shift instructions,

Short form indirection,

Single-stream architecture,

Skip instructions,

SKS action,

Segments,
access rights, 4-16
CALF stack frame stack root,

10-13
dedicated to PCB, 92
descriptor words, 4-16
discussion, 2-5
faults, 4-29
gate access,
numbers, 35-2
protection rings, 2-6
segment fault handling,
segmented mode, 3-16
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