
Prime. Instruction Sets Guide

Rev. 27.0

DOC9474-2LA

Instruction

Sets Guide

Second Edition

by

Marilyn Hammond

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice

and should not be construed as a commitment by Prime Computer, (Inc.

Prime Computer, Inc., assumes no responsibility for any errors that may

appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime

INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,

PST 100, PT25, PI45, PIES, PI200, PW15S, Pw200, PW250, RINGNET, SIMPLE,

50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,

6350, 9650, 9655, 9750, 9755, 9950, 9955, and QO55II are trademarks of

Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOCQ474-1LA) January 1985

Update 1 (UPD9474-11A) October 1985

Update 2 (UPDO474-12A) February 1986

Update 3 (UPD9474-13A) April 1986
Second Edition (D0C9474-2LA) August 1987

CREDITS

Editorial: Thelma Henner

Project Support: The CPU Group

Tllustration: Mingling Chang

Document Preparation: Kathy Normington

Production: Judy Gordon

ii

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a Catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Friday,
8:50 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

Contents

ABOUT THIS BOOK vii

INTRODUCTION

Addressing Modes 1-1
Summary of Datatypes and Applicable

Instructions 1-5

S, R, AND V MODE

Introduction 2-1
Instructions 2-7

I MODE

Introduction o-1
Instructions o-7

APPENDICES

Condition Code Information A-1

Addressing Information B-1

Addressing Modes and Formats B-1
Address Traps B-18
Summary B-22

Instruction Summary Charts C-1

Hardware Considerations in Performance D-1

Instruction Weights D-2
Extensions to Instruction Weights D-"

Archived Instructions E~-1

2455 Instruction Sets F-1

About

This Book

Prime's 50 Series™ family is a sophisticated group of totally
compatible supermini computers. Its members are the Prime:

6350™ 9955 II™ 9955 ™ 9950™
9755™ 9750 ™ 9655 ™ 9650 ™
2755 ™ 2655 ™ 2050 ™ 2450 ™
2550 ™ 2200 ™ 850 ™ 750 ™
650™ 550-II ™ 550 ™ 500 ™
450™ 1450 ™ 400 ™ 350 ™
200-II™ 200 ™ 150 ™

The earlier processors are the 2250, 850, 750, 650, 550-II, 550, 500,
450/, 1450, 400, 350, 250-II, 250, and 150.

The 50 Series systems embody an advanced 32-bit architecture that
grants the user the ability to perform complex tasks efficiently and
quickly. This document describes the 50 Series addressing modes and
their instructions from a functional point of view.

NOTES TO THE READER

Several groups of people will find this document useful: engineers,

programmers, designers, and technicians. To read this book, you should

have a basic understanding of computers, but not necessarily of Prime

computers. Prime stresses a high degree of compatibility across its
product line; therefore, you can apply much of the information

contained in this book to other Prime machines, as well as to the 50

Series machines.

ORGANIZATION OF THIS GUIDE

This guide describes the instructions for S, R, V, and I addressing

modes. Each of these modes is introduced in Chapter 1. This chapter

also presents the 50 Series datatypes and their applicable

instructions. Chapters 2 and 3 contain detailed information about each

instruction -- name, format, memonic, and required operands -- anda

complete description of each of the instruction’s actions.

Chapters 1 through 3 may be summarized as follows:

e Chapter 1 contains brief descriptions of S, R, V, amd I addressing

modes as well as a summary of datatypes with applicable
instructions.

@ Chapter 2 is a dictionary of instructions executable in S, R, amd V

modes.

@ Chapter 3 is a dictionary of instructions executable in I mode.

Appendix A discusses the condition codes and their interpretation.

Appendix B presents tables of addressing information.

Appendix C contains summary charts of the instructions.

Appendix D discusses hardware considerations in performance and

provides tables of relative instruction weights.

Appendix E has those instructions that have been archived.

Appendix F discusses the instructions sets in relation to the 2455.

viii

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.

Convention Explanation Example

UPPERCASE In command formats, words CRL

in uppercase indicate the
names of commands, options,
statements, and keywords.
Enter them in uppercase.

lowercase In command formats, words LDA address
in lowercase indicate vari-
ables for which you must
substitute a suitable value.

Brackets Brackets enclose an optional [DISPLACEMENT\16]
[] item.

Apostrophe An apostrophe preceding a ‘200
number indicates that the

number is in octal.

Introduction

This chapter briefly describes the S, R, V, and I addressing modes as
well as introducing their data representations. Each datatype
operation is listed with its S, R, V, and I mode instructions.

ADDRESSING MODES

The 50 Series processors support four addressing modes, each of which
forms addresses differently. Depending on the program and personal
preference, one or two of these modes may be more useful than another.
The three most important modes are:

e V, or virtual

e I, or general register

@e R, or relative

The fourth mode -- S, or sectored, mode -- is supported for historical
reasons.

1-1 Second Edition

INSTRUCTION SETS GUIDE

V Mode

V mode performs short and long operations and has a wide variety of
registers to use. A short (16-bit) instruction in this mode can
reference the first 256 locations of both the stack and link, as well
as the 224 locations on either side of the current location in the
procedure segment. A long (32-bit) V mode instruction can directly
reference all locations in four segments. Indirect addressing can
reference all locations in up to 4096 128-Kbyte segments.

I Mode

When referencing memory, I mode is similar to 32-bit V mode. The
difference is that I mode short operations reference 8 32-bit general
purpose registers for use as index registers, accumulators, counters,
or the like. I mode long operations have the same referencing power as
V mode long operations. They can also use immediate forms and five
additional index registers. (This makes a total of 7 index registers
that I mode long operations can use.) The index registers are
specified by the source register field. General register 0, however,
cannot be used for indexing.

General register relative (GRR) is an addressing capability added to
o2I mode that speeds up big array accesses and often gives the effect
of using general registers as base registers. (This is sometimes
called IX mode.) The offset is formed in GRR by adding the
displacement to bits 17 to 32 of the source register field. GRR is
used by the I mode instructions AIP and LIP. (GRR is not available for
the earlier processors listed in "About This Book".)

The C language pointer is used by the I mode instructions ACP, CCP,
DCP, ICP, Loc, SCC, and TONP. The format of this pointer is the same
as the indirect pointer, except that bit 4 is redefined as the B (byte)
bit. When this bit contains 0, it indicates that bits 1 to 8 (the left
byte) of an address contain the character to be used; when this bit
contains 1, bits 9 to 16 (the right byte) of an address contain the
Character. A null pointer is represented by a O in bits 4 through 32.
(The C language pointer and its instructions are not available for the
earlier processors listed in "About This Book".)

Normal effective address formation uses either a base register,
indirect pointer (IP) or a general register (for GRR addressing) as the
source of the ring field, B bit, and segment number. The C language
pointer is well defined for the IP and GRR form. When the base
register is the source of the B bit, software depends on finding it
reset to zero, pointing to the leftmost byte. While it is possible to
set the E bit in a base register using 48-bit IPs to specify 32-bit
addresses, this practice is not now done. Future implementations of V
and I modes will force bit 4 to zero during effective address formation
when the source of the segment is a base register; otherwise it will
copy bit 4.

Second Edition 1-2

INTRODUCTION

R Mode

A sector is a block of 512 (1000 octal) contiguous memory locations.
sector O starts on location 0 and ends on location ‘777; Sector 1
begins on location ‘1000 and ends on location ‘1777; and so on.

An R mode instruction can reference any location in Sector 0, as well
as a group of locations relative to the current value of the program
counter. When the sector bit (S) in an R mode instruction is 0, the
instruction can only reference locations in Sector 0. When § is 1, the
instruction references locations relative to the current value of the
program counter. The range of these relative locations is PC — ‘360 to
PC + ‘377, inclusive.

Note that an R mode instruction that specifies a location in the range
PC - ‘361 to PC - ‘400, inclusive, selects a special addressing code,
such as stack register.

S Mode

Like R mode instructions, § mode instructions contain a sector bit.
When §S is 0, references are to Sector 0. When S§ is 1, however,
references are only to those locations within the sector containing the
instruction.

S mode is a holdover from early Prime machines that were based on the
Honeywell 316 and 516 minicomputers. When operating in S mode, the 50
series processors act exactly as these early machines do.

Summary of Addressing Modes

Table 1-1 summarizes addressing information about S, R, V, and I modes.
For further information, see Chapter 3 of the System Architecture
Reference Guide.

1-3 Second Edition

INSTRUCTION SETS GUIDE

Table 1-1

summary of Addressing Modes

| Mode | Address | Addressing Range 1|# Index! Indirection|
| | Length | | Regs | Levels
|
| 168 direct | 14 bits | 1024 halfwords | One |
| | | | |
| 168 indirect | 14 bits | 16K halfwords | One | Multiple
328 direct	15 bits	1024 halfwords	One
328 indirect	15 bits	32K halfwords	One

32R direct	15 bits	1008 halfwords	One
32R indirect	15 bits	32K halfwords	One
64R direct	16 bits	1008 halfwords	One
64R indirect	16 bits ! 64K halfwords	One	One
64V 16-bit	16 bits	64K halfwords:	One
instructions		+256 SB relative	

	+256 LB relative		
		+/-256 PC relative!	
		+512 PB absolute	
64V 32-bit	28 bits	4 segments* i Two i One	
instructions			
64V indirect	28 bits	4096 segments*	Two
320 all	28 bits	12 segments*	Seven
		with GRR**	
d2aI indirect	28 bits	4096 segments*	Seven

* All segments contain 128 Kbytes.
** Pour segments for the 2

have no GRR capability.

Second Edition

OBRN
FITS

14

and earlier processors because they

INTRODUCTION

SUMMARY OF DATATYPES AND APPLICABLE INSTRUCTIONS

The 50 Series systems support several data representations. These
representations fall into the major groups:

@ Fixed-point data

@ Floating-point numbers

e Decimal integers

e Character strings

@ Queues

Tables 1-2 and 1-3 list the instructions applicable to the datatype
operations (other than queves) available in S, R, V, and I modes. The
body of each table shows which instructions perform a_ specific
Operation on a specific datatype. For detailed information about each
instruction, refer to the instruction dictionaries in Chapters 2 and 3
of this manual. For further information about datatypes, see Chapter 6
of the System Architecture Reference Guide.

When using Tables 1-2 and 1-3, aa represents the set of arithmetic
conditions [BQ, GE, GI, LE, LT, NE J. Also, these tables do not
include instructions that operate on CBIT, LINK, the condition codes,
or queues.

Throughout the rest of this book, R is used to indicate a 32-bit I mode
general register, while r indicates bits 1-16 of a 32-bit I mode
general register. In addition, A and B represent the S and R mode
16-bit registers; L and E represent the V mode 32-bit registers.

1-5 Second Edition

INSTRUCTION SETS GUIDE

Table 1-2
Summary of Datatypes and Applicable 5, R, V Mode Instructions

Second Edition 1-6

| | Size of Datatype (in Bits of Register) |
| Operation | |
| | 16131 | 32164 |32FP |\64FP 1128FP! Dec!
| | (A) 1(A/B)! (CL) | CL/E)! CRAG)! CDAC) 1 (QAC)! (-)!
| |
| Load from memory | LDA | DUD | LOL | | FLD | DFLDI QFLDI XMV!
Store to memory	STA	DST	STL !	FST	DFST! QFST!			
Add	ADD ! DAD ! ADL	!	FAD	DFAD! QFAD! XAD!				

| Subtract | SUB | DSB | SBL | | FSB | DFSBI QFSBI XADI
| | | | | | | | | |

| Multiply | MPY | | MPL | | FMP | DFMP! QFMP! XMP|
| | | | | | | | | |

| Divide | DIV | | DVL | | FDV | DFDV! QFDV! XDV!
| | | | | | | | |

Increment	IRS,							
	AlA,							
	AZA							

| | | | | | | | |
| Decrement | SIA,| | | | | | |

| | SQA | | | | | | | |

| | | | | | | | | |

| AND | ANA | | ANL |! | | | | |

| | | | | | | |
| OR | ORA | | | | | | | |

XOR	ERA		ERL					
Complement	CMA							
Compare	CAS,		CLS		FCS	DFCS! QFC,! XCMI		
	CAZ						QFCS	
Logical test	Laa		LLaa!	LFaa!l LFaal				
Branch	Baa		Blaa.!	BFaa! BFaa,!				
Logical left shift	ALL		LLL					
Logical right shift	ARL		LRL					
Arithmetic left shift! ALS	LLS	LLS						
Arithmetic right	ARS	LRS	LRS					
i shift			i					
Rotate left shift	AIR		LLR					

Table 1-2 (continued)
Sumary of Datatypes and Applicable S, R, V Mode Instructions

INTRODUCTION

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Size of Datatype (in Bits of Register)

16 |
(A)

ol
|(A/B)! (CL)

on | 64 |\32FP |64FP |128FP!
| (L/E) | CRAC) | (DAC) | (QAC) |

Dec
(-)

Rotate right shift

Clear

Clear left

Clear right

Interchange halves

Interchange and
clear left

Interchange and
Clear right

Two's complement

Set sign

Clear sign

Change sign

Convert datatypes:

Integer to
floating point

Floating point
to integer

Binary to decimal

Decimal to binary

Position for integer
divide

Position after
multiply

Skips

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

ARR

CRA

ICA

ICL

ICR

SSM

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

SSP |
|

|

|

|

|

FLTA|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

LRR

CRL |CRLE

CRL

CRE

TLE

XCA

XCB

FLTL

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

INTL!

|

XBTD| XBIDI
X0YB| XDTBi
PID Prot

—
PIML! PIML|

Po
| FSaal FSaa

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

DFCM

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

QINQ!
QIGR|

|
|

|

|

|

|

|

|

|

|

|

|

1-7 second Edition

INSTRUCTION SETS GUIDE

Table 1-3

Summary of Datatypes and Applicable I Mode Instructions

Size of Datatype (in Bits of Register) |

| |
| Operation | |
| | 161 382 | |\S2FP |64FP |128FP! Dec!
| | Cr) | CR) | CR/R+1)! CFAC) 1 (DAC)! (QAC)! (-)!
| |
| Load from memory | IH !L |! | FL {| DFL |! QFLD! XMV!
Store to memory	STH	ST		FST	DFST! QFST!		
Add	AR	A		FA	DFA	QFAD! XADI	
Subtract	SH	S		FS	DFS	QFSBI XADI	

| | | | | | | | |
| Multiply | MH | M | | FM | DFM | QFMP! XMP!
| | | | | | | |
| Divide | DH | D | | FDV | DFDV! QFDV! XDV!

| | | | | | | | |
| Increment | IMH,! IM, | | | |

| | IH1,! IR1,! | | | | |
| | ITH2 | IR2 | | | | | |

Decrement	DMH,! DM,					
	DH1,! DRi,!					

	DH2	DRe					
AND	NH IN						
OR	QH	O					
XOR	XH	X					
Complement	CMH	CYR					
Compare	CH	C		FC	DFC	QFC,!	XCM!

Logical test	LHaa!l Laa		LFaa! LFaal				
i Branch | BHaai BRaal i BFaai BFaai |

Logical shift		SHL					
Arithmetic shift		SHA					
Shift right 1	SHR1! SR1						
Shift right 2	SHR2! SR2						
Shift left 1	SHL1! SL1						
	LHI!						

Second Edition

INTRODUCTION

Table 1-3
Summary of Datatypes and Applicable I Mode Instructions |

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Size of Datatype (in Bits of Register) |
Operation | |

| 161 3821 64 I32FP |64FP 1128FP! Dec!
| (x) | CR) 1CR/R+1)1 CFAC) | (DAC) 1 (QAC)! (-)!

|
Shift left 2 | SHL2! SL2 | | | | | |

| LHS! | | | | | |

| | | | | | | |
Shift left 3 | LHL3! | | | | | |

| | | | | | | |
Rotate | | ROT | | | | | |

| | | | | | | |
Clear | | CR | | | | | |

| | | | | | | |
Clear left | CRBL! CRHLI | | |

| | | | | | | |
Clear right | CRBR| CRHR| | | | | |

| | | | | | |
Interchange halves | IRB | IRH! TI | | | | |

| | | | | | | |
Interchange and | ICBLI ICHL! | | | | |
clear left | | | | | | | |

| | | | | | | |
Interchange and | ICBR| ICHR! | | | | |
clear right | | | | | | | |

| | | | | | | |
Two's complement | TCH | TOC | | FOM | DFCM! QFCM! |

| | | | | | | |
Set sign | SSM | SSM | | | | | |

| | | | | | | |
Clear sign | SSP i SSP | | | | |

| | | | | | | |
Change sign | CHS | CHS | | | | | |

| | | | | | | |
Convert datatypes: | | | | | | | |

Integer to | FLTH! FLT | | | | | |
floating point | | | | | | | |

| | | | | | | |
Floating point | INTH! INT | | | | QINQ! |
to integer | | | | | | QIQR! |

| | | | | | | |
Binary to decimal | XBID! XBID! XBIDI | | | |

| | | CDACO)| | | | |
Decimal to binary | XDTB! XDIBI XDIB! | | | |

| | | (DACO)|! | | | |
Position for integer | PIDH! PID! PID! | | | |
divide | | | | | | | |

| | | | | | | |
Position after multiply! PIMH! PIM! PIM | | | | |

1-9 Second Edition

S, R, and V Mode

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in 5, R, and V modes. In the description of each instruction, you will
find:

e The instruction mnemonic followed by any arguments.

e The name of the instruction.

e The bit format of the instruction.

@ The modes for which the instruction is valid.

e Detailed information describing the instruction's action.

e Information about the how the instruction affects LINK, CBIT,

and the condition codes.

Notation Conventions

several abbreviations and symbols are used throughout this dictionary.
Table 2-1 defines the dictionary notation.

e-1 second Edition

INSTRUCTION SETS GUIDE

Table 2-1
Dictionary Notation

| Symbol | Meaning |
| |
| A | The A register. |

| |
ADDRESS	Encompasses all the elements needed to specify an
	effective address. This term is used because various
	addressing types require you to specify the elements
	ain different orders (such as indirect or pre- and
	post-indexing).
AP	Address pointer.
B	The 16-bit B register.
BR	Base register.
CB	Class bits.
CBIT	Bit 1 of the keys.

|

DAC	The double precision floating-point accumulator with 48
	bits of mantissa and 16 bits of exponent.
Displace-	The number of halfwords to be added to the base register
ment	to form the effecive address.
E	The 32-bit E register.
BA	Effective address.
F	Floating-point accumulator.
FAC	The single precision floating-point accumulator with 48
	bits of mantissa and 16 bits of exponent.
FAR	Field address register.
FLR	Field length register.
Halfword	A 16-bit unit of memory.
I	Indirect bit.
L	The 32-bit L register.
LINK	Bit 3 of the keys. Not used in § and R modes.
Offset	The number of halfwords from the starting address of a

second Edition e-e

5S, R, AND V MODE

Table 2-1 (continued)
Dictionary Notation

Symbol | Meaning

The quad precision floating-point accumulator with 96
bits of mantissa and 16 bits of exponent.

| |
| |
skip	Skip next 16-bit halfword before continuing execution.
Word	A 3a-bit unit of memory.
xX	The X register (indexing).
XB	Auxiliary base register.
Y¥	The Y register (indexing).

| |
| m\n | Specifies the number of bits, n, occupied by field n. |
| |
| | |Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the processor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
State of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 2-2 lists the resumable assembly language instructions.

Table 2-2

Resumable Instructions

| Instructions |

| |

| ARGT XAD XBTD XCM

| XDTB XDV XED XMP |

| XMV ZCM ZED Z2FIL |

| ZMV ZMVD ZTRN STEX |

2-35 second Edition

INSTRUCTION SETS GUIDE

These instructions depend on the settings in certain registers to

determine whether they are being executed for the first or another

time. In addition, some registers may be used for intermediate

storage, modifying the previous contents as a side effect. Registers
so modified are noted per instruction description.

Storing Data Into the V and I Mode Instruction Stream

For the 6350 and 9750 to 9955 II, you must wait five instructions

before executing data after any instruction that stores data into

memory. If in doubt about the next five instructions (temporally) to

be executed, use a mode change instruction to the current addressing

mode, such as EG4V, to allow the stored data to be executed. The rest
of the 50 Series has no such restriction.

Instruction Formats

All S, R, and V mode instructions belong to one of the following

instruction types:

e S and R Mode Memory Reference, Short

@ V Mode Memory Reference, Short

e R Mode Memory Reference, Long

@ V Mode Memory Reference, Long

@ V Mode Generic AP (Address Pointer)

e sS, R, and V Mode Generic Type A

e S, R, and V Mode Generic Type B

e S, R, and V Mode Shift

e sS, R, and V Mode Skip

The format of each instruction type is shown in Figure 2-1.

Short and long memory reference instructions have an opcode in bits 36

to 6. The value of this opcode ranges from 1 to ‘17, inclusive, with

the exception of ‘14, which is reserved for I/O. For opcode ‘15, the X

bit is part of the opcode.

In addition, long memory reference instructions have an opcode

extension contained in bits 13 to 14. Generic AP instructions have a

generic A or B format (where bits 7 to 16 contain the opcode extension)
followed by a 32-bit address pointer.

Second Edition a4

S, R, AND V MODE

Generic A and B, shift, and skip instructions are 16 bits long, all of
which form an opcode. The values of bits 1 and 2 determine the basic
instruction type: 11 for Generic A, 00 for Generic B, 01 for shifts,
and 10 for skips. Bits 3 to6 contain 0. Bits 7 to 16 contain an
opeode extension. For shifts, bits 10 to 16 of the opcode extension
contain the two's complement of the number of shifts to perform.

1 e356 67 16

| I | X |! OP | DISPLACEMENT |

S and R Mode Memory Reference, Short
/

1 e566 7 8 16

| I} X¥ | OP | 1 | DISPLACEMENT |

V Memory Mode Reference, Short

1 2 38 6 7 12 13 1415 1617 oe

R Mode Memory Reference, Long (Extended) Format

1 2 3 6 7 11 12 18 1415 1617 oR

| I | ¥ | OPCODE | 11000 | Y | OPEX ! BR! DISPLACEMENT |

Oo 48

| AUGMENT CODE* |

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| V Mode Memory Reference, Long Displacement Format
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

| I | X | OPCODE | 110000 | OPEX CB !: [OPTIONAL DISP]! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

*For quad operations only. |
|

S, R, and V Mode Instruction Formats

Figure 2-1

2-5 second Edition

INSTRUCTION SETS GUIDE

17 20 al 22 25 24 25 oe 3d 48

| BIT | I ! O + BR | QOOOO00O |! OFFSET!

Generic AP Format

1 6 7 16

| 110000 | OPOODE EXT |

S, R, V Modes Generic A Format

1 6 7 16

| Q00000 | OPCODE EXT |

S, R, V Modes Generic B Format

1 6 7 16

| 010000 |! OPCODE EXT |

S, R, V Modes Shift Format

1 67 16

| 100000 | OPOODE EXT |

S, R, V Modes Skip Format

S, R, and V Mode Instruction Formats

Figure 2-1 (continued)

Second Edition 2-6

5, R, AND V MODE

INSTRUCTIONS

— AlA
Add 1 to A
21100001010000110 £45, R, V mode form)

Adds 1 to the contents of A and stores the result inA. If A initially
contains (2**15)-1, an integer exception occurs and the instruction
loads -(2**15) into A. If no integer exception occurs, the instruction
resets CBIT to 0. LINK contains the carry-out bit. The condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

BPALA
Add 2 to A
1100000011000100 £2.(S, R, V mode form)

Adds 2 to the contents of A and stores the result in A. If A initially
contains (2**15)-1 or (2**15)-2, an integer exception occurs and the
instruction loads -(2**15)+1 or -(2**15), respectively, into A. If no
exception occurs, the instruction resets CBIT to 0. LINK contains the
Carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains al, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

B ABQ address
Add Entry to Bottom of Queue
1100001111001110 (V mode form)
AP\32

Adds the entry contained in A to the bottom of the queue referenced by
the AP. (AP points to the queue’s QCB.) Sets the condition codes to
reflect BQ if the queve is full, or to NE if not full. Leaves the
values of CBIT and LINK unchanged. See Chapters 6 and 11 of the System
Architecture Reference Guide for more information about queues and
queue operations.

2-7 second Edition

INSTRUCTION SETS GUIDE

p> ACA
Add CBIT to A
1100001010001110 4G, R, V mode form)

Adds the value of CBIT to the contents of A and stores the result in A.

If the initial value of A is (2**15)-1 and CBIT is 1, the instruction

loads -(2**15) into A and an integer exception occurs. If no integer
exception occurs, the instruction resets CBIT to 0. LINK contains the

carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a 0, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

Note

This instruction adds CBIT to bit 16 of A.

p> ADD address
Add
I¥O011011000Y00 Ri\e2 (V mode long)

DISPLACEMENT16

IX¥011011000000 CB\2 (R mode long)
{[DISPLACEMENT\16]

I X01 10 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit contents of

the location specified by EA and adds them to the contents of A.

Stores the results in A.

If the resulting sum is less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**15, an integer exception occurs. If

the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign

of the correct answer. In addition, the 16 bits are the 16 LSBs of the

correct answer, which needs 17 bits to be correctly represented.

If an integer exception occurs and bit 8 of the keys contains a0, the

instruction sets CBIT to 1. If bit 8 contains a1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The

condition codes reflect the result of the operation. (See Appendix A.)

Second Edition 2-8

S, R, AND V MODE

PBADL address
Add Long
ITX¥O011011000Y11 Re (V mode form)
DISPLACEMENT \16

Calculates an effective address, FA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of L.
Stores the results in L.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**31, an integer exception occurs. If
the sum is less than or equal to -(2**31)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the Opposite sign
of the correct answer. In addition, the 32 bits are the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
Sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

P AdLL
Add LINK to L
Ll1Q0001000000000

_

£(V mode form)

Adds the contents of LINK to the contents of L and stores the result in
L. If the initial value of L is (2**31)-1 and LINK is 1, an integer
exception occurs. When an integer exception occurs, the results are of
the opposite sign of the correct answer. In addition, the 32 bits are
the 32 LSBs of the correct answer, which needs 33 bits to be correctly
represented.

If no integer exception occurs, the instruction resets CBIT to 0. LINK
contains the carry-out bit. The condition codes reflect the result of
the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains aO, the
instruction sets CBIT to 1. If bit 8 contains a1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction adds the value of LINK to bit 32 of L.

2-9 Second Edition

INSTRUCTION SETS GUIDE

p ALFA far
Add L to FAR

000000101100F001_° (V mode formt)

Adds the two’s complement value contained in L to the offset and bit

number fields of FAR and stores the result in the specified FAR.

Leaves the values of LINK and CBIT indeterminate. The values of the

condition codes remain unchanged.

Figure 2-2 shows the format of L and the specified FAR for this

instruction.

1 on

| Number of bits to add to address pointer |

Format of L

1 16 17 de 3d oO

RING, SEGMENT | OFFSET + | BIT # |

Format of FAR

L and FAR Format for ALFA

Figure 2-2

ALL n

A Left Logical
0100001100N6 £5, R, V mode form)

Shifts the contents of A left the appropriate number of bits, bringing

zeros in through bit 16 as needed. CBIT and LINK contain the value of

the last bit shifted out; the values of the other bits shifted out are

lost. Leaves the values of the condition codes unchanged. See Chapter

6 of the System Architecture Reference Guide for more information about

shifts.

N contains the two's complement of the number of shifts to perform. If

N contains 0, the instruction performs 64 shifts.

Second Edition 2-10

S, R, AND V MODE

— ARn
A Left Rotate
Ol100001110N\6 (S, R, V mode form)

Shifts the contents of A to the left, rotating bit 1 into bit 16.
Stores the result in A. CBIT and LIMcontain the value of the last
bit rotated into bit 16. leaves the values of the condition codes
unchanged. See Chapter 6 of the System Architecture Reference Guide
for more information about shifts.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 6 shifts.

P Asn
A Arithmetic Left Shift
OlOOOO1LLOINSE (CS, R, V mode form)

Shifts the contents of A to the left, bringing zeros in on the right.
Stores the result in A. If bit 1, the sign bit, changes state, the
Shift has resulted in a loss of significance and produces an integer
exception. If no integer exception occurs, the instruction resets CBIT
to 0. The value of LINK is indeterminate. Leaves the values of the
condition codes unchanged. See Chapter 6 of the System Architecture
Reference Guide for more information about shifts.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

B ANA address
AND to A |
ITX¥O001111000YO00O R\2 (V mode long)
DISPLACEMENT\ 16

TXOO1lTII1IACONOOOO CBB (R mode long)
[DISPLACEMENT\16]

I X00 1 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Logically ANDs the 16-bit
contents of the location specified by EA with the contents of A, and
stores the result in A. leaves the values of CBIT, LINK, and the
condition codes unchanged.

2-11 second Edition

INSTRUCTION SETS GUIDE

p> ANL address
AND to A Long
IX¥001111000Y11 R32 (V node form)

Calculates a 32-bit effective address, EA. Logically ANDs the 32-bit

contents of the location specified by EA with the contents of L, and

stores the result in L. Leaves the values of CBIT, LINK, andi the

condition codes unchanged.

BP ARcT
Argument Transfer
0000000110000101 £(V mode form)

Transfers arguments from a source procedure to a destination procedure.

ARGT is fetched and executed only when the argument transfer phase of a

procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure

must contain the PCL instruction followed by a number of argument

templates. The destination procedure must begin with the ARGT

instruction. When the PCL instruction is executed, control transfers

to the destination procedure, and the ARGT instruction uses the

templates to form the actual arguments. The arguments are stored in

the new stack frame as they are computed. At the end of the ARGT

instruction, the values of CBIT, LINK, and the condition codes are

indeterminate.

ARGT must be the first executable instruction in any destination

procedure that will use arguments. For those procedures whose entry

control blocks specify zero arguments, you must omit ARGT or you will

destroy the return pointer for PCL, producing indeterminate results.

For more information about argument transfers, refer to the section on

procedure calls in Chapter 8 of the System Architecture Reference

Guide.

RP aRLn
A Right Logical
01000001 00N6 (CS, R, V mode form)

Shifts the contents of A right the appropriate number of bits, bringing

zeros in through bit 1. CBIT and LINK contain the value of the last

bit shifted out; the values of the other bits shifted out are lost.

Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If

N contains 0, the instruction performs 64 shifts.

Second Edition e-1le

S, R, AND V MODE

t Rot
OOO0O00110NS6 (S, R, V mode form)

Shifts the contents of A to the right, rotating bit 16 into bit 1.
CBIT and LINK contain the value of the last bit rotated into bit 1.
leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

P ARS n
A Arithmetic Right Shift
Ol1l00000101N\6_ (S, R, V mode form)

Shifts the contents of A to the right arithmetically, shifting copies
of bit 1, the sign bit, into the vacated bits. CBIT and LINK contain
the value of the last bit shifted out; the values of the other bits
shifted out are lost. leaves the values of the condition codes
unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

> ATaddress
Add Entry to Top of Queue
1100001111001111~+= «2mode forn)
AP\32

Adds the entry contained in A to the top of the queue referenced by the
AP. (AP points to the queve’s QCB.) Sets the condition codes to
reflect HY) if the queve is full, or to NE if not full. Leaves the
values of CBIT and LINK unchanged. For more information about queues
and queue manipulation, see Chapters 6 amd 11 of the System
Architecture Reference Guide.

2-13 second Edition

INSTRUCTION SETS GUTDE

B BCEQ address
Branch on Condition Code &Q
1100001110000010 £.(V mode form)
ADDRESS\ 16

If the condition codes reflect equal to 0, the instruction loads the
specified address into the program counter. This address mst he
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> BCE address
Branch on Condition Code GE
1100001110000101 42(V mode form)
ADDRESS\ 16

If the condition codes reflect greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the condition codes
reflect some other condition, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged .

> CCT address
Branch on Condition Code GT

1100001110000001_ (V mode form)
ADDRESS\ 16

If the condition codes reflect greater than 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. JLeaves_ the
values of CBIT, LINK, and the condition codes unchanged.

PB BCLE address
Branch on Condition Code LE

1100001110000000 £4(V mode form)
ADDRESS\16

If the condition codes reflect less than or equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the condition codes reflect
some other condition, execution continues with the next instruction.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-14

S, R, AND V MODE

P BCT address
Branch on Condition Code LT
1100001110000100 £((V mode form)
ADDRESS\ 16

If the condition codes reflect less than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

BP BCE address
Branch on Condition Code NE

1100001110000011 &42(V mode form)
ADDRESS\16

If the condition codes reflect not equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

B &CR address
Branch on CBIT Reset to 0
1100001111000101 (CV mode form)

ADDRESS\16

If CBIT has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If CBIT has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

PB BCS address
Branch on CBIT Set to l

1100001111000100 £(V mode form)
ADDRESS\ 16

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
Segment. If CBIT has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

2-15 second Edition

TNSTRUCTION SETS GUTMIR

p> HBX address
Branch on Decremented X

1100000111011100 £4mode form)
ADDRESS\16

Decrements the contents of X by one and stores the result in X. If the

decremented value is not equal to 0, loads the specified address into

the program counter. This address mst be within the current segment.
If the decremented value is equal to 0, execution continues with the

next instruction. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

PBBDY address
Branch on Decremented Y
1100000111010100 £4(V mode form)

ADDRESS\ 16

Decrements the contents of Y by one and stores the result in Y. If the

decremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the decremented value is equal to 0, execution continues with the

next instruction. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

> BR) address
Branch on A Equal to 0
1100000110001010 mode form)
ADDRESS\ 16

If the contents of A are equal to 0, the instruction loads the

specified address into the program counter. This address must be
within the current segment. If the A contents are not equal to 0,

execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

> BFEQ address
Branch on Floating Accumulator Equal to 0
1100001110001010 £4(V mode form)
ADDRESS\ 16

If the contents of the floating accumlator are equal to 0, the

instruction loads the specified address into the program counter. This

address mst be within the current segment. If the floating
accumulator contents are not equal to 0, execution continues with the
next instruction. The condition codes contain the result of the

comparison. (See Appendix A.) Leaves the values of LINK and CBIT

unchanged.

second Edition 2-16

S, R, AND V MODE

BFEQ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

B BFGE address
Branch on Floating Accumulator Greater Than or Equal to 0
1100001110001101

+=

£42mode form)
ADDRESS\ 16

If the contents of the floating accumulator are greater than or equal
to O, the instruction loads the specified address into the program
counter. This address must be within the current segment. If the
floating accumlator contents are less than 0, execution continues with
the next instruction. The condition codes contain the result of the
comparison. (See Appendix A.) Leaves the values of LINK and CBIT
unchanged. BFGE works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

>BCT address
Branch on Floating Accumlator Greater Than 0
1100001110001001_~ (V mode form)
ADDRESS\ 16

If the contents of the floating accumulator are greater than 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the floating
accumulator contents are less than or equal to 0, execution continues
with the next instruction. The condition codes contain the result of
the comparison. (See Appendix A.) Leaves the values of LINK amd CBIT
unchanged. BFGI works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

PBBFLE address
Branch on Floating Accumulator Less Than or Equal to 0
1100001110001000 £(V mode form)
ADDRESS\ 16

If the floating accumlator contents are less than or equal to 0, BFLE
loads the specified address into the program counter. This address
must be within the current segment. If the floating accumlator
contents are greater than 0, execution continues with the next
instruction. The condition codes contain the comparison result. (See
Appendix A.) Leaves the values of LINK and CBIT unchanged.

2-17 second Edition

TNOATDIVMAITTON Coma CITT
NA RAea (NAAodedheBRD hedWEANS ale wel <

BFLE works correctly only on normalized or nearly normalized numbers,

because it checks the first 32 fraction bits only for equal to zero and

less than zero. (See Chapter 6 in the System Architecture Reference

Guide.)

> BFLT address
Branch on Floating Accumulator Less Than 0
1100001110001100 £4(V node form)
ADDRESS\16

If the contents of the floating accumlator are less than 0, the

instruction loads the specified address into the program counter. This

address must be within the current segment. If the floating

accumlator contents are greater than or equal to 0, execution

continues with the next instruction. The condition codes contain the

result of the comparison. (See Appendix A.) Leaves the values of LINK
and CBIT unchanged. BFLT works correctly only on normalized or nearly

normalized numbers, because it checks the first 32 fraction bits only

for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

> BFNE address
Branch on Floating Accumulator Not Equal to 0
1100001110001011 &42(V node form)
ADDRESS\16

If the contents of the floating accumlator are not equal to O, the

instruction loads the specified address into the program counter. This

address must be within the current segment. If the floating

accumlator contents are equal to 0, execution continues with the next

instruction. The condition codes contain the result of the comparison.

(See Appendix A.) Leaves the values of LINK and CBIT unchanged. BFNE

works correctly only on normalized or nearly normalized numbers because

it checks the first 32 fraction bits only for equal to zero and less

than zero. (See Chapter 6 in the System Architecture Reference Guide.)

> GE address
Branch on A Greater Than or Equal to 0
1100000110001101 £4mode form)
ADDRESS\ 16

If the contents of A are greater than or equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the A contents are less than 0,
execution continues with the next instruction. The condition codes

contain the result of the comparison. (See Appendix A.) Leaves the

values of LINK and CBIT unchanged. This instruction has the same
anmnamahin° ration as RICE.

Second Edition 2-18

5S, R, AND V MODE

> BCTaddress
Branch on A Greater Than 0

1100000110001001 #£2.(~V mode form)
ADDRESS\16

If the contents of A are greater than O, the instruction loads the
Specified address into the program counter. This address must be
within the current segment. If the A contents are less than or equal
to 0, execution continues with the next instruction. The condition
Codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

p>BIX address
Branch on Incremented X

1100001011011100 £.((V mode form)
ADDRESS\ 16

Increments the contents of X by one and stores the result in X. If the
incremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

PBBIY address
Branch on Incremented Y

1100001011010100 £(V mode form)
ADDRESS\16

Increments the contents of Y by one and stores the result in Y. If the
incremented value is not equal to 0, loads the specified address into
the program counter. This address must be within the current segment.
If the incremented value is equal to 0, execution continues with the
next instruction. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

> BLE address
Branch on A Less Than or Equal to 0
1100000110001000 £((V mode form)
ADDRESS\16

If the contents of A are less than or equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the A contents are greater than 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

2-19 Second Edition

ee

P BLEQ address
Branch on L Equal to 0
1100000111000010 £2V mode form)
ADDRESS \16

If the contents of L are equal to O, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the lL contents are not equal to 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

> BIGE address
Branch on L Greater Than or Equal to 0
1100000110001101_~ 42(V mode form)
ADDRESS\16

If the contents of L are greater than or equal to O, the instruction
loads the specified address into the program counter. This address
mst be within the current segment. If the L contents are less than 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged. This instruction has the same
operation as BGE.

> BILGT address
Branch on L Greater Than O
1100000111000001_ £4(V mode form)
ADDRESS\ 16

If the contents of L are greater than 0, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the L contents are less than or equal
to 0, execution continues with the next instruction. The condition
codes contain the result of the comparison. (See Appendix A.) Leaves
the values of LINK and CBIT unchanged.

— BLLE address
Branch on L Less Than or Equal to 0
1100000111000000 (CV mode form)
ADDRESS\ 16

If the contents of L are less than or equal to 0, the instruction loads
the specified address into the program counter. This address must he
within the current segment. If the L contents are greater than 0,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

second Edition 2-20

S, R, AND V MODE

P BLLT address
Branch on L Less Than
11000001100
ADDRESS\ 16

If the contents of L are less than 0, the instruction loads the
Specified address into the program counter. This address must be
within the current segment. If the L contents are greater than or
equal to O, execution continues with the next instruction. The
condition codes contain the result of the comparison. (See Appendix
A.) Leaves the values of LINK and CBIT unchanged. This instruction
has the same operation has BLT.

0
01100 (V mode form)

> BLNE address
Branch on L Not Equal to 0
1100000111000011_° (VY mode form)
ADDRESS\ 16

If the contents of L are not equal to 0, the instruction loads the
Specified address into the program counter. This address mst be
within the current segment. If the L contents are equal to O,
execution continues with the next instruction. The condition codes
contain the result of the comparison. (See Appendix A.) Leaves the
values of LINK and CBIT unchanged.

PBBIR address
Branch on LINK Reset to 0
1100001111000111 4(V mode form)
ADDRESS\ 16

If LINK has the value 0, the instruction loads the specified address
into the program counter. This address mst be within the current
Segment. If LINK has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

PBBLS address
Branch on LINK Set to l

1100001111000110 £4(V mode form)
ADDRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
Segment. If LINK has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

2-21 second Edition

INSTRUCTION SETS GUIDE

> BLT address
Branch on A Less Than 0
1100000110001100 _£4(V mode form)
ADDRESS\16

If the contents of A are less than 0, the instruction loads the

specified address into the program counter. This address must be

within the current segment. If the A contents are greater than or

equal to 0, execution continues with the next instruction. The

condition codes contain the result of the comparison. (See Appendix

A.) Leaves the values of LINK and CBIT unchanged. This instruction
has the same operation as BLLT.

> BMEQ address
Branch on Magnitude Condition KY
1100001110000010
ADDRESS\16

(Vv mode form)

If the condition codes indicate magnitude equal to 0, the instruction

loads the specified address into the program counter, like BCE). BMEQ

is intended for magnitude comparisons after a compare or subtract

instruction. This address must be within the current segment. If the

condition codes indicate some other condition, execution continues with

the next instruction. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

> EMGE address
Branch on Magnitude Condition GE
1100001111000110
ADDRESS\16

(V mode form)

If LINK has the value 1, the instruction loads the specified address

into the program counter, like BLS. BMGE is used to determine if the

magnitude of the A/L register quantity was greater than or equal to the

memory quantity after a compare or subtract instruction. This address

must be within the current segment. If LINK has the value 0, execution

continues with the next instruction. Leaves the values of CBIT, LINK,

and the condition codes unchanged.

Second Edition 2-22

5S, R, AND V MODE

> BMGT address
Branch on Magnitude Condition GT
21100001111001000
ADDRESS\16

(V mode form)

If LINK is 1 and the condition codes reflect not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If some other condition
exists, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

PB BMLE address
Branch on Magnitude Condition LE
2100001111001001

~~

£42(WVmode form)
ADDRESS\16

If LINK is 0 or the condition codes reflect equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If some other comdition exists,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

PB EMT address
Branch on Magnitude Condition LT
1100001111000111 &42(WV mode forn)
ADDRESS\16

If LINK has the value 0, the instruction loads the specified address
into the program counter, like BLR. BMLT is used to determine if the
magnitude of the A/L register quantity is less than the memory quantity
after a compare or subtract instruction. This address must be within
the current segment. If LINK has the value 1, execution continues with
the next instruction. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

> BME address
Branch on Magnitude Condition NE
1100001110000011 #&2(V mode form)
ADDRESS\16

If the condition codes indicate magnitude not equal to 0, the
instruction loads the specified address into the program counter, like
BONE. BMNE is intended for magnitude comparisons after a compare or
subtract instruction. This address must be within the current segment.
If the condition codes reflect some other condition, execution
continues with the next instruction. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

2-25 Second Edition

INSTRUCTION SEIS GULUE

PBBNE address
Branch on A Not Equal to 0

1100000110001011 (V mode form)

ADDRESS\ 16

If the contents of A are not equal to 0, the instruction loads the

specified address into the program counter. This address must be

within the current segment. If the A contents are equal to 0,

execution continues with the next instruction. The condition codes

contain the result of the comparison. (See Appendix A.) Leaves the

values of LINK and CBIT unchanged.

Second Edition 2-24

S, R, AND V MODE

P CAL
Clear A Left Byte
1100001000101000 £S§, R, V mode form)

Clears the left byte of Ato 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

B CALF address
Call Fault Handler
0000000111000101

_

(WVmode forn)
AP\32

The address pointer in this instruction is to the ECB of a fault
routine. The instruction uses this pointer to transfer control to the
fault routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, LINK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Reference
Guide for more information.

> CAR
Clear A Right Byte
1100001000100100 £S, R, V mode form)

Clears the right byte of Ato 0. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

B CAS address
Compare A and Skip
IX¥100111000Y00 RR\2_ (Vv mode long)
DISPLACEMENT\ 16

ITX¥100111000000 cB\2 (R mode long)
[DISPLACEMENT\16]

IX 100 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. For 16-bit two's complement
Signed values only, compares the contents of the A register to the
contents of the location specified by EA and Skips as follows:

Condition Skip

Contents of A > contents of EA. No skip.

Contents of A = contents of EFA. Skip 16 bits (one halfword).

Contents of A < contents of EA. Skip 32 bits (two halfwords).

2-25 Second Edition

INSTRUCTION SETS GUIDE

The value of CBIT is unchanged. LINK contains the carry-out bit. The

condition codes reflect the result of the operation. (See Appendix A.)

pp CcAZ
Compare A With O
1100000010001100 £4S, R, V mode form)

Compares the contents of A with 0. Skips as follows:

Condition Skip

Contents of A > O. No skip.

Contents of A = 0. Skip 16 bits (one halfword).

Contents of A < 0. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The

condition codes reflect the result of the operation. (See Appendix A.)

p> CEA
Compute Effective Address
0000000001001001 £248, R mode form)

Interprets the contents of A as a 16-bit indirect address in the

current addressing mode. Calculates an effective address, EA, from the

indirect address and loads the final address into A. Leaves the values

of CBIT, LINK, and the condition codes unchanged.

» ccT
Computed GOTO
9000001011001100

=

£2(V mode form)

INTEGER N\16

BRANCH ADDRESS 1\16

BRANCH ADDRESS (N-1)\16

If the contents of A are greater than or equal to 1 and less than the

specified integer N that follows the opcode, the instruction adds the

contents of A to the contents of the program counter to form an

address. (The program counter points to the integer N following the

opcode.) Loads the contents of the location specified by this address

into the program counter. If the contents of A are not within this

range, the instruction adds integer N to the contents of the program

counter and stores the result in the program counter. The values of

CBIT, LINK, and the condition codes are indeterminate.

Second Edition 2-26

S, R, AND V MODE

Note

Each of the branch addresses following the OGT instruction
specifies a location within the current procedure segment.

P cus
Change Sign
1100000000010100 £48, R, V mode form)

Complements bit 1 of A. Leaves the values of CBIT, LINK, am the
condition codes unchanged.

PcS address
Compare L and Skip
IX¥100111000Y11 ER\2 CV mode form)
DISPLACEMENT16

Calculates an effective address, EA. For 32-bit two’s complement
Signed values only, compares the contents of L to the contents of the
de-bit location specified by EA and skips as follows.

Condition Skip

Contents of L > contents of EA. No skip.

Contents of L = contents of EA. Skip 16 bits (one halfword).

Contents of L < contents of EA. Skip 32 bits (two halfwords).

The value of CBIT is unchanged. LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

P cua
Complement A
1100000100000001 £28, R, V mode form)

Forms the one's complement of the contents of A by inverting the value
of each bit, and stores the result in A. Leaves the values of CBIT,

LINK, and the condition codes unchanged.

2-27 Second Edition

INSTRUCTION SETS GULUE

P CRA
Clear A to O

1100000000100000 £S, R, V mode form)

Clears the contents of A to 0. Leaves the values of CBIT, LIN, and

the condition codes unchanged.

> CRB
Clear B to O

1100000000001101 £42S, R, V mode form)

1100000000001100

Clears the contents of BtoO0O. Leaves the values of CBIT, LINK, and

the condition codes un sed.

Note

Opeode ‘140014 executes both a CRB and a FODBL. This is a

conversion aid for P300 programs. This opcode should not be

used; it is implemented for compatibility’s sake only.

BP CRE
Clear E to 0

1100001100000100_ £(V mode form)

Clears the contents of E to 0. Leaves the values of CBIT, LINK, and

the condition codes unchanged.

Pe cRL
Clear L to 0

1100000000001000 SS, R, V mode form)

Clears the contents of Lto0O. Leaves the values of CBIT, LINK, and

the condition codes unchanged.

 CRLE
Clear L and E to 0

1100001100001000_ £4mode form)

Clears the contents of FE and L to 0. Leaves the values of LD, CBIT,

and the condition codes unchanged.

Second Edition 2-28

S, R, AND V MODE

P ccA
Copy Sign of A
1100000011010000 (S, R, V mode form)

Sets CBIT equal to the value of bit 1 of A and clears bit 1 of A to O.
The value of LINK is indeterminate. Leaves the values of the condition
codes unchanged.

2-29 second Edition

INSTRUCTION SETS GUIDE

P DAD address
Double Add
TX¥O011011000000CB\2_ (R mode long)
[DISPLACEMENT\16]

I X¥ 0110 DISPLACEMENT\10 (S, R mode form)

Calculates an effective address, EA. Fetches the 31-bit contents of

the location specified by EA and adds them to the 31-bit contents of A

and B. Stores the result in and B.

If the result is greater than or equal to 2**30, an integer exception

occurs and the instruction loads bit 1 of A with a1, and bits 2 to 16

of A and bits 2 to 16 of B with (result - (2**30)). Bit 1 of B

contains 0.

Tf the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with aO and bits 2 to 16 of A and

bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B

contains 0.

If no integer exception occurs, CBIT is reset to 0. At the end of the

instruction, LINK contains the carry-out bit. The condition codes

reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a0, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 31-bit integer must be OQ. If nonzero,
unpredictable results will occur.

2. This instruction executes in double precision mode only.

> DBL
Enter Double Precision Mode

0000000000000111 £&23X(S, R mode form)

Enters double precision mode by setting bit 2 of the keys to l.

t LDA, STA, ADD, and SUB instructions manipulate 31-bit

integers and are interpreted as DLD, DST, DAD, and DSB, respectively.

Leaves the values of CBIT, LINK, and the condition codes unchanged. In

V or I mode, bit 2 of the keys has no effect.

Second Edition 2-30

S, R, AND V MODE

> DFAD address
Double Precision Floating Add
IX¥O011011000Y108R\2 (V mode long)
DISPLACEMENT \16

IX¥O11011000010CB\2-_ (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the double precision number
in the location specified by EA to the 64-bit contents of the DAC.
(See Chapter 6 of the System Architecture Reference Guide for more
information.) Normalizes the result and loads it into the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

> DFCM
Double Precision Floating Complement
1100000101111100 £48, V mode form)

Forms the two's complement of the double precision number in the DAC
and normalizes it if necessary. (See Chapter 6 of the System
Architecture Reference Guide.) Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-51 second Edition

INSTRUCTION SETS GUIDE

B ODFCS address
Double Precision Floating Point Compare and Skip
IX¥100111000Y10 R\2 (CV mode long)
DISPLACEMENT16

TX¥100111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the DAC contents (see
Chapter 6 of the System Architecture Reference Guide) to the contents
of the 64-bit location specified by EA and skips as follows.

Condition Skip

DAC contents > EA contents. No skip.

DAC contents = EA contents. Skip 16 bits (one halfword).

DAC contents < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.

On some processors, DFCS works correctly only on normalized numbers as

follows. The comparison has a maximum of three sequential stages:

first the signs, then the exponents, and finally the fractions of the

two numbers are compared for equality. If the comparison during any

one of these stages reveals an inequality, the results are returned and

the instruction ends. Unnormalized numbers are unexpected and produce

unexpected results. Other processors actually perform a subtract
operation, resulting in a proper comparison.

PBDFDV address
Double Precision Floating Point Divide
I¥111111000Y10 Rie (V mode long)
DISPLACEMENT16

IX¥111111000010 CB\2 (R mode long)

[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the DAC

by the contents of the location specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Normalizes the result and stores

the whole quotient in the DAC. An overflow or a divide by 0 causes a

floating-point exception. If no floating-point exception occurs, CBIT
is reset to O. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide.

second Edition 2-32

S, R, AND V MODE

> OFLD address
Double Precision Floating Point Load
IX¥001011000Y108R\2 (V mode long form)
DISPLACEMENT\ 16

IX¥O001011000010CB\2 (R mode long form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 64-bit contents of the
location specified by EA into the DAC. (See Chapter 6 of the System
Architecture Reference Guide.) Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the DAC.

PB FLX address
Double Precision Floating Point Load Index
I0110111000Y105R\2 (V mode long)
DISPLACEMENT16

T0110111000010CB\2-_ (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the index register, X, with
four times the 16-bit contents of the location specified by EA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

DFLX cannot do indexing. See Appendix B for more information.

> DFMP address
Double Precision Floating Point Multiply
IX¥111011000Y10 R\2 (V mode long)
DISPLACEMENT \16

IX¥111011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of the
DAC by the 64-bit contents of the location specified by EA. (See
Chapter 6 of the System Architecture Reference Guide.) Normalizes the
result, if necessary, and stores it in the DAC. An overflow causes a
floating-point exception; if none occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

2-35 second Edition

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a

1, the DFMP instruction sets CBIT tol. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

PBDFSB address
Double Precision Floating Point Subtract

TX¥O011111000Y10R\2 (V mode long)
DISPLACEMENT16

IX¥011111000010 CB\2 (R mode long)

{ DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 64-bit contents of

the locations specified by EA from the contents of the DAC. (See

Chapter 6 of the System Architecture Reference Guide.) Loads the
result in the DAC. An overflow causes a floating-point exception. If

no floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

For 750 and 850 processors, exponent underflow is detected, but

exponent overflow is not.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

> OFST address
Double Precision Floating Point Store
I¥010011000Y10 E\2 (V mode long)
DISPLACEMENT16

TX¥010011000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FA. Stores the contents of the DAC

into the location specified by EA. (See Chapter 6 of the System
Architecture Reference Guide.) Leaves the values of CBIT, LINK, am
the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

Second Edition 2-4

S, R, AND V MODE

p> DIV address
Divide
IX¥111111000000CB\2 (R& mode long)
{ DISPLACEMENT\16]

I X11 1 1 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Divides the 31-bit contents of A
and B by the 16-bit contents of the location specified by EA. Stores
the 16-bit quotient in A and the 16-bit remainder in B. The sign of
the remainder equals the sign of the dividend.

Overflow occurs when the quotient is less than -(2**15) or greater than
(2**15)-1. An overflow or a divide by 0 causes an integer exception.
If no integer exception occurs, CBIT is reset to 0. This instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs when bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

PB DIV address
Divide
IX¥111111000YOOR\2 (V mode long)
DISPLACEMENT16

I X¥ 1111 DISPLACEMENT\10 (V mode short)

Calculates an effective address, EA. Divides the contents of L by the
16-bit contents of the location specified by EA. Stores the 16-bit
quotient in A and the 16-bit remainder in B. The sign of the remainder
equals the sign of the dividend.

When the quotient is less than -(2**15) or greater than (2**15)-1, an
overflow occurs, causing an integer exception. A divide by O also
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. This instruction leaves the values of LINK and the
condition codes indeterminate.

If the integer exception occurs when bit 8 of the keys is 0, the
instruction sets CBIT to 1. If bit 8 is 1, the instruction sets CBIT
to 1 and causes an integer exception fault. See Chapter 10 of the
System Architecture Reference Guide for more information.

2-35 Second Edition

INSTRUCTION SETS GUIDE

> DLD address
Double Load
IrX¥001011000000 CB\2 (R mode long)

[DISPLACEMENT\16]

I X¥0O0O10 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Loads the 16-bit contents of the

location specified by EA into A, amd the 16-bit contents of the

location specified by EA+1 into B. Leaves the values of CBIT, LINK,

and the condition codes unchanged.

Note

This instruction executes only in double precision mode.

P mE
Double Round From Quad
0100000011000000 £(V mode form)

Converts the value in QAC to a double precision floating-point number.

If QAC contains 0, the instruction ends. If bits 50 to % of QAC are

not 0, or bit 48 of QAC contains 1, the instruction adds the value of

bit 49 to that of bit 48 (unbiased round) and clears bits 49 to 96 of

Qac to O. If any other condition exists, no unbiased rounding occurs

but bits 49 to 96 of QAC are still cleared to 0. After any rounding

and clearing occurs, the instruction normalizes the result and loads it

into bits 1 to 6 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to

O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note

If DRN is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-36

S, R, AND V MODE

> ORM
Double Round From Quad Towards Negative Infinity
1100000101111001_+ (WV mode form)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the instruction ends. If bits 49 to 96 of QAC
contain zeros, the instruction ends. In any other case, the
instruction clears bits 49 to 96 to O, normalizes the result, and
places it in bits 1 to & of QAC.

The value of CBIT is unchanged. The values of LINK and the condition
codes are indeterminate.

Note

If DRNM is used for any earlier system listed in “About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p> ORNP
Double Round From Quad Towards Positive Infinity
0100000011000001

_

(V mode forn)

Converts the value in QAC to a double precision floating-point number.
If QAC contains 0, the instruction ends. If bits 49 to 96 of QAC
contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 48 of QAC, clears bits
49 to 96 to 0, the instruction normalizes the result and places it in
bits 1 to & of QAC.

If no floating-point exception occurs, the instruction resets CBIT to
Q. The values of LINK and the condition codes are indeterminate.

Ifa floating-point exception ocours and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DRNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-37 Second Edition

INSTRUCTION SETS GUIDE

DRNZ
Double Round From Quad Towards zero

0100000011000010 £4mode form)

Converts the value in QAC to a double precision floating-point number.

If QAC contains 0, the instruction emis. If bits 49 to % of QAC

contain zeros and bit 1 contains 1, the instruction adds 1 to the value

contained in bit 48 of QAC, clears bits 49 to 96 to 0, normalizes the

result and places it in bits 1 to 64 of QAC. If any other condition

exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to

0. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note

If DRNZ is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

Ppmx
Decrement and Replace xX
1100000010001000 (S, R, V mode form)

Decrements the contents of X by 1 and stores the result in X. Skips

the next memory location if the decremented value is 0. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

> DSB address
Double Subtract
ITK¥O011111000000CB\2 -_~(&mode long)
[DISPLACEMENT\16]

I X01 11 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Fetches the sl-bit integer

contained in the locations specified by EA and EA+l and subtracts it

from the 31-bit integer contained in A and B. Stores the result in A

and B.

Second Edition 2-38

5S, R, AND V MODE

If the result is greater than or equal to 2**30, an integer exception
occurs and the DSB instruction loads bit 1 of A with 1, and bits 2 to
16 of A and 2 to 16 of B with the absolute value of (result — (2**30)).
Bit 1 of B must be 0.

If the result is less than -(2**30), an integer exception occurs and
the instruction loads bit 1 of A with aoO, and bits 2 to 16 of A and
bits 2 to 16 of B with the negative of (result + (2**30)). Bit 1 of B
must be O.

If no integer exception occurs, CBIT is reset to 0. At the end of the
instruction, LINK contains the borrow bit. The condition codes reflect
the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Notes

1. Bit 17 of each 31-bit integer must be O or indeterminate
results occur.

2. This instruction executes in double precision mode only.

3. To negate a Sl-bit integer, subtract it from 0.

P DST address
Double Store

IX¥O1l10011000000 CB\2 (R mode long)
[DISPLACEMENT\16]

I X01 00 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, EA. Stores the contents of A at the
location specified by EA, and the contents of B at the location
Specified by EA+1. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This instruction executes only in double precision mode.

2-39 second Edition

INSTRUCTION SETS GUIDE

> DVL address
Divide Long
IX¥111111000Y11 \2 (V mode long)
DISPLACEMENT\16

Calculates an effective address, EA. Divides the 64-bit contents of L

and E by the 32-bit contents of the location specified by EA. Stores

the quotient in L and the remainder in E. An overflow or divide by 0
causes an integer exception. If no integer exception occurs, CBIT is

reset to O. The values of LINK am the comdition codes are

indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

Note

This note applies only to the 150/250, 450/550/250-II, I450-II,

and 2250 processors. When the value ‘040000 ‘000000 ‘000000

‘000000 is divided by ‘100000 ‘000000, the quotient overflows

the hardware (and sets the CBIT to 1) in the early stage of the
algorithm even though the final result is not in overflow

(‘100000 ‘000000).

Second Edition 2-40

5S, R, AND V MODE

» §£16S
Enter 16S Mode
O000000000001001 £4(§, R, V mode form)

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions
may now be interpreted, and 16S address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

p E321
Enter 32I Mode
0000001000001000 (S, R, V mode form)

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions
may now be interpreted, and 32I address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, am the
condition codes unchanged.

p> EZR
Enter 32R Mode

0000001000001011 #&23(¢8, R, V mode form)

sets bits 4 to 6 of the keys to 011. Subsequent R mode instructions
may now be interpreted, and 32R address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

E325
Enter 32S Mode
0000000000001011 #£24S, R, V mode form)

Sets bits 4 to 6 of the keys to 001. Subsequent S mode instructions
may now be interpreted, and 32S address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, am the
condition codes unchanged.

BP ER
Enter 64R Mode

0000001000001001 £42S, R, V mode form)

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions
may now be interpreted, and 64R address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

2-41 Second Edition

INSTRUCTION SETS GUIDE

P RV
Enter 64V Mode
0000000000001000 (CS, R, V mode form)

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions

may now be interpreted, and G4V address calculations may be used to

form effective addresses. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

PB FAA address
Effective Address to A
TX¥000111000001 CB\2 (CR mode form)
DISPLACEMENT16

Calculates an effective address, EA, and loads it into A. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

p EAFA far,address
Effective Address to FAR
000000101100 FAR000 (V mode form)
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the

instruction and loads it into the specified FAR. The AP bit field is

processed and loaded into the bit portion of the FAR for direct access;

indirection uses the bit field in the indirect pointer (if any).

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Figure 2-3 shows the format of the EA loaded into the specified FAR.

1 16 17 oe 3d 36

| RING, SEG | WORD # | BIT # |

EA Format for EAFA

Figure 2-3d

> EAL address
Effective Address to L

ITx¥000111000Y01 E\2 (CV mode form)

DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into L. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-42

S, R, AND V MODE

p> =EALB address
Effective Address to LB
IX¥101111000Y10R\2 CV moe forn)
DISPLACEMENT16

Calculates an effective address, FA, and loads it into LB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> FAXB address
Effective Address to XB

IX¥101011000Y10 RB\2 (CV mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA, and loads it into XB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

PB EIO address
Execute I/O

IT0110011000Y01 ER\2 CV mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Executes bits 17 to 32 of FA as
if the bits were an extended PIO instruction. If execution is
successful, the instruction sets the condition codes as follows:

I8 Meaning

EQ Successful INA, OTA, or SKS instruction

NE Unsuccessful INA, OTA, or SKS; all OCP

leaves the values of LINK and CBIT unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

> ENB
Enable Interrupts
0O000000100000001 £28, R, V mode form)

Enables interrupts by setting bit 1 of the modals to 1. Interrupts
remain inhibited for the next instruction. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

2-43 Second Edition

INSTRUCTION SETS GUIDE

Note

ENB is a restricted instruction.

P ENBL
Enable Interrupts (Local)
0o000000100000001 £28, R, V mode form)

This 850 instruction performs the same actions as ENB except that it is
performed specifically for the local processor. leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

ENBL is a restricted instruction.

p> ENBM
Enable Interrupts (Mutual)
o000000100000000N (CS, R, V mode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

> ENBP
Enable Interrupts (Process)
o000000100000010 £468, R, V mode form)

For the 850, a processor checks the availability of the process

exchange lock. If available, the processor releases this lock and

enables interrupts. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

This is a restricted instruction.

Second Edition 2-44

S, R, AND V MODE

> ERA address
Exclusive OR to A
ITX¥O010111000Y00RR\2 (V mode long)
DISPLACEMENT\ 16

IFX¥OLO1ll1IOOOOOO Ce (R mode long)
{ DISPLACEMENT\16]J

I X0O10 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Exclusively ORs the contents of
the location specified by EA and the contents of A. Stores the results
in A. ILeaves the values of CBIT, LINK, and the condition codes
unchanged.

> ERL address
Exclusive Or to L
IX¥O010111000Y11 \2 (V mode long)
DISPLACEMENT\ 16

Calculates an effective address, EFA. Exclusively ORs the contents of L
with the contents of the 32-bit location specified by EA. Stores the
results in L. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

gt
)

H
o
o
n second Edition

INSTRUCTION SETS GUIDE

> FAD address
Floating Point Add
TX¥011011000Y01R\2_~ (CV mode long)
DISPLACEMENT16

IX¥011011000001 CB\2 (R mode long)

{ DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the location

specified by EA to the contents of the FAC. (See Chapter 6 of the

System Architecture Reference Guide.) Stores the result in the FAC and

normalizes it if necessary. An overflow causes a floating-point

exception. If no floating-point exception occurs, CBIT is reset to OQ.

The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a0, the

instruction sets CBIT to 1 amd causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

FCDQ)
Floating Point Convert Double to Quad

1100000101111001 (V mode form)

Clears FAC] to O. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

If FCDQ is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

P FH
Floating Point Complement
1100000101011000 £48, V mode form)

Forms the two’s complement of the FAC mantissa and normalizes the

result if necessary. (See Chapter 6 of the System Architecture

Reference Guide.) Stores the result in the FAC. An overflow causes a

floating-point exception. If no floating-point exception occurs, CBIT

is reset to 0. The values of LINK and the comdition codes are

indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-46

S, R, AND V MODE

B® FCS address
Floating Point Compare and Skip
IX¥100111000Y0O01 R\2 (V mode long)
DISPLACEMENT\ 16

IX¥100111000001CB\2_ (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. In rounding mode, the instruction
rounds the contents of DAC, then compares the rounded value to the
contents of the memory location specified by EA. In normal mode, no
rounding occurs before the compare. (See Chapter 6 of the System
Architecture Reference Guide for more information.) The compare
results in a skip as follows:

Condition Skip

FAC contents > EA contents. No skip.

FAC contents = EA contents. Skip 16 bits (one halfword).

FAC contents < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.

On some processors, FCS works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a_ subtract,
resulting in a proper comparison.

p> FDBL
Floating Point Convert Single to Double
1100000000001110 £(V mode form)

Converts the single precision floating-point number in the floating
accumulator to a double precision floating-point number by loading
zeros into bits 33 to 48 of the floating accumulator. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

2-47 second Edition

INSTRUCTION SETS GUIDE

Pp FDV address
Floating Point Divide
IX¥111111000YO1 R\2 (V mode long)
DISPLACEMENT16

IX111111000001CB\2 _(R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the FAC

by the contents of the location specified by EA. (See Chapter 6 of the

System Architecture Reference Guide.) Normalizes the result if

necessary and stores it in the FAC. A divide by O or an overflow

causes a floating-point exception. If no floating-point exception

occurs, CBIT is reset to 0. The values of LINK and the condition codes

are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note

The location specified by EA must contain a normalized

floating-point number. An unnormalized divisor can cause an

error.

PBFLD address
Floating Point Load
IxX¥001011000Y01 R\e (V mode long)

DISPLACEMENT\ 16

TX¥001011000001 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates a 32-bit effective address, EA. Loads the 32-bit contents

in the location specified by EA into the FAC without normalizing. (See

Chapter 6 of the System Architecture Reference Guide.) leaves the

values of LINK, CBIT, and the condition codes unchanged.

FLT
Convert Integer to Floating Point
1100000101101000 £4mode form)

Converts the 3l-bit integer contained in A and B to a normalized

floating-point number and stores the result in_ the floating

accumulator. The values of CBIT, LINK, and the condition codes are

indeterminate.

Second Edition 2-48

S, R, AND V MODE

p> FLTA
Convert Integer to Floating Point
1100000101011010

=

(V mode form)

Converts the 16-bit integer in A toa floating-point number and stores
the result in the floating accumlator. The values of CBIT, LINK, and
the condition codes are indeterminate.

 FLIL
Convert Long Integer to Floating Point
1100000101011101

=

(WV mode form)

Converts the 32-bit integer in L toa floating-point number and storesthe result in the floating accumlator. The values of CBIT, LINK, and
the condition codes are indeterminate.

p>FLX address
Floating Load Index
IT0110111000Y0O1 R\2 (V mode long)
DISPLACEMENT\16

TO0110111000001cB\2_~ (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FA. Loads the index register, X, with
two times the 16-bit contents of the location Specified by EFA. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

FLX cannot do indexing. See Appendix B for more information.

BPFMP address
Floating Point Multiply
ITX¥111011000Y0O01 RR\2 (V mode long)
DISPLACEMENT\ 16

ITX¥111011000001 cB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the contents of theFAC by the contents of the location specified by EA. (See Chapter 6 ofthe System Architecture Reference Guide.) Normalizes the result if
necessary and stores it in the FAC. An overflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

2-49 second Edition

INSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a

1, the FMP instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

p> FRN
Floating Point Round
1100000101011100 (R, V mode form)

This instruction operates on and stores all results in the floating

accumulator.

For the 2350 to the 9955 II, the following actions occur. If bits 1 to

48 contain 0, then bits 49 to 64 are cleared to O. If bits 24 and 25

both contain 1, then 1 is added to bit 24, bits 25 to 48 are cleared to

O, and the result is normalized. If bit 25 contains 1 and bits 26 to

48 are not equal to O, then 1 is added to bit 24, bits 25 to 48 are

Cleared, and the result is normalized.

For the earlier systems listed in "About This Book", the following

actions occur. Tf bits 1 to 48 contain 0, then bits 49 to & are

cleared to 0. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are

Cleared to 0, and the result is normalized.

For all systems, if no floating point exception occurs, sets CBIT to OQ.

The values of LINK and the condition codes are indeterminate.

If a floating point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

P FRM
Floating Point Round Towards Negative Infinity

0100000011010000

_

£(V mode form)

Converts the 64-bit value in DAC to a single precision floating-point

number. If DAC contains 0, the instruction emis. If bits 25 to 48 of

DAC contain zeros, the instruction ends. In any other case, the

instruction clears bits 25 to 48 to O, normalizes the result, and

places it in DAC. If no floating-point exception occurs, the

instruction resets CBIT to O. The values of LINK and the condition

codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

(See Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-50

S, R, AND V MODE

P FRNP
Floating Point Round Towards Positive Infinity
9100000011000011 (V mode form)

Converts the 64-bit value in DAC to a Single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC contain zeros, the instruction ends. In any other case, the
instruction adds 1 to the value contained in bit 24 of DAC, clears bits
25 to 48 to O, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
QO. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a1, the instruction sets CBIT to 1. If bit 7 contains a O, theinstruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P FR
Floating Point Round Towards Zero
9100000011010001

_

(V mode form)

Converts the 64-bit value in DAC toa Single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to zero,
normalizes the result, and places it in DAC. If any other condition
exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
O. The values of LINK and the condition codes are indeterminate.

Ifa floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, theinstruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-51 Second Edition

INSTRUCTION SETS GULDE

BP FSB address
Floating Point Subtract
TX¥011111000YO0O1R\2

~~

(V mode long)
DISPLACEMENT \16

TX¥011111000001 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-bit contents of

the locations specified by EA from the contents of the FAC. (See

Chapter 6 of the System Architecture Reference Guide.) Normalizes the

result if necessary and stores it in the FAC. An overflow causes a

floating-point exception. If no floating-point exception occurs, CBIT

igs reset to 0. The values of LINK and the condition codes are

indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the FSB instruction sets CBIT tol. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

FSGT
Floating Point Skip on F Greater Than 0

1100000101001101 £48, V mode form)

Skips the next 16-bit halfword if the contents of the floating

accumulator are greater than 0. Leaves the value of LINK and CBSIT

unchanged. The values of the condition codes are indeterminate. FSGT

works correctly only on normalized or nearly normalized numbers,

because it checks the first 32 fraction bits only for equal to zero and

less than zero. (See Chapter 6 in the System Architecture Reference

Guide.)

> FSLE
Floating Point Skip on F Less Than or Equal to 0

1100000101001100 £4, V mode form)

Skips the next 16-bit halfword if the contents of the floating

accumulator are less than or equal to 0. Leaves the values of LINK and

CBIT unchanged. The values of the condition codes are indeterminate.

FSLE works correctly only on normalized or nearly normalized numbers,

because it checks the first 32 fraction bits only for equal to zero and.

less than zero. (See Chapter 6 in the System Architecture Reference

Guide.)

Second Edition 2-52

S, R, AND V MODE

P FM
Floating Point Skip on F Minus
1100000101001010 £48, V moe form)

Skips the next 16-bit halfword if the contents of the floating
accumlator are less than 0. Leaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate. FSMI
works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.

P Faz
Floating Point Skip on F Not 0
1100000101001001

=

&, V mode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are less than or equal to 0. Leaves the values of LINK and
CBIT unchanged. The values of the condition codes are indeterminate.
FSNZ works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less “an zero. (See Chapter 6 in the System Architecture Reference
Guide.

Pp FSPL
Floating Point Skip on FAC Plus
1100000101001011 #42, V mode form)

Skips the next 16-bit halfword if the contents of the floating
accumulator are greater than or equal to 0. Leaves the values of LINK
and CBIT unchanged. The values of the condition codes are
indeterminate. FSPL works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

— FST address
Floating Point Store
IX¥010011000Y01 R\2 (V mode long)
DISPLACEMENT \16

IX¥010011000001cB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Stores the contents of the FAC
into the 32-bit location specified by EA. (See Chapter 6 of the System
Architecture Reference Guide.) If the exponent contained in the FAC is
too large to be expressed in 8 bits, a floating-point exception (store

2-53 Second Edition

INSTRUCTION SETS GUIDE

exception) occurs. If no floating-point exception occurs, the

instruction resets CBIT to 0. At the end of the instruction, the
values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more
information. In either case, a floating-point exception leaves the
contents of the memory location in an indeterminate state.

This instruction does not normalize the result before loading it into
the specified memory location unless rounding is enabled.

> FSZE
Floating Point Skip on F Equal to 0
1100000101001000 £4, V mode form)

Skips the next 16-bit halfword if the contents of the floating
accumlator equal O. Leaves the values of LINK and CBIT unchanged.

The values of the condition codes are indeterminate. FSZE works

correctly only on normalized or nearly normalized numbers, because it

checks the first 32 fraction bits only for equal to zero and less than
zero. (See Chapter 6 in the System Architecture Reference Guide.)

Second Edition 2-54

S, R, AND V MODE

PP HT
Halt
O00000000000000N S, R, V mode form)

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
Stopped. The supervisor terminal indicates a halt. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
Specified by the RSAVPIR. The contents of RSAVPTR can be accessed by
an LDLR/STLR instruction with address ‘40037. The registers are saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) The saved
register file order is shown in Table 2-3.

Table 2-3
Order of Saved Registers after HLT

| 6350, | 2350 to 2755, | |
| 9750 to 9955 II | 9650 and 9655 | Earlier Systems* |
| |
User Reg Set 3	User Reg Set 1	User Reg Set 2
User Reg Set 4	User Reg Set 2	User Reg Set 1
User Reg Set 1	User Reg Set 3	IMx Reg File
User Reg Set 2	User Reg Set 4	Microcode Reg File
Microcode Reg File,	User Reg Set 5	
Set 2	User Reg Set 6	
Indirect Reg Set	User Reg Set 7	
Microcode Reg File,	User Reg Set 8	
Set 1	IMx Reg File	
IMx Reg File	Microcode Reg File,	
	Set l	
	Microcode Reg File,	
	Set 2	

* The earlier systems are listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

2-55 Second Edition

TNOMMITIOTTON Sume CTTTTT
LLULEVYS LLALY RANA

p> I4B
Interchange A and B

o000000010000001 4S, R, V mode form)

Interchanges the contents of A and B. Leaves the values of LINK, CBIT,

and the condition codes unchanged.

p> ICA
Interchange Bytes of A Register
1100001011100000 £8, R, V mode form)

Interchanges the bytes of A. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

> Ic.
Interchange Bytes and Clear Left
1100001001100000 £5, R, V mode form)

Interchanges the bytes of A, then clears the left byte to 0. Leaves

the values of CBIT, LINK, and the condition codes unchanged.

ICR
Interchange Bytes and Clear Right
1100001010100000 £S, R, V mode form)

Interchanges the bytes of A, then clears the right byte to 0. Leaves

the values of CBIT, LINK, and the condition codes unchanged.

> IE
Interchange L and E
1100001100001100 £8, R, V mode form)

Tnterchanges the values of E and L. Leaves the values of CBIT, LINK,

and the condition codes unchanged.

Second Edition 2-56

S, R, AND V MODE

> IMA address
Interchange Memory and A
ITX¥101111000YO00 R\2 (V mode long)
DISPLACEMENT \16

IX¥101111000000CB\2_ (R mode long)
[DISPLACEMENT\16]

IX 101 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Interchanges the contents of A
and the contents of the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

The IMA instruction is nonatomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the STAC instruction instead.

B® INA function,device
Input to A
101100 FUNCTION\4 DEVICE\6
Valid for modes §, R

Loads data from the specified device into A. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

PB INECaddress
Interrupt Notify Beginning, Clear Active Interrupt
0000001010001111

+=

&42(WV mode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAT pulse to clear the currently active interrupt, and enables
interrupts. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

2-57 second Edition

Note

INEC is a restricted instruction.

This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the

System Architecture Reference Guide for more information.

p> INE address
Interrupt Notify Beginning
0000001010001101 £4mode form)

AP\32

Notifies a semaphore at the specified address during phantom interrupt

code. Restores the state of the interrupted process by loading bits 1

to 16 of PB, bits 17 to 32 of the program counter, and the keys from

microcode temporary registers PSWPB and PSWKEYS. Places the notified

process at the beginning of the appropriate priority level queue, and.

enables interrupts. Does not issue a CAI pulse to clear the currently

active interrupt. The values of CBIT, LINK, and the condition codes

are indeterminate. A process exchange will occur if the notified

process is of a higher priority than the interrupted process. see

Chapter 9 of the System Architecture Reference Guide for more

information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the

System Architecture Reference Guide for more information.

> INEC address
Interrupt Notify End, Clear Active Interrupt

0000001010001110 £(V mode form)

AP\32

Notifies a semaphore at the specified address during phantom interrupt

code. Restores the state of the interrupted process by loading bits 1

to 16 of PB, bits 17 to 32 of the program counter, and the keys from

microcode temporary registers PSWPB and PSWKEYS. Places the notified

process at the end of the appropriate priority level queue. Issues 4

CAI pulse to clear the currently active interrupt, and enables

interrupts. The values of CBIT, LINK, and the condition codes are

indeterminate. A process exchange will occur if the notified process

is of a higher priority than the interrupted process. See Chapter 9 of

the System Architecture Reference Guide for more information.

Second Edition 2-58

S, R, AND V MODE

Note

INEC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

> INEN address
Interrupt Notify End
0000001010001100 £(WVmode form)
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAI pulse to clear the currently active
interrupt. The values of CBIT, LINK, and the condition codes are
indeterminate. A process exchange will occur if the notified process
is of a higher priority than the interrupted process. See Chapter 9 of
the System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

> DH
Inhibit Interrupts
O000001000000001 £28, R, V mode forn)

Inhibits interrupts by setting bit 1 of the modals to 0. Inhibits
interrupts until an enable interrupts instruction executes. The
processor ignores any interrupt requests that are made over the I/O
bus. This instruction takes effect immediately. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

2-59 Second Edition

TNSTRUCTION SETS GUIDE

> EL
Inhibit Interrupts (Local)
0000001000000001 (S, R, V mode form)

This 850 instruction performs the same actions as INH does. Leaves the
values of CBIT, LINK,and the condition codes unchanged.

Note

This is a restricted instruction.

> nu
Inhibit Interrupts (Mutual)
o000001000000000 (CS, R, V mode form)

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

P DP
Inhibit Interrupts (Process)
0000001000000010 £4S§, R, V mode form)

For the 850, a processor checks the availability of the process

exchange lock. If available, the processor sets it and inhibits
interrupts. Otherwise, it waits for the lock to be released by the
other processor and then sets the lock and inhibits interrupts. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

Second Edition 2-60

S, R, AND V MODE

PP IK
Input Keys
0000000000100011 #£24(S8, R mode form)

Loads the contents of the S and R mode keys into A. Reads the
low-order 8 bits of the floating exponent (address trap location 6)
register along with the high-order 8 bits of the keys register. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

> or
Convert Floating Point to Integer
21100000101101100 £18, R mode form)

Converts the double precision floating-point number contained in the
floating accumulator to a 31-bit integer and stores the result in A and
bits 2 to 16 of B. Bit 1 of B (bit 17 of the result) is forced to O.
Ignores the fractional portion of the floating-point number. Overflow
occurs if the value in the floating accumlator is less than -2**30 or
greater than (2**30)-1. If overflow occurs, a floating-point exception
occurs. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p> INTA
Convert Floating Point to Integer
1100000101011001 (V mode form)

Converts the double precision number contained in the floating
accumulator to a 16-bit integer and stores the result in A. Ignores
the fractional portion of the floating-point number. For example, -4.5
is converted to -4 and +4.5 is converted to +4. Overflow occurs if the
value in the floating accumulator is less than -2**15 or greater than
(2**15)-1. If overflow occurs, a floating-point exception occurs. If
no floating-point exception occurs, CBIT is reset to 0.

At the end of this instruction, the B register contents are
indeterminate. The values of LINK and the condition codes. are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

2-61 Second Edition

WSTRUCLION SEIS GUIDE

P INTL
Convert Floating Point to Long Integer
1100000101011011 £2(V mode form)

Converts the double precision floating-point number contained in the

floating accumlator to a 32-bit integer and stores the result in L.
Ignores the fractional portion of the floating-point number contained
in the floating accumulator. For example, -4.5 is converted to 4 and
+4.5 is converted to +4. Overflow occurs if the floating-point number
is less than -2**31 or greater than (2**31)-1. If overflow occurs, a
floating-point exception occurs. If no floating-point exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes

are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

BPIRs address
Increment and Replace Memory
I¥101011000Y0O00 R\2 (V mode long)
DISPLACEMENT16

I¥101011000000 CB\2 (R mode long)

[DISPLACEMENT\16]

IX 1010 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the contents of the

location specified by EA, adds 1 (a 16-bit increment), and stores the
result back in the location specified by EA. Skips the next location

if the incremented value is 0. Leaves the values of CBIT, LINK, and

the condition codes unchanged.

> irc
Interrupt Return, Clear Active Interrupt
0000000110000011 (V mode form)

Returns from an interrupt. Restores the state existing before the

interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program

counter, and the keys from the values saved in microcode temporary

registers PSWPB and PSWKEYS. Issues a CAI pulse to clear the currently

active interrupt, and enables interrupts.

Second Edition 2-62

S, R, AND V MODE

p> IRIN
Interrupt Return
0000000110000001 (V mode form)

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS, and enables interrupts. Does not issue a
CAT pulse to clear the currently active interrupt.

Note

This is a restricted instruction.

Increment and Replace X
1100000001001100 £48, R, V mode form)

Increments the contents of X by 1 and stores the result in X. Skips
the next 16-bit halfword if the incremented value is 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P ITB
Invalidate STLB Entry

0000000110001101 £421mode forn)

Invalidates the STLB entry that corresponds to the virtual address
contained in L. The values of CBIT, LINK, and the condition codes are
indeterminate. You must execute this instruction whenever you change
the page table entry for the given address.

If you change an SDW or DIAR (explained in Chapter 4 of the System
Architecture Reference Guide), you usually have to invalidate the
entire STLB by issuing the instruction PILB. AO in the segment number
portion of L invalidates the IOTLB entry corresponding to the address
specified by L.

Note

This is a restricted instruction.

2-63 Second Edition

INSTRUCTION SETS GUIDE

> JDK address
Jump and Decrement xX
T0110111000010CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts 1 from the contents of
the index register, X. If the decremented value does not equal 0, the
instruction loads EA into the program counter. If the decremented
value is equal to 0, execution continues with the next sequential
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing. See Appendix B for more
information.

 JIX address
Increment X and Jump if Not Equal to 0
T011011100001 1 CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds 1 to the contents of the
index register, X. If the incremented value does not equal O, the
instruction loads EA into the program counter. If the incremented
value is equal to 0, execution continues with the next sequential
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction cannot do indexing.

IMP address
Jump
TX¥OO0OO0111000YO0O R\2 (V mode long)

DISPLACEMENT16

IT¥O000111000000 CB\2 (R mode long)
[DISPLACEMENT\16]

I X¥ 000 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, FA. Loads FA into the program
counter. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

Second Edition 2st

S, R, AND V MODE

> JST address
Jump and Store
IX¥100011000Y00 R\2 (V mode long)
DISPLACEMENT16

IX¥100011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X¥ 1000 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the
program counter in the location specified by EA. Execution continues
at the location FA+1.

The JST instruction truncates the return address according to the
addressing mode before storing it. The high-order bits of the memory
location are not affected by the store. This allows you to preset the
I or X bits in some modes as follows:

Mode Allowed Presets

16S I, xX

325, S2R I

64R, 64V none

Note

JST cannot be used in shared code. In Ring 0, JST inhibits
interrupts during execution of the next instruction.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

B JSX address
Jump and Save in X
Ir1110111000Y11 R\2 (V mode long)
DISPLACEMENT\ 16

I1110111000011CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, FEA. Increments the contents of the
program counter by 1 and loads the result into X. Loads EA into the
program counter. For the 750 and 850, if the value of CB is 2 or 3,
then the next 16 bits are skipped. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

2-65 Second Edition

INSTRUCTION SETS GUIDE

Note

JSX cannot do indexing. See Appendix B for more information.

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

> JSXB address
Jump and Save in XB
ITX¥110011000Y10 Ri\2 (V mode long)
DISPLACEMENT16

IX¥110011000010 CB\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the contents of the program
counter into XB. Loads EA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This instruction can make subroutine calls outside the current

segment as well as within.

B JSY address
Jump and Save in Y
IX¥110011000YO0O R\2 (V mode long)

DISPLACEMENT16

I X 1100 DISPLACEMENT\ 16 (V mode short)

Calculates an effective address, FA. Loads Y with the location number
of the program counter. Loads EA into the program counter. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction may call only those subroutines residing in
the same procedure segment as the instruction, because only the
offset number field of the program counter is saved.

Second Edition 2-66

S, R, AND V MODE

P Ich
Load A on Condition Code BQ
1100001101000011 &2(V mode form)

If the condition codes reflect an equal to condition, the instruction
loads A with a 1. If the condition codes reflect a not equal
condition, the instruction loads Awitha O. leaves the values of
CBIT, LINK, and the condition codes unchanged.

> LOGE
Load A on Condition Code GE

1100001101000100 £((V mode form)

If the condition codes reflect a greater than or equal to condition,
the instruction loads Awithal. If the condition codes reflect a
less than condition, the instruction loads A with a0O. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

>» cr
Load A on Condition Code GT

1100001101000101 £2(V mode form)

If the condition codes reflect a greater than condition, the
instruction loads with a1. If the condition codes reflect a less than
or equal to condition, the instruction loads A with a0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

p ICE
Load A on Condition Code LE

1100001101000001_ 42(V mode form)

If the condition codes reflect a less than or equal to condition, the
instruction loads A with ail. If the condition codes reflect a greater
than condition, the instruction loads A with a 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

> Lor
Load A on Condition Code LT

1100001101000000 £0.(~V mode form)

If the condition codes reflect a less than condition, the instruction
loads Awithal. If the condition codes reflect a greater than or
equal to condition, the instruction loads A witha0O. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

2-67 Second Edition

aoe eee

Load A on Condition Code NE

1100001101000010 £((V mode forn)

If the condition codes reflect a not equal condition, the instruction
loads A with ail. If the condition codes reflect an equal condition,
the instruction loads A with a QO. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

> LDA address
Load A
IX¥001011000Y00 R\2 (V mode long)
DISPLACEMENT16

IXO001011000000CB\2 (R mode long)
[DISPLACEMENT\16]

I X¥0OO1 0 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. loads the contents of the
location specified by EA into A. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

~ 10Cflr
Load Character
000000101100FIR010 (V mode form)

If the contents of the specified FIR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of A. When the FAR’s bit field contains Q,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of A.
Updates the contents of the appropriate FAR by 8 so that they point to
the next character. Decrements the contents of the specified FIR by 1.
Sets the condition codes to NE.

If the contents of the specified FLR are 0, the instruction sets the
condition codes to HQ.

The instruction leaves the values of CBIT and LINK unchanged.

Note

This instruction uses FARO when FLRO is specified, and FAR]
when FLR1 is specified.

second Edition 2-68

5S, R, AND V MODE

PB LOL address
Load Long

IX¥001011000Y11 B\2 (V mode forn)
DISPLACEMENT\ 16

Calculates a long (32-bit) effective address, EA. Loads the 32-bit
contents of the location specified by EA into L. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

> LDRaddress
Load L From Addressed Register
TX¥O010111000Y01\2~ (CV mode forn)
DISPLACEMENT\ 16

Calculates a 32-bit (l-word) effective address, EA. Loads L with the
contents of the register file location specified by the offset portion
of FA. Bit 2 and bit 12 of the offset portion of EA determine the
actions of this instruction:

Bit 2 Bit 12 Action

1* a Ignore bit 1 and bits 3 to 9. The offset
portion of EA specifies an absolute register
number from 0 to ‘377.

O* 1 Bits 13 to 16 of the offset portion of EA
specify one of the registers ‘20 to ‘37 in the
current register set.

0 0 Bits 13 to 16 of the offset portion of EA
Specify one of the registers 0 to ‘17 in the
current register set.

*This is a restricted instruction.

Leaves the values of CBIT and LINK unchanged; the values of the
condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information on register sets.

2-69 second Edition

TRAIANOAT CI Ae
LNDINBULILUIN DELD UWULUG

p> LX address
load X
I1110111000YO0O R\2 (V mode long)
DISPLACEMENT16

Ir1110111000000 CB\2 (R mode long)

[DISPLACEMENT\16]

I 1110 1 DISPLACEMENT\10 (S, R, V mode short form)

Calculates an effective address, EA. Loads X, the index register, with
the contents of the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged. For ‘750 and 850
processors in R mode only, if CB contains 2 or 3, the first 16 bits of
the next instruction will be skipped.

Note

LDX cannot specify indexing, though an address calculated in
the indirect chain may do so in 16S mode. See Appendix B for
more information.

> LDY address
Load Y
Ir1110111000Y01 R\2 (CV mode form)
DISPALCEMENT\16

Calculates an effective address, EA. Loads Y with the contents of the
location specified by FA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

LDY cannot do indexing. See Appendix B for more information.

> i)
Load A on A Equal to 0
1100000100001011 #24368, R, V mode form)

If the contents of A are equal to 0, the instruction loads A with a l.
If the contents of A are not equal to 0, the instruction loads A with a
O. Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

Second Edition 2-70

5S, R, AND V MODE

> LF
Load False
1100000100001110 £4(S, R, V mode form)

loads A with a0O. Leaves the values of LINK and CBIT unchanged. The
values of the condition codes are indeterminate.

> LF
Load A on F Equal to 0
1100001001001011 &2(V mode form)

If the contents of the floating accumlator are equal to 0, the
instruction loads A with al. If the F contents are not equal to 0,
the instruction loads A with aC. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) LFEQ works correctly only on normalized or nearly
normalized numbers, because it checks the first 32 fraction bits only
for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

> LFCE
Load A on Floating Accumulator Greater Than or Equal to 0
1100001001001100 £(V mode form)

If the contents of the floating accumulator are greater than or equal
to O, the instruction loads A with al. If the F contents are less
than 0, the instruction loads A with aO. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGE works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

» LFCT
Load A on Floating Accumulator Greater Than 0
1100001001001101 4(V mode form)

If the contents of the floating accumulator are greater than 0, the
instruction loads A with al. If the F contents are less than or equal
to 0, the instruction loads A with a0. Leaves the values of LINK and
CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.) LFGT works correctly only on normalized
or nearly normalized numbers, because it checks the first 32 fraction
bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

e-71 second Edition

TNSTRICTTION SETS GUTF

P LFLE
Load A on Floating Accumulator Less Than or Equal to 0
1100001001001001 £2(V mode form)

If the contents of the floating accumulator are less than or equal to

O, the instruction loads A withal. If the F contents are greater

than 0, the instruction loads A with a0. Leaves the values of LIN

and CBIT unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.) LFLE works correctly only on normalized

or nearly normalized numbers, because it checks the first 352 fraction

bits only for equal to zero and less than zero. (See Chapter 6 in the
System Architecture Reference Guide.)

p LFLI flr.data
Load FIR Immediate
000000101100FIR011 (WV mode form)
INTEGER\ 16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the

second halfword) of the instruction into the specified FLR. Clears the
upper bits of the FLR. Leaves the values of CBIT, LINK, the condition

codes, and the associated FAR unchanged.

p> LFLT
Load A on Floating Accumulator Less Than 0
1100001001001000 £4(V¥ mode form)

If the contents of the floating accumlator are less than O, the

instruction loads A with al. If the F contents are greater than or

equal to 0, the instruction loads Awitha0O. leaves the values of

LINK and CBIT unchanged. The condition codes reflect the result of the

comparison. (See Appendix A.) LFLT works correctly only on normalized
or nearly normalized numbers, because it checks the first 362 fraction

bits only for equal to zero and less than zero. (See Chapter 6 in the

System Architecture Reference Guide.)

> LFNE
Load A on Floating Accumulator Not Equal to O

1100001001001010 £(V mode form)

If the contents of the floating accumulator are not equal to O, the
instruction loads A with al. If the F contents are equal to O, the

instruction loads A with a 0. Leaves the values of LINK and CBIT

unchanged. The condition codes reflect the result of the comparison.

(See Appendix A.) LFNE works correctly only on normalized or nearly

normalized numbers, because it checks the first 32 fraction bits only

for equal to zero and less than zero. (See Chapter 6 in the System
Architecture Reference Guide.)

Second Edition 2-72

S, R, AND V MODE

> IGE
Load A on Greater Than or Equal to 0
1100000100001100 £(S, R, V mode form)

If the contents of A are greater than or equal to O, the instruction
loads A with a 1. If the contents of A are less than 0, the
instruction loads A with a0. Leaves the values of LINK am CBSIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.) This instruction has the same opcode as LIGE.

» cr
Load A on Greater Than 0

1100000100001101 £4, R, V mode form)

If the A contents are greater than 0, the instruction loads A with 1.
If the A contents are less than or equal to 0, the instruction loads A
with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

> LIOT address
Load IOTLB
O000000000100100 £(V mode forn)
AP\32

Loads a specified IOTLB entry. The following list shows the contents
of the LIOT entry and the origin of the information.

Origin Description

AP in LIOT Virtual address in I/O segment (calculated from EA).

Page table Physical address (translation of virtual address)
obtained from I/O segment. If the fault bit is set
to 1, a page fault occurs.

L register Target virtual address containing the segment number
and page number to be used by procedures accessing
this information. This is used to help invalidate
the proper locations in the cache. The segment
number and low-order 10 bits (offset number in the
page) are ignored.

The values of CBIT, LINK, and the condition codes are indeterminate.

Note

LIOT is a restricted instruction.

2-73 second Edition

INSTRUCTION SETS GUIDE

P LIE
Load on A Less Than or Equal to 0
1100000100001001 £2, R, V mode form)

If the contents of A are less than or equal to 0, the instruction loads
Awith 1. If the A contents are greater than 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

P LL
Load A on L Equal to 0
1100001101001011 £&2(V mode form)

If the contents of L are equal to O, the instruction loads A witha 1.
If the contents of L are not equal to O, the instruction loads A with a
O. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

p> LIGE
Load A on L Greater Than or Equal to 0
1100000100001100 £(V mode form)

If the contents of L are greater than or equal to 0, the instruction
loads A with a 1. If the contents of L are less than O, the
instruction loads A with a0. Leaves the values of LINK and CBIT
unchanged. The condition codes contain the result of the comparison.
(See Appendix A.) This instruction has the same op code as IGE.

LLGT
Load A on L Greater Than O

1100001101001101 (VY mode form)

If the L contents are greater than 0, the instruction loads A with 1.
If the L contents are less than or equal to 0, the instruction loads A
with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

Second Edition 2-74

5, R, AND V MODE

> LiLn
Long Left Logical
O100001000N6 £(S, R, V mode form)

Shifts the contents of A and B to the left, bringing zeros into bit 16
of B. Shifts bits out of bit 1 of B into bit 16 of A. CBIT and LOK
contain the value of last bit shifted out of A; the values of all
other bits shifted out of A are lost. Leaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs & shifts.

p LUE
Load A on L Less Than or Equal to 0
1100001101001001_ £=2(V mode form)

If the contents of L are less than or equal to 0, the instruction loads
A with 1. If the L contents are greater than 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.)

> LLLT
Load A on L Less Than 0
1100000100001000_ £(V mode form)

If the contents of L are less than 0, the instruction loads A with 1.
If the L contents are greater than or equal to 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLT.

> LL
Load A on L Not Equal to 0
1100001101001010 £4(V mode form)

If the contents of L are not equal to 0, the instruction loads A with a
l. If the contents of L are equal to O, the instruction loads A with a
O. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

2-75 Second Edition

TNHOTDITOTTOAT CLAN OTT
det NALY WORR CAASUd abe dh WAST he obs

LIR n
long Left Rotate
Ol100001010N6 (CS, R, V mode form)

Shifts the contents of A and B left, rotating bit 1 of A into bit 16 of
B. Bit 1 of B shifts into bit 16 of A. CBIT and LINK contain a copy
of the last bit rotated into bit 16 of B. Leaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 6 shifts.

— isn
Long Left Shift
Ol100001001N6_ (V mode form)

Shifts the 32-bit integer in L left arithmetically, bringing zeros into
bit 32. Bits shifted out of bit 1 are lost. If bit 1 changes state,
it is interpreted as an overflow and causes an integer exception. If
no integer exception occurs, CBIT is reset to 0. The values of LINK
and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains al, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P isn
Long Left Shift
Ol100001001N\6 £(S, R mode form)

Shifts the 31-bit integer contained in A and B left arithmetically,
bringing zeros into bit 16 of B. Bit 1 of B does not take part in the
shift; bit 2 of B is shifted into bit 16 of A. Bits shifted out of
bit 1 of A are lost. If bit 1 of A changes state, it is interpreted as
an overflow and causes an integer exception. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Second Edition 2-76

S, R, AND V MODE

> LIT

Load on A Less Than 0

1100000100001000 £48, R, V mode form)

If the contents of A are less than 0, the instruction loads A with 1.
If the A contents are greater than or equal to 0, the instruction loads
A with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes contain the result of the comparison. (See Appendix A.) This
instruction has the same operation as LLLT.

> LYE
Load on A Not Equal to 0
1100000100001010 £465, R, V mode form)

If the contents of A are not equal to 0, the instruction loads A with a
1. If the contents of A are equal to 0, the instruction loads A with a
O. Leaves the values of LINK and CBIT unchanged. The condition codes
contain the result of the comparison. (See Appendix A.)

» LPID
Load Process ID

0000000110001111 (V mode form)

Loads the process ID from bits 1 to 10 of A into RPID (the process ID
register). This contains the 10 most significant bits of the user’s
address space. leaves the values of CBIT, LINK, and the condition
codes unchanged.

The RPID data is used to update the process ID field of an STIB entry
as required. This RPID data is later used during subsequent memory
accesses to verify that STLB data is still valid (STLB hit) or not
(STLB miss). This register is for internal machine operation, and
Should not normally be modified by the user.

Note

This is a restricted instruction.

B LPSwW address
Load PSW
0000000111001001

~~

£42(V mode form)
AP\32

Changes the status of the processor by loading new values into the
program counter, keys, and modals. Inhibits interrupts for one
instruction.

2-77 second Edition

TNSTDIOTTON SkTS CTITOR
Seee 0 Aled alBFleet

Addresses a 64-bit (4-halfword) block at the specified location. The

block has the following.

Offset in Block Contents

1 to 2 New program counter (ring, segment, offset
numbers)

3 New keys

4 New modals

LPSW loads the program counter and keys of the currently running

process with the contents of the first three offsets (bits 1 to 48),
then loads the processor modals with the contents of the fourth offset

(bits 49 to 64).

The new value of bit 15 in the keys, the in-dispatch bit, can

temporarily halt execution of the current process. This bit is altered

by software only during a cold or warm start. If bit 15 is 0, the

currently executing process will continue to execute, but at a location

defined by the new value of the program counter. If bit 15 is 1, the

processor enters the dispatcher and dispatches the ready process with

the highest priority. When execution resumes for the process that was

temporarily halted, note that execution resumes at the point defined by

the value of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes

effect immediately, since the modals are associated with the processor,

not the process.

This instruction loads the 64 bits (four halfwords) of the register set
that the STIR instruction cannot correctly load. STIR does not update

the separate hardware registers the processor uses to maintain

duplicate information for optimization.

Never use this instruction to change bits 9 to 11 of the modals. These

bits specify the current user register set. This means that if you do

not know the current value of these bits, you must do the following

each time you want to execute an LPSW.

1. Inhibit interrupts.

2. Read the current values of modal bits 9 to 11 (use LDIR).

3. Mask the old values of the modal bits into the new information.

4. Ioad the new information into the modals with an LPSW.

For the two common uses of LPSW, you do not have to perform this

sequence, since the values of modal bits 9 to 11 are predictable. When

you use LPSW after a Master Clear to turn on processor exchange mode,

Second Edition 2-78

S, R, AND V MODE

bits 9 to 11 are 010 because the processor is always initialized to
register set 2. When you use LPSW to return froma fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

Also note that you should not use LPSW to set bits 16 (the save done
bit) or 15 (the in-dispatcher bit) of the keys, unless you are merely
loading status following a fault, check, or interrupt. When issuing
LPSW after a Master Clear, make sure you load zeros into both of these
bits.

Note

LPSW is a restricted instruction. This instruction inhibits
interrupts during execution of the next instruction.

P IRL n
Long Right Logical
OlLOOODODOOONE (S, R, V mode form)

Shifts the contents of A and B right, bringing zeros into bit 1 of A.
Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain the value of
the last bit shifted out of B; the values of all other bits shifted
out of B are lost. Leaves the values of the condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

P IRR n
Long Right Rotate
OlODODOODOO1LONE (S, R, V mode form)

Shifts the contents of A and B right, rotating bit 16 of B into bit 1
of A. Shifts bit 16 of A into bit 1 of B. CBIT and LINK contain a
copy of the last bit rotated from B to A. Leaves the values of the
condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If
N contains 0, the instruction performs 64 shifts.

P IRS n
Long Right Shift
Ol1lQ00000001N\6_ (V mode form)

Shifts the 52-bit integer contained in L right arithmetically. Shifts
Copies of bit 1, the sign bit, into each of the vacated bits. CBIT and
LINK contain the value of the last bit shifted out of L; the values of

2-79 Second Edition

TNSTRUCLIUN OSbio GuLUE

all other bits shifted out are lost. leaves the values of the

condition codes unchanged.

N contains the two's complement of the number of shifts to perform. If

N contains 0, the instruction performs 64 shifts.

— IRS n
Long Right Shift
O1l00000001N6 £S, R mode form)

Shifts right arithmetically the 31-bit integer contained in A and B,

leaving bit 1 of A unaffected. Bit 1 of B does not take part in the

shift; bit 16 of A is shifted into bit 2 of B. Shifts copies of bit 1

of A into each of the vacated bits. CBIT and LINK contain the value of

the last bit shifted out of B; the values of all other bits shifted

out of B are lost. Leaves the values of the condition codes unchanged.

N contains the two’s complement of the number of shifts to perform. If

N contains 0, the instruction performs 64 shifts.

> LT
Load True

1100000100001111 (S, R, V mode form)

Loads A with a1. Leaves the values of LINK and CBIT unchanged. The

values of the condition codes are indeterminate.

Second Edition 2-80

S, R, AND V MODE

> MPL address
Multiply Long
IX¥111011000Y11 R\2 (V mode forn)
DISPLACEMENT \16

Calculates an effective address, FA. Multiplies the 32-bit integer in
L by the 82-bit integer in the location Specified by EA. Stores the
64-bit result in L and E. The 150/250, 450/550/250-II, I450-II, and
2250 processors leave the CBIT and LINK unchanged. The other 50 Series
processors reset the CBIT to O and leave the value of ILDK
indeterminate. For all 50 Series processors, the condition codes are
unchanged. MPL cannot cause overflow or generate an integer exception.

> MPY address
Multiply
ITX¥111011000Y00 Re (V mode long)
DISPLACEMENT \16

IX 1110 DISPLACEMENT\10 (V mode short)

Calculates an effective address, FA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location Specified by EA. Stores the
s2-bit result in A and B. Resets the CBIT to 0. The value of LINK is
indeterminate. Leaves the values of the condition codes unchanged.

Note

This instruction cannot cause overflow.

— MPY address
Multiply
ITX¥111011000000 cBe2 (R mode long)
[DISPLACEMENT\16]

I X11 10 DISPLACEMENT\10 (S mode; R mode short)

Calculates an effective address, FA. Multiplies the 16-bit integer in
A by the 16-bit integer in the location Specified by FA. Loads the
dl-bit result in A and B. If the miutiplier and mitiplicand are both
-(2**15), an integer exception occurs. If no integer exception occurs,
CBIT is reset to 0. The value of LINK is indeterminate. For the 2350
to 9955 II, the condition codes are unchanged. For the earlier
processors listed in "About This Book", the values of the condition
codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
Sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-81 second Edition

TWSTRUCTION SETS GULDG

p> NFYB address
Notify to Beginning
0000001010001001

_

£4(V mode form)

AP\32

Notifies the semaphore at the address specified by the address pointer

in the instruction. Uses LIFO (last in, first out) queueing. Does not

Clear the currently active interrupt. The values of CBIT, LINK, and

the condition codes are indeterminate. See Chapter 9 of the System

Architecture Reference Guide for more information.

Note

This is a restricted instruction.

p> NFYE address
Notify to End
0000001010001000 £4(~V mode form)

AP\32

Notifies the semaphore at the address specified by the address pointer

in the instruction. Uses FIFO (first in, first out) queueing. Does

not clear the currently active interrupt. The values of CBIT, LINK,

and the condition codes are indeterminate. See Chapter 9 of the System

Architecture Reference Guide for more information.

Note

This is a restricted instruction.

p> Nop
No Operation

co000000000000N0N1 (S, R, V mode form)

Does nothing. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

Second Edition 2-82

S, R, AND V MODE

B OcP function,device
Output Control Pulse
O01 10 O FUNCTION\4 DEVICE\6 (S, R mode form)

Sends a control pulse to perform the Specified function to the
Specified device. This instruction never Skips. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

BPORA address
Inclusive OR

IX¥O001111000Y10 R\2 (WV mode forn)
DISPLACEMENT \16

Calculates an effective address, FA. Logically ORs the contents of the
location specified by EA and the contents of A and Stores the result in
A. Leaves the values of CBIT, LINK, and the condition codes unchanged.

PBOTA function,device
Output From A
1 11100 FUNCTION\4 DEVICE\6 (S, R mode form)

Transfers data from A to the specified device. Leaves the values of
CBIT, LINK, and the condition codes unchanged. See Chapter 11 of the
System Architecture Reference Guide for more information.

Note

This is a restricted instruction.

— ok
Output Keys
0000000100000101 £4(S, R mode forn)

Stores the contents of Ain the keys. Loads CBIT, LINK, and the
condition codes as a result of the operation. Loads the low-order 8bits of the floating exponent (address trap location 6) register with
the low-order 8 bits of A. If this instruction is executed in Ring 0,
it inhibits interrupt during execution of the next instruction.

2-85 second Edition

p>PCL address
Procedure Call

IX¥100011000Y10R\2 (V mode form)

DISPLACEMENT\ 16

Sets CBIT, LINK, and the condtion codes to the values contained in the

ECB. See Chapter 8 of the System Architecture Reference Guide for a

complete description of this instruction.

Note

When arguments are to be transferred to the called procedure,

this instruction uses X and Y, destroying the previous contents

of these registers. XB is updated if an AP has the S bit = 0.

The contents of X, Y, and XB remain unchanged if no arguments

are transferred. The contents of the condition codes, OBIT,

and LINK are not correctly saved in the ECB along with the rest

of the caller's keys.

~ Pip
Position for Integer Divide

0000000010001001 (S, R mode form)

Moves the contents of bits 2 to 16 of A into bits 2 to 16 of B. Clears

bit 1 of register B to O and extends the sign contained in bit 1 of A

into bits 2 to 16 of A. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

PpPIA
Position for Integer Divide

0000000001001101 (V mode form)

Moves the contents of bits 1 to 16 of A into bits 17 to &2 of L.

Extends the sign contained in bit 1 of A into bits 2 to 16 of A.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

p prio.
Position for Integer Divide Long

0000000011000101_ £(V mode form)

Moves the contents of L into E and extends the sign contained in bit 1

of L into bits 2 to 32 of L. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

Second Edition 2-84

S, R, AND V MODE

> PIM
Position After Multiply
0000000010000101 (S, R mode form)

Moves bits 2 to 16 of B into bits 2 to 16 of A. This converts a 31-bit
integer to a 16-bit integer. Leaves the values of CBIT, LINK, and the
condition codes unchanged. Overflow does not cause an integer
exception.

p> PIMA
Position After Multiply
09000000000001101

_

(V mode form)

Moves bits 17 to 32 of L into bits 1 to 16 of A. This converts a
d2-bit integer to a 16-bit integer. An integer exception occurs if
there is an overflow. (This occurs if bits 1 to 17 of L contain a
value other than all zeros or all ones before the move.) If no integer
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a1, the instruction
Sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

To position bits 17 to 32 of L in A, PIMA can modify all 32
bits of L. Since A and B overlap L, this Swap means that the
contents of B are indeterminate at the end of this instruction.

> PIM.
Position After Integer Multiply Long
0000000011000001

=

(V mode form)

Moves the contents of bits 1 to 32 of E into bits 1 to 32 of L. This
converts a 64-bit integer to a 32-bit integer. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-85 second Edition

Fe che ie eeeeee tA

p> PRIN
Procedure Return

0000000110001001~ £42(V mode form)

Deallocates the stack frame created for the executing procedure and

returns to the environment of the procedure that called it.

To deallocate the frame, the instruction stores the current value of

the stack base register into the free pointer. It then restores the

caller's state by loading the caller’s program counter, stack base

register, linkage base register, and keys with the values contained in

the frame being deallocated. Sets bits 15 to 16 of the keys to 0.

Loads the ring number in the program counter with the current ring

number to allow outward returns but prevent inward returns.

PTLB
Purge TLB
0000000000110100 £(V mode form)

L contains the address of a physical page, right justified. Based on

the value of L bit 1, PILB purges either the first 128 locations or a

single location. If L bit 1 contains a1, the instruction performs a4

complete purge. If L bit 1 contains a O, the instruction purges the

page specified by L. Leaves the values of CBIT, LINK, and the

condition codes indeterminate. See Chapters i, 4, and 11 of the System

Architecture Reference Guide for more information about the STLB and

IOTLB.

Note

This is a restricted instruction.

On the 750, 850, and 2350 to 9955 II, insert a CRE (Clear £)

instruction before PILB. Since PILB uses E as a pointer, the

CRE zeros E before PILB manipulates it. If an interrupt occurs

during PILB‘s execution, E points to the location PILB is

currently purging. PILB leaves the contents of E in an

undefined state at the end of its execution.

Second Edition 2-86

5S, R, AND V MODE

BP GQFAD address
Quad Precision Floating Add
ITX¥O010111000Y10 R\2 (V mode long)
DISPLACEMENT \16
0O000000000000010

Calculates an effective address, EA. Adds the 112-bit, quad precision
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6 of the System Architecture Reference Guide.)
Normalizes the result and loads it into QAC. An overflow or underflow
causes a floating-point exception. If no floating-point exception
occurs, the instruction resets CBIT to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFAD is used for any earlier system listed in “About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P rcv
Quad Precision Floating Complement
1100000101111000

+=

£(V mode form)

Forms the two's complement of the value contained in QAC and normalizes
it if necessary. (See Chapter 6 of the System Architecture Reference
Guide.) Stores the result in QAC. An underflow or overflow causes a
floating-point exception. If no floating-point exception occurs,
resets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

Ifa floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QFCM is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-87 Second Edition

TNSTRICTION SETS GUIDE

B QFcs address
Quad Precision Floating Point Compare and Skip

IX¥010111000Y10 ie (V mode long)

DISPLACEMENT \16
oo000000000000110

Calculates an effective address, EA. Compares the contents of QAC (see

Chapter 6 of the System Architecture Reference Guide) to the 11l2-bit

contents of the location specified by EA and skips as shown below.

Condition Skip

@AC > EA contents. No skip.

QAC = EA contents. Skip 16 bits (one halfword).

QAC < EA contents. Skip 32 bits (two halfwords).

The values of CBIT, LINK, and the condition codes are indeterminate.

On some processors, QFCS works correctly only on normalized numbers as

follows. The comparison has a maximum of three sequential stages:

first the signs, then the exponents, and finally the fractions of the

two numbers are compared for equality. If the comparison during any

one of these stages reveals an inequality, the results are returned and

the instruction ends. Unnormalized numbers are unexpected and produce

unexpected results. Other processors actually perform a subtract,

resulting in a proper comparison.

Note

If QFCS is used for any earlier system listed in “About This

Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

B QFDV address
Quad Precision Floating Point Divide

IX¥010111000Y10 Rie (V mode long)

DISPLACEMENT16
oo00000000000101

Calculates an effective address, EA. Divides the contents of QAC by

the 112-bit contents of the location specified by EA. Normalizes the

result and stores the whole quotient into QAC. An overflow, underflow,

or divide by 0 causes a floating-point exception. If there is no

floating-point exception, resets CBIT to 0. The values of LINK and the

condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide.

Second Edition 2-88

S, R, AND V MODE

Note

If QFDV is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

PB OFLD address
Quad Precision Floating Point Load
IX¥O010111000Y10 R\2 (V mode long)
DISPLACEMENT \16
O000000000000000

Calculates an extended, augmented effective address, FA. Performs one
of the following actions with the value contained in the location
Specified by EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, no normalization
occurs. (See Chapter 6 of the System Architecture Reference Guide for
more information.) Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

If QFLD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

BP FLX address
Quad Precision Floating Point Load Index
IT0110111000Y11 R\2 (V mode long)
DISPLACEMENT \16

Calculates an effective address, FA. Shifts the 16-bit contents of the
location specified by EA to the left three times to multiply the
contents by eight. Shifts in zeros on the right and shifts data out on
the left first through bit 2 and then bit 1. Leaves the values of
CBIT, LINK, and and the condition codes unchanged.

Note

Q@FLX cannot do indexing. See Appendix B for more information.

If QFLX is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-89 Second Edition

TNOTDTWITTONT SETS CITTT®
abiesFP ale de WedNF che wheeWeU hn TA

P QP address
Quad Precision Floating Point Multiply
ITX¥010111000Y108R\2 _~(V mode long)
DISPLACEMENT16
oo00000000000100

Calculates an effective address, EA. Multiplies the contents of QAC by

the 112-bit contents of the location specified by EA. (See Chapter 6

of the System Architecture Reference Guide.) Normalizes the result if

necessary and stores it into QAC. An overflow or underflow causes a

floating-point exception. If there is no floating-point exception, the

instruction resets CBIT to 0. ‘The values of LINK and the condition

codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note

If QFMP is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

P rss address
Quad Precision Floating Point Subtract
IX¥010111000Y10R\2 _~(V mode long)
DISPLACEMENT16
oo00000000000011

Calculates an effective address, EA. Subtracts the contents of the

locations specified by FA from the 112-bit contents of QAC. (See

Chapter 6 of the System Architecture Reference Guide.) Normalizes the

result if necessary and loads it into QAC. An overflow or underflow

causes a floating-point exception. If there is no floating-point

exception, the instruction resets CBIT to 0. The values of LINK and

the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Second Edition 2-90

5S, R, AND V MODE

Note

If QFSB is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

QFST address
Quad Precision Floating Point Store
IX¥O010111000Y10 R\2 (V mode long)
DISPLACEMENT16
O000000000000001

Calculates an effective address, EA. Stores the 128-bit contents of
@AC into the 128 bits of memory specified by EA. (See Chapter 6 of the
System Architecture Reference Guide.) Leaves the values of CBIT, LINK,
and the condition codes unchanged.

>

Note

This instruction does not normalize the result before storing
it into the specified memory location.

If QFST is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

QINQ
Quad to Integer, in Quad Convert

1100000101111010 £4(V mode form)

Strips the fractional portion of QAC as described in Table 2-4.

2-91 Second Edition

TNOTDITICTTON CHT CITT
hod wheedeF DAchend ahs ASwheeURS behVAIN

Table 2-4
QINQ Actions

Exponent Value | Action

‘S37 <= Exp No operation.|
|

‘200 < Exp < ‘337 | If sign >= 0, strip fractional part of QAC
| for result.
| If sign < O and fractional part <> 0, strip
| fractional part of QAC and increment
| integer portion of QAC by 1.
| If sign < O and fractional part = 0, no
| action is done.
|
|
|
|
|

|

‘200 = Exp If sign >= 0, result = 0.
If sign < 0 and bits 2 to % = 0, result = -1.
If sign < 0 and bits 2 to 9% <> 0, result = 0.

‘200 > Exp Result = 0.

The QINQ instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to 0. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QINQ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P QR
Quad to Integer, in Quad Convert Rounded
1100000101111011 &24(V mode form)

Strips the fractional portion of QAC as described in Table 2-5.Rene mee ae Seer eres uae

Second Edition 2-92

S, R, AND V MODE

Table 2-5
QIQR Actions

| Exponent Value | Action

‘337 <= Exp No operation.

‘177 < Exp < ‘337

|

If sign >= 0, round.*
If sign < O and fractional part <> 0.5, **

round and strip the fractional part
of QAC.

If sign >= 0, result =0.
If sign < 0 and bits 2 to 96 = 0, result = -1.
If sign < 0 and bits 2 to % <> 0, result = 0.
For all cases increment integer part by 1 if

it exists and the most significant bit of
QAC = 1.

Exp < ‘177 | The result is 0.

|

|

|

|

|

|

|

|

|

|

|

|

* Rounding occurs if the MSB of the QAC fraction is 1. For example,
add the MSB of the QAC fraction to itself and carry out to the QAC
integer.

** 0.5 implies a QAC fraction with the MSB = 1 and all other bits = 0.

The @IQR instruction can cause a floating-point exception; an
exception does not alter the contents of QAC. If no floating-point
exception occurs, the instruction resets CBIT to 0. The values of LINK
and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QIQR is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

2-93 Second Edition

TAICHMNTICINTONT CLOT Trrw
ALYLEVLAALY SETS GUIDE

P REQ address
Remove Entry From Bottom of Queue
1100001111001101 ~~£4(V mode form)
AP\32

The address pointer in this instruction points to the QCB for a queue.

The instruction removes the entry from the bottom of the referenced

queue and loads it into A. If the queve is not empty, sets the

condition codes to NE; if empty, resets A to 0 and sets the condition

codes to EQ. Leaves the values of CBIT and LINK unchanged.

RCB

Reset CBIT to O

1100000010000000 £45, R, V mode form)

Resets CBIT to O. Leaves the values of LINK and the condition codes

unchanged.

RNC
Reset Machine Check Flag to 0

0000000000010001 £28, R, V mode form)

Resets the MCM flag (bits 15 to 16 of the modals) to 0. leaves the

values of CBIT, LINK, and the condition codes unchanged. Inhibits

interrupts during execution of the next instruction.

Note

This is a restricted instruction.

PBRRST address
Restore Registers

0000000111001111

+

&42(V mode form)

AP\32

Calculates an effective address, EA, from the 32-bit address pointer in

the instruction. This specifies the starting address of a save area

for the general, floating, and XB registers. The save area format is

shown in Table 2-6. Restores the contents of the general, floating,

and XB registers from this save area. Bits 1 to 16 of the save area

are a save mask, whose format appears in Figure 24. A mask bit value

of 1 means that the corresponding register had nonzero contents that

have been saved in the save area; a mask bit value of O means that the

corresponding register’s contents were 0. Leaves the values of CBIT,

LINK, and the condition codes unchanged.

Second Edition 2-44

S, R, AND V MODE

Table 2-6
RRST Save Area Format

Offset # | Contents

| |
| |
| 1 | Save mask |

2toS5	FRI (F)
6to9	FRO
10toil1l [X, GR7

| 12to13 | GR6 |

| 14to15 ! Y, S, GR5 |

| 15 to 17 | GR4 |

| 18 to 19 | E, GR3 |
| 20 to 21 ! A, B, L, GRe |

22to 23	! GR1
24 to 25	GRO
26 to 27	XB

l 45 67 8 9 10 11 12 13 #=14 1516

| 0000 | FR1 ! FRO! X!1-iYt-tEttL,BAl -—- |

Save Mask Format, RRST and RSAV Instructions

Figure 2-4

B RSAV address
Save Registers
0000000111001101 4(V mode forn)
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. The save area format is
shown in Table 2-7. Bits 1 to 16 of the save area are a save mask,
whose format appears in Figure 2-5. This instruction sets the mask bit
of each register as follows: to 1 if the register’s contents have a
nonzero value; to Oifa0Ovalue. Saves the nonzero contents of the
general, floating, and XB registers in the save area. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

2-95 second Edition

TNHOTDIICNTO Cuma CTTTHY
ALUVAISoeART RAY NA

Table 2-7

RSAV Save Area Format

| 1 | Save mask |

| 2 to 5 | FRI (F) |
| 6 to 9 | FRO |
! 10to11 |! X, GR7 |
12to13	GRE
14to15	Y, S, GR5
15 to 17%	GR4
18to 19	E, GR
20 to 21	! A, B, L, GRe
22 to 23	GR1
24 to 25	! GRO
26 to 27	XB

1 45 67 8 9 10 11 12 16 14 15 16

| 0000 | FRl | FRO! X!-1Yt-!E1UL,B,A 1! -—|

Save Mask Format, RRST and RSAV Instructions

Figure 2-5

PB RQ address
Remove Entry From Top of Queue

1100001111001100 £4mode form)

AP\32

The address pointer in this instruction is to the QCB for a queue. The

instruction removes the entry from the top of the referenced queue, and

loads it into A. If the queve is empty, the instruction resets A to 0

and the condition codes to EQ; if not empty, sets the condition codes

to NE. Leaves the values of CBIT and LINK unchanged.

> RTS
Reset Time Slice
oo0o0000c00101001001 (V mode form)

Valid for the 550-II, 750, 850, I450, and new processors.

The A register contains a negative value representing the number of

milliseconds in the new time slice. The time slice is determined by

counting ITH up every 1.024 milliseconds until zero, when the time

Second Edition 2-96

5S, R, AND V MODE

slice ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current time slice.
Combining ITH and ET by addition gives the total elapsed time.

RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of A from the sum of the timers.
Stores the result in the elapsed timer. Loads the contents of A into
the interval timer. Leaves the contents of A unchanged. The values of
CBIT, LINK, and the condition codes are unchanged.

The addition performed by this instruction is equivalent to the
following series of instructions.

LDA ITH /* load A with the contents of ITH

SUB RV /* subtract reset value (in RV) from contents of A
PIDA /* sign extend the contents of A into L bits 17 to 32
SRC /* skip next 16-bit halfword if CBIT is 0 (no overflow)
CMA /* complement A
ADL ET /* add contents of L and contents of ET
STL ET /* store contents of L in ET
LDA RV /* load A with reset value
STA ITH £/* store the reset value into ITH

Note

RTS is a restricted instruction.

2-97 Second Edition

TNSTRUCTTON SETS GUTME

BP sla
Subtract 1 From A
1100000001001000 £4(S, R, V mode form)

Subtracts 1 from the contents of A and stores the result in A. If the
number to be decremented is -(2**15), an integer exception occurs, and
the instruction loads (2**15)-1 into A. If no overflow occurs, the
instruction resets CBIT to O. LINK contains the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains a1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

p> sea
Subtract 2 From A

1100000011001000 £416, R, V mode form)

Subtracts 2 from the contents of A and stores the result in A. If the

number to be decremented is -(2**15)-1 or -2**15, an integer exception
occurs and the instruction loads (2**15)-1 or (2**15)-2, respectively,
into A. If no overflow occurs, the instruction resets CBIT to 0. LINK

contains the borrow bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

BP sAR n
Skip on A Register Bit Reset to 0
100000001011N4 £5, R, V mode form)

Skips the next 16-bit halfword if bit n in register A contains 0.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of 0 indicates bit 1; 1, bit 2;
and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

Second Edition 2-98

S, R, AND V MODE

P sasn
Skip on A Register Bit Set to l
100000101011N4 #£=S, R, V mode form)

Skips the next 16-bit halfword if bit n in register A contains 1.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

N specifies the bit to test. A value of O indicates bit 1, and so on.

Note

The assembler converts n to the octal equivalent of bit number
minus 1.

B sBL address
Subtract Long
I¥011111000Y11 R\2 (VV mode forn)
DISPLACEMENT\ 16

Calculates an effective address, EA. Subtracts the 32-bit integer in
the location specified by EA from the contents of L. Stores the
results in L. If the result is greater than (2**31)-1, an integer
exception occurs and the instruction loads bit 1 of L with a 1 and bits
2 to 32 with (result - (2**31)).

If the result is less than -(2**31), an integer exception occurs and
the instruction loads bit 1 of L with a 0 and bits 2 to 32 with the
negative of (result + (2**31)).

If no overflow occurs, the instruction resets CBIT to O. The

instruction loads LINK with the borrow bit. The condition codes

reflect the outcome of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains a0, the
instruction sets CBIT to 1. If bit 8 contains a1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

sce
Set CBIT to 1
1100000110000000 (S,R, V mode form)

Sets the value of CBIT to 1. The value of LINis indeterminate.
leaves the values of the condition codes unchanged.

2-99 Second Edition

INSTRUCTION SETS GUIDE

P sc.
Enter Single Precision Mode
0O000000000000101 £248, R mode form)

Enters single precision mode by resetting bit 2 of the keys to O.
Subsequent LDA, STA, ADD, and SUB instructions manipulate 16-bit
integers. Leaves the values of CBIT, LINK, and the condition codes
unchanged .

P scr
Skip on A Greater Than 0
1000000010010000 £4(S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

PBsKPn
Skip
1o00000000000000 4G, R, V mode form)

Skips the next sequential 16-bit halfword if the specified condition is
met. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

This instruction allows you to test for several conditions. The table
below shows the conditions available to test and information about the

associated instruction.

second Edition 2-100

S, R, AND V MODE

Table 2-8
SKP Conditions

| Mnem | Opcode | Condition |
| |
NOP	101000	No operation.
SKP	100000	Unconditional skip.
SLT	101400	Skip on bit 1 of A equal to 1.
SGE	100400	Skip on bit 1 of A equal to 0.
SLN	101100	Skip on bit 16 of A equal to 1.
SLZ	100100	Skip on bit 16 of A equal to 0.
SNE	101040	Skip on A not equal to O.
SEQ	100040	Skip on A equal to O.
SS1*	101020	Skip on Switch 1 set to 1.
SR1*	100020	Skip on Switch 1 reset to 0.
SS$2*	101010	Skip on switch 2 set to l.
SR2*	100010	Skip on switch 2 reset to 0.
SS3*	101004	Skip on Switch 3 set to 1.
SR3*	100004	Skip on Switch 3 reset to 0.
SS4*	101002	Skip on Switch 4 set to 1.
SR4*	100002	Skip on switch 4 reset to 0.
SSS*	101036	Skip on any sense switches set tol.
SSR*	100036 ! Skip on all sense switches reset to 0.	
SSC	101001	Skip on CBIT set to 1.
SRC	100001	Skip on CBIT reset to O.

Note

*These are restricted instructions.

You do not have to specify the unique mnemonic to test a particular
condition; you can specify the SKP mnemonic and give the correct bit
configuration for bits 7 to 16 of the desired test. Make sure that you
set bit 7 of the SKP instruction properly: if it contains a 1, the
Skip occurs if any of the specified conditions are true; if it
contains a 0, the skip ocours if all of the specified conditions are
false.

PB SKS function,device
Skip on Condition Satisfied
O11 10 0 FUNCTION\4 DEVICE\6 (S, R mode form)

Tests for the condition specified in the function field of the
instruction. Leaves the values of CBIT, LINK, and the comition codes
unchanged. See Chapter 11 of the System Architecture Reference Guide
for more information.

2-101 second Edition

INSTRUCTION SETS GUIDEhe be VSAhe De RS chert

Note

SKS is a restricted instruction.

P se
Skip if A Less Than or Equal to 0
1000001010010000 £S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are less

than or equal to 0. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

P sin
Skip on LSB of A Nonzero

1000001001000000 S, R, V mode form)

Skips the next sequential 16-bit halfword if bit 16 of Ais 1. Leaves

the values of CBIT, LINK, and the condition codes unchanged.

siz
Skip on LSB of A Zero
1000000001000000 (CS, R, V mode form)

Skips the next sequential 16-bit halfword if the bit 16 in A equals Q.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

> sMCR
Skip on Machine Check Reset to 0
19000000010000000 (S, R, V mode form)

Skips the next 16-bit halfword if the machine check flag is 0. Leaves

the values of CBIT, LINK, and the condition codes unchanged.

Note

If the processor is operating in machine check mode, this

instruction has no meaning; it executes as an unconditional

skip.

Second Edition 2-102

S, R, AND V MODE

PB sMCsS
Skip on Machine Check Set to 1
1OQ0O0001010000000 £S, R, V mode form)

Skips the next 16-bit halfword if the machine check flag is 1. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Note

If the processer is operating in machine check mode, this
instruction has no meaning; it executes as a NOP.

> si
Skip on A Minus
1000001100000000 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are less
than 0. leaves the values of CBIT, LINK, and the condition codes
unchanged.

P sn
Skip on A Nonzero
1000001000100000 £(S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are not
equal to 0. leaves the values of CBIT, LINK, and the condition codes
unchanged.

— sPi
Skip on A Plus
1000000100000000 £5, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A are
greater than or equal to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

PB sRC
Skip on CBIT Reset to 0
LOO0O0000000000001 £25, R, V mode form)

Skips the next sequential 16-bit halfword if the value of CBIT is 0.
leaves the values of CBIT, LINK, and the condition codes unchanged.

2-103 Second Edition

TRIGTDTIOMTOMT OTANG CTTTNO
LIVLIVELUA od ATUL

ssc
Skip on CBIT Set to 1

1o00o0o0 1000000001 (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of CBIT is 1.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

> sou
Set the Sign of A Minus
1100000101000000 (S, R, V mode form)

Sets bit 1 of A to l. leaves the values of CBIT, LINK, an the

condition codes unchanged.

> ssP
Set the Sign of A Plus
1100000001000000 (S, R, V mode form)

Sets bit 1 of A to 0. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

B sssn
Store System Serial Number
o100000011001000 (V mode form)

This instruction is applicable only for the 2350 to the 9955 II. A

14-character system identifier programmed into the processor during

manufacturing consists of a 2-character plant location code followed by

a 12-digit number. (These characters and numbers are in 77-bit ASCIT

format.) SSSN writes this system identifier into a 16-halfword block

at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number

string as provided by manufacturing; the remaining halfwords are

reserved for future expansion and are 0.

Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

If SSSN is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

Second Edition 2-104

5S, R, AND V MODE

PBsTA address
Store A Into Memory
IX¥O010011000Y00 R\2 CV mode long)
DISPLACEMENT\ 16

ITX¥O010011000000CB\2_ (R mode long)
[DISPLACEMENT\16]

I X¥ 0100 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of the A
register in the location specified by EA. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

B sTAC address
Store A Conditionally
O0O000001010000000

_

£(V mode form)
AP\32

Compares the contents of B with the contents of the location referenced
by the specified address pointer. If the two values are equal, the
instruction stores the contents of A into that referenced location. If
the two values are not equal, execution continues with the next
instruction. Leaves the values of CBIT and LINK unchanged. Sets the
condition codes to EQ if the store occurs and to NE if not.

The comparison and store will not be separated by execution of other
instructions. This means that no instruction can alter the contents of
the specified memory location between the compare and the store.

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/O; this means you can use it to
interlock a process with a DMA, DMC, or DMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

— sic fir
store Character

000000101101FIR010

_

(V mode form)

If the contents of the specified FIR are nonzero, the instruction
stores the contents of bits 9 to 16 of A into the character byte
pointed to by the appropriate FAR. Updates the contents of the
appropriate FAR so that they point to the next character. Decrements
the contents of the specified FIR by 1. Sets the condition code NE.

2-105 Second Edition

TNSTRUCTION SETS GUIDE

If the contents of the specified FIR are 0, the SIC instruction sets

the condition code BQ) and does not store a character.

The STC instruction leaves the values of LINK and CBIT unchanged.

Note

When the instruction specifies FLRO, FARO is used; FLR1, FARI.

 sTEX
Stack Extend
0000001011001101

+=

£42(V mode form)

Extends the length of the procedure stack.

A and B contain a 32-bit number specifying the halfword size of the

extension. (A halfword is 16 bits.)

The firmware rounds up the number specified by A and B to an even

number of halfwords. The instruction uses this value to allocate a

block of memory to the procedure stack. The extension and the initial

stack do not have to be contiguous, since there may not have been

enough room left in the initial stack to contain a complete frame.

The instruction returns a segment number/offset number in A and B that

specifies the starting address of the extension.

The extension is automatically deallocated when the current procedure

completes execution. There is no limit on the number of extensions you

can make.

A stack fault occurs if there is no room for the extension. The values

of CBIT, LINK, and the condition codes are indeterminate. See Chapters

8 and 10 of the System Architecture Reference Guide for more

information about this instruction, stacks, and stack faults.

B sIPA far,address
Store FAR

000000101101 FAROOO £(V mode form)
AP\32

Stores the specified FAR contents as a hardware recognizable indirect

pointer at the memory location referenced by the specified address

pointer. If the bit number field of that FAR contains 0, the

instruction stores the first 32 bits (2 halfwords) of the pointer and

Clears the pointer’s extend bit to 0. If the bit number field of that

FAR does not contain 0, the instruction saves all 48 bits (three

halfwords) of the pointer and sets the pointer’s extend bit to l.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Second Edition 2-106

S, R, AND V MODE

Ppstl address
Store Long
IX¥010011000Y11 B\2 (V mode form)
DISPLACEMENT16

Calculates an effective address, FA. Stores the contents of L in the
de-bit location specified by EA. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

B sTIc address
Store L Conditionally
0000001010000100 £((V mode forn)
AP\32

Calculates an effective address, EA. Stores the contents of L into the
de-bit location specified by EA if and only if the contents of the
Specified location equal the contents of E. Leaves the values of CBIT
and LINK unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

Note

This instruction is useful when two cooperating, sequential
processes are manipulating shared data. It is interlocked
against direct memory I/O; this means you can use it to
interlock a process with a DMA, DMC, or DMQ channel, as well as
to interlock a memory location that is possibly accessed by
I/O.

— sTIR address
Store L Into Addressed Register
IX¥001111000Y0O1R\2 (V mode forn)
DISPLACEMENT \16

Calculates a S2-bit (l-word) effective address, FA. Stores the
contents of L into the register location specified by the offset
portion of FA. Bit 2 and bit 12 of the offset portion of EA determine
the actions of this instruction as follows.

2-107 second Edition

TRHISTIOTICONTON Nd TTT
oiled

tT ¢c
AMOILEVYAAT Re

Bit 2 Bit 12 Action

1* sooo Ignore bit 1 amd bits 3 to 9. The offset

portion of EA specified an absolute register
number from 0 to ‘377.

Q* 1 Bits 13 to 16 of the offset portion of EA

specify one of the registers ‘20 to ‘37 in the
current register set.

0 0 Bits 13 to 16 of the offset portion of EA

specify one of the registers 0 to ‘17 in the

current register set.

*This is a restricted instruction.

STIR leaves the values of CBIT and LINK unchanged; the values of the

condition codes are indeterminate. See Chapter 9 of the System

Architecture Reference Guide for more information about register sets.

Note

Do not use the STIR instruction to write into the keys or

modals. You can use LPSW or a mode control operation to change

either of these registers. Under no circumstances should you

try to change the value of the current register set bits

contained in the modals.

In addition, do not change the contents of the procedure base

register (PB) with this instruction. Use either LPSW or a

control transfer. Loading any value other than O into PBL will

change future effective address calculations for the currently

running process.

PP stm
Store Processor Model Number

oo000000000010100_ £2((V mode form)

Stores the CPU model number and microcode revision number in an

8-halfword field. (A halfword is 16 bits.) XB contains a pointer to
the field. The format of the field is shown in Table 2-9.

Second Edition 2-108

5S, R, AND V MODE

Table 2-9
STPM Memory Field Format

Bits 1 to 8 Reserved
Bits 9 to 16 Manufacturing microcode

revision number

Revision

Offset 4:

Bits 1 to 16 Engineering microcode
revision number

| Halfword | Name | Description

1 to 2 Processor | Contains a code specifying the machine:
Model | OL - 400/500, no 15L — 9950
Number | Rev B microcode 16L - 9650

| 1L - 400, Rev. B 17L -— 2550
| microcode 18L — 9955
| eL — Reserved 19L - 9750
| oL — 350 elL — 2350
| 4L -— 450/550 eeL — 2655
| SL — 750 20L — 9655
| 6L — 650 25L - 2450
| 7L — 250 o0L - 9955 II
| 8L — 850 olL — 2755
| 9L - 250-II o4L — 6350
|! 10L - 550-II 42L - 9755
| 11L — 2250

| Offset 3:
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

& to 4 | Microcode
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

5 Processor | Specifies options enabled for this machine:
Line | Bits 1to 15 Reserved; mst be 0

| Bit 16 Marketing segment
| Specification bit
|

6 Extended | To be implemented.
Microcode |
ID |

|
7 to 8 --~ | Reserved for future use.

This instruction leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

SIPM is a restricted instruction.

2-109 second Edition

THNOATDTIONTOANT CRMC MTT
LLULIVUULLY Dn Ud

STTM
Store Process Timer

o000000101001000 £(~V mode form)

Valid for the 550-II, 850, I450, and 2350 to 9955 IT.

The current process time is represented by the sum of the d2-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU hardware). Bit 17 of the elapsed tim is
equivalent in weight to bit 1 of the interval time. This operation is

equivalent to the following sequence of instructions.

LDIR PB% + ‘25 /* Get PCB address.

ADL = ‘10L /* Offset of elapsed time.
STL TEMP1 /* Elapsed time address -> Temp.
LDLR PB% + ‘30 /* Read timer.
TAB /* Store low order
STA XB% + 2 /* 16 bits.
TAB /* Adjust
PIDA /* weighting.
ADL TEMP1, * /* Add elapsed time.

STL XB% + O

Leaves the values of the CBIT, LINK, and condition codes indeterminate.

This instruction is not implemented on the 2250.

P six address
Store X
T0110111000Y00 R\2 (V mode long)
DISPLACEMENT16

TO0110111000000CB\2-_~— (R mode long)
[DISPLACEMENT\16]

T0110 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Stores the contents of X at the

location specified by EFA. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

Note

STX cannot directly specify indexing, though an address in the
indirection chain may do so in 16S mode. See Appendix B for
mo
sb

Second Edition 2-110

S, R, AND V MODE

> sTy
store Y

Ilil110111000Y10 \2 (V mode form)
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of Y at the
location specified by EA. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The STY instruction cannot do indexing. See Appendix B for
more information.

PBSUB address
Subtract
ITX¥O1l1111000YO0OO0O R\2 (V mode long)
DISPLACEMENT \16

IX¥O1l1l111000000 G\2 (R mode long)
[DISPLACEMENT\16]

I X01 1 1 DISPLACEMENT\10 (S mode; R, V mode short)

Calculates an effective address, EA. Fetches the 16-bit integer
contained in the location specified by FA and subtracts them from the
contents of A. Stores the results in A.

If the result is greater than or equal to 2**15, an integer exception
occurs and the instruction sets CBIT to 1 and loads bit 1 of A with al
and bits 2 to 16 with (result minus (2**15)).

If the result is less than -2**15, an integer exception occurs and the
instruction loads bit 1 of A with 0 and bits 2 to 16 with the negative
of (result + (2**15)).

If no overflow occurs, the instruction resets CBIT to 0. LINK contains
the carry-out bit. The condition codes reflect the result of the
operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

2-111 second Edition

TATOATMTIOTNTOW TT
INSTRUCTION SETS cu——

P svc
Supervisor Call

0000000101000101 (5, R8, V mode form)

Supervisor call. Generates a directed fault. Leaves the values of

CBIT, LINK, and the condition codes unchanged.

This instruction allows you to make an operating system request that is

addressing mode independent. By software convention, this instruction

sends an operation code and pointers to the operating system to

generate a fault. For more information, refer to Chapter 10 of the

System Architecture Reference Guide.

> Sze
Skip on A zero
1000000000100000 (6S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of A equal 0.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 2-112

S, R, AND V MODE

> TAB
Transfer A to B
1100000011001100 (VY mode form)

Transfers the contents of A into B. Leaves the values of CBIT, LINK,and the condition codes unchanged.

p> TA
Transfer A to Keys
0000001000001101 £4((V mode form)

Moves a copy of the contents of A into the keys. Loads CBIT, LINK, andthe condition codes as a result of the operation. Resets bits 15 to 16
of the keys to 0.

Note

If the new contents of the keys specifies a new addressing
mode, the new mode takes effect with the instruction
immediately following TAK.

P TAX
Transfer A to X

1100000101000100_ (V mode form)

Loads X with a copy of the contents of A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

TAY
Transfer A to Y

110000010100010}1 CV mode form)

Loads Y with a copy of the contents of A. Leaves the values of CBIT,LINK, and the condition codes unchanged.

P TB
Transfer B to A

Lll100000110000100 CV mode form)

Transfers a copy of the contents of B to A. Leaves the values of CBIT,LINK, and the condition codes unchanged.

2-113 second Edition

TATOMMTICN orn TITTY
INSTRUCTION SETS GUIDE

P cA
Two's Complement A
1100000100000111 £28, R, V mode form)

Forms the two's complement of the contents of A and stores the result

in A. If the number to be complemented is -2**15, an integer exception

occurs and the instruction loads -2**15 into A. If no integer

exception occurs, the instruction resets CBIT to O. LINK contains the

carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

— cL
Two’s Complement Long
1100001010001000 £(V mode form)

Forms the two’s complement of the contents of L and stores the result

in L. If the number to be complemented is -2**51, an integer exception

occurs and the instruction loads -2**31 into L. If no integer

exception occurs, the instruction resets CBIT to 0. LINK contains the

carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

Tf an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

p TFLflr
Transfer FIR to L

000000101101 FIR011 (VY mode form)

Transfers the contents of the specified FIR into L as an unsigned,

32-bit integer. Clears bits 1 to ll of LtoO. leaves the values of

CBIT, LINK, and the condition codes unchanged.

p> TKA
Transfer Keys to A

0000001000000101_ £4mode form)

Moves a copy of the keys into A. Leaves the values of CBIT, LINK, and

the condition codes unchanged.

Second Edition 2-114

S, R, AND V MODE

> TFL fir
Transfer L to FIR

000000101101NR001 (V mode form)

Transfers the 32-bit unsigned integer contained in L into the Specified
FIR. Clears bits 1 to 11 of L to O so that bits 1 to 6 of the
Specified FLR will be 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

This instruction allows you to load the Specified FLR with a
value computed at execution time. The maximum allowable
integer you can load is 2**20. This number is 21 bits wide and
equals the number of bits in a 64K segment .

B TSIQ address
Test Queue
1100001111101111

~+=

«2(V mode form)
AP\32

The address pointer in this instruction is to the QCB of a queve. This
instruction tests the referenced queue and sets A to equal the number
of items in the queue. Sets the condition codes to HQ when the queue
is empty. If the queve is not empty, sets the condition codes to NE.
Leaves the values of CBIT and LINK unchanged.

P TxA
Transfer X to A

1100001000011100 (CV mode form)

Transfers a copy of the contents of K to A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

> TYA
Transfer Y to A

1100001001010100

_

£((V mode form)

Transfers a copy of the contents of Y to A. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

2-115 Second Edition

TAICMMTACMNTMT CoM THT?
LUVLIVNVO SL LUA SETS GUIDE

WAIT address
Wait
0000000011001101

+=

£42(V mode form)
AP\32

The address pointer in this instruction is to a 16-bit semaphore

counter, C. The instruction increments C. If C is greater than 0,

either the resource is not available, or the event has not occurred.

The instruction removes the PCB from the ready list, suspending the

process, and adds it to the wait list associated with the semaphore.

Tt then makes the register set available, turns off the process timer,

and goes to the dispatcher to find another process to run. The

dispatcher enables interrupts.

If C is less than or equal to O, the currently executing process

continues.

If the instruction places the PCB on the wait list, no general

registers are saved. This means that a process cannot depend on these

registers to be intact after this instruction occurs. This instruction

potentially clears the general, floating, and XB registers.

Leaves CBIT, LINK, and the condition codes unchanged.

For more information about semaphores, the dispatcher, PCBs, and wait

lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

Second Edition 2-116

S, R, AND V MODE

> XAD
Decimal Add
O0O00001001000000O £(V mode form)

Performs a decimal arithmetic operation under control of FARO, FARI,
and L.

FARO contains the address of field 1. FAR1 contains the address of
field 2. lL contains the control word; fields B and C of the control
word specify the decimal operation to be performed, as shown in Table
2-10.

‘Table 2-10
XAD Decimal Operations

| Bt CG | Operation | Destination |
| |
O! O01 +F1+F2	F2
O11 1 +F1-F2	F2
1101 -F1+F2	F2
1111 -F1-F2	F2

The scale differential field in the control word specifies the
difference in the decimal point alignment between Fl and F2:

SD Relation of Fl and F2

SD>0 Fl > F2

SD=-0 Fl = F2

SD<O Fl < F2

If the T bit contains a1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

If the add operation results in an overflow, a decimal exception
occurs. If no overflow occurs, the instruction sets CBIT to 0O to
indicate success.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

2-117 Second Edition

INSTRUCTIGN SETS GUIDE

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, FAR1, FLRO,

and FLR1. At the end of the XAD instruction, the contents of these

registers is indeterminate. The value of LINK is indeterminate. The

condition codes reflect the state of F2 after the decimal operation.

(See Appendix A.)

p xXBID
Binary to Decimal Conversion

0000001001100101_ (V mode form)

Converts a binary number to a decimal number. FARO contains the

decimal field address. L contains the control word.

This instruction uses fields A, E, and H in the control word. H

specifies the length of the binary number and its location:

H Length Location

0 16 bits EH register

1 de bits E register

2 64 bits DAC register

Converts the specified binary integer to a decimal integer and stores

the result in the location specified by FARO. Overflow results in a

decimal exception. If no overflow occurs, the instruction resets CBIT

to 0. Leaves the value of LINK indeterminate. The values of the

condition codes are indeterminate.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, and FIRO. At

the end of the instruction, the contents of these registers are

indeterminate.

When the source register contains a null string, the destination

register will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains a 0, the

instruction sets CBIT to 1. If bit 11 contains a 1, the instruction

sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of

the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FLR1, or FACI.

Second Edition 2-118

5S, R, AND V MODE

Pe xca
Exchange and Clear A
1100000001000100 £465, R, V mode form)

interchanges the contents of registers A and B, then clears A to 0.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

xcs
Exchange and Clear B
1100000010000100 £4(S, R, V mode form)

Interchanges the values of A and B and then clears B to 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P xcy
Deci Compare
O0O00001001000010 CV mode form)

Compares two decimal numbers and sets the condition codes depending on
the result of the compare.

FARO contains the address of field 1 (Fl). FAR1 contains the address
of field 2 (F2). L contains the control word. This instruction uses
fields A, B, C, E, F, G, and H of the control word.

Compares the two specified numbers. The instruction uses the G field
of the control field to adjust the two numbers before the compare :

G Decision

>0 Low-order digits of Fl only affect the initial borrow
from the low-order digit of F2.

<O Assume Fl is zero-extended with low zeros.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FIRO, and FIR]. At
the end of this instruction, the contents of these registers are
indeterminate. The CBIT is reset to O when there is no decimal
exception. (This instruction cannot cause a decimal exception.)
Leaves the value of LINK indeterminate. The condition codes reflect
the result of the compare, as follows.

2-119 second Edition

TNSTRIICTTON SETS GUIDE

CC Test Result

GT F2 >FI1

EQ F2 = Fl

LT F2 < Fl

> xDIB
Decimal to Binary Conversion

0000001001100110 £4(V mode form)

Converts a decimal string to a binary string.

FARO contains the address of the decimal string. L contains the

control word; this instruction uses the A, E, and H fields. Field H

specifies the length of the binary string and its location:

H Length Destination Register

00 16 bits A register

01 32 bits L register

10 64 bits LIE

Converts the decimal string to a binary string of the specified type

and stores it in the specified register. A conversion error causes 4

decimal exception. Leaves the value of LINK unchanged. The values of

the condition codes are indeterminate.

The registers used are GRO, GR1, GRS (E), GR4, GRE, FARO, and FLIRO. At

the end of this instruction the contents of these registers are

indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a O, the

instruction sets CBIT to 1. If bit 11 contains a 1, the instruction

sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of

the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FIR1, or FACI.

Second Edition 2-120

S, R, AND V MODE

P xD
Decimal Divide

0000001001000111 #=(V mode forn)

Divides a decimal number, D2, by another, Dl, and stores the quotient
and remainder in the location of D2.

FARO contains the address of Dl. FAR] contains the address of De. L
contains the control word; this instruction uses fields A, B, C, E, F,
H, and T.

Both decimal numbers must be in trailing sign embedded format. In
addition, D2 must contain a number of leading zeros equal to the length
of Dl.

The instruction divides the two numbers. After the divide, the
location of De contains the quotient of length (D2 length - Dl length)
followed by the remainder of length (Dl length). Since D2 had leading
zeros, no overflow can occur.

If the T bit contains a1, the results will be forced positive. For
more information about decimal arithmetic, refer to Chapter 6 of the
System Architecture Reference Guide.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, FARI, FIRO,
and FLR1. At the end of this instruction, the contents of these
registers are indeterminate.

If Dl is 0, overflow occurs which causes a decimal exception. Decimal
exceptions also occur if Dl or D2 have the incorrect data type or if
the length of D2 is less than that of Dl. If no overflow occurs, CBIT
is reset to 0. At the end of the instruction, LINK and the condition
codes contain undefined results.

If a decimal exception occurs and bit 11 of the keys contains a O, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

> XXCaddress
Execute
ITX¥O000111000Y10 Rie2 (V mode long)
DISPLACEMENT\ 16

IX¥000111000010 cR\2 (R mode long)
[DISPLACEMENT\16]

Calculates an effective address, EA. Executes the instruction found at
EA, but does not transfer control to that location. Leaves the values
of CBIT, LINK, and the condition codes modified as Specified by the
executed instruction.

2-121 second Edition

INSTRUCTION SETS GUIDEVIN

The XEC instruction has limited application since all instructions

cannot be executed in this way. The KEC instruction is useful for

16-bit register generic instructions such as shifts, rotates, clears,

interchanges, and NOPs.

The following instruction types should not be used with XEC since they

may not execute properly or will produce undefined results:

instructions that change the address mode, program counter, or

instruction stream; instructions that cause arithmetic faults;

decimal or character instructions; and generic skips.

p> xXED
Numeric Edit

0000001001001010 (V mode form)

Edits the contents of a string under control of a subprogram.

The registers used are L, XB, FARO, FAR1, and FIRO. At the end of the

instruction, the contents of these registers and the CBIT, LINK, and

condition codes are indeterminate.

FARO contains the address of the source string. The source string must

be leading separate sign type and must have at least the same number of

decimal digits and the decimal point alignment as called for in the

edit subprogram.

FAR] contains the address of the destination string. Bits 1 to 8 of A

contain the floating character; bits 9 to 16, the status register.

Bits 1 to 8 of B contain the number of remaining bytes to be processed

(used if a fault or interrupt occurs). Bits 9 to 16 of B contain the

suppression character whose initial value is determined by bit 12 of

the keys ('240 if bit 1 contains 0; ‘40 if bit 12 contains 1). XB

contains the address of the edit subprogram.

The instruction uses an edit subprogram to alter a source string and

store the edit result in a destination location(s). To set up, perform

a decimal move to correct the type, alignment, and length of the number

to be edited. Next, use a LCKQ instruction to set up the initial

contents of the register.

Fach 16-bit halfword in the edit subprogram has the format shown in

Figure 2-6.

Second Edition 2-122

S, R, AND V MODE

12 34 89 16

1 LI! 0} E | M |

Edit Subprogram Halfword Format
Figure 2-6

where L is 1 if this 16-bit halfword is the last halfword
in the subprogram,

O if it is not the last halfword;
E is a suboperator;
M is a suboperator modifier.

The XED instruction uses several variables internally to control the
edit subprogram. These are shown in Table 2-11.

Table 2-11

XED Internal Variables

Var | Definition

SC zero Suppression character; contained in B. Initial
value is the space character (‘240 or ‘40, depending
on whether bit 12 of the keys contains 0 or 1.

value is not defined.

SIGN

|

Sign of the source field. The first character fetch

|
|
| |
| |
| |
| |
| FC | Floating edit character; contained in A. Initial
| |
| |
| |
| | sets up the value of this variable.
| |
| SIG | End zero suppression flag.

There are 17 edit suboperators, shown in Table 2-12.

2-123 second Edition

INSTRUCTION SETS

Table 2-12
XED Suboperators

| Subop | Mnem | Name and Description

00

Ol

03

05

10

|
|

|

|

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| oil

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

ZS

IL

SS

ICS

IGM

ICP

SFG

SFP

SFM

|

|
|

Zero Suppress. Fetches M digits from the source |

field consecutively, each time checking SIG. If |

SIG is 1, copies the digit into the destination |

string. If SIG is O and the digit is not 0, |

inserts the floating character (if defined) |

and copies the digit into the destination field. |

If SIG is 0, the digit is not O, and the |

floating character is not defined, sets the SIG |

flag and copies the digit into the destination. |

If SIG and the digit are both 0, substitutes |

SC for the 0 digit in the destination field. |

Insert Literal. Copies M into the |

destination string. Increments XB and FAR1 by 1.|

Set Suppress Character. Sets SC to M and |

increments XB by 1. |

Insert Character. If SIG is 1, copies M into the |

destination string. If SIG is 0, copies SC into|

the destination string. Increments XB and FAR] |

by 1. |

Insert Digits. If SIG is 0, and FC is defined, |

copies FC and M digits into the destination field!

then sets SIG to 1. Increments XB by 1, FARO by |

M, and FAR] by M+1. If SIG is O and FC is not |

defined, sets SIG to 1 and copies M digits from |

the source to the destination; increments XB by |

1 and both FARO and FAR] by M. If SIG is 1, |

copies M digits from the source to the |

destination and increments XB by 1 and both FARO |

and FAR1 by M. |

Insert Character if Minus. If SIGN = 1, copies |

M into the destination string. If SIGN = 1, |

copies SC into the destination string. |

Increments both SB and FAR] by 1. |

Insert Character if Plus. If SIGN =0, copies M |

into the destination string. If SIGN = 1, |

copies SC into the destination string. |

Increments both SB and FAR] by 1. |

Set Floating Character. Sets FC to M and |

increments XB by 1. |

Set Floating if Plus. If SIGN =0, sets FCtoM. |

If SIGN = 1, sets FC to SC. Increments XB by 1. |

Set Floating if Minus. If SIGN = 1, sets FC to M.|

If SIGN = 0, sets FC to SC. Increments XB by 1. |

Second Edition

2-124

S, R, AND V MODE

Table 2-12
XED Suboperators (continued)

Name and Description

12

13

15

16

17

Is

|
|

Set Floating to SIGN. If SIGN = 0, sets FC to |
'255. If SIGN = 1, sets FC to ‘255. Increments |
XB by 1. |

Jump if Zero. If the condition flag in A = 0, |
increments XB by 1. If the condition flag inA |
= 1, adds M to XB and then increments XB by 1. |

Fill with Suppression Characters. Copies SC |
M times into the destination string. Increments|
XB by 1 and FAR1 by M. |

Set Significance. If SIG = 0 and FC <> 0, inserts|
FC into the destination string, sets SIG to 1, |
and increments XB and FAR] by 1. If SIG = 0 amd |
FC = 0, sets SIG to 1 and increments XB and FAR] |
by 1. If SIG = 1, increments XB by 1. |

Insert Sign. If SIGN = 0, copies ‘253 into the |
destination string. If SIGN = 1, copies ‘255 |
into the destination string. Increments XB by 1.|

Suppress Digits. Fetches M digits from the source |
string and checks if they are ‘260. If the source!
digit = ‘260, inserts SC into the destination |
string. If the source digit <> ‘260, copies the |
source digit into the destination string. |
Increments XB by 1 and both FARO and FAR] by M. |

Embed Sign. Fetches M digits from the source |
string. If SIGN = 0, copies each digit into the |
destination string. If SIGN = 1, embeds a minus |
Sign into each digit before copying it into the |
destination string. Table 6-15 shows the |
Characters used to represent the sign/digit |
combinations. A } symbol represents negative 0. |

2-125 Second Edition

INSTRUCTION SETS GUIDE

P xP
Decimal Multiply
0000001001000100_ £4mode form)

Multiplies one decimal number, M, by another, Dl, and stores the result

in D2's location in memory. M is right justified in field De at the

start of the operation.

FARO contains the address of Dl. FAR] contains the address of Im. L

contains the control word; this instruction uses fields A, B, C, E, F,

G, H, andT. Field G, the scale differential, must contain the number

of decimal digits in M.

The number of decimal digits in D2 is greater than or equal to the

number of decimal digits in Dl plus the number of decimal digits in M

(specified by G). Normally, the digits to the left (more significant

side) of M are zeros. If this is not the case, then a partial product
field is added in.

The instruction mltiplies M by Dl and stores the result in the

location specified by FAR1. The result of the multiply is:

Dl x M+ partial product field

The partial product field is equal to:

length(D2) —- M.

The partial product field is left justified in De2’s location. ‘The

maximum partial product added in per traverse of the multiplicand is:

source digits + multiplier digits processed

There is also an implied weighting of the partial product field. The

weighting is:

10 ** multiplier digits

If the T bit is set to 1, the results are forced positive. See Chapter

6 of the System Architecture Reference Guide for more information about

decimal arithmetic.

A decimal exception occurs if there are more potential or actual
product digits than there is space in I@.

The registers used are GRO, GR1, GR3 (E), GR4, GR6, FARO, FAR1, and XB.
At the end of this instruction, the contents of these registers are

indeterminate. Overflow causes a decimal exception; if no overflow

occurs, resets CBIT to 0. LINK contains undefined results. At the end

of the instruction, the condition codes reflect the state of the

result. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a0, the

XMP instruction sets CBIT to 1. If bit 11 contains a 1, the

Second Edition 2-126

S, R, AND V MODE

instruction sets CBIT to 1 and causes a decimal exception fault. See
Chapter 10 of the System Architecture Reference Guide for more
information.

PP xMV
Decimal Move

o000001001000001 (V mode form)

Moves a String of characters from one location to another.

FARO contains the address of the source string. FAR] contains the
address of the destination string. L contains the control word; this
instruction uses fields A, B, D, E, F, G, H ami T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, changes the the sign of the source field during the move.
If the D field in the control word is 1 and the scale differential is
greater than 0, the instruction rounds the source field during the
move. If the scale differential (from the H field) is less than 0, the
instruction pads the source field with SD trailing zeros before
transferring.

Since the T bit is used by all systems for this instruction, the result
is forced positive if this bit is set to 1.

The registers used are GRO, GR1, GR2 (L), GR3 (E), GR4, GR6, FARO,
FAR1, FLRO, and FLR1. At the end of this instruction, the contents of
these registers are indeterminate.

A decimal exception occurs if there are more non-zero source digits
than there is room in the destination, after any padding. If there is
no decimal exception, CBIT is reset to 0. Leaves the value of LINK
indeterminate. The values of the condition codes reflect the state of
the destination field after the move. (See Appendix A.)

If a decimal exception occurs and bit 11 of the keys contains a0, the
instruction sets CBIT to 1. If bit 11 contains a1, the instruction
sets CBIT to 1 and causes a decimal exception fault. If no exception
occurs, the instruction sets CBIT to 0. See Chapter 10 of the System
Architecture Reference Guide for more information about decimal
exceptions.

Note

The source and destination strings may not overlap in memory.

2-127 Second Edition

TNCTDITTTON Crome CITT
edeNAc& chad athe Dra NhetaitaclBad edie he VNetNad ole

2H
Compare Character Field
0000001001001111 42mode form)

Compares two fields and sets the condition codes depending on the
result of the compare.

FARO contains the address of field 1 (Fl). FLRO contains an integer
Specifying the length of Fl. FAR] contains the address of field 2
(F2). FLR1 contains an integer specifying the length of Fe.

instruction compares the contents of Fl and F2 ona byte by byte
basis. If the fields are not of equal length, the instruction
automatically extends the shorter string with space characters. A
space character is ‘240 or ‘40 when bit 12 of the keys contains O or 1,
respectively. Sets the condition codes as a result of the compare:

Result of Compare Set Condition Codes

Fl > F2 GT

Fl = F2 EQ

Fl < F2 LT

The registers used are GR3 (E), GR4, FARO, FAR], FLRO, and FIR]; at
the end of this instruction, the contents of these registers are

indeterminate.

When the instruction completes execution, the values of CBIT and LINK
are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it

ahead of time.

p> ZED
Character Field Edit
0000001001001001 (V mode form)

Controls an edit subprogram.

Uses the registers FARO, FAR], FLRO, and XB. At the end of this
instruction the contents of these registers are indeterminate. Leaves
the values of CRIT, LINK, and the condition codes indeterminate.

Second Edition 2-128

5S, R, AND V MODE

FARO contains the address of the source string. FLRO specifies the
length of the source string. FAR] contains the address of the
destination string. XB contains the address of the edit subprogram.

The instruction uses the edit subprogram to alter the source string,
then loads the edited result into the destination string. The
Subprogram, addressed by the contents of XB, contains a list of
commands, each with the format shown in Figure 2-7:

1 2 6 7 8 9 16

| L | QO0O0OO0 ! E | M |

ZED Subprogram Word Format
Figure 2-7

where L is 1 if this command is the last command in the Subprogram,
O if it is not;

E is the edit opcode;
M is the edit modifier.

Bits 2 to 6 must be O.

M, the operator modifier, specifies information E uses when editing the
Source string. (See Table 2-13.)

E, the edit suboperator, specifies the operation to be performed on the
Source string. Available values for E are shown in Table 2-13.

2-129 Second Edition

Table 3-16
ZED Suboperators

| Subop | Value | Action

CPG 00 Copies characters from the source string into the
destination string. If the length of the source
string is greater than the contents of the M field,
then CPC moves a total of M source characters into
the destination string, increments FARO and FARI1 by
by M, increments XB by 1, and decrements FLRO by M.
If the length of the source string is less than the
the contents of the M field, then CPC moves the
rest of the source string into the destination
string, and then pads the remaining space to be
filled with spaces. (See note.) Increments FARO
by FLRO and FAR] by M, increments XB by 1, and
and decrements FLRO by FLRO (so FLRO = 0).

Ol Inserts M into the destination string and
increments both XB and FARI1 by 1.

SKC
remaining length of the source string is greater
than or equal to the contents of the M field, then
SKC skips over the next M characters of the source
field by incrementing FARO by M and decrementing
FLRO by M. If the remaining length of the source
string is less than the contents of the M field,
SKC skips over FLRO characters in the source string
by incrementing FARO by FLRO and decrementing FLRO
by FLRO (FLRO = 0). In either case, SKC increments
XB by 1.

11 Inserts M spaces (see note) into the destination
string, increments FAR] by M, and increments XB

i

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| by 1.

|
| |
| |

|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| 10 | Skips characters in the source string. If the
| |
| |
| |
| |
| |
| |
|
| |
| |
| |
| |
| |
| |
| |

Note

A space is ‘240 or ‘40, depending on whether bit 12 of the keys
is O or 1. This instruction uses GR3, GR4, the FARs, and the
FIRs during its operation. Since ZED does not save the
contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

second Edition 2-130

5S, R, AND V MODE

> ZFIL

Fill Field With Character

0000001001001110 £4.~V mode form)

Stores a character into a series of destination bytes.

Bits 9 to 16 of L contain the character to be stored. FAR1 contains
the starting address of the destination field (byte aligned). FIRI1
contains an integer specifying the length of the destination field (in
bytes).

The instruction stores the character specified in L in each byte of the
destination field. If FLR1 contains 0, no operation takes place.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.

The registers used are GR3 (E), GR4, FARO, FARI, FLRO, and FIRI1; at
the end of this instruction, the contents of these registers are
indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

> zZMV
Move Character Field

0000001001001100 £4(~V mode form)

Moves a Character field from one location to another.

FARO contains the address of the source string (byte aligned). FLRO
specifies the length in bytes, N, of the source string. FAR1 contains
the address of the destination string (byte aligned). FLR1 specifies
the length in bytes, M, of the destination string.

Compares Nand M. If Nis less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. (A space character is ‘240 or ‘40 when bit 12 of
the keys is O or 1, respectively.) If the destination string is
Shorter, the instruction moves the first M characters of the source
string into the destination string.

When the instruction completes, the values of FARO, FAR1, FLRO, FIRI,
CBIT, LINK, and the condition codes are indeterminate.

2-131 Second Edition

INSTRUCTION SETS GUIDE

Note

The ZMV instruction uses GR3, GR4, the FARs, and the FIRs
during its operation. Since ZMV does not save the contents of
these registers before using them, any data contained in them
is overwritten when this instruction executes, unless you save

it ahead of time. This instruction does not work with

overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

P zvD
Move Characters Between Equal Length Strings
0000001001001101_ (V mode form)

Moves characters from one string to another of equal length.

FARO contains the address of the source string. FAR1 contains

address of the destination string. FILR1 contains the number

characters to move, N.

The instruction moves N characters from the source string to

destination string. Characters are moved from lower addresses

higher addresses.

The registers used are GR3 (E), GR4, FARO, FARI, FLRO, and FIR1;
the end of this instruction, the contents of these registers

indeterminate. The values of CBIT, LINK, and the condition codes

indeterminate.

Note

The ZMV instruction uses GR3, GR4, the FARs, and the FIiRs
during its operation. Since ZMVD does not save the contents of
these registers before using them, any data contained in them

is overwritten when this instruction executes, unless you save

it ahead of time. This instruction does not work with

overlapping strings. See Chapter 6 of the System Architecture
Reference Guide for more information.

Second Edition 2-132

the
of

the
to

at

5S, R, AND V MODE

p> ZIRN
Character String Translate
0000001001001000_= £(V mode form)

Translates a string of characters and stores the translations in the
specified destination.

FARO contains the address of the source string (byte aligned). FARI
contains the address of the destination string (byte aligned). FIR1
specifies the length of the source and destination strings. XB
contains the starting address of a translation table. Each byte in the
256-byte table contains an alphabetic character.

The ZTRN instruction uses the address in FARO to reference a character.
It interprets this character as an integer, adding it to the contents
of XB to form an address into the translation table. The instruction
takes the referenced character in the translation table and writes it
into the location specified by FAR1. After storing the character, the
instruction increments the contents of FARO and FAR1 by 1, decrements
the contents of FIR1 by 1, and repeats the operation until FIR1
contains 0.

At the end of the instruction, FARO and FAR] point to the location that
follows the last byte of the source and destination strings,
respectively. FLR1 contains 0. Leaves the values of XB, CBIT, LIM,
and the condition codes unchanged.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

2-133 Second Edition

I Mode

INTRODUCTION

This chapter contains descriptions for all 50 Series instructions used
in I mode. In the descripticn of each instruction, you will find:

The instruction mnemonic followed by any arguments.

The name of the instruction.

The bit format of the instruction.

Detailed information describing the instruction’s action.

Information about the how the instruction affects LINK, CBIT,
and the condition codes.

Notation Conventions

Several abbreviations and symbols are used throughout this dictionary.
Table 5-1 defines the dictionary notation.

3-1 second Edition

TNATOTMVAINTOAT Crama CrITrnp
AAULEVELUATE UTA

Table 3-1
Dictionary Notation

| Symbol | Meaning |
| |
| A | The 16-bit A register. |
| | |

ADDRESS	Encompasses all the elements needed to specify an
	effective address. This term is used because various
	addressing types require you to specify the elements

| in different orders (such as indirect or pre- and |
| | post-indexing). |
| | |

AP	Address pointer.
B	The 16-bit B register.

BR	Base register.
CBIT	Bit 1 of the keys.

DAC	The double precision floating-point accumulator with 48
	bits of mantissa and 16 bits of exponent.

| Displace-! The number of halfwords to be added to the base register |
| ment | to form the effective address. |
| | |
{ OR | Destination register (normal register specifier). |
E	The 32-bit E register.
EA	Effective address.
F	Floating-point accumulator.
FAC	The single precision floating-point accumlator with 48
	bits of mantissa and 16 bits of exponent.
FAR	Field address register.
FLR	Field length register.
	:
GRn	A 32-bit general register, where n is O through 7.
Halfword	A 16-bit unit of memory.
I	Indirect bit.
IL	The 32-bit L register.
LINK	Bit 3 of the keys. Not used in S and R modes.

Second Edition o-2

I MODE

Table 3-1 (continued)
Dictionary Notation

| Symbol | Meaning |

: Offset | The number of halfwords from the Starting address of a |
| | segment. |

! PB | The procedure base register. :

: QAC | The quad precision floating-point accumlator with 96 |
| | bits of mantissa and 16 bits of exponent. |

: R ! A d2-bit general register. :

! r : Bits 1 to 16 of a general register. :

! skip : Skip next 16-bit halfword before continuing execution. :

: SR Source register (or index if memory reference). :

: TM ! Tag modifier. Bits used in I mode effective address !
| | caleulation to specify indirection, indexing, etc. |

| x ! The X register (indexing). :

! XB : Auxiliary base register. !

! Word : A 32-bit unit of memory. |

! Y : The Y register (indexing). !

m\n ! Specifies the number of bits, n, occupied by field m.
|

| | |Specifies an optional argument.

Resumable Instructions

Some assembly language instructions are resumable. When an interrupt
is requested during the execution of an instruction, the processor
usually services the interrupt at the end of execution before starting
the next instruction. Some instructions, however, are too long or too
complex for this to be desirable. When an interrupt is requested
during one of these resumable instructions, the processor preserves the
state of the interrupted instruction, handles the interrupt, then
resumes the instruction at the point where the interrupt occurred.
Table 3-2 lists the resumable assembly language instructions.

O-8 Second Edition

TNSTRUCTION SETS GUIDE

Table 3-2

Resumable Instructions

Instructions|

|

| ARGT XAD XBTD XCM
| XDTB XDV XED XMP
| XMV ZCM ZED ZFIL
| ZMV ZMVD 2ZTRN STEX

These instructions depend on the settings in certain registers to

determine whether they are being executed for the first or another

time. In addition, some registers may be used for intermediate

storage, modifying the previous contents as a side effect. Registers
so modified are noted per instruction description.

Storing Data Into the 6350 and 9750 to 9955 II Instruction Stream

After any instruction that stores data into memory, you must wait five

instructions before executing data. If in doubt about the next five

instructions (temporally) to be executed, a mode change instruction to

the current addressing mode, such as E321, allows the stored data to be

executed.

Instruction Formats

All I mode instructions belong to one of the following instruction

types:

@ I Mode Memory Reference

e@ I Mode Special Memory Reference

@ I Mode Generic AP (Address Pointer)

e@ I Mode Register Generic

@ I Mode Register Generic Branch

e Generic A and B (see below)

The format of each instruction type is shown in Figure 3-1.

Memory reference instructions have the opcode in bits 1 to 6. Special

memory reference instructions (for floating point) have the opcode in

bits 2, 3, 7, and 9; bit 8 specifies the floating accumulator. Some
memory reference and special memory reference instructions have

second Edition o-4

I MODE

register-to-register and/or immediate forms. Such instructions are so
identified in this I Mode Instruction Dictionary.

The immediate form of a memory reference instruction has a 16-bit
literal in bits 17 to 32 instead of a 16-bit displacement.
Register-to-register forms are 16 bits long, since they have no
displacement. Bits 7 to 9 specify the destination register and bits 12
to 14 specify the source register.

The immediate form of a special memory reference instruction has a
16-bit encoding in bits 17 to 32 instead of a 16-bit displacement. The
register-to-register form is 16 bits long, since it has no
displacement. Bit 8 specifies the floating-point destination
accumulator and bits 12 to 14 specify the index register or the
floating-point source register (in bit 13).

Generic AP instructions have a generic format (where bits 10 to 16
contain the opcode extension) followed by a 32-bit address pointer.

Register generic instructions are 16 bits long and have an opcode in
bits 10 to 16. The value of bits 1 to 6 is 011000; bits 7 to 9
Specify a general register.

Register generic branch instructions are 32 bits long and have an
opeode in bits 10 to 16. The value of bits 1 to 6 is 00100; bits 7 to
9 specify a general register. Bits 17 to 32 contain a displacement .

Generic A and B instructions that do not reference the A, B, E, or L
registers are also used in I Mode. See Chapter 2, Figure 2-1 for the
format of these instructions. Instructions defined in I mode for this
class are included in this instruction dictionary.

1 67 91011 12 14415 1617 382

| OPCODE | DEST REG | TM | SOURCE REG OR INDEX ! BR | DISP |

* This instruction type also has a register-to-register and

|

|

|

|

|
|
| I Mode General Memory Reference Format*
|
|

|
| immediate form as explained in the text.
|

I Mode Instruction Formats

Figure 3-1

o-5 second Edition

INSTRUCTION SETS GUIDE

12384 6 7 8 9 1011 12 14151617 382

| O! OP | 110 | OP | DES F | OP ! TM !SRC REG OR IDK! BR | DISP |

I Mode Special Memory Reference (Floating Point) Format*

1234 67 91011 12 14 15 16 17 be

| 1 | OP | 110 | OP | TM | REG OR INDEX i BR i DISPLACEMENT |

I Mode Special Memory Reference (General Register) Format

1 16

| GENERIC OR REGISTER GENERIC |

17 20 al 22 25 24 25 oe 3d 48

| BIT | I t| O | BR | OO000000 | OFFSET |

T Mode Generic AP Format

1 67 910 16

| 011000 | REG | OPCODE |

I Mode Register Generic Format

1 67 910 16 17 oe

| 001000 | REG | OPCODE | DISPLACEMENT |

I Mode Register Generic Branch Format

* This instruction type also has a register-to-register and

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

immediate form as explained in the text. |
|

I Mode Instruction Formats

Figure 3-1 (continued)

Second Edition 3-6

I MODE

INSTRUCTIONS

&A R,address
Add Fullword
000010 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 32-bit contents of
the location specified by EA and adds them to the contents of the
Specified R. Stores the results in the specified R.

If the resulting sum is less than or equal to (2**31)-1 and greater
than or equal to -(2**31), the instruction resets CBIT to 0. If the
sum is greater than or equal to 2**31, an integer exception occurs. If
the sum is less than or equal to -(2**31)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the opposite sign
of the correct answer. In addition, the 32 bits are the 32 LSBs of the
correct answer (that needs 33 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the carry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

PBABQ r,address
Add Entry to Bottom of Queue
O11000R\81011100
AP\32

Adds the entry contained in the specified r to the bottom of the
referenced by the AP. (AP points to the queue’s QB.) Sets the
condition codes to reflect EQ if the queue was full, or to NE if not
full. Leaves the values of CBIT and LINK unchanged.

3-7 Second Edition

INSTRUCTION SEIS GULUE

B ACP destination-R,source-R
Add C Pointer
101101 TR\S TM\2 SR\S BR\2

Adds the two's complement number contained in the specified source R to

the C language pointer in the specified destination R. Stores the

result in the C pointer in the same destination R. Leaves the values
of the CBIT, LINK, and condition codes unchanged.

Addition is done to segment-number| offset | byte, producing a new pointer

with an updated segment-number!offsetibyte. Adding a positive integer

that causes the segment-number field to overflow will modify the ring

field. Adding a negative integer that causes the segment-number field

to underflow will also modify the ring field. R contents that do not

cause the segment number to overflow will not modify the ring field.

No overflow is detected or indicated.

Note

While of the memory referencing form, this instruction is only

defined for register-to-register and immediate address

formation. (See Appendix B.)

If ACP is used for any earlier system listed in "About This
Book", an wunimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

BPADRR
Add LINK to Register
O11000R\30001100

Adds the contents of LINK to the contents of R and stores the result in

R. If there is an overflow, an integer exception occurs. If no

integer exception occurs, CBIT is reset to O. LINK contains the

carry-out bit. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets

CBIT to 1 and causes an integer exception fault. See Chapter 10 of the

System Architecture Reference Guide for more information.

second Edition C
A

I MODE

PpAH r,address
Add Halfword

001010 IR\3 TM\2 SR\S RR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Fetches the 16-bit contents of
the location specified by EA and adds them to the contents of the
Specified r. Stores the results in the specified r.

if the resulting sum is less than or equal to (2**15)-1 and greater
than or equal to -(2**15), the instruction resets CBIT to 0. If the
Sum is greater than or equal to 2**15, an integer exception occurs. If
the sum is less than or equal to -(2**15)-1, an integer exception
occurs.

When an integer exception occurs, the results are of the Opposite sign
of the correct answer. In addition, the 16 bits are the 16 LSBs of the
correct answer (that needs 17 bits to be correctly represented).

If an integer exception occurs and bit 8 of the keys contains a O, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

At the end of the operation, LINK contains the Ccarry-out bit. The
condition codes reflect the result of the operation. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

> AIP R,address
Add Indirect Pointer
1113101 IR\3 TM\2 SR\S BR\e
{ DISPLACEMENT\16]

Adds the value contained in the specified R to the 32-bit value
contained in the location specified by EA. Stores the result in the
Specified R. Checks these contents for a pointer fault.

This pointer fault is generated when the contents of the memory
location to be added to the specified R contain a pointer fault (bit 1
contains 1).

If this pointer fault occurs, the pointer to the memory location is
Saved in FADDR (SB + 11) as well as bits 1 to 16 of the contents of
that memory location FOCODEH (SB +10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

5-9 second Edition

TNOMDTICTTON CleTC CTTTTWR
malesWF adhe dp WedWd athe elkeNae ¥ akNF cheriedell che Dad

An overflow produces an integer exception. If no integer exception

occurs, CBIT is reset to 0. LIN contains the carry-out bit. The

condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets

CBIT to 1 and causes an integer exception fault. See Chapter 10 of the

System Architecture Reference Guide for more information.

Note

AIP should weaken the ring field against the ring field of the

effective address. This is not done on some current
processors, but will be done on all future processors.

If AIP is used for any earlier system listed in "About This

Book", an wunimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

p> ARFA far,R
Add Register to FAR
011000R\3111 FAR 001

Adds the bit address in the specified R to the contents of the

specified FAR. Stores the result in the FAR. Leaves the values of

CBIT and LINK indeterminate. Leaves the values of the condition codes

unchanged.

B ARGT
Argument Transfer
0000000110000101

Transfers arguments from a source procedure to a destination procedure.

ARGT is fetched and executed only when the argument transfer phase of a

procedure call (PCL) instruction is interrupted or faulted.

To perform a procedure call and argument transfer, the source procedure

must contain the PCL instruction followed by a number of argument

templates. The destination procedure must begin with the ARGT

instruction. When the PCL instruction is executed, control transfers

to the destination procedure, and the ARGI instruction uses the

templates to form the actual arguments. The arguments are stored in

the new stack frame as they are computed. At the end of the ARGT

instruction, the values of CBIT, LINK, and the condition codes are

indeterminate.

ARGT must be the first executable instruction in any destination

procedure that will use arguments. For those procedures whose entry
control blocks specify zero arguments, you mst omit ARGT or you will

—om

Second Edition 3-10

I MODE

destroy the return pointer for PCL, producing indeterminate results.
For information about argument transfers, refer to the procedure calls
section in Chapter 8 of the System Architecture Reference Guide.

P AT r,address
Add Entry to Top of Queue
O11000R\31011101
AP\32

Adds the entry contained in the specified r to the top of the queue
referenced by the AP. (AP points to the queue’s Q@CB.) Sets the
condition codes to reflect EQ if the queue was full, or to NE if not
full. Leaves the values of CBIT and LINK unchanged.

o-1l Second Edition

TNSTRUCTION SETS GUTTE

p> BCHQ address
Branch on Condition Code &
1100001110000010
ADDRESS\ 16

If the condition codes reflect equal to 0, the instruction loads the

specified address into the program counter. This address must be

within the current segment. If the condition codes reflect some other

condition, execution continues with the next instruction. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

> BOGE address
Branch on Condition Code GE
1100001110000101
ADDRESS\ 16

If the condition codes reflect greater than or equal to 0, the

instruction loads the specified address into the program counter. This

address mst be within the current segment. If the condition codes

reflect some other condition, execution continues with the next

instruction. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

> BOGT address
Branch on Condition Code GT
1100001110000001
ADDRESS\ 16

If the condition codes reflect greater than 0, the instruction loads

the specified address into the program counter. This address must be

within the current segment. If the condition codes reflect some other

condition, execution continues with the next instruction. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

> BCLE address
Branch on Condition Code LE
1100001110000000
ADDRESS\16

If the condition codes reflect less than or equal to O, the instruction

loads the specified address into the program counter. This address

must be within the current segment. If the condition codes reflect

some other condition, execution continues with the next instruction.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 5-12

I MODE

> CLT address
Branch on Condition Code LT
1100001110000100
ADDRESS\16

If the condition codes reflect less than 0, the instruction loads the
Specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

B BCNE address
Branch on Condition Code NE
1100001110000011
ADDRESS\ 16

If the condition codes reflect not equal to 0, the instruction loads
the specified address into the program counter. This address must be
within the current segment. If the condition codes reflect some other
condition, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

B BCR address
Branch on CBIT Reset to O
1100001111000101

ADDRESS\16

If CBIT has the value O, the instruction loads the specified address
into the program counter. This address must be within the current
Segment. If CBIT has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

PB 5CS address
Branch on CBIT Set to 1

1100001111000100
ADDRESS\ 16

If CBIT has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
Segment. If CBIT has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged .

o-13 second Edition

PRE CUTIAT TCTFA THETIC TTIW
TNSIRUCLILION Obio GULUG

> BFEQ f,address
Branch on Floating Accumlator Equal to 0
0010000F01010010
ADDRESS\ 16

If the specified floating accumulator contents are equal to 0, BFEQ

loads the specified address (in the current segment) into the program

counter; if they are not equal to 0, execution continues with the next

instruction. The condition codes reflect the comparison. (See

Appendix A.) Leaves the LINK and CBIT unchanged. BFEQ works correctly

only on normalized or nearly normalized numbers, because it checks the

first 32 fraction bits only for equal to 0 and less than 0. (See the

System Architecture Reference Guide, Chapter 6.)

> BIGE f,address
Branch on Floating Accumulator Greater Than or Equal to 0

Ool0000F01010101
ADDRESS\16

If the specified floating accumlator contents are greater than or

equal to 0, BFGE loads the specified address (in the current segment)

into the program counter; if they are less than 0, execution continues

with the next instruction. The condition codes reflect the comparison.

(See Appendix A.) Leaves the LINK and CBIT unchanged. BFGE works

correctly only on normalized or nearly normalized numbers, because it

checks the first 32 fraction bits only for equal to O and less than 0.

(See the System Architecture Reference Guide, Chapter 6.)

>BGT f,address
Branch on Floating Accumulator Greater Than 0
OoOo01l0000FO01010001
ADDRESS\ 16

If the specified floating accumulator contents are greater than O, BFGT

loads the specified address (in the current segment) into the program

counter; if they are less than or equal to 0, execution continues with

the next instruction. The comiition codes reflect the comparison.

(See Appendix A.) Leaves the LINK and CBIT unchanged. BFGT works

correctly only on normalized or nearly normalized numbers, because it

checks the first 32 fraction bits only for equal to O and less than 0.

(See the System Architecture Reference Guide, Chapter 6.)

Second Edition o-14

I MODE

> BFLE f,address
Branch on Floating Accumulator Less Than or Equal to 0
OOl0000F01010000
ADDRESS\ 16

If the specified floating accumlator contents are less than or
to 0, BFLE loads the specified address (in the current segment) into
the program counter; if they are greater than 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BFLE works
correctly only on normalized or nearly normalized numbers, because it
checks the first 32 fraction bits only for equal to O and less than 0.
(See Chapter 6 in the System Architecture Reference Guide.)

PBBFLT f,address
Branch on Floating Accumulator Less Than O
O0O10000F01010100
ADDRESS\ 16

If the specified floating accumulator contents are less than O, BFLT
loads the specified address (in the current segment) into the program
counter; if they are greater than or equal to 0, execution continues
with the next instruction. The condition codes reflect the comparison.
(See Appendix A.) Leaves the LINK and CBIT unchanged. BFLT works
correctly only on normalized or nearly normalized numbers, because it
Checks the first 32 fraction bits only for equal to O and less than 0.
(See the System Architecture Reference Guide, Chapter 6.)

PB EFNE f,address
Branch on Floating Accumulator Not Equal to 0
OO1l1l0000F01010011
ADDRESS\ 16

If the specified floating accumulator contents are not equal to 0, BFNE
loads the specified address (in the current segment) into the program
counter; if they are equal to 0, execution continues with the next
instruction. The condition codes reflect the comparison. (See
Appendix A.) Leaves the LINK and CBIT unchanged. BFNE works correctly
only on normalized or nearly normalized numbers, because it checks the
first 32 fraction bits only for equal to 0 and less thanO. (See the
System Architecture Reference Guide, Chapter 6.)

o-15 second Edition

TNHOTDTITOMTON COMmd CTITTER
ALUEVALALLY RR UY

> BHD! r,address
Branch on Half Register Decremented by 1
O01000R\31100100
ADDRESS\ 16

Decrements the specified r contents by 1 and stores the result in the
specified r. If the decremented value is not equal to 0, BHD1 loads
the specified address (in the current segment) into the program
counter. If that value is equal to 0, execution continues with the
next instruction. Leaves the CBIT, LINK, and condition codes
unchanged.

> BHe r,address
Branch on Half Register Decremented By 2
O01000R\31100101
ADDRESS\ 16

Decrements the specified r contents by 2 and stores the result in the

specified r. If the decremented value is not equal to 0, BHD loads

the specified address (in the current segment) into the program
counter. If that value is equal to 0, execution continues with the

next instruction. Leaves the CBIT, LINK, and condition codes

unchanged.

> BHDr,address
Branch on Half Register Decremented By 4
O01000R\31100110
ADDRESS16

Decrements the specified r contents by 4 and stores the result in the

specified r. If the decremented value is not equal to 0, BHD4 Loads

the specified address (in the current segment) into the program

counter. If that value is equal to 0, execution continues with the

next instruction. Leaves the CBIT, LINK, and condition codes

unchanged.

> BHEQ r, address
Branch on Half Register Equal To O
oo1000R\31001010
ADDRESS\ 16

If the specified r contents are equal to 0, BHEQ loads the specified

address (in the current segment) into the program counter; if they are

not equal to 0, execution continues with the next instruction. Sets

the condition codes to the comparison result. (See Appendix A.)

Leaves the CBIT and LINK unchanged.

Second Edition 5-16

I MODE

> BHGE r, address
Branch on Half Register Greater Than or Equal To 0
001000R\81001101
ADDRESS\ 16

If the specified r contents are greater than or equal to 0, BHGE loads
the specified address (in the current segment) into the program
counter; if they are less than 0, execution continues with the next
instruction. Sets the condition codes to the result comparison. (See
Appendix A.) Leaves the CBIT and LINK unchanged.

> BHT r,address
Branch on Half Register Greater Than 0
OO0O1000R\31001001
ADDRESS\16

If the contents of the specified r are greater than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are less than
or equal to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
leaves the values of CBIT and LINK unchanged.

> BHI] r,address
Branch on Half Register Incremented by 1
OO0O1000R\31100000
ADDRESS \16

Increments the contents of the specified r by 1 and stores the result
in the specified r. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P BHI2 r,address
Branch on Half Register Incremented by 2
OO1lO000R\31100001
ADDRESS\16

Increments the contents of the specified r by 2 and stores the result
in the specified r. If the incremented value is not equal to 0, the
instruction loads the the specified address into the program counter.
This address must be within the current segment. If the incremented
value is equal to 0, execution continues with the next instruction.
leaves the values of CBIT, LINK, and the condition codes unchanged.

3-17 Second Edition

INSTRUCTION SEI'S GULDE

P BHI4 r,address
Branch on Half Register Incremented by 4
O01000R\81100010
ADDRESS\ 16

Increments the contents of the specified r by 4 and stores the result
in the specified r. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

> BHLE r,address
Branch on Half Register Less Than or Equal to O
O01l1000R\31001000
ADDRESS\16

If the contents of the specified r are less than or equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the contents of r are
greater than O, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

> BHLT r,address
Branch on Half Register Less Than 0
OoO01000R\81001100
ADDRESS\ 16

If the contents of the specified r are less than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are greater
than or equal to O, execution continues with the next instruction.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Leaves the values of CBIT and LINK unchanged.

> BHNE r,address
Branch on Half Register Not Equal To 0
O01l1000R\831001011
ADDRESS\ 16

If the contents of the specified r are not equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the contents of r are equal to
O, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

Second Edition 5-18

I MODE

PB BIR address
Branch on LINK Reset to 0
1100001111000111
ADDRESS\ 16

If LINK has the value 0, the instruction loads the specified address
into the program counter. This address must be within the current
Segment. If LINK has the value 1, execution continues with the next
instruction. Leaves the values of CBIT, LIN, and the condition codes
unchanged .

> BLS address
Branch on LINK Set to 1
1100001111000110
ADDRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter. This address must be within the current
segment. If LINK has the value 0, execution continues with the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

> BMEQ address
Branch on Magnitude Condition EQ
1100001110000010
ADDRESS\ 16

If the condition codes indicate magnitude equal to 0, the instruction
loads the specified address into the program counter, like BCKQ. BMEQ
is intended for magnitude comparisons after a compare or subtract
instruction. This address must be within the current segment. If the
condition codes indicate some other condition, execution continues with
the next instruction. Leaves the values of CBIT, LINK, am the
condition codes unchanged.

p> EMGE address
Branch on Magnitude Condition GE
1100001111000110
ADDRESS\ 16

If LINK has the value 1, the instruction loads the specified address
into the program counter, like BLS. EMGE is used to determine if the
magnitude of the register quantity was greater than or equal to the
memory quantity after a compare or subtract instruction. This address
must be within the current segment. If LINK has the value 0, execution
continues with the next instruction. Leaves the values of CBIT, LDIXK,
and the condition codes unchanged.

3-19 second Edition

INSTRUCTION SETS GUIDE

p> BMGT address
Branch on Magnitude Condition GT
1100001111001000
ADDRESS\ 16

If LINK is 1 and the condition codes reflect not equal to O, the
instruction loads the specified address into the program counter. This

address must be within the current segment. If some other condition

exists, execution continues with the next instruction. leaves the
values of CBIT, LINK, and the condition codes unchanged.

PpBMLE address
Branch on Magnitude Condition LE
1100001111001001
ADDRESS\ 16

If LINK is O or the comition codes reflect equal to 0, the instruction

loads the specified address into the program counter. This address

must be within the current segment. If some other condition exists,

execution continues with the next instruction. Leaves the values of

CBIT, LINK, and the condition codes unchanged.

> BMLT address
Branch on Magnitude Condition LT
1100001111000111
ADDRESS\ 16

If LINK has the value 0, the instruction loads the specified address

into the program counter, like BLR. BMLT is used to determine if the

magnitude of the register quantity is less than the memory quantity

after a compare or subtract instruction. This address must be within

the current segment. If LINK has the value 1, execution continues with

the next instruction. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

> EMNE address
Branch on Magnitude Condition NE
1100001110000011 #&423(~,V mode form)
ADDRESS\ 16

If the condition codes indicate magnitude not equal to O, the

instruction loads the specified address into the program counter, like

BCNE. BMNE is intended for magnitude comparisons after a compare or

subtract instruction. This address must be within the current segment.

If the condition codes reflect some other condition, execution

continues with the next instruction. Leaves the values of CBIT, LINK,

and the condition codes unchanged.

Second Edition o
A

n
d
©

I MODE

PB BRER R,bit +,address
Branch on Register Bit Reset
001000 R\3 0 1 BIT\S
ADDRESS\16

Bits 12 to 16 of the instruction contain a value between ‘00 and ‘37.
This value specifies the bit position in the register to be tested. A
value of ‘OO corresponds to bit 1; ‘O01, bit 2; and so on.

If the specified bit position contains 0, the instruction loads the
specified address into the program counter. This address mst be
within the current segment. If the specified bit position contains 1,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

B BRBS R,bit +,address
Branch on Register Bit Set
001000R\300 BIT\S
ADDRESS\ 16

Bits 12 to 16 of the instruction contain a value between ‘00 and ‘37.
This value specifies the bit position in the register to be tested. A
value of ‘OO corresponds to bit 1; ‘01, bit 2; and so on.

If the specified bit position contains 1, the instruction loads the
specified address into the program counter. This address must be
within the current segment. If the specified bit position contains 0,
execution continues with the next instruction. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

> BRD] R, address
Branch on Register Decremented by 1
OO0O1000R\381011100
ADDRESS\ 16

Decrements the contents of the specified R by 1 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to O, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

3-21 Second Edition

TRICIMTICMTOAT Clana MTT
LLLIVLUA Do Ua

P ERD R, address
Branch on Register Decremented by 2
0O01000R\81011101
ADDRESS\ 16

Decrements the contents of the specified R by 2 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address mist be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

PB BRD R, address
Branch on Register Decremented by 4
0O01000R\81011110
ADDRESS\16

Decrements the contents of the specified R by 4 and stores the result
in the specified R. If the decremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the decremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

> BREQ R,address
Branch on Register Equal to 0
OO0O1000R\81000010
ADDRESS\16

If the contents of the specified R are equal to O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are not equal to
O, execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

p> BERGE R, address
Branch on Register Greater Than or Equal to 0
O01000R\381000101
ADDRESS\ 16

If the contents of the specified R are greater than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents are less
than 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

Beee ee etoeee

I MODE

> BRGT R,address
Branch on Register Greater Than 0
OO1l000R\81000001
ADDRESS\16

If the contents of the specified R are greater than 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are less than or
equal to QO, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

> BRI] R,address
Branch on Register Incremented by 1
O01000R\81011000
ADDRESS\ 16

Increments the contents of the specified R by 1 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

PB BRI2 R,address
Branch on Register Incremented by 2
OO1l000R\381011001
ADDRESS\ 16

Increments the contents of the specified R by 2 and stores the result
in the specified R. If the incremented value is not equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

> BRI4 R,address
Branch on Register Incremented by 4
O01000R\831011010
ADDRESS\16

Increments the contents of the specified R by 4 and stores the result
in the specified R. If the incremented value is not equal to O, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the incremented value
is equal to 0, execution continues with the next instruction. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

O-20 Second Edition

eeeet nd

P BRLE R,address
Branch on Register Less Than or Equal to 0
O0O1l1l000R\31000000
ADDRESS\16

If the contents of the specified R are less than or equal to 0, the
instruction loads the specified address into the program counter. This
address must be within the current segment. If the R contents are
greater than O, execution continues with the next instruction. Sets
the condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

PB ERT R,address
Branch on Register Less Than 0
O01000R\31000100
ADDRESS\16

If the contents of the specified R are less than O, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are greater than
or equal to 0, execution continues with the next instruction. Sets the
condition codes to the result of the comparison. (See Appendix A.)
Leaves the values of CBIT and LINK unchanged.

> BRNE R, address
Branch on Register Not Equal to 0
OO0O1000R\81000011
ADDRESS\16

If the contents of the specified R are not equal to 0, the instruction
loads the specified address into the program counter. This address
must be within the current segment. If the R contents are equal to 0,
execution continues with the next instruction. Sets the condition
codes to the result of the comparison. (See Appendix A.) Leaves the
values of CBIT and LINK unchanged.

Second Edition o-24

I MODE

CR, address
Compare Fullword
11000 1 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the 32-bit value
contained in the specified R to the 32-bit value contained in the
location specified by EA. The comparison is done by subtracting the
contents of the the memory location from the contents of the register.
Sets the condition codes to the result of the comparison. (See
Appendix A.) Leaves the value of CBIT unchanged. LINK contains the
carry-out bit.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

> CALF address
Call Fault Handler

0000000111000101
AP\32

The address pointer in this instruction points to the ECB of a fault
routine. CALF uses this pointer to transfer control to the fault
routine as if the transfer were a normal procedure call with no
arguments passed. The values of CBIT, LINK, and the condition codes
are indeterminate. See Chapter 10 of the System Architecture Reference
Guide for more information.

B CCP destination-R, source-R
Compare C Pointer
100101 MR\3 TM\2 SR\S BR\B

Compares the C language pointer in the specified source R to the C
language pointer in the specified destination R. Ignores the pointer
fault and ring bits during the comparison. Leaves the values of CBIT
and LINK unchanged. Sets the condition codes to the outcome of the
comparison as follows.

Condition e¢

Contents of destination-R > contents of source-R. GT

Contents of destination-R = contents of source-R. EQ)

Contents of destination-R < contents of source-R. LT

o-25 Second Edition

INSTRUCTION SETS GUIDE

Note

While of the memory referencing form, the CCP instruction is
only defined for register-to-register address formation. (See
Appendix B of the Instruction Sets Guide.) The immediate form
of this instruction is undefined, but the preferred
implementation is a UII for the immediate form.

If CCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P cor
Computed GOTO
011000R\830010110
INTEGER N\16
BRANCH ADDRESS 1\16

BRANCH ADDRESS N-1\16

If the contents of the specified r are greater than or equal to 1 and
less than the specified integer N that follows the opcode, the
instruction adds the contents of r to the contents of the program
counter to form an address. (The program counter points to the integer
N following the opcode.) Loads the contents of the location specified
by this address into the program counter. If the contents of r are not
within this range, the instruction adds integer N to the contents of
the program counter and stores the result in the program counter. Each
of the branch addresses following the instruction specifies a location
within the current procedure segment. The values of CBIT, LINK, and
the condition codes are indeterminate.

> CH r,address
Compare Halfword
11100 1 IR\3d TM\2 SR\2 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the value contained in
the specified r to the 16-bit value contained in the location specified
by EA. Leaves the value of CBIT unchanged. LIN contains the
carry—out bit. The condition codes reflect the result of the
comparison. (See Appendix A.)

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

Second Edition 3-26

I MODE

P CHS R
Change Sign
O1l1l1lOOOR\SZO100000

Complements bit 1 of the specified R. Leaves the values of CBIT, LINK,
and the condition codes unchanged.

P OH r
Complement r
O1l1l1000R\80100101

Forms the one's complement of the contents of the specified r by
inverting the value of each bit and stores the result inr. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P ORR
Complement R
O11000R\30100100

Forms the one’s complement of the contents of the specified R by
inverting the value of each bit and stores the result in R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

CR R
Clear R to 0

011000R\30101110

Clears the specified R to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Loads zeros into bits 1 to 8 of the specified R. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

PB CRER R
Clear R High Byte 2 Right
O011000R\30110011

Loads zeros into bits 9 to 16 of the specified R. Leaves the values of
LINK, CBIT, and the condition codes unchanged.

o-a7 Second Edition

INSTRUCTION SETS GUIDE

> CRHL R

Clear R Left Halfword

Ol1l1000R\80101100

Clears bits 1 to 16 of the specified R to 0. leaves the values of
CBIT, LINK, and the condition codes unchanged.

~ cCRHRR
Clear R Right Halfword
O11000R\80101101

Clears bits 17 to 32 of the specified R to 0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

P cORR
Copy Sign
O1l11000R\30100001

Copies the value of bit 1 of the specified R into CBIT, and then loads
O into bit 1 of R. The value of LINK is indeterminate. Leaves the

condition codes unchanged.

Second Edition 3-28

I MODE

— D R,address
Divide Fullword
11001 0 PTR\S TM\2 SR\S BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the @-bit value
contained in the specified R and R+1 by the 32-bit value contained in
the location specified by EA. Stores the quotient in the specified R
and the remainder in R+1l. Overflow may occur if the quotient is less
than -(2**31) or greater than (2**31)-1. Overflow and divide by 0
cause an integer exception.

If no integer exception occurs, CBIT is reset to 0. The instruction
leaves the values of LINK and the condition codes indeterminate.

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets CBIT to 1; if bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

Note

R must specify an even register. This instruction also has a
register-to-register and an immediate form. See Appendix B for
more information.

> DEE
Convert Single to Double Floating Point
Ol1l10000F01000110

Converts the single precision number in the specified floating-point
accumulator to a double precision one by zeroing bits 32 to 48 of the
floating-point accumilator. Stores the result in the floating-point
accumulator. Leaves the values of CBIT, LINK, and the condition codes
unchanged. Overflow or underflow cannot occur.

> DPR
Decrement C Pointer

O11000R\31110000

Decrements the C language pointer in the specified R by 1 byte.
Decrementing a O offset reduces the segment number by 1. Decrementing
segment number O, offset 0, byte O generates a pointer to the maximum
segment number, the maximum offset, and byte 0. Leaves the CBIT, LINK,
and the condition codes unchanged. For C pointer details, see Chapter
1 and Appendix B of this guide.

3-29 Second Edition

INSTRUCTION SETS GUIDE

Note

If DCP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

> DFA f,address
Double Floating Add
0011101F1 TM\2 SR\S Bie
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
specified DAC to the contents of the location specified by EA. Stores
the result in the DAC. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0. The values
of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

DFC f,address

Double Floating Compare
0001101F 1 TM\2 SR\S BR\S
[DISPLACEMENT\16]

Calculates an effective address, EA. Compares the contents of the
specified DAC to the contents of the location specified by EA. Leaves
the values of CBIT and LINK unchanged. Sets the condition codes to the
outcome of the comparison.

Condition CC

Contents of DAC > contents of location specified by EA. GT

Contents of DAC = contents of location specified by EA. EQ)

Contents of DAC < contents of location specified by EA. LT

On some processors, DFC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:

second Edition 3-30

I MODE

first the signs, then the exponents, and finally the fractions of the
two numberS are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

pe Orv ef
Double Floating Complement
O11l0000F01100100

Forms the two's complement of the double precision, floating-point
number contained in the specified DAC and normalizes it if necessary.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

} DFD f,address
Double Floating Divide
Q111100F 1 TM\2 SR\3 ER\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the
specified DAC by the contents of the location specified by EA.
Normalizes the quotient if necessary. Stores the result in the Dc.
An overflow or divide by to causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to O. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

3-381 Second Edition

ee eeee ed

PpOFL f,address
Double Floating Load
OO001100F 1 TM\2 SR\S BR\2
(DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 64-bit contents of the
location specified by EA into the specified DAC without normalizing the
result. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

Note

The DFL instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P FM faddress
Double Floating Multiply
0101101F1 TM\2 SR\3 BR\2
[DISPLACEMENT\16 J

Calculates an effective address, FA. Multiplies the 64-bit contents of
the location specified by EA by the contents of the specified DAC.
Normalizes the result if necessary. Stores the result in the DAC. An
overflow causes a floating-point exception. If no floating-point
exception occurs, CBIT is reset to 0. The values of LINK and the
condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

> DFS f,address
Double Floating Subtract
Ol101l100F1 T™\2 SR\i3 RR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 64-bit contents of
the location specified by EA from the contents of the specified DAC.
Stores the result in the DAC. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to 0.
The values of LINK and the condition codes are indeterminate.

Second Edition O-08

I MODE

For 750 and 850 processors, exponent underflow is detected, but
exponent overflow is not.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

The DFS instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P oUFST f, address
Double Floating Point Store
OO11L1OOF1 M2 SR\3 BR\Z
DISPLACEMENT16

Calculates an effective address, EA. Stores the contents of the
specified DAC into the location specified by EA. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This instruction does not normalize the result before loading
it into the specified memory location.

> 1H R,address
Divide Halfword

111010 MR\3s TM\2 SR\S ER\2

[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the 82-bit dividend
contained in the specified R by the 16-bit value contained in the
location specified by EA. Stores the quotient in bits 1 to 16 of R and
the remainder in bits 17 to 32 of R. The sign of the remainder equals
the sign of the dividend. If the quotient is less than -(2**15) or
greater than (2**15)-1, an overflow occurs and causes an integer
exception. If no integer exception occurs, CBIT is reset to 0. The
values of LINK and the condition codes are indeterminate.

If an integer exception occurs and bit 8 in the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

O-00 second Edition

INSTRUCTION SETS GUIDE

Note

The DH instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P Hier
Decrement r by 1
011000R\31011000

Decrements the contents of r by 1 and stores the result inr. If an

overflow occurs, an integer exception occurs. If no integer exception

occurs, CBIT is reset to 0. LINK reflects the value of the carry. The

condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P leer
Decrement r by 2
011000R\381011001

Decrements the contents of r by 2 and stores the result in r. If an

overflow occurs, an integer exception occurs. If no integer exception

occurs, CBIT is reset to 0. LINK reflects the value of the carry. The

condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
DH2 instruction sets CBIT to 1. If bit 8 contains a1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

B DM address
Decrement Memory Fullword
110110000 TM™\2 SR\S BR\2
DISPLACEMENT\ 16

Subtracts 1 from the 32-bit integer contained in the specified location

and stores the result back in the specified location. leaves the

values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

Second Edition o-o4

I MODE

> OMaddress
Decrement Memory Halfword
111110000 T\2 SR\3 RR\2
DISPLACEMENT \16

Subtracts 1 from the 16-bit integer contained in the Specified location
and stores the result back in the specified location. Leaves the
values of LINK and CBIT unchanged. The condition codes reflect the
result of the operation. (See Appendix A.)

P mR
Decrement Register by 1
O1l11l000R\31010100

Decrements the contents of R by 1 and stores the result in R. An
overflow causes an integer exception. If no integer exception occurs,
CBIT is reset to 0. LINK contains the value of the borrow bit. The
condition codes reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

> mere
Decrement Register by 2
O011000R\31010101

Decrements the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception. If no integer
exception occurs, CBIT is reset to 0. LINK contains the value of the
borrow bit. The condition codes reflect the result of the operation.
(See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
DRe instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

P URN
Double Round From Quad
0O100000011000000

Converts the 112-bit value in QAC to a double precision floating-point
number. If @AC contains 0, the instruction ends. If bits 50 to 96 of
@AC are not zero, or bit 48 of QAC contains 1, the instruction adds the
value of bit 49 to that of bit 48 (unbiased round) and clears bits 49
to % of @AC to 0. If any other condition exists, no unbiased rounding

o-85 second Edition

INSTRUCTION SETS GUIDE

occurs, but bits 49 to 96 of QAC are still cleared to 0. After any

rounding and clearing occurs, the instruction normalizes the result and

loads it into bits 1 to 64 of QAC.

If no floating-point exception occurs, the instruction resets CBIT to

O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception ocours and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a 0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note

If DRN is used for any earlier system listed in "About This

Book", an wunimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

> mM
Double Round From Quad Towards Negative Infinity
1100000101111001

Converts the 112-bit value in QAC to a double precision floating-point

number. If QAC contains 0, or if bits 49 to 96 of QAC contain zeros,

the instruction ends. In any other case, the instruction clears bits

49 to 96 to O, normalizes the result, and places it in bits 1 to 64 of

QAC.

The value of CBIT is unchanged. The values of LINK and the condition

codes are indeterminate.

Note

If DRNM is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

p> ORNP
Double Round From Quad Towards Positive Infinity

0100000011000001

Converts the 112-bit value in QAC to a double precision floating point

number. If QAC contains O, or if bits 49 to 96 of QAC contain zeros,

the instruction ends. In any other case, the instruction adds 1 to the

value contained in bit 48 of QAC, clears bits 49 to 9% to 0, normalizes

the result, and places it in bits 1 to 64 of QAC.

Second Edition 3-30

I MODE

If no floating-point exception occurs, the instruction resets CBIT to
O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DRNP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P RZ
Double Round From Quad Towards Zero
0100000011000010

Converts the 112-bit value in QAC to a double precision floating-point
number. If QAC contains 0, the instruction ends. If bits 49 to %& of
QAC contain zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 48 of QAC, clears bits 49 to 96 to O, normalizes
the result, and places it in bits 1 to G4 of QAC. If any other
condition exists, no rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If DRNZ is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

O-O7 Second Edition

INSTRUCTION SETS GUIDEAeee

E168
Enter 165 Mode
oo000000000001001

Sets bits 4 to 6 of the keys to 000. Subsequent S mode instructions

may now be interpreted, and 16S address calculations may be used to

form effective addresses. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

p Es2I
Enter 32I Mode
0000001000001000

Sets bits 4 to 6 of the keys to 100. Subsequent I mode instructions

may now be interpreted, and 32I address calculations may be used to

form effective addresses. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

> Eek
Enter 32R Mode
0000001000001011

Sets bits 4 to 6 of the keys to 011. Subsequent R mode instructions

may now be interpreted, and 32R address calculations may be used to

form effective addresses. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

P E325
Enter 32S Mode
0000000000001011

Sets bits 4 to 6 of the keys to 001. Subsequent S mode instructions

may now be interpreted, and 328 address calculations may be used to

form effective addresses. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

> EIR
Enter 64R Mode
oo00001000001001

Sets bits 4 to 6 of the keys to 010. Subsequent R mode instructions

may now be interpreted, and 64R address calculations may be used to

form effective addresses. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

Second Edition O-88

I MODE

RP EMV
Enter 64V Mode
oO000000000001000

Sets bits 4 to 6 of the keys to 110. Subsequent V mode instructions
may now be interpreted, and 64V address calculations may be used to
form effective addresses. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

— EAFA far,address
Effective Address to FAR

OO0OQ0001LOLILOOFOOO
AP\32

Builds a 36-bit EA from the 32-bit address pointer contained in the
instruction and loads it into the specified FAR. The AP bit field is
processed and loaded into the bit portion of the FAR, for direct
access. Indirection uses the bit field in the indirect pointer (if
any). Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Figure 3-2 shows the format of the EA loaded into the specified FAR.

l 16 17 on 33 36

| RING, SEG | WORD + | BIT # |

FA Format for EAFA
Figure 3-2

> EALB address
Effective Address to LB
100110010 TM\2 SR\3 Ri\2
DISPLACEMENT16

Calculates an effective address, EA, and loads it into LB. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

3-39 Second Edition

INSTRUCTION SETS GULUE

PB EAR R,address
Effective Address to Register
11001 1 DMR\S TM\2 SR\S BR\2
DISPLACEMENT16

Calculates an effective address, EA. loads the 32-bit EA into the

specified R. Leaves the values of CBIT, LINK, and the condition codes

unchanged .

> EAXE address
Effective Address to XB

101110010 TM\2 SR\d B\2
DISPLACEMENT\ 16

Calculates an effective address, FA, and loads it into XB. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

p> EO address
Execute I/O

0113100 IR\3 TM\2 SR\S BR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. Executes bits 17 to 52 of EA as

if they were a PIO instruction. If execution is successful, the

instruction sets the condition codes as follows:

co Meaning

EQ) Successful INA, OTA, or SKS instruction

NE Unsuccessful INA, OTA, OR SKS; any OCP

Leaves the values of LINK and CBIT unchanged. For more information

about I/O operations, see Chapter 11 of the System Architecture

Reference Guide.

Note

This is a restricted instruction.

Second Edition 3-40

I MODE

P ENB
Enable Interrupts
O000000100000001

Enables interrupts by setting bit 1 of the modals to 1. Inhibits
interrupts for one instruction. Leaves the values of CBIT, LINK, and
the condition codes unchanged.

Note

This is a restricted instruction.

 ENEL
Enable Interrupts (Local)
O000000100000001

This 850 instruction performs the same actions as ENB, except that it
is performed specifically for the local processor. leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

 =ENEM
Enable Interrupts (Mutual)
O000000100000000

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor releases this lock and
enables interrupts. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

This is a restricted instruction.

3-41 second Edition

INSTRUCTION SETS GUIDE

> ENP
Enable Interrupts (Process)
0000000100000010

For the 850, a processor checks the availability of the process

exchange lock. If available, the process releases this lock and

enables interrupts. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

This is a restricted instruction.

Second Edition o-te2

I MODE

p FA f,address
Floating Add
0011101F0 ™\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Adds the contents of the
Specified FAC to the 32-bit contents of the location Specified by EA.
(See Chapter 6 of the System Architecture Reference Guide.) Stores the
result in the FAC. An overflow causes a floating-point exception. If
no floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate. If a floating-point
exception occurs and bit 7 of the keys contains a 1, the instruction
sets CBIT to 1. If bit 7 contains a 0, the instruction sets CBIT to 1
and causes a floating-point exception fault. See Chapter 10 of the
System Architecture Reference Guide.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

BP FC f,address
Floating Compare
0001101FO ™\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, FEA. Compares the contents of the
Specified FAC to the contents of the location Specified by FA. Leaves
the values of LINK and CBIT unchanged. Sets the condition codes to
reflect the outcome of the comparison:

Condition CC

Contents of FAC > contents of location Specified by EA. GT

Contents of FAC = contents of location Specified by EA. EQ)

Contents of FAC < contents of location Specified by EA. LT

On some processors, FC works correctly only on normalized numbers as
follows. The comparison has a maximm of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

Note

The FC instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

5-43 Second Edition

INSTRUCTION SETS GUIDE

P FCDQ
Floating Point Convert Double to Quad

1100000101111001

Clears FAC] to 0. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

If FCDQ is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

PP rove
Floating Point Complement
O110000F01000000

Forms the two’s complement of the contents of the FAC and normalizes

the result if necessary. (See Chapter 6 of the System Architecture

Reference Guide.) Stores the result in the FAC. An overflow causes a

floating-point exception. If no floating-point exception occurs, CBIT

is reset to O. The values of LINK and the condition codes are

indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains l,

the instruction sets CBIT to 1. If bit 7 contains 0, the instruction

sets CBIT to 1 and causes a floating-point exception fault. For more

information, see Chapter 10 of the System Architecture Reference Guide.

P FD f,address
Floating Divide
O111100FO TM™\2 S&R\3 R\2

[DISPLACEMENT\16]

Calculates an effective address, EA. Divides the contents of the

specified FAC by the contents of the location specified by EA. (See

Chapter 6 of the System Architecture Reference Guide.) Stores the

result in the FAG and normalizes if necessary. A divide by O or an

overflow causes a floating-point exception. If no floating-point

exception occurs, CBIT is reset to 0. The values of LINK and the

condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,

the instruction sets CBIT tol. If bit 7 contains 0, the instruction

sets CBIT to 1 and causes a floating-point exception fault. ‘or more

information, see Chapter 10 of the System Architecture Reference Guide.

Second Edition 6-44

I MODE

Note

The FD instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

PFL f,address
Floating Load
OO001100FO TM\2 SR\3 BR\2
[DISPLACEMENT\16 J

Calculates an effective address, FA. Converts the Single precision
operand to double precision and loads the result into the Specified FAC
without normalizing it. Leaves the contents of CBIT, LINK, and the
condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P FLT E,R
Convert Integer to Floating Point
Ol1lOOORZIOOFIOI

Converts the integer contained in R toa floating-point number and
stores the result in the specified FAC. The values of CBIT, LINK, and
the condition codes are indeterminate.

P FL fr
Convert Halfword Integer to Floating Point
Ol1lOOOR\Z1IOOFO10O

Converts the halfword integer contained in r toa floating-point number
and stores the result in the specified FAC. The values of CBIT, LINK,
and the condition codes are indeterminate.

P IM f,address
Floating Multiply
0101101F0 T™\2 sR\3 RR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 32-bit contents of
the location specified by FA by the contents of the Specified FAC.
(See Chapter 6 of the System Architecture Reference Guide.) Normalizes
the result, if necessary, and stores it in the FAG. An exponent

5-45 second Edition

OS©ree

INSTRUCLIOGN SETS GUIDE

overflow causes a floating-point exception. If no floating-point

exception occurs, CBIT is reset to O. The values of LINK and the

condition codes are indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,

the instruction sets CBIT tol. If bit 7 contains 0, the instruction

sets CBIT to 1 and causes a floating-point exception fault. For more

information, see Chapter 10 of the System Architecture Reference Guide.

Note

The FM instruction also has a register-to-register and an

immediate form. See Appendix B for more information.

p> FRNf
Floating Round
0110000F01000111

This instruction operates on and stores all results in the floating

accumulator.

For the 2350 to 9955 II, the following actions occur. If bits 1 to 48

contain 0, then bits 49 to 64 are cleared to 0. If bits 24 and 25 both

contain 1, then 1 is added to bit 24, bits 25 to 48 are cleared to OQ,

and the result is normalized. If bit 25 contains 1 and bits 26 to 46

are not equal to O, then 1 is added to bit 24, bits 25 to 48 are

Cleared, and the result is normalized.

For the earlier systems listed in “About This Book", the following

actions occur. If bits 1 to 48 contain 0, then bits 49 to & are

Cleared to O. Otherwise, bit 25 is added to bit 24, bits 25 to 48 are

cleared to 0, and the result is normalized.

For all systems, if no floating-point exception occurs, resets CBIT to

O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Second Edition 3-46

I MODE

P FRY f£
Floating Point Round Towards Negative Infinity
Ol110000F01100110

Converts the 64-bit value in DAC to a single precision floating-point
number. If DAC contains 0, or if bits 25 to 48 of DAC contain ZeTOS,
the instruction ends. In any other case, the instruction clears bits
25 to 48 to 0, normalizes the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

p> FRNP f
Floating Point Round Towards Positive Infinity
O110000F01100101

Converts the 64-bit value in DAC toa Single precision floating-point
number. If DAC contains 0, or if bits 25 to 48 of DAC contain zeros,
the instruction ends. In any other case, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to 0, normalizes
the result, and places it in DAC.

If no floating-point exception occurs, the instruction resets CBIT to
O. The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

P Fre
Floating Point Round Towards Zero
0110000F01100111

Converts the 64-bit value in DAC toa Single precision floating-point
number. If DAC contains 0, the instruction ends. If bits 25 to 48 of
DAC are not zeros and bit 1 contains 1, the instruction adds 1 to the
value contained in bit 24 of DAC, clears bits 25 to 48 to O, normalizes
the result, and places it in DAC. If any other condition exists, no
rounding occurs.

If no floating-point exception occurs, the instruction resets CBIT to
O. The values of LINK and the condition codes are indeterminate.

o-47 second Edition

TNSTRUCTION SETS GUIDE

If a floating-point exception occurs and bit 7 of the keys contains a

1, FRNZ sets CBIT tol. If bit 7 contains a O, the instruction sets

CBIT to 1 and causes a floating-point exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

BP FS f,address
Floating Subtract
0101100F0 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Subtracts the 32-bit contents of

the location specified by EA from the contents of the specified FAC.

(See Chapter 6 of the System Architecture Reference Guide.) Normalizes

the result, if necessary, and stores it in the FAC. An overflow causes

a floating-point exception. If no floating-point exception occurs,

CBIT is reset to 0. The values of LINK and the condition codes are

indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a OQ, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note

This instruction also has a register-to-register and an

immediate form. See Appendix B for more information.

P FST f,address
Floating Store
OO0O11100F 0 TM\2 SR\S BR\2

DISPLACEMENT \16

Calculates an effective address, EA. Stores the contents of the

specified FAC into the d2-bit location specified by EA. (See Chapter 6

of the System Architecture Reference Guide.) The result is normalized

only if rounding is enabled. If the exponent contained in the FAC is

too large to be expressed in 8 bits, a floating-point exception (store

exception) occurs. If no exception occurs, the instruction resets CBIT

to 0. At the end of the instruction, the values of LINK and the

condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information. In either case, a floating-point exception leaves the

contents of the memory location in an indeterminate state.

Second Edition 5-48

I MODE

> HLT
Halt

OoO00000000000000N

Halts computer operation. The program counter points to the
instruction that would have been executed if execution had not been
Stopped. The supervisor terminal indicates a halt. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction saves the contents of registers in a memory location
Specified by the RSAVPTR. The contents of RSAVPTR can be accessed by
an LDAR/STAR instruction with address ‘40037. The registers are saved
in their physical order. (See Chapter 9 of the System Architecture
Reference Guide for the format of these register files.) ‘The saved
register file order is shown in Table 3-3.

Table 3-3
Order of Saved Registers After HLT

| 6350, | 2350 to 2755, | |
| 9750 to 9955 II | 9650 and 9655 | Earlier Systems* |
| |
User Reg Set 3	User Reg Set 1	User Reg Set 2
User Reg Set 4	User Reg Set 2	User Reg Set 1
User Reg Set 1	User Reg Set 3	IMx Reg File
User Reg Set 2	User Reg Set 4	Microcode Reg File
Microcode Reg File,	User Reg Set 5	
Set 2	User Reg Set 6	
Indirect Reg Set	User Reg Set 7	
Microcode Reg File,	User Reg Set 8	
Set 1	DMx Reg File	
DMx Reg File	Microcode Reg File,	
	set l	
	Microcode Reg File,	
	Set 2	

* The earlier systems are listed in "About This Book". Of these,
the 850 has two ISPs. For each ISP, the order of saved registers
is identical to the order shown for the rest of the 50 Series.

Note

This is a restricted instruction.

o-49 Second Edition

FAPOTHATTETVAP

NOIRUCLTIUN Ofio GULUG

p I R,address
Interchange Register and Memory Fullword
10000 1 IR\3 TM\2 SR\S BR\Z
[DISPLACEMENT\16]

Calculates an effective address, EA. Interchanges the 32-bit value

contained in the specified R with the 32-bit value contained in the

location specified by EA. Leaves the values of CBIT, LINK, and the

condition codes unchanged.

Note

The I instruction is non-atomic, amd, especially for

dual-stream processors, cannot be used for spin-locks. M™
these cases, use the STCD instruction instead.

This instruction also has a register-to-register form. See

Appendix B for more information.

} iIceaLr
Interchange Bytes and Clear Left
011000R\80110101

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r, then

loads O into bits 1to8ofr. Leaves the values of CBIT, LIN, and

the condition codes unchanged.

pP IchRr
Interchange Bytes and Clear Right
011000R\30110110

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r, then

loads zeros into bits 9 to 16 of r. Leaves the values of CBIT, LIM,

and the condition codes unchanged.

ICHL R
Interchange Halfwords and Clear left
O11000R\30110000

Interchanges the contents of bits 1 to 16 and bits 17 to &2 of the

specified R, then loads zeros into bits 1 to 16 of R. Leaves the

values of CBIT, LINK, and the condition codes unchanged.

Second Edition 3-50

I MODE

P IGRR
Interchange Halfwords and Clear Right
O1l1000R\830110001

interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
Specified R, then loads zeros into bits 17 to 32 of R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

P ICPR
Increment C Pointer

0O11000R\381110111

Increments the C language pointer in the specified R by 1 byte.
Incrementing the largest offset adds 1 to the segment number.
Incrementing the largest segment number with the largest offset
generates a pointer to segment 0, offset 0, byte 1. Leaves the CBIT,
LINK, and the condition codes unchanged. (For C pointer details, see I
Mode in Chapter 1 and 32 I Mode in Appendix B of this guide.)

Note

If ICP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

> 1H r,address
Interchange r and Memory Halfword
10100 1 IR\3 TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Interchanges the value contained
in the specified r with the 16-bit value contained in the location
Specified by EA. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

Note

The IH instruction is non-atomic, and, especially for
dual-stream processors, cannot be used for spin-locks. In
these cases, use the SICH instruction instead.

This instruction also has a register-to-register form. See
Appendix B for more information.

3-51 Second Edition

| !

INSTRUCTION EENS

} IHir
Increment r by 1
011000R\831010110

Increments the contents of the specified r by 1 and stores the result

inr. An overflow causes an integer exception. If no integer

exception occurs, CBIT is reset to 0. LINK reflects the state of the

carry. The condition codes reflect the result of the operation. (See
Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains al, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

P mer
Increment r by 2
011000R\81010111

Increments the contents of the specified r by 2 and stores the result

inr. An overflow causes an integer exception to occur. If no integer

exception occurs, CBIT is reset to 0. LINK reflects the state of the

carry. The condition codes reflect the result of the operation. (See

Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the

instruction sets CBIT to 1. If bit 8 contains a1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

> IM address
Increment Memory Fullword
100110000 TM\2 &R\S BR\2
DISPLACEMENT\ 16

Adds 1 to the 32-bit integer contained in the specified location and

stores the result back in the specified location. Leaves the values of

LINK and CBIT unchanged. The condition codes reflect the result of the

operation. (See Appendix A.)

Second Edition 3-52

I MODE

p> IMaddress
Increment Memory Halfword
101110000 TM\2 SR\S R\2
DISPLACEMENT16

Adds 1 to the 16-bit integer contained in the specified location and
Stores the result back in the specified location. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
Operation. (See Appendix A.)

> INC address
Interrupt Notify Beginning, Clear Active Interrupt
0000001010001111
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue.
Issues a CAI pulse to clear the currently active interrupt, and enables
interrupts.

The values of CBIT, LINK, and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted process. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

INBC is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

> INEN address
Interrupt Notify Beginning
0000001010001101
AP\32

Notifies a semaphore at the specified address during phantom interrupt
code. Restores the state of the interrupted process by loading bits 1
to 16 of PB, bits 17 to 32 of the program counter, and the keys from
microcode temporary registers PSWPB and PSWKEYS. Places the notified
process at the beginning of the appropriate priority level queue, and
enables interrupts. Does not issue a CAI pulse to clear the currently
active interrupt.

5-535 second Edition

+ et Seeeeee ee —

The values of CBIT, LINK, and the condition codes are indeterminate. A

process exchange will occur if the notified process is of a higher

priority than the interrupted process. See Chapter 9 of the System

Architecture Reference Guide for more information.

Note

INBN is a restricted instruction.

This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the

System Architecture Reference Guide for more information.

PpINEC address
Interrupt Notify End, Clear Active Interrupt
0000001010001110
AP\32

Notifies a semaphore at the specified address during phantom interrupt

code. Restores the state of the interrupted process by loading bits 1

to 16 of PB, bits 17 to 32 of the program counter, and the keys from

microcode temporary registers PSWPB and PSWKEYS. Places the notified

process at the end of the appropriate priority level queue. Issues a

CAI pulse to clear the currently active interrupt, and enables

interrupts.

The values of CBIT, LINK and the condition codes are indeterminate. A

process exchange will ocour if the notified process is of a higher

priority than the interrupted process. See Chapter 9 of the System

Architecture Reference Guide for more information.

Note

INEC is a restricted instruction.

This instruction is normally used to transfer from phantom

interrupt code to an interrupt process. See Chapter 10 of the

System Architecture Reference Guide for more information.

p> INEN address
Interrupt Notify End
0000001010001100
AP\32

Notifies a semaphore at the specified address during phantom interrupt

code. Restores the state of the interrupted process by loading bits 1

to 16 of PB, bits 17 to 32 of the program counter, and the keys from

microcode temporary registers PSWPB and PSWKEYS. Places the notified

Second Edition 5-54

I MODE

process at the end of the appropriate priority level queue, and enables
interrupts. Does not issue a CAT pulse to clear the currently active
interrupt.

The values of CBIT, LINK, and the condition codes are indeterminate. A
process exchange will occur if the notified process is of a higher
priority than the interrupted process. See Chapter 9 of the System
Architecture Reference Guide for more information.

Note

This is a restricted instruction.

This instruction is normally used to transfer from phantom
interrupt code to an interrupt process. See Chapter 10 of the
System Architecture Reference Guide for more information.

> lH
Inhibit Interrupts
QO000001000000001

Inhibits interrupts by resetting bit 1 of the modals to O. Inhibits
interrupts until an enable interrupts instruction executes. The
processor ignores any interrupt requests that are made over the I/O
bus. This instruction takes effect immediately. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

> INEL
Inhibit Interrupts (Local)
O000001000000001

This 850 instruction performs the same actions as INH does. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

INHL is a restricted instruction.

6-55 second Edition

INSTRUCTION SETS GULDE

INHM
Inhibit Interrupts (Mutual)
ooa00001000000000

For the 850, a processor checks the availability of the mutual
exclusion lock. If available, the processor sets this lock and
inhibits interrupts. Otherwise, it waits for the lock to be released
by the other processor and then sets the lock and inhibits interrupts.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

> DEP
Inhibit Interrupts (Process)
oo0o00o001000000010

For the 850, a processor checks the availability of the process

exchange lock. If available, the processor sets it and inhibits

interrupts. Otherwise, it waits for the lock to be released by the

other processor, and then sets the lock and inhibits interrupts. It

also inhibits interrupts in the local processor. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

INK r

Input Keys
011000R\30111000

Loads the contents of the I mode keys into the specified r. Leaves the

values of CBIT, LINK, and the condition codes unchanged. Reads the

low-order 8 bits of the S register along with the high-order 8 bits of

the keys register.

PP OT ?,R
Convert Floating Point to Integer
Ol1lOOORBIOOFOII

Converts the double precision floating-point number contained in the

specified floating accumulator to a 32-bit integer and stores the

result in R. Ignores the fractional part of the floating-point number.

For example, +4.5 is converted to +4 and -4.5 is converted to -4.

Second Edition 3-56

I MODE

Overflow occurs if the value in the floating accumllator is less than
~2**51 or greater than (2**31)-1. An overflow causes a floating-point
exception. If no floating-point exception occurs, CBIT is reset to O.
The values of LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a O, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

> ITH f,r
Convert Floating Point Number to Halfword Integer
Ol1lOOORBSIlOOFOO!I

Converts the double precision floating-point number contained in the
specified floating accumlator to an integer and stores the result in
r. Ignores the fractional portion of the floating-point number. For
example, +4.5 is converted to +4 and -4.5 is converted to -4. Overflow
occurs if the value in the floating accumlator is less than -2**15 or
greater than (2**15)-1. An overflow causes a floating-point exception.
If no floating-point exception occurs, CBIT is reset to 0.

At the end of this instruction, the contents of R bits 17 to 32 are
indeterminate. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 in the keys contains 1,
the instruction sets CBIT to 1. If bit 7 contains 0, the instruction
sets CBIT to 1 and causes a floating-point exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

— IRI R
Increment Register by 1
011000R\81010010

Increments the contents of the specified R by 1 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, CBIT is reset to 0. LINK contains the carry-out bit.
mS condition codes reflect the result of the operation. (See Appendix
A.

If an integer exception occurs and bit 8 in the keys contains 0, the
IR1 instruction sets CBIT to 1. If bit 8 contains 1, the instruction
sets CBIT to 1 and causes an integer exception fault. (See Chapter 10
of the System Architecture Reference Guide.)

3-57 Second Edition

TNSTRTIICTION SETS GITOR
olen Bagh elles dhe VP Nod cle lheAeSdlhe at ah Nr eee

P IRR
Increment Register by 2
O11000R\81010011

Increments the contents of the specified R by 2 and stores the result
in R. An overflow causes an integer exception fault. If no integer
exception occurs, CBIT is reset to 0. LINK contains the carry-out bit.
The condition code contains the result of the operation. (See Appendix
A.)

If an integer exception occurs and bit 8 in the keys contains O, the
instruction sets CBIT to 1. If bit 8 contains 1, the instruction sets
CBIT to 1 and causes an integer exception fault. For more information,
see Chapter 10 of the System Architecture Reference Guide.

PP rBr
Interchange r Bytes
O11000R\80110100

Interchanges bits 1 to 8 and bits 9 to 16 of the specified r. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

TRH R
Interchange Register Halves
0O11000R\30101111

Interchanges the contents of bits 1 to 16 and bits 17 to 32 of the
specified R. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

> IRC
Interrupt Return, Clear Active Interrupt
o000000110000011

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS. Issues a CAT pulse to clear the currently
active interrupt, and enables interrupts.

Note

IRTC is a restricted instruction.

Second Edition o-58

I MODE

Pemm
Interrupt Return

0O000000110000001

Returns from an interrupt. Restores the state existing before the
interrupt by loading bits 1 to 16 of PB, bits 17 to 32 of the program
counter, and the keys from the values saved in microcode temporary
registers PSWPB and PSWKEYS, and enables interrupts. Does not issue a
CAI pulse to clear the currently active interrupt.

Note

This is a restricted instruction.

» ITB
Invalidate STLB Entry

0000000110001101

Invalidates the STLB entry that corresponds to the virtual address
contained in GR2. The values of CBIT, LINK, and the condition codes
are indeterminate. You must execute this instruction whenever you
Change the page table entry for the given address.

If you change an SDW or DTAR (explained in Chapter 4 of the System
Architecture Reference Guide), you usually have to invalidate the
entire STLB by issuing the instruction PILB. AO in the segment number
portion of GR2 invalidates the IOTLB entry corresponding to the address
Specified by GR2.

Note

This is a restricted instruction.

3-59 Second Edition

INSTRUCTION SETS GUIDE

> IMaddress
Jump
101110001 TM\2 SR\S R\e
DISPLACEMENT16

Calculates an effective address, EFA, and loads it into the program
counter. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

BPJSR r,address
dump to Subroutine
11101 1 DR\S TM\e2 SR\S BR\2
DISPLACEMENT16

Calculates an effective address, EA. Saves the 16-bit halfword number

position of the return address in the specified r. Loads the program

counter with the current segment location specified by bits 17 to 32 of
the EA. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This instruction is useful for calling routines within the
current segment only.

> JSXB address
Jump and Save in XB
110110001 TM\2 SR\S BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Loads the contents of the program
counter into KB. Loads EA into the program counter. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

JSXB can make subroutine calls outside the current segment as

well as within.

second Edition o-60

I MODE

1 R,address
Load Full Word
00000 1 IR\3 TM\2 SR\3 BR\2
{[DISPLACEMENT\16]

Calculates an effective address, EA. Loads EA into the specified R.
leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

BP 1cr,address
Load C Character
100101 IR\S TM\2 SR\S BR\2
DISPLACEMENT\ 16

Calculates a C language pointer and uses it to load a single character
into bits 9 to 16 of the specified r. If bit 4 of the C pointer
contains 0, bits 1 to 8 of the location contain the character to be
loaded; if bit 4 of the pointer contains 1, bits 9 to 16 of the
location contain the character.

Clears bits 1 to 8 of r, but leaves bits 17 to 32 of R unchanged. Sets
the condition code EQ to 1 (indicating equal to 0) when O is loaded;
resets BQ to O (indicating not equal to zero) for all other characters.
The state of the LI condition code is indeterminate. Testing the
results should be done using either BCEQ or BCNE branches only. Leaves
the values of CBIT and LINK unchanged.

Note

The LCC instruction is valid only for general register relative
and indirect forms of address formation. Other forms of
address formation (including indexing) do not reliably generate
the C language pointer.

In particular, do not use the register-to-register or immediate
form with the LCC instruction because it would be interpreted
aS a CCP instruction. (LCC and CCP share the same opcode, but
CCP uses the register-to-register form; the immediate form of
CCP is undefined, but the preferred implementation is a UII
(unimplemented instruction.)

Direct addressing, however, will obtain the first byte (of two)
pointed to by the effective address. This assumes that the
base register used was loaded with a conventional 32-bit IP
with the E bit reset.

3-61 second Edition

TRIGTIMTWINTOMT CEMA CTT
AWOLIVUUL LUADUT

If LOC is used for any earlier system listed in "About This
Book", a UII fault occurs. (See Chapter 10 of the System
Architecture Reference Guide.)

P ichr
Load Register on Condition Code HQ
O1l11000R\81101011

If the condition codes reflect an equal to 0 condition, the instruction
loads the specified r with a 1. If they reflect a not equal to 0
condition, the instruction loads r witha 0. Leaves the values of

CBIT, LINK, and the condition codes unchanged.

P LOEr
Load Register on Condition Code GE
011000R\81101100

If the condition codes reflect a greater than or equal to O condition,
the instruction loads the specified r with al. If they reflect a less
than O condition, the instruction loads r with aO. leaves the values
of CBIT, LINK, and the condition codes unchanged.

T ~ nn
Lb it

Load Register on Condition Code GT
O11000R\81101101

If the condition codes reflect a greater than O condition, the
instruction loads the specified rwithal. If they reflect a less

than or equal to O condition, the instruction loads r with aO. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

P iclEr
Load Register on Condition Code LE
O11000R\831101001

If the condition codes reflect a less than or equal to 0 condition, the
instruction loads the specified r withal. If they reflect a greater
than O condition, the instruction loads r with aO. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Second Fdition b-62

I MODE

— IclTr
Load Register on Condition Code LT
011000R\381101000

If the condition codes reflect a less than O condition, the instruction
loads the specified r with a 1. If they reflect a greater than or
equal to 0 condition, the instruction loads rwith a 0. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> Ider
Load Register on Condition Code NE
O011000R\81101010

If the condition codes reflect a not equal to O condition, the
instruction loads the specified rwithal. If they reflect an equal
to 0 condition, the instruction loads r with a0. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

> LDAR RP, address
Load Addressed Register
100100 IR\3S TM\2 SR\S BR\2
DISPLACEMENT16

Calculates a 32-bit (1-word) effective address, EA. lLoads the
specified R with the contents of the register file location specified
by the offset portion of EA. Bit 2 and bit 12 of the offset portion of
EA determine the actions of this instruction.

Bit 2 Bit 12 Action

1* aa Ignore bits 1 and 5 to 9. The offset portion of
FA specifies an absolute register number from 0O
to ‘377.

O* 1 Bits 13 to 16 of the offset portion of FA
specify one of the registers ‘20 to ‘37 in the
current register set.

0 0 Bits 13 to 16 of the offset portion of EA
Specify one of the registers O to ‘17 in the
current register set.

*This is a restricted instruction.

Leaves the values of CBIT and LINK unchanged; the values of the
condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

3-63 Second Edition

INSTRUCTION SEIS GUIDE

Note

If the current ring is not O and EA is outside the range of 0
to ‘17, inclusive, any access causes an RKXM violation.

— LO flrir
Load Character

011000R\3111FR010

If the contents of the specified FLR are nonzero, the instruction
fetches the single character pointed to by the appropriate FAR and
loads it into bits 9 to 16 of r. When the FAR’s bit field contains 0,
it specifies the left byte (bits 1 to 8) of the 16-bit addressed
quantity; when the bit field contains 8, the right byte (bits 9 to 16)
is specified. This instruction loads zeros into bits 1 to 8 of rT.
Updates the contents of the FAR by 8 (one byte) so that they point to
the next character. Decrements the contents of the specified FIR by 1.
Sets the condition codes to NE. Leaves the values of CBIT and LINK
unchanged .

If the contents of the specified FIR are 0, the instruction sets the
condition codes to HQ.

Note

This instruction uses FARO when FLRO is specified, and FAR1
when FLR1 is specified.

P IQR
Load Register on Equal to 0
O1l1l1000R\830000011

If the contents of the specified R are equal to O, the instruction
loads r with al. If not equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

P ir
Logic Set False
011000R\830001110

Loads the specified r with 0. Leaves the values of LINK and CBIT
unchanged. The values of the co ion codes are indeterminate.

Second Edition boO4

I MODE

> LFEQ fr
Load Register on Floating Accumulator Equal to 0
OllLOAOOORSOOILFOII

If the contents of the specified floating accumulator are equal to O,
the instruction loads the specified r with al; if not equal to 0, the
instruction loads r with a 0. Leaves the values of LIN and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.)

LFEQ works correctly only on normalized or nearly normalized numbers,
because it checks fraction bits 1 to 32 only for equal to O and less
than 0. (See the System Architecture Reference Guide, Chapter 6.)

> LFCE f,r
Load Register on Floating Accumulator Greater Than or Equal to 0
OlLOOORSGSOOIF1O00NO

If the contents of the specified floating accumulator are greater than
or equal to 0, the instruction loads the specified r with al; if less
than 0, the instruction loads r with aO. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFGE works correctly only on normalized or nearly normalized nunbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P ircT fr
Load Register on Floating Accumulator Greater Than 0
O1l1lOOOR\SOOILFI1OIN

If the contents of the specified floating accumulator are greater than
O, the instruction loads the specified r with al; if less than or
equal to 0, the instruction loads r withaO. JLeaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFGT works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

o-65 Second Edition

TNSTRUCTION SETS GUTDE

P LIE f,r
Load Register on Floating Accumulator Less Than or Equal to 0
Ol1lAOOORBOOLFOO!]

If the contents of the specified floating accumulator are less than or
equal to 0, the instruction loads the specified r withal; if greater
than 0, the instruction loads r with a0. Leaves the values of LINK
and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFLE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

 LFLI flr,data
Load FLR Immediate
O00000101100F011
INTEGER16

Loads the 16-bit, unsigned integer contained in bits 17 to 32 (the
second halfword) of the instruction into the specified FIR. Clears the
upper bits of the FLR. Leaves the values of CBIT, LINK, the condition
codes, and the associated FAR unchanged.

P LFLT f,r
Load Register on Floating Accumulator Less Than 0
OllOOORSOO1LFOODO

If the contents of the specified floating accumulator are less than 0,
the instruction loads the specified rwithal; if greater than or
equal to 0, the instruction loads rwithaO. Leaves the values of
LINK and CBIT unchanged. The condition codes reflect the result of the
comparison. (See Appendix A.)

LFLT works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

> LYNE fr
Load Register on Floating Accumulator Not Equal to 0
O1l11lOOORZOO1FO1O

If the contents of the specified floating accumulator are not equal to
O, LFNE loads the specified rwithal; if equal to0O, LFNE loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
eodes reflect the result of the comparison. (See Appendix A.)

Second Edition 5-66

I MODE

LFNE works correctly only on normalized or nearly normalized numbers,
because it checks the first 32 fraction bits only for equal to zero and
less than zero. (See Chapter 6 in the System Architecture Reference
Guide.)

P IGER
Load Register on Greater Than or Equal to 0
O11l0O000R\30000100

If the contents of the specified R are greater than or equal to 0, the
instruction loads r withal1; if less than 0, the instruction loads r
with a OQ. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P IcTR
Load. Register on Greater Than 0
O11000R\30000101

If the contents of the specified R are greater than 0, the instruction
loads r with al; if less than or equal to 0, the instruction loads r
with a0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

P LH r, address
Load Halfword
001001 IR\3 TM\2 SR\S BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the 16-bit contents
contained in the location specified by EA into r. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

IH also has a register-to-register and an immediate form. (See
Appendix B.)

PP Lligr
Load r on EQ
O11000R\30001011

If the contents of the specified r are equal to O, the instruction
loads r with al; if not equal to 0, the instruction loads r with a 0.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

o-67 second Edition

INSTRUCTION SETS GUIDE

P HE r
Load r on GE
O1l1000R\80000100

If the contents of the specified r are greater than or equal to 0, the
instruction loads rwithal; if less than 0, the instruction loads r
with a0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

~ LHcT
Load on GT

Ol1l1000R\30001101

r

r

If the contents of the specified r are greater than 0, the instruction
loads r with al; if less than or equal to 0, the instruction loads r
with a 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

p> LHL] r,address
Load Halfword Shifted Left by 1
000100 IR\3 TM\2 SR\S ER\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Shifts the contents of the
location specified by EA left one bit and stores the result in the
specified r. (Shifts zero into the vacated bit.) Leaves the values of
CBIT, LINK, and the condition codes unchanged.

Note

LHL1 also has a register-to-register form. (See Appendix B.)

> LHe r,address
Load Halfword Shifted Left by 2
001100 IR\3 TM\2 SR\S BR\B

[DISPLACEMENT\16]

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA left two bits and stores the result in the
specified r. (Shifts zeros into the vacated bits.) Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

LHI2 also has a register-to-register form. (See Appendix B.)

Second Edition 3-68

I MODE

> LHr,address
load Halfword Shifted Left by 3
O11101 PR\3S TM\2 SR\3 BR\2
[DISPLACEMENT\16]

Calculates an effective address, EA. Shifts the 16-bit contents of the
location specified by EA left three bits and stores the result in the
specified r. (Shifts zeros into the vacated bits.) Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

LHLS also has a register-to-register form. (See Appendix B.)

If LHS is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P ler
Load r on LE
Ol11l000R\30001001

If the contents of the specified r are less than or equal to 0, the
instruction loads r with al; if greater than 0, the instruction loads
r with 0. Leaves the values of LINK and CBIT unchanged. The condition
codes reflect the result of the comparison. (See Appendix A.)

PP LHTr
Load r on LT

OllOOOR\ZOO000000D

If the contents of the specified r are less than 0, the instruction
loads r with a 1; if greater than or equal to 0, loads r with a O.
Leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

P LUE r
Load r on NE

OllOOOR\ZO001010

If the contents of the specified r are not equal to 0, the instruction
loads r with ail; if equal to 0, the instruction loads r with a O.
leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

0-69 Second Edition

RPATTTOAT CIR SerTNT

LNDLRUGCLLUIN Dold UULUS

Pp LIOT address
Load IOTLB
o000000000100100
AP\32

Loads a specified IOTLB entry. Table 3-4 shows the contents of the
LIOT entry and the origin of the information. The values of CBIT,
LINK, and the condition codes are indeterminate.

Table 5-4
LIOT Data

| Origin | Description
| --— |

| AP in LIOT Virtual address in I/O segment (calculated!
from the EA). |

Page table Physical address (translation of the
virtual address) obtained from I/O
segment. If the fault bit is set
to 1, a page fault occurs.

GR2 register Target virtual address. This is the

procedures accessing this information.
This is used to help invalidate the
proper locations in the cache. The
segment number and the low-order 10
bits (offset number in the page) are

|
|
|
|
|
|
|
| segment number and page number of the
|
|
|

|
|
| ignored.

|

|

|

|

|

|

virtual address that will be used by |
|

|

|
|

|

Note

This is a restricted instruction.

B® LIP R,address
Load Indirect Pointer

11010 1 DR\S TM\2 SR\S BR\S

[DISPLACEMENT\16]

Calculates an effective address, EA. Loads the value contained in the

location specified by EA into the specified R. Checks these contents
for a pointer fault.

This pointer fault is generated when the contents of the memory
location to be loaded into the specified R contain a pointer fault (bit

1 contains 1).

I MODE

If this pointer fault occurs, the pointer to the memory location is
Saved in FADDR (SB + 11) as well as bits 1 to 16 of the contents of
that memory location FOODEH (SB + 10). After completion of the fault
handling mechanism, the instruction can be re-executed. (See Chapter
10 of the System Architecture Reference Guide.)

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

LIP should weaken the ring field against the ring field of the
effective address. This is not done on some) current

processors, but will be done on all future processors.

If LIP is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

pPLLER
Load Register on Less Than or Equal to 0
Ol1l00O0R\30000001

If the contents of the specified R are less than or equal to 0, the
instruction loads r with al. If the contents of R are greater than O,
the instruction loads r with a0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.)

P LITR
Load Register on Less Than 0
Ol1lOQOOR\ZSOO000000

If the contents of the specified R are less than 0, the instruction
loads rwithail. If the contents of R are greater than or equal to 0,
the instruction loads rwith a0. Leaves the values of LINK and CBIT
unchanged. The condition codes reflect the result of the comparison.
(See Appendix A.)

> LNER
Load Register on Not Equal to 0
O11000R\830000010

If the contents of the specified R are not equal to 0, the instruction
loads r with a1; if equal to 0, the instruction loads r with a O.
leaves the values of LINK and CBIT unchanged. The condition codes
reflect the result of the comparison. (See Appendix A.)

o-’l second Edition

TNSTRICTION SETS GUIDE

> LPID

Load Process ID

oo0oo0oo0o0o0gq0110001111

Loads the process ID from bits 1 to 10 of GR2 into RPID (the process ID
register, which contains the 10 most significant bits of the user’s

address space). Leaves the values of CBIT, LINK, and the condition
codes unchanged.

The RPID data is used to update the process ID field of an STLB entry

as required. This RPID data is later used during subsequent memory

accesses to verify that STLB data is still valid (STLB hit) or not

(STLB miss). This register is for internal machine operation, and
should not normally be modified by the user.

Note

LPID is a restricted instruction.

p>LPswW address
Load PSW
0000000111001001
AP\32

Changes the status of the processor by loading new values into the

program counter, keys, and modals. Inhibits interrupts for one

instruction.

Addresses a 64-bit (4-halfword) block at the specified location. The
block has the following format.

Offset in Block Contents

1 to 2 New program counter (ring, segment, offset numbers)

3 New keys

4 New modals

Loads the program counter and keys of the currently running process

with the contents of the first three offsets (bits 1 to 48), then loads

the processor modals with the contents of the fourth offset (bits 49 to

64).

The new value of bit 15 in the keys, the in-dispatch bit, can

temporarily halt execution of the current process. This bit is altered

by software only during a cold or a warm start. If bit 15 is 0, the

currently executing process will continue to execute, but at a location

defined by the new value of the program counter. If bit 15 is 1, the

Second Edition O-72

I MODE

processor enters the dispatcher and dispatches the ready process with
the highest priority. When execution resumes for the process that was
temporarily halted, execution resumes at the point defined by the value
of the new program counter.

Regardless of the value of bit 15, the new value of the modals takes
effect immediately, since the modals are associated with the processor,
not the process.

The LPSW instruction loads the 64 bits (four halfwords) of the register
set that the STIR instruction cannot correctly load. STIR does not
update the separate hardware registers the processor uses to maintain
duplicate information for optimization. Never use the LPSW instruction
to change bits 9 to 11 of the modals. These bits Specify the current
user register set. This means that if you do not know the current
value of these bits, you must do the following each time you want to
execute an LPSW:

1. Inhibit interrupts.

2. Read the current values of modal bits 9 to 11 with an IDR ‘24
instruction.

3. Mask the old values of the modal bits into the new information.

4. Load the new information into the modals with an LPSW.

For the two common uses of LPSW, you do not have to perform this
sequence, Since the values of modal bits 9 to 11 are predictable. When
you use LPSW after a Master Clear to turn on processor exchange mode,
bits 9 to 11 are 010 because the processor is always initialized to
register set 2. When you use LPSW to return from a fault, check, or
interrupt, simply reload the values stored by the break because these
values are still correct.

You should not use LPSW to set bits 16 (the save-done bit) or 15 (the
in-dispatcher bit) of the keys, unless you are merely loading status
following a fault, check, or interrupt. When issuing LPSW after a
Master Clear, make sure you load zeros into both of these bits.

Note

This is a restricted instruction.

> ir
Logic Set True
O11000R\30001111

Loads the specified r with 1. Leaves the values of LINK and CBIT
unchanged. The values of the condition codes are indeterminate.

o-70 Second Edition

SOUTETOPCAF AEA MPT

TNSIRUCLICON Obie GUILDS

p> M R,address
Multiply Fullword
100010 IR\3 TM\2 SR\S BR\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Multiplies the 52-bit value

contained in the location specified by EA by the 32-bit value contained

in the specified R. Stores the 64-bit result in the specified R and

R+1l. The least significant bit of the result is contained in bit se of

R+tl. The 150/250, 450/550/250-II, I450-II, and 2250 processors leave

the CBIT and LINK unchanged. The other 50 Series processors reset the

value of the CBIT to O and leave the value of LINK indeterminate. For

all 50 Series processors, the condition codes are unchanged. This

instruction cannot cause an overflow or generate an integer exception.

Note

R must be an even numbered register.

This instruction also has a register-to-register and an

immediate form. See Appendix B for more information.

p> MH r,address
Multiply Halfword
101010 R\3 TM\2 SR\S BR\2

[DISPLACEMENT\16]

Calculates an effective address, EA. Multiplies the 16-bit value

contained in the location specified by EA by the 16-bit value contained

in the specified r. Stores the 32-bit result in R. Bit oe of R

contains the least significant bit of the result. The value of the

CBIT is reset to 0. The value of LINK is indeterminate, and the

condition codes are unchanged. This instruction cannot cause an

overflow or generate an integer exception.

Note

MH r also has a register-to-register and an immediate form.

See Appendix B for more information.

Second Edition 3o-74

I MODE

> N R,address
AND Fullword

00001 1 IR\S TM\2 SR\S BRIO
[DISPLACEMENT\16]

Calculates an effective address, FA. Logically ANDs the value
contained in the specified R with the 32-bit value contained in the
location specified by EA. Stores the result in the specified R.
leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

> \NFYB address
Notify to Beginning
0000001010001001
AP\32

Notifies on semaphore at address specified in second and third
halfwords of the instruction. Uses LIFO (last in, first out) queueing.
Does not clear the currently active interrupt. The values of CBIT,
LINK, and the condition codes are indeterminate. For more information,
see Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

> NFYE address
Notify to End
O000001010001000
AP\32

Notifies on semaphore at the address specified in second and third
halfwords of the instruction. Uses FIFO (first in, first out)
queueing. Does not clear the currently active interrupt. The values
of CBIT, LINK, and the condition codes are indeterminate. For more
information, see Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

o-75 second Edition

TWSTRUCLIIUN SDio GULUG

p> NH r,address
AND Halfword
001011 MR\3 T\2 SR\S ER\2
[DISPLACEMENT\16]

Calculates an effective address, EFA. Logically ANDs the value

contained in the specified r with the 16-bit value contained in the

location specified by EA. Stores the result inr. Leaves the values

of CBIT, LINK, and the condition codes unchanged.

Note

NH also has a register-to-register and an immediate form. See

Appendix B for more information.

p NoP
No Operation
oo000o00000000001

Does nothing. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

Second Edition 3-76

I MODE

— oO R, address
OR Fullword

01001 1 MR\3S TM\2 SR\S BR\2

{ DISPLACEMENT\16]

Calculates an effective address, EA. Logically ORs the value contained
in the specified R with the 32-bit value contained in the location
Specified by EA. Stores the result in the specified R. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

> 8 r,address
OR Halfword

01101 1 R\3 TM\2 SR\2 BR\2
{ DISPLACEMENT\16]

Calculates an effective address, EA. Logically ORs the value contained
in the specified r with the 16-bit value contained in the location
Specified by EA. Stores the result inr. Leaves the values of CBIT,
LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

P kr
Output Keys
O11000R\380111001

Stores the contents of the specified r in the keys. Resets bits 15 to
16 of the keys to0O. Loads CBIT, LINK, and the condition codes from
the specified r as a result of the operation. If this instruction is
executed in Ring 0, it inhibits interrupts during execution of the next
instruction.

O-77 Second Edition

TNSTRUCTION SETS GUIDE

p PCL address
Procedure Call
100110001 TM\2 &R\5 BR\2
DISPLACEMENT16

See Chapter 8 of the System Architecture Reference Guide for a complete

description of this instruction. Sets CBIT, LIN, and the condition

codes to the values contained in the ECB.

Note

When arguments are to be transferred to the called procedure,

this instruction uses GR5 and GR7, destroying the previous

contents of these registers. XB is updated if an AP has the 5

bit = O. The contents of GR5, GRY, and XB remain unchanged if

no arguments are transferred. The contents of the condition

codes, CBIT, and LINK are not correctly saved in the ECB along

with the rest of the caller's keys.

 PIDR
Position for Integer Divide
011000R\30101010

Positions a register for integer divide. Loads the contents of the

specified R into R+1. Extends the sign of R (bit 1) into bits 2 to 32

of R. Leaves the values of CBIT, LINK, amd the condition codes

unchanged .

Note

R must be a even numbered register.

P pir
Position r for Integer Divide
O11000R\30101011

Moves the contents of the specified r (bits 1 to 16 of R) into bits 1”

to 22 of R. Extends the contents of bit 1 of r into bits 2 to 16 of R.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 5-78

I MODE

P PIMR
Position After Multiply
Ol11000R\30101000

Checks bit 1 of R+1 to see if it is the same as all the bits in the
Specified R, and then moves the contents of R+l into R. If bit 1 of
R+1 was not the same as all the bits in R, an overflow occurs which
causes an integer exception. If no integer exception occurs, CBIT is
reset to 0. The values of LINK and the condition codes. are
indeterminate.

If an integer exception occurs and bit 8 in the keys contains O, the
PIM instruction sets CBIT to 1. If bit 8 contains 1, the instruction
sets CBIT to 1 and causes an integer exception fault. For more
information, see Chapter 10 of the System Architecture Reference Guide.

Note

R must be an even numbered register.

p Pir
Position r after Multiply
Ol1l1000R\380101001

Checks the contents of bit 17 of the specified R to see if it has the
same value as do all of bits 1 to 16 of R, and then moves the contents
of bits 17 to 32 into bits 1 to 16. If bit 17 was different from all
of bits 1 to 16, an integer exception occurs. If no integer exception
occurs, CBIT is reset to 0. The values of LINK and the condition codes
are indeterminate.

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains al, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

To position bits 17 to 32 of R in bits 1 to 16 of R, PIMH can
modify all 32 bits of R, meaning that the contents of bits 17
to 32 of R are indeterminate at the end of this instruction.

o-79 Second Edition

TATCHTIATICNNTCOOT OTATICTNSIRUCTLON ObLlo Gute

p> PRIN
Procedure Return

o0o000000110001001

Deallocates the stack frame created for the executing procedure and

returns to the environment of the procedure that called it.

To deallocate the frame, the instruction stores the current value of

the stack base register into the free pointer. It then restores the

caller's state by loading the caller's program counter, stack base

register, linkage base register, and keys with the values contained in

the frame being deallocated. Sets bits 15 to 16 of the keys to Q.

Loads the ring number in the program counter with the logical OR

(weaker) of the saved program counter ring and the current ring number.

This process prevents inward returns but also allows returns from gated

calls to work properly.

Pppris
Purge TLB
0000000000110100

GR2 contains the address of a physical page, right justified. Based on

the value of GR2 bit 1, PILB purges either the first 128 locations of

the STLB (i.e., not the IOTLB), or a specified physical page. If GRR

bit 1 contains a 1, the instruction performs a complete purge. If GR2

bit 1 contains a O, the instruction purges the page specified by GR2.

Leaves the values of CBIT, LINK, and the condition codes indeterminate.

See Chapters 1, 4, and 11 of the System Architecture Reference Guide

for more information about the STLB and IOTLB.

Note

This is a restricted instruction.

On the 750, 850, 2350 to 9955 II, insert a CRE (Clear &)
instruction before PILB. Since PILB uses E (GR3 in I mode) as

a pointer, the CRE zeros GR3 before PILB manipulates it. If an

interrupt occurs during PILB’s execution, GR3 points to the

location PILB is currently purging. PILB leaves the contents

of GR3 in an undefined state at the end of its execution.

Second Edition 5-80

I MODE

BP FAD address
Quad Precision Floating Add
O11110110 T\2 SR\3 R\2
DISPLACEMENT \16

Calculates an effective address, EA. Adds the 112-bit, quad precision
number contained in the locations specified by EA to the contents of
QAC. (See Chapter 6 of the System Architecture Reference Guide.)
Normalizes the result, if necessary, and loads it into QACG. An
overflow or underflow causes a floating-point exception. If no
floating-point exception occurs, CBIT is reset to 0. The values of
LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide.

Note

If QFAD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

BP FC address
Quad Precision Floating Compare
100110111 TM\2 SR\3 RR\2
DISPLACEMENT \16

Calculates an effective address, FA. Compares the contents of QAC
(explained in Chapter 6 of the System Architecture Reference Guide) to
the 112-bit contents of the location specified by EA. Leaves the
values of CBIT and LINK unchanged. Sets the condition codes (CC) to
the outcome of the comparison as shown below.

Condition @

Contents of QAC > contents of location specified by EA. GT

Contents of QAC = contents of location specified by EA. EQ)

Contents of QAC < contents of location specified by EA. LT

On some processors, QFC works correctly only on normalized numbers as
follows. The comparison has a maximum of three sequential stages:
first the signs, then the exponents, and finally the fractions of the
two numbers are compared for equality. If the comparison during any
one of these stages reveals an inequality, the results are returned and
the instruction ends. Unnormalized numbers are unexpected and produce
unexpected results. Other processors actually perform a subtract,
resulting in a proper comparison.

5-81 second Edition

INSTRUCTION SETS GUIDE

Note

If QFC is used for any earlier system listed in ‘About This

Book", an wunimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

PPgo
Quad Precision Floating Complement
1100000101111000

Forms the two’s complement of the value contained in QAC. (See Chapter

6 of the System Architecture Reference Guide.) Normalizes the result,

if necessary, and stores it in QAC. An underflow or overflow causes a

floating-point exception. If no floating-point exception occurs, CBIT

is reset to O. The values of LINK and the condition codes are

indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide.

Note

If QFCM is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

B QFaddress
Quad Precision Floating Point Divide

100110110 TM\2 SR\3 BR\2

DISPLACEMENT16

Calculates an effective address, FA. Divides the contents of QAC by

the 112-bit contents of the location specified by EA. (See Chapter 6

of the System Architecture Reference Guide.) Normalizes the result, if

necessary, and stores the whole quotient into @AC. An overflow,

underflow, or divide by to causes a floating-point exception. If no

floating-point exception occurs, CBIT is reset to 0. The values of

LINK and the condition codes are indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a O, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide.

Second Edition a © w
o

I MODE

Note

If QFDV is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

B QLD address
Quad Precision Floating Load
011110100 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an extended, augmented effective address, FA. Performs one
of the following actions with the value contained in the location
Specified by EA. Loads bits 1 to 112 into QAC and zeros QAC bits 113
to 128, or loads 128 bits into QAC. In either case, there is no
normalization of the result. (See Chapter 6 of the System Architecture
Reference Guide for more information.) Leaves the values of CBIT,
LINK, and the condition codes unchanged.

Note

If QFLD is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

PQP address
Quad Precision Floating Point Multiply
100110101 TM\2 SR\3 RBR\2
DISPLACEMENT\ 16

Calculates an effective address, FA. Multiplies the contents of QAC by
the 112-bit contents of the location Specified by EA. (See Chapter 6
of the System Architecture Reference Guide.) Normalizes the result, if
necessary, and stores it into QAC. An overflow or underflow causes a
floating-point exception. If no floating-point exception occurs, CBIT
is reset to 0. The values of LINK and the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

3-83 second Edition

INSTRUCTION SETS GUIDE

Note

If QFMP is used for any earlier system listed in “About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

PB OFSB address
Quad Precision Floating Point Subtract
QO11110111 TM2 SR\S BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Subtracts the 112-bit contents of

the locations specified by EA from the contents of QAC. (See Chapter 6

of the System Architecture Reference Guide.) Normalizes the result, if

necessary, and loads it into QAC. An overflow or underflow causes a

floating-point exception. If no floating-point exception occurs, CBIT

is reset to O. The values of LINK and the condition codes are

indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the instruction sets CBIT to 1. If bit 7 contains a0, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Note
If Q@FSB is used for any earlier system listed in "About This

Book", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

B QFST address
Precision Floating Store

011110101 TM\2 S&R\5 ER\e
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of QAC into

the 128 bits of memory specified by EA. Leaves the values of LINK,

CBIT, and the condition codes unchanged.

Note

QFST does not normalize the result before storing it into the

specified memory location.

If QFST is used for any earlier system listed in “About This

Rook", an unimplemented instruction (UII) fault occurs. (See

Chapter 10 of the System Architecture Reference Guide.)

Second Edition 5-84

I MODE

P ny
Quad to Integer, in Quad Convert
1100000101111010

Strips the fractional portion of QAC as described in Table 3-5.

Table 3-5
QINQ Actions

Exponent Value | Action

‘S37 <= Exp No operation.

|
|

| |
| |

‘200 < Exp < ‘337 | If sign >= 0, strip fractional part of QAC |
| for result. |
| If sign < O and fractional part <> 0, strip |
| fractional part of QAC and increment |
| integer portion of QAC by 1. |
| If sign < 0 and fractional part = 0, no |
| action is done. |
| |
| |
| |
| |

|
| |

‘200 = Exp If sign >= 0, result = 0.
If sign < 0 and bits 2 to 96 = O result = -1.
If sign < 0 and bits 2 to 96 <> 0 result = 0.

‘200 > Exp Result = 0.

QIN) can cause a floating-point exception. This exception does not
alter the contents of QAC. If no exception occurs, the instruction
resets CBIT to 0. The values of LINK amd the condition codes are
indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a
1, the instruction sets CBIT to 1. If bit 7 contains a 0, the
instruction sets CBIT to 1 and causes a floating-point exception fault.
See Chapter 10 of the System Architecture Reference Guide for more
information.

Note

If QIN) is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

o-85 second Edition

INSTRUCTION SEIS GULUE

P Qicr
Quad to Integer, in Quad Convert Rounded

1100000101111011

Strips the fractional portion of QAC as described in Table 3-6.

Table 3-6
QIQR Actions

| Exponent Value | Action

‘S37 <= Exp No operation.

‘177 < Exp < ‘337

|

If sign >= 0, round.*
If sign < O and fractional part <> 0.5,**

round and strip the fractional part

of QAC.

If sign < 0 and bits 2 to 9 = 0, result = -l.

If sign < 0 and bits 2 to 9% <> 0, result = O.

For all cases increment integer part by 1 if

it exists and the most significant bit of

|

|

|

|

|

|

Exp = ‘177 | If sign >= 0, result = 0.
|

|

|

|

| @AC = 1.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Exp < ‘177 | The result is 0.

* Rounding occurs if the MSB of the QAC fraction is 1. For example,

add the MSB of the QAC fraction to itself and carry out to the QAC

integer.

** 0.5 implies a QAC fraction with the MSB = 1 and all other bits = 0.

QIQR can cause a floating-point exception. This exception does not

alter the contents of QAC. If no exception occurs, the instruction

sets CBIT to 0. The values of LINK and the condition codes are

indeterminate.

If a floating-point exception occurs and bit 7 of the keys contains a

1, the QIQR instruction sets CBIT to 1. If bit 7 contains a OO, the

instruction sets CBIT to 1 and causes a floating-point exception fault.

See Chapter 10 of the System Architecture Reference Guide for more

information.

Second Edition " 8

I MODE

Note

If QIQR is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

5-87 Second Edition

TRIONTIATICNNTOAT ATEN MTT
LINDLAVULLIN Diino UUs

BPREQ r,address
Remove Entry From Bottom of Queue
0O11000R\31011011
AP\32

The address pointer in this instruction points to the QCB for a queue.

The instruction removes the entry from the bottom of the referenced

queue and loads it into the specified r. If the queue was not empty,

this instruction sets the condition codes to reflect not equal to. If

the queue was empty, resets r to 0 and sets the condition codes to

reflect equal to. Leaves the values of CBIT and LINK unchanged.

PBRCB
Reset CBIT to 0
1100000010000000

Resets CBIT to O. Leaves the values of LINK and the condition codes

unchanged.

> RMC
Reset Machine Check Flag to 0
oo0o00000000010001

Resets the machine check mode (bits 15 to 16 of the modals) to 0.

Leaves the values of CBIT, LINK, and the condition codes unchanged.
Inhibits interrupts for the next instruction.

Note

This is a restricted instruction.

PB ROT R,address
Rotating Shift
010100 IR\3 TM\2 SR\S BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as

a shift command, as shown in Table 5-7.

Second Edition 0-88

I MODE

Table 3-7
EA Format for ROT Shift Command

Bits | Value | Interpretation

number of bits to shift. A value of 0
indicates a shift of 64 places; of -1,
1 place; of -63, 63 places; and so on.

| |
| |
17	QO	Shift left.
	1	Shift right.
18	O	Word shift (82 bits).
	1	Halfword shift (16 bits).
19 to 2 1 --- Ignored		
27 to 32		

|
|
|

--- | Values specify the two's complement of the
|
|
|

Uses EA to perform a rotating shift on the contents of the specified R.
Stores the shifted result in R. CBIT and LIM contain the value of the
last bit shifted out. leaves the values of the condition codes
unchanged.

PB RRST address
Restore Registers
0000000111001111
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Restores the contents of
these registers from this save area.

The save area format is shown in Table 3-8. Bits 1 to 16 of the save
area are a Save mask, whose format appears in Figure 3-3. A mask bit
value of 1 means that the corresponding register had nonzero contents
that have been saved in the save area; amask bit value of O means
that the corresponding register’s contents were 0. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

o-89 Second Edition

INSTRUCTION SETS GUIDE

Table 3-8

RRST and RSAV Save Area Format

Offset # | Contents

| |
| |
1	Save mask
2toS5	FR1 (CF)
6 to 9	FRO
10to 11	X, GR7

| 12to13 | GR6 |
| 14to15 | Y, S, GR5 |

i 15 to 17% | GR4 |

| 18to19 | E, GR3 |
| 20to 21 1A, B, L, GR2 |

| 22to 23 | GRi |

| 24 to 25 | GRO |
| 26 to 27 | XB |

145 67 8 9 10 11 12 #18 #14 #15~=«#116

10000 |FR1 |FRO IGR7 |GR6 IGR5 |GR4 IGRS !GR2 IGR1 !GRO |

Save Mask Format, RRST and RSAV Instructions

Figure 3-35

PBRSAV address
Save Registers
0000000111001101
AP\32

Calculates an effective address, EA, from the 32-bit address pointer in
the instruction. This specifies the starting address of a save area
for the general, floating, and XB registers. Saves the nonzero
contents of these registers in the save area.

The save area format is shown in Table 3-8. Bits 1 to 16 of the save

area are a save mask, whose format appears in Figure 3-3. This
instruction sets the mask bit of each register as follows: to 1 if the
register’s contents have a nonzero value; toOifaQ value. Leaves
the values of CBIT, LINK, and the condition codes unchanged.

Second Edition 3-90

I MODE

P RIQ r,address
Remove Entry From Top of Queue
011000R\31011010
AP\32

The address pointer in this instruction is to the QCB for a queue. The
instruction removes the entry from the top of the referenced queue, and
loads it into the specified r. If the queve was not empty, the
instruction sets the condition codes to reflect not equal to 0. If the
queue was empty, resets r to O and sets the condition codes to reflect
equal to. Leaves the values of CBIT and LINK unchanged.

RTS
Reset Time Slice

0000000101001001

Valid for the 550-II, 750, 850, I450, and new processors.

GR2H (bits 1 to 16) contain a negative value that represents the number
of milliseconds in the new time slice. The time slice is determined by
counting ITH up every 1.024 milliseconds until zero when the time slice
ends. Therefore, ITH is the two's complement of the number of
milliseconds remaining in the time slice. The elapsed timer contains
the total number of 1.024 millisecond units that have elapsed since
process creation plus the full count of the current tim slice.
Combining ITH and ET by addition gives the total elapsed time.

RTS adds the current value of the interval timer (locations 16 to 17 of
the PCB) to the contents of the elapsed timer (locations 10 to 11 of
the PCB), then subtracts the contents of GR@H from the sum of the
timers. Stores the result in the elapsed timer. Loads the contents of
GReH into the interval timer. Leaves the contents of GR2H unchanged.
The values of CBIT, LINK, and the condition codes are unchanged. The
addition performed by this instruction is equivalent to the following
series of instructions:

LH O,ITH /* Load GRO with contents of ITH.
SH 0,2 /* Subtract reset value in GR2H from GRO contents
PIDH O /* Sign extend the contents of GROH into bits

/* 17 to 32 of GRO.
SRC /* Skip next 16-bit halfword if CBIT is 0.

0 /* Complement GRO.
A O,ET /* Add ITH and ET.
ST O,ET /* Store result in ET.
STH 2,ITH /* Store GR2 contents in ITH.

Note

RTS is a restricted instruction.

3-91 Second Edition

INSTRUCTION SETS GUIDE

— Ss R,address
Subtract Fullword
010010 IR\3 TM\2 SR\3 BR\2
{ DISPLACEMENT\16]

Calculates an effective address, FA. Subtracts the d2-bit value
contained in the location specified by EA from the value contained in
the specified R. Stores the result in the specified R. If overflow
occurs, an integer exception results. If no integer exception occurs,
CBIT is reset to 0. LINK contains the borrow bit. The condition codes
reflect the result of the operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

~ scp
Set CBIT to 1
1100000110000000

Sets the value of CBIT to l. The value of LINK is indeterminate.
Leaves the values of the condition codes unchanged.

B sce r,address
Store C Character
101101 IR\S TM\2 SR\S E\e
DISPLACEMENT16

Uses the C language pointer to store a single character from bits 9 to
16 of the specified r into a location in memory. (Bits 1 to 8 of r are
not modified and do not affect this operation.) When bit 4 of the C
pointer contains 0, the character is stored into bits 1 to 8 of the
address; if bit 4 of the pointer contains 1, the character is stored
into bits 9 to 16 of the address. Leaves the values of the CBIT, LDMK,
and condition codes unchanged.

Note

The SCC instruction is valid only for general register relative
and indirect forms of address formation. Other forms of
address formation (including indexing) do not reliably generate
the C language pointer.

Second Edition 3-92

I MODE

In particular, do not use the immediate or register-to-register
form with the SCC instruction because it would be interpreted
aS an ACP instruction. (SOC and ACP share the same opcode, but
ACP uses the immediate and register-to-register form.)
However, direct addressing will obtain the first byte (of two)
pointed to by the effective address. This assumes that the
base register used was loaded with a conventional 32-bit IP
with the E bit reset.

If SCC is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

B®SH r,address
Subtract Halfword
011010 IR\3 TM\2 SR\S BR\2
[DISPLACEMENT\16]

Calculates an effective address, FA. Subtracts the 16-bit value
contained in the location specified by EA from the value contained in
the specified r and stores the result inr. An overflow causes an
integer exception. If no integer exception occurs, CBIT is reset to 0.
LINK contains the borrow bit. The condition codes reflect the result
of the operation. (See Appendix A.)

If an integer exception occurs amd bit 8 of the keys contains 0, the
instruction sets CBIT to 1. If bit 8 contains a 1, the instruction
sets CBIT to 1 and causes an integer exception fault. See Chapter 10
of the System Architecture Reference Guide for more information.

Note

The SH instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

> SHA R, address
Arithmetic Shift

001101 IR\3 TM\2 SR\3 BR\2

DISPLACEMENT\ 16

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as
a shift command, as shown in Table 3-9.

o-93 Second Edition

INSTRUCTION SETS GUIDE

Table 3-9

EA Format for SHA Shift Command

the number of bits to shift. A value |
of O indicates a shift of 64 places;|

of -1, 1 place; of -63, 635 places; |

and so on. |

| Bits | Value | Interpretation |

| —--------— |

| 17 | QO | Shift left.
| i 1 ¢ Shift right. |
| | | |

| 18 | O | Word shift (32 bits). |

| | 1 | Halfword shift (16 bits). |

| | | |

| 19 to 26! --- | Ignored. |

| | | |

| 27 to 32 | --- | Values specify the two's complement of |

Uses EA to perform an arithmetic shift on the contents of the specified

R, and stores the result of the shift in R.

For a right shift, CBIT and LINcontain the value of the last bit

shifted out. The values of all other shifted-out bits are lost.

For a left shift, an overflow causes an integer exception. If there is

no integer exception, CBIT is reset to O. The value of LINK is

indeterminate.

All shifts leave the values of the condition codes unchanged.

If an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

p> SHL R,address
Logical Shift
000101 DR\3d TM\2 SR\S BR\2

DISPLACEMENT16

Calculates an effective address, EA. Interprets bits 17 to 32 of EA as

a shift command, as shown in Table 5-10.

Second Edition o-84

I MODE

Table 3-10

EA Format for SHL Shift Command

Bits | Value | Interpretation

the number of bits to shift. A value
of O indicates a shift of 64 places;
of -1, 1 place; of -63, 63 places;
and so on.

| |
| |
17	QO	Shift left.
	1 Shift right.	
18	O	Word shift (32 bits).
	1	Halfword shift (16 bits).
19 to 26	--—-	Ignored.
27 to 32.1 --—-	Values specify the two's complement of	

Uses EA to perform a logical shift on the contents of the specified R.
Stores the shifted result in R. CBIT and LINK contain the value of the
last bit shifted out. The values of all other shifted-out bits are
lost. Leaves the values of the condition codes unchanged.

> slr
Shift r Left 1

011000R\30111110

Shifts the contents of the specified r to the left one bit and stores
the result in r. CBIT and LINK contain the value of the bit shifted
Out. Leaves the values of the condition codes unchanged.

ser
Shift r Left 2

0O11000R\80111111

Shifts the contents of the specified r to the left two bits and stores
the result in r. CBIT and LINK contain the value of the last bit
Shifted out. The value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

36-95 second Edition

TNHOMDTITIOAMTOWT OTAMTT
LUOLIVOWELLA bot UTI

PP GRir
Shift r Right 1
Ol1lOOOR\3B1010000

shifts the contents of the specified r to the right one bit and stores
the result in r. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

SHR2 r

Shift r Right 2
O1l1l1000R\831010001

Shifts the contents of the specified r to the right two bits and stores
the result in r. CBIT and LINK contain the value of the last bit
Shifted out. The value of the first bit shifted out is lost. JLeaves
the values of the condition codes unchanged.

P sue
Shift Register Left 1
011000R\30111010

Shifts the contents of the specified R to the left one bit and stores
the result in R. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

SL2 R
Shift Register Left 2
011000R\830111011

Shifts the contents of the specified R to the left two bits and stores
the result in R. CBIT and LINK contain the value of the last bit
shifted out; the value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

P sRIR
Shift Register Right 1
011000R\830111100

Shifts the contents of the specified R to the right one bit and stores
the result in R. CBIT and LINK contain the value of the bit shifted
out. Leaves the values of the condition codes unchanged.

Second Edition 3-96

I MODE

Pm sReR
Shift Register Right 2
011000R\30111101

Shifts the contents of the specified R to the right two bits and stores
the result in R. CBIT and LINK contain the value of the last bit
shifted out; the value of the first bit shifted out is lost. Leaves
the values of the condition codes unchanged.

> soR
Set Sign Minus
0O11000R\30100010

Sets bit 1 of the specified R to 1. Leaves the values of CBIT, LDXK,
and the condition codes unchanged.

 sSPR
Set Sign Plus
011000R\80100011

Resets bit 1 of the specified R to 0. Leaves the values of CBIT, LIK,
and the condition codes unchanged.

B sssN
Store System Serial Number
0100000011001000

This instruction is applicable only for the 2350 to the 9955 II. A
14-character system identifier programmed into these processors during
manufacturing consists of a 2-character plant location code followed by
a le-digit number. (These characters and numbers are in 7-bit ASCII
format.) SSSN writes this system identifier into a 16-halfword block
at the address specified by the XB register. (A halfword is 16 bits.)
The first 8 halfwords of this block hold the system serial number
string as provided by manufacturing; the remaining halfwords are
reserved for future expansion and are 0.

Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

If SSSN is used for any earlier system listed in "About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

5-97 Second Edition

INSTRUCTION SETS GUIDE

BPsT Raddress
Store Fullword

010001 TPR\3 TM\2 SR\S BR\2

DISPLACEMENT16

Calculates an effective address, EA. Stores the contents of the
Specified R into the location specified by EA. Leaves the values of
the CBIT, LINK, and condition codes unchanged.

> sTAR R,address
Store Addressed Register
101100 IR\S TM\2 SR\S BR\2
DISPLACEMENT16

Calculates a 32-bit (word) effective address, EA. Stores the contents

of the specified R into the register location specified by the offset
portion of FA. Bit 2 and bit 12 of the offset portion of FA determine
the actions of this instruction, as shown in Table 3-1l.

Table 3-11
STAR Actions

Bit 2 | Bit 12 ! Action

1* = Ignore bits 1 and 3 to 9. The offset portion
of EA specifies an absolute register number
from 0 to ‘377.

|
|
|
|
| Bits 13 to 16 of the offset portion of EA
| specify one of the registers ‘20 to ‘37 in
| the current register set.
|

0 | Bits 13 to 16 of the offset portion of EA
| specify one of the registers 0 to ‘17 in
|

|
|

|
|

|
|
| O*
|

|
|
|
|
| the current register set.

|

|

|

|

|

|

|

|

|

|

|

*This is a restricted instruction.

Leaves the values of CBIT and LINK unchanged. The values of the
condition codes are indeterminate. See Chapter 9 of the System
Architecture Reference Guide for more information about register sets.

Second Edition 3-98

I MODE

Note

Do not use the STAR instruction to write into the procedure
base, keys, or modals. You can use LPSW to change any of these
three registers. In addition, you can use a control transfer
to change the procedure base, or a mode control operation to
Change the keys or modals. Under no circumstances should you
try to change the value of the current register set bits
contained in the modals.

If the current ring is not O and EA is outside the range of 0
to ‘17 inclusive, any access causes an RXM violation.

— sic fir.r
Store Character

O1l11000R\8111FR110

If the contents of the specified FIR are nonzero, the instruction
stores the contents of bits 9 to 16 of the specified r into the
Character byte address contained in the associated FAR. Updates the
contents of the appropriate FAR so that they point to the next
Character. Decrements the contents of the specified FIR by 1. Sets
the condition codes to NE.

If the contents of the specified FLR are 0, the instruction sets the
condition codes to EQ amd does not store a character.

The instruction leaves the values of LINK and CBIT unchanged.

Note

When the instruction specifies FLRO, FARO is used. When the
instruction specifies FLR1, FAR] is used.

B sIcD R, address
Store Conditional Fullword
011000R\81011111

AP\32

Compares the contents of R+l and the contents of the 32-bit location
referenced by the specified address pointer. If the two values are
equal, the instruction stores the contents of R in that referenced
location. If the two values are not equal, execution continues with
the next instruction. SICD is an interlocked operation, guaranteed to
work in a multiprocessor.

leaves the values of CBIT and LINK unchanged. The condition codes
indicate reflect the result of the comparison. (See Appendix A.)

3-99 Second Edition

INSTRUCTION SETS GUIDE

Note

R must be an even numbered register.

> sich r,address
Store Conditional Halfword
011000R\81011110
AP\32

Compares the contents of bits 17 to 32 of the specified R with the

contents of the location referenced by the specified address pointer.

If the two values are equal, the instruction stores the contents of r

into that referenced location. If the two values are not equal,

execution continues with the next instruction. Leaves the values of

CBIT and LINK unchanged. Sets the condition codes to BY if the store

occurs and to NE if not.

The comparison and store will not be separated by execution of other

instructions. Therefore, no instruction can alter the contents of the

specified memory location between the compare and the store.

Note

This instruction is useful when two cooperating, sequential

processes are manipulating shared data. It is interlocked

against direct memory I/O. This means you can use it to

interlock a process with a DMA, DMC, or DM@ channel, as well as

to interlock a memory location that is possibly accessed by

I/O.

BP sTEXR
Stack Extend
011000R\30010111

Extends the length of the procedure stack. The designated R contains a

32-bit number that specifies the halfword size of the extension. (A

halfword is 16 bits.)

The firmware rounds up the number contained in the specified R to an

even number of halfwords. The instruction uses this value to allocate

a block of memory to the procedure stack. The extension and the

initial stack segment do not have to be contiguous, since there may not

have been enough room left in the initial stack to contain a complete

frame.

Returns a segment number/offset number in the specified R that

specifies the starting address of the extension. The extension is

automatically deallocated when the current procedure completes

execution. There is no limit on the number of extensions you can make.

Second Edition 3-100

I MODE

A stack fault occurs if there is no room for the extension. The values
of CBIT, LINK, and the condition codes are indeterminate. See Chapters
8 and 10 of the System Architecture Reference Guide for more
information about this instruction, stacks, and stack faults.

P sIFA far,address
store FAR
000000101101 FAR OOO
AP\32

Stores the specified FAR contents as a hardware recognizable indirect
pointer at the memory location referenced by the Specified address
pointer. If the bit number field of the specified FAR contains 0, the
instruction stores the first 32 bits (two halfwords) of the pointer and
clears the pointer’s extend bit to 0. If the bit number field of the
Specified FAR does not contain 0, the instruction saves all 48 bits
(three halfwords) of the pointer and sets the pointer’s extend bit to
1. leaves the values of CBIT, LINK, and the condition codes
indeterminate.

> sTH r,address
store Halfword
O1100 1 IR\3 TM\2 SR\3 BR\2
DISPLACEMENT\ 16

Calculates an effective address, EA. Stores the contents of the
specified r into the 16-bit location specified by EA. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> sTPM
Store Processor Model Number
OO0O00000000010100

Stores the CPU model number and microcode revision number in an
8-halfword field. (A halfword is 16 bits.) XB contains a pointer to
the field in memory. Table 3-12 shows the format of the field.

6-101 Second Edition

or ee oe weere ee

Table 35-12
STPM Memory Field Format

| Halfword | Name | Description

1 to 2 Processor | Contains a code specifying the machine:
Model OL - 400/500, no 15L — 9950
Number Rev B microcode 16L - 9650

1L — 400, Rev. B 17L —- 2550
microcode 18L — 9955

2L — Reserved 19L - 9750
oL —- 350 21L — 2350
4L — 450/550 22L — 2655
5L -— 750 20L - 9655
6L - 650 25L -— 2450
7L — 250 SOL — 9955 IT
8L - 850 SlL — 2755
9L - 250-IT1 o4L — 6350
10L - 550-IT 42L - 9755
11L - 2250

|

| |

| | |

| | |
| | | |
| |

| | | |

| | | |

{ | | |

{ | | |

| | | |

| | |

| | |

| | | |

| | |

| | | |

| | | |

| | | |

| & to4 |! Microcode | Offset 3:

| | | |

| | | |

| | | |

| |

| | | |

| | | |

{ | | |

| | | |

| | |

| | |

| | | |

| | | |

| | | |

| | | |

| | | |

| |

| | | |

Revision Bits 1 to 8 Reserved
Bits 9 to 16 Manufacturing microcode

revision number

Offset 4:
Bits 1 to 16 Engineering microcode

revision number

5 Processor

|

Specifies options enabled for this machine:
Line Bits 1 to 15 Reserved; must be 0

Bit 16 Marketing segment
specification bit

6 Extended To be implemented.
Microcode
ID

7 to 8 --- Reserved for future use.

The STPM instruction leaves the values of CBIT, LINK, and the condition

codes unchanged.

Note

STPM is a restricted instruction.

Second Edition 56-102

I MODE

> STITM

Store Process Timer

O0O00000101001000

Valid for the 550-II, 850, 1450, and 2350 to 9955 II.

The current process time is represented by the sum of the 32-bit
elapsed time (stored in the PCB) and the 32-bit interval timer
(contained in the CPU hardware). Bit 17 of the elapsed time is
equivalent in weight to bit 1 of the interval time. This operation is
equivalent to the following sequence of instructions. (Register 0 is
not actually modified by the STIM instruction.)

LDAR O, PB% + ‘25 /* Get PCB address.
A O, = ‘10L /* Offset of elapsed time.
ST O, TEMP1 /* Elapsed time address -> Temp.
LDAR O, PB% + ‘30 /* Read timer.
TRH 0 /* Store low order
STH O, XB% +2 /* 16 bits.
IRH 0 /* Adjust
PIDH 0 /* weighting.
A O, TEMP1, * /* Add elapsed time.
sT O, XB% +0

Leaves the values of the CBIT, LINK, and condition codes indeterminate.
This instruction is not implemented on the 2250.

» svc
Supervisor Call
0000000101000101

Supervisor call. Generates a directed fault. Leaves the values of
CBIT, LINK, and the condition codes unchanged.

This instruction allows you to make an operating system request that is
addressing mode independent. By software convention, this instruction
sends an operation code and pointers to the operating system to
generate a fault. For more information, refer to Chapter 10 of the
System Architecture Reference Guide.

3-103 Second Edition

LNSTRUCTION SETS GUIDE

>

C
2
4

o’s Complement Register
11000R\30100110

Forms the two’s complement of the contents of the specified R and

stores the result inR. An overflow causes an integer exception. If

there is no integer exception, CBIT is reset to 0. The value of LINK

is indeterminate. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains 0, the

instruction sets CBIT to 1. If bit 8 contains al, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

PP Thr
Two’s Complement r
0O11000R\30100111

Forms the two’s complement of the contents of the specified r and

stores the result in r. An overflow causes an integer exception. If

there is no integer exception, CBIT is reset to 0. The value of LINK

is indeterminate. The condition codes reflect the result of the

operation. (See Appendix A.)

If an integer exception occurs and bit 8 of the keys contains O, the

instruction sets CBIT to 1. If bit 8 contains a 1, the instruction

sets CBIT to 1 and causes an integer exception fault. See Chapter 10

of the System Architecture Reference Guide for more information.

p TOCNP address
Test C Null Pointer

111110110 TM\2 SR\3 Ri\2

[DISPLACEMENT\16]

Calculates an effective address, EA. Tests bits 4 to 32 of the C

language pointer in the location specified by EA for zero. When these

bits are zero, this instruction sets the condition codes equal to zero;

otherwise the condition codes are set not equal to zero. The values of

the CBIT and LINK are unchanged.

° lo — nr

syntax and format for thi
The TCNP instruction also has a register addressing form. The

th rm of is:s

TONP R
011000R\31111000

Second Edition 3-1 C t

I MODE

(The expected form for TCNP register addressing would be

11111011000 sR\300

but this is, in fact, unimplemented.)

If TCNP is used for any earlier system listed in “About This
Book", an unimplemented instruction (UII) fault occurs. (See
Chapter 10 of the System Architecture Reference Guide.)

P FIR fir,R
Transfer FLR to Register
Ol11000R\38111FIR011

Transfers the contents of the specified FIR into the Specified R.
Leaves the values of CBIT, LINK, and the condition codes unchanged.

P ™ address
Test Memory Fullword
100110100 TM\2 SR\3 R\2
DISPLACEMENT \16

Calculates an effective address, EA. Sets the condition codes
according to the numerical value of the 32-bit contents of the location
Specified by EA. (See Appendix A.) Leaves the values of LINK and CBIT
unchanged.

— TMH address
Test Memory Halfword
101110100 TM\2 SR\3 RR\2
DISPLACEMENT \16

Calculates an effective address, EA. Sets the condition codes
according to the numerical value of the contents of bits 1 to 16 of the
location specified by EA. (See Appendix A.) Leaves the values of LINK
and CBIT unchanged.

P IRFL flr,R
Transfer Register to FLR
O11000R\38111FIR101

Transfers the contents of R into the Specified FIR. Clears bits 1 to
ll of R to O so that bits 1 to 6 of the Specified FLR will be 0.
leaves the values of CBIT, LINK, and the condition codes unchanged.

o-105 second Edition

INSTRUCTION SETS GUIDE

Note

The TRFL instruction allows you to load the specified FIR with

a value computed at execution time. The maximum allowable

integer you can load is 2**20. This number is 21 bits wide and

equals the number of bits in a 64K segment.

— TSTQ r,address
Test Queue
0O11000R\81000100

AP\32

The address pointer in this instruction points to the QCB of a queue.

This instruction tests the referenced queue and sets r to equal the

number of items in the queue. Sets the condition codes to when the

queue is empty. If the queue is not empty, the instruction sets the

Condition codes to NE. Leaves the values of CBIT and LINK unchanged.

Second Edition o-106

I MODE

WAIT address
Wait
0000000011001101
AP\32

The address pointer in this instruction points to a 16-bit semaphore
counter, C. The instruction increments C. If C is greater than 0,
either the resource is not available, or the event has not occurred.
Removes the PCB from the ready list, Suspending the process, and adds
it to the wait list associated with the semaphore. It then makes the
register set available, turns off the process timer, and goes to the
dispatcher to find another process to run. The dispatcher enables
interrupts.

If C is less than or equal to O, the currently executing process
continues.

If the instruction places the PCB on the wait list, no general
registers are saved. This means that a process cannot depend on these
registers to be intact after this instruction occurs. This instruction
potentially clears the general, floating, and XB registers.

Leaves CBIT, LINK, and the condition codes unchanged.

For more information about semaphores, the dispatcher, PCBs, and wait
lists, refer to Chapter 9 of the System Architecture Reference Guide.

Note

This is a restricted instruction.

3-107 Second Fdition

INSTRUCTION SETS GUIDE

p xX R,address
Exclusive OR Fullword
100011 MR\3 TM\2 SR\S BR\2

[DISPLACEMENT\16]

Calculates an effective address, EA. Performs an exclusive OR of the

contents of the specified R with the 32-bit value contained in the

location specified by EA. Stores the result in the specified R.

Leaves the values of CBIT, LINK, and the condition codes unchanged.

Note

This instruction also has a register-to-register and an

immediate form. See Appendix B for more information.

p> xXAD
Decimal Add

oo0o0o001i001000000

Performs a decimal arithmetic operation under control of FARO, FARI,

and GR2.

FARO contains the address of field 1. FAR1 contains the address of

field 2. GR2 contains the control word; fields B and C of the control

word specify the decimal operation to be performed, as shown in Table

o-13.

Table 3-15
XAD Decimal Operations

1 B | CB! Operation |! Destination |

O!0 | +F1+F2 | Fe |

1 0 , 1 , +F1-Fe : Fe :

Pio 1 -FuFe 1 Fe
Pia i -FeRe 1 Pe

The scale differential field in the control word specifies the

difference in the decimal point alignment between Fl and Fe, as

follows:

Second Edition 4-108

I MODE

SD Relation of Fl and F2

SD>0 Fl > F2

SD=0 Fl = F2

SD<O Fl < Fe

If the T bit is set to 1, the results are forced positive. If the add
operation results in an overflow, a decimal exception occurs. If no
overflow occurs, the XAD instruction resets CBIT to O to indicate
success.

If a decimal exception occurs and bit 11 of the keys contains a0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

The registers used are GRO, GR1, GR3, GR4, GR6, FARO, FARI, FLRO, and
FLR1. At the end of the instruction, the contents of these registers
are indeterminate. The value of LINK is also indeterminate. The
condition codes reflect the state of F2 after the decimal operation.
(See Appendix A.)

> XBID
Binary to Decimal Conversion
0000001001100101

Converts a binary number to a decimal number. FARO contains the
decimal field address. GR2 contains the control word. This
instruction uses fields A, E, amd H of the control word. H specifies
the length of the binary number and its location, as follows:

H Length Location

0 16 bits GRS register, high side

1 oe bits GR3 register

2 64 bits DAC] register

Converts the specified binary integer to a decimal integer and stores
the result in the location specified by FARO. Leaves the values of
LINK indeterminate. Overflow results in a decimal exception. If no
overflow occurs, resets CBIT to 0. The values of the condition codes
are indeterminate.

The registers used are GRO, GR1, GR3, GR4, GR6, FARO, and FLRO. At the
instruction’s end, the contents of the registers are indeterminate.

3-109 Second Edition

i |

ON SEIS

yi Be
e

When the source register contains all zeros, the destination register

will contain all zeros.

If a decimal exception occurs and bit 11 of the keys contains a O, the

instruction sets CBIT to 1. If bit 11 contains a 1, the instruction

sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of

the System Architecture Reference Guide for more information.

Note

The XBTD instruction does not use or modify FAR1, FIR1, or

FAC1.

pp XCM
Decimal Compare
0000001001000010

Compares two decimal numbers and sets the condition codes depending on

the result of the compare. Uses the G field of the control field to

adjust the two numbers before the compare, as follows:

G Field Decision

>0 Low-order digits of Fl only affect the initial

borrow from the low-order digit of Fe.

<O Assume Fl is zero-extended with low zeros.

FARO contains the address of field 1 (Fl). FAR1 contains the address

of field 2 (F2). GR2 contains the control word. This instruction uses

fields A, B, C, E, F, G, and H of the control word.

The registers used are GRO, GR1, GR5, GR4, GR6, FLRO, and FIR1. At the

end of this instruction, the contents of these registers are

indeterminate. When there is no decimal exception, CBIT is reset to 0.

(This instruction cannot cause a decimal exception.) Leaves the value

of LINK indeterminate. The condition codes reflect the result of the

comparison, as follows.

GG Test Result

GT F2 > Fl

EQ F2 = Fl

LI Fe < Fl

Second Edition 3-110

I MODE

> xXDIB
Decimal to Binary Conversion
0000001001100110

Converts a decimal string to a binary String. FARO contains the
address of the decimal string. GR2 contains the control word.

This instruction uses the A, E, and H fields. Field H Specifies the
length of the binary string and its location, as shown below.

H Length Destination Register

00 16 bits GR2H

Ol 32 bits GR2

10 64 bits GR2/GRS

Converts the decimal string to a binary string of the specified type
and stores it in the specified register. A conversion error causes a
decimal exception. If no decimal exception occurs, the instruction
Sets CBIT to 0. The values of LINK and the condition codes are
indeterminate.

The registers used are GRO, GR1, GR3, GR4, GR6, FARO, and FLRO. At the
end of the instruction, the contents of these registers are
indeterminate.

If a decimal exception occurs and bit 11 of the keys contains a 0, the
instruction sets CBIT to 1. If bit 11 contains a 1, the instruction
Sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of
the System Architecture Reference Guide for more information.

Note

This instruction does not use or modify FAR1, FLR1, or FACI.

xD
Decimal Divide

0000001001000111

Divides a decimal number, D2, by another, Dl, and stores the quotient
and remainder in the location of De.

FARO contains the address of Dl. FARI contains the address of Ie. L
contains the control word. This instruction uses fields A, B, C, E, F,
and H.

o-11l Second Edition

TNSTDIICTTON SETS GUIDE
CBS chins CUINShe ode a aee

Both decimal numbers must be in trailing sign embedded format. In

addition, D2 must contain a number of leading zeros equal to the length

of Dl.

The XDV instruction divides the two numbers. After the divide, the

location of D2 contains the quotient of length (D2 length - Dl length)

followed by the remainder of length (Dl length). Since D2 had leading

zeros, no overflow can occur.

If the T bit contains a 1, the results will be forced positive. For

more information about decimal arithmetic, refer to Chapter 6 of the

System Architecture Reference Guide.

The registers used are GRO, GR1, GR3, GR4, GRE, FARO, FAR1, FLRO, and

FLR1. At the end of the instructions, the contents of these registers

are indeterminate.

At the end of the instruction, the condition codes, LINK, FARO, and

FAR1 contain undefined results. If no overflow occurs, CBIT is reset

to O.

If Dl is 0, overflow occurs and causes a decimal exception. Decimal

exceptions also occur if Dl or Da has the incorrect data type or if the

length of D2 is less than that of Dl. If no decimal exception occurs,

the instruction resets CBIT to O.

If a decimal exception occurs and bit 11 of the keys contains a 0, the

instruction sets CBIT to 1. If bit 11 contains a 1, the instruction

sets CBIT to 1 and causes a decimal exception fault. See Chapter 10 of

the System Architecture Reference Guide for more information.

P xXED
Numeric Edit

0000001001001010

Edits the contents of a string under control of a subprogram. The

registers used are GR2, XB, FARO, FAR1, and FLRO. At the end of the

instruction, the contents of these registers and the CBIT, LINK, and

condition codes are indeterminate.

FARO contains the address of the source string. The source string must

be leading separate sign type and must have at least the same number of

decimal digits and the decimal point alignment as called for in the

edit subprogram.

FAR] contains the address of the destination string. Bits 1 to 8 of

GR2 contain the floating character; bits 9 to 16, the status register.

Bits 17 to 24 of GR2 contain the number of remaining bytes to le

processed (used if a favlt or interrupt occurs). Bits 25 to 82 of GR2

contain the suppression character whose initial value is determined by

bit 12 of the keys ('240 if bit 12 contains 0; ‘40 if bit le contains

1). XB contains the address of the edit subprogram.‘et ae ee

Second Edition 3-112

I MODE

The instruction uses an edit subprogram to alter a source string and
Store the edit result in a destination location(s). To set up, perform
@ decimal move to correct the type, alignment, and length of the number
to be edited. Next, use a LCHQ instruction to set up the initial
contents of the register.

Each 16-bit halfword in the edit subprogram has the format shown in
Figure 5-4, where:

Lis 1 if this 16-bit halfword is the last halfword
in the subprogram,

O if it is not the last halfword;
E is a suboperator;
M is a suboperator modifier.

12 34 89 16

| Lt! Ot E | M |

Edit Subprogram Halfword Format
Figure 3-4

The XED instruction uses several variables internally to control the
edit subprogram. These are shown in Table 3-14. There are 17 edit
suboperators, shown in Table 3-15.

6-113 second Edition

TNCTOTIICTTION SETS CIITTR
heheUS Nadie Y ihede VRSAS he ke DPlad cle Pu? ~~

Table 3-14

XED Internal Variables

Var | Definition

| |

| |

| SC | Zero suppression character; contained in B. Initial |

| | value is the space character (‘240 or ‘40 if bit le |
| | of the keys contains 0 or 1, respectively). |

FC	Floating edit character; contained in GR2. Initial
	value is not defined.
SIGN	Sign of the source field. The first character fetch

| | sets up the value of this variable. |

| SIG | End zero suppression flag. |

Table 3-15
XED Suboperators

| Subop | Mnem | Name and Description

|
|

00 ZS | Zero Suppress. Fetches M digits from the source |

| field consecutively, each time checking SIG. [If|

| SIG is 1, copies the digit into the destination |

| string. If SIG is 0 and the digit is not 0, |

| inserts the floating character (if defined) |
| and copies the digit into the destination field. |

| If SIG is 0, the digit is not 0, and the |

| floating character is not defined, sets the SIG |

| flag and copies the digit into the destination. |
| If SIG and the digit are both 0, substitutes
| $C for the O digit in the destination field. |

Ol IL | Insert Literal. Copies M into the |
| destination string. Increments XB and FAR] by 1.|

SS | Set Suppress Character. Sets SC to M and |

| increments XB by 1. |

03 ICS | Insert Character. If SIG is 1, copies M into the |
| destination string. If SIG is 0, copies SC into|
| the destination string. Increments XB and FAR] |

| byl. |

| Insert Digits. If SIG is 0, and FC is defined, |
| copies FC and M digits into the destination field|
| then sets SIG to 1. Increments XB by 1, FARO by|

| M, and FAR] by Mtl. If SIGis O and FC is not |

| defined, sets SIG to 1 and copies M digits from |

| the source to the destination. Increments XB by|

| 1 and both FARO and FAR] by M. If SIG is 1, |

| copies M digits from the source to the |

| destination and increments XB by 1 and both FARO |

| and FAR] by M. |

|

|

|

|

|
|

|

|

|

|

|

|

|

|

| Of
|

|

|

|

|

| ID
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Second Edition 5-114

I MODE

Table 3-15 (continued)
XED Suboperators

Name and Description

10

ll

12

15

14

15

16

17

ICP

SFP

SFM

SFS

FS

SF

Is

|

|
Insert Character if Minus. If SIGN = 0, copies |
M into the destination string. If SIGN = 1, |
copies SC into the destination string. |
Increments both SB and FAR1 by 1. |

Insert Character if Plus. If SIGN =0, copiesM |
into the destination string. If SIGN = 1, |
copies SC into the destination string. |
Increments both SB and FAR1 by 1. |

Set Floating Character. Sets FC to M and |
increments XB by 1. |

Set Floating if Plus. If SIGN = 0, sets FC toM. |
If SIGN = 1, FC to SC. Increments XB by 1. |

Set Floating if Minus. If SIGN = 1, sets FC to M.|
If SIGN = 0, sets FC to SC. Increments XB by 1. |

Set Floating to SIGN. If SIGN = 0, sets FC to |
‘255. If SIGN = 1, sets FC to ‘255. Increments |
XB by 1. |

dump if Zero. If the condition flag in A = 0, |
increments XB by 1. If the condition flag inA |
= 1, adds M to XB and then increments XB by 1. |

Fill with Suppression Characters. Copies SC |
M times into the destination string. Increments |
XB by 1 and FAR1 by M. |

Set Significance. If SIG = 0 and FC <> 0, inserts |
FC into the destination string, sets SIG to l, |
and increments XB and FAR] by 1. If SIG = O and|
FC = 0, sets SIG to 1 and increments XB and FAR1 |
by 1. If SIG = 1, increments XB by 1. |

Insert Sign. If SIGN = 0, copies ‘253 into the |
destination string. If SIGN = 1, copies ‘255 |
into the destination string. Increments XB by 1.|

Suppress Digits. Fetches M digits from the source|
string and checks if they are ‘260. If the source!
digit = ‘260, inserts SC into the destination |
string. If the source digit <> ‘260, copies the |
Source digit into the destination string. |
Increments XB by 1 and both FARO and FAR] by M. |

Embed Sign. Fetches M digits from the source |
string. If SIGN = 0, copies each digit into the |
destination string. If SIGN = 1, embeds a minus|
Sign into each digit before copying it into the |
destination string. Table 6-15 shows the |
Characters used to represent the sign/digit |
combinations. A } symbol represents negative 0. |

o-115 second Edition

TRICITIMOTIANTOAT CTlaAMA MTTTTNYO
LLLIVILVAD mod ULL

p> XH r,address
Exclusive OR Halfword
10101 1 MR\s TM\2 SR\S RR\2

[DISPLACEMENT\16]

Calculates an effective address, FA. Performs an exclusive OR of the

contents of the specified r with the 16-bit value contained in the

location specified by EA. Stores the result in r. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

This instruction also has a register-to-register and an
immediate form. See Appendix B for more information.

p> xYP
Decimal Multiply
o000001001000100

Multiplies one decimal number, M, by another, Dl, and stores the result

in D2’s location in memory. M is right justified in field De at the

start of the operation.

FARO contains the address of Dl. FAR1 contains the address of De. GRe

contains the control word; this instruction uses fields A, B, C, E, F,

G, H, and T. Field G, the scale differential, must contain the number

of decimal digits in M.

The number of decimal digits in De is greater than or equal to the

number of decimal digits in Dl plus the number of decimal digits in M

(specified by G). Normally, the digits to the left (more significant

side) of M are zeros. If this is not the case, then a partial product
field is added in.

The instruction multiplies M by Dl and stores the result in the
location specified by FAR]. The result of the multiply is:

Dl x M + partial product field

The partial product field is equal to:

length(D2) - M.

The partial product field is left justified in [e's location. The
maximum partial product added in per traverse of the multiplicand is:

source digits + miltiplier digits processed

Second Edition o-116

I MODE

There is also an implied weighting of the partial product field. The
weighting is:

10 ** multiplier digits

If the T bit contains a 1, the results are forced positive.

The registers used are GRO, GR1, GR3, GR4, GR6, FARO, FARI, and XB. At
the end of this instruction, the contents of these registers are
indeterminate. At the end of the XMP instruction, the condition codes
reflect the state of the result. (See Appendix A.) Overflow causes a
decimal exception. If no overflow occurs, XMP resets CBIT to 0. LINK
contains undefined results.

A decimal exception occurs if there are more potential or actual
product digits than there is space in I2. If a decimal exception
occurs and bit 11 of the keys contains a 0, the instruction sets CBIT
to 1. If bit 11 contains a1, the instruction sets CBIT to 1 and
causes a decimal exception fault. See Chapter 10 of the System
Architecture Reference Guide for more information.

> xMV
Decimal Move

O0O00001001000001

Moves a string of characters from one location to another.

FARO contains the address of the source string. FAR] contains the
address of the destination string. GR2 contains the control word.
This instruction uses fields A, B, D, E, F, G, H, ami T.

The instruction moves the contents of the source field into the
destination field from right to left. If the B field in the control
word is 1, the instruction changes the sign of the source field during
the move. If the D field in the control word is 1 and the scale
differential is greater than 0, the instruction rounds the source field
during the move. If the scale differential (from the H field) is less
than 0, the instruction pads the source field with SD trailing zeros
before transferring.

If the T bit is set to 1, the result will be forced positive.

An overflow causes a decimal exception. If no decimal exception
occurs, the instruction resets CBIT to O. At the end of the
instruction, LINK, FARO, and FAR] contain undefined results. The
values of the condition codes reflect the state of the destination
field after the move. (See Appendix A.)

3-117 Second Edition

INSTRUC+TON SE- Ss quAAD

If a decimal exception occurs and bit 11 of the keys contains a 0, the

XMV instruction sets CBIT to 1. If bit 11 contains a 1, the

instruction sets CBIT to 1 and causes a decimal exception fault. See

Chapter 10 of the System Architecture Reference Guide for more

information about decimal exceptions.

Note

The source and destination strings may not overlap in memory.

Second Edition 6-118

I MODE

72M
Compare Character Field
0000001001001111

Compares two fields and sets the comiition codes depending on the
result of the compare. Uses registers GR3, GR4, FARO, FARI, FLRO, and
FIR1. At the end of this instruction, the contents of these registers
are indeterminate.

FARO contains the address of field 1 (Fl). FIRO contains an integer
Specifying the length of Fl. FAR1 contains the address of field 2
(F2). FLR1 contains an integer Specifying the length of F2.

The instruction compares the contents of Fl and F2 ona byte by byte
basis. If the fields are not of equal length, the instruction
automatically extends the shorter string with Space characters. Sets
the condition codes as a result of the comparison, as follows:

Result of Compare Set Condition Codes

Fl > F2 GT

Fl = F2 EQ

Fl < FQ LT

When the instruction completes execution, the values of CBIT and LIK
are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZCM does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

ZED
Character Field Edit
O000001001001001

Controls an edit subprogram.

Uses the registers GR3, GR4, FARO, FAR], and FLRO. At the end of this
instruction the contents of these registers are indeterminate. Leaves
the values of CBIT, LINK, and the condition codes indeterminate.

FARO contains the address of the source string. FLRO specifies the
length of the source string. FAR] contains the address of the

6-119 Second Edition

INSTRUCTION SETS GUIDE

destination string. XB contains the address of the edit subprogram.

The ZED instruction uses the edit subprogram to alter the source

string, then loads the edited result into the destination string. The

subprogram, addressed by the contents of XB, contains a list of

commands, each with the format shown in Figure 5-5, where:

Lis 1 if this command is the last command in the subprogram,

O if it is not;
E is the edit opcode;
M is the edit modifier.

12 6 7 8 9 16

{ L | 00000 | E | M |

ZED Subprogram Word Format
Figure 35-5

Bits 2 to 6 must be O.

M, the operator modifier, specifies information E uses when editing the

source string. (See Table 3-16.)

E, the edit suboperator, specifies the operation to be performed on the

source string. Table 3-16 shows the available values for E.

Second Edition 5-120

I MODE

Table 3-16
ZED Suboperators

| Subop | Value | Action

CPC 00 Copies characters from the source string into the
destination string. If the length of the source
string is greater than the contents of the M field,
then CPC moves a total of M source characters into
the destination string, increments FARO and FAR] by
by M, increments XB by 1, and decrements FLRO by M.
If the length of the source string is less than the
the contents of the M field, then CPC moves the
rest of the source string into the destination
string, and then pads the remaining space to be
filled with spaces. (See note.) Increments FARO
by FLRO and FAR1] by M, increments XB by 1, and
and decrements FLRO by FLRO (so FLRO = 0).

INL
increments both XB and FARI1 by 1.

SKC 10 Skips characters in the source string. If the
remaining length of the source string is greater
than or equal to the contents of the M field, then
SKC skips over the next M characters of the source
field by incrementing FARO by M and decrementing
FLRO by M. If the remaining length of the source
string is less than the contents of the M field,
SKC skips over FLRO characters in the source string
by incrementing FARO by FLRO and decrementing FLRO
by FLRO (FLRO = 0). In either case, SKC increments
XB by 1.

BLK 11 Inserts M spaces (see note) into the destination
string, increments FAR] by M, and increments XB

| by 1.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Ol | Inserts M into the destination string and
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |

| |

i |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

|

| |

| |

| |

| |

|

| |

| |

| |

| |

| |

Note

A space is ‘240 or ‘40, depending on whether bit 12 of the keys
is Oori1. This instruction uses GR3, GR4, the FARs, and the
FIRS during its operation. Since ZED does not save the
contents of these registers before using them, any data
contained in them is overwritten when this instruction
executes, unless you save it ahead of time.

3-121 Second Edition

TRAICHMMTIOMNTAT ATANCG TITTY?
ALOLIVUVOL LOU0bi UTUSLA

 2FIL
Fill Field with Character
0000001001001110

Stores a character into a series of destination bytes. Uses registers
GR3, GR4, FARO, FAR1, FLRO, and FIR1. At the end of this instruction,
the contents of these registers are indeterminate.

Bits 9 to 16 of GR2 contain the character to be stored. FAR] contains
the starting address of the destination field (byte aligned). FIR1
contains an integer specifying the length of the destination field (in
bytes).

The instruction stores the character specified in GR2 in each byte of
the destination field. If FLR1 contains 0, no operation takes place.
Leaves the values of CBIT, LINK, and the condition codes indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZFIL does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it

ahead of time.

> 2M address
zero Memory Fullword
100110011 TM\2 &R\S R\e
DISPLACEMENT16

Calculates an effective address, EA. Loads 0 into the 32-bit location
specified by EA. Leaves the values of CBIT, LINK, and the condition

codes unchanged.

p> ZMH address
zero Memory Halfword
101110011 TM\2 SR\S R\2
DISPLACEMENT16

Calculates an effective address, EA. Loads O into the 16-bit location

specified by EA. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

second Edition o-122

I MODE

PP zMv
Move Character Field

0000001001001100

Moves a character field from one location to another. Uses registers
GR3, GR4, FARO, FAR1, FLRO, and FIR1. At the end of this instruction,
the contents of these registers are indeterminate.

FARO contains the address of the source string (byte aligned). FIRO
Specifies the length in bytes, N, of the source string. FAR] contains
the address of the destination string (byte aligned). FIR1 specifies
the length in bytes, M, of the destination string.

Compares Nand M. If Nis less than M, the instruction moves the
contents of the source string into the destination string followed by
M-N space characters. A space character is ‘240 or ‘40 when bit 12 of
the keys is O or 1, respectively. If the destination string is
Shorter, the instruction moves the first M characters of the source
string into the destination string.

When the instruction completes, the values of FARO, FAR], FIRO, FIR,
CBIT, LINK, and the condition codes are indeterminate.

Note

This instruction uses GR3, GR4, the FARs, and the FIRs during
its operation. Since ZMV does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

This instruction does not work with overlapping strings. See
Chapter 6 of the System Architecture Reference Guide for more
information.

 zZMvD
Move Characters Between Equal Length Strings
0000001001001101

Moves characters from one string to another of equal length. Uses
registers GR5, GR4, FARO, FARI1, FLRO, and FIR1. At the end of this
instruction, the contents of these registers are indeterminate.

FARO contains the address of the source string. FAR1 contains the
address of the destination string. FIR1 contains the number of
Characters to move, N.

The instruction moves N characters from the source string to the
destination string. Characters are moved from lower addresses to
higher addresses.

O-123 Second Edition

TNOTOTWPTO
PalleeeTS heWOoe ok SPlt ale Ba? CUIDE

When the ZMVD instruction completes, the values of FARO, FAR1, FLRO,

FLR1, CBIT, LINK, and the condition codes are indeterminate.

Note

The ZMVD instruction uses GR3, GR4, the FARs, and the FIRs

during its operation. Since ZMVD does not save the contents of

these registers before using them, any data contained in them

is overwritten when this instruction executes, unless you save

it ahead of time.

This instruction does not work with overlapping strings. ‘See

Chapter 6 of the System Architecture Reference Guide for more

information.

PP ZTRN
Character String Translate
0000001001001000

Translates a string of characters and stores the translations in the

specified destination. Uses registers GR3, GR4, FARO, FARI, FLRO, and

FIR1. At the end of this instruction, the contents of these registers

are indeterminate.

FARO contains the address of the source string (byte aligned). FAR1

contains the address of the destination string (byte aligned). FIR1
specifies the length of the source and destination strings. XB

contains the address of a translation table. Each byte in the 256-byte

table contains an alphabetic character.

The instruction uses the address in FARO to reference a character. It

interprets this character as an integer, adding it to the contents of

XB to form an address into the translation table. The instruction

takes the referenced character in the translation table and writes it

into the location specified by FAR1. After storing the character, the

instruction increments the contents of FARO and FAR1 by 1, decrements

the contents of FIRl by 1, and repeats the operation until FIR1

contains 0.

At the end of the instruction, FARO and FAR] point to the location that

follows the last byte of the source and destination strings,

respectively. FLR1 contains 0. Leaves the values of XB, CBIT, LINK,

and the condition codes unchanged.

second Edition o-124

I MODE

Note

This instruction uses GR3, GR4, the FARs, and the FLRs during
its operation. Since ZTRN does not save the contents of these
registers before using them, any data contained in them is
overwritten when this instruction executes, unless you save it
ahead of time.

3-125 second Edition

APPENDICES

Condition Code

Information

Bits 9-10 of the keys contain the condition codes. Many arithmetic,
branch, skip, jump, and other instructions set these bits to indicate
the result of a test (result is less than 0, for example), to indicate
whether a value is positive or negative, and so on. Other instructions
use the condition code values as Boolean values. The instruction
entries in Chapters 2 and 3 of this manual also describe how an
instruction affects the state of these bits.

The LT condition code (bit 9 of the keys) contains the extended sign
for arithmetic and comparison operations. The extended Sign is the
Sign of the result as if the operation had been done on a machine of
infinite precision; thus, LI shows the correct sign of the result
despite any overflow. For logic operations, LT reflects the sign of
the result.

The EQ condition code (bit 10 of the keys) shows whether or not a 16-
or 52-bit result is equal to 0.

Table A-~1 shows condition code interpretation for comparison,
arithmetic, and logic operations.

A-1 second Edition

TRICUTRATIOCNNTOAT OTANI MTT
LNOLNMUOLLUUN Dolo UUs

Table A-1
Interpretation of Condition Codes

(CBIT is set tol
as well, to

indicate overflow.)

| LT, EQ | | |
| Value | Comparison | Arithmetic | Logic
| —— eeeeee

| OO | Register >0O | Signed result > 0 | Result <> 0,
| | Register > EA | Unsigned result <> O | High-order bit = 0
| | Reg 1 > Reg 2 | |
a+-——— + —aaot+

i 8601 i Register = 0 i Result = 0 i Result = 0,
| | Register = EA | | High-order bit = 0
| | Reg 1 = Reg 2 | |
| + + +
| 10 | Register <O | Result <0 | Result <> 0,
| | Register < EA | | High-order bit = 1
| | Reg 1 < Reg 2 | |
|
| 611 Not working Possible if largest Not working
|
|
|

|
|

|

| negative number is |
| added to itself. |
| |
| |
| |

Second Edition A-2

Addressing

Information

As noted in Chapter 1, the 50 Series processors Support several kinds
of addressing: direct addressing, indexed addressing, indirect
addressing, indirect indexed addressing, and general register relative
addressing. In addition, these processors also have several modes of
addressing, each of which forms addresses differently.

ADDRESSING MODES AND FORMATS

The addressing modes are listed below. Their formats and address
formation are supplied in this Appendix.

@ 64V Mode, Short Form

@ G4V Mode, Long Form and Indirect Form

@ 32I Mode

@ 32R Mode

@ 64R Mode

@ 165 Mode

@ 32S Mode

Address trap information is also provided at the end of this Appendix.

B-1 second Edition

Sedeeeeed

64V Mode Short Form

Figure B-l1 and Table B-1 display and explain 64V mode short form

instructions.

1 2 38 6 7 8 16

1I'i Xi OP i $i DISPLACEMENT |

Instruction Format

| ADDRESS |

Indirect Pointer Format

64V Mode Formats, Short Form

Figure B-1

Table B-1
64V Mode Short Form Summary

| Ii X18! Disp | Inst Type | Example | Form of EA |

| |

(;o1otdi 0-'7@ | Direct | LDA ADR | REG |

| | | | ‘'10-'3877 | Direct | | $SB+D |

| | | | ‘400-'777 | Direct@@ | | LB+D |

|oOorl1lidotl 0O-'7@ | Indexed | LDA ADR,X | REG, if D+X<'7;@ |

| | | | l | | SBHD+X, if D+X>'7@ |

| | | | ‘'10-'377 | Indexed | | SB+D+X |

| | | | '400-'777 | Indexed@@ | | LB+D+X |

'1ioirot O-'7@ | Indirect | LDA ADR,* | I(REG) |

| | | | ‘'10-'777 | Indirect | | ICPB+D) |

rlidriot O-'7 | Indirect, | LDA ADR,X* | I(REG), if D+X<'7;@!

en ee lpreindexed | | I(PB+D+X), |

| | | | | | | if DxX>’'7@ |

| | | ‘10-'77 | Indirect, | LDA ADR,X* | I(PB+D+X) |

| | | | lpreindexed | | |

| | | | '100-'777 | Indirect, | LDA ADR,*1 | I(PB+D)+x |

| | | | | postindexed| | |

101011 1'-340-'+3771 Direct | LDA ALR | P+D |

| O11 11 |'-340-'+377! Indexed | LDA AR,1 ! P+DX |

11101 1 1'-340-'+377! Indirect | LDA ADR,* | I(P+D) |

/ 1.211 1'-340-'+3771 Indirect, | LDA ADR,1* | I(P+D+X) |

| | | | | | || preindexed

Second Edition B-2

ADDRESSING INFORMATION

Notes to Table B-1

@ This table assumes segmented mode (modals bit 14=1). For
nonsegmented mode, the displacement range is 0O to ‘37,
rather than 0 to ‘7. This means that the range ‘10 to ‘377
Changes to ‘40 to ‘377 in nonsegmented mode. The range ‘400
to ‘77? remains unchanged.

@@ In these address forms, the displacement offsets the
contents of LB by ‘400 (bit 8=1). To compensate for this,
set the contents of LB to the current value of the link
frame minus ‘400. For example, if the segment number in LB
is ‘4002 and the offset number in the displacement is
‘177400, the offset of ‘400 gives the location of the link
frame aS segment number ‘4002, offset number 0.

This mode allows one level of indexing, and one of indirection.

REG refers to a location in the register file. See Address
Traps at the end of this chapter.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STX, and STY
do not do indexing. The effective address is formed as if
bit 2 = 0.

B-3 second Edition

TRICTMTICONTOAT Clma MTTye
LAOLEULLY WI UI

64V Mode, Long Form and Indirect Form

Figure B-2 and Table B-2 display and explain G4V mode long and indirect

form instructions.

1 23 6 % #+$11121381415 1617 3&2

| I} Xt OP! 11000! Y ! XX! BR | DISP |

3O 48

AUGMENT CODE* |

Instruction Format

1 2 o 4 5 16 17 oR

| F | RING! 01 SEGMENT | OFFSET |

32-bit Indirect Pointer Format

1 2 &o 4 § 16 17 32 35 6 87 48

| F | RING | 1! SEGMENT | OFFSET | BIT# | RESERVED |

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

48-bit Indirect Pointer Format** |
|

* For quad operations only.

** This indirect format is used only by a few instructions;
most use the 32-bit form.

64V Mode Formats, Long Form and Indirect Form
Figure B-2

Second Edition B-4

ADDRESSING INFORMATION

Table B-2
64V Mode Long Form, Indirect Sumary

I! X 1! ¥Y 1! BR! Instruction Type | Example | Form of EA |
|

O0O!0O1!1 01 O11 Direct | LDA ARR | PB/D |
		Ol			SB+tD
		10			LB+D
		ll		XB+D	

O!0O1 11 00 | Indexed by y | LDA AR,Y | PB/DY
	1 Ol		SB+tD+Yy		
		10			LB+D+y
		ll)		XB+D+Y	

O!11!01 00 | Indexed by x | LDA ADR,X | PB/DX |
		Ol			SB+D+xX
		10			LB+D+xX
		11)		XB+D+X	

O!14141 1 OO1 Indirect | LDA A,* | ICPB/D) |
		Ol		ICSB+D)	
		10			ICLB+D)
		114		I(XB+D)	

110101 00 | Preindexed by Y | LDA ADR,Y* | I(PB/DHY) |
| | Ol | | | ICSB+D+Y) |

| | | 10 | | | ICLB+D+y) |
| | | 11 | | [CXB+D+Y) |

1! 01 11 00! Postindexed by Y | LDA AIR,*Y | I(PB/D)+Y |
| | | Ol | | | ICSB+D)+Y |

| | 10 | | | ICLB+D)+Y |
| | | ll | | ITCKB+D)+Y

111101 00! Preindexed by K | LDA ADR,X* | I(PB/DX) |
		Ol			ICSB+D+X)
		10			ICLB+D+xX)
		11		ICXB+D+X)	

111111! 00 | Postindexed by KX | LDA ADR,*X | I(PB/D)+X
| | | Ol | | | ICSB+D)+xX
| | | 10 | | | ICLB+D)+xX
| | | ll it | I(XB+D)+xX |

Notes to Table B-2

The processor performs X and Y indexing and 32-bit word
(inter-segment) indirection.

PB/D indicates that the displacement is relative to the origin
of PB. PB specifies the segment number (the offset must be 0);
the displacement specifies the offset.

All displacements are within the range 0 to ‘177777.

B-5 Second Edition

TATCHTIATICNNTCAT OTN MTTTND
LDLIVULLUN pt Ui

The instructions DFLX, FLX, JSX, IDX, LDY, QFLX, STIX, and SITY

do not do indexing. The effective address is formed as shown

in Table B-3. Bit 2, the X bit, is used as part of the opcode

in these instructions.

Table B-35

Address Formation for Nonindexing Instructions

i Ii X i Y | Instruction Type !
| |
|'or1otrdl Direct |

;otrotlll Direct |

(-oi1ridoil Direct |

;-otlidld Direct |
(11 ord I(A) |
l1iorli I(A) |
rlidriodol I(A) |
flildridli I(A) |

Notes to Table B-3

For the earlier processors listed in "About This Book", see

Appendix B for information on their address formation for

nonindexing instructions.

The symbol A in Table B-3 represents the value calculated from

the base register (PB, SB, LB, or XB) and displacement in the

instruction.

Second Edition B-6

ADDRESSING INFORMATION

del Mode

Figure B-3 and Table B-4 display and explain 32I mode instructions.

1 67 910 1112 1415 16 17 on

| OP ! IR | ™ | SR | BR DISPLACEMENT |

Instruction Format*

1 2 3&3 4 5 16 17 oe

| F | RING! 01 SEGMENT | OFFSET |

Indirect Pointer Format (Short Form)

1 2 &o 4 5 16 17 32 35 3 B7 48

| F | RING | 1 | SEGMENT | OFFSET | BIT# | RESERVED |

Indirect Pointer Format (Long Form)

| F | RING! Bt SEGMENT | OFFSET |

C Language Pointer**

1 16 17 on

| INSTRUCTION BITS 17 TO 32 | ZEROES |

Immediate Type 1***

1 16 17 on

| SIGN EXTENSION | INSTRUCTION BITS 17 TO 32 |

Immediate Type 2***

1 89 56 57 64

| BITS 17 TO 24 | ZEROES | BITS 25 TO 32 |

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
| |
| |
| |
| |
| |

|
| |
| |
| |
| 1 2 o 4 5 16 17 oe |
| |
| |
| |
| |

|
| |
| |
| |
| |
|

| |
| |

|
| |
| |

|
| |
| |
| |
| |
| |
| |Immediate Type 3 (Floating Point)***, ****

Sel Mode Formats

Figure B-3

B-7 second Edition

TATOMTHATIOCONITOMT OTANI MOTTO
AWDLIVUULLUN OGUML

x x

x KX

* KKK

Notes to Figure B-3

T is the tag modifier which, in combination with the SR

and BR fields, specifies the instruction type.

The C language pointer is not available for the earlier

processors listed in "About This Book".

The instruction specifies the immediate type to use.

During instruction execution, the processor forms the

immediate in the appropriate format and stores it

internally for use in the operation as shown in Figure B-3.

Bits 1 to 8 of Immediate Type 3 are formed from I mode

instruction bits 17 to 24; bits 57 to 64 from I mode

instruction bits 25 to de.

Table B4
Sel Mode Summary

2 | BR | Instruction Type | EA (Segment)! EA (Offset)

o
O
O
O
O
O

O
K
R
P
K
F
N
N
A
A
N

O
o

H
r
o
s
0
o
P
s
b
0
b
0
4
6
0
!

B
no

Indirect
Indirect postindexed
Indirect
Indirect preindexed
Direct
Indexed
Register-to-register
Immediate type 1
Immediate type 2

| I(5 to 16)
|
|
|

|
|
|
|
|

Immediate type 35 | —--
|
|
|
|
|
|
|

|
|

I(5 to 16)
I(5 to 16)
I(5 to 16)
BR(5 to 16)

BR(5 to 16)

ICD+BR)

T(D+BR)

I(D+BR+SRH)
D+BR

|
|
|

|
|
|
|
|
|
| Floating register
| source (FRO)
| Undefined; generates
|
|
|
|
|
|
|

|
|
|

»
N
Y
H
N
n
o
e
r
r

o
O

!

UII (unimplemented
instruction) fault

Floating register
source (FR1)

Undefined; generates
UIT fault

General register
relative (undefined |
for the earlier |
processors listed in|
"About This Book") |

n
o

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SR(5 to 16) |
|
|
|
|

(I(D+BR))+SRH

Note to Table B-4

ADDRESSING INFORMATION

oeR Mode

Figure B-4 and Table B-5 display and explain 52R mode instructions.

1 2 8 6 7 8 16

| IiXt OP | § | DISPLACEMENT |

Short Instruction Format

1 2 38 6 7% 1215 1415 16

| I1 X! OP 1! 110000! OP | cB |

16-bit Long Instruction Format

1 2 38 6 7 1215 1415 1617 32

de-bit Long Instruction Format

l 2 16

| IT | ADDRESS

Indirect Pointer Format

1 2 16

| O | ADDRESS |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | I!X! OP i 110000! OP |! cB | DISP |
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
| Final Effective Address Format*

|

eR Mode Formats

Figure B-4

B-9 second Edition

TATCWRWATTCENTMa? CTaANa MTT
LINDLNUULLUIN DOod0 Uv

Note to Figure B4

The final form of an effective address in 32R mode is only 15

bits wide. Special hardware exists to truncate the effective

address to this length. The program counter, however, is a

full 16 bits wide. Multilevel indirection is a feature of

oeR mode.

Table B-5
oeR Mode Summary

| I |X 1S 1 CBI Displacement | Instruction Type \Form of EAI

| |

1'o!1ao1ol-t 0 to ‘777 | Direct | O/D |

1-oO!r!1ioit-t O to ‘777 | Indexed | O/D+X |

fli1orotl-—-i 0 to ‘777 | Indirect | ICO/D) |

llildi1oiti-—t Oto ‘77 | Indirect, preindexed | ICO/D+X) |

11121101 -— 1! ‘100 to'777 | Indirect, postindexed | ICO/D)+X |

1010111 — 1'-3860 to ‘+8771 Direct | P+D |

1O!12l1t14t —1'-360 to ‘+877! Indexed | P+D+X |

1110111 — 1|'-8360 to ‘+3771 Indirect | I(P+D) |

i 111111 -- 1'-360 to ‘+377! Indirect postindexed | ICP+D)+X |

ror ol1l1lilis32 | ——— | @Postincrement | §P |

ioOrriiie2 | ——— | @Postincrement, indirect,! I(SP)+X |

| | | | | postindexed | |

Pr1r+ior1ria2a tl --- | @Postincrement, indirect | I(SP) |

(-or+or11lis | -—— | #Predecrement | SP-1 |

roOrlrilis3 --- | #Predecrement, indirect, | I(SP-1)+x!

| | | | | | postindexed | |

lliorl1li13s8 | -—~ | #Predecrement, indirect | I(SP-1) |

'oO!totlio 1O0Oto ‘177777 | *Direct, long reach | D |

(OtliltoO 1|O0Oto ‘177777 | *Indexed, long reach | D+X |

i'1'101110 | Oto ‘177777 | *Indirect, long reach | ICD) |

/lilit2l110 10 to ‘177777 | *Indirect, preindexed, | I(DtX) |

| | | | | | long reach | |

1 li1ilt112 1 Oto ‘177777 | *Indirect, postindexed, | I(D)+xX |

| | | | | long reach | |

10101111 #1 0to ‘177777 | *Direct, stack relative | D+SP |

i;O!tiltiil1iil |Oto ‘177777 | *Indexed, stack relative | DiSP+xX |

i11Ot1t1 | Oto ‘177777 | *Indirect, stack relative! I(D+SP) |

!}li2ltitdil1 1 Oto ‘177777 | *Indirect, preindexed | ICD+SP+X)|

| | | | | | stack relative | |

i 1liili113 1 Oto ‘177777 | *Indirect, postindexed | I(D+SP)+x!

| | | | | |stack relative

Second Edition B-10

ADDRESSING INFORMATION

Notes to Table B-5

* These instruction types use the 32-bit long format shown in
Figure B-4.

@ These instruction types use the 16-bit long format shown in
Figure B-4. They also increment the contents of SP by 1
during EA formation.

These instruction types use the 16-bit long format shown in
Figure B-4. They also decrement the contents of SP by 1
during EA formation.

For all instruction types listed above, address traps can occur
when any part of the EA formation results in an address in the
range 0 to ‘7 (segmented mode) or 0 to ‘37 (unsegmented mode).
See the end of this chapter for more information.

The processor performs one level of indexing and multiple
levels of indirection.

O/D indicates that the displacement is within Sector 0.

The instructions DFLX, FLX, JSX, LDX, LDY, QFLX, STX, and STy
do not do indexing. The processor treats the X bit asa O to
determine what addressing mode to use. For example, if one of
these instructions specifies I, X, S, and CB as 0113, the
processor interprets it as 0013.

B-11 second Edition

TRICITATINT Cran TTT Ye
AWLIVSL TON SETS GUIDE

64R Mode

Figure B-5 and Table B-6 display and explain 64R mode instructions.

1 2 8 6 7 8 16

(Ii xt OP ! S81 DISP |

Short Instruction Format

1 2 3 6 7 1213 1415 16

| I1xXt Op 1110000! OP | CG i!

16-bit Long Instruction Format

1 2 3 6 7 1213 1415 1617 3&2

1ItxX1 Op 1110000! OP | CB

|!

DISP |

32-bit Long Instruction Format

| ADDRESS |

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
| Indirect Pointer Format*

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

*Only a single level of indirection is possible in 64R mode.

64R Mode Formats

Figure B-5

Second Edition B-12

ADDRESSING INFORMATION

—
e
e
m
e
r
m
m
m
e
e
a
e

e
e

e
l
i
t
t

Table B-6
64R Mode Summary

I} X! 8 | CB! Displacement | Instruction Type |Form of EAI
|

0':0:01--1 0 to ‘777 | Direct | O/D
Or1lloi--t 0 to ‘777 | Indexed | O/D+X
1!10101—1! 0 to ‘777 | Indirect | I(O/D) |
L1iirviot—t Oto ‘7? | Indirect, preindexed | I(O/D+X) |
1!110%1 -—- 1 ‘100 to ‘777 | Indirect, postindexed | ICO/D)+X |
0O!10111 —- |'-360 to ‘+3771 Direct | P+D |
O!1111 — 1'-360 to ‘+3771 Indexed | P+D+X |
110111 -- 1'-860 to ‘+8771 Indirect | ICP+D)
lilt i1t — 1'-860 to ‘+3771 Indirect postindexed | ICP+D)+X |
O!10!11:12 | -—— | @Postincrement | §P |
O!llili2 | —-—~ | @Postincrement, indirect,! I(SP)+xX |

| | | | | postindexed | |
1!'1o!11i:2 ii —-- | @Postincrement, indirect |! I(SP) |
O!10!1113 | --- | #Predecrement | §P-1 |
Olliil1isis3 | -—- | #Predecrement, indirect, | I(SP-1)+X!
ee | postindexed | |

1'o011:138 | --- | #Predecrement, indirect | I(SP-1) |
O!'!O0!1110 |! 0 to ‘1”7777 | *Direct, long reach | D |
O!lilioO 10 to ‘1v7777 | *Indexed, long reach | DX |
1101110 |! Oto ‘177777 | *Indirect, long reach | ICD) |
1!i1i2i10 | Oto ‘177777 | *Indirect, preindexed, | I(D+X)

| | | | | long reach | |
1!ii1litili2 10 to ‘1”77777 | *Indirect, postindexed, | I(D)+xX |

| | | | | long reach | |
O!1O!tlii1 t Oto ‘177777 | *Direct, stack relative | DSP |
O!ll’iilidl | 0Oto ‘177777 | *Indexed, stack relative | D+SP+X |
1/10!111 | Oto ‘177777 | *Indirect, stack relative! I(D+SP) |
1ilii2i1 1 Oto ‘177777 | *Indirect, preindexed | I(D+SP+X)|

| | | | stack relative | |
L1iliili3& | Oto ‘177777 | *Indirect, postindexed | I(D+SP)+X!

| | | | | |stack relative

B-13 second Edition

9 Baad clinde VREahs keI

Notes to Table B-6

For all the instruction types listed in Table B-6, address

traps can occur when any part of the EA formation results in an

address in the range 0 to ‘7 (segmented mode) or 0 to ‘3S?

(unsegmented mode). See the end of this chapter for more

information.

* These instruction types use the 32-bit long format shown in

Figure B-5.

@ These instruction types use the 16-bit long format shown in

Figure B-5. They also increment the contents of SP by 1

during EA formation.

* These instruction types use the 16-bit long format shown in

Figure B-5. They also decrement the contents of SP by 1

during EA formation.

The processor performs one level of indexing and multiple

levels of indirection.

O/D indicates that the displacement is within Sector 0.

The instructions DFLX, FLK, JSX, LDX, LOY, QFLX, SIX, and SITY

do not do indexing. The processor treats the X bit as a O to

determine what addressing mode to use. For example, if one of

these instructions specifies I, X, S, amd CB as 0115, the

processor interprets it as 00138.

Second Edition B-14

ADDRESSING INFORMATION

16S Mode

Figure B-6 and Table B-7 display and explain 16S mode instructions.

1 2 38 6 7 8 16

| IixXt OP !S§ 1 DISPLACEMENT |

Instruction Format

'OoO!rol ADDRESS |

| |
|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| 1! Ii xl ADDRESS | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Final Effective Address Format
| |

16S Mode Formats

Figure B-6

Note to Figure B-6

The final form of effective addresses in S mode are only 14
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

B-15 second Edition

TATONMTICNTeAT Cranmad COTTTTNYO
LOLIVUULILAAN Mot LTV

Table B-7
16S Mode Summary

| Ii x!S81 Disp | Instruction Type | Example |\EA Form |

| |

'-O!1o!:ot Oto ‘V7? | Direct | LDA ADR | O/D |

|O!Otl1lt Oto ‘77? | Direct | LDA ADR | C/D |

1'O!tliot Oto ‘'??? | Indexed | LDA ADPR,1 =| O/DX |

'oOtlili Oto ‘777 | Indexed | LDA APR,1 | C/DX |

| 1!10t80Ot Oto ‘777 | Indirect | LDA ADR,* | ICO/D) |

ilioOitidli Oto ‘777 | Indirect | LDA ADR,* |! I(C/D) |!

11113101 Oto ‘777 | Indirect preindexed | LDA AR,1* | I(D+X) |

| 1ti1111 Oto ‘777 | Indirect preindexed | LDA AR,1* | I(DtX) |

Notes to Table B-7

The processor performs indexing before resolving each level of

indirection.

This mode allows multiple levels of both indexing and

indirection.

The instructions, LDX and STX, cannot do indexing. The

effective address is formed as if bit 2 = 0.

/D indicates that the displacement is within Sector 0; C/D,

within the current sector.

Second Edition B-16

ADDRESSING INFORMATION

Ses Mode

Figure B-7 and Table B-8 display and explain 32S mode instructions.

lL 2 38 6 7 8 16

| I! Xt OP 18s! DISPLACEMENT |

Instruction Format

Indirect Pointer Format

1 2 16

| O01 ADDRESS |

|
|
|
|
|
|
|
|
|
|
|
| | IT | ADDRESS |
|
|
|
|
|
|
|
|
|
| Final Effective Address Format
|

oe8 Mode Formats

Figure B-7

Note to Figure B-7

The final form of effective addresses in S mode are only 15
bits wide. Special hardware exists to truncate the effective
address to this length. The program counter, however, is a
full 16 bits wide.

B-17 Second Edition

}

INSTRUCTION SETS GULUE

Table B-8
oes Mode Summary

| Ti xi si Disp | Instruction Type | Example |EA Form |
| |
(010101 Oto ‘¥?7 | Direct i LDA ADR i O/D |
'O!totlt Oto ‘77 | Direct | LDA ADR | C/D |
'O!tl1liot Oto ‘777 | Indexed | LDA ADR,1 =| O/DKX |
i'Oltltili Oto ‘'?77 | Indexed | LDA A,1 | C/DX |
'l!10o0101 Oto ‘777 | Indirect | LDA ADR,* | I(O/D) |
|1liot!:ili Oto ‘777 | Indirect | LDA ADR,* {| ICC/D) |
!1li1!01 Oto ‘7? | Indirect preindexed | LDA ADR,1* | I(D+X) |
| 11110 1'100 to ‘777 | Indirect postindexed! LDA ADR,*1 | I(D)+x |
|li1il1i211 Oto ‘777 | Indirect postindexed! LDA ADR,*1 | I(D)+x |

Notes to Table B-8

The processor performs indexing before resolving each level of
indirection.

This mode allows one level of indexing, and multiple levels of
indirection.

The instructions, LDX and STX, cannot do indexing. The
effective address is formed as if bit 2 = 0.

ADDRESS TRAPS

Several of the summaries in the last section specifyd special cases of
FA formation when the address is within a particular range. This range

of addresses corresponds to registers within the current user register

set in the register file. (See Chapter 9 of the System Architecture
Reference Guide.) In segmented mode, this range is ‘O to ‘7; in
nonsegmented mode, ‘O to ‘37. This range of addresses for segmented
and nonsegmented modes is referred to as the ATR, or address trap
range, throughout this section.

The registers within the user register set contain information, such as
general, base, floating-point, and index registers, and system status
and control information. Each time any part of the EA formation
generates an address within the ATR, an address trap aborts any read or
write to a memory location and instead references the specific

register.

“of eh maeTable B-9 summarizes when address traps occur for all modes o
addressing and instruction types.

Second Edition B-18

ADDRESSING INFORMATION

Table B-9
Address Trap Information

Mode | Inst Type | Action

16S
320
32R
64R

|

|

|

|

|

|

|

|

| 64V
|

|

|

|

|

|

|

|

|

|

Memory
reference |

|
|
|

Generic |

Generic AP

memory
reference |

|
Short |

format |

|
16-bit |
indirect |

|
de-bit |
indirect |

|
| All types |

|

|

|

|

|

|

|

|

|

|

|

| 32-bit
|

|

|

|

|

|

|

|

|

|

|

Address trap occurs if the FA falls
within the ATR (address trap range).
The instruction format or length has
no bearing.

Address traps never occur.

Address traps do not occur when the
processor is fetching the address
pointer.

See Table B-10.

Address traps occur if the EA falls
within the ATR.

|
|
|
|

|

|
|
|
|
|
|

Address traps never occur. |
|
|
|
|
|
|
|
|
|

Address traps never occur. |
|
|
|Address traps never occur.

When bits 17 to 32 of the program counter contain a value within the
ATR and the processor is reading an instruction, an address trap always
occurs. The only exception to this is if the machine is Operating in
Sel mode.

When the processor executes short format instructions in 64V mode,
address traps can occur during operand fetches or indirect fetches.
Table B-10 lists the conditions that must be present for an address
trap to occur.

B-19 second Edition

TICAIMTICMNTOMT CTIMS CTTTT
LOLILLU sbbw UULID

Table B-10

Address Trap Action for Short Format
Instructions, 64V Mode

Ii xis Disp | Action

Oto ‘7 Takes address trap.| | |
O'10101 ‘10 to ‘37 Takes address trap only if

| | | segmentation is off.
010i 01 '40 to ‘377 i Cannot take address trap.
010111 -'340 to +'377 Takes address trap if EA (P+D) is

within the ATR.
O!1110 O to ATR Takes address trap if D+X is

|
|

| |
| |
| |

i

| |
| |
| |
| within the ATR. If DX is |
| outside the ATR, the EA is
| $B (seg #) | D+X (for the 750, |
| 850, and 2350 to 9955 II; or |
| SB (seg #) | D+X+SB (offset #) |
| (for all other machines). |

From ATR to ‘377! Cannot take address trap; EAis |
| §B+D+X (for 750, 850, and |
| 2350 to 9955 II). |
| All other machines take address |
| trap if D+X is within the ATR. |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

‘400 to ‘777 Cannot take address trap.
011111 -'340 to +'377 Takes address trap if EA (P+D+X)

is within the ATR.
1!01! 0 0 to ‘777 Takes address trap if Dis

within the ATR.*
110111 -'340 to +'377 Takes address trap if EA

((P+D)) is within the ATR.*
1/1110 0 to ‘777 Takes address trap if D<'100 and

D+X is within the ATR.*
111111 -'340 to +'377 Takes address trap if EA (P+D)

is within the ATR.*

Note to Table B-10

* The indirect address also takes an address trap if EA is
within the ATR.

If an instruction specifies a write operation that could potentially
cause an address trap, the instruction loads the data to be written
into a temporary register. If a trap occurs, the routine aborts the
write to memory. It loads the specified register file location with
the contents of the temporary register.

Second Edition B-20

ADDRESSING INFORMATION

If the instruction specifies a read operation that causes an address
trap, the trap routine aborts the memory read and fetches the contents
of a register file location. The trap routine loads the cache from the
register file data and allows the processor one cache access before
invalidating the cache location.

Table B-11 shows the address trap locations and the registers to which
they correspond. For more information on the register file, see
Chapter 9 of the System Architecture Reference Guide.

Table B-11
Address Trap/Register File Correspondence

| AT | § and R Modes | V Mode |
| |
‘O 1X	X
‘l 4A	A, LH
'2 1B	LL
‘3S 168 i 4	
‘4	FAC bits 1 to 16
‘5 1 FAC bits 17 to 32	FAC bits 17 to 32
‘6	FAC exponent
'%	PC, LSBs
‘10*	DIARSH
‘11*	FCODEH
‘12*	FADORL
‘13*	
'14*	
'15*	
‘16*	
'17*	
‘20*	DMA cell ‘20H
‘21*	DMA cell ‘20L
‘22*	DMA cell ‘22H
‘23*	DMA cell ‘22L
‘24*	DMA cell ‘24H
‘25*	DMA cell ‘241
‘26*	DMA cell ‘26H
‘27*	DMA cell ‘26L
‘30*	DMA cell ‘30H
‘31*	DMA cell ‘SOL
‘62*	DMA cell ‘32H
‘335*	DMA cell ‘32L
‘34*	DMA cell ‘34H
‘35*	DMA cell ‘'34L
‘36*	DMA cell ‘36H
‘37*	DMA cell ‘'36L

B-21 Second Edition

TRICTKMTIONTAT OTANC MTT
LWWLIWELLAYUT

Note to Table B-11

* These correspond to user register file
locations only in nonsegmented mode.

SUMMARY

The fields of a memory reference instruction specify information used

to form an effective address. These fields specify which information

is to be used in the formation, how the formation is to be done,

and —- in conjunction with the rest of the program —- the addressing

mode under which the address is to be formed. Depending on the

segmentation mode and the EA formation, addresses can reference

registers within the current user register file as well as memory

locations.

Second Edition B-22

Instruction Summary

Charts

This appendix contains two instruction summary charts: one for §S, R,
and V modes; another for I mode. Each chart contains a list of
instructions for the Prime 50 Series processors. (Appendix E lists
those instructions that have been archived.) Each instruction is
followed by its octal code, format, function, addressing mode, CBIT,
LINK, and condition code information, and a one-line description of the
instruction.

The columns in each chart are as follows:

R Restrictions:

Blank Regular instruction.
R Instruction causes a restricted mode fault if

executed in other than Ring 0.
P Instruction may cause a fault depending on

address.

Mnem A mnemonic name recognized by the assembler PMA.

Opcode Octal operation code portion of the instruction.

RI Register (R) and Immediate (I) forms, if available.

C-1 Second Edition

eSeeoe —_————

Form Format of instruction:

Mnemonic Definition

AP Address Pointer
BRAN Branch
CHAR Character
DECI Decimal
GEN Generic
GR General Register -- non Memory Reference
TBRN I Mode Branch
MR Memory Reference -- Non I Mode
MRFR Memory Reference -—- Floating Register
MRGR Memory Reference -- General Register
MRNR Memory Reference —- Non Register
PIO Programmed I/O
RGEN Register Generic
SHFT Shift

Func Function of instruction:

Mnemonic Definition

ADMOD Addressing Mode
BRAN Branch
CHAR Character
CLEAR Clear Field
CPTR C Language Pointer
DECI Decimal Arithmetic
FIELD Field Register
FLPT Floating Point Arithmetic
GRR General Register Relative
INT Integer
INTGY Integrity
IO Input/Output
KEYS Keys
LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control
MOVE Move
PCTLJ Program Control and Jump
PRCEX Process Exchange
QUEUE Queue Control
SHIFT Register Shift
SKIP Skip

Second Edition

INSTRUCTION SUMMARY CHARTS

M Addressing modes of instructions:

Mode Name

S sectored

R Relative

V Virtual (64V)

I Sal

C How instruction affects the CBIT and LIK.

Code Definition

X
x
O
O
N
O
O
P
A
N
e

| CBIT and LINK are unchanged
CBIT unchanged; LINK = carry
CBIT overflow status; LINK = carry
CBIT overflow status; LINK indeterminate
CBIT shift extension; LINK shift extension
CBIT result; LINK = indeterminate
CBIT and LINK are indeterminate
CBIT and LINK are loaded by the instruction
CBIT = result; LINK = unchanged
CBIT = unchanged; LINK = indeterminate
CBIT and LINK values vary among processors;
see individual instruction description

CC How instruction affects the condition codes.

Description

“I
O
)

O1

Definition

Condition codes are unchanged.
Condition codes are set to reflect the result
of arithmetic operation or compare.
Condition codes are set to reflect result of
branch, compare, or logicize operand state.
Condition codes are indeterminate.
Condition codes are loaded by instruction.
Condition codes show special results for this
instruction.

A brief description of the instruction.

Table C-1 contains a summary of S, R, and V mode instructions. Table
C-2 is a summary of I mode instructions. Instructions that have been
archived are not in either of these tables; see Appendix E for then.

C-3 second Edition

INSTRUCTION SETS GUIDE

Table C-1
S, R, V Mode Instruction Summary

R Mnem Opeode Form Func M C @ Description

AlA 141206 GEN INT SRV 2 1 Add One to A
A2ZA 140304 GEN INT SRV 2 1 Add Two to A
ABQ 141716 AP QUEUE V - 7 Add Entry to Bottom of Queue
ACA 141216 GEN INT SRV 2 1 Add CBIT to A
ADD 06 MR INT SRV 2 1 Add
ADL 06 03 YR INT V 2 1 Add Long
ADLL 141000 GEN INT Vv 2 1 Add LIN to L
ALFA QO 001301 GEN FIELD V 6 - Add L to FAR O
ALFA 1 001311 GEN FIELD V 6 - Add L to FAR 1
ALL 0414xXX SHFT SHIFT SRV 4 - A left Logical
AIR 0416XX SHFT SHIFT SRV 4 - A left Rotate
ALS 0415XX SHFT SHIFT SRV 3 - A Arithmetic Left Shift
ANA 03 MR LOGIC SRV - - ANDTtOA
ANL 03 03 YR LOGIC V - - AND to A Long
ARGT 000605 GEN PCIlJ V 6 5 Argument Transfer
ARL 0404xX SHFT SHIFT SRV 4 - A Right Logical
ARR O406XX SHFT SHIFT SRV 4 - A Right Rotate
ARS O405XX SHFT SHIFT SRV 4 - A Arithmetic Right Shift
ATQ 141717 AP QUEUE V - % Add Entry to Top of Queue
BCEQ 141602 BRAN BRAN V - - Branch on Condition Code &Q
BOGE 141605 BRAN BRAN V ~ = Branch on Condition Code GE
BOGT 141601 BRAN BRAN V — - Branch on Condition Code GT
BCLE 141600 BRAN BRAN V -~ -— Branch on Condition Code LE
BOLT 141604 BRAN BRAN V — - Branch on Condition Code LT
BCNE 141603 BRAN BRAN V —- - Branch on Condition Code NE
BCR 141705 BRAN BRAN V —- -— Branch on CBIT Reset to 0
BCS 141704 BRAN BRAN V —- - Branch on CBIT Set to l
BDX 140734 BRAN BRAN V —- - Branch on Decremented X
BDY 140724 BRAN BRAN V - - Branch on Decremented Y
BEQ 140612 BRAN BRAN V - 4 Branch on A Equal to 0
BFEQ 141612 BRAN BRAN V - 4 Branch on F Equal to 0
BFGE 141615 BRAN BRAN V -~ 4 Branch on F Greater Than or

Equal to 0
BFGT 141611 BRAN BRAN V - 4 Branch on F Greater Than 0
BFLE 141610 BRAN BRAN V - 4 Branch on F Less Than or

Equal to 0
BFLT 141614 BRAN BRAN V - 4 Branch on F Less Than 0
BFNE 141613 BRAN BRAN V - 4 Branch on F Not Equal to 0
BGE 140615 BRAN BRAN V - 4 Branch on A Greater Than or

Equal to 0
BGT 140611 BRAN BRAN V - 4 Branch on A Greater Than O
BIX 141334 BRAN BRAN V —- -— Branch on Incremented X
BIY 141324 BRAN BRAN V - - Branch on Incremented Y

BLE 140610 BRAN BRAN V -~ 4 Branch on A Less Than or

Equal to 0
BLEQ 140702 BRAN BRAN V - Branch on L Equal to 0

Second Edition C4

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opeode Form Func M C CC Description

BLGE 140615 BRAN BRAN V - 4 Branch on L Greater Than or
Equal to 0

BLGT 140701 BRAN BRAN V - 4 Branch on L Greater Than 0
BLLE 140700 BRAN BRAN V - 4 Branch on L Less Than or

Equal to 0
BLLT 140614 BRAN BRAN V - 4 Branch on L Less Than 0
BLNE 140705 BRAN BRAN V - 4 Branch on L Not Equal to 0
BLR 141707 BRAN BRAN V - - Branch on LINK Reset to 0
BLS 141706 BRAN BRAN V - - Branch on LINK Set to l
BLT 140614 BRAN BRAN V - 4 Branch on A Less Than 0
BMEQ 141602 BRAN BRAN V - - Branch on Magnitude

Condition EQ
BMGE 141706 BRAN BRAN V - - Branch on Magnitude

Condition GE
BMGT 141710 BRAN BRAN V - - Branch on Magnitude

Condition GT
BMLE 141711 BRAN BRAN V - - Branch on Magnitude

Condition LE
BMLT 141707 BRAN BRAN V - - Branch on Magnitude

Condition LT
BMNE 141603 BRAN BRAN V - - Branch on Magnitude

Condition NE
BNE 140613 BRAN BRAN V - 4 Branch on A Not Equal to 0
CAL 141050 GEN CLEAR SRV - - Clear A left Byte
CALF 000705 AP PCTLJ V 6 5 Call Fault Handler
CAR 141044 GEN CLEAR SRV - - Clear A Right Byte
CAS ll MR SKIP SRV 1 1 Compare A and Skip
CAZ 140214 GEN SKIP SRV 1 1 Compare A with 0
CEA 000111 GEN fPCTIJ SR - - Compute Effective Address
CGT 001314 GEN BRAN V 6 5 Computed GOTO
CHS 140024 GEN INT SRV - - Change Sign
CLS 1103 WR LOGIC V 1 1 Compare L and Skip
CMA 140401 GEN LOGIC SRV - - Complement A
CRA 140040 GEN CLEAR SRV - - Clear AtoO
CRB 140015 GEN CLEAR SRV - - Clear B to 0
CRE 141404 GEN CLEAR V - - Clear E to 0
CRL 140010 GEN CLEAR SRV - - Clear LtodO
CRLE 141410 GEN CLEAR V - - Clear L and E to 0
CSA 140320 GEN MOVE SRV 5 - Copy Sign of A
DAD 06 MR INT SR 2 1 Double Add
DBL 000007 GEN INT SR - - Enter Double Precision Mode
DFAD 06 02 MR FLPT RV 3 5 Double Precision Floating

Add
DFCM 140574 GEN FLPI RV 3% 5 Double Precision Floating

Complement
DFCS 11 02 MR FLPr RV 6 5 Double Precision Floating

Compare and Skip

C-5 second Edition

et de Ve etee er

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C CC Description

DFDV 17 02 MR FLPT RV 3 S5 Double Precision Floating
Divide

DFLD 02 02 MR FLPr RV - - Double Precision Floating
Load

DFLX 15 02 MR FLPT V —- - Double Precision Floating
Load Index

DFMP 16 02 MR FLPT RV 3 5 Double Precision Floating
Multiply

DFSB O07 02 YR FLPT RV 3 5 Double Precision Floating
Subtract

DFST 04 02 MR FLPT RV - - Double Precision Floating
Store

DIV 17 MR INT V 3 5 Divide
DIV 17 MR INT SR 3 5 Divide
DLD 02 MR MOVE SR - - Double Load
DRN 040300 GEN FLPIT V 3 5 Double Round From Quad

DRNM 140571 GEN FLPT V 8 5 Double Round From Quad
Towards Negative Infinity

DRNP 040301 GEN FLPI V 3 5 Double Round From Quad
Towards Positive Infinity

DRNZ 040302 GEN FLPI V 3 5 Double Round From Quad
Towards Zero

DRX 140210 GEN SKIP SRV - - Decrement and Replace X

DSB O7 MR INT SR 2 1 Double Subtract

DST 04 MR MOVE SR - - Double Store
DVL 17 03 MR INT V 3 § Divide Long
E168 000011 GEN ADMOD SRV - - Enter 165 Mode

ES2r 001010 GEN ADMOD SRV - - Enter 32I Mode

Ed2R 001013 GEN ADMOD SRV - - Enter 32R Mode

E328 000013 GEN ADMOD SRV - - Enter 325 Mode

EC4R 001011 GEN ADMOD SRV - - Enter G4R Mode

EO4V 000010 GEN ADMOD SRV - - Enter 64V Mode

EAA 0101 YR MOVE R — - Effective Address to A

EAFA O 001300 AP FIELD V - - Effective Address to FAR 0

EAFA 1 001310 AP FIELD V - - Effective Address to FAR 1

EAL O01 01 WR PCILJ V - - Effective Address to L

EALB 13 02 MR PCTILJ V - - Effective Address to LB

EAXB 12 02 MR PCILJ V - - Effective Address to XB

R EIO 14 01 YR IO V - 7 Execute I/0
R ENB 000401 GEN I0 SRV - - Enable Interrupts
R ENBL 000401 GEN I0 SRV - - Enable Interrupts (Local)
R ENBM 000400 GEN I0 SRV - - Enable Interrupts (Mutual)
R ENBP 000402 GEN I0 SRV - - Enable Interrupts (Process)

ERA 05 MR LOGIC SRV - - Exclusive OR to A

ERL 05 03 YR LOGIC V - - Exclusive OR to L

FAD 06 01 MR FLPT RV 3 5 Floating Add

Second Edition C-6

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opeode Form Func M CC Description

FCDQ) 140571 GEN FLPT V - - Floating Convert Double to
Quad

FCM 140530 GEN FLPT RV 3 5 Floating Complement
FCS 11 01 MR FLP. RV 6 5 Floating Compare and Skip
FDBL 140016 GEN FLPT V - - Floating Convert Single to

Double
FDV 17 01 MR FLPT RV 3 5 Floating Divide
FLD 02 01 MR FLPT RV - —- Floating Load
FLOT 140550 GEN FLPI R 6 5 Convert Integer to Floating

Point
FLTA 140532 GEN FLPI V 6 5 Convert Integer to Floating

Point
FLTL 1405355 GEN FLPT V 6 5 Convert Long Integer to

Floating Point
FLX 15 01 MR FLP. RV - - Floating Load Index
FMP 16 01 YR FLPr RV 3 5 Floating Multiply
FRN 140534 GEN FLPIT RV 3 5 Floating Round
FRNM 040320 GEN FLPT V & 5 Floating Round Towards

Negative Infinity
FRNP 040303 GEN FLPI V & 5 Floating Round Towards

Positive Infinity
FRNZ 040321 GEN FLPI V & 5 Floating Round Towards Zero
FSB O7 O01 MR FLPT RV 3 5 Floating Subtract
FSGT 140515 GEN FLPT RV - 5 Floating Skip If Greater

Than O
FSLE 140514 GEN FLPT RV - 5 Floating Skip If Less Than

or Equal to 0
FSMI 140512 GEN FLPT RV - 5 Floating Skip If Minus
FSNZ 140511 GEN FLPT RV - 5 Floating Skip If Not Equal

to O
FSPL 140513 GEN FLPT RV - 5 Floating Skip If Plus
FST 04 01 MR FLPr RV 3 5 Floating Store
FSZE 140510 GEN FLPT RV - 5 Floating Skip If Equal to 0

R HLT 000000 GEN MCTL SRV - - Halt
TAB 000201 GEN MOVE SRV - - Interchange A and B
ICA 141340 GEN MOVE SRV - - Interchange Bytes of A
ICL 141140 GEN MOVE SRV - - Interchange Bytes and Clear

Left
ICR 141240 GEN MOVE SRV - - Interchange Bytes and Clear

Right
ILE 141414 GEN MOVE V - - Interchange L amd E
IMA 13 MR MOVE SRV - - Interchange Memory and A

R INA 54 PIO 10 SR - - Input toA
R INEC 001217 AP PRCEX V 6 §5 Interrupt Notify Beginning,

Clear Active Interrupt
R INBN 001215 AP PRCEX V 6 5 Interrupt Notify Beginning

Second Edition

INSTRUCTION SETS GUIDE

Table C-1 (continued)
S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C C Description

R INEC 001216 AP PRCEX V 6 5 Interrupt Notify End, Clear
Active Interrupt

R INEN 001214 AP PRCEX V 6 5 Interrupt Notify End
R INH 001001 GEN 10 SRV - - Inhibit Interrupts
R INHL 001001 GEN 10 SRV - - Inhibit Interrupts (Local)
R INHM 001000 GEN 10 SRV - - Inhibit Interrupts (Mutual)
R INHP 001002 GEN I0 SRV - - Inhibit Interrupts (Process)

INK 0000453 GEN KEYS SR - - Input Keys
INT 140554 GEN FLPI R & § Convert Floating Point to

Integer
INTA 140531 GEN FLPT V & § Convert Floating Point to

Integer
INTL 140533 GEN FLPI V 3 5 Convert Floating Point to

Integer Long
IRS 12 MR SKIP SRV - - Increment and Replace Memory

R_ IRTC 000603 GEN iI0 V 7 6 Interrupt Return, Clear
Active Interrupt

R_ IRIN 000601 GEN I0 V 7 6 Interrupt Return
IRX 140114 GEN SKIP SRV - - Increment and Replace xX

R ITLB 000615 GEN MCTIL V 6 5 Invalidate STLB Entry
JDX 15 02 MR PCTILJ R - - dump and Decrement X
JIX 15 03 MR PCILJ R - -— dump and Increment xX
JMP Ol MR PCTLJ SRV - - dump
JST 10 MR PCTLJ SRV - - dump and Store
JSX 55 03 MR PCTILJ RV - - dump and Save in xX
JSXB 1402 MR PCTLJ V — -— dump and Save in XB
JSY 14 MR PCTLJ V - -— dump and Save in Y
LOE) 141503 GEN LISTS V - - Load A on Condition Code HQ
LOGE 141504 GEN LISTS V - - Load A on Condition Code GE
LOGT 141505 GEN LTSTS V - -— Load A on Condition Code GT
LCLE 141501 GEN LTSTS V - -— Load A on Condition Code LE
ILCLT 141500 GEN LTSTS V - -— Load A on Condition Code LT
LONE 141502 GEN LTSTIS V - - Load A on Condition Code NE
LDA 02 MR MOVE SRV - - LoadA
LDC O 001302 CHAR CHAR V - % Load Character
LDC 1 001312 CHAR CHAR V - % Load Character
LDL 02 03 MR MOVE V - -— Load Long

P IDR 05 01 MR MOVE V - § Load from Addressed Register
LDX 35 00 YR MOVE SRV - - Load xX
LDY oo Ol YR MOVE V - - Load Y
LEQ 140413 GEN LTSTS SRV - 4 Load Aon Equal to 0
LF 140416 GEN LTSTS SRV - 5 Load False
LFEQ 141113 GEN LTsts V - 4 Load A on F Equal to 0
LFGE 141114 GEN LTSTS V - 4 Load A on F Greater Than or

Equal to 0
LFGT 141115 GEN LTSTS V - 4 Load A on F Greater Than 0

Second Edition C-8

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opcode Form Func M C CC Description

LFLE 141111 GEN LTSTS V - 4 Load A on F Less Than or
Equal to 0

LFLI O 001303 BRAN FIELD V - - Load FIR O Immediate
LFLI 1 001313 BRAN FIELD V - - Load FLR 1 Imediate
LFLT 141110 GEN LISTS V - 4 Load A on F Less Than 0
LFNE 141112 GEN LISTS V - 4 Load A on F Not Equal to 0
LGE 140414 GEN LTSTS SRV - 4 Load A on Greater Than or

Equal to 0
LGT 140415 GEN LTSTS SRV - 4 Load A on A Greater Than 0

R LIOT 000044 AP MCIL V 6 5 Load IOTLB
LLE 140411 GEN LTSTS SRV - 4 Load A on A Less Than or

Equal to 0
LLEQ 141513 GEN LISTS V - 4 Load L on A Equal to 0
LLGE 140414 GEN LISTS V - 4 Load L on A Greater Than or

Equal to 0
LLGT 141515 GEN LTSTS V - 4 Load L on A Greater Than 0
LLL O410XX SHFT SHIFT SRV 4 - Long Left Logical
LLLE 141511 GEN LTSTS V - 4 Load L on A Less Than or

Equal to 0
LLLT 140410 GEN LISTS V - 4 Load L on A Less Than 0
LLNE 141512 GEN LISTS V - 4 Load L on A Not Equal to 0
LLR O412XX SHFI SHIFT SRV 4 - Long Left Rotate
LLS O411XX SHFI SHIFT SRV 3 5 Long left Shift
LLT 140410 GEN LTSTS SRV - 4 Load A on A Less Than 0
LNE 140412 GEN LISTS SRV - 4 Load A onA Not Equal to 0

R LPID 000617 GEN MCTL V - - Load Process ID
R LPSW 000711 AP MCTL V 7 6 Load Process Status Word

LRL O400KX SHFT SHIFT SRV 4 - Long Right Logical
LRR O402XX SHFI SHIFT SRV 4 - Long Right Rotate
IRS O401XX SHFIT SHIFT SRV 4 - Long Right Shift
LT 140417 GEN LISTS SRV - 5 Load True
MPL 16035 MR INT V * — Multiply Long
MPY 16 MR INT V & -— Multiply
MPY 16 MR INT SR 3S * Multiply

R NFYB 001211 AP PRCEX V 6 5 Notify
R NFYE 001210 AP PRCEX V 6 5 Notify

NOP Q00001 GEN MCTL SRV - - No Operation
R OCP 14 PIO I0 SR - - Output Control Pulse

ORA 03 02 YR LOGIC V - - Inelusive OR
R OTA 74 PIO I0 SR - - Output from A

OTK 000405 GEN KEYS SR 7 6 Output Keys
PCL 10 02 MR PCTILJ V 6 5 Procedure Call
PID 000211 GEN INT SR - - Position for Integer Divide
PIDA 000115 GEN INT V - - Position for Integer Divide
PIDL 000305 GEN INT V - - Position for Integer Divide

Long
PIM 000205 GEN INT SR - - Position after Multiply

C-9 second Edition

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opeode Form Func M C CC Description

PIMA 000015 GEN INT V & 5 Position after Multiply
PIML 000301 GEN INT Vv & 5 Position after Multiply Long
PRIN 000611 GEN PCIid V 7 6 Procedure Return

R PILB 000064 GEN MCIL V 6 5 Purge TLB
QFAD 522 WR FLPT V & 5 Quad Precision Floating Add
QFCM 140570 GEN FLPT V 3 5 Quad Precision Floating

Complement
QFCS 526 YR FLPI V 6 5 Quad Precision Floating

Compare and Skip
QFDV 525 WR FLPT V & 5S Quad Precision Floating

Divide
QFLD 520 MR FLPT V - - Quad Precision Floating

Load
QFLX 67 MR FLPT V - - Quad Precision Floating

Load Index
QFMP 524 MR FLPT V & 5 Quad Precision Floating

Multiply
QFSB 523 YR FLPT V & 5 Quad Precision Floating

Subtract
QFst 521 MR FLPT V ~ -— Quad Precision Floating

Store
QINQ 140572 GEN FLPT V 3 5S Quad to Integer, in Quad

Convert
QIQR 140573 GEN FLPT V 3S 5 Quad to Integer, in Quad

Convert Rounded
RBQ 141715 AP QUEUE V - % Remove Entry from Bottom of

Queue
RCB 140200 GEN KEYS SRV 8 - Reset CBIT to 0

R RMC 000021 GEN INTGY SRV - - Reset Machine Check Flag
to O

RRST 000717 AP MCIL V - - Restore Registers
RSAV 000715 AP MCTL V - - Save Registers
RTQ 141714 AP QUEUE V - 7 Remove Entry from Top of

Queue
R RTS 000511 GEN MCTL V - -— Reset Time Slice

S1A 140110 GEN INT SRV 2 1 Subtract 1 from A
S2A 140310 GEN INT SRV 2 1 Subtract 2 from A
SAR 10026K GEN SKIP SRV - - Skip on A Register Bit Reset

to 0
SAS 10126X GEN SKIP SRV - - Skip on A Register Bit Set

to l
SBL O07 03 MR INT V 2 Subtract Long
SCB 140600 GEN KEYS SRV 5 Set CBIT to 1
SGL 000005 GEN INT SR - - Enter Single Precision Mode
SGT 100220 GEN SKIP SRV - -— Skip on A Greater Than 0
SKP 100000 GEN SKIP SRV - - Skip

R SKS o4 PIO I0 SR -— - Skip on Condition Satisfied

second Edition C-10

INSTRUCTION SUMMARY CHARTS

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opeode Form Func M C C Description

SLE 101220 GEN SKIP SRV - - Skip on A Less Than or Equal
to 0

SLN 101100 GEN SKIP SRV - - Skip on LSB of A Nonzero
SLZ 100100 GEN SKIP SRV - - Skip on LSB of A Zero
SMCR 100200 GEN INIGY SRV - - Skip on Machine Check Reset

to 0
SMCS 101200 GEN INTGY SRV - - Skip on Machine Check Set

to l
SMI 101400 GEN SKIP SRV - - Skip on A Minus
SNZ 101040 GEN SKIP SRV - - Skip on A Nonzero
SPL 100400 GEN SKIP SRV - - Skip on A Plus
SRC 100001 GEN SKIP SRV - - Skip on CBIT Reset to 0
SSC 101001 GEN SKIP SRV - - Skip on CBIT Set to 1
SSM 140500 GEN INT SRV - - Set Sign of A Minus
SSP 140100 GEN INT SRV - - Set Sign of A Plus
SSSN 040310 GEN MCTL V 6 5 Store System Serial Number
STA O04 MR MOVE SRV - - Store A into Memory
STAC 001200 AP MOVE V - Store A Conditionally
STC 0 001322 CHAR CHAR V - ? Store Character
STC 1 001332 CHAR CHAR V - % Store Character
STEX 001315 GEN PCTL V 6 5 Stack Extend
STFA O 001320: AP FIELD V - - §tore FAR 0
STFA 1 001330 AP FIELD V - - §tore FAR 1
STL 04 03 MR MOVE V - - §tore Long
STLC 001204 AP MOVE V - 7 Store L Conditionally
STLR 03 01 MR MOVE V - 5 Store L into Addressed

Register
STPM 000024 GEN MCIL V - - Store Processor Model Number
STIM 000510 GEN MCTL V 6 5 Store Process Timer
STX 15 MR MOVE SRV - - Store X
STY oo 02 MR MOVE V - - §tore Y
SUB O7 MR INT SRV 2 1 Subtract
SVC 000505 GEN FPCTIJ SRV - - Supervisor Call
SZE 100040 GEN SKIP SRV - - Skip on A Zero
TAB 140314 GEN MOVE V - - Transfer A to B
TAK 001015 GEN KEYS V 7% 6 Transfer A to Keys
TAX 140504 GEN MOVE V - - Transfer A to X
TAY 140505 GEN MOVE V - - Transfer A to Y
TBA 140604 GEN MOVE V - - Transfer B to A
TCA 140407 GEN INT SRV 2 1 Two's Complement A
TCL 141210 GEN INT V 2 1 ‘Two's Complement Long
TFLL O 001323 GEN FIELD V - - Transfer FLR O to L
TFLL 2 001333 GEN FIELD V - - Transfer FIR 1 to L
TKA 001005 GEN KEYS V - - Transfer Keys to A
TLFL O 001321 GEN FIELD V - - Transfer L to FLR 0
TLFL 1 001331 GEN FIELD V - - Transfer L to FIR l
TSTQ 141757 AP QUEUE V - % Test Queue

C-11 Second Edition

INSTRUCTION SETS GUIDE

Table C-1 (continued)

S, R, V Mode Instruction Summary

R Mnem Opeode Form Func M C G Description

TXA 141034 GEN MOVE V - ~- Transfer X to A
TYA 141124 GEN MOVE V -~ - Transfer Y to A

R WAIT 000315 AP PRCEX V - -— Wait
XAD 001100 DECI DECI V 3 1 Decimal Add
XBTD 001145 DECI DECI V 3 5 Binary to Decimal Conversion
XICA 140104 GEN MOVE SRV - - Exchange and Clear A
XCB 140204 GEN MOVE SRV - - Exchange and Clear B
XCM 001102 DECI DECI V - 1 Decimal Compare
XDIB 001146 DECI DECI V 3 5 Decimal to Binary Conversion
XDV 001107 DECI DECI V 3 5 Decimal Divide
XEC 0102 MYR PCTLJ RV - - Execute
XED 001112 DECI DECI V - — Numeric Edit
XMP 001104 DECI DECI V 3 1 Decimal Multiply
XMV 001101 DECI DECI V 3 1 Decimal Move
ZCM 001117 CHAR CHAR V 6 % Compare Character Field
ZED 001111 CHAR CHAR V - - (Character Field Edit
ZFIL 001116 CHAR CHAR V 6 5 Fill Field With Character
ZMV 001114 CHAR CHAR V 6 5 Move Character Field
ZMVD 001115 CHAR CHAR V 6 5 Move Characters Between

Equal Length Strings
ZTRN 001110 CHAR CHAR V - - Character String Translate

Second Edition C-12

Table C-2
I Mode Instruction Summary

INSTRUCTION SUMMARY CHARTS

Mnem Opeode RI Form Func C C Description

A 02 RI MRGR INT 2 1 Add Fullword
ABQ 134 AP QUEUE - 7 Add Entry to Bottom of Queue
ACP 55 RI GR CPIR - —- Add C Pointer
ADLR 014 RGEN INT 2 1 Add LOK toR
AH 12 RI MRGR INT 2 1 Add Halfword
ATP 75 MRGR GRR 2 1 Add Indirect Pointer
ARFA O 161 RGEN FIELD - - Add R to FAR O
ARFA 1 171 RGEN FIELD - - Add R to FAR 1
ARGT O00605 GEN PCILJ 6 5 Argument Transfer
ATQ 135 AP QUEUE - 7 Add Entry to Top of Queue
BCE) 141602 BRAN BRAN - Branch on Condition Code
BOGE 141605 BRAN BRAN - - Branch on Condition Code GE
BOGT 141601 BRAN BRAN - -— Branch on Condition Code GT
BCLE 141600 BRAN BRAN - - Branch on Condition Code LE
BCLT 141604 BRAN BRAN - - Branch on Condition Code LT
BCNE 141603 BRAN BRAN - - Branch on Condition Code NE
BCR 141705 BRAN BRAN - - Branch on CBIT Reset to 0
BCS 141704 BRAN BRAN - - Branch on CBIT Set to l
BFEQ 122 IBRN BRAN - 4 Branch on F Equal to 0
BFGE 125 IBRN BRAN - 4 Branch on F Greater Than or

Equal to 0
BFGT 121 IBRN BRAN - 4 Branch on F Greater Than 0
BFLE 120 IBRN BRAN - 4 Branch on F Less Than or

Equal to 0
BFLT 124 IBRN BRAN - 4 Branch on F Less Than 0
BFNE 123 IBRN BRAN - 4 Branch on F Not Equal to 0
BHD1 144 IBRN BRAN - - Branch on r Decremented by 1
BHD2 145 IBRN BRAN - - Branch on r Decremented by 2
BHD4 146 IBRA BRAN - - Branch on r Decremented by 4
BHEQ) 112 TBRN BRAN - 4 Branch on r Equal to 0
BHGE 115 IBRN BRAN - 4 Branch on r Greater Than or

Equal to 0
BHGT 111 IBRN BRAN - 4 Branch on r Greater Than 0
BHI1 140 TERN BRAN - - Branch on r Incremented by 1
BHI2 141 IBRN BRAN - - Branch on r Incremented by 2
BHI4 142 IBRN BRAN - - Branch on r Incremented by 4
BHLE 110 IBRN BRAN - 4 Branch on r Less Than or

Equal to 0
BHLT 114 IBRN BRAN - 4 Branch on r Less Than 0
BHNE 113 TERN BRAN - 4 Branch on r Not Equal to 0
BLR 141707 BRAN BRAN - - Branch on LINK Reset to 0
BLS 141706 BRAN BRAN - - Branch on LINK Set to l
BMEQ) 141602 BRAN BRAN - - Branch on Magnitude Condition

EQ)
BMGE 141706 BRAN BRAN - - Branch on Magnitude Condition

GE

C-13 Second Edition

TNOTOTIOTTOON SETS CITTTW
adheUR hebWAIASle oleNA hie Vw

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opeode RI Form Func C @ Description

BMGT 141710 BRAN BRAN - - Branch on Magnitude Condition
GT

BMLE 141711 BRAN BRAN -— - Branch on Magnitude Condition
LE

BMLT 141707 BRAN BRAN -— -— Branch on Magnitude Condition

LT
BMNE 141603 BRAN BRAN - - Branch on Magnitude Condition

NE

BRBR 040-077 IBRN BRAN - - Branch on Register Bit Reset
to 0

BRBS 000-037 IBRN BRAN - -— Branch on Register Bit Set
to l

BRD1 134 IBRN BRAN - - Branch on R Decremented by 1

BRD2 135 TBRN BRAN - - Branch on R Decremented by 1

BRD4 136 IBRN BRAN - - Branch on R Decremented by 4

BREQ 102 TBRN BRAN - 4 Branch on R Equal to 0

BRGE 105 IBRN BRAN - 4 Branch on R Greater Than or
Equal to O

BRGT 101 IBRN BRAN - 4 Branch on R Greater Than 0

BRI1 130 IBRN BRAN - - Branch on R Incremented by 1

BRI2 131 TBRN BRAN - - Branch on R Incremented by 2

BRI4 132 IBRN BRAN - - Branch on R Incremented by 4

BRLE 100 TBRN BRAN - 4 Branch on R less Than or
Equal to 0

BRLT 104 IBRN BRAN - 4 Branch on R Less Than 0

BRNE 103 TBRN BRAN - 4 Branch on R Not Equal to 0

C 61 RI MRGR INT 1 1 Compare Fullword

CALF 000705 AP PCILIJ 6 5 Call Fault Handler

CCP 45 R GR CPIR - 1 Compare C Pointer

CGT 026 RGEN BRAN 6 5 Computed GOTO

CH 71 RI MRGR INT 1 1 Compare Halfword

CHS 040 RGEN INT - - Change Sign

CMH 045 RGEN LOGIC - - lement r

CMR 044 RGEN LOGIC - - Complement R
CR 056 RGEN CLEAR - - Clear R to 0
CRBL 062 RGEN CLEAR - —- Clear R High Byte 1 Right

CRER 063 RGEN CLEAR - - Clear R High Byte 2 Right

CRHL 054 RGEN CLEAR - - Clear R Left Halfword

CRHR O55 RGEN CLEAR - - Clear R Right Halfword

CSR 041 RGEN MOVE 5 - Copy Sign of R

D 62 RI MRGR INT 3 5 Divide Fullword

DBLE 106 RGEN FLPI - - Convert Single to Double
Precision Floating

DCP 160 RGEN CPTR - - Decrement C Pointer

DFA 15,17 RI Double Precision Floating Add

DFC 05,07 RI Double Precision Floating
Compare

:E s

Second Edition C-14

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opecode RI Form Func C CC Description

DFCM 144 RGEN FLPI 3&8 5 Double Precision Floating
Complement

DFD 51,53 RI MRFR FLPT 3 5 Double Precision Floating
Divide

DFL 01,05 RI MRFR FLPT - - Double Precision Floating
Load

DFM 25,27 RI MRFR FLPT 3 5 Double Precision Floating
Multiply

DFS 21.25 RI MRFR FLPT 3 5 Double Precision Floating
Subtract

DFST 11,13 MRFR FLPI - - Double Precision Floating
Store

DH 72 RI MRGR INT 5 5 Divide Halfword
DH1 130 RGEN INT 2 1 Decrement r by 1
DH2 131 RGEN INT 2 1 Decrement r by 2
TM 60 MRNR INT - 1 Decrement Memory Fullword
DMH 70 MRNR INT ~ 1 Decrement Memory Halfword
TR1 124 RGEN INT 2 1 Decrement R by 1
TR2 125 RGEN INT 2 1 Decrement R by 2
DRN 040300 GEN FLPI 3 5 Double Round From Quad
DRNM 140571 GEN FLPI 8 5 Double Round From Quad

Towards Negative Infinity
DRNP 040301 GEN FLPI 3 5 Double Round From Quad

Towards Positive Infinity
DRNZ 040302 GEN FLPI 3 5 Double Round From Quad

Towards Zero
E168 000011 GEN ADMOD - - Enter 16S Mode
Ed21 001010 GEN ADMOD - - Enter 32I Mode
ES2R 001013 GEN ADMOD - - Enter 32R Mode
Ed28 000013 GEN ADMOD - - Enter 32S Mode
E64R 001011 GEN ADMOD - - Enter 64R Mode
EO4AV 000010 GEN ADMOD - - Enter 64V Mode
FAFA 0 001300 AP FIELD - - Effective Address to FAR 0
EAFA 1 001310 AP FIELD - - Effective Address to FAR 1
EALB 42 MRNR PCILJ - - Effective Address to LB
EAR 635 MRGR PCILJ - - Effective Address to R
EAXB 52 MRNR PCTIIJ - - Effective Address to XB

R_ EIO a4 MRGR IO - Execute I/O
R_ ENB 000401 GEN IO - - Enable Interrupts
R ENBL 000401 GEN I0 - - Enable Interrupts (Local)
R ENBM 000400 GEN I0 - -— Enable Interrupts (Mutual)
R ENBP 000402 GEN IO - - Enable Interrupts (Process)

FA 014,16 RI MRFR FLPT 3 5 Floating Add
FC 04,06 RI MRFR FLPT - 1 Floating Compare
FCDQ) 140571 GEN FLPI - - Floating Convert Double to

Quad
FCM 100 RGEN FLPI 3 5 Floating Complement

C-15 second Edition

INSTRUCIION SETS GULuG

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opeode RI Form Func C © Description

FD 30,32 RI MRFR FLPT 3 5 Floating Divide

FL 00,02 RI MRFR FLPT - - Floating Load

FLT 105,11 RGEN FLPT 6 5 Convert Integer to Floating
Point

FLTH 102,11 RGEN FLPT 6 5 Convert Halfword Integer to
Floating Point

FM 24,26 RI MRFR FLPT 3 5 Floating Multiply
FRN 107 RGEN FLPT 3 5 Floating Round
FRNM 146 RGEN FLPT 3 5 Floating Round Towards

Negative Infinity

FRNP 145 RGEN FLPT 3 5 Floating Round Towards
Positive Infinity

FRNZ 147 RGEN FLPT 3 5 Floating Round Towards Zero

FS 20,22 RI MRFR FLPT 3 5 Floating Subtract

FST 10,12 MRFR FLPT 3 5 Floating Store
R HLT 000000 GEN MCTL - - Halt

I 41 R MRGR MOVE - - Interchange R and Memory
Fullword

ICBL 065 RGEN MOVE - -— Interchange Bytes and Clear
Left

ICBR 066 RGEN MOVE - - Interchange Bytes and Clear
Right

ICHL 060 RGEN MOVE - - Interchange Halfwords and
Clear Left

ICHR 061 RGEN MOVE - - Interchange Halfwords and
Clear Right

ICP 167 RGEN CPIR - - Increment C Pointer

TH 51 R MRGR MOVE - - Interchange r and and Memory
Halfword

TH1 126 RGEN INT 2 1 Increment r by l

TH2 127 RGEN INT 2 1 Increment r by 2

IM 40 MRNR INT - 1 Increment Memory Fullword

IMH 50 MRNR INT - 1 Increment Memory Halfword

R INBC 001217 AP PRCEX 6 5 Interrupt Notify Beginning,
Clear Active Interrupt

R INEN 001215 AP PRCEX 6 5 Interrupt Notify Beginning

R INEC 001216 AP PRCEX 6 5 Interrupt Notify End, Clear
Active Interrupt

R INEN 001214 AP PRCEX 6 5 Interrupt Notify End

R INH 001001 GEN I0 - - Inhibit Interrupts

R INHL~ 001001 GEN 10 - - Inhibit Interrupts (Local)
R INHM 001000 GEN I0 - - Inhibit Interrupts (Mutual)

R INHP 001002 GEN I0 - - Inhibit Interrupts (Process)
INK 070 RGEN KEYS - - Input Keys

INT 103,11 RGEN FLPI 3 5 Convert Floating Point to
Integer

Second Edition C-16

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

Mnem Opeode RI Form Func C CC Description

INTH 101,11 RGEN FLPI 3 5 Convert Floating Point to
Halfword Integer

IR1 122 RGEN INT 2 1 Increment R by 1
TR2 123 RGEN INT 2 1 Increment R by 2
IRB 064 RGEN MOVE - - Interchange r Bytes
TRH 057 RGEN MOVE - - Interchange R Halves
IRTC 000603 GEN IO % 6 Interrupt Return, Clear

Active Interrupt
IRTN 000601 GEN IO % 6 Interrupt Return
ITLB 000615 GEN MCIL 6 5 Invalidate STLB Entry
JMP 51 MRNR PCILJ - - dump
JSR 73 MRGR PCIILJ - - Jump to Subroutine
JSXB 61 MRNR PCILJ - - dump and Save in XB
L Ol RI MRGR MOVE - - Load
ICC 45 MRGR CPIR - Load C Character
LCEQ 153 RGEN LISTS - - Load r on Condition Code EQ
LOGE 154 RGEN LISTS - - Load r on Condition Code GE
LOGT 155 RGEN LISTS - - Load r on Condition Code CT
LCLE 151 RGEN LISTS - - Load r on Condition Code LE
ICLT 150 RGEN LISTS - - Load r on Condition Code LT
LONE 152 RGEN LISTS - - Load r on Condition Code NE
LDAR 44 MRGR MOVE - 5 Load from Addressed Register
Ipc O 162 RGEN CHAR - 7 Load Character
oC 1 172 RGEN CHAR - 7 Load Character
LEQ 003 RGEN LISTS - 4 Load r on R Equal to 0
LF 016 RGEN LISTS - 5 Load False
LFEQ 023,03 RGEN LISTS - 4 Load r on F Equal to 0
LFGE 024,03 RGEN LISTS - 4 Load r on F Greater Than or

Equal to 0
LFGT 025 , 03 RGEN LISTS - 4 Load r on F Greater Than 0
LFLE 021,03 RGEN LISTS - 4 Load r on F Less Than or

Equal to 0
LFLI O 001303 BRAN FIELD - - Load FIR O Immediate
LFLI 1 001313 BRAN FIELD - - Load FIR 1 Immediate
LFLT 020 , 03 RGEN LISTS - 4 Load r on F Less Than 0
LFNE 022 ,03 RGEN LISTS - 4 Load r on F Not Equal to 0
LGE 004 RGEN LISTS - 4 Load r on R Greater Than or

Equal to 0
IGT 005 RGEN LISTS - 4 Load r on R Greater Than 0
LH 11 RI MRGR MOVE - - Load Halfword
LHEQ) 013 RGEN LISTS - 4 Load r on r Equal to 0
LHGE 004 RGEN LISTS - 4 Load r on r Greater Than or

Equal to 0
LHGT 015 RGEN LTSTS 4 Load r on r Greater Than 0
LHL1 04 R MRGR MOVE - Load Halfword Shifted Left

by 1

C-17 Second Edition

8PUTT

SIRUCLLIUN ObGio Guilas

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opeode RI Form Func C @ Description

IHI2 14 R MRGR MOVE — Load Halfword Shifted Left
by 2

LHLS 35 R MRGR MOVE -— Load Halfword Shifted Left
by 3

LHLE O11 RGEN LTSTS 4 Load r on

r

Less Than or
Equal to 0

LHLT 000 RGEN LISTS 4 load r on Less Than 0

LHNE O12 RGEN LISTS 4 Loadr onr Not Equal to 0

R LIOT 000044: AP MCIL 6 5 load IOTLB

LIP 65 MRGR GRR ~ Load Indirect Pointer

LLE 001 RGEN LTSTS 4 Load r on R Less Than or
Equal to 0

LLT 000 RGEN LISTS 4 load r on R Less Than 0

LNE 002 RGEN LISTS - 4 Load r on R Not Equal to 0

R LPID 000617 GEN MCTL - - Load Process ID

R LPS 000711 AP MCTIL 7 6 Load Process Status Word

LT 017 RGEN LTSTS - 5 Load True

M 42 RI MRGR INT * — Multiply Fullword

MH 52 RI MRGR INT 3 5 Multiply Halfword

N 03 RI MRGR LOGIC - — AND Fullword

R NFYB 001211 AP PRCEX 6 5 Notify

R NFYE 001210 AP PRCEX 6 5 Notify

NH 13 RI MRGR LOGIC - - AND Halfword

NOP 000001 GEN MCIL - - No Operation

O 25 RI MRGR LOGIC - - OR Fullword

OH OO RI MRGR LOGIC - - OR Halfword

OTK O71 RGEN KEYS 7 6 Output Keys

PCL 41 MRNR PCIILJ 6 5 Procedure Call

PID 052 RGEN INT - -— Position for Integer Divide

PIDH 053 RGEN INT - - Position r for Integer
Divide

PIM 050 RGEN INT 3 5 Position after Multiply

PIMH 051 RGEN INT 3 5 Position r after Multiply

PRIN 000611 GEN PCTIJ 7 6 Procedure Return

R PILB 000064 GEN MCIL 6 5 Purge TLB

QFAD 36 MRFR FLPT 3 5 Quad Precision Floating Add

QFC 47 RI MRFR FLPT - 7 Quad Precision Floating

Compare

QFCM 140570 GEN FLPT 3 5 Quad Precision Floating
Complement

QFDV 46 MRFR FLPT 5 Quad Precision Floating
Divide

QFLD 34 MRFR FLPT — Quad Precision Floating Load

QFMP 5 MRFR FLPT 3 § Quad Precision Floating
Multiply

QFSB ov MRFR FLPI 5 Quad Precision Floating

Second Edition C-18

Subtract

INSTRUCTION SUMMARY CHARTS

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opeode RI Form Func C C Description

QFST 35 MRFR FLPI - - Quad Precision Floating Store
QIN@ 140572 GEN FLPT 3 5 Quad to Integer, in Quad

Convert
QIQR 140573 GEN FLPI 3 5 Quad to Integer, in Quad

Convert Rounded
RBQ 133 AP QUEUE - 7 Remove Entry from Bottom

of Queue
RCB 140200 GEN KEYS 8 - Reset CBIT to 0

R_ RMC 000021 GEN INTGY - - Reset Machine Check Flag to 0
ROT a4 MRGR SHIFT 4 - Rotate
RRST 000717 AP MCTL - - Restore Registers
RSAV 000715 AP MCIL - - Save Registers
RTQ 132 RGEN QUEUE - 7 Remove Entry from Top of

R RTS 000511 GEN MCTL - - Reset Time Slice
Ss 22 RI MRGR INT 2 1 Subtract Fullword
SCB 140600 GEN KEYS 5 - Set CBIT to 1
SCC 55 MRGR CPIR - - Store C Character
SH 32 RI MRGR DT 2 1 Subtract Halfword
SHA 15 MRGR SHIFT 4 - Shift Arithmetic
SHL 05 MRGR SHIFT 4 - Shift Logical
SHL1 O76 RGEN SHIFT 4 - Shift R left 1
SHL2 O77 RGEN SHIFT 4 - Shift R Left 2
SHR1 120 RGEN SHIFT 4 - Shift R Right 1
SHR2 121 RGEN SHIFT 4 - Shift R Right 2
SL1 O72 RGEN SHIFT 4 - Shift R left l
SL2 O73 RGEN SHIFT 4 - Shift R Left 2
SR1 O74 RGEN SHIFT 4 - Shift R Right 1
SR2 O75 RGEN SHIFT 4 - Shift R Right 2
SSM 042 RGEN INT - - Set Sign Minus
SSP 043 RGEN INT - - Set Sign Plus
SSSN 040310 GEN MCIL 6 5 Store System Serial. Number
st 21 MRGR MOVE - - Store Fullword

P STAR 54 MRGR MOVE - 5 Store into Addressed Register
STC O 166 RGEN CHAR - 7 Store Character
sTtc 1 176 RGEN CHAR - 7 Store Character
STCD 137 AP MOVE - 7 Store Conditional Fullword
STCH 136 AP MOVE - 7% Store Conditional Halfword
STEX 027 RGEN PCTLJ 6 5 Stack Extend
STFA O 001320 AP FIELD - - Store FAR 0
STFA 1 001330 AP FIELD — - Store FAR 1
STH ol MRGR MOVE - Store Halfword

R STPM 000024 GEN MCTL - - Store Processor Model Number
STIM 000510 GEN MCTL 6 5 Store Process Timer
SVC 000505 GEN PCTLJ - - Supervisor Call
Tc 046 RGEN INT 6 1 Two's Complement R
TCH 047 RGEN INT 3S 1 Two's Complement r

C-19 second Edition

Table C-2 (continued)
I Mode Instruction Summary

R Mnem Opeode RI Form Func C CC Description

TCNP 76 R MRNR CPIR - 1 Test C Null Pointer

TFIR O 163 RGEN FIELD - - Transfer FIR O toR

TFIR 1 173 RGEN FIELD - - Transfer FIR 1 toR

T™™ 44 MRNR MCTIL - 1 Test Memory Fullword

TMH 54 MRNR INT — 1 Test Memory Halfword

TRFL O 165 RGEN FIELD - - Transfer R to FIR 0

TRFL 1 175 RGEN FIELD - - Transfer R to FIR l

TSTQ 104 RGEN QUEUE - 7 Test Queue

WAIT 000315 AP PRCEX - - Wait

x 43 RI MRGR LOGIC - - Exclusive OR Fullword

XAD 001100 DECI DECI 3 1 Decimal Add

XBID 001145 DECI DECI 3 5 Binary to Decimal Conversion

XCM 001102 DECI DECI - 1 Decimal Compare

XDIB 001146 DECI DECI 3 5 Decimal to Binary Conversion

XDV 001107 DECI DECI 3 5 Decimal Divide

XED 001112 DECI DECI - - Numeric Edit

XH 53 RI MRGR LOGIC - - Exclusive OR Halfword

XMP 001104 DECI DECI 3 1 Decimal Multiply

XMV 001101 DECI DECI 3 1 Decimal Move

ZCM 001117 CHAR CHAR 6 7 Compare Character Field

ZED 001111 CHAR CHAR - - Character Field Edit

ZFIL 001116 CHAR CHAR 6 5 Fill Field With Character

2M 43 MRNR CLEAR - - Clear Fullword

ZMH 53 MRNR CLEAR - - Clear Halfword

ZMV 001114 CHAR CHAR 6 5 Move Character Field

ZMVD 001115 CHAR CHAR 6 5 Move Characters Between Equal
Length Strings

ZTRN 001110 CHAR CHAR - - Character String Translate

Second Edition C-20

Hardware

Consideration in

Performance

Several hardware considerations have bearing on performance. First,
Some instructions execute faster than others. To identify these, this
document lists the relative instruction weights for V and I modes.
Special note is made of preferred load/store, arithmetic, and bulk data
move instructions for optimum execution times. Second, the type of
address formation also affects execution times. To identify these,
this appendix shows the relative weights of different address
formations; the performance penalties for unaligned data, cache miss,
STLB miss, and address traps are also shown. Recommendations are given
for how to use all of this information when coding in PMA or a high
level language.

Performance of emitted code or assembler coding of identified
time-crucial routines requires some knowledge of instruction execution
times. Prime has never given these out before for any reasons:

@ Prime's 50 Series Processors are an entire line of machines that
have differing performances.

@ The execution time of an instruction is based on many events
Such as addressing mode and data alignment, making this a
complex issue.

® Contractual guarantees based on published times are certain to
be wrong because of the previous point.

@ There is a bad correlation of instruction times to MIPs in fact,
but not in the minds of the press. Hence we would mislead by
giving specific times.

D-1 Second Edition

TAICETMATITINTAT CCINSTRUCTION Spouse GUIDE

Having said that, nevertheless, tuners must tune. The following tables

represent relative "best case’ weights for the "perfect" 50 Series

machine. No actual machine has exactly this balance, but the 6350 and

9955 II come close.

INSTRUCTION WEIGHTS

To use these tables, locate the desired mnemonic and note its weight in

units. The following abbreviations are used.

A -- Equal to O if there are no PCL arguments. Equal to 8+6*n where

n is the number of arguments.

D -- The number of destination digits.

N -- In shift instructions, the number of shifts to perform. In

decimal and character instructions, the number of digits or

characters involved.

S -- The number of source digits.

—- The number of non-zero destination digits.

Second Edition D-2

HARDWARE CONSIDERATIONS IN PERFORMANCE

Table D-1
V Mode Instruction Weights

MnemUnitsMnem| Mnem UnitsUnits

14
14
3
9
4
2
8
2
7

5
5
5
2
2
2
2
2
2
1

10
1

11
1
1
oO
2
4
4
4
4
2
4
4
3
3

Ov
3
3
3
3

+2

3
3
3

o
O

os
a

4
SD

Second EditionD-3

TNSTRUCTION SETS GUIDE

Table D-1 (Continued)
V Mode Instruction Weights

| Mnem Units | Mnem Units | Mnem Units | Mnem Units

|
| LMCM 4 | QFST 19 | SRS 10 | TAX 1

| LNE 3 | QINQ 55 i SR4 10 | TAY l

| LPID 6 | QIQR 56 | SRC 3 | TBA 1

| LPSW 14 i RBQ 20 | SSl 10 | TCA 2

| LRL N+2 | RCB 1 | $82 10 | TCL 2

| LRR N+2 | RMC 15 | $83 10 | TFLL 3

| LRS N+2 | RRST 44 | SS4 10 | TKA 3

| LT 2 | RSAV 85 | SSC 3 | TLFL 2

| MPL 13 | RTO 18 | SSM 1 | TST 7

| MPY 8 | RTS 10 | SSP 1 | TXA 1

| NFYB oO | S1A 1 | SSR 10 | TYA 1

| NFYE 35 | S2A 1 | SSS 10 | WAIT 58

| NOP 1 | SAR 3 | SSSN Ov | XAD '76+3*N

| ORA 1 | SAS 3 | STA 2 | XBTD 40+5*N

| OTK 9 | SBL 1 | STAC 8 | XCA 2

| PCL 40+A | SCB 1 | STC 12 | XCB 2

| PIDA 2 | SGT 3 i STEX 9 | XCM 80+2*N

| PIDL 3 | SKP 7 | STFA 8 | XDTB 40+5*N

| PIMA 3 | SLE 3 | STL 2 | XDV 90+65*#

| PIML 4 | SLN 3 | STLC 9 | XEC 9

| PRIN 16 | SLZ 3 | STLR 13 | XED Varies

| PTLB 400 | SMCR 5 | STPM 12 | XMP 88+15*S*D

| @FAD 56 | SMCS 5 | STIM 17 | XMV 80+3*N

| QFCM 10 | SMI 3 | STX 2 | ZCM 20+N

| QFCS 39 | SNR 10 | STY 2 | ZED Varies

| QFDV 489 | SNS 10 | SUB 1 | ZFIL 14+0.5*N

| QFLD 14 | SNZ 3 | Svc 36 | ZMV 18+0.75*N

| QFLX 2 | SPL 3 | SZE 3 | ZMVD 14+0.75*N

| QFMP 65 | SR1 10 | TAB 1 | ZTRN 14+8*N

| QFSB 57 | SRe 10 | TAK 3 |

Second Edition

HARDWARE CONSIDERATIONS IN PERFORMANCE

Table D-2
I Mode Instruction Weights

Units | Mnem Units | MnemMnemUnits

8
8
8
8
8
8
3
2
1
1

12
4
3
4
4
4
10
6
38
2

15
10
9
14
7

ll
12
4
3
O
4
1
1
1
1
3
4
1
1
3
3

40
oO
40
oO
3
6

Second EditionD-5

INSTRUCTION SETS

Table D-2 (Continued)
I Mode Instruction Weights

Mnem Units | Mnem Units | Mnem Units | Mnem Units

LNE

| |

| |

| 3 | QFDV 489 | SHR2 2 i TMH 1 |

| LPID 6 | QFLD 14 | SLI 1 | TRFL 2 |

| LPSW 14 | QFMP 65 | SL2 1 | TSTQ 7 |

| LT 2 | QFSB 57 | SR1 1 | WAIT 58 |

| M 13 | QFST 19 | SR2 2 | Xx 1 |

| MH 8 | QINQ 55 | SSM 1 i XAD 76+3*N

IN 1 | QIQR 56 | SSP 1 | XBID 40+5*N |

| NFYB 35 | RBQ 20 | SSSN Ov | XCM 80+2*N |

| NFYE 35 | RCB 1 | ST 2 | XDTB 40+5*N |

| NH 1 | RMC 15 | STAR 13 | XDV Q90+65*# |

| NOP 1 | ROT N+2 | §TC 12 | XED Varies |

| O 1 | RRST 44 | STCD 9 | XH 1 |

| OH 1 | RSAV 85 | STCH 9 | XMP 88+15*S*D |

| OTK 9 | RT} 18 | STEX 9 | XMV 80+3*N |

| PCL 40+A | RTS 10 | STFA 8 | ZCM 20+N |

| PID 3 | § 1 | STH 2 | ZED Varies |

| PIDH 2 | SCB 1 | STPM 12 | ZPIL 14+0.5*N |

| PIM 4 | SCC 5 | STITM 17 | 2M 2 |

| PIMH 3 | SH 1 | SVC 36 | ZMH 2 |

| PRIN 16 | SHA N+2 i TC 2 | ZMV 18+0.75*N |

| PTLB 400 | SHL N+2 | TCH 2 | ZMVD 144+0.75*N |

| QFAD 56 | SHL1 1 | TCNP 2 | ZTRN 14+8*N |

| QFC 24 i SHL2 1 i TFLR 3 |

| QFCM 10 | SHR1 1 | TM 1 | |

Examination of the V and I mode instruction weights shows that certain

instructions have much activity in them and thus take much longer to

complete execution. Such instructions include STLR/LDIR and STAR/LDAR

(both 13/11 units) that store/load the L register into the addressed

register. Other such instructions are RSAV/RRST (44/85 units) that

save/restore all registers.

Other instructions are very fast, such as the long loads (LDL and L) at

one unit each.

Prime processor designers have worked hard to make the instructions

that "feel" fast be fast. "Cute" uses of instructions are usually

punished by reduced performance. An example of "cute" instruction use

is LDX# 2 instead of STL Temp, LDX Temp+1. Clever use exploits the

address modes and multiple index registers to save instructions.

Clever use of registers can save stores, but shuffling data from one

register to another (even in I mode) to save a store has little value.

Second Edition D6

HARDWARE CONSIDERATIONS IN PERFORMANCE

Restricted instructions are shown in these tables. Even though several
of these are heavily weighted, they are not discussed here since they
are Ring O instructions.

Also, short integer (16-bit) instructions take less time to execute
than long integer (32-bit) ones, particularly in the case of multiplies
and divides. For V mode, long integer arithmetic mnemonics end in "L",
Such aS MPL and DVL, while short integer ones do not, as in MPY and
DIV. I mode short integer mnemonics end in "H" (half register), such
as MH and DH, while long integer ones are simply M and D for multiply
long and divide long.

For all processors, be sure to use the ZMVD (Move Characters between
Equal Length Strings) instruction when moving bulk data. ZMVD is the
most efficient means for data moving. All of Prime software is
learning to use this instruction for bulk data transfers. Prime
processors are optimized for ZMVD.

The advantage of using these tables of weighted instruction times is
Obvious if you are programming in PMA. If you are programming in a
high level language such as FORTRAN or Pascal, however, you first need
to generate an expanded listing when you are compiling your source
program. Such a listing shows the PMA code that the compiler generated
for each source statement. Simple arithmetic will show the approximate
relative weights that each source statement takes.

EXTENSIONS TO INSTRUCTION WEIGHTS

Unfortunately, no simple calculation can accurately produce the actual
instruction time of any modern machine (including all of Prime's, of
course). Many factors influence the execution of a single instruction.
The most important is, of course, the processor type. However, many
other factors also affect execution time. Address formation and
virtual memory considerations are shown in Table D-3. Other factors
are harder to describe and so are deemed less important. Among them
are I/O (DMx) and process exchange activity, interprocessor locking (on
the P850), memory refresh, ECCC’s, etc.

Table D-3 shows that indexing adds no further time to the basic
instruction while indirection adds 1 unit. Unaligned data also adds 1
unit, so be sure to align data on even word (32-bit) boundaries in
common blocks. Prime software provides for proper data alignment if
possible. Address traps add considerably more time to instruction
execution. Read or write address traps add 8 units apiece, and should
be avoided. An address trap is invoked in V mode short instructions if
the final address is to memory from 0 to 7. The trap is to register
file locations.

A time penalty is paid whenever there is a cache miss (13 units) or an
STLB miss (31 units), since the virtual-to-physical address translation
process has to occur. The more pages used in a program, the higher the
probability of a cache miss, STLB miss or a page fault. As a rule of

D-7 second Edition

INSTRUCTION SEIS GULUE

thumb to keep these delays down, ensure that your programs have their

most frequently-used subroutines loaded together -- do not load

subroutines on an alphabetic basis.

Table D-3

Comparative Weighting
Address Formation High End for 32I Mode

Vanilla L 1,F0O 1 unit

Indexed L 1,FOO, 2 1 unit

Reg-Reg L 1,2 1 unit

Immediate L 1,=10 1 unit

Indirect L 1, P$FOO,* 2 units

Indirect L 1,P$FOO, *2 2units (postindexed)

Unaligned L 1,F0 2 units

Cache miss L 1,FOO 14 units (1 only)

STLB miss L_ 1,F00 32 units (1 only)

Worst case L _1,P$F0O,* 179 units
(Four STLB and Cache misses, Indirect, I.P. and operand unaligned.)

Address Traps:

LDA# 6 9 units (Read address trap)

DFST TEMP 6 units (Better practice)
LDA TEMP+3

STA# 6 9 units (Write address trap)

STA TEMP+3 4 units (Better practice)
DFLD TEMP

"Normal" cache hit rate of 98 percent
"Normal" STLB hit rate of 99 percent

Second Edition D-8

Archived Instructions

This appendix contains archived S,
These instructions support options that are no longer offered, or they
Support functions that are no longer used. Table E-1 contains a
Summary of the archived instructions.
format as those in Appendix C.) The descriptions of these instructions
follow Table E-1.

Table E-1

V, and I mode instructions.

(This table is in the same

Archived Instruction Summary

R Mnem Opcode Form Func M C Description

R CAT 000411 GEN I0 SRVI - Clear Active Interrupt
CREP 02 MR POILJ R - Call Recursive Entry

Procedure
CXCS 001714 GEN MCTL VI 6 Control Extended Control

Store
R EMCM 000503 GEN INTGY SRVI - Enter Machine Check Mode

ENIR 0103 MMR POTLJ R - Enter Recursive Procedure
Stack

R ESIM 000415 GEN I0 SRVI - Enter Standard Interrupt Mode
R EVIM 000417 GEN IO SRVI - Enter Vectored Interrupt Mode

JEQQ O02 03 MR PCTLI R - Jump on A Equal to O
JGE O07 03 MYR PCILJ R = Jump on A Greater Than or

Equal to 0

E-1 Second Edition

TRICOTIONNTCAT CTANG MTT
LNOLIVULLAY bd UV.

Table E-1 (continued)
Archived Instruction Summary

R Mnem Opcode Form Func M Cc C Description

JGT 0503 MR PCILJ R - - Jump on A Greater Than 0

JLE 0405 MR PCTLJ R - - Jump on A Less Than or Equal
to O

JLT O06 035 WR PCTLJ R - - dump on A Less Than 0

JNE 0305 MR PCTLS R - - Jump on A Not Equal to 0

R LMCM 000501 GEN INTGY SRVI - - Leave Machine Check Mode

LWCS 001710 GEN MCIL VI 6 5 Load Writable Control Store

R MDEI 001304 GEN INTGy VI 6 5 Memory Diagnostic Enable

Interleave

R MDII 001305 GEN InTGy VI 6 5 Inhibit Interleaved
R MDIW 001324 GEN INTGY VI 6 5 Write Interleaved

R MORS 001306 GEN InTGY VI 6 5 Read Syncrome Bits

R MDWC 001307 GEN INTGY VI 6 5 Load Write Control Register

MIA 6&4 MRGR MCIL I — -— Microcode Entrance

MIA 1201 MR MCTL V - - Microcode Entrance

MIB ‘74 MRGR MCTIL I - - Microcode Entrance
MIB 1301 YR MCTIL V - -— Microcode Entrance
NRM 000101 GEN MINT SR — Normalize
RIN 000105 GEN PCTIJ S&R - - Return

SCA 000041 GEN INT SR -~ - oad Shift Count into A

R SNR 10024KX GEN SKIP SRV - - Skip on Sense Switch N Reset

to 0

R SNS 10124K GEN SKIP SRV - - Skip on Sense Switch N Set

to l

R SRl 100020 GEN SKIP SRV - - Skip on Sense Switch 1 Reset

to 0

R SR2 100010 GEN SKIP SRV - - Skip on Sense Switch 2 Reset

to O

R SR3 100004 GEN SKIP SRV - - Skip on Sense Switch 5 Reset

to O

R SR4 100002 GEN SKIP SRV - - Skip on Sense Switch 4 Reset

to O

R SSl 101020 GEN SKIP SRV - - Skip on Sense Switch 1 Set

to l

R ss2 101010 GEN SKIP SRV - - Skip on Sense Switch 2 Set

to l

R SS3 101004 GEN SKIP SRV - - Skip on Sense Switch 3 Set

to 1

R SS4 101002 GEN SKIP SRV - - Skip on Sense Switch 4 Set
to l

R SSR 100036 GEN SKIP SRV - - Skip on All Sense Switches

Reset to 0

R SSS 101036 GEN SKIP SRV - - Skip on Any Sense Switches
Set to l

VIRY 000311 GEN INTGY SRVI 6 5 Verify
WCS OO16XX GEN MCTL RVI - - Write Control Store
XVRY 001113 MCTL GEN VI 6 5 Verify XIS

Second Edition E-2

ARCHIVED INSTRUCTIONS

> cAI
Clear Active Interrupt
0000000100001001 #2, R, V, I mode form)

Clears the current active interrupt. Effective only in vectored
interrupt mode. Inhibits interrupts for one instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

B CREP address
Call Recursive Entry Procedure
IX¥100011000010CB\2 (R mode form)
{ DISPLACEMENT\16]

Increments the contents of the program counter and loads the result
into the location following the one specified by the current value of
the R mode stack pointer. Calculates an effective address, EA, and
loads it into the program counter. Execution continues with the
location specified by the new value of the program counter.

This instruction performs subroutine linkage for reentrant or recursive
procedures. CREP stores the return address in bits 17-32 (the second
halfword) of a stack frame created by the ENTR instruction, rather than
in the destination address as JST does. leaves the values of CBIT,
LINK, and the condition codes indeterminate.

Pp cxcs
Control Extended Control Store
0000001111001100 (V, I mode form)

Moves the A register contents to the control register on the writable
control store board. leaves the values of CBIT, LINK, am the
condition codes indeterminate.

 =EMCM
Enter Machine Check Mode

0O000000101000011 #3«X(S, R, V, I mode forn)

Enters machine check mode 3 by loading 3 into modal bits 15-16. This
mode enables the reporting of all errors. The actions taken upon an
error depend on whether the machine was in process exchange mode or
not.

E-3 Second Edition

INSTRUCTION SETS GUIDE

The instruction inhibits interrupts during execution of the next
instruction. Leaves the values of CBIT, LINK, and the condition codes
unchanged. See Chapter 10 of the System Architecture Reference Guide
for more information about checks.

If an error occurs in process exchange mode, the microcode stores the
machine state in the appropriate check vector and transfers control to
that vector, automatically dropping back to machine check mode 0.

If an error occurs when the machine is not in process exchange mode,
the following actions occur. If the appropriate check vector contains
@ nonzero value, the processor jumps indirectly through this vector to

the check routine. If the check vector location contains 0, the
machine halts.

Note

This is a restricted instruction.

P ENR 1
Enter R Mode Recursive Procedure Stack
ITX¥000111000011CB\2 (R mode long form)
[DISPLACEMENT\16 J

Creates a save area n halfwords long. (A halfword is 16 bits.) Saves
the current value of the R mode stack pointer in the first halfword of
the save area. The starting address of the save area is:

(contents of R mode stack pointer) - n

This means that the instruction creates a stack frame containing n

locations, and that the first location points to the previous frame.

The ENTR instruction leaves the values of CBIT, LINK, and the condition

codes unchanged.

p> ESIM
Enter Standard Interrupt Mode
0000000100001101 .(S, R, V, I mode form)

Enters standard interrupt mode by resetting bit 2 of the modals to 0.
Inhibits interrupts for one instruction. ESIM is meaningless when the

system is in process exchange mode (that is, the value of modal bit 138
is 1). All interrupts use location ‘63. The processor services
interrupts according to their relative positions on the I/O bus. Lower

devices have higher priority. Inhibits interrupts during execution of
the next instruction. Leaves the values of CBIT, LINK, and the
condition codes unchanged. Refer to Chapter 10 of the System

Architecture Reference Guide for more information about interrupts.

Second Edition E-4

ARCHIVED INSTRUCTIONS

Note

ESIM is a restricted instruction.

p> EVM
Enter Vectored Interrupt Mode
0000000100001111 #4348, R, V, I mode form)

Enters vectored interrupt mode by setting bit 2 of the modals to 1.
EVIM is meaningless when the system is in process exchange mode (that
is, the value of modal bit 13 is 1). The processor services interrupts
according to their relative positions on the I/O bus. Lower devices
have higher priority. Interrupts occur through a location specified by
the interrupting device. Inhibits interrupts during execution of the
next instruction. Leaves the values of LINK, CBIT, and the condition
codes unchanged. Refer to Chapter 10 of the System Architecture
Reference Guide for more information about interrupts.

Note

This is a restricted instruction.

— JFQ address
Jump on A Equal to 0
IX¥001011000011CB\2 (R mode forn)
[DISPLACEMENT\16]

Calculates an effective address, EA. Loads EA into the program counter
if the contents of A are equal to 0. If the contents of A are not
equal to 0, execution continues with the next instruction. Leaves the
values of CBIT, LINK, and the condition codes unchanged.

> JGE address
Jump on A Greater Than or Equal to 0
IX¥011111000011CB\2 (R mode form)
{ DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are greater
than or equal to 0, the instruction loads EA into the program counter.
If the contents of A are less than 0, execution continues with the next
instruction. leaves the contents of CBIT, LINK, and the condition
codes unchanged.

E-5 second Edition

VS line UNA che heAT A

P JCT address
Jump on A Greater Than 0
IX¥010111000011cCB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are greater
than 0, the instruction loads EA into the program counter. If the
contents of A are less than or equal to 0, execution continues with the
next instruction. Leaves the contents of CBIT, LINK, and the condition
codes unchanged.

— JLE address
Jump on A Less Than or Equal to 0
TK¥O010011000011CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are less
than or equal to O, the instruction loads EA into the program counter.
If the contents of A are greater than 0, execution continues with the
next instruction. Leaves the contents of LINK, CBIT, and the condition
codes unchanged.

p JLT address
Jump on A Less Than 0
TX¥O011011000011CB\2 (® mode forn)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A are less
than 0, the instruction loads EA into the program counter. If the
contents of A are greater than 0, execution continues with the next
instruction. Leaves the contents of CBIT, LINK, and the condition

codes unchanged.

> INE address
Jump on A Not Equal to 0
TX¥001111000011CB\2 (R mode form)
[DISPLACEMENT\16]

Calculates an effective address, EA. If the contents of A do not equal
O, the instruction loads EA into the program counter. If the contents
of A are equal to 0, execution continues with the next instruction.
Leaves the contents of CBIT, LINK, and the condition codes unchanged.

Second Edition E-6

ARCHIVED INSTRUCTIONS

> Lucy
Leave Machine Check Mode
O000000101000001 £2, R, V, I mode form)

Leaves machine check mode by setting bits 15-16 of the modals to OO.
If a machine parity error occurs in this mode, the hardware sets the
machine check flag but no check (V mode) or interrupt (S, R modes)
occurs. Inhibits the machine for one instruction. Leaves the values
of CBIT, LINK, and the condition codes unchanged.

Note

This is a restricted instruction.

> LCS
Load Writable Control Store

0000001111001000 £4((V, I mode form)

Loads the writable control store portion of the extended control store
board from the memory block pointed to by XB. The control register
loaded by CXCS modifies this instruction. Leaves the values of OCBIT,
LINK, and the condition codes indeterminate.

P Mer
Memory Diagnostic Enable Interleave
0000001011000100 (V, I mode form)

Enables the memory interleave facility. Leaves the values of LIM,
CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

P MIT
Memory Diagnostic Inhibit Interleave
0000001011000101 (V, I mode form)

Inhibits the memory interleave facility. Leaves the values of LD,
CBIT, and the condition codes unchanged.

Note

This is a restricted instruction.

E-7 Second Edition

INSTRUCTION SETS GUIDE

> MIW
Memory Diagnostic Write Interleaved
0000001011010100 (V, I mode form)

Writes interleaved memory. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

p> RS
Memory Diagnostic Read Syndrome Bits
0000001011000110 (V, I mode form)

Reads memory syndrome bits. Leaves the values of LINK, CBIT, and the
condition codes unchanged.

Note

This is a restricted instruction.

P mpc
Memory Diagnostic Load Write Control Register
0000001011000111 (V, I mode form)

Writes memory control register. Leaves the values of LINK, CBIT, and
the condition codes unchanged.

Note

This is a restricted instruction.

P MIA
Microcode Execute A
IX¥101011000Y01 R\e2 (V mode long form)
DISPLACEMENT16

110100 R\3 TM™\2 SR\3 ER\2 (I mode form)
{[DISPLACEMENT\16]J

This instruction currently causes a UII fault. If implemented, this
instruction is for user-written microcode. For more information about
UII, refer to Chapter 10 of the System Architecture Reference Guide.

Second Edition E-8

ARCHIVED INSTRUCTIONS

P MB
Microcode Execute B

IX¥101111000Y015R\2 (V mode long)
DISPLACEMENT16

111100 R\3 TM\2 SR\3 BR\2 (I mode form)
[DISPLACEMENT\16]

This instruction currently causes a UII fault. If implemented, this
instruction is for user-written microcode. For more information about
UII, refer to Chapter 10 of the System Architecture Reference Guide.

P NR
Normalize

O000000001000001 £4(¢§, R mode form)

Shifts the 51-bit integer in A and B to the left arithmetically,
shifting in Os into bit 16 of B. The shift does not affect bit 1 of B
or bit 1 of A. The instruction shifts bits out of bit 2 in A until the
value of bit 2 is opposite the value of bit 1 in A. Loads bits 9-16 of
the S and R mode keys with the number of shifts performed.

Normalizing O on all machines results in the following: zeros are
loaded in bits 9-16 of the keys; bit 1 of the B register is ignored in
the test for zero. Bit 1 of the B register may be reset or left
unchanged, depending on the processor.

leaves the values of CBIT and the condition codes unchanged; the value
of LINK is indeterminate.

Note

Since the bits shifted out of bit 2 in A contain copies of the
Sign of the 31-bit number, the shift results in no loss of
information.

P RIN
Return

oo00o0000001000101 (R mode form)

Returns control from a P300 recursive procedure to the calling routine.
To do this, RIN fetches the return address from the second halfword of
the previous stack frame and loads the result in the program counter.
RIN then transfers halfword 1 (the pointer to the preceding stack
frame) to the S register. (A halfword is 16 bits.)

(S)+1 -> P
(Ss) -> S$

E-9 Second Edition

TNSTDUCTTON SETS GCrTOE
ThsA

If the return address is 0, (S) is unchanged and a PSU (Procedure Stack
Underflow) fault is taken (interrupt through location ‘75 in physical
memory is taken on the Prime 300). Leaves the values of LINK, CBIT,
and the condition codes unchanged.

Note

This instruction reverses the actions done by CREP and ENIR.

PRscA
Load Shift Count Into A

oo0o00000000100001 £421(S, R mode form)

Loads the contents of bits 9-16 of the keys into bits 9-16 of A.
Clears bits 1-8 of A to 0. Leaves the values of CBIT, LINK, and the
condition codes unchanged.

Note

The SCA instruction is used with NRM.

P Mo
Skip on Sense Switch N Reset to 0
LODODODOONOLOILONSA (S, R, V mode form)

Skips the next sequential 16-bit halfword if the contents of sense
Switch N are 0. Leaves the values of CBIT, LINK, and the condition
codes unchanged.

N specifies the sense switch to test.

Note

This is a restricted instruction.

P svs
Skip on Sense Switch N Set to 1
l1O0000101010N4 CS, R, V mode form)

Skips the next Soquentiat 16-bit halfword if the value of sense switch
values of CBIT, LINK, and the conditi codesVal

N specifies the sense switch to test.

second Edition E-10

ARCHIVED INSTRUCTIONS

Note

SNS is a restricted instruction.

» sri
Skip on Sense Switch 1 Reset to 0
1o0000000001000NO (S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
lis 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

P sre
Skip on Sense Switch 2 Reset to 0
l1O00000000001000 £48, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
2is 0. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

srs
Skip on Sense Switch 3 Reset to 0
1OoO00000000000100 £(§, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
Sis 0. Leaves the values of CBIT, LINK, and the comiition codes
unchanged.

Note

This is a restricted instruction.

E-11 second Edition

INSTRUCTION SETS GUIDE

P sr
Skip on Sense Switch 4 Reset to 0
1000000000000010 £(S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
4 is 0. Leaves the values of CBIT, LINK, and the comiition codes
unchanged.

Note

This is is a restricted instruction.

— ssi
Skip on Sense Switch 1 Set to l
1000001000010000 £S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
1 is 1. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

> sse
Skip on Sense Switch 2 Set to 1
1000001000001000 £4, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
2is 1. Leaves the values of CBIT, LINK, and the condition codes

unchanged.

Note

This is a restricted instruction.

P sss
Skip on Sense Switch 3 Set to l
1000001000000100 £(S, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
3 is 1. Leaves the values of CBIT, LINK, and the comdition codes
unchanged.

second Edition E-12

ARCHIVED INSTRUCTIONS

Note

This is a restricted instruction.

p> ss
Skip on Sense Switch 4 Set to l
1000001000000010 £48, R, V mode form)

Skips the next sequential 16-bit halfword if the value of sense switch
4is 1. Leaves the values of CBIT, LINK, and the condition codes
unchanged.

Note

This is a restricted instruction.

P ss
Skip on All Sense Switches Reset to 0
1000000000011110 £(S, R, V mode form)

Skips the next sequential 16-bit halfword if the values of sense
switches 1, 2, 3, and 4 are all 0. Leaves the values of CBIT, LOK,
and the condition codes unchanged.

Note

This is a restricted instruction.

— sss
Skip on Any Sense Switches Set to l
1000001000011110 £6, R, V mode form)

Skips the next sequential 16-bit halfword if the values of sense
Switches 1, 2, 3, and 4 are all 1. Leaves the values of CBIT, LOX,
and the condition codes unchanged.

Note

This is a restricted instruction.

E-13 Second Edition

TRICITMTYNNTCAT ATANS MITT
LINDLAUVULLUAY DDD UV

P VIRY
Verify 0311 opcode
0000000011001001 £28, R, V mode form)

Executes the verification routine. If there is a failure of any kind,

the processor goes on to the next instruction with the number of the

test that failed in register A. If there are no errors, the processor

skips the next sequential instruction.

If the processor does not have the verification routine, this

instruction executes aS no-op.

PB wsn
Writable Control Store

OO00001110N6 £((R, V, I mode form)

Reserved set of 64 op codes to serve as microcode entrances, where n is

O through 63.

p> xXVRY
XIS Board Verify 1113 opcode
0000001001001011 £42468, R, V mode form)

XVRY executes a Prime 500 microcode diagnostic routine tht checks the

integrity of the XIS board. If the XIS board is not functional, the

processor does not skip the next instruction and the A register holds

the failed micro-diagnostic test number. If the processor passes the

verify instruction, it skips the next instruction.

The codes and tests are:

'72 Data Move Test - Load and Unload XIS Board
‘73 Normalize Test - Adjust Test
‘74 Binary Multiply
‘75 Binary Divide
‘76 Decimal Arithmetic

Second Edition E-14

2455 Instruction Sets

The 2455 processor has now been added to the Prime 50 Series computers.
This new processor shares the architecture and operating system that is
common to all SO Series processors and makes the 50 Series a line of
completely upward-compatible and downward-compatible systems.

The implementation of the common architecture, however, can be slightly
different for each member of the 50 Series, allowing the different
processors to address a wide variety of user needs while remaining
compatible.

The architectural implementation of the 2455 is identical to that of
the 2755 processor. This means that instruction set features that
apply to the 2755 apply equally well to the 2455. The only exception
to this is the STPM (Store Processor Model) instruction: ‘the processor
model number code for the 2455 is 32L (decimal).

F-1 Second Edition

SURVEY

READER RESPONSE FORM

Instruction Sets Guide DOC9474-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization

of our publications.

1. How do you rate this document for overall usefulness?

O excellent O very good 0 good QO fair O poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

O Much better O Slightly better O About the same
O Much worse 0 Slightly worse O Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:

Address:

Postal Code:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

Postage will be paid by:

Prime.
Attention: Technical Publications

Bldg 10
Prime Park, Natick, Ma. 01760

H
H

TEA
DOCS4°4-2LA

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	reply
	replyA
	replyB
	xBack

