

PRIME
REFERENCE GUIDE
SYSTEMARCHITECTURE &
INSTRUCTIONS IDR3060

Se
rr
e
n
e
e

P/N MAN3251-001

PRIME SOF’TWARE DOCUMENTATION

HIGH LEVEL ASSEMBLY

LANGUAGE LANGUAGE

PROGRAMMER'S REFERENCE

GUIDES GUIDES

e FORTRAN IV e SYSTEM

PDR3057 ARCHITECTURE

PTU47 INSTRUCTIONS

IDR3060

e COBOL MAN1812*

PDR3056

PTU48 e PRIME MACRO

ASSEMBLER

e RPGII PDR3059

IDR3031 PTUSO
FDR3275*

PTU49

e BASIC/VM

IDR3058

@ INTERPRETIVE

BASIC

IDR1813

PRIME DOCUMENTATION TYPES

OPERATING

SYSTEM

REFERENCE

GUIDES

e PRIMOS

COMMANDS

PDR3108

FDR3250*

e SYSTEM

ADMINISTRATOR

GUIDE

IDR3109

e FILE SYSTEM

PDR3110

PTUS1!

e SOFTWARE

LIBRARY

PDR3106

PTUS2

SOFTWARE

SUBSYSTEM

REFERENCE

GUIDES

COMMUNICATIONS

SUBSYSTEM

REFERENCE

GUIDES

e DATA BASE

MANAGEMENT

IDR3043

IDR3044

IDR3045

IDR3046

PTUS55

e RJE/2780
PDR3067

e HASP

IDR3107

e EDITOR &

RUNOFF

FDR3104

e MIDAS

PDR3061

PTU54

e SPSS

PDR3173

e FORMS

IDR3040

PTU45

PTUS53

IDR Initial Documentation Release: provides usable, accurate advanced information.

PDR Preliminary Documentation Release: provides more complete and accurate information about the product,

but is not in final format.

FDR Final Documentation Release: a complete product description; edited, formatted and presented in Prime's
highest standards. The Programmer’s Companion*is another type of FDR;a series of pocket-size, quick

reference guides on Prime software products.

PTU Prime Technical Update: interim updates to existing documents.

PREFACE

This document is an IDR (Initial Documentation Release) on System

Architecture and Instructions for the Prime 10% through 5#¥. This
reference guide is being written in three stages:

1. IDR stage

e@ Includes the completely revised instruction set and
supporting data structures.

e Incorporates all the remaining material from the superseded
Manuals and PETS.

2. PDR stage

e Updates the instruction set summary.

e Includes a complete revision of all system architecture

descriptions.

3. FDR stage

e Revises and updates the PDR in a final typeset version.

Parts II and III of this IDR contain the Prime 100 through 500
instructions set definitions with supporting data and instruction
formats, grouped according to addressing mode. Combined with the PMA
User Guide, it provides the programmer with the information necessary

to program in the PMA assembly language.

Part I and the Appendices contain all the information from the

superseded manuals which was not rewritten for Parts II and III. This

section will be completely rewritten for the PDR.

The manuals and PETS which are superseded by this manual are:

MAN 1671 - System Reference User Guide
MAN 2798 -— P4098 System Reference
PET -308 - Introduction to P500

PET -381 - Prime P5@0 Extended Instruction Set

i o-1 July 1978

PREFACE (Cont)

All correspondence on suggested changes to this docment should be
directed to:

Rosemary Shields, Technical Writer
Technical Publications Department
Prime Computer, Inc.
#3 Newton Executive Park
Newton, Massachusetts 92165

We wish to thank the members of the SYSTEM ARCHITECTURE AND INSTRUCTION
GUIDE team and also the non-team members, both customer and Prime, who
contributed to and reviewed this IDR.

Copyright 1978 by
Prime Computer, Incorporated

#3 Newton Executive Park
Newton, Massachusetts @2165

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

First printing July 1978

REV. 6 i- 2

PART I —- OVERVIEW

Section Title Page

SECTION 1 INTRODUCTION | 1-1

THE CENTRAL PROCESSORS 1-1

SOFTWARE FIRST: THE PRIME BLUEPRINT 1-2

COMPATIBILITY 1-2

CENTRAL PROCESSOR FEATURES 1-3

SECTION 2 PRIME 400 ARCHITECTURE 2-1

OVERVIEW OF THE PRIME 400 PROCESSOR 2-1

Compatibility 2-1
Performance 2-2

Input/Output Operation 2-5
Firmware Enhancements 2-6

Integrity Enhancements 2-7

VIRTUAL MEMORY STRUCTURE 2-10
PROCESS EXCHANGE ENVIRONMENT 2-19

PROCEDURE CALL ENVIRONMENT 2-19

TRAPS, INTERRUPTS, FAULTS, AND CHECKS 2-22

QUEUES AND DMO 2-31

CONTROL PANEL 2-34

SECTION 3 PRIME 589 ARCHITECTURE 3-1

PART II -— INSTRUCTION SUMMARY - V, R, AND S MODES

SECTION 4 OVERVIEW AND SUMMARY OF CONVENTIONS 4-1]

INSTRUCTION DESCRIPTION CONVENT'IONS 4-1
FUNCTION GROUP DEFINITIONS 4-2
FORMAT DEFINITIONS 4-3
GENERAL DATA STRUCTURES 4-4
PROCESSOR CHARACTERISTICS 4-5

SECTION 5 FORMATS 5-1

DATA STRUCTURES 5-1
PROCESSOR CHARACTERISTICS 5-13
INSTRUCTION FORMATS | 5-24

. SECTION 6 MEMORY ADDRESSING 6-1

BACKGROUND CONCEPTS 6-1
MEMORY REFERENCE INSTRUCTION FORMATS 6-7
ADDRESSING MODE SUMMARIES/EFFECTIVE ADDRESS 6-1

CALCULATION FLOWCHARTS

SECTION 7 INSTRUCTION DEFINITIONS - SRV 7-1

ADMOD - ADDRESSING MODE
BRAN — BRANCH
CHAR — CHARACTER STRING OPERATIONS
CLEAR — CLEAR REGISTER
DECI —- DECIMAL ARITHMETIC
FIELD - FIELD OPERATIONS
FLPT — FLOATING POINT ARITHMETIC

INT —- INTEGER ARITHMETIC
INTGY — HARDWARE INTEGRITY CHECK
I/O -— INPUT/OUTPUT
KEYS - STATUS KEYS
LOGIC ~ LOGICAL OPERATIONS
LTSTS — LOGICAL TEST AND SET

MCTL - MACHINE CONTROL
MOVE ~ MOVE DATA
PCTLJ ~— PROGRAM CONTROL AND JUMP
PRCEX — PROCESS EXCHANGE
QUEUE ~- QUEUE MANAGEMENT INSTRUCTIONS
SHIFT ~ SHIFT GROUP

SKIP — CONDITIONAL SKIP
I

W
O
M
M

O
A
I
A
D
N
A
W
O
U

O
T
B

W
D
N
O
D

B
H
F
S
I
W
E

W
I
N
O
O
C
r
O
T
O
R
O
O
D
W
e

m
r
a

a
a
J

PART III — INSTRUCTION SUMMARY - I MODE

SECTION 8 FORMATS ~ I-MODE 8-1

DATA STRUCTURES 8-1

PROCESSOR CHARACTERISTICS 8-12
INSTRUCTION FORMATS 8-17
EFFECTIVE ADDRESS CALCULATION 8-19

SECTION 9 INSTRUCTIONS v aa)

ADMOD — ADDRESSING MODE

BRAN -— BRANCH

CHAR — CHARACTER OPERATIONS

CLEAR -— CLEAR

DECI - Decimal Arithmetic
FIELD -—- FIELD OPERATIONS

FLPT — FLOATING POINT ARITHMETIC

INT - INTEGER ARITHMETIC

INTGY — HARDWARE INTEGRITY CHECK

I/O - INPUT/OUTPUT

i
|

N
N
R

F
W
O
M
O
m
A
D
U
N

F
E

M
m
&

D
H
@

X
P

S
P

8
0
6
0

6
0
8
0
8
0

6
0

8
0

KEYS - STATUS KEYS

LOGIC - LOGICAL OPERATIONS

LISTS — LOGICAL TEST AND SET

MCTL -— MACHINE CONTROL
MOVE - MOVE DATA

PCTLJ -— PROGRAM CONTROL AND JUMP

PRCEX -— Process Exchange
QUEUE - QUEUE MANAGEMENT

SHIFT —- SHIFT DATA &
W
D
&
W
W

W
E
R
D
N

M
O
D
A
N

R
F

W
O
I
N

APPENDICES

APPENDIX A BASIC FEATURES OF THE PRIME A-1
100, 200 AND 30d

PROCESSOR ORGANIZATION A-1
CENTRAL PROCESSOR DESCRIPTION A-3

STANDARD CPU FUNCTIONS A-3
INSTRUCTION EXECUTION A-6
MEMORY CYCLING A-7
INTERRUPT AND TRAP HANDLING A-8
INPUT/OUTPUT A-1
DATA INTEGRITY FEATURES A-24
MICROVERIFICATION A-27
POWER MONITOR AND AUTOMATIC RESTART OPTION A-32
AUTOMATIC PROGRAM LOAD A-34

APPENDIX B ~ PRIME 30% ADVANCED FEATURES B-1

PRIME 388 EXTENDED INSTRUCTIONS B-1
VIRTUAL MEMORY B-2
WRITABLE CONTROL STORE B-9

APPENDIX C ALPHABETIC INSTRUCTION LIST C-1

PART ONE

OVERVIEW

IDR3060 INTRODUCTION

SECTION 1

INTRODUCTION

This reference guide emphasizes the Prime 350, 400 and 50%. However,
the capabilities of the Prime 108, 28@ and 300 may be considered as a
subset of the larger processors.

THECENTRAL PROCESSORS

There are six Prime processors: the single-user Prime 1@@ and Prime
200; the 3l-user Prime 380 and 350; the 63-user Prime 400; and the
top-of-the-line Prime 588. They are completely upward compatible,

insuring easy and economical growth.

The Prime 5@@ supports 32 million bytes of virtual memory, 8 million
bytes of 688 nanosecond MOS main memory, 2.4 billion bytes of disk
storage, and 63 simultaneous users. It provides high system throughput
for both business and computation applications with its parallel logic,

high-speed double precision floating-point arithmetic unit, and high
speed business instruction set. The processor's performance is
enhanced by an 8@-nanosecond cache memory, error correcting MOS memory,
stack architecture, 128 32-bit registers, automatic machine state

switching, and a performance-optimized microcode structure.

The Prime 488 can be substituted for the Prime 5@@ where applications
do not require the 5@@'s high-speed floating-point computation or
firmware enhancements for COBOL execution. Both processors offer the
same paged and segmented memory management techniques; up to 32
million bytes of virtual memory, and up to 8 million bytes of main
memory; both support the same peripheral system, including disk
subsystems with a capacity of up to 2.4 billion bytes; both provide
extensive microprogrammed system integrity features; and both are
capable of supporting up to 63 simultaneous users.

The Prime 358 combines the large-scale capabilities of the shared
virtual memory Prime 588 and Prime 400 with the economy of the Prime
308. It has up to 2 million bytes of virtual memory that can be shared
by up to 31 simultaneous users, each running programs up to 768K bytes
long.

The Prime 388 is a smaller-scale processor that provides an economical
balance of features for timesharing systems with up to 31 users. A

paged memory management system gives each user a 128K-byte virtual
address space. Main memory can be expanded in 64K-byte increments to a
maximum of 512K bytes.

The Prime 208 and 1¥@ provide low cost central processor resources for
dedicated applications such as single-user computation and real-time
data acquisition and control. The Prime 208 is a higher performance
version of the Prime 190 and in addition to a 128K-byte memory
capacity, offers optional high-speed multiply-divide, and byte parity
checking throughout the processor and main memory.

1 - 1 July 1978

SECTION 1 | IDR3060

SOFTWARE FIRST: THE PRIME BLUEPRINT

Prime central processors offer higher throughput, faster response, and

greater convenience than others because of Prime's unique "Software
First" approach to computer system design.

"Software First" means that Prime designs its system software first and
then develops a family of processors that offer combinations of
performance features, instruction sets and memory capacities that
guarantee optimum software performance.

Since all Prime software is based on a common file structure and a
uniform operating system (called PRIMOS) the software is the blueprint
for hardware design. As a result, each processor has specific features
that enhance software performance and provide a more responsive system.

For example, a process exchange hardware/firmware scheme automatically
allocates Prime 358, 40@ and 5#@@ resouces to the highest priority

process. Dual register sets in the Prime 488 and 500 increase
throughput. Procedure calls to reentrant subroutines minimize system

response time. Stack procedure instructions simplify recursive and
reentrant programming procedures. COBOL decimal arithmetic, character
manipulation, and character editing instructions are implemented in
firmware on the Prime 5@@. And to enhance FORTRAN compiler throughput,
all Prime processors feature a unique set of ‘'‘'logicize' instructions
that automatically convert comparision results directly to truth table
values.

COMPATIBILITY

Since a common and uniform software system came first, the processors
that run the software are compatible. Programs developed on smaller
processors can be preserved campletely when upgrading to a larger
system. Program development for small scale systems can be steamlined
by using the expanded file handling and memory resources of a larger
Multi-user system.

Prime central processors are not only logically compatible, but also

electromechanically compatible. This means that upgrading a_ system's
central processor performance is as simple as swapping circuit boards.
For example, a Prime 4@@ can be upgraded to a Prime 5@%8 by replacing
the dual Prime 4@8 processor boards with the Prime 58% three-board set.
All existing software will run on the new’ processor without
modification--and faster.

CENTRAL PROCESSOR FEATURES

Prime central processors have many important features, some unique,

some in common. Tables 1-1 through 1-4 itemize specific processor

REV. @ 1 - 2

IDR3869 INTRODUCTION

features, detailed performance characteristics, and operating

specifications.

Microprogrammed Logic

All Prime computers use microprogrammed logic. Microprogramming
frequently used subroutines, algorithms, and special purpose

instructions improves the processor's speed and reduces main memory
storage requirements.

MOS Memory

From its beginning, Prime has been committed to using state-of-the-art

MOS technology in its memories. As a result, Prime was first to

package 64K bytes on a single board using 4K chips. Today, Prime
continues to advance the state-of-the-art by also offering 256K bytes
on a Single board using 16K chips. The packaging density means Prime

users can have up to 8 million bytes of main memory—-more than many
mainframes--in an extremely compact configuration (1 megabyte occupies

a mere four inches of vertical cabinet space).

System Integrity Features

Memory byte parity is standard on the Prime 200, 300, 350, and 400
central processors (the Prime 5@@ has standard error correcting
Memory). Every word in main memory is treated as a pair of eight-bit
bytes, each with a ninth parity bit. Memory parity is checked when a
word is read, and generated when a word is written. Errors are
reported to the operating system for appropriate action.

Processor byte parity is standard on all Prime processors except the
Prime 100. Parity is checked or generated for all data transfers on

the bus between the main memory and processor, among all processor
registers, on all internal processor busses, and on the bus between the

processor and all I/O devices.

Microverification routines are optional on the Prime 200 and standard

on the Prime 308, 350, 400, and 500. They are a_ series of
Microprograms that verify the processor's integrity by checking and
excercising all processor components, other than basic clocks and
control circuits. They are activated automatically on the Prime 3089 by
a processor parity error. On the Prime 358, 400, and 500 they are

activated by a system master-clear, or can be initiated under user
program control. When one of the microverification routines detects a
fault condition, it is reported to the operating system for appropriate
action. If the system is halted, the control panel lights display the
number of the test that failed.

1 - 3 July 1978

MOnnununmwmnnuyn

NnNnnNN

nmnnwn

IDR3068

NNN N NNNN

nm NnNuNNnOoO NNNN

HM NNNNO NNNN

NNN WN

OoOoOn wn

U)

Central Processor Features

oO

Table 1-1.

MmWwMmwnn

OnNWMMmM YN

SECTION 1

o
T
J
o
U
L
A
T
I
e

J
u
t
T
o
d
-
H
u
T
}
e
o
T
s

4yseJ
S
U
O
T
J
O
N
I
S
U
T

S
S
e
U
T
S
N
g

o
a
n
j
o
n
a
z
4
s
u
o
t
O
S
}
o
I
d

f
u
T
Y

e
b
u
e
y
o
x
e

s
s
e
c
o
i
d

e
z
e
m
M
p
r
e
H

(euitz
a
T
O
A
D
p
u
c
o
s
s
o
u
e
U

0
g
)

s
y
o
e
d

a
q
A
q
-
y
z

s
u
o
t
j
o
n
z
y
4
s
u
t

h
u
t
s
s
e
s
o
r
i
d
y
o
r
j
s

(
u
O
T
J
e
V
U
E
U
H
e
S

p
u
e

f
H
u
T
h
e
d
)

A
A
t
T
t
G
g
e
d
e
o

A
z
o
u
p
u
l
T
e
n
j
A
T
A

(
s
u
t
b
e
d
)

A
q
t
t
t
q
e
d
e
s

A
r
z
o
u
s
u
T
e
n
q
A
T
A

O
T
J
e
u
L
Tre

TebeqUuT
4Tq-79

O
T
J
o
u
L
A
T
I
e

T
h
H
S
z
U
T

4
T
G
-
Z
e
E

T
u
n

OTHOT
OTJSULATIe

F
T
Q
-
Z
E

oT{euLATIe
Y
u
T
o
d
—
b
u
T
z
e
o
y
F

U
O
T
S
T
O
s
A
d
—
s
T
q
n
o
p
p
u
e

—
s
T
b
u
t
s

A
z
o
u
s
u
h
u
t
}
O
e
z
I
C
D
A
I
A
G

A
y
t
r
e
d

a
7
A
q
A
T
O
U
R
W

A
y
t
z
e
d

33A4q
rz0sse0071g

S
O
U
T
I
N
O
A
U
O
T
L
O
T
F
T
A
B
A
O
A
O
T
W

O
(
S
S
O
T
A
S
P

p
r
e
p
u
e
;
s
S
)

S
r
e
p
e
o
T

w
e
s
a
b
o
r
i
d

o
t
T
j
e
w
o
N
y

O
O
T
J
O
U
L
A
T
A
e
U
O
T
S
T
O
S
A
d

s
T
q
n
o
p

pue
optatp/ATdty [nw

ezemprey
s
i
e
j
s
t
b
e
a
z
e
s
o
d
i
n
d
T
e
z
e
u
e
b

g

S
(S79}STHer

F
T
Q
-
9
T

eTQesserzppe
Z¢)

S
T
T
y

s
e
y
s
t
b
o
e
a
p
o
o
d
s
-
y
b
t
y

S
d
e
r
}

u
O
T
}
J
O
N
A
A
S
U
T

p
s
j
U
S
U
P
T
d
w
T
U
n

S
T
e
u
e
d
T
o
x
}
U
C
O

T
I
N
Y

(
O
N
G
)

e
n
e
n
b
A
z
o
u
R
W
2
O
e
a
T
q

O
(
I
N
d
‘
O
W
d
)

s
s
e
o
o
e

A
z
o
u
p
u
l
J
O
S
A
T
p

pepuseqzx
y

StaysTbher
FTG-7ZE

eTGessezppe
JO

*ON
S
T
o
u
u
e
y
o
Y
W

e
T
q
e
u
m
e
s
z
b
o
i
r
d

J
o

"
o
n

A
Y
T
T
T
G
e
T
T
e
A
Y
o
m
n
j
e
a
d

O
O
T

Z
o
s
s
e
o
o
i
g
T
e
r
U
E
D

4)REV.

Table

Central processor

Word Size: Memory bits
Internal

Instruction size
Addressing
Minimum-maximum
main memory (bytes)

(K=1,024)
Memory access time (ns)
Memory increment

per board (bytes)
Maximum program

Size (bytes)

Maximum 'virtual
memory space (bytes/user)
I/O data path (bits)

Maximum DMTT/O

rate (MB/sec)

Addressable registers

in high-speed register

file

Standard instructions
Optional instructions
Instruction types
Typical instruction
times (us):
Add to memory

Skip on condition
Hardware multiply
Hardware divide
Single Precision
Floating-Point add

Floating—Point multiply
Floating-Point divide

Double Precision
Fluating-Point add
Floating-Point multiply
Floating-Point divide

IDR3G60

1-2. Operational Characteristics

100 200 300 350
16 16 16 16
16 16 16 32
basic format 16 bits;extended format, 32

INTRODUCTION

400

16

32

bits

500
16
32

direct, indexed and indirect in sectored and relative modes;

8-128 8-128 64-512 64K-512M 128K-8M
680 600 600 690 600

8K,16K,32K 8K,16K,64K 64K 64K 64K, 256K

128K per program 768K 32M

128K 2M 32M
16 16 plus 2. 16 plus 2 16 plus 16 plus 2

parity parity 2 parity parity

1.3 2 2.5 2.5 2.5

32 (includes index register, accumulators, stack

register, DMA addresses, etc.) 72 128

112 117 145 319 318
9 37 19
memory reference, input/output, generic, shift

2.44 1.96 1.56 1.28 0.56
2.84-3.30 2.04-2.32 1.92 1.48 1.20
14 10.48 8.50 6.56 4.20
18.2-19.6 13.68-14.72 13.50 7.28 4.76

9.35+.48A+
.8n 9,25 11.62 5.18

27.82 25.20 17.96 9.00
39.46 37.90 22.52 11.92

11.74 6.46
21.59 20.14
14.80 24.04

1 o- 5 July 1978

256K-8M
600

256K

32M

32M
16 plus 2

parity

2.5

128
517

0.56
1.20
4.20
4.76

IDR3068SECTION 1

Flectromechanical SpecificationsTable 1-3.

s
t
s
s
e
y
o

z
e
d

a
v
g

‘
p
e
j
u
n
o
u

S
s
T
s
s
e
y
o

‘
A
T
d
d
n
s

d
u
O
O
TS
T

€
9
-
L
P

O
0
S
Z
-
O
6
T

0
0
0
9

J
e
u
T
q
e
s
/
y
o
e
r

$
5
6

0
0
5
-
0
0

8°
6
P

GS
*
6
P
X
0
8
X
9
"SP
vc

OT
€9-LP

0SZ-06T
0
0
0
‘

y
o
r
r

$
9
6

0
0
S
—
o
0

9
°
S
P

G
°
O
P
X
L
°
9
9
X
9
°
S
PL
T

p
e
q
u
n
o
w
-
s
t
s
s
e
y
o

‘
A
t
d
d
n
s
u
t
e
w

‘
d
u
e

o
u
t

6
€9-LP

OSZ-06T
009’€

p
o
e
t

3
S
6

0
0
9
7
0
0

6
6
°
C

G*
6
P
X
0
P
X
9
"SP
O
T

S
€
9
-
L
P

0
S
Z
-
0
6
T

0
0
0
‘
Z

y
o
e
r
1
0

d
o
j

s
t
q
e
z

3
9
6

o
0
S
—
-
0
0

L
°
c
e

S
°
6
7
X
L
°
9
T
X
O
S
HS

A
j
d
d
n
s

z
e
m
o
g

(
T
e
o
t
d
A
)

s
d
u
y

(
e
s
e
y
d
—
e
T
b
u
t
s
)

2
H

(OWA)
e
b
u
e
z

o
b
e
y
T
O
A

(“aU/N1d)
u
o
T
}
e
d
T
S
S
s
t
p
y
e
e
y

TeoTdAy,
buTzUuNOW

(*puoo
ou)

A
W
T
p
T
u
n
y

*Ter°xewW
(
D
o
)

e
b
u
e
r

-
d
u
s
z

b
u
t
j
e
z
e
d
o

(64)
(
A
T
d
d
n
s

z
e
m
o
d

p
u
e

s
u
e
y

b
u
t
p
n
T
o
u
T
)
y
b
T
e
M

(WO
UT

GXHXM)
SUOTSUBUITp

S
T
S
S
e
Y
D

(spreoq)
A
q
T
o
e
d
e
D

stTsseyD

REV.

IDR3068 INTRODUCTION

Instruction Set

The machine language instruction set permits data manipulation by bit,
byte, word and multi-word. Included in the standard Prime instruction
set is a group of memory reference instructions that minimize register
overhead, and a group of 'logicize' instructions that enhance compiler
efficiency by converting comparison relationships directly to truth
values.

While each central processor provides a different mix of standard and
optional instructions, Prime maintains instruction set compatibility by
using unimplemented instruction interrupt hardware and a virtual
instruction package containing software equivalents of unimplemented
machine-language instructions. This means, for example, programs
written to use the Prime 508 instruction set can be executed on other
Prime central processors, such as the Prime 4@@ or 35M. And as
applications grow from smaller Prime processors to larger, more
powerful Prime processors, the basic instruction set used in the
Original code can use the more sophisticated large processor
performance features.

Virtual Memory

Prime's implementation of virtual memory is transparent to system
users. This means Prime virtual memory computer users can execute
large programs without concern for memory management. Program overlays
are no longer needed. Each user is free to create, test, modify, and
execute programs without regard for how system resources are managed to
perform these functions. Programs written for single user Prime 100
and Prime 2@0 systems can be executed by virtual memory Prime 300, 359,
408, or 500 systems without modification.

On the Prime 3080, each of up to 31 simultaneous users is allocated a
128K-byte virtual address space. Special hardware automatically maps
virtual addresses to physical memory. Each user has a page map in main
memory that maintains correspondence between the original 'virtual'
addresses and the 'real' or physical addresses they are translated
into.

On the Prime 35%, up to 3l users can share a 2 million byte virtual
memory, and on the Prime 488 and Prime 50%, up to 63 simultaneous users
can share a 32 million byte virtual memory. Both segmentation and
paging are used to manage virtual memory facilities. Each user's
address space consists of a private segment for user programs, and
another that is shared with the operating system. By embedding
Operating system functions in each user's virtual memory space, all
Operating system functions are immediately available as if they were an
integral part of a user's program, greatly reducing system overhead.

Floating-Point Arithmetic

A general-purpose floating-point arithmetic unit on the Prime 309, 359,
and 4@@ provides direct hardware execution of floating-point

1 - 7 July 1978

SECTION 1 IDR3868

instructions in the Prime instruction repertoire. Floating-point

arithmetic is done in either single-or double-precision formats. In
the single-precision (32-bit) format, two words are used to store the
mantissa and characteristic, and accuracy iS maintained to seven

significant digits. The double-precision (64-bit) format uses four
words and maintains accuracy to 14 significant digits.

The Prime 5098's high speed floating-point arithmetic executes
Gouble-precision arithmetic about three times faster than the Prime
460. One reason is the use of parallel logic in the floating-point
arithmetic unit. Binary multiplication is done four bits at a time,
division is done three bits at a time, and addition 48 bits at a time.
This is significantly faster than the single-bit algorithms
traditionally used for multiply and divide. Users upgrading from any
Prime central processor can run all existing programs’ without

modification.

Input/Output

Direct-to-memory input/output operations are supported by three types
of program-assignable I/O channels: Direct Memory Access Channels
(DMA), Direct Memory Channels (DMC), and Direct Memory Transter (DMT)

channels.

The Prime 380 and 35@ have 8 DMA channels; Prime 4@@ and 580 central

processors heave thirty-two program-assignable DMA channels controlled
by high-speed channel address registers, providing high throughput with
a minimum of CPU control oyerhead. DMA channels support a maximum data
rate of 2.5 million bytes per second, and are typically used for high

speed peripherals such as fast disk devices.

DMC channels, controlled by channel address words in the first 8K bytes
of main memory, offer up to 2048 channels for medium-speed I/0
transfers such as serial data communications transfer, with a maximum

transfer rate of 96@K bytes per second.

DMT channels are provided for high-speed device controllers, such as
the controllers for moving-head disks, that execute channel control

programs. The maximum DMT throughput rate is 2.5 million bytes/second.

In addition to these direct-to-memory channels, a Direct Memory Queue

(DMQ) mode of operation on the Prime 35%, 40@ and 5@@ provides a
circular queue for handling communication devices. The queue reduces
operating system overhead by eliminating interrupt handling on a

character-by-character basis.

Cache Memory

A high-speed (8@ nanosecond access) 2K-byte, bipolar cache memory on
the Prime 350, 498 and 5@@ acts as a high-speed buffer between the
central processor and main memory. ‘The cache uses a sophisticated
algorithm to determine and get the data the processor is most likely to
use next, increasing the apparent speed of the main memory to near that

REV. @ 1 - 8

IDR3069 INTRODUCTION

of the processor. This algorithm provides an average cache 'hit rate’

of about 85 per cent. Memory mapping is overlapped with cache memory
access, further reducing total instruction execution times.

High-Speed Integer Arithmetic Unit

All integer arithmetic and logical operations on the Prime 358, 40 and
5@@ are done in the central processor's 32-bit wide arithmetic unit.
Using a 32-bit, rather than a l6-bit, format significantly speeds the
execution of double-precision integer arithmetic. The arithmetic unit
also efficiently handles complex address formation, such as

base-plus-displacement, and indexed addressing.

Interleaved Main Memory

With interleaved main memory, consecutive memory locations are on
Separate memory boards. This two-way interleaving speeds sequential
memory accesses and maximizes the cache hit rate. In effect,
interleaving provides 32-bit transfers between memory and central

processor.

Dual Register Sets

Prime 400 and 5@8 central processors have 128 32-bit registers for
increased throughput. These handle a variety of functions, such as

controlling 32 high-speed DMA channels and storing machine states in

dual register sets during process exchange operations. The central

processor's process exchange mechanism dynamically and automatically

Manages register set assignment to processes.

Process Exchange

A combination of hardware and firmware automatically allocates Prime

358, 488 and 5@@ central processor resources to the highest priority

process in a queue of processes ready for execution.

Process exchange handles the swapping of machine states necessary for
coordinating between processes ready for execution and those waiting
for a specific event to occur. Firmware within the process exchange
mechanism automatically dispatches the next ready process’ for

execution, without software intervention.

Stack Architecture

Programs on the Prime 358, 4@@ and 50@ operate in a three segment
environment: a stack segment containing all local variable values, an
instruction or procedure segment, and a linkage segment that contains
statically allocated variables and linkages to common data. PRIMOS
provides highly efficient addressing modes to access stack and linkage
variables. Hardware CALL and RETURN instructions eliminate the

overhead of software stack management routines.

1 - 9 July 1978

SECTION 1 IDR3060

The Prime 350, 4@@ and 50@'s stack structure optimizes the efficiency
of operations like parameter passing, subroutine and procedure calls,
arithmetic expression evaluation, and dynamic allocation of temporary
Storage and context switching.

Business Instructions

The Prime 508 has high-level support for ANSI 74 COBOL and other
business oriented languages through comprehensive hardware/firmware
instructions designed for decimal arithmetic, character field
Manipulation, and editing operations.

Decimal arithmetic instructions support packed or unpacked signed
numbers up to 18 digits long. They handle operands with different data
types and scale factors automatically during add, subtract, multiply,
divide, and comparision operations. Users can specify rounding on
numeric operations, and instructions provide binary/decimal and
decimal/binary conversions.

The Prime 588 does character operations on field sizes of virtually any
length. Operations for moves, compares, translates, and searches
automatically handle justification, truncation, and padding. Numeric
and character editing instructions produce fields in ANSI 74 COBOL-like
picture formats.

REV. @ | 1 - 1

IDR3060 THE PRIME 400

SECTION 2

THE PRIME 400

OVERVIEW OF THE PRIME 408 PROCESSOR

The Prime 498 is a two-board processor designed to plug into the
standard Prime chassis, to drive all current and planned peripheral
devices and controllers, to interface with all present 32K and future
memories, to operate all present user-space software, and to obey the

compatibility constraints of the Prime Computer family. The processor
is very fast (built with high technology) and has segmented addressing
(for modern organization and a very large address space).

Thus, the Prime 48@ does two things. First, it provides a product with

the speed and capacity to handle very demanding new applications, such
as large data bases, multi-task real-time control, and distributed
networks supporting large-scale mainframes. Second, it provides a
compatible growth path for existing or proposed Prime 308
installations. In summary, the Prime 40@ preserves the customer's
existing investment in hardware and software while providing a range of

Speed and capacity features for greatly enhanced performance in new

applications.

Compatibility

Compatibility is a stringent goal in the Prime 4@@ product offering.

The new processor is absolutely hardware compatible with the present
chassis, present power supplies, present 32K memories, all present
peripheral device controllers, and the software-visible decor of the
Prime 190/200/300. On the software side, all existing user-space
programming operates without change on the Prime 409 processor, all
present data file structures are are preserved without change, and

aspects of upward and downward compatibility are maintained.

Notwithstanding the above, certain architectural advantages such as

segmentation cannot be downward compatible with respect to programs
designed to utilize them effectively. A segmented addressing space
provides the basis for a simpler and more effective operating system-~a
combined disk, virtual memory, and real-time operating system known as
PRIMOS IV. As PRIMOS IV takes heavy advantage of the advanced features
of the Prime 488 processor, it is not downward compatible. However,
PRIMOS IVsupports all former PRIMOS commands, the existing PRIMOS file

structures, and all Prime 100/200/300 addressing and execution modes.
Thus all existing user-space programs (including saved memory images)
run under PRIMOS IV without modification. Furthermore, PRIMOS IV can
be used to write, develop, and run new downward-compatible programs
which can be interchanged with Prime 190/200/300 environments at any

time.

2 - 1 July 1978

SECTION 2 IDR3868

In one sense then, downward compatibility of segmentation is handled
much the same way as the compatibility of the paging feature of the
Prime 368, which is not available on the Prime 100/200. That is, an
Operating system is provided which takes advantage of the segmentation
feature, is compatible with previous operating systems, and allows
userspace programs which are indifferent to segmentation to be treated
in a completely upward- and downward-compatible fashion.

In another sense though, the handling of segmentation is different from
the paging feature of the Prime 300. That is because, in addition to
itself taking advantage of the feature, PRIMOS also passes on to the
user-space environment the ability to full utilize segmentation when
desired.

Performance

The Prime 4@@ performance is between two and three times that of the
Prime 388, especially in benchmark situations. For comparison, some
Prime 300 and Prime 486 instruction times are shown in Table 2-l. Note
that on the Prime 3808 the ADD instruction in the worst case (which is
the usual case) takes 2488 nanoseconds, because of page-translation
time (168 ns), 60% ns memory, and the use of relative mode (in which
the index operation costs 449 ns). Thus the normal Prime 300 ADD
instruction under PRIMOS III takes 2480 ns. By comparison, the best
case ADD for the Prime 480 takes 560 ns, for an improvement factor of
4.4, The comparison of worst to best is fair because on the Prime 400
the best case is readily achievable in ordinary programming and
benchmarks. The average Prime 400 ADD time (assuming an 85 percent hit
rate in the cache and interleaved memories) is 920 ns, which is 2.7
times better than Prime 30@--a very substantial improvement.

Other integer arithmetic improvements are characterized by the MPY
instruction, which improves by 9640/4200 = 2.3 times. Floating-point
improvements are characterized by the FAD and FMP instructions, which
improve by 8996/4226 = 2.1 times and 25280/9000 = 2.8 times
respectively, which are again very substantial savings.

I/O performance is improved in four ways: shorter latency time (the
time an I/O controller must wait for service after requesting it);
faster data rates (shorter data transfer time when service is granted);
many More direct memory access (DMA) channels (in which control
information is stored in registers rather than in memory); and
entirely new modes (for greater I/O efficiency). Table 2-2 compares
the times for the Prime 3008 and Prime 40% I/O modes.

REV. @ 2 - 2

IDR3060

Table 2-1.

Instruction Execution Times

PRIME 380 TIMES:

449 ns mem 600 ns mem 668 ns mem

paging off paging off paging on
instruction 32S mode 32S mode 32S mode

ADD M,1l 1568 1888 204

ADD R 1768 1829 199

(note 1)

DAD M,1 2802 3288 3449

MPY M,1l 8726 9040 9200

FAD M,1 - - -

(note 2)
FMP M,1l - - -

PRIME 400 TIMES:

THE PRIME 409

Comparison of Prime 3@@ and Prime 40

608 ns mem

paging on
32R mode

2480

1908

3880

9646

89990

+489+720N
25288

All times for interleaved 602 ns memories, and include segmentation and
paging translation times.
with a 1208 ns cache fault time (doubleword fetch).

The assumed cache hit rate is 85 percent,

Instruction best case average case

ADDM,1 560 920

MPY M,1l 4200 4560

FAD M,1 3508 4220

(note 1) +16@A+169N +160A+160N

FMP M,1l 8286 9800

ALL TIMES IN NANOSECONDS

NOTE 1: ADD from a register, R<8.

NOTE 2: A =number of required adjust cycles; N =

normalization cycles.
number of reguired

July 1978

SECTION 2 IDR3069

Table 2-2. Comparison of Prime 30% and Prime 40@ I/O Times

input data output data
mode transfer time transfer time

(PRIME300, 448 ns memory)
DMT, first word 2768 2600
DMT, later words 800 882

DMA, first word 2860 3008
DMA, later words 112 198

DMC, first word 4949 4980
DMC, later words 3440 3480

(PRIME 400, any memory)

DMT, first word 1482 1646
DMT, later words 800 889

DMA, first word 1466 1642
DMA, later words 800 880

DMC, first word 2528 2920
DMC, later words 20808 2768

DMQ 5008 5020

ALL TIMES IN NANOSECONDS

The "first word" times refer to the first word of a block of words to

be transferred at the maximum I/O rate. The "later words" times refer
to all words of the block after the first word.

REV. @ 2 - 4

IDR3069 THE PRIME 400

The architectural features which gives these performance improvements
are as follows:

1. Cache. A 1024-word bipolar buffer between the central
processor and memory reduces the effective memory access time
from 688 ns to 248 ns. It also eliminates (completely
overlaps) the time required for paging and segmentation
translation.

2. 32-bit arithmetic and logic unit. Arithmetic performed on
full 32-bit quantities greatly reduces time for arithmetic and
floating-point operations. The 32-bit adder also speeds up
relative address formation.

3. Faster control unit. The new microcode structure for the
control unit allows very fast steps and reduces the number of
steps required. For example, a Prime 40% ADD instruction
requires only two steps, as opposed to five on the Prime 300.

4, Registers. The live-register set is increased from 32 16-bit

registers on the Prime 300 to 128 32-bit registers. This
allows multiple register sets for very fast process exchange.

5. Interleaved memory. On the Prime 4008, main memory can be

interleaved, which speeds up sequential access and reduces the
cache miss rate.

Input/Output Operation

Compatibility requires that all Prime 300 I/O modes be fully supported
on the present I/O bus. Thus, I/O through the A-register as well as
the DMA, DMC, and DMT direct modes of operation are fully supported,
but with improved performance. In addition, several new features are
added:

1. Mapped I/0 through segment @.

2. Remote I/O bus extender and I/O bus switch.

3. New direct-memory queue (DMQ) mode for stream I/O.

4, 32 DMA channels instead of 8.

5. Very fast DMC data rate.

6. Interrupts which automatically initiate process exchange.

The mapped I/O feature allows each I/O access to the entire 2**22 (4

million) words of physical memory, even though the I/O bus retains its
former 18-bit address width. The mapping feature causes I/O accesses
to memory to undergo segmentation and paging translation just as
processor references; the PRIMOS operating system is responsible for
keeping the necessary virtual-to-physical correspondence in effect for

2 - 5 July 1978

SECTION 2 IDR3060

the duration of the transfer. This mapping also aids the operating
system in performing file transfers.

The remote I/O bus extender allows the addition of up to four remote
backplanes, each of which can drive ten I/O controllers, along a
30-foot cable out from the processor. The I/O bus switch allows the
switching of controllers among several processors.

A new direct memory queue (DMQ) mode provides a ring-structured memory
buffer for the reception and transmission of stream I/O (I/O in which
data is transferred in continous streams of bits, characters, or words,
rather than in discrete records). This mode allows the asynchronous
multi-line controller to queue messages without the need for extensive
software management of "tumble tables" on receive, nor character-time
interrupts on transmit. The DMQ mode substantially reduces the PRIMOS
overhead in dealing with user-terminal I/O.

The large register set of the Prime 49@ provides for 32 DMA channels.
Also, since the cache is used to hold DMC cell pairs, repetitive DMC
transfers occur very quickly, as shown in Table 2-2.

For interrupts, a new central processor mode is defined which allows an

interrupt Signal to be processed as an automatic notify (wakeup) of a

process without causing an actual program interruption. The mode
automatically issues the proper interrupt-clearing instructions to the
Signalling controller. This mode allows very fast process exchange
times and greatly reduces the overhead of the multiple-priority
scheduling schemes common to the RIOS and PRIMOS III operating systems.

Overall, Prime 40% I/0 performance is considerably enhanced over the
Prime 300.

Firmware Enhancements

The Prime 490 uses a new microcode structure with the following salient

features:

1. 64-bit microcode word width.

2. IBM-style multiway branches.

3. 16K words of microcode address space.

4, Stack of depth 16.

5. Future availability of an extended control storage (XCS)
option.

REV. @ 2 - 6

IDR3060 THE PRIME 400

The 64-bit width of the new microcode allows more functions to be
controlled in parallel, and thus reduces the number of microcode steps
necessary to perform a given function. For example, the ADD
instruction executes in two microcode steps on the Prime 498 as opposed
to five steps on the Prime 308. The IBM-style multiway branches are
also important because they are very fast.

The 16K address space allows for considerable future expansion of the
microcode. The present two-board Prime 498 provides 2K 64-bit words of
on-board programmable read-only memory (PROM) using 2K PROM parts.
However, the board layout will accommodate a 4K PROM part when it

becomes available, giving 4K words of on-board PROM.

Microcode can also be expanded with an extended control storage (XCS)

board, to be available as an option in the future. The XCS board will
provide:

1. PROM extension of an additional 2K words (at least).

2. 1K words (at least) of program-writable control store.

3. Parity checking on all microcode words.

4. A simulate mode for writable control store (as in the Prime

308 writable control storage option).

5. A port for connection of a PROM programmer.

The writable control storage will be loaded internally under program

control or by I/O operations. The Prime 49@ instruction set has two
addressable and eight generic instructions reserved for a direct
decoding into writable control storage. The extended control storage

option is being designed specifically to support customer microprograms
as well as packaged microcode systems, such aS a business instruction
set, a fast Fourier transform processor, a matrix operation package,
etc.

Integrity Enhancements

The Prime 480 is equipped with several new integrity features,
representing a considerable improvement over the Prime 300. These

features include:

l. Parity checking on processor registers and the cache.

2. As an option to be available, an error detecting and
correcting code on each main memory word.

3. Improved program control over the disposition of machine and
parity checks.

4, Recording of the origin and status of every machine and parity

check Signal in a diagnostic status word.
{

2 - 7 July 1978

SECTION 2 IDR3060

5. A non-destructive VIRY instruction.

6. As an option to be available, a field-engineering panel with a
ring-buffer remembering the last 64 microcode addresses
fetched by the processor.

Parity is maintained and checked on all the live registers (128 32-bit
registers) of the processor and of the data in the cache. Parity is
also checked on all external busses. When the extended control store
option is provided, there will also be a parity check on each 64-bit
microcode word.

A further option to be available on main memory boards is an error
detecting and correcting code on each memory word. The code is capable
of correcting all single errors and detecting some double errors. When
correction is possible, it is done automatically in the memory
on-the-fly, with no delay to the processor. If a correctable error

occurs during instruction execution, a check signal which may be
requested by the software (see the discussion of the machine check
modes below) is held off until the completion of the instruction to

allow the computation in progress to benefit from the corrected value;
following the check, the operating system can elect to continue the
computation regardless of whether or not the hardware or the software
elected to run a diagnostic routine in the meanwhile. Correctable
errors which occur during direct-memory I/O operation (DMA, DMC, DMT,
DMQ) are simply corrected and cause no check signal ever, to maximize

the likelihood of completing the I/O transfer successfully.

Uncorrectable errors cause a check signal immediately if during
instruction execution, or following completion of the current
instruction if during direct-memory I/O, or else are completely ignored
(depending upon the machine check mode). As discussed below, all check
signals are accompanied by a complete description of the detected error
in the diagnostic status word for analysis by the check handler.

The Prime 496 gives the software improved control over the disposition
of check signals. A two-bit machine check mode field is provided which
allows the software to run the processor in one of four check modes.

The machine check mode field is the last two bits of the processor
modals, and is set with the LPSW instruction. The four modes are:

@0: "None". The processor is not in an error reporting mode. Errors
set a programtestable flag but no check is signalled. The
diagnostic status word is not set.

®1: "Memory parity". The processor set the diagnostic status word and
generates a check signal for all memory parity errors (and all
uncorrectable memory errors detected by the error detecting and
correction option, if installed), both during instruction
execution and also during direct-memory I/O. Correctable memory
errors are ignored and processor parity failures set a
program-testable flag in this mode.

REV. @ 2 - 8

IDR3968 THE PRIME 400

18: "Quiet". The processor sets the diagnostic status word and
generates a check signal for all detected errors other than a
correctable memory error. Correctable memory errors are ignored
in this mode.

il: "Record". The processor sets the diagnostic status word and
generates a check signal for all detected errors in this mode. In
the case of a correctable memory error, the check signal is held
off until the instruction in progress completes, to allow the
software the option of resuming the computation following
servicing of the check. Correctable memory errors which occur
during direct-memory I/O are always ignored, even in this mode, in
order to allow the I/O transfer to complete successfully when
possible with the correction.

The diagnostic status word is a 96-bit field set by the processor
whenever it detects an error which should result in a check Signal to
the software. The software handling the check signal can read the
diagnostic status word to learn the origin of the Signal and take
appropriate action.

A check is either a memory parity error or else a machine check. There
are three circumstances which can cause a memory parity check. The
first is detection of a main memory parity error (or uncorrectable main
memory error, if the error detecting and correcting option is
installed) during instruction execution when the processor is not in
machine check mode @6@ ("none"). The second is occurrence of a
correctable main memory error (the error detecting and correcting
option must be installed) during instruction execution when the
processor is in machine check mode 11 ("report"). The last is
detection of a main memory parity error (or an uncorrectable error,
with the correcting option installed) during direct-memory I/O when the
processor is not in machine check mode 92 ("none"). When the error
detecting and correcting option is installed, corrected errors dur ing
I/O execution are always ignored, never set the diagnostic status word,
and never signal a check.

A machine check is caused by detection of a parity error on a processor
internal register or on an external bus when the processor is in
machine check mode 1@ ("quiet") or 11 ("record"). When the processor
is running in modes @@ ("none") or @1 ("memory parity"), processor
parity errors do not set the diagnostic status word and do not cause a
check signal, but do set a program-testable flag.

The VIRY instruction triggers a series of microprograms that can verify
the integrity of the internal processor components without being
destructive to the state of the user's program in execution. This
greatly eases restart of the interrupted computation following a check,
even if the check handler desired to perform verification.

2 - 9 | July 1978

SECTION 2 -IDR3060

VIRTUAL MEMORY STRUCTURE

Physical memory on the Prime 480 can be as large as 4,194,304 (2**22)
16-bit words. The virtual space is 268,435,456 (2**28) 16-bit words.
The mapping of virtual space to physical space includes’ both
segmentation and paging. The page size is 1024 words. The segment
Size is @ to 65536 words in units of 1024 words. There are 4096
segments to a virtual space. The segments are in four groups of 1024

segments each. There are four descriptor table address registers
(DTARS), which point to tables containing segment descriptor words
(SDWs), which point to tables containing page map entries (PMNTs),
which point to physical pages of memory. Thus a 28-bit virtual address
contains 2 bits of descriptor table selection, 10 bits of segment
selection, and 16 bits of word selection. It should be noted that the
hardware-implemented automatic process-exchange mechanism does not
affect the contents of DTARs @ and 1 and, therefore, all processes
share the same first 2048 segments of virtual address space and have
the second 2048 segments as private space. Finally, the presence of
both paging and segmentation permits the separation of memory
management from operating system management. Table 2-3 shows the
formats of descriptor table address registers, segment descriptor
words, and page map entries.

A descriptor table has from 1 to 1024 entries, must begin on an even

word, and must not cross 65536-word boundary. A page table always has
64 entries and must not cross a 65536-word boundary. Pages must begin
on a 1824-word boundary.

There must be no missing memory locations in the first 65536 words of
physical memory. .

Virtual memory operation is under control of bit 14 of the processor
modals, loadable under program control via the LPSW instruction. When
this bit is off, no paging or segment translation is performed. The
low-order 22 bits of each virtual effective address are taken as a
physical address directly.

PROCESS EXCHANGE ENVIRONMENT

A process is a logically continuous executing sequence of code.
Physically a process may be halted for indeterminant lengths of time,
either by an interrupt or by explicitly requesting suspension until a
specific event occurs.

The data bases included in the process exchange mechanism are process
control blocks (PCBs), the ready list, semaphores (in the sense of
Dijkstra), and wait lists. Each process must have a control block
describing the process. All PCBs in the system are in a single
dedicated segment. The minimum size of a PCB is 64 words. The maximum
number of separate processes is 1023. Table 2-4 gives the PCB format.
Movement between the ready list and the wait lists is controlled by use
of the NOTIFY and WAIT instructions. These instructions reference a

REV. 9 2 - 10

1-18:
11-16 r

18-32:

17:

17:

18-26:

21-23:
24-26:
27-32 ’

1-18:

11-16:

B
m
W
N

5-16:

IDR3968 THE PRIME 400

Table 2-3. Virtual Memory formats

DESCRIPTOR TABLE ADDRESS REGISTER FORMAT
(32 bits)

SSSSSSSSSSDDDDDD
-DDDDDDDDDDDDDDD

1624 minus descriptor table size (SSS...S).

High-order 21 bits of 22-bit physical address descriptor
table origin, low bit taken as zero (DDD...D).
Not used,

SEGMENT DESCRIPTOR WORD FORMAT

(32 bits)

PPPPPPPPPP---————
FAAABBBCCCPPPPPP

Fault if 1 (F).
Access allowed from ring 1 (AAA).
080: No access.

901: Gate (for procedure call).
910: Read.
ll: Read and write.
100, 181: Reserved.
110: Read and execute.
lll: Read, write, and execute.
Reserved for future expansion (BBB).
Access allowed from ring 3, same code as above (CCC).

High-order 16 bits of the 22-bit physical address of
the page table origin (PPP...P).
Reserved, must be zero.

PAGE MAP ENTRY

(16 bits)

VRUSAAAAAAAAAAAA

Valid: page resident if 1, fault if @ (Vv).
Referenced: set by hardware when page is referenced (R).
Unmodified: reset by hardware when page is modified (U).
Shared (inhibit usage of cache buffer): set by software when
memory page is shared among processors (S).
High-order 12 bits of physical page address,
bits are taken as zero (AAA...A).

low-order 190

July 1978

SECTION 2 IDR306@

Table 2-4. Process Control Block Format

octal field length
offset (16-bit words) field description

g 1 Level (priority).
1 1 Link to next PCB of same priority.
2 1 Wait-list segment number (zero

if ready).
3 1 Wait-list word number.
4 1 Abort flags.
5 3 Reserved.
10 2 Elapsed timer.
12 2 Descriptor table address register 2.
14 2 Descriptor table address register 3.
16 1 Interval timer (live).
17 1 Reserved.
2d 1 Save mask.
21 1 Keys.
22 2 General register @.
24 2 General register l.
26 2 General register 2.
39 2 General register 3.
32 2 General register 4.
34 2 General register 5.
36 2 General register 6.
4G 2 General register 7.
42 4 Floating-point register @.
46 4 Floating-point register l.
52 2 Procedure base register.
54 2 Stack base register.
56 2 Linkage base register.
60 2 Tempory base register.
62 2 Fault vector, ring 8

64 2 Fault vector, ring l.
66 2 Reserved.
70 2 Fault vector, ring 3.
72 2 Page fault vector.
74 1 Concealed stack FIRST.
75 1 Concealed stack NEXT.
76 1 Concealed stack LAST.
77-up Concealed fault stack entries, six

words per entry (see Section 2.12).

The data saved in locations 22 through 61 has fixed order, but is
compacted toward low addresses over doublewords of zero. The save mask
in location 26 has a zero bit for each doubleword of zero omitted and a
one bit for each nonzero doubleword stored. Locations are fixed again
Starting at 62. After executing either instruction, the highest
priority process on the ready list is executed. A NOTIFY (Dijkstra's
"V" operation) decrements the sempahore counter and a WAIT (Dijkstra's
"P" operation) increments the counter. Thus a NOTIFY may cause a
process to move from non-ready to ready and a WAIT may cause a process

REV. @ 2 - 12

IDR3868 THE PRIME 480

to move from ready to non-ready.

A process is considered either ready to execute or not ready. If
ready, the process is on the ready list. If not ready, the process is
on the waitlist of some semaphore. A semaphore defines an event whose
Meaning is shared amont two or more processes. Coordination between
processes takes place through sempahores. A semaphore takes two 16-bit
locations in memory: a counter of WAITs on the event and the location
of the first PCB awaiting the event. Negative counts indicate the
event has already happened.

A wait list consists of a sempahore plus the PCBs of any processes
awaiting its event.

The ready list is a logically two-dimensional structure consisting of
strings of PCBs of processes which are ready to execute. Eacn PCB
contains a level indicator giving the priority of the process.
Multiple processes can exist on the same priority level. Processes
within a level are strung with the PCB link word.

The process exchange mechanism is composed of three data bases and two
basic instruction primitives. The data bases are the ready list, wait
lists, and process control blocks (PCB). The basic instruction
primitives are WAIT and NOTIFY. In addition, there is an independent
mechanism for controlling the usage of two register sets which is
related to, but not part of, the ready list data base.

The ready list is a two-dimensional list structure used for priority
scheduling and dispatching of processes. The entire ready list data
base (excluding registers) and all PCB's are contained in a single
segment. The segment number of this segment is contained in a 16-bit
register called OWNERH. Within the segment, all pointers and addresses
(except fault vectors and wait list pointers) are 16-bit word number
quantities.

The two-dimensionality of the ready list is achieved with a linear
array Of list headers for each priority level composed of a beginning
of list (BOL) pointer and an end of list (EOL) pointer.

Each pointer is the 16-bit word number address of a PCB (in the same
segment as the ready list). The PCB's on each priority level list are
forward-threaded through a 16-bit link word, and as many PCB's as
desired can be threaded together on each priority level to form the
ready list. A process priority level is both determined by and encoded
as the address of a BOL pointer in the ready List. Priority order is
determined by arithmetic comparison, i.e., smaller numbers (addresses)
are higher priorities. As a result, priority level list headers must
be allocated in contiguous memory at system startup time.

The end of the ready list is determined by a BOL containing a 1 (PCB
addresses must be even). An empty level is indicated by a BOL
containing 8. The 32-bit registers PPA (Pointer to Process A) and PPB
(Pointer to Process B) are a speed-up mechanism for locating the next

2 - 13 July 1978

SECTION 2 IDR3068

process to dispatch. PPA always contains both the level (BOL pointer)
and PCB address (designated level A and PCBA) of the currently active
process. PPB points to the NEXT process to be run when process A 'goes
away'. PPA not only points to the currently active process, but, by
definition, level A is the highest level in the system. It is possible
for PPB and PPA to be 'invalid'. This condition is indicated by a PCB
address of @. It is important NOT to disturb the level portions,
especially level A since, even if invalid, level A indicates the
highest level that WAS in the system and therefore determines where in
the ready list to begin a scan, if necessary (PPB invalid), for the
next process to run. In a completely idle system, both PPA and PPB
will be invalid and, upon completion of the ready list scan, the
microcode will go into a 'wait for interrupt' loop.

It is important to notice that there is no word number pointer to the
first priority level in the ready list. The ready list allocator,
which starts the process exchange mechanism, knows where the list
begins and, during execution, level A (in PPA) will always point to
either the highest level currently in the system or the last known
highest level and, hence, acts as an effective ready list begin
pointer. In addition, level B will always be higher than the second
level to run. That is, PCB can never be on a level higher than level B
unless it is the only PCB higher than level B (i.e., level A).

Two 'queuing' algor ithms are implemented for the ready list, FIFO and
LIFO..

Every PCB in the system will always be somewhere. If it is not on the
ready list, then, by definition, it will be on a wait list. A wait

list is defined by a 32-bit semaphore consisting of a 16-bit counter
(C) and a 16-bit word number BOL pointer. Since the ready list and all
PCB's reside in one segment (OWNERH), and only PCB's go onto wait
lists, a segment number is not needed in the semaphore. However,
semaphores themselves can be anywhere and, in general, are NOT in the
PCB segment. Notice that the last block on the wait list contains a 9

link word. Notice also that the semaphore contains only a BOL pointer.

The 'queuing' algorithm for wait lists is process priority queuing.
That is, the priorty level of a PCB will determine where on the wait
list the PCB will be queued. For PCB's of equal priority, the
algorithm becomes FIFO.

The contents of a process control block (PCB), shown in Table 2-4, can
be broken into the following logical sections which are ordered as
shown:

REV. @ 2 - 14

IDR3069 THE PRIME 400

a. Control

@ - level (pointer to BOL in ready list)
1 - link (pointer to next PCB or 9)

2,3 — Segment number/word number of Wait List this block is
currently on (Segment number=@ indicates on ready
list)

4 ~ abort flags used to generate process fault when PCB
is dispatched.

Current bit assignments 1-15: must be zero
16: process interval

timer overflow
5,/ -— reserved

b. Process State

_ 8,9 - Process elapsed timers (must be maintained by
software that resets the live interval timer)

18,13 - DTAR2 and DTAR3 (never saved, always restored)
14 - Process interval timer with 1.824 msec resolution

15 - Reserved |
16 ~- Save mask - used to avoid saving and restoring

registers = @ .

Bits 1-8: GRO-GR7 (2 words each)
9-12: FPO-FPl (4 registers, 2 words

(each)
13-16: Base registers (PB, SB,LB,XB)

17 - Keys |
18,33 -— GR@-GR7
34,41 - FPQ-FPL
42,49 - Base Registers (PB,SB,LB,XB)

Note that although all the registers are assigned locations
within the PCB, only non-zero registers will actually be saved,
which results in a compacted list which can only be determined
by the bits in the save mask. In general, the saved registers
(those not equal to 9) will be between words 18 and 49. The
order of the registers, however, is fixed as above.

c. Fault (See section on Faults for a description of the use of this
portion of the PCB)

50,59 - Fault Vectors: Segment number/word number pointer to
fault tables for Ring @, Ring 1, Page Fault and Ring
3 fault handlers

60,62 -— Concealed Fault Stack Header
63,.. — Concealed Stack - 6 word entries. (This stack need

not start at word 63).

2 - 15 July 1978 |

SECTION 2 IDR3069

Wait and Notify

There are two basic instruction primitives for the process exchange
mechanism: NOTIFY and WAIT. In addition, NOTIFY has two variants.
These instructions, similar to Dijkstra's P and V operators, are

essentially '‘interlock' mechanisms. These instructions are three-word
(48-bit) ‘instructions' as follows:

Instruction (16-bit universal generic)
32-bit AP-pointer to semaphore address

As suggested by the names, WAIT is used to wait for an event (CP, time,
unit record device available, whatever) and NOTIFY is used to. signal
that an event has occurred. In particular, a WAIT is used to wait for
a NOTIFY and a NOTIFY is used to alert a process which is waiting.

Coordination is achieved by means of a semaphore containing a counter

and a BOL pointer. The semaphore and the PCB's waiting for the event
of that semaphore constitute a wait list. The counter, if greater than
8, indicates the number of PCB's on the wait list. If negative, it
indicates the number of processes that can obtain the resource.
Semaphores fall into two categories: public and private. A public
semaphore is used to coordinate several processes together or control a
system resource. Private semaphores are used by a single process to
coordinate its own activiites. For example, if a disk request is made,
a process will wait on a private semaphore for the disk operation to
complete. The disk process will then notify the semaphore upon
completion. The distinguishing characteristics of a private semaphore
is that only one PCB can ever be on that wait list. A public semaphore
can have many different PCB's on its wait list.

The operation of WAIT is as_ follows: the semaphore counter is
incremented and, if greater than 9, (resource not available/event has
not occurred), the PCB is removed from the ready list and added to the

specified wait list. If the counter is less than or equal to 9, the
process continues. If the PCB is put on the wait list, the general
registers are NOT saved and the register set is made available.
Therefore, a process can NEVER depend on the general registers being
intact after a WAIT. In fact, from the point of view of an executing
process, a WAIT appears as a NOP which destroys the registers. In
addition, WAIT will turn off the process timer.

The NOTIFY instruction has two flavors:

NFYE: use FIFO queuing opcode Bit 16 = g
NFYB: use LIFO queuing opcode Bit 16 1

The instructions differ ONLY in the ready list queuing algorithm used.
The operation of NOTIFY is as follows: the semaphore counter is
decremented and the notifying process continues. If the counter is
less than 9, no action is taken, but if greater than or equal to @, a
PCB is removed from the top of the wait list and added to the ready
list. No explicit action is ever taken on the notifying process, only

REV. @ 2 - 16

IDR3069¢ THE PRIME 4890

the notified semaphore. If a notified process is of higher priority
than the notifying process, the latter will be effectively
‘interrupted', but will remain on the ready list.

The dispatcher is the root of the process exchange mechanism and is
responsible for determining the next process to run (be dispatched),
and assigning that process a register set. There is considerable
overlap with NOTIFY and WAIT in functionality related to maintaining
the ready list. For example, both NOTIFY and WAIT update PPA and PFB
aS appropriate, but the dispatcher scans the ready list if PPA is
invalid. Register set management, including any necessary saves and
restores, are the sole province of the dispatcher.

Upon entry, the dispatcher first asks if PPA is valid (PCBA nonzero).
If it is, the process is assigned a register set and dispatched. If
PPA is not valid (PCBA zero), a scan of the ready list is initiated
from the level of PPA, which is always valid. If a PCB is found, PPA
is adjusted and the process dispatched. If the ready list is empty,
the dispatcher idles. Whenever a process is dispatched the process
timer is turned on.

In each register set, a register, designated OWNER, contains a pointer

to the PCB of the process which owns the set. OWNER is a full 32-bit
pointer and OWNERH is used throughout the system to determine the
segment number of the ready list and PCB's. Obviously, OWNERH must be
the same in both register sets. In addition, the low order bit of the
keys register (KEYSH) is used to indicate whether the register set is
available. The bit is called the Save Done bit and, if set, indicates
that the register set and its copy in the owner's PCB are identical (a
save has been done). This bit is set by the save routine (called from
WAIT or the dispatcher) and cleared when a process is dispatched.
Whether a register set is avaiable (SD=l1) or not, it is always owned.
Therefore, if a process goes away (either as a result of a WAIT or the
notification of a higher level process) and comes back again
immediately and, if that process still owns the register set, a restore
operation isnot necessary. If a register set switch is necessary, the
process timer is turned off. The dispatcher is the only code which
switches register sets.

The Prime 4@@ contains four distinct register sets. Each set is
further divided into halves, each 32 locations (registers) long, and
each 16 bits wide. One half is referred to as the high half and the
other as the low half. Since both halves are addressed together, each
register set contains 32 32-bit registers or 64 16-bit registers. The

register sets, numbered from 9, are used as follows:

microcode scratch and system registers
32 DMA channels

- User register set
- User register setW

H
F
&

|

This layout of register sets allows easy expansion to eight register
set, thus adding four new user register sets. All user register sets

2 - 17 | July 1978

SECTION 2 IDR3060

have the same internal format and the DMA register set simply consists
of 32 channel registers. Channel register '2@ within RS] is equivalent
to the Prime 300 DMA registers '2@ and '21. Channel register '22 is
mapped to '22 and '23. In this way, the mapping proceeds for each even
register in RS] to channel register '36, mapped to '36 and '37. All
other RSl registers represent additional DMA channels over the Prime
308. Table 2-4 shows the internal layout of the user register sets
(RS2, RS3). Note that all user register sets contain the segment
number of the Ready List/PCB segment (OWNERH) and a cell for the modals
(KEYSL). It is necessary, before entering process exchange mode, to
Set OWNERH in ALL register sets to the proper value and to NEVER alter
it thereafter. Although all register sets contain a cell for the
modals, only the current register set (CRS) contains the valid modals.
It is therefore necessary, whenever register sets are switched, to copy
the modals into the new register set. Currently only the dispatcher
Switches register sets. CRS is defined and specified by the three bit
field labeled 'CRS' in the modals. Since this field can span up to
eight register files, but two are used for microcode scratch and DMA,
user register sets are number from 2 - 7. Of course, only 2 and 3 are
currently implemented. Thus, for the Prime 498, the CRS field must
always have bit 9 off, bit 10 on, and bit 11 selects the register set
(as if @ and 1 were the numbers). In fact, the microcode will only
look at bit ll.

Direct register set addressing (not using CRS) is accomplished either
with the LDLR/STLR instructions or via the control panel. The register
sets are ordered sequentially with an absolute address of 8 addressing
RS@-register @ (microcode scratch/system set), "49 addressing
RSl-register @ (DMA set), '10@ addressing RS2-register @ (user set 2),
and '14@ addressing RS3-register @ (user set 3).

Cell 30H of the current register set is a l6-bit wide 1024-microsecond
up-counting process CPU timer. The dispatcher turns it on before
dispatching a process and turns it off before saving a process into its
PCB or swapping register sets. On each tick, microcode increments the
interval timer (TIMER) in RS (CRS). When that overflows, bit 16 in the
PCB abort flags is set to cause a process fault. It is the
responsibility of software that clears the interval timer to maintain
the elasped timer.

At various points in the dispatcher a check for interrupt pending
(fetch cycle trap) is made. As a result, interrupts can occur either
in the fetch cycle or in the dispatcher. The possible fetch cycle
traps are:

- External interrupt and memory increment.
- CP-timer increment and possible overflow.
- Power failure
- Halt switch on control panel.
- End-of-instruction trap.O
l
&
W
h
e

The end-of-instruction trap occurs either from an ECC corrected error
or from a missing memory module, memory parity, or a machine check

REV. @ 2 - 18

IDR3660 THE PRIME 400

during I/O. In all cases, if the check handling software returns (via

LPSW instruction), the possible destinations are either the fetch cycle
or the dispatcher. (PB in PSW not a real program counter). In order

to guarantee the proper destination, bit 15 of the keys (KEYSH) is used
to indicate if the trap was detected by the dispatcher (bit 15=1).
This bit is set by the dispatcher upon detecting a trap and is cleared
when a process is actually dispatched (return to fetch cycle).

PROCEDURE CALL ENVIRONMENT

The Prime 400 procedure call mechanism permits procedures to call one
another, facilitates argument passing, permits ring crossing of the
protection mechanism, and permits shared, reentrant, and/or recursive

code. In the Prime 408, procedure call performs the functions of JST,
FSAT, and SVC in the Prime 300. The efffective address of the
procedure call instruction is an entry control block (ECB). The entry
control block contains the information required to set up the keys and
base registers, perform argument transfer, and do stack segment
Management. Stack segment management includes saving the current
procedure base, linkage base, stack base, and keys and also allocating
space for dynamic variables. An individual stack frame may not cross a
segment boundary.

A stack is a collection of one or more segments in which stack frames
are allocated as part of the procedure call mechanism. Frames are
allocated and deleted ina strict last-in/first-out order within a
Single stack. In general, all procedures executing in one ring share
the same stack, while procedures executing in different rings use

different stacks.

The segment number of the first segment in a stack serves to identify

the stack. This segment is called the stack root. The first two words
in this segment contain a segment number/word number pointer that
addresses the location following the last frame allocated on the stack.
The third and fourth word of each segment in a stack contain a pointer
to the next segment of the stack, if one has been allocated. When
there is not sufficient room to allocate a new frame in the segment
pointed to by the free pointer, the extension pointer is used to step
to the next segment in the stack. If none has been allocated, a stack
overflow fault occurs.

Stack frames are backward threaded only (each frame points to its
caller's frame). The state of the caller (return location, stack base

register, linkage base register, keys) is Saved in the called frame.
To perform a call or a return, no reference to the caller's frame is

required. |

Procedure Call Instructions (PCL)

The procedure call instruction (PCL) is a memory-reference instruction
that addresses the entry control block of the procedure being called.
The instruction performs the following sequence of operations.

2 - 19 July 1978

SECTION 2 IDR3968

1. Computes the ring number of the called procedure.

2. Allocates a stack frame for the called procedure.

3. Saves the caller's critical state information (program
counter, stack base register, linkage base register, and keys)
in the new stack frame.

4, Loads the critical state for the called procedure.

5. Evaluates the caller's argument template list, storing a list

of final effective addresses in the new stack frame.

The actual order in which these operations take place is determined by

the requirement that the instruction be restartable if a fault or
interrupt occurs during its execution. To avoid completely restarting
the instruction when a fault occurs during argument transfer, the
program counter is advanced to the first instruction of the called
procedure before the argument list is evaluated. This instruction must
be an Argument Transfer (ARGI), which restarts the argument list
evaluation from the point at which it was interrupted. When the
transfer is complete, the program counter is stepped to the instruction
following the ARGI. The argument transfer process uses the X- and
Y-registers and the temporary base register to save control information
during the transfer.

The detailed execution of a procedure call is as follows.

Ring number calculation: The ring number of the called procedure

depends upon the caller's access privileges to the segment containing
the addressed entry control block. No ring change takes place if the
caller has READ access. If the caller has GATE access, the ring number

is taken from the ring number field in ECB.PB without weakening. In
this case, the entry control block must start on a 16-word boundary to
ensure that a proper block is being referenced. An access violation
occurs if neither of the above cases applies.

Stack frame allocation: The stack root is obtained from the entry
control block. If zero, the stack root is fetched from the caller's
stack frame. The free pointer is fetched from the first two words of
the stack root. If there is sufficient room in the segment pointed to
by the free pointer for a frame of the size required by the entry
control block, the stack frame starts at the free pointer value, and
the free pointer is advanced over the new frame. If there is not
sufficient room there for the new frame, the extension pointer in words
2 and 3 of the segment pointed to by the free pointer is examined. If
zero, a stack overflow fault is generated. If nonzero, it is taken as

REV. @ 2 - 26

IDR3062 THE PRIME 488

a new free pointer, and the process is repeated.

Frame header fill-in: The flag word of the new frame is cleared. The
caller's program counter, stack base register, linkage base register,
and keys are stored in the frame. The saved program counter includes
the caller's ring and segment number. At this point, the saved program
counter points following the procedure call instruction. When argument
transfer is complete, the pointer will be updated to follow the entire

calling sequence.

Called procedure state load: The called procedure's program counter,
linkage base register, and keys are loaded from the entry control
block. The stack base register is set to the address of the frame
created by the procedure call instruction.

Argument transter:. The procedure call instruction is followed by a
sequence of argument transfer templates which define the argument list
for the called procedure. Argument transfer templates are described

next.

Argument Transfer Templates

The list of argument transfer templates following the procedure call

instructions is evaluated to generate a list of actual argument
pointers in the new frame. Each argument pointer may require one or
more templates for its generation. The last template for each argument
has its S (store) bit set. The last template for the last argument in
the list has its L (last) bit set to terminate the argument transfer.

Each template specifies the calculation of an address by specifying a
base register, a word and bit displacement from that register, and an

optional indirection. If further offsets or indirections are required
to generate the final argument address, the template will not have its
store bit set, and the address calculated so far will be placed in the

temporary base register (ring, segment, word number) and X-register

(bit number) for access by the next template.

Each time a template with its store bit set is encountered, the
calculated address is stored in the next argument pointer position in
the new stack frame. If the address has a zero bit offset, the address
is stored in the two-word indirect format with the E-bit reset.

Otherwise it is stored in the three-word format with the E-bit set. In
either case, three words are allocated to each pointer in the argument

list.

If the caller's template list generates a fewer arguments than are
expected by the callee (as specified in the entry control block),

argument pointers containing the pointer-fault bit set and all other
bits reset (pointer-fault code 100000, "omitted argument") are stored
for the missing arguments. On the other hand, if the caller's list
generates more arguments than are specified by the callee, the surplus
arguments are ignored. If the called procedure attempts to reference
an omitted argument, other than to simply pass it on in another call,

2 - 21 | July 1978

SECTION 2 IDR3860

it will experience a pointer fault. If it passes on an omitted
argument in another call, the argument will appear omitted to the newly
called procedure.

The calling and the called procedure must agree on whether or not
arguments are expected. If no arguments are expected (as specified in
the entry control block), the procedure call instruction must not be
followed by any argument transfer templates; but if arguments are
expected, a template list must follow the call. If a call intends to
omit all expected arguments, it may be followed by an argument transfer
template with its last bit set but with its store bit reset.
Procedures which specify no arguments in their entry control blocks
must not begin with ARGT instructions.

TRAPS, INTERRUPTS, FAULTS, AND CHECKS

Four words used frequently are 'trap', '‘interrupt' (or ‘external
interrupt'), 'fault', and 'check'. The meanings of these terms are
carefully distinguished for the Prime 400. software breaks in
execution are divided into three main categories referred to as
"interrupts', '‘faults', and 'checks'. ‘The word ‘trap’, on the other
hand, refers to a break in execution flow on the microcode level.

Traps can occur for many reasons, not all of which cause software
visible action, and are always processed on the microcode level. Some
traps may directly or indirectly cause breaks in software execution,
but not all software breaks are the result of a trap.

On the Prime 388 and in the Prime 4@@ when process exchange mode is not
turned on, interrupts, faults, and checks used the same protocol to get
to their respective software handlers, namely they caused a vector
through a dedicated sector @ location (*JST vector). On the Prime 400
when process exchange mode is enabled, the three categories use
different protocols both from the Prime 300 and each other. Roughly
the three terms are used to describe:

1. Interrupt - a signal has been received from a device in the
external world (including clocks) indicating that the
device either needs to be serviced or has completed an
Operation. In general, an interrupt is not the result of
an operation initiated by the currently executing
software and will not be processed by that software
(though, of course, it may).

2. Fault ~ a condition has been detected that requires software
intervention as a direct result of the currently
executing software. In general, faults can be handled by
the current software, although in Many caseS common
Supervisor code within the current process handles the
fault. Also, in general, an external device in the real

REV. @ 2 - 22

IDR3068 THE PRIME 460

world is not directly involved in either the cause or
cure of a fault condition. Often, however, external

devices are involved indirectly as for example, in
performing a page turn operation as a result of a page
fault.

3. Check - an internal CP consistency problem has been detected
which requires software intervention. The condition
could be either an integrity violation, reference to a
Memory module which does not exist, or a power failure.
By contrast, a reference to a page which is not’ resident

or an arithmetic operation which causes an exception is a
FAULT condition.

External Interrupts

External interupts operate in either of two modes depending upon
whether or not process exchange is turned on. If process exchange is
off, all interrupts are treated as Prime 308 interrupts. In all cases,
except memory increment, the address presented by the controller (or
"63 if in standard interrupt mode) is used as the address in segment 9
of a 16-bit vector. This vector, in turn, points to interrupt response
code (IRC), also in segment 9, which is entered via a simulated JST*

through the vector. Thus, the current program counter (RPL) is stored
in (vector) and execution begins at location (vector) +1 with
interrupts inhibited, but with no other keys or modals changed. If in
vectored interrupt mode, it is the responsibility of the software to do

a CAI. In either mode, the full RP is saved in the register PSWPB.
Software must store PSWPB before allowing another interrupt.

If process exchange mode is on, an entirely different mechanism
operates. In all cases, except memory increment, the address presented
by the controller is used as a 16-bit word number offset into the
interrupt segment (#4). This segment is guaranteed to be in memory,
but STLB misses may occur. The current PB (actually RP) and KEYS (keys
and modals) are saved in the microcode scratch registers PSWPB and
PSWKEYS. The machine is then inhibited and the IRC begins execution in
64V mode. It is the responsibility of the IRC to issue a CAI. It is
important to note that the IRC in the interrupt segment does not belong
to any process. PPA points to the PCB of the interrupted process and,
in fact, no PCB exists for the IRC. Also, except for PB and KEYS, no

registers are saved. In fact, even PSWPB and PSWKEYS are in the
register set and not in memory. As a result, the IRC cannot do an
enable and must return to the process exchange mechanism (i.e., the
dispatcher) as soon as possible. Because of all these restrictions on
what the immediate IRC can do, as well as the fact that it does not
belong to any process, it is referred to as phantom interrupt code.
Unless the job of servicing an interrupt is very simple, phantom
interrupt code can do little more than turn off the controller's
interrupt mask, issue a CAI, and NOTIFY the real IRC.

A memory increment interrupt is handled the same regardless of the
state of process exchange. The address presented by the controller is

2 - 23 July 1978

SECTION 2 IDR3068

used as the 16-bit word number in segment @ (I/O segment) of a 16-bit
memory cell to be incremented. If the counter does not overflow
(-1->8), the microcode simply returns. With process exchange off, the
return is always to the fetch cycle. With process exchange on, the
return is either to the fetch cycle or the dispatcher, depending upon
where the interrupt was detected. When detecting an interrupt, the
dispatcher always insures that RP=PB and that all keys=KEYS. When
memory increment returns, it does so to the top of the dispatcher
without having touched PB or KEYS. In this way, memory increment is
guaranteed not to destroy any vital information needed by the
dispatcher. If the memory cell counter does overflow, an end-of-range
signal is generated and then memory increment returns. The subsequent
FOR interrupt will then be treated like any other external interrupt.

Phantom interrupt code has two options for the actions it can take. If
the servicing required by the interrupt is very simple, phantom code
can completely process the interrupt and return to the dispatcher. Tf
the servicing required is more complex, the phantom code must turn off
the controller's interrupt mask and NOTIFY the remainder of the IRC.
In the first case, PB and KEYS must be restored from PSWPB and PSWKEYS
and then the dispatcher must be entered directly. Since PB cannot be
restored in phantom code (the program counter will point to the
instruction in phantom code) and the dispatcher cannot be entered
directly (no such instruction exists), the special instruction, IRIN, a
16-bit generic, is executed to perform these functions. After entering
the dispatcher via an IRIN, the dispatcher does not know that an
interrupt occurred.

In order to NOTIFY a process, phantom code must insure that PB and KEYS
are restored before issuing the NOTIFY. The special instruction,
INOTIFY, performs the restore and then does the NOTIFY. As NOTIFY,

INOTIFY is a three-word generic with two flavors, INOTIFYB and INOTIFYE

where the beginning of list option has bit 16=l and the end of list
option has bit 16=@ in the opcode.

Phantom interrupt code can issue a CAI in one of two ways. Either an
explicit CAI instruction may be issued or the IRTN/INOTIFY instructions
can issue it. Bit 15 of the IRIN/INOTIFY instruction is interpreted as
follows:

Bit 15 = @ do not issue CAI

l issue CAI

In all, there are four INOTIFY instructions as follows:

Name Bit 15 16 Function

INEC 1 Q End + CAI

INEN G 28 End + no CAI
INBC 1 41 Beginning + CAI

_INBN 0 1 Beginning + no CAI

Faults

REV. 2 - 24

IDR3068 THE PRIME 400

Faults are CPU events which are synchronous with and, in a loose sense,
caused by software. Eleven fault classes have been defined for the
Prime 408. Several of these classes are further subdivided into
distinct types. Of the eleven, three are completely new for the Prime
400 and, of the other eight, three have expanded meaning when in Prime
408 mode. The eleven fault classes and their meanings are:

Fault PRIME 409 PRIME 300

RXM Restrict mode violation same
Process Abort flags word .NE.@ N.A

in PCB on dispatch
Page Page Fault (Page not in same

memory)
SVC N.A. Supervisor Call
UII Unimplemented Instruction same
TLL Illegal instruction same
Access Violation of segment Page write violation

access rights
Arithmetic All FLEX + IEX (Integer FLEX

Exception)
Stack Stack overflow/underflow Procedure Stack (S—Reg)

Underflow
Segment l: Segment # too big N.A.

2: Missing segment (SDW) N.A.

fault bit set)
Pointer Fault bit in pointer set N.A

The fault handling mechanism consists of two data bases and the CALF
instruction. The microcode is in turn divided into a set of
'front-ends' for each fault class and a common fault handler.

The fault data bases consist of the fault vectors and concealed stack
in the PCB and the fault tables pointed to by the PCB vectors. Table
2-5 shows these data bases as well as the mapping of Prime 300 faults
to Prime 408 faults. Also shown in this figure is the differential
action taken according to fault class (e.g., what ring to process’ the
fault in) and the set up the microcode ‘front end' must do before going
to the common fault handler.

The underlying philosophy of the four fault vectors is that while some
faults may need to be processed by ring @ code, others may be
adequately handled in the current ring of the faulting process. The
vectors are in the PCB to allow different processes to have different
fault handlers. For example, process A may wish to use a system fault
routine to handle pointer faults (dynamic linker) while process B may
wish to define its own algorithms for resolving pointer faults. Notice
that it is always possible for a 'current ring' fault handler to call a
ring @ procedure if the need arises. Note also that page fault has its
own vector despite the fact that ring @ is entered. For the special
case of page fault, only a single, system-wide processor will be used
and all PCB page fault vectors will point to the same place.

2 - 25 | July 1978

SECTION 2 IDR3069

The concealed stack, also in the PCB, is used to allow fault on fault

conditions. For example, it is quite possible to get a segment fault
while processing a segment fault. The only fault which cannot cause
another fault of any type is page fault. Each frame of the concealed
stack contains the PB and keys (KEYSH) of the faulting procedure as
well as a fault code (to distinguish different types within each class)
and a fault address, if appropriate. The stack itself is circular and
must have allocated sufficient frames to handle the longest possible
sequence of fault on fault that can occur in ring @. Such a sequence
might be: Pointer (link) fault -> Segment fault —> Stack fault ->
Segment fault -> Page fault. Note that this particular sequence occurs
before any software fault handler is entered. Also, the first segment
fault enters ring 8, so at least a five-level stack is necessary if the
Original link fault is to be processed correctly. Each frame of the
concealed stack is six words long, organized as follows:

+8,+1 Program counter (segment number/word number);

+2 Keys;

+3 Fault code (FCODE in Table 2-7);

+4,+5 Fault address (segment number/word number, FADDR in Table
2-5).

The second data base consists of four distinct fault tables, each

pointed to by a PCB fault vector. Each entry in the table consists of
four words of which the first three must be a CALF instruction. Only
the page fault table must be locked to memory and only the ring @ table
must be in a pre-defined (SDW exists) segment (otherwise, segment fault
might recurse infinitely). Naturally, the ring @ table, as well as the
PCB, is carefully audited by ring @ procedures.

The CALF instruction has two major functions. First, to avoid holding
off interrupts for too long, the CALF instruciton defines a restart
point in.fault handling since it has a PB (i.e., it is a macro-machine
instruction). As a result, it is quite possible to suspend a process
in the middle of getting to a software fault handler. Second, it
allows a straightforward mechanism to simulate a procedure call from
the faulting procedure (at the instruction causing the fault) to the
fault handler.

The instruction itself is a three-word generic in which the second and
third words are a 32-bit AP-pointer to the fault handler. To simulate
the procedure call, the PB and KEYS from the concealed stack are placed
in the fault handler's stack frame along with the other base registers
(only the PB and KEYS have been changed to point to the CALF and to
enter 64V addressing mode) to be used by the standard procedure return
(PRIN) instruction. In addition, the fault code and address are placed
in the fault handler's stack as words '12, '13 and '14. After the

information is moved from the concealed stack it is popped. The flag
word ('@) of the new frame is set to 1 instead of @ to distinquish the

REV. @ 2 - 26

IDR306¢ THE PRIME 400

Table 2-5. Fault Processing

Column 1 is the vector location in segment zero for an indirect JST
when process-exchange mode is off. Column 3 is the offset within the
fault vector of the applicable CALF when process-exchange mode is on.
The "ring" column shows whether the fault is handled in the ring of
occurrence or in ring zero. In the "saved P-counter" column, "current"
means the saved P-counter is not reset back to the beginning of the
most recently attempted instruction; "backed" means that it is.

PX off PX on saved
vector fault type offset ring P-counter FCODE FADDR

62 restricted
instruction 8 current backed - -

63 process 4 zero current abort flags -
64 page 10 Zero backed - address
65 SVC 14 current current - -

66 unimplemented
instruction 28 current backed current P-ctr eff address

72 illegal
instruction 4@ current backed current P-ctr eff address

73 access
violation 44 ZELO backed - address

74 arithmetic
except ion 5@ current current excep code operand addr

75 stack .
over flow 54 zero backed ~ last stk Seg

76 segment 69 zero backed 1=# too big
2=fault bit address

77 ~=pointer 64 current backed ptr lst word’ addr of ptr

Exception codes for arithmetic exceptions are as on the PRIME 3@@ with
the addition of code “801400 (hexadecimal 9300) for integer exception

2 - 27 July 1978

SECTION 2 IDR3069

frame as created by CALF. The entry control block addressed by the
CALF must specify no arguments. It may be a gate or not.

The fault handler is a microcode routine that is entered from the
various fault class 'front ends' and, based on process exchange mode,

either simulates a Prime 3@0 type fault (JST* through segment @ fault
vectors) or performs the Prime 4@@ fault protocol which ‘includes
setting up a concealed stack frame, switching to 64V mode, and
determining, on the basis of information provided by the 'front end',
which fault vector to use and setting PB to point to the proper CALF
inthe fault table. Note that for Prime 300 faults, the full RP is also
saved in the microcode scratch register PSWPB and the machine is
inhibited for one instruction if in Ring @.

Checks

Checks, unlike faults, are CPU events which are asynchronous with, and
are not caused by, normal instruction execution. Rather, they are

events which are either invisible (e.g., an ECC corrected error) or

fatal (e.g., missing memory module) to the currently executing
procedure and perhaps the CPU entirely (e.g., machine check). Checks
essentially represent processor faults as opposed to process. or
procedure faults. Four check classes have been defined as follows:

First Instruction

Check header loc of handler DSW set?

power failure 4/' 208 4/'284 no
memory parity 4/'270 4/'274 yes
Machine check 4/'3@0 4/'3@4 yes
missing memory module 4/'310 4/'314 yes

Unlike faults which can be stacked and interrupts which cause a process
to be suspended, each check class has a single save area (check block)
consisting of eight words in the interrupt segment (#4) in which PB and
KEYS (high and low) are saved in the first four locations (check
header) and the remaining four locations contain software code
(probably a JMP). In addition to the memory data base, three 32-bit
registers are used as a diagnostic status word (DSW) to help a software
check handler sort out what happened. Table 2-6 shows the format of
the DSW.

Check reporting (traps) is controlled by the two low order bits in the
modals (KEYSL). The possible modes are:

@ no reporting

1 report memory parity (uncorrected) only
2 report unrecovered errors only
3 report all errors

The check trap can result in two possible actions depending upon the
type of check that occurred and the type of microcode which was

REV. @ 2 - 28

IDR3068 THE PRIME 40¢

Table 2-6. Diagnostic Status Word

Set on all checks except power failure as follows (the Diagnostic
Status Word is untouched by a power failure check):

Bits 1-32 (register file °34 absolute): DSWRMA.

Bits 33-64 (register file “35 absolute): DSWSTAT.
THPMKKKWCUBPPPXO
A-SSSSSN--TTTTIT

Bits 65-96 (register file °36 absolute): DSWPB.

bits

1-32 (DSWRMA)

33 I

34 H

35 P

36 M

37-39 KKK

48 W

4l U

42 C

meaning, validity

Memory address register. Valid if and only if a machine
check occurred but not a missing-memory-module check, or
else RMA invalid (bit 49) is reset on a
missing-memory-module or memory-parity check. Invalid
if and only if no check has occurred, or else RMA
invalid is set on a- missing-memory-module or

ECC-uncorrected check. In the event of multiple checks,
DSWRMA is the RMA of the missing-memory-module check if
any, else of the machine or ECC-uncorrected check (they
are mutually exclusive) if any, otherwise of the
ECC-corrected check.
Check immediate. The check could not be held off until
end-of-instruction. Always valid.
Machine check. Always valid. If set, bits 37-4@ are
valid.
Memory-parity check. Always valid. If set, bit 56 is
valid.

Missing-memory-module check. Always valid. If set,
bits 49 and 56 are valid.
Machine-check code. Valid only if bit 34 is set.
Parity failure on 6=peripheral data (BPD) output,

l=peripheral address (BPA) input, 2=memory data (BMD)
output, 3=cache data (RCD), 4=peripheral address (BPA)
output, 5=RDX-BPD input, 6=memory address (BMA) ,

7=register file.
Not RCM parity. Reset if and only if there is an RCM
parity error and the extended control storage option is
installed. Valid only if bit 34 is set.
ECC-uncorrected memory-parity check (or, any
memory-parity check when the ECC memory option is not
installed). Always valid. If set, bit 35 is set, and
bit 56 is valid.

ECC-corrected memory-parity check. Always valid. If
set, bit 35 is set, and bits 51-56 are valid.

2 - 29 July 1978

SECTION 2

43 B

44-46 PPP

47 xX
48 O

49 A

50
51-55 SSSSS

56 N

57-58
59-64 TITTIT

65-96 (DSWPB)

REV. @

IDR3068

Backup count invalid. Always valid. If reset, bits
44-46 are valid.
RP (P-counter) backup count. Amount to subtract from

DSWRP to find the beginning of the most recently
attempted instruction. Valid only if bit 43 is reset.
Check occurred during DMX service. Always valid.
Check occurred during DMX service, programmed
input/output, or interrupt microcode. Always valid.
RMA invalid. If set, no RMA is available in DSWRMA.

Valid if and only if a missing-memory-module check
occurred, or else a memory-parity check occurred but not
a machine check. Invalid if and only if there was no
check, or else a machine check occurred without a
missing-memory—module.
Reserved.
ECC-corrected syndrome bits. Valid only if bit 42 is
set.

Memory module number (failing memory module in case of

interleaved memories). Valid only if bit 35 or bit 36
is set. If both bits are set, bit 56 is the module
number which goes with the missing-memory-module check.
Reserved.
Microverify failing test number. Valid only following
failure during Master Clear or VIRY instruction.
Extended program counter (ring, segment, word). Always
valid. In the event of multiple thecks, DSWPB is the
program counter of the missing-memory-module check if
any, else of the machine or ECC-uncorrected check (they
are mutually exclusive) if any, otherwise of the
ECC-corrected check.

IDR3062 THE PRIME 400

trapped. If the trapped code was either DMX, PIO, or external
interrupt processing (unless the error was a machine check for RCM
parity), or if the check was for an ECC corrected (ECCC) error, the
end-of-instruction flag is set, REOIV is set to the proper
offset/vector, MCM is set to @ (except ECCC which sets it to 2), anda
microcode RIN to the trapped step is executed. In this way, the I/O
bus is always left in a clean state. In all other cases, the check to

software occurs immediately.

The common check handler is entered from various check 'front ends'
and, based on process exchange mode, either simulates a Prime 300 type
check (JST* through segment @ check vectors) or performs the Prime 400
protocol which includes setting up the check header, inhibiting the
machine, and switching to 64V addressing mode. In either mode, MCM is
set to @ before going to software.

Check-handling software has the responsibility for clearing’ the
Diagnostic Status Word after each check. If the software does not
clear the DSW, later checks will overwrite some of the data from
preceding checks. Enough independent fields are allowed in the DSW to
remember one each of the longest chain of checks which can occur before
software gets control, except that the RMA and PB of the last check
only can be saved. If a missing-memory-module check has occurred, then
it was the last, and the saved RMA and PB go with it. If not, then if
either a machine check or an ECC-uncorrected memory-parity check
occured (these are mutally exclusive), then it was the last and its RMA
and PB are in the DSW. Otherwise, the saved RMA and PB belong to the
ECC-corrected memory-parity check.

In the event that the ECC memory options is not installed, all
memory-parity errors are treated as ECC-uncorrected errors.

QUEUES AND DMO

Queue structures on the Prime 400 are double-ended queues ("deques", to
quote Knuth), and are used for both input/output (DMQ mode, physical
Queues) and interprocess communications (virtual queues). Each queue
is implemented by an array of 2**K words for data and a four-word
control block.

The data block is constrained to be of length 2**K for some 4<=K<=16
and the origin of the queue is constrained to be M*2**K, These
restrictions on the data block allow the beginning and ending of the
data block to be easily inferred from the read or write pointer. Let
us define MASK to be a word with K '1' bits on the right and 16-K '@'
bits on the left, i.e., MASK=2**K-l1: Then if P points inside the data
block, then

ORIGIN = P .AND. (.NOT. MASK)
and

END = P .OR. MASK

2 - 31 July 1978

SECTION 2 IDR3269

The control block entries mean as follows:

Top (Read) Ptr: Points to the datum at the head of the queue;

Bottom (Write) Ptr: Points to the cell after the datum at the
tail of the queue;

Segment: Six bits of address extension of else segment
number;

MASK: =2**K-1 defines the size of the queue data
block.

Notice carefully that the queue could contain from @ to 2**K entries,
but to reserve the condition Top-Ptr = Bottom-Ptr for empty, we must
define the queue to be full when it has 2**k-l entries: i.e., there is
always one slot empty.

The DMQ mode of I/O is defined by a DMX request of BPCMO...4=098@1 for
input and BPCMO...4=@9000 for output. In the input mode, a word is
added to the bottom of the queue if there is room, else an EOR (End of
Range) signal is returned to the controller. In output mode, data is
taken from the top of the queue or,m if empty, a zero word is output
along with EOR. Note that EOR is not put out with the word that
empties the queue as with DMA. All memory operations bypass cache. An
important special case is output when the queue is empty, which
requires only two reads (the Read-Ptr and Write-Ptr), a comparison, and
a speedy exit. This efficiency consideration accounts for the peculiar
ordering of words in the control block.

The DMQ modes assume that the BPA address refers to a control block in
segment zero which in turn refers to a data block in physical memory.

The instructions provided for queue manipulation are of the generic-AP
class, in which a following AP-pointer provides the address of the
queue control block.

Data is in the A-register and the results of the operation are given in

the condition code bits for later testing. No Wait or Notify action is
taken by the instruction per se. The instructions are:

ATQ P Add to Top of Queue
ABO Pp Add to Bottom of Queue

RTQ P Remove from Top of Queue
RBQ P Remove from Bottom of Queue

TSTQ P Test Queue

The Ptr refers to a control block in virtual space which is shown in
Table 2-18. The virtual queue control block differs from the physical
in that a segment number is provided instead of a physical address.
Ring zero privilege is required to manipulate physical queues. Also,
the ring number determines the privilege of access into both the
control block and the data block.

REV. @ 2 - 32

IDR3069 THE PRIME 400

The algorithms for queue operation are as follows (T1,T2,T3,T4, and T5

are temporary registers):

A. RTQ or DMQ output

1. Tl <- Top

2. T2 <- Bottom

3. if Tl = T2 exit, Queue Empty, EOR

4, T3 <- Segment

5. T4 <- Mask

6. A <- (Tl)

7. Top <- Tl .AND. .NOT. T4 .OR. (Tl +1) .AND. T4

Note that EOR is determined after only two memory references and the
top pointer is updated after the data is removed. Similarly, for input
the algorithm is:

B. ABQ or DMQ input

1. Tl <- Top

2. T2 <- Bottom

3. T3 <- Segment

4, T4 <- Mask

5. 75 <- T2 .AND. .NOT. T4 .OR. (T2 +1) .AND. T4

6. if Tl = T2 exit, Queue Full, EOR

7. (T2) <-A

8. Bottom <- T5

Note that here all four control words must be fetched before any
operation or testing can take place. Also note that the data is
inserted before the pointer is updated. This insures that the sequence
ABQ/DMQ-output and DMQ-output/RTQ can work without interlock in either
microcode or software. The other two algorithms are:

C. RBQ

1. Tl <- Top

2 - 33 July 1978

SECTION 2 IDR3060

2. T2 <- Bottom

3. if Tl = T2 exit, Queue Empty

4, T3 <- Segment

5. T4 <- Mask

6. T2 <- T2 .AND. .NOT. T4 .OR. (T2-1) .AND. T4

7. A <- (T2)

8. Bottom <- T2

l. Tl <- Top

2. T2 <- Bottom

3. 13 <- Segment

4, T4 <- Mask

>. Tl <- .AND. .NOT. T4 .OR. (TI-1) .AND. T4

6. (Tl) <-A

7. Top <- Tl

In addition, the queue can be tested by the instruction TSTQ which
calculates the length of the data queue and compare the result with @
and Mask. Interestingly, the length of the data queue is:

L = (Bottom - Top) .AND. MASK

whether the data is wrapped or not!

CONTROL PANEL

The control panel for the Prime 40@ is the same physical panel used for
the Prime 300. Its functionality was enhanced by improving the
microcode in the CP. All switches and selectors operate exactly as for
the Prime 308 with the exception of the sense switches in the up
position. Figure 2-1 is a diagram of the functionality of the
Switches. Notice that with all switches down, any FETCH/STORE
Operations are to/from memory-mapped. As long as segmentation mode is
not turned on, mapped and absolute are the same, thus preserving
compatiblity. If SS$ down were absolute, address traps could not occur
and would thus be incompatible. Notice also that SS5-16 in the up
position changes meaning depending upon SS4. When mapped, all 12

REV. § 2 - 34

IDR3060 THE PRIME 409

Switches are read as a 12-bit segment number. When absolute, SS11-16
are used as the 6 high order bits of the 22-bit physical address. To
address any Prime 388 registers, all sense switches should be placed in
the down position and addresses between @ and '37 specified.

Prime 408 registers are accessed by raising SSl. Then, if SS2 is down,
the low order 5 bits of the address are used to access 32-bit registers
®-'37 within CRS. If SS2 is raised, the full 7 bit address is used to
access any register in any register file. The addresses, as shown in
Figure 16, are §—'37=microcode scratch/system, '46-'77=DMA,

"18@0-'137=User set 2, and '14@-'177=User set 3. SS4 is used to access
either the high half (up) or the low half (down) of the selected
register. For all register accesss, the Y+l functions will advance the
register address before the access, exactly as for memory accesses.

Wrap around will occur on the appropriate number of bits, since any
bits of higher order are ignored for the access.

The control panel data register is TR2H and the address register is
TR3. Upon entering the control panel routine, RP is saved in TR3 and
(RP) is saved in TR2H. In addition, the keys (KEYSH) are updated to

accurately reflect the keys. Thereafter, TR3H is not altered by the
control panel itself is RPH and KEYS is used to update all the keys.
As a result, single stepping can change segments as well as keys and
modals.

The only exception to the control panel entry protocol is that if a

Fault, Check, or External Interrupt attempts to vector through a vector
containing @ in Prime 380 mode, the following registers will contain:

RP: address of 'trapped' instruction

PBH: SN of 'trapped' instruction

KEYSH: proper keys

TR2H: (data) @

TR3: (address) 91/6

TR2L: address, in segment 9, of the 'vector' containing 9

2 - 35 July 1978

SECTION 2 IDR3068

Figure 2-1. Control Panel

ssl ss2 SS 4 <--------- SS 5-16 ------------>

up= lup=		up=	
register	absolute	lhigh half	
	down=		down=
	cRS	Jlow half	
down=			up=
memory			absolute
		‘	down=
			mapped

REV. @ 2 - 36

IDR3868 THE PRIME 460

With all switches down, the control panel works exactly as for the
Prime 388 following a Master Clear or a HLT. It is necessary to make
mapped (SS 4 down) memory references to generate address traps (access
registers as memory, aS in short-form instructions). If segmentation
mode is on, mapped references are to segment zero unless some other
segment number is entered SS 5-16. When accessing the register file
(SS 1 up), only the low-order 5 bits (SS 2 down) or 7 bits (SS 2 up) of
the address are used for register selection; the "Yt+tl" functions
increment the address for registers in the same way as for memory.

2 - 37 July 1978

IDR306G PRIME 580

SECTION 3

PRIME 508

The Prime 508 is a general register 32-bit machine. This architecture
is supported by eight 32-bit fixed-point and logical accumulator
registers, seven of which can be used for indexing, two 64-bit floating
point registers which overlap the two 64-bit field registers, and four
32-bit base registers.

The Prime 5@@ contains two full register sets with the Prime 400

registers mapped onto them. Figure 1 shows one set of Prime 590
registers with the Prime 400 assignments.

The instruction set for the P5@6 contains three types of instructions:

1. Memory Reference - each of these instructions can specify any
register as a target (Source or destination depending on the

instruction), any base register plus a 16-bit word-number
displacement. The appendix shows this type of memory
reference (MR) instruction. The MR format can specify all
combinations of single-level indexing and indirect addressing.
These options are specified by the tag modifier (TM) field.
The TM field is also used to specify register-register (RR)
format and the 3 classes of immediate. The appendix shows all
of these formats. The MR class of instructions include both
full-word (32-bit) and half-word (16-bit) operand types.

2. Register Generics - these are instructions which operate on

the specified target register. This class includes the branch
instructions which use the second half-word to specify a FB
dislacement for the branch address. All the remaining
instructions occupy a half-word.

3. Non-Register Generics - this class of instructions includes
all of the control instructions including mode change. These
half-word instructions have op codes that overlap the Prime
408 generics.

3 - 1 July 1978

SECTION 3 IDR3068

PRIME 500 PRIME 480

Register Register

GRY - General Register @
GR1 - General Register 1

Index register 1
GR2 A,B (L) General Register 2

Index register 2
GR3 E General Register 3

| Index register 3
GR4 - General Register 4

Index register 4
GR5 Y,- General Register 5

Index register 5

GR6 - General Register 6
Index register 6

GR7 X,- General Register 7
Index Register 7

FROH - Floating Register @

(high 32 bits)
Field Register @ high

FROL - Floating Register @
(low 32 bits)
Field Register @ low

FR1H FRH Floating Register 1

(high 32-bits)
Field Register 1 high

FRIL - Floating Register 1
(low 32 bits)
Field Register 1 low

PB PB Procedure Base
SB SB Stack Base

LB LB Link Base
XB XB Auxiliary Base

XIS MICRO-CODE

The Prime 588 XIS board is controlled using the same 64-bit field which
controls the rest of a Prime 490-Prime 500.

The board is enabled to do anything if and only if the U/A field = 2 or
3 (RCM 29 = 1) and the UIS field = @ (RCM 31 = 33 = 9) and the IS field
does not @ (RAM 10 -> 13 has al). If the board is enabled, the BB,
ALU, RF, BD, IS, and RP/REA u-code fields are reinterpreted to control

the XIS board.

The field and bit encodings have been carefully chosen to permit both
the current and XIS boards to be active at the same time. The overlap
is chosen to permit loading and unloading the XIS board.

The IS field, clock field, cache control field, traps, and next address

fields are not affected by the XIS control. However, the XIS microcode

REV. @ 3 - 2

IDR3068 PRIME 580

uses these fields. For example, the next address field is used by the
XIS microcode for its next address calculations.

EXTENDED INSTRUCTION SET

The Prime 50@ Extended Instruction Set contains 15 new instructions to
support commercial data processing applications. The instructions are
divided into two basic groups, decimal arithmetic and character field
processing. The instructions make use of the Prime 400/580 field
address and length registers to provide for byte addressing and
restartability after interrupts and page faults.

3 - 3 - July 1978

PART TWO

INSTRUCTION SUMMARY V, R, S MODES

IDR3060 CONVENTIONS

SECTION 4

CONVENTIONS

INSTRUCTION DESCRIPTION CONVENTIONS

This manual describes each of the instructions in the context of the
mode where they are first used. To avoid duplicate descriptions while
facilitating retrieval, each instruction is described once, but listed
in as many categories as appropriate.

The illustration below shows the format we are using.

© Oo

Load A Register SRV MR

LDA ADDR [EA16]-—>A C=UNCHANGED

Move the contents of location ADDR to the A-register. The original
contents of the A-register are lost.

Instruction name©

Addressing modes where it is legal - S, R, V in this case©

Format of instruction - MR is memory reference

PMA format (numeric followed by argument, if required)

O
6
0

Instruction control flow in algebraic notation.
[] contents of
() bit number

-> = replaces

- State of condition codes, C-bit, or L-bit

~ Riff restricted; blank if not restricted

©
(7)- Description of instruction

FUNCTION GROUP DEFINITIONS

The instruction definitions are grouped by primary function, such as
fixed point arithmetic. Table 471 below contains the definitions for
all the function groups and modes. If you wish to find a particular
instruction, Appendix C contains an alphabetic list.

4 - J July 1978

SECTION 4 IDR3066

Table 4-1. FUNCTION DEFINITIONS

DEFINITION S

Addressing Mode X

Branch

Character

Clear field | X

Decimal Arithmetic

Field Register

Floating Point Arithmetic X

Integer Arithmetic X X

Integrity X X

Input/Output X X

Keys X X

Logical Operations X X

Logical Test and Set xX X

Machine Control X

Move X X

Program Control and Jump X

Process Exhange

Queue Control

Shift Xx

Skip X

REV. @ 4 - 2

IDR3868 CONVENTIONS

FORMAT DEFINITIONS

Each instruction has a format. The formats and their meaning are
summarized in Table 4-2. Their specific bit definitions are defined in
the instruction groups where they are first used.

Table 4-2. FORMAT DEFINITIONS

MNEMONIC DEFINITION S R VI

GEN Gener ic X X X

AP Address Pointer | X X

BRAN Branch X

CHAR Character X

DECI Generic Decimal X

PIO Programmed I/0 X X X

SHFT Shift X X X

MR Memory Reference — X X X

non I-mode

MRFR Memory Reference — X
Floating Register

MRNR Memory Reference X
Non Register

RGEN Register Generic X

4 - 3 July 1978

SECTION 4 IDR3069

GENERAL DATA STRUCTURES

Table 4-3. Data Structures - summarizes all the data structures
manipulated by instructions.

Table 4-3. DATA STRUCTURES

CLASS IDENTITY

S RVI

Integer (Unsigned)
16-bit X X X K

32-bit X X

Integer (Signed)
16-bit X X X X

31-bit X X
32-bit X X

Floating Point
32-bit X X X
64-bit X X K

Decimal X X

Character string X X

Word
16-bit X X X

32-bit X

Halfword - 16 bit X

Byte X X X X

Indirect Pointer (IP)

16-bit X X X K

32-bit X X
48-bit X X

Address Pointer (AP) X xX

Stacks
Segment Header X X
Frame Header X X

Argument Template X X

Entry Control Block X X

Queue Control Block X X

REV. @ 4 - 4

IDR30698 CONVENTIONS

PROCESSOR CHARACTERISTICS

Table 4-4, Processor Characteristics, lists the program
visible portions of the hardware.

Table 4-4. Processor Characteristics

Class Identity

Ss RV I

Registers
108/208/380 X xX
400/500 X X

Field Registers X X

Floating Registers X X X

Keys
300 X X
490/500 X X

C-Bit X X X X

L-Bit xX X

Condition Codes X X

Modals X X

4 - 5 July 1978

IDR3068 FORMATS —- SRV

SECTION 5

FORMATS —- SRV

DATA STRUCTURES

Word Length

16 bits

Byte Length

8 bits

Character Strings

Variable length collection of bytes from 1 to 2**17-1.

Numbers:

e Unsigned 16 and 32 bit integers

1 16 17 32

e Signed 16-bit integers

5 - dl July 1978

SECTION 5 IDR3060

@ Signed 31-bit integers (S,R-modes)

| s | | [| @ | |

1 2 16 17 32

@ Signed 32-bit integers (V-mode)

ls | | | |

1 2 16 17 32

e Floating Point - Single Precision, 32 bits (R,V-modes)

| s | MANTISSA |

1 2 16

| MANTISSA | EXPONENT (EXCESS 128) |

17 24-25 32.

@ Floating Point - Double Precision, 64 bits (R,V-modes)

Is | MANTISSA |

1 2 16

| MANTISSA |

17 32

REV. @ 5 - 2

IDR3060 FORMATS — SRV

MANTISSA |

33 48

| EXPONENT - (EXCESS 128) |

49 64

@ Decimal - one to 63 digits in five forms (V-mode)

Decimal Control Word Format (V-Mode)

To specify the characteristics of the operation to be performed, most
decimal arithmetic instructions require a control word to be loaded in
the L register. .

The general format is as follows:

A _ B C - T D &E F G H

1-6 78 9 18 11 12 13 14-16 17-22 23-29 38-32

Where:

Field 1, number of digits

Field 1, decimal data type

If set, sign of field 1 is treated as opposite of its

actual value.

If set, sign of field 2 is treated as opposite of its
actual value. (XAD, XMP, XDV, XCM only)

Round flag (XMV only)

Field 2, number of digits

Field 2, decimal data type

Scale differential (XAD, XMV, XCM only)

Generate positive results always

Unused, must be zero

5 = 3 July 1978

SECTION 5 IDR3669

The fields used by each instruction are listed in the instruction
descriptions. Fields not used by an instruction must be zero.

The scale differential specifies the difference in decimal point
alignment between the operator and fields for some instructions. This
field is treated as a signed 7 bit two's complement number. Its value
is specified as Fx=F1-F2, where Fx is the number of fractional digits
in Field x. A_ positive value indicates a right shifting of Field 1
with respect to Field 2, and a negative value indicates a left
shifting.

Address Pointer (AP) (V—-Mode)

Two word pointer which follows GENAP instructions.

| BITNO | 1 |- | BRI - | WORDNO |

1-4 5 6 7 8 9-16 17 | 32

BITNO (Bits 1-4) - Bit number

I (Bit 5) - Indirect bit

BR (Bits 7-8) - Base register

08 = Procedure Base (PB)

01 = Stack Base (SB)

18 = Link Base (LB)

ll = Temporary Base (XB)

WORDNO (Bit 17-32) - Word number offset from base register

contents

REV. @ 5 - 4

IDR3968

Indirect Word ~- One Word Memory Reference

{I|X| 14-bit address | 16S

123 | 16

|I| 15-bit address | 32S
32R

1 16

| 16-bit address | 64R
64V

1 16

a

Indirect Pointer - Two Word Memory Reference (IP) (V—Mode)

FORMATS - SRV

| F | RR | @ | SEGNO {| | WORDNO

|

l 23 #4 ~=«5 16 17 32

F (Bit 1) -— Generate pointer fault if set. In the fault
case, the entire first word (bits 1-16)
forms a fault code, and no other bits are
inspected.

RR (Bits 2-3) - Ring of privilege - controls access rights

Bit 4= @ - No third word. Bit number portion of

effective address is zero.

SEGNO (Bits 5-16) —- The segment number portion of the effective

address

WORDNO (Bit 17-32) - The word number portion of the effective
address.

5 - 5 July 1978

SECTION 5 IDR3060

Indirect Pointer - Three Word Memory Reference (IP) (V-Mode)

[F| RR | 1 | SEGNO | | WORDNO | | BITNO |

123 4 5 16 17 32 33 — 48

F (Bit 1) ~ Generate pointer fault if set. In the fault

case, the entire first word (bits 1-16)
forms a fault code, and no other bits are
inspected.

RR (Bits 2-3) ~ Ring of privilege - controls access rights.

Bit 4=1 - The third word is present and gives the bit

number portion of the effective address.

SEGNO (Bits 5-16) —- The segment number portion of the effective

WORDNO (Bit 17-32)

BITNO (Bits 33-36)

address.

The word number portion of the effective
address.

The bit number portion of the effective

address.

Stack Segment Header (V-—Mode)

6 | REE POINTER |
1 | |

2 | EXTENSION SEGMENT |

3 | POINTER |

Word Meaning

@,1 Free pointer - segment number/word number of available
location at which to build next frame. Must be even.

2,3 Extension segment pointer - segment number/word number of
locations at which to build next frame when current segment
overflow. If zero, a stack overflow fault occurs when
current segment overflows.

REV. @ 5 - 6

IDR3060 FORMATS —- SRV

PCL Stack Frame Header (V—Mode)

a | o-@ |

1 | STACK ROOT SEGMENT NUMBER |

W
B
O RETURN POINTER |

O
l
> CALLER'S SAVED STACK |

BASE REGISTER |

T
S
N CALLER'S SAVED LINK |

BASE REGISTER |

8 | CALLER'S SAVED KEYS

9 | LOCATION FOLLOWING CALL |

Word

2,3

4,5

6,7

Meaning

Flag bits - set to zero by PCL when frame is created

Stack root segment number - for locating free pointer

Return pointer - segment number/word number of location
following call and argument sequence which created this

frame

Caller's saved stack base register

Caller's saved link base register

Caller's saved keys

Word number of location following call - beginning of
argument transfer templates, if any

5 - 7 July 1978

SECTION 5 IDR3068

CALF Stack Frame Header (V-Mode)

FLAG BITS |

STACK ROOT SEGMENT NUMBER |

RETURN POINTER |

O
l CALLER'S SAVED STACK |

BASE REGISTER |

o
v CALLER'S SAVED LINK

BASE REGISTER |

CALLER'S SAVED KEYS |

LOCATION FOLLOWING CALL |

16 | FAULT CODE |

li
12 |

FAULT ADDRESS |

13 |
14
15 |

RESERVED |

Word

2,3

4,5

6,7

10

REV. @

Meaning

Flag bits —- set to one by CALF fault

Stack root segment number - for locating free pointer

Return pointer - segment number/word number of location
following call and argument sequence which created this
frame

Caller's saved stack base register

Caller's saved link base register

Caller's saved keys

Word number of location following call - beginning of
argument transfer templates, if any

Fault code

IDR3068 FORMATS - SRV

11,12 Fault address

13-15 Reserved

Entry Control Block (V—Mode)

® | POINTER TO CALLED |
1 | PROCEDURE |

2 | STACK FRAME SIZE |

W
w STACK ROOT SEGMENT NUMBER |

4 | ARGUMENT LIST DISPLACEMENT |

5 | -NUMBER OF ARGUMENTS |

6 | LINK BASE REGISTER OF |
7 | CALLED PROCEDURE |

8 | KEYS |

9 | | Oo -

10 | |
1l | RESERVED |
12 | |
13 | |

14 | |
15 | |

O
Word Meaning

e
9,1 Pointer (ring, segment, word number) to the first executable

instruction of the called procedure.

2 Stack frame size to create (in words). Must be even.

3 Stack root segment number. If zero, keep same stack.

4 Displacement in new frame of where to build argument list.

5 Number of arguments expected.

6,7 Called procedure's link base (location of called procedure's

linkage frame less '40@).

8 CPU keys desired by called procedure.

5 - 9 July 1978

SECTION 5 IDR3068

9-15 Reserved, must be zero.

Entry control blocks which are gates must begin on
boundary, and must specify a new stack root.

Queue Control Block (V-Mode)

a @ modulo

| TOP POINTER |
|1 16|

| BOTTOM POINTER |
[17 32|

| V | 888 | QUEUE DATA BLOCK |
[33 134 36]37 48]

| MASK |
|49 64|

Bits Meaning

1-16 Top pointer-read

17-32 Bottom Pointer-Write

33 (V) Virtual/physical control bit

® = physical queue
l = virtual queue

34-36 Reserved - must be zero

37-48 Queue data block address

Segment number if virtual queue

High order physical address bits if physical queue

49-64 Mask - value 2**K-1

Queue control blocks must start on even word boundaries.

REV. @ 18

16

IDR3068 FORMATS — SRV

Figure 5-1. Queue Data Structures
6

QUEUE DATA BLOCK, DATA NOT WRAPPED

<--Origin = M*2**K

(empty) |
|

Top-Read Ptr-~>| (head) | |
| | Length = 2**K
(data)	
(tail)	

Bottom-Write Ptr-->| | |
| (empty) : |
| <--End = (M+1)*2**K-1

QUEUE DATA BLOCK, DATA WRAPPED

| (data) [<--Origin = M*2**K
| | |
| (tail) | |

|
Bottom-Write Ptr——>| ||

| (empty) | Length = 2**K
| |
| |

Top-Read Ptr-->| (head)
|
| (data)
| (M+1) *2**K-1

5 - 1 July 1978

SECTION 5 IDR3068

Argument Transfer Template (V—Mode)

!B|I{il-|]BRILIS{-| | WORDNO |

1-45 678 9

B (Bits 1-4)

I (Bit 5)

BR (Bits 7-8)

L (Bit 9)

S (Bit 10)

WORDNO (Bits 17-32)

REV. @

1@ 16 17 | 32

Bit number

Indirect

Base register

@0 = Procedure base (PB)

G1 = Stack base (SB)
18 = Link base (LB)

ll = Temporary base (XB)

Last template for this call

Store argument address. Last template for
this argument.

Word number offset from base register

IDR3062 | FORMATS — SRV

PROCESSOR CHARACTERISTICS

Registers (S-Mode)

Prime 108, 208 and 308 registers are 16 bits wide. All the
program visible registers are physically located in high speed
memory and are addressed as memory locations 9-37. In restricted
mode (normal user operation) only 9-7 are accessable.

Memory Register
Address Designation Function

Qg X Index Register

1 A Arithmetic Register
2 B Extension Arithmetic Register
3
4
5
6 VSC Visible Shift Count
7 P Program Counter

16 PMAR (Prime 3@@ only) Page Map Address Register
11 FCODE

12 FAR Fault Address Register
13-17 Reserved
20-37 DMA 1-8 Word Pairs for DMA channels

(address and word counts)

Registers (R-Mode)

Prime 106, 208 and 300 registers are 16 bits wide. All the
program visible registers are physicaly located in high speed
memory and are addressed as memory locations 09-37. In restricted
mode (normal user operation) only @-7 are accessable.

Memory Register

 Address Designation Function

Q X Index Register
1 A Arithmetic Register
2 B Extension Arithmetic Register
3 Ss Stack Register
4 FLTH Floating Point Accumulator - High
5 FLTL Floating Point Accumulator - Low
6 FEXP Floating Point Exponent
7 P Program Counter

19 PMAR (Prime 308 only) Page Map Address Register
ll FCODE Fault code
12 PFAR Page Fault Address Register
13-17 Reserved for

microprogram
20-37 DMA 1-8 Word Pairs for DMA channels

(address and word counts)

5 - 13 July 1978

SECTION 5 IDR3069

Registers (V-Mode)

REV.

Prime 408/508 registers are 32 bits wide. See Section 2. Short

form instructions reference the same registers as in Rmode.

All other instructions use the LDLR and STLR relative register

addresses.

Register addresses used in LDLR and STLR instructions are

doubleword addresses. The notation "2 H" means the high or left
16 bits of register address 2, while "2 L" means the low or right
16 bits.

The following registers should not be written into by STLR
instructions, or anomalous behavior will result.

PB: The procedure base should be changed only via LPSW or
programmed transfers of control.

keys: The keys should be changed only via LPSW or the various
mode control operations.

modals: The modals should be changed only via LPSW or the
various mode control operations. In no case should an
LPSW ever attempt to change the current register set

bits of the modals.

IDR3060 FORMATS — SRV

V-Mode Register Description:

SCRATCH DMX CURRENT REGISTER SET (CRS)
RSG RS1 RS2 RS3
ADR HIGH LOW ADR HIGH LOW ADR ADR HIGH LOW

6 TRO - 49 ~ 108 140 GR@:OLT2 -
1 TRI - 41 - - 101 141 GR1:PTS -
2 TR2 - 42. - - 102 142 GR2(1,A,LH) (2,B,LL)
3 TR3 - 430 - - 183 143 GR3(EH) (EL)
4 TR4 - 44 - ~ 104 144 GR4 -
5 TRS - 45 - - 105 145 GR5(3,S8,Y) -
6 TRE - 46 - - 186 146 GR6 -
7 TR? - 47 - 107 147 GR7(@,X) -

18 RDMX1 - 58 Oe - 118 158 FARI(13) -
11 RDMX2 - 51 - - 111 151 FLRI -
12. - RATMPL 52 - - 112 152 FAR2(4) (5)
13. RSGT1 - 53 - - 113 153 FLR2:VSC(6) -
14 RSGT2 - 54. = - 114 154 BB -
15 RECC1 - 55 - - 115 155 SB(14) (15)
16 RECC2 - 56 - - 116 156 LB(16) (17)
17. - REOIV 57° - - 117 157 XB -
28 ZERO ONE 6@ (20) (21) 126 168 DTAR3(10) -
21 PBSAVE - 61 - - 121 161 DTAR2 -
22 RDMX3 ~ 62 (22) (23) 122 162 DTARL 1
23 RDMX4 - 63 - - 123 163 DTAR@ -
24 C377 - 64 (24) (25) 124 164 KEYS (MODALS)
2 «| - 65 - - 125 165 OWNER -
26 «= ~ 66 (26) (27) 126 166 FCODE(11) -
27. - - 67. - - 127 167 FADDR (12)
38 PSWPB - 76 (38) (31) 136 170 TIMER -
31 PSWKEYS 1 71 o-° 131 171 - -
32 PPA:PLA PCBA 72 (32) (33) 132 172 - -
33 PPB:PLB CBB 73° == - 133 173 - -
34 DSWRMA - 74 (34) «(35) 134 174 - -
35 DSWSTAT - 75 = - 135 175 - -
36 DSWPB - 76 (36) (37) 136 176 - -
37 RSAVPTR - 77 = - 137 177 - -

NOTICE —- Numbers in parentheses () show P3@@ Address Mapping

Definitions
TR Temporary Registers

TR7 — Saved return pointer on a crash (automatic save)
RDMX Register DMX

RDMX1 - Used by DMC, buffer start pointer

RDMX2 - REA at time of DMX trap
RDMX3 - Save RD during DMQ
RDMX4 - Used as working register

RATMPL Read Address Trap Map to rP Low
RSGT Register Segmentation Trap

RSGT1 - SDW2 / address of Page Map
RSGT2 - contents of Page Map / SDW2

5 = 45 July 1978

SECTION 5

REOIV
ZERO/ONE
PBSAVE

C377
PSWPB

PSWKEYS

PPA
PLA
PCBA

PPB
PLA
PCBB
DSWRMA

DSWSTAT
DSWPB

RSAVPTR

GR
OLT2
PTS
FAR]
FLR1
FAR2
FLR2
PB

SB
LB
XB
DTAR
KEYS
MODALS
OWNER
FCODE
FADDR
TIMER

REV. @

IDR3069

Register End of Instruction Vector
Constants
Procedure Base SAVE
saved return pointer when return pointer used elsewhere

Constant
Processor Status Word Procedure Base
return pointer for interupt return (also used for Prime

368 compatibility)
Processor Status Word KEYS
KEYS for interupt return (also used for Prime 380 compatibility)
Pointer to Process A
Pointer to Level A
Process Control Block A

Pointer to Process B
Pointer to Level B
Process Control Block B
Diagnostic Status Word RMA
RMA at last Check Trap
Diagnostic Status Word STATus
Diagnostic Status Word Procedure Base
Return pointer or PBSAVE at last check
Register SAVE Pointer
Location of Register Save Area after Halt

General Register
Old Length and Type
Pointer To Sign
Field Address Register l
Field Length Register l
Field Address Register 2
Field Length Register 2
Procedure Base
PBH — RPH
PBL —- @
Stack Base
Link Base
Temporary (auxiliary) base
Descriptor Table address registers
See below
See below
Pointer to PCB of process owning this register set
Fault CODE
Fault ADDRess
l-millisecond process timer (used for time-slice)

V-Mode Register Usage:

Address

Trap

P
o
r

~
]

11

12

IDR3969 FORMATS - SRV

Usage

P (program counter)
A (accumulator, high half of L)
B (double-precision, low half of L)
EH,EL (accumulator extension for MPL
DVL)
Y (alternate index), S (stack)
X (index)

(field address and length
register @)

(field address and length
register 1)
(floating accumulator, mantissa

high)
(mantissa middle)
(exponent)
(mantissa low, double-precision)
PB (procedure base)
SB (stack base)
LB (linkage base)
XB (temporary base)
(high half of DTAR3)
DTAR3 (descriptor table address,
segments 3072-4995)
DIAR2 (segments 2948-3071)
DTARI1 (segments 1024-2047)
DTARZ (segments @-1823)
keys, modals
OWNER (address of process control
block of process owning
register contents)
FCODE (fault code)
FADDR (fault address)
(fault address word number)
process 1024-microsecond c.p.u timer

July 1978

SECTION 5 IDR3860

Floating Point Register -— Single Precision (R-Mode)

Register Contents

"94
iS | MANTISSA |

12 16

"95
| MANTISSA |

17 32

"96

| EXPONENT (EXCESS 128) |

Floating Point Register - Double Precision (R-Mode)

Register Contents

'g4 -

IS | MANTISSA l

12 16

"95
| MANTISSA |

17 32

"82
| MANTISSA |

33 48

"86

| EXPONENT (EXCESS 128) |

49 64

IDR3060 FORMATS - SRV

Floating Point Register - Single Precision (V-Mode)

Register Contents

12H
IS | MANTISSA |

12 16

12L
| MANTISSA |

17 | 32

13H
| EXPONENT (EXCESS 128) |

33 48

Floating Point Register -— Double Precision (V—Mode)

Register Contents

12H
Is | MANTISSA |

12 16

12L
| MANTISSA |

17 32

13L
| MANTISSA. |

33 48

13H

| EXPONENT (EXCESS 128) |

49 64

5 - 19 July 1978

SECTION 5 IDR3068

Base Registers (V—Mode)

The four base registers:

Procedure Base Register PB
Stack Base Register SB
Link Base Register LB
Temporary Base Register XB

are discussed in Section 2, Prime 4@@ Architecture. Their format

is:

|@| RING | @ | SEGNO | WORDNO |

1 23 4 5 1617 32

RING (Bits 2-3) - Ring Number

SEGNO (Bits 5-16) —- Segment Number

WORDNO (Bits 17-32) - Word Number

Field Registers (V-Mode)

There are two address registers and two length register for the

Manipulation of variable length fields. They overlap the floating

point accumulator.

Field Address Register

{@| RING | @ - @ | SEGNO | WORDNO | BITNO|

12 3 4 8 9 14 15 36 37 40

RING (Bits 2-3) Ring Number

SEGNO (Bits 9-14) Segment Number

WORDNO (Bits 15-36) Word Number

BITNO (Bits 37-486) Bit Number

REV. 9 5 - 20

IDR3860 FORMATS —- SRV

Field Length Register

| length |

1 32

The meaning of the value in the field length register depends
on the data type being used. For a discussion of the
available data types see the decimal and character
instruction descriptions.

Keys (S,R-Modes)

Process status information is available in a word called the keys,
which can be read or set by the program. If format is as follows:

IC| DBL | @ | Mode | @ - @ | Bits 9-16 of Location 6 |

12345678 9 186 #1112 13 #14 #15 16

C (Bit 1) - Set by arithmetic error conditions

DBL (Bit 2). ~ Single Precision, 1 - Double Precision.

MODE (Bits 4-6) - The current addressing mode as follows:

600 = 16S

001 = 32S

G11 = 32R

018 = 64R

118 = 64V

108 = 321
C-Bit (S,R-Modes)

Bit 1 in the keys. Set by arithmetic error conditions (Bit 1).

Keys (V-Mode)

Process status information is collected in a 16-bit register known
as the keys. It may be referenced by the LPSW, TKA, and TAK
instructions.

5 - 21 July 1978

SECTION 5 IDR3060

{C|@IL| MODE |FIXILTIEQ| DEX |@-98® | I1|S |

123 46 78 916 11 12-14 15 16

C (Bit 1) -

L (Bit 3) -

MODE (Bits 4-6) -

F (Bit 7) -

X (Bit 8) -

LT (Bit 9) -

EQ (Bit 1€)

EQ (Bit 10)

DEX (Bit 11) -

I (Bit 15) -

S (Bit 16) -

C-Bit (V-Mode)

C-Bit

L-Bit

Addressing Mode:

000 = 16S
G@1 = 32S
G11 = 32R
018 = 64R
119 = 64V
10@ = 321

Floating point exception disable:

@ = take fault
1 = set C-bit

Integer Exception enable

set C-bit

take fault1

Condition code bits:

LT = negative

Decimal exception enable

set C-bit

take fault

G
1

In dispatcher - set/cleared only by process

exchange

Save done - set/cleared only by process

exchange

Set by error conditions in arithmetic operations.

REV. @

IDR396¢ FORMATS ~— SRV

L-Bit (V-—Mode)

Set by an arithmetic or shift operation except IRS, IRX, DRX.
Equal to carry out of the most significant bit (bit 1) of an
arithmetic operation. It is valuable for simulating multiple -
precision operations and for performing unsigned comparisons
following a CAS or a SUB.

Condition Code Bits (V—-Mode)

The two condition-code bits are designated "EQ" and "LT". EQ is
set if and only if the result is zero; if overflow occurs, EQ
reflects the state of the result after truncation rather than
before. LT reflects the extended sign of the result (before
truncation, if overflow), and is set if the result is negative.

Modals (V-Mode)

Processor status is collected in another 16-bit register known as
the "modals".

|E|V | @®-® | CURREG | MIO |P|1S |McK |

1 2 3 8 9 11 12 13 14 15 16

E (Bit 1) - Interrupts enabled

V (Bit 2) - Vectored-interrupt mode

CURREG (Bits 9-1l) - Current register set (set/cleared only by
process exchange)

MIO (Bit 12) - Mapped 1/0 mode

P (Bit 13) Process-exchange mode

S (Bit 14) Segmentation mode

MCK (Bits 15-16) Machine-check mode

Note

Never attempt to write into the keys or the modals with the STLR
instruction. The only valid way to change either the keys or the
modals is to use the LPSW instruction, the keys operations OTK and TAK,
or the various special-case instructions designed to manipluate
specific bits of the status. Furthermore, even LPSW should not be used
to alter the in-dispatcher and save-done bits of the keys or the
register-set bits of the modals.

5 - 23 | July 1978
8

SECTION 5 IDR3860

INSTRUCTION FORMATS

GENERIC

1 16

The entire instruction word is an opcode. Bits 3-6 are

always zero

SHIFT

| OP | SHIFT-NO |

1 19 ll 16

OP (Bits 1-10) - Opcode - Bits 3-6 are always zero

SHIFT-NO (Bits 11-16) - Two's complement of the number of
places to be shifted.

1/0 (§,R-Modes)

| cClASS |1 1 0 @ | FUNCTION | DEVICE |

1 2 3 6 7 19 11 16

CLASS (Bits 1-2) - Type of I/0 instruction

@8 = Control
01 = Sense
1@ = Input
11 = Output

Bits 3-6 - 11088

FUNCTION (Bits 7-18) - Subdivision of class. Device dependent

DEVICE (Bits 11-16) Device type

REV. @ 5 - 24

~ IDR3062 FORMATS - SRV

DECIMAL (V-Mode)

1 16

OP (Bits 1-16) - Opcode. This instruction uses previously set up

field registers and a previously set up control word in register L
(see decimal control word in Data Structures).

CHARACTER (V-Mode)

1 16

OP (Bits 1-16) - Opcode. This instruction uses previously set up
field registers.

GENERIC AP (V-—Mode)

| OP |

] 16

AP |

17 32

| AP |

33 48

OP (Bits 1-16) - Opcode

AP Bits (17-48) - Address Pointer — see AP in Data Structures

5 = 25 July 1978

SECTION 5 IDR3069

BRANCH (V-Mode)

| OP |

1 16

| WORDNO |

17 32

OP (Bits 1-16) —- Opcode

WORDNO (Bits 17-32) - Word number offset from procedure base

register.

Memory Reference

See Effective Addressing Formation in Section 6 - Memory

Addressing.

REV. @

IDR3068 MEMORY ADDRESSING

SECTION 6

MEMORY ADDRESSING

BACKGROUND CONCEPTS

Memory is addressed as a set of continuous word locations. The number
of words that can be addressed by an instruction, and the way in which
the address is calculated depends on the current addressing mode of the
machine and the location of the address relative to the instruction.

In turn, the addressing modes of the machine differ in the size of the
instruction word, the number of bits allotted to the provisional
address displacement, and the number and meaning of the bits allotted
to the operation code.

To reduce the number of memory references, designers wish to do as much
as possible in one word. For example, in the S and R addressing modes,
a one word memory reference instruction has nine bits (512 words) of
direct addressability, four bits for operation codes, one bit for
indirection, one bit for indexing, and one bit to control out-of-range
addresses.

Within each addressing mode, there are the following tradeoffs:

1) Size of program address space

2) Levels of indirection

3) Levels of indexing

4) Whether indexing is performed before or after indirection

5) Number of operation codes available.

Through the discussion of the S, R, and V addressing modes, we shall

show how these variables are defined.

Memory Organization

Sectors: (S-Mode and R-Mode when S=@). A sector is a contiguous group
of 512 words. S-Mode memory reference instructions have nine bits (D
field) of addressability to any location in a sector and one bit, the
S-bit, to specify Sector @ (S=0) or the current sector (S=l). D and S$
together give 19 bits, or 1024 words, of direct addressability.

6 - 1 July 1978

SECTION 6 IDR3060

Relative Reach: (R-Mode and V-Mode when S=1). When S=l the D field is

interpreted as a signed number in the range ~255 to +256. When D<24¥

(R-Mode) or D<224 (V-Mode) the number is treated as a code, not as a
displacement. When —24@<D<256 (R-Mode) or -224<D<256 (V-Mode), the

address is relative to the program counter.

Segmentation: (V-Mode and I-Mode). See Sections 2 and 3 - Prime 40

and Prime 5@¥ architecture for a discussion of segmentation.

Effective Address Formation

Each memory reference instruction calculates an effective address.

This calculation and its results vary depending on addressing mode and

and instruction format; variables include pre and post indexing,

indirection, and base registers. For maximum clarity, we discuss the

classes by format types and present addressing mode flowcharts. Both

the format discussions and the addressing mode flowcharts are cross

referenced to each other. Table 6-1 summarizes the format classes and

gives the addressing modes where they are used.

Indexing: In general, if the X-bit of the instruction is set, the

contents of the index register are added to the D-field. If the

indirect bit is set, the address mode and D-field determine whether

indexing occurs before or after indirection. The result is truncated

to the number of bits permitted by the addressing modes, and the high

order bits are cleared. In V-Mode, there are two index registers, X

and Y. ‘The displacement field determines which to use and how to use

it.

Note

The index register may be preset by the program to
any value between -32768 and +32767.

Indirection: In general, if the I-bit is set, the D-field plus index,

if any, is an intermediate address. The indirect address word at that

location may, depending on the address mode, also contain X and I bits.

The specific addressing mode discussion gives the details.

Address Truncation (SR): After effective address formation is

complete, the resulting address is truncated to the number of bits

appropriate to the addressing mode in effect:

REV. 6 - 2

IDR3068 MEMORY ADDRESSING

Table 6-1. Memory Reference Instruction Format

(1) (2) (3)
Type No. Words s D CB Mode

Basic 1 g 0 - '777 -- SR

Sector Relative 1 1 @ - '777 -~ S

Procedure Relative 1 1 -241 to +256 -- R

-224 to +256 -- V

Stack Postincrement/ 1 1 -256 to -241 2,3 R
Predecrement

Base Register 1 Q @ - '777 -- V
Relative

Long Reach 2 1 -256 to -241 0,2 R

Stack Relative 2 1 -256 to -241 1,3 R

Base Registers 2 1 —256 to -224 _ V

(1) S-- Sector Bit. Bit 7 in both one and two word memory reference

(2) D-

(3) CB -

instructions. The meaning varies, depending on the addressing
mode, -but in general is used to control out of range
addresses.

Displacement field. Bits 8-16 in the instruction word. Bit 8
is Sign bit except in Basic, Sector Relative, and Base
Register types of instruction.

Class Bits. Bits 15 and 16 of the R mode two- word
instructions distinguish between Long Reach and Stack Relative
instruction types.

6 - 3 July 1978

SECTION 6 IDR3069

 Mode Addressing Bits Size of Addressable Memory

16S 14 16K

32S

15 32K
32R

64R 16 64K

Since the higher order bits of the address are zeroes, an address
cannot be formed that addresses a memory location beyond the range of
the current addressing mode. However, it is possible for an executing
program to increment the program counter out of the current range

(instead of overflowing to zero).

Instruction Range

The range that an instruction can directly address is called its
addressing range. The assembler and the loader analyze the assembler
statement and set up both in-range and out-of-range addresses. In the
discussion below we shall examine the sectored and relative address
ranges and how they are set up prior to execution. The segmentation
concepts and address ranges are discussed in Section 2.

Sectored: In S-mode, the memory reference instructions can address any
location in sector @ or in the sector of the instruction. When S=l1,
the nine bit displacement field is a location in the current sector.
When S=@, the nine bit displacement is in sector 8.

The software uses the S-bit to control out-of-range addresses in the
following manner: the assembler does a preliminary analysis of the
relation of the displacement field (expression or symbol) to the
instruction location, and passes this information to the loader, which
sets up the final instruction for execution. The loader puts the
object code received from the assembler together with any other
required routines (such as subroutines), resolves external linkages and
sets up sector 8, the communication and linkage area.

Sector @ can also be directly addressed by the program, a_ useful
feature for handling common data fields.

REV. @ 6 - 4

Examples:

IDR3068 MEMORY ADDRESSING

ASSEMBLER
NOTATION LOCATION OF ADDR

SECTOR @ SAME SECTOR OTHER

LDA ADDR S=8 S=l1 S=0

I= I= I=l
D=location in D=displacement |D=first
sector @ in same sector available link

in sector W¥. At

that location an
indirect word is
constructed with I=8,
pointing at ADDR with
a full 14 (16S) or

15 (32S, 32R) or
16 (64R) bit indirect
address

LDA ADDR, |S=@ S=1 S=6

I=1 I=l1 I=l
D=location D=location D=first available
in sector @ in same link in sector @.

 which contains sector. It At that location

a pointer must contain an indirect word is
defined by pointer defined constructed with I=l1
the program by program. and a full 14

(16S) or 15 (32S, 32SR)
bit indirect pointer
to ADDR. Not per-
mitted in 64R.

6 - 5 July 1978

SECTION 6 IDR3060

Relative: In R-mode when S=1, the D field is interpreted as a signed
number in the range -225 to +256. When the two high order bits are one
(D<248) the number is treated as a code, not as a displacement. When
-240<D<256 the address is relative to the program counter.

The loader analyzes the displacement field and if the effective address
will be out of relative range (-256 -> +256) sets S=@, I=l, and the
displacement field to point to the address word in sector zero. Thus,
in 64R, if the address is is out of range, no indirection is possible
because the loader uses the instruction word indirect bit.

REV. @ 6 - 6

IDR3060

MEMORY REFERENCE INSTRUCTION FORMATS

BASIC (One word, S-bit=@)

MEMORY ADDRESSING

The D-field is a displacement in sector @.

S (Bit 7)

D (Bits 8-16)

Sector Bit =0

Displacement in sector @

| I] Xl] OP is | D |

123 678 16

I (Bit 1) ~ Indirect Bit

X (Bit 2) - Index Bit

OP (Bits 3-6) -— Opcode

16S
32S
32R
64R

The effective address is

equal to bits 8-16 of the instruction, with bits 6-7 equal to zero.
Indexing and indirection are a function of the I and X bits and the
addressing mode.

Addresing
Mode I xs

16S 0 68 BD 0
G6 1 @ G
1 6 @ 0g
1 1 @ 0

32S 6 0 QO 6
32R 6 1 B 0
64R 1 8 @ g

11 @ g

1 1 @ 186

j
o

to
to

to
to

to

to

to

to

to

"777
‘777
‘777 —
"777

"777
"777
"777
"77

"777

EA

@|D
@ | D+X
I (@|D)

I (@|D+X)

@|D
@ |D+X
I (@|D)
I (®@|D+X)

I (@|D) +X

Type

Direct

Indexed
Indirect

Indirect,

preindexed

Direct

Indexed
Indirect

Indirect,

preindexed
Indirect,

postindexed

July 1978

SECTION 6 IDR3060

SECTOR RELATIVE (One word, S-bit=1) 16S
32S

| If X| OP IS | D |

1 2 3 6 7 8 16

I (Bit 1) ~ Indirect Bit

X (Bit 2) - Index Bit

OP (Bits 3-6) - Opcode

S (Bit 7) - Sector Bit = 1

D (Bits 8-16) — Displacement within current sector.

The D-field is a displacement in the current sector. The effective
address is formed by concatinating the D-field bits with the higher
order bits of the program counter (P). Indexing and indirection are a
function of the I and X bits and the addressing mode. Bits 1 and 2
(16S) or 1 (32S) of the final effective address are cleared. In

effect, the program counter gives the sector number and the D-field,
the location within the sector.

Addressing

Mode Ix s D EA Type
16S 6 @ il G6 to ‘777 P|D Direct

6 1 ii @ to '777 P|D+X Indexed
1 81 6 to '777— I (P|D) Indirect
1i1ii1 @ to '777 I (P|D+X) Indirect,

preindexed

32S 6 @ 1 @ to '777 P|D Direct
6 11 8 to '777 P|D+X Indexed
1 686 1 @ to '777 I (P|D) Indirect
111i @ to '777 I (P|D) +X Indirect,

postindexed

REV. @ 6 - 8

IDR3060 MEMORY ADDRESSING

PROCEDURE RELATIVE (One word, S~bit=1) 32R

64R
64V

| I] Xl] OP | Ss | D |

1 2 3 6 7 8 16

I (Bit 1) ~ Indirect Bit

X (Bit 2) Index Bit

OP (Bits 3-6) - Opcode

S (Bit 7) - Sector Bit =l

D (Bits 8-16) - Location relative to the program counter

64V = -224 to +256
64R = -246 to +256

Addressing is relative to the current program counter value, which is
the current instruction location plus 1. The effective address is
formed by adding the value of the D-field to the updated program
counter value (P). Indirection and indexing are a function of the I
and X bits and the addressing mode.

Addressing

Mode xs D EA Type
32R ®@ © 1 ~-248 to +256 P+D Direct
64R

6 1 1 -248 to +256 P+D+X Indexed
1 @ 1 -248 to +256 I (P+D) Indirect
1 1 1 -248 to +256 I (P+D) +X Indirect,

postindexed

64V 6 @ 1 -224 to +256 P+D Direct
@ 1 1 -224 to +256 P+D+X Indexed
1 @ 1 -224 to +256 I (P+D) Indirect

1 1 1 -224 to +256 I (P+D) +X Indirect,

postindexed

6 - 9 July 1978

SECTION 6 IDR3060

STACK PREDECREMENT, POSTINCREMENT (One word, S-bit=1) 32R

64R

|I1X| OP | 119000 | xx | cB

1 2 3 6 7 12 13 1415 16

I (Bit 1) - Indirect Bit

X (Bit 2) - Index Bit

OP (Bits 3-6) - Opcode

Bits 7-12 = 110092

XX (Bits 13-14) - Opcode extension

CB (Bits 15-16) - Class Bits

These classes use the stack pointer (SP) as the address displacement,
and perform an auxiliary postincrement or predecrement of the pointer.
Instructions using these address methods are always one-word

instructions.

Addressing Class Bits
Mode I xX S 15,16 EA

32R 6 @ 1 2 SP
64R

6 11 2 I (SP) +X

1 6 1 2 I (SP)

6 8 1 3 SP-1

G11 3 I (SP-1) +X

1 @1 3 I (SP-1)

Note

Type

Postincrement

Postincrement,

indirect, post-
indexed

Postincrement,

indirect

Predecrement

Predecrement
indirect, post-
indexed

Predecrement,

indirect

If a fault occurs during the execution of these
classes, anomolous behavior can result.

REV. @ 6 - 10

IDR3060

BASE REGISTER RELATIVE (One word, S-bit=@)

This format provides 64V with one word based

MEMORY ADDRESSING

64V

II |X | OP D |

1 2 3 6 8 : 16

I (Bit 1) - Indirect Bit

X (Bit 2) - Index Bit

OP (Bits 3-6) - Opcode

S (Bit 7) - Sector Bit = @

D (Bits 8-16)

instructions,

All indirection will be through 16-bit pointers

Location relative to selected base register.

Memory reference

using the D-field to encode both base and displacement.

in the procedure

segment and the final effective address of indirect instructions will

be in the procedure segment.

The effective address calculation is:

i

Q

SB

x

Q

S

1

D

p-'7
'10-'377
'400-'777

0—'377

"400-'777

0-'7
"10-'777

Q-'77

"100-'777

link base register

stack base register

Address

register location
SB+D

LB+D

if DtX<'18 then
EFA= register location
else SB+D+X
LB+D+X

REG*
PB | D*

[PB]D+X] *

[PB|D] *+X

procedure base register

11

Type

Direct

Indexed

Indirect

Indirect
preindexed

Indirect

postindexed

July 1978

SECTION 6 IDR30698

X = Index register

D = Displacement field

REG = R-Mode registers, i.e., A,B,X, etc.

REV, 6 - 12

IDR3G69 MEMORY ADDRESSING

LONG REACH (Two word, S-bit=1) 32R
64R

|r {xf op | 1leg0¢ | XX | cB |

1 2 3 6 7 12 13 14 15 16

| A |

17 32

I (Bit 1) - Indirect Bit

X (Bit 2) ~ Index Bit

OP (Bits 3-6) —- Opcode

Bits 7-12 - 1190¢0

XX (Bits 13-14) - Opcode extension

CB (Bits 15-16) - Class Bits

A (Bits 17-32) - Address word

The 16-bit address word in the location following the instruction plus
the I and X bits in the instruction combine in effective address

calculation. The direct instruction reach is extended to 32K words

(32R) or 64K words (64R), since the address is in the word following

the instruction. In 32R, bit 1 is zero. In 64R, all 16 bits are used.

Addressing

Mode IX S cB EA Type
32R G21 @ A Direct

64R @1ii1 Q AtX Indexed

1 641 g I (A) Indirect

111i g I (A+X) Indirect, preindexed
111 2 I (A) +X Indirect, postindexed

6 - 13 July 1978

SECTION 6

STACK RELATIVE (Two Word, S-bit=1)

IDR3060

32R

64R

110000 =| «XX | cB

| I] x | OP |

1 2 3 6 7 12 13 14 15 16

| A |

17 32

I (Bit 1) - Indirect Bit

X (Bit 2) ~ Index Bit

OP (Bits 3-6) - Opcode

Bits 7-12 ~ 1100008

XX (Bits 13-14)

CB (Bits 15-16)

A (Bits 17-32)

This class is identical

of the stack pointer (S
instruction word during

Indexing and

Opcode extension

Class Bits

Address word

to two-word long reach except that the contents
P) are added to the address word following the
the initial effective address calculation.

indirection take place under control of the I and X bits
and the addressing mode.

Addressing

Mode IX S CB EA Type
32R
64R 02 il 1 A+SP Direct

6 11 1 A+SP+X Indexed
1 @i41 1 I (A+SP) Indirect
111i 1 I (A+SP+X) Indirect, preindexed
1 1éi1 3 I(A+SP)+X Indirect, postindexed

REV. 0 6 - 14

IDR3060 MEMORY ADDRESSING

TWO WORD MEMORY REFERENCE 64V

| I | X | OP | 11008 | Y | XX | BR |

12 3 -6 7 1112 13 #4214 15-16

I (Bit 1) - Indirect bit

X (Bit 2) - X bit

OP (Bit 3-6) - Opcode

Y (Bit 12) - Y bit

XX (Bits 13 -14) - Opcode extension

Base register: @0=PB, 01=SB, 10=LB, 11=XBBR (Bits 15-16)

A (Bits 17-32) 16-bit word displacement relative to the

base selected by the BR bits.

I, X, Y and BR combine to give all 32 possible address combinations:

@ direct

@ indexed by X

@ indexed by Y

@® indirect

@ pre-indexed by X

@ pre-indexed by Y

@ postindexed by X

@ postindexed by Y

All indirect words are either 32 or 48 bit format and the final
effective address is always a memory address (never a register). Table
6-3 shows all possible combinations.

6 - 15 July 1978

SECTION 6

I A

QB Q

B G

G 1

0 1

1 0

1 Q

1 1

1 1

REV. @

Table 6-3.

Y BR Effective Address

W
N
H
O
R
r
D
S

W
H
F

S
&
W
H
F

S&
S

W
N
H
O
r
S
&

W
h
r
F
&

W
N
H
O
r
&

W
H
E

&
W
h
F
S

LDX and

indirect.

IDR396¢

V-Mode Two Word Memory Reference

[PB] |D
[SB] +D

[LB] +D
[XB] +D

[PB] |D+[Y]
[SB] +D+[Y]
[LB] +D+[Y]
[XB] +D+[Y]

[PB] |D+[X]
[SB] +D+[X]

[LB]+D+[X] _

[XB] +D+[X]

[PB] |D*
[SB] +D*
[LB] +D*
[XB] +bD*

[PB|D+Y¥] *
[SB+D+Y] *

[LB+D+Y] *
[XB+D+Y] *

[PB] |D*+[Y]
[SB] +D*+[Y]

[LB] +D*+[Y]
[XB] +D*+[Y]

[PB] |D+[X]* _
[SB] +D+[X] *

[LB] +D+[X] *
[XB] +D+ [X] *

[PB] |D*+[X]
[SB] +D*+[X]

[LB] +D*+ [X]
[XB] +D*+[X]

Note

Meaning

Direct

Indexed by Y

Indexed by X

Indirect

Pre-indexed by Y

Post-indexed by Y

Pre-indexed by X

Post-indexed by X

STX instructions may only be direct or

16

IDR3060 MEMORY ADDRESSING

ADDRESSING MODE SUMMARIES AND FLOW CHARTS

16S SUMMARY

Address Length: 14 bits; 16K word address space

Format: | I |X | opcode |S]! D | Instruction

1 2 3 6 7 8. 16

| I | X | 14-bit address | Indirect address word

1 2 3 16

Indexing: Multiple levels. In an indirect word, the index calculation

is done before the indirection.

Indirection: Multiple levels.

Assembler

i xs D EA Notation Type
08 8 @O @to '777 BID LDA ADDR Direct

@ 1 @ @to '777 O|DtX LDA ADDR,1 Indexed

1 6 @ @to '777 1(@\|D) LDA ADDR, * Indirect

11 @ @ to '777 I(@|DtX) LDA ADDR,1* Indirect,
preindexed

6 8 1 ® to '777 PID LDA ADDR Direct

9 11 @ to '777 P|D+X LDA ADDR,1 Indexed

1 @ 1 6 to ‘777 I (P|D) LDA ADDR,* Indirect

11éi1 8 to '777 I (P|D+X) LDA ADDR,1* Indirect,
preindexed

6 - 17 July 1978

SECTION 6 IDR3060

Table Description

P = contents of program counter prior to instruction fetch

(pointing at instruction)

OID = displacement into sector @. Sector bits of effective
address (bits 3-8) are zero.

P|D = displacement in current sector formed by concatenation

of sector bits from program counter with displacement
field in instruction word.

X = contents of index register.

I(expression) = treat the effective address as indirect address

ADDR = location addressed by the LDA

Note

If D is @-'7 and S=0, the effective address is a
register.

REV. 6 - 18

IDR3969

i= INST bit 0 (1)
X = INST bit 2 (X)

OP = INST bits 3-6

YES

 '

EA =P371D
(Current sector)

BIT 7 (S)
OF INST
SET

?

EA =01ID

(sector Q)

 | A

EA = EA + (X)

|= [EA] bit 1

X = [EA] bit 2

EA = [EA] bits 3-16

Figure 6-1.

16S Address Calculation

MEMORY ADDRESSING

July 1978

SECTION 6 IDR30690

32S (INCLUDES 32R WHEN S=@) SUMMARY

Address Length:15 bits; 32K word address space

Format: |I1X| opcode |S| OD | Instruction Word

1 2 3 6 7 8 16

lI] 15-bit address | Indirect address

word

1 2 16

Indexing: One level. The 15-bit indirect address word eliminates the

X bit. Done after all indirection is complete, except for the special

case shown in the table below.

Indirection: Multiple levels.

Assembler

Ixs »D EA Notation Type
6 8 @ 6 to '777 @|D LDA ADDR Direct

G6 1 @ 8 to ‘777 @ |D+X LDA ADDR, 1 Indexed

1 @ @ 86 to '777 I(@|D) LDA ADDR,* Indirect

1 1 @ 8 to ‘77 I (@|D+X) LDA ADDR,1* Indirect,

preindexed

1 1 @ 108 to '777 I(@|D)+X LDA ADDR,*1 Indirect
post indexed

06 6 1 @to '777 PID LDA ADDR Direct

8141 ii @ to '777 P|D+X LDA ADDR,1 Indexed

1 @ 1 Q to '777 I (P|D) LDA ADDR, * Indirect

111 @ to '777 I(P|D)+X LDA ADDR,1* Indirect
postindexed

Table Description

P = contents of program counter prior to instruction fetch
(pointing at instruction)

@|D = displacement into sector @. The contents of D when

S=@.

REV. @ 6 - 20

IDR3860 MEMORY ADDRESSING

PID = displacement in current sector formed by concatenation

of sector bits from program counter with D.

X = contents of index register.

treat the effective address as indirect address.I (expression)

ADDR location addressed by the LDA.

Note

If D is @-'7 and S=@, the effective address is a
register.

6 - 2 July 1978

SECTION 6 IDR3069

32S ADDRESS CALCULATION

| = INST bit 1 (1)
X = INST bit 2 (X)

EA = EA + (X)
X=0

 « 7

|= [EA] bit 1
EA = [EA] bits 2-16 YES

 EA = EA + (X)

DONE

Figure 6-2. 32S Address Calculation

REV. @

IDR3869 MEMORY ADDRESSING

32R SUMMARY

Address Length: 15 bits; 32K word address space

Format: I |X| opcodelS| D | Instruction Word:
S=@ or S=l

1 2 3 67 8 16 D>-240

Instruction Word
[I|Xlopcode|]11@0@0| XX | CB | S=1

D<-249

1 2 3 67 12131415 16

Address Word:
| A | Long Reach and

Stack Relative
17: 32

[I | 15-bit address | Indirect Address
Word

12 16

Indexing: One level.

Indirection: Multiple levels.

Assembler
IxXs GB D EA Notation Type
6 6 6 — to '777 @[D LDA ADDR Direct
8 16 - @ to '777 @ |D+X LDA ADDR,1 Indexed
1 @ @ -— @ to '777 I (@|D) LDA ADDR,* Indirect
119080 -- @to'77 I(@|D+X) LDA ADDR,1* Indirect,

preindexed
1 1 @ -- ‘'188 to '777 I(@|D)+X LDA ADDR,*1 Indirect,

postindexed
0 @ 1 — =-248 to +256 P+D LDA ADDR Direct
6 11 -— -246 to +256 P+D+x LDA ADDR,1 Indexed
1 @ 1 --— -2468 to +256 I(P+D) LDA ADDR,* Indirect
1 1 1 -— -248 to +256 I(P+D)+X LDA ADDR, *1 Indirect,

postindexed
@ @ 1.2 —------ SP LDA @+ Postincrement
@®14’i1l2 —------ I (SP) +X LDA @+,¥*1 Postincrement,

" indirect,
postindexed

1 @i12 —------ I (SP) LDA @+,* Postincrement,
indirect

@@1 3 —----- SP-1 LDA -@ Predecrement
69113 —---—- I(SP-1)+X LDA —-@,*1 Predecrement

indirect,
postindexed

19313 —----- I (SP-1) LDA -@,* Predecrement,

6 - 23 July 1978

SECTION 6

6 @ 1 B@

611 @

1 @41 @

111 2

1112

6 @ 11

6 11 ii

1@41it1

1 1ii1i1

1 11 3

IDR3060

_---— A LDA% ADDR

—_— AtX LDA% ADDR, X

a I (A) LAD% ADDR, *

— I (A+X) LDA% ADDR, X*

---- I (A) +X LDA% ADDR, *X

_--- At+SP LDA @+ADDR

__-- A+SP+X LDA @+ADDR,X

__ I (A+SP) LDA @+ADDR, *

---- I (At+SP+X) LDA @+ADDR,X*

---- I(AtSP)+X LDA @+ADDR, *X

Table Description

P

¢|D

X

I (expression)

SP

ADDR

REV. J

contents of program counter after
(pointing at instruction plus 1)

displacement into sector 9. Sector
address (bits 3-8) are zero.

contents of index register

indirect
Direct,

long reach
Indexed,

long reach
Indirect,
long reach
Indirect,
preindexed
long reach
Indirect,
post indexed
long reach

Direct, stack
relative
Indexed, stack

relative
Indirect, stack

relative
Indirect,

preindexed, stack
relative
Indirect,

postindexed, stack
relative

instruction fetch

bits of effective

treat the effective address as indirect address

stack pointer

location addressed by the LDA

IDR3068 MEMORY ADDRESSING

|= INST BIT 1
X= INST BIT 2

BIT 7 (S)
OF INST
SET

aitse-16 << -240

EA =P + ty 5iTs8-16

EA = EA + (X)

X=0

1 = [EA] bit 1

EA = [EA]bits 2-16

EA = EA + (X)

Figure 6-3. 32R Address Calculation (1 of 5)

6 - 25 July 1978

SECTICN 6 IDR3068

Bits 15, 16 = 0?
YES (»

NO

Bits 15,16 = 1?
YES Cc

NO

NO YES
Bits 15, 16 = 2?

YES YES

NO

Figure 6-3. 32R Address Calculation (2 of 5)

REV. @ 6 - 26

IDR3869 MEMORY ADDRESSING

EA=A EA=A+(S)

NO

YES

EA =EA+(X)

|= [EA] bit 1
EA = [EA] bits 2-16 DONE

Figure 6-3, 32R Address Calculation (3 of 5)

6 - 27 July 1978

SECTION 6

IDR3960

EA=A+t (S)

EA = EA + (X)

EA=A

|= [EA] bit 1
EA = [EA]bits 2-16

Figure 6-3. 32R Address Calculation (4 of 5)

28

IDR3868 MEMORY ADDRESSING

EA = (S) S$ =(S) -1

S=(S)+1 EA = (S)

NO

 /
|= [EA] bit 1

EA = [EA] bits 2-16

EA = EA + (X)

Figure 6-3. 32R Address Calculation (5 of 5)

6 - 29 July 1978

SECTION 6 IDR3666

64R SUMMARY

Address Length: 16 bits; 64K word address space

Format: {1I1|X| opcode IS | D

123 678 16

|I|Xlopcode| 118000 | XX | CB |

1 2 3 6 7 12 13 14 15 16

Instruction Word
S=0 or S=1
D <-240

Instruction

S=1
D<-240

Address Word:

| A | Long Reach and
Stack Relative

17 32

| 16-bit address | Indirect Address
Word

1 16

Indexing: One level.

Indirection: One level.

Assembler
IX S @®B D EA Notation
08 @ ® to '777 @[D LDA ADDR Direct
G1 @Q @ to '777 @ |D+X LDA ADDR,1 Indexed
1 @ @8 -- @®@to'777 I(@ID) LDA ADDR,* Indirect
116 -—- @to '77 I (@ |D+X) LDA ADDR,1* Indirect,

-- preindexed
1 1 —- ']108 to '777 I(@|D)+X LDA ADDR*1 Indirect,

postindexed
0 @ | -—-— -—-246 to +256 P+D LDA ADDR Direct

011 —-— -248 to +256 P+D+X LDA ADDR,1 Indexed
1 @ 1 -- -248 to +256 I(P+D) LDA ADDR,* Indirect

111 -—-- -248@ to +256 I(P+D)+xX LDA ADDR,*1 Indirect,

postindexed
06 @ 12 ------- SP LDA @+ Postincrement

@ |] |2 ------- I (SP) +X LDA @+,¥*1 Postincrement,
indirect,
postindexed

1 @12 ------- I (SP) LDA @+,* Postincrement,
indirect

0 @©@ 13 —------ SP-1] LDA -@ Predecrement
@341i13->--- I(SP-1)+X LDA -@,*1 Predecrement

indirect,
. postindexed

1 @31 3 ------ I (SP-1) LDA -@,* Predecrement,

REV. @ 6 - 30

0 @ 1 @

611 @

121 @

1 1ii1 @g

1 1i1 @Q

0 @1éik1

6 1i1ii1

1 @i1i1

1 o1id1ii

111 3

Table Description

P

giD

X

I (expression)

SP

ADDR

= contents of program counter

IDR3060

AtX

I (A)

I (A+X)

I (A) +X

At+SP

AtSP+X

I (A+SP)

I (A+SP+X)

I (A+SP) +X

LDA% ADDR

LDA$ ADDR,X

LDA% ADDR,*

LDA ADDR,X*

LDA% ADDR, *X

LDA @+ADDR

LDA @+ADDR,X

LDA @+ADDR,*

LDA @+ADDR,X*

LDA @+ADDR, *X

(pointing at instruction plus 1)

= displacement into sector @.
address (bits 3-8) are zero.

= contents of index register

= stack pointer

= location addressed by the LDA

31

after

MEMORY ADDRESSING

indirect
Direct,

long reach
Indexed,

long reach
Indirect,

long reach
Indirect,

preindexed
long reach
Indirect,

postindexed
long reach
Direct, stack
relative
Indexed, stack
relative
Indirect,

stack relative
Indirect,

preindexed, stack
relative
Indirect,

postindexed, stack
relative

instruction fetch

Sector bits of effective

treat effective address as indirect address

July 1978

SECTION 6 IDR3068

|= INST BET 1

X= INST BIT 2

 BIT 7 (S)

OF INST
SET

?

YES

 BITS 8-16

<-240 ? (a)

EA=P+1+

' BITS 8-16

EA = EA + (X)

X=0

EA = [EA]

YES

EA = EA + (X)

 _————

(DONE)

Figure 6-4. 64R Address Calculation (1 of 5)

IDR3969 MEMORY ADDRESSING

 Bits 15,16 =0?

YES (®)

NO

Bits 15,16 = 1?
YES (c)

NO

NO YES
Bits 15, 16 = 2?

YES YES

NO NO

Figure 6-4. 64R Address Calculation (2 of 5)

6 - 33 | July 1978

SECTION 6 IDR3868

EA=A EA=A+(S)

NO

YES

EA = EA + (X)

EA = [EA]

 A

DONE

Figure 6-4. 64R Address Calculation (3 of 5)

REV. @ 6 - 34

IDR30698 MEMORY ADDRESSING

EA=A EA=A+(S)

NO

YES

EA = [EA]

v

EA = EA + (X)

 Y

DONE

Figure 6-4. 64R Address Calculation (4 of 5)’

6 - 35 July 1978

SECTION 6 | IDR3060

EA = (S) S=(S)-1
S=(S) +1 EA = (S)

NO

YES

EA = EA + (X),

d

DONE

Figure 6-4. 64R Address Calculation (5 of 5)

REV. 0 6 - 36

IDR3969 MEMORY ADDRESSING

64V PROCEDURE RELATIVE (One Word, S=1)

Address length: 16 bits; 64K word address space

Format: | I | X | OP 1s | D | Instruction Word

1 2 3 6 7 8 16

| 16-bit | Indirect address word

1 16

Indexing: One level

Indirection: One level

Ix Ss D EA Type
6 @ 1 -224 to +256 P+D Direct

6 1iil -224 to +256 P+D+X Indexed

1 61 -224 to +256 I (P+D) Indirect

141i -224 to +256 I (P+D) +X Indirect,

postindexed

Table Description

P = contents of program counter after instruction fetch (pointing at
instruction plus one).

D = procedure segment displacement.

X = contents of X register.

I(expression) = treat effective address as indirect address

6 - 37 July 1978

SECTION 6 IDR386@

64V BASE REGISTER RELATIVE (One Word, S=0)

Address Length: 3 64K segments

Format: | 1I1|]xX | oP |S | D [= Instruction Word

1 2 3 6 7 8 16

| 16-bit | Indirect address word

1 16

Indexing: One level

Indirection: One level

Ix 68s D EA Type

08 @ Qg-'7 register location Direct

"1@-'377 SB+D
"490-'377 LBtD

0 1 @ Q-'377 if D¥X<'ld then
EA=register location Indexed
else SBtD+X

"400-'777 LB+D+X

1 @ @ Q-'7 I (REG) Indirect
'10-'777 I(PBID)

1 1 @ @-'77 I (PB|D+X) Indirect,
preindexed

1 1 @ '100-'777 I (PB|D)+X Indirect,
postindexed

REG = R-mode registers, i.e., A, B, X, etc.

PB = procedure base register

LB = link base register

SB = stack base register

X = Index register

D Displacement field

I(expression) = treat effective address as indirect address

REV. @ 6 - 38

IDR3069

64V TWO WORD MEMORY REFERENCE

Address Length: 28 bits; 4096 64K segments

MEMORY ADDRESSING

Format: | I | X | OP | 11000 | Y | OPEXT | BR |

1 2 3 6 7 ll 12131415 16

| A |

17 32

Indexing: X and Y

Indirection: 48 bit word

| F | RR| | SEGNO |

123 4 5 16

| WORDNO |

17 32

| BITNO | |

33 36 37 48

6 - 39 July 1978

SECTION 6 IDR3060

I X XY BR Effective Address Meaning

PB|D

SB+D Direct

LB+D

XB+DW
N
r
®

PB |D+Y

SB+D+Y Indexed by Y
LB+D+Y

XB+Dt+YW
h
e
&

PB | D+X
SBtD+X

LB+D+X Indexed by X
XBt+D+XW

H
F

&

I (PB|D)

I (SB+D) Indirect

I (LB+D)

I (XB+D)W
N
H
r
D

I (PB|D+Y)

I (SB+D+Y) Pre-indexed by Y

I (LB+D+Y)
I (XB+D+Y)W

N
r
F
&

I (PB|D)+¥
I (SB+D) +¥ Post-indexed by Y

I (LB+D) +Y

I (XB+D) +YW
N
H
r
&

I (PB|D+X)

I (SB+D+X) Pre-indexed by X

T (LB+D+X)

IT (XB+D+X)W
r

®
&

I (PB|D) +X
I (SB+D) +X Post-indexed by X

IT (LB+D) +X

I (XB+D) +XW
H
F
&

REV. @ 6 - 46

IDR3860 MEMORY ADDRESSING

EAS=PC_S
EA_R=PCR

R=TRUE

BIT 7 (S)
OF INSTR.

SET
?

YES

EAW=PCW+a.+1 EAW=Old

YES EAW<'100
EA W=EA_W+ (Xx) AND
~ X=0 x=1

NO

EA_W= [EA]

a.
taal

YES
EA_W = EA_W + (X)

Figure 6-5. 64V Address Calculation (i of 3)

6 - 4 July 1978

SECTION 6 IDR3060

£
EA_W=0OID

 YES EA_W =EA_W t+(X)

NO

D < ‘400

YES

EA_S=LB_S
EA_W=EA_W+LB_W
EA_R=EA_RVLB_R

R = FALSE

/
(| DONE)

\
DONE

EA_S=SB_S

EA_W=EA_W+SB_W

FA_R=EA_RVSB_R

 R = FALSE
M WHEN SEG ENABLED = ’10

, M WHENSEG DISABLED = ‘40

' DONE

Figure 6-5. 64V Address Calculation (2 of 3)

REV. 9 6 -—- 42

IDR3968 MEMORY ADDRESSING

EAS=BRS
EALW=BR_W+A
EA_R=BR_RVEA_R
R = FALSE

IXY = 001

IXY = 100 ?

IXY = 010

IXY = 110?

EA_W =EA_W+(Y) EA_W= EA_W+ (X)

Le ¥

YES

IXY = 000 V 001 Vv 010

[EA] bit 1

set

EA_S = [EA] bits 5-16
EA_W= [EA+ 1}
EA_R=EA_R V

{EA] bits 2-3

POINTER

FAULT

EA_W = EA_W + (Y) EA_W = EA_W + (X)

 > > «cat

Figure 6-5. 64V Address Calculation (3 of 3)

6 - 43 July 1978

IDR386@ INSTRUCTION DEFINITIONS — SRV

SECTION 7

INSTRUCTION. DEFINITIONS - SRV

ADMOD - Addressing Mode

Set the addressing mode of the machine.

Enter 16S Mode SRV GEN

E16S

Use 16S address calculations to form subsequent effective addresses and

enable S-mode interpretation of instruction. See section on address
resolution for details.

Enter 32S Mode © SRV GEN

E32S

Use 32S address calculations to form subsequent effective addresses and

enable S-mode interpretation of instructions. See section on address
resolution for details.

Enter 32R Mode SRV GEN

E32R

Use 32R address calculations to form subsequent effective addresses and
enable R-mode interpretation of instructions. See section on address

resolution for details.

Enter 64R Mode SRV GEN

E64R

Use 64R address calculations to form subsequent effective addresses and
enable R-mode interpretation of instructions. See section on address
resolution for details.

7 - Jd ~ July 1978

SECTION 7 IDR3069

Enter 64V Mode SRV GEN

E64V

Use 64V address calculations to form subsequent effective addresses and

enable 64V-mode interpretation of instructions. See section on address
resolution for details.

Enter 32I Mode SRV GEN

E32I

Use 32I address calculations to form subsequent effective addresses and
enable 32I-mode interpretation of instructions. See section on address

resolution for details.

REV. @ 7 = 2

IDR306@ INSTRUCTION DEFINITIONS - SRV

BRAN - Branch V BRAN

The branch instructions are two word generics which test the contents
of a register or the result of a previous ARITHMETIC or COMPARE
operation, as indicated by the condition codes (CC), the C-bit, and the

L-bit.

Word 1 = opcode and conditional test

Word 2 = 16-bit direct word address within the current procedure

segment

Condition code branches test six conditions based on the LT bit, the EQ

bit, and the opcode.

Condition Meaning

< branch if LT bit set and EQ bit cleared

< branch if LT bit set or EQ bit set

= branch if EQ bit set

branch if EQ bit cleared

> branch if LT bit cleared or EQ bit set

> branch if LT bit cleared and EQ bit cleared

Test Condition Code and Branch

These instructions have the following format:

LT

LE

Branch if condition EQ \@

code NE

GE

GT

For example: BCLT ADDR means Branch to ADDR if the condition code is

less than zero (LT bit set and EQ bit cleared).

BCLT ADDR if CC<@, then ADDR->PC
BCLE ADDR if CC<@, then ADDR->PC
BCEQ ADDR if CC=6, then ADDR->PC
BCNE ADDR if CC#@, then ADDR->PC
BCGE ADDR if CC>@, then ADDR->PC
BCGT ADDR if CC>@, then ADDR->PC

7 - 3 July 1978

SECTION 7 IDR3069

Test Magnitude Condition and Branch

These instructions have the following format:

LT

LE

Branch to ADDR if L=l and condition code EO @

NE

GE

GT

For example: BMLT ADDR means Branch to ADDR if the L-bit is set and
condition code is less than @ (LT bit set and EQ bit cleared).

BMLT ADDR if L=l and CC<@, then ADDR->PC
BMLE ADDR if L=l and CC<@, then ADDR->PC
BMEQ ADDR if L=l and CC=@, then ADDR->PC

BMNE ADDR if L=l and CC#@, then ADDR-—>PC

BMGE ADDR if L=l and CO>8, then ADDR->PC

BMGT ADDR if L=l and CC>@, then ADDR->PC

Test C-Bit and Branch

Gg

Branch if C-Bit

1

e Branch if C-bit Reset (equals zero)

BCR ADDR

if C-bit=@, then ADDR->PC

® Branch if C-bit Set (equals one)

BCS ADDR

if C-bit=1, then ADDR->PC

Test L-Bit

Q

Branch if rit
1

@ Branch if L-bit Reset (equals zero)

BLR ADDR

if L-bit=8, then ADDR->PC

REV. 9 7oo- 4.

IDR366@ INSTRUCTION DEFINITIONS - SRV

e Branch if L-bit Set (equals one)

BLS ADDR

if L-bit=l, then ADDR->PC

Branch on Register

These instructions have the following format:

LT

Branch if A-Register LE
L-Register EQ 0
Floating-Register NE

GE
GT

For example: BLT ADDR means Branch to ADDR if the contents of the A
register is less than zero (LT bit is set and EQ bit is cleared).

BLT ADDR if A<@, then ADDR->PC
BLE ADDR if A<@, then ADDR->PC
BEQ ADDR if A=@, then ADDR->PC
BNE ADDR if A#@, then ADDR->PC
BGE ADDR if A>@, then ADDR->PC
BGT ADDR if A>®, then ADDR->PC
BLLT ADDR if L<@, then ADDR->PC
BLLE ADDR if L<@, then ADDR->PC
BLEQ ADDR if L=@, then ADDR->PC
BLNE ADDR if L#@, then ADDR->PC
BLGE ADDR if L>g, then ADDR~->PC
BLGT ADDR if L>@, then ADDR->PC
BFLT ADDR if F<@, then ADDR->PC
BFLE ADDR if F<@, then ADDR->PC
BFEQ ADDR if F=@, then ADDR->PC
BFNE ADDR if F¥@, then ADDR->PC
BFGE ADDR if F>@, then ADDR->PC
BFGT ADDR if F>@, then ADDR->PC

Increment or Decrement X or Y and Branch

‘necremene |fa by 1 then branch to ADDR if result = @
Decrement Y

BIX ADDR X+1—>X; if X=@ then ADDR->PC
BIY ADDR Y+tl1—>Y; if Y=@ then ADDR->PC
BDX ADDR X-1->X: iff X=@ then ADDR->PC
BDY ADDR Y-l->Y; if Y=@ then ADDR-—>PC

7 = 5 July 1978

SECTION 7 IDR3060

Computed GOTO Vv GEN

CGT n If 1<A<n
then [PC+A]-—>PC

else PC+n->PC

Instruction word followed by n further words:

Word 1 contains integer n

Words 2-n contain branch addresses within the current procedure

segment.

If the contents of register A is less than n and greater than or equal

to 1, then control passes to the address in PC+tA; otherwise no branch

is taken and control passes to PCtn.

REV. @ 7 - 6

IDR3@6@ INSTRUCTION DEFINITIONS —- SRV

CHAR - Character String Operations

These instructions use the field address and length registers (FAR,
FLR) which have been set up by field operation instructions prior to
the use of these instructions. Character string operations perform
Memory to memory operations on variable length character fields. The
FAR is used as a byte pointer and the bit offset (low order 3 bits) is

ignored.

Date Type: Characters are 8-bit bytes. The format is unspecified and

may be determined by programmer, e.g., ASCII, EBCDIC, etc. The

translate instruction (ZTRN), for example uses a table set up by the
programmer to translate one character code into another.

Load Character Vv CHAR

LDC { 1 \ CC=NE=succeed
@ CC=EQ=field empty

If the specified FLR is nonzero, load the single character pointed to

by the specified FAR into A register bits 9-16. A-reg bits 1-8 are

cleared. The specified FAR is advanced 8 bits to the next character,
and the FLR is decremented by 1. Set condition code NE.

If the specified FLR is zero, then set the condition code EQ.

Store Character V CHAR

STC ‘ 1 \ CC=NE=succeed
0 CC=EQ=abort

Store bits 9-16 of the A register into the character pointed to by the

selected FAR. The FAR is advanced 8 bits to the next character, and

the FLR is decremented by 1. Set the condition code NE.

If the specified FLR is zero, set the condition code EQ and do not

store.

7 - 7 July 1978

SECTION 7 IDR3060

Move Character Field I
< CHAR

ZMV

Move characters from field @ to field 1, going from left to right. If
the source field is shorter than the destination field, the destination
Field is padded with ASCII blanks ('240). If the source field is
longer than the destination field, the remainder of the source field is
not moved. The FAR's and FLR's are left in an undefined state by this
operation.

Setup:

FAR ®@ = source field address (byte-aligned)

FLR @ = source field length in bytes
FAR 1 = destination field address length (byte aligned)
FLR 1 = destination field length in bytes

Move Equal Length Fields CHARI
<

Z2MVD

Move characters from field ® to field 1. There is no padding or
truncation since only the number of characters to be moved is
specified.

Setup:

FAR @ = source field address (byte-aligned)
FAR 1 = destination field address (byte-aligned)
FLR 1 = number of characters to move

Fill Field CHARI
<

ZFIL

Store the character contained in bits 9-16 of the A register into each
character of field l.

Setup:

A [9-16] = character to fill

FAR 1 = destination field address (byte aligned)
FLR 1 = destination field length in bytes

REV. @ 7 - 8

IDR396@ INSTRUCTION DEFINITIONS - SRV

Translate Character Field Vv CHAR

ZTRN

Use each character in field @ as an index into the 256 byte table

addressed by the XB register. Store each selected table character in

the successive characters of field 1. Source and destination length

are the same, specified by FLRI.

setup:

FAR @ = source field address (byte aligned)

FAR 1 = destination field address (byte aligned)

FLR 1 = number of characters to translate and move

XB = address of 256-byte translate table

Example:

Source: Character A = ASCII 101

Tabletl1@1: $

Destination: $

Compare Character Field Vv CHAR

ZCM

Compare field @ to field 1 and set condition codes based on the

results. If the fields are not of equal length, the shorter field is

logically padded with ASCII blanks ('248).

setup:

FAR @ = field @ address (byte aligned)

FLR @ = length of field @ in characters
FAR 1 = field 1 address (byte aligned)
FLR 1 = length of field 1 in characters

Condition code Result

EQ field @ = field l
LT field ® < field l

7 - 9 July 1978

SECTION 7 IDR3060

Edit Character Field CHARi
<

ZED

Move characters from field @ into field 1 under the control of an edit

program pointed to by XB. Movement stops when the source field is
exhausted or when the end of the edit program is reached.

Edit Program Word

lL | Q | E | M |

1 2 6 7 8 9 16

L = Last entry if set

® = Must be zero

E = Edit opcode

M = Edit modifier

Opcode(E) Mnemonic Definition

G CPC copy M characters from source to destination

1 INL insert literal character M

2 SKC skip M characters

3 BLK supply M blanks (ASCII '246)

Setup:
FAR @ = address of source field (byte aligned)
FAR 1 = address of destination field (byte aligned)
FLR 1 = number of characters to move and edit
XB = address of edit program

REV. @ 7 - 1

IDR3860 INSTRUCTION DEFINITIONS - SRV

CLEAR — Clear Register

Clear A Right Byte SRV GEN

CAR B—->A (9-16)

Clear bits 9-16 of register A without affecting bits 1-8.

Clear A Left Byte SRV GEN

CAL O0->A (1-8)

Clear bits 1-8 of register A without affecting bits 9-16.

Clear the A Register . SRV GEN

CRA 0->A

Reset the contents of the A register to zero.

Clear the B Register SRV GEN

CRB Q->B

Reset the contents of the B register to zero.

Clear Long SRV GEN

CRL 0->L

Reset the contents of the L register to zero.

Clear E Vv GEN

CRE O—>E

Reset the contents of E to zero.

7 - ll July 1978

SECTION 7 IDR3668

Clear L and E V

CRLE 0->L
@->E

Reset the contents of L and E to zero.

IDR3@68 INSTRUCTION DEFINITIONS - SRV

DECI — Decimal Arithmetic

These instructions use the field address and length registers which
have been set up by field operation instructions prior to the use of
the decimal arithmetic instruction. The general setup is:

EAFA @,Source field address
FAFA 1,Destination field address
LDL Control word (described below)
decimal operation

Variations on this pattern are discussed in the appropriate
instruction.

Decimal Data Types

The decimal instruction set operates on five types of decimal data.
Table 7-1 summarizes the characteristics of each type:

7 - 13 July 1978

IDR3868

14

a
I

6
6

0
H

8
8

d
O
L

L
O

Jd
9

9
N

a
g

S
W

a
p

v
T

O
E

€
a

d
z

c
c

W
T

T
{

-
_

+
4
4
4
0

0

S
A
T
I
C
H
O
N

S
A
T
I
T
S
O
d

4
T
b
t
a

:
S
M
O
T
[
O
J

S
e

o
r
e

szejOereYyO
U
b
T
S

peppequy”
G

_
u
b
t
s

8
peppequg

Sut [TezL

*PTOETZ
B
T
N
S
e
A

U
T

ueBATH
o
q
T
T
T

ysATyZ
A
T
u
O
y
n
q

‘pezTuboosaz
e
q
[
T
T

T
T
e

‘peqgST[
S
T

z
e
q
o
e
r
e
y
o

s
u
o
U
e
S
A
C
U

U
S
Y
M

“
P
T
e
T
F

B
u
y

F
O

u
B
T
S

u
b
T
S
e
y

p
u
e

4
T
H
h
t
p
e

s
j
u
e
s
e
r
m
d
e
z

T
e
Z
O
e
r
e
Y
y
O

e
T
b
u
t
s

Ww
8

v
p
e
p
p
e
q
u
y

b
u
t
T
p
e
e
T

-
A
z
e
p
u
n
o
g
3
3
A
q
u
o

yaze4s
Y
S
s
n
u
p
u
e

s
a
z
T
h
t
p
j
o
z
e
q
u
n
u

p
p
o

s
e
z
t
n
b
e
y

-°d
x
e
y

u
T

a
a
T
R
F
e
b
e
N

*
e
T
q
q
t
u
u
b
t
s

u
t

>
x
e
y

A
q
p
e
q
u
e
s
e
i
d
e
z

u
b
T
s

e
a
T
,
I
T
S
O
g

‘“aTqqru
u
b
t
s
A
q

-
p
e
m
o
T
T
o
y

‘
3
t
S
t
p
y
o
r
e
q
u
s
s
e
a
d
e
z

oF}
SeTQqTU

T
q
-
p

B
S
N

v
€

Teultoeqd
peyoed.

)
u
b
T
s

8
T

szeredes
SHutTTezL

*
“
Z
e
q
u
n
u
s
a
T
z
e
h
e
u

s
q
u
e
s
e
r
z
d
e
l
—

(-)
u
b
t
s

s
n
u
t
m
y

°
+

s
}
y
e
r
e
u
e
h

s
u
o
T
y
e
r
Z
e
d
Q

§6*zequNu-
u
b
T
S

e
a
T
y
t
s
o
d

e
s
q
z
u
e
s
e
i
d
e
z
s
o
e
d
s

e
t
o

(+)
u
b
t
s

s
n
t
d
v
.

8
0

a
z
e
r
e
d
s
s

b
u
t
p
e
e
T
l

S7USULIOD
JATSta

Tewtoed
jo

ezts
2poD

adAL

SECTION 7

s
o
d
A
,
e
y
e
d

T
e
w
t
o
e
d

“T-L
e
T
d
e
L

8

REV.

IDR3@69 INSTRUCTION DEFINITIONS - SRV

Arithmetic Instruction Register Usage (I-Mode only)

All arithmetic instructions use general registers GRO, GR1, GR3, GR4,
and GR6, FLR@, FLR1 as scratch registers. These registers are not
guaranteed to remainthe same if an arithmetic instruction is executed.

Control Word Format

To specify the characteristics of the operation to be performed, most
decimal arithmetic instructions require a control word to be loaded in
the L register.

The general format is as follows:

A - BC - T D_ E F G H

1-6 789 18 11 12 13 14-16 17-22 23-29 30-32

Where:

A - Field 1, number of digits

E - Field 1, decimal data type (see Table 7-1)

B - If set, sign of field 1 is treated as opposite of its

actual value.

C - If set, sign of field 2 is treated as opposite of its
actual value. (XAD, XMP, XDV, XCM only)

D - If set, then round (XMV only)

F -— Field 2, number of digits

H - Field 2, decimal data type

G ~ Scale differential (XAD, XMV, XCM only)

T — Generate positive results always

—- -— Unused, must be zero

The fields used by each instruction are listed in the instruction
descriptions. Fields not used by an instruction must be zero.

The scale differential specifies the difference in decimal point
alignment between the operator and fields for some instructions. This
field is treated as a signed 7 bit two's complement number, where a
positive value indicates a right shifting of Field 1 with respect to
Field 2, and a negative value indicates a left shifting.

7 - 15 July 1978

SECTION 7 IDR3868

Decimal Exception (DEX)

There are two ways that an exception is handled. If the program is
running in decimal exception mode, then a directed fault (similar to
floating exception) is taken with the following fault codes:

DEX TYPE (HIGH) SUB CODE (LOW

Over flow 7 | Q

Divide by zero 7 1

Conversion 7 | 2

When not in decimal exception mode, the C bit is set and execution
continues with the next instruction.

Decimal Add I
< DECI

XAD

IA - BC E F G H |

1-6 789 1@ 11:12 13 14-16 17-22 23-29 39-32

Add the source field to the destination field and place the
results in the destination field. The control word determines:

1) The operation - addition or subtraction

2) The scaling of the results

Operations:

B and C field control whether the operation is an add or subtract

B Cc Operation

G Gg + Source + Destination

G l + Source - Destination

1 g ~ Source + Destination

1 1 - Source -— Destination

Scaling: G Field

The scale differential field in the control word is used to adjust

REV. 7 - 16

IDR3@6@ INSTRUCTION DEFINITIONS - SRV

field 1 in relation to field 2. If the scale differential is greater
than zero, low order digits in field 1 will only affect the initial

borrow from the low order digit of field 2. If the scale differential
is less than zero, field 1 is considered to be logically extended with

low order zeros when applied to field 2.

Decimal Multiply DECII
<

XMP

IA - Bc -f F G H|

1-6 7 8 9 18 11 12 13 14-16 17-22 23-29 39-32

Multiply destination field by source field and put the result in the

destination field. To avoid overflow the destination field must have
the same number of leading zeros as the length of the source field.
The G field (scale differential) must contain the number of multiplier

(source field) digits.

Multiply calculates source field times destination field. The product
has a field length of 'destination field length (i.e., length of Field
2) + the number of multiplier digits’.

The product field is left justified in the destination field. The
maximum partial product added in per traverse of the multiplicand is
source digits + multiplier digits processed. Note also that there is
an implied weighting of the partial product Field that is 18 **r, where
r = multiplier digits.

The condition codes are set to reflect the state of the resultant
field. The C bit is set on overflow (i.e., F2 is not source digits
longer than the multiplier field) if not in DEX mode. If in DEX mode,

a directed vector is taken.

The temporary base register is used by the instruction and may change.

7 - 17 July 1978

SECTION 7 IDR3060

Decimal Divide I
< DECT

XDV

IA - BC |

1-6 78 9 18 11 12 13 14-16 17-22 23-29 39-32

Divide destination field by source field, placing both the quotient and
remainder in the destination field.

Decimal Data Type - trailing sign embedded only. To allow room for
both quotient and remainder the destination field must contain the same
number of leading zeros as the length of the source field.

After divide the destination field contains quotient of length
(destination length - source length) followed by remainder of source
length.

Exceptions

1) Source = @

2) Not trailing embedded

3) Destination < source.

Decimal to Binary Conversion Vv DECI

XDTB

[A | E H |

1-6 78 9 186 11 12 13 14-16 17-22 23-29 39-32

XDTB converts the decimal field to binary. The length of the binary
field is specified in the H field of the control word as follows:

@ - 16 Bits, returned in A

1 - 32 Bits, returned in L

2 - 64 Bits, returned in L/E

A conversion error exception is taken on overflow. The condition codes
are undefined for this operation.

REV. 9 7 - 18

IDR3869 INSTRUCTION DEFINITIONS - SRV

Field Address Register 2 is not used by this instruction and can be
used as an accumulator for indexed pointers.

XDTB Characteristics:

This instruction returns a 16, 32 or 64 bit integer in either the A, L,
or L/E registers, depending on the destination field type.

Binary to Decimal Conversion Vv DECI

XBTD

lA E H |

1-6 78 9 18 11 12 13 14-16 17-22 23-29 38-32

XBTD converts a 16, 32 or 64 bit signed binary number to decimal. The
H field in the control word specifies the length and location of the

binary source as follows:

6 - 16 Bits, located in EH

1 - 32 Bits, located in E

33 - 64 Bits, located in FPl

The condition codes are undefined for this operation. A conversion
error exception is taken on overflow - see decimal exception.

XBTD Characteristics:

This instruction converts the binary field present in EH, E or FPRI1
(depending on field type) into a decimal field. Unlike the rest of the
decimal arithmetic instructions, XBTD returns the decimal field in what

elsewhere is known as the "source" field address register.

7 - 19 July 1978

SECTION 7 IDR3069

Decimal Compare Vv DECI

XCM

IA - BC E F G H |

1-6 78 918 11 12 13 14-16 17-22 23-29 30-32

XCM sets the condition codes to reflect the compar ison
Field 2 :: Field 1. The scale difference applies as in XAD.

The condition codes are set as follows:

GI = Field 2 > Field 1

EQ = Field 2 = Field 1

LT = Field 2 < Field 1

f

Decimal Move Vv DECI

XMV

lA - BC-TOD &E F G H |

1-6 78 9 1@ 11 12 13 14-16 17-22 23-29 39-32

XMV moves source to destination, changing the sign if the B bit in the
control word is set, and rounding if the D bit is set and G, the scale

differential, is greater than zero. If the scale differential is
negative then zeros are supplied before field 1 is used for a source.
The condition codes are set to reflect the state of the destination
after the move.

Numeric Edit I
< DECI

XED "

Processes an edit sub-program addressed by the temporary base register
to control the editing of the source field into the destination field.
The source field must have leading separate sign, and must have the
same number of digits and the same decimal point alignment as called
for by the edit sub-program. Normal setup for the instruction would
consist of a decimal move to correct the type, length, and alignment of

the number to be edited. The A register must equal one if the source

REV. 0 7 - 20

IDR386@ INSTRUCTION DEFINITIONS - SRV

field is 8; otherwise the A register must be @.

The edit sub-program consists of a list of words formatted as follows:

|LIO!]EI| MM |

1 2-4 5-8 8 16

Where:

L = Last entry if set

E = Edit opcode

M = Edit modifier

The XED instruction maintains several internal variables during its
processing which are used to control the operation. These variables
are:

@ Zero suppress character - initial value is blank (ASCII '24@).

@ Floating edit character - initially not defined

e@ Sign of the source field - established by fetching the first
character of the source field.

e Significance flag - records the end of zero suppression.

7 - 21 July 1978

SECTION 7

Edit Sub Operations

Opcode Mnemonic

OB ZS

01 IL

G2 SS

93 ICS

4 ID

05 ICM

06 ICP

Q7 SFC

10 SFP

ll SFM

12 SFS

REV. g

IDR3069

Definition

zero suppress next M digits. Digits are
consecutively fetched from the source field
and the significance flag is checked. If the
significance flag is set, the digit is copied
to the destination field. If the
significance flag is clear and the digit is
non-zero, the significance flag is set, the
floating character inserted (if it is
currently defined), and the digit is copied.
Otherwise the zero suppress character is
substituted for the zero digit in the

destination field.

insert literal M in destination field.

set zero suppress character to M

if the significance flag
insert zero suppress

insert literal M

set; otherwise

character

insert M digits. If significance flag is
clear, it is set and the floating edit

character inserted (if currently defined).
Then copy M digits into the destination

field.

insert M if sign is minus; otherwise insert
zero Suppress character

insert M if sign is plus; otherwise insert
zero suppress character.

set floating character to M

set floating character to M if sign plus;
otherwise set floating edit character to zero

suppress character.

set floating character to M if sign minus;
otherwise set floating edit character to zero

suppress character.

set floating character to sign

13

14

15

16

JZ

FS

SF

Is

IDR3868 INSTRUCTION DEFINITIONS - SRV

jump M+l locations ahead in edit sub program
if source field equals zero.

fill next M characters with zero suppress
character

set significance flag

insert sign

7 - 23 July 1978

SECTION 7 IDR3869

FIELD - Field Operations

These instructions set up and manipulate the field address and length
registers. These registers are used by both the decimal and character
string instructions. The interpretation of the value in the field
length registers depends on the data type and instruction using them.

Store Field Address Register Vv

AP

1 1
STFA ,ADDR FAR ->[EA]32 or [EA]48

g G

Store the contents of the field address register into ADDR as a

hardware indirect pointer.

If bit number field of the field address register is zero, store the
first two words of the pointer and clear the pointer's extend bit.

If bit number field of the field address register is non-zero, store

all three words of the pointer and set the pointer's extend bit.

Transfer L-Register to Field Length Register V GEN

0 G

TLFL L->[FLR]
1 1

Transfer the 32-bit unsigned integer in the L register into the
selected field length register. The high order 1l bits of L must be
zero to make the high order 6 bits of the field length register equal
to zero. This instruction is used to load a value computed at
execution time into a field length register. The maximum allowable
field length is 2**2@ (21 bits) - the number of bits in a 64K segment.

Effective Address to Field Address Register V AP

1 1
EAFA ,ADDR [EA] -> [FAR]

g 0

Place the complete effective address, including the bit portion, in the
selected field address register. The associated field length register
is unchanged.

REV. @ 7 - 24

IDR3068 INSTRUCTION DEFINITIONS — SRV

Load Field Length Register Immediate V BRAN

1 1
LFLI ,DATA . DATA-> [FLR]

0 Q

Place the 16-bit unsigned integer in the 2nd word of the instruction

into the field length register. Clear the high order bits. This
instruction loads a constant which is 65535 or less into a field length
register.

The associated field address register is unchanged.

Add_Long Integer _to Field Address Vv GEN

Add the 32-bit integer in register L, which represnts an offset in
bits, to the 26-bit unsigned word and bit number fields of the field
address register. The low-order 26 bits of the sum replace the word
and bit number fields of the field address register. All but the low

order 2@ bits of the sum must be zero.

Example:

To advance FAR @ by 3 bytes, place 24 into the L register and execute

ALFA 6.

Transfer Field Length Register to L

mf
Transfer the contents of the field length register to the L register as

an unsigned 32-bit integer. Clear the high order 11 bits of L.

I< @ B

7 - 25 July 1978

SECTION 7 IDR3068

FLPT - Floating Point Arithmetic

See Section 5 for a description of the processor dependent register
formats and the floating point data structuresa

Normalization

The result of every floating point calculation is normalized. In
normal form, the most significant digit of the mantissa follows the
binary point. If an operation produces a mantissa that is smaller than
normal, the mantissa is shifted left until the most significant bit
differs from the sign bit, and the exponent is decreased by one for
each shift. Bits vacated at the right are filled by zeros. If the
result of an operation overflows the mantissa, it is shifted right one
place, the overflow bit is made the most significant bit, and the
exponent is increased by l.

Floating Point Exceptions

On the Prime 388, error conditions that arise during floating point

operations are detected and handled by floating exception (FLEX)
interrupt. These are enabled when the software makes physical memory
location '74 non-zero (i.e., insertS a pointer to a routine that
identifies and processes floating point error conditions). When any
one of several types of error occurs, the CPU interrupts through

location '74 to the error handlng routine.

If location '74 is zero, FLEX interrupts do not occur; instead, the C
bit is set. The user can test the C bit after possible error

situations and take action as appropriate.

All FLEX interrupts vector through location '74 and locations ‘ll and
'12 are set in certain cases to indicate the type of error condition.
Table 7-2 shows the codes currently assigned.

In the basic arithmetic operations, increasing the exponent in the
floating point register beyond 32639 is an overflow; decreasing it
below -32896 is an underflow. Note that the exception is detected
during an overflow or underflow of the full 16-bit exponent in the
floating point register.

An attempt to store a single-precision number with an exponent greater
than 127 or less than -128 in the two-word memory format results in a
different type of exception. The number in the floating point register
is not altered by the FST operation and so can be recovered if
necessary.

Other detected exceptions are an attempt to divide by zero or to form
an integer exceeding the capacity of the combined AIB register (+30

bits or about +1 billion decimal).

REV. @ 7 - 26

IDR3@60 INSTRUCTION DEFINITIONS - SRV

On the Prime 480/508, the floating point exception is a fault rather
than an interrupt. For a discussion of the difference between faults,
checks and interrupts, see Section 2.

7 = 27 July 1978

SECTION 7

Table 7-2.

Register ll Register 12

Single Pre. Double Pre.

$108 $200 --

$101 $261 ——

$102 -_— (EA)

$193 — --

Note: $ indicates hexadecimal codes

REV.

IDR3960

28

Floating Exception Codes

Type of Exception

Overflow/Underflow (Exponent
exceeds approx. 10 +9800)

Division by zero

Attempt to store single
precision exponent exceeding
8-bit memory format (>127,
<-128)

Attempt to form INT
exceeding capacity of
concatenated A and B
registers (approx. +1
billion).

IDR396@ INSTRUCTION DEFINITIONS - SRV

Table 7-3. Floating Point Mantissa and Exponent Ranges

Single Single
Precision- Precision- Double

Field Memory Register Precision

Mantissa

Bits 23 + Sign 31 + Sign 47 + Sign

Precision +8,388,687 +2,147,483,647 +146 , 737,488, 355,327

Exponent

Bits 8 | 16 16

Range -128 to +127 -32896 to +32639 -32896 to +32639

+38 +9 ,823 ,-9992 +9823 ,-99682
(lg) (10) (10)

7 - 29 July 1978

SECTION 7 IDR3069

Floating Load RV | MR

FLD ADDR [EA] 32->F

Load the double precision number contained in the two successive words
at ADDR into the floating point register.

Floating Store RV MR

FST ADDR F—> [EA] 32

Store the single precision floating point number contained in the
floating point register in two memory words starting at ADDR. Bits
24-31 of the 31 bit mantissa are truncated when written into the 23-bit
capacity memory storage. However, the mantissa may be rounded to bit
24 by a FRN instruction which adds 1 to bit 24 if bit 25 is 1. If the
floating point register contains an exponent outside the 8-bit range
(-128<E<+127), set C or initiate a floating exception.

Floating Add RV MR

FAD ADDR F+[EA] 32->F

Add the floating point number at ADDR to the contents of the floating
point register and leave the resulting floating point number in the
floating point register. Addition of floating point numbers is
accomplished by right shifting the smaller number by the difference in
the exponents. After alignment, the mantissas are added.

If there is an overflow from the most significant bit (not the sign),
the sum mantissa is shifted right one place, the exponent is
incremented by one and the overflow bit becomes the high-order bit in

the normalized mantissa. If the result is otherwise not in normal form
(as when numbers with unlike signs are added), the result is
normalized. If there is an exponent under/overflow (<-32896, >+32639)
set the C Bit or take a floating exception.

REV. 8 7 - 38

IDR3868 INSTRUCTION DEFINITIONS - SRV

Floating Subtract RV MR

FSB ADDR F- [EA] 32->F

Subtract the contents of ADDR from the floating point register by
aligning exponents, and proceding as in FAD except that the [EA]32 is
subtracted from the floating point register.

Floating Multiply RV MR
—a

FMP ADDR F* [EA] 32->F

Multiply the contents of the floating point register by the contents of
ADDR and place the product in the floating point register with the

Mantissa normalized. If there is an exponent under/overflow, the C bit
is set or floating exception is initiated.

Floating Divide RV FE

FDV ADDR F/ [EA] 32->F

Divide the contents of the floating point register by the number in
ADDR and place the quotient in the floating point register with the

Mantissa normalized.

If there is an exponent under/overflow or division by zero, the C bit
is set or a floating exception is initiated.

Compare and Skip RV
——— [5

FCS ADDR If F>[EA]32, then PC->PC

If F=[EA]32, then PC+1->PC
If F<[EA]32, then PC+2->PC

If the contents of the floating point register is greater than the
contents of ADDR, execute the next instruction.

If the contents of the floating point register equals the contents of
ADDR, skip the next location in instruction sequence and execute the

instruction at second location following.

If the contents of the floating point register is lss than the contents

of ADDR, skip next two locations in instruction sequence and execute

=

7 - 31 July 1978

SECTION 7 IDR3868

the instruction at third instruction location.

Fix As Fraction RV GEN

FRAC FRAC (F) -> (AI|B)

Convert the fractional part of the floating point number in FAC to a
binary fraction in the concatenated A and B registers with the binary

point between Al and A2.

Float RV GEN

FLOT Float (A|B)->F

Take the 31-bit integer in the combined AIB register and convert it
into a normalized floating point number in the floating point register.

Convert Integer to Float V GEN

FLTA FLOT (A) ->F

Convert the 16 bit integer in register A to a single precision floating

point number in the floating point register.

Convert Long Integer to Float Vv GEN

FLTL FLOT (L) ->FAC

Convert the 32 bit integer in register L to a single precision floating

point number in the floating point register.

Fix as Integer RV GEN

INT Int (F)->AIB

Convert the integer part of floating point number in the floating point
register to a 31 bit integer in the AIB register with the binary point
following bit 31. If the floating point register contains a number too

REV. 7 - 32

IDR3068 INSTRUCTION DEFINITIONS - SRV

large to be represented in the 31-bit integer format, the C-bit is set

or a floating exception is initiated.

Convert Float to Integer Vv GEN

INTA INT (FAC) ->A

Convert the single precision floating point number in the floating
point register into a 16 bit in integer in register A. The fractional
part of floating point register is lost. Overflow occurs if the value
in floating point register is less than -(2**15) or greater than
2**15-1, and sets the C-bit or generates a FLEX.

Convert Float to Long Integer Vv GEN

INTL INT (FAC) ->L

Convert the single precision floating point number in the floating
point register into a 32 bit integer in register L. The fractional
part of FAC is lost. Overflow occurs if the value in the floating
point register is less than -—(2**31) or greater than 2**31-1 and sets

the C-bit or generates a FLEX.

Complement RV GEN

FCM —-F->F

Two's complement the mantissa of the floating point register and
normalize if necessary. Overflow sets C or generates a floating

exception.

Round Up RV GEN

FRN

If bit 25 of the mantissa in the floating point register is 1, add 1 to
bit 24 and reset 25. Overflow sets C or generates a floating

exception.

7 - 33 July 1978

SECTION 7 IDR3868

Floating Skip If Zero RV GEN

FSZE

If the floating point register is equal to zero, skip next location.

Floating Skip If Not Zero RV GEN

FSNZ

If the floating point register is not equal to zero, skip next
location. |

Floating Skip If Minus RV GEN

FSMI

If the floating point register is less than 9, skip next location.

Floating Skip If Plus RV GEN

FSPL

If the floating point register is greater than 9, skip next location.

Floating Skip If Less or Equal Than Zero RV GEN

FSLE

If floating point register is less than or equal to zero, skip next
location.

REV. @ 7 - 34

IDR3868 INSTRUCTION DEFINITIONS - SRV

Floating Skip If Greater Than Zero RV GEN

FSGT

If floating point register is greater than zero, skip next location.

Double Precision Floating Load RV MR

DFLD ADDR [EA] 64->F

Ioad the double precision floating point number contained in the four
memory words at ADDR into the floating point register.

Double Precision Floating Store RV MR

DFST ADDR F—> [EA] 64

Store the double precision floating point number contained in the
floating point register into the location specified by ADDR. Exponent
and mantissa bit capacities are the same so that no floating point
exceptions are possible.

Double Precision Floating Add RV MR

DFAD ADDR F+[EA]64->F

Add the double precision number starting at ADDR to the double
precision number in the floating point register and leave the result in
the floating point register. (Same procedure as FAD except a 47-bit
mantissa is produced.)

Double Precision Floating Subtract RV MR

DFSB ADDR F-[EA]64->F

Subtract the double precision floating point number starting at ADDR
from the double precision floating point number in the floating point
register. (Same procedure as FSB except a 47-bit mantissa is
produced.)

7 = 35 July 1978

SECTION 7 IDR3069

Double Precision Floating Multiply RV MR

DFMP ADDR F* [EA] 64-—>F

Multiply the contents of the floating point register by the contents of
ADDR and place the products in the floating point register with the
mantissa normalized. If there is an exponent under/overflow, the C bit

is set or floating exception is initiated.

Double Precision Floating Divide RV MR

DFDV ADDR F/ [EA] 64->F

Divide the contents ot the floating point register by the number in
ADDR and place the quotient in the floating point register with the
mantissa normalized.

If there is an exponent under/overflow or division by zero, the C bit

is set or a floating exception is initiated.

Double Precision Floating Point Compare and Skip E Es

DFCS ADDR if F>[EA]64 then PC->PC

if F=[EA]64 then PC+1->PC

if F<[EA]64 then PC+2->PC

If the contents of the floating point register is greater than the
contents of ADDR, execute the next instruction.

If the contents of the floating point register equals the contents of
ADDR, skip the next location in instruction sequence and execute the
instruction at second location following.

If the contents of the floating point register is less than the

contents of ADDR, skip next two locations in instruction sequence and
execute the at third instruction location following.

REV. @ 7 - 36

IDR3#68 INSTRUCTION DEFINITIONS - SRV

Double Precision Floating Complement RV GEN

DFCM —F->F

Two's complement the precision mantissa in floating point register and
normalize if necessary. Overflow sets C or generates a floating
exception.

Floating Load Index RV MR

FLX ADDR [EA] 16*2->X

Double the contents of the effective address and load the result into

the index register X. This instruction facilitates indexing sequences
that involve double-word memory reference operations. It works
directly for two-word indexing, e.g., 31-bit or 32-bit integer or
floating point.

Double Floating Load Index Vv MR

DFLX ADDR [EA] 16*4->X

Quadruple the contents of the effective address and load the result
into the index register X. This instruction is useful for addressing
arrays or tables of element size four words.

Convert Single to Double Float I
< 3

FDBL F->F

Convert the single precision floating point number in the floating
point register to a double precision precision floating point number in
the floating point register.

7 - 37 July 1978

SECTION 7 IDR3069

INT - Integer Arithmetic

These instructions operate on 16, 3l-bit and 32-bit signed integers.

Single Precision SR GEN

SGL

Return to single precision mode. Subsequent LDA, STA, ADD and SUB

instructions handle 16-bit integers.

Add SRV MR
ADD ADDR A+[EA]16-—>A

Add the 16-bit integer at ADDR to the 16-bit integer in register A and
put the result into register A. If the sum is greater than 2**15 or
less than or equal to -2**15, set C; otherwise, clear C. In the first
overflow case, the result has a minus sign, but a magnitude in positive
form equal to the sum minus 2**15; in the second, the result has a

plus sign, but a magnitude in negative form equal to the sum plus
2**15,.

Add One to A SRV GEN

AlA Atl->A

Add 1 to the 16-bit integer in register A and put the result into A.
If the number incremented is 2**15-l1, set C and give a result of
-~2**15; otherwise clear C.

Add 2 to A SRV GEN

A2A At+2-—>A

Add 2 to the 16-bit integer in register A and put the result into A.
If the number incremented is 2%**15-2 or 2**15-1, set C and give a

result of -2**15 or -—(2**15-1); otherwise clear C.

REV. @ 7 —- 38

IDR3@68 INSTRUCTION DEFINITIONS - SRV

subtract SRV MR

SUB ADDR A-[EA]16->A

Subtract the 16-bit integer at ADDR from the 16-bit integer in register
A and put the result into register A. If the difference is >2**15 or
<-2**15, set C; otherwise clear C. In the first overflow case, the
result has a minus sign but a magnitude in positive form equal to the
difference minus 2**15; in the second, the result has a plus sign but
a Magnitude in negative form equal to the difference plus 2**15.

Subtract One from A SRV GEN

S1A A-1->A

Subtract 1 from the 16-bit integer in register A and put the result
into A. If the number decremented is -2**15, set C and give a result
of 2**15-1; otherwise clear C.

Subtract 2 from-A SRV GEN

S2A A-2->A

Subtract 2 from the 16-bit integer in register A and put the result
into A. If the number decremented is —(2**15-1) or -2**15, set C and
give a result of 2**15-2; otherwise clear C.

Multiply SR MR

MPY ADDR A* [EA] 16->A|B

Multiply the 16-bit integer in register A by the 16-bit integer at
ADDR, and put the 31-bit integer result into registers A and B. If
both the multiplier and multiplicand are -2**15 then set C; otherwise
clear C.

7 = 39 July 1978

SECTION 7 IDR3960

Position Following Integer Multiply SR GEN

PIM B (2-16) —>A (2-16)

Convert the 3l-bit integer in registers AIB to a 16-bit integer in A by
moving bits 2-16 of B into bits 2-16 of A. Overflow if a loss of
precision would result.

Normalize SR GEN
— ee

NRM Al A2...Al6 Bl B2...Bl6 <- @

Shift the 3l-bit integer in registers A and B left arithmetically,
bringing zeros into bit 16 of B, bypassing bit 1 of B, leaving bit 1 of
register A unaffected, and dropping bits out of bit 2 of register A
until bit 2 of register Ais in the state opposite that bit 1 of
register A. Since the only data shifted out of bit 2 of register A is
equal to the sign, no information is lost. Place the number of shifts
performed in bits 9-16 of the keys.

Load Shift Count into A SR GEN

SCA keys (9-16) ->A (9-16)
®->A (1-8)

Load the contents of bits 9-16 of the keys into bits 9-16 of register A

and clear bits 1-8 of register A.

By shifting until bit 2 differs from the sign, normalization produces a
fraction in the range 1/2 to (1-LSB) or —(1/2+LSB) to -l. Saving the
number of shifts allows the program to determine any change in the
order of magnitude of a result due to a fixed point operation on the
fractions of floating point operands. The program can then use the
information stored in the keys to adjust the exponent. Finally, the
result is put in proper format by shifting the fraction to the correct
position and inserting the exponent in the high order word.

REV. @ 7 —- 408

IDR3868 INSTRUCTION DEFINITIONS - SRV

Divide SR MR

DIV ADDR A|B/ [EA] 16->A;REM-—>B

Divide the 3l-bit integer in register AIB by the 16-bit integer at ADDR
and put the quotient into A, and the remainder into B. Barring
overflow, the results are defined such that A*[ADDR]+B equals’ the
original AIB and the remainder in B has the same sign as the dividend.
Hence, -42 divided by 5 gives A=-8 and B=-2. Overflow occurs (and the
C-bit is set) whenever the quotient is less than -—(2**15) or greater

than 2**15-1; the AIB register is unchanged.

Position for Integer Divide SR GEN

PID A (2-16) -—>B (2-16)

@->B (1) ;A(1)->A (2-156)

Convert the 16-bit integer in register A to a 3l-bit integer in AIB by

moving the contents of bits 2-16 of register A to bits 2-16 of register
B, clearing bit 1 of register B and extending the sign in bit 1 of A

through bits 2-16 of A.

Double Precision SR GEN

DBL

Enter double precision mode. Subsequent LDA, STA, ADD and SUB

instructions handle 31-bit integers.

7 - 41 July 1978

SECTION 7 IDR3069

Double Add SR MR
i

DAD ADDR A|B+[EA]31-—>A|B

Add the 31-bit integer at ADDR and ADDRt1 to the 31-bit integer in
registers A|B, and put the result into AIB. If the sum is >2**38 or
<-2**38, set C; otherwise, clear C. In the first overflow case, the
result has a minus sign but a magnitude in positive form equal to the
sum minus 2**3@; in the second, the result has a plus sign but a
Magnitude in negative form equal to the sum plus 2**3Q.

By definition, bit 1 of the low order word of a 31-bit integer must be
®@. The instruction executes only in double precision mode.

Double Subtract SR MRron

DSB ADDR A|B-[EA]31->A|B

Subtract the 31-bit integer at ADDR and ADDR+1 from the 31-bit integer

in registers A|B, and place the result into AIB. If the difference is
>2**30 or <-2**30, set C; otherwise, clear C. In the first overflow
case, the result has a minus sign but a magnitude in positive form
equal to the difference minus 2**30; in the second, the result has a
plus sign but a magnitude in negative form equal to the difference plus
2**30.

Bit 1 of the low order word of a 3l-bit integer must be @. The
instruction executes only in double precision mode.

To negate one 3]l-bit integer, simply subtract it from zero.

Two's Complement A SRV GEN

TCA -A->A

Form the twos complement of the contents of register A and put the
result into register A. If the result is -2**15, set C and give a
result of -2**15; otherwise clear C.

REV. @ 7 o- 42

IDR3068 INSTRUCTION DEFINITIONS - SRV

Add C-Bit toA SRV GEN

ACA AtC-bit-—>A

Add the C-bit to the contents of register A and put the result into A
(C is treated as same order of magnitude as bit 16 of A). If the
number originally in A is 2**15-1, set C and give a result of —2**15;
otherwise clear C.

Set Sign Plus SRV GEN

SSP Q-—>A (1)

Clear bit 1 of register A without affecting the rest of the register.

Set Sign Minus SRV GEN

SSM 1->A (1)

Set bit 1 of register A to one without affecting the rest of the
register.

Change Sign SRV GEN

CHS ~A(1)->A(1)

Complement bit 1 of register A without affecting the rest of the
register.

Copy Sign of A SRV GEN

CSA A(1)->C-bit
@—->A (1)

Make C equal to bit 1 of register A and clear bit 1 of A without
affecting the rest of the register. Used when using single precision
arithmetic to do double precision work.

7 - 43 July 1978

SECTION 7 IDR3069

Add Long Vv MR

ADL ADDR L+ [EA] 32->L

Add the 32-bit integer at ADDR to the 32-bit integer in register L and
put the result into L. If the sum is greater than 2**31 or less
than-2**31, set C; otherwise, clear C. In the first overflow case,
the result has a minus sign, but a magnitude in positive form equal to
the sum minus 2**31; in the second, the result has a plus sign, but a
magnitude in negative form equal to the sum plus 2**31,

Subtract Long Vv MR

SBL ADDR L- [EA] 32->L

Subtract the 32-bit integer at ADDR from the 32-bit integer in register
L and put the result into the L register. If the difference is greater
than +2**31 or less than -2**31, set C; otherwise clear C. In the
first overflow case, the result has a minus sign but a magnitude in

positive form equal to the difference minus 2**31; in the second, the
result has a plus sign but a magnitude in negative form equal to the
difference plus 2**31.

Multiply Vv MR

MPY ADDR A* [EA] 16->L

Multiply the 16-bit integer in register A by the 16-bit integer at
ADDR, and put the 32-bit integer result into L. This operation never
overflows because there is always room for the product.

Position Following Integer Multiply Vv GEN

PIMA L (17-31) ->A (1-16)

Convert the 32-bit integer in L to a 16-bit integer in register A by
moving bits 17-32 of L into bits 1-16 of A. Overflow if a loss of

precision would result.

REV. @ 7 - 44

IDR3068 INSTRUCTION DEFINITIONS - SRV

Multiply Long 4 MR

MPL ADDR L* [EA] 32->L|E

Multiply the 32-bit integer in register L by the 32-bit integer at
ADDR, and put the 64-bit integer result into LIE. This operation never
overflows becuase there is always room for the product.

Position Following Integer Multiply—Long V GEN® GEN
~~

PIML L|E (33-64) —>L (1-32)

Convert the 64-bit integer in registers LIE to a 32-bit integer in L by
moving bits 33-64 of register LIE into bits 1-32 of register L.
Overflow if a loss of precision would result.

Divide V MR

DIV ADDR L/ [EA] 16->A;REM—>B

Divide the 32-bit integer in register L by the 16-bit integer at ADDR
and put the quotient into A, and the remainder into B. Barring
overflow, the results are defined such that A*[ADDR]+B eguals’ the
original L and the remainder in B has the same sign as the dividend.

Hence, —42 divided by 5 gives A=-8 and B=-2.

Overflow occurs (and the C-bit is set) whenever the quotient is less
than -(2**15) or greater than 2**15-l1. The PIDA instruction is useful

for placing 16-bit dividends into L.

Divide Long V MR

DVL ADDR L|E/ [EA] 32—>L;REM-—>E

Divide the 64-bit integer in registers LIE by the 32-bit integer at
ADDR and put the quotient into L, and the remainder into E. Barring
overflow, the results are defined such that L*/ADDR]+E equals the
original LJE and the remainder in E has the same sign as the dividend.
Hence, +42 divided by -5 gives L=-8 and E=+2.

Overflow occurs (and the C-bit is set) whenever the quotient is less

than -—(2**31) or greater than 2**31-1.

7 = 45 July 1978

IDR3868

Vv

A (1-16) ->L (17-32)
A(1)->A (2-16)

in register A to a 32-bit integer in
A by moving bits 1-16 of A to bits 17-32 of L and extending

I<

in register L to a 64-bit integer in
E by moving the contents of L to E and extending the sign in

PIDL is useful for placng 32 bit

SECTION 7

Position For Integer Divide

PID

Convert the 16-bit integer
register
the sign in bit 1 of L through bits 2-16 of A.

Position For Integer Divide-Long

PIDL L->E

L(1)->L (2-32)

Convert the 32-bit integer
register
bits 1 of L through bits 2-32 of L.
operands in LIE.

Two's Complement Long Vv

TCL

Form the

result

—2**31;

Add L bit to L

ADLL

Add the link bit (L-bit
and put the result into

into L.

-L->L

two's complement of the contents of register L and put the
If the result is -2**31, set C and give a result of

otherwise clear C.

Vv

Ltkeys (L) ->L

in the keys) to the contents of the L register
the L register. Overflow may be set.

This instruction is useful in implementing multiple precision

arithmetic.

COMPARE V MR

CLS ADDR if L>[(EA}]32 then PB+1->PB

REV. 6

if L=[EA]32 then PB+2->PB

7 —- 46

IDR3868 INSTRUCTION DEFINITIONS - SRV

if L<[EA]32 then PB+3->PB

If the contents of the L register is greater than the contents of ADDR,
execute the next instruction.

If the contents of the L register equals the contents of ADDR, skip the
next location in instruction sequence and execute the instruction at

second location following.

If the contents of the L register is less than the contents of ADDR,

skip next two locations in instruction Sequence and execute the

instruction at third location following.

Compare A_ and Skip SRV FE

if A>[EA]16 then PC=PC

CAS ADDR if A=[EA]16 then PC+l1->PC

if A<[EA]16 then PC+2->PC

If the contents of the A register is greater than the contents of ADDR,

execute the next instruction.

If the contents of the A register equals the contents of ADDR, skip the
next location in instruction sequence and execute the instruction at
the second location following.

If the contents of the L register is less than the contents of ADDR,
skip the next two locations in instruction sequence and execute the
instruction at the third location following.

Compare A with Zero SRV GEN

if A>@ then PC=PC

CAZ if A=®@ then PC+1->PC

if A<@ then PC+2->PC

If the contents of the A register is greater than zero, execute the

next instruction.

If the contents of the A register is equal to zero, skip the next
location in instruction sequence and execute the instruction at second
location following.

If the contents of the Aregister is less than zero, skip the next
location in instruction sequence and execute the instruction at third
location following.

7 - 47 July 1978

SECTION 7 IDR3060

INIGY — Hardware Integrity Check

Verify SRV GEN

VIRY R

Execute the verification routine, and if there is a failure of any

kind, go on to the next instruction with the number of the test that
failed in register A. If there are no errors, skip the next
instruction in sequence.

If the processor does not have the verification routine, this
instruction executes as no-op.

Enter Machine Check Mode SRV GEN

EMCM R

In machine check mode the microprogram responds to a machine parity
error by causing a machine check interrupt if there is a non-zero

vector in the interrupt locaion. If this locaion is zeo the machine
halts.

Leave Machine Check Mode SRV GEN

LMCM | R

A machine parity error sets the machine check flag, but does not cause
a check.

Clear Machine Check SRV GEN

RMC R

Clear the machine check flag.

Skip on Machine Check Reset SRV GEN

SMCR | R

If the machine check flag is zero (indicating no machine detected

REV. 0 7 - 48

IDR366@ INSTRUCTION DEFINITIONS - SRV

parity error), skip the next instruction in sequence. (When the
processor is in machine check mode, this instruction has no meaning and
executes as skip.)

Skip on Machine Check Set SRV GEN
meetaateed

SMCS | R

If the machine check flag is set (indicating a machine detected parity
error), skip the next instruction in sequence. (When the processor is

in machine check mode, this instruction has no meaning and executes as

a NOP).

Inhibit Interleave I
< a) B

MDII | R

Inhibit the memory diagnostic interleave capability.

Write Interleaved i
< GEN

MDIW . R

Write interleaved memory diagnostic

Read Syndrome Bits 1
< a B

MDRS R

Read memory diagnostic syndrome bits

Load Write Control Register i< Q B

MDWC R

Write memory diagnostic control register

7 = 49 July 1978

SECTION 7 IDR3968

Verify the XIS Board GEN —
rere<

VXIS R-

VXIS executes a Prime 500 microcode diagnostic routine that checks the

integrity of the XIS board. If the XIS board is not functional, the
machine will not skip the next instruction and the A register will hold
the failed micro-diagnostic test number. If the machine passes’ the
verify instruction, the next instruction is skipped.

The codes and tests are:

' 72 Data Move Test - Load and Unload XIS Board

' 73 Normalize Test - Adjust Test

' 74 Binary Multiply

' 75 Binary Divide

' 76 Decimal Arithmetic

REV. 9 7 - 59

IDR3068 INSTRUCTION DEFINITIONS - SRV

I/O — Input/Output

Output from A SR PIO

OTA FUNC|DEV R

Output data from register A to DEV. FUNC tells the device which
operation to perform. If the device does not respond ready, then do
not perform the transfer but instead execute the next instruction in
sequence. If the device responds ready, then perform the transfer and
skip the next instruction in sequence. The processor sends the
contents of register A to DEV which performs whatever control
Operations are appropriate to the function and the device.

The number of bits actually accepted by the device depends on the type
of information, the size of the device register, the mode of operation,
etc. The contents of register A are unaffected.

An OTA instruction for any device except device '20 uses a ready test

and the skipping procedure as stated in the description of the
instruction. An OTA to device '28 makes no test and does not skip.

Skip if Satisfied SR PIO

SKS FUNC|DEV R

FUNC (bits 7-18) defines a condition to be tested by the SKS. When the
condition is satisfied, the device specified by DEV (bits 11-16)
responds ready, and the next instruction in sequence is skipped.

Input to A SR PIO

INA FUNC |DEV R

Input data from device DEV into register A. FUNC determines the type
of data. If the device does not respond ready, then do not perform the
transfer, but execute the next instruction in sequence. If the device
responds ready, then perform the transfer specified by FUNC and skip
the next instruction in sequence. To perform the function specified by
FUNC, the processor reads the information from DEV into register A and
performs whatever control operations are appropriate to the function
and the device. Depending on FUNC, the information read may be data,
status, an address, a word count, or anything else.

The number of bits brought into register A depends on the type of

7 - 51 July 1978

SECTION 7 IDR3668

information, the size of the device register, the mode of operation,

etc.

INA instructions for any device except device '2@ use a ready test and

skip the next instruction if the device was ready.

Output Control Pulse SR PIO

OCP FUNC |DEV R

Send a control pulse for the function specified by FUNC (bits 7-18) to
the device specified by DEV (bits 11-16). This instruction never skips
and is used for such functions as initializing a disk controller, or

starting a transfer.

INTERRUPT PROGRAMMING

The instructions that control the interrupt system are all of the type
with a full word op-code, but associated with the system are two I/0
instructions that deal with the mask used for setting up the interrupt

enable flags in certain devices. When power is turned on or the
computer is cleared from the control panel, the processor is
automatically in standard interrupt mode with interrupts inhibited.

Enable Interrupt SRV GEN

ENB R

Enable the external interrupt system so the processor will respond to

interrupt requests over the I/O bus. This instruction takes effect
following execution of the next sequential instruction.

Inhibit Interrupts SRV GEN

INH R

Inhibit the external interrupt system so the processor will not respond
to interrupt requests over the I/O bus. This instruction takes effect

immediately.

REV. 9 7 - 52

IDR3060 _ INSTRUCTION DEFINITIONS —- SRV

Enter Standard Interrupt Mode SRV GEN

ESIM

Enter standard interrupt mode so that all interrupts are made through
location '63.

Enter Vectored Interrupt Mode SRV GEN

EVIM

Enter vectored interrupt mode so that the interrupt priority of a
device is determined by its position on the I/O bus (with lower devices
having higher priority) and each interrupt is made through the location
specified by the interrupting device.

Clear Active Interrupt SRV GEN

CAI

Terminate the presently active interrupt so that the processor can
recognize interrupt requests from devices of lower priority (in higher
slots) than the device for which the current interrupt is being held.
This instruction is effective only in vectored interrupt mode.

Send Mask SR PIO

SMK R

Set up the interrupt enable flags in the device according to the mask
in register A (a 1 in a mask bit sets the flag in the device
corresponding to that bit; a @ clears it). Note that this instruction
is equivalent to OTA 'O@20 and never skips.

7 = 53 July 1978

SECTION 7 IDR3060

The bits in the mask and the devices assigned to them are as follows

(note that the mask does not necessarily control the interrupt enable

flags in all devices):

Moving head disk (certain models)

Fixed head disk
Paper tape reader

1@ Paper tape punch
ll Teletypwriter

16 Real time clock
This instruction and IMK are included only for compatibility.

Input Mask SR PIO

IMK R

Input interrupt mas bits to A register from all implemented devices.
Used to see which devices have interrupts enabled. For compatibility
only.

Execute I/O Vv MR

EIO ADDR

Perform the I/O instruction represented by the effective address, e.g.,
X = '@4 EIO '131000,X will execute an INA with FUNC = '1@ and DEV =
"94,

REV. @ 7 —- 54

IDR3868 INSTRUCTION DEFINITIONS - SRV

KEYS-Status Keys

See Section 5 for the format of the keys.

Input Keys SR GEN

INK keys—>A

Read the keys into register A.

Output Keys SR GEN

OTK A->keys

Set up the keys from the contents of register A. Each bit position in
register A corresponds to the bit position in the keys, e.g., bit 1 of
register A becomes the C-bit in the keys.

Set C-Bit SRV GEN

SCB 1->C

Set the C-bit in the keys.

Reset_C-Bit SRV GEN

RCB ->C

Clear the C-bit in the keys.

Transfer A to Keys Vv GEN

TAK A->keys

Transfer the contents of register A to the keys register. If the new

value of the keys specifies a different addressing mode, note that the
new mode takes effect on the next instruction.

7 = 55 | July 1978

SECTION 7 IDR3068

Transfer Keys to A Vv

TKA keys—>A

Transfer the contents of the keys register to register A.

REV. 9 7 - 56

IDR3062 INSTRUCTION DEFINITIONS - SRV

LOGIC - Logical Operations

Exclusive OR to A SRV MR

ERA ADDR A.XOR. [EA] 16->A

EXCLUSIVE OR the contents of location ADDR with the contents of
register A and place the result in register A. A given bit of the
result is 1 if the corresponding bits of the operands differ;
otherwise the resulting bit is 9.

A Bit Memory Bit Resulting Bit

Q Qg QB

Q 1 1

1 Q 1

1 1 Q

Complement A SRV GEN

CMA NOT. A->A

Form the ones complement of the contents of register A and put the
result in register A. Each one becomes a zero; each zero becomes a
one.

AND to A SRV MR

ANA ADDR A.AND. [EA] 16-—>A

AND the contents of location ADDR with the contents of register A and

place the result in register A. A given bit of the result is 1 if the
corresponding bits of both operands are 1; otherwise the resulting bit

is @,

A Bit Memory Bit Resulting Bit

L
e
i

e
Q
e
®
&

7 - 57 July 1978

SECTION 7 IDR3968

AND Long ~ Vv MR

ANL ADDR L. AND. [EA] 32->L

AND the contents of register L with the 32-bit quantity at ADDR,

putting the result in L.

Inclusive OR Vv MR

ORA A.OR. [EA] 16->A

INCLUSIVE OR the contents of register A with the 16-bit quantity at
ADDR, putting the result in A.

Exclusive OR Long Vv MR

ERL ADDR L.XOR. [EA] 32->L

EXCLUSIVE OR the contents of register L with the 32-bit quantity at
ADDR, putting the result in L.

REV. @ 7 — 58

IDR3@6@ INSTRUCTION DEFINITIONS — SRV

LISTS — Logical Test and Set

Logical Test and Set (Logicize) SRV GEN

If the test is satisfied, then set the A register equal to l.

If the test is not satisfied, then set the register equal to @.

These instructions simplify the analysis of complex logical
expressions.

For example, LLT means if the contentss of the A register is less than
®, then set A equal to one; else clear A.

LLT if CC < 9, then 1->A; else @-—>A
LLE if CC < 8, then 1->A; else 0->A
LEQ if CC = 6, then 1->A; else @—->A
LNE if CC # @, then 1->A; else @—A
LGE if CC > @, then 1->A; else O->A
LGT if CC > @, then 1->A; else 8—>A

Logic set A True

LT 1->A

set A equal to one.

Logic set A False

LF O->A

Set A equal to zero.

7 - 59 July 1978

SECTION 7 IDR3868

Logical Test and Set (Logicize) V

If the test is satisfied, then set the A register equal to l.

If the test is not satisfied, then set the A register equal to 8.

The logical test and set instructions simplify the analysis of complex

logical expressions.

Their format is:

LT

Condition Code LE

If JL Register EQ\ 6, then 1 -—-> A; else @ —-> A

Floating Point NE
Register GE

GT

For example: LCLI means if the condition code is less than zero (LT

bit is set and EQ is cleared), set the A register equal to 1 else set A

equal to 0.

LCLT if CC < @, then 1->A; else O0->A

LCLE if CC < @, then 1->A; else 0->A

LCEQ if CC = @, then 1->A; else O->A

LCNE if CC # 6, then 1->A; else O->A

LCGE if CC > @, then 1->A; else 8—>A

LCGT if CC > @, then 1->A; else @->A

LLLT if L < @, then 1->A; else O0->A

LLLE if L < 6, then 1->A; else 0->A
LLEQ if L = @, then 1->A; else 0->A

LLNE if L # @, then 1->A; else @->A

LLGE if L > @, then 1->A; else 8—->A

LLGT if L > @, then 1->A; else 0->A

LFLT if F < @, then 1->A; else 9->A

LFLE if F < @, then 1->A; else 0->A

LFEQ if F = @, then 1->A; else 0—->A

LFNE if F # @, then 1->A; else @->A

LFGE if F > @, then 1->A; else 9->A
LFGT if F > @, then 1->A; else @->A

REV. @ 7 - 66

IDR3@68 INSTRUCTION DEFINITIONS - SRV

MCTL -— Machine Control

Enter Paging Mode and Jump (Prime 300) SR MR

EPMJ ADDR EA->PC R

EPMJ is a two-word instruction. The first word is the opcode; the
second word contains a 16-bit address pointing to the final effective
address which is transferred to the program counter; the associative
memory registers are cleared, and paging mode is enabled.

Leave Paging Mode and Jump (Prime 300) SR MR

LPMJ ADDR EA->PC R

LPMJ is a two-word instruction. The first word is the opcode; the

second word contains a 16-bit address pointing to the final effective
address which is transferred to the program counter. Paging mode is
disabled.

Enter Restricted Execution Mode and Jump (Prime 300) SR MR

ERMJ ADDR EA->PC R

ERMJ is a two-word instruction. The first word is the opcode; the

second word contains a 16-bit address pointing to the final effective
address which is transferred to the program counter; restricted
execution mode is enabled, and interrupts are enabled.

Enter Virtual Mode and Jump (Prime 309) SR MR

EVMJ ADDR FA->PC R

EVMJ is a two-word instruction that has the effect of an EPMJ and ERMJ
combined. The first word in the opcode; the second word contains a
lo-bit address pointing to the final effective address which is
transferred to the program counter; the associative memory registers
are cleared, paging mode is enabled, restricted execution mode is
enabled, and interrupts are enabled.

7 - 61 July 1978

SECTION 7 IDR3066

Enter Paging Mode and Jump to XCS (Prime 309) SR MR

EPMX ADDR EA->PC

EPMX is a two-word instruction. The first word is the opcode; the

second word contains a l6-bit pointer to the location of the

micro-instruction. Paging is enabled.

Enter Restricted Execution Mode and Jump to XCS (Prime 380) SR MR

ERMX ADDR EA-—>PC

ERMX is a two word instruction. The first is the opcode. The second

word contains a 16-bit pointer to the location of the micro
instruction. Restricted execution mode and interrupts are enabled.

Leave Paging Mode and Jump to XCS (Prime 389) SR MR

LPMX ADDR 7 EA->PC

LPMX is a two-word instruction. The first word is the opcode. The

second word contains a 16-bit pointer to the location of the micro

instruction. Paging is disabled.

Enter Virtual Mode and Jump to XCS (Prime 300) SR MR

EVMX ADDR EA->PC

EVMX is a two-word instruction. The first word, that has the effect of

an EPMX and ERMX combined, is the opcode; the second word contains a

16-bit pointer to the location of the micro-instruction. Paging,

interrupts, and restricted execution mode are enabled.

Supervisor Call SRV GEN

SVC

An addressing mode independent method of making an operating system

request. It is also independent of operating system. The call

protocol is such that an operation code (request) followed by argument

pointers (16-bit word number - on the Prime 490/508, segment number is

REV. 0 7 - 62

IDR306@ INSTRUCTION DEFINITIONS —- SRV

the segment in which the SVC resides) is made available to the
Operating system. PRIMOS II, III, IV and V have defined a uniform set
of operation codes to provide operating system independent services.
See PDR3198, System Commands, for definition of op codes and arguments.

Note

On the Prime 109-308, the SVC is treated as an
interrupt. On the Prime 358-590, the SVC is
treated as a fault.

Halt SRV GEN

HLT

Halt the processor with the STOP indicator lit on the control panel and

the program counter pointing to the next instruction in sequence (the
instruction that would have been executed had the HLT been replaced by
a no-op). The data lights display the next instruction.

No Operation SRV GEN

NOP PC+1->PC

Do nothing, but go on to the next instruction.

Save Registers AP

RSAV ADDR

I
<

Save the general, floating and XB registers in the save area starting

at location ADDR. Only those general and floating point registers
which are not zero are saved. A save mask is generated which
identifies the registers which are not zero. Registers which are zero
are not stored into the save area; their location remains untouched.

The format of the RSAV area is:

Save Mask

RF13H
RF13L
RF12H
RF12L

7 - 63 July 1978

SECTION 7 IDR3068

RF11H
RF11L

RF16H
RF19L

RFO7H
RFO7L
RFO6H
RFO6L
RF@5H
RFO5L
RF@4H

RFO4L
RF@3H
RFO3L
RF@2H
RF@2L
RFQ1H
RF@1L
RFOGH
RFOOL
XBH
XBL

legend:

RFxxH Current register file location xx High Half

RFxxL = current register file location xx Low Half.

Save Mask:

R RRRRRRRRRRR
|MBZ113/12|11]1@| 7] 6] 5] 4] 3] 2] 11 @l

1-4 5 6 7 8 91811 12 13 14 15 16

The size of the RSAV area varies between 3 words and 27 words.

Restore Registers I
< AP

RRST ADDR

Restore the general, floating and XB registers from the save area
starting at location ADDR. The format of the save area is as for RSAV,

above.

REV. @ 7 - 64

IDR3@68 INSTRUCTION DEFINITIONS - SRV

GENInvalidate STLB Entry I
<

ITLB R

Invalidate the Segmentation Translation Lookaside Buffer (STLB) entry

whose address is in L. This instruction must be executed whenever the

page table entry for the given address is changed.

If a Segment Descriptor Word (SDW) or a Descriptor Table Address

Register (DTAR) is changed, usually the entire STLB must_ be

invalidated. This can be done by executing ITLB once for each page of

any single segment (except segment @).

If the segment number portion of L is zero, the I/O T.L.B. entry

corresponding to address L is invalidated.

Load Process ID V GEN

LPID A->RPID R

Load the process id register from bits 1-12 of Register A.

Load Program Status Word I<

AP

LPSW ADDR R

Load Program Status Word is a restricted operation which can change the

status of the processor. It can be executed only in ring zero. The

instruction addresses a four-word block at location ADDR containing a

program counter (ring, segment, and word numbers) in the first two

words, keys in the third word and modals in the fourth. The program

counter and keys of the running process are loaded from the first three

words, then the processor modals are loaded from the fourth. If the

new keys have the in-dispatcher bit (bit 16) off, the current process

continues in execution but at a location defined by the new program

counter. If the new keys have the in-dispatcher bit on, the dispatcher
is entered to dispatch the highest priority ready process. Whenever
the current process again becomes the highest priority ready process,
it will then resume execution at the point defined by its new program
counter. The modals are associated with the processor and not the
process, so in either case, the new modals are effective immediately.

This instruction is used to load the four words of the register file

which cannot be correctly loaded with the STLR instruction: the

program counter (ring, segment, and word number), the keys, and the

modals. The STLR instruction should not be used to set these words, as

it dos not update the separate hardware registers in which the

7 = 65 July 1978

SECTION 7 IDR3068

processor maintains duplicate information to achieve higher
performance.

The LPSW instruction must never attempt to change the

current-register-set bits of the modals (bits 9-ll). This implies
that, unless for some reason the current register set in effect for the
execution of the program is known with certainty, any program wishing
to execute an LPSW must inhibit interrupts (to prevent an unexpected
process and register exchange), read the register set currently in
effect from the present modals (as with an LDLR '24), mask those
register-set bits into the modals to be loaded, and then finally
execute the LPSW. Fortunately, in both usual applications of LPSW the
needed register-set bits are predictable: when LPSW is first used
after Master Clear to turn on process-exchange mode, the
current-register-set bits should be §@18 (the processor is always
initialized to register set 2); and when LPSW is used to return from a
fault, check, or interrupt handled by inhibited code, whatever
register-set bits were stored away by the fault, check, or interrupt
are still correct and can simply be reloaded.

Similarly, except to eload status correctly stored on a fault, check,
or interrupt, an LPSW should never attempt to set either the save-done
bit (bit 15) or the in-dispatcher bit (bit 16) of the keys. The
initial LPSW following a Master Clear should have both these bits off.

Control Extended Control Store Vv GEN

CXCS

Move the A register to control register on writable control store
board.

Microcode Indirect A I< 5

MIA ADDR

Microcode entrance.

Microcode Indirect B I< [55

MIB ADDR

Microcode entrance.

REV. 0 7 - 66

IDR3868 INSTRUCTION DEFINITIONS - SRV

Writable Control Store RV GEN

wes

Reserved set of 64 op codes to serve as microcode entrances.

Load Writable Control Store Vv GEN

LXCS

Load writable control store portion of extended control store board

from the memory block pointed to by XB. The control register loaded by
CXCS modifies this instruction.

7 - 67 July 1978

SECTION 7 IDR3068

MOVE - Move Data

Interchange Characters in A SRV GEN

ICA A(1-8) <-> A(9-16)

Interchange the two bytes (characters) of register A (move the contents

of bits 1-8 to bits 9-16 and the contents of bits 9-16 to bits 1-8).

Interchange and Clear Left SRV GEN

ICL A(1-8)->A (9-16)
0->A (1-8)

Interchange the two bytes of register A and then clear the left byte
(bits 1-8).

Interchange and Clear Right SRV GEN

ICR A(1-16)->A (1-8)
8->A (1-16)

Move the contents of register A bits 9-16 to bits 1-8 and clear bits
1-16. The original contents of bits 1-8 are lost.

Interchange the A and B Registers SRV GEN

IAB A<-~->B

Move the contents of register A to register B and the contents of
register B to register A.

Exchange and Clear the A Register SRV GEN

XCA A->B

G-—>A

Exchange (swap) the A and B registers; then clear A.

REV. @ 7 —- 68

IDR3¢6@ INSTRUCTION DEFINITIONS - SRV

Exchange and Clear the B Register SRV GEN

XCB B->A
Q->B

Exchange (swap) the B and A registers; then clear register B.

Load the A Register SRV MR

LDA ADDR [EA] 16->A

Load the contents of location ADDR into the A register. The contents
of ADDR are unaffected; the previous contents of the A register are

lost.

Store the A Register SRV MR

STA ADDR A-> [EA]16

Store the contents of the A register in location ADDR. The contents of
the A register are unaffected; the previous contents of ADDR are lost.

Interchange Memory and the A Register SRV MR

IMA ADDR [EA]16<-—>A

Store the contents of the A register in location ADDR and load the
original contents of location ADDR into the A register; the original
contents of the A register and ADDR are swapped.

7 - 69 July 1978

SECTION 7 IDR3069

Load Index Register SRV MR

LDX ADDR [FA] 16->X

Load the contents of location ADDR into the index register. The

contents of ADDR are unaffected, the previous contents of the index

register are lost. This instruction cannot itself specify indexing,

although an address word retrieved in the effective address calculation

may do so in 16S mode.

Store Index Register SRV MR

STX ADDR X—> [EA] 16

Store the contents of the index register in location ADDR. The
contents of the index register are unaffected and the previous contents
of ADDR are lost. This instruction cannot itself specify indexing,

although an address word retrieved in the effective address calculation

may do so in 16S mode.

Double Load SR MR
—

DLD ADDR [EA] 32->A|B

Load the contents of location ADDR into register A and the contents of
location ADDR+1 into register B. The contents oof memory’ are

unaffected, the original contents of registers A and B are lost. This

instruction executes only in double precision mode.

Double Store SR MR

DST ADDR A|B—> [EA] 32

Store the contents of register A in location ADDR and the contents of

register B in location ADDR+1. The contents of registers A and B are
unaffected, the original contents of the specified memory locations are
lost. This instruction executes only in double precision mode.

REV. @ 7 - 70

Transfer A toB

TAB

Move the

Transfer

contents

B toA

TBA

Move the

Transfer

contents

A to X

TAX

Move the

Transfer

contents

X toA

TXA

Move the

Transfer

contents

AtoY

TAY

Move the

Transfer

contents

Y toA

TYA

Move the contents

of A to B,

of B to A.

of A to X.

of X to A.

of A to Y.

of Y to A.

IDR3069

A->B

B->A

A->X

X—->A

A->Y

Y->A

I
<

i
<

I<
I<

I<
i
<

71

INSTRUCTION DEFINITIONS - SRV

GEN

July 1978

SECTION 7 IDR3060

Store L Into Addressed Register V MR

STLR ADDR L->register (EA) W

Stores the contents of L into the register location specified by ADDR.
There are three cases of this instruction which are summarized below.
Only the word portion of the effective address, ((EA)W), is used.

Ring @ and Bit 2 of (EA)W=1 R

(EA)W(18-16) - Absolute register number from @ to '177.

Ring @ and Bit 2 of (EA)W = @ R

(EA)W(12-16) - Register 9-37 in current register set.

Ring other than @

(EA)W (1-12) must = @

(EA)W(13-16) - Register 9-17 in current register set.

Load L From Addressed Register Vv MR

LDLR ADDR register (EA)W->L

Copies the contents of the register specified by the word number
portion of ADDR into L. There are three cases of this instruction
which are summarized below. Only the word portion of the effective
address, (EA)W, is used.

Ring @ and Bit 2 of (EA)W = 1 R

(EA)W(1@-16) - Absolute register number from @-'177.

Ring @ and Bit 2 of (EA)W = @ R

(EA)W - Register @-'37 in the current register set.

Ring Other than 9

(EA)W(1-12) must = @.

(EA)W(13-16) - Register @-'17 in the current register set.

REV. @ 7 - 72

IDR3@6@ §INSTRUCTION DEFINITIONS - SRV

Interchange L and E Vv GEN

ILE L<-—>E

Swap the contents of registers L and E.

Load Long Vv MR

LDL ADDR [EA] 32->L

Move the 32-bit quantity at location ADDR to register L.

Load Y V MR

LDY ADDR [EA] 32-—>Y

Move the 16 bit quantity at location ADDR to register Y. Cannot be

indexed.

Store Long V MR

STL ADDR L-> [EA] 32

Store the contents of register L into the 32-bit long word at location

ADDR.

Store ¥ Vv AP

STY ADDR Y—> [EA] 32

Store the contents of Y into the location specified by ADDR. Cannot be

indexed.

7 - B July 1978

SECTION 7 IDR3060

Store A Conditionally Vv AP

STAC ADDR if [EA]16=B then A->[EA]16

Store the contents of A into location ADDR, if and only if, the
contents of location ADDR equals the contents of B.

The comparison and store are guaranteed not to be separated by the
execution of any other cpu instructions. That is, it is not possible
for any other instruction to change the contents of the addressed
memory word after the comparison has been made but before the store
takes place. The condition-code bits are set "equal" if the store
takes place, otherwise "unequal".

store L Conditionally Vv MR

STLC ADDR if [EA]32=E then L->[EA]32

Store the contents of L into the 32-bit location at ADDR if and only if
the contents of location ADDR equals the contents of E.

STLC and STAC are provided to aid cooperating sequential processes in
the manipulation of shared data. They often permit removal of mutually
exclusive critical sections, hence possibly indefinite delays, from
algorithms which would otherwise have required them.

Both of these instructions are interlocked against direct-memory input/
output. Hence, these instructions may be used to interlock a process
with a DMA, DMC or DMQ channel, or to interlock a memory location
possibly being accessed by I/O.

REV. @ 7 —- 74

IDR386@ INSTRUCTION DEFINITIONS - SRV

PCTLJ - Program Control and Jump

Compute Effective Address SR GEN

CEA

Interpret the contents of the A register as a 16-bit indirect address
word in the current addressing mode, calculate the effective address,
and place the final effective address back in the A register.

Jump SRV MR

JMP ADDR EA->PC

Transfer conrol to location ADDR by loading ADDR into the program
counter and continue sequential operation from that location.

Jump and Store SR MR

JST ADDR PC—> [EA] 16

EA+1-—>PC

Call a subroutine by storing the contents of the program counter (which
points to the next location after the JST instruction) in location
ADDR. Continue execution at location ADDR+1. In non-restricted mode,
interrupts are inhibited for one instruction cycle following a JST.

The return address is truncated according to the addressing mode before
it is stored, and higher-order bits of the Memory location are not
altered. It is thus possible to preset the I or X bits of such
locations:

Mode Preset Allowed

16S I, X

32S, 32R I

64R -

The usual procedure for calling a subroutine is to use a JST with an
effective address that specifies the subroutine's starting location.
Since the return address is saved at the entry point, a subsequent
return can be made to the instruction following the JST by an indirect
JMP through the entry point.

7 = 75 July 1978

SECTION 7 | IDR3060

Note

Cannot be used in shared code.

Jump If Equal to Zero R MR

JEQ ADDR if A=@, then EA->PC

If the contents of the A register are equal to zero, then load ADDR
into the program counter and continue sequential operation from that
location.

Jump If Not Equal to Zero R MR

JNE ADDR if A=@, then EA->PC

If the contents of the A register are not equal to zero, then load ADDR

into the program counter and continue sequential operation from that
location.

Jump If Less Than or Equal to Zero R MR

JLE ADDR if A<@, then EA->PC

If the contents of the A register are less than or equal to zero, then
load ADDR into the program counter and continue sequential operation

from that location.

Jump If Greater Than Zero R MR

JGT ADDR if A>@, then EA->PC

If the contents of the A register are greater than zero, then load ADDR

into the program counter and continue sequential operation from that

location.

REV. @- 7 - 76

IDR3868 INSTRUCTION DEFINITIONS —- SRV

Jump If Less Than Zero R | MR

JLT ADDR if A<@, then EA->PC

If the contents of the A register are less than zero, then load ADDR
into the program counter and continue sequential operation from that

location.

Jump If Greater Than or Equal to Zero R MR

JGE ADDR if A>@, then EA->PC

If the contents of the A register are greater than or equal to zero,
then load ADDR into the program counter and continue sequential

operation from that location.

Jump and Decrement Index R [5

JDX ADDR | X=X-]
if X=@, then EA->PC;else PC=PCt1l

Decrement the contents of the index register by one; then, if the
contents of X are not equal to zero, load ADDR into the program counter
and continue sequential operation from that location. Otherwise,
execute the next sequential instruction.

Jump and Increment Index R [55

JIX ADDR X=X+1
if X=@, then EA->PC; else PC=PC+l

Increment the contents of the index register by one; then, if the

contents of X are not equal to zero, load ADDR into the program counter

and continue sequential operation from that location. Otherwise,
execute the next sequential instruction.

Jump and Store Return in Index R MR

JSX ADDR PC+1->X
EA~>PC

7 = 77 July 1978

SECTION 7 IDR3068

Increment the program counter by one and load into the index register.

Load ADDR into the program counter and continue sequential operation
from that location.

Procedure Stack Control R

This group of instructions simplifies programming of pure procedures,
recursive or reentrant subroutines, and dynamic storage allocation.
CREP saves the program counter in the current stack frame and transfers
control to a subroutine. ENTR creates an n-word stack frame by
altering the stack pointer (S Register), and links the new frame with
the previous one. RIN undoes the work of both CREP and ENTR by
deleting the current frame and restoring the saved program counter
value for the calling program.

Stack frames created by recursive or reentrant procedures are assumed
to contain n+2 words, where n is the number of locations required for
variable or parameter storage during an invocation of the subroutine.
The other two words are reserved for the frame linkword (inserted by

ENTR) and a return address (inserted by CREP).

Call Recursive Entry Procedure R MR

CREP ADDR

Increment the programs counter, P, and load P+tl into the location
following the one specified by the current stack pointer. Load ADDR
into the program counter and continue execution from that location.

(P)+1 -—> [(S) +1]
EA -> (P)

The CREP instruction performs subroutine linkage for recursive or
reentrant procedures. CREP stores the return address in the second
word of a stack frame created by the ENTR instruction, rather than in
the destination address as in a JST:

(S) -> |___FramePointer}
(S)+l —> !

I

Stack
Frame

|
I

FEEnter Recursive Procedure Stack R

REV. @ 7 - 78

IDR3868 INSTRUCTION DEFINITIONS - SRV

ENTR N

Alter the stack pointer by subtracting the value of N and store the

previous value of S in the new location.

(S)1 -> [(S)1-EA]
(S)1-EA -> (S)2

The ENTR instruction allocates a block of memory as a stack frame
containing N locations:

(S)l ->

Frame l

The frame is created by subtracting N from the stack pointer contents,
(S)1, to form (S)2, and then storing (S)1l at that address. Thus, the

first word of the frame points to the previous frame.

Return from Recursive Procedure R GEN

RIN

Fetch the return address from word 2 of the previous stack frame and ©

load the result in the program counter; then transfer word 1 (the
pointer to the preceding stack frame) to the S register.

(S)+l —> P
(S) - S

If the return address is 8, (S) is unchanged and a PSU (Procedure Stack

Underflow) fault is taken (interrupt through location '75 in physical
memory is taken on the Prime 300).

Execute RV [55

XEC ADDR

7 - 79 July 1978

SECTION 7 IDR3060

Execute the instruction at location ADDR, but do not transfer control

to that location. Not all instructions can be executed by the
instruction.

No multi-word instructions can be executed properly. All one-word
instructions can be executed properly except JMP, JST, and address—mode
changing generics. Instructions which skip do so relative to the XEC
instruction. On any fault or interrupt, the saved program counter is
relative to the XEC instruction.

Jump and Set Y Vv MR

JSY ADDR (PC) W->Y
EA->PB

Save the word number of the program counter in the Y register and
transfer control to location ADDR. Only the word number portion of the
return address is saved, JSY may (usually) only be used to call
subroutines that reside in the same procedure segment.

Jump and Set XB V MR

JSXB ADDR PC->XB

EA->PB

Save the 32-bit contents of the program counter in XB, and transfer
control to location ADDR. JSXB may be used to make both intersegment
and intrasegment subroutine calls.

Effective Address to A Register R MR

EAA ADDR EA—>A

Calculate the effective address and load it into register A. The
contents of ADDR are unaffected and the original contents of register A
are overwritten and lost.

Effective Address to L i< EE

EAL ADDR EA->L

REV. @ 7 - 88

IDR3068 INSTRUCTION DEFINITIONS - SRV

Calculate the effective address and put it into the L register.

Effective Address to LB Vv MR

EALB ADDR EA->LB

Calculate the effective address and put it into the link base, LB.

Effective Address to XB Vv MR

EAXB ADDR EA->XB

Calculate the effective address and put it into the temporary base, XB.

Procedure Call

PCL ADDR

I
< E

Call procedure whose ECB is at ADDR.

Step l.

ae

b.

Calculation of Target Ring Number

If the caller has Read access to the segment containing the
ECB (segment number of ADDR), new ring=current ring.

If the caller has Gate access to the segment containing the
ECB, new ring=ring field of ECB(PB) The ECB must start on a

modulo-16 boundary in this case.

If neither a. nor b. holds, an access violation results.

Stack Frame Allocation

If ECB(STACK ROOT)=0, then stack root=ECB (ROOTSN)

Fetch the free pointer at location 0 of segment (stack root).
If there is sufficient room remaining (size needed given by
ECB(SFSIZE), allocate frame here and update free pointer in
segment stack root.

If no room in this segment, fetch the extension pointer at
location 2 of the segment pointed to by free pointer. If @,

7 - 81 July 1978

SECTION 7 IDR3060

generate stack overflow fault. Else, use extension pointer as

a new free pointer and go to step b.

Step 3. New Frame Header Setup

a. The flag word (word @) is set to @.

b. The caller's PB, SB, LB and keys are saved in the frame
header. The ring of field of PB properly reflects the ring of
execution of the caller. The saved PB at this moment points
to the word following the PCL instruction. It will be updated
when argument transfer (if any) complete to point beyond the
argument templates. Word 'll of the stack frame is set to the
word number of this initial value of saved PB (i.e., points to
PCL+2) .

Step 4. Callee State Load

The callee's PB, LB, and keys are loaded from the entry

control block, except that the ring field of PB has no effect
if the ECB is not a gate. The SB register is set to point at
the new stack frame.

Step 5. Argument Transfer

If ECB(NARGS) is 8, this step is skipped. Otherwise, the one
or more AP's (argument templates) following the PCL
instruction are processed to load argument pointers into the

callee's stack frame. At least one AP must follow PCL if the
callee expects arguments; no AP may follow if the callee
expects no arguments. The saved PB in callee's stack frame is
updated to point beyond the AP's when argument transfer is
done. See the ARGT instruction for a description of argument
transfer.

Argument Transfer I< :

ARGT

The Argument Transfer operation must be the first executable
instruction of any procedure which is defined by its entry control
block as accepting arguments. It serves as a holding point for the
program counter while argument transfer is taking place into the new
frame. The program counter is advanced past it when argument transfer
is complete. Procedures which specify zero arguments in their entry
control blocks must not begin with an ARGT.

REV. @ 7 =- 82

IDR3868 INSTRUCTION DEFINITIONS - SRV

The list of argument transfer templates following the caller's PCL

instruction is evaluated to generate a list of actual argument pointers
in the new frame. The format of each argument transfer template is
shown in Section 5. Each argument pointer may require one or more
templates for its generation. The last template for each argument has
its S (store) bit set. The last template for the last argument in the
list has its L (last) bit set to terminate the argument transfer.

Each template specifies the calculation of an address by specifying a
base register, a word and bit displacement from that register, and an
optional indirection. If further offsets or indirections are required
to generate the final argument address, the template will not have its
store bit set, and the address calculated so far will be placed in the
temporary base (XB) register (ring, segment, word numbers) and
X-register (bit number) for access by the next template.

Each time a template with its store bit set is encountered, the
calculated address is stored in the next argument pointer position in

the new stack frame. The first argument pointer position is specified

in the procedure's ECB. If the address has a zero bit offset, the
address is stored in the two-word indirect format (with the E-bit
clear). Otherwise it is stored in the three-word format (E-bit set).
In either case, three words are allocated to each pointer in the
argument list.

If the caller's template list generates fewer arguments than are
expected by the callee (as specified in the entry control block),
argument pointers containing the pointer-fault bit set and all other
bits reset (pointer-fault code 100000, "omitted argument") are stored
for the missing arguments. On the other hand, if the caller's list
generates more arguments than are specified by the callee, the surplus
argments are ignored. If the called procedure attempts to reference an
omitted argument, other than to simply pass it on in another call, it
will experience a pointer fault. If it passes on an omitted argument
in another call, the argument will appear omitted to the newly called
procedure.

If a call intends to omit all expected arguments, it may be followed by
an argument transfer template with its last bit set but with its store
bit reset.

Stack Extend I
< Q B

STEX

Obtains additional space in the procedure stack for automatic

variables. Such space is automatically deallocated and reclaimed for
other uses when the procedure returns, just like the original frame
created when the procedure was entered. The L register specifies the

7 - 83 July 1978

SECTION 7 IDR3069

desired contiguous size of the extension in words. The size is rounded

up to an even number of words. The address of the extension is

returned as a segment number/word number pointer in the L register. It
is possible that the extension may not be contiguous with the initial

frame (there may have been insufficient room left in the same segment).
Any number of extensions may be made. This instruction can cause a
stack overflow fault.

Procedure Return V GEN

PRIN

Deallocates the current stack frame and returns to the environment of
the procedure that called it. The stack frame is deallocated by
storing the current stack base register into the free pointer. The
caller's state is restored by loading his program counter, stack base
register, linkage base register, and keys from the frame being left.
The ring number in the program counter is weakened with the current
ring number The current stack frame consists of the frame created upon
entry to the current procedure plus all extensions created during the

execution of the current procedure.

REV. 9 7 - 84

IDR3068 INSTRUCTION DEFINITIONS - SRV

PRCEX - Process Exchange — (Restricted) Vv AP

There are seven process exchange instructions:

INBC

INBN
INEC
INEN

NFYB
NF'YE
WAIT

See Section 2 for a complete discussion of the process exchange
mechanism.

7 = 85 July 1978

SECTION 7 IDR3069

QUEUE - Queue Management Instructions

The instructions provided for queue manipulation are of the generic-AP

class, in which a following AP-pointer provides the address to the
queue control block.

Data is to or from register A and the results of the operation are

given in the condition code bits for later testing.

ADDR refers to a control block in virtual space. The virtual queue
control block differs from the physical in that a segment number is
provided instead of a physical address. Ring zero privilege is
required to manipulate physical queues; any non-ring zero attempt to
access physical queues will result in a restrict mode violation fault.
Also the ring number determines the privilege of access into both the
control block and the data block.

Add to Top of Queue i
< AP

ATQ ADDR

Add the contents of the A-register to the top of the queue defined by
the QCB (Queue Control Block) at ADDR. The condition codes are set EQ

if the queue is full e.g., the word could not be added.

Add to Bottom of Queue i< AP

ABQ ADDR

Add the contents of the A-register to the bottom of the queue defined
by the QCB at ADDR. The condition codes are set EQ if the queue is
full e.g., the word could not be added.

Remove from Top of Queue
 {

< AP

RTQ ADDR

Remove a single word from the top of the queue defined by the QCB at
ADDR, and place it in the A-register. If the queue is empty, set A=0
and condition codes EQ.

REV. @ 7 —- 86

IDR306@ INSTRUCTION DEFINITIONS - SRV

Remove from Bottom of Queue Vv AP

RBQ ADDR

Remove a single word from the bottom of the queue defined by the QCB at
ADDR, and place it in the A-register. If the queue is empty, set A=@
and condition codes EQ.

Test Queue I
< AP

TSTQ ADDR

Set the A-register to the number of items in the queue defined by the

QCB at ADDR. If the queue is empty, set condition codes EQ.

7 = 87 July 1978

SECTION 7 IDR3060

SHIFT - Shift Group

Shifting is the movement of the contents of a register bit-to-bit. The
instructions in this group shift or rotate right or left the contents
of A or the contents of A and B treated as a single register with A on

the left. Although these instructions are similar in format and
operation, functionally some are logical and others arithmetic.

A shift is logical or arithmetic simply in terms of the way the data
word is interpeted: a logical shift treats it as a string of bits
whereas an arithmetic shift treats it as a signed number.

Rotation is a cyclic logical shift such that information rotated out at
one end is put back in at the other. The last bit rotated in at the
right or left is also saved in C.

In a logical or left shift, the contents of the register or registers
are moved bit-to-bit with 8's brought in at the end being vacated.
Information shifted out at the other end is lost.

A right arithmetic shift fills the vacated left positions with the sign
bit. The C-bit reflects the last bit shifted out.

A left arithmetic shift includes the sign, but interprets a sign change
as overflow. It fills the vacated right positions with O's and sets
the C-bit on overflow.

Hence, arithmetic shifting is equivalent to multiplying or dividing the
number by a power of 2, provided no information is lost. These
operations also use the C-bit to detect the loss of any bit of
Significance in a left arithmetic shift, and in all other cases to save
the last bit shifted cut.

In a shift instruction word, bits 3-6 are all @'s and the group is

indicated by @1 in bits 1 and 2. Bits 7-18 indicate the particular
type of shift, and bits 11-16 specify the twos complement of the number
of places to be shifted. Mnemonics are available for the individual

types, so the opcode may be regarded as the left four digits of the
instruction word, with the word completed by adding the right two
digits for the number of places. Note that the mnemonics are
constructed using "logical" to mean a logical shift and "shift" to mean
specifically an arithmetic shift.

REV. 0 | 7 - 88

IDR3868 INSTRUCTION DEFINITIONS - SRV

A Left Logical SRV SHFT

ALL n Cc <--A --A <-- @

1 16

Shift the contents of register A left n places, bringing zeros into bit
16; data shifted out of bit 1 are lost, except that the last bit

shifted out is saved in C.

A Right Logical SRV SHFT

ARL n @—->A —-A ->C
1 16

Shift the contents of register A right n places, bringing zeros into

bit 1; data shifted out of bit 16 are lost, except that the last bit

shifted out is saved in C.

Long Right Logical SRV SHFT

LRL n 0-—->A --A —->B-—-B —->C

1 16 1 16

Shift the contents of register A and B right n places, bringing zeros

into bit 1 of register A. Bit 16 of register A is shifted into bit 1

of register B. Data shifted out of bit 16 of register B are lost,

except that the last bit shifted out is saved in C.

Long Left Logical | SRV SHFT

LLL n C<-A -A <—-B -B <- @
1 16 1 16

Shift the contents of registers A and B left n places, bringing zeros

into bit 16 of register B. Bit 1 of register B is shifted into bit 16

of register A; data shifted out of bit 1 of register A are lost,

except that the last bit shifted out is saved in C.

7 - 89 July 1978

SECTION 7 IDR3060

A Left Rotate SRV SHFT

ALR n A —-A <—>>C
1 16

Shift the contents of register A left n places, rotating bit 1 into bit
16. The last bit rotated back in at the right is also saved in C.

A Right Rotate SRV SHFT

ARR n C <--> A --A

1 16

Shift the contents of register A right n places, rotating bit 16 into
bit 1. The last bit rotated back in at the left is also saved inC.

Long Left Rotate SRV SHFT

LLR n A —-A <-B-—-B <—-C
1 16 1 16

Shift the contents of registers A and B left n places, rotating bit 1
of register A into bit 16 of register B. Bit 1 of register B shifts
into bit 16 of register A. The last bit rotated from register A back
to B is also saved inC.

Long Right Rotate SRV SHFT

LRR n C <-> A -A ->B -—-B

1 16 1 16

Shift the contents of register A and B right n places, rotating bit 16

of register B into bit 1 of register A. Bit 16 of register A is
shifted into bit 1 of register B. The last bit rotated from register B
back to register A is also saved in C.

A Left Shift SRV SHFT

ALS n A <-A ~—-A <—@

REV. @ 7 - 9

IDR3868 INSTRUCTION DEFINITIONS - SRV

Shift the contents of register A left arithmetically n places, bringing

zeros into bit 16. Data shifted out of bit 1 are lost. The C-bit is
initially cleared. If the sign (bit 1) changes state, set C. A sign
change indicates that a bit of significance (a one in a positive

number, a zero in a negative) has been shifted out of the magnitude
part.

A Right Shift | SRV SHFT

ARS n AoA —-A -—->C
1 2 16

Shift the contents of register A right arithmetically n places, leaving

the sign (bit 1) unaffected, but shifting it into the magnitude part,
zeros in a positive number, ones in a negative. Data shifted out of
bit 16 are lost, except that the last bit shifted out is saved in C.

Long Left Shift SR SHFT

LLS n A <-A --A B B —B <- @
1 2 16 1 2 16

Shift the contents of the 3l-bit integer in register AIB left
arithmetically n places, bringing zeros into bit 16 of register B,
bypassing bit 1 of register B; Bit 2 of register B is shifted into bit
16 of register A. Data shifted out of bit 1 of register A are lost.

If the sign (bit 1 of register A) changes state, set C; otherwise,
clear C. A sign change indicates that a bit of significance (a one in
a positive number, a zero in a negative) has been shifted out of the
Magnitude part.

Long Right Shift SR SHFT

LRS n A —-> A -A B B-B -—->C
1 2 16 1 2 16

Shift the contents of the 31-bit integer in register AIB right
arithmetically n places, leaving bit 1 of register A unaffected,
bypassing bit 1 of register B, and shifting the sign (bit 1 of register
A) into the magnitude part (zeros ina positive number, ones in a
negative). Bit 16 of register A is shifted into bit 2 of register B;
data shifted out of B bit 16 are lost, except that the last bit shifted
out is saved in C.

7 = 91 July 1978

SECTION 7 IDR3060

Long Left Shift Vv SHFT

LES n L<-L-——-L<- 0

1 2 32

Shift the contents of the 32-bit integer in the L register left.
arithmetically n places, bringing zeros into bit 32. Data shifted out
of bit 1 are lost. If the sign (bit 1) changes state, set C;
otherwise clear C.

Long Right Shift V SHFT

LLS n L<L-—--L-C
1 2 32

Shift the contents of the 32-bit integer in the L register right
arithmetically n places, leaving bit 1 unaffected. Data shifted out of
bit 32 are lost, except that the last bit shifted out is saved in C.

REV. @ 7 = 92

IDR3@68 INSTRUCTION DEFINITIONS — SRV

SKIP — Conditional Skip

Skip if A Greater Than Zero SRV GEN

SGT if A>@ then PC+1->PC

If the contents of register A is greater than zero, skip the next

instruction in sequence.

Skip if A Less Than or Equal to Zero SRV GEN

SLE if A<@ then PC+1->PC

If the number contained in A is less than or equal to zero, skip the

next instruction in Sequence.

Skip on A Bit Set SRV GEN

SAS n if A(n)=l then PC+1->PC

If bit n in register A is 1, skip the next instruction in sequence.

Note

The assembler will convert n_ to the octal

equivalent of the bit number minus one.

Increment Memory, Replace, and Skip SRV 55

IRS ADDR [EA] 16+1-—>|EA]16;
if [EA]16=@ then PC+1->PC

Add 1 to the contents of location ADDR and place the result back in
ADDR. Skip the next instruction in sequence if the result is Zero.

7 = 93 July 1978

SECTION 7 IDR3869

Increment and Replace Index SRV GEN

IRX X+1->X;

if X=@ then PC+1->PC

Add 1 to the contents of the index register and place the result back
in that register. Skip the next instruction in sequence if the result
is zero. 7

Decrement and Replace Index SRV GEN

DRX X-1->X

if X=@ then PC+l1->PC

Subtract 1 from the contents of the index register and place the result
back in that register. Skip the next instruction in sequence if the
result is zero.

Skip on A Bit Reset SRV GEN

SAR n if A(n)=@ then PC+1->PC

If bit n in the A register is 9, skip the next instruction in sequence.

Note

The assembler will convert n to octal equivalent of
the bit number minus one.

Skip on Sense Switch Set | SRV GEN

SNS n if sense switch n=l then PC+tl->PC

If sense switch n is on (up), skip the next instruction in sequence.

Skip on Sense Switch Reset SRV GEN

SNR n if sense switch n=@ then PC+1->PC

If sense switch n is off (not up), skip the next instruction in
sequence.

REV. © 7 - 94

IDR3@6@ INSTRUCTION DEFINITIONS - SRV

Skip Group

SKP n

Skip conditions are selected by individual bits or combinations of
them.

e Bits 1-6 are always 100000.

e Bit 7=l means if true, skip the next instruction.

@ Bit 7=@ means if false, skip the next instruction.

e Bit 9=@ means test a combination of bits.

The various conditions, the bits that select them and the mnemonics and
opcodes for them are given in Table 7-1.

7 = 95 July 1978

SECTION 7

Mnemonic

NOP

SKP

SMI

SPL

SLN

SLZ

SNZ

SZE

SS1

SR1

SS2

SR2

SS3

SR3

Ss4

SR4

SSS

SSR

SSC

SRC

IDR3068

Table 7-1. Combination Skip Group

Selector
Bits Bit 7

1

Q

8 1

8 g

19 @

10 Gg

11 1

11 Q

12 1

12 i)

13 1

13)

14 1

14 0

15 1

15 g

12-15 1

12-15 Gg

16 1

16 0

Skip on Condition

None (no-op)

Skip unconditionally

A Minus (A(1)= 1)

A Plus (A(1)= @)

LSB Nonzero (A(16)= 1)

LSB Zero (A(16)= @)

A Nonz

A Zero

Sense

Sense

Sense

Sense

Sense

Sense

Sense

Sense

ero

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Switch

Any of Sense
1-4

Any of
1-4

Set C

Clear

Set

Sense

Reset

C

1 Set

1 Clear

2 Set

2 Clear

3 Set

3 Clear

4 Set

4 Clear

Switches

Switches

Skip conditions can be combined using SKP and giving
configuration for the combination in the address field.

the

Op Code

‘101000

"180000

‘181408

"180400

"101198

"100180

"101048

"180040

"181020

"190820

"101819

"100018

"181004

"100004

"181902

"108002

"101036

"188036

"181001

"190001

bit 7-16

PART THREE

INSTRUCTION SUMMARY I MCDE

TDR3068 - FORMATS — I-MODE

SECTION 8

FORMATS - I-MODE

32I mode implements the general register architecture of the Pr ime-500.

The data types and instruction formats combine to provide an extensive
range of addressing types.

DATA STRUCTURES

Word Length

32 bits

Halfword Length

16 bits

Byte Length

8 bits

Character Strings

Variable length collection of bytes from 1 to 2**17-l.

Numbers

@e Unsigned 32 and 64 bit integers

1 3233 CO” 64

@ Signed 32-bit integers

| s | |

1 2 32

8 - 1 July 1978

SECTION 8 IDR3960

REV.

e Signed 64-bit integers

| s | | |

1 2 32 33

e Floating Point - Single Precision 32 bits

| s | MANTISSA |

| MANTISSA | EXPONENT XCS 128 |

17 24 25 32

@ Floating Point - Double Precision 64 bits

| s | MANTISSA |

1 2 16

| MANTISSA |

17 32

| MANTISSA |

33 48

| EXPONENT -— XCS 128

49 64

@ Decimal - one to 63 digits in five forms

64

IDR3068 FORMATS — I-MODE

Decimal Control Word Format:

To specify the characteristics of the operation to be performed, most
decimal arithmetic instructions require a control word to be loaded in
general register 2.

The general format is as follows:

A - B CC - T D &E F G H

1-6 78 9 18 11 12 13 14-16 17-22 23-29 38-32

Where:

A - Field 1, number of digits

E - Field 1, decimal data type

B ~ If set, sign of field 1 is treated as opposite of its
actual value.

C - If set, sign of field 2 is treated as opposite of its
actual value. (XAD, XMP, XDV, XCM only)

D - Round flag (XMV only)

F - Field 2, number of digits

H - Field 2, decimal data type

G - Scale differential (XAD, XMV, XCM only)

T - Generate positive results always

- - Unused, must be zero

The fields used by each instruction are listed in the instruction
descriptions. Fields not used by an instruction must be zero.

The. scale differential specifies the difference in decimal point
alignment between the operator and fields for some instructions. This
field is treated as a signed 7 bit two's complement number. A positive
value indicates a right shifting of Field 1 with respect to Field 2,
and a negative value indicates a left shifting.

8 - 3 July 1978

SECTION 8 IDR3068

Address Pointer (AP)

Two word pointer which follows AP instructions.

[BITNO| I | - | BRI] - | WORDNO |

1-4 5 6 7 8 99-1617 32

BITNO (Bits 1-4) - Bit number

I (Bit 5) - Indirect bit

BR (Bits 7-8) - Base register

@@ = Procedure Base (PB)

@1 = Stack Base (SB)

19 = Link Base (LB)

11 = Temporary Base (XB)

WORDNO (Bit 17-32) —-— Word number offset from base

contents

Indirect Pointer - Two Word Memory Reference (IP)

| F | RR | E | SEGNO |

1 23 4 5 16

| WORDNO |

17 32

{ BITNO | |

33 36 «(37 48

REV. @ 8 - 4

register

F (Bit 1)

RR (Bits 2-3)

E (Bit 4)

SEGNO (Bits 5-16)

WORDNO (Bit 17-32)

BITNO (Bits 33-36)

Stack Segment Header

IDR3068 FORMATS - I-MODE

Generate pointer fault if set. In the fault

case, the entire first word (bits 1-16)
forms a fault code, and no other bits are
inspected.

Ring of privilege - controls access rights

Extend bit. If zero, no third word is

present and the bit number of the effective
address is taken as zero. If one, the third
word is present and gives the bit number.

The segment number portion of the effective

address

The word number portion of the effective

address.

The bit number if E is a one.

@ | FREE POINTER |
1 | |

2 | EXTENSION SEGMENT |

3 | POINTER |

Word Meaning

Q,1 Free pointer - segment number/word number of available

location at which to build next frame. Must be even.

2,3 Extension segment pointer - segment number/word number of

locations at which to build next frame when current segment
overflow. If zero, a stack overflow fault occurs when
current segment overflows.

8 - 5 July 1978

SECTION 8 IDR3069

PCL Stack Frame Header

FLAG BITS |

| STACK ROOT SEGMENT NUMBER |

W
W

B
O |

|
RETURN POINTER |

|

1
> CALLER'S SAVED STACK |

BASE REGISTER |

S
N

Word

2,3

4,5

6,7

REV. @

| CALLER'S SAVED LINK |
BASE REGISTER |

| CALLER'S SAVED KEYS |

| LOCATION FOLLOWING CALL |

Meaning

Flag bits - set to zero by PCL when frame is created

Stack root segment number - for locating free pointer

Return pointer - segment number/word number of location
following call and argument sequence which created this

frame .

Caller's saved stack base register

Caller's saved link base register

Caller's saved keys

Word number of location following call - beginning of

argument transfer templates, if any

IDR3060 FORMATS - I-MODE

CALF Stack Frame Header

FLAG BITS |

t
e STACK ROOT SEGMENT NUMBER |

RETURN POINTER |

U
1 CALLER'S SAVED STACK |

BASE REGISTER |

S
T
O CALLER'S SAVED LINK |

BASE REGISTER |

CALLER'S SAVED KEYS |

O
o LOCATION FOLLOWING CALL |

16 | FAULT CODE |

11
12 |

FAULT ADDRESS |

13 |
14
15 |

RESERVED |

Word

2,3

4,5

6,7

19

Meaning

Flag bits - set to ones by CALF fault

Stack root segment number - for locating free pointer

Return pointer - segment number/word number of location
following call and argument sequence which created this

frame

Caller's saved stack base register

Caller's saved link base register

Caller's saved keys

Word number of location following call - beginning of
argument transfer templates, if any

Fault code

8 - 7 July 1978

SECTION 8 IDR3068

ll Fault address

13-15 Reserved

Entry Control Block

@ | POINTER TO CALLED |
1 | PROCEDURE |

2 | STACK FRAME SIZE |

3. | STACK ROOT SEGMENT NUMBER |

4 | ARGUMENT LIST DISPLACEMENT |

5 | NUMBER OF ARGUMENTS |

6 | LINK BASE REGISTEROF |
7 | CALLED PROCEDURE |

8 | KEYS |

|
|
| RESERVED

12 |
|
|
|

Word Meaning

@,1 Pointer (ring, segment, word number) to the first executable

instruction of the called procedure.

2 Stack frame size to create (in words). Must be even.

3 Stack root segment number. If zero, keep same stack.

4 Displacement in new frame of where to build argument list.

5 Number of arguments expected.

6,7 Called procedure's link base (location of called procedure's

linkage frame less '408).

8 CPU keys desired by called procedure.

REV. @ 8 - 8

IDR3068 FORMATS — I-MODE

9-15 Reserved, must be zero.

Entry control blocks which are gates must begin on a 9 modulo 16
boundary, and must specify a new stack root.

Queue Control Block

TOP POINTER |
[1 16|

| BOTTOM POINTER |
117 32|

| V | @@0 | QUEUE DATA BLOCK |
133 134 36/37 48 |

| MASK |
|49 64|

Bits Meaning

1-16 Top Pointer-read

17-32 Bottom Pointer-Write

33 (V) Virtual/physical control bit

physical queue0

1 =virtual queue

34-36 Reserved ~ must be zero

37-48 Queue data block address

Segment number if virtual queue

High order physical address bits if physical queue

49-64 Mask - value 2**K-1

Queue control blocks must start on even word boundaries.

Argument Transfer Template:

| BIlIfsl-|]BRILISI{[-] | WORDNO |

14 5 6 7 8 9 18 16 17 32

8 - 9 July 1978

SECTION 8 IDR3062

B (Bits 1-4) Bit number

I (Bit 5) Indirect

BR (Bits 7-8) Base register

66 = Procedure base (PB)
01 = Stack base (SB)
19 = Link base (LB)
11 = Temporary base (XB)

L (Bit 9) - Last template for this call

S (Bit 10) ~ Store argument address. Last template for
this argument.

WORDNO (Bits 17-32) Word number offset from base register

REV. @ 8 - 10

IDR3069 FORMATS - I-MODE

Figure 8-l. Queue Data Structures

QUEUE DATA BLOCK, DATA NOT WRAPPED

| |<--Origin = M*2**K
(empty)	

Top-Read Ptr-->| (head) | |
| | Length = 2**K
(data)	
(tail)	

|
Bottom-Write Ptr-->| | |

| (empty) | |
| <--End = (M+]) *2**K-1

QUEUE DATA BLOCK, DATA WRAPPED

| (data) |<--Origin

= M*¥2**K

| | |
| (tail) | |

|
Bottom-Write Ptr-->| |

(empty) Length = 2**K

Top-Read Ptr-->| (head) |
| |
| (data) |
| | (M+1) *2**K—-1

8 - ll July 1978

SECTION 8 IDR3060

PROCESSOR CHARACTERISTICS

I-Mode Register Description:

SCRATCH DMX CURRENT REGISTER SET (CRS)
RSO RS1 RS2 RS3
ADR HIGH LOW ADR HIGH LOW ADR ADR HIGH LOW

6 TRI - 49 - - 168 148 GR@:OLT2 ~
1 TRI - 4, - - 191 141 GRI1:PTS -
2 TR2 = 42. - - 182 142 GR2(1,A,LH) (2,B,LL)
3 TR3 - 43. - - 183 143 GR3(EH) (EL)
4 TR4 - 44 - - 194 144 GR4 -
5 TR5 - 45 - - 1@5 145 GR5(3,8,Y) -
6 TR6 - 46 - - 106 146 GR6 -
7 TR7 = 47 - - 197 147 GR7(@,X) -

16 RDMX1 - 56 - - 11@ 158 FARI1(13) -
11 RDMX2 - 51 - - 111 151 FLRI1 -
12 - RATMPL 52 - - 112 152 FAR2(4) (5)
13 RSGT1 - 53. - - 113 153 FLR2:VSC(6) -
14 RSGT2 ~ 54 - - 114 154 PB -
15 RECC1 = 55 - - 115 155 SB(14) (15)
16 RECC2 - 56 - - 116 156 LB(16) (17)
17 - REOIV 57 = - 117 157 XB -
26 ZERO ONE 60 (28) (21) 120 168 DTAR3 (19) -
21 PBSAVE - 61 - - 121 161 DTAR2 -
22 RDMX3 - 62 (22) (23) 122 162 DTARI 1
23 RDMX4 - 63 - = 123 163 DTAR@ -
24 C377 - 64 (24) (25) 124 164 KEYS (MODALS)
25 - - 65 - - 125 165 OWNER -
26 - - 66 (26) (27) 126 166 FCODE(11) -
27 - - 67 = - 127 167 FADDR (12)
3@ PSWPB - 76 (38) (31) 13@ 170 TIMER -
31 PSWKEYS 1 71 - - 131 171 - -
32 PPA:PLA PCBA 72 (32) (33) 132 172 - -
33 PPB:PLB PCBB 730 - = 133 173 - -
34 DSWRMA - 74 (34) (35) 134 174 - -
35 DSWSTAT - 75 - - 135 175 - -
36 DSWPB - 76 (36) (37) 136 176 - -
37 RSAVPTR —- 7700 = - 137 177 - -

NOTICE - Letters in parentheses () show V-Mode correspondence
~ Numbers in parentheses () show P36@ Address Mapping

Definitions
TR Temporary Registers

TR7 - Saved return pointer on a crash (automatic save)

RDMX Register DMX
RDMX1 - Used by DMC, buffer start pointer
RDMX2 - REA at time of DMX trap
RDMX3 - Save RD during DMQ
RDMX4 - Used as working register

RATMPL Read Address Trap Map to rP Low

REV. @ 8 - 12

REOIV
ZERO/ONE
PBSAVE

C377
PSWPB

PSWKEYS

PPA
PLA
PCBA
PPB
PLA
PCBB
DSWRMA

DSWSTAT
DSWPB

RSAVPTR

GR
OLT2
PTS
FARIL
FLR1
FAR2
FLR2

S
a
b
&

‘AR
KEYS
MODALS
OWNER
FCODE
FADDR
TIMER

IDR3969 FORMATS —- I-MODE

Register Segmentation Trap
RSGT1 - SDW2 / address of Page Map
RSGT2 —- contents of Page Map / DSW2
Register End of Instruction Vector
Constants
Procedure Base SAVE
saved return pointer when return pointer used elsewhere
Constant
Processor Status Word Procedure Base
return pointer for interupt return (also used for Prime
360 compatibility)
Processor Status Word KEYS
KEYS for interupt return (also used for Prime 300 compatibility)
Pointer to Process A
Pointer to Level A
Process Control Block A
Pointer to Process B
Pointer to Level B
Process Control Block B
Diagnostic Status Word RMA
RMA at last Check Trap
Diagnostic Status Word STATus
Diagnostic Status Word Procedure Base
Return pointer or PBSAVE at last check
Register SAVE Pointer
Location of Register Save Area after Halt

General Register
Old Length and Type
Pointer To Sign
Field Address Register
Field Length Register
Field Address Register
Field Length Register
Procedure Base
PBH — RPH

PBL — @

Stack Base
Link Base
Temp. (auxiliary) base
Descriptor Table adr. reg.
See below
see below
OWNER
Fault CODE
Fault ADDRess
TIMER

8 - 13 July 1978

SECTION 8 IDR3068

General Register - 32 bits

The eight general registers are numbered from 9 - 7. 1 - 7 may be
used for index registers. All are used as fixed point and logical
accumulators in register to memory and register to register
operations.

Floating Point Registers - 64 bits

Base

The two floating point registers are numbered 8 andl. They are
used as single and double precision accumulators in register to
memory and register to register operations. The two foating point

registers overlap the two field length address registers on the
Prime 580 and care must be used in moving between floating point
and field registers.

Registers -— 32-bits

The four base registers:

Procedure Base Register PB
- Stack Base Register SB
Link Base Register LB
Temporary Base Register XB

are discussed in Section 2, Prime 488 Architecture. Their format

iss

\@| RING | ® | SEGNO | WORDNO |

123 4 5 1617 32

RING (Bits 2-3) - Ring Number

SEGNO (Bits 5-16) - Segment Number

WORDNO (Bits 17-32) - Word Number

Field Registers — 64 bits

REV.

The field registers, numbered 8 and 1, have the same meaning as in

V-mode. They are distinguished from the floating point registers
by the instructions which use them, but exercise caution in moving
from one instruction type to the other. The floating point
registers overlap the field registers.

IDR3068 FORMATS —- I-MODE

Process status information is collected in a 16-bit register known
as the "keys". It may be referenced by the LPSW, TKA, and TAK
instructions.

IC|@|L| MODE |FIXILTIEQ] @ - @ |I|sS|

123 46 78 91@11-14 15 16

C (Bit 1)

L (Bit 3)

- C-Bit

- L-Bit

MODE (Bits 4-6) - Addressing Mode:

F (Bit 7)

X (Bit 8)

LT (Bit 9)

EQ (Bit 18)

DEX (Bit 11)

I (Bit 15)

S (Bit 16)

G08 = 16S

G01 = 32S
G11 = 32R
G18 = 64R
118 = 64V
188 = 321

- Floating point exception disable:

take fault

set C-bit

g

1

~ Integer Exception enable

0
1

set C-bit

take fault

~ Condition code bits:

LT = negative
EQ =

- Decimal exception enable
®@ = set C-bit
l = take fault

- In dispatcher - set/cleared only by process
exchange

- Save done - set/cleared only by process
exchange

8 - 15 July 1978

SECTION 8 IDR3068

C-Bit

Set by error conditions in arithmetic operations.

L-Bit

Set by an arithmetic or shift operation except IRS, IRX, DRX.

Equal to carry out of the most significant bit (bit 1) of an

arithmetic operation. It is valuable for simulating multiple -

precision operations and for performing unsigned comparisons

following a CAS or a SUB.

Condition Code Bits

The two condition-code bits are designated "EQ" and "LT". EQ is

set if and only if the result is zero; if overflow occurs, EQ

reflects the state of the result after truncation rather than

before. LT reflects the extended sign of the result (before

truncation, if overflow), and is set if the result is negative.

Modals

Processor status is collected in another 16-bit register known as

the "modals".

|E|V1@-@ | CURREG | MIO [| P|s | McK |

1 2 3 8 9 11 12 13 14 15 16

E (Bit l) - Interrupts enabled

V (Bit 2) - Vectored-interrupt mode

CURREG (Bits 9-11) - Current register set (set/cleared only by

process exchange)

MIO (Bit 12) - Mapped I/O mode

P (Bit 13) - Process-exchange mode

S (Bit 14) - Segmentation mode

MCK (Bits 15-16) - Machine-check mode

REV. 9 8 - 16

IDR306¢ FORMATS - I-MODE

INSTRUCTION FORMATS

The three primary instruction formats and their subcategories are
discussed below.

Non Register Generic:

These instructions are a subset of the V-mode generics and are
processed in the same way.

Register Generic:

These instructions operate on the specified register, which may be
a general, field, or floating register. This class includes the
branch instructions, where the branch address, in the second word,

is a 16-bit procedure base displacement.

Memory Reference:

Table 8-1 below summarizes the differences among the types, and Table
8-2 describes the meaning of various tag modes (address formation
rules).

Table 8-1

Data Data Location Bit Layout
Inst. Type Type (2nd word) (see Table 18-2)

MRNR Fixed Point Memory 1 4 7 18 12 16 17-36

Logical ooo 118 ooo TT SSS BB D D

MRGR Fixed Point Immediate 1 7 18 12 16 17-36
Logical Register ooo ooo RRR TT SSS BB D D

Memory

MRFR Floating Immediate 1 4 791812 £16 17-36
Register ooo 119 000 TT SSS BB D D
Memory

Bit 9=@ if single
Bit 9=1 if double
OP = opcode

8 - 17 July 1978

SECTION 8 IDR3069

Table 8-2. Address Formation
Special Case Selection

T S B Effective Address/Instruction Type

3 >2 - (D+B) *+S (indirect ,post-index)

3 0 - (D+B) * (indirect)
2 >@ - (D+B+S) * (pre-index, indirect)

2 g - (D+B) * (indirect)
1 >@ - D+B+S (indexed)
1 G - D+B (direct)
Q 28 Q REG-REG (S specifices source Register)
g 8 1 Immediate Type 1
0B >@ 1 Immediate Type 2
g g 2 Immediate Type 3
g 1 2 Floating Reg Source (FRQ)
6 2 2 Undefined (will not generate UIT)
6G 3 2 Floating Reg source (FR1)
6G 4-7 2 Undefined (will not generated UIT)
G - 3 Undefined (will not generate UII)

IDR3969 FORMATS —- I-MODE

MEMORY REFERENCE - ADDRESS FORMATION

See Section 6, V Mode effective address calculation flow charts.
Immediate and register-to register operations are discribed below:

Immediate Requirements:

1. Half word general register instruction requires a 16 bit
literal (no L suffix).

Full word general register instruction requires a 32-bit
literal (with L suffix) with high order 16 bits = @

Floating point register instruction (both single and double

precision) requires a floating point literal.

a. @ or 1 if the instruction format is MRFR, or

b. @- 7 if the instruction format is MRGR

2.

3.

Register to Register Requirements:

1. Address field = absolute value, either:

2. No indirection

3. No indexing

8 - 19 July 1978

ADMOD

Defined in Section 7.

E16S
E32R
E32S
E64R
F64V

E321

Enter 16S Mode
Enter 32R Mode

Enter 32S Mode

Enter 64R Mode

Enter 64V Mode

Enter 32I Mode

IDR3969

SECTION 9

I-MODE INSTRUCTIONS

I-MODE INSTRUCTIONS

July 1978

SECTION 9 IDR3066

BRAN -— Branch

The branch instructions are two word register generics which test the

contents of a register or the result of a previous ARITHMETIC or

COMPARE operation as indicated by the condition codes (CC), the C-bit,

and the L-Bit.

Word 1 opcode and register number

Word 2 16-bit address within the current segment.

The bit layout is:

|@t{O9@l1ltie@tlgogt@s@tRtiRIR | opcode |

1 2 3 4 5 6 7 8 9 18 - 16

Condition code branches test six conditions based on the LT bit, the EQ

bit, and the opcode.

Condition Meaning

< branch if LT bit set and EQ bit cleared

< branch if LT bit set or EQ bit set

= branch if EQ bit set

branch if EQ bit cleared

> branch if LT bit cleared or EQ bit set

> branch if LY bit cleared and EQ bit cleared

Test Relation to @ and Branch if True

These instructions have the following format:

Register LT
Branch if<Half-Register LE

loating-Register/)/ EQ g
NE

GE
GT

For example: BRLT R,ADDR means Branch to ADDR if Register less than

zero.

BRLT R,ADDR if R<@, then ADDR->PC CC=Result
BRLE R,ADDR if R<@, then ADDR->PC CC=Result

BREQ R,ADDR if R=@, then ADDR->PC CC=Result

BRNE R,ADDR if R¥@, then ADDR->PC CC=Result

REV. @ 9 - 2

BRGE R,ADDR
BRGT R,ADDR
BHLT RH,ADDR
BHLE RH,ADDR
BHEQ RH,ADDR
BHNE RH,ADDR
BHGE RH,ADDR
BHGT RH,ADDR
BFLT F,ADDR
BFLE F,ADDR
BFEQ F,ADDR
BFNE F,ADDR
BFGE F,ADDR
BFGT F,ADDR

IDR30969

if R>@, then ADDR->PC
if R>@, then ADDR->PC

if RH<@, then ADDR->PC
if RH<@, then ADDR->PC
if RH=@, then ADDR->PC

if RH4#@, then ADDR->PC
if RH>@, then ADDR->PC
if RH>8, then ADDR->PC

if F<@, then ADDR->PC
if F<@, then ADDR->PC

if F=@, then ADDR->PC
if F4@, then ADDR->PC

if F>@, then ADDR->PC
if F>@, then ADDR->PC

Branch on Incremented or Decremented Register

These instructions have the following format:

increment

Decrement

For example:

BRI1 R,ADDR
BRI2 R,ADDR
BRI4 R,ADDR
BHI1 RH,ADDR
BHI2 RH,ADDR
BHI4 RH,ADDR
BRD1 R,ADDR
BRD2 R,ADDR
BRD4 R,ADDR
BHD1 RH,ADDR
BHD2 RH,ADDR
BHD4 RH,ADDR

BRI] R,ADDR means increment the contents of the register
by 1 and then branch to ADDR if the result equals zero.

Register
Half Register 4

R+l —->R;

R+2 —>R;
if R=@, then ADDR->PC
if R=@, then ADDR->PC

Rt4 ->R; if R=0, then ADDR->PC
RH+1->RH; if RH=@, then ADDR->PC
RH+2->RH; if RH=@, then ADDR-—>PC

RH+4—->RH; if RH=@, then ADDR->PC
R-1->R; if R=, then ADDR->PC
R-2->R; if R=@, then ADDR->PC

R-4->R; If R=@, then ADDR->PC

RH-1->RH; if RH=@, then ADDR->PC
RH-2->RH; if RH=@, then ADDR->PC

RH-4->RH; if RH=@, then ADDR->PC

Test Register Bit and Branch

@ Branch if Register Bit Reset (Equals Zero)

BRBR R,BITNO,ADDR

if R(BITNO)=0, then ADDR->PC

I-MODE INSTRUCTIONS

CC=Result

CC=Result
CC=Result
CC=Result

CC=Result
CC=Result

CC=Result
CC=Result

CC=Result

CC=Result

CC=Result
CC=Result

CC=Result

CC=Result

1
\ by 2 then branch if result = @

CC=Result

CC=Result
CC=Result

CC=Result

CC=Result

CC=Result

CC=Result
CC=Result

CC=Result

CC=Result

CC=Result
CC=Result

July 1978

SECTION 9 IDR3268

e Branch if Register Bit Set (Equals One)

BRBS R,BITNO,ADDR

if R(BITNO)=1, then ADDR->PC

Computed GOTO I RGEN

CGT R,n if 1<R<n

then [PC+R]->PC
else PC+n->PC

Instruction word followed by n further words:

Word 1 contains integer n

Words 2-n contain branch addresses within the current

Procedure segment

If the contents of register R is less than n and greater than or equal

to 1, then control passes to the address in PCtR; otherwise no branch

is taken and control passes to PCtn.

REV. @ 9 - 4

IDR3868 I-MODE INSTRUCTIONS

CHAR — Character Operations

Load Character

ve
If the specified field length register is nonzero, load the single
character pointed to by the specified field address register into R,
bits 9-16. R bits 1-8 are cleared. The low order 3 bits of the bit
offset in the field address register are ignored, implying that the
character must be byte aligned. The specified field address register
is advanced 8 bits to the next character, and the field length register
is decremented by 1. Set condition code NE (clear EQ).

tH E

If the specified field length register is zero, then set the condition
code EQ.

Store Character

8
STC rR

1

Store bits 9-16 of register R into the character pointed to by the
selected field address register. The low order 3 bits of the bit
offset of the field address register are ignored, implying that the
character must be byte aligned. The field address register is advanced
8 bits to the next character, and the field length register is
decremented by 1. Set the condition code NE (clear EQ).

tH E

If the specified field length register is zero, set the condition code
EQ and do not store.

summary of Instructions Defined in Section 7

ZCM Compare Character Field
ZFIL Fill Character Field
ZMV Move Character Field
ZMVD Move Equal Length Fields
ZTRN Translate Character Fields
ZED Character Edit

9 - 5 July 1978

SECTION 9 IDR3068

CLEAR - Clear

Clear Register I RGEN

C=unchanged

CR R 8->R L=unchanged
CC=unchanged »

Fill R with zeros.

Clear Left Halfword I RGEN

C=unchanged

CRHL R 0->RH L=unchanged
CC=unchanged

Fill bits 1-16 of R with zeros.

Clear Right Halfword I RGEN

C=unchanged

CRHR R §->RL L=unchanged
CC=unchanged

Fill bits 17-32 of R with zeros. |

Clear High Byte l I RGEN

C=unchanged

CRBL R 8—>RH (1-8) L=unchanged

CC=unchanged

Fill Bits 1-8 of R with zeros.

REV. @ 9 - 6

IDR386¢

Clear High Byte 2 I

CRBR R Q@—>RH (9-16)

Fill bits 9-16 of R with zeros.

Zero Memory Fullword i

ZM ADDR §-—> [EA] 32

Fill contents of ADDR with zeros.

zero Memory Halfword I

ZMH ADDR 6—> [EA] 16

Fill contents of ADDR with zeros.

I-MODE INSTRUCTIONS

RGEN

C=unchanged
L=unchanged

CC=unchanged

MRNR

C=unchanged
=unchanged

CC=unchanged

MRNR
One

C=unchanged
L=unchanged
CC=unchanged

July 1978

SECTION 9 IDR3068

DECI - Decimal Arithmetic

Defined in Section 7

XAD Decimal Add
XBTD Binary to Decimal Conversion
XCM Decimal Compare
XDTB Decimal to Binary Conversion

XDV Decimal Divide
XMP Decimal Multiply
XMV Decimal Move
XED Numeric Edit

REV. . 9 -

IDR3869 I-MODE INSTRUCTIONS

FIELD — Field Operations

Add Register to Field Address Register I RGEN

ARFA {a yR R+FAR->FAR
1

Add the contents of R to the field address register, putting the result
in the field address register.

Transfer Field Length Register to Register i RGEN

TFLR ‘tf 7R FLR->R
1

Move the contents of the field length register to R.

Transfer Register To Field Length Register I _RGEN

TRFL { a R R->FLR
1

Move the contents of R to the field length register.

Summary of Instructions Defined in Section 7

EARA @ Load Field Address Register @
EAFA 1 Load Field Address Register 1
LFLI @ Load Field Length Register @
LFLI 1 Load Field Length Register 1
STFA 9 Store Field Address Register

STFA 1 Store field Address Register

9 - 9 July 1978

SECTION 9 IDR3062

FLPT — Floating Point Arithmetic

Single Precision -— 32 bits

Floating Add I MRFR-

FA + F+ [EA] 32—->F
l |

Add the floating point number at ADDR to the contents of the floating
point number in the specified floating point register, and leave the
resulting floating point number in the floating point register.
Addition of floating point numbers requires that their exponents be the
Same power of two. This is accomplished by right shifting the smaller
number by the difference in the exponents. After alignment, the

mantissas are added.

If there is an overflow from the most significant bit (not the sign),
the sum mantissa is shifted right one place, the exponent is
incremented by one and the overflow bit becomes the high-order bit in
the normalized mantissa. If the result is otherwise not in normal form
(as when numbers with unlike signs are added), the result is
normalized. If there is an exponent under/overflow (<-32896, >+32639)

set the C-bit or take a floating point exception.

Floating Subtract i MRFR

FS ‘ 1p rADDR F-[EA]32->F
1

Subtract the contents of ADDR from the specified floating point

register by aligning exponents, and proceding as in FA except that the
contents of ADDR is subtracted from floating point register.

Floating Multiply I MRFR

FM { BL ,ADDR F* [EA] 32->F
1

Multiply the contents of the floating point register by the contents of

ADDR and place the product in the floating point register with the
mantissa normalized. If there is an exponent under/overflow, the C-bit
is set or floating exception is initiated.

REV. @ 9 - 10

IDR3060 I-MODE INSTRUCTIONS

Floating Divide I MRFR

FD ‘®\,ADDR F/[EA]32—->F
1

Divide the contents of the specified floating point register by the
number in ADDR and leave the normalized quotient in the floating point
register.

If there is an exponent under/overflow Or- division by zero, the C-bit
is set or a floating exception is initiated.

Floating Compare I MRFR

FC {@\,ADDR F:: [EA]32
1

Compare the contents of the specified floating point register with the
contents of ADDR and set the condition codes accordingly.

Floating Complement i RGEN

FCM ' 0 \ -F->F
1

Two's complement the mantissa of the specified floating point register
and normalize if necessary. Overflow will set the C-bit or intiate a
floating exception,

Floating Load I MRFR

FL { 8/ADDR [EA] 32->F
1

Load the floating point number contained in ADDR into the specified
floating point register.

9 - ll July 1978

SECTION 9 IDR3069

Floating Store i MRFR

FST {0 praboR F—> [EA] 32
1

Store the single precision floating point number contained in the

specified floating point register in ADDR. Bits 24-31 of the 31 bit

mantissa are truncated when written into the 23-bit capacity memory

storage. However, the mantissa may be rounded to bit 24 by a FRN

instruction which adds 1 to bit 24 if bit 25 is 1. If the floating

point register contains an exponent outside the 8-bit range

(-128<E<+127), set C or initiate a floating exception.

{
4 a BFloating Round

FRN +
1

If bit 25 of the mantissa in specified floating point register is l,

add 1 to bit 24 and reset 25. Overflow sets C or generates a floating

point exception.

Convert Integer to Floating Point i RGEN

FLT ober Float (R)->F
1

Convert the integer in R to a normalized floating point number in the

specified floating point register.

Convert Halfword Integer to Floating Point I RGEN

FLTH JObR Float (RH) —>F
1

Convert the halfword integer in RH to a normalized floating point

number in the specified floating point register.

REV. @ 9 - 12

IDR3260 I-MODE INSTRUCTIONS

Convert Floating Point to Integer I RGEN

INT ta Int (F)->R
1

Convert the floating point number in the specified floating point regis
ter to an integer in R.

Convert Floating Point to Halfword Integer I RGEN

INTH {OLR Int (F) ->RH
1

Convert the floating point number in the specified floating point
register to a halfword integer in RH.

Double Precision - 64 Bits

Double Floating Add i MRF'R

DFA {2 \-ADDR F+[EA]64—>F
1

Add the contents of ADDR to the contents of the specified floating
point register and put the result in the floating point register.

Double Floating Subtract I MRFR

DFS 1 Q ADDR F-[EA]64—>F
1

Subtract the contents of ADDR from the contents of the specified

floating point register and put the result in the floating point
register.

9 - 13) July 1978

SECTION 9 IDR3068

Double Floating Multiply I MRFR

DFM 1beADPR F* [FA] 64->F
1

Multiply the double precision floating point number in the specified

floating point register by the double precision floating number

starting at ADDR and leave the result in the floating point register.

Exponents are added and, after mantissas are multiplied, the product is

normal ized.

An exponent under/overflow sets the C-bit or initiates a floating point

exception.

Double Floating Divide i MRFR

DFD {8 beADDR F/ [EFA]64->F

1

Divide the double precision floating point number in the specified

floating point register by the double precision floating point number

starting at ADDR and leave the result in the floating point register.

Exponents are subtracted, and after the divisor mantissa is divided

into the dividend mantissa, the quotient is normalized.

An under/overflow or an attempt to divide by zero sets the C bit or

initiates a floating point exception.

Double Floating Compare I MRF'R

DFC {rane F:; [EA] 64

1

Compare the contents of ADDR with the contents of the specified

floating point register and set the condition codes accordingly.

Double Floating Complement I RGEN

DFCM +, -F->F
1

Two's complement the double precision mantissa in_ the specified

floating point register and normalize if necessary. Overflow sets the

C-bit or initiates a floating point exception.

REV. @ 9 - 14

IDR3669 I-MODE INSTRUCTIONS

Double Floating Load I | MRFR

DFL ube [EFA]64-—>F
l

Load the double Precision number contained in the four memory words
at ADDR into the specified floating point register.

Double Floating Store Ii MRFR

DFST {ab eADDR F-> [EA]64
1

Store the contents of the specified floating point register into the
four memory words at ADDR.

Convert Single to Double i RGEN

DBLE br F->F
1

Convert single precision floating point number in the specified
floating point register to double precision floating point number in
the floating point register.

9 - 15 July 1978

SECTION 9 IDR3068

INT - Integer Arithmetic

C=overflow if and only if IEX=@ (See KEYS in Section 8)

Add _Fullword I MRGR

C=overflow

A R,ADDR R+ [EA] 32->R L=carry
CC=arithmetic result

Add the 32-bit integer at ADDR to the 32-bit integer in register R, and

put the result into R.

Add Halfword I MRGR

C=overflow

AH R,ADDR RH+ [EA] 16—>RH L=carry
CC=arithmetic result

Add the 16-bit integer at ADDR to the 16-bit integer in bits 1-16 of

register R and put the result into bits 1-16 of R.

Subtract Fullword I MRGR

C=overflow

S R,ADDR R-[EA]32->R L=carry
CC=arithmetic result

Subtract the 32-bit integer ADDR from 32-bit integer in register R, and

put the result into R.

Subtract Halfword i MRGR

C=overflow

SH R,ADDR RH- [EA] 16->RH L=carry
CC=ar ithmetic result

Subtract the 16-bit integer at ADDR from the 16-bit integer in bits
1-16 of register R and put the result into bits 1-16 of R.

REV. @ 9 - 16

IDR3068 I-MODE INSTRUCTIONS

Multiply Fullword i MRGR

C=over flow
M R,ADDR R* [EA] 32->R|R+1 L=unspecified

CC=arithmetic result

Multiply the 32-bit integer in register R by the 32-bit integer at ADDR

and put the 64-bit result into R and R+l. The least significant bit is
in bit position 64. R must be an even register.

Position After Multiply I RGEN

C=over flow

PIM R R+1->R L=carry

CC=arithmetic result

Convert the 64-bit integer in registers R and R+l to a 32-bit integer
in R by moving the contents of Rtl to R. Overflow if a loss of
precision would result. Bit 1 of R+l must be the same as R.

Multiply Halfword I MRGR

C=overflow
MH R,ADDR RH* [EA] 16->R L=unspecified

CC=arithmetic result

Multiply the 16-bit integer in bits1-16 of register R by the 16-bit
integer at ADDR and put the 32-bit result into R. The least
Significant bit is in bit position 32.

Position Half Register After Multiply I RGEN

C=overflow
PIMH R RL->RH L=unspecified

CC=arithmetic result

Convert the 32-bit integer in register R to a 16-bit integer in bits
1-16 of register R by moving the contents of bits 17-32 of R to bits

1-16 of R. Overflow if a loss of precision would result.

9 - 17 July 1978

SECTION 9 IDR368

Divide Fullword i MRGR

C=overflow/div by @
D R,ADDR R|R+1/[EA]32->R L=unspecified

REMAINDER->R+1 CC=arithmetic result

Divide the 64-bit integer in registers R and R+l by the 32-bit integer
at ADDR, and put the result in R and the remainder in R+l. The least
significant bit of the dividend is in bit 64. Overflow if the quotient
is less then -(2**31) or greater than 2**31-l1. R must be an even
register.

Position For Integer Divide I RGEN

C=unchanged
PID R R->R+1 L=unchanged

R(1) —> R(2-32) - CC=unchanged

Convert the 32-bit integer in register R to a 64 integer in registers R

and Rtl by moving the contents of R to Rtl, and extending the sign in
bit 1 of R through bits 2-32 of R.

Divide Halfword i MRGR

C=overflow/div by @
DH R,ADDR R/ [EA] 16—>RH L=unspecified

- Remainder->RH CC=arithmetic result

Divide the 32-bit integer in register R by the 16-bit integer at ADDR,
and put the result into bits 1-16 of R and the remainder into bits
17-32 of R. The least significant bit of the dividend is in bit 32.
Overflow if the quotient is less than -(2**15) or greater than 2**15-1.

Position Half Register For Integer Divide I RGEN

C=unchanged
PIDH R RH->RL L=unchanged

R(1)->R(2-16) CC=unchanged

Convert the 16-bit integer in bits 1-16 of register R to 32-bit integer
in R by moving the contents of bits 1-16 of R to bits 17-32 of R, and
extending the sign in bit 1 through bits 2-16 of R.

REV. @ 9 - 18

IDR3069 I-MODE INSTRUCTIONS

Change Sign I RGEN

C=unchanged ~
CHS R -R(1)-—>R(1) L=unchanged

CC=unchanged

Change bit 1 of register R to its opposite.

Two's Complement Register I RGEN

C=over flow

TC R -R+1->R L=unspecified
CC=arithmetic result

Replace the contents of register R by its two's complement.

Two's Complement Half Register i RGEN

C=oveflow
TCH R -RH+1->RH L=unspecified

CC=arithmetic result

Replace the contents of bits 1-16 of register R by its two's
complement.

Increment Memory Fullword I MRNR

C=overflow

IM ADDR [EA] 32+1-—> [EA] 32 L=unchanged
CC=arithmetic result

Add one to the 32-bit integer at ADDR and put the result into ADDR.

Increment Memory Halfword I MRNR

C=overflow

IMH ADDR [EA]16+1-—> [EA] 16 L=unchanged
CC=arithmetic result
eee

Add one to the 16-bit integer at ADDR and put the result into ADDR.

9 - 19 July 1978

SECTION 9 IDR3969

Increment Register by1 I RGEN

C=over flow
IR1 R R+1->R L=carry

CC=arithmetic result

Add one to the contents of register R and put the result in R.

Increment Register by2 I RGEN

C=overflow

IR2 R R+2->R L=carry
CC=arithmetic result

Add two to the contents of register R and put the result in R.

Increment Half Register by l I RGEN

C=overflow

TH1 RH+1->RH L=carry
C=arithmetic result

Add one to the contents of bits 1-16 of register R and put the result

into R.

Increment Half Register by 2 I RGEN

. C=overflow
IH2 R RH+2->RH L=carry

CC=arithmetic result

Add two to the contents of bits 1-16 of register R and put the result

into R.

REV. @ 9 - 20

IDR3068 I-MODE INSTRUCTIONS

Decrement Memory Fullword I MRNR

C=unchanged
DM ADDR [EA] 32~-1-—> [EA] 32 L=unchanged

CC=arithmetic result

Subtract one from the 32-bit integer at ADDR and put the result into
ADDR.

Decrement Memory Halfword I MRNR

C=over flow
DMH ADDR [EA]16-1-—> [EA]16 L=unchanged

CC=arithmetic result

Subtract one from the 16-bit integer at ADDR and put the result into
ADDR.

Decrement Register by1 I RGEN

C=overflow

DR1 R R-1->R L=carry

CC=arithmetic result

Subtract one from the contents of R and put the result into R.

Decrement Register by2 i RGEN

C=over flow

DR2 R R-2->R L=carry
CC=arithmetic result

Subtract two from the contents of R and put the result into R.

Decrement Half Register by 1 I RGEN

C=over flow
DH1 R RH-1->RH L=carry

CC=arithmetic result

Subtract one from the bits 1-16 of register R and put the results into

9 - 21 July 1978

SECTION9 IDR3069

bits 1-16 of register R.

Decrement Half Register by2 I RGEN

C=overflow

DH2 R RH-2->RH L=carry
CC=arithmetic result

Subtract two from the bits 1-16 of register RH and put the result into
bits 1-16 of register R.

Compare Fullword i MRGR

C R,ADDR R:: [EA] 32,

Set CC.

Arithmetically compare the 32-bit integer in R with the 32-bit integer
at ADDR and set the condition codes to reflect the results.

Compare Halfword I MRGR

CH R,ADDR RH: : [EA] 16;

Set CC,

Arithmetically compare bits 1-16 of register R with the 16-bit integer
at ADDR and set the condition codes to reflect the results.

Copy Sign I | RGEN

CSR R R(1)->C
0->R (1)

Copy the sign bit of register R, (bit 1), into C and zero R(1l).

REV. @ 9 - 22

IDR3060 I-MODE INSTRUCTIONS

Set Sign Minus I RGEN

SSM R 1->R (1)

Set the sign bit of register R, (bit 1), equal to one.

Set Sign Plus I RGEN

SSP R O->R (1)

Set the sign bit of register R, (bit 1), equal to zero.

Test Memory I MRNR

T ADDR _ [EA]32::8; set CC

Test the contents of ADDR and set condition code accordingly.

Add Link to Register I RGEN

ADLR R if keys (L)=1 then
R+1->R

If the L bit is set in the keys then add 1 to the contents of register
R.

9 = 23 July 1978

SECTION 9 . IDR3060

INTGY

Defined in Section 7.

MDII Inhibit Interleaved
MDIW Write Interleaved

MDRS Read Syndrome Bits
MDWC Load Write Control Register

EMCM Enter Machine Check Mode
RMC Clear Machine Check
VIRY Verify
LMCM Leave Machine Check Mode

REV. 9 -- 24

IDR3869 I-MODE INSTRUCTIONS

I/O _- Input/Output

Execute I/0 2

EIO ADDR

Interpret the low order 16 bits of ADDR as a Prime 400 PIO instruction.
If the addressed device responds ready, the condition codes will be set
EQ; otherwise they will be set NE.

summary of Instructions From Section. 7

IRTC Interrupt Return
IRIN Interrupt Return
CAI Clear Active Interrupt
ENB Enable Interrupts
ESIM Enter Standard Interrupt Mode
EVIM Enter Vectored Interrupt Mode
INH Inhibit Interrupts

9 - 25 July 1978

SECTION 9 . IDR306@

KEYS -— Status Keys

Moves keys to and from registers.

Input Keys I

INK R keys—>R

Save contents of keys in R.

Output Keys I

OTK R R->keys

Restore keys from R.

G
a

(o
O |REV. | 26

E

IDR3069 I-MODE INSTRUCTIONS

LOGIC - Logical Operations

Complement Register

CMR R .NOT.R->R

Complement the contents of R.

Complement Half Register

CMH RH ~ NOT. RH->RH

Complement the contents of RH.

AND Fullword

N R,ADDR R.AND. [EA] 32->R

AND the contents of R and ADDR and put the result into R. |

AND Halfword

NH R,ADDR , RH.AND. [EA] 16-—>RH

AND the contents of RH and ADDR and put the result into RH.

OR Fullword i

O R,ADDR R.OR. [EA] 32-—>R

OR the contents of R and ADDR and put the result into R.

OR Halfword I

OH R,ADDR RH.OR. [EA] 16->RH

OR the contents of RH and ADDR and put the result into RH.

MRGR

MRGR

MRGR

July 1978

SECTION 9 IDR3060

Exclusive OR Fullword i MRGR

X R,ADDR R.XOR.j [EA]32->R

Exclusive OR the contents of R and ADDR and put the result into R.

Exclusive OR Halfword I MRGR

XH R,ADDR RH. XOR. [EA] 16->RH

Exclusive OR the contents of RH and ADDR and put the result into RH.

REV. @ 9 - 28

IDR3968 I-MODEINSTRUCTIONS

LISTS ~- Logical Test and Set

Logical Test and Set (Logicize) I RGEN

If the test is satisfied, then set the register egual to l.

If the test is not satisfied, then set the register equal to @.

These instructions simplify the analysis of complex logical
expressions.

The general format is:

Condition Codes LT
Register LE

If

<

Half Register EQ ®, then 1 -> R; else @ -> R
Floating-Point NE
Register GE

GT

For example: ICLT R means, if the condition code is less than zero
then set R equal to one, else set R equal to zero.

ICLT R if CC < @, then 1 -> R; else @ -> R
LCLE R if CC < @, then 1 -> R; else 8 -> R
LCEQ R if CC = @, then 1 -> R; else 6 —-> R
LCNE R if CC # @, then 1 -> R; else @ -> R
LCGE R if CC > @, then 1 -> R; else 6 -> R
LCGT R if CC > @, then 1 -> R; else @ —-> R
LLT R if R < @, then 1 -> R; else @ —->R
LLE R if R <9, then 1 -> R; else @->R
LEQ R if R = 9, then 1 -> R; else @ ->R
INE R if R #6, then 1 —> R; else @ ->R
LGE R if R >, then 1 —-> R; else 0 ->R
LGT R if R > @, then 1 -> R; else 0 —-> R
LHLT R if RH < 9, then 1 -> R; else @ -> R
LHLE R if RH < @, then 1 -> R; else 8 -> R
LHEQ R if RH = @, then 1 -> R; else 0 -> R
LHNE R if RH # @, then 1 —-> R; else 8 -> R
LHGE R if RH > @, then 1 -> R; else @ -> R
LHGT R if RH > @, then 1 -> R; else @ -> R
LFLT R if F < @, then 1 -> R; else @->R
LFLE R if F < @, then 1 -> R; else @ —-> R
LFEQ R if F = 86, then 1 -> R; else @ —-> R
LFNE R if F #86, then 1 -> R; else @-—-R
LFGE R if F > 90, then 1 -> R; else 8 -> R
LFGT R if F > @, then 1 -—-> R; else @ ->R

9 - 29 July 1978

SECTION 9 IDR3068

Logic set False I

LF R ©

Set R equal to zero.

Logic set True I

LT R

Set R equal to one.

REV. @ 9 - 30

IDR3068

MCTL -— Machine Control

Defined in Section 7.

ITLB

LPID
LPSW
RSAV
ALT

Invalidate STLB entry

Load Process ID
Load Program Status Word
Register Save
Halt

I-MODE INSTRUCTIONS

July 1978

SECTION 9 IDR3062

MOVE ~— Move Data

These instructions move data from one location to another.

Interchange Register and Memory — Fullword I

I R,ADDR R<-> [EA] 32

Swap the contents of R and ADDR.

Interchange Register and Memory — Halfword i

IH R,ADDR RH<-> [EA] 16

Swap the contents of RH and ADDR.

Interchange Register Halves i

IR R RH<->RL

Swap halves of R.

Interchange Bytes I

IRB R RH (1-8) <->RH (9-16)

Swap bits 1-8 of RH with bits 9-16 of RH.

Interchange Bytes and Clear Left I

ICBL R RH (1-8) <—>RH (9-16) ;

8—> [RH (1-8)]

Swap the bits 1-8 and bits 9-16 of RH. Then set bits 1-8=0.

REV. @ 9 - 32

MRGR

MRGR

IDR3060 I-MODE INSTRUCTIONS

Interchange Bytes and Clear Right I

ICBR R RH (9-16) <—>RH (1-8) ;

Q—>RH (9-16)

Swap bits 9-16 and bits 1-8 of RH. Then set bits 9-16=0.

Interchange Halfwords and Clear Left I

ICHL R RH<->RL;

@-—>RH

Swap halves of R and set RH=0.

Swap Halfwords and Clear Right I

ICHR R RH<~—>RL;

8->RL

Swap halves of R and set RL=0.

store Fullword I

ST R,ADDR R-> [EA] 32

Store the contents of R into ADDR.

Store Halfword I

STH R,ADDR RH-> [EA] 16

Store the contents of RH into ADDR.

RGEN

MAGR

MRGR

July 1978

SECTION 9 IDR3060

Store Conditional Fullword I AP
—

STCD R,ADDR if R+l=[(EA]32 then R->[EA] 32

If the contents of Rtl equals the contents of ADDR, then store the

contents of R into ADDR.

Store Conditional Halfword I AP
—

STCH R,ADDR if RL=[(EA]16 then RH->[EA]16

If the contents of RL equal the contents of ADDR, then store the
contents of RH into ADDR.

Load Fullword I MRGR

L R,ADDR [EA] 32->R

Load the contents of ADDR into R.

Load Halfword I MRGR

LH R,ADDR [EA] 16->RH

Load the contents of ADDR into RH.

Load Halfword Left Shifted by1 I MRGR

LHL1 R,ADDR [EA] 16.LS.1=>RH

Left shift the contents of ADDR by 1 and put the result into RH.

Load Halfword Left Shifted by 2 I MRGR

LHL2 R,ADDR [EA]16.LS.2=>RH

Left shift the contents of ADDR by 2 and put the result into RH.

REV. @ 9 -- 34

IDR3968 I-MODE INSTRUCTIONS

Load Addressed Register MRGR
 J

H

LDAR R,ADDR

Stores the contents of R into the register specified by ADDR. There
are three special cases of this instruction which are summarized below.
Only the word portion of the effective address is used.

Ring 8 and Bit 2 of word portion = 1 (Restricted)

Bits 10-16 - Absolute register number from 1-12 (see discussion of
register sets in Section 8, FORMATS — I-MODE).

Ring 8 and Bit 2 of word portion = @ (Restricted if Register > '17)

Bits 12-16 ~ Register 9-37 in current register set.

Ring 1 or 3

Bits 1-12 must = @

Bits 13-16 - Register 9-17 in current register set.

Store Addressed Register MRGRJ
H

STAR R,ADDR

Stores the contents of the register specified by the contents of ADDR
into R. There are three special cases of this instruction which are
summarized below. Only the word portion of the effective address is
used.

Ring @ and Bit 2 of word portion = 1 (Restricted)

Bits 10-16 - Absolute register number from 1-128. (See discussion of
register sets in Section 8, FORMATS - I-MODE).

Ring 2 and Bit 2 of word portion = @ (Restricted '20 => '37)

Bits 12-16 — Register 0-37 in the current register set.

Ring 1 or 3

Bits 1-12 must = @

Bits 13-16 - Register @-17 in the current register set.

9 = 35 July 1978

SECTION 9 IDR3668

PCTLJ -— Program Control and Jump

These instructions transfer control to a different location. They
differ from branch instructions in the ability to move across segments.
They differ among themselves in the complexity of operations performed
and in the handling of the return address.

Jump 1 MRNR

JMP ADDR EA->PC

Jump to ADDR.

Jump to Subroutine I MRGR

JSR R,ADDR PCL->RH;
EA->PC

Jump to ADDR and save the 16-bit word number position of the return
address in RH.

Jump and Set XB I MRNR

JSXB ADDR PC->XB
EA -—> PC

Jump to ADDR and save the full 32-bit return address in XB.

Effective Address to Link Base i MRNR

EALB ADDR EA->LB

Store the effective address of ADDR in the link base register.

REV. 0 9 - 36

IDR3960 I-MODE INSTRUCTIONS

Effective Address to Register I MRGR

EAR R,ADDR EA->R

Store the effective address of ADDR in R.

Effective Address to Temporary Base I | MRNR

EAXB ADDR EA->XB

Store the effective address of ADDR in the temporary base register.

Summary of Instructions Defined in Section 7

PCL Procedure Call
ARGT Argument Transfer
PRIN Procedure Return
SVC Suprevisor Call
STEX Stack Extend
RSAV Register Save
RRST Register Restore

9 - 37 July 1978

SECTION 9 IDR3860

QUEUE - Queue Management

The instructions provided for queue manipulation are of the generic-AP

class, in which a following AP-pointer provides the address to the
queue control block.

Data is to or from general register 2 and the results of the operation

are given in the condition code bits for later testing.

ADDR refers to a control block in virtual space. The virtual queue
control block differs from the physical in that a segment number is
provided instead of a physical address. Ring zero privilege is
required to manipulate physical queues; any non-ring zero attempt to

access physical queues will result in a restrict mode violation fault.
Also, the ring number determines the privilege of access into both the
control block and the data block.

Add to Top of Queue J
H AP

ATQ ADDR

Add the contents of general register 2 to the top of the queue defined
by the QCB (Queue Control Block) at ADDR. The condition codes are set

EQ if the queue is full e.g., the word could not be added.

Add to Bottom of Queue J
H AP

ABQ ADDR

Add the contents of general register 2 to the bottom of the queue

defined by the QCB at ADDR. The condition codes are set EQ if the

queue is full e.g., the word could not be added.

AP

Remove from Top of Queue J
e

RTQ ADDR

Remove a single word from the top of the queue defined by the QCB at
ADDR, and place it in general register 2. But if the queue is empty,

set general register 2=@ and condition codes EQ.

REV. 9 9 - 38

IDR3060 I-MODE INSTRUCTIONS

Remove from Bottom of Queue I AP

RBQ ADDR

Remove a single word from the bottom of the queue defined by the QCB at
ADDR, and place it in general register 2. But, if the queue is empty,
set general register 2=@ and condition codes EQ.

Test Queue

J
H AP

TSTQ ADDR

Set general register 2 to the number of items in the queue defined by
the QCB at ADDR. If the queue is empty, set condition codes EQ.

\

9 - 39 July 1978

SECTION 9

PRCEX

Defined in Section 7.

INBC

INBN
INEC
INEN
NFYB
NFYE
WAIT

REV. @

Interrupt Notify

Interrupt Notify
Interrupt Notify
Interrupt Notify
Notify
Notify
Wait

IDR3869

40

IDR30698 I-MODE INSTRUCTIONS

SHIFT - Shift Data

Register Shifts

Rotate MRGR4

ROT R,ADDR

Rotates the bits in R. The low order 16 bits of ADDR tell how many
bits to shift, in what direction and whether full or halfword.

Bit 1 = @ = left

Bit 1 = 1 = right

Bit 2 = 9 = word (32)

Bit 2 = 1 = halfword

Bits 3-16 = no. of bits to shift

Shift Arithmetic MRGRJ
H

SHA R,ADDR

Shift R arithmetically, leaving bit 1 of the register untouched. The
low order 16 bits of ADDR tell how many bits to shift, in what
direction and whether full or halfword.

Bit 1 = @ = left

Bit 1 = 1 = right

Bit 2 = @ = word (32)

Bit 2 = 1 = halfword

Bits 3-16 = no. of bits to shift

9 - 41 July 1978

SECTION 9 IDR3960

MRGR

J
HShift Logical

SHL R,ADDR

Shift all bits in R, including bit 1. The low order 16 bits of ADDR

tell how many bits to shift, in what direction and whether full or

halfword.

Bit 1 = @ = left

Bit 1 = 1 = right

Bit 2 = ® = word (32)

Bit 2 = 1 = halfword

Bits 3-16 = no. of bits to shift

Shift Register Left 1 f
e 3 2

SL1 R

Shift R left one bit.

Shift Register Left 2 f
H a ZB

SL2 R

Shift R left two bits.

Shift Register Right l J
H a e

SR1 R

Shift R right one bit.

Shift Register Right 2 f
H ae 2

SR2 R

Shift R right two bits.

REV. 9g 9 - 42

IDR3068 I-MODE INSTRUCTIONS

Half Register Shifts

Shift Half Register Left 1 J
H a B

SHL1 R

Shift RH left one bit.

Shift Half Register Left 2 I RGEN

SHL2 R

Shift RH left two bits.

Shift Half Register Right l I RGEN

SHRI R

Shift RH right onebit.

Shift Half Register Right 2 a B

SHR2 R

Shift RH right two bits.

9 - 43 July 1978

APPENDICES

IDR3068 BASIC FEATURES

APPENDIX A

BASIC FEATURES OF THE
PRIME 100, 200 AND 306

This section describes the basic architecture and program-visible
features of the Prime 10¥, 208 and 300. Appendix B describes the
advanced features of the Prime 300.

PROCESSOR ORGANIZATION

From the user's point of view, the central processor is the control
unit for the entire system; it performs all arithmetic, logical, and
data handling operations, manages address calculations, and sequences
the program. It is connected to the memory by a memory bus and to the
peripheral equipment by I/O, data, address and control busses. The
processor (Figure A-1) consists of a set of high speed hardware
registers addressed by a register set, an arithmetic logic unit, and
other registers such as the Y and M memory buffers that are connected
to the memory and I/O busses. Microprocessing logic manipulates data
contained in these system elements to execute each instruction.

Microprogram Control

Processor arithmetic operations are performed by manipulating data
contained in the register set in conjunction with the arthmetic logic
unit. Processor arithmetic operations, data transfers to and from main

memory and peripheral I/O operation are all controlled by a
microprogram stored in read-only memory. The microprogram is a
Separate program stored in increments of 256 52-bit micro-instructions.

The microprocessor executes one or two micro-instructions during each
machine cycle to execute user-level instructions, calculate addresses,
accomplish interrupts, oversee I/O transfers, and in general perform
internal system control functions.

High Speed Register Set

The first 32 memory locations (@-'37) are high speed hardware that
permits multi-step instruction op-codes, (.€.9., multiply,
double-precision) to proceed at several times the memory cycle time
under microprogram control. The X, A and B registers can be addressed
symbolically or as memory locations.

A detailed discussion of microprogramming and the associated registers
is given in the Microcoders Handbook (MAN194@) .

A - dl July 1978

APPENDIX A

MICRO

PROCESSOR

HS ARITH

FLOATING
POINT

ARITHMETIC
LOGIC

UNIT
(ALU)

1
2

2

3
4-

6 -

7
0-

0-

HIGH SPEED REGISTER FILE

0 -

1-

X REGISTER
A REGISTER
B REGISTER
S REGISTER
RESERVED
SHIFT COUNT
PROG. COUNTER

17 RESERVED
27 DMA WORD PAIRS

IDR3860

MEMORY BUS

M REG. DATA

Y

REG. ADDR.

D BUS

SHIFT
COUNTER

KEYS

 I

B BUS

r

 r y

SERIAL INTERFACE

CONTROL

Tn
DMA/

 I/O DATA 1/0 ADDR

PIO

1 = ! APL |A

ye

PERIPHERAL DEVICES

CONTROL PANEL

Figure A-l. CPU Block Diagram

IDR3060 BASIC FEATURES

CENTRAL PROCESSOR DESCRIPTION

The central processors can be thought of as having a processor within a
processor. From the user standpoint, the outer processor is a stored
program digital computer consisting of a control unit, main memory,
arithmetic, and I/O logic. In a microprogrammed computer, however, the
function of the control unit is implemented with an inner control
memory containing an orderly arrangement of instruction sub-elements.
These sub-elements, called micro-instructions, are arranged into a
series of steps (a microprogram) to execute a user level or outer
processor level instruction.

The inner processor or micro-processor also contains a control unit,

memory and I/O facilities. It too contains a program address register,

fetches instructions, and executes them. It is even capable of being
interrupted from normal instruction level sequences in order to handle
I/O, power failure, machine checks, etc.

In order to achieve speed in executing user level instructions and
minimize random discrete logic, the micro-instruction word is 52 bits
wide and is expandable to 64 bits wide. The micro-instruction is
divided into 12 fields, with each field controlling a portion of the
processors operation.

The microprogram resides in a read-only control memory (ROM), which
makes it impervious to power outages and programming errors.

Every function that the outer processor would normally perform is
controlled by e series of the micro-instruction steps. This includes
fetching user-level instructions from memory, incrementing the program
address register, and executing the instruction. Unlike the outer
processor, the microprogram never stops. Even when the outer processor
is executing a HALT instruction, the microprogram is monitoring the
control panel and is ready to respond to control panel input. The
control panel is an I/O device and the switch settings are interpreted

by the CPU as data words, with each bit having a particular function.
The Microprogram decodes the sense switch data and then controls user
program execution, and displays data and program addresses on the
control panel displays.

STANDARD CPU FUNCTIONS

Sequential Instruction Execution

The address for a memory access is held in register 7, and data read
from memory or about to be stored into memory is held in register M.
The processor performs a program by executing instructions retrieved
from consecutive memory locations counted by the program counter (P
register), register 7 on the block diagram. As one instruction is
being fetched, P is incremented by 1 so that the next instruction is

e .

A - 3 July 1978

APPENDIX A IDR3860

normally taken from the next consecutive location. Sequential program

flow is altered by changing the contents of P, either by incrementing
it an extra time in a test-skip instruction or by replacing its
contents with the value specified by a jump instruction.

Addressable Registers

A general-purpose arithmetic unit and high-speed register set are used
by the outer processor to perform machine-language functions and store
transient deta and control information. The arithmetic unit performs
arithmetic and logical operations while the 32 addressable registers in
the register set handle such functions as address indexing, stack
processing, program sequencing, and control direct-to-memory I/O data
transfers. All processing is done on 16-bit words, with all bits ina

word processed in parallel.

Arithmetic Register

All computations are performed using the ALU and the arithmetic or A
register. Data can be moved in either direction between A and any
memory location via the D bus and the M register. The contents of a
memory location can be combined arithmetically or logically with the
contents of A. The A register also serves as the data connection with
the programmed I/O bus, via the D bus and B bus. A secondary
arithmetic register, the B register, serves as a right extension of A
for double length operations. The processor also has a single-bit
register, the C register (or carry bit), that is set on overflow in
arithmetic operations and is loaded with the last bit dropped out of A
or B in shift operations.

Referencing Memory

Each memory reference instruction calculates an effective address that
is stored in the Y register. This calculation may include indirection,
where an address calculated at an intermediate step is used to retrieve
another address, and may include indexing, where a fixed quantity is
added to a given address. The index register (X) as well as the S
(stack) register may be used for storing the indexing quantity. The S
register is used for push-pop stack operations as well as fully
recursive reentry procedures. The recursive procedure is essentially
an indexing technigue that is performed independently of and addition

to the indexing in the effective address calculation involving X.

MOS Memory

Instructions and data are stored in MOS main memory. Prime systems use
MOS memory exclusively and depending on which processor is used, memory
access times of 680, 6@@ or 448 nanoseconds, and maximum capacities of
64K or 256K words are available. A system's main memory can be
expanded in modular increments of 8K or 32K words on a single 16" X 18"

circuit board.

REV. @ A - 4

_ IDR3060 BASIC FEATURES

Automatic Power Monitor with Battery Backup

Any configuration of processor and MOS memory can be equipped with an
optional power monitor system to preserve the memory's contents if AC
power is interrupted, and automatically restart program execution when
power is restored. Four major functions are handled by the power
monitor option: sensing line voltage not within operational limits,
issuing an interrupt at the onset of power failure, battery refreshing
of MOS memory, and automatic restart when power is restored.

The battery backup system includes one or more 28 Amp-hour, sealed
gelelectrolyte cells and an automatic charger. The batteries are
housed on a rack-mountable panel which can be installed in any position
in a system rack or cabinet.

Direct-To-Memory Data Transfers

Data transfers between the main memory and high-speed devices can be
performed through the use of the programmable, eight-channel direct
memory access (DMA) system, standard on all Prime processors. The
number of direct memory channels and the maximum data rate can be
expanded with DMC and DMT modes of operation (optional on the Prime 180
and 200, and standard on the 308). DMC, which provides up to 2,000
direct memory channels, is similar to DMA, except that where DMA uses
registers in the high-speed register set to store control information,
DMC uses main memory locations. DMT is used with certain high-speed
device controllers in which the controllers themselves monitor direct
memory transfers with minimal processor intervention.

Processor Serial I/O Ports

In addition to the data transfers handled via the I/O bus, EIA binary
signals up to 9680 baud, can be handled by a four-channel, bit-serial,
full-duplex interface which is an integral part of all Prime
processors. By means of programmed control of this interface, serial
data can be transmitted on four output lines and_ simultaneously
received on four input lines. The interface operates on EIA standard
levels, and all lines are easily accessible at the back edge-connector
strip of the processor board.

Vectored Priority Interrupts

A flexible interrupt processing capability is a standard feature on all
Prime processors and augments programmed control of I/O data transfers.
I/O processing on an interrupt basis frees the central processor for
other activities between data transfers, and automatically resolves
processing priorities when multiple activities require servicing at the
same time. An interrupt vectoring technique minimizes interrupt
response time by assigning each interrupt source a program selectable
Memory location for subroutine entry. Interrupt priorities are
established by the physical sequence in which device controllers are
plugged into the back plane.

A - 5 July 1978

APPENDIX A IDR3960

INSTRUCTION EXECUTION

Refer to the block diagram, Figure A-1, to supplement this discussion
of instruction execution.

High-Speed Register Set

All processor register are physically located in a high-speed register
set and logically addressed as if they were MOS memory locations.
Memory addresses 0-37 are reserved for this purpose and correspond to
the following registers:

Memory Register

Address Designation Function

g X Index Register
1 A Arithmetic Register
2 B Extension Arithmetic Register
3 S Stack Register
4 FLTH Floating Point
5 FLTL Accumulator
6 VSC Visible Shift Count/Floating Point Exponent
7 P Program Counter

19 PMAR Page Map Address Register
1l Reserved for microprogram
12 PFAR Page Fault Address Register
13-17 Reserved for microprogram
20-37 DMA-18 Word Pairs for DMA channels

(address and word counts)

Transfer of Information

The simplest CPU operation is the transfer of information from one
register to another register or a series of registers; for example, to
transfer the contents of the A register in the register set to register
M and thence to the memory bus. To do this, the A register must be
selected; the register set must be allowed on the bus D; the
resultant data on bus D must be put into the M register and its
effective address must be calculated and stored in the Y register, then
the M register and Y register address must be transferred to the memory
bus. Finally, the data on the memory bus must be transferred to memory
at the specific memory address. ‘The program counter (register 7) must
have been incremented when the instruction was fetched. This process
is roughly a Store A (STA) instruction.

Conversely, information may be taken from memory and moved back down to
a register in the register set. This process is roughly equivalent to
a Load A (LDA) instruction. To do this, information must be
transferred from the memory to memory bus to the M register which must
be selected as the source of bus D via a transfer through bus B. Then
the register set must be used as the source of the information on bus
D. Finally, the P counter (register set 7) must have been incremented
when the instruction was fetched. These operations are accomplished by

REV. @ A - 6

IDR3068 BASIC FEATURES

selecting and setting the proper microcode fields then executing the
microcode. For details of the fields that are set and how to construct
microcode information, refer to the Microcoder's Handbook (MAN 1940).

Transfers Using the ALU

To add two values, the first of which is in the M register and the
second of which is in the A register and then load the result into the
A register, it is necessary to first get the correct data to the inputs
of the arithmetic logic unit (ALU). This is done by selecting the M
register as the source of the B bus and the A register as the register
set register. Next, the ALU must be conditioned to add. This is done
by selecting the microcode fields for addition (Refer to the
Microcoder's Handbook). After the add operation, the results have to

be loaded back into the A register by selected the ALU as the source of
bus D and the A register as the destination of the information on bus
D.

shifting

Shifting is controlled by microcode. This includes both the type of
shift and the end conditions. It is accomplished by using the
information in the VSC register (register 6) as the source for the
information on the D Bus. Each output of the VSC register is shifted
(right or left) one place before being placed into the D bus; the
shift counter is used to keep count of the number of shifts. This
counter is created outside of the register set and can be loaded from
bus B and read in as the low order half of bus B. The shift counter
incrementation takes place at the end of the shift cycle.

MEMORY CYCLING

MOS memory provides an optimum combination of high speed, simple
plug-in expansion and high density packaging. Memory cycle times are
either 680 or 758 nanoseconds on the Prime 380, 75@ nanoseconds on the
200 and 1 microsecond on the 188. A single etched circuit board
provides 8K words available in the increments up to 32K per board with
integral byte parity. Memory capacity is expandable to 64K in 8K
increments on all Prime computers, and to 256K in 32K increments of 750
ns memory on 300-series machines.

The main memory is addressed as a set of contiguous word locations
whose addresses range from @ to '177777 or 65,536. (Memory locations
are always specified by their octal addresses.) The number of words
that can be addressed by an instruction, and the location of those
words relative to the instruction depend on which of two addressing
modes - sectored or relative - the machine is operating in. In either
mode, contiguous word locations are organized into fixed-length groups
called sectors.

A - 7 July 1978

APPENDIX A IDR3060

Sectored and Relative Addressing Modes

In sectored mode addressing, all sectors are 512 words long and an
instruction may directly address either the locations in sector zero
(locations @ -'777) or the locations in the sector in which the
instruction is stored. Relative mode addressing permits direct
references to locations in sector zero, as in sectored mode, or

references to locations in a range relative to the contents of the
program counter P (P-239 to P+256). Sixteen unused addresses from
P-240 to P-256 are interpreted as special addressing codes that provide
additional methods of address formation such as stack register
operation, base-plus-displacement and direct addressing of any location
from @ to '177777.

Automatic Memory Refresh

The computer's semiconductor memory is continually refreshed by a

sequence of staggered refresh cycles, each of which refreshes 1/32 of

the entire memory. Although refreshing does take some time from the

program, the effect is usually negligible as the microprogrammed

processor logic continues in operation while the refreshing is in

progress.

Reserved Memory Locations

Locations '4@-'57 are reserved for eight direct memory channel (DMC)

data words and eight channel control words. Locations '6@ through '74

are dedicated for specific interrupts, both internal (i.e., memory

parity errors and illegal instructions) or external (peripheral deviced

interrupts). Locations '1@0-'177 are set aside for vectored interrupts

from peripheral devices (i.e., the locations used for a particular

interrupt is typically '1@@ plus the code of the device causing the

interrupt).

INTERRUPT AND TRAP HANDLING

Traps and Interrupts

Traps result in branching in the microcode. Interrupts result in
branching in the executing program. Some traps also cause interrupts.

There are external and internal interrupts. Internal interrupts are

those caused by traps, such as unimplemented instruction interrupts,

etc. External interrupts are caused by real-time interrupt requests

from device controllers plugged into the backplane. External

interrupts can be enabled or disabled by the INH and ENB instructions.

External interrupts have two modes, vectored and standard, selected by

the EVIM and ESIM instructions. In standard mode, an indirect JST

through location '63 is executed. In vectored mode, the indirect JST

REV. 9 A - 8

IDR3966 BASIC FEATURES

is through a vector address provided by the interrupting controller.
In both modes, interrupt priority is determined by the backplane.

Interrupts

There are 13 different interrupt vectors allowed in the Prime 100/200.
They fall into several broad classes: hardware monitoring, external,

and software aids.

All of these interrupts have some properties in common. First, all of
the interrupts check their vector location to see if it is zero before
going indirect through it. If it is zero, HLT (halt) is executed.
Second, the vector is interpreted as a 16 bit absolute address
independent of addressing mode in force. Third, the program counter is

deposited at the address pointed to by the vector and execution begins
at the next address. Fourth, the non-visible keys are changed by
clearing out the ‘system clear' and 'permit external interrupts' flops.
Fifth, all vectors do an absolute vector.

Hardware Monitoring

These interrupts as a class check on the operability of the system and
give the user warning of past or approaching failures:

1. Missing Memory Module

The memory does not exist at a location accessed. This interrupt
may be used to determine memory size. It may result from the CEA
instruction as well as any memory reference instruction.

The interrupt cannot be inhibited and deposits the P counter

pointing to the next instruction to be executed. The machine
check flag is cleared by this interrupt.

2. Memory Parity

An error has been detected in the memory data most recently read.

3. Machine check

An internal data transfer or I/O bus transfer generated at parity

error.

4, Parity Fail

This uninhibitable interrupt is taken when a failure of system
power is detected. The interrupt is through location '6@ and is
given 1 millisecond before an internal system clear signal is
given. If location '68 has an address other than zero in it, an
interrupt to that location will be executed. If the contents of
location '6@ is zero, a halt occurs.

A - 9 July 1978

APPENDIX A IDR3069

Systems with battery backup can minimize the effect of power loss

by saving applicable data registers, terminating peripheral
tranfers and setting up for an auto restart at location '1@@@ when
power is restored.

External Interrupts

These interrupts serve as the normal asynchronous sources of external
stimuli to the processor. Included in this class are all of the normal
periphral interrupts.

1. Real Time Clock (Increment)

This interrupt does not interrupt program execution. However, it

does increment location '61 of memory every 16.6 milliseconds (20
milliseconds for 58 Hz systems). On incrementing to zero, an
external interrupt through location ‘'63 is requested.
Incrementing the clock is not affected by the ENB and INH
instructions, but can be started and stopped using programmed I/O.

Real Time Clock (Overflow)

This is a standard external interrupt. (See 3.)

Interrupt (Compatible Mode)

This interrupt is for all external devices. It can be enabled or
inhibited using the ENB and INH instructions respectively The
actual device interrupting must be determined by a polling method.
External interrupts are automatically inhibited by this interrupt.
External interrupts come here if the processor is in compatible
mode.

Interrupt (Vectored Mode)

Identical in function to compatible mode, this method is used if
the processor has been put into the vectored interrupt mode. ENB
and INH word as before.

This time, however, each interrupt uses a vector specified by the
controller (normally '1@@ + Device Address) and the vector can be
anywhere in the first 64K memory.

Software Aids

These vectors serve aS a link to tie user developed software to Prime
developed software along a clearly defined path. In addition, standard
software can use these traps to run efficiently on large Prime machines
while still running successfully on smaller Prime machine.

REV.

IDR3968 BASIC FEATURES

svC (SerVice Call): This interrupt is a convenient way of
unambiguously demanding the attention of the executive software.
Argument transfer will typically be done using the computer words in
memory that follow the SVC.

Prime executive software defines the SVC calls. The advantage of using
SVC is: an SVC works the same in normal, restricted, or virtual
execution mode. Thus standard software is able to run in different
execution environments.

Restricted Execution Violation: This interrut is enabled by executing
an ERM and disabled by any interrupt (including SVC).

If enabled, this interrupt occurs whenever a restricted user executes
any I/O (including ISI and OSI) -instructions, or machine mode change of
any non-visible key, or over n levels of indirection (n = a convenient
number), or execution of a HALT. This feature is found only in systems
with virtual memory.

UII (Unimplemented Instruction): To permit upward compatible software,
Prime has reserved octal codes that when executed cause an

unimplemented instruction interrupt. On the Prime 108 and 200,
Multiply and Divide are examples of instructions that cause this
uninhibitable interrupt.

As a result, a package that decodes and software-implements'§ these
instructions, can be added. To help this unimplemented instruction
(UII) package, the program counter contents is saved so that a
deposited program counter always points to the instruction that caused
the interrupt.

ILL (Illegal Instruction): To permit customer use of special op codes
which act as UII's, Prime has defined many codes as illegal. Execution
of these causes an interrupt similar to the UII (Unimplemented
Instruction package). The difference is that an instruction that is
unimplemented can easily become implemented in the future by microcode
changes. Illegal instructions, however, will remain illegal.

Internal Interrupts

Besides the use of interrupts to handle the peripheral equipment, a
number of internal processor situations can interrupt the program. The
action taken in response to an internal interrupt is essentially the
same as for an external interrupt, but many of the conditions
associated with the latter are not applicable to the former. All
internal interrupts are vectored regardless of the mode of the external
interrupt.

Although a particular type of internal interrupt may be inhibited at
its source, it is never affected by the enabling or inhibiting of
external interrupts as a class; e.g., a memory parity error can cause
an interrupt only if the processor is in machine check mode, but with
that mode in effect, an error always causes an interrupt even if

A - ll. July 1978

APPENDIX A IDR3869

external interrupts are inhibited. All internal interrupts have
priority over external interrupts simply by virtue of the circumstances
they represent. Among internal interrupts, priority is a function of
logical necessity.

In response to an internal interrupt, the processor vectors through a
specific location. If the 16-bit absolute address in this location is
zero, the processor halts. If the address is nonzero, the processor

inhibits external interrupts saves the P register in the location and
resumes normal program execution at the location following that in
which the P register was stored. Since an internal interrupt has
nothing to do with the bus priority structure, the service routine need
not give a CIA upon completion.

Internal interrupts are used to monitor the hardware and aid in
software execution. Interrupt locations and conditions that generate
interrupts through them are as follows:

‘68 Power Failure - incoming power is not up to specification. This
vector must be left unimplemented (zero) unless the processor has
the memory save option.

‘61 Real Time Clock Counter - this is not an internal interrupt at
all, but is used as a counter by the real time clock.

'62 Restricted execution in VM. (Prime 300)

‘63 External interrupts use this location.

'e4 Page Fault. (Prime 300)

‘65 Supervisor Call - an interrupt to this service.

INPUT/OUTPUT

As shown on the block diagram, a Prime computer system can be connected

to a variety of peripheral devices. Generally, I/O Data is transferred
to and from the B bus from the serial interface or AMLC or SMIC
devices. Device types other than the serial interface interact with
the B bus through an I/O data buffer and I/O buffer, similar to the way
in which the CPU interacts with the memory bus through the memory data
and address buffers. Serial input is routed to to the B bus; however,
serial output is directed from the D bus directly to the serial
interface buffer. Note also, that the control panel has a buffer and
is treated as an I/O device; thus setting sense switches can input
information directly into the CPU.

REV. @ A - 12

IDR3060 BASIC FEATURES

Instructions

Instructions in the I/O class govern the transfer of data to and from
the peripheral equipment, and also perform some functions in the
processor. The class comprises four types of instructions for sending
control pulses out to a device, testing conditions in a device for a
skip, and moving data or other information out to a device or in from
it. An instruction in the I/O class is designated by 110@ in bits 3-6,
and the type is indicated by bits 1 and 2; hence the four types of I/O
instructions have op codes '14, '34, '54 and '74. Bits 7-10 specify
the particular function the instruction is to perform, and bits 11-16
select the device that is to respond to the instruction. The format
thus allows sixty-four codes for addressing devices ('@@-'77) and
sixteen for specifying functions ('@%-'77) that a given type of I/O
instruction can perform using the addressed device.

Device code '2@ is used for communication with the control panel and
for controlling interrupts and the real time clock. The other sixty-
three codes are available for external devices, but many are assigned
to standard equipment.

The meanings of the function codes differ with the type of instruction
and the type of device, although some are common to all devices. With
the control type of instruction, the function code 09 usually "turns
on" or "starts" the device (with whatever meaning that term may have
vis-a-vis the particular device), and code '17 initializes the device,
Making it ready for use. An I/O skip instruction invariably uses
function code 9@ to determine whether a device is ready and code '@4 to
determine whether it is requesting an interrupt. The data
instructions, in and out, generally use code @0 specifically for real
data - as against moving control information, word counts, addresses,
or status.

Typically a device interface has a 6-bit device selection network,

ready and interrupt enable flags, and logic nets that supply the device
code, the device identification, and the number of the slot in which
the interface is mounted. The selection network decodes bits 11-16 of
the instruction so that only the addressed device responds to signals
sent by the processor over the I/O bus. The ready flag indicates just
that: the device is ready - meaning it has just completed a task
requiring some response by the processor, or it is idle and may be
used. Considering devices at the simplest level, the program places an
output device in operation by giving a data-out instruction that resets
ready and sends the first unit of data ~ a word or character depending
on how the device handles information. When the device has processed
the unit of data, it sets ready to indicate that it is ready to receive
new data for output. With an input device, the program responds by
giving a data-in instruction that not only brings in the data but also
resets ready and tells the device to read more data; to end the
process the program must actually issue a control command to stop the
device. With either type of device, the setting of ready requests an
interrupt if the interrupt enable flag is set. If the program does not
wish to use the device, it can reset interrupt enable to prevent the

A - 13 July 1978

APPENDIX A IDR3060

idle state of the device from continually requesting an interrupt.

Every device can supply its device code for use by the interrupt system
(although a more complex device may be set up to supply an interrupt
addreses specified by the program rather than using its own device
code). The program can read the slot number in order to determine the
position of any device on the I/O bus (this determines priority with
respect to the vectored interrupt) and can read the identification
number of each device. The latter number not only identifies the type
of device, but also indicates any modification from the standard, which
one it is if several of the same type are connected to the bus.

The four basic I/O instruction types:

OCP Output Control Pulse
SKS Skip if Condition Satisfied
INA Input to A Register
OTA Output from A Register

Control Panel Communication

The program can communicate with the operator via the control panel by
virtue of the fact that it can address the panel as an I/O device.
With the following instructions, the program reads the contents of the
switch register as data or aS sense switches and loads a data register
whose contents can be displayed in the lights (in no case is a ready
test necessary). The instructions assigned to the control panel are:

INA '1629 Read Sense Switches
INA '172@ Read Data Switches

OTA '1726 Load Lights

Processor Serial Interface

Besides the many peripheral devices connected to the I/O bus and
controlled by I/O instructions, there is a basic serial interface that

is built into the processor and is controlled by special instructions.
By means of this device, the program can control the transmission of
serial data on four output lines and can receive serial data
simultaneously over four input lines. The program handles output by
periodically changing the contents of a 4-bit output register in which
each bit is connected to a separate output line thus, successive
changes in the register contents produce bit-by-bit serial transmission
over the lines. Data is received by sampling the input lines to pick
up bit-by-bit-serial input. The device operates entirely on EIA
standard levels and the lines are available at the back edge connector
of the processor board. The program supplies data to and receives data
from the lines via A bits 13-16, where line 1 corresponds to bit 13.
Input and output are handled by the two instructions:

OSI Output Serial Interface
ISI Input Serial Interface

REV. 9 A - 14

IDR3069 BASIC FEATURES

The lines may be used for anything that involves transmission or
reception of binary EIA signal. An output line could be used to
control a light to signal the operator; an input line might be
connected to a switch, allowing a person or a device to supply a binary
Signal that can be sampled at appropriate times by the program. The
lines can also be used for standard data communication where the
program is entirely responsible for all timing, for constructing
characters with appropriate start and stop bits, and for stripping the
data out of received characters. For output, the usual procedure is
simply to change the signal on the output line for each bit in a serial
transmission. The program determines character length and transmission
frequency, and can actually run the output lines at different rates -
as would be the case were one line being used for serial transmission
and another to control a signal light. Whenever any bit of the output
register is changed, information previously given for the other lines
must be repeated to keep the appropriate signals on them.

For input, both the frequency and character length must be known. In
conventional data communications, an idle line is constantly marking
(continuous 1s) and the beginning of an asynchronous character is
indicated by a starting space (a zero bit). The usual procedure is to
sample the line at five times the bit rate. Upon reading a zero on a
line that has been idle, the program should assume it has discovered
only a possible space; if a zero is still read at the next two sample
times, it can be assumed that the line has a true space rather than a
transient, and transmission has started. The program should then read
the line at every fifth sample time so that reading is centered within
each bit time. _If a number of lines are operating, the program must
keep track of them separately, i.e., the program must keep the read
times centered on each line independently of the others. With
sophisticated software, the serial interface could actually be used for
a complete data communication channel with even the automatic answering
of incoming calls in a private network or the public dial telephone
system. For such an arrangement, one input line would be used for data
and the others for modem control signals such as ring indicator, clear
to send, carrier detected, and data set ready. Output would require
three lines: one for data, and two for the control signals request to
send and data terminal ready.

External Interrupt

Many I/O devices must be serviced infrequently relative to the
processor speed and only a small amount of processor time is required
to service them, but they must be serviced within a short time after
they request it. Failure to do so within the specified time (which
varies among devices) can result in loss of information and certainly
results in operating the device below its maximum speed. The external
priority interrupt is designed with these considerations in mind, i.e.,
the use of interruptions in the current program sequence facilitates
concurrent operation of the main program and a number of peripheral
devices. The interrupt system also allows conditions internal to the
processor (traps) to interrupt the program, but here we are concerned
only with external interrupts.

A - 15 July 1978

APPENDIX A IDR3960

Interrupt requests by a device are governed by its interrupt ready and

interrupt enable flags. When a device completes an operation it sets
the ready flag, and this action requests an interrupt if interrupt
enable is set - if interrupt enable has been cleared by the program,
the device cannot request an interrupt. The program controls the
enabling flags by means of OCP instructions; moreover, the flags in
some devices are also connected to the I/O bus data lines, so the
program can set up the enabling flags in all such devices at once by
means of a mask sent over the bus. .

At appropriate times the processor synchronizes any requests that are

then being made. Once a request has been synchronized, the device that
Made it must wait for an interrupt to start. Although the interrupt
signal on the bus is disabled once an interrupt starts, the request
made by the device remains until the program clears ready or interrupt
enable. if the program does clear interrupt enable in a device, that
device not only cannot request an interrupt when its ready flag sets,

but any request it has already made is voided, so it is no longer
waiting for an interrupt (and no I/O skip instruction can determine
that it had requested one). However, if ready is left set, setting
interrupt enable restores the request.

Before beginning each instruction, the processor takes care of all
direct memory requests, including any additional requests that are made
while direct memory transfers are being handled. When no more devices
are requesting access, the processor starts an interrupt if the
external interrupt system is enabled and a device that has priority is
requesting an interrupt. The way in which the hardware handles an
interrupt and the way in which the program should respond depends upon

the interrupt mode.

Standard Interrupt Mode: In standard mode, any device that can make an

interrupt request has priority to interrupt any program, even an
interrupt service routine, unless the interrupt system is inhibited.
The processor starts to service an interrupt by inhibiting the
interrupt system so no further interrupts can be started, saving P
(which points to the next instruction) in the location addressed by the
contents of location '63, and begins the interrupt service routine by
resuming normal instruction execution at the location following that in

which P was stored.

CAUTION

The contents of any interrupt location ('63 for the

standard interrupt) are always interpreted as a
16-bit absolute address. Therefore, when setting
up interrupt locations, the program must make sure
not to use addresses larger than available memory.

REV. @ A - 16

IDR3962 BASIC FEATURES

The service routine should determine which device requires. service,
Save the keys and any parts of the register set that it will use, and
Service the device. The device can be identified by means of SKS
instructions that test for interrupt requests. The program may leave
the interrupt inhibited while servicing the device (or devices), or it
can enable interrupts and establish a priority structure to allow
higher priority devices to interrupt the current routine.

There are two ways in which the program can structure device priority.

The service routine establishes a basic priority by the order in which
it tests the devices. It can also define higher and lower priorities
by setting up the interrupt enable flags in the devices and then
reenabling the interrupt. In this way, any device whose interrupt
enable flag is clear cannot interrupt the current routine and is
therefore defined as being of lower priority, whereas a device that is
allowed to interrupt is defined as being of higher priority.

After servicing a device (or all devices found to be interrupting by an

SKS chain), the routine should restore the preinterrupt states of the
keys and the register set, enable the interrupt, and return to the
interrupted program by jumping indirect through the location in which P
was stored. If the routine allows interrupts by higher priority
devices, then before returning to the interrupted program it should
reenable lower priority devices that were not allowed to interrupt the
current routine, but will be allowed to interrupt the program to which
the processor is returning.

Vectored Interrupt Mode: In vectored mode, the processor responds to
an interrupt request from a specific device and has a built-in priority
structure such that lower priority devices cannot interrupt while the
processor is holding an interrupt for a device of higher priority. The
conditions for starting an interrupt are therefore the same as those
given for the standard case with one exception: if the processor is
already in an interrupt routine, it will go on to the next instruction
even if interrupts are enabled, unless the requesting device is of
higher priority than that for which the current interrupt is being
held. When an interrupt is started and several devices are making
requests simultaneously, the processor responds to that requesting
device that has the highest priority (mounted in the lowest-numbered
slot).

As in standard mode, the processor inhibits further interrupts, saves P
aS specified by the contents of an interrupt location, and proceeds
with the service routine at the position following that in which P was
Stored. However, unlike a standard interrupt, here there is no fixed
interrupt location - instead the location is specified by the device to
which the processor is responding. In most cases, the device specifies
an address '1@@ greater than its device code, but a complex device may
have an address register for this purpose so that the program can
specify the location through which the device will interrupt.

Since the system uses a location unique to each device, there is no

need for testing, and the service routine acts only for the

A - 17 July 1978

APPENDIX A IDR3060

interrupting device (it should of course save keys and registers as
usual). There is also a built-in priority determined by bus position,
so even if the routine allows interrupts, no device higher on the bus

can do so (in other words, all devices in higher-numbered slots are of
lessor priority). Moreover, the program can still pick and choose
among the nearer devices by adjusting the individual interrupt enable
flags. Hence in vectored mode, devices of higher interrupt priority

can interrupt a given routine once interrupts are reenabled.

When returning to the interrupted program, the routine must restore the
preinterrupt state and either reenable interrupts or reestablish the
appropriate priority structure. Furthermore, a routine for a_ vectored

interrupt must also give a specific instruction (CAI) to clear the
presently active interrupt so the processor can then respond to
requests from devices of lower interrupt priority.

Interrupt Programming: The instructions that control the interrupt
system are all of the type with a full word op code, but associated
withh the system are two I/O instructions that deal with the mask used
for setting up the interrurpt enable flags in certain devices. When
power is turned on or the computer is cleared from the control panel,
the processor is automatically in standard interrupt mode with
interrupts inhibited. The instructions are:

ENB Enable Interrupt
INH Inhibit Interrupts
ESIM Enter Standard Interrupt Mode
EVIM Enter Vectored Interrupt Mode

CAI Clear Active Interrupt
SMK Send Mask
IMK Input Mask

Timing: The time a device must wait for an interrupt to start depends

on how many devices are using interrupts, how long the service routines
are for devices of higher priority, and whether the direct memory
channels are in use. In vectored mode, a single device will shut out
all others of lower priority until a CAI instruction is executed; and
the direct memory channels shut out all interrupts when they operate at
the maximum rate. If the DMA channels are not in use and only one
device is using interrupts, it need never wait longer than the time
required for the processor to finish the instruction that is being
performed when the request is made. Without delays caused by indirect
addressing, the maximum interrupt waiting time is the latency given in

the Specification table below.

Programming Suggestions: If the program has little computing to do and

is using only one or two fast I/O devices or several slow ones, it may
not be necessary to use the interrupt at all. On the other hand, if
there are many calculations to perform and the program is using a fast
device or data is being processed using several slower devices, then
the interrupt is necessary. The critical factors in determining
whether to use the interrupt, and in what ways the program should
determine priority, are what the program is doing besides input/output

REV. 9 A - 18

IDR3960 BASIC FEATURES

and the time required by the service routines.

A convenient method for handling a large number of priority levels is
to use a push-pop stack for saving the machine state. This obviates
setting aside so many specific locations for saving registers, and
makes it very easy for a routine at any level in a sequence of nested
routines to restore the state for the interrupted program.

For those who do program interrupt routines, there are several rules to
remember:

1. An interrupt cannot be started until the current instruction is
finished. Therefore, do not use lengthy indirect address chains if
a device that requires very fast service can request an interrupt.

2. The service routine should save the keys and any parts of the
register set that it will use.

3. The JST and ENB instructions delay external interrupt servicing for
one full instruction cycle, as do the ILL and UII internal
interrupts.

4. The principal function cf an interrupt routine is to respond to the
Situation that caused the interrupt, (e.g., computations that can
be performed outside the routine should not be included within it).

5. Before returning to the interrupted program, the routine should
restore the keys and the register set, and in vectored mode it must
give a CAI,

Direct Memory Access

Handling data transfers between external devices and memory under
programmed I/O control requires the execution of several instructions
for each word transferred. To allow greater transfer rates, the
processor contains eight direct memory channels through which devices,
at their own request, can gain direct access to memory using a minimum
of processor time. At rates lower than the maximum, the channels free
the processor to allow execution of a program concurrently with data
transfers for high speed devices such as disk and magnetic tape.

To control a direct memory transfer, the program sets up a device to
use a particular channel and sets up a pair of memory locations to
define the channel. The channels use locations '20-'37 in the register
set, with locations '20 and '21] governing channel one, '22 and '23
governing channel two, and so on to '36 and '37*. To set up the
device, the program gives an OTA that supplies the controller the
address of the first channel location to be used. The program places a
12-bit word count in the first location, and the address of the first
word to be transferred in the second.

A - 19 July 1978

APPENDIX A IDR3060

FIRST LOCATION

| -WORD COUNT | RESERVED |

123 4 5 6 7 8 9 186 11 12 13 #14 #15 16

SECOND LOCATION

| ADDRESS |

123 4 5 6 7 8 9 18 11 12 13 14 15 16

*The processor permits any contiguous pair of locations in the register
set to be used, although some locations, such as the program counter or
those reserved for microprogram functions, are obviously not
appropriate for this purpose. The programmer can use X, A, B, S, and

certain other locations when necessary.

The word count is in bits 1-12 and is the twos complement of the number
of words to be transferred; the maximum number of words in a single
block on one channel is therefore 4896, produced by a negative count of
zero (a single device can handle larger blocks by stepping through

successive channels). The contents of the second address are
interpreted as a 16-bit absolute address regardless of memory size.

When the device requires data service, it requests access to memory via
its channel. Between instructions and at various points within an
instruction, the processor can pause to handle a transfer. If several
devices are waiting for service simutaneously, the first to receive it
is the one that is mounted in the lowest-numbered slot. Whenever the
processor pauses to handle a DMA request, it handles all pending
requests before resuming the instruction, starting an interrupt, or

going on to the next instruction.

To service a channel request, the processor accesses the location

specified by the channel address, sends its contents out over the bus
or stores in it a word taken from the bus as specified by the device,

and increments both the address and the word count by one. When the
word count overflows (goes to zero), the processor signals the device
that the block is complete. Typically, complex device controllers such
as those for fixed and moving head disks can automatically chain DMA
channels thereby facilitating scatter/gather data transfers.

Timing: The time a device must wait for channel access depends on when

its request is made within an instruction and how many devices of
higher priority are also requesting access; a given device must wait
until all devices of higher priority have been serviced, so the highest
priority device can preempt all processor time if it requests access at
the maximum rate. The microprogram must save certain registers to
service the channel, and although it can pause within an instruction,
it cannot take direct memory requests while starting an interrupt, so

REV. @ A - 26

IDR3868 BASIC FEATURES

the worst case waiting time for the highest priority device is 3-4
microseconds for an isolated transfer. But once an initial transfer
can be handled at the rate of one every 1.2 microseconds; this allows
a maximum of 833,333 words per second, but at this rate all other
processing activity is suspended.

Direct Memory Channel, Direct Memory Transfer (DMC, DMT

The DMC and DMT modes of input/output operation extend the speed and

flexibility of the standard DMA system available in all Prime
computers. DMC is used to extend the number of direct memory channels
(up to 2080) and the maximumblock size handled by each channel (up to
64K words). DMI increases the maximum direct memory data rate to one
million words per second. In contrast to programmed I/0, which
requires the execution of several instructions for each word

transferred, direct memory transfers reduce the number of instructions
needed for I/O control, allow multiple high speed transfers to be
handled concurrently and permit processing to be overlapped with I/0
operations.

DMC Operation: DMC transfers are controlled in much the same way as
DMA transfers; the program specifies a particular channel for an I/O
device via an OTA to the device's controller and sets up a pair of
control words to establish at what memory location the transfer will
begin and how many words will be transferred. Unlike the DMA system,

which uses preassigned pairs of high-speed registers to control the DMA
channels, DMC transfers are controlled by pairs of adjacent locations

in main memory. This permits up to 2800 DMC channels to be specified
using memory locations between '64 to '7776. The first word of a
control word pair contains the starting address for the transfer, and
the second word contains the ending address as illustrated below.

lst Control Word

| Starting/Current Address |

123 45 67 8 9 1@ 11 12 13 14 15 16

2nd control Word

| Ending Address |

123 45 6 7 8 9 1@ 11 #12 13 14 #15 16

Data blocks of up to 64K words can be transferred at input and output
rates of up to 271,739 and 268,817 words per second. At the maximum
input and output rates, processing is suspended, while at lower rates
processing and I/O transfers are overlapped.

When a device requires DMC service, it requests access to memory via
its specified channel. The DMC microcode automatically synchronizes
with the instruction currently being executed and causes the processor
to pause either at some point within the instruction or upon its

A - 21 July 1978

APPENDIX A IDR3666

completion. If several devices request servicing simultaneously, the
order in which the requests are acknowledged is determined by the
priority relationship among the device controllers and the central
processor. In general, the controller closest to the processor in the
chassis (i.e., mounted in the lowest numbered slot) is given highest
priority, while the controller in the highest slot position is assigned
the lowest priority.

To service a channel request, the processor accesses the location
specified by the first channel control word (starting or current
address) and either reads or writes a word as specified by the device
controller. The current address is incremented by one after each
channel request is serviced until the current address is equal to the
ending address, signaling that the block transfer is complete.

Chaining: DMC channels may be chained together to facilitate
scatter/gather data transfers. An OTA 14XX loads a device controller
with the required DMC set up information from the A register as shown
below. A one in bit 5 specifies a DMC transfer (a zero specifies DMC).

| Chain No. | 1] Channel Address |

1 2 3 4 5 6 7 8 9 18 11 1 13 #14 #15 #16

The chain number specifies how many DMC channels in addition to one
specified by the channel address portion of the word will be used for a
data transfer. A chain number of zero causes the transfer to terminate
after one end of range. A chain number greater than zero causes the
controller to wait for that number of ends of range plus one before
terminating the transfer. In this case, the channel address is
automatically incremented by two after each end of range, thereby
automatically switching control to the next higher DMC channel.

DMI Operation: Certain controllers are capable of providing the
necessary memory addresses for direct memory transfers without using
external control words stored in the processor or memory aS with DMA or
DMC transfers. This permits all channel control functions to be
completely overlapped with processor and memory functions thereby
increasing the computer's maximum input and output rates to 1,086,956
and 1,041,666 words per second respectively. When operating in the DMT
mode, the controller automatically places the memory address of each
word to be transferred directly on the I/O bus and terminates the
transfer when the end of range has been reached. Because of its high
speed and low control overhead, the DMT mode can multiplex data on a
word-by-word basis.

REV. @ A - 22

Specification Summary*

Maximum Transfer Rate
(processing suspended)

Input (words/sec.)

Output (words/sec.)

Interruption To Processing
Per Word Transferred at Max.

Input Rate at Max.
Output Rate
Interleaved Input
Interleaved Output

IDR3068.

271,739
268 ,817

3.68 microsec
3.72 microsec
4.7 microsec
4.7 microsec

*Assumes microsec memory cycle time.

BASIC FEATURES

1,886,956
1,041,666

928 nanosec

968 nanosec
2 microsec

2 microsec

July 1978

APPENDIX A IDR3068

DATA INTEGRITY FEATURES

The following paragraphs summarize data integrity features available

on Prime systems, and the purpose of traps, and interrupts within the
central processor.

The Prime 208 and 39@ CPU's include several levels of automatic,
program-independent data integrity check features:

Memory Parity Checks parity of every 8-bit byte read from

high-speed memory. If machine check mode is in
effect, an interrupt through location '67 is taken.

Machine Check Enabled or disabled by EMCM and LMCM instructions.
Mode Enables memory parity interrupts and

microverification, if present.

Microverification Optional microcode test routines that test the logic
of the entire CPU.

Interrupt Associated with the user’ level program. An
interrupt performs a control transfer to a location
specified by the location associated with the type
of interrupt found. This amounts to an indirect
JST,

Trap Associated with microcode. A trap transfers

micro-control to a specific trap catching
microroutine. Some traps also generate interrupts;
others do not.

Memory Parity A parity error in a word read from memory.
Error

Machine Check A parity error in any other situation (in a
Error register, over the I/O bus, etc.).

Memory parity and machine checks are standard on the Prime 209 and 300
and microverification is optional on both processors. These features
are not implemented in the Prime 100.

Machine Check Functions

Occurrence of either memory parity error or machine check error in any
Prime processor always sets the machine check flag, depending on the

type of processor (does it have microverification or not?), its

Operation mode (normal operating mode or machine check mode), type of
error (memory parity or machine check), and type of failure (solid or
transient).

REV. @ A - 24

IDR3668 BASIC FEATURES

Normal Opereting Mode (Enabled by MASTER CLEAR or LMCM Instruction

Memory Parity Error: Memory parity error in any Prime machine
operating in normal operating mode always sets the machine check flag.
There is no interrupt to the operating program. To check for parity
error, the operating program may use the SMCS (Skip on Machine Check

Set) or SMCR (Skip on Machine Check Reset) instruction. It is then up
to the system programmer to handle this problem. Master clear or RMC
(Reset Machine Check) can be used to clear the flag.

Machine Check Error: The same procedure as for memory parity error
applies.

Machine Check Mode (Enabled by EMCM)

Memory Parity Error: In any Prime processor operating in machine check
mode, a memory parity error sets the machine check flag. This causes a
microcode trap that executes a microroutine to reset the machine check
flag and causes a program interrupt through location '67. Response to
this interrupt is decided by the system interrupt service routine.

Machine Check Error (CPU without microverification): A machine check
error occurring in a Prime Type 211 or Type 215 central processor
running in machine check mode and causes the processor to halt

(indicated by the control panel STOP light). If the operator turns the
function selector to STOP/STEP, all address lights will be lit.

Machine Check Error (CPU with microverification): A machine check
error occurring in a Prime computer with microverification running in
Machine check mode, initiates execution of the microprogram
verification routine to check (verify) proper operation of the
processor. The verification routine always clears the machine check
flag.

Parity Errors

Several alternative ways of detecting and recovering from parity errors
are provided by Prime hardware.

Prime 208 and 300 series computers detect memory parity errors by
checking byte parity on each memory read operation. Byte parity errors
that occur during data transfers between CPU registers, the backplane
and the arithmetic unit, are all classified as machine check parity
errors. Both memory and machine check parity errors set the machine
check flag.

In the normal operating mode, Prime 2@@ and 30@ computers resemble the
Prime 108, which has no parity check hardware. The user may employ the

SMCS (Skip on Machine Check Set) and SMCR (Skip on Machine Check Reset)
instructions to sense parity errors by testing the machine check flag
and may provide subroutines to handle parity errors.

A - 25 July 1978

APPENDIX A IDR3060

Special instructions (EMCM, LMCM) are provided that cause the computer

to enter the machine check mode. In the machine check mode, when a
memory parity error sets the machine check flag; a microcode program
resets the flag and causes an interrupt through location '67.

Depending on a program's sensitivity to memory parity errors, a user
May choose to provide reentry points and a service routine to repeat
the calculation or a user may choose some other solution.

In Prime 388 computers, memory is organized into 512-word sectors or
pages; and the virtual memory paging technique enables the user to
edit out and work around a defective page if interrupts through
location '67 occur consistently from a particular area in memory.
Also, operating system software checks for bad memory and takes
appropriate action to work around that memory. Systems User Guide).

In processors without microverification, machine check parity errors
cause the processor to halt, as indicated by the control panel stop
light. In this case, turning the function selector to the STOP/STEP
position lights all the ADDRESS lights. This action confirms that a
CPU parity error has occurred.

In Prime 2@@ and 3@@ series machines with the microverify option, a
machine check error activates the microcode verification program. This
program runs a series of tests on individual registers in the
processor, arithmetic unit and I/@ bus. If the entire microverify
routine is cycled without a failure being diagnosed in a particular
circuit, the parity error is assumed to have been caused by a transient
condition. The microverify routine then clears the register set and
machine Status Keys and causes interrupt through location '7@. The

program can then resume execution after the machine state is restored
if the user program has been set up to handle this situation.

If the microverification routine encounters a nontransient circuit
failure, it continues to cycle as long as the failure persists; and
the number of the test is displayed in the ADDRESS lights when the
function selector is set at the RUN or LOAD postion. The processor
leaves the machine check mode and reenters the normal operating mode
when it encounters the LMCM (Leave Machine Check Mode) instruction.
Thus, there are two operating modes: normal and machine check. In
normal mode, parity errors do not influence program flow unless
explicit instructions are inserted into the user's program. In the
Machine check mode, a parity error during memory read causes an
interrupt through location ‘'67 that may be acted upon at the user's
discretion; otherwise, program execution continues. In processors

without microverification, a machine check parity error halts the
machine because processor parity errors are assumed to be more’ serious
than memory parity errors. In machines with the microverify option, if
the CPU passes the tests performed by the microverify routine; the
assumption is that the trouble was a transient one and processing
resumes.

REV. @ A - 26

IDR3068 BASIC FEATURES

When power is turned-on (and when the MASTER CLEAR button is pressed) ,
processors with microverification perform a CPU circuit integrity
check. Then, the computer operates in normal mode. The machine check
flag signifying a memory/CPU parity error is ignored in this case.

The microverification routine can be executed at any time by means of
the VIRY instruction to assure the integrity of processor circuits.
Similarly, the user can assure himself that the CPU is functioning
properly by turning on the power and pressing MASTER CLEAR to initiate
the microverify sequence.

MICROVERIFICATION

The optional microverify feature provides the Prime processor with a
self-test capability. This self-test capability consists of a set of
microcode routines that verify the operations that can be successfully
performed by the processor. These tests are carefully constructed to
verify successively larger portions of the CPU hardware, always
building on those portions that are already verified. Table A-1 lists
the verification routines and describes the microcode logic that the
test exercises.

¢

One of the fundamental tasks of the microverify feature is to verify
that the machine checking hardware (Machine Check) is detecting both
good and bad parity correctly; this is done with Tests 4, 5, and 6.
Machine Check checks byte parity on internal and external data paths.
Parity is generated only when necessary (i.e., on shift and ALU
Operations), and parity is normally transmitted from one register to
another unchanged. Each processor register includes parity checking
logic. This parity checking normally detects all single bit parity
failures and detects looping multiple faults after a few data patterns
have been used. A parity error detected by the machine check hardware
traps to the microprocessor and causes the verify microcode to be
executed.

The verify microcode exercises the processor's control unit as well as
the ALU, the registers, and the various data paths (See Figure A-1l).
Because address and data busses of both memory and I/@ (bus D, memory
bus, bus B, etc.) are tri-state and because all but the memory address
bus are bi-directional, a failed component (board) anywhere in the
system can stop all data transfer to and from a bus. ‘Two microverify
tests (11 and 12) explicitly check for this condition by verifying that
both ones and zeroes can be placed upon the busses.

Microverify status is displayed at the control panel indicator lights.

Microverification routines provide a powerful and flexible means of
verifying data integrity and preventing the propagation of erroneous
data within the system. The Microverification Routines consist of
microprogrammed firmware sequences that can test the logic of the

A - 27 July 1978

APPENDIX A IDR3068

Table A-l. Verification Routines

Test No. Test Exercises:

Q ALU-0, condition code
Jump on not equal

Q RM, RY, EMIT, RA (Register A) all can be set=@

ALU (subtract)
Internal busses - transmit @

1 BB can be loaded from RY

2 Modals and traps are tested to verify clear

3 RX can be incremented
BD can transmit bits on lower byte
RSC words (it counts and loads correctly)
RCM emit @ can be done

4 RY parity detection
Control unit 16 way branch
BB, BD data transmission
Jump logic

5 RM parity detection
Control unit 16 way branch
BB, BD data transmission
Jump logic

6 Register set parity detection and all tested in 5

7 ALU = -1
BD shift left, BD parity generate

RF parity check
RSC increment
Jump

7 Carry bit, Load, set and clear
ALU = subtract
Jump Logic

10 Register set with various patterns of bits

RSC increment | |
BB, BD various sources and patterns
Jump logic

11 I/@ busses, BPA, BPD are able to transmit a one and

zero in each bit. —
Right shift
RM, RY, RF data and parity

REV. @ A - 28

12

13

IDR3068

Memory busses, BMA, BMD. Memory Location 5
BMD is tested for a 1 and @ in each bit
Memory timing must work

Discovers a parity failure in tests 7-12

BASIC FEATURES

July 1978

APPENDIX A IDR38608

entire CPU, verify the reliability of the computer's error detection
logic, and test the operation of all data registers, peripheral address
and data bus lines, memory address and data bus lines, and the

high-speed register set. In addition to these operational tests, the

Microverification Routines can also force selected error conditions to
occur and then verify that the CPU properly detects those conditions.

Operation

Since the microverification routines are implemented in the CPU's
microcode, they are always resident within the system yet do not
require memory space for storage. A microverification sequence is
initiated whenever the system is cleared from the control panel (Master
Clear), a machine check flag is set (hardware detection of a CPU
error), or a VIRY (Verify) instruction is executed. For greater
operating flexibility, initiation of the sequence following a machine
check can be enabled or disabled under program control. (See EMCM and
LMCM instructions in Section 7.) This is an important feature since if

microverification is enabled for machine checks, the detection of a
processor error automatically suspends normal processing for as long as
the error condition exists. In certain situations, the user may wish
to continue processing to predetermined check points and at such points
initiate microverification under program control. When
microverification is enabled for machine checks and a transient error

is detected, the machine will automatically resume normal operation
when proper operational status has been verified.

The result of a pass through the microverification routines depends on
CPU status and the method of entering the routines. The various
alternatives are summarized in Figure A-l.

Transient Failure

If the entire routine runs (verification routine did not find an

error), the failure may have been a transient one, therefore the
Micro-routine clears the keys and register set, and issues a programmed
interrupt through location '7@. This returns control to the system
program (which can provide for recovery and continued operation).

Solid Failure

The micro-processor will recycle through the microverification routines
as long as the failure exists (indefinitely). The number of the
failing test is displayed in the address lights.

The VIRY Instruction

The self-test (microverify) routines described in this section may be
initiated by a VIRY instruction. The VIRY instruction skips on no
error and returns with the failed test number on error. The
microverify routines are also initiated by a MASTER CLEAR and by a

machine check error. |

Table A-2 shows how entry and exit of the verify test operates.

REV. @ A - 36

IDR3869 BASIC FEATURES

Table A-2. Microverify Entry and Exit

ENTRY to microverify EXIT from microverify
routines will be upon: routines will be upon:

system Clear (MASTER CLEAR) No Error

CPU parity error (Machine Check) Successful pass or first
error detected.

VIRY instruction Successful pass or first
error detected.

A - 31 July 1978

APPENDIX A IDR3060

POWER MONITOR AND AUTOMATIC RESTART OPTION

The power monitor and related features combine to provide automatic
restart from memory after a power failure has been corrected and AC
power is restored. Four distinct and interrelated functions are
provided by this option: sensing of line voltage not within operating

specifications, storing of processor status information when power

fails, battery refreshing of MOS memory, and automatic restart when AC

power is restored.

Operation

When the computer is running, AC power is constantly monitored to
assure that it satisfies the computer's voltage requirement. Should
voltage drop below the specified limit (95 VAC) an automatic power
failure interrupt is executed through location '6@. This gives the
program approximately one millisecond to prepare for loss of AC power.
At the end of this interval, a system clear is generated to prevent
random logic transitions from altering memory as power is going down.
The back-up battery is used to refresh the contents of the MOS memory
and provide power to essential processor logic. Use of the battery is
indicated by the flashing of the STOP light on the computer's control
panel. When power returns to proper operating specifications, the
processor automatically restarts at location '1®@@® and the battery

begins recharging.

Equipment Configuration

The equipment consists of two separate components: an assembly with
panel which mounts on the computer's power supply, and the battery
which may be mounted at either the front or back of the equipment rack.
The assembly which mounts on the power supply contains the battery

charging circuitry and PC to DC conversion circuitry to supply

16.2 volts + 9.5 volts, 2.5 amps

3.5 volts + @.5 volts, 2.9 amps
5.8 volts + @.25 volts, 7.@ amps

with bendback and overvoltage protections. The panel associated with
this assembly contains a full-charge indicator, meter terminals, and
battery terminals.

The battery is a sealed, gel-electrolyte unit which can be stored or
charged in any position. Two 2@ Amp hour cells can be housed in the
battery mounting, which requires 7" of panel space and a depth of 8".

REV. @ A - 32

IDR3969 BASIC FEATURES

Specification Summary

Prime input voltage requirement: 95 to 125 VAC, 47 to 63Hz.

Allowable Temporary Voltage Drops:

% Drop From Maxumum Allowable

120 VAC Duration

188% 12.0 msec.
40% 20.8 msec.

24% 480 .@ msec.

Battery: 28 Amp-Hour

Operating Temperature: @ to 58C

Battery Back-up Time:

Memory 1 Battery 2Batteries

4K 6.7 Hrs. 13.4 Hrs.
8K 6 12

24K 3.1 6.2
16K 4.3 8.7
32K 2.4 4.9

A - 33 July 1978

APPENDIX A IDR3@68

AUTOMATIC PROGRAM LOAD

The automatic program load feature enables the operator to load

programs from devices such as fixed and moving head disks and paper
tape simply by initiating a hardware bootstrap from the control panel.
They may also be used to reload programs when power is’ restored

following a power failure. These features save considerable time and
effort by eliminating the tedious and error-prone procedure of manually

keying in a bootstrap loader one word at a time.

There are three basic types of automatic loaders, one for the fixed-and

moving head disks, one for magnetic tape, and one for the ASR and high

speed paper tape readers.
a

All versions are implemented as part of the control panel and the
Operator uses sense switches to specify the input device.

The disk version reads the contents of sector ®@ of the selected disk,
storing the words beginning at location '77@. After reading the data,
the processor begins normal program execution at location '10@0. (The
program executed; i.e., the data read in from the disk, is entirely at
the discretion of the programmer) .

The magnetic tape version reads the first record from magnetic tape

unit @ into memory beginning at location '77@. After reading the data,
the processor begins normal program execution at location '10@@. Like
the disk, the data read from tape is entirely at the discretion of the
programmer.

The paper tape version reads any Prime self-loading tape. Tapes of the

assembler, linking loader, text editor and other basic programers are
available in self-loading format. Also, any tape punched by the memory

dump and load program (MDL) is in the self-loading format and its data
is stored in the same part of memory from which it was punched.

REV. 8 A - 34

IDR3068

SPECIFICATION SUMMARY

Operating Characteristics

Ssw 14 15

Q

0

ob

Data Rate

16 Function Selected

O=Start at '1000

1=APL from TTY

®=APL from HSR

1=APL from FHD

Q=APL from MHD

1=APL from Magnetic Tape

- Input Device Dependent

BASIC FEATURES

July 1978

IDR3060 PRIME 3088 ADVANCED FEATURES

APPENDIX B

PRIME 368 ADVANCED FEATURES

The Prime 308 is totally compatible with the Prime 100 and 200. All of
the features described in Appendix A are present in the Prime 300.

In addition to the core functionality described in Appendix A, the
Prime 388 provides several advanced features: an extended instruction
set, virtual memory management hardware, and optional writable control
store.

PRIME 308 EXTENDED INSTRUCTIONS

This group of instructions is hardware-implemented only in the Prime
388 and above. The op-codes are obtained by using the extended R-mode
instruction format. However, all instructions of this group (except
XEC) can be implemented on the Prime 10@ or 20@ through’ the
Unimplemented Instruction Interrupt (UII) and a UII subroutine library.

Extended Jump Instructions

The Prime 30@ introduces nine jump instructions in the R-mode extended,

two-word instruction set. (These instructions are also available in
the Prime 358 and above in R-mode.) Six of them are conditional on

whether the contents of the A register are equal to zero, greater than
zero, etc. Others combine a jump with incrementing, decrementing and
storing the index register. The instructions are:

JEQ Jump If Equal to Zero

JNE Jump If Not Equal to Zero

JLE Jump If Less Than or Equal to Zero

_ JGT Jump If Greater Than Zero

JLT Jump If Less Than Zero

JGE Jump If Greater Than or Equal to Zero

JDX Jump and Decrement Index

JIX Jump and Increment Index

JSX Jump and Store Return in Index

B - dt July 1978

APPENDIX B IDR3069

Procedure Stack Control

This group of instructions simplifies programming of pure procedures,
recursive or reentrant subroutines, and dynamic storage allocation.
ENTR alters a stack pointer (S Register) to create an n-word stack
frame, and links the new frame with the previous one. CREP saves. the
program counter in the current stack frame and transfers control to a
subroutine. RIN undoes the work of both CREP and ENTR by deleting the
current frame and restoring the saved program counter value for the
calling program.

ENTR Enter Recursive Procedure Stack

CREP Call Recursive Entry Procedure

RIN Return from Recursive Procedure

Other Extended Instructions

FAA Effective Address to A Register

XEC Execute Effective Address Contents as Next Instruction

FLX Load Double Word Index

VIRTUAL MEMORY

The virtual memory feature (VM) greatly expands the processing and
storage resources of a Prime 300. It adds the following basic
capabilities:

@ Expansion of memory addressing to 262,144 words.

e@ Hardware protection of software integrity:

Specific areas within a task (user-level) can be protected
against being altered by the task itself

Tasks can be protected against access and alterations by
other tasks

Executive routines (base and supervisory level) can be
protected against alteration by user-level tasks

@ Automatic swapping of program segments (pages) between memory
and disk.

REV. @ B - 2

IDR30698 PRIME 3@@ ADVANCED FEATURES

VM's capabilities facilitate:

@ Multi-user time-shared disk Operating systems.

@ Multi-tasking real time operating systems

@ Foreground/Background systems with real time multi-user or
multi-tasking in the (protected) foregound and batch operations
in the background.

@® Execution of single programs larger than 64K with or without a
disk.

Paging

Paging is a technique of segmenting memory into a fixed length of 512
words or 'pages', intercepting memory acccess, and translating the
access from a 'virtual' address to a 'real' or physical address. This
translation expands the normal 16 bit address field (2**16= 65,536
words) to 18 bits (2**18=262,144 words). Each translation references a
"page map’ that contains the 'real' address for each of the 'virtual'
addresses. When paging operations are enabled, the processor is said
to be in the ‘Paging Mode'.

A page is a 512-word contiguous address space whose starting address is
a multiple of 512. Normally on a Prime 208 or 388 the maximum address
Space or segment available to a program is 2**16=65,536 words because
of the inherent 16-bit address field. Consider the format of a 16-bit
effective address associated with a program segment:

] 7 8 16

| VIRTUAL PAGE ADDRESS | WORD ADDRESS |

(@-127) (9-511)
12 1¢

Page Map

In paging mode, the virtual page address (VPA) points to an entry in

the page map. That entry contains the real page address and indicates
if the page is in memory and if it is 'write-protected'. The contents
of the map are created by the base-level executive software. Each

user-level program has a map that normally consists of 128 entries -
one for each virtual page address. The format for each map entry is:

B - 3 July 1978

APPENDIX B IDR3069

lst word

1 7 8 16

| x | | Y | Physical Page Address |

2nd word

| RESERVED

X: page in memory; 1 = yes, 9 no

Y¥: page is write protected; 1 = yes, 8 = no

The second word is usually used by the supervisor for the page's
disk address. It can also be used for a second interleaved map.

A page map consists of 128 entries (two words per entry). When a map

is in memory, it starts at a multiple of 256 or 256 n+l. To activate
a user-level program in the page mode, its map must be in memory and
the map's starting address loaded into register '18, the page map
address register (PMAR).

As illustrated in Figure B-1, when the user-level program initiates a
fetch to an effective address, the following sequence of events occurs:

The virtual page address is doubled and 'added' to the PMAR to create
an address that points to the appropriate entry in the map. The
physical page address becomes the high order nine bits of the physical

memory address; the word address becomes the low order nine bits.
This is the full 18 bit physical memory address.

Content Associative Memory Registers (CAM)

The process described above requires an extra memory cycle for each

"virtual' Memory reference. The VM features has four Content
Associative Memory (CAM) Registers that reduce the overhead to 8@ ns
per memory reference. The CAM registers contain a copy of the four
last referenced page map entries. (See Figure B-2.) The contents of
these registers are inspected before the memory map. If the CAM
registers contain the required map entry, the overhead is 88 ns; if

not, the memory map is accessed and copied into the particular CAM
register that has gone the longest time since it was last accessed.
Most programs spend most of the time within a page and would usually

find the map entry in CAM. Prime has measured the performance of
typical programs operating under its operating systems and found that
only 3 percent to 4 percent of map references are not found in CAM.

REV. @ B - 4

IDR3068 PRIME 308 ADVANCED FEATURES

1 7 8 16
VIRTUAL PAGE ADDRESS|

|

WORD ADDRESS | VIRTUAL ADDRESS
— 7x = (16 bits)

J |

i. 7 8 9 16

0 0 0 0 0 0 O| Z| PAGE MAP ADDRESS PMAR
< 3 > (R'10)

t Z=0, Even

Z-1, Odd

PAGE MAP

 ENTRY ADDRESS

-—p} x 0 0 0 0 O| Y| REAL PAGE ADDRESS

PAGE MAP
ENTRY

. Y

5
fi > «

|
~

-—> To HSM

99 00 1 7 8 16

< REAL ADDRESS a
(18 bits)

X=Page is in HSM; 1=Yes
——P Points to O=No

> Transferred to Y=Page is write protecvad
1=Yes

HSM=High Speed Memory O=No

Figure B-l. Physical Address Formation

July 1978

APPENDIX B IDR3660

1 7 8 16
Virtual Page Word VIRTUAL

Address Address ADDRESS

99 OC1. 7 ss= |

REAL ADDRESS > TO RFAL

A
ee e@eere eee 6 @ & @ 208 8 -t vattee s sony eeaonwe@ @a2rae Ge @@ @e

oo L.., :

-" Page TMM” :
. Map X10 0000] Y¥) Real Page [of .
: Entry Address | °
- I :

a

| :

| os
|

Pe Io:| :
—_>EBTecto RPA 2 | :

et)Lt pcm TG
| oe

Ly. <—§<trn

3|

xlo0ool RPA 3 | :
N . : :: : | | :

o | | :

PA 4 —PLO 2 0 0 ofr | RPA 4 | :
N .° :

“Pop Off CAM . | :
e

°

q J , :

| °
= 8 | :
(0 0000 0 0/2 [PaPage Map "| ewan (R120) | °

. address :

Z=0, Even ee | :
Z=1, Odd 9 ey! :

Page Map Fntry | :
| Address “| .
i X—x716 :p=

Not in CAM Vanna mee

em

ee ee ee eeeeeeeeeee -me lo tee ee 6 cer eeneses

_____ >
—> Points to X = Page is in HSM; 1=Yes
— Transferred to O=No

Y = Page is write protected;
Phase 1] First check CAM* 1l=Yes
Phase 2 - - - If not in CAM O=No
Phase 3 Update CAM*

*If reference was in CAM, that entry is pushed

REV. @

to the top of the CAM

Content Associative Memory registers
Virtual Page Address
Real Page Address
High Speed Memory
Page Map Address Register

Figure B-2. Virtual Memo

B

ry Effective Address Formation

6

IDR3660 PRIME 388 ADVANCED FEATURES

Page-turning

A disk-based system can effectively expand the 'size' of memory to be
as big as the storage size of the disk. This is done by swapping
program segments in and out of memory or page-turning. This is a
practical technique for many applications since a program usually
executes one portion at a time. To make page-turning efficient and
practical, the executive program is automatically notified when a task
tried to access a page not in memory. The information of which pages
are in or out of memory is stored in the page map. This condition is
called a 'page fault'. The executive is also told what page the
program tried to access and then brings the required page into memory.
This feature means that user-level programs can be written without
concern for paging; i.e., paging is the executive's responsibility and
is transparent to the user-level programs.

The page map entries have a bit that indicates if the page is in memory
Or on the disk. When a program accesses a new page and its map entry
indicates it is not in memory, a page-fault interrupt occurs and the
virtual address causing the page-fault is loaded into register '12.
The base-level executive program must respond to the interrupt, decide
what physical space to use for the new page, load the page off the disk
into that space, update the page map entry, and return control over the
user-level program. This procedure is referred to as page-turning.
One technique used in page-turning is to use the second word of a page
map entry to store the page's disk address.

The page map can also specify which pages can be altered and those that
cannot. Thus, the map is consulted for each write operation. If a
task tries to write into a protected page, the executive is
automatically notified of the attempted violation.

Hardware Memory Protection

Virtual Memory provides three levels of protection for maintaining
program integrity. The first is inherent in the paging mode Operation.
Each user-level program is associated with a page map. To activate
that program, the executive must load the PMAR with the Maps physical
address and turn control over to the program. That program can access
only those pages in its map.

To reallocate the computer's resources to another program, the
executive need only change the PMAR to a new Map address. Time-sharing
and multi-tasking is facilitated in this manner. The reallocation
process can be initiated by an external interrupt, specifically the
real time clock, or by a call to the executive from a user-level
program.

Within a user-level program, pages Gan be protected against being
altered. This is done by the executive setting the write protect bit
in each of the protected page's map entries. When a protected page is
accessed by an instruction that would alter its contents, a page write
violation interrupt is generated.

B - 7 July 1978

APPENDIX B IDR3860

A third level of protection is provided by restricting selected

programs from executing instructions that would alter the processors

control state.

Restricted Execution

User-level programs operate in the restricted execution mode (RXM). In

the RXM mode, the executive is automatically notified when the

user-level program attempts to execute any one of a class of Ifo,

interrupt and control instructions. This insures a delineation of

responsibilities between the user-level programs and the executive

program that controls all I/0, interrupts, and processor modes. In

this way, ‘stand alone' user-level programs needn't be re-written to

run under a time-sharing executive, and they can run without danger of

alteration to the executive or other tasks.

The executive program would normally enable the restricted execution

mode (RXM) as part of its transfer to a user-level program. This mode

is exited by an external interrupt or when a restricted instruction is

attempted. The later case causes a RXM interrupt and, as with an

external interrupt, would normally branch to the base-level executive

program. :

Hierarchy of Processing States

Three district processing states can be defined as a direct result of

the paging mode and the restricted execution mode. These are:

User-level: usually the ‘application’ software operating in both the

paging and restricted execution mode.

Supervisory-level: A portion of the executive program that needn't be

resident in memory and operates in the paging and non-restricted

execution modes. |

Base-level: A fundamental portion of the executive program that must

reside in memory and operates in the non-paging and non-restricted

execution modes.

Processing Paging Restricted
state Mode Execution Mode

User-level ON ON

Supervisor-level ON OFF
(executive)

Base-level OFF OFF

(executive)

REV. @ B - 8

IDR3060 PRIME 308 ADVANCED FEATURES

The base-level program is always resident in memory and is responsible
for handling:

1. Interrupts (see Table B-1)

a. I/0 devices
b. Real Time Clock
Cc. Page-fault
d. Restricted execution fault
e. Disk transfers

2. Bookkeeping

a. Operating state
b. Memory allocation

The supervisor level is part of the operating system executive and is a
continuation of the base-level executive. The Supervisory level can be
page-turned and therefore is inherently slower to respond to stimuli
than the base. It can be used for such functions as file management
and internal operating system commands such as:

e Attach a user file space to a terminal

@ Read batch commands from a specified file and execute

@ Load a memory image file into memory

@ Save memory on a user file

Virtual Memory Instructions

The following instructions control page, virtual and restricted
execution modes. They are not emulated by UII software on the Prime
168 or 208, which lack the virtual memory hardware, and so cause an
illegal instruction trap.

EPMJ Enter Paging Mode and Jump

LPMJ Leave Paging Mode and Jump

ERMJ Enter Restricted Execution Mode and Jump

EVMJ Enter Virtual Mode and Jump

WRITABLE CONTROL STORE

The Prime 380 is microprogrammed using a 64-bit wide microprocessor as
the control unit. This microprocessor or "inner processor" has a
control store containing microinstructions arranged as microprograms.
These execute the computer's or "outer processor's" machine
instructions, I/O and control panel functions. WSC extends the Prime

B - 9 July 1978

APPENDIX B IDR3060

Octal

Vector

Location

"65

"64

'73

"62

REV. 6

Table B-l. Virtual Memory Interrupts

Description

Supervisor Call. Generated by the execution of the SVC

instruction. The contents of the program counter is copied

into the location addressed in '65. The program counter

points to the location following the SVC instruction.

Page-fault. This interrupt occurs when the page map

indicates the page required by the executing instruction is

not in memory. The program counter pointing to the faulted

instruction is copied into the location addressed in ‘64.

The address of the requested page is copied to location ‘l2.

The interrupt can occur only when the paging mode is enabled.

When a page fault interrupt occurs, paging mode is disabled.

Page Write Violation. This interrupt occurs when the page

map indicates the page about to be written into is write

protected. The program counter point to the violating

instruction is copied into the location addressed in '73.

The interrupt can occur only when paging mode is_ enabled.

When a page write violation interrupt occurs, the paging mode

is disabled.

Restricted Execution Violation. This interrupt occurs when
the following types of instructions try to execute:

I/O _sINTERRUPTS CONTROL

OCP ENB HLT
SKS INH EMCM
INA ESIM LMCM
OTA EVIM RMC/RMP
ISI CAI VIRY
OSI SMK EPMJ

INK LPMJ
EVMJ
ERMJ

The program counter pointing to the violating instruction is

copied into the location addressed '62. The interrupt can

occur only when restricted execution mode is enabled. When a

restricted execution violation interrupt occurs, the

restricted execution mode is disabled.

TIDR3969 PRIME 388 ADVANCED FEATURES

3@@'s basic control store (512 words of PROM, Programmable Read Only
Memory) with 256 words of RAM (Random Access Memory). Microprograms
for WS are written using Prime's Micro Assembler and are loaded from
main memory using a Prime-supplied loader. Control is turned over to
WCS microprograms by executing a set of special 'Jump to Wwcs'
instructions.

WCS Capabilities

The capabilities of WCS are a function of both the inner and outer
processors. The outer processor has 32 general purpose registers, an
arithmetic and logic unit, main memory interface, I/O bus interface and
an 8-bit auxiliary counter. This general architecture is enhanced by
hardware assists to speed the execution of skips, instruction fetches,
and decode operations.

The inner processor contains a control unit and control store. It
features a three-deep push/pop stack and condition testing to assist in
Subroutines, and microprogram trapping. The microprocessor fetches and
executes microinstructions from control store. The 64-bit wide
microinstructions format permits multiple functions to be performed by
a Single instruction. A narrower word may require several instructions
to accomplish an equivalent task. Also, the generalized structure of
the outer processor broadens the spectrum of tasks that can be
implemented with the powerful inner processor.

Microprogramming can be used to gain a speed advantage and minimize
main memory storage compared to in-line programming with the standard
instruction set. A microprogrammed subroutine eliminates individual
instruction fetches from main memory. A typical microinstruction
executes in 28@ ns - much faster than main Memory cycle time. Thus,
when main memory references are minimized, execution speed increases.
Furthermore, since a single in-line instruction transfers control to a
WCS subroutine, there can also be a more efficient use of main memory.

XCS Board

The Prime microprocessor can address up to 4896 words of control store.
To extend the control store past the 512 words located on the central
processor (CP) board, a

_

second board is used. The extended control
store (XCS) board connects to the CP board in adjacent chassis slots
with three short ribbon cables attached to the boards' rear edge
connectors.

Both WCS (RAM) and floating point arithmetic (PROM) can use the XCS
board depending upon which type processor and option has been ordered.

Programming

Loading WCS: The XCS board also interfaces to the I/O bus to
facilitate the loading of WS from main memory. This is accomplished
by first loading the A register with the starting address of WCS and
transferring this to the XCS board with an OTA instruction. Data is

B - ll July 1978

APPENDIX B IDR366G

transferred to WCS by a sequence of LDA and OTA instructions. The WCS

control logic automatically packs four sequential 16-bit words into one

64-bit microinstruction, and advances to the next WCS location.

"Jumo to WCS" Instructions: Four "Jump to WCS" instructions have been

added to the Prime 3008 series processors:

EPMX Enter Page Mode and Jump to XCS

EVMX Enter Virtual Mode and Jump to XCS

(Virtual mode = page mode and restricted

execution mode)

ERMX Enter Restricted Execution Mode and Jump to SCS

LPMX Leave Page Mode and Jump to SCX

All of the above are 2 word instructions. The first word is the op

code; the second is a pointer to a main memory location containing the

address of the microinstruction. This format permits pure procedures

to be separated from variables (the control store address may be a

var iable) and facilitates recursive, re-entrant programming. To

transfer control to WS takes approximately 2.5 microseconds. These

are restricted instructions and cause a trap when executed with

restricted execution mode enabled. This feature gives the executive

software the ability to decide how to handle user-level requests for

WCS access.

Use of PMA: Prime's Macro Assembler (PMA) can be used to create

special mnemonic representations for microprograms. These are actually

one-instruction macro's: a "Jump to WCS" with a unique pointer and WCS

address. Once the macro has been defined, the user can refer to his

microprogram as a mnemonic, the way he would to a standard Prime

instruction.

Software

Micro Assembler: Prime's micro assembler allows the user to create

microprograms with full symbolic assembly capabilities. Symbolic

source code is assembled and object code created in a format to be

loaded into WCS and/or printed in hexadecimal format. The micro

assembler runs under PRIMOS and requires a system with at least 32K

words of main memory. The Text Editor (ED) is used to enter and modify

source statements.

Loader: This enables a PRIMOS user to load WCS from main memory.

Test and Verification: Test and verification routines are also

provided.

REV. @ B - 12

IDR3668 PRIME 30@ ADVANCED FEATURES

Microprogramming Course: A one week microprogramming course must be
attended as a prerequisite to installing and using the WCS feature.
The course is designed to give the student hands-on experience writing,
debugging, and executing microprograms. For the student to properly
benefit from the course, he should at least familiarize himself with
the reading material that will be provided him prior to the course.
Preferably he will be experienced in machine level programming, logic
design, and computer architecture.

B - 13 July 1978

IDR3068 INSTRUCTION SUMMARY

APPENDIX C

INSTRUCTION SUMMARY

This appendix contains a complete list of instructions for the Prime
108 through 5@0. Each instruction is followed by its octal code,
format, function information on addressing mode and_ hardware

availability, and a one line description of the instruction.

The columns in the list are as follows:

R RESTRICTIONS

blank -— regular instruction

R- instruction causes a restricted mode violation fault if

executed in other than ring 9 (restricted mode violation

interrupt on Prime 300)

P - instruction may cause a fault depending on address

W- writable control store instruction, may be
programmed in wcs to cause a fault

/M- Machine specific - use only on specified
CPU. Usually an instruction reserved for
operating system, such as EPMJ.

MNEM - a mnemonic name recognized by the assembler PMA.

OPCODE - Octal operation code of the instruction. The codes are
indented so that I/O instructions are isolated from generics,
and the memory reference and register instructions of the
P5008 are sorted apart from the MR instructions of the

P109-400.

RI - Register (R) and Immediate (I) forms available (P5988 memory
reference instructions only); Y = YES, N = NO.

FORM Format of instruction:

MNEMONIC DEFINITION

GEN Generic

AP Address Pointer

BRAN Branch

c 6 ll July 1978

APPENDIX C

CHAR

DECI
PIO

SHFT
MR

MRG

MRFR

MRNR

RGEN

IDR3062

Character

Decimal
Programmed I/0
Shift

Memory Reference -

non I-mode
Memory Reference —
General Register

Memory Reference —
Floating Register

Memory Reference
Non Register

Register Generic

FUNC Function of instruction:

REV.

MNEMONIC DEFINITION

ADMOD Addressing Mode

BRAN Branch
CHAR Character

CLEAR Clear field
DECI Decimal Arithmetic
FIELD Field Register
FLOAT Floating Point Arithmetic
INT Integer
INTGY Integrity
IO Input/Output
KEYS Keys
LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control
MOVE Move
PCTLJ Program Control and Jump
PRCEX Process Exchange
QUEUE Queue Control

SHIFT Register shift
SKIP Skip

MODE Addressing modes in which instruction functions as

8 16S or 325

R 32R or 64R

V 64V (P400-P500)

I 32I (P5080)

defined:

IDR3068 _ INSTRUCTION SUMMARY

1 23 4 5 How instruction is implemented on each CPU (1098 thru
500) .

Codes are:

- Not implemented. Do not use this mnemonic on this CPU.

H Implemented by standard hardware.

O Implemented by hardware option or UII library if option

is not present.

U Implemented by UII library.

C- How instruction affects C and L bits. codes are:

~ C and L are unchanged
1 C = unchanged, L = carry
2 C = overflow status, L = carry
3 C = overflow status, L = indeterminant
4 C = status returned by specific shift, L = indeterminant
5 C = set by instruction, L = last bit out of Al for left

L = last bit out of Bl6 for right, including short
6 C = indeterminant, L = indeterminant
7 C = loaded by instruction, L = loaded by instruction
8 C = reset by instruction, L = indeterminate

CC - How instruction affects condition codes. codes are:

- condition codes are not altered
1 condition codes are set to reflect the result of arithmetic

operation or compare
4 condition codes are set to reflect result of branch,

compare
or logicize operand state.
condition codes are indeterminant
condition codes are loaded by instruction
special results are shown in condition codes for this

instruction

~
I

O
S

O
T

DESCRIPTION - a brief description of the instruction

Cc 6-3 July 1978

APPENDIX C

R MNEM

A
AlA
A2A
ABQ
ABQ
ACA
ADD
ADL
ADLL
ADLR
AH
ALFA

ALFA

BCEQ
BCGE

BCGT
BCLE
BCLT

BCR
BCS
BDX

BDY

BEQ
BFEQ
BFEQ
BFGE
BFGE

BFGT
BFGT
BFLE

BFLE
BFLT
BFLT

0

OP CODE RI FORM

@2 YY MRGR
141206 GEN
140304 GEN
141716 AP
(78) 134 AP
141216 GEN

86 MR
86 03 MR
141920 GEN
(78) 614 RGEN

12. ‘YY MRGR
001301 GEN

801311 GEN

@414xx SHFT
@4.16XX SHFT
B415XX SHFT

03 MR
03 03 MR
(78)161,171 RGEN

020605 GEN
0404xx SHFT
B406XX SHFT
@405XX SHFT
141/17 AP
(78) 135 AP
141602 BRAN
141685 BRAN
141681 BRAN
141690 BRAN
141684 BRAN
141693 BRAN
141705 BRAN
141704 BRAN
148734 BRAN

140724 BRAN

149612 BRAN
141612 BRAN
(58) 122 RGEN
141615 BRAN
(58)125 RGEN
141611 BRAN
(58) 121 RGEN
141618 BRAN
(58) 128 RGEN
141614 BRAN
(58) 124 RGEN
141613 BRAN
(58)123 RGEN
140615 BRAN
14¥611 BRAN
(58)144 RGEN

(50) 145 RGEN

(58) 146 RGEN

(58)105_ RGEN
(50) 112 RGEN

FUNC

INT
INT
INT

QUEUE
QUEUE
INT
INT

INT
INT

FIELD

FIELD

SHIFT
SHIFT
SHIFT

LOGIC
LOGIC
FIELD

PCTLJ
SHIFT
SHIFT
SHIFT

QUEUE
BRAN
BRAN

BRAN

BRAN
BRAN
BRAN
BRAN
BRAN

BRAN

BRAN

BRAN
BRAN

MODE

m
m

w
a

n
n

N
n
n
m
n

D
w

Dw

<
a
a
q
d
c
c

n
m
m
n

a
w

<
a
<
a
<
a
<
a

<
a
c
a
e
c

a
w
w

<
a
c
q
c
c
c
c
a
c
a
d
c
a
d

a
c
a
c
d
c
d

<
<

<<
<

<¢
<<

<
a

<
<

<
<

IDR3869

1
m
m
?
)

t
m
m

I
m
r
m
l
t
o
w

i
(
m
m
m

1
u
m
a

m

1
u
m
l

|
m
m
s

(
a
c
o

e
(
u
m
m

i

1
C
a
o
!
a
o
e

re
}

x
I
m
m
o
o
e

m
G
r
o

c
m
r
a
o
a
o
l
o
e
s

(
m
a
m
a
t

m
i

a
+

a
t
i
m
i
a
e

c
o
r
o

TM
T
T
e
m
a
a
a
s

—
m
c
m
o
a

c
K
O
c
o
r
T
o
e
T
e
t
e
o
e
o
o
s

m
C
e
t
t
e

r
t
e
t
t
o
e

ro

[|
M
R
O
h

D
n

D
N

Il
N
M
N
N
D

!
l
P
P
P

i
b
b
S

|

CC

W
R
N
R
R
R
R
S
R
B

I
N
D
O
I

“
l
o
l
n
o
w

w
o

l
b
>
P
b

P
H
S
H
E

S
f
b
f
f
f

H
S

DESCRIPTION

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

Add

Fullword

One to A
Two to A

to Bottom of Queue
to Bottom of Queue

C-Bit to A

Long
Link Bit to L
Link to R
Halfword
Long Integer to Field

Address
Add Long Integer to Field
Address

A Left Logical
A Left Rotate
A Left Shift

AND.
AND Long
Update Field Address

Register
Argument Transfer
A Right Logical
A Right Rotate
A Right Shift
Add to Top of Queue

Add to Top of Queue
Branch if CC
Branch if CC

Branch if CC

Branch if CC

Branch if CC
Branch if CC .NE. @
Branch if C-Bit = @
Branch if C-Bit = 1
Decrement X; Branch if X

= Q
Decrement Y;

= @
Branch i

Branch if

Branch if

Branch if

Branch if
Branch if
Branch if

Branch if

Branch if

Branch if

Branch if

Branch if

Branch if

Branch if
Branch if
Decrement

Branch if

Decrement

Branch if
Decrement

Branch if
Branch if

Branch if

0
0

Q
0
8A

L
A

V
v
I
~
w

ou

Branch if Y

- t
h

D
o
T

o
C
r
t

P
r
P
a
T
I
M
M
M
T
T
a
M
y
y
y

B
S
O
o
e
g
o
n
g
n
o
o
n
e

A
A
I
A
I
A

Vv
V
I
V
I
V

It
t
o
t

ae

R MNEM

BHGT

BHI1

BHI2

BHI4

BHLE
BHLT

BIX
BIY
BLE
BLEQ

BLGT
BLLE
BLLT

BLR

BLS
BLT

BMEQ
BMGE

BMGT

BMLE

BMLT

BMNE

BNE

BRBR

BRD1

BRD2

BRD4

BREQ
BRGE
BRGT
BRI1

BRI2

BRI4

BRLE
BRLT
BRNE

CALF

CAZ
CEA

OP CODE RI FORM

(50) 111 RGEN
(50) 140 RGEN

(58)141 RGEN

(58) 142 RGEN

(58) 118 RGEN
(58) 104 RGEN
(50) 113 RGEN

141334 BRAN
141324 BRAN
140610 BRAN
148762 BRAN
140615 BRAN

140781 BRAN
140760 BRAN
140614 BRAN
140793 BRAN
141707 BRAN

141706 BRAN

140614 BRAN
141682 BRAN
141706 BRAN

141718 BRAN

141711 BRAN

141707 BRAN

141603 BRAN

140613 BRAN
(5@)@40-077 BRAN

(58)008-837 RGEN
(58)134 RGEN

(58)135 RGEN

(58) 136 RGEN

(50) 182 RGEN
(58) 105 RGEN
(50) 11 RGEN
(58) 138 RGEN

(58)131 RGEN

(50)132 RGEN

(50) 10@ RGEN
(58) 104 RGEN
(58) 103 RGEN

61 YY MRGR
900411 GEN
141856 GEN
890705 AP
141044 GEN

ll MR
146214 GEN
000111 GEN

FUNC MODE

BRAN

BRAN

BRAN

BRAN

BRAN

BRAN

BRAN

BRAN
BRAN
BRAN
BRAN
BRAN
BRAN
BRAN
BRAN <

a
c
c
c
c
q
c
a
q
a
c
a
d
c

BRAN
BRAN

BRAN
BRAN a

a
c
c
d

BRAN <

BRAN V

BRAN V

BRAN V

BRAN V

BRAN
BRAN
BRAN

BRAN

BRAN

BRAN
BRAN
BRAN
BRAN

BRAN

R
R

R
e

h
e

e
H

IDR3069

1

m
m
m
r
m
m
!
o
m

sl

m
c
m
m
m
i

m
o
m
o

m
m
m
m

i
m
m

it

C
a
e
r
c
m
c
o
o

e
se

we
)

VY

m
u
m
o
m
m
o
a
m
e

m
m
o

on
c
o
o
o

n
o
o
e
c
C
c
e
e
e
e
e

c
o
o

oc
a8
)

c
m
o
s

m
m

tae
}

m
a
m
e

m
e
r
r
m
a
m
m
m
e

D
b
r
R
e
r
e
t
l
w
n

dl

INSTRUCTION SUMMARY

CC DESCRIPTION

4 Branch if H > @

- Increment H by One;
Branch if H = @

~ Increment H by Two;
Branch if H = @

- Increment H by One;
Branch if H = @

4 Branch if H < 6
4 Branch if H < 0
4 Branch if H is not equal

to 0
- Increment X and Branch
- Increment Y¥ and Branch
4 Branch if A< ®@
4 Branch if L = 9
4 Branch is L > @
4 Branch if L > @
4 Branch if L < @
4 Branch if L < @
4 Branch if L .NE. @
- Branch if L-Bit = @

(Reset)
- Branch if L-Bit = 1 (Set)
4 Branch if A < @
~ Branch if Magnitude = @
- Branch if Magnitude is >

Q
- Branch if Magnitude is >

0
- Branch if Magnitude is <

DG
- * Branch if Magnitude is <

g

- Branch if Magnitude is
-NE. @

4 Branch if A .NE. @

- Branch if bit n = 0
- Branch if Rbitn=1
- Decrement R by One;

Branch if R=
~ Decrement R by Two;

Branch if R=
- Decrement R by Four;

Branch if R=
4 Branch if R= 9
4 Branch if R> @
4 Branch if R> @
- Increment R by one and

branch if @

- Increment R by 2 and
branch if @

- Increment R by 4 and
branch if 0

4 Branch if R <x 8
4 Branch if R< @
4 Branch if R .NE. @
1 Compare Fullword

- Clear Active Interrupt
- Clear A Left
6 Call Fault Handler
- Clear A Right
1 Compare A and Skip
1 Compare A with Zero

Compute Effective Address

July 1978

APPENDIX C

R MNEM

CRBL

CRBR

CREP

CRHL

CRL

CSA
CSR

R CXCS

DBL
DBLE
DFA
DFAD
DFC
DFCM

DFCM

DFCS

DFD
DFDV
DFL
DFLD
DFLX

DFM
DFMP
DFS
DFSB
DFST
DFST

DH1
DH2
DIV
DIV
DLD
DM
DMH
DR1
DR2
DRX

DSB
DST
DVL
E16S

REV. 9

OP CODE RI FORM

601314

(78) 026

71
148024
(78) 040

ll 83
140481
(78) 845
(78) 856
140040
140015

(78) 062

(78) 863
141404

18 82

(70) 054
(78) 855
148019
141410
148328
(78) 841
001714

62
86
090907
(70) 16,116

15,17 YY
B6 W2

Q5,07 YY
140574

(70)144,154

ll @2

17 @2

82 02
415 92

16 @2

07 B2

04 b2
72

(78) 138
(78) 131

(70)125
149210

07
04
17 63
000811

B
s

BRAN
BRAN

MRGR

RGEN

GEN
RGEN
RGEN
GEN
GEN

RGEN

RGEN
GEN

RGEN
RGEN
GEN
GEN
GEN
RGEN
GEN
MRGR
MR
GEN
RGEN
MRFR
MR
MRFR
GEN

RGEN

MR

MRFR
MR
MRFR

MR
MR

MRER
MR
MRFR
MR
MRFR

RGEN

FUNC MODE

ADMOD S

m
w

c
c
d

<
a
<
<

e
t

H
t

H
i

m
e
e
H
H

IDR3G60

1 2

H H

H H

H H

H H

U U

H H

H H

O 0

H H

U U

- O

U U

U O

U U

U O

U U

U U

Oo Oo
O 0

O O

OC Oo

H H

a
jee

)
|

t
m
m

il
fan

}
1
m
m
i
t
l
t
t
i
m
i
w
m
g
t
s
i
i

t
o
|
l
r
z

il
=

i
m
t
i
o

(
i
m
r
i
e
m
i
o
t

1
i
m
m
e

—
m
i
m
n

1
a
m

=n
)

m
a
m
i

ltl
a
m
l

l
L
m
u
m
i
n
i
t
i
m
a
u
a
u
n
a
i
l

si
m
m
i
n
m
i

x
m
i
a

I
m
m
m
i
r
i
a
i
a
n
i
a
i

m
a
o

T
m
r
m
m
r
r
U
n
a
a
e
e
e

“
m
m
m
o
o
m
r
o
e
e
e
o
e

x
=o

M
m
m
m
e
r
r
n
o

t
e
e
t

m
m
m
m
e

m
m
o

e
e
e
e

2
)

_
W
w
W
l
w
w
i
l
l
w
w
l

t
W
w

n
n

1
W
w

PF
Pr
W
W
N
Y
D
N
W
E

I
W
W
W
w
W
w

|
I
m
o
n

li
}
w
l

er
e

(
m
b

r
e

CC

b
r
e
w
s

O
o

—
O
e
u
e

|
l
e
e

i
~

o
m

L
o
e
o
e

O
m
e

e
e
e
e

|

DESCRIPTION

Computed GOTO
Computed GOTO

Compare Halfword
Change Sign
Change Sign
Compare
Complement A
Complement
Clear
Clear A
Clear B

Clear High Byte 1 (Left)
Clear High Byte 2 (Right)
Clear E
Call Recursive Entry

Procedure
Clear Left Half
Clear Right Half
Clear Long ©
Clear L and E
Copy Sign of A
Copy Sign
Extended Control Store
Divide Fullword
Double Add
Double Precision
Convert Single to Double
Double Floating Add
Double Floating Add
Double Floating Compare
Double Floating
Complement
Double Floating
Complement
Double Floating Compare

and Skip
Double Floating Divide
Double Floating Divide
Double Floating Load

Double Floating Load
Load Double Floating
Index
Double Floating Multiply
Double Floating Multiply
Double Floating Subtract
Double Floating Subtract
Double Floating Store
Double Floating Store
Divide Halfword
Decrement by One
Decrement by Two

Divide
Divide
Double Load
Decrement Fullword
Decrement Halfword
Decrement by One
Decrement by Two
Decrement and Replace
Index
Double Subtract
Double Store
Divide Long
Enter 16S Mode

R

a
w
w

=
=

wD
@w

MNEM

E321

E32R
E32S
E64R

E64V

EAFA

BAFA

EIO
E1O
EMCM

ENTR

EPMJ

ERA
ERL

ERMX

ESIM

EVIM

EVMX

FA
FAD

FCM
FCM
FCS
FD
FDBL

OP CODE RI FORM FUNC

0010108 GEN ADMOD

901013 GEN ADMOD
900013 GEN ADMOD
901011 GEN ADMOD
009010 GEN ADMOD

G1 v1 MR MOVE
001302 AP FIELD

001312 AP FIELD

G1 wl MR MOVE
42 NN MRNR PCTLJ

13 #2 MR PCTLJ
63 NN MRGR PCTLJ

52. NN MRNR PCTLJ

12 v2 MR MOVE

34 NN MRGR IO
14 1 MR IO
900583 GEN INIGY
920401 GEN IO

Q1 03 MR PCTLJ

000217 MR MCTL

000237 MR MCTL

05 MR LOGIC
@5 03 MR LOGIC
020701 MR MCTL

900721 MR MCTL

000415 GEN IO

Qu0417 GEN 10

@00703 MR MCTL

Q08723 MR MCTL S

14,16 YY MRFR FLPT
06 01 MR FLPT

@4,06 YY MRFR FLPT
149530 GEN FLPT
(76) 1v0,110 RGEN FLPT
11 61 MR FLPT

30,32 YY MRFR FLPT
149816 GEN FLPT

17 @1 MR FLPT
@0,02 YY MRFR FLPT

@2 g1-~ MR FLPT
140550 GEN FLPT
(70) 15,115 RGEN

149532

(76) 12,112 RGEN

GEN

FLPT

FLPT

FLPT

MODE

M
n
n
N
N
n
N

D
A
D
w
D
D

wD

<
<

<4
<
<
c
a
c
c
a
d

W
w

Dw
m

m
H

<
<
<

<
<
<

<
<

<
m
e
e

R
e

IDR3860 |

1

r
a
l
m
m
m

il
r
a
t
a

(
c
+
;
a
o
n

i
a
q
a
n
m
a

r
a
r
;
~
i
o
r
a
t
l

r
o
a
r
t
o
d

I
i
o
m
i
a
o
d

I
m
i

a
o
u
e
r
e

m
m
m

il
m

(
m
i
o
r
w
s

c
a
e
r
o
c
o
e

=
ja

sn
)

m
o
r

m
i
m
i
m
t
i
n
a
y

1
m
m
o
l

&
am

c
o
m
a
o
e

er
}

a
m
m
c
o
o

T
o
r
e
a
r

e
m
m
m
m

es
a

x

L
w
n
w
w

dl
w
w

|
W
w

a

CC

INSTRUCTION SUMMARY

DESCRIPTION

Enter 32I Mode

Enter 32R Mode
Enter 32S Mode

Enter 64R Mode

Enter 64V Mode
Effective Address to A

Load Field Address
Register 0
Load Field Address
Register 1
Effective Address to L

' Effective Address to Link
Base
Effective Address to LB
Effective Address to
Register

Effective Address to
Temporary Base
Effective Address to

Temporary Base
Execute I/O
Execute I/O
Enter Machine Check Mode
Enable Interrupts
Enter Recursive Procedure

Stack
Enter Paging Mode and
Jump
Enter Paging Mode and

Jump to XCS
Exclusive OR to A

Exclusive OR to L
Enter Restricted
Execution Mode and Jump

Enter Restricted
Execution Mode and Jump
to WCS
Enter Standard Interrupt

Mode
Enter Vectored Interrupt
Mode
Enter Vectored Mode and
Jump

Enter Virtual Mode and Jump

P
e
O
k
e
O
e
o
e

-
O

w
n

to WCS
Floating Add

Floating Add
Floating Compare
Floating Complement
Floating Complement

_ Floating Compare and Skip
Floating Divide
Convert Single to Double
Float
Floating Divide
Floating Load
Floating Load
Float
Convert Integer to
Floating
Convert Integer to

Floating
Convert Halfword to
Floating

July 1978

APPENDIX C

R MNEM

FLTL

FLX

FMP
FRN
FRN

FSB
FSGT
FSLE
FSMI
FSNZ
FSPL
FST
FST
FSZE

ICA

ICBL

ICBR

ICHL

ICHR

ICL

ICR

D
A
D
A
D
D

t
H a =

INTA

INTH

INTL

IR1
IR2
IRB

IRH

REV. @

OP CODE RI FORM

140535 GEN

15 @l MR
24,26 YY MRFR

16 01 MR
140534 GEN
(70) 187,117 RGEN

20,22 YY MRFR
07 Ol MR
149515 GEN
140514 GEN
149512 GEN
149511 GEN
149513 GEN

10,12 NN MRFR
04 v1 MR
14510 GEN
genoa GEN

41 YN MRGR

000201 GEN
141340 GEN

(78) 065 RGEN

(78) 066 RGEN

(70) 868 RGEN

(78) 861 RGEN

141140 GEN

141246 GEN

51 YN MRGR

(78) 126 RGEN
(70) 127 RGEN
141414 GEN

40 NN MRNR
13 MR

9 NN MRNR
54 PIO

@01215 AP
801215 AP
901216 AP
901214 AP
001801 GEN
900043 GEN
(70) 8708 RGEN
140554 GEN
(78) 1W3,113 RGEN

140531 GEN

(70) 1W1,111 RGEN

140533 GEN

(78) 122 RGEN
(78) 123 RGEN
(76) 064 RGEN
(78) 057 RGEN

FUNC

FLPT

FLPT
FLPT
FLPT
FLPT
FLPT

FLPT
FLPT

FLPT
FLPT
FLPT
FLPT

FLPT
FLPT
MCTL
MOVE

MOVE
MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

INT
INT

MOVE

INT
MOVE
INT
IO
PRCEX
PRCEX
PRCEX
PRCEX

KEYS
KEYS
FLPT
FLPT

FLPT

FLPT

FLPT

INT

MOVE

MOVE

MODE

A
m
m
a

w
a

m
a

m
m
m

SR

<
<
<
<
a
d
d

<
<

iH
<
a
<

<
<
a
c
c

<
<

R
R

e
t

e
S

IDR3060

1
r
a
e
a
i
I
i
a

a
I
[
m
i
s
t
i
c
i
e
t

m
o

!
m
e
m
i

it
i
m
o
l
s
t

P
m
o
a
c
r
~
o
o
o
o
o
o
d
c
i
:
i
:
o
0
o
i
c
a

m
r

1
a
m

it
r
o
r

n
a
g
a

r
m
o
m
r
i
o
o
o
o
o
m
i
!
r
1
f
o
o
t
a

r
r

I
m
i
w
e

it
1
o
r
;
n
m
m

)

a
I
m
m
m
e
o

o
e
o
e
s
!

o
e
s

m
o

(
T
i

i
m
m
a
n
r
a
r
a
o
o
m
s
l
i
n
i
e
s

m

T
I
M
m
o
m
c
o
r
e
r

r
a
a
a

m
z
o
o

=
m
T
m
r
a
m
o
m
e
n
e

T
m
o
m
m
a
o
w
e

Hae
}

m
mm

a0
)

au
m
o
o

l
w
w
w
w
w
y
w

|
c
o

BN
O
b
d

L
A
D
A
D
D

1

cc

L
P
O
!
P
h
e
P
h
h
w
U
O
r
r
F
U
M
E
|

P
o
o
m
o
o
m
d
R
l
e
t
r
e

w
n

DESCRIPTION

Convert Long Integer to

Floating
Load Double Word Index
Floating Multiply
Floating Multiply
Floating Round
Floating Round
Floating Subtract
Floating Subtract
Floating Skip if > 0
Floating Skip < 8
Floating Skip if Minus
Floating Skip if Not Zero
Floating skip if Plus
Floating Store
Floating Store
Floatin Skip if Zero
Halt
Interchange Register and

Memory-Fullword
Interchange A and B
Interchange Characters in
A
Interchange

Clear Left
Interchange
Clear Right
Interchange

Clear Left
Interchange

Clear Right
Interchange
Left
Interchange
Right
Interchange Memory and
Register-Halfword
Increment by One
Increment by Two
Interchange L and E
Increment Fullword
Interchange Memory and A
Increment Halfword
Input to A
Interrupt Notify

Interrupt Notify
Interrupt Notify
Interrupt Notify
Inhibit Interrupts
Input Keys
Save Keys
Fix as Integer
Convert Floating
Integer
Convert Floating
Integer
Convert Floating
Halfword Integer

Convert Floating
Integer Long

Increment by One
Increment by Two
Interchange Bytes
Interchange Halves

Bytes and

Bytes and

Halves and

Halves and

and Clear

and Clear

to

to

to

to

R MNEM

IRS

IRX

R ITLB

JEQ

JGE
JGT

JIX

LFLE
LFLE
LFLI @ 961383

LFLI 1 681313

OP CODE RI FORM FUNC MODE

12

000683
0006081
148114

008615

16
35

14
14

141583

(78) 153
141594

(78) 154
141565
(78)155
141581

(78)151
141568
(76) 158
1415982
(70)152
Q2

02
03

03
03

83
63
03

51

03

73

63

61
B2

01

44 NN
(70)162,172
001382
001312

02
05

35
35
140413
(78) 803
148416
(78) 016
141113

03
Ol

61

(70)823 ,833
141114

(70) 824 ,834
141115
(78)825,035
141111
(78) 021,031

GEN

GEN

a z
a
d

B
R
R
S
E
B
E
E
R
E
R
E
S

SKIP SRV

IO

SKIP SR

e
m ©

<
s
a
c

MCTL
PCTLJ
PCTLJ

PCTLJ

PCTLJ
PCTLJ
PCTLJ

PCTLI
PCTLJ S
PCTLJ
PCTLJ

V
O
I
D

w
a
A
a
w
W
w
y

D
w

PCTLI RV

PCTLJ
PCTLJ Vv
PCTLJ Vv

LTSTS V

LTSTS
LTSTS V

LTSTS
LTSTS V
LTSTS
LTSTS Vv

LTSTS
LTSTS V
LTSTS
LTSTS V
LTSTS
MOVE SR
MOVE

CHAR

<

CHAR

MOVE
MOVE <

<
a
a
c

MOVE SR
MOVE
LTSTS S R
LTSTS
LISTS S RV
LTSTS
LTSTS
LTSTS
LTSTS

LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
FIELD

c
<
c

<
<

<
<

<
<

FIELD

IDR3668

1 2 3

H H 4H

H H 4H

U U 4H
U U 4H
U U 4H
U U 4H
U U 4H
U U &H
U U 4H

H H 4H
U U 4H

H H 4H
H H 4H

H H 4H

H H 4H

H H 4H

H H 4H

a
o

m
r
i

n
o
e
l
a
n
a

a
a
m
y

(
I
T
I
m
i
n
i
n
m
t
i
n
m
e

m
c
m

m
o
m
)
+

+
m
a
t
i
m
i
m
e

z
m
i
m
i
m
t

m
i
m
m
i

e
e

ot
t

ra
e

a0
}

m
o
m

G
C
c
C
K
C
T
a
r
e
e
e
e
e

e
a
e
r
e

T
o
r
o
o

c
a
o
a
o
c
o

m
a
c
e
c
o
e
r
e
m
o
e

c
o
n
o
r
T
e
e
n
a

at
o
m
e

=

[
w
n

CC

n
n

Il
P
o
E
H
H
E
H
L
L
U
A
D
]

j

INSTRUCTION SUMMARY

DESCRIPTION

Increment Memory Replace
and Skip

Interrupt Return

Interrupt Return
Increment and Replace
Index

Invalidate STLB entry
Jump and Decrement Index
Jump if = @

Jump or > @
Jump if > @

Jump and Increment Index
Jump if < @
Jump if < @

Jump
Jump
Jump if .NE. @

Jump to Subroutine
Jump and Store
Jump and Store Return in
Index
Jump and Set XB
Jump and Set XB
Jump and Store Y
Load
Test CC Equal to @ and
Set A

Test CC = @ and Set R
Test CC < @ and Set A
Test CC > @ and Set R
Test CC > @ and Set A
Test CC > @ and Set R
Test CC Less than @ or
Equal to A
Test CC < @ and Set R
Test CC < @ and Set A

Test CC < @ and Set R
Test CC .NE. @ and Set A
Test CC .NE. 8 and Set R

Load A
Load Addressed Register
Load Character

Load Character
Load Character
Load Long

Load From Addressed
Register

Load Index

Load
Test A QO; Set A

Test R @ and Set R

Logic set A False
Logic set R False
Test F = 0; Set A
Test F = @; Set R
Test F > @; Set A
Test F > @; SetA
Test F > @; Set A
Test F > 0; Set R
Test F < @; Set A
Test F < @; Set R
Load Field Length
Register 0
Load Field Length

July 1978

APPENDIX C

R MNEM OP CODE RI

LFLT 141110
LFLT (78)820,030
LFNE 141112
LFNE (70)022,032
LGE 140414
LGE (78) 004
LGT 140415
LGT (78) 605
LH ll YY
LHEQ (70)@13
LHGE (70) 04
LHGT (70)015
LHL1 04 YN

LHL2 14 s-YN

LHLE (70)@11
LHLT (70) 000
LHNE (70) 812
LLE 140411
LLE (78) 001
LLEQ 141513
LIGE 149414
LLGT =—-:141515
LLL 0410XX
LLLE 141511
LLLT 140410
LINE 141512
LLR 041 2XX
LLS O411XX
LLT 148410
LLT (78) 00d

RLMCM 980501
LNE 140412
LNE (70) 802

R LPID 608617
MLPMJ 008215

M LPMX 900235

R LPSW @W0711
LRL B4u0Xx
LRR B40 2XX
LRS 0401XX
LT 140417
LT (78) O17

RLWS 601710

M 42 YY
RMDII 661305
RMDIW 001324
RMDRS 01306
R MDWC 901307

MH 52 soYY
MIA 64 NN

MMIA 12 @1
MIB 74 ~=NN

MMIB- 13 #1
MPL 16 @3
MPY 16
MPY 16
N 3 yy

REV. @

FORM FUNC MODE

GEN
RGEN
GEN
RGEN
GEN
RGEN
GEN
RGEN

RGEN
RGEN
RGEN
MRGR

MRGR

RGEN
RGEN

RGEN

RGEN
GEN

GEN
SHFT
GEN
GEN
GEN
SHFT
SHFT
GEN
RGEN
GEN

RGEN
GEN

SHFT
SHFT
SHFT

Q
a

@)
a)

g>
e2

5
a>

aa
B
E
E
R

BE
E

LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
MOVE
LTSTS
LTSTS
LTSTS
MOVE

MOVE

LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
LTSTS
SHIFT
LTSTS
LTSTS
LTSTS
SHIFT
SHIFT
LTSTS
LISTS

LTSTS
LTSTS
MCTL
MCTL

MCTL

MCTL
SHIFT
SHIFT
SHIFT
LTSTS
LTSTS
MCTL

INT
INTGY
INTGY
INTGY
INTGY

INT
MCTL
MCTL

MCTL
MCTL
INT
INT
INT
LOGIC

SR

SR

n
n
n

a
w
w

A
N
n
N
N
N

B
a
n
a

SR

Vv

V

<
c
<
c
c
c
d
c

<
<

a
q
a
a
c
c
d
a
c
c
c
d
c
a
d
c
c

<<
<

<
<
<

H
H
H
H
Y

a
a
c

H
t

IDR3060

1

1
m
i
m
i

sd
|
m
m
m
i
i
t

m
(
T
u
o
e
o
e

m
i
m

1
a
m
)

a
o
m

[
m
I
a
t

(
m
o
m

i
m
o
m
s

i
a8

m
(
m
o
m
m

t
r
m
o
l
i
m
i
m
i
n
a

1
O
o
r
i
n
r
n
m
t
a
r
r

me
e
e

r
e
a
e

m
s

c
T
i
n
m
m
u
m
o
m

a
m
r

(
m
o
m
o

a
c
l

m
C
m
a
m
m
o
n
o
e

o
e
m
a
o
s

[
C
M
U
r
T

I
T
U
T
M
T
I
E
T
S

pa
}

m
a
r
o
c
e

n
m
r

o
m
r
m
o
m

m
o
r
o
m
r
e
e
T
o
e

I
&
&

|
I

l
&
&

P
P

~
)

cc

|
F
P

b
h

|
S
H
H
H
S
H
H
D

[
P
e

|
P
e
U
N

F
P
P
U
P
e
e
P
S

H
P
P
A

|
P
O
O
n

I
t
e

|

DESCRIPTION

Register 1]

Test F< @; Set A

Test F < @; Set R
Test F .NE. 6; Set A

Test F .NE. @; Set R

Test A> 6; SetA

Test R > 0; Set R
Test A> 0; *SetA

Test R>@; Set R

Load Halfword
Test RH = 8; Set RH
Test RH > 0; Set RH
Test RH > 0; Set R

Load Halfword Left

Shifted by l

Load Halfword Left

Shifted by 2
Test RH < 0; Set RH

Test RH < @; Set RH

Test RH .NE. @; Set RH

Test A <0; Set A

Test R< @; Set R
Test L = @; Set A

Test L > @; Set A
Test L > @; Set A

Long Left Logical
Test L< 0; Set A

Test L << @; Set A

Test L .NE. 6; Set A

Long left Rotate
Long Left Shift
Test A< @; Set A

Test R<@; Set R
Leave
Test A .NE. 6; Set A

Test R .NE. @; Set R

Load Process ID

Leave Paging Mode and
Jump
Leave Paging Mode and
Jump to XCS ;

Load Program Status Word
Long Right Logical Shift

Long Right Rotate
Long Right Shift
Set A=1

Set R= 1

Load Writable Control
Store
Multiply Fullword
Inhibit Interleaved
Write Interleaved
Read Syndrome Bits
Load Write Control
Register

Multiply Halfword
Microcode Entrance
Microcode Entrance

Microcode Entrance
Microcode Entrance
Multiply Long
Multiply
Multiply
AND

R MNEM

R NFYB

R NFYE

NOP

R OCP

ORA

R OTA
OTK

PCL
PCL
PID

PID

PIDA

PIDH

PIDL

PIM
PIM
PIMA

PIMH
PIML

SH

SHL

SHL1
SHL2
SHR1

SHR2
SKP

R SKS
SLI

OP CODE

881211

901219
13

980001
020181

23

14
33

03 02

74

000405
(76) 071

41
10 @2
060211

(78) 052

688115

(78) 853

000385

000205
(78) 058
060015

(78) O51
080301

OGvVol11
141715

(76)133

146290

000021
24

600717
000715
0001085
141714

(78)132
22

149118
140318
10026X
101260

07 03
000041
140680
200005
100228

32

15
65

(78) 876
(78) 977
(78)128

(78)121
160000
34

(76) 872

RI

2
2
:

FORM

RGEN

GEN

RGEN

GEN

GEN

GEN
RGEN
GEN

GEN

GEN

GEN
MRGR

AP
GEN

MRGR
GEN
GEN

GEN

GEN
GEN
GEN

MRGR

MRGR
RGEN
RGEN
RGEN

RGEN

PIO

FUNC MODE

PRCEX

PRCEX
LOGIC

MCTL
INT
LOGIC
IO
LOGIC
LOGIC

IO
KEYS
KEYS

PCTLJ

INT

INT

INT

INT

INT

INT

INT

INT
INT

PCTLJ
QUEUE

QUEUE

KEYS
INTGY
SHIFT
MCTL
MCTL
PCTLJ
QUEUE
QUEUE
INT
INT
INT
SKIP
SKIP
INT

KEYS
INT
SKIP

INT

SHIFT
SHIFT

SHIFT
SHIFT
SHIFT

SHIFT
SKIP
IO

SHIFT

S

S

N
n
n
M
N

D
A
W

aw

N
n
N
n
N

A
a
w
a

n
n

R

R

<q
<
<

<
<

<
<

<
<

<
a
c
c
e
d

w
a

e
H

e
H

r
H
e
H

e
H

m
e

m
e
e
e

R
e
e
e

r
e

IDR306¢

1 i

l
u
a
u

i
o
O

m
m
m
m
i
m
e
m
e

i
u
}

r
m
o
i
m
m
s

(
m
i
m
e
s

(
u
m

©
x

c
m
c
m
o
r
m
!
l
o
e
m

I
m
m

il

ll

i
z

i
n
w

1
1
u
e

&
m
m
m
m
t
B
o
e
o
t

I
o
x

(
I
c
a
a
r
a
e
I
i

n
a
t
i
a
m
)
o
e

Z
a
o

m
i
m
i

m
o

m
m
o

mt
m
o
o
!

|
o
e
s

o
S

1
n
a
o
l

D
U
M
M
o
t
n
a
n
t
a
e
a
t
r
r
e
c
e

ae
}

m
o
o
m
o
o

a
m
m

a}
M
U
M

U
T
A
e
a
e
a
o

S
r
m
m
r
t
o
e
r
a
w
e

(
w
n

l
w
w
m
i
i
l

|
W
h
W
h

]
l

~
1
&

t
o
m

I
f

M
B
w
O
h

I
P
o
i
n

il
|

»
&
&
&
h

&

f
o

!
=

INSTRUCTION SUMMARY

cc

I
n
I
n
n

i
m
e
m
e

|
|

n
N

b
P
A
m

_
—

e
e

e
e
e

j
b
t

DESCRIPTION

Notify

Notify
AND Halfword

No Operation
Normalize
OR
Output Control Pulse
OR Halfword
Inclusive OR

Output from A
Restore Keys
Restore Keys
Procedure Call
Procedure Call
Position for Integer

Divide
Position
Divide
Position
Divide
Position
Divide
Position
Divide

Position
Position
Position

Position
Position
Long

Procedure Return
Remove From Bottom of

Queue
Remove From Bottom of
Queue

Clear C-Bit (Reset)

Clear Machine Check
Rotate

Register Restore
Register Save
Return
Remove From Top of Queue

Remove From Top of Queue
Subtract
Subtract One from A

Subtract Two from A
Skip on A Bit Clear
Skip on A Bit Set
Subtract Long
Load Shift Count into A
Set C-Bit in Keys
Single Precision
Skip if A Greater Than
Zero
Subtract Halfword

Shift Arithmetic
Shift Logical

Shift H Left One
Shift H Left Two
Shift H Right One

Shift H Right Two
Skip
Skip if Satisfied
Shift R Left One

for Integer

for Integer

for Integer

Long for Integer

After
After
After

After

After

Multiply
Multiply
Multiply
Multiply
Multiply

July 1978

APPENDIX C

R MNEM OP CODE RI FORM

SL2 (78) 873 RGEN
SLE 101220 GEN

SLN 101108 GEN

SLZ 104100 GEN

SMCR 100200 GEN

SMCS 11200 GEN
SMI 101400 GEN

R SMK 170020 PIO
R SNR 10024X GEN

R SNS 101240 GEN
SNZ 101048 GEN
SPL 100400 GEN

R SRI 196020 GEN

SRI (70) 074 RGEN
R SR2 108010 GEN

SR2 (70) 075 RGEN
R SR3 190804 GEN

R SR4 190202 GEN

SRC 10001 GEN
R ssl 101020 GEN

R SS2 101910 GEN

R SS3 101904 GEN

R SS4 101022 GEN

SSC 101081 GEN
SSM 140500 GEN
SSM (70) @42 RGEN
SSP 148160 GEN
SSP (70) @43 RGEN

R SSR 108036 GEN

R sss 101036 GEN

ST 21 ~—sNN MRGR
STA 4 MR
STAC 01200 AP
STAR 54 NN MRGR
STC (70) 166,176 RGEN
STC 6 901322 CHAR
STC 1 @81332 CHAR
STCD (70) 137 RGEN

STCH (78)136 RGEN

STEX 01315 GEN
STEX (70)827 RGEN
STFA @ 201320 AP

STFA 1 081330 AP

STH 31 NN MRGR
STL 04 83 MR

REV. @

FUNC

SHIFT
SKIP

SKIP

SKIP

INTGY

INTGY
SKIP

IO
SKIP

SKIP
SKIP
SKIP
SKIP

SHIFT
SKIP

SHIFT
SKIP

SKIP

SKIP
SKIP

SKIP

SKIP

SKIP

SKIP
INT

INT
INT
INT

SKIP

SKIP

MOVE

PCTLJ
PCTLJ
FIELD

FIELD

MOVE
MOVE

MODE

S

wn w <

n
N
a
A
W
M
n
N

n
N
n
N
n
A
M
N

D
a
w

R

R

R

a
w
a

Dw

Vv

V

V

<
a
<
a
s
c
0
6
U
S
G
C
l
U
G
S

<
<

<
<

<
<

n
u
m
e
r
o

m
o
c
!

pa
}

<=
m
i
m
l
a
m

se

m
o
r
e
m
m
o

a
peo

}
m
i
m
i
w
v
n
r

a

IDR3868

=
:

m
a
m
r
o
e

c
r
o
c
s

6
m

m
i
m
i

m
i

<<
c
a
m
o

n
c
o
c
s
y

jo
e

m
i
m
i

w
m
m
o

©
=

1
m

1
a
u
o
x

a
u
r
m
e

n
a
m
o

<
m
o

m
a
m
m
a
m
o
a

se
}
m
m
o

m
o
e

a
x

m
m

Cc

s
~
n
n
i
n

it
s
i

~
J
O

DESCRIPTION

Shift R Left Two
Skip if A Less Than or
Equal to Zero
Skip if LSB (A(16)=1)

Nonzero
Skip if LSB (A(16)=8)

zero
Skip on Machine Check
Clear
Skip on Machine Check Set
Skip if A Minus

' Send Mask

Skip on Sense Switch
Clear
Skip on Sense Switch Set
Skip if A Non-Zero
Skip if A Plus
Skip if Sense Switch 1

Clear
Shift R Right One
Skip if Sense Switch 2
Clear
Shift R Right Two
Skip if Sense Switch 3

Clear
Skip if Sense Switch 4

Elear
Skip if C-Bit is Clear
Skip if Sense Switch 1

Clear
Skip if Sense Switch 2

Clear
Skip if Sense Switch 3
Clear
Skip if Sense Switch 4

Clear
Skip if C-Bit is Set
Set Sign Minus

Set Sign Minus
Set Sign Plus
Set Sign Plus

Skip if Any Sense Switch

is Clear
Skip if Any Sense Switch

is Set
Store
Store A
Store A Conditionally
Store Addressed Register
Store Character

Store Character
Store Character
Store Conditional
Fullword
Store Conditional
Halfword

Stack Extend
Stack Extend
Store Field Address

Register
Store Field Address
Register
Store Halfword
Store Long

R

P
=
w
w

MNEM

STLC

STLR

STX
STY

svc
SZE

TAK

TAX
TAY

ICH

TFLL 8

TFLL 1

TFLR

TKA
TLFL

TLFL

XCA
XCB
XCM

XDV
XEC

XMP

ZCM
ZED
ZFIL

ZMH
ZMV
ZMVD
ZTRN

OP CODE RI FORM FUNC

001264
03 01

15

35 82
07
090505

168048
146314
001815

140584
140585
140604

(78) 846
140407
(78) 047
141218
001323

881333

(78) 163,173
081005
081321

801331

44 NN
(76) 165,175
141757
(78) 14
141034
141124
900311
068315

GB16XX
43

801120
001145

140104
149204
601182

801146

981107
61 92
8@1112

53
081104
081101
061117
081111
@11116

021118

YY

2
3

AP MOVE

MR MOVE

MR MOVE

GEN PCTLJ
GEN SKIP
GEN MOVE
GEN KEYS

GEN MOVE
GEN MOVE
GEN MOVE
RGEN INT
GEN INT
RGEN INT
GEN INT
GEN FIELD

GEN FIELD

RGEN FIELD
GEN KEYS
GEN FIELD

GEN FIELD

MRNR MCTL
RGEN FIELD
AP QUEUE
AP QUEUE
GEN MOVE
GEN MOVE
GEN INTGY
AP PRCEX

GEN MCTL
MRGR LOGIC
DECI DECI
DECI DECI

GEN MOVE
GEN MOVE
DECI DECI
DECI DECI

DECI DECI

DECI DECI

DECI DECI
DECI DECI
CHAR CHAR
CHAR CHAR
CHAR CHAR
MRNR CLEAR

MRNR CLEAR
CHAR CHAR
CHAR CHAR

CHAR CHAR

MODE

S
5
S

S

o
m
w
m

Ww
a
c
c
c
d
c
d
c
d
d
c

<
<

ma
m

<
<
<

<
<
<

<
<
<

<
a
a
c
c
q

<<
a
<
c
<
c

<
c
e
c

<
e
e
d

a
d
c

b
e

e
H

H
L
e

o
e

o
e
e
e
o
e

IDR3969

1 2

H 4H

H 4H
H 4H
H 4H

H 4H

- 0

H 4H
H 4H

(
m
o
m
s

y
e

I

13

o
t
i

m
l
a
e
r
a
m
m
o
m
e

m
x

<
m
a
o

=
c
C
a
r
o
m
m
m
m
i
m
,

I
m
a

c
c
r
u
n
r

1
c

;
i
a
a
c
c
a

a
a
c
!

T
o
r
t
r
T
n
R
O
a
e
r
t
o
e
s
=

m
m
o

m
T
r
m
O
m
u
m
n
r
m
o
m
o
s

m
m
m
m

T
o
m
e
M
e
e
r
a
m
a
s
s

P
r
o
W
w
h
y
w

|!
L
M
M
K
I
X
I

m
x

s
m
o

I

INSTRUCTION SUMMARY

CC

a
n

a
b
o
l
o

s
D
R

a
!

x
PS

x
X

MM
I
I

x
x

t
o
d

a
m
o

I

DESCRIPTION

Store L Conditionally
Store L into Addressed
Register
Store X

Store Y

Subtract
Supervisor Call
Skip if A Zero
Transfer A to B

Move A to Keys

Transfer A to X

Transfer A to Y

Transfer B to A

Two's Complement R
Two's Complement A
Two-'s Complement H

Two's Complement Long
Transfer Field Length
Register to L
Transfer Field Length
Register to L
Move Field Length
Move Keys to A
Transfer L to Field
Length Register

Transfer L to Field
Length Register
Test Memory
Update Field Length
Test Queue
Test Queue

Transfer X to A

Transfer Y to A

Verify
Wait

Writeable Control Store
Exclusive OR

Decimal Add

Binary to Decimal
Conversion

Exchange and Clear A
Exchange and Clear B
Decimal Compare
Decimal to Binary
Conversion
Decimal Divide
Execute
Numeric Edit
Exclusive OR Halfword

Decimal Multiply
Decimal Move

Compare Character Field
Character Edit
Fill Character Field
Clear Fullword

Clear Halfword

Move Character Field
Move Equal Length Fields
Translate Character
Fields

July 1978

INDEX

16S SUMMARY 6-17

32 DMA CHANNELS 2-17

32-BIT ARITHMETIC AND LOGIC UNIT
2-5

32R SUMMARY 6-23

32S (INCLUDES 32R WHEN’ S=9)
SUMMARY 6-26

64R SUMMARY 6-30

64V BASE REGISTER RELATIVE 6-38

64V PROCEDURE RELATIVE 6-37

64V TwO WORD MEMORY REFERENCE
6-39

A 9-16

A (ACCUMULATOR, HIGH HALF OF L)
5-17

A LEFT LOGICAL 7-89

A LEFT ROTATE 7-90

A LEFT SHIFT 7-90

A RIGHT LOGICAL 7-89

A RIGHT ROTATE 7-90

A RIGHT SHIFT 7-91

A-REGISTER A-4, A-6, A-7, 2-5

AlA 7-38

A2A 7-38

ABQ 7-86, 9-38

ACA 7-43

ACCESS VIOLATION 2-25

ADD 7-38

ADD C-BIT TO A 7-43

ADD FULLWORD 9-16

ADD HALFWCRD 9-16

ADD L BIT TO L 7-46

ADD LINK TO REGISTER 9-23

ADD LONG 7-44

ADD LONG INTEGER TC FIELD ADDRESS
7-25

ADD ONE TO A 7-38

ADD REGISTER TO FIELD ADDRESS
REGISTER 9-7

ADD TO BOTTOM OF QUEUE 7-86, 9-38

ADD TO TOP OF QUEUE 7-86, 9-38

ADD IWO TO A 7-38

ADDRESS DISPLACEMENT 6-1

ADDRESS FORMATION SPECIAL CASE
SELECTION 8-18

ADDRESS POINTER (AP) 4-4, 5-4,
8-4

ADDRESS TRAP 5-17

ADDRESS TRUNCATION (SR) 6-2

ADDRESSABLE REGISTERS A-4

ADDRESSING MODE 6-1, 6-2

ADDRESSING MODE SUMMARIES AND
FLOW CHARTS 6-17

ADDRESSING RANGE 6-4

ADL 7-44

ADLL 7-46

INDEX

ADLR 9-23

ADMOD - ADDRESSING MODE 7-1, 9-1

AH 9-16

ALFA 7-25

ALL 7-89

ALR 7-90

ALS 7-90

ALU A-4, A-7

ANA 7-57

AND FULLWORD 9-27

AND HALFWORD 9-27

AND TO A 7-57

ANL 7-58

AP-POINTER 2-32, 9-38

ARFA 9-7

ARGT 7-82, 9-37

ARGUMENT PASSING 2-19

ARGUMENT TEMPLATE 4-4

ARGUMENT TEMPLATE LIST 2-20

ARGUMENT TRANSFER
2-21, 7-82, 9-37

2-ly, 2-20,

ARGUMENT TRANSFER TEMPLATE 5-12,
8-9, 2-21

ARITHMETIC 2-25

ARITHMETIC INSTRUCTION
- USAGE (I-MODE ONLY) 7-15

REGISTER

ARITHMETIC OPERATIONS A-3

ARITHMETIC REGISTER 5-13, A-4

ARL 7-89

ARR 7-99

ARS 7-91

ASSEMBLER 6-4 |

ATO 7-86, 9-38

AUTOMATIC MEMORY REFRESH A-8

MONITORAUTOMATIC POWER WITH
BATTERY BACKUP A-5

AUTOMATIC PROGRAM LOAD A-34

B (DOUBLE-PRECISION, LOW HALF OF

L) 5-17

B BUS A-7

BASE REGISTER RELATIVE 6-11

BASE REGISTERS 2-19,
8-4

2-21, 6-2,

BASE REGISTERS (V-MODE) 5-20

BASED MEMORY REFERENCE 6-11

BASIC 6-7

BCEQ 7-3

BCGE 7-3

BCGT 7-3

BCL 7-3

BCLT 7-3

BCNE 7-3

BCR 7-4

BCS 7-4

INDEX

BDX 7-5 BIY 7-5

BDY 7-5 BLE 7-5

BEGINNING OF LIST (BOL) 2-13 BLEQ 7-5

BEQ 7-5 BLIGE 7-5

BFEQ 7-5, 9-3 BLGT 7-5

BFGE 7-5, 9-3 BLLE 7-5

BFGE 7-5, 9-3 BLLT 7-5

BFLE 7-5, 9-3 BLNE 7-5

BFLT 7-5, 9-3 BIR 7-4

BFNE 7-5, 9-3 BLS 7-5

BGE 7-5 BLT 7-5

BGT 7-5 BMEQ 7-4

BHD1 9-3 BMGE 7-4

BHD2 9-3 BMGT 7-4

BHD4 9-3 BMLE 7-4

BHEQ 9-3 BMLT 7-4

BHGE 9-3 BMNE 7-4

BHGT 9-3 | BNE 7-5

BHI1 9-3 BOOKKEEPING B-9

BHI2 9-3 BRAN - BRANCH 7-3, 9-2

BHI4 9-3 BRANCH (V-MODE) 5-26

BHLE 9-3 BRANCH IF C-BIT RESET 7~4

BHLT 9-3 BRANCH IF C-BIT SET 7-4

BHNE 9-3 . BRANCH IF L-BIT RESET 7-4

BINARY TO DECIMAL CONVERSION 7-19 ° BRANCH IF L-BIT SET 7-5

BIX 7-5 . BRANCH IF REGISTER BIT RESET
(EQUALS ZERO) 9-3

INDEX

BRANCH IF REGISTER BIT SET
(EQUALS ONE) 9-4

BRANCH ON INCREMENTED OR
DECREMENTED REGISTER 9-3

BRANCH ON REGISTER 7-5

BRBR 9-3

BRBS 9-4

BRD1 9-3

BRD2 9-3

BRD4 9-3

BREQ 9-2

BRGE 9~3

BRGI 9-3

BRI1 9-3

BRI2 9-3

BRI4 9-3

BRLE 9-2

BRLT 9-2

BRNE 9-2

BUS D A-6, A-7

BYTE 4-4

BYTE LENGTH 5-1, 8-1

C 9-22

C-BIT 4-6, 8-16

C-BIT (S,R-MODES) 5-21

C-BIT (V-MODE) 5-22

CACHE 2-5, 2-8

CAI 2-24, 7-53, 9-25, A-18

CAL 7-11

CALF 2-27

CALF STACK FRAME HEADER 5-8, 8-7

CALL RECURSIVE ENTRY PROCEDURE
7-78

CALLED PROCEDURE STATE LOAD 2-20

CAR 7-11

CAS 7-47

CAZ 7-47

CEA 7-75

CENTRAL PROCESSOR A-3, A-4

CCT 7-6, 9-4

CH 9-22

CHAINING A-22

CHANGE SIGN 7-43, 9-19

CHANNEL REGISTER 2-17

CHAR —- CHARACTER STRING
OPERATIONS 7-7, 9-5

CHARACTER (V-MODE) 5-25

CHARACTER FIELD 3-3

CHARACTER STRING 4-4, 5-1, 8-1

CHECK 2-9, 2-22

CHECK BLOCK 2-28

CHECK HANDLER 2-28

CHECK MODE FIELD 2-8

CHECK REPORTING (TRAPS) 2-28

INDEX

CHECK SIGNAL 2-8

CHECK TRAP 2-28

CHECKS 2-28

CHS 7-43, 9-19

CLASS CODE 6-3

CLEAR - CLEAR REGISTER 7-11, 9-6

CLEAR A LEFT BYTE 7-11

CLEAR A RIGHT BYTE 7-11

CLEAR ACTIVE INTERRUPT 7-53

CLEAR C-BIT 7-55

CLEAR E 7-11

CLEAR HIGH BYTE 1 9-6

CLEAR HIGH BYTE 2 9-7

CLEAR L AND E 7-12

CLEAR LEFT HALFWORD 9-6

CLEAR LONG 7-11

CLEAR MACHINE CHECK 7-48

CLEAR REGISTER 9-6

CLEAR RIGHT HALFWORD 9-6

CLEAR THE A REGISTER 7-11

CLEAR THE B REGISTER 7-11

CLS 7-46

CMA 7-57

CMH 9-27

CMR 9-27

COMBINATION SKIP GROUP 7-95

COMMERCIAL DATA PROCESSING 3-3

COMPARE 7-46

COMPARE A AND SKIP 7-47

COMPARE A WITH ZERO 7-47

COMPARE AND SKIP 7-31

COMPARE CHARACTER FIELD 7-9

COMPARE FULLWORD 9-22

COMPARE HALFWORD 9-22

COMPARISON OF PRIME 3@@ AND PRIME
490 1/O TIMES 2-4

COMPATIBILITY 2-1

COMPLEMENT 7-33

COMPLEMENT A 7-57

COMPLEMENT HALF REGISTER 9-27

COMPLEMENT REGISTER9-27

COMPUTE EFFECTIVE ADDRESS 7-75

COMPUTED GOTO 7-6, 9-4

CONCEALED STACK 2-25

CONDITION CODE BITS 8-16

CONDITION CODE BITS (V-MODE) 5-23

CONDITICN CODES 4-6

CONTENT ASSOCIATIVE MEMORY
REGISTERS (CAM) B-4

CONTROL EXTENDED CONTROL STORE
7-66

CONTROL PANEL 2-18, 2-34, A-13

CONTROL PANEL COMMUNICATION A-14

INDEX

CONTROL WORD FORMAT 7-15

CONVERT FLOAT TO INTEGER 7-33

CONVERT FLOAT TO LONG INTEGER
7-33

CONVERT FLOATING POINT ‘TO
HALFWORD INTEGER 9-13

CONVERT FLOATING POINT TO INTEGER
9-13

CONVERT INTEGER TO FLOAT 7-32

CONVERT INTEGER TO FLOATING POINT
9-12

CONVERT LONG INTEGER TO
7-32

FLOAT

CONVERT SINGLE TO DOUBLE 9-15

CONVERT SINGLE TO DOUBLE FLOAT
7-37

CONVET HALFWORD
FLOATING POINT 9-12

INTEGER TO

COPY SIGN 9-22

COPY SIGN OFA 7-43

CP-TIMER INCREMENT 2-18

CR 9-6

CRA 7-11

CRB 7-11

CRBL 9-6

CRBR 9-7

CRE 7-11

CREP 7-78, B-2

CRHL 9-6

CRHR 9-6

CRL 7-11

CRLE 7-12

CRS FIELD 2-18

CSA 7-43

CSR 9-22

CURRENT 2-19

CXCS 7-66

D 9-18

D-FIELD 6-2, 6-6, 6-7

DAD 7-42

DATA INTEGRITY FEATURES A-24

DATA STRUCTURES 4-4, 5-1, 8-1

DBL 7-41

DBLE 9-15

DECI - DECIMAL ARITHMETIC 7-13,
9-8

DECIMAL 4-4, 5-3, 8-2

DECIMAL (V-MODE) 5-25

DECIMAL ADD 7-16

DECIMAL ARITHMETIC 3-3

DECIMAL COMPARE 7-26

DECIMAL CONTROL WORD FORMAT 5-3,
8-3

DECIMAL DATA TYPES 7-13, 7-14

DECIMAL DIVIDE 7-18

DECIMAL EXCEPTION 7-16

DECIMAL MOVE 7-20

DECIMAL MULTIPLY 7-17

DECIMAL POINT ALIGNMENT 5-4, 8-3

DECIMAL TO BINARY CONVERSION 7-18

DECREMENT AND REPLACE INDEX 7-94

DECREMENT HALF REGISTER BY 1 9-21

DECREMENT HALF REGISTER BY 2 9-22

DECREMENT MEMORY FULLWORD 9-21

DECREMENT MEMORY HALFWORD 9-21

DECREMENT REGISTER BY 2 9-21

DESCRIPTOR ADDRESS
REGISTERS 2-18

TABLE

DEVICE CODE A-13

DEVICE INTERFACE A-13

DEVICE SELECTION NETWORK A-13

DFA 9-13

DFAD 7-35

DFC 9-14

DFCM 7-37, 9-14

DFCS 7-36

DFD 9-14

DFDV 7-36

DFL 9-15

DFLD 7-35

DFLX 7-37

DFM 9-14

INDEX

DFMP 7-36

DFS 9-13

DFSB 7-35

DFST 7-35, 9-15

DH 9-18

DH2 9-22

DH21 9-21

DIAGNOSTIC STATUS WORD 2-7, 2-8,
2-9, 2-28, 2-29, 2-31

‘DIRECT ADDRESSABILITY 6-1

DIRECT MEMORY ACCESS A-19

DIRECT MEMORY CHANNEL, DIRECT
MEMORY TRANSFER (DMC, DMT) A-21

DIRECT MEMORY QUEUE (DMQ) 2-6

DIRECT MEMORY TRANSFER A-19

DIRECT REGISTER SET ADDRESSING
2-18

DIRECT-MEMORY QUEUE (DMQ) 2-5

DIRECT-TO-MEMORY DATA TRANSFERS
A-5

DISPATCHER 2-16, 2-17, 2-18

DISPLACEMENT FIELD 6-3, 6-4, 6-6

DIV 7-41, 7-45

DIVIDE 7~41

DIVIDE 7-45

DIVIDE FULLWORD 9-18

DIVIDE HALFWORD 9-18

DIVIDE LONG 7-45

INDEX

DLD 7-76

DM 9-21

DMA A-5

DMA CHANNELS 2-5, 2-6, 5-13

DMA REGISTER SET 2-17

DMC A-5, A-23

DMC CELL PAIRS 2-6

DMC DATA RATE 2-5

DMC CPERATION A-21

DMH 9-21

DMQ MODE OF I/O 2-32

DMT 2-5, A-5, A-23

DMT OPERATION A-22

DOUBLE ADD 7-42

DOUBLE FLOATING ADD 9-13

DCUBLE FLOATING COMPARE 9-14

DOUBLE FLOATING COMPLEMENT 9-14

DOUBLE FLOATING DIVIDE 9-14

DOUBLE FLOATING LOAD 9-15

DOUBLE FLOATING LOAD INDEX 7-37

DOUBLE FLOATING MULTIPLY 9-14

DOUBLE FLOATING POINT COMPARE AND
SKIP 7-36

DOUBLE FLOATING STORE 9-15

DOUBLE FLOATING SUBTRACT 9-13

DOUBLE LOAD 7-76

DOUBLE PRECISION 7-41

DOUBLE PRECISION — 64 BITS 9-13

DOUBLE PRECISION

7-35

FLOATING ADD

DOUBLE PRECISION
COMPLEMENT 7-37

FLOATING

DOUBLE PRECISION FLOATING DIVIDE

7-36

DCUBLE PRECISION FLOATING LOAD

7-35

DOUBLE PRECISION FLOATING

MULTIPLY 7-36

DCUBLE PRECISION FLOATING STORE

7-35

DOUBLE PRECISION
SUBTRACT 7-35

FLOATING

DOUBLE STORE 7-70

DOUBLE SUBTRACT 7-42

DR2 9-21

DRX 7-94

DSB 7-42

DST 7-708

DITAR® (SEGMENTS 9-19023) 5-17

DTAR1 (SEGMENTS 1024-2047) 5-17

DITAR2 (SEGMENTS 2048-3871) 5-17

DTAR3 (DESCRIPTOR TABLE ADDRESS,
SEGMENTS 3972-4995) 5-17

DIARS 2-18

DVL 7-45

E16S 7-1, 9-1

_ INDEX

E32I 7-2, 9-1

E32R 7-1, 9-1

E32S 7-1, 9-1

E64R 7-1, 9-1

E64V 7-2, 9-1

EAA 7-80, B-2

EAFA 7-24, 9-9

EAL 7-89

FALB 7-81

EAR 9-37

EAXB 7-81, 9-37

ECC CORRECTED ERROR 2-28

EDIT CHARACTER FIELD 7-16

EDIT SUB OPERATIONS 7-22

EFFECTIVE ADDRESS 6-6, A-4

EFFECTIVE ADDRESS FORMATION 6-2

EFFECTIVE ADDRESS TO A REGISTER
7-88

EFFECTIVE ADDRESS TO
ADDRESS REGISTER 7-24

FIELD

EFFECTIVE ADDRESS TO L 7-84

EFFECTIVE ADDRESS TO LB 7-81

EFFECTIVE ADDRESS TO REGISTER
9-37

EFFECTIVE ADDRESS TO
BASE 9-37

TEMPORARY

EFFECTIVE ADDRESS TO XB 7-81

FH,EL (ACCUMULATOR EXTENSION FOR
MPL DBL) 5-17

EIA A-5

EIA STANDARD LEVELS A-5

RIO 7-54, 9-25

EMCM 7-48, 9-24

ENABLE INTERRUPT 7-52

ENB 7-52, 9-25, A-18

END OF LIST (EOL) 2-13

END-OF-INSTRUCTION TRAP 2-18

ENTER 16S MODE 7-1, 9-1

ENTER 321 MODE 7-2, 9-1

ENTER 32R MODE 7-1, 9-1

ENTER 32S MODE 7-1, 9-1

ENTER 64R MODE 7-1, 9-2

ENTER 64V MODE 7-2, 9-2

ENTER MACHINE CHECK MODE 7-48

ENTER PAGING MCDE AND JUMP (PRIME
360) 7-61

ENTER PAGING MODE AND JUMP TO XCS
(PRIME 300) 7-62

‘ENTER RECURSIVE PROCEDURE STACK
7-78

ENTER RESTRICTED EXECUTION MODE
AND JUMP (PRIME 308) 7-61

ENTER RESTRICTED EXECUTION MODE
AND JUMP TO XCS (PRIME 3@@) 7-62

ENTER STANDARD INTERRUPT MODE
7-53

ENTER VECTORED INTERRUPI MODE
7-53

9

ENTER VIRTUAL MODE AND JUMP

(PRIME 300) 7-61

ENTER VIRTUAL MODE AND JUMP ‘TO
XCS (PRIME 3@@) 7-62

ENTR 7-78, B-2

ENTRY CONTROL BLOCK 2-19, 2-21

4-4, 4-5, 5-9, 8-8,

EPMJ 7-61

EPMX 7-62, B-12

EQUIPMENT CONFIGURATION A-32

ERA 7-57 |

ERL 7-58

ERMJ 7-61

ERMX 7-62, B-12

ERROR DETECTING AND

2-7
CORRECTING

ESIM 7-53, 9-25, A-18

EVIM 7-53, 9-25, A-18

EVM 7-61

EVMX 7-62, B-12

EXCHANGE AND CLEAR THE A REGISTER
7-68

EXCHANGE AND CLEAR THE B REGISTER
7-69

EXCLUSIVE OR FULLWORD 9-28

EXCLUSIVE OR HALFWORD 9-28

EXCLUSIVE OR LONG 7-58

EXCLUSIVE OR TO A 7-57

EXECUTE 7-79

INDEX

EXECUTE 1/0 9-25, 7-54

EXTENDED CONTROL STORAGE
2-7, 2-8

(XCS)

EXTENDED INSTRUCTION SET 3-3

EXTENDED JUMP INSTRUCTIONS B-1

EXTENSION ARITHMETIC
5-13

REGISTER

EXTERNAL A-9

EXTERNAL INTERRUPTS 2-18,
A-8, A-9, A-15

2-23,

FA 9-16

FAD 7-30

FADDR (FAULT ADDRESS) 5-17

FASTER CONTROL UNIT 2-5

FAULT 2-15, 2-22

FAULT ADDRESS 2-27

FAULT ADDRESS REGISTER 5-13

FAULT ADDRESS WORD NUMBER 5-17

FAULT CODE 2-27, 5-13

FAULT HANDLER 2-27

FAULT VECTORS 2-25

FAULTS 2-24

FC 11-9

FCM 7-33, 11-9

FCODE (FAULT CODE) 5-17

FCS 7-31

FD 11-9

16

INDEX

FDBL 7-37

FDV 7-31

FIELD 9-/, 9-9

FIELD - FIELD OPERATIONS 7-24

FIELD ADDRESS AND LENGTH REGISTER
@ 5-17

FIELD ADDRESS AND LENGTH REGISTER
1 5-17

FIELD ADDRESS REGISTERS 7-7

FIELD LENGTH REGISTERS 7-7

FIELD REGISTERS 4-0, 8-14

FIELD REGISTERS (V-MODE) 5-20

FIELD-ENGINEERING PANEL 2-8

FILL FIELD 7-8

FIRMWARE ENHANCEMENTS 2-6

FIX AS FRACTION 7-32

FIX AS INTEGER 7-32

FL 11-9

FLD 7-30

FLOAT 7-32

FLOATING ACCUMULATOR, MANTISSA
HIGH 5-17

FLOATING ADD 7-30, 9-14

FLOATING COMPARE 11-9

FLOATING COMPLEMENT 11-9

FLOATING DIVIDE 7-31, 11-9

FLOATING EXCEPTION CODES 7-28

FLOATING LOAD 7-3¥, 11-9

FLOATING LOAD INDEX 7-37

FLOATING MULTIPLY 7-31, 9-10

FLOATING POINT 14

FLOATING POINT - DOUBLE PRECISION
5-2, 8-2

FLOATING POINT - SINGLE PRECISION
5-2, 8-2

FLOATING POINT ACCUMULATOR — HIGH
5-14

FLOATING POINT ACCUMULATOR - LOW
5-13

FLOATING POINT
(R-MODE) 7-26

EXCEPTIONS

FLOATING POINT EXPONENT 5-13

FLOATING POINT MANTISSA AND
EXPONENT RANGES 7-29

FLOATING POINT REGISTER - DOUBLE

PRECISION 5-18, 5-19

FLOATING POINT REGISTER - SINGLE

PRECISION 5-18, 5-19

FLOATING POINT REGISTERS 8-14

FLOATING REGISTERS 4~6

FLOATING ROUND 9-12

FLOATING SKIP IF GREATER
ZERO 7-35

THAN

FLOATING SKIP IF LESS OR EQUAL
THAN ZERO 7-34

FLOATING SKIP IF MINUS 7-34

FLOATING SKIP IF NOT ZERO 7-34

FLOATING SKIP IF PLUS 7-34

1l

FLOATING SKIP IF ZERO 7-34

FLOATING STORE 7-38, 9-12

FLOATING SUBTRACT 7-31, 9-1@

FLOT 7-32

FLPT -— FLOATING POINT ARITHMETIC
7-26, 9-16

FLT 9-12

FLTA 7-32

FLTH 9-12

FLIL 7-32

FLX 7-3/, B-2

FM 9-10

FMP 7-31

FORMAT DEFINITIONS 4-3

FORMATS — I-MODE 8-1

FORMATS - SRV 5-1

FRAC 7-32

FRAME HEADER FILL-IN 2-20

FRN 7-33, 9-12

FS 9-10

FSB 7-31

FSG 7-35

FSLE 7-34

FSMI 7-34

FSNZ 7-34

FSPL 7-34

INDEX

FST 7-30, 9-12

FSZE 7-34

FUNCTION DEFINITIONS 4-2

FUNCTION GROUP DEFINITIONS 4-1

GENERAL REGISTER 3-1, 8-14

GENERIC 5-24

GENERIC AP (V-MODE) 5-25

GENERIC-AP 9-38

HALF REGISTER SHIFTS 9-43

HALFWORD - 16 BIT 4-4

HALFWORD LENGTH 8-1

HALT 7-63

HALT SWITCH 2-18

HARDWARE MEMORY PROTECTION B-7

HARDWARE MONITORING A-9

HIERARCHY OF PROCESSING
B-8

STATES

HIGH HALF OF DTAR3 5-17

HIGH SPEED REGISTER SET A-3, A-4,
A-6

HLT 7-63, 9-31

I 9-32

I-MODE INSTRUCTIONS 9-1

1/O (S,R-MODES) 5-24

L/O - INPUT/OUTPUT 7-51, 9-25

L/O BUS A-5, A-13 |

T/O BUS SWITCH 2-5

12

_ INDEX

I/O LOGIC A-4

I/O PERFORMANCE 2-2 |

IAB 7-68

ICA 7-68

ICBL 9-32

ICBR 9-33

ICHL 9-33

ICHR 9-33

ICL 7-68

ICR 7-68

IH 9-32

IH] 9-20

IH2 9-20
ILE 7-73

ILL 2-25

ILL (ILLEGAL INSTRUCTION) A-1l

IM 9-19

IMA 7-69

IMH 9-19

IMK 7-54, A-18

IMMEDIATE REQUIREMENTS 8-19

INA 7-51, A-14

INBC 2-24, 7-85

INBN 2-24, 7-85

INCLUSIVE OR 7-58

INCREMENT AND REPLACE INDEX 7-94

INCREMENT HALF REGISTER BY 1 9-20

INCREMENT HALF REGISTER BY 2 9-29

INCREMENT MEMORY FULLWORD 9-19

INCREMENT MEMORY HALFWORD 9-19

INCREMENT MEMORY,
SKIP 7-93

REPLACE, AND

INCREMENT OR DECREMENT X OR Y AND
BRANCH 7-5

INCREMENT REGISTER BY 1 9-20

INCREMENT REGISTER BY 2 926

INDEX REGISTER 5-13, 6-2

INDEXING 6-1, 6-2, 6-8, 6-9, 6-14

INDEXING AND INDIRECTION 6-7

INDIRECT POINTER (IP) 4-4

INDIRECT POINTER - THREE WORD
MEMORY REFERENCE (IP) 5-6

INDIRECT POINTER - ‘TWO WORD
MEMORY REFERENCE (IP) 8-4

INDIRECT WORD - ONE WORD MEMORY
REFERENCE 5-5

INDIRECT WORD - TWO WORD MEMORY
REFERENCE (IP) 5-5

INDIRECTION 6-1, 6-2, 6-8, 6-9,
6-14

INEC 2~24, 7-85, 9-4@

INEN 2-24, 7-8, 9-40

INH 7-52, 9-25, A-18

INHIBIT INTERLEAVE 7-49, 7-52

INK 7-55, 9-26

13

INDEX

INOTIFY 2-24

INPUT KEYS 7-55, 9-26

INPUT MASK 7-54

INPUT TO A 7-51

INPUT/OUTPUT A-12

INPUT/OUTPUT OPERATION 2-5

INSTRUCTION DEFINITIONS - SVC 7-1

INSTRUCTION |
CONVENTIONS 4-1

DESCRIPTION

INSTRUCTION EXECUTION A-6

INSTRUCTION EXECUTION TIMES 2-3

INSTRUCTION FORMATS 5-24, 8-17

INSTRUCTION RANGE 6-4

INSTRUCTIONS A-12

INT 7-32, 9-13

INT - INTEGER ARITHMETIC 7-38,

9-16

INIA 7-33

INTEGER (SIGNED) 4-4

INTEGER (UNSIGNED) 4-4

INTEGER ARITHMETIC
2-2

IMPROVEMENTS

INTEGRITY ENHANCEMENTS 2-7

INTERCHANGE AND CLEAR LEFT 7-68

INTERCHANGE AND CLEAR RIGHT 7-68

INTERCHANGE BYTES 9-32

INTERCHANGE BYTES AND CLEAR LEFT
9-32

INTERCHANGE BYTES AND CLEAR RIGHT
9-33

INTERCHANGE CHARACTERS IN A 7-68

INTERCHANGE HALFWORD AND
LEFT 9-33

CLEAR

INTERCHANGE L AND E 7-73

INTERCHANGE MEMORY AND THE A

REGISTER 7-69

INTERCHANGE REGISTER AND MEMORY -

FULLWORD 9-32

INTERCHANGE REGISTER AND MEMORY -—

HALFWORD 9-32

INTERCHANGE REGISTER HALVES 9-32

INTERCHANGE THE A AND B REGISTERS

7-68

INTERLEAVED MEMORY 2-5

INTERNAL INTERRUPTS A-8, A-11

INTERPROCESS COMMUNICATION 2-31

INTERRUPT 2-22, A-24

INTERRUPT (VECTORED MODE) A-1d

INTERRUPT AND TRAP HANDLING A-8

INTERRUPT PROGRAMMING 7-52, A-18

INTERRUPTS A-9, B-9

INTGY ~— HARDWARE INTEGRITY CHECK

7-48, 9-24

INTH 9-13

INTL 7-33

INVALIDATE STLB ENTRY 7-65

IO 9-25

14

INDEX

IR 9~32 JUMP AND SET XB 7-80, 9-36

IR1 9-29 JUMP AND SET Y 7-89

IR2 9-29 JUMP AND STORE 7-75

IRB 9-32 JUMP AND STORE RETURN IN INDEX
| 7-77

IRS 7-93
JUMP IF EQUAL TO ZERO 7-76IRTC 9-25
JUMP IF GREATER THAN OR EQUAL TOIRIN 2-24, 9-25 ZERO 7-77

IRX 7-94 JUMP IF GREATER THAN ZERO 7-76

ISI A-14 JUMP IF LESS THAN OR EQUAL 1O
ZERO 7-76

ITLB 7-65, 9-31

JUMP IF NOT EQUAL TO ZERO 7-76
JDX 7-77

JUMP IS LESS THAN ZERO 7-77
JEQ 7-76

JUMP TO SUBROUTINE 9-36
JGE 7-77 |

KEYS 2-19, 2-21, 2-23, 2-24,
JIX 7-77 2-2/, 4-6, 5-14, 8-15

SLE 7-76 KEYS (S,R-MODES) 5-21

JL7-77 KEYS (V-MODE) 5-21

JMP 7-75, 9-36 KEYS - STATUS KEYS 7-55, 9-26

JNE 7-76 | KEYS, MODALS 5-17

JSR 9-36 KEYSH 2-17

Ist 7-75, 7-76 L 9-34

JSX 7-77 L REGISTER 5-3

JSXB 7-80, 9-36

JSY 7-77

JUMP 7-75, 9-36

JUMP AND DECREMENT INDEX 7-77

JUMP AND INCREMENT INDEX 7-77

L-BIT 4-6, 5-23, 8-16

LAST TEMPLATE 2-21

LB (LINKAGE BASE) 5-1/, 6-11

LCEQ 7-60, 9-29

LCGE 7-60, 9-29

15

INDEX

LCGT 7-60, 9-29 LGT 7-5¥, 9-29

LCLE 7-60, 9-29 LH 9-34

LCLT 7-60, 9-29 LHEQ 9-29

LCNE 7-68, 9-29 LHGE 9-29

LDA 7-69 LHGT 9-29

LDAR 9-35 LHL1 9-34

LDC 7-7, 9-5 LHL2 9-34

LDL 7-73 LHLE 9-29

LDLR 5-14, 7-72 LHL? 9-29

LDLR/STLR 2-18 LHNE 9-29

LDX 7-76 LINK FAULT 2-25

LDY 7-76 | LINKAGE BASE 2-19, 2-21

LEAVE MACHINE CHECK MODE 7-48 LLE 7-59, 9-29

LEAVE PAGING MODE AND JUMP (PRIME LLEQ 7-60
300) 7-61

LLGE 7-60
LEAVE PAGING MODE AND JUMP TO XCS
(PRIME 300) 7-62 LLG? 7-60

LEQ 7-59, 9-29 LLL 7-89

LF 7-59, 9-30 | LLLE 7-60

LFEQ 7-60, 9-29 LLLT 7-60

LFGE 7-60, 9-29 LLNE 7-60

LFGT 7-60, 9-29 LLR 7-90

LFLE 7-68, 9-29 LLS 7-92

LFLI 7-25, 9-9 LLT 7-59, 9-29

LFLT 7-66, 9-29 IMCM 7-48, 9-24

LFNE 7-60, 9-29 LNE 7-59, 9-29

LGE 7-59, 9~29 LOAD ADDRESSED REGISTER 9-35

INDEX

LOAD CHARACTER 7-7, 9-5

LOAD FIELD
IMMEDIATE 7-25

LENGTH REGISTER

LOAD FULLWORD 9-34

LOAD HALFWORD 9-34

LOAD HALFWORD LEFT SHIFTED BY 1
9-34

LOAD HALFWORD LEFT SHIFTED BY 2
9-34

LOAD INDEX REGISTER 7-76

LOAD L FROM ADDRESSED REGISTER
7-72

LOAD LONG 7-73

LOAD PROCESS ID 7-65

LOAD PROGRAM STATUS WORD 7-65

LOAD SHIFT COUNT INTO A 7-4¢

LOAD THE A REGISTER 7-69

LOAD WRITABLE CONTROL STORE 7-67

LOAD WRITE CONTROL REGISTER 7-49

LOAD Y 7-70

LOADER 6-4, 6-6

LOADER B-12

LOADING WCS B-11

LOGIC - LOGICAL OPERATIONS 7-57,
9-27

LOGIC SET A FALSE 7-59

LOGIC SET A TRUE 7-59

LOGIC SET FALSE 9-39

LOGIC SET TRUE 9-36

LOGICAL AND LONG 7-58

LOGICAL TEST AND SET
7-59, 7-64, 9-29

(LOGICIZE)

LONG LEFT LOGICAL 7-89

LONG LEFT ROTATE 7-99

LONG LEFT SHIFT 7-92

LONG REACH 6-3, 6-13

LONG REACH, TWO-WORD 6-14

LONG RIGHT LOGICAL 7-89

LONG RIGHT ROTATE 7-99

LONG RIGHT SHIFT 7-92

LPID 7-65, 9-31

LPMJ 7-61

LPMX 7-62, B-12

LPSW 2-8, 5-14, 7-65, 9-31

LRL 7-89

LRR 7-90

LRS 7-92

LT 7-59, 9-30

LISTS - LOGICAL TEST AND SET
7-59, 9~29

LXCS 7-67

M 9-17

M REGISTER A-6, A-7

MACHINE CHECK 2-9, 2-28, A-9

MACHINE CHECK ERROR A-24, A-25

17

INDEX

MACHINE CHECK ERROR (CPU WITHOUT
MICROVERIFICATION) A-25

MACHINE CHECK FUNCTIONS A-24

MACHINE CHECK MODE 2-8, A-24

MACHINE CHECKS A-3

MANTISSA LOW,
5-17

DOUBLE-PRECISION

MANTISSA MIDDLE 5-17

MAPPED I/O 2-5

MCTL - MACHINE CONTROL 7-61, 9-31

MDII 7-49, 9-24

MDIW 7-49, 9-24

MDRS 7-49, 9-24

MDWC 7-49, 9-24

MEMORY ADDRESSING 6-1

MEMORY BUS A-6

MEMORY CYCLE TIMES A-7

MEMORY CYCLING A-7

MEMORY INCREMENT INTERRUPT 2-23

MEMORY ORGANIZATION 6-1

MEMORY PARITY 2-28, A-Y¥, A-24

MEMORY PARITY ERROR 2-9, 2-31,
A-24, A-25,

MEMORY REFERENCE 3-1, 5-26, 8-17

MEMORY REFERENCE - 64V, TWO WORD
6-15

MEMORY REFERENCE - ADDRESS
FORMATION 8-19

MEMORY REFERENCE
FORMATS 6-3, 6-7

INSTRUCTION

MH 9-17

MIA 7-66

MIB 7-66

MICRO ASSEMBLER B-12

MICRO-INSTRUCTION WORD A-3

MICRO-INSTRUCTIONS A-4

MICRO-PROCESSOR A-4

MICROCODE 2-7

MICROCODE INDIRECT A 7-66

MICROCODE INDIRECT B 7-66

MICROCODE SCRATCH AND -SYSTEM
REGISTERS 2-17

MICROCODERS HANDBOOK (MAN1940)

A-3, A-7

MICROPROCESSING A-3

MICROPROCESSOR A-3

MICROPROGRAM CONTROL A-3

MICROVERIFICATION A-24, A-27

MICROVERIFY ENTRY AND EXIT A-31

MISSING MEMORY MODULE 2-28, A-9

MODALS 2-18,
8-lo,

4-6, 5-14, 5-23,

MOS MEMORY A-4

MOVE - MOVE DATA 7-68, 9-32

MOVE CHARACTER FIELD 7-8

MOVE EQUAL LENGTH FIELDS 7-8

18

MPL 7-45

MPY 7~39, 7-44

MRFR - FLOATING POINT REGISTER
8-17

MRGR 8-17

MRNR — NON REGISTER 8-17

MULTI-LINE
ASYNCHRONOUS 2-6

CONTROLLER

MULTIPLY 7-39, 7-44

MULTIPLY FULLWORD 9-17

MULTIPLY HALFWORD 9-17

MULTIPLY LONG 7-45

MULTIWAY BRANCHES 2-7

N 9-27

NFYB 2-lo, 7-85, 9-40

NFYE 2-lo, 7-85, 9-40

NH 9-27

NO OPERATION 7-63

NON-REGISTER GENERICS 3-1, 8-17

NOP 7-63

NORMAL OPERATING MODE (ENABLED BY
MASTER CLEAR OR LMCM INSTRUCTION)
A-25

NORMALIZATION 7-26

NORMALIZE 7-40

NOTIFY 2-6, 2-18, 2-lo, 2-24,

NRM 7-406

NUMBERS 5-1, 8-1

INDEX

NUMERIC EDIT 7-20

O 9-27

OCP 7-52, A-14

OH 9-27

OPERATION CODES 6-1

OR FULLWORD 9-27

OR HALFWORD 9-27

ORA 7-58

OTA 7-51, A-14

OTHER EXTENDED INSTRUCTIONS B-2

OK 7-55, 9-26

OUT-OF-RANGE ADDRESSES 6-1, 6-4,
6-6

OUTPUT CONTROL PULSE 7-52

OUTPUT FROM A 7-51

OUTPUT KEYS 7-55, 9-26

OWNER (ADDRESS OF PROCESS CONTROL
BLOCK OF PROCESS OWNING REGISTER
CONTENTS) 5-17

OWNERH 2-13, 2-14, 2-17

P (PROGRAM COUNTER) 5-17

PAGE 2-25

PAGE FAULT 2-27

PAGE MAP B-3, B-4

PAGE MAP ADDRESS REGISTER 5-13

PAGE MAP ENTRIES 2-18

PAGE SIZE 2-10

19

INDEX

PAGE-TURNING B-7

PAGING B-3

PAGING FEATURE 2-2

PARITY 2-8

PARITY CHECKING 2-7

PARITY CHECKS 2-7

PARITY ERRORS A-25

PARITY FAIL A-9

PB (PROCEDURE BASE REGISTER) 6-11

PB (PROCEDURE BASE)
5-1/7, 6-1,

2-31, 5-14,

PCB 2-13, 2-14, 2-16, 2-17

PCB FAULT VECTOR 2-27

PCB LINK WORD 2-13

PCBs 2-10

PCL 7-81, 9-37

PCL STACK FRAME HEADER 5-7, 8-6

PCTLJ - PROGRAM CONTROL AND JUMP
7-75, 9-36

PERFORMANCE 2-2

PERIPHERAL I/O OPERATION A-3

PHANTOM INTERRUPT CODE 2-24

PHYSICAL ADDRESS FORMATION B-5

PID 7-41, 7-46, 9-18

PIDH 9-18

PIDL 7-46

PIM 7-49, 9-17

PIMA 7-44

PIMH 9-17

PIML 7-45

PMNTs 2-10

POINTER 2-25

POSITION AFTER MULTIPLY 9-17

POSITION FOLLOWING INTEGER
MULTIPLY 7-40, 7-44

POSITION FOLLOWING INTEGER
MULTIPLY-LONG 7-45

POSITION FOR INTEGER DIVIDE 7-41,
7-46, 9-18

POSITION FOR INTEGER DIVIDE-LONG
7-46

POSITION HALF REGISTER
MULTIPLY 9-17

AFTER

POSITION HALF REGISTER FOR
INTEGER DIVIDE 9-18

POWER FAILURE 2-18, 2-28, A-3

POWER MONITOR AND AUTOMATIC
RESTART OPTION A-32

PPA (POINTER TO PROCESS A) 2-13,
2-14, 2-17

PPB 2-14

PRCEX - PROCESS EXCHANGE -
(RESTRICTED) 7-85, 9-40

PRIME 160, 200 AND 300 A-1

PRIME 3@@ ADVANCED FEATURES B-1

PRIME 30@ EXTENDED INSTRUCTIONS
B-1

PRIME 388 TIMES 2-3

20

PRIME 408

PRIME 400

PRIME 408

PRIME 586

PRIME 506
SET 3-3

PRIMOS IV

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
2-19

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

INDEX

PERFORMANCE 2-2

PROCESSOR 2-1

TIMES 2-3

3-1

EXTENDED INSTRUCTION

2-1

6-11

BASE 2-19

CALL 2-21, 7-81, 9-37

CALL ENVIRONMENT 2-19

CALL INSTRUCTIONS (PCL)

CALL MECHANISM 2-19

RELATIVE 6-9

RETURN 7-84

RETURN 9-37

STACK CONTROL 7-78, B-2

PROCESS 2-16, 2-25

PROCESS CONTROL BLOCK FORMAT 2-12

PROCESS CONTROL BLOCKS (PCB)
2-16, 2-12, 2-13, 2-14

PROCESS CPU TIMER 2-18

PROCESS EXCHANGE 2-5, 2-0, 2-23

PROCESS EXCHANGE ENVIRONMENT 2-190

PROCESS EXCHANGE MECHANISM 2-10,
2-13, 2-14, 2-16

PROCESS EXCHANGE MODE 2-22

PROCESS FAULT 2-18

PROCESS STATE 2-15

PROCESSOR CHARACTERISTICS
5-13, 8-12

4-6,

PROCESSOR ORGANIZATION A-2

PROCESSOR SERIAL I/O PORTS A-5

PROCESSOR SERIAL INTERFACE A-14

PROGRAM ADDRESS REGISTER A-3

PROGRAM COUNTER 2-20, 2-2/, 5-13,
6-6, 6-8, 6-9

PROGRAMMING B-11

PROGRAMMING SUGGESTIONS A-18

PROM 2-7

PROTECTION MECHANISM 2-19

PRIN 7-84, 9-37

QUEUE 2-34

QUEUE - QUEUE MANAGEMENT 7-86,
9-38

QUEUE CONTROL BLOCK 4-4, 5-10,
8-9

QUEUE DATA BLOCK, DATA NOT
WRAPPED 5-11, 8-11

QUEUE DATA BLOCK,
5-l1, 8-11

DATA WRAPPED

QUEUE DATA STRUCTURES 5-11, 8-11

QUEUING ALGORITHMS 2-14

R-MODE 6-6

RBQ 7-87, 9-39

RCB 7-55

21

INDEX

READ SYNDROME BITS 7-49

READ-ONLY CONTROL MEMORY
A-3

(ROM)

READY FLAG A-13

READY LIST 2-18, 2-13, 2-14

REAL TIME CLOCK (INCREMENT) A-1@

REAL TIME CLOCK (OVERFLOW) A-1d

REAL-TIME 2-1

RECURSIVE 2-19

REENTRANT 2-19

REFERENCING MEMORY A-4

REGISTER 6 A-7

REGISTER GENERICS 3-1, 8-17

REGISTER RESTORE 9-37

REGISTER SAVE 9-37

REGISTER SET 2-18, A-3

REGISTER SET MANAGEMENT 2-16

REGISTER SHIFTS 9-41

REGISTER TO REGISTER REQUIREMENTS
8-19

REGISTERS 2-5, 2-8, 4-6

REGISTERS (R-MODE) 5-13

REGISTERS (S-MODE) 5-13

REGISTERS (V-MODE) 5-14

RELATIVE MODE A-8, 6-6

RELATIVE REACH 6-2

REMOTE I/O BUS EXTENDER 2-5, 2-6

REMOVE FROM BOTTOM OF QUEUE 7-87,
9-39

REMOVE FROM TOP OF QUEUE 7-86,
9-38

_ RESERVED MEMORY LOCATIONS A-8

RESTORE REGISTERS 7-64

RESTRICT MODE VIOLATION 2-24

RESTRICTED EXECUTION B-8

RESTRICTED EXECUTION
A-11

VIOLATION

RETURN FROM RECURSIVE PROCEDURE
7-79

RING 2-25

RING CROSSING 2-19

RING NUMBER 2-19

RING NUMBER CALCULATION 2-20

RING ZERO 9-38

RING-STRUCTURED MEMORY BUFFER 2-6

PMC 7-48, 9-24

ROT 9-41

ROTATE 9-41

ROUND UP 7-33

RRST 9-37

RRST ADDR 7-64

RSAV 9-31, 9-37

RSAV ADDR 7-63

RIN 7-79, B-2

RIQ 7-86, 9-38

22

INDEX

RXM 2-24

S 9-16

S (STACK) 5-17

SIA 7-39

S2A 7-39

SAR 7-94

SAS 7-93

SAVE DONE BIT 2-17

SAVE REGISTERS 7-63

SB (STACK BASE) 5-17, 6-11

SBL 7-44

SCA 7-40

SCALE DIFFERENTIAL 5-4, 8-3

SCALING 7-16

SCB 7-55

SDWs 2-10

SECTOR BIT 6-3

SECTOR RELATIVE 6-8

SECTOR ZERO 6-4, 6-7

SECTORED 6-4

SECTORED AND RELATIVE ADDRESSING
MODES A-8

SECTORED MODE A-8

SECTORS 6-1

SEGMENT 2-10, 2-19, 2-25, 6-11

SEGMENT DESCRIPTOR WORDS 2-18

SEGMENT FAULT 2-25, 2-27

SEGMENT NUMBER 2-13, 2-19

SEGMENTATION 2-1, 2-2, 6-2

SEGMENTED ADDRESSING 2-1

SEMAPHORE 2-1¥, 2-13, 2-16

SEMICONDUCTOR MEMORY A-8

SEND MASK 7~53

SEQUENTIAL INSTRUCTION EXECUTION
A-3

SET C-BIT 7-55

SET SIGN MINUS 7-43, 9-23

SET SIGN PLUS 7-43, 9-23

SGL 7-38

SGT 7-93

SH 9-16

SHA 9-41

SHARED 2-19

SHIFT 5-24, 7-88

SHIFT - SHIFT DATA 9-41

SHIFT ARITHMETIC 9-4]

SHIFT HALF REGISTER LEFT 1 9-43

SHIFT HALF REGISTER LEFT 3 9-43

SHIFT HALF REGISTER RIGHT 1 9-43

SHIFT HALF REGISTER RIGHT 2 9-43

SHIFT LOGICAL 9-42

SHIFT REGISTER LEFT 1 9-42

23

SHIFT REGISTER LEFT 2 9-42

SHIFT REGISTER RIGHT 1 9-42

SHIFT REGISTER RIGHT 2 9-42

SHIFTING A-7

SHL 9-42

SHL1 9-43

SHL2 9-43

SHRI 9-43

SHR2 9-43

SIGNED 31-BIT INTEGER 5-2

SIGNED 32-BIT INTEGER 5-2

SIGNED INTEGERS 8-2

SINGLE PRECISION 7-38

SKIP - CONDITIONAL SKIP 7-93

SKIP GROUP 7-94

SKIP IF A GREATER THAN ZERO 7-93

SKIP IF A LESS THAN OR EQUAL ‘TO
ZERO 7-93

SKIP IS SATISFIED 7-51

SKIP ON A BIT RESET 7-94

SKIP ON A BIT SET 7-93

SKIP ON MACHINE CHECK RESET 7-48

SKIP ON MACHINE CHECK SET 7-49

SKIP ON SENSE SWITCH RESET 7-94

SKIP ON SENSE SWITCH SET 7-94

SKP 7-94

INDEX

SKS 7-51, A-14

SL1 9-42

SL2 9-42

SLE 7-93

SMCR 7-48

SMCS 7-49

SMK 7-53, A-18

SNR 7-94

SNS 7-94

SOFTWARE B-12

SOFTWARE AIDS A-9, 2-10

SOLID FAILURE A-39

SRL 9-42

SR2 9-42

SSM 7-43, 9-23

SSP 7-43, 9-23

ST 9-33

STA 7-69

STAC 7-74

STACK 2-19, 2-25

STACK BASE 2-19

STACK EXTEND 7-83, 9-37

STACK FAULT 2-25

STACK FRAME ALLOCATION 2-26

STACK FRAMES 2-19

STACK POINTER (SP) 6-10

24

INDEX

STACK POSTINCREMENT 6-10 STORE CONDITIONAL HALFWORD 9-34

STACK PREDECREMENT 6-18 ; STORE FIELD ADDRESS REGISTER 7-24

STACK REGISTER 5-14 | ; STORE FULLWORD 9-33

STACK RELATIVE 6-3, 6-14 | STORE HALFWORD 9-33

STACK SEGMENT 2-19 STORE INDEX REGISTER 7-70

STACK SEGMENT HEADER 5-6, 8-5 STORE L CONDITIONALLY 7-74

STACK SEGMENT MANAGEMENT 2-19 : STORE L INTO ADDRESSED REGISTER

STACKS 4-4 me
STORE LONG 7-73

STANDARD A-8
STORE THE A REGISTER 7-69

STANDARD CPU FUNCTIONS A-3
STORE Y 7-73

STANDARD INTERRUPT MODE A-16
| STX 7-70

STAR 9-35

STY 7-73
STC 7-7, 9-5 :

SUB 7-39
STCH 9-34

SUBTRACT 7-39

STCO 9-34
SUBTRACT FULLWORD 9-16

STEX 7-83, 9-37
SUBTRACT HALFWORD 9-16

STFA 7-24, 9-9
SUBTRACT LONG 7-44

STH 9-33
SUBTRACT ONE FROM A 7-39

STL 7-73
SUBTRACT TWO FROM A 7-39

STLC 7-74
SUPERVISOR CALL 7-62

STLR 5-14, 7-72
SUPERVISORY-LEVEL B-8, B-9

STLR/LDLR 5-17
SvC 2-25, 7-62, A-10

STORE A CONDITIONALLY 7-74
SWAP HALFWORDS AND CLEAR RIGHT

STORE ADDRESSED REGISTER 9-35 9-33

STORE CHARACTER 7-7, 9-5 _ TAB 7-71
i

STORE CONDITIONAL FULLWORD 9-34 TAK 7-55

TAX 7-71

TAY 7-71

TBA 7-7/1

TC 9-19

TCA 7-42

TCH 9-19

TCL 7-46

TEMPLATE LIST 2-21

TEST AND VERIFICATION B-12

TEST C-BIT AND BRANCH 7-4

TEST CONDITION CODE AND BRANCH
7-3

TEST L-BIT 7-4

TEST MAGNITUDE
BRANCH 7-4

CONDITION AND

TEST MEMORY 9-23

TEST QUEUE 7-87, 9-39

TEST REGISTER BIT AND BRANCH 9-2

TEST RELATION TO @ AND BRANCH IF
TRUE 9-2

TFLL 7-25

THE VIRY INSTRUCTION A-3@

TIMING A-1l8, A-20

TKA 7-56

TLFL 7-24

™ 9-23

TRANSFER A TO B 7-71

INDEX

TRANSFER A TO KEYS 7-55

TRANSFER A TO X 7-71

TRANSFER A TO Y 7-71

TRANSFER B TO A 7-71

TRANSFER FIELD LENGTH REGISTER TO
L 7-25

TRANSFER FIELD LENGTH REGISTERTO
REGISTER 9-7

TRANSFER KEYS TO A 7-55

TRANSFER L-REGISTER TO FIELD
LENGTH REGISTER 7-24

TRANSFER OF INFORMATION A-6

TRANSFER X TO A 7-71

TRANSFER Y TO A 7-71

TRANSFERS USING THE ALU A-7

TRANSIENT FAILURE A-30

TRANSLATE CHARACTER FIELDS 7-9

TRAP 2-22, A-24

TRAPS AND INTERRUPTS A-8

TRAPS, INTERRUPIS,
CHECKS 2-22

FAULTS , AND

TRFL 9-7

TSTQ 2-34, 7-87, 9-39

TWO'S COMPLEMENT A 7-42

TwWO'S COMPLEMENT HALF #REGISTER
9-19

TWO'S COMPLEMENT LONG 7-46

TwO'S COMPLEMENT REGISTER 9-19

26

INDEX

TXA 7-71

TYA 7-71

UII (UNIMPLEMENTED INSTRUCTION)
A-ll, 2-25

UNSIGNED INTEGER 5-1, 8-1

USE OF PMA B-12

USER REGISTER SET 2-17

USER-LEVEL B-8

V-MODE REGISTER DESCRIPTION 5-1),
8-12

V-MODE REGISTER USAGE 5-17

V-MODE TWO WORD MEMORY REFERENCE
6-16

VECTORED A-8

VECTORED INTERRUPT MODE A-17

VECTORED PRIORITY INTERRUPTS A-5

VERIFICATION ROUTINES A-28

VERIFY 7-48

VERIFY THE XIS BOARD 7-50

VIRTUAL MEMORY 2-1, 2-10, B-2

VIRTUAL MEMORY EFFECTIVE ADDRESS
FORMATION B-6

VIRTUAL MEMORY FORMATS 2-1]

VIRTUAL MEMORY INSTRUCTIONS B-9

VIRTUAL MEMORY INTERRUPTS B-1@

VIRTUAL PAGE ADDRESS B-4

VIRTUAL QUEUE CONTROL BLOCK 2-32,
9-38 |

VIRTUAL SPACE 2~10

VIRY 2-8, 2-9, 7-48, 9-24

VISIBLE SHIFT COUNT 5-13

VSC REGISTER A-7

VXIS 7-56

WAIT 2-10, 2-16, 7-85, 9-49

WAIT AND NOTIFY 2-15

WAIT LIST 2-3, 2-13

WAITS 2-13

WCS 7-67

WCS CAPABILITIES B-1l

WORD 4-4

WORD LENGTH 8-1

WRITABLE CONTROL STORE 2-7, 7-67,
B-9

WRITE INTERLEAVED 7-49

X 9-28

X (INDEX) 5-17

XAD 7-lo, 9-8

XB (TEMPORARY BASE) 5-17

XBTD 7-19, 9-8

XBTD CHARACTERISTICS 7-19

XCA 7-68

XCB 7-69

XCM 7-20, 9-8

XCS BOARD B-1l

27

INDEX

XDTB 7-18, 9-8

XDTB CHARACTERISTICS 7-19

XDV 7-18, 9-8 |

XEC 7-79, B-2

XED 7-20, 9-8

XH 9-28

XIS MICRO-CODE 3-2

XMP 7-17, 9-8

XMV 7-20, 9-8

Y (ALTERNATE INDEX) 5-17

Y AND M MEMORY BUFFERS A-3

Y REGISTER A-4, A-6

ZCM 7-9, 9-7

ZED 7-1b, 9-7

“ZERO MEMORY FULLWORD 9-7

ZERO MEMORY HALFWORD 9-7

ZFIL 7-8, 9-7

2M 9-7

ZMH 9-7

ZMV 7-8, 9-7

ZMVD 7-8, 9-7

ZTRN 7-9, 9-7

	0001
	0002
	001
	002
	003
	004
	005
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	03-01
	03-02
	03-03
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	07-63
	07-64
	07-65
	07-66
	07-67
	07-68
	07-69
	07-70
	07-71
	07-72
	07-73
	07-74
	07-75
	07-76
	07-77
	07-78
	07-79
	07-80
	07-81
	07-82
	07-83
	07-84
	07-85
	07-86
	07-87
	07-88
	07-89
	07-90
	07-91
	07-92
	07-93
	07-94
	07-95
	07-96
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	a-00
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	a-18
	a-19
	a-20
	a-21
	a-22
	a-23
	a-24
	a-25
	a-26
	a-27
	a-28
	a-29
	a-30
	a-31
	a-32
	a-33
	a-34
	a-35
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	c-01
	c-02
	c-03
	c-04
	c-05
	c-06
	c-07
	c-08
	c-09
	c-10
	c-11
	c-12
	c-13
	x-01
	x-02
	x-03
	x-04
	x-05
	x-06
	x-07
	x-08
	x-09
	x-10
	x-11
	x-12
	x-13
	x-14
	x-15
	x-16
	x-17
	x-18
	x-19
	x-20
	x-21
	x-22
	x-23
	x-24
	x-25
	x-26
	x-27
	x-28

