PERFORM Reference Guide
PDR, 3906

INTRODUCTION PDR3906 PRIME INFORMATION

1 INTRODUCTION

1.1 How to Use This Manual

Each pair of facing pages presents a single topic, with a narrative
description on the left page and usually some examples on the right

page.

Each topic is presented on a pair of facing pages. The left-hand page
contains the main text and the right-hand page presents the figures
supporting the text. Each left-hand page also has a title followed by
a brief summary of the topic presented.

This format has the advantage that a topic is covered in one pair of
facing pages and can be learned or referenced quickly.

A set of general conventions has been established to support this
format. See Figure 1.

Page 2 PRIME INFORMATION Release 4 December 2, 1980

)

Table of Contents

l IN’I'RODUCTIONO'"........................I........................'..2
l. l l-bw to Use mis mnual ® © 00000000000 OO0 PO OO0 OO .2
1.2 Communicating with the PRIME INFORMATION SySteM..eceesecscessecssed

2 PERFORM COMMAND LANGUAGE. . eseseessccssccssssscssensscsoscsscsossossesccsd
.1 PERFORM Introduction and OVervieW..e.cececccscccsscccccnssscscsceeh
.2 PRIME INFORMATION System ProCeSSOIrS.ccssscscecccssccscssssonsscsseed
.3 INFORM System ProCeSSOrSeececsesessscscsssscscsossssssssssscssesssll
.4 Command Invocation ModeS.escecececceccsoscsssoosossansssssscsecseall
5 Commands Which Use SELECT LiStS.ccecccececescccoscosocsecscscsssld
6 Use 0f the BREAK KeY.eeeeeooonsssossssssssssssssscssscscssscssesslh

2
2
2
2
2
2.

3 PRIME INFORMATION FILES.:ceoveeccceccccsscccscscscsocsscsscasccsseesl8

3.1 Introduction to PRIME INFORMATION FileSeeeecesesccccnsasccssasssl8
3.2 Hash-Encoded AJdresSing.cescecescccccosscsccssssssascssscescssselld
3.3 PRIME INFORMATION File GrOUPSeceeccssscccsscsssossscscccsscsceeldl
304 File TYPeSeceesscsesssesssscsassscscssscsssssasscssssssssssnsesld
3.5 File Type 1 DesCriptioNecceccsccescscescesssesssesssccscsscsessslb
3.6 File Type 2 DesCriptioNecececececcssscscsecccscscscsesesocesessl8
3.7 File Type 3 DesCriptioNeecccececcecscscsssscesscscssccsssscssesselfl
3.8 File Type 4 DescriptioNecceccecscecssccscessscssccesscessassanssl2
3.9 File Type 5 DesCriptioNeecececeeccccscescscsscssscsccscasascaseneldd
3.10 File Type 6 DesCriptioNeececcececcccescccescccsscscscsscssseselb
3.11 File Type 7 DesCriptionecscecececsccescesssccesccscscsccccscecselB
3.12 File Type 8 DesSCriptioNececcececccsesescscccsssssssseascscsanassadld
3.13 File Type 9 DesCriptioNececceccceccccscesccscoseccscosscscnceesed
3.14 Large FileS.eeeceeeceeeccecescscssossovsnsscssscssssesesesescsadd

B

VOCABULARY FILE.ecceessescccccsascssscosossssossnsscsssssssccssadh
1 The User Vocabulary Fil€.cececescececcscccsesscscccscsssccscssedb
«2 VOC File ReCOrd TYPESeceeccessccsorsscssssssscssscssscessscnsesssdB
«3 SENTENCE Definition ReCOrdeccceecececccocccccscsocsscocascnsecsssdl
.4 PARAGRAPH Definition ReCOrdeceeccececccececsoccsccccsacsscsonsonscssd?
.5 PHRASE Definition ReCOrd..cceecccecesscscecossssssccnccsssnceeeshd
«6 MENU Pointer ReCOrdeececceceacccscecscscsssssscsscsssssssesscsnnnnsesssdd
4.6.1 MENU Definition ReCOrdS..ceceesccceccsccccoscccccccenecesed8
4.6.2 MENUS: A MENU Maintenance ProCeSSOr cceececccccscoccccsaessb?
7 REMOTE Item Definition ReCOrde..ceceececcocsceceoccccccccacessesbd
8 VERB Definition ReCOIQ.ceececcsessccscsccccccaccccnssssccosasssshb
9 FILE Definition ReCOrd.cccccceecccscsscssccscsscscosasssssssseshb8
1
1
1

N N N O N N

ﬂ KEWORD mfinition Record..o..o.ooo..ooooo-‘o..o...oooo-aoo.oo?
1 USER Record mfinitionooooooo.o.oouoot".‘oooooooo.0..........72

4
4
4
4
4
4.12 Stored System SeNteNnCeS.cccecccceccscssccsescssscosssccsccccsscesld

RIME INFORMATION CmMANm.-00OQoo...oooo.o..ooo.oo'o.0..00..00..0.76
1* (COWENT) StatementooQ..oo.ooo...oooooooooo.o.o00..0.....0.'.76

P
5.
502 ASSIGN Comand.oo.oo.0000000.oo-.ocoooooo...o‘o"o..ooooo..ooo.?B

AVAIL COoMMANUecesccscccoscsesscscccsscssscsccccsccssccscccosssssdl
BASTIC COMMANdeecaccsesscccosssscesosssocnccassosasscsenassoeessd
BLOCK.PRINT COMMANAeseesccocsosscscessccsccccascccscsnssccesecsll
BLOCK. TERM COMMANA 4 e e eeeeecesosccescesocacaccsoscssccnnssessssl
CATALOG COmMMaNd.eeeeeeoscessssssscsesessscssccccccccccccncccsceesedd
CD CommMANd.eeeceseesecscsssscsccssssssoscoscsscccsccsssscsccecesdl
CHAP ComMANd e e eeeecsososseossssssssssssccccccscascascscssoncesel?
CLEAN.ACCOUNT ComMandeceececcecccscccssssocssssccsssssssssccnsssdd
CLEAR.FILE COMMANA e et coseccssssssscscssccscssccsoscssssssosssesdd
CLEAR.LOCKS CommandecececceceecsscsoocsssccoscsoscsaccccscsscecsscssIB
CLEARDATA ComMMANdecececoscccacsccscsscsasecscsessscscscscccsncacessllf
CLEARSELECT CommMand eeceececsssessscssscoscsscsoscsscsssssosssesell2
CLR COMMANd e ceececcoscoscsoscscnsscscasssesscssssscscsnsssscssceslld
CNAME COMMANA .+ e ceecascccscccsccsccssccssscsescssssssasessccsssl@O
COMO Command.eeececscscecscccsassscscccscssasescsoscssssnsiosnssesll8
COMPILE.DICT Commandecsceesoseossosscsccosssscssssacsascsscsnsalll
COPY Commande ceecececscssccsccsscssssssssssscsscsssscsssssssasasall?
COUNT (INFORM System ProCeSSOr) ceescecesesssccsscscsccsssssecelld
CREATE.FILE COMMandecceceescecsascscaoscscsccssscssscsssasscsecsslld
CS COMMANGeeecececssesceoscsssscssossccsssessscsascsscsssssscssssesllB
DATE COMMANAe.cccecsesccscsscscscsccsccscssscscscsccssscscscsslll
DATE. FORMAT ComMANd eceseeesescsscsscsscscssccssasccssssscsseessll2
DELAY ComMAndeececeosssssssossassesssssascscssscssnascssasceslld
DELETE COmMMANdeeseecsacssessccsccscccscoscsesnsoscssososnscsscsssssllh
DELETE.ACCOUNT CoMMANdeceecccccsccascsscecososcesassasssasscsscsesll8
DELETE.CATALOG Commandeccesessesscesccsssoscscsscssssssosssassldd
DELETE.FILE Commandeeececescssccesscssscccccccassssscssccsssseell2
DELETE.LIST Commandecceecsssescsocsccssccccscssssscnssssscssslld
DISPLAY CommANnde.ceeeccsesessscssosssesscssscsssccssoscsscasassllib
ED Commandeeeeceecceocoscsosscsscsossoscessssnscsscoscscscscoscssell8
ENTER (INFORM System ProCeSSOL) eeeessesscscsscscssccssseesessldl
ENTRO (INFORM System ProCeSSOr) ceeececeoccecceccccasssssosssssld?
ENTROC (INFORM System ProCeSSOr) cccesececesesscrsssssoossscsesssldd
FILE.STAT COMMANA ¢ eeseccccccccsssscscssesccsssssscsssassocsessldB
FORM.LIST ComMMand.ceecessecccscsscssccsccccsscsscscccscscsoncsssssld8
FORMAT Command.eeecceseescccsscseccscscssssccsccscscssscsesnncsssseldl
5.38.1 FORMAT EXGMpPle.ccccesoccoesccscosccssscssssssscnsssscceesld2
«39 GET.LIST CommMANGeceeccccccccesesssscascsssssssssassssssasscssnsesldd
.40 GROUP.STAT CoMMANdececcecsssesscsscsassssassscssscsssssssssaecealdd
GROUP.STAT.DETAIL ComMaNdeseceescccccsssesocsccssscsssossssesesld8
HASH.HELP COMMANA . cceccoocososvccssenscsossossssssscsssssscscsceselbl
HASH.HELP.DETAIL COMMandececccecececsocscoccsccscscsssssscnsocasalB2
HASH.TEST COMMANGA e cceccccscccosssssssssssssssssccscsssssnssselbd
HASH, TEST.DETAIL COmMMANGecesoocossccccessscessscscsssccssccneslbBb
HELP Command...ceseoesecsesssccsssscssssscsssccscssscsssscsaccsccscsslOB
HUSH COMMANA . ccceecoscosossccsscscssscsssscsssssesscsoscscsscscsscsssll/l
IAM COMMANA e ececcccoossoosssosssssccsassssscscssssscsscsssssascnell?
INFO Command (PRIMOS-level CommMANd) eeeeecesccecccsccscsssseeeslld
ISTAT ComMMANA e ceeeccossssscscscsssscscsssscsssscsscssscsscsasassssscselld
LIST (INFORM System ProCeSSOr) cecececcccssssssccorssccccscseesl/8
LIST.LOCKS COMMANdeseeceeccccsccssccscsasacscsssssssccsccesesl8BO

NN DW=V WNDHFEFQOYOJOTO WL HEHDR

.
WWWWWWWWWNNNDRODNNDDNODNDNNMNNOEREREEEREREEFRERREREOOIOTEDS W

IR R O N N Y
NHFRQOVOIOWVN &S WK -

LIST.READU COMMANA eeesssesecesssccsssccscscscsssccsscccscaasssel82
LO ComMaNde ceeecesccscscsssssssescsssscsssasnccccssonsscssocscecselBd
LOCK CommMandeeeeessescssscsacecscccssscscsssssscsscsscccccsssncssslBS
LOGIN Command (PRIMOS-level Command) cceeecececcscccccecncaccsssslBB
LOGOUT Command.ceecscccsecssescsccccsosssssscsscsssscocccsocsessslOl
LOGTO Commandescesesssesscssccsssccssscsccscsscscsssssssesessld2
Magnetic Tape CommMandS...eseeesscescscscscssssscoscscscccessaldd
MAIL CommMANd.esecescesecossscccosnsssscsosccsccssssscesoscssscseeealdf
MAKE .MAP.FILE COmMMAaNd.cesececescecoccscososssossssssssssasesslO8
MAP COmMMANdeseeeccsssescescssscsascsssosccsascsssosscscnsceeessBf
MASTER COMMANG e eeeesscacscsocaccsscssosoccccccsossacsossasssl?
MENU.DOC ComMANAeeceseeesassacsscscscscssccsccssosssnconossssss 2l
MENU.PIX ComMand.eseeseecesessssscscsccssscssscscscassssssocessesdB
MESSAGE COmMANG e e ceesecscacsoscssssssssscsssoscsscssscscnssesss 08
OFF COMMANG e eseveeoaossssssosscssscsscscccssssssaccosssnsanneslll
P.ATT ComMMANGeessessscsssscsscsccasscscsscsccsscssssascsaccncsell?
P.DET COMMANAcccesscascsssssescsoscccsssssssssscscssocsssccsseelld
PASSWD COMMANAeeeeeeeossssssscccsasssscsccccssssasasccsssseesealll
PHANTOM COMMANA e s ceersssscsoscscsccocscccscscccssssacsenssss2l®
PROP COMMANG e sccasensscssassasssscosscscossscssasscscscsaasselll
PSPOOL COMMANA e e s esececsscssssssccsscscsssecssscssccnsossossesll?
PTERM Commande.ceeecesscecsassccosssaccssssccscssissccnsssesselld
PTIME COMMANdeesecsssssssesccsscccccsssscscscsccscsccsssasessllB
QUIT CommMAaNd e ceseeeeressssssccccascsssssccsnssssssocscasseceell8
RADIX, XTD, DTX, BTD, DTB, OTD and DTO CommandS..cecccescoecssess 230
RECORD ComMMANd e cseseeossssssscscsccscssscssscsccsssasscosssssacsell?
RELEASE COMMANGesseecocoessssscesssscsssescssscsssscsccssoosessd
RELEASE.ITEMS COMMANA.eecesccssessocesscsscssscssesscssacsesslB
RESET. PRINTER COMMANG e e esecceccccoccsosoccoccscscccssssssssss 8
RESIZE COMMANAecesceccesanscosccssassssacscscsssasssoncosssssdl]
RUN COmMMANA..eecescccesscscsssccacsascssscscsccccscscsscosnococsesseld?
SAVE.LIST ComMaNd.cecseecccaasscsrcsvssccccsosssncsssssssscncesasdd
SELECT (INFORM SysStem ProCESSOL) ceeescesscssssccesscsscsssess2db
SETFILE COoMMANesescececsosccsesssssssssccccccssssssonvenesssld8
SETPTR COMMANG 4 esevsecesssesasccsccccssscssssocscscsscsoncncnsessslDd
SLEEP COMMANA e s sesseccccccosenscscsscovooccccccssccsscssscncesseldd
SORT (INFORM System ProCESSOL) ceeeecscccscescsssscssscsocsessel5B
SP.TAPE ComMAaNdeeeeecssssescasccsccscccnsonnssscssosscccesesseB8
SPOOL COMMANU esessseaccsscaccscccsosscosossssscsccscsssascnsessslbd
SSELECT (INFORM System ProCeSSOr) ceeeessescssssssscosssccesselb2
STAT COMMANG s s eessesssscsssessscscscccsosnsssssssssscssssssssbd
STATUS COMMANG e ecscccossssccctsccscnsosssssscsassassccssssselbb
SUM (INFORM System ProCeSSOC) cesececevesescsccscccsscccscesasasb8
T.DUMP (INFORM SysStem ProCeSSOIL) eeeeeeccecosccsccccsanccosnss?d
TERM COMMANd eeeessseesssscssssscsccsscsccncssssscosacssoscnseell?
TIME COMMANA.ccececccsscscsarscccsascsssscoscssssscconcsonseneelld
UNASSIGN ComMMANdecescsevrceccosacsscocoscssccscccscsssscansseeell
5.100 USERS Command..seeceessssccsssccccccccccesscssnsssaccscasseeall8
5.101 VCATALOG COMMANAeeceasescccoscocccossessccsscsscsoassnsescess8l
5.102 VVOC CONMMANA. s eeeceeosesceocecconssosossscsscscscssossossssss82
5.103 WHO ComMANd e s eeeeeccccscesceoecoccossssscassscsccsnsssseecsse28d

WWOOVWWYWWOVWYWWOVWOWWOWWYWONWWMOMWMEMMEMMMWOVWBVINNINNIIdISJaogaaanaoaaaoaannoaoaauuunuou

L] » L[] * L] L] . L[] . L] L] L[] L] L] L] L[] . L]

* e o o o o

¢ o e o o o . e e

Ui oo,
WLCONOAUMIBWNHFRQRIVONAATMBWLHFRWONNAAUBWNNHFROVONAOAUUBWNHROON UL W

L L]

6 PARAGRAPHS AND SYSTEM CONTROL. et vveeeeesonocococeccnsnsnncaseeeess286
6.1 Prompting Within a Stored PERFORM Commandeeeeeseeseeceenesesss286
6.2 DATA Statements in ParagraphSeceecceessssceeeneeenecocnseneess288
6.3 IF . . . THEN GO Paragraph Control SErUCtUrE.eeeenteeneennnsss200
6.4 Labels in PERFORM Paragraphs.eeeeeeeeeeeeieeeeenieennenneneees292

6.5 LOOP . . . REPEAT Paragraph Control Structure..eceeeeeeeeees..294
6.6 LOGIN Procedure in VOC Fileeeeueeenieeeeneeeeeenenneacnsannees296

6
ERFORM SENTENCE STACK.I...O.Q....'.................0..0..........298
1 PERFORM Sentence Stack INtrodUCtioN.eeeeeeeeeeecossncsnsseesss298
2 .? (Display Sentence Stack CommaNndS) eeveeseseecsccccncascnsess 3B
3
4
5

L[] L] *

.A (Append to Sentence in PERFORM Sentence Stack) eeeececenceesal3B2
.C (Change Sentence in PERFORM Sentence StackK) ceseecocncaseees3fd
.D (Delete Sentence from PERFORM Sentence Stack) eeeeeccceese.s306
.I (Insert Sentence Into PERFCRM Sentence Stack) ceeaccecceoess308
.L (List PERFORM Sentence StACK) ceeeteneeeccesocncsoncncescsealll
R (Recall Sentence/Paragraph Into PERFORM Sentence Stack)....312
.S (Save Sentence/Paragraph From PERFORM Sentence Stack) eee...214
9 .X (Execute Sentence In PERFORM Sentence Stack) eesseeececesos..315
1 ? (Terminate PERFORM Sentence Which Contains Error)..........318
2 PERFORM Sentence Stack Retention (STACKWRITE) «vvvvececcseseees320

* o e o .

= =O0W0g

L] .

NNSNSNNNNNNNNYT

8 APPENDIX A: SPECIAL FILE . ieteeseestceasecccsonccnssssosacnneessl22
1 &ED& File...322
.2 &HOLDs& File...324
T I 1 Y
4 &PHS& File...328
5 &SAVEDLISTS& File...33@
6 &TEMP& File...332
T &UFD& Fileueeauueeueeeoonsoocsssscencasossocasasoceaosonssssss3ld
8 APP.PROGS Fil@uuueeeeeossosoacocoeensssscsoacescocsscannesesssl3b
.9 DICT.DICT File..338
.10 ISYS Account...342
.11 NEWACC File..344
12 PHANTOM Command FileS.eeecseeeccsocccccscscncsccscocescneesss3df
13 SYS.HELP Fil@uuceeeeeecoonoeoosoncsccnaonscosscnccncesasessss3d8
14 USER.HELP File...35@
15 VERBS Fil@eueeeeeeeesseeessosancsaceancososscosccssceannenesssl5

PERFORM

CONVENTION

UPPER CASE

lower case

{1

{}...

COMMAND

PDR39f16 INTRODUCTION

MEANING

Upper case words or characters are
required and must appear exactly as shown.

Lower case words or characters are
parameters to be supplied by the user (i.e.,
file.name, field.name, etc.)

Words or parameters surrounded by braces
indicate that the word or parameter is
optional and may be included or omitted at
the user's option.

An ellipsis (i.e., three dots) that follows the
terminating bracket means the enclosed word

or parameter may be omitted or repeated

an arbitrary number of times.

In the examples, words that are underlined

are commands and parameters typed at the
display terminal by the user.

FIGURE 1. Conventions Used.

December 2, 1980

PRIME INFORMATION Release 4 Page

INTRODUCTION PDR3966 PRIME INFORMATION

1.2 Communicating with the PRIME INFORMATION System

Communication with the PRIME INFORMATION System is accomplished through
the use of commands entered at the terminal keyboard in response to a
colon prompt (:).

Communication with the PRIME INFORMATION System is accomplished through
the use of commands entered at the terminal keyboard in response to
PERFORM's prompting. ‘These commands are analyzed and processed by
PERFORM as the first step in accomplishing the requested action.

The PERFORM prompt character is a colon (:). When PERFORM prompts for
the next request with this colon prompt, commands may be entered via
the terminal keyboard. The command may be the name of a VERB, or it
may be the name of a stored SENTENCE, PARAGRAPH, or MENU.

A VERB is a command that is defined in the vocabulary file and contains
"V" in field one. Verbs invoke various processors within the PRIME
INFORMATION System. (See the section titled "PRIME INFORMATION
COMMANDS" in this manual.)

A SENTENCE is a complete command to PERFORM which consists of one or
more words, the first one of which must be a verb. The simplest
complete sentence is simply a verb name. (See the section titled
"SENTENCE Definition Records" in this manual.)

A stored SENTENCE is a named item in the VOC file, which consists of a
complete sentence formed according to the rules for sentences.

A PARAGRAPH is a named item in the VOC file, which consists of one or
more sentences. (See the section titled "PARAGRAPH Definition Records"
in this manual.)

A MENU is a named item in the VOC file, which consists of a displayed
list of functions which may be selected and, by their selection,
executed. (See the section titled "MENU Definition Records" in this
manual.)

© If the command is typed in upper-case characters, it must be found in
the VOC file exactly as typed. If the command is entered in lower—case
characters, it will be searched for in the VOC file exactly as typed,
and if found, will be executed. However, if a lower-case command is
not found, it will be transformed into its upper-case equivalent, and
then searched for again in the VOC file; if found in this form, it
will be executed.

Page 4 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 INTRODUCTION

:LIST ORDERS WITH SHIP.DATE > 11/38/78 A sentence beginning
with a verb

: INVENTCRY . MENU The name of a menu

sREPCRT. 3 The name of a stored sentence
or paragraph

FIGURE 1. Examples of Commands.

December 2, 1980 PRIME INFORMATION Release 4 Page 5

PERFORM COMMAND LANGUAGE PDR3906 PRIME INFCRMATION

2 PERFORM COMMAND LANGUAGE

2.1 PERFORM Introduction and Overview

PERFORM accepts words presented to it and, using the VOC file to find
the meaning of each word, transforms them into sentences. These

sentences then invoke various processors within the PRIME INFORMATION
System.

The function of PERFORM is to accept commands from the terminal
keyboard, analyze the intended action from the words contained in the
commands (using the VOC file as a dictionary for this analysis), and
use the resolved command to invoke one of the PRIME INFORMATION System
processors.

PERFORM operates on verbs, stored sentences, menus and paragraphs. Its
operation is dictated by the type of the first word in the command
(after PERFORM has "looked up" the command in the VOC file, to
determine its type from data stored there).

If the first word of the command is a verb, PERFORM invokes the proper
processor and passes the remainder of the command sentence to that
processor.

If the first word of the command is the name of a stored sentence,
PERFORM finds the actual stored sentence in the VOC file and uses it to
replace the first word of the command (the name of the stored
sentence) . The command in its new form is then re-analyzed, as if the
sentence itself had been entered in response to the colon prompt.

If the first word of the command is the name of a paragraph, the
paragraph is found in the VOC file, and each sentence within the
paragraph then becomes a sentence to be analyzed by PERFORM, just as if
a series of sentences had been entered from the terminal keyboard at
successive colon prompts. When the sentences in the paragraph are
exhausted, PERFORM issues another colon prompt and waits for the next
command to be entered.

If the first word of the command is the name of a menu pointer, the
menu named in the VOC file pointer is invoked. As each successive
selection is made from the menu, the corresponding command is analysed
just as if it had been entered from the keyboard at the colon prompt.
After the selected command's function has been completed, control
returns to the menu to allow another selection. When no further
selections are made from that menu, control is returned to PERFORM,
which issues another colon prompt and waits for the next command to be
entered at the terminal.

Page 6 PRIME INFORMATION Release 4 December 2, 1980

S

PERFORM : PDR3906 PERFORM COMMAND LANGUAGE

If the first word is: Action is:

The name of a Verb Invoke the proper processor and pass
the sentence to that processor.

The name of a stored Extract the named sentence from the

sentence vocabulary file and analyze it as if
it had been typed by the operator,
instead of just its name.

The name of a paragraph Get the stack of commands from the
paragraph and start executing them
sequentially.

The name of a menu Display the menu and prompt for the

user to select one of the options.

Anything else Display "'Anything' is not in your
vocabulary file"

FIGURE 1. Summary of PERFORM responses to command types.

December 2, 1980 PRIME INFORMATION Release 4 Page 7

PERFORM COMMAND LANGUAGE PDR3906 PRIME INFORMATION

2.2 PRIME INFORMATION System Processors

—— -

Actions within the PRIME INFORMATION System are performed by various
processors, which belong to one of five categories: INFORM processors,

DIRECT processors, PERFORM processors, INFQ/BASIC processors, and
PRIMOS command processors.

Processors which are invoked by PERFORM in response to PERFORM's
analysis of the commands entered at the terminal belong to five
categories: INFORM processors, DIRECT processors, PERFORM processors,
INFO/BASIC processors, and PRIMOS command processors.

INFORM processors are those which access PRIME INFORMATION files via
the database manager, using file dictionaries and the data files
described by those dictionaries. In general, INFORM processors are
those which accomplish the query and report generation functions of
PRIME INFORMATION systems. INFORM processors are identifiable in the
VOC file by having IN in field three.

DIRECT processors access PRIME INFORMATION files directly, without
using the file descriptions found in the file dictionaries. Also
included in this category of processors are those which access no
files, such as TIME. DIRECT processors are identifiable in the VOC
file by having DI in field three.

PERFORM processors are those which interact directly with PERFORM, and
must be uniquely identifiable by PERFORM. Examples of this type of
processor would be DEBUG, or WHO. PERFORM processors are identifiable
in the VOC file by having PE in field three.

INFO/BASIC processors are programs which are written in INFO/BASIC,
usually by the user of the PRIME INFORMATION system (although there are
some INFO/BASIC processors which are part of PRIME INFORMATION
software) . INFO/BASIC processors are identifiable in the VOC file by
having IB in field three.

PRIMOS processors are commands which are available at the PRIMOS level
that have been "brought up" into PRIME INFORVMATION. These processors
are identifiable in the VOC file by having PR in field three.

These five types of processors (defined by IN, DI, PE, IB or PR in
field three of the VOC record of each verb) are the only types defined
to PERFORM. Of these five types, only type IB (for INFO/BASIC
programs) is available for use by customers. Types IN, DI, PR, and PE
are explicitly reserved for use by PRIME INFORMATION software, as are
all undefined types.

Page 8 PRIME INFORMATION Release 4 December 2, 1980

(1]

PERFORM

COUNT
LIST
SUM
T.LGAD

ASSIGN

BTD
CLEAN.ACCOUNT
CNAME
CREATE.FILE
DELETE.CATALOG
DTO

FORM.LIST

GROUP. STAT.DETAIL

HASH. TEST. DETAIL
LIST.LOCKS
LOGOUT
MESSAGE
P.DET
RADIX
RESIZE
SETPTR
STATUS
TIME

XTD

CLEARDATA
GO
LOOP

DATE
RELEASE.ALL

AVAIL
PTERM

FIGURE 1.

PDR3906 PERFORM COMMAND LANGUAGE

INFORM processors

ENTER ENTRO
SELECT SORT
T.BCK T.DUMP
T.READ T.REW

DIRECT processors

BASIC BLOCK. PRINT
CATALOG CD
CLEAR.FILE CLEAR. LOCKS
coMo COMPILE.DICT
cs DELAY
DELETE.FILE DELETE.LIST
DTX ED

FORMAT GET.LIST
HASH. HELP HASH. HELP. DETAIL
HELP HUSH
LIST.READU LO
MAKE.MAP.FILE MAP

OFF OTD

PASSWD PHANTOM
RECORD RELEASE

RUN ' SAVE.LIST
SLEEP SPOOL

T.ATT T.DET
UNASSIGN USERS

PERFORM processors

CLEARSELECT DEBUG
IAM IF
QUIT REPEAT

INFO/BASIC processors

DATE. FORMAT
RELEASE. ITEMS

MENU.DOC

PRIMOS processors

MAIL PROP

ENTROC
SSELECT
T.FWD
T.WEOF

BLOCK. TERM
CHAP

CLR

COPY
DELETE

DTB
FILE.STAT
GROUP. STAT
HASH. TEST
ISTAT

LOCK
MASTER
P.ATT
PTIME

RESET. PRINTER

SETFILE
STAT
TERM
VCATALOG

DISPLAY
LOGTO
WHO

MENU. PIX

PSPOOL

Examples of Various Types of Processors.

December 2, 1980

PRIME INFORMATION Release 4

Page

PERFORM COMMAND LANGUAGE PDR3906 PRIME INFORMATION

2.3 INFORM System Processors

Some of the verbs defined in a PRIME INFORMATION account's VOC file are

processors which belong to INFORM. Those verbs are documented in THE
INFORM REFERENCE GUIDE, IDR39@5.

Processors which are invoked by PERFORM that belong to the INFORM group
are not documented in this manual. Instead, they are documented in THE
INFORM REFERENCE GUIDE, IDR3995. INFORM processors which belong to
this category are:

COUNT ENTER ENTRO
ENTROC LIST SELECT
SCRT SSELECT SuM
T.BCK * T.DUMP * T.FWD *
T.LOAD * T.READ * T.REW *
T.WECF *

INFORM processors are those which access PRIME INFORMATION files via
the database manager, using file dictionaries and the data files
described by those dictionaries. In general, INFORM processors are
those which accomplish the query and report generation functions of
PRIME INFORMATION systems. INFORM processors are identifiable in the
VOC file by having IN in field three.

Note that several magnetic tape commands are implemented as INFORM
processors (those marked with an asterisk above). The T.DUMP and
T.LOAD processors utilize the full power of INFORM, and thus are
implemented as INFORM processors. The other magnetic tape commands are
documented in this manual, but are actually implemented as part of the
INFORM system.

Page 10 PRIME INFORMATION Release 4 December 2, 1980

(o

PERFORM PDR3906 PERFORM CCQMMAND LANGUAGE

INFORM processors

COUNT ENTER ENTRO
ENTROC LIST SELECT
SORT SSELECT SuM
T.BCK * T.DUMP T.FWD *
T.LOAD T.READ * T.REW *
T.WEOF *

Commands marked with an asterisk (*) are documented in this manual,
even though they are implemented as INFORM processors.

FIGURE 1. Verbs documented in THE INFORM REFERENCE GUIDE, IDR39¢5.

December 2, 1980 PRIME INFORMATION Release 4 Page 11

PERFORM COMMAND LANGUAGE PDR3906 PRIME INFORMATION

2.4 Command Invocation Modes

Most PRIME INFORMATION commands have two primary modes of invocation:
single-line, where all required parameters are entered on the command

line; and prompting, where each omitted parameter is requested by the
command processor.

Most commands that are supplied with the PRIME INFORMATION system are
responsive to two primary modes of invocation. The first mode is
single-line mode, wherein the command and all of its required
parameters are typed on a single line. The other mode ("prompting"
mode) requires only that the command itself be typed; omitted
parameters are requested via prompts from the command processor.

For an experienced user, the single-line mode will probably be
preferred. Since many of the parameters are position-dependent (rather
than being keywords), only an experienced user will be able to use this
form. However, for such a user the system will be more rapidly
accessible, since all the information required by the command is
entered at one time.

"Prompting" mode is the preferred mode for the novice user, or indeed,
for the experienced user with commands that are infrequently used. 1In
this mode, only the command name is required, although one or more
parameters may additionally be supplied. Once the command processor
for that command receives control, it will prompt the user for all
missing parameters. For a person utilizing this mode of command
invocation, the system appears to be tutorial: it is not necessary to
know the order of the parameters required, or even to know which ones
are required; the command processor will name the parameters it needs.

Since commands may be invoked not only by typing them at the terminal
(in response to PERFORM's colon prompt), but also by placing them into
Sentences or Paragraphs, and even by EXECUTE statements within
INFO/BASIC programs, the choice of command invocation mode for these
uses deserves some discussion. While it is possible to invoke these
commands in "prompting" mode, and then to supply parameters via DATA
statements, this is not a very good technique. Among the reasons that
it is not are that:

(1) it requires more time, thereby slowing execution;

(2) it requires more storage space (several 1lines of DATA
statements, instead of a single command line); and

(3) once "prompting" mode is entered, a command processor
assumes real interaction with a person, so that an
unexpected question could be asked for which there is no
pre-stored DATA statement.

Page 12 PRIME INFORMATION Release 4 December 2, 1989

]

Ja

(Y]

PERFORM PDR3906 PERFORM COMMAND LANGUAGE

Therefore, as a general recommendation, you should use the single-line

form of all commands for every invocation of a command not done by a
person at a terminal.

The choice for the person at a terminal is an individual one, related
to the level of experience and comfort with the system. However, in
the absence of any other reason for making a choice, the performance of
the overall system might be better if all users utilized the
single-line mode. A command which required (for example) three
parameters would begin its work after a single transmission from the
terminal in the single-line mode. That first input transmission would
require three additional output transmissions and three additional
input transmissions in "prompting" mode. In a system with active use,
the difference in throughput for all users could become significant.
Note that the throughput would be influenced by more than just the
number and size of the transmitted messages, but additionally by the
"side effects® of potentially being "paged out" while waiting for a
reply, of making other users wait for resources, etc.

:CREATE.FILE OLD.TRANS 3 97 'Backup of TRANS file'

Creating file OLD.TRANS / Type 3 / Modulo 97.

Creating file D OLD.TRANS (DICT) / Type 3 / Modulo 1.

Added "@ID", the default record for INFORM, to DICT D OLD.TRANS.

:CLEAR,.FILE EMPLOYEES
EMPLOYEES has been cleared.

:BASIC BP TEST.PROGRAM

FIGURE 1. Examples of single-line Command Invocation mode.

:CREATE.FILE

File name =0LD. TRANS
File type =3

Modulo =97

File description =Backup of TRANS file

Creating file OLD.TRANS / Type 3 / Modulo 97.

Creating file D OLD.TRANS (DICT) / Type 3 / Modulo 1.

Added "@ID", the default record for INFORM, to DICT D OLD.TRANS.

FIGURE 2. Example of "prompting"” Command Invocation mode.

December 2, 1980 PRIME INFORMATION Release 4 Page 13

- PERFORM COMMAND LANGUAGE PDR3906 PRIME INFORMATION

2.5 Commands Which Use SELECT Lists

Many PRIME INFORMATION commands that work with files or records can be
invoked with an active SELECT list which comprises (as appropriate) a
list of file names or record identifiers. These commands will use the
active SELECT list if they are invoked in this manner.

Many of the PRIME INFORMATION commands which have either files or
records as parameters of the command, will detect the presence of an
active SELECT list (if there is one) and use it. A SELECT 1list is a
list of record identifiers which has been formed by using the SELECT
command (described in THE INFORM REFERENCE GUIDE, IDR39@5), or by using
the GET.LIST or FORM.LIST commands (described in this manual). If the
command being invoked expects as a parameter the name of a file (an
example is the command CLEAR.FILE), you could provide a SELECT list of
VOC file record identifiers that identify file records (records with
"F* in field one). If the command expects as a parameter the name of
one or more records in a file (such as the ED command) , you could
provide a SELECT list of record identifiers which are to be found in
the specified file.

As a general rule for those commands which utilize a SELECT list, if
there is a "file.name" parameter, but no "record.id" parameter, then
- You may provide a SELECT list of file identifier records which are in
your account's VOC file and omit the “"file.name" parameter. If the
command has both a "file.name" and a "record.id" parameter, you may
provide a SELECT 1list of identifiers of records which are in the file
named “"file.name", and you must specify "file.name" on the command line
with the command name (but omit "record.id"). Finally, if there are
parameters which either must, or optionally may, follow either
“file.name" or "record.id", then those parameters (if supplied) will be
used with every component of the active SELECT 1list: an example is
HASH.TEST, where the trial file type and modulus will be used with
every "file.name" in the SELECT 1list. However, these are general
rules, and may not apply in every case. We have tried to make these
commands obey logic and common sense, rather than a rigid rule: some
experimentation with the command may be in order if you are not sure
how a particular command will behave with a SELECT 1list.

.Page 14 PRIME INFORMATION Release 4 December 2, 1980

)«.

(1Y

PERFORM PDR3906 PERFORM COMMAND LANGUAGE

BASIC CLEAR.FILE CopY

DELETE - DELETE.FILE ED

ENTER ENTRO ENTROC

FORMAT GROUP. STAT GROUP.STAT.DETAIL
HASH. HELP HASH.HELP.DETAIL HASH. TEST
HASH.TEST.DETAIL ISTAT LIST

RELEASE SORT SPOOL

T.DUMP

FIGURE 1. PRIME INFORMATION commands which use SELECT lists.

:SELECT SOURCE WITH @ID MATCHING 'PAY...'

4 records selected.

:FORMAT SOURCE

PAYMENTS.MASTER
kekdkdkdhddkdddkddddkhkkiddddikkkhhikk

PAYROLL. LEDGER
Kkkkkhkdkkhhkkhkhkhhkhhkkhkihhhhhkikhkhhhkikikhkkkdkih

PAYBACK.BALANCE
kkkkkkhkkhkhkkkkhhhhkhkkhhhhhkkhrhhhk

PAYROLL. HISTORY
Kk ddkkdkkdkdkddhkhhhkdhkihkihhddkhkiihhhiidhhkkkkhhkkikiikkk

FIGURE 2. Example of a command with a SELECT list.

December 2, 1980 PRIME INFORMATION Release 4

Page

15

PERFORM COMMAND LANGUAGE PDR3906 PRIME INFORMATION

2.6 Use of the BREAK Key

The BREAK key may be used to interrupt an executing process.

A process can be interrupted by pressing the BREAK key. When the BREAK
key is pressed, PERFORM will interrupt the process running and display:

BREAK.

at the user terminal. The user has two options at this time:

l. Enter "G" (for "GO"), to resume the interrupted process
at the point where it was interrupted.

2. Enter "Q" (for "QUIT"), to terminate the process which
was interrupted and return to the PERFORM colon prompt
(:).

NOTE: Carriage return, or <NEW LINE>, is not required after
entering either "G" or "Q".

It is possible for a process to disable the BREAK key, as might be done
to protect against interruption during a "must complete® activity such
as updating several related files. To ensure proper action of the
BREAK key disable/enable commands (which could be issued from several
different subroutines during a process), PERFORM maintains a BREAK key
counter for each user. PERFORM initializes the BREAK key counter to @
when a process begins, and it is only when the BREAK key counter equals
@ that pressing the BREAK key will cause PERFORM to interrupt the
execution of the process. Each time the BREAK key is disabled by the
process, the BREAK key counter is incremented; each time the BREAK key
is enabled by the process, the BREAK key counter is decremented, until
it reaches @ again. (See the BREAK KEY section in THE INFO/BASIC
REFERENCE GUIDE, PDR3983, for further information on disabling/enabling
the BREAK key.) Also note that the BREAK key should be used only when
absolutely necessary, not as a standard operating practice. It is
possible to lose output destined for the terminal by the "BREAK . . .
G" sequence.

If it should become necessary to use the BREAK key to stop a process,
but the BREAK key has been disabled by that process, your System
Administrator has a mechanism for enabling the BREAK key for your task.
See the description of the MASTER command, elsewhere in this manual.

Page 16 PRIME INFORMATION Release 4 December 2, 1980

L]

(Y

PERFORM

:LIST STATES BY NAME

PDR39¢6

LIST STATES BY NAME 11:14:16 05-03-80 PAGE

STATES....

AL
AK

AZ

AR

ca

Co

CT

DE

C

FL

GA

HI

ID

IL
<BREAK>
BREAK.
G

N

IA

KS

KY

LA

ME

LR N

STATE.........O.....

Al abama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
District of Columbia
Florida
Georgia
Hawaii
Idaho
Illinois

Indiana .
Iowa
Kansas
Kentucky
[ouisiana
Maine

CAPITAL...O....

Montgomery
Juneau
Phoenix
Little Rock
Sacramento
Denver
Hartford
Dover
Washington
Tallahassee
Atlanta
Honolulu
Boise
Springfield

Indianapolis
Des Moines
Topeka
Frankfort
Baton Rouge
Augusta

SETTLED

1702
1784
1776
1785
1769
1858
1635
1683

1565
1733

1842
1720

1733
1788
1727
1774
1699
1624

FIGURE 1. Example of use of the BREAK key.

PERFORM COMMAND LANGUAGE

STATEHOOD. .

14 DEC
@3 JAN
14 FEB
15 JuN
@9 SEP
g1 AUG
@9 JAN
@7 DEC

@3 MAR
@2 JAN
21 AUG
#3 JuL
@3 DEC

11 DEC
28 DEC
29 JAN
g1 JUN
30 APR
15 MAR

1819
1959
1912
1836
1850
1876
1788
1787

1845
1788
1959
189¢
1818

1816
1846
1861
1792
1812
1820

December 2, 1980

PRIME INFORMATION Release 4

Page

17

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3 PRIME INFORMATION FILES

3.1 Introduction to PRIME INFORMATION Files

PRIME INFORMATION files are designed for efficient storage and rapid
retrieval of data. Each file in a PRIME INFORMATION system is defined
by its own integral data dictionary, which is available for use by
PERFORM, by the INFORM query and report generation language, by the
commands described later in this manual, and by user-written INFO/BASIC
programs.

PRIME INFORMATION files are collections of records organized as
relationships. Each data file on a PRIME INFORMATION system is defined
and described by its own associated dictionary, so that the dictionary
is an integral part of the file. Every dictionary is defined and
described by a single master dictionary, which is called DICT.DICT.
Therefore, when a dictionary of a file is being modified or listed, it
is treated as a data file defined by its own dictionary (DICT.DICT).

The dictionary of a data file contains several types of records which
are used to describe the data portion of the file; among these are
data descriptors, Information descriptors, and phrases. For a complete
description of data dictionaries, see the section titled "DICTIONARIESY
in THE INFORM REFERENCE GUIDE, IDR3945.

The data portion of a file is organized as a collection of logical
relationships which are user-defined by the creation of the dictionary
items. For example, a file named STATES might have relations such as
NAME, CAPITAL, DATE.SETTLED, STATEHOOD.DATE, HIGHEST.POINT, LAND.AREA,
WATER.AREA, etc. Each of these items is related to every state in the
file, but the value of each relation is different for each state in the
file. In this example, the record identifier for each 1logical
relationship (i.e., for each grouping of the relations named in the
example) would be something which uniquely identifies a particular

state: perhaps the two-character U.S. Post Office abbreviation for
the state.

Each relation in a PRIME INFORMATION file is stored as ‘a
variable-length ASCII string, delimited at least by a field mark, but
possibly including other delimiters such as value marks and sub-value
marks. For example, in a PERSONNFL.MASTER file, one relation might be
an employee's dependents. An employee with no dependents would have a
DEPENDENTS relation which contained simply a field mark (i.e., no

data). An employee with a wife and two children might have a record
such as:

Mary Jones <v> William Randolph (Billy) Jones <v> Karen Jones <f>

Page 18 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION FILES

where <v> is a value mark and <f> is a field mark. Note that with this
variable-length ASCII string storage technique, data storage is
extremely efficient. In particular, note that the actual size of a
data item is the only consideration in how much storage space is
required for it. Most systems would require that the programmer
reserve sufficient space in every record for an average number of
dependents, and that each dependent have reserved for it an average
number of character positions for the name. With PRIME INFORMATION
files, an employee with no dependents requires only a single character
position (a field mark) for the "dependents" relation, while our
example illustrates that a very 1long name "fits" in the relation as
well as a very short name, with no wasted space in either case.

For a further discussion of records stored as ASCII strings separated

by field, value, and sub-value delimiters, see the section titled
"DYNAMIC ARRAYS" in THE INFQ/BASIC REFERENCE GUIDE, PDR3943.

December 2, 1980 PRIME INFORMATION Release 4 Page 19

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.2 Hash-Encoded Addressing

PRIME INFORMATION files are accessed by INFO/DMS by a method known as

hash-encoded addressing, to provide rapid direct access with low time
and storage overhead.

To provide rapid access to the individual relations stored in a PRIME
INFORMATION file, INFO/DMS uses a method known as hash-encoded
addressing. Simply stated, hash-encoded addressing is accomplished by
performing a sequence of operations on the unjique identifier of a
record, in order to transform that unique identifier into a probable
actual location within the file: 1i.e., into a record address. Once
this probable location has been calculated, INFO/DMS can begin the
search for the record at that location, rather than at the beginning of
the file. Hash-encoded addressing provides rapid access by record
identifier to any record in a file, but without the high storage and
time cost of maintaining an index to the file.

While a complete description of hash-encoded addressing is beyond the
scope of this manual (and is completely covered in many texts on
computer science), a brief overview will help in understanding PRIME
INFORMATION file structures. ‘The general objective of hash-encoded
addressing is to reduce the space required to store every conceivable
record identifier down to the space required to store a reasonable
quantity of actual records. For example, a file named STATES, with
record identifiers comprised of two alphabetic characters (the U.S.
Post Office official abbreviations), has a potential number of record
identifiers that is 676; however, there are only 5@ actual states (51,
‘including the District of Columbia). The simplest possible
hash-encoded addressing scheme would allocate 676 locations for the
records in the file, with 625 of these never to be used. The waste of
space, while not severe in this example, would be unaffordable if the
identifier of each record were the name of the state, rather than its
two-letter abbreviation. The name of the state would require a maximum
of 20 characters (for the District of Columbia), and with a
26-character alphabet, this gives a potential number of records in the
millions.

To reduce the mathematically calculated space requirement down to a
logical space requirement, a hash-encoding algorithm is used in
conjunction with a user-specified modulus. The hash-encoding algorithm
typically involves performing some operation on the record identifier,
whose purpose is to reduce the record identifier to a number. This
number, once calculated, is usually divided by the specified modulus of
the file, and the remainder from the division is used to begin the
search for the record.

Page 20 PRIME INFORMATION Release 4 December 2, 1980

e

PERFORM PDR3906 PRIME INFORMATION FILES

In the specific case of PRIME INFORMATION files, there are actually
eight hash-encoded addressing algorithms employed, with the choice of
any particular one effected by specifying one of the file types 2
through 9. (Type 1 files are not hash-encoded, but instead are sub-ufd
type files.) In general, the hash-encoded addressing algorithms
employed have in common that they process each character of the record
identifier one-by-one, accumulating its algorithm-determined value into
a 32-bit word.

Once the 32-bit number has been calculated by the hash-encoded
addressing algorithm, it is divided by the modulus defined for the
file. The remainder from this division is used as a group number, to
identify the 1location of the group of records where the relation
identified by the record identifier will reside. The number of such
groups is actually the modulus of the file; e.g., a file with a
modulus of seven will have all of its records organized into seven

groups.

With a careful choice of file type and modulus, and a logical choice
for record identifier which assures that each record identifier is
sufficiently distinct from each other record identifier, the user has
considerable control over the resulting distribution of records across
the total number of groups. The objective of exercising these choices
is to arrive at as even a distribution of records across all groups as
is possible, while keeping each group size relatively small. When a
file has been created and data placed into it, the GROUP.STAT and
GROUP.STAT.DETAIL commands may be used to analyze this record
distribution. (See the descriptions of these commands elsewhere in
this manual.)

For further details on hash-encoded addressing techniques and
algorithms, there are many excellent books. One particularly
outstanding one is Volume 3, "Sorting and Searching", in Donald E.
Knuth's series "The Art of Computer Programming", published by
Addison-Wesley.

December 2, 1980 PRIME INFORMATION Release 4 Page 21

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.3 PRIME INFORMATION File Groups

Records in PRIME INFORMATION files are stored in physical groups; the
group that a particular record is stored in is determined by
hash-encoding the record identifier (key).

The groups which are used to store logical records of PRIME INFORMATION
files are physical disk records, or strings of physical disk records,
organized as either SAM or DAM sub-files of segmented files (SEGSAM
files or SEGDAM files; see the section titled "large Files" for an
explanation of how the choice is made between SEGSAM and SEGDAM files.)
Each physical disk record contains 208¢ bytes, of which 32 bytes are
used by the system for disk management and data integrity, leaving 2048
bytes available for data storage. This 2048 bytes is further
diminished by INFO/IMS, the data base manager of PRIME INFORMATION.
The exact amount of space required by INFO/DMS to store logical records
in a group is dependent on several factors, such as the size of each
key, the size of the data portion of each record in the group, the
number of logical records in the group, and certain other variables
which are outside the scope of this manual. A formula which is
accurate (but not precise, since it does not account for all possible
variables) is:

key.length + (data.length * 1.11) + 4

where "data.length" and "key.length" are expressed in characters and
are rounded upward to be evenly divisible by two. This formula must be
repeated for each record in a group, and the total must have an
additional twelve characters added to it (for group identifier
overhead) .

When a file is created (using the CREATE.FILE command, described
elsewhere in this manual), the modulus parameter is used to determine
the number of groups that will comprise the file. If the file type and
modulus have been chosen well for the size and type of data to be
stored in the file, then when the file is fully loaded with data, there
will be exactly one disk record for each group of logical records in
the file. If the modulus is too small for the quantity of data, then
each group in the file will be considerably larger than 2048 bytes,
thus requiring that each group be a chain of physical records rather
than a single physical record. The number of physical disk records
which must be read to retrieve a particular logical record is expressed
as the total number of physical disk records which comprise the group,
divided by two, and rounded upward to the nearest whole number. Thus,
a group with only a single physical disk record never requires more
than a single physical disk access to retrieve any logical record of
the group, while groups with three disk records will, on average,
require two disk accesses. Cbviously, the performance of the system
will be less than it could be when accessing such a file.

Page 22 PRIME INFORMATION Release 4 December 2, 1980

[V H

B

1]

(S}

PERFORM PDR3906 PRIME INFORMATION FILES

If the modulus is too large for the quantity of data, then there will
be many groups which are "empty" (i.e., have no logical records in
those groups). Although this is also an undesirable situation, it is
better than having groups that are too large. PRIME INFORMATION files
are allocated as "sparse" files: that is, a group is not created
unless and until there is data to be placed in the group. Therefore, a
file with a 1large number of empty groups will not take extra space to
store, nor extra time to access, because it has empty groups.

‘Nevertheless, the objective is to have the logical records of your

PRIME INFORMATION files as evenly distributed across the groups as is
possible, with none empty, and all approximately the same size.
Several tools are provided with the PRIME INFORMATION system to monitor
logical record distribution within PRIME INFORMATION files (see the
sections on the GROUP.STAT and GROUP.STAT.DETAIL commands in this
manual) , and to reorganize these files when necessary (see the sections
on the RESIZE, HASH.TEST, and HASH.TEST.DETAIL commands in this
manual) .

As a general rule of thumb, a file is well-hashed if each group in the
file is approximately the same size as the others, and if no group in
the file exceeds approximately 190¢ bytes in size. Since poorly-hashed
files are a major causative factor in poor system performance, group

'size and record distribution across groups should be closely examined

if performance begins to deteriorate for no apparent reason.

Note that INFQ/DMS automatically deletes physical disk records within
groups when those records are no longer needed (when logical records
within those groups are deleted, or are diminished in size). However,
once a group is created (by placing a logical record in that group), at
least one physical disk record is retained for that group, even if the
entire group becomes empty. The RESIZE command, described in this
manual, may be used to delete all disk records associated with empty
groups.

December 2, 1980 PRIME INFORMATION Release 4 Page 23

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.4 File Types

The PRIME INFORMATION system provides eight file types, types 2 through
9, each of which is associated with its own hash-encoded addressing
technique. In addition, file type 1 is provided, as a sub-ufd type
file which does not use hash-encoded addressing.

The PRIME INFORMATION system provides eight file types which are used
for hash-encoded direct access, and one file type which is a PRIMOS
sub-ufd file type. The PRIMOS sub-ufd file type is a Type 1 file, and
is used for INFO/BASIC program source and object code, and for files
destined for interchange with PRIMOS-level processors (such as RUNOFF).
File types 2 through 9 are the hash-encoded direct access files, and
are the principal data files used on PRIME INFORMATION systems.

Each of these file types is described in more detail in succeeding
sections of this manual.

Page 24 PRIME INFORMATION Release 4 December 2, 1980

(L]

y

(.

[

PERFORM PDR3906 PRIME INFORMATION FILES

FILE TYPE PRINCIPAL USE

1 INFO/BASIC source code storage
Data interchange (via SAM file) to PRIMOS

2 Data files with record identifiers that are
more unique in right-most characters than
in left-most characters; for general use

3 Data files with record identifiers that
are principally numeric, but with
common separators (such as *, -, or #);
more unique in right-most characters than
in left-most characters.

4 ' Data files with record identifiers that
' are alphabetic (comprised of the
64-character ASCII subset);
more unique in right-most characters than
in left-most characters.

5 Data files with records identifiers that
span the entire ASCII character set;
more unique in right-most characters than
in left-most characters.

6 Data files with record identifiers like
those of Type 2 files, but more unique
in their left-most character positions
than in their right-most characters

7 Data files with record identifiers like
those of Type 3 files, but more unique
in their left-most character positions
than in their right-most characters

8 Data files with record identifiers like
those of Type 4 files, but more unique
in their left-most character positions
than in their right-most characters

9 Data files with record identifiers like
those of Type 5 files, but more unique
in their left-most character positions
than in their right-most characters

FIGURE 1. Summary of the nine PRIME INFORMATION file types.

December 2, 1988 PRIME INFORMATION Release 4 Page 25

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.5 File Type 1 Description

The PRIME INFORMATION Type 1 file is intended for use in storing
INFO/BASIC program source and compiled object code, and for providing a
data interchange path with PRIMOS-level processors such as RUNOFF.

The PRIME INFORMATION Type 1 file is implemented physically as a PRIMOS
sub-ufd. To the PRIME INFORMATION processors, the Type 1 file appears
to be a named file which contains records that have unique record
identifiers. For example, a Type 1 INFO/BASIC source and object code
file named BP might have records (programs) named UPDATE.CUST.MASTER,
ORDER. ENTRY, and INVENTORY.UPDATE. This same Type 1 file can be viewed
by PRIMOS as a sub-ufd to the PRIME INFORMATION account, where the name
of the sub-ufd is BP, and the contents of the sub-ufd are the three
PRIMOS SAM files named UPDATE.CUST.MASTER, ORDER.ENTRY, and
INVENTORY. UPDATE.

INFO/BASIC source and object code (and any files to be $INSERTed during
compilation) must be stored in Type 1 files; file Types 2 through 9
are not usable for this purpose. MNote that since both PRIME
INFORMATION and PRIMOS recognize Type 1 files (although they each have
a different "view" of these files as described above), data stored in
Type 1 files is available to processors at both levels. In the
particular case of INFO/BASIC source code, both the PRIME INFORMATION
EDITOR and the PRIMOS EDITOR can operate on the source code.
Additionally, the BASIC compiler can compile these programs either from
the PRIME INFORMATION level, or from the PRIMOS level.

There are other processors which have an equivalent in both
environments, and which may utilize the dual-environment character of
Type 1 files to advantage. In particular, Prime's text processing
system (RUNOFF) can be used to advantage by creating the source files
within the PRIME INFORMATION environment (as records in a Type 1 file),
then invoking RUNOFF in the PRIMOS environment.

It may be desirable to provide a data transfer mechanism from the data
stored in PRIME INFORMATION hash-encoded direct access files, to other
language processors which run only in the PRIMOS environment. For
example, it would be possible to write a simple INFO/BASIC program
which reads a direct access (Type 2 through 9) file, formats it into
fixed-length fields padded with trailing spaces or leading zeroes as
appropriate, and writes records into a Type 1 (sub-ufd) file. Each
"record" written by the INFQ/BASIC program becomes a SAM file, which
PRIMOS-level programs written in (for example) COBOL or FORTRAN can
process. The inverse operation is also possible, of course: a COBOL
or FORTRAN program could create a SAM file in a PRIME INFORMATION
account's sub-ufd (where that sub-ufd was created by the PRIME
INFORMATION account as a Type 1 file), and an INFO/BASIC program could
transfer that data into the direct access data file Types 2 through 9.

Page 26 PRIME INFORMATION Release 4 December 2, 1980

te

"

(14

‘PERFORM PDR3906 PRIME INFORMATION FILES

Note that when a Type 1 file is created, the modulo parameter required
for Types 2 through 9 is not used. This is because a Type 1 file is
not a hash-encoded direct access type file, but a sub-ufd; the modulo
parameter is used only for the hash-coding function, which is not used
for Type 1 files.

For additional documentation on PRIMOS sub-ufd's and SAM files, see the

section titled "File Management System Concepts" in the PRIMOS
Subroutines Reference Guide, PDR3621l.

December 2, 1980 PRIME INFORMATION Release 4 Page 27

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.6 File Type 2 Description

The PRIME INFORMATION Type 2 file is a hash-encoded direct access data
file that uses a general-purpose hash-encoding algorithm.

The PRIME INFORMATION Type 2 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is a
general-purpose algorithm, suitable for most data files whose record
identifiers are relatively unique in the right-most portion of each
identifier.

In a Type 2 file, each record identifier is treated as if it were a
numeric identifier, even though it may contain non-numeric characters.
This file type is ideal for records whose record identifiers are
sequential numbers, because of the assumption of a numeric identifier
and because only the right-most eight characters of the record
identifier are used in the hash-encoding algorithm (since the
right-most eight characters of the number are the most unique portion
of each sequential number).

To prepare the record identifier for division by the modulo selected
for the file, the hash-encoding algorithm begins by extracting from the
record identifier the right-most eight characters (or the entire record
identifier is used, if it is less than eight characters long). Next, a
32-bit accumulator is initialized to =zero, so that successive
characters of the record identifier may be added to it.

Each character of the extracted (up to eight-character) record
identifier is treated individually by the hash-encoding algorithm. The
assumption that the record identifier 1is numeric 1is enforced by
truncating the left-most four bits of each character, and using only
the right-most four bits in the algorithm. These low-order four bits
can only have a value between zero and fifteen, regardless of the ASCII
value of the character.

Proceeding character-by-character from the 1left-most (high-order)
position of the extracted record identifier, the algorithm operates as
follows:

1. Multiply the current value of the accumulator by 10.
(This provides proper scaling for a decimal value added
digit by digit.)

2. Add the next character's low-order four bits to the
accumulator.

Page 28 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION FILES

3. Repeat steps 1 and 2 for each character in the extracted
record identifier, to a maximum of eight characters.

The net result of this algorithm is readily understood with an example.
If a record identifier with a length of nine characters, and an ASCII
value of "123456789" is processed by this algorithm, the extracted
record identifier would be the right-most eight characters, in this
case "23456789". PRIME's ASCII representation of the digits @ through
9 is the octal values from 260 through 271. The low-order (right-most)
four bits of these octal values is the binary equivalent of @ through
9. As each of these digits is added to the accumulator, with scaling
by 10 for each addition, the end result in the accumulator is the
binary equivalent of the extracted record identifier: "23456789".

The Type 2 file, because of its general-purpose hash-encoding
algorithm, can be used successfully in most cases. However, note that
its operation provides even distribution of the records only when they
are relatively unique in their right-most eight character positions.
For files whose record identifiers are non-unique in their right-most
eight character positions, but are relatively unique in their left-most
eight character positions, there is a "left-weighted" equivalent of
this file type in the Type 6 file, described elsewhere in this manual.
For other cases, see the descriptions of the other six direct access
file types in this manual.

December 2, 1980 PRIME INFORMATION Release 4 Page 29

PRIME INFORMATION FILES PDR39¢6 PRIME INFORMATION

3.7 File Type 3 Description

The PRIME INFORMATION Type 3 file is a hash-encoded direct access data
file which employs a hash-encoding algorithm similar to the one used
for Type 2 files, but which results in better distribution of records
that have certain recurring characters within their record identifiers.

The PRIME INFORMATION Type 3 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
similar to the algorithm used for Type 2 files. However, Type 3 files
are particularly useful where the record identifiers are comprised of
data that is principally numeric, but with common separators between
logical components of that data.

As an example, a file whose record identifiers are Social Security
numbers has a record identifier for each record which looks like this:

nnn-nn-nnnn

where each "n" is a numeric digit. With a Type 2 file, the right-most
eight characters of this eleven-character record identifier would be
used in the hash-encoding algorithm. In this example, every record
identifier would have two "-" characters involved equally in the
hash-encoding algorithm, even though these are insignificant characters
in terms of the data (they are merely separator characters). ‘The
following description of the hash-encoding algorithm used for Type 3
files will illustrate the usefulness of this file type for record
identifiers such as this.

The Type 3 file hash-encoding algorithm functions identically to the
Type 2 hash-encoding algorithm, with the following exception: instead
of extracting the right-most eight characters of the record identifier
for use in the algorithm, the right-most eight numeric characters are
used. If a character is encountered in the right-most eight characters
of the record identifier, whose right-most four bits are not one of the
digits @ through 9, it is passed over for the next character in the
record identifier. ‘This process 1is continued until there are eight
numeric digits in the extracted record identifier, or until there are
no more characters in the original record identifier, whichever comes
first. ~

~ Page 30 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION FILES

The net effect of using only the truly numeric characters from the
record identifier is that common separator characters used in otherwise
numeric identifiers are "thrown away", and do not create a bias in the

distribution of the records within their groups. Since many
applications have record identifiers which are principally numeric, but
contain separators such as ©*",6 w.n uw/n wow otc., using a Type 3

file for these applications results in a more uniform distribution of
records than would the Type 2 file.

As in the case of the Type 2 file, the Type 3 file has its 1logical
inverse: for record identifiers which are more unique in their first
eight characters than in their last eight characters, the Type 7 file
should be used.

Note that use of the Type 3 file for record identifiers which contain
no numeric characters whatsoever, will result in placing most records
of the file into a single group. While a Type 2 file merely treats
every character of the record identifier as if it were numeric, the
Type 3 file requires that at least some characters in the right-most
eight characters of every record identifier be numeric. If this
requirement is not met, the distribution of records into the groups of
the file will be very poor, and will adversely affect the performance
of the system.

Note also that, for the sake of efficiency, the test for whether a
character is or is not numeric is based solely on its right-most four
bits. That is, if the right-most four bits of a character are in the
range of @ through 9, that character is treated as if it were numeric
(for purposes of hash-encoding), even though many characters of the
ASCII character set that are not numeric will satisfy this test.

December 2, 1980 PRIME INFORMATION Release 4 Page 31

PRIME INFORMATION FILES PDR3966 PRIME INFORMATION

3.8 File Type 4 Description

e

The PRIME INFORMATION Type 4 file is a hash-encoded direct access data
file which uses a hash-encoding algorithm weighted toward alphabetic
record identifiers.

The PRIME INFORMATION Type 4 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
weighted toward record identifiers comprised of alphabetic characters,
and is therefore the preferred file type for records with this type of
record identifier.

To prepare the record identifier for division by the modulo selected
for the file, the hash-encoding algorithm begins by extracting from the
record identifier the right-most five characters (or the entire record
identifier is used, if it is less than five characters long). Next, a
32-bit accumulator is initialized to =zero, so that successive
characters of the record identifier may be added to it.

Each character of the extracted (up to five—character) record
identifier is treated individually by the hash-encoding algorithm. The
assumption that the record identifier is alphabetic is enforced by
truncating the left-most two bits of each character, and using only the
right-most six bits in the algorithm. These low-order six bits can
have a value between zero and sixty-three, a range which corresponds
directly to the 64-character ASCII printable character set.

Proceeding character-by-character from the left-most (high-order)
position of the extracted record identifier, the algorithm operates as
follows:

1. Multiply the current value of the accumulator by 64.
(This provides proper scaling for an alphabetic value
added character by character.)

2. Add the next character's 1low-order six bits to the
accumulator.

3. Repeat steps 1 and 2 for each character in the extracted
record identifier, to a maximum of five characters.

Page 32 * PRIME INFORMATION Release 4 ‘December 2, 1980

PERFORM PDR3906 PRIME INFORMATION FILES

The Type 4 file, because of its alphabetic-weighted hash-encoding
algorithm, can be used successfully for most files with alphabetic
record identifiers. However, note that its operation provides even
distribution of the records only when they are relatively unique in
their right-most five character positions. For files whose record
identifiers are non-unique in their right-most five character
positions, but are relatively unique in their left-most five character
positions, there 1is a "left-weighted" equivalent of this file type in
the Type 8 file, described elsewhere in this manual. For other cases,
see the descriptions of the other six direct access file types in this .
manual,

December 2, 1980 PRIME INFORMATION Release 4 Page 33

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.9 File Type 5 Description

The PRIME INFORMATION Type 5 file is a hash-encoded direct access data
file which employs a hash-encoding algorithm that is unweighted by
character type. It assumes equal probability for all ASCII character

types as meaningful characters in each character position of the record
identifier.

The PRIME INFORMATION Type 5 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
not weighted toward either numeric or alphabetic record identifiers;
it gives equal weight to any ASCII character which appears in the
record identifier. This algorithm is useful for files whose record
identifiers may contain any character from the 64-character printing
ASCII set.

To prepare the record identifier for division by the modulo selected
for the file, the hash-encoding algorithm begins by extracting from the
record identifier the right-most four characters (or the entire record
identifier is used, if it is less than four characters long). Next, a
32-bit accumulator is initialized to 2zero, so that successive
characters of the record identifier may be added to it.

Each character .of the extracted (up to four—character) record
identifier is treated individually by the hash-encoding algorithm.
Since each character in the record identifier is equally weighted with
" each other character, no bits are extracted from the character: the
entire eight bits are used.

Proceeding character-by-character from the left-most (high-order)
position of the extracted record identifier, the algorithm operates as
follows:

1. Shift the current contents of the accumulator to the
left by eight bits (to make room for the next eight-bit
character).

2. Move the next character's full eight bits to the
accumulator's right-most eight bits.

3. Repeat steps 1 and 2 for each character in the extracted
record identifier, to a maximum of four characters.

Page 34 PRIME INFORMATION Release 4 December 2, 1980

‘PERFORM PDR3906 PRIME INFORMATION FILES

The Type 5 file, because of its unweighted hash-encoding algorithm, can
be used successfully for almost any record identifiers. However, note
that its operation provides even distribution of the records only when
they are relatively unique in ‘their right-most four character
positions. For files whose record identifiers are non-unique in their
right-most four character positions, but are relatively unique in their
left-most four character positions, there is a "left-weighted"
equivalent of this file type in the Type 9 file, described elsewhere in
this manual. For other cases, see the descriptions of the other six
direct access file types in this manual.

December 2, 1980 PRIME INFORMATION Release 4 Page 35

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.10 File Type 6 Description

The PRIME INFORMATION Type 6 file is a hash-encoded direct access data
file which employs a hash-encoding algorithm identical to the one used
for Type 2 files, but using the left-most eight characters of the
record identifier instead of the right-most eight characters.

The PRIME INFORMATION Type 6 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
the complement of the algorithm employed with Type 2 files, in that the
left-most eight characters of each record identifier are extracted for
use in the algorithm instead of the right-most eight characters.

Thus, Type 6 files should be employed where the record identifiers are
more unique in their high-order (left-most) character positions than in
their low-order (right-most) .positions. With this exception, the
detailed description of the Type 2 file hash-encoding algorithm applies
equally to the Type 6 algorithm, and is therefore not repeated here.

Page 36 PRIME INFORMATICON Release 4 December 2, 1980

PERFORM"

It

N

sir

December 2, 1980

PDR3906 PRIME INFORMATION, FILES

PRIME INFORMATION Release 4

Page

37

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.11 File Type 7 Description

The PRIME INFORMATION Type 7 file is a hash-encoded direct access data
file which employs a hash-encoding algorithm identical to the one used
for Type 3 files, but using the left-most eight characters of the
record identifier instead of the right-most eight characters.

The PRIME INFORMATION Type 7 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
the complement of the algorithm employed with Type 3 files, in that the
left-most eight characters of each record identifier are extracted for
use in the algorithm instead of the right-most eight characters.

Thus, Type 7 files should be employed where the record identifiers are
more unique in their high-order (left-most) character positions than in
their low-order (right-most) positions. With this exception, the
detailed description of the Type 3 file hash-encoding algorithm applies
equally to the Type 7 algorithm, and is therefore not repeated here.

Page 38 PRIME INFORMATION Release 4 December 2, 1980

[

. V(.

T

|

PERFORM:

December 2, 1980

PDR3996 ~ DRIME INFORMATION FILES

PRIME INFORMATION Release 4 Page 39

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.12 File Type 8 Description

The PRIME INFORMATION Type 8 file is a hash-encoded direct access data
file which employs a hash-encoding algorithm identical to the one used
for Type 4 files, but using the left-most five characters of the record
identifier instead of the right-most five characters.

The PRIME INFORMATION Type 8 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
the complement of the algorithm employed with Type 4 files, in that the
left-most five characters of each record identifier are extracted for
use in the algorithm instead of the right-most five characters.

Thus, Type 8 files should be employed where the record identifiers are
more unique in their high-order (left-most) character positions than in
their low-order (right-most) positions. With this exception, the
detailed description of the Type 4 file hash-encoding algorithm applies
equally to the Type 8 algorithm, and is therefore not repeated here.

Page 40 PRIME INFORMATION Release 4 December 2, 1980

n

it

PERFORM

December 2, 1980

PDR3906

PRIME INFORMATION Release 4

PRIME INFORMATION FILES

Page 41

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.13 File Type 9 Description

The PRIME INFORMATION Type 9 file is a hash-encoded direct access data
file which employs a hash-encoding algorithm identical to the one used
for Type 5 files, but using the left-most four characters of the record
identifier instead of the right-most four characters.

The PRIME INFORMATION Type 9 file is one of the eight data file types
which provide hash-encoded direct access to each record in the file.
The hash-encoding algorithm employed to provide this direct access is
the complement of the algorithm employed with Type 5 files, in that the
left-most four characters of each record identifier are extracted for
use in the algorithm instead of the right-most four characters.

Thus, Type 9 files should be employed where the record identifiers are
more unique in their high-order (left-most) character positions than in
their low-order (right-most) positions. With this exception, the
detailed description of the Type 5 file hash-encoding algorithm applies
equally to the Type 9 algorithm, and is therefore not repeated here.

page 42 PRIME INFORMATION Release 4 December 2, 1980

PERFCRM

December 2, 1980

PDR3906

PRIME INFORMATION FILES

PRIME INFORMATION Release 4 Page 43

PRIME INFORMATION FILES PDR3906 PRIME INFORMATION

3.14 Large Files

Unusually large files on the PRIME INFORMATION system are optimized for
efficient access automatically when the file is created. The signal to

CREATE.FILE that this optimization should take place is the selection
of a file modulo that is 2000 or larger.

Any of the hash-coded direct access files (types 2 through 9, which
require the specification of a modulus at the time the file is created)
can be optimized for the efficient storage and rapid retrieval of a
very large quantity of records. ‘This is done by CREATE.FILE
automatically, by the choice of the physical file type used to
implement the file. CREATE.FILE normally uses the PRIMOS Segmented
Sequential Access Method (SEGSAM) file type to implement hash-encoded
direct access files. However, when the file is created with a modulus
of 2008 or greater, CREATE.FILE uses the PRIMOS Segmented Direct Access
Method (SEGDAM) file type to implement the file.

Regardless of which physical file type is used by CREATE.FILE to
implement the hash-encoded direct access file, all file access by
user-written INFO/BASIC programs is the same for all of these file
types, and all of the PRIME INFORMATION processors function identically
regardless of physical file type. However, for very large quantities
of records, the SEGDAM type physical file is more efficient than the
SEGSAM file type, so INFO/DMS chooses the SEGDAM type when the chosen
modulus (2000 or greater) indicates that the number of records to be
stored in the file is large. The converse is also true: for files of
average size, SEGSAM physical files are more efficient than SEGDAM file
types, so CREATE.FILE uses the SEGSAM file structure to implement
hash-encoded direct access files for most files created on the system.

It should be noted that physical file type (SEGSAM or SEGDAM) is
determined only at the time the file is created. Specifically, when a
file is created with a modulus of (for example) 379, the SEGSAM file
type is chosen. If this file is reorganized with the RESIZE command
(described elsewhere in this manual) using a new modulus which is
greater than 2000, the physical file type remains SEGSAM; RESIZE does
not change physical file type.

For additional information on SEGSAM and SEGDAM file types, see the

section titled "File Management System Concepts"” in the PRIMOS
SUBROUTINES REFERENCE GUIDE, PDR362l.

Page 44 PRIME INFORMATION Release 4 December 2, 1980

'PERFORM

December 2, 1988

PDR3906

PRIME INFORMATION Release 4

VOCABULARY FILE

Page 45

VOCABULARY FILE PDR3906 PRIME INFORMATION

4 THE VOCABULARY FILE

4.1 The User Vocabulary File

Each PRIME INFORMATION account has a unique vocabulary that can be
tailored to the user's needs. This unique vocabulary is stored in the
VOC file of the user's account.

A user's vocabulary consists of defining records for verbs, file names,
keywords, menus, stored sentences, and paragraphs. This vocabulary is
unique to each PRIME INFORMATION account, thus allowing vocabularies to
be tailored to each user's or each application's needs. The provision
for a private vocabulary for each account on the system allows control
over the capabilities of each PRIME INFORMATION account, by adding or
removing vocabulary definitions of items such as verbs and keywords.

Each PRIME INFORMATION account's vocabulary is stored in a file within
that account; the name of this file is VOC. The VOC file is created
automatically as part of the process which creates PRIME INFORMATION
accounts. The portion of that process which creates the VOC file is
accomplished by copying all of the records of the file named NEWACC (in
the master PRIME INFORMATION account named ISYS) to the VOC file of the
account being created. A standard NEWACC file is supplied with the
system. The installation administrator can add or delete items in
NEWACC to fit the installation's particular needs, so that the creation
of a new PRIME INFORMATION account on the system results in a standard
VOC file. After this standard VOC file has been created in the new
user's account, the system administrator can modify it by either adding
or deleting entries, as desired.

A second file is also established in each user account, named VOCLIB.
It is recommended that 1long paragraphs be stored in this file, using
remote records. Using the VOCLIB in this manner keeps the size of the
VOC file smaller, and allows more rapid access to the items in the vOC
file. (See the section on REMOTE DEFINITION in this manual.)

Page 46 PRIME INFORMATION Release 4 December 2, 1980

L

(Y

PERFORM

December 2, 198¢ .

PDR3906

PRIME. INFORMATION Release 4

VOCABULARY FILE

Page 47

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.2 VOC File Record Types

A PRIME INFORMATION account's vocabulary is defined in its VOC file.
Each record in the VOC file has a type code in field one, which is used
by PERFORM to identify the type of the item defined by the record.

The VOC file contains records defining verbs, stored sentences, menus,
paragraphs, phrases, files, keywords, and remote file references. Each
record contains a type .code in field one, which defines to PERFORM

which of several types the particular record is. The type codes
recognized by PERFORM are:

\' Verbs

S Stored Sentences

M Menu Pointers

PA Paragraphs

PH Phrases

F File Pointers

K Keywords

I Information Descriptors
R Remote items

X User-defined (ignored by

PRIME INFORMATION software)

A reserved type code of X is provided for users who may wish to store
something in the VOC file which does not belong to any of the
categories listed above. Note that this practice is not recommended,
but is allowed. (See the section titled "USER Record Definition" in
this manual.)

Each of these VOC file record types is described in more detail in the
following sections of this manual, except that type code "I" (for
Information Descriptors) is described in THE INFORM REFERENCE GUIDE,
IDR3905.

Page 48 PRIME INFCRMATION Release 4 December 2, 1980

PERFORM

PH

PDR3906

Verbs

Stored Sentences

Menu Pointers
Paragraphs

Phrases

File Pointers

Keywords

Information Descriptors
Remote items

User-defined (ignored by
PRIME INFORMATION software)

FIGURE 1. Type Codes in the VOC File.

VOCABULARY FILE

(

O

December 2, 1980

PRIME INFORMATION Release 4

Page 49

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.3 SENTENCE Definition Record

Stored sentences are VOC file records which contain sentences that may
be executed by typing a single word name.

A sentence that is expected to be used more than once may be stored in
the VOC file with a single word name as its key. Once stored, the
sentence may be executed again by simply typing the name of the
sentence at the PERFORM colon prompt (:), or by invoking the sentence
by its name from within a paragraph. (See the section titled
"PARAGRAPH Definition Record" in this manual.) Stored sentence records
in the vocabulary file contain an "S" as the first character in field
one, with an optional description of the purpose of the sentence in the
remainder of field one. Field two 1is the sentence that will be
executed when the name of the sentence is encountered by PERFORM.

When the first word in a command is the name (record identifier) of a
stored sentence, the list of words in field two of the record replaces
the first word in the command. The command in its new form is then
re-analyzed by PERFORM. Note that all other words in the original
command are left unchanged. Thus it is possible to append words to a
stored sentence and have PERFORM treat it as if the entire stored
sentence and the appended words were all typed at the colon prompt.

Stored sentences are useful for situations where a sentence is long and
complex and is going to be used more than once, or where any sentence
is going to be used frequently and it is desired to reduce the amount
of typing or the possibility of typing errors. One example of this
would be an INFORM report-generating sentence that is to be produced
periodically, and the INFORM sentence is complex or very long. ‘This
sentence could be stored in the vocabulary file, allowing that report
to be referred to and generated by a single word name.

If the sentence is too long to fit on a single line, it may be
continued onto successive 1lines by typing an underscore character ()
at the end of each line except the last line of the sentence. (The
underscore character may be a back-arrow character on some terminals.)

See the section titled "PERFORM SENTENCE STACK" in this manual for a

convenient way to create stored sentences using the ".S" command, or to
modify them using the ".R name" command.

The stored sentence LISTS displays all stored sentence definition
records in the VOC file.

Page 50 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

id: name of stored sentence

@01: S {description}
@02: the text of the stored sentence

FIGURE 1. Format of the Stored SENTENCE Record.

Given the VOC file record:
id: REPORT.3

#01: S WEEKLY REPORT FOR INVENTORY REORDERING
002: LIST INV WITH QOH < 20 DESC QOH COST

the command:

:REPORT. 3 LPTR

is the same as the command:

:LIST INV WITH QOH < 20 DESC QOH COST LPTR

FIGURE 2. Example of a Stored Sentence.

December 2, 1980 PRIME INFORMATION Release 4 Page 51

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.4 PARAGRAPH Definition Record

A series of PERFORM sentences to be executed in sequence may be stored
in the VOC file as a named paragraph, for subsequent execution by use
of a single word command.

Paragraphs are a series of PERFORM sentences kept in a single record in
the VOC file, for subsequent execution by simply typing the name of the
paragraph. The first two characters of field one of the paragraph
record must be the letters "PA", to identify this as a paragraph
record; a description of the paragraph may optionally be included in
field one. Each of the remaining fields contains a PERFORM sentence,
using the same format as would be used at the terminal keyboard. (See
the section titled "SENTENCE Definition Record" in this manual.)

Sentences in a paragraph are executed in sequence. Each sentence is
analyzed by PERFORM just as if it had been entered at the terminal
keyboard. Therefore, commands in. the paragraph may be complete
sentences, or they may be names of stored sentences, names of
paragraphs, names of menus, etc.

When the paragraph has been completed (i.e., when there are no more
commands to be executed), control returns to PERFORM's colon prompt or,
if the paragraph was initiated from a menu or paragraph, to that menu

or paragraph.

If the sentence is too long to fit on a single line, it may be
continued onto successive lines by typing an underscore character ()
at the end of each line except the last line of the sentence. (The
underscore character may be a back-arrow character on some terminals.)

The stored sentence LISTPA displays all paragraph definition records
stored in the VOC file.

A note of warning: it is possible, either deliberately or
inadvertently, to create a paragraph vhich invokes itself. 1If this
happens, the paragraph will never complete, and the task will have to
be aborted (with the BREAK key, described elsewhere in this manual).
This inadvertent recursion is most likely to happen when a paragraph
invokes another paragraph, which invokes another, etc., until one of
the paragraphs in the recursion string invokes a paragraph which has
been invoked earlier.

Page 52 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

id: name of the paragraph
991: PA {deséription}
002: first sentence

903: next sentence
P24: next sentence

nnn: last sentence

FIGURE 1. Format of the PARAGRAPH Record.

id: INVENTORY.RUN.1

@#0l: PA NIGHTLY INVENTORY AUDIT

@02: LIST INVENTORY.FILE LPTR

P@3: SELECT INVENTORY.FILE BY CUST.NUMBER
0d4: RUN BP INVB237A

905: LIST ERROR.FILE LPTR

FIGURE 2. Example of a Paragraph.

December 2, 1980 PRIME INFORMATION Release 4 Page 53

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.5 PHRASE Definition Record

A PHRASE is a fragment of an INFORM sentence which is stored as a
record in the VOC file or in a data file dictionary. A phrase may be

included in any sentence by typing the name of the phrase into the
sentence.)

A PHRASE is an incomplete fragment of a sentence, stored as a record in

the VOC file or in a data file dictionary. The record identifier of a

phrase is the name of the phrase, chosen by the person who created it.

A PHRASE cannot contain a VERB name; since a SENTENCE must begin with

a VERB, a phrase can never be a complete sentence. (See the section
titled “SENTENCE Definition Record” in this manual.)

A phrase can be included in a sentence at any point after the VERB
name, by simply putting the name of the phrase into the sentence at the
appropriate point. PERFORM will find the named phrase record either in
the dictionary of the file named in the sentence, or in the VOC file.
Once found, the actual phrase is extracted from the record and inserted
into the sentence in place of the phrase name, as if the phrase itself
had been typed into the sentence.

A phrase record in the VOC file or in a data file dictionary must
contain the letters PH as the first two characters in field one, to
identify the record as a stored phrase. 2An optional description may
also be included in field one, after the PH. Field two contains the
list of words that constitute the phrase that will replace the name of
the phrase in the INFORM sentence.

Phrases may be kept in the VOC file, or in the dictionary of the file
named in the sentence. When PERFORM encounters the name of a phrase in
a sentence, it will search the named file dictionary for the phrase
before it searches the VOC file. Therefore, if a phrase is stored in a
data file dictionary and in the VOC file with an identical name in both
locations, the phrase from the data file dictionary is the one that is
used by PERFORM to complete the sentence.

The stored sentence LISTPH displays all phrase definition records
stored in the VOC file.

Page 54 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

id: phrase.name
@01: PH {description}

P02: list of words that replace "phrase.name"
in the INFORM sentence

FIGURE 1. Format of PHRASE Records.

Given a phrase record of:
id: BACK.ORDERS

981: PH
#02: WITH BO.QTY > @ CUST BO.QTY SH.DATE

then the command:

:LIST ORDER.FILE BACK.ORDERS LPTR

is the same as entering the command:

:LIST ORDER.FILE WITH BO.QTY > # CUST BO.QTY SH.DATE LPTR

FIGURE 2. Example of the use of a Phrase.

December 2, 1980 PRIME INFORMATION Release 4 Page 55

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.6 MENU Pointer Record

A MENU is a list of processes from which a selection may be made for
execution by PERFORM. A MENU is defined by a record kept in a MENU

file, and it is invoked by specifying the name of a MENU pointer record
that is kept in the VOC file.

A MENU is a list of processes from which a selection may be made for
execution. Each selection is identified by a brief description of an
operation, chosen by the person who created the MENU. Associated with
each description is a selection number, which was assigned by the MENU
processor when the MENU was invoked. When a selection of one of the
described processes is made (by typing its associated number in
response to a prompt from the MENU processor), a sequence of PERFORM
commands that was defined by the creator of the MENU and associated
with the selected process description, is executed. After completion
of a selected process, the MENU's selections are again displayed so
that another selection may be made.

This sequence of events (displaying a narrative description of
potential operations, selecting and executing a particular operation,
then displaying potential operations again) is repeated until no choice
is made (usually signified by <NEW LINE> without any selection number
for most MENUs; see the description of MENU "exit" and "stop", in the
section titled "MENU Definition Records" in this manual, for other
means of exiting a MENU.) Upon exit from a MENU, control is returned
to the entity that invoked the MENU, which could be PERFORM (signified
by a colon prompt after exiting the MENU), or could be another MENU
(signified by a re-display of the choices of the invoking MENU), or
could be a PARAGRAPH or program, etc.

The MENU pointer record in the VOC file contains an "M" in field one to
identify it as a MENU pointer record; a "comment" describing the MENU
may optionally follow the "M". Field two contains the name of the file
where the MENU is stored, and field three contains the record
identifier (the name) of the actual MENU definition record; this MENU
definition record is described in the section of this manual titled
“"MENU Definition Record". '

A MENU maintenance processor which allows the user to create or modify
a MENU, 1list the contents of a particular MENU, list all MENUs stored
in a particular MENU file, or perform other MENU-related functions, is
provided with the system. This processor, itself MENU-driven, is
invoked by entering the command "MENUS" in response to the colon prompt
from PERFORM. This MENU maintenance processor is described in more
detail in the section of this manual titled "MENUS: A MENU Maintenance
Processor". o

Page 56 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

Menu Pointer in VOC file
id: MENU name

P01: M {description}

P02: file.name of file where the MENU record
is to be found

P03: id of record in file (named in field two
above) that is the actual MENU record

FIGURE 1. Format of the MENU pointer record in the VOC file.

December 2, 1989 PRIME INFORMATION Release 4 Page 57

VOCABULARY FILE PDR3906 PRIME INFORMATION

4,6.1 MENU Definition Records

A MENU definition record in a MENU file defines the screen format of a
MENU and the processes that are to be executed when a selection is made
from that MENU. Titles and alternate query prompts, exit commands, and
stop commands are also defined in a record in a MENU file.

A MENU definition record in a MENU file defines the screen format of a
MENU and the processes that are to be executed when a selection is made
from that MENU. This MENU definition record can be built using the
system-supplied PRIME INFORMATION MENU maintenance processor "MENUS",
described in the section of this manual titled “MENUS: A MENU
Maintenance Processor". Once a MENU definition record has been put
into a MENU file, a MENU pointer record must be put into the VOC file
in order to invoke that MENU (see the section titled “MENU PRointer
Record”" elsewhere in this manual).

The actual MENU definition record contains seven fields, and this
record is stored either in a user—created MENU file which is available
for use only within that account (the usual case), or in the system
MENU file named “ISYS.MENU.FILE", which is available to all users on
the system. Field one of this record is used to store the (optional)
title of the MENU, and is a singled-valued field which may contain a
text string of from 1 to 55 characters. If a text string is present in
field one, then that text is used as the MENU title, and is displayed,
with the current system time and date, on the first line of the MENU
display screen. (The procedure for positioning a title elsewhere on
the screen and/or to override the display of the system time and date
with the title is described later in this section.) The title will be
centered by PERFCRM when the MENU is displayed, according to the number
of characters in the text string; a title that is greater than 55
characters long will be truncated at the 55th character.

Field two is a multi-valued field, with each value being a description
of a process which may be selected when the MENU is displayed.
Selection numbers (consecutive integers starting with one for the first
process) are assigned to each process description when the MENU is
displayed. Each process description, preceded by its assigned
selection number, is displayed on successive lines of the user's
terminal, beginning on 1line 3, and always beginning in position 1 of
each line. When the MENU is created, it may optionally be created as a
formatted MENU, which allows the MENU's creator to specify where each
selection should be displayed on the terminal's screen. ‘'This is
accomplished by entering the description text in the following format:

(COL,ROW)description.text
where COL and RON are the column and row at which the

“"description.text" will be displayed on the screen. The
"description.text" must be entered in the exact format as shown, for

Page 58 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

the cursor-positioning function of a formatted MENU to work properly.

Field three is multi-valued, and is associated value-by-value with the
values in field two; it is a list of PERFORM commands that will be
executed if the corresponding process description is selected. For
example, if process number four is selected (the fourth value of field
two) , then command number four is executed (the fourth value of field
three). There are four types of commands that are acceptable in this
"action" field. The four command types are:

(1) A sentence which begins with a Verb;
(2) The name of a stored Sentence;

(3) The name of a Paragraph; or

(4) The name of a MENU Pointer.

These four command types are each described in detail elsewhere in this
manual. If the action is a valid PERFORM sentence, then this sentence
will be executed; after it has been completed, the MENU will be
re-displayed, and the user will be given another opportunity to make a
selection. If the action is the name of a stored Sentence, then the
sentence defined by this name will be executed; after it has been
completed, the MENU will be re-displayed, and the user will be given
another opportunity to make a selection. If the action to be executed
is the name of a Paragraph, then all commands in that Paragraph will be
executed; after it has been completed, the MENU will be re-displayed,
and the user will be given another opportunity to make a selection. If
the action to be executed is the name of a MENU pointer, then control
will be passed to the MENU referenced and the user will be prompted to
make a selection from the new MENU. When the user no longer desires to
execute any commands in the new MENU, this can be signified by pressing
<NEW LINE> without having typed a selection number (or, for some MENUs,
by typing one of the defined "exit" or "stop" commands; “exit" and
"stop"” commands will be discussed later in this section).

If one of the action values of field three is 1left null, then the
corresponding description value in field two will be treated as an
alternate title. This means that the text string specified as a
description in field two will be displayed on the screen at the defined
cursor position. This description value will not be assigned a
selection number, and thus can be used as a sub-title. This feature
enables the MENU creator to define multiple titles and to have them
displayed at any position on the screen. By using this feature, but
leaving the title field (field one) null, a title can be displayed at
the top of the screen, but without the current system time and date
also being displayed.

Field four is multi-valued, and is associated value-by-value with the
values in field two. Each value of field two is a single-line
explanation of each selection on the MENU. The appropriate explanation
is displayed when its associated selection number is typed, followed
with a question mark, at the prompt for a selection to be made. For

December 2, 1980 PRIME INFORMATION Release 4 Page 59

VOCABULARY FILE PDR39¢6 PRIME INFORMATION

example, if "3?" is typed when the MENU processor prompts for a
process selection, the explanation text for selection number three will
be displayed (along with the command that would be executed if 3 were
selected) , and the selection prompt will be reissued.

Field five is single-valued, and can contain the user-defined cursor
positioning of the query prompt and/or a user-defined query prompt.
The query prompt is displayed whenever a MENU is displayed, and it
prompts the user to choose one of the selections available on that
MENU. If field five is null, the default value for the duery prompt
will be used. The default prompt is: "Which would you like? (1 -
n)", where "n" is the highest selection number available on that
particular MENU; this prompt is displayed two rows below the last
selection number and description text displayed on the screen. If the
MENU creator wishes to define a different query prompt, this is done by
typing the desired prompt in field five when creating the MENU
definition record. This would cause the specified query prompt to be
displayed, at the default position. If the user desires to position
the query prompt at some location other than the default position, then
field five would be entered in one of the following formats:

(COL, ROW)
(COL,ROW) query.prompt . text

The first format will cause the default query prompt to be displayed at
the postion defined by COL and ROW, while the second format will define
"query.prompt.text" as the prompt text to be displayed at the postion
defined by COL and ROW.

When defining the action field, one of the legal action values was
specified to be the name of a MENU pointer record. This provides the
abilty to nest MENUs (to invoke a new MENU by a selection from a
different MENU). In other words, MENU "A" could invoke MENU "B", which
in turn could invoke MENU "C", and so on to any reasonable level. Two
fields are available in the MENU definition record to control the way
in which these nested MENUs may be exited. They are field six (which
contains legal "exit" commands), and field seven (which contains legal
"stop" commands). The distinction between "exit" and “stop" is that an
"exit" from a MENU will cause control to be passed to the process that
invoked the MENU (which could be another MENU), while a "stop" will
cause control to be passed all the way back to PERFORM's colon prompt
regardless of whether the MENU processes have been nested or not.

Field six may contain a string of one or more user-defined ‘“exit"
commands, separated by commas. Each "exit" command is a string of text
which has been selected by the creator of the MENU; typing any one of
these strings of text in response to the MENU selection prompt will
produce an exit from the MENU back to the processor that invoked it.
(Note that if the person using the MENU does not know the contents of
at least one of these "exit" text strings, it will not be possible for
that user to do anything from that MENU except select one of its
options; the MENU creator can take advantage of this feature to assure
that a task using that MENU will be completely controlled by the MENU.)

Page 60 PRIME INFORMATION Release 4 December 2, 1980

ts

)u

a

PERFORM PDR3906 VOCABULARY FILE

If field six is null, then the “"exit" command is the default "exit"
command, which is <NEW LINE)>.

Field seven may contain a list of 1legal "stop" commands, that are
entered into the MENU definition record in the same format as the
"exit" commands. ‘These "stop" commands function differently from
"exit" commands in that when one of them is entered at the query
prompt, control is immediatly returned to PERFORM's colon prompt. If
the user is in a MENU that is nested three levels deep, the entry of a
"stop" command in response to the MENU's selection prompt will return
control to PERFORM's colon prompt, while an "exit" command would return
control to the prior MENU. Leaving field seven null will prohibit the
user from returning to PERFORM's colon prompt from within a nested
MENU; since there is no default value for the "stop" command, a null
value in field seven results in having no mechanism for specifying
"stop”.

MENU Definition Record
id: MENU name

@@l: MENU TITLE, or null
P02: multi-valued list of process descriptions
P03: multi-valued list of PERFORM commands
(number of values should correspond to field two)
004: multi-valued list of process explanations
(number of values should correspond to field two)
005: query prompt (to override default prompt)
@06: list of valid "exit" commands, separated by comma's
(or null, to use default <NEW LINE> “"exit")
007: list of valid "stop" commands, separated by comma's
(or null, to prohibit "stop")

FIGURE 1. Format of the MENU definition record.

id: MAIN.MENU

201:

092: (5,0)Main MENU} (5,4) Inventory MENU}(5,6)Accounts Receivable
P83: }INV.MENU}A/R.MENU

@94: }Inventory Control MENU}Accounts Receivable MENU

205: (16,8) Enter Selection Number to Process

@@6: EXIT,EX,,QUIT,Q

P@7: STOP

FIGURE 2. Example of a MENU definition record.

December 2, 1980 PRIME INFORMATION Release 4 Page 61

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.6.2 MENUS: A MENU Maintenance Processor

A MENU maintenance processor which allows the user to create or modify
a MENU, list the contents of a particular MENU, list all MENUs stored
in a particular MENU file, or perform other MENU-related functions, is
provided with the system; its name is MENUS.

A MENU maintenance processor which allows the user to create or modify
a MENU, 1list the contents of a particular MENU, list all MENUs stored
in a particular MENU file, or perform other MENU-related functions, is
provided with the system. ‘This processor, itself MENU-driven, is
invoked by entering the command MENUS in response to the colon prompt
from PERFORM. The format of the command is:

MENUS

When this command is entered, the PRIME INFORMATION MENU Maintenance
MENU is displayed on the user terminal, and an opportunity is given to
select one of the operations. Selection 1 is used to create a standard
MENU (one that does not use cursor positioning). Selection 2 is
similar to selection 1, but allows for formatting the MENU, and
additionally allows for the definition of "exit" and "stop" parameters.
Selection 3 is used to list the names of the MENUs stored in a MENU
file whose name is provided in response to a prompt. Selection 4 is
used to display the contents of a particular MENU, after responding to
a prompt for the name of the MENU, and the name of the MENU file where
it is stored. Selection 5 is used to put a record into the VOC file by
vhich a particular MENU can be invoked; this will be a type "M"
record.

Selection 6 is used to create or modify a SENTENCE in the VOC file.
Selection 7 is used to display all MENU selector items (records whose
type is "M") in the VOC file. Selection 8 is used to display all
stored SENTENCE records (records whose type is "S") in the VOC file.
Selection 9 is used to display the contents of the DICTIONARY of a file
whose name is provided in response to a prompt. Selection 1@ is used
to print (on the system printer) a summary of all MENUs on a MENU file
whose name is provided in response to a prompt. Selection 11 is used
to print (on the system printer) the contents of a MENU whose name, and
the name of the MENU file where it is stored, are provided in response
to prompts. Selection 12 is described in detail in the section titled
"MENU.PIX Command" elsewhere in this manual. Selection 13 is used to
print the contents of a formatted MENU on the system printer.
Selection 14 is used to print the DICTIONARY of a file on the system
printer. Selection 15 is described in detail in the section of this
manual titled "MENU.DOC" command.

Page 62 PRIME INFORMATION Release 4 December 2, 1980

r

PERFORM PDR3906 VOCABULARY FILE

The normal sequence of operations used to create a new MENU are:
1. Create a new MENU file using the CREATE.FILE command
described in this manual (or use an existing MENU file).

2. Define the MENU by using either Selection 1 or Selection 2 of
the MENUS processor (depending on whether the MENU is to be
formatted and/or use defined "exit" and "stop" commands).

3. Create the VOC file record by which the MENU will be invoked,
using Selection 5 of the MENUS processor.

4. Optionally, document the MENU using MENU.PIX and/or MENU.DOC
(vhich may be invoked by using Selection 12 or 13, or
Selection 15, respectively, of the MENUS processor) .

:MENUS

" Information MENU Maintenance 13:15:53 27 MAY 1980
= Enter/Modify a MENU '

= Enter/Modify a formatted MENU

= Display a summary. of all MENUs on a MENU file
= Display the contents of a MENU
= Enter/Modify a VOC MENU selector item .
6= Enter/Modify a VOC stored sentence item
= Display all MENU selector items on the VOC file
= Display all stored sentence items on the VOC file
9= Display the dictionary of a file
1= Print a summary of all MENUs on a MENU file
11= Print the contents of a MENU
12= Print a virtual image of a MENU on the printer
13= Print the contents of a formatted MENU
14= Print the dictionary of a file
15= Print detail of a MENU including VOC records referenced

Which would you like? (1 - 15)=

FIGURE 1. The PRIME INFORMATION MENU Maintenance MENU.

December 2, 1980 PRIME INFORMATION Release 4 Page

63

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.7 REMOTE Item Definition Record

A REMOTE item is a record in the VOC file that points to a record in
another file, where the remotely-referenced item is defined.

A REMOTE item is a record in the VOC file that points to a record in
another file, where the remotely-referenced item is defined.

Remote item records in the VOC file contain the letter R as the first
character in field one, to indicate that the record is a remote
definition; field one may also contain a description. Field two
contains the name of the file where the actual item is defined; this
file name must be defined in the VOC file. Field three contains the
record identifier of the actual item to be used by PERFORM in place of
the remote item's name.

The use of Remote items for user-defined processes helps keep the VOC
file small, by storing a brief remote-item pointer record in the
heavily-used VOC file instead of the lengthy paragraphs or sentences it
replaces. For example, the word END.OF.MONTH may be stored in the VOC
file as a remote item, pointing to a long paragraph named EOM.PROCESS
in a file called VOCLIB. The convenience of invoking this process by
simply typing END.OF.MONTH in response to PERFORM's colon prompt is
available, without having to store what is probably a very long

paragraph in the central file of the PRIME INFORMATION system: the VOC
file.

Remote items are also useful for defining sentences and paragraphs to
be stored in different files according to the application in which they
are used. In this way, all of the processes of a particular
application may be kept together in a single file, for ease of
maintenance.

The remote record pointed to has the same format as if it were in the
VOC file, according to its type; e.g., if the remote item is a
PARAGRAPH, then the record defining the item is identical to a
PARAGRAPH record in the VOC file.

The stored sentence LISTR displays all remote definition records stored
in the vOC file.

Page 64 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

id: remote name
@01: R {description}

#092: file.name
P@3: record.id

FIGURE 1. Format of the REMOTE item pointer record.

REMOTE item pointer in the VOC file:

id: END.OF.MONTH
@91: R Month-end processing

@02: VOCLIB
9@3: EOM.PROCESS

Actual item in the VOCLIB file:

id: EOM.PROCESS

.

@91: PA End-of-month processing paragraph
"002: SSELECT COMPANY.MASTER

@@3: EOM.ACCOUNTING

@94: SSELECT CUSTOMER.FILE BY BILLING.DATE
@05: EQM.BILLING

~ nnn: DISPLAY END-OF-MONTH PROCESSING COMPLETED

FIGURE 2. Example of the actual REMOTE item record.
[

December 2, 1980 PRIME INFORMATION Release 4 Page 65

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.8 VERB Definition Record

Verbs are defined by a record in the user's VOC file. The record
directs the invocation of one of the INFORMATION processors.

The action taken by PERFORM for any VERB is determined by the VERB

definition record in the VOC file. The VERB definition record has the
following format:

id: verb name

@01: V {description}
@02: processor name
P03: dispatch type

#@4: processor mode
905 - nnn: reserved

The record must have a "V" as the first character of field one to
define that this is a VERB definition record. Words two through the
end of the field constitute the one line description of the VERB.

"Processor name" is the actual program that is executed.

The dispatch type codes are:

1B cataloged INFO/BASIC For user-written programs and
programs PRIME INFORMATION implementation

software

DI Directives Reserved for PRIME INFORMATION
implementation software

IN Informatives Reserved for PRIME INFORMATION
implementation software

PE PERFORM internal Reserved for PRIME INFORMATION
implementation software

PR PRIMOS commands Reserved for PRIME INFORMATION

implementation software
The "processor mode" is used by PERFORM or the INFORMATION processor
named in field two. For example, if field four is "SELECT" or

"SSELECT", PERFORM will not destroy a select list but will leave it
intact for the next process which references the file.

It should be noted that all fields from five on are reserved.

The stored sentence LISTV displays all VERB definition records stored
in the voOC file.

Page 66 v PRIME INFORMATION Release 4 December 2, 1980

PERFORM

id: wverb name

PDR3906

VOCABULARY FILE

P01: V {description}

@02: processor name

@@3: dispatch type (IB, DI, IN, PE, PR)

@84: processor mode

@@85: reserved

nnn: reserved

FIGURE 1. Format of the VERB Definition Record.

ASSIGN " AVAIL BASIC BLOCK. PRINT
BLOCK.TERM BTD CATALOG CD
CHAP CLEAN.ACCOUNT CLEAR.FILE CLEAR. LOCKS
CLEARDATA CLEARSELECT CLR CNAME
camMo COMPILE.DICT COPY COUNT
CREATE.FILE Cs DATE DATE. FORMAT
DELAY DELETE DELETE.CATALOG DELETE.FILE
DELETE.LIST DISPLAY DTB DTO
DTX ED ENTER ENTRO
ENTROC FILE.STAT FORM.LIST FORMAT
GET.LIST GO - GROUP. STAT GROUP. STAT.DETAIL
HASH.HELP HASH.HELP.DETAIL HASH.TEST HASH.TEST.DETAIL
HELP HUSH Iam IF
ISTAT LIST LIST.LOCKS LIST.READU
LO LOCK LOGOUT LOGTO
LOOP MAIL MAKE.MAP.FILE MAP
MASTER MENU.DOC MENU. PIX MESSAGE
OFF 01D P.ATT P.DET
PASSWD PHANTOM PROP PSPOOL
PTERM PTIME QUIT RADIX
RECORD RELEASE RELEASE.ALL RELEASE. ITEMS
REPEAT RESET.PRINTER RESIZE RUN
SAVE.LIST SELECT SETFILE SETPTR
SLEEP SORT SPOOL SSELECT
STAT STATUS suM T.ATT
T.BCK T.DET T.DUMP T. FWD
T.LOAD T.READ T.REW T.WEOF
TERM TIME UNASSIGN USERS
VCATALOG WHO XTD

FIGURE 2. Verbs supplied with the PRIME INFORVATION System.

December 2, 1980

PRIME INFORMATION Release 4

Page

67

VOCABULARY FILE PDR3906 PRIME INFORMATION

4,9 FILE Definition Record

Each PRIME INFORMATION System file is defined by a record in the VvOC
file.

When a PRIME INFORMATION file is created, the CREATE.FILE processor
adds a record to the VOC file which defines the file being created.
The format of this record is:

id: file.name

@@l: F {description}

@g2: DATA file name

gP3: DICTIONARY file name

The default values used when the file is created are:

DATA file name
DICTIONARY file name

file .name
D file.name

If it is desired to have a synonym name by which the file could be
referenced (in addition to referencing it by "file.name"), all that is
needed is to copy the "file.name" record in the VOC file to a
"new.name" record in the VOC file. (See also the section titled
“"SETFILE Command" in this manual.)

Since the DATA and DICT sections of a file are maintained by PRIME
INFORMATION as physically separate files, any file may be described by
several different dictionaries. This may be done by changing field
three (DICTIONARY file name) of a synonym file definition record to the
name of the dictionary to use when the file is referenced by that
synonym. Similarly, one dictionary may be used for many data €files.
The CLEAR.FILE and DELETE.FILE commands should be used with care if
these features are in use. (See the sections titled "CLEAR.FILE
Command" and "DELETE.FILE Command" in this manual.)

A file definition record in the VOC file may also point to files in
other accounts, through the use of PRIMOS treenames in fields two and
three. The SETFILE command is useful in establishing these remote file
pointer records. (See the section titled "SETFILE Command" in this
manual.)

The stored sentence LISTF displays all file definition records in the
VoC file. The stored sentence LISTFL displays all file definition
records in the VOC file which are local files (i.e., do not use PRIMOS
treenames to point to files which are stored in other accounts). The
stored sentence LISTFR displays all file definition records in the VOC
file which are remote files (i.e., use PRIMOS treenames to point to
files which are stored in other accounts).

Page 68 PRIME INFORMATION Release 4 December 2, 1988

PERFORM PDR3906 VOCABULARY FILE

id: CUSTOMER.MASTER

P91: F Customer Master File
002: CUST.MAST

003: D_CUST.MAST

FIGURE 1. Example of a typical FILE definition record.

-STANDARD CUSTOMER MASTER SPECIAL CUSTOMER MASTER

id: CUSTOMER.MASTER id: CUSTQMER.MASTER.X
ggl: F gol: F
092: CUST.MAST p@2: CUST.MAST
@03: D _CUST.MAST @@3: D CUST.MAST.RESTRICTED

FIGURE 2. Example of a file with more than one dictionary.

INVENTORY MASTER PARTS MASTER

id: INVENTORY.MASTER id: PARTS.MASTER.X
921: F 021: F
@02: INV.MASTER P02: PARTS.MASTER
203: D INV.MASTER 093: D_INV.MASTER

FIGURE 3. Example of two files with a single dictionary.

id: AP.CUST

@0l: F
pB2: ACCAP>CUST
@03: ACCAP)D__CUST

“"AP.CUST" is a synonym file name for a file in account "ACCAP"., The
DATA section of the file is "CUST", identified by the PRIMOS treename
"ACCAP>CUST", and the DICT section of the file is "D CUST", identified
by the PRIMOS treename "ACCAP>D CUST". -

FIGURE 4. Example of a file in another account.

December 2, 1980 PRIME INFORMATION Release 4 Page 69

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.10 KEYWORD Definition Record

Keywords are used by PRIME INFORMATION System verbs to define special
operations.

Keywords are used by PRIME INFORMATION to define special operations,
such as MATCHING, WITH, BY, etc. When PERFORM encounters a keyword in
a sentence, it searches the VOC file for a record named "keyword", and
substitutes a coded operation number for the keyword.

The format of the keyword record in the VOC file is:
id: keyword.name

P9l: K {description}
002: keyword.opcode

where "keyword.opcode" is a number which defines the operation for
“"keyword .name" .

It is possible to create synonyms for existing keywords, by creating
new records in the VOC file which use the same format shown above, with
the appropriate operation number in field two of the record. For
example, a new keyword ORDERING could be defined by copying the keyword
record for BY. It would then be possible to type

:LIST INVENTORY ORDERING DATE.RECEIVED

and get the same results as from

:LIST INVENTORY BY DATE.RECEIVED

The stored sentence LISTK displays all of the keywords defined in the
voe file.

Page 70 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

id: keyword.name

@01: K {description}
P02: keyword.opcode
FIGURE 1. Format of the KEYWORD record.

id: NO.PAGE id: BREAK.ON id: OVERWRITING

291: K 001: K 281: K

902: 30 g92: 16 g02: 34

FIGURE 2. Examples of keyword records.

> 3 AFTER 3 GREATER 3 GT 3
= 4 EQ 4 EQUAL 4 = 5
>= 5 GE 5 < 6 BEFORE 6
LESS 6 LT 6 # 7 NE 7
NOT 7 <= 8 = 8 LE 8
OR 9 & 18 AND ~ 190 LIKE 11
MATCHES 11 MATCHING 11 BY 12 BY-DSND 13
BY.DSND ~— 13 BUGS " 14 TOTAL 15 BREAK-ON ~ 16
BREAK. ON 16 DET-SUPP __ 17 DET.SUP 17 ID-SUP 18
ID.SUP 18 HEADER 19 HEADING 19 DICT 20
DBL-SPC — 21 DBL.SPC 21 FIRST ~— 22 SAMPLE 22
FOOTING 23 TEMPL 24 USING 24 NOT.MATCHING 25
UNLIKE ~ 25 ID.ONLY 26 ONLY 26 WITH 27
HDR-SUPP 28 HDR.SUP 28 COL-SUPP 29 COL.SUP 29
NO. PAGE 30 NOPAGE 30 SAMPLED ~ 31 COL.SPACES 32
COL.SPCS 32 (P) 33 LPTR "~ 33 OVERWRITING 34
DELETING ~— 35 SQUAWK 36 ALL 37 A 38
ANY T 38 ARE T 38 FILE~ 38 FOR 38
IN 38 INVISIBLE __ 38 OF 38 PRINT 38
THAN 38 THE 38 CALC ~ 39 CALCULATE 39
MTU 40 BLK 41 BREAK.SUP __ 42 % 44
PCT 44 PERCENT 44 PERCENTAGE 44 SAID 45
SPOKEN 45 ~ 45 MARGIN "~ 46 AVERAGE 47
AVG 47 BY.EXP 48 BY.EXP.DSND 49 VERT 50
VERTICALLY 50 EVERY 51 VERIFILE ~ 52 VERIFY 52
WHEN ___53 VERIFIELD _ 54 TEMPLATE __ 55 REQUIRE.SELECT 56

NEXT.AVAILABLE 57

FIGURE 3.

INQUIRING _ 58

List of KEYWORDS in opcode sequence.

December 2, 1980

PRIME INFORMATION Release 4

Page 71

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.11 USER Record Definition

A reserved user record type X has been provided, to allow anyone to put
into the VOC file records which will not be treated as invalid records
by PERFORM.

Every record in the VOC file has a type code in field one of the
record. This type code is used by PERFORM to determine the type of
each record, and PERFORM must be able to control the allocation and
meaning of these type codes. 'The type codes presently defined are
listed in the section titled "The User Vocabulary File", elsewhere in

this manual. All type codes which are not listed are reserved for
possible future use.

Some users wish to place items in the VOC file which are to be used in
daily processing, for whatever purpose the user may define. 1In order
to provide a guarantee of non-interference with future type codes which
may be defined by PERFORM, a special user-defined record, with type
code X, has been provided. PERFORM will always ignore type X records
(with the two exceptions listed below), so that this type code may be
used for these user-defined purposes. No other type code should be
"invented” and used in the VOC file: the definition of type codes is
reserved by PRIME.

The format of the user record in the VOC file is:
id: record.id
@01: X {description}

The user may use fields two, three, etc. for whatever data is
meaningful to the user-defined purpose of the record.

Presently, PRIME INFORMATION uses two type X records. ‘The first of
these is used to verify that the user's VOCABULARY has been updated to
agree with the cataloged version of PRIME INFORMATION which is
currently executing. This type X record is named RELLEVEL, and
contains in field three the release level of the VOC file at the time
it was created or 1last updated. This VOC file release level is
verified against an internal release level kept within PERFORM, and if
the two do not agree, PERFORM produces a warning message.

The other type X record used by PRIME INFORMATION in the VOC file is
the record named "“STACKWRITE". ‘This record is used by PERFORM's
sentence stack processor, to determine whether to maintain the user's
sentence stack in a file so that it is preserved after LOGOFF. If
field two of this record contains "OFF", the sentence stack
preservation routine is "turned off", and the stack is not maintained
after LOGOFF.

Page 72 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 VOCABULARY FILE

The stored sentence LISTO produces a list of all records in the WVOC
file which either are not defined in the section of this manual titled
"VOC File Record Types" (there should be none of these), or which are
type X or type I.

id: record.id
P0l: X {description}

Fields two, three, etc. can be used for anything.

FIGURE 1. Format of the USER record.

id: RELLEVEL

PPl: X Item used by PERFORM to define RELEASE LEVEL of account
002: 4.0

FIGURE 2. The PRIME INFORMATION user record RELLEVEL,

id: STACKWRITE

P91: X If field two = "OFF", stack is not saved after LOGOFF.
202: ON

FIGURE 3. 'The PRIME INFORMATION user record STACKWRITE.

December 2, 1980 PRIME INFORMATION Release 4 ' Page 73

VOCABULARY FILE PDR3906 PRIME INFORMATION

4.12 Stored System Sentences

The VOC file contains a miscellaneous group of stored sentences that

may be used to list the contents of the VOC file belonging to a single
record type.

The stored sentences are:
LISTF lists all files defined in your VOC file.
LISTFL lists local files defined in your VOC file.
LISTFR lists remote files defined in your VOC file.
LISTK lists keywords defined in your VOC file.
LIS™™ lists menus defined in your VOC file.
LISTPA lists paragraphs defined in your VOC file,
LISTPH lists phrases defined in your VOC file.

LISTPR lists PRIMOS commands defined in your
voC file.

LISTR lists remotes defined in your VOC file.

LISTS lists sentences defined in your VOC file.

LISTV = 1lists verbs defined in your VOC file.

LISTO list all other things not listed above
that are defined in your VOC file.

Note that any of these sentences may be used with "LPTR" appended to
it, to direct the 1listing to the system printer instead of to your
terminal.

EXAMPLE:

:LISTV LPTR

Page 74 PRIME INFORMATION Release 4 December 2, 1980

i@

PERFORM PDR3906 VOCABULARY FILE

¢:LISTF NO.PAGE

These are the FILES defined in your VOCABULARY
WE.............. FILE...I....'........ DI@‘IONARY.....

&PHs &PHg

&SAVEDLISTSS &SAVEDLISTS& D_&SAVEDLISTSs
&UFD& * D &UFD&
APP.PROGS APP, PROGS D APP.PROGS
DICT.DICT ISYS>DICT.DICT ISYS>DICT.DICT

ENTRO-PROCESSES ISYS>ENTRO. PROCESSES ISYS>D ENTRO.PROCESSES
ENTRO.DISCUSSIONS ENTRO.DISCUSSIONS D_ENTRO.DISCUSSIONS
ENTRO. PROCESSES ISYS>ENTRO. PROCESSES ISYS>D ENTRO.PROCESSES

ISYS.VOCLIB ISYS>VOCLIB ISYS>D_VOCLIB
KM ISYS>KWM ISYS>D_KWM
MENU. FILE MENU. FILE D_MENU.FILE
NEWACC ISYS>NEWACC ISYS>D NEWACC
VERBS VERBS D_VERBS

voC voC D VoC

VOCLIB VOCLIB D_VOCLIB

15 RECORDS LISTED

FIGURE 1. Example of use of a stored system sentence.

December 2, 1980 PRIME INFORMATION Release 4 Page

75

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5 PRIME INFORMATION COMMANDS

5.1 * (COMMENT) Statement

The "*" statement is provided to allow insertion of comments into

‘stored system paragraphs. ‘These may be used to help document the
intent of the paragraph.

The "*" statement is provided to allow insertion of comments into
stored system paragraphs. The format of the * (COMMENT) statement is:

* comment .text

When any sentence is encountered by PERFORM which begins with an
asterisk (*), that sentence is ignored. It is not printed on the
terminal, nor is it examined for "correctness"; however, the comment
is examined to see if it contains a prompting sequence, and if there is
one, the prompting is done. (See the section titled "Prompting Within
a Stored PERFORM Command" in this manual.)

You may use a comment statement not only in a paragraph (its normal
use), but also from the terminal. This would be particularly useful if
you were using a COMO file, and wished to document an event for further
examination later. (See the section titled "COMO Command" in this
manual) .

For a form of the COMMENT statment which additionally prints

"comment.text” on the terminal, see the section titled V"DISPLAY
Command" in this manual.

Page 76 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

* comment.text

FIGURE 1. Format of the * (COMMENT) Statement.

With this Paragraph stored in the VOC file:
id: INV.RUN.1

@01: PA

092: * First, list the Inventory file with QOH less than 100.
g@3: INV,.LIST

004: DATA 100

P05: * Now, generate orders for items in short supply.

@@6: RUN INV INV,SHORT

@@7: * Finally, print journal of items ordered.

@08: RUN INV INV.JOURNAL

The following would be the result at the terminal:

INV.RUN. 1

FIGURE 2. Example of the * (COMMENT) Statement.

December 2, 1980 PRIME INFORMATION Release 4 Page 77

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.2 ASSIGN Command

The ASSIGN command may be issued at any user terminal, to request
exclusive control of a peripheral device.

A user can request exclusive control of a peripheral device with the
ASSIGN command. The format of this command is:

ASSIGN device {-WAIT}

where "device" is an available peripheral. The most common peripherals
are:

MTh Magnetic tape units, "n" from 0 to 7
CRn Card reader, "n" from 0 to 3
PTR Paper tape reader

PUNCH Paper tape punch
If "device" is currently assigned to another user, the system replies:
DEVICE IN USE

unless the optional argument "-WAIT" was supplied. In this case, the
ASSIGN command is queued until "device" is UNASSIGNed by the other
user, or until the other user logs out. (See the section titled
"UNASSIGN Command" in this manual.)

If any I/0 operation is attempted which requires exclusive control of a
peripheral device, and that device has not been assigned to the task
with the ASSIGN command, the error message:

DEVICE NOT ASSIGNED

is displayed at the terminal.

For additional details on the ASSIGN command and on peripheral devices
" that can be ASSIGNed, see the PRIMOS COMMANDS REFERENCE GUIDE, FDR3148.

Page 78 PRIME INFORMATION Release 4 December 2, 198¢

PERFORM PDR3906 PRIME INFORMATION COMMANDS

ASSIGN device {-WAIT}

FIGURE 1. Format of the ASSIGN command.

sASSIGN MT1 assign magnetic tape unit 1
:ASSIGN CR@ assign card reader unit @

:ASSIGN MT1 -WAIT assign magnetic tape unit 1,
wait for it if necessary

FIGURE 2. Examples of the ASSIGN command.

December 2, 198¢ - PRIME INFORMATION Release 4 Page 79

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.3 AVAIL Command

The AVAIL command displays disk usage statistics at the terminal.

The AVAIL command displays disk usage statistics at the terminal.
These statistics include the number of normalized disk records used,
the number of normalized disk records still available, and the percent
of total 1logical disk space already used. The format of the command
is:

AVAIL {argument}
where the values of "argument" (if specified) are:

packname The MFD name of the logical disk whose
statistics are wanted.

-LDEV n The logical disk whose number is "n".

* Use the file named DISCS in UFD SYSTEM as
a list of logical devices whose statistics
are wanted.

number The spelled-out number of the 1ogica1 disk
whose statistics are wanted. (i.e.,
"number"” must be ONE, TWO, THREE, etc.)

If no “argument" is specified, AVAIL displays the disk usage statistics
of the logical disk where the user's account is located.

Note that the number of records displayed is "normalized" to a physical
record size of 880 bytes per disk sector. This normalization is done
to maintain compatability with early users of PRIME computers. Today's
disks have sector sizes of 2048 bytes. To determine disk space usage
in bytes, multiply number of records times 88@#. To determine disk
space usage in sectors, multiply number of records times 8808 and divide
the result by 2048.

For additional explanations of these options and the meaning of the
displayed data, see the section titled "Monitoring the System" in THE
SYSTEM ADMINISTRATOR'S GUIDE, PDR3199. Also see the section on the
AVAIL command in the PRIMOS COMMANDS REFERENCE GUIDE, FDR3108.

Page 88 PRIME INFORMATION Release 4 December 2, 1980

-~~~

PERFORM PDR3906

AVAIL {argument}

PRIME INFORMATION COMMANDS

FIGURE 1. Format of the AVAIL command.

:AVAIL *
VOLUME TOTAL FREE %

ID RECS RECS FULL CCOMMENTS
INF4.0 68952 8350 87.9

MASTER NOT MOUNTED
SOURCE NOT MOUNTED

DEMO 68952 6290 94.9
BENCH 34476 895 97.4
:AVAIL ONE

VOLUME DEMO

68952 TOTAL RECORDS (NORMALIZED)
6290 RECORDS AVAILABLE (NORMALIZED)
96.9% FULL

:AVAIL DEMO

VOLUME DEMO

68952 TOTAL RECORDS (NCRMALIZED)
6290 RECORDS AVAILABLE (NORMALIZED)
90.9% FULL

:AVAIL

VOLUME INF4.0

68952 TOTAL RECORDS (NORMALIZED)
‘8350 RECORDS AVAILABLE (NOR“IALIZED)
87.9% FULL

INFORMATION RELEASE 4.0

DEMO ACCOUNTS
BENCHMARK ACCOUNTS

FIGURE 2. Examples of the AVAIL command.

December 2, 1980 PRIME INFORMATION Release 4 Page

81

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.4 BASIC Command

The BASIC command is used to compile INFO/BASIC source code for
execution. This command uses a SELECT list if one is active.

To compile an INFO/BASIC source program, the PRIME INFORMATION user
types the following command:

BASIC file.name {program.name} ... {-option} ...

The "program.name" parameter may be a list of program names to be
compiled, or it may be omitted as a signal to the INFO/BASIC compiler
to use a SELECT list. If a SELECT 1list is used, the INFO/BASIC
compiler will ignore all records beginning with "$" and with "x ®
(where "x" is any letter). ‘These records are ignored because, by
convention, records which begin with "$" are compiled object code, and
those which begin with "x " are $INSERT files.

INFO/BASIC program source code must be stored in a PRIME INFORMATION
type 1 file (a file type which corresponds to a PRIMOS sub-ufd).
Programs may be created and edited with either the PRIME INFORMATION
BEditor, or with the standard PRIME Editor. (For further information,
see THE INFO/BASIC REFERENCE GUIDE, PDR3993.)

The "-option" is an optional control specification to the compiler
(with the minus sign a required element of the option name). The
following options are presently defined:

-LIST or -L produce a listing of the compilation,
named "L _program.name” in "file.name"
-XREF or -X produce a cross-reference listing
. of labels and variables
-SPOOL or -S produce a listing of the compilation,
and spool it direct to the line printer
-OPTA compile with Microdata REALITY
DATA/BASIC compatiblity

The "-LIST" option generates a listing of the program, while "-XREF"
generates a cross-reference table of all labels and symbolic variable
names used in the program. The "-LIST" and "-XREF" listings are saved
in "file.name" under the name "L program.name" (i.e., the
"program.name” prefixed by L "). The "-SPOOL" option is the same as
the "-LIST" option, except that the listing is spooled directly to the
printer instead of being filed. The "-OPTA" option causes compilation
to be performed with compatibility to Microdata REALITY DATA/RASIC.
(See THE INFO/BASIC REFERENCE GUIDE, PDR39¢3.)

Page 82 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

When the "-LIST" option is used, the listing will show 1line numbers,
all lines inserted with S$INSERT (which do not increment the source

program line numbers), and all symbolic string substitutions specified
by any EQUATE statements.

The object code produced by the compiler will be stored in "file.name"
under the name "S$program.name" (i.e., the "program.name" prefixed by

"$"). During compilation, an asterisk ("*") is displayed for each 19
lines of code compiled.

BASIC file.name {program.name} ... {-option} ...

The options are:

-LIST or -L generate a listing record named
"L program.name” in "file.name"

-XREF or -X generate a cross-reference table of all labels
and symbolic variable names used in the program

-SPOOL or -S generate a listing and spool it to the
line printer

-OPTA causes compilation to be performed with
compatibility to Microdata REALITY DATA/BASIC.

FIGURE 1. Format of the BASIC command.

:BASIC BP.AP RPT.PGM1 -SPOOL -XREF

This command will compile the source code of the program named
"RPT.PGM1" in the file named "BP.AP", and will cause a listing and a
cross-reference to be spooled to the line printer. The compiled object
code will be stored in the source file "BP.AP", under the name
"SRPT.BGM1".

FIGURE 2. Example of the BASIC command.

December 2, 1980 PRIME INFORMATION Release 4 Page 83

'PRIME INFORMATION CCMMANDS PDR3906 PRIME INFORMATION

5.5 BLOCK.PRINT Command

The BLOCK.PRINT command is used to print characters in block format on
the system printer.

The BLOCK.PRINT command will print on the system printer the block
format equivalent of the character string supplied with the command.
As an example of block format, the letter A in block format would be
several lines comprised of the letter A alternating with spaces, to
form a large character which looks like the letter A. The format of
the BLOCK.PRINT command is:

BLOCK. PRINT character.string ...

Each individual character of "character.string" is printed in a 9 by
'n' block. The variable 'n' ranges from 5 to 20, depending on the
relative width of the character to be printed (the letter "I" is the
narrowest character, -and the letters "M" and "W" are the widest). The
number of characters which may be contained in the character string is
limited by the output width of the character string. The total output
width of the string must be less than or equal to the 1line width
available on the printer. If this limit is exceeded, an error message
will be displayed, indicating that the character string is too long to
be printed in block character format. Multiple "character.string"s
(separated by blanks) will be printed on the system printer on separate
lines.

The BLOCK.PRINT command uses the file named BLTRS, which must be
defined in the VOC file of your account. The BLTRS file exists in the
ISYS account, and is used to store a "map" of each character that can
be printed in block format. 2Any character that does not exist in the
BLTRS file cannot be printed in block format by the BLOCK.PRINT
command.

See also the description of the BLOCK.TERM command, which is similar to

the BLOCK.PRINT command, except that the block format equivalent of
"character.string" is displayed on the terminal.

Page 84 PRIME INFORMATION Release 4 December 2, 1980

"

PERFORM

PDR3906

BLOCK.PRINT character.string ...

FIGURE 1.

PRIME INFORMATION COMMANDS

Format of the BLOCK.PRINT Command.

:BLOCK. PRINT HELLO THERE

* The following is what would be printed on the system printer:

HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHHHHHHHHHH
HHHHHHHHHHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
TTTTTTTTTTIT
TTTTTTTTTTTT
TTTT
TTTT
TTTT
TTTT
TTTT
TTTT
TTTT

FIGURE 2.

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEEE
EEEEEEEEE
EEEE

EEEE
EEEEEEEEEEE
EEEEEEEEEEE

HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHHHHHHHHHH
HHHHHHHHHHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH

LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLLLLLLLLLL
LLLLLLLLLLLL

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEEE
EEEEEEEEE
EEEE

EEEE
EEEEEEEEEEE
EEEEEEEEEEE

LLLL

LLLL

LLLL

LLLL

LLLL

LLLL

LLLL
LLLLLLLLLLLL
LLLLLLLLLLLL
RRRRRRRRRRR
RRRRRRRRRRRR
RRRR RRRR
RRRR RRRR
RRRRRRRRRRRR
RRRRRRRRRRR
RRRR RRRR
RRRR RRRR
RRRR RRRR

Example of the BLOCK.PRINT command.

0000000000
00C000000000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
000000000000

0000000000

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEEE
EEEEEEEEE
EEEE

EEEE
EEEEEEEEEEE
EEEEEEEEEEE

December 2, 1980

PRIME INFORMATION Release 4

Page 85

PRIME INFORMATICON COMMANDS PDR3906 PRIME INFORMATION

5.6 BLOCK.TERM Command

The BLOCK.TERM command is used to print characters in block format on
the terminal.

The BLOCK.TERM command will print on the terminal the block format
equivalent of the character string supplied with the command. As an
example of block format, the letter A in block format would be several
lines comprised of the 1letter A alternating with spaces, to form a
large character which looks like the 1letter A. The format of the
BLOCK.TERM command is:

BLOCK.TERM character.string ...

Each individual character of "character.string" is printed in a 9 by
'n' block. The variable 'n' ranges from 5 to 20, depending on the
relative width of the character to be printed (the letter "I" is the
narrowest character, and the letters "M" and "W" are the widest). The
number of characters which may be contained in the character string is
limited by the output width of the character string. The total output
width of the string must be less than or equal to the 1line width
available on the terminal. If this limit is exceeded, an error message
will be displayed, indicating that the character string is too long to
be printed in block character format. For most 8@-column terminals,
the effective maximum character string size is five characters.
Multiple "character.string"s (separated by blanks) will be printed on
the terminal on separate lines.

The BLOCK.TERM command uses the file named BLTRS, which must be defined
in the VOC file of your account. The BLTRS file exists in the 1ISYS
account, and is used to store a "map" of each character that can be
printed in block format. Any character that does not exist in the
BLTRS file cannot be printed in block format by the BLOCK.TERM command.

See also the description of the BLOCK.TERM command, which is similar to

the BLOCK.PRINT command, except that the block format equivalent of
“character.string" is printed on the system printer.

Page 86 PRIME INFORMATION Release 4 December 2, 1980

PERFORM

PDR3906

BLOCK.TERM character.string ...

FIGURE 1.

PRIME INFORMATION CQMMANDS

Format of the BLOCK.TERM Command.

:BLOCK.TERM HELLO THERE

HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHHHHHHHHHH
HHHHHHHHHHHH
HHHH HHHH
HHHH HHHH
HHHH HHHH
HEHH HHHH
TTTTTTTTTTTT
TTTTTTTTTTTT
TTTT
TTTT
TTTT
TTTT
TTTT
TTTT
TTTT

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEEE
EEEEEEEEE
EEEE

EEEE
EEEEEEEEEEE
EEEEEEEEEEE
HHHH HHHH
HHHH HHHH
HHHH HHHH
HHHHHHHHHHHH
HHHHHHHHHHHH
HHHH HHBH
HHHH HHHH
HHHH HHHH
HHHH HHHH

LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLLLLLLLLLL
LLLLLLLLLLLL

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEEE
EEEEEEEEE
EEEE

EEEE
EEEEEEEEEEE
EEEEEEEEEEE

LLLL

LLLL

LLLL

LLLL

LLLL

LLLL

LLLL
LLLLLLLLLLLL
LLLLLLLLLLLL
RRRRRRRRRRR
RRRRRRRRRRRR
RRRR RRRR
RRRR RRRR
RRRRRRRRRRRR
RRRRRRRRRRR
RRRR RRRR
RRRR RRRR
RRRR RRRR

FIGURE 2. Example of the BLOCK.TERM command.

0000000000
0000CCC00000
0000 0000
0000 0000
00Co 0000
0000 0000
0000 0000
000000000000

0000000000

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEEE
EEEEEEEEE
EEEE

EEEE
EEEEEEEEEEE
EEEEEEEEEEE

December 2, 198¢

PRIME INFORMATION Release 4

Page 87

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.7 CATALOG Command

The CATALOG command is used to to copy into system catalog space the
object code generated by the compilation of an INFO/BASIC program.

After compilation, object code from an INFQO/BASIC program may be copied
into system catalog space by the CATALOG verb. Catalog space is
accessible to all people on the system, and allows having only one copy
of the program in the system, regardless of how many people are
executing the program. If two or more people are running the same
INFO/BASIC program, there is a copy of.that program in system memory
for each user, unless it has been cataloged; this puts a much larger
demand on real memory and may affect response time. In general,
programs that are going to be used by more than one user should be
cataloged. External subroutines that are to be called from a program
must be cataloged, although the main (calling) program need not be.

The format of the CATALOG command is:

CATALOG {file.name} {catalog.name} {program.name} {FORCE}
{NOXREF} {LOCAL}

where "catalog.name" is the name under which the program will be stored
in the catalog space; in the case of an external subroutine, this must
be the name used in the CALL statement of the main program. The
parameter "file.name" is the name of the file where the object code is
stored, and "program.name" is the name of the program whose object code
is to be cataloged. If only "file.name" is entered, the CATALOG
processor will prompt for "catalog.name" and "program.name". If only
"file.name” and "program.name" are entered, then "catalog.name" and
"program.name” will be the same. The “"catalog.name" frequently will be
the same as "program.name", but with a special prefix. Programs
cataloged with "catalog.name" prefixed with "#" or "—" are classified
as globally cataloged programs; all others are classified as locally
cataloged programs. ‘The prefix character "*" is provided for
user-written programs; the prefix "-" is reserved for PRIME
INFORMATION verbs.

The optional "FORCE" keyword specifies that, if the program being
cataloged already exists in system catalog space as a GLOBALLY
available program, it is to be overwritten; if this parameter is not
used, the CATALOG command will prompt for verification that an existing
program may be overwritten.

The optional "NOXREF" keyword specifies that no cross reference data or
symbol table is to be stored with the program; note that this will
handicap PERFORM's debugging assistance during execution of the
program, and so should not be used except for programs that have been
thoroughly tested.

Page 88 PRIME INFORMATION Release 4 December 2, 1980

"

PERFORM . PDR3906 PRIME INFORMATION COMMANDS

The optional "LOCAL" keyword specifies that the program is to be
treated as if it were cataloged, but is not to be moved to system
catalog space; only the account from which it was cataloged will be
able to access this program.

Iocally cataloged programs require a verb definition record in the VOC
file, which is created automatically when a program is cataloged; see
Figure 2 for an example. Users on other accounts do not have access to
a locally cataloged program unless the local program definition record
is copied to the VOC file in the other account.

Globally cataloged programs are retrieved more rapidly than are locally
cataloged programs, because PERFORM does not have to access the VOC
file to find the program in the catalog space. If the main program is
cataloged, the VOC file of every account that is to be able to use the
program must contain a VERB definition record for "program.name".

CATALOG {file.name} {catalog.name} {program.name} {FORCE}
{NOXREF} {LOCAL}

The CATALOG processor will prompt for parameters not entered at
the same time as the command is typed.

FIGURE 1. Format of the CATALOG Command.

If a user is in account CURLEY and enters the following:
¢CATALOG
catalog name =MAIL.LABELS
file name =ADMIN.SOURCE
program name =MAIL,.LABELS
The following record will be put in the VOC file:

id: MAIL.LABELS

@81: Vv
@02: *CURLEY*MAIL.LABELS
ge3: 1B

This program could also be cataloged by the one-line command:

:CATALOG ADMIN.SOURCE MAIL.LABELS

This program is a locally cataloged program.

FIGURE 2. Example of the CATALOG Command.

December 2, 1980 PRIME INFORMATION Release 4 Page 89

PRIME INFORMATION COMMANDS - . PDR3906 PRIME INFORVIATION

5.8 CD Command

Before using dictionary Information ("I" type) descriptors in an INFORM
sentence, they must be compiled. Compilation is accomplished by using
the CD command, which is an abbreviation of the COMPILE.DICT command.

Before an "I" descriptor can be referenced in an INFORM sentence, it
must be compiled by the COMPILE.DICT command. An abbreviated form of
the command, CD, is provided for convenience. For a complete
description of the CD command, see the section titled "COMPILE.DICT
Command” elsewhere in this manual.

Page 90 PRIME INFORMATION Release 4 December 2, 1980

PERFORM 'PDR3906 PRIME INFORMATION COMMANDS

December 2, 198¢ PRIME INFORMATION Release 4 ' Page 91

PRIME INFORMATION COMMANDS PDR39¢6 PRIME INFORMATION

5.9 CHAP Command

Each user has limited control over his or her execution priority
through the use of the CHAP command.

The PRIME INFORMATION System has four levels of execution priority,

ranging from @ (lowest execution priority) to 3 (highest execution
priority). The system default execution priority for all users is 1.

A user at a user terminal can change his or her priority (between # and
the defined upper limit) by using the following commands:

CHAP DOWN
CHAP
CHAP UP

CHAP DOWN will lower the user's priority by 1 each time it is used,
down to the lowest priority limit of @. CHAP UP will raise the user's
priority by 1 each time it is ubed, up to the defined upper 1limit for
that task (which is normally 1). CHAP with no parameters is the same
as CHAP DOAN. A user priority upper limit can be set to 2 or 3 only at
the supervisor terminal. Note that unless the system administrator has
changed a task's upper execution priority, CHAP DOWN will normally
result in setting the task's execution priority to @, and CHAP UP will
normally result in setting the task's execution priority to 1.

The STATUS command will display a user's priority, if it is other than
the default. (See the section titled "STATUS Command" in this manual.)

For additional details concerning the CHAP command and its interaction
with the PRIMOS-level CHAP command, see the CHAP command in the PRIMOS
COMMANDS REFERENCE GUIDE, FDR31¢8, and the CHAP command in the THE
SYSTEM ADMINISTRATOR'S GUIDE, PDR31#9.

Page 92 PRIME INFORMATION Release 4 December 2, 1980

PERFORM

PDR3906

PRIME INFORMATION COMMANDS

CHAP DOWN lower the user execution priority by 1
(normally, set execution priority to @)
CHAP UP raise the user execution priority by 1
(normally, set execution priority to 1)
FIGURE 1. Format of the CHAP command.
WHO
2 KOVSKY
¢STATUS US
USER NO LIN PDEVS
KOVSKY 2 9 1060
SIMONDS 4 2 41060
SYSTEM 12 77 1060 PRO
¢:CHAP DOWN
¢STATUS US
USER NO LIN PDEVS
KOVSKY 2 1060 (0)
SIMONDS 4 2 41060
SYSTEM 12 77 1060 PRO
:CHAP UP
:STATUS US
USER NO LIN PDEVS
KOVSKY 2 0 1060
SIMONDS 4 2 41060
SYSTEM 12 77 1060 PRO
FIGURE 2. Examples of the CHAP command.

December 2, 1980

PRIME INFORMATION Release 4

Page

93

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.1¢ CLEAN.ACCOUNT Command

The CLEAN.ACCOUNT command is provided for the System Administrator to
use as part of routine system maintenance.

T

The CLEAN.ACCOUNT command is used by the System Administrator for
routine maintenance of your account, or sometimes to correct suspected
problems with the files in your account. The format of the command is:

CLEAN.ACCOUNT

The CLEAN.ACCOUNT command performs a number of file-related functions.
If the CLEAN.ACCOUNT process finds a file named "&TEMP&" in your
account, it will ask if that file may be deleted; if the reply is
affirmative, this temporary file will be deleted. If there is a file
named "&PH&" in your account (created and used by the PHANTOM command,
described in this manual), CLEAN,ACCOUNT will clear this file (but not
delete it) if you indicate that is what you wish done.

CLEAN.ACCOUNT also searches the file named "&SAVEDLISTS&" (if there is
one for the account) for all records whose name begins with "S#" or
with "&". These records are temporary records, used respectively for
SORT work files and as unnamed savelists. If any are found,
CLEAN,ACCOUNT deletes them. All other records in the "§SAVEDLISTSs"
file are left intact.

Next, CLEAN.ACCOUNT verifies every item in your VOC file that is type
"F" (for file), checking that the physical file exists in your UFD,
that the file type and modulus are correct, etc. Any errors or
inconsistencies are reported via messages on your terminal, with a
suggested corrective action.

Page 94 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

CLEAN.ACCOUNT

FIGURE 1. Format of the CLEAN,ACCOUNT command.

sCLEAN,ACCOUNT

OK to delete &TEMP&? (YES or NO) =YES
Deleting file &TEMP&, Type l.

OK to clear &PH&? (YES or NO) =YES
&PH& has been cleared.

EXECUTING "SSELECT VOC WITH TYPE = F "

27 records selected.
EXECUTING "SSELECT &UFD&"

26 records selected.

kkkhkhkhkhkhkhkhkkikhhdkkhkhkkik

The following were left as unresolved mysteries in this account
A PRIMOS file in your account called O CLEAN.ACCOUNT

FIGURE 2. Example of the CLEAN,ACCOUNT command.

December 2, 1980 PRIME INFORMATION Release 4 Page 95

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.11 CLEAR.FILE Command

The data or dictionary sections of a file may be cleared of all records
by using the CLEAR.FILE command. This command uses a SELECT list if
one is active.

The CLEAR.FILE command is used to clear a file (either the data or
dictionary section, or both) of all records. The format of the command
is:

CLEAR.FILE {DATA} {file.name}
or
CLEAR.FILE {DICT} {file.name}

If neither the DATA nor the DICT keyword is entered at the same time as
the command, both the DATA and the DICT portions of the file will be
cleared. As with other PERFORM commands, if the command is entered
with no parameters at all, it will prompt for "file.name".

The process is break-inhibited; that is, once the actual clearing
process has begun, the process cannot be interrupted by the BREAK key.

The file to be cleared can be either an INFO/DMS direct access data
file or dictionary (file type 2 through 9), or a PRIME INFORMATION type
1 file (sub-ufd). "File.name" may be prefaced with either the word
"DATA" or "DICT" to clear only the appropriate section.

This command may be used with an active SELECT list, if desired. ‘The
SELECT list would be comprised of names of files (record identifiers
for records in the VOC file with type "F* in field one). After
activating the SELECT 1list (see the SELECT command in THE INFORM
REFERENCE GUIDE, IDR39¢5, or the GET.LIST and FORM.LIST commands in
this manual), the CLEAR.LIST command is invoked without a "file.name"
parameter. In this mode, the CLEAR.LIST command processor will verify
that you intended to use the active SELECT list by prompting you for an
affirmative response.

Page 96 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

CLEAR.FILE {DATA} {file.name}
or

CLEAR.FILE {DICT} {file.name}

FIGURE 1. Format of the CLEAR.FILE command.

:CLEAR.FILE TRANSACTIONS

TRANSACTIONS has been cleared

FIGURE 2. Example of the CLEAR.FILE command.

December 2, 1980 PRIME INFORMATION Release 4 Page 97

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.12 CLEAR,LOCKS Command

The CLEAR.LOCKS command releases either a specified task

synchronization lock, or all task synchronization locks, for the user
invoking the command.

PRIME INFORMATION systems have 64 user-accessible semaphores which are
referred to as execution locks. These locks may be used to synchronize
processes running on different terminals on the same system. The
meaning of any one of these 1locks is defined by your System
Administrator. For example, Lock Number 23 may be defined (within your
installation) as being the lock that must be set when any process which
could affect a General Ledger balance is being executed. If all
programs which modify Accounting balances correctly set Lock Number 23
before they actually modify these balances, then the integrity of the
General lLedger balance is assured.

Any specified execution lock set by your task may be cleared (i.e., set
to the -1 status) by the CLEAR,LOCKS command. ‘The format of the
command is:

CLEAR.LOCKS {lock.number}

where "lock.number" is the particular lock to clear. If “"lock.number"
is omitted then all 64 execution locks set by your task are cleared.

WARNING: It is your responsiblity to understand the use of these task
synchronization locks by your installation, before you use this
command. If you use the CLEAR.LOCKS command to release a lock before
it should have been released, you may affect the integrity of the
information being maintained on your system. The CLEAR.LOCKS command
will clear the specified "lock.number" (or all locks if no
"lock.number” is specified) without regard to the dependence of any
currently-executing programs on the lock(s) being left in the state set
by those programs; the only requirement is that the lock was set by
your task. If you are not absolutely certain of the effects of this
command, you should have your System Administrator accomplish your
intended purpose by whatever mechanism he or she thinks is appropriate.

See also the description of the LIST.LOCKS and LOCK commands elsewhere

in this manual. ‘The System Administrator may also wish to review the
MASTER command, described in this manual.

Page 98 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION CQMMANDS

CLEAR.LOCKS {lock.number}

where “"lock.number" is the lock to be cleared. If "lock.number" is
omitted then all locks that were set by your task are cleared.

FIGURE 1. Format of the CLEAR.LOCKS command.

:LOCK 7

:LOCK 9

:LOCK 11

:LIST.LOCKS

g: =11 1l: -11 :t =11 3: -1} : =11 :t=1! 6: -11! : 8!
8:-1! 9: @1 10: -1y 11l: @ ! 12: -1 ! 13: -1 ! 14: -1 ! 15: -1 !
16:¢ -1 1 17: -1 1 18: =1 ! 19: -1 ! 2@: -1 ! 21: =11 22: =1 ! 23: -1}
24: -1) 25: -1 1 26: -1 ! 27: -1 ! 28: -1} 29: -1 ! 3@: -1 ! 31: -1}
32¢ -1 1 33: -1 ! 34: -1} 35: -1 ! 36: -1 37: -1 ¢ 38: -1 ! 39: -1}
40: -1 ! 41: =11 42: =11 43: =1 ! 44: -1 ! 45: -1 ! 46: -1} 47: -1 1
48: -1 1 49: -1 1 5@0: -1 ! 51: -1 ! 52: -1 1 53: -1 § 54: =1 | 55: -1}
56: -1} 57: -1 1 58: -1 ! 59: -1 ! 60: -1 ! 61: -1 ! 62: -1 ! 63: -1 1}
:CLEAR. LOCKS 7

¢LIST.LOCKS

B: =11 1l: -1 : =11 3:-11! 4: -1 t=-11! 6: -1 : -1
8:-11! 9: @ ¢! 10: -1 ! 11: @ ! 12: -1 ! 13: -1 ! 14: -1 ! 15: -1}
16: -1 ! 17: -1 1 18: =1 1 19: -1 ! 20: -1 ! 21: =1} 22: -1 ! 23: =11
24: -1 1 25: -1 1 26: -1} 27: -1 1 28: -1 1 29: -1 ! 3@: -1 ! 31: -1 !
32: -1 ! 33: 11 34: -1} 35: -1 36: =11 37: -1 1 38: -1 | 39:--1 1
40: -1 ! 41: -1 1 42: -1} 43: -1 1 44: -1) 45: -1 ! 46: -1 ! 47: -1}
48: -1 ! 49: -1 1 5@0: -1 ! 51: -1 ! 52: -1 1 53: -1 ! 54: -1 ! 55: -1 1
56: -1 ! 57: -1 ! 58: -1 ! 59: -1 ! 6@: -1 ! 61: -1 ! 62: -1 | 63: -1 !
:CLEAR. LOCKS

:LIST.LOCKS

g: -1 1! HEO | t=1! 3:-1! 4: -1} s -11! 6:-11 7: -1
8: -11! $t-1!1@4: -1 1 11: -1 1 12: -1 ¢ 13: -1 ! 14: -1 ! 15: -1}
16: -1 ! 17: -1 ! 18: =1 1 19: -1 ! 2@: -1 1 21: =1 ! 22: -1] 23: -1 |
24: -1 ! 25: -1 1 .26s -1 ! 27: -1 1 28: -1 ! 29: -1 ! 3@: -1 ! 31: -1 1
32: =<1 1 33: -1) 34: =11 35: -1 ! 36: -1 ! 37: -1 ! 38: -1} 39: -1 1
40: -1 ! 41: -1 ! 42: -1} 43: -1) 44: -1} 45: -1 | 46: -1 ! 47: -1 1}
48: -11 49: -1 1 50: -1 ! 51: -1 1 52: =1 § 53: -1 ! 54: =1 | 55: -1 1|
56: =1 ! 57: -1 ! $-1159: -1160:-1"!61: -11! 62: <1 ! 63: -1 !

FIGURE 2. Examples of the CLEAR.LOCKS command.

December 2, 1980 PRIME INFORMATION Release 4 Page 99

PRIME INFORMATION COMMANDS PDR39¢6 PRIME INFORMATION

5.13 CLEARDATA Command

The CLEARDATA command allows an INFO/BASIC program to clear out the
data stack that has been built either from DATA statements in a
paragraph, or from DATA statements in another INFO/BASIC program.

Within PRIME INFORMATION, it is possible to build a data stack of
pre-supplied responses to anticipated INPUT statements that will be
executed by an INFO/BASIC program. This data stack can be built either
by a series of DATA statements in a paragraph, or by a series of DATA
statements in an INFO/BASIC program. If such a data stack has been
built, and an INFO/BASIC program executes an INPUT statement, the next
unused element of the data stack will be supplied to the program as if
it had been typed at the terminal. When there are no more elements
left on the data stack (or if there was no data stack created) , any
subsequent INPUT statement executed by the INFOQ/BASIC program will
require a response from the terminal.

Occasionally, it may be necessary for an INFO/BASIC program to "throw
away" the rest of the elements of a pre-supplied data stack, and to
obtain its input from the terminal. As an example, if a program was
invoked from a paragraph that contained DATA statements to build a data
stack, and the program encountered an error in its processing (such as
a missing file, with the file name having been supplied as a DATA
statement in the data stack), that program might choose to abandon the
remaining elements of the data stack, and request a new (valid) file
name from the terminal operator. The CLEARDATA command is supplied for
this purpose.

The format of the CLEARDATA command is:
EXECUTE 'CLEARDATA'

Note that, although this command appears in an account's VOC file, it
is not intended for use at the terminal. Tt is useful only when it is
invoked via an EXECUTE statement within an INFO/BASIC program. Note
also that all unused elements of a data stack are erased by PERFORM
each time your task returns to the colon (:) prompt; therefore, it is
not necessary for an INFO/BASIC program to use the CLEARDATA command
except in unusual situations.

Page 100 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

EXECUTE 'CLEARDATA'

FIGURE 1. Format of the CLEARDATA command.

GET.FILE.NAME:

PRINT "Enter name of file ":

INPUT FILE.NAME

OPEN "", FILE.NAME TO FILE.VAR ELSE
EXECUTE "CLEARDATA"
PRINT "Unable to open file " :FILE.NAME
GOTO GET.FILE.NAME

END

PRINT "Enter name of record to be modified ":

INPUT RECORD.NAME

In the program fragment of this example, the program will prompt for
file name, and later for record name. If the file name is not correct
and the program re-prompts for it, the next DATA statement (if the
program was invoked with a DATA statement stack) will be provided as
the response; this is obviously invalid. By executing the CLEARDATA
command, the program can assure that the data being input matches its
intended use.

FIGURE 2. Example of the CLEARDATA command.

December 2, 198¢ PRIME INFORMATION Release 4 Page 101

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

' 5.14 CLEARSELECT Command

Active SELECT lists that have been constructed by the SELECT or SSELECT
processors, or by the FORM.LIST or GET.LIST commands, may be cancelled
before they would have been used by subsequent processes. The PERFORM
verb which cancels an active SELECT list is CLEARSELECT.

A SELECT list is made active by executing a SELECT or SSELECT command,
by executing a GET.LIST command, or by executing a FORM,LIST command.
If the command which immediately follows the activation of a SELECT
list is one which utilizes a SELECT list, then it will use the list
just activated. If you have activated such a SELECT list, and then
decide that you do not wish to have the next command or program use it
after all, you may use the CLEARSELECT verb to cancel the SELECT 1list.

The format of the CLEARSELECT command is:

CLEARSELECT

Many PRIME INFORMATION processors use a SELECT list if one is present
at the time that they are invoked. For example, most of the INFORM
commands such as LIST, COUNT, SUM, SELECT, etc., use an active SELECT
list if there is one, as do most of the PERFORM commands which are
file-related (such as GROUP.STAT, DELETE, ED, etc.). Additionally, any
INFO/BASIC program which utilizes the READNEXT statement will use a
SELECT list that had already been created at the time the program was
invoked. Note that, in the case of an INFO/BASIC program using the
READNEXT statement, an active SELECT list may be partially processed
and then the remainder disposed of, with the CLEARSELECT command (which
is also an INFO/BASIC statement).

Page 102 PRIME INFORMATION Release 4 December 2, 1980

te

s

PERFORM PDR3946 PRIME INFORMATION COMMANDS

CLEARSELECT

FIGURE 1. Format of the CLEARSELECT Command.

¢SELECT EMPLOYEES WITH DEPENDENTS > 3
49 items selected.
:COUNT EMPLOYEES

49 records counted.

sSELECT EMPLOYEES WITH DEPENDENTS > 3
49 items selected.

:CLEARSELECT

:COUNT EMPLOYEES

328 records counted.

FIGURE 2. Example of the CLEARSELECT Command.

December 2, 1988 PRIME INFORMATION Release 4 Page 103

PRIME INFORMATION COMMANDS PDR390)6 PRIME INFORMATION

5.15 CLR Command

The CLR command is provided to allow the user to erase the terminal
display. The CLR command is a synonym for the CS command.

It may be desirable to erase the data last displayed on the terminal,
as, for example, when sensitive information has just been displayed but
is no longer needed. T prevent casual observers from seeing this
sensitive information, the display can be erased with the CLR command.

The format of the CLR command is as follows:

CLR
This command clears the terminal screen.

Note that the CLR command relies on the ability of the terminal to
recognize and respond to a particular control character sequence.
Since there is no standard among terminal manufacturers for the control
sequences which generate various responses (such as CLEAR SCREEN), the
CLR command will not work on every terminal. It is specifically
intended to work on PRIME's PT25 terminal.

While this command may work on terminals which do not use the control
sequences of PRIME's PT25 terminals, it is unlikely. In this case, the
user may write a simple INFO/BASIC program which writes the appropriate
control sequence to erase the terminal display, and replace the VOC
record for CLR with a pointer to this cataloged INFO/BASIC program.

Page 104 PRIME INFORMATION Release 4 December 2, 1980

[

PERFORM PDR3906 PRIME INFORMATION COMMANDS

PRINT CHAR(12) :STR(CHAR(0) ,20) :@(d,0)
END

FIGURE 1. Actual statement executed to CLR screen.

PRINT CHAR(27) :"K"
END

FIGURE 2. Example of user-written CIR (for Perkin-Elmer FOX terminal).

December 2, 198¢ PRIME INFORMATION Release 4 Page 105

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.16 CNAME Command

The CNAME command is used to change the name of a PRIME INFORMATION
file, or to change the names of records within a PRIME INFORMATION
file. ‘

The CNAME command is used to change the name of a PRIME INFORMATION
file, or to change the names of records within a file. The format of
the command to change file names is:

CNAME old.file.name,new.file.name
or
CNAME old.file.name TO new.file.name

Either format of the CNAME command will rename "old.file.name" to
"new.file.name". CNAME will make the necessary changes to the PRIME
INFORMATION file index "/FILE.DEF/", and also to the VOC file. If the
VOC file entry whose record identifier is "old.file.name" is a synonym
(that is, the DATA file name field and/or the DICT file name field are
not the same as "old.file.name"), CNAME will affect only the
appropriate field of the VOC file entry (see FIGURE 3 for an example).

CNAME file.name old.rec.id,new.rec.id ...

Al

or
CNAME file.name old.rec.id TO new.rec.id

Either of these formats of the CNAME command will rename "old.rec.id"
to "new.rec.id" in the file "file.name". ‘The first form of this
command allows specification of a list of records to be renamed within
a file by continuing the list of old and new record names (separated by
commas) on the same command line. ‘The second form of this command
allows only a single pair of old and new record names per command line.

Page 106 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

CNAME old.file.name,new.file.name
or

CNAME old.file.name TO new.file.name

CNAME file.name old.rec.id,new.rec.id ...
or

CNAME - file.name old.rec.id TO new.rec.id

FIGURE 1. Formats of the CNAME command.

:CNAME BP TO TYPEl

:CNAME SALES.ORDERS S123,A123 S124,Al124

:CNAME INVOICES, PAID. INVOICES

FIGURE 2. Example of the CNAME command.

VoC file item "SALES.ORDERS"
001: F
@02: SALES,ORDERS
@P3: D_INVOICES ' '

:CNAME SALES.ORDERS, SALES. HISTCRY

VOC file item "SALES.HISTORY"
@a1: F
@02: SALES,HISTORY
6@3: D_INVOICES

FIGURE 3. Example of the CNAME command for a VOC file synonym item.

December 2, 1980 PRIME INFORMATION Release 4 Page 107

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORVATION

5.17 COMO Command

The COMO command allows the user to manipulate PRIMOS COMO files from
within PRIME INFORMATION.

The format of the command is:

COMO {action} {file.name} {param}
where “"action" may be:

oN — create a new COMOUTPUT file

OFF - stop capturing terminal display

SPOOL - print a COMOUTPUT file to lineprinter
DELETE - delete COMOUTPUT file

LIST - list all COMOUTPUT files for an account

"file.name" is the name of the COMOUTPUT file to be accessed; and
"param" may be:

HUSH - a keyword to indicate that the terminal
display should be captured on the COMOUTPUT
file, but not displayed on the terminal.
HUSH is used only with the ON action.

T - to direct a SPOOL list to the terminal.

If the COMO verb is entered without any options, the command processor
will prompt for the necessary parameters.

The COMOUTPUT files created by the COMO command are automatically
prefixed with "0 ", to identify them as COMOUTPUT files at the PRIMOS
level. Within PRIME INFORMATION, the user should refer to these files
by the "file.name" specified (omitting the "o").

A note of caution on the use of the HUSH keyword: if this keyword is
used with an INFORM LIST statement, carriage returns are still required
for each page of output, unless the INFORM statement contains the
NO.PAGE parameter. The HUSH keyword is equivalent to the -NTTY keyword
of the PRIMOS COMO command. See the description of the HUSH command,
elsewhere in this manual, for additional information about the effects
of this option.

The COMO command is a PRIME INFORMATION-level version of the PRIMOS
COMO command, described in the PRIMOS COMMANDS REFERENCE GUIDE,
FDR31#8. Note that the files produced by this command can become quite
large, and are not automatically deleted by the system. This is a
powerful and useful tool, but should not be used indiscriminately.
When old COMO files are no longer needed, they should be deleted.

Page 108 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

CoMO {action} {file.name} {param}

FIGURE 1. Format of the COMO command.

:COMO

Enter action (ON,CFF,DELETE,LIST,SPOOL,QUIT)
CoMO file name or QUIT =TUESDAY

Terminal display on? (Y/N) =Y
TUESDAY established

]
2

Enter action (ON,CFF,DELETE,LIST,SPOOL,QUIT) =LIST

coMo file list 15:18:47 12 MAR 1980
1 POSTING
2 LOCK
3 GEN.LEDGER
4 ACCT.REC
5 ACCT.PAY
6 ORD.ENT
7 MAIL.LIST
8 TUESDAY IN USE

Enter number of file to be selected or QUI'I‘=§

Enter action (ON,OFF,DELETE,LIST,SPOOL,QUIT) =DELETE
GEN, LEDGER deleted

Enter action (ON,COFF,DELETE,LIST,SPCOL,QUIT) =QUIT
End of COMO session

:COMO SPOOL ORD,. ENT
ORD. ENT spooled to line printer

FIGURE 2. Examples of the COMO command.

December 2, 1980 PRIME INFORMATION Release 4 Page

199

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.18 COMPILE.DICT Command

Before using dictionary Information ("I" type) descriptors in an INFORM
Sentence, they must be compiled. Compilation is accomplished by using
the COMPILE.DICT command. :

Before an "I" descriptor can be referenced in an INFORM sentence, it
must be compiled. (For a description of “Iv descriptors, see the
section titled "INFORMATION DESCRIPTORS" in THE INFORM REFERENCE GUIDE,
IDR3905) . ‘The COMPILE.DICT command can specify a particular descriptor
to be compiled, or it can compile the entire dictionary. A short form
of the verb, COMPILE.DICT, is provided for convenience. The possible
formats of the COMPILE.DICT or COMPILE.DICT command are:

COMPILE.DICT file.name {descriptor.name}...
or
COMPILE.DICT file.name {descriptor.name}...

If an optional "descriptor.name" is not specified, all the "I¢
descriptors in the dictionary are compiled.

The compiled object code for the descriptor expression is stored in the
descriptor record, along with the time and date of the compilation.

Whenever one or more “I" descriptors are changed in a dictionary, it is
advisable to compile all the "I" descriptors in that dictionary, since
other "I" descriptors may have referenced those that have been changed.

When the PRIME INFORMATION EDITOR is used to change "I" descriptors, it
invalidates the object code stored from any previous compilation, as a
signal to INFORM that this item requires compilation before use. At
the time that the EDITOR is asked to FILE the changed "I" descriptor,
it will issue a reminder message that the item needs to be compiled.
Because of the "invalidated" object code now stored with the VI"
descriptor, INFORM will notice that the item has not been compiled if
that item is used in an INFORM sentence, and will automatically compile
it before the sentence is executed.

Note that, at present, ENTRO does not invalidate the object code of
previously-compiled "I" descriptors which it modifies; the
responsibility for compiling these ENTRO-modified "I" descriptors is
the user's.

Page 110 PRIME INFORMATION Release 4 December 2, 1980

o

\\—/

PERFORM

PDR3906 PRIME INFORMATION COMMANDS

COMPILE.DICT filename {descriptor.name}...

or

COMPILE.DICT filename {descriptor.name}...

FIGURE 1. Format of the COMPILE.DICT Command.
id: field.name
pel: I {desc} type code and optional description
@B2: expression expression specification
@03: conversion conversion specification
@04: name optional display name
9@5: format format specification
P06: s/m single-valued or multi-valued
PA7: assoc association name
908 thru @15 <reserved>
P16: object compiled object code
g17: time time (internal format) last compiled
@g18: date date (internal format) last compiled
@19: object compiled object code
920 and on <reserved>
FIGURE 2. An "I" descriptor record after compilation.

December 2, 1980

PRIME INFORMATION Release 4 Page 111

PRIME INFORMATION COMMANDS PDR397A6 PRIME INFORMATION

5.19 COPY Command

The COPY command is used to copy records from one file to another, or
to copy records within a file and give them new record identifiers.
The COPY command uses a SELECT list if one is active.

The COPY command is used to move records from one file to another,
optionally deleting the source file records, changing the identifiers
of the source file records in the target file, and overwriting existing
records in the target file which have the same identifiers as the
source records. Both the source file and the target file may be either
DATA portions of PRIME INFORMATION files, or DICT portions of these
files. The COPY command may also be used within a single file, to copy
records while giving them new identifiers, optionally deleting the
original records and optionally overwriting existing records which have
the same new identifier. The format of the COPY command is as follows:

COPY FROM {DICT} filel {TO {DICT} file2} {rec.list}
{OVERWRITING} { DELETING} { SQUAWK}

"rec.list" can be one of three forms:
recl rec2 rec3
or
recl,rec2 rec3,recd
or
ALL

If the first form of "rec.list" is used, the named records will be
copied with no change in their record identifiers. If the second form
of “rec.list" is used, records "recl" and "rec3" will be copied and
their record identifiers changed to "rec2" and "rec4", respectively.
In form three of "rec.list", the keyword "ALL" directs the COPY
processor to copy all records from the "FROM" file. If a select list
is used, "rec.list" is not specified. (See the description of the
SELECT and SSELECT verbs in THE INFORM REFERENCE GUIDE, IDR39#5).

If the source record identifier already exists on the target file, it
will not be overwritten unless the "OVERWRITING" keyword is included.
If you are copying to a newly-created file, or to a newly-cleared file
(making an archival backup, for example), the performance of COPY can
be improved greatly by using the OVERWRITING keyword, since the COPY
process does not have to read each record in the target file before
writing it. Source records are not deleted by COPY, unless the
"DELETING" keyword is included.

Page 112 PRIME INFORMATION Release 4 December 2, 198¢

PERFORM PDR3906 PRIME INFORMATION COMMANDS

If the "SQUAWK" option is specified, the copy processor outputs a
descriptive narrative as the records are being copied. (See example in
Figure 2.) If the "TO" file.name is not specified, the COPY process
operates within the "FROM" file that was specified.

Note that the COPY command should not be used to copy compiled object
code (i.e., "S$program.name" records, where the "$" indicates object
code) . Note also that copying dictionaries which contain compiled "I"
items should always be followed by the command " :COMPILE.DICT
file.name", since the "I" items in a dictionary are often inter-related
and should always be compiled together. Finally, note that the COPY
command may not be used with mixed file types: 1i.e., to copy from File
Type 1 to File Type 2 through 9, or vice versa.

COPY FROM {DICT} filel {TO {DICT} file2} {rec.list}
{OVERWRITING} {DELETING} {SQUAWK}

FIGURE 1. Format of the COPY command.

:COPY FROM CANDIDATE TO MEMBER ALL SQUAWK

* from file = CANDIDATE
* to file = MEMBER

* orig.file.sw =
* dest.file.sw =
* overwriting.sw = @

* deleting.sw]
JONES copied to JONES
SMITH copied to SMITH
BROAN copied to BROWN
DOAKES copied to DOAKES
HONARD copied to HOWARD
5 records copied.

[| I

FIGURE 2. Example of the COPY command with the SQUAWK option.

December 2, 1980 PRIME INFORMATION Release 4 Page 113

PRIME INFORMATION COMMANDS PDR39#6 PRIME INFORMATION

5.20 COUNT (INFORM System Processor)

COUNT is a portion of the high-level, natural language QUERY and REPORT
GENERATOR portion of the PRIME INFORMATION system. It is documented
completely in THE INFORM REFERENCE GUIDE, IDR39¢5.

Processors which are invoked by PERFORM that belong to the INFORM group
are not documented in this manual. Instead, they are documented in THE
INFORM REFERENCE GUIDE, IDR39¢5. COUNT is one of these INFORM
processors.

Page 114 PRIME INFORMATION Release 4 December 2, 1980

PERFORM

December 2, 1980

PDR3906 PRIME INFORMATION COMMANDS
!
PRIME INFORMATION Release 4 ' Page 115

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.21 CREATE.FILE Command

The CREATE.FILE command is used to create files to be used with the
PRIME INFORMATION system.

All PRIME INFORMATION files must be created by the CREATE.FILE command.
The format of the CREATE.FILE command is:

CREATE.FILE {dict/data} {file.name} {type} {modulo} {description}

CREATE.FILE normally creates both data and dictionary sections for the
file, but the optional "dict/data" parameter may be used to specify
that only the DICT portion of the file, or only the DATA portion of the
file, is to be created, by using the keyword DICT or DATA as the
"dict/data" parameter. CREATE.FILE also creates the file definition
record in the VOC file, by which the file being created will be
referenced. The data portion of the file is named "file.name", and the
dictionary portion is named "D file.name"; these files appear as
PRIMOS files in the account's ufd. (See the section titled "FILE
Definition Records" in this manual.)

Two categories of files may be created: hash-encoded direct access, or
sub-ufd. Hash-encoded direct access files should be used for all data
files; sub-ufd files should be used for program source or RUNOFF
source. There are eight different file types within the "hash-encoded
direct access" category; these are files types 2 through 9. The
sub-ufd file is specified by choosing file type 1. When the
CREATE.FILE processor prompts for file type, a brief description of the
primary purpose of each one is displayed in response to a "?" entry.
(See the section titled "PRIME INFORMATION Files" elsewhere in this
manual for a complete description of each file type.)

"Modulo" is used for direct access data files only, and must be
specified as an integer with values between 1 and 32,767, inclusive.

The optional parameter “"description" is added to the file definition
record in the VOC file, as the comment portion of field one (after the
"F" which identifies the VOC file record as a file definition record).
This "description" will be displayed in response to the sequence ":.?
file.name".

The CREATE.FILE processor will prompt for input if the command is
entered with no parameters. (See example in Figure 2.)

Page 116 PRIME INFORMATION Release 4 December 2, 1980

t 1

PERFORM PDR3906 PRIME INFORMATION COMMANDS

CREATE.FILE {dict/data} {file.name} {type} {modulo} {description}

The CREATE.FILE processor will prompt for input. Type "?" at the
“ENTER FILE TYPE" prompt to have the list of file types displayed. In
the multi-line form of the CREATE.FILE command, the CREATE.FILE
processor will prompt for an optional "description" in addition to
prompting for “file.name", "type" and "modulo”. This file description
becomes the remainder of field one in the VOC file record defining the
file (after the "F" which identifies the record as a File definition
record), and is the data to be displayed in response to a user typing
"?2file.name" at the PERFORM colon prompt.

FIGURE 1. Format of the CREATE.FILE command.

:CREATE.FILE INV
File type =?

The valid file types are:

Usage

Sub-ufd type file, for large records or source code
Hashed, keys end in numbers

Hashed, keys end mainly in numbers

Hashed, keys end in letters

Hashed, keys end in full range of ASCII characters
Hashed, keys begin in numbers

Hashed, keys begin mainly in numbers

Hashed, keys begin in letters

Hashed, keys begin in full range of ASCII characters

File type =2

Modulo =7

File description =Master INVENTORY file.

Creating file INV / Type 2 / Modulo 7.

Creating file D _INV (DICT) / Type 3 / Modulo 1.

Added "@ID", the default record for INFORM, to DICT D _INV.

The same file may be created with the following one-line command
format:

:CREATE.FILE INV 2 7 Master INVENTORY File

FIGURE 2., Example of CREATE.FILE command.

December 2, 1980 PRIME INFORMATION Release 4 Page 117

PRIME INFORMATION CQOMMANDS PDR3906 PRIME INFORMATION

5.22 CS Command

The CS command is provided to allow the user to erase the terminal
display.

It may be desirable to erase the data last displayed on the terminal,
as, for example, when sensitive information has just been displayed but
is no longer needed. To prevent casual observers from seeing this
sensitive information, the display can be erased with the CS command.

The format of the CS command is as follows:
Cs
This command'clears the terminal screen.

Note that the CS command relies on the ability of the terminal to
recognize and respond to a particular control character sequence.
Since there is no standard among terminal manufacturers for the control
sequences which generate various responses (such as CLEAR SCREEN), the
CS command will not work on every terminal. It is specifically
intended to work on PRIME's PT25 terminals.

While this command may work on terminals which do not use the control
sequences of PRIME's PT25 terminals, it is unlikely. 1In this case, the
user may write a simple INFO/BASIC program which writes the appropriate
control sequence to erase the terminal display, and replace the VOC
record for CS with a pointer to this cataloged INFO/BASIC program.

Page 118 PRIME INFORMATION Release 4 December 2, 1980

PERFORM ' PDR3906 PRIME INFORMATION CCMMANDS

PRINT CHAR(12) :STR(CHAR(Q) ,20) :@(0,0)
END '

FIGURE 1. Actual statement executed to CS screen.

PRINT CHAR(27) :"K"
END

FIGURE 2. Example of user-written CS (for Perkin-Elmer FOX terminal).

December 2, 1980 PRIME INFORMATION Release 4 Page 119

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.23 DATE Command

The DATE command displays the current system date and time at the user
terminal.

The current system date and time are printed at the user terminal by

the DATE command. The DATE command requires no parameters; its format
is simply:

DATE

The date and time displayed by invoking the DATE verb are the date and
time set by the System Administrator at the system operator's console.
This system date is a required parameter of the PRIMOS bootstrap
process, but may be reset at any time after that process. The DATE
command is provided as a simple mechanism for verifying that the
correct system date and time have been set, before beginning a process
that requires the correct date and time.

The format of the date portion of the display is the standard format
used in the United States. For example:

Friday, February 29, 1989
This format may be changed to European format by executing the
DATE.FORMAT verb; see the description of the DATE.FORMAT verb in this
manual.

To obtain the system date in a different format, which includes the
time of day, see the "TIME Command" section elsewhere in this manual.

Page 120 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

DATE

FIGURE 1. Format of the DATE command.

:DATE

Thursday, March 20, 1980 @©2:14 PM

FIGURE 2. Example of the DATE command (standard format).

:DATE

Thursday, 20 March 1980 @2:14 PM

FIGURE 3. Example of the DATE command (European format).

December 2, 198¢ PRIME INFORMATION Release 4 Page 121

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.24 DATE.FORMAT Command

The DATE.FORMAT verb changes the default format for dates from American
format to European format.

The default format for dates on the PRIME INFORMATION system is the
American format, which is month followed by day followed by year. This
format can be modified to European format (day followed by month
followed by year) by the DATE,FORMAT command. The format of this
command is: -

DATE. FORMAT

The DATE.FORMAT verb has no effect on the internal representation of
dates (as described in the section titled YDATE() FUNCTION" in THE
INFO/BASIC REFERENCE GUIDE, PDR3983), but only on the results of
conversion from that internal representation to external
representation. Specifically, the DATE.FORMAT verb will alter the date
format produced by the following:

HEADING and FOOTING
DATE command
ICONV and OCONV

If the conversion field of a D descriptor in a dictionary were "D2/",
and the contents of that field were the internal representation for the
date September 25, 1980, then this field would normally be printed as:

09/25/80

However, if the DATE.FORMAT verb were used, this same date would now be
printed as:

25/09/80

Note that the same result can be achieved by using "D2/E" in the D
descriptor in the dictionary and not using the DATE.FORMAT command.
Note also that a "D2/E" conversion specification will effectively
become a "D2/" conversion specification, after execution of ‘the
DATE. FORMAT verb.

DATE.FORMAT is a “one-shot" command, rather than a "toggle" command.
That is, once it has been executed, a second execution of the same
command will not reset the date format to the default. If it is
desired to return to the default date format, it is necessary to leave
the PRIME INFORMATION environment (see the section titled "QUIT
Command® in this manual) and then re-enter it (see the section titled
*"INFO Command" in this manual).

Page 122 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

DATE. FORMAT

FIGURE 1. Format of the DATE.FORMAT command.

BEFORE AFTER
CONVERSION DATE. FORMAT DATE. FORMAT
OCONV (4000,"D2/") 12/13/78 13/12/78
OCONV (4000,"D2/E") 13/12/78 12/13/78
ICONV("12/13/78" ,"D2") 4000 null;
STATUS() = 1
ICONV("12/13/78" ,"D2E") null; 4000
STATUS() = 1

FIGURE 2. Results of the DATE.FORMAT command.

December 2, 1980 PRIME INFORMATICN Release 4 . Page 123

PRIME INFORMATION COMMANDS PDR3906 : PRIME INFORMATION

5.25 DELAY Command

The DELAY verb defines a time function to be used to delay the printing
of a character after a Carriage Return or Carriage Return/Line Feed, to
support hard copy terminals.

Since CRT terminals operate at electronic speeds, there is no need to
delay data transmission after a Carriage Return or Carriage Return/Line
Feed sequence; the cursor will have moved to the beginning of the next
line before the first character of that line arrives. However, most
hard—copy or printing terminals incur considerable mechanical delays in
the physical movement of the printing mechanism back to the beginning
of the 1line. With these types of terminals, failure to delay
next-character transmission can cause the first few character(s) after
a Carriage Return to be printed incorrectly.

The DELAY verb defines a time function to be used to delay the printing
of the next character after a Carriage Return (<KNEW LINE>) has been
sent to a terminal. The format of the DELAY command is:

DELAY {octal .minimum.delay} {octal.maximum.delay} {octal.r.margin}

where "octal .minimum.delay" defines the number of character-times (the
time it takes the system to type a character on a line) to delay when
<NEW LINE> is output at the left margin; "octal.maximum.delay" defines
the number of character-times to delay when <NEW LINE> is output at the
defined right-most position of the line; and "octal.r.margin" defines
the right-most position of the 1line (expressed as the number of
characters per line). If <NEW LINE> is output at some point within a
line, the time delay is proportional to the number of characters typed.
If ‘octal.r.margin" is not specified, 72 is assumed; if
"octal .maximum.delay” is not specified, 12 is assumed. If the verb
DELAY is given with no parameters, the default values 6, 12, and 72 are
assumed. These values are adequate for most 30 cps terminals.

The DELAY process is actually implemented by sending ASCII "NULL"
characters after each carriage return, depending on where the carriage
(or cursor) was located at the time of the carriage return. Systems
which have only CRT terminals might benefit from a slight performance
improvement by using the following command in a LOGIN procedure:

DELAY 1 1 129

This command specifies that only one delay character (ASCII NULL) will
be transmitted after a Carriage Return, regardless of where the cursor
was positioned. (Note that it is not possible to specify =zero delay
characters, since this command treats a parameter value of zero as a
specification to return to the default value.)

Page 124 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

The DELAY verb can be used prior to logging in, at the PRIMOS 1level.

(See the PRIMOS COMMANDS REFERENCE GUIDE, FDR31#8, for more information
on this command.)

DELAY {octal.minimum.delay} {octal.maximum.delay} {octal .r.margin}

FIGURE 1. Format of the DELAY command.

:DELAY 0 10 100

will set the following delays:
@ Will use the default 6 character-time delays when
a carriage return is encountered at the left margin.
(0 specifies to use default parameter value.)

10 Decimal 8 character-time delays when a carriage
return is encountered at the right margin.

166 The maximum expected line length is decimal
64 characters.

FIGURE 2. Example of the DELAY command.

December 2, 1988 PRIME INFORMATION Release 4 Page 125

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.26 DELETE Command

The DELETE command deletes a specified record or records from a named
data file or dictionary. This command uses a SELECT list if one is
active.

The DELETE command is used to delete records from the DATA section or
the DICT section of a PRIME INFORMATION file. The format of this
command is:

DELETE {DICT} file.name record.id {record.id} . . .

Note that the "file.name" parameter, and at least one "record.id", must
be specified on the command line with the DELETE command. Additional
“"record.id"'s may be specified, if desired.

If the DICT keyword is used, the DELETE processor will attempt to
delete the specified "record.id"(s) from the dictionary portion of the
. named file "file.name". If the DICT keyword is omitted, the DELETE
processor will attempt to delete the specified "record.id"(s) from the
data portion of the named file.

The DELETE command also works with a SELECT LIST. After creating the
select list (with the SELECT/SSELECT command), or after re-activating a
saved select 1list (with the GET.LIST command), or after activating a
user-created select list (with the FORM.LIST command), simply type
"DELETE file.name", with no parameters (or type "DELETE DICT file.name"
with no additional parameters). The DELETE processor will display the
key of the first record in the select list, and ask for verification of
your intent to delete all the records whose keys are in the select
list. If you affirm that intention, DELETE will use the select list;
otherwise, you will see the message "DELETE aborted"” and will return to
PERFORM's colon prompt. If you forget to activate a SELECT 1list, and
type "DELETE file.name" or "DELETE DICT file.name", you will see the
message "Not found. @ records deleted.", and will return to PERFORM's
colon prompt.

Page 126 PRIME INFORMATION Release 4 December 2, 1980

PERFORM

DELETE {DICT} file.name record.id {record.id} . . .

FIGURE 1. Format of the DELETE Command.

PDR3906 PRIME INFORMATION COMMANDS

¢:DELETE PAYROLL SMITH JONES
2 records deleted.

:DELETE DICT CUSTOMERS PAST.DUE PHONE F29
3 records deleted.

sDELETE INVENTORY "321*1@@29*%A4%7"
1 records deleted.

FIGURE 2. Examples of the DELETE Command.

:SELECT VENDORS WITH LAST.ORDER.DATE BEFORE 12/31/77

17 records selected.

:DELETE VENDORS
Do you wish to delete the records previously selected?

The first record ID=Acme.Indust.Supply
Enter Yor N
Y

17 records deleted.

FIGURE 3. Example of the DELETE command with a SELECT list.

December 2, 1980 PRIME INFORMATION Release 4 Page

127

PRIME INFORMATION CQMMANDS PDR3906 PRIME INFORMATICN

5.27 DELETE.ACCOUNT Command

The DELETE.ACCOUNT command is provided for the exclusive use of the

System Administrator, to delete PRIME INFORMATION accounts which are no
longer needed on the system.

The DELETE.ACCOUNT command is used by the System Administrator for
deleting PRIME INFORMATION accounts which are no longer needed on the
system. Within a PRIMOS UFD that has been a PRIME INFORMATION account,
the DELETE.ACCOUNT processor will delete only PRIME INFORMATION-related
files; any files within the PRIMOS UFD which were created outside the
PRIME INFORMATION environment will be left intact. Additionally, the
DELETE.ACCOUNT processor will delete from the system CATALOG space any
programs which were cataloged from within the account being deleted.
The format of the command is:

DELETE.ACCOUNT

Because of the potentially disastrous results of its uninformed use,
the DELETE.ACCOUNT command is protected from inadvertant use. Its
operation is documented here, but its correct invocation is left to
your System Administrator. Once invoked, the DELETE.ACCOUNT processor
will prompt for the name of the account to be deleted. Given the
account name, the processor will confirm that the account does exist.
If the account has a password, or if it does not contain the file
u/FILE.DEF/", then the account deletion process will be aborted.

Next, the DELETE.ACCOUNT processor executes an INFORM "SELECT"
statement, to retrieve from the account's VOC file those Verb
definition records which define programs cataloged from the account
into the system CATALOG space; these records are identifiable in the
VOC file by containing a "V" in the TYPE field (field 1), and having
the Verb name (field 2) begin with an asterisk ("*"). (If no such
entries exist, the System Administrator will see the message "No
records meeting selection criteria found on the VOC file" during this
portion of the DELETE.ACCOUNT processing.) Using this SELECT list, the
DELETE.ACCOUNT processor executes the "DELETE.CATALOG" command to
delete the corresponding programs from the system CATALOG space. This
process automatically deletes all programs that have been cataloged
from this account during its existence.

Page 128 PRIME INFORMATION Release 4 December 2, 1980

(%

(
PERFORM PDR3906 PRIME INFORMATION COMMANDS

The DELETE.ACCOUNT processor next reads the file named "/FILE.DEF/" in
the account being deleted, and deletes all the files and dictionaries
whose names appear there; any non-PRIME INFORMATION files and
sub-UFD's (files and sub-UFD's whose names do not appear in the
“/FILE.DEF/" file) are left intact in the account. When this portion
of the account deletion process has been completed, the account will be
empty of all PRIME INFORMATION files (/FILE.DEF/, VOC, etc.). If no
non-PRIME INFORMATION files or sub-UFD's exist in the account, then the
account will be completely empty (PRIMOS will see it as a NULL UFD) .
In this event, the System Administrator may wish to utilize the
PRIMOS-level utility “FUTIL®, selecting its "TREDEL" option, to delete
the empty UFD. (See the PRIMOS COMMANDS REFERENCE GUIDE, FDR31@#8 and
THE SYSTEM ADMINISTRATOR'S GUIDE, PDR31@9 for information on how to use
FUTIL.) :

DELETE.ACCOUNT

FIGURE 1. Format of the DELETE.ACCOUNT command.

:DELETE.ACCOUNT

Acount name =DEL.TEST

No records meeting selection criteria found on the voC File.

Deleting file vOC

Deleting file D &UFD&
Deleting file D VOC

Deleting file &SAVEDLISTSs
Deleting file D &SAVEDLISTS&
Deleting file VOCLIB
Deleting file D VOCLIB

The account has been deleted.

FIGURE 2. Example of the DELETE.ACCOUNT command.

December 2, 1980 PRIME INFORMATION Release 4 Page 129

PRIME INFORMATION CQMMANDS PDR3906 PRIME INFORMATICON

5.28 DELETE.CATALOG Command

The DELETE.CATALOG command makes cataloged programs:. unavailable for
subsequent execution.

The DELETE.CATALOG command marks a cataloged program as unavailable for
execution by subsequent calls. The format of this command is:

DELETE.CATALOG {program.name}

where "program.name" is the exact name of the program as it appears in
the catalog. (See the section titled "MAP Command" in this manual for
a command to list the contents of your catalog space.)

The deletion of a program from the catalog does not affect any tasks
that are currently executing the program, because the actual cataloged
object code is not destroyed by the DELETE.CATALOG command; it is
simply marked as ineligible for subsequent invocation. This also means
that the space occupied by the deleted code is not made available for
use by new cataloged programs until the catalog space reclamation
routine is performed via the GARBAGECOLLECT option of the INFORMATION
BOOTSTRAP PROCESSCR) .

Note that deletion of a subroutine from the catalog must be done with
care, and with knowledge of other users on the system. If a cataloged
subroutine is in use by a program which has already called that
subroutine before the DELETE.CATALOG command is used, the program will
continue to execute normally. However, if a program calls a subroutine
after it has been deleted from the catalog by the DELETE.CATALOG
command (even if the program was already executing before the
DELETE.CATALOG command was used to delete the subroutine), the program
will produce the error "SUBROUTINE NOT CATALOGED".

Page 130 PRIME INFORMATION Release 4 December 2, 1980

1]

PERFORM PDR3906 PRIME INFORMATION COMMANDS

DELETE.CATALOG {program.name}

FIGURE 1. Format of the DELETE.CATALOG command.

:WHO

4 DEMO
¢DELETE.CATALOG PGM1

*DEMO*PGM1
Catalog deletion completed.

FIGURE 2. Example of the DELETE.CATALOG command (locally cataloged).

sWHO
2 MASTER
:DELETE.CATALOG *POSTING

*POSTING
Catalog deletion completed.

FIGURE 3. Example of the DELETE.CATALOG command (globally cataloged).

December 2, 1980 PRIME INFORMATION Release 4 Page 131

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.29 DELETE.FILE Command

The DELETE.FILE command deletes a file and/or its associated
dictionary. This command uses a SELECT list if one is active.

The DELETE.FILE command is used to delete the DATA section, the DICT
section, or both sections of a PRIME INFORMATION file. The format of
the command is:

DELETE.FILE {DATA} {file.name}
or
DELETE.FILE {DICT} {file.name}

If the DATA keyword is specified, and field two of the file definition
record in the VOC file equals "file.name", thenh thewDATA section of
"file.name" will be deleted, and field two in the -file definition
record will be set to null. If field two of the file definition record
does not equal "file.name", the DELETE.FILE processor will ask if it is
o.k. to delete the file whose name is in field two. If the reply is
no, the file definition record will not be altered. If the reply is
yes, the file whose name is in field two of the file definition record
will be deleted, and field two will be nulled.

If the DICT keyword is specified and field three of the file definition
record in the WVOC file equals "D file.name", the DICT section
"D file.name” will be deleted, and field three in the file definition
record will be nulled. If field three of the file definition record
does not equal "D file.name", the DELETE.FILE processor will ask if it
is o.k. to delete the file whose name is in field three of the file
definition record. If the reply is no, the file definition record will
not be altered.

If neither the DATA nor DICT keyword is specified, both sections of
"file.name" will be deleted, provided that field two of the file
definition record equals "file.name" and field three of the file
definition record equals "D file.name". If fields two and three do not
equal "file.name" and "D file.name", respectively, the DELETE.FILE
processor will ask if it is o.k. to delete the file whose name appears
in field two; the file definition record in the VOC file will be
deleted in either case. If the file being deleted is a REMOTE file,
only the VOC file record will be deleted, and the treename which
defines the remote file will be displayed.

Page 132 PRIME INFORMATION Release 4 December 2, 1980

PERFORM _ PDR3906 PRIME INFORMATION COMMANDS

DELETE.FILE {DATA} {file.name}
. or

DELETE.FILE {DICT} {file.name}

FIGURE 1. Format of the DELETE.FILE Command.

:DELETE.FILE DATA PAYROLL
Deleting file PAYROLL, type 2.

¢:DELETE.FILE DICT CUSTQOMERS
Deleting file D _CUSTOMERS, type 3.

¢:DELETE.FILE INVENTORY

Deleting file INVENTORY, type 7.
Deleting file D_INVENTORY, type 3.

FIGURE 2. Examples of the DELETE.FILE Command.

December 2, 1980 PRIME INFORMATION Release 4 : Page 133

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.30 DELETE.LIST Command

Lists of record identifiers that have been constructed by the SELECT or
SSELECT commands may be stored and subsequently referenced by name.
When these lists are no longer needed, they may be deleted by the
DELETE. LIST command.

After the SELECT or SSELECT commands have been used to construct a list
of identifiers of records which meet specified selection criteria, the
list may be saved by the SAVE.LIST command, for subsequent recall by
the GET.LIST command. (See the description of the SELECT and SSELECT
commands in THE INFORM REFERENCE GUIDE, IDR39¢5, and of the SAVE.LIST
and GET.LIST commands elsewhere in this manual.) Use of these saved
lists offers the advantage of being able to use a given select list
more than once without having to re-access the data file in order to
reconstruct the list. Eventually, such lists will have out-lived their
usefulness, and should be deleted. Deletion of a stored select list
may be accomplished through the use of the command:

DELETE.LIST {list.name}

This command deletes "list.name" (or "&TEMPport#&" if "list.name" is
not specified) from the file &SAVEDLISTS&, where SELECT lists are
saved. All saved select lists are stored under the user-specified name
"list.name", or the default name "sTEMPport#&", concatenated with a
three-digit number "seq", where "seq" is "@@@" for saved lists of the
short form. If the saved select list is in the long form, groups of up
to 5000 record identifiers are stored in separate records. ‘The first
group is stored with "seq" equal to "@@1", and "seq" is incremented by
one for each additional group of record identifiers. ‘This appended
three-digit number is never specified with the DELETE.LIST command,
since the DELETE.LIST processor automatically provides this number as
needed.

Page 134 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

DELETE.LIST {list.name}

A
FIGURE 1. Format of the DELETE.LIST Command.
; :DELETE.LIST ORDERS
:DELETE.LIST BACK.ORDERS
:DELETE. LIST
o/ FIGURE 2. Examples of the DELETE.LIST Command.
NS
‘\/‘
\/’

December 2, 1980 PRIME INFORMATION Release 4 Page 135

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.31 DISPLAY Command

During execution of a paragraph it is sometimes de51rab1e to display a
line on the terminal to advise the operator of the. progress of the
entire procedure. This can be accomplished through the use of the
DISPLAY command. S

The format of the DISPIAY command is as follows:

DISPLAY display.text

This command causes "display.text" to be printed on the termlnal,
followed by a carrlage-return and a line feed.

Page 136 PRIME INFORMATION Release 4 December 2, 1980

r‘\\

PERFORM PDR3906 PRIME INFORMATIOGN COMMANDS

DISPLAY display.text

FIGURE 1. Format of the DISPLAY Command. ’

With this Paragraph stored in the VOC file:
id: INV.RUN.1

@01: PA

@82: LIST INV.FILE WITH QOH < 18@ LPTR
#03: DISPLAY STARTING INV2203

PB4: RUN BP INV2263

@05: DISPLAY PRINTING ERROR.FILE

#@6: LIST ERROR.FILE LPTR

The following would be the result at the terminal:
:INV.RUN. 1

 STARTING INV2203
PRINTING ERROR.FILE

FIGURE 2. Example of the DISPLAY Command.

December 2, 1980 PRIME INFORMATION Release 4 Page 137

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.32 ED Command

The ED command invokes the PRIME INFORMATION EDITOR. This command uses
a SELECT list if one is active.

The PRIME INFORMATION EDITOR is a line-oriented text editor, used to
create, update or delete INFO/BASIC source programs, data and
dictionary items, and text files for RUNOFF processing. This EDITOR
may be used on records in any PRIME INFORMATION file, regardless of
data type or file type. The EDITOR is invoked by the ED command. The
format of this command is:

ED file.name & record.id's prompted
ED {DICT} file.name ' record.id's prompted
ED {DICT} file.name rec.id specified record.id

ED {DICT} file.name rec.id rec.id ...multiple record.id's
ED {DICT} file.name * all records in file

The optional keyword "DICT" may be used to specify that the dictionary
of the named file is to be edited.

The EDITOR can only access valid PRIME INFORMATION files, i.e., those
files created by the PERFORM CREATE.FILE processor.

The PRIME INFORMATION EDITOR is completely documented in THE PRIME
INFORMATION EDITOR REFERENCE, IDR3944.

Page 138 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

N~ ED file.name & record.id's prompted
‘ ED {DICT} file.name record.id's prompted
| ED {DICT} file.name rec.id specified record.id

ED {DICT} file.name rec.id rec.id ...multiple record.id's

- ED {DICT} file.name * all records in file

FIGURE 1. Format of the ED Command.

December 2, 1980 PRIME INFORMATION Release 4 Page 139

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.33 ENTER (INFORM System Processor)

ENTER is a basic data entry processor which belongs to the PRIME
INFORMATION system INFORM processor. ENTER 1is a synonym for ENTRO,
which is documented completely in THE INFORM REFERENCE GUIDE, IDR39@5.
This command uses a SELECT list if one is active.

Processors which are invoked by PERFORM that belong to the INFORM group
are not documented in this manual. Instead, they are documented in THE
INFORM REFERENCE GUIDE, IDR39#5. ENTER is one of these INFORM
processors.

Page 140 PRIME INFORMATION Release 4 December 2, 1980

L

PERFORM

December 2, 1980

PDR3906 PRIME INFORMATION COMMANDS

PRIME INFORMATION Release 4 Page 141

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.34 ENTRO (INFORM System Processor)

ENTRO is a basic data entry processor which belongs to the PRIME
INFORMATION system INFORM processor. It is documented completely in
THE INFORM REFERENCE GUIDE, IDR39¢5. This command uses a SELECT list
if one is active. '

c e

Processors which are invoked by PERFORM that belong to the INFORM group
are not documented in this manual. Instead, they are documented in THE
INFORM REFERENCE GUIDE, IDR39¢5. ENTRO is one of these INFORM
processors. ’

Page 142 PRIME INFORMATION Release 4 December 2, 1980

“

(U

PERFORM

December 2, 1980

PDR3906 PRIME INFORMATION COMMANDS

PRIME INFORMATION Release 4 Page 143

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.35 ENTROC (INFORM System Processor)

ENTROC is a basic data entry processor which belongs to the PRIME
INFORMATION system INFORM processor. ENTROC is actually a synonym for
ENTRO, which is documented completely in THE INFORM REFERENCE GUIDE,
IDR39@5, except that ENTROC uses cursor addressing. This command uses
a SELECT list if one is active.

Processors which are invoked by PERFORM that belong to the INFORM group
are not documented in this manual. Instead, they are documented in THE
INFORM REFERENCE GUIDE, IDR3995. ENTROC is one of these INFORM
processors. -

viv el
B

Page 144 PRIME INFCRMATION Release 4 December 2, 1980

L))

PERFORM PDR3906 PRIME INFORMATION COMMANDS

December 2, 1989 PRIME INFCRMATION Release 4 Page 145

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

/
5,36 FILE.STAT Command

The FILE.STAT command allows the user to obtain useful information

regarding the size of a file and the distribution of records within the
file. '

Information may be obtained about a PRIME INFORMATION file through the
use of the FILE.STAT command. This command provides information about
the type of the file, its modulo, the quantity of data in the file (in
bytes), and its distribution into file groups. The command has the
following format: ‘

FILE.STAT {DICT} {file.name} {LPTR}

For more detailed information on record distribution within the f£ile,
see the description of the GROUP.STAT and GROUP.STAT.DETAIL commands in
this manual. For an understanding of the data produced by the
FILE,STAT command, see the section titled "PRIME INFORMATION Files" in
this manual. _

Page 146 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

FILE.STAT {DICT} {file.name} {LPTR}

FIGURE 1. Format of the FILE.STAT Command.

¢FILE.STAT VOC

File name = VOC
File type =5
Number of groups in file (modulo) = 21
Number of records = 276
Total number of bytes = 22789
Average number of records per group = 13.1428
Average number of bytes per group = = 1085.1904
- Average number of bytes per record = 82.5688
Minimum number of bytes in a record = 15
Maximum number of bytes in a record = 379
Average number of fields per record = 2.9384
Minimum number of fields per record = 2
Maximum number of fields per record = 19

FIGURE 2. Example of the FILE.STAT Command.

December 2, 1980 PRIME INFORMATION Release 4 Page 147

PRIME INFCRMATICN COMMANDS PDR3906 PRIME INFORMATION

5.37 FORM.LIST Command

Lists of record identifiers that have been constructed by INFO/BASIC
programs may be used by PERFORM as if they had been constructed by the
SELECT or SSELECT commands. These lists are retrieved and prepared for
processing by the FORM.LIST command. '

It may be desirable to write an INFO/BASIC program which produces a
list of record identifiers that are to be involved in subsequent
processing. Such a program might select records whose keys are to be
included in the list, using criteria provided in response to a dialogue
with the user at the terminal. Such a 1list could be stored as a
multi-valued record in a PRIME INFORMATION file, with each value being
a unique record identifier.

Once stored, a user-built select list may be recalled by the command:
FORM.LIST {file.name} {lisﬁ.name} B

The FORM.LIST command retrieves the user-built - select 1list from the
file named "file.name" and the record named "list.name", and makes the
list available to INFO/BASIC READNEXT statements, to PERFORM commands
which use select 1lists, or to the INFORM processor. A process that
makes use of select lists will be unable to distinguish between a
select list formed by the SELECT or SSELECT processors, and one
recalled by the FORM.LIST command. Indeed, the FORM.LIST command may
be thought of as being exactly like the GET.LIST command, since both
commands activate a previously saved SELECT list; the difference is
that the FORM.LIST command activates a user-built 1list from a
user-specified file, while the GET.LIST command activates a
system-built list from the &SAVEDLISTS& file.

See also the sections titled "GET.LIST Command", "SAVE.LIST Command"

and "DELETE.LIST Command" in this manual, and the sections on the
SELECT and SSELECT commands in THE INFORM REFERENCE GUIDE, IDR39¢5.

Page 148 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

FORM.LIST {file.name} {list.name}

FIGURE 1. Format of the FORM.LIST Command.

¢FORM. LIST KEY.FILE CUSTOMERS.MONDAY

478 records selected

¢FORM.LIST MASTER MAIL.LIST

529 records selected

FIGURE 2. Examples of .the FORM.LIST Command.

December 2, 1980 PRIME INFORMATION Release 4

Page 149

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.38 FORMAT Command

The FORMAT command will organize INFO/BASIC source statements into a
visible logical block structure for easy reading. This command uses a
SELECT list if one is active.

-

The FORVAT command analyzes an INFO/BASIC source program and
re-organizes its physical appearance to reflect its logical structure,
utilizing indentation to improve its readability. The format of the
command is:

FORMAT {file.name} { prog ram.name} {-LIST}

If the single-line form of the command is used (with no parameters),
the FORMAT processor will prompt for "file.name" and "program.name".
If the "file.name" parameter is' specified, but the "program.name"
parameter is omitted, the FORMAT processor will not prompt for the
“program.name", since it assumes that a SELECT 1list is present when
this form of the command is used.

The use of the -LIST keyword will cause the FORMAT processor to spool
the results of the formatting operation directly to the system printer.

For an example of a program before and after using the FORMAT
processor, see the section titled "FORMAT Example®™ in this manual. For
an example of the FORMAT command when used with an active SELECT list,
see the section titled "Commands Which Use SELECT Lists" in this
manual.

Page 150 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

FORMAT {file.name} {program.name} {-LIST}

The command will prompt for the “file.name" and "program.name" if the
one-line format of the command is not used.

FIGURE 1. Format of the FORMAT command.

:FORMAT

INFO/BASIC file name - =MASTER. SOURCE
Spool to printer (¥/N) - =N

INFO/BASIC Program name - =ACCOUNTING.DRIVER
ACCOUNTING.DRIVER

% ek e de g Fe g Fe g g de ke de ke ke g do kK K

224 lines formatted.

INFO/BASIC Program name - = <NEW LINE>

Note that the same result would be achieved with the single-line form
of the command:

:FORMAT MASTER.SOURCE ACCOUNTING.DRIVER

FIGURE 2. Example of the FORMAT command.

December 2, 1980 PRIME INFORMATION Release 4 Page 151

PRIME INFORMATION COMMANDS PDR3906 : PRIME INFORMATION

5.38.1 FORMAT Example

These pages present an example of the FORMAT command, by displaying a
program whose block structure is difficult to perceive visually, and
that same program after the FORMAT processor has produced a
highly-visible block structure.

PROGRAM BEFORE FORMATTING

* 'PRIME NUMBER GENERATOR

LIMIT = 100

DIM PRIME.LIST (LIMIT)

PRIMES.FOUND = ¢ ’

FOR NUMBER = 1 TO LIMIT

IF PRIMES.FOUND = @ THEN. STOP, POINT = INT(NUMBER / 2)
ELSE STOP.POINT = PRIME.LIST (PRIMES.FOUND)

FOR DIVISCR = 2 TO STOP.POINT

QUOTIENT = NUMBER / DIVISOR

IF INT(QUOTIENT) = QUOTIENT THEN GOTO NOT.PRIME
NEXT DIVISOR ’

PRIMES.FOUND += 1

PRINT "*":

PRIME.LIST (PRIMES.FOUND) = NUMBER

IF PRIMES.FOUND => LIMIT THEN GOTO FINISHED

NOT. PRIME:
NEXT NUMBER

FINISHED:

PRINT

FOR NUMBER = 1 TO PRIMES.FOUND
PRINT PRIME.LIST (NUMBER)

NEXT NUMBER

END

FIGURE 1. The PRIME.NUMBER program before formatting.

Page 152 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

sFORMAT EXAMPLES PRIME.NUMBER
. PRIME.NUMBER
~ kedk

27 lines formatted.

FIGURE 2. The FORMAT command used to format this program.

PROGRAM AFTER FORMATTING

* PRIME NUMBER GENERATOR

N\ LIMIT = 100
DIM PRIME.LIST (LIMIT)
PRIMES.FOUND = 0
FOR NUMBER = 1 TO LIMIT
IF PRIMES.FOUND = @ THEN STOP.POINT = INT(NUMBER / 2)
ELSE STOP.POINT = PRIME.LIST (PRIMES.FOUND)
FOR DIVISOR = 2 TO STOP.POINT
QUOTIENT = NUMBER / DIVISOR
IF INT(QUOTIENT) = QUOTIENT THEN GOTO NOT.PRIME
© NEXT DIVISOR
R PRIMES.FOUND 4= 1
PRINT ll*tl: .
PRIME.LIST (PRIMES.FOUND) = NUMBER
. IF PRIMES.FOUND.=> LIMIT THEN GOTO FINISHED

NOT. PRIME:
NEXT NUMBER
FINISHED:
, PRINT
N~ FOR NUMBER =1 TO PRIMES.FOUND
PRINT PRIME.LIST (NUMBER)
- NEXT NUMBER
END
FIGURE 3. The PRIME.NUMBER program after formatting.
\/"

December 2, 1980 PRIME INFORMATION Release 4 Page 153

PRIME INFORMATICN COMMANDS PDR3906 PRIME INFORMATION

5.39 GET.LIST Command

Lists of record identifiers that have been constructed by the SELECT
and SSELECT processors may be stored and referenced by name. These
lists are retrieved and prepared for processing by the GET.LIST
command .

After constructing a list of identifiers of records which meet a
specified set of selection criteria "(with the SELECT or SSELECT
commands, described in THE INFORM REFERENCE GUIDE, IDR3905), the 1list
may be stored and subsequently retrieved by name. This technique has
the advantage of being able to use a given select list more than once,
without having to re-access the data file to reconstruct the list.

The select list may be stored in a file named &SAVEDLISTS&, by using
the command SAVE.LIST, described elsewhere in this manual. Once
stored, a select list may be recalled by the command:

GET.LIST {account.name} {1ist.name}

The GET.LIST command retrieves the previously-stored select list from
the file &SAVEDLISTS&, using the name "list.name", and makes the list
available to INFO/BASIC READNEXT statements, to PERFORM commands which
use select lists, or to the INFORM processor. A process that makes use
of select lists will be unable to distinguish between a select list
formed by the SELECT or SSELECT processors, and one recalled by the
GET.LIST command. '

If the optional "account.name" is specified, the GET.LIST command will
retrieve the saved list from that account. Note that this format of
the command cannot work if "account.name” requires a password. If no
"]ist.name" is specified, the GET.LIST command will retrieve the list
with the name &TEMPport#&, where "port#" is the port number of the user
invoking the command.

All saved select 1lists are stored under the user-specified name
"]ist.name", or under the default name &TEMPport#&, concatenated with a
three-digit number "seq", where “"seq" is "0P@" for saved lists of the
short form. If the saved select list is in the long form, groups of up
to 5000 record identifiers are stored in separate records. ‘The first
group is stored with "seq" equal to "ggl", and “seq" is incremented for
each additional group of record identifiers. This appended three-digit
nurber is never specified with the GET.LIST command, since the GET.LIST
processor automatically supplies this number as needed.

See also the sections titled "SAVE.LIST Command" and "DELETE.LIST

Command" in this manual, and the description of the "&SAVEDLISTS&" file
in the Appendix to this manual.

Page 154 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION CQOMMANDS

GET.LIST {account.name} {list.name}

FIGURE 1. Format of the GET.LIST Command.

:GET.LIST CUSTOMERS

3478 records selected.

:GET,.LIST MASTER MAIL.LIST

12529 records selected.

:GET,. LIST

35 records selected.

FIGURE 2. Examples of the GET.LIST Command.

December 2, 1980 PRIME INFORMATION Release 4 Page 155

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.40 GROUP.STAT Command

GROUP.STAT is a command that produces a record distribution histogram
for a specified file. ‘This command uses a SELECT list if one is
active.

The objective of hash-encoded direct access files such as are used for
data files in the PRIME INFORMATION system is to evenly distribute the
records of the file across a number of groups. With an understanding
of the algorithms employed for each of the hash-encoded file types
(Types 2 through 9) and knowledge of the actual values of the record
identifiers, it is possible to choose a combination of file type and
modulo which is likely to produce the best possible distribution of
records.

However, when the record identifiers are relatively unpredictable, or
as the file grows in size, it is often necessary to view the actual
record distribution, to verify that the file type/modulo combination is
in fact the correct choice. For this purpose, the GROUP.STAT command
has been provided.

The format of the GROUP.STAT command is:
GROUP.STAT {DICT} {file.name} {LPTR}

The "DICT" and "file.name" parameters may be omitted as a signal for
this verb to use a SELECT list.

The GROUP.STAT verb produces a summary of each group, displaying the
number of bytes in the group, the number of records in the group, and a
histogram of the number of records in the group. In addition, the
GROUP.STAT verb displays the file type description, file type number,
and modulo, and produces statistics including total bytes. in all
groups, total number of records in all groups, average bytes and
records per group, and the standard deviation and percent standard
deviation of bytes and records per group.

A complement to the GROUP.STAT command is the GROUP.STAT.DETAIL
command, described elsewhere in this manual. The GROUP.STAT.DETAIL
command provides (as its name 1mp11es) more detailed information about
the distribution of records in a spec1f1ed f11e, including actual
record identifiers and corresponding record sizes in each group.

Examples of the GROUP.STAT command are shown in Figures 2 and 3.

Page 156 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

GROUP.STAT {DICT} {file.name} {LPTR}

{ FIGURE 1. Format of the GROUP.STAT command.

. tGROUP. STAT CUST

Type description= Hashed, keys end mainly in numbers

Bytes Records File= CUST Modulo= 3 Type= 3
117 35
181 2>»

229 4 >>>>

9 Totals

3 Averages per group

45 @ Standard deviation from average
@ Percent std dev from average

FIGURE 2. ' Example of GROUP.STAT command.

¢:GROUP. STAT PATIENTS

Type description= Hashed, keys end in full range of ASCII characters

Bytes Records File= PATIENTS Modulo= 7 Type= 5
1347 5 3> -
962 3>

1263 5 5>
1325 5 >>>>

808 35»

693 3 >>»

2059 5 >
8457 29 Totals

1208 4 Averages per group

421 @ Standard deviation from average
34.9 0.0 Percent std dev from average

FIGURE 3. Example of GROUP.STAT command.

December 2, 198¢ PRIME INFORMATION Release 4 Page 157

- PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.41 GROUP.STAT.DETAIL Command

GROUP.STAT.DETAIL is a command that produces a detailed record
distribution summary for a specified file. This command uses a SELECT
list if one is active.

The objective of hash-encoded direct access files such as are used for
data files in the PRIME INFORMATION system is to evenly distribute the
records of the file across a number of groups. With an understanding
of the algorithms employed for each of the hash-encoded file types
(Types 2 through 9) and knowledge of the actual values of the record
identifiers, it is possible to choose a combination of file type and
modulo which is likely to produce the best possible distribution of
records.

However, when the record identifiers are relatively unpredictable, or
as the file grows in size, it is often necessary to view the actual
record distribution, to verify that the file type/modulo combination is
in fact the correct choice. For this purpose, the GROUP.STAT.DETAIL
command has been provided.

The format of the GROUP.STAT.DETAIL command is:
GROUP.STAT.DETAIL {DICT} {file.name} {LPTR}

The “DICT" and “"file.name" parameters may be omitted as a signal for
this verb to use a SELECT list.

The GROUP.STAT.DETAIL command produces a detailed summary of each
group, displaying the record id and size in bytes of each record in the
group, and producing a total line for each group, which includes the
size of the group in bytes, and the number of records in the group. In
addition, the GROUP.STAT.DETAIL verb displays the file type
description, file type number, and modulo, and produces statistics
including total bytes in all groups, total number of records in all
groups, average bytes and records per group, and the standard deviation
and percent standard deviation of bytes and records per group.

A functionally 'similar record distribution display, but with less
detail and with each group represented by a histogram, is available
from the GROUP.STAT command, described elsewhere in this manual.

An example of the GROUP.STAT.DETAIL command is shown in Figure 2.

Page 158 PRIME INFORMATION Release 4 December 2, 1988

)

PERFORM PDR3906 PRIME INFORMATION CQMMANDS

GROUP.STAT.DETAIL {DICT} {file.name} {LPTR}

FIGURE 1. Format of the GROUP.STAT.DETAIL command.

:GROUP. STAT.DETAIL CUST
Type description= Hashed, keys end mainly in numbers

Bytes Record.id File= CUST Modulo= 3 Type= 3
24 1p¢1.A
48 103.B
39 1¢4.A
Group 1 Total size: 117 Bytes 3 Records
114 101.B
61 105.A
Group 2 Total size: 181 Bytes 2 Records
46 103.D
61 102.B
41 106.A
75 103.A

Group 3 Total size: 229 Bytes 4 Records

Bytes Records
527 9 Totals
176 3 Averages per group
45 @ Standard deviation from average
25.6 0.8 Percent std dev from average

FIGURE 2. Example of GROUP.STAT.DETAIL command.

December 2, 1980 PRIME INFORMATION Release 4 Page 159

PRIME INFORMATION COMMANDS *° PDR3946 PRIME INFORMATION

5.42 HASH.HELP Command

HASH.HELP is a command that analyzes an existing PRIME INFORMATION
file, looking closely at record id characteristics and record id/record
sizes, to recommend a file type and modulo for that file. This command
uses a SELECT list if one is active.

The HASH.HELP verb is provided as an aid to determining the best file
type and modulo for an existing PRIME INFORMATION file. Since
hash-encoded direct access files (used for data files on PRIME
INFORMATION systems) may affect overall system performance according to
how well the records in them are distributed, it is important to choose
a combination of file type and modulo which optimizes this
distribution. The HASH.HELP verb is intended to assist a knowledgable
System Administrator in determining what is the "best" file type and
modulo which will assure the most even distribution of records in the
file.

The format of the HASH.HELP command is:
HASH.HELP {DICT} {file.name} {NO.PAGE} {LPTR}

The "DICT" and "file.name" parameters may be omitted as a signal for
this verb to use a SELECT list, or (if no SELECT list is active) to
prompt for "file.name". Since HASH.HELP is an aid in hash-encoding
files more efficiently, Type 1 files (which are not hash-encoded) may
not be specified by the "file.name" parameter. If a SELECT 1list is
used, but the terminal being used is a printing device, you may wish to
use the NO.PAGE parameter. ‘The report produced by this verb may be
routed to the system printer by using the LPTR parameter.

The HASH.HELP verb analyzes a file by reading every key and every
record in the file. The record id's are examined carefully to
determine their predominant data type, and to determine whether they
tend to be more unique from left-to-right, or from right-to-left. This
information, combined with average record id and record data sizes, is
used as the basis for a recommendation as to "best" file type and
"minimum" modulo. Since this process depends on averages, the
recommendations produced are just that: recommendations. In some
cases, the file type recommended may not actually be the optimum one,
and it is likely that the modulo recommended (since it 1is a minimum
modulo recommendation) will usually be smaller than is ideal.

A complement to the HASH.HELP command is the HASH.HELP.DETAIL command,
described elsewhere in this manual. The HASH.HELP.DETAIL command
provides (as its name implies) more detailed information about the
distribution of records in a specified file, including minimum,
maximum, and average record id and record data sizes.

Page 160 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

HASH.HELP {DICT} {file.name} {NO.PAGE} {LPTR}

FIGURE 1. Format of the HASH.HELP command.

¢HASH.HELP STATES

File STATES Type 6 Modulo 2 16:32:04 10-19-8¢ Page 1

Of the 51 total keys in this file:

@ keys were wholly numeric (digits @ thru 9)
(Use File Type 2 or 6 for wholly numeric keys)

@ keys were numeric with separators (as reproduced below):
0123456789#$%&*+-./2;

(Use File Type 3 or 7 for numeric keys with separators)

51 keys were from the 64-character ASCII set reproduced below:

1"§9%&" () *+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ I\l “_‘
(Use File Type 4 or 8 for 64-character ASCII keys)

@ keys were from the 256-character ASCII set
(Use File Type 5 or 9 for 256-character ASCII keys)

The keys in this file are more unique in their right-most eight bytes.
The smallest modulo you should consider for this file is 4.

The best type to choose for this file is probably type 4.

- FIGURE 2. Example of the HASH.HELP command.

December 2, 1980 PRIME INFORMATION Release 4

Page 161

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.43 HASH.HELP.DETAIL Command

HASH.HELP.DETAIL is a command , that analyzes an existing PRIME
INFORMATION file, looking closely at record id characteristics and
record id/record sizes, to recommend a file type and modulo for that
file. This command uses a SELECT list if one is active.

Yooz

The HASH.HELP.DETAIL verb is provided as an aid to determining the best
file type and modulo for an existing PRIME INFORMATION file. Since
hash-encoded direct access files (used for data files on PRIME
INFORMATION systems) may affect overall system performance according to
how well the records in them are distributed, it is important to choose
a combination of file type and modulo which optimizes this
distribution. The HASH.HELP.DETAIL verb is intended to assist a
knowledgable System Administrator in determining what is the "best"
file type and modulo which will assure the most even distribution of
records in the file.

»The format of the HASH.HELP.DETAIL command is:
HASH.HELP.DETAIL {DICT} {file.name} {NO.PAGE} {LPTR}

The "DICT" and "file.name" parameters may be omitted as a signal for
this verb to use a SELECT list, or (if no SELECT list is active) to
prompt for "file.name". Since HASH.HELP.DETAIL is an aid in
hash-encoding files more efficiently, Type 1 files (which are not
hash-encoded) may not be specified by the "file.name" parameter. If a
SELECT list is used, but the terminal being used is a printing device,
you may wish to use the NO.PAGE parameter. The report produced by this
verb may be routed to the system printer by using the LPTR parameter.

The HASH.HELP.DETAIL verb analyzes a file by reading every key and
every record in the file. The record id's are examined carefully to
determine their predominant data type, and to determine whether they
tend to be more unique from left-to-right, or from right-to-left. This
information, combined with average record id and record data sizes, is
used as the basis for a recommendation as to "best" file type and
"minimm"” modulo. Since this process depends on averages, the
recommendations produced are just that: recommendations. In some
cases, the file type recommended may not actually be the optimum one,
and it is likely that the modulo recommended (since it is a minimum
modulo recommendation) will usually be smaller than is ideal.

A complement to the HASH.HELP.DETAIL command is the HASH.HELP command,
described elsewhere in this manual. The HASH.HELP command provides
more concise information about the distribution of records in a
specified file, omitting minimum, maximum, and average record id and
record data sizes.

Page 162 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

HASH.HELP.DETAIL {DICT} {file.name} {NO.PAGE} {LPTR} -

FIGURE 1. Format of the HASH.HELP.DETAIL command.

+HASH.HELP.DETAIL STATES

File STATES Type 6 Modulo 1 16:41:19 10-10-80 Page 1

51 total keys in file

102 total bytes in all keys
2 smallest key
2 largest key
2 average bytes per key

51 total records in file
5514 total bytes in all records
86 smallest record
122 largest record
108.00 average bytes per record

17 average records per group (optimized)
1838 average bytes per group (optimized)

Press <NEW LINE> to continue =<NEW LINE>
File STATES Type 4 Modulo 3 16:41:19 19-10-80 Page 2
Of the 51 total keys in this file:

@ keys were wholly numeric (digits @ thru 9)
(Use File Type 2 or 6 for wholly numeric keys)

@ keys were numeric with separators (as reproduced below):
0123456789#5%&*+-./2; :
(Use File Type 3 or 7 for numeric keys with separators)

51 keys were from the 64-character ASCII set reproduced below:
17§$%&" () *+,-./0123456789: ;<=>?@ABCDEFGHIJKLMNOPORSTUWWXYZ [\] " _*
(Use File Type 4 or 8 for 64-character ASCII keys)

@ keys were from the 256-character ASCII set
(Use File Type 5 or 9 for 256-character ASCII keys)

The keys in this file are more unique in their right—moét eight bytes.
The smallest modulo you should consider for this file is 4.
The best type to choose for this file is probably type 4.

FIGURE 2. Example of the HASH.HELP.DETAIL command.

December 2, 1980 PRIME INFORMATION Release 4 Page 163

PRIME INFORMATION COMMANDS PDR3906 PRIME TNFORMATION

5.44 HASH.TEST Command

HASH.TEST is a command that produces a record distributioh histogra
for an existing PRIME INFORMATION file, with the user Supplying & hew
file type and/or modulo. This command uses a SELECT 1ist if one i
active.

The HASH.TEST command is used to give a "preview" of the Qistribution
of records in an existing PRIME INFORMATION file, given a néw filé type
and/or modulo. The format of the HASH.TEST command is:

HASH.TEST {DICT} {file.name} {type} {modulo} {LPTR}

The "DICT" and "file.name" parameters may be omitted as a signal for
this verb to use a SELECT list. The "type" and "modulo" parameters are
the same as for the CREATE.FILE command, except that Type 1 is Rot
acceptable for the HASH.TEST command. An asterisk (*) for either of
these parameters is a signal to use the existing type of module,
respectively. Additionally, both the “type" and the _Pfgdule®
parameters may be expressed as if they were control variablés for 3
loop. In this format {taking the "type" parameter as an axample), file
"type" could be expressed as:

begin.type,end.type,increment

where "begin.type” is the first file type to be tried (and must bBe an
integer between 2 and 9); end.type is the last file type to be EFied
(and must also be an integer between 2 and 9); and "ihcrément® must be
an integer. As an example, the command:

HASH.TEST INVENTORY.MASTER 2,6,2 *

would produce a trial histogram for the "INVENTCRY.MASTER" file uSing
its current "modulo" (signified by the asterisk), and uSifg first file
type 2, then file type 4, then file type 6.

The HASH.TEST verb produces a summary of each droup, displaying a
histogram of the number of records in the group. In addition, the
HASH.TEST verb displays the file type description, file type number,
and modulo, and produces statistics including total number of records
in all groups, average records per group, and the standard deviation
and percent standard deviation of records per group.

A complement to the HASH.TEST command is the HASH.TEST.DETAIL command,
described elsewhere in this manual. The HASH.TEST.DETAIL command
provides (as its name implies) more detailed information about the
distribution of records in a specified file, including corresponding
record sizes in each group.

Page 164 PRIME INFORMATION Release 4 December 2, 1980

)

)

PERFORM PDR3906 PRIME INFORMATION COMMANDS

HASH.TEST {DICT} {file.name} {type} {modulo} {LPTR}

FIGURE 1. Format of the HASH.TEST command.

:HASH. TEST STATES * *

Type description= Hashed, keys end in letters
records file= STATES modulo= 1 type= 4
51 S5535555555555555555550555555 55555555 5555555555555>
51 totals
51 averages per group
@ standard deviation from average
0.8 percent std dev from average
:HASH. TEST STATES 3 3

Type description= Hashed, keys end mainly in numbers
records file= STATES modulo= 3 type= 3
21 DOOO0000555555555555)
21 DOOOOD535355505005555>
9 OO55555>>

51 totals
17 averages per group
5 standard deviation from average
29.4 percent std dev from average
:HASH. TEST STATES 7 5

Type description= Hashed, keys begin mainly in numbers
records file= STATES modulo= 5 type= 7
8 5555 ’
14 >>5555555555>>
2>
9 >55555>>
18 >OO55555555555555)>
51 totals
10 averages per group
5 standard deviation from average
50.0 percent std dev from average

FIGURE 2. Examples of the HASH.TEST command.

December 2, 1980 PRIME INFORMATION Release 4 Page 165

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.45 HASH.TEST.DETAIL Command

HASH.TEST.DETAIL is a command that produces a record distribution
histogram for an existing PRIME INFORMATION file, with the user
supplying a new file type and/or modulus. This command uses a SELECT
list if one is active.

The HASH.TEST.DETAIL command is used to give a "preview" of the
distribution of records in an existing PRIME INFORMATION file, given a
new file type and/or modulo. ‘The format of the HASH.TEST.DETAIL
command is:

HASH. TEST.DETAIL {DICT} {file.name} {type} {modulo} {LPTR}

The "DICT" and “file.name" parameters may be omitted as a signal for
this verb to use a SELECT list. The "type" and "modulo" parameters are
the same as for the CREATE.FILE command, except that Type 1 is not
acceptable for the HASH.TEST.DETAIL command. An asterisk (*) for
either of these parameters is a signal to use the existing type or
modulo, respectively. Additionally, both the "type" and the "modulo"
parameters may be expressed as if they were control variables for a
loop. In this format (taking the "type" parameter as an example), file
"type" could be expressed as:

begin.type,end}type,increment

where "begin.type" is the first file type to be tried (and must be an
integer between 2 and 9); end.type is the last file type to be tried
(and must also be an integer between 2 and 9); and "increment" must be
an integer. As an example, the command:

HASH.TEST.DETAIL INVENTORY.MASTER 3,8,2 *

would produce a trial histogram for the "INVENTORY.MASTER" file using
its current "modulo" (signified by the asterisk), and using first file
type 3, then file type 5, then file type 7.

The HASH.TEST.DETAIL verb produces a summary of each group, displaying
a histogram of the number of records in the group. In addition, the
HASH. TEST.DETAIL verb displays the file type description, file type
number, and modulo, and produces statistics including total number of
records in all groups, average records per group, and the standard
deviation and percent standard deviation of records per group.

A complement to the HASH.TEST.DETAIL command is the HASH.TEST command,
described elsewhere in this manual. The HASH.TEST.DETAIL command
differs from the HASH.TEST command in that it provides the size (in
bytes) of each group, in addition to the record distribution histogram
for each group.

Page 166 PRIME INFORMATION Release 4 December 2, 1980

PERFORM ‘ - PDR3926 PRIME INFORMATION COMMANDS

HASH.TEST.DETAIL {DICT} {file.name} {type} {modulo} {LPTR}

FIGURE 1. Format of the HASH.TEST.DETAIL command.

:HASH.TEST.DETAIL STATES * *

Type description= Hashed, keys end in letters
bytes records file= STATES modulo= 1 type= 4
6458 51 DO55555550555555555555 55555005555 55535D5353355555>>

6458 51 totals
6458 51 averages per group
@ standard deviation from average
9.0 percent std dev from average
:HASH. TEST.DETAIL STATES 3 3

Type description= Hashed, keys end mainly 'in numbers

bytes records file= STATES modulo= 3 type= 3
2695 21 OOOODO00555355555555>
2663 21 DOOOOOOOX5OX3555555>>
1112 9 S555555>>

6470 51 totals
2157 17 averages per group
738 5 standard deviation from average
34.2 29.4 percent std dev from average
:HASH.TEST.DETAIL STATES 7 5

Type description= Hashed, keys begin mainly in numbers
bytes records file= STATES modulo= 5 type= 7
1921 8 DOX555>>
1818 14 >355555555555>
274 2 >»
1121 9 53>
2248 18 DOO5555555555555>>
6482 51 totals '
1296 10 averages per group
682 5 standard deviation from average
52.6 50.0 percent std dev from average

FIGURE 2. Examples of the HASH.TEST.DETAIL command.

December 2, 1980 PRIME INFORMATION Release 4 Page 167

PRIME INFORMATION CQMMANDS PDR3906 PRIME INFORMATION

5.46 HELP Command

The HELP command invokes the PRIME INFORMATION on-line user assistance
processor.

The HELP command is used to request assistance in using the PRIME
INFORMATION system. With a system as comprehensive as PRIME
INFORMATION, it is easy to forget how to use some infrequently-used
commands, or indeed, to forget what they are for. The HELP command is
Provided to give you enough information about any element which is
contained in the VOC file, to be able to use that element (ideally),
or, at the least, to know where to look for additional information.

The format of the HELP command is:
HELP {VOC.item.name}

If you know the name of the item that you need some HELP in using,
Specify its name on the command 1line with the HELP command. For
example, if you are having difficulty remembering the order of the
parameters required by the COPY command, simply type:

¢HELP COPY

You will see a description of the COPY command which is a summary of
the information available from this manual. However, if you simply
need HELP with the entire PRIME INFORMATION System, type HELP, and the
HELP processor will ask you to type either a single processor name (the
name of an item in the voC file), or simply <NEW LINE> to view every
HELP item in the SYS.HELP and USER.HELP files.

The PRIME INFORMATION system is supplied with HELP items for
PRIME-supplied routines in a file named SYS.HELP. Your system
administrator may augment this system HELP information by providing
HELP information for your own installation's programs, files, commands,
Sentences, etc., by Placing HELP descriptions into a file named
USER.HELP, using the same format as the SYS.HELP file.

You may also invoke the HELP Processor by typing "?VOC.item.name" at
PERFORM's ":" prompt. If you do so, you will be shown the comment
portion of Field Ghe of the VOC item you named, and will be given the
opportunity to see the SYS.HELP description (and the ~USER.HELP
description, if available) if you wish to do so.

Page 168 PRIME INFORMATION Release 4 December 2, 1980

.

PERFORM PDR3906 PRIME INFORMATION CCMMANDS

HELP {VOC.item.name}

FIGURE 1. Format of the HELP Command.

sHELP WHO
DOCUMENTATION AVAILABLE ON SYSTEM HELP FILE FOR *%% WHQ ***
Type "WHO"

This command displays the terminal number and the account name
for your task. :

Example:

sWHO
2 MASTER

In this example, the user is using terminal port number 2, and is
in the INFORMATION account named MASTER.

FIGURE 2. Example of the HELP Command.

December 2, 198¢ PRIME INFCRMATION Release 4 Page 169

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.47 HUSH Command

The HUSH command is used to suppress all messages which might normally
be sent to a terminal during processing. This command may also be used
to re-enable message transmission after it has been suppressed by
earlier use of this command.

Sometimes it is desirable to be able to run a task with all terminal
output suppressed. For example, a paragraph which is known to produce
considerable amounts of display data (in addition to the primary
results that the paragraph should produce, which might be a report on
the system printer) may be run on a slow device. The slow device could
be a CRT terminal operating at slow speed over a telephone line, or it
could be a hard-copy terminal which is inherently slow. If the data to
be displayed on the terminal is not necessary (it is not the principal
product of executing the paragraph), it may be completely suppressed
with the HUSH command. The format of the command is:

HUSH {OFF}
or
HUSH {on}

Normal system operation is as if the command HUSH ON had been used;
i.e., any message destined for the terminal display device is
transmitted for display on that device. HUSH OFF will suppress all
messages destined for the terminal display device.

This command should be used only when the terminal messages are known
to be unnecessary. For example, any request for input data will not
appear on the terminal after HUSH OFF has been executed; neither will
any error messages (which may well have been unexpected) appear.

HUSH OFF suppresses all messages destined for the terminal, while HUSH
ON re-enables terminal display. If neither keyword (ON or OFF) is used
with the HUSH command, the command becomes a toggle: if terminal
display was in effect, HUSH will disable it; if terminal display was
suppressed, HUSH will re-enable it.

This command should not be confused with the command which sets a
terminal's display characteristics as either half-duplex or
full-duplex. For this requirement, see the description of the TERM
command in the PRIMOS COMMANDS REFERENCE GUIDE, FDR31@#8, and the
description of the AMLC command in THE SYSTEM ADMINISTRATOR'S GUIDE,
PDR3199.

Page 170 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

HUSH {OFF}

'b‘
or
HUSH {ON}
FIGURE 1. Format of the HUSH command.

~
N
.

Deceitber 2, 1980 PRIME INFORMATION Release 4 Page 171

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.48 IAM Command

The IAM command specifies to PERFORM the name of the PRIME INFORMATION
account which should be used by commands which require an account name.

Many PERFORM commands require an account name for proper operation;
some examples are CATALOG, which uses the account name along with the
program name when a program is cataloged as a local resource, and
RELEASE, which releases file and/or record locks for a particular
account.

“When the user first enters the PRIME INFORMATION environment (either by
-logging in or by typing INFO while in the PRIMOS environment), PERFORM
sets the account name at that instant as the name of the current UFD.
When a user switches from one account to another within the PRIME
INFORMATION ~ environment (by using the LOGTO command, described
elsewhere in this manual), PERFORM automatically uses the name of the
new account as the account name. If this is not desired, the account
name to be maintained by PERFORM may be specified by using the IAM
command,

The format of the IAM command is:

IAM account .name
where "account.name" is the account name that PERFORM should use when a
name is required (and is normally the name of the account the user is

presently attached to).

The WHO command (described elsewhere in this manual) may be used at any
time to verify that the current account name is as intended.

Page 172 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATIOGN COMMANDS

IAM account.name

FIGURE 1. Format of the IAM command.

FIGURE 2. Example of the IAM command.

December 2, 1980 PRIME INFORMATION Release 4 Page 173

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.49 INFO Command (PRIMOS-level Command)

The INFO command is a PRIMOS-level command which allows the user to
leave the PRIMOS environment and enter the PRIME INFORMATION
environment.

A user can go from the PRIMOS environment to the PRIME INFORMATION
environment by invoking the INFO command. The INFO command is a
PRIMOS-level command which has no meaning within the PRIME INFORMATION
environment. It may only be invoked at the PRIMOS "OK, " prompt. The
format of the INFO command is:

INFO {-PHANTOM}

The -PHANTOM keyword is a signal to PERFORM that the task invoking
INFORMATION is a phantom task. With this keyword, PERFORM will be able
to accept all "terminal" input (commands and data) from a COMINPUT
file. (See the COMINPUT command description in the PRIMOS COMMANDS
REFERENCE GUIDE, FDR3108, for a description of this command file.)
Note that you should include "OFF" as the last command in your COMINPUT
file. The PHANTOM command (described elsewhere in this manual) uses
this optional keyword in the command file it builds to accomplish the
operation specified with the PHANTOM command.

If the INFO command is executed within an account which is not
currently a PRIME INFORMATION account, PERFORM displays the message:

This UFD is not a valid INFORMATION account
Do you wish to make it one? =

If the reply to this question is YES, PERFORM will create in the
account all of the files necessary to make it a PRIME INFORMATION
account. If the reply to this question is NO, PERFORM will treat it as
a QUIT command (see the section titled "QUIT Command” in this manual) ,
allowing the user to re-enter the PRIMOS environment in the account.

If the account has an owner password, and it is omitted or incorrectly
specified when the account is ATTACHed to, PERFORM will be unable to
identify the account as a PRIME INFORMATION account, whether it is or
is not. In this circumstance, the same message as above will be
produced. However, PERFORM will (with an incorrect or omitted
password) be attached to the new account with non-owner rights, and
those rights will determine whether PERFORM will be allowed to make the
account a PRIME INFORMATION account, or not. In general, after a
password error on the INFO command, it may be necessary to re-specify
the INFO command with the correct password, or to leave the PRIME
INFORMATION environment, attach to the account with the correct
password, and re-enter the PRIME INFORMATION environment (with the INFO
command) .

Page 174 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

INFO

FIGURE 1. Format of the INFO command.

LOGIN OLDACC

OK, INFO

OLDACC

Release number 4.0

FIGURE 2. Example of the INFO command (exjsting account).

LOGIN OLDACC

OK, A MFD XXXXXX 1

OK, CR NEWONE

OK, A NEWONE

OK, INFO

NEWONE

This UFD is not a valid information account.

Do you wish to make it one? YES

Creating file &SAVEDLISTS& / Type 1 / Modulo 1.
Creating file D &SAVEDLISTS& (DICT) / Type 3 / Modulo 1.
Added "@ID", the default record for INFORM, to DICT D &SAVEDLISTS&
Creating file VOCLIB / Type 2 / Modulo 7.

Creating file D VOCLIB (DICT) / Type 3 / Modulo 1.

Added "@ID", the default record for INFORM, to DICT.D VOCLIB.
Release number 4.0

H

FIGURE 3. Example of the INFO command (new account).

December 2, 1980 PRIME INFORMATION Release 4 Page 175

PRIME INFORMATION CQMMANDS - PDR39#6 ‘ PRIME INFORMATION

5.50 ISTAT Command

ISTAT is a command that produces a record distribution histogram for a
specified file. ISTAT is a synonym for the command GROUP.STAT. This
command uses a SELECT list if one is active.

The ISTAT command is used to monitor the distribution of records within
PRIME INFORMATION files. ISTAT is an synonym for the GROUP.STAT
command. For a complete description of the ISTAT command, see the
description of GROUP.STAT in the section of this manual titled
“"GROUP.STAT Command".

L]

Page 176 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

December 2, 1980 PRIME INFORMATION Release 4 ' Page 177

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.51 LIST (INFORM System Processor)

LIST is the high-level, natural language QUERY and REPORT GENERATOR
portion of the PRIME INFORMATION system. It is documented completely
in THE INFORM REFERENCE GUIDE, IDR39¢5. This command uses a SELECT
list if one is active.

Processors which are invoked by PERFORM that belong to the INFORM group
are not documented in this manual. Instead, they are documented in THE
INFORM REFERENCE GUIDE, IDR39#5. LIST is one of these INFORM
processors.

Page 178 PRIME INFORMATION Release 4 December 2, 1980

PERFORM

December ‘2,, 11980

PDR3906

PRIME INFORMATION COMMANDS

PRIME INFORMATION Release 4 _ Page 179

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.52 LIST.LOCKS Command

The LIST.LOCKS command displays the status of the 64 task
synchronization locks.

PRIME INFORMATION CPU's have 64 hardware semaphores which are referred
to as execution 1locks. They may be used to synchronize processes
running on different terminals.

The current status of the 64 task synchronization locks can be
displayed using the LIST.LOCKS command. The format of this command is:

LIST.LOCKS

This command displays the lock number and an integer showing the status
of that lock. A status of -1 means that the lock is clear (not set)
whereas a status of zero or greater means the lock is set.

See also the description of the CLEAR.LOCKS and LOCK commands elsewhere

in this manual. The System Administrator may also wish to review the
MASTER command, documented in this manual. .

Page 180 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

LIST.LOCKS

FIGURE 1. Format of the LIST.LOCKS command.

:LIST.LOCKS

P: -1 ¢ 1l: -1} 2‘:-1! 3: -1! 4: -1 5:-11! 6:~-11! 7:-11
8:-1! 9:-1114: -1 ! 11: -1 ! 12: -1 ¢ 13: -1 ! 14: -1 ! 15: -1 !
16: 0! 17: -1 ! 18: -1 ! 19: -1 ! 2@: =1} 21: =11 22: -1 1 23: -1}
24: -1} 25: -1) 262 -1 ! 27: -1 ! 28: -1} 29: -1 ! 3@: -1 ¢ 31: -1 !

32: -1 ! 33: -1 ! 34: -1 ! 35: -1 ! 36: -1 ! 37: -1 38: -1 ! 39: -11

[~
=0
(1]
|
[
-

41: -1

[2]
o+
N
(1]
|
ot
(L]
-3
w
(1]
[
p—
onn
o
o
.0

[
[
S
oo
wm
L1

i
[hir}
-
-3
<)}
(1]

[
-
(]
o
~
(1)

[
[
em

48: -1) 49: -1 1 56: -1 ! 51: -1 ! 52: -1

wn
N
(1]
|
=
oun
L]
wn
w
(1]
|
—
wn
s
(1]
|
—
oan
w
wn
.0
|
[

57: -1 1 58: -1 ! 59: -1 ! 6@0: -1 ! 61: -1 ! 62: -1 ! 63: -1

FIGURE 2. Fxample of the LIST.LOCKS command.
(Note that lock number 16 is set.)

December 2, 1980 PRIME INFORMATION Release 4 Page 181

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.53 LIST.READU Command

The LIST.READU command is used to request a list of records which have
been locked by the INFO/BASIC READU, READVU, or MATREADU commands.

The LIST.READU command is used to request a list of records which have
been locked by the INFO/BASIC READU, READVU, or MATREADU commands. The
format of the LIST.READU command is:

LIST.READU user .number
or
LIST.READU ALL

where "user.number" is the task number of the user whose locked records
will be displayed on the terminal; the parameter "user.number" must be
between @ and 63. If the "ALL" option is used in place of a task
number, then all record 1locks on the system set by INFO/BASIC READU,
READVU, or MATREADU statements will be displayed on the terminal.

For each record locked, the LIST.READU command will display RECORD ID,
FILE ID, and LINK fields, as well as the task number of the user for
whom the record is locked. The RECORD ID field is an abbreviation of
the actual identifier of the record that is locked; this abbreviation
is used internally by INFO/DMS in its record lock management routines.
In many cases, this RECORD ID field may be identical to the complete
record identifier, but it will not be identical in the case of 1lengthy
record identifiers. ‘The FILE ID field contains a number that is used
internally by INFO/DMS to identify the file where the locked record
resides. (Note that the FILE ID field is not the file name, which is
not retained by INFO/DMS after the file is opened.) The LINK field is
reserved for future use, and the value that appears there is not
meaningful at this time. '

Page 182 PRIME INFORMATICON Release 4 December 2, 1980

PERFORM

LIST.READU user .number
or
LIST.READU ALL

where:

PDR3906

PRIME INFORMATION COMMANDS

"user .number” 1is the user number whose record locks are
to be displayed.

“"ALL" means to display the record locks of all users.

FIGURE 1. Format of the LIST.READU command.

:LIST.READU 5

RECORD ID FILE ID
00010 000400035171
TIME : 141320120240
:LIST.READU ALL

RECORD ID FILE ID
00010 000400035171
TIME 141320120240
RECORD ID FILE ID
074-99-8123 234400235171
ON. HAND 141320112345

LINK
@
13

LINK
]

13

~ LINK

/]
6

FOR USER' 5

FOR USER 5

FOR USER 3

e,

FIGURE 2. Examples of the LIST.READU command.

December 2, 1980

PRIME INFORMATION Release 4 Page 183

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.54 LO Command

The LO command is an abbreviation for the LOGOUT command.

The LO command is an abbreviation for the LOGOUT command, which is the
command which is used to give up access to the system. The LOGOUT
command is described in the section titled "LOGOUT Command”, elsewhere

in this manual.

Page 184 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

December 2, 1980 PRIME INFORMATION Release 4 Page 185

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.55 LOCK Command

The LOCK command sets the status of any of the 64 task synchronization
locks, to the locked state.

- PRIME INFORMATION systems have 64 user-accessible semaphores which are
referred to as execution locks. They may be used to synchronize
processes running on different terminals on the same PRIME INFORMATION
system. The current status of any of the 64 task synchronization locks
can be set ‘to the locked state by using the LOCK command. The format
of this command- is:

LOCK semaphore.number {PROMPT}
or
LOCK semaphore .number {NO.WAIT}

where "semaphore.number" is an integer from @ through 63, corresponding
to the number of the semaphore to be set to the locked state. If the
optional "PROMPT" parameter is present, the LOCK processor will give
yYou an opportunity to execute other commands while waiting (if
necessary) for the specified semaphore to be unlocked by another user.

If the "PROMPT" parameter is omitted, and the specified
"semaphore .number" is already locked by another user, the LOCK command
normally will wait until this lock is released before returning to
PERFORM's colon prompt. However, you may specify that this wait is not
to take place, even if the semaphore is already locked by another user,
by using the optional "NO.WAIT" parameter. (Note that neither the
"PROMPT" nor the "NO.WAIT" parameters should be used within a PERFORM
paragraph stored in the VOC file, since either parameter could cause a
prompt for terminal input.)

The LOCK command is a PERFORM-level version of the INFO/BASIC LOCK
statement, and the result of both the command and the statement is the
same. Usually, task synchronization locks are set within INFO/BASIC
programs, but the LOCK command also allows them to be set from the
terminal .

See also the description of the LIST.LOCKS and CLEAR.LOCKS commands
elsewhere in this manual, and the description of the LOCK statement in
THE INFO/BASIC REFERENCE GUIDE, PDR39¢3. The System Administrator may
also wish to review the MASTER command, described in this manual .

WARNING: The task synchronization locks are local to any particular
PRIME INFORMATION system. Specifically, they are not effective over a
network, including PRIMENET. If you have two or more systems operating
together in a networked environment, you cannot use these locks to
synchronize events in both systems.

Page 186 : PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION CQMMANDS

LOCK semaphore.number {PROMPT}
or

LOCK semaphore.number {NO.WAIT}

FIGURE 1. Format of the LOCK command.

é

:LOCK 48 NO.WAIT

:LOCK 13 PROMPT

Enter commands to perform while waiting on lock, or END to wait.
Enter QUIT to give up. I will tell you when the LOCK succeeds.
SWHO

4 KOVSKY

>QUIT

*** LOCK aborted at Operator request.

FIGURE 2. Examples of the LOCK command.

December 2, 1980 PRIME INFORMATION Release 4 Page 187

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.56 LOGIN Command (PRIMOS-level Command)

To begin an operating session on the PRIME INFORMATION System a user
must LOGIN to an account.

LOGIN is the command the user must type at the terminal to begin an
operatlng session with the PRIME INFORMATION System.

. LOGIN account .name {password} {l1disk} {-ON nodename}

"account.name"” must be a valid account (UFD) name on any of the disks
available to the system. "password" is an optlonal argument which
specifies the password to the account. "ldisk" is an optional argument
which spec1f1es the logical disk to search for "account.name". If
"ldisk" is not specified all logical disks will be searched starting
with logical disk number @ until "account.name" is found or there are
no more logical disks to search.

If the user's system is connected via a network to other PRIME
INFORMATION Systems, it is possible to log into an account that is not
local to the system to which the user terminal is connected. ‘This is
accomplished by use of the -ON option. See LOGIN in the PRIMOS
COMMANDS REFERENCE GUIDE, FDR3108, for additional details.

When LOGIN is successful, the user is attached to the account specified
by "account.name". A login message is printed at the user terminal and
at the supervisor terminal. See example in Figure 2.

A user may LOGTO other accounts during a session but the LOGIN
"account.name" is remembered and printed on LOGOUT regardless of which
account a user is currently attached to. The LOGIN "account.name" is
also printed by the STATUS command.

Most PRIME INFORMATION Systems will be set up to take the user directly
to the PERFORM colon prompt (:). If your account is not set up this
way, you must enter "INFO", after 1logging in to go from the PRIMOS
prompt of "OK," to the PERFORM prompt of ":".

Any time a PRIME INFORMATION account is initially entered (as in a
LOGIN, a LOGTO, or after typing .INFO at the PRIMOS "OK," prompt), a VOC
file record with an id of "LOGIN" is executed (if there is one). See
the section titled "LOGIN Procedure in VOC File" in this manual for
additional information about this feature.

Page 188 PRIME INFORMATION Release 4 December. 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

LOGIN account.name {password} {ldisk} {-ON nodename}

where
"account.name" is a valid account (UFD) on one of the logical
"password" is the password which must be specified if the account
has one.

"1disk" is the logical disk to searched for "account.name". If
omitted, all logical disks will be searched (starting with logical
disk 9).

"-ON nodename" is the remote system a user wishes to log into if
your system is part of a PRIMENET network of PRIME INFORMATION
Systems.

FIGURE 1. Format of the LOGIN command.

LOGIN JONESY SECRET

This command sequence logs in the user and attaches the user to account
"JONESY" (if the password "SECRET" is correct). The system response to
this login at the user terminal and at the supervisor terminal is:

JONESY (4) LOGGED IN AT 12'39 #£32380

The number in parentheses is the user number of the user terminal
(e.g., 4). The next number is the time of day (e.g., 12:39 PM) and the
last number is the date in the form "mmddyy" (e.g., 93-23-80).

FIGURE 2. Example of the LOGIN command.

December 2, 1980 PRIME INFORMATION Release 4 Page 189

PRIME INFORMATION CQMMANDS PDR3906 PRIME INFORMATION

5.57 LOGOUT Command

The last command the user issues to terminate access to the PRIME
INFORMATION System is LOGOUT.

LOGOUT is the last command the user issues when giving up access to the
PRIME INFORMATION system. The format of this command is:

LOGOUT {-user .number}

When the LOGOUT command is invoked, all user files are closed, all
devices ASSIGNed to the user terminal are released and a logout message
is pr1nted at the user terminal and at the supervisor terminal. See

.- .example in FIGURE 2. Additionally, the PERFORM sentence stack is
‘,erased (if the item named STACKWRITE in the user's VOC file has "OFF"

in field two), or is preserved until the next session (if the item

. hamed STACKWRITE in the user's VOC file does not have "OFF" in field

two). (See the section titled YPERFORM Sentence Stack Retention
(STACKWRITE)" in this manual for more information on the preservation
of the sentence stack.)

If a user has started a phantom process and wishes to abort it, the
user may log it out using the "-user.number" option, provided the user
"-user .number" has the same login name as the user giving the command.
"-user .number" is the user number of the user to be logged out. (At
the system terminal, the user specified by "-user.number"” will be
logged out regardless of login name.)

CAUTION: if you LOGOUT a task other than the one running at your
terminal, the data base may be adversely affected. " LOGOUT
-user .number" is an immediate command, and overrides all protections of
INFO/DMS against damaging the data base by only partially completing a
disk record update process. This option of the LOGOUT command should
be used only as an emergency measure, not as a standard operating
practice. See the description of the MASTER command elsewhere in this
manual, for a controlled method of forcing a task to logout.

If a user is logged out because the inactivity time has run out, the
message TIMEOUT is printed at both the user terminal and the supervisor
terminal, followed by the normal logout message. (See the description
of the LOUTOM parameter of the system configuration file, in the THE
SYSTEM ADMINISTRATOR'S GUIDE, PDR31@9.) If the user is logged out by
the "-user.number" option of the LOGOUT command, or by a LOGOUT command
issued at the supervisor terminal, the message FORCED LOGOUT is printed
at both the user terminal and the supervisor terminal, followed by the
normal logout message.

The command OFF is a synonym for the LOGOUT command within the PRIME
INFORMATION environment (but not within the PRIMOS environment).

Page 190 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

LOGOUT {-user .number}

where "-user.number" is the user number of another user, generally a
phantom user, that you wish to logout. The login name of both must be
the same. (See the warning above about the use of the "user .number"
option.)

FIGURE 1. Format of the LOGOUT command.

: LOGOUT

FINNEY (4) LOGGED OUT AT 10'16 ©32280
TIME USED = @1'24 7'15 1'54

User "FINNEY" logged out at 10:16 AM on March 22, 1980 and was

connected to the system 1 hour and 24 minutes, used 7 minutes and 15
seconds of CPU time and 1 minute and 54 seconds of disk I/0 time.

FIGURE 2. Example of the LOGOUT command.

December 2, 1980 PRIME INFORMATION Release 4 Page 191

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.58 LOGTO Command

The LOGTO command allows a user to go from one PRIME INFORMATION
account to another without logging out and back in. .

A user can move from one account to another using the LOGTO command.
The format of the LOGTO command is:

LOGTO account.name {password}

This ‘command will attach the user to "account.name". If “account .name"
has a password, it must be correctly specified with the LOGTO command.

The LOGTO command does not leave the PERFORM environment, and therefore
does not require the user to type “INFO" to begin work with PRIME
INFORMATION files and programs. Additionally, the LOGTO command will
retain the PERFORM sentence stack described in this manual. DNote also
that if the new account contains an item named "LOGIN" in its voC file,
that item will be executed by PERFORM before the ":" prompt is issued.
(See the: section titled "LOGIN Procedure in VOC File" in this manual
for more information about this procedure.)

If the LOGTO command is executed for an "account.name® which is not
currently a PRIME INFORMATION account, PERFORM displays the message:

This UFD is not a valid INFORMATION account
Do you wish to make it one? =

If the reply to this question is YES, PERFORM will create in the UFD
all of the files necessary to make it a PRIME INFORMATION account. If
the reply to this question is NO, PERFORM will treat it as a QUIT
command (see the section on the QUIT command in this manual), allowing
the user to enter the PRIMOS environment in the new account.

Page 192 PRIME INFORMATICON Release 4 December 2, 1980

i

PERFORM PDR3906 PRIME INFORMATION CQMMANDS

LOGTO account.name {password}
where:
"account.name” is the new account to be attached to.

"password” is the password of "account.name" (if one
has been assigned).

FIGURE 1. Format of the LOGTO command.

:LOGTO MURPHY HERO

Will attach the user to account "MURPHY" (which has a password
"HERO") .

FIGURE 2. Example of the LOGTO command.

of

December 2, 1980 PRIME INFORMATION Release 4 Page 193

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.59 Magnetic Tape Commands

T.ATT, T.REW, T.FWD, T.BCK, T.READ, T.WEOF and T.DET are commands which
are used to reserve a tape drive, position and examine a magnetic tape,
and write an end-of-file mark and rewind a tape.

T.ATT is used to reserve the mag tape unit for the current user. The
attach will fail if another user already has the unit attached. The

. tape will remain attached to the user until explicitly detatched

"(T.DET) or until the user logs off the system. Note that T.ATT is a
special form of the generalized ASSIGN command, and T.DET is a special
form of the generalized UNASSIGN command. Thus, "T.ATT MTU @@1% is
equivalent -to "ASSIGN MT1", while "T.DET" is equivalent to "UNASSIGN
MT@". Note also that omission of the unit number as in this "T.DET"
example, is the same as specifying the default unit number "MT@".

T.REW will rewind the tape to the load point.

T.FWD will advance the tape until an end-of-file mark is read. After
the command has been executed, the tape will be positioned to read the
first record after the end-of-file. If the optional record count is
included in the sentence (T.FWD rec.cnt), the tape will be advanced
past rec.cnt tape records.

T.BCK backs the tape up until an end-of-file mark is read. The tape is
then positioned to read the end-of-file mark again. If the optional
record count is included in the sentence (T.BCK rec.cnt), the tape will
be backed up rec.cnt tape records.

T.READ reads the next tape record and displays it on the screen. This
command recognizes the LPTR keyword to print the record on the line
printer. If the optional record count is included in the sentence
(T.READ rec.cnt), the command will display "rec.cnt" records at a time
instead of the default one.

T.WEOF writes an end-of-file mark at the current tape position.
All of these commands recognize the MTU keyword to specify the mag tape

mode, tracks and unit number. If the keyword is not used, the commands
default MTU to 009 (ASCII, 9-track, unit 0).

Page 194 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

T.ATT {MTU mtu}

T.REN {MTU mtu}

T.FWD {MTU mtu} {rec.cnt}

T.BCK {MTU mtu} {rec.cnt}

T.READ {MTU mtu} {rec.cnt} {LPTR}
T.WEOF {MTU mtu}

T.DET {MTU mtu}

where:

"m" is mode:

@ = no conversions (ASCII assumed data type)
1 = EBCDIC conversion
2 = invert high bit

"t" is tracks

9 track tape
7 track tape

=
non

"u" is unit number
@ to 7

"rec.cnt" is the number of tape records

FIGURE 1. Format of the magnetic tape commands.

December 2, 1980 PRIME INFORMATION Release 4

Page 195

PRIME INFORMATION CQMMANDS PDR39¢6 PRIME INFORMATION

5.60 MAIL Command

The MAIL command is used to send a message to a user on the PRIME
INFORMATION system, or to receive mail sent to you by other users.

The MAIL command is provided with PRIME INFORMATION systems to allow
users to communicate with one another. Normally, a user may
communicate only with the system console, but not with another user
(see the section of this manual titled "MESSAGE Command"). The MAIL
command allows any user to send "mail" to a specific user by name, or
to all users on the system. The format of the MAIL command is:

MAIL {destination}

where "destination" may be either a user's login account name, or may
be "*" (asterisk) to send mail to all users who login to the system.
If the "destination" parameter is omitted, you will be shown first your
own private mail (and will be given an opportunity to delete it after
you have read it), and then you will be shown mail intended for all
users (but not given an opportunity to delete it).

To send private mail to a particular user, type "MAIL account.name",
and the MAIL command will prompt you (with a ">" symbol) for each line
of your message. A null line (simply NEW LINE, or CARRIAGE RETURN,
depending on your terminal) will terminate the message.

To send mail to all users, type "MAIL *", and the MAIL command will
prompt you as above for each line of your message.

If someone has sent you mail, you will see a message informing you of
this when you LOGIN. To receive this mail, simply type MAIL. If the
mail is public (destined for everyone on the system), you will see it,
but will not be able to delete it. If the mail is destined for you
only, you will be given the option to delete it after you have read it,
or to leave it for reading again later.

Page 196 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

MAIL {destination}

FIGURE 1. Format of the MAIL command.

:MAIL PEGGY

>Peqgy, let me know when you have finished

>testing the new mailing label program. We are ready
>to integrate i1t with the new mass-mailing sales
>letter when you are.

><NEW LINE>

FIGURE 2. MAIL command used to send private mail.

LOGIN PEGGY

PRIMOS Version 17.2
PEGGY (4) LOGGED IN AT 17'13 09108¢

YOU HAVE PRIVATE MAIL
TYPE 'MAIL' TO READ IT
INFO

PEGGY

Release number 4.2
:MAIL

FROM WAYNE ON 09/09/80 AT 11:55

Peggy, let me know when you have finished

testing the new mailing label program. We are ready
to integrate it with the new mass-mailing sales
letter when you are.

OK TO DELETE YOUR MAIL FILE? YES

FIGURE 3. MAIL command used to receive private mail.

December 2, 1989 PRIME INFORMATION Release 4 Page 197

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.61 MAKE.MAP.FILE Command

The MAKE.MAP.FILE command is used to create a PRIME INFORMATION data
file from the current contents of the system catalog space. After
creating this file, the full power of INFORM may be used to produce
reports using the information stored in the system catalog.

The catalog space of a PRIME INFORMATION system contains object
programs in executable form, with those programs having been placed
into the catalog space by using the CATALOG command (described in this
manual) . When a program is placed into the system catalog space,
information relevant to that program is stored with it. Some of .the
components of that information include catalog name, the date it was
cataloged, the account name from which it was cataloged, its size s etc.

This relevant information is directly available by using ‘the; MAP
command (described in this manual), but the information is pregented
only in the order in which each program is encountered in the catalog
space. In order to apply the full power of INFORM (the high~level
on-line query and report generator supplied as part of each PRIME
INFORMATION system) to the system catalog, the command MAKE.MAP.FILE is
provided, to create an INFORMATION data file from the current catalog
contents.,

The format of the command is:

MAKE.MAP.FILE

The file created by this command, for later use by INFORM, is named
&MAP&, and is described in more detail in the section of this manual
titled "&MAPs File".

The &MAP& file is a standard PRIME INFORMATION data file, described by
a dictionary associated with it (D_&MAP&) . Once this file is created,
reports may be generated from it using the full power of INFORM,
including selection criteria and sequencing criteria.

Note that since the &MAPs file is created only upon request, its
contents become out-of-date with the first use of any command which
manipulates catalog space (such as CATALOG, or DELETE.CATALOG) . If you
wish to use the &MAP& file to create reports to aid in system catalog
management, you should use the MAKE.MAP.FILE command immediately before
creating any such reports. The &MAP& file is not updated automatically
by any of the catalog management commands, but is simply recreated (at
your request, with the MAKE.MAP.FILE command) from current system
catalog contents.

Page 198 PRIME INFORMATION Release 4 December 10, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

MAKE.MAP.FILE

N

FIGURE 1. Format of the MAKE.MAP.FILE command.

tMAKE.MAP.FILE

FIGURE 2. Example of the MAKE.MAP.FILE command.
NN
\
N
\v

December 10, 1980 PRIME INFORMATION Release 4 Page 199

PRIME INFORMATION COMMANDS PDR3906 PRIME INFORMATION

5.62 MAP Command

The MAP command shows which INFO/BASIC programs and subroutines are in
the catalog space.

The MAP command is used to display the contents of the PRIME
INFOCRMATION System catalog. The format for the MAP command is:

MAP

The MAP command first displays a summary of catalog space utilization,
which includes the percentage of the total catalog space which has been
used, and the number of bytes still available for use. Next, the MAP
command displays a single line for each program or subroutine in the
catalog, with the following information for each entry:

1, The name of the program or subroutine. This is the name
" which must appear in field two of the verb definition
" record for programs, or the name by which the subroutine
-must be CALLed from within an INFO/BASIC program. (See
the section titled "VERB Definition Record” in this
manual, and the sections titled "SUBROUTINES" and "CALL
STATEMENT" in THE INFO/BASIC REFERENCE GUIDE, PDR390@3.)

The heading of this column is Catalog Name.

2. 'The DATE when the program or subroutine was cataloged,
in the format MMDDYY, where MM is the month, DD is the
day, and YY is the last two digits of the year. The
heading of this column is Date.

3. The name of the PRIME INFORMATION account from which the

program or subroutine was CATALOGed. The heading of
this column is Who.

4. The number of arguments required by the program or
subroutine when it is invoked. The heading of this
column is Args.

5. The number of times the program or subroutine has been
invoked for execution since it was initially CATALOGed,
or since the CATALOG space was re-organized. The
heading of this column is Ref.

6. The size of the executable object code, in bytes. The
heading of this column is Object.

Page 200 PRIME INFORMATION Release 4 December 2, 1980

PERFORM PDR3906 PRIME INFORMATION COMMANDS

7. The size of the symbol cross-reference table, in bytes.
The heading of this column is CR.

8. The size of the symbol table, in bytes. The heading of
this column is Sym.

9. The total number of bytes in the CATALOGed program or
subroutine (i.e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>