

Prime Computer, Inc.

— DOC10055-1LA
Advanced Programmer’s
Guide
Volume I
BINDand EPFs

Revision 19.4

Advanced Programmer's
Guide

Volume|
BIND and EPEs

First Edition

James Craig Burley

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 19.4.2 (Rev. 19.4.2).

Prime Computer, Inc.
Prime Park

Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a_ license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1985 by
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, MIDASPLUS, Electronic Design

Management System, EDMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PST 100, Pw200, W150, 2250, 9950, THE PROGRAMMER'S
COMPANION, and PRISAM are trademarks of Prime Computer, Inc.

CREDITS

Project Support Alice Landy
Len Bruns
Margaret Taft

Editorial Support Mary Callaghan

Graphic Support Marjorie Clark
Mike Moyle
Bob Stuart

Production Support Michelle Hoyt

ii

PRINTING HISTORY — Advanced Programmer's Guide, Volume I:
BIND and EPFs

Edition Date Number Software Release

Preliminary January, 1985 DOC9229-1LA 19.4.0
First September, 1985 DOC10055-1LA 19.4.2

In document numbers, L indicates loose-leaf.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price list, and
information on placing orders.

United States Only International

Call Prime Telemarketing, Contact your local Prime
toll free, at 800-343-2533, subsidiary or distributor.
Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST)

iii

Contents

ABOUT THIS BOOK ix

Prime Documentation Conventions x

1 INTRODUCTION TO BIND AND EPFS

What is an EPF? 1-2
Why EPFs? 1-4

History of Linking Loaders
Under PRIMOS 1-4

BIND, the New Linker 1-8

2 ‘THE DYNAMIC LINKING MECHANISM

What Is the Dynamic Linking
Mechanism? — 2-1

What Is a Dynamic Link? 2-2
What Happens To a Dynamic

Link? 2-2
How Does PRIMOS Snap the Link? 2-3
Sample Session 2-4
What If the Desired Subroutine

Cannot Be Found? 2-6
How Does Dynamic Linking

Relate to Common Blocks? 2-7

3 THE EPF MECHANISM

EPF Organization 3-2
Subroutine Organization 3-4
The Life of an EPF 3-5
How Multiple Invocations of

an EPF are Handled 3-34
How Simultaneous Use of an EPF

Is Handled 3-35
How Debugging of an EPF

Is Handled 3-35
How Running a Remote EPF

Is Handled 3-36

4 EPFS AND STATIC-MODE APPLICATIONS

Restriction on the Use of Static-
mode Programs by EPFs 4-2

Restriction on the Use of Static-
mode Libraries by EPFs 4-4

Static Information to Avoid in EPFs 4-7
Effect of EPFs on Existing Shared

Applications 4-8

5 PROGRAM EPFS

What is a Program EPF? 5-1
Writing the Main Program of a

Program EPF 5-4

6 LIBRARY EPFS

What is a Library EPF? 6-2
Steps in Building a Library EPF 6-4
Choosing the Right Type of

Library EPF 6-14
How to Use DBG on a Library EPF 6-30
Entrypoint Search Lists 6-32
Examining Entrypoint Lists 6-38
The Library EPF Mechanism 6-39

7 CODING GUIDELINES FOR EPFS

Writing Modules in High-Level
Languages For EPFs 7-1

Writing Modules in PMA for EPFs 7-2

8 SHARED DATA

How to Define a Shared COMMON Area 8-2
How to Update Shared Information

Atomically 8-7

9 MAPS AND ADDRESSES

Imaginary Vs. Actual Addresses 9-2
Using the LIST_EPF Command 9-3
Using the LIST_SEGMENT Command 9-5
Using the BIND Map 9-5
Using VPSD 9-8
Using the DUMP_STACK Command 9-9
Using Expanded Listings 9-13

vi

10 BINARY EDITORS

LIBEDB
ERB
Examples

APPENDIXES

A OONVERTING PROGRAMS THAT USE

REGISTER SETTINGS

How the Static Mode Program Works
How to Achieve This Functionality

In an EPF

INDEX

vii

10-1
10-2
10-7

A-2

A-3

X-1

About

This Book

The Advanced Programmer's Guide is intended for programmers who are

experienced with Prime 50 Series systems, have read the Prime User's

Guide (DOC4130-4LA) and Programmer's Guide to BIND and __EPFs

(DOC8691-1LA), are familiar with the Subroutines Reference Guide

(D0C3621-190) and its first update package (UPD3621-31A), are

experienced in at least one high-level lanquage supplied by Prime

(preferably PL1/G or FIN), and have an

_

understanding of the

architecture of Prime systens as described in the Prime 50 Series

Technical Summary (DOC6904-191) and in the System Architecture Guide.

This guide consists of four volumes, and describes:

@ Executable Program Formats (EPFs) in Volume I of this series

e The PRIMS File System in Volume II of this series

e@ The PRIMS Command Envirorment in Volume III of this series

e New features for readers of this guide in Volume 0 of this

series

e Standard error codes used by PRIMOS, along with their messages

and meanings, in Volume 0 of this series

Volume 0 also contains information applicable to all of the other

volumes, such as an explanation of the presentation of the subroutine

calls, general coding guidelines, and the like.

Designed for systems-level progranmers, this guide describes the

lowest-level interfaces supported by PRIMS and its’ utilities.

ix

Higher-level interfaces not described in this guide include:

e Langquage-directed 1/0

@ The applications library (APPLIB)

@ The sort packages (VSRILI and MSORTS)

@ Data management packages (such as MPLUSLB and PRISAMLIB)

@ Other subroutine packages

All of these higher-level interfaces are described in other manuals,
such as language reference manuals,. and the Subroutines Reference
Guide.

This guide documents the low-level interfaces for use by programmers
and engineers who are designing new products such as_ lanquage
compilers, data management software, electronic mail subsystens,
utility packages, and so on. Such products are themselves higher-level
interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces
described in this guide for best results.

Because of the technical content of the subjects presented in this
guide, it is expected that this quide will be regularly used only by
project leaders, design engineers, and technical supervisors rather
than by all programmers on a project. Most of the information in this
guide deals with interfaces to PRIMS that are typically used only in
small portions of a product, and with overall product design issues
that should be considered before coding begins. Once the product is
designed and the PRIMDS interfaces are designed and coded, a typical
product can then be written by programmers whose knowledge of these
issues is minimal. Of course, this statement is predicated on the
assumption that programmers employ widely accepted programming
practices such as modular, or structured, programming; functional and
design specifications; and thorough unit debugging and testing.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase letters.

Convention

UPPERCASE

lowercase

Abbreviations

underlining
in

examples

Brackets

[]

Braces

i}

Ellipsis

Parentheses

Hyphen

Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
These can be entered in
either uppercase or
lowercase letters.

In command formats, words
in lowercase letters indicate
items for which the user must
substitute a suitable value.

If a command or statement
has an abbreviation, it is

indicated by underlining.
In cases where the command
or directive itself

contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces,

In examples, user input
is underlined but systen
prompts and output are not.

Brackets enclose one or
more optional items.
Choose none, one, or
more of these items.

Braces enclose a list

of items. Choose one
and only one of these
items,

An ellipsis indicates that
the preceding item may be
repeated,

In command or statement
formats, parentheses must
be entered exactly
as shown.

Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

Example

SLIST

LOGIN user-id

LOGOUT

SET_QUOTA

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL
OK,

SPOOL | ~LIST |
—CANCEL

CLOSE filename
ALL

iten-x [’ iten-y] eee

DIM array (row,col)

SPOOL -LIST

Introduction to

BIND and EPFs

This volume introduces EPFs (Executable Program Formats) and BIND, the

new utility that creates them. It describes how to create EPFs and

covers, in detail, concepts that apply to all EPFs and information
applicable to two specific types of EPFs, program EPFs and library

EPF's.

Specifically, Volume I of this guide:

Explains what an EPF is

Compares EPFs to the previously available method of building
programs under PRIMDS

Explains the dynamic linking mechanism

Describes the EPF mechanism

Explains restrictions on the use of static-mode programs and on

the use of static-mode libraries

Lists information and subroutines involving static information
that should not be used in EPFs

Describes the effect EPFs may have on existing static-mode

shared applications

1-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

It is important that you read all of Chapters 1 through 6 to understand
how EPFs affect all aspects of programming on Prime systems from
Rev. 19.4 on. Even if your installation does not intend to use EPFs,
you should be aware of the effect EPFs may have on existing shared
applications used at your installation; this topic is covered in
Chapter 4,

Prior to Rev. 19.4, SEG and LOAD were the only two utilities provided
by Prime that linked programs. As of Rev. 19.4, a new linking utility
named BIND is provided that creates programs using a new program
format, the EPF. Chapter 1 introduces you to BIND and EPFs_ and
compares the programming envirorment provided by BIND and EPFs to the
environments provided by the SEG and LOAD utilities.

Other chapters in Volume I explain BIND and EPF concepts in greater
detail:

@ Chapter 2 explains the dynamic linking mechanism, which allows a
program to call a subroutine that is not linked in with the
program.

e@e Chapter 3 explains the EPF mechanism in detail, including
elements of the Prime 50 Series architecture that relate
directly to EPFs.

@ Chapter 4 explains the effects that the advent of EPFs have on
existing static-mode applications, even in an installation that
does not switch over to using EPFs.

@ Chapters 5 and 6 describe the ways in which program EPFs and the
two classes of library EPFs (program-class and process-class)
are created, and the operational characteristics of each.

e@ The remaining chapters introduce some coding quidelines that you
should adhere to when programming EPFs, the concept of shared
common data blocks and how to define them, and the use of
linkage maps and the binary editor.

WHAT IS AN EPF?

An EPF is an executable file system object. You, the programmer,
generate an EPF using BIND. An EPF may be used by a user or by another
program. A file containing an EPF has a suffix of either .RUN or .RPn,
where n is a digit (0-9). The .RUN suffix indicates that the file
contains the latest version of the EPF. The .RPn suffix, if present,
indicates an older version of the EPF; an old version of an EPF is
kept only if at least one user is still using the EPF when the new
version is installed.

First Edition | 1-2

INTRODUCTION TO BIND AND EPFS

Types of EPFs

There are two types of EPFs:

@ Program EPFs, which contain a program having one entrypoint and

which are invoked by explicitly running the program

e@ Library EPFs, which contain subroutines having one or more

entrypoints and which are invoked by another program implicitly

by referencing an entrypoint within the library EPF

Program EPFs: A program EPF contains a main entrypoint and related

Subroutines that together constitute a single program. A program EPF

is invoked explicitly by issuing the PRIMOS command RESUME, by calling

a subroutine to invoke a program EPF, or by issuing a command that

names a program EPF residing in UFD CMDNCO.

To a programmer, a program EPF is a file containing a program. To a

user, a program EPF is either a PRIMOS command (if the EPF resides in

UFD CMDNCO) or a program invoked via the RESUME command. To a program,

a program EPF is a subroutine, having a standard calling sequence, that

may be invoked by calling one of several PRIMOS subroutines.

Chapter 5 contains detailed information about program EPFs (as distinct

from library EPFs).

Library EPFs: A library EPF contains many subroutines, some (or all)

of which are entrypoints to that library EPF. A library EPF is not

invoked explicitly as is a program EPF; instead, the pathname of the

library EPF is placed in an entrypoint search list (ENTRYS$.SR) by the

System Administrator (for the default system-wide search list

SYSTEM>ENTRYS.SR) or by a user (for a private search list).

The dynamic linking mechanism, described later in this chapter,

connects a library EPF to any program or subroutine that calls an

entrypoint inside the library EPF. When any program or library calls a

subroutine that is not contained within the program, it makes the call

through a faulted Indirect Pointer (IP), also known as a dynamic link.

Upon recognizing the faulted IP, the dynamic linking mechanism in

PRIMDS takes action. First, it searches its own list of internal

entrypoints (internal to PRIMOS). Next, it scans the user's entrypoint

search rules for library EPFs (or the special —STATIC_MODE_LIBRARIES

object), looking for a library that contains the subroutine named by

the faulted IP as an entrypoint.

If the faulted IP identifies, as its target, the name of one of the

entrypoints in a library EPF, PRIMOS connects the library EPF to the

program invoking the subroutine via the faulted IP, allowing the

program to call any of the entrypoints in that library EPF. As further

faulted IPs are encountered, PRIMOS oonverts those that identify

_ subroutines in that library EPF to point to the actual memory addresses

of Entry Control Blocks (ECBs) in that library EPF. (An ECB is the

1-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

actual target of a subroutine call instruction, as it contains
information on the subroutine such as where it is located, how much
Stack space it needs, and where its linkage information is located.)
Subsequent uses of the affected IPs do not cause invocation of the
dynamic linking mechanism; hence, they execute much faster. In fact,
subsequent uses of such converted IPs execute as fast as IPs that were
not faulted in the first place, such as IPs to statically allocated
storage or to storage within the same program containing the IPs.

To a programmer, a library EPF is a collection of related subroutines
that are useful to more than one application. To a user, a library EPF
is nothing more than an entry in the entrypoint search list, with which
many users do not even concern themselves. To a program, a library EPF
appears aS a collection of entrypoints to which the program may link
itself by calling them via dynamiclinks (faulted IPs). However, a
program is not concerned with how entrypoints are distributed among
library EPFs; the programmer who builds a library EPF must concern
himself or herself with the optimal grouping of related entrypoints in
one or more library EPFs.

Chapter 6 contains detailed information about library EPFs (as distinct
from program EPF's).

WHY EPFS?

EPF'S are provided as an alternative to static-mode programs, which,
until Rev. 19.4, were the only kind of program supported by PRIMS.
Static-mode programs are created by the SEG and LOAD linking loaders,
while EPFs are created only by the new (at Rev. 19.4) BIND linker.

This section explains the history behind static-mode programs and EPFs,
explains the disadvantages of static-mode programs, and explains the
advantages of EPFs. During this discussion, information is presented
Suggesting how both static-mode programs and EPFs work.

History of Linking Loaders Under PRIMOS

Prior to Rev. 19.4, PRIMOS provided two linking loaders:

@ SEG, for linking and loading V-mode and I-mode programs

@ LOAD, for linking and loading R~mode programs

These linking loaders are fully described in the SEG and LOAD Reference
Guide.

R-mode programs are limited to 128KB of memory in size. R mode is
provided for compatibility so that programs written to run on the older
.Prime 100, 200, and 300 systems can run on newer Prime systems without
modification, Such programs cannot take advantage of the large

First Edition 1-4

INTRODUCTION TO BIND AND EPFS

segmented memory address space provided by PRIMSstarting with the
Prime 400 system. (There are two submodes of R mode, 32R mode and 64R
mode. They differ only in their ability to reference memory.)

V-mode and I-mode programs can take full advantage of the large
segmented memory address space provided by PRIMOS. V-mode and I-mode
differ only in the way instructions are decoded and in the fact that
registers in I mode are organized around a general-purpose register set
architecture, while V-mode registers retain the special-purpose
register set architecture inherited from the predecessor of V mode,
which is R mode. (The predecessor of R mode is an almost entirely
obsolete mode called S mode, which is used only during the very
earliest phase of systen boot and in certain systen test and

maintenance utilities. S mode consists of two submodes, 16S mode and

32S mode, which, like their counterparts in R mode, differ only in

their ability to reference memory.)

R-Mode — Single-Segnent Limit and DELSEG Requirement: Although SEG

links and loads V-mode and I-mode programs, pre-Rev. 19.4 PRIMS
provided no direct way to execute V-mode or I-mode programs; only the
R-mode (or S-mode) program format was supported. The R-mode program

format produces a static-mode program. There are five characteristics

of a static-mode program:

@ It is represented in a SAM (Sequential Access Method) file that
consists simply of a representation of the contents of a portion
of segnent '4000 when it contains the program. Nine halfwords
of control information are followed by the memory image itself;
the beginning and ending addresses of the memory image are in

the nine halfwords of control information, as is the starting
address of the program and the initial state of certain special
R-mode registers. No distinction is made in the static-mode
image between procedure code, data, and uninitialized memory.

Control Info (RVEC)

Procedure Code

Data

Uninitialized Memory

1-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

e It is always loaded into user segment '4000 by PRIMS;
therefore, if static-mode program A is first loaded, followed by
Static-mode program B, it is likely that loading program B will
overwrite part or all of program A in memory unless they occupy
completely separate areas in segnent 4000. ‘The default method
of loading static-mode programs, however, starts all programs at
location '1000 in segment '4000; therefore, static-mode
programs loaded using the default method will invariably
overwrite each other.

Segment '4000 Segment ‘4000

/
/ / B

A B iUj6H

@ It is executed by PRIMDS when the user issues the RESUME command
identifying the static-mode program file, which typically has
the suffix .SAVE to identify it as a static-mode program.
PRIMOS loads the program into segment '4000 and performs a
nonlocal goto to the starting address of the program; the
program is not treated as a subroutine by PRIMDS.

Gamos
JMP Segment '4000

First Edition 1-6

INTRODUCTION TO BIND AND EPFS

e It terminates execution by calling one of several PRIMOS
subroutines that return the user to PRIMOS command level, rather
than by executing a return as a called subroutine might do.

Segment ’4000

e It can use more than om segnent by directly referencing

segments other than segnent '4000. However, PRIMOS does not
manage these additional segnents. If a progran uses five

segments, then five segnents remain allocated to the user when

the program finishes.

In order to free any segnents referenced by an R-mode program

(but no longer in use because the program has terminated), the

user must issue appropriate DELSEG commands to delete the

segments. (The DELSEG command is described in the PRIMOS

Commands Reference Guide.) The additional segnents are also

released when the user logs out.

Due to the design of static-mode programs, one static-mode program

cannot call another static-mode program as if it were a subroutine;

the first static-mode program must give up control to the second

program entirely, because the second program will destroy part or all

of the first program.

SEG — R-Mode to Initialize V-Mode or I-Mode: Because the static-mode

mechanism does not handle V-mode or I-mode programs, the SEG loader is

designed not only to provide the mechanism to link a V-mode or I-mode

program, but also to enable the user to execute the program by typing:

SEG program-name

The SEG program itself is a static-mode program that loads program—name

into memory (into segnents other than segnent '4000, which is where SEG

resides). Then, SEG sets up the V-mode/I-mode environment and begins

execution of the program.

- If a V-mode or I-mode program fits within a single segment, SEG can

generate a static-mode image of the program in segment '4000 that can

1-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

then be invoked directly using the RESUME command. However, the
procedure for building such a program via SEG is complicated and
definitely not intuitive.

SHG for Shared Procedure Segments: If a V-mode or I-mode program is
larger than a segnent, but its impure data fits withina single
Segment, the program can be shared via SHG. SEG can generate, in
segment '4000, a static-mode image of the impure portion of the
program, which includes an interlude to the pure portion of the
program; it can also generate static-mode images of the pure portions
of the program in shared system-wide segments (for example, segments
2030, 2031, 2032, and so on). The procedure for building a shared
program via SEG is extremely complex and has_ the following
requirements:

@ The System Administrator must coordinate the use of shared
segments on the system and must assign shared segnent numbers to
programs that are to become shared programs.

@ At every system coldstart, the shared static-mode segment images
must be loaded into their corresponding shared segments.

@ At system coldstart, the shared segnents must be protected
against modification.

@ The user must RESUME the image of segnent '4000 generated by SEG
to run the program.

@ To install a new version of the program reliably, the system
must be shut down and restarted. Otherwise, the possibility
exists that a user may be executing the old version of the
program when the new version is installed. This usually results
in unrecoverable errors for that user.

In addition, once a program is shared in system-wide segnents, any user
can examine or make copies of the pure code, even if that user cannot
access the program itself (which is the impure and startup code
residing in the image of segment '4000).

(See the SEG and LOAD Reference Guide for complete information on SEG
and LOAD.)

BIND, the New Linker

As of Rev. 19.4, PRIMOS supports a new program type, called an EPF (for
Executable Program Format). To build EPFs, PRIMOS provides a new
linker named BIND. BIND is not a loader, because it does not load the
final linked program into memory; PRIMOS is solely responsible for
loading an EPF into memory.

First Edition 1-8

INTRODUCTION TO BIND AND EPFS

BIND, like SEG, can be used to create only V-mode and I-mode programs,

frequently referred to as 64V-mode or 32I-mode programs.

Using the BIND linker to create EPFs provides the following benefits:

The BIND linker is much simpler to use than SEG, and is even

simpler than LOAD (while providing more capabilities). This

simplicity is maintained even when large programs are linked via

BIND, because BIND and PRIMOS manage very small and very large

programs in the same way.

BIND allows external names (subroutine and common area names) to

be a maximum of 32 characters in length; SEG limits external

names to 8 characters, and LOAD to 6 characters, both by

truncating external names.

Two distinct types of EPFs are provided, one type to contain

programs (invoked directly by a user) and another type to

contain subroutine libraries (invoked implicitly by any program

that references a subroutine in a library). With SEG, building

a library is difficult, and its invocation must be explicitly

performed by any program that wishes to invoke it by using an

unusual program load sequence.

Program EPFs are directly invoked using the RESUME command,

rather than by an intermediate program (as is sametimes

necessary with the SEG loader).

A program EPF may be debugged by DBG without having to use a

different build sequence than that used to build the production

version of the same program EPF.

Library EPFs are implicitly invoked when a program calls a

subroutine in a library EPF; neither the library nor any

subroutine in it needs to be made physically part of a program

that uses the library.

Any user may create his or her own personal library EPF and use

that library EPF by placing its pathname in the user's

entrypoint search list (a list of libraries to search for

subroutine entrypoints).

A program EPF is invoked by PRIMOS as a subroutine, and may

return to PRIMOS as a subroutine.

PRIMOS separates memory used for EPFs, called dynamic memory,

from memory used for static-mode programs, called static memory.

Static memory for a user begins in segnent '4000 and extends

upward for the number of static segnents allocated for the user

by EDIT_PROFILE. Dynamic memory for a user begins at or beyond

where static memory ends. Segments between the last static

segment and the first dynamic segnent for a user are not

accessible.

1-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Static-mode programs cannot acquire additional dynamic memory in
the same way they acquire additional static memory (by simply
referencing it); therefore, EPFS are guaranteed not to be
corrupted by loading static-mode programs.

While EPFs can use static memory, their use of static memory
must be managed by the programmer; PRIMOS cannot keep track of
which programs are using static memory as it can for dynamic
memory.

@ Most memory allocation is handled entirely by BIND, at program
or library linking time, or by PRIMS, at program or library
invocation time. Memory allocation performed by BIND is done
entirely within segnents, while PRIMS performs the task of
finding available segnents for the program. So that this may
work, BIND generally does not put actual memory addresses into
an EPF; it uses imaginary addresses, which identify locations
within the EPF. PRIMOS translates these imaginary addresses
into actual addresses once it knows where, in memory, it will
place the EPF. As a result, a particular EPF can execute
properly in segment '4354 at one point in time, and can later
execute properly in segment '4362, without needing to be
relinked.

14354

/ Contaiontains
/ Actual

/ Addresses

EPF_PROG.RUN

'4355

Contai \ / | |ntains

Imaginary \7 | |
Addresses / \ |

JS \ |

'4362

\ Contains
\ Actual
\ Addresses

\

First Edition 1-10

INTRODUCTION TO BIND AND EPFS

Because memory allocation is handled by PRIMOS at runtine,
PRIMOS ensures that EPFs do not overlay each other's memory
space; this allows many EPFs to be kept in memory at one time
without resulting in the destruction of data among the EPFs.

 ‘4354 4354

/ A
/ .

A.RUN B.RUN
/ 14355 14355

/
/

1-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

@ An EPF separates procedure code that is pure (meaning it is not
modified during program execution), from linkage text, impure
code, and common areas, which are not pure. PRIMOS uses this
Separation to protect segments containing pure procedure code
against modification by even the program itself, improving the
Chances of preventing a programming bug from turning into a
disaster. A segnent is used either to contain the procedure
code of, at most, one EPF, or to contain the linkage text and
common areas for many EPFs. A procedure segnent may contain
either pure or impure code, but only segnents containing pure
code are shared and protected against writing.

14354

/
|, Protected

J / | Against

PROG.RUN Writing

Pure /

Procedure / c | |

Code

v | |
Impure Linkage
and Data \ Wy '4367

SS Uy
YO W}

N\

ZZi2Zz,

First Edition 1-12

INTRODUCTION TO BIND AND EPFS

e@ PRIMSalso uses the separation of pure and impure code to
automatically share pure code from a particular EPF between each

user on a systen that is using that EPF.

User A User B
'4354 '4354

N ~

Shared ™N PROG.RUN a“ Shared

Copy ; Copy

, Pure a
Procedure

nN Code 7

| | ™ “| |
Impure Linkage

| | / and Data \ | |

/, SOA'4367 V, \ 7, '4367Y)//,/ \\\ Yj

Yi / \ Le
Copy for / \. Copy for
User A User B

L2Ldtidida. LLizddaldde.

@ RIMS shares the pure code of an EPF in the per-user (private)
memory of each user who is using that particular EPF.
Therefore, other users cannot access this shared code unless
they, too, invoke the EPF (implying that they have sufficient
access to do this).

1-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

e Because BIND produces only imaginary addresses to point to
locations within an EPF, PRIMDS, when it shares an EPF among two
or more users, can use different segnent numbers for each user
while still sharing the pure procedure code. For example, an
EPF might reside in segnents '4352 and '4357 for user A, while
also residing in segnents '4363 and '4366 for user B. In this
case, segment '4352 for user A and segnent '4363 for user B
could correspond to a single copy of the pure procedure code for
that EPF; one copy of pure procedure code is therefore known by
two different segnent numbers for two users.

User A User B
'4352 '4352

Shared] ~~.
NON“
\ \ ~_PROG.RUN .

435777,LLL \ Ny Pure \ 14357

fob N \ Procedure \
| i \! |\\ Code ~K.

‘4363 XS ™s '4363
— Shared

\ Impure Linkage IX” “~~
and Data

| | So |

‘4366 ~N Jpf{4366

P7777]

First Edition

1-14

INTRODUCTION TO BIND AND EPFS

@ PRIMS further uses the separation of pure and impure code to
avoid treating segnents containing pure code as traditional
virtual memory segnents whose contents must be written out to
the paging disk during paging. Instead, PRIMOS can always be
sure of reading pure EPF segnents from a single copy of the EPF,
since pure segnents are "locked" against modification, and hence
alwayS up-to-date. This improves performance and uses less
paging disk space.

14354

/

/ cPROG.RUN ©
2
S}Q@

Pure / C
Procedure / | |

Code / | | Paging ~~]
/ Disk

Impure Linkage o
and Data ~~ ‘4367 &//

Yn, fe

fy,’
LLji

ff

1-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

e@ Although PRIMOS autamatically shares EPFs between users, new
versions of EPFs can be installed at any time by using the OOPY
command to replace an old version. If the old version is still
in use by at least one user, PRIMOS keeps the old version on the
disk, renaming it so that subsequent invocations of the EPF
invoke the new version. A maximum of 10 old versions of an EPF
may be kept in this fashion. Although PRIMS creates the old
versions, it is up to the owner of the EPF to delete them when

they are no longer in use.

PROG.RPO

__ User A— PROG.RP1
(running oldest version)

PROG.RUN
Oldest

Version
Older

User B Version

|

__All other

(running older version) Latest users run

Version latest version

@ An EPF can be removed from memory by issuing the REMOVE_EPF
command. All memory associated with the removed EPF that
belongs to the user issuing the command is thereby returned to
the free memory pool. If no other users are using the EPF, this
means that one or more segnents, which contained the procedure
code for the EPF, are returned to the system-wide free segnent
pool.

@ The command line arguments used to invoke a program EPF can be
received by that EPF as an argument to the main entrypoint of
the EPF, due to the symmetric call/return flow of program EPF
invocation by the PRIMOS command envirorment. Such a program
need not make a special subroutine call to acquire the command
line from the command envirorment. This feature prevents the
side effect of wiping out any unparsed data on the origirmal
command line by aborting a running program and then typing
START; such side effects can occur with programs that continue
to use RDIKSS to retrieve the command line token by token.

@ Users can write their own CPL functions by building progran EPFs
that interface with the command processor.

e A program EPF can be executed by another progran and treated as
a command (which does not return a value) or as a CPL function

(which returns a string value).

First Edition 1-16

INTRODUCTION TO BIND AND EPFS

A program EPF can be constructed to selectively enable or
disable most forms of command-line preprocessing performed by
PRIMOS, such as wildcards, treewalking, iteration lists, and

name generation.

A program EPF can obtain information on what kind of command
preprocessing is taking place for the invocation of the EPF.
For example, a program EPF can determine whether it is being
invoked with a wildcard specification, even though what it
receives aS a command line argument is an objectrame without
wildcards; if wildcarding is being used, the program may wish
to alter its output display to suit a list of file system
objects.

Program EPFs can be stacked on the command processor stack,
allowing you to invoke program A, suspend it (via Control-P for
example), invoke program B, and then, when program B finishes,
use the START command to continue execution of program A at the
point at which you suspended it. This same mechanism applies
when program A is suspended as a result of a programming error
(such aS a memory access violation or use of an illegal segment
number), allowing easier program debugging by using more
advanced debugging techniques.

B.RUN

Command Processor Level 2

A.RUN

Command ProcessorLevel 1

1-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

@ PRIMDS maintains an EPF cache for each user. Terminated program
EPFs are not immediately renoved from memory, but instead are
placed in the EPF cache. A subsequent invocation of a program
EPF that is in the EPF cache results in faster startup time for
that EPF, because most of the initialization of the EPF has
already been completed. PRIMOS keeps the EPF cache’ from
overloading system resources by removing older EPFs from the
cache (and also from memory) as new EPFs are invoked.

@ An EPF contains not only procedure code and linkage information,
but general information on the EPF itself, including:

- The version of BIND that was used to link the EPF

- The date and time the EPF was linked via BIND

- The name of the program, which may be different from the
name of the file containing the program

- The version of the program, as assigned by the programmer
during the BIND session

- A comment pertaining to the program, as assigned by the
programmer during the BIND session; for example, a
copyright notice

@ Debugging of an EPF that is in production mode is easier; after
an EPF is suspended, due to a user quit or some error, you can:

- Use the LIST_EPF command to determine where in memory the
EPF is located

- Use the DUMP_STACK command to display the stack history
of the EPF and the PRIMDS command envirorment

- Use BIND, which itself is an EPF, either to display a map
of the EPF at the terminal or to write one into a file by
typing:

BIND —LOAD EPF-filename -MAP [map-filename] -QUIT

(With SEG and LOAD, you cannot generate a map of the
program without destroying part or all of the in-memory
copy of the suspended progran.)

- Use VPSD, which remains a static-mode progran, to examine
the EPF in memory. VPSD does not overwrite your EPF as
it may static-mode programs; you no longer have to
consider whether to use VPSD or VPSD16. Note, however,
that you cannot place breakpoints in the procedure code
of either a library EPF or of a program EPF that has been
invoked via RESUME, because the pure procedure code is

First Edition 1-18

INTRODUCTION TO BIND AND EPFS

protected against writing. (Use the VPSD subcommand of
DBG if you wish to place breakpoints in the procedure
code of an EPF with VPSD.)

- Use other commands, such as ED, SPOOL, and so on, without
disturbing the in-memory copy of the EPF or the stack
history of the EPF. After invoking static-mode programs,
you must issue the RELEASE_LEVEL command (abbreviated
RLS) once to prevent a subsequent START command from
returning you to the static-mode program rather than your
EPF. However, avoid issuing commands such as
RELEASE_LEVEL -ALL and INITIALIZE_COMMAND_ENVIRONMENT
(abbreviated ICE), as these delete stack history and, in
the case of ICE, remove EPFs from memory.

e The detection of uninitialized variables is improved because,
unlike SEG, BIND and PRIMOS do not initialize uninitialized
static data to all zeroes for EPFs. While this may produce the
undesirable effect of a working program failing when converting
from using SHG to using BIND, it does significantly improve the
chances of the progranmer detecting cases of uninitialized
variables when a program is built as an EPF. When such a
program does not depend on default initialization to zeroes, it
is more portable in that it can be ported to hosts whose own
operating systems do not provide default initialization.

As you read on in this volume, particularly Chapters 2 through 6, you
may discover additional benefits of using BIND to create EPFs. For
information on features provided by EPFs when interacting with the
PRIMOS command envirorment, see Volume III of this series.

1-19 First Edition

The Dynamic Linking

Mechanism

This chapter explains the concepts of the dynamic linking mechanism,
and details its operation. Because this mechanism is used by all
programs and libraries, all readers of this guide should understand how
it operates. A thorough understanding of dynamic linking on Prime
systems improves one's ability to solve product design and packaging
problems while it simplifies the debugging of errant programs.

WHAT IS THE DYNAMIC LINKING MECHANISM?

The dynamic linking mechanism in PRIMS allows a program to call
subroutines that are not linked in with the program itself, but which
are located in one of several libraries when the program is run. The
advantages of placing subroutines in libraries that are connected by
the dynamic linking mechanism, rather than binding them into each
program that uses them, are:

e@e Less disk space is wasted because only one copy of the
subroutine exists on a system, rather than having a copy in
every program that uses the subroutine.

e Less memory is needed when two or more users are running
programs that use the same subroutine, because the subroutine is
automatically shared between users.

@ New versions of the subroutine can be easily installed, as long
as they are compatible with previous versions, without having to
relink all programs that use the subroutine.

2-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

e Internal privileged PRIMDS subroutines, which execute in ring 0,
can be accessed via the dynamic linking mechanism if they are 7
entrypoints into PRIMOS; special-purpose supervisor call
instructions need not be used.

There are three general types of subroutine libraries in PRIMDS:

@ PRIMS-resident libraries, containing subroutines that are
internal to PRIMS.

e Library EPFs, supplied by Prime or by vendors, or user-written;

these are described in Chapter 6.

e@ Static-mode shared libraries, supplied only by Prime.

The dynamic linking mechanism allows access to specific subroutines,
called entrypoints, in these three types of libraries. Although a
particular library may have several subroutines, a subset of these
subroutines may be declared by the library as entrypoints; only
entrypoints may be called by programs that reside outside the library

itself,

WHAT IS A DYNAMIC LINK?

The crux of the dynamic linking mechanism is the dynamic link, also _

called a DYNT (pronounced "dint"). Inplace of a normal pointer to the
ECB of a subroutine, a dynamic link consists of a special pointer,
called a faulted IP (Indirect Pointer), that points to the name of an
entrypoint. The dynamic link serves as a placeholder for a_ subroutine
until that subroutine is located and connected to the program; it
contains the name of the subroutine.

DYNT SUBR

y»| ‘SUBR’

SUBRIP

1 segno
PCL SUBRIP,* ————>

offset

(faulted IP)

WHAT HAPPENS TO A DYNAMIC LINK?

When a program is run, it attempts to use faulted IPs when calling
subroutines external to the program. Each time a faulted IP is
encountered, a fault condition results; this causes PRIMOS to call its
dynamic linking mechanism to resolve the fault condition.

First Edition 2-2

THE DYNAMIC LINKING MECHANISM

The dynamic linking mechanism examines the faulted IP, determines that
it is part of a dynamic link, and begins a complex process that
culminates in the determination of the actual IP of the ECB of the
target subroutine. PRIMOS then replaces the faulted IP with the actual
IP; this is called snapping the link. At this point, PRIMS resets
the fault condition and continues the program. The instruction that
caused the fault by referencing the faulted IP is executed again, and
it succeeds: the target subroutine is called.

DYNT SUBR SUBR procedure

‘SUBR’

SUBRIP >

O segno
PCL SUBRIP,* ———> SUBR ECB

offset

(actual IP)

SUBRlinkage

p>

HOW DOES PRIMOS SNAP THE LINK?

To determine the name of the target subroutine, PRIMOS modifies the
faulted IP so that it is a normal IP by resetting the Fault bit in the
IP. (PRIMOS does this to a temporary copy of the IP, not the copy in
memory that caused the fault.) Then, PRIMOS uses the resulting IP to
read, from memory, the name of the target subroutine. (The name is

stored in CHARACTER VARYING format.)

Once PRIMOS has the name of the target subroutine, it searches through

its list of libraries (all three types) for a library that declares

that name as an entrypoint. When PRIMOS finds the first such library,

PRIMOS performs whatever initialization of that library is needed (such
as initializing ECBs, IPs, static data, and so on). Then, PRIMOS
determines the actual address of the ECB of the target subroutine
within that library and replaces the faulted IP with that actual
address.

2-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

SAMPLE SESSION

The following annotated sample session illustrates the effects of the
dynamic linking mechanism. A program named LINKIT is written which
first sleeps for ten seconds and then calls the T1OU subroutine. The
ten-second sleep allows the user to type OONTROL-P before the TIO
subroutine is called; the user can then examine (via VPSD) the faulted
IP that will be used to call T1OU, and can also examine the name of the

target subroutine (the T1OU DYNT).

The user then terminates VPSD, types START to continue execution of
LINKIT, and waits for the program to finish. After the program
finishes, the user examines the IP again and sees that it is no longer
faulted, but instead points into the linkage area for the library EPF
named SYSTEM_LIBRARY, as shown by an ensuing LIST_EPF command. (The IP
points into the linkage area rather than the procedure area because a
resolved IP to a subroutine points to the ECB of that subroutine; the
ECB itself actually points to the first executable instruction of the
subroutine.)

OK, ED
INPUT

SUBROUTINE LINKIT

CALL SLEEPS(010000) /* SLEEP FOR 10 SECONDS

CALL T10U(:207) /* RING THE BELL

RETURN

END

(CR)
EDIT

FILE LINKIT. FIN

OK, FIN LINKIT ~DYNM -DCL

0000 ERRORS [<LINKIT>FIN-REV19.3]
OK, BIND —LOAD LINKIT —LIBRARY

[BIND rev 19.4]
BIND COMPLETE

OK, INITIALIZE_COMMAND_ENVIRONMENT (cleans up envirorment)
OK, RESUME LINKIT
(user types Control-P after a few seconds elapse)
QUIT.
OK, LIST_EPF ~DETAIL (shows placement of program in memory)

l Program EPF.

(active) <USRDSK>UNGER>LINKIT. RUN
1 procedure segnent: +0: 4340
1 linkage area: -2:4377 (3) /70
bind version: 19.4
date of binding: 84-11-13.16:38:40.Tue
program name: LINKIT
user version: (none)
comment : (none)
debug segnents:]
command options: wldcrd,trwlk,iter file,dir,segdir,acat 1

First Edition 2-4

THE DYNAMIC LINKING MECHANISM

OK, VPSD (use the symbolic debugger to examine memory)

SSN 4340 (the procedure segnent)

SA 1000:S (EPFs typically start at offset '1000; see map)
43407 1000 PCL? IB%+ 422,* (CR) (the SLEEPS call)
4340/ 1002 AP 1012,SL (CR)
4340/ 1004 PCL? IB%+ 424,* (CR) (the T1OU call)
4340/ 1006 AP IB%+ 400,SL (CR)
4340/ 1010 PRIN
SLB 4377 70-400 (linkage references are offset by '400)

SA LB3+424:0 (access the faulted IP)
4377/7 114 104340 (CR) (the fault bit is the 1 in 104340)
4377/ 115 1014 /
SSN 4340 (select the segnent, without the fault bit)

SA 1014
43407 1014 4 aA (name of DYNT is four characters long)
4340/ 1015 T1 (CR) (name of DYNT is T100)
4340/ 1016 OU /

SQ
OK, RELEASE_LEVEL (release the static-mode VPSD invocation)
Static mode program released. (rls)
OK, START (continue the suspended invocation of LINKIT)
(bell rings)
OK, VPSD (reenter VPSD)

SLB 4377 70-400 (set up LB again)

SA LB%+424:0 (access the same place in memory)
4377/7 114 4377 (CR (IP now points to 4377/16304)
4377/ 115 16304

$Q
OK, LIST_EPF -DETAIL —NO_WAIT (check for library EPF)

1 Process-Class Library EPF.

(active) <SYSDSK>LIBRARIES*>SYSTEM_LIBRARY.RUN

2 procedure segnents: +0:4342 +2: 4343
2 linkage areas: -2:4376(0)/0 -4: 4377 (3) /1134
bind version: 19.4
date of binding: 84-10-25.16:17:20.Thu
program name: SYSTEM_LIBRARY
user version: (none)
comment : Copyright (C) 1983, Prime Computer, Inc.,

Natick, Ma. 01760 All rights reserved
debug segnents: 2

1 Program EPF.

2-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

(not active) <USRDSK>UNGER>LINKIT.RUN
l procedure segnent: +0: 4340
1 linkage area: -2:4377(3)/70
bind version: 19.4
date of binding: 84-11-13.16:38:40.Tue
program name: LINKIT
user version: (none)
comment ;: (none)
debug segnents: 1
command options: widcrd,trwlk,iter file,dir,segdir,acat 1

OK,

WHAT IF THE DESIRED SUBROUTINE CANNOT BE FOUND?

Dynamic links, also referred to as faulted IPs, are resolved as the
program runs. They are resolved to point to one of the three types of
libraries discussed previously. If none of the libraries known to
PRIMOS lists a particular subroutine as an entrypoint, PRIMOS signals
the error condition LINKAGE_FAULTS. Unless intercepted by a program,
the condition results in a display similar to the following:

Error: condition "LINKAGEFAULTS" raised at 4243(3)/1031.
Entry name "INIT_LINE" not found while attempting to resolve
dynamic link from procedure "TRY_ASYNC" .
ER!

Here, INIT_LINE is the target subroutine that is not known to PRIMS,
4242/1031 is the address of the instruction that referenced a faulted
IP for INIT_LINE, and TRY_ASYNC is the name of the procedure making the
reference,

Note

PRIMOS is not always able to determine the mame of the
procedure making the reference that produces the linkage fault
error. For example, procedures compiled in FIN do not identify
themselves to PRIMOS; therefore, PRIMS produces a shorter
message. For example:

Error: condition "LINKAGE_FAULTS" raised at 4347(3)/10246.
Entry name "GETLIN" not found.
ER!

First Edition 2-6

THE DYNAMIC LINKING MECHANISM

HOW DOES DYNAMIC LINKING RELATE TO COMMON BLOCKS?

PRIMOS does not support dynamic linking to common blocks; dynamic

linking to subroutines only is supported. The BIND subcommand

ENTRYNAME -ALL applies only to subroutines; ENTRYNAME -ALL does not

declare common areas in a library EPF as externally available

entrypoints.

Caution

Do not explicitly name a common area in a DYNT or ENTRYNAME
subcommand in BIND, or you may encounter unexpected results.

2-7 First Edition

The EPF Mechanism

This chapter describes the EPF mechanism itself. You should read this
chapter if you want to more thoroughly understand how EPFs are handled
by PRIMOS.

There are three general areas with which the EPF mechanism is
concerned:

@ Memory allocation

@ Subroutine linkage

@ Data initialization

In terms of these three general areas, this section describes:

@ The organization of an EPF

@ The organization ot subroutines on Prime systems

e The life of an EPF

@e How multiple invocations of an EPF are handled

@ How simultaneous use of an EPF by two or more users is handled

@ How to debug an EPF using DBG

e How invocation of a remote EPF is handled

3-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

EPF ORGANIZATION

A running EPF is organized into five basic sections:

@ Procedure text

e Linkage text

@e Stack space

e@ Dynamically allocated memory (optional)

@e Debugger text (optional)

Not. all of the information in these five sections exists before the EPF
is invoked. The file oontaining an EPF, named program.RUN- or
program.RPn, contains only the following information:

@ Procedure code

e Linkage text initialization information

@ Stack allocation information (included in linkage text)

@ Debugger text

Procedure Code

The procedure code for an EPF is the most stable aspect of an EDPF.
Once a procedure is compiled or assembled, the contents of the
procedure code are set. Once an EPF is linked by BIND, the pure
procedure segnents of that EPF are set and are not changed. An EPF may
also have impure procedure segnents; the oontents of an impure
procedure segnent may be changed by PRIMDS or by the program itself as
it runs. ‘Typically, a procedure segnent is impure because it contains
linkage data (such as ECBs or IPs), although it may be impure because
the code actually modifies itself as it executes.

Linkage Text

The linkage text for an EPF is the most complex aspect of an EPF.
Linkage text includes:

@ Program data

e EC8s for subroutines

@ Links between subroutines

e Links to common data areas

@ Common data areas

First Edition 3-2

THE EPF MECHANISM

The final content for this information is determined at different
points in time during the life of an EPF, depending upon the nature of
the information. Because all of this information resides in the impure
part of an EPF, and most of it resides in the Linkage text of an EPF,
various portions of the linkage text of an EPF are finalized at
different points in time during the life of that EPF. Therefore, the
file containing an EPF rarely contains the final content of the linkage
text; instead, it contains a combination of final information and

information on how other portions of the linkage text are to be

initialized.

Although common data areas are, themselves, not part of the linkage for

any particular procedure, BIND places them in the linkage portion of an
EPF along with the linkage text.

Stack Space

As noted, the stack allocation information is stored in the linkage
text. Stack is allocated autanatically during the invocation of a
subroutine via the PCL (Procedure Call) instruction; the ECB for a
subroutine includes the amount of stack space to be allocated each time
the subroutine is called. Therefore, stack allocation is performed

each time a subroutine is called.

Dynamically Allocated Memory

Dynamically allocated memory is acquired during program execution as a
result of explicit requests by the procedure code of the program.

Because both stack storage and dynamically allocated memory are
acquired during program execution, the file containing an EPF does not
specify initial values for data within those areas. In fact, data in
stack storage or in dynamic storage must be initialized during program
execution.

Debugger Information

Information provided via the -DEBUG option of most Prime-supplied
compilers is also kept in an EPF. [BG alore uses this information
during the debugging of an EPF. You do not need to be concerned with
the nature of this information, as long as you understand that it is
passed from the compilers to BIND via object (.BIN) files, and from

BIND to DBG via the EPF.

3-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

SUBROUTINE ORGANIZATION

The Prime 50 Series architecture defines a subroutine, or procedure, as
consisting of:

@ Procedure code

e Linkage text

@ Stack space

e@ An Entry Control Block (ECB) that contains information on the
above three elements

A particular procedure is said to consist of a procedure frame, a link
frame, and a stack frame, which correspond to the terms listed above,

Management of the elements of a procedure is handled at runtime by the
PCL and PRIN instructions. To call a procedure, a PCL instruction that
addresses, as its target, the ECB of the desired procedure, is
executed. The PCL instruction analyzes the ECB for the procedure being
Called, allocates a stack frame, and handles the transfer of arguments
between the procedures. Before the PCL instruction completes, it sets
up three base registers (PB for Procedure Base, IB for Linkage Base,
and SB for Stack Base) pointing to the three frames listed above.
These base registers are used by the procedure being called during its
execution to execute instructions and access data in its linkage and
stack areas,

A procedure therefore consists of only one copy of its procedure code
and link frame, whereas it has any number of stack frames, depending
upon the number of active invocations of that procedure. The EPF
mechanism, however, provides a method for maintaining more than one
copy of the link frames for an entire EPF when appropriate. Each
separate invocation of a program EPF is given its own copy of its link
frames by the EPF mechanism; similarly, each use of a program-class
library EPF by a separate program invocation is given its own copy of
its link frames. (See Chapter 6 for information on library EPFs.)

At the beginning of each stack frane is a stack header that contains
the information needed to identify the owning procedure and also the
information needed to return to the calling procedure. The stack
header may also contain information on conditions and on-units to be
invoked; this information is defined and set up by software on the
Prime 50 Series systems.

When the called procedure is finished, it executes the PRIN
instruction. The PRIN instruction deallocates the stack frame used by
the procedure, resets the three base registers to their original values
(before execution of the matching PCL instruction), and returns control
to the calling procedure at the instruction following the FECL
instruction (and its argument list, if any).

First Edition 3-4

THE EPF MECHANISM

Typically, the linkage information for a procedure also contains the
ECB for that procedure. It may seem strange that the ECB for a
procedure not only identifies the address of the link frame of that
procedure but also resides in the same link frame. It is the calling
procedure that must address the ECB of the target procedure; the
calling procedure does this by specifying an indirect pointer, or MIP,
that resides in its own link frame. This IP is set by either BIND or
PRIMOS to point to the target ECB. Because an IP is a full address,
rather than an address relative to the PB, IB, or SB base registers,
the ECB may reside in the link frame of the target procedure.

General information on the procedure call mechanism is found in the
Prime 50 Series Technical Summary. Details of the procedure call
mechanism, including formats of the ECB and stack frame, are found in

the System Architecture Reference Guide.

THE LIFE OF AN EPF

In the following discussion, the life of an EPF is presented as a
series of phases through which an EPF passes from generation by the
programmer, through invocation by a user or program, through
termination, to removal from memory. Each of the above three areas is
touched upon during the description of the phases.

In very general terms, the life of an EPF can be seen as progressing
through five stages:

1. Generation by the programmer

- Invocation (by a user or by a program)2

3. Preparation by PRIMDS

4. Execution

5 - Removal by PRIMOS

Each of these stages consists of one or more phases that, when put
together, constitute a complex series of steps in the life of an EPF.
Some of these phases differ in meaning between types of EPFs. For
example, a program EPF is invoked directly by a user or program,
whereas a library EPF is invoked as a result of a call to one of its

entrypoints by another running program.

Prime—supplied text editors and compilers, the Prime Macro Assembler
(PMA), and the BIND linker perform the activities that constitute Stage
1 at the direction of the programmer. After Stage 1, the EPF is in the
hands of its users and is operated on by PRIMDS.

As described in Volume III of this’ series, there are many
‘ PRIMOS-supplied subroutines that operate onan EPF. One subroutine,
EPFSRUN, performs all of the tasks needed to invoke a program EPF.

3-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Invocation of an EPF, whether by EPFSRUN (for a program EPF) or by
calling one of its entrypoints (for a library EPF), is Stage 2 in the
above list.

EPFSRUN performs its tasks by calling other EPFS subroutines to prepare
the EPF for execution (Stage 3), to execute the EPF (Stage 4), and to
remove the EPF from memory (Stage 5).

All five stages apply equally for both types of EPFs. Library EPFs,
however, are not executed in the same way as program EPFs; instead,
the subroutines they contain are executed as the calling program
invokes them.

The other EPFS$ subroutines called by EPFSRUN are called for every EPF
run by PRIMOS. The exception is the EPFSINVK subroutine, which invokes
a program EPF.

To describe the EPF mechanism faithfully, only those phases that are
generally common to both program EPFs and library EPFs are presented
here. Where appropriate, each step is correlated with the appropriate
EPF$ subroutine. Chapter 6 describes aspects of the mechanism specific
to library EPFs; Volume III of this series describes the EPFS
subroutines, including EPFSRUN, in detail.

There are ten phases of activity during the life of an EPF:

1. The procedures that are to constitute the EPF are compiled or
assembled, generating object files (.BIN files).

2. These object files are linked using BIND, generating an EPF.

3. The EPF is invoked by either a user or a running program
(EPFSRUN or the dynamic linking mechanism).

4, The procedure (pure) portion of the EPF is mapped to memory
(EPFSMAP).

5. The linkage (impure) portion of the EPF is_ allocated
(EPFSALLC).

6. The linkage (impure) portion of the EPF is initialized
(EPFSINIT) .

7. The EPF entrypoint is invoked (EPFSINVK or the dynamic linking
mechanism) .

8. Dynamic links encountered within the EPF are snapped.

9. The EPF terminates, returning to its caller.

10. The EPF is removed from memory (EPFSDEL).

- The remainder of this chapter describes these phases in detail.

First Edition 3-6

THE EPF MECHANISM

Phase 1 -— Compiling or Assembling

The source code of the program or library specifies the exact contents

of the procedure text and the desired contents of the linkage text.

The purpose of this phase is to generate an object file containing this

information in a form that is independent of the language used in the

source code.

Procedure text includes instructions and often includes constants used

during execution of the procedure. Linkage text includes:

e Static data, which can be initialized when the program is

invoked (via FORTRAN DATA statement or PLI/G STATIC INITIAL
attributes) .

e The ECB for the procedure and an ECB for each alternate

entrypoint and for each internal procedure

e@ External linkage information, such as pointers to external

procedures or to common areas

Static data values are known during this phase. Most of the data in an

ECB are known during this phase except for the actual location of the

procedure frame and the linkage frame for the procedure. The data for
external linkage information are not known during this phase.

Data that are not known during this phase are described using alternate

methods. For example, the statement CALL SUBRI might reference an

external procedure named SUBRIl. The external linkage information

indicates a requirenent for an IP (Indirect Pointer) to SUBRI at a

certain location in the link frane. Either BIND or PRIMS sets the

data value of the IP. The procedure code, which is known during this

phase, includes a PCL instruction referencing the location of the IP in

the link frame as an indirect reference. Figure 3-1 illustrates
linkage information as it exists in a single object (.BIN) file.

In Figure 3-1, the procedure SUBRI references six external symbols:

SUBR2, COMN1, OOMN2, SRCHSS, CLOSSA, and S¥FOOLS. Figure 3-2

illustrates linkage information for the three object files, including
SUBRL.BIN, that will be used to build a program EPF.

Phase 2 -— Linking

Object files are linked together using BIND during this phase. BIND

maintains a list of procedure (PROC, or pure) segnents and linkage

(DATA, or impure) segments needed to represent the resulting program.

The purpose of this phase is to produce an EPF file that contains the

PROC, IMPURE, and DATA segnents needed to run the program or library.

Also, debugger information is written to the EPF file when this

information is provided in the object files.

3-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

»ENT eT

EXT IP SUBR&

EXT IP COMN1

EXT IP COMN&2

EXT IP SRCH$$

EXT IP CLOS$A

EXT IP SPOOL$
SUBR1.BIN

ENT is an externally available name declaration

EXT IP is an external (unresolved) Indirect Pointer

Linkage Information in a Single Object File
Figure 3-1

First Edition 3-8

THE EPF MECHANISM

Nia'cy¥aNns

V
$
S
O
T
I
O

d
I
L
x
X
@

@
N
W
O
O

d
I
L
x
X
a

I
N
W
O
O
D

d
I
L
x
a

Nig"
LY¥sNns

N
i
g
‘
S
O
u
d

$
1
0
0
d
S

dI
L
X

V
$
S
O
T
0

dI
L
X
E

$
$
H
O
U
S

dI
L
X
a

V$SOT10
dI

L
X
E

@
N
W
O
O

dI
L
X
a

$
$
H
O
U
S

dI
L
X
a

I
N
W
O
O

dI
L
X

s
u
a
n
s

dI
LxXa

e
u
a
n
s

dI
LxXa

T
u
a
n
s

dI
L
X
W

9
0
d

L
s
u
d
n
s
L
N
<
«

L
T
u
d
o
n
s
L
N
A

L
j
/
o
u
d
L
N
A

Linkage Information in Three Object Files
Figure 3-2

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The procedure code from the linked object files is collected into ore
Or more PROC and IMPURE segnents. Link frames from these object files
are collected into one or more DATA segnents. Common areas referenced
(and optionally initialized) by these files are also placed in DATA
segments.

While collecting link frames, BIND maintains a list of external symbols
and their placement in the program so that it can resolve some of the
references in the link frames.

For example, if the CALL SUBRI statement exists in a program named
PROG, and the BIND session to create PROG.RUN links SUBRl in with it,
BIND resolves the IP to SUBRI in the link frame of PROG to point to the
SUBR1 ECB in the linkage text of SUBRI.

However, in most cases, BIND cannot resolve IPs to the actual memory
addresses. Each time an EPF is invoked, PRIMOS dynamically allocates
memory for the linkage text of the program. Therefore, BIND does not
know the actual memory address of the linkage text of SUBRI, and
therefore cannot compute the actual memory address of the SUBRI ECB.

Instead, BIND leaves the task of determining actual memory addresses to
PRIMDS. BIND identifies all IPs and ECBSs that must be adjusted at
program runtime by PRIMDS. In the meantime, BIND uses imaginary memory
addresses. An imaginary address identifies a location within a
particular EPF. When an EPF is invoked, PRIMDS maps the EPF into
virtual memory and maintains a table indicating the mapping between
imaginary and actual addresses,

In our example, therefore, BIND might put the linkage text for SUBRI at
imaginary address -0002/60. (Due to the architecture of Prime 50
Series computers, linkage text starts at octal 400 halfwords beyond the
address in the base register that identifies linkage text for a
procedure. Therefore, if linkage text is at -0002/60, the address used
by BIND must be -0002/177460, because 60 minus 400, in octal and using
16-bit unsigned halfword arithmetic, is 177460.)

If the ECB for SUBRI begins at octal 120 halfwords beyond the start of
the linkage text, then the imaginary address for the ECB is -0002/200.
BIND places —0002/200 in the linkage text location for the IP needed by
PROG when it calls SUBRI so that it uses the SUBRI ECB as its target.
BIND also places -0002/177460, the offset start of the SUBRI linkage
text, into the appropriate portion of the SUBRl ECB. In both cases,
BIND identifies that it has used imaginary addresses in the file
containing the EPF, so that when the EPF is invoked, PRIMS knows to
modify these addresses.

BIND uses segnent numbers +0, +2, +4, +6, +10, +12, and so on to
indicate imaginary addresses identifying pure procedure (PROC)
segments. BIND uses segnent numbers -2, -4, -6, -10, -12, -14, and so
on to indicate imaginary addresses identifying linkage (DATA) segnents
or impure procedure (IMPURE) segnents. For more information on

. imaginary addresses vs. actual addresses, see Chapter 9.

First Edition 3-10

THE EPF MECHANISM

Figure 3-3 illustrates the resolution of some of the external symbol
references made by the three object files after BIND is invoked and the
three files are linked via the LOAD subcommand.

As illustrated in Figure 3-3, external references to SUBRI and SUBR2
have been resolved to the extent that their placement relative to the
start of the EPF itself is known. There is only one way to produce
actual memory addresses in BIND, and that is by using the SYMBOL
subcommand.

When you use the SYMBOL subcommand to tell BIND exactly where an
external symbol is located in memory, BIND does not use an imaginary
address. Instead, it replaces all of the program's unresolved IPs that
reference the external symbol with the actual address you specified
using the SYMBOL command. Because use of the SYMBOL command requires
you to manage actual memory, its use is generally confined to
specifying shared common areas, as described in Chapter 8.

The SYMBOL subcommand may also be used to specify a common area in
static per-user memory. Figure 3-4 illustrates this use of the SYMBQL
subcommand.

In Figure 3-4, the SYMBOL subcommand is used to specify that the common
area named COMN2 is placed at address 4001/0, which is in static
per-user memory. BIND therefore fully resolves all external references

to COMN2 to actual memory addresses.

Note

Common areas that are placed by the SYMBQL subcommand of BIND
are not initialized by BIND during program linking or by PRIMDS
when the progran is invoked. Either the progran must
initialize the common area at runtime, or it must be
preinitialized by another program (as is often the case when
shared memory is involved).

External references still wumresolved include references to SRCHSS,
CLOSSA, and SPOOLS. ‘These are Prime-supplied subroutines that reside
in libraries. These references are resolved when the libraries are
linked via the LIBRARY subcommand of BIND. However, they are resolved
only to the extent that they are identified as dynamic entrypoints,
also known as dynamic links. IPs to these subroutines are converted to
faulted IPs by BIND, as illustrated in Figure 3-5.

A faulted IP has a bit, called the fault bit, set tol. This causes a
hardware fault to take place whenever the IP is referenced as an
indirect pointer, as described in Chapter 2. With the fault bit in the
IP reset to 0, the IP points to a DYNr that names the desired
subroutine. Because this name is in the PROC code of an EPF, BIND must
use an imaginary address in the faulted IP as it does for other

‘addresses not set using the SYMBOL subcommand.

3-11 First Edition

BIND AND EPFS ~ADVANCED PROGRAMMER'S GUIDE, VOLUME I:

N
I
a
‘
c
H
a
n
s
G
V
O

V
$
S
O
T
O

d
I
L
X
a

S
N
W
O
O

d
I
L
X

I
N
W
O
O
D

d
I

LxXad
r
e
—

c
U
u
d
N
s

dil
L
l
e
r

N
i
a
b
L
Y
a
N
S
G
V
O
T

$
1
0
0
d
S

d
I
L
X
a

V
$
S
O
T
1
0

d
I
L
X

$
$
H
O
U
S

d
I
L
X

S
N
W
O
O

d
I
L
X

L
c
u
d
o
s
L
N
_

L
L

Tuqdos
L
N
a
<
«

Jajuiod
s
s
e
u
p
p
e
-
A
v
e
u
l
B
e
w
!
u
e

st
dj
L
X
¥
F

N
I
G
“
S
O
’
d
G
V
O
T

V
$
S
O
I
O

d
I
L
X
@

$
$
H
O
U
S

d
I
L
X
H

I
N
W
O
)
D
d
I

L
X
@

—
—

S
U
N
S

d
I
L
e
t

(
_

T
U
a
N
S

d
I
L
e
e
t

L
p
o
u
d
L
N
A

a
n
i
a

After Linking (Loading) Three Object Files in BIND
Figure 3-3

3-12First Edition

THE EPF MECHANISM

V
$
S
O
T
1
0

d
I
L
X

0
/
T
O
O
%
=
S
N
W
O
O

d
I
S
i

I
N
W
O
)
D
d
I

L
x
X
d

sojuiod
sseuppe-jenjoe

ue
SI
d
i

$
1
0
0
d
S

d
I
L
X
a

V
$
S
O
T
O

d
I
L
X
d

$
$
H
O
U
S

d
I
L
X

0
/
T
O
O
F
=
S
N
W
O
D

d
I
S
i
e

T
I
N
W
O
O

d
I
L
x

a
i
—
-
—
—
-
—
_
S
H
a
N
S

d
I
L
e
t

L

e
u
d
n
s
L
N
G
<
<

—
L

1uqoas
LNa<«—”

V
$
S
O
T
O

d
I

L
x
X
a

$
$
H
O
U
S

d
I
L
X
a

C
U
a
O
s

d
i
L
E
T

T
U
a
N
s

d
I
L
e
t

L
\
o
u
d
L
N
a
<

0
/
L
0
0
v
2
N
W
O
D
T
I
O
S
W
A
S

Figure 3-4
After Using the SYMBOL Subcommand in BIND

First Edition3-13

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

LIBRARY VAPPLB

LIBRARY SPOOLS

 LIBRARY
>ENT ~|

ENT SUBR2|

EXTIP SUBR2 EXT IP COMN1

EXT IP COMN1 MM IP COMN2 = 4001/0

rr ENT SUBR1|

EXT IP SUBR1—

EXT IP SUBR2

[EXTIIP is a fault

IP SRCH$$

pew) Etre ee
—N\ IP CLOS$A .

IP SPOOL$ /

DYNT

SPOOLS

\

- J

ed pointer.

DYNTis a dynamic-link declaration.

First Edition

After Using LIBRARY Subcommands in BIND
Figure 3-5

3-14

THE EPF MECHANISM

There still remain two unresolved references to the COMN] common area.
BIND knows the size of the common area, because this information was

provided in the object files that referenced the common area. However,

BIND has not yet resolved the two external IPs to OOMNI, because it

does not yet know whether COMNI is part of the EPF, or external to the
EPF (as defined by the SYMBOL subcommand) as is COMN2. Once the FILE
subcommand is given, BIND resolves the dilemma by placing any
unresolved common areas within the LINK portion of the EPF and
resolving IPs to the common areas to imaginary addresses.

However, if you wish to produce a MAP of an EPF before issuing the FILE
subcommand, you may want the imaginary addresses produced for such
common areas to be present in the map. To effect this, issue the

RESOLVE_DEFERRED_COMMON subcommand of . BIND before issuing the MAP

subcommand of BIND. Figure 3-6 illustrates the effect of the
RESOLVE_DEFERRED_COMMON subcommand on IPs to OOMNI1 and on the EPF

itself.

As shown in Figure 3-6, BIND has allocated storage in the EPF for the
COMN1 common area, and resolved IPs to COMNI so that they point to this
area. Although not shown, COMNI is located in the LINK portion of the
EPF. The IPs to COMNI are imaginary addresses, because the final
address for COMN] is not known until after the EPF is invoked.

Although all external IPs have been resolved in some fashion, there

remains the task of defining the entrypoint or entrypoints to the EPF.
A program EPF has only one entrypoint, defined by the MAIN subcommand
o£ BIND, as illustrated in Figure 3-7. A library EPF has one or more
entrypoints, defined by the ENTRYNAME subcommand of BIND, as described
in Chapter 6.

Figure 3-7 illustrates the final EPF file produced by a FILE subcommand
after the entrypoint(s) of the EPF have been identified. PRIMOS uses
the MAIN or ENTRYNAME entrypoints when invoking the EPF. If no MAIN
subcommand is given while linking a program EPF, BIND uses the first
module linked via the LOAD subcommand as a default. If no ENTRYNAME
subcommand is given while linking a library EPF, the library EPF is
effectively useless because the dynamic linking mechanism will not link
to any subroutines contained in it.

Figure 3-7 also illustrates that, once the EPF is written to file,

the boundaries between procedures are less distinct; BIND assembles
the procedure frames and link frames for the procedures into single
procedure segments and link segnents for use by PRIMDS. Generally,

PRIMDS is not aware of the boundaries between procedures within an EPF;
PRIMOS is more concerned with the boundaries between EPFs in memory.

Phase 3 -— EPF Invocation

When an EPF is invoked, PRIMOS begins the process of preparing the EPF
‘so that it can be executed. Portions or all of this process may be
avoided, however, if they have been performed previously.

3-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The form of invocation depends upon the type of the EPF. A program EPF
is invoked by calling the EPFSRUN subroutine or by calling the CPS
subroutine to execute an EPF. (CPS is called to process a user command
such as RESUME; it calls the same EPFS subroutines that EPFSRUN
calls.) A library EPF is invoked by a program that references one of
its entrypoints by name.

Once PRIMOS has determined the name of the EPF to be invoked, it checks
to see if it has already performed some or all of the preparatory steps
needed to execute the EPF. For a program EPF, PRIMOS considers whether
it must map the EPF to memory; if it has already mapped the EPF, it
skips Phase 4. A program EPF is already mapped to memory if it is
either on the EPF cache or if another invocation of the same EPF is
still active on the command stack, such as when it is suspended by the
user,

For a library EPF, PRIMDS has already mapped in the EPF at least to
check its list of entrypoints to see if the desired subroutine is an
entrypoint in the EPF. A library EPF is already mapped to memory,
therefore, by the time PRIMOS determines that the EPF is the target of
a dynamic link. PRIMDS then determines whether Phases 5 and 6 may be
skipped. See Chapter 6 for a complete description of how PRIMS
decides whether to skip phases 5 and 6 for a library EPF.

Phase 4 -— Mapping

During Phase 4, PRIMDS allocates sufficient dynamic segnents to hold
all of the pure procedure (PROC) segnents required by the EPF. The
EPFSMAP subroutine performs the tasks associated with this fhase.
Information on space requirements for procedure and linkage segnents is
found by PRIMDS in the file containing the EPF.

PRIMOS maps the PROC segments that have been allocated to the imaginary
PROC segnent mumbers (+0, +2, +4, and so on) used in the file
containing the EPF. In fact, PRIMOS does not read the procedure text
in from the file at this point — instead, PRIMS uses the virtual
memory mechanism of PRIMOS to page data for these segments directly
from the file containing the EPF. Because the virtual memory mechanisn
does not allow for segnents mapped in this way to be modified, PRIMOS
sets the access on these segnents so that they cannot be written by the
user or the program itself.

Phase 5 - Linkage Allocation

During Phase 5, PRIMOS allocates sufficient dynamic space to hold all
of the linkage (DATA) segnents and impure procedure (IMPURE) segments
required by the EPF. PRIMOS sets the access on these segments so that

- they can be written by the user or by the program. The EPFSALLC
subroutine performs these tasks.

First Edition 3-16

THE EPF MECHANISM

 [RESOLVE_DEFERRED_COMMON|

ENT| ENT| ENT~|

 EXT IP SUBR1

EXT IP SUBR2

\

EXTIP SUBR&

BXT IP COMN1I————_

IP CLOS$A GB IP comNn2 = 4001/0. IP CLOS$A—~

) IP SRCH$$
—~ IP CLOS$A

IP SPOOL$ > Y

DYNT

SPOOLS

| \

¥
—

After Using the RESOLVE_DEFERRED_COMMON Subcommand in BIND

Figure 3-6

3-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

MAIN PROG MAIN PROG

FILE PROG.RUN

EXTIP SUBR1

EXT IP SUBR2 \

EXT|IP SRCH$$

EXT|IP CLOS$4——~

EXT IP SUBR2 ye DYNT CLOSSA

EXT IP COMN1

GMM Ie comNne2 = 4001/0

EXT|IP SRCHS$——f~

EXTIIP CLOS$A

EXT|IP SPOOL$

BRT IP COMN1

MIP COMN2 = 4001/0

[ExT|IP CLos$a——/

Program EPF PROG.RUN

After Using the FILE Subcommand in BIND
Figure 3-7

First Edition 3-18

THE EPF MECHANISM

Phase 6 -— Linkage Initialization

During Phase 6, PRIMDS reads the descriptor information for the linkage

areas and impure areas of the EPF and sets the DATAand IMPURE segnents
that have been allocated to contain the indicated information. Data
such aS program constants are copied directly into the DATA segments.

Linkage data consisting of imaginary addresses are first converted into

the corresponding actual addresses for this program invocation, and are

then copied into the DATA segments. This linkage data consists mostly

of IPs and ECB linkage area pointers. Impure procedure code is copied

directly into the IMPURE segments. These tasks are performed by the

EPFSINIT subroutine.

Figure 3-8 illustrates a program EPF after its imaginary addresses have

been converted to actual addresses.

Although Figure 3-8 illustrates the overall effect of a RESUME command

on a program EPF just before its main entrypoint is actually invoked,

the same actions are performed on a library EPF. All of the linkage

information for both program EPFs and library EPFs is initialized,

converting imaginary addresses to actual addresses for both IPs and

ECBs. The only IPs that renain unresolved are faulted IPs. Faulted
IPs are adjusted so that they contain the actual addresses of DYNTs,
rather than the imaginary addresses produced by BIND.

Phase 7 -— Entrypoint Invocation

At this point, PRIMS either executes a PCL instruction to the ECB of
the main entrypoint for a program EPF (performed by the EPFSINVK
subroutine), or resets the fault condition and reexecutes the original

PCL instruction that now references the ECB of the desired entrypoint
for a library EPF (performed by the dynamic linking mechanism). The
EPF is now running.

3-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

RESUME PROG.RUN

 MAIN PROG>

(Y
GE IP SUBR1 = 4376/1022

GEE IP SUBR2 = 4376/1722

EXTI/IP SRCH$$

EXT|IP CLOS$4 ———————7

GEE IP SUBR2 = 4376/1722 | DYNT

GR IP COMN1 = 4376/3406

GM IP COMN2 = 4001/0

EXT|IP SRCH$$——————_
EXT|IP CLOS$4———————

EXT|IP SPOOL$

GE IP COMN1 = 4376/3406

HM IP COMN2 = 4001/0

IP CLOS$A————_—_

in-memory Copy of PROG.RUN

”

After EPF Is Mapped and Initialized
Figure 3-8

First Edition 3-20

THE EPF MECHANISM

Phase 8 — Dynamic Links Snapped

During the execution of the EPF, faulted IPs are typically encountered.
These represent dynamic links that must be snapped by PRIMDS before the
instructions referencing the faulted IPs can be executed. Once
snapped, a faulted IP becomes an actual memory address, and subsequent

use of that particular IP produces no fault condition.

Because several different faulted IPs may point to the same DYNT within

an EPF, several faults may resolve to the same subroutine within an
EPF, In addition, while some entrypoints reside in PRIMOS, others

reside in library EPFs or in static-mode libraries. To show the

details of how dynamic links are snapped in an executing EPF, several

illustrations are provided that follow the PROG progran EPF through its

execution until it has snapped all of its faulted IPs.

In practice, few programs ever snap all of their faulted IPs, because
some faulted IPs point to error-handling subroutines (such as_ ERRPRS$
and SIGNLS), while other faulted IPs point to subroutines used when no

errors occur (such as ‘NOU, PRWFSS, and CLOSSA). Furthermore, a
library EPF rarely snaps all of its links when it consists of more than
one entrypoint, unless each entrypoint in that library EPF is invoked
by the same calling program during its execution.

3-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Figure 3-9 illustrates the PROG progran EPF after the first dynamic

link to SRCHSS in the PROG procedure is snapped. Here, PRIMS itself

is illustrated as residing in the same memory space as the user program

and containing many entrypoints, one of which is named SRCHSS.

In Figure 3-9, the first faulted IP in the EPF, which resides in the

link frame for PROG, has been snapped. It has been replaced with the

absolute address of the ECB of SRCHSS in PRIMOS. Note that another

faulted IP to SRCHSS$, in the link frame for SUBRI, has not been

resolved.

Dynamic links to entrypoints in PRIMOS itself are easy for PRIMDS to

resolve. PRIMOS is always present in every user's memory address

Space. In addition, all PRIMOS entrypoints have their link frames

initialized at system ooldstart or during systen build, so no

initialization is needed.

First Edition 3-22

THE EPF MECHANISM

Dynamic Link to SRCH$$ in PROG is Snapped PRIMOS

MAIN PROG ~ Y

a. SQ

GEMM IP SUBR1...

GMB IP SUBR2 ...

GE IP SRCHS$$

IP CLOS$A —————}
GMM IP SUBR2...

GIP COMN1...

WEB IP comne...

EXTIIP SRCH$$——————
EXTIIP CLOS$4 ————_—___

EXTIIP SPOOL$
QE IP COMN1...

MIP comne...

IP CLOS$4 ————___’

|__| DYNT

e Execution Point

After First Dynamic Link Is Snapped
Figure 3-9

3-23 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Next, a faulted IP to CLOSSA in the PROG procedure is snapped. CLOSSA

is an entrypoint in the Application Library (described in the

Subroutines Reference Guide), which is contained in the library EPF

file LIBRARIES*>APPLICATION_LIBRARY.RUN. Figure 3-10 illustrates the

appearance of the PROG program EPF after the dynamic link to CLOSSA is

snapped.

As shown in Figure 3-10, the APPLICATION_LIBRARY library EPF has been

loaded into memory and "connected" to the running program EPF PROG. In

fact, by the time the first call to CLOSSA by the PROG procedure was

completed, the library EPF named APPLICATION_LIBRARY went through

Phases 3 through 9 as described here, when the CLOSSA entrypoint
returned to its caller, the PROG procedure.

Again, notice that two other faulted IPs to CLOSSA, in SUBRI and in

SUBR2, have not yet been resolved.

Sometime after calling SRCHSS$ and CLOSSA, the PROG procedure calls the
SUBRL procedure, which will encounter its own faulted IPs.

First Edition 3-24

THE EPF MECHANISM

Dynamic Link to CLOS$A in PROG is Snapped; APPLICATION__LIBRARY.RUN is Mapped In

(PROG now calls SUBR1) PRIMOS

MAIN PROG YS

f SS

GEMBIP SUBR1...

GEM IP SUBR2...

MIP SRCHS$

MIP CLos$a ——~
GEM IP SUBR2 ... DYNT DYNT

GMB IP comMN1...

WE IP comNne...

EXTIIP SRCH$$

EXTIIP CLOS$A
EXT|IP SPOOL$ a2
MEME IP COMN1...
MIP COMNe2... L J

[ext]IP cLos$4 ————_—” /
APPLICATION_LIBRARY

After Second Dynamic Link Is Snapped
Figure 3-10

3-25 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

When dynamic links that identify entrypoints in libraries already
initialized are encountered, PRIMOS needs to do much less work to make
the connection. This is illustrated in Figure 3-11, in which the
dynamic links to SRCHSS$ and CLOSSA in SUBRI are snapped.

Because SRCHS$ is an entrypoint in PRIMDS, the process of snapping the
faulted IP to it is again straightforward. PRIMDS is already present
in the user's memory area, aS always, and no initialization of any
PRIMOS-resident subroutines is ever needed at runtime.

Because CLOSSA is an entrypoint in a library EPF that has already been
connected to the PROG program EPF, no initialization of the library EPF
is needed. Even if a different entrypoint in the same library EPF,
such as NLENSA, had been called, no initialization would have been
needed.

As there are no longer any faulted IPs pointing to the DYNT for SRCHSS,
the DYNT in the illustration has been shaded in to indicate that it is
no longer in use by that program invocation. This shading does not
represent any action by PRIMOS; the DYNT still remains in the FRC
segment as before. The shading is present only to indicate the absence
of faulted IPs to the SRCHSS DYNT.

First Edition 3-26

THE EPF MECHANISM

Dynamic Links to SRCH$$ and CLOS$A in SUBR1 Are Snapped

PRIMOS

 S

MAIN PROG —~

f
GEMMIP SUBR1...

GEMBIP SUBR2...

MMMM IP sRcHS$

MIP cLos$a ——,
G@EMBIP SUBR2... DYNT

GBI comN1...

GIP COMNe2... |

MIP sRcHs$ —,

MMIP cLosg$a
[ext] 1P sroo1s———_——
GMM IP comN1.

GIP CoMNe .

SO

USNs

[ext] IP CLOS$ASs
7

APPLICATION__LIBRARY

After Third and Fourth Dynamic Links Are Snapped
Figure 3-11

3-27 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Next, the faulted IP to SPOOLS in the SUBRL procedure is encountered.

SPOOLS is a Prime-supplied entrypoint that comprises the program's

interface to the Spooler subsystem. SPOOLS is, at Rev. 19.4, supplied

as a static-mode library. (Prime reserves the right to change SPOOLS

to a library EPF in the future.) Figure 3-12 illustrates the PROG

program EPF after snapping the dynamic link to SPOOLS.

All static-mode libraries are placed in shared memory at system

coldstart. In this manner, they have a similarity to FPRIMS

entrypoints. Linkage information for a static-mode library is

initialized when a program invokes that static-mode library for the

first time. Here, a similarity to program-class library EPFs exists.

Because linkage information for a static-mode library is statically

located, only one active copy may exist for each user process. This

indicates a similarity to process-class library EPFs.

In fact, once a program has invoked a static-mode library, any other

suspended programs for the same user process that have used the same

static-mode library are made unrestartable by PRIMDS. Any attempt to

continue the execution of a suspended program that has already used a

reinitialized static~mode library is thwarted by PRIMS, which displays

an error message. (See Chapter 4.)

As before, notice that the DYNT for SPOOLS is now shaded, to indicate

that the DYNT is no longer referenced by any faulted IPs in the PRO

EPF’.

The SUBR1 procedure now calls the SUBR2 procedure.

First Edition . 3-28

THE EPF MECHANISM

Dynamic Link to SPOOL$ in SUBR1 is Snapped

(SUBR1 now calls SUBR2) PRIMOS

MAIN PROG~ NS

GMMBIP SUBR1... ; NH

MEMMIP SUBR2...

GEM IP sRcHS$$

MIP cLos$a

GEMBIP SUBR2...

WEBIP COMN1 ...

GIP COMNe2...

GIP sRcHss

MIP CLos$a SPOOLS
GMiP sPooLs Static-
GIP COMN1... Rt mode

GMB IP COMN2... Library

[ext|1P cLos$a————_
APPLICATION__LIBRARY

After Fifth Dynamic Link Is Snapped
Figure 3-12

3-29 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Finally, the last faulted IP, to the CLOSSA subroutine, is encountered
while executing procedure SUBR2. Figure 3-13 illustrates the PRG
program EPF after snapping this final faulted IP.

As before, because the Application Library is already mapped into
memory and initialized, only Phases 7 through 9 of the EPF process are
involved in snapping this faulted IP. Notice that the last DYNT, to
CLOSSA, has been shaded in to indicate that no more faulted IPs
pointing to the CLOSSA DYNT exist.

The final picture of the PROG program EPF shows a program in which all
DYNTs, which are placeholders for subroutines, have been replaced by
the actual subroutines, whether they reside in PRIMDS, in library EPFs,
or in static-mode libraries. From this point forward, such an EPF
executes faster when it encounters snapped IPs, because the dynamic
linking mechanism is no longer involved.

However, PRIMOS takes care to insure that these snapped IPs do not
become a burden by preventing subsequent relocation of their targets.
An in-use library EPF, such as APPLICATION_LIBRARY in the example,
cannot be removed via the REMOVE_EPF command; if a new version is
installed, the user running the PROG program EPF will not begin using
the new version until after PROG has completed and the next program
calls the Application Library. If another program invokes
APPLICATION_LIBRARY while PROG is suspended, PRIMOS will allocate and
initialize a separate linkage area for the library EPF so thata
separate connection is made. This procedure preserves the integrity of
the first connection made between PROG and APPLICATION_LIBRARY, because
that connection will continue to use the originally allocated linkage
area for APPLICATION_LIBRARY.

PRIMDS has less control over static-mode libraries because they are
less flexible. No new version of a static-mode library may be
installed while users are running programs that use it, or programs may
stop functioning correctly. Instead, the installer should shut down
and coldstart PRIMOS when installing a new version of a static-mode
library to ensure that programs are not adversely affected.

If, while PROG is suspended, a static-mode library is reinitialized by
another program's invocation of one of its entrypoints, PRIMOS detects
this and flags PROG as being unrestartable. This prevents PROG from
later calling the static-mode library and imadvertently using the
linkage data in that library that was left over from the other
program's use of that library.

Phase 9 - Termination

A program EPF terminates just once per invocation, either by returning
from its main entrypoint (preferred) or by calling EXIT (an alternate
way of terminating).

First Edition 3-30

THE EPF MECHANISM

Dynamic Link to CLOS$A in SUBR2 is Snapped

PRIMOS

MAIN PROG ~ Y
{

S

GMB IP suBR1... e

GEM IP SUBR2...
Gp\ yMIP srcuss Uy

MMP cLosg$a dp MW ye

—IP SUBR2... W/V 5Yj

IP COMN1... U

Gir comMNe2... Mi Y

HMBIP sRCHS$ VW)

WIP cLos$a SPOOLS

Set Bos fl sane
GIP COMNe ... Zz TZ Library
MIP cLos$aa /

APPLICATION__LIBRARY

After Final Dynamic Link Is Snapped
Figure 3-13

3-31 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

A library EPF terminates simply by returning from whatever entrypoint
invoked it. A library EPF typically is invoked many times during the
life of a program, and it accordingly terminates, or returns, many
times. Unlike a program EPF, there is no point at which a library EPF
really finishes, because it is actually a collection of subroutines

that service a progran.

Conceptually, a library EPF is part of the program that invokes it.
When the program terminates, the library is also terminated by PRIMOS.
However, PRIMOS distinguishes between two types of library EPF in this
regard: program-class and process-class library EPFs. When a program
that invoked a program-class library EPF terminates, PRIMS terminates
the library EPF by marking for reinitialization the copy of its linkage
area it earlier allocated and initialized for use by the library EPF in

service of that particular program.

Similarly, when a program EPF terminates, PRIMOS marks’ for
reinitialization the linkage area used for that program invocation.
When a linkage area is reinitialized, only program data and faulted IPs
are actually reinitialized, saving startup tine. (Linkage areas for
program EPFs and program-class library EPFs are deallocated when the
command level they were invoked from is released. In addition, linkage
areas for program EPFs are deallocated when they are removed from the

EPF cache.)

However, PRIMOS never reinitializes or deallocates the linkage area for
a process-class library EPF when any program terminates, because that
linkage area and the data it contains is usable for all programs
invoked by that process. Only explicit removal (via REMOVE_EPF),
logout (via LOGOUT), or command enviroment initialization (via INI-
TTALIZE_COMMAND_ENVIRONMENT) causes PRIMOS to deallocate the linkage

area associated with a process-class library EPF.

For program EPF's and program-class library EPFs, keep in mind that only
one copy of the linkage area for a terminated EPF is deallocated.
Other copies may exist if the same program EPF is suspended within the
same process or if another suspended program is also using the same
program-class library EPF. PRIMOS ensures that suspended program
invocations are not affected by the termination of other programs.

PRIMDS also deallocates dynamically allocated memory (acquired via the
ALLOCATE statement in PL1/G, for example) when a program EPF or
program—class library EPF terminates. PRIMS does not deallocate
memory allocated by a process-class library EPF even when the
REMOVE_EPF command is used to remove the EPF. Only the INITIALIZEOOM
MAND_ENVIRONMENT and LOGOUT commands deallocate memory dynamically
allocated by process-class library EPFs. See Chapter 6 for more
information on storage allocation and library EPFs.

First Edition 3-32

THE EPF MECHANISM

Phase 10 -— Removal

Once an EPF has completely terminated — that is, once it is no longer
in use by any suspended or executing program — PRIMDS may unmap the
EPF from memory. The EPFSDEL subroutine performs this task. However,
PRIMOS typically keeps an EPF mapped for future use, depending upon the

type of EPF involved.

Removal of Program EPFs: PRIMDS usually places a terminated program
EPF on the EPF cache rather than simply unmapping it. While on the EPF
cache, the EPF is still mapped to memory. If the EPF is invoked again
while on the EPF cache, the mapping step (Phase 4) is avoided. In
addition, if the impure areas (such as linkage data) have not been

deallocated, the allocation step (Phase 5) is avoided, and only a
subset of the initialization step (Phase 6), reinitializing linkage
information, is required.

If, on the other hand, the EPF cache becomes unwieldy, PRIMS
autanatically unmaps the oldest EPF on the EPF cache, removing it from
the EPF cache at the same time, and deallocating its impure areas.

When you change command levels, PRIMOS removes all program EPFs from
the EPF cache, deallocating their impure areas and unmapping them from
memory. Only suspended (in-use) program EPFs and all library EPFs
remain mapped to memory. (This behavior may change at future Revisions
of PRIMDS.)

Removal of Program-class Library EPFs: When all programs that are
using a program-class library EPF have terminated, the library EPF is
itself considered terminated. However, PRIMDS leaves the EPF mapped to
memory and also leaves its impure areas (such as linkage data)
allocated. This allows faster scanning of the entrypoint table for
that library EPF in the future.

When you change command levels, PRIMOS deallocates all impure areas for
program-class library EPFs that are not in use by a suspended or
running program, but it leaves the library EPFs mapped to memory.
(This behavior may change at future Revisions of PRIMDS.)

Removal of Process-class Library EPFs: When all programs that are
using a process-class library EPF have terminated, the library EPF is
itself considered terminated. However, PRIMOS leaves the EPF mapped to
memory and also leaves its impure areas allocated because, once
allocated and initialized, a process-class library EPF is considered
initialized for the duration of that process (that is, until the user
logs out or the command envirorment is reinitialized).

When not in use, you may remove a process-class library EPF with the
REMOVE_EPF command. However, you can never remove an EPF that is in

, use (executing or suspended).

3-33 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Normally, you do not need to be concerned with the EPF cache or the
maintaining of library EPFs performed by PRIMOS. ‘These features are
present as an optimization feature of PRIMDS. They do provide the
ability to display useful information on a recently invoked EPF via the
LIST_EPF command without having to specify the —NOT_MAPFED option.

However, the maintaining of inactive EPFs in memory also may produce
unexpected side effects. For example, while an EPF is mapped to memory
for one or more users, installation of a new version of that EPF
results in the generation of a .RPn file containing the old version,
even though no user may be running the old version or may even have the
old version suspended. The transparent nature of PRIMOS' creation of
-RPn files during COPY operations should keep this from being a
problem.

Note

An EPF cannot be deleted if another user either is running that
EPF, has suspended that EPF, or has that EPF mapped to memory.
On the other hand, if only one user is uSing an EPF, and the
EPF is not running nor suspended (that is, it is a program EPF
on the EPF cache or a library EPF still mapped to memory), then
that user can delete the EPF. The DELETE command autamatically
removes an inactive EPF if it is found to be in use during the
first deletion attempt; after removing the inactive EPF, it
retries the deletion.

A program that maps an EPF by calling EPFSMAP may also explicitly call
EPFSDEL to unmap that EPF. A program that calls EPFSRUN may make use
of a special key that indicates that EPFSRUN should call EPFSDEL after
invoking the progran EPF to unmap it rather than place it on the EPF
cache. See Volume III of this series for more information on EPFSMAP,
EPFSDEL, and EPFSRUN.

HOW MULTIPLE INVOCATIONS OF AN EPF ARE HANDLED

Sometimes a user might invoke an EPF, either explicitly by running a
program EPF or implicitly by running a program that calls a library
EPF, then suspend the EPF via Control-P, and issue a command that
causes the same EPF to be reinvoked. Here, PRIMOS must allow the
second invocation of the EPF to execute without disturbing the state of
the first EPF, so that the user has the option of later continuing the
first invocation.

When PRIMOS detects that an EPF that is already mapped into memory is
being invoked, PRIMOS checks the type of the EPF. If the EPF isa
process-class library EPF, PRIMOS reuses the already-initialized
linkage area for that EPF. For other types of EPFs, program EPFs and

. program-class library EPFs, PRIMDS allocates new memory for the linkage
areas of the EPF, rather than reusing any existing linkage areas for

First Edition 3-34

THE EPF MECHANISM

the EPF. In this case, PRIMS must initialize this newly allocated
linkage information. Because the stack is preserved when a program is
suspended, and because PRIMOS does not destroy the linkage of the
suspended EPF, reinvoking the same EPF does not necessarily overwrite
the data used by the suspended invocation. (See the restriction on
using static-mode libraries, in Chapter 4, for an exception to this
rule.)

However, to save time and memory, PRIMOS does reuse the same pure
procedure (PROC) segments used by the first invocation of the EPF.
PRIMOS can do this because segnents mapped in this manner cannot be

modified, and because no data in PROC segnents needs to be adjusted to

reflect imaginary-to-actual memory addresses.

HOW SIMULTANEOUS USE OF AN EPF IS HANDLED

When two or more users are running the same EPF, PRIMOS detects this

and shares pure procedure (PROC) segments between the users. It can do

this even when one user's actual segnent numbers for the EPF are

different from another user's actual segnent numbers, because no

segment numbers are stored in PROC segnents.

For example, if two users are running the same EPF at the same time,

one user might have imaginary PROC segnent number +0 mapped into actual

segment number 4365, while the other user might have imaginary segnent
+0 of the same program EPF mapped into segnent number 4372. Segment

4365 for the first user and segnent 4372 for the second both map to the

same imaginary PROC segment in the file containing the EPF, reducing

actual memory usage and paging overhead.

To prevent one user from being able to adversely affect the smooth

operation of another user's program, PRIMDS protects PROC segnents so

that they cannot be written into when they are shared in this fashion.

HOW DEBUGGING OF AN EPF IS HANDLED

You can use DBG on a program EPF by issuing the DBG program command

rather than the RESUME program command. You cannot, however, use [BG

to debug a library EPF rectly. To debug a library EPF, link the

object files that comprise it into a program EPF image with a main

entrypoint consisting of a small module that invokes or otherwise

declares the existence of all of the desired entypoints in the library

EPF. Then, use the DBG program command to debug the resulting program

EPF,

DBG allows you to set breakpoints in the program EPF you are debugging,

so DBG must be able to modify the pure procedure (PROC) segnents of the

program. Yet PRIMOS normally maps the PROC segnents to their imaginary

‘ counterparts in the file containing the program EPF, setting the access

to the PROC segments so that they cannot be written into. How can [BG

3-35 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

set breakpoints in the code when it cannot write over any procedure
instructions?

To handle this, DBG specifically requests PRIMOS to not map PROC
segments into memory. Instead, PRIMOS copies data from the imaginary
PROC segnents in the program EPF file into the actual PROC segments in
memory. PRIMOS sets the access on these copied PROC segnents so that
they can be written into. In addition, PRIMOS does not share these
PROC segnents with any other users.

Finally, if the user suspends D&G and invokes the program EPF he or she
is debugging using the RESUME command, PRIMS allocates new PROC
segnents for this second invocation of the program EPF, preventing
breakpoints set in DBG from affecting the RESUME invocation of the
program EPF. When the RESUME invocation has finished, the user may
type START and continue debugging the [BG invocation of the program
EPF.

One of the effects of using DBG, therefore, is that attempts by the
program EPF being debugged to modify itself generally go undetected.
Such attempts cause access violation errors only when the program EPF
is invoked using the RESUME command.

HOW RUNNING A REMOTE EPF IS HANDLED

If a remote EPF is invoked, either by a user typing RESUME program
where progran.RUN resides on a remote system disk, or by an_ entrypoint
search rule referencing a remote library EPF, PRIMDS does not map the
PROC segnents to the remote file. Instead, the PROC segments are
copied from the file into memory before execution begins, in a fashion
Similar to the way IMPURE segnents are handled.

This is done so that a running remote EPF will not be affected should
the remote system or network be shut down. If the PROC segnents were
mapped, then the effect on the running progran of the remote system
becoming unavailable would be wmpredictable. In any case, the
condition could probably not be trapped by the running program, because
the code to handle such a condition would probably not be in physical
memory. (The chances of error recovery code being frequently
referenced tend to be small). If the recovery code is not in physical
memory, then it would have to be paged in from the remote system, with
which contact had been lost.

Therefore, due to the amount of time required to copy a large remote
program EPF into memory, it is recommended that you provide local
copies of EPFs on all systems in your network. By doing this, you take
advantage of the faster memory mapping mechanism that is used for local
EPF's.

First Edition 3-36

EPFsand Static-mode

Applications

Because of the dynamic nature of EPFs, their interaction with existing
static-mode applications is fraught with considerations and
restrictions. In general, if you have a large body of software that is
already built with SEG, it is best to designate one or two applications
as pilot cases for conversion before committing to a wholesale
conversion. Once you have succeeded at converting the chosen pilot
applications, and have developed corresponding expertise on conversion
difficulties peculiar to your installation, you should then perform a
wholesale conversion rather than a piecemeal conversion, in order to
avoid excessive concern over the oonsiderations and restrictions
described in this chapter.

However, piecemeal conversion is: sometimes the only feasible approach,
and, in such cases, you should thoroughly understand the information
presented in this chapter before you begin, so that you know what
pitfalls may await you.

In many cases, conversion involves simply relinking an application
using BIND. However, certain uses of static systen-defined data in
static-mode programs may no longer function or may not be appropriate
when these programs are converted to EPFs.

Even if you do not intend to convert any applications to EPFs in the
near future, you may have an existing application that requires
modification to run on a Rev. 19.4 (or beyond) system because of the
existence of library EPFs that contain system library subroutines.
Such an application is one that resides in shared memory and that

‘shares faulted IPs (Indirect Pointers).

4-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

This chapter presents, in detail, the considerations and restrictions
involved in the interface between the dynamic envirorment provided by
EPFs and the older, static envirorment still present in PRIMOS and in
existing user-written applications:

e A restriction on the use of static-mode programs by EPFs

e@e A restriction on the use of static-mode libraries by EPFs

Static information to avoid in EPFs

@ The effect of EPFs on existing shared static-mode applications

RESTRICTION ON THE USE OF STATIC-MODE PROGRAMS BY EPFS

Because the memory used by static-mode prograns is all statically
allocated, restrictions are placed on their use.

When This Restriction Is Apparent

The effect of this restriction is seen when one static-mode program is
Suspended, another static-mode program is invoked, and then an attempt
is made to continue execution of the first static-mode progran.
Because both static-mode programs use the same areas of memory, PRIMOS
prevents the attempt to continue execution of the first static-mode
program after the second static-mode program has executed.

A Sample of This Restriction

For example, ED and SLIST are both static-mode programs. (They may be
converted to EPFs in the future, at which point you must substitute two
other static-mode programs for the example below.) If a user invokes
ED, suspends the program via Control-P, and then invokes SLIST, the act
of loading SLIST into memory causes the suspended memory image of ED to
be at least partially destroyed.

Because users typically use Control-P to abort a running program rather
than to suspend it with the intention of oontinuing the suspended

program later, PRIMOS allows the subsequent invocation of SLIST.

First Edition 4-2

EPFS AND STATIC-MODE APPLICATIONS

If, after completing the SLIST session, the user attempts to use the
START command to continue the suspended ED session, PRIMDS rejects the
attempt, as seen here:

ED
INPUT
Jill - I am worried that Tom's Tasty Tinsel might not be
able to handle our shipment of 200 stainless steel pizzas.
I've eaten there, and I have noticed their receiving dock
is not really set up for such large items. Seeing as you're
in charge of all this, I suggest you call them up and

make sure they know what they're getting! -— Fred

P.S. The order number is . (user types Control-P)
QUIT.
OK 14:19:48 0.218 0.033 level 2
SLIST FREDDY>TOMS_ORDER#
Fred: the order number for Tom's Tasty Tinsel order of
200 stainless steel pizzas is 0214453. -— Sue
OK 14:19:53 0.172 0.054 level 2+
RELEAS
Static mode program released. (rls)
OK 14:20:01 0.054 0.000 level 2
START
Attempt to proceed to overwritten program image. (listen_)

ER 14:20:02 0.045 0.000 level 2

How to Recover From Encountering the Restriction

If you encounter this restriction, you should release the command stack

using the RELEASE_LEVEL -ALL command. In addition, you should use the

CLOSE -ALL command to close any file units opened by the restricted

invocation.

An alternative method of recovery is to issue the INITIALIZEOM

MAND_ENVIRONMENT command (abbreviated ICE).

A more general solution to this problem is to convert your existing

static-mode programs to program EPFs.

Note

These recovery methods recover the user's ability to execute

commands up to the full limit of the user's envirorment. ‘They

do not recover the data in the overwritten program. In the
example given above, for instance, the edit session is lost.

4-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

A General Statement of the Restriction

A generalization of this restriction is that only one static-mode
program may be active, whether suspended or running, at any given time
for a given process.

Therefore, if the user invokes program A, then quits and invokes
program B, then quits and invokes program C, and so on, PRIMSwill
automatically terminate active static-mode programs in the sequence (A,
B, C, and so on) each time a new static-mode program is invoked. Any
subsequent attempt to continue an inactive static-mode program that had
been suspended causes PRIMOS to issue an error message.

The Reason Behind the Restriction

As implied by the error message displayed when the restriction is
encountered, PRIMOS prevents an attempt to continue a suspended program
invocation if it detects that parts of the suspended program image may
have been overwritten.

Unlike program EPFs, the placement of procedure and linkage areas for
static-mode programs is determined during program load sessions by
either the SEG/LOAD utilities or by the programmer during the SEG/LOAD
session. Static-mode programs therefore cannot be dynamically placed
in memory when they are invoked.

Additionally, most static-mode programs create their own stack bases
rather than using the command stack (used by program EPFs). ‘The
placement of this stack base is also determined when the program is
loaded.

Due to these characteristics, static-mode programs cannot coexist in
memory for a particular user process,

RESTRICTION ON THE USE OF STATIC-MODE LIBRARIES BY EPFS

Because the linkage areas for static-mode libraries are all statically
allocated, a restriction is placed on their use by program EPFs.

When This Restriction Is Apparent

The effect of this restriction is seen when one program EPF is
Suspended, another program EPF is invoked, and then an attempt is made
to continue execution of the first progran EPF. If both the first and

second program EPF use the same static-mode library, then PRIMS
prevents the attempt to continue execution of the first program EPF
_after the second program EPF has executed.

First Edition 4-4

EPFS AND STATIC-MODE APPLICATIONS

A Sample of This Restriction

In this example, a program EPF named SPOOL_MY_REPORTS, which makes use

of the static-mode library SPOOLS, is invoked, suspended via Control-P,

and then reinvoked. When the second invocation completes, the user

attempts to proceed with the first invocation, and encounters the

static-mode library restriction. (The Prime-supplied SPOOLS library

may be converted to a library EPF in the future. At that point, if

other static-mode libraries still exist, you must substitute the use of

one of them and a progran that uses it in the example below to

reproduce it. However, it is possible that all static-mode libraries

supplied by Prime may be converted to library EPFs in the future, at

which point the restriction under discussion is no longer pertinent.)

OK, RDY —LONG
OK 10:13:30 0.060 0.000
RESUME SPOOL_MY_REPORIS
GO
Enter start date for report spooling, or <CR> to leave:

—> 08/10/84
Enter end date for report spooling, or <CR> to leave:
—> 08/14/84

Spooling reports for period starting on 08/10/84 and ending on

08/14/84...

08/10/84 is PRTOO5 (12 records)
08/11/84 is PRTO06 (13 records)

08/12/84 is PRTOO7 (10 records)
08/13/84 is PRTOO8 (5 records)
08/14/84 is PRTO10 (47 records)

Enter start date for report spooling, or <CR> to leave:

—> (user types Control-P)

QUIT,
OK 10:20:46 12.254 9.301 level 2
RESUME SPOOL_MY_REPORTS
GO
Enter start date for report spooling, or <CR> to leave:

—> 08/17/84
Enter end date for report spooling, or <CR> to leave:
—> 08/21/84

Spooling reports for period starting on 08/17/84 and ending on

08/21/84...

08/17/84 is PRTO12 (8 records)
08/18/84 is PRTO13 (10 records)
08/19/84 is PRTO15 (25 records)
08/20/84 is PRTO16 (18 records)
08/21/84 is PRTO17 (30 records)

4-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Enter start date for report spooling, or <CR> to leave:
—> (CR)

OK 10:27:31 10.205 7.722 level 2
START /* User now attempts to continue first invocation.
Attempt to proceed to overwritten program image. (listen_)
ER 10:27:52 0.060 0.000 level 2

How to Recover From Encountering the Restriction

If you encounter this restriction, you should release the command stack
using the RELEASE_LEVEL -ALL command, In addition, you should use the
CLOSE -ALL command to close any file units opened by the restricted
invocation.

An alternative method of recovery is to issue the INITIALIZEOM
MAND_ENVIRONMENT command (abbreviated ICE).

The Reason Behind the Restriction

As implied by the error message displayed when the restriction is
encountered, PRIMOS prevents an attempt to continue a suspended program
invocation if it detects that parts of the suspended program image may
have been overwritten.

Although the progran in the example is a suspended program EPF, and
therefore has not had any of its program image overwritten, the
static-mode library SPOOLS, used by the EPF, has had its linkage area
overwritten.

When a static-mode library is first invoked by a program EPF, PRIMDS
initializes the linkage area for the library. During execution of the
static-mode library subroutines, the linkage area for the static~-mode
library is used and modified by the static-mode subroutines.

If execution of the program EPF is suspended, for example, via
Control-P, a subsequent command that runs a program EPF or a
Static-mode program that also uses the same static-mode library my
occur. If this happens, PRIMDS must reinitialize the linkage area for
the static-mode library when the library is called, so that the new
program will not use subroutines that are operating on undefined data
values in the linkage area.

Because the linkage area for a static-mode library is statically
located, it cannot be relocated by PRIMOS for the new program that is
calling the library.

Therefore, reinitializing the linkage area for that library destroys
the previous contents of the linkage area. The previous contents of
the linkage area were set during the first invocation of the library by
the original program EPF.

First Edition 4-6

EPFS AND STATIC-MODE APPLICATIONS

PRIMOS detects this condition and prevents the user from continuing

under such circumstances so that the original program EPF will not

behave in an undefined fashion when it makes subsequent calls to the

static-mode library.

STATIC INFORMATION TO AVOID IN EPFS

Whether building a new application as an EPF or converting an existing

application to an EPF, you should avoid the use of certain static

information by the progran. Such static information includes:

e Command line information

e Error information

Static command line information is accessed and manipulated using the

subroutines COMANL and RDIKSS; static error information is accessed

and manipulated using the subroutines GETERR, PRERR, and ERRSET. An

EPF that uses these subroutines may sometimes operate correctly and, at

other times, produce invalid results.

Static Command Line Information

The COMANL and RDIKSS subroutines have been modified at Rev. 19.4 so

that static command line information, which prior to Rev. 19.4 was

per-process information, is now maintained for each command level.

This allows separate programs that use these subroutines to coexist in

the same process without disturbing each other. However, if one

program that uses COMANL and RDIKS$ directly invokes another program

that also uses these subroutines, the second program's use of these

subroutines will disrupt the command line information for the first

program, and invalid results may be produced. (One program directly

invoking another does not produce a change in the user's command level;

static command line information is maintained for each command level,

but not for each individual progran.)

The alternative to using COMANL and RDIK$$ is to design programs so

that they accept the command line from the PRIMOS command processor as

an argument to the main entrypoint of the progran, and so that they

parse the command line using a parsing subroutine such as CLSPIX or

CMDLSA.

4-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Static Error Information

The GETERR, PRERR, and ERRSET subroutines have not been modified at
Rev. 19.4. The static error vector remains a per-process entity.
Therefore, two programs that use ERRSET along with GETERR and PRERR to
set and retrieve static error information are likely to have adverse
effects on each other if they coexist in the same process as EPFs.

The alternative to using these subroutines is to use PRIMS subroutines
that return error codes rather than older versions that set the static
error vector; to use the ERRPRS subroutine to display error messages;
and to pass the returned error codes back to the calling subroutines or
the PRIMOS command processor via the second argument of the main
entrypoint calling sequence.

EFFECT OF EPFS ON EXISTING SHARED APPLICATIONS

In rare cases, existing applications that use shared segnents for
storage of program code (as opposed to shared data) may be adversely
affected by the introduction of library EPFs at Rev. 19.4. In
particular, shared static-mode programs and libraries that place
faulted IPs (Indirect Pointers) in shared segments will probably
exhibit erratic behavior when run on a Rev. 19.4 system. (Faulted IPs
are IPs to external subroutines that are satisfied with dynamic links,
or DYNTs, during the loading of the application.)

Applications that remain static-mode at Rev. 19.4 should not encounter
problems when run under Rev. 19.4 PRIMOS if they do not share faulted
IPs. Applications that do share faulted IPs, either explicitly or
implicitly (by sharing linkage frames) may be affected at Rev. 19.4
because libraries, which before Rev. 19.4 were statically assigned
segnents during system coldstart, may at Rev. 19.4 be library EPFs.
Therefore, a particular entrypoint in a library EPF may have one
address for user A and another address for user B, even though the
library EPF is shared by the EPF mechanism. Prior to Rev. 19.4, that
entrypoint would always have the same address for all users following a
system coldstart.

Shared applications that place some or all of their linkage information
in shared memory (Segments '2000 through '3777) are likely to encounter
this situation, because linkage information typically contains faulted
IPs for most subroutines. Applications that explicitly place any
faulted IPs in procedure text that is then shared will also encounter
this situation.

Normally, all IPs and ECBs are placed in the linkage frame for a
procedure; linkage areas for a program are normally placed in per-user
(nonshared) memory. Some applications place ECBs in the procedure
frame by using the —PBECB option of the compiler or by specifying the
ECB pseudo-op of PMA within a PROC block, rather than within a LINK

- block, in a PMA program. Such applications will encounter no
difficulties unless they are converted to EPFs.

First Edition 4-8

EPFS AND STATIC-MODE APPLICATIONS

Other applications place the linkage frame of one or more procedures in
the shared (procedure) segnents. Faulted IPs may be present in the
linkage frames of such applications. If this is the case, the shared
segments are not protected against modification, allowing these faulted
IPs to be snapped as the application is used. (A segnent-protection
value of 700 octal causes the SHARE command to allow all users to
modify the segment.) Such applications will likely behave erratically

until they are modified so that they do not share linkage frames.

Rarely, applications explicitly place faulted IPs in shared segnents.
These IPs are explicitly resolved during system coldstart by a program
that snaps all of the links for that program before protecting the
shared segments against further modification. (Applications that share
faulted IPs and explicitly snap them during coldstart are wmusval and
are not built according to Prime-documented quidelines.) Such
applications will probably behave erratically until they are modified
so that they do not share faulted IPs.

All of the practices described in the preceding paragraphs are used to
reduce the working set of an application. By sharing ECBs, IPs,
linkage frames, or all three, less total memory is used when several
users run the application.

Effect of Sharing Faulted IPs

An IP that points to the ECB (Entry Control Block) of a procedure
starts out as a faulted IP if it points to a dynamically linked object
(an entrypoint that is accessed via the dynamic linking mechanism).
When an indirect reference occurs through a faulted IP, typically via a
PCL IP,* instruction, PRIMOS determines the name of the entrypoint
being targeted by the IP. PRIMOS then searches its list of entrypoint
names, starting with internal entrypoints, then moving on to items in
the user's entrypoint search rule (ENTRYS.SR).

When PRIMOS finds the desired entrypoint, PRIMOS determines the address
of the ECB of the target procedure and then replaces the original IP
with that address.

As part of finding the desired entrypoint, PRIMOS may map in a new
library EPF, assigning it areas of memory in which it is to reside.
Therefore, a reference by user A to subroutine PLOTXY through a faulted
IP might be resolved by PRIMOS to an ECB at location 4362/1764, whereas
the same reference by user B to the same subroutine might be resolved
to another copy of the ECB, for the same subroutine, at location
4357/1764.

For IPs placed in per-user (nonshared) memory segnents, this poses no
problem, because each user has a separate copy of the IP to match the
separate copy of the ECB.

4-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

However, a program sharing faulted IPs resolves them at system
coldstart so that they point to the ECBs of desired entrypoints.
Library EPFs containing desired entrypoints are mapped in for the user
who first shares the program (typically user 1, which runs the system
startup file). Addresses of the desired entrypoints within the library
EPFs replace the original faulted IPs as the effective addresses of the
ECBS.

Then, when another user invokes the same application later, the same
resolved IPSs are used (because they reside in shared segments).
However, libraries are mapped into memory only as a result of
encountering faulted IPs; therefore, the library EPFs referenced by
these resolved IPs will probably not be mapped into memory for this
second user.

Even if the needed library EPFs are mapped into memory for the user,
they may not necessarily reside in the corresponding areas of memory as
they did for user 1 when the faulted IPs were smpped.

Asa result, the application typically encounters an illegal segnent
error, an access violation error, or a pointer fault error.

Modifying an Application to Not Share Faulted IPs

To modify an application so that it does not share faulted IPs, you
must either change its load sequence so that shared segnents are used
to contain only procedure code and other constant data, or you must
load all of the subroutines it meeds into the same application,
including those in Prime-supplied libraries.

Modifying the Load Sequence: Modifying the load sequence of an
application so that it does not share IPs is the safest approach. It
involves changing the load sequence so that only pure code (procedure
code) is placed in shared segnents and disabling special-purpose
programs that snap faulted IPs at coldstart for the application. For
example, a CPL program that builds such an application (via SEG) might
contain the following line:

S/LOAD MODULE] 0 2035 2035

The underlined segment number, the second 2035 in the command lire,
specifies that linkage information (including IPs and the ECB) is to be
placed in segment '2035, a shared segment. Modify this line, and lines
like it, to place the linkage information in nonshared segnents, such
as segment '4000. For example:

S/LOAD MODULE] 0 2035 4000

First Edition 4-10

EPFS AND STATIC-MODE APPLICATIONS

Then, modify the load sequence for your application so that it performs
no processing of the .SEG file, program map, or object files for the
purposes of gathering information on the locations of faulted IPs.
(Because Prime provides no program for doing this, an example of this
cannot be documented here; it is expected that each development group
that has built an application that shares IPs has also built its own
tools to find faulted IPs.) An application may have no such program,
if it leaves shared segments unprotected against user modification.

Finally, find the portion of the system startup file, PRIMDS.OOMI (or
C_PRMD), that shares the application and modify it so that it no longer
runs a program to snap faulted IPs in the shared segnent images of the
program. If your application has no such program, modify the system
startup file to set the protection for shared segments to '600 (read
and execute) rather than '700 (read, write, and execute).

Loading In All Subroutines: An alternate solution is to load in all
subroutines used by your application that do not reside in PRIMOS
itself or in static-mode (Prime-supplied) libraries; that is, load all
subroutines used by your application that reside in library EPFs
directly into your application in place of the dynamic links it
currently loads.

This solution has the disadvantage of increasing the size of your
application while duplicating the extra subroutines loaded; other
applications will be unable to access the copies of those subroutines
loaded into your application, and will instead use the copies in the
library EPFs. However, as the size of your application generally
affects only the coldstart initialization time of your application,
performance should not be reduced; in fact, because the remaining
faulted IPs can still be snapped at coldstart, the performance gains
realized by constructing your application in this unusual way can be
maintained, (Internal PRIMOS subroutines and subroutines in
static-mode libraries remain in the same areas of memory for all users
after system coldstart.)

However, you must load in the unshared versions of all libraries that
your application references. For example, ina particular application
that uses the Pascal library, the load sequence might contain:

D/LIBRARY PASLIB
D/LIBRARY

4-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Replace these statements to load in the unshared versions of the
libraries. The default libraries loaded in via a LIBRARY command with
no filename are SPLLIB, PFINLB, and IFTNLB; the unshared versions are
NSPLLIB and NPFINLB. (IFINLB has no unshared counterpart; it is
included in NPFINIB.) The corresponding statements for the above
sample section of a load sequence would therefore read:

D/LIBRARY NPASLIB
D/LIBRARY NSPLLIB
D/LIBRARY NPFINLB
D/LIBRARY

Note that the D/LIBRARY command, withno filename, is still given at
the end; it results in the loading of DYNTs to static entrypoints
(entrypoints into PRIMOS and entrypoints residing in static-mode
libraries).

First Edition 4-12

Program EPFs

This chapter describes how to design and implement programs as program

EPF's.

WHAT IS A PROGRAM EPF?

A program EPF is an executable file system object. A program EPF is

generated by you, the programmer, using BIND. It may be used by you,

by another user, or by another program.

To a programmer, a progran EPF is a file containing a program. To a

user, a program EPF is a command. To a program, a program EPF is a

subroutine with a predefined calling sequence accessible via ome of

three PRIMOS subroutines: CPS, EPFSRUN, or EPFSINVEK.

The Programmer's View of a Program EPF

Typically, a progran EPF contains a completed and working program. A

programmer builds a program EPF by following three steps:

1. Entering the program into the system using an editor such as

EMACS

2. Compiling the program using a compiler such as F77 or PLI/G, or
assembling the program using PMA

5-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

3. Binding the program using BIND

Step 1, entering the program into the system, produces source files for
the compiler or assembler. Step 2, compiling or assembling the
program, uses the source files to produce object files. Step 3,
binding the program, uses the object files to produce a program EPF.

The file containing a program EPF has the name program.RUN. The .RUN
suffix specifies that the file contains a program EPF. (An alternate
suffix for an EPF file, .RPn, is described in Chapter 1.)

This chapter describes how to take full advantage of program EPFs
Guring each of the above steps.

The User's View of a Program EPF

A user runs a program EPF in ore of two ways:

@ By typing the name of the program EPF as a PRIMOS command

@ By using the PRIMOS RESUME command to run the program EPF

General information on entering commands and running programs is
provided for users in the Prime User's Guide.

Typically, if you write a program, you provide additional documentation
describing the nature and purpose of the program, where it resides, how
to run it, and whom to contact if problems arise.

Invoking a Program EPF as a PRIMOS Command: If a program EPF resides
in the directory CMDNCO on the command disk of the system, users invoke
the program EPF by simply typing its name as if it were a normal PRIMDS
command. The command disk is usually logical disk 0 on a system. For
more information, see your System Administrator or the System
Administrator's Guide.

Invoking a Program EPF Using the RESUME Command: A user invokes any
program EPF by using the PRIMOS RESUME command and specifying the
pathname of the program EPF. The user must have Read access to the
program EPF.

The Program's View of a Program EPF

A program invokes a program EPF by calling one of several system
subroutines, depending on the needs of the invoking program. When one
program invokes another program in this manner, the first program is

‘ suspended while the second program runs. When the second program

finishes, the first program continues running.

First Edition 5-2

PROGRAM EPFS

The first program may supply input data to the second program when it
invokes the second progran. It can also accept returned information
from the second program when the second program finishes. For example,
the first program can receive information from the second program as to

whether or not the second program ran successfully.

The ability for one program to call another is not limited to one
occurrence; the second program can call a third, and the third can
call a fourth. The only limits placed on the invocation of programs
from within programs are:

@ Resource limits, such as amount of memory and internal table
space

@ Restrictions placed on the use of static-mode programs (those
programs linked using SEG or LOAD rather than BIND)

e Limits set by the System Administrator on the command level
breadth

The resource limits are exceeded when PRIMS is unable to allocate
resources to execute another program EPF. A discussion of static-mode
program restrictions is found in Chapter 4.

The command level breadth is the number of programs that are active at
a given command level. PRIMOS maintains this number; this number is 0
when the user is at PRIMOS command level. When the user runs a program
EPF, PRIMOS sets this number to 1. If the program EPF invokes another
program EPF, PRIMOS then sets this number to 2. If the second program
EPF invokes a third, PRIMOS sets this number to 3, because three

programs are active at that command level.

As program EPFs finish and return to their callers, PRIMS decrements
this number. When the original program EPF is reached, PRIMS sets
this number to 1. The original program EPF may then choose to invoke
further program EPFs, which causes PRIMDS to again increase the command
level breadth. However, when the original program EPF finally
finishes, PRIMOS returns this number to 0, and places the user at

PRIMOS command level.

The System Administrator has the ability to limit the command level
breadth for all users of the system on a per-user basis. Therefore, an
attempt by a program EPF to invoke another program EPF may be thwarted
by PRIMDS because the maximum limit on the user's command level breadth
would be exceeded.

For more information on invoking programs from within programs, see
Volume III of this series.

5-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

WRITING THE MAIN PROGRAM OF A PROGRAM EPF

In every program EPF, one procedure is defined as the main entrypoint.
The main procedure is the procedure that is called by PRIMOS when the
program EPF is run. It is identified during the BIND session via the
MAIN subcommand. If the MAIN subcommand is not issued, BIND assumes

the first procedure linked is the main procedure.

The main procedure of a program EPF should accept no arguments unless

command line processing is to occur. See Volume III of this series for

information on writing program EPFs that perform command line

processing.

Therefore, the main procedure of an F77 program should begin as

follows:

PROGRAM program—name

The main procedure of an FIN program should beginwith:

SUBROUTINE program-name

The main procedure of a PLI/G program should begin with:

program—-name: PROCEDURE;

The main procedure of a PMA program should be structured as described

in Chapter 7. However, its ECB should specify that it accepts no
arguments, as follows:

program-ecb ECB program-name-start

In addition, the END pseudo instruction at the end of the module should

specify the ECB that is to serve as the main entrypoint for the module,

as follows:

END program—ecb

If you specify no label following the END pseudo instruction, you must

use the MAIN subcommand of BIND when you link the PMA module as the

first module of a program EPF, or the program will fail to run.

First Edition 5-4

PROGRAM EPF'S

The MAIN Subcommand of BIND

Use the MAIN subcommand of BIND to specify the main entrypoint of the
program EPF. PRIMDS invokes this entrypoint when the EPF is invoked.
If the MAIN subcommand is not specified during the linking of a program
EPF, BIND defaults to choosing the first ECB linked during the BIND
session as the main entrypoint.

The main entrypoint of a program EPF has a predefined calling sequence
if it accepts arguments. This calling sequence is described in detail
in Volume III of this series.

The DYNT Subcommand of BIND

The DYNT subcommand of BIND controls the production of dynamic links,
typically for references to external entrypoints defined in your own
personal library. (PRIMOS does not support dynamic linking to common
areas.)

You may use the DYNT subcommand to declare specific entrypoint names as
dynamic links, using the form:

DYNT name-l [name-2 ...]

The DYNT subcommand is useful when no library object (.BIN) file exists
to define dynamic links for entrypoints ina library EPF, such as a
library EPF you have created for your own personal use.

You should use the DYNT subcommand only for entrypoints in a library
EPF that is for your own personal use. Any library supplied to you, or
that you supply to other users, should be accompanied by an object file
that contains the appropriate DYNTs. This library should be built
according to the guidelines shown in Chapter 6 and should be kept ina
single, system-wide location. Users of this library should always use
the LIBRARY or LOAD subcommand to link the library object file at BIND
time; they should not use the DYNT subcommand to produce links to
individual entrypoints within the library.

5-5 First Edition

Library EPFs

Library EPFs provide a simple and direct way to build and maintain a
library of commonly used subroutines for one or more products. Use of
library EPFs can be simple, yet flexible enough to meet the demands of
different applications. Sophisticated use of library EPFs is possible,
but it requires sophisticated knowledge of how your product is
organized.

To make the use of library EPFs as simple as possible, PRIMDS provides
some intriguing mechanisms that help make the existence of library EPFs
transparent to most users. ‘These mechanisms include:

e Library search lists

@ Autanatic dynamic linking

@ On-demand library EPF mapping

As the programmer of a library EPF, you must be aware of how these
mechanisms are seen by users, and how to use them during the
development process for your product library.

To fully acquaint you with all aspects of library EPFs, this chapter:

@ Describes what a library EPF is

@ Describes the steps needed to create a library EPF

@ Examines the choice of the appropriate type of library FEPF in
detail

6-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

e Explains how to use DBG on a library EPF

e@ Describes library entrypoint search lists and how to manipulate
them

@ Describes specific aspects of the EPF mechanism that pertain to

library EPFs

WHAT IS A LIBRARY EPF?

A library EPF is an executable file system object. A library EPF is
generated by you, the programmer, using BIND. It is used by other
programs that invoke it by calling entrypoints in it.

To a programmer, a library EPF is a file containing a program. Toa

program, a library EPF is a collection of subroutines.

The Programmer's View of a Library EPF

Typically, a library EPF contains a collection of completed and working
subroutines program. There are two kinds of library EPF:

e Program-class

e Process-class

The choice as to whether a library EPF should be program-class or
process-class is up to the programmer who is building the library EPF.

Typically, a library EPF is built as a program-class library EPF;

PRIMOS treats a program-class library EPF as part of any program that
uses that library EPF. Occasionally, a library EPF is best built as a

process-class library EPF; PRIMOS keeps process-class library EPFs

separate from program invocations.

A programmer builds a library EPF by following these steps:

1. Enter the subroutines into the system using an editor such as
EMACS or ED.

2. Compile the subroutines entered in Step 1 using a compiler
such as F77 or PLL/G, or assemble the subroutines using PMA.

3. Determine how the library is to be organized.

4, Determine which subroutines in the library are to ke
considered entrypoints into the library, and ensure that there
are no naming conflicts between your entrypoints and
entrypoints in other libraries.

First Edition 6-2

LIBRARY EPFS

5. Link the subroutines compiled in Step 2 into one or two
library EPFs using BIND, indicating which subroutines are

entrypoints.

6. Build a PMA file listing entrypoints as dynamic links (DYNTs).

7. Assemble the PMA file built in Step 6, generating an object
(.BIN) file containing DYNTs to your library.

8. Use EDB to make the .BIN file generated in Step 7 a
nom-force-linked library.

9. Install the .BIN file built in Step 8 in the appropriate
directory.

10. Install the library EPF built in Step 5 in the appropriate
directory.

11. Modify the appropriate entrypoint search list to reference the
library EPF installed in Step 10.

Step 1, entering the subroutines into the system, produces source files
for the compiler or assembler. Step 2, compiling or assembling the
subroutines, uses the source files to produce object files. Step 3,
determining how the library is to be organized, requires you to assess
the way in which individual subroutines in your library need to be
initialized when invoked. Step 4, determining the entrypoints for your
library, requires you to check your entrypoint names against a
Prime-supplied list of reserved entrypoint names (provided later in
this chapter) and against other library EPFs, not provided by Prime,
used at your installation.

Step 5, linking the subroutines using BIND, uses the object files to
produce a library EPF. The file containing a library EPF has the name
library.RUN. The .RUN suffix specifies that the file contains an EPF.
(An alternate suffix for an EPF file, .RPn, is described in Chapter 1.)

Steps 6 through 9 provide the file to be loaded or linked by programs
that are to use your library. They use the LOAD or LIBRARY subcommand
of either SHG or BIND, specifying the .BIN file installed in Step 9, to
resolve references to subroutines in your library to dynamic links
(DYNTs) .

Steps 10 and 11 make your library EPF available to whoever uses an
entrypoint search list that specifies your library EPF. Running
programs that encounter dynamic links specifying subroutines that are
entrypoints in your library EPF are automatically connected to your
library EPF. Such programs acquire this ability by loading or linking
the library (.BIN) file installed in Step 9 if the entrypoint search
list names your library EPF.

This chapter describes how to take full advantage of library EPFs
.-during each of the above steps.

6-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The Program's View of a Library EPF

To a program, a library EPF is invoked by calling a subroutine that is
an entrypoint to that library EPF. Unlike the main entrypoint of a
program EPF, PRIMOS imposes no constraints upon the calling sequence of

the subroutine.

STEPS IN BUILDING A LIBRARY EPF

This section describes the steps performed in building a library EPF.
Some of the steps require even further detailed explanation for certain
cases; subsequent sections in this chapter address these needs.

It is important that you read the descriptions of all of the steps
before you begin designing and coding your library EPF. In particular,
the entrypoint-naming issues described in Step 4 may impact your design
specifications.

Step 1 - Enter the Subroutines

You enter the subroutines for a library EPF just as you would for a
program EPF, by using a text editor such as EMACS or ED. Wo
subroutines should be coded as PROGRAM modules; they should all be
SUBROUTINE, PROCEDURE, or FUNCTION modules. No restrictions are placed
on their calling sequences by PRIMDOS.

Step 2 - Compile the Subroutines

You compile or assemble the subroutines for a library EPF using one of
Prime's compilers or PMA. The compiler must generate 64V-mode or
32I-mode code; a PMA program must contain the pseudo-op SEG or SEGR.
These requirements are described in Chapter 7.

Step 3 - Determine How the Library Is to be Organized

You now consider whether the library should be a single program-class
library EPF, a single process-class library EPF, or one of each.
Typically, program-class library EPFs are the best’ choice.
Occasionally, however, it improves performance to put subroutines ina
process-class library EPF, as long as they will perform correctly. See

the section below, entitled CHOOSING THE RIGHT TYPE OF LIBRARY EPF, for

detailed information on making the decision between building a_ single

program-class library EPF, a single process-class library EPF, or two

library EPFs (one of each type).

First Edition 6-4

LIBRARY EPFS

The simplest, and often the most appropriate, decision is to build one
program-class library EPF. Only in rare cases does this approach not
produce a working library. Advantages of process-class library EPFs
are primarily in terms of performance.

Step 4 - Determine Library Entrypoints

You now build a list of the subroutines that are to be considered
entrypoints in your library. You will use this list for two purposes:

@ To identify entrypoints in the library EPF during the BIND
session

@ To identify external entrypoint references as dynamic links in
programs that use your library EPF

Subroutines that are not made entrypoints to a library EPF cannot be
called by subroutines outside that library EPF, unless their addresses
are provided by other entrypoints in the library EPF via ENTRY VARIABLE
(or similar) functionality.

Prime reserves many names for its own use as entrypoint names. These
names are listed next.

Reserved Names

The complete list of entrypoint names reserved by PRIMOS is on the
following page. In addition to the mames in this list, names
containing a $ symbol are reserved by PRIMOS and Prime-supplied
libraries,

WARNING

Do not attempt to use any of the entrypoints listed unless
other documentation specifically explains it. Using
undocumented PRIMOS subroutine entrypoints may result in
unusual behavior by PRIMOS' subsystems. In addition, such
subroutines may be removed or changed at any point without
warning.

Note

Prime guarantees that no new names will be added to the
following list. In other words, mo reserved names will be
added to this list; the only changes made to this list will be
the removal of names that are used only internally by Prime
products as the names are changed to have $ symbols in them.

6-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I:

ACKRCT
ADD_OREC
ADOCRD
ADQREC
ADRESS
AD_CMD
ALLOC
APPEND
APROTO
ATLIST
ATMAIN
ATTDEV
AVAIL
BCKUFB
BSCMAN
CLIN
CALFC_
CFI
CIRLOG
CKINST
CKNDNM
CLEARS
CLREAD
CLRLIN
CLR_FLDS
CLSDOC

CMD_FPOST
CMD_PRE_
CNIN
COMANI
CONTRL
CRAWL_
CREUFD

DATE_A
DCTEXS
DECR_HOP
DEFILE
DELAY
DELAY_
DELETE
DELETE_O
DELOAS
DH3270
DIDNUM
DIRSER
DISPLA
DMIDAS
DMLCP
DNUMID
DOSSUB
DPTINI
DPTOFF

- DRAIN_QU

EM3270

First Edition

ENCRYP
EPF_ERR
EPF_RL
ERASE
ERROPN

ERRSET
EVAL_A

EXTRAC
FILERR
FILHER
FINDPG
FIND_U
FIND_UID

FORCEW
FREE_DES
FREE_Q_R
FSCHOC

GETADR
GETENT
GETERR
GETINEG
GETINYB
GETREG
GETSLT
GET_REPL
GFILKS
GINFO
GORDNC
GOREAD

GTWORD
GUSLKS
HASH_U
HASH_UID
ICMTB_

ICPL_
ICS2CT

INCPIR
INITP1
INTT_NPX
INIT_Q_S

IQNET
IQUSER
ISFEPF
JUSTRT
LCKGRP

LIBTBL
LIST_SRiL
LNGCMP

LOG_EVEN
LOG_RECO
MCSDAT
MCSTOD
MOVB
MOVE
MOVEB

MSGCTL
NETCHK
NETFIG
NETPRC
NETSET

NEWS

NPXPRC
NXTLIN
OAUSER
OERRTN
OPNDFL
OPNDOC
OPNOFL

P1IB
PLIN
P1OB
P1OU
P2UPCS
PACK_BIT
PACK_CHA
PACK_INT
PARS_ATT
PARTCL
PASSWD

PEXIT
PFIL2A
PFLMOE

PINIT
PINLNK
PK2LDV
PRIBLD
PRICON
PRVSB_

PUTBL
PUTSLT
PUT_HOP
QPARSE

6-6

BIND AND EPFS

QPOST
QUITHD

QUOTE_
ROBASE
R3FALT

RDASC

RDNPAG
RDPRCN
RECYCL
RELGRP
REMANS
REMUSR
REPOST
RESTART_
RGSTRY
RJDBG
RJMNIT
RJPROC

RPISPL
RQUEST
RSTBL

SCANB

SEARCH_C
SEARCH_H
SECBLD
SHGOON
SELANG
SETATT
SE'INAM
SETREHG
SET_SRL
SET_VERS
SFR_CFSC
SFR_HP
SHRLIB
SH_CMD
SLAVE
SLAVER

SPLCHK
SRWREC

STPNC
STRBL

STUFF
SUBMIT
SWFBK_
SWFIM_
SWINTO

T1IN

WHATIT

WRITLINE

XLACPT
XLASGN

XLOONN
XLGOON
XLGVVC
XLUASN
XMTRCV

LIBRARY EPFS

Step 5 - Linking the Subroutines

You now link the subroutines using BIND to create a library EPF of the
appropriate type, or to create two library EPFs, one of each type.

For a program-class library EPF, the link sequence is:

BIND library-EPF—-filename
LIBMODE -PROGRAM

LOAD module-1
LOAD module-2

ENTRYNAME name-l [name-2 ...]
LIBRARY [special~library-l ...] /* if needed
LIBRARY

RESOLVE_DEFERRED_COMPYON

MAP [map-filename] [options]

FILE

For a process-class library EPF, the link sequence is:

BIND library~-EPF-filename
LIBMODE ~—PROCESS
LOAD module-l
LOAD module—2

e

ENTRYNAME name-l [name-2 ...]
LIBRARY [special~library-l ...] /* if needed
LIBRARY PROCESSCLASS

LIBRARY

RESOLVE_DEFERRED_COMMON
MAP [map-filename] [options]
FILE

The differences between linking a program-class library EPF and a
process-class library EPF are:

e Use of the LIBMODE -PROCESS subcommand rather than LIBMODE
-PROGRAM

e Use of the LIBRARY PROCESS_CLASS subcommand immediately before
the LIBRARY subcommand

6-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The LIBMODE subcommand specifies the type of library EPF to be
generated. The LIBRARY PROCESS_CLASS subcommand links a library that
causes dynamic allocation performed by your library EPF to be done from
process-class, rather than program-class, memory.

Although not required to link a library EPF, the
RESOLVE_DEFERRED_COMMON and MAP subcommands are recommended for use
when debugging a library EPF. See also the section below entitled HOW
TO USE DBG ON A LIBRARY EPF.

An Easy Way to Declare Entrypoints: An easier way to declare
entrypoints to your library EPF is to use the ENTRYNAM -ALL and
ENTRYNAME —NONE subcommands. Between use of these two subcommands,
BIND automatically makes any subroutines linked via the LOAD or LIBRARY
subcommands into entrypoints for the library.

Therefore, the template you would use for the appropriate section of
the above two build file templates is:

ENTRYNAME ~ALL
LOAD entrypoint-—module-1
LOAD entrypoint-—module-2

ENTRYNAME —NONE

LOAD other-module-1 /* if needed
LOAD other-module-2

LIBRARY [special-library-1 ...] /* if needed

Make certain that you issue an ENTRYNAME —NONE subcommand before using
the LIBRARY subcommand. Otherwise, you are likely to produce a library
EPF that either will not execute correctly or that has entrypoint names
that conflict with Prime-supplied libraries.

Step 6 -— Building a PMA Entrypoint File

You now build a single PMA file that declares all of the entrypoints to
your library EPF (or both library EPFs) as dynamic links. This file
has the format:

* List of dynamic links for MYLIBRARY.RUN.
SEG
SYML
DYNT entrypoint-1

First Edition 6-8

LIBRARY EPFS

END
SEG
SYML
DYNT entrypoint-2
END

An easy way to build this file is to enter the entrypoint names into a
file named ENTRYPOINTS, one name per line. For example:

INTT_LINE
GET_CHAR
NEW_CHAR_FOR_LINE
CLEAR_LINE
BACKSPACE_LINE
END_LINE

Now, enter and run the following CPL file to lbilda file named
ENTRYPOINTS. PMA:

&DATA ED

LOAD ENTRYPOINITS

TOP

N;IB SEG : SYML;N;GM I/ DYNT /FI/ : END/;*
FILE ENTRYPOINTS. PMA

&END

This produces the following ENTRYPOINTS.PMA file when run on the
ENTRYPOINTS file built in the earlier example:

SEG : SYML

DYNT INIT_LINE : END

SEG : SYML

DYNT GET_CHAR : END

SEG : SYML

DYNT NEW_CHAR_FOR_LINE : END

SEG : SYML

DYNT CLEAR_LINE : END

SEG : SYML

DYNT BACKSPACE_LINE : END

SHG : SYML

DYNT END_LINE : END

6-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Step 7 -— Assemble the Entrypoints File

You now assemble the entrypoints file by issuing the command:

PMA ENTRYPOINIS —-LISTING NO

This produces a file named ENTRYPOINTS.BIN. (You usually do not need
to produce a listing of the file. If you wish to produc a listing,
anit the -LISTING NO specification.) For example:

OK, PMA ENTRYPOINTS —LISTING NO
0000 ERRORS (PMA Rev. 19.4)
OK,

Step 8 - Use EDB to Generate Library File

You now use EDB, the Binary Editor, to generate a new version of the
ENTRYPOINTS.BIN file that does not forcibly load or link itself into
whatever program is using it. A CPL program to perform this step is:

&DATA EDB ENTRYPOINIS.BIN MYLIBRARY.BIN
REL
COPY ALL
SFL
QUIT
&END

You now have a file named MYLIBRARY.BIN that can be installed as_ the
library file that programs can load or link to use your library EPF.

For example, if you named the CPL file shown above FIX_LIB.CPL, and ran
it on the ENTRYPOINTS.BIN file produced in the earlier sample PMA
invocation, the following output would result:

OK, RESUME FIX_LIB

{[EDB rev 19.4]
ENTER, RFL
ENTER, COPY ALL
INIT_LINE GET_CHAR
NEW_CHAR_FOR_LINE CLEAR_LINE
BACKSPACE_LINE END_LINE

- BOTTOM.
ENTER, SFL
ENTER, QUIT
OK,

First Edition 6-10

LIBRARY EPFS

Notice how the entrypoint names are listed, two per line.

See Chapter 10 for more information on ELB.

Step 9 -— Install the Library File

You now install the library file, named MYLIBRARY.BIN in the above
example, into the appropriate directory. For system-wide libraries,
the LIB UFD is appropriate. For example:

COPY MYLIBRARY.BIN LIB>MYLIBRARY.BIN —-NO_QUERY ~DIM —REPORT

When a library is installed in UFD LIB, programs can load (SEG) or link
(BIND) it by issuing the SEG or BIND subcommand:

LIBRARY library—filename

In the example used, the LIBRARY MYLIBRARY subcommand would be used.

Alternatively, you may wish to place the library file in a directory
common to users in your project. In this case, programs must specify
the full pathname of the library file when loading or linking it. ‘They
May use either the LOAD or LIBRARY subcommand of SEG or BIND with a
full pathname, although the LIBRARY subcommand is recommended because
its name commmicates more clearly to someone reading the program's
build file what the purpose of the file is.

Step 10 —- Install the Library EPF

You now install the library EPF file built in Step 5. As with Step 9,
you may install the library EPF in either a system-wide directory or in
a directory common to users who are to use it. The system-wide library
directory for library EPFs is the LIBRARIES* UFD. For example:

COPY MYLIBRARY. RUN LIBRARIES*>MYLIBRARY.RUN -NO_QUERY -DIM ~REPORT

Whether installed in the system-wide LIBRARIES* UFD or in another
directory, the library EPF is not usable until the next step, when its
full pathname is added to the entrypoint search list of users that are
to make use of the library EPF or of programs that use the library EPF.

6-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Step 11 - Modify the Entrypoint Search List

You now modify the appropriate entrypoint search list so that the
library EPF you installed in Step 10 is accessible by the appropriate
users,

If you have installed the library EPF in the system-wide LIBRARIES*
UFD, then you typically modify the system-wide default entrypoint
search list, SYSTEM>ENTRYS.SR. The following sample session inserts
the search rule LIBRARIES*>MYLIBRARY.RUN at the bottan of the
SYSTEM>ENTRYS.SR search list:

OK, ED SYSTEM>ENTRYS.SR
EDIT
BOTTOM
INSERT LIBRARIES*>MYLIBRARY. RUN
FILE
SYSTEM>ENTRYS.SR
OK,

Caution

Typically, you do not have access to SYSTEM>ENTRYS.SR unless
you are the System Administrator. If you modify it, it is
possible that you might unknowingly render it unusable, such as
by putting one search rule in twice (a duplicate rule). If
this happens, not only will users be affected, but a subsequent
coldstart of the system may render the supervisor terminal
mearly ineffective. In such a situation, you will be unable to
use editor ED to fix the file, as ED references faulted IPs to
call system subroutines via the dynamic linking mechanism.

The solution to this problem is to use the nonshared editor,
NSED, rather than the shared editor ED, to fix the default
search list file. NSED runs under PRIMS II, and therefore
does not ever reference faulted IPs.

Alternatively, you may modify the entrypoint search list of the users
who are to use the library EPF, or ask them to make the modifications
themselves. If these users are using the system-wide default
entrypoint search list, then you must construct an entrypoint search
list for them that includes both the system-wide default search list
and your own library EPF.

First Edition 6-12

LIBRARY EPFS

For example, if the users all have access to a directory named

PROJECT_A, in which you have already installed the library EPF (and

possibly the library file named MYLIBRARY.BIN), you might type:

OK, ED
INPUT
—SYSTEM
PROJECT_A>MYLIBRARY.RUN
(CR)
EDIT
FILE PROJECT_A>ENTRYS.SR
OK,

After you do this, all users who are to use this library must place a

SET_SEARCH_RULES command in their LOGIN.CPL or LOGIN.OOMI file, as

follows:

SET_SEARCHRULES PROJECT_A>ENTRYS

Note

Whether you modify the system-wide default entrypoint search

list SYSTEM>ENTRYS.SR, modify some other entrypoint search

list, or create a new search list, users who are already logged

in must issue the SET_SEARCH_RULES command before they can run

a program that uses your library EPF. (A user who has the

appropriate SET_SEARCH_RULES command in his or her LOGIN.CPL

file may simply issue the INITIALIZE_COMMAND_ENVIRONMENT

command, as may all users if you have modified the system-wide

default entrypoint search list.) If a user complains that a

LINKAGEFAULTS condition was signaled indicating a failure to

link to an entrypoint in your library EPF, it may be that the

user is not using an entrypoint search list that includes your
library EPF. Ask the user to issue the LIST_SEARCH_RULES

command (abbreviated LSR) and ensure that your library EPF is

listed therein.

If the user has the correct entrypoint search list, then use

the LISTLIBRARY_ENTRYPOINTS command (abbreviated LLENT) to

ensure that the desired subroutine is in fact an entrypoint in

your library EPF. See the section below, entitled EXAMINING

ENTRYPFOINT LISTS, for more information on this command.

6-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

CHOOSING THE RIGHT TYPE OF LIBRARY EPF

A library EPF must be either a program-class or process-class library
EPF, as described earlier in this Chapter. This section explains how
you determine the appropriate classification for subroutines in your
library EPF.

The decision aS to whether a library EPF is process-class or
program-class is actually made on a per-subroutine basis, and includes
such factors as:

@ How the subroutine uses its linkage area

@ How procedures external to the subroutine are classified

In general, the simplest decision is to put all of your subroutines
into a program-class library EPF. In most cases, this will produc a
working library EPF, although the performance of the library EPF may
not be as good as if a process-class library EPF were used.

Performance for a process-class library EPF is often better than that
of the same subroutines collected as a program-class library EPF
because the linkage area for the library EPF need not be reallocated
and reinitialized each time a program using the library EPF is run.

However, subroutines in a process-class library EPF must observe
certain restrictions on their use of linkage areas and other external
procedures. These restrictions are:

@ A subroutine in a process-class library EPF may not call a
procedure in a program-class library EPF or a static-mode
library.

e Because of the above restriction, a subroutine in a
process-class library EPF may not perform any lanquage-directed
I/O operations. (No PRIMDS-resident subroutine ever performs
language-directed I/O operations; rather, the subroutines that
are called upon to perform lanquage-directed I/O operations call
PRIMOS-resident subroutines to accomplish their tasks.)

e A subroutine in a process-class library EPF should not modify
any data in its linkage area, except in certain special cases.

Both restrictions can be difficult to check for in a given subroutine.
PRIMOS does detect and prevent a violation of the restriction against a
process-class library EPF subroutine invoking a program-class library
EPF or static-mode procedure. However, PRIMOS cannot detect a
potentially invalid use of data in the linkage area.

The remainder of this section describes the steps used to determine
whether you want one library EPF of a particular class, or two library
EPFs (one of each class).

First Edition 6-14

LIBRARY EPFS

In summary, these steps are:

1. Determine the class requirements of each subroutine in your

library.

2. Determine the class requirements of your library EPF using the

subroutine requirements data.

If your library EPF must meet performance constraints, then the first

requirement can become somewhat complicated. Process-class subroutines

tend to have better performance than program-class subroutines because

they tend to require complete initialization of their linkage areas

less often, but they must meet more stringent requirements (Such as not

being able to call a program-class subroutine).

First, you determine which subroutines must be program—-class

subroutines based on two absolute rules listed below.

Second, you examine the remaining subroutines, and determine which of

those should be program-class subroutines based on their use of static

data.

Third, you consider specific cases where the usage of static data by a

subroutine implies that it must be in the program class, but in fact

the nature of the static data it uses allows it to be in the process

class.

Finally, you consider specific cases where the usage of static data by

a subroutine indicates a need to redesign the subroutine (and probably

its external interface) so that it can be in the process class.

Determining the Class Requirements of a Subroutine

It is most desirable for a subroutine to work properly as a

process-class subroutine. Process-class subroutines do not incur the

overhead of allocating and initializing their linkage areas each time

they are invoked by a new program.

Instead, their linkage areas are allocated and initialized only the

first time the process-class library EPF to which they belong is Mapped

into memory, and remain valid until the same process-class library EPF

is unmapped from memory. If a program that uses that process-class

library EPF is run several times between the mapping of the library EPF

and its unmapping, the linkage will still be allocated and initialized

only once.

However, due to the restrictions described above, not all subroutines

will work when built into a process-class library EPF. For the most

part, all subroutines will work when built into program-class library

EPFs, which do incur linkage allocation and initialization overhead for

* each program invocation.

6-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The following sections are designed to help you determine, for each
subroutine, whether it must be a program-class subroutine or can be in
either class.

This section is split up into several rules. Some of these rules are
absolute rules that cannot be violated. Other rules apply to most
subroutines, but exceptional cases are listed or described.

Subsequent sections discuss ways in which a subroutine can be examined
in greater detail to determine if it is, or can be made, a
process-class subroutine.

Rule 1 — Restriction on Library Class Mixing: It is an absolute rule
that a process-class library EPF subroutine cannot call a subroutine
within a progran-class library EPF or a static-mode library. If this
is attempted, PRIMOS will produce an error message similar to the
following:

Error: condition "LINKAGEERRORS" raised at 4342(3) /12506.
Attempt to link to program class library EPF entrypoint "ATTDEV"
from a process class EPF.
ER!

It is possible for a process-class subroutine to call some other
Subroutine that then calls a program-class or static-mode library
subroutine. However, in most cases, this cannot be done because this
rule must be reapplied.

Specifically, if process-class subroutine A calls subroutine B which
calls program-class (or static-mode library) subroutine C, then
subroutine B cannot be a process-class subroutine, or Rule 1 would be
violated. In addition, subroutine B cannot be a programclass or
static-mode subroutine, or again, Rule 1 would be violated when
subroutine A calls subroutine B.

This situation will be valid only if subroutine B is part of a program
EPF or a static-mode program. PRIMS will treat the invocation of
subroutine C by subroutine B as being a program-to-program invocation,
and will allow it, since PRIMS will be able to properly allocate and
initialize the linkage area for the program-class library EPF or
Static-mode library containing subroutine C.

However, subroutine A cannot call subroutine B if it is not part of a
library unless the entrypoint for subroutine B is passed to subroutine
Aas part of its calling sequence or through a common area. (For
example, a PLI/G ENTRY VARIABLE declaration provides this
functionality.)

Therefore, under most circumstances, once a process-class library
Subroutine is invoked, only process-class subroutines or PRIMOS direct
entry subroutines can be called until the process-class library

First Edition 6-16

LIBRARY EPFS

subroutine returns to its caller. Exceptions to this statement occur

only when non-library subroutine calls occur during this period.

(Non-library subroutine calls can also occur as a result of a condition

being signaled. See the Subroutines Reference Guide for information on

writing condition handlers.)

Rule 2 - Restriction on Use of Language I/O: If a subroutine makes use

of language—directed 1/0, it must be made a program-class subroutine.

Language-directed I/O includes statements such as READ, WRITE, ENOODE,

DECODE, and OPEN in FORTRAN, PUT, GET, OPEN, CLOSE in PL1/G.

This rule is, in fact, a corollary to Rule 1. All Prime-supplied

languages generate subroutine calls to perform language-directed 1/0.

All such languages provide their runtime support of language I/O as

program-class library EPFs. To permit oorrect management of data

buffers between program invocations, language I/O library EPFs must be

program—class.

Rule 3 - Problem When Storing Data in Linkage Areas: A subroutine that

uses its linkage area (static storage) to store data will probably not

function correctly if built into a process-class library EPF.

Exceptions occur for faulted IPs that are resolved by the PRIMS

dynamic linking mechanism and for imaginary IPs that are converted to

actual IPs by the PRIMOS EPF invocation mechanism. Such IPs are

automatically generated by all Prime-supplied lanquages, including PMA.

However, PMA programmers may explicitly specify an IP in their linkage

text that is covered by this exception only if the subroutine never

attempts to modify the contents of the IP.

Other special-case subroutines, such as random number generators, may

be considered exceptions to this rule. This is discussed later in this

chapter.

Determining the Use of Static Data by a Subroutine

If your product does not have stringent performance criteria to meet,

it is recommended that you not devote time attempting to determine

which subroutines are process-class and program-class. At this point,

if you don't know whether some of your subroutines require placement in

a program-class library EPF, you should assume that they do.

However, if your product does have performance standards to meet, it

may be worthwhile to invest the time needed to determine precisely

which subroutines can and cannot be safely made process-class

subroutines. It is even conceivable that redesigning the internal

operation (and perhaps external interface) of a few chosen subroutines

so that they may execute as process-class subroutines would be a

reasonable investment of your time, if the resulting performance

increase justifies it.

6-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The key issue that determines whether a subroutine must run as a
program-class subroutine involves its use of data in the linkage area.
This includes:

e@ Static data (declared as STATIC in PLI1/G, with DATA statement in
FORTRAN, and, in PMA, via LINK pseudo instruction followed by
DATA, OCT, DEC, BSS, BSZ, ECB, IP, and So on)

@ Common data (declared as STATIC EXTERNAL in PL1/G, with OOMMON
statement in FORTRAN, via COMM and EXT pseudo instructions in
PMA)

The reason the linkage area is the crux of the issue is that the
linkage area is not reallocated and reinitialized for a process-class
library EPF when a new program calls a member subroutine. ‘Therefore,
if any of the data in the linkage area for the library is
program-related, the execution of the second program that calls the
process-class library EPF after it is mapped into memory may produce
inaccurate results or cause error conditions. See Chapter 5 for more
information on such restrictions.

If a subroutine stores data in the linkage area, and it uses that data
at any other point, then the subroutine is probably not reentrant. A
non-reentrant subroutine must typically be put in a progran-class
library EPF, to prevent it from misbehaving after multiple invocations
by separate programs.

Here is a sample PL1/G subroutine that is not reentrant:

average: proc(number) returns(fixed bin(15));

dcl number fixed bin(15); /* The newest number. */

del count fixed bin(15) static init(0), /* # of numbers, */
total fixed bin(31) static init(0); /* Total value. */

count=count+l; /* Another number. */
total=total+number; /* Total it up. */

return (divide (total,count,15)); /* Return quotient of average. */
end; /* average: proc */

First Edition 6-18

LIBRARY EPFS

This subroutine is meant to be called in the following way:

do_average: proc;

dcl current_avg fixed bin(15),
next_number fixed bin(15);

dcl tnou entry (char (80) ,fixed bin(15)),
tidec entry (fixed bin(15)),
tovfd$ entry (fixed bin(15)),
tnoua entry (char (80) ,fixed bin(15)),
average entry(fixed bin(15)) returns(fixed bin(15));

call tnou('Enter numbers. ‘Type 0 to stop.',31);
current_avg=0;
next_number=-1 ;

do while (next_number”=0);
call tnoua('Enter next number: ',19);
call tidec(next_number);
if next_number*=0 then current_avg=average (next_number);

end;

call tnoua('The average is ',15);
call tovfd$(current_avg);
call tnou('',0);

end:

The AVERAGE subroutine uses STATIC INIT for its averaging data, so that

the data values are maintained between calls to the AVERAGE subroutine.
It modifies the STATIC INIT storage during execution. This makes it

nonreentrant even within a given program. That is, even within one

progran, the AVERAGE subroutine can be used to calculate the average of

only one stream of numbers at a time.

In fact, as it currently exists, it can handle only ore stream of

numbers for one entire program execution, because there is no method to

reinitialize the STATIC INIT data. Even if an alternate entrypoint

existed to do this, the subroutine would still be able to manage only

one stream of numbers at a time.

The single-stream restriction on the AVERAGE subroutine is not a

problem if the calling program needs to calculate an average for only a

single stream of numbers at a time. However, it does require that if

AVERAGE is made part of a library EPF, it must be a program-class

library EPF. That way, separate linkage is allocated and initialized

for each different program that uses the AVERAGE subroutine.

If program A uses AVERAGE, and program B is then run and it also uses

. AVERAGE, the fact that AVERAGE is in a program-class library will

prevent program B from simply continuing the calculation of average

6-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

number values established in progran A. Instead, program B will start
with a fresh copy of the averaging data.

When Nonreentrant Subroutines Should Be Process-class

There are certain cases where a nonreentrant subroutine, as determined
by its use of static storage, should actually be in a process-class
library EPF. Generally, a subroutine that uses static data to store
and use only process-related information, rather than program-related
information, may be a nonreentrant subroutine that can be installed in
a process-class library EPF.

Process-related information includes such data as: username, user
number, user's terminal type, the name of the system, today's date,
limits on the user's use of command level depth and breadth and on the
humber ot static and dynamic segments, user's project id, and so on.
This information is generally process-related or system-related, rather
than program-related. Typically, it does not change during the life of
a process, and hence does not need to be reinitialized each time a new
program calls a library EPF subroutine that maintains this type of
information.

However, carefully consider whether the use of a process-related datum
is in itself process-related or program-related. For example, today's
date is usually process-related, but it may be important for a progran
to acquire an up-to-date value, instead of a value that may have been
put into the linkage area some time ago, including (possibly)
yesterday.

For a more tangible example of a subroutine that is nonreentrant, but
uses only process-related data in the linkage area, consider the
following PL1/G subroutine:

get_username: proc returns (char (32));

dcl 1 timdat_info static,
date char (6),
time fixed bin(15),
ticks fixed bin(15),
meters (4) fixed bin(15),
tps fixed bin(15),
user_number fixed bin(15),
user_name char (32);N
O
M
N
O
N

D
N
b
P
b
d

dcl have_info bit(1) static init('0'b);

del timdat entry(1,2 char(6),2 fixed bin(15),2 fixed bin(15),
2 (4) fixed bin(15),2 fixed bin(15),2 fixed bin(15),
2 char (32) ,fixed bin(15));

First Edition 6-20

LIBRARY EPFS

if “have_info
then do;

call timdat (timdat_info, 28);
have_info='1'b;
end;

return (user_name);

end;

This subroutine returns the username of the current user. It incurs
the added overhead of calling the systen TIMDAT subroutine only when it
is first invoked.

Even though GET_USERNAME uses static storage in a nonreentrant fashion,
you can see that because all of its static storage identifies
process-wide data (the user name), it can be in a process-class library
EPF. It will be more efficient there than in a program-class library

EPF.

Converting a Nonreentrant Subroutine to be Reentrant

If the performance of a particular group of program-class subroutines
needs to be increased, it is possible that converting them to
process-class subroutines will help result in the needed performance
improvements.

To do this, you must convert the subroutine or group of subroutines to
a reentrant entity. This often requires major internal changes,
probably a rewrite of the target modules, possibly even rewriting into
a different language. For example, PLI/G handles the smooth
construction of reentrant subroutines quite well, due to its ability to
handle pointer manipulation and based structure declaration.

If PL1/G cannot be used, PMA is an alternative. Here, the XB register
is often substituted for references to static data in the linkage area
that were once IB relative.

In any case, such a conversion often requires changes in the external
appearance of the target modules. All uses of the target modules may
have to be changed to accommodate the new calling sequences of the
target modules. For this reason, it is recommended that you design new
interfaces to allow full reentrancy, both inside and outside a single
program.

Simple Conversion: To understand how to convert a target module, we'll
look at the AVERAGE subroutine, shown earlier. A simple conversion
would be to move the small amount of static data out of the linkage
area by making it part of the calling sequence of the subroutine.
‘Initialization of this data would then be left to the calling program.

6-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The resulting version of AVERAGE would appear thus:

average: proc (number, count, total) returns(fixed bin(15));

dcl number fixed bin(15), /* The newest number. */
count fixed bin(15), /* # of numbers. */
total fixed bin(31); /* Total value. */

count=count+l1; /* Another number. */
total=total+number; /* Total it up. */

return (divide (total, count,15)); /* Return quotient of average. */
end; /* average: proc */

Because the calling sequence of the subroutine has been changed, the
method of calling the subroutine would have to be adjusted for all
users of the subroutine, as indicated in the following example:

do_average: proc;

dcl current_avg fixed bin(15),
avg_number fixed bin(15),
avg_total fixed bin(3l),

next_number fixed bin(15);

dcl tnou entry (char (80) ,fixed bin(15)),
tidec entry (fixed bin(15)),
tovfdS entry(fixed bin(15)),
tnoua entry (char (80) ,fixed bin(15)),
average entry (fixed bin(15) ,fixed bin(15),fixed bin(31))

returns (fixed bin(15));

Call tnou('Enter numbers. Type 0 to stop.',31);
current_avg=0;
avg_number=0 ;
avg_total=0;
next_number=-1;

do while (next_number*=0) ;
call tnoua('Enter next number: ',19);
call tidec(next_number);
if next_number*=0 then current_avg=average (next_number,

avg_number, avg_total);
end;

call tnoua('The average is ',15);
call tovfd$ (current_avg);

call tnou (' ' 70) ?

end;

First Edition 6-22

LIBRARY EPFS

As a result of these changes, the AVERAGE subroutine can become a

process-class subroutine. In addition, the calling program can use it

for averaging one stream of numbers at a time. The calling program my

use several copies of AVG_NUMBER and AVG_TOTAL to keep the number

streams separate.

However, this is a limited form of coping with the nonreentrancy

problem for two reasons:

@ It requires all calling programs to perform the initialization
that is best performed by the target module

@ To replace large amounts of static data, long (expensive)

calling sequences would be needed

A General Approach to Conversion: A more general approach is to

separate out the AVERAGE subroutine into three separate procedures.

One procedure, INIT_AVERAGE, allocates storage for and initializes the

data for a specific number stream. The second procedure, DO_AVERAGE,

actually performs the computation. The third procedure, END_AVERAGE,

is called to indicate the end of the calling program's need for the

maintenance of data on a particular number stream, and hence

deallocates the storage for that stream.

To make use of the efficient way in which the Prime 50 Series machines

manipulate pointers, the identifier for a number stream will bea

pointer. The INIT_AVERAGE, when invoked, returns a pointer to be used

to identify that particular number stream to DO_AVERAGE and

END_AVERAGE. ‘The same pointer identifies the area in memory in which

the number stream data is stored, for use by DO_AVERAGE, and which is

to be freed by END_AVERAGE. Now, the AVERAGE module appears as

follows:

init_avg: proc returns(ptr);

dcl avg_id ptr;

dcl 1 average_stream based (avg_id),
2 count fixed bin(15), /* # of numbers. */

2 total fixed bin(31); /* Total value. */

allocate average_stream set (avg_id);
count=0;
total=0;
return (avg_id);
end; /* init_avg: proc */

average: proc(avg_id, number) returns(fixed bin(15));

dcl avg_id ptr, /* Points to average data structure. */
number fixed bin(15); /* The newest number. */

6-23 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

dcl 1 average_stream based(avg_id),
2 count fixed bin(15), /* # of numbers, */
2 total fixed bin(31); /* Total value. */

count=countt+l; /* Another number. */
total=total+number; /* Total it up. */

return (divide (total, count,15)); /* Return quotient of average. */
end; /* average: proc */

end_avg: proc (avg_id);

dcl avg_id ptr;

dcl 1 average_stream based (avg_id),
2 count fixed bin(15), /* # of numbers. */
2 total fixed bin(31); /* Total value. */

free average_stream;
end; /* end_avg: proc */

As with the previous change, because the calling sequence of the
subroutine has been changed, the method of calling the subroutine would
have to be adjusted for all users of the subroutine, as indicated in
the following example:

do_average: proc;

dcl current_avg fixed bin(15),
next_number fixed bin(15),
avg_id ptr;

dcl tnou entry (char (80) ,fixed bin(15)),

tidec entry (fixed bin(15)),
tovfdS entry(fixed bin(15)),
tnoua entry (char (80) , fixed bin(15)),
init_avg entry returns(ptr),
end_avg entry(ptr),
average entry (ptr,fixed bin(15)) returns(fixed bin(15));

call tnou('Enter numbers. ‘Type 0 to stop.',31);
current_avg=0};
next_number=~1;

avg_id-init_avg();

do while (next_number*=0) ;
call tnoua('Enter next number: ',19);
call tidec(next_number);
if next_number”=0 then current_avg=average (avg_id, next_number);
end;

First Edition 6-24

LIBRARY EPFS

call end_avg(avg_id);

call tnoua('The average is ',15);
call tovfd$ (current_avg);
call tnou('',0);

end;

This method has an advantage in that, in the future, the AVERAGE module
may add information to its AVERAGENUMBER based structure without
affecting any callers of the module. As with the previous method, full
reentrancy is realized even within a single program. To handle two or
more simultaneous number streams, the main program needs only make
multiple calls to INIT_AVERAGE and END_AVERAGE using different AVG_ID
pointers, and use the appropriate pointers in calls to DO_AVERAGE.

Optimizingthe General Approach to Conversion: Another example of the
ability of the structure hinted at above is that if further
optimization is needed when multiple number streams are used, the
module can be changed to avoid frequent dynamic allocation of the
AVERAGE_STREAM structure. To reduce use of the memory allocation
mechanism, a more efficient special-case mechanism can be constructed
by reserving storage in the linkage area. This storage, called
AVERAGE_STATIC, contains 50 potential copies of AVERAGE_STREAM, where
50 is a number representing a typical figure for the maximm number of
simultaneous number streams in use by a particular product.

Of course, reestablishing the use of STATIC data causes the subroutine
to become nonreentrant once again. However, additional processing can
be performed to manage the single linkage area that the subroutine uses
aS a process-class subroutine, so that separate program invocations use
the same static AVERAGE_STREAM pool, without overwriting each other's
data. This produces a form of reentrancy known as active reentrancy.
Most PRIMOS system subroutines also practice active reentrancy, using
methods similar to the one discussed here.

Causing the AVERAGE module to employ active reentrancy can be done
without changing the external calling sequence of the AVERAGE module as
most recently shown above. However, major internal changes are needed.

An important consideration is to code the AVERAGE module so that
interruption of the module during the management of the STATIC data
followed by invocation of another program that called INIT_AVERAGE does
not corrupt the linkage area.

6-25 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

When recoded according to these considerations, the AVERAGE module
appears as follows:

init_avg: proc returns(ptr);

dcl 1 average_static(50) static external,
2 index_st fixed bin(15) init((50)0), /* Index within the

array. -l means not in array, 0
means not in use, >0 means in use
and is index. */

2 count_into_based fixed bin(15) init((50)0),
2 total_into_based fixed bin(31) init((50) 0);

dcl 1 average_info static external,
2 next_index fixed bin(15) init(l),
2 have_ended_early_indexes bit(1) init('0'b);

dcl 1 average_stream based (avg_id),
2 index_into_static fixed bin(15), /* Index within array. */
2 count fixed bin(15), /* # of numbers. */
2 total fixed bin(31); /* Total value. */

dcl i fixed bin(15), /* Temporary. */
avg_id ptr, /* Pointer to average data structure. */
cond_store_ok fixed bin(15); /* l=Conditiomal store worked. */

dcl cond_store entry(fixed bin(15),fixed bin(15),fixed bin(15))
returns(fixed bin(15));

avg_id=nul1() ;
do while (avg_id=null());

i=next_index; /* See if we can get this element. */
if i<=hbound (average_static,1)

then do; /* Some of array left. */
next_index=itl; /* Either way, increment it. */
cond_store_ok=cond_store(index_st (i) ,i,0);
if cond_store_ok=l

then avg_id=addr (average_static(i));
end; /* Or try again. */

else do; /* It isn't easy, consider searching lower. */
if have_ended_early_indexes /* Find free element? */

then do i=l to hbound(average_static,1) ;
cond_store_ok=cond_store(index_st (i) ,i,0);
if cond_store_ok=1

then avg_id=addr (average_static(i));
end; /* Or try again. */

if avg_id=null() /* If still not found, allocate. */
then do;

allocate average_strean set (avg_id);
index_into_static=-1; /* Allocated. */
end; /* if avg_id=null() */

end; /* if i>hbound(average_static,1) */
end; /* do while(avg_id=null()) */

First Edition 6-26

LIBRARY EPFS

count=0;

total=0;

return (avg_id);
end; /* init_avg: proc */

average: proc(avg_id,number) returns(fixed bin(15));

dcl avg_id ptr, /* Address of the average data structure. */
number fixed bin(15); /* The newest number, */

dcl 1 average_stream based (avg_id),
2 index_into_static fixed bin(15), /* Index within array. */
2 count fixed bin(15), /* # of numbers. */
2 total fixed bin(31); /* Total value. */

count=counttl; /* Another number. */
total=total+mumber; /* Total it up. */

return (divide (total,count,15)); /* Return quotient of average. */
end; /* average: proc */

end_avg: proc (avg_id);

dcl avg_id ptr;

dcl 1 average_static(50) static external,
2 index_st fixed bin(15) init((50)0), /* Index within the

array. -l means not in array, 0
Means not in use, >0O means in use
and is index. */

2 count_into_based fixed bin(15) init((50)0),
2 total_into_based fixed bin(31) init((50)0);

dcl 1 average_info static external,
2 next_index fixed bin(15) init(l),
2 have_ended_early_indexes bit(1) init('0O'b);

dcl 1 average_stream based (avg_id),
2 index_into_static fixed bin(15), /* Index within array. */
2 count fixed bin(15), /* # of numbers, */
2 total fixed bin(31); /* Total value. */

dcl i fixed bin(15), /* Temporary. */
cond_store_ok fixed bin(15); /* l=conditional store worked. */

dcl cond_store entry (fixed bin(15),fixed bin(15),fixed bin(15))
returns(fixed bin(15));

if index_into_static>0
then do; /* Pointer to within array. */

i=index_into_static;
index_st(i)=0; /* Free again. */

6-27 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

cond_store_ok=cond_store(next_index, i, i+1) ;
if cond_store_ok=0 /* Wasn't most recent? */

then have_ended_early_indexes='1'b;
end; /* if index_into_static>0 */

else if index_into_static=-l1 then free average_stream;
else stop; /* This is an error. */

end; /* end_avg: proc */

To provide optimal performance, the INIT_AVERAGE and END_AVERAGE
procedures have undergone extensive changes. However, the AVERAGE
procedure itself has remained unchanged, except for the new declaration
of the average data structure. AVERAGE does not need to consider
whether the pointer passed to it identifies storage within the linkage
area or dynamically obtained storage.

Instead, INIT_AVERAGE and END_AVERAGE together manage the external

static (common) storage that is used for quick "allocation" of

AVERAGE_STREAM structures. The AVERAGE_STATIC array contains 50 copies
of potential AVERAGE_STREAM structures. Now included in each structure
is an INDEX that identifies whether the structure is available or not
(within the array), or separately allocated (not within the array).
Separate allocation occurs only when the array of AVERAGE_STATIC is
fully used, and hence represents a graceful degradation when more than
50 number streams are in use at a time.

An important subroutine used in the newest AVERAGE module is the
COND_STORE subroutine. This subroutine is a PMA module that takes a
FIXED BIN(15) location in memory, a new value for that location, and an

old value for that location. The COND_STORE subroutine updates the
FIXED BIN(15) location to the specified new value only if the old value
is accurate. Otherwise, it leaves the location unchanged. It returns
al if it succeeds in updating the location; 0 if it does not.

Because it uses the STAC machine instruction, the verification of the
old value and update of the new value are guaranteed to occur in an
atomic fashion, independent of any other processing on the system.

A listing of COND_STORE.PMA is found in Chapter 8, as it is a useful
subroutine for updating information in shared memory.

Methods such as those listed above may seem extensive, but they can
result in better throughput for your product. In addition, when the

target of such a procedure includes a number of separate subroutines

that manage a single common area, folding them into one procedure with

alternate entrypoints may improve the maintainability of that portion

of your product.

First Edition 6-28

LIBRARY EPFS

Determining the Class Requirements of Your Library EPF

Once you have determined the requirements for all of the subroutines in
the library EPF you wish to build, decide whether you will have one
library EPF, either process-class or program-class, or two library
EPFs, one of each class. On a per-subroutine basis, the decisions are:

e A subroutine that must be in one particular class must be placed
in a library EPF of that particular class.

e@ A subroutine that can operate in either class can be placed in
either class, but will probably operate more efficiently when
placed in a process-class library EPF.

If you have subroutines in each class that require being in that
particular class, then you must have two library EPFs, one of each
class.

If all your subroutines require being in the program class, or they all
require being in the process class, then you must have one library EPF
of the appropriate class. It is rare for a subroutine to require being
in the process class, although dependencies on being in the program
class are common.

If none of your subroutines require being in the program class, then
you need create only one process-class library EPF. This is the most

desirable situation, as it results in the best performance.

Typically, however, you will have some subroutines that require being
in the program class, and others that can be in either class. In this
case, you can create either one program-class library EPF, or two
library EPFs (one of each type).

The tradeoff depends on the overhead of having PRIMOS maintain
information on a second library EPF, including a search list entry,
certain internal resources on a per-library EPF basis, and two separate
linkage initialization phases for using your library as a whole.

If this overhead is less than the overhead of having PRIMDS reallocate
and reinitialize linkage areas belonging to subroutines that do not
require the program class, then having two library EPFs represents a
reasonable performance tradeoff.

Otherwise, the added overhead of a second library EPF for your library
is not worth the savings of separating the linkage areas, so one
program-class library EPF should be used.

Note

Because PRIMDS does not support dynamic linking to common
areas, you must place all subroutines that reference a
particular common area in the same EPF as the common area
itself. For example, if subroutines A and B wish’ to

6-29 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

communicate via a common area ramed JIOBUF, then both

subroutines A and Band common area IOBUF must all be linked

into one EPF. If instead you place subroutine A in a

progran-class library EPF and subroutine B in a process-class

library EPF, for example, then they each get their own copies

of IOBUF and therefore cannot communicate with each other

through IOBUF.

HOW TO USE DBG ON A LIBRARY EPF

Debugging a library EPF using DBG requires that the object (.BIN) files

that comprise the library EPF be linked into a program EPF along with a

subroutine that serves as as the main entrypoint for the program EPF.

Typically, the main subroutine entrypoint is used only for debugging

and testing of the library EPF, and it does not necessarily require any

code. It should, however, contain declarations for all subroutine

entrypoints in the library EPF.

You may find it useful to also declare storage in the main entrypoint

of the program EPF, to be used during DBG CALL commands to subroutine

entrypoints as storage for the input and output arguments. If you do

this, you should have the main entrypoint initialize all its variables

so that an attempt by the user of DBG to examine some of the data (such

as varying character strings) does not produce garbage output on the

screen.

The last statement executed by such a test bed is, in PLI/G:

CALL SIGNLS$('PAUSES',NULL() ,0,NULL() ,0, 'CO00'b4);

In FIN or F77, use a PAUSE statement.

This signals a condition that is intercepted by [DBG, causing DBG to

enter subcommand level without finishing execution of the program.

(When the main progran finishes, access to the variables declared

within it are lost.)

A sample main entrypoint subroutine might be:

test_bed_for_xyz_library: proc;

/* Declare all the library entrypoints. */

dcl xyz_input_coordinates entry(fixed bin(15),fixed bin(15)),

xyzplot entry (ptr,fixed bin(15),fixed bin(15)),

xyZ_update entry (ptr),
xyZ_output_graph entry (ptr),
xyz_delete_user entry(char(32) var);

First Edition 6-30

LIBRARY EPFS —

/* Declare storage used for library entrypoints. */

dcl x fixed bin(15), /* For XYZ_INPUT_COORDINATES. */
y fixed bin(15),
graph_ptr ptr, /* For XYZ_UPDATE and XYZ_OUTPUT_GRAPH. */
user_name char(32) var; /* For XYZ_DELETE_USER. */

/* Declare graph structure. */

dcl graph(24,80) char(1);

/* Declare SIGNLS subroutine. */

dcl signl$ entry (char (32) var,ptr,fixed bin(15),ptr,fixed bin(15),

bit (16));

/* Initialize variables. */

x=0;3

y=0;
graph_ptr=addr (graph);
user_name=''3

graph=' ';

/* Now pause, invoking DBG subcommand level. */

call signl1$('PAUSES',nul1() ,0,nu11() ,0,'C000'b4);

/* If user continues, run the game. */

x=1;
do while (x*=0) ;

call xyz_input_coordimates (x,y)?
if x=] & x<=80 & y>o=l1 & y<=24

then call xyzplot (graph_ptr,x,y);
end; /* do while(x°=0) */

call xyz_output_graph (graph_ptr);
‘do while('1'b);

call signl1$('PAUSES',null() ,0,nu11() ,0,'C000'b4);
call xyz_update(graph_ptr) ;

can xyz_output_graph (graph_ptr);
end;

/* End of test bed. */

end;

6-31 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Build the test bed program EPF by linking the main test bed subroutine
with the object files used that comprise the library EPF. Then, type:

DBG test-bed-progran
RESTART

The RESTART command causes the work area variables to be initialized.
The main program is then suspended, returning you to DBG mode. At this
point, you can either CONTINUE the main program to perform typical
system or unit tests, or use the CALL subcommand to test the behavior

of specific subroutines in your library.

ENTRYPOINT SEARCH LISTS

PRIMOS makes the connection between a library EPF and a progran that
wishes to use the library EPF when the program attempts to call a
subroutine in that library EPF. This causes the dynamic linking
mechanism to be invoked. The dynamic linking mechanism is described in
Chapter 2.

When the dynamic linking mechanism is invoked, it first searches the
list of internal PRIMOS entrypoints. If the desired subroutine is not
found there, the dynamic linking mechanism uses an entrypoint search
list to direct it to library EPFs that are to be searched for the
desired subroutine. In addition, the search list specifies at what
point the static-mode libraries are to be searched, if they are to be
searched.

Each user has an in-memory copy of an entrypoint search list. This
in-memory copy is loaded from a file on disk with the name ENTRYS.SR or
with a name ending in .ENTRYS.SR. The file is loaded into memory
either:

@ When the first dynamic link for a user is encountered

e When a user issues the SET_SEARCHRULES command (abbreviated

SSR)

If the first dynamic link is encountered before a user issues the
SET_SEARCHRULES command after logging in, PRIMOS loads the default
entrypoint search list, which has the pathname SYSTEM>ENTRYS.SR.

A user may use the SETSEARCHRULES command to switch to a new

entrypoint search list or to return to the default entrypoint search

list.

Typically, the default entrypoint search list indicates that
system-wide library EPFs (in the LIBRARIES* UFD) are to be searched
first (after internal PRIMOS entrypoints, which are always searched
before any libraries listed in the entrypoint search list). ‘These

First Edition 6-32

LIBRARY EPFS

libraries include the system library (SYSTEM_LIBRARY), the FORTRAN I/O
library (FORTRAN_IO_LIBRARY) , the application library
(APPLICATION_LIBRARY), and so on.

At some point, the default search list usually directs that the
Static~mode libraries are to be searched. Although Prime supplies
several individual static-mode libraries, these libraries are treated
by the search list mechanism as one library. If the desired subroutine
is still not found, the default search list may specify further library
EPFs that are to be searched. If the end of the search list is reached
and the target subroutine has still not been found, the dynamic linking
mechanism signals the condition LINKAGEFAULTS, which typically
produces an error message such as:

Error: condition "LINKAGE_FAULTS" raised at 4243(3)/1031.
Entry name “INIT_LINE" not found while attempting to resolve
dynamic link from procedure "TRY_ASYNC" .
ER!

An entrypoint search list oonsists of ome or more search rules. A
particular line within a search list is referred to as a search rule
(Singular).

To display your current search list, use the LIST_SEARCH_RULES command
(abbreviated LSR). For example:

OK, LIST_SEARCHRULES

Pathname of template: <SYSDSK>SYSTEM>ENTRYS.SR

LIBRARIES*>SYSTEM_LIBRARY. RUN
LIBRARIES*>APPLICATION_LIBRARY.RUN
~STATIC_MODE_LIBRARIES
LIBRARIES*>PL1G_LIBRARY. RUN
LIBRARIES*>FORTRAN_IO_LIBRARY. RUN
LIBRARIES*>OCOMMON_ENVELOPE . RUN
LIBRARIES*>OPTIMIZER. RUN
LIBRARIES*>CODEGEN_COMMON.RUN
LIBRARIES*>CODEGENV. RUN
LIBRARIES*>CODEGENT. RUN
LIBRARIES*>CBL_LIBRARY.RUN
LIBRARIES*>CC_LIBRARY. RUN
LIBRARIES*>PASCAL,_LIBRARY. RUN
LIBRARIES*>VRPG_LIBRARY. RUN

OK,

As shown in the above sample, the default system search list comes from
the file SYSTEM>ENTRYS.SR. All entrypoint search rule files must be
named ENTRYS.SR, or end in .ENTRYS.SR, to identify them as library

entrypoint search rule files.

6-33 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Notice that the static-mode libraries are identified using the

~STATIC_MODE_LIBRARIES option.

The file containing the search rules, SYSTEM>ENTRYS.SR, is a text file

that contains the lines shown in the above sample. As with other text

files, the file can be modified by using text editors such as ED or

EMACS. The file corresponding to the above sample search list is shown

below:

LIBRARIES*>SYSTEM_LIBRARY. RUN
LIBRARIES*>APPLICATION_LIBRARY.RUN
~STATIC_MODE_LIBRARTES
LIBRARIES*>PL1G_LIBRARY. RUN
LIBRARIES*>FORTRAN_IO_LIBRARY. RUN
LIBRARIES*>COMMON_ENVELOPE . RUN

LIBRARIES*>OPTIMIZER. RUN
LIBRARIES*>CODEGEN_COMIVON. RUN
LIBRARIES*>CODEGENV. RUN
LIBRARIES*>CODEGENT. RUN
LIBRARIES*>CBL_LIBRARY. RUN
LIBRARIES*>CC_LIBRARY. RUN
LIBRARIES*>PASCAL_LIBRARY. RUN
LIBRARIES*>VRPG_LIBRARY. RUN

The ordering of individual rules is important, as it reflects the order

in which the libraries are searched. The search order is important for

performance reasons, as frequently-called subroutines (such as_ the

subroutines in SYSTEMLIBRARY) should require the shortest search time

possible. In addition, the search order is important when naming

conflicts occur between libraries — the order in which the conflicting

libraries appear decides which copy of a subroutine is actually

invoked.

Setting Your Own Search Rules

Setting your own private search rules is important when you are

developing a library EPF. Only by updating your search rules do you

enable programs that you run to be able to call, or link to,

subroutines in your library EPF. This section discusses how to set

your own search rules,

First, you create your own search rule file. It must be named

ENTRYS.SR, or end in .ENTRYS.SR, to be considered a valid entrypoint

search rules file.

First Edition 6-34

LIBRARY EPFS

The simplest form of this file is:

—-SYSTEM
MYUFD>MYLIBRARY. RUN

The —SYSTEM rule specifies that the standard system search rules, found
in SYSTEM>ENTRYS.SR, are to be searched, and then the library EPF
specified is to be searched. The contents of SYSTEM>ENTRYS.SR replace
the -SYSTEM rule in memory at the time you issue the SET_SEARCHRULES
command, not later when dynamic linking takes place.

Keep in mind that these lists are. searched only when the dynamic
linking mechanism is actually invoked. Until a subroutine in your
library EPF is called, it may not necessarily be mapped into memory.

Note

The -SYSTEM rule affects the ordering of the search only if the
—-NO_SYSTEM option is specified on the SET_SEARCH_RULES command
line, as described below. Otherwise, -SYSTEM is ignored, and
the search rules in the default entrypoint search list are used
before the search rules in the personal entrypoint search list.

Although -SYSTEM is ignored, you should place it in the file as
shown, just in case somebody accidentally specifies the
-NO_SYSTEM option on the SET_SEARCH_RULES command line. The
side effects of having only one search rule in an entrypoint
search list are very strange and difficult to identify.

A more complex method of creating your search rules file is to actually
list all of the libraries to be searched, in the order you desire. For
example:

MYUFD>MYLIBRARY. RUN
LIBRARIES*>SYSTEM_LIBRARY. RUN
LIBRARIES*>FORTRAN_LIBRARY.RUN
LIBRARIES*>FORTRAN_IO_LIBRARY.RUN
LIBRARIES*>APPLICATION_LIBRARY. RUN
~STATIC_MODE_LIBRARIES

This has an effect similar to the previous search rules file, except
that the library EPF MYUFD>MYLIBRARY.RUN is searched before any other
library is searched, with the exception of internal PRIMDS entrypoints.

Once the search rules file is created, you establish it for the
Guration of your login session using the SET_SEARCH_RULES command.

6-35 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The format of this command is:

| Sos search-rules-file. ENTRYS [-NO_SYSTEM]
SSR :

This changes your current search list to the search rules specified in
search-rules-file.ENTRYS.SR. You will revert to the standard system
search rules (in SYSTEM>ENTRYS.SR) only when you log in again, when
your command envirorment is reinitialized, or when you issue the
command :

SET_SEARCH_RULES —DEFAULT ENTRYS

To make changes to your search list permanent, update your LOGIN.CPL or
LOGIN.COMI file to include the appropriate SET_SEARCH_RULES command.

The -NO_SYSTEM option, when present, indicates that the default system
search list, SYSTEM>ENTRYS.SR, is not to be autamatically inserted in
front of your search rule when you issue the SET_SEARCH_RULES command.
You should use this option only if you have used a copy of the default
system search list to build your own search rule. Careless use of the
-NO_SYSTEM option may cause erratic behavior in Prime-supplied
programs.

Caution

Do not use the SET_SEARCHRULES command while there are active
program or library EPFs in your command enviromment, except to
add new library EPFs that you are developing to the end of the
list (after the -SYSTEM rule). It is recommended that you use
the INITIALIZE_COMMAND_ENVIRONMENT command before each use of
SET_SEARCHRULES. It is not intended for the active search
list of a user to be frequently changed. Deleting or modifying
particular rules in the search list while active EPFs abound is
likely to cause inconsistent program behavior.

If your login program (LOGIN.CPL, LOGIN.OOMI, LOGIN.RUN, or LOGIN. SAVE)
sets up your search’ rules, then use of the
INITIALIZE_COMMAND_ENVIRONMENT command, which invokes your login
program, also causes your search rules to be set up.

In this case, either modify your personal copy of the search rules so
that your login program uses the correct copy, or modify your login
program to use the new copy that you have constructed.

First Edition 6-36

LIBRARY EPFS

Advanced Use of Entrypoint Search Lists

In some cases, there may be three levels of entrypoint search list
activity:

e The system-wide search list, maintained by the System
Administrator

e@ The search list for a particular application or project, which
changes relatively frequently

e A user who has his or her own library EPFs and who therefore has
a personal search list, yet needs to also utilize the other two
search lists

In this case, the user might have difficulty maintaining his or her
personal search list so that it reflected the latest changes for the
application or project he or she is associated with.

A solution to the problen is to place search rules specific to the
application or project in a central entrypoint search list file. Then,
personal search lists can use the special rule -USE to refer to the
project list.

For example, a project-wide entrypoint - search list file named
PROJECT_ADENTRYS.SR might read:

PROJBCT_A>ASYNC_LINE.RUN
PROJECT_A>X. 25_COMMS . RUN
PROJECT_A>SCREEN_FORMS . RUN

A personal entrypoint search list file might then read:

—SYSTEM
—-USE PROJECT_ADENTRYS
MYDIR>MYLIBRARY.RUN

Anytime the SET_SEARCH_RULES command is issued for the persoml
entrypoint search list file, the project-wide entrypoint search list
file is automatically included.

This allows the project leader of PROJECI_A to change the project-wide
search list file without having to ask users on the system who have
their own personal entrypoint search list files to update their files.

6-37 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

EXAMINING ENTRYPOINT LISTS

You can examine the list of entrypoints for either a library EPF or a
particular library (.BIN) file.

Examining Entrypoints in a Library EPF

You may examine the list of entrypoints for a library EPF by using the

LISTLIBRARY_ENTRIES command (abbreviated LLENT). This is useful when:

@ You want to check other library EPFs use at your installation
for possible conflicts with names you intend to use as

entrypoint names ,

@ You want to check that you have declared all entrypoints in your
own library EPF correctly

@e You want to determine in which library EPF a particular
entrypoint exists

Checking a Particular Library EPF

To check a particular library EPF for whether it declares a particular
name aS an entrypoint, or to list all of its entrypoints, use the

command :

LIST_LIBRARY_ENTRIES epf-filename [-—ENTRYNAME name ...]

It does not matter whether the library EPF you are checking is yours or

not.

The library EPF is epf-filename. You may specify as many as eight
entrypoint names (name) to search for, or you may leave off the
—-ENTRYNAME specification to display all of the entrypoints for the
library.

Locating a Particular Entrypoint

To determine in which library EPF a particular entrypoint exists, use
the following form of the LIST_LIBRARY_ENTRIES command:

LIST_LIBRARY_ENTRIES —ENTRYNAME name ...

First Edition 6-38

LIBRARY EPFS

All library EPFs specified in your entrypoint search list are checked
for the existence of the entrypoint named name. (You may specify as

many as eight entrypoint names.)

If any library EPFs specified in your entrypoint search list are
inaccessible for some reason, such as when a library EPF does not not
exist in the specified directory, LIST_LIBRARY_ENTRIES displays an
error message. Therefore, LIST_LIBRARY_ENTRIES may be used to verify

the correctness of an entrypoint search list.

THE LIBRARY EPF MECHANISM

This section describes specific aspects of the EPF mechanism that apply
only to library EPFs. Thorough familiarity with the description of the
EPF mechanism found in Chapter 3 is a prerequisite for understanding

this section.

Specifically, this section describes:

@ The automatic mapping of library EPFs during dynamic linking

@ How PRIMS decides whether to skip Phases 5 and 6 of the EPF
mechanism for a library EPF

@ Storage allocation issues relating to library EPFs

The Automatic Mapping of Library EPFs

The only way a library EPF is accessed by another program is by
encountering a dynamic link (via a faulted IP) that identifies, as its
target, an entrypoint in the library EPF.

The dynamic linking mechanism, described in Chapter 2, detects the
faulted IP. After it has searched the internal PRIMDS entrypoints for
the desired subroutine, it uses the user's entrypoint search list to
determine where to look for the desired subroutine next.

Fach rule in the entrypoint search list is either:

@ The pathname of a library EPF

e The rule -STATIC_MODELIBRARIES which indicates that the
static-mode libraries are to be searched

@ The rule -SYSTEM which indicates that the default entrypoint
search list, SYSTEM>ENTRYS.SR is to be searched; this list has
in it only rules of the first two types listed above

6-39 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

When the dynamic linking mechanism encounters a pathname rule, it
checks to see whether the library EPF identified by the pathname is
already mapped in. If it is not, the dynamic linking mechanism must
map the library EPF into memory (Phase 4 of the life of an EPF, as
presented in Chapter 3) before it can search its list of entrypoints.

Once the library EPF is mapped in, the dynamic linking mechanism
searches its list of entrypoint names to see if it contains the desired
subroutine. If not, the library EPF remains mapped-in but inactive. A
library EPF is removed only by a user command (such as REMOVE_EPF) or a
call to the EPFSDEL subroutine.

If the library EPF does contain the desired subroutine, the dynamic

linking mechanism does not need to map it in because it has already

been mapped in. Instead, the dynamiclinking mechanism checks to see

if it needs to allocate and initialize linkage for the EPF, as

described next.

Phases 5 and 6 of the EPF Mechanism

In the life of an EPF, presented in Chapter 3, Phases 5 and 6 are:

5. The linkage (impure) portion of the EPF is allocated
(EPFSALLC).

6. The linkage (impure) portion of the EPF is initialized
(EPFSINIT) .

Each time the dynamic linking mechanism processes a dynamic link to a
library EPF, it must determine whether it needs to allocate and

initialize the linkage (impure) portions of that EPF. This decision is
primarily based upon whether the library EPF is program-class or

process-class, and whether it is already in use (by the progran or by

the process).

Program—Class Library EPF: For a program-class library EPF, the
dynamic linking mechanism checks to see whether the program invoking
the library EPF has already linked to the same EPF. If it has, then
the impure portions of the library EPF that correspond to the program
have already been allocated and initialized, and Phases 5 and 6 are
skipped.

The impure portions of a process-class library EPF are deallocated

whenever the user changes command levels, unless the library EPF is in

use by a suspended program. (This behaviour may change at future

Revisions of PRIMS.)

First Edition 6-40

LIBRARY EPFS

Process-Class Library EPF: For a process-class library EPF, the
dynamic linking mechanism checks to see whether the EPF has already had
its impure portions allocated and initialized. If it has, then Phases
5 and 6 are skipped. Even if a different program caused the allocation
and initialization of the EPF, Phases 5 and 6 are skipped, because only

one copy of the impure portions of a process-class library EPF are kept
for a user, and they are not reinitialized when a new program starts
using the EPF.

Impure portions of a process-class library EPF are deallocated when:

@e The user logs out.

e@ The user explicitly removes the process-class library EPF by
using the REMOVE_EPF command.

e The user's command envirorment is’ reinitialized, either
explicitly (via the INITIALIZE_COMMAND_ENVIRONMENT command) or
implicitly (as a result of an error condition detected by the
command envirorment and identified as being unresolvable).

However, a process-class library EPF that is still in use bya
suspended or running program cannot have its impure portions
deallocated.

Storage Allocation Issues

The Prime 50-Series architecture allows the dynamic allocation of stack
space during procedure call. In addition, PRIMS allows the dynamic
allocation and deallocation of memory via explicit requests by a
running program.

Dynamic memory is allocated during program runtime as a result of
either:

@ Compiler-generated requests for temporary storage, such as for
the storing of a temporary character string during the execution
of a string concatenation operation

e@ Program-directed requests for memory, such as via the ALLOCATE
statement in PL1 Subset G

Normally, memory dynamically allocated by a program is autanatically
deallocated (freed) by PRIMOS when the program terminates. In
addition, any memory dynamically allocated by progran-class library
EPFs invoked by that program is also deallocated.

However, memory dynamically allocated by a process-class library EPF
must not be deallocated by PRIMOS when a program terminates. This is
because the linkage portion of that EPF, which may contain pointers to

. the dynamically allocated memory, is not deallocated; it is instead
reused,

6-41 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Therefore, PRIMOS must distinguish between a program-class library EPF

anda process-class library EPF when allocating memory to ensure that

it does not, later, autamnatically deallocate memory acquired by a

process-class library EPF.

This distinction is made during the linking of the library EPF. For a

process-class library EPF, using the LIBRARY PROCESS_CLASS subcommand

specifies that dynamically allocated memory is to be acquired from a

special memory pool, called process-class storage. No memory from this

pool is ever explicitly deallocated by PRIMOS except during logout and

command envirorment initialization.

Tf the LIBRARY PROCESSCLASS subcommand is not used, as for a

program-class library EPF, dynamically allocated memory is acquired

from the program-class storage pool used by program EPFs. Memory

allocated from this pool by a particular progran is autamatically

deallocated by PRIMOS when the program terminates.

If a process-class library EPF is built without the — LIBRARY

PROCESS_CLASS subcommand, then any langquage-driven allocation, either

explicitly via statements such as ALLOCATE in PLI/G, or implicitly via

compiler-generated allocation for temporary storage, will fail when the

library EPF executes. The failure will be in the form of a

LINKAGEERRORS condition raised. The condition is raised because the

process-class library EPF attempted to link to a program-class library

EPF in which the progran-class allocator resides.

Caution

A pointer to storage that has been dynamically allocated as

program-based storage should not be passed to a process-class

subroutine if that subroutine stores the pointer in linkage
area or in dynamically allocated memory. Similarly, the
address of a program-class entrypoint should not be passed to a
process-class subroutine unless the subroutine stops using the
address when it returns to its caller.

In general, a pointer to object A should never be passed to

subroutine B if the life-span of the storage used by subroutine
B to hold the pointer to object A may exceed the life-span of
object A itself. Otherwise, the termination of object A
followed by the continued execution of subroutine B may result
in the reference by B to the (nonexistant) object A, producing
unpredictable (and invariably incorrect) results.

While this is a general principle of programming methodologies,
it applies specifically to the interactions between
program-class subroutines and process-class subroutines.

First Edition 6-42

Coding Guidelines

for EPFs

This chapter describes the coding guidelines that you should follow
when writing subroutines or main programs that are going to be builtas
EPFs. None of these guidelines preclude the use of these subroutines
and main programs in static-mode applications built with SEG except as
otherwise noted,

Specifically, this chapter describes:

@ How to write modules in Prime-supplied high-level languages for
EPFs

e How to write modules in PMA (Prime Macro Assembler) for EPFs

WRITING MODULES IN HIGH-LEVEL LANGUAGES FOR EPFS

Most Prime-supplied language compilers produce EPF-compatible object
(.BIN) files. These languages include:

@ F77

e FIN (when using the -64V or —DYNM options)

@ Pascal

e PLI/G

@ VREG

7-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

e cCBL

ec

Using these compilers always produces EPF-compatible object files. An
exception is the FIN compiler when the —PBECB option is specified. If
-PBECB is specified on the FIN command line, BIND produces a warning
message when the generated object file is linked:

Warning: ECB MYPROG loaded into PROC segment.

If this warning message appears, it indicates that the EPF is not
likely to successfully execute when invoked.

When the -—PBECB option is used with compilers other than FIN (for those
compilers that support the option), the compilers mark the compiled
modules as impure. BIND places procedure text for impure modules in
the linkage area in specially marked segnents called IMPURE segments.
This allows PRIMOS to modify the ECBs when the program is executed,
while preventing the procedure text for such modules from being shared
between users and from being mapped directly from the file system disk.
Therefore, while -PBECB may enhance the performance of a shared
static-mode application, it typically reduces the performance of an
EPF'.

Writing the Main Entrypoint of a Program EPF

You write the main entrypoint of a program EPF exactly as you would
write a subroutine. You may use the PROGRAM statement (instead of the
SUBROUTINE statement) in F77 or the OPTIONS(MAIN) keyword (on the
PROCEDURE statement) in PL1/G if you desire. However, neither of these
conventions is required for a main entrypoint. Requirements for the
calling sequence of main entrypoints are described in the Programmer's
Guide to BIND and EPFs and in Volume III of this series.

Note that a progran built via SEG in a fashion that produces a
RESUMEable static-mode runfile typically requires the main entrypoint
to be named MAIN. No such requirement exists for BIND and EPFs;
however, you may wish to keep the SEG requirement in mind if you intend
to use a main entrypoint in both the EPF and static-mode envirorments.

WRITING MODULES IN PMA FOR EPFS

This section summarizes basic concepts of PMA (Prime Macro Assembler)
programming, and then discusses specific requirements for writing PMA

subroutines that are to execute as EPFs.

First Edition 7-2

CODING GUIDELINES FOR EPFS

Basic Concepts of PMA Programming

A PMA source file is referred to as a module. It may contain ome or

more subroutines. When a module is assembled (using PMA), an object

file is generated, usually with the .BIN suffix on its file name. This

object text consists of:

@ Module description information

e Procedure text for each subroutine

e@ Linkage text for each subroutine

@ Stack and parameter allocation information for each subroutine

entrypoint

@ Linkage information for each subroutine entrypoint

e External linkage information, including references to common
areas and other subroutines

You tell PMA which part of the module you are building by including

special pseudo instructions in the PMA source code. Pseudo

instructions are directives to the assembler; usually, they change the

way in which subsequent lines in the source file are interpreted.

Pseudo instructions themselves may or may not cause specific data (such

as instructions or storage allocation information) to be generated in

the object text.

All PMA modules must have the END pseudo instruction as the last line

in the file. PMA modules that serve as main entrypoints for a program

(whether an EPF or a static-mode program) must name the main

entrypoint's ECB in the operand field of the END pseudo instruction.

No comment lines or blank lines may follow the END pseudo instruction.

Other important pseudo instructions are described below.

PMA subroutines that are to be linked into EPFs are usually constructed

according to the following template:

Source Text Meaning

* Comment lines describing the subroutine

SEG or SEGR Pseudo instruction to specify a V-mode or

I~mode module

SYML Optional pseudo instruction to turn on long (as
many as 32 character) symbol names

RLIT Optional pseudo instruction to cause placement
of literals in procedure text

7-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

ENT Optional pseudo instructions to export names
for reference by external modules

LINK Pseudo instruction to switch to linkage text
generation for placement of the ECB

ECB Pseudo instruction to generate the ECB itself,
and, optionally, additional ECBs for alternate
entrypoints or internal subroutines

DYNM Pseudo instructions to specify stack frame
allocation

EXT Optional pseudo instructions to specify
external symbols

PROC Pseudo instruction to switch back to generating
procedure text

instructions The procedure code of the module

LINK Optional pseudo instruction for switching to
linkage text generation

data Various address definition, data definition,
and storage allocation pseudo instructions
(optional), to describe the format and data for
the link frame

END Pseudo instruction to delimit the end of the
module and optionally designate the main
entrypoint of the module

The remainder of this section describes portions of the object text and
of the above template that are specifically related to coding a PMA
module for execution within an EPF. See the Assembly Lanquage
Programmer's Guide for further information on PMA. For information on
the instruction sets and architecture of the Prime 50 Series machines,
see the System Architecture Reference Guide.

Use of SEG or SEGR: The first non-comment line of a proper PMA
subroutine must be either the SEG pseudo instruction (for a V-mode
subroutine) or the SEGR pseudo instruction (for an I-mode subroutine).
If this is not the case, BIND refuses to link the object text (.BIN
file) generated by assembling the subroutine via PMA. Additiomlly,
the keyword PURE or IMPURE should follow the SEG or SEGR keyword on the
same line, as described below in the sections on Impure PMA Module
Restrictions and Pure PMA Modules. If neither PURE nor IMPURE is
Specified, the default is PURE.

First Edition 7-4

CODING GUIDELINES FOR EPFS

Procedure Text: The procedure text for a subroutine consists of the

instructions that make up the body of the subroutine. In a PMA

subroutine, procedure text generation is specified via the pseudo

instruction:

PROC

Linkage Text: The linkage text for a subroutine consists of static

data used and modified by the subroutine. Only one copy of linkage

text exists for a subroutine within a program or library, even if the

subroutine invokes itself recursively. Linkage text generation is

specified via the pseudo instruction: |

LINK

Stack and Parameter Allocation Information: The DYNM pseudo

instruction iS used to specify the allocation of the stack frame for

the module. The stack frame is also used to hold the argument list

pointers for the subroutine invocation. Each subroutine invocation

causes the dynamic allocation of its stack frame. Initially, a_ stack

frame contains undefined values except for the stack frame header and

the argument pointers (if any).

Typically, the DYNM pseudo instruction is used in the following manner:

DYNM temporary-1 (size-1) , temporary-2 (size-2)

DYNM argument-1 (3) ,argument—2 (3) ,argument—3 (3) ,argument~4 (3)

DYNM temporary-3 (size-3) , temporary—4 (size-4)

The argument list pointers must be allocated 3 halfwords each, and must

be contiguous in the stack frame as indicated. Other temporaries can

precede or follow the argument list template in the stack frame. The

start ot the argument list template in this case is argument-l, and the

number of arguments is 4.

The DYNM pseudo instruction provides the only way of allocating stack

frame storage in PMA. Using an EQU pseudo instruction to set a symbol

equivalent to, say, SB%+102 does not affect allocation of the stack

frame in any way.

Use of DYNM changes allocation of storage to the stack frame only

temporarily. The current assembly pointer is still either in procedure

or linkage text, so machine instructions and data generation directives

following DYNM are placed in either the procedure or the linkage area

rather than the stack frame. (You cannot specify initial values for

storage in the stack frame except by including proloque code in your

‘ subroutine to perform the initialization at runtime.)

7-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Linkage Information: Information for each subroutine entrypoint that
describes the entrypoint to BIND is called linkage information. Its
purpose is to tie together the procedure text, linkage text, and stack
and parameter allocation information for the entrypoint.

This information is turned into an ECB (Entry Control Block) for the
entrypoint by BIND. When the EPF is invoked, PRIMDS modifies the ECB
for each subroutine in the EPF so that the pointer to the linkage text
in each ECB identifies the actual location of the linkage text. For
this reason, a PMA subroutine that has its ECB in the procedure text
behaves aS an impure subroutine if it is linked into an EPF via BIND.

Linkage information is declared via the ECB pseudo instruction. Here
is a sample use of the ECB pseudo instruction:

LINK

ecb_label ECB first_instruction_label,,first_arg, n_args

This ECB is placed in the linkage text for the module. The label for
it is ecb_label and identifies the actual target of procedure call
(PCL) instructions to the entrypoint. The ENT pseudo instruction is
used to associate the exported (externally available) symbol name with
ecb_label :

ENT external_name, ecb_label

If external_name and ecb_label are the same mame, then only ENT
ecb_label need be specified.

The label of the first instruction to be executed (an ARGT instruction
when the procedure has one or more arguments) is identified via
first_instruction_label. The label of the start of the argument list
template is first_arg and must refer to a stack-relative label
(declared via the DYNM pseudo instruction). The number of arguments is
specified as n_args.

The ECB pseudo instruction can be used to specify other information not
described above. For example, between the two commas in the form
above, you could define the start of linkage text for the entrypoint.
It defaults to the start of linkage text for the module, as indicated
via the LINK pseudo instruction. Another optional field, the stack
size, defaults to the amount of stack space explicitly reserved via the
DYNM pseudo instruction. You can also specify the initial value of the
keys register via ECB, although it defaults (appropriately) to the
addressing mode of the module (V-mode or I-mode).

External Linkage Information: A PMA module must often refer to symbols
-chat are not defined within the scope of the module itself. These are
called external references.

First Edition 7-6

CODING GUIDELINES FOR EPFS

A reference to a subroutine that is defined externally is a_ reference

to an external subroutine. For the most part, references to external

subroutines are handled automatically by PMA via the CALL pseudo

instruction:

CALL subroutine

When PMA detects a CALL pseudo operation while assembling V-mode or

I-mode code, it:

e Identifies subroutine as an external reference, as if the pseudo

instruction EXT subroutine had been issued

e Places one IP (Indirect Pointer) in the linkage text that points

to the external subroutine at runtime, for use by all CALLS to

that subroutine in the current module, as if the following

instruction sequence had been present:

LINK (Switches to generating linkage text)

subroutine_ip IP subroutine
PROC (Only if originally in procedure text)

@ Generates a procedure call instruction to invoke the subroutine,

identifying indirection through the IP it generated as the

target of the instruction:

PCL subroutine_ip,*

All of the above can be explicitly specified by the PMA programmer, but

use of the CALL pseudo instruction is recommended when calling external

subroutines. (To call a subroutine within the current module, use a

PCL to its ECB without specifying indirection.)

Another form of external reference includes references to program

common areas and other symbols. Here, PMA also automatically generates

IPs and implicitly forms indirect instructions that refer to the

external symbols. However, the symbols must be explicitly declared as

external as follows:

EXT symbol

7-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Caution

Do not use the XAC pseudo instruction or its equivalent EXT/DAC
pair in V-mode or I-mode PMA modules. PMA does not treat this
usage aS an error; however, neither BIND nor SEG support that
form of external link (DAC and XAC_ generate only a 16-bit
halfword link), and PRIMOS does not support the oonversion of
an imaginary 16-bit address to an actual 16-bit address.

The COMM pseudo instruction is particularly useful for building
representations of common areas. PMA autamatically generates IPs for
references into common areas, including references into the midst of
common areas. In other words, PMA does not generate a single IP to the
beginning of a common area and then use offset addressing (via the XB
or X registers) to access itens within the common area. Instead, PMA
generates one IP for each reference into a common area at a different
offset. This method produces more efficient code in terms of execution
time at the expense of the size of linkage text (as more than ore IP
may be needed to access each common area). It also allows PMA to avoid
making de facto use of the XB or X register, either or both of which
may be used by the programmer in neighboring instructions. However,
because PMA must convert instructions referencing common areas so_ that
they go indirect through IPs, the instructions in the source program
cannot specify indirection.

If you want to refer to items within a common area using offset
addressing rather than directly through an IP, you must use either the
XB or X register. To use the XB register, code the instruction:

EAXB common_area (Becomes common_area_ip, *)

Then, your program performs subsequent references to items within the
common area by referencing XB%+offset, where offset is the offset of
the item, in halfwords, from the beginning of common_area.

To use the X register, code the instruction:

LDX =offset

Subsequent references to the item that is offset halfwords from the
beginning of common_area are performed by referencing common_area, X.
For example:

LDA common_area, X

First Edition 7-8

CODING GUIDELINES FOR EPFS

Because common_area is an external, PMA automatically translates this

into:

LDA common_area_ip, *X

Therefore, you cannot perform indirection through a pointer in a common
area without using effective address calculation and the XB register.

Note

When using the XB or X register, remember that, as with all

other general-purpose registers, the RL (also CALL)
instruction may destroy the register contents.

Designating the Main Entrypoint: If you are writing a PMA module that

is to contain the main entrypoint for a program EPF, you must designate

the main entrypoint of the module by specifying the symbol name for the

ECB in the operand field of the END pseudo instruction at the end of

the module. For example:

SEG
RLIT
SYML

*

SUBR COUNT, COUNT_ECB
*

LINK
COUNT_ECB ECB COUNT_START, , COMMAND_LINE, 2
*

DYNM COMMAND_LINE (3) ,SEVERTTY_OODE (3)
*

PROC
*

COUNT_START EQU *
ARGT

END OOUNT_ECB

As this example illustrates, you must specify the label that tags the

ECB for the main entrypoint (COUNT_ECB), not the external name of the

subroutine (COUNT) or the starting address of the procedure code

(COUNT_START) .

7-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

If you specify the main entrypoint in this fashion, you may still use
the module as a subroutine rather than a main program; in this case,
your specification of the main entrypoint is ignored.

If you fail to specify the main entrypoint as shown, linking the
assembled module as the first module in a program EPF produces an EPF
that, when run, might produce an error message such as:

Error: condition "ILLEGAL,SEGNOS" raised at 41(3)/122722.,
(Referencing 1(3)/0).
FR!

If you do not have access to the source code of the module, or if you
wish to use a "quick fix", relink the module and use the MAIN
subcommand of BIND to specify the entrypoint of the module that is the
main entrypoint of the program EPF. You may do this particularly
quickly by using the following command sequence:

BIND

LOAD failing-program.RUN
MAIN main-entrypoint—name
FILE working-program.RUN

Restrictions on Writing PMA Modules for EPF Execution

When writing a module in PMA for execution within an EPF, several
restrictions must be observed:

@ Each subroutine in the module must execute in the V-mode or

I-mode environment,

e If the module has impure procedure text, it must be declared as
an impure module

@ If the module has pure procedure text, it should be declared as
a pure module

@ Subroutines within the module must not use explicit addressing
to externals unless their addresses are explicitly set during
the BIND session

@ Indirect Pointers (IPs) used in the module must never be
modified by the module, because they are not necessarily
reinitialized when the EPF is reinvoked

This section discusses these restrictions.

First Edition 7-10

CODING GUIDELINES FOR EPF'S

PMA Subroutines Must Execute in V-mode or I-mode Environment: A PMA

Subroutine intended for execution within EPFs must be assembled in the

V-mode or I-mode envirorment, as implied by the requirements that PMA

modules used for EPFs must begin with SEG or SEGR.

Under most circumstances, a PMA module must execute entirely in V-mode

or I-mode. Occasionally, it may enter R-mode or S-mode to execute a

limited set of instructions. For example, it may wish to execute a PIO

instruction to read or test for a character from the user terminal.

However, the PMA subroutine must reenter V-mode or I-mode before

returning to the calling procedure.

Impure PMA Module Restrictions: If a PMA module is impure, the SEG or

SHGR pseudo instruction at the top of the module must read SEG IMPURE

or SEGR IMPURE.

An impure PMA module is characterized by an inability to be executed

with the pure procedure (PROC) portion of the subroutine protected

against modification by the subroutine. Instead, BIND places such a

module in impure procedure (IMPURE) segments of an EPF. An IMPURE

segment is similar to a PROC segnent in that it contains procedure code

and therefore must start at offset 0 in an actual segment, whereas DATA

segments are relocatable to anywhere inside a segnent. However, an

IMPURE segnent is not shared between users and is not protected against

writing. Except in the case of a process-class library EPF, IMPURE

segments are treated like DATA segnents by PRIMS, in that they are

reinitialized each time the EPF is invoked.

Any PMA module that explicitly stores into the procedure text is

inherently impure. Such modules are said to employ self-—modifying

code. This is widely regarded as poor programming practice. Moreover,

Some Prime systems employ preprocessors or a pipeline architecture,

which may not behave as expected under such circumstances. On Prime

systems, therefore, self-modifying code may not work or may result in

nontransportable programs.

However, a PMA module can also implicitly modify procedure text, for

example, by placing the ECB for the module in the procedure text and

linking the module into an EPF. When such a module is part of an EPF,

the actual placement of the linkage text is determined when the program

is run, not when it is linked by BIND. (When loading with SEG and

producing SEG runfiles, the linkage text is placed during the loading

of the program by SEG.)

Therefore, when running as an EPF, PRIMOS must set the linkage base

pointers for the ECB of each procedure in the EPF. If an ECB is in the

procedure text, which is normally protected against writing, PRIMOS

would encounter an access violation error if it tried to set the

linkage base pointer for that ECB; therefore, PRIMOS does not attempt

to modify the ECB. It is because the ECB requires modification at

runtime that a module with an ECB in the procedure text is considered

. impure.

7-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

If BIND encounters an ECB in the procedure text, and the module is not
declared as an impure module, BIND issues a warning message. If the
resulting EPF is executed, it may produce an access violation error
when the offending module is invoked, because the imaginary address has
not been translated into an actual address.

Similarly, placing IPs (Indirect Pointers) in the procedure text
results in an impure module when that module is linked using BIND,
unless all such references identify external symbols that are
explicitly located during program binding using the SYMBOL command of
BIND.

Modification of procedure text can occur explicitly or implicitly. An
explicit modification is performed by the subroutine code (or possibly
code outside the subroutine). When the subroutine is run within an
EPF, implicit modifications occur when subroutine linkage data are
placed in the procedure text. This linkage information must be
dynamically adjusted by the EPF mechanism when the subroutine is
executed,

A JST (Jump and STore) instruction that references an internal
subroutine also produces impure code, because JST stores the offset
portion of the return address in the halfword that is the target of the
instruction and then begins execution at the subsequent halfword. If
the target of the JST instruction is in procedure code, rather than
linkage, common, or stack frame storage, then the procedure code is
impure. Instead, use the JSXB, JSX, or JSY instructions, and modify
the target subroutine accordingly.

The RLIT and FIN pseudo instructions are often used to specify that
literals are to be placed in the procedure text, rather than the
linkage text. If literals are properly used, this does not result in ©
an impure PMA module. However, uSing RLIT or FIN for literals that are
to be stored into results in an impure module. (Storing into literals
is considered extremely bad programming practice.) For example, the
following literal reference is a pure reference independent of the use
of RLIT or FIN:

LDA =5

However, the following literal reference requires that the RLIT or FIN
pseudo instruction not be used if the procedure is to remain pure:

STA =10

This reference also has the dangerous side effect of causing references
to the literal value of 10 to reference a different value for the
entire subroutine or for portions of that subroutine.

First Edition 7-12

CODING GUIDELINES FOREPFS

Pure PMA Modules: If a PMA module is pure, that is, if it does not

have any of the characteristics of an impure module as described above,

then the SEG or SEGR pseudo instruction at the top of the module should

read SEG PURE or SEGR PURE. If PURE is not specified, the default is

PURE anyway.

However, explicitly including the PURE keyword can be a convenient

signal to other programmers that the module has been checked for

purity. If this convention is used, then any PMA module without a PURE

or IMPURE keyword following the SEG or SEGR pseudo instruction should
be checked for purity before being linked into an EPF.

No Explicit Addressing of Dynamically Placed Externals: If a PMA

module attempts to use an explicit address to an external entity, and

the external entity is not placed via the SYMBOGL command during the
BIND session, the PMA module may not execute properly.

Such an attempt might appear as follows:

LDA THEVALUE,*

THEVALUE OCT4001
ocr 174000

To remedy this situation, either use the SYMBOL command to place the

entity being addressed through THEVALUE at 4001/174000, or fix THEVALUE

to appear as follows:

EXT ENTITY

THEVALUE IP ENTITY

Do Not Store Into IPs or ECBs: If your program declares Indirect

Pointers (IPS) or Entry Control Blocks (ECBs), it should never modify

them during. execution. For example, consider the following subroutine:

SEG
RLIT
SYML

ENT TESTSUBR

LINK
TESTSUBR ECB START

PROC

START CALL ‘TNOU

7-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

AP THE_IP, *S
AP =16,SL

*

EAL STRING2
STL THE_IP

*

PRIN
*

STRINGL BCI ‘THIS IS STRING 1'
STRING2 BCI 'THIS IS STRING 2'
*

LINK
THE_IP IP STRINGL
*

END ‘TESTSUBR

This program uses THE_IP to point to one of two strings. It specifies
that, initially, THE_IP is to point to STRING], and that for all
subsequent calls, THE_IP is to point to STRING2. The intention here is
for the subroutine to behave differently during its first invocation by
a program than it behaves during subsequent invocations by the program.

However, once THE_IP is modified, it is not reinitialized by PRIMDS
during repeated invocations of the program unless the program has been
removed from memory (or if the kSinit_all key is supplied to EPFSINIT
by a user program as described in Volume III of this series).

For example, if you call this subroutine from a program that simply
calls TESTSUBR once and then exits, then the program does not produce
identical results when invoked several times in a row, as shown in the
following sample session:

OK, RESUME TESTPROG
THIS IS STRING l
OK, RESUME TESTPROG
THIS IS STRING 2

OK, RESUME TESTPROG
THIS IS STRING 2
OK, REMOVE_EPF TESTPROG
OK, RESUME TESTPROG
THIS IS STRING l
OK, RESUME TESTPROG
THIS IS STRING 2
OK,

The REMOVE_EPF command, used midway through this session, removed the
EPF from memory. This forced the complete reinitialization of the EPF
at the next RESUME command, and thus restored THE_IP to its initial
state.

First Edition 7-14

CODING GUIDELINES FOR EPFS

In any situation where you wish to modify IPs or ECBs, split them into:

@ The desired initial value (IP or ECB) that is not modified by
the program

e A block of linkage data (using the BSS pseudo instruction) that
is to contain the actual value that is used and modified (BSS 2
for IP, BSS '20 for ECB) during program execution

Then, create another linkage-resident variable called FIRST_INVOCATION
and declared as follows:

FIRST_INVOCATION OCT 1

Having done this, the first thing your subroutine should do is examine
FIRST_INVOCATION. If nonzero, it should initialize the block of
linkage data described above to the desired initial value (IP or ECB).

Then, before your’ subroutine’ returns, it should examine
FIRST_INVOCATION again, and, if nonzero, it should update the block of
linkage data as desired and then set FIRST_INVOCATION to 0.

Because FIRST_INVOCATION is an initialized datum, it is reinitialized
by PRIMOS during every program invocation.

Here is the ‘TESTSUBR subroutine, shown above, modified according to
these recommendations:

SEG
RLIT
SYML

ENT TESTSUBR

LINK
TESTSUBR ECB START

PROC
*

START LDA FIRST_INVOCATION
BEQ GG

*

EAL THE_IP_INITIAL, *
STL THE_IP

*

GO CALL ‘INOU
AP THE_IP, *S
AP =16,SL

LDA FIRST_INVOCATION
BEQ RETURN

7-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

FAL STRING2
STL THE_IP

*

CRA
STA FIRST_INVOCATION

*

RETURN PRIN
*

STRING] BCI 'THIS IS STRING 1'
STRING2 BCI ‘THIS IS STRING 2'
*

LINK
THE_IP_INITIAL IP STRING]
THE_IP BSS 2
FIRST_INVOCATION OCT 1
*

END TESTSUBR

Now, invoking the TESTPROG program linked with the new version of
TESTSUBR shown above produces the correct output during subsequent
invocations:

OK, RESUME TESTPROG
THIS IS STRING l
OK, RESUME TESTPROG
THIS IS STRING 1
OK, RESUME TESTPROG
THIS IS STRING l
OK,

First Edition 7-16

Shared Data

The architecture of Prime 50-Series systems allows programs to have
access to memory that is shared by all processes on a_ system.
Cooperating programs may use this capability to communicate between
user processes.

In addition, programs may wish to communicate with each other within
the context of a single process, by accessing a predefined common area
in nonshared (per-user) memory.

The distinction here is between data that is shared for an entire
system and data that is shared within a user process. Aside from the
choice between system-wide and process-wide shared data, the mechanisms
used in employing both kinds of shared data access are the same;
exceptions are noted in this chapter.

This chapter describes:

@ How to define a shared common area in either shared or nonshared

memory

@ How to update information in a shared common area atanically

8-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

HOW TO DEFINE A SHARED COMMON AREA

There are two general ways to define a common area that is shared
between two or more programs, either within the context of one process
(when nonshared memory is used) or of ome system (when shared memory is
used) :

@ Use the SYMBOL subcommand of BIND to specify the actual address
of an external common area

@ Place subroutines that wish to communicate with each other in a
process-class library EPF

This section describes both approaches.

Using the SYMBOL Subcommand of BIND

The SYMBOL subcommand of BIND is used to specify the actual address of
an external common area in memory. This address may be either in
Shared memory or in nonshared static memory.

Each program or library that wishes to use the shared area must use the
SYMBOL subcommand during the linking of that program. In addition,
they must all specify the same actual address of the shared data area.
The name of the shared data area may differ from program to program;
however, it is good practice to use the same name throughout.

Because the location of the shared common area is placed during the
linking of a program, there are no special requirements on the
compiling of the program. However, there are coding requirements that
are described in the section later in this chapter entitled HOW TO
UPDATE SHARED INFORMATION ATOMICALLY.

Before you can run a program that accesses a shared data area, you
must :

l. Determine the address of the shared data area.

2. Ensure that the shared data is initialized once during each
system coldstart (for data in shared memory) or once for each
user login (for data in nonshared memory).

3. Specify the appropriate SYMBOL subcommand while linking your
program or library.

Determining the Address of the Shared Data Area: Because memory
accessed via the SYMBOL subcommand of BIND is not managed by PRIMS,
you must determine a location for your shared data area that does not
conflict with other programs or libraries.

First Edition 8-2

SHARED DATA

For shared (system-wide) memory, you use shared segnents. Shared
segment numbers range from ‘2000 through '2577 at Rev. 19.4. However,
you must consult with your System Administrator before deciding what
portions of shared system-wide memory to use. He or she will use the
System Administrator's Guide, which contains a list of shared segment
usage by Prime products, along with information on shared segnent usage
at your installation, to determine where your shared data can be

placed.

For nonshared (per-user) memory, you use static segments. Static
segment numbers range from '4000 up to the first dynamic segnent number
for each particular user. You may, for example, use memory in segment
"4001. However, bear in mind that static-mode programs use segnent
"4000 and may use static segnents beyond segment '4000. In addition,
other users may be building programs which, like yours, use static
segments to store shared per-user data; their choice of placement of
the data might conflict with your choice. Again, it is best to consult
your System Administrator on the matter. He or she may decide to keep
a registry of static per-user segnent allocation at your installation.

Ensuring That the Data Is Initialized: Before any program uses the
shared data, the data must be initialized, either by a program that
uses the data or by a special initialization program. The execution of
a program, whether an EPF or a static-mode program, does. not
autamatically cause common data placed via a SYMBOL subcommand to be
initialized. This is because BIND cannot statically initialize a
static segment, nor does PRIMS perform any static segment
initialization while preparing to execute an EPF.

For shared (system-wide) memory, this initialization must be performed
at the supervisor terminal; typically, it is performed at system
coldstart. The following sample command sequence may be entered
interactively at the supervisor terminal or placed in the system
startup file, PRIMOS.COMI (or C_PRMD):

OPRPRI 1 /* Allow SHARE commands.
SHARE 2030 700 /* Share segment 2030 for read and write access.
RESUME SYSTEM>INIT_MYPROG /* Initialize segnent 2030.
OPRPRI 0 /* Disallow SHARE commands.

Alternatively, if the initialization can be placed in a_ static-mode
memory image, such as one generated via the SHARE subcommand of SEG,
you can use a command sequence such as:

OPRPRI 1 /* Allow SHARE commands.
SHARE SYSTEM>MYPROG2030 2030 700 /* Share segment 2030 for read

/* and write access, and load a static~-mode memory image into

/*® it.
OPRPRI 0 /* Disallow SHARE commands.

8-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

In both cases, you must build either the initialization program or the

initialization static-mode shared image.

Note

If you SHARE a mew shared segnent without specifying a

static-mode memory image to be placed in it, the data in the

segment is initialized to all zeroes. You may therefore

actually consider not initializing the segnent data at systen

coldstart, and choose instead to have your program initialize

the data area if a special portion of it oonsists of zeroes

(indicating that the data has not yet been initialized). If

you do this, read the explanation below of how to perform

initialization in this fashion, because this method is often

used for nonshared (per-user) memory.

For nonshared (per-user) memory, the safest approach to initializing

your data area is to ask all users who are going to use your program or

library to modify their LOGIN.CPL or LOGIN.OOMI file to include a

command such as:

RESUME PROG_DIR>INIT_MYPROG /* Initialize some static memory.

You must build the INIT_MYPROG program and place it in the appropriate

directory (PROG_DIR in the example).

This method is the safest because it reduces the chances that your

program will be run before the data is initialized.

An alternate method is for your program to determine, when it begins

running, whether the data has been initialized, by testing a portion of

the data area to see if it contains a certain data pattern. If it does

not, your progran can initialize it at that point in time, and set the

data pattern to indicate that initialization has taken place.

This kind of dynamic initialization has the advantage of being easier

to set up, but it has the disadvantage of possibly not recognizing a

situation where the correct data pattern is in place but the entire

data area has not, in fact, been initialized. To reduce this risk,

have your initialization logic write the pattern only after the rest of

the data area has been initialized, and use plenty of unusual values in

the data pattern.

Specifying the Appropriate SYMBOL Subcommand: Specify the appropriate

SYMBOL subcommand as follows:

SYMBOL name definition [size]

First Edition 8-4

SHARED DATA

Here, name is the external name of the common area, definition is the
location of the shared data area in the form seqno/offset, and size,
which is optional, specifies the size of the shared data area in 16-bit
halfwords (in decimal, not in octal). For example, to specify that the
external common area named MESSAGES is to be placed at address 2030/0
and that it is 200 decimal halfwords in length, issue the following
subcommand while linking the program via BIND:

SYMBOL MESSAGES 2030/0 200

Using a Process-class Library EPF

If you want to place the shared data area in nonshared (per-user)
Memory, it might be best to place all subroutines that use the shared
data area in a Single process-class library EPF. The data area may
then be either a common area or the linkage for a single procedure that
contains one or more entrypoints. This. approach has the following
advantages over uSing the SYMBOL subcommand:

e@ BIND and PRIMS ensure that the data area is autanatically
initialized each time the process-class library EPF is first
invoked by a user.

@ You do not need to check with your Systen Administrator to
determine where, in static memory, to place the shared data
area, because BIND and PRIMOS determine the location of the area
when the process-class library EPF is first invoked by a user.

@ You do not need to specify any special BIND subcommand aside
from the commands to declare the library to be process-class.

@ Additional memory may be allocated for the shared data area by
using ALLOCATE statements in PL1/G.

e@ Data can be initialized by using STATIC INITIAL(...) attributes
in PL1/G or DATA /.../ statements in FORTRAN.

However, you must ensure that the subroutines you place in the
process-class library EPF meet the requirements for a process-class
library EPF, as outlined in Chapter 6.

A small but illustrative example of this form of shared data access is
the GET_USERNAME subroutine shown in Chapter 6 and reproduced here:

get_username: proc returns(char (32));

dcl 1 timdat_info static,
2 date char(6),
2 time fixed bin(15),
2 ticks fixed bin(15),

8-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

2 meters (4) fixed bin(15),
2 tps fixed bin(15),
2 user_number fixed bin(15),
2 user_name char(32);

dcl have_info bit(1) static init('0O'b);

dcl timdat entry(1,2 char(6),2 fixed bin(15),2 fixed bin(15),
2 (4) fixed bin(15),2 fixed bin(15),2 fixed bin(15),
2 char (32) ,fixed bin(15));

if “have_info
then do;

call timdat (timdat_info, 28);

have_info='1'b;
end;

return (user_name) ;

end;

Because the task of this subroutine is simply to return the username of
the invoking user, it is written to save time after the first
invocation by calling the TIMDAT subroutine, which is an internal

PRIMOS entrypoint, only once. After the first call, subsequent
invocations result simply in the returning of the username acquired

during the first invocation.

If GET_USERNAME is placed in a process-class library EPF, then several
programs that call it may be run, and yet it will invoke TIMDAT only
the first time it is run. PRIMOS keeps the linkage data for a

process-class library EPF active between program invocations, as

described in Chapter 6.

In a_ sense, this subroutine "communicates" between program invocations

within a single user process. One program may have to end up calling

TIMDAT via GET_USERNAME to acquire the username of the user, but the

next program run by that user reuses the same username. This is a very

simple form of interprogram communication.

This simple use of process-class library EPF linkage is applicable to

information that is process-wide, rather than program-wide. Other

examples of such information include:

e User number

@ Terminal type — the user may have to be asked to enter the
terminal type the first time, but after that, it could be made

available to subsequent programs and libraries via a
process-class library EPF subroutine

@ User's origin directory

First Edition 8-6

SHARED DATA

e User's erase and kill characters (useful if the process-class
library EPF also handles the collection of command lines; the
internal PRIMDS subroutine ERKLSS$ is already quite fast)

More complex uses of process-class library EPF linkage (or common) data
areas might include:

@e Keeping track of virtual circuits a user has open to other
systems for remote login or other purposes, allowing a user to
leave a networking program and later reenter it while keeping
his or her connections intact

@ Keeping track of how many times a user invoked ome or more
particular applications and possibly even keeping track of
functions invoked within each application -— a log file wnit
number might be a candidate for a shared datum

However, except for the very simplest uses of shared per-user data
areas, you must be careful to design subroutines so that they either
prevent interruption (such as by inhibiting quits or establishing
on-units) or are robust enough to withstand interruption at any point
followed by a new invocation of the same or similar subroutines.
Remember, a subsequent invocation of an executing subroutine in a
process-class library EPF, while recursive in nature, never causes the
allocation or initialization of linkage data; the existing linkage
data is used. Modifications made by the second invocation of the
subroutine can affect the ability of the first invocation of the
subroutine to complete correctly when its execution is resumed. See
the next section for information on how to update shared information in
a manner that protects against multiple concurrent updates.

HOW TO UPDATE SHARED INFORMATION ATOMICALLY

Whether in system-wide shared memory or in per-user nonshared memory, a
data area must be protected against the possibility of multiple
concurrent updates if: .

@ Updates can be performed by two processes -— only for
system-wide shared memory

@ Updates can be performed by either two or more separate
subroutines or two separate invocations of a single subroutine.
This occurs when one of the subroutines can be invoked following
an interruption of one of the subroutines (such as via a user
typing CONTROL-P or the asynchronous invocation of an on-unit as
a result of a condition such as PH_LOGOS or LOGOUTS being
signaled)

Incorrect or nonexistent use of interlocking facilities for the
updating of shared data areas is very difficult to detect; similarly,
correct use is difficult to prove. Typically, incorrect or nonexistent
use of such facilities results in perhaps a serious program error once

8-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPPS

in a great while; because the serious error is not easily

reproducible, it is often written off as a "glitch". To build the most

robust product, you should carefully analyze portions of your product

in which interlocking facilities might be needed to determine just how

to use then.

You should study how your subroutines use either the linkage area of a

process-class library EPF or, more obviously, shared system-wide memory

to see if interrupt inhibition or atamic updating are called for. Keep
in mind that statements such as

ITEMS=ITEMS+1

are interruptible between the reading of the current value of ITEMS and

the storing of the incremented value. An interruption at that point,

followed by reinvocation of the same subroutine, might result in two

invocations of the subroutine, causing the ITEMS value to ke

incremented only once. If ITEMS is used as a wumique identifier by

subroutine invocations, the results might be disastrous; yet this

situation might not ever occur even during exhaustive testing, and

would probably not be reproducible. On the other hand, if the

increment of ITEMS is tested against some other static data in an

atanic fashion, perhaps the failure of the multiple concurrent update

will not have a bad effect on the program.

For example, see the final version of the AVERAGE subroutine in Chapter

6. Note that while it makes reasomably heavy use of linkage (common)

data, only certain updates to the common areas are protected by calling

a special subroutine. Other updates are interruptable because they are

protected by the atomic updates performed, ultimately, by the STAC

instruction in the COND_STORE subroutine.

Following is a listing of the COND_STORE subroutine, written in FMA,

plus a version of the subroutine named LONG_COND_STORE that deals with

FIXED BIN(31) (FULL INT, or INTHGER*4) integers. After that, a listing

of a special-purpose PMA subroutine that performs a typical use of the

STAC instruction, named INCREMENT, is provided.

Note

These three subroutines, OOND_STORE, LONG_OCOND_STORE, and

INCREMENT, are provided by Prime only in this document, not on

the master disk. If you wish to use them, you must key them

into your system. They are all PMA subroutines.

First Edition 8-8

SHARED DATA

The COND_STORE. PMA Subroutine

The COND_STORE. PMA subroutine is called with three halfword integers,
and returns as its function value a halfword integer. In PLI/G, its
calling sequence is:

dcl cond_store entry (fixed bin(15) ,fixed bin(15),fixed bin(15))
returns (fixed bin(15));

cond_store_ok=cond_store (destination, new_value, old_value) ;

If cond_store_ok is 1, then the value of destination has been
successfully changed from old.value to new_value. Otherwise,
cond_store_ok is 0, and no change to destination has taken place.

SHG PURE
RLIT
SYML

*

SUBR COND_STORE, ECB
*

| LINK
ECB ECB COND_STORE, , WHERE, 3

PROC
*

COND_STORE QU *
ARGT
LDA OLD, *
TAB
LDA NEW, *
STAC WHERE,*
BCRQ OK
CRA
PRIN

OK LT
PRIN

DYNM WHERE (3) , NEW (3) ,OLD (3)

END

8-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The LONGCONDSTORE. PMA Subroutine

The LONG_COND_STORE.PMA subroutine is called with three fullword
integers, and returns as its function value a halfword integer. In
PL1/G, its calling sequence is:

dcl long_cond_store entry(fixed bin(31) ,fixed bin(31),
fixed bin(31)) returns(fixed bin(15));

cond_store_ok=long_cond_store (destination, new_value, old_value);

If cond_store_ok is 1, then the value of destination has been
successfully changed from oldvalue to new_value. Otherwise,
cond_store_ok is 0, and no change to destination has taken place.

SHG PURE
RLIT
SYML

SUBR LONG_COND_STORE, ECB
*

LINK
ECB ECB LONG_OCOND_STORE, , WHERE,3

PROC
*

LONG_OOND_STORE EQU *
ARGT
LDL OLD, *
ILE
LDL NEW, *
STLC WHERE,*
BCEQ OK
CRA
PRIN

OK LT
PRIN

DYNM WHERE (3) ,NEW(3) ,OLD(3)

END

The INCREMENT. PMA Subroutine

The INCREMENT.PMA subroutine increments the value of a variable
atanically and returns the new value as its function value. It deals
entirely in halfword integers (FIXED BIN(15), INTEGER*2, HALF INT).
-Note that by the time the subroutine actually returns, the returned
value may differ from the latest value of the variable due to an update

First Edition 8-10

SHARED DATA

by another procedure or process; the purpose of the returned value is
to provide the caller with a value guaranteed to be unique if all
references to the variable by all procedures and processes are dore

through the INCREMENT subroutine.

SHG PURE
RLIT
SYML

SUBR INCREMENT, ECB
*

LINK

ECB ECB INCREMENT, ,VARIABLE,1

PROC
*

INCREMENT EQU *

ARGT
*

TRY_AGAIN LDA VARIABLE, *

TAB

AlA
STAC VARIABLE,*

BCNE TRY_AGAIN
*

* It is important to leave A-reg as is after the STAC
* instruction succeeds; do not LDA VARIABLE,* or it may
* be different from what we incremented it to just now!
*

PRIN New value in A-reg
*

DYNM VARIABLE (3)
*

END

8-11 First Edition

Maps and Addresses

Because EPFs are dynamically placed in available memory at runtine,
maps of EPFs produced by BIND do not, for the most part, contain actual
memory addresses. Instead, they contain imaginary addresses, as
described in Chapter 1.

Once an EPF has been mapped to memory, the location of its procedure
code is determined; once that EPF has had its linkage data allocated,
the location of all data in the EPF is determined. To display
information on where code and data for an active or mapped EPF have
been placed, use the following format of the LIST_EPF command:

LIST_EPF EPF-name ~-SHGMENTS

You may then oorrelate the displayed output from the LIST_EPF command
with the BIND map produced for that EPF to determine the actual
addresses of subroutines, common areas, and so on, in that particular
invocation of the EPF.

This chapter explains imaginary versus actual addresses. Then, this
chapter describes how to use LIST_EPF output, LIST_SHGMENT output, BIND
Maps, VPSD, and DUMP_STACK output to examine in-memory EPFs. Finally,
the chapter provides a short section on expanded listings.

9-1] First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

IMAGINARY VS. ACTUAL ADDRESSES

To understand how to correlate BIND maps with the displayed output of
PRIMOS commands such as LIST_EPF, DUMP_STACK, and VPSD, you must first
understand imaginary addresses and how they differ from actual

addresses.

An imaginary address is a temporary representation of a memory address
generated by BIND. An imaginary address identifies locations within an
EPF for later correlation with actual addresses determined by PRIMDS
when an EPF is mapped, its linkage allocated, and its linkage
initialized. An actual address is also known, from a_=— system
architecture point of view, aS a virtual memory address.

Both imaginary addresses and actual addresses have the form:

segno/offset

So that imaginary addresses and actual addresses can be distinguished
at a glance, imaginary addresses have signed segment numbers, while
actual addresses have wumsigned segnent numbers. Here are same sample
addresses:

Imaginary Addresses Actual Addresses

-0002/10472 4376/15433
+0000/77160 4363/126021
-0004/1672 4232/1000
+0006/1000 4337/100123

(The addresses listed above do not necessarily have any correlations
with each other.)

Sometimes, actual addresses are shown with ring numbers, as in
4376 (3) /15433 or 4337(0)/100123. These ring numbers have no effect on
the execution or behavior of your program; therefore, you may ignore
them.

Also, different portions of PRIMOS and BIND display both types of
address with or without leading zeroes. Therefore, imaginary address
~0002/10472 may also be displayed as -2/10472 or as -0002/010472; all
three displays are equivalent.

Positive or Negative Segnent Numbers

Imaginary addresses have signed segnent numbers; either a+ or -
. always precedes the segment number of an imaginary number.

First Edition 9-2

MAPS AND ADDRESSES

e A positive (+) sign indicates a segnent used to hold pure
procedure code.

@e A negative (-) sign indicates a segnent used to hold linkage or
common data, or impure procedure code.

In addition, BIND maps indicate the type of information stored in each
segment. In BIND maps, pure procedure segnents are labeled PROC; data
segments containing linkage or common data are labeled DATA; and
impure procedure code segnents are labeled IMPURE. PROC segnent
numbers always start with a positive (+) sign; DATA and IMPURE segment
numbers always start with a negative (-) sign.

Thus, imaginary segnent number +0 is a PROC (pure procedure) segnent,

whereas imaginary segnent number -2 is an impure segnent that may be
either a DATA or an IMPURE segnent.

USING THE LIST_EPF COMMAND

The LIST_EPF command is the crucial command to use when working with
EPFs and memory addresses. It displays the correspondence between
imaginary segment numbers and actual memory addresses.

For example, here is the display of a LIST_EPF -SEGMENTS command issued
after the LD, COPY, and DELETE commands have been used:

OK, LIST_EPF —SEGMENTS

1 Process-Class Library EPF.

(active) <SYSDSK>LIBRARIES*>SYSTEM_LIBRARY. RUN

2 procedure segments: +0:4234 +2 24235
2 linkage areas: -—2:4376(0)/0 —4:4377(3) /730

3 Program EPFs.

(not active) <SYSDSK>CMDNCO>COPY. RUN
l procedure segment: +0 : 4237
2 linkage areas: -2:4375 (0) /0 —4:4377(3) /44744

(not active) <SYSDSK>CMDNCO>DELETE. RUN

l procedure segnent: +0 : 4240
2 linkage areas: —2:4374 (0) /0 ~4:4377 (3) /52770

(not active) <SYSDSK>CMDNCO>LD. RUN
1 procedure segment: +0 : 4236
1 linkage area: -2:4377 (3) /36100

OK,

9-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

The correspondence between imaginary PROC segment numbers and actual
addresses is displayed as:

+imaginary_segno:actual,_segno

The correspondence between imaginary DATA and IMPURE segnent numbers
and actual addresses is displayed as:

-imaginary_segno:actual_segno/actual_offset

Notice how each PROC segnent (with RX access) has only one EPF listed
for it in the LIST_SEGMENT display; whereas segnent 4377, a DATA
segment, has four EPFs listed for it. This is because an imaginary
PROC or IMPURE segment must be the only resident of an actual segment,
even if it does not use all of it; imaginary segments. containing
executable procedure code must be placed at offset 0 of an actual
segment because executable procedure code is not relocatable within a
segment. However, imaginary DATA segments can share actual segnents
with other imaginary DATA segments, because they can be easily
relocated within a segment.

Therefore, in the output from the LIST_EPF -SEGMENTS command shown
earlier in this section, the actual addresses for imaginary PROC
segments are shown without offset portions, as in:

+0 :4240 (a PROC segnent)

The actual addresses for imaginary DATA segments are shown with nonzero
offset portions, as in:

—4:4377 (3) /52770 (a DATA segnent)

For EPFs containing imaginary IMPURE segnents, LIST_EPF -SEGMENTS
displays the actual addresses with zero offset portions, as in:

-2:4374(0)/0 (an IMPURE segnent)

Note

The LIST_EPF -SEGMENTS command displays information on only the
most recent invocation of an EPF. Previous active invocations,
applicable for program EPFs and program-class library EPFs, are
not displayed in the list of linkage segments.

First Edition 9-4

MAPS AND ADDRESSES

USING THE LIST_SEGMENT COMMAND

To illustrate the actual mapping of segnents for the EPFs displayed in
the sample LIST_EPF display above, here is the display from a
LISTSEGMENT -NAME command issued just after the same LIST_EPF
-SEGMENTS command shown above:

1 Private static segnent.
segment access

4000 RWX

9 Private dynamic segments.
segment access epf

4234 RX <SYSDSK>LIBRARIES*>SYSTEM_LIBRARY.PUN
4235 RX <SYSDSK>LIBRARIES*>SYSTEM_LIBRARY.RUN
4236 RX <SYSDSK>CMDNCO>LD.RUN
4237 RX <SYSDSK>CMDNCO>COPY. RUN
4240 RX <SYSDSK>CMDNCO>DELETE.RUN
4374 RWX <SYSDSK>CMDNCO>DELETE.RUN
4375 RWX <SYSDSK>CMDNCO>COPY.RUN
4376 RWX <SYSDSK>LIBRARIES*>SYSTEM_LIBRARY. RUN
4377 RWX <SYSDSK>CMDNCO>COPY.RUN

<SYSDSK>CMDNCO>DELETE.RUN
<SYSDSK>CMDNCO>LD.RUN
<SYSDSK>LIBRARIES*>SYSTEM_LIBRARY. RUN

OK,

The segnents with RX access are PROC segnents — the R indicates that
they may be read, while the absence of the W indicates that they cannot
be written. ‘The segnents with access RWX can be both read and written;
they are either DATA or IMPURE segnents. As explained in Chapter l,
PRIMOS automatically shares PROC segnents between users using the same
EPF.

USING THE BIND MAP

The map produced by a MAP subcommand while in BIND shows the
relationship of locations internal to an EPF to the beginning of two or
more imaginary segnents that are used by that EPF. Each EPF has at
least two segments: a PROC segment and a DATA segment. Larger EPFs
May use more than one PROC or DATA segnent each, and some EPFs have

IMPURE segments (which are like PROC segments except they are modified

during execution and hence cannot be shared or protected against

modification).

-The BIND map primarily contains imaginary addresses. The exceptions
occur when the SYMBOL subcommand is used to specify an actual address

9-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

for an external symbol (such as a common block). In this case, the map
shows an actual address (with an unsigned segment number) for that
symbol, and the list of segments at the top of the map show that
Segment aS a STATIC type segment. —

Once you have begun executing an EPF, its imaginary addresses have been
resolved to actual addresses. You can then use the LIST_EPF -SEGMENTS
command to display the mapping from imaginary segnent numbers in the
BIND map to actual addresses in user memory. You can then add the
offset portion of a symbol's imaginary address to its corresponding
actual address in the LIST_EPF display to determine the symbol's actual
address in user memory.

For example, suppose a line in a BIND map reads:

Name ECB address Initial PBS... Initial LBS
SUBR1 -0002/000004 +0000/001005 .. . -0002/177400

Also, suppose a LIST_EPF -SEGMENTS command displays the following
information for the EPF containing SUBRI:

(active) <USRDSK>UNGER>MY_PROG. RUN
1 procedure segment: +0 : 4234
1 linkage area: —-2: 4377 (3) /730

Determining Procedure Code Addresses

To determine the address of the first instruction of SUBRI1, you first
examine the imaginary address in the column labeled Initial PB%. Here,
the imaginary address is +0000/001005. Next, you look up imaginary
segment +0 in the LIST_EPF display to determine its corresponding
segment number. Here, +0 corresponds to segnent 4234. Therefore, the
actual address for the first executable instruction in SUBRI is
4234/1005.

Determining ECB Addresses

To determine the address of the ECB of SUBRI, you examine the imaginary
address in the column labeled ECB address, Here, the imaginary address
is -0002/000004. Next, you look up imaginary segnent -2 in the
LIST_EPF display to determine its corresponding segment number. Here,
~2 corresponds to actual address 4377/730. You add 730 to 4 (without
ever carrying into the segment number portion) to determine the actual
address of the ECB for SUBRL, 4377/734.

First Edition 9-6

MAPS AND ADDRESSES

Determining Stack Frame Addresses

To determine the address of a stack frame for an active procedure, use
the DUMP_STACK command, described later in this chapter.

Determining Addresses For Other Map Objects

To determine the address of other objects in a BIND map, such as common
blocks, dynamic links, and so on, simply use the same method used for
determining procedure code addresses (when a positive imaginary segment
number is involved) or for determining ECB addresses (when a negative

imaginary segnent number is involved). .

However, for link frame addresses, read the next section carefully

before proceeding.

Determining Link Frame Addresses

Finally, let's look at the trickiest calculation. To determine the
address of the link frame of SUBR1, you examine the imaginary address
in the column labeled Initial LB%. Here, the imaginary address is
-0002/177400. However, this is not the imaginary address of the link
frame itself; it is, as implied by the column header, the address
placed in the Link Base (IB) when the procedure is called. On Prime
systems, the address in the IB is always the starting address of the
link frame minus '400 (in halfwords, without borrowing from the segnent

number portion).

Therefore, when considering the link frame, you must decide whether you
wish to determine the address of the beginning of the link frame itself
or the address placed in the IB when the procedure is executed. The
address of the link frame is useful when you want to examine the link
frame data. The address placed in the IB is useful when you want to
examine procedure code that uses the link frame, because assembler
instructions include the '400 halfword offset; the instruction LDA
IB%+'400 reterences the first halfword in the link frame,

In fact, determining both values is straightforward. As_ before,
imaginary segnent -2 corresponds to address 4377/730, so you add 730 to
177400 (without carrying) to determine the address placed in the IB for
the SUBRI procedure, 4377/330. To determine the actual address of the
beginning of the link frame for a procedure, add '400 to the IB for the
procedure (again, without carrying into the segnent number). Here, the
beginning of the link frame for SUBR1 is 4377/730.

PRIMOS commands that display memory allocation information, such as
LIST_EPF, display link frame addresses. PRIMOS commands that display
base register and instruction information, such as DUMP_STACK, WVPSD,
‘and PM, display IB addresses, which are '400 less than the actual
locations of corresponding link frames.

9-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

USING VPSD

When you use VPSD (Virtual Prime Symbolic Debugger), the arithmetic is
handled by the computer. The method for accessing a particular
location in memory, given its imaginary address and the actual
addressing corresponding to the imaginary segnent number, is:

SN actual~-segnent—number
RE actual-offset
A >imaginary-offset

In VPSD, the SN subcommand sets the segnent number; the RE subcommand
sets the relocatable address offset, which is particularly useful for
this sort of job; the A subcommand accesses (opens) a memory location,
and the > specifies that the value following the > is to be treated as
relative to the value specified in the RE subcommand.

For example, to access the ECB for SUBRI, which is at imaginary address
-0002/000004 and where imaginary segment -2 corresponds to actual
address 4377/730, you would issue the following VPSD subcommands:

SN 4377
RE 730
A >4

For addresses in PROC or IMPURE segments, which always have an
actual-offset ot 0, the method is even simpler:

SN actual-segnent-number
A imaginary-offset

For example, to access the first executable instruction in SUBR1, which
begins at imaginary address +0000/001005, and where imaginary segment
+0 corresponds to actual segnent 4234, you would issue these VPSD
subcommands :

SN 4234
A 1005

To set up the IB register to access the link frame for a particular
procedure, given the imaginary address from the Initial LB% column of
the BIND map and the corresponding actual segnent mumber from the
LIST_EPF command display, use the following method:

LB actual-segnent-number actual~-offset+imaginary—offset

First Edition 9-8

MAPS AND ADDRESSES

The LB subcommand of VPSD sets up an internal representation of the IB
register, used when you make IB-relative references in VPSD (such as by
typing something like A ILB%+10). Three other similar commands, FB, SB,
and XB, set up the internal copies of the other three base registers
for the same purpose. (The + is underlined to distinguish it from
dashes in the variable names; you type in the + as shown, but you
substitute actual values for the variable names.)

For example, to set up the IB for the SUBRI procedure, whose imaginary

IB address is -0002/177400 and where imaginary segnent -2 corresponds

to actual address 4377/730, you would issue these VPSD subcommands:

LB 4377 730+177400

You would then reference the first halfword of the link frame of SUBRL

by typing:

A LB%+400

USING THE DUMP_STACK COMMAND

The DUMP_STACK command is necessary for displaying the addresses of

stack frames in your program. Because it displays all of the stack

frames between the latest frame and the initial frame at command level

1, identification of which frame is the desired frame is not

necessarily straightforward. There are two ways to identify the proper

stack frame:

@ By the Ownrer= label, if the procedure you are attempting to
locate is written in PL1/G, F77, VRPG, or Pascal

@ By comparing the (IB=) field to the LIST_EPF -SEGMENTS display,
and then to the BIND map of the appropriate EPF, which works for
a procedure written in any language

The first method requires that the procedure identify itself by setting

up its stack frame header so that it identifies its ECB, and by having

the ECB contain the name of the procedure. However, not all Prime

language translators generate code to perform this action each time a

procedure is invoked; for example, FIN and PMA do not perform the
requisite actions. In such cases, you must compare IB values.

Typically, you are searching for the stack frame of a particular

procedure. In this case, determine the Initial LB% for the procedure

according to the instructions given earlier in this chapter. ‘hen,

look for the corresponding stack frane in a DUMP_STACK display. If it

isn't there, it means that the procedure you are searching for is not

active and therefore not on the stack.

9-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

How to Locate the Stack Frame for a Procedure

Here is a sample display from the DUMP_STACK command after a user
interrupted a running program EPF by typing CONTRGL-P:

OK, DUMP_STACK

Backward trace of stack from frame 7 at 6002(3) /4046.

STACK SEGMENT IS 6002.

(7) 004046: CONDITION FRAME for "QUITS"; returns to 13(3)/77622.
Condition raised at 4257(3)/1327; LB= 4377(0)/44424, Keys= 004000

(8) 003726: FAULT FRAME; fault type "RXM" (0)
Fault returns to 4257(3)/1327; LB= 4377(0)/44424, keys= 004000
Fault code= 000000, fault addr= 4257(3)/130004.
Registers at time of fault:

Save Mask= 007755; XB= 4257(3)/1042
GRO 60013 24667 14002624667 GRI 0 0 0

L, GR2 0 12 12 E,GR3 310 11766 62011766
GR4 0 0 0 Y,GR5 0 174052 174052
GR6 3466 66002 715466002 X,GR/ 0 1061 1061

FARO 4375 (3) /12 FLRO 13 FRO 2.41041 274E-39
FAR1 4377 (3) /124 FLR1 3466002 FRI 3.75089893E 543

(9) 003710: Owner= (IB= 4377(0) /44424).
Called from 4234(3)/1055; returns to 4234 (3)/1061.

(10) 003616: Owner= SUBRI (IB= 4377(0)/177460) .
Called from 41(3)/125336; returns to 41(3)/125340.

(11) 003462: Owner= (LB= 41(0)/125010).
Called from 13(3)/17354; returns to 13(3)/17376.
Proceed to this activation is prohibited.

(12) 002220: Owner= (IB= 13(0)/20256).
Called from 13(3)/15025; returns to 13(3)/15033.

(13) 001420: Owner= (IB= 13(0)/20256).

Called from 13(3)/7224; returns to 13(3)/7236.

(14) 000640: Owner= (IB= 13(0)/11206).
Called from 13(3)/163464; returns to 13(3)/163470.

(15) 000632: Owner= (IB= 13(0)/163102).
Called from 4(0)/163466; returns to 4(0)/0.

OK,

In this example, the stack frames for the user's program are numbers
(9) and (10). They are easily distinguished because the LB segnent

-numbers are in the private per-user segnent range (4377 in this
example), rather than in public shared PRIMOS segments (41 and 13 in

First Edition 9-10

MAPS AND ADDRESSES

this example). In addition, Frame (10) is easily identified as
belonging to a procedure named SUBRI because it is a PL1/G procedure

that identifies itself by name. The stack frame for SUBRI_ is

6002/3616, where 6002 is the stack root (as displayed at the beginning

of the DUMP_STACK display); the stack frame for the PMA subroutine it

called, from which the QUITS condition was signaled via a user typing

CONTROL-P, is 6002/3710.

However, in more complicated situations, the stack frames are often not

SO easy to identify, so comparison against the IB registers displayed

for each frame are helpful.

Multiple Entrypoints With the Same IB -

In a Situation where more than one entrypoint has the same IB,
identification by LB is insufficient. Here, identification by EC is
required. To do this, examine the stack frame to determine the address

of the calling instruction. Then, examine the next higher-numbered

stack frame to determine the contents of the SB and IB registers for

the calling procedure. Then, enter VPSD and examine the calling

instruction to determine the address of the ECB. Often, the calling

instruction is a PCL instruction that goes indirect through an IP in

the link frame (IB-relative); if this is the case, you must also set

up the LB in VPSD to be the IB for the calling procedure.

Occasionally, the calling instruction is a PCL through an SB-relative

IP, in which case you must set up the SB in VPSD accordingly.

However, if the PCL is XB-relative, tracking down the actual address

can be very difficult because the XB register contents can be changed

during the processing of argument templates (APs) and its contents at

the time of the call are not saved by the PCL mechanism. In this case,

your best bet is to backtrack through the code prior to the RPL to

determine how it calculated the address for XB by looking for an EAXB

that is SB-, PB-, or [B-relative, and then reconstruct the sequence of

instructions to determine the actual XB contents used at the tim of

the call.

Example: For example, to determine the address of the ECB that

corresponds to the SUBR1 procedure, Frame (10) in the above example, we

first examine the display for Frame (10):

(10) 003616: Owner= SUBRI1 (LB= 4377(0)/177460).
Called from 41(3)/125336; returns to 41(3)/125340.

This tells us that the instruction that called the SUBRI procedure is

at address 41/125336.

9-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Next, we look at the next frame, Frame (11):

(11) 003462: Owner= (IB= 41(0)/125010).
Called from 13(3)/17354; returns to 13(3)/17376.

This tells us that the SB for the calling procedure is 6002/3462 and
the IB for it is 41/125010. Now, we enter VPSD, examine the calling
instruction, and track down its IP to the ECB. Once we have the actual
ECB address, we use LIST_SEGMENT to show us which EPFs have linkage
data in that segment; we then use LIST_EPF -SEGMENTS on the most
likely EPF in the LIST_SHGMENT display to determine whether there is a
matchup between the ECB address, the actual address of the linkage data
for the EPF, and the imaginary ECB address in the BIND map.

OK, VPSD

SSN 41

SA 125336:S
417125336PCL% SB3+ 107,* /
SSB 6002 3462

SA SB%+107:0
6002/7 3571 4377 (CR)
6002/ 3572 7050 /

$Q
OK, LIST_SEGMENT 4377 —-NAME

1 Private dynamic segment.
segment access epf

4377 RWX <USRDSK>UNGER>MYLIBRARY. RUN
<SYSDSK>LIBRARIES*>SYSTEM_LIBRARY. RUN
<USRDSK>UNGER>MY_PROG. RUN

OK, LIST_EPF MY_PROG —SEGMENTS

1 Program EPF.

(active) <USRDSK>UNGER>MY_PROG.RUN
l procedure segment: +0 34235
1 linkage area: -2:4377 (3) /7044

OK,

The difference between an actual ECB address of 4377/7050 and an actual
linkage data address of 4377/7044 is 4, yielding a corresponding
imaginary ECB address of -2/4, or -0002/000004 as shown in the examples
of SUBRI earlier in this chapter.

First Edition 9-12

MAPS AND ADDRESSES

Examining the Stack Frame for a Procedure Invocation

Once you know the address of a stack frame for a particular procedure
invocation, you can reenter VPSD and examine the stack frame by issuing

the following commands:

VPSD

SB stackroot offset
A SB%tn

Here, stackroot is the segnent number of the stack root, displayed by

DUMP_STACK at the top of its display. and subsequently during the
display if the stack switches to another segnent. (Watch for the STACK
SEGMENT IS messages during the display; use the most recent message

displayed before the target stack frame.)

The offset value comes from the octal number following the stack frame

Yr.numbe In the above DUMP_STACK example, the offset value for Frame

(10) is 3616.

USING EXPANDED LISTINGS

Prime language translators all have the ability to produce expanded
listings. An expanded listing is a special type of listing, obtained
by including the -EXPLIST option on the compiler command line, that
shows the partially processed machine instructions generated as a
result of compiling each line in the source file, along with the offset
of each instruction from the beginning of the program. However, there
are several different formats of expanded listing output, and the
offset values differ in meaning, such as between FIN and PLIG. Consult

the language manual appropriate for your compiler for more information.

The listings produced by PMA correspond, of course, to instructions in
the source program. The offsets shown are from the beginning of the

procedure code, the link frame, the stack frame, and so on.

9-13 First Edition

Binary Editors

This chapter describes the Binary Editor (EDB) and the Library Editor

(LIBEDB). EDB is used to create and modify object (.BIN) library

files, LIBEDB is used once a library is created to decrease linking or

loading time. Both of these programs operate on object text blocks

generated by Prime lanquage translators such as F77, FIN, CBL, PLIG,

PMA, and soon. These object-text blocks form the input to BIND, LOAD

and SEG. ‘The term linker is used to identify all three programs.

LIBEDB

The LIBEDB program is used for editing bypass information into library

files. ‘The linker uses the bypass information to skip an unnecessary

routine efficiently instead of reading and discarding all the unwanted

object text. Depending on the size and number of unnecessary routines

in a library, the linker may process library files up to 50 percent
faster if they have first been processed by LIBEIB.

LIBEDB is maintained as the runfile LIBEDB.SAVE in the UFDLIB. It

should be used on a library file after its creation and after each time

that the library is edited with the Bimry Editor. he linker is

capable, however, of handling a library which is not, or is only

partially, processed by LIBEDB.

10-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Because it is expected that LIBEDB will be used fairly infrequently,
the user/computer interaction is self-explanatory. LIBEDB asks for an
input and output filename and for file type. In theory, a library with
large routines will link faster if it is created as a Direct Access
Method (DAM) file. In practice, none of the regularly used libraries
contain routines large enough to warrant creating the library as a DAM
file instead of as a Sequential Access Method (SAM) file.

EDB

The command format for EDB is:

input~file
ELB ~ASR [output—file]

~PTR

Both the input and output file may be pathnames. The input file should
be an existing library or the binary output of a Prime language
translator. The output file is optional; if specified, a file of that
name is created if none exists. -ASR or —PIR instead of a file on the
command line specifies a user terminal or paper-tape reader/punch,
respectively. If these are not included, a PRIMS file is assumed.
(-ASR and ~PIR are tremendously obsolete options.)

EDB displays ENTER, and then waits for user commands.

Operation

EDB maintains a pointer to the input file. When EIB is initialized, or
after a TOP or NEWINF subcommand, the pointer is at the top of the
input file. The pointer can be moved by the FIND subcommand to the
start of a module. A module is identified by its subprogram or
entry-point name. After a COPY subcommand (which copies blocks from
the input to output file), the pointer is positioned to the module
following the module copied.

First Edition 10-2

BINARY EDITORS

Subcommand Summary

EDB responds to the following subcommands, listed in alphabetical
order. Subcommands may be abbreviated to the underlined letters.

Note

The keyword ALL, used in the COPY and FIND subcommands, is not
specially treated by EDB; if the external symbol name ALL is
encountered in the input file, the COPY or FIND operation is
terminated. This distinction is important only for input files
that contain an external symbol name of ALL; in such a case,
use some random name instead of ALL to COPY or FIND all modules
in an input file, such as FDSA. The ALL keyword is essentially
an ad hoc standard,

p BRIEF

Inhibits the display of subroutine names and entrypoints as they are
encountered in the input file. (See also TERSE and VERIFY.)

name

B copy ALL
<REL>
<SFL>

Copies to the output file all main programs and subroutines from the
pointer up to (but not including) the subroutine called name or
containing name as an entrypoint. If name is not encountered or if
COPY ALL is specified, EDB copies to the end of the input file and
displays .BOTIOM. on the terminal. EDB moves the pointer past the
last copied item.

<RFL> and <SFL> are special keywords that search for a reset~force-load
or set-force-load flag block.

name
p> FIND ALL

<RFL>
<SFL>

Moves the pointer up to the module of the input file containing a
subroutine called name or containing name as an entrypoint without
copying the intervening modules to the output file. If name is not
found, EDB moves the pointer to the end of the input file and displays

* ~BOTTOM. on the terminal.

10-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

In VERIFY mode, the FIND ALL command is useful for displaying all
subroutines and entry names in the input file.

<RFL> and <SFL> are special keywords that search for a reset~-force-load
or set-force-load flag block.

> INSERT pathname

Copies all modules of pathname to the output file. The pointer to the

original input file is unchanged.

> NEWpathname

Closes the current input file and opens pathname as the new input file.
The pointer is positioned to the beginning of pathname.

> OPEN

Closes the current output file and opens pathname as the new output
file.

~ gut

Closes all files and exits to PRIMDS.

> REPLAC name pathname

Replaces the object module containing name as an entrypoint by all

modules of pathname.

P REL

Writes a reset-force-load flag block to the output file. Typically,
all libraries begin with an RFL. The RFL block places a linker in
library mode; while in library mode, only those modules that are
referenced are linked. RFL mode is in effect wntil the linker

encounters an SFL block.

First Edition 10-4

BINARY EDITORS

Note

Because an RFL block affects other files linked after the
object file containing the RFL block, it is important that any
object file containing an RFL block contain an SFL block at the
end of the file. See the SFL command.

> sr.

Writes a set-force-load flag block to the output file. This block
places a linker in force-load mode; all subsequent modules are linked,
whether or not they are called. SFL mode is in effect until the linker
encounters an RFL block. A library file should be terminated by an SFL
block.

> TERSE

Places the editor into TERSE mode. While in TERSE mode, EDB displays
only the first entrypoint name of each module encountered. (See also
BRIEF and VERIFY.)

> Top

Moves the pointer to the top of the input file.

> VERIFY

Places EDB into VERIFY mode. All subroutine names and entrypoints, as
they are encountered by EDB, are displayed on the terminal. EDB is
initialized in the VERIFY mode. (See also BRIEF and TERSE.)

Obsolete Commands

The following commands are outmoded but are included for the sake of

compatibility:

>

Writes an end-of-tape mark on the output file ('223, '223 on paper
tape; 0 word on disk). Writing an ET to disk causes the linker to
‘ignore the remainder of the file.

10-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

P GET [Gc]

Copies the subroutine to which the pointer is currently positioned and
follows it with an end-of-tape mark. The pointer moves to the next
subroutine. The optional letter G specifies a global copy; all
subroutines from the current position of the pointer are copied, each
followed by an end-of-tape mark. When the bottamn of the input file is
encountered, EDB displays .BOTTOM. on the terminal.

> OMITET [G]

Copies the subroutine to which the binary location pointer is currently
positioned. The pointer moves to the next subroutine. The optioml
letter G specifies a global copy; all subroutines from the current
position of the pointer are copied. When the bottom of the input file
is encountered, EDB displays .BOTTOM. on the terminal.

EDB Error Messages

EDB displays ENTER to show that it is ready to accept commands. Most
errors in command input cause EDB to display a question mark (?).
Other messages are listed below.

e BAD OBJECT FILE (FRIBIN)

Usually indicates that you have specified a source file, rather than an
object (.BIN) file, as the input file. EDB attempts to continue
processing by ignoring the remainder of the input file.

@ BAD PARAMETERS (EDB)

Indicates an error while locating an input file, an output file, or a
replace file; or, indicates an erroneous usage of EIB. EDB
terminates,

@ ERROR WHILE WRITING

A file system error occurred while EDB was trying to write the contents
of an object file. EDB terminates.

First Edition 10-6

BINARY EDITORS

EXAMPLES

Creating a Library of Subroutines

The following example creates a library from the files FILEI.BIN,
FILE2.BIN, FILE3.BIN, and FILEA.BIN. Each file contains a single
module, although FILE1.BIN and FILE2.BIN contain multiple entrypoints.
The example shows the EDB commands to list the entrypoints of each
file, plus the commands necessary to combine them into a library file,
LIBEXP.BIN.

OK, EDB FILEL.BIN

f[EDB rev 19.4]

ENTER, FIND ALL
ENTIA ENTIB
ENTLC

» BOTTOM.
ENTER, NEWINF FILE2.BIN
ENTER, FIND ALL

ENT2D ENT2E

. BOTTOM.
ENTER, NEWINF FILE3.BIN
ENTER, FIND ALL
ENT3G
. BOTTOM.
ENTER, NEWINF FILE4.BIN
ENTER, FIND ALL
ENT4H
. BOTTOM.
ENTER, OPEN LIBEXP,BIN
ENTER, NEWINF FILEL.BIN
ENTER, RFL
ENTER, COPY ALL
ENTIA ENT1B

. BOTTOM.
ENTER, INSERT FILE2.BIN
ENTER, INSERT FILE3 BIN
ENTER, INSERT FILE4.BIN
ENTER, SFL
ENTER, QUIT

After a library is created, LIBEDB can be run on it to speed its
linking time.

10-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Displaying Entrypoints

Notice the difference between the terminal output in VERIFY and TERSE
modes. ENTSA and ENT6A are both entrypoints of the module in the file
FILES.BIN; ENTSA is the name of the procedure, ENT6A is the name of an

alternate entrypoint to the ENTSA procedure. In TERSE mode, only ENT6A
is listed. (The compiler in this case emits the external name for the
alternate entrypoint before it emits the external mame for the
procedure; therefore, ENT6A is listed first.) For example:

OK, EDB FILE5S.BIN

[EDB rev 19.4}
ENTER, FIND ALL

ENTOA ENTSA

. BOTTOM.
ENTER, TOP
ENTER, TERSE
ENTER, FIND ALL
ENT6A ~
. BOTTOM.
ENTER, QUIT
OK,

Replacing an Object Module in the Library

The library file created above, LIBEXP.BIN, is edited to replace the
module containing entry point ENT3G with the module in NFILE3.BIN
containing entry points ENT3F and ENT3G. The output file is

LIBNEW. BIN.

OK, EDB NFILE3.BIN

[EDB rev 19.4]
ENTER, FIND ALL

ENTSF ENT3G

- BOTTOM.

ENTER, QUIT

OK, EDS LIBEXP.BIN LIBNEW.BIN

[EDB rev 19.4]

ENTER, REPLAC ENT3G NFILE3 .BIN

<RFL> ENTIA
ENT1B ENTIC
ENT2D ENT2E
ENT3G
ENTER, COPY ALL
ENT4H <SFL>

-BOTTOM.
FNTER, QUIT

First Edition 10-8

OK, EDB LIBNEW.BIN

[EDB rev 19.4]
ENTER, FIND ALL

<RFL>

ENT1B
ENT2D
ENTSF

ENT4H

-BOTTOM.
ENTER, QUIT
OK,

Sample Use of LIBEDB

ENT1A
ENTI1C
ENT2E
ENT3G
<SFL>

BINARY EDITORS

In this example, the file LIBEXP.BIN is processed by LIBEDB, producing
a SAM file named FAST_LIBEXP.BIN.

OK, RESUME LIB>LIBEDB

[LIBEDB rev 19.0]

SOURCE FILE, DESTINATION FILE, PARAMETER
WHERE: PARAMETER = 0 — DESTINATION FILE SAM

PARAMETER = 2000 — DESTINATION FILE DAM
$ LIBEXP.BIN, FAST_LIBEXP.BIN, 0

OK,

10-9 First Edition

APPENDIX

Converting Programs

‘That Use Register

Settings

Some existing static-mode programs use register settings to select
options for the program. Register settings set the initial values of
R-mode and V-mode registers for static-mode programs by setting values
in the RVEC (Register VECtor) for the user. (See the PRIMS Commands
Reference Guide for more information on RVEC and register settings.)

While using register settings to select program options is obsolete,
having been replaced by the more legible and flexible command line
options (such as -LISTING, -XREF, and so on), register settings do
offer the advantage of being able to change the default options for a
program without having to recompile or reload it.

For example, to change the register settings for a program named NRSL,
you might type:

RESTORE NRSL. SAVE
SAVE NRSL.SAVE 3/14520

This command sequence would change the initial value of the A_ register
for NRSL from its original value of 120 to 14520. This might have the
effect of enabling more options by default; users subsequently
invoking the program would not have to specify those options.

b-l First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Converting such a program to an EPF might seem difficult at first,
because this feature is not directly supplied by BIND and EPFs.
However, a feature exists that is easier to use with BIND and EPFs and
that may be a suitable replacement. ‘This appendix shows how to use
this feature to provide a somewhat compatible interface for setting the
initial values of registers.

First, the appendix provides a short discussion of how the present

static-mode program uses the initial values of registers. Then, using

that model, the appendix describes how to accomplish the same thing

using BIND and EPFs.

HOW THE STATIC-MODE PROGRAM WORKS

The key to the use of initial values for registers by a static-mode
program is that its first instructions that reference the appropriate

registers must not initialize them before using them, because the
command processor has already initialized them. ‘Their values are
stored in the first nine halfwords of the static-mode_ runfile
containing the program. The first two of these halfwords are the
beginning and ending addresses for the program's memory image; - the
third halfword is the starting location of the program (the initial
value of the P register); and the next four halfwords contain the

initial values for the A, B, X, and K registers. The remaining two
halfwords are undefined and should be 0.

Therefore, the main entrypoint of a static-mode program that utilizes

the initial values of ome or more registers usually begins with a STA,

STL, or STX instruction if written in PMA, or with a call to the GETA

or GETL subroutine if written in FIN. (GETA stores the value in the A
register into the INTHGER*2 argument passed to it, while GEIL stores
the value in the L register, which is the A and B registers
concatenated, into the INTHGER*4 argument passed to it.)

Then, the main entrypoint uses the values retrieved from the registers
as the initial, or default, values for option settings in the program.
Typically, the program then reads options from the command line,
recording any options it finds there on top of the initial option
settings. (Thus, command line options, when specified, override the
initial values.)

In addition, the user may use register settings on the command line
(such as RESUME NRSL 3/10120) instead of command line options. The use
of this obsolete method of specifying program options is guaranteed to
confuse and bewilder anybody who tries to understand the command file
written by the user to invoke the program. (Such a user rarely builds
a CPL program for the purpose.) These register settings, when
specified on the command line, override the settings in the RVEC for
the static-mode program image, and hence replace the initial values for

the registers.

First Edition A-2

CONVERTING PROGRAMS THAT USE REGISTER SETTINGS

HOW TO ACHIEVE THIS FUNCTIONALITY IN AN EPF

To make the default options for an EPF tailorable on a per-system

basis, you build a CPL program that replaces the RESUME/SAVE command

sequence shown at the beginning of this appendix; in addition, you

convert your static-mode program by changing the way it obtains the

initial values of the registers.

The CPL Program

The CPL program performs the following tasks:

1. It determines the default options desired by the user, either
by accepting the baroque register settings used for the

static-mode version of the program or by reading command line

options typed by the user.

2. It compiles a small FIN subroutine called NGETA or NGETL that

stores the numeric equivalents to the desired default options

into the passed argument, either an INTHGER*2 (NGETA) or an
INTRGER*4 (NGETL) argument.

3. It invokes BIND and links the EPF using the subcommand LOAD

program. RUN.

4. It uses the RELOAD subcommand to relink the NGETA or NGEIL

subroutine just compiled into the EPF just linked.

5. It uses the FILE subcommand to write to disk the new version of

the EPF with modified default options.

Converting the Static-mode Program

You also convert your static-mode program to obtain the initial values

for the registers by calling a subroutine named NGETA or NGEIL,

depending upon whether the program uses the initial value for the A

register or for both the A register and the B register.

Then, you write a subroutine named NGETA or NGETL in FIN that you link

with your program. The subroutine sets the passed number to the

standard default option settings as numbers and returns to the caller.

The Result

The result you have is a program EPF that obtains its initial register

values by calling NGETA or NGETL, an internal subroutine that returns

“Standard values for the registers in the argument provided. The rest

of your program operates as it did before.

A-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

If someone wishes to tailor your program for their needs, they need
only invoke the CPL program you have supplied. It obtains the desired
default options from the user, and compiles a new version of NGETA or
NGETL that supplies the new initial values instead of the standard
values. The CPL program then relinks the newly compiled NGETA or NGETIL
moaule into the existing EPF, and now that program EPF uses the new

faults.

A Sample Case

A sample CPL program that performs this conversion, along with the
corresponding copy of NGETA and NGETL, follows.

&args prog:tree; areg:oct=120

&if [null t%progs] &then &return 1 Smessage Requires program name.

&if [index %prog% .RUN] “= [calc [length %prog%] - 3] ~
&then && prog := %prog%.RUN

S&data ed
SUBROUTINE NGETA(TI)
INTHGER*2 I

I=: %areg%
RETURN
END

FILE NGETA. FIN

&end

ftn ngeta -dynm -dclvar

bind -load %prog% -reload ngeta

delete ngeta.bin

The oct=120 in the first line simply sets the default value for the
initial A-register setting if the user does not specify it. It should
be the same value with which you ship the program EPF.

As you can see from the above sample CPL progran, the sample NGETA.FIN
module is quite simple:

SUBROUTINE NGETA(I)
INTEGER*2 I
I=:value
RETURN

END

First Edition A-4

CONVERTING PROGRAMS THAT USE REGISTER SETTINGS

Here, value is the standard initial A-register value. The NGEIL.FIN

module is as follows:

SUBROUTINE NGETL(L)
INTHGER*2 L(2)
L(1)=:valuel
L(2)=:value2
RETURN

END

Here, valuel and value2 are the standard initial A-register and

B-register values, respectively. If your program expects an initial

value for the B register, you should use the copy of NGETL shown above

and modify the CPL program shown earlier accordingly. (For example, it

should take two octal arguments, one for the A register and one for the

B register.)

If the Main Entrypoint Is a PMA Program

If the main entrypoint of your program is written in PMA, then you must

change the STA or STL instruction at the beginning to a CALL NGETA or

CALL NGETL followed by AP INIT_REG_SETTING,SL (where INIT_R&G_SETTING

was the target of the STA or STL instruction). If the program also

expects an initial value for the X register, add a third octal argument

to the CPL program and a second argument to NGETL to pass the X

register value, and call NGETL with a second argument from the PMA

module that stores the value returned in the second argument in the

destination of the original STX instruction.

If the PMA program does not start off with STA, SIL, or SIX

instructions, but instead uses instructions that test the registers in

various ways (such as SAR, SAS, BEQ, CAS, and so on), simply insert the

call to NGETA or NGETL in front of the instructions, then code a LDA,

LDL, or LDX instruction to load the registers with the initial values

retrieved from NGETA or NGETL.

A-5 First Edition

INDEX

A

Addresses,
actual, 1-10, 9-2
ECB in the BIND map, 9-6
form of, 9-2
imaginary, 1-10, 1-14, 9-2
link frame in the BIND map,

9-7
LIST_EPF command, 9-3
mapping of, 9-1
offsets in, 9-2
procedure code in the BIND map,

9-6
segment numbers in, 9-2
stack frane in DUMP_STACK

command, 9-9

Arguments to program EPFs, 1-16

B

-BIN file, 3-6, 3-7

Binary editors, 10-1

BIND, 1-2, 1-8
benefits of using, 1-9
DYNT subcommand, 5-5

X-1

Index

BIND (continued)
ENTRYNAME subcommand, 3-15
entrypoint subcommand, 6-8
initialization of static data,

1-19
LIBRARY subcommand, 3-11
linking object files, 3-7
MAIN subcommand, 3-15, 5-5
MAP subcommand, 9-5
RESOLVE_DEFERRED_COMIPON

subcommand, 3-15 .
SYMBOL subcommand, 3-11, 8-2,

8-4
treatment of common area,

3-11, 3-15
treatment of IPs, 3-10, 3-11
use of segment numbers, 3-10

BIND map, 9-5 to 9-7
determining ECB addresses, 9-6
determining link frame

addresses, 9-7
determining procedure code

addresses, 9-6

Building shared programs with
SEG, 1-8

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I:

c

Command level breadth, 5-3

3-10, 8-1
8-2
3-11

3-ll,

Common area,

defining a shared,
initialization of,
treatment of by BIND,

3-15

Common blocks and dynamic link,
2-4

CPS subroutine, 3-16

CPL functions and program EPFs,
1-16

D

DATA segnent, 3-7, 3-10, 3-19
access to, 3-16

Deallocation of dynamic memory,
3-32

Deallocation of library EPFs,
3-32

Debugging an EPF,
BIND command, 1-18
DBG command, 3-35
DUMP_STACK command, 1-18
LIST_EPF command, 1-18

other useful commands, 1-19
setting breakpoints, 1-18

Debugging information in EPFs,
3-3, 3-7

Displaying common area addresses,
3-15

DUMP_STACK command, 9-9

Dynamic link, 5-5
common blocks and, 2-4
definition of, 2~2
sample session, 2-4
snapping, 2-3, 3-21

First Edition

BIND AND EPFS

Dynamic link (continued)
to entry points in PRIMS,

3-22
to entrypoints in Application

Library, 3-24
to entrypoints in PRIMDS,
to static-mode libraries,

3-26
3-28

Dynamic linking mechanism, 1-3,
2-1, 3-6, 3-19

advantages, 2-l

Dynamic memory, 1-9
deallocation of, 3-32

DYNT, (See also Dynamic link)
as a subcommand of BIND, 5-5

E

ECB (entry control block), 1-3
information contained in, 1-4

EDB binary editor,
error messages,
obsolete commands,
subcommands, 10-3

10-2 to 10-6
10-5

10-5

Entry control block (See ECB)

ENTRYS.SR, 1-3

ENTRYNAME ,
as a subcommand of BIND, 3-15

Entrypoint, 2-2
as a subcommand of BIND, 6-8
determining, for library EPFs,

6-5
invocation, 3-19
Iain, of a program EPF,

5-5
modifying the search list of,

6-12, 6-13
reserved names, 6-5
subroutine, declaring,

5-4 ’

6-8

Entrypoint search list, 6-12,

6-13, 6-32
advanced use of, 6-37
default, 6-32 .
examining, 6-38

EPF, (See also Library EPF;

Process-class library EPF;

Program EPF; Program-class

library EPF)
benefits of, 1-9
cache, 1-18, 3-34

coding guidelines for, 7-l

copies of link frame, 3-4
debugging information, 3-3

debugging of, 1-18, 3-35

definition of, 1-2
dynamic memory, 3-3
information contained in, 1-18

invocation by CP$ subroutine,
3-16

invocation by EPFSRUN
subroutine, 3-16

invocation, forms of, 3-16

library, 1-3
life of an, 3-5 to 3-34

linkage text, 3-2

mapped, 3-16
mechanism, 3-l

multiple invocations of, 3-34

new versions, 1-2, 3-30, 3-34

old versions, 1-2, 3-34

organization of, 3-2

procedure code, 3-2

program, 1-3
reason for, 1-4

removing from memory, 1-16,

3-6, 3-30
restrictions on writing in PMA,

7-10 to 7-16
eRPn suffix, 1-2
-RUN suffix, 1-2
running a remote,
simultaneous use of,
stack space, 3-3
(See also Stack frame)

static information and, 4-7

suspending and restarting,

1-17
termination of,

3-31
types of, 1-3
unmapping, 3-34

3-36
3-35

3-6, 3-30,

Index

EPF (continued)
writing in high-level

languages, 7-l
writing in PMA, 7-2

EPF generation and use,

phase 1 (compilation or
assembly), 3-7

phase 10 (removal), 3-33
phase 2 (linking), 3-7
phase 3 (invocation), 3-15

phase 4 (mapping), 3-16
phase 5 (linkage allocation),

. 3-16
phase 6 (linkage

initialization) ,
phase 7 (entrypoint

invocation), 3-19
phase 8 (dynamic links

snapped), 3-21

3-19

phase 9 (termination), 3-30
phases in, 3-6
stages in, 3-5

EPFSALLC subroutine, 3-6, 3-16

EPFSDEL subroutine, 3-6, 3-33

EPFSINIT subroutine, 3-6, 3-19

EPFSINVK subroutine, 3-6, 3-19

EPFSMAP subroutine, 3-6, 3-16

EPFSRUN subroutine, 3-5, 3-16

Executable program format

EPF)
(See

Expanded listings, 9-13

External linkage information,

3-7

F

Faulted IP, 1-3, 2-2, 3-ll,
3-19, 3-21, 6-17

how to avoid sharing,

sharing of, 4-9

4-10

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I:

Freeing segnents of R-mode
programs, 1-7

i

I-mode programs, 1-5

Imaginary addresses and EPF
Sharing, 1-14

Impure code, 1-13
separation of pure code from,

1-12, 7-2

IMPURE segnent, 3-7, 3-10, 3-19

access to, 3-16

Indirect pointer (See IP)

Initialization,
of variables,
shared data,

1-19
8-3 r 8-4

Invoking an EPF,
5-2

subroutines for, 3-5

1-3, 3-15, 5-1,

IP (indirect pointer),
faulted,
6-17

how to avoid sharing faulted,
4-10

resolution of at runtime,
Sharing of faulted, 4-9
treatment of by BIND, 3-10,

3-11

1-3, 3-7
1-3, 2-2, 3-ll, 3-21,

3~10

L

IB (See Linkage base)

LIBEDB binary editor, 10-1

LIBRARY,

as a subcommand of BIND, 3-11
external references resolved

by, 3-11

First Edition xX-4

BIND AND EPFS

Library EPF, 1-3, 1-9

assembling the PMA entrypoint
file for, 6-10

building a PMA entrypoint file
for, 6-8, 6-9

choosing the right type of,
6-4, 6-14, 6-15

coding a subroutine for, 6-4
compiling a subroutine for,

6-4
deallocation of, 3-32
definition of, 6-2
determining class requirements

of, 6-29
determining entrypoints of,

6-4
installing a library file,
6-11

installing the library EPF,
6-11

invoking, 1-3
linking subroutines of, 6-7
modifying the entrypoint search

list, 6-12

process-class, 3-32, 3-33
progran's view of, 6-4
program-class, 3-32, 3-33
programmer's view of, 6-2
restriction on class mixing of,

6-16
restriction on use of language

steps in building,
6-13

storage allocation issues,
6-41

storing data in linkage area
of, 6-17

using DBG on, 6-30, 6-31
using EDB to generate a library

file, 6-10

Library EPF mechanism, 6-39

Limits on calling program EPFs,
5-3

Link frame, 3-4, 3-5, 3-10

Linkage,
area, 3-32
area, storing data in,
6-18

base, 3-4

6-17,

Linkage (continued)
fault, 2-4
initialization,
text, 3-7

text, in EPFS, 3-2

text, in subroutines, 3-4

3-19, 6-18

Linking,
loaders, history of, 1-4
purpose of, 3-7
utilities, 1-2

LIST_EPF command, 9-3

LISTSEGMENT command, 9-5

LOAD, 1-2, 1-4

M

MAIN,
as a subcommand of BIND,

5-5

3-15 v

MAP,
as a subcommand of BIND, 9-5

Mapping an EPF, 3-16

Maps and addresses, 9-l

Memory,
allocation of,
dynamic, 1-9

1-10, 1-11

Multiple invocations of an EPF,
3-34

o

P

PB (See Procedure base)

PCL instruction, 3-4, 3-7, 3-19

X-5

Index

PMA,
restrictions for EPF execution,

7-10
writing EPFs in, 7-2 to 7-10

PROC segnent, 3-7, 3-10
access to, 3-15

Procedure,
base, 3-4
code in EPFs, 3-2
code in subroutines, 3-4

frame, 3-4

main, of a program EPF, 5-4

Management, 3-4
text, 3-7

Process-class library EPF,
3-33, 6-41

choice of, 6-14
link sequence for, 6-7

restrictions on use of, 6-14

using for shared data, 8-5

3-32 ’

Program,
I-mode, 1-5

R-mode, 1-4, 1-5
S-mode, 1-5

static-mode, 1-4
V-mode, 1-5

Progran EPF, 1-3, 1-9
arguments to, 1-16, 5-4
command line preprocessing,

1-17
CPL functions, 1-16
data returned from, 5-3
data supplied to, 5-3
definition of, 5-l
invoking, 1-3, 5-1, 5-2
invoking progran's view of,
5-2

limits on calling, 5-3
main entrypoint of, 5-4, 7-2
main procedure of, 5-4
programmer's view of, 5-l
stacking of, 1-17
user's view of, 5-2

writing the main program, 5-4

Program—class library EPF,
3-33, 6-40

Choice of, 6-14
link sequence for, 6-7

3-32,

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME

PRIN instruction, 3-4

Pure code,
Separation of impure code from,

1-12, 7-2 |
Sharing of, 1-13

R

R mode, 1-4

1-4 v 1-5

1-7
R-mode prograns,

freeing segnents of,

Removal of EPFs,
process-class library,
program EPF, 3-33
program-class library,

1-16, 3-30
3-33

3-33

Replacing static-mode libraries,
3-30

Reserved entrypoint name list,
6-6

Reserved entrypoint names, 6-5
list of, 6-6

RESOLVE_DEFERRED COMMON,
as a subcommand of BIND, 3-15
to display common area address,

3-15

-RPn suffix, 1-2

RUN suffix, 1-2

Running a remote EPF, 3-36

S

S mode, 1-5

SB (See Stack base)

Search rule,
6-36

1-3, 6-12, 6-33 to

First Edition X-6

I: BIND AND EPFS

SEG, 1-2, 1-4

building shared programs, 1-8
for invoking V- or I-mode

programs, 1-7
for shared procedure segnents,

1-8
generating static-mode images,

1-8

Segment access,
to DATA segnents, 3-16
to IMPURE segnents, 3-16
to PROC segnents, 3-15

‘Segnent number,
for IMPURE and DATA segnent,

9-3
for PURE segnent, 9-3
in addresses, 9-2

use of by BIND, 3-10

Segnents,
shared system-wide, 1-8, 8-3

Separation of pure and impure

Shared applications,
Shared programs)

effect of EPFs on existing,
4-8

(See also

Shared data, 8-1 to 8-7
determining the address of,

8~2
how to update atamically,

8-8
initializing, 8-3, 8-4
PMA subroutines for updating,
8-9 to 8-11

process-wide, 8-1]
system-wide, 8-1
using a process-class Library

8-7 ’

Shared prograns,
deleting old versions,
installing new versions,

1-16
using SEG to build,

1-16
1-8 r

1-8

Shared system-wide segnents, 1-8

Sharing faulted IPs, 4-9
how to avoid, 4-10

Sharing of pure code, 1-13

Simultaneous use of an EPF, 3-35

Snapping dynamic links,

3-21
2-3 r

Stack base, 3-4

Stack frame, 3-4
addresses of in DUMP_STACK

command, 9-9
locating procedure, 9-10

Stack header, 3-4

Stack space in EPFs, 3-3

Stack space in subroutines, 3-4

Stacking program EPFs, 1-17

Static data, 3-7

Static information and EPFs,
command line information, 4-7
error information, 4-7

Static memory, 1-9

Static-mode applications, (See
also Static-mode progran)

conversion strategy, 4-l
relation of EPFs to, 4-l
restriction on EPF use of, 4-2
suspending and continuing, 4-2

Static-mode library,
dynamic link to,
replacing, 3-30
restriction on EPF use of, 4-4

3~28
3-28

Static-mode program, 1-5
(See also Static-mode
applications)

characteristics of, 1-5 to 1-7

Subroutine,
EPF)

converting nonreentrant to
reentrant, 6-21 to 6-25

(See also library

X-7

Index

Subroutine (continued)
determining class requirements

of, 6-15, 6-16
determining the use of static

data by, 6-17, 6-18
linkage text, 3-4
nonreentrant process-class,

6-20
optimizing conversion approach

to, 6-25 to 6-28
organization of, 3-4
procedure code, 3-4
process-class, 6-15

_ program-class, 6-15
stack space, 3-4
storing data in linkage area

Subroutine libraries, 2-l
types of, 2-2

Subroutine not found condition,
2-4

Subroutines,
dynamic linking of, 2-1

Subroutines for invoking EPFs,
3-5

SYMBOL,
as a subcommand of BIND, 3-11,

8-2, 8-4

to locate common areas, 3-ll

rt

Terminating an EPF, 3-6, 3-30,
3-31

Types of EPFs, 1-3

U

Unmapping an EPF, 3-34

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME I: BIND AND EPFS

Vv

V-mode programs, 1-5

VPSD command, 1-18, 9-8

First Edition X-8

SURVEY

READER RESPONSE FORM

DOC10055-1LA Advanced Programmer's Guide, Volume! First Edition

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

__excellent __very good _good fair poor

2. Please rate the document in the following areas:

Readability: ___hard to understand _average -___very clear

Technical level: __too simple about right too technical

Technical accuracy: __poor average very good

Examples: ___too many about right _too few

Illustrations: ___too many about right __too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? yes ___no

Name : Position:

Company :

Address:

enoe eeee aem mm cam wee om mm ey eh me emSSaNSeeyaDrym SuSS me ce) ee ewSaemueweaeeaae ee ce a ae oe ey neee

ll pez
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

READER RESFONSE FORM

DOC10055-1LA Advanced Programmer’s Guide, Volume! First Edition

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent ___very good _good —__fair poor

2. Please rate the document in the following areas:

Readability: __hard to understand _ average very clear

Technical level: __too simple about right

_

__too technical

Technical accuracy: __poor __average

_

__very good

Examples: ___too many -___about right ___too few

Illustrations: __too many -___about right ___too few

3. What features did you find most useful?

 4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? __yes __no

Name : Position:

Company ;

 Address:

Zip:

Hl] ere
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

Address:

READER RESPONSE FORM

DOC10055-1LA Advanced Programmer's Guide, Volume! First Edition

Your feedback will helpus continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent _very good good fair

-_

__poor

2. Please rate the document in the following areas:

Readability: __hard to understand . ___average ___very clear

Technical level: __too simple ___about right ___too technical

Technical accuracy: __poor average ___very good

Examples: ___too many

_

__about right ___too few

Illustrations: ___too many about right

_

too few

3. What features did you find most useful?

4, What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? _yes ___no

Name : Position:

Company :

Zip:

| | | | NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

	Front cover
	Title page
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	ix
	xi
	xii
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	Appendices-1
	Appendices-2
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	Index-1
	Index-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	Survey-1
	Survey-2
	Survey-1
	Survey-2
	Survey-3
	Survey-4
	Survey-5
	Survey-6
	Survey-7
	Survey-8
	Survey-9
	Survey-10
	Survey-11
	Survey-12
	Survey-13
	Survey-14
	Survey-15
	Survey-16
	Back cover

