Advanced Programmer’s
Guide

Volume I/

File System

Revision 21.0
DOC10056-2LA

Advanced Programmer’s

Guide
Volume 11

File System
Second Edition
by
Leonard E. Bruns and Mary Hadcock

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPIUS, PERFORM, Prime
INFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,
PST 100, PT25, PT45, PI6S, PTR00, PW153, PW200, PWR50, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
6350, 6550, 9650, 9655, 9750, 9755, 9950, 0955, and 9955II are
trademarks of Prime Computer, Inc.

PRINTING HISTORY

Preliminary Edition (DOCO229-11A) January 1985 for Release 19.4.0
First Edition (DOC10056-1LA) September 1985 for Release 19.4.2
Second Edition (DOC10056-21A) July 1987 for Release 21.0

CREDITS

Author of Chapter 3, SEARCH RULES: Glenn Morrow

Editorial: Mary Skousgaard, Thelma Henner

Illustration: Marjorie Clark, Mingling Chang, Mary Easter, Robert Alba

Document Preparation: Margaret Theriault, Celeste Henry, Mary Mixon,
Kathy Normington

Production: dJudy Gordon

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska,)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONLENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 0Old Connecticut Path
Framingham, MA 01701

Contents

ABOUT THIS BOCK xi

1 PRIMOS FILE SYSTEM CONCEPTS

What Is a File System? : 1-1
Data 1-2
Storage 12
QObjects 1-2
Procedures 1-3
Summary of File System Rationale 1-3

Vhat Is the PRIMOS File System? 14

The Tree Structure 1-5

File System Objects 1-5
Disk Partition 1-5
Master File Directory 1-8
Top-level Directory 1-8
Lower-level Directory 1-9
Segment Directory 1-9
Access Category 1-10
File 1-10

Object Naming Conventions 1-10
Object Names 1-11
Pathnames 1-12
How and When Objects Are Named 1-15

Access Methods 1-15

Access Control 1-16
Attaching to a File Directory 1-16
Access Control Lists 1-17
Password Directory 1-18

How and When Access Is Calculated 1-19
Access Calculation Concepts 1-19
Access Calculation When

Opening Files 1-21
Access Calculation When Attaching

to Directories 1-21
Access Calculation for Other

Operations 1-22

File Units 1-23
Information Associated With a

File Unit 1-23

Opening a File 1-26

File Unit Number Allocation 1-27
File Unit Numbers 1-28
File Pointer 1-29
Positioning a File 1-29
Truncating a File 1-29
Closing a File 1-30

Closing on Normal Program

Termination 1-30
Closing on Abnormal Program

Termination 1-30

File Attributes 1-31

The Date and Time Last

Accessed Attribute 1-32
The Date and Time Created

Attribute 1-33
The Date and Time Last

Modified Attribute 1-33
The Date and Time lLast

Backed Up Attribute 1-35
The Read/Write Lock Attribute 1-35
The File Type Attribute 1-37

The Dumped/Not-dumped Attribute 1-38
The Special/Not-special Attribute 1-38
Quotas 1-39

2 PROGRAMMER INTERFACES TO THE FILE SYSTEM

Commmnicating With the File System 2-1

Commands 2-1
Command Functions 2-2
Subroutine Calls 2-2
System Primitives 2-3
Arguments and Options 2-3
Attach Points and Access Rights 24
Object Names 2-7
File Units and Attributes 2-8

PRIMOS Responses (Return Codes) 2-9
File System Operations: An Overview 2-10

General Requirements 2-10
Creating Objects 2-10
Opening Objects 2-11
Reading Objects 2-11
VWriting Objects 2-12
Deleting Objects 2-12
Access Control to File System

Objects 2-13
Attach/ACL Requirements 2-13
Attaching 2-13
Access Control List (ACL)

Functions 2-16

Creating File System Objects
Creating File Directories
Creating Files

Opening File System Objects
Opening File Directories
Opening Files

Reading File System Objects

Writing File System Objects

Closing File System Objects

Deleting File System Objects

3 SEARCH RULES

Search Rules and Search Lists

Advantages of Search Rules
Search Rule Types
Administrator and System
Search Rules
User-specified Rules
Search List Types
User—-defined Lists
ATTACH$
COMMANDS$
INCLUDE$
BINARY$
ENTRY$

Creating and Setting Search Rules

Creating a Search Rules
File
Setting Search Lists
Search Rule Keywords
Accessing Search Lists
PRIMOS Command Environment
CPL Programs
Program Subroutines
ATTACH$ Invoked by Other
Search Lists

4 ATTACH POINTS

The Initial Attach Point
The Home Attach Point
The Current Attach Point
Operations That Reset the
Current Attach Point

2-24
*—24
2-26
-7
-7
2-29
2-30
-4

2-37

3-1
3-3
54

34
3-5
3-5
3-5
3-6
37
3-8
3-8
3-9
3-9

3-10
5-12
3-19
3-19
3-19
3-19

3-21

4-1
4-3
4-5

46

Functions Used to Manipulate
Attach Points
The AT$ Subroutine
The AT$ABS Subroutine
The AT$ANY Subroutine
The AT$REL Subroutine
The GPATH$ Subroutine
The SRCH$$ Subroutine
Questions and Answers About
Attach Points

5 TEXT STORAGE AND RETRIEVAL

Subroutines for Accessing Files
Differences Between Variable-length
and Fixed-length Record Files
Variable-length Records
Fixed-length Records
Hybrid Approaches
Maximum ILength of a File
How to Open, Extend, Truncate,
and Close Files
Opening a File
Positioning a File to End-of-file
Truncating a File
Closing a File
How to Read and Write Variable-
length Text Files
The ROLIN$ and WTLIN$ Interfaces
Sample Programs Using RDLINS$
and WILIN$
How to Read, Write, and Position
Fixed-length Files
The PRWF$$ Interface
Sample Uses of PRWF$$
Format of a Variable-length
Record File
Format of a Fixed-length
Record File
Determining the Blocking Factor
Calculating Record Position During
Random-access Operations
Questions and Answers About
Text Files

4-7
4-8
4-9
4-13
4-16
4-18
4-21

4-24

5-15
5-17
5-21

5-24
5-24

5-29
5-31
5-31
5-39
542

544
545

546

547

6 DATA STORAGE AND RETRIEVAL

File Organization 6-2

Segment Directories 6-2
Subroutines Used to Access

Segment Directories 62

How to Open a Segment Directory 6-3
How to Position a Segment

Directory 6-10
How to Extend a Segment Directory 6-14
How to Open a File Within a

Segment Directory 6-17

How to Delete a File Within a
Segment Directory 6-23
How to Scan a Segment Directory 6-25
File Directories 6-30
How to Create a File Directory 6-31
How to Open a File Directory 6-34
How to Scan a File Directory 6-36
Reading and Writing Data Files 642

Questions and Answers About

Data Files 643

7 ACCESS CONTROL LISTS (ACLs)

Subroutines That Manipulate ACLs 7-1
Setting Access on Files and
Directories 7-2
Creating Access Categories 7-2
Changing Access to a File
System Object 76
Setting the Access for an Object
to That of Another Object 7-6
Reading the Access for an Object 7-9
How Programs Should Parse an ACL 7-9
Questions and Answers About ACLS 7-11

8 FILE ATTRIBUTES

How to Read the File Attributes
of an Object 8-1
How to Set File Attributes 8-6

9 DISK QUOTAS

Retrieving Information on

Disk Space in Use 9-1
Retrieving Quota Information

for a Directory 9-2
Retrieving Quota Information

for the MFD 9-2

Improving Quota System Performance 9-2

10 INTERPROCESS COMMUNICATION
VIA THE FILE SYSTEM

General Concepts ' 10-1
File and System Read/Write Locks 10-2
Caveats on Using the File System

for Interprocess Communication 104

Sample Models of Communication via

File System 10-5
Multiple Processes Creating
File-based Transactions 10-5

Multiple Competing Servers

Accessing File-based Transactions 10-7
Two-process Transaction Management 10-9
Multiple Processes Accessing a

Data Base 10-10

About
This Book

The Advanced Programmer’'s Guide is intended for programmers who are
experienced with 50 Series™ systems, developed by Prime, and at least
one high-level language supplied by Prime (preferably PL/I or FORTRAN
77). Readers should have read the Prime User's Guide, DOC4130-5LA, and
the Programmer'’'s Guide to BIND and EPFs, DOC8691-1IA. Familiarity with
the Subroutines Reference Guides Volumes I-IV, DOC10080-2LA,
DOC10081-1IA through DOC10083-1IA, and updates UPD10081-11A through
UPD10083-11A will be helpful. Prime system architecture is described
in the Prime 50 Series Technical Summary, DOC6904-2LA, and in the
System Architecture Reference Guide, DOCO473-2LA.

The following books are also referenced in this volume: System
Administrator’'s Guide, Vol III: System Access and Security,
DOC10133-1IA; Security Features User's Guide, DOC10130-1lLA; PRIMOS
Commands Reference Guide, DOC3108-6LA.

This guide consists of four volumes. At PRIMOS® Rev. 21.0, the set
consists of the following editions:

Advanced Programmer’'s Guide, Volume O, Introduction and Error
Codes, DOC10066-1IA and update UPD100G6-11A

Advanced Programmer's Guide, Volume I, BIND and EPFs, DOC10055-1LA
Advanced Programmer's Guide, Volume II, File System, DOC10056-2TA

Advanced Programmer’'s Guide, Volume III, Command Environment,
DOC10057-11A

Information is divided among the set as follows:
® Executable Program Formats (EPFs) in Volume I
e The PRIMOS File System in Volume II
e The PRIMOS Command Environment in Volume III
® New features for readers of this guide in Volume O

e Standard error codes used by PRIMOS, along with their messages
and meanings, in Volume O

Volume O also contains information .applicable to all of the other
volumes, such as an explanation of the presentation of the subroutine
calls, general coding guidelines, and the like.
Designed for systems-level programmers, this guide describes the
lowest-level interfaces supported by PRIMOS and its utilities.
Higher-level interfaces not described in this guide include:

® ILanguage-directed I/O

e The applications library (APPLIB)

e The sort packages (VSRTLI and MSORTS)

e Data management packages (such as MPLUSLB and PRISAMLIB)

e Other subroutine packages
All of these higher-level interfaces are described in other manuals,

such as language reference manuals, and the four volumes of the
Subroutines Reference Guide.

This guide documents the low-level interfaces for use by programmers
and engineers who are designing new products such as language
compilers, data management software, electronic mail subsystems,
utility packages, and so on. Such products are themselves higher-level
interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces
described in this guide for best results.

Because of the technical content of the subjects presented in this
guide, it is expected that this guide will be regularly used only by
project leaders, design engineers, and technical supervisors rather
than by all programmers on a project. Most of the information in this
guide deals with interfaces to PRIMOS that are typically used only in
small portions of a product, and with owverall product design issues
that should be considered before coding begins. Once the product is
designed and the PRIMOS interfaces are designed and coded, a typical
product can then be written by programmers whose knowledge of these
- ilssues is minimal. Of course, this statement is predicated on the
assumption that programmers employ widely accepted programming

practices such as modular, or structured, programming;

functional and

design specifications; and thorough unit debugging and testing.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats,
formats, and in examples throughout this document.

statement
Examples illustrate

the uses of these conmands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase letters.

Convention Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
These can be entered in
either uppercase or
lowercase letters.

UPPERCASE

lowercase In command formats, words

in lowercase letters indicate
items for which the user must
substitute a suitable value.

If a command or statement
has an abbreviation, it is
indicated by underlining.
In cases where the command
or directive itself
contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces.

Abbreviations

underlining In examples, user input
in is underlined but system
examples prompts and output are not.

Brackets Brackets enclose one or
[] more optional items.
Choose none, one, Or
more of these items.

Braces Braces enclose a list
{ 1} of items. Choose one
and only one of these

items.

Example
SLIST

IOGIN user-id

LOGOUT

SET_QUOTA]
R

OK, RESUME MY PROG
This is the output
of MY_PROG.CPL

CK.

SPOOL | -LIST
—CANCEL

=)

Ellipsis

Parentheses
()

Hyphen

An ellipsis indicates that

the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly

as shown.

¥herever a hyphen appears
as the first letter of an

option, it is a required
part of that option.

item—x[,item-y]...

DIM array (row,col)

SPOOL -LIST

PRIMOS File System
Concepts

This chapter and Chapter 2, PROGRAMMER INTERFACES TO THE FILE SYSTEM,
explain the concepts and use of the PRIMOS file system.

What follows in this chapter is a brief description of file systems in
general, a rationale for their use, and then, in some detail,
explanations of the elements and concepts that are peculiar to the
PRIMOS file system.

Chapter 2 describes in detail the ways in which programmers can use the
PRIMOS file system elements in building application programs and
subsystems that create, use, and maintain their own or their company’'s
collections of data.

WHAT IS A FILE SYSTEM?

It is hard to imagine a large corporation, a small business, or even an
individual being able to do any business at all without some form of
data. Something as simple as an address book is one kind of data that
an individual might use. A checkbook is another. Businesses use data
in the form of mailing lists, accounts receivable, accounts payable,
cash on hand, and many other collections of words and numbers in their
dajly transactions. In order to use these words and numbers in any
efficient and meaningful way, they must be organized in some fashion,
and there must be tools by which their owners can manipulate them. The
function of a file system is to provide the organization and the tools
. to store and use information by means of a computer.

1-1 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Data

The first characteristic of a file system, then, is that it is a
collection of data —- information in the form of letters, digits, and
symbols arranged into wuseful groups of words and numbers. If the
groups are put into some fixed sequence, such as a last name, a first
name, a middle initial, and a telephone number, each group can be
called a field. A field is usually designated as either alphanumeric
(consisting of a mixture of letters, digits, and symbols) or numeric
(consisting mostly of digits, but possibly including a plus or a minus
sign, a decimal point, one or more commas, and perhaps a currency
symbol). Other kinds of fields, such as pure alphabetic or binary, are
recognized by some programming languages.

A record is the basic unit upon which most file systems operate. A
number of fields can be combined into a structured element known as a
data record. There are also unstructured records, which consist of
strings of alphanumeric information of varying lengths; these are,
strictly speaking, also data records, but to distinguish between
structured and unstructured records, the unstructured records can be
called text records. As a programmer, you will be using both kinds of
records: you will write programs in the form of text records; your
programs will most likely deal with data records.

Storage

The second characteristic of a file system is that its data has been
placed in some kind of storage from which it can be retrieved when
needed. Many forms of storage exist: punched cards, paper tape,
magnetic tape, and various forms of magnetic disks. In these chapters
we will deal only with storage on disks.

Objects

Having a collection of data arranged into fields and records and stored
on a disk is a big step toward organizing the data. It is really all
that you absolutely need to store and retrieve data. Given a set of
commands that the computer understands, you could at this point
successively retrieve records until the desired one is found, and then
do some kind of operation on it. But this is a tedious task, and there
might be more than one class of records upon which you want to perform
different kinds of operations. For example, the telephone number
records would serve a purpose different from that of, say, accounting
records, and for reasons of efficiency or privacy, it would be useful
to keep these two classes of records separate.

A useful file system should be able to segregate different classes of
data into different groups, or objects, the most basic of which is the
, file. The previous paragraph hinted at the existence of two files, one
a list of names and telephone numbers, and the other a list of names

Second Edition 1-2

PRIMOS FILE SYSTEM CONCEPTS

and accounting information. A company employee whose job is to do
telephone surveys of customers could retrieve their telephone numbers
from the first file without having to read and skip, or even being able
to see, any of the information about their accounts in the second file.

You can also imagine a second level of segregation, in which files, as
well as records, might be grouped together to serve some particular
purpose. A company Wwith a nation-wide customer base, for example,
would maintain account files of all of its customers, but might want to
operate on them on a state-by-state or regional basis. One approach to
this task would be to cluster the files for each state or region into
another kind of object: a catalog containing the names of the files in
the cluster. These objects serve as directories to the objects
contained in them, and indeed, some file systems, including the PRIMOS
file system, call them just that. Directories, along with a suitable
language, enable identical actions to be performed on several files by
simply addressing the directory that contains them.

File systems provide other kinds of objects, whose purposes are to ease
the burden of dealing with large collections of data, controlling
access to them, and increasing the efficiency of operating on them.
What PRIMOS provides will be described later in this chapter. How you
as a programmer use them will be explained in the next chapter.

Procedures

No matter how sophisticated it may be, data organization is only an
idea, useless without some way to implement it, and then to act on the
organized data. For these purposes, a set of tools, or procedures, is
needed. Procedures, written into programs, enable you to create file
system objects, write data into them, read data from them, control
access to them, and perform other related functions on both the objects
themselves and the information contained in them.

Summary of File System Rationale

You may have inferred by now that there are good reasons for using a
file system, no matter how elementary or sophisticated your needs may
be. File systems come in many forms, with a variety of capabilities
ranging from simple file creation, reading, and writing to the
construction of highly complex data bases with hierarchical structures
and intricate access control mechanisms. But the ultimate goals of any
file system are simple: to organize data, to enable and simplify
access to it, and to exercise control over who can do what to it.

The rest of this chapter explains the elements of the PRIMOS file
system and how they work together to achieve these three goals.

1-3 Secord Edition

ADVANCED PROGRAMMER'S GUILDE, VOLUME II: FILE SYSTEM

WHAT IS THE PRIMOS FILE SYSTEM?

The PRIMOS file system is Prime’s implementation of a collection of
objects and procedures that let you create, on a disk, a file storage
structure as simple or as complex as you require to fulfill your data
storage, access, and security needs. The structure is analogous to
that of an inverted tree, consisting of a trunk (the disk), branches
(the directories mentioned earlier), and leaves (your files —— the
ultimate target of most of your work with the file system).

At its simplest, the tree consists of a trunk and one or more leaves,
representing a storage volume containing one or more files.
Optionally, you can interpose one or more branches (directories)
between the trunk and the leaves, and include some other objects (whose
functions will be described shortly), to meke your tree as complex as
you wish.

The objects that the PRIMOS file system is concerned with are
e Disk Partition
e Master File Directory (MFD)
e Top-level Directory
e Lower-level Directory
e Segment Directory
® Access Category
e File

There can be varying numbers of all of these objects on any given
system. You can add a number of disk partitions to a system. Each
partition contains one master file directory. Each master file
directory can contain any number of the other file system objects.

In order to get to any of these objects to operate on them, you must be
able to identify each one uniquely. This means that each object must
have a name. The person who creates an object assigns it a name. Disk
partitions and top-level directories are usually assigned names by a
System Administrator. You, the programmer, assign your own names to
objects that belong to you: lower-level directories, segment
directories, access categories, and files.

Once you have created a tree structure suitable for your purposes, you
will want to store some data in it, and use the data that you have
stored. The PRIMOS file system supports two access methods, or ways of
reading and writing data: the Sequential Access Method (SAM), and the
Direct Access Method (DAM).

, You will want to have some control not only over who has access to your
files, but also over what kinds of things those who do have access can

Second Edition 14

PRIMOS FILE SYSTEM CONCEPTS

do to your files. Other users who share your system will want to
exercise the same control over theirs. Typically, you might want all
members of your department to be able to read your files, a select few
to be able to change them or add to them, and you alone to be able to
create and delete them. The PRIMOS file system gives you a variety of
access control tools to establish whatever degree of control you wish
over any, some, or all of the objects that belong to you. These tools
involve user identifications and a set of rmissions, or access
rights, which together make up Access Control Lists (ACLs). An older
form of access control, the directory password, is still supported, but
its use is declining in favor of the access control list.

In addition to allowing several disks to be connected to one computer
system, PRIMOS permits you to connect two or more computer systems to
each other in a network, and to operate on objects "belonging" to one
system from one or more of the other systems. Objects that belong to a
system different from the one you are working on are called remote
objects, and access to them is known as Remote File Access (RFA).
Access to remote objects is controllable, through ACLs, in the same way
as is access to objects on your own system (local objects).

THE TREE STRUCTURE

In the PRIMOS file system, data is stored in objects structured in the
form of an inverted tree. Figure 1-1 shows a sample tree structure.

FILE SYSTEM OBJECTS

The tree structure is made up of file system objects. An object is a
collection of data that has its own name, the name by which you can
refer to the object when you want to do something with it. The
paragraphs that follow describe each of these objects in detail.

Disk Partition

At the top of a tree structure is a disk partition, which may also be
referred to as a logical disk or a volume, or even an MFD.

Disk partitions are configured on physical disks. PRIMOS supports
three kinds of yphysical disks: Cartridge Module Devices (CMDs),
Fixed-media Disks (FMDs), and Storage Module Disks (SMDs). Each of
these is available in several storage capacities; the total range of
usable storage space provided by the three types is from approximately
30 usable megabytes for the smallest CMD to approximately 620 usable
megabytes for the largest FMD. Storage space is divided into surfaces,
tracks (or cylinders), and sectors, the numbers and capacities of which
. are physical properties of the devices, and vary from one type of

device to another. All of the devices and their capacities and

1-5 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

DISK PARTITION <FOREST >

BEECH
ELM
PINE —>
<FOREST >MFD
TOP-LEVEL : TOP-LEVEL
DIRECTORY v ELM DIRECTORY | BEECH
LEAF1 LEAF2
<FOREST>ELM BRANCH1
<FOREST >BEECH
DIRECTORY v BRANCH1
FILE \ LEAF1 TWIG4 FILE v LEAF2
BRANCH 8
<FOREST>ELM>LEAF1 <FOREST>BEECH >BRANCH1 <FOREST >BEECH >LEAF2
DIRECTORY ‘ BRANCHS DIRECTORY {’ TWIG4
LEAF6 LEAF6
<FOREST >BEECH >BRANCH1 > <FOREST >BEECH >BRANCH1 >
BRANCHS TWIG4
FILE | LEAF6 FILE v LEAF6
<FOREST >BEECH >BRANCH1 > <FOREST >BEECH >BRANCH1 >
BRANCH8 >LEAF6 TWIG4 >LEAF6

Sample File System Tree
Figure 1-1

Second Edition 1-6

PRIMOS FILE SYSTEM CONCEPTS

physical characteristics are described in detail in the Operator’s
Guide to File System Maintenance.

Each physical disk, when it is first introduced to the PRIMOS operating
system, is initialized, or formatted, by a System Administrator or
System Operator, using the MAKE command (described in the Operator's
Guide to File System Maintenance). One function of formatting is to
create, on the physical disk, one or more logical disks, or partitioms,
by defining the starting surface number and the number of surfaces that
make up the partition. (A partition may not be smaller than one
surface.) Some physical disks can contain a single partition, while
others either are required to be or operate more efficiently when
configured into two or more partitions. The actual number of
partitions that a physical disk ultimately contains depends both on its
physical characteristics and on the uses to which it is put. The
System Administrator’'s Guide, Vol. I, discusses the considerations
involved in the planning and execution of disk partitioning.

Another function of formatting is to create a file known as the Disk
Record Availability Table (DSKRAT), which enables the file system to
keep track of which physical records contain data and which physical
records are available to have data stored in them. Each physical
record on the disk is represented in this file by one bit, whose value
is 0 if the record is in use, and 1 if the record is available. The
DSKRAT file typically occupies several contiguous physical records,
starting at track O, sector 2, on the first surface on the disk. The
DSKRAT file has the same name as the disk partition.

Note

A physical record is not the same as the data or text records
mentioned earlier. These might be called logical records, and,
unless otherwise noted, will be what is meant whenever the term
record is used.

Another function of formatting is to provide the disk with a bootstrap
file (named BOOT). This file contains machine-executable instructions
that initiate the loading of the PRIMOS operating system, enabling
PRIMOS to be loaded and started from any disk connected to the computer
system. The bootstrap file consists of a single physical record,
located at track O, sector O on the first surface of the disk.

During formatting, the MAKE program may detect a "bad" sector, that is,
a sector having a flaw that makes it impossible to record data into
that sector reliably. When this happens, MAKE creates a file called
the badspot file (named BADSPT) in which are recorded the locations of
any such sectors that it encounters. The file system refers to this
file in order to avoid attempts to write data to unreliable sectors.

1-%7 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The DSKRAT, BADSPT, and bootstrap files are largely invisible and of
little direct interest to you as a programmer. The file system uses
DSKRAT and BADSPT automatically, and the bootstrap record is normally
invoked only by the system operator.

The final object that formatting creates is the master file directory,
beginning at track O, sector 1, on the first surface of the partition.

Master File Directory

Every disk partition is organized in a hierarchy of directories, with
one master file directory, called the MFD, at the top. Each directory
contains a list of names and starting disk addresses of all of the
objects that are immediately subordinate to it. The objects
immediately subordinate to the MFD are top-level directories. The MFD
can contain other information, such as who has access to these objects
and how much disk space the objects are permitted to occupy (their
quotas). The MFD is the starting point in any search for a file system
object. To attach to the MFD, you issue the command:

ATTACH <DISK_PARTITION>MFD

where <DISK PARTITION> is a name, but MFD is entered literally.
Because "MFD" does not appear in a pathname displayed from anywhere

other than itself, the term MFD is often used synonymously with disk
partition to indicate the top of the file system tree structure.

Top-level Directory

A directory immediately subordinate to a master file directory is a
top-level directory. System or Project Administrators often assign
top-level directories to individual users as origin directories,
although lower-level directories may be assigned just as well for this
purpose. (An origin directory is the starting point for a user to
access all of the file system objects belonging to him.) The objects
that can be immediately subordinate to a top-level directory are
lower-level directories, segment directories, access categories, or
files. 1In addition to pointing to the objects it contains, a top-level
directory also includes access control and quota information for them.

Not all top-level directories are assigned as origin directories. On a
disk partition containing the PRIMOS operating system, for example, a
number of directories immediately wunder the MFD may contain objects
such as command files, records of system usage, and other kinds of data
that are related to system operation.

Second Edition 1-8

PRIMOS FILE SYSTEM CONCEPTS

Lower-level Directory

Any directory that is one or more levels below a top-level directory is
a lower-level directory, or =simply a directory. Lower-level
directories can point to the same kinds of objects that top-level
directories can point to, including more lower-level directories.
Directories can be nested to many levels (99 is the default maximum
number). While the nesting level limit depends on such factors as the
physical capacity of the disk on which the directories reside and on
quotas that may have been established on their superior directories,
the real determining factor may be the length of the absolute pathname,
which is limited to 128 characters. User access to and interaction
with a lower-level directory whose pathname contains more than 128
characters is uncertain, because the pathname is truncated. (Pathnames
are explained in the section entitled OBJECT-NAMING CONVENTIONS later
in this chapter.)

Segment Directory

The directories described so far all fall into a class known as file
directories. There is another class known as a segment directory, used
primarily to contain program segments created by the PRIMOS SEG
command, and multiple-index files such as those created by the
MIDASPLUS subsystem.

Segment directories can be contained in file directories just as any
other file system object can. But they can point only to numbered data
files and segment directories, and cannot contain the names of
lower-level directories or other objects such as data files or access
categories. Their main function is to increase the efficiency of
certain utility and application programs through the use of numbered,
rather than named, objects. Once the identifying number of an object
is made known to PRIMOS, it is more efficient to locate and operate on
than is an object identified by a pathname or a filename.

A segment directory cannot be created explicitly by a command from a
terminal. Rather, PRIMOS provides subroutines, expressly designed for
this purpose, that can be included in any program that is intended to
manipulate segmented files. You can see the evidence of a segment
directory’s creation by inspecting the contents of the file directory
that contains it, but its actual creation is transparent to you as you
sit at your terminal.

Refer to Chapter 6, DATA STORAGE AND RETRIEVAL, for further information
on segment directories and to the Subroutines Reference Guide, Vol. IT,
and the SEG and I0AD Reference Guide for information on segmented
programs.

1-9 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Access Category

An access category is a directory entry that contains an access control
list. When you specify that a certain set of users have specific
rights to operate on one of your file system objects, that list of
users and rights (the ACL) takes up space in the directory that
contains the object. If a number of objects require the same 1list,
creating that 1list for each individual object becomes wasteful, and it
is useful to be able to specify this common list by defining it once
and having it reside in only one place. The function of the access
category is to contain the list; the access to each object can then be
set by referring to the name of the access category.

The subject of access control and ACLs is explained in more detail in
the section entitled ACCESS CONTROL later in this chapter.

File

A file is an object that contains a collection of user data. In this
broad sense, any file system object can be thought of as a file, since
all objects presumably contain information useful to their users. A
top-level directory, for instance, has information that its wuser, the
file system, uses in its search for file system objects. But a file,
from the point of view of the human user, contains no pointers to
further subordinate objects; it is a leaf at the end of a branch in
the tree structure.

There are system files and user files. System files are created by
PRIMOS or its administrators and operators for use by the operating
system. Some of them can be read by users for purposes such as listing
users on the system and getting status information of wvarious kinds.
But because of the access controls usually applied to them and their
directories, few system files, if any, can be changed or deleted by the
ordinary user.

User files, on the other hand, are created by you and other users to
fulfill the needs of your application programs. You normally create
structured data files by running your application programs, or text
files by wusing a text editor or word processing application. You can
control access to your files as tightly or as loosely as you wish to
satisfy your security needs and those of any group(s) you may belong
to.

OBJECT-NAMING CONVENTIONS

Every directory, access category, and file must have an identification
that is unique within the entire collection of objects known to the
file system. This requirement appears, at first glance, to place a
heavy burden on you — that of knowing about the name of every existing
object any time you want to assign a name to a new object. But PRIMOS

Second Edition 1-10

PRIMOS FILE SYSTEM CONCEPTS

eases this burden in much the same way as a mailing address enables the
Postal Service to locate a particular John Smith: by using a
hierarchical access path to John Smith through a state, city, street
name, and house number. It is this access path that is unique, even
though some of the individual components may not be.

It is only a small step from the Postal Service'’s access path to the
file system’s access path — the state is the top-level directory; the
city and street name are lower-level directories, the house number is a
file, and the individual Smiths living in the house are records. (At
the uppermost level, the United States is the disk partition; other
countries are different partitioms.)

The mailing address is interpreted by reading geographical elements in
a specific order, from the most inclusive to the least inclusive. The
file system’'s access path is formed and interpreted in precisely the
same way, by combining the names of file system objects in order, from
the most to the least inclusive. The resulting string of names (plus
some separators to show where one name ends and another begins) is
called a pathname, and, for the file system, it is only this pathname
that must be unique.

Thus, the only uniqueness requirement you must satisfy is that, within
a given directory, each object must have a unique name. This is the
same as saying that in a given city there can be only one Washington
Street (but there could be a Washington Street in every city in the
country).

Object Names

An object’'s name 1is a string of up to 32 characters selected from the
following set:

letters (A through 2)
digits (O through 9)

special characters _ # $§ - . * & /

An object name cannot begin with a digit or contain any spaces. Also,
you should avoid names beginning with _, -, &, and $, because they can
cause confusion in certain commands and syntaxes. You can use the
underscore (_) to represent a space if you want your object name to
consist of two or more words. Use the period (.) for separating
object name components.

An object name can consist of one or more components. When there are
two or more components in an object name, each is separated from the
next by a period. Components can be used for whatever purpose you
wish, such as to identify several objects as being related to each

1-11 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

other in some way. As a programmer, you Wwill wuse components as
suffixes to source-text filemames to identify the language used in
writing your programs (for example, .FIN for FORTRAN programs, or .CBL
for COBOL programs). PRIMOS provides subroutines whose functions are
to manipulate suffixes. Refer to the Prime User's Guide for an
explanation of components and for a list of suffixes that Prime
software recognizes.

Although the file system allows up to 16 components in an object name,
two or three are usually sufficient for most practical applications.
In any case, remember that an object name, including all components and
their periods, cannot be more than 32 characters long.

Pathnames

A pathname is a string of object names representing the access path
that the file system follows to get to a specific object. There are
several kinds of pathnames, detailed in the following paragraphs.

Absolute Pathname: From the file system’s point of view, an object’s
pathname contains the name of each directory level that must be crossed
to get to the desired object. Such a pathname is called an absolute
pathname. It begins with the name of the disk partition, and continues
with the names of progressively less inclusive directories until the
one containing the desired object is reached. It ends with the name of
the object. A pathname cannot be more than 128 characters long.

The name of the disk partition is enclosed in <> symbols, and each
subsequent directory name is separated from the next by a > symbol:

<disk_partition>top-level dir>lower-level dir> . . . >objectname

Relative Pathname: As a terminal operator or a programmer, you will
often need to supply only part of an absolute pathname: the part that
follows the name of the directory you are currently working in. This
kind of pathname is called a relative pathname; it is relative to the
directory you are in. It can be used because the file system
"remembers" the elements of the absolute pathname that precede and
include the name of this directory. Most commands that you will invoke
from your terminal, as well as many of the file system subroutines you
will write into your programs, allow you to use relative pathnames.

You use a relative pathname whenever you want to work on an object that
is subordinate to the directory you are currently in, but not
immediately subordinate to it; that is, when one or more directory

Second Edition 1-12

PRIMOS FILE SYSTEM CONCEPTS

levels exist between the one you are in and the object you want to
address. The form of a relative pathname is:

*>lower-level dir> . . . >objectname

Here the asterisk (*) represents the part of the pathname that the file
system "remembers,” and when it is combined with the elements that you
supply explicitly, the result is an absolute pathname that leads from
the disk partition to the object. The part of the pathname represented
by the asterisk is called the home, or working, directory pathname;
the directory itself is the home, or working, directory. In Figure
1-1, if your home directory is BRANCH1, the home directory pathname
represented by the asterisk is <FOREST>BEECH>BRANCH1. The part of the
pathname that you would supply after the asterisk to get to the file
LEAF6 in lower-level directory BRANCHS would be >BRANCH8>LEAFG, giving
the following relative pathname:

* >BRANCHS >LEAF6

This, in turn, is interpreted by the file system as the absolute
pathname:

<FOREST >BEECH >BRANCH1 >BRANCHS8 >LLEAF6

Simple Pathname: When the object you want to address is immediately
contained in your home directory, you can use an even simpler form of
pathname, known as a simple pathname. A simple pathname consists of
only the name of the object you want to work with; it does not contain
any > symbols. Objectname, entryname, and simple filename are terms
used synonymously with simple pathname. If, as in the last example,
your home directory is BRANCH1, and you want to do some operation on
the directory BRANCH8, you can use the simple pathname BRANCHS.

Note

There is an exception to the interpretation of a simple name
when you use the ATTACH command. If, using the example above,
you attempt to attach to BRANCH8 by issuing the command

ATTACH BRANCHS8

the ATTACH command interprets BRANCH8 as a full pathname
(described below) rather than the simple pathname of the
subordinate directory BRANCH8. The result is that PRIMOS
searches for a top-level directory of that name, and in all

1-13 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

likelihood will fail to find it. To attach to the lower-level
directory BRANCH8, you would use a relative pathname:

ATTACH *>BRANCHS8

Full Pathname: A full pathname is one in which you explicitly call out
all of the pathname elements except the first (the disk partition).
The file system assumes that the first element that you specify in a
full pathname is the name of a top-level directory. In Figure 1-1, a
full pathname might be:

BEECH>BRANCH1 >TWIG4

When you specify a full pathname, you are asking the file system to
search all of the active disk partitions that are visible to your
system to find the first occurrence of that top-level directory. If
your system is part of a network, all visible disk partitions on all of
the active systems on the network are searched. Local disks are
searched first, in order of logical disk number, and then remote disks
are searched in the same manner. This can take some time. (You can
limit the scope of such a search, or change the order in which disk
partitions are searched by modifying the ATTACH$ search 1list. Search
lists are described in Chapter 3, SEARCH RULES.) The search ends when
the first (or only) top-level directory with the specified name is
found. That top-level directory, and any intervening lower-level
directories specified in the pathname, are then followed to the desired
object.

There are three points you must understand about a file system search
by full pathname:

e Once a top-level directory with the specified name is found on
any disk, the search terminates.

e If the desired object and all intervening lower-level
directories specified in the pathname exist under that
directory, PRIMOS performs whatever operation you requested on
the object.

e If the desired object or one of the lower-level directories
specified in the pathname does not exist under that top-level
directory on that disk partition, the file system returns an
error message and aborts the search, even though the required
full pathname may exist on another partition (either on the same
system or on another system in the network).

The implication of this file system search method is that, if you want
to use a full pathname and be sure of finding the object you want to
operate on, all of the objects named in the pathname must exist within
the directory that begins the pathname, and the directory that begins

Second Edition 1-14

PRIMOS FILE SYSTEM CONCEPTS

the pathname must be unique on your system (and on any other systems
that may share a network with your system). Your System Administrator
may take the responsibility for uniqueness of top-level directories,
but if there is no guarantee of uniqueness, it is always safer to use
an absolute pathname.

How and When Objects Are Named

You assign a name to a file system object when you create it; how you
create it depends on the kind of object you are creating.

A text file such as a memo or a source program is normally created by
using an editor program, and is named by specifying a filename the
first time you ask the editor to store it. Different editors have
different ways of doing this, documented in their respective manuals
and user’'s guides; storage commands usually take the form of a FILE,
STORE, SAVE, or WRITE.

Application-related data files are usually created by a user program
that executes an open file subroutine. If it does not find the name of
the file it is asked to open, the subroutine creates the file and
assigns the given name to it. The subroutine call also contains
information as to the type of file to be created, and whether it is to
be opened for input, output, or both.

File directories, lower-level directories, and access categories can be
created either by executing a subroutine in a user program or by using
a PRIMOS command at a terminal.

Segment directories are created by various application programs that

manipulate segmented files. User programs can call subroutines to
create segment directories.

ACCESS METHODS

PRIMOS provides two means of file access: the Sequential Access Method
(SAM) and the Direct Access Method (DAM). In both access methods, the
file appears as a linear array of words indexed by a current position
pointer.

Using a SAM file, your program can read or write a number of halfwords
beginning at the pointer, which is advanced as the halfwords are read
or written. File system subroutines emable you to position the pointer
anywhere within an open file, and to read and write data sequentially
from that point. File data can be transferred anywhere in the
addressing range. When a file is closed and reopened, the pointer is
automatically returned to the beginning of the file.

., With the direct access method, the file also appears to be a linear
array of halfwords. This method, however, has faster access times in

1-15 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

positioning operations, since PRIMOS keeps an index to allow fast
random positioning. Subroutine calls to manipulate SAM and DAM files
are identical.

ACCESS CONTROL

Two requirements must be met before your program can operate on a file
system object:

® Your program must be attached to the file directory that
contains the desired object, and, so that this can happen,

® Your program’'s user must have at least Use access to that
directory

Attaching to a File Directory

You can attach your program to the directory containing the desired
object in one of two ways:

e Explicitly, if you invoke the ATTACH command specifying the
pathname of the file directory before you invoke your program

e Implicitly, if you do not explicitly attach to the file
directory, but supply any form of pathname other than a simple
object name when you invoke your program

When you explicitly attach to a file directory by using the ATTACH
command, that directory becomes your home directory. You can then
invoke your programs using simple object names as arguments; your
programs will locate their target objects provided they are immediately
contained in that directory.

For example, if you write a program called COUNT to count the number of
lines in a text file, and install it in the directory MYDIR.MEMOS, one
way you can invoke it is:

ATTACH MYDIR.MEMOS
RESUME COUNT CHARITY

Since the COUNT program was invoked with the simple object name CHARITY
as its argument, OCOUNT looks in the home directory MYDIR.MEMOS,
established by the ATTACH command, for the file CHARITY.

You do not always need to attach explicitly to a file directory before
invoking your programs; they can still operate on objects outside the

. home directory if you supply the object’s relative, full, or absolute

pathname rather than its simple name. Taking the COUNT program again

Second Edition 1-16

PRIMOS FILE SYSTEM CONCEPTS

as an example, and still assuming the same home directory, you could
invoke it in the following way:

RESUME COUNT INIT DIR>LOGIN.CPL

For this invocation, COUNT has to go to a directory INIT DIR, outside
the home directory, to locate the file IOGIN.CPL. To do this, it
attaches temporarily to the outside directory by means of a current
attach point; the target directory is called the current directory.

If you want to enable your programs to operate in both of the ways
shown in these examples, you must use the SRSFX$ subroutine, which is
capable of searching for objects outside as well as within the home
directory. The SRCH$$ subroutine can search only in the home
directory; if you use it in a program, and the target object is
outside your home directory, you will have to attach to the directory
containing the object before invoking the program, as in the first
example.

Note

The TSRC$$ subroutine, which is capable of searching for an
object outside the home directory, is considered obsolete at
PRIMOS Rev. 20.2. Although TSRC$$ is still supported, programs
should use SRSFX$ beginning with Rev. 20.2. At Rev. 21.0,
OPSR$ and OPSRS$ are supported for use with Search Rules.
These two subroutines are described in Volume II of the
Subroutines Reference Guide. Refer to Chapter 3, SEARCH RULES,
for a description of the search rules facility.

The intent of the current attach point is that the attachment is in
effect only for the duration of the program’s execution. Vhen the
program terminates, the attach point should revert to the home
directory. This is especially important if the program does not
terminate normally; in order to provide a consistent result in cases
of abnormal termination, most Prime software resets the current attach
point to the home directory whether it terminates normally or
abnormally.

Attach points and the subroutines that manipulate them are described in
more detail in Chapter 4, ATTACH POINTS.

Access Control lists

As stated earlier, users must have access to all directory 1levels
leading to the objects they are working on, as well as to the objects
-themselves. The means by which you as a programmer are given access,
and by which you can control access, to the various directories and

1-1% Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

files involved in your daily work are clearly explained in the Prime
User’'s Guide. As a programmer of utilities and applications for other
users, however, you need to be aware of the kinds of things your
programs can and should do to enable those users to control access to
the objects these programs create and use.

PRIMOS provides a set of subroutines that you can write into your
programs to enable them to manipulate access control lists (ACLs) in
precisely the same way as you can by issuing ACL-related comands at
your terminal. For example, if you write a program that constructs a
data base for a group of users, it is particularly useful for that
program to be able to establish a data base ACL for that group of users
at the time the data base is created. Or, consider a utility program
that creates new files at various times, all of which should be
identically protected. Using subroutine calls, this program can create
an access category to which each new file is linked when it is created.

An access category, while it takes more disk space than a single access
control list (about as much as two average ACLs), saves disk space when
the same ACL is to protect more than two objects; this is because any
number of objects can be linked to the access category once it is
created. Your program can make these links when it creates its files,
after it checks to see whether the access category already exists.

You can use an access category to synchronize the access to multiple
objects when rights are added or removed from the access category’'s
ACL: whenever a new right is added or an old right is removed, the
change applies to all objects protected by the access category,
removing the need to update each object’'s ACL individually.

The access rights that you can assign to your own file system objects
(using PRIMOS commands) and that your programs can assign to their
objects (using access control subroutines) are all fully described in
the Prime User's Guide. In the Rev. 21.0 release of PRIMOS, you can
specify ALL to include OPDALURVWX, all of the rights supported at this
rev. (If some future rev. of PRIMOS supports new access rights, you
will not get them automatically when you read in your Rev. 21.0 file
that has been assigned ALL. You will have to reassign ALL or add the
new rights individually.)

Access control subroutines can deal with both individual users and
groups of users. Your System or Project Administrator can define a
user group (whose group name begins with a period, such as .DBUSER)
consisting of the user identifications of all of the users of a
particular utility or application program. Your programS can use the
acoess control subroutines to grant or demy access to these groups as
well as to individuals.

Password Directory

Tn an older form of file access control, PRIMOS allows a limited set of
access rights to be specified on a per-file basis. A file directory

Second Edition 1-18

PRIMOS FILE SYSTEM CONCEPTS

can be given an owner password and a non-owner password and a set of
rights for each: R (read), W (write), and D (delete). This form of
protection is giving way to the more comprehensive ACL mechanism, and
will not be further described in this book. Details can be found in
the Prime User's Guide, as can procedures by which you can convert the
older form to the ACL form.

HOW AND WHEN ACCESS IS CALCULATED

In most situations, users need not be concerned about when access is
actually calculated by PRIMOS. However, there are some subtleties of
the ACL mechanism that the advanced user should be aware of. This
section discusses:

® Access calculation concepts

® Access calculation when opening files

® Access calculation when attaching to directories

@ Access calculation for other operations

Access Calculation Concepts

For a given file system operation, there are two times that relate
directly to the ACL mechanism:

® VYhen access is read
® VWhen access is used

For the most part, reading and using occur at the same time. A sample
case is the deletion of a file. When you delete a file, PRIMOS first
reads the access for that file, and then it wuses that access to
determine whether or not you may delete the file.

Vhen you attach to a directory, however, the access is read once. It
is then used immediately to determine whether or not you may attach to
the directory. If you are allowed to attach, PRIMOS remembers the
access it read for the directory. Subsequent operations within and
upon that directory may reuse the access that PRIMOS read when you
first attached. Therefore, if you attach to a directory, and then
change the access for that directory, you will find that for certain
operations the access change has not taken effect. The access
information read for a home or current directory is not discarded until
you attach away from the directory.

1-19 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The following example illustrates an effect of this behavior.

OK, ATTACH COGENT

0K, CREATE SENCRA

OK, ATTACH COGENT>SENCRA
0K, LIST ACCESS

"<Current directory>" protected by default ACL (from "<X1>COGENT"):
COGENT: ALL
$REST: LUR

COK, LIST ACCESS COGENT>SENORA

"COGENT>SENORA™ protected by default ACL (from " <X1>COGENT") :
COGENT: ALL
$REST: LUR

0K, ID

<X1>COGENT>SENORA (ALL access)
1 record in this directory, 1 total record out of quota of O.

No entries selected.

OK, SET_ACCESS COGENT>SENORA COGENT:U -NO_QUERY
OK, LIST_ACCESS

ACL protecting "<Current directory>":
COGENT: ALL
$REST: LUR

(K, LIST ACCESS COGENT>SENORA

ACL protecting "COGENT>SENCRA":
COGENT: U
$REST: NONE

K, 1D

<X1>COGENT>SENCRA (ALL access)
1 record in this directory, 1 total record out of quota of O.

No entries selected.

0K, ATTACH COGENT>SENORA

oK, ID

Insufficient access rights. (curremt_directory) (14)
ER!

In this example, LIST ACCESS commands are invoked at different times to
illustrate the difference between the home directory and the same
directory when referenced explicitly by pathname. In the first two
invocations, LIST ACCESS reports the same access when the directory is
referenced as the home directory and when it is referenced by pathname.

Second Edition 1-20

PRIMOS FILE SYSTEM OONCEPTS

Then, without changing the home attach point, you set the access to the
home directory so that you have only Use access. Among other things,
this removes List access from the ACL on the SENORA directory.

At this point, the third LIST ACCESS command on the home directory
shows that you still hawve ALL access to SENORA. A fourth LIST ACCESS
command on the same directory (using the pathname) reports that you
have only Use access. This discrepancy is illustrated further by the
fact th;;‘t you can still type ID and see the directory contents (or lack
thereof).

However, when you reestablish SENORA as the home attach point, PRIMOS
reads the new ACL for this directory. This results in your having only
Use access to the home directory, which prevents you from examining the
directory contents using ID. It is when you attach again to the
lower-level directory that the new ACL takes effect.

Similarly, the new ACL will take effect for any other users that attach

to the directory, but not for users who were already attached to the
directory when the ACL on it was reset.

Access Calculation When Opening Files

Vhen opening a file or segment directory, the access is read and used
when the open operation first takes place. The access is not used
again during read or write operations. The access will be used if a
change-access operation is performed (by using the SRCH$$ subroutine
with the K$CACC key). However, the access is not read again in this
case. Therefore, once a file is open on a file unit, changing the
access of the file does not affect any operations performed on that
file unit up until the time that file unit is closed. (See the FILE
UNITS section, following, for an explanation of file units.)

Access Calculation When Attaching to Directories

WVhen you attach to a directory, as either a home or a current
directory, PRIMOS reads and uses the access on the directory during the
attach operation. Subsequent operations on the home or current
directory use the access without reading it again, as illustrated
earlier. However, subsequent operations on the same directory when the
name of the directory is specified will cause PRIMOS to read the access
for the directory to check the access rights for those operations.
Once PRIMOS has read the access for the directory, it does not wupdate
any access it has already read for the origin, home, or current
directories.

1-21 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The following example illustrates these points.

, ATTACH COGENT

, CREATE SENCRA

, ATTACH COGENT>SENCRA
, B

INPUT

A TEST FILE.

RRRR

EDIT
FILE TEST FILE
0K, LIST ACCESS TEST FILE

"TEST_FILE" protected by default ACL (from “<X1>COGENT"):
COGENT': ALL
$REST: LUR

(K, SET_ACCESS COGENT>SENORA COGENT :ALURW

OK, LIST ACCESS TEST FILE

"TEST_FILE" protected by default ACL (from " <X1>COGENT"):
COGENT: ALl
$REST: LUR

OK, LIST ACCESS COGENT>SENORA>TEST FILE

"OOGENT>SENORA>TEST _FILE" protected by default ACL
(from " <X1>COGENT>SENORA"):
COGENT: ALURW
$REST: NONE
0K, DELETE COGENT>SENORA>TEST_FILE
Insufficient access rights. Unable to delete "COGENT>SENORA>TEST F

ILE" (delete)
(K, DELETE TEST_FILE
X,

Here, an attempt to delete a file by pathname fails because the access
on its parent directory denies Delete access to the user. However,
because the user was attached to the parent directory before the access
was changed to deny Delete access, deleting the file as a member of the
home directory succeeds.

Access Calculation for Other Operations

Aside from opening files and attaching to directories, most file system
operations cause PRIMOS either to use the access for the current
directory or to read and use the access for the appropriate file system
object just once. For example, renaming a file causes PRIMOS to use
the access for the current directory and make certain that both Delete
and Add rights are granted.

Second Edition 1-22

PRIMOS FILE SYSTEM CONCEPTS

FILE UNITS

A file unit is an open channel to a file, a segment directory, or a
file directory. Through this channel, your programs read data from and
write data to a file system object. Associated with a file unit is a
file unit number, that is, a numeric pseudonym for the object'’'s name.
This number is assigned either by the program (static allocation) or by
PRIMOS (dynamic allocation) when the program opens the file (see File
Unit Number Allocation, later in this section). It uniquely identifies
the file unit for a particular process (user).

Generally speaking, your program performs the following operations to
operate on a file system object:

1. Opens the file: establishes an open file unit and assigns a
file unit number.

2. Accesses the file: the open file unit enables operations on
the file.

3. Closes the file unit: revokes access to the file.

Information Associated With a File Unit

As described previously, a file unit idemtifies an open file system
object. Internally, PRIMOS maintains information on each open file
unit.

Current Object Position: The current object position points to the
location in the file system object at which the next data read or write
begins. For files, the position points to a particular halfword in the
file. For segment and file directories, the position points to a
particular entry in the directory.

The current object position is adjusted automatically by PRIMOS as data
is read from or written to an object. In addition, your program may
change the current object position without reading or writing data by
using the PRWF$$ subroutine, described in Chapter 5, TEXT STORAGE AND
RETRIEVAL.

For files, the current object position is always between O and the
exd-location of the file, or end of file, inclusive. The end-of-file
location is the same value as the number of halfwords in the file;
vhen a file is first created, the end-of-file location is O.

To append new data to the end of an existing file, first position the
file unit to the end-of-file location, which represents the position of
the next halfword to be appended to the file. (If you do not know the
end-of-file location, simply position to the largest possible halfword
,humber, 2147483647. Although PRIMOS returns an error code of e$eof to

1-23 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

indicate that the end of file has been reached, PRIMOS sets the current
object position to the end-of-file location.)

At the end-of-file position, writing data to the file automatically
extends the file as the data is written; an attempt to read data at
this point returns the error code e$eof (emd of file).

Open Mode: The open mode determines what operations are valid for an
open file unit. A read operation requires the file unit to be open for
reading; a write operation requires the file unit to be open for
writing; both operations are valid if the file unit is open for both
reading and writing.

Your program sets the open mode when it first opens a file. Your
program can open a file for reading, for writing, or for both reading
and writing. To do this, the user running your program must have the
corresponding access to the target object. For files and segment
directories, the required access is Read, Write, or both Read and
Write, to match the actions for which they are opened; for file
directories, which are open only for reading, List access is required.

A special open mode, known as virtual memory file access read
(VMFA-Tead), also exists. The PRIMOS executable program format (EPF)
mechanism uses VMFA-read to map an EPF into virtual memory from the
disk. A file unit open for VMFA-read cannot be read or written by a
program.

When your program tries to open a file unit to an object for a specific
action such as writing, another file unit may already be open to that
object for the same purpose. In such cases, PRIMOS checks' the open
mode requested by your program against the read/write lock then in
effect for the object. Your program’'s open request is rejected if the
lock specifies that only one user at a time can do what the open
request intends to do, and

e Another user is already using the object for that purpose, or

® Your program has already opened the object on another file unit
for the same purpose.

See the swotion entitled The Read/Write Lock Attribute, later in this
chapter for the meanings of the possible values for the lock.

Your program can change the open mode of a file if the new open mode
does not conflict with the access or read/write lock controls described
above. The CH$MOD subroutine, described in the Subroutines Reference
Guide, Vol. IT, performs this function.

Second Edition 1-24

PRIMOS FILE SYSTEM CONCEPTS

Object Type: The type of the object open on a file unit determines
what kinds of operations are wvalid on that file unit. Object types
include:

e SAM and DAM files, for which most operations (except directory
operations) are valid, such as data read and data write

® SAM and DAM segment directories, for which only segwent
directory operations are valid, such as position to segment
directory member and delete segment directory member

e File directories, for which only file directory operations are
valid, such as read next directory entry and read named
directory entry

Access categories cannot be opened on a file unit; they are restricted
in size, so they are read and written in single operations and do not
require an associated file unit.

If your program attempts an operation that conflicts with the object
type, PRIMOS returns one of several error codes:

e e$dire (Operation illegal on directory), indicating an attempt
to perform an operation wvalid only for SAM or DAM files on a
segment or file directory

o efntsd (Not a segment directory), indicating an attempt to
perform an operation wvalid only for segment directories on a
file or file directory

e efntud (Not a top-level directory), indicating an attempt to
perform an operation wvalid only for file directories on a file
or on a segment directory

Because these object types are all opened in the same way, these errors
are returned only when your program attempts to perform the invalid
operation, typically after opening the object. To enable your program
to detect an inappropriate object type earlier, have it check the type
value returned by the subroutine it calls to open the object. If the
type value is not appropriate to the intended operations, your program
should close the file unit and report an error.

Object Modified: An object-modified flag is initially reset when a
file unit is first opened (before the object is modified). When the
first data write is performed on the object, this flag is set (after
the object has been modified).

Vhen the file unit is later closed, PRIMOS uses the object-modified
flag to determine whether the date and time last modified (dtm) field
for the object should be updated. If the flag is not set, PRIMOS does
not update the dtm field. Therefore, simply opening a file for writing
. and then closing the file does not cause the dtm field to be updated.
(The date and time last accessed field is set under this and other

1-25 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

circumstances described later in +this chapter.) A program must
actually write data to the file and then close the file to update the
dtm field.

Disk Shut Down: A disk-shut-down flag is initially reset (meaning the
disk is not shut down) when a file unit is first opened. If a disk
partition is shut down by the System Administrator or System Operator
(by using the SHUTDN command), the disk-shut-down flags for all file
units open to objects on that disk are set (meaning the disk is shut
down). After that, any attempt by a program or user to continue
performing operations on an affected file unit is rejected with the
error code e$shdn (Disk has been shut down).

Calculated Access to Object: When your program opens an object, PRIMOS
calculates the user’'s access to the file to make sure that the user can
operate on the file. PRIMOS records the resulting summary of the
user’'s access to the file in the information for the corresponding file
unit. A later attempt by your program to change the open mode of the
file is checked against this copy of the user’s access, not against the
current access on the object itself (which may have changed since the
file unit was opened).

Read/Write Lock: PRIMOS records the read/write lock of an open file
unit in the information for that file unit so that it can quickly
determine whether record-level locking for writes is necessary. If at
least two file units are open to the same object for writing, or one is
open for reading and another is open for writing, PRIMOS must ensure
that simultaneous operations on those file units result in predictable
behavior. Because such a situation is permissible only when the
read/write lock is set to an appropriate value, PRIMOS checks the
read/write lock for the file unit to determine how careful it must be
in guarding against simultaneous access during a read or write. The
more permissive the read/write lock setting, the more care PRIMOS has
to take, and the lower the performance of each read or write operation
will be.

OPENING A FILE

Your program may open a file for reading only, for writing only, for
both reading and writing, or for VMFA-read (EPFs only). If your
program opens a file for reading only, your program can read the file,
but cannot change the file. If your program opens a file for writing
only, your program can write the file, but cannot read the file.

To open a file, your program calls one of many system subroutines,
described in Chapters 5, TEXT STORAGE AND RETRIEVAL and 6, DATA STORAGE

Second Edition 1-26

PRIMOS FILE SYSTEM CONCEPTS

AND RETRIEVAL. ©Each subroutine provides different functionality for
opening a file, but they all provide the following services.

® Search the specified file directory (if a pathname is specified)
or the current directory (if a simple object name is specified)
to see whether the requested filename is there.

® Create the file if the filename is not present and your program
is opening the file for writing or for both reading and writing.
If the filename is not present, and your program is opening the
file for reading only, these subroutines return a "not found"
indicator.

e Determine a file unit number. The file unit number is the only
identifier PRIMOS uses for transferring data to and from the
file.

® Set up tables and initialize buffers in the operating system.

If your program opens a file for writing only, or for reading and
writing, your program may change that file. If the system subroutine
creates a new file at the time of opening, no information is contained
in the file.

Because open-for-write files are subject to alteration (deliberate or
accidental), your program should keep files closed except when they are
being used. Open files absorb system resources; they may also be
unavailable to other wusers. However, frequent open and close
operations also absorb system resources; therefore, try to Dalance
your program’'s use of files so that open and close operations are
infrequent without resulting in file units being open but inactive for
long periods of time.

¥hen the user is communicating with the file structure through one of
the standard Prime translator or utility programs, files are referred
to by name only. PRIMOS, or your program, handles the details of
opening or closing files and assigning file units. For example, the
user can enter an external command such as ED FILEl, which loads and
starts the text editor and takes care of the details of assigning the
file FILEl to an available unit for reading or writing.

File Unit Number Allocation

PRIMOS allows two ways of allocating file unit numbers:
e Dynamic allocation
e Static allocation
Dynamic allocation allows a program to leave to PRIMOS the task of

selecting an available file unit number. VWhen opening a file, a
program specifies dynamic file unit allocation, and PRIMOS returns to

1-27 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

the program the file unit number it has assigned to the open file. The
program then uses this file unit number when reading or writing the
file.

Static allocation is performed by a program. When opening a file, a
program passes the file unit number to PRIMOS. If the specified file
unit is already in use, PRIMOS rejects the attempt to reuse the file
unit; otherwise, PRIMOS uses the program-defined file unit number to
read or write the file.

Dynamic allocation is the recommended method for most programs. Its
advantages are as follows:

@ You do not have to worry about different parts of your program
having conflicting file unit number requirements.

® Your program can call another program that also uses dynamic
unit allocation without causing file unit number conflicts.

® A very large number of file units (32761) are available when
using dynamic allocation, whereas static allocation allows a
maximum of 126 file units open simultaneously for a given user.

® Your program is guaranteed exclusive use of file units.

Static allocation offers very few advantages; these rarely outweigh
any of the advantages of dynamic allocation:

® You can design several programs that are to run together as a
package so that they use agreed-upon statically allocated file
unit numbers; thus, these programs do not have to pass
dynamically allocated file unit numbers back and forth to each
other.

® Your program can use a numerical constant as the file unit
number, rather than requiring the use of a variable.

® Prime translators do treat certain file unit numbers specially
(when enabled using the -ALLOW_PRECONNECTION option), so your
program may use these file unit numbers if it invokes Prime
translators.

File Unit Numbers

File unit numbers 1 through 127 (1 through 15 under PRIMOS II) may be
specified for static allocation by your program. File units 127
through 32761 are returned by PRIMOS only when your program requests
dynamic unit allocation. Your program cannot specify a file unit
number between 128 and 32761 (inclusive) when opening a file system
object.

Second Edition 1-28

PRIMOS FILE SYSTEM CONCEPTS

Unit 16 is reserved for system use under PRIMOS II; however, this fact
is rarely important to consider, as any program linked by BIND or SEG
cannot run under PRIMOS II.

Unit <4 is the command output file unit. Your program should not read
data from or write data to this file unit. Your program may read the
current object position of this file unit, or use GPATH$ to obtain the
full pathname of the command output file.

Unit -1 is the current directory; unit -2 is the home directory; unit
-3 is the origin directory. These three units are usually open to the
correspording directories. You may use this knowledge to perform
certain operations efficiently. For example, to read the directory
entries in the wuser’s origin directory, your program can simply call
DIR$RD using the k$init key the first time for file unit -3. It does
not have to attach to the origin directory (thus preserving the current
attach point) or to open the origin directory for reading (thus saving
time and a file unit).

File Pointer

Once your program has opened a file, a file pointer is associated with
the file unit. To understand how the file pointer works, imagine that
the halfwords in a file are serially numbered beginning at halfword
number 0. The file pointer is the number of the next halfword to be
processed in a file. It identifies the point at which data are read
from and written to the file. As your program reads and writes
halfwords, the associated file pointer is incremented once for each
halfword read or written. If your program reads a line of text, for
example, the file pointer is positioned, after the read, to the
beginning of the next line of text in the file.

Positioning a File

Your program can move the file pointer backward and forward within a
file without moving any data. This is called positioning a file, and
is described in more detail in Chapter 5, TEXT STORAGE AND RETRIEVAL.
The value of a file pointer is called the position of the file.
Positioning a file to its beginning is often called rewinding a file.

Truncating a File

Your program can shorten a file by truncating it. When your program
truncates a file, the part of the file that is located at or beyond the
file pointer is eliminated from the file, and an end-of-file mark is
placed at the pointer position. If the file pointer is positioned at
 the beginning of the file, all of the information in the file is

1-29 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

removed, but the filename remains in the file directory. If the file
pointer is positioned at the end of the file, the truncation has no
effect.

PRIMOS handles the returning of disk space occupied by truncated
records to the free record pool on the disk.

Many programs truncate a text file just before closing it if they have
written new information to the file. Because text files are typically
variable-length record files, as described in Chapter 5, TEXT STCRAGE
AND RETRIEVAL, they are usually written from beginning to end; even if
only one line in a file is changed, the entire file is rewritten in
case the new line is longer or shorter than the line it replaces. 1In
the process of rewriting an entire file, a program may write a new
version that is shorter than the old wversion. Truncating the file
ensures that old data is not left at the end of the new file.

CLOSING A FILE

Your program should always close a file before terminating execution,
whether termination is normal or abnormal. Closing files is described
in more detail in Chapters 5, TEXT STORAGE AND RETRIEVAL and 6, DATA
STORAGE AND RETRIEVAL.

Closing on Normal Program Termination

Your program may close a file unit, also referred to as closing a file,
when it finishes its processing of the file. When your program does
this, the file unit number and the corresponding table areas in the
operating system are "cleaned up" and released for reuse by another
program Or user.

Closing on Abmormal Program Termination

When control returns to PRIMOS by way of an error condition, files are
not normally closed. To provide this functionality in your program,
have your program close any file units it opened when it detects a
fatal error. (Of course, your program should still report the original
error; be careful to separate error code variables used to clean up
after an error from error code variables used to detect original
errors.)

You may also choose to have your program meke an on-unit for many
system error conditions, as described in the Subroutines Reference
Guide, Vol. ITI. If one of these conditions occurs while your program

is running, your program can close any file units it has opened and

Second Edition 1-30

PRIMOS FILE SYSTEM CONCEPIS

then continue to signal the error condition. Typically, this is done
for the QUIT$ condition, signaled when the wuser types CONIROL-P or
BREAK.

Note, however, that although closing file units upon recognition of the
QUIT$ condition has advantages, a distinct disadvantage is that the
user cannot restart your program by issuing the START command. If the
user attempts this, the program continues executing where it was
stopped until it attempts to use one of the closed file units. At this
point, an error indicator is returned to the program.

FILE ATTRIBUTES

PRIMOS maintains a set of file attributes for every file, segment
directory, file directory, and access category on disk. The file
attributes of a file system object can be read and written by a wuser
program that has sufficient access to the parent directory of the
target object. File system attributes include:

e The date and time the object was created
e The date and time the object was last accessed
e The date and time the object was last modified
e The date and time the object was last backed up
e The read/write lock of the object
e The file type (which once established can only be read)
e The dumped/not dumped state of the object
e The special/not special state of the object (which is set at

disk initialization and can only be read)

Note

The date and time created (dtc) and date and time last accessed
(dta) attributes may appear in directory entries beginning at
PRIMOS Rev. 20.0. These expanded entries are accessed through
the use of a hash table. At Rev. 20.0, MAKE creates all
directories as hashed ACL directories unless an option is
specified that creates a pre-Rev. 20.0 disk. A Rev. 20.0
system can use pre-Rev. 20.0 disks, as can a pre-Rev. 20.0

system. A system running pre-Rev. 20.0 PRIMOS can not use
local Rev. 20.0 disks, but it can use remote Rev. 20.0 disks.

1-31 Secord Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The Date and Time Last Accessed (DTA) Attribute

The date and +time last accessed (dta) attribute of a system object or
its parent is modified under various circumstances as depicted below.

Action Result

Object DTA Parent DTA
Modified? Modified?

Close an open entry (from read or write)
Segment directory subfile
After read from write-protected disk
Write attribute
dump
dtm
dtb
dtec *
dta *
other (delete switch, protection,
rwlock, logical type, truncated bit)
Read any attribute
Tape backup (MAGSAV)
Tape backup (BRMS) *
Tape restore (MAGRST -
Set to time of restore)
Tape restore (BRMS)
Size
Remote size
Pre-Rev. 20.0 system operating on
Rev. 20.0 hashed directory
Remote backup (MAGSAV)
Pre-Rev. 20.0 system operating on
Rev. 20.0 hashed directory
Remote backup (BRMS)
Pre-Rev. 20.0 system operating on
Rev. 20.0 hashed directory

2 22 <K 2z ZKZZ2 2Z2Z9Z9z 22
2 g HYy «(KKZ2 Z22dd Z2KZEZ22 2Z2«KE

* Dta and dtc can be set only by members of the user group
named .BACKUP$. Backups performed by this group are
recorded in the date and time last backed up (dtb)
attribute.

Second Edition 1-32

PRIMOS FILE SYSTEM CONCEPTS

Format of the Date and Time Last Accessed Attribute: The format of the
dta attribute of a file system object is declared in PL/I as follows:

dcl 1 dta,
2 date,
3 year bit(7), /* Starting in year 1900. */
3 month bit(4), /* January is month 1. */
3 day bit(5), /* The first day of the month is day 1. */
2 time fixed bin(15); /* (Seconds since midnight)/4. */

As shown in this declaration, the dta attribute occupies one fullword,
or two halfwords. The first halfword is organized as follows:

YYYYYYYMMMMDODTD

Here, YYYYYYY is the year minus 1900, MMMM is the month (January is
month 1), and DIXID is the day of the month.

The second halfword is the number of seconds past midnight divided by
four. The remainder portion of the result of the division is
discarded. Therefore, the granularity of the dta field is four
seconds.

The Date and Time Created (DIC) Attribute

The date and time created (dte) attribute contains the date and time
that a file system object was created.

Format of the Date and Time Created Attribute: The format of the dtc
attribute of a file system object is the same as that for the date and
time last accessed attribute.

The Date and Time last Modified (DIM) Attribute

Vhenever a change occurs in the file system data or structure, the date
and time last modified (dtm) attribute of the file system object
involved is set to the current date and time. User programs may use
the dtm attribute of file system objects to determine when the objects
were most recently modified.

User programs may also change the dtm attribute of a file system object
to any date and time.

1-33 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

How PRIMOS Sets the Date and Time last Modified Attribute: The dtm
attribute of a file system object is set depending upon the object
type., as shown below.

Type DIM Attribute Set

file ¥hen the file is first created, and whenever the
file is closed after data in the file has been
modified or after the file has been truncated.
(The dtm attribute of a file is not changed when
any other attributes of the file are changed.)

segment Vhen the segment directory is first created, and

directory after the segment directory is closed when any of
its members have been created, deleted, modified,
truncated, or renamed, or when its =size is
changed.

file Vhen the directory is first created, when one of

directory its members is created, deleted, or renamed, or
when certain attributes of one of its members are
changed by a user program. Changes to all
attributes except the dumped bit, the date and
time last modified, and the date and time last
backed wup cause the updating of a parent
directory’s dtm field. The parent directory’s dtm
field is also updated when the access control for
one of its members is changed.

access Vhen the access category is first created, or when

category its contents are changed. Changing the contents
of an access category does not, however, update
the date and time last modified field of any
objects protected by that access category.

The purpose of the dtm attribute is to record the change of any file
system data or structure somewhere in the file system itself. Thus,
creating a new file sets the dtm attribute for both the file and its
parent directory. Subsequently deleting the file will also update the
dtm attribute for its parent directory. Although the net result may be
that the contents of the directory are unchanged, the recent dtm
attribute of the parent directory is an indicator that activity has
taken place within the directory.

Format of the Date and Time Last Modified Attribute: The format of the
dtm attribute of a file system object is the same as that for the date
and time last accessed attribute.

Second Edition 1-34

PRIMOS FILE SYSTEM CONCEPTS

The Date and Time Last Backed Up (DTB) Attribute

The date and time last backed up (dtb) attribute contains the date and
time that a file system object was last backed up by a member of the
BACKUP$ group.

Format of the Date and Time Last Backed Up Attribute: The format of
the dtb attribute of a file system object is the same as that for the
date and time last accessed attribute.

The Read/Write Lock Attribute

One of the responsibilities of the PRIMOS file system is to ensure
against attempts by several user processes to read and write one file
simultaneously. For example, if user FRED opens a file for reading and
writing, user BARNEY will be unable to open the file until user FRED
has closed it.

Some applications require this restriction to be lifted. For example,
an application might require several users to have a file open for
writing at the same time. The PRIMOS file system allows this to be
specified via a read/write lock attribute.

The Nature of the Read/Write lLock Attribute: Every segment directory
and file has a read/write lock attribute. File directories and access
categories do not have them, since PRIMOS is entirely responsible for
synchronizing updates to these objects.

A file 1is protected against concurrent access by its read/write lock.
The read/write lock attribute for a file is checked every time a wuser
opens the file for reading, writing, or both reading and writing. In
addition, a check is made to see if the file is already open for
reading and/or writing. Depending on the results of these two checks,
the attempt to open the file may be rejected with the error code e$fius
(File in use).

Even if only one .user is accessing a file, that user may receive a
file-in-use error if he or she attempts to open the file twice. PRIMOS
does not distinguish between two different processes attempting to open
a file and one process attempting to open a file on different file
units. For example, if a user attempts to open one file for writing on
two different file units, the second attempt to open the file may fail.

Segment Directories and the Read/Write Lock Attribute: The read/write
lock attribute for a segment directory affects not only the segment
directory itself, but also serves as the read/write lock for all of its
members since segment directory members have no attributes of their own
- (except for file type).

1-35 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

However, PRIMOS still distinguishes between the segment directory and
each of its members when it is called upon to open the directory or its
members. Therefore, two users may have two differemt files within one
segment directory open for writing at the same time, whereas an attempt
by a user to open a segment directory member file that is already open
may meet with failure.

The Format of the Read/Write Iock Attribute: The format of a
read/write lock attribute is as follows:

dcl rwlock bit(2);

The four possible wvalues for a read/write lock attribute are as
follows:

Value Keyword Meaning

0] SYS Use the system-wide default. The system
default is set via the RWLOCK configuration
directive, as described in the System
Administrator’'s Guide, Vol. I. Normally,
the defanlt is 1, corresponding to a file
read/write lock of 1, or EXCL (described
below).

However, the system-wide read/write 1lock
may be O, meaning only 1 reader or 1 writer
may have a file open at a time. The other
possible value for a system-wide read/write
lock is 3, corresponding to a file
read/write lock of 2, or UPDT (described
below).

1 EXCL Exclusive control; n readers or 1 writer.
This allows multiple processes to read a
single file at a time, unless the file is
being writtemn. If the file is being
written, no other user may open the file.

2 UPDT Update control; n readers and 1 writer.
This allows multiple processes to read a
single file at a time even while it is
being written by one process. It still
prevents more than one process from writing
to the same file at the same time. This
setting is wuseful for command output

(COMOUTPUT) files, for example.

Second Edition 1-36

PRIMOS FILE SYSTEM CONCEPTS

Value Keyword Meaning

3 NONE No control; n readers and m writers. This

provides no Jocking on a file at all.
Using this setting is not recommended, as
it decreases the performance of the file
system, and can result in damage to your
files.

The File Type Attribute

Every object in the PRIMOS file system has a file type. File types
include the following:

Sequential access method file (SAM)

Direct access method file (DAM)

Contiguous access method file (CAM) (for ROAM files only)
Sequential access segment directory (SEGSAM)

Direct access segment directory (SEGDAM)

File directory

Access category (ACAT)

The file type of an object is determined only when the object is
created. It cannot be changed afterwards without deleting and
recreating the object.

The file type of an object can be read by a user program along with
other file system attributes. The file type attribute is declared as
follows:

dcl type bit(8);

The seven possible values, and their corresponding keywords, are:

Keyword Value

(ROAM files only)

1-37 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Notice that file type value 5 is not defined. A value of 5, and any
other undefined value, should be treated as an unrecognized file type.
Prime reserves the right to use any or all of these undefined values.

The Dumped/Not-dumped Attribute

For backup service, the file system provides a dumped bit for all file
system objects except access categories. The file system resets this
bit whenever the corresponding object is modified. A backup utility
can read the dumped bit to determine whether to make a backup copy of
the object. If the dumped bit is reset, the utility can then make a
backup copy, and set the dumped bit on for the object.

The dumped bit for a file system object is reset (turned off) whenever
the dateand time last modified attribute for the object is updated.
Similarly, if a file is deleted or renamed, the dumped bit of the
parent directory is reset when the dtm attribute of the parent
directory is updated.

Dumped Bits for Directories: When a file is modified, the resetting of
dumped bits is not performed on all of the directories that intervene
between the file and the MFD. Therefore, a backup program must walk
through the entire contents of a directory, sensing the dumped bits for
all of its members, before deciding that no recent modifications have
been made to its members.

Dumped Bits for Segment Directories: File attributes exist only for
members of file directories. Therefore, when a file within a segment
directory is modified, the resetting of the dumped bit occurs on the
parent segment directory, and not on the file, because the parent
directory is a member of a file directory, and the individual files are
not.

Therefore, only the top-level segment directory dumped bit need be
tested to determine whether the contents of the segment directory have
changed.

A corollary is that if the dumped bit for a segment directory is reset,

the entire segment directory must be backed up, even if only one member
of the segment directory has been modified.

The Special/Not-special Attribute

User programs that read directory entries may find the special bit
useful. PRIMOS sets this bit on for all of the special files when it
creates a new disk partition. Special files include the MFD, the BOOT

Second Edition 1-38

PRIMOS FILE SYSTEM CONCEPIS

file, the BADSPT file (if it exists), and the record allocation table
for the disk partition (which has the name of the disk partition as its
objectname) .

PRIMOS does not allow user programs to change the special bit for a
file system object, nor does it allow objects with the special bit set
to 1 to be deleted.

Special files exist only in the MFD for a disk partition.

QUOTAS

PRIMOS allows you to set quotas on your directories and lower-level
directories under certain conditions. Your programs can also make use
of quota manipulation subroutines to do this. Quotas are expressed in
terms of numbers of physical disk records, and must be assigned
carefully if they are to be meaningful and useful.

Detailed explanations of quotas and their settings can be found in the
System Administrator’'s Guide, Vol. I, and in the Prime User's Guide.
Subroutines related to quotas are described in Chapter 9, DISK QUOTAS,
and in the Subroutines Reference Guide, Vol. IT.

1-39 Second Edition

Programmer Interfaces
to the File System

Chapter 1, PRIMOS FILE SYSTEM CONCEPTS, introduced you to the concepts
of the file system you will need to know in writing programs that deal
with files, access categories, and the various kinds of directories
that the file system supports.

This chapter will explain the file system interfaces that you as a

programmer can use to communicate with the file system, what these
interfaces allow you to do, and the principles involved in using them.

COMMUNICATING WITH THE FILE SYSTEM

As a programmer using PRIMOS programming tools like editors, compilers,
and linkers, you have at your disposal a number of procedures by which
you can communicate with the file system. From your terminal you can
use commands to attach to directories, set access to file system
objects, and create, open, close, and delete file system objects.
These commands invoke PRIMOS programs that in turn call subroutines
that perform the requested functions. Some PRIMOS programs invoke
command functions, which in turn invoke subroutines to do their tasks.

Commands
Commands constitute the highest-level programmer interface to the

PRIMOS operating system. This is the interface that you use to request
the execution of PRIMOS programs stored in the standard command

2-1 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

directory CMDNCO, and to execute any application program you have
developed and installed in this directory. Descriptions of all PRIMOS
commands are given in the PRIMOS Commands Reference Guide. You or
someone in your organization will provide information on the execution
of your application programs.

You can also request the execution of a program stored in a directory
other than CMDNCO by invoking the RESUME command, supplying the
pathname of the program as an argument.

Command Functions

Command functions can be considered the second highest-level programmer
interface after the command level. Command functions are used in a
PRIMOS command 1line, and are amnalogous to subroutine calls in a
program: during program execution, a subroutine call in a program
statement requests the service of a precompiled procedure stored in a
subroutine library; a command function requests the execution of a
precompiled procedure at PRIMOS command level. A command function
consists of a function name and zero or more arguments or options, all
enclosed in square brackets ([]1). It differs from a command in that
it can return a value and store it in a wvariable for use by a
subsequent command or command function. Command functions are
explained in the PRIMOS Commands Reference Guide and the CPL User's
Guide. -

For repetitive operations at command level, you can build a series of
commands and command functions into a Command Procedure Language (CPL)
file. You can store a CPL program in one of your directories and
execute it by invoking it from PRIMOS command level using the RESUME
command (for detailed explanations, see the CPL User's Guide).

You can also store CPL programs in CMDNCO and invoke them directly as
commands. However, for all but the simplest of routines, a CPL
program’s execution speed tends to be slower than that of the
equivalent program stored in compiled form.

Subroutine Calls

As described in Chapter 1, PRIMOS FILE SYSTEM CONCEPTS, your
application programs can contain subroutine calls that perform a
variety of functions involving the file system: opening and closing
files, reading and writing data, as well as a number of operations
involving pathnames, access control, and the like. You can make use of
the extensive library of Prime-supplied subroutines, but you can also
create your own libraries of subroutines tailored to the needs of your
applications. Commands and command functions make extensive use of
Prime-supplied subroutines during their execution; for example, the
editor program uses subroutines to open, read, write, and close text
files, as well as to create new files when necessary. These operations

Second Edition -2

PROGRAMMER INTERFACES TO THE FILE SYSTEM

implicitly involve other subroutines that may, among other things,
attach to top-level directories, evaluate access rights, and supply
access control lists for newly created files. All of these actions are
largely invisible to you as you sit at your terminal running the
editor, unless you attempt to violate an access right, or PRIMOS
detects some kind of abnormal condition such as a directory quota
overflow.

System Primitives

As you have no doubt inferred, subroutine calls are not necessarily
single-level operations, but may progress to one or more sublevels.
There is a point at which no further sublevels are called during a
subroutine’'s execution. A subroutine that itself makes no calls to
other subroutines is known as a system primitive; it is the lowest
programmer-visible interface between a program and PRIMOS. The PRWF$$
subroutine, for example, is a system primitive that positions, reads,
writes, or truncates a file; it can be called directly from a program,
or indirectly through other subroutines such as SRCH$$ (used to open,
close, delete, change access, or verify the existence of a file).

Arguments and Options

Arguments and options are additional elements of all of the programming
interfaces described so far. They increase the flexibility of
operations of commands, command functions, and subroutines by allowing
variations in the ways in which they operate. An argument is usually a
character string that defines the object to be operated on, such as a
filename, a directory name, a file unit number, or one of the several
forms of pathname. An option defines the way the object is operated
on.

For a call to the SRCH$$ subroutine, for example, an argument would be
the name of a file unit to be operated on, and an option could specify
that the desired action is to open the file unit. Another option could
specify whether the file unit was to be opened for reading, writing, or
both. A subsequent call to SRCH$$ would be used to close the file
unit, using the same file unit number (argument) and a different action
(option).

For example, to open a new DAM file for writing on an unused file unit,
perform some write operations on it, and then close it, you could use
the following sequence of calls:

CALL SRCH$$(K$WRIT+K$GETU+K$NDAM, NEWFILE, 7, UNIT, TYPE, CODE)

Do some write operations

CALI, SRCH$$(K$CIOS, O, O, UNIT, O, CODE)

2-3 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The three K$ options in the first call specify opening a DAM file
(K$NDAM) for writing (K$WRIT) on an available file unit (K$GETU). The
K$CLOS option in the second call causes the file to be closed. UNIT is
a data element defined in the program to receive the file unit number
returned by the subroutine when it opens the file; it also specifies
the file unit to be closed. The zero (O) entries in the close call
indicate that space must be reserved in the calling sequence for all
elements of the call, even though some may be unused for certain
actions.

At command level, arguments and options are similarly used. For
example the SET_ACCESS command accepts both an argument to specify the
name of the object on which the access control list is to be set, and
an option to specify whether the list is to be obtained from an access
category or set the same as another (existing) object.

Attach Points and Access Rights

All of the programming interfaces to the file system assume that you as
a programmer at a terminal, or a user using one of your programs, can
access the object or objects to be worked on. That is, the user-id of
the person working on an object must exist (either explicitly or
implicitly) on that object’'s access control list (ACL), and the ACL
mst include, for that user-id, the kind of access appropriate to what
the person wants to do. (Refer to the Prime User's Guide for details
on access control lists.)

In order to gain access to a file system object, you (or your program)
mst also be attached to the directory that either directly or
indirectly (by way of one or more lower-level directories) contains the
object. You can attach to a directory from your terminal at command
level by using the ATTACH command; your program can do the same thing
by using one of the AT$ subroutine calls. In both cases, Use (U)
access is required at all directory levels that have to be passed
through to get to the object.

The Three Attach Points: The initial, home, and current attach points
identify your (or your user’s) initial, home, and current directories.
Other terms refer to these attach points as follows:

e The initial attach point identifies the initial, origin, or
login directory.

e The home attach point identifies the home, or working directory.
e The current attach point identifies the current directory.

The terms attach point and directory are generally interchangeable.
You establish an attach point by attaching to a directory.

Second Edition 2-4

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The PRIMOS file system is heavily dependent on attach points. Most
commands, command functions, and subroutines involving file access use
the current attach point. Subroutines that accept pathnames to objects
outside the home directory can temporarily change the current attach
point during their execution. Some file system subroutines allow the
attach points to be permanently changed.

There are specific uses for and restrictions on the three attach
points, summarized as follows:

Attach Point Use

Initial Attaches you to your initial directory. The
initial attach pcint 1is established when you
first log in. From the terminal, you can
attach to your initial directory at any time by
issuing the PRIMOS command ORIGIN. Your
program can attach to the initial directory by
a call to the AT$OR subroutine.

Neither you nor any user program can change the
initial attach point. This can be done only by
a System or Project Administrator.

Home Establishes and attaches you to your home
directory. This directory is your primary
working directory. From the terminal, you can
change the home directory by using the ATTACH
command; a program uses a call to the AT$HOM
subroutine. Changing the home attach point
also changes the current attach point. When
commands such as ID and LIST QUOTA are issued
without arguments, the home directory is the
implicit target directory.

User programs may change the home attach point,
but this is rarely done except when it is part
of the function of the program to do this.

Current Establishes and attaches you to a current
directory. The current attach point 1is
normally the same as the home attach point.
However, programs can change the current attach
point by using one of the AT$ subroutines to
operate on objects outside the home directory
without changing the home directory. Before
returning the user to command level, programs
should always reset the current attach point to
the home attach point.

Most PRIMOS subroutines that change the current

attach point reset it to the home attach point
before returning to their callers.

2-5 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Attach Point Use

Normally, you cannot explicitly, from command
level, set the current attach point to be
different from your home attach point. You
can, however, explicitly reset the current
attach point to be the same as the home attach
point by issuing the ATTACH command with no
arguments.

Access Rights: There are currently nine access rights that PRIMOS uses
at various times to determine whether you (as a programmer) or your
program (on behalf of its user) can do what you or your program want to
do with a file system object. These rights and what actions they allow
are explained in detail in the Prime User's Guide. In brief:

0O: Applies to files and directories; allows user to set access
rights except for P and AIL; if the object is a file or a
segment directory, the possessor is permitted to set the
rwlock.

P: Applies to directories; allows the access rights and
attributes of the directory and its subordinate objects to be
changed.

D: Applies to directories; allows subordinate objects to be
deleted or renamed.

A: Applies to directories; allows subordinate objects to be added
or renamed.

L: Applies to directories; allows their contents to be listed.

U: Applies to directories; allows the directory to be “used;"
that is, attached to or passed through on the way toa
subordinate object.

R: Applies to files; allows them to be read; allows EPFs to be
executed.

W: Applies to files; allows them to be written.

X: Applies to local EPFs; allows them to be executed (not
required if R is allowed).

Two other rights, represented by the character strings ALL and NONE,

mean, respectively that all of the above individual rights, or none of
them, apply to the user to whom these designations are given.

Second Edition 2-6

PROGRAMMER INTERFACES TO THE FILE SYSTEM

An important point to remember, when referring to a program’'s access to
a file system object, is that it is not the program that must have
access to the object, but the user on whose behalf the program is
running. That is, the user-id by which a user is known to the system
must exist on the access control list of the object on which an action
is to be performed.

The ACL of a newly created object is always inherited from its
containing directory. It is then said to have a default ACL. A newly
created file or directory inherits all of the access rights of its
parent directory (even though R, W, O, and X accesses are the only ones
meaningful to a file). If you change the inherited ACL of a newly
created directory, then the changed ACL becomes the default ACL for any
objects subsequently created within the new directory.

The existence of the wuser-id on the ACL may be either explicit (the
user—id itself) or implicit (the name of a group to which the user
belongs or the special identifier $REST). Each of these has its uses
in particular circumstances. For example, if you are writing a program
that creates a file for the exclusive use of its user, it would be
appropriate for that program to create for the file an ACL that
contains the user’'s name explicitly, and gives him the necessary rights
to the file. On the other hand, if the program executes on behalf of a
data base group, and that group has a group-id, them it would be
appropriate to crea*~ an ACL that contains the group-id and the rights
applicable to the group. Any fine-tuning of this ACL with respect to
specific users in the group can be done by using the ACL-related
commands from PRIMOS command level.

Object Names

The ways in which object names can be specified vary from command to
command, command function to command function, and subroutine to
subroutine. The allowable forms of object names (simple names,
relative, full, or absolute pathnames) for the various levels of PRIMOS
interfaces are defined in the appropriate manuals and guides. For
subroutines that deal with the file system, they are given also in
later chapters of this book.

You must keep in mind, when writing application programs that use file
system subroutines, that the way you specify an object name in a
subroutine call (if you have a choice of method) can affect one or more
of your attach points in some unexpected way. It may also determine
whether or not the user on whose behalf your program is running has
access to the object whose name is specified. Refer to the section
titled HOW AND WHEN ACCESS IS CALCULATED in Chapter 1, PRIMOS FILE
SYSTEM CONCEPTS, and remember that the same subtleties of the ACL
mechanism that apply at command level can also apply at the command
function and subroutine levels.

¥hen interpreting object name arguments, subroutines make a distinction
between home and current directories that is not made at command level

-7 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

or command function level. For a subroutine, the current directory is
the directory to which the process is currently attached. The home
directory is either the one first attached to when the user logs in, or
the one specified in a subroutine call such as AT$HOM.

Assume, for example, that you have used the ATTACH command to attach to
a directory MYDIR. Your home and current attach points are now MYDIR.
Now, you invoke a command or program with a pathname as an argument:

MYPROG JANESDIR>MEMOS

The behavior of the home and current attach points is as follows:

1. The home attach point remains the same; from your point of view
the attach point does not change.

2. MYPROG calls various subroutines that locate, check access, and
open the MEMOS file in the JANESDIR directory. The subroutines
change the current attach point to JANESDIR.

3. Vhen the program terminates, the last subroutine executed
(typically the one that closes the file) sets the current attach
point back to MYDIR.

When you use a subroutine that accepts only a simple pathname, you must
know the current attach point (and hence the current directory),
because the current directory is the one that is used to determine the
pathname of an object referred to by a simple name.

File Units and Attributes

When a file is opened using a subroutine call such as SRCH$$, it
becomes associated with a file unit number, which is used in subsequent
subroutine calls to manipulate the file data. A file can be read or
written only by referring to its file unit number in read or write
subroutine calls. File units are described more fully in the
Subroutines Reference Guide, Vol. II.

Files can be opened by specifying a file unit number explicitly or by
allowing PRIMOS to allocate one (except in the FORTRAN language, which
requires an explicit file unit number). If you are writing a program
that is entirely self-contained (that is, it does not support, require
support from, or otherwise commnicate file information to another
program), it mekes little difference how you associate a file with its
file unit number, other than to make sure that an explicitly defined
number is not already in use by the same program. However, if your
program is one element of a larger group of programs that make up a
subsystem and that have to communicate file unit information among
themselves, then it is more appropriate to let PRIMOS allocate file
unit numbers, and to have the program that opens the file the first

Second Edition 2-8

S i i

PROGRAMMER INTERFACES TO THE FILE SYSTEM

time store the returned file unit number in a program variable
accessible to all components of the subsystem. This technique is
particularly appropriate when a number of file units are opened at
various times and in unpredictable order.

In programming a subsystem, once a file has been opened for the first
time and associated with a file unit number, then that number should be
used for all subsequent operations on that file, using the centrally
stored file unit number returned from the first open call. 1In
particular, if the same file is opened more than once during an
application’s execution, the file unit number resulting from the first
open call should be used to explicitly define the number for subsequent
open calls, rather than letting PRIMOS allocate a possibly different
number and cause inconsistencies to arise among the members of the
family of programs in the subsystem.

Vhen your program has opened a directory containing a file system
object, a set of attributes describing each object contained in the
directory is available to the program. The attributes are read by the
ENT$RD subroutine call into a structure that your program provides, as
described in detail in Chapter 8, FILE ATTRIBUTES.

You must remember two things when using a subroutine that reads, sets,
or changes the attributes of an object. First, the containing
directory must be open and associated with a file unit number, since
this is the argument that the subroutine uses to determine which
directory to loock in for the attribute list. Second, the object whose
attributes are to be obtained, set, or changed must be immediately
contained within that directory, since the argument specifying the
object’s name does not accept a pathname (that is, the object is
assumed to be in the current directory).

The subroutine used to set or change attributes is SATR$$, which is
fully described in the Subroutines Reference Guide, Vol. II, along with
the formats of the structures that your program needs to provide for
its operation.

PRIMOS Responses (Return Codes)

Virtually all PRIMOS subroutines communicate with their callers in one
consistent respect: they return a numeric code that informs the caller
of the subroutine’s success or failure in performing its task. For
consistency, subroutines that you write for your own applications
should also follow this practice.

PRIMOS subroutines always place the return code in a 16-bit binary
integer data item. If the subroutine was entirely successful in
completing its requested function, the value of this integer is always
zero (0). Other values are returned in case of total failure or
partial success. Your program should always check the wvalue of the

2-9 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

return code upon returning from a subroutine call and take whatever
action is appropriate to the reported condition.

A complete 1list of PRIMOS subroutine return codes is provided in the
Subroutines Reference Guide, Vol. II, with some examples of how a
program might respond to a nonzero response code.

It is important that a subroutine call that can potentially change the
current attach point be handled carefully when a nonzero code is
returned. In order that the programmer can rely on some consistent
current attach point even if a subroutine fails, most PRIMOS
subroutines cause the current attach point to be set to the home attach
point before returning to their callers, regardless of where the
current attach point was before the call. Any programs, command
functions, or subroutines that are to become part of a larger subsystem
should handle nonzero return codes in a consistent way, and should be
documented accordingly.

FILE SYSTEM OPERATIONS: AN OVERVIEW

This section gives you an overview of the five major operations
(creating, opening, reading, writing, and deleting) that your programs
can perform on file system objects and the general requirements that
must be satisfied in order to do these operations. They will all be
explained in more detail in subsequent sections.

General Requirements

In order to perform operations on file system objects, the users of
your programs must be able to attach to the appropriate directories,
and, in order to do this, they must have rights appropriate to what
they want to do. A successful attach to a directory requires that the
user have Use access to all directory levels from the MFD down to the
level that contains (or will contain) the object. Additional rights
required on the directory immediately containing the object depend on
the action that is to be performed. For example, in order to change
the name of a file, its owner must have both Add and Delete access to
the directory containing the file.

Creating Objects

Programs that operate on files contain calls to subroutines that locate
the files to be operated on, either in the user’s home directory or in
the current directory. If the attempt to locate a file that is to Dbe
opened for writing, or for both reading and writing, is unsuccessful,
you can give the program the option of creating it in whichever
directory it was being searched for. You do this by supplying a key
that specifies the type of file to be created if it is not found. Your

Second Edition 2-10

PROGRAMMER INTERFACES TO THE FILE SYSTEM

program can also create lower-level directories by using the same
subroutine calls with the appropriate keys. Creating a new top-level
directory requires a different subroutine from that which creates
lower-level directories and files.

If a search for a file for reading is unsuccessful, the subroutine
returns an error code; the program must decide how to handle this
cordition. It is fairly probable that the file is not found because
the program is attached to a directory other than the one in which the
file is expected to exist; in this case the user is most likely
expected to have attached to the proper directory from PRIMOS command
level before executing the program. However, if the application can
expect that a file to be read may not exist, then it should, by means
of the appropriate key, test for the file's existence, inform the user
in some meaningful way of its nonexistence, and provide for a graceful
escape from the situation.

Opening Objects

Your programs open file system objects by using calls to any of several
subroutines, depending on where the object is relative to the home
directory, what kind of optional actions are desired (for example,
creating new objects or retrying in case of initial failure), and
whether your applications are more suited to wusing system library
subroutines or application library subroutines. The Subroutines
Reference Guide, Vol. II, contains a chapter of all of the subroutines
you can use to open file system objects.

In general, the subroutines in the application 1libraries (APPLIB or
VAPPLB) are easier to use for application programs, as their user
interfaces are comparatively simple and they return codes that are
either true or false. In many cases, these subroutines call
lower-level subroutines, taking care of supplying arguments with which
you as a programmer need not concern yourself. They also perform all
possible error detection and recovery tasks before returning to their
callers, thus ensuring that everything that can be done to complete the
requested function is done, and that whatever errors are encountered
are reported.

Reading Objects

Assuming that your program has successfully opened an object for
reading or for reading and writing, the object can then be read, using
any of several subroutine calls. The call to be used depends on
whether the object is a file, a file directory, or a segment directory;
there are also calls intended expressly for reading ASCIT text files,
getting characters or lines of text from command files or from the
terminal, and getting characters from an array.

-11 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Positioning an object involves an implied read of the object, although
no data is actually transmitted. Calls to position an object can be
made either with a specified absolute position or with a position
relative to the current position, either backward or forward. An
object can also be positioned at its beginning or end.

Writing Objects

Assuming that your program has successfully opened an abject for
writing or for reading and writing, the object can then be written,
using any of several subroutine calls. Generally, the writing of data
files is done by explicit calls to write a line to a text file, a data
file, or a command output file or terminal. You can also call a
subroutine whose function is to store characters into an array.

The writing of other file system objects (file and segment directories
and access categories) is done implicitly during many operations on
files. File creation, ACL manipulation, and file renaming, for
example, all implicitly involve writing to these objects, but there are
no explicit subroutine calls that result in writing a specific
character or string to them.

Files can be positioned to any arbitrary point before writing data to
them. Normally, when additional data is written to a SAM or DAM file,
the file is positioned to its end before writing is done; if the
position is somewhere within the file (or at its beginning), existing
data will be overwritten. Indexed files, such as those used by
MIDASPIUS, are capable of having records inserted into them; such
subsystems take care of insertions in such a way as not to overwrite
existing data.

Deleting Objects

Several subroutines are available to delete files and directories; the
one you choose will usually depend on whether the object is directly
contained in the home directory or elsewhere.

The ability of your program to delete an object depends on the user’s
access rights not only on the object itself but also on the parent
directory. The state of the delete-protect attribute on the object
also affects the user’'s ability to delete an object, independent of
access rights. The ability to set or reset this attribute, in turn,
depends on the user’'s having Protect rights on the parent directory.

Having given you an overview of the programmer's interfaces to the file
system and the kinds of things that can be done with file system
objects, the rest of this chapter gives more details on file system
operations at the command level and at the subroutine level.

Second Edition 2-12

PROGRAMMER INTERFACES TO THE FILE SYSTEM

ACCESS CONTROL TO FILE SYSTEM OBJECTS

This section describes the requirements and procedures for attaching
and controlling access to file system objects, both at command level
and at the subroutine level.

As previously described, only file directories can be attached to; you
cannot attach to segment directories, access categories, or files
directly, but you can attach to the file directories that contain any
of these objects.

Attach/ACL Requirements

Your user-id, or that of your program’'s user, must appear at all
directory levels above the directory that is being attached to, and the
access rights must include Use access. The user-id can be explicit, or
it can be implied as the member of a specific group-id or the special
group $REST. Use access can be specified explicitly (U access) or
implicitly (ALL access).

Access control lists and the subroutines for manipulating them are
described more fully in Chapter 7, ACCESS CONTROL LISTS (ACLS).

Attachi

At the command level you can attach to two of the three kinds of attach
points: the home attach point and the initial, or origin, attach
point. Remember that the initial attach point, the point at which you
are attached when you first log in, cannot be changed except by your
System Administrator or Project Administrator. You can change your
home attach point, however, at any time; in fact, if the files you are
working on (specifically, program files if you are a programmer) are in
a directory other than your initial directory, you should use Attach
commands to attach to the directory containing them.

At the subroutine level, your programs can set not only the initial and
home attach points, but also the current attach point, a (usually)
temporary attachment that is in effect only for the duration of the
routine in which the subroutine is called.

ATTACH TO INITTAL DIRECTCRY

Command Command Function Subroutine

ORIGIN None AT$OR

2-13 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Attach to Initial Directory (Command): To attach to the initial, or
origin, directory from PRIMOS command level, use the command:

CRIGIN

Using the ORIGIN command sets both the home and the current attach
points to the initial directory. The ORIGIN command requires no

arguments.

Attach to Initial Directory (Command Function): There are no command
functions that explicitly set the attach point to any directory.
However, some command functions, such as OPEN _FILE, could implicitly
attach temporarily to the initial directory. A CPL program that needs
to attach specifically to the initial directory can use the CRIGIN
command as one of its statements.

Attach to Initial Directory (Subroutine): To attach to the initial
directory from a program, use the subroutine call:

AT$OR (key, code)

The value of key is K$SETH if both home and current attach points are
to be set to the initial directory, or K$SETC if only the current
attach point is to be set.

Note that if only the current attach point is set, any subroutine that
uses a simple object name as an argument will lock in the initial
directory for the object, regardless of the setting of the home attach
point.

The details of the calling sequence for the AT$CR subroutine are given
in Chapter 4, ATTACH POINTS.

ATTACH TO HOME DIRECTORY

Command Command Function Subroutine

ATTACH None ATSHOM

Attach to Home Directory (Command): To define and attach to the home
directory from PRIMOS command level, use the command:

ATTACH [directory_name]

Second Edition 2-14

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Using the ATTACH command sets both the home attach point and the
current attach point to the directory specified as the argument. If no
argument is given, no change occurs (unless the current attach point
has been left set at some other point in a previous operation, in which
case it is reset to the home attach point).

The directory name argument can be any form of pathname that leads to a
file directory.

Attach to Home Directory (Command Function): There are no command
functions that explicitly set the attach point to any directory. A CPL
program that needs to specifically set the home directory can use as
one of its statements the ATTACH command in the form just described.

Attach to Home Directory (Subroutine): To set the current attach point
to the current home directory from a program, use the subroutine call:

AT$HOM (code)

The details of the calling sequence for the AT$HOM subroutine are given
in Chapter 4, ATTACH POINTS.

ATTACH TO ANY DIRECTORY

Command Command Function Subroutine

ATTACH None ATS$
AT$ABS
AT$ANY
ATS$REL

Attach to Any Directory (Subroutine): To set the current and
(optionally) the home attach points to a specific directory (other than
the initial or home directory), use one of the following subroutine
calls:

AT$ (key, path, code)

AT$ABS (key, partition, directory, code)
AT$ANY (key, name, code)

AT$REL (key, name, code)

Details of these calling sequences and their operations are given in
Chapter 4, ATTACH POINTS.

.In all of these calls, the value of key determines whether both the
current and home attach points are to be set, or only the current

2-15 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

attach point. A value of K$SETH sets both; a value of K$SEIC sets
only the current attach point. If you specify K$SETH, the effect is
the same as if the ATTACH command had been used at the terminal.

The AT$ call is the most general of all of the attaching calls, in that
it accepts a pathname in any form, and then calls one of the others,
depending on the results it obtains from parsing the pathname. A null
name argument (‘) means the home directory, and is equivalent to the
AT$HOM call or the ATTACH command with no argument. You can use the
AT$ call to attach to anywhere from anywhere, regardless of whether or
not the current and home attach points were the same before the call.

In the AT$ABS call, partition is the name or logical disk number of an
active disk on the system on which your program is running, or on
another system connected through a network. The ition argument can
also be the null string, implying logical disk O (zero); or it can be
‘*' signifying the disk partition containing the directory to which
the current attach point is set at the time of the call.

The directory argument is the name (and optional directory password,
separated by a single space) of a top-level directory on the disk
partition identified by partition. A null directory argument signifies
the MFD of the disk partition. .

The AT$ANY call requires name to be a full pathname, beginning with the
name of a top-level directory. Remember the rules that were givem in
Chapter 1, PRIMOS FILE SYSTEM CONCEPTS, for directory searching when
using a full pathname.

The AT$REL call requires name to be the name of a directory immediately

subordinate to the current directory. It can include a directory
password, separated by a single space.

Access Control List (ACL) Functions

The ACL. functions can be used at the command level to define, modify,
list, and delete user access rights on file system objects. You can
define ACLs by default from the object’'s containing directory, by
specifying separate user-ids and their individual rights, or by
specifying user groups and the rights that apply to them. You can also
define access categories that protect any number of objects with the
same ACL. The PRIMOS Command Reference Guide and the Prime User's
Guide explain the use of the various ACL-related commands in detail.

When using ACL-related subroutines in a program, your program must
furnish the ACL entries in the form of a structure containing the
user—id/access-right pairs; the subroutine call supplies the address
of the structure in the form of a pointer argument, addr(acl struct).
Chapter 7, ACCESS CONTROL LISTS (ACLS), gives the details of the
calling sequences and operations of all of the ACL-related subroutines.

Second Edition 2-16

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The ACL structure is shown pictorially in Chapter 7, ACCESS CONTROL
LISTS (ACLS), and in program declaration form in the Subroutines
Reference Guide. Vol. II.

The target object for any ACL-related command or subroutine can be a
file, a file directory, or a segment directory. An access category is
a special object that contains an ACL used to protect other objects;
the ACL of the access category itself is the same as that of the group
of objects it protects.

At both command and subroutine levels you, or your program’'s user, must

have Protect and List access to the containing directory, and Protect
access to the object on which an ACL is to be set.

SETTING DEFAULT ACCESS

Command Command Function Subroutine
SET_ACCESS None ACSTIFT
SAC

Setting Default Access (Command): PRIMOS gives a default ACL
automatically to any object whenever the object is created; the ACL is
the same as that of the containing directory. (The System
Administrator or Project Administrator should set a specific ACL, as
described later, on a top-level directory if it is to be different from
that of the MFD.) Any objects created at levels below the top-level
directory will then get this specific ACL by default.

To set a default ACL from PRIMOS command level, use the command:

SET_ACCESS objectname
SAC

In this form of the SET_ACCESS command, if the target object has an ACL
different from the default, its ACL will be reset to the default. A
message may be returned indicating that there is already an ACL set on
the object and asking whether it is to be replaced; the message can be
suppressed by using the -NO_QUERY option.

Be careful, when you set the default access on an object, that the
directory that is supplying the default ACL has rights appropriate to
the object on which the default is being set. For example, Read and
Write access as such are not meaningful to directories, but are usually
included in directory ACLs so that they will be inherited by
subordinate files automatically.

_*-17 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Setting Default Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.

Setting Default Access (Subroutine): To set a default ACL from a
program, use the subroutine call:

ACSDFT (name, code)

The name argument can be any of the valid forms of pathname. The same
precautions regarding propagated ACLs apply to the AC$DFT subroutine as
to the SET_ACCESS command described above.

Details of the calling sequence and its operation appear in Chapter 7,
ACCESS CONTROL LISTS (ACLS).

SETTING SPECIFIC ACCESS

Command Command Function Subroutine
SET_ACCESS None AC$SET
SAC

Setting Specific Access (Command): To set a specific ACL from PRIMOS
command level, use the command:

{ SET_ACCESS } objectname user-id:access-rights ...[-NO_QUERY]
SAC

In this form of the SET ACCESS command, the resulting ACL contains the
list of users and access rights given as arguments to the command,
plus, by default, $REST:NONE if no other specific rights are givem to
the $REST group. The ACL thus produced replaces any ACL already
existing on the object. To modify an existing entry on an ACL without
replacing the ACL, use the EDIT _ACCESS command, described later.

If objectname does not exist, PRIMOS assumes that you want to create an
access category. If you do, refer to Creating an Access Category,
described later; otherwise answer NO to the query returned by PRIMOS.

Setting Specific Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set
an ACLL can use the appropriate PRIMOS command as a program statement.

Second Edition 2-18

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Setting Specific Access (Subroutine): To set a specific ACL from a
program, use the subroutine call:

AC$SET (key, name, addr(acl_struc), code)

In the AC$SET subroutine call, key governs the creation and replacement
of ACLs and specifies the error to return if ACS$SET is called to
replace a nonexistent ACL or to create an ACL on an object that already
has one. The AC$SET description in Volume IT of the Subroutines
Reference Guide 1lists the possible key values and their meanings. The
name argument specifies the object that is to receive the new ACL, as
in the AC$DFT call previously described. The structure of the ACL
entries is shown in diagrammatic form in Chapter 7, ACCESS CONTROL
LISTS (ACLS). Each entry can have as many as 80 characters, and there
can be as many as 32 entries in a given list.

SETTING CATBEGORY ACCESS

Command Command Function Subroutine
SET_ACCESS None AC$CAT
SAC

Setting Category Access (Command): To set the access of an object to
that of an existing access category, use the command:

{ SET_ACCESS } objectname -CATHGORY acatname
SAC

The objectname argument can be any valid form of pathname. The access
category specified by acatname must exist in the same directory as that
of the object being protected. (Creating an access category is
described later in this section.)

Setting Category Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.

Setting Category Access (Subroutine): To set the ACL of an object from
a program, use the subroutine call:

ACSCAT (name, category, code)

2-19 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The name argument identifies the object to be protected; it can be any
valid form of pathname. The category is the simple name of the access
category that is to protect name; the access category must exist and
must reside in the same directory as name. The calling sequence and
operation of the AC$CAT subroutine are described more fully in Chapter
7, ACCESS CONTROL LISTS (ACLS). Access requirements for using the
ACS$CAT subroutine are described in the Subroutines Reference Guide,
Volume II.

SETTING ACCESS LIKE THAT OF ANOTHER OBJECT

Command Command Function Subroutine
SET_ACCESS None ACSLIK
SAC

Setting Access Like That of Another Object (Command): To set an
object’s access so that it is identical to that of another object fram
PRIMOS command level, use the command:

{ SET_ACCESS } objectnamel —LIKE objectname
SAC

Both objectnamel and objectname2 can be any valid form of pathname;
objects need not be in the same directory. The objectnamel argument
identifies the target object on which the access is to be set;
objectname2 identifies the object whose access is to be applied to the
target object.

There is also no requirement that source and target objects be of the
same type. If the source and target objects are of different types
(for example, the source is a directory and the target is a file), be
sure that the source object includes access rights appropriate to the
target, as described previously under Setting Default Access.

Vhen you use this form of the command, it does not matter whether the
source object’'s ACL is derived from its superior directory, from an
access category, or a specific ACL; the ACL of the target will always
be a specific ACL, since it is the ACL’'s values that are copied, not
the location of its source.

Setting Access Like That of Another Object (Command Function): There
are no command functions to set access control lists. A CPL program
that needs to set an ACL can use the appropriate PRIMOS command as a
program statement.

Second Edition 2-20

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Setting Access Like That of Another Object (Subroutine): To set an
object’s access so that it is identical to that of another object fram
a program, use the subroutine call:

ACSLIK (target, reference, code)

Both target and reference are any valid form of pathname; target
identifies the object on which an ACL is to be set, while reference
identifies the source of the ACL. The actions are the same as
described in the command description just given; the calling sequence
is described more fully in Chapter 7, ACCESS CONTROL LISTS (ACLS). The
Subroutines Reference Guide, Vol. II gives information on the access
rights required to use the ACSLIK call.

CREATING AN ACCESS CATEGORY

Command Command Function Subroutine
SET_ACCESS None ACS$SET
SAC

Creating an Access Category (Command): To create an access category
from PRIMOS command level, use the command:

{ SET_ACCESS] objectname user-id:access-rights ...
SAC

This is the same form of SET ACCESS command as you use to set a
specific ACL on an object, as described previously under Setting
Specific Access. The difference is that, in this case, objectname
identifies a nonexistent object, and PRIMOS assumes that you want to
create an access category. PRIMOS tells you that the access category
does not exist and asks whether you want to create it. If you do, the
access category is created and given the name objectname.ACAT and the
specified ACL entry or entries. You can then use this access category
in subsequent operations to set category access as described
previously.

Be careful, if you really want to create an access category, that the
named object does not exist; otherwise, PRIMOS will locate the named
object and apply the specified ACL entry or entries to it, with
possibly unwanted results. If you know that an object whose name is,
say, PRIVATE exists, you can still create an access category with the
name PRIVATE.ACAT in the same directory by explicitly supplying the
.ACAT suffix when giving objectname. PRIMOS will recognize this as a
different object from PRIVATE, and will create the access category
« PRIVATE.ACAT.

2-21 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The objectname argument can be any valid form of pathname, implying
that you can create an access category anywhere. Remember, though,
that an access category must be in the same directory as the object(s)
it is intended to protect.

Creating an Access Category (Command Function): There are no command
functions to create access categories. A CPL program that needs to
create one can use the appropriate PRIMOS command as a program
statement. It would be prudent for your CPL program to test for the
existence of the named object using the [EXISTS] command function
before attempting to use the command to create an access category. If
the function returns a result indicating that the object exists, it
should allow the wuser to specify what to do. Refer to the CPL User's
Guide for information on the [EXTISTS] command function and how to query
the user and request a response.

Creating an Access Category (Subroutine): To create an access category
from a program, use the subroutine call:

AC$SET (key, name, addr(acl_struc), code)

Vhen using AC$SET to create an access category, name must identify a
nonexistent object (any valid form of pathname), and key must have a
value of either O (zero) or K$CREA. As before, addr(acl _struc) is a
pointer to an area in your program that contains the structure of the
ACL to be set on the access category.

The calling sequence and operation of the AC$SET subroutine are more
fully presented in Chapter 7, ACCESS OONTROL LISTS (ACLS). The
Subroutines Reference Guide, Vol. II gives the access rights required
to use the AC$SET call.

CHANGING ACCESS TO AN OBJECT

Conmmand Command Function Subroutine
EDIT ACCESS None AC$CHG
FEDAC

Changing Access to an Object (Command): To change an existing ACL on a
file system object from PRIMOS command level, use the command:

{EDIT_AGGE:SS } objectname user-id:access-rights ...
EDAC :

Second Edition 2-22

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The objectname argument identifies a file system object that already
has an ACL of any type: specific, category, or default. The object
can be identified by any valid form of pathname. The ACL argument(s)
identify one or more individual entries on the 1list that are to be
added, deleted, or changed. Only the specified entries are affected;
unreferenced entries are left on the list unchanged.

Changing Access to an Object (Command Function): There are no command
functions to modify access categories. A CPL program that needs to
modify one can use the appropriate PRIMOS command as a program
statement.

Changing Access to an Object (Subroutine): To change an existing ACL
on an object from a program, use the subroutine:

AC$CHG (name, addr(acl_struc), code)

In the AC$CHG call, the name and addr(acl struc) arguments have the
same functions and requirements as in the ACS$SET call described
earlier. This is the fundamental call used for changing access, and
behaves in the same way as the EDAC command. There are other methods,
which are described in Chapter 7, ACCESS CONTROL LISTS (ACLS), used to
change an existing ACL to that of another object and to make selective
modifications to it afterwards.

DELETING ACCESS CONTROL ENTRIES

Command Command Function Subroutine
l SET_ACCESS } None AC$SET

SAC

EDIT ACCESS None AC$CHG

EDAC

Deleting ACL. Entries: There are no explicit commands, command
functions, or subroutines that perform the sole function of deleting an
ACL entry or entries; the basic approach to accomplish this is to use
the SET_ACCESS or EDIT ACCESS functions, and to include entries that
contain the special access right NONE.

For example, if an ACL contains an entry BAKER:IUR and you want to
exclude user BAKER from any access at all, you can use the EDIT_ACCESS
command (or the AC$CHG subroutine call), specifying the explicit entry
BAKER:NONE. This explicitly states that user BAKER has access NONE,
and an entry to this effect is placed on the ACL. Alternatively, you
can use the EDIT _ACCESS command, specifying BAKER:, that is, the
- user-id and the colon, but no access rights. This results in the entry
for user BAKER being deleted from the ACL entirely.

2-23 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

You can also use the SET ACCESS command (or the AC$SET subroutine call)
and explicitly specify all of the entries on the existing ACL except
the entry for BAKER.

Using the EDIT ACCESS command is much the easier method, especially if
the ACL is long and complex.

CREATING FILE SYSTEM OBJECTS

File system objects are created in several different ways, depending on
the type of object. In order to create any type of object, you (at
command level) or your program’'s user must have Add access to the
directory immediately containing the object, and Use access to any
higher-level directories.

For those objects that can be created at command level (file
directories, files, and access categories), you can specify either a
simple name to create the object in the home directory, or a pathname
to create the object in any other directory for which you have the
appropriate access.

At subroutine level, you can use any of several subroutine calls to

create an object, depending on its type and location. All types of
objects can be created at this level.

Creating File Directories

In order to create a directory, you (or your program's user) must have
Add access to the directory (which may be the MFD) that will contain
the directory, and Use access to any directories that are superior to
the one being created.

CREATING FILE DIRECTCRIES

Command Cormand Function Subroutine
CREATE None DIRSCR
CREASS *

* The CREA$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
CREA$$ is still supported, programs should use DIR$CR
beginning with Rev. 20.2.

Second Edition 2-24

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Creating a File Directory (Command): To create a file directory from
command level, use the command:

CREATE directory_pathname [-MAX n] [-CATEGORY acatname)

The directory_pathname argument can be any legitimate form of pathname,
implying that you can create a file directory anywhere, provided, of
course, that you have the appropriate access. The ACL of the new
directory will be the same as that of the containing directory; you
can modify it once the directory exists by using any of the access
control commands described previously.

Creating a File Directory (Command Function): You can include the
CREATE command in a CPL program in the same form that you use when you
enter the command at your terminal; if you invoke the CPL program from
your terminal, the results are the same, including the return of error
messages. However, if you invoke the CPL program as a phantom, no
error messages are rebturned to your terminal. The program would not,
for example, return a message if you were to try to create a directory
that already existed. It would therefore be wise to check for the
existence of the directory before attempting to create it; you can use
the [EXISTS] command function for this purpose, as described in the CPL
User's Guide.

Creating a File Directory (Subroutine): To create a file directory
from a program, use the subroutine call:

DIR$CR (dirname, addr(attributes), code)

The DIR$CR subroutine creates a lower-level directory in the location
indicated by the pathname. It creates a password directory if the
current directory is a password directory; in this case, the owner and
nonowner passwords are applied to the new directory. If the current
directory is an ACL directory, the new directory is also an ACL
directory; in this case, any passwords supplied in the call are
ignored.

NOTE
The CREPW$ subroutine creates a password directory within an
ACL directory. It is documented in Appendix A of the
Subroutines Reference Guide, Vol. II. CREPW$ is considered
obsolete at PRIMOS Rev. 20.2. Although CREPW$ is still
supported, programs should use DIR$CR beginning with Rev. 20.2.

2-25 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Creating Files

In order to create a file, you (or your program’s user) must have Add
access to the directory that is to contain the file, and Use access to
all superior directories leading to this directory.

CREATING FILES

Command Command Function Subroutine

None None SRCH$ $
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Creating a File (Command): There is no command that explicitly creates
a file; files are implicitly created by PRIMOS programs such as ED,
the compilers, the PMA assembler, and the linkers SEG, LOAD, and BIND.

An empty file is implicitly created from PRIMOS command level if the
OPEN command is given to open a nonexistent file for writing or for
reading and writing. Opening file system objects is discussed in more
detail later in this chapter and in Chapters 5, TEXT STORAGE AND
RETRIEVAL and 6, DATA STORAGE AND RETRIEVAL.

Creating a File (Command Function): As at PRIMOS command level, there
is no command function that explicitly creates a file; you can include
the OPEN command as a CPL program statement if you want the program to
create an empty file.

Creating a File (Subroutine): To create a file from a program, use one
of the subroutine calls:

SRCH$$ (key, name, name_len, unit, type, code)
SRSFX$ (key, name, unit, type, num suffixes, suffixes,
basename, suffix used, code)

These calls are described in greater detail in Chapter 5, TEXT STORAGE
AND RETRIEVAL, and in Volume II of the Subroutines Reference Guide.

Second Edition 2-26

PROGRAMMER INTERFACES TO THE FILE SYSTEM

In all cases, the newfile portion of key specifies the type of file
(SaM or DAM) to be created if the object specified by name does not
exist and the action to be performed is writing or reading and writing.

For the SRCH$$ call, the name argument is a simple name; the resulting
file is created in the current directory and given the same protection
as that of the current directory.

For SRSFX$, name is any form of pathname; the resulting file is
created in the directory specified by the directory portion of name,
and given its protection.

Creating Access Categories: The creation of access categories was
described earlier in the section entitled Access Control Functions.

OPENING FILE SYSTEM OBJECTS

To open a file system object, you (or your program’s user) must have
Use access to all directory levels leading to the object to be opened.
Additional rights required on the object itself and its containing
directory depend on the action to be performed on the opened object.

As described previously, attempting to open a nonexistent file normally

results in that file being created in an empty state; the discussion
in the following subsections assumes that the object already exists.

Opening File Directories

File directories can be opened at both command level and at subroutine
level; however, they can be opened only for reading. File directories
are written to implicitly whenever some action on or within the
directory requires that information in the directory be updated (such
as the date-time-last-modified or access control information).

OPENING FILE DIRECTORIES

Command Command Function Subroutine

OPEN OPEN_FILE SRCH$$
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

2-27 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Opening File Directories (Command): There is not much to be gained
from opening a file directory interactively, since there are no
commands that enable you to read the directory interactively. However,

PRIMOS will not prevent your doing this; if you want to open a file
directory from PRIMOS command level, use the command:

OPEN pathname funit key

The pathname argument can be any form of pathname leading to a file
directory to which you have Read access. You must specify a file unit
number funit; PRIMOS does not 1look for an unused file unit when an
object is being opened from command level. The key argument must
specify a value of 1 (read). See the PRIMOS Commands Reference Guide
for a full description of the OPEN command.

Opening File Directories (Command Function): PRIMOS will allow a file
directory to be opened by the OPEN_FILE command function, but will not
allow any other operations (other than CIOSE) to be performed on it.
Use the following form in a CPL program:

&set_var unit := [OPEN_FILE pathname status -MODE R]

In this CPL statement, unit is a local or global variable that receives
the file unit number assigned to the opened directory by PRIMOS;
status is a local or global variable that receives the status code
resulting from the operation. The pathname argument can be any of the
valid forms. See the PRIMOS Commands Referemce Guide and the CPL
User’'s Guide for more detailed descriptions of the OPEN_FILE command
function.

Opening File Directories (Subroutine): To open a file directory from a
program, use calls to the subroutines described previously for creating
file system objects:

SRCH$$ (key, name, name_len, unit, type, code)

SRSFX$ (key, name, unit, type, num suffixes, suffixes, basename,
suffix used, code)

In all cases, the action portion of key specifies the action(s) to be
performed (read, write, or read and write).

Second Edition 228

PROGRAMMER INTERFACES TO THE FILE SYSTEM

For the SRCH$$ call, the name argument can be only a simple name, the
name of the directory being searched for in the current directory.

For SRSFX$, name is any form of pathname.

Opening Files

Files contained in file and segment directories can be opened for
reading, writing, or reading and writing at command, command function,
and subroutine levels. In all cases, Use access is required on the
containing directory and superior directories, and Read, Write, or Read
and Write access is required on the file, depending on the actions to
be performed.

OPENING FILES
Command Command Function Subroutine
OPEN OPEN_FILE SRCH$$
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Opening Files (Command): To open a file (either text or data) from
command level, use the command:

OPEN pathname funit key

The pathname argument can be any form of pathname leading to a file.
You must specify a file unit number funit; PRIMOS does not look for an
unused file unit when opening a file from command level. The key
argument must specify a value indicating the action to be performed.
Refer to the PRIMOS Commands Reference Guide for details on the use of
the OPEN cammand and its arguments.

Opening Files (Command Function): To open & file (either text or data)
from a CPL program, use a statement of the form:

&set_var unit := [OPEN_FILE pathname status -MODE x]

229 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

In this CPL statement, unit is a local or global variable that receives
the file unit number assigned to the opened file by PRIMOS; status is
a local or globel variable that receives the operation’s status code.
The pathname argument can be any of the valid forms. The mode argument
x specifies the action(s) for which the file is being opemed: R
(Read), W (Write), or RW or WR (Read and Write). Note that if the file
is being opened in any mode that allows writing and the file does not
exist in the directory indicated by pathname, the file will be created
with no indication of an error. Therefore, if proper operation of your
CPL program depends on a pre-existing file of the specified name, it
would be wise to test for its existence before opening it for writing.
See the PRIMOS Commands Reference Guide and the CPL User's Guide for
more detailed descriptions of the OPEN _FILE command function.

Opening Files (Subroutine): To open a file from a program, use calls
to the subroutines described previously for creating and opening file
system objects:

SRCH$$ (key, name, name_len, unit, type, code)
SRSFX$ (key, name, unit, type, num suffixes, suffixes, basename,
suffix used, code)
In all cases, the action portion of key specifies the action(s) to be
performed (read, write, or read and write).

For the SRCH$$ call, the name argument can be only a simple name, the
name of the file being searched for in the current directory.

For SRSFX$, name is any form of pathname.
Segmented files (members of a segment directory) can be opened by the

SGD$OP subroutine call, described in Chapters 5, TEXT STORAGE AND
RETRIEVAL and 6, DATA STORAGE AND RETRIEVAL.

READING FILE SYSTEM OBJECTS

After an object has been opened, it can be read under certain
conditions and from some, but not all, programmer interface levels.
From the command level, directories cannot be read, nor can
fixed-length data records; variable-length text records can be read
and displayed on the terminal, but only indirectly through a command
function. Any kind of object can be read from program level by use of
several special-purpose subroutines, as well as some of the
general-purpose subroutines already described. In all cases, Read
access is required on the object to be read, and Use access is required
to all superior directories.

Second Edition 2-30

PROGRAMMER INTERFACES TO THE FILE SYSTEM

READING DIRECTORIES

Command Command Function Subroutine

None None DIRSLS
DIRS$SE
DIR$RD
ENT$RD
SGIRS

Reading Directories (Command and Command Function): There is no
mechanism by which directory entries can be read from command level or
from command function level. This applies to both file and segment
directories. (Directory contents can, of course, be displayed or
written to a OOMO file by using the LD command.)

Reading Directories (Subroutine): Your program can read file
directories in several ways using any of the following subroutine
calls:

DIR$LS (dir-unit, dir-type, initialize, desired-types,
wild-ptr, wild-count, return-ptr, max-entries,
entry-size, ent-returned, type-counts,
before-date, after-date, code)

DIR$SE (dir-unit, dir-type, initialize, sel-ptr,
return-ptr, max-entries, entry-size,
ent-returned, type-counts, max-type, code)

DIRS$RD (key, unit, return-ptr, max-return-len, code)
ENT$RD (unit, name, return-ptr, max-return-len, code)

DIRSLS is a general-purpose directory searcher that takes arguments
used to select entries to be searched for. Selection criteria can be
object types, wild-card names, date and time last modified, or
combinations of these. Selection can not be by date and time last
accessed or date and time created. Either file or segmemt directories
can be read. Selection can begin at the beginning of the directory or
at the current position; entries are returned in a structure provided
by the program that is capable of holding max-entries entries, and are
pointed to by return-ptr. This call is fully described in Volume IT of
the Subroutines Reference Guide.

DIR$SE extends the functionality of DIR$LS by using a structure to
-contain additional selection criteria, including date and time last

2-31 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

accessed and date and time created. DIR$SE is fully described in
Volume II of the Subroutines Referemce Guide.

DIRSRD reads the contents of a directory sequentially, one entry at a
time, and returns each entry read in a program-provided structure
pointed to by return-ptr. It returns only named file system objects,
and therefore cannot be used to read subentries in a segment directory.
Tt returns names for files, file directories, and access categories.
This call is described more fully in Chapter 6, DATA STORAGE AND
RETRIEVAL, and in Volume II of the Subroutines Reference Guide.

ENT$RD is used to read the contents of a specific directory entry whose
pame is given as the name argument. The entry is returned in a
structure identical to that used by DIR$RD, and pointed to by
return-ptr. The entry being searched for must exist in the current
directory, since name is defined as having a length of 32 characters.
This call is described in detail in Volume II of the Subroutines
Reference Guide.

Segment directories can be read by using either of the following calls:

DIRSIS (dir-unit, dir-type, initialize, desired-types,
wild-ptr, wild-count, return-ptr, max-entries,
entry-size, ent-returned, type-counts,
before-date, after-date, code)

SGIR$$ (key, unit, starpositn, end position, code)

DIRSLS is used as described for file directories, except that dir-type
must have a value of 2 for a SAM segment directory, or 3 for a DAM
segment directory.

SGIR$$ returns an integer representing the position in the directory of
the first or next full or free position in the segment directory,
depending on the values of key and start position. The key argument is
K$FULL or K$FREE to look for full or free emtries, respectively. A
start_position value of zero (0) loocks for the first emntry; a value
equal to the position of the last full or free emtry plus 1 looks for
the next entry. The position integer is returned in end position. The
SGIR$$ call is described in detail in Chapter 6, DATA STORAGE AND
RETRIEVAL, and in the Subroutines Referemce Guide, Volume II.

READING FILES
Command Command Function Subroutine
None READ FILE ROLINS
PRWF$$

Second Edition 2-32

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Reading Files (Command): There are no commands that enable you to read
a file directly from PRIMOS command level. However, a text file can be
read indirectly and displayed to your terminal (or written to a COMO
file), one line at a time, by using a TYPE command whose argument is a
[READ FITE] command function, described next.

Reading Files (Command Function): You can read an ASCII (text) file
from a CPL program by including a statement of the form:

&set_var read_data := [READ FILE unit status_var)

In this CPL statement, unit is the decimal number of the file unit on
which the file has been previously opened. You supply local or global
variable names for the variables read_data and status var. The former
receives the 1line of text read from the file, while the latter stores
the return code from the execution of the read. (The setting and
evaluating of variables, and the use of the READ FILE command function,
are described in the CPL User's Guide).

Reading Files (Subroutine): To read a file from & program, use one of
the following subroutine calls:

ROLIN$ (unit, input line, max line length, code)

PRWF$$ (key, unit, addr(buffer), size, pre_posn,
halfwords read, code)

The ROLIN$ call is used to read variable-sized records from a file open
on unit into a buffer, pointed to by input_line. Reading emds when a
new-line character is encountered. If the number of characters read is
less than max line length, the remaining buffer characters are
blank-filled. The RDLIN$ calling sequence is illustrated in Chapter 5,
TEXT STORAGE AND RETRIEVAL; the subroutine’'s operation is further
explained in Chapter 5, TEXT STORAGE AND RETRIEVAL, and in the
Subroutines Reference Guide, Vol. IT.

Use the PRWF$$ call to position and read fixed-length data files.
Positioning and reading are only two of many functions that PRWF$$ can
rerform; 1its complete functionality is described in Chapter 5, TEXT
STORAGE AND RETRIEVAL, and in the Subroutines Reference Guide, Vol. II.

In addition to ROLIN$ and PRWF$$, there are subroutines whose functions
are to read from other than disk devices: RDASC reads ASCII characters
from any device, while RDBIN reads binary data from any device. These
subroutines are described in the Subroutines Reference Guide, Vol. II.

2-33 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

WRITING FILE SYSTEM OBJECTS

WRITING DIRECTORIES

Command Command Function Subroutine
None None SGIR$$
SGD$DL

File and segment directory objects are most often written to
implicitly, as a result of performing some function on a subordinate
object that reflects a need to add or update control information in its
containing directory. Each time a file open for writing is closed, for
example, the date-time-last-modified information in the containing
directory needs to be changed; this is done as an implicit byproduct
of the close operation. No writing to directories of either type can
be done explicitly by commands or command functions, and only a limited
number of writing operations can be done to directories at subroutine
level, and these only on segment directories. Likewise, there are no
commands by which you can explicitly write records to a file from
command level; you can, however, write variable-length text records
using a command function in a CPL program.

Write access is required on any object to be written to; Use access is
required to all superior directories, and Add access is required to the
containing directory if a previously nonexistent file is being written
into that directory. (If the name of a file or other object in a
directory is being changed, Delete as well as Add access is required on
the containing directory.)

Writing Segment Directories (Subroutine): You can effectively write to
a segment directory fram program level by using the subroutine calls:

SGIR$$ (key, unit, new_size, ignored, code)
SGD$DL (unit, code)

The SGIR$$ call is used to extend or truncate a segment directory open
on unit by specifying the key value K$MSIZ and the new number of
members in the new _size argument. The ignored argument is not used,
and should be zero (0).

The SGD$DL call is used to delete a member of the segment directory
open on unit. If the member deleted is not the last member of the
directory, effectively the size of the directory does not change; it
will change only if the member deleted is the last one.

Both of these subroutines and their calling sequences are described in
Chapter 6, DATA STORAGE AND RETRIEVAL.

Second Edition 2-34

PROGRAMMER INTERFACES TO THE FILE SYSTEM

WRITING FILES
Command Command Function Subroutine
None . WRITE_FILE WTLINS
PRWF$$

Writing Files (Command): There is no direct command by which a text
line or data file record can be written from command level. You can,
however, write a text line wusing the WRITE FILE command function
described next.

Writing Files (Command Function): You can write text files (but not
data files) from a CPL program by using the command function:

(WRITE_FILE unit text]

The unit argument is the file unit number of a text file previously
opened for writing or for reading and writing. The text to be written,
represented by text, can be either literal text (enclosed in quotes if
it contains spaces or special characters), or the current contents of a
local or global variable previously set by a command function such as
RESPONSE. Refer to the CPL User’'s Guide for further information on the
WRITE FILE command function.

Writing Files (Subroutine): To write a file from a program, use one of
the following subroutine calls:

WILIN$ (unit, output_line, max line length, code)

PRWF$$ (key, unit, addr(buffer), size, rel posn,
lhalfwords read, code)

The WILIN$ call is used to write variable-sized (usually ASCII text)
records to a file open on unit from a buffer, pointed to by
output_line. Writing ends when a new-line character is encountered.

If the number of characters written is less than max line length, the
remaining characters in the buffer are blank-filled. The WTLINS
calling sequence is illustrated in Gha.pter 5, TEXT STORAGE AND
RETRIEVAL; the subroutine’'s opera.tion is further explained in Chapter
5, TEXT STORAGE AND RETRIEVAL, and in the Subroutines Reference Guide,

Vol. II.

Use the PRWF$$ call to position and write fixed-length data files.
Positioning and writing are only two of many functions that PRWF$$ can
perform; 1its complete - functionality is described in Chapter 5, TEXT
STORAGE AND RETRIEVAL, and in the Subroutines Reference Guide, Vol. II.

2-35 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

In addition to WILIN$ and PRWF$$, there are subroutines whose functioms
are to write to other than disk devices: WRASC writes ASCII characters
to any device, while WRBIN writes binary data to any device. These
subroutines are described in the Subroutines Reference Guide, Vol. IV.

CLOSING FILE SYSTEM OBJECTS

Any file system object that is capable of being opened from command,
command function, or subroutine level is also capable of being closed.
Objects can be closed only by the CLOSE command or a subroutine; there
is no CIOSE FIIE command function to match the OPEN_FILE command
function. However, the CLOSE command can be included in a CPL program
either with or without the enclosing brackets ([1); the results are
identical.

CLOSING FILE SYSTEM OBJECTS

Command Command Function Subroutine

CLOSE CLOSE CLOSFU
CLOS$FN
SRCH$$
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Closing Objects (Command and Command Function): To close an aobject
from command or command function level, use one of the following:

CLOSE objectname
[CLOSE objectname]

The objectname argument is any valid form of pathneme. The CLOSE
function does not return a code indicating that an object is not open;
it does, however, return a code if the abject is not found.

Second Edition 2-36

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Closing Objects (Subroutine): To close a file system object from

program level, use one of the subroutine calls:

CLOS$FU (unit, code)
CLO$FN (pathname, code)
SRCH$$ (key, objectname, name_length, unit, type, code)

SRSFX$ (key, pathname, unit, type, n-suffixes, suffix-list,
basename, suffix-used, code)

CLO$FU and CIO$FN are simplified interfaces to close file system
objects by file unit number and pathname, respectively. Their calling
sequences and operations are described more fully in Chapter 5, TEXT
STORAGE AND RETRIEVAL.

SRCH$$ and SRSFX$ both require a key value of K$CIOS to close an
object. SRCH$$ accepts only a simple object name, and closes the named
object in the current directory. SRSFX$ can close an object anywhere
in the file system (assuming appropriate access, of course). These
subroutines are fully described in Volume II of the Subroutines
Reference Guide.

See also the description of the CLOS$A subroutine, part of the
Application Library package, given in Volume IV of the Subroutines
Reference Guide.

DELETING FILE SYSTEM OBJECTS

Any file system object that has been created, by whatever means, can
also be deleted. Not all types of objects, however, can be deleted
from all interface levels: you cannot, for example, delete an
individual segment from a segment directory from command or command
function level.

Delete access is required for the directory containing the object to be
deleted; Use access is required for all superior directory levels.

2-37 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

DELETING FILE SYSTEM OBJECTS

Command Command Function Subroutine

DELETE None SGD$DL
SRCH$$
SRSFX$
FIL$DL
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Deleting Objects (Command): To delete a file, file directory, segment
directory, or access category from command level, use the command:

DELETE objectname [options]

Objectname is any wvalid form of pathname in which you have the
appropriate access rights; you can therefore delete an abject anywhere
in the file system. The values that you can supply for the options
argument are described in the PRIMOS Commands Reference Guide.

Note that there is no abbreviated form of the DELETE command.

Deleting Objects (Command Function): There is no command function to
delete a file system object. However, the DELETE command can be
included in a CPL program.

Deleting Objects (Subroutine): To delete a file system object from a
program, use one of the following subroutine calls:

SGD$DL (unit, code)
SRCH$$ (key, objectname, nam length, unit, type, code)

SRSFX$ (key, pathname, unit, type, n-suffixes, suffix-list,
basename, suffix-used, code)

FIL$DL (pathname, code)

Second Edition 2-38

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The SGD$DL call is used only to delete members of a segment directory.
The program must first position to the desired segment number. See How
to Position a Segment Directory in Chapter 6, DATA STORAGE AND
RETRIEVAL. The unit argument gives the file unit number on which the

segment directory was previm1sly opened.

For SRCH$$ and SRSFX$, the value of key is K$DELE to delete an object.
For SRCH$$, objectname is the simple name of an object in the current
directory; 1if the object is a directory, the deletion will occur only
if the directory is empty.

SRSFX$ can delete objects anywhere in the file system, provided the
program’s user has Delete access to the containing directory, and the
objects are not delete-protected.

These calls are described further in Chapters 5, TEXT STORAGE AND
RETRIEVAL and 6, DATA STORAGE AND RETRIEVAL, and in Volume II of the
Subroutines Reference Guide. See also the description of the DELES$A
subroutine, part of the Application Library package, given in Volume IV
of the Subroutines Reference Guide.

-39 Second Edition

Search Rules

This chapter describes the search rules facility provided with Rev.
21.0 of PRIMOS. It provides a conceptual overview of the search rules
facility and describes how you can both modify system—supplied lists of
search rules and create your own search lists. The search rules
facility permits you to invoke a runtime search operation to locate an
object, rather than specifying the exact location of the object. It is
an important programming tool to enhance the generality, flexibility,
and performance of many types of operations.

SEARCH RULES AND SEARCH LISTS

The PRIMOS search rules facility is a general-purpose mechanism for
specifying a search sequence. It enables you to prespecify locations
for PRIMOS to use when conducting a search. Each prespecified location
is known as a search rule. A search rule names a location that may
contain the object of the search. For example, a directory name would
be a search rule when the object of the search is a file.

Search rules are grouped into sequences known as search lists. A
search list is an area in memory that contains search rules, listed in
sequential order. You initially write the sequence of search rules
into a text file known as a search rules file. Before these search
rules can be used, they must be copied from the search rules file into

3-1 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

a search 1list. The process of copying search rules into a search list
is known as setting the search list.

When using a search list, PRIMOS searches the first search rule in the
search 1ist, then the second search rule in the list, and so forth
until PRIMOS either finds the object of the search or encounters the
end of the search list.

One common use of search rules is to locate file system objects without
requiring the user to enter the fully qualified pathname. You can
create different search lists for different kinds of search operations.
For example, you can establish a search list to search miltiple disk
partitions for a top-level directory or establish a search list to
search multiple directories for a file.

You can invoke such a search by using a PRIMOS command, a CPFL function,
or a subroutine call. The EXPAND SEARCH RULES command, for example,
takes a filename as input and uses the search rules facility to
determine the absolute pathname of that file. The search rules
facility is invoked automatically by system software, such as the
PRIMOS command processor and the BIND program linker.

PRIMOS maintains a separate group of search lists for each process.
This means that users can customize their search lists to meet
individual requirements. Because a group of search lists is specific
to a process, a program uses the search lists of the user (or phantom)
currently executing the program. To avoid possible mismatches between
programs and search lists, you can include in the program calls to
search rule subroutines that check or set your search lists. You
cannot use, read, or set search lists that belong to other users’
processes. The use of search lists is not affected by the user'’'s
current command level or attach point.

Default Search Lists

PRIMOS provides system default rules for five special-purpose search
lists. These five search lists are included in the search 1lists of
every user on the system. These search lists and their default rules
are automatically set when a user logs in or otherwise initializes a
process. The five special-purpose search lists are the following:
ATTACH$ searches partitions to locate top-level directories.
COMMAND$ searches directories to locate executable code files.
INCLUDE$ searches directories to locate source code files.
BINARY$ searches directories to locate binary object code files.

ENTRY$ searches EPF library files to locate entrypoints.

Second Edition 32

SEARCH RULES

In addition to these five special-purpose search lists, you can set
other, general-purpose search lists for the duration of a process.
These search lists are referred to as user-defined search lists.
During a process you can add, delete, or modify the search rules in any
of your search lists. Search rules that you add to a search list (of
any type) are referred to as user-specified search rules.

ADVANTAGES OF SEARCH RULES

The use of search rules provides several benefits:

® Search rules enable users to locate items at runtime without
knowing their exact location. You specify this location
information when you create the search list. When the search
list is used, PRIMOS searches these listed locations for the
object of the search. Once these search lists have been set,
you do not have to specify (or even know) the full pathname in
order to retrieve each item. Naive users can be supplied with
search lists that make knowledge of the file system architecture
unnecessary.

® PRIMOS searches the rules in a search list in the listed order.
By rearranging the search rules in a list, you can improve
performance in searching for an item. This is particularly
significant when searching multiple disk partitions for a
directory.

e PRIMOS stops searching when it finds a match. Because a search
operation uses the search rules to find the first occurrence of
an item, you can maintain multiple items with identical
filenames on the system and sequence the search rules to find
the desired instance of that item. For example, if you have
several revisions of the same file in different directories, you
could list your search rules so that they always locate the
directory containing the most recent version of the file. When
you create a new version of the file, you simply add the name of
that version’s directory to the top of the search list.

e FPRIMOS searches only those items that are specified in the
search list. By changing the contents of a search list, you can
restrict the scope of a search to only those locations where the
desired item is 1likely to be found. For example, if a program
always accesses a directory located on one of a small group of
disk partitions, you would create a search list to search only
those partitions, thus avoiding a search of all partitions on
the system and preventing access to inappropriate directories.

3-3 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The use of search rules can greatly simplify program and terminal
operations, can increase the flexibility of programs and thus reduce
maintenance overhead, and can improve the performance of search
operations. However, note that failing to set a search 1list or
modifying the rules in a search list can result in unexpected changes
to the execution of programs.

SEARCH RULE TYPES

A search list can consist of three types of search rules:
administrator rules, system rules, and user-specified rules.

Administrator and System Search Rules

PRIMOS sets a group of search lists when you log in or otherwise
initialize a process. These search lists are initialized with
administrator search rules and system search rules. In each search
list, administrator rules appear first, followed by system rules.
PRIMOS assigns the same administrator and system rules to every process
on the system.

Administrator search rules permit the System Administrator to regulate
the use of search rules throughout the system. System search rules
provide all users on the system with the same default search
environment for normal PRIMOS operations. The search lists that PRIMOS
sets when you initialize a process can contain just administrator
rules, just system rules, or both administrator and system rules.

When you set a search 1list to user-specified rules, PRIMOS
automatically prefaces your user-specified search rules with
administrator and system rules. You can override the placement of
system rules in a search list. You cannot override the placement of
administrator rules in a search list.

Administrator and system search rules are located in search rules files
found in directory <O>SEARCH RULES* on the command device. This
directory provides search rules for ATTACH$, COMMAND$, ENTRY$, BINARYS,
and INCLUDE$. The System Administrator can modify these search rules
files and can add administrator or system search rules files to this
directory for other search lists. If either an administrator or system
search rules file exists in SEARCH RULES*, PRIMOS automatically sets a
corresponding search list whenever a process is initialized. Refer to
the System Administrator’s Guide, Volume III for further details on
administrator and system search rules.

Secord Edition 34

SEARCH RULES

User-specified Rules

You can specify new search rules to add to existing search lists. You
can also specify search rules for new, user-defined search lists.

Vhen adding rules to an existing search list, you can specify whether
you wish the system rules to preface your user-specified rules (the
default), to be excluded from the search list, or to be placed in a
designated location in the search list. If administrator rules have
boen established for a search list, they always precede the
user—specified rules and system rules. User-defined search lists have
no corresponding administrator or system search rules.

SEARCH LIST TYPES

PRIMOS permits you to create your own search lists. It also provides
support for five special-purpose search 1lists: ATTACH$, COMMANDS,
ENTRY$, BINARY$, and INCLUDES$.

User—defined Lists

You can use a user-defined search list to search directories for file
system objects (files, subdirectories, segment directories, and access
categories). You create a search list that consists of the pathnames
of the directories that you wish to search for these file system
objects. Each directory pathname is a separate search rule. The
following are typical search rules for a user-defined search list.

glenn

glenn>project
alan>project
glenn>project>tests
glenn>status

How to create and name a user-defined search list is described later in
this chapter, in the section named Creating and Setting Search Rules.

You can use the EXPAND SEARCH RULES (ESR) command or a subroutine call
to search a user-defined search list. You specify the full name (name
and suffix) of the file system object that is the object of the search,
and the name of the search list. The ESR command returns the object’s
absolute pathname. The OPSR$ and OPSRS$ subroutines locate and open
the file.

You can use the SR$SEIL subroutine to define the locator pointer values
for rules in user-defined search lists. This advanced operation

3-5 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

permits you to freely define the objects of a search. For further
details, refer to the SR$SETL subroutine in the Subroutines Reference
Guide, Volume II.

You must set user-defined search lists during the process in which they
are used. User-defined search lists are automatically deleted at the
conclusion of the process.

ATTACHS$

You use the ATTACH$ search list to search disk partitions for top-level
directories. The ATTACH$ search list should contain the names of these
partitions in the desired search sequence. The following are typical
search rules for an ATTACH$ search list:

<sysdisk>
<workdisk>
<vackupdisk>
-added,_disks

To use this search list, you specify the name of a top-level directory
as the object of the search. PRIMOS searches each of the partitions in
the sequence you specified. PRIMOS stops searching when it finds the
first top-level directory with the name you requested.

The default for the ATTACH$ search list is a single search rule: the
-added_disks keyword. This keyword causes PRIMOS to search the
complete list of added disks in the following sequence: local disk
partitions in the order added, then remote disk partitions in the order
added. If your system has few added remote disk partitions, it is
recommended that you end your ATTACH$ search list with the -added disks
keyword. If your system has many added remote disk partitions, it is
recommended that you specify by name all local disk partitions and
needed remote disk partitions in the ATTACH$ search list; do not
include the -added_disks keyword in ATTACH$ for such a system.

The ATTACH command uses the ATTACH$ search list. If an ATTACH request
specifies a pathname that does not include a partition name, the ATTACH
command searches multiple partitions for the top-level directory of the
pathname. If an ATTACH$ search list is set, the ATTACH command uses
the ATTACH$ search list sequence to locate this top-level directory.

The EXPAND SEARCH RULES (ESR) command uses the ATTACH$ search list.
You supply ESR with the name of a top-level directory, and it returns
the absolute pathname of that directory (for example, <sysdisk>mydir).
If you supply an objectname (other than the name of an executable file)
to the ESR command, and do not supply a search list name, ESR assumes
the name refers to a top-level directory and automatically wuses the
ATTACH$ list.

Second Edition 36

SEARCH RULES

If no ATTACH$ search list is set, PRIMOS defaults to a sequential
search of all added disks. It first searches all local disk partitions
in the order added, then all remote disk partitions in the order added.

The ATTACH$ search list can be invoked automatically by other search
lists. This use of ATTACH$ is described in the section ATTACH$ Invoked
by Other Search Lists.

COMMANDS

You use the OCOMMAND$ search 1list to search directories for command
files. A command file is any executable code file, such as a runfile
or CPL file. A COMMAND$ search list should contain the pathnames of
the directories that you wish to search for executable code files. The
following are typical search rules for a COMMAND$ search list:

cmdncO

glenn

glenn>project
alan>project
glenn>project >tests
glenn>status

The default for COMMAND$ is the directory CMONCO, which contains the
executable code files for PRIMOS commands. This default permits you to
execute PRIMOS cammands without supplying complete pathnames.

Once you have created a COMMAND$ search list, you can execute a command
file by simply typing its name, as if it were a PRIMOS command. For
example, if you include the search rule mydir>subdir in your OCOMMANDS$
search list, you can execute the file mydir>subdir>mycfile.run from any
attach point by simply typing mycfile. You do not have to specify the
RESUME command or the filename suffix. PRIMOS searches each listed
directory in sequence. PRIMOS stops searching when it finds the first
file with the name you requested and (in order of preference) the
suffix .RUN, .SAVE, .CPL, or a static-mode runfile with no suffix.

You can also use the EXPAND SEARCH RULES (ESR) command to search the
COMMANDS$ search list. If you instruct ESR to use the COMMAND$ search
list, you do not have to specify the .RUN, .SAVE, or .CPL filename
suffix. If you instruct ESR to find a filename with a .RUN, .SAVE, or
.CPL suffix, you do not have to specify use of the COMMAND$ search
list. ESR returns the absolute pathname of the command file, including
its suffix.

37 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

INCLUDE$

Some language compilers use the INCLUDE$S search list to search
directories for source code files that are to be included during
program compilation. An INCILUDE$ search 1list should contain the
pathnames of the directories that you wish to search for source code
files. The following are typical search rules for the INCLUDE$ search
list:

glenn

glenn>tools
glenn>project >tests
alan>subsystem>tests

The compiler uses this search 1list when you specify the name of an
include file during program compilation. You do not have to specify
the filename suffix.

The following compilers support INCLUDE$: F77, C, Pascal, CBL, VRFG,
and PL/I. If no INCLUDE$ search list is set, or a compiler does not
support INCLUDE$, the compiler assumes the include file is a source
code file in the current directory. Refer to the individual language
manuals for further details.

BINARY$

The BIND linker uses the BINARY$ search list to search directories for
binary (.BIN) files. A BINARY$ search list should contain the
pathnames of the directories that you wish to search for binary files.
The following are typical search rules for a BINARY$ search list:

glenn

glenn>compiles
glenn>project >compiles
alan>subsystem>compiles

When running BIND, you specify the filename of the BIND load file, and
PRIMOS searches the directories listed in BINARY$ for that file. You
do not have to specify the .BIN filename suffix.

If no BINARY$ search list is set, BIND assumes the load file is a
binary file in the current directory.

Second Edition 3-8

SEARCH RULES

ENTRY$

You use the ENTRY$ search 1list to search executable program format
(EPF) or static-mode libraries for entrypoints. Each of these
libraries can contain one or more entrypoints. The ENTRY$ search list
should contain the pathnames of the library files that you wish to
search for entrypoints. The following are typical search rules for an
ENTRY$ search list.

-primos direct_entries
LIBRARTES*>SYSTEM_LTIBRARY.RUN
LTBRARTES* >TTYCKS$. RUN

LIERARTIES* >FORTRAN_TO_LTEBRARY.RUN
LIBRARIES*>PASCAL, LTERARY.RUN
GLENN>PRIV_LIB.RUN

The ENTRY$ search list is used automatically when you execute a program
that contains a dynamic link to an entrypoint. This dynamic 1link is
established using BIND. During the BIND operation, you use the -dynt
option to specify the name of the entrypoint. Then, during program
execution, PRIMOS searches the libraries listed in ENTRY$ for the named
entrypoint. For further details on this use of ENTRY$, refer to the
Programmer’'s Guide to BIND and EPFs.

CREATING AND SETTING SEARCH RULES

Establishing user-specified search rules is a two-step process. First,
you create a search rules file. A search rules file is a standard text
file in which you write one or more search rules. After you create a
search rules file, you wuse that file to set a search list. This set
operation copies the rules in the search rules file into an area in
memory established for the search 1list. All search operations are
performed against the search list, not against the search rules file.

Creating a Search Rules File

You create a search rules file as a standard text file using EMACS or
EDITOR. The naming conventions for search rules files are as follows:

o Use the name format: =xxx.listname.SR. In this format, xxx can
be any name, listname is the name of the search list, and .SR is
a suffix indicating a search rules file.

® Do not use dollar signs ($) in the listname of user-defined

search rules files. Dollar signs are reserved for the listnames
of special-ptrpose search rules files.

3-9 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

For example, you would use a search rules file with the name

mylist.command$.sr

to set the special-purpose search list COMMAND$. You would use a
search rules file with the name

yourlist.lookup.Ssr

to set the search list LOCKUP.

You can create multiple search rules files that can be used to set the
same search list. Only one file at a time can be used to set a
particular list. (This file can, however, contain keywords that draw
upon the contents of other search rules files.)

To place rules in a search rules file, use EMACS or EDITOR to specify
one search rule per line in the sequence that the items should be
searched. A search rule can be up to 128 characters in length. A
search rule can include the disk partition name, or it can begin with
the top-level directory. If the disk partition name is omitted, the
search rules facility uses the ATTACH$ search list to locate the
appropriate partition. This use of ATTACH$ is described later in the
section ATTACH$ Invoked by Other Search Lists.

You can include comments, blank lines, and leading and trailing blanks
in a search rules file. A comment begins with /* and continues to the
end of the line. Comments and blanks in the search rules file are not
copied into the search list during a set operation.

When creating a search rules file, you should avoid duplicating
administrator rules or system rules in your file. The one exception to
this is if you plan to override the automatic inclusion of system rules
when you set the search list.

Setting Search Lists

A search rules file is used to set a search list. Search lists are set
when:

e You initialize a process

e You invoke a set operation

Second Edition 3-10

SEARCH RULES

In both cases, the set operation copies search rules from one or more
search rules files into an area in memory allocated for the search
list. Because the set operation is a copy operation, the subsequent
deletion or modification of the search rules file does not affect the
search list.

When a process is initialized, PRIMOS automatically performs set
operations that copy the search rules from the search rules files in
the directory <O>SEARCH RULES* into search 1lists in memory. This
creates a group of default search lists for that process. PRIMOS sets
each search list with search rules copied from the administrator search
rules file and the system search rules file for that list. If one of
these search rules files does not exist, PRIMOS sets the search list
with the contents of whichever of these search rules files does exist.
If a 1list has neither type of search rules file, no search list is set
during process initialization.

You can set a search list by using the SET SEARCH RULES (SSR) command
or the SR$SSR subroutine. You supply the pathname of your search rules
file to these set operations. You can also specify a name for the
search list, or have the set operation derive the search list name from
the name of the search rules file.

If the search list did not previously exist, the set operation creates
that search list. If the search list did exist previously, the set
operation either overwrites the old search rules or appends the new
search rules to the search list. The set operation copies the rules in
your search rules file into the search 1list. It may also copy
administrator and system rules into the search list, if the appropriate
search rules files are present in <O>SEARCH _RULES*.

A set operation does not check your search rules against the contents
of the file system. Therefore, you can set search rules that refer to
partitions, directories, and so on, that do not yet exist in your file
system. When a search operation is performed, PRIMOS uses each rule in
a search list independently. An invalid reference in one search rule
does not affect other search rules or halt the search operation. If a
search rule names a nonexistent object, PRIMOS proceeds to the next
rule in the search list.

The SSR command returns a message if your search list has been set with
duplicate rules. The SSR command sets the search list regardless of
the presence of duplicate rules. A duplicate search rule in a search
list can result in redundant searches but does not otherwise affect the
search operation.

The SSR command has an option that permits you to reset a search list
to system defaults. You can also use the SR$INIT subroutine to reset
search lists to system defaults. Other search rule subroutines are
available to add or delete individual search lists and search rules.
These subroutines act directly upon the search lists in memory and do
not affect the corresponding search rules files.

3-11 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Once you have set a search list, you can use the LIST SEARCH RULES
(ISR) command to display the search list. You can also use the SR$READ
and SR$NEXIR subroutines to read the rules set in a search list. The
SSR and ISR commands are further described in the PRIMOS Commands
Reference Guide. Search rule subroutines are further described in the
Subroutines Reference Guide, Volume II.

SEARCH RULE KEYWORDS

A search rules file can contain keywords that perform specific
operations. Keywords that begin with a hyphen are directions to the
search rules facility. These directions are carried out either when
you set the search list or when you perform a search operation on that
search list. Keywords enclosed in square brackets are variables for
which the appropriate literal is supplied when the search list is used.
The following are the available search rule keywords:

—-insert

-system

—-optional

-added_disks
-static_mode libraries
-primos_direct_entries
[origin dir]

[home_dir]
[referencing dir]

You should place each keyword on its own line in a search rules file.
Keywords and search rules can be intermixed in any sequence within a
search rules file. Keywords can be written in either uppercase or
lowercase.

—~insert

The -insert keyword specifies the pathname of another search rules
file. Vhen you set the search list, PRIMOS inserts: the contents of
that search rules file at the point indicated by the -insert keyword.
By using this keyword, you can set a large search list using several
small search rules files. Search rules files can be nested. The
SET_SEARCH_RULES command rejects circular references, such as a search
rules file that includes itself.

Figure 3-1 is an example of the -insert keyword. In this example,
nested -insert keywords cause the contents of three search rules files
to be included in the MYLIST search list.

Second Edition 3-12

SEARCH RULES

SEARCH RULES FILES
glenn>main.mylist.sr

g— — 3 glenn>current.worklist.sr
glenn > proj1 >routines

glenn > proj1 >tools

glenn >tests

— 3 glenn> history.sr
(glenn > oldproj >tools (

glenn > proj1 >tests

SET__SEARCH__RULES glenn > main.mylist

MYLIST

glenn

glenn>mysubs

glenn > proj1 > routines
glenn > proj1 >tools
glenn>oldproj > tools
glenn > proj1 >tests
glenn >tests

RESULTING SEARCH LIST

Setting a Search List from Nested Search Rules Files
Using the -insert Keyword

Figure 3-1

-System

The -system keyword allows you to change the placement of system rules

in a search list. By default, PRIMOS automatically places the system

rules at the beginning of the search list. To place the system rules

elsewhere in the search list, you specify the -system keyword at the

desired location. When you set the search list, the complete sequence

of system rules is placed in your search list at the location indicated
by the -system keyword.

3-13 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

If you set the search list using the SET _SEARCH RULES command, it is
necessary to suppress the automatic inclusion of the system rules at
the top of the list. To suppress automatic inclusion of system rules,
use the SET SEARCH RULES command -no_system option. If you set the
search list using the SR$SSR subroutine, Jjust specify the -system
keyword at the desired location. You do not have to suppress inclusion
of system rules at the beginning of the search list.

The example in Figure 3-2 inserts the system rules at the location
indicated by the -system keyword. The SET_SEARCH RULES -no_system
option suppresses inclusion of the system rules at the beginning of the
list.

glenn >main.command$.sr

glenn

glenn>mysubs

— — — — 3 <0>search__rule* >command$.sr
glenn >tests (cmdnc0 (

USER SEARCH RULES FILE sys >submaster

SYSTEM SEARCH RULES FILE

SET__SEARCH__RULES glenn >main.command$ —no__system

COMMANDS$

glenn
glenn>mysub
cmdnc0

sys >submaster
glenn>tests

RESULTING SEARCH LIST

Setting a Search List With User and System Default
Search Rules Using the -system Keyword

Figure 3-2

Second Edition 3-14

SEARCH RULES

If you do not suppress the prefacing of system rules (by using the
SET_SEARCH_RULES -no_system option) PRIMOS ignores the -system keyword,
and places the system rules at the beginning of the file.

Do not use the -system keyword in a search rules file for the ATTACHS
search list. Instead, use the -added disks keyword to perform the
equivalent operation.

—optional

The -optional keyword specifies a rule that must be enabled before it
can be used by PRIMOS. In your search rules file, you write the
-optional keyword and the rule that must be enabled on the same line,
as shown in the following search rules file:

glenn>tools
—optional glenn>tests
glenn>routines

When you set a search list, all optional search rules are disabled.
PRIMOS skips over those rules when searching the list. The
LIST SEARCH RULES command and most subroutines do not display the
disabled search rules in the search list. For example, if you set a
search list using the search rules file above, and then issue a
LIST SEARCH RULES command for that search list, the following search
rules are displayed:

glenn>tools
glenn>routines

You can enable optional search rules in a search list by using the
SR$ENABL subroutine. When enabled, an optional search rule appears in
the search list as an ordinary rule. For example, if you enable the
glenn>tests optional search rule and then issue a LIST SEARCH RULES
command, the following search rules are now displayed:

glenn>tools
glenn>tests
glenn>routines

Optional search rules can be set in any search list, including system
and administrator search lists. You can specify any search rule or
search rule keyword as an optional search rule, except for the keywords
-system and -insert.

3-15 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Optional rules in a search list can be repeatedly enabled and disabled.
One application of optional search rules is to establish search rules
that are used only by a particular program. You enable the optional
rules at the beginning of program execution and disable the optional
rules at the end of program execution. For further details, refer to
SR$ENABL in the Subroutines Reference Guide, Volume IIT.

—added,_disks

The -added_disks keyword causes PRIMOS to search all of the added disk
partitions. The -added disks keyword is only used in the ATTACH$
search list. When you set an ATTACH$ search list, the set operation
copies the -added disks keyword from the search rules file into the
search list. VWhen PRIMOS uses the ATTACH$ search list and encounters
the -added_disks keyword, it searches all disk partitions added to the
system. PRIMOS searches the added disks in the following sequence:
all local disks in the order added, followed by all remote disks in the
order added.

Because the -added disks keyword causes PRIMOS to search all added
disks, it is normally specified as the last search rule in an ATTACH$
search list. The -added disks keyword searches all disk partitionms,
including those that have already been searched using previous ATTACH$
search rules.

The -added_disks keyword is the system default. To specify any other
sequence of disks in an ATTACH$ search list, you must suppress this
default. One method is to place the -added disks keyword at the end of
your search rules file, then set the ATTACH$ search 1list using the
SET_SEARCH RULES command with the -no_system option. For systems with
many added remote disks, it is recommended that you do not include the
-added_disks keyword in your ATTACH$ search list.

-static_mode libraries

The -static mode libraries keyword causes PRIMOS to search the
static-mode libraries. The -static_mode_ libraries keyword is only used
in the ENTRY$ search list. When you set an ENTRY$ search list, the set
operation copies the -static mode_libraries keyword from the search
rules file into the search list. When PRIMOS uses the ENTRY$ search
list and encounters the -static_mode libraries keyword, it searches the
static-mode libraries for the desired entrypoint. Refer to the
Progrg.nmer’s Guide to BIND and EPFs for further details on the use of
ENTRYS .

Second Edition 3-16

SEARCH RULES

-primos_direct_entries

The -primos direct_entries keyword causes PRIMOS to search the PRIMOS
system calls. The -primos direct_entries keyword is only used in the
ENTRY$ search list. Normally, this keyword is set as an administrator
rule in the ENTRY$ search 1list. When PRIMOS uses the ENTRY$ search
list and encounters the -primos direct_entries keyword, it searches the
PRIMOS system calls for the desired entrypoint. Refer to the
Programmer’'s Guide to BIND and EPFs for further details on the use of
ENTRY$.

[origin dir]

The [origin dir] keyword causes PRIMOS to search the user’'s origin
directory (that is, the user’'s initial attach point). This keyword is
executed when the search list is used. When you set a search list, the
set operation copies the [origin dir] keyword from the search rules
file into the search list. VWhen PRIMOS uses the search list and
encounters the [origin dir] keyword, it searches the user’s origin
directory. The [origin dir] keyword can be used in all search rules
files (including search rules files for administrator and system rules)
with the exception of ATTACHS.

The [origin dir] keyword can be used as a complete search rule or as a
component of a pathname in a search rule, as shown in the following
sample search rules file:

[origin dir]
glenn>tools
[origin dir]>tools
glenn>subr

[home_dir]

The [home dir] keyword causes PRIMOS to search the user’'s home
directory (that is, the user’s current attach point). This keyword is
executed when the search list is used. When you set a search list, the
set operation copies the [home_dir] keyword from the search rules file
into the search list. When PRIMOS uses the search list and encounters
the [home dir] keyword, it searches the user’s current attach point at
the time of the search operation. The [home dir] keyword can be used
in all search rules files (including search rules files for
administrator and system rules) with the exception of ATTACH$. Using
[home_dir] in the ENTRY$ search list can produce unexpected results,
and is therefore not recommended.

3-17 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The [home_dir] keyword can be used as a camplete search rule or as a
component Of a pathname in a search rule, as shown in the following
sample search rules file:

[home_dir]
glenn>tools
[home_dir]>tools
glenn>subr

[referencing dir]

The [referencing dir] keyword causes PRIMOS to search a pathname
supplied by the user. When you set a search list, the set operation
copies the [referencing dir] keyword from the search rules file into
the search list. When the search list is used, the operation that uses
the search list should also supply a pathname to substitute for the
[referencing dir] keyword. If an operation that uses the search list
does not supply a pathname, PRIMOS ignores the [referencing dir]
keyword and proceeds to the next rule in the search list. The
[referencing dir] keyword can be used in all search rules files
(including search rules files for administrator and system rules) with
the exception of ATTACHS.

The EXPAND SFARCH RULES (ESR) commend and the OPSR$ and OPSRS$
subroutines have optional arguments that supply a pathname to the
[referencing dir] keyword. PRIMOS substitutes this pathname for every
instance of [referencing dir] in the search list and then performs the
search operation. The [referencing dir] keywords revert to null values
at the completion of the search operation.

Compilers that use the INCLUDE$ search list automatically supply values
to the [referencing dir] keyword. For further details concerning the
use of [referencing dirl in INCLUDE$ search lists, refer to the
individual language manuals.

The [referencing dir] keyword can be used as a complete search rule or
as a component of a pathname in a search rule, as shown in the
following sample search rules file:

[referencing dir]
glenn>tools
[referencing dir]>tools
glenn>subr

Second Edition 3-18

SEARCH RULES

ACCESSING SEARCH LISTS

You can use search lists to conduct searches from the PRIMOS command
environment, from CPL programs, or through subroutine calls from user
programs. The five system-defined search lists are also accessible by
specific system software. The ATTACH$ search list can be accessed by
other search lists.

PRIMOS Command Environment

The EXPAND_ SEARCH RULES (ESR) command uses a search list to locate the
requested item and returns the absolute pathname of the object to the
user’'s terminal. When you issue an ESR command, you specify which
search list should be used for the search. If you do not specify which
search list to use, ESR selects a search list, based on the suffix of
the sought item. If the object of the search is not located, ESR
returns the value $ERROR$. The ESR command is further described in the
PRIMOS Commands Reference Guide.

CPL Programs

EXPAND SEARCH RULES (ESR) can be issued as a CPL function from within a
CPL program. The ESR CPL function has the same syntax and options as
the ESR PRIMOS command. When issued as a CPL function, ESR returns the
absolute pathname to a variable within the CPL program.

Program Subroutines

The search rules facility supports 18 search rule subroutines. Most of
these subroutines perform operations on the search 1lists themselves.
However, two subroutines (OPSR$ and OPSRS$) use the search rules to
locate and open a file. These two subroutines can also check for the
existence of a file system object and, under certain circumstances,
create a new file system object if the specified object does not exist.

The available search rule subroutines are as follows:

Routine Function

OPSR$ Locates a file using a search list and opens the
file. Creates the file if the file sought does
not exist.

OPSRS$ Locates a file using a search list and a list of

suffixes. Opens the located file or creates the
file if it does not exist.

3-19 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Routine
SR$ABSDS

SR$ADDB

SR$ADDE

SR$CREAT
SR$DEL
SR$DSABL

SR$ENABL

SR$EXSTR
SR$FR_IS

SR$INIT
SR$LIST
SR$NEXTR
SR$READ
SR$REM
SR$SETL
SR$SSR

These subroutines are further described in the Subroutines Reference
Guide, Volume II.

Second Edition

Function
Disables an optional search rule. Used to
disable rules that have been enabled using
SR$ENABL. This subroutine absolutely disables an
enabled rule, regardless of how many times the
rule has been enabled. Compare with SR$DSAEL.

Adds a rule to a search list before a specified
rule.

Adds a rule to the end of a search list, or after
a specified rule.

Creates a search list.

Deletes a search list.

Disables an optional search rule that was enabled
by SR$ENABL. Disables a single SR$ENAEL
operation. Compare with SR$ABSDS.

Enables an optional search rule. Enabled rules
can be disabled using SR$DSABL or SR$ABSDS.

Determines if a search rule exists.

Frees list structure space allocated by SR$LIST
or SR$READ.

Initializes all search lists to system .defaults.
Returns the names of all defined search lists.
Reads the next rule from a search list.

Reads all of the rules in a search list.
Removes a search rule from a search list.

Sets the locator pointer for a search rule.

Sets a search list using a user-defined search
rules file.

SEARCH RULES

ATTACH$ Invoked by Other Search Lists

For all search lists except ATTACH$, each search rule must contain a
top-level directory name. These search rules can include or omit the
disk partition name. If the partition name is omitted, PRIMOS
automatically uses the ATTACH$ search list to supply the partition name
to the search rule.

This search operation is performed as follows: During a search
operation PRIMOS checks a rule in a search list and determines whether
or not the rule contains a partition name. If it does not, PRIMOS goes
to the ATTACH$ search 1list and searches the first partition named in
that list. If the top-level directory is not found on that partition,
PRIMOS proceeds to the second disk listed in ATTACH$, and so forth.
When PRIMOS finds a disk that contains the top-level directory, it
returns to the initial search list.

This search procedure increases the power and flexibility of the search
rules facility. It does, however, have two consequences that users
should be aware of:

e Duplicate top-level directory names can produce unexpected
results, as shown in the following example: You are searching
for glenn>mywork. Top-level directories named glenn are found
on diskl and disk2. These disks are listed in that order in
ATTACH$. The directory glenn that contains mywork is on disk2.
In this case, the search operation uses ATTACH$ to locate
<diskl>glenn, then proceeds to search that directory for
mywork. It doesn’t find mywork in that directory and reports
that mywork does not exist. Because the ATTACH$ search
completed successfully by finding <diskl>glenn, PRIMOS did not
search <disk2>glenn.

® Nonexistent top-level directories can cause performance
problems. This is because PRIMOS must search every disk in the
ATTACH$ list for the nonexistent directory each time that the
search list is used. If the ATTACH$ search 1list contains
several remote disks, this search time can be significant.

If a search rule does not contain a partition name, and no ATTACH$
search list is set, PRIMOS automatically searches all added disks for
the required disk name. All 1local disks are searched first in the
order added, then remote disks are searched in the order added.

321 Second Edition

Attach Points

This chapter describes, in detail, the initial, home, and current
attach points, and then describes subroutines that are used to
manipulate attach points.

THE INTTTAL ATTACH POINT

Vhen a new user is added to the system, the System Administrator or the
Project Administrator specifies an initial attach point and usually
creates an origin directory for the new user.

PRIMOS attaches the user’'s process to the origin directory during the
login procedure; when the procedure terminates, the user’s initial,
home, and current attach points are all set to the origin directory,
unless the login procedure itself (or an external program that it may
call) has changed the home or current attach point, or both.

During a terminal session, the user may reset his or her home and
current attach points to the origin directory by issuing the ORIGIN
command. Your program may also reset the home and current attach
points by using the AT$OR subroutine. The AT$OR subroutine allows your
program to reset Jjust the current point or both the current and hame
attach points to the origin directory. Figure 4-1 illustrates the
calling sequence for the AT$OR subroutine.

If the key argument is k$seth, both the home and current attach points
-are reset to the origin directory. If the key argument is k$setc, only
the current attach point is reset to the origin directory.

4-1 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Reset Current (and, Optionally, Home) Attach Point to Origin Directory

KS$SETH
K$SETC

HALF
INT

|

ATS$OR (key, code)

HALF
INT

Standard
Error
Code

Calling Sequence of AT$OR
Figure 4-1

Second Edition 4-2

ATTACH POINTS

An output argument, code, informs your program of the success or
failure of the operation. If code is O, the operation was entirely
successful. Otherwise, code is always positive. After a call to AT$OR
to attach to the origin directory, code may have one of many values.

Volume O of this series contains a comprehensive list of all standard
file system error codes. Error codes specific to this operation are:

Reyword ~ Value Meaning

E$NATT 7 No top-level directory attached. This
error usually occurs only when the disk on
which the origin directory resides has been
removed from the system, as when a disk is
shut down. Once a disk has been shut down,
all origin directories residing on that
disk and Dbelonging to all currently
logged-in users are lost. These users can
reestablish their origin directories only
by logging in after the disk is started up

again.

E$SHDN 121 The disk has been shut down. The disk on
which the origin directory resides has been
shut down by the system operator. The disk
is no longer available for use, until the
system operator uses the ADDISK command to
add the disk again. After this is done,
the user must log in again to reestablish
his or her origin directory.

THE HOME ATTACH POINT

The home attach point essentially identifies the user’s working
directory. Imitially, following user login, the home attach point is
the same as the initial attach point. The user can change this by
issuing the ATTACH command.

Many system operations autamatically reset the current attach point to
the home attach point, as described below. To reset the current attach
point to the hame attach point from within your program, use the AT$HOM
subroutine. Figure 4-2 illustrates the calling sequence for the AT$SHOM
subroutine.

An output argument, code, informs your program of the success or
failure of the operation. If code is O, the operation was entirely
successful. Otherwise, code is always positive. After a call to
AT$HOM to attach to the home directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes.

4-3 Secord Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Reset Current Attach Point to Home Directory

AT$HOM (code)

l

HALF
INT

Standard
Error
Code

Calling Sequence of AT$HOM
Figure 4-2

Second Edition 4-4

ATTACH POINTS

Error codes specific to the AT$HOM subroutine are:

Keyword

Value , Meaning

E$NATT

E$SHIN

7 No top-level directory attached. This

error usually occurs only when the disk on
which the home directory resides has been
removed from the system, as when a disk is
shut down. Once a disk has been shut down,
all home directories residing on that disk
for all currently logged-in users are lost.
These home directories can be reestablished
by the users only by issuing an ATTACH
command after the disk is started up again.

121 The disk has been shut down. The disk on

wvhich the home directory resides has been
shut down (using the SHUTDN command as
described in the System Operator’s Guide,
Volume IT). The disk is no longer
available for use, until the system
operator uses the ADDISK command to add the
disk again. After this is done, the user
must issue the ATTACH command again to
reestablish his or her home directory.

THE CURRENT ATTACH POINT

The current attach point is essentially

the program’'s working

directory. Initially, the current attach point is the same as the
initial and home attach points. A program can change the current

attach point by calling one of many file system subroutines:

Subroutine Use

AT$ Attaches the current (optionally home) attach
point to the directory specified by pathname.
Similar to the ATTACH pathname command.

AT$ABS Attaches the current (optionally home) attach
point to the specified top-level directory on the
specified disk partition. Similar to the ATTACH
<partition>dirname command.

AT$ANY

Attaches the current (optionally home) attach
point to the specified top-level directory on the
first disk partition found to have the specified
top-level directory. All 1local partitions are
searched first; then, remote partitions are
searched. Similar to the ATTACH dirname command.

4-5 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Subroutine Use

AT$HOM Attaches the current attach point to the home
directory, as described earlier in this chapter.
Similar to the ATTACH command.

AT$OR Attaches the current (optionally home) attach
point to the origin directory, as described
earlier in this chapter. Similar to the ORIGIN
command.

AT$REL Attaches the current (optionally home) attach
point to the specified lower-level directory of
the current current directory. Used to attach
downward in & directory tree. Similar to the
ATTACH *>dirname command.

All of the above subroutines replace an obsolete subroutine named
ATCH$$ that performed all of the attach functions in one (rather
complicated) interface. The subroutines listed above are described
later in this chapter; the ATCH$$ subroutine is described in detail in
Apperdix A of of the Subroutines Reference Guide, Vol. II.

Operations That Reset the Current Attach Point

Because the current attach point is used in so many file system
operations, it is often reset even when errors occur. For example, if
a call to AT$ is made to set the current attach point to
FRODO>FINGER>FOOD, and the FINGER lower-level directory does not exist
in the FRODO directory, an error code of e$fntf (Not found) is
returned, and the current attach point is reset to the home directory,
independent of what it was before the call was made.

Similarly, a mistyped command resets the current attach point to the
home directory. In fact, the only way to avoid resetting the current
attach point while at PRIMOS command level is to use only internal
commands, such as OPEN, STATUS, DUMP_STACK, and so on. (The PRIMOS
Command Reference Guide lists internal commands.)

Commands such as LD, DELETE, COPY, EMACS, and USAGE reset the current
attach point. In most cases, resetting the current attach point is
usually not a problem. Resetting the current attach point is a problem
if a program activation has been suspended (such as via CONTROL-P) just
when the current attach point is different from the home attach point.
In this case, restarting the suspended program may produce irrational
behavior. Programs that make heavy use of the current attach point can
expect to encounter problems resulting from program interruptions;
even programs that do not explicitly use the current attach point can
possibly encounter problems when calling subroutines that handle
pathnames (such as SRSFX$), because these subroutines use the current
attach point and may also be interrupted.

Second Edition 4-6

ATTACH POINTS

In addition, anytime a pathname is processed by the file system, the
current attach point is reset to the home directory. For example, if
the DIR$CR subroutine, described in Chapter 6, DATA STORAGE AND
RETRIEVAL, is called with the pathname FRODO>THUMB, the current attach
point is implicitly reset to the home directory.

File system subroutines that accept filenames but not pathnames assume
that the specified file is in the curremt directory. Similar
subroutines perform their operations in the current directory, although
they do not actually accept filenames as arguments. In both cases,
these subroutines are frequently referred to as file system primitives.
The use of these primitives rarely changes the current attach point.
Among the PRIMOS file system primitives are the following subroutines:

ACSRVT CNAM$$ OOMI$$S OCOMOSS FILSDL GPASS
GPATH$ PHANT$ PHNIM$ REST$$ RESUS SATR$S
SAVE$$ SPAS$$ SRCH$S

Note

CREA$$ and CREPW$, which accept only filenames, are considered
obsolete at PRIMOS Rev. 20.2. Although CREA$$ and CREPW$ are
still supported, programs should use DIR$CR, which accepts
pathnames, beginning with Rev. 20.2.

All other subroutines that operate either explicitly or implicitly on a
pathname (any file system name containing at least one < or >
character) reset or change the current attach point.

FUNCTIONS USED TO MANIPULATE ATTACH POINTS

In addition to the subroutines described earlier in this chapter, six
subroutines are provided to allow a running program to manipulate the
user’'s attach points. These are:

e The AT$ subroutine, which attaches to a pathname

e The AT$ABS subroutine, which attaches to a top-level directory
on a specified disk partition

e The AT$ANY subroutine, which attaches to a top-level directory
on any started-up disk partition

e The ATS$REL subroutine, which attaches down to a subordinate
directory

o The GPATH$ subroutine, which returns the complete pathname of
the initial, home, or current directories

4-7 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

e The SRCH$$ subroutine, which opens the current directory for
reading

The AT$ Subroutine

To attach to a specific directory by pathname, use the AT$ subroutine.
The AT$ subroutine parses a pathname, and calls the ATABS, ATSANY,
AT$HOM, and AT$REL subroutines (described below) to perform the actual

attaching.

The AT$ subroutine may be used to change only the current directory or
both the home and current directories. It may return any of the error
codes that the other four subroutines can return, with one additional
error code —- e$itre (Tllegal treename). This error code indicates an
invalid pathname.

The subroutines called by AT$ depend on the form of the pathname. The
several forms and their corresponding implementations are:

Form Causes

<disk>... A call to AT$ABS by AT$ to attach to the specified
disk partition followed by calls to AT$REL to
attach to directories following the <disk> portion
of the pathname

dir A call to AT$ANY by AT$ to attach to the first
dir>... directory specified in the pathname followed by
subsequent calls to AT$REL to attach downward
>0, A call to AT$HOM by AT$ to attach to the home
directory followed by calls to AT$REL to attach
downward
(null) A call to AT$HOM by AT$ to attach to the home
directory
Note

PRIMOS treats a single (simple) object name in one of two ways,
depending upon whether or not the object name is a directory to
which the user is to be attached.

When attaching to a directory, a simple object name identifies
a top-level directory that is to be searched for. In other
cases, a simple object name identifies a file in the current
directory.

Second Edition 48

ATTACH POINTS

This distinction is seen when comparing the following two
PRIMOS commands:

ATTACH FRODO
SLIST FRODO

The ATTACH command searches for a top-level directory named
FRODO. The SLIST command searches for a file named FRODO in
the home (current) directory. (When the SLIST command is
issued, the current attach point is reset to the home directory
by the operation of searching the command directory, CMINCO,
for the SLIST program.) :

Figure 4-3 illustrates the calling sequence of ATS.

The AT$ABS Subroutine

To attach to a top-level directory on a specific disk partition, use
the AT$ABS subroutine. This subroutine allows you to specify the disk
partition by using:

® The name of the partition

e The partition on which the current directory resides

e The partition corresponding to logical disk O

o The partition corresponding to a particular logical disk number
Vhen your program calls AT$ABS, it provides:

® A key that specifies whether the home attach point is to be set

o The identity of the top-level directory's partition, in any of
the forms listed above

o The name of the top-level directory itself

The AT$ABS subroutine attempts to set the current attach point to the
specified top-level directory on the specified partition, and returns a
code indicating whether the operation was successful. If the operation
fails, no changes are made to the attach points. If the operation
succeeds, the home attach point is also set to the current attach point

if specified by the key.

Figure 44 illustrates the calling sequence of the AT$ABS subroutine.

4-9 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Attach to Directory by Pathname

K$SETH } Pathname of
—_— —— Target Directory
{K$SETC (Null String Means

Home Directory)

vy
HALF < =128
INT STRING

|

ATS$ (key, name, code)

HALF
INT

Standard
Error
Code

Calling Sequence of AT$
Figure 4-3

Second Edition 4-10

ATTACH POINTS

Attach to Top-level Directory of Specified Partition

Name or Logical Disk
Number of Partition

(g;x,ch '\?s"‘lgU_BS’ or Top-level Directory
), Null String Name With Optional
Sl:gglc_al Disk 0), or Password (Separated by

. (Disk qf Current One Space), or Null String
Attach Point) (Implying MFD)

K$SETH
K$SETC

\J v
HALF < =32 < =39
INT STRING STRING

l

AT$ABS (key, partition, directory, code)

HALF
INT
Standard
Error
Code

Calling Sequence of AT$ABS
Figure 44

4-11 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The Key: Your program sets the key argument to one of the following:
Keyword Value Meaning
K$SETC 0] Set only the current attach point.
K$SETH 1 Set both the current and home attach
points.

The Partition: Your program passes the partition on which the
top-level directory resides as a character string. A null partition
name specifies logical disk O (the command device). A partition name
of * specifies the partition on which the current current directory
resides. A character string that is an unsigned octal number specifies
the logical disk number. Otherwise, the partition name identifies the
desired partition.

The Top-level Directory: Your program passes the name of the top-level
directory to attach to as a character string. To specify a password,
append it to the directory name with a single space separating the
directory name and the password.

If your program passes a mull directory name, AT$ABS attaches to the
MFD of the desired partition.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is O, the operation was
entirely successful. Otherwise, code is always positive. After a call
to AT$ABS to attach to a top-level directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this
operation are:

Keyword Value Meaning

E$BPAR 6 Bad parameter. The length of the directory
nane as passed by the calling program is a
negative number or is greater than 39
(including an optional directory password).

E$NATT 7 No top-level directory attached. This
error can occur only when the partition
name is * and the partition on which the
current directory resides is removed from
the system, as when a disk is shut down.
Use one of the subroutines described in
this chapter to reestablish a current
attach point.

Second Edition 4-12

ATTACH POINTS

Reyword ~ Value Neaning

E$FNTF 15 Not found. The specified partition does
not exist, or the specified directory does
not exist on that partition.

E$BNAM 17 Illegal name. The partition name must be
between O and 32 characters in length. The
directory name must also be between O and
32 characters in length (inclusive),
optionally followed by a single space and a
password from 1 to 6 characters long
(inclusive).

le: The following PL/I statement sets the home and current attach
points to the directory named ORANGE on the partition named RHYMES:

call at$abs(k$seth, 'RHYMES', 'CRANGE',code):

The AT$ANY Subroutine

To attach to a top-level directory on any disk partition, use the
AT$ANY subroutine. AT$ANY scans all started-up disks for the specified
top-level directory. It scans local partitions first, in logical disk
order, and then scans remote partitions in logical disk order. Use the
STATUS DISKS command to determine the logical disk order for your
system.

When calling AT$ANY, your program provides:
® A key that specifies whether the home attach point is to be set
e The name of the top-level directory
The AT$ANY subroutine attempts to set the current attach point to the
specified top-level directory on the first partition it finds that has
such a directory. It returns a code indicating whether the operation
was successful. If the operation fails, no changes are made to the
attach points. If the operation succeeds, the home attach point is
also set to the current attach point if specified by the key.

Figure 4-5 illustrates the calling sequence of the AT$ANY subroutine.

4-13 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Attach to Top-level Directory of Any Partition

K$SETH
K$SETC

|

Top-level Directory

Name With Optional
Password (Separated
by One Space)

' v
HALF < =39

INT STRING

|

AT$ANY (key, name, code)

Second Edition

|

HALF
INT
Standard
t——Error
Code

Calling Sequence of AT$ANY
Figure 4-5

4-14

ATTACH POINTS

The Key: Your program sets the key argument to one of the following
Keyword Value Meaning
K$SETC 0] Set only the current attach point.
K$SETH 1 Set both the current and home attach
points.

The Top-level Directory: Your program passes the name of the top-level
directory to attach to as a character string. To specify a password,
append it to the directory name with a single space separating the
directory name and the password.

The Error Code: An output argument, code, informs your program of the
success or fallure of the operation. If code is O, the operation was
entirely successful. Otherwise, code is always positive. After a call
to AT$ANY to attach to a top-level directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this
operation are:

Reyword Value Meaning

E$BPAR 6 Bad parameter. The length of the directory
name as passed by the calling program is a
negative number or is greater than 39
(including an optional directory password).

E$BNAM 17 Illegal name. The syntax of the directory
name as supplied by the calling program is
not correct. The directory name must be
between O and 32 characters in length,
optionally followed by a single space and a
password. See the Prime User's Guide for a
description of the legal syntax for
objectnames.

E$NFAS 189 Top-level directory not found or
inaccessible. The specified directory
could not be found, or resides on a disk
partition that cannot be accessed by the
user.

4-15 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Example: The following PL/I statement sets the home and current attach
points to the directory named ORANGE on the first partition found to
contain a directory named ORANGE:

call at$any(k$seth, 'ORANGE’,code);

The AT$REL Subroutine

Use the AT$REL subroutine to attach down to a directory that is
subordinate to the current directory. The subroutine searches through
the current directory for the specified lower-level directory, and
attaches to it as the new current (and optionally home) directory.

When calling AT$REL, your program provides:
e A key that specifies whether the home attach point is to be set
e The lower-level directory to be attached to
The AT$REL subroutine attempts to set the curremt attach point to the
specified lower-level directory of the current directory, and returns a
code indicating success or failure. If the operation fails, the attach
points are not changed. If the operation succeeds, the home attach
point is also set to the current attach point if specified by the key.

Figure 46 illustrates the calling sequence of the AT$REL subroutine.

The Key: Your program sets the key argument to one of the following
Keyword Value Meaning
K$SETC 0] Set only the current attach point.
K$SETH 1 Set both the current and home attach
points.

The Lower-level Directory: Your program passes the name of the
Tower-level directory to attach to as a character string. To specify a
password, append it to the lower-level directory name with a single
space separating the lower-level directory name and the password.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is O, the operation was
entirely successful. Otherwise, code is always positive. After a call
to AT$REL to attach to a lower-level directory, code may have one of

. many values. Volume O of this series contains a comprehensive list of

Second Edition 4-16

ATTACH POINTS

Attach to Subdirectory of Current Directory

K$SETH
K$SETC

With Optional Password
(Separated by One Space)

} Lower-level Directory Name

\ \j
HALF < =39

INT STRING

R

ATS$REL (key, name, code)

HALF
INT

Standard
Error
Code

Calling Sequence of AT$REL
Figure 4-6

4-1% Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

all standard file system error codes. Error codes specific to this
operation are:

Reyword Value Meaning

E$BPAR 6 Bad parameter. The length of the
lower-level directory name as passed by the
calling program is a negative number or is
greater than 39 (including an optional
lower-level directory password).

E$NATT 7 No top-level directory attached. This
error can occur only when the partition on
which the current directory resides 1is
removed from the system, as when a disk is
shut down. Use one of the AT{xxx
subroutines to reestablish a current attach
point.

E$ENAM 17 Illegal name. The syntax of the
lower-level directory name as supplied by
the calling program is not correct. The
lower-level directory name must be between
O and 32 characters in length, optionally
followed by a single space and a password.
See the Prime User's Guide for a
description of the legal syntax for
objectnames.

le: The following PL/I statement sets the home and current attach
points to the lower-level directory named JUICE of the current
directory:

call at$rel(k$seth, ‘JUICE’',code);

The GPATH$ Subroutine

It is sometimes useful for your program to be able to determine the
full pathname of the initial, home, or current directories. The GPATHS
subroutine provides this function. This subroutine is also capable of
determining the full pathname of a file open on any file unit,
including the command output unit. File numbers for member files
within segment directories are returned when appropriate.

Second Edition 4-18

ATTACH POINTS

To determine the full pathname of one of the three directories, your
program calls GPATH$ and provides it with:

® A key that specifies which directory pathname is to be obtained
e The size of the buffer into which the pathname is to be stored

The GPATH$ subroutine determines the appropriate directory pathname and
returns to your program:

® A buffer containing the resulting pathname

e The actual length of the pathname

® An error code indicating whether the operation was successful
Figure 4-7 illustrates the calling sequence for the GPATH$ subroutine
to determine the pathname of one of the three attach points.

The Key: Your program sets the key argument to one of three values:

Keyword Value Meaning

K$CURA 2 Determine the pathname of the current
directory.

K$HOMA 3 Determine the pathname of the home
directory.

K$INTA 4 Determine the pathname of the initial
directory.

Maximum Size of the Returned Pathname: Your program sets the
max_name_len argument to the size of the name argument in bytes. If
the resulting pathname is longer than max name len characters, the
operation fails, and an error code of e$bfts is returned.

The Returned Pathname: The GPATH$ subroutine sets the name argument to
the resulting pathname if the operation succeeds (code is 0). GPATH$
stores the operational length of the returned pathname in name len. No
characters beyond character number name_len in name contain valid data.

The Actual Iength of the Returned Pathname: GPATH$ sets the name_len
argument to the length of the resulting pathname in bytes if the
operation succeeds (code is 0).

4-19 Second Edition

ADVANCED PROGRAMMER'S GUITE, VOLUME II: FILE SYSTEM

Determine Pathname of an Attach Point

0 (Zero) ——
K$CURA Maximum Length of
_— Name (Returned
KSHOMA Pathname)
KSINIA (characters)
\ \i v
HALF HALF HALF
INT INT #INT

R

GPATHS (key, ignored, name, max__name__len, name__len, code)

LHALF HALF

STRING --mcmmmm e m ==
INT INT
~ Standard
Error
Code
Ret g Length of
eturne L » Returned Pathname
Pathname (characters)

Calling Sequence of GPATH$ to
Determine the Pathname of an Attach Point

Figure 4-7

Second Edition 4-20

ATTACH POINTS

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is O, the operation was
entirely successful. Otherwise, code is always positive. After a call
to GPATH$ to determine the pathname of an attach point, code may have
one of many values. Volume O of this series contains a comprehensive
list of all standard file system error codes. Error codes specific to
this operation are:

Reyword Value Meaning

E$NATT v No top-level directory attached. This
error usually occurs only when the
directory to which the user is attached is
removed from the system, as when a disk is
shut down. Use one of the subroutines
described in this chapter to reestablish a
current attach point.

E$BFTS 35 Buffer too small. The supplied buffer is
too small to hold the information. The
buffer argument contains no useful data.

g

ple: The following PL/I statements display the full pathname of
home directory:

J

call gpath$(k$homa,O, pathname, 80, pathlen,code);
if code=0 then call tnou(pathname,pathlen);
else call errpr$(k$irtn,code, ‘Cannot get home pathname’,24,
"MYPROGRAM' ,9)

The SRCH$$ Subroutine

Use the SRCH$$ subroutine to open the current directory. When calling
SRCH$$, your program provides:

e An indicator that the current directory is being opened

® A key that specifies how the directory is to be opened

4-21 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

The SRCH$$ subroutine attempts to open the current directory and
returns to your program:

® An error code indicating whether the operation was successful

e A file unit number that identifies the open directory. This
number is used when reading directory entries.

e The file type, indicating the type of file Jjust opened
(currently always top-level directory)

This section describes the input and output parameters that apply when
calling SRCH$$, and then shows a sample call to SRCH$$. Figure 4-8
illustrates the calling sequence of the SRCH$$ subroutine to open the
current directory.

The Error Code: An output argument, code, informs your program of the
success or fajlure of the operation. If code is O, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SRCH$$ to open the current directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this

operation are:

Keyword Value Meaning

E$NATT 7 No top-level directory attached. This
error usually occurs only when the
directory to which the user is attached is
removed from the system, as when a disk is
shut down. Use one of the subroutines
described in this chapter to reestablish a
current attach point.

E$NRIT 10 Insufficient access rights. The user does
not have List access to the current
directory.

Exanple: The following example shows how a FORTIRAN program opens the
current directory for reading:

CALL SRCH$$(K$READ+K$GETU,K$CURR, O, UNIT, TYPE,OOCE)
IF (CODE.NE.O) GO TO 1000

1000 CAIL.ERRPR$(K$IR'IN,(X)DE, ‘Current directory’,15, ‘MYPROGRAM',9)
RETURN

Second Edition 4-22

ATTACH POINTS

Open Current Directory

K$CURR

K$READ + K$SGETU

— 0 (Zero)

Y Y Y
HALF HALF HALF
INT INT INT

N

SRCHS$$ (key, current, ignored, unit, type, code)

HALF HALF HALF
INT INT INT

File Unit Standard
Number Error
Code

Type of Current
—— Directory (Currently
Always 4, Top-level)

Calling Sequence of SRCH$$ to
Open the Current Directory

Figure 4-8

4-23 Secord Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

QUESTIONS AND ANSWERS ABOUT ATTACH POINTS

This section answers some typical questions about attach points.

® If the current attach point gets reset by a mistyped command, or by
the execution of a non-internal command, how does this affect my

running program?

If a user quits (by typing CONTROL-P) while rumning a program, resets
the current attach point by mistyping a command or executing a
non-internal command, and then restarts the program (by using the START
command), the program may not continue working properly; its behavior
when it resumes execution may be unpredictable, because it is suddenly
performing file system operations in a different directory than
intended. This is the case only if the user happened to quit while the
program was using the current attach point separately from the home
attach point.

Attach points are not a part of the recursive command environment. You
must consider this when you write programs that tend to disassociate
the home and current attach points while allowing the user to quit.

Even a call to SRSFX$ or CP$ can involve the specific use of the
current attach point. (For example, calling CP$ to invoke DELETE
causes an attach to CMDNCO to search for the DELETE program.) Because
these subroutines are also interruptible, they may not continue
execution properly if the current attach point is reset during an
interruption, and improper execution of these subroutines may affect
the operation of your program.

® Can I use the GPATH$ subroutine to record my current attach point
during a quit, and then when the user types START, call AT$ with
the pathname returned by GPATH$ to preserve my attach point?

Yes, with the following cawveat: the pathname returned by GPATH$
contains no passwords. If your system is using password directories,
it is possible that the mechanism proposed by this question might
complicate matters, but if your system uses ACL directories throughout,
then the proposed solution should work.

There are two points to consider:

® Make certain that the mechanism not only catches the original
CONTROL-P, but also catches the subsequent START command. The
recommended way to do this is to resignal the QUIT$ condition
from within the handler for QUIT$. The Subroutines Reference
Guide, Vol. IIT describes the condition signalling mechanism.

o The access to the specified directory is recalculated whenever
the mechanism is engaged. This is rarely a problem, but it is
possible that the attempt to reattach to the current directory
could fail due to insufficient access, whereas the original

Second Edition 4-24

Text Storage and

Retrieval

Many applications must be able to store and retrieve text strings on
disk. Under PRIMOS, text strings consist of 8-bit characters in ASCII
format. Each text string is considered to be a line of text. A text
file consists of one or more lines of text. This chapter describes how
programs create and operate on text files.

Using PRIMOS, text storage and retrieval is straightforward. PRIMOS
offers two methods of organizing lines of text on disk:

e Variable-length records

e Fixed-length records
Each method of organization has advantages and disadvantages, described
later in this chapter. PRIMOS provides a unified interface to both
types of files. In particular, the opening and closing of
variable-length record and fixed-length record files is identical. The
only difference is in the way data are actually read and written to the
file.
This chapter describes:

e The differences between variable-length record files and
fixed-length record files

e How to open, extend, truncate, and close text files

e How to read and write variable-length files

5-1 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

e How to read, write, and position fixed-length record files
e The format of a variable-length record file
e The format of a fixed-length record file

This chapter closes with questions and answers about text files.

SUBROUTINES FOR ACCESSING FILES

The subroutines most often used when accessing text files are:

Subroutine Use

SRCH$$ Accepts a filename; opens, closes, deletes,
changes access on, or verifies the existence of
the file as requested by the key. Most commonly
used to open and close files.

SRSFX$ Allows the calling program to specify a list of
legal file suffixes in order to find a file with
one of them. Each supplied suffix is appended to
the base pathname, until the file is found or the
list of suffixes is exhausted. This subroutine
is used by Prime software such as the RESUME
command.

SGD$OP Opens a file within a segment directory. The
segment directory must already be open.

RDLIN$ Reads a line from an open variable-length record
file, returning a fixed-length record buffer.
The buffer is appropriately padded with spaces
(240 octal).

WILINS$ Writes a fixed-length record to an oOpen
variable-length record file. The length of the
line is calculated by subtracting the number of
trailing spaces (240 octal) from the length of
the record.

PRWF$$ Used to truncate a file after writing it, in case
the file is to be made shorter. For fixed-length
record files, PRWF$$ is also used to read, write,
and position the file, as described later.

All of these subroutines are thoroughly described in Volume II of the
Subroutines Reference Guide.

Second Edition 5-2

TEXT STORAGE AND RETRIEVAL

DIFFERENCES BETWEEN VARIABLE-LENGTH AND FIXED-LENGTH RECCRD FILES

The organization of data within a file is defined by the program or
programs that use the file. PRIMOS does not maintain a description of
the contents of any file. This allows flexibility in accessing files,
because one program can treat a file as a collection of lines of text,
while another program can treat the same file as binary data.

All programs that use a file must agree on the organization of data
within the file, because PRIMOS does not impose restrictions on the
access method. This means that all programs must know whether a text
file consists of variable-length records or fixed-length records when
operating on text files.

Therefore, you should decide early in any project whether to use
variable-length records or fixed-length records. This will prevent
confusion and program misbehavior. If such a decision cannot be made
early enough, you should build a small subroutine library that can
perform fixed-length operations on variable-length record files, and
vice versa. You will rarely need such a subroutine library, however,
because the advantages and disadvantages of the two organizations are
so distinct.

Variable-length Records

Text files under PRIMOS normally consist of variable-length records.
Each line of text in a file is terminated by a new-line character,
ASCII IF (212 octal). The lengths of lines in the file vary from O to
an application-defined maximum. No prefix defining the record length
is present; the new-line character delimits each record.

Variable-length records offer the following advantages:

@ All Prime-supplied utilities that operate on text files accept
variable-length records. Such utilities include SLIST, ED,
EMACS, RUNOFF, SPOOL, and others. Only a few utilities, such as
SORT, support fixed-length records.

o Using variable-length records usually saves disk space. This is
true when the lengths of lines in a file vary, or when three or
more contiguous spaces (a space is 240 octal) occur frequently
in the file.

e There is no inherent limit to the length of a line in a
variable-record file. Each particular application limits the
operational length of lines in a text file to a specific
quantity. This is also true of Prime-supplied utilities. The
maximum line length in is different fram that of EMACS, for

example.

5-3 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

o The length of each line in a variable-record file is defined by
a new-line character that follows it. Thus, a utility needs no
information outside the file to use the file. On the other
hand, any program that operates on a fixed-length record file
must know the record size of the file.

Variable-length record files are sometimes referred to as compressed
files. The term “"compressed" refers to the compression of contiguous
spaces. Another term, uncompressed, identifies a similar file format
that does not include space compression. PRIMOS itself cannot
distinguish between compressed and wuncompressed files; your
application must make this distinction.

Fixed-length Records

The alternate organization of text files under PRIMOS stores lines of
text in fixed-length records. Here, the length of each record, or line
of text, is known by the program using the file. Records are stored
side-by-side in the file, with no intervening control information (such
as a new-line character).

Fixed-length records offer the following advantages:

® Accessing a particular record is significantly faster when all
of the records are fixed-length, since the location of the
record is defined by only two variables —- the record length for
the file and the record number to be accessed. A
variable-length record file must be searched sequentially until
the desired record is found.

® There are no restrictions on the character set. Characters such
as the ASCII line feed (212 octal), DCl (221 octal), and null
(000 octal) can be read and writtem without any special
consideration.

o The execution speed of a program that expects records to contain
fixed-length fields of information may be superior when
fixed-length records are used. Fixed-length records can be read
directly into PL/I structures or FORTRAN BQUIVALENCE areas
without going through an intermediate parsing stage (as is
necessary when reading variable-length records).

® Programs that use fixed-length record data can often be more
easily moved from one large-scale computer system to another.
Fixed-length record organization has been in use for
approximately & century, beginning with the punched card.
Variable-length record organization is comparatively recent, and
is still the second choice in languages such as COBOL, FORTRAN,
and PL/TI.

Second Edition 54

TEXT STORAGE AND RETRIEVAL

Hybrid Approaches

As described previously, PRIMOS itself places no restrictions on the
organization of data in a file. It is up to the programs that access
the file to use the same access method on a file. Therefore, it is
possible to construct hybrid file organizations that include advantages
from both the fixed-length and variable-length record approaches.

For example, if you use fixed-length records separated by an ASCII LF
(212 octal) and a NUL (00O octal) byte, you will be able to display a
fixed-length record file using SLIST. (It cannot be edited by using ED
or EMACS, however.)

To solve the problem of having to hard-code the record length into
programs that use fixed-length records, the first two bytes of a file
can be defined to contain the length of records in the file in Dbytes.
However, this prevents the file from being directly sorted by Prime’s
SORT facility — when sorting fixed-length record files, SORT will not
be expecting the first two bytes to contain such information.

You may decide to have a variable-length record file to sawve disk
space, using the PL/I language as a model. You can represent the
individual records as PL/I CHARACTER(*) VARYING variables, rather than

each record with a new-line code. This has two disadvantages.
First, it renders such files inaccessible via PRIMOS utilities such as
SLIST, ED, and EMACS. Second, records would presumably not be written
using space compression techniques, and therefore one might take up
extra disk space. The important advantage of this approach is that of
fixed-length records; the entire character set may be used within each
record.

Although you can use approaches such as those described above instead
of the variable-length and fixed-length record organizations, such
approaches are not described in this book. If you find that you need a
nonstandard organization for a text file, you must treat the file as a
data file. The manipulation of data files is described in Chapter 6,
DATA STORAGE AND RETRIEVAL.

Maximum Length of a File

Currently, the maximum number of characters that can be stored in one
file under PRIMOS is 465 million. This assumes a single file stored on
a 30-head partition residing on a 675MB disk drive (also known as a
600MB disk), with the minimal housekeeping and directory information in
the partition.

5-5 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

HOW TO OPEN, EXTEND, TRUNCATE, AND CLOSE TEXT FILES

To read a text file, your program normally:

1.

2.

3.

Opens the file for reading.
Reads the file until the end of file is reached.

Closes the file.

To write a text file, your program normally:

1.

2.

5.

Opens the file for writing.

Positions the file to end-of-file if new data is to be written
to the end of the file; otherwise, your program will overwrite
the existing data.

Writes the file, automatically extending the file length when
necessary.

Truncates the file at the current position to insure that old
data originally in the (longer) file is deleted.

Closes the file.

PRIMOS does not impose restrictions on the order of these operations
except that your program must open a file before it can read, write,
extend, or truncate the opened file.

The subjects of this section are how to open, position to the end of,
truncate, and close a text file. The subsequent two sections describe
how to actually read and write text files.

Opening a File

Before your program can access data in a file, it must open the file.
Your program opens a file by using the SRSFX$, SGD$OP, or SRCHS
subroutines. When your program calls these subroutines, it provides:

e The name of the file to be opened.

e A key that specifies how the file is to be opened.

Second Edition 5-6

TEXT STORAGE AND RETRIEVAL

The SRSFX$, SGD$OP, or SRCH$$ subroutine attempts to open the specified
file and returns the following information to your program:

® An error code indicating whether the operation was successful.

e A file unit number that identifies the open file. Your program
uses this number when performing operations (such as read axd
write) on an open file.

o The file type, indicating the type of file just opened
(including SAM, DAM, CAM, SEGSAM, SEGDAM, and Directory).

Additional information returned by SRSFX$ is not relevant to this
description.

This section contains the input and output parameters applicable when
you call SRSFX$, SGD$OP, and SRCH$$, and shows a sample call to SRCH$S.
Figure 5-1 illustrates the calling sequence of SRSFX$ to open a file;
Figure 5-2 illustrates the calling sequence of SGD$OP;<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>