

a

a

a a

a a
a

a a

a

a

a
a

Prime. AdvancedProgrammer’s
Guide
VolumeI!
File System

Revision 21.0

DOC10056-2LA

Advanced Programmer’s
(Guide

VolumeII
File System

Second Edition

by

Leonard E. Bruns and Mary Hadcock

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 21.0 (Rev. 21.0).

Prime Computer,Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.

Prime Computer, Inc., assumes no responsibility for any errors that may

appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

Copyright © 1987 by Prime Computer, Inc. All rights reserved.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
DISCOVER, INFO/BASIC, INFORM, MIDAS, MIDASPLUS, PERFORM, Prime
TNFORMATION, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWAY, PRIMIX, PRISAM,
PST 100, PT25, PTI45, PIGS, PT200, PW153, PW200, PWe50, RINGNET, SIMPLE,
50 Series, 400, 750, 850, 2250, 2350, 2450, 2550, 2650, 2655, 2755,
6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and Q955II are
trademarks of Prime Computer, Inc.

PRINTING HISTORY

Preliminary Edition (DOC9229-1LA) January 1985 for Release 19.4.0
First Edition (DOC1O056-1LA) September 1985 for Release 19.4.2
Second Edition (DOC10056-2LA) July 1987 for Release 21.0

CREDITS

Author of Chapter 3, SEARCH RULES: Glenn Morrow
Editorial: Mary Skousgaard, Thelma Henner
Illustration: Marjorie Clark, Mingling Chang, Mary Easter, Robert Alba
Document Preparation: Margaret Theriault, Celeste Henry, Mary Mixon,

Kathy Normington
Production: Judy Gordon

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska.)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

—

: *

:

—

Contents

ABOUT THIS BOOK xi

l PRIMOS FILE SYSTEM CONCEPTS

What Is a File System? , 1-1
Data 1-2
Storage 1-2
Objects 1-2
Procedures 1-3
Summary of File System Rationale 1-3

What Is the PRIMOS File System? 1-4
The Tree Structure 1-5
File System Objects 1-5
Disk Partition 1-5
Master File Directory 1-8
Top-level Directory 1-8
Lower—level Directory 1-9
Segment Directory 1-9
Access Category 1-10
File 1-10

Object Naming Conventions 1-10
Object Names 1-11
Pathnames 1-12
How and When Objects Are Named 1-15

Access Methods 1-15
Access Control 1-16
Attaching to a File Directory 1-16
Access Control Lists 1-17
Password Directory 1-18

How and When Access Is Calculated 1-19
Access Calculation Concepts 1-19
Access Calculation When

Opening Files 1-21
Access Calculation When Attaching

to Directories 1-21
Access Calculation for Other

Operations 1-22
File Units 1-23

Information Associated With a
File Unit 1-23

Opening a File 1-26
File Unit Number Allocation 1-27
File Unit Numbers 1-28
File Pointer 1-29

Positioning a File 1-29
Truncating a File 1-29

Closing a File 1-30
Closing on Normal Program

Termination 1-30
Closing on Abnormal Program
Termination 1-30

File Attributes 1-31
The Date and Time Last
Accessed Attribute 1-32

The Date and Time Created
Attribute 1-33

The Date and Time Last
Modified Attribute 1-33

The Date and Time Last
Backed Up Attribute 1-35

The Read/Write Lock Attribute 1-35
The File Type Attribute 1-37
The Dumped/Not-dumped Attribute 1-38
The Special/Not-special Attribute 1-38

Quotas 1-39

@ PROGRAMMER INTERFACES TO THE FILE SYSTEM

Communicating With the File System 2-1
Commands 2-1
Command Functions 2-2
Subroutine Calls 2-2
System Primitives 2-35
Arguments and Options 2-35
Attach Points and Access Rights 2-4
Object Names 2-7
File Units and Attributes 2-8
PRIMOS Responses (Return Codes) 2-9

File System Operations: An Overview 2-10
General Requirements 2-10
Creating Objects 2-10
Opening Objects 2-11
Reading Objects 2-11
Writing Objects 2-12
Deleting Objects 2-12

Access Control to File System
Objects 2-13

Attach/ACL Requirements 2-13
Attaching 2-13
Access Control List (ACL)

Functions 2-16

Creating File System Objects 2-24
Creating File Directories 2-24
Creating Files 2-26

Opening File System Objects 2-27
Opening File Directories 2-27
Opening Files 2-29

Reading File System Objects 2-30
Writing File System Objects 2-oA
Closing File System Objects 2-36
Deleting File System Objects 2-37

© SEARCH RULES

Search Rules and Search Lists 3-1

Advantages of Search Rules o-3
Search Rule Types o-4
Administrator and System

search Rules 3-4
User—specified Rules 3-5

Search List Types 3-5
User-defined Lists 3-5
ATTACH$ 3-6
COMMAND$ 3-7
INCLUDE$ 5-8
BINARY$ 5-8
ENTRY$ 3-9

Creating and Setting Search Rules o-9
Creating a Search Rules

File 5-9
Setting Search Lists 5-10

search Rule Keywords 3-12
Accessing Search Lists 3-19

PRIMOS Command Environment o-19
CPL Programs 5-19
Program Subroutines 3-19
ATTACH$ Invoked by Other

Search Lists o-21

4 ATTACH POINTS

The Initial Attach Point 4-1
The Home Attach Point 4-3
The Current Attach Point 4-5
Operations That Reset the

Current Attach Point 4-6

Functions Used to Manipulate
Attach Points

The AT$ Subroutine
The AT$ABS Subroutine
The AT$ANY Subroutine
The AT$REL Subroutine
The GPATH$ Subroutine
The SRCH$$ Subroutine

Questions and Answers About
Attach Points

5 TEXT STORAGE AND RETRIEVAL

Subroutines for Accessing Files
Differences Between Variable—length

and Fixed-length Record Files
Variable-length Records
Fixed-length Records
Hybrid Approaches
Maximum Length of a File

How to Open, Extend, Truncate,
and Close Files

Opening a File
Positioning a File to End-of-file
Truncating a File
Closing a File

How to Read and Write Variable-
length Text Files

The RDLIN$ and WILIN$ Interfaces
Sample Programs Using RDLIN$
and WILIN$

How to Read, Write, and Position
Fixed-—length Files

The PRWF$$ Interface
Sample Uses of PRWF$$

Format of a Variable-length
Record File

Format of a Fixed-length
Record File

Determining the Blocking Factor
Calculating Record Position During
Random-access Operations

Questions and Answers About
Text Files

4-7
4-8
4-9
4-13
4-16
4-18
4-21

4-24

5-21

5-24
5-24

5-29

5-31
5-31
5-39

5-42

5-44
5-45

5-46

5-47

6 DATA STORAGE AND RETRIEVAL

File Organization 6-2
segment Directories 6-2

Subroutines Used to Access
Segment Directories 6-2

How to Open a Segment Directory 6-3
How to Position a Segment

Directory 6-10
How to Extend a Segment Directory 6-14
How to Open a File Within a

segment Directory 6-17
How to Delete a File Within a

segment Directory 6-25
How to Scan a Segment Directory 6-25

File Directories 6-30
How to Create a File Directory 6-31
How to Open a File Directory 6-34
How to Scan a File Directory 6-36

Reading and Writing Data Files 6-42
Questions and Answers About

Data Files 6-435

7 ACCESS CONTROL LISTS (ACLs)

Subroutines That Manipulate ACLs 7-1
Setting Access on Files and
Directories 7-2

Creating Access Categories 7-2
Changing Access to a File

System Object 7-6
Setting the Access for an Object
to That of Another Object 7-6

Reading the Access for an Object 7-9
How Programs Should Parse an ACL 7-9
Questions and Answers About ACLs 7-11

8 FILE ATTRIBUTES

How to Read the File Attributes

of an Object 8-1
How to Set File Attributes 8-6

9 DISK QUOTAS

Retrieving Information on
Disk Space in Use 9-1

Retrieving Quota Information
for a Directory 9-2

Retrieving Quota Information
for the MFD 9-2

Improving Quota System Performance 9-2

10 INTERPROCESS COMMUNICATION
VIA THE FILE SYSTEM

General Concepts . 10-1
File and System Read/Write Locks 10-2
Caveats on Using the File System

for Interprocess Communication 10-4
Sample Models of Communication via

File System 10-5
Multiple Processes Creating

File-based Transactions 10-5
Multiple Competing Servers

Accessing File-based Transactions 10-7
Two-process Transaction Management 10-9
Multiple Processes Accessing a
Data Base 10-10

About

This Book

The Advanced Programmer's Guide is intended for programmers who are

experienced with 50 Series™ systems, developed by Prime, and at least

one high-level language supplied by Prime (preferably PL/I or FORTRAN

77). Readers should have read the Prime User's Guide, DOG@4150-51A, and
the Programmer's Guide to BIND and EPFs, DOC8691-11A. Familiarity with

the Subroutines Reference Guides Volumes I-IV, 00C10080-21A,

DOC1OO81-1LA through DOC10083-1LA, and updates UPD10081-11A through

UPD10083-11A will be helpful. Prime system architecture is described

in the Prime 50 Series Technical Summary, D0C6904-2LA, and in the

System Architecture Reference Guide, DOC9#475-21A.

The following books are also referenced in this volume: System

Administrator's Guide, Vol III: System Access and Security,

DOC10133-1LA; Security Features User's Guide, DOC101350-1LA; PRIMOS

Commands Reference Guide, DOC35108-6LA.

This guide consists of four volumes. At PRIMOS® Rev. 21.0, the set
consists of the following editions:

Advanced Programmer's Guide, Volume O, Introduction and Error

Codes, DOC1O066-1LA and update UPD10066-11A

Advanced Programmer's Guide, Volume I, BIND and EPFs, DOC10055-1LA

Advanced Programmer's Guide, Volume II, File System, DOC10056-2LA

Advanced Programmer's Guide, Volume III, Command Environment,

DOC10057—-1LA

Information is divided among the set as follows:

e@ Executable Program Formats (EPFs) in Volume I

@ The PRIMOS File System in Volume IT

@ The PRIMOS Command Environment in Volume III

@ New features for readers of this guide in Volum 0

@ Standard error codes used by PRIMOS, along with their messages
and meanings, in Volume 0

Volume 0 also contains information applicable to all of the other
volumes, such aS an explanation of the presentation of the subroutine
calls, general coding guidelines, and the like.

Designed for systems-level programmers, this guide describes the
lowest-level interfaces supported by PRIMOS and its utilities.
Higher—level interfaces not described in this guide include:

@ Language-directed I/O

@ The applications library (APPLIB)

@ The sort packages (VSRTLI and MSORTS)

@ Data management packages (such as MPLUSLB and PRISAMLIB)

@e Other subroutine packages

All of these higher-level interfaces are described in other manuals,
such as language reference manuals, and the four volumes of the
Subroutines Reference Guide.

This guide documents the low-level interfaces for use by programmers
and engineers who are designing new products such as language
compilers, data management software, electronic mail subsystems,
utility packages, and so on. Such products are themselves higher-level
interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces
described in this guide for best results.

Because of the technical content of the subjects presented in this
guide, it is expected that this guide will be regularly used only by
project leaders, design engineers, and technical supervisors rather
than by all programmers on a project. Most of the information in this
guide deals with interfaces to PRIMOS that are typically used only in
small portions of a product, and with overall product design issues
that should be considered before coding begins. Once the product is
designed and the PRIMOS interfaces are designed and coded, a typical
product can then be written by programmers whose knowledge of these

- issues is minimal. Of course, this statement is predicated on the
assumption that programmers employ widely accepted programming

practices such as modular, or structured, programming; functional and
design specifications; and thorough unit debugging and testing.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase letters.

Convention Explanation Example

UPPERCASE In command formats, words SLIST
in uppercase indicate the
actual names of commands,
statements, and keywords.
These can be entered in
either uppercase or
lowercase letters.

Lowercase In command formats, words LOGIN user-id
in lowercase letters indicate

items for which the user must
substitute a suitable value.

Abbreviations If a command or statement LOGOUT
has an abbreviation, it is
indicated by underlining.
In cases where the command
or directive itself SET._QUOTA
contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces.

underlining In examples, user input OK, RESUME MY_PROG
in is underlined but system This is the output

examples prompts and output are not. of MY_PROG.CPL
OK,

Brackets Brackets enclose one or SPOOL —-LIST
Cc] more optional items. —CANCEL

Choose none, one, or

more of these items.

Braces Braces enclose a list CLOSE filename
{ } of items. Choose one ALL

and only one of these
items.

Ellipsis

Parentheses

C)

Hyphen

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly
as shown.

Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

item-x[,item-y]...

DIM array (row,col)

SPOOL -LIST

PRIMOSFile System

Concepts

This chapter and Chapter 2, PROGRAMMER INTERFACES TO THE FILE SYSTEM,
explain the concepts and use of the PRIMOS file system.

What follows in this chapter is a brief description of file systems in
general, a rationale for their use, and then, in som detail,
explanations of the elements and concepts that are peculiar to the
PRIMOS file system.

Chapter 2 describes in detail the ways in which programmers can use the
PRIMOS file system elements in building application programs and
Subsystems that create, use, and maintain their own or their company's
collections of data.

WHAT IS A FILE SYSTEM?

It is hard to imagine a large corporation, a small business, or even an
individual being able to do any business at all without some form of
data. Something as simple as an address book is one kind of data that
an individual might use. A checkbook is another. Businesses use data
in the form of mailing lists, accounts receivable, accounts payable,
cash on hand, and many other collections of words and numbers in their
daily transactions. In order to use these words and numbers in any
efficient and meaningful way, they must be organized in some fashion,
and there must be tools by which their owners can manipulate them. The
function of a file system is to provide the organization and the tools

, to store and use information by means of a computer.

1-1 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Data

The first characteristic of a file system, then, is that itisa
collection of data -- information in the form of letters, digits, and
symbols arranged into useful groups of words and numbers. If the
groups are put into some fixed sequence, such as a last name, a first
name, a middle initial, and a telephone number, each group can be
called a field. A field is usually designated as either alphanumeric
(consisting of a mixture of letters, digits, and symbols) or numeric
(consisting mostly of digits, but possibly including a plus or a minus
sign, a decimal point, one or more commas, and perhaps a currency
Symbol). Other kinds of fields, such as pure alphabetic or binary, are
recognized by some programming languages.

A record is the basic unit upon which most file systems operate. A
number of fields can be combined into a structured element known as a
data record. There are also unstructured records, which consist of
strings of alphanumeric information of varying lengths; these are,
strictly speaking, also data records, but to distinguish between
structured and unstructured records, the unstructured records can be
called text records. As a programmer, you will be using both kinds of
records:youwill write programs in the form of text records; your
programs will most likely deal with data records.

Storage

The second characteristic of a file system is that its data has been
placed in some kind of storage from which it can be retrieved when
needed. Many forms of storage exist: punched cards, paper tape,
magnetic tape, and various forms of magnetic disks. In these chapters
we will deal only with storage on disks.

Objects

Having a collection of data arranged into fields and records and stored
on a disk is a big step toward organizing the data. It is really all
that you absolutely need to store and retrieve data. Given a set of
comands that the computer understands, you could at this point
successively retrieve records until the desired one is found, and then
do some kind of operation on it. But this is a tedious task, and there
might be more than one class of records upon which you want to perform
different kinds of operations. For example, the telephone number
records would serve a purpose different from that of, say, accounting
records, and for reasons of efficiency or privacy, it would be useful
to keep these two classes of records separate.

A useful file system should be able to segregate different classes of
data into different groups, or objects, the most basic of which is the

_ file. The previous paragraph hinted at the existence of two files, one
alist of names and telephone numbers, and the other a list of names

Second Edition 1-2

PRIMOS FILE SYSTEM CONCEPTS

and accounting information. A company employee whose job is to do
telephone surveys of customers could retrieve their telephone numbers
from the first file without having to read and skip, or even being able
to see, any of the information about their accounts in the second file.

You can also imagine a second level of segregation, in which files, as
well as records, might be grouped together to serve som particular
purpose. A company with a nation-wide customer base, for example,
would maintain account files of all of its customers, but might want to
operate on them on a state-by-state or regional basis. One approach to
this task would be to cluster the files for each state or region into
another kind of object: a catalog containing the names of the files in
the cluster. These objects serve as directories to the objects
contained in them, and indeed, some file systems, including the PRIMOS
file system, call them just that. Directories, along with a suitable
language, enable identical actions to be performed on several files by
simply addressing the directory that contains them.

File systems provide other kinds of objects, whose purposes are to ease
the burden of dealing with large collections of data, controlling
access to them, and increasing the efficiency of operating on them.
What PRIMOS provides will be described later in this chapter. How you
as a programmer use them will be explained in the next chapter.

Procedures

No matter how sophisticated it may be, data organization is only an
idea, useless without some way to implement it, and then to act on the
organized data. For these purposes, a set of tools, or procedures, is
needed. Procedures, written into programs, enable you to create file
system objects, write data into them, read data from them, control
access to them, and perform other related functions on both the objects
themselves and the information contained in them.

Summary of File System Rationale

You may have inferred by now that there are good reasons for using a
file system, no matter how elementary or sophisticated your needs may
be. File systems come in many forms, with a variety of capabilities
ranging from simple file creation, reading, and writing to the
construction of highly complex data bases with hierarchical structures
and intricate access control mechanisms. But the ultimate goals of any
file system are simple: to organize data, to enable and simplify
access to it, and to exercise control over who can do what to it.

The rest of this chapter explains the elements of the PRIMOS file
system and how they work together to achieve these three goals.

1-3 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME ITI: FILE SYSTEM

WHAT IS THE PRIMOS FILE SYSTEM?

The PRIMOS file system is Prime’s implementation of a collection of
objects and procedures that let you create, on a disk, a file storage
structure as simple or as complex as you require to fulfill your data
storage, access, and security needs. The structure is analogous to
that of an inverted tree, consisting of a trunk (the disk), branches
(the directories mentioned earlier), and leaves (your files —- the
ultimate target of most of your work with the file system).

At its simplest, the tree consists of a trunk and one or more leaves,
representing a storage volume containing one or more files.
Optionally, you can interpose one or more branches (directories)
between the trunk and the leaves, and include some other objects (whose
functions will be described shortly), to make your tree as complex as
you wish.

The objects that the PRIMOS file system is concerned with are

e Disk Partition

@ Master File Directory (MFD)

@ Top-level Directory

@ lLower-level Directory

@e Segment Directory

@ Access Category

e File

There can be varying numbers of all of these objects on any given
system. You can add a number of disk partitions to a system. Each
partition contains one master file directory. Each master file
directory can contain any number of the other file system objects.

In order to get to any of these objects to operate on them, you must be
able to identify each one uniquely. This means that each object must
have a name. The person who creates an object assigns it a name. Disk
partitions and top-level directories are usually assigned names by a
System Administrator. You, the programmer, assign your own names to
objects that belong to you: lower-level directories, segment
directories, access categories, and files.

Once you have created a tree structure suitable for your purposes, you
will want to store some data in it, and use the data that you have
stored. The PRIMOS file system supports two access methods, or ways of
reading and writing data: the Sequential Access Method (SAM), and the
Direct Access Method (DAM).

, You will want to have some control not only over who has access to your
files, but also over what kinds of things those who do have access can

second Edition 14

PRIMOS FILE SYSTEM CONCEPTS

do to your files. Other users who share your system will want to

exercise the same control over theirs. Typically, you might want all

members of your department to be able to read your files, a select few
to be able to change them or add to them, and you alone to be able to
create and delete them. The PRIMOS file system gives you a variety of

access control tools to establish whatever degree of control you wish

over any, some, or all of the objects that belong to you. These tools

involve user identifications and a set of missions, or access

rights, which together make up Access Control Lists (ACLS). An older

form of access control, the directory password, is still supported, but
its use is declining in favor of the access control list.

In addition to allowing several disks to be connected to one computer

system, PRIMOS permits you to connect two or more computer systems to

each other in a network, and to operate on objects "belonging" to one

system from one or more of the other systems. Objects that belong to a

system different from the one you are working on are called remote

objects, and access to them is known as Remote File Access (RFA).
Access to remote objects is controllable, through ACLs, in the same way
as is access to objects on your own system (local objects).

THE TREE STRUCTURE

In the PRIMOS file system, data is stored in objects structured in the

form of an inverted tree. Figure 1-1 shows a sample tree structure.

FILE SYSTEM OBJECTS

The tree structure is made up of file system objects. An object is a

collection of data that has its own name, the name by which you can

refer to the object when you want to do something with it. ‘The

paragraphs that follow describe each of these objects in detail.

Disk Partition

At the top of a tree structure is a disk partition, which may also be
referred to as a logical disk or a volume, or even an MFD.

Disk partitions are configured on physical disks. PRIMOS supports
three kinds of physical disks: Cartridge Module Devices (CMDs),
Fixed-media Disks (FMDs), and Storage Module Disks (SMDs). Each of

these is available in several storage capacities; the total range of

usable storage space provided by the three types is from approximately

30 usable megabytes for the smallest CMD to approximately 620 usable

megabytes for the largest FMD. Storage space is dividedinto surfaces,

tracks (or cylinders), and sectors, the numbers and capacities of which
- are physical properties of the devices, and vary from one type of

device to another. All of the devices and their capacities and

1-5 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

DISK PARTITION <FOREST >

BEECH

ELM

PINE >

<FOREST>MFD

TOP-LEVEL ; TOP-LEVEL
DIRECTORY y ELM DIRECTORY y BEECH

LEAF1 LEAF2

<FOREST>ELM BRANCH1

<FOREST > BEECH

DIRECTORY y BRANCH1

FILE y LEAF1 TWIG4 FILE y LEAF2

BRANCH 8

< FOREST > ELM >LEAF1 <FOREST > BEECH > BRANCH1 <FOREST > BEECH > LEAF2

DIRECTORY | BRANCH8 DIRECTORY \ TWIG4

LEAF6 LEAF6

<FOREST > BEECH > BRANCH1 > <FOREST > BEECH > BRANCH1 >
BRANCH8 TWIG4

FILE y LEAF6 FILE y LEAF6

<FOREST > BEECH > BRANCH1 > <FOREST > BEECH > BRANCH1 >
BRANCH8 >LEAF6 TWIG4>LEAF6

Sample File System Tree
Figure 1-1

second Edition 1-6

PRIMOS FILE SYSTEM CONCEPTS

physical characteristics are described in detail in the Operator's
Guide to File System Maintenance.

Each physical disk, when it is first introduced to the PRIMOS operating
system, is initialized, or formatted, by a System Administrator or
System Operator, using the MAKE command (described in the Operator's
Guide to File System Maintenance). One function of formatting is to
create, on the physical disk, one or more logical disks, or partitions,
by defining the starting surface number and the number of surfaces that
make up the partition. (A partition may not be smaller than one
surface.) Some physical disks can contain a single partition, while
others either are required to be or operate more efficiently when
configured into two or more partitions. The actual number of
partitions that a physical disk ultimately contains depends both on its
physical characteristics and on the uses to which it is put. The
system Administrator's Guide, Vol. I, discusses the considerations
involved in the planning and execution of disk partitioning.

Another function of formatting is to create a file known as the Disk
Record Availability Table (DSKRAT), which enables the file system to
keep track of which physical records contain data and which physical
records are available to have data stored in them. Each physical
record on the disk is represented in this file by one bit, whose value
is 0 if the record is in use, and 1 if the record is available. The
DSKRAT file typically occupies several contiguous physical records,
starting at track O, sector 2, on the first surface on the disk. The
DSKRAT file has the same name as the disk partition.

Note

A physical record is not the same as the data or text records
mentioned earlier. These might be called logical records, and,
unless otherwise noted, will be what is meant whenever the term
record is used.

Another function of formatting is to provide the disk with a bootstrap
file (named BOOT). This file contains machine-executable instructions
that initiate the loading of the PRIMOS operating system, enabling
PRIMOS to be loaded and started from any disk connected to the computer
system. The bootstrap file consists of a single physical record,
located at track 0, sector O on the first surface of the disk.

During formatting, the MAKE program may detect a "bad" sector, that is,
a sector having a flaw that makes it impossible to record data into
that sector reliably. When this happens, MAKE creates a file called
the badspot file (named BADSPT) in which are recorded the locations of
any such sectors that it encounters. The file system refers to this
file in order to avoid attempts to write data to unreliable sectors.

1-7 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME IT: FILE SYSTEM

The DSKRAT, BADSPT, and bootstrap files are largely invisible and of
little direct interest to you as a programmer. The file system uses
DSKRAT and BADSPT automatically, and the bootstrap record is normally

invoked only by the system operator.

The final object that formatting creates is the master file directory,
beginning at track 0, sector 1, on the first surface of the partition.

Master File Directory

Every disk partition is organized in a hierarchy of directories, with
one master file directory, called the MFD, at the top. Each directory
contains a list of names and starting disk addresses of all of the
objects that are immediately subordinate to it. The objects
immediately subordinate to the MFD are top-level directories. The MFD
can contain other information, such as who has access to these objects
and how much disk space the objects are permitted to occupy (their
quotas). The MFD is the starting point in any search for a file system
object. To attach to the MFD, you issue the command:

ATTACH <DISK_PARTITION>MFD

where <DISK_PARTITION> is a name, but MFD is entered literally.

Because "MFD" does not appear in a pathname displayed from anywhere
other than itself, the term MFD is often used synonymously with disk
partition to indicate the top of the file system tree structure.

Top-level Directory

A directory immediately subordinate to a master file directory is a
top-level directory. System or Project Administrators often assign
top-level directories to individual users as origin directories,
although lower-level directories may be assigned just as well for this
purpose. (An origin directory is the starting point for a user to
access all of the file system objects belonging to him.) The objects
that can be immediately subordinate to a top-level directory are
lower-level directories, segment directories, access categories, or
files. In addition to pointing to the objects it contains, a top-level
directory also includes access control and quota information for them.

Not all top-level directories are assigned as origin directories. Ona
disk partition containing the PRIMOS operating system, for example, a
number of directories immediately under the MFD may contain objects
such as command files, records of system usage, and other kinds of data
that are related to system operation.

Second Edition 1-8

PRIMOS FILE SYSTEM CONCEPIS

Lower—level Directory

Any directory that is one or more levels below a top-level directory is
a lower-level directory, or simply a_ directory. Lower-—level
directories can point to the same kinds of objects that top-level
directories can point to, including more lower-level directories.
Directories can be nested to many levels (99 is the default maximum
number). While the nesting level limit depends on such factors as the
physical capacity of the disk on which the directories reside and on
quotas that may have been established on their superior directories,
the real determining factor may be the length of the absolute pathname,
Which is limited to 128 characters. User access to and interaction
with a lower-level directory whose pathname contains more than 128
characters is uncertain, because the pathname is truncated. (Pathnames
are explained in the section entitled OBJECT-NAMING CONVENTIONS later
in this chapter.)

segment Directory

The directories described so far all fall into a class known as file
directories. There is another class known as a segment directory, used
primarily to contain program segments created by the PRIMOS SEG
command, and multiple-index files such as those created by the
MIDASPLUS subsystem.

Segment directories can be contained in file directories just as any
other file system object can. But they can point only to numbered data
files and segment directories, and cannot contain the names of
lower-level directories or other objects such as data files or access
categories. Their main function is to increase the efficiency of
certain utility and application programs through the use of numbered,
rather than named, objects. Once the identifying number of an object
is made known to PRIMOS, it is more efficient to locate and operate on
than is an object identified by a pathname or a filename.

A segment directory cannot be created explicitly by a command from a
terminal. Rather, PRIMOS provides subroutines, expressly designed for
this purpose, that can be included in any program that is intended to
manipulate segmented files. You can see the evidence of a segment
directory’s creation by inspecting the contents of the file directory
that contains it, but its actual creation is transparent to you as you
sit at your terminal.

Refer to Chapter 6, DATA STORAGE AND RETRIEVAL, for further information
on segment directories and to the Subroutines Reference Guide, Vol. II,
and the SHG and LOAD Reference Guide for information on segmented
programs.

1-9 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME IT: FILE SYSTEM

Access Category

An access category is a directory entry that contains an access control
list. When you specify that a certain set of users have specific
rights to operate on one of your file system objects, that list of
users and rights (the ACL) takes up space in the directory that
contains the object. If a number of objects require the same list,
creating that list for each individual object becomes wasteful, and it
is useful to be able to specify this common list by defining it once
and having it reside in only one place. The function of the access
category is to contain the list; the access to each object can then be
set by referring to the name of the access category.

The subject of access control and ACLs is explained in more detail in
the section entitled ACCESS CONTROL later in this chapter.

File

A file is an object that contains a collection of user data. In this
broad sense, any file system object can be thought of as a file, since
all objects presumably contain information useful to their users. A
top-level directory, for instance, has information that its user, the
file system, uses in its search for file system objects. But a file,
from the point of view of the human user, contains no pointers to
further subordinate objects; it is a leaf at the end of a branch in
the tree structure.

There are system files and user files. System files are created by
PRIMOS or its administrators and operators for use by the operating
system. Some of them can be read by users for purposes such as listing
users on the system and getting status information of various kinds.
But because of the access controls usually applied to them and their
directories, few system files, if any, can be changed or deleted by the
ordinary user.

User files, on the other hand, are created by you and other users to
fulfill the needs of your application programs. You normally create
structured data files by running your application programs, or text
files by using a text editor or word processing application. You can
control access to your files as tightly or as loosely as you wish to
satisfy your security needs and those of any group(s) you may belong
to.

OBJECT-NAMING CONVENTIONS

Every directory, access category, and file must have an identification
that is unique within the entire collection of objects known to the
file system. This requirement appears, at first glance, to place a
heavy burden on you —- that of knowing about the name of every existing
object any time you want to assign a name to a new object. But PRIMOS

Second Edition 1-10

PRIMOS FILE SYSTEM CONCEPIS

eases this burden in much the same way as a mailing address enables the
Postal Service to locate a particular John Smith: by using a
hierarchical access path to John Smith through a state, city, street
name, and house number. It is this access path that is unique, even
though some of the individual components may not be.

It is only a small step from the Postal Service’s access path to the
file system's access path —- the state is the top-level directory; the
city and street name are lower-level directories, the house number is a
file, and the individual Smiths living in the house are records. (At
the uppermost level, the United States is the disk partition; other
countries are different partitions.)

The mailing address is interpreted by reading geographical elements in
a Specific order, from the most inclusive to the least inclusive. The
file system's access path is formed and interpreted in precisely the
same way, by combining the names of file system objects in order, from
the most to the least inclusive. The resulting string of names (plus
some separators to show where one name ends and another begins) is
called a pathname, and, for the file system, it is only this pathname
that must be unique.

Thus, the only uniqueness requirement you must satisfy is that, within
@ given directory, each object must have a unique name. This is the
same aS saying that ina given city there can be only one Washington
Street (but there could be a Washington Street in every city in the
country).

Object Names

An object’s name is a string of up to 32 characters selected from the
following set:

letters (A through 2)

digits (O through 9)

special characters _#$- .* &/

An object name cannot begin with a digit or contain any spaces. Also,
you should avoid names beginning with _, -, & and $, because they can
cause confusion in certain commands and syntaxes. You can use the
underscore (_) to represent a space if you want your object name to
consist of two or more words. Use the period (.) for separating
object name components.

An object name can consist of one or more components. When there are
two or more components in an object name, each is separated from the
next by a period. Components can be used for whatever purpose you
wish, such as to identify several objects as being related to each

1-11 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

other in some way. AS a programmer, you will use components as
suffixes to source-text filenames to identify the language used in
writing your programs (for example, .FIN for FORTRAN programs, or .CBL
for COBOL programs). PRIMOS provides subroutines whose functions are
to manipulate suffixes. Refer to the Prime User's Guide for an
explanation of components and for a list of suffixes that Prime

software recognizes.

Although the file system allows up to 16 components in an object name,
two or three are usually sufficient for most practical applications.
In any case, remember that an object name, including all components and
their periods, cannot be more than 32 characters long.

Pathnames

A pathname is a string of object names representing the access path
that the file system follows to get to a specific object. There are
several kinds of pathnames, detailed in the following paragraphs.

Absolute Pathname: From the file system’s point of view, an object's
pathname contains the name of each directory level that mst be crossed
to get to the desired object. Such a pathname is called an absolute
pathname. It begins with the name of the disk partition, and continues
with the names of progressively less inclusive directories until the
one containing the desired object is reached. It ends with the name of
the object. A pathname cannot be more than 128 characters long.

The name of the disk partition is enclosed in <> symbols, and each
subsequent directory name is separated from the next by a > symbol:

<disk_partition>top-level_dir>lower-level_dir> . . . >objectname

Relative Pathname: As a terminal operator or a programmer, you will
often need to supply only part of an absolute pathname: the part that
follows the name of the directory you are currently working in. This
kind of pathname is called a relative pathname; it is relative to the
directory you are in. It can be used because the file system
"remembers" the elements of the absolute pathname that precede and
include the name of this directory. Most commands that you will invoke
from your terminal, as well as many of the file system subroutines you
will write into your programs, allow you to use relative pathnames.

You use a relative pathname whenever you want to work on an object that
is subordinate to the directory you are currently in, but not
immediately subordinate to it; that is, when one or more directory

Second Edition 1-12

PRIMOS FILE SYSTEM CONCEPTS

levels exist between the one you are in and the object you want to
address. The form of a relative pathname is:

*>lower-level_dir> . . . >objectname

Here the asterisk (*) represents the part of the pathname that the file
system "remembers," and when it is combined with the elements that you
supply explicitly, the result is an absolute pathname that leads from
the disk partition to the object. The part of the pathname represented
by the asterisk is called the home, or working, directory pathname;
the directory itself is the home, or working, directory. In Figure
1-1, if your home directory is BRANCH1, the home directory pathname
represented by the asterisk is <FOREST>BEECH>BRANCH1. The part of the
pathname that you would supply after the asterisk to get to the file
LEAF6 in lower-level directory BRANCH8 would be >BRANCH8>LEAF6, giving
the following relative pathname:

* >BRANCHB >LEAF6

This, in turn, is interpreted by the file system as the absolute
pathname :

<FOREST>BEECH>BRANCH]1>BRANCH8>LEAF6

Simple Pathname: When the object you want to address is immediately
contained in your home directory, you can use an even simpler form of
pathname, known as a simple pathname. A simple pathname consists of
only the name of the object you want to work with; it does not contain
any > symbols. Objectname, entryname, and simple filename are terms
used synonymously with simple pathname. If, as in the last example,
your home directory is BRANCH], and you want to do some operation on
the directory BRANCH8, you can use the simple pathname BRANCHS8.

Note

There is an exception to the interpretation of a simple name
when you use the ATTACH command. If, using the example above,
you attempt to attach to BRANCH8 by issuing the command

ATTACH BRANCH8

the ATTACH command interprets BRANCHB as a full pathname
(described below) rather than the simple pathname of the
subordinate directory BRANCH8. The result is that PRIMOS
searches for a top-level directory of that name, and in all

1-13 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

likelihood will fail to find it. To attach to the lower-level
directory BRANCH8, you would use a relative pathname:

ATTACH *>BRANCH8

Full Pathname: A full pathname is one in which you explicitly call out
all of the pathname elements except the first (the disk partition).
The file system assumes that the first element that you specify ina
full pathname is the name of a top-level directory. In Figure 1-1, a
full pathname might be:

BEECH>BRANCH]1>TWIG4

When you specify a full pathname, you are asking the file system to
search all of the active disk partitions that are visible to your
system to find the first occurrence of that top-level directory. If
your system is part of a network, all visible disk partitions on all of
the active systems on the network are searched. Local disks are
searched first, in order of logical disk number, and then remote disks
are searched in the same manner. This can take some time. (You can
limit the scope of such a search, or change the order in which disk
partitions are searched by modifying the ATTACH$ search list. Search
lists are described in Chapter 3, SEARCH RULES.) The search ends when
the first (or only) top-level directory with the specified name is
found. That top-level directory, and any intervening lower-level
directories specified in the pathname, are then followed to the desired
object.

There are three points you must understand about a file system search
by full pathname:

@ Once a top-level directory with the specified name is found on
any disk, the search terminates.

e If the desired object and all intervening lower-level
directories specified in the pathname exist under that
directory, PRIMOS performs whatever operation you requested on
the object.

e If the desired object or one of the lower-level directories
specified in the pathname does not exist under that top-level
directory on that disk partition, the file system returns an
error message and aborts the search, even thougn the required
full pathname may exist on another partition (either on the same
system or on another system in the network).

The implication of this file system search method is that, if you want
to use a full pathname and be sure of finding the object you want to
operate on, all of the objects named in the pathname must exist within
the directory that begins the pathname, and the directory that begins

Second Edition 1-14

PRIMOS FILE SYSTEM CONCEPTS

the pathname must be unique on your system (and on any other systems
that may share a network with your system). Your System Administrator
may take the responsibility for uniqueness of top-level directories,
but if there is no guarantee of uniqueness, it is always safer to use
an absolute pathname. —

How and When Objects Are Named

You assign a name to a file system object when you create it; how you
create it depends on the kind of object you are creating.

A text file such as a memo or a source program is normally created by
using an editor program, and is named by specifying a filename the
first time you ask the editor to store it. Different editors have
different ways of doing this, documented in their respective manuals
and user's guides; storage commands usually take the form of a FILE,
STORE, SAVE, or WRITE.

Application-related data files are usually created by a user program
that executes an open file subroutine. If it does not find the name of
the file it is asked to open, the subroutine creates the file and
assigns the given name to it. The subroutine call also contains
information as to the type of file to be created, and whether it is to
be opened for input, output, or both.

File directories, lower-level directories, and access categories can be
created either by executing a subroutine in a user program or by using
@ PRIMOS command at a terminal.

Segment directories are created by various application programs that
manipulate segmented files. User programs can call subroutines to
create segment directories.

ACCESS METHODS

PRIMOS provides two means of file access: the Sequential Access Method
(SAM) and the Direct Access Method (DAM). In both access methods, the
file appears as a linear array of words indexed by a current position
pointer.

Using a SAM file, your program can read or write a number of halfwords
beginning at the pointer, which is advanced as the halfwords are read
or written. File system subroutines enable you to position the pointer
anywhere within an open file, and to read and write data sequentially
from that point. File data can be transferred anywhere in the
addressing range. When a file is closed and reopened, the pointer is
automatically returned to the beginning of the file.

, With the direct access method, the file also appears to be a linear
array Of halfwords. This method, however, has faster access times in

1-15 second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

positioning operations, since PRIMOS keeps an index to allow fast

random positioning. Subroutine calls to manipulate SAM and DAM files

are identical.

ACCESS CONTROL

Two requirements must be met before your program can operate on a file

system object:

® Your program must be attached to the file directory that

contains the desired object, and, so that this can happen,

e Your program’s user must have at least Use access to that
directory

Attaching to a File Directory

You can attach your program to the directory containing the desired

object in one of two ways:

e Explicitly, if you invoke the ATTACH command specifying the

pathname of the file directory before you invoke your program

@ Implicitly, if you do not explicitly attach to the file

directory, but supply any form of pathname other than a simple
object name when you invoke your program

When you explicitly attach to a file directory by using the ATTACH

command, that directory becomes your home directory. You can then

invoke your programs using simple object names as arguments; your
programs will locate their target objects provided they are immediately

contained in that directory.

For example, if you write a program called COUNT to count the number of

lines in a text file, and install it in the directory MYDIR.MEMOS, one

way you can invoke it is:

ATTACH MYDIR.MEMOS
RESUME COUNT CHARITY

Since the COUNT program was invoked with the simple object name CHARITY

as its argument, COUNT looks in the home directory MYDIR.MEMOS,

established by the ATTACH command, for the file CHARITY.

You do not always need to attach explicitly to a file directory before

invoking your programs; they can still operate on objects outside the

. home directory if you supply the object’s relative, full, or absolute

pathname rather than its simple name. Taking the COUNT program again:

Second Edition 1-16

PRIMOS FILE SYSTEM CONCEPTS

as an example, and still assuming the same home directory, you could
invoke it in the following way:

RESUME COUNT INIT_DIR>LOGIN.CPL

For this invocation, COUNT has to go to a directory INIT_DIR, outside
the home directory, to locate the file LOGIN.CPL. To do this, it
attaches temporarily to the outside directory by means of a current
attach point; the target directory is called the current directory.

If you want to enable your programs to operate in both of the ways
Shown in these examples, you must use the SRSFX$ subroutine, which is
Capable of searching for objects outside as well as within the home
directory. The SRCH$$ subroutine can search only in the home
directory; if you use it in a program, amd the target object is
outside your home directory, you will have to attach to the directory
containing the object before invoking the program, as in the first
example.

Note

The TSRC$$ subroutine, which is capable of searching for an
object outside the home directory, is considered obsolete at
PRIMOS Rev. 20.2. Although TSRC$$ is still supported, programs
Should use SRSFK$ beginning with Rev. 20.2. At Rev. 21.0,
OPSR$ and OPSRS$ are supported for use with Search Rules.
These two subroutines are described in Volume II of the
Subroutines Reference Guide. Refer to Chapter 3, SEARCH RULES,
for a description of the search rules facility.

The intent of the current attach point is that the attachment is in
effect only for the duration of the program’s execution. When the
program terminates, the attach point should revert to the home
directory. This is especially important if the program does not
terminate normally; in order to provide a consistent result in cases
of abnormal termination, most Prime software resets the current attach
point to the home directory whether it terminates normally or
abnormally.

Attach points and the subroutines that manipulate them are described in
more detail in Chapter 4, ATTACH POINTS.

Access Control Lists

AS stated earlier, users must have access to all directory levels
leading to the objects they are working on, as well as to the objects
‘themselves. The means by which you as a programmer are given access,
and by which you can control access, to the various directories and

1-17 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

files involved in your daily work are clearly explained in the Prime

User's Guide. As a programmer of utilities and applications for other

users, however, you need to be aware of the kinds of things your

programs can and should do to enable those users to control access to

the objects these programs create and use.

PRIMOS provides a set of subroutines that you can write into your

programs to enable them to manipulate access control lists (ACLs) in

precisely the same way as you can by issuing ACL-related commands at

your terminal. For example, if you write a program that constructs a

data base for a group of users, it is particularly useful for that

program to be able to establish a data base ACL for that group of users

at the time the data base is created. Or, consider a utility program

that creates new files at various times, all of which should be

identically protected. Using subroutine calls, this program can create

an access category to which each new file is linked when it is created.

An access category, while it takes more disk space than a single access

control list (about as much as two average ACLs), saves disk space when

the same ACL is to protect more than two objects; this is because any

number of objects can be linked to the access category once it is

created. Your program can make these links when it creates its files,

after it checks to see whether the access category already exists.

You can use an access category to synchronize the access to multiple

objects when rights are added or removed from the access category's

ACL: whenever a new right is added or an old right is removed, the

Change applies to all objects protected by the access category,

removing the need to update each object's ACL individually.

The access rights that you can assign to your own file system objects

(using PRIMOS commands) and that your programs can assign to their

objects (using access control subroutines) are all fully described in

the Prime User's Guide. In the Rev. 21.0 release of PRIMOS, you can

specify ALL to include OPDALURWX, all of the rights supported at this

rev. (If some future rev. of PRIMOS supports new access rights, you

will not get them automatically when you read in your Rev. @l. O file

that has been assigned ALL. You will have to reassign ALL or add the

new rights individually.)

Access control subroutines can deal with both individual users and

groups of users. Your System or Project Administrator can define a

user group (whose group name begins with a period, such as . DBUSER)

consisting of the user identifications of all of the users of a

particular utility or application program. Your programs can use the

access control subroutines to grant or deny access to these groups as

well as to individuals.

Password Directory

In an older form of file access control, PRIMOS allows a limited set of

access rights to be specified on a per-file basis. A file directory

Second Edition 1-18

PRIMOS FILE SYSTEM CONCEPIS

can be given an owner password and aone password and a set of
rights for each: R (read), W (write), D (delete). This form of
protection is giving way to the more comprehensive ACL mechanism, and
will not be further described in this book. Details can be found in
the Prime User's Guide, as can procedures by which you can convert the
older form to the ACL form.

HOW AND WHEN ACCESS IS CALCULATED

In most situations, users need not be concerned about when access is
actually calculated by PRIMOS. However, there are some subtleties of
the ACL mechanism that the advanced user should be aware of. This
section discusses:

e Access calculation concepts

e Access calculation when opening files

e@ Access calculation when attaching to directories

e Access calculation for other operations

Access Calculation Concepts

For a given file system operation, there are two times that relate
directly to the ACL mechanism:

e When access is read

e When access is used

For the most part, reading and using occur at the same time. A sample
case is the deletion of a file. When you delete a file, PRIMOS first
reads the access for that file, and then it uses that access to
determine whether or not you may delete the file.

When you attach to a directory, however, the access is read once. It
is then used immediately to determine whether or not you may attach to
the directory. If you are allowed to attach, PRIMOS remembers the
access it read for the directory. Subsequent operations within and
upon that directory may reuse the access that PRIMOS read when you
first attached. Therefore, if you attach to a directory, and then
change the access for that directory, you will find that for certain
operations the access change has not taken effect. The access
information read for a home or current directory is not discarded until
you attach away from the directory.

1-19 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

The following example illustrates an effect of this behavior.

OK, ATTACH COGENT
OK, CREATE SENORA
OK, ATTACH COGENT>SENORA
OK, LIST_ACCESS

"<Current directory>" protected by default ACL (from " <X1>COGENT"):

COGENT: ALL
$REST: LUR

OK, LIST_ACCESS COGENT>SENORA
"COGENT>SENORA" protected by default ACL (from "<X1>COGENT"):

COGENT: ALL
$REST: LUR

OK, LD

<X1>COGENT>SENORA (ALL access)
1 record in this directory, 1 total record out of quota of 0.

No entries selected.

OK, SET_ACCESS COGENT>SENORA COGENT:U_—NO_QUERY

OK, LIST_ACCESS

ACL protecting "<Current directory>":
COGENT: ALL
$REST: LUR

OK, LIST_ACCESS COGENT>SENORA

ACL protecting "COGENT>SENORA":
COGENT: U
$REST : NONE

OK, LD
<X1>COGENT>SENORA (ALL access)
1 record in this directory, 1 total record out of quota of 0.

No entries selected.

OK, ATTACH COGENT>SENORA
OK, ID
Insufficient access rights. (current_directory) (1d)
ER!

In this example, LIST_ACCESS commands are invoked at different times to

illustrate the difference between the home directory and the same

directory when referenced explicitly by pathname. In the first two

invocations, LIST_ACCESS reports the same access when the directory is

referenced as the home directory and when it is referenced by pathname.

Second Edition 1-20

PRIMOS FILE SYSTEM CONCEPTS

Then, without changing the home attach point, you set the access to the
home directory so that you have only Use access. Among other things,
this removes List access from the ACL on the SENORA directory.

At this point, the third LIST_ACCESS command on the home directory
shows that you still have ALL access to SENORA. A fourth LIST_ACCESS
command on the same directory (using the pathname) reports that you
have only Use access. This discrepancy is illustrated further by the
fact thet you can still type LD and see the directory contents (or lack
thereof).

However, when you reestablish SENORA as the home attach point, PRIMOS
reads the new ACL for this directory. This results in your having only
Use access to the home directory, which prevents you from examining the
directory contents using LD. It is when you attach again to the
lower-level directory that the new ACL takes effect.

Similarly, the new ACL will take effect for any other users that attach
to the directory, but not for users who were already attached to the
directory when the ACL on it was reset.

Access Calculation When Opening Files

When opening a file or segment directory, the access is read and used
when the open operation first takes place. The access is not used
again during read or write operations. The access will be used if a
Change-access operation is performed (by using the SRCH$$ subroutine
with the K$CACC key). However, the access is not read again in this
case. Therefore, once a file is open on a file unit, changing the
access of the file does not affect any operations performed on that
file unit up until the time that file wnit is closed. (See the FILE
UNITS section, following, for an explanation of file units.)

Access Calculation When Attaching to Directories

When you attach to a directory, as either a home or a current
directory, PRIMOS reads and uses the access on the directory during the
attach operation. Subsequent operations on the home or current
directory use the access without reading it again, as illustrated
earlier. However, subsequent operations on the same directory when the
name of the directory is specified will cause PRIMOS to read the access
for the directory to check the access rights for those operations.
Once PRIMOS has read the access for the directory, it does not update
any access it has already read for the origin, home, or current
directories.

1-21 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

The following example illustrates these points.

, ATTACH COGENT

, CREATE SENORA

, ATTACH COGENT>SENORA

, ED
INPUT

A TEST FILE.

R
R
R
R

EDIT
FILE TEST_FILE
OK, LIST_ACCESS TEST_FILE

"TESTFILE" protected by default ACL (from "<X1>COGENT"):

COGENT : ALL

$REST: LUR
OK, SET_ACCESS COGENT>SENORA COGENT: ALURW
OK, LIST_ACCESS TEST_FILE

"TESTFILE" protected by default ACL (from " <X1>COGENT"):

COGENT : ALL
$REST: LUR

OK, LISTACCESS COGENT>SENORA>TEST_FILE

"COGENT>SENORA>TEST_FILE" protected by default ACL
(from "<X1>COGENT>SENORA"):

COGENT: ALURW
$REST: NONE

OK, DELETE COGENT>SENORA>TEST_FILE
Insufficient access rights. Unable to delete "COGENT>SENORA>TEST_F

ILE" (delete)
OK, DELETE TEST_FILE

OK,

Here, an attempt to delete a file by pathname fails because the access

on its parent directory denies Delete access to the user. However,

because the user was attached to the parent directory before the access

was changed to deny Delete access, deleting the file as a member of the

home directory succeeds.

Access Calculation for Other Operations

Aside from opening files and attaching to directories, most file system

operations cause PRIMOS either to use the access for the current

directory or to read and use the access for the appropriate file system

object just once. For example, renaming a file causes PRIMOS to use

the access for the current directory and make certain that both Delete
and Add rights are granted.

Second Edition 1-22

PRIMOS FILE SYSTEM CONCEPTS

FILE UNITS

A file unit is an open channel to a file, a segment directory, or a
file directory. Through this channel, your programs read data from and
write data to a file system object. Associated with a file wit is a
file unit number, that is, a numeric pseudonym for the object's name.
This number is assigned either by the program (static allocation) or by
PRIMOS (dynamic allocation) when the program opens the file (see File
Unit Number Allocation, later in this section). It uniquely identifies
the file unit for a particular process (user).

Generally speaking, your program performs the following operations to
operate on a file system object:

1. Opens the file: establishes an open file unit and assigns a
file unit number.

2. Accesses the file: the open file unit enables operations on
the file.

o. Closes the file unit: revokes access to the file.

Information Associated With a File Unit

As described previously, a file unit identifies an open file system
object. Internally, PRIMOS maintains information on each open file
unit.

Current Object Position: The current object position points to the
location in the file system object at which the next data read or write
begins. For files, the position points to a particular halfword in the
file. For segment and file directories, the position points toa
particular entry in the directory.

The current object position is adjusted automatically by PRIMOS as data
is read from or written to an object. In addition, your program may
change the current object position without reading or writing data by
using the PRWF$$ subroutine, described in Chapter 5, TEXT STORAGE AND
RETRIEVAL.

For files, the current object position is always between 0 and the
end-location of the file, or end of file, inclusive. The end-of-file
location is the same value as. the number of halfwords in the file;
when a file is first created, the end-of-file location is 0.

To append new data to the end of an existing file, first position the
file unit to the end-of-file location, which represents the position of
the next halfword to be appended to the file. (If you do not know the
end-of-file location, simply position to the largest possible halfword

, number, 2147485647. Although PRIMOS returns an error code of e$eof to

1-23 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

indicate that the end of file has been reached, PRIMOS sets the current

object position to the end-of-file location.)

At the end-of-file position, writing data to the file automatically

extends the file as the data is written; an attempt to read data at

this point returns the error code e$eof (end of file).

Open Mode: The open mode determines what operations are valid for an

open file unit. A read operation requires the file unit to be open for

reading; a write operation requires the file unit to be open for

writing; both operations are valid if the file unit is open for both

reading and writing.

Your program sets the open mode when it first opens a file. Your
program can open a file for reading, for writing, or for both reading

and writing. To do this, the user running your program must have the

corresponding access to the target object. For files and segment

directories, the required access is Read, Write, or both Read and

Write, to match the actions for which they are opened; for file

directories, which are open only for reading, List access is required.

A special open mode, known as virtual memory file access read

(VMFA-read), also exists. The PRIMOS executable program format (EPF)
mechanism uses VMFA-read to map an EPF into virtual memory from the

disk. A file unit open for VMFA-read cannot be read or written by a

program.

When your program tries to open a file unit to an object for a specific

action such as writing, another file unit may already be open to that

object for the same purpose. In such cases, PRIMOS checks the open

mode requested by your program against the read/write lock then in

effect for the object. Your program's open request is rejected if the

lock specifies that only one user at a time can do what the open

request intends to do, and

e Another user is already using the object for that purpose, or

@ Your program has already opened the object on another file unit

for the same purpose.

See the sevtion entitled The Read/Write Lock Attribute, later in this

Chapter for the meanings of the possible values for the lock.

Your program can change the open mode of a file if the new open mode

does not conflict with the access or read/write lock controls described

above. The CH$MOD subroutine, described in the Subroutines Reference

Guide, Vol. II, performs this function.

Second Edition 1-24

PRIMOS FILE SYSTEM CONCEPTS

Object Type: The type of the object open on a file wnit determines
what kinds of operations are valid on that file unit. Object types
include:

@ SAM and DAM files, for which most operations (except directory
operations) are valid, such as data read and data write

@ SAM and DAM segment directories, for which only segment
directory operations are valid, such as position to segment
directory member and delete segment directory member

e File directories, for which only file directory operations are
valid, such as read next directory entry and read named
directory entry

Access categories cannot be opened on a file unit; they are restricted
in size, so they are read and written in single operations and do not
require an associated file unit.

If your program attempts an operation that conflicts with the object
type, PRIMOS returns one of several error codes:

e e$dire (Operation illegal on directory), indicating an attempt
to perform an operation valid only for SAM or DAM files ona
segment or file directory

@ e$ntsd (Not a segment directory), indicating an attempt to
perform an operation valid only for segment directories on a
file or file directory

@ e$ntud (Not a top-level directory), indicating an attempt to
perform an operation valid only for file directories on a file
or on a segment directory

Because these object types are all opened in the same way, these errors
are returned only when your program attempts to perform the invalid
operation, typically after opening the object. To enable your program
to detect an inappropriate object type earlier, have it check the type
value returned by the subroutine it calls to open the object. If the
type value is not appropriate to the intended operations, your program
Should close the file unit and report an error.

Object Modified: An object-modified flag is initially reset when a
file unit is first opened (before the object is modified). When the
first data write is performed on the object, this flag is set (after
the object has been modified).

When the file unit is later closed, PRIMOS uses the object-modified
flag to determine whether the date and time last modified (dtm) field
for the object should be updated. If the flag is not set, PRIMOS does
not update the dtm field. Therefore, simply opening a file for writing

. and then closing the file does not cause the dtm field to be updated.
(The date and time last accessed field is set under this and other

1-25 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

circumstances described later in this chapter.) A program must
actually write data to the file and then close the file to update the
dtm field.

Disk Shut Down: A disk-shut-down flag is initially reset (meaning the
disk is not shut down) when a file unit is first opened. If a disk
partition is shut down by the System Administrator or System Operator
(by using the SHUTDN command), the disk-shut-down flags for all file
units open to objects on that disk are set (meaning the disk is shut
down). After that, any attempt by a program or user to continue
performing operations on an affected file unit is rejected with the
error code e$shdn (Disk has been shut down).

Calculated Access to Object: When your program opens an object, PRIMOS
calculates the user’s access to the file to make sure that the user can
operate on the file. PRIMOS records the resulting summary of the
user’s access to the file in the information for the corresponding file
unit. A later attempt by your program to change the open mode of the
file is checked against this copy of the user’s access, not against the
current access on the object itself (which may have changed since the
file unit was opened).

Read/Write Lock: PRIMOS records the read/write lock of an open file
unit in the information for that file unit so that it can quickly
determine whether record-level locking for writes is necessary. If at
least two file units are open to the same object for writing, or one is
open for reading and another is open for writing, PRIMOS must ensure
that simultaneous operations on those file units result in predictable
behavior. Because such a situation is permissible only when the
read/write lock is set to an appropriate value, PRIMOS checks the
read/write lock for the file unit to determine how careful it must be
in guarding against simultaneous access during a read or write. The
more permissive the read/write lock setting, the more care PRIMOS has
to take, and the lower the performance of each read or write operation
will be.

OPENING A FILE

Your program may open a file for reading only, for writing only, for
both reading and writing, or for VMFA-read (EPFs only). If your
program opens a file for reading only, your program can read the file,
but cannot change the file. If your program opens a file for writing
only, your program can write the file, but cannot read the file.

To open a file, your program calls one of many system subroutines,
described in Chapters 5, TEXT STORAGE AND RETRIEVAL and 6, DATA STORAGE

Second Edition 1-26

PRIMOS FILE SYSTEM CONCEPIS

AND RETRIEVAL. Each subroutine provides different functionality for
opening a file, but they all provide the following services. |

@ Search the specified file directory (if a pathname is specified)
or the current directory (if a simple object name is specified)
to see whether the requested filename is there.

e Create the file if the filename is not present and your program
is opening the file for writing or for both reading and writing.
If the filename is not present, and your program is opening the
file for reading only, these subroutines return a "not found"
indicator.

e Determine a file unit number. The file unit number is the only
identifier PRIMOS uses for transferring data to and from the
file.

e Set up tables and initialize buffers in the operating system.

If your program opens a file for writing only, or for reading and
writing, your program may change that file. If the system subroutine
creates a new file at the time of opening, no information is contained
in the file.

Because open-for-write files are subject to alteration (deliberate or
accidental), your program should keep files closed except when they are
being used. Open files absorb system resources; they may also ke
unavailable to other users. However, frequent open and close
operations also absorb system resources; therefore, try to balance
your program's use of files so that open and close operations are
infrequent without resulting in file units being open but inactive for
long periods of time.

When the user is communicating with the file structure through one of
the standard Prime translator or utility programs, files are referred
to by name only. PRIMOS, or your program, handles the details of
opening or closing files and assigning file units. For example, the
user can enter an external command such as ED FILE], which loads and
starts the text editor and takes care of the details of assigning the
file FILE] to an available unit for reading or writing.

File Unit Number Allocation

PRIMOS allows two ways of allocating file unit numbers:

@ Dynamic allocation

@ Static allocation

Dynamic allocation allows a program to leave to PRIMOS the task of
selecting an available file unit number. When opening a file, a
program specifies dynamic file unit allocation, and PRIMOS returns to

1-27 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

the program the file unit number it has assigned to the open file. The
program then uses this file unit number when reading or writing the
file.

Static allocation is performed by a program. When opening a file, a
program passes the file unit number to PRIMOS. If the specified file
unit is already in use, PRIMOS rejects the attempt to reuse the file
unit; otherwise, PRIMOS uses the program-defined file unit number to
read or write the file.

Dynamic allocation is the recommended method for most programs. Its
advantages are as follows:

@ You do not have to worry about different parts of your program
having conflicting file unit number requirements.

@ Your program can call another program that also uses dynamic
unit allocation without causing file unit number conflicts.

e A very large number of file units (32761) are available when
using dynamic allocation, whereas static allocation allows a
maximum of 126 file units open simultaneously for a given user.

e Your program is guaranteed exclusive use of file units.

Static allocation offers very few advantages; these rarely outweigh
any of the advantages of dynamic allocation:

@ You can design several programs that are to run together as a
package so that they use agreed-upon statically allocated file
unit numbers; thus, these programs do not have to pass
dynamically allocated file unit numbers back and forth to each
other.

@e Your program can use a numerical constant as the file unit
number, rather than requiring the use of a variable.

e Prime translators do treat certain file unit numbers specially
(when enabled using the -ALLOW_PRECONNECTION option), so your
program may use these file unit numbers if it invokes Prime
translators.

File Unit Numbers

File unit numbers 1 through 127 (1 through 15 under PRIMOS II) may be
specified for static allocation by your program. File units 127
through 32761 are returned by PRIMOS only when your program requests
dynamic unit allocation. Your program cannot specify a file unit
number between 128 and 32761 (inclusive) when opening a file system
object.

Second Edition 1-28

PRIMOS FILE SYSTEM CONCEPIS

Unit 16 is reserved for system use under PRIMOS II; however, this fact

is rarely important to consider, as any program linked by BIND or SEG

cannot run under PRIMOS ITI.

Unit 4 is the command output file unit. Your program should not read
data from or write data to this file unit. Your program may read the
current object position of this file unit, or use GPATH$ to obtain the
full pathname of the command output file.

Unit -1 is the current directory; unit -2 is the home directory; unit

-3 is the origin directory. These three units are usually open to the

corresponding directories. You may use this knowledge to perform

certain operations efficiently. For example, to read the directory

entries in the user’s origin directory, your program can simply call

DIR$RD using the k$init key the first time for file unit -3. It does

not have to attach to the origin directory (thus preserving the current

attach point) or to open the origin directory for reading (thus saving
time and a file unit).

File Pointer

Once your program has opened a file, a file pointer is associated with
the file unit. To understand how the file pointer works, imagine that

the halfwords in a file are serially numbered beginning at halfword
number 0. The file pointer is the number of the next halfword to be
processed ina file. It identifies the point at which data are read
from and written to the file. As your program reads and writes
halfwords, the associated file pointer is incremented once for each
halfword read or written. If your program reads a line of text, for
example, the file pointer is positioned, after the read, to the
beginning of the next line of text in the file.

Positioning a File

Your program can move the file pointer backward and forward within a
file without moving any data. This is called positioning a file, and
is described in more detail in Chapter 5, TEXT STORAGE AND RETRIEVAL.

The value of a file pointer is called the position of the file.

Positioning a file to its beginning is often called rewinding a file.

Truncating a File

Your program can shorten a file by truncating it. When your program
truncates a file, the part of the file that is located at or beyond the
file pointer is eliminated from the file, and an end-of-file mark is
placed at the pointer position. If the file pointer is positioned at

‘ the beginning of the file, all of the information in the file is

1-29 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

removed, but the filename remains in the file directory. If the file
pointer is positioned at the end of the file, the truncation has no
effect.

PRIMOS handles the returning of disk space occupied by truncated
records to the free record pool on the disk.

Many programs truncate a text file just before closing it if they have
written new information to the file. Because text files are typically
variable-length record files, as described in Chapter 5, TEXT STORAGE
AND RETRIEVAL, they are usually written from beginning to end; even if
only one line in a file is changed, the entire file is rewritten in
case the new line is longer or shorter than the line it replaces. In
the process of rewriting an entire file, a program may write a new
version that is shorter than the old version. MTruncating the file
ensures that old data is not left at the end of the new file.

CLOSING A FILE

Your program should always close a file before terminating execution,
whether termination is normal or abnormal. Closing files is described
in more detail in Chapters 5, TEXT STORAGE AND RETRIEVAL and 6, DATA
STORAGE AND RETRIEVAL.

Closing on Normal Program Termination

Your program may close a file unit, also referred to as closing a file,
when it finishes its processing of the file. When your program does
this, the file unit number and the corresponding table areas in the
operating system are "cleaned up" and released for reuse by another
program or user.

Closing on Abnormal Program Termination

When control returns to PRIMOS by way of an error condition, files are
not normally closed. To provide this functionality in your program,
have your program close any file units it opened when it detects a
fatal error. (Of course, your program should still report the original
error; be careful to separate error code variables used to clean up
after an error from error code variables used to detect original
errors.)

You may also choose to have your program make an on-unit for many
system error conditions, as described in the Subroutines Reference
Guide, Vol. III. If one of these conditions occurs while your program
is running, your program can close any file units it has opened and

Second Edition 1-30

PRIMOS FILE SYSTEM CONCEPTS

then continue to signal the error condition. Typically, this is done
for the QUIT$ condition, signaled when the user types OONTROL-P or
BREAK .

Note, however, that although closing file units upon recognition of the
QUIT$ condition has advantages, a distinct disadvantage is that the
user cannot restart your program by issuing the START command. If the
user attempts this, the program continues executing where it was
stopped until it attempts to use one of the closed file units. At this
point, an error indicator is returned to the program.

FILE ATTRIBUTES

PRIMOS maintains a set of file attributes for every file, segment
directory, file directory, and access category on disk. The file
attributes of a file system object can be read and written by a user
program that has sufficient access to the parent directory of the
target object. File system attributes include:

e The date and time the object was created

e The date and time the object was last accessed

@ The date and time the object was last modified

e@ The date and time the object was last backed up

e The read/write lock of the object

e The file type (which once established can only be read)

@ The dumped/not dumped state of the object

@ The special/not special state of the object (which is set at
disk initialization and can only be read)

Note

The date and time created (dtc) and date and time last accessed
(dta) attributes may appear in directory entries beginning at
PRIMOS Rev. 20.0. These expanded entries are accessed through
the use of a hash table. At Rev. 20.0, MAKE creates all
directories as hashed ACL directories unless an option is
specified that creates a pre-Rev. 20.0 disk. A Rev. 20.0
system can use pre-Rev. 20.0 disks, as can a pre-Rev. 20.0
system. A system running pre-Rev. 20.0 PRIMOS can not use
local Rev. 20.0 disks, but it can use remote Rev. 20.0 disks.

1-31 Second Edition

ADVANCED PROGRAMMER ‘S GUIDE, VOLUME II: FILE SYSTEM

The Date and Time Last Accessed (DTA) Attribute

The date and time last accessed (dta) attribute of a system object or
its parent is modified under various circumstances as depicted below.

Action Result

Object DIA Parent DIA
Modified? Modified?

Close an open entry (from read or write)
Segment directory subfile
After read from write—protected disk

Write attribute
Gump
dtm
atb
dtc *
dta *
other (delete switch, protection,

rwlock, logical type, truncated bit)
Read any attribute

Tape backup (MAGSAV)
Tape backup (BRMS) *
Tape restore (MAGRST -

Set to time of restore)
Tape restore (BRMS)
Size
Remote size

Pre-Rev. 20.0 system operating on
Rev. 20.0 hashed directory

Remote backup (MAGSAV)
Pre-Rev. 20.0 system operating on

Rev. 20.0 hashed directory
Remote backup (BRMS)

Pre-Rev. 20.0 system operating on
Rev. 20.0 hashed directory 2

2
a

K
K

B
S
B
a
a
r
k
K

B
S
x
K
S
B
Q

S
2
S
A
4
B
4
a
m
e
a

A
N
A
K

a
@
~
a

2
a

K
K

B
B
Q

S
A
K
K

B
A
K
A
S
Z
B
A

S
K
S

* Dta and dtc can be set only by members of the user group
named .BACKUP$. Backups performed by this group are
recorded in the date and time last backed up (dtb)
attribute.

Second Edition 1-32

PRIMOS FILE SYSTEM CONCEPTS

Format of the Date and Time Last Accessed Attribute: The format of the
dta attribute of a file system object is declared in PL/I as follows:

del 1 dta,
2 date,

3 year bit(7), /* Starting in year 1900. */
3 month bit(4), /* January is month 1. */
3 day bit(5), /* The first day of the month is day 1. */

2 time fixed bin(15); /* (Seconds since midnight)/4. */

As shown in this declaration, the dta attribute occupies one fullword,
or two halfwords. The first halfword is organized as follows:

YYYYYYYMMMMDDDDD

Here, YYYYYYY is the year minus 1900, MMMM is the month (January is
month 1), and DOODD is the day of the month.

The second halfword is the number of seconds past midnight divided by
four. The remainder portion of the result of the division is
discarded. Therefore, the granularity of the dta field is four
seconds.

The Date and Time Created (DIC) Attribute

The date and time created (dtc) attribute contains the date and time
that a file system object was created.

Format of the Date and Time Created Attribute: The format of the dtc

attribute of a file system object is the same as that for the date and
time last accessed attribute.

The Date and Time Last Modified (DIM) Attribute

Whenever a change occurs in the file system data or structure, the date
and time last modified (dtm) attribute of the file system object
involved is set to the current date and time. User programs may use
the dtm attribute of file system objects to determine when the objects
were most recently modified.

User programs may also change the dtm attribute of a file system object
to any date and tine.

1-33 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

How PRIMOS Sets the Date and Time Last Modified Attribute: The dtm
attribute of a file system object is set depending upon the object
type, as shown below.

Type DIM Attribute Set

file When the file is first created, and whenever the
file is closed after data in the file has been
modified or after the file has been truncated.
(The dtm attribute of a file is not changed when
any other attributes of the file are changed.)

segment When the segment directory is first created, and
directory after the segment directory is closed when any of

its members have been created, deleted, modified,
truncated, or renamed, or when its size is
changed.

file When the directory is first created, when one of
directory its members is created, deleted, or renamed, or

when certain attributes of one of its members are
changed by a user program. Changes to all
attributes except the dumped bit, the date and
time last modified, and the date and time last
backed up cause the updating of a parent
directory’s dtm field. The parent directory’s dtm
field is also updated when the access control for
one of its members is changed.

access When the access category is first created, or when
category its contents are changed. Changing the contents

of an access category does not, however, update
the date and time last modified field of any
objects protected by that access category.

The purpose of the dtm attribute is to record the change of any file
system data or structure somewhere in the file system itself. Thus,
creating a new file sets the dtm attribute for both the file and its
parent directory. Subsequently deleting the file will also update the
dtm attribute for its parent directory. Although the net result may be
that the contents of the directory are unchanged, the recent dtm
attribute of the parent directory is an indicator that activity has
taken place within the directory.

Format of the Date and Time Last Modified Attribute: The format of the
dtm attribute of a file system object is the same as that for the date
and time last accessed attribute.

second Edition 1-34

PRIMOS FILE SYSTEM CONCEPTS

The Date and Time Last Backed Up (DIB) Attribute

The date and time last backed up (dtb) attribute contains the date and
time that a file system object was last backed up by a member of the
BACKUP$ group.

Format of the Date and Time Last Backed Up Attribute: The format of
the dtb attribute of a file system object is the same as that for the
date and time last accessed attribute.

The Read/Write Lock Attribute

One of the responsibilities of the PRIMOS file system is to ensure
against attempts by several user processes to read and write one file
simultaneously. For example, if user FRED opens a file for reading and
writing, user BARNEY will be unable to open the file until user FRED
has closed it.

some applications require this restriction to be lifted. For example,
an application might require several users to have a file open for
writing at the same time. The PRIMOS file system allows this to be
specified via a read/write lock attribute.

The Nature of the Read/Write Lock Attribute: Every segment directory
and file has a read/write lock attribute. File directories and access
categories do not have them, since PRIMOS is entirely responsible for
synchronizing updates to these objects.

A file is protected against concurrent access by its read/write lock.
The read/write lock attribute for a file is checked every time a user
opens the file for reading, writing, or both reading and writing. In
addition, a check is made to see if the file is already open for
reading and/or writing. Depending on the results of these two checks,
the attempt to open the file may be rejected with the error code e$fius
(File in use).

Even if only one user is accessing a file, that user may receive a
file-in-use error if he or she attempts to open the file twice. PRIMOS
does not distinguish between two different processes attempting to open
afile and one process attempting to open a file on different file
units. For example, if a user attempts to open one file for writing on
two different file units, the second attempt to open the file may fail.

Segment Directories and the Read/Write Lock Attribute: The read/write
lock attribute for a segment directory affects not only the segment
directory itself, but also serves as the read/write lock for all of its
members since segment directory members have no attributes of their own

- (except for file type).

1-35 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

However, PRIMOS still distinguishes between the segment directory and
each of its members when it is called upon to open the directory or its
members. Therefore, two users may have two different files within one
segment directory open for writing at the same time, whereas an attempt
by a user to open a segment directory member file that is already open
may meet with failure.

The Format of the Read/Write Lock Attribute: The format of a

read/write lock attribute is as follows:

del rwlock bit(2);

The four possible values for a read/write lock attribute are as
follows:

Value Keyword Meaning

0 SYS Use the system-wide default. The system
default is set via the RWLOCK configuration
directive, as described in the System
Administrator's Guide, Vol. I. Normally,
the default is 1, corresponding to a file
read/write lock of 1, or EXCL (described
below).

However, the system-wide read/write lock
may be O, meaning only 1 reader or 1 writer
may have a file open at a time. The other
possible value for a system-wide read/write
lock is 3, corresponding to a file
read/write lock of 2, or UPDI (described
below).

1 EXCL Exclusive control; n readers or 1 writer.
This allows multiple processes to read a
Single file at a time, unless the file is
being written. If the file is being
written, no other user may open the file.

2 UPDT Update control; n readers and 1 writer.
This allows multiple processes to read a
Single file at a time even while it is
being written by one process. It still
prevents more than one process from writing
to the same file at the same time. This
setting is useful for command output
(COMOUTPUT) files, for example.

Second Edition 1-36

PRIMOS FILE SYSTEM CONCEPTS

 Value Keyword Meaning

3 NONE No control; n readers and m writers. This

provides no locking ona file at all.
Using this setting is not recommended, as
it decreases the performance of the file
System, and can result in damage to your
files.

The File Type Attribute

Every object in the PRIMOS file system has a file type. File types
include the following:

@ Sequential access method file (SAM)

e Direct access method file (DAM)

@ Contiguous access method file (CAM) (for ROAM files only)

@ Sequential access segment directory (SEGSAM)

e Direct access segment directory (SEGDAM)

e File directory

e Access category (ACAT)

The file type of an object is determined only when the object is
created. It cannot be changed afterwards without deleting and
recreating the object.

The file type of an object can be read by a user program along with
other file system attributes. The file type attribute is declared as
follows:

del type bit(8);

The seven possible values, and their corresponding keywords, are:

Keyword Value

(ROAM files only)

1-37 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Notice that file type value 5 is not defined. A value of 5, and any
other undefined value, should be treated as an unrecognized file type.
Prime reserves the right to use any or all of these undefined values.

The Dumped/Not-dumped Attribute

For backup service, the file system provides a dumped bit for all file
system objects except access categories. The file system resets this
bit whenever the corresponding object is modified. A backup utility
can read the dumped bit to determine whether to make a backup copy of
the object. If the dumped bit is reset, the utility can then make a
backup copy, and set the dumped bit on for the object.

The dumped bit for a file system object is reset (turned off) whenever
the dateand time last modified attribute for the object is updated.
Similarly, if a file is deleted or renamed, the dumped bit of the
parent directory is reset when the dtm attribute of the parent
directory is updated.

Dumped Bits for Directories: When a file is modified, the resetting of
dumped bits is not performed on all of the directories that intervene
between the file and the MFD. Therefore, a backup program must walk
through the entire contents of a directory, sensing the dumped bits for
all of its members, before deciding that no recent modifications have
been made to its members.

Dumped Bits for Segment Directories: File attributes exist only for
members of file directories. Therefore, when a file within a segment
directory is modified, the resetting of the dumped bit occurs on the
parent segment directory, and not on the file, because the parent
directory is a member of a file directory, and the individual files are
not.

Therefore, only the top-level segment directory dumped bit need be
tested to determine whether the contents of the segment directory have
changed.

A corollary is that if the dumped bit for a segment directory is reset,
the entire segment directory must be backed up, even if only one member
of the segment directory has been modified.

The Special/Not-special Attribute

User programs that read directory entries may find the special bit
useful. PRIMOS sets this bit on for all of the special files when it
creates a new disk partition. Special files include the MFD, the BOOT

Second Edition 1-38

PRIMOS FILE SYSTEM CONCEPIS

file, the BADSPT file (if it exists), and the record allocation table —
for the disk partition (which has the name of the disk partition as its
objectname) .

PRIMOS does not allow user programs to change the special bit for a
file system object, nor does it allow objects with the special bit set
to 1 to be deleted.

Special files exist only in the MFD for a disk partition.

QUOTAS

PRIMOS allows you to set quotas on your directories and lower-level
directories under certain conditions. Your programs can also make use
of quota manipulation subroutines to do this. Quotas are expressed in
terms of numbers of physical disk records, and must be assigned
carefully if they are to be meaningful and useful.

Detailed explanations of quotas and their settings can be found in the
System Administrator's Guide, Vol. I, and in the Prime User's Guide.
Subroutines related to quotas are described in Chapter 9, DISK QUOTAS,
and in the Subroutines Reference Guide, Vol. IT.

1-39 Second Edition

ProgrammerInterfaces

to the File System

Chapter 1, PRIMOS FILE SYSTEM CONCEPTS, introduced you to the concepts
of the file system you will need to know in writing programs that deal
with files, access categories, and the various kinds of directories
that the file system supports.

This chapter will explain the file system interfaces that you as a
programmer can use to communicate with the file system, what these
interfaces allow you to do, and the principles involved in using then.

COMMUNICATING WITH THE FILE SYSTEM

AS a programmer using PRIMOS programming tools like editors, compilers,
and linkers, you have at your disposal a number of procedures by which
you can communicate with the file system. From your terminal you can
use commands to attach to directories, set access to file system
objects, and create, open, close, and delete file system objects.
These commands invoke PRIMOS programs that in turn call subroutines
that perform the requested functions. Some PRIMOS programs invoke
command functions, which in turn invoke subroutines to do their tasks.

Commands

Commands constitute the highest-level programmer interface to the
PRIMOS operating system. This is the interface that you use to request
the execution of PRIMOS programs stored in the standard command

2-1 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME ITI: FILE SYSTEM

directory CMDNCO, and to execute any application program you have
developed and installed in this directory. Descriptions of all PRIMOS
commands are given in the PRIMOS Commands Reference Guide. You or
Someone in your organization will provide information on the execution
of your application programs.

You can also request the execution of a program stored in a directory
other than CMDNCO by invoking the RESUME command, supplying the
pathname of the program as an argument.

Command Functions

Command functions can be considered the second highest-—level programmer
interface after thecommand level. Command functions. are used in a
PRIMOS command line, and are analogous to subroutine calls ina
program: during program execution, a subroutine call in a program
statement requests the service of a precompiled procedure stored in a
subroutine library; a command function requests the execution of a
precompiled procedure at PRIMOS command level. A command function
consists of a function name and zero or more arguments or options, all
enclosed in square brackets ({]). It differs from a command in that
it can return a value and store it in a variable for use by a
Subsequent command or command function. Command functions are
explained in the PRIMOS Commands Reference Guide and the CPL User's
Guide.

For repetitive operations at command level, you can build a series of
commands and command functions into a Command Procedure Language (CPL)
file. You can store a CPL program in one of your directories and
execute it by invoking it from PRIMOS command level using the RESUME
command (for detailed explanations, see the CPL User's Guide).

You can also store CPL programs in CMDNCO and invoke them directly as
commands. However, for all but the simplest of routines, a CPL
program’s execution speed tends to be slower than that of the
equivalent program stored in compiled form.

Subroutine Calls

As described in Chapter 1, PRIMOS FILE SYSTEM OONCEPTS, your

application programs can contain subroutine calls that perform a
variety of functions involving the file system: opening and closing
files, reading and writing data, as well as a number of operations
involving pathnames, access control, and the like. You can make use of
the extensive library of Prime-supplied subroutines, but you can also
create your own libraries of subroutines tailored to the needs of your
applications. Commands and command functions make extensive use of
Prime-supplied subroutines during their execution; for example, the
editor program uses subroutines to open, read, write, and close text
files, as well as to create new files when necessary. These operations

Second Edition 2-2

PROGRAMMER INTERFACES TO THE FILE SYSTEM

implicitly involve other subroutines that may, among other things,
attach to top-level directories, evaluate access rights, and supply
access control lists for newly created files. All of these actions are
largely invisible to you as you sit at your terminal running the
editor, unless you attempt to violate an access right, or PRIMOS
detects some kind of abnormal comdition such as a directory quota
overflow.

system Primitives

As you have no doubt inferred, subroutine calls are not necessarily
Single-level operations, but may progress to one or more sublevels.
There is a point at which no further sublevels are called during a
subroutine’s execution. A subroutine that itself makes no calls to
other subroutines is known as a system primitive; it is the lowest
programmer-visible interface between a program and PRIMOS. The PRWF$$
subroutine, for example, is a system primitive that positions, reads,
writes, or truncates a file; it can be called directly from a program,
or indirectly through other subroutines such as SRCH$$ (used to open,
close, delete, change access, or verify the existence of a file).

Arguments and Options

Arguments and options are additional elements of all of the programming
interfaces described so far. They increase the (flexibility of
operations of commands, command functions, and subroutines by allowing
variations in the ways in which they operate. An argument is usually a
character string that defines the object to be operated on, such as a
filename, a directory name, a file unit number, or one of the several
forms of pathname. An option defines the way the object is operated
on.

For a call to the SRCH$$ subroutine, for example, an argument would be
the name of a file unit to be operated on, and an option could specify
that the desired action is to open the file unit. Another option could
specify whether the file unit was to be opened for reading, writing, or
both. A subsequent call to SRCH$$ would be used to close the file
unit, using the same file unit number (argument) and a different action
(option).

For example, to open a new DAM file for writing on an unused file unit,
perform some write operations on it, and then close it, you could use
the following sequence of calls:

CALL SRCH$$(K$WRIT+K$GETU+K$NDAM, NEWFILE, 7, UNIT, TYPE, CODE)

Do some write operations

CALL SRCH$$(KSCLOS, 0, 0, UNIT, 0, CODE)

2-3 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

The three K$ options in the first call specify opening a DAM file

(K$NDAM) for writing (K$WRIT) on an available file unit (K$GETU). ‘The
K$CLOS option in the second call causes the file to be closed. UNIT is

a data element defined in the program to receive the file unit number

returned by the subroutine when it opens the file; it also specifies

the file unit to be closed. The zero (0) entries in the close call
indicate that space must be reserved in the calling sequence for all

elements of the call, even though some may be unused for certain

actions.

At command level, arguments and options are similarly used. For

example the SET_ACCESS command accepts both an argument to specify the

name of the object on which the access control list is to be set, and

an option to specify whether the list is to be obtained from an access

category or set the same as another (existing) object.

Attach Points and Access Rights

All of the programming interfaces to the file system assume that you as

a programmer at a terminal, or a user using one of your programs, can

access the object or objects to be worked on. That is, the user-id of

the person working on an object must exist (either explicitly or
implicitly) on that object’s access control list (ACL), and the ACL

must include, for that user-id, the kind of access appropriate to what

the person wants todo. (Refer to the Prime User's Guide for details
on access control lists.)

In order to gain access to a file system object, you (or your program)

must also be attached to the directory that either directly or

indirectly (by way of one or more lower-level directories) contains the

object. You can attach to a directory from your terminal at command

level by using the ATTACH command; your program can do the same thing

by using one of the AT$ subroutine calls. In both cases, Use (U)

access is required at all directory levels that have to be passed

through to get to the object.

The Three Attach Points: The initial, home, and current attach points

identify your (or your user's) initial, home, and current directories.

Other terms refer to these attach points as follows:

® The initial attach point identifies the initial, origin, or

login directory.

@ The home attach point identifies the home, or working directory.

@ The current attach point identifies the current directory.

The terms attach point and directory are generally interchangeable.

You establish an attach point by attaching to a directory.

Second Edition 2-4

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The PRIMOS file system is heavily dependent on attach points. Most
commands, command functions, and subroutines involving file access use
the current attach point. Subroutines that accept pathnames to objects
outside the home directory can temporarily change the current attach
point during their execution. Some file system subroutines allow the
attach points to be permanently changed.

There are specific uses for and restrictions on the three attach
points, summarized as follows:

Attach Point Use

Initial Attaches you to your initial directory. The
initial attach pcint is established when you
first log in. From the terminal, you can
attach to your initial directory at any time by
issuing the PRIMOS command ORIGIN. Your
program can attach to the initial directory by
a call to the AT$OR subroutine.

Neither you nor any user program can change the
initial attach point. This can be done only by
a System or Project Administrator.

Home Establishes and attaches you to your home
directory. This directory is your primary
working directory. From the terminal, you can
Change the home directory by using the ATTACH
command; a program uses a call to the AT$HOM
subroutine. Changing the home attach point
also changes the current attach point. When
comands such as ILD and LIST_QUOTA are issued
without arguments, the home directory is the
implicit target directory.

User programs may change the home attach point,
but this is rarely done except when it is part
of the function of the program to do this.

Current Establishes and attaches you to a current
directory. The current attach point is
normally the same as the home attach point.
However, programs can change the current attach
point by using one of the AT$ subroutines to
operate on objects outside the home directory
without changing the home directory. Before
returning the user to command level, programs
should always reset the current attach point to
the home attach point.

Most PRIMOS subroutines that change the current
attach point reset it to the home attach point
before returning to their callers.

2-5 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Attach Point Use

Normally, you cannot explicitly, from command
level, set the current attach point to ble
different from your home attach point. You
can, however, explicitly reset the current
attach point to be the same as the home attach
point by issuing the ATTACH command with no
arguments.

Access Rights: There are currently nine access rights that PRIMOS uses
at various times to determine whether you (as a programmer) or your
program (on behalf of its user) can do what you or your program want to
do with a file system object. These rights and what actions they allow
are explained in detail in the Prime User’s Guide. In brief:

O:

W:

xX:

Applies to files and directories; allows user to set access
rights except for P and ALL; if the object is a file ora
segment directory, the possessor is permitted to set the
rwlock.

Applies to directories; allows the access rights and
attributes of the directory and its subordinate objects to be
changed.

Applies to directories; allows subordinate objects to he
deleted or renamed.

Applies to directories; allows subordinate objects to be added
or renamed.

Applies to directories; allows their contents to be listed.

Applies to directories; allows the directory to be “used;"
that is, attached to or passed through on the way toa

subordinate object.

Applies to files; allows them to be read; allows EPFs to be
executed.

Applies to files; allows them to be written.

Applies to local EPFs; allows them to be executed (not
required if R is allowed).

Two other rights, represented by the character strings ALL and NOME,
mean, respectively that all of the above individual rights, or none of
them, apply to the user to whom these designations are given.

Second Edition 2-6

PROGRAMMER INTERFACES TO THE FILE SYSTEM

An important point to remember, when referring to a program's access to
a file system object, is that it is not the program that must have
access to the object, but the user on whose behalf the program is
running. That is, the user-id by which a user is known to the system
must exist on the access control list of the object on which an action
is to be performed.

The ACL of a newly created object is always inherited from its
containing directory. It is then said to have a default ACL. A newly
created file or directory inherits all of the access rights of its
parent directory (even though R, W, O, and X accesses are the only ones
meaningful to a file). If you change the inherited ACL of a newly
created directory, then the changed ACL becomes the default ACL for any
objects subsequently created within the new directory.

The existence of the user-id on the ACL may be either explicit (the
user-id itself) or implicit (the name of a group to which the user
belongs or the special identifier $REST). Each of these has its uses
in particular circumstances. For example, if you are writing a program
that creates a file for the exclusive use of its user, it would be
appropriate for that program to create for the file an ACL that
contains the user's name explicitly, and gives him the necessary rights
to the file. On the other hand, if the program executes on behalf of a
data base group, and that group has a group-id, then it would be
appropriate to creat? an ACL that contains the group-—id and the rights
applicable to the group. Any fine-tuning of this ACL with respect to
specific users in the group can be done by using the ACL-related
commands from PRIMOS command level.

Object Names

The ways in which object names can be specified vary from command to
command, command function to command function, and subroutine to
subroutine. The allowable forms of object names (simple nanes,
relative, full, or absolute pathnames) for the various levels of PRIMOS
interfaces are defined in the appropriate manuals and guides. For
Subroutines that deal with the file system, they are given also in
later chapters of this book.

You must keep in mind, when writing application programs that use file
system subroutines, that the way you specify an object name in a
subroutine call (if you have a choice of method) can affect one or more
of your attach points in some unexpected way. It may also determine
whether or not the user on whose behalf your program is running has
access to the object whose name is specified. Refer to the section
titled HOW AND WHEN ACCESS IS CALCULATED in Chapter 1, PRIMOS FILE
SYSTEM CONCEPTS, and remember that the same subtleties of the ACL
mechanism that apply at command level can also apply at the command
function and subroutine levels.

When interpreting object name arguments, subroutines make a distinction
between home and current directories that is not made at command level

2-7 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

or command function level. For a subroutine, the current directory is

the directory to which the process is currently attached. The home

directory is either the one first attached to when the user logs in, or
the one specified in a subroutine call such as AT$HOM.

Assume, for example, that you have used the ATTACH command to attach to

a directory MYDIR. Your home and current attach points are now MYDIR.

Now, you invoke a command or program with a pathname as an argument:

MYPROG JANESDIR>MEMOS

The behavior of the home and current attach points is as follows:

1. The home attach point remains the same; from your point of view

the attach point does not change.

2. MYPROG calls various subroutines that locate, check access, and

open the MEMOS file in the JANESDIR directory. The subroutines
change the current attach point to JANESDIR.

3. When the program terminates, the last subroutine executed

(typically the one that closes the file) sets the current attach

point back to MYDIR.

When you use a subroutine that accepts only a simple pathname, you must

know the current attach point (and hence the current directory),
because the current directory is the one that is used to determine the

pathname of an object referred to by a simple nane.

File Units and Attributes

When a file is opened using a subroutine call such as SRCHS$, it

becomes associated with a file unit number, which is used in subsequent

subroutine calls to manipulate the file data. A file can be read or

written only by referring to its file unit number in read or write

subroutine calls. File units are described more fully in_ the

Subroutines Reference Guide, Vol. IT.

Files can be opened by specifying a file unit number explicitly or by

allowing PRIMOS to allocate one (except in the FORTRAN language, which

requires an explicit file unit number). If you are writing a program
that is entirely self-contained (that is, it does not support, require

support from, or otherwise commmicate file information to another

program), it makes little difference how you associate a file with its
file unit number, other than to make sure that an explicitly defined

numberis not already in use by the same program. However, if your

program is one element of a larger group of programs that make up a

subsystem and that have to communicate file unit information among

themselves, then it is more appropriate to let PRIMOS allocate file

unit numbers, and to have the program that opens the file the first

Second Edition 2-8

PROGRAMMER INTERFACES TO THE FILE SYSTEM

time store the returned file unit number in a program variable
accessible to all components of the subsystem. This technique is
particularly appropriate when a number of file units are opened at
various times and in unpredictable order.

In programming a subsystem, once a file has been opened for the first
time and associated with a file unit number, then that number should be
used for all subsequent operations on that file, using the centrally
stored file unit number returned from the first open call. In
particular, if the same file is opened more than once during an
application's execution, the file unit number resulting from the first
Open call should be used to explicitly define the number for subsequent
open calls, rather than letting PRIMOS allocate a possibly different
number and cause inconsistencies to arise among the members of the
family of programs in the subsystem.

When your program has opened a directory containing a file system
object, a set of attributes describing each object contained in the
directory is available to the program. The attributes are read by the
ENT$RD subroutine call into a structure that your program provides, as
described in detail in Chapter 8, FILE ATTRIBUTES.

You must remember two things when using a subroutine that reads, sets,
or changes the attributes of an object. First, the containing
directory must be open and associated with a file unit number, since
this is the argument that the subroutine uses to determine which
directory to look in for the attribute list. Second, the object whose
attributes are to be obtained, set, or changed must be immediately
contained within that directory, since the argument specifying the
object’s name does not accept a pathname (that is, the object is
assumed to be in the current directory).

The subroutine used to set or change attributes is SATR$$, which is
fully described in the Subroutines Reference Guide, Vol. II, along with
the formats of the structures that your program needs to provide for
its operation.

PRIMOS Responses (Return Codes)

Virtually all PRIMOS subroutines communicate with their callers in one
consistent respect: they return a numeric code that informs the caller
of the subroutine’s success or failure in performing its task. For
consistency, subroutines that you write for your own applications
should also follow this practice.

PRIMOS subroutines always place the return code in a 16-bit binary
integer data item. If the subroutine was entirely successful in
completing its requested function, the valueof this integer is always
zero (0). Other values are returned in case of total failure or
partial success. Your program should always check the value of the

2-9 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

return code upon returning from a subroutine call and take whatever
action is appropriate to the reported condition.

A complete list of PRIMOS subroutine return codes is provided in the

Subroutines Reference Guide, Vol. II, with some examples of how a
program might respond to a nonzero response code.

It is important that a subroutine call that can potentially change the

current attach point be handled carefully when a nonzero code is

returned. In order that the programmer can rely on some consistent

current attach point even if a subroutine fails, most PRIMOS

subroutines cause the current attach point to be set to the home attach

point before returning to their callers, regardless of where the

current attach point was before the call. Any programs, command

functions, or subroutines that are to become part of a larger subsystem

should handle nonzero return codes in a consistent way, and should be

documented accordingly.

FILE SYSTEM OPERATIONS: AN OVERVIEW

This section gives you an overview of the five major operations

(creating, opening, reading, writing, and deleting) that your programs
can perform on file system objects and the general requirements that

must be satisfied in order to do these operations. They will all be
explained in more detail in subsequent sections.

General Requirements

In order to perform operations on file system objects, the users of

your programs must be able to attach to the appropriate directories,

and, in order to do this, they mst have rights appropriate to what

they want todo. A successful attach to a directory requires that the

user have Use access to all directory levels from the MFD down to the

level that contains (or will contain) the object. Additional rights

required on the directory immediately containing the object depend on

the action that is to be performed. For example, in order to change

the name of a file, its owner must have both Add and Delete access to
the directory containing the file.

Creating Objects

Programs that operate on files contain calls to subroutines that locate

the files to be operated on, either in the user’s home directory or in

the current directory. If the attempt to locate a file that is to le

opened for writing, or for both reading and writing, is unsuccessful,

you can give the program the option of creating it in whichever

directory it was being searched for. You do this by supplying a key

that specifies the type of file to be created if it is not found. Your

Second Edition 2-10

PROGRAMMER INTERFACES TO THE FILE SYSTEM

program can also create lower-level directories by using the same
Subroutine calls with the appropriate keys. Creating a new top-level
directory requires a different subroutine from that which creates
lower-level directories and files.

If a search for a file for reading is unsuccessful, the subroutine
returns an error code; the program must decide how to handle this
condition. It is fairly probable that the file is not found because
the program is attached to a directory other than the one in which the
file is expected to exist; in this case the user is most likely
expected to have attached to the proper directory from PRIMOS command
level before executing the program. However, if the application can
expect that a file to be read may not exist, then it should, by means
of the appropriate key, test for the file’s existence, inform the user
in some meaningful way of its nonexistence, and provide for a graceful
escape from the situation.

Opening Objects

Your programs open file system objects by using calls to any of several
subroutines, depending on where the object is relative to the home
directory, what kind of optional actions are desired (for example,
creating new objects or retrying in case of initial failure), and
whether your applications are more suited to using system library
Subroutines or application library subroutines. The Subroutines
Reference Guide, Vol. II, contains a chapter of all of the subroutines
you can use to open file system objects.

In general, the subroutines in the application libraries (APPLIB or
VAPPLB) are easier to use for application programs, as their user
interfaces are comparatively simple and they return codes that are
either true or false. In many cases, these subroutines call
lower-level subroutines, taking care of supplying arguments with which
you aS a programmer need not concern yourself. They also perform all
possible error detection and recovery tasks before returning to their
callers, thus ensuring that everything that can be done to complete the
requested function is done, and that whatever errors are encountered
are reported.

Reading Objects

Assuming that your program has successfully opened an object for
reading or for reading and writing, the object can then be read, using
any of several subroutine calls. The call to be used depends on
whether the object is a file, a file directory, or a segment directory;
there are also calls intended expressly for reading ASCII text files,
getting characters or lines of text from command files or from the
terminal, and getting characters from an array.

ea-1l Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

Positioning an object involves an implied read of the object, although

no data is actually transmitted. Calls to position an object can be

made either with a specified absolute position or with a position

relative to the current position, either backward or forward. An

object can also be positioned at its beginning or end.

Writing Objects

Assuming that your program has successfully opened an object for

writing or for reading and writing, the object can then be written,

using any of several subroutine calls. Generally, the writing of data

files is done by explicit calls to write a line to a text file, a data

file, or a command output file or terminal. You can also calla

subroutine whose function is to store characters into an array.

The writing of other file system objects (file and segment directories

and access categories) is done implicitly during many operations on_

files. File creation, ACL manipulation, and file renaming, for

example, all implicitly involve writing to these objects, but there are

no explicit subroutine calls that result in writing a specific

character or string to them.

Files can be positioned to any arbitrary point before writing data to

them. Normally, when additional data is written to a SAM or DAM file,

the file is positioned to its end before writing is done; if the

position is somewhere within the file (or at its beginning), existing

data will be overwritten. Indexed files, such as those used by

MIDASPLUS, are capable of having records inserted into them; such

subsystems take care of insertions in such a way as not to overwrite

existing data.

Deleting Objects

Several subroutines are available to delete files and directories; the

one you choose will usually depend on whether the object is directly

contained in the home directory or elsewhere.

The ability of your program to delete an object depends on the user’s

access rights not only on the object itself but also on the parent

directory. The state of the delete-protect attribute on the object

also affects the user’s ability to delete an object, independent of

access rights. The ability to set or reset this attribute, in turn,

depends on the user's having Protect rights on the parent directory.

Having given you an overview of the programmer's interfaces to the file

system and the kinds of things that can be done with file system

objects, the rest of this chapter gives more details on file system

operations at the command level and at the subroutine level.

Second Edition 2-12

PROGRAMMER INTERFACES TO THE FILE SYSTEM

ACCESS CONTROL TO FILE SYSTEM OBJECTS

This section describes the requirements and procedures for attaching
and controlling access to file system objects, both at command level
and at the subroutine level.

As previously described, only file directories can be attached to; you
cannot attach to segment directories, access categories, or files
directly, but you can attach to the file directories that contain any
of these objects.

Attach/ACL Requirements

Your user-id, or that of your program’s user, must appear at all
directory levels above the directory that is being attached to, and the
access rights must include Use access. The user-id can be explicit, or
it can be implied as the member of a specific group-id or the special
group $REST. Use access can be specified explicitly (U access) or
implicitly (ALL access).

Access control lists and the subroutines for manipulating them are
described more fully in Chapter 7, ACCESS CONTROL LISTS (ACLS).

Attachi

At the command level you can attach to two of the three kinds of attach
points: the home attach point and the initial, or origin, attach
point. Remember that the initial attach point, the point at which you
are attached when you first log in, cannot be changed except by your
System Administrator or Project Administrator. You can change your
home attach point, however, at any time; in fact, if the files you are
working on (specifically, program files if you are a programmer) are in
a directory other than your initial directory, you should use Attach
commands to attach to the directory containing them.

At the subroutine level, your programs can set not only the initial and
home attach points, but also the current attach point, a (usually)
temporary attachment that is in effect only for the duration of the
routine in which the subroutine is called.

ATTACH TO INITIAL DIRECTORY

Command Command Function Subroutine

ORIGIN None ATSOR

2-13 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Attach to Initial Directory (Command): To attach to the initial, or

origin, directory from PRIMOS command level, use the command:

ORIGIN

Using the ORIGIN command sets both the home and the current attach

points to the initial directory. The ORIGIN command requires no

arguments.

Attach to Initial Directory (Command Function): There are no command
functions that explicitly set the attach point to any directory.

However, some command functions, such as OPEN_FILE, could implicitly
attach temporarily to the initial directory. A CPL program that needs

to attach specifically to the initial directory can use the ORIGIN

command as one of its statements.

Attach to Initial Directory (Subroutine): To attach to the initial

directory from a program, use the subroutine call:

AT$OR (key, code)

The value of key is K$SETH if both home and current attach points are
to be set to the initial directory, or K$SETC if only the current

attach point is to be set.

Note that if only the current attach point is set, any subroutine that

uses a simple object name as an argument will look in the initial

directory for the object, regardless of the setting of the home attach

point.

The details of the calling sequence for the AT$OR subroutine are given
in Chapter 4, ATTACH POINTS.

ATTACH TO HOME DIRECTORY

Command Command Function Subroutine

ATTACH None AT$HOM

Attach to Home Directory (Command): To define and attach to the home
directory from PRIMOS command level, use the command:

ATTACH [directory_name]

Second Edition 2-14

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Using the ATTACH command sets both the home attach point and the
current attach point to the directory specified as the argument. If no
argument is given, no change occurs (unless the current attach point
has been left set at some other point in a previous operation, in which
case it is reset to the home attach point).

The directory_name argument can be any form of pathname that leads to a
file directory.

Attach to Home Directory (Command Function): There are no command
functions that explicitly set the attach point to any directory. A CPL
program that needs to specifically set the home directory can use as
one of its statements the ATTACH command in the form just described.

Attach to Home Directory (Subroutine): To set the current attach point
to the current home directory from a program, use the subroutine call:

AT$HOM (code)

The details of the calling sequence for the AT$HOM subroutine are given
in Chapter 4, ATTACH POINTS.

ATTACH TO ANY DIRECTORY

Command Command Function Subroutine

ATTACH None AT$
ATS$ABS

ATSANY

AT$REL
Attach to Any Directory (Subroutine): To set the current and
(optionally) the home attach points to a specific directory (other than
the initial or home directory), use one of the following subroutine
calls:

AT$ (key, path, code)
AT$ABS (key, partition, directory, code)
AT$ANY (key, name, code)
AT$REL (key, name, code)

Details of these calling sequences and their operations are given in
Chapter 4, ATTACH POINTS.

In all of these calls, the value of key determines whether both the
current and home attach points are to be set, or only the current

2-15 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

attach point. A value of K$SETH sets both; a value of K$SEIC sets
only the current attach point. If you specify K$SETH, the effect is
the same as if the ATTACH command had been used at the terminal.

The AT$ call is the most general of all of the attaching calls, in that
it accepts a pathname in any form, and then calls one of the others,
depending on the results it obtains from parsing the pathname. A null
name argument (‘’) means the home directory, and is equivalent to the
AT$HOM call or the ATTACH command with no argument. You can use the
AT$ call to attach to anywhere from anywhere, regardless of whether or
not the current and home attach points were the same before the call.

In the AT$ABS call, partition is the name or logical disk number of an
active disk on the system on which your program is running, or on
another system connected through a network. The ition argument can
also be the null string, implying logical disk 0 (zero); or it can be
‘*' signifying the disk partition containing the directory to which
the current attach point is set at the time of the call.

The directory argument is the name (and optional directory password,
separated by a single space) of a top-level directory on the disk
partition identified by partition. A null directory argument signifies
the MFD of the disk partition.

The AT$ANY call requires name to be a full pathname, beginning with the
name of a top-level directory. Remember the rules that were given in
Chapter 1, PRIMOS FILE SYSTEM CONCEPTS, for directory searching when
using a full pathname.

The AT$REL call requires name to be the name of a directory immediately
subordinate to the current directory. It can include a directory
password, separated by a single space.

Access Control List (ACL) Functions

The ACL functions can be used at the command level to define, modify,
list, and delete user access rights on file system objects. You can
define ACLs by default from the object's containing directory, by
specifying separate user-ids and their individual rights, or by
specifying user groups and the rights that apply to them. You can also
define access categories that protect any number of objects with the
same ACL. The PRIMOS Command Reference Guide and the Prime User's
Guide explain the use of the various ACL-related commands in detail.

When using ACL-related subroutines in a program, your program must
furnish the ACL entries in the form of a structure containing the
user-id/access-right pairs; the subroutine call supplies the address
of the structure in the form of a pointer argument, addr(acl_struct).
Chapter 7, ACCESS CONTROL LISTS (ACLS), gives the details of the
calling sequences and operations of all of the ACL-related subroutines.

Second Edition 2-16

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The ACL structure is shown pictorially in Chapter 7, ACCESS CONTROL
LISTS (ACLS), and in program declaration form in the Subroutines
Reference Guide. Vol. ITI.

The target object for any ACL-related command or subroutine can be a
file, a file directory, or a segment directory. An access category is
a@ Special object that contains an ACL used to protect other objects;
the ACL of the access category itself is the same as that of the group
of objects it protects.

At both command and subroutine levels you, or your program's user, must
have Protect and List access to the containing directory, and Protect
access to the object on which an ACL is to be set.

SETTING DEFAULT ACCESS

Command Command Function Subroutine

SET_ACCESS None AC$DFT
SAC

Setting Default Access (Command): PRIMOS gives a default ACL
automatically to any object whenever the object is created; the ACL is
the same as that of the containing directory. (The System
Administrator or Project Administrator should set a specific ACL, as
described later, on a top-level directory if it is to be different from
that of the MFD.) Any objects created at levels below the top-level
directory will then get this specific ACL by default.

To set a default ACL from PRIMOS command level, use the command:

SET_ACCESS objectname
SAC

In this form of the SET_ACCESS command, if the target object has an ACL
different from the default, its ACL will be reset to the default. A
message may be returned indicating that there is already an ACL set on
the object and asking whether it is to be replaced; the message can be
Suppressed by using the —NO_QUERY option.

Be careful, when you set the default access on an object, that the
directory that is supplying the default ACL has rights appropriate to
the object on which the default is being set. For example, Read and
Write access as such are not meaningful to directories, but are usually
included in directory ACLs so that they will be inherited by
subordinate files automatically.

2-17 second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

Setting Default Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.

Setting Default Access (Subroutine): To set a default ACL froma
program, use the subroutine call:

AC$DFT (name, code)

The name argument can be any of the valid forms of pathname. The same
precautions regarding propagated ACLs apply to the AC$DFT subroutine as
to the SET_ACCESS command described above.

Details of the calling sequence and its operation appear in Chapter 7,
ACCESS CONTROL LISTS (ACLS).

SETTING SPECIFIC ACCESS

Command Command Function Subroutine

SET_ACCESS None ACSSET

SAC

Setting Specific Access (Command): To set a specific ACL from PRIMOS
command level, use the command:

SET_ACCESS objectname user-id:access-rights ...[-NO_QUERY]

SAC

In this form of the SET_ACCESS command, the resulting ACL contains the
list of users and access rights given as arguments to the command,
plus, by default, $REST:NONE if no other specific rights are given to
the $REST group. The ACL thus produced replaces any ACL already
existing on the object. To modify an existing entry on an ACL without
replacing the ACL, use the EDIT_ACCESS command, described later.

If objectname does not exist, PRIMOS assumes that you want to create an
access category. If you do, refer to Creating an Access Category,

described later; otherwise answer NO to the query returned by PRIMOS.

Setting Specific Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.

Second Edition 2-18

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Setting Specific Access (Subroutine): To set a specific ACL from a
program, use the subroutine call:

AC$SET (key, name, addr(acl_struc), code)

In the AC$SET subroutine call, key governs the creation and replacement
of ACLs and specifies the error to return if AC$SET is called to
replace a nonexistent ACL or to create an ACL on an object that already
has one. The AC$SET description in Volume II of the Subroutines
Reference Guide lists the possible key values and their meanings. The
name argument specifies the object that is to receive the new ACL, as
in the AC$DFT call previously described. The structure of the ACL
entries is shown in diagrammatic form in Chapter 7, ACCESS OONTROL
LISTS (ACLS). Each entry can have as many as 80 characters, and there
can be aS many as 32 entries in a given list.

SETTING CATEGORY ACCESS

Command Command Function Subroutine

SET_ACCESS None ACS$CAT
SAC

Setting Category Access (Command): To set the access of an object to
that of an existing access category, use the command:

SET_ACCESS objectname -CATEGORY acatname
SAC

The objectname argument can be any valid form of pathname. The access
category specified by acatname must exist in the same directory as that
of the object being protected. (Creating an access category is
described later in this section.)

Setting Category Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.

Setting Category Access (Subroutine): To set the ACL of an object from
@ program, use the subroutine call:

AC$CAT (name, category, code)

2-19 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

The name argument identifies the object to be protected; it can be any
valid form of pathname. The category is the simple name of the access
category that is to protect name; the access category mst exist and
must reside in the same directory as name. The calling sequence and
operation of the AC$CAT subroutine are described more fully in Chapter
7, ACCESS CONTROL LISTS (ACLS). Access requirements for using the
AC$CAT subroutine are described in the Subroutines Reference Guide,
Volume II.

SETTING ACCESS LIKE THAT OF ANOTHER OBJECT

Command Command Function Subroutine

SET_ACCESS None ACSLIK
SAC

Setting Access Like That of Another Object (Command): To set an
object's access so that it is identical to that of another object from
PRIMOS command level, use the command:

SET_ACCESS objectnamel -LIKE objectname2
SAC

Both objectnamel and objectname2 can be any valid form of pathname;
objects need not be in the same directory. The objectnamel argument
identifies the target object on which the access is to be set;
objectnamee identifies the object whose access is to be applied to the
target object.

There is also no requirement that source and target objects be of the
same type. If the source and target objects are of different types
(for example, the source is a directory and the target is a file), be
sure that the source object includes access rights appropriate to the
target, as described previously under Setting Default Access.

When you use this form of the command, it does not matter whether the
source object’s ACL is derived from its superior directory, from an
access category, or a specific ACL; the ACL of the target will always
be a specific ACL, since it is the ACL's values that are copied, not
the location of its source.

Setting Access Like That of Another Object (Command Function): There
are no command functions to set access control lists. A CPL program
that needs to set an ACL can use the appropriate PRIMOS command as a
program statement.

Second Edition 2-20

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Setting Access Like That of Another Object (Subroutine): To set an
object's access so that it is identical to that of another object from
@ program, use the subroutine call:

AC$LIK (target, reference, code)

Both target and reference are any valid form of pathname; target
identifies the object on which an ACL is to be set, while reference
identifies the source of the ACL. The actions are the same as
described in the command description just given; the calling sequence
is described more fully in Chapter 7, ACCESS CONTROL LISTS (ACLS). The
Subroutines Reference Guide, Vol. II gives information on the access
rights required to use the AC$LIK call.

CREATING AN ACCESS CATEGORY

Command Command Function Subroutine

SETACCESS None AC$SET

SAG

Creating an Access Category (Command): To create an access category
from PRIMOS command level, use the command:

SET_ACCESS objectname user-id:access-rights ...
SAC

This is the same form of SET_ACCESS command as you use to set a
specific ACL on an object, as described previously under Setting
Specific Access. The difference is that, in this case, objectname
identifies a nonexistent object, and PRIMOS assumes that you want to
create an access category. PRIMOS tells you that the access category
does not exist and asks whether you want to create it. If you do, the
access category iscreated and given the name objectname.ACAT and the
specified ACL entry or entries. You can then use this access category
in subsequent operations to set category access as described

previously.

Be careful, if you really want to create an access category, that the
named object does not exist; otherwise, PRIMOS will locate the named
object and apply the specified ACL entry or entries to it, with
possibly unwanted results. If you know that an object whose name is,
say, PRIVATE exists, you can still create an access category with the
name PRIVATE.ACAT in the same directory by explicitly supplying the
.ACAT suffix when giving objectname. PRIMOS will recognize this as a
different object from PRIVATE, and will create the access category

+ PRIVATE. ACAT.

2-21 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

The objectname argument can be any valid form of pathname, implying
that you can create an access category anywhere. Remember, though,
that an access category must be in the same directory as the object(s)
it is intended to protect.

Creating an Access Category (Command Function): There are no command
functions to create access categories. A CPL program that needs to
create one can use the appropriate PRIMOS command as a program
Statement. It would be prudent for your CPL program to test for the
existence of the named object using the [EXISTS] command function
before attempting to use the command to create an access category. If
the function returns a result indicating that the object exists, it
should allow the user to specify what to do. Refer to the CPL User's
Guide for information on the [EXISTS] command function and how to query
the user and request a response.

Creating an Access Category (Subroutine): To create an access category
from a program, use the subroutine call:

AC$SET (key, name, addr(acl_struc), code)

When using AC$SET to create an access category, name must identify a
nonexistent object (any valid form of pathname), and key must have a
value of either 0 (zero) or K$CREA. As before, addr(acl_struc) is a
pointer to an area in your program that contains the structure of the
ACL to be set on the access category.

The calling sequence and operation of the AC$SET subroutine are more
fully presented in Chapter 7, ACCESS CONTROL LISTS (ACLS). The
Subroutines Reference Guide, Vol. II gives the access. rights required
to use the AC$SET call.

CHANGING ACCESS TO AN OBJECT

Command Command Function Subroutine

EDITACCESS None AC$CHG
EDAC

Changing Access to an Object (Command): To change an existing ACL on a
file system object from PRIMOS command level, use the command:

| Eeos objectname user-id:access-rights .
EDAC |

Second Edition 2-22

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The objectname argument identifies a file system object that already
has an ACL of any type: specific, category, or default. The object
can be identified by any valid form of pathname. The ACL argument(s)
identify one or more individual entries on the list that are to tke
added, deleted, or changed. Only the specified entries are affected;
unreferenced entries are left on the list unchanged.

Changing Access to an Object (Command Function): There are no command
functions to modify access categories. A CPL program that needs to
modify one can use the appropriate PRIMOS command as a program
statement.

Changing Access to an Object (Subroutine): To Change an existing ACL
on an object from a program, use the subroutine:

AC$CHG (name, addr(acl_struc), code)

In the AC$CHG call, the name and addr(acl_struc) arguments have the
same functions and requirements as in the AC$SET call described
earlier. This is the fundamental call used for changing access, and
behaves in the same way as the EDAC command. There are other methods,
which are described in Chapter 7, ACCESS CONTROL LISTS (ACLS), used to
Change an existing ACL to that of another object and to make selective
modifications to it afterwards.

DELETING ACCESS CONTROL ENTRIES

Command Command Function Subroutine

SETACCESS None ACS$SET
SAC
EDITACCESS | None ACS$CHG
EDAC

Deleting ACL Entries: There are no explicit commands, command
functions, or subroutines that perform the sole function of deleting an
ACL entry or entries; the basic approach to accomplish this is to use
the SET_ACCESS or EDIT_ACCESS functions, and to include entries that
contain the special access right NONE.

For example, if an ACL contains an entry BAKER:LUR and you want to
exclude user BAKER from any access at all, you can use the EDITACCESS
command (or the AC$CHG subroutine call), specifying the explicit entry
BAKER:NONE. This explicitly states that user BAKER has access NONE,
and an entry to this effect is placed on the ACL. Alternatively, you
can use the EDIT_ACCESS command, specifying BAKER:, that is, the

‘user-id and the colon, but no access rights. This results in the entry
for user BAKER being deleted from the ACL entirely.

2-25 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

You can also use the SET_ACCESS command (or the AC$SET subroutine call)
and explicitly specify all of the entries on the existing ACL except
the entry for BAKER.

Using the EDIT_ACCESS command is much the easier method, especially if
the ACL is long and complex.

CREATING FILE SYSTEM OBJECTS

File system objects are created in several different ways, depending on
the type of object. In order to create any type of object, you (at
command level) or your program’s user must have Add access to the
directory immediately containing the object, and Use access to any
higher-level directories.

For those objects that can be created at command level (file
directories, files, and access categories), you can specify either a
Simple name to create the object in the home directory, or a pathname
to create the object in any other directory for which you have the
appropriate access.

At subroutine level, you can use any of several subroutine calls to
create an object, depending on its type and location. All types of
objects can be created at this level.

Creating File Directories

In order to create a directory, you (or your program’s user) must have
Add access to the directory (which may be the MFD) that will contain
the directory, and Use access to any directories that are superior to
the one being created.

CREATING FILE DIRECTORIES

Command Command Function Subroutine

CREATE None DIR$CR
CREA$$ *

* The CREA$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
CREA$$ is still supported, programs should use DIR$CR
beginning with Rev. 20.2.

Second Edition 2-24

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Creating a File Directory (Command): To create a file directory from
command level, use the command:

CREATE directory_pathname [-MAX n] [-CATEGORY acatnane]

The directory_pathname argument can be any legitimate form of pathname,
implying that you can create a file directory anywhere, provided, of
course, that you have the appropriate access. The ACL of the new
directory will be the same as that of the containing directory; you
can modify it once the directory exists by using any of the access
control commands described previously.

Creating a File Directory (Command Function): You can include the
CREATE command in a CPL program in the same form that you use when you
enter the command at your terminal; if you invoke the CPL program from
your terminal, the results are the same, including the return of error
messages. However, if you invoke the CPL program as a phantom, no
error messages are returned to your terminal. The program would not,
for example, return a message if you were to try to create a directory
that already existed. It would therefore be wise to check for the
existence of the directory before attempting to create it; you can use
the [EXISTS] command function for this purpose, as described in the CPL
User's Guide.

Creating a File Directory (Subroutine): To create a file directory
from a program, use the subroutine call:

DIR$CR (dirname, addr(attributes), code)

The DIR$CR subroutine creates a lower-level directory in the location
indicated by the pathname. It creates a password directory if the
current directory is a password directory; in this case, the owner and
nonowner passwords are applied to the new directory. If the current
directory is an ACL directory, the new directory is also an ACL
directory; in this case, any passwords supplied in the call are
ignored.

NOTE

The CREPW$ subroutine creates a password directory within an
ACL directory. It is documented in Appendix A of the
Subroutines Reference Guide, Vol. II. CREPW$ is considered
obsolete at PRIMOS Rev. 20.2. Although CREPW$ is still
Supported, programs should use DIR$CR beginning with Rev. 20.2.

2-25 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Creating Files

In order to create a file, you (or your program’s user) must have Add
access to the directory that is to contain the file, and Use access to
all superior directories leading to this directory.

CREATING FILES

Command Command Function Subroutine

None None SRCHS$$
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. IT. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Creating a File (Command): There is no command that explicitly creates
a file; files are implicitly created by PRIMOS programs such as ED,
the compilers, the PMA assembler, and the linkers SEG, LOAD, and BIND.

An empty file is implicitly created from PRIMOS command level if the
OPEN command is given to open a nonexistent file for writing or for
reading and writing. Opening file system objects is discussed in more
detail later in this chapter and in Chapters 5, TEXT STORAGE AND
RETRIEVAL and 6, DATA STORAGE AND RETRIEVAL.

Creating a File (Command Function): As at PRIMOS command level, there
is no command function that explicitly creates a file; you can include
the OPEN command as a CPL program statement if you want the program to
create an empty file.

Creating a File (Subroutine): To create a file from a program, use one
of the subroutine calls:

SRCH$$ (key, name, name_len, unit, type, code)

SRSFX$ (key, name, unit, type, num_suffixes, suffixes,
basename, suffix_used, code)

These calls are described in greater detail in Chapter 5, TEXT STORAGE
AND RETRIEVAL, and in Volume II of the Subroutines Reference Guide.

Second Edition 2-26

PROGRAMMER INTERFACES TO THE FILE SYSTEM

In all cases, the newfile portion of key specifies the type of file
(SAM or DAM) to becreated if the object specified by name does not
exist and the action to be performed is writing or readingand writing.

For the SRCH$$ call, the name argument is a simple name; the resulting
file is created in the current directory and given the same protection
as that of the current directory.

For SRSFX$, name is any form of pathname; the resulting file is
created in the directory specified by the directory portion of name,
and given its protection.

Creating Access Categories: The creation of access categories was
described earlier in the section entitled Access Control Functions.

OPENING FILE SYSTEM OBJECTS

To open a file system object, you (or your program’s user) must have
Use access to all directory levels leading to the object to be opened.
Additional rights required on the object itself and its containing
directory depend on the action to be performed on the opened object.

As described previously, attempting to open a nonexistent file normally
results in that file being created in an empty state; the discussion
in the following subsections assumes that the object already exists.

Opening File Directories

File directories can be opened at both command level and at subroutine
level; however, they can be opened only for reading. File directories
are written to implicitly whenever some action on or within the
directory requires that information in the directory be updated (such
as the date-time-last-modified or access control information).

OPENING FILE DIRECTORIES

Command Command Function Subroutine

OPEN OPEN_FILE SRCH$$

SRSFX$

TSRC$$ *
* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

2-27 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Opening File Directories (Command): There is not much to be gained
from opening a file directory interactively, since there are no
commands that enable you to read the directory interactively. However,

PRIMOS will not prevent your doing this; if you want to open a file
directory from PRIMOS command level, use the command:

OPEN pathname funit key

The pathname argument can be any form of pathname leading to a file
directory to which you have Read access. You must specify a file unit
number funit; PRIMOS does not look for an unused file unit when an
object is being opened from command level. The key argument must
specify a value of 1 (read). See the PRIMOS Commands Reference Guide
for a full description of the OPEN command.

Opening File Directories (Command Function): PRIMOS will allowa file
directory to be opened by the OPEN_FILE command function, but will not
allow any other operations (other than CLOSE) to be performed on it.
Use the following form in a CPL program:

&set_var unit := [OPEN_FILE pathname status -MODE R]

In this CPL statement, unit is a local or global variable that receives
the file unit number assigned to the opened directory by PRIMOS;
status is a local or global variable that receives the status code
resulting from the operation. The pathname argument can be any of the
valid forms. See the PRIMOS Commands Reference Guide and the CPL
User's Guide for more detailed descriptions of the OPEN_FILE command
function.

Opening File Directories (Subroutine): To open a file directory from a
program, use calls to the subroutines described previously for creating
file system objects:

SRCH$$ (key, name, name_len, unit, type, code)

SRSFX$ (key, name, unit, type, numsuffixes, suffixes, basenane,
suffixused, code)

In all cases, the action portion of key specifies the action(s) to be
performed (read, write, or read and write).

Second Edition 2-28

PROGRAMMER INTERFACES TO THE FILE SYSTEM

For the SRCH$$ call, the name argument can be only a simple name, the
name of the directory being searched for in the current directory.

For SRSFX$, name is any form of pathnane.

Opening Files

Files contained in file and segment directories can be opened for
reading, writing, or reading and writing at command, command function,
and subroutine levels. In all cases, Use access is required on the
containing directory and superior directories, and Read, Write, or Read
and Write access is required on the file, depending on the actions to
be performed.

OPENING FILES

Command Command Function Subroutine

OPEN OPEN_FILE SRCH$$
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Opening Files (Command): To open a file (either text or data) from
command level, use the command:

OPEN pathname funit key

The pathname argument can be any form of pathname leading to a file.
You must specify a file unit mumber funit; PRIMOS does not look for an
unused file unit when opening a file from command level. The key
argument must specify a value indicating the action to be performed.
Refer to the PRIMOS Commands Reference Guide for details on the use of
the OPEN command and its arguments.

Opening Files (Command Function): To open a file (either text or data)
from a CPL program, use a statement of the form:

&set_var unit := [OPEN_FILE pathname status -MODE x]

2-29 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

In this CPL statement, unit is a local or global variable that receives
the file unit number assigned to the opened file by PRIMOS; status is
ailocal or global variable that receives the operation’s status code.
The pathname argument can be any of the valid forms. The mode argument
x specifies the action(s) for which the file is being opened: R
(Read), W (Write), or RW or WR (Read and Write). Note that if the file
is being opened in any mode that allows writing and the file does not
exist in the directory indicated by pathname, the file will be created
with no indication of an error. Therefore, if proper operation of your
CPL program depends on a pre-existing file of the specified name, it
would be wise to test for its existence before opening it for writing.
See the PRIMOS Commands Reference Guide and the CPL User's Guide for
more detailed descriptions of the OPEN_FILE command function.

Opening Files (Subroutine): To open a file from a program, use calls
to the subroutines described previously for creating and opening file
system objects:

SRCH$$ (key, name, name_len, unit, type, code)

SRSFX$ (key, name, unit, type, num_suffixes, suffixes, basename,
suffix_used, code)

In all cases, the action portion of key specifies the action(s) to he
performed (read, write, or read and write).

For the SRCH$$ call, the name argument can be only a simple name, the
name of the file being searched for in the current directory.

For SRSFX$, name is any form of pathname.

Segmented files (members of a segment directory) can be opened by the
SGD$OP subroutine call, described in Chapters 5, TEXT STORAGE AND
RETRIEVAL and 6, DATA STORAGE AND RETRIEVAL.

READING FILE SYSTEM OBJECTS

After an object has been opened, it can be read under certain
conditions and from some, but not all, programmer interface levels.
From the command level, directories cannot be read, nor can
fixed-length data records; variable-length text records can be read
and displayed on the terminal, but only indirectly through a command
function. Any kind of object can be read from program level by use of
several special-purpose subroutines, as well as some of the
general-purpose subroutines already described. In all cases, Read
access is required on the object to be read, and Use access is required
to all superior directories.

Second Edition 2-30

PROGRAMMER INTERFACES TO THE FILE SYSTEM

READING DIRECTORIES

Command Command Function Subroutine

None None DIR$LS
DIR$SE
DIR$RD

ENT$RD

SGDRS$$
Reading Directories (Command and Command Function): There is no
mechanism by which directory entries can be read from command level or
from command function level. This applies to both file and segment
directories. (Directory contents can, of course, be displayed or
written to a COMO file by using the LD command.)

Reading Directories (Subroutine): Your program can read file
directories in several ways using any of the following subroutine
calls:

DIR$LS (dir-unit, dir-type, initialize, desired-types,
wild-ptr, wild-count, return-ptr, max-entries,
entry-size, ent-returned, type-counts,
before-date, after-date, code)

DIR$SE (dir-unit, dir-type, initialize, sel-ptr,
return-ptr, max-entries, entry-size,
ent-returned, type-counts, max-type, code)

DIR$RD (key, unit, return-ptr, max-return-len, code)

ENT$RD Cunit, name, return-ptr, max-return-len, code)

DIRSLS is a general-purpose directory searcher that takes arguments
used to select entries to be searched for. Selection criteria can be
object types, wild-card names, date and time last modified, or
combinations of these. Selection can not be by date and time last
accessed or date and time created. Either file or segment directories
can be read. Selection can begin at the beginning of the directory or
at the current position; entries are returned in a structure provided
by the program that is capable of holding max-entries entries, and are
pointed to by return-ptr. This call is fully described in Volume II of
the Subroutines Reference Guide.

DIR$SE extends the functionality of DIR$LS by using a structure to
‘contain additional selection criteria, including date and time last

2-51 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

accessed and date and time created. DIR$SE is fully described in

Volume II of the Subroutines Reference Guide.

DIR$RD reads the contents of a directory sequentially, one entry at a

time, and returns each entry read in a program-provided structure

pointed to by return-ptr. It returns only named file system objects,

and therefore cannot be used to read subentries in a segment directory.

It returns names for files, file directories, and access categories.

This call is described more fully in Chapter 6, DATA STORAGE AND

RETRIEVAL, and in Volume II of the Subroutines Reference Guide.

ENT$RD is used to read the contents of a specific directory entry whose

nam is given as the name argument. The entry is returned in a

structure identical to that used by DIR$RD, and pointed to by

return-ptr. The entry being searched for must exist in the current

directory, since name is defined as having a length of 52 characters.

This call is described in detail in Volume II of the Subroutines

Reference Guide.

Segment directories can be read by using either of the following calls:

DIR$LS (dir-unit, dir-type, initialize, desired-types,
wild-ptr, wild-count, return-ptr, max-entries,
entry-size, ent-returned, type-counts,
before-date, after-date, code)

SGDR$$ (key, unit, starpositn, end_position, code)

DIR$LS is used as described for file directories, except that dir-—type

must have a value of 2 for a SAM segment directory, or 5 for a DAM

segment directory.

SGDOR$$ returns an integer representing the position in the directory of

the first or next full or free position in the segment directory,

depending on the values of key and start_position. The key argument is

K$FULL or K$FREE to look for full or free entries, respectively. A

start_position value of zero (0) looks for the first entry; a value
equal to the position of the last full or free entry plus 1 looks for

the next entry. The position integer is returned in end_position. The

SGDR$$ call is described in detail in Chapter 6, DATA STORAGE AND

RETRIEVAL, and in the Subroutines Reference Guide, Volume II.

READING FILES

Command Command Function Subroutine

None READFILE RDLIN$
PRWFS$$

Second Edition 2-52

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Reading Files (Command): There are no commands that enable you to read
a file directly from PRIMOS command level. However, a text file can be
read indirectly and displayed to your terminal (or written to a COMO
file), one line at a time, by using a TYPE command whose argument is a
(READFILE] command function, described next.

Reading Files (Command Function): You can read an ASCII (text) file
from a CPL program by including a statement of the form:

&set_var read_data := [READFILE unit status_var]

In this CPL statement, unit is the decimal number of the file unit on
which the file has been previously opened. You supply local or global
variable names for the variables read_data and status_var. The former
receives the line of text read from the file, while the latter stores
the return code from the execution of the read. (The setting and
evaluating of variables, and the use of the READFILE command function,
are described in the CPL User's Guide).

Reading Files (Subroutine): To read a file from a program, use one of
the following subroutine calls:

RDLIN$ Cunit, input_line, max_linelength, code)

PRWF$$ (key, unit, addr(buffer), size, pre_posn,
halfwords_read, code)

The RDLIN$ call is used to read variable-sized records from a file open
on unit into a buffer, pointed to by input_line. Reading ends when a
new-line character is encountered. If the number of characters read is
less than max_linelength, the remaining buffer characters are
blank-filled. The RDLIN$ calling sequence is illustrated in Chapter 5,
TEXT STORAGE AND RETRIEVAL; the subroutine’s operation is further
explained in Chapter 5, TEXT STORAGE AND RETRIEVAL, and in the
Subroutines Reference Guide, Vol. II.

Use the PRWF$$ call to position and read fixed-length data files.
Positioning and reading are only two of many functions that PRWF$$ can
perform; its complete functionality is described in Chapter 5, TEXT
STORAGE AND RETRIEVAL, and in the Subroutines Reference Guide, Vol. II.

In addition to RDLINS and PRWF$$, there are subroutines whose functions
are to read from other than disk devices: RDASC reads ASCII characters
from any device, while RDBIN reads binary data from any device. These
subroutines are described in the Subroutines Reference Guide, Vol. II.

2-335 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

WRITING FILE SYSTEM OBJECIS

WRITING DIRECTORIES

Command Command Function Subroutine

None None SGIR$$
SGD$DL

File and segment directory objects are most often written to

implicitly, as a result of performing some function on a subordinate

object that reflects a need to add or. update control information in its

containing directory. Each time a file open for writing is closed, for

example, the date-time-last-modified information in the containing

directory needs to be changed; this is done as an implicit byproduct

of the close operation. No writing to directories of either type can

be done explicitly by commands or command functions, and only a limited

number of writing operations can be done to directories at subroutine

level, and these only on segment directories. Likewise, there are no

commands by which you can explicitly write records to a file from

command level; you can, however, write variable-length text records
using a command function in a CPL program.

Write access is required on any object to be written to; Use access is

required to all superior directories, and Add access is required to the

containing directory if a previously nonexistent file is being written

into that directory. (If the name of a file or other object ina
directory is being changed, Delete as well as Add access is required on
the containing directory.)

Writing Segment Directories (Subroutine): You can effectively write to

a segment directory from program level by using the subroutine calls:

SGOIR$$ (key, unit, new_size, ignored, code)

SGD$DL (unit, code)

The SGOR$$ call is used to extend or truncate a segment directory open

on unit by specifying the key value K$MSIZ and the new number of
members in the new._size argument. The ignored argument is not used,
and should be zero (0).

The SGD$DL call is used to delete a member of the segment directory

openon unit. If the member deleted is not the last member of the

directory, effectively the size of the directory does not change; it

will change only if the member deleted is the last one.

Both of these subroutines and their calling sequences are described in

Chapter 6, DATA STORAGE AND RETRIEVAL.

Second Edition 2-4

PROGRAMMER INTERFACES TO THE FILE SYSTEM

WRITING FILES

Command Command Function Subroutine

None “WRITEFILE WILIN$
PRWF$$

Writing Files (Command): There is no direct command by which a text
line or data file record can be written from command level. You can,
however, write a text line using the WRITE_FILE command function
described next.

Writing Files (Command Function): You can write text files (but not
data files) from a CPL program by using the command function:

(WRITE_FILE unit text]

The unit argument is the file unit number of a text file previously
opened for writing or for reading and writing. The text to be written,
represented by text, can be either literal text (enclosed in quotes if
it contains spaces or special characters), or the current contents of a
local or global variable previously set by a command function such as
RESPONSE. Refer to the CPL User’s Guide for further information on the
WRITE_FILE command function.

Writing Files (Subroutine): To write a file from a program, use one of
the following subroutine calls:

WILIN$S Cunit, output_line, max_linelength, code)

PRWF$$ (key, unit, addr(buffer), size, rel_posn,
lhalfwords_read, code)

The WILINS call is used to write variable-sized (usually ASCII text)
records to a file open on unit from a buffer, pointed to by
output_line. Writing ends when a new-line character is encountered.
If the number of characters written is less than max_linelength, the
remaining characters in the buffer are blank-filled. The WILIN$
calling sequence is illustrated in Chapter 5, TEXT STORAGE AND
RETRIEVAL; the subroutine’s operation is further explained in Chapter
5, TEXT STORAGE AND RETRIEVAL, and in the Subroutines Reference Guide,
Vol. ITI.

Use the PRWF$$ call to position and write fixed-length data files.
Positioning and writing are only two of many functions that PRWF$$ can
perform; its complete: functionality is described in Chapter 5, TEXT
STORAGE AND RETRIEVAL, and in the Subroutines Reference Guide, Vol. II.

2-35 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

In addition to WILIN$ and PRWF$$, there are subroutines whose functions

are to write to other than disk devices: WRASC writes ASCII characters

to any device, while WRBIN writes binary data to any device. These

subroutines are described in the Subroutines Reference Guide, Vol. IV.

CLOSING FILE SYSTEM OBJECIS

Any file system object that is capable of being opened from command,

command function, or subroutine level is also capable of being closed.

Objects can be closed only by the CLOSE command or a subroutine; there

is no CLOSEFILE command function to match the OPEN_FILE command

function. However, the CLOSE command can be included in a CPL program

either with or without the enclosing brackets ([]); the results are
identical.

CLOSING FILE SYSTEM OBJECTS

Command Command Function Subroutine

CLOSE CLOSE CLO$FU
CLO$FN
SRCHS$
SRSFX$
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is

considered obsolete at PRIMOS Rev. 20.2. Although

TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Closing Objects (Command and Command Function): To close an object

from command or command function level, use one of the following:

CLOSE objectname

[CLOSE objectname]

The objectname argument is any valid form of pathname. The CLOSE

function does not return a code indicating that an object is not open;

it does, however, return a code if the object is not found.

Second Edition 2-36

PROGRAMMER INTERFACES TO THE FILE SYSTEM

Closing Objects (Subroutine): To close a file system object from

program level, use one of the subroutine calls:

CLO$FU (unit, code)

CLO$FN (pathname, code)

SRCH$$ (key, objectname, name_length, unit, type, code)

SRSFX$ (key, pathname, unit, type, n-suffixes, suffix-list,
basename, suffix-—used, code)

CLOS$FU and CLO$FN are simplified interfaces to close file system
objects by file unit number and pathname, respectively. Their calling
sequences and operations are described more fully in Chapter 5, TEXT
STORAGE AND RETRIEVAL.

SRCH$$ and SRSFX$ both require a key value of K$CLOS to close an
object. SRCH$$ accepts only a simple object name, and closes the named
abject in the current directory. SRSFX$ can close an object anywhere
in the file system (assuming appropriate access, of course). ‘These
subroutines are fully described in Volume II of the Subroutines
Reference Guide.

See also the description of the CLOS$A subroutine, part of the
Application Library package, given in Volume IV of the Subroutines
Reference Guide.

DELETING FILE SYSTEM OBJECTS

Any file system object that has been created, by whatever means, can
also be deleted. Not all types of objects, however, can be deleted
from all interface levels: you cannot, for example, delete an
individual segment from a segment directory from command or command
function level.

Delete access is required for the directory containing the object to be
deleted; Use access is required for all superior directory levels.

2-37 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

DELETING FILE SYSTEM OBJECTS

Command Command Function Subroutine

DELETE None SGD$DL
SRCHS$$
SRSFX$
FIL$DL
TSRC$$ *

* The TSRC$$ subroutine is documented in Appendix A of
the Subroutines Reference Guide, Vol. II. It is
considered obsolete at PRIMOS Rev. 20.2. Although
TSRC$$ is still supported, programs should use SRSFX$
beginning with Rev. 20.2.

Deleting Objects (Command): To delete a file, file directory, segment
directory, or access category from command level, use the command:

DELETE objectname [options]

QObjectname is any valid form of pathname in which you have the

appropriate access rights; you can therefore delete an object anywhere

in the file system. The values that you can supply for the options

argument are described in the PRIMOS Commands Reference Guide.

Note that there is no abbreviated form of the DELETE command.

Deleting Objects (Command Function): There is no command function to

delete a file system object. However, the DELETE command can be

included in a CPL program.

Deleting Objects (Subroutine): To delete a file system object from a
program, use one of the following subroutine calls:

SGD$DL (unit, code)

SRCH$$ (key, objectname, nam_length, unit, type, code)

SRSFX$ (key, pathname, unit, type, n-suffixes, suffix-list,
basename, suffix-used, code)

FIL$DL (pathname, code)

Second Edition 2-38

PROGRAMMER INTERFACES TO THE FILE SYSTEM

The SGD$DL call is used only to delete members of a segment directory.
The program must first position to the desired segment number. See How
to Position a Segment Directory in Chapter 6, DATA STORAGE AND
RETRIEVAL. The unit argument gives the file unit number on which the
segment directory was previously opened.

For SRCH$$ and SRSFX$, the value of key is K$DELE to delete an object.
For SRCH$$, objectname is the simple name of an object in the current
directory; if the object is a directory, the deletion will occur only
if the directory is empty.

SRSFX$ can delete objects anywhere in the file system, provided the
program's user has Delete access to the containing directory, and the
abjects are not delete-protected.

These calls are described further in Chapters 5, TEXT STORAGE AND
RETRIEVAL and 6, DATA STORAGE AND RETRIEVAL, and in Volume II of the
Subroutines Reference Guide. See also the description of the DELE$A
subroutine, part of the Application Library package, given in Volume IV
of the Subroutines Reference Guide.

2-39 Second Edition

Search Rules

This chapter describes the search rules facility provided with Rev.
21.0 of PRIMOS. It provides a conceptual overview of the search rules
facility and describes how you can both modify system-supplied lists of
search rules and create your own search lists. The search rules
facility permits you to invoke a runtime search operation to locate an
object, rather than specifying the exact location of the object. It is
an important programming tool to enhance the generality, flexibility,
and performance of many types of operations.

SEARCH RULES AND SEARCH LISTS

The PRIMOS search rules facility is a general-purpose mechanism for
Specifying a search sequence. It enables you to prespecify locations
for PRIMOS to use when conducting a search. Each prespecified location
is known as a search rule. A search rule names a location that may
contain the object of the search. For example, a directory name would
be a search rule when the object of the search is a file.

Search rules are grouped into sequences known as search lists. A
Search list is an area in memory that contains search rules, listed in
Sequential order. You initially write the sequence of search rules
into a text file known as a search rules file. Before these search
rules can be used, they must be copied from the search rules file into

o-1 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

a search list. The process of copying search rules into a search list

is known as setting the search list.

When using a search list, PRIMOS searches the first search rule in the

search list, then the second search rule in the list, and so forth

until PRIMOS either finds the object of the search or encounters the

end of the search list.

One common use of search rules is to locate file system objects without

requiring the user to enter the fully qualified pathname. You can

create different search lists for different kinds of search operations.

For example, you can establish a search list to search multiple disk

partitions for a top-level directory or establish a search list to

search multiple directories for a file.

You can invoke such a search by using a PRIMOS command, a CPL function,

or a subroutine call. ‘The EXPAND_SEARCHRULES command, for example,

takes a filename as input and uses the search rules facility to

determine the absolute pathname of that file. The search rules

facility is invoked automatically by system software, such as the

PRIMOS command processor and the BIND program linker.

PRIMOS maintains a separate group of search lists for each process.

This means that users can customize their search lists to meet

individual requirements. Because a group of search lists is specific

to a process, a program uses the search lists of the user (or phantom)

currently executing the program. To avoid possible mismatches between

programs and search lists, you can include in the program calls to

search rule subroutines that check or set your search lists. You

cannot use, read, or set search lists that belong to other users’

processes. The use of search lists is not affected by the user's

current command level or attach point.

Default Search Lists

PRIMOS provides system default rules for five special-purpose search

lists. These five search lists are included in the search lists of

every user on the system. These search lists and their default rules

are automatically set when a user logs in or otherwise initializes a

process. The five special-purpose search lists are the following:

ATTACH$ searches partitions to locate top-level directories.

COMMAND$ searches directories to locate executable code files.

INCLUDE$ searches directories to locate source code files.

BINARY$ searches directories to locate binary object code files.

ENTRY$ searches EPF library files to locate entrypoints.

Second Edition O-2

SEARCH RULES

In addition to these five special-purpose search lists, you can set
other, general-purpose search lists for the duration of a process.
These search lists are referred to as user-defined search lists.
During a process you can add, delete, or modify the search rules in any
of your search lists. Search rules that you add to a search list (of
any type) are referred to as user-specified search rules.

ADVANTAGES OF SEARCH RULES

The use of search rules provides several benefits:

e Search rules enable users to locate items at runtime without
knowing their exact location. You specify this location
information when you create the search list. When the search
list is used, PRIMOS searches these listed locations for the
object of the search. Once these search lists have been set,
you do not have to specify (or even know) the full pathname in
order to retrieve each item. Naive users can be supplied with
search lists that make knowledge of the file system architecture
unnecessary.

@ PRIMOS searches the rules in a search list in the listed order.
By rearranging the search rules in a list, you can improve
performance in searching for an item. This is particularly
significant when searching multiple disk partitions for a
directory.

@ PRIMOS stops searching when it finds a match. Because a search
operation uses the search rules to find the first occurrence of
an item, you can maintain multiple items with identical
filenames on the system and sequence the search rules to find
the desired instance of that item. For example, if you have
several revisions of the same file in different directories, you
could list your search rules so that they always locate the
directory containing the most recent version of the file. When
you create a new version of the file, you simply add the name of
that version‘s directory to the top of the search list.

@ PRIMOS searches only those items that are specified in the
search list. By changing the contents of a search list, you can
restrict the scope of a search to only those locations where the
desired item is likely to be found. For example, if a program
always accesses a directory located on one of a small group of
disk partitions, you would create a search list to search only
those partitions, thus avoiding a search of all partitions on
the system and preventing access to inappropriate directories.

3-5 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

The use of search rules can greatly simplify program and terminal
operations, can increase the flexibility of programs and thus reduce
maintenance overhead, and can improve the performance of search
operations. However, note that failing to set a search list or
modifying the rules in a search list can result in unexpected changes
to the execution of programs.

SEARCH RULE TYPES

A search list can consist of three types of search rules:
administrator rules, system rules, and user-specified rules.

Administrator and System Search Rules

PRIMOS sets a group of search lists when you log in or otherwise
initialize a process. These search lists are initialized with
administrator search rules and system search rules. In each search
list, administrator rules appear first, followed by system rules.
PRIMOS assigns the same administrator and system rules to every process
on the system.

Administrator search rules permit the System Administrator to regulate
the use of search rules throughout the system. System search rules
provide all users on the system with the same default search
environment for normal PRIMOS operations. The search lists that PRIMOS
sets when you initialize a process can contain just administrator
rules, just system rules, or both administrator and system rules.

When you set a search list to user-specified rules, PRIMOS
automatically prefaces your user-specified search ruies with
administrator and system rules. You can override the placement of
system rules in a search list. You cannot override the placement of
administrator rules in a search list.

Administrator and system search rules are located in search rules files
found in directory <O>SEARCH_RULES* on the command device. This
directory provides search rules for ATTACH$, COMMAND$, ENTRY$, BINARY$,
and INCLUDE$. The System Administrator can modify these search rules
files and can add administrator or system search rules files to this
directory for other search lists. If either an administrator or system
search rules file exists in SEARCH_RULES*, PRIMOS automatically sets a
corresponding search list whenever a process is initialized. Refer to
the System Administrator's Guide, Volume ITI for further details on
administrator and system search rules.

Second Edition 5-4

SEARCH RULES

User-specified Rules

You can specify new search rules to add to existing search lists. You
can also specify search rules for new, user-defined search lists.

When adding rules to an existing search list, you can specify whether
you wish the system rules to preface your user-specified rules (the
default), to be excluded from the search list, or to be placed ina
designated location in the search list. If administrator rules have
been established for a search list, they always precede the
user-specified rules and system rules. User-defined search lists have
no corresponding administrator or system search rules.

SEARCH LIST TYPES

PRIMOS permits you to create your own search lists. It also provides
support for five special-purpose search lists: ATTACH$, COMMANDS,
ENTRY$, BINARY$, and INCLUDES.

User-defined Lists

You can use a user-defined search list to search directories for file
system objects (files, subdirectories, segment directories, and access
categories). You create a search list that consists of the pathnames
of the directories that you wish to search for these file system
objects. Each directory pathname is a separate search rule. The
following are typical search rules for a user-defined search list.

glenn
glenn>project
alan>project
glenn>project>tests
glenn>status

How to create and name a user-defined search list is described later in
thischapter, in the section named Creating and Setting Search Rules.

You can use the EXPANDSEARCHRULES (ESR) command or a subroutine call
to search a user-defined search list. You specify the full name (name
and suffix) of the file system object that is the object of the search,
and the name of the search list. The ESR command returns the object's
absolute pathname. The OPSR$ and OPSRS$ subroutines locate and open
the file.

You can use the SR$SETL subroutine to define the locator pointer values
for rules in user-defined search lists. This advanced operation

3-5 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

permits you to freely define the objects of a search. For further

details, refer to the SR$SETL subroutine in the Subroutines Reference

Guide, Volume II.

You must set user-defined search lists during the process in which they

are used. User-defined search lists are automatically deleted at the

conclusion of the process.

ATTACH$

You use the ATTACH$ search list to search disk partitions for top-level

directories. The ATTACH$ search list should contain the names of these

partitions in the desired search sequence. The following are typical

search rules for an ATTACH$ search list:

<sysdisk>
<workdisk>
<packupdisk>
—added_disks

To use this search list, you specify the name of a top-level directory

as the object of the search. PRIMOS searches each of the partitions in

the sequence you specified. PRIMOS stops searching when it finds the
first top-level directory with the name you requested.

The default for the ATTACH$ search list is a single search rule: the

~added_disks keyword. This keyword causes PRIMOS to search the

complete list of added disks in the following sequence: local disk

partitions in the order added, then remote disk partitions in the order

added. If your system has few added remote disk partitions, it is

recommended that you end your ATTACH$ search list with the -added_disks

keyword. If your system has many added remote disk partitions, it is

recommended that you specify by name all local disk partitions and

needed remote disk partitions in the ATTACH$ search list; do not

include the -added_disks keyword in ATTACH$ for such a system.

The ATTACH command uses the ATTACH$ search list. If an ATTACH request

specifies a pathname that does not include a partition name, the ATTACH

command searches multiple partitions for the top-level directory of the

pathname. If an ATTACH$ search list is set, the ATTACH command uses

the ATTACH$ search list sequence to locate this top-level directory.

The EXPANDSEARCHRULES (ESR) command uses the ATTACH$ search list.
You supply ESR with the name of a top-level directory, and it returns

the absolute pathname of that directory (for example, <sysdisk>mydir).

If you supply an objectname (other than the name of an executable file)

to the ESR command, and do not supply a search list name, ESR assumes

the name refers to a top-level directory and automatically uses the

ATTACH$ list.

Second Edition 3-6

SEARCH RULES

If no ATTACH$ search list is set, PRIMOS defaults to a sequential
Search of all added disks. It first searches all local disk partitions
in the order added, then all remote disk partitions in the order added.

The ATTACH$ search list can be invoked automatically by other search
lists. This use of ATTACH$ is described in the section ATTACH$ Invoked
by Other Search Lists.

COMMANDS

You use the COMMAND$ search list to search directories for command
files. A command file is any executable code file, suchas a runfile
or CPL file. A COMMANDS search list should contain the pathnames of
the directories that you wish to search for executable code files. The
following are typical search rules for a COMMAND$ search list:

cmdncd
glenn
glenn>project
alan>project
glenn>project >tests
glenn>status

The default for COMMAND$ is the directory CMDNCO, which contains the
executable code files for PRIMOS commands. This default permits you to
execute PRIMOS commands without supplying complete pathnames.

Once you have created a COMMAND$ search list, you can execute a command
file by simply typing its name, as if it were a PRIMOS command. For
example, if you include the search rule mydir>subdir in your COMMANDS
search list, you can execute the file mydir>subdir>mycfile.run from any
attach point by simply typing mycfile. You do not have to specify the
RESUME command or the filename suffix. PRIMOS searches each listed
directory in sequence. PRIMOS stops searching when it finds the first
file with the name you requested and (in order of preference) the
suffix .RUN, .SAVE, .CPL, or a static-mode runfile with no suffix.

You can also use the EXPANDSEARCHRULES (ESR) command to search the
COMMAND$ search list. If you instruct ESR to use the COMMANDS search
list, you do not have to specify the .RUN, .SAVE, or .CPL filename
suffix. If you instruct ESR to find a filename with a .RUN, .SAVE, or
.CPL suffix, you do not have to specify use of the COMMAND$ search
list. ESR returns the absolute pathname of the command file, including
its suffix.

3-7 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME IT: FILE SYSTEM

INCLUDES$

Some language compilers use the INCLUDE$ search list to search
directories for source code files that are to be included during
program compilation. An INCLUDE$ search list should contain the
pathnames of the directories that you wish to search for source code
files. The following are typical search rules for the INCLUDE$ search
list:

glenn
glenn>tools
glenn>project >tests
alan>subsystem>tests

The compiler uses this search list when you specify the name of an
include file during program compilation. You do not have to specify
the filename suffix.

The following compilers support INCLUDE$: F77, C, Pascal, CBL, VRPG,
and PL/I. If no INCLUDE$ search list is set, or a compiler does not
Support INCLUDE$, the compiler assumes the include file is a source
code file in the current directory. Refer to the individual language
manuals for further details.

BINARY$

The BIND linker uses the BINARY$ search list to search directories for
binary (.BIN) files. A BINARY$ search list should contain’ the
pathnames of the directories that you wish to search for binary files.

The following are typical search rules for a BINARY$ search list:

glenn
glenn>compiles
glenn>project >compiles
alan>subsystem>compiles

When running BIND, you specify the filename of the BIND load file, and
PRIMOS searches the directories listed in BINARY$ for that file. You
do not have to specify the .BIN filename suffix.

If no BINARY$ search list is set, BIND assumes the load file is a
binary file in the current directory.

Second Edition 3-8

SEARCH RULES

ENTRY$

You use the ENTRY$ search list to search executable program format
(EPF) or static-mode libraries for entrypoints. Each of these
libraries can contain one or more entrypoints. The ENTRY$ search list
should contain the pathnames of the library files that you wish to
search for entrypoints. The following are typical search rules for an
ENTRY$ search list.

—primos_direct_entries
LIBRARTES* >SYSTEM_LIBRARY . RUN
LIBRARIES* >TTYCK$. RUN
LIBRARTES* >FORTRAN_IO_LIBRARY.RUN
LIBRARTES* >PASCALLIBRARY.RUN
GLENN>PRIV_LIB.RUN

The ENTRY$ search list is used automatically when you execute a program
that contains a dynamic link to an entrypoint. This dynamic link is
established using BIND. During the BIND operation, you use the —dynt
option to specify the name of the entrypoint. Then, during program
execution, PRIMOS searches the libraries listed in ENTRY$ for the named
entrypoint. For further details on this use of ENTRY$, refer to the
Programmer's Guide to BIND and EPFs.

CREATING AND SETTING SEARCH RULES

Establishing user-specified search rules is a two-step process. First,
you create a search rules file. A search rules file is a standard text
file in which you write one or more search rules. After you create a
search rules file, you use that file to set a search list. This set
operation copies the rules in the search rules file into an area in
memory established for the search list. All search operations are
performed against the search list, not against the search rules file.

Creating a Search Rules File

You create a search rules file as a standard text file using EMACS or
EDITOR. The naming conventions for search rules files are as follows:

e Use the name format: xxx.listname.SR. In this format, xxx can
be any name, listname is the name of the search list, and .SR is
a suffix indicating a search rules file.

@ Do not use dollar signs ($) in the listname of user-defined
search rules files. Dollar signs are reserved for the listnames
of special—pttrpose search rules files.

3-9 Second Edition

ADVANCED PROGRAMMER ‘S GUIDE, VOLUME II: FILE SYSTEM

For example, you would use a search rules file with the name

mylist.command$.sr _

to set the special-purpose search list OCOMMAND$. You would use a

search rules file with the name

yourlist.lookup.sr

to set the search list LOOKUP.

You can create multiple search rules files that can be used to set the

same search list. Only one file at a time can be used to set a

particular list. (This file can, however, contain keywords that draw
upon the contents of other search rules files.)

To place rules in a search rules file, use EMACS or EDITOR to specify

one search rule per line in the sequence that the items should be

searched. A search rule can be up to 128 characters in length. A

search rule can include the disk partition name, or it can begin with

the top-level directory. If the disk partition name is omitted, the

search rules facility uses the ATTACH$ search list to locate the

appropriate partition. This use of ATTACH$ is described later in the

section ATTACH$ Invoked by Other Search Lists.

You can include comments, blank lines, and leading and trailing blanks

ina search rules file. A comment begins with /* and continues to the

end of the line. Comments and blanks in the search rules file are not

copied into the search list during a set operation.

When creating a search rules file, you should avoid duplicating

administrator rules or system rules in your file. The one exception to

this is if you plan to override the automatic inclusion of system rules

when you set the search list.

Setting Search Lists

A search rules file is used to set a search list. Search lists are set

when:

@ You initialize a process

@® You invoke a set operation

Second Edition 3-10

SEARCH RULES

In both cases, the set operation copies search rules from one or more
search rules files into an area in memory allocated for the search
list. Because the set operation is a copy operation, the subsequent
deletion or modification of the search rules file does not affect the
search list.

When a process is initialized, PRIMOS automatically performs set
operations that copy the search rules from the search rules files in
the directory <O>SEARCH_RULES* into search lists in memory. This
creates a group of default search lists for that process. PRIMOS sets
each search list with search rules copied from the administrator search
rules file and the system search rules file for that list. If one of
these search rules files does not exist, PRIMOS sets the search list
with the contents of whichever of these search rules files does exist.
If a list has neither type of search rules file, no search list is set
during process initialization.

You can set a search list by using the SET_SEARCH_RULES (SSR) command
or the SR$SSR subroutine. You supply the pathname of your search rules
file to these set operations. You can also specify a name for the
search list, or have the set operation derive the search list name from
the name of the search rules file.

If the search list did not previously exist, the set operation creates
that search list. If the search list did exist previously, the set
operation either overwrites the old search rules or appends the new
search rules to the search list. The set operation copies the rules in
your search rules file into the search list. It may also copy
administrator and system rules into the search list, if the appropriate
search rules files are present in <OQ>SEARCH_RULES*.

A set operation does not check your search rules against the contents
of the file system. Therefore, you can set search rules that refer to
partitions, directories, and so on, that do not yet exist in your file
system. When a search operation is performed, PRIMOS uses each rule in
a search list independently. An invalid reference in one search rule
does not affect other search rules or halt the search operation. If a
search rule names a nonexistent object, PRIMOS proceeds to the next
rule in the search list.

The SSR command returns a message if your search list has been set with
duplicate rules. The SSR command sets the search list regardless of
the presence of duplicate rules. A duplicate search rule in a search
list can result in redundant searches but does not otherwise affect the
search operation.

The SSR command has an option that permits you to reset a search list
to system defaults. You can also use the SR$INIT subroutine to reset
search lists to system defaults. Other search rule subroutines are
available to add or delete individual search lists and search rules.
These subroutines act directly upon the search lists in memory and do
not affect the corresponding search rules files.

3-11 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Once you have set a search list, you can use the LIST_SEARCHRULES
(LSR) command to display the search list. You can also use the SR$READ
and SR$NEXTR subroutines to read the rules set in a search list. The
SSR and LSR commands are further described in the PRIMOS Commands
Reference Guide. Search rule subroutines are further described in the
Subroutines Reference Guide, Volume II.

SEARCH RULE KEYWORDS

A search rules file can contain keywords that perform specific
Operations. Keywords that begin with a hyphen are directions to the
search rules facility. These directions are carried out either when
you set the search list or when you perform a search operation on that
search list. Keywords enclosed in square brackets are variables for
which the appropriate literal is supplied when the search list is used.
The following are the available search rule keywords:

—insert
—system
-optional
~added_disks
-static_mode_libraries
~primos_direct_entries
[origindir]
[home_dir]
[referencingdir]

You should place each keyword on its own line in a search rules file.
Keywords and search rules canbe intermixed in any sequence within a
search rules file. Keywords can be written in either uppercase or
lowercase .

~insert

The -insert keyword specifies the pathname of another search rules
file. When you set the search list, PRIMOS inserts: the contents of
that search rules file at the point indicated by the -insert keyword.
By using this keyword, you can set a large search list using several
small search rules files. Search rules files can be nested. The
SET_SEARCH_RULES command rejects circular references, such as a search
rules file that includes itself.

Figure 35-1 is an example of the -insert keyword. In this example,
nested -insert keywords cause the contents of three search rules files
to be included in the MYLIST search list.

Second Edition 3-12

SEARCH RULES

SEARCH RULES FILES

gienn > main.mylist.sr

glenn
|

(- —2 glenn>current.worklist.sr

glenn > proj1 > routines

oe £- gy glenn>history.sr

glenn > oldproj > tools

SET__SEARCH__RULESglenn > main.mylist

MYLIST

glenn
glenn >mysubs
glenn > proj1 > routines
glenn > proji > tools
glenn > oldproj > tools
glenn > proj1 > tests
glenn > tests

RESULTING SEARCH LIST

Setting a Search List from Nested Search Rules Files
Using the -insert Keyword

Figure 3-1

—system

The -system keyword allows you to change the placement of system rules
in a search list. By default, PRIMOS automatically places the system
rules at the beginning of the search list. To place the system rules
elsewhere in the search list, you specify the -system keyword at the
desired location. When you set the search list, the complete sequence
of system rules is placed in your search list at the location indicated
by the -system keyword.

o-13 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

If you set the search list using the SET_SEARCH_RULES command, it is
necessary to suppress the automatic inclusion of the system rules at
the top of the list. To suppress automatic inclusion of system rules,
use the SET_SEARCH_RULES command -no_system option. If you set the
search list using the SR$SSR. subroutine, just specify the -system
keyword at the desired location. You do not have to suppress inclusion
of system rules at the beginning of the search list.

The example in Figure 3-2 inserts the system rules at the location
indicated by the -system keyword. The SET_SEARCH_RULES -no_system
option suppresses inclusion of the system rules at the beginning of the
list.

glenn > main.command$.sr

glenn

glenn > mysubssystemOE—

~

<0>search_rule* >command$.sr

glenn > tests cmdncO

USER SEARCHRULESFILE sys> submaster

SYSTEM SEARCH RULESFILE

SET__SEARCH__RULESglenn >main.command$ -no__system

COMMANDS

glenn
glenn > mysub
emdnc0d
sys > submaster
glenn > tests

RESULTING SEARCHLIST

Setting a Search List With User and System Default
Search Rules Using the -system Keyword

Figure 3-2

Second Edition 5-14

SEARCH RULES

If you do not suppress the prefacing of system rules (by using the
SET_SEARCH_RULES -no_system option) PRIMOS ignores the -system keyword,
and places the system rules at the beginning of the file.

Do not use the -system keyword in a search rules file for the ATTACH$
search list. Instead, use the -added_disks keyword to perform the
equivalent operation.

—optional

The -optional keyword specifies a rule that must be enabled before it
can be used by PRIMOS. In your search rules file, you write the
—optional keyword and the rule that must be enabled on the same line,
as shown in the following search rules file:

glenn>tools
—optional glenn>tests
glenn>routines

When you set a search list, all optional search rules are disabled.
PRIMOS skips over those rules when searching the list. The
LIST_SEARCH_RULES command and most subroutines do not display the
disabled search rules in the search list. For example, if you set a
search list using the search rules file above, and then issue a
LIST_SEARCH_RULES command for that search list, the following search
rules are displayed:

glenn>tools
glenn>routines

You can enable optional search rules in a search list by using the
SR$ENABL subroutine. When enabled, an optional search rule appears in
the search list as an ordinary rule. For example, if you enable the
glenn>tests optional search rule and then issue a LIST_SEARCHRULES
comand, the following search rules are now displayed:

glenn>tools
glenn>tests
glenn>routines

Optional search rules can be set in any search list, including system
and administrator search lists. You can specify any search rule or
search rule keyword as an optional search rule, except for the keywords
—system and -insert.

3-15 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Optional rules in a search list can be repeatedly enabled and disabled.
One application of optional search rules is to establish search rules
that are used only by a particular program. You enable the optional
rules at the beginning of program execution and disable the optional
rules at the end of program execution. For further details, refer to
SR$ENABL in the Subroutines Reference Guide, Volume IT.

~added_disks

The -added_disks keyword causes PRIMOS to search all of the added disk
partitions. The -added_disks keyword is only used in the ATTACHS
search list. When you set an ATTACH$ search list, the set operation
copies the -added_disks keyword from the search rules file into the
search list. When PRIMOS uses the ATTACH$ search list and encounters
the -added_disks keyword, it searches all disk partitions added to the
System. PRIMOS searches the added disks in the following sequence:
all local disks in the order added, followed by all remote disks in the
order added.

Because the -added_disks keyword causes PRIMOS to search all added
disks, it is normally specified as the last search rule in an ATTACH$
search list. The -added_disks keyword searches all disk partitions,
including those that have already been searched using previous ATTACHS$
search rules.

The -—added_disks keyword is: the system default. To specify any other
sequence of disks in an ATTACH$ search list, you must suppress this
default. One method is to place the -added_disks keyword at the end of
your search rules file, then set the ATTACH$ search list using the
SET_SEARCHRULES command with the -no_system option. For systems with
many added remote disks, it is recommended that you do not include the
-added_disks keyword in your ATTACH$ search list.

-static_mode_libraries

The -static_mode_libraries keyword causes PRIMOS to search the
static-mode libraries. The -static_mode_libraries keyword is only used
in the ENTRY$ search list. When you set an ENTRY$ search list, the set
operation copies the -static_mode_libraries keyword from the search
rules file into the search list. When PRIMOS uses the ENTRY$ search
list and encounters the -static_mode_libraries keyword, it searches the
Sstatic-mode libraries for the desired entrypoint. Refer to the
Programmer's Guide to BIND and EPfs for further details on the use of
ENTRY$.

second Edition 5-16

SEARCH RULES

—primos_direct_entries

The -primos_direct_entries keyword causes PRIMOS to search the PRIMOS
system calls. The -primos_direct_entries keyword is only used in the
ENTRY$ search list. Normally, this keyword is set as an administrator
rule in the ENTRY$ search list. When PRIMOS uses the ENTRY$ search
list and encounters the -primos_direct_entries keyword, it searches the
PRIMOS system calls for the desired entrypoint. Refer to the
Programmer's Guide to BIND and EPFs for further details on the use of
ENTRY$.

lorigindir]

The [origindir] keyword causes PRIMOS to search the user’s origin
directory (that is, the user's initial attach point). This keyword is
executed when the search list is used. When you set a search list, the
set operation copies the [origindir] keyword from the search rules
file into the search list. When PRIMOS uses the search list and
encounters the [origindir] keyword, it searches the user’s origin
directory. The [origindir] keyword can be used in all search rules
files (including search rules files for administrator and system rules)
with the exception of ATTACHS.

The [origindir] keyword can be used as a complete search rule or as a
component of a pathname in a search rule, as shown in the following
sample search rules file:

[origindir]
glenn>tools
[origindir] >tools
glenn>subr

[home_dir]

The [home_dir] keyword causes PRIMOS to search the user’s home
directory (that is, the user's current attach point). This keyword is
executed when the search list is used. When you set a search list, the
set operation copies the [home_dir] keyword from the search rules file
into the search list. When PRIMOS uses the search list and encounters
the [home_dir] keyword, it searches the user's current attach point at
the time of the search operation. The [home_dir] keyword can be used
in all search rules files (including search rules files for
administrator and system rules) with the exception of ATTACH$. Using
[home_dir] in the ENTRY$ search list can produce unexpected results,
and is therefore not recommended.

3-17 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

The [home_dir] keyword can be used as a complete search rule or as a
component of a pathname in a search rule, as shown in the following
Sample search rules file:

[home_dir]
glenn>tools
[home_dir] >tools
glenn>subr

[referencingdir]

The [referencingdir] keyword causes PRIMOS to search a pathname
Supplied by the user. When you set a search list, the set operation
copies the [referencingdir] keyword from the search rules file into
the search list. When the search list is used, the operation that uses
the search list should also supply a pathname to substitute for the
[referencingdir] keyword. If an operation that uses the search list
does not supply a pathname, PRIMOS ignores the [referencingdir]
keyword and proceeds to the next rule in the search list. The
[referencingdir] keyword can be used in all search rules files
(including search rules files for administrator and system rules) with
the exception of ATTACH$.

The EXPANDSEARCHRULES (ESR) command and the OPSR$ and OPSRS$
subroutines have optional arguments that supply a pathname to the
[referencingdir] keyword. PRIMOS substitutes this pathname for every
instance of [referencingdir] in the search list and then performs the
search operation. The [referencingdir] keywords revert to null values
at the completion of the search operation.

Compilers that use the INCLUDE$ search list automatically supply values
to the [referencingdir] keyword. For further details concerning the
use of [referencingdir] in INCLUDE$ search lists, refer to the
individual language manuals.

The [referencingdir] keyword can be used as a complete search rule or
aS a component of a pathname in a search rule, as shown in the
following sample search rules file:

[referencingdir]
glenn>tools
[referencingdir] >tools
glenn>subr

Second Edition o-18

ee

SEARCH RULES

ACCESSING SEARCH LISTS

You can use search lists to conduct searches from the PRIMOS command
environment, from CPL programs, or through subroutine calls from user
programs. The five system-defined search lists are also accessible by
Specific system software. The ATTACH$ search list can be accessed by
other search lists.

PRIMOS Command Environment

The EXPAND_SEARCH_RULES (ESR) command uses a search list to locate the
requested item and returns the absolute pathname of the object to the
user's terminal. When you issue an ESR command, you specify which
search list should be used for the search. If you do not specify which
search list to use, ESR selects a search list, based on the suffix of
the sought item. If the object of the search is not located, ESR
returns the value $ERROR$. The ESR command is further described in the
PRIMOS Commands Reference Guide.

CPL Programs

EXPANDSEARCHRULES (ESR) can be issued as a CPL function from within a
CPL program. The ESR CPL function has the same syntax and options as
the ESR PRIMOS command. When issued as a CPL function, ESR returns the
absolute pathname to a variable within the CPL program.

Program Subroutines

The search rules facility supports 18 search rule subroutines. Most of
these subroutines perform operations on the search lists themselves.
However, two subroutines (OPSR$ and OPSRS$) use the search rules to
locate and open a file. These two subroutines can also check for the
existence of a file system object and, under certain circumstances,
create a new file system object if the specified object does not exist.

The available search rule subroutines are as follows:

Routine Function

OPSR$ Locates a file using a search list and opens the
file. Creates the file if the file sought does
not exist.

OPSRS$ Locates a file using a search list anda list of
suffixes. Opens the located file or creates the
file if it does not exist.

3-19 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Routine

SR$ABSDS

SRS$ADDB

SR$ADDE

SRS$CREAT

SR$DEL

SRS$DSABL

SRSENABL

SRSEXSTR

SR$FR_LS

SRSINIT

SR$LIST

SRSNEXTR

SR$READ

SR$REM

SR$SETL

SRS$SSR

These subroutines are further described in the Subroutines Reference
Guide, Volume II.

Second Edition

Function

Disables an optional search rule. Used to
disable rules that have been enabled using
SR$ENABL. This subroutine absolutely disables an
enabled rule, regardless of how many times the
rule has been enabled. Compare with SR$DSABL.

Adds a rule to a search list before a specified
rule.

Adds a rule to the end of a search list, or after

a specified rule.

Creates a search list.

Deletes a search list.

Disables an optional search rule that was enabled
by SRSENABL. Disables a single SRS$ENABL
operation. Compare with SR$ABSDS.

Enables an optional search rule. Enabled rules
can be disabled using SR$DSABL or SR$ABSDS.

Determines if a search rule exists.

Frees list structure space allocated by SR$LIST
or SRS$READ.

Initializes all search lists to system defaults.

Returns the names of all defined search lists.

Reads the next rule from a search list.

Reads all of the rules in a search list.

Removes a search rule from a search list.

Sets the locator pointer for a search rule.

Sets a search list using a user-defined search
rules file.

3-20

SEARCH RULES

ATTACH$ Invoked by Other Search Lists

For all search lists except ATTACH$, each search rule must contain a
top-level directory name. These search rules can include or omit the
disk partition name. If the partition name is omitted, PRIMOS
automatically uses the ATTACH$ search list to supply the partition name
to the search rule.

This search operation is performed as follows: During a search
operation PRIMOS checks a rule in a search list and determines whether
or not the rule contains a partition name. If it does not, PRIMOS goes
to the ATTACH$ search list and searches the first partition named in
that list. If the top-level directory is not found on that partition,
PRIMOS proceeds to the second disklisted in ATTACH$, and so forth.
When PRIMOS finds a disk that contains the top-level directory, it
returns to the initial search list.

This search procedure increases the power and flexibility of the search
rules facility. It does, however, have two consequences that users
should be aware of:

@ Duplicate top-level directory names can produce unexpected
results, as shown in the following example: You are searching
for glenn>mywork. Top-level directories named glenn are found
on diskl and disk2. These disks are listed in that order in
ATTACH$. The directory glenn that contains mywork is on disk2.
In this case, the search operation uses ATTACH$ to locate
<diskl>glenn, then proceeds to search that directory for
mywork. It doesn’t find mywork in that directory and reports
that mywork does not exist. Because the ATTACH$ search
completed successfully by finding <diskl>glenn, PRIMOS did not
search <disk2>glenn.

e Nonexistent top-level directories can cause performance
problems. This is because PRIMOS must search every disk in the
ATTACH$ list for the nonexistent directory each time that the
search list is used. If the ATTACH$ search list contains
several remote disks, this search time can be significant.

If a search rule does not contain a partition name, and no ATTACHS
search list is set, PRIMOS automatically searches all added disks for
the required disk name. All local disks are searched first in the
order added, then remote disks are searched in the order added.

3-21 Second Edition

Attach Points

This chapter describes, in detail, the initial, home, and current
attach points, and then describes subroutines that are used to
manipulate attach points.

THE INITIAL ATTACH POINT

When a new user is added to the system, the System Administrator or the
Project Administrator specifies an initial attach point and usually
creates an origin directory for the new user.

PRIMOS attaches the user’s process to the origin directory during the
login procedure; when the procedure terminates, the user’s initial,
home, and current attach points are all set to the origin directory,
unless the login procedure itself (or an external program that it may
call) has changed the home or current attach point, or both.

During a terminal session, the user may reset his or her home and
current attach points to the origin directory by issuing the ORIGIN
command. Your program may also reset the home and current attach
points by using the AT$OR subroutine. The AT$OR subroutine allows your
program to reset just the current point or both the current andhome
attach points to the origin directory. Figure 4-1 illustrates the
calling sequence for the AT$OR subroutine.

If the key argument is k$seth, both the home and current attach points
‘are reset to the origin directory. If the key argument is k$setc, only
the current attach point is reset to the origin directory.

4-1 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Reset Current (and, Optionally, Home) Attach Point to Origin Directory

Second Edition

K$SETH

K$SETC

HALF

INT

|
ATSOR(key, code)

HALF

INT

Standard
Error
Code

Calling Sequence of AT$OR
Figure 4-1

4-2

ATTACH POINTS

An output argument, code, informs your program of the success or
failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to AT$OR
to attach to the origin directory, code may have one of many values.
Volume O of this series contains acomprehensive list of all standard
file system error codes. Error codes specific to this operation are:

Keyword Value Meaning

E$NATT 7 No top-level directory attached. This
error usually occurs only when the disk on
which the origin directory resides has been
removed from the system, as when a disk is
shut down. Once a disk has been shut down,
all origin directories residing on that
disk and belonging to all currently
logged-in users are lost. These users can
reestablish their origin directories only
by logging in after the disk is started up
again.

ESSHDN 121 The disk has been shut down. The disk on
which the origin directory resides has been
shut down by the system operator. The disk
is no longer available for use, until the
system operator uses the ADDISK command to
add the disk again. After this is done,
the user must log in again to reestablish
his or her origin directory.

THE HOME ATTACH POINT

The home attach point essentially identifies the user’s working
directory. Initially, following user login, the home attach point is
the same as the initial attach point. The user can change this by
issuing the ATTACH command.

Many system operations automatically reset the current attach point to
the home attach point, as described below. To reset the current attach
point to the home attach point from within your program, use the AT$HOM
subroutine. Figure 4-2 illustrates the calling sequence for the AT$HOM
subroutine.

An output argument, code, informs your program of the success or
failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to
AT$HOM to attach to the homedirectory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes.

4-3 Secomd Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Reset Current Attach Point to Home Directory

ATS$HOM (code)

HALF

INT

Standard
Error

Code

Calling Sequence of ATSHOM
Figure 4-2

Second Edition 4-4

ATTACH POINTS

Error codes specific to the AT$HOM subroutine are:

Keyword Value . Meaning

ES$NATT 7 No top-level directory attached. This

ESSHDN

error usually occurs only when the disk on
which the home directory resides has been
removed from the system, as when a disk is
shut down. Once a disk has been shut down,
all home directories residing on that disk
for all currently logged-in users are lost.
These home directories can be reestablished
by the users only by issuing an ATTACH
command after the disk is started up again.

121 The disk has been shut down. The disk on

which the home directory resides has been
shut down (using the SHUTDN command as
described in the System Operator's Guide,
Volume II). The disk is no_ longer
available for use, until the system
Operator uses the ADDISK command to add the
disk again. After this is done, the user
must issue the ATTACH command again to
reestablish his or her home directory.

THE CURRENT ATTACH POINT

The current attach point is essentially the program’s working
directory. Initially, the current attach point is the samas the
initial and home attach points. A program can change the current
attach point by calling one of many file system subroutines:

Subroutine Use

AT$ Attaches the current (optionally home) attach
point to the directory specified by pathname.
Similar to the ATTACH pathname command.

AT$ABS Attaches the current (optionally home) attach
point to the specified top-level directory on the
specified disk partition. Similar to the ATTACH
<partition>dirname command.

ATSANY Attaches the current (optionally home) attach
point to the specified top-level directory on the
first disk partition found to have the specified
top-level directory. All local partitions are
searched first; then, remote partitions are
searched. Similar to the ATTACH dirname command.

4-5 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Subroutine Use

ATS$HOM Attaches the current attach point to the home
directory, as described earlier in this chapter.
Similar to the ATTACH command.

ATS$OR Attaches the current (optionally home) attach
point to the origin directory, as described
earlier in this chapter. Similar to the ORIGIN
command .

AT$REL Attaches the current (optionally home) attach
point to the specified lower-level directory of
the current current directory. Used to attach
downward in a directory tree. Similar to the
ATTACH *>dirname command.

All of the above subroutines replace an obsolete subroutine named
ATCH$$ that performed all of the attach functions in one (rather
complicated) interface. The subroutines listed above are described
later in this chapter; the ATCH$$ subroutine is described in detail in
Appendix A of of the Subroutines Reference Guide, Vol. IT.

Operations That Reset the Current Attach Point

Because the current attach point is used in so many file system
operations, it is often reset even when errors occur. For example, if
a call to AT$ is made to set the current attach point to
FRODO>FINGER>FOOD, and the FINGER lower-level directory does not exist
in the FRODO directory, an error code of e$fntf (Not found) is
returned, and the current attach point is reset to the home directory,
independent of what it was before the call was made.

Similarly, a mistyped command resets the current attach point to the
home directory. In fact, the only way to avoid resetting the current
attach point while at PRIMOS command level is to use only internal
commands, such as OPEN, STATUS, DUMP_STACK, and so on. (The PRIMOS
Command Reference Guide lists internal commands.)

Commands such as LD, DELETE, COPY, EMACS, and USAGE reset the current
attach point. In most cases, resetting the current attach point is
usually not a problem. Resetting the current attach point is a problem
if a program activation has been suspended (such as via CONTROL-P) just
when the current attach point is different from the home attach point.
In this case, restarting the suspended program may produce irrational
behavior. Programs that make heavy use of the current attach point can
expect to encounter problems resulting from program interruptions;
even programs that do not explicitly use the current attach point can
possibly encounter problems when calling subroutines that handle
pathnames (such as SRSFX$), because these subroutines use the current
attach point and may also be interrupted.

Second Edition 4-6

ATTACH POINTS

In addition, anytime a pathname is processed by the file system, the
current attach point is reset to the home directory. For example, if
the DIR$CR subroutine, described in Chapter 6, DATA STORAGE AND
RETRIEVAL, is called with the pathname FRODO>THUMB, the current attach
point is implicitly reset to the home directory.

File system subroutines that accept filenames but not pathnames assume
that the specified file is in the current directory. Similar
subroutines perform their operations in the current directory, although
they do not actually accept filenames as arguments. In both cases,
these subroutines are frequently referred to as file system primitives.
The use of these primitives rarely changes the current attach point.
Among the PRIMOS file system primitives are the following subroutines:

ACSRVI CNAM$$ COMI$$ COMOS$ FILS$DL GPAS$$
GPATH$ PHANT$ PHNIM$ REST$$ RESUS$ SATRS$$
SAVES$ SPAS$$ SRCHS$$

Note

CREA$$ and CREPW$, which accept only filenames, are considered
obsolete at PRIMOS Rev. 20.2. Although CREA$$ and CREPW$ are
still supported, programs should use DIR$CR, which accepts
pathnames, beginning with Rev. 20.2.

All other subroutines that operate either explicitly or implicitly on a
pathname (any file system name containing at least one < or >
Character) reset or change the current attach point.

FUNCTIONS USED TO MANIPULATE ATTACH POINTS

In addition to the subroutines described earlier in this chapter, six
subroutines are provided to allow a running program to manipulate the
user's attach points. These are:

e The AT$ subroutine, which attaches to a pathname

e@ The AT$ABS subroutine, which attaches to a top-level directory
on a specified disk partition

e@ The ATS$ANY subroutine, which attaches to a top-level directory
on any started-up disk partition

e The AT$REL subroutine, which attaches down to a subordinate

directory

@ The GPATH$ subroutine, which returns the complete pathname of
the initial, home, or current directories

4-7 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

@ The SRCH$$ subroutine, which opens the current directory for
reading

The AT$ Subroutine

To attach to a specific directory by pathname, use the AT$ subroutine.
The AT$ subroutine parses a pathname, and calls the ATABS, ATSANY,
AT$HOM, and AT$REL subroutines (described below) to perform the actual
attaching.

The AT$ subroutine may be used to change only the current directory or
both the home and current directories. It may return any of the error
codes that the other four subroutines can return, with one additional
error code -- e$itre (Illegal treename). This error code indicates an
invalid pathname.

The subroutines called by AT$ depend on the form of the pathname. The
several forms and their corresponding implementations are:

Form Causes

<disk>... A call to AT$ABS by AT$ to attach to the specified
disk partition followed by calls to ATS$REL to
attach to directories following the <disk> portion
of the pathname

air A call to AT$ANY by AT$ to attach to the first
dir>... directory specified in the pathname followed by

subsequent calls to AT$REL to attach downward

>, A call to AT$HOM by AT$ to attach to the hore
directory followed by calls to AT$REL to attach
downward

(null) A call to AT$HOM by AT$ to attach to the home
directory

Note

PRIMOS treats a single (simple) object name in one of two ways,
depending upon whether or not the object name is a directory to
which the user is to be attached.

When attaching to a directory, a simple object name identifies
a top-level directory that is to be searched for. In other
cases, a Simple object name identifies a file in the current
directory.

Second Edition 4-8

ATTACH POINTS

This distinction is seen when comparing the following two
PRIMOS commands:

ATTACH FRODO
SLIST FRODO

The ATTACH command searches for a top-level directory named
FRODO. The SLIST command searches for a file named FRODO in
the home (current) directory. (When the SLIST command is
issued, the current attach point is reset to the home directory
by the operation of searching the command directory, CMDNCO,
for the SLIST program.) .

Figure 4-3 illustrates the calling sequence of AT$.

The AT$ABS Subroutine

To attach to a top-level directory on a specific disk partition, use
the AT$ABS subroutine. This subroutine allows you to specify the disk
partition by using:

@ The name of the partition

@ The partition on which the current directory resides

e The partition corresponding to logical disk 0

@ The partition corresponding to a particular logical disk number

When your program calls AT$ABS, it provides:

e@ A key that specifies whether the home attach point is to be set

@ The identity of the top-level directory's partition, in any of
the forms listed above

e The name of the top-level directory itself

The AT$ABS subroutine attempts to set the current attach point to the
specified top-level directory on the specified partition, and returns a
code indicating whether the operation was successful. If the operation
fails, no changes are made to the attach points. If the operation
Succeeds, the home attach point is also set to the current attach point
if specified by the key.

Figure 4-4 illustrates the calling sequence of the AT$ABS subroutine.

4-9 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Attach to Directory by Pathname

Pathnameof
| KSSETH Target Directory
K$SETC (Null String Means

HomeDirectory)

HALF < =128

INT STRING

| |
AT$ (key, name, code)

HALF

INT

Standard
Error
Code

Calling Sequence of AT$
Figure 4-35

Second Edition 4-10

ATTACH POINTS

Attach to Top-level Directory of Specified Partition

Nameor Logical Disk
Numberof Partition

(SuchoSohne, or Top-levelDirectory
), Null String NameWith Optional

(Logical Disk 0), or Password (Separated by
~ (Disk of Current One Space), or Null String

Attach Point) (Implying MFD)

KS$SETH
KS$SETC v

HALF < =382 < =39

INT STRING STRING

ATSABS (key, partition, directory, code)

HALF

INT

Standard
Error

Code

Calling Sequence of AT$ABS
Figure 4-4

4-11 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

The Key: Your program sets the key argument to one of the following:

Keyword Value — Meaning

K$SETC 0 Set only the current attach point.

K$SETH 1 Set both the current and home attach

points.

The Partition: Your program passes the partition on which the

top-level directory resides as a character string. A null partition

name specifies logical disk 0 (the command device). A partition name

of * specifies the partition on which the current current directory

resides. A character string that is an unsigned octal number specifies

the logical disk number. Otherwise, the partition name identifies the

desired partition.

The Top-level Directory: Your program passes the name of the top-level

directory to attach to as a character string. To specify a password,

append it to the directory name with a single space separating the

directory name and the password.

If your program passes a null directory name, AT$ABS attaches to the

MFD of the desired partition.

The Error Code: An output argument, code, informs your program of the

success or failure of the operation. If code is 0, the operation was

entirely successful. Otherwise, code is always positive. After a call

to AT$ABS to attach to a top-level directory, code may have one of many

values. Volume O of this series contains a comprehensive list of all

standard file system error codes. Error codes specific to this

operation are:

Keyword Value Meaning

ESBPAR 6 Bad parameter. The length of the directory
name as passed by the calling programis a
negative number or is greater than 39
(including an optional directory password).

E$NATT 7 No top-level directory attached. This
error can occur only when the partition
name is * and the partition on which the
current directory resides is removed from
the system, as when a disk is shut down.
Use one of the subroutines described in
this chapter to reestablish a current
attach point.

Second Edition 4-12

ATTACH POINTS

Keyword Value Meaning

ESFNIF 15 Not found. The specified partition does
not exist, or the specified directory does
not exist on that partition.

ESBNAM 17 Tllegal name. The partition name must be
between 0 and 32 characters in length. The
directory name must also be between 0 and
32 characters in length (inclusive),
optionally followed by a single space and a
password from 1 to 6 characters long
(inclusive).

Example: The following PL/I statement sets the home and current attach
points to the directory named ORANGE on the partition named RHYMES:

call at$abs(k$seth, ‘RHYMES’ , ‘ORANGE’ , code);

The AT$ANY Subroutine

To attach to a top-level directory on any disk partition, use the
AT$ANY subroutine. AT$ANY scans all started-up disks for the specified
top-level directory. It scans local partitions first, in logical disk
order, and then scans remote partitions in logical disk order. Use the
STATUS DISKS command to determine the logical disk order for your
system.

When calling AT$ANY, your program provides:

e@ A key that specifies whether the home attach point is to be set

e The name of the top-level directory

The AT$ANY subroutine attempts to set the current attach point to the
specified top-level directory on the first partition it finds that has
such a directory. It returns a code indicating whether the operation
was successful. If the operation fails, no changes are made to the
attach points. If the operation succeeds, the home attach point is
also set to the current attach point if specified by the key.

Figure 4-5 illustrates the calling sequence of the ATSANY subroutine.

4-13 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Attach to Top-level Directory of Any Partition

| K$SETH Top-level Directory
| Name With Optional

K$SETC Password (Separated
by One Space)

HALF < =39

INT STRING

|
ATSANY(key, name, code)

!
HALF

INT

Standard
Error
Code

Calling Sequence of AT$ANY
Figure 4-5

Second Edition 4-14

ATTACH POINTS

The Key: Your program sets the key argument to one of the following

Keyword Value Meaning

K$SETC 0 Set only the current attach point.

K$SETH 1 Set both the current and home attach
points.

The Top-level Directory: Your program passes the name of the top-level
directory to attach to as a character string. To specify a password,
append it to the directory name with a single space separating the
directory name and the password.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to AT$ANY to attach to a top-level directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this
Operation are:

Keyword Value Meaning

E$BPAR 6 Bad parameter. The length of the directory
name as passed by the calling program is a
negative number or is greater than 39
(including an optional directory password).

ES$BNAM 17 Illegal name. The syntax of the directory
nam aS supplied by the calling program is
not correct. The directory name must be
between 0 and 352 characters in length,
optionally followed by a single space and a
password. See the Prime User's Guide for a
description of the legal syntax for
objectnames.

ESNFAS 189 Top-level directory not found or
inaccessible. The specified directory
could not be found, or resides on a disk
partition that cannot be accessed by the
user.

4-15 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Example: The following PL/I statement sets the home and current attach

points to the directory named ORANGE on the first partition found to
contain a directory named ORANGE:

call at$any(k$seth, ‘ORANGE’ , code);

The AT$REL Subroutine

Use the AT$REL subroutine to attach down to a directory that is

subordinate to the current directory. The subroutine searches through

the current directory for the specified lower-level directory, and

attaches to it as the new current (and optionally home) directory.

When calling AT$REL, your program provides:

e A key that specifies whether the home attach point is to be set

@ The lower-level directory to be attached to

The AT$REL subroutine attempts to set the current attach point to the
specified lower-level directory of the current directory, and returns a

code indicating success or failure. If the operation fails, the attach

points are not changed. If the operation succeeds, the home attach

point is also set to the current attach point if specified by the key.

Figure 4-6 illustrates the calling sequence of the ATSREL subroutine.

The Key: Your program sets the key argument to one of the following

Keyword Value Meaning
K$SETC 0 Set only the current attach point.

K$SETH 1 Set both the current and hom attach
points.

The Lower-level Directory: Your program passes the name of the

lower-level directory to attach to as a character string. To specify a

password, append it to the lower-level directory name with a single

space separating the lower-level directory name and the password.

The Error Code: An output argument, code, informs your program of the

success or failure of the operation. If code is 0, the operation was

entirely successful. Otherwise, code is always positive. After a call

to AT$REL to attach to a lower-level directory, code may have one of

. Imany values. Volume O of this series contains a comprehensive list of

Second Edition 4-16

ATTACH POINTS

Attach to Subdirectory of Current Directory

Lower-level Directory Name
{ussers| With Optional Password

(Separated by One Space)

HALF < =39

INT STRING

, 4
ATSREL (key, name, code)

HALF
INT

Standard
Error
Code

Calling Sequence of AT$REL
Figure 4-6

4-17 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

all standard file system error codes. Error codes specific to this
operation are:

Keyword Value — Meaning

E$BPAR 6 Bad parameter. The length of the
lower-level directory name as passed by the
calling program is a negative number or is
greater than 39 (including an optional
lower-level directory password).

ES$NATT 7 No top-level directory attached. This
error can occur only when the partition on
which the current directory resides is
removed from the system, as when a disk is
shut down. Use one of the AT$xxx
subroutines to reestablish a current attach

point.

E$BNAM 17 Illegal name. The syntax of the
lower-level directory name as supplied by
the calling program is not correct. The
lower-level directory name must be between
O and 22 characters in length, optionally
followed by a single space and a password.
See the Prime User's Guide for a
description of the legal syntax for
objectnames.

le: The following PL/I statement sets the home and current attach
points to the lower-level directory named JUICE of the current
directory:

call at$rel(k$seth, ‘JUICE’ ,code);

The GPATH$ Subroutine

It is sometimes useful for your program to be able to determine the
full pathname of the initial, home, or current directories. The GPATHS
subroutine provides this function. This subroutine is also capable of

determining the full pathname of a file open on any file unit,

including the command output unit. File numbers for member files

within segment directories are returned when appropriate.

Second Edition 4-18

ATTACH POINTS

To determine the full pathname of one of the three directories, your
program calls GPATH$ and provides it with:

@ A key that specifies which directory pathname is to be obtained

e The size of the buffer into which the pathname is to be stored

The GPATH$ subroutine determines the appropriate directory pathname and
returns to your program:

e A buffer containing the resulting pathname

@ The actual length of the pathname

e An error code indicating whether the operation was successful

Figure 4-7 illustrates the calling sequence for the GPATH$ subroutine
to determine the pathname of one of the three attach points.

The Key: Your program sets the key argument to one of three values:

Keyword Value Meaning

K$CURA 2 Determine the pathname of the current
directory.

K$HOMA 3 Determine the pathname of the home
directory.

K$INIA 4 Determine the pathname of the initial
directory.

Maximiam Size of the Returned Pathname: Your program sets the
max_name_len argument to the size of the name argument in bytes. [If
the resulting pathname is longer thanmax_name_len characters, the
operation fails, and an error code of e$bfts is returned.

The Returned Pathname: The GPATH$ subroutine sets the name argument to
the resulting pathname if the operation succeeds (code is0). GPATHS
stores the operational length of the returned pathname in name_len. No
Characters beyond character number name_len in name containvaliddata.

The Actual Length of the Returned Pathname: GPATH$ sets the name_len
argument to the length of the resulting pathname in bytes ifthe
operation succeeds (code is 0).

4-19 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Determine Pathname of an Attach Point

0 (Zero)

K$CURA Maximum Length of
Name (Returned

KSHOMA Pathname)

KSINIA (characters)

y
HALF HALF HALF
INT INT MINT

, } 4 |
7

GPATHS$(key, ignored, name, max__name__len, name__len, code)

STRING----------------,HALF HALF

INT INT

| Standard
Error
Code

Ret d Length of
eturned |_» Returned Pathname

Pathname (characters)

Calling Sequence of GPATH$ to
Determine the Pathname of an Attach Point

Figure 4-7

Second Edition 4-20

ATTACH POINTS

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to GPATH$ to determine the pathname of an attach point, code may have
one of many values. Volume O of this series contains a comprehensive
list of all standard file system error codes. Error codes specific to
this operation are:

Keyword Value Meaning

E$NATT 7 No top-level directory attached. This
error usually occurs only when the
directory to which the user is attached is
removed from the system, as when a disk is
shut down. Use one of the subroutines
described in this chapter to reestablish a
current attach point.

E$BFTS 35 Buffer too small. The supplied buffer is
too small to hold the information. The
buffer argument contains no useful data.

Example: The following PL/I statements display the full pathname of
the home directory:

call gpath$(k$homa,, 0, pathname, 80, pathlen, code) ;
if code=-0 then call tnou(pathname, pathlen);

else call errpr$(k$irtn, code, ‘Cannot get home pathname’ ,24,
‘MYPROGRAM’, 9)

The SRCH$$ Subroutine

Use the SRCH$$ subroutine to open the current directory. When calling
SRCH$$, your program provides:

e An indicator that the current directory is being opened

e A key that specifies how the directory is to be opened

4-21 Second Edition

ADVANCED PROGRAMMER ‘S GUIDE, VOLUME II: FILE SYSTEM

The SRCH$$ subroutine attempts to open the current directory and
returns to your program:

e An error code indicating whether the operation was successful

e A file unit number that identifies the open directory. This
number is used when reading directory entries.

e The file type, indicating the type of file just opened
(currently always top-level directory)

This section describes the input and output parameters that apply when
calling SRCH$$, and then shows a sample call to SRCH$$. Figure 4-8
illustrates the calling sequence of the SRCH$$ subroutine to open the
current directory.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SRCH$$ to open the current directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this
Operation are:

Keyword Value Meaning

E$NATT 7 No top-level directory attached. This
error usually occurs only when the
directory to which the user is attached is
removed from the system, as when a disk is
shut down. Use one of the subroutines
described in this chapter to reestablish a
current attach point.

E$NRIT 10 Insufficient access rights. The user does
not have List access to the current
directory.

Example: The following example shows how a FORTRAN program opens the
current directory for reading:

CALL SRCH$$(K$READ+K$GETU, K$CURR,O, UNIT, TYPE , CODE)
IF (CODE.NE.O) GO TO 1000

1000 CALLERRPR$(K$IRIN,CODE, ‘Current directory’ ,15, ‘MYPROGRAM’ ,9)
RETURN

Second Edition 4-22

Open Current Directory

 KSREAD + K$GETU

 v

 \]

ATTACH POINTS

K$CURR

-———— 0 (Zero)

 '
HALF HALF HALF

INT INT

| |
SRCH$$ (key, current, ignored, unit, type, code)

INT

|

File Unit
Number

HALF HALF HALF

INT INT INT

Standard
Error

Code

 Type of Current
—— Directory (Currently

Always 4, Top-level)

Calling Sequence of SRCH$$ to
Open the Current Directory

Figure 4-8

4-25 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

QUESTIONS AND ANSWERS ABOUT ATTACH POINTS

This section answers some typical questions about attach points.

e If the current attach point gets reset by a mistyped command, or by
the execution of a non-internal command, how does this affect my
running program?

If a user quits (by typing CONTROL-P) while running a program, resets
the current attach point by mistyping a command or executing a
non-internal command, and then restarts the program (by using the START
command), the program may not continue working properly; its behavior
when it resumes execution may be unpredictable, because it is suddenly
performing file system operations in a different directory than
intended. This is the case only if the user happened to quit while the
program was using the current attach point separately from the home
attach point.

Attach points are not a part of the recursive command environment. You
must consider this when you write programs that tend to disassociate
the home and current attach points while allowing the user to quit.

Even a call to SRSFX$ or CP$ can involve the specific use of the
current attach point. (For example, calling CP$ to invoke DELETE
causes an attach to CMDNCO to search for the DELETE program.) Because
these subroutines are also interruptible, they may not continue
execution properly if the current attach point is reset during an
interruption, and improper execution of these subroutines may affect
the operation of your program.

@ Can I use the GPATH$ subroutine to record my current attach point
during a quit, and then when the user types START, call AT$ with
the pathname returned by GPATH$ to preserve my attach point?

Yes, with the following caveat: the pathname returned by GPATH$
contains no passwords. If your system is using password directories,
it is possible that the mechanism proposed by this question might
complicate matters, but if your system uses ACL directories throughout,
then the proposed solution should work.

There are two points to consider:

e Make certain that the mechanism not only catches the original
CONTROL-P, but also catches the subsequent START command. The
recommended way to do this is to resignal the QUIT$ condition
from within the handler for QUIT$. The Subroutines Reference
Guide, Vol. III describes the condition signalling mechanism.

e The access to the specified directory is recalculated whenever
the mechanism is engaged. This is rarely a problem, but it is
possible that the attempt to reattach to the current directory
could fail due to insufficient access, whereas the original

Second Edition 4-24

Text Storage and

Retrieval

Many applications must be able to store and retrieve text strings on
disk. Under PRIMOS, text strings consist of 8-bit characters in ASCIT
format. Each text string is considered to be a line of text. A text
file consists of one or more lines of text. This chapter describes how
programs create and operate on text files.

Using PRIMOS, text storage and retrieval is straightforward. PRIMOS
offers two methods of organizing lines of text on disk:

e Variable-length records

e Fixed-length records

Each method of organization has advantages and disadvantages, described
later in this chapter. PRIMOS provides a unified interface to both
types of files. In particular, the opening and closing of
variable-length record and fixed-length record files is identical. The
only difference is in the way data are actually read and written to the
file.

This chapter describes:

@ The differences between variable-length record files and
fixed-length record files

@ How to open, extend, truncate, and close text files

e How to read and write variable-length files

5-1 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

@ How to read, write, and position fixed-length record files

@ The format of a variable-length record file

@ The format of a fixed-length record file

This chapter closes with questions and answers about text files.

SUBROUTINES FOR ACCESSING FILES

The subroutines most often used when accessing text files are:

Subroutine Use

SRCH$$ Accepts a filename; opens, closes, deletes,
Changes access on, or verifies the existence of
the file as requested by the key. Most commonly
used to open and close files.

SRSFX$ Allows the calling program to specify a list of
legal file suffixes in order to find a file with
one of them. Each supplied suffix is appended to
the base pathname, until the file is found or the
list of suffixes is exhausted. This subroutine
is used by Prime software such as the RESUME

command .

SGD$OP Opens a file within a segment directory. The
segment directory must already be open.

RDLIN$ Reads a line from an open variable-length record
file, returning a fixed-length record buffer.
The buffer is appropriately padded with spaces
(240 octal).

WILIN$ Writes a fixed-length record to an open
variable-length record file. The length of the
line is calculated by subtracting the number of
trailing spaces (240 octal) from the length of
the record.

PRWF'S$ Used to truncate a file after writing it, in case
the file is to be made shorter. For fixed-length
record files, PRWF$$ is also used to read, write,
and position the file, as described later.

All of these subroutines are thoroughly described in Volume II of the
Subroutines Reference Guide.

Second Edition 5-2

TEXT STORAGE AND RETRIEVAL

DIFFERENCES BETWEEN VARIABLE-LENGTH AND FIXED-LENGTH RECORD FILES

The organization of data within a file is defined by the program or
programs that use the file. PRIMOS does not maintain a description of
the contents of any file. This allows flexibility in accessing files,
because one program can treat a file as a collection of lines of text,
while another program can treat the same file as binary data.

All programs that use a file must agree on the organization of data
within the file, because PRIMOS does not impose restrictions on the
access method. This means that all programs must know whether a text
file consists of variable-length records or fixed-length records when
operating on text files.

Therefore, you should decide early in any project whether to use
variable-length records or fixed-length records. This will prevent
confusion and program misbehavior. If such a decision cannot be made
early enough, you should build a small subroutine library that can
perform fixed-length operations on variable-length record files, and
vice versa. You will rarely need such a subroutine library, however,
because the advantages and disadvantages of the two organizations are
so distinct.

Variable-length Records

Text files under PRIMOS normally consist of variable-length records.
Each line of text in a file is terminated by a new-line character,
ASCII LF (212 octal). The lengths of lines in the file vary from O to
an application-defined maximum. No prefix defining the record length
is present; the new-line character delimits each record.

Variable-length records offer the following advantages:

e@ All Prime-supplied utilities that operate on text files accept
variable-length records. Such utilities include SLIST, ED,
EMACS, RUNOFF, SPOOL, and others. Only a few utilities, such as
SORT, support fixed-length records.

e Using variable-length records usually saves disk space. This is
true when the lengths of lines in a file vary, or when three or
more contiguous spaces (a space is 240 octal) occur frequently
in the file.

@ There is no inherent limit to the length of a line in a
variable-record file. Each particular application limits the
operational length of lines in a text file to a specific
quantity. This is also true of Prime-supplied utilities. The
maximum line length in ED is different from that of EMACS, for
example.

5-35 second Edition

ADVANCED PROGRAMMER’'S GUIDE, VOLUME II: FILE SYSTEM

@ The length of each line in a variable-record file is defined by
a new-line character that follows it. Thus, a utility needs no
information outside the file to use the file. On the other
hand, any program that operates on a fixed-length record file
must know the record size of the file.

Variable-length record files are sometimes referred to as compressed
files. The term “compressed" refers to the compression of contiguous
Spaces. Another term, uncompressed, identifies a similar file format
that does not include space compression. PRIMOS itself cannot
distinguish between compressed and uncompressed files; your
application must make this distinction.

Fixed—length Records

The alternate organization of text files under PRIMOS stores lines of
text in fixed-length records. Here, the length of each record, or line
of text, is known by the program using the file. Records are stored
Side-by-side in the file, with no intervening control information (such
as a new-line character).

Fixed-length records offer the following advantages:

@ Accessing a particular record is significantly faster when all
of the records are fixed-length, since the location of the
record is defined by only two variables -- the record length for
the file and the record number to be accessed. A
variable-length record file must be searched sequentially until
the desired record is found.

@e There are no restrictions on the character set. Characters such
as the ASCII line feed (212 octal), DCl (221 octal), and null

(000 octal) can be read amd written without any special
consideration.

@ The execution speed of a program that expects records to contain
fixed-length fields of information may be superior when
fixed-length records are used. Fixed-length records can be read
directly into PL/I structures or FORTRAN EQUIVALENCE areas
without going through an intermediate parsing stage (as is
necessary when reading variable-length records).

e Programs that use fixed-length record data can often be more
easily moved from one large-scale computer system to another.
Fixed-length record organization has been in use (for
approximately a century, beginning with the punched card.
Variable-length record organization is comparatively recent, and
is still the second choice in languages such as COBOL, FORTRAN,
and PL/I.

Second Edition 5-4

TEXT STORAGE AND RETRIEVAL

Hybrid Approaches

As described previously, PRIMOS itself places no restrictions on the
organization of data ina file. It is up to the programs that access
the file to use the same access method ona file. Therefore, it is
possible to construct hybrid file organizations that include advantages
from both the fixed-length and variable-length record approaches.

For example, if you use fixed-length records separated by an ASCII LF
(212 octal) and a NUL (000 octal) byte, you will be able to display a
fixed-length record file using SLIST. (It cannot be edited by using ED
or EMACS, however.)

To solve the problem of having to hard-code the record length into
programs that use fixed-length records, the first two bytes of a file
can be defined to contain the length of records in the file in bytes.
However, this prevents the file from being directly sorted by Prime's
SORT facility -- when sorting fixed-length record files, SORT will not
be expecting the first two bytes to contain such information.

You may decide to have a variable-length record file to save disk
Space, using the PL/I language as a model. You can represent the
individual records as PL/I CHARACTER(*) VARYING variables, rather than

each record with a new-line code. This has two disadvantages.
First, it renders such files inaccessible via PRIMOS utilities such as
SLIST, ED, and EMACS. Second, records would presumably not be written
using space compression techniques, and therefore one might take up
extra disk space. The important advantage of this approach is that of
fixed-length records; the entire character set may be used within each
record.

Although you can use approaches such as those described above instead
of the variable-length and fixed-length record organizations, such
approaches are not described in this book. If you find that you need a
nonstandard organization for a text file, you must treat the file as a
data file. The manipulation of data files is described in Chapter 6,
DATA STORAGE AND RETRIEVAL.

Maximum Length of a File

Currently, the maximum number of characters that can be stored in one
file under PRIMOS is 465 million. This assumes a single file stored on
a 30-head partition residing on a 675MB disk drive (also Imown as a
600MB disk), with the minimal housekeeping and directory information in
the partition.

5-5 Second Edition

ADVANCED PROGRAMMER '’S GUIDE, VOLUME II: FILE SYSTEM

HOW TO OPEN, EXTEND, TRUNCATE, AND CLOSE TEXT FILES

To read a text file, your program normally:

1.

2.

oO.

Opens the file for reading.

Reads the file until the end of file is reached.

Closes the file.

To write a text file, your program normally:

1.

2.

5.

Opens the filefor writing.

Positions the file to end-of-file if new data is to be written
to the end of the file; otherwise, your program will overwrite
the existing data.

Writes the file, automatically extending the file length when
necessary .

Truncates the file at the current position to insure that old
data originally in the (longer) file is deleted.

Closes the file.

PRIMOS does not impose restrictions on the order of these operations
except that your program must open a file before it can read, write,
extend, or truncate the opened file.

The subjects of this section are how to open, position to the end of,
truncate, and close a text file. The subsequent two sections describe
how to actually read and write text files.

Opening a File

Before your program can access data in a file, it must open the file.
Your program opens a file by using the SRSFX$, SGD$OP, or SRCHS$
subroutines. When your program calls these subroutines, it provides:

e The name of the file to be opened.

e A key that specifies how the file is to be opened.

second Edition 5-6

TEXT STORAGE AND RETRIEVAL

The SRSFX$, SGD$OP, or SRCH$$ subroutine attempts to open the specified
file and returns the following information to your program:

@ An error code indicating whether the operation was successful.

e A file unit number that identifies the open file. Your program
uses this number when performing operations (such as read and
write) on an open file.

e The file type, indicating the type of file just opened
(including SAM, DAM, CAM, SEGSAM, SEGDAM, and Directory).

Additional information returned by SRSFX$ is not relevant to this
description.

This section contains the input and output parameters applicable when
you call SRSFX$, SGD$OP, and SRCH$$, and shows a sample call to SRCH$$.
Figure 5-1 illustrates the calling sequence of SRSFX$ to open a file;
Figure 5-2 illustrates the calling sequence of SGD$OP; Figure 5-3
illustrates the calling sequence of SRCH$$ to open a file.

The Name of the File: The rules for the filename depend on the system
subroutine being called.

Your program may supply a pathname if it is using SRSFX$. The pathname
may identify segment directory members (such as FRED>XYZ.SEG>O).

For SGD$OP, your program must first position the segment directory to
the desired entry by using SGDR$$; then, your program calls SGD$OP,
providing the file unit number of the open segment directory.

When calling SRCH$$, the filename must be an objectname; that is, it
cannot contain a > symbol. SRCH$$ searches the current directory for
the specified file system object.

The Key: In the case of SRSFX$ and SRCH$$, your program sets key as
follows:

key = action + newfile + K$GETU

For SGD$OP, your program sets key as follows:

key = action

5-7 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Open a File, With Possible Suffix

Pathnameof

Object to Open ~]

Number of Suffixes
_____in suffixes Array

KS$READ (0 Means No Suffix

KSWRIT Processing)

K$RDWR

K$NSAM array of
KSNDAM Desired

Suffixes
+ K$GETU

’ Y <=32
HALF <=128 HALFy STRING
INT STRING INT “> ARRAY

tf ' '
SRSFX$ (key, name,unit, type, num__suffixes, suffixes, basename, suffix_used, code)

! 1 4 '

HALF HALF HALF <=32 HALF HALF
INT INT INT STRING INT INT

[ARRAY(8)] FTN/PMA | i
only* Vee lL. Standard

Error
Code

Me rally Index Into suffixes
umbe of Suffix Used

(matched); 0 Means

(1): Termination Character Position Null Suffix

> |(2): Length of Pathname .
| (characters) - FTN/PMA only

> Final Component of name
Without Suffix Used; Useful
When Appending Another Suffix

Side Effects: May reset current attach point.

* Function value is returned in L-register; typically, you need only to declare as HALF INT,

becausefirst datum is all you need andis in A-register. Otherwise, you must declare it as

FULL INT to make it work.

Calling Sequence of SRSFX$ to
Open a File

Figure 5-1

Second Edition 5-8

TEXT STORAGE AND RETRIEVAL

Open Member of Segment Directory

— 10000

ofSegment —_—— ____ (Find Available

Directory Unit Number)
/ 1<n<126

(Use this Unit

Number)

KS$READ

KSWRIT Type of Newly Created File:

K$RDWR KSNSAM

KSVMR KSNDAM
K$NSGS

y y K$NSGD
HALF HALF HALF HALF K$NCAM
INT INT INT INT

SGDS$OP(key, seg-unit, file-unit, type, new-type, code)

INT INT INT

Unit Number Standard

Member Opened On Code

 Type of File Opened

Value Type
0 SAM File
1 DAMFile
2 SAM Segdir
3 DAM Segdir
7 CAMFile

Side Effects: If seg-unit is at end of segment directory and key is K$WRIT or
K$RDWR, SGD$OP attempts to automatically extend segment
directory by one entry, which also repositions seg-unit to new
end-of-segdir position; otherwise, size of segment directory
and position of seg-unit remain unchanged.

Calling Sequence of SGD$OP
Figure 5-2

5-9 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

OpenFile in Current Directory

K$BKUP
K$READ
KSWRIT

K$RDWR
KSNSAM

*) KSNDAM

+ K$GETU

HALF

___ Nameof
Object

Length of
Object Name
(characters)

y
32+. HALF

INT STRING“INT

, 4
SRCH$$ (key, name, name__len, unit, type, code)

HALF HALF HALF

INT INT INT

File

Unit
Number

Type

Calling Sequence of SRCH$$ to
Open a File

Figure 5-3

Second Edition 5-10

|_. Object

Standard
Error

Code

TEXT STORAGE AND RETRIEVAL

The values and meanings of action and newfile are:

Value

action

newfile

Meaning

Specifies how the file is to be opened. This
distinguishes between a file being open for reading,
writing, or both reading and writing. These states
are often identified by the memonics R, W, and RW
(or WR), respectively. The keywords used when
opening files are:

 Keyword Value Meaning

K$READ 1 Open the file for
reading.

K$WRIT 2 Open the file for
writing.

K$RDWR 3 Open the file for both
reading and writing.

K$BKUP 7 Open for reading by
backup facility.

K$VMR 16 Open for VMFA read.

If your program attempts to write to a file that is
open for reading, an error code of e$unop (Unit not
open) is returned to your program. This same error
code is returned if your program attempts to read a
file that is open for writing.

Specifies what type of file should be created if the
file does not already exist. (The file is created
only if your program is opening the file for writing
or for reading and writing.) The keywords used for
text files are:

Keyword Value Meaning

K$NSAM 0 Create a new threaded

(SAM) file. (This is
the default.)

K$NDAM 1024 Create a new directed
(DAM) file.

5-11 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

For SGD$OP, the newfile value is replaced by the
new-type argument inthe calling sequence. This
argument may also include:

Keyword Value Meaning
K$NSGS 2048 Create a new SAM Segment

Directory

K$NSGD 3072 Create a new DAM Segment
Directory

K$NCAM 4096 . Create a new contiguous
(CAM) file.

K$GETU Specifies that PRIMOS is to use an available file
unit, and return the selected file unit number in
the unit parameter of the calling Sequence. For
SGD$OP,your program specifies that PRIMOS is to use
an available file unit by supplying a unit number of
-10000. If you want your program to specify the
unit number instead of letting PRIMOS select the
number, your program supplies a unit number between
1 and 126 (or 1 and 15 for a program running under
PRIMOS ITI).

The Error Code: An output argument, code, informs your program of the
success or failure of the operation.
entirely successful. Otherwise, code is always positive. After a call
to SRSFX$, SGD$OP, or SRCH$$ to open a file, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes.
operation are:

Keyword Value

E$FIUS 5

Second Edition

Meaning

File in use. The file being opened is
already open on another file unit, or by
another user. Normally, a file that is
open for reading cannot be opened for
writing, nor can a file open for writing be
opened for reading. A file that is open
for writing can have only one file unit
open to it, whereas a file open for reading
can have many file units open to it.

5-12

Ifcode is 0, the operation was

Error codes specific to this

TEXT STORAGE AND RETRIEVAL

Keyword Value Meaning

If you expect your program to open a file
that may occasionally be in use by another
process for a short period of tine,
consider having your program repeatedly
attempt to open an in-use file for 30
seconds or a minute, sleeping one second in
between each attempt by calling SLEEP$.

See Chapter 8, FILE ATTRIBUTES, for more

information on the read/write lock.

ESDKFL 9 The disk is full. This error can occur
only if a new file is being created, and
hence cannot occur if the action portion of
the key argument is k$read.

ES$NRIT 10 Insufficient access rights. If the file
being opened already exists, this means
that the user running your program does not
have sufficient access rights to the file.
If the file does not exist, then the user
does not have Add rights to the directory
in which the file is to be created.

For calls to SRSFX$, this error code may
indicate a problem attaching to the
directory that was specified by the
pathname argument of the calling sequence.
In this case, the user does not have Use
access to at least one directory in the
pathname .

ESFNIF 15 Not found. The file being opened does not
exist. The action portion of the key
argument is probably k$read; otherwise,
the file would be created.

For calls to SRSFX$, this error code may
indicate a problem attaching to the
directory that was specified by the
pathname argument of the calling sequence.
In this case, at least one directory in the
pathname does not exist. Even if the
action portion of the key argument is
k$writ or k$rdwr, no directory is ever
created via a call to SRSFX$. You must use
the DIR$CR subroutine to create a
directory.

5-135 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME IT: FILE SYSTEM

Keyword Value | Meaning
E$ITRE 57 Illegal treename. (SRSFX$ only.) This

indicates that the pathname supplied to
SRSFX$ does not conform to the syntax rules
for a pathname. See the Prime User's Guide
for a description of the syntax of a
pathname.

ESMXQB 143 Maximum quota exceeded. This error can
occur only if a new file is being created,
and hence cannot occur if the action
portion of the key argument is k$read.

E$IACL 150 Entry is an access category. The specified
file system object is an access category.
See Chapter 7, ACCESS CONTROL LISTS (ACLS),
for information on access categories.

ESNINF 159 No information. This indicates that some
error occurred, but the user running your
program does not have List access to the
directory involving the error. In such a
case, the e$ninf error code is always
returned to prevent the user or calling
program from getting any information about
the directory. Therefore, this error code
indicates any possible error, in addition
to a simple case of insufficient access.

The File Type: The returned file type is valid when the returned error
code is O. It is not valid in any other case.

The file type is one of the following five values:

Value Meaning
0 A SAM file has been opened. Use RDLINS, WILINS,

PRWF$$, and similar subroutines to read or write it.

1 A DAM file has been opened. Use RDLINS, WILINS,
PRWF$$, and similar subroutines to read or write it.

2 A SAM segment directory (SEGSAM) has been opened. Use
SGOR$$ to operate on members of this segment
directory. See Chapter 6, DATA STORAGE AND RETRIEVAL,
for information on how to do this.

3 A DAM segment directory (SEGDAM) has been opened. Use
SGDR$$ to operate on members of this segment
directory. See Chapter 6, DATA STORAGE AND RETRIEVAL,
for information on how to do this.

Second Edition 5-14

TEXT STORAGE AND RETRIEVAL

 Value Meaning

4 A top-level directory has been opened. Use DIR$SE,
DIRRD, ENTRD, and RDEN$$ to read information on
files in this directory. See Chapter 6, DATA STORAGE

AND RETRIEVAL, for information on how to do this.

7 A CAM file has been opened. Use RDLIN$, WTILIN$,
PRWF$$, and similar subroutines to read or write it.

Examples: The following example shows how a FORTRAN program would open
the file MYFILE in the current directory for reading:

CALL SRCH$$(K$READ+K$GETU, ‘MYFILE’ ,6, UNIT, TYPE, CODE)
IF (CODE.NE.O) GO TO 1000

1000 CALLERRPR$(K$IRIN,CODE, ‘MYFILE’ ,6, ‘MYPROGRAM’ 9)
RETURN

The next example illustrates the use of the newfile value in the key
argument of the calling sequence to SRCH$$. The file ANOTHERFILE is
opened for reading and writing in the current directory. If it does
not exist, it will be created as a DAM (directed) type file. Only the
subroutine call itself is shown; the error code would be examined in
the same fashion as shown in the example above.

CALL SRCH$$(K$RDWR+K$NDAM+K$GETU,‘ANOTHERFILE’ ,12,UNIT,
& TYPE,CODE)

Positioning a File to End-of-file

When your program is writing data to a text file, you may want it to
add new data to the end of the existing file and leave the previously
entered data intact. To position a newly opened file to the
end-of-file location, have your program call a subroutine named POSIT,
Shown below, with the HALF INT file unit number of the file, and a HALF
INT returned error code. Your program then checks the returned error
code to make certain the operation succeeded. If it did not, your
program closes the opened file, produces an error message, and aborts.

5-15 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME IT: FILE SYSTEM

The following FORTRAN statements illustrate the procedure.
CALL SRCH$$(K$WRIT+K$GETU, ‘MYFILE' ,6, UNIT, TYPE ,CODE)
IF (CODE.NE.O) GO TO 1000

C
CALL POSIT(UNIT,CODE) /* Position to end of file.
IF (CODE.NE.O) GO TO 1001

C

1000 CALL ERRPR$(K$IRTN, CODE, ‘MYFILE’ ,6, ‘'MYPROGRAM’ ,9)

RETURN

C
1001 CALL SRCH$$(K$CLOS,O,0,UNIT,TYPE,I) /* Don’t overwrite CODE!

GO TO 1000

The POSIT subroutine mainly uses a form of the PRWF$$ subroutine that
positions a file. Figure 5-4 illustrates the calling sequence of the
PRWF$$ subroutine to position toward end-of-file.

The POSIT subroutine might be written as follows:

SUBROUTINE POSIT(UNIT, CODE)
INTEGER*2 UNIT, CODE

C
C This subroutine positions the specified file unit to the
C end-of-file location. It returns the success or failure
C of the operation in the CODE parameter.
C
$INSERT SYSCOM>ERRD. INS. FIN
$INSERT SYSCOM>KEYS. INS. FIN
C

INTEGER*2 RNW
C
10 CALL PRWF$$(K$POSN+K$PRER, /* Position relative.

UNIT, /* Pass the file unit number.
10C(0), /* This pointer is unused during a

/* position-only operation.
O, /* Another unused value in this case.
2147483647, /* Largest positive INTHEGER*4 number.
RNW, /* Unused, but may be overwritten anyway.
CODE) /* The error code.BP

BD
BW

BW
LO

KO
Qo

CODE should never be 0. If it is, it means the file is
very large. Loop until we reach the end of the file.

IF (CODE.—E).0) GOTO 10 /* File is very big!

However, if the returned error code is E$KOF (End of file),
then we succeeded, so set it to O. In any case, return.

A
a
a
A
a
g
n
R

a
n
g
a
A
N
g
n

IF (CODE.EQ.ESEOF) OCODE=0 /* Success.
RETURN
END

Second Edition 5-16

TEXT STORAGE AND RETRIEVAL

Truncating a File

Before closing a file you have written to, it is good practice to have
your program truncate the file. This tells PRIMOS to make the current
position of the file the new end-of-file location.

If your program just created the file, this operation is not necessary.
However, if your program has opened an existing file and overwritten
it, your program may not have written up to the current end-of-file
location of the file. If this is the case, and your program performs
no truncation, the file ends up having more data than was intended, and
the chances are good that one record of the old file data has been
partially overwritten by the new data.

The truncation operation is simple, and is always done by PRYF$$.
Figure 5-5 illustrates the calling sequence of the PRWF$$ subroutine to
truncate a file. A sample use of PRWF$$ follows:

CALL PRWF$$(K$TRNC, /* Truncate the file.
UNIT, /* The file unit number.
10c(0), /* Ignored when truncating.
O, /* Ignored when truncating.
000000, /* Truncate at the current position.
RNW, /* Ignored when truncating, but play it safe.
CODE) /* The error code.QD

BO
QO

PO
Ro

Qo

IF (CODE.NE.O) CALL ERRPR$(K$IRIN,CODE, /* Not fatal.
& ‘Cannot truncate file’ ,20, ‘MYPROGRAM’,9)

As shown in the example above, most programs do not regard an inability
to truncate a text file as an error, although they do produce an error
message. For example, the PRIMOS editor ED treats an inability to
truncate a file as a nonfatal error. This is because the data have
been written, but there exists the possibility of extraneous data in
the file.

Volume 0 of this series contains a comprehensive list of all standard
file system error codes. Error codes that may typically be returned as
a result of attempting to truncate a file follow.

5-17 Second Edition

ADVANCED PROGRAMMER‘S GUIDE, VOLUME II: FILE SYSTEM

Position Toward End-of-file

| NULL() in PL/I or

LOC(O) in FORTRAN

File Unit

Number -—— 0 (Zero)

KSPOSN + K$PRER
a)

v v v
HALF HALF px HALF FULL
"| INT | INT 7

PRWFS$(key, unit, ignored__1, ignored__2, far__forward, overwritten, code)

HALF HALF

INT INT

Standard
Error
Code

 Ignore
Value

Calling Sequence of PRWF$$ to
Position Toward End-of-file

Figure 5-4

Second Edition 5-18

TEXT STORAGE AND RETRIEVAL

Keyword Value Meaning

ESEOF 1 End of file. This can occur only if the
call to PRWF$$ inadvertently specifies that
the position of the file be changed. The
fifth argument in the call to PRWF$$ should
always be an INTEGER*4 zero (000000 in
FORTRAN, OL in PMA). If it is not, this
error code may be returned.

ESBOF 2 Beginning of file. This can occur only if
the call to PRWF$$ inadvertently specifies
that the position of the file be changed.
The fifth argument in the call to PRYFS$$
should always be an INTEGER*4 zero (000000
in FORTRAN, OL in PMA). If it is not, this
error code may be returned.

ESUNOP 3 Unit not open. The specified file unit is
not open, oris open only for reading.

This usually indicates a program error,
although it can also be the result of the
user exiting the program via CONTROL-P,
typing CLOSE ALL, and then typing START.

E$FIUS 5 File in use. The file being truncated is
already open on another file unit, or being
used by another user. This error code
usually indicates that the open file has a
read/write lock setting of UPDT or NONE,
because the program has the file open for
writing, and yet at least one other file
unit is open to the file for reading or
writing.

Chapter 8, FILE ATTRIBUTES, contains

information on the read/write lock.

5-19 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME ITI: FILE SYSTEM

Truncate File at Current Position

| NULL () in PL/I or

LOC(O) in FORTRAN

File Unit
Number 0 (Zero)

0 (Zero), to Truncate
KSTRNC at Current Position

’ ' y
HALF HALF pap HALF FULL
INT INT | INT +

PRWF$$(key, unit, ignored__1, ignored__2, ignored__3, overwritten, code)

HALF HALF

INT INT

|Standard
Error
Code

 Ignore
Value

Calling Sequence of PRWF$$ to
Truncate a File

Figure 5-5

Second Edition 5-20

TEXT STORAGE AND RETRIEVAL

Closing a File

It is very easy to close a file. The best method is to close the file
by unit number. This means that only the file unit specified in the
call to CLO$FU is closed. Figure 5-6 illustrates the calling sequence
of the CLO$FU subroutine.

A sample use of CLO$FU is:

CALL CLO$FUCUNIT, CODE)
IF (CODE.NE.O) CALL ERRPR$(K$IRTN,CODE, ‘Cannot close’ ,12,
& 'MYPROGRAM’ ,9)

If a nonzero error code is returned, your program should treat it as a
fatal error, because subsequent operations on the file by the same
program, other programs, or the user may fail. In addition, a failure
to close may indicate a program error or a disk error, both of which
suggest that the program should not attempt to continue processing.

Your program may also close a file by name by using the CLO$FN
subroutine by passing the same pathname that was used to open the file.
Figure 5-7 illustrates the calling sequence of the CLO$FN subroutine.

When a file is closed by name, all file units opened to the file by the
user are closed. This function is rarely needed, because most programs
opena file on only one file unit at atime. However, interactive
users often find this ability useful, such as when they try to write
out an edited command input file, and receive a "File in use" message
from the editor. At that point, a CLOSE filename command fixes the
problem, no matter what the file unit number for filename is, as long
as no other users have the file open.

Here is a sample use of closing a file by name:

call clo$fn(‘MYDIR>MYFILE’ , code);
if code*=0 then call errpr$(k$irtn, code, ‘Cannot close’ ,12,

‘MYPROGRAM’ ,9);

5-21 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

Close a File Unit Number

File Unit
Number

HALF

INT

CLOS$FU(unit, code)

HALF

INT

Standard
Error
Code

Calling Sequence of CLO$FU
Figure 5-6

Second Edition 5-22

TEXT STORAGE AND RETRIEVAL

Close One or More File Units by Pathname

Pathname of

Target Object

< =128

STRING

|
CLOSEFN (name, code)

HALF

INT

Standard
Error

Code

Side Effects: May reset current attach point.

Calling Sequence of CLO$FN
Figure 5-7

5-23 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

HOW TO READ AND WRITE VARIABLE-LENGTH TEXT FILES

Use the RDLIN$ subroutine to read a variable-length record file
(compressed or uncompressed), and use the WILINS subroutine to write a
variable-length record file (compressed).

Note

In most cases, variable-length record files are compressed. In
other words, contiguous spaces in a line are compressed into a
two-byte code to save disk space. Therefore, this section will
describe only the reading and writing of compressed files. For
information on the format of compressed variable-length record
files, see the section entitled FORMAT OF A VARIABLE-LENGTH
RECORD FILE, later in this chapter.

This section describes:

e The RDLIN$ and WILINS interfaces

e Sample uses of RDLIN$ and WILINS

The RDLIN$ and WILIN$ Interfaces

The subroutine interfaces for RDLIN$ and WILIN$S are identical. Each
subroutine has the following arguments:

e A file unit

e A character buffer

@ The length of the buffer (in halfwords)

@e An error code

For RDLIN$, the input arguments are the file unit and the length of the
buffer, and the output arguments are the character buffer and the error
code. For WILIN$, the input arguments are the file unit, the character
buffer, and the length of the buffer, and the only output argument is
the error code. Figure 5-8 illustrates the calling sequence of the
RDLIN$ subroutine; Figure 5-9 illustrates the calling sequence of the
WILIN$ subroutine.

File Unit: Each subroutine takes the file unit number as an input
argument. The file unit mist be open for reading (RDLINS), writing
(WILINS), or reading and writing (either subroutine). Further, the
file that is open on the file unit must be a SAM or DAM file; it

. cannot be a segment directory or file directory.

Second Edition 5-24

TEXT STORAGE AND RETRIEVAL

The reading or writing of the line (or record) begins at the current
position in the file for that file unit. After the line is
successfully read or written, the current position of the file unit
immediately follows the line. Therefore, a subsequent call to RDLIN$
or WILINS reads or writes the next line. Your program does not need to
call PRWF$$ to position the file to read or write successive lines of
the file.

Input or Output Line: The input or output line is a CHARACTER(*)
ALIGNED variable for PL/I programs, a CHARACTER*n variable for FORTRAN
77? programs (n must be even), or an INTEGER*2 array for FORTRAN 66
programs.

When your program calls RDLIN$, RDLIN$ places the line read from the
file into input_line, assuming a successful invocation of RDLIN$ has
occurred. The input line is padded with trailing spaces if the actual
line is shorter than the size indicated by max_linelength. If it is
longer than max_line_length, the line is truncated on the right. When
your program calls WILIN$, your program passes the line that is to he
written to the file in output_line with trailing spaces up to the end
of output_line (as represented by max_linelength). PL/I automatically
appends the necessary trailing spaces when the variable is set, whereas
FORTRAN programmers must ensure trailing spaces are used to pad the
string. If no trailing spaces are present, the length of the line that
is written to the file is the max_linelength.

Maximum Line Length: Your program passes the length of the input or
output line in halfwords to RDLIN$ and WILIN$. Therefore, if the input
or output line is a CHARACTER(80) ALIGNED variable, max_line_length is
always 40, because one halfword contains two bytes. If the character
buffer is an INTEGER*2 array dimensioned to 40, then, again, the length
of the buffer is 40, because one INTEGER*2 element is a halfword.

RDLIN$ and WILIN$ never reference the input or output line beyond the
boundary specified by max_line_length. They both use max_linelength
as the maximum possible length of the line, and always consider the
current (or operational) length of the line in characters to be
max_linelength times two, minus the number of trailing spaces.

5-25 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME IT: FILE SYSTEM

Read a Line of Text

, Maximum Length of
File Unit input__line

Number (halfwords)

HALF HALF

INT INT

!
RDLIN$(unit, input_line, max__line_length, code)

?
¢

7
7

4
7

“ HALF
STRING INT

Line Input From Standard

File, Blank-padded Code

Calling Sequence of RDLIN$
Figure 5-8

Second Edition 5-26

TEXT STORAGE AND RETRIEVAL

Write a Line of Text

| Line to be Output
to File, Blank-padded

File Unit Maximum Length of

output-line

Number (halfwords)

yHALF HALF
INT mT-----> "

WTLING (unit, output-line, max-line-length, code)

HALF
INT

Standard
Error
Code

Calling Sequence for WILIN$
Figure 5-9

5-27 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

The Error Code: An output argument, code, informs your program of the
success or failure of the operation.If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to RDLIN$ or WILIN$, code may haveone of many values. Volume 0 of
this series containsacomprehensive list of all standard file system
error codes. Error codes specific to this operation are:

Keyword Value Meaning

ESEOF 1 End of file (RDLIN$ only). The end of the
file was reached. The contents of the
character buffer are undefined. Normally,
this means that there is no more data in
the file, but it could mean that there is
an incomplete line at the end of the file,
that is, data without a following new-line
character (ASCII 212).

E$UNOP 2 Unit not open. When calling RDLIN$, this
means the file unit is open only for
writing, or is not open at all. When
calling WILIN$, this means the file unit is
open only for reading, or is not open.

ESBPAR 6 Bad parameter. The length of the buffer as
passed by the calling program is a negative
number.

ESDKFL 9 The disk is full (WILIN$ only). The line
could not be completely written to the file
because the disk was full. The amount of
data successfully written to the file is
undefined, so the only way to recover from
this error is to call PRWF$$ to read the
file position before calling WTLINS, and
reposition the fileafter the e$dkfl error
occurs before trying to write the line
again or truncating the file.

E$MXQB 143 Maximum quota, exceeded (WILIN$ only). The
line could not be completely written to the
file because the quota for the directory
was exceeded. The amount of data
successfully written to the file is
undefined. The only way to recover from
this error is to call PRWF$$ to read the
file position before calling WILINS. Then,
before trying towrite the line again or
truncating the file, reposition the file
after the e$mxgb error occurs.

Second Edition 5-28

TEXT STORAGE AND RETRIEVAL

Sample Programs Using RDLIN$ and WILIN$

Here is a sample FORTRAN subroutine that uses WILIN$ to write lines to
an open file unit. If a disk-full or quota-exceeded error occurs, the

user is given an opportunity to delete files and restart the program,

and the subroutine retries the write in the correct fashion. This
subroutine has the same calling sequence as WILINS.

SUBROUTINE WRITE(UNIT, BUFFER , BUFLEN , CODE)
INTEGER*2 UNIT, BUFFER(1) , BUFLEN, CODE

C
C BUFFER can be dimensioned to just 1, even though it is probably
C larger, because this subroutine does not reference its contents;
C it simply passes the buffer on to WILINS.
C
$INSERT SYSCOM>ERRD. INS. FIN
$INSERT SYSCOM>KEYS. INS. FIN
C

INTEGER*2 RNW, PATHNM(40) , PATHLN , CODE2
INTEGER*4 POSITIN /* A fullword variable.

C
C First use PRWF$$ to determine our current position in the file.

C
CALL PRWF$$(K$RPOS, /* Special "“read-position" function.

UNIT, /* The file unit.
1LOC(O), /* Unused during a read-position.
O, /* Also unused during a read-position.
POSIIN, /* Report position in POSIIN.
RNW, /* Unused, but always play it safe.
CODE) /* The error code.

IF (CODE.NE.O) RETURN /* Failure.

GO
BQ

BW
RO
P
O

C
C Now that we know the position of the file before the attempt to
C write the line, we attempt to write the line.

CALL WILIN$(UNIT, BUFFER,BUFLEN,CODE) /* Simple enough.

Examine the return code. If disk-full or quota-exceeded, do
special processing. Otherwise, return.

IF (CODE.NE.E$DKFL.AND.CODE.NE.E$MXQB) RETURN

A disk-full or maximum-quota error has occurred. We want to tell

the user to clean up the directory and type START. First, output

the error message, along with the full pathname of the file being
written (so the user knows where to delete files!).

A
A
A
A
R
A
A
Q

A
A
a
g
g
H
A
a
A

CALL GPATH$(K$UNIT, UNIT, PATHNM, 80, PATHLN,CODE2) /* Get the

& /* full pathname of the file open on the file unit.
IF (CODE2.EQ.0) GO TO 10 /* Error?

5-29 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

C
C If we can't get the treename, ignore the error, but make the
C error message useful.
C

CALL ERRPR$(K$IRTIN,CODE, ‘Unknown file nam’ ,17,
& ‘WRITE’ ,5)
GO TO 20

C
C Otherwise, produce an error message showing the treename.

10 CALL ERRPR$(K$IRIN, CODE, PATHNM, PATHLN, ‘WRITE’ ,5)

c Now explain to the user what must be done.

20 CALL TNOU(O,0) /* Blank line.
CALL TNOUAC’Free up some space using DELETE, then type ',

SCALEaNOUC ‘START to continue.’ ,19)

CALL TNOU(O,0)

Now invoke a new command level, and hope we return.

° CALL COMLV$

G User has typed START, reposition the file, and retry the write.

° CALL PRWF$$(K$POSN+K$PREA, /* Position absolute.
& UNIT, /* Hopefully this is still open!
& Locco), /* Unused during a position.
& O, /* Also unused.
& POSITN, /* Specify the desired position.
& RNW, /* Unused, but play it safe.
& CODE) /* The error code.

C
C If it works, retry, else return to the caller.
C

IF (CODE.EQ.0) GO TO 1
RETURN

C
END

Second Edition 5-30

TEXT STORAGE AND RETRIEVAL

The following is a sample use of RDLIN$. This PL/I subroutine serves
as an interlude for RDLIN$. It returns a CHARACTER(80) VARYING string
containing the input line.

read: proc(unit,line,code); /* Similar to RDLIN$, but no buffer
length, and LINE is a varying
character string. */

del unit fixed bin(15), /* The file unit (input). */
line char(80) var, /* The line read (output). */
code fixed bin(15), /* The error code (output). */
buff char(80); /* This is what is passed to RDLINS. */

call rdlin$(unit,buff,40,code); /* 40 halfwords = 80 chars. */
if code=-O then line=trim(buff,’01'b); /* Store line without

trailing spaces. */
else line='’; /* If error, do clean up the line. */

end; /* read: proc */

HOW TO READ, WRITE, AND POSITION FIXED-LENGTH FILES

You use the PRWF$$ subroutine to read, write, and position fixed-length
record files. This section:

e Describes the PRWF$$ interface

e Shows some sample uses of PRWF$$

The PRWF$$ Interface

PRWF$$ is a multipurpose subroutine; its interface is complex. This
section describes the primary functions of PRWF$$ for manipulating
files containing fixed-size records of data.

The following table shows which figures illustrate the calling sequence
of PRWF$$ for each PRWF$$ function described in this section:

Figure Function

5-10 Reading a File
5-11 Writing a File
5-12 Positioning a File
5-13 Reading the Position of a File
5-5 Truncating a File

This section describes the arguments common to reading, writing,
positioning, truncating, and reading the position of a file.

5-31 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Read a File

—— Pointer to
Data Buffer

File Unit____ ____ Numberof Halfwords
Number to Read (Unsigned)

0 (Zero), to Read
KSREAD at Current Position

VY oey v
HALF HALF pon HALF FULL
INT INT INT INT

Y YY
PRWF$$(key, unit, addr (buffer), size, rel-posn, halfwords-read, code)

HALF _-WHALF HALF
INT eee INT INT

ARRAY-"7 | Standara
Error

Buffer to Which | Code
Data Are Transferred

Numberof
Halfwords
Actually Read

Side Effects: Contents of buffer elements halfwords-read +1 through size are
undefined after the operation if fewer halfwords than requested were read.

Calling Sequence of PRWF$$ to
Read a File

Figure 5-10

second Edition 5-32

Write a File

Pointer to
Data Buffer

File Unit |
Number

HALFKSWRIT INT

HALF

INT

v y Y
PTR

Y

HALF

INT

ARRAY

TEXT STORAGE AND RETRIEVAL

Buffer From Which
Data Are Transferred

___. Numberof Halfwords
to Write (Unsigned)

0 (Zero), to Write
at Current Position

PRWF$$(key, unit, addr (buffer), size, rel-posn, halfwords-written, code)

YY
\HALF FULL

INT INT

v v

HALF
INT

ne | Standard
Error
Code

Numberof

Halfwords
Actually Written

Calling Sequence of PRWF$$ to
Write a File

Figure 5-11

5-35 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Position a File

____ NULL() in PL/I or

LOC(0) in FORTRAN

File Unit

Number -—— 0 (Zero)

KSPOSN + K$PREA Desired File

| Position

y y v
HALF HALF PTR HALF FULL
INT INT INT INT

v v
PRWFS(key, unit, ignored-1, ignored-2, position, overwritten, code)

yy
HALF HALF

INT INT

Standard
Error
Code

 Ignore
Value

Calling Sequence of PRWF$$ to
Position a File

Figure 5-12

Second Edition 5-34

Read the Position of a File

File Unit
Number

 KSRPOS

4 f

TEXT STORAGE AND RETRIEVAL

NULL() in PL/I or
[~~ LOC(0) in FORTRAN

[~ 0 (Zero)

 HALF HALF _Y HALF
PTR

INT INT INT

y oY
PRWFSS(key, unit,

Y
ignored-1, ignored-2, position, overwritten, code)

to 4 4
FULL HALF HALF
INT INT INT

| Standard
Error
Code

Current File Ignore
Position Value

Calling Sequence of PRWF$$ to
Read the Position of a File

Figure 5-13

5-35 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Key: The key argument tells PRWF$$ what operation is to be performed:

Key Meaning

K$READ Read data from the file starting at the
current position.

K$WRIT Write data to the file starting at the current
position.

K$POSN+K$PREA Position the file to the specified location.

K$TRNC Truncate the file at the current position.

K$RPOS Return the current position of the file.

The above functions represent all of the functions you need to make
full use of PRWF$$ for text files. There are more key values you can
pass, but aside from two special functions, these involve performing
two or more of the above operations at one time. Generally, you should
avoid the use of such combined operations, because ambiguity can result
if you perform combined operations and a nonzero error code is
returned. For example, if you attempt to pre-position the file and
read data at the same time, it is unclear what has actually happened if
the returned error code is e$eof.

File Unit: The file unit must be open for reading, writing, or both
reading and writing. Further, the file that is open must be a SAM or
DAM file. It cannot be a segment directory or file directory.

The data are read or written beginning at the current position in the
file for that file unit. After the data are successfully read or
written, the current position of the file unit is changed to
immediately follow the data. Therefore, a subsequent call to PRWF$$
reads or writes subsequent data; you do not need to call PRWF$$ to
position the file when reading or writing contiguous data in file.

Pointer to a Buffer: You supply a pointer to the buffer as an input
argument to PRWF$$, whereas the buffer itself is used as input or
output data by PRWF$$, or not used at all, depending on the function
you are requesting. This argument is used only during calls to read or
write data; in all other cases, LOC(O) or INTL(O) may be specified in
FORTRAN 66 or FORTRAN 77, and NULL () may be specified in PL/I.

When your program performs a read or write operation, the buffer may
have any appropriate declaration as long as it begins and ends on a
halfword boundary and resides within a single segment. Unless you
explicitly instruct them to do so, Prime linkers do not put appropri-

- ately declared buffers into memory in such a way that the buffers cross
segment boundaries.

Second Edition 5-36

TEXT STORAGE AND RETRIEVAL

For example, a FORTRAN programmer may choose to use an INTEGER*2 array
as the buffer. A PL/I programmer might find using a structure useful.
Because PRWF$$ is the "raw data mover" for the PRIMOS file system, the
data may be of any size and shape.

However, your program must also supply the length of the buffer in
halfwords in the next argument.

Length of the Buffer: The length of the buffer is an unsigned number
that represents the number of halfwords in the buffer. If it is 0,
then no data is transferred to or from the buffer by PRWF$$.

Note

The maximum value of the size argument is 65,535 because it is
an unsigned HALF INT argument. If you wish to read or write an
entire segment, you cannot do so in one PRWF$$ operation,
because 65,536 halfwords are in an entire segment. Instead,
use two separate calls to PRWF$$, specifying a size of 352,768
in each call.

File Positioning Information: Your program uses a FULL INT argument to

communicate with the PRWF$$ subroutine concerning the file position.
Its use depends on the function being performed.

When reading or writing data, this argument’s value should always be 0
in PL/I, and 000000 or INTL(O) in FORTRAN. If it is nonzero, PRWF$$
first positions the file forward or backward relative to the current
position based on the value of this argument (positive or negative).
It is recommended that you avoid this functionality, as it is intended
only for applications that perform many positioning operations.

When positioning the file, the value of this argument should be the
desired position in the file. File position is measured in halfwords.
The first halfword of the file is position 0, the second is position l,
the third is position 2, and so on.

Number of Halfwords Actually Read or Written: PRWF$$ returns the
number of halfwords actually read or written during a read or write
operation to your program. The value of this argument is not modified
for other PRWF$$ operations, but it is recommended that a variable
always be passed.

Normally, a read or write operation completes successfully, in which
case PRWF$$ sets this argument to the same value supplied as the length

of the buffer. However, if an error such as end-of-file or disk-full

occurs, the number of halfwords actually transferred may range from 0

to the length of the buffer.

5-37 Second Edition

ADVANCED PROGRAMMER '’S GUIDE, VOLUME II: FILE SYSTEM

Therefore, unless the returned error code is 0O, this value should
always be checked to see how many halfwords were actually transferred.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to PRWF$$ to read or write data, code may have one of many values.
Volume O of this series contains a comprehensive list of all standard
file system error codes. Codes specific to this operation follow.

Keyword Value Meaning

ESEOF 1 End of file. The end of the file was
reached. If no data were to be
transferred, this error code indicates that
an attempt was made to position the file
past the end-of-file position. The file is
positioned at end-of-file when this error
occurs.

If data were to be read froma file, this
error code indicates that the end of the
file was reached during the process.
However, some data may or may not have
actually been read into the buffer. The
number of halfwords actually read will be
returned in the argument described above.
This value ranges from O to one less than
the length of the buffer when the efgeof
error code is returned. The contents of
the buffer following the last halfword
transferred (as indicated by the number of
halfwords actually read) are undefined.

Unless the file is being simultaneously
written by another process or on another
file unit, any further attempts to read the
file without first repositioning it result
in e$eof being returned with the number of
halfwords transferred set to 0.

If data were to be written to the file,
this error code indicates that an attempt
to position the file failed. This means
that the value of the file position (a
doubleword value) was not 0.

E$BOF 2 Beginning of file. The beginning of the
file was reached. This should occur only
if an attempt is made to position the file
backward, using relative positioning keys.
If the key value is one of the values

Second Edition 5-38

TEXT STORAGE AND RETRIEVAL

Keyword Value Meaning

described above, then this error means that
the value of the file position is negative
instead of O as it should be.

ESUNOP 3 Unit not open. If the key specified a read
operation, then the file unit is open only
for writing or is not open at all. If the
key specified a write operation, then the
file unit is open only for reading or is
not open at all. If any other operation
was specified, then the file unit is not
open.

ESDKFL 9 The disk is full. This occurs only during
a write operation. The buffer could not be
completely written to disk because the disk
was full, so anywhere from 0 halfwords to
one less than the length of the buffer
halfwords were written.

After the data are written by PRWF$$, the
file is automatically returned to its
pre-write position. Therefore, your
program can easily retry the operation by
Simply calling PRWF$$ in the same manner
after freeing up disk space in some
fashion.

ES$MXQB 143 Maximim quota, exceeded. This occurs only
during a write operation. The buffer could
not be completely written to disk because
the quota on the directory was exceeded;
therefore, anywhere from 0 halfwords to one
halfword less than the length of the buffer
were written.

After the data are written by PRWF$$, the
file is automatically returned to its
pre-write position. Therefore, your
program can easily retry the operation by
simply calling PRWF$$ in the same manner
after freeing up some directory space or
increasing the directory's quota.

Sample Uses of PRWF$$

Here is a sample FORTRAN subroutine that uses PRWF$$ to write records
to an open file unit. If a disk-full or quota-exceeded error occurs,

‘the user is given an opportunity to delete files and restart the

5-39 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME ITI: FILE SYSTEM

program, and the subroutine will retry the write in the correct
fashion. This subroutine has the same calling sequence as PRWFS$.

SUBROUTINE PRWF(KEY , UNIT, LOCBUF , BUFLEN, POSN, RNW, CODE)
INTEGER*2 KEY, UNIT, BUFLEN, RNW, CODE
INTEGER*4 LOCBUF , POSN

C
$INSERT SYSCOM>ERRD. INS. FIN
$INSERT SYSCOM>KEYS. INS. FIN
C

INTEGER*2 RNW, PATHNM(40) , PATHLN , CODE2

CALL PRWF$$(KEY, UNIT, LOCBUF, BUFLEN , POSN, RNW, CODE)
IF (CODE.NE.E$DKFL. AND.CODE.NE.E$MXQB) RETURN

Disk-full or quota-exceeded. Tell the user to clean up the
directory and type START. First, output the error message,
along with the full pathname of the file being written (so
the user knows where to delete files!).

A
A
A
R
A
A
A
N
K
N
D
A

CALL GPATH$(K$UNIT , UNIT, PATHNM, 80, PATHLN,CODE2) /* Get the
& /* full pathname of the file open on the file unit.
IF (CODE2.EQ.0) GO TO 10 /* Error?

C
C If we can’t get the treename, ignore the error, but make the
C error message useful.
C

CALL ERRPR$(K$IRTN, CODE, ‘Unknown file name’ ,17,
& ‘'PRWF’ ,4)
GO TO 20

C
C Otherwise, produce an error message showing the treename.
C
10 CALL ERRPR$(K$IRIN, CODE, PATHNM, PATHLN, ‘PRWF’ ,4)
C
C Now explain to the user what must be done.
C
20 CALL TNOU(O,O) /* Blank line.

CALL TNOUA(’Free up some Space using DELETE, then type ',
& 43)
CALL TNOUC’START to continue. ',19)
CALL TNOU(O,0)

C
C Now invoke a new command level, and hope we return.
C

CALL COMLV$
C
C User has typed START, so retry the write.

C
IF (AND(KEY,K$POSR).NE.O) GO TO 1 /* Retry exactly as
& /* specified if post-positioning desired.

Second Edition 5-40

TEXT STORAGE AND RETRIEVAL

C
CALL PRWF$$(KEY, UNIT, LOCBUF , BUFLEN , 000000, RNW , CODE)
GO TO 2 /* Otherwise, retry with no positioning because
& /* the positioning portion of the operation has already
& /* happened.

C
END

The next example shows a subroutine that simulates a RDLIN$ interface
for a fixed-length record file. The record length is determined by the
size of the RDLIN$ buffer being passed. The calling program calls this
subroutine just as it would call RDLIN$, except that the file is a
fixed-length record file, in which each record has trailing spaces. A
Similar subroutine could be written that simulates a WILIN$ interface
for fixed-length record files.

SUBROUTINE RDLIN(UNIT, BUFFER, BUFLEN , CODE)
INTEGER*2 UNIT, BUFFER(1), BUFLEN , CODE

C
C BUFFER can be dimensioned to just 1, even though it is probably
C larger, because this subroutine does not reference its contents;
C it simply passes the buffer on to WILINS.
C
SINSERT SYSCOM>ERRD. INS. FIN
$INSERT SYSCOM>KEYS.INS.FIN
C

INTEGER*2 RNW,CODE,I, START
C

CALL PRWF$$(K$READ, /* Read a record.
UNIT, /* The file unit.
LOC(BUFFER), /* The buffer.
BUFLEN, /* The length of the buffer.
000000, /* No positioning.
RNW, /* The number of halfwords actually read/written.
CODE) /* The error code.

IF (CODE.EQ.0) RETURN /* Success.

RH
BW

BO
PO

Ro
Ro

If an error occurred, we must first fill the buffer with spaces,
starting with the word following the last word successfully
read.

If the error code was not end-of-file, however, pretend that no
halfwords were read at all.

IF (CODE.NE.E$EOF) RNW=0 /* No words read.

QA
A
A
Q
A
A
A
R
A
I
A
N
A

IF (RNW.EQ.BUFLEN) GO TO 20 /* Unlikely that the buffer was
& /* completely filled.

5-41 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

C

START=RNW+1 /* Start with the next halfword.

DO 10 I=START, BUFLEN

BUFFER(I)=' '

10 CONTINUE

C

C Now, if at least one halfword was read, then return an error

C code of zero. This can happen only on an end-of-file error.
C
20 IF CRNW.NE.O) CODE=0

RETURN
C

END

The next sample subroutine shows how to position a fixed-length record
file to a particular record number. This subroutine is called with the
file unit to be positioned, the desired position in terms of a record
number, and the record length (in halfwords) for the file. It returns
a standard file system error code.

SUBROUTINE POSCUNIT, RECNO, RECLEN , CODE)
INTEGER*2 UNIT, RECLEN , CODE

C
INTHGER*4 RECNO

$INSERT SYSCOM>ERRD. INS .FIN
$SINSERT SYSCOM>KEYS.INS.FIN
C

INTEGER*2 RNW
CG

CALL PRWF$$(K$POSN+K$PREA, /* Position absolute.
& UNIT, /* The file unit.
& oc(o), /* Unused during a position-only operation.
& 0, /* Also unused.
& RECNO*INTL(RECLEN), /* The file position.
& RNW, /* Unused, but play it safe.
& CODE) /* The error code.

C
RETURN
END

FORMAT OF A VARTABLE-LENGTH RECORD FILE

Variable-length record text files have the following attributes:

e Each line of text can contain from O characters to as many as
needed.

@ Each line of text begins on a halfword boundary.

@ Each character in a line of text occupies one 86-bit byte.

second Edition 5-42

TEXT STORAGE AND RETRIEVAL

e A new-line character (ASCII line-feed, 212 octal), and
optionally a pad character (000 octal or 240 octal) follows each
line of text to cause each new line to begin on a halfword
boundary .

@ Space compression is performed by substituting two or more
Spaces with an ASCII DCl character (221 octal) followed by a
byte representing the number of spaces.

e In general, the last line of a file is terminated by a new-line
character and an optional pad character, the same as all other
lines in the file. When an wunterminated last line is
encountered, the behavior of Prime and user-written software is
undefined. Most programs ignore all text following the last
new-line code. Some programs, however, treat the end of the
file as an implicit new-line character, and therefore recognize
an unterminated last line as if it were terminated.

For example, suppose that a file named REBEL contains the following
lines of text:

Rebel, Jean-Fery Position: Composer Born: 1661 Died: 1747
Interests: Swimming, Hiking, Dissonance

When stored using the standard PRIMOS variable-record organization, the
disk copy of this file would he:

Repel =, Jean-FeryQDlOoPos ii
t ion =: Com pose ri0l@Bor ni:
166i101i@¢dDied =: 17 4 YIFNULI n t e
rests: Swimming =, H iki non
gs , Dissonaneetlr

In the above example, DCl represents the ASCII DCl code (221 octal),
and 04 represents the number of spaces. The new-line character is
represented by LF (212 octal), and NUL indicates a null character (000
octal).

Notice that the final character in the file is a new-line code (LF).
It is not followed by a NUL code because the LF code is in the
low-order byte of the 16-bit halfword. A NUL code is inserted when it
follows an LF code only if the LF code is in the high-order byte of a
16-bit halfword in a disk record. Some programs use the space
Character (240 octal) as the fill character instead of NUL.

5-45 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Caution

A program that searches forward or backward in a file for
particular characters (such as new-line) must take into account
the space compression character DCl (221 octal). If a
Character is preceded by an odd number of DCl characters in the
file, the character is to be interpreted as a space count.

Another concern is that some programs may generate multiple
consecutive DCl and space count characters, which must be
treated collectively as the appropriate number of spaces.

Finally, it is possible for some programs to output a ITCl
followed by a byte containing O or 1. These values are to be
taken literally, that is, no spaces (the DCl code is a
"no-op"), or one space. Do not interpret a space count of 0 as
256 decimal or 65536 decimal (byte-overflow and
halfword-overflow values, respectively).

FORMAT OF A FIXED-LENGTH RECORD FILE

Fixed-length record text files have the following attributes:

e A record length mst be defined for the file. This record
length should be expressed in terms of the number of bytes per
record. If this record length is odd, the blocking factor for
the file (explained below) must be even, and the number of
records in the file must also be even. However, PRIMOS
utilities that support fixed-length records in files support
only even-length records.

e@e A blocking factor should be defined for each program that reads
or writes the file. The blocking factor is a number that
specifies how many records are read and written during a single
read/write operation.

e Each line of text is always r characters in length, where r is
the record length for the file.

Ifa line that is less than r characters long is to be written
to the file, spaces (240 octal) are appended to the line by the
user program before writing the record. This leaves the line
Left—justified in the record.

If a line that is more than r characters long is to be written
to the file, the line istruncated to r characters, and the
remaining information on the line is discarded by the user
program.

Second Edition 5-44

TEXT STORAGE AND RETRIEVAL

@ Each line is implicitly terminated by the end of the record,
that is, after the rth character in the record. The last
Character of record n of a file is immediately followed by the
first character of record n+l. The new-line character, ASCII LF
(212 octal), has no special meaning in fixed-length record
files.

@ No space compression is performed. The variable-record space
compression character, ASCII DCl (221 octal), has no special
meaning in fixed-length record files.

e The last record is immediately followed by the end of the file.
Therefore, no data follows the last record of the file. If an
attempt is made to read past the last record ina file, PRIMOS
returns an error code.

It is possible that a partial record (less than r characters
long) follows the last complete record ina file. This often
indicates that the file is corrupted. When such a partial
record exists, the data should be ignored, and an error message
should be generated to inform the user of the program that a
possible data file corruption has occurred.

To ensure that no partial records are inadvertently created,
programs that write a fixed-record length file should always
truncate the file immediately after writing the last record.

PRIMOS does not maintain information on the record length for the file.
All programs that use the file must know the record length. Similarly,
PRIMOS does not maintain any history of blocking factors that were used
when the file was written.

In fact, PRIMOS performs its own record blocking, optimized for the
type of disk being used. A PRIMOS block is referred to as a record by
other Prime documentation, or as a PRIMOS, disk, or physical record
when clarification is needed. Usually, PRIMOS stores 2048 bytes per
record, plus some housekeeping information. This housekeeping
information is used by PRIMOS to provide optimized record blocking in a
fashion that is transparent to user programs.

Determining the Blocking Factor

The choice of the appropriate blocking factor for your program depends
upon the needs of the program. The only rule imposed by PRIMOS is that
the blocking factor must be even if the record length is odd; PRIMOS
allows only reading, writing, positioning, and truncating of files at
halfword boundaries.

5-45 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Aside from that rule, the determination of a blocking factor is fairly
straightforward. In general, the larger the blocking factor, the fewer
read/write operations needed to peruse a large file. However, a larger
blocking factor increases the amount of time needed to perform most
individual read/write operations, and also requires more program memory
to hold the records. Because PRIMOS provides large amounts of virtual
memory, large blocking factors are preferred.

Although PRIMOS does not require a consistent blocking factor to be
used when reading and writing the file, it is good practice to use the
same blocking factor throughout any given program. Once the file is
written, other programs using different blocking factors can read the
same file. However, they must use the same record length, or the data
will be misinterpreted.

Calculating Record Position During Random-access Operations

The position of a record in a fixed-length record file is calculated as
follows:

the record number (starting at record 0)
the record length in characters
the position of the record in characters (starting

at character O in the file)
=n*rro

P
O
I
K
I
B

If r is odd, p will be odd whenever n is odd. In such a case, the file
should be positioned to record number n-1l, and the record copied
starting at the appropriate low-order byte of the halfword in which
record n begins.

Assuming p is even, the halfword position of the record is p divided by
2. The number of halfwords to read in is calculated as follows:

r = the record length
b = the blocking factor (r * b is even)
h = the number of halfwords to read

h=-(r*b)/2

Second Edition 5-46

TEXT STORAGE AND RETRIEVAL

QUESTIONS AND ANSWERS ABOUT TEXT FILES

This section answers some typical questions about text storage and
retrieval.

@ How can I open only an existing file for writing, or reading and
writing; that is, without creating a new file if it doesn’t exist?

Answer: There are several ways to do this. The most straightforward
way is to test for the existence of the file before opening it. fThis
is done by calling the SRSFX$ or SRCH$$ subroutines with a key value of
k$exst. For files within segment directories, use the SGD$EX
subroutine.

There is a drawback to this method, however; another user might delete
the file between your call to test for its existence and the call to
open the file.

Amore reliable way to open an existing file is to first open it for
reading. If the file does not exist, an error code e$fntf is returned.
If the file does exist, it is opened for reading, preventing any other
users from deleting it.

At this point, call the CH$MOD subroutine with the file unit number and
a key argument of k$writ or k$rdwr. This changes the state of the file
unit from read to write or read/write. If an error code such as e$fius
(File in use) is returned, close the unit and return the error code.

A sample PL/I subroutine that opens a file for writing, without
creating the file, follows.

open_existingfile: proc(filename) returns(fixed bin(15));

/* Declarations are not shown except for the input argument and
the returned value. */

del filename char(*) var,
code fixed bin(15);

call srsfx$(k$read+k$getu, filename, unit,type,0O,’’,basenane,
suffix_used, code);

if code*=0 then return(code);

call ch$mod(k$writ, unit, code);
if code*=0 then call clo$fu(unit, ignore_code);

return(code);
end; /* openexistingfile: proc */

5-47 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

@ How do I choose between SRSFK$, SGD$SOP, SRCH$$, and others?

Answer: If you want to open a file that may or may not have one or

more suffixes appended to its name, use SRSFX$. If you are programming

in PL/I or Pascal, and you want to open a file by using a pathname

(such as MYDIR>THIS_FILE), use SRSFX$.

If you want to open a file that is not a pathname, and is in the

current directory, use SRCH$$ for maximum performance.

If you want to open a file that is in a segment directory that you have

already opened on another file unit, use SGDSOP.

If you want to close a file by name, use CLO$FN. If you want to close

a file by unit number, use CLO$FU. ,

If you want to test for the existence of a file within a segment

directory, use SGD$EX. If you want to test for the existence of a file

within a file directory, make the decision as to which subroutine to

use (SRSFK$ or SRCH$$) as if you were opening the file, and use the

k$exst key.

If you want to delete a file, use FIL$DL if it is a member of a

directory, or SGD$DL if it is a member of a segment directory.

If you want to change the access of an open file unit, always use

CHSMOD.

If you want to open a member of an open segment directory, use SGDSOP.

@ What is the k$getu additive key for? What if I don’t use it?

Answer: Add the k$getu key to k$read, k$writ, and k$rdwr when you open

files using the SRSFX$ or SRCH$$ subroutines. This causes an available

file unit to be selected by PRIMOS and returned in the unit argument of

the calling sequence.

If you do not specify k$getu when opening a file, PRIMOS treats the

unit argument as an input-only argument, and uses the number in unit as

the file unit number. This is not recommended practice.

Dynamic unit allocation has been preferred since PRIMOS Revision 16,

when the k$getu functionality was first made available. Only programs

that have to maintain past behavior for compatibility reasons should

pass file units to PRIMOS when opening files. All other programs

Should use k$getu or specify -10000 as the unit number, whichever is

needed by the procedure called.

Second Edition 5-48

TEXT STORAGE AND RETRIEVAL

If you decide not to use k$getu, be aware that there are two additional
error codes that may be returned. The e$uius (Unit in use) code is
returned if the file unit you specified is already open. The e$bunt
(Bad unit number) code is returned if the file unit you specified is
not a legal file unit number. However, the error code e$fuiu (All file
units in use) is not returned, because you are not asking PRIMOS to
allocate a new file unit.

5-49 Second Edition

Data Storage and

Retrieval

Certain applications require the ability to maintain one or more data
bases on disk. Prime provides several facilities for building and
manipulating data bases from within programs and via interactive
sessions. These include MIDASPLUS, DBMS, DISCOVER, INFORMATION, and
PRISAM. Information on these products can be found in the Prime 50
series Technical Summary.

In addition, PRIMOS provides several facilities to allow applications
to perform their own data base management. These facilities are:

@ The PRIMOS file system, which allows the hierarchical
organization of files, identified by name or by number.

e The semaphore mechanism, which provides a method of handling
concurrency problems that occur when several users attempt to
access the same data base simultaneously.

@ The Prime 50 series architecture, which facilitates rapid access
by permitting the sharing of memory-resident data among several
users.

This chapter describes the PRIMOS file system as used by data base
management software. Volumes II and III of the Subroutines Reference
Guide describe the use of semaphores and shared memory for data base
management purposes. In addition, the Prime 50 Series Technical

and the System Architecture Reference Guide describe semaphores
and shared memory in detail.

6-1 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

FILE ORGANIZATION

Two useful file organizations provided by the PRIMOS file system are:

@ Segment directories, for organizing data files by number

@® File directories, for organizing data files by name

This chapter describes how to manipulate segment directories and file
directories under PRIMOS. This is followed by a short discussion on
the reading and writing of data files (whether in segment directories
or file directories). Finally, a question and answer section is
provided.

SEGMENT DIRECTORIES

Your program manipulates files within a segment directory by first
opening the segment directory itself and then positioning the segment
directory to the desired file by using SGOR$$. Your program then calls
SGDOP, SGDEX, or SGD$DL with the file unit number of the opensegment
directory to manipulate members of the segment directory. When your
program is finished with the segment directory, it closes the segment
directory unit by calling CLO$FU.

Once a file within a segment directory is opened, you can treat it asa
text file (described in Chapter 5, TEXT STORAGE AND RETRIEVAL) or a
data file (described later in this chapter). The remainder of this
section describes:

e Subroutines used to access segment directories

@ How to open a segment directory

e@ How to position a segment directory

@ How to extend a segment directory

@ How to open a file within a segment directory

@ How to delete a file within a segment directory

@ How to scan a segment directory

Subroutines Used to Access Segment Directories

The subroutines most often used when accessing segment directories
follow.

Second Edition 6-2

DATA STORAGE AND RETRIEVAL

Subroutine Use

SRSFX$ Accepts a pathname and calls SRCH$$ to manipulate
the object according to the specified key.
SRSFX$ calls SGOR$$ to position to a file.

SGIR$$ Positions an open segment directory to a
specified member. Positioning is necessary
before calling SRCH$$ or SGD$DL to operate on a
member of a segment directory. In addition,
SGDOR$$ is used to expand and truncate segment
directories, and to read the position of an open
sepment directory.

SGDSOP Opens a member file of an open segment directory,
optionally Creating the member if it does not
already exist.

SGD$DL Deletes a member file of an open segment
directory.

SGD$EX Tests for the existence of a member file of an
open segment directory.

How to Open a Segment Directory

Your program must open a segment directory before it can access members
of the segment directory. Use the SRSFX$ or SRCH$$ subroutine to open
the segment directory. Your program must open the segment directory
for reading and writing if it is going to create or delete members. If
your program is going to open and close only existing members, it need
Open the segment directory only for reading. Opening a segment
directory only for writing (but not reading) is not recommended.

When your program calls the SRSFX$ or SRCH$$ subroutine to open a
segment directory, it provides:

e The name of the segment directory to be opened

e A key that specifies how the segment directory is to be opened

The SRSFX$ or SRCH$$ subroutine attempts to open the specified segment
directory, and returns to your program:

e Anerror code that indicates whether the operation was
successful

e A file unit number that identifies the open segment directory.
Your program uses this number when performing operations (such
as extend and truncate) on an open segment directory or when it
manipulates members of a segment directory.

6-3 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

e The file type, indicating the type of segment directory just

opened (including SEGSAM and SEGDAM)

Your program should close a segment directory when finished with it.

Do this with CLO$FU to close the file unit, as described in Chapter 5,

TEXT STORAGE AND RETRIEVAL.

This section describes the input and output parameters that apply when

calling SRSFX$ and SRCH$$, and then shows a sample call to SRCHS$.

Figure 6-1 illustrates the calling sequence of SRSFX$ to open a segment

directory; Figure 6-2 illustrates the calling sequence of SRCH$$ to
open a segment directory.

The Name of the Segment Directory: The rules for specifying the

segment directory name depend on the system subroutine being called.

The filename may be a pathname if SRSFX$ is being used. If SRCH$$ is

being used, the filename must be an entry name; that is, it cannot

contain a > symbol.

The Key: The key argument is calculated as follows:

key = action + newfile [+ K$GETU]

The values and meanings are:

Value . Meaning

action Specifies whether the segment directory is to ke

opened for reading or for both reading and writing.

These states are often identified by the mnemonics R

and RW (or WR), respectively. The keywords used

when opening segment directories are:

Keyword Value Meaning

K$READ 1 Open the sesment
directory for reading.

K$RDWR 3 Open the segment
directory for both
reading and writing.

Second Edition 6-4

DATA STORAGE AND RETRIEVAL

Value Meaning

When a segment directory is open for reading, and an
attempt is made to create or delete a member of it
or to change its size, an error code of e$unop (Unit
not open) is returned.

newfile Specifies what type of segment directory should be
created if the segment directory does not already
exist. (The segment directory is created only if it
is being opened for writing or for Treading and
writing.) The keywords used for segment directories
are:

Keyword Value Meaning

K$NSGS 2048 Create a new threaded
(SAM) segment directory.

K$NSGD 3072 Create a new directed
(DAM) segment directory.

SAM and DAM segment directories differ only in
performance and storage efficiency, as described in
Chapter 1, PRIMOS FILE SYSTEM CONCEPTS.

Note

The type of a segment directory (SAM or DAM)
is unrelated to the type of any of its
members. For example, a SAM segment
directory may contain DAM files.

K$GETU Specifies that PRIMOS is to use an available file
unit, and return the selected file unit number in
the unit parameter of the calling sequence.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SRSFX$ or SRCH$$ to open a segment directory, code may have one of
many values. Volume O of this series contains a comprehensive list of
all standard file system error codes. Error codes specific to this
operation follow.

6-5 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Open a SegmentDirectory, With Possible Suffix

Pathname of

Object to Open 7

Numberof Suffixes
____ in suffixes Array

(0 Means No Suffix
KSREAD Processing)

KSRDWR

eensen|
+ Array of
IksNseD Desired

Suffixes
+ K$GETU

v Y <=32
HALF <=128 HALFy. STRING
INT STRING INT ~~ ARRAY

$ 4 ' {
SRSFX$ (key, name, unit, type, num__suffixes, suffixes, basename, suffix__used, code)

' f 4 '
HALF HALF HALF <=32 HALF HALF
INT INT INT STRING INT INT

[ARRAY(2)] FTN/PMA | j
only* ype LL Standard

Error
Code

File Unit .
Index Into suffixes

Number of Suffix Used
(matched); 0 Means
Null Suffix (2): Length of| _ FTN/PMAonly”

a (1): Termination Character Position

| (characters) > Final Component of name
Without Suffix Used; Useful
When Appending Another Suffix

Side Effects: May reset current attach point.

* Function value is returned in L-register; typically, you need only to declare as HALF INT,
becausefirst datum is all you need andis in A-register. Otherwise, you must declare it as
FULL INT to makeit work.

Calling Sequence of SRSFX$ to
Open a Segent Directory

Figure 6-1

Second Edition 6-6

DATA STORAGE AND RETRIEVAL

Open SegmentDirectory by Object Name

KS$READ

KS$RDWR

‘ K$NSGS

KSNSGD

+ K$GETU

|
|

___ Name of
Object

Length of
Object Name
(characters)

 v
HALF 32. HALF
INT STRING “INT

ee,
SRCH$$ (key, name, name__len, unit, type, code)

HALF HALF HALF

INT INT INT

File | Standard
Unit Error

Number Code

Object
Type

Calling Sequence of SRCH$$ to
Open a Segment Directory

Figure 6-2

6-7 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Keyword

E$FIUS

E$NRIT

E$FNIF

Second Edition

Value

5

10

15

Meaning

File in use. The segment directory being
opened is already open on another file
unit, or by another user. Under normal
lock settings, a segment directory that is
open for reading can have many file units
open to it, but a segment directory open
for writing can have only one file unit
open to it. Therefore, a segment directory
that is open for reading cannot be opened
for writing, nor can a segment directory
that is open for writing be opened for
writing or for reading.

See Chapter 8, FILE ATTRIBUTES, for more
information on the read/write lock.

Insufficient access rights. If the segment
directory being opened already exists, this
means that the user does not have
sufficient access to the segment directory.
If the segment directory does not exist,
then the user does not have Add access to
the directory in which the segment
directory is to be created.

For calls to SRSFX$, this error code may
indicate a problem attaching to the
directory specified by the pathname
argument of the calling sequence. In this
case, the user does not have Use access to
at least one directory in the pathname.

Not found. The segment directory being
opened does not exist. The action portion
of the key argument is probably k$read,
otherwise the segment directory would be
created.

For calls to SRSFX$, this error code may
indicate a problem attaching to the
directory specified by the pathname
argument of the calling sequence. In this
case, at least one directory in the
pathname does not exist. Even if the
action portion of the key argument is
k$rdwr, no directory will ever be created
via a call to SRSFX$. Use the DIRS$CR
subroutine to create a directory.

DATA STORAGE AND RETRIEVAL

Keyword Value Meaning

ES$BNAM 17 Tllegal name. The filename or pathname as
Supplied by the calling program is not
valid. See the Prime User's Guide for a
description of the valid syntax for a
filename and pathname.

E$WIPR 56 The disk is write-protected. A segment
directory cannot be opened for writing, nor
can it be created, on a write-protected
disk. (A disk is write—protected using the
ADDISK command, described in the System
Operator's Guide, Volume II.)

ESMXQB 143 Maximum quota. exceeded. This error can
occur only if a new segment directory is
being created, and hence cannot occur if
the action portion of the key argument is
k$read.

ESNFAS 189 Top-level directory not found or
inaccessible (SRSFX$ only). The first
directory name supplied in the pathname
could not be located on any of the system
disks.

The File Unit Number: The returned file unit number is valid only when
the returned error code is 0. After opening a segment directory, your
program passes the returned file unit number to other system
subroutines (such as SGOR$$ and SGD$OP) to manipulate the segment
directory and its members.

Once your program closes the segment directory, the file unit number is
returned to the free pool for reuse by PRIMOS when another file is
opened .

The File Type: The returned file type is valid only when the returned
error code is 0, and the segment directory is actually opened. The
file type is one of the following five values:

Value Meaning

0 A SAM file has been opened. Use RDLINS, WTILINS,
PRWF$$, and similar subroutines to read or write it.
(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for

information on how to do this.)

1 A DAM file has been opened. Use RDLINS, WTILINS,
PRWF$$, and similar subroutines to read or write it.

6-9 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Value Meaning

(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for

information on how to do this.)

A SAM segment directory (SEGSAM) has been opened. Use
SGDR$$ to operate on members of this segment
directory.

A DAM segment directory (SEGDAM) has been opened. Use
SGOR$$ to operate on members of this segment
directory.

A top-level directory has been opened. Use DIR$LS,
DIRRD, ENTRD, to read information on files in this
directory. (See the section entitled FILE
DIRECTORIES, later in this chapter, for information on
how to do this.)

Note

It is important to understand that opening a segment directory
is very different from opening a segment directory member. The
above section describes how to open a segment directory.
Information on opening members of a segment directory is in an
ensuing section entitled How to Open a File Within a Segment
Directory.

Le:

The following example shows how a FORTRAN program would open
the object MYSEGDIR in the current directory for reading and writing,
creating a SAM segment directory if it does not already exist:

CALL SRCH$$(K$RDWR+K$NSGS+K$GETU, ‘MYSEGDIR’ ,8, UNIT, TYPE, CODE)
IF (CODE.NE.O) GO TO 1000

1000 CALLERRPR$(K$IRTN, CODE, ’MYSEGDIR’ ,8, ‘MYPROGRAM’,9)
RETURN

How to Position a Segment Directory

Before opening a file within a segment directory, your program must
position the segment directory to the appropriate member file.

Second Edition 6-10

DATA STORAGE AND RETRIEVAL

position a segment directory by using the SGDR$$ subroutine. When your
program calls SGDR$$ to position a segment directory, it provides:

e The file unit of the open segment directory

e Akey that specifies that a position operation is to ke
performed

e The desired position of the segment directory, also known as the
member file number

The SGOR$$ subroutine attempts to position the specified segment
directory, and returns to your program:

e An error code indicating whether the operation was successful

e A file existence indicator. This integer indicates whether the

specified position indicates an existing file, a nonexistent
file, or lies beyond the limits of the segment directory

This section describes the input and output parameters that apply when
calling SGDR$$ to position a segment directory, and then shows a sample
call to SGDR$$. Figure 6-3 illustrates the calling sequence of SGIR$$
to open a segment directory.

The Desired Position of the Segment Directory: Your program passes the
desired position of the segment directory, which ranges from 0 to 65535

(-1 signed), inclusive. The resulting position in the segment
directory may or may not have a member file present.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was

entirely successful. Otherwise, code is always positive. After a call
to SGIR$$ to position a segment directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all

standard file system error codes. Error codes specific to this

operation are:

Keyword Value Meaning

E$EOF 1 End of file. The desired position is
beyond the end of the segment directory.
The segment directory is left positioned at
the end of the directory. If a call to
SRCH$$ with a key argument of k$writ or
k$rdwr is performed within the segment
directory at this point, a new file is
created and the segment directory is
automatically extended by one file entry.

6-11 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Keyword Value Meaning

ES$UNOP 3 Unit not open. The specified file unit is
not open. This usually indicates a program

error, although it can also be the result
of the user exiting the program via
CONTROL-P, typing CLOSE ALL, and then
starting the program again by typing START.

The File Existence Indicator: If the positioning operation is
successfully performed, SGOR$$ returns a file existence indicator
(result) to your program. This variable takes on one of the following
values:

Value Meaning

1 The specified position is within the bounds of the
segment directory, and a member file exists at this
position. In other words, a member file exists with
this member file number.

0 The specified position is within the bounds of the
segment directory, but no member file exists at this
position. In other words, no file exists with this
member file number.

-1 The specified position is at the end of the segment
directory. Therefore, no member file exists at this
position. If a new member file is created at this
position, the segment directory is automatically
extended to accommodate it; however, the file number
of the newly created member file is not necessarily
position, but is instead the end-of-file member number
plus one (which may be less than or equal to
position).

Example: The following sample use of SGIR$$ positions the segment
directory open on file unit SGUNIT to member file number 5. If the
file exists, it prints the word EXISTS. If the file does not exist, it
prints the words NOT THERE. If the position is at the end of the
segment directory, it prints the words AT END OF SEGDIR.

second Edition 6-12

DATA STORAGE AND RETRIEVAL

Position Segment Directory to Entry Number

Unit Number
of Segment

Directory

K$SPOS

Desired Position
(Member File Number)

 v
HALF HALF HALF

INT INT INT

toy 4
SGDR$$(key, unit, position, result, code)

HALF HALF
INT INT

Standard
Error

Code

1: position Contains a File

0: position Contains No File

—1: position Is Beyond End of

SegmentDirectory

Calling Sequence of SGDR$$ to
Position a Segment Directory

Figure 6-35

6-13 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

CALL SGDR$$(K$SPOS , SGUNIT,5, INDICS8 , CODE)
IF (CODE.NE.O) GO TO 1000
IF CINDIC8) 10, 20, 30

C
10 CALL TNOU('AT END OF SEGDIR’ ,16)

GO TO 100
20 CALL TNOU(‘NOT THERE’ ,9)

GO TO 100
30 CALL TNOU(EXISTS’ ,6)

GO TO 100
C
100

1000 CALL ERRPR$(K$IRIN, CODE, ‘SGDR$$ error’ ,12, ‘MYPROGRAM’ ,9)
RETURN

How to Extend a Segment Directory

To create a new member file within a segment directory when the member
file number represents a position beyond the end of the segment
directory (as indicated by a returned error code of e$eof when trying
to position the segment directory to the specified file number), your
program must extend the segment directory to accommodate the new
member.

When a segment directory is extended, PRIMOS adds new placeholders for
segment directory members. These placeholders represent nonexistent
files: they may be used by your program to hold new files. You use the
SGDR$$ subroutine to extend a segment directory. When your program
calls SGDR$$ to extend a segment directory, it provides:

e The file unit of the open segment directory.

@ A key that specifies that an extend operation is to be performed

e The desired size of the segment directory, also known as the new
end-of-segment—directory location

This section describes the input and output parameters that apply when
calling SGOR$$ to extend a segment directory, and then shows a sample
call to SGOR$$. Figure 6-4 illustrates the calling sequence of SGIR$$
to extend a segment directory.

Second Edition 6-14

DATA STORAGE AND RETRIEVAL

The Desired Size of the Segment Directory: Your program passes the
desired size of the segment directory (new_size), which ranges from 0
to 65535 (-1 signed), inclusive.

Note

You cannot use k$msiz to extend a segment directory to a full
length of 65,536 member entries, because the data type of the
desired size cannot accommodate the number 65536. If it is
necessary to extend a segment directory to 65,536 entries,
first extend it to 65,535 entries using SGDR$$, which leaves
the segment directory unit positioned at the end of the segment
directory; then use SGD$OP to create a member file, which,
when at the end of a segment directory, automatically extends
the segment directory by one entry; use CLO$FU to close the
newly created (and empty) member file; finally, use SGD$DL to
delete the member file, leaving an empty entry at member file
number 655355.

Keep in mind that a segment directory of size position can have
member file numbers ranging from O through position-1l. For
example, extending a segment directory to 65 entries for member
file numbers ranging from O through 6, but not including
member file number 65.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SGOR$$ to extend a segment directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this
Operation are:

Keyword Value Meaning

ESUNOP 3 Unit not open. The specified file unit is
open only for reading, or is not open.
This usually indicates a program error,
although it can also be the result of the
user exiting the program via CONTROL-P,
typing CLOSE ALL, and then typing START.

ESDKFL 9 The disk is full. The segment directory
may or may not have been extended, but it
has not been extended to the desired size.
The segment directory is left positioned at
the end of the directory.

6-15 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME IT: FILE SYSTEM

Extend (or Truncate) Segment Directory

Unit Number Desired Size
of Segment (Numberof
Directory Possible Members)

K$MSIZ 0 (Zero)

v v
HALF HALF HALF HALF

INT INT INT INT

t 4
SGDR$$(key, unit, new__size, ignored, code)

HALF
INT

Standard
Error

Code

Side Effects: Position of unit after operation is at end of segment
directory if code is 0, undefined otherwise.

Calling Sequence of SGIR$$ to
Extend a Segment Directory

Figure 6-4

Second Edition 6-16

DATA STORAGE AND RETRIEVAL

Keyword Value Meaning
ESMXQB 143 Maximum quota exceeded. The segment

directory may or may not have been
extended, but it has not been extended to
the desired size. The segment directory is
left positioned at the emd of the
directory.

Example: The following sample use of SGDOR$$ extends the segment
directory open on file unit SGUNIT to hold 205 entries.

CALL SGDR$$(K$MSIZ, SGUNIT, 205 , IGNORE , CODE)
IF (CODE.NE.O) GO TO 1000

C
1000 CALL ERRPR$(K$IRTN,CODE, ‘SGDR$$ error’ ,12, ‘'MYPROGRAM’, 9)

RETURN

How to Open a File Within a Segment Directory

Before data in a file are accessed, the file must be opened. To opena
file within a segment directory, have your program position the segment
directory by using the SGDR$$ subroutine, and then open the member file
by using the SGD$OP subroutine. When your program calls the SGDSOP
subroutine, it provides three items of information.

@ The file unit number of the open segment directory that is
positioned to the member file to be opened

@ A key that specifies how the member file is to be opened

@ The file unit number on which the member file is to be opened

The SGD$OP subroutine attempts to open the specified file and returns
to your program:

e An error code indicating whether the operation was successful

e A file unit number that identifies the open file. This number
is used when performing operations (such as read and write) on
an open file.

e The file type, indicating the type of file just opened
(including SAM, DAM, CAM, SEGSAM, and SEGDAM).

6-17 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

This section describes the input and output parameters used when
Calling SGD$OP, and then shows a sample call to SGD$OP. Figure 6-5
illustrates the calling sequence of SGDS$OP.

The Key: The key argument = action. Its values and meanings are:

Value Meaning

action Specifies how the file is to be opened. This
distinguishes between a file being open for reading,
writing, and both reading and writing. These states
are often identified by the mnemonics R, W, and RW
Cor WR), respectively. The keywords used for
opening files are:

Keyword Value Meaning

K$READ 1 Open a file for reading
only.

K$WRIT 2 Open a file for writing
only.

K$RDWR 3 Open a file for reading
and writing.

K$VMR 16 Open a file for VMFA
read, used only before
calling one of the EPF
subroutines to initial-
ize or execute the file.

If your program attempts to write to a file that is
open for reading, an error code of e$unop (Unit not
open) is returned to your program. This same error
code is returned if your program attempts to read a
file that is open for writing.

The Desired Unit Number: Your program passes the value -10000 to
indicate that PRIMOS is to choose an available file unit number. If
you want your program to specify the unit number instead of letting
PRIMOS select the number, your program supplies a unit number between 1
and 126 (or 1 and 15 for a program running under PRIMOS II). SGDSOP
returns the chosen file unit number used as the value of the SGD$OP
function.

second Edition 6-18

DATA STORAGE AND RETRIEVAL

Open Member of SegmentDirectory

— 10000
Unit Number (Find Availableof Segment .;
Directory Unit Number)

1<n<126
(Use this Unit
Number)

K$READ

KSWRIT Type of Newly Created File:

K$RDWR K$NSAM

KSVMR K$NDAM
K$NSGS

Vv v K$NSGD

HALF HALF HALF HALF K$NCAM
INT INT INT INT

SGDS$OP(key, seg-unit, file-unit, type, new-type, code)

HALF HALF HALF
INT INT INT

Unit Number Bandara
Member Opened On Code

 _———. Type of File Opened

Value Type
0 SAM File
1 DAM File
2 SAM Segdir
3 DAM Segdir
7 CAM File

Side Effects: If seg-unit is at end of segment directory and key is KSWRIT or
K$RDWR, SGDS$OPattempts to automatically extend segment
directory by one entry, which also repositions seg-unit to new
end-of-segdir position; otherwise, size of segment directory
and position of seg-unit remain unchanged.

Calling Sequence of SGD$OP
Figure 6-5

6-19 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

The Error Code: An output argument, code, informs your program of the

success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SGD$OP to open a segment directory member, code may have one of many
values. Volume O of this series contains a comprehensive list of all
standard file system error codes.
operation are:

Keyword

E$FIUS

ESDKFL

E$NRIT

E$FNTS

second Edition

Value

5

10

16

Meaning

File in use. The file being opened is
already open on another file unit, or is
being used by another user. Normally, a
file that is open for reading cannot be
opened for writing, nor can a file open for
writing be opened for reading. A file that
is open for writing can have only one file
unit open to it, whereas a file open for
reading can have many file units open to
it.

If you expect your program to open a file
that may occasionally be in use by another
process for a short time, consider having
your program repeatedly attempt to open an
in-use file for 30 seconds or a minute,
Sleeping one second in between each attempt
by calling SLEEP$.

See Chapter 8, FILE ATTRIBUTES, for more
information on the read/write lock.

The disk is full. This error can occur
only if a new file is being created, and
hence cannot occur if the action portion of
the key argument is k$read.

Insufficient access rights. If the file
being opened already exists, this means
that the user does not have sufficient
access to the parent segment directory. If
the file does not exist, then the user does
not have Write access to the parent segment
directory in which the file is to lke
created.

Not found in segment directory. The file
being opened does not exist in the segment
directory. The action portion of the
argument is typically k$read, otherwise the
file would have been created.

6-20

Error codes specific to this

DATA STORAGE AND RETRIEVAL

Keyword Value Meaning

ESMXQB 143 Maximum quota, exceeded. This error can
occur only if a new file is being created,
and hence cannot occur if the action
portion of the key argument is k$read.

ES$NINF 159 No information. This indicates that some
error occurred, but the user does not have
List access to the directory involving the
error. In such a case, the e$ninf error
code is always returned to prevent the user
or calling program from being able to
determine any information on the directory.
Therefore, this error code is to be
interpreted as any possible error, in
addition to a case of insufficient access.

The File Unit Number: The returned file unit number is valid only when
the returned error code is 0. After opening a file, your program
passes the returned file unit number to other system subroutines (such
as PRWF$$ and RDLIN$) to read, write, and position the file.

Once your program closes the file, the corresponding file unit number
can no longer be used. It may then be reused by PRIMOS when another

file is opened.

The File Type: The returned file type is valid only when the returned
error code is 0. The file type is one of the following five values:

Value Meaning

0 A SAM file has been opened. Use RDLINS, WILINS,
PRWF$$, and similar subroutines to read or write it.
(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for

information on how to do this.)

1 A DAM file has been opened. Use RDLIN$, WILINS,
PRWF$$, and similar subroutines to read or write it.
(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for
information on how to do this.)

2 A SAM segment directory (SEGSAM) has been opened. Use
SGDIR$$ to operate on members of this segment
directory.

3 A DAM segment directory (SEGDAM) has been opened. Use
SGOR$$ to operate on members of this segment
directory.

6-21 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Value Meaning
7 A CAM file has been opened. Use RDLINS, WILINS,

PRWF$$, and similar subroutines to read or write it.
(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for
information on how to do this.)

The New File Type: Specifies what type of file should be created if
the file does not already exist. (The file is created only if it is
being opened for writing or for reading and writing.) The keywords
used for text or data files are:

Keyword Value Meaning
K$NSAM 0 Create a new threaded (SAM) file. (This is

the default.)

K$NDAM 1024 Create a new directed (DAM) file.

K$NSGS 2048 Create a new threaded (SAM) segment
directory.

K$NSGD 3072 Create a new directed (DAM) segment
directory.

K$NCAM 4096 Create a new contiguous (CAM) file.

SAM and DAM files differ only in performance and storage efficiency, as
described in Chapter 1, PRIMOS FILE SYSTEM CONCEPIS.

Examples: The following example shows how a FORTRAN program would open
the file at the current position for reading in the segment directory
open on unit SGUNIT.

UNIT=SGD$OP(K$READ, SGUNIT , -10000 , TYPE , CODE)
IF (CODE.NE.O) GO TO 1000

1000 CALLERRPR$(K$IRIN, CODE, 'Segdir file’, ‘MYPROGRAM’ ,9)
RETURN

Second Edition 6-22

DATA STORAGE AND RETRIEVAL

The next example illustrates the use of the new-type value in the
Calling sequence to SGD$OP. The file at the current position is opened
for reading and writing in the segment directory open on unit SGUNIT.
If it does not exist, it is created as a DAM (directed) type file.
Only the subroutine call itself is shown; the error code is examined
in the same fashion as shown in the above example.

UNIT=SGD$OP(K$RDWR , SGUNIT, -10000 , TYPE , K$NDAM, CODE)

How to Delete a File Within a Segment Directory

Your program can delete a file within a segment directory by
positioning the segment directory with the SGDR$$ subroutine, and then
using the SGD$DL subroutine to actually delete the file. When calling
the SGD$DL subroutine, your program provides the file unit number of
the open segment directory that is positioned to the file to be
deleted. The SGD$DL subroutine attempts to delete the specified file,
and returns an error code indicating whether the operation was
successful .

This section describes the input and output parameters used when
Calling SGD$DL, and then shows a sample call to SGD$DL. Figure 6-6
illustrates the calling sequence of SGD$DL.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation.If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SGD$DL to delete a segment directory member, code may have one of
many values. Volume O of this series contains acomprehensive list of
all standard file system error codes. Error codes specific to this
operation follow.

Keyword Value Meaning

E$FDEL 11 File open on delete. The file to be
deleted is already open on another file
unit, or is being used by another user.

E$FNTS 16 Not found in segment directory. The file
being deleted does not exist in the segment
directory, or the segment directory is
positioned at the end of the directory.

E$SUNO ol Segdir unit not open. The segment
directory unit is open only for reading, or
is not open at all.

6-23 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Delete Member of Segment Directory

Unit Number
of Segment
Directory

HALF

INT

'
SGDS$DL(unit, code)

HALF

INT

Standard
Error

Code

Calling Sequence of SGD$DL
Figure 6-6

second Edition 6-24

DATA STORAGE AND RETRIEVAL

Example: The following example shows how a FORTRAN program would
delete the file at the current position in the segment directory open
on unit SGUNIT:

CALL SGD$DLCSGUNIT , CODE)
IF (CODE.NE.O) GO TO 1000

1000 CALLERRPR$(K$IRIN, CODE, ‘Segdir file’, ’MYPROGRAM’ ,9)
RETURN

How to Scan a Segment Directory

If you want your program to scan a segment directory for all of its
members, you use the SGOR$$ subroutine. In addition to the functions
described earlier, this subroutine can find the file numbers of all of
the members of a segment directory. This is referred to as the “find
full entry" function.

In addition, you can use the SGDR$$ subroutine to find all of the
unused file numbers in a segment directory. This capability is useful
when your program needs to create a new segment directory member. Your
program can scan the segment directory for "free" member numbers, and
use one of these numbers for the new member it is going to create.
This capability is referred to as the "find free entry" function.

The "find full entry" and "find free entry" functions are very similar.
Your program provides the starting position of the segment directory,
and SGOR$$ searches the segment directory for the first full or free
entry starting at that position and continuing toward the end of the
segment directory. When SGDR$$ finds the appropriate entry, it leaves
the segment directory at that position and returns the position to your
program. (The returned position also serves as the file number of a
new or existing segment directory member.)

The only difference between the two functions is that the "find full
entry" function of SGDR$$ sets the position of the segment directory at
the first position that corresponds to an existing member of the
segment directory, whereas the "find free entry" function of SGR$$
Sets the position of the segment directory at the first position that
corresponds to an unused member number in the segment directory.

6-25 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

When your program calls SGDR$$ to search a segment directory for a full
or free position, it provides:

e The file unit of the open segment directory

e A key that specifies that a search operation is to be performed

e The starting position of the segment directory, also known as
the first file number to be checked

The SGDR$$ subroutine searches the specified segment directory and

returns to your program:

e Anerror code indicating whether the operation was successful

e The ending position of the segment directory following the

search, also known as the first full or free entry following the

specified starting position

This section describes the input and output parameters that apply when

calling SGDR$$ to search a segment directory, and then shows a sample

call to SGOR$$. Figure 6-7 illustrates the calling sequence of SGIRS$$
to scan a sepment directory.

The Key: Set the key argument to one of the following two values:

Value Meaning

K$FULL Find the first full entry

K$FREE Find the first free entry

The Starting Position of the Segment Directory: Your program passes

the starting position of the segment directory, which ranges from 0 to

65535 (-1 signed). The resulting position in the segment directory may
or may not have a file present.

The Error Code: An output argument, code, informs your program of the

success or failure of the operation. If code is 0, the operation was

entirely successful. Otherwise, code is always positive. After a call

to SGDR$$ to search a segment directory, code may have one of many

values. Volume O of this series contains a comprehensive list of all

standard file system error codes. Error codes specific to this

operation are:

Second Edition 6-26

DATA STORAGE AND RETRIEVAL

Scan SegmentDirectory for Next Full/Free Entry

Unit Number
of Segment
Directory

Starting Position of Scan
(0 if First Scan, or Position
of Last Full/Free Entry
Plus 1 if Not First Scan)

K$FULL

K$FREE

’ ’
HALF HALF HALF

INT INT INT

+ toy
SGDR$$(key, unit, start__position, end__position, code)

!
HALF HALF

INT INT

Standard
—-» Error

Code

Position of Full or Free Entry
or —1 if No Full/Free
Entry Found (Note Ambiguity:
— 1=65535 unsigned, which
is a valid memberfile number)

Side Effects: The position of unit is left at end-position
if desired entry is found; otherwise, unit is positioned
to end of segment directory.

Calling Sequence of SGDR$$ to
scan a Sesment Directory

Figure 6-7

6-27 Second Edition

ADVANCED PROGRAMMER‘S GUIDE, VOLUME II: FILE SYSTEM

Keyword Value Meaning

ES$EOF 1 End of file. The starting position is
- beyond the end of the segment directory.
The segment directory is left positioned at
the end of the directory. If a call to
SRCH$$ with a key argument of k$writ or
k$rdwr is performed within the segment
directory at this point, a new member file
is created, and the segment directory is
automatically extended by one file entry.

E$UNOP 3 Unit not open. The specified file unit is
not open. This usually indicates a program
error, although it can also be the result
of the user exiting the program via
CONTROL-P, typing CLOSE -ALL, and then
typing START.

The Ending Position of the Segment Directory: The SGOR$$ subroutine

returns the ending position of the segment directory resulting from the

search operation. If the desired entry (full or free) was found, its

position is returned in this variable. Otherwise, a value of -1 is

returned.

Caution

A returned value of -1 in this variable corresponds to an

unsigned value of 65535, and hence is not a reliable indicator

of a search operation that failed to find the desired entry.

When a value of -1 is returned in this field, have your program

call SGDR$$ to position the segment directory to file number

65535.

If SGDR$$ returns an end-of-file error code, or if it returns a

file existence indicator of -1, then segment directory position

65535 does not exist. If SGOR$$ returns a file existence

indicator of 0, then segment directory position 65555 exists,

but there is no file with that number (the entry is free). If

it returns a file existence indicator of 1, then file number

65535 exists (the entry is full).

Example: The following sample subroutine displays a list of all full

entries in an open segment directory by using SGOR$$ to scan for
existing entries.

Second Edition 6-28

C

DATA STORAGE AND RETRIEVAL

SUBROUTINE LISTEM(SGUNIT, CODE)
INTEGER*2 SGUNIT, CODE

$INSERT SYSCOM>ERRD. INS. FIN
SINSERT SYSCOM>KEYS. INS. FIN

Q
Q
Q
a
A
Q

a
Q
a
q
r
a

O
l

§
C2

A
R
a
A
A

Q
R
Q
)

INTEGER*2 FILNBR,NXTNBR,MYTH

FILNBR=O0

CALL SGDR$$(K$FULL, SGUNIT, FILNBR , NXTNBR , CODE)
IF (CODE.NE.O) RETURN

IF (NXTNBR.NE.-1) GO TO 20

The returned file number is -1, or 65535 unsigned. Find out
if file number 65535 is a myth.

CALL SGDR$$(K$SPOS, SGUNIT, -1,MYTH, CODE)
IF (CODE.NE.E$EOF) GO TO 15

CODE=0 /* Treat end-of-file as no more full entries.

GO TO 100

IF (MYTH.LE.O) GO TO 100 /* No entry there.

We have a file number in NXTNBR, print out the number with
an optional header.

IF (FILNBR.NE.O) GO TO 30 /* First full entry?

CALL TNOU('File numbers:',13) /* Yes, explain the list.

CALL TNOUAC' ‘,2) /* A little indentation.
CALL TOVFD$(NXTINBR) /* Number may be negative, of course.
CALL TNOU(O,O) /* End of line.

IF (NXTNBR.EQ.-1) GO TO 100 /* Definitely last entry?
FILNBR=NXTNBR+1 /* No, search for next entry.
GO TO 10 /* Thanks, Debbie...

IF (FILNBR.NE.O) RETURN /* Finished with listing.

CALL TNOUC'’No files.’ ,9)
RETURN

END

6-29 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

FILE DIRECTORIES

Relating primarily to the manipulation of file directories themselves,

this section describes:

@ How to create a file directory

@ How to open a file directory

@ How to scan a file directory

@ How to determine a new filename

The subroutines most often used when accessing file directories are:

Subroutine Use

DIR$CR Creates a directory. Your program passes the

pathname of the directory to DIR$CR along with a

structure defining the initial state of the

directory. DIR$CR creates the specified

directory. Your program may then populate the
directory with new file system objects.

SRSFX$ Accepts a pathname and calls SRCH$$ to manipulate

the directory according to the specified key.

SRCH$$ Accepts a filename, and searches for the
directory in the current directory. The SRSFX$
subroutine calls SRCH$$ after it attaches to the

directory specified by the supplied pathname.

SRCH$$ can open, close, change accesS on, or
verify the existence of the directory.

DIR$RD Reads the next entry from an open directory, and

returns a structure that describes the name of

the entry and its attributes. Your program can

use DIR$RD to read successive entries in a

directory.

ENT$RD Reads a particular entry from an open directory,

and returns a structure that describes the name

of the entry and its attributes. Your program

can use ENT$RD to read the attributes of a

particular entry in a directory by specifying the

name of the entry.

Second Edition 6-30

DATA STORAGE AND RETRIEVAL

How to Create a File Directory

Your program creates file directories by using the DIR$CR subroutine.
Your program supplies the pathname of the directory to be created along
with control information on the type of directory to be created and on
its attributes. Once created, the directory contains no file system
objects; your program may then create new file system objects in the
newly created directory.

When your program calls the DIR$CR subroutine, it provides:

e The pathname of the directory to be created

e The attributes of the directory .

The DIR$CR subroutine attempts to create the directory and returns to
your program an error code indicating whether the operation was
successful.

This section describes the input and output parameters to use when
Calling DIRSCR, and then shows a sample call to DIR$CR. Figure 6-8
illustrates the calling sequence of DIRS$CR.

The Attributes of the Directory: Your program constructs a structure
that contains the attributes of the directory to be created, and passes
a@ pointer to this structure to DIR$CR. This structure describes:

@ Whether the directory is to be the same type (ACL or password)
as its parent, or is to be made a password directory.

e The maximum quota of the directory.

@ The access category that is to protect the directory.

Normally, you set the directory type to the same type as its parent;
the maximum quota to 0, meaning no quota; and the access category to
null, meaning default protection.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to DIR$CR to create a file directory, code may have one of many values.
Volume 0 of this series contains a comprehensive list of all standard
file system error codes. Error codes specific to this operation
follow.

6-31 Second Edition

ADVANCED PROGRAMMER‘S GUIDE, VOLUME II: FILE SYSTEM

Create File Directory

Pointer to
Structure

Pathnameof
Directory to
Be Created

<=128 ," '
STRING

'

Halfword

PTR STRUC

DIRSCR (name, addr (attributes), code)

HALF

INT

dec

0 Version of Structure (1)

4

Type of New Directory:
K$SAME — same as parent
K$PWD -— password directory

Maximum Quota
(0 if no limit)

Length of Access Category
Name(0 if default protection)

20|

<
«
—

O
o

f
F
W
N

Access Category Name
: (not necessary if length is 0)

Standard
Error
Code

Side Effects: Resets current directory if name contains a > symbol;

otherwise, new directory created in current directory.

Calling Sequence of DIR$CR

Second Edition

Figure 6-8

6-32

DATA STORAGE AND RETRIEVAL

 Keyword Value Meaning
E$BPAR 6 Bad parameter. The maximum quota for the

directory is a negative number.

ESDKFL 9 The disk is full. The new directory cannot
be created.

E$NRIT 10 Insufficient access rights. The user does
not have sufficient access to create the
specified directory. This error code may
also indicate a problem in attaching to the
directory specified by the pathname
argument of the calling sequence. In this
case, the user does not have Use access to
at least one directory in the pathname.

ESFNIF 15 Not found. There is a problem in attaching
to the directory specified by the pathname
argument of the calling sequence. In this
case, at least one directory in the
pathname does not exist.

ES$EXST 18 Already exists. Another file system object
already exists with the name of the new
directory. The existing object may or may
not be a file directory.

ESMXQB 143 Maximum quota exceeded. The new directory
cannot be created.

E$NOQD 144 Not a quota disk. The disk on which the
directory is to be created is not a quota
disk, but the supplied structure indicates
that a maximum quota is to be imposed.

ES$PNAC 148 Parent not an ACL directory. The parent
directory of the new directory is not an
ACL directory, but the supplied structure
indicates that the new directory is to be
protected by an access category.

ESACNF 155 Access category not found. The access
category to be used to protect the newly
created directory does not exist in the
parent directory.

E$BVER 158 Bad version. The version number of the
supplied structure containing the
attributes of the directory is not 1. The
calling program must initialize this number
to 1 before calling DIR$CR.

6-335 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Keyword Value Meaning

E$DINS 173 Date and time not set yet. The supplied

- gtructure indicates that a quota is to be

placed on the new directory, but quotas

cannot be imposed unless the system date

and time are set.

E$NFAS 189 Top-level directory not found or

inaccessible. The first directory name

supplied in the pathname could not te

located on any of the system disks.

Examples: The following PL/I code illustrates a sample call to DIR$CR

to create a new directory named FRODO in the HOBBIT directory. The

newly created directory will be of the same type as the HOBBIT

directory, will be a non-quota directory, and will have no access

category protecting it (it will be protected by the access on HOBBIT).

struc. version=1;

struc.dir_type=k$same ;
struc.max_quota=0;
struc.acc_cat='';

call dir$cr(‘HOBBIT>FRODO’ , addr(struc) , code) ;

if code*=O0 then call errpr$(k$irtn, code, ‘HOBBIT>FRODO', 12,
'MYPROGRAM' ,9);

How to Open a File Directory

Your program must open a directory before it may read entries in the

directory. To open the directory, your program uses the SRSFX$ or

SRCH$$ subroutine. When calling these subroutines, your program

provides:

e The name of the directory to be opened

@ A key that specifies how the directory is to be opened

The SRSFX$ or SRCH$$ subroutine attempts to open the specified

directory and return to your program:

e An error code indicating whether the operation was successful

e A file unit number that identifies the open directory; your

program uses this number when reading directory entries in an

open directory

e The file type, indicating the type of file just opened

(including SAM, DAM, SEGSAM, SEGDAM, and Directory)

Second Edition 6-34

DATA STORAGE AND RETRIEVAL

Additional information returned by SRSFX$ is not relevant to this
discussion.

This section describes the input and output parameters that apply when
Calling SRSFK$ and SRCH$$, and then shows a sample call to SRCH$$.
Figure 6-9 illustrates the calling sequence of SRSFX$ to open a
directory; Figure 6-10 illustrates the SRCH$$ calling sequence.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SRSFX$ or SRCH$$ to open a directory, code may have one of many
values. Volume O of this series contains a comprehensive list of all
Standard file system error codes. The error code specific to this
operation is:

Keyword Value Meaning

E$NRIT 10 Insufficient access rights. This means
that the user running your program does not
have List access to the directory.

For calls to SRSFX$, this error code may
indicate a problem attaching to the
directory specified by the pathname
argument of the calling sequence. In this
case, the user running your program does
not have Use access to at least one
directory in the pathname.

The File Type: The returned file type is valid only when the returned
error code is 0 and the directory is actually opened. The file type is
one of the following five values:

Value Meaning

0 A SAM file has been opened. Use RDLIN$, WILIN$,
PRWF$$, and similar subroutines to read or write it.
(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for

information on how to do this.)

1 A DAM file has been opened. Use RDLIN$, WTILINS,
PRWF$$, and similar subroutines to read or write it.
(See Chapter 5, TEXT STORAGE AND RETRIEVAL, for
information on how to do this.)

6-35 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Value Meaning

2 A SAM segment directory (SEGSAM) has been opened. Use
SGIR$$ to operate on members of this segment

directory. (See the section SEGMENT DIRECTORIES,
above, for information on how to do this.)

3 A DAM segment directory (SEGDAM) has been opened. Use
SGIR$$ to operate on members of this segment
directory. (See the section SEGMENT DIRECTORIES,
above, for information on how to do this.)

4 A top-level directory has been opened. Use DIRSLS,

DIRRD, ENTRD, and RDEN$$ to read information on

files in this directory.

Example: The following example shows how a FORTRAN program would open

the directory MYDIR in the current directory for reading:

CALL SRCH$$(K$READ+K$GETU, ‘MYDIR’ ,5,UNIT, TYPE, CODE)
IF (CODE.NE.O) GO TO 1000

1000 CALLERRPR$(K$IRTN, CODE, ‘MYDIR’ ,5, ‘MYPROGRAM'’, 9)
RETURN

How to Scan a File Directory

Once your program opens a directory, it may scan that directory.

Scanning a directory consists of reading file system object entries.

Your program may read entries sequentially, that is, in the order in

which they appear in the directory, or may read particular entries by

name. This section describes how to read a directory sequentially, one

entry at a time, using the DIR$RD subroutine. To read sequential

entries several entries at a time, see the description of the DIRS$SE

subroutine in Volume II of the Subroutines Reference Guide. To read

directory entries by name, see Chapter 8, FILE ATTRIBUTES.

After opening the directory, your program calls DIR$RD providing:

e The file unit of the open directory

@ A key that specifies the operation to be performed

A pointer to a structure into which the entry information is to

be stored

e The size of the storage structure

Second Edition 6-36

DATA STORAGE AND RETRIEVAL

Open a File Directory, With Possible Suffix

Pathnameof
Object to Open ~

Number of Suffixes
_____ in suffixes Array

(0 Means No Suffix
Processing)

Array of

K$READ Desired
+ ~| Suffixes

’ v <=32
HALF < =128 HALFy STRING
INT STRING INT —“™ ARRAY

$f {
SRSFX$ (key, name, unit, type, num__suffixes, suffixes, basename, suffix__used, code)

' t 4 '
HALF HALF HALF < =32 HALF HALF
INT INT INT STRING INT INT

[ARRAY(2)] FTN/PMA | File Standard
only* Type Error

Code

Index Into suffixes
File Unit . of Suffix Used
Number (matched); 0 Means

Null Suffix

(1): Termination Character Position Le ke Lengthoeayname _ FTN/PMAonly

Final Component of name
> Without Suffix Used; Useful
When Appending Another Suffix

Side Effects: May reset current attach point.

“ Function value is returned in L-register; typically, you need only to declare as HALF INT,
becausefirst datum is all you need andis in A-register. Otherwise, you must declare it as
FULL INT to makeit work.

Calling Sequence of SRSFX$ to
Open a File Directory

Figure 6-9

6-37 second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

Open File Directory by Object Name

r—— Nameof Directory

Name (characters)
KSREAD + K$GETU Length of Directory

v
HALF 32=--%HALF

INT STRING INT

y ¥ 4
SRCH$$ (key, name, name-len, unit, type, code)

yy 4
HALF HALF HALF

INT INT INT

File Unit |tana
Number Code

ysObject
Type

Calling Sequence of SRCH$$ to
Open a File Directory

Figure 6-10

Second Edition 6-38

DATA STORAGE AND RETRIEVAL

The DIR$RD subroutine finds the next sequential entry in the specified
directory and returns to your program an error code indicating whether
the operation was successful.

This section describes the input and output parameters to specify when
you call DIR$RD to scan a directory, and then shows a sample call to
DIR$RD. Figure 6-11 illustrates the calling sequence of DIR$RD.

The Key: Your program sets the key argument to one of the following
values:

Value Meaning .

K$READ Read the next entry

K$INIT Reset to the beginning of the directory

Normally, your program passes the k$read value for key. Your program
uses the k$init value only if the open directory is to be read again
from the beginning, as in a two-pass directory scanning program.

A Pointer to a Structure: Your program provides a structure that
DIR$RD fills in with information on the next entry in the directory.
Your program passes a pointer to this structure to DIR$RD. Assuming
DIR$RD finds an entry, it fills the structure with information such as
the filename, the file type, and other information on the file. See
the description of the dir_entry structure in Chapter 8, FILE
ATTRIBUTES, for details.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to DIR$RD to scan a directory, code may have one of many values.
Volume O of this series contains a comprehensive list of all standard
file system error codes. Error codes specific to this operation are:

Keyword Value Meaning

ESEOF 1 End of file. No more directory entries are
present.

E$UNOP 3 Unit not open. The specified file unit is
not open. This usually indicates a program
error, although it can also be the result
of the user exiting the program via
CONTROL-P, typing CLOSE -ALL, and then
typing START.

6-39 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Read Next Entry in File Directory

File Unit Pointer to

of Directory Structure

si |
KS$READ
$ Length of Structure

(Currently 31)

 v
vHALF HALF PTR HALF

INT INT INT

| | |
DIR$RD (key, unit, addr(dir-entry), dir-entry-len, code)

| HALF
STRUC INT

Object Name, Type, Standard
and Attributes Error

Code

(ESBFTS Implies
Success, but More

Info Available)

Side Effects: Repositions unit.

Calling Sequence of DIR$RD
Figure 6-11

Second Edition 6-40

DATA STORAGE AND RETRIEVAL

 Keyword Value Meaning

E$BFTS 35 Buffer too small. The supplied structure
is too small to hold the information.
Unlike the other error codes, this error
code indicates that the operation
succeeded, but that only some of the
available information (as much as the
calling program has asked for) has been
returned in the structure.

Example: The following subroutine displays the names of all the files
in an open file directory:

list_filenames: proc(unit, code);

del unit fixed bin(15), /* File unit directory is open on. */
code fixed bin(15); /* Standard f/s error code. */

/* Other declarations omitted. */

/* This subroutine assumes that the specified file unit is
already positioned at the beginning of the directory. It
therefore does not call DIR$RD with the K$INIT key. */

first='1'b;

do until(code*=0);
call dir$rd(k$read,unit,addr(dir_entry) ,31, code);
if code=0

then do;

if first then call tnou(‘File names:’,11)
first='0O'b;

call tnoua(’ ‘,2);

call tnou(dir_entry. name, length(trim(dir_entry.name,
'Ol'b))); /* Don't output trailing blanks. */

end; /* if code=0 */

end: /* do until(code*=0) */
if code=e$eof

then do;

if first then call tnou(‘No files.’ ,9);
code=0;

end; /* if code-e$eof */
end; /* list_file_names: proc */

6-41 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

READING AND WRITING DATA FILES

A data file is a file containing data that does not logically break

down into single 8-bit bytes. For example, a file that contains a list

of employee records that contain some single-bit data is a data file,

rather than a text file.

In general, PRIMOS does not distinguish between text and data files.

PRIMOS does provide a simple interface for variable-length record text

files (the RDLIN$ and WILIN$ subroutines); this interface is described
in Chapter 5, TEXT STORAGE AND RETRIEVAL. The interface for data files

is precisely the same interface used for fixed-length record files,

described in Chapter 5, TEXT STORAGE AND RETRIEVAL.

Many application programs store data files in segment directories. The

manipulation of data files in segment directories is described in the

section entitled SEGMENT DIRECTORIES, found earlier in this chapter.

Whether a data file is a member of a file directory or segment

directory, however, does not affect how it is read, written, extended,

and truncated. These operations are very similar to the operations

performed on fixed-length record text files.

There are several important things to remember when you are designing a

program that reads and writes data files:

e There is no record length or blocking factor that PRIMOS is

aware of. If your program writes more or less data than

originally specified in design specification for your program,

PRIMOS does not know to truncate or extend the data.

e Because there is no implicit record length, your program must

satisfy its own random-access position calculation requirements.

PRIMOS provides the ability to position a file only toa
specified halfword location.

@ PRIMOS allows data files to be read and written in any order.

PRIMOS imposes no sequential ordering, although such ordering is

typically the default.

e The only way your program may extend the length of a data file

is by writing new data starting at the end-of-file location;

PRIMOS automatically extends the end-of-file location as your

program writes the file.

@ PRIMOS allows your program to use more than one file unit at a

time to access a single file, assuming the read/write lock

restrictions are satisfied. You can use this capability to

improve the performance of your program in certain cases.

For example, suppose your program needs to read data record

indexes at the beginning of a large file, whereas the data

records themselves are scattered throughout the file. If your

program uses two file units to access the file simultaneously,

your program can position one file unit at the beginning of the

Second Edition 6-42

DATA STORAGE AND RETRIEVAL

file to access the indexing information rapidly, and use the
other file unit to retrieve and store the data records

themselves.

e In most cases, data files should be created as DAM files.

QUESTIONS AND ANSWERS ABOUT DATA FILES

This section answers some typical questions about data storage and
retrieval. See Chapter 5, TEXT STORAGE AND RETRIEVAL, for questions
and answers about text storage and retrieval, including opening files.

e Explain the relationship between SRSFX$ and segment directories.

SRSFX$ is the only file system subroutine that allows references to
files within segment directories. A detailed description of accessing
files within segment directories is provided earlier in this chapter.

SRSFX$ is a high-level interface for opening a segment directory
member. You typically use SRSFX$ for opening one or two particular
members of a segment directory, because it provides a simpler interface
than the more complex method recommended in this chapter.

e Aren‘’t there more subroutines I can use to do things like change
filenames and numbers, and determine pathnames?

Yes, there are. Most application programs do not need to use these
subroutines during most of their development process. However,
functions such as changing the number (position) of a segment directory
member are sometimes useful when you construct administrative tools for
the application. Determining the full pathname of a file system object
is also useful.

For information on changing filenames and numbers, see the descriptions
of the SGDR$$ and CNAM$$ subroutines in Volume II of the Subroutines
Reference Guide. Similarly, the GPATH$ subroutine is useful for
determining the pathname of an open file system object or an attach
point. In fact, one of the examples in Chapter 5, TEXT STORAGE AND
RETRIEVAL, used GPATH$ for a typical situation in which the full
pathname of an open file unit is quite useful.

6-43 Second Edition

Access Control Lists

(ACLs)

This chapter discusses:

@ Subroutines used to manipulate ACLs

@ How programs should parse an ACL

@ Typical questions and answers about ACLs

The reader should be familiar with Access Control Lists (ACLs), as
described in the Prime User's Guide.

Note

Beginning at PRIMOS Rev. 21, the System Administrator can
enable device ACLS. While device ACLS are enabled, an
authorized user can create user access lists for individual
devices, granting either USE or NONE rights. The device ACLs
facility and its commands are described in the System
Administrator's Guide, Volume III: System Access and Security,
and in the Prime User's Guide.

SUBROUTINES THAT MANIPULATE ACLS

Subroutines that manipulate ACLs are fully described in Volume II of
, the Subroutines Reference Guide. They are summarized briefly here.

7-1 Second Edition

ADVANCED PROGRAMMER ‘S GUIDE, VOLUME II: FILE SYSTEM

When using these subroutines, you may wish to think of access
categories as file system objects that have specific ACLs set on them.
An access category centralizes access for several files and directories
in one ACL represented by that access category. In a sense, the access
category itself is a placeholder file system object with a specific ACL
set on it. Envisioning access categories in this fashion is
particularly useful when using subroutines such as ACSET, ACCHG, and
ACS$LST.

Setting Access on Files and Directories

You can set any of the following three accesses:

e Default

@ Specific

@e Category

Setting Default Access: To set access for a file or directory to the
default access, use the AC$DFT subroutine. The default access for a
file system object comes from the ACL for the parent directory of that
object. You cannot set the MFD for a disk partition to default access.
Figure 7-1 illustrates the calling sequence for the AC$DFT subroutine.

Setting Specific Access: To set a specific ACL on a file or directory,
use the AC$SET subroutine. Your program provides a structure
describing the desired access. Figure 7-2 illustrates the calling
sequence of the AC$SET subroutine.

Setting Category Access: To set a category ACL on a file or directory,
use the AC$CAT subroutine. Your program passes the name of the access
category that is to protect the object. The access category must
already exist in the same directory as the object being protected.
Figure 7-3 illustrates the calling sequence of the AC$CAT subroutine.

Creating Access Categories

To create an access category, use the AC$SET subroutine. Your program
passes the name of the access category to be created and provides a
structure describing the desired access. Figure 7-2 illustrates the
calling sequence of the AC$SET subroutine.

Second Edition 7-2

ACCESS CONTROL LISTS (ACLS)

Protect Object With Default ACL

Pathnameof
Target Object

< =128

STRING

ACS$DFT (name, code)

HALF

INT

Standard
Error

Code

Calling Sequence of AC$DFT
Figure 7-1

7-3 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Create or Replace Specific ACL of Object, or

Replace ACL of Access Category

Pointer to
ACL Structure

Halfword
oct dec

Pathnameof 00
Target Object) Version Numberof Structure (2)

11 Number of Access Pairs

22 Access Pair Number 1
| | (< =80 STRING)

v

 Access Pair Number 2

(< =80 STRING) ’
_ q

HALF <=188 pop grRuc
INT STRING |

ACS$SET(key, name, addr(acl__struc), code)

0
REA .

{son | 122 22$ 123 =

HALF

INT

Standard
Error
Code

Side Effects: May reset current attach point.

Calling Sequence of AC$SET
Figure 7-2

second Edition 7-4

ACCESS CONTROL LISTS (ACLS)

Protect Object With Access Category

Pathnameof Access Category Name

Object to Be (Must Be in Same Directory

Protected as target Object)

<=128 <=88

STRING STRING

| |
ACSCAT(target, category, code)

|

HALF
INT

Standard
———» Error

Code

Side Effects: May reset current attach point.

Calling Sequence of AC$CAT
Figure 7-3

7-5 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Changing Access to a File System Object

When changing access toa file system object, the object mst already
be protected by a specific ACL or a category ACL. To change the
contents of an access category, you treat the access category as a file
system object protected by a specific ACL.

Changing Access for a Specific-protected Object: To change the ACL of
an existing file system object protected by a specific ACL, including
an access category, use either the AC$CHG or AC$SET subroutine,
depending on the nature of the change. To modify the contents of an
existing ACL, use AC$CHG. To replace the existing ACL with an entirely
new ACL, use AC$SET. In both cases, your program provides a structure
describing the desired access.

Figure 7-4 illustrates the calling sequence of the AC$CHG subroutine.
The calling sequence of the AC$SET subroutine is illustrated in Figure
7-2.

Changing Access for a Category—protected Object: If you wish to change
the access of a file or directory that is protected by an access
category, you have two choices:

@ Change the ACL of the access category

@ Set a new specific ACL on the file or directory

When changing the ACL of an access category, keep in mind that the
access for all files and directories protected by the access category
also changes. To change the ACL of an access category, treat the
access category as a file system object protected by a specific ACL, as
described earlier in this section.

To set a new specific ACL ona file or directory that is currently
protected by a category ACL, use the AC$LIK subroutine. This creates a
specific ACL that protects the file or directory in the same way as the
category ACL. Now, use AC$SET or AC$CHG on the file or directory to
change the specific ACL for the object.

Figure 7-5 illustrates the calling sequence of the AC$LIK subroutine.

Setting the Access for an Object to That of Another Object

To set the access for an object to that of another object, use the
AC$LIK subroutine. The access for the target object is copied from the
ACL protecting the model object, whether via default, specific, or
category access. A specific ACL with this access is then set on the
target object by AC$LIK. The target and model objects need not reside

, in the same lower-level directory, as the ACL is copied by value,
rather than by reference.

Second Edition 7-6

ACCESS CONTROL LISTS (ACLS)

Change Protection of Object (Specifically Protected), or
Change Access Control List of Access Category

Pointer to Halfword
ACL Structure | oct dec

00 |Version Number of Structure (2)

.11 |Number of Access Pairs

Pathname of 22 Access Pair Number 1
Target Object | rT (<=80 STRING)

122 82|
123 83 Access Pair Number 2

(< =80 STRING)

 Y

<=128

STRING

ACS$CHG (name, addr(acl__struc),code)

Y ’
PTR STRUC

HALF

INT

Standard
Error

Code

Side Effects: May reset current attach point.

Calling Sequence of AC$CHG
Figure 7-4

7-7 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Protect Object With Specific ACL According to
ACL That Protects Reference Object

Pathnameof
Pathnameof Reference
Target Object Object

<=128 <=1288

STRING STRING

ACS$LIK (target, reference, code)

HALF

INT

Standard
Error
Code

Side Effects: May reset current attach point.

Calling Sequence of AC$LIK
FIGURE 7-5

Second Edition 7-8

ACCESS CONTROL LISTS (ACLS)

Figure 7-5 illustrates the calling sequence of the AC$LIK subroutine.

Reading the Access for an Object

To read the ACL protecting a file system object, use the AC$LST
subroutine. Your program provides a structure describing the ACL that
is to be filled in by AC$LST. Your program then analyzes the returned
structure to determine the access. Figure 7-6 illustrates the calling
sequence of the ACSLST subroutine.

HOW PROGRAMS SHOULD PARSE AN ACL

This section describes how to parse an ACL on an existing file system
object. The access string information also applies to constructing an
ACL to be placed on a file system object.

When the AC$LST subroutine is used to read an ACL, a list of access

pairs is returned. Each access pair has the following format:

id: access

Both id and access are at least one character long, separated by a
colon(:). If you are constructing an ACL to be passed to ACS$CHG,
access may be the null string to indicate deletion of the access pair
for the specified id.

The id portion of the access pair is either a user-id, a group name, or
the character string $REST. A group name begins with a period (.),
whereas a user-id does not.

The access portion of the access pair can be the character string NONE,
indicating no access rights, a character string listing individual
access rights, or the string ALL, indicating all access rights
(OPDALURWX at Rev. 21). Note that AC$LST will never return a string
representing all of the supported access rights; it will be translated
to ALL. Because ALL may represent a different set of rights at
different revs, it is recommended that access rights be checked
individually using the CALAC$ subroutine. CALAC$ takes a list of
accesses you supply as input and checks against them. CALACS is
described in the Subroutines Guide, Volume ITI.

You may design your program so that it ignores unrecognized characters.

7-9 Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Retrieve Access Information for Specified Object

Pointer to ACL Structure:

May be NULL() if
max__pairs is 0 (Zero)

Pathnameof

Target Object i 1 ’
< =188 bmp gsrRuc
~ | |

ACSLST (name, addr(acl__struc),

Halfword STRUC
oct dec '

o0{ Version Number of Structure (2)

—
_

i :

Maximum Numberof Access Pairs to Be Returned

in acl__struc; 0 means return no acl__struc

information, but still return acl_name and acl_type

HALF

INT

!
max__pairs, acl_name, acl__type, code)

< =128 HALF HALF

STRING INT INT

O O

|

Version Numberof Structure (2)
Standard

1 1 |Number of Access Pairs Returned Error

2 2 Access Pair Number1
| (< =80 STRING) Code

0: Protected by Specific ACL
 122 82 }

123 83 Access Pair Number 2
| | ! (< =80 STRING)

a

| Last Access Pair | '
: (< =80 STRING)

L

Side Effects: May reset current attach point.

1: Protected by Access Category
| 2: Default From Specific ACL

3: Default From Access Category
4: Target Is an Access Category

- Pathname of Object That Protects
> Target Object:

acl__type acl__name

0 Pathname of Target Object

1 Pathname of Access Category

2 Pathname of Ancestral

Directory With Specific ACL

3 Pathname of Access Category
Protecting Ancestral Directory

4 Pathname of Target Object

Calling Sequence of AC$LST
Figure 7-6

Second Edition 7-10

ACCESS CONTROL LISTS (ACLS)

QUESTIONS AND ANSWERS ABOUT ACLs

This section answers some typical questions about ACLs.

@ Can ACL operations result in disk-full or quota-exceeded errors?

Yes. Even though specific ACLs do not appear as separate files, they
do take up room on the disk when they are created or modified.
Therefore, it is possible to exceed the capacity of the directory or
the disk when:

- Placing a specific ACL on an object that does not already have
one ,

- Creating a new access category

- Updating the specific ACL of an object

- Updating the ACL of an existing access category

Changing the protection of an object from one category ACL to another
(existing) category ACL never results in a disk-full or quota-exceeded
error.

e Is there a limit to how many access pairs can be put ina specific
ACL or access category?

Yes, there are two distinct limitations on access control lists:

- Limit on the number of access pairs passed in acl_struc

- Limit on the maximm size of a physical ACL on the disk

The first limit is the maximmm number of access pairs accepted by
PRIMOS AC$ subroutines. This limit, named max_acl_entries, is
currently 32. If your program attempts to pass more than 32 access
pairs to a subroutine such as AC$SET and AC$CHG, the subroutine returns
the error code e$bpar (Bad parameter) to your program. (The AC$LST
subroutine places no limit on the max_pairs argument, because it never
returns more than 32 access pairs.)

The second limit is more complex. The limit on the number of halfwords
that a physical representation of an ACL may take up on the disk is a
PRIMOS parameter named max_ent_len, which is currently 255. An ACL
with no access pairs (not counting the $REST access pair, which is
present in every ACL, even when not specified) takes up a minimum
number of halfwords; named base_entry_len, this value is currently 11.
Finally, each access pair in an ACL (excluding the $REST access pair)
takes up 5 halfwords plus the number of halfwords needed to contain the
id portion of the access pair (not counting trailing blanks).

7-11 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME IT: FILE SYSTEM

Therefore, at Rev. 19.4, the second limit can be defined as follows:

11 + [for each access pair, (5 + (length(id(n))+1)/2)] <= 255

If the second limit is exceeded, the AC$ subroutine called by your

program returns the error code e$acbg (ACL too big) to your program,

and does not perform the requested operation.

Second Edition 7-12

File Attributes

This chapter first describes how to read the attributes of a file
System object; then it describes how to set each attribute. Finally,
a question-and-answer section is provided.

HOW TO READ THE FILE ATTRIBUTES OF AN OBJECT

To read the file attributes of a specific file system object, your
program first opens the parent directory of that object for reading.
See Chapter 6, DATA STORAGE AND RETRIEVAL, for a description of how to
Open a directory for reading.

Then, your program calls the ENT$RD subroutine to read the attributes.
Remember that your program should close the parent directory when
finished with it. Figure 8-1 illustrates the calling sequence of
ENT$RD. Chapter 6, DATA STORAGE AND RETRIEVAL, describes DIR$RD, a
Similar subroutine that is used to scan a directory sequentially for
entries and read their attributes.

The structure returned by the ENT$RD subroutine (dir_entry) contains
the objectname, the file type of the object, and all other attributes
of the object. The format of this structure is shown in Figure 8-2.

8-1 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

Read Particular Named Entry in File Directory

Nameof | Pointer to
Object Structure

File Unit
Length of Structure

of Directory (Currently 31)

 Y
HALF <=32 _' HALF
INT STRING | v

ENTSRD(unit, name, addr(dir__entry), dir__entry__len, code)

| HALF
STRUC INT

Object Name, Type, Standard
and Attributes Error

Code

(ESBFTS Implies
Success, but More
Info Available)

Side Effects: Repositions unit.

Calling Sequence of ENTS$RD
Figure 8-1

Second Edition 8-2

Halfword

Offset

oct dec

0

1

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

0

1

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

FILE ATTRIBUTES

Bit #

1 2 3 4 5 6 7 8 9 10 11 #12 #13 «14 «15 #16
directory entry type: 3 for access length of structure (halfwords)
category; 2 for other objects - currently 31

name of object, 32 characters, blank-padded

. (Aacl) owner rights (Aacl) non-ownerrights
reserved bits delete). ote reserved bits deletes)

truncate W'ite read votected truncate, Write readI | | | | | |

has reservedbits reserved bits
acl | | fo; ye
long PRIMOS| special te reserved
ratOtoleate| lock| bits file type

|
se: , h | fi we:

year last modified minus 1900 (anuaryis month) date last modified (1-31)

| | | | | { | i | | | | |

time last modified (seconds since midnight divided by 4)

logical__type

hash__thread

trunc-

ated reservedbits

. month last backed-upyear last backed-up minus 1900 (January is month 1) |Gate last backed-up (1-31)
| | l i | | | | | I | |

time last backed-up (seconds since midnight divided by 4)

year created minus 1900 UWanuanyisranih 1) date created (1-31)
{ ! ! | | | | | l | ! i |

time created (seconds since midnight divided by 4)

year last accessed minus 1900 (Wanuaryismonth’) date last accessed (1-31)
I 1 | | | | | | | | | |

time last accessed (seconds since midnight divided by 4)
Format of Directory Entry Returned by DIR$RD or ENT$RD

: Figure 8-2

8-35 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

In PL/I, the declaration of dir_entry is:

del 1 direntry based, /* Logical object entry. */
2 ecw, /* Entry control word. */

3 type bit(8), /* 3 for ACAT, 2 otherwise. */

3 len bit(8), /* Length of structure (currently 31). */
2 name char(32), /* Name of object. */
2 pwprot_or_delprot, /* Password protection bits (for non-

ACL dirs) or delete-protect bit (for
ACL dirs). */

3 owner, /* Owner protection bits. */
4 reserved bit(5),
4 delete bit(1), /* Can delete or truncate object. */
4 write bit(1), /* Can write object. */
4 read bit(1), /* Can read object. */

3 delete_protect bit(1), /* Delete-protected bit. */
3 nonowner, /* Nonowner protection bits. */
4 reserved bit(4),
4 delete bit(1), /* Can delete or truncate object. */
4 write bit(1), /* Can write object. */
4 read bit(1), /* Can read object. */

2 nondefault_acl bit(1), /* True if not protected by
default ACL. */

2 reserved_1l bit(15),
2 object_info, /* Information on object. */

3 long_rat_hdr bit(1), /* BOOT or DSKRAT file on non-

floppy disk. */
3 dumped bit(1), /* True if file has been backed up. * /

3 dos_mod bit(1), /* True if file modified under
PRIMOS II. */

3 special bit(1), /* True if special file in MFD. */
3 rwlock bit(2), /* Read/write lock. */

3 reserved bit(2),
3 type bit(8), /* Object type. */

2dtm, /* Date/time last modified. */

5 date,
4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day 1. */

3 time fixed bin(15), /* Seconds since midnight divided

by four. */

reserved_2 fixed bin,
reserved_3 fixed bin,
truncated bit(1), /* True if truncated by FIX_DISK. */

reserved_4 bit(15),
adtbu, /* Date/time last backed-up. */

& date,
4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day 1. */

3 time fixed bin(15); /* Seconds since midnight divided

by four. */

Y
N
N
W
N
D

Second Edition 8-4

FILE ATTRIBUTES

2dte, /* Date/time created. */
3 date,

4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day 1. */

& time fixed bin(15); /* Seconds since midnight divided
by four. */

2 dta, /* Date/time accessed. */
o date,
4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is Gay 1. */

& time fixed bin(15); /* Seconds since midnight divided
by four. */

Example

Here is a sample PL/I subroutine that retrieves attributes for a file
identified by a pathname, and displays some of the attributes:

display_attributes: proc(name, code);

dcl name char(128) var, /* Pathname of file. */
code fixed bin(15); /* Standard error code. */

/* Other declarations omitted. */

if index(name, '>')=0
then do; /* Not a pathname, just read current directory. */

call srch$$(k$read+k$getu, k$curr ,O, unit, type, code);
if code*=0 then return;
filename=name;
end ;

else do; /* A pathname, open parent directory. */

/* First, call subroutine to split pathname (name) into parent
directory name (pathname) and final objectname (filename). */

call get_parent_directory(namne, pathname, filename);

/* Now, open parent directory for reading. */

chrpos(1)=0;
chrpos(2)=length(pathname);
call tsrce$$(k$read+k$getu, (pathname) , unit ,chrpos, type,

code);
if code*=0 then return;
end; /* if index(name,'>')*=0 */

/* Now read the desired entry. */

8-5 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

call ent$rdCunit, filename ,addr(dir_entry) ,31,code);

if code*=0
then do; /* If error, close directory and return. */

call clo$fuCunit,i);
return;

/* Now close the directory and return if error. */

call clo$fuCunit, code);
if code*=0 then return;

/* Display some info on the file. */

select(dir_entry.object_info. type);
when('00'b4) call tnoua(‘SAM file’ ,8);
when(‘O1'b4) call tnoua(‘DAM file’ ,8);
when('02'b4) call tnoua('SAM segdir’,10);
when('03'b4) call tnoua('DAM segdir’,10);
when('04’b4) call tnoua('DIRECTORY’ ,3);
when('06‘b4) call tnoua('ACAT’ ,4);
otherwise call tnoua(‘Unrecognized type’ ,17);
end; /* select(dir_entry.object_info.type) */

call tnoua('; ',2);

if nondefault_acl then call tnoua(‘not default-protected; ',23);

select(dir_entry.object_info.rwlock);
when(‘00'b) call tnou(‘sys’ ,3);
when(‘01‘b) call tnou(‘EXCL’ ,4);
when(‘10'b) call tnou(‘UPDT’ ,4);
when('11’b) call tnou(‘NONE’ ,4);

otherwise call tnou('????',4); /* Theoretically impossible. */

end; /* select(dir_entry.object_info.rwlock) */

end; /* display_attributes: proc */

HOW TO SET FILE ATTRIBUTES

You use the SATR$$ subroutine to set most file attributes. The SATR$$

subroutine can set attributes only on an object in the current

directory. Therefore, you may have to include calls to AT$ and ATSHOM

to set a file attribute for an arbitrary object.

Note

SATR$$ cannot work if the object is on a write-protected disk.

Usually, SATR$$ also updates the date/time last modified (and date/time

last accessed, if possible) of the parent directory. Exceptions are

Second Edition 8-6

FILE ATTRIBUTES

Setting the dump bit and writing date/time last modified, date/time
backed up, and date/time last accessed.

When calling SATR$$, your program provides:

@ The name of the file whose attributes are to be changed

e The length of the name

e A key that specifies the file attribute to be changed

@ The new value of the file attribute

The SATR$$ subroutine attempts to change the specified attribute to the
new value, and returns an error code indicating whether or not the
operation was successful. The caller must have protect rights on the
object's parent directory in order to write any of the attributes
except the dumped bit. The error E$NRIT indicates that the caller
tried to set dta or dtc without belonging to the group, .backup$. The
error E$AINS indicates that the object is not an entry in a hashed
directory; the dtc and dta attributes are not supported.

Figure 8-3 illustrates the calling sequence of SATR$$. This section
describes the input and output parameters used when calling SATR$$, and
then shows a sample call to SATR$$.

The Key: Your program passes a key argument that specifies the file
attribute to be changed. The values for key and their corresponding
meanings can be one of:

Keyword Value Meaning

K$DMPB 3 Set the dumped bit to 1. The only way to
reset the dumped bit to 0 is by modifying
the file or directory.

K$DIA 10 set date/time last accessed.

K$DIC ll Set date/time created.

K$DIIM 2 set date/time modified.

K$PROT 1 Set password protection keys (described in
Subroutines Reference Guide, Volume ITI).

K$RWLK 4 Set read/write lock. Does not close file
units currently open to the file; any such
file units remain open, and no error
indication is returned.

K$SDL 6 Set delete-protect switch.

8-7 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

Set Attribute of Object

. Name of

K$DMPB Object
K$DTA*

KSDTC" New Value of
K$DTIM —_——
KSPROT ChosenAttribute

KS$RWLK

K$SDL
Length of
Object Name
(characters)

v
, oY DEPENDS

HALF 32._ HALF On
INT STRING “SINT KEY

SATRS$$ (key, name, name__len, new__value, code)

HALF

INT

|
Standard
Code
Error

*For use only by .backup$ group.

Side Effects: Updates dtm and dta attributes of parent directory if key is not
KSDMPB, K$DTA,or K$DTIM. ~~

Calling Sequence of SATR$$
Figure 8-3

Second Edition 8-8

FILE ATTRIBUTES

Caution

Do not use the dumped bit to implement an incremental backup
program unless the dumped bits are set only after the backup
copy is verified to be readable.

The New Value of the File Attribute: Your program supplies the new
value of the file attribute for all keys, except for k$dmpb which
assumes a value of 1 (meaning “object dumped").

The formats of the new value for each key shown above are illustrated
in Figure 8-4.

Note

Prior to Rev. 19.4, the second halfword of the new attribute
value field had to be O when key was k$prot. This second
halfword was thereby reserved for future use. As of Rev. 19.4,
no second halfword is required, as future modifications are no
longer planned for the k$prot key.

Four mnemonic keys are provided for use with the k$rwlk key of SATR$$:

Key Meaning

K$DFLT Default (system-wide) read/write lock; depends on
RWLOCK directive setting in system configuration
file.

K$EXCL Exclusive; the file or segment directory may be open
to several readers or to one writer, but not to both
@ reader and a writer, at the same time.

K$UPDT Update; the file or segment directory may be open to
several readers and one writer at the same tine.

K$NONE None; the file may be open to several readers and
writers at the same time.

8-9 Second Edition

ADVANCED PROGRAMMER'’S GUIDE, VOLUME II: FILE SYSTEM

KSDMPB N/A ignored

1 2 3 4 5 6 7 8 9 10 11 12 138 14 15 16

year last accessed minus month last accessed date last accessed

0 1900 (January is month 1) (1-31)

KSDTA STRUC | ! I L I I ! 1 | I ! ! I

1 time last accessed (seconds since midnight divided by 4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

year created minus month created date created

0 1900 (January is month 1) (1-31)

K$DTC STRUC | | IL I | | ! 1 ! I J { l

1 time created (seconds since midnight divided by4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

year last modified minus month last modified date last modified

0 1900 (January is month 1) (1-31)

KS$DTIM STRUC | J 1 I ! { I 1 1 l ! ! |

1 time last modified (seconds since midnight divided by 4)

1 2 3 4 #5 6 7 8 9 10 11 12 13 14 15 16

K$PROT STRUC must be 0 dae’ write read must be 0 dee!write read
truncate truncate

l | l ! | 1 l I | |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

KSRWLK HALF must be zero read/write
INT i i l l } | I I L 1 | I 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HALF 1 or LOGICAL

KSSDL INT, BIT *2

Formats

Second Edition

O meansnot delete-protected; non-zero means delete-protected

 I I ! I 1 | ! i | | l ! | I J

of SATR$$ Attributes for Each Key
Figure 8-4

8-10

FILE ATTRIBUTES

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. Ifcode is 0, the operation was
entirely successful. Otherwise, code is always positive. After a call
to SATR$$ to set a file systemattribute, code may have one of many
values. Volume 0 of this series contains a comprehensive list of all
Standard file system error codes. Error codes specific to this
Operation are:

Keyword Value Meaning

ESATNS 208 Specified attribute is not supported in the
directory. The target object does not have
dta or dte fields because it is not an
entry in a hashed directory.

ESBPAR 6 Bad parameter. The length of the
objectname as passed by the calling program
is less than 1 or greater than 32.

E$NRIT 10 Insufficient access rights. The user must
have Protect access to the parent directory
of the object whose file attributes are
being changed for keys other than k$sdl;
for k$sdl, the user must have Delete access
to theparent directory.

E$NRIT may also indicate that the user
tried to set dta or dtc without being a
member of the group, .backup$.

E$DIRE 14 Operation illegal on a directory. An
attempt has been made to set the read/write
lock for a file directory. File
directories do not have read/write locks.

E$IACL 150 Entry is an access category. An attempt
has been made to set a file attribute other
than the date/time last modified for an
access category. See Chapter 7, ACCESS
CONTROL LISTS (ACLS), for information on
access categories.

Example: The following FORTRAN statement changes the read/write lock
of the file MYDATABASE to UPDT (2):

CALL SATR$$(K$RWLK, ‘MYDATABASE’ ,11,K$UPDT, CODE)

8-11 Second Edition

Disk Quotas

This chapter describes:

e The retrieval of information on disk space in use by a directory

e@ How to improve quota system performance

RETRIEVING INFORMATION ON DISK SPACE IN USE

The @$READ subroutine is useful for finding out how much disk space is
used in a given directory. It reports both the amount of space in use
by the directory itself (including files and segment directories within
that directory) and the total amount of space in use by the directory
and all of its subdirectories. It also reports the maximum quota
placed on that directory, but does not report information on quotas
placed on parent directories of that directory, even though such quotas
nay restrict activity within the directory.

You can use Q$READ to retrieve quota information on any directory
residing on a Rev. 19.0 (or later) disk except for the MFD (Master File
Directory). Because the MFD is the parent directory of the entire
disk, you can use the AVAIL command to determine how much disk space is
being used by the disk.

9-1 second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Retrieving Quota Information for a Directory

To retrieve quota information for a specific directory, simply call
Q$READ with the pathname of the directory. To retrieve quota
information on the current directory, specify a null pathname.

An important datum returned is the quota/non-quota directory datum. If
the directory is not a quota directory, then the date/time last updated
information for the directory is not maintained. Instead, this
information is set to 0 by Q$READ.

Figure 9-1 illustrates the calling sequence of Q$READ. Figure 92
illustrates the returned array of directory quota information
(quota_info).

Retrieving Quota Information for the MFD

To retrieve quota information for the MFD, your program must accumulate
quota information for all top-level directories in the MFD and analyze
the information. Useful information might include:

e The total number of records in use. (Remember to count files
and segment directories in the MFD itself, as they are not
accounted for in any top-level directory by Q$READ.)

@ Whether the partition is open (has at least one top-level
directory with no quota restriction) or closed (all top-level
directories have quotas placed on them).

e If the partition is closed, the total of all top-level directory
quotas (the total quota for the partition).

e If the partition is closed, whether it is overcommitted (total
quota greater than the partition size) or undercommitted (total
quota less than the partition size), and by how many records.

IMPROVING QUOTA SYSTEM PERFORMANCE

If your system does not use disk quotas, an attempt to read quota
information for a directory may take some time, as the quota system
must size all files and directories within a directory to produce the
directory-used and total-—used values.

To speed this up, set a very large maximum quota on all top-level
directories on all disk partitions on your system. A maximum quota of
1000000 (one million) records suffices. This forces PRIMOS to maintain
up-to-the-minute quota information on all directories on your system.
As a result, using Q$READ (or the LISTQUOTA command) potentially takes

, much less time. However, minor overhead cost is incurred when this is

done.

Second Edition 9-2

DISK QUOTAS

Read Quota Information on File Directory

Pathnameof Length of
Target quota__info
Directory (fullwords)

< =128 HALF
STRING INT

|
Q$READ(name, quota_info, max__entries, type, code)

! —— |
FULL HALF HALF
INT INT INT

ARRAY(6) |

0: Quota Directory
1: Non-quota Directory

Quota Information Standard
on Directory Error

Code

Side Effects: May reset cache attach point.

~ . Calling Sequence of Q$READ
Figure 9-1

9-3 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Array
Element

(6

Halfword
Offset

oct dec

0

10

12

12

13

Second Edition

0 Size of Disk Record in Halfwords
(1024 for SMDs, CMDs, FMDs; 440 for Floppies)

Number of Records Used by Directory

Maximum Number of Records (Quota)
0 for Non-quota Directory

Total Number of Records Used by Directory
(# Records Used + Total # Records Used for

All Subordinate Directories)

10)

10

Reserved

Date/Time Last Updated (0 if Non-quota) in Format:

|

year minus 1900 mo(1= January)
J ! | ! l I j 1

date (1-31)
| I | i 11 seconds since midnight divided by 4

Figure 9-2

9-4

Structure of Directory Quota Information

DISK QUOTAS

You can write a program that does this using the Q$SET subroutine,
although the user who runs the program must have Protect access to the
MFD of the disk partition on which the program is being run. Your
program would set high quotas on all directories that do not already
have quotas. |

Bear in mind that a quota cannot be set on a non-quota directory that
is in use by any user. This includes situations where a user is
attached to a subdirectory of the non-quota directory. Therefore, it
is best to run such programs immediately after system coldstart, or
just before the system is shut down (but after all users are logged
out).

9-5 Second Edition

Interprocess

Communication via

the File System

The PRIMOS file system may be used to communicate between processes.
For example, an electronic mail subsystem can use a directory as the
mail data base, and use specific files within the directory to
communicate between different processes of the subsystem.

This chapter describes the general concepts involved when using the
file system for interprocess communication. Some specific direction is
then given for solving typical interprocess communication problems
using the file system.

GENERAL CONCEPTS

For applications that require multiple processes to run simultaneously,
some form of interprocess communication is needed. If your application
does not require high transaction processing rates, such as more than
one transaction per second, you might find that relying upon the PRIMOS
file system for all of your interprocess communication saves you
development and maintenance cost.

If your application requires more than one transaction per second, you
can still use the file system for primary storage, but the interprocess
communication mechanism might be more efficiently handled by a
combination of shared data and semaphores, at the expense of increased
development and maintenance cost. See the Subroutines Reference Guides
for further information.

10-1 Second Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME II: FILE SYSTEM

File and System Read/Write Locks

For all files in your data base, you must determine the appropriate
per-file read/write locks. All files are created with a read/write
lock of SYS, meaning use the system-wide read/write lock. The
system-wide read/write lock is set by the RWLOCK' configuration
directive during system cold start. See the System Administrator's
Guide, Vol. I for further information on the RWLOCK directive.

Typically, the system-wide read/write lock is 1, corresponding to a
per-file read/write lock of EXCL (multiple readers or 1 writer). This
is typically the most appropriate setting for data base files.
However, you should consider the effects on your application should the
system-wide read/write lock be 3, corresponding to a_ per-file
read/write lock of UPDI (multiple readers and 1 writer), or should it
be 0, meaning 1 reader or 1 writer.

If your application does not operate correctly with a non-standard
system-wide read/write lock, then you should take one of the following
actions:

@ Document the restriction and have your application perform a
safety check the first time it is started up after each system
cold start.

e Avoid the restriction by placing per-file read/write locks on
all files in your database.

Documenting the Restriction and Performing a Safety Check: To document
the restriction your application places on the system-wide read/write
lock, include a sentence in the System Requirements portion of your

documentation that reads as follows:

This product requires the system-wide read/write lock to be set
to 1 for proper operation. The system-wide read/write lock is
controlled by the RWLOCK configuration directive in your system
configuration file (usually named OONFIG). If the RWLOCK
directive is not present, or has an argument of 1, the
requirement is satisfied. However, if it has an argument of O
or 3, this product will not operate properly. See the PRIMOS
System Administrator's Guide, Vol. I for information on the
RWLOCK configuration directive.

In addition, it is wise to have your product perform a safety check to
make sure the system-wide read/write lock is set to the correct value.
This safety check can be performed in CPL, using the following CPL
program. This program returns the system-wide read/write lock as its
function value.

Second Edition 10-2

INTER-PROCESS COMMUNICATION VIA THE FILE SYSTEM

&if [exists t$temp_file.t] &then delete t$temp_file.t -no_query
&severity &error &ignore
open t$temp_file.t 1 40002 /* Open for write, creating it too.
&S sev := *%severity$%
&if %sev% “= 0 &then &result UNKNOWN

&else &do
open t$tempfile.t 1 40001 /* Open it again for read.
&S sev := *severity$%
&if %sev% = O &then &result 3 /* UPDT lock.

8else &do /* Could be EXCL (1) or SNGL (0).
close t$tempfile.t /* Close the file.
open t$temp_file.t 1 40001 /* Open for read.
&S sev := *severity$%
&if %sev% “= 0 &then &result UNKNOWN

&else &do
open t$temp_file.t 1 40001 /* Again.
&if %seve = O &then &result 1

&else &result 0
Send

&end
Send

close t$temp_file.t
delete t$temp_file.t
&return

If the above CPL program is entitled RWLOCK.CPL, then the following
Sequence of CPL statements verifies that the system-wide read/write
lock is 1 or displays an error message:

&if [r rwlock] *= 1 &then &do
type System-wide read/write lock <RWLOCK> not set tol. XYZ
type product cannot operate under these conditions. Please
type delete the RWLOCK directive from the system configuration
type file, then start up the XYZ application again using the
type START_XYZ command. For more information, see the XYZ
type Guide, and the PRIMOS System Administrator’’s Guide.
&data message /* Message to supervisor terminal.

XYZ product shutting down due to unsupported RWLOCK configuration.
Send

S&return 1 &message RWLOCK not set to 1
&end

Placing a Per-file Read/Write Lock on Each File: A method of
insulating your product from the system-wide read/write lock value is
to have your application place a per-file read/write lock on each file
it uses. This means that each time your application creates a file,
your application must call the SATR$$ subroutine to set the read/write
lock of the file to the appropriate value. (See Chapter 8, FILE
ATTRIBUTES, for information on calling SATR$$.)

10-3 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

With this method, two problems exist:

e To set the read/write lock of a file, the user running your
application must have Protect access to the parent directory of
the file.

e Although creating a new file implies that the file is open for
writing, your application must close the file and then reopen
the file after setting the read/write lock for it, so that the
new read/write lock setting may take immediate effect. If your
application does not perform these steps in the order indicated,
a window of time may still exist during which one process may
open a file for reading while another process has it open for
writing. .

Caveats on Using the File System for Interprocess Communication

Under no circumstances should your application depend on the timing
Characteristics of the PRIMOS file system or of any other part of
PRIMOS. If such a dependency is built in, then your application may be
traumatized when run on different models of Prime computers or on
different revisions of PRIMO. Additionally, the timing
characteristics of the file system may vary with the system load at any
given moment.

It is assumed that a data base used for interprocess communication
between processes in a given subsystem is accessed only by processes
belonging to (or operating under the auspices of) that subsystem.
PRIMOS makes no direct attempt to distinguish processes relating to a
subsystem from other processes. If the data base is accessed by a
process that is outside the domain of the subsystem, the following may
result:

e The contents of the data base may be rendered invalid

e Processes within the domain of the subsystem may encounter file
system errors, such as e$fius (File in use)

e Portions of the data base that are protected only by the
subsystem itself, not by the PRIMOS ACL mechanism, may be read
or written by any users when outside the domain of the subsystem

In summary, from the point of view of a subsystem data base, all

processes fall into two categories:

@ Cooperating processes

@ Noncooperating processes

If cooperative processes can be identified by user-id or group name,
‘ then the data base can be protected by the PRIMOS ACL mechanism against
unauthorized access.

second Edition 10-4

INTER-PROCESS COMMUNICATION VIA THE FILE SYSTEM

However, certain applications require the ability for any process to
become a cooperating process when running a program that is part of the
Subsystem. For example, an electronic mail system might require that
all users be able to send and receive mail using a command such as
MATL, and yet these same users must not be allowed to access crucial
portions of the data base when not using the MAIL command. If this is
a requirement of your subsystem, you have two choices:

@ Accept the potential consequences described earlier in this
section

e Use a different interprocess communication mechanism, such as
the PRIMENET X.25 interface

SAMPLE MODELS OF COMMUNICATION VIA FILE SYSTEM

This section discusses several sample subsystem models, all of which
can be implemented using the file system for interprocess
communication. The models discussed are:

@ Multiple processes creating file-based transactions

@ Multiple competing servers accessing file-based transactions

e Two-process transaction management

@ Multiple processes accessing a data base

Multiple Processes Creating File-based Transactions

Certain applications, such as electronic mail subsystems, require the
ability for multiple processes to create new transactions, such as
pieces of electronic mail, to be processed by one or more server
processes.

It is convenient for such a subsystem to store transactions in a
lower-level directory within the subsystem data base, where each
transaction is stored in its own file.

There are two requirements:

@ While a transaction file is being created, it is incomplete and
must not be read by one of the server processes.

e Once a transaction file is created, it must be overwritten or
deleted by only one of the server processes. A transaction file
must not be reused for another transaction until the original
transaction has been serviced.

10-5 Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

Preventing Premature Servicing of a Transaction: To prevent a server
process from servicing a file-based transaction before the transaction
has been completely written, one of two approaches can be used:

e Acentral data base file, containing information on all
outstanding transactions, can be used to indicate the status of
each outstanding transaction.

e A field within the transaction file can be used to indicate the

status of the transaction.

The status of a transaction is used to distinguish between a
transaction being written, waiting for servicing, and being serviced.
In both of the above situations, the process that creates a transaction
would update the transaction status after it finished writing the
transaction. This ordering of events would prevent the transaction
from being considered complete if the process creating the transaction
was aborted (such as by a force-logout) before it finished writing the
transaction.

A server process might be unable to open a transaction file if it is
still in use by the process creating the transaction file. This will
be true if the system-wide read/write lock (RWLOCK) is set to 0 or 1.
This inability to open a transaction file can be used by a server
process to recognize a transaction creation in progress. See the
System Administrator's Guide, Vol. I for a description of the RWLOCK
configuration directive.

Preventing Reuse of a Transaction File: To prevent inadvertent reuse
of a transaction file that has not yet been serviced, a unique name can
be assigned to each transaction file. When this method is used, Add
and Use access to the lower-level directory containing the transaction
files is the only access required for processes creating transaction
files.

An obvious solution to the problem of preventing inadvertent reuse of a
transaction file is for a process to pick a filename using some
algorithm and then check for the previous existence of a file with that
name. This approach has two problems:

e It is possible for process A to create a file between the point
in time that process B tests for the existence of the file and
the point in time that process B subsequently uses the file. If
this happens, both processes will use the same transaction file.

e If the algorithm used to pick a filename is limited to a
sufficiently small set of possible filenames, a process could
Spend an unreasonable amount of time testing filenames
representing existing files if enough transactions were pending.
This would reduce system performance at a time when performance
needs to be at its best to process the pending transactions.

Second Edition 10-6

INTER-PROCESS COMMUNICATION VIA THE FILE SYSTEM

Multiple Competing Servers Accessing File-based Transactions

When files in a directory represent transactions, or units of work, it
is often desirable for one of several transaction server processes to
read a transaction file, perform the transaction described within, and
delete the transaction file. The sequence of events is:

1. A server process, 8, is directed to process a transaction
represented by (and described within) a file, F.

2. Server process § opens file F.

5. Server process § reads the contents of file F and performs the
corresponding transaction.

4. Having performed the transaction, server process S now closes
file F.

5. Server process § deletes file F to signal the completion of the
transaction to other server processes within the subsystem.

This sequence of events may not result in a sufficiently robust
interprocess communication mechanism. The sequence shown above implies
one crucial assumption involving interprocess communication:

Once Step 1 is in progress, no other server process will
attempt to perform the transaction described in file F.

If transactions are being assigned to server processes by a central
process, this assumption can be satisfied by having the central process
refuse to assign file F to another server process unless server process
S is unable to complete the transaction.

If there is no central process, then, in Step 1, server process S must
choose transaction file F for itself, based on some search algorithn.
The following methods of preventing other competing server processes
from making the same choice are in common use:

1. A central data base file is used to maintain information on the
outstanding transactions. In this case, each transaction is
represented by a record within the central data base file, and
records for transactions being serviced also identify the
server process servicing the transaction.

2. The beginning of each transaction file contains a field that
describes whether and by which process the transaction is being
serviced.

5. The transaction file is kept open while the transaction is
being serviced, ~ preventing other server processes from opening
the same transaction file.

10-7 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Method 1 —- Central Data Base: Using a central data base file to
maintain information on transaction status has advantages and
disadvantages. The primary advantage is that status on all
transactions can be retrieved by reading only one file. Disadvantages
are:

e Access to the central file must be single-threaded, possibly
reducing overall throughput.

e Additional overhead is incurred whenever a transaction is

serviced, as its entry in the central file must be updated or
deleted to reflect this fact.

e A premature server abort may cause the transaction status to he
left in the "being serviced" state too long.

Method 2 -- Transaction File Status Field: Maintaining a status field
at the beginning of each transaction file has several advantages:

@e Status is easily updated by the server process servicing the
transaction represented by the file, simply by rewriting the
transaction status field at the beginning of the file.

@ When the transaction is completed, the status need not he
updated if the transaction file is deleted.

However, this method has the following disadvantages:

e The status of all transactions must be obtained by examining
each transaction file.

e A premature server abort may cause the transaction status to he
left in the "being serviced" state too long.

Method 3 -- Transaction File Kept Open: The status of a transaction
can be inferred by the state of the transaction file. If it is in use,
that is, open for reading and writing, then it is either being created
or being serviced. This approach has its advantages:

e if the server process is aborted, then the act of its logging
out closes the transaction file. This effectively implies a
change to a "waiting for service" status, allowing other server
processes to open and service the file.

e The status of the file is automatically updated when the server
process opens the file. No separate operation need be performed
to update the status.

This method also has its disadvantages:

e To determine the status of all transactions, each transaction
file must be tested to see if it is in use.

Second Edition 10-8

INTER-PROCESS COMMUNICATION VIA THE FILE SYSTEM

e Constraints on the effective read/write lock of transaction
files exist. Multiple writers must never be allowed to open the
file, and if the file is open for writing, no other processes
should be able to open it for reading. This implies that the
per-file read/write lock must be either EXCL or must be SYS. If
it is SYS, then the system-wide read/write lock (RWLOCK) must be
Oor 1. See the System Administrator's Guide, Vol. I fora
description of the RWLOCK configuration directive.

@ Between Steps 4 and 5, that is, after closing a completed
transaction file and deleting it, another server process may
find that it is not in use and open the file. To prevent this,
the file access can be set so that it does not include Read or
Write access for server processes. (Use an existing category
ACL, with a name like TO_BEDELETED.ACAT, for best results.)

After the access is changed, then Step 4 can be performed
followed by Step 5. Any attempt by another server process to
open the transaction file between Steps 4 and 5 results in an
insufficient access rights error.

Two-process Transaction Management

A subsystem that consists of two processes usually conforms to one of

two models:

@e One process creates transaction files, the other process
services and deletes them

@ Both processes create and service transaction files

The first model might be a distributed transaction processing service.
One process receives transactions from other nodes on a network and
deposits these transactions in the data base. The other process reads
these transactions, services them, and then deletes the transaction
files.

The second model might be an electronic mail gateway service. Here,
one process services the electronic mail traffic for the local network,
while the other process services the incoming and outgoing electronic
mail traffic for other networks (such as a Public Data Network, or
PON).

The second model can be considered a bidirectional version of the first
model. To implement one direction of transaction communication,
dedicate a subdirectory of your data base to this single direction.
The process that creates transactions can use the UID$BT and UIDSCH
subroutines to determine unique filenames, and writes files with these
names in the lower-level directory. The process that services the
transactions can use the DIR$RD subroutine to continually scan the
‘lower-level directory for new transaction file arrivals.

10-9 Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

When using this approach, the file creation process is the only process
creating files in the lower-level directory, and the file servicing
process is the only process servicing files in the lower-level
directory. There is only one concern over read/write locks in this
case: while a transaction file is being written by the transaction
file creation process, the transaction file servicing process must not
attempt to service the transaction. This implies that the system-wide
read/write lock is set to 0 or 1, or that the per-file read/write lock
is set to EXCL (using the open/set-—lock/close/open sequence described
earlier).

One way to avoid the read/write lock concern entirely is to use the
per-file dumped bit to signal the readiness of a transaction file.
When a file is created, the dumped bit is reset. After the process
finishes creating the file, it can use SATR$$ to set the dumped bit.
Meanwhile, the other process is using DIR$RD to scan for new
transaction files. Because DIR$RD also returns the dumped bit for a
file, it can avoid opening a file that has the dumped bit reset.

Multiple Processes Accessing a Data Base

For concurrent access to a data base, Prime offers the MIDASPLUS
system. If you do not need the full potential of MIDASPLUS, you can
design your own data base system that uses only the PRIMOS file system
for concurrency management.

This is particularly appropriate if your subsystem uses a small number
of central data base files to manage a larger number of transaction
files. This possibility has been discussed earlier in this chapter.
If this is the case, you must ensure that two processes do not attempt
to update a central file simultaneously, and that one process does not
attempt to read a central file while it is being written.

This implies that the system-wide read/write lock is restricted to l,
or that all central files in the data base have their read/write locks
set to EXCL (multiple readers or 1 writer).

Performing record locking within a file is not an alternative, since
there is no reliable method of updating a field within the file from
one value to another while preventing another process from updating the
same field. Moreover, such an occurrence cannot be detected by either

process.

For example, if process P wishes to lock a record within the file, it
might read a field in the file that indicates the record is not in use.
It would then update this field to indicate that it is using the
record. In the meantime, however, process Q could perform the same
Sequence of operations, and both processes would then operate as if
they had locked the record, although the field would record only one

process as owning the record lock.

Second Edition 10-10

INTER-PROCESS COMMUNICATION VIA THE FILE SYSTEM

Therefore, it is recommended that central data base files all have
effective read/write locks of EXCL. If, for example, you need one
central data base file to manage pending transactions in your data
base, and you believe that single-threading access to the central data
base file will result in insufficient throughput, you might consider
using several central data base files. Here, the appropriate central
data base file would be selected using a hash function on the
transaction key. This approach might increase throughput.

10-11 Second Edition

~INDEX

A

Absolute pathname, 1-12, 7-2,
7-5

ACSCAT subroutine, 2-19, 7-2,
7-5

ACSCHG subroutine, 2-22, 7-2,
7-6, 7-7, 7-9

AC$DFT subroutine, 2-17, 7-2,
7-35

AC$LIK subroutine, 2-20, 7-8

ACS$LST subroutine, 7-2, 7-9,
7-10

AC$RVT subroutine, 4-7

ACS$SET subroutine, 2-18, 2-21,
7-2, 7-4, 7-6

Access calculation, 1-26
concepts, 1-19
how and when done, 1-19, 1-22
when attaching to a directory,

1-21
when opening files, 1-21

INDEX

Access category, 1-10, 1-18,
2-21

creating, 7-2

Access control, 1-16

(See also Access Control Lists
CACLS))

changing, ‘7-6
setting, 7-2

Access Control Lists (ACLs),
1-5, 1-18, 2-135, 7-11

(See also Access rights)
Access pairs limit, 7-11
changing, ‘7-6
changing rights, 2-22
default, 2-7
deleting entries, 2-235
device, 7-1
entries structure, 2-16
functions, 2-16
limitations, 7-11
manipulating, ‘7-1
parsing, 7-9
setting, 7-2

Access methods,

direct (DAM), 1-15
sequential (SAM), 1-15

Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Access rights, (See also Access
Control Lists CACLs))

A access, 2-6
ALL access, 1-18, 2-6
Changing, 2-22
creating a category, 2-21
D access, 2-6
deleting, 2-23
L access, 2-6
needed to attach to directory,

2-13
needed to change ACLs, 2-17
needed to create object,
needed to delete object,

2-37
needed to open object, 2-27
needed to read object, 2-30
needed to write to object,

2-24
2-12,

2-34
NONE access, 2-6
O access, 2-6
P access, 2-6
R access, 2-6
setting a category, 2-19
setting specific, 2-18
setting the same as another

object, 2-20
setting to default, 2-17
U access, 2-6
W access, 2-6
X access, 2-6

Accessing text files, 5-2

ACL-related subroutines,

structure, 2-16

-added_disks, 3-6, 3-16

ADDISK, command, 4-5

Administrator search rules,

in search rules file, 3-10

process initialization, 3-11

o-4

AT$ subroutine, 2-15, 4-5, 4-7,

4-8, 4-10

AT$ABS subroutine, 2-15, 4-5,
4-7, 4-9, 4-11

ATSANY subroutine, 2-15, 4-5,

4-7, 4-8, 4-13

Second Edition X-2

AT$HOM subroutine,

4-4, 46, 48
2-8, 2-14,

AT$OR subroutine,
4-2, 46

2-15, 4-1,

AT$REL subroutine,

4-7, 4-16, 4-17
2-15, 4-6,

ATCH$$ subroutine, 4-6

Attach,
to directory, 1-16, 2-13
to lower-level directory, 4-16
to specific directory, 4-8
to top-level directory, 4-9,
4-13

ATTACH$, 3-2, 3-6
-added_disks keyword,
default if not set,
default value of, 3-6
-system keyword, 35-15
use by other search lists,

3-21

5-16
o-7, 5-21

ATTACH command, 1-13, 1-16, 2-8,

2-14, 2-15, 4-3, 4-5, 4-9

Attach point,

current, 1-17, 2-5, 2-8, 2-13,
4-1, 45, 46, 4-9, 4-13

home, 1-20, 2-5, 2-8, 2-13,
4-1, 4-3, 4-13

initial, 2-5, 2-13, 41
manipulating, 4-7
questions, 4-24
search rules, 3-2

Attribute (See File attributes)

AVAIL, command, 9-1

B

Bad sector, 1-7

Bad spot file (BADSPT), 1-7

Binary files,
searching directories for, 5-8

BIND linker,
BINARY$ search list, 3-8
ENTRY$ search list, 35-9

Bootstrap file (BOOT), 1-7

Cc

CALAC$ subroutine, 7-9

Cartridge Module Devices (CMDs),
1-5

CH$MOD subroutine, 5-47

CLO$FN subroutine, 2-36, 5-21,
5-25, 5-48

CLO$FU subroutine, 2-36, 5-21,
5-22, 5-48, 6-2, 64

CLOS$A subroutine, 2-37

CLOSE command, 2-36

Closing a file, 5-21
on abnormal program

termination, 1-30
on normal program termination,

1-30

Closing a file system object,
2-36

CNAM$$ subroutine, 4-7, 6-435

COMI$$ subroutine, 4-7

Command file,
searching directories for, 35-7

Command functions, 2-1, 2-2

Command level,
search rules, 35-2

Command Procedure Language (CPL),
2-2

COMO$$ subroutine, 4-7

Compilers,
search rule support, 3-8
searching for include files,

5-8

Compressed files, 54

_CREA$$ subroutine, 2-24, 4-7

CREATE command, 2-24

Creating a file, 2-26

Creating file directories, 2-24

Creating file system objects,
2-24

CREPW$ subroutine, 2-25, 4-7

Current attach point, 1-17,
2-13, 4-1, 46, 4-9, 4-165

searching, 5-17

Current directory, 1-17
opening, 4-21, 4-22

Current object position, 1-23

Cylinders, 1-5

D

DAM (Direct Access Method), 1-15

DAM segment directory, 1-25

Data, 1-2
field, 1-2
file, 1-2
objects, 1-2
record, 1-2
storage, 1-2

Data base, 6-1
management, 6-1

Second Edition

ADVANCED PROGRAMMER 'S GUIDE, VOLUME II: FILE SYSTEM

Data file,
extending, 6-42
positioning in,
reading, 6-42
retrieval, 6-43
storage, 6-43
writing, 6-42

Date and Time Created (DIC)
attribute, 1-33

6-42

Date and Time Last Accessed (DTA)
attribute, 1-32

Date and Time Last Backed Up
(DIB) attribute, 1-35

Date and Time Last Modified (DIM)
attribute, 1-33

Default search rules (See System
search rules)

DELETE command, 2-38

Deleting a file,
within a segment directory,

6-23

Deleting file system objects,
2-37

Device ACLs, 7-1

DIR$CR subroutine, 2-24, 6-30,
6-32, 6-34

DIR$LS subroutine, 2-31

DIR$RD subroutine, 1-29, 2-31,
6-30, 6-39 to 641, 8-1, 8-3

DIR$SE subroutine, 2-31

Direct Access Method (DAM), 1-15

Directory, 1-3
attaching to, 1-16
creating file, 2-25
current, 1-17, 4-7
current file unit,
duplicate names,
file, 1-8, 1-25
home, 1-13, 1-20, 4-7, 4-9

1-29
o-21

second Edition x-4

Directory (continued)
home file unit, 1-29
opening file, 2-27
origin, 1-8, 4-1
origin file unit,
password, 1-18
quota, 1-39
quota, information,
reading, 2-31
searching, 3-7, 3-8
searching partitions for,
segment, 1-9
top-level, 1-8

_ working, 1-135
writing, 2-34

Disk, 1-5
(See also Disk partition)
formatting, 1-7
full, 7-11
logical, 1-7
organization, 1-5, 1-7
physical, 1-5, 1-7
storage, 1-2

1-29

9-4

3-6

Disk partitions, 1-5
as argument, 2-16
search all, 35-16
search named only,
searching,

Disk record availability table

5-16
5-6, 3-21

Disk-shut-down flag, 1-26

Dumped bit, 1-38

Dumped/not—dumped attribute,
1-38

Dynamic links,
resolving, using ENTRY$, 3-9

E

EDAC command, 2-22

EDIT_ACCESS command, 2-22

End of file,
positioning to, 5-15

ENT$RD subroutine, 2-31, 6-30,

8-1 to 8-3

ENTRY$, 3-2, 3-9
Chome_dir] keyword, 3-17
~primos_direct_entries keyword,

o-17
—static_mode_libraries keyword,

5-16

Entrypoint,
searching EPF libraries for,

3-9
searching PRIMOS system calls

for, 35-17
searching static-mode libraries

for, 35-16

EPF (executable program format),
1-24

EPF libraries,

searching, 3-9

Error,

egacbg, 7-12
e$acnf, 6-33
e$atns, 8-11
e$bfts, 4-21, 641

e$bnam, 4-13, 4-15, 4-18, 6-9

e$bof, 5-19, 5-38

e$bpar, 4-12, 4-15, 4-18,

5-28, 6-33, 7-11, 8-11

e$bunt, 5-49

e$bver, 6-33
e$dire, 1-25, 8-11
e$dkf1, 5-13, 5-28, 5-39,

6-15, 6-20, 6-33

e$dtns, 6-34
e$eof, 1-23, 5-19, 5-28, 5-36,

5-38, 6-11, 6-14, 6-28, 6-39

e$exst, 6-33
e$fdel, 6-23
e$fius, 1-35, 5-12, 5-19, 6-8,

6-20, 10-4
e$fntf, 4-6, 4-13, 5-13, 5-47,

6-8, 6-33

e$fnts, 6-20, 6-23

e$fuiu, 549
e$iacl, 5-14, 8-11

e$itre, 4-8, 5-14

e$mxgb, 5-14, 5-28, 5-39, 6-9,
6-17, 6-21, 6-33

Error (continued)
e$natt, 4-3, 4-5, 4-12, 4-18,

4-21, 4-22

e$nfas, 4-15, 6-9, 6-34
e$ninf, 5-14, 6-21

e$nogd, 6-33
e$nrit, 4-22, 5-13, 6-8, 6-20,

6-33, 6-35, 8-11

e$ntsd, 1-25

e$ntud, 1-25
e$pnac, 6-33
e$shdn, 1-26, 4-3, 4-5

e$suno, 6-23
e$uius, 5-49

~ e$unop, 5-19, 5-28, 5-39, 6-5,
6-12, 6-15, 6-28, 6-39

e$wtpr, 6-9

ESR (See EXPAND_SEARCH_RULES)

Executable code file, 3-17

Executable program format (EPF),
1-24

EXPANDSEARCHRULES (ESR) CPL

function, 3-19

EXPANDSEARCHRULES command,
3-2, 5-5, 3-19

ATTACH$ used as default, 35-6
COMMANDS$ used as default, 3-7
partition names, 35-6
pathnames, 3-7
referencingdir option, 35-18

F

Field, 1-2

FIL$DL subroutine, 2-38, 4-7,

5-48

File, 4-8
appending to, 1-23
closing, 1-30, 5-21
(See also Closing a file)
creating, 1-27, 2-26
DAM, 1-25
data, 6-42, 6-43
definition, 1-10
Maximum length, 5-5

Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

-File (continued)
open, using search rule

subroutine, 35-19
opening, 2-29, 5-6
(See also Opening file)
pointer, 1-29
positioning,
reading, 2-33
SAM, 1-25
system, 1-10
text, 1-10
truncating,
type, 1-37
unit number,

user, 1-10
writing, 2-35

File access control,

1-29

1-29, 5-17

1-28

1-16

File access methods,
Direct (DAM), 1-15
Sequential (SAM),

File attributes, 1-31, 8-1
date and time created (DIC),

1-33
date and time last accessed

(DTA), 1-32
date and time last backed up

(DIB), 1-35
date and time last modified

(DIM), 1-33
dumped./not—dumped,
file type, 1-37
read/write lock,
setting, 846
special/not-special ,

1-15

1-15

1-38

1-35

1-38

File directory, 1-8
attributes, 6-31
creating, 2-25, 6-dl
manipulating, 6-30
opening, 6-344
scanning, 6-36

File organization, 6-2

File system, 1-1
communicating with,
interfaces, 2-1
objects, 1-5
search, 1-14

2-1

File type attribute, 1-37

Second Edition X-6

File unit, 1-23, 2-8
abnormal terminate,
accessing, 1-23
calculated access to object,

1-26
Closing, 1-23
current object position,
disk-shut-down flag, 1-26
dynamic number allocation,

1-27
multiple opens,
normal terminate,
object type, 1-25
object-modified flag,
open mode, 1-24
opening, 1-23
positioning, 1-23
read/write lock, 1-26
static number allocation,

1-30

1-23

2-9
1-30

1-25

1-28

Filename,
expand to full pathname, 5-5
getting pathname for, 3-2

Fixed-length record file,
blocking factor, 5-44, 5-45
calculating record position,

5-46
end of file, 5-45
format, 5-44
incomplete read/write, 5-37
positioning, 5-31, 5-37, 5-42
reading, 5-31
record length, 5-44
writing, 5-3d1
writing records to open file

unit, 5-39

Fixed-length records,
advantages, 5-4

5-4

Fixed-media Disks (FMDs), 1-5

Formatting a disk, 1-7

Full pathname,
determining, 4-18

G

GPAS$$ subroutine, 4-7

GPATH$ subroutine, 4-7, 4-18,

4-20, 4-24, 6-43

H

Home attach point,
4-3, 4-13

1-16, 2-13,

Home directory, 1-16, 4-9
searching, 3-17

How and when objects are named,
1-15

r

INCLUDE$, 35-2, 3-8
if doesn't exist, 45-8
[referencingdir] keyword,
o-18

Include file,
searching directories for, 5-8

Initial attach point,
searching, 3-17

2-135

Initialize process,
search list created,
search list deleted,
search list set, 3-1l
search rule set, 3-4

o-2
3-6

Interprocess communication,
caveats, 10-4
competing servers, 10-7
concurrent access to data base,

10-10
general concepts, 10-1
models, 10-5
read/write locks, 10-2
transaction file, 10-5
two-process transaction models,

10-9

IPC (See Interprocess
communication).

x-7

K

Key,

K$BKUP, 5-11
K$CLOS, 2-37
K$CURA, 4-19
K$DELE, 2-39
K$DFLT, 8-9
K$DMPB, 8-7, 8-9
K$DTA, 8-7
K$DIC, 8-7
K$DTIM, 8-7
K$EXCL, 8-9
K$EXST, 5-47
K$FREE, 2-32, 6-26
K$FULL, 2-32, 6-26
K$GETU, 5-12, 5-48, 5-49, 6-5
K$HOMA, 4-19
K$INIA, 4-19
K$INIT, 1-29, 6-39
K$MSIZ, 2-34
K$NCAM, 5-12, 6-22
K$NDAM, 5-11, 6-22
K$NONE, 8-9
K$NSAM, 5-11, 6-22
K$NSGD, 5-12, 6-5, 6-22
K$NSGS, 5-12, 6-5, 6-28
K$POSN, 5-36
K$PREA, 5-36
K$PROT, 8-7, 8-9
K$RDWR, 5-11, 5-48, 6-4, 6-18
K$READ, 5-11, 5-36, 5-48, 6-4,

6-18, 6-39
K$RPOS, 5-36
K$RWLK, 8-7, 8-9
K$SDL, 8-7
K$SETC, 2-16, 4-1, 4-12, 4-15,
4-16

K$SETH, 2-16, 4-1, 4-12, 4-15,
4-16

K$TRNC, 5-6
K$UPDT, 8-9
K$VMR, 5-11, 6-18
K$WRIT, 5-11, 5-36, 5-48, 6-18

L

LIST_ACCESS command, 1-20

LIST_SEARCHRULES command, 3-12
disabled search rules, 3-15

Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Local objects, 1-5

Login (See Initialize process)

Lower-—level Directory, 1-9

LSR (See LIST_SEARCHRULES)

M

MAKE command, 1-7

Master file directory (MFD), 1-8

MFD (master file directory), 1-8

O

Object,
closing, 2-36
creating, 1-15, 2-10
creating file system,
current position, 1-23
deleting, 2-12, 2-37
file system, 1-2, 1-5
local, 1-5
name, 1-11, 2-7, 48
naming, 1-15
opening, 2-11
opening file system,
reading, 2-11, 2-30
remote, 1-5
Simple name, 4-8
specifying names, 2-7
type, 1-25
writing, 2-12, 2-%

2-A4

2-2

Object naming conventions, 1-15
absolute pathname, 1-12
components, 1-11
full pathname, 1-14
relative pathname,
simple pathname,

1-12
1-13

OPEN command,

Open mode,

2-27

1-24

second Edition X-8

Opening a file, 1-26, 2-29
file pointer, 1-29
file unit number, 1-28
file unit number allocation,

1-27
using search rules, 35-5
within a segment directory,

6-17

Opening a file directory,

Opening a file system object,
2-27

2-2

ORIGIN command, 2-13

Origin directory, 1-8
searching, 3-17

P

Partition (See Disk partition)

Password directory, 1-18

Pathname, 1-11
absolute, 1-12
full, 1-14, 4-18
partial, 3-2
relative, 1-12
simple, 1-13

Performance,

disk access, 3-3

Permissions (See Access Control
Lists (ACLS))

PHANT$ subroutine, 4-7

Phantoms,

search lists of, 3-2

PHNIM$ subroutine, 4-7

Positioning a file, 1-29

PRIMOS commands,
searching for, 3-7

PRIMOS file system,

elements of, 1-4

tree structure, 1-5

Procedure, 1-3

PRWF$$ subroutine, 2-35, 5-2,
5-16 to 5-18, 5-20, 5-29,
5-31 to 5-42

Q

Q$READ subroutine, 9-1, 9-3

Q$SET subroutine, 9-5

Quota, 1-39
directory, 9-1
MFD ’ 9-2

Quota, exceeded, 7-11

R

RDLINS subroutine,
5-26, 5-31

5-2, 5-24 to

Read/write lock attribute, 1-35

Read/write locks, 1-26
documenting, 10-2
EXCL, 10-2
file, 10-2
per file, 10-3
safety check,
system, 10-2
UPDT, 10-2

10-2

Reading file system objects,
2-30

Record, 1-2
date, 1-2
logical,
physical,
text, 1-2

1-7
1-7

Records,

fixed-length, 5-4

X-9

Records, variable length, 5-3

Referencing directory, 3-18

Relative pathname, 1-12

Remote disks,

ATTACH$ search list for, 3-6

Remote File Access (RFA), 1-5

Remote objects, 1-5

REST$$ subroutine, 4-7

RESU$$ subroutine, 4-7

RESUME command, 2-2

Return codes, 2-9

RWLOCK,
configuration directive, 10-2

8

SAC command, 2-17

SAM (Sequential Access Method),
1-15

SAM segment directory, 1-25

SATR$$ subroutine, 2-9, 4-7,
8-6, 8-8, 8-10, 10-3

SAVE$$ subroutine, 4-7

Search list, 5-1
appending to, 5-11
creating, 3-20
defaults, 35-2, 5-4
deleted automatically, 35-6
deleting, 35-20
duplicate rules, 35-11
initializing, 3-20
listing all, 3-20
naming, 3-11
reading, 3-20
setting, 3-2, 3-9 to 3-ll,

3-20
user-defined, 35-3, 5-5

Second Edition

ADVANCED PROGRAMMER’S GUIDE, VOLUME II: FILE SYSTEM

search rule, 3-1
adding rule to list,
checking existence of,
creating, 3-10
deleting rule from list,
disabled/enabled, 3-15
duplicate rule, 3-11
enabling/disabling rule,
format, 3-21
locator pointer, 3-5
nonexistent object,
Optional, 3-15
reading, 3-20
setting locator pointer, 3-20
Supplying at runtime, 3-18
user-specified, 3-3, 3-5

3-20
3-20

o-20

3-20

o-ll, 3-2

Search rule keywords, 3-12
-added_disks, 35-6, 3-16
[home_dir], 3-17
-insert, 3-12
—optional, 3-15
origindir], 3-17
—primos_direct_entries,
[referencingdir], 3-18
-static_mode_libraries,
—system, 3-13, 3-15

3-17

5-16

search rule subroutines,
3-11, 3-12, 3-19, 3-20

OPSR$, 3-18
OPSRS$, 3-18
SR$ENABL, 3-15
SR$INIT, 3-11
SR$READ, 3-12
SR$SSR, 3-11, 3-14

o-8,

o-1
o-ll

Search rules facility,
error in search list,
invoking, 3-2
performance,
process-based, 3-2
search scope, 3-3
search sequence,

o-21
using,

Search rules file,
comments, 3-10
creating, 3-9
effect of changes to,
miitiple files, 3-12
naming, 3-9

3-35

o-2, 3-35,

3-2, 5-3

o-1

6-11

Second Edition

1

X-10

Search rules file (continued)
nesting, 3-12
used to set search list, 3-11

SEARCH_RULES*, 35-4, 3-11

sectors, 1-5

segment directories, 6-2

segment directory, 1-9
closing, 64
deleting a file, 6-23
ending position, 6-28
extending, 6-14
extending full length, 6-15
find free entry, 6-25
find full entry, . 6-25
opening, 6-3
opening a file, 6-17
positioning in, 6-10
reading, 2-32
scanning, 6-25
size, 6-15
starting position, 6-26
writing, 2-34

Sequential Access Method (SAM),
1-15

Set search list, 3-2, 3-9 to
o-ll

nonexistent object, 3-11
relocating system rules, 3-14
suppressing system rules, 3-14
using multiple files, 3-12

SET_ACCESS command, 2-17

SET_SEARCH_RULES command, 3-11
error, 3-135
—no_system option, 5-14
reset option, 3-11

SGD$DL subroutine, 2-34, 2-38,
5-48, 6-2, 6-3, 6-24, 6-25

SGD$EX subroutine, 5-47, 5-48,
6-2, 6-3

SGD$OP subroutine, 5-2, 5-7,
5-9, 548, 6-2, 6-3, 6-17,
6-19, 6-22

SGDR$$ subroutine, 2-31, 2-3,
6-2, 6-3, 6-12 to 6-14, 6-16,
6-17, 6-25 to 6-29, 6-435

SHUTDN command, 1-26, 4-5

Simple pathname, 1-135

SLIST command, 4-9

Source code file, searching
directories for, 5-18

SPAS$$ subroutine, 4-7

Special/not-special attribute,
1-38

SRCH$$ subroutine, 1-17, 2-26,
2-27, 2-36, 2-38, 4-7, 4-8,

4-21, 4-23, 5-2, 5-7, 5-10,

5-15, 547, 5-48, 6-3, 64,

6-7, 6-30, 6-34, 6-36, 6-38

SRSFX$ subroutine, 1-17, 2-26,

2-27, 2-36, 2-38, 4-6, 4-24,
5-2, 5-7, 5-8, 5-47, 5-48,
6-3, 6-4, 6-6, 6-30, 6-44,
6-37, 6-45

SSR (See SET_SEARCH_RULES)

Static-mode libraries, 3-16

Static-mode runfile,
searching for, 5-7

Storage, 1-2

Sub-UFD (See Lower-level
Directory)

Subdirectory (See Lower-level
Directory)

Subroutine,

AC$CAT, 2-19, 7-2, 7-5
ACSCHG, 7-2, 7-6, 7-7, 7-9
ACSDFT, 2-17, 7-2, 7-3
ACS$LIK, 2-20, 7-8
ACSLST, 7-2, 7-9, 7-10
ACSRVT, 4-7
ACS$SET, 2-18, 2-21, 7-2, 7-4,

7-6

X-1]

Subroutine (continued)
AT$, 2-15, 4-5, 4-7, 4-8, 4-10
AT$ABS, 2-15, 4-5, 4-7 to 4-9,

4-11
AT$ANY, 2-15, 4-5, 4-7, 4-8,

4-13, 4-14
AT$HOM, 2-8, 2-14, 44, 46,

4-8
AT$OR, 2-13, 4-1, 4-2, 46
AT$REL, 2-15, 4-6, 4-7, 4-16,

4-17
ATCHS$, 4-6
CALAC$, 7-9
CH$MOD, 5-47
CLO$FN, 2-36, 5-21, 5-23, 5-48
CLO$FU, 2-36, 5-21, 5-22,

5-48, 6-2, 6-4
CLOS$A, 2-37
CNAM$$, 4-7, 6-43
COMI$$, 4-7
COMO$$, 4-7
CREA$$, 2-24, 4-7
CREPW$, 2-25, 4-7
DIR$CR, 2-24, 6-30, 6-32, 6-%4
DIR$LS, 2-31
DIR$RD, 1-29, 2-31, 6-30, 6-39
to 6-41, 8-1, 8-3

DIR$SE, 2-31
ENT$RD, 2-31, 6-30, 8-1 to 8-3
FIL$DL, 2-38, 4-7, 5-48
GPAS$$, 4-7
GPATH$, 4-7, 4-18, 4-20, 4-24,

6-43
PHANTS, 4-7
PHNIM$, 4-7
PRWF$$, 2-35, 5-2, 5-16 to

5-18, 5-20, 5-29, 5-31 to
5-42

Q$READ, 9-1, 9-3
Q$SET, 9-5
ROLIN$, 5-2, 5-24 to 5-26,

5-31
REST$$, 4-7
RESUS$, 4-7
SATR$$, 2-9, 4-7, 8-6, 8-8,

8-10, 10-3
SAVES$, 4-7
SGD$DL, 2-34, 2-38, 5-48, 6-2,

6-3, 6-24, 6-25
SGD$EX, 5-47, 548, 6-2, 6-3
SGD$OP, 5-2, 5-7, 5-9, 5-48,

6-2, 6-3, 6-17, 6-19, 6-22

Second Edition

ADVANCED PROGRAMMER ’S GUIDE, VOLUME II: FILE SYSTEM

Subroutine (continued)
SGDR$$, 2-31, 2-34, 6-2, 6-3,

6-12 to 6-14, 6-16, 6-17,

6-25 to 6-29, 6-43

SPAS$$, 4-7

SRCH$$, 1-17, 2-26, 2-287,

2-36, 2-38, 4-7, 4-8, 4-21,

4-25, 5-2, 5-7, 5-10, 5-15,

5-47, 548, 6-3, 64, 6-7,

6-30, 6-34, 6-36, 6-38

SRSFX$, 1-17, 2-26, 2-27,

2-36, 2-38, 46, 4-24, 5-2,

5-7, 5-8, 5-47, 5-48, 6-3,

64, 6-6, 6-30, 6-H, 6-37,

6-43

TSRC$$, 2-26

WILINS, 2-35, 5-2, 5-24, 5-27,
5-29

Subroutine calls, 2-2

Suffixes, 3-7

Surfaces, 1-5

system Administrator,
default search rules, 354

system file, 1-10

System primitives, 2-3

System search rules, 34
in search rules file, 3-10
location in list, 3-13
process initialization, 3-11
reset to, 3-ll

q

Text,
retrieval, 5-1
storage, 5-1
strings, 5-1

Text file, 5-1
(See also Fixed-length record

file; Variable-length record
file)

accessing, 5-2
compression, 5-24
current position, 5-25

second Edition X-12

Text file (continued)
input line, 5-25
maximum line length, 5-25
open file unit, 5-29
opening, 5-6
output line, 5-25
positioning to end, 5-15
read variable-length, 5-24
reading, 5-6
write variable-length, 5-24
writing, 5-6
writing lines to, 5-29

Top-level directory, 1-8

Tracks, 1-5

Tree structure,
creating, 1-5

Truncating a file, 1-29, 5-17

TSRC$$ subroutine, 2-26

U

User file, 1-10

User-defined search list, 3-2

Users,

search lists of, 3-2

Vv

Variable-length record file,
compression character, 5-44
format, 5-42
pad character, 543
space compression, 5-43é

Variable—length records, 5-3
advantages, 5-3
termination character, 5-3

Virtual memory file access read
(VMFA-read), 1-24

W

Writing file system objects,
2-64

Writing files, 2-35

Writing segment directories,
2-34

WILIN$ subroutine, 2-35, 5-2,
5-24, 5-27, 5-29

X-135 Second Edition

SURVEY

READER RESPONSE FORM

DOC10056-2LA Advanced Programmer’s Guide, VolumeII: File System

Your feedback will help us continue to improve the quality, accuracy, and organization

of our publications.

1. How do you rate this document for overall usefulness?

0 excellent O very good O good O fair O poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer

companies?

O Much better O Slightly better O About the same
O Much worse O Slightly worse O Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:

Address:

Postal Code:

Wl] ores
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

 Prime.
Attention: Technical Publications

Bidg 10

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC10056-2LA Advanced Programmer's Guide, VolumeII: File System

Your feedback will help us continue to improve the quality, accuracy, and organization

of our publications.

1. How do you rate this document for overall usefulness?

O excellent O very good O good O fair O poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer

companies?

0 Much better O Slightly better (1) About the same
O Much worse O Slightly worse 0 Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:

Address:

Postal Code:

(
|

ean ere ir cen eeaceeeraeesoece ce ah me te weees ne oe ee Oe oe weeeeen eneeeeee

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications

Bldg 10

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC10056-2LA Advanced Programmer's Guide, Volume II: File System

Your feedback will help us continue to improve the quality, accuracy, and organization

of our publications.

1. How do you rate this document for overall usefulness?

O excellent O very good 0 good O fair O) poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer

companies?

O Much better O Slightly better O About the same
O Much worse O Slightly worse O Can't judge

5. Which other companies’ manuals have you read?

Name: Position:

Company:

Address:

Postal Code:

| | | | NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

 Prime.
Attention: Technical Publications

Bldg 10

Prime Park, Natick, Ma. 01760

FUER
DOC14436-2LA

(

	Front cover
	Title page
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	Index-1
	Index-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	Survey-1
	Survey-2
	Survey-3
	Survey-4
	Survey-5
	Survey-6
	Survey-7
	Survey-8
	Survey-9
	Survey-10
	Back cover

