

Prime Computer, Inc.

DOC5041-1LA

PL/I Reference Guide

PL/I Reference Guide
First Edition

by

John J. Xenakis

and

Camilla B. Haase

Updated for Translator Family
Release ’T1.0-21.0

by

Kim M. Seward

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities at Translator Family Release
T1.0-21.0.

Prime Computer,Inc.
Prime Park

Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1988 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. PERFORMER, PRIME/SNA, PRIME TIMER, PRIMECALC,
PRIMELINK, PRIMENET, PRIMEWORD, PRODUCER, PST 100, PT25, Pr45, Pr65,
PT200, PW153, PW200, PW250, RINGNET, 50 Series, 400, 750, 850, 2250,
2350, 2450, 2550, 2650, 2655, 2755, 6350, 6550, 9650, 9655, 9750, 9755,
9950, 9955, and 9955II are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC5041-1LA) January 1986 for Release 1.0
Update 1 (UPD5041-11A) January 1988 for T1.0-21.0

CREDITS

Editorial: Bill Modlin, Thelma Henner
Project Support: Margaret Taft, Camilla Haase
Illustration: Marlene Bober
Illustration Support: Anna Spoerri
Graphic Support: Mingling Chang
Document Preparation: Julie Cyphers, Mary Mixon
Production: Judy Gordon

ii

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any additional comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framinghan, MA 01701

iii

ABOUT THIS BOOK

PART I -— OVERVIEW OF PRIME PL/I

1 INTRODUCTION

The PL/I Language
Restrictions on PL/I Prograns
Interface to Other Languages
PL/I and the Editor
PL/I Under PRIMOS
Program Environments

PL/I and Prime Utilities
The PRIMOS Condition-Handling

Mechanism

2 USING THE PL/I COMPILER

Compiling a PL/I Progran
Compiler Options

3 LINKING AND EXECUTING PL/I

Introduction
How to Use BIND

Basic Linking Commands
Running Your Program

Contents

Xi

1-1

1-2
1-3

1-5
1-6

1-8

3-1
3-1
3-3
3-3

PART II -- PRIME PL/I LANGUAGE REFERENCE

4 THE PL/I LANGUAGE

Simple PL/I Programs
Elements of a PL/I Progran
Expressions
Flow of Control With IF, DO,

and GO To
Numeric Data Types
Built-in Functions
CHARACTER String Data Type
Operations on CHARACTER Strings
Arrays and Structures

4-1

4-11

4-13
4-22
4-28
4-32
4-35
4-42

Input/Output 4-46
Other Features of the PL/I

Language 4-49

5 DATA TYPES AND DATA ATTRIBUTES

Data Types: Introduction 5-1
Arithmetic Data Types:

Introduction 5-4
String Data Types:

Introduction 5-18
Pictured Data Types:

Introduction 5-29
Pictured-String 5-29
Pictured-Numeric 5-31
Arrays and Structures 5-56
The ALIGNED and UNALIGNED

Attributes 5-66
The DEFINED Attribute 5-67
The LIKE Attribute 5-71
The INITIAL Attribute 5-72
The DEFAULT Statement 5-75

6 EVALUATING EXPRESSIONS

Expressions, Data Conversions,
and Aggregate Promotions 6-1

Forming Expressions 6-2
Scalar Targets and Data

Conversions 6-9
PL/I Expression Operators 6-25
Scalar Conversion Rules for

Computational Data Types 6-38
Aggregate Targets and Promotion 6-43

7 STORAGE MANAGEMENT

Types of Storage 7-2
Techniques for Overlaying Storage 7-20
Extent Expressions and INITIAL

Attribute 7-26:
Internal and External Scope

Attributes 7-30
Named Constants and Noncomputational

Variables 7-31
Advanced Programming Option:

POINTER OPTIONS(SHORT) 7-32

vi

8 SUBROUTINE AND FUNCTION PROCEDURES

Procedures 8-1
Subroutine Procedures 8-3
Function Procedures 8-11
Summary of Differences Between

Subroutine and Function
Procedures 8-21

Relation Between Arguments
and Parameters 8-21

External Procedures 8-31
Recursive Procedures 8-37
Generic Entry Names 8-39
ENTRY Variables 8-42
Advanced Programming Options:

SHORICALL and NONQUICK 8-44
Summary of Procedure Rules 8-45

9 PROGRAM BLOCKS, DECLARATIONS,
AND SCOPE RULES

PL/I Progran Block Structures 9-1
The DECLARE Statement 9-6
Types of Declarations 9-13
Scope of a Declaration 9-21
Resolving References 9-27

10 FLOW OF CONTROL

The IF Statement 10-1
The DO Statement 10-4
The GO TO Statement 10-22
The LEAVE Statement -— Prime

Extension 10-24
The SELECT Statement — Prime

Extension 10-25
PL/I Progran Blocks 10-27
Static and Dynamic Progran

Block Structure 10-29
Compiler-directing Statements 10-53

11 STREAM INPUT/OUTPUT

Introduction to the PUT Statement 11-2
Introduction to the GET Statement 11-13
PUT and GET to Files and Devices 11-24

STREAM Input/Output Specifications 11-30
Establishing Data Items 11-42

vii

Matching Data Values to Format
Items 11-43

Detailed Specifications for the
PUT Statement 11-46

Detailed Specifications for the
GET Statement 11-66

12 RECORD INPUT/OUTPUT

Concepts of RECORD Input/Output 12-1
Sequential RECORD Input/Output 12-5
Direct Access with DAM Files 12-10
Direct Access with MIDASPLUS Files 12-14
RECORD Input/Output in Locate Mode 12-17
File Attributes, Attribute Merging,

and the OPEN Statement 12-20
Input/Output on Conditions and

Built-in Functions 12-32
FILE Variables and Functions That

Return FILE Values 12-33

13 PL/I CONDITION HANDLING

The ON Statement 13-2
Enabling Conditions With Condition

Prefixes 13-13
The REVERT Statement 13-18
The SIGNAL Statement 13-19
The CONDITION Condition 13-20
The SNAP Option 13-20
List of Conditions 13-24
Built-in Functions Related to

On-Units 13-40

14 BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Arguments to Built-in Functions 14-1
Classification and Summary of

Built-in Functions 14-6
Complete List of Built-in

Functions 14-13
The Use of Pseudovariables 14-95

viii

APPENDICES

A PL/I KEYWORDS A-1

B ‘THE PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters B-2
Special Meanings of Prime ECS

Characters B-5
PL/I Programming Considerations B-5
Prime Extended Character Set Table B-6

C DATA FORMATS

Overview Cc-1
FIXED BINARY Data C-2
FIXED DECIMAL Data C-2
FLOAT BINARY Data C-3
FLOAT DECIMAL Data C-3
COMPLEX FIXED BINARY Data c-4
COMPLEX FIXED DECIMAL Data c-4
COMPLEX FLOAT BINARY Data c-5
COMPLEX FLOAT DECIMAL Data C-5
PICTURE Data C-6
CHARACTER Data C-6
CHARACTER VARYING Data C-7
BIT Data C-7
BIT VARYING Data C-7
POINTER Data C-8
POINTER OPTIONS SHORT) C-8
LABEL Data C-8
ENTRY Data Cc-9
FILE Data Cc-10
Arrays c-10

D FUNCTION RETURN CONVENTIONS AND
STACK FRAME FORMAT

Locations of Returned Function
Values D-1

Stack Frame Format D=-2

ix

E DIFFERENCES AMONG ANS, IBM, AND
PRIME PL/I

Prime Extensions to the ANSI
Standard

ANS Feature Not Supported in
Prime PL/I

IBM Features Not Supported in
Prime PL/I

F ONCODE VALUES

G GLOSSARY OF PL/I TERMS

H USE OF FORMS WITH PL/I

I USING SEG

INDEX

E-1

E-2

F-1

G-1

H-1

X-1

About

This Book

This book is a progranmer's guide to the PL/I language as implemented
on Prime systems. You are expected to be familiar with some high-level
language and with programming in general, but not necessarily with PL/I
or Prime computers. If you need additional background in programming
techniques or PL/I, consult an appropriate textbook, such as:

Conway, Richard, and Gries, David, An Introduction to Programming:
A Structured Approach.Using PL/I and PL/C, Little, Brown, 1978.

Hughes, Joan K., PL/I Structured Progranming, John Wiley & Sons,
Inc., 1979.

Pollack, Seymour V., and Sterling, Theodore C., A Guide to PL/I and
Structured Programming, Holt, Rinehart, and Winston, 1980.

NEW FEATURES

The following features are new to Prime PL/I at Translator Family
Release T1.0-21.0:

1. Search rules for INCLUDE files. See Chapter 10.

2. The Prime Extended Character Set and the
-EXTENDED_CHARACTER_SET and —-NO_EXTENDED_CHARACTERSET compiler
options. See Appendix B and Chapter 2.

xi

3. The -STRINGSIZE and -NO_STRINGSIZE compiler options. See
Chapter 2 and Chapter 13.

HOW TO USE THIS BOOK

The following is a brief chapter-by-chapter description of the contents
of this book.

Part I -- Overview of Prime PL/I

@ Chapter 1 introduces PL/I and its implementation on Prime
computers,

e Chapter 2 provides information on the use of the PL/I compiler,
including compiler options.

@ Chapter 3 provides information on linking and executing programs
using Prime's BIND utility.

Part II -— Prime PL/I Language Reference

@ Chapter 4 provides an overview of the PL/I language.

@ Chapter 5 describes PL/I data elements.

@ Chapter 6 describes PL/I expressions, data type conversions, and
aggregate data structures.

@ Chapter 7 describes PL/I storage management capabilities and the
types of storage available.

@ Chapter 8 explains the use of subroutines and functions and the
differences between then.

@ Chapter 9 describes PL/I program blocks and explains the rules
of scoping in declarations.

@ Chapter 10 describes the flow of control of a PL/I program and
briefly discusses compiler-directing statements.

@ Chapter 1] describes how to input and output data on the
terminal.

@ Chapter 12 describes how to input and output data by using files
and devices.

@ Chapter 13 describes PL/I condition handling.

xii

@ Chapter 14 describes FL/I's built-in functions and
pseudovariables.

Appendixes

e@ Appendix A lists all PL/I keywords.

e@ Appendix B describes and lists the Prime Extended Character Set.

e@ Appendix C describes the internal representation of PL/I data
types.

@ Appendix D describes PL/I function return conventions and the
stack frane format.

@ Appendix E summarizes the differences between Prime PL/I and ANS
PL/I and between Prime PL/I and IBM PL/I.

@ Appendix F lists PL/I error codes and their meanings.

@ Appendix G provides a glossary of PL/I terms.

@ Appendix H briefly describes the use of Prime's FORMS utility
with PL/I.

@ Appendix I summarizes the use of Prime's older linking utility,
SEG.

RELATED DOCUMENTS

In addition to the PL/I Reference Guide, there are several books
describing other Prime utilities that will help you with your
programming on Prime equipment. These documents are:

Prime User's Guide (DOC4130-4LA)

Prime PL/I Conversion Guide (DOC5769-1LA)

EMACS Primer (IDR6107-183) and EMACS Reference Guide (DOC5026-2LA)

New User's Guide to EDITOR and RUNOFF (DOC3104-4LA)

Programmer's Guide to BIND and EPFs (DOC8691-1LA)

SEG and LOAD Reference Guide (DOC3524-192L)

xiii

Subroutines Reference Guide

Volume I (DOC10080~-2LA)
Volume II (DOC10081-1LA)
Volume III (DOC10082—1LA)

Volume IV (DOC10083-1LA)

Source Level Debugger User's Guide (DOC4033-193L)

Guide to Prime User Documents (DOC6138-5PA)

PRIMOS Commands Programmer's Companion (FDR3250-192)

Other Sources of Information

In addition to the documents listed above, please consider the
following sources when looking for information about Prime PL/I:

@ The Software Release Document released at each software
revision. This document contains a summary of new features and
changes in Prime's user software.

@ Prime's online HELP files. Information on PRIMOS commands is
displayed at your terminal. A cumulative list of manuals,
updates, and other material is also included.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention Explanation Example

UPPERCASE In command formats, words SLIST
in uppercase indicate the
actual names of commands,
statements, and keywords.
They can be entered in
either uppercase or
lowercase.

lowercase In command formats, words LOGIN user-id
in lowercase indicate items
for which the user must
substitute a suitable value.

xiv

Convention

Abbreviations

Underlining
in

examples

Brackets

Braces

Ellipsis

Parentheses

()

Hyphen

Explanation

If a command or statement
has an abbreviation, it is
indicated by underlining.
In cases where the command
or directive itself
contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces.

In examples, user input
is underlined but systen
prompts and output are not.

Brackets enclose a list
of two or more optional
items. Choose none, one,
or more of these items.

Braces enclose a list
of items. Choose one and
only one of these itens.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly as
shown.

Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

Example

LOGOUT

SET_QUOTA

OK, RESUME MY_PROG
This is the output
o£ MY_PROG.CPL
OK,

SPOOL -LIST
~CANCEL

CLOSE filename
ALL

iten-x Ly iten-y] eos

DIM array (row,col)

SPOOL ~LIST

PART I

Overview ofPrime PL/I

Introduction

THE PL/I LANGUAGE

PL/I is a comprehensive general-purpose programming language combining
the best features of several other languages, including FORTRAN, COBOL,
and ALGOL. PL/I provides more powerful programming tools and methods
than any other language currently available. It is defined in the
American National Standards Institute (ANSI) document X3.53-1976.

Prime's PL/I is completely compatible with Prime's PL/I Subset G
(invoked by the command PLIG). Any extensions available for Subset G
are also available for PL/I. You can recompile programs written in
Subset G with no changes using PL/I.

Differences Between Prime PL/I and Standard PL/I

Appendix E contains a detailed comparison of Prime PL/I and ANSI
Standard PL/I. Differences between Prime PL/I and IBM PL/I are also
listed there.

1-1 First Edition

PL/I Reference Guide

Implementation-defined Features of PL/I

The ANSI standard for PL/I does not specify every detail of the
language. Certain features that are inherently dependent on the

particular computer systen used are designated in the standard as
implementation-defined. Each computer manufacturer sets its own
standard for such features.

A general description of each implementation-defined feature is given
in the appropriate chapter of this guide. Specific details on Prime's
choices for each such feature are contained in Appendix C.

Programs that may have to run under a non-Prime version of PL/I should

be written to be minimally dependent on implementation-defined

features.

Compatibility of Prime PL/I Subset G

If PL/I-G programs are recompiled with full PL/I, you should load and

execute them using Rev. 19.4 or higher PRIMOS.

RESTRICTIONS ON PL/I PROGRAMS

The segmented nature of the Prime virtual memory systen imposes a few

machine restrictions on PL/I programs, None of these restrictions is

contrary to the ANSI standard or need interfere with program design.

@ The executable code (exclusive of data storage) for a

compilation unit may not occupy more than one segment (128K

bytes). For additional program space, break out procedures and
make them separate compilation units.

@ No program may have more than one segment of local static

storage. For additional storage, make some of the data static

external,

e@ No program unit may have more than one segment of dynamic
storage. Any additional storage must be made static.

e No data item in a static external aggregate may be split across

the boundary between two segments. When laying out a static
external aggregate, use the information on storage formats in
Appendix C to insure compliance with this rule.

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object code

level, and since all use the same calling conventions, object modules

First Edition 1-2

INTRODUCTION

produced by the PL/I compiler can reference or be referenced by modules
produced by the FORTRAN IV, FORTRAN 77, COBOL, Pascal, and C compilers.
You must observe certain restrictions when a PL/I object module
interfaces one compiled from another language.

e All I/O routines must be written in the same language.

e There must be no conflict of data types for variables being
passed as arguments. For example, FIXED BINARY in PL/I should
be declared as INTEGER in FORTRAN 77. See Appendix C for a
description of PL/I data storage formats.

@ Modules compiled in 64V or 32I mode cannot reference or be
referenced by modules compiled in any R mode, Modules in 64V or
32I may reference each other if they are otherwise compatible.

@ A PL/I program cannot reference a FORTRAN complex-valued
function.

@ A label passed to a Prime FORTRAN IV (FIN) subroutine as an
alternate-return specifier must identify a statement in the same
block that contains the subroutine call.

You may use a PL/I static external structure to reference a FORTRAN or
PMA common block having the same name as the structure. Take care that
the data items in the structure and block correspond appropriately.

PL/I object modules can also interface with PMA (Prime Macro Assembler)
routines. See the Assembly Language Programmer's Guide.

You may input any data file to PL/I, providing it is written in either
ASCII compressed or binary form.

PL/I AND THE EDITOR

PL/I source code can be entered into Prime systems using the system

line editor, called EDITOR.

The characters up-arrow (*) and semicolon (;) have special meanings
for the EDITOR that conflict with their uses in PL/I. The “~ is the
EDITOR's escape character and PL/I's NOT character, while the ; is the
EDITOR's carriage return and PL/I's statement delimiter. A conflict
arises whenever you attempt to enter either of these characters into a
PL/I source program using the EDITOR.

The EDITOR functions of “~ and; can be transferred to other symbols
for the duration of an EDITOR session by using the EDITOR's SYMBOL
command, While in EDIT mode, type:

SY SEMICO a
SY ESCAPE b

1-3 First Edition

PL/I Reference Guide

where a and b must be single, currently non-special characters. (The @
and ~ characters may be useful.) The character a replaces the
semicolon as a carriage return, and b replaces the up-arrow as an
escape character. The semicolon and up-arrow are thereby freed for
ordinary use.

The semicolon may also be freed by typing in MODE NOSEMI in EDIT mode.
The up-arrow may be entered as the double symbol “* without changing
its function as an escape character.

For more information, see the New User's Guide to EDITOR and RUNOFF.

More permanent solutions to this conflict are available through your
Prime field analyst. ‘The EMACS capability is available as a separately
priced product.

PL/I UNDER PRINOS

Implementation

Prime's PL/I runs on all Prime models. It operates under PRIMDS,
Prime's operating system. Code generated by the PL/I compiler is the
same for all Prime processor models.

The maximum code size for a PL/I program is 64K.

Prime's processors execute an extended set of instructions directly,
including decimal arithmetic and character edits. They maximize
execution time efficiency better than processors that only recognize
the code as an wunimplemented instruction trap and autanatically
substitute an equivalent software routine, Addressing modes and the
Prime instruction set hardware are presented in the System Architecture
Guide (DOC9473-1LA), the Instruction Sets Guide (D0C9474-1LA), and the

Assembly Language Programmer's Guide (FDR3059-101A).

Operating Enviroment

Only one version of PRIMOS exists for all Prime models. It features
paged and segmented virtual memory management. The system is based on
demand paging from disk with 2048 bytes per page. A page-sharing
feature reduces overhead time. The system thus supplies paging
requirements for the application program immediately and autamatically.
For example, several users may share one copy of the EDITOR to enter or
modify their programs, rather than having multiple copies.

First Edition 1-4

INTRODUCTION

PROGRAM ENVIRONMENTS

Under PRIMDS, PL/I programs may be run in one of three envirorments:

@ Interactive

@ Phantom user

@ Batch job

Interactive

All phases of PL/I compilation can be handled through interactive
terminals, Therefore, you can enter and modify source programs
directly at a terminal. You can create, edit, compile, list, debug,
execute, and save a program in a single interactive session.

Program execution is initiated directly by you. Programs run in real
time and are associated with a terminal. You can display program
output, as well as error messages, at the terminal.

Major interactive uses are

e Program development

e Programs requiring short execution time

@ Data entry programs, such as order entry or payroll

@ Interactive programs, such as the EDITOR

Phantom User

The phantom environment allows programs to be executed while not
associated with a terminal. This frees the terminal for other uses.
Phantan users are programs that accept input from a command file
instead of a terminal; output directed to a terminal is either ignored
or directed to a file.

Major uses of phantans are

e Programs requiring long execution time, such as sorts

@ Certain system utilities, such as line printer spooler

e Any program, if the terminal should be free for another use

For more information on command files and phantan users, see the Prime

User's Guide.

1-5 First Edition

PL/I Reference Guide

Batch Job

Since the number of phantan users on a system is limited, phantans are

not always available. The batch environment allows users to submit

noninteractive command files as batch jobs at any time. The Batch

Monitor (itself a phantan) queues these jobs and runs them, one to six

at a time, as phantans become free.

For more information on command files and batch processing, see the

Prime User's Guide.

PL/I AND PRIME UTILITIES

Prime offers three major utility systems for use by Prime programmers.

These are

@ Multiple Index Data Access Systen (MIDASPLUS)

@ Forms Management System (FORMS)

e The Source Level Debugger

For complete information on any of these utilities, see the appropriate

reference guide. Below are brief descriptions of MIDASPLUS, FORMS, and

the Debugger.

Multiple Index Data Access System (MIDASPLUS)

MIDASPLUS is a systen of interactive utilities and high-level

subroutines enabling the use of index-sequential and direct-access data

files at the applications level. MIDASPLUS autanatically handles

indexes, keys, pointers, and the rest of the file structure. Major

advantages of MIDASPLUS are

e Large data files

e Efficient search techniques

@ Rapid data access

@ Compatibility with existing Prime file structures

e Ease of building files

@ Multiple user access to files

e Partial or full file deletion utility

First Edition 1-6

INTRODUCTION

PL/I interfaces with MIDASPLUS through the use of MIDASPLUS subroutine
calls invoked by the OPEN, WRITE, REWRITE, and READ statements for a
file declared as KEYED SEQUENTIAL with the —DAM option. See Chapter 12
of this manual and the MIDASPLUS User's Guide (DO0C9244-1LA). Since
MIDASPLUS subroutines are written in Prime FORTRAN IV, the restrictions
mentioned earlier in this chapter under INTERFACE TO OTHER LANGUAGES
apply.

FORMS Management System (FORMS)

The Prime FORMS Management System (FORMS) provides a convenient method
of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications
program that uses Prime's Input/Output Control System (I0CS), including
programs written in PL/I. Applications programs communicate with FORMS
through input/output statements native to the host lanquage. Programs
that currently run in an interactive mode can easily be converted to
use FORMS.

FORMS allows cataloging and maintenance of form definitions available
within the computer system. For use within an applications program,
all form definitions reside within a centralized directory in the
system. This directory, under control of the System Administrator, may
be easily changed, allowing the addition, modification, or deletion of
form definitions.

The interface of PL/I with FORMS is identical to that of Prime
FORTRAN IV.

See the FORMS Programmer's Guide, or Appendix H of this manual.

The Source Level Debugger

Prime's powerful interactive debugging tool, the Source Level Debugger,
may be obtained from Prime as a separately priced item. Use of the
Debugger can greatly expedite and simplify the debugging process.
Major features of the debugger enable you to

® Set both absolute and conditional breakpoints

@ Request the execution of Debugger commands (action list) when a
breakpoint occurs

@ Execute the progran step by step

@ Call procedures, subroutines, or functions from Debugger command
level

® Trace statement execution

1-7 First Edition

PL/I Reference Guide

@ Trace selected variables, printing a message when their value

changes

@ Print or change the value of any variable

@ Create Debugger macros that stand for two or more Debugger

commands

e Print a subprogram call or return stack history (traceback)

e Examine the source file while executing within the Debugger,

eliminating the need for hard-copy listings

See the Source Level Debugger User's Guide.

THE PRIMOS CONDITION-HANDLING MECHANISM

PRIMOS has two ways of reporting and dealing with errors: error codes

and PRIMODS conditions.

When a PRIMOS subroutine is called, it returns an error code. ‘This

code must be tested by the calling program to establish that the

subroutine has executed successfully.

Some errors cannot be dealt with by the return of an error code. For

each such error, a PRIMOS condition exists. When the error occurs, the

condition corresponding to the error is raised.

When a condition is raised, PRIMOS activates the condition-handling

mechanism. The condition handler notes what condition exists, then

calls an error-handling routine known as an on-unit to deal with the

error that has occurred.

PRIMOS supplies a default on-unit that handles all conditions. You can

specify an individual response to a condition by supplying an or-unit.

When a condition occurs for which a progranmer-supplied on-unit exists,

the actions specified in the onmunit are taken, rather than those

specified in the PRIMOS default onr-unit.

Information on the system default or-unit and the method for

substituting programmer-supplied on-units is contained in the Prime

User's Guide. For complete information on the condition handler, see

the Subroutines Reference Guide.

First Edition 1-8

Using the PL/I

Compiler

Prime's PL/I compiler accepts a source program meeting the PL/I
standard. It translates the statements in the source program into an
object (binary) module that contains the machine code needed to link
and execute the program, It can also output a source listing, error
and statistics information, and various messages. Errors are reported
at the terminal as the compiler detects then.

This chapter describes:

@ How to compile PL/I programs

@ How to specify options to the compiler

@ Compiler error messages

@ Compiler options

COMPILING A PL/I PROGRAM

After you have entered your source program into the system using ED or
EMACS, and have named the program with a .PLl suffix, you are ready to
invoke the PL/I compiler.

2-1 First Edition

PL/I Reference Guide

Invoking and Specifying Options to the Compiler

To invoke the PL/I compiler from the PRIMOS command level, use the PLI

command:

PL1 pathname [-option_1] [-option2] .. . [-option_n]

pathname is the pathname of the PL/I source program to be compiled. If

the source program has the suffix .PL1, pathname need only include the

part to the left of the period.

option is a PL/I compiler option. These options provide information

and input while you compile, link, and execute your program.

All compiler options begin with a hyphen (-). For example,

OK, PLl TEST1 -RANGE -DEBUG -LISTING

causes TEST1.PL1 to be compiled with the options given. You may

specify more than one option on the command line, in any order.

However, if you issue conflicting options, an error message results.

Compiler Error Messages

During compilation, the compiler outputs an error message each time it

encounters an error in your program. The error messages, which are

self-explanatory, assist you in finding and correcting the errors in

your program. For every error found, the compiler displays information

about where the error occurred and the level of severity:

ERROR xxx SEVERITY y BEGINNING ON LINE 222

explanation of message

XXX Error code

y Level of severity

ZZZ Line number where error begins

explanation Description of the error and possible remedies

First Edition 2-2

USING THE PL/I COMPILER

Errors are classified into four levels depending on the severity of the
error :

Severity Meaning

lL Warning —- a recoverable error, object file
produced.

2 Recoverable -- the compiler has supplied defaults
or a conversion; object file produced.

3 Nonrecoverable -- object file not produced.

4 Error that immediately aborts the compilation.

After the compilation process is complete, the compiler prints an
end-of-compilation message at the terminal. Its format is:

XxXxxX ERRORS [PL1 Rev. 19.4]
MAX SEVERITY IS y

xxxx is the number of compilation errors; 0000 indicates a successful

compilation. If there are no errors, the second line of the message

does not appear,

After compilation, control returns to the PRIMOS level. The PRIMOS
error prompt appears after a compilation that results in error messages
of severity levels greater than 2. Any PRIMOS command that may be
entered after OK may also be entered after the error prompt. (The
default error prompt, which can be changed by users, is ER!)

COMPILER OPTIONS

This section discusses the options available with the PL/I compiler.
Most of the options come in pairs, which act as switches to enable or
disable a particular action. The Prime-supplied defaults are indicated
by an asterisk. These defaults can be changed by your System
Administrator. Sone options require an argument to the option
specification. The argument follows the option and is not preceded by
a hyphen.

At the end of this section, Table 2-1 lists a summary of compiler

options and abbreviations.

2-3 First Edition

PL/I Reference Guide

pe *-64V

The -64V option generates 64V—mode code, which is a segmented virtual
addressing mode for 32-bit machines.

> *~AL.LOW_PRECONNECTION / —NO_ALLOW_PRECONNECTION

Abbreviation: -APRE / —-NAPRE

The —ALLON_PRECONNECTION option allows for the preconnection of a
listing output to a preopened file unit 2, or of a binary output to a
preopened file unit 3. When files have been preconnected, the compiler
displays a message indicating that preconnection has occurred.

When the -NO_ALLOW_PRECONNECTION option is used, PL/I always opens and
closes the listing and binary files (and uses dynamic file units).

 -BIG / *-NO_BIG

Abbreviation: —-BIG / -NBIG

-BIG generates segment-spanning code for aggregates (arrays or
structures) larger than one segment, when such aggregates are passed as
Parameters or referenced in a_ subprogram. If -BIG is specified, a
BASED or PARAMETER aggregate can become associated with any aggregate,
whether or not a segment boundary is crossed.

-NOBIG specifies that a BASED or PARAMETER aggregate can become
associated only with an aggregate that does not cross a segment
boundary.

> *-BINARY [pathname] / -NO_BINARY

Abbreviation: -B / -NB

The -BINARY option produces an object (binary) file with the name
source-program.BIN. ‘To write the object code toa different file, use

e -BINARY option followed by pathname.

-NO_BINARY specifies that no binary object file is to be produced. Use
this option when only a syntax check or listing is desired.

First Edition 2-4

USING THE PL/I COMPILER

B *-COPY / -NO_COPY

Abbreviation: -COP / -NCOP

~COPY causes the compiler to copy constants before calling
subprocedures, that is, to pass by value, so that when the new copy is
changed by a procedure, the corresponding value in the calling routine
is not changed.

-NO_OOPY allows the programmer to suppress the copying of constants
into temporary variables for procedure calls. This feature must be
coded properly in the called procedure, for if the called routine
changes the value of one of its parameters which was passed as a
constant, the value of that constant in the calling program will be
changed, causing subsequent references to that constant to use the
wrong value. Use of the -NO_COPY option can save on the amount of
executable code generated.

p> -DEBUG / *-NO_DEBUG

Abbreviation: -DBG / -NDBG

~DEBUG controls generation of code for the debugger. ‘The object file
is modified so that it will run under the Source Level Debugger.
Execution time increases, and the code generated is not optimized. Use
of the csbugger on programs with external procedures is not supported.

-NO_DEBUG causes no debugger code to be generated.

The Source Level Debugger is a separately priced product. For full
information, see the Source Level Debugger User's Guide.

p> -ERRLIST / *-NO_ERRLIST

Abbreviation: -ERRL / —NERRL

~ERRLIST produces a listing file (see below under -LISTING) that
contains only error messages. If both -LISTING and -ERRLIST are
specified, -ERRLIST takes precedence.

-NO_LERRLIST has no effect; if both -LISTING and -NO_ERRLIST are
specified, the listing file still includes the error messages.

2-5 First Edition, Update 1

PL/I Reference Guide

> *-ERRTTY / -NO_ERRITY

Abbreviation: -ERRI / —NERRT

-ERRTTY prints error messages at the terminal during compilation.

-NO_ERRTTY suppresses listing of errors on the terminal. They are
still included in the source listing file, if there is one.

> -EXPLIST / *~NO_EXPLIST (Implies -LISTING)

Abbreviation: -EXP / -NEXP

-EXPLIST inserts a pseudo-assembly code listing into the source

listing. Each statement in the source is followed by the pseudo-PMA

(Prime Macro Assembler) statements into which it was compiled. For
information on PMA, see the Assembly Language Programmer's Guide.

-NO_EXPLIST, if specified with -LISTING, causes no assembler statements
to be printed in the listing.

> -EXTENDED_CHARACTER_SET / *-NO_EXTENDED_CHARACTER_SET

Abbreviation: -ECS / -NECS

The -EXTENDED_CHARACTERSET option causes the COLLATE built-in function
to return a 256-character string, and causes the LOW built-in function
to return the character with numeric value zero. (See Chapter 14 for
information about these functions. The Prime Extended Character Set is
discussed in Appendix B.)

—NO_EXTENDED_CHARACTER_SET makes COLLATE return a 128-character string,
and makes LOW return the character with decimal value 128 (200 octal).

> -FRN / *-NO_FRN

Abbreviation: -FRN / —-NFRN

The Floating-point Round option improves the accuracy of calculations
involving single-precision real (FLOAT BIN(23)) numbers.

When the -FRN option has been given, all single-precision numbers are
rounded each time they are moved from a register to main storage. The
method of rounding is as follows: if the last bit of the mantissa is
1, add a 1 to the second-to-last bit, then set the last bit to 0. This
rounding reduces loss of accuracy in the low-order bits when many
calculations are performed on the same number.

First Edition, Update 1 2-6

USING THE PL/I COMPILER

The -FRN option does not affect double-precision real numbers (FLOAT
BIN(47)). It causes a slight increase in execution time and should
therefore be used only when maximum accuracy is a major consideration.

~NO_FRN causes no rounding to be performed.

> -FULL_HELP

Abbreviation: -FH

~FULL_HELP is similar to the —HELP option, except that in addition to
the usage summary, a description of the meaning of each compiler option
is given. The -HELP option is described below.

> -FULL_OPTIMIZE

Abbreviation: -FOPT

~FULL_OPTIMIZE ensures that the maximum amount of optimization
available is used. A note in the listing file shows the current level
of optimization implied by the use of this option.

> -HELP

Abbreviation: —-H

~HELP produces information on using the PL/I compiler. The compiler
displays a usage summary and a list of all options available.

> -INPUT pathname

Abbreviation: -I

-INPUT is an alternative way to specify the source file to be compiled,
it you do not name the file immediately after the PL1 command.
pathname specifies the name of the source progran. If pathname is TTY,
input will come from the terminal. ‘The pathname must not be designated
more than once. -INPUT is identical to Fre ~SOURCE option; see the
discussion of that option for examples.

2-7 First Edition, Update 1

PL/I Reference Guide

> -LCASE

Abbreviation: -LC

The -UPCASE and -LCASE options control mapping of lowercase to
uppercase letters in a source progran.

-LCASE distinguishes between lowercase and uppercase letters. Systen
calls must be in uppercase. -UPCASE is the default.

TTY
> -LISTING pathname| / *-NO_LISTING

SPOOL

Abbreviation: <-L / -NL

~LISTING causes the creation of a source listing file with the name
source-progran.LIST. The file ordinarily has four components: a list
of compiler options selected (including defaults), the source code with
line numbers, a map of data and procedure names, and compiler error
messages. The following arguments may be used:

TTY The listing is displayed at the terminal.

SPOOL The listing is spooled directly to the line printer.
Default SPOOL arguments are in effect.

To write the listing to a specific file, use the -LISTING option
followed by pathname.

~NO_LISTING causes no listing file to be created.

D> -map / *-NO_MAP (Implies -LISTING)

Abbreviation: -MA / -NMA

~MAP produces a listing file that contains a reference map of data and
procedure names. To get a full cross-reference of usage information
for each symbolic name, use the -XREF option. -MAP by itself is
identical to -LISTING by itself.

-NO_MAP, if specified with -LISTING, produces a listing file that
includes only the source progran and the error messages, without a
variable reference map.

First Edition, Update 1 2-8

USING THE PL/I COMPILER

> -MAPWIDE [decimal-integer] (Implies -MAP)

Abbreviation: -MAPW

~MAPWIDE specifies the width in characters of the cross-reference map
that appears in the listing file, as well as the width of the options
list section that appears at the beginning of the listing file. ‘The
legal range of values for the decimal-integer argument is from 80 to
160 inclusive. If a listing file is being produced and -MAPWIDE is not
specified, the default map width is 80. -MAPWIDE with no argument is
equivalent to —MAPWIDE 108.

> -MAXERRORS [decimal integer]

Abbreviation: -MAXE

-MAXERRORS specifies the maximum number of compilation errors to be
reported. If in a given compilation the specified maximum is reached,
then a severity 4 error message is issued and the compilation is
aborted. The number of errors that can be reported can range from 1] to
32767. If -MAXERRORS is not specified, the default maximum number of
errors to report is 100; if -MAXERRORS is specified without a decimal
argument, the maximum number of errors to report is 32767.

> -NESTING / *-NO_NESTING (Implies -LISTING)

Abbreviation: -NE / -NNE

~NESTING includes logical control nesting level in the source listing.
Each line in the source listing is printed with a number indicating how
many PROCEDURE statements, BEGIN blocks, and DO groups contain the
statement (s) on that line. This option is useful in tracing flow of
control and in matching END statements with their corresponding DO,
BEGIN, and PROCEDURE statements.

~NO_NESTING, if specified with -LISTING, produces a listing file that
contains no nesting level numbers.

> -OFFSET / *-NO_OFFSET (Implies -LISTING)

Abbreviation: -OFF / -NOFF

-OFFSET appends an offset map to the source listing. For each
statement in the source program, the offset map gives the offset in the
object file of the first machine instruction generated for that
statement.

2-9 First Edition, Update 1

PL/I Reference Guide

~NO_LOFFSET, if specified with -LISTING, causes no offset map to be
appended to the listing file.

p> *-OPTIMIZE [decimal-integer]

Abbreviation: -OPT

-OPTIMIZE controls the optimization phase of the compiler. Optimized
code runs more efficiently than non-optimized code, but takes somewhat
longer to compile. The decimal-integer that follows -OPITIMIZE
specifies one of the following levels:

Level Meaning

0 Perform no optimizations. Turns optimization off.

1 Code pattern replacement.

2 Common subexpression elimination. (Default value)

3 Loop invariant renoval, code pattern elimination,
and redundancy elimination. At this level,
internally nested procedures are made quick, that
is, called by a Jump To Subroutine instruction
rather than a Procedure Call, if conditions allow.
The condition under which a procedure is made quick
is that it be called simply, that is, called from
only one place. For example, procedure C can be
quick if it is called only from procedure A. But if
it is also called from procedure B, where B is a
separate procedure from A, then C cannot be quick.
The last section of Chapter 8 explains how to use
the NONQUICK option to keep a particular procedure
from being made quick.

Note

Each optimization level performs all the optimizations of the
next lower level, plus those that are listed.

If you do not specify -OPTIMIZE, the default level is 2. -OPTIMIZE
with no arguments also produces the default level. The level of
optimization that you select is identified in the optimization note of
the compiler's listing output file.

First Edition, Update 1 2-10

USING THE PL/I COMPILER

> -OVERFLOW / *-NO_OVERFLOW

Abbreviation: -OVF / -NOVF

~OVERFLOW enables the integer condition handling mechanism when a
division by zero is encountered, or when integer arithmetic causes an
integer to be larger than the data type for which it was declared.
-OVERFLOW affects integer calculations only. It causes the
FIXEDOVERFLOW condition to be raised at runtime if the result does not
fit.

~NO_OVERFLOW disables the integer overflow condition.

> -PRODUCTION / *~NO_PRODUCTION

Abbreviation: -PROD / -NPROD

~PRODUCTION generates controlling code for the debugger. It is similar
to -DEBUG, except that the code generated does not permit insertion of
statement breakpoints or tracepoints, nor does it allow single-stepping
through the progran. Execution time increases less than when —-DEBUG is
specified.

-NO_PRODUCTION causes no production-type code to be generated.

> -RANGE / *-NO_RANGE

Abbreviation: —-RA / -NRA

~RANGE controls error checking for out-of-bounds values of array
subscripts and character substring indexes.

Error-checking code is inserted into the object file. If an array
subscript or character substring index takes on a value outside the
range specified when the referenced data iten was declared, the ERROR
condition is signalled. (Note that range checking decreases the
efficiency of the generated code.)

-NO_RANGE causes no code to be generated to check for out-of-range
values of subscripts and indexes.

> -SILENT [decimal-integer]

Abbreviation: —-SI

-SILENT, when used with a decimal argument, suppresses the printing of
error and warning messages of the severity you specify in
decimal-integer. The error and warning messages are anitted from any

2-11 First Edition, Update 1

PL/I Reference Guide

listing files generated. Severity levels are listed above in the
section on Compiler Error Messages.

If -SILENT is not specified, a value of -l is assumed: all error

messages appear. -SILENT with no argument is equivalent to ~-SILENT 1.

The option header in the listing file (if any) shows the level of
severity you specify in decimal-integer.

> -SOURCE pathname

-SOURCE is an alternative way to specify the source file tobe

compiled, if you do not name the file immediately after the Pil

command. pathname specifies the name of the source progran. If

thname is TTY, input will come from the terminal. ~-SOURCE is

:Sentical to the -INPUT option. ‘The following are equivalent:

PL1 pathname -RANGE ~BIG

PL1 -RANGE -BIG ~I pathname

PL1 -BIG -S pathname -RANGE

The pathname must not be designated more than once.

> -SPACE

-SPACE specifies that space reduction is to be given preference over

speed in optimization consideration. This option is the opposite of

-TIME, which favors speed over space in reducing the size of optimized

code. -TIME is the default.

> -STATISTICS / *~NO_STATISTICS

Abbreviation: -STAT / -NSTAT

-STATISTICS displays a list of compilation statistics at the terminal

after each phase of compilation. For each phase the list contains:

DISK Number of reads and writes during the phase,
excluding those needed to obtain the source file

SECONDS Elapsed real time

SPACE Internal buffer space used for symbol table, in 16K

byte units

First Edition, Update 1 2-12

USING THE PL/I COMPILER

NODES The number of symbol table nodes that the compiler
is using in the program

PAGING Disk I/O time

CPU CPU time in seconds, followed by the clock time when
the phase was completed

The -NO_STATISTICS option does not display compilation statistics at
the terminal.

> *=—STORE_OWNER_FIELD / -NO_STORE_OWNER_FIELD

Abbreviation: -SOF / -NSOF

~STORE_ONNER_FIELD stores the identity of the current program ina
known place for use by traceback routines. This option is useful for
debugging programs. Use of this option increases the size of the
generated code and linkage and slightly degrades execution time of
prograns.

~NO_STORE_OWNER_FIELD omits this small code sequence for extremely
time-critical programs.

eS *—~STRINGSIZE / -NO_STRINGSIZE

Abbreviation: -STRZ / —NSTRZ

~STRINGSIZE enables the STRINGSIZE condition for the entire compilation
unit. PL/I raises the STRINGSIZE condition if either of the following
circumstances occurs:

@ Ina PUT EDIT statement with the data format iten B[n](w), the
resulting conversion contains more bits than the specified width
We

e A source string is longer than the maximum length of the
assignment target.

~NO_STRINGSIZE disables the STRINGSIZE condition. Execution time is
faster because code is not generated to check for string overflow at
runtime.

Chapter 13, PL/I Condition Handling, contains more detailed information
on the STRINGSIZE condition.

2-13 First Edition, Update 1

PL/I Reference Guide

> *~-TIME

-TIME specifies that speed is to be given preference over space

reduction in optimization selection. This option is the opposite of

-SPACE, which favors space over speed in reducing the size of optimized

code.

p> *-UPCASE

Abbreviation: -UP

The -UPCASE and -LCASE options control mapping of lowercase to

uppercase letters in a source progran.

—-UPCASE treats all lowercase letters in the source as uppercase, except

in character constants.

p> -XREF / *-NO_XREF (Implies -LISTING)

Abbreviation: -XREF / -NXREF

~XREF appends a cross-reference to the source listing. A

cross-reference gives, for every variable, the numbers of all lines on

which the variable was referenced.

-NO_XREF does not generate a cross-reference listing.

First Edition, Update 1 2-14

USING THE PL/I COMPILER

Table 2-1
Summary of Compiler Options and Abbreviations

(Defaults are marked with asterisks.)

Option Abbreviation Significance

~64V * Produce 64V mode code

~ALLOW_PRECONNECTION * -APRE Use preopened file
~NO_ALLOW_PRECONNECTION —NAPRE

~BIG Allow boundary spanning
~NO_BIG * -NBIG

—BINARY * -B Create object file
~NO_BINARY ~NB

~COPY * ~COP Pass arguments by value
—-NO_COPY -NCOP Pass arguments by reference

—DEBUG —DBG Generate debugger code
~-NO_DEBUG * -NDBG

—ERRLIST —-ERRL Produce an error file
—NO_ERRLIST * -NERRL

~ERRITY * ~ERRT List errors on the terminal
—-NO_ERRTTY —NERRE

~EXPLIST ~-EXP Generate expanded source
—-NO_EXPLIST * -NEXP listing

~EXTENDED_CHARACTER_SET -ECS Change values returned
~NO_EXTENDED_CHARACTER_SET * ~—NECS by LOW and COLLATE

—FRN Round floating-point numbers
-NO_FRN * -NFRN in storage

~—FULL_HELP ~FH Display usage information,
option list, and description

~FULL_OPTIMIZE ~FOPT Optimize fully

-HELP -H Display usage information
and option list

~INPUT -I Designate source file

~LCASE -LC Do not convert lowercase

2-15 First Edition, Update 1

PL/I Reference Guide

Table 2-1 (continued)
Summary of Compiler Options and Abbreviations

(Defaults are marked with asterisks.)

Option Abbreviation Significance

—LISTING -L Create source listing
-NO_LISTING * -NL

—MAP ~-MA List data and procedure
-NO_MAP * -NMA names

~MAPWIDE —-MAPW Set width of listing map

~MAXERRORS —MAXE Specify maximum number
of reported errors

—NESTING -NE Indicate nesting level
~NO_NESTING * -NNE

—-OFFSET -OFF Show offsets in source list
~NO_OFFSET * —-NOFF

~OPTIMIZE * -OPT Optimize object code

—OVERFLOW -OVF Enable integer overflow
-NO_OVERFLOW * -NOVF

—PRODUCTION -PROD Generate production code
-NO_PRODUCTION * -NPROD

—RANGE ~-RA Check subscript ranges
—NO_RANGE * -NRA

~SILENT -SI Suppress warning messages

—SOURCE -S Designate source file

~SPACE Space over time in
optimization

-STATISTICS ~STAT Print compiler statistics
~NO_STATISTICS * -NSTAT

~STORE_OWNER_FIELD * ~SOF Store module names in
~NO_STORE_ONNER_FIELD ~NSOF program code for debugging

-STRINGSIZE * ~SIRZ Enable STRINGSIZE condition
~NO_STRINGSIZE -NSTRZ for entire compilation

unit

First Edition, Update 1 2-16

USING THE PL/I COMPILER

Table 2-1 (continued)
Summary of Compiler Options and Abbreviations

(Defaults are marked with asterisks.)

Option Abbreviation Significance

~TIME * Time over space in
optimization

~UPCASE * -UP Convert to uppercase

—-XREF -XR Generate cross-reference
~NO_XREF * ~NXR

2-17 First Edition, Update 1

Linking and

Executing PL/I

INTRODUCTION

This chapter shows you how to create an Executable Program Format (EPF)
using BIND. ‘The basic commands given in this chapter will be
sufficient for most of your linking needs. For more advanced linking
commands with BIND, see the Programmer's Guide to BIND and EPFs.

HOW TO USE BIND

After you have successfully compiled your program, you are ready to
link and execute it using BIND. You can do this in either of the
following two ways:

@ Directly from the PRIMOS command line

@ Interactively, by invoking subcommands of BIND

To run BIND from the PRIMOS command line, type:

BIND [EPF-filename] [arguments]

Invoking BIND in this way allows you to create your runfile (the
executable version of your progran) in one PRIMOS command line. When
using BIND on PRIMOS command level, you must precede each command with
a hyphen (-). EPF-filename is the name of the existing EPF or the name

3-1 First Edition

PL/I Reference Guide

of the object file (binary file) that you want BIND to create, If
EPF-filename is missing, BIND uses the name of the first loaded binary
file for the EPF-filename base. Arguments given on this command line
correspond to internal BIND commands that are explained in the
following sections.

A sample linking session using one PRIMOS command line follows:

OK, BIND MYPROG -LO ADD -LO SUB ~LI PLILIB -LI

[BIND rev 19.4]
BIND COMPLETE

OK,

The commands -LO (or -LOAD) and -LI (or -LIBRARY) are explained below
in the section on BASIC LINKING COMMANDS. BIND saves your runfile in
your directory with the default name EPF-filename.RJN. In the example
above, BIND has saved your runfile with the name MYPROG. RUN.

You may also use BIND interactively by issuing commands to BIND one
command line at a time in response to the colon (:) prompt.

To invoke BIND interactively, type the command:

BIND

BIND then asks you with a colon prompt to load your files. Each time
you press the carriage return, you see this prompt. When you leave
BIND, your system prompt appears on the screen.

A sample of an interactive linking session using the same program as
the single-step link looks like this:

OK, BIND MYPROG
{BIND rev 19.4]
: LOAD ADD

: LOAD SUB

: LI PLILIB

BIND COMPLETE

: FILE

OK,

BIND saves the runfile in your directory as MYPROG. FUN.

First Edition 3-2

LINKING AND EXECUTING PL/I

BASIC LINKING COMMANDS

You can accomplish most. of your loading and linking with the following

sequence of commands :

1. Load your program with the LOAD command, starting with the main

procedure followed by the subprograms in the order in which

they are called. (LOAD may be abbreviated LO.)

2. load the PL/I library with the command LIBRARY PLILIB.

(LIBRARY may be abbreviated LI.)

3. Load the system library with the command LIBRARY.

4, When you receive the BIND COMPLETE message, save the EPF

runfile and return to PRIMOS level with the command FILE,

The following commands are useful but not necessary to create an EPF.

They can be used at any time during the linking sequence.

e MAP can be used to identify references if you do not receive a

BIND COMPLETE message at your terminal, MAP ~UNDEFINED, the

most useful form of this command, produces a list of unresolved

references,

® QUIT returns you to PRIMOS level immediately without saving the

current EPF.

@ HELP gives on-line help if you have problems during a BIND

session.

RUNNING YOUR PROGRAM

Once you have compiled and created an EPF, you are ready to run your

program using the RESUME command. (For more information on running

programs, see the Prime User's Guide.)

The RESUME command has the following format:

RESUME [EPF-filename]

Previously, we created a runfile with BIND called MYPROG. RUN. To

execute that runfile, type the PRIMOS level command:

RESUME MYPROG

PRIMOS autanatically looks in your directory for MYPROG.RJN and begins

execution of the EPF.

3-3 First Edition

PL/I Reference Guide

If PRIMOS does not find a file with the name MYPROG.RUN, the following
message appears:

Not found. MYPROG (stdScp)

PRIMOS is telling you that you forgot to create a runfile using BIND.

First Edition 3-4

PART II

Prime PL/I Language Reference

The PL/I Language

This section begins by describing enough of the PL/I language to get
you started writing simple programs. It assumes that you already know
general programming concepts, such as loops, subroutines, functions,
input/output, and so forth, and explains how to program these concepts
in PL/I.

Much of the material in this section is repeated later in the manual in
much more detail. For example, Chapter 9 contains more information on
the IF and DO statements. Refer to other chapters of this manual to
get further explanations of the topics discussed.

SIMPLE PL/I PROGRAMS

The following simple PL/I program accepts two data values, which it
interprets as the two sides of a rectangle. The program then computes
the perimeter of the rectangle, using the standard formula, and prints
out the result of the computation:

TEST: PROCEDURE OPTIONS (MAIN);
GET LIST (X, Y)?
PERIMETER = 2 * (X + Y)?
PUT LIST (PERIMETER);
END TEST;

The following paragraphs describe how this program works.

4-1 First Edition

PL/I Reference Guide

PL/I Statements

The above program contains five PL/I statements. Each of the five
statements is on a separate line, although, as we will explain, this is
not required.

PL/I is a free form language. This means that you are not required to
begin a statement in any particular column, as you are, for example, in
FORTRAN or COBOL. PL/I recognizes the end of a statement by means of a
semicolon; each statement must end with a semicolon.

For example, in the above program, the second statement was written as

GET LIST(X, Y);

However, PL/I rules would have permitted you to write the statement as

GET

LIST

(X, Y)?

It does not matter that the statement now takes three lines.

Conversely, it is perfectly okay to have several statements on a single
line, For example, the second and third statements in the example
program above could have been written as

GET LIST(X, Y); PERIMETER = 2 * (X + Y);

PL/I knows that there are two statements because each of the statements

ends in a semicolon,

The maximum size of a source line is 255 characters. A statement may
have a maximum of 6143 elements or tokens.

Statement Types

Every PL/I statement has a statement type. Most statements are keyword
statements, because the statement type is determined by a special word,
called a keyword, in the statement. In the sample program above, all
but the third statement are keyword statements. The first two
statements are PROCEDURE and GET statements, respectively, and the last
two statements are PUT and END statements, respectively. The third
statement is an assignment statement and is not determined by a
keyword,

First Edition 4-2

THE PL/I LANGUAGE

The PROCEDURE and END Statements

The sample PL/I program above begins with the following PROCEDURE
statement:

TEST: PROCEDURE OPTIONS (MAIN);

and ends with the following END statement:

END TEST;

In fact, each PL/I program must begin with a PROCEDURE statement and
end with an END statement.

The PROCEDURE statement that begins your program has the following
syntax:

name: PROCEDURE OPTIONS (MAIN);

The name, which should be no more than eight characters long, is the
name that you have chosen for your program. The first character must
be a letter of the alphabet, and the other seven characters may be
either letters or digits. In the sample program above, the name of the
program is TEST.

The phrase OPTIONS(MAIN) tells PL/I that this is a main procedure or
main program. This phrase is necessary because you can also use the
PROCEDURE statement to define subroutines, which are not main programs.

Since PROCEDURE is a fairly long keyword, PL/I permits you to
abbreviate it with the alternate keyword PROC. Therefore, the first
statement of the sample program above could be written

TEST: PROC OPTIONS (MAIN) ;

The use of the abbreviation PROC is entirely equivalent to the use of
the full keyword PROCEDURE.

4-3 First Edition

PL/I Reference Guide

The syntax of the END statement that ends the program must be either

END:

or

END name?

In the second format, the name is the name of your program, which you
have already specified in the PROCEDURE statement. You may use either
format. ‘The second format is often preferable because it is more
explicit. That is, your program can contain a number of END
statements. By specifying the name of the program in the END
statement, you are emphasizing the fact that this END statement is the
end o£ the program.

The GET Statement

The second statement of the sample program above is the following GET
statement:

GET LIST(X, Y);

This statement accepts input from your terminal. When PL/I reaches
this statement, execution of your program stops, and PL/I waits for you
to type values for the variables X and Y. For example, you might type

12, 3, CR

where CR indicates pressing the return key. PL/I would set the value
of X to 12 and the value of Y to 3.

The syntax of the GET statement is

GET LIST (variable);

or

GET LIST(variable, variable, ...)?

First Edition 4~4

THE PL/I LANGUAGE

When PL/I executes a statement in one of these formats, it waits for
you to type values of the variables appearing in the statement at your
terminal.

More complicated formats for the GET statement enable PL/I to

@ Accept input from arbitrary files or devices

@ Accept formatted input

These are discussed in Chapter ll.

The Assignment Statement

The third statement of the sample program above is an assignment
statement:

PERIMETER = 2 * (X + Y);

PL/I computes the value of 2 * (X + Y), and assigns the result to the
variable PERIMETER. Since the asterisk is the PL/I symbol for
multiplication, PL/I computes 2 * (X + Y) by doubling the sum of X and

Yo

The simplest syntax of the assignment statement is

variable = expression;

PL/I computes the value of the expression on the right-hand side of the
assignment statement, and assigns that value to the variable on the
left-hand side of the statement. A more complex syntax is the
£ollowing:

variable, variable, ... = expression;

In this case, PL/I evaluates the expression and assigns the result to
each of the variables on the left-hand side of the statement.

The format of an expression is discussed in the section on expressions
below and in full detail in Chapter 6.

4-5 First Edition

PL/I Reference Guide

The PUT Statement

The fourth statement of the sample program is the following:

PUT LIST (PERIMETER) ;

Use the PUT statement to print a value on your terminal. The above

statement prints the value of the variable PERIMETER on your terminal.

The simplest forms of the PUT statement are

PUT LIST (expression);

or

PUT LIST(expression, expression, ..-)?

PL/I executes such a statement by evaluating each expression and

printing its value on your terminal.

More complex forms of the PUT statement perform formatted output or

perform output to arbitrary files and devices, See Chapter 11 for

details.

You may use any expression in the PUT LIST statement. ‘Therefore, in

the sample progran at the beginning of this section, you could have

replaced the two statements

PERIMETER = 2 * (X + Y);
PUT LIST (PERIMETER);

with the single statement

PUT LIST(2 * (X + Y))3

and gotten the same results.

Sometimes you wish to print out same words or text along with your

answer. You can enclose such text in apostrophes. For example,

consider the following statement:

PUT LIST('THE ANSWER IS', 2 * (X + Y¥))?

First Edition 4-6

THE PL/I LANGUAGE

When PL/I executes this statement, if X=5 and Y=15, this PuT
statement would print

THE ANSWER IS 40

The element

'THE ANSWER IS'

which appears in the PUT statement is a CHARACTER string constant.
These are described in the section on the CHARACTER data type below,
and in complete detail in Chapter 5.

ELEMENTS OF A PL/I PROGRAM

The following are some of the basic syntactic elements of a PL/I
program: identifiers, constants, operators, parentheses, spacing,
expressions, and comments.

Identifiers

A PL/I identifier is a sequence of characters that serves as a name.
Usually it is the name of the program, a variable, or a keyword. ‘The
following is a list of all the identifiers appearing in the sample
program given at the beginning of this section:

e@ The name of the program is TEST.

@ The keywords are PROCEDURE, OPTIONS, MAIN, GET, LIST, PUT, END.

@ The variables are X, Y, PERIMETER,

Identifiers are used for other purposes besides the three just listed,
and these are described in appropriate places in the manual.

You may use any legal identifier as a variable mame. A legal
identifier must follow these rules:

@ The first character of the identifier must be a letter,

@ Subsequent characters may be letters, digits, the break
character (_), also called the underscore, the space character

(#), or the dollar sign (S$).

@ No more than 32 characters are permitted.

4-7 First Edition

PL/I Reference Guide

The following are legal PL/I identifiers:

A
WHITE
WHITE68
RED#40
YOURS
MILES_PER_GALLON

On the other hand, the following are not legal identifiers:

5XYZ (Does not begin with a letter)

THISISAVERYLONGIDENTIFIERWORD (Too long)

If you use a lowercase letter in an identifier, PL/I treats it as if it

were an uppercase letter. Therefore, the following would all ke

considered equivalent variable names:

WHITE

white
White

However, this rule does not apply if you run the PL/I program with the

-LCASE option explained in Chapter 2. If you specify this option, the

three identifiers given just above would be considered three different

variables. Note, however, that even if you use the ~-LCASE compiler

option, PL/I would still consider list, when used as a keyword, to be

the same as LIST.

A feature of the PL/I language is that it has no reserved words,

identifiers that are illegal as variables because they are reserved for
use as keywords. Therefore, for example, the statement

PUT LIST (PUT + LIST);

is a perfectly legal PL/I statement, and PL/I recognizes that the first

uses of the identifiers PUT and LIST are as keywords, and that the

second uses are as variables. However, aS a practical matter, you

should avoid using variables that are the same as keywords, because
your program will be confusing and difficult to understand.

First Edition 4-8

THE PL/I LANGUAGE

Constants

A constant is usually a number. The sample program given at the
beginning of this section contains only one constant. In the statement

PERIMETER = 2 * (X + Y)?

2 is a constant.

PL/I constants come in many forms, as described in Chapter 5. Numeric
constants always begin with a digit or a decimal point. The following
are examples of numeric constants:

23 4
89E+12
1.10F~4BI
2862

PL/I also has string constants, which are described in Chapter 5. Each
such constant is enclosed in apostrophes. Some examples of string
constants are

"THE ANSWER IS!
'101101'B
'23BFF43 'B4

Operators and Parentheses

The assignment statement

PERIMETER = 2 * (X + Y)?3

contains two arithmetic operators. These are the asterisk (*) for
multiplication and the plus sign (+) for addition. The statement also
contains parentheses, and the equal sign for assignment. The use of
operators and parentheses in expressions is described briefly in the
section on expressions below and in complete detail in Chapter 6.

4-9 First Edition

PL/I Reference Guide

Spacing

As has been previously stated, PL/I recognizes different individual

statements in your program by the fact that each PL/I statement ends

with a semicolon. You may write one statement per line if you wish, or

you may spread a single statement over several lines, or you may have

several statements on a single line.

You may space the statement in any way you wish, subject to some fairly

obvious rules. Consider the statement

PUT LIST (PERIMETER) ;

You may not insert spaces in the middle of a constant or identifier, or

in the middle of a two-character operator, such as <=, but you may

insert spaces anywhere else you wish. Therefore, the above statement

could have been written

PUT LIST (PERIMETER 3

You must have spaces to separate two identifiers, or two constants, or

a constant and an identifier. Therefore, in the above statement, you

must have spaces between PUT and LIST, but spaces are optional between

LIST and the left parenthesis, and between PERIMETER and the right

parenthesis.

Comments

A comment has the syntax

/* comment */

Any characters between the delimiters /* and */ are read aS a comment.

You may insert a comment into your program anywhere you would use 4

space. For example, you could change the PUT statenent shown above to

the following:

/*FINAL CUTPUT*/PUT LIST (PERIME'TER/*ANSWER*/) 3

PL/I considers a comment to be entirely equivalent to a blank.

First Edition 4-10

THE PL/I LANGUAGE

EXPRESSIONS

Almost every PL/I statement contains expressions. You have already
seen how they are used in assignment statements and PUT statements.
The full details about expressions are given in Chapter 6. This
section deals with some general concepts.

Arithmetic Operators

The following are the PL/I arithmetic operators:

rator MeaninMeaning

Addition
Subtraction
Multiplication
Division

* ExponentiationN
e

E
+

You may combine these operators in expressions in any way you wish.
For example, if you wish to perform the algebraic assignment

use the following assignment statement:

X= (A+B*Y) / (A~ B) ** N;

Priority of Operators

Unless you specify otherwise, by means of parentheses, PL/I performs
multiplication and division before addition or subtraction, and
exponentiation before any of these. Therefore, the statement

X=A*B+C;

is equivalent to the statement

X= (A * B) + C;

4-11 First Edition

PL/I Reference Guide

Furthermore, the statement

X=A/B ** C;

is equivalent to the statement

X= A/ (B ** C);

In each case, the implied parentheses give higher priority to

multiplication over addition, and exponentiation over division.

When you have two adjacent multiplication or division operators, PL/I

computes them from left to right. For example, consider the following

statement:

X=A/B* C;

The expression on the right-hand side of the assignment statement

contains the operators for division and multiplication. Since there

are no parentheses, PL/I computes these from left to right. The result

is that the above statement is equivalent to the statement

X= (A /B) * C;

The same left to right rule applies to adjacent addition and

subtraction operators. For example, consider the statement

X=A-B+tC+tD;

The addition and subtraction operations are performed left to right,

and so this statement is equivalent to

X= ((A- B) + C) + D;

First Edition 4-12

THE PL/I LANGUAGE

Note that the operator "=" has two separate meanings. The examples
that you have seen for this operator are for subtraction. But the same
symbol is also used for a different operation called the negation
operation. The negation operation is illustrated by the following
statements:

X = -A;
Y = -A * B;

When used for the negation operation, the "=" operator is called a
unary minus and is performed before multiplication or division. Thus
the last statement above is equivalent to the statement

Y= (-A) * B;

PL/I has a number of additional rules for determining the priority of
operations in expressions. (See Chapter 6.) The most important rule,
however, is

When in doubt, parenthesize!

That is, use parentheses in your expressions whenever you are unsure of
the precise priority rules specified by the PL/I lanquage.

FLOW OF CONTROL WITH IF, DO, AND GO TO

Normally, PL/I executes the statenents of your program in the order in
which they appear. That is, PL/I executes one statement, then the
statenent following it, and then the statement following that.
However, you may use the IF, DO, and GO TO statements to modify the
order of execution of the statements of your program.

Conditional Execution With the IF Statement

Consider the following program, which inputs two data values and prints
the larger of the two input values:

LARGER: PROC OPTIONS (MAIN);
GET LIST (FIRST, SECOND) ;
IF FIRST > SECOND THEN HIGH = FIRST;

ELSE HIGH = SECOND;
PUT LIST (HIGH) ;
END LARGER?

4-13 First Edition

PL/I Reference Guide

This program contains a new kind of statement, the IF statement. The

particular IF statement in this program says the following: if the

value of the variable FIRST is greater than the value of the variable

SECOND, then set the variable HIGH equal to FIRST; otherwise, set HIGH

to the value of SECOND. Therefore, HIGH is set to equal the larger of

the two input values. The PUT statement then prints out the larger

value. ‘The simplest syntax of the IF statement is as follows:

IF logical-expression THEN statement;
ELSE statement;

The logical expression is usually a simple comparison (such as

FIRST > SECOND in the example above), but may be more complicated, as

described below.

The syntax shown above uses two additional statements with the IF

statement. ‘The statement following the keyword THEN in the above

syntax is called the HEN clause of the IF statement. The one

following the keyword ELSE is called the ELSE clause,

PL/I executes the IF statement by evaluating the logical expression to

determine whether it is true or false. If it is true, PL/I executes

the THEN clause. If the logical expression is false, PL/I executes the

ELSE clause.

You may, if you wish, omit the ELSE clause of the IF statement, using

the following syntax:

IF logical-expression THEN statement;

In this case, PL/I evaluates the logical expression, as before. If it

is true, PL/I executes the THEN clause. If it is false, PL/I continues

sequential execution with the next statement.

Using a DO Group for the THEN or ELSE Clause of the IF Statement

Consider the following program segment:

IF X > 0 THEN DO;
FLAG = 1;
PUT LIST (' POSITIVE’);

END;

ELSE DOs

FLAG = 0;
PUT LIST ("NEGATIVE OR ZERO') ;

END;

First Edition 4-14

THE PL/I LANGUAGE

This example illustrates how your THEN clause or ELSE clause can
include more than just a single PL/I statement. In this example, if
the variable X is greater than 0, PL/I sets FLAG to 1 and prints the
word POSITIVE; otherwise, PL/I sets FLAG to 0 and prints the words
NEGATIVE OR ZERO.

In fact, your THEN or ELSE clause may contain as many statements as you
wish. The demarcation structure you use is a DO/END group, a group of
statements beginning with a DO statement and ending with an END
statement. Other uses of DO/END groups are discussed later in this
chapter.

Logical Expressions

A logical expression is a special kind of PL/I expression that is
either true or false. For example, in the IF statement illustrated in
the sample program above, FIRST > SECOND is a logical expression that
is true if the value of the variable FIRST is larger than the value of
SECOND, and is false otherwise. In the next example above, X > 0 is
true if X is positive, and false if X is 0 or necative,

The simplest form of a logical expression is a comparison. The logical
expression FIRST > SECOND is a comparison, using the comparison
operator >, which stands for greater than. The following table lists
all PL/I comparison operators:

Comparison
Operator Meaning

> Greater than
< Less than
= Equal
<= Less than or equal
>= Greater than or equal
“es Not. equal
“> Not greater than (same as <=)
“< Not less than (same as >=)

Note

In the Prime EDITOR, the operator NOT must be entered as “*.

4-15 First Edition

PL/I Reference Guide

For example, the statement

IF X+ Y <= R* S THEN ...7
ELSE co?

is executed as follows: if X plus Y is less than or equal to R * 5S,

PL/I executes the THEN clause; otherwise, PL/I executes the ELSE

clause.

A logical expression may also combine comparisons with the logical

operators & for AND and | or ! for OR. Consider, for example, this

statement:

IF (3<A&A< 5) | A= 0 THEN X= 15;

The statement tests whether A is either between 3 and 5 or equal to 0.

If the result of this test is true, PL/I sets the value of X to 15.

Aword of warning: you may wish to test whether the value of X is

between 0 and 10 by using a comparison like the following:

IF 0 < X < 10 THEN ...?

The problem with this statement is that although it is a legal PL/I

statement, it does something quite different from what you expect. (In

fact, the result of evaluating 0 < X < 10 is always true. The full

rules for PL/I evaluation of expressions like this are in Chapter 5.)

Therefore, PL/I does not tell you that this is an illegal statement,

since it is in fact legal. The correct way to test whether xX is

between 0 and 10 is to use the following:

IF 0 << X & X < 10 THEN ...?}

For introductory purposes, we have been using the words logical

expression somewhat imprecisely in this section. Chapter 5 defines a

Togical expression as a PL/I expression that has the BIT data type. In

fact, since PL/I can convert any numeric value to the BIT data type,

you may theoretically use any numeric expression aS a logical

expression, However, most programmers will find these conversion rules

somewhat arcane, and so you should restrict your logical expressions to

simple comparisons and combinations of comparisons using & and |.

First Edition 4-16

THE PL/I LANGUAGE

The DO/END Group

In the discussion of the IF statement above, you saw how to use a
DO/END group to permit the THEN or ELSE clause to contain more than one
statement. One of the fundamental purposes of the DO/END group is to
allow you to define a group of statements to be used as a single unit.

By using a different form of the DO statement, you can use PL/I's
looping capability. This capability is similar to that provided by the
DO statement in FORTRAN, the FOR statement in BASIC, or the PERFORM
statement in COBOL. The looping capability is discussed in the next
few sections, and in full detail in Chapter 10.

Fach DO statement, of whatever format, begins a group of statements to
be treated as a unit. For each DO statement in your program there must
be a matching END statement that terminates the DO/END group. If the
DO statement has no options (and this is the only type of DO statement
we have seen so far), the DO/END group is noniterative, meaning that
the statements in the group are executed precisely once. If the DO
statement has options (which are described below), the group is
iterative, since the options control the number of times the group
executes, or, in PL/I terminology, the number of iterations of the
loop.

The DO WHILE Statement

The following is a program that inputs one or more data values,
stopping when the value 0 is reached, and prints out their sum:

SUMER: PROC OPTIONS (MAIN);
SUM = 0;
GETLIST (X) ;

DO WHILE(X “=
SUM = SUM + X3
GET LIST (X)?
END:

PUT LIST (SUM) 3
END SUMER};

0) ;

This program contains a DO/END group that begins with the following
statement:

DO WHILE(X “= 0);

This statement says, execute the statement inside the DO/END group over
and over, as long as X does not equal 0.

4-17 First Edition

PL/I Reference Guide

The syntax for a group of this type is as follows:

DO WHILE (logical-expression);

END;

The logical expression has the same form in the DO WHILE statement as

it does for the IF statement described before. PL/I executes all the

statements in the group over and over, as long as the logical

expression is true.

Be aware that so-called zero-trip DO loops are possible in PL/I. If

the logical expression is false the first time that it is tested, PL/I

does not execute the statements inside the group at all; execution

continues immediately with the statement following the END statement.
In the SUMER example shown above, if the first input value for Xis 0,

the statements inside the group does not execute, and execution

continues immediately with the PUT statement following the END
statement, which prints the value 0 for SUM.

DO/END Groups with Index Variables

Users of other programming languages may be more comfortable with the

form of the DO statement illustrated in the following program segment:

DO K = 5 TO 20;
PUT LIST (K) 3
END;

This program segment prints out the integers 5, 6, 7; ese, 20. The DO
statement says, execute all the statements in the DO group 16 times,
The first time, let K equal 5; the second time, let K equal 6; and so
forth, until the sixteenth time, when K equals 20.

The variable K is called the index variable of the DO/END group. For
each iteration of the statements inside the group, PL/I first changes
the value of the index variable in the manner dictated by the options

of the DO statement. The options of the DO statement also determine

the number of iterations. In the example above, the DO statement says

that K is to have the value 5 for the first iteration, that the value

of K is to be increased by one for each subsequent iteration, and that
the loop is to terminate when the value of K exceeds 20.

There are many forms of DO statements with an index variable. See
Chapter 10 for details. This introductory section shows some examples
illustrating the most useful options of the DO statement with an index.

First Edition 4-18

THE PL/I LANGUAGE

In the example above, PL/I increments K by 1 for each repetition of the
loop. If you wish to increment by a different value, use the BY
option. For example, the loop

DO K = 5 TO 20 BY 3;
PUT LIST (K);
END;

prints the values 5, 8, 11, 14, 17, 20. The TO and BY clauses may go
in either order. Therefore, the loop

DO K = 5 BY 3 TO 20;
PUT LIST (K)?
END:

is equivalent.

Any of the three values shown in the DO statement in the last example
may be an arbitrary PL/I expression. For example, a DO group like

DO COUNT = X¥ + 3 TO 4 BYU + @;

END;

is legal.

A final useful form permits you to make a list of the values that you
wish the index variable to take. For example, the program segnent

DO VALUE = 8, 12, -3, 4, 15, 23

PUT LIST (VALUE) ;
END;

prints the values 8, 12, ~3, 4, 15, and 2. Each of the specifications
in the list may contain a TO and BY option. For example, the loop

DO VALUE = 3 TO 5, 8 TO 10, 15 TO 21 BY 2;
PUT LIST (VALUE):
END;

prints 3, 4, 5, 8, 9, 10, 15, 17, 19, and 21.

4-19 First Edition

PL/I Reference Guide

There are further examples of these DO statements later in this

section, especially in the discussion of arrays. For complete details,

see Chapter 10.

Named DO/END Groups

Recall that each PL/I progran begins with a PROCEDURE statement

specifying the name of your program and ends with an END statement
specifying the same name. The syntax is

name: PROC OPTIONS (MAIN);

eee

END name;

The END statement matches the PROCEDURE statement. The name specified

in the END statement emphasizes that fact, since it is the same name

that appears in the PROCEDURE statement.

Just as you use an END statement to match a PROCEDURE statement, you

must also use it to match a DO statement. ‘There may be many DO

statements in your program. Each must have a corresponding END

statement. It is even possible to have one DO/END group nested inside

another group.

In order to make your program easier to understand, you may wish to

name your DO/END groups in the same way that you name your entire

program. For example, the SUMER program illustrated in the section on

The DO WHILE Statement could be changed as follows:

SUMER : PROCEDURE OPTIONS (MAIN) ;

SUM = 0;
GET LIST (X) ;?

INLOOP : DO WHILE(X “=
SUM = SUM + X;

GET LIST (X) 3

END INLOOP;

PUT LIST (SUM) 3

END SUMER;?

0);

In this revised example, the DO statement has a statement name of

INLOOP, This same name is referenced in the corresponding END

statement.

First Edition 4—20

THE PL/I LANGUAGE

Multiple Closure END Statements

In certain circumstances, you May use a single END statement to
terminate several DO statements simultaneously. A statement of the
form

END name;

closes off all wnclosed nested DO groups back to the one whose
statement name is given in the END statement. For example, consider
the following:

LOOPL: DO wo?

TO woo?

TO ooo?

END LOOP];

The END statement in this example closes off all three nested DO

groups.

Statement Labels and the GO TO Statement

You have already seen how you can name a program or a DO/END group by

putting a statement name on the PROCEDURE or 10 statement,

respectively. The syntax is

name: PROC OPTIONS (MAIN) ;

for the PROCEDURE statement, and

name: DO options;

for the DO statement. In either case, the name is an identifier of
your choice for the name of your program or of the group, respectively.

4-21 First Edition

PL/I Reference Guide

You may use a similar syntax to provide a statement name, or statement
label, for any executable statement, and then you may use the GO 10
statement to cause your program to transfer control to the labelled
statement. The syntax of the GO TO statement is either of the
following:

GO TO name;

or

GOTO name;

where the name is the statement label of a statement.

You have previously studied the SUMER program, which inputs data values
until the value zero is read as input, and then prints the sum of the
input values. The original program of this name was written using DO
WHILE. To write the same program using GO TO, type

SUMER: PROC OPTIONS (MAIN) :

SUM = 0;

LOOP: GET LIST (X) 3
IF X = 0 THEN GO TO PUT_STMT;

SUM = SUM + X;
GO TO LOOP;

PUT_STMY: PUT LIST (SUM);

END SUMER3

Although this program works the same as the program using DO WHILE,
most practitioners of structured-programming techniques find the DO
WHILE form of the program to be far clearer and more maintainable than
the above version using the GO TO statement.

NUMERIC DATA TYPES

In all the examples so far in this section, the constants and variables
always had integer values. If you wish to use noninteger data, you
must take some special precautions. For full details, see Chapter 5.

First Edition 4-22

THE PL/I LANGUAGE

DECLARE Statement for FIXED Integer Data Types

In the discussion of DO WHILE, a program called SUMER was used as an
example. Consider the following modification of that program example:

SUMER: PROC OPTIONS (MAIN);
DECLARE X FIXED DECIMAL (3) 3
DECLARE SUM FIXED DECIMAL (5) :
SUM = 0;
GET LIST (X)3

DO WHILE(X “=
SUM = SUM + X;
GET LIST (X) ;
END;

Pur LIST (SUM) ;
END SUMER;

0);

This program contains two DECLARE statements, which define the
respective data types of the variables X and SUM; that is, they
specify the type of data that these variables can accommodate.

The first of the DECLARE statements is as follows:

DECLARE X FIXED DECIMAL (3) 3

This statement specifies that the variable X is to have certain data
type attributes, FIXED DECIMAL(3), which have the following

significance:

e@ The variable X is given the FIXED attribute. This means that
the scale of the data type of X is FIXED. (The other possible
scale data type attribute is FLOAT; this is discussed later.)
For now, a scale of FIXED means that X can only have integer
values, but this is modified in the section Noninteger FIXED

@ The variable X is given the DECIMAL attribute. This means that
the base of the data type of X is DECIMAL. (The other possible
base data type is BINARY; this is discussed in Chapter 5.) A
base of DECIMAL means that PL/I uses internal data
representation for X with decimal digits.

e The element 3, following DECIMAL in the declaration, specifies
that the precision or number of digits in the data type of X
is 3.

4-23 First Edition

PL/I Reference Guide

Putting all the above together, you see that X is given the data type
FIXED DECIMAL(3), which means the following: X can have an integer
value containing three decimal digits. Such values may be either
positive or negative. Therefore, X can have any integer value greater
than or equal to -999 and less than or equal to +999. Typical values
that X can have are as follows:

~876 +000
-423 +005
-029 +042
-005 +259

Notice that, in the above list of values that X can have, each number
is shown with all three digits and the sign, in order to emphasize that
the data type is FIXED DECIMAL(3). Similar representations are used
elsewhere in this guide to emphasize the data type of the numeric
value.

In the current case, the variable X may have any integer value
containing three decimal digits. When your program assigns a different
kind of value to X, as in the statement

X = 28.93

then FL/I truncates the value being assigned, and throws away the
fractional part. The result is that X is assigned the value +028. On
the other hand, it is illegal to assign to X a value such as 1842,
which is larger than +999.

In the actual program shown at the beginning of this section, the
variable X is assigned a value by means of a GET LIST statement, rather
than by means of an assignment statement. However, the rules are the
same. When PL/I reaches the GET LIST statenent, execution stops and
PL/I waits for you to type the input value of X on your terminal. If
your typed input value is fractional, PL/I truncates it to an integer.
For example, if you type

28.9

then PL/I would assign to X the value +028. An input value larger than
+999 or smaller than -999 would be illegal.

The variable SUM in the sample program is declared with the following
statement:

DECLARE SUM FIXED DECIMAL (5);

First Edition 4-24

THE PL/I LANGUAGE

Therefore, the variable SUM has the attributes FIXED DECIMAL(5), which
differ from the data type attributes for X only in that the precision
or number of digits is 5 instead of 3. The result is that the variable
SUM can have any integer value between -99999 and +99999, inclusive.

In view of these declarations, the above program operates properly only

if the input values are between -999 and +999, and if the sum never
exceeds five digits. Any noninteger input values are truncated.

Default Data Types

Every variable of your program has a data type, whether you use a

DECLARE statement for the variable or not. If you do not declare the

variable, PL/I gives it the default attributes FIXED BINARY (15). ‘The

base of this data type is BINARY (rather than decimal), and so a

variable with default attributes can accommodate any integer value with

up to 15 binary digits (or bits). Therefore, such a variable can have

any value between -32768 and +32767, inclusive.

Noninteger FIXED Data Types

Up to now, it has been implied that a variable whose data type is FIXED

can only take on integer data values. That statement was not entirely
true. Consider, for example, the following declaration:

DECLARE SALARY FIXED DECIMAL(7, 2);

For this declaration, the data type of the variable SALARY has a scale
of FIXED, a base of DECIMAL, and a precision of (7, 2). The precision

contains two integers, a number-of-digits value of 7, and a
scale-factor value of 2. This means that SALARY can take on any value
that can be represented in seven decimal digits, with two digits
following the decimal point. Therefore, SALARY can have, for example,

any of the following values:

+87429 .78 +00000.00
+00723 .00 ~00045.16
+00005.10 -97423 .90

In fact, SALARY can have any value in this format fron ~99999.99 to
+99999.99,

4-25 First Edition

PL/I Reference Guide

Similarly, you can declare a variable to have other precisions and
scale factors. For example, if you declare

DECLARE VR FIXED DECIMAL (10, 3);

then the variable VR can have any value from ~-9999999,999 to
+9999999.999 that can be represented in ten decimal digits, with three
digits following the decimal point. The maximum precision is fourteen
digits.

FLOAT Data Types

If the data type of a numerical variable has a scale of FIXED, the
Gecimal point is always in a fixed position with respect to the digits
in the value. For example, the variable SALARY described above can
have a value with seven decimal digits, and the decimal point is always
in a fixed position, two digits from the end.

If the data type of a numeric variable has a scale of FLOAT rather than
FIXED, the position of the decimal point floats with respect to the
digit in the variable. For example, consider the following
declaration:

DECLARE RANGE FLOAT DECIMAL (5) ;

The value of the variable RANGE can have up to five significant digits,
and the decimal point can be in any position with respect to those
digits. Therefore, RANGE can have such values as +8.7942, +1142.3, or

-.11015.

In this manual, to emphasize that a value is a FLOAT value, that value
is written in a special notational form corresponding to scientific
notation. The idea behind this format is that a FLOAT value really has
two parts: the significant digits in the value, and the position of

the decimal point with respect to those digits.

For example, when we write

2.8455

we are representing the value 2.84X1075, which equals 284000. ‘The
format 2.84E5 emphasizes the fact that the value has three significant
digits. The value could also be written

28453

First Edition 4-26

THE PL/I LANGUAGE

with the same effect. The value to the right of the letter E specifies
the number of places to move the decimal point to the right. If the
value following the letter E is negative, the decimal point is moved to
the left. Therefore, the number

284E-3

has the same value as .284,

Returning to the declaration of the FLOAT variable RANGE shown above,
RANGE may have any FLOAT value containing five significant digits.
Thus, for example, RANGE can have any of the following values:

+8 .9742E0
+4 .2675E20
~-4,7426E-15
-.87200E-2
+00000E0

The maximum precision is fourteen digits.

Conversions Among Numeric Variables

PL/I supports many data types, and it follows the general rule that
when you use a variable or expression of one data type in an
envirorment that requires a different data type, PL/I converts the
value of the variable or expression to the correct data type.

The example of this concept that is easiest to understand is in the
assignment statement. Consider the following program segnent:

DECLARE X FLOAT DECIMAL (8);
DECLARE K FIXED DECIMAL (5);

K = X}

X = K;

The first assignment statement, K = X, assigns a FLOAT value to a FIXED
variable. PL/I converts the FLOAT value to FIXED, truncating a
noninteger value, if necessary. The second assignment statement,
X = K, assigns a FIXED value to a FLOAT variable. Here the conversion
does not require truncation or other change of value, but it does
require a change to the internal representation of the value from a
fixed-point representation to a floating-point representation.

4-27 First Edition

PL/I Reference Guide

Another more complicated case is a statement like the following:

K=X+ K:

where you assume that the declarations are the same as above. Because
PL/I cannot directly compute the sum of a FLOAT and FIXED value, it
converts the value of K from FIXED to FLOAT, storing the result of the
conversion in a temporary location. PL/I then adds the two FLOAT
values to get a FLOAT sum, converts this result to FIXED, and assigns
the result of this conversion to the variable K.

These examples illustrate the following rules:

@ If an expression involves both FIXED and FLOAT values, PL/I
converts the FIXED value to FLOAT in order to compute the value

of the expression.

@ If the right-hand side of an assignment statement has a
different data type from the variable on the left-hand side,
PL/I converts the value of the right-hand side to the data type
of the variable on the left-hand side before doing the

assignment.

These two rules are simplifications of a collection of fairly
complicated rules involving expression evaluation and conversion. See
Chapter 6 for the full set of these rules.

BUILT-IN FUNCTIONS

PL/I's built-in functions give you additional capabilities not provided
by the ordinary operators (+, -, *, etc.). For example, the statement

A=B+ C;

uses the + operator to compute the sum of the values of B and C, and
stores the results in A. But there is no PL/I operator to compute the
maximum of two values. However, you can use the built-in function MAX
as follows:

A = MAX(B, C)?

This statenent computes the maximum of B and C and stores the result in
A.

First Edition 4-28

THE PL/I LANGUAGE

When discussing PL/I built-in functions, some special terminology is

used:

e The arguments of the built-in functions are the values enclosed

in parentheses following the name of the built-in function. For

example, in the last assignment statement, the arguments of the

MAX built-in function are B and C.

e A reference to a built-in function is the use of that built-in

function in a statement. For example, in the last assignment

statement, MAX(B, C) is a reference to the MAX built-in

function,

e ‘The word returns is used to describe the result that PL/I

computes for the function. For example, you could say that the

MAX built-in function returns a value equal to the maximum of

the values of its arguments.

The argument to a built-in function may be any PL/I expression. For
example, consider the following statement:

A = MAX(B * C, X + Y + 5)?

This statement is legal. PL/I evaluates the expressions B * C and

X¥+¥Y-5 and returns the larger of these two values; the value

returned is then assigned to A.

You may use a built-in function within any PL/I expression, in any

statement. Consider, for example, the following:

A= 3 + MAX(B * C, X) + MAX(Q, R);

This is an assignment statement whose right-hand side is an expression

containing two different references to the MAX built-in function. PL/I

adds 3 to the sum of the respective values returned by these two

references to MAX, and assigns the result of that computation to the

variable A,

In some cases, the PL/I built-in functions are simply conveniences,
For example,

A = MAX(B, C);

4-29 First Edition

PL/I Reference Guide

is a convenient method for assigning to A the maximum of the values of
B and C. However, the statements

IF B > C THEN A= B;
ELSE A = C;

do the same thing by using an IF statement rather than the MAX built-in
function,

In the following sections, some of the most commonly used PL/I built-in
functions discussed. For full details on these built-in functions, see
Chapter 14,

Arithmetic Built-in Functions

The PL/I arithmetic built-in functions perform simple arithmetic
computations.

ABS: The ABS built-in function returns the absolute value of its
argument. Consider the following:

PUT LIST (ABS (X)) 3

This statement prints the absolute value of X. The absolute value of a
number is that number with the sign made positive. Therefore, ABS(5)
returns 5, and ABS(-5) also returns 5. The above PUT statement could
have been replaced with

IF X >= 0 THEN PUT LIST(X);
ELSE PUT LIST (-X);

which does exactly the same thing.

TRUNC, C&IL, FLOOR: There are three related built-in functions, TRUN,
CEIL, and FLOOR, which take a (possibly) noninteger argument and return
an integer value. These three functions operate as follows on a
noninteger argument:

® FLOOR of a noninteger argument returns the next lower integer.
For example, FLOOR(2.7) returns the value 2, and FLOOR(-2.7)
returns -3.

First Edition 4-30

THE PL/I LANGUAGE

e CEIL of a noninteger argument returns the next higher integer.
For example, CEIL(2.7) returns the value 3, and CEIL(-2.7)
returns ~2.

@ 'TRUNC of a noninteger argument returns the integer obtained by
truncating the argument. For example, TRUNC(2.7) returns the

value 2, and TRUNC(-2.7) returns -2.

All three functions leave an integer argument unchanged. For example,
FLOOR(5), CEIL(5), and TRUNC(5) all return the value 5.

Notice that FLOOR and TRUNC return the same value for positive
arguments, and CEIL and TRUNC return the same values for negative
arguments.

MOD: The MOD built-in function takes two arguments and returns the
remainder that results when the first argument is divided by the
second. For example, MOD(17, 5) returns the value 2, since 17 divided
by 5 has a quotient of 3 and a remainder of 2. One use of MOD is to
determine whether an integer value is odd or even. For example,

IF MOD(K, 2) = 0 THEN PUT LIST('EVEN');
ELSE PUT LIST('ODD') ;

prints the word EVEN or ODD, depending upon whether the value of K is
even or odd.

MAX, MIN: You saw an example of the MAX built-in function above. ‘he
two related functions, MAX and MIN, return the maximum and minimun,
respectively, of the values of their arguments. Either may have two or
more arguments. For example, the statement

A = MAX(B, C, D)?

assigns to A the maximum of the values of B, C, and D. As a further
example, consider

R= MIN(Q * S, 0, S + T, X)?

which assigns to R the minimum of the four values shown in the
arguments,

4-31 First Edition

PL/I Reference Guide

Mathematical Built-in Functions

These built-in functions are useful in mathematical applications. In
most cases, PL/I uses a polynomial approximation to compute the value

returned by the function.

The SORT built-in function returns the square root of the argument, the
number that, when multiplied by itself, results in the value of the
argument, Therefore, SOQRT(25) returns 5, since 5 * 5 = 25. SOQRT

(2.000) returns 1.414.

There are two sets of trigonometric built-in functions, one in which
the angle is measured in degrees, and one in which the angle is
measured in radians,

SIN(X) returns the sine of X, where X is measured in radians, and
SIND(X) returns the sine of X, where X is measured in degrees. For
example, SIND(90) returns the value 1, while SIN(3.14159/2) returns the
value 1. Similarly, COS and COSD compute the cosine of the argument
measured in radians and degrees, respectively, and TAN and TAND compute
the tangent.

The reference EXP(x) computes e*x where e is the transcendental number

approximately equal to 2.71828.

There are three logarithm functions, LOG, [LOG10, and LOG2. [0G
computes the natural logarithm (logarithm to base e) of the argument.
LOG10 computes the common logarithm (logarithm to base 10) of the
argument, and LOG2 computes the logarithm to base 2.

There are a number of other mathematical built-in functions. (See
Chapter 14.)

CHARACTER STRING DATA TYPE

Most variables have a numeric data type. That is, the value of the
variable is a numeric value. The type of numeric value (for example,
whether it must be an integer) depends upon the data type of the
variable.

This section discusses a different kind of data type, the CHARACTER
data type. The value of a CHARACTER variable is not a number, but
rather a string of characters.

The following paragraphs explain generally how this works. For a full
description of the CHARACTER data type, see Chapter 5.

First Edition 4-32

THE PL/I LANGUAGE

The CHARACTER String Declaration

Consider the following PL/I statements:

DECLARE C CHARACTER(S);

= 'SMITH';
PUT LIST (C);

The first of these statenents is a DECLARE statement that specifies

that the variable C is to have the CHARACTER data type attribute, and

that the value of C is to be a string of five characters. ‘he

assignment statement in the example assigns to C the characters

'SMITH'. The PUT statement prints

SMITH

since these are the five characters in the string value of C.

The value of C is always a string of precisely five characters, neither

more nor less. On the other hand, if you declare CV as follows:

DECLARE CV CHARACTER(5) VARYING;

then the value of the variable CV can have five or fewer characters.

If you assign to either C or CV a string of length greater than five

characters, PL/I truncates the string before assigning it. Consider,

for example, the following assignments:

‘JOHNSON;
" JOHNSON';o

uCc
CV

In each of these cases, the string being assigned is too long for the

variable it is being assigned to, and so PL/I assigns to each of C and

CV the truncated string value 'JCHNS'.

The difference between C and Cv is illustrated when you assign a string

shorter than five characters. Consider, for example, these statements:

"ABC! :

"ABC's
Cc
CV

4-33 First Edition

PL/I Reference Guide

These two assignment statements are similar, but the results are
different, since C is CHARACTER and CV is CHARACTER VARYING. PL/I
assigns to C the value 'ABCbb', where bis a blank character; PL/I
pads the string 'ABC' with blanks to get a total padded length of five,
the length required for assignment to C. On the other hand, PL/I
assigns to CV the string 'ABC'; no padding is done because CV has the
VARYING attribute, and can have a length of five or less. Therefore,
the length of C is always five, since PL/I pads a short string value
with blank characters to a length of five, but the value of CV can have
any length of five or less.

CHARACTER String Constants

A string of characters enclosed between apostrophes is called a
CHARACTER string constant. Consider, for example, the following two
statements:

PUT LIST('THE ANSWER IS', X);
CV = 'JCHNSON';

Each of these statements contains a CHARACTER string constant. The
first contains 'THE ANSWER IS', and the second contains 'JOHNSON'.

Normally, you can put any characters you want between the apostrophes,
so that they will be in the CHARACTER string. However, special
problems arise when you wish to put an apostrophe itself into the
CHARACTER string constant. If you wish to d this, use two
apostrophes. Consider, for example, the following statement:

PUT LIST('I DON''T KNOW.');

This PUT statement prints

IT DON'T KNOW.

The two apostrophes between the N and the T in the CHARACTER string
constant are printed as a single apostrophe.

There is a special CHARACTER string constant called the null string.
For example, consider these statements:

DECLARE CV CHARACTER(5) VARYING;

Ws rts

First Edition 4-34

THE PL/I LANGUAGE

The assignment statement assigns to CV the null string, a string
containing no characters at all. ‘The result is that CV has a value
whose length is 0.

GET LIST With CHARACTER String Variables

You may use GET LIST to input the value of a CHARACTER string variable.
For example, if WORD is a CHARACTER string variable, the statement

GET LIST (WORD);

inputs a value for the variable WORD from your terminal. When
execution of your program stops to wait for you to type an input value
for the GET statement, type any CHARACTER string constant, followed by
a blank or comma, as your input value. For example, if you type

TURKEY

then that CHARACTER string value is assigned to WORD.

OPERATIONS ON CHARACTER STRINGS

You can perform operations on CHARACTER string data, just as you
perform operations on numeric data. The operations on numeric data are
usually addition, subtraction, multiplication, and division. For

string data, the operations do such things as pulling strings apart and

putting them together.

For numeric operations, PL/I uses the commonly accepted symbols +, -,
*, /, and ** to represent the operations. Other operations on

character strings are described below.

4-35 First Edition

PL/I Reference Guide

The Concatenation Operator

The CHARACTER string operation for concatenation can be represented

either by the symbol || or the symbol !!. For example, consider the

following statements:

DECLARE Cl CHARACTER(20) VARYING;
DECLARE C2 CHARACTER (4);
DECLARE C3 CHARACTER(10) VARYING;

Cl = 'QRS':
C2 = 'ABCD';
C3 = Cl [| C2;

The last assignment statement uses the concatenation operator. PL/I

concatenates the two string values by sticking them together end to
end, The result is that C3 is assigned the value 'QRSABCD'.

CHARACTER String Comparisons

Just as you may compare two numbers to determine which is greater, you

may also compare two CHARACTER string values. See Chapter 6 for the

precise meaning of CHARACTER string comparisons.

For the purposes of this introductory section, CHARACTER string

comparisons are somewhat like comparing two words for their relative

position in alphabetical order. ‘That is, the word ANT comes before the

word ANVIL in a dictionary, and so, PL/I considers the CHARACTER string

'ANT' to be less than the CHARACTER string 'ANVIL'.

The preceding section contained a program segnent example illustrating

the concatenation operator. The following statements use the same

variables:

IF Cl < C2 THEN X= 1;
ELSE X = 23

Recall that Cl = 'ORS' and C2 = 'ABCD'. Since QRS comes after ABCD in

alphabetical order, the comparison Cl < C2 is false, so PL/I sets X

equal to 2.

The above description of CHARACTER string comparisons is greatly

simplified. In fact, CHARACTER strings may contain more than letters;

they may also contain digits, blanks, and punctuation symbols, for

example. The complete set of characters that you may use is called the

ASCII collating sequence. (See Appendix B.) For a full set of rules

for comparing strings of characters, see Chapter 6.

First Edition 4~36

THE PL/I LANGUAGE

CHARACTER String Built-in Functions

Most CHARACTER string operations are performed by means of built-in
functions rather than operators. Therefore, to manipulate CHARACTER
string values, we must use CHARACTER string built-in functions.

The LENGTH built-in function takes a CHARACTER string argument and then
returns the length of the argument. The length of the string is the
number of characters in the string.

Several of the built-in functions use the concept of the position of a
substring of a string. For example, start with the string 'JCHNSCN'.
Then 'OHN' is a substring starting in position 2, since it starts at
the second character position of 'JOHNSON'. Similarly, 'JOHN' is a
substring in position 1. On the other hand, 'JOS' is not a_ substring
of "JOHNSON', since the characters of 'JOS' do not appear in
consecutive positions in 'JCHNSCN'.

The built-in function reference

SUBSTR(c, m, n)

returns the substring of string c starting at position m and going for
n characters. For example, the reference

SUBSTR ("JOHNSON', 4, 3)

returns the substring 'NSO'. Similarly, the reference

SUBSTR('JOHNSON', 7, 1)

returns 'N',

As an example of the use of these functions, consider the following
PL/I program:

SPLIT: PROC OPTIONS (MAIN);
DECLARE STR CHARACTER(100) VARYING;
GET LIST (STR) ;

DO FOSITION = 1 TO LENGTH (STR);
PUT SKIP LIST(SUBSTR(STR, POSITION, 1));
END;

END SPLIT;

4-37 First Edition

PL/I Reference Guide

This program inputs a CHARACTER string, and prints out the string, one
character per line of output. For example, if the input is 'ABC', the
output is

Q
W

PY

This program works as follows:

@ The DECLARE statement specifies that STR is a CHARACTER string
variable whose maximum length is 100.

e The GET statement accepts a CHARACTER string value from your
terminal, and stores it into the variable STR.

e The DO statement uses an index variable called POSITION, which

varies from 1 to the number of characters in the input string,

as determined by use of the built-in function LENGH.
Therefore, there is one execution of the loop for each character

in the input string.

e The PUT string prints out a single character on a new line. The
SKIP option in the PUT statement specifies that output is to be
ona new line. The reference to SUBSTR(STR, POSITION, 1)

returns a string containing the single character in the position

determined by the variable POSITION.

The net result is that the DO loop prints each character of the input

string on a new line of output.

The SUBSTR built-in function may also be used with only two arguments,
rather than three. A reference to -

SUBSTR(c, m)

returns the substring of string c starting at position m and going to
the end of string c. For example, a reference to

SUBSTR ('JOHNSON', 5)

returns the substring 'SON'.

You may use the INDEX built-in function to perform string searches,
The reference

INDEX(c, s)

First Edition 4-38

THE PL/I LANGUAGE

returns an integer value equal to the position of the first occurrence
of s as a substring of c. If s is not a substring of c, the built-in
function reference returns 0. For example, the reference

INDEX (‘JOHNSON', 'HN')

returns the integer value 3, since 'HN' is a substring of ‘JOHNSON’
starting at position 3. The reference

INDEX ('JOHNSON', 'N')

returns the integer value 4, since the first occurrence of 'N' in
'JOHNSON' is at position 4. On the other hand, the reference

INDEX ('JOHNSCN', 'JOS')

returns the integer value 0, since 'JOS' is not a substring of

'JOHNSON' .

Here is an example of a program that uses several of these built-in
functions:

WORDS: PROC OPTIONS (MAIN);
DECLARE SENTENCE CHARACTER(200) VARYING;
GET LIST (SENTENCE) :
K = INDEX(SENTENCE, ' ');

DO WHILE(K > 0);
PUT SKIP LIST (SUBSTR(SENTENCE, 1, K - 1))3
SENTENCE = SUBSTR(SENTENCE, K + 1);
K = INDEX(SENTENCE, ' '");

END;
PUT SKIP LIST (SENTENCE) ;
END WORDS;

This program inputs a CHARACTER string value that is interpreted as a
sentence. The progran then prints the sentence out, one word per line
of output. For example, if the input string is

THIS IS A STRING.,

4-39 First Edition

PL/I Reference Guide

then the program prints

THIS
Is
A
STRING.

The program assumes that a single blank separates each adjacent pair of
words in the sentence. The program works as follows:

1.

2.

The GET statement inputs a CHARACTER string into the string
variable SENTENCE.

The assignment statement

K = INDEX(SENTENCE, ' ');

computes the position of the first blank character in the
variable SENTENCE, and then assigns the result to the integer
variable K. If SENTENCE contains no blank characters, K is set
to 0. Notice that this statement appears in two places, just
before the DO statement and just before the END statement that
terminates the DO group, so that K has a valid value each time
the loop is iterated.

The DO statement specifies that looping should continue as long
as K is positive; that is, looping continues as long as
SENTENCE contains a blank character.

The following PUT statement appears in the loop:

PUT SKIP LIST (SUBSTR(SENTENCE, 1, K - 1))?

This PUT statement prints the first word in the variable
SENTENCE, It does this by printing the substring of SENTENCE
containing all characters up to, but not including, the first
blank character in SENTENCE. For further explanation, see the
examples below.

First Edition 4-40

THE PL/I LANGUAGE

5. The next assignment statement in the loop,

SENTENCE = SUBSTR(SENTENCE, K + 1);

recomputes the value of the variable SENTENCE by removing the
first word (and the blank following) from the front of the
string value of SENTENCE. For further explanation, see the
examples below.

6. The DO group terminates when there are no more blanks in
SENTENCE, which happens when SENTENCE contains a single word.
At that point, the PUT statement just before the end of the
program prints the last word in SENTENCE.

To understand how this program works, consider the following:

K=5

SENTENCE = ‘THIS IS A STRING?
—— eee

SUBSTR (SENTENCE, K + 1)

SUBSTR (SENTENCE,1, K — 1)

If SENTENCE has the value shown above, K = 5, since the first blank
occurs in the fifth position of SENTENCE. The program then prints the
value of SUBSTR(SENTENCE, 1, K-1), which is the first word in the
sentence. ‘Then the program recomputes the value of SENTENCE to the
value of SUBSTR(SENTENCE, K + 1), which throws away the first word and
blank of SENTENCE.

4-41 First Edition

PL/I Reference Guide

For the second execution of the loop, you have

i
e
e
e

SENTENCE =‘IS A STRING’
yo Naoe

SUBSTR (SENTENCE, K + 1)

SUBSTR (SENTENCE,1, K - 1)

After the PUT statement and the recomputation of SENTENCE, you have the
following for the third execution:

SENTENCE = ‘A STRING’

tf
SUBSTR (SENTENCE,K + 1)

SUBSTR (SENTENCE,1, K — 1)

After the end of the third execution, SENTENCE equals 'STRING.', which

contains no blanks; the value of K is 0, and there is no fourth
execution of the loop. ‘The final PUT statement prints out 'STRING.'.

For other string built-in functions, see Chapter 14.

ARRAYS AND STRUCTURES

Up to this point, each variable that has been used in the examples of

this section has been what is called a scalar, meaning that the

variable represents precisely one data value. By using the DECLARE

statement, you may specify that a given variable is to represent many

data values all by itself. Such a variable is called an aggregate.

There are two kinds of PL/I aggregates: arrays and structures.

First Edition 4-42

THE PL/I LANGUAGE

Arrays

What is called an array in the PL/I programming language is called a
dimensioned variable in other programming languages. Consider the
declaration

DECLARE SLOPES (5) FIXED DECIMAL (9) ;

which specifies that SLOPES is an array of five data values, each of
which is an integer that accommodates nine decimal digits. You may
refer to the five individual data values by means of the following
kinds of references:

SLOPES(1)
SLOPES (2)
SLOPES (3)
SLOPES (4)
SLOPES(5)

Therefore, for example, you could use statements like

SLOPES(3)
SLOPES(2)

153
SLOPES (3) + 53

to set or fetch the various individual data values of the array SLOPES.
The numbers in parentheses are called subscripts of the array SLOPES.
For example, in the last assignment statement, the first reference to
SLOPES has a subscript of 2, and the second reference has a subscript
of 3.

The main advantage of the use of arrays is that you may use variables
or expressions in the subscripts. Consider, for example, the
statements

DO K=1 TO 5;
SLOPES (K) = SLOPES (K) - 1;
END;

which make up a DO loop that decreases each element of the array SLOPES
by one.

4-43 First Edition

PL/I Reference Guide

You may also use a reference to the array SLOPES with no subscript at

all, to refer to all five elements of the array simultaneously. For

example, consider the assignment statement

SLOPES = 25;

which assigns the value 25 to each of the five elements of the array

SLOPES. Furthermore, the statement

PUT LIST (SLOPES);

prints out all five elements of the array SLOPES.

An array may have any PL/I data type. For example, consider this

DECLARE statement,

DECLARE NAMELIST (50) CHARACTER (10);

which specifies that NAMELIST is to be an array of 50 elements, each of

which contains 10 characters.

See Chapter 5 for a more detailed discussion of arrays. For methods of

manipulating entire arrays of numbers, see the sections on aggregate

expressions in Chapter 6.

Structures

The second form of aggregate is called a structure. ‘The structure is

similar to the file definition in the COBOL programming language and to

the RECORD data type in Pascal, but a number of important differences

exist,

When you use a DECLARE statement to declare an array, all elements of

the array must have the same data type. However, the individual data

elements of a structure may have different data types. For example,

consider the following declaration:

DECLARE 1 STUDENT,
2 NAME CHARACTER(20) ,
2 QUIZ_AVG FIXED DECIMAL (4, 1),
2 EXAMGRADE FIXED DECIMAL (3) ,
2 LETTER_GRADE CHARACTER(1);

First Edition 4-44

THE PL/I LANGUAGE

STUDENT is a structure aggregate containing four individual data
elements, each of which has an additional name as well as a data type.
Note that elements of the structure are separated by commas.

You may refer to the individual elements of the structure STUDENT by
means of the following names:

STUDENT.NAME
STUDENT. QUIZ_AVG
STUDENT. EXAM_GRADE
STUDENT. LETTER_GRADE

Therefore, for example, you may set or fetch any of the four individual
data elements by using the names as illustrated by the following
statements:

STUDENT. EXAM_GRADE = 83;
= |STUDENT. LETTER_GRADE Bi;

These two statements set two of the individual data elements in the
Structure STUDENT.

If you use the name STUDENT by itself, you are referencing the entire
structure aggregate collectively. For example, the statement

PUT LIST (STUDENT);

prints out all four elements of the structure.

Other Aggregate Options

PL/I supports two aggregate types, arrays and structures, However, you
may define aggregates of unlimited complexity by combining arrays and
structures in various ways. For example, you may define an array of
structures, which is an array each of whose elements is a_ structure;
or you may define a structure whose elements are arrays or other
structures. (See Chapter 5.)

PL/I allows you to manipulate aggregates just as you can manipulate
ordinary scalar variables. For example, under certain circumstances,
you can add an array to a structure and get an array of structures.
(See Chapter 6.)

4-45 First Edition

PL/I Reference Guide

INPUT/OUTPUT

You have already seen several examples of the GET and PUT statements,
which perform input from and output to your terminal. You may use
different forms of these same statements to perform input/output to
files and devices. For example, the arbitrary statement

PUT LIST(X + Y);

performs output to your terminal, while you might use a statement like

PUT FILE(QUTFILE) LIST(X + Y)?

to perform output to another device or file. For a full description of
output to files, see Chapter 11, STREAM INPUT/OUTPUT, and Chapter 12,
RECORD INPUT/OUTPUT.

This section is restricted to simple forms of the PUT and GET statement
to do output only on your terminal.

The PUT LIST Statement

You may use the form

PUT LIST (expression);

or

PUT LIST(expression, expression, ...)}

to print the values of one or more expressions on your terminal. Each
expression may be any expression, including one of the following:

@ A number or a variable. For example, the statement

PUT LIST(25, X)?

prints the value 25, and then the value of X.

First Edition 4-46

THE PL/I LANGUAGE

@ A CHARACTER string constant. For example, the statement

PUT LIST('END OF PROGRAM') ;

displays the following output:

END OF PROGRAM

@ An arbitrary PL/I expression. For example, the statement

PUT LIST(A * B + C, Q + SORT (X));

causes PL/I to evaluate each of the expressions and print their
values.

Before printing the value of each item, PL/I moves to the next of a
collection of predetermined tab stop positions on the output line. In
Rev. 19, these are every seventh column, starting with column 4.

The SKIP and PAGE Options

PL/I does not autanatically move to the next line of output until the
current line is filled. Therefore, for example, the two statements

PUT LIST (A)
PUT LIST (B)

?

?

have exactly the same effect as the following single statement:

PUT LIST(A, B):?

In both cases, PL/I prints the values of A and B on the same line.

If you wish to print A and B on separate lines, use the following
statements:

PUT LIST (A) ;
PUT SKIP LIST (B) ;

4-47 First Edition

PL/I Reference Guide

The SKIP option causes PL/I to skip to a new line before printing the
value of B.

You may use any one of the following options in the PUT statement:

e@ SKIP: Skip to a new line before printing.

e SKIP(n): Skip n lines before printing.

@ PAGE: Skip to a new page before printing.

The GET LIST Statement

You may use either of the forms

GET LIST (variable);

or

GET LIST(variable, variable, ...)?

to input the values of various variables from your terminal. When PL/I

reaches one of these GET statements, execution of your program stops

until you type values for the variables specified.

When you type input to the GET LIST statement, type each input value as

a constant. For example, when your program executes a statement like

GET LIST(A, B, C)+3

type something like the following as input:

25, 67, 43,

Other PUT and GET Statement Options

In addition to PUT LIST and GET LIST, PL/I provides the following:

@ PUT EDIT, which allows formatted output. This is similar to the

formatted output capability provided by the FORTRAN language
PRINT statement and the BASIC language PRINT USING statement.

@ GET EDIT, which provides formatted input.

First Edition 4-48

THE PL/I LANGUAGE

@ FUT DATA, used mostly for debugging. PL/I prints out each
variable name with its value.

@ GET DATA, which allows you to specify at execution time which
variables you wish to set on input.

See Chapter 11, STREAM INPUT/OUTPUT, for information on the use of
these options.

REQORD Input/Output

The PUT and GET statements discussed above are part of the STREAM
input/output capability of the PL/I language. When you use these
statements, PL/I treats the external file or device as a stream of
characters and generally ignores boundaries between records. For a
description of the features of STREAM input/output, see Chapter 11.

PL/I provides an additional set of input/output statements, called
REOORD input/output. An example of a RECORD input/output statement is

READ FILE(TAPE) INTO(S) ;

which could be used to read a tape record into a structure S. For a
description of RECORD input/output, see Chapter 12.

OTHER FEATURES OF THE PL/I LANGUAGE

This section summarizes other features of PL/I. For full details, see
the referenced sections of this manual.

Subroutines and User-defined Functions

In PL/I terminology, a PL/I program is called a procedure. Remember
that your main program begins with a PROCEDURE statement and ends with
an END statement,

A user-defined function or subroutine is also called a procedure. Such
a function or subroutine also begins with a PROCEDURE statement and
ends with an END statement.

A subroutine or function procedure is classified as either internal or
external. An external procedure is compiled separately from the main
program, and then linked to the main program when the entire program is
loaded. (Your main program is also an external procedure.) An
internal procedure is nested in your main procedure (or any external
procedure), and is compiled at the same time.

4-49 First Edition

PL/I Reference Guide

For more information on subroutine and function procedures, see

Chapter 8.

Error and Condition Handling

A condition is any event that alters the normal execution of your

program, Examples of conditions are end of file and program errors.

Using the ON statement, you may specify what action your program may

take. For example, you may specify that when end of file occurs, your

program should transfer to another section of code, but that ona

floating-point arithmetic overflow error your program should print an

error message and stop.

By means of condition prefixes, you may control whether PL/I even

monitors certain errors. For example, PL/I does not normally check

your array subscript values to see if they are in range. But by means

of condition prefixes, you may specify that the PL/I compiler is to

generate additional code to check for subscript errors.

Chapter 13 contains a general discussion of condition handling.

Chapter 12 discusses how you specify action to be taken for

input/output conditions, such as end of file.

Block Structuring and Storage Allocation

PL/I is a block-structured language, meaning that each program consists

of blocks of code, and that declarations are local to one or more of

these blocks of code. An example of a program block is a procedure,

mentioned above. For a discussion of the rules, see Chapter 9.

Related to the declaration of variables is the question of when storage

for variables is allocated. PL/I gives you a great deal of control

over management. of your storage allocation. (See Chapter 7.)

First Edition 4-50

Data Types and

Data Attributes

DATA TYPES: INTRODUCTION

In PL/I every constant and variable has both a value and a data type.
This chapter describes the major kinds of PL/I data types --
arithmetic, string, and pictured — and explains how to specify
constants and variables for each data type. The chapter also describes
aggregates. An aggregate may be either an array of values with the
same data type, or a structure of values with possibly different data
types. Finally, the chapter introduces the attributes of data types:
the ways in which you may specify how a constant or variable is stored
in memory.

An analysis of the following assignment statement demonstrates the
relationship between the value and the data type of variables and
constants:

FAHRENHEIT = 1.8 * CELSIUS + 32;

This statement uses two variables, FAHRENHEIT and CELSIUS, and two
constants, 1.8 and 32, to specify the familiar formula for converting a
temperature in degrees Celsius to degrees Fahrenheit.

Values of Variables and Constants: The value of a constant is
determined by the constant itself; for example, the constant 1.8 has
the value 1.8. The value of a constant remains the same throughout
execution of the PL/I program. On the other hand, the value of a
variable changes during execution of the program. For example, after

5-1 First Edition

PL/I Reference Guide

the above statement has been executed, the value of the variable

FAHRENHEIT would be changed to the value of the expression on the

right-hand side of the assignment statement.

Data Types of Constants: The constant 32 has the data type FIXED

DECIMAL (2). This means that 32 contains two decimal digits. On the

other hand, the constant 1.8 has the data type FIXED DECIMAL (2,1) ,

indicating that the constant contains two decimal digits, one of which

follows the decimal point.

Data Types of Variables: You may specify the data type of a variable

by means of a DECLARE statement. For example, suppose that the progran

containing the assignment statement shown above also contains the

following DECLARE statement:

DECLARE FAHRENHEIT FIXED DECIMAL (6,2) ;

This DECLARE statement specifies that the variable FAHRENHEIT occupies

a storage area large enough to accommodate six decimal digits, and that

two of these digits follow the decimal point. This means that the

variable FAHRENHEIT can be assigned any value from -9999.99 to 9999.99,

inclusive.

The keyword FIXED in the data type of FAHRENHEIT indicates that the

position of the decimal point in the digits representing FAHRENHEIT is

fixed; that is, FAHRENHEIT has a value of six digits, and two of these

digits always follow the decimal point. If you DECLARE a variable to

be FLOAT, rather than FIXED, you are specifying that the decimal point

may be in any position with respect to the digits in the value. For

example, suppose your program contained the following declaration:

DECLARE CELSIUS FLOAT DECIMAL (4) ;

This statement specifies that the variable CELSIUS occupies a storage

area large enough to hold four decimal digits, and that the decimal

point can appear anywhere with respect to those digits. For example,

CELSIUS could have the value 8.264x10°12.

Data Types: Classification

Below is a summary of the two major classes of PL/I data types:

computational data types and noncomputational data types.

Computational data types specify values that can be used in

computations, such as addition or multiplication. Noncomputational

data types specify values on which no such computations can be made.

First Edition 5-2

DATA TYPES AND DATA ATTRIBUTES

Computational Data Types

There are three groups of computational data types in PL/I, all of
which are described in detail in this chapter:

Values of the arithmetic data type are ordinary numbers that can
be combined by the usual arithmetic operations, such as
addition, subtraction, multiplication, and division.

Values of the string data type are sequences of characters or
bits. PL/I provides operators and functions that permit you to
pull strings apart and put them together, as well as to perform
various string searches and translations.

Values of the pictured data type are also sequences of
characters, but such sequences are constrained in various ways.
For example, you may declare a variable to be a pictured value
whose string of characters can contain only digits and a decimal
point.

Noncomputational Data Types

Noncomputational data types are used for program control, input/output
control, and storage control. ‘The noncomputational data types and the
chapters where they are discussed are as follows:

A value of the LABEL data type is the label of a PL/I statement
(4, 7, 10).

A value of the FORMAT data type is the label of a FORMAT
statement (11).

A value of the ENTRY data type is the entry point to a procedure
(8, 10) °

A value of the FILE data type is an identifier associated with a
file (12).

A value of the POINTER data type is the storage address of data
(7) .

A value of the AREA data type is a block of storage that you can
sub-allocate to store other variables (7).

A value of the OFFSET data type is the displacement of a storage
block within a given AREA (7).

5-3 First Edition

PL/I Reference Guide

ARITHMETIC DATA TYPES: INTRODUCTION

PL/I has many arithmetic data types. Each of these data types has a

base, scale, mode, and precision, and in the case of FIXED arithmetic
data types, a scale factor. ‘These terms have the following meanings:

Base: ‘The base of an arithmetic data type is either DECIMAL or BINARY.
Your choice of base indicates whether you want PL/I to manipulate the
data internally as a binary number or a decimal number. Most of the

time it does not make any difference whether you use DECIMAL or BINARY,
since you usually get the same answers either way. In fact, for FLOAT
data there is no difference whatsoever in the internal representation.
However, for FIXED, there are some differences: FIXED BINARY is
usually more efficient than FIXED DECIMAL when the values being
represented are integers (that is, the scale factor is 0). On the
other hand, FIXED DECIMAL is usually more accurate than FIXED BINARY if
the values are not integers, such as in dollars and cents computations.

Note

BINARY is used only with arithmetic data types, and is
different from the BIT data type, which is specified for
certain types of strings.

Scale: The scale of arithmetic data is either FIXED or FLOAT. Data
having the FIXED attribute has its decimal point (or binary point) at a
fixed position with respect to the digits in the value. Data with the
FLOAT attribute can have its decimal (or binary) point in any position
with respect to the digits in the value. Ordinarily, use FIXED when
your data is going to be integers, or in commercial applications when

you are dealing with dollars and cents values that must be accurate to

the penny and that are within well-defined ranges. Ordinarily, use the
FLOAT data type in scientific applications when you are interested in
accuracy to a certain number of significant digits, regardless of where
the decimal point is in relation to those digits.

Mode: The mode of arithmetic data is either REAL or COMPLEX. You will

nearly always use REAL. Use the COMPLEX data type only in those

engineering or mathematical applications where it is necessary to

manipulate imaginary or complex numbers.

Precision: The precision of arithmetic data of scale FIXED is the
Maximum number of digits in the value of the data. If the scale is

FLOAT, the precision is the number of significant digits in the
mantissa. If the base is DECIMAL, the precision is the number of
decimal digits; if the base is BINARY, the precision is the number of
binary digits or bits. PL/I allocates to the data element a block of
storage that is large enough to accommodate the number of digits
specified by the precision, as well as a sign.

First Edition 5-4

DATA TYPES AND DATA ATTRIBUTES

Scale Factor: The scale factor is applicable only to FIXED data, and
it specifies the number of digits following the decimal point or binary
point. If the scale factor is 0, the data value is always an intecer.
If the scale factor is positive, it specifies the number of digits to
the right of the decimal point. If the scale factor is negative, it
specifies that the rightmost digit in the value is one or more
positions to the left of the implied decimal or binary point.

The next few sections cover the arithmetic data types in more detail.

Arithmetic Data Types: FIXED DECIMAL REAL

The simplest kind of FIXED DECIMAL constant consists of one or more
decimal digits, possibly with a decimal point, possibly with a sign.
The precision of the constant is the number of digits, and the scale
factor of the constant is the number of digits following the decimal
point. If there is no decimal point, or if no digits follow the
decimal point, the scale factor is 0.

For example, the constant 23 has the attribute FIXED DECIMAL(2,0);
that is, 23 is FIXED DECIMAL with a precision of 2 anda scale factor
of 0. The constant 894.7 and the constant -482.3 each have the
attributes FIXED DECIMAL(4,1); that is, a precision of 4 and a_ scale
factor of 1. The constant .897 has a precision of 3 and a scale factor
o£ 3, since all digits follow the decimal point.

It is possible to have two FIXED DECIMAL constants with the same value
but with different precisions or scale factors. For example, the
constants 23, 023, and 23.0 all have the same value (23), but they have
precisions of 2, 3, and 3, respectively, and scale factors of 0, 0, and

1, respectively.

PL/I permits you to form a more complex type of FIXED DECIMAL constant
by appending to it the letter F followed by a decimal number
(optionally signed) that specifies a power of ten by which the value of
the decimal number is to be multiplied. For example, the constant
23.892F1 has the value 238.92 (since Fl specifies that the value is to
be multiplied by ten), has a precision of 5 (since there are five
digits in the value portion of the constant, and since the digit 1
following the F does not contribute to the precision), and has a scale
factor of 2 since the last two digits of the value follow the decimal
point.

Amore complicated example is the constant 23F4. This constant has
value 230000, but has the attribute FIXED DECIMAL(2,-4), for the
following reasons: the precision is 2 because there are two digits in
the value portion of the constant 23F4. The scale factor is -4, since
the value digits in the constant (23) are four positions to the left of
the decimal point. Similarly, the constant 46.2F20 has the attributes
FIXED DECIMAL (3,-19), and has the value 46.2x10°20.

5-5 First Edition

PL/I Reference Guide

The number following the F may be negative, in which case it means that

the decimal point is to be moved to the left. For example, the

constant 23.892F-1 has the value 2.3892, but has the attributes FIXED

DECIMAL (5,4), since four decimal digits in the value follow the decimal

point. The constant 23F-4 has the value .0023 and the attributes FIXED

DECIMAL (2,4); the precision is 2 because there are two digits (23) in

the value, and the scale factor is 4 because there are four digits

following the decimal point. Similarly, the constant 23.8F-20 has the

attributes FIXED DECIMAL(3,19), and the value 23.8x10°-20.

You may use the DECLARE statement to specify that a variable is to be

FIXED DECIMAL and, at the same time, you may specify the precision and

scale factor of the variable. ‘The simplest form of such a declaration

is

DECLARE variable FIXED DECIMAL (p,q) ;

which indicates that the specified variable is FIXED DECIMAL, with a

precision of p anda scale factor of g. The precision of p indicates

that the variable occupies a storage block large enough to accommodate

p decimal digits anda sign. The scale factor of g indicates that g of

these digits follow the implied decimal point.

For example, if your program contains the statement

DECLARE SALARY FIXED DECIMAL (7,2);

then you are telling PL/I that the variable SALARY is to have seven

decimal digits, two of which follow the decimal point. This means that

SALARY can have a value as large as 99999.99 or a negative value as

small as ~99999.99,

If the scale factor is 0, you need not specify the scale factor in the

declaration. For example, the statement

DECLARE INDEX FIXED DECIMAL (3);

says that INDEX can have a value between -999 and +999, with no digits

following the decimal point (the scale factor is 0).

It is possible for a scale factor to be negative. In this case, the

decimal point is to the right of the rightmost digit in the stored

value of the variable, For example, if a variable has the attributes

FIXED DECIMAL (2,-3), the variable may be assigned any value between

~99000 and +99000, as long as the value is a multiple of 1000. For

example, you may assign the value 86000 to such a variable, in which

case PL/I stores the digits 86 and remembers that the decimal point is

three positions to the right of the 6.

First Edition 5-6

DATA TYPES AND DATA ATTRIBUTES

It is also possible for the scale factor to be positive and larger than
the precision. In this case, the decimal point is one or more
positions to the left of the leftmost position in the stored value of
the variable. For example, if a variable has the attributes FIXED
DECIMAL (2,5), it can take on any value between -.00099 and +.00099. If
you assigned the value .00086 to such a variable, PL/I would store the
two digits 86, and would remember that the decimal point was five
positions to the left of the 6.

Your program may, of course, assign any numeric value to any FIXED
DECIMAL variable. If the value being assigned has the same precision
and scale factor as the variable to which it is being assigned, PL/I
can perform the assignment directly. However, it is possible that the
value being assigned has a different precision or scale factor. In
this case, PL/I must modify the value being assigned before the
operation can be completed, Usually, this modification is precisely
what you would expect.

Consider, for example, the variable SALARY declared above as FIXED
DECIMAL(7,2). If a program contains the assignment statement

SALARY = 12345.67;

then PL/I can make the assignment directly, since the value being
assigned is also FIXED DECIMAL(7,2). On the other hand, if the program
contains the statement

SALARY = 23;

then PL/I actually assigns the value 00023.00 to SALARY. If the value
being assigned has extra digits to the right of the decimal point, PL/I
throws these additional digits away, or truncates the value.

For example, if your program contains the statement

SALARY = 482.937:

then PL/I assigns the value 00482.93 to SALARY. Notice that PL/I does
not round to 482.94; the value being assigned is truncated, meaning
that extra digits on the right are thrown away. Finally, if the value
being assigned has too many digits to the left of the decimal point,
the assignment produces a SIZE error. The assignment statement

SALARY = 1234567;

is an example of a SIZE error in the assignment.

5-7 First Edition

PL/I Reference Guide

As another example, suppose that the variable PART has the attributes
FIXED DECIMAL(2,-3). Then PART can only have values that are multiples
of 1000, and these values must lie between -99000 and +99000. If your
program attempts to assign a value greater than 99000 or smaller than
~99000 to the variable PART, the assignment produces a SIZE error. On
the other hand, if your program contains the assignment

PART = 43827:

then PL/I truncates the last three digits, with the result that PART is
assigned the value 43000.

In the preceding paragraphs, only assignment of constants to FIXED
DECIMAL variables has been discussed. The same rules apply, however,
whenever a variable or expression is assigned to a FIXED DECIMAL
variable,

For example, suppose that the variable A is FIXED DECIMAL(7,2), and the
variable B is FIXED DECIMAL(4,1). Suppose that your program contains
the assignment statement

A = Be

Since A has five digits to the left of the decimal point, and B has
three digits to the left of the decimal point, this assignment cannot
produce a SIZE error. Furthermore, since A has two digits to the right
of the decimal and B has one digit to the right of the decimal point no
truncation takes place. On the other hand, suppose that your program
contains the assignment statement

B= A;

How PL/I handles this depends upon the value of A. As long as A is
less than 999 and greater than -999, this assignment is legal; but if
A is outside of that range, the assignment causes a SIZE error. If the
assignment is legal, B is assigned the value of A truncated after the

first digit to the right of the decimal point.

For maximum precision, default precision, and the maximum and minimum
allowable scale factor of FIXED DECIMAL REAL numbers, see Appendix C.

First Edition 5-8

DATA TYPES AND DATA ATIRIBUTES

Arithmetic Data Types: FLOAT DECIMAL REAL

Data with the FIXED attribute have their decimal point in a fixed
position relative to the digits of the value; the scale factor is used
to specify that position. With FLOAT data, there is no scale factor,
Since the decimal point may be in any position with respect to the
digits of the value.

A FLOAT DECIMAL constant contains one or more decimal. digits
(optionally with a decimal point, and optionally preceded by a minus
sign) followed by the letter E followed by an (optionally signed)
cecimal number. The value to the left of the letter E is called the
mantissa of the FLOAT constant, and the number to the right is called
the exponent or characteristic. The precision of the FLOAT constant is
the number of digits in the mantissa.

For example, the constant 2.34E05 is a constant with the attributes
FLOAT DECIMAL(3). The mantissa is 2.34, and the exponent is 5. The
precision is 3, since there are three digits in the mantissa. The
value of the constant is 2.34x1075. The constant 2.34E+05 has exactly
the same value as 2.34F+05, but the latter has the attributes FIXED
DECIMAL (3,~-4). This means that, although the two constants have the
same value, PL/I uses different methods to represent the constants
internally in your PL/I program. Use of the different constants may
produce different results.

As another example, the constant 894.267E-4 has the attributes FLOAT
DECIMAL (6), and has the same value as the constant .0894267. However,
the latter constant has the attributes FIXED DECIMAL(7,7) and so has a
different internal representation. In fact, any FIXED DECIMAL constant
can be rewritten as a FLOAT DECIMAL constant with the same value. For
example, the constant 23, which has the attributes FIXED DECIMAL(2),
can be rewritten as 23E+00 with the attributes FLOAT DECIMAL(2), or as
023, or as 023E+00 with the attributes FLOAT DECIMAL(3). Or, the
constant 8.94E+00, with the attributes FIXED DECIMAL(3,2), can be
rewritten as .894E]1, with the attributes FLOAT DECIMAL(3).

You may use the DECLARE statement to specify that a variable is FLOAT
DECIMAL. For example, the statement

DECLARE SOOPE FLOAT DECIMAL (8) ;

specifies that the variable SCOPE is a FLOAT variable occupying enough
storage to accommodate eight decimal digits, or significant digits.
The decimal point may appear in any position with respect to these
digits.

For maximum exponent range and maximum precision of FLOAT DECIMAL REAL
numbers, see Appendix C.

5-9 First Edition

PL/I Reference Guide

Arithmetic Data Types: FIXED BINARY REAL

PL/I gives the programmer the option of storing constants and variables

using the binary, rather than the decimal, number base. Internally,

this means that PL/I stores your FIXED data as two's-complement binary

numbers, rather than the binary-coded decimal format used with the

DECIMAL attribute.

The simplest form of FIXED BINARY constant consists of a string of

binary digits (0's and 1's), with an optional sign and an optional

binary point. (The term binary point is used in the binary number

system in the same way that the decimal point is used in the decimal

number system; in both cases, the function is to separate the integer

digits fron the fractional digits.) The constant must end with the

letter B to indicate that it is a BINARY constant. For example, the

constant 10110B is a FIXED BINARY constant that has the same value as
the FIXED DECIMAL constant 22.

The terms precision and scale factor are used for FIXED BINARY

constants and variables in the same way as for all FIXED DECIMAL

constants and variables, except that now the phrase "number of digits"

refers to binary digits, rather than decimal digits. For example, the

constant 1001.010B is a constant with the attributes FIXED BINARY (7,3);

the precision is 7 because there are seven binary digits, and the scale

factor is 3 since three of the digits follow the binary point. This

constant has the same value as the constant 9.25, which has the

attributes FIXED DECIMAL (3,2).

As in the case of FIXED DECIMAL constants, a FIXED BINARY constant may

contain the letter F, followed by a decimal constant, to specify the

number in decimal that a binary point should be moved to the right or

left. For example, the constant 11.01101F3B has the data type FIXED

BINARY (7,2), and has the same value as 11011.01B. (In decimal, this

value could be written as 27.25.) Similarly, the constant 11011F5B has

the data type FIXED BINARY(5,-5), and has the value 1101100000B (equal
to decimal 864), which has the attributes FIXED BINARY(10,0).

Notice, in particular, that the value following the letter F is a

decimal constant, not a binary constant. As another example, the

constant 1101F~25B has the attributes FIXED BINARY(4,25), and has a

value equal to 13x2*(-25).

Further examples of FIXED BINARY constants are shown in Table 5-1.

This table illustrates various FIXED BINARY constants and indicates

their precisions and scale factors, as well as the values of the

constants in decimal.

First Edition 5-10

DATA TYPES AND DATA ATTRIBUTES

Table 5-1

Examples of FIXED BINARY Constants

Scale

Constant Precision Factor Value

101B 3 0 5

00101B 5 0 5

101.1B 4 1 5.5

101.100B 6 3 5.5

000101.100B 9 3 5.5

10100B 5 0 20

101F2B 3 -2 20

-LOLF5B 3 -2 20

-LOLOOF5B 5 0 20

100.0F-3B 4 4 23

10F~3B 2 3 225

1101F-20B 4 20 13x2*-20
You may use the DECLARE statement to specify that a variable is to have

FIXED BINARY attributes. For example, if the statement

DECLARE DATUM FIXED BINARY (3,0) 3

appears in your program, it specifies that DATUM is a variable for

which the compiler should allocate enough storage to accommodate three

binary digits anda sign. This means that DATUM can have values

between -111B, or -7, and 111B, or 7. Since the scale factor is 0,

DATUM can have any integer value between those two values.

In the declaration of a FIXED BINARY variable, the precision specifies

the number of binary digits in the value of the variable, and the scale

factor specifies the number of those digits that lie to the right of

the binary point. For example, if the statement

DECLARE LINK FIXED BINARY (5,2);

appears in your program, it specifies that LINK is a variable that can

hold five binary digits, and that two of these lie to the right of the

binary point. This means that LINK can have values as large as 111.11B

(or 7.75), and as small as -111.11B (or ~8.00). It can take on any

value between these two extremes, only in increments of .O1B (or .25).

This means that the variable can take on such values as 3.25, 1.75, and

-6.5.

5-11 First Edition

PL/I Reference Guide

If the scale factor is negative, it specifies the mumber of implied
zeros that lie to the right of the rightmost digit in the value of the
variable. For example, if your program contains the DECLARE statement

DECLARE LONGITUDE FIXED BINARY (3 ,~4) 3

then LONGITUDE has enough storage allocated to hold three binary digits
anda sign, with four implied zeros following the rightmost of these
digits. This means that LONGITUDE can have a value as large as
1110000B, or as small as -1110000B, in increments of 10000B. (Writing
these figures in decimal, the variable can have values as large as 112
or aS small as -128, in increments of 16. This means that LONGITUDE
can take on any of the following values, and only the following values:
112, 96, 80, 64, 48, 32, 16, 0, -16, —32, -48, -64, -80, -96, -112, and
-128).

Examples of FIXED BINARY variable data types are shown in Table 5-2.

Table 5-2
Examples of FIXED BINARY Variable Data Types

Data Type of Range of Values: In Increments
Variable From To of

FIXED BIN (3,9) -100@B (=-8) 111B (=7) 1
FIXED BIN (7,8) ~109000001B (=+128) 1111111B (=127) 1

FIXED BIN (5,2) -1008.90B (=~8) 111.118 (=7.75) »81B (=.25)
FIXED BIN (3,4) ~.91113 +,@111B 298818
FIXED BIN (3,-4) ~1110000B (=-112) +1110000B (=-112) 19000B (=16)

As in the case of assignments to FIXED DECIMAL variables, if the value
assigned to a FIXED BINARY variable does not match the data type of the
target variable, PL/I changes the value being assigned to match the
target variable. If the value being assigned has too many digits to
the right of the binary point, the extra digits are truncated. If
there are too many digits to the left of the binary point, a valid
assignment cannot be made, and a SIZE error occurs. Table 5-3
illustrates such assignments.

First Edition 5-12

DATA TYPES AND DATA ATTRIBUTES

Table 5-3
Examples of FIXED BINARY Assignments

Data Type of Value of Expression Value Actually
Target Variable Being Assigned Assigned as a Result

FIXED BIN (3,0) 4 4

FIXED BIN (3,0) 4.9 4 (truncation)
FIXED BIN (3,0) -4.7 -4 (truncation)
FIXED BIN (3,0) 12 SIZE error
FIXED BIN (3,0) 5 5 (=101.00B)
FIXED BIN (15,2) 5.43 5.25 (=101.01B)

truncation
FIXED BIN (15,2) 1101.1011B 1101.10B (truncation)
FIXED BIN (15,-2) 1110B 1100B (truncation)
FIXED BIN (15,-2) 87 84 (truncation)

Maximum precision and maximum scale factor for FIXED BINARY REAL
numbers are given in Appendix C.

Arithmetic Data Types: FLOAT BINARY REAL

FLOAT BINARY constants are written as a string of binary digits (zeros
and ones), optionally with a sign and a binary point, followed by the
letter E and then by a decimal number indicating the number of
positions that the binary point is to be shifted relative to the binary
digits in the value. The entire constant is ended with the letter B,
The terminology used with FLOAT BINARY values is similar to that used
with FLOAT DECIMAL values, ‘The value to the left of the letter E is
called the mantissa of the FLOAT value, and the decimal constant to the
right of the letter E is called the exponent or characteristic of the
value. The precision of the FLOAT BINARY constant is the number of
digits in the mantissa. There is no scale factor in FLOAT values,
since the position of the binary point, as specified by the
characteristic, may be in any position relative to the digits in the
mantissa.

For example, the constant 101E3B is a FLOAT BINARY(3) constant. ‘he
precision is 3 since there are three digits in the mantissa. This
constant has the same value as the constant 101000B, but the latter has
the attributes FIXED BINARY(6,0). Each of these two BINARY constants
has the same value as the DECIMAL constant 40, the latter having the
attributes FIXED DECIMAL(2,0).

5-13 First Edition

PL/I Reference Guide

A negative exponent indicates the number of positions that the binary
point is to be moved to the left with respect to the value in the
mantissa. For example, the constant 1011E-2B has the attributes FLOAT
BINARY (4). It has the same value as the constant 10.11B, which has the
attributes FIXED BINARY(4,-2). It also has the same value as the
constant 2.75, which has the attributes FIXED DECIMAL (3,2).

Table 5-4 illustrates several FLOAT BINARY constants, giving their
precisions and values.

Table 5-4
Examples of FLOAT BINARY Constants

Constant Precision Value

101E0B 3 5
101E3B 3 40
000101E3B 6 40
101.000E3B 6 40
101E45B 3 5x2745
1011E-2B 4 2.75
11011E-23B 5 27x2* (-23)

You may use the DECLARE statement to specify that a variable is to be
FLOAT BINARY. For example, if the statement

DECLARE RANGE FLOAT BINARY(47);

appears in your program, you are specifying that the variable RANGE
occupies enough storage to accommodate 47 significant binary digits
(bits), with the binary point in any position with respect to those
digits. Maximum precision of FLOAT BINARY REAL numbers is given in
Appendix C.

Arithmetic Data Types: COMPLEX

Up until now, all the arithmetic data types that have been considered
have been REAL, meaning real in the mathematical sense of not using
complex or imaginary numbers (numbers that are expressed using the
square root of -1). If you are writing a mathematical or engineering
application requiring the use of imaginary or complex numbers, use the
COMPLEX data type supplied by the PL/I language.

First Edition 5-14

DATA TYPES AND DATA ATTRIBUTES

In preceding sections, several different kinds of arithmetic constants
are described. All of these constants have REAL attributes, since REAL
is the default mode for arithmetic constants. If you take any of these
constants and append the letter I to the end, the result is a_ constant
that PL/I recognizes as representing an imaginary value.

Table 5-5 illustrates a number of COMPLEX constants. Each of these
constants is identical to one in a preceding section, except that the
letter I has been added to the end. The data type of the constant is
derived as in preceding sections with the precision represented by the
number of digits, and, for FIXED constants, the scale factor
representing the number of digits following the decimal point or binary
point. ‘The only difference in the data type is in the attribute
COMPLEX, where, in preceding sections, the constant has the implied
attribute REAL. The values of these constants are imaginary in the
mathematical sense, with each constant represented as a multiple of i,
the square root of -l.

Table 5-5
Table of COMPLEX Constants

Line # Constant Data Type Value

1 231 FIXED DECIMAL (2,0) COMPLEX 231i

2 86 .45F31 FIXED DECIMAL (4,-1) COMPLEX 864501
3 45E01 FLOAT DECIMAL (2) COMPLEX 451

4 1101BI FIXED BINARY (4,0) COMPLEX 131

5 10F-4BI FIXED BINARY (2,4) COMPLEX 01251

6 10E-4BI FLOAT BINARY (2) COMPLEX 01251

If you declare a variable to be COMPLEX, you are specifying that the
storage allocated for the variable is large enough to hold two numbers,
one for the real part of the value of the variable, and one for the
imaginary part. For example, if the statement

DECLARE STRENGTH FIXED DECIMAL(10,2) COMPLEX;

appears in your program, STRENGTH is a variable whose storage area can
accommodate two numbers, one of which is the real part of the value of
STRENGTH, and one of which is the imaginary part; each of these
numbers can hold ten decimal digits, two of which follow the decimal
point.

Your program may contain expressions involving COMPLEX constants and

variables. PL/I can evaluate these expressions according to the

mathematical rules for complex numbers to achieve COMPLEX results. If

5-15 First Edition

PL/I Reference Guide

a COMPLEX expression is assigned to a REAL variable, the real part of

the expression is assigned to the target variable, and the imaginary
part of the value of the expression is discarded. If a COMPLEX
expression is assigned to a COMPLEX variable, the real part of the

value of the expression is assigned to the real part of the target
variable, and the imaginary part of the expression is assigned to the
imaginary part of the variable.

Finally, if a REAL expression is assigned to a COMPLEX variable, the

value of the expression is assigned to the real part of the variable,

and the value 0 is assigned to the imaginary part.

For assigning the real part or the imaginary part of a value, the rules

for truncation and SIZE errors are the same as those given above in the

sections on real constants. For example, if the program with the

declaration of STRENGTH contains the following assignment statement

STRENGTH = 23 + 45.7891;

then the last digit of the imaginary part of the value is truncated,

with the result that STRENGTH is assigned the value 23 + 45.781.

Declarations of Arithmetic Variables

Use the DECLARE statement to specify the attributes of an arithmetic
variable. Every arithmetic variable has a base, scale, mode, and

precision. Furthermore, if the variable is FIXED, a scale factor is

specified as part of the precision. If you omit one of these from the
list of attributes in the DECLARE statement, PL/I supplies a default.
The rules for base, scale, and mode are as follows:

@ The base is either BINARY or DECIMAL. If you prefer, you may

use the abbreviations BIN or DEC, respectively. If your DECLARE

statement specifies no base, the default of BINARY is supplied.

e The scale is either FIXED or FLOAT. If the DECLARE statement
does not specify a scale, PL/I supplies a default of FIXED.

@ The mode is either REAL or COMPLEX. If you prefer, you may use

the abbreviation CPLX for OOMPLEX. If you do not specify a

mode, PL/I supplies a default of REAL.

First Edition 5-16

DATA TYPES AND DATA ATTRIBUTES

In your DECLARE statement, you may specify the base, scale, and mode in
any order. Specify the precision, and for FIXED variables the scale
factor, in parentheses following any one of the base, scale, or mode
attributes, If you do not specify a scale factor for a FIXED variable,
PL/I supplies a default of 0. You may, if you prefer, specify the
precision with a separate Keyword PRECISION (abbreviation PREC). For
example, all of the following five declarations are equivalent:

DECLARE VALUE FIXED DECIMAL(5) REAL?
DECLARE VALUE FIXED(5) DEC REAL;
DECLARE VALUE DEC (5,0) ;
DECLARE VALUE FIXED DECIMAL REAL PREC (5,0);
DECLARE VALUE DEC PRECISION (5) ;

These five DECLARE statements all give the same attributes of VALUE.
The attributes FIXED and REAL need not be specified, since they are the
defaults. The precision can be specified along with any of the
keywords, or with a separate PRECISION keyword. The scale factor of 0
need not be specified, since 0 is the default.

Summary of Arithmetic Constants

Below is a brief summary of the rules for formation of arithmetic
constants, and for deriving their data types.

An arithmetic constant consists of a number of characters, one
immediately following the other, with no blanks, These characters are
as follows:

1. An optional plus sign or minus sign.

2. A string of digits, optionally containing a radix point. If
the base of the constant is BINARY, the digits may be only
zeros and ones.

3. An optional F or E, followed by a string of decimal digits.
The decimal digits may be preceded optionally by a plus sign or
minus sign.

4. An optional B.

5. An optional I.

All of the elements shown above are optional, except those listed in
Rule 2. That is, a constant must contain at least one digit.

5-17 First Edition

PL/I Reference Guide

The data type of the constant is derived according to the following

rules:

lL. If the constant contains the letter B, the base is BINARY;

otherwise the base is DECIMAL.

2. If the constant contains the letter E, the scale is FLOAT;

otherwise, the scale is FIXED.

3, If the constant contains the letter I, the mode is OOMPLEX;

otherwise, the mode is REAL.

4, The number of digits in the precision is the total number of

digits appearing in that section of the constant specified by

Rule 2 for number of characters above.

5. If the constant is FIXED, the scale is determined as follows:

o If the constant contains a radix point, let x equal the

number of digits to the right of the radix point;

otherwise, let x = 0.

o If the constant contains the letter F, let y equal the

value of the decimal constant following the letter F;

otherwise, let y= 0. (It is possible for y to be

negative.)

o The scale factor of the constant is (x - y).

STRING DATA TYPES: INTRODUCTION

String values are sequences of characters. PL/I contains two string

data types, CHARACTER strings and BIT strings. CHARACTER strings are

useful for representing text; BIT strings are used to represent

Boolean or logical values and to manipulate the internal representation

of other data types.

In many ways, BIT strings work the same way in PL/I as CHARACTER

strings; in fact, the PL/I language was designed to make these two

types of strings as similar as possible. The properties shared by

CHARACTER and BIT strings include the following: NONVARYING strings of

constant length, VARYING strings of variable length, and concatenation

and various built-in functions to put strings together and pull them

apart,

The two major differences between BIT and CHARACTER strings are as

follows:

@ The individual elements of a CHARACTER string can be any of the

256 characters supported by PRIME hardware. On the other hand,

the individual elements of a BIT string may have only two

possible values: a O0-bit or a 1-bit.

First Edition 5-18

DATA TYPES AND DATA ATTRIBUTES

@e Inthe internal representation of CHARACTER strings, each
character in the string occupies one byte of memory. Each
individual element of a BIT string occupies only one bit of
memory, making it possible to store eight bit values in a single
memory byte.

String Data Types: CHARACTER NONVARYING

The simplest form of CHARACTER constant consists of an apostrophe
followed by a string of characters and another apostrophe. The
characters between the apostrophes make up the value of the constant.
For example, 'ABCDE' is an example of a CHARACTER constant containing
the five characters ABCDE.

Use the CHARACTER attribute in a DECLARE statement to specify that the
value of the variable is to be a string of characters, rather than a
number. Follow the keyword CHARACTER with a parenthesized number to
indicate the precise number of characters in the variable. For
example, the statement

DECLARE NAME CHARACTER(8);

specifies that the variable NAME can have, as its value, a string of
precisely eight characters. This means that you may assign a string of
eight characters to the variable NAME, For example, the assignment
statement

NAME = 'JOHNSTON';

means that the variable NAME has as its value the eight characters in
JOHNSTON,

The value of the variable NAME must contain precisely eight characters,
no more and no less. If you assign to NAME a character string with a
different number of characters, PL/I must modify the value before
assigning it to NAME.

If the character string assigned to NAME contains less than eight
characters, PL/I pads the value by adding blank characters to it in
assigning the value to NAME. For example, if your program executes the
assignment statement

NAME = 'JONES';

then PL/I pads the value being assigned with three blanks so that,
after the assignment, the variable NAME has the value 'JONESbbb', where

5-19 First Edition

PL/I Reference Guide

the symbol b indicates a blank, a nonprinting character. As another
example, if your program executes the assignment statement

NAME = 'KU';:

then PL/I assigns the value 'KUbbbbbb' to NAME,

If your program assigns to NAME a value containing more than eight
characters, PL/I truncates the value by removing from it all characters

following the eighth. For example, if your program executes the

statement

NAME = 'ALEXANDERSON';

then PL/I truncates the value by discarding the last four characters,
so that the value assigned to NAME is 'ALEXANDE'.

Since the variable NAME must always have precisely eight characters as
its value, it is said that NAME has the CHARACTER NONVARYING
attributes. For example, the statement

DECLARE ADDRESS CHARACTER(30) NONVARYING;

specifies that ADDRESS is a variable containing precisely 30
characters, no more and no less. If you do not specify VARYING or
NONVARYING in the DECLARE statement, PL/I autanatically provides the

default attribute NONVARYING.

Under certain circumstances, you may use an arbitrary expression in
parentheses following CHARACTER. For example, the statement

DECLARE PRODUCT CHARACTER(X + Y)+

is legal under certain circumstances. These circumstances are

described in the section Variables in Extent and INITIAL Expressions in

Chapter 7.

String Data Types: CHARACTER VARYING

The variables described in the preceding section have values that must
always contain the same number of characters. It is also possible to
declare that a variable can contain a varying number of characters.

First Edition 5-20

DATA TYPES AND DATA ATTRIBUTES

For example, if your program contains the statement

DECLARE CITY CHARACTER(8) VARYING;

then CITY is a variable whose value is a string containing eight or
fewer characters. That is, CITY can have as its value a string
containing 0, 1, 2, 3, 4, 5, 6, 7, of 8 characters, but no more than
eight characters. ‘Thus, if your program executes the statement

CITY = 'BOSTON';

then the value 'BOSTON' is actually assigned to CITY; PL/I does not
pad with blanks in this case. On the other hand, if your program
assigns a string longer than eight characters to CITY, truncation still
takes place. For example, if your program executes the statement

CITY = 'PHILADELPHIA';

then the last four characters of the value being assigned are
discarded, and the truncated value 'PHILADEL' is assigned to CITY.

String Data Types: CHARACTER Constants

The simplest form of a CHARACTER constant is a string of characters
between two apostrophes. But PL/I has several other rules for forming
CHARACTER constants,

The discussion in this section refers to Table 5-6. Line number 1 of
that table illustrates the simple form of CHARACTER constant that has
already been discussed. The constant ‘'ABCDE' contains the five
Characters ABCDE.

5-21 First Edition

PL/I Reference Guide

Table 5-6
CHARACTER Constants

Length (# of
Line # CHAR Constant Characters) Characters

1 "ABCDE! 5 ABCDE

2 um 0 (none)

3 "DOESN! TT! 7 DOFSN'T
4 beet 1 ¥

5 (6) 'AS 6 AAAAAA

6 (4) 'aBCc' 12 ABCABCABCABC
The Null String: A null string is a string that contains no characters

at all. A null string constant consists of two apostrophes with no

characters between them.

When the null string is assigned to a CHARACTER NONVARYING variable,

PL/I pads the null string with blanks, so that the variable receives a

value of a string of blanks. If the null string is assigned to a

CHARACTER VARYING variable, no padding takes place, and the value of

the variable is itself the null string. For example, consider the

following statements:

DECLARE NAME CHARACTER (8) ;

DECLARE CITY CHARACTER(8) VARYING;

NAME = '':
CITY = '':

After these statements have been executed, the variable NAME has the

value 'bbbbbbbb'. ‘The variable CITY has the value '', the null string.

Using an Apostrophe in a CHARACTER Constant: Since you may wish to

include an apostrophe in a CHARACTER constant, PL/I provides a special

rule for doing this, as illustrated in line 3 of the table. To

represent a single apostrophe within a CHARACTER constant, write two

apostrophes. For example, the two apostrophes between the letters N

and T in the constant 'DOESN''T' are recognized by PL/I as representing

a single apostrophe, so that the CHARACTER constant really contains

only seven characters, DOESN'T.

Line 4 of the table illustrates a very special case of this, ‘he

string contains exactly one character, that character being an
apostrophe. ‘This CHARACTER constant is written ''''.

First Edition 5-22

DATA TYPES AND DATA ATTRIBUTES

Repetition Factors: If your CHARACTER constant is made up of one or
more Characters repeated over and over, then, for convenience, you can
use a repetition factor. The repetition factor is a decimal integer,
with no sign, enclosed in parentheses just before the first apostrophe
in the constant. For example, (6)'A' is a CHARACTER constant
containing six characters, AAAAAA, This constant could also have been
written as 'AAAAAA'; PL/I treats these two constants in exactly the
same way.

Line number 6 of the table illustrates the case where several
characters are being repeated. ‘The constant (4)'ABC' contains twelve
characters, ABCABCABCABC. This constant could also have been written

" ABCABCABCABC'.

String Data Types: BIT NONVARYING and VARYING

The CHARACTER data types that have been described in the last few
sections are only one form of PL/I's string data types. The second
form of string data type is called BIT.

Note

Do not confuse the BIT data type with the BINARY data type.
BINARY variables are numeric, and have values that are numbers,
BIT variables are string variables, and their values are
strings of bits.

The BIT data type is used far less often by programmers than the
CHARACTER data type. The two main uses of the BIT data type are as
follows:

@ Other languages have a so-called logical or Boolean data type,
which the programmer uses to manipulate values that are either
true or false. In PL/I, the role of the logical data type is
played by a string declared as BIT(1). A BIT(1) string contains
one individual element, which is either a 0-bit or a l-bit. The
l~bit represents true, and the 0-bit represents false.

@ The PL/I language was designed so that a programmer taking
reasonable precautions can write a program in an
implementation-independent manner, This means that if the
program runs on two different machines, it should give the same
answers. However, sometimes a programmer needs to write a
machine-dependent program that examines and manipulates the bit
formats of other data elements. PL/I allows this with the
UNSPEC built-in function and pseudo-variable, which are
described in Chapter 14.

5-23 First Edition

PL/I Reference Guide

The simplest form of a BIT constant is an apostrophe ('), followed by a
string of zeros and ones, followed by another apostrophe, followed
immediately by the letter B. For example, '10110'B is a BIT constant
containing five bit values, a l-bit followed by a 0-bit followed by two
l-bits and another 0-bit. True and false are represented as ‘'1'B and
'O'B respectively.

The letter B is the crucial element that distinguishes a BIT constant

from a CHARACTER constant, For example, the constant '10110' is a

CHARACTER constant, containing the five characters shown. In terms of

the internal representation of PL/I data, the CHARACTER constant would

require five bytes of storage, while the BIT constant '10110'B would

require only five bits of storage, and so would occupy less space than
a byte. More complex forms of BIT constants are explained in the next
section.

Use the DECLARE statement to specify that a variable is to have a BIT
data type. For example, if your program contains the statement

DECLARE BST BIT (7) 3

then the variable BST has, as its value, a string containing seven

bits,

For example, if your program executes the statement

BST = '0110111'B;

the seven bits in the string '0110111'B are assigned to the variable

BST.

The variable BST has as its value précisely seven bits, no more and no

less. If your program attempts to assign to BST a BIT string value

containing other than seven bits, PL/I must modify the value before

assigning it. As in the case of CHARACTER strings, PL/I pads a_ short

string, and truncates a long string.

For example, if your program executes the statement

BST = '111000111000'B;

then PL/I truncates the string being assigned by throwing away or

truncating the last five of the twelve bits in the value on the

right-hand side. The result is that BST is assigned the value

'1110001'B. On the other hand, if your program executes

BST = '101'B;

First Edition 5-24

DATA TYPES AND DATA ATTRIBUTES

then PL/I pads the value being assigned by adding four 0-bits to it on
the right-hand side, so that BST is assigned the value '1010000'B.

As with CHARACTER strings, you may specify that a variable is to be BIT
VARYING, meaning that the length specified in the DECLARE statement is
a maximum length, and that the variable can have any length less than
or equal to that maximum. For example, if your program contains

DECLARE BSV BIT(6) VARYING;

then BSV is a variable whose value is a string of bits, and the string
contains six or fewer bits. It is still true, of course, that if your
program assigns to BSV a bit string longer than six bits, truncation
takes place,

It was mentioned above that the BIT(1) data type in PL/I performs the
same function that logical data types perform in other programming
languages. Suppose your program contains the following statements:

DECLARE TEST BIT (1) ;
TEST = (X < 0);

IF TEST THEN CALL NEGATIVE;

In this program segment, the variable TEST is specified to be a logical
variable, The assignment statement on the second line illustrates how
a truth value can be assigned to TEST, If the variable X is negative,
TEST is assigned the BIT(1) value '1'B, which stands for true. If X is
0 or greater than 0, TEST is assigned '0'B, which stands for false.
The IF statement shows how your program may make a decision based on
this variable TEST; if TEST has the value '1'B, control is transferred
to the procedure NEGATIVE,

As in the case of CHARACTER strings, you may DECLARE a BIT string
explicitly to be NONVARYING. For example, the variable BST described
above could have been declared with the statement

DECLARE BST BIT(7) NONVARYING:

If you do not specify either VARYING or NONVARYING, PL/I supplies the
default of NONVARYING.

Also, as in the case of CHARACTER strings, it is possible under certain
circumstances for the length specified in the DECLARE statement to be
an expression containing variables. These circumstances are described
in a later section.

5-25 First Edition

PL/I Reference Guide

String Data Types: BIT Constants

The simplest form of a BIT constant is illustrated several times in the

preceding section. Such a constant begins with an apostrophe, followed

immediately by a string of zeros and ones, followed by another

apostrophe and the letter B.

PL/I provides other rules for writing certain kinds of BIT constants

more conveniently than in the simple form just described, These rules

are illustrated in Table 5-7.

Table 5-7
BIT Constants

Length (#
Line # Bit Constant of Bits) Bits

1 '01101'B 5 01101
2 '1'B 1 1
3 RB 0 (None)
4 (5) '1'B 5 11111
5 (4) '101'B 12 101101101101

6 "A76'B3 9 100111110
7 "1 'BB 3 001
8 'tB3 0 (None)

9 (2) '67'B3 12 110111110111

10 'OF3'B4 12 100111110011
11 (3) 'FO'B4 24 111100001111000011110000
12 *23021'B2 10 1011001001

13 (3) '2'B2 6 101010
14 'O1101'BI 5 01101

Lines 1 and 2 of this table illustrate the simple form of the BIT

constant that has been described, Line 3 illustrates the null BIT

string, a BIT string containing no bits whatsoever. This corresponds

to the null string, which has been previously described in the section

on CHARACTER constants.

Line 4 illustrates the use of repetition factors in BIT constants. As

in the case of CHARACTER strings, the number 5 in parentheses tells

PL/I that the string is to be repeated five times, For this reason,

the constant (5)'1'B represents exactly the same value as the constant

'11111'B, and both of these constants have the same data type, BIT(5).

Line 5 illustrates this concept further, where the repetition factor 4

applies to all three of the bits, 101.

First Edition 5-26

DATA TYPES AND DATA ATTRIBUTES

Octal Notation: For your convenience, PL/I also permits you to write

BIT constants using digits in the octal (base 8) number system. Lines

6 and 7 illustrate this. In the example '476'B3, the B3 signals to

PL/I that the characters between the apostrophes are to be interpreted

as octal digits, and that each of these digits is to be transmitted

into three bits to create the final BIT constant. ‘Therefore, the 4

becomes 100, the 7 becomes 111, and the 6 becomes 110, using the

standard convention for translating octal digits to binary digits.

That is why PL/I considers this constant to be exactly the same as the

constant '100111110'B. Both constants have the same data type BIT(9),

and both constants have the same value in terms of the string of bits.

Line 7 also illustrates the use of B3. Here, the octal digit 1 is

translated into the three bits 001, and so the constant '1'B3 is the

same as the constant '001'B.

Lines 8 and 9 illustrate the use of B3 constants with other features.

In line 8 the constant ''B3 is another way of writing the null BIT

string, which was described before as ‘tp. In line 9, the repetition

factor 2 applies to all the octal digits, so that the constant

(2)'67'B3 is considered identical to the constant '6767'B3, which in

turn is considered identical to the constant '110111110111'B, All

three of these constants specify the same bit values, and all three

have the data type BIT(12).

Other Number Bases: PL/I allows you to specify BIT constants in any of

the common number bases: binary (base 2), quartal (base 4), octal

(base 8), or hexadecimal (base 16). Specify your choice of the number

base by means of the suffix Bl, B2, B3, or B4, respectively. Note that

Rl is the same as B. Fach character that you specify between the

apostrophes in a Bl, B2, B3, or B4 constant represents, respectively,

1, 2, 3, or 4 bits in the final BIT string value. Table 5-8 shows

which characters are legal for each of the four kinds of BIT constants,

and shows how each of these characters is translated into a string of

bits. Note that for hexadecimal (base 16) constants, which are

specified by the suffix B4, the letters A through F are used to

represent the hexadecimal digits for the decimal values 10 through 15.

5-27 First Edition

PL/I Reference Guide

Table 5-8

Characters Permitted in Bn Constants
and Corresponding Bit Values

Character Corresponds to These Bits
B or Bl B2 B3 B4

0 0 00 000 0000
1 1 01 001 0001
2 Invalid 10 010 0010
3 Invalid 11 011 0011
4 Invalid Invalid 100 0100
5 Invalid Invalid 101 O1LOL
6 Invalid Invalid 110 0110
7 Invalid Invalid 111 0111
8 Invalid Invalid Invalid 1000
9 Invalid Invalid Invalid 1001
A Invalid Invalid Invalid 1010
B Invalid Invalid Invalid 1011
Cc Invalid Invalid Invalid 1100
D Invalid Invalid Invalid 1101
E Invalid Invalid Invalid 1110
F Invalid Invalid Invalid 1111

Lines 10 through 14 in Table 5-7 illustrate some of these other kinds
of BIT constants. In line 10, the constant '9F3'B4 is a hexadecimal
BIT constant. Each of the characters between the apostrophes is
translated into four bits, according to the usual hexadecimal to binary
conversion rules as shown in Table 5-8. The character 9 translates
into the bits 1001, the character F translates into the bits 1111, and
the character 3 translates into the bits 0011, so that the equivalent
constant is '100111110011'B. You may write this constant in either of
these two formats; PL/I will consider them to have the same value as
well as the same data type, BIT(12). In line 11, the repetition factor
3 applies to the two hexadecimal digits 10.

Lines 12 and 13 illustrate the B2 representation of a BIT constant. In
line 12 each of the characters gets translated into two bits. In line
13, the repetition factor 3 is used.

Line 14 illustrates the alternate way, using Bl, of writing the same

constant as in line 1. ,

First Edition 5-28

DATA TYPES AND DATA ATIRIBUTES

PICTURED DATA TYPES: INTRODUCTION

The CHARACTER data type, which has been described, is extremely
powerful and flexible. CHARACTER variables can have, as their values,
strings of any of the 256 characters supported by the Prime hardware,
The use of such variables thus provides the programmer with the
capability of manipulating any kind of character string in a wide
variety of applications.

Unfortunately, this power carries with it the disadvantage of being a
bit too general. In many applications, the programmer would like to
declare CHARACTER variables in such a way that the strings that may be
assigned to those variables are constrained to permit only certain
characters in certain character positions. For example, a programmer
may wish to specify that a certain CHARACTER variable may have as a
value a string that can contain only letters as character values. Or,
a programmer may wish to specify that a certain CHARACTER variable may
contain only digits in its character value. In the latter case, the
compiler should be able to interpret such a string as a numeric value
as well as a string value.

Pictured data types provide these capabilities. The two kinds of
pictured data types are pictured-string and pictured-numeric. ‘They are
described in the next sections.

PICTURED-STRING

A variable that is pictured-string is like a CHARACTER NONVARYING
variable, except that only certain types of character string values may
be assigned to it. In particular, it is possible for you to specify
that certain character positions may contain only letters, and that
other character positions may contain only digits. (PL/I will permit a
blank in place of a letter or a digit.) You may also allow certain
character positions to have any character.

Consider the following statement:

DECLARE CODE PICTURE 'AAAX99':

Notice that there are six characters between the two apostrophes
following the keyword PICTURE. This declaration specifies that CODE is
a CHARACTER variable containing exactly six characters, that the first
three of these characters must be letters (represented by A), the next
character may be any character (represented by X), and the last two
Characters must be digits (represented by 9). Thus, for example, the
variable CODE may be assigned the value "NUT-64", but may not have the
value 'NT8-14' or the value 'NUT-X4',

5-29 First Edition

PL/I Reference Guide

The simplest format for declaring a pictured string is as follows:

DECLARE variable PICTURE picture-specification;

where the picture specification has the format

"string-of-characters'

If such a declaration appears in your program, the specified variable
will be CHARACTER NONVARYING, with a length equal to the number of
Characters between the apostrophes in the picture Specification. The
characters between the apostrophes may be any of the following:

@ A specifies that the character in that position must be either a
letter or a blank.

@ X specifies that any character is permitted in that position,

@ 9 specifies that the character in that position must be either a
digit or a blank.

The picture specification must contain at least one A or X. I£ the
picture specification contains only occurrences of the character 9, the
variable is pictured-numeric, rather than pictured-string,
Pictured-numeric variables are described in the next section,

If the same character appears several times consecutively in the
picture specification, you may use a convenient shorthand notation. A
parenthesized number appearing in a picture specification is
interpreted as a repetition factor to be applied to the character
immediately following. For example, the statement

DECLARE TYPE PICTURE 'X(7)AX(4)9':

is completely equivalent to the declaration

DECLARE TYPE PICTURE 'XAAAAAAAX9999! ¢

In the first picture specification, the elements (7)A specify that the
A is to be repeated seven times; this is done explicitly in the second
picture specification. Similarly, the element (4)9 is replaced by
9999, An example of a CHARACTER string that is valid for assignment to
TYPE is '*MAILBOX:8742', Another example of a string that is valid for
assignment to TYPE is '*SLOTbbb:b233', where b stands for a blank.
This string is valid for assignment to TYPE because PL/I allows a blank

First Edition 5-30

DATA TYPES AND DATA ATTRIBUTES

to be used in a character position where an A or a 9 was used in the
picture specification,

In the declaration of a pictured variable, the keyword PICTURE may be
abbreviated PIC.

PICTURED-NUMERIC

PL/I's pictured-numeric data type capability is a flexible method for
constraining CHARACTER strings so that a legal value will be a
character representation of a number in the format desired by the user.
Furthermore, PL/I will interpret that variable as having an appropriate
numeric value, if you desire. For example, you may specify that a
variable is to contain precisely seven characters, and that the fifth
o£ these seven characters must be a decimal point, while the others
must all be digits. The string '8742.56' would be a legal value for
that variable, but a string such as '—243492' would not be a valid
value.

The pictured-numeric data type combines the functional advantages of
the numeric data types with the functional advantages of the CHARACTER
data type. The format for declaring a pictured-numeric variable is as
follows:

DECLARE variable PICTURE picture-specification;

where PICTURE may be abbreviated to PIC. This is the same format as
for pictured-string, described in the previous section. The difference
is that the picture specification contains different characters for
pictured-numeric, and these characters are interpreted quite
differently.

Any pictured-numeric variable has two values, a numeric value and a
CHARACTER value. When you use such a variable in a PL/I statement,
PL/I uses whichever of the two values is appropriate for the context.
For example, if the variable appears in an arithmetic expression, its
numeric value is used. If you use PUT LIST to print out the value of
the variable, its CHARACTER value is used. This means that you can
manipulate the value of the variable numerically, and, when you print
it out, get the formatting advantages of using a CHARACTER string.

Although the pictured-numeric data type has a number of advantages, it
has one important disadvantage: numeric computations involving
pictured-numeric variables execute much more slowly than the same
computations involving ordinary numeric variables. This means that you
should choose carefully which of your. variables are to be
pictured-numeric and which are to be numeric, based on how frequently
each variable is to be used in arithmetic expressions. Of course, you
may always use the assignment statement to assign to a pictured-numeric
variable the value of a numeric variable, or vice versa.

5-31 First Edition

PL/I Reference Guide

The S and 9 Picture Specification Characters

Suppose your program contains the statement

DECLARE POINTS PICTURE 'S999';

This statement specifies that POINTS is to be pictured-numeric, meaning

that it will have both a CHARACTER value and a numeric value.

CHARACTER Value: There are four characters in the picture

Specification above, and so the. CHARACTER data type for POINTS is

CHARACTER(4) NONVARYING. ‘The first character in the CHARACTER value is

always a sign (that is, + or -), because the first character in the

picture specification is S. The next three characters in the CHARACTER

value are always digits, since each of these positions has a 9 in the

picture specification.

Numeric Value: The picture specification specifies that the variable

is to contain three decimal digits. For this reason, the data type of

the numeric value of POINTS is FIXED DECIMAL(3).

To understand how this variable is used, suppose your program executes

the following statements:

POINTS 233
POINTS POINTS+1;

PUT LIST (POINTS) ;

The first assignment statement assigns the numeric value 23 to POINTS.

When PL/I executes this statement, it edits the numeric value into a

character string that fits the specification given in your PICTURE

declaration. This means that POINTS is assigned the value '+023'.

The second assignment statement increases the numeric value of POINTS

by 1. In evaluating the expression POINTS + 1, PL/I uses the numeric

value (23) of points, adds 1 to it, and then completes the assignment

statement by editing the result 24 into a string that conforms to the

picture specification. The result is that POINTS is assigned the value

'4024', When the PUT statement is executed, PL/I uses the string value

of POINTS, and prints the following output value:

+024

Thus, PL/I moves freely back and forth between the numeric and string

value of POINTS.

First Edition 5-32

DATA TYPES AND DATA ATTRIBUTES

Table 5-9 illustrates the effect of assigning various values to
pictured-numeric variables. Each line of this table shows what happens
when you assign a certain value to a variable with a specified picture
specification. The table shows what the resulting numeric and string
values of the PICTURE variable will be.

Note

Internal representation of the numeric value for PICTURE is
decimal data type.

Lines 1 through 6 illustrate what happens when various values are
assigned to POINTS, the variable we have been discussing with the
picture specification 'S999', Lines 1 and 2 illustrate the basic
feature that the string value of the variable contains a plus or minus
sign, followed by three decimal digits. Line 3 of the’ table
illustrates how truncation works, just as for any FIXED decimal
variable. The fractional portion, point 8, of the value assigned is
simply thrown away, with the result that the variable has a numeric
value of 468 and a string value of '+468'. Line 4 illustrates what
happens when you assign a value containing too many digits to POINTS.
The result is a SIZE error, and the value of POINTS is undefined.

Lines 5 and 6 illustrate that you may also assign a string value to a
pictured-numeric variable, provided that the string value corresponds
to the requirements of the picture specification. In line 5, the value
'+764' is assigned to POINTS, with the result that POINT has a_ numeric
value of 764 and a string value of '+764'. Line 6 illustrates an
invalid assignment of this type, where the assigned value '+7.3' does
not conform to the picture specification, since the decimal point
appearing in the third character position is not a digit.

Line 7 illustrates an alternate way of writing a picture specification
when the same character is repeated several times. In this example,
PL/I interprets the statement

DECLARE MILES 'S(7)9';

exactly the same as the statement

DECLARE MILES 'S9999999';

That is, the group (7)9 is interpreted as meaning that the 9 is to be
repeated seven times.

5-33 First Edition

PL/I Reference Guide

Table 5-9

Assigning Values to
Numeric PICTURE Variables

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE

Line # Assigned Variable Numeric String Comment

1 23 '§999' +923 "4923!

2 -23 *5999' -G23 '-§23'

3 468.8 *$999' +468 '+468' ' Truncation

4 1874 5999! Invalid SIZE error -- too

many digits

5 +764! "S999! +764 '+764' CHARACTER
assignment

6 '+7.3' *5999' Invalid CHAR value does

not conform to
picture
specification

7 =~4,3E5 '§(7)9' ~439000 '-0439000' Repetition factor

8 746 *999S' +746 '746+' Sign at end

9 53 '999S' -953 *953-'

1¢ 79942 #99999! +79942 '79942' No sign

11 874 *99999' 400874 '@8874'

12 =B74 #99999! Invalid SIZE error -= no
character position

for sign

First Edition 5-34

DATA TYPES AND DATA ATTRIBUTES

Lines 8 and 9 illustrate that the plus or minus sign may appear at the

end of the string value, as well as at the beginning. If you assign

the value 746 to a pictured-numeric variable with picture specification

'9999S', the variable has the numeric value 746 and a string value of

'0746+', If you assign -53 to the same variable, the string value is

'0053-'.

Lines 10 through 12 of the table illustrate a picture specification

that contains no sign at all. As shown in line 11, if you assign the

value 874 to a variable with a picture specification of '99999', the

variable has a numeric value of 874 and a string value of '00874'.

As illustrated in line 12, it is invalid to assign a negative value to

such a variable, since there is no sign position in the picture

specification, The result of such an assignment is a SIZE error.

Other Sign Symbols: -, +, CR, TB

Tt was explained above that an S in the picture specification is

replaced by a plus or minus sign in the string value of the picture

variable. PL/I provides a number of other ways to represent a sign in

the string value. Some of these are as follows:

e If the picture specification contains a minus sign, PL/I inserts

into the string value of the variable either a blank, if the

numeric value is positive or zero, or a minus sign if the

numeric value is negative. This form of string is, for many

people, the most natural representation of the sign since a plus

sign never appears, and a minus sign appears for negative

numbers, which is the usual convention.

e If the picture specification contains a plus sign, PL/I inserts

into the corresponding position in the string value of the

variable a plus sign if the numeric value is zero or positive,

and a blank if the numeric value is negative.

e@ In commercial applications involving billing, a negative value

is considered a credit. If you use CR in a

_

picture

specification, PL/I inserts CR into the string value of the

variable if the numeric value is negative. It inserts two

blanks if the numeric value is zero or positive. CR may be used

only at the end of the picture specification.

e In some commercial accounting applications, a negative value is

considered to be a debit. If your picture specification

contains DB, PL/I puts DB into the corresponding characters in

the string value of the variable, provided that the numeric

value is negative. If the numeric value is positive or zero,

PL/I uses two blanks. Notice that, even though the terms credit

and debit have opposite meanings in accounting, CR and DB wor k

the same way in PL/I picture specifications.

5-35 First Edition

PL/I Reference Guide

Table 5-10 illustrates the use of these picture specification symbols.
Lines 1 through 6 illustrate the contrasting uses of S, +, and -.
Lines 7 through 12 illustrate similar examples, with the sign appearing
at the end of the picture specification. Lines 13 through 16
illustrate the use of CR and DB.

All of the examples in Table 5-10 have picture specifications with
three positions for digits. As a result, the data type of the numeric
value of the variable in each case is FIXED DECIMAL(3). The data type
for the string value of the variable is CHARACTER(4) for lines 1
through 12 and CHARACTER(5) for lines 13 through 16.

First Edition 5-36

DATA TYPES AND DATAATTRIBUTES

Table 5-10

Assigning Values to
Signed PICTURE Variables

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE

Line # Assigned Variable Numeric String Comment

1 23 '$999' +823 '+923' Sign Positive

2 23 1999! +923 "bg23' Sign Positive

3 23 "4999! +923 "4923! Sign Positive

4 -23 $999" -823 '-§23' Sign Negative

5 -23 '~999' -G23 1-23! - Sign Negative

6 -23 "4999! -§23 "b@23' Sign Negative

7 486 '999S' +486 'Agot+! Sign Positive
at End

8 486 1999—' +486 '486b' Sign Positive
at End

9 486 "999+! +486 'A86+' Sign Positive

: at End

18 ~486 '999S' ~486 '486-' Sign Negative
at End

11 ~486 1999-' -486 '486-' Sign Negative

at End

12 ~486 1999+! ~486 '486b' Sign Negative
at End

13 18 '999CR' +818 '918bb' Sign Positive
at End

14 18 '999DB ' +818 '@18bb! Sign Positive
at End

15 -18 '999CR! -918 'g18CR' Sign Negative

at End

16 -18 '999DB' -G18 '@18DB' Sign Negative

at End

5-37 First Edition

PL/I Reference Guide

Insertion Character Symbols: .,/B

When one of these four symbols appears in a picture specification, PL/I
inserts the corresponding character into the string value of the
variable, In the case of the symbol Bin the picture specification,
PL/I inserts a blank into the string value of the variable.

Table 5-11 illustrates the use of these four insertion character
symbols. As this table illustrates, when a numeric value is assigned
toa variable with a picture specification containing one of the
insertion character symbols, PL/I inserts the appropriate character

into the string value of the variable.

Table 5-11
Insertion Character Symbols

PICTURE Spec Result: Values of

Value for Target PICTURE Variable
Line # Assigned Variable Numeric String Comment

8742935 *99,999,999' +98742935 '88,742,935'1
2 780213 "99/99/99! +788213 78/02/13'

3 9643 "5999.99! +89643 '+996,43'
4 =4 '99.,99CR' =—8OG4 '80.@4CR'
5 783 '9,999.99! +0980783 'G,087.83'

6 2743 '-99B9B9! +2743 "b27b4b3'
7 6.78 $999.99! +0B006 +000 .06' Truncation

It is important to note that the appearance of a decimal point in the
picture specification does not mean that the numeric value of the
PICTURE variable can contain a fraction. This is illustrated in lines
3, 5, and 7 in the table. In particular, line 7 illustrates that when
the value 6.78 is assigned to a variable with picture specification
*S999.99', the numeric value is truncated with the result that the
variable has the numeric value 6 and the string value '+000.06'.

In each of the examples in Table 5-11, the string value of the variable
has a data type CHARACTER NONVARYING, with a string length equal to the
number of characters in the picture specification. The data type for
the numeric value of the variable is FIXED DECIMAL, with a precision
(number of digits) equal to the number of occurrences of 9 in the
picture specification. For example, a variable declared to have this
picture specification '99,999,999', as illustrated in line 1 of the
table, has a string data type of CHARACTER(10), and a numeric data type
o£ FIXED DECIMAL (8).

First Edition 5-38

DATA TYPES AND DATA ATTRIBUTES

Numeric Scale Factor Symbols: V_ and F(n)

All the numeric picture specifications we have discussed so far could

be used to represent only integer values. In other words, in all

cases, the data type of the numeric value of the PICTURE variable was

FIXED DECIMAL with a scale factor of 0. This section ceals with ways

of introducing a nonzero scale factor into the picture specification.

The easiest way to allow noninteger numeric values is to use V plus a

period (V.) as a single element to specify where the decimal point

occurs. This usage is illustrated in lines 1 through 6 of Table 5-12.

For example, line 1 shows the result of assigning the value 4 to a

variable with picture specification '-9V.99'. ‘The symbol 9 appears

three times, meaning that the numeric value of the variable contains

three decimal digits. Since two occurrences of 9 occur after V plus a

period, two of the digits in the numeric value of the variable appear

after the decimal point. The result is that when 4 is assigned to the

variable, the resulting numeric value is 4.00, and the resulting string

value is 'b4.00'. If -8.6 is assigned to the same variable, the

resulting numeric is -8.60, and the resulting string value is '~8.60'.

If 7.894 is assigned to the same variable, then, since the variable can

only accommodate two digits after the decimal point, truncation takes

place, the resulting numeric value is 7.89, and the string value is

'b7.89', These results are illustrated in lines 2 and 3 of Table 5-12.

The symbol V is unusual because it appears in the picture specification

but does not correspond to any character in the string representation

of the value of the variable. That is, even though the picture

specification '-9V.99' contains six characters, the data type for the

string value of the variable is CHARACTER(5). Each of the characters

in the picture specification contributes one character to the string

representation of the variable except for V, which is ignored in the

string representation, On the other hand, the V does affect the data

type of the numeric value of the variable, since the scale factor of

the data type is determined by the number of occurrences of 9 that

folloy the V. ‘Thus, the picture specification '~9V,99' has a

corresponding numeric type of FIXED DECIMAL (3,2).

Lines 4 and 5 illustrate another picture specification using V followed

by a period. In this case, each occurrence of 9 follows the V, meaning

that all the digits in the value of the variable follow the decimal

point. The string data type of the value of the variable is

CHARACTER(5), and the numeric data type is FIXED DECIMAL(3,3). AS

illustrated in line 5, attempting to assign a value greater than one to

such a variable yields a SIZE error.

5-39 First Edition

PL/I Reference Guide

Table 5~12

Assigning Values to PICTURE
Variables with Scale Factors

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE

Line # Assigned Variable Numeric String Comment

1 4 '~9V.99! +4.08 "b4 0G
2 8.6 '~9V,99! ~8.60 '-8.69'
3 7.894 '~9V.99 +7.89 "b7.89' Truncation

4 02 *SV.999' +.288 *+,206'
5 4 "SV.999' Invalid SIZE error
6 12.3 '99V.99' +12.3¢0 '12.36'
7 12.3 99,99! +8812 "98.12! Truncation

8 12.3 ‘99V99! +12.38 '123¢'
9 83 "99V99' +83 ..88 '83e0'

18 225 '99V99' +09.25 "9G25'
11 493 '99V99' Invalid SIZE error
12 03 'V.9999' +,..3808 "3000 '
13 o3 ',9999' +, 0808 "8980" Truncation
14 o3 *v9999' +.3088 '3000'
15 2829 'V9999' +.929@ "9299!

16 3 'v9999' Invalid SIZE error
17 487020 '999F (3)' t+487F3 '487'

18 29763 '999F (3)! +29F3 'g29!' Truncation
19 12.3 '99,99F(-2)' 412.30 "12.3! Same as lines 6-8

28 12.3 99,99" - +9912 "@@.12'
21 12.3 '9999F (—2) ' 412.38 '1230'
22 90883 ‘OOF (=6) ' +30F-6 '36'
23 »9980297 '99F(-6)' +29F=-6 "29! Truncation
24 43.782 'Q9OV99F (1)' +04.37 'g437' Truncation

It is not necessary to use the symbols V and period together. Farlier,
you saw that the period is an insertion character that PL/I copies to
the string value of the variable without affecting the numeric value of
the variable. On the other hand, the symbol V does not correspond to
any character in the string value of the PICTURE variable, but since
PL/I uses the V to determine the scale factor, this symbol does affect
the numeric value of the variable. Therefore, the period affects only
the string value of the PICTURE variable, and V affects only the
numeric value. When they are used together (V.), they affect both the
string and numeric values and they do so in a consistent manner, since
the position of the decimal point in the string value corresponds to

the scale factor in the numeric value,

Lines 6, 7, and 8 of Table 5-12 illustrate what happens when the period
and the V are used separately. In line 6, the value 12.3 is assigned
to a variable with picture specification '99V.99'. Here the V and the
period are used together, and, as shown, the resulting numeric value is

First Edition 5-40

DATA TYPES AND DATA ATTRIBUTES

12.3 and the resulting string value '12.30'. The string data type is
CHARACTER(5), and the numeric data type is FIXED DECIMAL(4,2).

In line 7, there is only a period in the picture specification. Since
there is no V, the scale factor of the numeric value is 0, and so the
numeric value can only have an integer value. For this reason, when
the value 12.3 is assigned, truncation occurs, and the resulting
numeric value is 12, corresponding with the numeric data type of FIXED
DECIMAL(4). In the string value of the variable, the numeric value of
12 is represented by means of the digits 0012, but the period in the
picture specification is simply copied over to the string value of the
variable, resulting in a string value of '00.12'.

Line 8 has the first example of a picture specification containing a V
with no period. The data type of the numeric value of the variable is
FIXED DECIMAL(4,2). This example is identical to the one in line 6,
where the period appears, with the exception that there is no decimal
point appearing in the string value of the variable. However, the
numeric value is the same in both cases, and the digits appearing in
the string value are the same. Lines 10 and 11 provide two additional
examples of assignment to the same picture specification as in line 9.
Lines 12 through 16 of the table provide a further illustration of the
concepts just described. In this example, all of the digits appear
after the decimal point.

Lines 17 and 18 illustrate a new kind of picture specification. The
appearance of F(3) at the end of the picture specification indicates
that the numeric value of the variable will have three zeros following
the digits as they appear in the string value. Thus, for example, if
the value 487000 is assigned to a variable with the picture
specification '999F(3)', the resulting numeric value is 487000 (which
could also be written as 487F3), and the string value is '487'. For
this picture specification, the numeric data type is FIXED
DECIMAL (3,-3), and the string data type is CHARACTER(3). In line 18,
the value 29763 is assigned to a variable with the same picture
specification. Truncation takes place, and so the resulting numeric

value is 29000, and the resulting string value is '029'.

Like V, when F(n) appears in a picture specification it determines the
scale factor of the numeric value of the variable. The rule is as
follows: an increase of one in the value of n in the F(n) is
equivalent to moving the V to the left one position with respect to the
occurrences of 9 in the picture specification. Lines 19, 20, and 21
illustrate this. The picture specifications on these three lines are
entirely equivalent to the picture specification in lines 6, 7, and 8.
The appearance of F(-2) is equivalent to inserting V to the left of two
occurrences of 9 in the picture specification.

In lines 22 and 23, the implied decimal point is six positions to the
left of the rightmost digit appearing in the string value of the
variable. In line 23, truncation takes place.

It is even possible to use both V and F in the same picture
specification, resulting in their effects being combined. ‘The picture

5-41 First Edition

PL/I Reference Guide

specification '99V99F(1)' is equivalent to the picture specification

'999V9'.".

The following is a summary of the effects of V and F(n) on the numeric

and string data types of the variable. The string data type is

CHARACTER NONVARYING, with the length equal to the number of characters

in the picture specification, not including the V or the F(n). The

numeric data type is FIXED DECIMAL(p,q), where p equals the number of

occurrences of 9 in the picture specification, and q equals mn, where

m is the number of occurrences of 9 following the symbol V, and n is

the integer appearing along with F.

Suppressing Zeros: 2, *, and Y

One of the main purposes of PICTURE variables is to provide a method of

storing numeric values in a string form that is suitable for attractive

or functional output. One important feature of attractive output is

the suppression of leading zeros. For example, in printing 45, most

users would consider the output 0045 unattractive, because of the two

leading zeros.

In a string specification, the symbol Z has the same meaning as 9,

except that, in the string value of the variable, PL/I will substitute

a blank for the Z if the digit that would have been substituted was a

leading zero. .

In Table 5-13, lines 1 through 5 illustrate what happens when various

values are assigned to a PICTURE variable with the picture

specification '22799', The data type of the numeric value of the

variable is FIXED DECIMAL(4), and the data type of the string value of

the variable is CHARACTER(4), just as if the picture specification were

'9999', In fact, the Z is entirely equivalent to 9 in determining the

data types of the string and numeric values of the PICTURE variable,

The difference is that PL/I does not always substitute a digit for a Z

as it does for a 9.

First Edition 5~42

Table 5-13
Zero Suppression With PICTURE Variables

DATA TYPES AND DATA ATTRIBUTES

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE

Line Assigned Variable Numeric String Comment

1 8002 *2299' +8902 *8992' No suppression

2 453 '2299' +9453 "p453! One digit
suppressed

3 62 'ZZ99' +9062 "bb62' Two digits
suppressed

4 4 "2299" +8004 "bbd4'

5 g '22Z99' +0909 "bbgg'

6 490 "222" +400 "490! No suppression

7 5 ‘222 ' +685 "pb5! Two digits
suppressed

8 g "Z2Z' +800 "bbb! All digits
suppressed

9 -25 'SZ29' ~925 '-b25'

19 g "2298" +008 "bb@+'

11 4279365 '2,222,229' +4279365 '4,279,365' No suppression

12 279365 '7,222,229' +8279365 'bb279,365' Digit and comma
suppressed

13 143 '2,222,229' +0000143 '‘bbbbbb143' Both commas
suppressed

14 2 - '22/29/99' +000082 ‘bbbb@/2' Slash suppressed

15 8062 '#*QQ! +8992 "8092! Similar to lines

1-4

16 453 'kkgQ! +8453 '*453! Similar to lines

1-4

17 62 'k*QQ! +0862 '*e*62! Similar to lines
1-4

5-43 First Edition

PL/I Reference Guide

Table 5-13 (continued)
zero Suppression With PICTURE Variables

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE

Line # Assigned Variable Numeric String Comment

18 4 1##QQ' +8004 Teeg4! Similar to lines

1-4

19 143 Vk Rk REG! +0000143 '******143'" Similar to lines

13-14

28 2 Tk/*9/99 ' +OOOGG2 ****Y/G2'

al 182983 ‘yyyyy' +182083 "lb2b3'

22 189090 "yy/Y9/Y9' +180008 '‘lb/bd/bo'
As line 1 of Table 5-13 shows, when the value 8002 is assigned to such
a variable, the resulting string value is '8002', since there are no
leading zeros. However, as line 2 shows, when 453 is assigned to the
same variable, the resulting string value is 'b453'. The leading zero
is replaced with a blank. When the value 62 is assigned, two leading
zeros are replaced with blanks, as illustrated in line 3. On the other
hand, when the value 4 is assigned to the variable as illustrated in
line 4, only two of the three leading zeros are suppressed, since a 9
appears in the third position of the picture specification.
Furthermore, as line 5 shows, when the value 0 is assigned, the
resulting string value is 'bb', since the two occurrences of 9 at the
end of the picture specification require actual digit substitution.

Lines 6, 7, and 8 illustrate assignment to a variable with a picture
specification consisting entirely of the character Z. For a variable
with picture specification 'Z22%', the numeric value has data type FIXED
DECIMAL (3), and the string value has data type CHARACTER(3). When the
value 400 is assigned to this variable, the resulting string value is
'400', since there are no leading zeros. When the value 5 is assigned,
the resulting string value is 'bb5', since there are two leading zeros.
When the value zero is assigned, all three digits are suppressed, and
the resulting string value contains three blanks.

The use of the various sign symbols is not affected at all by the
suppression of leading zeros. Lines 9 and 10 of Table 5-13 illustrate

this,

First Edition 5-44

DATA TYPES AND DATA ATTRIBUTES

An important feature of the suppression of leading zeros is that any

insertion characters encountered along the way during the editing

process are replaced with blanks if the preceding digits are replaced

with blanks. This feature is illustrated in lines 11 through 14.

These examples illustrate the suppression of the insertion characters

comma (,) and slash (/) when leading zeros are suppressed.

In certain commercial applications, such as the printing of checks, it

is desirable that leading zeros be replaced by some printing character,

rather than by a blank. ‘The character most commonly used is the

asterisk (*), and PL/I provides this capability. When the symbol *

appears in a picture specification, it is treated precisely the same as

aZ, except that, when a digit is suppressed, it is replaced with an

asterisk rather than a blank. ‘These features are illustrated by lines

13 through 20 of Table 5-13. These examples are identical to the

examples in lines 1 through 4 and 13 through 14, except that an

asterisk is used instead of 2.

The last zero-suppression symbol is Y. When this symbol appears ina

picture specification, the corresponding string value has any zero

replaced with a blank, whether the digit is leading or not. This is

illustrated in lines 21 and 22 of Table 5-13.

The symbols Z and * may not be intermixed with one another, nor may

they be intermixed with 9 or Y. Also, 2 and * may not both appear in

the same picture specification. Furthermore, no 9 or Y may appear to

the left of either a 2% or an * in the picture specification. The

symbols 9 and Y may be intermixed as desired.

In the preceding section, the data types of the string and numeric

values of a pictured variable have been defined in terms of the number

of occurrences of 9. Now those rules must be amended to count

occurrences of the symbols 9, Z, *, and Y.

Suppressing Leading Zeros in Picture Specifications with V

When V appears in the same picture specification as either 2 or *, some

special rules apply. These rules are as follows:

e If either Z or * appears in the picture specification to the

right of V, all digit positions in the picture specification

must be represented by Z or *, respectively.

@ When your program assigns a numeric value to a picture

specification all of whose digits positions contain either 2 or

*, then, in creating the string value of the variable, PL/I does

not suppress any digit or insertion character appearing to the

right of a V, even a leading zero, wmless the numeric value is

zero. In the latter case, all digits and insertion characters

are suppressed,

5-45 First Edition

PL/I Reference Guide

Table 5-14 illustrates these rules. In line 2, the insertion character
period is not suppressed, as it would be if the picture specification
contained no V. As illustrated in line 3, the picture specification
'27V.29' is an illegal picture specification, since a Z appears to the
right of a V, but there is still a 9 in the picture specification.

The case where all digit positions are occupied by Z, with two of those
digit positions following a V, is illustrated in lines 4 through 7.
The only case where digits after the V are suppressed is illustrated in
line 7, where the numeric value is 0, and all digit positions, as well
as the insertion character period, are suppressed.

When the insertion character period appears to the left of V, as
illustrated in lines 8 and 9, it can be suppressed even if digits to
the right of V are not suppressed. Inline 9, the resulting string
value 'bbb42' could cause confusion to somebody reading the output from
your program. That is why V followed by a period (V.) is considered
preferable in most circumstances to period followed by a V (.V).

Lines 10 through 13 of the table are similar to lines 4 through 7
except that the insertion character period has been omitted. This
serves to emphasize the point that a period is inserted into the string
value of the variable, and carries no meaning as regards the numeric
value of the variable, which is the function of V.

Lines 14 through 20 of the table are the same as lines] through 7 of
the table, except that the zero suppression character * replaces @,.
All other remarks are the same.

Drifting Signs: S, +, and ~-

In the string value of a PICTURE variable, in many cases you would
prefer that there be no blanks between the sign and the first nonzero
digit. The use of drifting signs solves this problem. When PL/I edits
a numeric value into the string value, it lets the sign drift to the
right so that it appears just before the first nonzero digit.

Table 5-15 illustrates the use of drifting signs. In the first two
lines, the symbol S is a static sign, so called because it can appear
in only one position, the leftmost position of the string value of the
variable. In line 2, where leading zeros have been suppressed, there
are blanks between the minus sign and the 2. Lines 3 through 9
illustrate the various results when different values are assigned to a
variable whose picture specification contains S as a drifting sign. In
each case, the sign appears in the position immediately preceding the
first significant digit.

First Edition 5-46

DATA TYPES AND DATA ATTRIBUTES

Table 5-14
Assigning Values to PICTUREs With V

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE

Line Assigned Variable Numeric String Comment

1 8.42 '2ZV.99' +08.42 "b8.42'

2 242 'ZZV.99' +0842 "bb. 42!

3 'Z2V.29' Illegal picture

specification

4 8.42 ‘22.22 ' +98.42 "bb. 42'

5 242 "2ZV.22' +06 .42 "bb.42'

6 82 '22V.22' +08.82 'bb.@2' @ after V not
suppressed

7 g 'Z2V..22' +80.08 ‘bbbbb' All digits and
period suppressed

8 8.42 'ZZ.VZZ' +88.42 "b8. 42!

9 242 '2Z.VZZ' +00.42 "pbb42'

18 8.42 ‘ZZV2Z' 498.42 'b842' Similar to lines 4=7

ll 042 'ZZVZ2' +00 .42 'bb42' Similar to lines 4-7

12 22 'ZZVZ2 ' +00.82 ‘bb@2' Similar to lines 4-7

13 6 "Z2V2Z' +00.80 "bbbb' Similar to lines 4-7

14 8.42 tek99! +88.42 #842!

15 042 tee, 99! +08.42 Vee 42"

16 THEY, OQ! Illegal picture
specification

17 8.42 Veake! +88 .42 '*8,42'

18 042 TemYHK! +00.42 tek. 42!

19 82 TeaeH! +00 .082 '**,.92' @ after V not
suppressed

20 g VeaHe! +89.88 ‘ekeee' AI] digits and
period suppressed

5-47 First Edition

PL/I Reference Guide

Table 5-15
Assigning Values to PICTUREs With Drifting Signs

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment

1 -25 *$99999' ~09925 '=99825' Static sign

2 =-25 'SZ2Z229' -09825 ‘ebbb25' Static sign

3 ~-25 ‘SSSSS9' -98825 "bbb=-25' Drifting sign

4 g 'SSSSs9' +0B090 ‘bbbb+@' Drifting sign

5 25 "sssss9' +89825 "bbb+25' Drifting sign

6 3875 'SSSSS9' +83875 "b+3875' Drifting sign

7 42765 'sssss9' +42765 '+42765' Drifting sign

8 ~42765 'SSSss9o' -42765 '42765' Drifting sign

9 723463 'sssss9' Invalid SIZE error

19 25 'ssssss' +00825 ‘pbb+25' Drifting sign,
all positions

11 g ‘SSSSSS' +8B0G0 "pbbbbb'
12 4876 ‘ss,Ss9' +4876 '+4,876' Comma inserted

13 876 'ss,SS9' +0876 "bb+876' Comma replaced
with sign

14 76 'sS,ss9' +0876' "bbb+76' Comma replaced
with blank

15 83 *SS9V.99' +08 .83 "b+9.93'

16 G3 "SSSV.99' +00 .03 *bb+.93'

17 283 'SSSV.SS' +88 .93 "ob+.93'

18 g 'SSSV.SS' +08 .0@' "bbbbbb!

19 "SSSV.S9' Illegal picture
specification

First Edition 5-48

DATA TYPES AND DATA ATTRIBUTES

Table 5-15 (continued)
Assigning Values to PICTURES With Drifting Signs

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment

28 25 ane9! +89625 "pbbb25' Other drifting
signs

21 -25 ete9! ~88825 "bbb-25' Other drifting
signs

22 25 "444449 ! +00825 ‘bbb+25' Other drifting
signs

23 -25 "$4+4449! -88025 "pbbb25' Other drifting
signs

Specify a drifting sign ina picture specification by using the sign
two or more times in the specification. If you use a drifting sign,
all occurrences of the drifting sign must appear to the left of any of
the digit symbols 9, Z or Y.

For computing the data type of the string value of the PICTURE
variable, each occurrence of the drifting sign symbol contributes one
character to the string value. Thus, a variable with a picture
specification of 'SSSSS9' would be CHARACTER(6); that is, all six
characters in the picture specification correspond to characters in the
string value. On the other hand, for computing the data type of the
numeric value of the picture variable, all but one of the occurrences
of the drifting sign symbol contribute to the precision. That is, if
there are n occurrences of a drifting symbol in the picture
specification, only (n - 1) of these contribute to the precision of the
numeric value of the PICTURE variable. For this reason, the picture
specification 'SSSSS9' has a numeric data type of FIXED DECIMAL(5).
The precision of 5 comes from the four digit positions contributed by
the five occurrences of S, plus one from the occurrence of 9.

It is possible for a picture specification to contain no digit symbols
other than the drifting sign symbols as illustrated in lines 10 and ll.
When zero is assigned to a variable with such a picture specification,
the string value contains all blanks. Notice that the data type of the
numeric value of a variable with picture specification 'SSSSSS' is
FIXED DECIMAL(5). The precision of 5 comes from the six occurrences of
S.

When an insertion character, such as a comma, appears in the picture
specification either in the midst of, or immediately following, a
string of drifting sign symbols, then PL/I incluces the insertion

5-49 First Edition

PL/I Reference Guide

character, in a sense, as part of the drifting field. The sense is

that the insertion character can become any of the following in the

final edited string value of the PICTURE variable:

e If a nonzero digit appears before the insertion character, the

insertion character is left unchanged.

e If the first nonzero digit appears immediately after the

insertion character, the insertion character is replaced by a

sign, just as if the insertion character were part of the

drifting sign field.

e If the first nonzero digit appears after that point, the

insertion character is replaced with a blank, as usual.

These rules are illustrated in lines 12 through 14 of the table.

Notice, in particular, line 13, where the insertion character comma was

replaced with the plus sign.

A drifting sign interacts with V very much as Z does. TE a drifting

sign appears to the right of a V, it must appear in all positions. No

digits to the right of V are suppressed in the string value of the

PICTURE variable unless the numeric value of the variable is 0, in

which case the entire field is suppressed. ‘These rules are illustrated

in lines 15 through 19 of the table.

This discussion regarding the sign symbol S applies equally to the

symbols + and -. As usual, the minus sign is replaced by a blank if

the numeric value is greater than or equal to 0, and the plus sign is

replaced with a blank if the numeric value is less than 0.

Static and Drifting $

If you wish a currency symbol to appear in the string value of the

PICTURE variable, use a $ in the picture specification. If there is

only one $ in the picture specification, it is treated as a static

symbol, and PL/I simply copies it when editing the string value of the

picture variable. ‘This is illustrated in line l of Table 5-16.

First Edition 5-50

DATA TYPES AND DATAATTRIBUTES

Table 5-16
Static and Drifting Dollar Sign

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE

Line # Assigned Variable Numeric String Comment

1 25 'SZZ2Z29' +98025 'Sbbb25' Static $

2 25 'SS$$S9' +08825 "pbbS25! Drifting $

3 87425 *S$$$$9' +87425 *$87425' Drifting $

4 2 "SSS$$9! +60062' '"bbbbS2' Drifting $

5 -23 'SSSSS9' Invalid SIZE error --
no sign in
picture
specification

6 8742.63 'S$,SSSV.99DB' +8742.63 '$8,742.63DB'

7 -834.92 'SS,SSSV.99DB' +0834.92 'bbS834.92bb'

8 6.23 'SS,SSSV.99CR' +9086.23 '‘bbbbS$6.23bb'

9 .@2 'SS,SSSV.99CR' +8908.92 'bbbbb$.@2bb' 16 -7.63 "$$,S98V.99CR" -9907.63 '‘bbbS7.63CR'
If there are two or more occurrences of $ in the picture specification,
it is treated as a drifting character, and the rules for it are the
same as for the drifting signs. Lines 2 through 10 of the same table
illustrate these features. Notice that the currency symbol drifts to
the right until it appears before the first digit in the string.

Since it is illegal to have a drifting sign in the same picture
specification as a drifting currency symbol, use either CR or DB to
indicate the sign of the numeric value. The use of CR is illustrated
in lines 6 through 10.

5-51 First Edition

PL/I Reference Guide

Overpunched Sign Symbols: T, I, and R

In the early days of punched-card usage with the BCD (binary-coded
decimal) character set, it was the convention that a signed number
could be punched by overpunching the last digit of the number with a
plus sign or minus sign. When such overpunching occurred, the result
was simply a new character. For example, when the digit 1 is
overpunched with a plus sign (12-punch), the result is the character A.
If 1 is overpunched with a minus sign (ll-punch), the result is the
character J. Table 5-17 provides a complete list of these overpunched
codes.

Table 5-17
Digits With Overpunched Signs

Overpunched Digit
Digit With + With -

0 { }
1 A J
2 B K
3 Cc L
4 D M

5 E N

6 F O
7 G P
8 H Q
9 I R

If you use the symbol T in the picture specification for a variable,
you are indicating that the sign of the number is to be specified by
one of these overpunched characters. The symbol Tis handled exactly
like 9, except that the corresponding character in the string value of
the PICTURE variable will contain an overpunched digit rather than a
simple digit. This is illustrated in lines 1 through 6 of Table 5-18.
Notice that, as illustrated in lines 5 and 6, the symbol T need not

appear in the last position of the picture specification.

Note

Because of a Prime hardware limitation, only negative sign
overpunch is available in Prime PL/I.

First Edition 5-52

DATA TYPES AND DATA ATIRIBUTES

Table 5-18
PICTURE Variables With Overpunch

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment

1 25 '999T' +8025 "QO2E' + or — overpunch
2 -25 ‘999T' ~8825 *OO2N' + or = overpunch

3 1282 ‘999T' +1282 '128B' + or = overpunch
4 ~1282 ‘999T' ~1282 ‘128K! + or = overpunch
5 1282 '99T9' +1282 '12H2' + or = overpunch
6 -1282 '99T9' ~1282 *12092' + or = overpunch
7 1282 '999R! +1282 *1282' - overpunch only
8 -1282 '999R' -1282 "128K" ~ overpunch only
9 1282 *9991' +1282 *128B' + overpunch only

1g -1282 ‘9991! -1282 1282! + overpunch only

The symbol R is like T except that only a negative numeric value causes
an overpunch; if the numeric value is zero or positive, the R is
replaced with an ordinary digit in the string value of the PICTURE
variable. This is illustrated in lines 7 and 8 of the table.
Similarly, lines 9 and 10 illustrate the use of I, which causes an
overpunch only if the numeric value is zero or positive.

The following sign symbols have been discussed: S, +, -, CR, DB, $, T,
R, and I. Only one of these symbols may be used in any picture
specification, with the exception of the use of S, +, or - asa
drifting sign. In any case, two different sign symbols may not be used
in the same field. If no sign symbols appear, the numeric value of the
PICTURE variable must always be positive.

FLOAT Symbols: E and K

Up until now, all of the pictured-numeric variables that have been
discussed have had numeric data types with a scale of FIXED. This
section covers picture specifications that define variables with FLOAT
numeric data types.

A FLOAT number can be represented by means of two fixed numbers, the
mantissa and the characteristic (that is, the exponent). For this
reason, a FLOAT picture specification consists of two FIXED picture
specifications separated by the letter E.

5-53 First Edition

PL/I Reference Guide

Consider, for example, the picture specification 'SV.999FS99', which is

illustrated in lines 1 through 5 of Table 5-19. This FLOAT picture

specification contains two FIXED picture specifications. The first,

'sv.999', is for the mantissa, and the second, 'S99', is for the

characteristic of the numeric value of the PICTURE variable. In

creating the string value of the PICTURE variable, PL/I edits the

mantissa using the first picture specification, copies the letter E,

and then edits the characteristic using the second picture

specification.

Table 5-19

Assigning Values to PICTURES With FLOAT Symbols

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE

Line # Assigned Variable Numeric String Comment

1L 23 'SV.999ES99' +.23GE2 '+.230E+02'

2 8.74 'SV.999ES99' +.874E1 '+.874E+@1'

3 2 80G3 'SV.999ES99' +.300E-3 '+.300E-03'

4 -23 'SV.999ES99' -,23GE2 '-.23QE+82'

5 ~.0003 'SV.9998S99' -,3Q@0E-3 '~.300E-93'

6 23 'S99V.9ES99' +.23G@E2 '+23.0E+00'

7 ~.0003 'S99V.9ES99' -.3Q0E-3 '~30.0E-@5'

8 a 'S99V.9RS99' +.000E0 '+09.GE+00'

9 8.74 'SSSV.9ESS9' +.874F1 '4+87,4Eb-1'

1g. @ 'SSSV.9ESS9' +.000E0 "bb+.@Ebt+d'

ll 87 ‘QRS! +,8E2 '8E1'

12 -87 'QE9' Invalid SIZE error -- no
sign in mantissa

13 +.8003 ‘9E9' Invalid SIZE error -- no

sign in
characteristic

14 23 'SV.999KS99' +.230E2 '+,.230+02'
First Edition 5-54

DATA TYPES AND DATA ATTRIBUTES

The scale factor of the mantissa portion of the picture specification,
as determined by the symbol V or F, determines the value of the
characteristic, which is to be edited using the second portion of the
picture specification. For example, in line 1 of the table, V appears
before the first digit while, in line 6, V appears before the third
digit. Although, in both of these lines, the numeric value of the
variable is the same, the value appearing in the characteristic portion
of the string value is different because the scale factor in the
mantissa portion is different. (Compare lines 5 and 7 in the table.)

Use of drifting signs in the mantissa portion of a FLOAT picture
specification usually does not make sense, because when PL/I creates
the string value of the PICTURE variable, it uses as its first digit in
the mantissa the leading significant digit in the numeric value. This
means that there are usually no leading zeros to suppress (see line 9
of the table). The exception is when the numeric value is 0, as
illustrated in line 10.

Notice that the mantissa and characteristic portions of the picture
specifications have separate signs. It is possible to get a SIZE error
in either portion, if there is no provision for a negative sign. This
is illustrated in lines 11 through 13 where the picture specification
'9E9' has no provision for a sign in either the mantissa or the
characteristic. ,

The use of K is identical to the use of E, except that no E is inserted
into the string value of the PICTURE variable. This is illustrated in
line 14 of the table, which is identical to line 1, except that K
appears instead of E in the picture specification, and no character
whatsoever appears in the string value of the PICTURE variable to
separate the mantissa and characteristic portions.

Some of the rules that have been stated in preceding sections must now
be modified. All rules that stated "you can't do such and such in a
picture specification" should now be rewritten as “you can't do such
and such in a single field of a picture specification," where a field
of a FLOAT picture specification is either the mantissa field or the
characteristic field. For example, the rule that you may not have two
different sign symbols in a picture specification must now be changed
to state that you may not have two different sign symbols in a single
field of a picture specification.

The rules for determining the data types for the numeric and_ string
values of a PICTURE variable with a FLOAT picture specification are as
follows: the numeric value has a data type of FLOAT DECIMAL, with a
precision equal to the precision of the mantissa portion of the picture
specification. (The FLOAT data type has no scale factor.) The string
value has a data type of CHARACTER NONVARYING. The length of the
string equals the sum of the length of the strings corresponding to the
mantissa portion and characteristic portion of the picture
specification. To this sum, add 1 if E is used in the picture
specification; do not add 1 if K is used.

5-55 First Edition

PL/I Reference Guide

COMPLEX Pictures

If you wish the numeric value of a PICTURE variable to be COMPLEX,

rather than REAL, specify the keyword COMPLEX in the declaration of the

PICTURE variable. For example, suppose the statement

DECLARE CPP PICTURE 'S9V.99ES99' COMPLEX;

appears in your program. COMPLEX is combined with the data type

derived from the picture specification, and the numeric value of CPP

has a data type of FLOAT DECIMAL(3) COMPLEX. The string value of CPP

contains two parts, one for the real part of the value, and one for the

imaginary part. For this reason, the data type of the string value of

CPP ig CHARACTER(18) NONVARYING. For example, if your program executes

the statement

CPP = 3-21;

then the resulting numeric value of CPP is +.300F1-.200E1I, and the

string value of CPP is '+3.00E+00-2.00E+01'.

ARRAYS AND STRUCTURES

The preceding section dealt with the data types of individual PL/I data

elements, In all the cases discussed, each variable represented a

single data value, such as a number or a string. For this reason,

these variables are called scalars. When a variable can stand for many

individual data elements, it is an aggregate, and its value is called

an aggregate value. ‘The two basic kinds of aggregates are the array

and the structure. In addition, it is possible to combine the basic

aggregate types to get more complex aggregates, such as arrays of

structures or structures of arrays.

One-dimensional Arrays

An array is an aggregate value all of whose individual data elements

have the same data type. Consider, for example, the following

statement:

DECLARE PRICES(50) FIXED DECIMAL (7,2) ?

First Edition 5-56

DATA TYPES AND DATA ATTRIBUTES

If this statement appears in your program, it specifies that PRICES is
an array containing 50 individual data elements or scalars, Each of
these 50 individual data elements has the same data type, FIXED
DECIMAL (7 ;2) .

Figure 5-1 illustrates the array PRICES. When you wish to refer to all
50 scalar elements in PRICES at once, use the identifier PRICES. For
example, a statement like

PRICES = 7:

says to set the entire array PRICES to 7, which PL/I interprets as
meaning that each of the 50 scalar elements of PRICES is to be assigned
the value 7. Similarly, the statement

PUT LIST (PRICES) ;

causes PL/I to print out each of the 50 data elements in the array
PRICES.

To refer to each of the 50 scalars individually, use a subscript. For
example, the statement

PRICES (49) = 15*PRICES (2) ;

is an assignment statement involving the individual elements of the
array PRICES. As shown in the figure, PRICES(2) refers to the second
of the scalar elements, while PRICES(49) refers to the 49th of the
scalar elements. The subscripts are 2 and 49.

First Editionow I u
l
~

PL/I Reference Guide

PRICES PRICES(1)

PRICES (2)

PRICES (3)

PRICES (4)

PRICES (48)

PRICES (49)

PRICES (50)
Representation of the Array PRICES

Figure 5-1

Most of the real programming power of arrays comes from the fact that

array subscripts may be variables or expressions. For example,

something like

DO INDEX = 1 TO 50;

PRICES (INDEX) = INDEX;

END;

is legal in PL/I, and permits you todo ina three-statement loop

something that would require 50 statements if you used 50 individual

variables rather than an array. Any PL/I expression may be used as a

subscript, so that a statement like

PRICES (K + L) = PRICES (2*M);

is perfectly legal.

First Edition 5-58

DATA TYPES AND DATA ATTRIBUTES

Array Bounds

The bounds of an array are the maximum and minimum values that a
subscript used with the array can have. The lower bound of the array
is the minimum value that a subscript can have, and the upper bound is
the maximum value. In the array PRICES shown in Figure 5-1, the lower

bound is 1, and the upper bound is 50.

Use a colon (:) in your array declaration to specify that the lower
bound of the array should be other than 1. For example, the statement

DECLARE VECTOR(0:12) FLOAT;

specifies that VECIOR is an array of 13 elements, and that the lower
bound of the subscript values is 0 and the upper bound is 12. By using
this kind of declaration, you may make the lower bound any value you
want, including a negative value.

Under certain circumstances, PL/I allows you, in your array
declaration, to use as array bounds expressions containing variables.
For example, the statement

DECLARE VALUES (N) 3

is legal, even though the upper bound, represented by N, is variable.
The circumstances in which this is legal are discussed in the section
Variables in Extent and INITIAL Expressions in Chapter 7.

Multi-dimensional Arrays

The array examples just given were all one-dimensional arrays, meaning
that the individual scalar elements of the array were referenced by
means of a single subscript. PL/I permits arrays of two or more
dimensions as well. For example, consider the following declaration:

DECLARE MAT (4,3) FLOAT DECIMAL (7) }

This statement specifies that MAT is a two-dimensional array
(informally called a matrix or table), containing four rows and three
columns.

5+59 First Edition

PL/I Reference Guide

Figure 5-2 illustrates the array MAT. When you use the symbol MAT by
itself, you are referring to all 12 scalar elements of the array. By
using two subscripts, such as in MAT(4,3), you are referring to a

Single element of the array.

MAT

MAT(1,1) MAT(1,2) MAT(1,3)

MAT(2,1) MAT(2,2) MAT(2,3)

MAT(3,1) MAT(3,2) MAT(3,3)

MAT(4,1) MAT(4,2) MAT(4,3)

The Two-dimensional Array MAT
Figure 5-2

First Edition 5-60

DATA TYPES AND DATA ATTRIBUTES

MAT (1, 1)

MAT (1, 2)

MAT (1, 3)

MAT (2, 1)

MAT (2, 2)

MAT (2, 3)

MAT (3, 1)

MAT (3, 2)

MAT (3, 3)

MAT (4, 1)

MAT (4, 2)

MAT (4, 3)
Layout of MAT in Memory

Figure 5-3

For example, the statement

PUT LIST (MAT) 3

prints out all 12 elements of the array, in the order MAT(1,1),
MAT(1,2), MAT(1,3), MAT(2,1), ..., MAT(4,2), MAT(4,3). (This is known
as row-major order. Row-major order is how MAT is arranged in memory,
as illustrated by Figure 5-3. FORTRAN programmers should be aware that
FORTRAN uses column-major order.) On the other hand, the statement

PUT LIST (MAT(3,2))3

prints only that one scalar element.

5-61 First Edition

PL/I Reference Guide

The bound specification, as applied to two-dimensional arrays, is used

separately with each of the dimensions, The array MAT, which has been

described, has a lower bound of 1 for both the first and second

dimensions, but has an upper bound of 4 for the first dimension and 3

for the second dimension. As in the case of singly dimensioned arrays,

you may use the colon to specify a lower bound other than 1. For

example, the statement

DECLARE GNP(1950:1970,4) FIXED DECIMAL (12) ;

specifies that the array GNP is a 21x4 two-dimensional array, with

lower bounds of 1950 for the first dimension and 1 for the second

dimension, and upper bounds of 1970 for the first dimension and 4 for

the second dimension.

Although they are very unusual, PL/I permits arrays of more than two

dimensions, For example,

DECLARE M(8,4,5:3,16) CHARACTER(S);

is a declaration for a four-dimensional array, M. The maximum number

of dimensions is eight.

Array: Cross Sections

Use an asterisk (*) to refer to a particular single row or column of a

two-dimensional array. For example, MAT(3,*) refers to the third row

of MAT, where MAT is the two-dimensional array described above, ‘The

statement

PUT LIST (MAT (3,*)) 3

prints out the three values, MAT(3,1), MAT(3,2), and MAT(3,3), in the

third row of MAT, Similarly, MAT(*,2) refers to the second column of

the array MAT.

In multi-dimensional arrays, use an asterisk in any of the subscript

positions to specify that all subscripts in that subscript position are

to be included. For example, with the four-dimensional array M

described above, you may use M(*,I,*,3) to specify a two-dimensional

cross section.

First Edition 5-62

DATA TYPES AND DATAATTRIBUTES

Structures

The second basic aggregate type is a structure. Whereas in an array
all the scalar elements have the same data type, ina structure the
individual scalars may have different data types.

Consider, for example, the following declaration:

DECLARE 1 INDIVIDUAL,

2 NAME CHARACTER(20) VARYING,

2 AGE FIXED BINARY,

2 SALARY FIXED DECIMAL (9,2) ;

Note

Commas, not semicolons, are used to separate elements within
the structure declaration. Level numbers are explained below.

This declaration specifies that INDIVIDUAL is a structure, and that it

contains three individual scalar elements, called members. Each of the

structure members has its own identifier. The first member, called

NAME, has the attributes CHARACTER(20) VARYING, the second member,

called AGE, has the attributes FIXED BINARY, and the third, called

SALARY, has the attributes FIXED DECIMAL(9,2). Thus, INDIVIDUAL is a

structure containing three scalar element members, with three different
data types.

When used by itself, the identifier INDIVIDUAL refers to all three
scalar elements in the structure. For example, the statement

PUT LIST (INDIVIDUAL);

prints out all three of the values.

You may refer to each of the three members separately as
INDIVIDUAL. NAME, INDIVIDUAL.AGE, INDIVIDUAL. SALARY. A name specified
in this fashion using a period is called a qualified name. You may
also use the unqualified identifiers, NAME, AGE, and SALARY, to refer
to the individual scalar elements, providing that doing so would not be
ambiguous. An example of a situation in which such use would be
ambiguous is a program containing declarations for different structures
with the same member names. In such a case, use the fully qualified

identifiers.

5-63 First Edition

PL/I Reference Guide

It is possible for a member of a structure itself to be a structure;
it is then called a substructure. For example, consider the following
declaration:

DECLARE 1 SALE
2 PRODUCT,

3 SERIAL PIC 'AAX999',
3 DESCRIP CHAR (20),

2 DATE,
3 MONTH CHAR(3),
3 DAY FIXED DEC(2),
3 YEAR FIXED DEC(4) ,

2 PRICE PIC 'SSSS9V.99';

Here, the major structure name is SALE. Its first member is a
substructure called PRODUCT, which, itself, has two members called

SERIAL and DESCRIP. ‘The second member of SALE is a substructure called

DATE, and the third member is a scalar called PRICE. This structure
contains six scalar elements. The first of these can be referenced by
means of the qualified name SALE.PRODUCT.SERIAL. You may also use any
of the references SERIAL, PRODUCT.SERIAL, or SALE.SERIAL, provided that
there is no other declaration in your program that would make such a
reference ambiguous.

The numbers 1, 2, and 3 in the declaration above are called level
numbers and are used to indicate the depth of the identifier insidethe
‘structure or substructure. You need not specify these level numbers
consecutively. In fact, the preceding declaration is completely
equivalent to the following one:

DECLARE 1 SALE,
3 PRODUCT,

7 SERIAL PIC 'AAX999',
7 DESCRIP CHAR (20) ,

3 DATE,
9 MONTH CHAR(3),
9 DAY FIXED DEC(2),
9 YEAR FIXED DEC(4),

3 PRICE PIC 'SSS$S9V.99';

The only requirement is that the level number of a member must be
greater than the level number for its structure name.

The maximum number of items in a structure is 1024.

First Edition 5-64

DATA TYPES AND DATA ATTRIBUTES

The BY NAME Option

Tf two structures have one or more member elements of the same name,
the assignment statement using the BY NAME clause moves the values of
lLike-named sources to targets. Consider the following two structures
and the assignment statement

DECLARE 1 A,

This statement moves values between elements whose names are found in
the same level of both structures. The result is that B and D of
structure A have the values of the like-named variables of X. The

value of Y in structure A is not changed.

Arrays of Structures

An array of structures is an array, each of whose elements is a
structure, The structure INDIVIDUAL, which was decribed above, can be
made into an array of structures as follows:

DECLARE 1 INDIVIDUAL(50),
2 NAME CHAR(20) VAR,
2 AGE BIN FIXED,
2 SALARY FIXED DEC (9,2);

INDIVIDUAL is here an array of 50 elements, each of which is a
structure containing three numbers. ‘Therefore, INDIVIDUAL contains 150
scalar elements. You can reference various cross sections and
individual elements of this array of structures as follows:

e INDIVIDUAL(5) is the fifth structure in the array. It contains
three scalar elements.

@ INDIVIDUAL(5).NAME, INDIVIDUAL(5).AGE, and INDIVIDUAL(5) .SALARY
are the three scalar elements of INDIVIUAL(5). In referencing a
single scalar element in an array of structures, you may move
the subscript to the right of the qualified name. Thus, for
example, PL/I considers INDIVIDUAL.SALARY(8) to be equivalent to

INDIVIDUAL (8) .SALARY.

5-65 First Edition

PL/I Reference Guide

@ INDIVIDUAL.NAME is a cross section array containing 50 elements,

which are, the NAME fields in each of the 50 structures in the

array of structures.

THE ALIGNED AND UNALIGNED ATTRIBUTES

Use the ALIGNED and UNALIGNED attributes to specify whether the storage
area occupied by a variable is to be aligned on a word boundary or not.

The purpose of these attributes is to permit you to specify what kind
of optimization criteria you wish to follow. If you specify that data

is to be ALIGNED, it may occupy more storage area, but accessing it is

faster; on the other hand, UNALIGNED data can be packed together to

save space, but is harder to access,

BIT ALIGNED and UNALIGNED Data

Normally, PL/I stores BIT NONVARYING data in whatever storage space is

available, whether aligned on a word boundary or not. This means that

several BIT NONVARYING data areas might be packed together, making the

data hard to access. If you specify ALIGNED with the BIT attribute,

the PL/I aligns the BIT string on a word boundary, so that the data can

be accessed faster.

Consider the following declarations:

DECLARE BARRAY (200) BIT(2) ALIGNED;
DECLARE BARRAY2(200) BIT(2) UNALIGNED;

Both BARRAY and BARRAY2 are BIT arrays, each containing 200 data

elements, where each of the data elements is a string containing 2

bits. However, each of the 200 data elements of BARRAY is aligned on a

word boundary, so that BARRAY occupies 200 words of storage. On the

other hand, BARRAY2 is UNALIGNED, and so the bits of the data elements

are packed together. This means that BARRAY2 occupies a total of 400

bits, or 25 16~bit words,

If you do not specify either ALIGNED or UNALIGNED for a BIT NONVARYING
declaration, PL/I uses a default of UNALIGNED.

First Edition 5-66

DATA TYPES AND DATA ATTRIBUTES

ALIGNED and UNALIGNED With Other Data Types

PL/I gives every data variable either the ALIGNED attribute or the
UNALIGNED attribute. The default is UNALIGNED for BIT NONVARYING,
CHARACTER NONVARYING, and PICTURE data; otherwise the default is
ALIGNED, You may override these defaults by specifying either ALIGNED
or UNALIGNED in the declaration.

THE DEFINED ATIRIBUTE

The DEFINED attribute allows you to specify that the storace allocated
for one variable is to be shared by another variable. One use of this
attribute is to save storage by using a single area for two separate
large aggregates.

However, that is not its main purpose. ‘The DEFINED attribute is most
useful in providing you a convenient means of referencing the same
storage area in two different ways. For example,

e You may reference the same storage area by two different names,
or you may represent a portion of one variable's storage area by
a different name.

e You may reference the same storage area either as one long
CHARACTER string or as an aggregate containing several shorter

CHARACTER strings.

@ You may specify that the elements of an array are to be
automatically referenced in a different order from the one in
which they are stored in memory.

The following pages cover the different uses of the DEFINED attribute:
simple defining, string overlay defining, and iSUB defining.

Simple Defining

Consider the following declarations:

DECLARE X FIXED;
DECLARE Y FIXED DEFINED (X);

These statements specify that X and Y have the same data type, FIXED,
and that Y is to occupy the same storage area as X. The result is that
any reference to Y in any statement is the same as a reference to X in
that statement.

5-67 First Edition

PL/I Reference Guide

A more useful example is illustrated by the following declarations:

DECLARE A(100) ;
DECLARE B DEFINED(A(23));

In this example, the variable B is specified as occupying the same
storage as the twenty-third element of the array A. An even more
sophisticated example is the following:

DECLARE C DEFINED (A(K));

Like B, C is DEFINED on a single element of the array A. In this case
however, the number of the element is determined by the value of Kk. K
is reevaluated each time C is referenced, and so C might be equivalent
to any of the elements of A.

You may also use simple defining to specify that one variable is to he
used as a singly dimensioned cross section of a two-dimensional array.
Consider, for example, the following declarations:

DECLARE MAT(10, 20);
DECLARE ROW3(10) DEFINED (MAT (3 ,*));
DECLARE ROW(10) DEFINED (MAT (K,*));

In this example, ROW3 is a singly dimensioned array equivalent to the
third row of the doubly dimensioned array MAT. ROW is another singly
dimensioned array, equivalent to the Kth row of MAT, where the value of
K is reevaluated each time ROW is referenced.

CHARACTER String Overlay Defining

Using string overlay defining, you can reference the storage area
occupied by an UNALIGNED CHARACTER NONVARYING string by means of an
aggregate whose elements are all UNALIGNED CHARACTER NONVARYING
strings, Alternatively, you can reference the storage occupied by one
aggregate of UNALIGNED CHARACTER NONVARYING strings by means of another

such aggregate.

Consider the following declarations:

DECLARE C CHARACTER(100);
DECLARE D(100) CHARACTER(1) DEFINED (C);

First Edition 5-68

DATA TYPES AND DATA ATTRIBUTES

The value of C is stored as 100 individual characters packed together
into a storage area. The declaration of D specifies that its 100
characters are to be the same as the 100 characters of C. ‘Therefore,
for example, a reference to SUBSTR(C,5,1) is the same as a reference to
D(5). :

A DEFINED string need not overlay the entire storage area of the
variable over which it is DEFINED. For example,

DECLARE D2(20) CHARACTER(2) DEFINED(C);

specifies that D2 is to use as its storage area the first 40 characters

of the 100-character storage area occupied by C. It is not necessary
for the overlaid storage area to be at the beginning of the storage
area being overlaid. For example,

DECLARE D3(20) CHARACTER(2) DEFINED(C) POSITION(13);

specifies that D3 is to occupy the same storage as C, starting at the
thirteenth character of C. Since D3 occupies 40 characters of storage,
it uses characters 13 through 52 of the storage area occupied by C.

A useful application of string overlay defining is to break up a long

character string into separate fields, each of which is meaningful in
its own right. For example, consider the following declarations:

DECLARE CARD CHARACTER (80) ;
DECLARE 1 S DEFINED(CARD),

2 NAME CHARACTER (30) ,
2 ADDRESS CHARACTER(20) ,
2 CITY CHARACTER (30) ;

In this example, the variable CARD contains a card image of 80
characters. The first 30 columns of the card contain a person's name,
the next 20 characters contain the address, and the last 30 characters
contain the city. By using string overlay defining, you can reference
the individual portions of the CHARACTER string CARD without having to
perform unnecessary copying operations from one variable to another.

5-69 First Edition

PL/I Reference Guide

As a final example, it is possible for one aggregate to be overlaid by
another. Consider the following declarations:

DECLARE 1 S(5),
2 T CHARACTER(3) ,
2 U(6),

3 V CHARACTER(1),
3 W CHARACTER (20) ;

DECLARE SD(129) CHARACTER(5) DEFINED(S);

S is an array of structures whose individual data elements are all

UNALIGNED CHARACTER NONVARYING strings. The total storage area for S
contains 645 characters. SD is an array aggregate, also containing 645
characters, which shares the same storage space as S.

For the purpose of string overlay defining, the PICTURE data type may
be overlaid in the same way that an UNALIGNED CHARACTER NONVARYING
string may be overlaid, Consider the following declarations:

DECLARE SALARY PICTURE 'SS,$S9V.99';
DECLARE SALSTRING CHARACTER(9) DEFINED (SALARY);

Both SALARY and SAL_STRING occupy the same nine characters of storage.

BIT String Overlay Defining

UNALIGNED BIT NONVARYING strings may be defined as string overlays in

the same way that UNALIGNED CHARACTER NONVARYING strings may be

overlaid. All the examples of the preceding subscripts are valid with

CHARACTER replaced by BIT, except that of course a BIT string may not

meaningfully overlay a PICTURE variable.

iSUB Defining

Sometimes you wish to reference the elements of an array in a different
order from the one in which they are stored in memory. You may do this

conveniently by means of iSUB defining. The expression iSUB refers to

one subscript or dimension of the area to be overlaid, and i is the
number of the subscript. Consider the following declarations:

DECLARE A(100) ;
DECLARE B(100) DEFINED(A(101 - 1SUB));

First Edition 5-70

DATA TYPES AND DATA ATTRIBUTES

The declaration of B says that a reference to an element of the array B
is equivalent to a reference to sane element of the array A. In the
declaration, 1SUB stands for the subscript used in the reference to B,
For example, a reference to B(K + L) is equivalent to a reference to
A(101 - (K + L)). ‘Therefore, for example, a reference to B(1) is
equivalent to a reference to A(100), and a reference to B(100) is
equivalent to a reference to A(1). In fact, the array B is simply the
array A in reverse order.

A slightly more complicated example is the following:

DECLARE M(40,40);
DECLARE N(40,40) DEFINED(M(2SUB, 1SUB));

In this example, M and N are two-dimensional arrays occupying the same
storage. A reference to an element of N is replaced by a reference to
Mwith the subscripts reversed, because, in the declaration, the
element 2SUB stands for the second subscript expression in the
reference to N, and 1SUB stands for the first subscript reference.

You may define a singly-dimensioned array over the diagonal of the
two-dimensional array M as follows:

DECLARE DIAG(40) DEFINED(M(1SUB, 1SUB));

For example, a reference to DIAG(K) is equivalent to a reference to

M(K,R).

THE LIKE ATTRIBUTE

When you wish to specify that one structure or substructure has the
same members as another structure or substructure, you may simplify
your declaration by using the LIKE attribute. Consider the following
declarations:

DECLARE 1 A,

2 X FIXED,
2 Y FLOAT;

DECLARE 1 B LIKE A;

5~71 First Edition

PL/I Reference Guide

The declaration of B specifies that it is to be a structure with the
same members as A. ‘These members have the same names, aggregate types,
and data types. Therefore, the above declaration of B is equivalent to

the following:

DECLARE 1 B,
2 X FIXED,
2 Y FLOAT;

When you specify that one structure is LIKE another structure, you are
specifying only that they have the same members; the attributes of the
structure (such as dimensioning or the storage class) need not be the
same. For example,

DECLARE 1 PRODUCTS (1000) CONTROLLED,
2 NAME CHARACTER(20) VARYING,
2 STOCK_NUM PICTURE 'A999',
2 PRICE FIXED DECIMAL (7 ,2) ;

DECLARE 1 ITEM STATIC LIKE PRODUCTS;

specifies that ITEM is to be a structure with the same members as
PRODUCTS. Note, however, that PRODUCTS is an array of structures while
ITEM is a single structure, and that PRODUCTS has the CONTROLLED
storage class attribute, while ITEM has the STATIC storage class
attribute. (Storage class attributes are defined and discussed in

Chapter 7.)

THE INITIAL ATTRIBUTE

Abbreviation: INIT for INITIAL

You must assign a value to each PL/I variable before you use that
variable in any other way. A convenient way to give an initial value
to a variable is to use the INITIAL attribute when you declare the
variable, to specify an initial value to be assigned to it.

Initializing Scalars

The following examples illustrate how to use the INITIAL attribute to
provide initial values for scalar variables:

DECLARE X FLOAT INIT (0) ;
DECLARE Y FIXED DECIMAL(5,2) INIT (7.3);
DECLARE C CHARACTER(200) VARYING INIT('');

First Edition 5-72

DATA TYPES AND DATA ATTRIBUTES

The variable X is initialized to 0, the variable Y is initialized to

7.3, and the string variable C is initialized to the null string. Like
other attributes, the INITIAL attribute may be factored in a DECLARE
statement. For example,

DECLARE (U,V) INITIAL (0) ;

can be used to initialize both U and V to 0.

Initializing Arrays

In order to initialize an array, specify an initial value for each of
the elements of the array. For example,

specifies that A is to be an array of five elements, and the initial

values of the array elements are 8, 7, 4, 25 and -15, respectively.

If you wish to initialize all the elements of the array to the same
value, you may use a repetition factor, as in the following example:

DECLARE B(10) FLOAT INITIAL((10) 0);

Here, B is an array of 10 elements, all of which are initialized to 0.

For more complicated initializations, use repetition factors as often

as they are needed. Consider, for example, the following:

DECLARE C(100) INITIAL((25)0, 1, 2, 3, 4, 5, (70)~1);

In this example, C is an array of 100 elements. The first 25 of these
elements are initialized to 0, elements 26 through 30 are initialized

tol, 2, 3, 4 and 5, respectively, and elements 31 through 100 are

initialized to -l.

5-73 First Edition

PL/I Reference Guide

You do not have to initialize the entire array. For example, the
declaration

DECLARE D(10) INITIAL((5) 0);

initializes the first five elements of D to 0 and leaves the last five
elements uninitialized.

Use an asterisk to specify explicitly that an element of the array is
to be left uninitialized, For example,

DECLARE E(10) INITIAL (*, (4)0,(4)*,1);

specifies that the first element of E is to be left wminitialized, the
next four elements are initialized to 0, the next four elements are
uninitialized, and the last element is initialized tol.

A special consideration must be followed when you initialize arrays of
CHARACTER or BIT strings. Suppose you wish to declare a CHARACTER
string array called STR, and you wish to initialize each of the
elements of the array to the string 'A'. You might mistakenly try the
following declaration:

DECLARE STR(10) CHARACTER(100) VARYING INITIAL (10) 'A');

However, PL/I misinterprets this statement as written. PL/I interprets
(10)'A' as the character string constant equal to 'AAAAAAAAAA', PL/I
initializes STR(1) to this string, and leaves the other elements of STR
uninitialized. The proper declaration is the following:

DECLARE STR(10) CHARACTER(100) VARYING INITIAL (10) ('A'));

The extra set of parentheses around 'A' permits PL/I to interpret the
statement as you intend.

Initializing Structures and Arrays of Structures

To initialize a structure, specify the INITIAL attribute for each
element of the structure. For example, the declaration

DECLARE 1 S,
2 A FIXED INITIAL(0),
2 B FLOAT INITIAL (5);

First Edition 5-74

DATA TYPES AND DATA ATTRIBUTES

specifies that the structure element S.A is to be initialized to 0 and
S.B is to be initialized to 5.

To initialize an array of structures, remember that each of the members
of the structure inherits the dimensions of the structure. Therefore,
use the conventions described above under Initializing Arrays to
specify an initial value for each of the elements of the member arrays.
For example,

DECLARE 1 T(100) ,
2 A FIXED INITIAL (100) 0),
2 B FLOAT INITIAL (50) 5) ;

specifies that all 100 elements of the array T.A are to be initialized
to 0, and the first 50 elements of the array T.B are to be initialized
to 5. The last 50 elements of T.B are left uninitialized.

Using Variables in the INITIAL Attribute

A statement like

DECLARE COUNT (1000) INITIAL ((K) (MP3));

is legal under certain circumstances, as described in Chapter 7. If
the rules in that chapter are followed, then when COUNT is allocated,
the values of K and M are determined, and the first K elements of the
array COUNT are initialized to the value of M+ 3.

THE DEFAULT STATEMENT

Abbreviation: DEFT for DEFAULT

This is a rarely used statement. Use it to specify default attributes
and default rules to override the autamatic PL/I defaults.

Iet's start with some examples:

@ DEFAULT(RANGE(A:H) ! RANGE(0:2)) FLOAT;

Normally, if you use an undeclared variable in your program, or
if you declare a numeric variable but don't specify either FIXED
or FLOAT, then PL/I gives it the default attribute FIXED. This
was not true in older implementations of PL/I, however. Older
implementations followed the "I through N_ rule," which gave
variables beginning with the letters I, J, K, L, M, or N_ the

5-75 First Edition

PL/I Reference Guide

default attribute FIXED and all other variables the default

attribute FLOAT.

The above DEFAULT statement specifies that you wish to follow

the I through N rule. In this statement, RANGE(A:H) refers to

any variable beginning with the letters A through H. The phrase

RANGE (0:%) refers to all variables beginning with the letters 0

through Z. ‘The exclamation point is the symbol for CR.

Therefore, this DEFAULT statement specifies that all variables

beginning with the letters A through H or O through 2 should

have the default attribute FLOAT. ‘This means that all variables

beginning with I through N are still given the systen default

attribute, FIXED.

The above example also makes the variable DEFAULT compatible

with IBM PL/I.

e@ DEFAULT (VARIABLE) STATIC;

In this statement, the keyword VARIABLE refers to any variable

in your program. This DEFAULT statement says that every

variable of your program should have the default attribute

STATIC, unless declared otherwise. (STATIC is a storage class

attribute; the default storage class attribute is AUTOMATIC.

Storage attributes are described in Chapter 7.)

e@ DEFAULT (FIXED: & DECIMAL) PRECISION(7, 2);

This statement specifies that any variable with both the

attributes FIXED and DECIMAL is to be given a default precision

of (7, 2), instead of the system default precision (5, 0).

If your program contains a DEFAULT statement, it is important to

remember that the statement only specifies default attributes. You may

override these defaults by declaring any variable explicitly with the

attributes that you want it to have. For example, if you declared the

variable COUNT with the FIXED attribute, the default attribute FLOAT

would not apply. FLOAT applies only when you do not specify either

FIXED or FLOAT.

A second important point to remember is that the default attributes

apply only when they are consistent with the other attributes of the

variable. For example, if a program containing the first DEFAULT

statement above contained the declaration

DECLARE STRING CHARACTER (5);

then PL/I would not give the default attribute FLOAT to STRING, since

FLOAT is inconsistent with the explicitly declared attribute CHARACTER.

First Edition 5-76

DATA TYPES AND DATA ATTRIBUTES

Format of the DEFAULT Statement

The DEFAULT statement has the following format:

DEFAULT (attribute-test) attribute-list [, attribute-list...];

This statement specifies that PL/I is to apply the attribute-test to
each of the variables in your program and use the default attribute in
each of the attribute-lists, where consistent, for each of the
variables meeting the attribute-test.

The attribute-test is a logical combination of keywords testing either
attributes that the variable already has or the letters in the name of
the variable. The keywords that test attributes are the following:

ALIGNED DEFINED INTERNAL PRECTSION
AREA DIMENSION KEYED PRINT
AUTOMATIC DIRECT LABEL REAL
BASED ENTRY LOCAL RECORD
BINARY ENVIRONMENT MEMBER RETURNS
BIT EXTERNAL NONVARYING SEQUENTIAL
BUILTIN FILE OFFSET STATIC
CHARACTER FIXED OPTIONS STREAM
COMPLEX FLOAT OUTPUT STRUCTURE
CONDITION FORMAT PARAMETER UNALIGNED
CONSTANT GENERIC PICTURE UPDATE
CONTROLLED INITIAL POINTER VARTABLE
DECIMAL INPUT POSITION VARYING

In addition to the attribute-test keywords, you may use the keyword
RANGE to test the letters in the variable name. ‘The RANGE keyword has
two forms. ‘The first is

RANGE (letter :letter)

It tests whether the first character in the variable name lies within
the specified range of letters. The form

RANGE (letters)

tests whether the variable identifier name begins with the specified
string of one or more letters,

5-77 First Edition

PL/I Reference Guide

You may combine these keyword tests into a full attribute-test by using
the logical operators & for AND, ! or | for OR and “ for NOT. For
example, the statement

DEFAULT (RANGE(B:C) & (BIT ! CHAR) & ~ RANGE(CNV)) VARYING;

specifies that any variable beginning with the letters B or C and

having either the BIT or CHARACTER attribute, but not beginning with

the letters CNV, should be given the default attribute VARYING, unless

declared otherwise.

The attribute keywords above test whether the variable has any

attribute using that keyword. For example, including the keyword

PRECISION tests whether any precision attribute has been specified for

the variable.

Use the DEFAULT statement to change the default length of strings. For

example,

DEFAULT CHAR CHAR (17);

changes the default length of character strings to 17.

Your program may contain as many DEFAULT statements as you wish. PL/I

applies the default statements in the order in which they appear in
your program. After PL/I has applied all the DEFAULT statements in

your program, it applies the system defaults.

It is legal for a DEFAULT statement to appear inside an internal

PROCEDURE or BEGIN block. In that case, the default rules apply only

to explicit declarations made within that block.

Compiler Application of the DEFAULT Statement

When you DECLARE a variable, you usually specify only a few of the

attributes and let PL/I apply the remaining ones.

For each variable in your program, PL/I forms a set of attributes for

that variable, PL/I starts with the attribute you specify in the

DECLARE statement, and uses the DEFAULT statements to add attributes as

follows:

1. PL/I uses the attribute-test in the DEFAULT statement to test

whether the attribute set so far satisfies the test. If so,

PL/I continues with the next step.

First Edition 5-78

DATA TYPES AND DATA ATTRIBUTES

2. For each of the attribute-lists in the DEFAULT statement, if
that list of attributes is consistent with the attribute set so
far, then PL/I adds the new attribute-list to the attribute
set.

PL/I performs these steps for each of the DEFAULT statements in your
program.

Other Forms of the DEFAULT Statement

The form

DEFAULT SYSTEM;

Specifies that the standard system default rules are to apply. Use
this statement in an inner block if you do not wish that block to
inherit the effects of a DEFAULT statement specified in an outer block.

Another form of the DEFAULT statement is

DEFAULT (attribute-test) ERROR;

to specify that certain attributes or combinations of attributes are to
be illegal in your progran.

The form

DEFAULT NONE}

specifies that no defaults are applied, not even system defaults.

"P"—Constants and the DEFAULT Statement

Default attributes apply to all objects within theirscope, including
constants. Consider the following code segment:

DEFAULT (DECIMAL) FLOAT:

DECLARE X DECIMAL (2):

X = 10;

5-79 First Edition

PL/I Reference Guide

Under the system default attributes, the constant 10, which has by its

nature the attribute CONSTANT REAL DECIMAL(2), acquires the scale

attribute FIXED. However, in this example, the DEFAULT statement

establishes that any object with the attribute DECIMAL has FLOAT scale.

Thus, 10 as well as X has the scale attribute FLOAT.

This feature is convenient in that it prevents unnecessary routine

conversions. Sometimes, though, it is equally convenient to force a

constant to be interpreted according to system default attributes.

This can be done by appending a P after the constant, as in the

following example:

DEFAULT (DECIMAL) FLOAT;
DECLARE X DECIMAL (2) ;
DECLARE Y FIXED DECIMAL (5) ;
X= 10; /* 10 is FLOAT DECIMAL(2) */

Y

=

00010P; /* 00010P is FIXED DECIMAL(5) */

First Edition 5-80

Evaluating Expressions

EXPRESSIONS, DATA CONVERSIONS, AND AGGREGATE PROMOTIONS

This chapter describes how PL/I evaluates expressions. It first
defines a PL/I expression, then discusses the following particular
aspects of the evaluation process:

@ Data types. If you use a PL/I expression of one data type in a
context that requires a different data type, PL/I must convert
the value of your expression to the data type required by the
context. In addition, it may be necessary for PL/I to perform
conversion during evaluation of the expression to produce
intermediate results. This would happen, for example, if you
attempted to multiply a CHARACTER string value by a BIT string
value. This chapter covers the detailed rules for such
conversions.

e Aggregates. PL/I permits an expression to contain variables
that are aggregates (arrays or structures), with the result that
the entire expression has an aggregate value. An aggregate
expression has an aggregate type of scalar, array, structure, or
some combination of these. If an expression of one aggregate
type is used in a context that requires a different aggregate
type, an aggregate promotion must take place. This chapter

discusses the rules for aggregate promotions.

Almost all computer programs perform computations of some sort on data
values. In PL/I, the computation of new data values from old is done

6-1 First Edition

PL/T Reference Guide

by means of expressions. Expressions appear in almost all PL/I
statements. Consider, for example, the following assignment statement:

PARAMETER = 2 * (LENGTH + WIDTH);

This statement contains a variable, PARAMETER, to the left of the equal
sign, and an expression to the right of the equal sign. The statement
specifies that the value of the expression is to be computed and
assigned to the variable on the left. Another example is

PUT LIST(X + Y);

Here, the expression X + Y is to be computed, and its value is to be
printed. As a final example, consider the following:

IF VALUE > 5 THEN GO TO BIG;

This IF statement contains an example of what is called informally a
logical expression. The expression VALUE > 5 is to be evaluated to
obtain what is informally called a truth value, in order to determine
whether control should transfer to the statement with label BIG. More

precisely, VALUE > 5 is a PL/I expression whose value will have the

data type BIT(1), which is the PL/I equivalent of what are called

logical data types in other languages.

FORMING EXPRESSIONS

An expression is composed of the following basic elements:

1. Variables and constants

2. Operators, such as +, *, or &

3. Parentheses

4, Built-in functions

The methods for referencing variables and constants are discussed in
Chapter 5. This section describes the other components of a PL/I
expression.

First Edition 6-2

EVALUATING EXPRESSIONS

Arithmetic Operators

Arithmetic operators are those whose operands must be arithmetic
(numeric), and whose results are also arithmetic. There are seven
arithmetic operators, and they may be grouped as follows:

l. The four infix operators are the plus sign (+), minus sign (-),
asterisk (*), and slash (/). These operators stand for
addition, subtraction, multiplication, and division,
respectively, of two operands.

The prefix operators are + and -. Infix minus is usually
called subtraction, while prefix minus is usually called
negation. The expression "-(A - B)" illustrates the
difference. The first minus sign in this expression is prefix
minus, because it has only one operand, (A - 8B), and it
operates by simply reversing the sign of that operand. The
second minus sign is infix minus, because it has two operands,
A end B, and it operates by subtracting the second operand from
the first.

The exponentiation operator, **, This operator takes two
operands, and operates by raising the first operand to the
power of the second. For example, the expression X**3 is
usually called X cubed, and has the value X * X * X,

The Comparison Operators

There are eight comparison operators, as shown in Table 6-1.

Table 6-1
Comparison Operators

Operator Meaning

Equals
Does not equal
Is less than
Is less than or equal
Is greater than
Is greater than or equal
Is not less than
Is not greater than

“A
w

>
>

>
V
A
I
V

T
A

6-3 First Edition

PL/I Reference Guide

Comparison operators are used most frequently in the IF statement, in

order to make some decision based on a comparison of two values. For

example, the statement

IF A = B THEN STOP;

contains the comparison A = B. ‘The statement specifies that if A

equals B, the program should stop.

However, you should realize that the comparison operators can be used

in expressions in any context. A comparison operator is an operator

that takes two operands, and that operates by comparing the two

operands and producing a BIT(1) result. This result has the value '1'B

if the comparison was true, and the value '0'B if the comparison was

false. Thus, for example, a program may contain the following

statements:

DECLARE TEST BIT (1);

TEST = A= B;

IF TEST THEN STOP;

The middle statement in this example is an assignment statement with

the variable TEST on the lefthand side, and the expression A = B on the

righthand side. PL/I executes this assignment statement by comparing

the variables A and B for equality, and setting TEST to either '0'B or

'1'B, depending upon the result of the comparison. The last statement

of this example is an IF statement that uses the variable TEST as an

operand.

Note
In Prime ED, the operator ~ must be entered in duplicate, as

ical rators

The logical operators, ampersand (&), vertical bar (|), exclamation

point (!), and caret (*), are shown in Table 6-2.

First Edition 6-4

EVALUATING EXPRESSIONS

Table 6-2
Logical Operators

Operator # of Operands Meaning

& 2 "and"
| 2 19r "

2 "Or"
“ 1 "Not "

Like the comparison operators, the logical operators are used most
frequently in the IF statement. In fact, usually the logical operators
are used with the comparison operators in order to provide for the
testing of two or more comparisons. For example, the statement

IF (CASE > 2 & CASE <= 5) | CASE = 23 THEN CALL SMALL;

contains three comparisons, joined by means of the operators & and |.
The statement says that if CASE equals 23, or is greater than 2 and
less than or equal to 5, then control should pass to the procedure
SMALL. An example using the * operator is

IF ~ (X > 0 & X < .0001) THEN GO TO LARGE;

which states that if it is not true that X is both positive and less
than .0001 (which is the same as saying that either X is negative or
zero or greater than or equal to .0001), then control should pass to
the statement LARGE,

Precisely speaking, the & and | each take two BIT operands and produce
a BIT result. The ~ operator takes a single BIT operand and computes a
BIT result. Like the comparison operators, the logical operators can
be used in any expression that can accommodate a BIT result,

Note

“nw

In Prime ED, the operator NOT must be entered as “*,

Concatenation

Use the concatenation operator || or !! with two strings, either
CHARACTER or BIT, in order to stick them together (the precise term is
concatenate) to form one long string.

6-5 First Edition

PL/I Reference Guide

Examples of PL/I concatenation for CHARACTER strings and BIT strings

follow:

DCL A CHAR(4); DCL D BIT(2);

DCL B CHAR(5); DCL E BIT(1);

DCL C CHAR(10) VARYING; DCL F BIT(3);

A= 'SOME'; D = 'O1'B;

B = 'THING'; E = '1'B;

C=A {I B; F=D!! E;

C has been assigned the CHARACTER string 'SOMETHING', and F has been

assigned the BIT string '011'B.

Operator Priority and Parentheses

Consider the following three assignment statements:

These three assignment statements are identical except for their use of

parentheses. These parentheses specify the order in which the

operations are to be performed. In the first assignment statement,

multiplication is to be performed first. In the second assignment

statement, addition is to be performed first.

In the absence of parentheses, PL/I performs multiplication before

addition, so that the third assignment statement is equivalent to the

first. This is precisely what one would expect from the usual rules of

algebra.

Adjacent operators are two operators in an expression separated by a

Single operand, with all parentheses between the two operands

completely matched. For example, in the expression

2* B+ C3

the * and the + are adjacent operators separated by the operand B, In

the expression

A * (B+ C) —- D;

First Edition 6-6

EVALUATING EXPRESSIONS

the * and the - are adjacent operators separated by the single operand
(B+ C). The + operator is not considered adjacent to either of the
other operators, since, in each case, there is an wunbalanced
parenthesis separating them.

PL/I provides precise rules for determining, given two adjacent
operators, which operation will be performed first. Table 6-3
summarizes these rules. This table breaks up the collection of PL/I
operators into seven different priority levels. with 1 the highest
priority. The rules for the order of evaluation of two adjacent
operators in an expression are as follows:

1. If the two operations are at different priority levels in Table
6-3, the operation with higher priority is performed first.

2. If the two operations are at the same priority level in the
table, they are performed in the order indicated by the
rightmost column of the table. That is, at the top priority
level, the one on the right is performed first, while at the
other priority levels, the one on the left is performed first.

Table 6-3
Operator Priority

Ordering between operators

Level Operators at this level

1 Prefix +, prefix -,
ee, * Right-to-left

2 *, / Left-to-right
3 Infix +, Infix - Left-to-right
4 Il, tt Left~to-right
5 Comparison operators Left~to-right

=F “=, Dy <y OF,
mp

6 & Left-to-right
7 |, ! Left-to-right

For example, in the expression

2* B+ CG

since * is at level 2 while + is at level 3, the * is performed first.

6-7 First Edition

PL/I Reference Guide

In the expression

At B- C3

the two operators, + and -, are both at level 3 in the table. As

indicated by the table, these two operators will be performed from left

to right, so that the + will be performed before the - operator. In

the expression

the - and ** operators are both at level 1, and, as indicated by the

table, are evaluated in right to left order, For this reason, the **

operator is performed before the - operator.

An important consequence of this rule is that sone operator priorities

are not specified. For example, in the expression

A*B+C/D

it is easy to see that the + operator is performed after either the *

operator or the / operator. However, there is no way of determining,

by PL/I rules, whether the * operator is performed before or after the

/ operator. The reason is that * and / are not adjacent operators in

this expression. In actual practice, the PL/I compiler uses various

optimization techniques to determine, statement by statement, the order

in which nonadjacent operators are computed.

Built-in Functions

Another important component of expressions is the built-in function.

For example, in the statement

X = 3 + SORT(B + C);

the function SORT, which computes the square root of its argument, is

used, A complete list of built-in functions is provided in Chapter 14.

Notice that built-in functions can be used in any expression, and the

argument of a built-in function may itself be an expression.

First Edition 6-8

EVALUATING EXPRESSIONS

SCALAR TARGETS AND DATA CONVERSIONS

When an expression having one data type is used in a context that
requires a different data type, PL/I must convert the value of your
expression to the data type required by the context. This section
explains precisely when these conversions are required and what the
rules for the conversion are. In addition, precise definitions of the
data types of expressions are given.

Examples of Need of Conversions

Suppose the following statements appear in your program:

DECLARE A FLOAT, I FIXED;

A= 1+ 3:

PL/I computes the expression on the righthand side of the assignment
statement by adding 3 to the value of I to get a FIXED result. Since
this value is to be assigned to a FLOAT variable, PL/I must convert the
FIXED value to FLOAT, before the assignment can be made. In general,
PL/I computes the value of the expression on the right-hand side of the
assignment statement, and converts it to the data type of the variable
on the left-hand side of the assignment statement. This is an example
of how the context of an expression can require a conversion.

Another example occurs with the IF statement. The expression following
the IF keyword must be a BIT string value. If it is not, PL/I converts
it to BIT. For example, if your program contains the statement

IF I + 3 THEN GO TO L;

then PL/I evaluates the statement I + 3, and then converts it toa BIT
string value. Notice that this is an example of a conversion that is
not recommended, The rules for numeric to string conversion are quite
precise, and are described later in this chapter, but they are very
complicated and are full of traps for the unwary.

Arguments to built-in functions often have certain data type
restrictions. For example, if you use a FIXED argument with the SORT
built-in function, PL/I must convert the argument to FLOAT. A final
example: if an array subscript expression is not fixed, PL/I converts
it to FIXED.

6-9 First Edition

PL/I Reference Guide

Use of Intermediate Targets

The mechanism PL/I uses to evaluate an expression involves the use of

intermediate taraets. In the evaluation of an expression, PL/I stores

the result of each intermediate computation in a temporary location

called an intermediate target, with a data type determined by specific

rules.

The following program segment illustrates this concept:

DECLARE (A,B,C) FIXED DECIMAL (5) ;

The method PL/I uses to evaluate the last assignment statement is

illustrated in Figure 6-1. The boxes in this figure represent storage

locations containing the values of the constants, variables, and

intermediate values in the computation of this assignment statement.

As this figure illustrates, the constant 20 is multiplied by the value

of A, and the result is stored in the intermediate target, which for

convenience we mame TEMP1. The contents of that storage location are

then added to B, and the result is stored in TEMP2. This value is then

assigned to C.

As this figure also shows, each of these storage locations has a data

type, which is printed to the right of each box. The data type of the

constant 20 is FIXED DECIMAL(2), and the data type printed next to the

boxes for each of the variables A, B, and C is FIXED DECIMAL(5), as

declared. TEMP] has a data type of FIXED DECIMAL(8), and TEMP2 has a

data type of FIXED DECIMAL(9), for this reason: the data type of an

intermediate target of an operation depends only upon the operation and

the data types of the operands. It does not depend upon the value of

the operands.

The data type of ‘TEMP2 is somewhat easier to understand than that of

TEMP1, TEMP2 is an intermediate target resulting from the addition of

two values, one of which is FIXED DECIMAL(8) and the other FIXED

DECIMAL(5). PL/I reasons as follows: TEMP2 must be large enough to

accommodate any possible value obtained by adding the two operands.

Both operands are FIXED DECIMAL, so TEMP2 is FIXED DECIMAL. To

determine the precision, PL/I sees that the first operand has a data

type of FIXED DECIMAL(8). Therefore, the maximum value that the first

operand can have is +99999999, The second operand is FIXED DECIMAL (5) ,

and so its maximum value is +99999. Therefore, the maximum value that

TEMP2 can be expected to accommodate is 99999999 + 99999 = 100099998.

Since this maximum possible value has nine digits, we make the

precision of TEMP2 9. ‘Thus, TEMP2 is FIXED DECIMAL(9). It has a scale

factor of zero because both operands have a scale factor of 0.

First Edition 6-10

EVALUATING EXPRESSIONS

FIXED
+20

|

DEC(2)

A FIXED
+ 00003 DEC(5)

B FIXED
+ 00012 DEC(5)

v
TEMP1

rie+ 00000060 DEC(8)

+

v

TEMP2 + 000000072 oe

Assign

v
C FIXED

+ 00072 DEC(5)

Intermediate Targets
Figure 6-1

PL/I derives the data type of TEMP] as follows: TEMPl is the
intermediate target of a multiplication operation, where the two
Operands are FIXED DECIMAL(2) and FIXED DECIMAL(5). The data type of
TEMP] is FIXED DECIMAL. To determine the precision, PL/I applies the
same reasoning as for addition. The first operand can have a maximum
value of +99, and the second operand can have a maximum value of
+99999, (Of course, the first operand is the constant 20 and cannot
have a maximum value of anything other than 20. But don't forget the
general rule: the data type of the intermediate target depends only
upon the data types of the operands, and not on their values.)
Therefore, the maximum value that TEMP1 will have to accommodate is 99
* 99999 or 9899901, which has seven digits. Therefore, it would seem
that the precision of TEMP] should be seven, However, 1 is added, for
the following somewhat obscure but nonetheless very important reason:

6~11 First Edition

PL/I Reference Guide

the rule for assigning the precision of an intermediate target must

take into account the possibility that the operands will be COMPLEX

rather than RFAL. It is possible to multiply a FIXED DECIMAL(2)

COMPLEX operand by a FIXED DECIMAL(5) COMPLEX operand, and get a result

requiring eight digits in the real part or the imaginary part.
Therefore, TEMP] is FIXED DECIMAL(8).

As another example, consider the following program segment

DECLARE (A,B) FLOAT DECIMAL (5);
DECLARE I FIXED DECIMAL (5);

F
D
O

+
A
v
e

|
~
e

=
e

3
463

P
H

m
o
n

u
te

Note the last assignment statement. ‘This example is quite different

from the preceding one because a FIXED variable is added to a FLOAT

variable. Because a FIXED quantity cannot be directly added to a FLOAT

quantity, PL/I performs an implicit conversion. The value of I is

converted to FLOAT, and that result is added to B.

Figure 6-2 illustrates how PL/I executes this assignment statement. As

this figure shows, the value of I is converted to FLOAT DECIMAL(5), and

the result of the conversion is stored in an intermediate target called

TEMP1., Then, B is added to TEMPI, with the result stored in a new

intermediate target called TEMP2. ‘this result is then assigned to A.

The following pages contain the rules for determining whether an

implicit conversion is required and what the data types of intermediate

targets are.

First Edition 6-12

EVALUATING EXPRESSIONS

B FLOAT I FIXED
+.23000E2 DEC(5) +01463 DEC(5)

Convert

v

TEMP1 FLOAT

+

vy

TEMP2 FLOAT

Assign

\

A FLOAT
+.1486E4 DEC(5)

Implicit Conversions
Figure 6-2

Derived Common Base, Scale, and Mode

The last example showed that when a FLOAT operand is added to a FIXED
operand, PL/I converts the FIXED operand to FLOAT before performing the
addition operation.

Figure 6-3 illustrates what happens when a program adds two operands,
one of which is FIXED DECIMAL(8,2) COMPLEX and the other FLOAT
BINARY(12) REAL. This example is more complicated than the preceding
one because the two operands differ not only in the scale (one is FIXED
and the other is FLOAT), but also in the base (one is DECIMAL and the
other is BINARY) and the mode (one is COMPLEX and the other is REAL).
Figure 6-3 shows that PL/I performs two implicit conversions. Each of
the two operands is converted to the derived common base, scale, and
mode, with the appropriate converted precisions, and the results are
stored in the two intermediate targets, TEMP] and TEMP2. This section
defines derived common base, scale and mode. ‘The next section defines

6-13 First Edition

PL/I Reference Guide

converted precision. These concepts make it possible to derive the

complete data types of TEMP1 and TEMP2. A later section specifies the

rules for determining the complete data type for the result of the

addition, stored in target TEMP3.

FIXED FLOAT

DEC(8,2) BINARY(12)
COMPLEX REAL

Convert Convert

v v

TEMP1 FLOAT TEMP2 FLOAT
BINARY BINARY

COMPLEX COMPLEX

+

v
TEMP3 229

Conversion of Scale, Base, and Mode
Figure 6-3

Derived Common Scale: Table 6-4 gives the rules for defining the

derived common scale for two operands, Informally, one can say that

FLOAT is a higher data type than FIXED. More precisely, if either of

the operands is FLOAT, the derived common scale is FLOAT; otherwise,

the derived common scale is FIXED.

For example, consider the following program segment:

DECLARE (A,B) FLOAT;
DECLARE (I,J) FIXED;

A=I+d+ B;

The assignment statement contains two addition operations, and, by the

priority rules, the + on the left is computed before the + on the

right. The result is illustrated in Figure 6-4. As this figure shows,

the value of I + J is computed as a FIXED quantity, and the result is

stored in TEMP]. That quantity is then converted to FLOAT, and the

results stored in TEMP2, so that it can be added to the value of B,

which is FLOAT.

First Edition 6-14

EVALUATING EXPRESSIONS

Table 6-4
Derived Common Scale for Two Operands

Operand 1 Operand 2

Arithmetic or Arithmetic or Not either
pictured-numeric pictured=-numeric arithmetic or

with scale=FLOAT with scale=FIXED pictured-numeric

Arithmetic
or pictured- FLOAT FLOAT FLOAT
numeric with

scale=FLOAT

Arithmetic

or pictured- FLOAT FIXED FIXED

numeric with

scale=FIXED

Not either

arithmetic FLOAT FIXED FIXED

or pictured-
numeric

| FIXED J FIXED

+

‘
TEMP1 FIXED B FLOAT

Convert

'

TEMP2 FLOAT

|

+

v

TEMPS

Derived Common Scale
Figure 6~4

6-15 First Edition

PL/I Reference Guide

Note that PL/I executes this assignment statement differently from the

way other languages, such as FORTRAN, execute it. The FORTRAN language

would not perform any additions until all the operands had been

converted to floating point. This means that the value of I would be

converted to floating point, the value of J would be converted to

floating point, and then those two quantities would be added together

to the value of B to get a floating point result. PL/I, by contrast,

postpones all conversions as long as possible, performing only those

that are explicitly dictated by the operator rules.

Nonetheless, there are circumstances when more than two operands must

be converted to a common derived scale. Although this cannot happen

with any of the ordinary operators, it can happen with the MAX built-in

function:

DECLARE (A,B) FLOAT;
DECLARE (I,J) FIXED;

A = MAX(I,J,B)}

This program segnent is quite similar to the preceding one, in that the

final assignment statement assigns to A some operation performed on the

three variables I, J, and B. In the last example, the operation was

addition, which is performed on operands two at a time. In that case,

the value I + J was computed first without any regard for the data type

of B, In the current example, the MAX built-in function looks at all

three operands at once. This means that all three operands must be

converted to the common derived scale before any further progress can

be made. The result is illustrated in Figure 6-5. The value of I is

converted to FLOAT, and the result is stored in TEMP1. Similarly, the

value o£ J is converted to FLOAT and stored in TEMP2. At that point,

all three operands to MAX are FLOAT, and so the computation of which

number is the maximum can take place, with the results stored in TEMP3.

First Edition 6-16

EVALUATING EXPRESSIONS

l FIXED J FIXED B FLOAT

Convert Convert

' TEMP2 vy
TEMP1 FLOAT FLOAT

MAX bit

v
TEMPS FLOAT

Derived Common Scale -—— Three Options
Figure 6-5

In cases such as this, use a more complete rule for the derived common
scale of two operands: given two or more operands, the derived common
scale for the operands is FLOAT if at least one of the operands is
either arithmetic or pictured-numeric with a scale of FLOAT;
otherwise, the derived common scale is FIXED.

Derived Common Mode: The rule for the derived common mode for two
operands can be stated informally as follows: the COMPLEX data type is
higher than the REAL data type. The precise rule is given in Table
6-5.

6~17 First Edition

PL/I Reference Guide

Table 6-5
Derived Common Mode for Two Operands

Operand 1 Operand 2

Arithmetic or Arithmetic or Not either
pictured—numeric pictured-numeric arithmetic or

with mode=COMPLEX with mode=REAL pictured-numeric

Arithmetic
or pictured—

numeric with COMPLEX COMPLEX COMPLEX

mode=COMPLEX

Arithmetic

or pictured-
numeric with COMPLEX REAL REAL

mode=REAL

Not either
arithmetic

or pictured COMPLEX REAL REAL

numeric
Certain built-in functions, such as MAX, require the computation of the

derived common mode for more than two operands. The complete rule,

then, is as follows: given two or more operands, the derived common

mode for the operands is OOMPLEX if at least one of the operands is

either arithmetic or pictured-numeric with a mode of OOMPLEX;

otherwise, the derived common mode is REAL.

Derived Common Base: We may summarize the rule for deriving the common

base of two operands by saying that BINARY is a higher data type than

DECIMAL, but there is a slight additional complication. It is possible

that one of the operands is a BIT string, and for the purposes of

determining the derived common base, a BIT string is considered to be

BINARY. ‘The precise rule is given in Table 6-6.

First Edition 6-18

EVALUATING EXPRESSIONS

Table 6-6
Derived Common Base for Two Operands

Operand 1 Operand 2

Arithmetic or Neither BIT string
base=BINARY BIT string nor BINARY arithmetic

Arithmetic
with base= BINARY BINARY BINARY

BINARY

BIT string BINARY BINARY BINARY

Neither BIT
string nor
BINARY BINARY BINARY DECIMAL

arithmetic
As in the case of scale and mode, certain built-in functions require
the derived common base for more than two operands simultaneously. The
complete rule, then, is as follows: given two or more operands, the
derived common base is BINARY if at least one of the operands either is
a BIT string or is arithmetic with a base of BINARY; otherwise, the
base is DECIMAL,

Refer to Figure 6-6. If the two operands are FIXED DECIMAL COMPLEX and
FLOAT BINARY REAL, the derived common scale, base, and mode are FLOAT
BINARY COMPLEX. As the figure shows, each of the operands must be
converted to the derived common scale, base, and mode before addition
can take place. This figure does not yet indicate the precision of
TEMP] or TEMP2, ‘The subject of converted precision will be treated in
the next section.

6-19 First Edition

PL/I Reference Guide

FIXED FLOAT
DEC(8,2) BINARY(12)
COMPLEX REAL

Convert Convert

‘ Vv

TEMP1 FLOAT TEMP2 FLOAT
BINARY BINARY
COMPLEX COMPLEX

+

v

TEMP3 FLOAT
BINARY
COMPLEX

Derived Common Scale, Base, and Mode
Figure 6-6

As noted above, one of the operands could be a BIT string. Actually,
PL/I permits you to use operands of any computational data type in
arithmetic expressions. If you use a string, PL/I must convert that
string to the appropriate arithmetic data type, with the derived common
base, scale, and mode. You are strongly urged to avoid such implicit
conversions from string to arithmetic. As an example of the trouble
you can get into, consider the following program segment:

DECLARE A FLOAT;

= '2.7' + '3.85';

In the assignment statement, you are adding together two CHARACTER
string values, presumably expecting A to be assigned the value 6.55.
Actually, something quite different happens, as illustrated in Figure
6-7. Since PL/I must add together two CHARACTER values, the derived
common base, scale, and mode are FIXED DECIMAL REAL, with a scale

factor of zero. The result is that each of the CHARACTER values is
converted to an integer before the addition takes place, and so A is
assigned the value 5.

First Edition 6-20

EVALUATING EXPRESSIONS

2.7 CHAR 3.85 CHAR

Convert Convert

v v

TEMP1 FIXED TEMP2 FIXED
2 DECIMAL 3 DECIMAL

REAL REAL

+

\

TEMP3 FIXED
5 DECIMAL

REAL

Convert

\
A FLOAT

5E1 BINARY
REAL

Conversion of CHARACTER Values
Figure 6-7

Converted Precision

This section deals with the precision and scale factor of the
intermediate target created as the result of an implicit conversion
during the evaluation of an expression.

Consider the following program segment:

DECLARE K FIXED DECIMAL (5,2) ;
DECLARE IL, FIXED DECIMAL (7,1);
DECLARE A FLOAT DECIMAL (6);

K=L+ A;

The assignment statement in the last line adds together a FIXED and a
FLOAT value, and so an implicit conversion is required, Figure 6-8
illustrates the result. (In this figure, no mode is shown for any of
the data types, because the converted precision does not depend upon
the mode.) The derived common scale and base of the data types for L

6-21 First Edition

PL/I Reference Guide

and A are FLOAT DECIMAL. Therefore, PL/I converts the value of L to

FLOAT DECIMAL, and stores the result in a target called TEMP]. Since

the value of L contains seven digits, PL/I also gives TEMPl a precision

of 7, since no additional digits are necessary. The target precision
of 7 is the converted precision for the conversion of FIXED
DECIMAL (7,1) to FLOAT DECIMAL. Figure 6-8 also shows the precisions of

all temporary targets. The precision of TEMP2 is determined by the

rules for addition, which are discussed later in this chapter.

L FIXED A FLOAT

DEC(7,1) DEC(6)

Convert

v

TEMP'1 FLOAT

DEC(7)

+

7 .

TEMP2 FLOAT

DEC(7)

Convert

v

TEMP3 FIXED

DEC(5,2)

Assign

v

K FIXED

DEC(5,2)

Converted Precision
Figure 6-8

The precision and scale factor of TEMP3 are determined by the precision

of the target variable K. For this reason, this precision does not

follow the rules for the converted precision described in this section,
because the conversion is considered explicit rather than implicit.

Table 6-7 spells out the rules for converted precisions in implicit

conversion in general. The values of the converted precisions depend

only upon the scale and base of the source and target data types; they

do not depend upon the mode of the source and target data types. This

table shows, for each combination of source scale and base with target

scale and base, the formulas for determining the converted precision.

First Edition 6-22

EVALUATING EXPRESSIONS

Table 6-7

Converted Precisions in Implicit Conversions

Source Data Type

Target

Data FIXED BINARY FIXED DECIMAL FLOAT BINARY FLOAT DECIMAL

Type (p,q) (P,Q) (p) (Pp)

FIXED r=p r=MIN (31, No implicit No implicit
BINARY Ss=q CEIL (p*3.32)+1) conversion conversion
(x,S) S=CEIL (q*3.32) possible possible

FIXED xr=CEIL(p/3.32) r=p No implicit No implicit
DECIMAL +1 s=q conversion conversion

(r,s) S=CEIL (q/3.32) possible possible

FLOAT r=p r=CEIL (p*3. 32) r=p r=CEIL (p*3. 32)
BINARY

(x)

FLOAT r=CEIL(p/3.32) r=p rx=MIN (14, r=p
DECIMAL +1 CEIL (p/3. 32))
(r)

These notes refer to Table 6-7:

In converting from FIXED to FLOAT, the converted precision of
the FLOAT target equals the number of digits in the FIXED
source. The reason is that in FLOAT targets we are interested
only in the appropriate number of significant digits.

In the PL/I language, it is never possible to have an implicit
conversion from FLOAT to FIXED; FLOAT to FIXED conversions must
be explicit. That is why no formula is given in those four
positions in Table 6-7.

In going from DECIMAL to BINARY, or vice versa, the constant
3.32 is used. This constant is approximately equal to the
common Logarithm (that is, the logarithm to the base 10) of 2.
This constant is chosen because it is possible to prove
mathematically that if you represent a large integer in both
BINARY and DECIMAL, it will require approximately 3.32 times as
many digits to represent it in BINARY as it does in DECIMAL. In
the table, the use of the function CETL is made in order to
indicate that the result of multiplying or dividing by 3.32
should be rounded up to the next higher integer.

In two cases, using the straightforward formula for the
converted precision. would result in a precision that is larger
than the maximum permitted for that scale and base on Prime

6-23 First Edition

PL/I Reference Guide

equipment. In those two cases, the MIN built-in function is

used in order to indicate that, if the formula results in a

precision that is larger than the maximum allowed, the maximum

precision should be used.

Derived Common String Type

This section deals with operations performed on BIT or CHARACTER string

data. If you perform a string operation on two operands with different

string data types, PL/I must determine the derived common string type

for the two operands, and then convert the operands to that data type,

if necessary.

Table 6-8 gives the rules for the derived common string type. For

example, if you have a statement containing an expression that

concatenates two operands, PL/I uses this table to determine whether to

do a BIT string concatenation or a CHARACTER string concatenation.

Table 6-8
Derived Common String Type for Two Operands

Operand 1 Operand 2

BIT string CHARACTER string Not a string

BIT string BIT CHARACTER CHARACTER

CHARACTER CHARACTER CHARACTER CHARACTER
string

Not a CHARACTER CHARACTER CHARACTER
string

The rule can be specified as follows: given two operands, if both of

them are BIT string operands, the derived common string type is BIT;

otherwise, the derived common string type is CHARACTER.

First Edition 6-24

EVALUATING EXPRESSIONS

PL/I EXPRESSION OPERATORS

This section defines all of the PL/I operators used in the evaluation
of expressions. While you are reading this section, keep in mind the
following general rules:

Each operator has either one or two operands. If it has two
operands, it is called an infix operator. If it has only one
operand, it is called a prefix operator.

PL/I evaluates an operator by creating a target of an
appropriate data type and then storing the result of the
operation in that target.

At the time that PL/I is compiling your program, it determines
the data type of the target. The data type of the target
depends only on the operator and on the data types of the
operands; the data type of the target does not depend upon the
value of the operands, even when the value is known at compile
time. (There is an exception to this rule in certain cases of
‘the ** operator.)

While the data type of the target is determined at compile time,
the value of the target is determined when the program executes.

Infix + and — Operators

These operators perform ordinary arithmetic addition and subtraction.
Given the operands x and y, PL/I evaluates x + y or x — y according to
the following rules:

1.

2.

PL/I determines the derived common scale, base, and mode of the
data types for x and y.

PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in

either order.

PL/I creates a target having a data type with the derived
common base, scale, and mode, anda precision as defined by

PL/I performs the addition or subtraction of the operand
values, and stores the result in the target.

6-25 First Edition

PL/I Reference Guide

Table 6-9

Precision of Target Results for
Addition or Subtraction of Two Numbers

Converted Converted
Derived Common Scale Precision Precision Precision of Target
& Base of x and y of x of y for x+y or x-y

FIXED BINARY (p,q) (r,S) (m,n) where

m=MIN (31,MAX (p-q,r-s) +

MAX (q,S) +1)

n=MAX (q,8)

FIXED DECIMAL (p,q) (r,s) (m,n) where
=MIN (14,MAX (p-q, r-S) +

MAX (q,S)+1)
n=MAX (q,S)

FLOAT BINARY (p) (r) (m) where
m=MAX (p, 1)

FLOAT DECIMAL (p) (x) (m) where

m=MAX (p,r)
In order to understand Table 6-9, consider the following example.

Suppose x has a data type of FIXED DECIMAL(2) and y has a data type of

FIXED DECIMAL(3). Then the maximum value that x can have is 99, and

the maximum value that y can have is 999. Therefore, the maximum value
of x + y is 99 + 999, or 1098. Since this result contains four digits,

PL/I creates a target of FIXED DECIMAL(4).

When a scale factor is involved, the reasoning is similar. For

example, suppose x has a data type of FIXED DECIMAL(2) and y has a data

type of FIXED DECIMAL(3,1). Then the maximum value of x is 99, and the

maximum value of y is 99.9, and so the maximum value of x + y is 198.9.

Since the maximum result contains four digits, with one digit to the

right of the decimal point, the data type of the target is FIXED

DECIMAL (4,1).

Occasionally the desired target precision is larger than the maximum

precision supported by PL/I. For example, if x and y are both FIXED

DECIMAL(14), the desired target precision is FIXED DECIMAL(15).

Unfortunately, this exceeds the maximum precision allowed, and so PL/I

uses a target of FIXED DECIMAL(14).

In the table, the rules for FLOAT BINARY and FLOAT DECIMAL follow a

general rule for FLOAT that holds for all the arithmetic operators.

The precision of the target is the maximum of the precision of the

operands. In practical terms, this means that if both operands are

single precision, the target is single precision; if at least one of

the operands is double precision, the target is double precision.

First Edition 6-26

EVALUATING EXPRESSIONS

Infix * Operator

The asterisk (*) is used for multiplication. Given the two operands x
and y, PL/I evaluates x * y as follows:

l.

2.

PL/I determines the derived common base, scale, and mode for
the data types for x and y.

PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. ‘These conversions can take place in
either order.

PL/I creates a target having a data type with the derived
common base, scale, and mode, anda precision as defined by

Table 6-10.

PL/I performs the multiplication operation, storing the result
into this target.

Table 6-10
Precision of Target Results for Multiplication of Two Numbers

Derived Common Converted Converted

Scale, Base of Precision Precision Precision of Target

x and y of x of y for x*y

FIXED BINARY (p,q) (r,s) (mpn) where
mremin (31 ,ptrt+1)
n=q+s

FIXED DECIMAL (p,q) (r,s) (m,n) where
m=min (14 ,ptr+1)
n=qts

FLOAT BINARY (p) (r) (m) where
m=max (p,r)

FLOAT DECIMAL (p) (r) (m) where
me=max (p,L)

In Table 6-10, the reasoning is similar to the reasoning in the case of
addition and subtraction, although there is a slight additional
complication.

For example, suppose x has a data type of FIXED DECIMAL (2) and y has a
data type of FIXED DECIMAL(3). Then the largest value of x is 99 and
the largest value of y is 999. ‘Therefore, the maximum value that x * y

6-27 First Edition

PL/I Reference Guide

can have is 98901, which contains five digits. This would seem to
indicate that PL/I should create a target having the data type FIXED
DECIMAL (5). However, the precisions defined in Table 6-10 must work
whether the mode is REAL or COOMPLEX. I£ x were FIXED DECIMAL (2)
COMPLEX and y were FIXED DECIMAL(3) COMPLEX, then x * y could have six
digits in the real part or the imaginary part of the result. For this
reason, PL/I adds 1 to the precision that you would expect, and the
target is FIXED DECIMAL (6) .

The reasoning in the other cases follows the reasoning for addition and
subtraction.

Infix / Operator

The slash (/) is used to perform arithmetic division. Given two
Operands, x and y, PL/I evaluates x / y as follows:

1. PL/I determines the derived common base, scale, and mode of the
data types for x and y.

2. PL/I converts x to the data type of the derived common hase,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in
either order.

3. PL/I creates a target having a data type with the derived
common base, scale, and mode, anda precision as defined in

Table 6-11.

4. PL/I performs the division operation, and stores the result

into this target.

Table 6-11 contains a fundamental difference from the tables for
addition, subtraction, and multiplication. The difference is in the
FIXED case, where the precision of the target is always the maximum
allowed, irrespective of the precisions of the operands. The reason is
that division can produce approximate results, even when the operands
are exact. PL/I attempts to preserve as much accuracy as possible by
creating a target with a large number of digits to the right of the
decimal point, thus preserving as much accuracy in the quotient as
possible.

First Edition 6-28

EVALUATING EXPRESSIONS

Table 6-11
Precision of Target Results for Division

Derived Common Converted Converted
Scale Base of Precision Precision - Precision of Target

x and y of x of y x/V

FIXED BINARY (p,q) (r,s) (myn) where
m=31]
r=3]-ptq-s

FIXED DECIMAL (p,q) (r,s) (m,n) where
m=14
n=14-piq-s

FLOAT BINARY (p) (r) (m) where

m=max (p, r)

FLOAT DECIMAL (p) (r) (m) where

max(Pp; r)
For example, suppose x and y are each FIXED DECIMAL(1). This means
that x and y each contain only one decimal digit, and so x / y can have
at most one digit to the left of the decimal point. Since PL/I can
support a maximum precision of fourteen decimal digits, and since at
most one digit can appear to the left of the decimal point, PL/I
provides a target with thirteen digits to the right of the decimal
point. ‘Therefore, the target has size FIXED DECIMAL(14, 13).

Similar reasoning is involved when x and y have nonzero scale factors.
In addition, the rules for FLOAT aresimilar to the rules for addition,
subtraction, and multiplication.

Be aware that the use of FIXED division can get you into unexpected
trouble. Consider, for example, the following statement:

A= 25 + 1/3;

You may be surprised to learn that this statement cannot execute
properly according to the rules for PL/I. To understand why, consider
the data types of the temporaries used in the evaluation of the
expression 25 + 1/3.

Since 1 and 3 are single decimal digits, they have a data type of FIXED
DECIMAL(1). Therefore, the target for the division operation will have
a data type of FIXED DECIMAL(14,13), as described in the preceding
paragraph. When the division operation is performed, the result stored
in the target will be 0.3333333333333. An examination of Table 6-9

6-29 First Edition

PL/I Reference Guide

will reveal that, since 25 has a data type of FIXED DECIMAL(2), the

target for the addition operation is FIXED DECIMAL (14,13), which allows

only one digit to the left of the decimal point. ‘Therefore, the target

is not large enough to hold the value of the expression.

The reader should note that this is not a bug in the PL/I compiler, but

rather is a consequence of the precisely defined rules of the PL/I

language. Many mathematicians have examined these rules to try to

eliminate this fixed division problem. However, it has turned out that

any change to the rules has simply moved the problen somewhere else,

and so no satisfactory change has been found.

To the programmer who finds this situation disconcerting, remember the

following: never do FIXED division. If you wish to divide two FIXED

quantities, convert one of them to FLOAT before doing the division. Of

course, if you must maintain the accuracy provided by FIXED division,

by all means do it, but be certain that you check the sizes of the

targets in the expression, and make sure that they will be large enough

to hold all the intermediate results.

Infix ** Operator

The exponentiation operator, the double asterisk (**), is handled quite

differently from the other arithmetic operators because of some of its

unique mathematical properties. For example, PL/I will sometimes

handle a case like x**2 in a special way, because this equals x * x.

This means, for example, that in certain cases PL/I will use the fact

that the value of the constant in the exponent is 2 to define the data

type of the target of the operation. ‘This is the only case where PL/I

uses the value of an operand to determine the data type of the target

of the operand.

Special cases: Let x and k be the two operands of **, such that k is

an integer constant or variable; that is, such that the derived scale

and mode of k are FIXED REAL, with a scale factor of zero, Then the
cases are as follows:

1. If k is a positive integer constant, and the derived scale and

base of x are FIXED BINARY, and the converted precision of x is

(p,q), such that (p +1) * k -1 <= 31, then the target data

type is FIXED BINARY(m,n), where m= (p+1) *k-1, and

n=q*k,

2. If k is a positive integer constant, and the derived scale and
base of x are FIXED DECIMAL, and the converted precision of x
is (p,q), such that (p + 1) * k - 1 <= 14, then the target data

type is FIXED DECIMAL(m,n) where m= (p+1) *k-1, and

n=q*k,

3, If neither of the above two cases holds, PL/I proceeds as

follows: it converts x to the derived base and mode of x, and

a scale of FLOAT, with the appropriate converted precision.

First Edition 6-30

EVALUATING EXPRESSIONS

The target of the ** operation will have the same data type as
the converted value of x.

The reasoning behind these Special cases is that if x is FIXED with a
small precision, and n is a fairly small constant, then the
exponentiation operation can be performed using ordinary FIXED
multiplication, and the result stored into a FIXED target. On the
other hand, if k is an integer value, but is either a large constant or
a variable, then the exponentiation operation can still be performed by
repeated multiplication, but the multiplication must be done using a
scale of FLOAT, to prevent a result that is too large for the target.

General case: If none of the special cases apply, the general rule
applies. Let x and y be the two operands. Then the general rule for
the evaluation of x**y is as follows:

l. PL/I determines the derived common base and mode of the data
types of x andy. PL/I does not determine the derived common
scale, because FLOAT will be used.

2. PL/I converts x to the data type of the derived common base and
mode with FLOAT, and with the appropriate converted precision.
PL/I does the same for y. ‘These conversions can take place in
either order.

3. PL/I creates a target having a data type with the derived
common base and mode, with a scale of FLOAT, and with a
precision equal to the maximum of the converted precisions of x
and y.

4, PL/I performs the exponentiation operation, storing the result
into the target.

Infix || Operator

The double vertical bar (||) is the concatenation operator. On Prime
terminals, it may be entered as || or !!. It is applied to two string
values, and the result of concatenating two string values is simply to
stick the strings together. Concatenation may apply to either
CHARACTER or BIT string values.

let x and y be the two operands of the concatenation operation. Then
PL/Idetermines the value of x || y as follows:

1. PL/I determines the derived common string type of the data
types for x and y. PL/I converts x to the derived common
string type. PL/I does the same for Yeo “These conversions can
take place in either order.

2. PL/I creates a target having a data type with the derived
common string type.

6-31 First Edition

PL/I Reference Guide

3. PL/I concatenates the two string values, storing the result in

the target.

Notice an interesting difference between the ways PL/I handles numeric

targets and string targets. The PL/I rules specify that the precision

of numeric targets must always be known at compile time. However, the

length of a string target need not be known until the program actually

executes,

Infix Comparison Operators

PL/I provides eight comparison operators. ‘These operators are listed

in Table 6-12.

You may use any of the eight comparison operators to compare two REAL

numeric values or two string values. In addition, you may use either

of the first two (= or “=) to compare values of all other data types

(COMPLEX numeric or noncomputational). Use of any of the last six

comparison operators with any of these latter data types is illegal.

The target for any of the comparison operators is always BIT(1). If

the comparison is true, the value of the result is '1'B, If the result

of the comparison is false, the result value is '0'B.

Table 6-12
Comparison Operators

Operator Meaning

Equals
Does not equal

. Is less than
Is less than or equal
Is greater than
Is greater than or equal
Is not less than
Is not greater than

>
»
y

“
A

V
A
T
I
V
I
A

>
When the two operands of the comparison operator have different data

types, PL/I must convert the operands to the same data type. The

conversion rules are as follows:

1. If at least one of the two operands is numeric” or

pictured-numeric, a numeric comparison is done. The rules are

described below.

First Edition 6-32

26

EVALUATING EXPRESSIONS

If both of the operands are either string or
pictured-character, a string comparison is done. The rules are
described below.

If one of the operands has a noncomputational data type, the
other operand must have the same noncomputational data type.
The only exception is that a POINTER value may be compared with
an OFFSET value. For all noncomputational data type
comparisons, only the operators = and “= may be used.

Numeric comparisons: Let x and y be the two operands being compared.
PL/I compares them as follows:

1.

26

PL/I determines the derived common base, scale, and mode of the
data types of x and y.

PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in
either order.

PL/I creates a BIT(1) target.

PL/I makes the appropriate comparison, and sets the target to
the '0'B if the result is false, and to '1'B if the result is
true. If the derived common mode of x and y is OOMPLEX, only
the comparisons = and “= are permitted,

String comparisons: Let x and y be the two operands being compared.
PL/I compares them as follows:

l.

2.

PL/I determines the derived common string type of the data
types for x and y.

PL/I converts x to the derived common string typé. PL/I does
the same for y. These conversions can take place in either
order.

Tf the resulting strings do not have the same length, PL/I pads
the shorter one on the right, so that they do have the same
length. If the derived string type is CHARACTER, PL/I pads the
shorter string on the right with blanks. If the derived common
string type is BIT, PL/I pads the shorter string on the right
with 0~bits.

PL/I creates a BIT(1) target. PL/I uses the rules in the
following paragraphs to determine whether the two strings are
equal or whether one is greater than the other.

If the two strings of equal length are identical, they are
considered to be equal. Otherwise, to determine which is
larger, PL/I compares the two strings character by character or
bit by bit, moving from left to right in the two strings, until
it finds a pair of characters or bits that are unequal.

6~33 First Edition

PL/I Reference Guide

6. If the derived string type is CHARACTER, the two unequal

characters are compared in the ASCII collating sequence. If

the first character comes before the second character in this

collating sequence, the first string is considered smaller than

the second string; otherwise, the second string is considered

smaller,

7. If the derived string type is BIT, one of the unequal bits must

be a O-bit, and the other must be a l1-bit. The string that

contains the 0-bit is considered smaller than the other string.

To illustrate the rule for CHARACTER string comparisons, take the

strings 'ANT' and 'ANVIL'. PL/I pads the shorter string with blanks to

the length of the longer string, with the result that the first string

becomes 'ANTbb'. PL/I then compares the two strings character by

character as follows:

itt
AN Vleet

The first pair of unequal characters are T and V. Since T comes before

V in the ASCII collating sequence, the first string is considered

smaller than the second. See Appendix B for the ASCII Collating

Sequence.

As a second example, suppose PL/I is comparing the strings 'ANT' and

‘ANTELOPE’, PL/I pads the shorter of these strings with blanks, and

then compares the results character by character, as follows:

N T b b b b b

>
—
—
>
>

N T EL OPE

The first pair of unequal characters is found in fourth position.

These characters are a blank and E. Since the blank comes before E in

the ASCII collating sequence, PL/I considers the first string to be

smaller than the second.

First Edition 6-34

EVALUATING EXPRESSIONS

Infix & |, and ! Operators

The ampersand (&), vertical bar (|), and exclamation point (!) are the
logical operators. The symbol & represents AND; | and ! both stand
for OR. Normally, you think of these operators as simple logical
connectors, as in the statement:

IF A > 3 & B= 5 THEN STOP;

In reality, PL/I treats & !, and | as operators on BIT strings. That
is, the operands of these operators must be BIT strings, and the
results are BIT strings.

Suppose xand yare two operands. ‘Then PL/I computes x & y or x | y as

follows:

lj. PL/I converts x to BIT. PL/I does the same for y. These

conversions can occur in either order.

2. I£ these two BIT strings do not have the same length, PL/I pads
the shorter string with 0-bits, so that it is the same length
as the longer string.

3. PL/I creates a target having a data type of BIT and a length
equal to the common length of the two strings.

4. Moving from left to right, PL/I takes bits from corresponding
bit positions in the two operands, and produces a result bit
from these two operand bits. If the operator is &the result
bit is shown in Table 6-13.

Table 6-13
Bit Results from &

Operand 1
0B 1B

0B 0B 0B
Operand 2

1B 0B 1B
If the operator is |, the result bit is shown in Table 6-14. PL/I
stores the result bit into the corresponding bit position of the
target.

6-35 First Edition

PL/I Reference Guide

Table 6-14
Bit Results from |

Operand 1
0B 1B

0B 0B 1B
Operand 2

1B 1B 1B
Prefix + and — Operators

The minus sign, the prefix - operator, takes one operand and negates it

by changing a positive number to negative or a negative number to

positive. The plus sign, the prefix + operator, also takes one

operand, but it has no effect whatsoever on the value of that operand

except to force a conversion to numeric, if the data type is not

already numeric.

Given an operand x, PL/I evaluates +x or -x as follows:

1. PL/I determines the derived base, scale, and mode of the data

type for x. Since there is only one operand, the derived base,

scale, and mode are the same as the base, scale, and mode of x,
unless x is not numeric.

2. PL/I converts x to the data type of the derived base, scale,

and mode with the appropriate converted precision. Notice that
no conversion is ever necessary if x is already numeric.

3. PL/I creates a target having a data type with the derived base,

scale, and mode, and a precision as defined by Table 6-15.

4. PL/I evaluates +x by simply using the converted value of x.
PL/I evaluates -x by reversing the sign of the converted value

of x.

Notice that in Table 6-15, the precision of the target for +x or -x is
the same as the data type for the converted value of x.

First Edition 6-36

EVALUATING EXPRESSIONS

Table 6-15
Precision of Target for Unary Plus and Minus Operators

Derived Scale Converted Precision of Target for
and Base of x Precision +X OF —X

FIXED BINARY (p,q) (m,n) where

tp
n=q

FIXED DECIMAL (p,q) (m,n) where

nep
n=q

FLOAT BINARY (p) (m) where

=p

FLOAT DECIMAL (p) (m) where

mp

Prefix ~ Operator

The caret (*) is the logical operator corresponding to NOT. It isa
prefix operator taking only one operand. ‘That operand must be a BIT
string, and the result of the operation is BIT.

Given an operand x, PL/I computes *x as follows:

1. PL/I converts x to BIT.

2. PL/I creates a BIT target that is the same length as the string
just discussed.

3. Proceeding from left to right, PL/I fetches a bit from the
operand, uses that bit to compute a result bit as shown in
Table 6-16, and stores the result bit in the corresponding
position of the result BIT string.

Table 6~16

Bit Results from *

Operand Result

'O'B '1'B

"1'B 'O'B

6-37 First Edition

PL/I Reference Guide

SCALAR CONVERSION RULES FOR COMPUTATIONAL DATA TYPES

This section contains the rules for conversion from one computational
data type to another -- numeric to numeric, string to numeric, and
numeric to string.

Most conversions among noncomputational data types are illegal in PL/I.
For example, it is illegal to convert POINTER to FIXED, or FORMAT to
LABEL. The one exception is that, under certain circumstances, it is
legal to convert POINTER to OFFSET, or vice versa. These conversions

are discussed in Chapter 7.

Numeric To Numeric Conversions

If a data value is converted from one numeric or pictured-numeric data
type to a different one, there may be a change in value. Such a
conversion would involve a change in one or more of the base, scale,
mode, and precision data attributes.

Change in base: If there is a change in base from BINARY to DECIMAL,

or vice versa, there is usually a round-off error in converting
noninteger values. Notice, however, that if the scale is FLOAT, there

is no difference in the internal representation of FLOAT DECIMAL and

FLOAT BINARY on Prime computers.

Change in scale: If there is a change in scale from FLOAT to FIXED,

truncation occurs if the FLOAT value contains more digits to the right
of the decimal or binary point than are provided for by the scale
factor of the FIXED data type. A conversion from FIXED DECIMAL or
FIXED BINARY to FLOAT usually has a round-off error, because, on Prime
equipment, FLOAT is always represented internally in binary. PL/I
performs a mode conversion from REAL to COMPLEX by using an imaginary

part of 0. PL/I converts COMPLEX to REAL by discarding the imaginary
part of the COMPLEX value.

Change of precision: In the case of FLOAT, an increase in precision
will mean no change in value, while a decrease in precision will result
in either no change in value or a truncation of significant digits in
going from an internal representation of double precision FLOAT to

Single precision.

How a change in precision for FIXED data values works depends upon
whether digits are added to or removed from the left end of the number
or from the right end, and upon the position of the decimal point as
determined by the scale factors of the source and target data types.
If digits are added to either end, there is no change in value, because
PL/I does the conversion by filling the new positions with zeros. If
digits are removed from the right-hand end of the source value,
truncation takes place. If digits are removed from the left-hand end
of the source value, and if the values of these digits are nonzero,
then a SIZE error occurs.

First Edition 6-38

EVALUATING EXPRESSIONS

Numeric To CHARACTER Conversions

Since the rules are fairly complicated, it is not recommended to most
programmers to use numeric to CHARACTER conversions. Programmers who
need to convert numeric values to CHARACTER values should do so by
means Of PICTURE variables, which permit precise specification of the
CHARACTER string.

When you convert a numeric value to CHARACTER, PL/I represents the
numeric value as a DECIMAL constant, where the constant has the data
type of the numeric variable, and stores the constant in the CHARACTER
string, usually with leading blanks. The precise rules are listed in
the following paragraphs. .

If the base of the numeric value is BINARY, PL/I converts the value to
DECIMAL, with the appropriate converted precision. HL./I then proceeds
with the DECIMAL value, as described below.

If the value is FIXED DECIMAL(p,q) REAL, where q is greater than or
equal to zero and pis greater than or equal to gq, then PL/I forms a
CHARACTER string containing p + 6 characters, There are three cases:

1. If gq equals zero, the CHARACTER string contains up to p digits,
with a leading minus sign for negative numbers and a_ leading
space for positive numbers. There is no decimal point in the
string.

2. If q is greater than zero and p equals q, PL/I forms a_ string
of the form 'SO.DDD...D', where the S is replaced by a blank if
the number is positive and by a minus sign if the number is
negative, and there are gq digits following the decimal point.

3. If g is greater than zero and p is greater than gq, PL/I forms a
constant containing at most p- gq digits before the decimal
point, preceded by a minus sign for negative numbers with gq
digits following the decimal point. There will always be at
least one leading blank.

If the numeric value is FIXED DECIMAL(p,q) REAL, where either qis
greater than p or q is less than zero, then PL/I forms a CHARACTER
string of the form 'Sddd...dFS(n)', where there are p digits and no
decimal point, and where the nis replaced by an integer constant with
as many digits as necessary to represent the position of the implied
decimal point.

If the numeric value is FLOAT DECIMAL(p) REAL, PL/I forms a character
string of the form 'Sd.ddd...dESdd', where there are p- 1 digits
following the decimal point, and there is a two-digit signed
characteristic. For double-precision numbers, the form is
"Sd. ddd...dESdddd'. ‘Thetength of this CHARACTER stringis p+6 for
Single precision, and p + 8 for double precision.

6-39 First Edition

PL/I Reference Guide

If the numeric value is OOMPLEX, and if n is the length of the

character string for the corresponding REAL data type, then PL/I forms

a CHARACTER string of length 2n + 1, formed as follows:

1. Get the CHARACTER string representations of the real and

imaginary parts of the COMPLEX value. If the imaginary part is

positive, replace the last leading blank in the cor responding

CHARACTER string with at.

2. Concatenate the two CHARACTER strings together, and concatenate

an I to the result.

3. Rearrange the characters in this string by moving all leading

blanks to the left-hand side.

CHARACTER to Numeric

A QHARACTER to numeric conversion is legal if the CHARACTER string

contains a legal PL/I numeric constant, possibly with leading and

trailing blanks. The CHARACTER string may contain a COMPLEX constant,

consisting of a real and an imaginary part added together, with the

letter I following the imaginary part. In no case may the constant

contain any embedded blanks.

If the CHARACTER string contains only blanks, or is the null string,

the conversion is still legal, and the corresponding numeric value is

0.

Numeric to BIT

This conversion is quite complicated and is not recommended. ‘The

detailed rules are described in the following paragraphs.

If the data type of the numeric value is COMPLEX, take only the real

part of the numeric value. If the numeric value is negative, take its

absolute value.

The length of the BIT string will be p, where p depends upon the data

type of the numeric value, as follows:

1. If the numeric value is FIXED BINARY (r,S), p equals r - Ss.

2, If the numeric value is FIXED DECIMAL (r,/S), Pp equals

CEIL(3.32 * (cr - s)).

3. If the numeric value is FLOAT BINARY (r), p equals r.

4, lf the numeric value is FLOAT DECIMAL (xr), Pp equals

CEIL(3.32 * r).

First Edition 6-40

EVALUATING EXPRESSIONS

In all four cases, if the resulting value of p is negative, p equals 0.
TE p > 31, let p equal 31.

Convert the numeric value to the data type FIXED BINARY(p,0) REAL, to
obtain a nonnegative integer, Represent this integer as a binary
number containing p bits, and those bits will form the resulting BIT
string.

BIT to Numeric

When converting BIT to numeric, PL/I examines the BIT string and treats
the bits as an unsigned binary integer. This integer is evaluated and
converted to FIXED BINARY(31) REAL. This numeric value is then
converted to the appropriate data type.

BIT to CHARACTER

PL/I converts a BIT string to a CHARACTER string of the same length.
Each 0-bit in the BIT string is replaced with the character '0' in the
CHARACTER string, and each 1-bit in the BIT string is replaced with the
character '1' in the CHARACTER string. For example, '1011'B would be
converted to '1011'.

CHARACTER to BIT

This conversion is legal only if the CHARACTER string contains only the
characters '0' and '1l', PL/I translates the CHARACTER string to a BIT
string of the same length by replacing the character '1' with a 1-bit,
and the character '0' with a 0-bit. .

Conversions Involving PICTURE Variables

If a variable is pictured-string, its conversions are treated the same
as for CHARACTER,

When converting a value to a pictured-numeric data type, PL/I converts
the source value to numeric, and then forms the string value of the
PICTURE variable by performing the PICTURE editing rules. This is true
even if the source value is a CHARACTER string.

In conversions from a pictured-numeric value to a CHARACTER value, the
string value of the PICTURE variable is used. For converting to any
other data type, the numeric value of the PICTURE variable is used.

6-41 First Edition

PL/I Reference Guide

Special Conversion Built-in Functions

PL/I follows the conversion rules given in this chapter to determine

what data attributes and precisions should apply to conversion targets.

PL/I provides a number of built-in functions that allow you to specify

explicit conversions. For example, consider the following statements:

DECLARE A FLOAT DECIMAL (7) ;
DECLARE B FIXED DECIMAL (5) ;
C=A+t B;

According to the rules, PL/I computes A + B by converting B to FLOAT

DECIMAL (5) and then performing a FLOAT addition.

However, suppose you would prefer that PL/I convert A to FIXED, and

then compute A+B using FIXED addition. You might do something like

the following:

C = FIXED(A, 9, 2) + B?

PL/I executes this statement by converting A to the data type FIXED

DECIMAL (9,2) and then adding that result, using FIXED addition rules,

to the value of the variable B.

As another example, suppose the assignment statement is changed to

C = A+ FLOAT(B, 15);

PL/I converts B to FLOAT DECIMAL(15) rather than FLOAT DECIMAL(5)

before performing the FLOAT addition operation.

FIXED and FLOAT are examples of PL/I built-in functions that allow you

to specify explicitly what kinds of conversions PL/I should make in

evaluating your expression. Other built-in functions provided for this

purpose are BINARY, DECIMAL, REAL, COMPLEX, PRECISION, CHARACTER, and

BIT. These functions are fully described in Chapter 14.

In addition, PL/I allows you to specify the precision of the targets of

numeric operations. For example, using the same declarations as in the

preceding example, PL/I evaluates A + B in the statement

C=A+t B;

First Edition 6-42

EVALUATING EXPRESSIONS

by creating a target with the attributes FLOAT DECIMAL(7). To specify
a target with a different precision attribute, use the ADD built-in
function, as follows:

C = ADD(A, B, 12);

PL/I computes the value of A+B by creating a target with the
attributes FLOAT DECIMAL (12).

In addition to ADD, you may use SUBTRACT, MULTIPLY, and DIVIDE to
specify the target precision attributes for a numeric operation. ‘These
functions are fully defined in Chapter 14.

AGGREGATE TARGETS AND PROMOTION

Expressions considered so far have involved only scalar elements. This
section deals with PL/I expressions involving aggregates, specifically
arrays, structures, and arrays of structures,

Aggregate Expressions without Promotions

Consider the following program segment:

DECLARE A(4);
DECLARE B(4) INITIAL (1,3,8,2) 3
DECLARE C(4) INITIAL(2,5,6,7);

A=B+t C3

In this assignment statement, the array B is added to the array C with
the results stored in the array A. When you add two arrays together,
the result is an array value. The array value is computed by adding
corresponding elements of the two arrays being added.

In the above assignment statement, B + C is computed to form the array
(3,8,14,9). This array value is then assigned to the array A.

In an assignment statement involving arrays, PL/I requires that all
arrays must have the same number of dimensions, and the same upper and
lower bounds.

6-43 First Edition

PL/I Reference Guide

Similarly, it is possible to have structure expressions. Consider the
following program segment:

DECLARE 1S, 2 A, 2 B;
DECLARE 1 T, 2 A INITIAL(5), 2 B INITIAL(6);
DECLARE 1 U, 2 A INITIAL(4), 2 B INITIAL(2);

S= T+ U;

Here, the assignment statement adds together two like structures. ‘The

result is that the corresponding structure members are added together

to form a structure target. In this case, the structure target will

contain two members, and the values will be 9 and 8. This structure

target is then assigned tc the structure S, with the result that S.A

will have the value 9, and S.B will have the value 8.

These aggregate operations may be used with any infix or prefix

operators, or with any of the PL/I built-in functions. However, notice

that when you multiply two arrays together, you do not get what is

normally referred to as matrix multiplication. All operations are

performed by performing the operation on the individual corresponding

scalar members.

Scalar to Array Promotions

When scalars and arrays are involved in an expression or in an

assignment statement, it is often necessary to promote or convert each

scalar to a corresponding array. Consider the following program

seoment:

DECLARE A(4);

A= 5:

In this assignment statement, a scalar constant, 5, is being assigned

to an array A. In order for PL/I to make this assignment, it must

promote the scalar 5 to the array (5,5,5,5). PL/I can then assign this

array to A.

Now consider the following program segment:

DECLARE A(4);

DECLARE B(4) INITIAL(2,3,4,5);
X= 4;
A=B* X;

First Edition 6-44

EVALUATING EXPRESSIONS

The last assignment statement contains the expression B * X, which
multiplies the array B by the scalar X.

In order for this expression to be evaluated, the scalar X must be
promoted to an array. Since X has the value 4, PL/I promotes X to the
array (4,4,4,4). PL/I then multiplies these two arrays to get a new
array value, (8,12,16,20). This array value is then assigned to A.

Note
These scalar-to-array promotion rules were affected by the 1976
changes in the ANS PL/I standard. Earlier implementations of
PL/I (for instance, IBM PL/I) may give unexpected answers to
program segments like the following:

DECLARE A(4) INITIAL(1,2,3,4);
A= A(2) * A;

By the current rules, the scalar value A(2) is multiplied by
the array A, and the result is assigned back to A. As we have
described, A(2) is promoted to the temporary array (2,;2,2,2).
This temporary array then multiplies A to form a new array,
(2,4,6,8).

On older compilers, however, this assignment statement is
performed differently. In fact, the assignment statement is
equivalent to the following three statements:

DO K=1 TO 4;

A(K) = A(2) * A(K);
END;

As you can verify, the results of this assignment would be
(2,4,12,16).

Scalar to Structure Promotions

Just as you can promote a scalar to an array, you can promote a scalar
to a structure. Consider the following example:

DECLARE 1 S, 2 A, 2 B?

S= 73

6-45 First Edition

PL/I Reference Guide

In this example, the scalar constant 7 is promoted to a_ structure

containing two elements, each of whose values is 7. This structure is

then assigned to S, with the result that S.A = 7 and S.B= 7.

Next, consider the following example:

DECLARE 1 S, 2 A, 2 B;

DECLARE 1 T, 2 A INITIAL(4), 2 B INITIAL(5);

X= 7;
S= T * Xs

To execute the last assignment statement, the scalar X is promoted to a

structure containing two elements, with the respective values 7 and 7.

This structure is multiplied by the structure T, and the result is

assigned to S, with the result that S.A equals 28 and S.B equals 35.

Promotion to Array of Structures

It is possible for any aggregate type, a scalar, an array, or a

structure, to be promoted to an array of structures. Consider the

following example:

DECLARE 1S(4), 2A, 2B;
DECLARE 1C(4) INITIAL (5,6,7 8) ;
DECLARE 1T, 2D INITIAL(2), 2E INITIAL(3);

S=C+T+ 4;

Whenever a structure and an array are added together, PL/I promotes

each of them to an array of structures. In this last assignment

statement, the array C, the structure T, and the scalar 4 are each

promoted to an array of structures, where the array contains four

members and each of these members is a structure containing two scalar

values. You may picture these promotions as resulting in the following

intermediate array of structure values:

First Edition 6-46

EVALUATING EXPRESSIONS

These three arrays of structures are added together to get a new array
of structures that may be pictured as follows:

ll 12

12 13

13 14

14 15

These values are then assigned to the array of structures S.

6-47 First Edition

Storage Management

Whenever you use a computer system, you are limited as to the amount of
storage you may use. When you write a PL/I program, your program uses
some storage for the program instructions and some storage for the data
used by the program, This chapter deals with techniques for managing
areas occupied by the data of your program, covering the following
topics:

e The use of PL/I storage types to control the allocation,
initialization, and freeing of data storage. If you have a
program that is too large to run efficiently, you may be able to
use this information to reduce the amount of storage required by
your data. The technique for storage reduction is to control
the allocation of large blocks of data, so that each large block
occupies storage only while it is needed. This section also

covers list processing techniques.

@ Techniques for overlaying storage. It is possible for two
variables to share the same storage area, or for one variable to
share a portion of the storage area of another variable. In
these cases, the storage of one variable is said to overlay the
storage of another variable. This section gives several
techniques for overlaying storage.

@ Extent expressions and the INITIAL attribute. Extent
expressions and INITIAL attributes appear in declarations of
variables. An extent expression is an expression defining an
array bound or string length. An INITIAL attribute specifies
how a variable is to be initialized. This section defines these

7-1 First Edition

PL/I Reference Guide

terms more fully and discusses how to use variables in these
options in order to have variable-sized arrays and strings.

e The EXTERNAL and INTERNAL scope attributes. This section
describes how to use the EXTERNAL attribute to permit one
external procedure to access the data areas that are used by a

second external procedure.

@ Named constants. Certain PL/I constants have names. For
example, a statement label is a named constant. This section
explains how to specify named constants, and how the
corresponding noncomputational variable data types can he
declared.

TYPES OF STORAGE

In the PL/I language, the terms storage type and storage class usually

refer to the manner in which the storage is to be allocated,
initialized, and freed according to the specifications of your program.

The tem allocation refers to the operation of associating a specific
block of storage or memory with a variable. For example, suppose your
program contains the following declaration:

DECLARE A(1000) ;

This declaration specifies that A is to be an array that occupies 1000
words of storage. You may not use the array A until PL/I has allocated
a specific storage block of 1000 words, and associated that block with
A. Normally, PL/I does this automatically without your even realizing
it. However, PL/I provides several optional techniques that give you
complete control over when the storage block is allocated.

The tem initialization refers to the operation of assigning an initial
value to a variable, by means of the INITIAL attribute in the DECLARE
statement. ‘The INITIAL attribute is discussed more fully later in this
chapter. For now, look at the following example:

DECLARE RANGE FLOAT INITIAL(5.3) ;

This statement specifies that RANGE is a FLOAT variable, and that PL/I
is to give RANGE an initial value of 5.3. Initialization takes place
just after allocation. If allocation takes place more than once for a
given variable, initialization takes place the same number of times.

The term freeing refers to the operation of releasing a block of

storage that has been allocated and used by some variable. Under

certain circumstances, if you have finished using a particular

First Edition 7-2

STORAGE MANAGEMENT

variable, you may release the storage occupied by that variable, so
that other variables can use that same storage area. If you do this
carefully, you may be able to keep your program size smaller.

The following paragraphs list the types of storage supported by PL/I
and summarize the rules for when storage of each type is allocated,
initialized, and freed.

l. If a variable has the STATIC storage class, it is allocated and
initialized when your program begins executing, and it is freed
when your program finishes executing. This is conceptually the
simplest storage class to understand, since you may assume that
the storage is always available.

The default storage type is AUTOMATIC. AUTOMATIC is the same
as STATIC for variables that are declared in your main
procedure. However, if an AUTOMATIC variable is declared in a
subroutine or function procedure, or within any BHGIN block or
ON unit, PL/I allocates and initializes the storage when the
block is invoked, and frees the storage when the block is
terminated. If the block is invoked and terminated several
times during execution of a program, the storage is allocated
and freed each time.

If a variable has the OONTROLLED storage class, allocation,
initialization, and freeing of the storage are done entirely
under your control. When your program executes an ALLOCATE
statement, PL/I allocates and initializes the storage for the
CONTROLLED variable. When your program executes a FREE
statement, PL/I frees the storage. No other allocation or
freeing operations take place except that, of course, when your
program ends, all storage is released.

The BASED storage class gives you the most control of all over
your storage management. As with CONTROLLED, BASED storage is
allocated and initialized only with an explicit. ALLOCATE
statement, and freed with an explicit FREE statement. However,
when used with POINTER variables, BASED storage provides a very
powerful capability for list processing and other applications
where you must handle sophisticated data structures in your
program.

A variable with the PARAMETER storage type is one that is
specified in a PROCEDURE statement, The allocation,

initialization, and freeing operations that we have discussed
do not really apply to PARAMETER variables, because such a
variable is simply a pointer back to the argument that was
Specified when the procedure was called or referenced. This is
discussed more fully in Chapter 8 on procedures.

A DEFINED variable is one that does not have its own storage;
instead, it shares storage with a variable of a different
storage type. DEFINED variables are described later in the
section TECHNIQUES FOR OVERLAYING STORAGE,

7-3 First Edition

PL/I Reference Guide

7. A temporary variable is one that is invisible to you, the user,

but that PL/I requires in order to execute your program. For

example, when your program evaluates an expression, PL/I must

often allocate a storage area for intermediate results. ‘This

is described in Chapter 6. PL/I allocates such temporary
storage when your program requires it, and frees that storage

when your program is finished with it. The programmer has no

direct control over allocation or freeing of temporary storage.

In PL/I terminology, the term storage type refers to any of the seven

classifications described in the preceding paragraphs. The term

storage class is more restrictive, referring to those types described

in the first four of these paragraphs, namely STATIC, AUTOMATIC,
CONTROLLED, and BASED. ‘The remainder of this chapter concentrates on

the four storage classes.

STATIC and AUTOMATIC Storage

The most elementary storage class is the STATIC storage class. Suppose
your program contains the following declaration:

DECLARE A FIXED STATIC INITIAL (0) ;

This declaration specifies that A is to be a FIXED variable, with the

STATIC storage class attribute, and is to be initialized to the value

zero. When your program begins execution, PL/I allocates the variable

A and initializes it to 0. ‘The storage for A remains allocated until

your program terminates. This is true no matter where this declaration

appears in your program, even if it appears in a subroutine or function

procedure.

If you declare a variable and do not specify any storage class, PL/I

supplies the AUTOMATIC storage class by default. Consider the

following declaration in which AUTOMATIC is explicitly declared:

DECLARE B FIXED AUTOMATIC INITIAL (0);

This declaration is the same as that for A given above, except that now

the storage class is AUTOMATIC rather than STATIC. If this declaration

appears in the MAIN procedure, and not within any internal PROCEDURE or

BHGIN block, the result is the same as for STATIC; that is, when your

program begins execution, B is allocated and initialized to 0, and is

freed when your progran terminates. On the other hand, if this

declaration appears within a subroutine or function procedure, or

within a BEGIN block, B is allocated and initialized each time the

block is invoked, and is freed each time the block is terminated.

First Edition 7-4

STORAGE MANAGEMENT

To understand more fully the differences between STATIC and AUTOMATIC,
consider the next example. This program contains declarations for four
variables, AB, X, and Y.

Ps PROC OPTIONS (MAIN);

DECLARE A FIXED STATIC INIT(0);

DECLARE B FIXED AUTOMATIC INIT (0);

PUT LIST (A,B) ;

CALL QO;

CALL Q3

Q: PROC:

DECLARE X FIXED STATIC INIT (5);

DECLARE Y FIXED AUTOMATIC INIT (5) :

PUT LIST (X,Y) 3

The first two declarations are the same as those already discussed.
Since these declarations are in the main procedure, and are not inside
any internal PROCEDURE or BHGIN block, the effects of the STATIC and
AUTOMATIC storage classes are essentially identical. Both AandB are
allocated and initialized to 0 when the program begins execution and
are freed when the program ends execution. The PUT statement in the
fourth line of the program prints the value 0 twice.

Note the declarations of X and Y in the same example. ‘These
declarations appear inside the internal procedure Q. Because X has the
storage class STATIC, it is allocated and initialized only once, at the
time the program begins execution. This means that when procedure Q is
called the first time, X has the value 5. The PUT statement prints a
value of X equal to 5. Notice that the assignment statement on the
following line assigns the value 10 to X. ‘This means that when
procedure Q is called the second time, X has the value 10, and so the
value 10 is printed by the PUT statement inside procedure Q, the second
time Q is called.

On the other hand, because Y is AUTOMATIC (the default), it is
allocated and initialized each time procedure Q is called, and is freed
each time procedure Q is terminated. This means that when the value 10
is assigned to Y the first time Q is called, that value is lost as soon
as Q is terminated, since Y is freed at that point. The second time Q
is called, Y is reallocated and reinitialized to the value 5, so that
the PUT statement prints a value of 5 for Y. In summary, then, the
first time Q is called, the PUT statement inside Q prints the values 5
and 5. ‘The second time Q is called, the same PUT statement prints the
values 10 and 5.

7-5 First Edition

PL/I Reference Guide

AUTOMATIC Storage in a Recursive Procedure

When a declaration for an AUTOMATIC variable appears inside a recursive
procedure, it is possible to have several different allocations of the
variable in existence at once. Consider the example below. The
procedure Q is recursive, and it contains declarations for a STATIC

variable X and an AUTOMATIC variable Y. When Q calls itself, there are

two simultaneous active invocations of Q. Since X is static, there is

only one allocation of X, and all invocations of Q refers to the same
storage area for X.

Pe PROC OPTIONS (MAIN);

QO: PROC RECURSIVE;
DCL X FIXED STATIC INTT(5):

FIXED AUTOMATIC INIT(5);

On the other hand, Y is AUTOMATIC. If there are two or more active

invocations of Q at one time, there are an equal number of allocations

of Y in existence at the same time. This means that each invocation of

Q references a different allocation of Y.

The multiple allocation of an AUTOMATIC variable in a recursive

procedure is very much like a stack mechanism, since each invocation of

the procedure may reference only the most recent allocation of the

AUTOMATIC variable. CONTROLLED storage also implements a form of stack

mechanism.

CONTROLLED Storage Class

If you declare a variable to have the CONTROLLED storage class, you

have complete control over the allocation, initialization, and freeing

operations for the storage for that variable. For example, suppose

your program contains the declaration

DECLARE MAT(100,100) FLOAT CONTROLLED;

First Edition 7-6

STORAGE MANAGEMENT

Then PL/I allocates no storage for MAT, and it is illegal to reference
MAT until you specify that storage is to be allocated. Use the
statement

ALLOCATE MAT;

to specify that PL/I is to allocate storage for MAT. (If the
declaration for MAT contained an INITIAL attribute, PL/I would also
perform initialization, right after allocation.) Each ALLOCATE
statement can specify a maximum of one segment of storage. In the
above example, if MAT required more than one segment, you would have to
break it into several storage modules and use a separate ALLOCATE
statement for each one.

After your program has completed processing MAT, release the storage
for other use by executing the statement

FREE MAT}

This statenent says that the allocation for MAT is to be released.

Use the ALLOCATE statement to create multiple allocations of a
CONTROLLED variable. When you do this, a reference to the CONTROLLED
variable becomes a reference to the most recent allocation. Therefore,
PL/I supports multiple allocations of CONTROLLED storage as a_ stack
mechanism. The built-in function ALLOCATION takes a OONTROLLED
variable as an argument and returns the number of allocations of that
CONTROLLED variable currently in existence.

Consider, for example, the following:

DECLARE C FIXED CONTROLLED;
ALLOCATE C;

C= 53;

ALLOCATE C;
C = 10;

PUT SKIP LIST (ALLOCATION(C), C);3
FREE C;
PUT SKIP LIST (ALLOCATION(C), C);
FREE C;
PUT SKIP LIST (ALLOCATION (C));

This program segment prints three lines of output. The program segment
begins by creating two allocations of C, setting the first one to 5 and
the second one to 10. Therefore, the first PUT statement prints the
values 2 and 10, since there are currently two allocations of C in
existence, and the most recent allocation has a value of 10. The
second PUT statement appears after a FREE statement. This FREE
statement frees the second allocation of C, so that the second PUT
statement prints the values 1 and 5. ‘The second FREE statement leaves
no remaining allocations of C, with the result that the last PUT
statement prints the value 0.

7-7 First Edition, Update 1

PL/I Reference Guide

One of the most useful features of CONTROLLED storage is that it allows
you to have arrays with variable-sized dimension bounds and strings
with variable-sized maximum lengths. Variable extent expressions are
discussed later in this chapter.

BASED Storage Class and POINTER Variables

BASED storage is the most elementary of the storage classes because it
reduces storage management to a set of operations that put everything
under the control of the programmer. On the other hand, it is the most
sophisticated of the storage classes since by using it the programmer
can implement very advanced list processing applications.

As in the case of CONTROLLED storage, you must allocate BASED storage
by means of an explicit ALLOCATE statement. However, in the case of
CONTROLLED storage, multiple allocations are handled by PL/I by means
of a stack mechanism, which makes only the most recent allocation
available to the programmer. Furthermore, PL/I maintains total control
over the locations of CONTROLLED storage.

In the case of BASED storage, it is the programmer who must writethe
program so as to keep track of the location of each allocation of
Storage. If there are several allocations in existence at the same
time, the programmer may reference any of the allocations at any time.
Furthermore, the programmer may free the allocations in any order.

The user keeps track of the location of each allocation by means of the
POINTER variable. POINTER is an example of a noncomputational data
type of PL/I, so called because you may not perform ordinary arithmetic
or string operations on it. A POINTER value is, conceptually, the
storage address of an allocation of storage. When you allocate a BASED
variable, you specify, in the ALLOCATE statement, the name of a POINTER
variable that PL/I will set to point to the block of storage being
allocated. If later you wish to reference that block of storage, do so
by means of the same POINTER value.

To illustrate these concepts, consider the following program segment:

DECLARE X FIXED BASED;
DECLARE (P,Q,R) POINTER;
ALLOCATE X SET(P);
ALLOCATE X SET(Q);
ALLOCATE X SET(R)?
P->X = 5;
Q->X = PX + 1;
R->X = PK + Q->X;

In this example, the variable X is BASED. We have also declared three
pointer variables, P, Q, and R, allowing us to keep track of three
different allocations of the BASED variable X. (Note that POINTER is a

First Edition, Update 1 7-8

STORAGE MANAGEMENT

data type, while BASED is a storage class. P, Q, and R all have a

storage class of AIJTOMATIC, the default storage class.)

The program segment above contains three ALLOCATE statements. Each of

these statements causes PL/I to allocate a block of storage for X. In

each case, an appropriate POINTER variable P, Q, or R, as specified in

the ALLOCATE statement, is set by PL/I to point to the region just

allocated. The result of these three allocations is shown in Figure

7-1. As this figure shows, there are three blocks of storage, pointed

to respectively by P, Q, and R.

P—> Q-> R~>

Pointer Variables
Figure 7-1

By using the appropriate POINTER variable, you may reference any of

three allocations at any time. To do this, use the right arrow symbol

(->). Precede this symbol with the appropriate POINTER variable, and
follow this symbol with the BASED variable. ‘Therefore, to reference
the first of three allocations in the example above, use P->X; to

reference the second, Q->X; and to reference the third, use R->X. The

last three assignment statements in the program segment above use these

references to assign values to these three allocations. The resulting

values are shown in Figure 7-2.

P-> 5 Q-> 6 R-> 11

Assignment With Pointer Variables
Figure 7-2

Use the same symbol to free any of the allocations. For example, if

you wish to free the second allocation of the three in the example

above, use the statement

FREE Q->X;

7-9 First Edition

PL/I Reference Guide

Once this statement has been executed, the POINTER variable Q no longer
has a valid value.

Another way to understand BASED storage is to compare it to STATIC
storage. Suppose Y is declared as follows:

DECLARE Y FIXED STATIC;

Then the variables X and Y have the same data type, FIXED, but have
different storage classes. If you reference the variable Y in an
expression, PL/I automatically knows from just the identifier Y both
what the data type is and where the storage is. However, this is not
the case with the BASED variable X. IJI£ you use X in an expression,
PL/I does not have enough information to get a value, since a BASED
variable has a data type but has no storage location. In order to
provide PL/I with a storage location, you must also use a POINTER
variable such as P->X. ‘The P portion specifies the location of the
data, and the X portion specifies the data type of the value.

You may, if you wish, specify a default POINTER variable in your
DECLARE statement for a BASED variable. For example, the declaration
of X could be written

DECLARE X FIXED BASED (P) ;

This declaration for X specifies a default POINTER variable of P. This
means that if you reference X with no POINTER qualifier, PL/I assumes
that you mean a POINTER variable of P. You may still specify any
POINTER variable you wish with X simply by using the -> operator.

A List Processing Example

The following short example of list processing by means of a linked
list illustrates BASED storage and POINTER variables. The basic
declarations of our program example are

DECLARE 1 REC BASED,
2 NEXT POINTER,
2 NUMB FIXED;

DECLARE (FIRST, P, 9) POINTER;

In the first declaration, REC is a BASED structure, with two scalar
members NEXT and NUMB. This means that you may think of an allocation
of REC as looking something like Figure 7-3. As that figure shows, an
allocation of REC is a block of storage containing two values, NEXT and
NUOMB.

First Edition 7-10

STORAGE MANAGEMENT

NEXT

 NUMB
A BASED Structure

Figure 7-3

A linked list is a collection of allocations of REC, with each block in

the list pointing to the next block in the list. That is, each

allocation of REC contains a POINTER value and a FIXED value. ‘The

POINTER value can point to another allocation of REC. For example,

Figure 7-4 shows four allocations of REC, with each pointing to the

next one in the list. The result is that this is a linked list of four

numbers, 8, 13, 22, and 5.

A Linked List

Figure 7-4

The following PL/I code segment creates a linked list from 50 values

that are input using GET LIST:

ALLOCATE REC SET(FIRST);
GET LIST (FIRST->NUMB);
P = FIRST;
DO K = 2 TO 50;

ALLOCATE REC SET(Q)?
P->NEXT = Q;
GET LIST (Q->NUMB);

P= Q;
END;

P—>NEXT = NULL();

7-11 First Edition

PL/I Reference Guide

The first statement allocates a storage block for REC, and sets the

pointer variable FIRST to point to that storage block. The second

statement inputs a data value, and stores it in the NUMB portion of the

newly allocated REC storage block. Notice that FIRST->NUMB is a

shorthand notation for FIRST->REC.NUMB. The third statement is an

assignment statement, assigning the POINTER value FIRST to the POINTER

variable P. The result is that P and FIRST now point to the same

storage block. If we assume that the first input value is 8, the

situation after the first three lines of the above code may be pictured

as follows:

AN
FIRSTneo

The next six lines of code form a DO group that allocates the next 49

blocks in the linked list, and inputs the 49 data values to be stored

in the 49 storage blocks. Let us examine what happens during the first

iteration of this loop. The statement ALLOCATE REC SET(Q) allocates a

new REC storage block, and sets the POINTER variable Q to point to it.

Next, the statement P->NEXT = Q specifies that the NEXT field of the

first block (the one pointed to by P) is to point to the same thing

that Q points to. The result is two allocated REC blocks, with the

first pointing to the second:

PY Q

FIRSTanne =

The next statement of the loop inputs a data value, storing it into the

NUMB field of the second block, the one pointed to by Q. ‘Then, the

assignment statement P = Q advances the pointer variable P so that it

First Edition 7-12

STORAGE MANAGEMENT

points to the same block pointed to by Q. The result, assuming that
the second data value is 13, may be shown as

 o

V
W

 FIRST2

 8 13

Subsequent repetitions of the loop allocate additional blocks in the
linked list, setting them so that each points to the next one. This
process is accomplished by advancing the pointers P and Q as the
repetitions continue. For example, halfway through the first
repetition of the loop, when K = 3, the linked list may be thought of
as follows:

 AY Ne
FURSTcoemesneap > >

The last line of code in the preceding example illustrates a new
built-in function, NULL(). This built-in function takes no arguments,
and it returns a POINTER value that points nowhere. The assignment
statement P->NEXT = NULL() specifies that the NEXT field of the last
block in the linked list is to point nowhere.

The following loop prints out all the numbers in the linked list:

DO P = FIRST REPEAT (P->NEXT)
WHILE(P “= NULL());

PUT LIST (P—>NUMB);
END;

The DO statement specifies that the pointer P begins at the first block
in the list, the one pointed to by FIRST, and that in each subsequent
repetition the pointer P moves up to the next block in the linked list.
The repetitions continue until P equals NULL(), indicating the end of

the linked list.

7-13 First Edition

PL/I Reference Guide

The complete program for the above discussion follows.

LINK: PROCEDURE OPTIONS (MAIN) ;
DECLARE 1 REC BASED,

2 NEXT POINTER,
2 NUMB FIXED;

DECLARE (FIRST, P, 9) POINTER;
ALLOCATE REC SET(FIRST);
PUT LIST('ENTER FIRST NUMBER") ;
GET LIST (FIRST->NUMB) 7
P = FIRST;
DO K = 2 TO 20;

ALLOCATE REC SET (Q) 3
P-SNEXT = QO;

PUT LIST('ENTER ANOTHER NUMBER') ;

GET LIST (Q->NUMB) ;

P = Q}
END;

P—>NEXT = NULL();
PUT SKIP LIST('END OF RUN');

FUT SKIP;

DO P = FIRST REPEAT P->NEXT
WHILE(P “= NULL);
PUT LIST (P->NUMB) ;

END;

END LINK;

AREA and OFFSET Variables

If you use the ALLOCATE statement to allocate several blocks of

storage, you have no control over where those blocks of storage are

located, In fact, it is possible for PL/I to allocate those blocks of

storage in such a way that they are scattered throughout memory. This

is not a problem in most applications, because you can use the POINTER

values to find those storage blocks, no matter where they are.

However, suppose you wish to allocate the blocks in such a way that

they are all collected in one place, so that you can use an output

operation to write all the blocks together out onto secondary storage.

For this, you must be able to tell PL/I to allocate all of its BASED

storage within a single larger region of storage, which we call an

area.

PL/I provides this kind of support by means of two noncomputational

data types, AREA and OFFSET, ‘The value of an AREA variable is not a

value in the usual sense. Rather, the value of an AREA variable is a

block of storage from which you may suballocate smaller blocks of

storage for BASED variables. An OFFSET variable is like a POINTER

variable in that you use it with a BASED variable to specify the

location of the storage for the BASED variable. However, it differs

from a POINTER variable in that it is used only in conjunction with an

AREA variable, and its value is not the location of the storage block

First Edition 7-14

STORAGE MANAGEMENT

being allocated, but is rather the displacement or offset of the
storage block from the beginning of the area from which it was
suballocated.

To understand the relationships among BASED variables, AREA variables,
and OFFSET and POINTER variables, look at an example starting with some
basic declarations:

DECLARE (A,A2) AREA(2000);
DECLARE O OFFSET;

DECLARE P POINTER;
DECLARE X FIXED BASED;

The first declaration specifies that two variables, A and A2, are to be
AREA variables, each representing a region of storage containing 2000
bytes. The second line specifies that O is an OFFSET variable. 0 here
represents displacements inside the two AREA variables.

Now consider the following statement:

ALLOCATE X IN(A) SET(P);

This statement specifies that an allocation of the BASED variable X is
to be made within the area A. The result may be pictured as shown in
Figure 7-5. In the figure, A represents a region of storage that is
one segment or less in size. PL/I uses the first portion of that
region as a header in which to store control information about what has
been allocated in the area. After the ALLOCATE statement has been
executed, a small portion of A is reserved for that allocation of X,
and the pointer P points to that allocation.

Header

PP exer Allocation of X

Allocation Within an AREA

Figure 7-5

7-15 First Edition, Update 1

PL/I Reference Guide

The statement

ALLOCATE X IN(A) SET(O);

causes a second allocation of X to be made, but this time the OFFSET
variable O is to be set rather than a POINTER variable. The result is
shown in Figure 7-6. There are now two allocations of X, and, as
indicated by the figure, the value of O is the displacement of the
second allocation from the beginning of the area.

 A
Header |

P essai Allocation of X |

Allocation of X

Two Allocations of X
Figure 7-6

As with ordinary BASED variables, use the -—> operator to reference a
specific allocation of X. For example, the statement

P->X = 53

stores the value 5 into the first allocation of X.

On the other hand, a statement like

O->X = 5;

is not valid, because PL/I does not have enough information. This
statement tells PL/I that you want to reference an allocation at a
certain displacement from the beginning of an area, but PL/I has no
idea which area you mean. The -> operator must be preceded by a
POINTER value. Therefore, in order to reference the second allocation
of X, it is necessary to convert the OFFSET variable O to a value. The
way to do this is by means of the built-in function POINTER. This
function takes two arguments, an OFFSET value and an AREA value, and
returns the corresponding POINTER value.

First Edition, Update 1 7-16

STORAGE MANAGEMENT

For example, the statement

POINTER(O,A)-—>X = 5;

is legal, because now you are telling PL/I both the AREA variable, A,
and the displacement or OFFSET value within that area.

It is legal to execute an assignment statement involving AREA
variables. For example, the statenent

A2 = A;

assigns the entire area A to the area A2. The result is as shown in
Figure 7-7. The area A2 now contains two allocations of X. The OFFSET
variable O is a valid displacement to the second allocation of X in the
area A2. This is the value of OFFSET variables. When you assign one
area to another, the OFFSET values remain the same for the individual
suballocations.

A2 |
Header

Allocation of X

Allocation of X |

The OFFSET Variable
Figure 7-7

On the other hand, there is no way to access the first allocation of X
in A2. There is no OFFSET variable indicating its displacement, and
the POINTER variable P, used in the area A, has no meaning in the area
A2.

7-17 First Edition, Update 1

PL/I Reference Guide

In this situation, you could actually access the first allocation of X
in A2 by a somewhat roundabout method. A built-in function, called
OFFSET, can be used to convert a POINTER variable to an OFFSET value.
If you used this built-in function on the POINTER value P, you would
have an OFFSET value to the first allocation of X in A that would also
be valid for the first allocation of X in A2. That OFFSET value could
then be used to access the first allocation in A2 in something like the
following method:

DECLARE O02 OFFSET:
O02 = OFFSET(P,A);
POINTER(02,A2)-> = 10;

This group of statements would assign the value 10 to the first
allocation of X in A2.

Use the FREE statement with the IN option to free a_ suballocation
within an area. For example, the statement

FREE P->X IN(A);

is valid to release the first allocation of X in the area A.

Use the built-in function EMPLfy if you wish to free all allocations in
an area simultaneously. For example, the statement

A2 = EMPTY();

assigns a cleared area to the AREA variable A2, with the effect that
all suballocations within A2 are freed.

As we have already stated, an OFFSET variable may not be used by itself
to indicate the location of a specific allocation. You must always
specify which AREA variable contains the allocation, and you do this
with the built-in function POINTER.

In the declaration of an OFFSET variable, you may specify a default
AREA variable, which PL/I is to use when you use the OFFSET variable by
itself without specifying an explicit AREA variable. For example, if
the declaration of O given above were changed to

DECLARE O OFFSET(A);

First Edition, Update 1 7-18

STORAGE MANAGEMENT

you could use a reference like O->X, and PL/I would assume that you
meant the area A. In addition, statements like P= 0 and O=P are
legal, since PL/I can supply the appropriate AREA variable. Note that
you could use the OFFSET variable O with any other AREA variable, by
using either the POINTER or the OFFSET built-in function. For example,
the statement

POINTER(O,A2)—->X = 5;

is legal, with the explicit AREA variable A2 replacing the default AREA
variable A.

The ALLOCATE and FREE Statements

The format of the ALLOCATE statement is as follows:

ALLOCATE specification {,specification}...;

where each specification is of the form

variable {IN(area-variable)} {SET(locator) }

If there are multiple specifications, multiple allocations are done
with a single ALLOCATE statement, provided the total allocation does
not exceed one segment. PL/I raises the AREA condition if an
allocation exceeds one segment.

The variable must be either CONTROLLED or BASED. If it is OONTRQGLLED,
the IN and SET options are illegal.

If the variable is BASED, you must specify a locator, either a POINTER
variable or an OFFSET variable. You may specify the locator either
explicitly by means of the SET option, or by default if a locator is
specified with the BASED attribute in the declaration of the variable.

If you wish the allocation to take place inside an area, you must
specify an AREA variable. You may do this either explicitly by means
of the IN option, or by default, if the locator is an OFFSET variable
with a default AREA variable.

The FREE statement has the format

FREE specification {,specification}...;

7-19 First Edition, Update 1

PL/I Reference Guide

where each specification is of the form

{locator->} variable {IN(area-variable)};

Multiple freeings take place if there are multiple specifications in
the FREE statement. The variable must be either CONTROLLED or BASED.
If it is CONTROLLED, the locator and the IN option may not be
specified.

If the variable is BASED, you must specify a locator, either explicitly
in the specification or else by default if the declaration for the
BASED variable contains a default locator. If the freeing is to take
place within an area, you must specify the area either explicitly by
means of the IN option, or by default if the locator is an OFFSET
variable with a default AREA variable.

TECHNIQUES FOR OVERLAYING STORAGE

The term overlaying storage describes the situation that occurs when
two variables share the same storage area. Of course, one reason to do
this might be simply to save space. However, it is more common for a
programmer to use these techniques to access the same block of data in
two different ways, either considering it as organized into aggregates
in two different ways or treating some of the data as having two
different data types.

To illustrate the last sentence, consider the two following
declarations: :

DECLARE A(3) FIXED;
DECLARE 1 S,

2 X FIXED,
2 Y FIXED,
2 Z FIXED;

The variable A is an array, and the variable S is a structure. Each of
them is an aggregate containing three FIXED data values. If it were
possible for A and S to share the same storage area, large enough to
hold the three FIXED data values, then the first data value could be
accessed by either a reference to A (1) or a reference to S.X.
Similarly, the second data value could be referenced by either A (2) or
S.Y, and the third by A (3) or S.Z. This ability to organize the same
data area into two different aggregate configurations can be very
valuable in certain applications.

First Edition, Update 1 7-20

STORAGE MANAGEMENT

In a different example,

DECLARE C CHARACTER(100) ;
DECLARE D(100) CHARACTER(1);

each of the variables C and D requires 100 characters of storage. If
it were possible for C and D to occupy the same storage, you would be
able to reference the same characters either as a single long CHARACTER
string, or else as members of a CHARACTER array.

As a final introductory example, consider the following declarations:

DECLARE F FLOAT BINARY (23);
DECLARE B BIT(32);

On the Prime computer architecture, the FLOAT variable F declared above
requires two words of storage, or 32 bits. Therefore, if F and B could
share the same two words of storage, your program could use F to refer
to those two words as a FLOAT number, and could use B to examine the
format of that FLOAT number as a BIT string. This is an example of a
situation in which the same storage area can be accessed using two
different data types.

The two types of overlaying of storage among variables are machine
independent and machine dependent. The first two examples just given
would be machine independent, because sharing storage in those
situations would have the same results on any implementation of PL/I on
any machine. The third example, where a FLOAT number is overlaid by a
BIT string, is an example of machine dependent overlaying. The reason
is that the BIT configuration of FLOAT numbers differs from machine to
machine, and so you might get different results on different machines
from overlaying that storage.

Overlaying of BASED Storage

Overlaying BASED storage is done fairly easily, since you need only use
the same POINTER variable with different BASED variables. Consider,
for example, the following declarations:

DECLARE P POINTER;
DECLARE C CHARACTER(100) BASED;
DECLARE D(100) CHARACTER(1) BASED;

7-21 First Edition

PL/I Reference Guide

Since you can use the pointer P with either of the BASED variables C or

D, you may reference the same block of storage as either a CHARACTER

string of length 100, or an array of 100 single characters. Consider,

for example, the following statements:

ALLOCATE C SET(P);
PUT LIST (P->C);
PUT LIST (P->D);

The first PUT statement prints out the region of storage as a single

CHARACTER string of length 100. The second PUT statement prints 100

individual characters, following the conventions of PUT LIST. Both

statements refer to the same section of storage.

Similarly, you can overlay any two BASED variables, even if they have

different data types and different aggregate types. Overlaying storage

of different types, however, produces machine dependent results.

The ADDR Built-in Function

The preceding examples demonstrate how it is possible to overlay BASED

storage with a BASED variable of a different data type or aggregate

type. The ADDR built-in function allows you to overlay any storage,

STATIC, AUTOMATIC or CONTROLLED, with a BASED variable.

Consider the following program segment:

DECLARE C CHARACTER(100) STATIC;
DECLARE D(100) CHARACTER(1) BASED;

DECLARE P POINTER;

P = ADDR(C);
PUT LIST (P->D);

The ADDR built-in function, which is illustrated in this program

segment, takes one argument and returns a POINTER value for the storage

for that argument. Therefore, the first assignment statement shown

above computes the address of the STATIC variable C and assigns that

address aS a POINTER value to P. ‘Therefore, the PUT statement prints

out the CHARACTER string C as an array of 100 individual characters.

By means of the ADDR built-in function, you can obtain a POINTER value

for the storage for any variable of any storage class. Therefore, you

can always overlay storage of any storage class with a BASED variable

of your choice.

First Edition 7-22

STORAGE MANAGEMENT

Machine Independent Overlaying Rules

Those programmers who plan to run their PL/I programs only on Prime
equipment may feel free to overlay storage of one data type with
storage of any other data type. However, for some users it is
important that their PL/I programs run on different machines and
different implementations of PL/I and get the same results. These
programmers must follow certain rules if they are going to use
overlaying techniques.

There are two forms of machine independent overlaying: simple
overlaying and string overlaying. In simple overlaying, both variables
are either scalars with the same data type or are aggregates whose
scalar values have the same data types in the same order. For example,
consider the following declarations:

DECLARE 1 S(3) BASED,
2 A CHAR(20) VAR,
2 B FIXED,

2 C CHAR(20) VAR,
2 D FIXED;

DECLARE 1 T(6) BASED,

2 X CHAR(20) VAR,

2 Y FIXED;

The aggregates S and T each contain 12 scalar values, with the data
types of these scalars alternating between CHARACTER (20) VARYING and
FIXED, As a result, if you overlay S and T, your program is still
machine independent.

In string overlaying, both variables are NONVARYING strings, either
CHARACTER or BIT. Furthermore, all strings involved must be UNALIGNED.
Consider, for example, the following declarations:

DECLARE CARD CHAR(80) BASED;
DECLARE 1 IMAGE BASED,

2 NAME CHAR(20),
2 CODES (25) CHAR(2),
2 FILLER CHAR (10);

Since CARD is a scalar and IMAGE is a structure containing 27 scalars,
CARD and IMAGE are not eligible for simple overlaying. However, notice
that both variables contain precisely 80 characters. As a result, they
fulfill the requirement for string overlaying, and so overlaying these

two variables does not make your program machine dependent.

7-23 First Edition

PL/I Reference Guide

It is possible to combine simple overlaying and string overlaying, and

still remain machine independent. For example, consider the following

declarations:

DECLARE 1 S BASED,
2 A(2) FIXED,
2 B BIT(40);

DECLARE] T BASED,
2 U FIXED,
2 V FIXED,
2 W(4) BIT(10);

S and T do not qualify either for simple overlaying or for string

overlaying. However, the first two data items in both S and T are both

FIXED, and thus qualified for simple overlaying, and the last portion

of both structures consists of 40 BIT values, qualified for string

overlaying. As a result, overlaying the two structures is machine

independent.

If you attempt to overlay any two data items with different data types,

you will get machine dependent results. This includes the situation

where one of the data items is a VARYING string and the other is

NONVARYING.

The DEFINED Attribute

In preceding paragraphs, we have discussed how you can use a BASED

variable to overlay a storage block of one aggregate type or data type

with a variable of a different aggregate type or data type. PL/I also

provides a more autanatic mechanism for overlaying storage, called the

DEFINED attribute.

Consider the following example:

DECLARE A(100) FIXED DECIMAL (5) ;
DECLARE B(10,10) FIXED DECIMAL (5) DEFINED (A) ;

Both A and B contain 100 FIXED DECIMAL(5) data items, but A is a singly

dimensioned array and B is a doubly dimensioned array. This fits the

definition of simple overlaying described in the preceding section, and

so PL/I permits you to specify DEFINED(A) in the declaration of B to

indicate that A and

B

share the same storage. The variable A is said

to be the base variable for the DEFINED attribute for B.

ANS PL/I allows only simple overlaying or string overlaying with the

DEFINED attribute. Prime PL/I allows overlaying data of any type using

the DEFINED attribute, but such overlaying produces machine dependent

effects. (Appendix C explains the underlying representations of PL/I

First Edition 7-24

STORAGE MANAGEMENT

data types on Prime hardware.) The base variable of a DEFINED
attribute may be neither DEFINED nor BASED.

When using string overlay defining, use the POSITION attribute to
specify that the DEFINED variable starts at a certain character
position within the base variable. Consider the following:

DECLARE CARD CHARACTER (80) ;
DECLARE NAME CHARACTER(20) DEFINED(CARD) POSITION (23) ;

In this example, CARD is a card image of 80 characters. The NAME field
in that card image occupies columns 23 through 42. ‘The declaration of
NAME just above specifies that NAME is the 20-character field of CARD
beginning from the twenty-third character.

PL/I supports a third type of DEFINED attribute called iSUB. The
purpose of iSUB defining is to give you a way to define arrays in other
than linear or rectangular fashion. Consider the example:

DECLARE A(3,5) 3
DECLARE B(5,3) DEFINED(A(2SUB, 1SUB));

A and B are both two-dimensional arrays containing 15 scalar elements.
The expression in parentheses following the keyword DEFINED specifies
how to translate a subscript list for B from the desired subscript list
for A. The symbol 1SUB is to be replaced by the first subscript of A,
and the symbol 2SUB is to be replaced by the second subscript. For
example, if your program contains a reference to B(M+1,N), this is
equivalent to a reference to A(N,M+1). Therefore, this use of
DEFINED has the effect of reversing the way in which the subscripts
Vary.

Consider a second example:

DECLARE MAT(20,20);
DECLARE DIAG(20) DEFINED (MAT (1SUB,1SUB));

Here, MAT is a two-dimensional matrix, and DIAG is a one-dimensional
array whose elements form a diagonal of the matrix. The expression
following the DEFINED keyword specifies that a reference to DIAG(K) is
to be replaced by a reference to MAT(K,K).

7-25 First Edition

PL/I Reference Guide

EXTENT EXPRESSIONS AND INITIAL ATTRIBUTE

This section deals with certain expressions that can appear in DECLARE

statements. Two types of such expressions are extent expressions,

which are used as dimension bounds for arrays, maximum string lengths,

and AREA sizes, and INITIAL expressions, which appear as iteration

factors or initialization values in the INITIAL attribute.

This section discusses what happens when there are variables in these

expressions.

The INITIAL Attribute

Use the INITIAL attribute in the declaration of a variable in order. to

specify what initial value the variable should have. PL/I performs the

initialization just after it allocates storage for the variable.

For an ordinary scalar variable, specify the initial value in

parentheses following the keyword INITIAL, as in_ the following

examples:

DECLARE RATE FIXED INITIAL (0) ;
DECLARE STR CHAR(20) VAR INIT('XYZ');

In the first declaration, the FIXED variable RATE is to be initialized

to 0, and in the second declaration the CHARACTER variable STR is to be

initialized to 'XYZ'.

If the variable being initialized is an array, you must specify one

initial value for each element in the array. For example, the

statement

DECLARE M(5) BIN FIXED INIT(8,4,2,7,3);

specifies that the array M has five elements, which are to be

initialized to 8, 4, 2, 7, and 3, respectively. If the array is large,

and if you wish to initialize many of the elements of the same value,

then you can use a repetition factor. For example, the statement

DECLARE VECTOR(100) INIT (100) 0) ;

specifies that the 100 elements in the array VECTOR are all to be

initialized to 0. Amore complex example is the following:

DECLARE S(-10:10) INIT((10)-1,0, (10) 1);

First Edition 7-26

STORAGE MANAGEMENT

The vector S contains 21 elements, with array subscripts varying from
-10 to 10. The INITIAL attribute specifies that the first 10 of these
values are to be initialized to -1, the 11th to zero, and the last 10
to l.

If the INITIAL attribute does not specify enough values, PL/I does not
initialize the entire array. For example, the statement

DECLARE VECTOR(100) INITIAL ((50) 0) ;

specifies that the first 50 elements of the array VECTOR are to be
initialized to 0, and the last 50 elements are to be left
uninitialized. If the INITIAL attribute specifies more values than
there are elements in the array, PL/I ignores the extra values.

If you specify an asterisk (*) as an initial value, you are indicating
to PL/I that you do not wish any initialization for that particular
array element. For example,

DECLARE VECTOR(100) INIT((5) *,(10)0,*, (9) 2);

specifies that the first five elements of the array VECTOR are to be
uninitialized. Elements 6 through 15 are to be initialized to 0.
Element 16 is to be uninitialized and elements 17 through 25 are to be
initialized to 2.

When you are initializing a string array, a special problem arises when
you use a repetition factor with a string constant. The problem is
that PL/I could confuse the repetition factor for the initialization
with a replication factor for the CHARACTER string. Consider, for
example, the following declaration:

DECLARE CA(5) CHAR(50) VAR INIT((5)'A');

The writer of this statement intended that each of the five elements of
CA be initialized to 'A', Instead, PL/I interpreted (5)'A' as a
replicated string constant equaling 'AAAAA', The result is that PL/I
initializes CA(1) to 'AAAAA', and leaves the rest of the array
uninitialized. The easiest way for the programmer to accomplish the
multiple initialization is to insert a dummy string replication factor
of 1, as follows:

DECLARE CA(5) CHAR(50) VAR INIT((5)(1) 'A');

In this case, PL/I interprets (1) as a string replication factor, and
so interprets (5) as an initialization repetition factor.

7-27 First Edition

PL/I Reference Guide

When you wish to specify initialization for a_ structure, specify an

INITIAL attribute for each of the scalar elements in the structure.

Consider, for example, the following:

DECLARE 1 S,
2 A INIT(0),
2 B INIT(5);

Here the structure § is initialized by initializing S.Ato 0 and S.B
to 5.

If you are initializing an array of structures, your initialization

list must provide initialization values for all the elements resulting

from the inherited dimension. This is shown in the following:

DECLARE 1 S(10),
2 A INIT((10)0),
2 B INTT((5)0, (5)1);3

Each of §.A and S.B is an array containing 10 elements, as a result of

having inherited the dimension from S. As shown, each INITIAL list

contains 10 elements for that reason.

Variables in Extent and INITIAL Expressions

Up until now, all extent and initial expressions have been constant@

Under certain circumstances, PL/I pemits arbitrary expressions to

appear.

If the variable being declared is AUTOMATIC, extent and initial

expressions may contain variables, provided that the variables are not

AUTOMATIC and are declared in the same block. For example, the

statement

DECLARE A(N) INITIAL (N) 0);

is legal, provided that the variable N is not AUTOMATIC and is declared

in the same block.

Variables are permitted in declarations for CONTROLLED storage as well.
There is no similar restriction on these variables.

For both AUTOMATIC and CONTROLLED, the extent expressions and the

initial expressions are evaluated at the time that the variable is

allocated. ‘The expressions are not evaluated at any other time. Thus,

in the example above, if the value of N should change after A has been

First Edition 7-28

STORAGE MANAGEMENT

allocated, that change would not affect the dimension size of the array
A. Even when PL/I frees the allocation of A, it does not re-evaluate
the expression; instead, it uses the value of the dimension size,
which it saved when it allocated A.

Variable extent and initial expressions are not permitted for STATIC
storage.

Variables and REFER Option for BASED Storage

The handling of variables in initial expressions for BASED storage is
the same as for OONTROLLED storage. The expressions in the INITIAL
attribute are evaluated only when the BASED storage is allocated by
means of an ALLOCATE statement.

However, the rules are somewhat different for variables in extent
expressions for BASED storage. If a BASED variable contains a variable
extent expression, the extent expression is evaluated not only when the
BASED variable is allocated, but also whenever the BASED variable is
even referenced. Consider the following program segment:

DECLARE A(N) BASED, P POINTER;
N = 10;
ALLOCATE A SET(P) ?
PA = 5;
N= 7}
PUT LIST (P—>A) ;

At the time the ALLOCATE statement is executed, the value of N is 10,
and so PL/I allocates 10 words of storage for A. The next statement
assigns the value 5 to each of the 10 elements in the array A just
allocated. However, when the PUT statement is executed, only seven
array elements are printed. The reason is that the value N has been
changed to 7, and when PL/I references A in the PUT statement, it uses
the current value of N. Notice that if the value of N had been changed
so that it was larger than 10, execution of the program would have
produced unpredictable results.

PL/I provides one additional capability for variable sized BASED
storage. This feature, the REFER option, allows the value of an extent
expression to be part of a structure. Consider the following example:

DECLARE 1 STOCKITEM BASED,

2 NAME CHAR(30),
2 COUNT BIN FIXED,
2 QGODES (N + 1 REFER (COUNT)) FIXED;

7-29 First Edition

PL/I Reference Guide

This declaration describes a BASED structure called STOCKITEM

containing three fields. The third of these fields is an array called

CODES, where the array bound contains two separate specifications, the

expression N +1 and the identifier QOUNT, the latter enclosed in

parentheses following the keyword REFER. PL/I uses the expression

N+ 1 when an ALLOCATE statement for STOCKITEM is executed, This

expression determines the size of the array at allocation time. PL/I

also stores the value of that expression into the COUNT field of

STOCKITEM, From that point on, whenever your program references

STOCKITEM, PL/I uses the value of COUNT to determine the size of the

CODES array. This capability is particularly important in situations

involving input/output. If your program writes out an allocation of

STOCKITEM, and then reads the same allocation back at a later time,

your program will still know how large the CODES array is, since that

information is stored in the structure in the COUNT field,

The format of an extent expression using the REFER option is as

follows:

expression REFER (identifier)

This format can be used in any BASED structure in an extent expression

for an array bound, a string length, or an AREA size. PL/I evaluates

the expression when your program executes an ALLOCATE statement for the

BASED structure. ‘The identifier must be a preceding member of the same

BASED structure. Whenever your program references the BASED structure

other than in an ALLOCATE statement, PL/I uses the member specified by

identifier to determine the size of the extent expression.

INTERNAL AND EXTERNAL SCOPE ATTRIBUTES

The scope of a variable is either INTERNAL or EXTERNAL. The default is

INTERNAL.

If a variable has either the STATIC or CONTROLLED storage class, you

may declare it to be EXTERNAL in addition. Consider the following

example:

DECLARE X FIXED DECIMAL (5)
STATIC EXTERNAL INITIAL (0) ;

If this declaration appears in several different external procedures of

your program, any reference to X in one of those procedures refers to

precisely the same variable as a reference to X in a different

procedure. Therefore, this method allows you to share data values

among external procedures without having to pass those values as

araquments.

First Edition 7-30

STORAGE MANAGEMENT

Note that this method does not work unless the declarations of the
EXTERNAL variable are identical in all procedures in which it is used.
Even the INITIAL attribute must be identical. If the EXTERNAL variable
is a structure, all the structure members must be declared with the
same attributes in all procedures, although it is permitted that the
member names be different in different procedures,

The EXTERNAL attribute may also apply to FILE and ENTRY constants. In
fact, EXTERNAL is the default for these constants.

NAMED CONSTANTS AND NONCOMPUTATIONAL VARIABLES

If a value has a noncomputational data type, that value may not be used
in ordinary computations such as addition or concatenation. Previous
sections have covered the noncomputational data types POINTER, OFFSET,
and AREA, ‘The following sections examine the other noncomputational
data types in the PL/I language.

Named Constants

You are already familiar with constants in computational data types.
For example, 23 is a constant with data type FIXED DECIMAL(2).

For noncomputational data types, there are special rules for how you
specify constants. In all cases, the constant is specified by an
identifier, just as if it were a variable. The difference is that it
is illegal to assign values to these constants, Since these constants
are specified by identifiers, they are called named constants.

To declare an identifier to be a LABEL, FORMAT, or ENTRY constant, use
that identifier as the statement label for an appropriate statement.
Tf you use an identifier as a label of a FORMAT statement, the
identifier is declared as a FORMAT constant. If you use the identifier
as the label of a PROCEDURE or ENTRY statement, it is an ENTRY
constant. If you use it as a statement label for any kind of statement
other than FORMAT, PROCEDURE or ENTRY, it is a LABEL constant.

Use the DECLARE statement to declare either a FILE or ENTRY constant.

Here is an example:

DECLARE TAPE FILE RECORD INPUT;
DECLARE RANGE EXTERNAL ENTRY;

The first of these statements declares TAPE to be a FILE constant, and

the second declares RANGE to be an ENTRY constant.

7-31 First Edition

PL/I Reference Guide

Noncomputational Variables

The following program segment shows how to define variables of these

noncomputational data types:

DECLARE © LABEL VARIABLE?
GET LIST (X) 3
IF X = 0 THEN L = ADD;

ELSE L = PROD;

GO TO L;

ADD: . oe

PROD:«

In this program segnent, L is a LABEL variable, meaning that it is a

variable to which you may assign LABEL values. The third and fourth

lines of this program segment illustrate two such possible assignments,

under control of an IF statement. ‘The GO TO statement on the following

line transfers control to either ADD or PROD, depending on which of

those LABEL values has been assigned to L.

Similarly, you may declare variables of the FORMAT, ENTRY, and FILE

data types. Consider the following program segment:

DECLARE (OUTFILL, OUTFIL2)
FILE OUTPUT STREAM PRINT;

OPEN FILE(QUTFIL1) , FILE(OUTFIL2) ;
DECLARE F FILE VARIABLE;
GET LIST (X);
IF X = 0 THEN F = OUTFILL;

ELSE F = CUTFIL2;
PUT FILE(F) PAGE LIST(A + B);

In this example, the FILE variable F may be assigned either OUTFIL1 or

QUTFIL2. ‘The PUT statement in the last line of the example may perform

output to either of these files, depending upon the current value of

the FILE variable F.

ADVANCED PROGRAMMING OPTION: POINTER OPTIONS (SHORT)

If your program makes extensive use of POINTER variables, you may wish

to econanize both on storage and execution time. To do this, you may

declare POINTER variables with the SHORT option, using the following

syntax:

DECLARE P POINTER OPTIONS (SHORT);

First Edition 7-32

STORAGE MANAGEMENT

The pointer occupies two words of storage, rather than three; see
Appendix C for more details. The compiler generates instructions that
assume no bit offset in the pointer value.

Two-word pointers, having no bit or byte address part, must point to
objects aligned on word boundaries. Therefore, you must make sure that
a SHORT pointer points to aligned data: BIT and CHARACTER data, for
instance, should be declared with the ALIGNED attribute. Because there
is no way to ensure that the SUBSTR of a CHARACTER string is word
aligned, do not permit a SHORT pointer to point to an object of this
type e

7-33 First Edition

Subroutine and

Function Procedures

PROCEDURES

Every PL/I program is a procedure. We have seen numerous examples of

the PROCEDURE statement with OPTIONS(MAIN) to indicate the beginning of

amain program. If your program is very large, you may find it

convenient to break it into smaller programs, each of which performs a

single simple task. PL/I gives you this capability by allowing you to

break up a large procedure into two or more smaller procedures or

subprocedures.

You may be familiar with the terms modular programming and top-down

programming, both of which are related to the use of subprocedures.

Modular programming refers to the practice of breaking a large program

into small pieces, known as modules. This is an important step in the

design of a computer program because you can take a_ large complicated

problem and break it up into smail components such that each of the

components can be programmed ina single small module. It is even

possible to assign different modules to different programmers and then

later to run all the modules together as one big program.

Top-down programming refers to a type of modular programming where the

modules are deSigned and coded in a certain way. ‘To understand

top-down programming, see Figure 8-1.

8-1 First Edition

PL/I Reference Guide

PAYROLL

{ J

INPUT PROCESS OUTPUT

RD__MASTER RD__TIMECARD WR__MASTER WR__PAYCHECK

t I

SALARY TAXES BENEFITS

i I
FEDERAL FICA STATE INSURNCE

Top-down Design
Figure 8-1

Figure 8-1 is a hierarchy chart for a large payroll processing program.
Each of the boxes on this chart represents a single module in the

program. The lines in the chart indicate which modules are called from

which modules. For example, PAYROLL calls three modules, INPUT,

PROCESS, and OUTPUT. PROCESS itself calls three modules, SALARY,

TAXES, and BENEFITS. BENEFITS calls one other module, INSURNCE.

Top-down programming of this program has you write the procedures in

this chart starting from the top and working down. ‘This means that you

write the procedure PAYROLL first, then the modules INPUT, PROCESS, and

OUTPUT, and so forth. With this method, you design your program in the

most logical style possible. If you code the module PAYROLL first, you

are forced to understand the overall flow of control in the program,

since this is the highest level module. In general, you work on the

conceptually broader modules before you get into the detailed

programming required by the lower level modules.

Another purpose of the procedure facility is to save space. Suppose

that your program contains the same group of statements in several

different places, You may take that group of statements and put then

together into a single procedure, and then invoke that procedure from

each of the places where the statements have been. This means that the

group of statements, which had appeared in several places in your

program, now appears only once, in a separate procedure, thereby saving

space. The example of a subroutine procedure in the next section

illustrates this.

First Edition 8-2

SUBROUTINE AND FUNCTION PROCEDURES

SUBROUTINE PROCEDURES

PL/I permits you to write a procedure as either a subroutine procedure
or a function procedure. The difference between these two types is the
way in which you invoke them. You invoke a subroutine procedure by
means of a CALL statement, and you invoke a function procedure by
simply referencing the procedure name in any expression. Function
procedures can be very convenient, since they allow you to define your
own functions and use them just as you would use the built-in functions
that are supplied by the system.

Example of a Subroutine Procedure

Let us start with a simple example of a program that does not use a
procedure, and then change it to an equivalent program that does use a
procedure. The following program contains no subprocedure, but
contains the same group of five statements in two different places.
This program uses the GET LIST statement to input an entire array A.
The program then prints out the entire array A. Next, the program
makes computations that change the array A, and then prints out the
array once more. The program then prints END OF PROGRAM and
terminates.

Ps PROCEDURE OPTIONS (MAIN);
DECLARE A(100) FIXED DECIMAL (5,2) ;
GET LIST (A);

'PUT PAGE LIST('PRINTOUT OF ARRAY A');
PUT SKIP (3) 3

DO K = 1 TO 100;
PUT SKTP LIST(K, A(K))-;
END:

Computations that change the array A

PUT PAGE LIST('PRINTOUT OF ARRAY A');
PUT SKIP(3) ;

DO K = 1 TO 100;
PUT SKIP LIST(K, A(K))3
END;

PUT SKIP LIST('END OF PROGRAM’) ¢
END P3;

The brackets highlight the fact that the five statements that print out
the array A appear in two different places in the program. It is
possible to take these five statements, to put them into a separate

8-3 Pirst Edition

PL/I Reference Guide

subprocedure, and then to use the CALL statement to invoke that
subprocedure from each of the two places where the array A is to he
printed out.

The result is shown in Figure 8-2. The five statements that print out
the array A have been incorporated into a subprocedure called PRNTIA,
which lies inside the procedure P. There is a CALL statement in each
of the two positions where, in the preceding example, the five
statements that print out the array A appeared. Each of these CALL
statements causes the procedure PRNTA to be invoked, with the result
that the five statements that print out the array A are executed.

Ps PROCEDURE OPTIONS (MAIN);
DECLARE A(100) FIXED DECIMAL (5,2) ;
GET LIST (A) ;
CALL PRNTA;

Computations that change the array A

CALL PRNTA;
PUT SKIP LIST(*END OF PROGRAM') ;

PRNTA: PROCEDURE ¢

DECLARE K BINARY FIXED;

PUT PAGE LIST('PRINTOUT OF ARRAY A’);

PUT SKIP(3) :

DO K= 1 T 100;
PUT SKIP LIST(K, A(K))3

An Internal Procedure
Figure 8-2

PRNTA is an example of an internal procedure, because it lies entirely
inside another procedure. This concept is illustrated by Figure 8-3.
As that figure shows, the subprocedure PRNTA is internal to procedure

P, since the first lies entirely within the second.

First Edition 8-4

SUBROUTINE AND FUNCTION PROCEDURES

PROCEDURE P

Statements of Main Program

PROCEDURE PRNTA

Statements of

SubPROCEDURE

Representation of an Internal Procedure
Figure 8-3

Figure 8-3 also illustrates the distinction between the statements of
the main program and those of the subprocedure. ‘The principal flow of
control in the program is dictated by the statements in the main

program, those statements that are part of procedure P, but are not

part of procedure PRNTA. It is only when the main program executes a
CALL statement that the statements of PRNTA are even executed.

CALL, PROCEDURE, and RETURN Statements

Figure 8-4 shows what happens when a program executes a CALL statement

for a subroutine procedure. This figure pictures the main program and

the subroutine as two separate programs, although, in the example

above, the subprocedure is physically a part of the main procedure.

8-5 First Edition

PL/I Reference Guide

Main program

Subprogram

Y RETURN:
next statement elles mee ee eee eeee

A Call to a Procedure

Figure 8-4

As the figure illustrates, PL/I executes the statements in the main
program until it reaches the CALL statement. At that point, PL/I
suspends execution of the main program and begins executing the
statements of the subprogram. When PL/I reaches the RETURN statement
of the subprogram, it terminates execution of the subprogram and
resumes execution of the main program. Execution continues with the
statement following the CALL statement.

As part of the process that PL/I performs when it executes a CALL
statement, PL/I must remember where the CALL statement is located, so
that when the RETURN statement in the subprogram is executed, PL/I can
return to the correct place in the main program. A more complete
picture is shown in Figure 8-5. Execution begins in the main program,
and continues until the first CALL statement is reached. At that time,
following the line of dashes in the figure, PL/I remembers where the
CALL statement is, suspends execution of the main program, and executes
the statements in the subprogram. When control reaches the RETURN
statement in the subprogram, PL/I returns to the correct point in the
main program, according to what it remembers about the location of the
CALL statement. Execution of the main program then continues until the
second CALL statement is reached. Following the line of dots in the
figure, PL/I then suspends execution of the main program again,
transferring control to the subprogram. When PL/I reaches the RETURN
statement in the subprogram, control returns to the statement following
the second CALL statement.

For a subroutine procedure, the CALL statement is the point of
invocation of the subroutine procedure. This terminology is used
because the subroutine procedure is said to be invoked by the CALL
statement.

First Edition 8-6

SUBROUTINE AND FUNCTION PROCEDURES

Main program

Subprogram

CALL >

next statement <. es j | RETURN;

° ae / oo"
e wn L-7

CALL -7~ --~
next statement a ~

Multiple Procedure Calls
Figure 8-5

In summary, then, when the main program executes a CALL statement, PL/I
performs the following steps:

1. PL/I suspends what it was doing in the main program and
remembers where the point of invocation (the CALL statement)
is,

2. PL/I invokes the subprocedure and starts to execute the
statements within that procedure.

3. When PL/I reaches the RETURN statement in the subprogram, it
terminates the subprogram and returns to the point’ of
invocation. This means that PL/I returns to the main program
and continues executing statements starting from the statement
following the CALL statement.

Dropping Into a Subprocedure

Take another look at Figure 8-2. Notice that the last statement of the
main program is

PUT SKIP LIST('END OF PROGRAM’) ;

This statement immediately precedes the PROCEDURE statement for
procedure PRNTA. If your program drops into a subprocedure in this
way, PL/I simply skips over the subprocedure. This is illustrated by
Figure 8-6. As this figure shows, after PL/I executes the PUT
statement, control arrives at the PROCEDURE statement. PL/I simply
skips over the entire procedure, and continues execution with the

8-7 First Edition

PL/I Reference Guide

statement following the END statement for the procedure. In this

example, that statement is the END statement for the entire program, so

the program terminates at that point.

The general rule, then, is that a program executes the statements of a

subprocedure only if that procedure is correctly invoked. This means

that a CALL statement is necessary for subroutine procedures, and that
an appropriate function reference is necessary for function procedures.
(Function procedures are covered later in this chapter.) If your
program simply drops into a procedure, PL/I does not execute the
statements in the procedure, but rather skips over them.

|
PUT SKIP LIST (‘END OF PROGRAM));

PRNTA: PROCEDURE;

END PRNTA;
END P;

An Embedded Procedure
Figure 8-6

Notice that this rule implies that you may place your internal

procedures anywhere that you wish within your main procedure. Whenever
PL/I encounters a procedure within your program, it skips over it.
Although PL/I gives you this freedom, good structured programming

practice dictates that all of your internal procedures should appear at
the end of your main program, just before the final END statement.

Introduction to Scope Rules

Chapter 9 contains a detailed discussion of scope rules, as applied to

procedures and other blocks. ‘This section covers enough of these rules

to clarify the preceding example and the other examples in this

chapter.

In Figure 8-2, which we have already examined, there is a declaration

of K within the internal procedure PRNTA. The scope of this

declaration is that part of the program to which this declaration

applies. If a declaration is made within an internal procedure, it

applies only within that internal procedure. In this case, the

First Edition 8-8

SUBROUTINE AND FUNCTION PROCEDURES

declaration of K applies only within procedure PRNTA, If there were a
variable called K used in the main program, it would be a different K,
just as if the variable name were different. If K were declared in the
main program as well, it could have a different data type or aggregate
type, without conflicting with the declaration of K within the internal
procedure.

On the other hand, consider the array variable A as used within the
internal procedure PRNTA. Since there is no declaration of A within
the internal procedure, the internal procedure inherits that variable
from the main program. That is, when you use A within the internal
procedure, it is the same variable A as used within the main program.

The general rule, then, is as follows: if a declaration appears within
the main program, its scope is the entire program, excluding those
internal procedures in which another declaration of the same variable
appears. If a declaration appears within an internal procedure, its
scope is only that internal procedure.

Example of a Subroutine Procedure With Parameters

In Figure 8-2, the procedure PRNTA was a subroutine that printed out
the entire array A. In the next example, the internal procedure prints
out only a portion of the array A. The CALL statement specifies
exactly the portion of the array to be printed. This example differs
from Figure 8-2 in its CALL statement, in the PROCEDURE statement for
the internal procedure, and in the DO statement inside the internal
procedure.

Ps PROCEDURE OPTIONS (MAIN);
DECLARE A(100) FIXED DECIMAL (5,2);
GET LIST (A) ;
CALL PRNTA(15, 38);

Computations that change the array A and that
compute K and L

CALL PRNTA(K, 1);
PUT SKIP LIST('END OF PROGRAM’) ;

PRNTA: PROCEDURE (M, N);

DECLARE K BINARY FIXED;

PUT PAGE LIST('PRINTOUT OF ARRAY A‘);

PUT SKIP (3):

DO K = M TON;

PUT SKIP LIST(K, A(K))?

END;

RETURN?

END PRNTA;

END P;

8-9 First Edition

PL/I Reference Guide

The CALL statement has two arguments, 15 and 38. These arguments

represent information that you wish the main program to pass to the

internal procedure. Arguments and parameters are defined more fully in

the section RELATION BETWEEN ARGUMENTS AND PARAMETERS.

The PROCEDURE statement for the procedure PRNTA has two parameters, M

and N. ‘The parameters complete the mechanism for passing information

between the main program and the subprogram.

PL/I requires that the number of arguments in the CALL statement must

be equal to the number of parameters in the PROCEDURE statement. When

PL/I executes the CALL statement, it matches up the arguments and the

parameters as illustrated in Figure 8-7. While the statements of the

internal procedure are executing, Mhas the value 15 and N has the

value 38. This means that the statement

DO K = M TON;

specifies that the loop is to be executed with K going from 15 to 38.

CALL PRNTA (15, 38);

PRNTA: PROCEDURE (M, N);

Passing Arguments
Figure 8-7

The parameters M and N have the values 15 and 38, respectively, only

while the procedure call is still active. As soon as your program

executes the RETURN statement in the internal procedure, these values
of M and N are lost. In fact, the scope rules for parameters are just
the same as for variables declared within an internal procedure. Tf

there were variables M and N in the main program, they would be

entirely different variables, just as if they had different names.
These rules are explained in more detail in Chapter 9.

Return now to the programming example, and look at the second CALL

statement. By the time control has reached this point in the main

program, the values of the array A have presumably been changed, and

that values of K and L have been set. PL/I matches these arguments, K

and L, with the parameters M and N, respectively, just as in the case

of the first CALL statement. During this execution of the internal

procedure, the parameters M and N have whatever values your program has

computed for the variables K and L. That is, the value of K is

assigned to M and the value of L is assigned to N for the duration of

this invocation of procedure PRNTA,

First Edition 8-10

SUBROUTINE AND FUNCTION PROCEDURES

The word "assigned" is used loosely in the previous sentence: an
assignment is not made in the way that a value is assigned to a regular
variable. There is a more complex relationship between an argument and
a parameter, which is discussed later in this chapter.

FUNCTION PROCEDURES

PL/I provides a large number of built-in functions, such as ABS and
LOG. You may use these functions in any expression to simplify
computations.

By means of function procedures, you may also define your own functions
to make computations of your choice. You may use these user-defined
functions in any expression, as you do built-in functions.

Example of a Function Procedure

The following procedure defines a function called HYP that takes two
arguments, representing the sides of a right triangle, and that returns
the value of the hypotenuse of that triangle, This function is part of
Figure 8-8.

Ps PROCELURE OPTIONS (MAIN) 3:

C = HYP(A, B);

PUT LIST(HYP(Q + 3, R) + 15):
eee

HYP: PROCEDURE (X, Y) RETURNS (FLOAT) :

DECLARE (X, Y) FLOAT:

DECLARE 2 FLOAT's

2= SORT(X * X + ¥ * Yj)e

RETURN (2) 3
END HYP;

END P;

Example of a Function
Figure 8-8

This program contains an internal procedure called HYP. The PROCEDURE
statement is slightly different in format from the PROCEDURE statement
for a subroutine procedure. It contains two parameters, X and Y, and
these are specified the same way as for the subroutine procedure. The

8-11 . First Edition

PL/I Reference Guide

difference is the option RETURNS(FLOAT). This option indicates that

HYP is to be invoked as a function rather than as a subroutine. In
simplest terms, the implication of this is as follows:

e To invoke the procedure HYP, do not use a CALL statement.
Instead, reference HYP just as you would reference an ordinary

built-in function. The program example illustrates this with

the statement C = HYP(A, B).

@ PL/I does not simply return from HYP as it does from a

subroutine procedure. Instead it returns a value, the computed

value of the function. The option RETURNS(FLOAT) in the

PROCEDURE statement for the internal procedure says that HYP

returns a float value. In other words, you are defining a

function called HYP whose value is FLOAT. ‘The statement

RETURN(Z) says that the value of Z computed inside the internal

procedure is to be the returned value of the function HYP.

Unlike a subroutine procedure, a function procedure must always take an

argument list and contain a parameter list, even if both are empty. If

the procedure HYP did not take arguments (for instance, if it obtained

its data from user input during execution), it would be referenced by

the statement

C = HYP();

and would begin with the statement

HYP: PROCEDURE() RETURNS (FLOAT);

In the program example, the main program invokes HYP twice. The first

time is with the assignment statement

C = HYP(A, B)?

Notice that HYP is invoked just as if it were a built-in function.
When the internal procedure computes that value, PL/I assigns that

value to the variable C, as specified by the assignment statement.

The second invocation of HYP in the program example is the following

PUT statement:

PUT LIST(HYP(Q + 3, R) + 15);

This example uses the function HYP in a more complicated setting.

While in the preceding example, the arguments of HYP were simple

First Edition 8-12

SUBROUTINE AND FUNCTION PROCEDURES

variables A and B, here the first argument is an expression Q + 3.
Furthermore, the value returned by HYP is not simply assigned to a
variable, but is part of an expression that is to be computed by adding
15 to the value returned by HYP.

These examples illustrate the important fact that, like built-in
functions, user-defined functions can interact with expressions in any
way you desire. This is true for the following two reasons:

e The arguments to a user-defined function may be arbitrary
expressions.

@ The user-defined function may be used within an arbitrary
expression, and the value returned by the function is used in
the computation of that expression.

Arguments and Parameters for Function Procedures

The rules for arguments and parameters for function procedures are
identical to the rules for subroutine procedures. ‘The detailed
relationships between arguments and parameters are discussed later in
this chapter.

The following points clarify the previous example:

@ The PROCEDURE statement for HYP specifies two parameters, X and
Y. For this reason, any reference to HYP as a function must
specify exactly two arguments. PL/I matches up these arguments
to the corresponding parameters exactly as in the case of
subroutine procedures.

® Notice that the internal procedure contains the following
statement:

DECLARE (X,Y) FLOAT;

The purpose of this DECLARE statement is to specify the data
types of the parameters. In the absence of such a declaration,
the parameters receive the default data types, BINARY FIXED.

@ The arguments can be any expression.

Return Mechanism for Function Procedures

Although subroutine and function procedures are similar in many ways,
the difference between the two types is in the way you invoke the
procedure and in the way that the procedure returns to the point of
invocation. You invoke a subroutine procedure by means of a CALL

8-13 First Edition

PL/I Reference Guide

statement, and you invoke a function procedure by referencing the
procedure name in any expression. In both cases, you specify precisely
as Many arguments as there are parameters in the PROCEDURE statement.
When the procedure ends, a subroutine procedure simply returns to the
point of invocation, so that execution can continue with the next
statement. On the other hand, a function procedure returns to the
point of invocation with a value, the computed value of the function.

PL/I normally continues execution by finishing the evaluation of the
expression in which the reference to the function procedure occurred.
In fact, a single expression may contain several references to function
procedures.

Because of the more complicated return mechanism from a function
procedure, when you write a function procedure you must specify the
data type and value to be returned when the function is invoked.

Specify the data type to be returned by the function procedure with the
option

RETURNS (descriptor)

in the PROCEDURE statement.

The descriptor is the data type of the value to be returned by the
function. (The next section explains that the descriptor also
specifies the aggregate type to be returned by the function.)

Specify the computed value to be returned by the function procedure by
means of the RETURN statement, in a different format from that used
with the subroutine procedure. For a function procedure, the RETURN
statement has the format

RETURN (expression) ;

where the expression is an arbitrary expression. PL/I executes this
form of the RETURN statement by evaluating the expression, converting
it to the data type and aggregate type specified by the RETURNS option
of the PROCEDURE statement, and returning with that value to the point

of invocation.

To illustrate the use of an arbitrary expression in the RETURN
statement, the following example rewrites only the internal procedure
portion of Figure 8-8. ‘This new version of the internal procedure HYP
eliminates the need for the auxiliary variable 2 by simply computing
the expression to be returned entirely within the RETURN statement.

First Edition 8-14

SUBROUTINE AND FUNCTION PROCEDURES

HYP: PROCEDURE(X,Y) RETURNS (FLOAT) ;
DECLARE (X,Y) FLOAT;
RETURN (SORT(X * X + Y * Y));
END HYP;

A user-defined procedure may return any data type that you desire.
Specify the desired data type in the descriptor of the RETURNS option
of the PROCEDURE statement.

For example, Figure 8-9 is a function procedure that returns a
CHARACTER(1) value. A reference to LET(K) returns the Kth letter of
the alphabet. The statements

K = 3}
PUT LIST (LET (K)) ;

print the third letter of the alphabet, C. Note that there is a little
“defensive programming" in the fourth line. If the argument is not
positive, or if it is greater than 26, then LET returns a dash.

LET: PROCEDURE(N) RETURNS (CHAR (1)):
DECLARE ALPH CHARACTER (26)

STATIC INIT ('ABCDEFGHIJKLMNOPORSIUVWXYZ"') 3
IFN <=0 |1N> 26

THEN RETURN('=") 3;
ELSE RETURN (SUBSTR(ALPH, N, 1));
END LET};

A Function That Returns a CHARACTER Value
Figure 8-9

As explained in Chapter 6, when PL/I evaluates an expression it
allocates targets in which to store intermediate results. PL/I uses
the same techniques for references to function procedures, The
following steps explain in detail how the return mechanism from a
function procedure works.

1. When the user-defined function is referenced in an expression,
PL/I allocates a temporary storage location for storage of the
value of the function. The size of this storage location is
determined at compile time from the data type information
specified in the descriptor for the RETURNS option of the
PROCEDURE statement.

8-15 First Edition

PL/I Reference Guide

2. PL/I invokes the function, passing to it information about the

location of the newly allocated temporary storage location.
PL/I then starts executing statements inside the function.

3. When program execution reaches the RETURN statement of the
function, PL/I evaluates the expression in the RETURN
statement, converts the result to the data type and aggregate

type specified by the descriptor in the RETURNS option of the

statement for the function, and stores the resulting data value
in the temporary target storage area described in step l.

4, PL/I then returns control to the point of invocation, the place

where the function was called. At that point, PL/I continues

to evaluate the expression in which the function reference

occurred, In order to evaluate that expression, PL/I finds the

value of the function reference in the temporary target storage

area allocated in step l.

Note

The above steps are changed when there is an asterisk in the

RETURNS descriptor. The differences are described in a later

section.

Functions That Return an Array or Structure

In all the discussion and examples of function procedures so far, the

procedure has returned a scalar value. This means that the function

has returned, for example, a single FLOAT or a single CHARACTER value.

In fact, you may define functions that return any PL/I aggregate type.

Specify the aggregate, just as you specify the data type, in the

descriptor field of the RETURNS attribute in the PROCEDURE statement

for the function procedure.

The following example illustrates a function procedure that returns an

array value. This function, ADD5, has a single parameter that is a

FLOAT array with a dimension size of 10. The function returns a FIXED

array, also with a dimension size of 10.

ADD5: PROCEDURE(ARR) RETURNS((10) FIXED);
DECLARE ARR(10) FLOAT;
RETURN(ARR + 5);
END ADD5;

The RETURN statement in the third line of the function procedure

specifies that the value to be returned is ARR+ 5. This means that

when the function procedure terminates and control returns to the point

of invocation, the value returned is obtained by adding 5 to each

First Edition 8-16

SUBROUTINE AND FUNCTION PROCEDURES

element of the parameter array and converting each of those elements to
FIXED. The result is a FIXED array returned to the point of

invocation.

To see how the function ADD5 might be invoked, consider the following
statements that might appear in the main program:

DECLARE A(10) FLOAT, B(10) FIXED;

PUT LIST (ADDS (A)) ;
B = ADD5(A);

First look at the PUT statement in this example. The argument is the
FLOAT array A, which is passed to the ADD5 procedure, to be matched up
with the parameter ARR. The value returned is the result obtained by
adding 5 to each element of A and converting the result to FIXED.
Therefore, the PUT statement prints out an array of 10 FIXED values.

The assignment statement on the next line references the same function,

with the same argument, but does not print it out. Instead, the array

value returned by ADD5 is assigned to the array B.

Similarly, it is possible for a function procedure to return a
structure aggregate value. Figure 8-10 is such a function procedure.
Since this is a more complicated example than any given previously,
look at it in some detail.

FIND is a function procedure that has a CHARACTER(20) parameter and
that returns a structure value. Examine the RETURNS option in the
PROCEDURE statement:

RETURNS (1,2 CHAR(20) ,2 FIXED DEC(7,2),
2 PICTURE 'A9X99') ;

The descriptor in this RETURNS attribute specifies a structure value
containing three individual scalar values. The three individual scalar
values have data types CHARACTER(20), FIXED DECIMAL(7,2), and PICTURE
'AQX99', If this RETURNS descriptor is confusing to you, compare it to
the declaration of the structure S in the same example. Notice that
the RETURNS descriptor is identical to the declaration of S, except
that the descriptor contains no variable names, either the name of the
structure or the names of any of the members, This is a useful trick
for figuring out how to write a descriptor: just write what you want
as an ordinary declaration, and delete the names of the variables.

8-17 First Edition

PL/I Reference Guide

FIND: PROCEDURE(NAME) RETURNS(1,
2 CHAR(20), 2 FIXED DEC(7,2),
2 PICTURE 'A9X99'):

DECLARE NAME CHARACTER (20) :
DECLARE 1 S,

2 NAME CHAR(20),
2 PRICE FIXED DEC(7,2),
2 CODE PIC 'A9X99':

DECLARE K FIXED BINARY;
DECLARE NAMLIST(5) CHAR(20) STATIC

INIT('TOY', 'BOAT', 'CLOCK', 'BOOK', 'PEN');
DECLARE PRLIST(5) FIXED DEC(7,2) STATIC

INIT (7.43, 12.52, 8.92, 10.53, 7.50);
DECLARE CDLIST(5) PIC 'A9X99' STATIC

INIT ('C3-42', 'C5-25', 'C4~-99',
'p9-42, 'X3-25"')3

DO K = 1 10 5 WHILE(NAME “= NAMELIST(K));
S.NAME = NAME;
END;

IF K <= 5 THEN DO;
S.PRICE = PRLIST(K);
S.QODE = CDLIST(K);
END;

ELSE DO;

S. PRICE = 0;
S.CODE = '2Z9~99':
END;

RETURN (S) 3
END FIND;

A Function That Returns a Structure
Figure 8-10

The FIND function is intended to be a rudimentary inventory control
routine. It takes one argument, the name of a product, and it returns
a structure containing three values: the name of the product, the
price of the product, and the inventory code for the product.

Inside the procedure FIND are declarations of three arrays. NAMLIST is
an array that is initialized to a list of all the products supported by
this rudimentary procedure. PRLIST and CDLIST are arrays that are
initialized to the prices and inventory codes, respectively, of all the
products in the NAMLIST array.

The procedure contains a two-line repetitive DO group, whose purpose is
to search for the product specified by the parameter NAME in the list
provided in the array NAMLIST. At the end of this loop, K equals the
index of the product within the array NAMLIST if the search is
successful, and K equals 6 if the search is unsuccessful.

First Edition 8-18

SUBROUTINE AND FUNCTION PROCEDURES

The next to last line of the procedure is the statement

RETURN (S) 7

This statement returns from the function procedure, passing as a value
the current value of the structure S, whose members have been assigned
the name, price, and inventory code of the product by the preceding
statements in the procedure.

For example, suppose that FIND is invoked by means of the statement

PUT LIST (FIND ('CLOCK')) ;

When the procedure is invoked, the repetitive DO group computes a value
of K = 3, since CLOCK is the value of the third element NAMLIST array.
S.NAME is set equal to 'CLOCK', S.PRICE is set equal to 8.92, and
S.CODE is set equal to 'CA-99', ‘The value returned by FIND is a
structure containing these three scalar values, and the PUT statement
that invokes FIND prints out these three scalar values. Similarly, it
would be possible to invoke FIND from an assignment statement that
assigned the structure returned by FIND to another structure variable.

In summary, the RETURNS descriptor can specify any aggregate type and
any data types. Although you usually use only scalar RETURNS
descriptors, you may occasionally define a function that returns an
array, a structure, or an array of structures,

RETURNS Descriptor With Variable Extent Expressions

As defined in Chapter 7, the term extent expression refers to an
expression, usually a constant, that you specify in a DECLARE statement
for a string length, an array bound, or an AREA size, For example, in
the DECLARE statement

DECLARE CA(5) CHARACTER(20) ;

there are two extent expressions, the array bound 5 and the string
length 20. In this example, both extent expressions are constant,
which is the usual case.

Extent expressions also appear in RETURNS descriptors to represent
string lengths, array bounds, and AREA sizes. In all the examples
given previously, these extent expressions have been constant.

The restriction of extent expressions in RETURNS descriptors to
constants can be very inconvenient, particularly when the value being

8-19 First Edition

PL/I Reference Guide

returned is a CHARACTER string. The problem is that when you are
writing the function procedure, you do not know what the maximum string
size will be when the function procedure is executing with various
arguments. In such cases, PL/I permits you to use an asterisk for the
extent expression in the RETURNS descriptor to indicate that the extent
expression is not known at the time the program compiles, but will be
determined each time the function procedure is referenced, depending
upon the value returned by the RETURN statement of the function.

This point can be illustrated with a modification of a previous
example. Earlier, this section examined Figure 8-9, which defined a
function procedure that returned a CHARACTER(1) value equal to the
letter of the alphabet specified by the numeric argument. For example,
LET(3) would return the value 'C', the third letter of the alphabet.
This example can be modified to create a new function, LET2, which
takes two arguments. The first argument is as before, and the second
argument is the number of copies of the letter of the alphabet that you
wish returned. For example, a reference to LET2(4,6) would return a
CHARACTER string of length 6 containing six occurrences of the fourth
letter of the alphabet, or 'DDDDDD'. This is a simple example of a
function procedure that returns a CHARACTER string whose length is not
known at compile time, since LET2 may be called with any second
argument. ‘Therefore, it is impossible to specify a constant string
length in the RETURNS descriptor for LET2.

The problem can be handled as shown in the example below. The RETURNS
Gescriptor specifies CHAR(*), indicating that the function can return a
CHARACTER value of any length, where the length is determined anew each
time the function procedure is invoked.

LET2: PROC(N,L) RETURNS (CHAR (*));
DECLARE C CHARACTER (1) 3

DECLARE ALPH CHARACTER(26) STATIC

INITIAL (' ABCDEFGHILJIKLMNOPORSTUVWXYZ')) 3

IF N <= 0 |N > 26 THEN C= '=';

ELSE C = SUBSTR(ALPH, N, 1);

RETURN (COPY (C, L))3

END LET23

The length of the string that is returned is determined by the RETURN
statement in the next to last line of the function procedure. As you
can see, the expression specified with this RETURN statement yields a
string of length L. CHAR(*) is appropriate in the RETURNS descriptor,
because you do not know when you write this procedure what the value of
L will be when the procedure is called.

Similarly, you can specify an asterisk for any extent expression in the
RETURNS descriptor, string length, array bound, or AREA size.
Furthermore, if the RETURNS descriptor is for a structure with several

members, any of the members can have an asterisk in its individual

extent expression.

First Edition 8-20

SUBROUTINE AND FUNCTION PROCEDURES

Notice that the steps outlined above in the section Return Mechanism
for Function Procedures do not apply when there is an asterisk in the
RETURNS descriptor. The problem is that PL/I cannot allocate the
temporary target area for the returned value when the function is
invoked, since the size of this target is not known until the RETURN
statement is executed. For that reason, PL/I postpones allocation of
the temporary storage area for the target until the RETURN statement is
executed. PL/I uses special techniques so that when your program
returns from the function procedure to the point of invocation, PL/I
can continue evaluating the expression in which the function reference
appeared by using special information on where the temporary target
storage area can be found.

SUMMARY OF DIFFERENCES BETWEEN SUBROUTINE AND FUNCTION PROCEDURES

The following list is a summary of the differences in subroutine and
function procedures:

@ A subroutine procedure is invoked by means of a CALL statement.
A function procedure is invoked by means of a reference to the
function name in any expression.

@ The RETURNS option of the PROCEDURE statement is forbidden for a
subroutine procedure; it is required for a function procedure.

e Arguments and parameters are handled the same for subroutine and
function procedures.

@ The RETURN statement may not include an expression for a
subroutine procedure; it must include an expression for a
function procedure,

@ Executing the END statement of a procedure is equivalent to a
RETURN statement for a subroutine procedure; it is illegal for
a function procedure.

RELATION BETWEEN ARGUMENTS AND PARAME'TERS

The preceding pages of this chapter gave a number of examples of
subroutine and function procedures using arguments and parameters. The
following sections examine the detailed rules covering arguments,
parameters, and the relationships between them. Bear in mind that all
of these rules are identical for both function and_ subroutine
procedures.

In many mathematical, scientific, or engineering applications, the
terms argument and parameter mean the same thing. In the PL/I
language, these two terms have different meanings. An argument appears
in the statement that invokes a procedure, whether the invocation is by
means of a CALL statement for a subroutine procedure, or a function

8-21 First Edition

PL/I Reference Guide

reference for a function procedure. A parameter appears in the
PROCEDURE statement. PL/I requires that the number of arguments in the
procedure invocation equal the number of parameters in the PROCEDURE
statement. When PL/I invokes the procedure, it matches up the
arguments in the invocation with the corresponding parameters in the
PROCEDURE statement. ‘This section describes how PL/I does this.

How PL/I Handles Parameters

The statement that K has the value 5 means different things depending
on whether K is a parameter or an ordinary variable. If K is an

ordinary STATIC or AUTOMATIC variable, it means that there is a storage

area associated with kK, and that the value 5 has been stored in that

storage area. If PL/I executes a statement in your program that

requires the value of K, PL/I simply fetches the value stored in the

storage area associated with K.

It is quite different when the variable is a procedure parameter. PL/I
handles parameters quite differently from ordinary variables. ‘This
section explores how PL/I handles parameters, and what exactly it means
to say that a parameter has such and such a value.

Consider the next example. K is an ordinary variable to which the

first statement assigns the value 5. ‘The CALL statement on the second
line uses K as an argument. When PL/I invokes the procedure SB, PL/I

matches this argument with the parameter M. Since K has the value 5,
the parameter M also has the value 5 during execution of the procedure.

K = 5;
CALL SB(K) ;

SB: PROC(M);
T = 10;
M= 10;
PUT LIST (K);
RETURN 3

END SB;

However, the statement that M has the value 5 means something quite

different in concept from the statement that K has the value 5. M is

not a variable in the ordinary sense, but is a parameter. When PL/I

executes the CALL statement, PL/I does not store the value 5 in the

storage area associated with M; instead, PL/I sets Masa pointer back

to the argument K.

This is the major difference between a parameter and an ordinary

variable. A parameter does have a storage area associated with it, but

First Edition 8-22

SUBROUTINE AND FUNCTION PROCEDURES

that storage area is not used to store the value of the parameter.
Instead, that storage area is used to store a pointer to the argument.
Notice further that the term pointer is used here in an informal sense;
it does not refer to a POINTER variable.

Therefore, M does not equal 5 in the usual sense, but really names a
pointer to the argument K. Therefore, a reference within the procedure
to M is treated as a reference to the argument K.

This concept is illustrated by Figure 8-1] below. This figure shows
the storage associated with the variable K and the parameter M. Both K
and M can be said to have the value 5, but the meaning of that
statement is different for the two cases. The storage associated with
K actually contains the value 5, but the storage associated with M
contains a pointer to K.

To understand the implications of this concept, consider the statements
of procedure SB. First, look at the statement

T= 10;

This is an ordinary asSignment statement, which assigns the value 10 to
the variable T. PL/I executes this statement by storing the value 10
in the storage area associated with T.

But now look at the statement on the following line:

M= 10;

This is also an ordinary assignment statement, but now the value 10 is
being assigned to a parameter M. PL/I executes this statement not by
storing the value 10 in the storage area associated with M, but by
storing the value 10 in the storage area pointed to by the area
associated with M. As you can see in Figure 8-ll, this has the effect
of changing the value of Kto 10. As a result, the statement on the
next line,

PUT LIST (K) ;

prints the new value of K, 10.

8-23 First Edition

PL/I Reference Guide

address

Storage of Parameters and Values
Figure 8-11

Variable Parameter Extent Expressions

An extent expression in a declaration specifies a string length, array

bound, or AREA size. Most of the time, an extent expression is an

ordinary constant.

Suppose that you wish to write a subroutine or function procedure that

you may invoke with a string argument of any length. When you declare

the parameter inside the procedure, if you use a constant for the

string length, your procedure is limited to arguments of that string

size or maximum string size. Similarly, suppose you wish to write a

procedure that you would like to call with an array argument with any

upper bound or lower bound. Specifying constants for the array bounds

in the declaration of the array parameter would restrict you to arrays

of that dimension size.

Under such circumstances, PL/I permits you to use an asterisk for the

extent expression in the declaration of the parameter. When you use an

asterisk for a string length or array bound, you are telling PL/I that

it should assume that the length of the string parameter, or the

dimension size of the array parameter, is the same as that for the

argument that is matched with that parameter.

This is particularly important in the case of CHARACTER string

parameters. You need a procedure that can handle strings of any length
in the argument. The next example illustrates this concept.

First Edition 8-24

SUBROUTINE AND FUNCTION PROCEDURES

INDEX: PROC(C, S) RETURNS(BIN FIXED);
DECLARE (C, S) CHAR(*);
DECLARE K BIN FIXED;
IF LENGTH(S) > 0 THEN

DO K = 1 TO LENGTH(C) - LENGTH(S) + 1;
IF SUBSTR(C, K, LENGTH(S)) = S

THEN RETURN(K);
END:

RETURN (0) 3
END INDEX;

This example shows how you could write the built-in function INDEX as a
function procedure. There are two parameters, C and S, both of which
are declared with

DECLARE (C,S) CHAR(*);

This declaration specifies that the lengths of C and S are simply to be
taken from the lengths of the arguments that are matched with these
parameters. The result is that this INDEX function procedure can be
used with arguments of any length. Notice that, in the procedure, the
built-in function LENGTH is used to determine the actual length of the
arguments matched with the parameters C and S.

You may wish to write a user-defined function that can take an argument
string of any length and return a CHARACTER string of any length. In
Such cases, use CHARACTER(*) in both the parameter data type and the
RETURNS descriptor, as in the next example. The UPCASE function is
invoked with a CHARACTER string argument of any length; it returns the
same string with all the lowercase letters translated to uppercase.

UPCASE: PROC(C) RETURNS (CHAR (*)) 3
DECLARE C CHAR(*);
DECLARE LOWALF CHAR(26) STATIC

INIT ('abcdefghijklmnopqrstuvwxyz') ;
DECLARE UPALF CHAR(26) STATIC

INIT (' ABCDEFGHLIKLMNOPORSTUVWXYZ') 3
RETURN (TRANSLATE (C, UPALF, LOWALF));
END UPCASE?

The section on array parameters below illustrates the use of the
asterisk in the array bounds of an array parameter.

Dummy Arguments

As we have previously explained, PL/I does not handle a parameter the
way it handles other variables. The storage associated with a

8-25 First Edition

PL/I Reference Guide

parameter does not contain the value of the parameter, but rather

contains a pointer to the corresponding argument, which was matched to

that parameter when the procedure was invoked. (Recall that the term

pointer is used in an informal sense here and should not be confused

with POINTER variables.) An important result is that when the

procedure assigns a new value to the parameter, it is the corresponding

argument that is changed.

Sometimes the argument is such that it does not make sense for the

parameter to point to it. In such cases, PL/I creates a dummy
argument, which the parameter can point to.

There are three cases when PL/I creates a dummy argument:

@ When the argument is a constant.

@ When the argument is an expression, but not a simple variable

reference. This includes the special case of a variable

reference that is enclosed in a set of parentheses,

@ When the data type or the aggregate type of the argument is

different from the data type or aggregate type, respectively, of

the parameter.

To understand the concept of the dummy argument, look at the following

example. This program contains an internal procedure, S, with a single

parameter. The internal procedure contains an assignment statement,

L = 25, which assigns a value to the parameter.

P: PROC OPTIONS(MAIN);
DECLARE K FIXED?

K = 533
CALL S(K);:

CALL 8(53)3

PROCEDURE (L) ;
DECLARE L FIXED;
L = 253

c
A

RETURN;
END S
END P ~

e
w
e

There are two CALL statements that invoke S. In the first one, the

argument is K, which has been assigned the value 53. When control

passes to the procedure S, the parameter L points to the argument K.

As a result, the assignment statement L = 25 changes the value of K to

25.

First Edition 8-26

SUBROUTINE AND FUNCTION PROCEDURES

In the second CALL statement, the argument is a constant 53. It would
not make sense for the parameter L to point to a constant. As a
result, PL/I allocates a block of storage to be used as a dummy
argument. ‘This block of storage is large enough to hold a FIXED value.
PL/I stores the value 53 in this dummy argument before invoking S.
When PL/I invokes S, L points to the dummy argument that was created.
After the RETURN statement is executed, PL/I returns control to the
point of invocation, and the storage occupied by the dummy argument is
released, As a result, there is no permanent effect of the assignment
statement L = 25. In fact, all computations that affect the value of
the dummy argument are lost.

Suppose the same program contained the following statements:

DECLARE X FLOAT;
X = 46.2;
CALL S(X);

In this CALL statement the argument X is FLOAT, while the corresponding
parameter L is FIXED. Because the data types do not match, it does not
make sense for the parameter L to point to the argument X. As a
result, PL/I creates a dummy argument. That is, PL/I allocates a FIXED
temporary storage area, converts X to the FIXED value of 46, and stores
that FIXED value in the storage area. This temporary storage area is
the dummy argument to which the parameter L points during execution of
the internal procedure S. ‘The statement L = 25 changes the value of
the dummy argument, but does not affect the value of X. When the
RETURN statement is executed, PL/I frees the storage occupied by the
dummy argument and X still equals 46.2.

When an argument is an expression that is not a simple variable
reference, PL/I must create a dummy argument. For example, suppose the
same program contained the following statement:

CALL S(K + 3);

It could not make sense for the parameter L to point to the expression
K+ 3. As a result, PL/I creates a dummy argument, computes the value
of K+ 3, and stores that value in the dummy argument. During
execution of the internal procedure S, L points to this dummy argument,
and the value of K is not affected by assignment to the parameter.

A special case of dummy argument creation is the enclosure of a
variable in parentheses, An example is

CALL S((K));

8-27 First Edition

PL/I Reference Guide

Even though K is a variable that has the same data type as the

parameter L, PL/I creates a dummy argument, because K is enclosed in an

extra set of parentheses. As a result, the statement L = 25 does not

change the value of K.

On the other hand, the argument may be an element of an array without

PL/I's creating a dummy argument, For example, suppose the same main

program contained the following two statements:

DECLARE KA(100) FIXED;
CALL S(KA(4))3

Since KA(4) has the same data type as the parameter L, PL/I creates no

dummy argument. The statement L = 25 inside the internal procedure

changes the value of the array element KA(4).

In fact, the argument subscript can be any expression. For example,

the statement

CALL S(KA(Z + 3))?

invokes the procedure S without the creation of any dummy argument. In

that case, the parameter L points to whatever array element is

indicated by the value of the expression Z + 3.

Similarly, the argument may be any element of a structure or an array

of structures. If it has the same data type as the parameter, no dummy

argument is created.

In all the examples so far in this chapter, the parameter was a scalar.

When the parameter is a scalar, the corresponding argument must also be

a scalar. If the parameter is a nonscalar aggregate, the argument must

be promotable to the aggregate type of the parameter, according to the

rules given in Chapter 6 for aggregate promotion. If the aggregate

type of the argument does not equal the aggregate type of the

parameter, PL/I creates a dummy argument, converts and promotes the

argument to the data type and aggregate type of the parameter, and

stores the result in the dummy argument. The aggregate parameter then

points to the dummy argument.

First Edition 8-28

SUBROUTINE AND FUNCTION PROCEDURES

Array Parameters

When the parameter is an array, the corresponding argument must either
be an array or be promotable to an array. If it is not an array, or if
it is an array with a data type different from the data type of the
parameter, then a dummy argument is created. The rules for the
argument or dummy argument are as follows:

@ The number of dimensions of the argument must equal the number
of dimensions of the parameter. For example, if the parameter
is a three-dimensional array, the argument must also be a
three-dimensional array.

e For each dimension, the lower bound and upper bound of the
argument must equal the lower bound and upper bound,
respectively, of the parameter, Alternatively, the declaration
of the parameter may contain an asterisk for the dimensions, in
which case the parameter will match any lower bound and upper
bound in the argument.

The example below contains an internal procedure with a parameter that
is declared to be an array with an asterisk for a dimension size. ‘The
main program contains two CALL statements to this internal procedure,
For these two calls, the arguments are the arrays Q and R,
respectively. Since the parameter has an asterisk for an array bound,
no dummy argument is created. The upper and lower bounds of the
parameter A depend on the upper and lower bounds for the argument. For
the first CALL, when the argument is Q, the lower bound for A is 1 and
the higher bound is 10. With the second CALL, when the argument is R,
the lower bound is 12 and the upper bound is 28.

P: PROC OPTIONS(MAIN);
DECLARE Q(10);
DECLARE R(12:28);

CALL PRNTAR (Q) ;
CALL PRNTAR(R);

PRNTAR: PROC(A);
DECLARE A(*);
DECLARE K BINARY FIXED;

PUT PAGE LIST ('ARRAY PRINTOUT");

DO K = LBOUND(A,1) TO HBOUND(A,1);
PUT SKIP LIST (K,A(K))3
END;

RETURN;

END PRNTAR;
END P;

The procedure PRNTAR in this example uses the built-in functions LBOUND
and HBOUND. Use these built-in functions in any circumstances where
the bounds of an allocated array are not known at the time you are

8-29 First Edition

PL/I Reference Guide

writing the program. This can happen for a CONTROL or AUTOMATIC array
with variable extent expressions, or it can happen in the current case
with a parameter, where the array bound is specified by an asterisk.

There are three related built-in functions for use in such

circumstances:

@ LBOUND(array,n)

@® HBOUND(array,n)

@® DIMENSION(array,;n) or DIM(array,n)

For each of these built-in functions, the array is an array variable
andn is the dimension number for which the information is to be
computed. In the example above, the parameter Ais a one-dimensional
array. Therefore, LBQUND(A,1) refers to the first (and only) dimension

of the parameter A,

The information computed by the three built-in functions is as follows:
LBOUND returns the lower bound of the specified dimension, HBOUND
returns the upper bound, and DIMENSION or DIM returns the value of the
dimension size, which equals (upper bound — lower bound + 1).

In the preceding example, consider the statement

DO K = LBOUND(A,1) TO HBOUND(A,;1);

The statement specifies that the value of K is to vary from the lower

bound to the upper bound of the array Ain the first dimension. ‘The
values of the lower bound and the upper bound depend upon the
parameters, since the declaration for A contains an asterisk for the

dimension size. As a result, for the first CALL statement, when Q is
the argument, this DO statement executes with K going from 1 to 10.
For the second CALL statenent, when R is the argument, the value of K
goes from 12 to 28. In either case, the result is that K ranges over
all possible values of the subscript for the argument array, with the
further result that this DO loop prints out all values in the array.

If the parameter is a one-dimensional array, you may use aS an argument
a cross section of a multidimensional array. For example, suppose the
main program of the last example contained the following statements:

DECLARE S(5, 15, 25);

CALL PRNTAR(S(*, I + 3, 1));

First Edition 8-30

SUBROUTINE AND FUNCTION PROCEDURES

The specified cross section of the three-dimensional array S is passed
as a one-dimensional array argument to the procedure PRNTAR. Within
PRNTAR, the DO statement is executed with K going from 1 to 5.

You may use appropriate cross sections in any other circumstances as
well. For example, you may use a two-dimensional cross section of a
four-dimensional array as an argument, when the parameter is a
two-dimensional array.

EXTERNAL PROCEDURES

All examples of procedures so far have been internal procedures. An
internal procedure is one that is part of another procedure (such as
the main program) and that is compiled as part of that procedure. By
contrast, an external procedure is separately compiled. Your main
program is an example of an external procedure, but it is also possible
to have subroutine or function procedures that are all external
procedures.

In order to understand the need for external procedures, it is
necessary to understand precisely what a compiler is. Figure 8-12
illustrates how a compiler works. Your PL/I program is part of a
source file. The source file is used as input to the PL/I compiler,
which translates your PL/I program into machine language, storing the
result in an object file. Later, the system loads the contents of the
object file into the computer's memory, so that the computer can
execute the machine language representation of your program.

Source

File
/

PLA
Compiler

 j

Object
File

Compilation
Figure 8-12

8-31 First Edition

PL/I Reference Guide

When your program contains two or more separately compiled external

procedures, the process is a little more complicated, Figure 8-13

illustrates what happens. This figure shows three external procedures,
in three separate source files. The first external procedure is the

main program, the second is a function procedure, and the third is a

subroutine procedure. These external procedures are separately

compiled, and the result, as shown in the figure, is three separate

object files. In order to get a single executable program from the

three object files, you need another system program, called a linker.
The linker turns two or more object files into a single executable

program. It does this by recognizing and correctly handling the

situation where one object file references an external procedure

defined in a different object file. The resulting executable program

file, or runfile, can be loaded into the computer's memory and executed

by the computer.

Source File #1 Source File #2 Source File #3

main program function PROC subroutine PROC

v / /

PL/I PL/I PL/I

Compiler Compiler Compiler

/ i

Object File #1 Object File #2 Object File #3

 L

Vv

Linker)

Vv
Executable

Program

Compilation of External Procedures
Figure 8-13

Advantages of External Procedures

It is very convenient to include your subroutine and function

procedures as internal procedures that are part of your main program.

First Edition 8-32

SUBROUTINE AND FUNCTION PROCEDURES

But a very large program, such as a payroll application or a
manufacturing application, can consist of many PL/I statements, perhaps
in the millions. Since it is not practical, or even possible, to
maintain something so large as a single program, designers of such
large programs break them up into smaller chunks, called external
procedures. These small external procedures can he written and
compiled separately, and then, as a final step, linked together by
means of a linker. ‘This method has two major advantages:

@ If you change one of the small external procedures, you have no
need to recompile the entire system. Instead, simply recompile
the one external procedure that you modified, and then link
together all object files with the new one.

e If you have many programmers working on the programming project,
you can assign different external procedures to different
programmers, Each of the programmers can write an external
procedure, and can even debug it to some extent, separately.
Later, all the external procedures can be linked together to get
a single program.

The following sections cover techniques for writing external

procedures.

EXTERNAL ENTRY Declarations

External procedures pose certain problems for the compiler that are not
present with internal procedures. ‘The problem arises because when the
compiler compiles the statement that invokes the procedure, whether a

CALL statement or a function reference, the compiler needs certain

information about the procedure. In the case of an internal procedure,
the internal procedure is compiled at the same time, and so the
compiler has complete information about it.

Figure 8-14 illustrates the kind of information that the compiler
needs, That example contains an internal procedure, Q, which is
invoked by the statement A = Q(3, B, C).

P: PROC OPTIONS (MAIN);

A= Q(3, By C)?

Q: PROC(X, Y, Z) RETURNS(FIXED DEC(5));

DECLARE X FLOAT, Y(5) CHAR(20) VAR, Z BINARY FIXED;

END Q;
END P;

Internal Procedure Declaration
Figure 8-14

8-33 First Edition

PL/I Reference Guide

In order for PL/I to compile this assignment, it needs some information
about the procedure Q, which it figures out by simply examining the
procedure. Information that it figures out is as follows:

e Q is a function procedure name. It is not a built-in function
or an array, which are other possibilities, since in the above
statement Q is immediately followed by a parenthesized list.

e Q has three parameters. The aggregate types and data types of
these three parameters are scalar FLOAT, array CHARACTER(20)
VARYING, and scalar BINARY FIXED, respectively. The compiler
reeds this information when compiling the above assignment
statement in order to know how to handle the three arguments 3,
B, and C, and to decide whether or not to create dummy arguments

for these arguments. :

e Qis user-defined function that returns a FIXED DECIMAL(5)
value. ‘The compiler needs to know this information in order to
know what conversions must be done before the value returned by
Q(3, B, C) can be assigned to A.

The compiler needs all this information in order to compile a reference
to the procedure Q. Now suppose Q is a separately compiled external
procedure. PL/I would not have ‘enough information to compile the
statement A= Q(3, B, C) because it would not have any of the

information in the three paragraphs above.

If you wish your program to be able to invoke a separately compiled
external procedure, you must insert a special declaration in your
program to give the compiler the information it needs. For example, in
Figure 8-14, if Q were not an internal procedure for P, but were a
separately compiled external procedure, P would have to contain the
following declaration:

DECLARE Q EXTERNAL
ENTRY (FLOAT, (5) CHAR(20) VAR, BIN FIXED)
RETURNS (FIXED DECIMAL (5) ;

This declaration gives PL/I the information it needs to compile a
reference toQ. It provides the following information:

e It says that Q is an EXTERNAL ENTRY. This means that Q is a
separately compiled external procedure.

@ The ENTRY option is followed by a parenthesized list containing
three descriptors. These three descriptors specify that Q has
three parameters, and that their aggregate and data types are
scalar FLOAT, array CHARACTER(20) VARYING, and BINARY FIXED,
respectively. This information allows the compiler to determine
whether the arguments in the reference to Q must be replaced by

dummy arguments.

First Edition 8-34

SUBROUTINE AND FUNCTION PROCEDURES

e@ The RETURNS option in the declaration says that Q is a function
procedure (not a subroutine procedure), and that the function

returns a FIXED DECIMAL(5) value.

Any procedure that calls another external procedure should have one of
these declarations. The general format of these declarations is as
follows:

DECLARE name EXTERNAL

ENTRY (parameter-descriptor—list)
[RETURNS (returns-descriptor)];

In this format, the parameter-descriptor-list is a list of descriptors
separated by commas, giving the data types and aggregate types of each
of the procedure parameters.

The RETURNS option must be specified in the declaration if the external
procedure is a function, and must be omitted if the external procedure
is a subroutine. The returns-descriptor is a descriptor giving the
data type and aggregate type of the value returned by the user-defined
function.

A returns-descriptor is described in the section Functions That Return
an Array or Structure earlier in this’ chapter. Refer to that
discussion for more information on descriptors.

ENTRY Statements and Multiple Entry Points

The label of a PROCEDURE statement, whether the procedure is internal
or external, is called the entry point or primary entry point of the
procedure. By means of the ENTRY statement, it is possible for you to
establish secondary entry points within the procedure. These are
additional entry points, which you may use to invoke the procedure and
begin execution within the procedure, without having to begin execution
at the beginning of the procedure, The following example illustrates
the use of the ENTRY statement. There is a main external procedure, P,
which contains an internal procedure. The internal procedure has a
primary entry point, XSUB, and a secondary entry point, XFNC. XSUB is
the label of the PROCEDURE statement, and XFNC is the label of the
ENTRY statement. Notice that XSUB is a subroutine entry point, and
XFNC is a function entry point to the same procedure. The CALL
statement and assignment statement in the main program invoke each of
the entry points.

8-35 First Edition

PL/I Reference Guide

P: PROC OPTIONS (MAIN) ;

CALL XSUB (A);

B = XFNC(C);

XSUB: PROC (X) 3
DECLARE FUNC BIT (1):

DECLARE (X, 2) FLOAT;

FUNC = '0' B;
GO TO COMDDN;

XFNC: ENTRY (X) RETURNS (FLOAT) ;
FUNC = '1' B;

COMMON: Z = SORT(SIN(X) + COS(X))3
IF FUNC THEN RETURN(Z) ;
/* RETURN FROM SUBROUTINE XSUB */
X= Z

RETURN;
END XSUB;
END P;

Although the internal procedure is a short one, it uses same techniques
that are common to the use of multiple entry points. The real work
done inside the procedure, for either entry point, begins at the
statement labeled COMMON. In this case, the work done consists of only
a single assignment statement, but typical procedures, of course, do
much more. Before reaching COMMON, either entry point set the BIT
variable FUNC to indicate which entry point was used. That way, the
procedure can decide which type of RETURN statement to use. Similar
techniques can be used with more than two entry points.

The following general rules apply to multiple entry points:

@ Each of the entry points can have different parameters or the
same parameters.

@ Each of the entry points can be a subroutine or function entry
point. Of course, your program must execute the correct form of
RETURN statement, depending upon which entry point the caller
used. If two or more entry points are function entry points,
they can have different RETURNS descriptors.

e Any declaration inside the procedure applies to all of the entry
points. In particular, the INITIAL attribute for AUTOMATIC
variables is applied, and the declared variables are
initialized.

e Multiple entry points can be used with either internal or
external procedures. A secondary entry point to an external
procedure is also an external entry point, and can be invoked

from other external procedures.

First Edition 8-36

SUBROUTINE AND FUNCTION PROCEDURES

e If, during execution of the statements inside a procedure,

control reaches an ENTRY statement, then control simply passes

around the ENTRY statement.

RECURSIVE PROCEDURES

To invoke a procedure recursively means to invoke it and then to invoke

it again while the first invocation is still active. (An invocation
remains active until it is terminated by a RETURN or GO TO.)

A recursive invocation can come about either directly or indirectly.
It can come about directly if a procedure invokes itself from inside

the procedure, as shown in the example below. A recursive invocation

can also happen indirectly, as when a procedure invokes a chain of

other procedures, one of which invokes the original procedure.

As an illustration of a recursive procedure, consider the factorial

function. The formula for this function is as follows:

ni=n* (n-1) * ... *2*1

where n! is read "n factorial." The formula says that n factorial is

computed by multiplying together n with all the positive integers

smaller thann. For example, 3! equals 3*2%*1 or 6. 6! equals

6*5%*4%*3%*2%* 1 o0r 720. ‘In addition, the special case of 0! is

defined to equal 1.

Later, we are going to define a recursive procedure that computes the

factorial function. However, let us begin with a procedure that is not

recursive and that computes n factorial. Such a procedure is shown

below. Verify for yourself that FAC1 (3) returns the value 6, FAC] (6)

returns 720, and FAC1(0) returns the value 1.

FAC]: PROC(N) RETURNS(FIXED);
DECLARE (K, F) FIXED;
F= 1;

DO K=1 TW N;
F=F * K;
END;

RETURN(F) 3
END FAC];

8-37 First Edition

PL/I Reference Guide

The recursive procedure for n factorial is based on a different
definition of the factorial function, a so-called recursive definition.
This definition is as follows:

O!=1]
Te n> oO, n!=n* (n-1)!

This definition of n factorial has two lines. The first line specifies
what 0! is, and the second tells what n! is when n>0O. The second
line of this definition looks circular, since it seems to define the
factorial function in terms of the factorial function. Actually, the
definition is not circular, as you can see when we apply the recursive
definition to compute the value of 3!. Applying the second line of the
definition, we get

3! =3 * 2!

As you can see, we have defined 3! in terms of 2!. This may not seem
like the direction in which we wish to go, but we have done something:
we have reduced our problem to computing the value of the factorial of
asmaller number. If we are able to keep doing that, we will
eventually reach 0!, which we know the value of, We now apply the
recursive definition to 2! to get

3! 2!

%
%

I

2 * 1!)
!N

D
W
W

to
o
t
t

(
1!

Applying the second line of the recursive definition to 1!, we get

3!

D
a
n

%

i!
(1 * 0!)
0!o

o
n

And finally, we apply the first line of the definition, which says that
0! equals 1, to get

3!

h
o
w

oo

+ H
O =

A
A
N
H

Similarly, we could compute the value of n! for any positive integer
n. We do this by repeatedly applying the second line of the recursive

First Edition 8-38

SUBROUTINE AND FUNCTION PROCEDURES

definition, until we have reduced the problem to 0!, which the first
line of the definition gives us.

The next example contains a recursive procedure that computes the
factorial function. This procedure computes factorial in the same way
the recursive definition works. The definition clause 0! = 1 becomes

IF N= 0 THEN F = 1;

The clause n! =n * (n - 1)! becomes

ELSE F = N * FAC2(N - 1);

Tt is this last line that makes FAC2 a recursive procedure. While FAC2
is active, it is possible for it to call itself, so that there are two
or more active invocations of FAC2 at the same time.

FAC2: PROC(N) RETURNS(FIXED) RECURSIVE;

DECLARE F FIXED;

IF N = 0 THEN F=1;

ELSE F = N * FAC2(N - 1);

RETURN (F);
END FAC2;

If you are going to invoke a subroutine or function procedure
recursively, specify the option RECURSIVE on the PROCEDURE statement.
Never specify the RECURSIVE option on an ENTRY statement.

Note

On Prime computers, a recursively invoked procedure works
properly whether or not the RECURSIVE option is specified.

GENERIC ENTRY NAMES

This is a rarely used capability. It allows you to use a single

identifier name to stand for two or more different but related

procedures, array names, or built-in functions. Whenever you reference

the common identifier mame, PL/I uses the data types and aggregate

types of the arguments to determine which of the procedures, arrays, or

built-in functions to choose.

8-39 First Edition

PL/I Reference Guide

Here are some examples:

@ DECLARE Q GENERIC (Ql WHEN (*), Q2 WHEN (*,*), Q3 WHEN (*,*,*));

This DECLARE statement might be used in a program that contains
three different but related procedures, Ql, 02, and Q3. The
program may reference Q as if it were a procedure name, and then
PL/I replaces the reference to Q with a reference to Ql, Q2, or
Q3, depending upon the arguments you specify in the referenced
Q. In the declaration Q shown above, the words Q1 WHEN(*)
indicate that PL/I is to use Ql for Q whenever the reference to
Q contains exactly one argument. The words Q2 WHEN(*,*)
indicate that Q2 is to be substituted for Q when the reference
to Q has exactly two arguments. And the words Q3 WHEN(*,*,*)
specify that Q3 is to be used when the reference to Q contains
exactly three arguments.

Therefore, PL/I would change a reference to Q(X) to a reference

to Q1(X), and would change a reference to Q(X, Y+ 3) toa
reference to Q2(X, Y + 3). ‘Therefore, the statement

Z = Q(X) * O(%, ¥ + 3);

would be equivalent to

Z = QL(X) * O2(X, Y + 3);

@ DECLARE LN_ARRAY (5) FLOAT INIT(1, 2.7182818, 7.3890561,
20.0855369, 54.5981500);

DECLARE LN GENERIC (LN_ARRAY WHEN (FIXED (1:31, 0)),

LOG WHEN (*));

In the GENERIC declaration, the phrase FIXED(1:31, 0) refers to
any FIXED data type with a precision containing one to 31
digits, none of which follow the decimal (or binary) point.
Therefore, this is a way o£ representing an integer data type in
a GENERIC declaration.

The GENERIC declaration specifies that any reference to LN is to
be replaced with a reference to either the array LN_ARRAY or the
built-in function LOG. If the argument to LN has one of the
integer data types just described, LN is replaced with LN_ARRAY;
but if an argument of any other data type is used, the built-in
function LOG replaces LN.

A programmer might use a declaration of this kind to improve
performance of a program. Since an array reference is
presumably faster than a built-in function reference, the
program references the array whenever the argument is an

First Edition 8-40

SUBROUTINE AND FUNCTION PROCEDURES

integer, and invokes the built-in function whenever the argument
is not an integer. Of course, the usefulness is rather limited,
since the generic choice is based not on whether the value of
the argument is an integer but rather on whether the data type
of the argument is integer. Furthermore, the program gets an
execution error if the argument to LN has an integer data type

whose value is not in the range 1 to 5. For example, if I has

the attribute FIXED DECIMAL(5), PL/I replaces a reference to

LN(I) with a reference to LN_ARRAY(I), and this reference is
illegal if the value of I is less than 1 or greater than 5.

The format of a GENERIC declaration is as follows:

DECLARE ident GENERIC (choice, choice, ...)?

where each choice is of the form

name WHEN (descriptor, descriptor, ...)

When your program references ident, PL/I replaces the reference to

ident with a reference to one of the choices of name, based ona

process of matching the arguments in the reference to ident with the
list of descriptors in each of the choices in the manner described
below.

If descriptor corresponds to one argument, it gives the range of data
types and aggregate types in the argument that can be used for this

particular choice of name. If the data types and aggregate types of
all the arguments in the reference to the ident satisfy the
specifications of the descriptors for a choice in the GENERIC
declaration, then the ident is replaced by the name for that choice.
If the argument list satisfies the descriptor specifications for more
than one choice in the GENERIC declaration, the first choice is used,

The descriptor for a single argument may be a structure descriptor like

1, 2 CHARACTER, 2 FIXED;

This descriptor would match an argument that was a structure containing
two members, the first of which is CHARACTER and the second of which is

FIXED,

8-41 First Edition

PL/I Reference Guide

The descriptor may also include array bounds, specifying that the
corresponding argument must be an array. In this case, you must
specify an asterisk for the value of the array bound. For example, the
Cescriptor

(*) FLOAT DECIMAL

matches any singly-dimensioned array that is FLOAT DECIMAL.

Each descriptor can specify any of the following attributes:

ALIGNED LABEL

AREA MEMBER

BINARY [(precision)] NONVARYING
BIT OFFSET

CHARACTER PICIURE 'picture specification'
COMPLEX [(precision)] POINTER
DECIMAL [(precision)] PRECISION [(precision)]
DIMENSION (*, ..e) REAL [(precision)]
ENTRY [([descriptor, ...])] RETURNS [(descriptor)]
FILE STRUCIURE

FIXED [precision] UNALIGNED
FLOAT [precision] VARYING
FORMAT

In each case in the above list where precision is specified, you may

specify either the number of digits or the number of digits and the

scale factor. Furthermore, you may specify either quantity as a_ range
by using the colon (:). For example, the descriptor

FIXED DECIMAL (1:10, —5:0)

refers to any FIXED DECIMAL data type with a precision of between one
and 10 digits, with a scale factor between -5 and 0.

ENTRY VARIABLES

The ENTRY data type is a noncomputational data type. The label of a

PROCEDURE or ENTRY statement is an identifier to which PL/I gives the

ENTRY data type. Such a statement label is considered to be a constant

of the ENTRY data type.

By means of an appropriate DECLARE statement, you may specify that an

identifier of your choice is to be an ENTRY variable. You may assign

ENTRY values, such as ENTRY constants or other ENTRY variables, to an

First Edition 8-42

SUBROUTINE AND FUNCTION PROCEDURES

ENTRY variable, but you may not perform ordinary arithmetic
computations or ordinary input or output operations on such variables.

The following example illustrates a simple use of ENTRY variables. In
this program segment, the DECLARE statement specifies that EV is to be
an ENTRY variable. The IF statement tests the variable K to decide
which ENTRY constant, P or Q, to assign to the ENTRY variable EV. The
CALL statement that follows specifies the ENTRY variable EV; the
actual procedure that is invoked by this CALL statement depends upon
the current value of EV, either P or Q.

DECLARE EV VARIABLE ENTRY?

IF K = 1 THEN EV = P;

ELSE EV = Qs:

CALL EV:

Ps PROC;

END P;

QO: PROC;

END Q;

An ENTRY variable may be part of a structure or may be an array.
Arrays of ENTRY variables can provide a table-driven programming
capability. The next example illustrates this. In this case, the
ENTRY constants P, Q, and R are external procedures rather than
internal procedures. Each of these external procedures has a_ single
scalar FLOAT parameter and is a function procedure that returns a
scalar FLOAT value.

DECLARE(P, 0, R) EXTERNAL
ENTRY (FLOAT) RETURNS (FLOAT) ;

DECLARE F(3) VARIABLE
ENTRY (FLOAT) RETURNS (FLOAT)
INITIAL (P, Q, R)?

X= F(R) (Y);

In this example, F is an array of three ENTRY variables. The INITIAL
attribute in the declaration of F specifies that F(1) is tobe
initialized to the ENTRY constant P, F(2) is to be initialized to Q,
and F(3) is to be initialized to R. The declaration for F must also
specify the parameter~descriptors and the returns-descriptor, for the
same reasons that these descriptors must be specified for external
ENTRY constants. The PL/I compiler needs this information in order to
be able to decide whether to create dummy arguments and whether a
conversion of a return value is needed.

8-43 First Edition

PL/I Reference Guide

Notice the surprising assignment statement

X = F(K) (¥)3

This statement is valid only when K has the value 1, 2, or 3. Fis an
array ENTRY variable, and F(K) has, as its value, one of the ENTRY
values P, Q, or R. Therefore, depending upon the value of K, this
assignment statement is equivalent to one of the three following:

me
DS

PS

i
w

tt

W
o

'd

B
R
R

Which of P, Q, or R is invoked depends upon the value of K.

ADVANCED PROGRAMMING OPTIONS: SHORTCALI, AND NONQUICK

Prime PL/I offers two options, SHORTCALL and NONQUICK, for programmers
who wish to have greater control over the procedure-calling mechanism,

If a PL/I program calls an external procedure written in PMA (Prime
Macro Assembler), you may declare that procedure with the SHORTCALL
option, using the following syntax:

DCL EXPROC EXTERNAL ENTRY OPTIONS (SHORICALL);

The SHORICALL option generates a JSXB rather than a PCL sequence for
invocations of this procedure. You should be aware of the following:

e You must code the PMA subroutine to use the runtime support
scratch space in the stack. See Appendix D, Figure D-1, for the
location of this scratch space.

@ Parameters for a SHORTCALL subroutine are passed by reference,
and you must code the subroutine to handle them properly. If
the subroutine takes only one argument, the address of the
argument is placed in the Irregister, If it takes more than
one, the SHORTCALL option creates an array of pointer
temporaries, puts the address of each argument in that array,
and puts the address of the array into the L-register.

e If only one argument is passed to a SHORICALL routine, it must
be word-aligned. If the routine takes multiple arguments, their
alignment does not matter.

First Edition 8-44

SUBROUTINE AND FUNCTION PROCEDURES

The second option, NONQUICK, applies to internal rather than external
procedures. If a program is to be compiled at an optimization level of

3 or above, the compiler ordinarily makes most non-recursive internal

procedures SHORTCALL. If you wish to prevent this from happening to a
particular internal procedure, use the following syntax:

INPROC: PROCEDURE OPTIONS (NONQUICK);

The procedure is then called with the PCL rather than the JSxB

sequence,

SUMMARY OF PROCEDURE RULES

This section summarizes some of the major rules in using procedures.

@ The main procedure of your program begins with the statement

name: PROCEDURE OPTIONS (MAIN) ;

e@ The abbreviation for PROCEDURE is PRO.

e A subroutine procedure begins with a statement in the format

name: PROCEDURE [(parm-list)] [RECURSIVE];

The parm-List is the list of parameters for the procedure, and

is written as a list of one or more identifiers separated by

commas.

e Any declarations inside a procedure apply only within that

procedure. In particular, you may specify the data type of a

parameter by using a DECLARE statement within the procedure to

specify any attributes that you wish the parameter to have.

e A function procedure begins with a statement in the format

name: PROCEDURE [(parmmlist)] [RECURSIVE]
RETURNS [(descriptor)];

The descriptor specifies the data type and aggregate type of the

value to be returned by the function procedure.

8~45 First Edition

PL/I Reference Guide

@ Invoke a subroutine procedure with a statement in the form

CALL name [(arg-list)];

@ Invoke a function procedure by using a reference of the form

name [(arg-list)]

in an expression.

The arg-list is the list of arguments to be passed when invoking

the procedure. The list of arguments is one or more expressions

separated by commas. The number of arguments used when invoking
a procedure must equal the number of parameters in the PROCEDURE
statement,

e During execution of the invoked procedure, each of the procedure
parameters points back to the corresponding argument used in

invoking the procedure. In certain cases, PL/I creates a dummy

argument when invoking the procedure, and then the parameter

points back to the dummy argument. ‘The cases where a dummy
argument is created are as follows:

- When the argument is a constant.

- When the argument is an expression (as when it is
enclosed in a set of parentheses).

- When the data type or aggregate type of the argument is

different from that of the parameter.

In order to determine whether a dummy argument is needed, the

compiler must know, at the time it is compiling the statement

that invokes a procedure, what the data types of the procedure

parameters are. If the procedure being invoked is an internal

procedure, the compiler can determine the data types of the

parameters. However, if the procedure being invoked is an

external procedure that is separately compiled, the invoking

program must contain a special declaration to indicate to the

compiler what the data types of the parameters are. The format

of this declaration is as follows:

DECLARE name EXTERNAL ENTRY (parm-descriptors)
[RETURNS (returns-descriptor)];

The pam-descriptors are the descriptors for each of the

parameters of the procedure, separated by commas. There is one

descriptor for each parameter, and it specifies the data type

First Edition 8-46

SUBROUTINE AND FUNCTION PROCEDURES

and aggregate type of the parameter. Similarly, the
returns-descriptor specifies the data type and aggregate type of
the value returned by the procedure, if it is a function
procedure.

@ To return from a subroutine procedure, your program must execute
the statement

RETURN;

or else the END statement of the procedure. To return from a
function procedure, your program must execute a statement of the
format

RETURN (expression);

It is illegal to execute the END statement of a procedure
invoked as a function.

e A procedure may have one or more secondary entry points. Each
secondary entry point is specified by the name of an ENTRY
statement in the following format:

name: ENTRY [(parm-list)] [RETURNS [(descriptor)]];

8-47 First Edition

Program Blocks,

Declarations, and

Scope Rules

PL/I PROGRAM BLOCK STRUCTURES

PL/I is a so-called block structured language, meaning that a PL/I

program consists of a group of nested blocks. This feature, described

in the following pages, gives the PL/I programmer a great deal of

power.

Statement Groups and Blocks

Three statement types require a matching END statement: the DO,

PROCEDURE, and BHGIN statements. Each of these statements, along with

its corresponding END statement, identifies a collection of statements

to be handled in a special way.

For example, the entire compiled program is a collection of statements

beginning with a PROCEDURE statement and ending with an END statement.

This is called an external procedure. Within the external procedure,

there may be additional PROCEDURE, BHGIN, and DO statements, each

matched with its own END statement. Depending upon the circumstances,

the collection of statenents so defined might be a subroutine, a

user-defined function, a group of statements to be repeated, or an

error-handling routine.

9-1 First Edition

PL/I Reference Guide

Figure 9-1] illustrates the three statement types. In this example, P
is an external procedure, with the initial PROCEDURE statement matched
by the final END statement. Inside the procedure P, there are

e@ ADO group. In this case, the group is a group of statements to
be executed iteratively. The DO statement is covered in Chapter
10.

e Three internal blocks, each beginning with either PROCEDURE or
BEGIN, and ending with END.

According to PL/I terminology, DO and END define a group of statements,
while BEGIN and END or PROCEDURE and END define a block of statements.

This chapter deals with blocks. We mention the DO group in this
chapter only because both the group and the block require an END
statement. The full use of the DO statement is described in
Chapter 10.

P: PROCEDURE;

DO K=1 TO 5;

END;

BEGIN;

END:

ON ERROR BEGIN;

Statement Types
Figure 9-1

PL/I's block structure capability gives the user a great deal of power
in the following areas:

@ Limiting the scope of a declaration: that is, you can specify
the range of statements over which the declaration applies.

First Edition 9-2

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

Modular programming: using the procedure capability to break up
a large progran into small chunks. See Chapter 8 for details.

Error and condition handling: using the ON-unit to define what
happens when a condition or error occurs. See Chapter 13.

Recursive programming, the ability to have more than one
simultaneous activation of a block: this can be very powerful
in certain computer programs, such as compilers. See Chapter 8.

Only blocks (as opposed to DO groups) are relevant to these points.
The DO group provides for repetitive execution of a collection of
statements, but does not provide the kind of control described above
for blocks.

Types of Blocks

PL/I syntax recognizes three types of blocks, each of which begins with
either a PROCEDURE statement or a BHGIN statement:

A PROCEDURE block, which begins with a PROCEDURE statement and
ends with an END statement. Use a PROCEDURE block to define
your main program or to create a subroutine or user-defined
function. Such procedures may be internal or external.
Procedures are defined in Chapter 8.

An ON-unit. This is a BEGIN block that is attached to an ON
statement. It is used for trapping errors or other conditions
that might make a program abort. ‘The format is

ON condition-name [SNAP] BHGIN;

END:

PL/I handles ON-units differently from the way it handles BEGIN
blocks that are not ON-units. Use ON-units for error and
condition handling, as described in Chapter 13.

A BEGIN block other than an ON-unit. Such a block provides
block structuring without the additional features provided by
PROCEDURE blocks or ON-units (subroutines and functions, and
error and condition handling).

9-3 First Edition

PL/I Reference Guide

Nesting of Blocks

A PL/I compiler compiles a module called an external procedure. This
external procedure may be a main program, a subroutine, or a function.
Inside the external procedure may be one or more internal blocks,
PROCEDURE blocks, BEGIN blocks, and ON-units. Each of these internal
blocks may have any other internal blocks inside it.

Figure 9-2 shows a program skeleton with several nested blocks of
various types. Compare this program with Figure 9-3. By comparing the
program with its representation, you can see the meaning of the block
nesting concept. An external procedure (the entire main program) has
five internal blocks. An internal BEGIN block has an ON-unit and a
PROCEDURE block inside of it. A PROCEDURE block has a BEGIN block
nested inside.

P: PROCEDURE OPTIONS (MAIN) ;

BEGIN;

ON ERROR BEGIN;

END;

Q: PROC;

END Q;
END;

Re PROC;

BEGIN;

END:

END R?;

END P;

Block Structure
Figure 9-2

First Edition 9—4

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

PROC

BEGIN

ON-unit

PROC

PROC

BEGIN

Representation of Block Structure
Figure 9-3

Multiple Closure END Statements

Fach DO, BEGIN, and PROCEDURE statement in your program must have a
corresponding END statement. If you require several END statements in
a row, PL/I permits you to use a single END statement in the format

END identifier;

If you use an END statement in this syntax, PL/I supplies additional
END statements, to close off any unclosed groups or blocks, back to the
DO, PROCEDURE, or BEGIN statement whose label is the specified
identifier.

9~5 First Edition

PL/I Reference Guide

Consider this program segment, which has a DO group, a BEGIN block, and
a PROCEDURE block, all ending at the same point.

L: DO;

M: BEGIN;

N: PROCEDURE;

END L?

As a result of the statement END L, PL/I inserts two additional END
statements just before this statement, to close off the BHGIN block and
the PROCEDURE block. The result is as shown below. Of course, these

END statements do not appear in your program listings, since the

compiler inserts them internally without displaying the result.

L: DO;

M: BEGIN;

N: PROCEDURE?

e
e

e
f

END L;

THE DECLARE STATEMENT

Use the DECLARE statement to give identifiers the attributes of your

choice. For example, the DECLARE statement

DECLARE X FIXED BINARY STATIC;

specifies that the identifier X is to have the attributes FIXED,

BINARY, and STATIC,

The DECLARE statement has many formats. ‘The simplest format is

DECLARE identifier [attribute-list];

which specifies that the identifier is to have all the attributes in

the attribute-list. The attribute list may include some combination of

the keywords FIXED, FLOAT, DECIMAL, BINARY, COMPLEX, REAL, INITIAL, and

PICTURE discussed in Chapter 5.

First Edition 9-6

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

The left and right brackets in the above format indicate that the
attribute-list is optional, and so the DECLARE statement can be used to
declare an identifier without specifying any attributes. In this case,
the identifier is given the default attributes. For example, the
statement

DECLARE 2}

declares Z to have the system default attributes, BINARY FIXED.

Declaring Structure Level Numbers

When you use the DECLARE statement to declare a structure, specify
level numbers for the member names. In the following example, the
structure name EMPLOYEE has a level number of 1. EMPLOYEE has three
members, NAME, SALARY, and STARTDATE, each at level 2. SALARY and
STARTDATE are substructures, each with level 3 members,

DECLARE 1 EMPLOYEE (1000) ,

2 NAME CHARACTER(20) VARYING,

2 SALARY,

3 REGULAR PICTURE 'SSS$V.99',
3 OVERTIME PICTURE 'SSSV.99',

2 STARTDATE,

3 MONTH FIXED DECIMAL (2) ,
3 DAY FIXED DECIMAL (2),
3 YEAR FIXED DECIMAL (4) ;

Your structure declaration need not have consecutive level numbers.
The next example illustrates this.

9-7 First Edition

PL/I Reference Guide

DECLARE 1 EMPLOYEE (1000) ,

3 NAME CHARACTER(20) VARYING,

3 SALARY,

7 REGULAR PICTURE 'SS$V.99',
7 OVERTIME PICTURE 'SSSV.99',

3 STARTDATE,

6 MONTH FIXED DECIMAL (2) ,
6 DAY FIXED DECIMAL (2) ,
6 YEAR FIXED DECIMAL (4);

This declaration has exactly the same effect as the one before it, but
the level numbers are different. Internally, when PL/I compiles your

program, PL/I changes your level numbers to the correct logical level

numbers. In the case of the declaration in the example below, the
logical level numbers are those in the preceding example. Of course,
PL/I changes the level numbers only internally; the level numbers you
specify appear in your listing.

Any declared identifier that is not a structure member has a level
number of 1, even if it is not a structure. If you declare an
identifier with no level number, PL/I assumes a level number of 1.
Consider the declarations below. In these examples, X, Y, S, and T are

level-1 identifiers. Note that X and Y are level-1 scalars, while S

and T are level-1 structures. X and Y are considered level-1 even

though they are not structures. A, B, C, and D are level-2 identifiers

that are members of structures.

DECLARE X FLOAT;
DECLARE 1 Y FLOAT;

DECLARE 1 S, 2 A, 2 B;
DECLARE 1 T, 2 C, 2 D;

Multiple Declarations

You may use a single DECLARE statement to declare two or more
identifiers, For example, the single DECLARE statement

DECLARE A FLOAT, B FIXED,
C(20) CHARACTER(100) VARYING;

First Edition 9-8

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

is equivalent to the following three DECLARE statements:

DECLARE A FLOAT?
DECLARE B FIXED;
DECLARE C(20) CHARACTER(100) VARYING;

In both cases, you are giving the identifiers A, B, and C exactly the
same attributes.

Factored Declarations

Many times when you are writing a program, you would like to give
several different identifiers the same or similar attributes. In such
cases, the technique of factoring declarations can greatly simplify
your DECLARE statements. Some examples follow.

If you wish to give several identifiers exactly the same attributes,
follow a parenthesized list of the identifiers with a list of the
common attributes, For example,

DECLARE (A, B, C) CHAR(20) VAR;

gives A, B, and C the same attributes, CHAR(20) VAR, and so is the same
as

DECLARE A CHAR(20) VAR, B CHAR(20) VAR,
C CHAR(20) VAR;

which does the same thing.

9~9 First Edition

PL/I Reference Guide

WARNING

A very troublesome error for beginners is to forget to
parenthesize the list of identifiers. For example, many
beginners would accidentally write the factored DECLARE
statement above as

DECLARE A, B, C CHAR(20) VAR;

The reason this is such a problem is that the DECLARE statement
without parentheses is completely legal, and so is not flagged

by the PL/I compiler, and yet it gives results that are totally
unexpected by the user. ‘The DECLARE statement just above would
give A and B the default attributes (BINARY FIXED), and would

give C the attributes of CHAR(20) VAR, instead of, as the user
expects, giving all three identifiers the attributes CHAR(20)
VAR.

The factoring technique may be used even when the identifiers being

declared do not have all of their attributes in common, as long as they

share some attributes. In this case, it is possible to factor out just
the attributes that they do have in common. For example, the statement

DECLARE (M BINARY, N DECIMAL(5),
P DECIMAL (7)) FIXED;

is equivalent to the following three statements:

DECLARE M BINARY FIXED;
DECLARE N DECIMAL(5) FIXED;
DECLARE P DECIMAL(7) FIXED;

Here the parenthesized list contains not only the identifiers M, N, and

P being declared, but also the attributes that these identifiers do not

share (BINARY, DECIMAL(5), and DESCIMAL(7)). The only factored

attribute is the shared attribute FIXED.

As another example, consider the following:

DECLARE (X FLOAT, Y DEC(2) FIXED)
STATIC COMPLEX;

First Edition 9-10

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

The two factored attributes here are STATIC and COMPLEX. ‘Therefore,
the two DECLARE statements

DECLARE X FLOAT STATIC COMPLEX;
DECLARE Y DEC(2) FIXED STATIC COMPLEX;

are equivalent to the one statement above.

If you wish to make several identifiers into an array, you may factor
out the parenthesized dimension list. For example, the statement

DECLARE (LA, IB) (10) FIXED;

factors out the dimension specification, 10. ‘Therefore, the statement

DECLARE LA(10) FIXED, IB(10) FIXED;

is equivalent.

Whenever a parenthesized list immediately follows the right parenthesis
of a factorization, PL/I treats the parenthesized list as a dimension
list. For example, the declaration ‘

DECLARE (A BIN, B DEC) (5,7)?

factors out the dimension list (5,7). An equivalent declaration is

DECLARE A(5,7) BIN, B(5,7) DEC;

The (5,7) is treated as a dimension list, not as a precision to he
associated with BINARY and DECIMAL.

9-11 First Edition

PL/I Reference Guide

You can also use several nested levels of factoring in your DECLARE
statement. For example, the statement

DECLARE ((F VAR, G) CHAR(20), H DECIMAL)
STATIC;

contains two nested levels of factoring, with three identifiers, F, G,
and H, being declared. This factored DECLARE statement is equivalent
to the following three DECLARE statements:

DECLARE F VAR CHAR(20) STATIC;
DECLARE G CHAR(20) STATIC;
DECLARE H DECIMAL STATIC;

You may also use the factoring technique to factor an entire structure.
For example, the declaration

DECLARE 1 (S, T), 2 A FIXED, 2 B FLOAT;

specifies that the two structures § and T are to have the same members,
Therefore, it is equivalent to the declarations

DECLARE 1 S, 2 A FIXED, 2 B FLOAT;
DECLARE 1 T, 2 A FIXED, 2 B FLOAT;

You may also factor structure members inside a structured declaration.
For example, the declaration .

DECLARE 1 ST, 2 (A, B) FLOAT;

defines a structure, ST, with two members, A and B, each of which is

FLOAT. Therefore, the declaration

DECLARE 1 ST, 2 A FLOAT, 2 B FLOAT;

is equivalent.

First Edition 9-12

PROGRAM BLOCKS, DECLARATIONS, AND SQOPE RULES

The LIKE Attribute

Use the LIKE attribute when you wish to declare a structure to have the
same members as one declared elsewhere. In the following declarations,

DECLARE 1 S, 2 A FIXED, 2 B FLOAT;
DECLARE 1 T LIKE S;

the second declaration specifies that T is a structure that is to have
the same members as S. Therefore, the declaration

DECLARE 1 T, 2 A FIXED, 2 B FLOAT;

is an equivalent declaration for T.

The LIKE attribute can be used to copy the declarations of structure
members and their attributes from one structure declaration to another.
Tt does not copy storage type or dimension attributes for the structure
identifier itself. For example, the declarations

DECLARE 1 ST(20) AUTOMATIC, 2 X, 2 Y;
DECLARE 1 STB BASED LIKE ST;

give STB the same members (X and Y) as the array of structures ST.
However, the dimension attribute, 20, and the storage class AUTOMATIC,
are not copied to STB. In fact, STB is a BASED scalar. Therefore,

DECLARE 1 STB BASED, 2 X, 2 Y;

is an equivalent definition for the structure STB.

TYPES OF DECLARATIONS

All identifiers (other than keywords) that appear in your PL/I program
are declared in one way or another. If you do not explicitly declare
such an identifier in one of the three ways below, PL/I supplies either
a contextual or an implicit declaration of its own. The rules for
explicit and nonexplicit declarations are described in this section.

9-13 First Edition

PL/I Reference Guide

Types of Explicit Declarations

PL/I recognizes three contexts that explicitly declare an identifier.

These contexts, and the resulting attributes that PL/I gives the

identifier, are as follows:

An identifier declared by a DECLARE statement is explicitly

declared to have the attributes specified in the DECLARE

statement.

An identifier appearing as a statement label is explicitly

declared to be a named constant. The precise attributes that

PL/I gives to such an identifier depend upon the kind of

statement being labeled. Tf it is a FORMAT statement, the

identifier is given the attributes FORMAT CONSTANT. If the

statement is a PROCEDURE or ENTRY statement, the identifier is

given the attributes ENTRY CONSTANT. In all other cases, the

identifier is given the attributes LABEL CONSTANT. In the case

of an ENTRY constant, if the PROCEDURE statement is an external

procedure, or if the ENTRY statement is for a secondary entry

point for an external procedure, then the identifier is given

the EXTERNAL attribute; otherwise, it is given the INTERNAL

attribute.

An identifier appearing in the context of a parameter in a

parameter list of a PROCEDURE or ENTRY statement is thereby

explicitly declared to have the PARAMETER attribute.

Figure 9-4 is a program skeleton containing a number of explicit
declarations. The explicit declarations are as follows:

Since P is a statement label for a PROCEDURE statement for an

external procedure, P has the attributes EXTERNAL ENTRY.

X, by virtue of its appearance in the DECLARE statement, is

explicitly declared to have the attribute FLOAT.

L is a statement label for a statement other than a PROCEDURE,

ENTRY, or FORMAT statement. Therefore, L is explicitly declared

to have the attributes LABEL CONSTANT.

FR is a statement label for a FORMAT statement, and so is

explicitly declared to have the attributes FORMAT CONSTANT

discussed in Chapter ll.

Of the three explicit declarations for A in the internal

procedure, two are in the context of a procedure parameter, and

one is in a DECLARE statement. As a result of these three

explicit declarations, A receives the attributes CHARACTER (20)

PARAMETER.

First Edition 9-14

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

e Bis explicitly declared to be a PARAMETER, because it appears
in the parameter list of the ENTRY statement. Since there is no
separate DECLARE statement for B, the data type attributes for B
are the system or program defaults.

@ SB appears as the label of a PROCEDURE statement for an internal
procedure, and so SB receives the attributes INTERNAL ENTRY
(CHARACTER(20)) CONSTANT.

@ FN appears as the statement label for an ENTRY statement for an
internal procedure, and thereby receives the attributes INTERNAL
ENTRY (CHARACTER (20) , BINARY FIXED) RETURNS(FLOAT) CONSTANT.

P: PROC OPTIONS (MAIN);
DECLARE X FLOAT;

PUT EDIT (X) (R(FR)) 3
FORMAT (F (5))¢td

be

SB: PROCEDURE (A) ;

DECLARE A CHARACTER (20) ;

FN: ENTRY(A,B) RETURNS (FLOAT) ;

END SB;
END P;

Explicit and Non-explicit Declarations
Figure 9-4

LABEL CONSTANT Arrays: An identifier that appears in the context of a
statement label is thereby explicitly declared by such an appearance.
You may put subscripts on such identifier references to create a LABEL
CONSTANT array.

The next example illustrates the use of such an array. In this
example, the appearances of BRANCH in statement labels cause BRANCH to
be explicitly declared as a LABEL CONSTANT array, with a lower bound of
1 and an upper bound of 10. PL/I decides the upper and lower bounds by
finding the lowest and highest subscripts, respectively, that appear in
the statement label references.

9-15 First Edition

PL/I Reference Guide

GO TO BRANCH(K);

BRANCH (1) ¢ ees

BRANCH(2): wee

BRANCH (3) : cee

BRANCH (10) ° eee

If you use this method to declare LABEL CONSTANT arrays, all

appearances of the identifier in the context of a label must have the

same number of subscripts, and all subscripts must be constants.

Furthermore, the various subscript lists must all be different.

Contextual Declarations

Sane other kinds of declarations are not explicit in the sense we have

described.

When you use an identifier in an explicit declaration, you do so for

the express purpose of telling the PL/I compiler what attributes the

identifier should have. This is true whether the explicit declaration

is performed by means of a DECLARE statement, a statement label, or a

PROCEDURE or ENTRY statement parameter list.

If you use an identifier (not a keyword) in your program, and there is

no explicit declaration for that identifier, then PL/I must supply a

declaration for you. In most cases, PL/I supplies an implicit

declaration, as described in the next section. However, if you happen

to use that identifier in your program in certain contexts, PL/I makes

a contextual declaration of the identifier, giving the identifier

certain attributes, depending upon the context.

The following paragraphs define these contexts and the attributes

derived from the resulting contextual declarations.

First Edition 9-16

PROGRAM BLOCKS, DECLARATIONS, AND SOCOPE RULES

Built-in Functions: The most common contextual declaration is for
built-in functions. Unless you explicitly declare the built-in
function identifier name to have the BUILTIN attribute, PL/I has no way
of knowing whether the identifier is to be an ordinary variable or a
built-in function. However, if the identifier appears in same
statement of your program in the context of being immediately followed
by a parenthesized argument list, PL/I assumes that it is a built-in
function and gives it the BUILTIN attribute in a contextual
declaration. For example, if

A = MAX(B,C);

appears in your program, and if there is no explicit declaration of MAX
as either an ENTRY or an array, then PL/I assumes that MAX is a

built-in function. PL/I contextually declares the identifier MAX to

have the BUILTIN attribute,

On the other hand, it is perfectly legal to use a built-in function
name as an ordinary variable in your program. For example,

MIN = X + Y¥;

is a valid assignment statement to an ordinary variable called MIN,
provided that you do not use MIN as a built-in function elsewhere in

your program. If you do, MIN would be given the BUILTIN attribute, and

the above assignment statement would then be illegal.

It is important to understand the concept of contextual declarations
when you are using built-in functions that take no arguments, such as
DATE, TIME, and ONSOURCE. For example, if you use DATE in your program

in the statement

PUT LIST (DATE);

then, since DATE is not followed by a parenthesized argument list, PL/I
does not contextually declare DATE to be BUILTIN. As a result, DATE is
considered an ordinary variable, and the above PUT statement prints
some numeric value, usually 0. To make the above statement work
properly, follow DATE with a pair of empty parentheses, as in

PUT LIST (DATE()) 7

The empty argument list following the identifier DATE causes PL/I to
make the correct contextual declaration. If you use the DATE built-in
function many times in your program, you only need to put the empty
argument list after one occurrence. The contextual declaration then

9-17 First Edition

PL/I Reference Guide

applies to all occurrences. Of course, you could avoid the whole issue
by using an explicit declaration like

DECLARE DATE BUILTIN;

This would be an explicit declaration of DATE as BUILTIN, and so no
contextual declaration would be needed.

File Constant Identifiers: Another common contextual declaration is
for FILE OONSTANT identifiers. For example, if your program contains
the statement

READ FILE(TAPEIN) INTO(REC);

and if your program has no explicit declaration for the identifier
TAPEIN, then PL/I contextually declares TAPEIN to have the FILE
CONSTANT attributes.

There are several contexts that would give an identifier the FILE
CONSTANT attributes in a contextual declaration. These are as follows:

@ FILE(identifier) option in the OPEN, PUT, GET, READ, WRITE,
REWRITE, DELETE, or CLOSE statement.

@ OOPY(identifier) option in the PUT statement.

@ One of the file condition options in the ON, REVERT, or SIGNAL
statement. The file conditions are ENDFILE(identifier),
UNDEFINEDFILE (identifier), ENDPAGE(identifier), KEY(identifier),
NAME (identifier), RECORD(identifier), and TRANSMIT (identifier).

Of course, if your program contains an explicit declaration for the
identifier -~ for instance, giving it the FILE VARIABLE attributes --
then no contextual declaration is made.

An interesting special case of FILE CONSTANT contextual declarations
occurs for SYSIN and SYSPRINT. For example, if your program contains a
GET statement with no FILE or STRING option, FILE(SYSIN) is assumed by
PL/I. As a result of this assumption, PL/I contextually declares SYSIN

to be FILE CONSTANT. ‘Therefore, the statement

GET LIST (X) ;

is assumed by PL/I to mean the same thing as

GET FILE(SYSIN) LIST (X);

First Edition 9-18

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

and so SYSIN is contextually declared as a FILE CONSTANT. A similar
thing happens with SYSPRINT. If no FILE or STRING option occurs in a
PUT statement, PL/I assumes the FILE(SYSPRINT) option for the PUT

statement and contextually declares SYSPRINT to be a FILE CONSTANT.

The Condition Attribute: If an identifier appears with the OONDITION
option of the ON, REVERT, or SIGNAL statement, PL/I contextually
declares that identifier to have the CONDITION attribute. For example,
the statement

ON CONDITION (FILEERROR) GO TO HANDLE;

causes PL/I to declare FILEERROR contextually to have the OONDITION
attribute. See Chapter 13 for a full discussion of PL/I condition
handling.

The POINTER Attribute: In certain contexts, an undeclared variable is
given the POINTER attribute. These contexts are as follows:

e If the identifier appears to the left of the symbol ->. For
example, Suppose your program contains the statement

P->S = 15

Tf P is not explicitly declared, then, as a result of this
statement, PL/I contextually declares P to have the POINTER
attribute.

e If the identifier appears in the SET option of the READ or
ALLOCATE statement. For example, if P is undeclared, the
statement

READ FILE(TAPEIN) SET(P);

causes PL/I to declare P contextually with the POINTER
attribute.

@ If the identifier appears as the argument of the BASED attribute
in the DECLARE statement for some other identifier. For
example, if P is not explicitly declared, the statement

DECLARE S FIXED BASED (P) ;

9-19 First Edition

PL/I Reference Guide

causes PL/I to declare P contextually with the POINTER
attribute.

The AREA Attribute: Certain contexts cause an undeclared identifier to
be declared contextually with the AREA attribute. These contexts are
as follows:

@ IN(identifier) option in the ALLOCATE and FREE statements

@ OFFSET(identifier) attribute of the DECLARE statement

Other Remarks: The above paragraphs contain a complete list of those
contexts that, according to ANSI rules, cause PL/I to make a contextual
Geclaration of an identifier that is not explicitly declared. Since
Prime supports the ANSI rules, the above is also a complete list of all
contextual declarations supported by Prime. To avoid confusion among
users who are accustaned to IBM or other older compilers, we mention
here a type of contextual declaration that is supported by older
compilers but that was discarded by the ANSI committee. In these older
compilers, an identifier used as the target of a CALL statement and not
explicitly declared would be contextually declared as an EXTERNAL
ENTRY. Furthermore, an identifier that is not recognized as a valid
built-in function name, but that appears in an expression followed by a
parenthesized argument list, is contextually declared as an EXTERNAL
ENTRY, if there is no explicit declaration for it.

Therefore, in these older compilers, the statements

CALL SBR(A) ;
A = FNC(B)3

would cause SBR and FNC to be contextually declared as having the
EXTERNAL ENTRY attributes, provided that there were no explicit
declarations for these identifiers. According to the ANSI rules, and
therefore according to PRIME rules, the above two statements would be
illegal without explicit declarations of SBR and FNC.

There are some final rules concerning contextual declarations:

e If an identifier appears in an explicit declaration, PL/I never
makes a contextual declaration for it.

e If an identifier that has not been explicitly declared appears
in two or more different contexts that would cause PL/I to make
contextual declarations according to the rules in the paragraphs
above, then the different contexts must lead to consistent sets
of attributes. For example, if the same undeclared identifier
appears in both a FILE option and an IN option, then your
program is in error, because the FILE attribute is inconsistent

with the AREA attribute.

First Edition 9-20

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

Implicit Declarations

T£ you use an identifier (not a keyword) in your program, and if the

following two conditions hold:

e Your program contains no explicit declaration for the

identifier; and

@ Nowhere in your program does the identifier appear in any —

context that qualifies it for a contextual declaration,
according to the rules of the preceding section;

then PL/I implicitly declares the identifier. This means that PL/T

declares the identifier with the default attributes (usually BINARY

FIXED REAL(31,0)). Implicit declarations generate level-l error

warnings at compilation time.

For example, if the variable X appears in your program in the

statements

X= A+ B;

PUT LIST (X) 3

and if X appears nowhere else in your program, then PL/I implicitly

declares X with the default attributes.

SCOPE OF A DECLARATION

If your program contains an explicit declaration of an identifier, that

explicit declaration may or may not apply to your entire program. That

portion of your program to which a declaration applies is called the

scope of the declaration.

Consider Figure 9-5. This program skeleton contains two explicit
declarations of X. ‘The first of these is not inside an internal block,
but the second is inside an internal BEGIN block. The scope of the

second declaration is the internal BEGIN block, as shown by the bracket

lines to the right of the figure. This means that the second
declaration applies only within that BBGIN block. The scope of the

first declaration of X is all the rest of the program. This means that

any reference to X, except within the first BEGIN block, is to the

variable declared by the first DECLARE statement.

9-21 First Edition

PL/I Reference Guide

P: PROC OPTIONS (MAIN) |
DECLARE X FIXED; Scope of

X = 5: first declaration

BEGIN; 4

DECLARE X FLOAT? Scope of

X = 103 second
eo. declaration
END;

BEGIN; 1]
PUT LIST (X); Scope of
eee first declaration
END;

PUT LIST (X%):
Scope of Declarations

Figure 9-5

In this program, the statement

is in the scope of the first declaration, as we have just described,
and so the identifier X in this statement refers to the X declared in
that declaration. On the other hand, the statement

X = 10;

is in the scope of the second declaration, and so the X in that
statement refers to the X declared by the second DECLARE statement.
These two variables, both with the identifier xX, are completely
different; they have different values and different data types. They
are just as different as if they had different identifiers.

The statement

PUT LIST (X) :

appears twice in this program segment, both times within the scope of
the first declaration. Therefore, both PUT statements refer to the X
that was set to 5 near the beginning of the program. Unless same other
statement changes the value of this variable X, each of these PUT
statements prints the value 5. In particular, the value of X is not

First Edition 9-22

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

10, since it is a different X that was set to 10 within the BEGIN
block.

The following sections give the precise rules for determining the scope
of a declaration.

Block Containment of Explicit Declarations

The scope of an explicit declaration depends upon where the declaration
appears in the program as compared to the location of the various
internal blocks of the program. In particular, to understand the
concept of scope of a declaration, we must understand what it means for
a declaration to be inside a block, or contained in a block. In most

cases, it is perfectly obvious whether or not an explicit declaration
lies within a given block.

The case of the DECLARE statement is completely obvious. A DECLARE
statement is contained in a given block if the DECLARE statement lies
between the PROCEDURE or BEGIN statement that begins the block and the
END statement that ends the block. ‘This means that a DECLARE statement
is contained in a given block if it lies within the block in the
obvious sense,

Almost as obvious is the case of statement labels for statements other
than PROCEDURE, BEGIN, or ENTRY statements. Consider, for example, the

£ollowing BEGIN block:

m
WGIN

= 5 =
e

~
0

END;

The explicit declaration for L is contained in the BEGIN block shown,

Another type of explicit declaration is the case of an identifier in a
parenthesized list following the first keyword in either a PROCEDURE or
ENTRY statement. Such an identifier is thereby explicitly declared to
be a PARAMETER. This explicit declaration is contained in the
PROCEDURE block for the PROCEDURE or ENTRY statement.

The only remaining case of an explicit declaration is the one that is
least obvious, the case of a statement label for a BEGIN, PROCEDURE, or
ENTRY statement. In all three cases, the explicit declaration
determined by the statement label is not contained in the block defined
by the PROCEDURE or BEGIN statement, or by the PROCEDURE statement
corresponding to the ENTRY statement. However, it is contained in the
next outer block.

Although it seems ,confusing, this is indeed true for the label on an
ENTRY statement. Even though such a label appears clearly to be

9-23 First Edition

PL/I Reference Guide

defined inside the procedure in which the ENTRY statement lies, PL/I
considers that declaration to be outside the procedure.

In the illustration below, SUBR is an internal procedure with a

secondary entry point, SUBR2. The box drawn in the example shows which

explicit declarations are contained in the PROCEDURE block. ‘The

explicit declarations of A, B, C, and L are contained in the PROCEDURE

block, but the explicit declarations of SUBR and SUBR2 are not

contained in that block.

SUBR: PROCEDURE (A) 3

DCL A FLOAT, B FIXED;

Ls B = 103

SUBR2: ENTRY(A,C);

END SUBR;
Immediate Containment

Consider the next example. The procedure SUBB contains the

declarations of both A and B. However, the procedure does not

immediately contain the declaration for B, since that declaration is

inside an internal block. ‘The PROCEDURE block immediately contains the

declaration for A, and the BEGIN block immediately contains the

declaration for B.

SUBB: PROCEDURE?

DECLARE A FIXED;

BEGIN;

DECLARE B FIXED;

END SUBB;

First Edition 9-24

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

A given block is said to contain immediately a given explicit

declaration if the block contains the declaration, but no inner block

also contains the declaration. Note that several blocks can contain a

given declaration, but only one block can contain a declaration

immediately.

Scope of an Explicit Declaration

That portion of your program to which an explicit declaration applies

is called the scope of the explicit declaration.

To get the scope of an explicit declaration,

e Start with the block that immediately contains the explicit

declaration. This includes all statements in this block,

including statements that are inside internal blocks within the

block.

e Look for other explicit declarations of the same identifier in

internal blocks. Cross out any internal blocks that immediately

contain those explicit declarations.

Figure 9-6 illustrates the results of applying these rules. This

program skeleton contains a number of blocks, labelled P, S, U, VW, W,

and X, respectively. Three declarations of B are shown. For the first

of these three declarations, the one following the PROCEDURE statement

for procedure S, the scope is shown by the brackets to the right of the

program skeleton. We obtained this result by starting with procedure

S, the block that immediately contains the first declaration, and then

crossing out blocks V and W, since these blocks immediately contain

explicit declarations of B. The result is the scope of the first

declaration.

9=25 First Edition

PL/I Reference Guide

tg PROC OPTIONS (MAIN);

PROC:

DECLARE B FIXED;

BEGIN;

BEGIN;

DCL B FLOAT;

END V3

END Us: |

BEGIN;

DECLARE B;

We

END W;

END S?3; |

BEGIN;

END X¢:

END P;

First Explicit Declaration of B
Figure 9-6

Scope of the

Scope of an Implicit or Contextual Declaration

PL/I considers an implicit or contextual declaration to be immediately
contained in the external procedure being compiled. With this
information, we can apply the general rules of the last section to get
the following rules for the scope of an implicit or contextual
declaration:

@® Start with the entire external procedure.

@ Cross out all internal blocks that immediately contain an
explicit declaration for the same identifier.

The result is the scope of the implicit or contextual declaration.

Figure 9-7 illustrates these rules.
program consisting of an external procedure,

and W. ‘There is an explicit declaration of theBEGIN blocks, U, V,

identifier B within the BEGIN block V,
explicit declaration is just the block V.
to the identifier B outside of the BEGIN
explicit declaration for

First Edition 9-26

these references,

This figure shows an entire
P, and three internal

and so the scope of this
There are other references

block V, and there is no
Therefore PL/I creates an

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

implicit declaration for B. This implicit declaration is immediately
contained in the external procedure P. To get the scope of this
implicit declaration, we apply the above rules. We start with the
external procedure P, and we cross out the BEGIN block V_ that
immediately contains an explicit declaration of the same identifier, B,
The result is the scope of the implicit declaration for B, and it is
indicated by the brackets to the right of the program in the figure,
I£ this program is executed, the PUT statement prints the value 5,
which is the value to which B was set inside the BEGIN block U.

*

P: PROC OPTIONS (MAIN);

Us BEGIN:
B= 5:3

END U:

V3 BEGIN;

DECLARE B;

B = 10;
END V;

Ws BEGIN;

PUT LIST (B) 3

END W;

END P;

Scope of an Implicit Declaration of B
Figure 9-7

RESOLVING REFERENCES

Whenever any statement of your PL/I program references an identifier
that is not a keyword, the PL/I compiler must match that reference up
with some declaration, explicit, implicit, or contextual. This process
is called resolving the reference.

Multiple Declarations

As a general rule, if a program contains two declarations for the same
identifier, they must be immediately contained in different blocks of
your program. As a result, the two declarations have different scopes,
and, in fact, the scopes never overlap.

9-27 First Edition

PL/I Reference Guide

There are some exceptions to this general rule. Some of these

exceptions have been illustrated in earlier sections; all of them are

summarized here. The precise rule for two or more explicit

declarations of the same identifier is as follows: two or more

explicit declarations of the same identifier may not be immediately

contained in the same block of your program, unless each pair of such

explicit declarations meets one of the following conditions:

e At least one of the two explicit declarations in the pair is for

a member of a structure. To put it another way, they must not

both be level-1 declarations of the same identifier.

@ The two explicit declarations in the pair are for parameters in

the parameter lists of different PROCEDURE or ENTRY statements
immediately contained in the same PROCEDURE block.

@ One of the explicit declarations is for a parameter in the

parameter list of a PROCEDURE or ENTRY statement, and the other

is a separate declaration of the same identifier in a DECLARE

statement, the purpose of which is to specify the data type and

aggregate type of the parameter.

@ Both explicit declarations are subscripted labels for LABEL

CONSTANT arrays. In this case, it is required that the

subscripts be constant, that both references have the same

number of subscripts, and that the values of the subscripts be

different.

All of the above exceptions, except the first, have been illustrated

earlier in this chapter. The next section illustrates the first of

these exceptions.

Structure References

Suppose your program contains the following code and you wish to assign

the value 5 to the element A.B.C. Consider the four different

assignment statements at the end of the code. The reference to A.B.C

in the first statement of this example is called a fully qualified

reference, The others are called partially qualified references, since

one or more intermediate structure names are missing. If the program

contains no other declarations for the identifiers A or B or C, these

four assignment statements are all legal, and they are all equivalent.

First Edition 9-28

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

DECLARE 1 A,
2 B,
3 C,
3 D,

2 E;

A.B.C = 53
B.C = 5;
A.C = 53

Cc = 5;

If there are other declarations of C in the program, not all of the
references in this example are legal. In such a case, the statement
C= 5 is certainly ambiguous, and is therefore invalid. The statement
A.B.C = 5, which contains the fully qualified reference, is always
valid. Whether the other two statements are valid depends on whether
there are any other declarations in the program that make these

statements ambiguous.

Interleaved Subscripts

Consider this declaration:

DECLARE 1 S(10),

2 A(5),
3 B,
3 C(20),

2 D;

A reference to S(I).A(3).C(K) is said to have interleaved subscripts,
since the subscript lists come between the various identifier qualifier
levels.

PL/I permits such a reference to be written with all subscripts to the
right. For the above example, this would be S.A.C(I,3,K), and, in
fact, PL/I considers these two references to be completely equivalent.

The rules for resolving structure references would then apply to S.A.C,
with the subscripts ignored for the purpose of reference resolution.

9-29 First Edition

Flow ofControl

This chapter examines in detail the order in which statements are
executed. Normally, when PL/I executes a program, it executes the
statements of the program sequentially; that is, it executes one
statement of the program, and then executes the statement immediately
following. However, certain types of statements, such as those that
define program loops or certain types of conditions such as program
errors, can alter the sequential execution of a program.

The last part of Chapter 10 presents five statements that direct the
compiler to copy text, replace characters, skip to a new page, or
suppress and restart the printing of a source listing. ‘The statements
do not themselves cause any object code to be generated.

THE IF STATEMENT

Introductory material on the IF statement is in Chapter 4. The format
of the IF statement is

IF expression THEN then-clause;
[ELSE else-clause]

10-1 First Edition

PL/I Reference Guide

The expression is any PL/I expression. ‘he then-clause and the

else-clause are each one of the following:

@ A single executable statement of one of the following types:
ALLOCATE, =, CALL, CLOSE, DELETE, FREE, GET, GOTO, LOCATE, NULL,
OPEN, PUT, READ, RETURN, REVERT, REWRITE, SIGNAL, STOP, or

WRITE.

e@ Another IF statement, with its own subclauses.

e An ON statement, possibly with its own ON-unit (discussed in

Chapter 13).

@ A group of statements beginning with a DO statement and ending

with an END statement (discussed later in this chapter).

@ A block of statements beginning with a BEGIN statement and

ending with an END statement. For performance reasons, a block

is not recommended unless you need the full power of PL/I's

block mechanism.

PL/I executes the IF statement by first determining whether the

expression is true or false. It does this by evaluating the expression

and converting it to the BIT data type according to the rules given in

Chapter 6. If the resulting BIT string contains any 1-bit, PL/I

considers the expression to be true; if the BIT string is null, or if
it contains only 0-bits, PL/I considers the expression to be false.

Figure 10-1 is a flow chart showing the operation of the IF statement.
PL/I executes either the then-clause or the else-clause, depending upon

whether or not there is a l-bit in the result obtained by evaluating

the expression and converting it to BIT. After executing either one

clause or the other, control passes to the next statement. Of course,

this does not happen if the clause that is executed specifies a change
in flow of control, such as by means of a GOTO statement.

Then-clause

Any
1-bit in

Next

expression
statement

?

Else-clause

Flow of the IF Statement
Figure 10-1

First Edition 10-2

FLOW OF CONTROL

The IF statement format shown above uses the brackets ([]) to indicate
that you need not specify the ELSE option. If you use an IF statement
with no ELSE option, the execution is as shown in Figure 10-2.

Then-clause

Any
1-bit in

expression
?

Next

..4 statement
 No

IF With No ELSE
Figure 10-2

Nested IF Statements

T£ either the then-clause or the else-clause of an IF statement is
another IF statement, we have a case of nested IF statements. This is
illustrated in the following example. The nested IF statements are
combined to test the various possibilities shown in the chart below.

IF X > 0 THEN IF X <= 10

ta B
D
p

Dp

Various values of X have the following results:

Tested Value Value Assigned
of X to A

> 0 but <= 10 1
> 10 2
0 3
<0 4

The danger in using nested IF statements is that it is very easy to
make a mistake in matching the ELSE options with the appropriate IF
statements. To understand the problem, look at the next example.

10-3 First Edition

PL/I Reference Guide

There is a missing ELSE clause in that example. To which of the two IF
statements does the single ELSE keyword belong?

IF X > 0 THEN IF X = 10
THEN A = 1;

ELSE A = 2;

PL/I always matches each ELSE with the nearest unmatched IF. In the
example, this means that PL/I matches the ELSE with the second IF,
which may or may not have been the programmer's intention. For the
ELSE clause to match with the first IF, there must be a dummy ELSE

clause, as follows. In this example, the line ELSE specifies an ELSE
clause consisting of a null statement. ‘This ELSE matches the second

IF, so that the second ELSE can match the first IF.

IF X > 0 THEN IF X <= 10
THEN A= 1;
ELSE;

ELSE A = 2;

THE DO STATEMENT

Introductory material on the DO statement is in Chapter 4.

The DO statement has two purposes:

e To define a statement group. The collection of statements
between the DO statement and its corresponding END statement
form a group that, for several purposes, can be treated as a

single unit. We have already seen this use with the IF

statement in the THEN and ELSE clauses.

e To provide looping, by means of repetitive execution of such a

group of statements.

DO Statement with No Options

The simplest form of the DO statement is

DO;
statements

END:

In this format, where the DO statement has no options, we have merely

defined a group of statements. ‘This is the most common format used in

First Edition . 10-4

FLOW OF CONTROL

the subclauses of the IF statement. No repetition is provided by this
format.

DO WHILE

The simplest form of iterative DO statement has only a WHILE option.
The format is

DO WHILE (expression) ;
statements

END:

Before each iteration of the loop, PL/I must determine whether the
expression is true or false. It does this by evaluating the
expression, converting the result to the BIT data type and then
considering the expression to be true if there is a 1-bit in the
resulting BIT string, false otherwise. As long as the expression
remains true, PL/I continues to re-execute the statements in the group.

The operation of the DO loop shown in the format above is flowcharted
in Figure 10-3. Notice that PL/I evaluates the expression before the
first iteration of the loop, and then re-evaluates it after each
subsequent iteration.

Any
1-bit in

expression
?

Execute statements
inside DO-group

 Next

statement
 A

Operation of DO WHILE
Figure 10-3

10-5 First Edition

PL/I Reference Guide

One consequence of these rules is that a zero trip DO loop is possible.
This is a loop in which no iterations are executed. An illustration
follows. If the first GET statement inputs a negative value of A, the
expression A >= 0 is false immediately. As a result, there are no

iterations of the loop, and PL/I immediately transfers control to the

statement following the END statement.

GET LIST (A);
DO WHILE(A >= 0);
PUT LIST (A) 3
GET LIST (A) ;
END;

Another consequence of the above rules is that execution of the loop
does not terminate in the middle of an iteration, even if the
expression becomes untrue in the middle of an iteration. Consider the
example below. If, after several iterations, the GET statement inputs
a negative value, the PUT statement still executes. The loop does not
terminate until the test of the expression is made at the completion of
the iteration.

A=1;
DO WHILE(A >= 0);
GET LIST (A);
PUT LIST (A) 3:
END;

DO with Numeric Index Variable

The DO statement in FORTRAN, the FOR statement in BASIC, and the

PERFORM statement in COBOL give the user the capability of looping

under the control of an index variable.

In PL/I, the simplest format of DO with an index is

DO index = initial-expr [BY by-expr] [TO to-expr];
statements
END;

In this format, the index is the DO loop variable. PL/I begins
execution of such a group by initializing the value of the index
variable to the value of the initial-expr.

The BY clause and the TO clause are optional. If both are specified,
they may appear in either order. The rules for execution of this
format DO statement depend upon whether the BY option is specified and

First Edition 10-6

FLOW OF CONTROL

whether the TO option is specified. The rules are given in the
remainder of this section.

The simplest case,

DO index = initial-expr;

has no BY option or TO option. PL/I initializes the index variable to
the value of the initial-expr, and then executes the statements in the
group once. There are no multiple iterations. For example, the DO
group

DO X = 50;
PUT LIST (X) ;

END;

contains a PUT statement that is executed only once, with the value of
X equal to 50.

Next, let us consider the case where you specify only the BY option:

DO index = initial-expr BY by-expr;

If PL/I executes a loop beginning with this DO statement, the result is
usually an infinite loop. PL/I initializes the index variable to the
value of the initial-expr, and then executes the statements inside the
group. After all the statements have been executed, PL/I adds the
value of the by-expr to the index variable, and then executes the
statements in the group again. The process of modifying the index
variable and executing the statements in the group’ continues
indefinitely, Such a DO loop cannot terminate normally. It continues
looping until either the program executes a GOTO statement that
transfers out of the loop, or wntil the program is stopped by some
external means.

Figure 10-4 shows, by means of a flowchart, how PL/I executes a DO loop
of this type. For example, the loop

DO K= 1 BY];
PUT LIST (K);
END;

prints the values 1, 2, 3, 4, and so forth, wntil something external
terminates the program.

10-7 First Edition

PL/I Reference Guide

!
Compute value of
initial-expr and

by-expr

 Vv
Initialize index

variable to

value of initial-expr

—Te

\
Execute statements
inside DO-group

Add value of

by-expr to index
variable

Indexed DO Loop
Figure 10-4

Next, let us consider the case where only the TO option is specified:

DO index = initial-expr TO to-expr;

The TO option specifies an ending value for the index variable, to

terminate the loop normally. PL/I executes the loop beginning with

this type of DO statement by initializing the index variable to the

value of the initial-expr for the first iteration of the loop, and then

increnenting the index variable by 1 for each new iteration, stopping

when the value of the to-expr is reached.

First Edition 10-8

FLOW OF CONTROL

Figure 10-5 is a flowchart that shows how PL/I executes a DO group that
begins with this type of DO statement. For example, the following
program segment prints the values 1, 2, 3, 4, and 5:

DO K=1 7 5;
PUT LIST (K):

END:

10-9 First Edition

PL/I Reference Guide

|
Compute value of
initial-expr and

by-expr

Vv

Initialize index

variable to value of

initial-expr

Is
value of

index variable
<= value of

to-expr

?

Yes

Execute statements
inside DO-group

Vv Add 1 to index

variable

 Next statement [-«

DO Without BY
Figure 10-5

As you can see from the flowchart, PL/I decides whether to execute each

new iteration of the statements in the DO group by testing whether the

First Edition 10-10

FLOW OF CONTROL

index variable is less than or equal to the value of the to-expr. This

means that the loop terminates even if the index variable comes to
exceed the value of the to-expr, without ever actually equalling it.
For example, the next program segment prints the values 2.5, 3.5, 4.5,

and 5.5. ‘The variable X will never actually equal 6, because the loop

terminates after 5.5 has been printed, Although the last printed value

is 5.5, the variable X has a value of 6.5 as the loop is terminated.

DECLARE X FIXED DECIMAL (7,1);
DO X = 2.5 TO 6;
PUT LIST (X) ;

END;

The initial-expr and the to-expr may be arbitrary PL/I expressions.

PL/I evaluates each of them only once, when the DO loop is entered. To

understand the significance of this, consider the following example.

The loop in that example prints the values 1, 2, 3, 4, and 5. Note

that PL/I evaluates the to-expr only once to get the value 5, and does

not re-evaluate the expression after subsequent loop iterations.

Therefore, the change in the value of M to 2 during execution of the

statements in the group has no effect on the value of the to-expr.

M= 5;
DO K=1 TO M;
PUT LIST (RK) ;
M= 2;
END;

It is apparent from the flowchart in Figure 10-5 that a zero-trip DO

loop is possible. Consider the program segment below. The way in

which PL/I executes the loop depends upon the value assigned toAas a

result of the GET statement. If A equals 7, the loop prints the values

5, 6, and 7. But if A equals 2, the loop sets K to the value 5 but

does not execute the PUT statement at all, resulting in a zero~-trip

loop.

GET LIST (A);
DO K = 5 TO A;
PUT LIST (RK);
END;

As the flowchart shows, the index variable always has a well-defined

value when the loop terminates. Upon normal termination of the loop,

the index variable always exceeds the value of the to-expr. This means

that, except in the zero-trip case, the final value of the index

variable is one greater than the value it had during the last iteration

of the loop. This is illustrated by the next example, where the loop

10-11 First Edition

PL/I Reference Guide

terminates with a value of K equal to 5l. Therefore, the final PUT
statement prints the value 51.

DO K = 1 TO 50;

END;

PUT LIST (K) ;

The final format uses both the TO and BY options:

DO index initial-expr BY by-expr TO to~-expr;

or

DO index initial~expr TO to-expr BY by-expr;

This is the most complicated case, but it is similar to the preceding
case (TO option but no BY option), except that, at the end of each
iteration of the loop, PL/I increments the index variable by the value
of the by-expr, rather than by 1.

For example, the next loop prints the values 1, 4, 7, 10, and 13. At
normal termination of the loop, the value of K is 16.

DO K = 1 BY 3 TO 14;
PUT LIST (K) :
END;

There is an important special case, the case where the value of the
by-expr is negative. For example, the loop

DO K=5 TO 1 BY -l;
PUT LIST (K) 3
END:

prints the values 5, 4, 3, 2, and 1. When the loop terminates

normally, the value of K is 0.

The rules for when the expression in the BY option is negative are
similar to those for when no BY option is used, except that

@ PL/I decreases, rather than increases, the value of the index
variable at the end of each iteration; and

e The test for loop termination is whether the index variable is

less than, rather than greater than, the value of the to-expr.

First Edition 10-12

FLOW OF CONTROL

WHILE Option With an Index Variable

Consider the following program segment:

SUM = 0;
bO K = 1 70 15 WHILE(SUM <= 20);
SUM = SUM + Ke
END:

PUT LIST (K, SUM);

The loop in this example contains two different conditions for

termination:

e The value of K exceeds 15, as specified by the TO option.

e The value of SUM exceeds 20, as specified by the WHILE option.

PL/I terminates the loop as soon as either of these conditions occurs,
whichever comes first.

In the case of the program segment just above, the following happens:
Guring the sixth iteration, when K equals 6, the statement

SUM = SUM + Ky;

sets the value of SUMto 21. As a result of the specification in the
DO statement, PL/I increments the value of K to 7. The loop terminates
at this point, not because of the TO option, but because of the WHILE
option, since the value of SUM exceeds 20. At this normal termination,
the value of K is 7 and the value of SUM is 21. ‘These are the values
that are printed by the final PUT statement in the example.

To clarify the precise rules, suppose your DO statement has the
following format:

DO index = initial-expr TO to-expr WHILE (while-expr);

Figure 10-5 was a flowchart showing how PL/I handles this DO statement
format when there is no WHILE clause. Figure 10-6 is a modification of
that flowchart to show what happens when there is a WHILE clause.
Notice in particular that PL/I evaluates the initial-expr and the
to~expr only once, when the loop begins. (This is also true of the
by-expr when you specify a BY option.) On the other hand, the
while-expr is evaluated for each iteration of the loop.

10-13 First Edition

PL/I Reference Guide

Similar rules apply to other cases when you add a WHILE clause to an
index variable specification. For the format

DO index = initial-expr WHILE(while-expr);

PL/I executes the statements inside the group at most one time. I£ the
while-expr is true, PL/I executes the statements once. There is no

execution at all if that expression is false,

As we have already seen, the case where there is a BY clause but no TO
clause leads to an infinite loop. However, this is no longer the case
when you add a WHILE clause. A group beginning with a statement in the
format

DO index = initial-expr BY by-expr
WHILE (while-expr);

repeats indefinitely as long as the while-expr remains true. When it
becomes false the loop terminates normally. ‘The next illustration
contains a DO statement of this type. This loop terminates normally
after six iterations, because the value of SUM exceeds 20. The PUT
statement in that example prints the values 7 and 21.

SUM = 03
DO K = 1 BY 1 WHILE(SUM <= 20);
SUM = SUM + Ke
END;

PUT LIST(K, SUM);

First Edition 10-14

FLOW OF CONTROL

|
Compute value ofinitial-expr

and to-expr

 /
Initialize index variable to

value of initial-expr
v

Is
value of

index variable’

<= value of
to-expr

?

Evaluate while-expr and
connect value to BIT

value of

while-expr,

Execute statements
inside DO-group

 /

Add 1 to index

variable

 Next statement’

DO WHILE With an Index Variable
Figure 10-6

10-15 First Edition

PL/I Reference Guide

The Complete Do Statement

The full format of the DO statement is

1. WHILE(expression) [UNTIL(expression)]

DO ;
UNTIL (expression) [WHILE(expression)]

2. TO expr [BY expr]
DO index = expr [WHILE(expr)] [UNTIL (expr)];

BY expr [TO expr]
REPEAT expr

The REPEAT clause is explained below.

The UNTIL clause is a Prime extension and is similar to WHILE. The
expression following UNTIL is a logical expression. It allows the
programmer to assure that the DO statement does not loop indefinitely,
by establishing a condition for termination. The expression after
UNTIL is evaluated after each execution of DO and, when it is true,
control passes to the statement following DO. An UNTIL clause thus
ensures that the DO group is executed at least once. An example is

DO UNTIL(K > 100);
K=K+13

END;

Index Variable with REPEAT Option

The REPEAT option is a more general form of the BY option. While the
BY option allows you to add a given value to the index variable after
each iteration of the loop, the REPEAT option lets you modify the index
variable in any way you want. For example, consider

DO K = 1 REPEAT 2 * K;
PUT LIST (K) ¢
END;

This is an infinite loop. The initial value of K is 1, and after each
iteration, PL/I computes the value of the expression 2 * K and assigns
that as the new value of K. This means that, for each repetition, the
value of K is twice the value of K from the preceding iteration.
Therefore, this loop prints the values 1, 2, 4, 8, 16, 32, 64, «eer
looping indefinitely until the program halts for an external reason.

First Edition 10-16

FLOW OF CONTROL

PL/I does not permit you to use the TO option with the REPEAT option.

Therefore, you have to use the WHILE option to prevent an infinite

loop. Consider this example:

DO K = 1 REPEAT 2 * K WHILE(K <= 32);
PUT LIST (K) ?
END;

This loop prints the values 1, 2, 4, 8, 16, and 32. After that, the

loop terminates, since the value of K is 64.

To make the rules precise, suppose that the format of the DO statement

is as follows:

DO index = initial-expr REPEAT repeat-expr

WHILE (while-expr);

Then PL/I executes the loop as specified in the flowchart in Figure

10-7. Notice that the repeat-expr is like the while-expr, and unlike

the by-expr, in that it is evaluated for each iteration of the loop.

10-17 First Edition

PL/I Reference Guide

|
Compute value ofinitial-expr

Vv

Initialize index variable to
value ofinitial-expr

—

v

Evaluate while-expr and
connect value to BIT

value of

while-expr

Execute statements
inside DO-group

/
Evaluate repeat-expr

Y
Set index variable to
value of repeat-expr

Next statement <<

The REPEAT Option
Figure 10-7

First Edition 10-18

FLOW OF CONTROL

The importance of the REPEAT option is that, while the BY option can
only be used to add a value to the index variable, the REPEAT option
can make each new value of the index variable any function of the
preceding value. Therefore, we can use something like

DO K = 1 REPEAT(F(K)) WHILE(K > 0);

END:

which actually uses a user-defined function F to compute each new value
of K.

Index Variable with Multiple Specifications

We can now summarize all the index variable formats that we have seen
so far in this chapter as being in the format

DO index = specification;

where the specification includes, as we have seen, an initial-expr with
optional BY, TO, REPEAT, and WHILE clauses.

We can now expand this format. PL/I pemnits you to use multiple
specifications of this type in a single DO statement, with the
specifications separated by commas. For example, in the loop

DO K= 1 TO 3, 8 TO 10;
PUT LIST (K):
END;

the DO statement has two specifications, 1 TO 3 and 8 1010. The loop
prints the values 1, 2, 3, 8, 9, and 10.

Another simple example is

DO K = 4, 25, 3, -18°

PUT LIST (K);
END;

This DO statement has four specifications, 4, 25, 3, and -18. Each of
these four specifications is of the type that has only an initial-expr,
with no optional BY, ‘10, REPEAT, and WHILE clauses. The loop prints

the values 4, 25, 3, and ~-18.

10-19 First Edition

PL/I Reference Guide

To summarize, the format of the DO statement with multiple

specifications is

DO index = specification, specification, ...;

PL/I iterates the loop for each specification in turn, After one

specification terminates, PL/I goes on to the next one in the [0

statement. Each specification has an initial-expr, with optional 10,

BY, REPEAT, and WHILE clauses. When the last specification terminates,

the entire loop is considered to have terminated normally.

Nonnumeric index Variables

In all the examples so far, the index variable has had a numeric data

type. PL/I permits you to use an index variable with any data type,

including string, pictured, and even noncomputational data types. In

such cases, you usually use the REPEAT option to define the iteration

rule, and the WHILE option to define the termination condition for the

loop. You may not use the TO or BY clause with nonnumeric index

variables.

In the next example, C is an index variable with the CHARACTER VARYING

data type. During the first iteration of the loop, C has its initial

value of 'A'. During subsequent iterations, the value of C is '‘AB',

'ABB', 'ABBB', and so forth. ‘The loop prints each of these values,

terminating normally after the value 'ABBBBBB' has been printed.

DECLARE C CHARACTER(200) VAR;
DO C= 'A' REPEAT (C || 'B') WHILE(LENGTH(C) <= 7);
PUT LIST(C) ;
END;

In list processing applications, it is common to use the REPEAT and

WHILE options in a loop to follow along a chain of BASED blocks. For
example, suppose your program contains these declarations:

DECLARE (P, BASE) POINTER;

DECLARE 1 REC BASED,
2 NEXT POINTER,
2 VALUE FIXED;

First Edition 10-20

FLOW OF OONTROL

These declarations define a linked list that might be pictured as in
Figure 10-8.

BASE

A Linked List
Figure 10-8

If you wish to print out all the VALUE fields in each of the blocks of
the linked list, you can use the following loop. In this loop, the
POINTER variable P initially points to the first block in the linked
list. For each subsequent iteration, P points to the next block in the
list. The loop terminates after the last block in the list has been
processed,

DO P = BASE REPEAT (P->REC.NEXT) WHILE(P “= NULL());
PUT LIST (P—->REC.VALUE);
END;

For a data type like ENTRY VARIABLE, you can use multiple
‘specifications in your DO statement if you wish to have a loop index
variable with this data type. for example, if EV is a variable with
the ENTRY VARIABLE data type, and if El, E2, and E3 are ENTRY OONSTANT
values, the following loop can be used:

DO EV = El, F2, E33

CALL EV;

END;

In this DO statement, there are three specifications, each one
consisting of an initial-expr.

DO Statement with the IF Statement

Earlier in this chapter, we illustrated the IF statement with THEN and
ELSE clauses containing only the simplest forms of DO groups. Jn fact,

any form of the DO statement may be used with the IF statement. For

example, the program segnent below is legal.

10-21 First Edition

PL/I Reference Guide

IF A >= 0
THEN DO K = 1 TO 50;

PUT LIST(K);
END;

ELSE DO K = 50 TO 1 BY -1;

PUT LIST (K) 3

END;

THE GO TO STATEMENT

Subject to certain restrictions, use the GOTO (or GO TO) statement to
transfer control from one part of your program to any other part. The
restrictions are that you may not use GOTO to transfer into an inactive
group or block. (Active and inactive blocks are presented below in
Invocation and Termination of Blocks.)

The format of the GOTO statement is

GO TO target;

or

GOTO target;

where target is a LABEL OONSTANT, LABEL VARIABLE, or an expression

whose data type is LABEL.

Normal and Abnormal Termination of a Group or a Block

When a GOTO statement transfers control out of a group or a block, the
group or block is said to terminate abnormally. Consider the next
example. The loop in that example can terminate in two different ways:

@ Normally, when the value of K exceeds the value of N;

@ Abnormally, when the IF statement executes and the test for SUM

being greater than 1000 is successful.

GET LIST(N);

SUM = 0;

THEN GO TO XL;

XL: eeo

First Edition 10-22

FLOW OF CONTROL

Whether the loop actually terminates normally or abnormally depends

upon the value of N set as a result of the GET statement.

Some DO loops cannot terminate normally, since the DO statement

provides no means for normal loop termination. Some examples of these

DO statements are

pO K=1 BY 1;

or

DO WHILE(2 = 2);

or

DO X = 2 REPEAT 2 * X;

Normal loop termination from a loop beginning with any of these DO

statements is impossible, since none of these statements specifies any

termination condition that will ever be satisfied. Such a_ loop will

always be an infinite loop, tnless the statenents inside the group

include a GOTO statement that can terminate the loop abnormally.

Tt is possible for a single GOIO statement to terminate several groups

and blocks simultaneously. When the following sample program segment

executes, the DO loop calls procedure Q, which calls procedure R. ‘The

GOTO statenent in procedure R terminates the DO group, as well as the

two PROCEDURE block invocations for Q and R.

P: PROC OPTIONS (MAIN);

TIO K=1 0 10;

CALL Q;
END;

LB: cee

Q: PROCEDURE}

CALL R;

END 0;

R: PROCEDURE;

GO TO LB;

END R;

END P;

10-23 First Edition

PL/I Reference Guide

Whenever a block terminates abnormally, PL/I executes the block
epilogue, just as if the block had terminated normally. The block
epilogue is described later in this chapter.

The GOTO Statement with LABEL Expressions

Usually the target of a GOTO statement is a LABEL constant. In fact,
any expression that has a LABEL value may be used. For example, any of
the following can be used:

@ LABEL CONSTANT

@ Member of a LABEL CONSTANT array

® LABEL VARIABLE

@ A reference to a user-defined function that returns a LABEL
value

THE LEAVE STATEMENT -~- PRIME EXTENSION

This statement provides a means of terminating a group abnormally. The
syntax is

LEAVE};

It causes program execution to be transferred to the statement
following the END statement for the current group. In the next
example, if ENTRY1 equals 0, the next statement executed is the PUT
statement.

DO X= 1 TO 100;
GET LIST (ENTRY1) 3

IF ENTRY] = 0

THEN LEAVE;

TOTAL = TOTAL + EVTRYI;

END;
PUT SKIP LIST('END OF RUN');

First Edition 10-24

FLOW OF CONTROL

Termination of Multiple Loops with LEAVE

The LEAVE statement in the form just described terminates the innermost

DO/END loop in which the DO statement lies. A more general form of the

LEAVE statement is

LEAVE ident;

The "ident" must be the label of a DO statement such that the LEAVE

statement lies within the corresponding DO/END group. When this form

is used, it is possible for a single LEAVE statement to terminate

several DO/END groups simultaneously. Consider the following example:

OLUP: DO

tl

K
(K, J) = 0

THEN CALL RND(A, K)?
ELSE LEAVE OLUP;

END;

END;

Within this example, the statement

LEAVE OLUP;

if executed, terminates both DO/END groups, and control will pass to

the statement following the second END statement.

THE SELECT? STATEMENT -- PRIME EXTENSION

SELECT provides a case selection. A SELECT block has one of two

formats:

1. SELECT;
WHEN (if-expression list) statement;

[OTHERWISE statement;]

END;

10-25 First Edition

PL/I Reference Guide

2. SELECT (value);

WHEN (value list) statement:

[OTHERWISE statement;]
END;

In both SELECT formats, the statement is defined to be any simple
statement not including DECLARE,END, ENTRY, or PROCEDURE. The
statement may include a DO block or a BEGIN block of statements, or be
an IF statement. ‘The if-expression list in the first format is either
a single expression that evaluates toa BIT(1) result as in an IPF
statement, or a list of such expressions separated by commas, The
value in the second format is any expression that has a scalar value,
andvalue list is either a value or a list of values separated by
commas.

A SELECT block is traversed by executing each WHEN clause until a TRUE
condition is found. A TRUE condition happens when the if-expression
part evaluates to '1'B or a value in the WHEN clause equals a value in
the SELECT statement. If a value in the WHEN clause is not of the same
data type as the value in the SELECT statement, it is converted to the
data type of the latter before the comparison is done. If none of the
WHEN clauses is satisfied, if an OTHERWISE clause exists, the OTHERWISE
clause is executed; if there is no OTHERWISE clause, ERROR is
Signalled. After either a WHEN clause or the OTHERWISE clause is
executed, control passes to the first executable statement following
the SELECT block.

The following example illustrates the second type of SELECT block:

GET LIST (INPUT_VALUE);
SELECT (INPUT_VALUE) ;
WHEN (VALUE_1) CALL UPDATE_RIN;
WHEN (VALUE_2) CALL DELETE_RIN;
OTHERWISE PUT SKIP LIST('ERROR -- ENTRY IGNORED');
END;

If the INPUT_VALUE is equal either to VALUE.1 or to VALUE_2, the
appropriate subroutine is called. The OTHERWISE statement catches
erroneous input.

First Edition 10-26

PLOW OF CONTROL

PL/I PROGRAM BLOCKS

This section and the next describe in detail how PL/I invokes and
terminates program blocks. These sections tie together information
presented in other chapters on such subjects as procedures, ON-units,
and storage management. They also provide those readers who are
interested with the abstract models on which the PL/I block mechanism
is based.

Types of Blocks

PL/I recognizes three types of blocks:

@ A PROCEDURE block begins with a PROCEDURE statement and ends
with an END statement.

@ A BEGIN block begins with a BHGIN statement and ends with an END
statement.

e An ON-unit is a collection of statements, beginning with a BEGIN
statement and ending with an END statement, which an ON
statement specifies as the action to be taken when an
appropriate error or condition occurs. The ON-unit is
considered to be a different kind of block from an ordinary
BEGIN block.

Even though the BEGIN block and the ON-unit both begin with a BEGIN
statement, PL/I treats these as two quite different types of blocks.
When we use the term BEGIN block, we will be referring to one that is
not an ON-unit.

Invocation and Termination of Blocks

When your program invokes a block, that block is said to become active.
The block remains active until your program terminates it.

The method for invoking a block depends upon the type of block. The
methods are as follows:

@ Your program invokes a PROCEDURE block by referencing one of the
entry points. If the entry point is a subroutine entry point,
the reference should be by means of a CALL statement. For a
function entry point, your program should reference the function
as part of an expression in any type of statement.

@ An ON-unit is invoked when the appropriate error or condition
occurs. Your program can invoke an ON-unit artificially by
means of a SIGNAL statement.

10-27 First Edition

PL/I Reference Guide

e Your program invokes a BEGIN block by executing the BEGIN

statement that begins the block.

It is possible to terminate a block either normally or abnormally.
Your program terminates a block abnormally by means of a GOTO statement

that transfers control outside of the block.

The way to terminate a block normally depends upon the type of block.
The various ways are as follows: |

@ Your program terminates a PROCEDURE block by executing a RETURN

statement. If the PROCEDURE block was invoked as a subroutine,

the RETURN statement may not specify an expression; if the

PROCEDURE block was referenced as a function, the RETURN

statement must specify an expression. If the procedure was

invoked as a subroutine, executing the END statement is

equivalent to executing a RETURN statement.

e Your program terminates an ON-unit normally by executing the END

statement. For some ON conditions, normal termination is

illegal. A RETURN statement is illegal inside an ON-unit,
unless it appears inside a PROCEDURE block that is itself inside

the ON-unit.

@ Your program terminates a BEGIN block normally by executing the

END statement. If the BEGIN block is inside a PROCEDURE block,

executing a RETURN statement terminates both the BHGIN block and

the PROCEDURE block. In this case, both terminations are

normal.

Prologues, Epilogues, and Storage Management

When your program invokes a block, PL/I executes a prologue before

executing any of the statements inside the block. The prologue does

the following things:

1. PL/I allocates a dynamic storage area, or DSA. ‘This is
described more fully in the next section.

2. If the block is a procedure, PL/I allocates storage for the

parameters and establishes pointers to the arguments from the

parameters. This is described in Chapter 8. ‘The storage

allocated for the parameters is usually part of the DSA.

3. PL/I allocates storage for all AUTOMATIC variables contained

immediately in the block. This storage is usually part of the

DSA. PL/I then initializes all of the AUTOMATIC variables that
are declared with the INITIAL attribute.

When the block terminates, either normally or abnormally, PL/I executes

an epilogue for the block. The epilogue frees the DSA, and so frees

all AUTOMATIC and parameter storage allocated by the prologue.

First Edition 10-28

FLOW OF CONTROL

Recursion

Recursion occurs when a block that is already active is invoked again.
The result is that there can be two or more simultaneous activations of
the block.

Chapter 8 illustrates a recursive PROCEDURE block. An ON-unit will
also be invoked recursively if the same condition occurs while the
ON-unit is already active.

Prime procedures are recursive, whether the RECURSIVE option is
selected or not.

The next section explains more fully how recursion works.

STATIC AND DYNAMIC PROGRAM BLOCK STRUCTURE

This section is provided for programmers who need to understand exactly
how the PL/I block structure works, especially when recursion is
involved. The vast majority of programmers need only the simpler rules
given earlier in this chapter.

This text defines the PL/I block structure rules by using an abstract
model of how a PL/I program executes with regard to its program block

structure. The abstract model is simply a diagram representing both
the static and dynamic block structures of the program. The following
paragraphs describe how the static diagram is defined when the program

is compiled, and how the dynamic diagran changes as_ the program
executes,

It is not the purpose of this section to describe the internal
implementation of PL/I. The actual PL/I compiler you are using may or

may not use data structures that correspond to the block structure
diagrams given in this chapter. These diagrams are only a model of how
the PL/I system produces its final results.

Block Structure versus Block Invocations

Consider the program segment shown in Figure 10-9. ‘This program
consists of a main procedure called M, with a subprocedure called A.

10-29 First Edition

PL/I Reference Guide

M: PROCEDURE OPTIONS (MAIN);

CALL A;

As PROCEDURE RECURSIVE;

END A;

END M;

A Program With Two Blocks
Figure 10-9

From the point of view of the PL/I call system, this program contains
two blocks, M and A, with A nested inside M.

From the point of view of the PL/I runtime system, however, the program

looks somewhat different. ‘The program begins executing when procedure
M is invoked. When M executes the CALL statement, it invokes the
subprocedure A, Since A is RECURSIVE, it is possible for A to call

itself,

The concept that the program contains two blocks, one nested inside the
other, is a static concept in that it does not tell you how the program
executes. The block invocation described below is a dynamic concept

because the block invocation structure of a program causes it to change

constantly as the program executes.

In our example, the program begins executing with the invocation of
block M, With the CALL statement there is an invocation of block A.
If block A invokes itself recursively, there are several simultaneous

invocations of block A. Each time a RETURN is made from A, one of the

block invocations disappears, until finally the program returns to M,
at which time there is, once again, one block invocation.

Active and Inactive Blocks

During execution of a program, a block is said to be active if an

invocation of it exists. A block is inactive when no invocation of it
currently exists. During execution of a program, a block may change
from inactive to active or from active to inactive many times.

If, during execution of the program, there exists more than one
simultaneous invocation of a block, then at that point the block is

said to be recursively active.

In Figure 10-9 above, the program begins executing when M becomes
active. When the CALL statement is executed, block A becomes active.

If A calls itself, block A becomes recursively active. As the

First Edition 10-30

FLOW OF CONTROL

invocation of A terminates, the status of A moves from recursively

active to nonrecursively active to inactive.

Inheriting Variables

When your program invokes a new block, PL/I allocates a dynamic storage

area (DSA) containing all the AUTOMATIC variables declared within that

block.

If the block is an internal block (that is, not an external procedure),

and if a statement within the block uses a variable not explicitly

declared within the block, then it inherits that variable from the

outer block that contains it.

Consider the program in Figure 10-10.

M: PROCEDURE OPTIONS (MAIN);
DECLARE X;}
X = 53
CALL A;

As PROCEDURE}
DECLARE X};

X = 10;
CALL B;

RETURN?
END A;

B: ' PROCEDURE;
PUT LIST (X) 3

END B;
END M;

Invoking and Containing Blocks
Figure 10-10

This program consists of an external procedure M, and two internal

blocks called A and B. Notice that there are two declarations of X,

one contained immediately in M and the second contained immediately in

block A. When this program executes, block M invokes block A, which

invokes block B. Inside B, the variable X used is inherited from the

containing block, M, rather than the invoking block A. Therefore, the

PUT LIST statement prints the value 5.

10-31 First Edition

PL/I Reference Guide

We use the phrase envirormental block invocation to specify the block
invocation from which a new block inherits variable values, That is,
in Figure 10-10, when block B is invoked, there are two important
previous block invocations to consider:

@ The invoking block invocation.

This is the block invocation that invoked the new block. In
this example, block B is invoked by an invocation of block A.

@ The envirormental block invocation.

This is the invocation from which the new biock inherits the
values of variables not declared within the new block. In our
example, when block B is invoked, the envirormental block
invocation is an invocation of block M.

The invoking block invocation can refer to any block in the program,
while an environmental block invocation must refer to the block that
contains immediately the new block being invoked.

Note the difference between the invoking block invocation and the
envirormental block invocation. Each of these invocations contributes
something to the new block. The invoking block contributes arguments,
established on-units, and values of om-condition built-in functions,
The environmental block contributes values of variables not explicitly
declared within the new block.

The following sections use this abstract model to describe very
precisely how the invoking and envirormental block invocations
contribute these things to the new block.

The Static Block Structure Tree

The abstract model uses two different kinds of diagrams. The first
kind of diagram is called the static block structure tree. It
represents the block structure of the program as the compiler sees it.

For example, suppose your PL/I program consists of a main procedure
called A, which contains two internal procedures called B and C.
Figure 10-11 is the static block structure tree for this program. The
root node of this tree represents the main procedure, and each branch
represents a block contained immediately within the block represented
by the root.

First Edition 10-32

FLOW OF CONTROL

Two Blocks Contained Within a Third
Figure 10-11

Let's now consider a more complicated example. Figure 10-12 represents

a program whose main procedure is called A. ‘This main procedure

contains immediately two internal blocks called B and D. ‘These
internal blocks contain their own internal blocks as follows:

@ Block B contains immediately an internal block C.

@ Block D contains immediately two internal blocks, E and F.

Containment and Immediate Containment
Figure 10-12

10-33 First Edition

PL/I Reference Guide

Notice that the main procedure A contains five internal blocks, B, C,
D, E and F, but only two of these blocks, B and D, are contained

immediately.

If your PL/I program contains several external procedures, each
external procedure is represented by the root node of a separate tree
in the static block structure tree diagram. For example, Figure 10-13
is the static block structure tree diagram for a program containing
three external procedures, A, Dand F. These external procedures have
the following structures:

@ The main procedure A contains immediately two internal blocks, B
and C.

@ The external procedure D contains immediately a single block, E.

e The external procedure F contains immediately two internal
blocks, G and H. The internal block H contains immediately two
blocks internal to it, I and J.

External Procedures
Figure 10-13

The static block structure tree diagram is the first step in our
abstract model of how the PL/I block structure mechanism operates.
This part of the model describes the block structure of the program in
the way the compiler sees it. We now turn to the block structure of

the program as it is seen at runtime.

Dynamic Block Invocation Chain

Consider the program illustrated in Figure 10-14. This program
contains a main procedure A, and two internal blocks, B and C.

First Edition 10-34

FLOW OF CONTROL

As PROCEDURE OPTIONS (MAIN);
DECLARE VALUE INIT (0);

Bs BEGIN;

DECLARE M INIT (2):
CALL C(M);
M=M+1;
CALL C(M) 3
END B;

PUT LIST (VALUE);
Cs PROCEDURE (K) RECURSIVE:

DECLARE (L, K) FIXED;
DOL=1WK-1];
CALL C(L):
END;

VALUE = VALUE + Ke
RETURN;

END C;
END A;

Block Invocation Chain
Figure 10-14

Figure 10-15 is the static block structure tree diagram for this
program. The program begins when PL/I invokes block A. When block A
invokes block B, there are two active blocks. If block invocations
continue, we may have several active blocks at the same time.

Block Invocation -- Static Diagram
Figure 10-15

We represent the active block invocations in a diagram picturing each
block invocation as a circle pointed to by its invoking block.

For example, Figure 10-16 is the diagram of the dynamic block
invocation chain for the program illustrated above at the point where

10-35 First Edition

PL/I Reference Guide

block A has invoked block B. The numbers inside the circles are what

we call the block invocation numbers. Each such number simply

represents the total number of block invocations that have occurred at

the point where this block invocation occurs.

O—-®
A B

Block Invocation -- Dynamic Diagram
Figure 10-16

As Figure 10-16 illustrates, block invocation number 1 is an invocation

of block A. It has invoked block invocation number 2, which is an

invocation of block B.

If block B now invokes block C, the dynamic block invocation chain

diagram is as shown in Figure 10-17. This diagram shows three block

invocations, one for each of A, B and C.

B CcA

Three Block Invocations
Figure 10-17

If execution of the program continues, the diagram changes. This is

illustrated in Figure 10-18. Line 4 of this figure represents what

happens after block C invokes itself recursively. There are then four

block invocations, and two of these invocations are for block C. When

each of these invocations terminates, the result is shown in lines 5

and 6 of the diagram. Notice that the diagram inline 6 is identical

to the diagram in line 2.

Line 7 shows what happens when block B invokes block C again. Notice

that the block invocation number is now 5, since this is the fifth

block invocation that has occurred since execution of the program

began.

First Edition 10-36

FLOW OF CONTROL

Representing the Envirormental Block Invocation

In Figure 10-18, as discussed, the dynamic block invocation chain
diagram indicates each block invocation and its invoking block
invocation. It is also important that the diagram indicate, for each
block invocation, its envirormental block invocation.

Action Invocation Chain Diagram

1. Program begins C1)

A

2. A invokes B G)—-(2)

A B

3. B invokes C (.}—+-—-G)

A B Cc

4. C invokes C (+2)G)-®)

recursively
A B Cc Cc

5. C returns 1 >(9 =(3 O—-O—O
6. C returns O—©

A

er OO
A B Cc

Changing Block Invocations During Execution
Figure 10-18

10-37 First Edit..on

PL/I Reference Guide

Dynamic Block

Action Invocation Chain Diagram

1. Program begins 1)

2. A invokes B

B invokes Co

4. C invokes C G)}—-(2) (3)
recursively

A

B Cc

5, C returns CNS

A B Cc

6. C returns

A B

7. B invokes C ? 5
again ar

A B Cc

Environmental Block Invocations
Figure 10-19

First Edition 10-38

FLOW OF CONTROL

We use the convention that the circle representing a block invocation

will point back to the circle representing its envirormental block

invocation. If we modify the diagrams in Figure 10-18 to use this

convention, the result is as shown in Figure 10-19. Notice that, for

example, in line 4 of this figure, there are three invocations of

internal blocks, and for each of these, the envirormental block

invocation is block invocation number 1. For this reason, each of the

circles representing block invocations 2, 3, and 4 points back to the

circle representing block invocation number 1.

If a block invocation calls an external procedure, there is no

environmental block invocation.

Representing the Dynamic Storage Area

One dynamic storage area (DSA) is allocated for each block ‘invocation.

The DSA contains the parameters and AUTOMATIC storage allocated for

that block invocation.

In our dynamic diagram, we may indicate the DSA for each block

invocation as a box attached to the circle that represents the block

invocation. For example, consider line 4 of Figure 10-19. At the

point where the RETURN statement in procedure C is executed, the

diagram may be modified as shown in Figure 10-20. Notice that each of

the block invocation circles has a DSA box attached to it, and the box

shows the variables contained in the DSA. In the case where there are

two or more invocations of the same recursive block, the DSAs for the

different invocations will contain the same variables, possibly with

different values. This is illustrated in Figure 10-20 in block

invocation numbers 3 and 4.

DSA DSA DSA DSA
VALUE=1 M=2 K=2 K=1

L=1 L=1
Dynamic Storage Area (DSA) for Block Invocations

Figure 10-20

10-39 First Edition

PL/I Reference Guide

How LABEL Variables Are Implemented

A GO TO statement may terminate an active block. Such a termination is
said to be an abnormal termination.

If the target of a GO TO statement is a LABEL constant, as is usually
the case, then it is always clear to what block invocation the
statement is transferring. If the LABEL constant is inside the block
containing the GO TO statement, no block invocations are terminated.
If the LABEL constant is outside the block that contains the GO TT
statement, but is inside the immediately containing block, then the
transfer is made to the envirormental block invocation, and the block
executing the GO TO statement is abnormally terminated. If the
environmental block invocation is different from the invoking block
invocation, all block invocations after the environmental block

invocation are terminated,

In the case of a LABEL variable, the situation is a bit more
complicated, since the value of the LABEL variable must specify a block
invocation number, Consider the program illustrated in Figure 10-21.

S: PROC OPTIONS (MAIN);
DECLARE L(4) LABEL;

K = 0;
CALL R;

R: PROC RECURSIVE;
DECLARE V;

K, V=K+1;

L(V) = 1B;
IF K < 4 THEN CALL R;

ELSE CALL T;

LB: PUT LIST (V);
END R;

Ts PROC;

DECLARE M:
GET LIST (M) ;
GO TO L(M);
END T;

END S;

Label Variables for Blocks
Figure 10-21

_If you trace through execution of this program, you see that it does

the following:

1. ‘The main program, block S, invokes block R.

First Edition 10-40

FLOW OF CONTROL

2. Block R sets L(1) to the LABEL value IB. R then invokes

itself recursively.

3. Rsets L(2) to the LABEL value LB, and invokes itself

recursively.

4, Resets L(3) to the LABEL value LB, and invokes itself

recursively.

5. R sets L(4) to the LABEL value LB, and invokes block T.

6. Block T inputs a value for M and executes a GO TO statement,
transferring control to the location specified by the LABEL
variable L(M).

At the point just before the GO TO statement is executed, the dynamic
block invocation structure is indicated by Figure 10-22. As this
diagram shows, there are four simultaneous invocations of the recursive

block R at this point.

aa a
DSA V=1 V=2 V=3 V=4 M=?

Invocations of a Recursive Procedure With LABEL Variables
Figure 10-22

All four elements of the LABEL variable array L point to the same
statement, the one with LABEL IB. Therefore, the statement

GO TO L(M);

10-41 First Edition

PL/I Reference Guide

transfers to the statement with LABEL LB. The question is: to which
invocation of block R does the GO TO statement transfer?

A LABEL variable value contains two pieces of information, as
illustrated in Figure 10-23. It contains a block invocation number and
a pointer to the statement to which the transfer is to be made. Since

the assignments to the four different elements of the array L were made

within four different invocations of block R, the four elements of

array L will contain four different block invocation numbers. The GO
TO statement returns to the invocation whose block number is specified
in the value of LABEL variable L(M).

Block Invocation Number

Pointer to Target Statement
Information in a LABEL Variable

Figure 10-23

Suppose, for example, that the input value of Mis 2. The value of

L(2) is shown in Figure 10-24. Therefore, the GO TO statement returns

to block invocation number 3. The dynamic block invocation chain

diagram becomes the diagram shown in Figure 10-25. That is, block

invocation numbers 4, 5 and 6 are all abnormally terminated. The PUT

LIST statement prints the value 7.

3

Pointer to Statement LB

Return to Block Invocation 3 (LABEL Variable = 2)

Figure 10-24

First Edition 10-42

FLOW OF CONTROL

1 >(7) (3

A ,
DSA V=1 V=2
K=4

Abnormal Termination of Blocks 4, 5, 6

(Result of Preceding Figure)

Figure 10-25

A final note: although our example program does not illustrate it, the
statement

GO TO L(4);

would now be illegal, That is, it would be legal to transfer to the
statement with LABEL LB, but not within the block invocation specified
by the number in the value of L(4), since that block invocation has
been terminated.

How ENTRY Variables Are Implemented

Like LABEL variables, ENTRY variables contain two pieces of
information, as illustrated in Figure 10-26. In this case, however,
the block invocation number is the number of the envirormental block
invocation to be used when the procedure is invoked.

10-43 First Edition

PL/I Reference Guide

Block Invocation Number

 Pointer to PROC Statement
Information in an ENTRY Variable

Figure 10-26

Consider the program illustrated in Figure 10-27.

M: PROCEDURE OPTIONS (MAIN);
DECLARE E ENTRY VARIABLE;

I = 0;
CALL R;

Re PROC RECURSIVE?
DECLARE K;
K, I, = I1+1]13
If K = 2 THEN E = S;
IF K < 4 THEN CALL R;

ELSE CALL T;

S: PROC 3
PUT LIST (K) ¢

END S;
END R3

Ts: PROC;
CALL E;

END Ty;

END M;

A Program With ENTRY Variables
Figure 10-27

The static block structure tree for this program is shown in Figure

10-28. This program executes as follows:

1. The main program block, block M, invokes block R.

2. R invokes itself recursively.

3. Rsets the ENTRY variable to S, and then invokes itself

recursively.

First Edition 10-44

FLOW OF CONTROL

4, R invokes itself recursively.

5. R invokes block T.

6. T executes a CALL statement specifying the ENTRY variable E.

Static Structure Diagram for ENTRY Variables
Figure 10-28

At the point where block T executes the CALL statement, the dynamic
block structure is as shown in Figure 10-29. There are four
invocations of the recursive block R, as shown in that diagram. Since
E was set equal to the entry point S, the statement CALL E invokes the
procedure S. The question is: what is the envirormental block
invocation number?

10-45 First Edition

PL/I Reference Guide

DSA DSA DSA DSA DSA DSA

l=4 K=1 K=2 K=3 K=4

E=S

Dynamic Structure for ENTRY Variables
Figure 10-29

Notice that the value of E was set only once, inside block invocation

number 3, where the value of K equals 2. That is, the value of the

ENTRY variable E is as shown in Figure 10-30. ‘Therefore, the statement

CALL E invokes block S, and the enviromental block invocation number

is 3.

3

Pointer to PROCEDURE S
Result of CALL E in Figure 10-27

Figure 10-30

Therefore, when S is invoked, the dynamic block structure becomes what

is shown in Figure 10-31. Notice that circle number 7 points back to

circle number 3 since the envirormental block invocation for invocation

number 7 is number 3. ‘Therefore, the PUT LIST statement in S prints

the value K of 2 since the value of K is inherited from the

enviromental block invocation number 3.

First Edition 10-46

FLOW OF CONTROL

Result of Invocation of Block S in Figure 10-27

Figure 10-31

Rules for Block Invocation and Termination

We now summarize some rules for block invocation and termination.
Examples of these rules have already been given in the preceding

sections.

1. If a block invocation terminates normally, control returns to

the invoking block invocation.

2. If a block invocation terminates abnormally, any number of
additional block invocations may simultaneously terminate
abnormally. By appropriate use of LABEL variables, control may
be returned to any active block invocation, and all subsequent
block invocations terminate abnormally at the same time.

3. By appropriate use of ENTRY variables, any PROCEDURE block
contained immediately in any active block may be invoked. If
the PROCEDURE block is contained immediately in a recursively
active block, the procedure may be invoked in such a way that
any of the recursive invocations of the containing block may

become the envirormental block invocation.

There is a special case of the third rule: any external
procedure may be invoked from any other block, subject to the
restriction that a nonrecursive block may not be recursively
invoked.

Implementation of On-units

The way PL/I handles on-units and or-unit invocation is particularly
tricky when recursive procedures are involved. On-units are introduced

10-47 First Edition

PL/I Reference Guide

at the end of Chapter 4. Before reading the present section, however,
be familiar with on-units as presented in Chapter 13.

This section outlines the actions that PL/I takes for the following

statements and operations:

@ ON condition on-unit;

e ON condition SYSTEM;

@ REVERT condition;

@ raising a condition.

We explain these actions by showing how each of these actions affects
the diagram of the dynamic block invocation chain.

Let's begin with the execution of an ON statement where an or-unit is

established. Figure 10-32 illustrates how an established on-unit is

represented in the dynamic diagram. In the block invocation that
executes the ON statement that establishes the on-unit, the diagram is
modified so that there is an on-condition box attached to the DSA.
This on-condition box contains the name of the condition and a_ pointer
to the established on-unit. This on-condition box is added only when
the ON statement is actually executed.

—o—

DSA

Condition

Pointer to On-unit
Dynamic Representation of an On-unit

Figure 10-32

There may be several of these on-condition boxes attached to a_ single
DSA for a single block invocation, This would happen, for example, if
several ON statements for different conditions are executed during the

same block invocation. In this case, the result might be as
illustrated in Figure 10-33, which shows three orcondition boxes

First Edition 10-48

FLOW OF CONTROL

attached to the same DSA. ‘They represent established on-units for

three different conditions, as the result of the execution of three ON
statements during the same block invocation,

ae a

DSA

Condition 4 Condition 2 Condition 3

Pointer to On-unit Pointer to On-unit Pointer to On-unit

Multiple On-units for One Block Invocation
Figure 10-33

If a block invocation executes an ON statement specifying the SYSTEM

option, an ormcondition box is still attached to the DSA, but the box

does not contain a pointer to the established on-unit; instead, it

contains the word SYSTEM to indicate the SYSTEM option. ‘This is

illustrated in Figure 10-34.

DSA

Condition

SYSTEM

An On-unit for the SYSTEM Option
Figure 10-34

10-49 First Edition

PL/I Reference Guide

Now suppose a block invocation executes two ON statements specifying
the same condition. This is reflected in the dynamic diagram as
follows: when the second ON statement executes, the new on-condition
box replaces the one created when the first ON statement was executed.

Therefore, there can never be more than one omcondition box for the

same condition attached to the same DSA.

When a block invocation executes a REVERT statement for a condition,

the diagram is modified by entirely removing any on-condition box for
that condition from the DSA for the current block invocation.

Now let us suppose that a program error occurs and it is necessary to
raise a condition and either take the standard system action for the
condition or invoke an established on-unit. In terms of the dynamic
block invocation chain diagram, PL/I proceeds as follows:

1. Starting from the current block invocation, and continuing back
through the invoking block invocations, it finds the most
recently created on-condition box for the desired condition.

2. If no omcondition box ig found for the desired condition, or
if the most recently created box specifies the SYSTEM option,
then it takes the standard system action for the condition;
otherwise, it proceeds with the next step.

3, It invokes the established or-unit specified by the
on-condition box. Note that this is a new block invocation.
The envirormental block invocation is the new block invocation

for the invocation that contained the ormcondition box.

The following example illustrates how these rules work.

P: PROC OPTIONS (MAIN);
DECLARE (I, K) INITIAL(0);

CALL Q;
QO: PROC RECURSIVE;

DECLARE J};
J, T=I+1;
IF J = 2

THEN ON ERROR
Xs BEGIN;

K= J}

GO TO EXIT;

END;

IF J < 5 THEN CALL Q;
PUT LIST (LOG(-1))/*RAISE ERROR*/}
RETURN;

END Q;
EXIT: PUT LIST(K);

END P;

First Edition 10-50

FLOW OF CONTROL

Fxecution of this program proceeds as follows:

Procedure P invokes procedure Q.

Procedure Q sets J equal to 1 and invokes Q recursively.

Q sets J equal to 2, establishes an ERROR on-unit, and invokes

Q recursively.

Q sets J equal to 3, and invokes Q recursively.

Q sets J equal tc 4, and invokes Q recursively.

Q sets J equal to 5 and then executes a statement that raises

the ERROR condition. Figure 10-35 shows the dynamic diagram at

the point just before the ERROR condition is raised. Notice

that block invocation number 3 contains an or-condition box for

the ERROR condition, since that is the only invocation that

executed an ON statement.

As a result, block xX, the omunit established for the ERROR

condition, is invoked with envirormental block invocation

number 3.

ERROR

Pointer to Block

The Dynamic Block Chain before an Error Condition Occurs
Figure 10-35

10-51 First Edition

PL/I Reference Guide

7. Block X sets K equal to J. Since the envirormental block
invocation is invocation number 3, the value of J in that block
invocation is used,

As a result, K is set equal to the value 2. At that point, the
dynamic diagram is as shown in Figure 10-36. Notice that, in
the DSA for block invocation number 1, the value of 2 for K is
indicated.

Block X then executes a GO TO statement to the label EXIT.

ERROR

 Pointer to Block

The Dynamic Block Chain With an Error Condition
Figure 10-36

This last action abnormally terminates block invocations 2 through 7,
so the dynamic diagram becomes that shown in Figure 10-37, and the
value 2 is printed.

First Edition 10-52

FLOW OF CONTROL

Abnormal Termination After an Error Condition

Figure 10-37

COMPILER~DIRECTING STATEMENTS

Five statements, %INCLUDE, $REPLACE, PAGE, SLIST, and %NOLIST, direct
the compiler to alter the text of the source file or to change the
listing format.

During the compilation of a program module, the compiler recognizes and
evaluates two statements that alter the progran. text. These
statements, INCLUDE and SREPLACE, simplify the job of writing large
programs, but are also useful in small programs.

The general form of INCLUDE is

SINCLUDE 'filename';

where filename is the name of a text file that is to be inserted into
the program text in place of the INCLUDE statement. The filename is a
PRIMOS filename.

SINCLUDE can appear in place of a name, constant, or punctuation
symbol. The included text may contain additional tINCLUDE statements,
but normally contains declarations that are common to more than one
program module.

If the file named in a %INCLUDE statement also contains a *INCLUDE
statement, the second %$INCLUDE statement is said to be nested. The
maximum number of nestings of SINCLUDE statements is 32.

The general form of %REPLACE is

%REPLACE name BY [-]constant [, name BY [-] constant] ...;

10-53 First Edition, Update l

PL/I Reference Guide

Each occurrence of name that follows the REPLACE is replaced by the
constant or signed constant. %REPLACE normally is used to supply the
Sizes of tables or to give names to special constants whose meaning
would not otherwise be obvious, as in this example:

SREPLACE TRUE BY '1'B;
SREPLACE TABLE_SIZE BY 100;
%REPLACE MOTOR_POOL BY 5;

DECLARE X(TABLE_SIZE) FIXED STATIC;

DO K = 1 TO TABLE_SIZE;

IF DEPARTMENT.NUMBER = MOTOR_POOL

THEN DO;

Both $REPLACE and %INCLUDE operate on the program text without regard
to the meaning of the text. Thus the replaced name can accidentally be
a keyword such as STOP or READ. In this case, an "unrecognizable
statement" error message is issued by the compiler when it reads a
subsequent STOP or READ statement. %REPLACE replaces all subsequent
occurrences of name without regard to the block structure of the
module.

A third compiler-directing statement, %PAGE, causes the compiler
listing, if any, to skip to a new page.

The last two compiler-directing statements, tNOLIST and %LIST, suppress
and restart the printing of the source listing. Progran statements
between a %NOLIST statement and a $LIST statement do not appear in the
source listing file.

Note

SINCLUDE, REPLACE, %PAGE, %LIST, and %NOLIST are Prime

extensions to standard PL/I and may not be available in other

implementations of PL/I.

SINCLUDE Files and the Search Rules Facility

As of Rev. 21.0, the PRIMOS search rules facility enables you to
establish an INCLUDES search list. An INCLUDES search list is a list
of directories that are to be searched for a INCLUDE file whenever a
SINCLUDE statement is processed. (Although there are several kinds of
search lists, this section explains only the INCLUDES search list. For

complete information about the PRIMOS search rules facility, see the
Advanced Programmer's Guide, Volume II.)

When you specify a file in a $INCLUDE statement, you must ordinarily

First Edition, Update l 10-54

FLOW OF CONTROL

give as much of the file pathname as PRIMOS needs to locate the file.
If you use INCLUDE files often, and if the files are kept in a number
of different directories, keeping track of the file pathnames can be
difficult. Now, however, you can locate INCLUDE files by supplying
only a filename and using the search rules facility to provide the full
pathname.

Establishing Search Rules: To establish search rules for S%INCLUDE
files, perform the following steps:

1. Create a template file called

[yourchoice.] INCLUDES.SR

This file should contain a list of the pathnames of the
directories that contain your INCLUDE files. For example, you
might create a file called MY.INCLUDES.SR that contains the
following directory names:

<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

2. Activate the template file by using the SET_SEARCH_RULES (SSR)
command. For example, if your template file is named
MY. INCLUDES.SR, type

OK, SSR MY. INCLUDES

This command sets the INCLUDES search list for your process.
This search list may contain systen search rules and
administrator search rules in addition to the rules you
specified in MY.INCLUDES.SR. If you will use a search list
often, you should include the command to activate the list in
your LOGIN.CPL file.

When you give the SSR command shown in step 2, PRIMOS copies the
contents of MY. INCLUDES.SR into your INCLUDES search list. If you have
no special system or administrator search rules, your INCLUDES search
list appears as follows when you give the LISTSEARCHRULES (LSR)
command :

List: INCLUDES
Pathname of template: <MYSYS>ME>PLI>MY. INCLUDES.SR

[home_dir]
<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

10-55 First Edition, Update 1

PL/I Reference Guide

[home_dir], your current attach point, is the system default. It is
always the first directory searched, unless you renove it from the list
or change the order of evaluation by using the -NO_SYSTEM option of the
SSR command. Additional search rules, established as system-wide
defaults by your system administrator, may also appear at the beginning
o£ your INCLUDES search list.

The SET_SEARCHRULES and LIST_SEARCH_RULES commands are described in
the PRIMOS Commands Reference Guide. For more information about
establishing search rules, see the Advanced Programmer's Guide, Volume
Ii.

Using Search Rules: Once you have set the search list, any %INCLUDE
statement in a progran can give just the filename rather than the full
pathname of the file. PRIMOS then searches the contents of the
directories in the INCLUDES search list for the filename specified in
the INCLUDE statement. If PRIMOS finds the file, it stops searching
and returns the full pathname of the file to the compiler. The
compiler then uses this pathname to locate the file and inserts its
contents into the source progran.

Using [referencingdir]: The Advanced Programmer's Guide describes
several expressions that you can use in your list of search rules. One
of these, [referencing_dir], has a special meaning for INCLUDES search
lists. Like [home_dir], [referencing_dir] is a variable that PRIMDS
replaces with a directory pathname. [referencing_dir] always evaluates
to the pathname of the directory from which the request for a tINCLUDE
file is made. Thus, if a $INCLUDE statement is located in a progran,
[referencing_dir] evaluates to the pathname of the directory that
contains the program.

[referencingdir] is useful if the following three situations exist.

@ You are compiling a progran that is not in your current
directory.

@ The directory containing the program is not in your search rules
list.

@ The program contains a INCLUDE statement.

Under the above circumstances, the search for the %INCLUDE file
succeeds only if [referencing_dir] is in your list of search rules.

You can also use [referencing_dir] for programs that contain nested
INCLUDE statements. %INCLUDE statements are nested if the file
requested by one %INCLUDE statement also contains one or more $INCLUDE
statements. If nested %INCLUDE statements request files located in the
same directory as the SINCLUDE file in which they are nested, putting
[referencingdir] at the top of your search rules list could speed up
the search somewhat.

First Edition, Update 1 10-56

I]
STREAM

Input/Output

The PL/I language supports two methods for doing input/output: STREAM
I/O and RECORD I/O. This chapter discusses STREAM I/0. STREAM 1/0
uses GET and PUT statements, which treat a file as a stream of
characters. This method preserves machine independence. STREAM I/O is
also used for terminal input/output. More explanation of the
differences between STREAM and RECORD I/O is provided in the section on
STREAM INPUT/OUTPUT SPECIFICATIONS later in this chapter.

The statements discussed are

@ The PUT statement, for general output.

e The GET statement, for general input.

e The WRITE statement, for variable-length wninterpreted output
(on Prime systems only).

@ The READ statement, for variable-length uninterpreted input (on
Prime systems only).

@ The FORMAT statement, which allows you to specify a common
format list for several PUT EDIT or GET EDIT statements.

@ The DECLARE statement, which allows you to specify that a
certain identifier is to have the FILE attribute. You need this

and the OPEN statement in order to do input from or output to

all files and devices.

li-1 First Edition, Update 1

PL/I Reference Guide

@ The OPEN statement, which allows you to connect your program's
FILE identifier to an external file or device.

e ON ENDFILE and ON ENDPAGE.

The DECLARE and OPEN statements for files are discussed in greater
detail in Chapter 12, RECORD INPUT/OUTPUT.

INTRODUCTION 'TO THE PUT STATEMENT

Previous chapters contain a number of examples of the PUT statement.
This section summarizes the most commonly used PUT statement options.
Detailed specifications for the PUT statement can be found later in
this chapter.

The syntax for the PUT statement is

PUT option-list;

The option-list is a list of options separated by blanks. The most
commonly-used options are

@ FILE(reference): See the section PUT AND GET TO FILES AND
DEVICES.

® STRING(reference): See The PUT STRING Statement.

e SKIP or SKIP(1): PL/I skips to the next output line (or output
record) before doing any further output.

@ SKIP(n), where n > 1: PL/I skips to the next output line (or
record), then skips (n - 1) additional blank lines (or records).

PAGE: PL/I skips to a new output page.

LINE(n): PL/I moves to output line n on the printer page,
skipping to a new page if necessary.

@ LIST, DATA, EDIT: These are described in this section.

If you specify neither the FILE nor the STRING option in your PUT
statement, PL/I assumes FILE(SYSPRINI), output to the terminal. You
must specify at least one of the options SKIP, PAGE, LINE, LIST, DATA,
and EDIT. You may specify at most one of the options SKIP, LINE, and
PAGE, and at most one of the options LIST, EDIT, and DATA. You may
specify the options in any order.

First Edition, Update 1 11-2

STREAM INPUT/OUTPUT

Here are some examples:

PUT PAGE;

PUT LIST(X, Y + 3);

PUT FILE(TAPEOUT) SKIP EDIT(A + B) (F(5));

PUT SKIP LIST (X)

PUT LIST(X) SKIP;

The first of these statements causes PL/I to skip to the top of a new

printer page. The second prints the values of X and Y +3. The third
specifies a FILE identifier called TAPEOUT and specifies that PL/I is
to skip to a new output record and then print the value of A+ B in the

format F(5). The last two statements have exactly the same effect and
are included here to illustrate the fact that the options may go in any
order. Many beginning programmers believe that the last statement
skips to a new output record after the value of X is printed, while, in
fact, the effect of the SKIP option always takes place before any
further output occurs.

Note that unlike other languages, PL/I does not automatically execute a
SKIP option at the end of output from a PUT statement. Therefore, the
two statements

PUT LIST (A);

PUT LIST (B) ;

taken together, have exactly the same effect as the single statement

PUT LIST(A, B);

In both cases, output appears on the same line. To avoid this, use the
two statements

PUT LIST(A);

PUT SKIP LIST(B);

The SKIP option in the second of these statements causes the value of B
to be printed on a new line.

11-3 First Edition, Update 1

PL/I Reference Guide

The PUT LIST Statement

Most of the examples of the PUT statements that appear in other
chapters of this manual are for PUT LIST. You may use the LIST option
to print the values of one or more expressions. For example, the
statement

PUT LIST(A, X + Y, U*V);

prints the values of the three expressions within the set of
parentheses following the word LIST.

An expression may be an aggregate expression. For example,

DECLARE AR(100) FIXED;

PUT LIST(AR + 5);

prints 100 values. Each of these 100 values is obtained by adding 5 to
the corresponding element of the array AR. The complete set of rules
for evaluating aggregate expressions is discussed in Chapter 6,
EVALUATING EXPRESSIONS.

For each of the individual scalar data values appearing with the LIST
option, PL/I does the following:

1. Prints sufficient blank characters to advance the output line
toa tab stop. The tab stop positions are preset by the
system, but they may be changed by the TABS option of the OPEN
statement, as described later in this chapter.

2. Converts the scalar data items to the CHARACTER data type as
described in Chapter 6.

3. Prints out the value of that CHARACTER string value.

The above rules apply to files intended to be printed on the terminal
or line printer. Output files that are to be stored on disk have
Slightly different rules from those above.

The PUT DATA Statement

When you use DATA directed output, PL/I prints the variable name along
with the value of the variable, in the format of an assignment

statement. For example, the statement

PUT DATA(M, N);

First Edition, Update 1 11-4

STREAM INPUT/OUTPUT

would cause PL/I to print something like the following:

M= 5 N= 20;

If the variable being printed is an aggregate, PL/I prints all the

individual scalar elements of the aggregate. For example, consider the

following statements:

DECLARE A(5) FLOAT DECIMAL (5);

PUT SKIP DATA(A);

These statement would print something like the following:

A(1)= 2.8734E+02 A(2)= -7.4628E-05 A(3)= 1.0000E+00

A(4)= 8.6500E+02 A(5)= 0.0000E+-00;

Notice that each scalar value in the aggregate is printed, as in the

case of PUT LIST, but PUT DATA prints additional information, the name

of the variable or aggregate element. After the last variable/value

pair is printed, the output ends with a semicolon.

The use of PUT DATA has advantages and disadvantages. The major

advantages are that you clearly see which variable is associated with

each value being printed; this can be very useful during the debugging

stages of your progran, or for printing dumps of progran variables

after unexpected errors. The main disadvantage of PUT DATA is the

cluttered appearance of the output, which makes it unpleasant to read.

One form of the PUT DATA statement is particularly useful in certain

debugging situations. The statement

PUT DATA;

where you supply no list of variables with the DATA option, causes PL/I

to print the name and value of all variables in your program accessible

from the PUT statement. The result is usually several pages of very

cluttered output, but this can be useful in certain debugging

situations.

11-5 First Edition, Update 1

PL/I Reference Guide

Unlike PUT LIST, PUT DATA does not allow arbitrary expressions in the
list following the DATA keyword. For example, the statement

PUT DATA(X + Y);

is illegal.

The PUT EDIT Statement

Let us now turn our attention to the formats of the output that PL/I
prints. In the case of PUT LIST and PUT DATA, PL/I prints the data
values in an output format that is determined by the data type of the
values. For example, if the value is FIXED, it is printed as a decimal
number, possibly with a decimal point. If the data value is FLOAT, it
is printed in scientific notation.

PUT EDIT permits you to specify not only the value to be printed, but
also the format in which the value is to be printed. PUT EDIT also
gives you complete control over both horizontal and vertical spacing of
your printed data, so that you can get columns, tables, graphs, and
other printouts that are pleasing to the eye.

Consider the following example:

DECLARE (X, Y) FLOAT;

X = 8.3;
Y = -65.32:;

PUT EDIT(X, Y) (F(4),F(9,3))?

Look at the PUT EDIT statement, the last statement in the above
example. It contains a list of data values (the variables X and Y
whose values are to be printed) but the statement also contains a
format list, containing the two format items, F(4) and F(9,3). The
resultisthe following: TO

1. PL/I prints the value of X in the format F(4). This format
specifies that the output value, no matter what its data type,
is to be printed as an integer in a four-character field.
Therefore, since the value of X is 8.3, it is printed as bbb8,
where b is a blank character.

2. The value of Y is -64.32, and PL/I prints this value in the
format F(9,3), a format item that specifies a nine-character
output field, with three digits after the decimal point. The
result is that the value of Y is printed as bb-64.320. Notice
that there are two leading blanks among the characters printed,
in order to fill out the results to nine characters.

First Edition, Update 1 11-6

' STREAM INPUT/OUTPUT

PUT EDIT differs from PUT LIST in that you are completely in control of

the spacing between output data items. For PUT LIST, PL/I
automatically inserts blank characters between output data items; but

for PUT EDIT, PL/I only prints those blank characters called for by
your format list. Therefore, in the above example of a PUT EDIT
statement, the full output is

bbb8bb-64.320

There are exactly five blank characters in this output, as called for
by the format items.

Many beginning programmers confuse the format item F(8,3) with the

numeric data type FIXED DECIMAL(8,3). Although there are some

similarities, there are also very important differences. FIXED

DECIMAL (8,3) is a data type for a variable that can have a sign (plus
or minus) and eight digits, three of which follow the decimal point.
F(8,3) is a format item specifying output of eight characters,

including three digits after the decimal point. These eight characters

include the printed sign, if any, and the decimal point. The largest
number that can be printed in the format F(8,3) is

9999.999

while the smallest negative number is

-999 999

This contrasts to the fact that a variable with the data type FIXED
DECIMAL (8,3) can have a value as large as

+99999 999

and a negative value as small as

-99999.999

Thus, the width in the format items specifies the total number of

characters, including the sign, if any, and the decimal points, if any.

The precision in the data type specifies only the number of digits, and

does not include the sign or the decimal point. Therefore, the F(8,3)
format item is not always sufficiently wide to accommodate the value of
a FIXED DECIMAL(8,3) variable.

11-7 First Edition, Update 1

PL/I Reference Guide

Common Data Formats: Later in this chapter, there is a section called
DETAILED SPECIFICATIONS FOR THE PUT STATEMENT. ‘That section describes
all the PUT EDIT format items and defines them precisely. The
following lines list the most commonly used PUT EDIT format items for
data values. Table 11-1 illustrates each of these format itens.

F(w): PL/I prints the data value as a decimal integer, in a
field of w characters.

F(w,d): PL/I prints the data value as a decimal number with a
decimal point, in a field of w characters, with d digits
following the decimal point. If d=0, no decimal point is
printed.

E(w,d): PL/I prints the data value in scientific notation, with
the mantissa and characteristic fields separated by the letter
E, with d digits following the decimal point and ore digit
precedingthe decimal point in the mantissa. The total field
size, including both mantissa and characteristic, is w
characters.

P'picture': PL/I prints the data value in the format determined
by the CHARACTER string value of the picture specification. See
Chapter 5 for details on picture specifications.

A: PL/I prints the data value as a CHARACTER value. All
characters in the data value are printed.

A(w): PL/I prints the data value as a CHARACTER value in a
field of w characters. If the data value contains fewer than w
characters, PL/I prints out additional blank characters on the
right, to pad out the data value. If the data value contains
more than w characters, PL/I truncates it and prints only the
first w characters.

C(format, format): PL/I prints the data value as a COMPLEX
value. PL/I prints the real part of the COMPLEX value using the
first format, and prints the imaginary part of the data value
using the second format.

Fach of these format items is illustrated in Table ll-l. Additional
illustrations of each format item are given in the section on DETAILED
SPECIFICATIONS FOR THE PUT STATEMENT later in this chapter.

First Edition, Update 1 11-8

STREAM INPUT/OUTPUT

Table 11-1
Common PUT EDIT Format Items

Format Data Value Characters Printed

F (4) 23 bb23
F(5) 23 bbb23
F (5) —23 bb-23
F(5,1) 23 b23 .0
F (8,2) ~7 924 bob-7 .92
E(10,4) 92.4 9.2400E+01
p'9999!' 23 0023
A ‘ABCD! ABCD
A(5) ‘ABCD! ABCDp
A(3) "ABCD! ABC
C(F (4) ,F(7,1)) 45+231 bb45bbb23 .0

Control Formats: So far in this chapter we have discussed same of the

data format items. These are format items that specify the format in

which a particular data value is to be printed. PL/I provides another

set of format items called the control format items. Use these format

items to specify the position of the output; that is, specify where in
‘the output line or output record the data is to appear, or where on the
printer page it is to appear. For example, if you wish your data items
to appear in columns, with headings at the top of the printer page, use
control format items to control the spacing between the data items
printed,

Here is an example:

X= 33
PUT EDIT(X, 2 * X + 1) (F(4) ,X(3) -F(3))?

In this PUT EDIT statement, there are two data values to be printed,

and the format list contains three format items. The first and last of

these are data format items, in that they specify the format in which

each of the two data values is to be printed. The second format item,

X(3), is a control format item. It does not specify how any data value
is to be printed, but it does specify that three additional blank
characters are to be inserted into the output. The result is that the
output from the PUT statement would be

bbb3bbbbb7
“Sum,reyeee”

F(4) X(3) F(3)

11-9 First Edition

PL/I Reference Guide

The F(4) and F(3) format items specify the printing of four and three
characters, respectively. Because of the X(3) format item, three
additional blank characters are printed.

The following is a list of the most commonly used control format items:

@ X(w): PL/I prints w blank characters.

@ QOLUMN(n): PL/I moves to column n on the output line or output
record. This means that PL/I prints as many blank characters as
are necessary so that the next output value appears starting in
column n. If output is already past column n on the current
output record or output line, PL/I skips to a new line and
prints (n - 1) blank characters.

@ SKIP or SKIP(1): PL/I skips to the next output line or output
record.

@ SKIP(n), where n> 1: PL/I skips to the next output line, and
then skips (n - 1) blank lines or records.

@ PAGE: PL/I skips to the top of a new page in the output file.

@ LINE(n): PL/I moves to output line n on the printer page,
skipping to a new page if necessary.

Notice that the SKIP, PAGE, and LINE format items are handled exactly
the same as for the corresponding options of the PUT statement.

The following example uses the X and SKIP format items:

A = 864;
= 92:

PUT EDIT(A, B) (SKIP, F(5), SKIP, X(1), F(2))3;

The above PUT EDIT statement specifies two data values, A and B, to be
printed, and the format list contains two data format items as well as
three control format items. The output from this PUT statement is

F(5)

X(1) F(2)

First Edition 11-10

STREAM INPUT/CUTPUT

Notice that the output is printed on two separate lines because of the
SKIP format item, and that the blank character on the second line of
output comes from the X(1) format item. ‘The digits 92 on the second

line of output come from the F(2) data format iten.

If, in executing a PUT EDIT statement, PL/I finds that there are not
enough format items in the format list to print all the data values in
the data value list, PL/I restarts the format list from the beginning.
For example, in the program segment:

A = 253
= 38.33

PUT EDIT(A, B, A + B) (SKIP, F(5,2))+3

the PUT statement above contains three data values in the data value
list, but only one data format item in the format list. As a result,
the format list is restarted for each data value, to get the following
results:

25.00
38.30
63.30

The control format item SKIP and the data format item F(5,2) are
repeated for each of the three data values.

This feature of restarting the format list is particularly useful for
printing an array. For example,

DECLARE A(200,3);

PUT EDIT(A) (SKIP, F(4), F(10,2), F(10));

In this example, the data list specifies the variable A, and so all 600
scalar elements of the array A are to be printed. The format list
contains only three data format items, F(4), F(10,2), and F(10). The
result is that the format list must be started from the beginning 200
times in order to print all 600 data values. Since the SKIP control
format iten is executed each time the format list is restarted, PL/I
prints the array A in three columns, in a table containing 200 lines.
The first column is printed in the format F(4), the second columin
the format F(10,2), and the third column in the format F(10).

11-11 First Edition

PL/I Reference Guide

If you wish your format list to repeat a group of format items several

times, you may use a repetition factor in your format list. The syntax

is

n(format list)

Here you are specifying that the format list is to be repeated n times.
Consider, for example, the following:

DECLARE B(10);

FUT EDIT(B) (3(F(5)),7(SKIP, F(10)));

This PUT statement prints the ten scalar elements of the array B. The

first three elements of B are printed using the format F(5), which is

to be used three times as specified by the repetition factor, and the

last seven elements of B are to be printed using the format list SKIP,

F(10).

The PUT STRING Statement

The PUT statement prints the values of variables on the terminal, on a

printer, or stores them ina file. Part of PL/I's job in executing a

PUT statement is to convert the value of a variable from internal

encoded machine format into a string of characters that can include

digits, decimal points, and signs.

Sometimes you wish to take advantage of this conversion process without

actually doing any output to a device external to your program. In

PL/I terminology, this is the wish to convert a numeric value into a

CHARACTER format. One way to do this is to do an implicit numeric to

string conversion in an assignment statement. For example, consider

the following:

DECLARE X FLOAT DECIMAL (6) :

DECLARE C CHARACTER(100) VARYING;

X =25.33
C= xXo

i
e

u
t

=
o

The assignment statement at the end of this example causes PL/I to

convert implicitly the numeric value of X to a CHARACTER string value
and assign it to C with the result that C = 'b2.53000E+01'. However,

this kind of implicit conversion gives you no control over the format
in which the variable is to be stored in CHARACTER form.

First. Edition 11-12

STREAM INPUT/OUTPUT

By means of the STRING option, PL/I allows you to use the full power of

the PUT statement in converting numeric data to CHARACTER data in

whatever format you wish. For example, you can change the preceding

example to the following:

DECLARE X FLOAT DECIMAL(6);
DECLARE C CHARACTER(100) VARYING;

X = 25.33
PUT STRING(C) EDIT (X) (F(7,2))3

This last statement is similar in effect to the final assignment

statement of the preceding example in that in both cases PL/I converts

the value of the numeric value X into character form. In the case of

this PUT statement, since a STRING option is specified, PL/I does not

do output to a device or file. Instead, PL/I stores the output

characters in the variable C. The result is that C equals 'bb25.30',

where the value of X was converted to CHARACTER format and stored into

the variable C, using the format item F(7,2).

The general syntax of this option is

PUT STRING(variable) other-options;

When you are using PUT STRING, usually you use the EDIT option, since

you want. to control the format explicitly. However, the LIST and DATA

options are also legal.

The following options and format items are illegal with the STRING

option: FILE, SKIP, PAGE, LINE, and COLUMN.

Notice that PUT STRING is no longer an output statement, since no

actual data transmission to an external device is performed. Instead,

PUT STRING is a purely computational statement.

INTRODUCTION TO THE GET STATEMENT

The syntax of the GET statement is

GET option-list;

This section introduces the most commonly used options of the GET

statement. The section DETAILED SPECIFICATIONS FOR THE GET STATEMENT

later in this chapter describes all the options in detail.

11-13 First Edition

PL/I Reference Guide

The most commonly used options are

@ FILE(reference): See the section PUT AND GET TO FILES AND
DEVICES .

@® STRING(expression): See The GET STRING Statement.

@ SKIP or SKIP(1): PL/I skips the remainder of the current input
record and moves to the beginning of the next input record
before doing any more input.

e@ SKIP(n), where n> 1: PL/I skips to the beginning of the next
input record, and then skips (n - 1) additional input records
before doing any further input.

e OOPY: PL/I copies all input characters to the standard output
file (SYSPRINT).

@ OOPY(reference): PL/I copies all input characters to the output
file specified by the reference, which must be to a FILE
constant or expression.

e LIST, DATA, EDIT: These are described later in this section.

The GET statement takes input data values from the input stream. This
means that, when it executes a GET statement, PL/I treats the input
file or device as nothing more than a stream of characters, organized
into records (or lines). Normally, record boundaries are ignored. The
exceptions to this general principle are for those options and format
items that specifically reference record boundaries. An example is the
SKIP option, which causes PL/I to move to the beginning of the next
input record.

In the GET statement, if you specify neither the FILE option nor the
STRING option, PL/I assumes FILE(SYSIN), terminal input. You must
specify at least one of the options SKIP, LIST, DATA, or EDIT. You may
specify at most one of the options LIST, DATA, and EDIT. You may
specify the options in any order.

Here are some examples:

GET LIST(X, Y)¢

GET FILE (TAPEIN) SKIP;

GET EDIT (A) (F(5))3

For the first of these statements, PL/I takes two values from the input
stream and assigns them to the variables X and Y. As we shall see,
PL/I takes characters from the input stream until it finds an
appropriate delimiter, either a blank or a comma. The second statement
specifies that input is to be taken from a file called TAPEIN. This

First Edition 11-14

STREAM INPUT/OUTPUT

GET statement specifies that you wish PL/I to skip the remainder of the

current input record and to position further input at the beginning of

the next record. The last statement specifies that five characters are

to be taken from the input stream, and that these characters are to be

converted to a numeric value and the result assigned to the variable A.

The GET LIST Statement

You may use the LIST option of the GET statement to input values for

one or more variables. For example, the statement

GET LIST(A, X(K))+?

specifies that PL/I is to take values for the variable A and the array

element X(K) from the input stream.

The input variable may be an aggregate. For example, consider these

statements:

DECLARE AR(100) FIXED; DECLARE 1S, 2A, 2B;

GET LIST (AR);
GET LIST (S) ;

When executing the first GET statement, PL/I inputs 100 values from the

input stream, converts them, and stores then in the array AR. ‘The

second GET statement inputs a value for each member of S in order,

converts them, and stores them in the appropriate members.

The GET LIST statement takes characters from the input stream, ignoring

boundaries between records. In the input stream, the individual data

items should be separated by a comma, by one or more blank characters,

or by both.

For instance, suppose that the input stream is coming from a disk file,

and suppose that your program is executing the statement

GET LIST(A, B);

where A and B are numeric variables. Let us look at several examples

of ways you might prepare an input stream file.

11-15 First Edition

PL/I Reference Guide

You may type both values on one line, ending each one with a comma.
For example, you might type

234 ,8764, CR

where CR stands for pressing the return key on your terminal. You
may also end each data value with a blank, as in

234b8764b CR

You may also put the data onto separate input lines, which would be the
case if you typed

234, CR
8764, CR

Since PL/I simply ignores the return key in stream files, you may
spread your input data over several lines, as would be the case if you

typed the following:

A common user error is to forget that a comma or blank must terminate
each data value in the input stream. For example, if a file contained

234CR
8764CR

PL/I would handle the above input as follows: PL/I would treat 2348764
as the first seven digits in the first input value, and then it would
wait for more input, looking for a comma or a blank.

For input from the terminal, however, PL/I recognizes the return key as
a terminator. The two lines just above are acceptable terminal input,
while the three preceding them would be interpreted as four separate
values. If you wish to disable recognition of the return key for
terminal input as well as for stream files, use the -ANSI option. (See
the section Interpretation of the TITLE Option Argument later in this
chapter.)

First Edition 11-16

STREAM INPUT/OUTPUT

Notice also that the above example could be changed by changing the GET
statement into two statements,

GET LIST (A) ;
GET LIST (B) ;

These two GET statements would have exactly the same effect in your
PL/I program as the single GET statement illustrated above.

The data value taken from the input stream for a GET LIST statement may
be any legitimate PL/I constant, always terminated by a blank or comma.
If the input is a CHARACTER string value, it might look something like
the following:

‘STRING VALUE',

In this example, the input stream data value is a CHARACTER constant,
followed here by a comma as terminator. Note that a CHARACTER constant
containing a space or comma must be enclosed in single quotation marks
in order to be interpreted as a single string. Examples of BIT and
COMPLEX input values are

*1011101'B,
23+4.51,

Other legal constants of any computational data type are permitted.
PL/I takes the constant and converts it to the data type of the
variable in the GET LIST statement.

The longest acceptable terminal input stream value is 256 characters.

The GET DATA Statement

You may use GET DATA when you wish your input stream to contain the
name of the variable as well as the value of the variable. To
illustrate this, consider the statement

GET DATA(A, B, C, D, E);

11-17 First Edition

PL/I Reference Guide

where A, B, C, D, and E are all scalar numeric variables. Let us take
a look at same examples of what might be in the input stream where PL/I
executes this statement. Depending upon what is in the input stream,
PL/I may change or leave unchanged the values of any of the variables
A, B, C,; D, or E.

The input stream corresponding to a GET DATA statement contains what
appears to be one or more consecutive assignments, only the last of
which ends in a semicolon. The right-hand side of each assignment must
be a constant following the same rules as for GET LIST.

For example, suppose that the input stream contains

If PL/I finds these characters in the input stream when it executes the

GET DATA statement shown above, PL/I changes the value of A to 5,

changes the value of C to 23, and leaves the variables B, D, and E

unchanged.

As another example, if the input stream corresponding to the GET DATA

statement is

E = 43, B= 84, D= 92;

then PL/I sets the variables E, B, and D to the values shown above.

This input stream example illustrates the fact that variables in the

input stream need not appear in the same order as the variables in the

GET DATA statement. You may separate the assignments in the input

stream by a comma, or by one or more blanks, or both. ‘Therefore, the

input stream

is handled by PL/I in exactly the same way as the input stream example

above. PL/I keeps processing these assignments until it finds a

semicolon in the input stream.

If the variable in the GET DATA statement is an aggregate, your input

stream may specify any of the aggregate's scalar elements. Consider,

for example, the effect of the two statements

DECLARE AR(100) FLOAT INITIAL (100) 0) ;
GET DATA(AR);

First Edition 11-18

STREAM INPUT/OQUTPUT

Because of the INITIAL option in the DECLARE statement, PL/I
initializes all elements of the array to zeros. Now suppose that, when
executing the GET DATA statement, PL/I finds the following in the input
stream:

AR(5) = 18.23E5, AR(1) = 62, AR(50) = 42.7;

Then PL/I changes the values of the three array elements shown to the
values shown, and all other elements of the array are left unchanged at
the value zero, This example illustrates the general rule that the
subscript used in the subscript list of the input stream corresponding
to a GET DATA statement must always be an integer constant, possibly
with a sign.

You may also use the GET DATA statement with no list of variables, as
in the syntax

GET DATA;

In this case, your input stream may contain assignments for any
variable in your program. (More precisely, the assignments may be for
any variable whose declaration scope contains the GET statement.)

The GET EDIT Statement

Like PUT EDIT, the GET EDIT statement permits you to specify a format
along with each data item to be transmitted. However, since GET LIST
permits the input stream to contain free-format data input anyway, the
main advantage that GET EDIT has over GET LIST is to pemit you to use
a format list to specify both the number of characters in the input
stream to be used for each data item, and the number of spaces between
data items.

Since GET EDIT is used more to control spacing than to specify the
actual format of the input stream characters, you seldom use GET EDIT
for input from your terminal. Instead, GET EDIT is used mostly for
input from card, disk, or tape records that have been formatted in some
particular way:

@ Punched cards are often prepared offline in various commercial
applications. Since space is at a premium on these cards,
numbers are often punched in consecutive columns with no blanks
at all between them. For example, the first few columns of a
punched card might be

18265387025...

11-19 First Edition

PL/I Reference Guide

where 18265 is an employee identification number, 387 stands for

38.7 regular hours worked, and 025 stands for 2.5 overtime hours

worked. You could not use GET LIST to read this input card,

since no blanks or commas separate the fields, But you can use

GET EDIT, where the format items specify the number of

characters to be read for each data value. Furthermore, GET

EDIT autanatically inserts the implied decimal point,

interpreting the input stream characters 387 as 38.7.

@ You may create a disk file one day using PUT EDIT, and then on

another day use that file as input. In that case, use GET EDIT

with the same format items that you used to create the file.

@ You may have a magnetic tape file prepared at a different

installation or even on a different kind of computer with

formatted character records.

As an example, look at the punched card example given above. That

example shows the first 11 columns of a card, containing three data

fields. The following is a GET EDIT statement that reads those three

fields:

GET EDIT(IDENT, REG, OVT) (F(5), F(3,1), F(3,1));

This statement specifies input for three variables, IDENT, REG, and

OVI. Input for the first variable is done in the format F(5), and for

each of the last two in the format F(3,1). When PL/I inputs a value in

the F(5) format, it takes five characters from the input stream. These

five characters must be a DECIMAL FIXED constant, possibly with a sign.

PL/I converts the characters to a numeric value and then assigns that

numeric value to the variable, in this case the variable IDENT. PL/I

inputs RAG and OVI according to the format F(3,1). This format

specifies input of three characters, with an implied decimal point

preceding the last digit among those three characters. Therefore, if

the three characters are 387, the value 38.7 is assigned to REG.

Similarly, PL/I takes the input characters 025 and assigns then to OVT

as 2.5.

Data Format Items: Later in this chapter, in the section entitled

DETAILED SPECIFICATIONS FOR THE GET STATEMENT, precise specifications

for each of the format items for GET EDIT are given, The most commonly

used format items are

e F(w): PL/I takes w characters from the input stream. These W

characters must form a decimal number, possibly with a sign,

possibly with a decimal point, and possibly with leading or

trailing blanks.

@ F(w,d): PL/I takes w characters from the input stream. These w

characters must be in the same format as has been described for

F(w). The difference is that if the input characters do not

First Edition 11-20

STREAM INPUT/OUTEUT

contain a decimal point, PL/I moves the decimal point in the

input value to the left d places. (The decimal point is moved

to the right if d is negative.)

e A(w): PL/I takes w characters from the input stream, and uses

them as a CHARACTER stream of length w.

@ A: PL/I takes characters from the input stream, stopping at the

end of the current input line or record. PL/I puts these
characters together to form a CHARACTER string value.

Note

This format item is not valid in ANS PL/I and will not

be valid in other implementations of PL/I. ANS PL/I
requires that the A format item for GET LIST specify w.

Table 11-2 illustrates the above format items. Additional

illustrations of these format items are in the section DETAILED

SPECIFICATIONS FOR THE GET STATEMENT.

Table 11-2

Common GET EDIT Format Items

Format Input Stream Input Value

F (5) 12345 12345
F(5) 123bb 123
F (5) bb123 123
F(5,2) 12345 123.45
F(5,2) 123bb 1.23
F(5,2) bb123 1.23
A(7) ABCDEFG "ABCDEFG'

The rules that PL/I follows for matching data variables with format

items are the same as for the PUT EDIT statement. For example, suppose

a punched card contains four-digit numbers, with 20 numbers per card.

Then, the following statements can be used to cause PL/I to read the

entire card as input and store all twenty data values into the array

AR:

DECLARE AR (20) ;

GET EDIT (AR) (F (4));

11-21 First Edition

PL/I Reference Guide

Control Format Items: Like the PUT EDIT statement, GET EDIT also has a
set of control format items that you may use to control the spacing
between data items. ‘The most commonly used are

@ X(w): PL/I takes w characters from the input stream and ignores

them.

@ OOLUMN(n): PL/I skips enough characters from the input stream
so that the next input value comes from column n of the current
input record, If input has already proceeded past column n in
the current record, PL/I skips to the next input record, and
then removes (n - 1) additional characters from the new input

record, ignoring then.

@ SKIP or SKIP(1): PL/I skips to the beginning of the next input
record, ignoring all characters taken from the input stream to
do this.

@ SKIP(n), where n> 1: PL/I skips to the beginning of the next
input record, and then skips (n - 1) additional records.

Notice that the SKIP format item is handled exactly the same as the
SKIP option of the GET statement.

The following is an example of a GET EDIT statement, using the X format

item:

GET EDIT(A, B) (F(5), X(3), F(3))3

Suppose that, when PL/I executes this GET EDIT statement, it finds the

following input stream:

123450QRS789

PL/I inputs the value of A using the format item F(5). This means that
PL/I takes the characters 12345 from the input stream and assigns that
value to the variable A. In performing input for the variable B, PL/I
first encounters the control format item X(3), as a result of which it
skips over the input stream characters QRS. Then, PL/I uses F(3) to
input the characters 789, and to assign the value 789 to B.

First Edition 11-22

STREAM INPUT/OUTPUT

The GET STRING Statement

Normally, PL/I executes the GET statement by taking characters from the
input stream, usually from your terminal or from an external file or

other device. By means of GET STRING, however, you can specify that

PL/I is to take the input stream from a CHARACTER string expression of

your choosing, rather than from an I/O device. The syntax is

GET STRING (expression) other-options;

When PL/I executes this statement, it evaluates the expression,

converts it to a CHARACTER string value, if a conversion is necessary,

and uses the characters in that CHARACTER string value as the input
stream for the GET statement. An example is

DECLARE C CHARACTER(100) VARYING;

C = '123456';
GET STRING(C) EDIT(X, Y) (F(3), X(1), F(2))3

In this GET statement, the input stream is the characters in the value

of C, or 123456. When PL/I executes this statement, therefore, it

assigns to X the value 123, skips over the character 4 as a result of
the control format item X(1), and then uses the stream characters 56 to

assign the value 56 to the variable Y, according to the format item

F(2).

We may also use GET LIST with the STRING option, as in the following
example, which concatenates a comma to indicate the end of one item.

C = '1234';
GET STRING(C||',') LIST(Z);

In this example, the string expression is C/|',', which means that the

input stream is 1234,. ‘Therefore, Z is set equal to the value 1234,

when PL/I executes the GET statement.

This last example illustrates the following two important points about

using GET STRING:

e The string value used in the STRING option of GET may he any
expression. (This is not true for PUT STRING, where the string
value must be a variable reference.)

@ I£ you are doing GET LIST with the string value, the usual rules
about GET LIST terminators still apply. That is, each data
value in the input stream must end with a blank or a comma, just

like input from a file or device.

11-23 First Edition

PL/I Reference Guide

You may use the STRING option with GET EDIT, GET LIST, or GET DATA,
The following options and format items are illegal with the STRING
option: SKIP, COLUMN, and FILE.

Notice that the GET STRING statement is not an input/output statement,
because no data is actually transmitted from an external device.
Instead, it is a purely computational statement, since it manipulates
data only within your program.

PUT AND GET TO FILES AND DEVICES

Usually you use the PUT statement to print data on your terminal, and
you use the GET statement to take input values from the keyboard of
your terminal. By following same special conventions, you may use GET
and PUT to access all files and devices, such as those on disk or tape.

In any PUT or GET statement, use the FILE option to specify an
identifier with the FILE data type. This FILE identifier can be
associated with a file or device. For example, the statement

PUT FILE(F) LIST(X, Y);

specifies the FILE identifier F. The output from this PUT statement is
transmitted to whatever device has been associated with this FILE

identifier.

In fact, PL/I rules require that each PUT and GET statement must have
either a STRING option or FILE option. If your program contains a PUT
or GET statement with neither of these options, PL/I supplies a default
FILE option, For a GET statement, the default FILE option is
FILE(SYSIN):; for PUT, it is FILE(SYSPRINT). Therefore, the statements

GET LIST(A, B);
PUT LIST(A, B);

are entirely equivalent to the following statements:

GET FILE(SYSIN) LIST(A, B);
PUT FILE(SYSPRINT) LIST(A, B);

Therefore, every PUT or GET statement that transmits data between your
program and an external device has a FILE option, either by default or
explicitly.

First Edition 11-24

STREAM INPUT/OUTPUT

The FILE VARIABLE identifier appearing in the FILE option gives your
input/output a kind of device independence. This means that the FILE
identifier in your program can stand for one device and file one day,
and a different device and file when you run the program the next day.
Therefore, all your GET and PUT statements, as well as the other
statements of your program, remain the same even though you may be
doing input/output to different devices and files. The FILE VARIABLE
is discussed in Chapter 12. The TITLE option discussed below also

allows file independence.

DECLARE, OPEN, AND TITLE

Use the DECLARE statement to tell PL/I the rame of your FILE

identifier. For example, the statement

DECLARE F FILE;

specifies that F is such a FILE identifier. (In PL/I jargon, F is a

file constant.) Tf this declaration appears in your program, you may

use F in the FILE option of a PUT or GET statement. A DECLARE
statement may also establish a file variable, which is discussed in

Chapter 12.

The next step in using devices and files is the OPEN statement. The
syntax of this statement is

INPUT

OPEN FILE (f£ile-name) | arn | [TITLE (character string)] ;

Use the OPEN statement to associate the specified file identifier with
the device and file of your choice. After PL/I executes the OPEN

statement, any GET or PUT statement using the same FILE identifier

performs I/O to the device and file with which the OPEN statement

associated the FILE identifier. This is explained more fully in the

following paragraphs.

As the syntax shown above illustrates, in the OPEN statement you may

specify either the input or output option. (A number of other options

to the OPEN statement are discussed in the next section and the next

chapter.)

If you specify the INPUT option, you will be using the file identifier
in future GET statements; if you specify the OUTPUT option, you will
be using the file identifier in PUT statements. If you do not specify

either INPUT or OUTPUT, PL/I assumes INPUT.

11-25 First Edition

PL/I Reference Guide

You may use the TITLE option to specify which device and file you wish

to use. ‘The argument to the TITLE option may be any CHARACTER string.

For example, the statement

OPEN FILE(F) INPUT TITLE('SQUIRREL') ;

would associate the file identifier F with the disk file called

SQUIRREL, to be accessed for input. It would then be legal for your

program to execute statements like

GET FILE(F) EDIT (X) (A(80));

This statement would input 80 characters from the disk file SQUIRREL,

since the OPEN statement had associated the FILE identifier F with that

disk file.

You may associate the file identifier with any device by using an

appropriate CHARACTER string expression with the TITLE option, This is

explained fully in a later section, Interpretation of the TITLE Option

Argument.

Since the TITLE option may specify any PL/I expression, which may

include arbitrary variables, it is possible for your program to

determine at execution time the name of the device and file. Consider,

for example, the following statements:

DECLARE F FILE;
DECLARE C CHARACTER(100) VARYING;
PUT LIST('TYPE NAME OF INPUT FILE:');
GET LIST (C) 3
OPEN FILE(F) INPUT TITLE(C);

GET FILE(F) LIST (C);

The first GET statement in this example inputs from the user's terminal

the name of the file to be used as input later in the program. The

name is assigned to the CHARACTER variable C, and then the OPEN

statement uses that same variable in the TITLE option. The final GET
statement of the example actually does input from that file.

You may, if you wish, omit the TITLE option from the OPEN statement.

If you do, PL/I uses the FILE identifier name as the name of the disk

file. For example, the statement

OPEN FILE(F);

First Edition 11-26

STREAM INPUT/OUTPUT

associates the file identifier F with the disk file F to be accessed
for input.

Refer to Chapter 12, the section FILE ATTRIBUTES, ATTRIBUTE MERGING,
AND THE OPEN STATEMENT, for a discusSion of required attributes,
Gefault attributes, and conflicting attributes implied by the OPEN
statement.

Other Options of the OPEN Statement

The preceding section describes how you can use the most important
options of the OPEN statement. Some other options of the OPEN
statenent are discussed below. The next chapter, om RECORD
input/output, discusses the OPEN statement in more detail.

The syntax of the OPEN statement is

OPEN FILE(file-identifier) options;

where FILE(file-identifier) gives the name of the file identifier that
is to be associated with an external file and device.

The following options may be specified in the OPEN statement:

e INPUT: this option specifies that the FILE identifier is to be
used for input. Only GET statements may be used.

@ OUTPUT: this option specifies that the FILE identifier is to be
used for output. Only PUT statements may be used. If you
specify neither the INPUT option nor the OUTPUT option, PL/I
assumes INPUT as the default.

e STREAM: this option specifies STREAM I/O, the default, as
opposed to RECORD I/O, which must be specified. Chapter 12
describes RECORD I/O.

@ PRINT: this option is used only with OUTPUT files. If you use
this option, you are specifying that the file is intended only
to be printed, either on your terminal or on a line printer.
You do not intend to use this file as input to another program.

This option is explained more fully in a later section.

@ LINESIZE(expression): this option may be used only for OUTPUT
files. PL/I evaluates the expression and converts to an integer
value, if necessary. This integer specifies the maximum number
of characters in an output line or record. If a PUT statement
outputs characters so that the line size is exceeded, PL/I
automatically skips to a new line or record. The default is
120.

11-27 First Edition, Update 1

PL/I Reference Guide

@ PAGESIZE(expression): this option may only be used with PRINT
OUTPUT files. PL/I evaluates the expression and converts it to
an integer value. This integer specifies the maximum number of
lines that may be printed on a single output page. After PL/I
has printed that many lines, PL/I automatically skips to a new
printing page. The default is 60.

@ TAB(expression, expression, ...): PL/I evaluates each
expression and converts the value to an integer. Specify one or
more of these expressions to determine the tab positions on the
output line. Before doing any output, the PUT LIST statement
moves to the next tab position on the output line.

@ TITLE(expression): this option is summarized above and is
described more fully in the next section.

All arguments except FILE are optional. INPUT is the default. You may
specify these options in any order in the OPEN statement. For example,
the statement

OPEN TITLE('ANTLER') PRINT FILE(F) OUTPUT;

associates the file identifier F with the disk file ANTLER for use as
OUTPUT PRINT.

Interpretation of the TITLE Option Argument

If your OPEN statement has a TITLE option, the argument of that option
may be any PL/I expression. When PL/I executes the OPEN statement,

PL/I evaluates this expression and converts it to a CHARACTER string.
This CHARACTER string should have the following format:

‘name [options]'

where the name is the name of either a disk file or a device, depending
upon whether any options are specified. The name may be a filename
with no options, in the format:

OPEN FILE(filename) TITLE('pathname [options]');

File pathnames specified in the TITLE option of a file statement can be
up to 128 characters in length. Passwords can be included.

First Edition, Update 1 11-28

STREAM INPUT/OUTPUT

The options are

@ -DEVICE: This option specifies that the name in the TITLE

option character string is the name of a device, not the name of

a disk file. The legal device names are

@IrTY the terminal
PTR paper tape reader
PIP paper tape punch
CR card reader
SPR serial printer
Mr0-MI7 magnetic tape drives 0-7
PRO-PR1 line printers 0 and 1

e@ -APPEND: Use -APPEND with the OUTPUT option when you wish

further output to go to the end of an existing file. If you do

not use -APPEND, PL/I creates a new output file, deleting any

existing file of the same name.

@ -ANSI: Use -ANSI with the -DEVICE option specifying the

terminal, to specify that ANSI standard PL/I conventions are

followed with respect to line marks. That is, if -ANSI is

specified, line marks are ignored in terminal input; otherwise,

line marks act as terminators, exactly like commas and blanks.

e -CTLASA: See Chapter 12.

e@ -FUNIT: See Chapter 12.

@ -NOSIZE: See Chapter 12.

e@ -RECL: See Chapter 12.

@ -FORMS: See Appendix H.

If no TITLE option is given, the default is

OPEN FILE(f) TITLE('fname');

where fname is the declared name of the file constant referenced by f,

and where f is a file variable, file-valued function, or file constant.

11-29 First Edition, Update 1

PL/I Reference Guide

STREAM INPUT/OUTPUT SPECIFICATIONS

The rest of this chapter describes the concepts and specifications for
STREAM input and output. This section describes standard STREAM I/O,
as well as Prime's implementation of READ and WRITE statements with
STREAM 1/0.

Program Portability and Device Independence

The designers of the PL/I programming language were very concerned with
the concept of program portability. To say that a program is portable
usually means that if the program runs under one implementation of

standard PL/I, it should run under other implenentations of standard
PL/I and get the same results.

Usually, discussions of program portability revolve around the
difficulties of moving a progran from one computer to another. The
major problen in moving prograns in this way is that different
computers have different methods of representing numbers internally,
and those differences can affect the way programs are written and the
results that they produce.

However, there is another important aspect to the portability question:
portability among input/output devices. Input/output to a tape can be
very different from I/O to a disk. Even different disk drives can have
very different input/output characteristics. Therefore, the problen
facing the designers of the PL/I lanquage was to design’ the
input/output statements so that a program that is written to work with
a given input/output device also works with other I/O devices, even
when those devices are on different computers.

PL/I STREAM input/output solves these problems by the following means:

@ All numeric data is transmitted to and from the input/output
devices as machine independent decimal numbers in character
form.

@ All data on the input/output devices is considered to be
organized as a stream of characters, split up into individual
records.

Before describing these points in more detail, it is important to note
that standard STREAM input/output statenents (GET and PUT) afford
program portability, but they are limiting because file access is
sequential, from beginning to end (no random positioning).

First Edition, Update 1 11-30

STREAM INPUT/OUTPUT

The STREAM Input/Output Concept

When you use the PUT and GET statements, you are using PL/I STREAM
input/output. STREAM I/O is designed to provide maximum progran
portability and device independence, concepts described above.

Note

Prime also supports READ and WRITE with STREAM I/O. However,
because this is an extension to ANS PL/I, you can run programs
using READ and WRITE with STREAM I/O only on Prime computers,
thereby losing portability. READ and WRITE are presented later
in this chapter.

An external collection of data is known as a data set and is informally
called a file, the term used in this manual. PL/I STREAM input/output
treats a file as a stream of characters organized into individual
records. Some examples are the following:

@ A file on punched cards is a stream of characters, where each
record (each punched card) contains exactly 80 characters. A
deck of 100 punched cards would consist of a strean of 8000
characters organized into 100 80-character records.

@ A file ona line printer is printed in lines of characters.
Each line is considered to be a record. (For more information
about files directed to the line printer, see the PRINT
attribute described in the next section.)

@ When you type data to a PL/I program from the keyboard of your
terminal, each record ends when you press the return key.

@ Files on tape and disk devices may, in general, contain either
binary or character data. However, a file to be accessed by
means of STREAM input/output statements may contain. only
character data. (You may use RECORD input/output statements to
access any kind of data.)

Although this way of looking at input/output devices is somewhat
restricted, it does have the advantage of treating all I/O devices in
the same way, thereby making programs portable.

STREAM input/output also helps with problems caused by data values
having different internal representations on different computers. For
example, suppose X is a FLOAT variable, and your program executes the
statement

X = LOG10(2);

11-31 First Edition, Update 1

PL/I Reference Guide

PL/I computes the value of X and stores that value in the computer's
memory in a special FLOAT format unique to that machine. However, if
you execute the statement

PUT LIST (X) ;

PL/I converts that special internal format to a CHARACTER format, and
prints something like

3.01030E-01

This CHARACTER representation of the value of X is the same for all
computers, differing only in the number of significant digits.

Similarly, when your progran executes a GET LIST statement, PL/I
expects the input stream to contain a number in decimal digit CHARACTER
format. PL/I converts these characters to the correct internal format
for that computer.

This conversion of numeric values to and from a CHARACTER format is an
important feature of STREAM input/output. No such conversions are done
for RECORD input/output.

PUT and GET statements have a certain symmetry within PL/I STREAM
input/output. The idea is that if you create a file using PUT
statements, you may use that file as input to another PL/I program on
the same or on a different computer, provided that you use the same
sorts of options and format items in the GET statement that you used in
the PUT statements when you created the file. For example, if you
create the file with statements like

PUT SKIP EDIT(R, S, T) (X(5), F(20,2), COL(45), F(7,2), (20,3))3
PUT LIST(U) ;

you should be able to read that same file later with the following

statements:

GET SKIP EDIT(R, S, T)(X(5), F(20,2), COL(45), F(7,2), B(20,3));
GET LIST (U) ;

Furthermore, you should be able to do that even if the second program
is executing on a different computer. This might happen if one program
creates a tape file on one computer and a second program on a different
computer reads the same tape file.

First Edition, Update 1 11-32

STREAM INPUT/OUTPUT

Although the symmetry between PUT and GET is not perfect, it is
followed very closely, and is an objective in the design of STREAM
input/output.

PRINT Files

One important situation where the symmetry between PUT and GET
operations breaks down is in PRINT files, that is, files that you open
with the PRINT attribute. The concept is as follows: Some output
files are intended to be printed only, on either your terminal or on a
line printer. These files are not intended to be used as input later
with GET statements, and so it is possible to relax some of the format
rules for output for such files.

PL/I automatically gives to SYSPRINT, the default PUT file, the PRINT
attribute. You may use the DECLARE or OPEN statement to give any other

STREAM OUTPUT file the PRINT attribute.

When your program executes a PUT statement to a PRINT file, PL/I does
certain things that make sense for a file that is to be printed but not
used as later input. The two major differences between PRINT and
non-PRINT files are described in the following paragraphs.

The more important difference has to do with paging of the output file.
That is, if the file is intended to be printed, the records of a PRINT
file are cailed lines, and these lines are organized into printer
pages. This has the following implications:

@ The PAGEand LINE options of the PUT statement are legal. Also,
the PAGE and LINE format items of PUT EDIT are legal. PAGE and

LINE are not legal for non-PRINT files.

e The PAGSNO and LINENO built-in functions are legal only when the
argument of the built-in function is a FILE with the PRINT
attribute.

@ The ENDPAGE condition can be raised only for SYSPRINT or other
files with the PRINT attribute.

The other difference, not having to do with pages, is the following.
When your program executes a PUT LIST statement for a data value that
is either CHARACTER or pictured-character, PL/I encloses the output
value in apostrophes if the file does not have the PRINT attribute;
there are no apostrophes if the file has the PRINT attribute. For
example, the statement

PUT LIST('THE ANSWER IS');

11-33 First Edition, Update 1

PL/I Reference Guide

produces the following output to PRINT files:

THE ANSWER IS

and the following output to non-PRINT files:

"THE ANSWER IS'

STREAM File Information Pointers and Values

Standard PL/I looks at a STREAM file as a stream of characters
organized into records. If the STREAM file is OUTPUT PRINT, the
records are called lines, and the lines are organized into pages.

When your progran is doing input from or output to a STREAM file, PL/I
must keep track of several pointers and values related to the
operations being performed on that file. To help you understand the
STREAM input/output concept, some if these are listed here.

PL/I maintains a pointer to the last character read from or written
into the file. This pointer is updated after every GET or PUT
operation to the file. In the case of output, the pointer indicates
the end of the file, or at least at the end of that portion of the file
that has already been written.

PL/I also maintains the following values associated with the file
operations:

@ PL/I remembers the current position in the current record. PL/I
needs this value in order to handle the COLUMN and TAB format
items and to determine the position of the next tab stop for PUT
LIST. Also, PL/I needs to know this value in order to know when
a record has been filled.

e@ For PRINT files, PL/I remembers the current page number, which
the user can obtain by calling the PAGENO built-in function.
(The user can change this value by using the PAGENO
pseudovariable.)

e For PRINT files, PL/I remembers the current line number on the
printer page. It needs this value for use with the LINE option
and LINE format item, as well as the LINENO built-in function.
Also, PL/I must compare the line number with the value specified
in the PAGESIZE option of the OPEN statement in order to
determine when to raise the ENDPAGE condition.

In addition to the ANS handling of STREAM I/O shown above, Prime offers
a way to use variable-length, unformatted STREAM I/O via the READ and
WRITE statements. With READ and WRITE, Prime PL/I updates only the

First Edition, Update 1 11-34

STREAM INPUT/OUTPUT

pointer to the next line, not the pointer to the next character. READ
and WRITE statements treat each line separately, one at a time.

The next section describes these statements and their use.

READ and WRITE With STREAM I/O

The use of READ and WRITE statements on STREAM files is an easy, fast,
and efficient method of processing variable-length lines that need no
formatting. It is the only way to process unformatted variable-length
STREAM I/O one line at a time.

However, using READ and WRITE statements with STREAM files is not part
of standard PL/I; therefore you can run programs that contain these
statements only on Prime computers. Also, although programs using READ
and WRITE run somewhat faster, for edited I/O you must use PUT and GET.
Do not use READ and WRITE statements with PUT and GET statements on the
same file.

Note

To process variable-length formatted STREAM I/O, you can use a
GET statement with an A format that contains no field width.
However, this format item is not valid in ANS PL/I and will not
be valid in other implementations of PL/I. ‘The section The A
Input Data Format Item later in this chapter explains how fo
use this Prime implementation.

Only two options are available for READ and WRITE statements, but both
options are mandatory. Each READ statement requires the FILE and INTO
options, and each WRITE statement requires the FILE and FROM options.
Each INTO and FROM option must specify a scalar varying character
string variable.

A READ statement reads the next complete input line from the file
variable or constant specified by the FILE option, and assigns it to
the varying character string specified by the INTO option. A line is
defined as everything up to but excluding a new-line character.

A WRITE statement writes any partial string currently in the output
buffer to the output file. The statement then forces a line break so
that the current value of the varying string specified by the FROM
option begins on a new line.

11-35 First Edition, Update 1

PL/I Reference Guide

The table below compares use of READ/WRITE and GET/PUT statements with

STREAM I/O.

Table 11-3
READ/WRITE vs GET/PUT Statements

READ/WRITE GET/PUT

Unformatted 1/0

File or device I/0

Variable-length strings

One line for each operation

Each string handled
separately

Character I/O only

Required options
FILE and INTO (READ)

Formatted or unformatted I/O

Terminal, file, or device I/O

Fixed-length strings only

One field for each operation

Strings grouped into lines
and pages

Character I/O only

Required options
SKIP, LIST, DATA,

FILE and FROM (WRITE)

Valid statements

or EDIT (GET)

SKIP, PAGE, LINE, LIST,
DATA, or EDIT (PUT)

Valid statements
ON ENDFILE ON ENDFILE
ON ENDPAGE ON ENDPAGE

FORMAT

The following sample progran demonstrates use of the READ statement
with STREAM I/O.

COUNT_LINES: PROCEDURE OPTIONS(MAIN);

/* This is a simple program to illustrate the use of nonstandard
READ statements. */

DECLARE F INPUT FILE STREAM,
SYSIN INPUT FILE STREAM,

SYSPRINT OUTPUT FILE STREAM,
LENGTH BUILTIN,

NAME CHAR(256) VARYING,
#LINES BIN INIT(0),
#CHARS BIN INIT(0),

S CHAR(256) VARYING;

PUT FILE(SYSPRINT) LIST('INPUT FILE NAME: ');

First Edition, Update 1 11-36

STREAM INPUT/OUTPUT

GET FILE(SYSIN) EDIT(NAME) (A); /* Note: READ won't work here.
Nonstandard READ is for files
only, never for terminal input.*

/
OPEN FILE(F) TITLE(NAME);

ON ENDFILE(F) GOTO FINISH; /* ENDFILE works even with

nonstandard READ. */

READLOOP: READ FILE(F) INTO(S); /* This is it, the nonstandard

#LINES = #LINES + 1; READ. You could also use GET

#CHARS = #CHARS + LENGTH(S); FILE(F) EDIT(S) (A); here. */

GOTO READ_LOOP;

FINISH: CLOSE FILE(F);

PUT SKIP FILE(SYSPRINT);

PUT FILE(SYSPRINT)

EDIT('FILE ', NAME, ' HAS ', #LINES, ' LINES AND ', #CHARS,

' CHARACTERS.')

((3)A, F(5), A, F(5), A)?
PUT SKIP FILE(SYSPRINT);

END COUNT_LINES;

The following example demonstrates the use of READ and WRITE with

STREAM I/O to copy files.

NONSTD_COPY: PROCEDURE OPTIONS(MAIN);

/* This sample progran uses nonstandard READ and WRITE to copy files.

Files are assumed to be text files. "binary" files cannot be

copied in this way. */

DECLARE (SYSIN, SYSPRINT) FILE;
DECLARE (FROM, TO) FILE;
DECLARE LINE CHAR(1024)VARYING;

PUT FILE(SYSPRINT) EDIT('FILE TO COPY FROM: ') (A);
GET FILE(SYSIN) LIST(LINE);
OPEN FILE(FROM) TITLE(LINE) INPUT STREAM;

PUT FILE(SYSPRINT) EDIT('FILE TO COPY TO: ') (A);

GET FILE(SYSIN) LIST(LINE) ;
OPEN FILE(TO) TITLE(LINE) OUTPUT STREAM;

ON ENDFILE(FROM) GOTO DONE;

READING: READ FILE(FROM) INTO(LINE);
WRITE FILE(TO) FROM(LINE);

GOTO READING;

11-37 First Edition, Update 1

PL/I Reference Guide

DONE: CLOSE FILE(FROM):

CLOSE FILE('TO);

PUT FILE(SYSPRINT) LIST('DONE!');
PUT FILE(SYSPRINT) SKIP;

END NONSTD_COPY;

Use of ON ENDFILE

Once input for the GET statement comes from tape or disk files, you
need a way to specify in your program what action your program should
take when the GET statement fails because of end of file. Use the ON
ENDFILE statement to specify this action.

Note

You also can use the ON ENDFILE statement for input with
nonstandard READ statements. Refer to READ and WRITE With
STREAM I/O earlier in this chapter for moré information about
nonstandard READ statements.

Consider, for example, the next sample program segment. This program
segment inputs data values from a file, using the FILE identifier
TAPEIN, and prints those values. In that example, the ON statement
specifies that when end of file is reached on the file TAPEIN, PL/I is
to transfer control to ENDIAPE. Notice that the program segment
contains an infinite loop, since the condition specified in the WHILE
clause of the DO statement is always true. This infinite loop actually
terminates when the GET statement fails because of end of file. At
that point, because of the ON ENDFILE statement, control transfers to
the label ENDIAPE, and execution continues with the statement following
the END statement of the DO loop.

DECLARE TAPEIN FILE;
OPEN FILE(TAPEIN) INPUT

TITLE('Mf2 -DEVICE');
ON ENDFILE(TAPEIN) GO TO ENDIAPE;
DO WHILE('1'B);

GET FILE(TAPEIN) LIST (X);
PUT LIST (X);
END;

ENDIAPE: . . .

The next example illustrates another method for accomplishing the same
thing, using the ON statement in a slightly different way. The ON
ENDFILE statement specifies that when end of file is reached, the
variable FLAG is to be set equal to one. In this case, the DO loop
terminates as soon as end of file occurs.

First Edition, Update 1 11-38

STREAM INPUT/OUTPUT

DECLARE TAPEIN FILE;
FLAG = 0;
ON ENDFILE(TAPEIN) FLAG = 1;
GET FILE(TAPEIN) LIST(X);

DO WHILE(FLAG = 0);
PUT LIST (X);
GET FILE(TAPEIN) LIST (X);
END;

The syntax of the ON ENDFILE statement is

ON ENDFILE(file-identifier) on-unit;

where the on-unit can be one of the following:

@ AGO TO statement

e An assignment statement

@ Many other kinds of statements, but not an IF statement

e A group of statements, beginning with a BEGIN statement and
ending with an END statement

The full rules for the syntax of the on-unit are given in Chapter 13,
CONDITION HANDLING.

When your program executes the ON statement, an on-unit is said to
become established for the ENDFILE(file-identifier) condition. If a
GET statement fails because of end of file, PL/I automatically executes

the statement or group of statements in the established on-unit. If
the on-unit is a GO TO statement, the control passes to the specified
target label. If there is no GO TO statement in the on-unit, then,
atter PL/I has finished executing the on-unit, PL/I transfers control
to the statenent following the GET statement that failed because of end

of file. Chapter 13 describes this more fully.

If end of file occurs in the middle of a data item in the input stream,
rather than between data items in the input stream, PL/I raises the
ERROR condition rather than the ENDFILE condition.

Use of ON ENDPAGE

If you have opened your file with the PRINT attribute, you may use the

ENDPAGE condition to control what happens after PL/I has completed each

page of output. You can use the ENDPAGE condition with standard PUT

statements as well as with nonstandard WRITE statements. Refer to the

READ and WRITE With STREAM I/O section earlier in this chapter for more

information about nonstandard WRITE statements.

11-39 First Edition, Update 1

PL/I Reference Guide

Typically, use ON ENDPAGE to specify that a heading is to be printed at
the top of each page of your output. For example, the following is a
program segment example that prints a title and a page number at the
top of each page:

P = 0;
ON ENDPAGE(SYSPRINT) BEGIN;

P=P+1;

PUT PAGE EDIT('SUMMARY', 'PAGE', P) (A, COL(60), A, F(4));

END;

This example uses the variable P as a page number counter. ‘The ON
statement specifies the following: whenever a PUT statement reaches
the bottan on the printer page, execute all the statements between the
BEGIN and END statements, and continue with the PUT statement that
caused output to reach the bottam of the printer page. This means that
each time your PUT statement reaches the bottan of the PUT printer
page, the statement P= P+ 1 increases the page number counter by 1,
and the PUT statement prints a heading something like

SUMMARY PAGE 2

at the top of the next page.

Notice that PL/I raises the ENDPAGE condition whenever your printing
reaches the bottan of the printer page. This means that there is no
heading on the first page of output, unless you do samething special.
The easiest thing to do is to use the SIGNAL statement to raise the
ENDPAGE condition artificially before you perform any other output.
That is, before executing any PUT statement, execute the statement

SIGNAL ENDPAGE(SYSPRINT);

This statenent artificially raises the ENDPAGE condition, just as if
output had really reached the end of the printer page. The result is
that the header line

SUMMARY PAGE 1

is printed at the top of the first page of output.

The complete program example below illustrates all these concepts.
This program prints out a table of the square roots of every number
from 1 to 1000, with a heading at the top of each printer page. Note
that

First Edition, Update 1 11-40

STREAM INPUT/OUTPUT

@ The ON statement near the beginning of the program specifies
what action PL/I should take when printing reaches the bottan of
the printer page.

@ The variable P keeps track of the page number.

e The SIGNAL statement artificially raises the ENDPAGE condition
before any further output occurs, so that there is a heading on
the first page of output.

@ The DO group prints out the table without worrying about page
headings. Whenever a PUT statement reaches the bottamn of a
page, PL/I autamatically raises the ENDPAGE condition, with the
result that a page heading is printed at the top of the next

page.

Notice that the onm-unit could use the PAGENO built-in function to
determine the page number, rather than having a variable P.

SORTAB: PROC OPPIONS(MAIN);
P = 0;
ON ENDPAGE(SYSPRINT) BHGIN;

P=P+1;

PUT PAGE EDIT('X', 'SORT(X)', ‘PAGE’, P)

(A, COL(10), A, COL(60), A, F(4));
END;

SIGNAL ENDPAGE(SYSPRINT);

DO X = 1 TO 1000;

PUT SKIP EDIT(X, SORT(X)) (F(4), CoL(10), F(10,3));

END;

END SORTAB ;

See Chapter 13, CONDITION HANDLING, for a full discussion of ON
conditions. The next paragraphs contain some specific rules for the
ENDPAGE condition.

When your program opens a PRINT file, the number of lines on a page is
detemined either by a system default value of 60, or by the PAGESIZE
option of the OPEN statement. When your program executes a PUT
statement to a PRINT file, PL/I keeps track of the line number on the
printer page. Whenever the line number is incremented so that it
equals the value of the page size plus one, PL/I raises the ENDPAGE
condition. The standard system action for this condition is to execute
a PUT PAGE operation to the output file.

If your program has established an ENDPAGE on-unit for the PRINT file,
PL/I performs no autanatic PUT PAGE. This means that your on-unit must
do this explicitly, or else there will be two results:

11-41 First Edition, Update l

PL/I Reference Guide

e If your omunit does not do a PUT PAGE, the printer is not
directed to skip to a new page. Depending on the
characteristics of the line printer and on the value of the page
size, this may mean that the following output does not appear at
the top of the next page.

e Since PL/I resets the line number back to 1 only when your
program executes an explicit PUT PAGE operation, PL/I continues

incrementing the line number indefinitely. Thus ENDPAGE is
never raised again unless you execute an explicit PUT PAGE
statement.

ESTABLISHING DATA ITEMS

The parenthesized list immediately following the LIST, DATA, or EDIT
keyword in a PUT or GET statement is called the list of data items.
This section discusses how PL/I identifies individual data itens,
especially when aggregates are involved.

Aggregates in Data Item Lists

If the list following the DATA, LIST, or EDIT keyword contains an
aggregate variable or expression, all scalar elements of the aggregate
are considered to be items in the data item list. For example, the
statement

DECLARE AR(100);
PUT LIST (AR) 3;

specifies the aggregate AR in the output list. As a result, there are
100 data items to be printed.

Implied DO Loops in Data Item Lists

In place of a variable or expression, you may use the following syntax
in the data item list:

(variable-list DO do-options)

or

(expression-list DO do-options)

where the phrase DO do-options can be any legal DO statement (without
the semicolon). Notice that this syntax includes a set of parentheses.

First Edition, Update 1 11-42

STREAM INPUT/OUTPUT

For example, in

DECLARE AR(100) ;

GET LIST((AR(I) DO I = 1 10 10));

the GET statement inputs the values of AR(1), AR(2), ..., AR(10). On
the other hand, the statement

PUT DATA((AR(K) DO K = 1 REPEAT (2*K) WHILE(K <= 64)));

prints, in PUT DATA format, the values of AR(1), AR(2), AR(4), AR(8),
AR(16), AR(32), and AR(64). The following statement prints the array
AR in a two-column table, the first column printing the values 1
through 100, and the second column the values of AR(1), AR(2), ..,

AR(100) :

PUT EDIT('I', 'AR(I)', (I, AR(I) DO I = 1 TO 100))
(PAGE, A(10), A, 100(SKIP, F(3), F(15,2)));

With two-dimensional arrays, you may wish to nest the DO clauses. In
the statements

DECLARE ARD(3,100) ;

PUT LIST(((ARD(I,J) DO I = 1 10 3)
DO J = 100 101 BY -1));

the PUT statement prints the array ARD in the order ARD(100,1),
ARD(100,2), ARD(100,3), ARD(99,1), ..., ARD(1,3).

MATCHING DATA VALUES TO FORMAT ITEMS

When you execute a PUT or GET statement with the EDIT option, you must
specify both a list of data items and a list of format items. PL/I
must match each data item to a corresponding data format iten.

The general rule is that PL/I alternates between the data item list and
the format list. PL/I determines a data item according to the rules
given in the preceding section, then searches for the next format iten.
This process stops when the data items are used up.

11-43 First Edition, Update 1

PL/I Reference Guide

For example, in the statement

PUT EDIT(A, B) (F(2), F(3), F(4));

the value of A is printed in the F(2) format, and B in the F(3) format.
After B is printed, the PUT statement is finished, and the F(4) format
iten is ignored.

On the other hand, if the format list is used up before all the data
items have been processed, the format list wraps around; that is, PL/I
starts the format list over again from the beginning. Consider, for
example, the following statement:

GET EDIT(A, B, C, D, E) (F(2), F(3))3

This GET statement inputs A in the format F(2), and B in the format
F(3). Then, since the format list is ended, PL/I starts it at the
beginning and uses F(2) to input the value of C. MThis process
continues, using F(3) for D, and F(2) for E.

Kinds of Format Items

There are three classes of format items:.

@® Data format items

® Control format items

@ Remote format items

The general rule given above about searching for a format item is
modified as follows: for each data item, PL/I searches the format list
for the next data format iten. If that search encounters some control
or remote format items, appropriate action is taken, and the search for
a data format item continues. For example, given

PUT EDIT(A, B) (F(2), LINE(20), X(5), F(8), SKIP, F(10));

PL/I prints the value of A using the F(2) data format iten. To print
B, PL/I must search for the next data format iten in the format list.
In searching, PL/I processes the control format itens LINE(20) and x(5)
by skipping to the appropriate line and then printing five blank
characters. Finally, PL/I encounters the data format item F(8), and
prints B in that format. Since that ends the data item list, execution
of the PUT statement terminates, and the SKIP and F(10) format items
are ignored.

First Edition, Update 1 11-44

STREAM INPUT/QUTPUT

The Remote Format Item and the FORMAT Statement

For convenience, PL/I permits you to put format items into a_ separate
FORMAT statement, and then to refer to that FORMAT statement from the
format list in the EDIT option of the PUT or GET statement. Do this by
means of the remote format item, R.

Consider the following example:

GET SKIP EDIT(A, B, C)
(F(2), R(FRM), ©0L(20), F(5));

FRM: FORMAT(X(2), F(4), SKIP);

In this example, the format list of the GET statement oontains the
remote format item R(FRM), which refers to the FORMAT statement with
statement label FRM. The effect of the R format item is to reference
the format items in the FORMAT statement as a kind of format list
subroutine, with the result that PL/I uses the format items in the
FORMAT statement as if they appeared in the format list of the EDIT
option of the GET statement. When PL/I executes this statement, PL/I
matches the data item A with the data format item F(2). Then, for the
data item B, PL/I searches for a corresponding data format iten,
performing the following operations:

1. PL/I encounters the remote format item R(FRM) and goes to the
format statement FRM.

2. There, PL/I encounters the control format iten X(2), takes two
characters from the input stream, and ignores them.

3. PL/I encounters the data format iten F(4); the search is
ended.

Next, PL/I must find the data format iten corresponding to the data
item C. It does this by continuing from the point where it left off in
the FORMAT statement, as follows:

4, PL/I encounters the SKIP control format item, and so skips to
the beginning of the next input record.

5. Because that is the end of the format list in the FORMAT
statement, PL/I goes back to the point in the format list of
the GET statement just after the remote format iten R(FRM).

6. PL/I encounters the COLUMN(20) control format iten, and so
skips to column 20 in the current input record.

7. PL/I encounters the F(5) data format item; the search is
ended.

11-44a First Edition, Update 1

PL/I Reference Guide

Because that is the end of the data list of the GET statement, the GET
operation is complete.

It is legal for one FORMAT statement to reference another by means of
the R format item in the format list of a FORMAT statement.

Format Repetition Factors

Use a repetition factor in a format list to specify that a format iten,
or group of format items, is to be used more than once. The syntax is

n format-iten

Consider, for example, the statement

PUT EDIT(A, B, Cy, D, E)(2 F(2), X(5), 3 F(4));

This statement has the same effect as

PUT EDIT(A, B, C, D, E)(F(2), F(2), X(5), F(4), F(4), F(4))3

In the first of these two PUT statements, the repetition factors 2 and
3 specify that the format items that follow are to be used that many
times.

You may specify a repetition factor for an entire list of format items
by using the syntax

n(format-list)

For example, the statement

GET EDIT(A, B, C, D, E) (F(2), 3(X(2), F(4)), F(8))3

is the same as the statement

GET EDIT(A, B, C, D, E)(F(2), X(2), F(4),
X(2), F(4), X(2), F(4), F(8))?

where the format list (X(2), F(4)) is used three times, as specified by
the repetition factor 3.

First Edition, Update 1 11-44b

STREAM INPUT/OUTPUT

You may also use repetition factors within repeated format lists,

giving the effect of nested repetitions. Consider the following

statements:

DECLARE ARD(100,10);

PUT EDIT(ARD) (100(SKIP, 10 F(8)));

The PUT statement has a format list with nested repetition factors. It

prints 100 lines of data, each line containing 10 data values.

Variables and Expressions in Format Lists

In the examples we have seen so far, the numeric values in format items

have all been decimal constants. PL/I pemits arbitrary variables and

expressions in all such places. This permits you to write your progran

so that field widths and other numeric specifications can be decided

when your progran executes, rather than when your program is written.

In the progran segment

IF X > 999 THEN W= 7; ELSE W = 3;
PUT EDIT (X) (F(W))?

the IF statement tests the value of X to determine whether it can be

printed out using three characters. If it can, the variable W is set

equal to 3; otherwise, the variable is set equal to 7. The value of W

is used in the F format item of the PUT EDIT statement and so the

number of characters printed is determined at execution time rather

than compile time.

A somewhat trickier example, using the mathematical built-in function

LOG10, illustrates the use of an arbitrary expression with a format

item:

PUT EDIT (X) (F(1 + TRUNC(LOGLO(X))))?

The expression 1 + TRUNC(LOG1O(X)) can be shown mathematically to equal

the number of decimal digits in the value of X, provided that xX is a

positive integer. Therefore, this PUT EDIT example prints the value of

X with no leading blanks.

11-44c First Edition, Update l

PL/I Reference Guide

First Edition, Update 1 11-44d

STREAM INPUT/OUTPUT

You may also use variables and expressions in format list repetition
factors, provided that you enclose the repetition factor in an extra
set of parentheses. The syntax is either of the following two forms:

(expression) format-iten
(expression) (format-list)

As an example, consider the statements

DECLARE AR(100) ;

PUT EDIT(AR) (SKIP, (N) F(5));

The PUT statenent prints the array AR in a table with N columns and as
many lines as are necessary.

If a repetition factor in a format list is a variable or expression
whose value is 0, PL/I skips the entire format iten or format list.
Consider the following example:

IF ABS(X) >= 1E8 THEN SW = 0; ELSE SW = 1;

PUT EDIT(X) ((SW)F(9), E(9,2));

In this example, the variable SW is used as a switch to determine which
of the format items, F(9) or E(9,2) is to be used to print the value of
X. If X is small enough to be printed with nine characters, the IF
statement sets SW = 1, so that F(9) is used; otherwise, X is printed
in scientific notation, using E(9,2).

FORMAT Variables

PL/I considers the identifier in the statement label of a FORMAT
statement to be a constant of the FORMAT data type. Since, therefore,
PL/I has constants of the FORMAT data type, it also permits you to use
the DECLARE statement to create a variable of the FORMAT data type.

You may use that variable in an R remote format item, after assigning

to it the value of an appropriate FORMAT constant.

11-45 First Edition, Update 1

PL/I Reference Guide

In the program segment

DECLARE FV FORMAT VARIABLE;

IF X >= 1E8 THEN FV = FRM;

ELSE FV = FRM13

PUT EDIT (X) (R(FV))3
FRM1: FORMAT(F(9)) 3
FRM2: FORMAT(E(9,2))3;

the PUT EDIT format list contains a renote FORMAT variable FV. The IF
statement sets the variable FV to equal one of the FORMAT constants
FRM] or FRM2. Thus, the value of X determines whether the format F(9)
or E(9,2) is used to print it.

DETAILED SPECIFICATIONS FOR THE PUT STATEMENT

This section provides detailed specifications for each of the options
of the PUT statement and for each of the format items of the PUT EDIT
statement. All the options and format items are listed in alphabetical
order. Notice that some keywords such as SKIP are both options and
format items, and are handled the same way.

For each option and format item, the list gives its syntax and the
rules that PL/I follows in executing it. For data format items, the
rules specify what conversions are made and what the precise format of
the output is. In all cases, the rules specify what characters are
placed in the output stream. Note, however, that in the actual
execution of your program, the rules specified by this section may be
modified as follows:

@ When the output stream reaches the end of an output record, or a
print line, PL/I performs a PUT SKIP automatically.

@ If the output reaches the end of a page for a PRINT file, PL/I
signals the ENDPAGE condition. If your program has established
an ENDPAGE on-unit, PL/I invokes that on-unit, even in the
middle of the output described by one of the rules in this
section. Upon normal return from the om-unit, PL/I continues
Going output according to the rules in this section, continuing
execution with the statement that caused the ENDPAGE condition
to be raised.

® If ENDPAGE on-unit is not called for, PL/I continues output
according to the rules in this section. Execution continues
with the statement that caused the ENDPAGE condition to be
raised.

First Edition, Update 1 11-46

STREAM INPUT/OUTPUT

The A Output Data Format Item

Purpose: Specifies the number of characters in the output.

tax: A or A(w), where w, if specified, is any expression. PL/I

evaluates w and converts it to an integer. It is an error for w to be
negative.

Rules: Let Vl be the value of the scalar data item that is being

printed with the A format iten.

1. PL/I converts Vl to the CHARACTER data type, to get a new

value, V2.

2. If w is not specified, let w = LENGTH (V2).

3. If wis specified, PL/I pads with blanks or truncates, if
necessary, the string V2, so that its length is w characters.

4, PL/I places the characters of V2 into the output stream.

Examples: Table 11-3 displays various examples of the A format iten.
Line 1 illustrates A with no value for w. In that case, the number of
characters that PL/I places in the output stream equals the length of

the data value. Lines 2 through 4 show the effect of specifying w. In

line 5, PL/I converts the FLOAT value 2.84E02 to the CHARACTER value
'bb2.84E+02'. When PL/I prints this value in the A(12) format, two
more blanks appear on the right.

Table 11-3
The A Output Format Item

Line # Data Value Format Items Output Chars

1 "xyz! A XYZ
2 "xyz! A(5) XYZbb
3 "xyz! A(2) XY
4 "xyz! A(0) (none)
5 2.84E+02 A(12) bb2 .84E+02bb

11-47 First Edition

PL/I Reference Guide

The B, BL, B2, B3, and B4 Output Data Format Items

Purpose: Specify the radix for bit string output.

Syntax: B, Bl, B2, B3, B4, B(w), Bl(w), B2(w), B3(w), or B4(w), where
w, if specified, is any PL/I expression. PL/I evaluates w, if
specified, and converts it to an integer. It is an error for w to be

negative.

Rules: Let Vl be the value of the scalar data iten that is being
Printed with the bit format item. In the following paragraphs, let n
be the radix factor of the format item. That is, the format item is Bn
or Bn(w), where n equals 1, 2, 3, or 4, and where B is the same as Bl.

1. PL/I converts V1 to the BIT data type, to get a new value, V2.

2. Ifw is not specified with the format item, let
w = CEIL(length(V2)/n). That is, if w is not specified with
the format item, the default value of w is the precise number
of characters needed to print the BITstring value V2 as a BIT
string with the specified radix factor.

3. If wis specified, PL/I pads with O-bits or truncates, if
necessary, the BIT value, V2, so that it contains precisely n*w
bits.

4, PL/I divides the BIT string V2 into w groups of bits, each
containing n bits.

5. Using Table 11-4, PL/I converts each of the w groups of n bits
into one of the Characters 0-9 or A-F. The result of this is a
CHARACTER string value V3 containing w characters,

6. PL/I places the characters of V3 into the output stream.

First Edition 11-48

STREAM INPUT/OUTPUT

Table 11-4
Characters Corresponding to B(n)

Format Item Corresponding
B or Bl B2 B3 B4 Character

0 00 000 0000
1 01 001 0001

10 010 0010
ll 011 0011

100 0100
101 0101
110 0110
111 0111

1000
1001
1010
1011
1100
1101
1110
1lil M

O
V
A
W
P
r

o
O
O
A
D
P
W
N
Y
E
O

11-49 First Edition

PL/I Reference Guide

Examples: Table 11-5 illustrates the various bit format items. Lines

1 through 5 illustrate the B and Bl format items; these are the same,
In line 2, the BIT value '01101'B, which is being printed in the B(7)

format, is padded with two O0-bits. In lines 3 and 4, PL/I must

truncate.

Table 11-5
The B Output Format Item

Line # Data Value Format Items Output Chars

1 '01101'B B 01101
2 '01101'B B(7) 0110100
3 '01101'B B(3) 011
4 '01101'B B(0) (none)
5 '01101'B Bl 01101
6 '011011'B B2 123
7 '011011'B B2 (4) 1230
8 *01101'B B2 122
9 '011101001'B B3 351

10 '011101001'B B3 (2) 35
il 'O111'B B3 34
12 '01101'B B3 32
13 *01011000'B B4 58
14 '11011110'B BA DE

- 15 '000011'B BA 0c
16 'O1'B B4 (3) 400

Lines 6 through 8 of the same table illustrate the B2 format items, In

each case, the data value is '011011'B, and PL/I breaks up the bits

into three groups of two bits each, to get 01, 10, and 11. Looking at

Table 11-4, in the B2 column, we see that these groups of bits

correspond to the characters 1, 2, and 3, respectively, and so PL/I

prints 123. Line 7 is similar, except that w equals 4 in the format

item, and so PL/I pads the bit string, and prints 1230. Line 8

illustrates what happens when there is an odd number of bits in the BIT

data value associated with the B2 format item. PL/I pads the BIT value

'Q1101'B to get an even number of bits, so that the result is

'011010'B. PL/I breaks up this string of bits into the groups 01, 10,

and 10, corresponding to the characters 1, 2, and 3, respectively.

Lines 9 through 12 illustrate the B3 format itens. In line 9, PL/I

breaks up the BIT value '011101001'B into groups of three bits each, to

get 011, 101, and 001. Using the first row, we see that these bit

groups correspond to the characters 3, 5, andl, respectively, and so

PL/T prints 351. Line 10 is the same, except that, since w equals 2,

PL/I must truncate the result to the two characters, 35. Lines 11 and

12 illustrate what happens when the number of bits in the data value is

First Edition 11-50

STREAM INFUT/OUTPUT

not divisible by three. In line 11, PL/I extends the data values
'0111'B to '011100'B, and in line 12, PL/I extends '01101'B to
*911010'B.

Lines 13 through 16 illustrate that B4 works much the same as B3 and
B2. In line 14, PL/I breaks up '11011110'B into groups of four bits
each, to get 1101 and 1110, corresponding to the characters D and E,
respectively, so that PL/I prints DE.

In line 16, since w equals 3 and n equals 4, PL/I extends the BIT value
'OL'B to 3*4, or 12 bits, to get '01000000000'B, so that 400 is
printed.

The C Output Data Format Item

Purpose: Provides special formats for complex numbers.

Syntax: C(forml) or C(forml, form2), where forml and form2 are each
one of the following data format items: F, E, or P. In the case of P,
the picture specification must be pictured-numeric, rather than
pictured-character.

Rules: Let V1 be the value of the scalar data item that is being
printed with the C format item.

1. PL/I converts Vl to COMPLEX to get a new value, V2.

2. If form2 is not specified, let form2 = forml.

3. PL/I prints the real part of V2 with the forml format item, and
prints the imaginary part of V2 with the form2 format iten.

11-51 First Edition

PL/I Reference Guide

Examples: Table 11-6 illustrates the C format iten. In line 1, each

of the values 4 and 3 is printed using the format item F(2). ‘The

result is b4b3. In line 2, the same pair of values is printed using
F(2) and F(1) formats. Note that the result has no blank character

between the 4 and the 3. In line 3, the REAL value 4 is converted to

the COMPLEX value 4 + OI, and the real and imaginary parts are printed

using the format item F(2).

Table 11-6
The C Output Format Item

Line # Data Value Format Item Output Chars

L A+3T C(F(2)) b4b3
2 4431 C(F(2), F(1)) b43
3 4 C(F(2)) b4b0

The COLUMN Output Control Format Item

Purpose: Puts output in the desired column.

Syntax: COLUMN(n), where n is any PL/I expression. P1/I evaluates n

and converts it to aninteger, It is an error for n to be negative.
If n equals 0, or if n is greater than the line size for the output
file, PL/I changes the value of n tol.

Abbreviation: COL for COLUMN.

Rules:

1. If the current column number in the current print line or

output record of the file is greater than the value of n, PL/I

performs a PUT SKIP to the file.

2. PL/I prints a sufficient number of blank characters so that,

when this operation has been completed, the next output

character goes in column n. Specifically, if there are already

k characters in the current output print line or record, where

k <n, PL/I puts (n-k — 1) blank characters into the output

stream.

First Edition 11-52

STREAM INPUT/OUTPUT

The DATA Option

Purpose: Prints data values with their names (good for debugging).

Syntax: DATA(list) or DATA,

The method for determining the individual data items from the list has

been described in the section on The GET DATA Statement. The list may
include aggregates and implied DO groups. The individual data items
may not be arbitrary expressions, but must be variables, structure
elements, or array elements with arbitrary expression subscripts. No
data item may be BASED or have a noncomputational data type.

If you use DATA with no list, PL/I prints the values of all variables
in your program that are accessible to the statement, including those
that are declared in containing blocks.

Rules: PL/I prints the individual data items in the following format:

name = value name = value o 8 hl name = value;

It uses the the following rules:

1. Before each name, PL/I inserts a blank into the output stream.
If output is going to a PRINT file, PL/I inserts enough blank
characters to advance to the next tab stop.

2. If there is not enough roam in the current record (print line)
for the entire name, PL/I executes a PUT SKIP to the output

file.

3. PL/I prints the name of the variable or aggregate element being

printed, with all structure qualifiers and subscripts. If the

item is an element of an array of structures, the subscripts
are not interleaved; instead, the entire subscript list is
printed in parentheses to the right of the entire qualified
name. See the example below.

4, PL/I prints the value of the variable in the same format as it
would for PUT LIST to a non-PRINT file. See the discussion of
the LIST option for more details of this format.

After PL/I has printed all individual data values specified by the DATA
option, PL/I prints a semicolon.

11-53 First Edition

PL/I Reference Guide

Examples:

DECLARE A FIXED DECIMAL(5), B CHARACTER(100) VARYING;

FUT DATA(A, B);

The PUT statement of this program segment prints the values of A and B
in a format that appears something like the following:

A= 23 B = ‘STRING VALUE';

Notice that the values are printed out as individual assignments, and
the last such assignment ends with a semicolon.

The following example uses an array of structures:

DECLARE 1 S (100),
2 U FIXED DEC(5),
2 V(10) FIXED DEC (10);

PUT DATA(S);

In this example, the PUT statement prints out all 1100 elements of the
array of structures S. All subscripts are printed to the right of the
fully qualified name, and so are not interleaved within the individual
components of the fully qualified name. For example, the value of
S(23) .U might be printed as something like

S.U(23) = -234

with the subscript (23) appearing to the right of the fully qualified
name S.U, rather than being interleaved between the components of the
name, aS it would be if it had been printed in the format S(23).U.
Similarly, PL/I would print the value of S(23).V(5) in a format
something like

S.V(23, 5) = 45

where the two subscripts are combined into a single subscript list
appearing to the right of the fully qualified name.

First Edition 11~54

STREAM INPUT/OUTPUT

The E Output Data Format Item

Purpose: Provides scientific notation formats.

Syntax: E(w), E(w, d), or E(w, d, s), where w, d, and s are any PL/I
expressions, PL/I evaluates each of w, d, ands that is specified and
converts it to an integer.

Rules: Let Vl be the value of the scalar data item that is being

printed with the E format iten.

1. If neither d nor s is specified in the E format item, let s be
the converted precision for conversion of V1 to REAL FLOAT
DECIMAL, where the converted precision is defined in Chapter 6,
and let d=s-l.

2. If dis specified in the E format iten, but s is not, let
s=ditl.

3. In any case, it is an error if w< 0, or d< 0, or S<d.

4, PL/I converts Vl to the data type REAL FLOAT DECIMAL(s), to get
a new value, V2.

5. PL/I prints V2 in scientific notation according to the
following rules: First, if s=d, PL/I prints V2 in the
following format:

For S <= 6,

beee- b-0.9..£.9E+ 99
ome” NE

w-7-d d

For S > 6,

b..-b-0.9...9E+ 9999

w-9-d d

Next, if d= 0, PL/I uses the format

For S <= 6,

b.,..e-b-9...9E+ 99

we-5-s s

11-55 First Edition

PL/I Reference Guide

For S > 6,

b..b-9...9E+ 9999
coe Ne,

w-7-s S

If neither of the above two cases hold, PL/I uses the following

format:

For S <= 6,

be. e-bD-9L.4.+-9 2D e - DEF II

w6-S s-d d

For S > 6,

b..b -9..9.9.2 2 «JE 9999
ce ee ee ,

w-8-s s-d d

In each of these formats, 9 stands for a digit position, either
in the mantissa or the characteristic portion of the output.
The minus sign is replaced by a blank if the mantissa is
nonnegative. The characteristic of the value is printed right
after the E, and PL/I always prints a sign for the
characteristic even if it is positive.

6. If wis too small to accommodate all the signs and digits
required by the format described above, the format item is in
error, and PL/I prints w question marks.

Examples: Table 11-7 illustrates the E format items. Lines 1 through
6 illustrate the format E(w, d). In this case, PL/I prints the data
value with one digit before the decimal point, and ddigits after the
decimal point. If d= 0, as in line 6, PL/I prints no decimal points.

First Edition 11-56

STREAM INPFUT/OUTPUT

Table 11-7
The E Output Format Item

Line # Data Value Format Item Output Chars

1 23 E(9,2) b2.30E+01
2 23 E(8,2) 2.30E+01
3 23 E(9,2) ~2.30E+01
4 ~23 E(8,2) (size error)
5 23 E(9,1) bb2 .3E+01
6 23 E(9,0) bbbb2E+01
7 23 E(11,2,3) bbb2.30E+01
8 23 E(11,2,2) bbb0 .23E+-02
9 23 E(11,2,4) bb23 .00E+00

10 23 E(11,2,5) b230.00E-01
ll 23 E(11,2 ,6) 2300.00E-02
12 23 E(11,0,6) b230000E~04
13 23 E(1]) bbbb2.3E+01
14 023.0 E(11) bb2.300E+01

Lines 7 through 12 illustrate E(w, d, s). PL/I prints a total of s
significant digits in the mantissa, with d of them after the decimal
point. If d= s, as in line 8, PL/I prints an extra zero preceding the
decimal point, since all significant digits follow the decimal points
in that case. If d= 0, as in line 12, PL/I prints no decimal point.

Lines 13 and 14 illustrate the format E(w), where d and s are not

specified. In this case, PL/I prints a number of digits in the
mantissa(s) equal to the number of digits in the converted precision
for the conversion of the data value to REAL FIXED DECIMAL. (See
Chapter 6 for information on converted precision.) PL/I prints these s

digits with one digit before the decimal point and (s - 1) digits after
the decimal point. In line 13, the converted precision is 2, so E(11)
is equivalent to E(11,1,2). In line 14, the converted precision is 4,

and so E(11) is equivalent to E(11,3,4).

The EDIT Output Option

Purpose: Provides special formats for numeric items.

Syntax: EDIT (data-list) (format-list) or
EDIT (data-list) (format—list) (data-list) (format-list)...

11-57 First Edition

PL/I Reference Guide

The data-list can contain any PL/I expressions with computational data
types. The individual scalar data items are matched up with format
items in the manner that has been described in the section on The PUT
EDIT Statement.

In your EDIT option, you may specify two or more data-list and
format-list pairs. PL/I matches the data items in the first data-list
to the format itens in the first format list, the data items in the
second data-list to the format items in the second format list, and so

forth.

The F Output Data Format Item

Purpose: Provides special fixed decimal formats for numeric items.

Syntax: F(w) or F(w, d), or F(w, d, Ss), where each of w, d, and s, if
Specified, is any PL/I expression. PL/I evaluates each operand
specified and converts it to an integer.

Rules: Let Vl be the value of the scalar data item that is being
printed with the F format item.

1. If dis not specified in the F format item, let d= 0. If sis
not specified, let s = 0.

2. It is an error for either w or d to be negative; if either is

negative, it is treated as zero.

3. PL/I converts the value V1 to the data type
REAL FIXED DECIMAL(p, a), where p is the number of digit
positions available in the output field. The value of p is
obtained by subtracting from w the number of character
positions required for the decimal point and sign. PL/I
multiplies the result of this conversion by 10s, and rounds off
the result to d digit positions after the decimal point. Let
V2 be the result of these computations.

4, PL/I represents V2 as a string of characters, right adjusted in
the field of length w. If d> 0, there is a decimal point in
the representation, with d digits following the decimal point.
If v2 < 0, there is a minus sign just before the first digit.
All other character positions are leading blanks.

In the above representation, leading zeros are handled as
follows: PL/I always puts at least one digit before the
decimal point. (If there is no decimal point, there is always
at least one digit.) This means that if the value being
printed is less than 1 in absolute value, PL/I puts a leading

zero just before the decimal point. All digits following the
decimal point are present, even if they are all zeros.

First Edition 11-58

STREAM INPUT/OUTPUT

5. PL/I puts the characters in this CHARACTER string
representation into the output stream.

6. If there is any error in the format item, or if w is too small
to accommodate the resulting CHARACTER string, PL/I puts Ww

question marks into the output stream.

Examples: Table 11-8 illustrates the F format iten.

Lines 1 through 6 illustrate F(w), where d and s are not specified.
PL/I rounds the value to an integer, and right adjusts it in the output
field.

Lines 5 through 9 illustrate F(w, d). PL/I prints d digits after the
Gecimal point. Notice in lines 8 and 9 that there is a leading zero
printed before the decimal point when the value being printed is less

than 1 in magnitude.

Lines 10 through 14 illustrate F(w, d, s). The effect of s is to move
the decimal point to the right s digit positions. (If 8)is negative,
the decimal point moves to the left.) Thus, for example,in line 10,
23 printed in the format F(6,0,1) is printed as a value of 230. The
other examples are similar.

Table 11-8
The F Output Format Item

Line # Data Value Format Item Output Chars

1 23 F (6) bbbb23
2 23.7 F (6) bbbb24
3 -23.4 F (6) bbb-23
4 0 F (6) bbbbb0
5 23 F (6,2) b23 .00
6 23.7 F (6,2) b23 .70
7 03 F (6,2) bb0.03
8 ~.74 F (6,2) b-0.74
9 -.748 F (6,2) b-0.75

10 23 F(6,0,1) bbb230
il 23 F(6,0,2) bb2300
12 23 F(6,2,1) 230.00
13 23 F(6,;2,-1) bb2.30
14 23 F (6,2 77-2) bb0.23

11-59 First Edition

PL/I Reference Guide

The FILE Output Option

Purpose: Identifies the file to which output is sent.

Syntax: PILE (reference) , where the reference is an expression whose
data type is FILE. Usually the reference is to a FILE constant, as
explained in the section on PUT and GET to files and devices, but it
may also be a FILE variable or a FILE value returned by a user-defined
function. FILE variables and user-defined functions are explained in
Chapter 12, RECORD INPUT/OUTPUT.

The LINE Output Option and Control Format Item

Purpose: Puts output on the desired line of a page.

Syntax: LINE(n), where n is any PL/I expression. LINE may be an

option of the PUT statement, or a control format iten in a PUT EDIT

format list, PL/I evaluates n and converts it to an integer. It is an

error for n to be negative. The file to which the PUT operation is

specified must have the PRINT attribute.

Rules: PL/I performs as many PUT SKIP operations as necessary to move
to the beginning of line n on the current page of output.

If, however, printing has already passed the beginning of line n on the
current page, PL/I performs as many PUT SKIP operations as necessary to
move to the bottan of the current page, and then raises the ENDPAGE
condition, for which the standard system actionis to perform a PUT
PAGE operation. PL/I does the same thing if the value of n is greater
than the value of the page size (the number of lines on a page).

Examples:

PUT EDIT(X, Y, Z) (PAGE, F(10), SKIP, F(10), LINE(20), F(5));

This statement is equivalent to

PUT EDIT(X, Y, Z) (PAGE, F(10), SKIP, F(10), SKIP(18), F(5));

because the LINE(20) control format item comes in the middle of the

second line of output on the current page.

First Edition 11-60

STREAM INPUT/OUTPUT

I£ now your program executes

PUT LINE(5) LIST (X);

PL/I performs enough PUT SKIP operations to move to the bottan of the
printer page, and then signals the ENDPAGE condition.

The LIST Output Option

Purpose: Provides character and bit string formats for output.

Syntax: LIST(data-list)

The data~list can contali any expressions, including aggregate

expressions and implied DO groups. The individual data items are
established as described in the section ESTABLISHING DATA ITEMS. Each
expression must have a computational data type.

Rules: Before printing each scalar data item, PL/I inserts a blank
Character into the output stream. If output is through a PRINT file,
PL/I inserts enough blank characters to advance to the next tab stop

position.

Let V1 be the scalar data item being printed. PL/I converts Vl to
CHARACTER, following the rules in Chapter 6 to obtain a new CHARACTER
value, V2. Then PL/I proceeds as follows, depending upon the data type

of VL:

1. If Vl is BIT, PL/I places the following in the output stream:

an apostrophe, all the characters in V2, another apostrophe,

and a B.

2. If Vl is CHARACTER or pictured-character, and if the output
file is a PRINT file, PL/I places the characters in V2 in the
output stream.

3. If Vl is CHARACTER or pictured-character, but the output file
is not a PRINT file, PL/I places the following characters in

the output stream: an apostrophe, all the characters in V2 but

with each apostrophe in V2 replaced by two apostrophes in the

output stream, and another apostrophe.

4, In all other cases, PL/I places the characters in V2 in the
output stream.

11-61 First Edition

PL/I Reference Guide

The P Output Data Format Item

Purpose: Provides picture specifications for output.

Syntax: P'picture', where picture is any picture specification.

Rules: Let Vl be the value of the scalar data item that is being
printed with the P format item.

1. If the picture specification is pictured-numeric, PL/I converts
Vl to the numeric data type associated with the picture
specification, PL/I then edits this numeric value into the
character format associated with the picture specification, as
described in Chapter 5. PL/I then inserts these characters in
the output stream.

2. If the picture specification is pictured-character, PL/I
converts Vl to the CHARACTER data type, with a length equal to
the length of the CHARACTER string value determined by the
picture specification. If the resulting CHARACTER value is not
valid for the picture specification, PL/I raises the CONVERSION
condition. Otherwise, PL/I inserts these characters in the
output strean.

Examples: Table 11-9 illustrates the P format item.

Table 11-9
The P Output Format Item

Line # Data Value Format Item Output Chars

1 25 P's9999' +0025
2 25 P'-999V. ES999' b250.E-001
3 25 P'Xx999! bbb2
4 ~25 P'x999! (CONV error)

Lines 1 and 2 illustrate the P format item with a picture specification
that is pictured-numeric. This is a very useful technique to get
special kinds of output formats, suchas the printing of leading plus
signs or leading zeros.

Lines 3 and 4 illustrate the pictured-character case. This case is not
very common in practice, since the A format item is often more useful.
In line 3, PL/I converts the value 25 to the CHARACTER value 'bbb25!',
which it truncates to 'bbb2', because the length of the string

First Edition 11-62

STREAM INFUT/OCUTPUT

associated with the picture specification for P'x999' is 4. PL/I

prints these four characters. On the other hand, in line 4, PL/I

converts the value -25 to the CHARACTER value 'bb-25', which it then

truncates to 'bb-2'. Since this string is not valid for the picture

specification, PL/I raises the CONVERSION condition.

For more information on picture specifications and their associated

numeric and string data types, see Chapter 5, DATA TYPES AND DATA

ATTRIBUTES.

The PAGE Output Option and Control Format Item

Purpose: Starts a new page.

syntax: PAGE

PAGE is both an option of the PUT statement and a format item used with

PUT EDIT. The PAGE option is legal only if the file has the PRINT

attribute.

Rules: PL/I skips to the top of a new printer page on the output file

and resets its internal line number count for the output page tol.

PL/I does not raise the ENDPAGE condition.

Exampless

PUT EDIT(X, Y¥) (F(5), PAGE, F(5))3

PL/I prints the values of X and Y in the same format, F(5), but on
separate pages of output. After that, the statement

PUT PAGE LIST (Z);

prints the value of Z on a third page.

11-63 First Edition

PL/I Reference Guide

The R Output Format Item

Purpose: Identifies the format item to be used.

Syntax: R(reference)

This is the remote format item descried earlier in the section on
Matching Data Items to Format Items. The reference is a format
variable or format constant.

The SKIP Output Option and Control Format Item

Purpose: Starts a new line or record,

Syntax: SKIP or SKIP(n), where n, if specified, is any PL/I
expression. SKIP is both an option of the PUT statement and a format
item used with PUT EDIT. PL/I evaluates n and converts it to an
integer. It is an error for n to be negative or zero. If n is not
specified, let n= 1.

Rules: PL/I moves to the beginning of a new output record (print line)
ntimes. For ASCII files, PL/I accomplishes this by placing n carriage
return characters in the output stream.

The STRING Output Option

Purpose: Moves data to a string variable.

tax: STRING(reference), where the reference is a scalar variable,
possibly a structure or array element, with the CHARACTER attribute,
either VARYING or NONVARYING. ‘The reference may be BASED. Also, the
reference may be to one of the ONCHIAR, ONSOURCE, or SUBSTR
pseudovariables,

Rules: PUT with the STRING option is no longer an output statement in
the narrow sense of transmitting data to an external device. Instead,
PUT STRING is a purely computational statement that manipulates
internal data. When you use the STRING option, the stream of
characters that PL/I would normally transmit to a file is instead
stored in the reference variable. If the reference variable is not
large enough to handle all the characters that would normally be
printed by the PUT statement to a file, PL/I raises the ERROR
condition.

First Edition 11-64

STREAM INPUT/OUTPUT

Examples :

DECLARE (C, D) CHARACTER(200) VARYING;
DECLARE (X INITIAL(5), Y INITIAL(10.3)) FLOAT DECIMAL (5);
PUT STRING(C) EDIT(X, Y)(F(2), F(7,2))?
PUT STRING(D) DATA(X);

Each of these PUT statements specifies output to a string variable, C
or D. The resulting values are

C 'b5bb10.30'
D= 'X = b1.0300E+01;'

The TAB Output Control Format Item

Purpose: Puts output at the desired tab stop.

Syntax: TAB or TAB(n), where n if specified, is any PL/I expression.
PL/I evaluates n and converts it to an integer. It is an error for n
to be negative.

Rules: If nis not specified, let n= 1.

l. If n= 0, PL/I does nothing.

2. If there are at least n tab positions renaining on the current
output line (as set either by default or explicitly by the TAB
option of the OPEN statement), PL/I prints a sufficient number
of blank characters to move n tab stop positions on the output
line. ~

3. If there are not at least n tab positions remaining on the
current line, PL/I performs a PUT SKIP to the output file, and
if n > 1, PL/I moves to the first tab position on the line.

Example:

PUT EDIT(X, Y) (SKIP, TAB, F(5), TAB(2), F(2));

PL/I prints the value of X after the first tab position in the output
file and skips two tab positions to print Y.

11-65 First Edition, Update 1

PL/I Reference Guide

The X Output Control Format Item

Purpose: Provides blanks in output.

Syntax: X(n), where n is any PL/I expression. PL/I evaluates n and
converts it to an integer. It is an error for n to be negative.

Rules: If n= 0, PL/I does nothing; otherwise, PL/I places n_ blank
Characters in the output stream.

DETAILED SPECIFICATIONS FOR THE GET STATEMENT

This section gives the detailed specifications for all the options of
the GET statement ard all of the format items of the GET EDIT
statement. The options and format items are listed together in
alphabetical order. Some keywords, such as SKIP, are both options and
format items.

For each option and format item, the list gives the syntax and rules.
The rules explain how many characters are taken from the input stream
and how they are interpreted. Note that, in taking characters from the
input stream, PL/I ignores record boundaries, unless the rules for the
option or format item specify otherwise.

The A Input Data Format Item

Purpose: Accepts input as a CHARACTER string.

Syntax: A or A(w), where w, if specified, is any PL/I expression.
PL/I evaluates w and converts it to an integer. It is an error for w
to be negative. —

Note

The form A, with w not specified, is permitted by Prime PL/I,
but is forbidden” by ANS PL/I rules and so may not be valid in
other implementations of the PL/I lanquage. However, this is
the only way to use variable-length edited input. For
variable-length unedited input, consider using the nonstandard
READ statement, described earlier in READ and WRITE With STREAM
1/0.

First Edition, Update 1 11-66

STREAM INPUT/OUTPUT

Rules:

1. If w is specified, PL/I takes w characters from the input
stream and forms a CHARACTER NONVARYING string from these
characters.

2. If w is not specified (this is the nonstandard case), PL/I
takés all renaining characters in the current input record from
the input stream, and forms a CHARACTER NONVARYING string of
these characters.

In either case, PL/I converts the string to the data type of the target
variable according to the rules in Chapter 6, and assigns the result to
that target variable.

Examples: Table 11-10 illustrates the A format item. Inline 1, four
characters are taken from the input stream, and the resulting value is
the CHARACTER(4) NONVARYING string 'ABCD'. In line 2, the format item
is A(0), which means that no characters are taken from the input
stream, and the resulting input value is the null string. In line 3,
we assume that the remaining characters in the input record are
"12.34'.

Table 11-10
The A Input Format Item

Resulting
Line # Format Item Input Stream Input Value

1 A(4) ABCD "ABCD!
2 A(0) (none) a
3 A 12.34 "12.34!

The B, Bl, B2, B3, and B4 Input Data Format Items

Purpose: Accepts input as a BIT string of the specified radix.

Syntax: B(w), Bl(w), B2(w), B3(w), or B4(w), where w is any PL/I
expression. PL/I evaluates w and converts it to an integer. It is an
error for w to be negative.

Rules: In the following, let n be the radix factor of the format item.
That is, the format item is Bn(w), where n= 1, 2, 3, or 4, and where B
is the same as Bl.

11-67 First Edition, Update 1

PL/I Reference Guide

1. PL/I takes w characters from the input stream.

2. Using Table 11-11, PL/I converts each of these w characters
into a group of n bits. If any character is not listed in the
Input Character column of the table, or if the corresponding
table entry is illegal, PL/I raises the CONVERSION condition.

3. Using the w groups of n bits each, PL/I forms a single BIT
NONVARYING string of n * w bits.

4, Using the conversion rules in Chapter 6, PL/I converts this BIT
string to the data type of the target variable and assigns the
result to the target variable.

Table 11-11
Characters Corresponding to the B(n) Format Item

Formation
Input
Char B or Bl B2 B3 B4

0 0 00 000 0000
1 1 01 001 0001
2 Invalid 10 010 0010
3 Invalid ll 011 0011
4 Invalid Invalid 100 0100
5 Invalid Invalid 101 0101
6 Invalid Invalid 110 0110
7 Invalid Invalid lll 0111
8 Invalid Invalid Invalid 1000
9 Invalid Invalid Invalid 1001
A Invalid Invalid Invalid 1010
B Invalid Invalid Invalid 1011
Cc Invalid Invalid Invalid 1100
D Invalid Invalid Invalid 1101
E Invalid Invalid Invalid 1110
F Invalid Invalid Invalid 1111

First Edition, Update 1 11-68

STREAM INPUT/OUTPUT

Example: Table 11-12 illustrates the various bit format items.

Table 11-12
The B Input Format Item

Resulting

Line # Format Item Input Stream Input Value

1 B(5) 01101 'OLLOL'B
2 B(7) 01101bb (CONV error)

3 B(0) (none) Tp

4 Bl (5) 01101 'O1101'B
5 B2 (3) 123 '011011'B

6 B2 (4) 4123 (CONV error)

7 B2 (0) (none) ''B

8 B3 (3) 351 '011101001'B
9 B3 (2) 34 '011100'B

10 BA (2) 58 '01011000'B
il B4 (2) DE *71011110'B

Lines 1 through 3 illustrate B(w). In line 1, the format item B(5)

causes PL/I to take the five characters 01101 from the input stream.

The resulting input value is the BIT NONVARYING string, '91101'B. In

line 2, PL/I takes seven characters from the input stream, as a result

of the B(7) format item, Since these seven characters include the b

character, which is illegal for the B format iten, PL/I raises the

CONVERSION condition. In line 3, there are no input characters for the

B(0) format item, and the resulting input value is the null BIT string.

Line 4 illustrates the Bl format item, which is the same as B.

Lines 5 through 7 illustrate the B2(w) format item. In line 5, because

of the B2(3) format item, PL/I takes three characters, 123, from the

input stream. Using Table 11-11, PL/I converts these three characters

into three groups of two bits each, 01, 10, and ll, respectively, and

so the resulting BIT string value is '011011'B. In line 6, the first

input character is 4, and so there is a CONVERSION error, since this

character is not permitted for B2. In line 7, since w equals 0, PL/I

takes no characters from the input stream, and the resulting input

value is the null BIT string.

Lines 8 through 11 illustrate B3 and B4. The rules are similar to the

rules for B2.

11-69 First Edition

PL/I Reference Guide

The C Input Data Format Item

Purpose: Accepts input as a complex number.

Syntax: C(forml) or C(forml, form2), where forml and form2 are each
data format items of one of the following types: F, E, or P. If P,
then the picture specification must be pictured-numeric, rather than
pictured-character. If form2 is not specified, let form2 equal forml.

Rules:

1. PL/I inputs a data value, vr, according to the format forml.

2. PL/I inputs a data value, vi, according to the format form2.

3. PL/I creates a single COMPLEX value, vc, by computing

ve = QOMPLEX(vr, vi);

The data type of vc depends upon the data types of vr and vi
according to the rules of the COMPLEX built-in function.

4, PL/I converts ve to the data type of the target variable, and
assigns the results to the target variable.

Examples: Table 11-13 illustrates the C format item for input.

Table 11-13
The C Input Format Item

Resulting
Line # Format Item Input Stream Input Value

1 C(F(2)) b4b3 4431
2 C(F(2)) 42b3 42+031
3 C(F(1), F(3)) 1.23 1.00+0.231
4 C(E(4), E(4)) 1E0b0 .23 1.00E0+2 .30E-011

In line 1, PL/I uses F(2) to input each of the real and imaginary
parts. The first two characters are b4, as a result of which
vr equals 4 with a data type of REAL FIXED DECIMAL(1,0). The next two
characters are b3, so that vi equals 3, with the same data type. Using
the rules for the COMPLEX built-in function, the combined data type is
COMPLEX FIXED DECIMAL(1,0), and the resulting value for vc is 4 + 3I.

First Edition 11-70

STREAM INPUT/OUTPUT

In line 2, the imaginary part of the input is the same, but the first

two characters are 42, and so vr equals 42, with a data type of REAL

FIXED DECIMAL (2,0). The combined data type is OOMPLEX FIXED

DECIMAL (2,0), with a resulting value for ve of 42 + 031.

Lines 3 and 4 are similar, except that the real and imaginary parts

have different format items. In line 4, PL/I uses the format item E(4)

to input the four characters 1E0b from the input stream, with the

result that vr equals 1E0, with the data type REAL FLOAT DECIMAL (1) .

PL/I uses E(4) to input the characters 0.23, and get a resulting

imaginary value vi of 0.23, in the data type REAL FIXED DECIMAL(3,2).

The resulting combined data type vc is COMPLEX FLOAT DECIMAL(3), with

the value of 1.00E0+2.30E-011.

The COLUMN Input Control Format Item

Purpose: Accepts input from the desired column,

Syntax: COLUMN(n), where n is any PL/I expression. PL/I evaluates n

and converts it to an integer. It is an error for n to be negative.

Abbreviation: COL for COLUMN

Rules: The intention is that, after execution of the COLUMN format

item, the next stream character will come from the nth column of the

input record. I£ the previous input operation has taken n or more

characters from the current input record, PL/I performs a GET SKIP

before moving to column n.

Therefore, if c characters have already been taken from the current
record, then

1. If c<n, PL/I takes (n- ¢- 1) characters from the current

record in the input stream.

2. If c>=n, PL/I performs a GET SKIP operation, then takes

(n ~- 1) characters from the input stream.

Examples:

GET EDIT (X, Y, Z) (COLUMN(1), F(3), COL(70), F(5))3

PL/I inputs the value of X starting in column 1, and the value of Y

starting in column 70. PL/I inputs the value of 2 starting in column 1

of the next record.

11-71 First Edition

PL/I Reference Guide

The COPY Input Option

Purpose: Copies input toa file.

Syntax: COPY(file-reference) or COPY, where file-reference is any FILE
constant or FILE variable or an expression with a data type of FILE.
If the file-reference is not specified, PL/I uses COPY (SYSPRINT).

Rules: All characters that PL/I takes from the input stream in order
to execute the GET statement are printed in the file specified by the
COPY option. This includes characters that are skipped, such as
characters skipped because of the X format item for GET EDIT.

Examples: The statement

GET COPY LIST (X,Y);

inputs values for X and Y from the SYSIN file, printing the input
stream characters on the file SYSPRINT.

The statement

GET FILE(TAPEIN) COPY (TAPEOUT) EDIT (A) (X(5), F(2))3

takes seven characters as input from TAPEIN, and transmits them to file

TAPEOUT,

The DATA Input Option

Purpose: Accepts input values with data names.

Syntax: DATA(list) or DATA

The method for determining the individual data items for the list has
been described in the section on The GET DATA Statement earlier in this
chapter. The list may contain only level-l identifiers that are not
BASED, ,

If you specify no list, all non-BASED variables accessible to the GET

statement, including those declared in containing blocks, are in the

implied input list.

First Edition 11-72

STREAM INPUT/OUTPUT

Rules: The input stream must look like a list of assignments of the
form

reference = constant

where the reference is a reference to a scalar element in the list, and
the constant is any PL/I computational constant. ‘The reference may be
one of the items appearing in the list, or it may be a scalar element
of such an item, if the item is an aggregate. If the reference is to
an array element, all subscripts must be decimal integer constants.

The individual assignments must be separated in the input stream by a
comma, one or more blank characters, or both. The last assignment in
the input stream should terminate with a semicolon.

Examples: See the section, The GET DATA Statement, earlier in this
chapter.

The E Input Data Format Item

Purpose: Accepts input as scientific notation.

Syntax: E(w), or E(w, d), or E(w, d, s), where each of w, d, and s, if
specified, is any PL/I expression. PL/I evaluates each argument
specified and converts it to an integer. If s is specified, PL/I
ignores it. If dis not specified, let d equal 0. It is an error if w
is negative. PL/I ignores s, if specified.

Rules: PL/I takes w characters from the input stream, to form a
CHARACTER string of length w. This CHARACTER string must be in one of

the following formats:

@ A null string (if w= 0), or all blank characters. (This case
is interpreted as a zero value.)

@ A decimal constant in the format

[b... b] [4] 9...9[.]) 9...9 (b... Dd

where 9 stands for a decimal digit. The leading blank
characters, trailing blank characters, sign, and decimal point

are all optional.

11-73 First Edition

PL/I Reference Guide

A scientific notation constant in the format

[b. .. bJ[+] 9. ..-9 ff] 9... 9 Et] 9... 9 [b... b

where 9 stands for a decimal digit. The leading and trailing
blank characters, both signs, and the decimal point are all
optional.

A scientific notation constant in the format

[b... b] (419... (9.9) ~2--9t+9..- DOD... bi

where 9 stands for a decimal digit. The leading and trailing
blank characters, the first sign, and the decimal point are all
optional. Since the E separating the mantissa from the
characteristic is omitted in this format, the sign of the
characteristic is required.

PL/I obtains a numeric value and data type according to one of the
following rules:

1. If the CHARACTER string is the null string or is all blank
characters (case 1 above), PL/I changes it to '0'~

If the CHARACTER string is a scientific notation constant with
no E (last format above), PL/I changes the CHARACTER string by
inserting an E between the characteristic and the mantissa
portions of the constant,

PL/I converts the CHARACTER string to the numeric data type
appropriate to the constant. In case 1 above, the data type is
REAL FIXED DECIMAL(1,0). In case 2, the data type is REAL
FIXED DECIMAL (p, q), where p is the number of decimal digits in
the constant, andq is the number of digits following the
decimal point. In cases 3 and 4, the data type is REAL FLOAT
DECIMAL (p), where pis the number of decimal digits in the
mantissa portion of the constant. Note that the values of p
and g do not depend on the value of w, as specified in the
format item.

If the CHARACTER string contains no decimal point, PL/I
multiplies the value obtained in the previous step by 10°-d,
and, if the data type is REAL FIXED DECIMAL(p, q), PL/I
increases the value of q by d.

PL/I converts the resulting numeric value to the data type of the
target variable, using the rules in Chapter 6, and assigns that value
to the target variable.

First Edition 11-74

STREAM INPUT/OUTPUT

Examples: Table 11-14 illustrates the various forms of the E format

item.

Table 11-14
The E Input Format Item

Resulting

Line # Format Item Input Stream Input Value

1 E(8) bbbbbb23 +23
2 E(8) b23 .4bbb +23 4
3 E(8) +2348E-1 +2 .348E+02
4 E(8) +2348-01 +2..348E+02
5 E(8) bbbbbbbb +0
6 E(4) ~123 -123
7 E(4,1) ~123 -12.3
8 E(4,3) 123 -.123
9 E(4,-1) -123 ~123F1

10 E(5,3) -123. -123
ll E (6) 234.E0 +2..34E+02
12 E (6/2) 234.E0 +2 ..34E+02
13 E(5,2) 234E0 +2 ..34E+00
14 E(5,2,25) 234E0 +2.34E+00

Lines 1 through 5 illustrate various types of input with the E(8)

format item. The data type of the resulting numeric value depends on

the characters taken as input from the input string. Inline 1, PL/I

treats bbbbbb23 as the REAL FIXED DECIMAL(2,0) value +23, while in line

2, PL/I converts b23.4bbb to the REAL FIXED DECIMAL(3,1) value +23.4.

Line 3 illustrates a FLOAT value, and line 4 illustrates FLOAT with no

E separating the mantissa from the characteristic. In line 5, the

input is all blanks, and the resulting numeric value is the REAL FIXED

DECIMAL(1,0) value, 0.

Lines 6 through 10 illustrate what happens when the format item

specifies a value for d and the input stream value has a FIXED data

type. The effect is to move the decimal point in the value to the left

d places, and to increase the scale factor in the data type by the

amount d, provided that the input characters have no decimal point.

For example, in line 7, the input stream contains the characters -123,

which PL/I converts to the value -123 with the data type REAL FIXED

DECIMAL(3,0). However, since the format item has a value of 1 for d,
the value is changed to -12.3 (PL/I moves the decimal point to the left

one place), and the data type becomes REAL FIXED DECIMAL(3,1). In line

10, the input stream contains a decimal point, and so the value 3 for d

has no effect.

11-75 First Edition

PL/I Reference Guide

Lines 11 through 13 illustrate the effect of specifying d with a FLOAT
input stream. If there is no decimal point in the input stream, PL/I
moves the decimal point to the left d places in the input value. This
has the effect of decreasing the value of the characteristic by d.

As line 14 illustrates, when a third argument to the E format item is
specified, PL/I ignores it.

The EDIT Input Option

Purpose: Accepts edited input.

Syntax: EDIT(reference-list) (format-list), or
EDIT (reference—list) (format~list) (reference-list) (format-list)...

The rules for determining the individual data items for the
reference-list have been described in the section on The GET EDIT
Statement. The reference-list may include aggregates and implied DO
loops. The individual data items may not be arbitrary expressions, but

“must be variables or elements of aggregates.

The EDIT option may specify two or more reference-list and format-list
pairs. PL/I matches the data items in the first reference-list to the
format items in the first format-list, the data items in the second
reference-list to the format items in the second format-list, and so

forth,

The F Input Data Format Item

Purpose: Accepts edited numeric input.

Syntax: F(w), or F(w, d), or F(w, d, Ss), where each w, d, and s is any
PL/I expression. PL/I evaluates each operand specified and converts it
to an integer. If d is not specified, let d equal 0. If s is not
specified, let s equal 0.

Rules: PL/I takes w characters from the input stream and forms a
CHARACTER string of length w. ‘he string must be in one of the
following formats:

@ The null string (if w= 0) or all blank characters. (PL/I
interprets such a string as a zero valve.)

@ A decimal constant in the format

[b...b] 4) 9...9[.] 9... 9 (b. - - bI

First Edition 11-76

STREAM INPUT/OUTPUT

where 9 stands for a decimal digit. The leading and trailing

blank characters, the sign and the decimal point are all

optional.

PL/I obtains a numeric value and data type from the CHARACTER string as

follows:

1.

4.

If the CHARACTER string is the null string, or is all blank

characters (case 1 above), PL/I changes the CHARACTER string to

"of.

PL/I converts the CHARACTER string to the numeric data type

appropriate to the constant. The data type is REAL FIXED

DECIMAL (p, gq), where p is the number of decimal digits in the

CHARACTER string, and gq is the mumber of those digits that

follow the decimal point, if any.

If the CHARACTER string contains no decimal point, PL/I

multiplies this numeric value by 10*-d, and increases the value

of q by a.

In all cases, PL/I multiplies the value by 10%s, and decreases

the value of g by s.

PL/I converts the resulting numeric value to the data type of the

target variable using the rules in Chapter 6, and assigns that value to

the target variable.

Examples: Table 11-15 illustrates the F format item.

Table 11-15
The F Input Format Item

Resulting

Line # Format Item Input Stream Input Value

1 F(4) b23b +23
2 F (4) 23.4 +23 .4
3 F (4) ~-14b 14
4 F (4) bbbb +0
5 F(4) -123 -123
6 F(4,1) -123 ~12.3
7 F (4,3) ~123 -.123
8 F(4,-1) -123 ~123F1
9 F (5,3) ~123. -123

10 F(4,3,1) -123 -1.23
11 F(5,3,1) ~-1.23 -12.3

11-77 First Edition

PL/I Reference Guide

Lines 1 through 5 illustrate the F(4) format item, with various values
in the input stream. In line 1, the input stream contains b23b, which
PL/I converts to a numeric value of +23, with a data type of REAL FIXED
DECIMAL(2,0). In line 4, where the input stream is all blank
characters, the resulting input value is 0, with a data type of REAL
FIXED DECIMAL(1,0).

Lines 5 through 9 illustrate what happens when the F format item has a
second argument, d. ‘The value of d has no effect if the input stream
contains a decimal point; but if the input stream contains no decimal
point, a nonzero value of d can change both the value and the data type
of the input value. If the value of dis nonzero, PL/I moves the
decimal point in the value to the left d places (to the right if d is
negative), and increases the scale factor in the data type by the value
of d.

In line 6, PL/I converts the input stream characters -123 to the value
~123, with a data type of REAL FIXED DECIMAL(3,0). But since the input
stream characters contain no decimal points and since d= 1, PL/I moves
the decimal point in the value to the left one place, and increases the
scale factor by 1. The resulting input value is ~-12.3, with a data
type of REAL FIXED DECIMAL(3,1). The other examples are similar. In
line 9, the input stream characters contain a decimal point, so the
value of d is ignored.

Lines 10 and 11 illustrate what happens when you specify a third
argument, s, to the F format item. PL/I moves the decimal point to the
right s places and increases the scale factor of the data type by s.
Therefore, the effect of s is the same as the effect for d with the
sign reversed, except that the effect of S is felt even if the input
stream contains a decimal point.

In line 10, the input stream is ~-123, which PL/I converts to the value
~123 with a data type of REAL FIXED DECIMAL(3,0). Since there is no
decimal point in the input stream characters, the effect of d= 3 is to
change the value to -.123, with a data type of REAL FIXED DECIMAL(3,3).
Then, since s=1, the numeric result is changed again to -1.23, and
the data type is changed to REAL FIXED DECIMAL(3,2).

In line 11, the input stream contains a decimal point, so that the
value of d is ignored, Since s = 1, the REAL FIXED DECIMAL(3,2) value
~1.23 is changed to a REAL FIXED DECIMAL (3, 1) with the value -12.3.

The FILE Input Option

Purpose: Specifies the file from which input is taken.

Syntax: FILE(reference), where the reference is an expression whose
data type is FILE. Usually the reference is to a FILE constant, as
explained in the section on PUT and GET to files and devices, but it
may also be a FILE variable or a FILE value returned by a user-defined

First Edition 11-78

STREAM INPUT/OUTPUT

function, FILE variables and user-defined functions are explained in
Chapter 12, RECORD INPUT/OUTPUT.

The LIST Input Option

Purpose: Accepts character input with separators.

tax: LIST(data-list)

The data-list can contain references to variables, including

aggregates, aggregate elements, and implied DO groups. The individual

data items are established as described in the section ESTABLISHING

DATA ITEMS. Each scalar reference must have a computational data type.

Rules: For each input data item, PL/I must take a value from the input

Stream and assign it to the data item. This requires the following

steps:

1. PL/I skips over any separators between data items in the input

stream.

2. PL/I takes a string of characters fron the input stream and

interprets that string of characters as an input value. In

most cases, the input value is a CHARACTER string; however, in

some cases, the input value is interpreted as a BIT string.

3. PL/I converts the CHARACTER BIT string to the data type of the

input data item and assigns the results to the input data iten.

The rules for these steps are described in the following paragraphs.

The separators mentioned in Step 1 can be commas or blanks. GET LIsT

data values in an input stream must be separated either by one or more

blanks, by a single comma, or by both a comma and one or more blanks.

Thus, for example, if you had the values 2 and 3 in your input stream,

you could separate them in any of the following ways:

2b3 2,bb3
2,3 2bbbb,3
2bbbb3 2bb , bobb3

When PL/I completes the input operation for one GET LIST data value (2

in the above example), it stops taking input characters after it has

taken the blank or comma following that data value. PL/I does not skip

over the full separator (the remaining blanks or comma), until the next

GET LIST input request (for 3 in the above example). Therefore, when

PL/I begins input for a new GET LIST value, it must remember whether

the terminator for the previous GET LIST value was a blank or a comma.

11-79 First Edition

PL/I Reference Guide

In order for PL/I to skip over the separator for the new value it must
skip over blank characters, searching for the first nonblank character;
but if the preceding GET LIST value was terminated by a blank, rather
than by a comma, PL/I can skip over a single comma in the separator as
well,

Note that if, after PL/I has skipped over one comma, it finds that the
first nonblank is a second comma, then PL/I considers the input value
to be missing from the input stream. In this case, PL/I leaves the
value of the target data item unchanged. Consider, for example, the
following statements:

X, Y= 23
GET LIST (X, Y):?

Suppose that when PL/I executes the GET statement, it finds the
following characters in the input stream:

3 rr

Then PL/I considers the first input data value to be 3, and the second
input data value to be missing. As a result, P1/I sets X to 3, and
leaves Y with its old value of 2.

Figure 11-1 summarizes the algorithm that PL/I uses to skip over the
separator between GET LIST data items, At the point when control
enters the logic specified by this figure, PL/I is ready to begin
skipping over the separator for the next GET LIST input value. When
this logic is finished, PL/I either has decided that the input value is
skipped, or has found the first character of the input value.

Now let us turn our attention to how PL/I identifies the input data
value from the input stream. There are two major cases:

e If the first character of the input data value after the
separator is not an apostrophe, PL/I takes characters from the
input stream, stopping at the first blank or comma, and forms a
CHARACTER string of these characters. Lines 1 through 4 of
Table 11-16 illustrate this case.

First Edition 11-80

STREAM INPUT/OUTPUT

Is this

first GET Yes _

LIST from this
file?

What was
the terminator Comma _

for the previous
GET LIST?

»| Blank _
vy

\

Get char from _

|

Get char from

|_Yes <> <> Yes

No No

<> Yes | __No <>

No Yes

\

Use this as the There is no input

first char of value for this data

the input value item; value is skipped

Handling Separators With GET LIST
Figure ll-1

11~81 First Edition

PL/I Reference Guide

Table 11-16
The LIST Input Option

Line # Input Stream Input Value

1 764b "764!
2 48E+23, "ABE+23 !
3 JE2+16E31, 'TE2+16E31'
4 ABCDEFDb "ABCDEF'

5 "ABCD, bE'b "ABCD, bF!
6 'DON' THGo', "DON ThGo! ,

7 '1011'B, '1011'B
8 *34'B3 '011100'B
9 "A'BA, '1010'B

10 "ABC'X, (error)
il "ABC'B3 , (error)
12 'O1L1'BXY, (error)

@ If the first character after the separator is an apostrophe,
PL/I takes characters until it finds the matching apostrophe.
In searching for the matching apostrophe, PL/I must correctly
handle the situation where two apostrophes in a row appear in
the input stream with the usual meaning. The matching
apostrophe may be followed by B or by Bn, where the n is a radix

factor; this is precisely the situation where the input value

would be considered a BIT value rather than a CHARACTER value.

In any case, the CHARACTER or BIT string constant must end with

a blank or comma. Lines 5 through 9 of Table 11-16 illustrate

these cases, while lines 10 through 12 illustrate error

situations.

Figure 11-2 illustrates these rules. The logic in this figure follows
immediately after the logic in the preceding figure, assuming that the

search for the end of the separator has ended with the finding of the

first character of the new data value. When the logic in this new

figure has been completed, PL/I has identified the entire input data

value and determined whether it is a CHARACTER value or a BIT value.

In any case, PL/I ends up with a CHARACTER or BIT string value. PL/I

converts this value to the data type of the target data item, following

the rules in Chapter 6, and assigns the result to the target data item.

First Edition 11-82

STREAM INPUT/OUTPUT

Is
first char No _| Get char from

anCe q ™ input stream

Yes
 ys

Vv
Blank or

comma

?

 Get char from
input stream

Form a CHARstring
of all chars up

to blank or comma

Apostrophe
?

 Yes

Get char from
input stream

Get char from
input stream

Apostrophe>

?

No

No_

Blank or

comma

;
Yes

\ Get char from
Convert the °

result to a ERROR input stream

CHARstring

 Blank or

comma

?

Convert the result
to a BIT string

Identifying the Input Value With GET LIST
Figure 11-2

11-83 First Edition

PL/I Reference Guide

The P Input Data Format Item

Purpose: Accepts input with picture specifications.

Syntax: P'specification', where specification is a picture

specification, either pictured-numeric or pictured-character.

Rules: PL/I takes from the input stream a number of characters equal

to the length of the CHARACTER string value corresponding to the
picture specification. This string of input characters must be valid
for the picture specification; otherwise, PL/I signals the CONVERSION

condition.

Further action depends on whether the picture specification is

pictured-string or pictured-numeric.

1. If the picture specification is pictured-string, PL/I forms the

input characters into a CHARACTER string, which it uses as_ the

input value.

2. If the picture specification is pictured-numeric, an extra
conversion takes place. PL/I converts the string of characters

to the numeric data type corresponding to the picture

specification, and that numeric value is used as the input

value.

In either case, PL/I converts the resulting string or numeric value to

the data type of the target variable, and assigns the result to the

target variable.

Example: Table 11-17 Illustrates the P format item. Lines 1 and 2

illustrate a specification for pictured-string, while lines 3 and 4

illustrate pictured-numeric,

Table 11-17
The P Input Format Item

Resulting

Line # Format Item Input Stream Input Value

1 P'AX99' M-23 'M-23!

2 P' AX99! 1234 (error)

3 P'99V.9' 23.4 23.4

4 P'99V.9' 23 ,4 (error)
First. Edition 11-84

STREAM INPUT/OUTPUT

Lines 2 and 4 are error situations because the input stream characters
are not valid for the picture specification specified with the P format
item. See Chapter 5 for further information on picture specifications.

The R Input Format Item

Purpose: Specifies the format item to be used with input.

Syntax: R(reference).

This is the remote format item, and it has already been discussed in
the section on MATCHING DATA ITEMS TO FORMAT ITEMS.

The SKIP Input Option and Control Format Item

Purpose: Moves to a new line or record of input.

ntax: SKIP or SKIP(n), where n, if specified, is any PL/I
expression. SKIP is both an option of the GET statement and a format
item used with the GET EDIT statement. PL/I evaluates n and converts
it to an integer, It is an error for n to be zero or negative. If n
is not specified, let n= 1.

Rules: PL/I moves to the beginning of a new input recordn times, For
ASCII files, PL/I accomplishes this by taking characters from the input
stream, and stopping after n carriage return characters have been
accepted.

The STRING Input Option

Purpose: Moves data from a string variable.

Syntax: STRING(expression), where the expression is a scalar
expression. PL/I converts the expression to the CHARACTER data type.

Rules: GET with the STRING option is no longer an input statement in
the narrow sense of transmitting data from an external device.
Instead, GET STRING is a purely computational statement which
manipulates internal data.

When you use the STRING option, the stream of characters that would
normally be transmitted from a file or device is taken instead from the
value of the expression.

11-85 First Edition

PL/I Reference Guide

If the CHARACTER string value of the expression is not long enough to
satisfy the input stream requirements for the GET statement, PL/I
signals the ERROR condition. In particular, for GET LIST with the
STRING option, the CHARACTER string expression must contain the blank
or comma that terminates the input data value.

Examples:

DECLARE C CHARACTER(4) INITIAL('7642') ;
GET STRING(C) EDIT(X, Y) (F(2))3
GET STRING(C||',') LIST(Z);

In each of the GET statements, the input stream is taken from the
specified CHARACTER string expression, rather than from an input device
like your terminal. The result is that X = 76, Y = 42, and 2 = 7642.
Note that in the last GET statement, the string expression is '7642,',
including a comma concatenated to terminate the GET LIST value.

The X Input Control Format Item

Purpose: Skips input characters.

Syntax: X(n), where n is any PL/I expression. PL/I evaluates n and
converts it to an integer. It is an error for n to be negative.

Rules: PL/I takes n characters from the input stream and ignores them.

First Edition 11-86

12
RECORD

Input/Output

Standard STREAM input/output, discussed in Chapter 11, uses the GET and
PUT statements to preserve machine and device independence by treating
a file as a stream of characters. Chapter 11 also discusses use of
nonstandard READ and WRITE statements with STREAM input/output.

RECORD input/output is a more general approach to I/O in that it
permits you to read and write files and devices with any record format
or organization. However, since RECORD I/O access methods reflect very
closely the access methods supported by the Prime operating systen,
your program may not run on other implementations of PL/I. It is even
possible that your program will work differently on different devices
on the same computer.

CONCEPTS OF RECORD INPUT/OUTPUT

The easiest way to understand RECORD input/output is to contrast it
with STREAM input/output. Standard STREAM input/output treats a file
as a long stream of characters. The GET and PUT statements transmit
characters to or from this stream. To accomplish this, PL/I must
automatically convert internal data formats to and from the character
representation that is stored in the STREAM file.

RECORD input/output considers a file to be a collection of records.
Each READ or WRITE statement transmits precisely one record of the file
to or from the I/O device. Furthermore, PL/I transmits that record
directly from or to a block of progran storage and performs no
conversion during that transmission. Therefore, the records of the

12-1 First Edition, Update l

PL/I Reference Guide

file may contain character data, or they may contain data in any
representation or format supported by the machine on which your PL/I
program is running.

The precise meaning of a record depends upon the device to or from
-which data is being transmitted. Examples of records are as follows:

e If the file is a deck of punched cards, each card is considered
to be a single record. In this case, therefore, each record
contains precisely 80 characters.

e If the file is output to a line printer, each line printed is
considered to be a record. Therefore, each record of a line
printer file can contain up to 132 characters.

e If the file is stored on a disk or tape device, the records may
be CHARACTER of varying or fixed length, or may be a fixed size,
but containing data of arbitrary data types.

Sequential Versus Direct Access

RECORD input/output provides you with a direct access capability that
is entirely unavailable with STREAM I/O. The direct access capability
allows you to jump around in a file, reading or writing records in
random order.

To understand this capability, imagine that you have a numbered list of
names and addresses written on a sheet of paper. You cannot insert a
new name and address between two existing names, since that would
require renumbering the entire list after that point, which you do not
wish to do. However, you may add a new name and address to the end of
this list. (The resulting list, however, may not be in alphabetical
order.)

The term direct access, when applied to such a list, means only that
you can jump around the list, reading the entries in any order. For
example, if you wishto read the fifteenth name in the list, there is
no need for you to read the first 14 names first; instead, your eye
can skim down to the fifteenth line, and you can read the information
on that line. Furthermore, you may rewrite any line in the list, by
erasing the information on that line and writing in a new name and
address.

Now, however, suppose that you had such a file stored on magnetic tape.
When a file is stored on magnetic tape, it may be accessed only by
means of sequential operations. This means that your program could
access such a file in any of the following ways:

@ It could read the fifteenth record on the tape only by first
reading the 14 records that precede it.

First Edition, Update 1 12-2

RECORD INPUT/OUTPUT

@ It could add a new record to the end of the file by reading all

the records in the file, and then writing a new record at the

end of the file.

@ It could change the fifteenth record of the file by positioning

the tape just after the fourteenth record, and then rewriting

the following record.

The important characteristic of this tape file is that you cannot go

from one point to another in the file without reading all records in

between,

When you put this file onto a direct access device, such as a disk, you

have much more flexibility. PRIME provides two basic file

organizations:

e SAM files (Sequential Access Method)

® DAM files (Direct Access Method)

Appendix I of the Subroutines Reference Guide contains more information

about SAM‘and DAM files. Your program may access SAM files only

sequentially, and they are treated the same as files on tape. Your

program may handle a DAM file either by using the sequential techniques

discussed above or by using direct access techniques.

Direct access techniques permit you to move from one point in the file

to any other point directly, without having to read all the records in

between. Therefore, the three operations described above for

sequential access become the following with direct access:

e Your program can read the fifteenth record of the file directly,

without having to access any of the records that precede it.

e Your program can add records to the end of the file without

having to read the entire file first.

@ Your program can change the fifteenth record of the file by

rewriting it directly. It is not necessary to position the file

by reading preceding records.

Therefore, use SAM files when you plan to access the records of the

file only in the order in which they were stored into the file. If you

plan to jump around in the file, use DAM files.

MIDASPLUS Files

PRIME provides a third file organization that gives you even more

flexibility and power than SAM or DAM files. To understand this

capability, let us go back to the list of names and addresses we

discussed, but now suppose that you keep the information on 3 x 5 index

cards rather than in a numbered list. If you have only one name and

12-3 First Edition

PL/I Reference Guide

address per index card, you can keep the cards in alphabetical order.
The difference is that when you have to add a new name to your list,
you can insert the new card in its proper position among the old cards;
there is no need to put each new name and address at the end of the
list. MIDASPLUS gives you the capability of inserting records anywhere
in the file.

The major differences between DAM files and MIDASPLUS files are the
following:

@ You can access an arbitrary record in either file organization,
but you specify the record in different ways. For DAM files,
choose the record you want by specifying the number of the
record according to its position in the file. For MIDASPLUS
files, specify an arbitrary CHARACTER string as a key to the
record. In the example of the list of names and addresses given
above, you would choose your desired record by giving the
person's name as a string of characters.

e You can add records to a file in either file organization, but
for DAM files, you may add records only at the end. For
MIDASPLUS files, you may insert records at any point within the
file.

e@ For MIDASPLUS files, you may delete any record in the file. You
may not delete records in a DAM file.

The Key of a Record

For direct access files, the DAM and MIDASPLUS organizations, each
record of the file has a key. Use this key to specify which record of
the file you wish to access,

For DAM files, the key of a record is an integer equal to the position
of the record in the file. The first record of the file has a key of
1, the second has a key of 2, and so forth. The position of a record
in the file is called the relative record number of the record within

the file.

For MIDASPLUS files, the key for each record is an arbitrary string of
up to 32 characters. The nature of this string of characters depends
upon the particular application. For example, one application may use
a person's name as the key for each record. A different application
that keeps track of information about each town and city in the United
States might use as a key the string of characters consisting of both
the name of the city or town and the name of the state.

The PL/I interface to MIDASPLUS has no way of handling situations where
two different records have the same alphabetic key. Therefore, if your
application uses a person's name as a key, your application cannot
handle two people with the same name. For this reason, many
applications that keep records of different people use a unique

First Edition 12-4

RECORD INPUT/OUTPUT

identification number (such as a social security number) as the key to
each record, rather than the person's name.

SEQUENTIAL

Let us begi

RECORD INFUT/OUTPUT

n with some examples of sequential mode RECORD 1/0.

The Basic Statements

Figure 12-] is a program that copies card images from a tape to a
direct access file called 'Data'. In this program, the identifiers IN
and OUT are FILE identifiers representing the input and output files,
respectively. Each of these identifiers is given the following
attributes:

@ FILE is the data type attribute,

@ RECORD specifies that your program will use RECORD rather than

STREAM access,

@ SEQUENTIAL specifies that SEQUENTIAL rather than DIRECT access
is to be used.

COPY: PROC OPTIONS (MAIN) 3
DCL (IN, OUT) FILE REQORD SEQUENTIAL;
DECLARE CARD CHARACTER(80) ;
OPEN FILE(IN) INPUT TITLE('ME0O -DEVICE —RECL 80');
OPEN FILE(OUT) OUTPUT TITLE('DATA -DAM 80 —APPEND') ;
ON ENDFILE(IN) FLAG = 1;
FLAG = 0;

READ FILE(IN) INTO(CARD) ;
DO WHILE(FLAG = 0);
WRITE FILE(QUT) FROM(CARD) ;
READ FILE(IN) INTO(CARD) ;
END;

CLOSE FILE(IN), FILE(OUT) ;
END COPY;

A Record I/O Program
Figure 12-1

12-5 First Edition

PL/I Reference Guide

These two file identifiers are used in all of the input/output
statements, These statements are as follows:

1. The first I/O statement,

OPEN FILE(IN) INPUT TITLE('MTO -DEVICH ~RECL 80');

opens the file IN as an INPUT file and associates it with the
device MTO (a magnetic tape drive), with a record size of 40
words (80 characters) per record.

The statement

OPEN FILE(OQUT) OUTPUT TITLE('DATA -DAM 80 —APPEND') ;

opens file OUT as an output file, associating it with a_ direct
access file that has 80 characters, and positioning to append
information to the end of the file.

The ON statement

ON ENDFILE(IN) FLAG = 1}

specifies what action is to be taken when end of file occurs on
the input file, with file identifier IN. This statement says
the following: If a READ statement fails because of end of
file, then set FLAG equal to 1, and continue execution with the
statement following the READ statement. The ON statement is
described in detail in Chapter 13 on condition handling.

The statement

READ FILE(IN) INTO(CARD);

specifies that PL/I is to read one record from the file IN, and
store the data in the variable called CARD. Since the OPEN
statement described above has opened the file IN and connected
it with a magnetic tape device, each READ statement reads one
card image and stores the 80 characters in the CHARACTER(80)

variable CARD.

First Edition 12-6

RECORD INPUT/OUTPUT

5. The statement

WRITE FILE(OUT) FROM(CARD) ;

takes the data in the variable CARD and appends it to the end

of the file DATA to which OUT has been attached by the second

OPEN statement described above.

6. The final I/O statement

CLOSE FILE(IN) , FILE(OUT) ;

is executed after end of file has been reached on file IN.

This statement disconnects the file identifiers IN and OUT from

the respective devices with which the OPEN statements have

associated them.

In this program example, the DO loop works by reading each card image

from a tape and writing it into the file DATA, The DO loop continues

executing as long as the variable FLAG is equal to 0. FLAG is set tol

by the on-unit specified in the ON ENDFILE statement when a READ

statement fails because of end of file.

The IGNORE Clause

You may skip records in a SEQUENTIAL input or update file by using the

IGNORE option of READ:

READ FILE(name) IGNORE (expr) ;

PL/I evaluates the expression, truncates it to an integer, and skips

over that number of records. Thus, the statement

READ FILE(IN) IGNORE(1);

skips over one record.

12-7 First Edition

PL/I Reference Guide

Card Image Into CHARACTER Structure

Suppose you are writing a program to read cards from the card reader
and you wish to process the information on these cards. Suppose
further that each of the cards is punched in the following format:

Columns 1-20 Name
Columns 21-50 Address
Columns 51-60 Unused
Columns 61-68 Telephone # (XxXX-xxXxx)
Columns 69-80 Unused

By reading the cards into an appropriate structure, you can split the
characters in the input card into their individual fields
automatically. For example, suppose you used the following DECLARE
statement:

DECLARE 1 CARD,
2 NAME CHAR(20),
2 ADDRESS CHAR (30) ,
2 UNUSED_1 CHAR(10),
2 PHONE CHAR(8),
2 UNUSED_2 CHAR(12) ;

If the identifier IN is declared and opened as in the preceding
example, the statement

READ FILE(IN) INTO(CARD);

inputs a card image into the structure CARD. By then referencing the
individual members of the CARD structure, you can directly reference
the corresponding individual fields of each punched card.

Non-character Records

In all the previous examples of READ and WRITE, the records of the file
or device contained only characters. Actually, data of any data type
can be stored in such a file. For example, suppose your program
contains the following declaration:

DECLARE 1 S(5),
2 A BIN FIXED,
2 X(5) FLOAT DEC(3) 3

First Edition 12-8

RECORD INPUT/OUTPUT

The array of structures S that is declared in this DECLARE statement

can be used in the FROM option of the WRITE statement or in the INTO

option of the READ statement. PL/I simply transmits the block of

storage occupied by S to or from the input/output device. It performs

no data conversions whatsoever.

RECORD Input/Output to Disk Files

Your program may access any files on disk, with arbitrary record

format. For example, here are some statements that create a disk file:

DECLARE 1 REC,
2 NAME CHAR(20),
2 AGE FIXED BIN(15),
2 SALARY FIXED DEC(J.0,2) ;

DECLARE F FILE RECORD SEQUENTIAL ;

OPEN FILE(F) OUTPUT TITLE ('NAMELIST -SAM 28") 3

WRITE FILE(F) FROM(REC);

In this example, the OPEN statement associates the file identifier F

with the disk file NAMELIST, to be used as a SAM file with a record

size of 14 words (28 bytes). If the file does not exist, NAMELIST is

created. Each WRITE statement, such as the one shown in the example,

transmits the block of storage occupied by the structure REC to a

record in the file NAMELIST on disk.

Appending to an OUTPUT File

Suppose you open a disk file for OUTPUT, and suppose there is already a

file on disk with the same file name. Ordinarily, PL/I creates a new

file with that name, deleting the old file. However, if you use the

APPEND option in the CHARACTER string specified with the TITLE option,

PL/I does not replace the old file with the new file: instead, your

new output records are appended to the end of the existing file.

In the previous example, if the OPEN statement were

OPEN FILE(F) OUTPUT TITLE('NAMELIST ~APPEND 28') ;

PL/I would append the new records written by the WRITE statement to the

end of the existing file NAMELIST.

12-9 First Edition

PL/I Reference Guide

DIRECT ACCESS WITH DAM FILES

The preceding examples illustrate files that are read or written
sequentially; that is, the records of the file are accessed in order.
For this reason, a SAM file is used.

If you wish to create a file that you can access by jumping around
among the records, use a DAM file.

Creating a DAM File Sequentially

You may create a DAM disk file sequentially, in the same way that you
create a SAM file. The only difference, when you create the file, is
that you should specify DAM rather than SAM in the CHARACTER string
that you specify with the TITLE option of the OPEN statement.

The last example, which created a SAM file, can thus be changed to

DECLARE 1 REC,
2 NAME CHAR(20),
2 AGE FIXED BIN(15),
2 SALARY FIXED DEC(10,2);

DECLARE F FILE RECORD SEQUENTIAL;

OPEN FILE(F) OUTPUT TITLE('NAMELIST -DAM 28') ;

WRITE FILE(F) FROM(REC);

The only difference between this and the preceding example is that DAM,
rather than SAM, is specified with the TITLE option of the OPEN
statement. As before, each WRITE statement adds a new record to the
end of the file. However, PL/I organizes the file differently on disk,
so that it is possible to read and update the file more efficiently
with direct access techniques. These techniques are illustrated below.

Reading a DAM File With KEYED DIRECT INPUT

The following explains DIRECT access techniques using keys. Any record
of a DIRECT file has a key, a string of characters that you may use to
access that record. In the case of DAM files, this string of
characters contains an unsigned decimal integer, possibly with leading
or trailing blanks. The value of this decimal integer is the relative
record number of the record within the file. For example, you can
reference the first record of the file with the key 1, and the 234th
record of the file with the key 234,

The file created in the example of the preceding section illustrates
how you can access a file using keys. This file was created

First -Edition 12-10

RECORD INPUT/OUTPUT

sequentially. To access the same file using direct access techniques,

use an interactive program segment like the following, which allows the

user to type in a record number and which then types out the

corresponding record of the file:

DECLARE 1 S,
2 NAME CHAR(20),
2 AGE FIXED BIN(15),
2 SALARY FIXED DEC(10,2);

DECLARE RECNUM FIXED DEC(5) ;

DECLARE F FILE RECORD KEYED DIRECT;

OPEN FILE(F) INPUT TITLE('NAMELIST -DAM 28');

PUT SKIP LIST('TYPE FIRST RECORD # DESIRED:');

GET LIST (RECNUM);
DO WHILE(RECNUM > 0);
READ FILE(F) INTO(S) KEY(RECNUM);

PUT SKIP EDIT(S) (A, F(4), F(14,2));

PUT SKIP LIST('TYPE NEXT REC # DESIRED');

PUT LIST(' (TYPE O TO TERMINATE) :');

GET LIST (RECNUM) ;
END;

Compare this example with previous examples. Notice that the DECLARE

statement for the identifier F specifies the attributes KEYED DIRECT

rather than the SEQUENTIAL attribute that we have seen before. ‘This

means that you will use keys to jump around the file in direct access

mode.

The READ statement in this example uses a FIXED variable RECNUM to

specify the relative record number of the record in the file to be

read. The statement

READ FILE(F) INTO(S) KEY(RECNUM);

executes by performing the following steps:

1. PL/I converts RECNUM to a CHARACTER string according to the

rules in Chapter 6. For example, if RECNUM = 1623, PL/I

converts RECNUM to the CHARACTER string ‘'bbbbbl623', where b

stands for a blank character.

2. PL/I uses this CHARACTER string as a key to find the record
with relative record number 1623 in the file.

3. PL/I reads that record from disk and transmits the data to the

structure S, performing no conversion.

12-11 First Edition

PL/I Reference Guide

The new option in the READ statement is

KEY (RECNUM)

PL/I uses the variable RECNUM to determine which record you wish to
read, Although PL/I converts the value of RECNUM from FIXED to
CHARACTER, you may informally think of the key of a DAM file as the
FIXED numeric value of RECNUM.

Updating a DAM File With KEYED DIRECT UPDATE

In all the examples so far, our OPEN statements have specified either
the INPUT option to read from the file or the OUTPUT option to create
the file or add records to the end of the file.

You may also specify UPDATE, instead of INPUT or OUTPUT, If you do
that, subsequent statements of your program will be able to perform any
of the following operations:

@ Use a READ statement to input an arbitrary record of the file.

@ Use a WRITE statement to add a new record to the end of the
file.

@ Use a REWRITE statement to change an existing record in the
file.

Consider some specific examples. Suppose your PL/I program contains
the following statements:

DECLARE F FILE RECORD KEYED DIRECT;
OPEN FILE(F) UPDATE TITLE('NAMELIST -DAM 28');

This OPEN statement is the same as the OPEN statement in the preceding
example except that it specifies the UPDATE option rather than either
INPUT or OUTPUT.

Now assume that S and RECNUM are declared the same way in your program
as they were in the last example. The statement

READ FILE(F) INTO(S) KEY (RECNUM);

causes PL/I to find the records specified by the FIXED variable RECNUM
and to transmit the data from disk into the storage block occupied by
S.

First Edition 12-12

RECORD INPUT/CUTPUT

Since you have opened the file with the UPDATE attribute, you are

permitted to do output to the file as well as input from the file.

However, you must distinguish between two kinds of output operations:

adding a new record to the file, and updating or changing an existing

record. Use the WRITE statement to perform the first of these

operations and the REWRITE statement to perform the second.

Tf RECNUM contains the number of the record that you wish to change,

use the statement

REWRITE FILE(F) FROM(S) KEY (RECNUM);

to change the existing record. In this case, you use the block of

storage occupied by the variable S to replace the data in the record

with relative record number RECNUM. ‘The old data in that record is

lost.

T£, however, you wish to add a new record to the end of the file, use

the WRITE statement. An example is

WRITE FILE(F) FROM(S) KEYFROM(RECNUM);

When you use this statement, RECNUM should have a value larger than the

number of records that you have already written to the file. If there

are n records in the file before your program executes this statement,

this WRITE statement adds RECNUM - _n new records to the end of the

file. PL/I copies the storage block occupied by S into each of those

new records.

In fact, such use of the WRITE statement shows an easy way to expand an

existing file. Suppose you wish to expand this file from its current

size to 2000 records, and you wish the additional records to contain

bytes that are all zeros. You could use the following program segment:

DECLARE C CHARACTER(28);
C = LOW(28) ;

WRITE FILE(F) FROM(C) KEYFROM(2000);

The function reference LOW(28) returns a CHARACTER string containing 28

bytes, all of which are zeros. The assignment statement assigns this

string to the CHARACTER variable C, and the WRITE statement outputs

that variable to the file. If the current size of the file is 1000

records, this WRITE statement adds 1000 new records to the file, and

each of the new records contains all zero bytes.

12-13 First Edition

PL/I Reference Guide

DIRECT ACCESS WITH MIDASPLUS FILES

This section outlines how you use MIDASPLUS files from PL/I. For
further examples and details, see the section on FL/I-G in The
MIDASPLUS User's Guide.

Prime PL/I uses the attributes KEYED SEQUENTIAL to indicate a MIDASPLUS
file. Note that even though you use the keyword SEQUENTIAL for
MIDASPLUS, you may nonetheless use direct access operations on these
files.

Fach record of a MIDASPLUS file has a key. The important
characteristics of the keys of MIDASPLUS files are as follows:

@ Each record of a MIDASPLUS file has a key that may be an
arbitrary CHARACTER string. ‘The length of the key is the same
for all records of the file.

e If PL/I creates the MIDASPLUS file, the length of the key is
always precisely 32 characters.

e If you create the file by means of a separate utility and you
wish to update the file from a PL/I program, the key length may
be 32 characters or less.

Internally, PL/I organizes MIDASPLUS files in two parts, an index
portion and a data portion. When you write a new record to the
MIDASPLUS file, you must tell PL/I both the data value (using the FROM
option) and the key (using the KEYFROM option). Each entry in the
index portion of the MIDASPLUS file contains both the value of the key
and a pointer to the corresponding data record. When you wish to read
a record of the file, use the KEY option to specify the key of the
record you desire. PL/I looks up the key in the index portion of the
file and uses the pointer it finds there to find the data record that
you are requesting.

Operations on MIDASPLUS files are like operations on DAM files, with
the following differences:

@ The expression that you use with the KEYFROM option of the WRITE
statement or the KEY option of the REWRITE or READ statement
should be CHARACTER, and the length of the string should be
equal to or less than the key length for the file. The key must
be unique.

@ You may use the WRITE statement to insert new records into any .
point in the file, not just at the end.

@ You may use the DELETE statement to delete any record of the
file. When you use the DELETE statement, PL/I deletes both the
key from the index portion of the file and the data record from
the data portion of the file,

First Edition 12-14

RECORD INPUT/OUTPUT

The Basic Statements

Let us look at some specific examples of statements you use to access

MIDASPLUS files. You can DECLARE a MIDASPLUS file as follows:

DECLARE F FILE RECORD KEYED SEQUENTIAL;

This declaration uses the attributes KEYED SEQUENTIAL, which signal to

PRIME PL/I that F is a MIDASPLUS file.

To create a MIDASPLUS file using the declaration just above, you could

use statements like

DECLARE KVBLE CHAR (32) ;
OPEN FILE(F) OUTPUT TITLE ('MIDASPLUSFILE') ;

WRITE FILE(F) FROM(S) KEYFROM (KVBLE);

CLOSE FILE(F) 3

The OPEN statement specifies the OUTPUT attribute, which means that

PL/I creates a new file called MIDASPLUSFILE.

Each WRITE statement of the type shown in the example adds a new record

to the file. The FROM and KEYFROM options of the WRITE statement

specify what is to be stored in the data portion and the index portion,

respectively, of the MIDASPLUSFILE. ‘The data stored in the data record

of the file is copied from the storage area occupied by the variable S,

used with the FROM option. PL/I takes the 32 characters from the

variable KVBLE, and stores that string in an entry in the index portion

of the file. That entry also contains a pointer to the data record

that we have just written.

The final statement of the program example above is the CLOSE

statement. When you execute that statement, the file creation process

is complete.

Once the file is created you may update it, in the same program or in a

different program, by using the OPEN statement with the UPDATE option:

OPEN FILE(F) UPDATE TITLE ('MIDASPLUSFILE') ;

12-15 First Edition

PL/I Reference Guide

After PL/I has executed this OPEN statement, your program may perform
any of the following operations:

e Use the statement

READ FILE(F) INTO(S) KEY(KVBLE) ;

to have PL/I search the index portion of the MIDASPLUS file for
an index entry that specifies a key equal to the KVBLE CHARACTER
string, and then read the corresponding data record from the
data portion of the file into the storage block occupied by the
variable S.

e Use a typical WRITE statement, such as

WRITE FILE(F) FROM(S) KEYFROM(KVBLE);

to add a new record to the MIDASPLUS file. The string in KVBLE
is used as the key to be stored in the index portion of the
file, and the data record is taken from the storage area

occupied by the variable S.

@ To change the data record for an existing key, use

REWRITE FILE(F) FROM(S) KEY (KVBLE);

This statement is legal only if the file already contains a
record with key specified by the string variable KVBLE. PL/I
uses the data in the storage block occupied by S to replace the
data record for this key. The old data record is lost.

@ Finally, use the statement

DELETE FILE(F) KEY (KVBLE) 3

to delete the record with the key specified by the string in
KVBLE. PL/I deletes both the data record in the data portion of
the file and the index entry in the index portion of the file.

Use the WRITE statement to add a new record to the file, and REWRITE to
replace an existing record. The REWRITE statement is legal only if a
record with the specified key already exists, and the WRITE statement
is legal only if no record with the specified key already exists.

Finally, suppose that you have created an updated MIDASPLUS file, and
that you wish your program to make a list of all the records in the

First Edition 12-16

RECORD INPUT/OUTPUT

file in alphabetical order by key value. (By alphabetical order, we

mean the collating sequence order shown in Appendix B.) To do this,

your program may execute an OPEN statement with the INPUT option. Then

you may execute READ statements like

READ FILE(F) INTO(S) KEYTO(KVBLE) ;

which uses a new option, the KEYTO option. Since this statement

contains no KEY option, PL/I reads the file in sequential order; more

precisely, in alphabetical order by key. The READ statement takes the

value of the key from the index portion of the file and stores it in

the variable KVBLE. It also takes the corresponding data record from

the data portion of the file and stores it in the variable S. You may

then print out the value of either the key (in KVBLE) or the data (in

S).

The argument in the KEYTO option must be a varying CHARACTER string,

while the KEY and KEYFROM arguments may be either varying

=

or

nonvarying.

RECORD INPUT/OUTPUT IN LOCATE MODE

To improve the efficiency of your RECORD input/output statements, use

locate mode operations, which improve efficiency by reducing the need

for PL/I to copy blocks of data between internal buffers. In order to

explain how locate mode works, we must first explain how PL/I's

internal buffering works.

Most RECORD input/output statements operate through an internal buffer

that is usually invisible to the programmer. For example, a statement

like

READ FILE(F) INTO(S);

is executed according to the following steps:

1. PL/I transmits the data record from the input device into an

internal buffer that is invisible to the user.

2. PL/I copies the data record from the internal buffer to the

storage area for S.

Similarly, when PL/I executes a WRITE statement, it copies the data to

an internal buffer that is invisible to the user, and the data is

transmitted to the device from that internal buffer.

By using locate mode input/output, you can improve the performance of

your input/output operations by avoiding the step of copying the data

12-17 First Edition

PL/I Reference Guide

between the internal buffer and the storage area. PL/I provides a
POINTER value to the internal buffer, so that you can manipulate the
data directly in this buffer, rather than in the storage area of your
program.

Locate Mode Input: The SET Option

Up to this point, each READ statement that we have seen has had an INTO
option to specify the name of a variable in whose storage area the
transmitted data is to be stored. You can rewrite such a READ
statement, replacing the INTO option with a SET option with the
following syntax:

SET (pointer~variable)

For example, by replacing the INTO option with a SET option, you can
change

READ FILE(F) INTO(S);

to

READ FILE(F) SET(P) ;

where P is a variable with the POINTER data type. In this second form
of the READ statement, PL/I transmits the data from the device into its
internal buffer, but does not copy this record into the storage block
occupied by a variable. Instead, PL/I sets P to the address of the
record in the internal buffer. You may then access the data directly
using the POINTER variable P and an appropriate BASED variable, as
discussed in Chapter 7.

Locate Mode Output

Output in locate mode is conceptually a bit more subtle than input in
locate mode. The program segment that follows uses normlocate mode
WRITE statements,

First Edition 12-18

RECORD INPUT/OUTPUT

DECLARE 1 REC,
2 NAME CHAR(20),
2 AGE BIN FIXED;

DECLARE F FILE RECORD SEQUENTIAL ;

OPEN FILE(F) OUTPUT;
REC . NAME = 'JONES';
REC . AGE = 23;
WRITE FILE(F) FROM(REC) :

REC . NAME = 'SMTTH';
REC . AGE = 45;
WRITE FILE(F) FROM(REC);

CLOSE FILE(F) :

This program segment opens a file, writes two data records to the file,

and closes it.

To rewrite this example in locate mode, first obtain a POINTER value to

PL/I's internal output buffer by using the LOCATE statement. Next, use

the POINTER value with a BASED structure to move data values into the
output buffer. Then execute another LOCATE statement to tell PL/I that
you have finished filling the first output buffer and are ready for
another output buffer.

The following PL/I program segment performs these operations:

DECLARE P POINTER,
1 REC BASED,

2 NAME CHAR(20),
2 AGE BIN FIXED;

DECLARE F FILE RECORD SEQUENTIAL;

OPEN FILE(F) OUTPUT;
LOCATE REC SET(P);
P->REC , NAME = 'JONES';
P->REC . AGE = 23;
LOCATE REC SET(P);
P—>REC . NAME = 'SMITH';
P->REC . AGE 45;
CLOSE FILE(F) we

il

This example illustrates the new form of output statement, the LOCATE
statement. The first LOCATE statement allocates an internal buffer and

sets the POINTER variable P to its address, The program then uses
BASED storage with P to store values in that buffer. The second LOCATE

statement in the example has a dual purpose:

@ It tells PL/I that you are finished with the first output
buffer. As a result, PL/I can transmit the first output buffer
to the output device.

12-19 First Edition

PL/I Reference Guide

@ It allocates a new output buffer for the second output record
and sets the POINTER variable P to the address of that buffer.

This example has only two LOCATE statements, but if it had more, each
additional LOCATE statement would transmit the preceding buffer to the
output device and would allocate a new output buffer.

The CLOSE statement, which is the last statement of the example,
completes the locate mode output operations by transmitting the last
output buffer to the device and closing the file.

The syntax of the LOCATE statement is as follows:

LOCATE identifier SET(variable) FILE(identifier) other-options;

In this syntax, the identifier must be a BASED variable so that PL/I
will know how large the output buffer must be. The variable appearing
with the SET option must have the POINTER data type. The other-options
are options of the WRITE statement, except that the FROM option may not
be used.

FILE ATTRIBUTES, ATTRIBUTE MERGING, AND THE OPEN STATEMENT

Note

This section applies to both STREAM and RECORD input/output.

In a DECLARE or OPEN statement for a file, you specify various file
attributes and options, such as RECORD or STREAM, INPUT or OUTPUT or
UPDATE, and so forth. This section discusses these attributes.

When you access a file or device, you use file attributes to describe
various things about the operation, such as how the file is organized,
the formats and size of the records of the file, and the way in which
you will access the file. Prime PL/I permits you to specify file
attributes and options in three different contexts:

@® As attributes in the DECLARE statement that declares the FILE
identifier;

@ As options of the OPEN statement, which you use to open the
file; or

@ In the CHARACTER string value used with the TITLE option of the
OPEN statement, which opens the file.

Two kinds of attributes are standard and nonstandard attributes. The
attributes that you specify by either of the first two methods above

First Edition 12-20

RECORD INPUT/OUTPUT

(as attributes in the DECLARE statement or as options in the OPEN

statement) are standard, in the sense that these attributes are defined

by the ANS PL/I standard and are the same in all implementations of the

PL/I language, including those implementations on other computers. The

attributes that you specify in the CHARACTER string associated with the

TITLE option of the OPEN statements are not defined by the ANS PL/I

standard, and they are unique to the Prime implementation of the PL/I

language.

Table 12-1 gives all legal file attributes in the Prime PL/I language.

This table breaks the attributes down into four groups. The ones to

the left are for STREAM input/output, and the ones to the right are for

RECORD input/output. Within these two divisions, the table breaks the

attributes down according to whether they are standard and may be

specified as either attributes in the DECLARE statement or options in

the OPEN statement, or nonstandard and must be specified in the

CHARACTER string values associated with the TITLE option. The square

brackets used with the nonstandard options for RECORD input/output in

the table signify that the decimal integer associated with that option

need not always be specified.

Table 12-1
File Attributes

For STREAM For RECORD
Input/Output Input/Output

Standard STREAM RECORD

Attributes in INPUT or OUTPUT INPUT or OUTPUT

DECLARE or OPEN PRINT or UPDATE

Statement SEQUENTIAL

or DIRECT

KEYED

Attributes —SAM ~SAM [n]

in TITLE ~APPEND —-DAM [n]

Option of -DEVICE -APPEND [n]

OPEN Statement -DEVICE [n]
-RECL n

-FUNIT m

-NOSIZE

~CILASA
Once a file has been opened, only certain input/output statements are

legal for that file, depending upon the attributes that were specified

when the file was opened. Table 12-2 lists all those statements that

are legal, depending on whether the file was opened for STREAM or

RECORD I/O, and depending upon whether the file was opened for INPUT,

OUTPUT, or UPDATE.

12-21 First Edition, Update 1

PL/I Reference Guide

Table 12-2
Legal Statements

For STREAM For RECORD

Input/Output Input/Output

INPUT GET READ

READ (see below)

WRITE

OUTPUT PUT DELETE

WRITE (see below) LOCATE

READ

WRITE

UPDATE (Illegal) REWRITE

DELETE

LOCATE
You can use nonstandard READ and WRITE statements with STREAM I/O,
but you will lose program portability. Refer to Chapter 11 for more
information.

Let us now discuss the meanings of some of the other attributes.

The PRINT attribute is permitted only with STREAM OUTPUT file
accessing. It specifies that the output file is intended to be printed
on a terminal or line printer and is not intended for input to another
program. The PRINT attribute is discussed in detail in Chapter ll.

The KEYED, SEQUENTIAL, and DIRECT attributes apply to RECORD
input/output only. The KEYED attribute specifies a file organization
where each record of the file has a key. For DAM files, the key is a
relative record number. For MIDASPLUS files, the key is an arbitrary
string of characters, such as a person's name or aé social security
number.

Use the SEQUENTIAL and DIRECT attributes to tell how you plan to access
the file. The SEQUENTIAL attribute means that you plan to access the

records of the file in ascending order by key, while the DIRECT
attribute means that you plan to use direct access methods, where you
will jump around. In the Prime implementation, however, KEYED
SEQUENTIAL is the signal for MIDASPLUS files, and direct access
operations are permitted even though the SEQUENTIAL attribute is used.

First Edition, Update 1 12-22

RECORD INPUT/OUTPUT

Formats of the TITLE Option CHARACTER String

You may use the TITLE option in the OPEN statements, It has the syntax

TITLE (expression)

where the expression is any legal PL/I expression. PL/I evaluates this

expression and converts it to CHARACTER if it is not already CHARACTER.

The characters in this CHARACTER string must have one of the following

forms:

name

name ~option

name -option [n]

In these forms, the name is either a file name or a device name. The

option is a nonstandard option, one of those specified below; nisa

decimal integer that you use to specify the maximum record size of the

file or device in words. If you do not specify n, PL/I uses a default

value of 1024.

The full format of the TITLE option is

OPEN FILE(£) TITLE('name [{-SAM|-DAM|-DEVICE}] [-APPEND]

[[-RECL] n] [-FUNIT m] [-NOSIZE] [-CTLASA] ')

where name is the pathname or device name, which must be supplied if

TITLE is present. If the name begins with @, and no options are

supplied, the @ is removed and the name is compared with a list of

device names (see Table 12-3). If a match is found, the file is

associated with the specified device. If no match is found, default

values are assumed for the other options.

The nonstandard options that you specify in the TITLE option are as

follows:

@ -SAM [n]: The file has been or will be organized as a SAM file.

You may access it only by sequential access methods, and_ the

records have no keys. ‘The value of n, whether you specify it

explicitly or use the default value of 1024, is the maximum

number of words in each record. In the WRITE and LOCATE

statements that follow the OPEN statement, your program may

output records shorter than n words; in this case, PL/I writes

only the smaller number of words.

12-23 First Edition

PL/I Reference Guide

e -APPEND [n]: The file is like a SAM file, except that -APPEND
is legal only for OUTPUT, and the new output records are
appended to the end of an existing disk file, For -SAMwith an
OUTPUT file, an old file with the same name is deleted.

e -DAM [n]: The file has a DAM file organization, As explained
earlier in this section, you may use DIRECT access operations
with these files, and the key of an individual record in the
file is a decimal integer representing the relative record
number of the record within the file. An important difference
between SAM files and DAM files is that, for DAM files, in the
WRITE and LOCATE statements that follow the OPEN statement, each
record transmitted to the file contains precisely n words,
whether you specify n explicitly, or use the default value of
n= 1024. Therefore, all records in a DAM file have precisely
the same size, although they may have different sizes in a SAM
file.

e -DEVICE [n]: This is like ~-SAM, except that the name is
interpreted as a device name rather than as a disk file name.

Table 12-3 lists all the legal device names. If you specify
-DEVICE, the name must be one of the device names given in this
table. If you specify -SAM, -DAM, or ~APPEND, the name may be
any disk file name, and is interpreted as such. If you specify
the name with no additional option, PL/I chooses an option
according to the following rules:

1. If the file is open with the RECORD KEYED SEQUENTIAL
attributes, the name is interpreted as the name of a

MIDASPLUS disk file.

2. If the file is open with the RECORD DIRECT attributes,
the option —DAM is assumed.

3. If the file is opened with the STREAM attribute, or if
the file is opened with the RECORD SEQUENTIAL attribute,
but without KEYED, and if the name is one of the valid
device names listed in Table 12-3, the option ~DEVICE is
assumed,

4, If the conditions specified in the preceding paragraph
hold, except that the name is not listed in Table 12-3,
~SAM is assumed,

First Edition 12-24

RECORD INPUT/OUTPUT

Table 12-3
Device Names

Name Input/Output/Update Device

SYSIN INPOT Terminal

SYSPRINT OUTPUT Terminal

TTY INPUT/OUTPUT Terminal

PIR INPUT Paper tape reader

PTP OUTPUT Paper tape punch

CR INPUT Card reader

SPR OUTPUT Serial printer

MIO-MT7 INPUT/OUTPUT/UPDATE Mag tape drives 0-7

PRO-PR1 CUTPUT Line printer 0-1

-RECL n: This option specifies the record length (in bytes) for

DIRECT files, or the buffer size (that is, maximum record

length) for other file types. The maximum is 131,062 bytes. If

-RECL is omitted, n must immediately follow -SAM, —~DAM, ~DEVICE

or ~APPEND, The default is -RECL 2048.

-FUNIT m: This option specifies the file unit on which the disk

file is to be opened, or is already open. If the file is

already open, name is ignored, If the file is already open and

-APPEND is not specified, the file is truncated at its current

position. If -FUNIT is not specified, any available file unit

is used.

-NOSIZE: This option specifies that records of a DIRECT file

are to be stored in the old format (the data is not preceded by

aword indicating the record length). If ~-NOSIZE is not

specified, records are stored in RDBIN/WRBIN format (a word

indicating record length precedes the data).

-CTLASA: This option specifies that FORTRAN control codes are

to be the first character in each line of a file. ‘The

characters and their spacing effect are

Print Character
Option Generated Effect

SKIP(0) + overprinting

PAGE 1 advance to next

page

SKIP blank one line

12-25 First Edition

PL/I Reference Guide

This option is useful with the -FIN command line option of
SPOOL. This option allows SKIP(0) to be used for overstriking.
SKIP(0) directed to the TTY device causes a carriage return
without a line feed.

@ -FORMS: This option specifies that the file is a FORMS file.
FORMS files must be STREAM files. See Appendix H for more
information,

The above options may be specified in any order, but name must be the
first entry in the TITLE option. All names and options are mapped to
uppercase before processing. Therefore, @tty -dev and @TTY -DEV are
equivalent. The maximum length of the TITLE option is 128 characters.

If the OPEN statement contains no TITLE option, PL/I assumes a default
of TITLE('ident'), where ident is the name of the FILE identifier in
the FILE option of the OPEN statement. For example,

OPEN FILE(F) OUTPUT;

is the same as

OPEN FILE(F) OUTPUT TITLE('F') ;

Explicit and Implicit File Openings

Before PL/I can execute any GET, PUT, READ, WRITE, REWRITE, LOCATE, or

DELETE statements, PL/I must open the file. Your program may open a
file explicitly by executing an OPEN statement.

However, if your progran executes one of the above input/output
statements for a file that is not open, PL/I opens the file implicitly
before executing the I/O statement. The implicit opening is equivalent
to an explicit OPEN statement with certain implied standard attributes
that depend upon the type of the statement that is causing the file to
be opened implicitly. Table 12-4 lists these implied attributes for
each of the different kinds of statements.

Suppose, for example, your program executes the statement

GET FILE(F) LIST(X) ;

and the file F has not been opened. Then PL/I opens the file
implicitly, by simulating execution of the following statement:

OPEN FILE(F) STREAM INPUT;

First Edition 12-26

RECORD INPUT/OUTPUT

Table 12-4
Implied Attributes for I/O Statements

Statement Implied Attributes

GET STREAM INPUT

PUT STREAM OUTPUT

READ RECORD INPUT*

WRITE RECORD OUTPUT*

REWRITE RECORD UPDATE

LOCATE RECORD OUTPUT

DELETE RECORD UPDATE
* INPUT and OUTPUT are not implied if UPDATE is a DECLARE

attribute,

Attribute Merging and Completion at File Opening

As we have previously stated, you may specify attributes of a file in

several different places: as attributes in the DECLARE statement, as

options in the OPEN statement, and in the CHARACTER string value of the

expression specified with the TITLE option. When your program executes
any statement that opens a file, PL/I must form a complete, consistent
attribute set for the file. This means that PL/I must gather together
all the file attributes specified in the various possible places, must
check them for consistency, and must supply additional attributes when

the specified attribute set is incomplete. This routine is necessary

whether the file is opened by an explicit OPEN statement or by another

input/output statement that causes PL/I to execute an implied OPEN

statement as described in the preceding section.

PL/I goes through the following steps to supply attributes:

1. PL/I starts with the attributes given in the declaration of the
file.

2. I£ the file opening is caused by an explicit OPEN statement,
PL/I merges the attributes in the OPEN statement with the
attributes in the declaration.

3. If the file opening is implicit, PL/I merges the attributes
implied by the input/output statement type (see the preceding
section) with the attributes in the declaration.

12-27 First Edition

PL/I Reference Guide

4, Certain file attributes imply other file attributes. Table
12-5 lists these attribute implications. If the merged
attribute set so far contains any of the attributes in the
first column of Table 12-5, PL/I adds the attributes in the
corresponding line of the second column to the merged attribute
set.

5. If the merged attribute set so far contains neither the STREAM
attribute nor the RECORD attribute, PL/I uses the default
attribute of STREAM,

6. If the merged attribute set so far does not contain any of the
attributes INPUT, OUTPUT, or UPDATE, PL/I uses the default
attribute of INPUT.

7. If the merged attribute set so far contains RECORD, but does
not contain either DIRECT or SHQUENTIAL, PL/I uses the default
attribute of SEQUENTIAL.

8. If the file being opened has an identified name of SYSPRINT,
and if the merged attribute set so far contains STREAM and
CUTPUT, PL/I adds PRINT to the merged attribute set.

Table 12-5
Implied Attributes for Files

Attribute Implied Attributes

DIRECT RECORD KEYED

KEYED RECORD

PRINT STREAM OUTPUT

SEQUENTIAL RECORD

UPDATE RECORD
PL/I follows the above steps in order to build a complete attribute

set. After these steps have been completed, PL/I must do some error

checking of several different types.

First, PL/I must check for conflicting attributes. Table 12-6 lists

all conflicting file attributes. If the attribute set contains any

attributes in the first column along with an attribute on the same line

in the second column, there is an attribute conflict, and the file

opening fails.

First Edition 12-28

RECORD INPUT/OUTPUT

Table 12-6
Conflicting Attributes

Attribute Conflicting Attributes

INPUT OUTPUT, UPDATE

OUTPUT UPDATE

STREAM RECORD

DIRECT SEQUENTIAL
If the file opening is being done by an explicit OPEN statement, PL/I
performs the following additional checking:

1. If the explicit OPEN statement has a LINESIZE option, it is. an
error if the attribute set does not contain STREAM OUTPUT.

2. I£ the OPEN statement has a PAGESIZE or TAB option, it is an
error if the attribute set does not include the STREAM OUTPUT
PRINT options,

If any of the above error checks fail, the entire file opening fails,

and PL/I raises the UNDEFINEDFILE condition.

Attribute Requirements of Input/Output Statements

Before PL/I can execute any input/output statement, the file must be
opened with certain attributes. For example, before PL/I can execute a
GET statement, the file must be opened with the STREAM INPUT
attributes. Each statement type has its own set of required
attributes. Table 12-7 lists all of these required attributes. Each
Statement of the type listed in the first column may not be executed
unless the file has been opened, either implicitly or explicitly, with
the attributes in the second column. If the file is not open, PL/I
opens it implicitly, according to the rules already given. If the file
has been opened, but without all the attributes specified by the table,
PL/I raises the ERROR condition.

12-29 First Edition

PL/I Reference Guide

Table 12-7
Required Attributes for I/O Statements

Statement Required File Attributes

READ INPUT or UPDATE
READ with IGNORE option SEQUENTIAL
READ with no KEY option SEQUENTIAL
READ with KEY or KEYTO option KEYED
WRITE either OUTPUT or

DIRECT UPDATE
WRITE with KEYFROM option KEYED
LOCATE RECORD OUTPUT
LOCATE with KEY option KEYED
REWRITE RECORD UPDATE
REWRITE with no KEY option SEQUENTIAL
REWRITE with KEY option KEYED
DELETE REQORD UPDATE
DELETE with no KEY option SEQUENTIAL
DELETE with KEY option KEYED
GET STREAM INPUT
PUT STREAM OUTPUT

There is an additional requirement. If your program executes certain
input/output statements, certain options of those statements are
required, depending upon the attributes of the open file. ‘These
requirements are listed in Table 12-8.

Table 12-8
Required Attributes for File Options

If the Open File Then the Statement
Statement Has These Attributes Must Have These Options

REWRITE DIRECT KEY
LOCATE DIRECT KEY

If any requirements listed above fail, PL/I raises the ERROR condition.

First Edition 12-30

RECORD INPUT/OUTPUT

The Effect of the CLOSE Statement on Attributes

When PL/I executes a CLOSE statement, the attributes associated with
the FILE identifier revert to those specified in the declaration alone.
That is, the attribute set for the file that was created when the file
was opened is thrown away, leaving only those attributes in the DECLARE
statement for the file. This means that it is possible to reopen the
file in the same program with different attributes.

The program segment

DECLARE F FILE RECORD;
OPEN FILE(F) OUTPUT;

WRITE PILE(F)...}

CLOSE FILE(F);
OPEN FILE(F) INPUT;

READ FILE(F) wee}

CLOSE FILE(F) ;

illustrates how you can close a file and then reopen it with different
attributes, The first OPEN statement opens the file F for RECORD
OUTPUT, presumably to create a disk file. When PL/I executes the CLOSE
statement, PL/I leaves F only with the RECORD attribute specified in
the DECLARE statement. Then, the new OPEN statement opens the same
file for RECORD input.

Be aware of a fairly subtle potential error. If you execute an OPEN
statement for a file that is already open, PL/I simply ignores the OPEN
statement. For example, in the program segment shown above, suppose
you accidentally onitted the CLOSE statement from your code. Then when
PL/I encountered the second OPEN statement, PL/I would ignore the OPEN
statement, because the file was already open, and so the file would
remain open with the RECORD OUTPUT attributes obtained from the first
OPEN. PL/I would not find any error until your program attempted to
execute the READ statement, which would fail because the file was not
opened with either the INPUT or UPDATE attributes.

12-31 First Edition

PL/I Reference Guide

INPUT/OUTPUT ON CONDITIONS AND BUILT-IN FUNCTIONS

Note

This section applies to both STREAM and RECORD input/output.

When a statement execution fails because of an error, PL/I normally
prints an error message and terminates execution of your program. You
may, however, use the ON statement to specify what action your program
should take when an error occurs. ON statements are presented in

detail in Chapter 13.

The following is a list of all ON conditions for input/output
operation. In the following list, identifier is the FILE identifier
specified with the FILE option of the input/output statement.

@ UNDEFINEDFILE(identifier) is raised when either an implicit
opening or an explicit OPEN statement fails for any reason.

e@ ENDFILE(identifier) is raised when a GET or READ statement fails
because of end of file. It is discussed more fully in Chapter
ll.

@ kEY(identifier) is raised when a keyed operation fails. ‘This
can occur when a key specified in either the KEY or KEYFROM
option has the wrong format, when a record with the specified
key does not exist in the file for a READ, REWRITE, or DELETE
statement, or when a record with the specified key already does
exist in the file for a WRITE statement.

@ REOORD(identifier) is raised when the size of the variable
specified with the FROM or INTO option is too large or too small
for the file or device being processed by the input/output
statement.

@ TRANSMIT(identifier) is raised when a hardware input/output
error occurs during an I/O operation.

@ ENDPAGE(identifier) is raised when output from a PUT statement
to a PRINT file reaches the bottan of a printer page. It is

discussed more fully in Chapter 11.

@ NAME(identifier) is raised when the input stream for a GET DATA
operation contains an invalid variable reference to the left of

an equal sign.

Since it is possible for a given on-unit to be raised for various
conditions and various error situations, PL/I provides several built-in
functions for use in on-units to determine precisely what error caused
the on-unit to be invoked. ‘These are discussed in Chapters 13 and 14.

First Edition 12-32

RECORD INPUT/OUTPUT

The condition-handling built-in functions specifically related to
input/output conditions are as follows:

e ONFILE() returns a CHARACTER string containing the name of the

FILE identifier for which the input/output condition was raised.

@ ONFIELD() returns a CHARACTER string containing the invalid

characters in the input stream that caused the NAME condition to

be invoked on a GET DATA statement.

e ONKEY() returns a CHARACTER string containing either the invalid

value computed from the expression in the KEY or KEYFROM option,
or else the key of the record on which the input/output
operation fails.

In addition, ONCODE(), while not limited to I/O functions, returns the

error code for conditions for which no orrunit was defined.

FILE VARIABLES AND FUNCTIONS THAT RETURN FILE VALUES

Note

This section applies to both STREAM and RECORD input/output.

All the FILE declarations in this and preceding sections have been for
identifiers given the FILE QONSTANT attributes. (The CONSTANT
attribute, which you normally do not specify yourself, is the default.)

You may also DECLARE an identifier to have the FILE VARIABLE
attributes. Such a variable can have as its value any FILE constant.
In fact, in an assignment statement, you may assign any FILE constant

to a FILE variable.

This is illustrated in the following example:

DECLARE (F,G) FILE STREAM OUTPUT;

DECLARE FV FILE VARIABLE;
OPEN FILE(F) ;
OPEN FILE(G) ;

IF K = 1 THEN FV = F; ELSE FV = G;

eee

PUT FILE(FV) LIST(X,Y) 3

In this example, F and G each have the FILE CONSTANT attributes, while

FV has the FILE VARIABLE attribute. ‘The OPEN statement opens the two

files, F and G. ‘he first use of FV is illustrated in the THEN and

ELSE clauses of the IF statement of the example above. As shown, the

12-33 First Edition

PL/I Reference Guide

value o£ K determines which of the constants F or G is to be assigned
to FV. The PUT statement at the end of the example outputs to either F
or G, depending upon which of these has been assigned to FV.

You may also DECLARE an array of PILE VARIABLE values, as in the
following:

DECLARE(Fl, F2, F3, F4, F5) FILE
RECORD OUTPUT;

DECLARE FA(5) FILE VARIABLE
INITIAL (Fl, F2, F3, F4, F5);

ooo

TOK =1 7 5;
WRITE FILE(FA(K)) FROM(S);
END;

In this example, the FILE VARIABLE array has been initialized to the
five FILE CONSTANT values, as shown. The WRITE statement is executed
five times, once for each of the FILE CONSTANT values.

A user-defined function may return a FILE value if the FILE data type
is specified in the RETURNS option, as in

FILEFUNC: PROCEDURE(N) RETURNS (FILE) 3

Inside such a procedure, the RETURN statement should specify, as an
argument, a constant or variable whose data type is FILE.

First Edition 12-34

PL/I Condition

Handling

During execution of your PL/I program, it is possible for various

conditions to be raised. A condition is something that happens during

execution of a statement that alters or prevents the normal execution

of that statement. ‘The following kinds of events are conditions:

e Anerror. For example, the statement

A= B/C;

would not execute normally if C were 0. this is called a

ZERODIVIDE error. Many conditions are errors.

@ End of file. When a GET or READ statement fails because of end

of file, the GET or READ statement cannot execute normally.

Even though, philosophically speaking, such a condition is not

really an error since end of file must occur sooner or later,

nonetheless PL/I treats this situation as if it were an error.

This is called an ENDFILE condition.

e Termination of program. Termination of your program for any

reason (including normal completion) is a condition.

The following sections show how to use the ON statement to specify what

action your program should take whenever a condition such as those just

described is raised,

13-1 First Edition

PL/I Reference Guide

THE ON STATEMENT

The PL/I language specifies a standard system action that PL/I takes
whenever a condition is raised. In most (but not all) situations where
a condition is raised, the standard system action that PL/I takes is to
print an error message and terminate execution of your program.

If you wish PL/I to take an action other than the standard system
action, use the ON statement to specify exactly what action PL/I should
take,

Althouch the ON statement has several different forms, the most common
form is the following:

ON condition-name or-unit;

where condition-name specifies the condition for which you wish to
specify alternate action; the full list of these condition names is
given later in this chapter. The on-unit is the alternate action that
PL/I should take instead of the standard system action.

The simplest form of or-unit is a single statement that you wish PL/I
to execute when the condition occurs. For example, the statement

ON ZERODIVIDE CALL REVALUE;

specifies that, in any arithmetic computation, if a condition is raised
because of division by zero, PL/I should execute the statement CALL
REVALUE;. Frequently the single statement is a GO TO statement. An
on-unit that is a single statement may not be an IF, DO, or ON
statement.

Alternatively, if you wish the action specified by your on-unit to
contain several statements, use a BHGIN/END block, For example,
consider the following ON statement:

ON OVERFLOW BEGIN:

DECLARE X FLOAT?

X=A~- B+ C3
IF X < 0 THEN GO TO ERRA;

ELSE GO TO ERRB;

END;

This ON statement specifies the OVERFLOW condition, and so this
statement tells PL/I what alternate action you wish it to take when
floating-point overflow occurs during computation of an expression.
Notice that PL/I does not execute the statements between the BEGIN and
END right away. Instead, PL/I skips over these statements for the time

First Edition 13-2

PL/I CONDITION HANDLING

being, but when the OVERFLOW condition occurs, PL/I goes back and
executes these statements.

When a condition is signalled, each block activation beginning with the

current block activation is examined to see if it has an established

on-unit for the condition. If it does not, the previous block

activation is examined, and so on, util an or-unit for the condition

is found. If no or-unit exists, the standard system action is invoked.

The systen action for KEY or ENDFILE signals the ERROR condition. The

system action for ENDPAGE puts a new page. The standard systen action

for ERROR writes an error message and terminates program execution.

The consequence of this mechanism is that a block may establish its own

on-unit for a condition or may let its caller's orunit handle the

condition. Any ormunit established by a block is cancelled when the
block returns to its caller or is otherwise terminated.

Other Formats of the ON Statement

For any form of the ON statement, you may specify more than one

condition name by giving a list of condition names separated by commas,

This applies both to ON statements that specify omunits, and to ON
statements with the SYSTEM option, For example,

ON UNDERFLOW, OVERFLOW GO TO COMPERR;

specifies that on either the UNDERFLOW or OVERFLOW condition, control

should pass to the statement with label COMPERR.

The On-unit as a Block

An on-unit may be a single statement, or it may be a group of

statements beginning with BEGIN and ending with END. However, even

when the on-unit is a single statement, there are implied BEGIN and END

statements, because PL/I inserts these statements before and after the

on-units, respectively.

In the ON statement

ON ENDFILE(SYSIN) FLAG = 1;

the on-unit is a single statement, FLAG = 1. Since the onmunit is a

single statement, PL/I inserts a BEGIN statement before the onmunit and

an END statement after the on-unit, so that the omunit is really a

group of statements beginning with BEGIN and ending with END.

13-3 First Edition

PL/I Reference Guide

Therefore, the above ON statement is equivalent to

ON ENDFILE(SYSIN) BEGIN;

FLAG = 1;

END;

In both cases, the on-unit is a block, but in the first case, the BEGIN

and END statements are implied.

Normal and Abnormal Termination of the On-unit

Like any other block in your program, an on-unit may terminate normally
or abnormally. An on-unit terminates normally if your program executes
the END statement of the omunit block. It terminates abnormally if
your program executes a GO TO statenent that transfers out of the

on-unit.

Therefore, the on-unit specified by the statement

ON ENDFILE(SYSIN) FLAG = 1;

would terminate normally if invoked, because it is a simple assignment
statement. An ormunit specified by

ON ENDFILE(SYSIN) CALL DONE;

would also terminate normally, since it invokes a procedure. However,
the on-unit in the statement

ON ENDFILE(SYSIN) GO TO EOF;

would terminate abnormally, since control would be transferred to a
label, EOF, that is not within the or-unit.

Examples of ON ENDFILE

The most commonly used ON condition name is ENDFILE. An ENDFILE
condition is raised when a GET or READ statement fails because end of
file was reached on the file being used for input.

The following program segment illustrates how to use GET LIST to input

data values and stop at end of file.

First Edition 13-4

PL/I CONDITION HANDLING

ON ENDFILE(SYSIN) GO TO NEXT;

DO WHILE('1'B) ;

GET LIST (X) 3

PUT LIST (SORT (X)) 3

END;

NEXT: 2c

In this example the ON statement specifies that when end of file occurs
on file SYSIN, control should transfer to the statement with label
NEXT, (This would be an abnormal termination of the on-unit.) The DO
loop specifies an infinite loop, but the loop terminates when the GET
statement fails because of end of file. At that point, the or-unit GO
TO NEXT is executed. The statement

GET LIST (X) 3

is equivalent to the statement

GET FILE(SYSIN) LIST (X) ;

because SYSIN is the default file name when your GET statement does not
have a FILE or STRING option. That is why SYSIN is the file name used
in the ON ENDFILE statement.

The following example illustrates ON ENDFILE somewhat differently:

DECLARE C CHARACTER (80) ;
DECLARE CARDIN FILE;

ON ENDFILE(CARDIN) EOF = 13
EOF = 0;

READ FILE(CARDIN) INTO(C);
DO WHILE(EOF = 0);
PUT SKIP LIST(C);
READ FILE(CARDIN) INTO(C);

END;

In the previous example, the omunit was a GO TO statement, and so the
on-unit would terminate abnormally when invoked. In this new example,
the on-unit is a simple assignment statement, and so when the orrunit
is invoked it terminates normally rather than abnormally. ‘This has the
advantage of making the on-unit more acceptable to those programmers
who follow strict structured programming rules. Another difference in
this example is that the input statement is a READ statement rather
than a GET statement.

13-5 First Edition

PL/I Reference Guide

The on-unit is the statement BOF = 1. The DO loop executes as long as
EOF equals 0. This is true until the on-unit is invoked, and that
happens when one of the READ statements fails because of end of file.
When such an end of file occurs, PL/I invokes the on-unit after setting
EOF to 1, the on-unit terminates normally, and PL/I continues execution
with the statement following the READ statement that caused the error
to occur.

Examples of ON CONVERSION

PL/I raises the CONVERSION condition whenever any conversion from
CHARACTER or pictured-character fails because there is an invalid
character in the CHARACTER string that is the source of the conversion.
The most common example of this occurs when a GET LIST statement fails
because the input stream contains an invalid character.

For example, consider the statements

DECLARE VAL FLOAT;
GET LIST (VAL);

Suppose that the GET statement executed, and PL/I found the following
characters in the input stream:

23V74T;

The GET statement would fail because of the characters V and T in the
input stream. These characters would cause the conversion of '23V74T'
to FLOAT to fail, and PL/I would raise the CONVERSION condition.

Your program can handle errors of this type by establishing a
CONVERSION on-unit. In this or-unit, you may use the ONSOURCE and
ONCHAR built-in functions to determine precisely what error occurred.
ONSOURCE() returns the CHARACTER string for which the conversion
failed, and ONCHAR() returns the first invalid character. Consider the
following example:

DECLARE VAL FLOAT:
ON CONVERSION BEGIN;

PUT SKIP EDIT(' INVALID CHAR', ONCHAR(),

'IN INPUT STREAM', ONSOURCE(), (A))3
GO TO BADCHAR;
END?

GET LIST (VAL) ;

eee

BADCHAR? cece

First Edition 13-6

PL/I CONDITION HANDLING

This example specifies that if a CONVERSION error occurs, PL/I should

execute the PUT and GO TO statements that are in the on-unit. Suppose
that the GET statement executed, and the input stream were

23V74T;

Then the CONVERSION condition would be raised, and PL/I would invoke

the on-unit. ‘The PUT statement in the on-unit would print the

following:

INVALID CHAR V IN INPUT STREAM 23V74T

This PUT STATEMENT uses the ONCHAR and ONSOURCE built-in functions.

After executing the PUT statement, PL/I would transfer control to the

statement with label BADCHAR, thus terminating the or-unit abnormally.

There is a more complex method for handling CONVERSION errors: use the

on-unit specified with the ON OONVERSION statement to repair the

CHARACTER string for which the conversion failed. The technique is to

assign new CHARACTER string values to ONCHAR or ONSOURCE, and then to

terminate the or-unit normally, which causes Fi/I to reattempt the

conversion, When you use ONCHAR or ONSOURCE in this way, they are

called pseudovariables, rather than built-in functions, The method is

illustrated as follows:

DECLARE VAL FLOAT?
ON CONVERSION BHGIN;

ONSOURCE () = 'O'?
END;

GET LIST (VAL) 3

If there is any bad input to the GET statement, PL/I invokes the

on-unit specified for ON CONVERSION. This on-unit assigns the string

'0' to ONSOURCE as a pseudovariable. Then when PL/I executes the END

statement of the or-unit (so that the on-unit terminates normally),

control returns to the GET statement at the point where the conversion

error occurred, and PL/I reattempts the conversion with the string

value assigned to the ONSOURCE pseudovariable., The result is that VAL

is given the value 0.

In the preceding example, ONSOURCE was used as a pseudovariable in the

CONVERSION on-unit, with the effect of changing the entire string that
caused the conversion error. If you wish to change only the one
invalid character that caused the CONVERSION error, you may assign a
value to ONGIAR, used as a pseudovariable. PL/I then changes the

erroneous string by changing the first invalid character in that string

to the one that you assign to ONCHAR. Then, as before, if you

terminate the CONVERSION on-unit normally, PL/I returns to the

13-7 First Edition

PL/I Reference Guide

statement that gave rise to the CONVERSION error and reattempts the
conversion with the modified input string. If the conversion fails
again, PL/I raises the CONVERSION condition again, and the on-unit can
assign a value to ONCHAR again, this time presumably changing the next
invalid character in the input string.

Consider the following example:

DECLARE VAL FLOAT;
ON CONVERSION BEGIN;

ONCHAR() = 'O':

END;
GET LIST (VAL) ;

Suppose that the input stream to this program segment is

23V/4T

This input stream contains two invalid characters, V and T. Therefore,
the GET statement fails, and PL/I invokes the CONVERSION on-unit. ‘The
on-unit assigns the character '0' to the ONCHAR() pseudovariable, which
has the effect of changing the first invalid character in the input
stream to '0'. ‘Therefore, the new conversion source string is

23074T

When PL/I executes the END statement of the or-unit so that the or-unit
terminates normally, PL/I returns to the GET statement and reattenpts
the conversion.

The conversion fails again, because there is a second invalid
character, T, and so the on-unit is invoked a second time. This time
the assignment to ONCHAR changes the T, and so the new conversion
source string is

230740

When the on-unit terminates normally this time, PL/I returns to the GET
statement and reattempts the conversion, which finally succeeds.
Therefore, VAL is given the value 230740.

The very astute reader will realize that the preceding example is very
dangerous, since it can possibly result in an infinite loop. The
reason for this is that it is possible for the invalid character in a
conversion to be a 0, and so assigning the value '0' to the ONCHAR
pseudovariable would have no effect on the string being converted.

First Edition 13-8

PL/I CONDITION HANDLING

Therefore the new conversion attempt would always fail, and so PL/I

would go into an infinite loop attempting the conversion, failing,

invoking the ormunit, and reattempting the conversion. An example of

gome input stream characters that would in fact give rise to such a

situation is the following:

19

If these. three characters were in the input stream, the first two

characters would be valid, and the first invalid character would be the

0. So the statement

ONCHAR() = 'O';

would make no change to the invalid string of characters taken from the

input stream.

This example illustrates an important fact: use of ONCHAR and ONSOURCE

as pseudovariables can be very tricky and can lead to infinite loops

unless great care is taken. For this reason, it is recommended that

you avoid using these pseudovariables altogether, and that you

terminate your CONVERSION on-units abnormally, executing a GO TO

statement out of any CONVERSION on-unit.

Examples of ON ERROR

ERROR is a condition keyword that is a general catch-all for any type

of error situation. PL/I raises the ERROR condition in any of the

following situations:

e If a program error occurs for which PL/I has no special

condition keyword. For example, if you execute a GET statement

on a file that has previously been opened for OUTPUT, PL/I

directly raises the ERROR condition, with an appropriate ONCODE™

message indicating the problem.

@ If a program error occurs for which PL/I does have a_ special

condition keyword, but your program has no established on-unit

for that condition. For example, if a GET statement fails

because of end of file on file SYSIN, but your program has not

established any on-unit for ENDFILE(SYSIN), PL/I raises the

ERROR condition. In fact, this can be restated as follows: the

standard system action for the ENDPILE condition is to raise the

ERROR condition.

13-9 First Edition

PL/I Reference Guide

@ If an or-unit terminates normally, the action taken for certain
conditions whose on-units terminate normally is to raise the
ERROR condition. For example, if an OVERFLOW on-unit terminates
normally, PL/I raises the ERROR condition.

Therefore, as you can see, use of ON ERROR provides a very general
method for handling many different kinds of errors. To understand sane
of the full power of ON ERROR, consider the following program examples:

see Section A

ONERROR GO TO LC;

wee Section B

LC: ONERROR GO TO LD:

vee Section C

LD: wee
see Section D

This program has four sections, which are shown as A, B, C, and D.
Assuming that the four sections execute in order, and that there is no
jumping around among the sections, note what happens if an error occurs
in any of these four sections:

@ If the ERROR condition is raised in Section A before any ON
statement is executed, PL/I takes the standard system action,
which is to print an error message and terminate execution of
the program.

@ Now, suppose that the ERROR condition is raised in Section B,
after the first ON ERROR statement is executed. Then PL/I
invokes the established on-unit for the ERROR condition, which
is

GO TO LC;

and so control passes to the statement with label LC. This
means that the rest of Section B, after the error occurs, is
skipped.

_ @ Now, suppose that control reaches label LC. This might have
happened either because of the normal flow of execution out of
Section B or because of an error during execution of Section B
that caused PL/I to invoke the established on-unit and execute a
GO TO to label LC. When PL/I executes the second ON ERROR

First Edition 13-10

PL/I CONDITION HANDLING

statement, the or-unit specified there replaces the or-unit

established by the previous ON statement. ‘therefore, if an

error occurs in Section C, PL/I invokes the new established

on-unit, which is

GO TO LD;

and so control passes to the statement with label LD.

e Finally, suppose that control reaches label LD, either through

normal flow of control out of Section C, or because of an error

in Section C, If an error occurs in Section D, then, since the

on-unit

GO TO LD;

is still established, control returns to the statement with

label LD. This will probably result in re-execution of the

statement that gave rise to the error, and so an infinite loop

may result.

The main point to understand from the above example is that the ON

statement is an executable statement, and has no effect until it is

executed, (This is unlike the DECLARE statement, which is declarative

and is not executed.) Furthermore, when PL/I executes a second ON

statement for a given condition, the effect of the first ON statement

is wiped out. (This is untrue if the ON statements are in different

program blocks.)

The above example also shows the very important point that use of ON

ERROR can be very risky. In the example, use of ON ERROR could have

led to an infinite loop. The general reason that ON ERROR is so risky

is that the ERROR condition can be raised for any sort of error,

including many types of errors that you cannot anticipate at the time

you write your program. For this reason, use of ON ERROR should be

avoided.

In the above example, it is possible to use

ON ERROR SYSTEM;

13-11 First Edition

PL/I Reference Guide

to avoid an infinite loop. The following is the revised program
segnent:

eee

eee Section A

ON ERROR GO TO LC;

cee Section B

LC: ON ERROR GO TO LD;

eae

eee Section C

LD: ON ERROR SYSTEM;

eee Section D

In this revised example, the SYSTEM option tells PL/I to take the
standard system action when the ERROR condition is raised. Therefore,
if an error occurs in Section D, B./I does the same as in Section A:
it prints an error message and terminates execution of the program.

Another example of a dangerous use of ON ERROR is as follows:

ON ERROR PUT DATA;

The programmer who codes this PL/I statement intends that PL/I is to
dump all program variables in case of any program error that raises the
ERROR condition. The reason that this statement is dangerous is that
PUT DATA could itself cause the ERROR condition to be raised, and so
ERROR would be raised again, resulting in an infinite loop. An
alternative, and considerably safer, method of doing the same thing is

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT DATA;
END;

With this on-unit, if an error occurs in the PUT DATA statement, the
standard system action is taken, and the program terminates.

ON ERROR overrides any conditions previously established. ‘Therefore,
if you wish to test for other conditions, they should be listed after
ON ERROR.

First Edition 13-12

PL/I CONDITION HANDLING

ENABLING CONDITIONS WITH CONDITION PREFIXES

The last statement of the program segment

DECLARE A(100) :

K= 101;
eee

A(K) = 03

is invalid, because K = 101, and so the subscript value is out of

range.

PL/I, however, takes no special action, and the results of executing

the final assignment statement are unpredictable. The reason for this

is that, unless you specify otherwise, PL/I does not monitor subscript

errors. Therefore, even though the value of K is 101, P1/I executes

A(K) = 0;

as if it were a valid statement. Since the array A contains only 100

words, PL/I stores the value 0 in the word following the end of the

array A, the word where A(101) would be if it existed, This means that

the contents of this word, which might be another variable, or might be

an important system pointer, are destroyed, with results that are

totally unpredictable.

Whether or not PL/I monitors subscript errors of this kind is under

your control. ‘his section discusses these kinds of errors. If PL/I

monitors the error, the error condition is said to be enabled;

otherwise, the condition is said to be disabled.

Some conditions may be enabled or disabled by means of condition

prefixes of the form

(condition-name):

The resulting enablement or disablement has a scope that may be one

line, one block, or a whole procedure, depending on the position of the

condition prefix. The following sections give examples of enablement,

disablement, and scope.

A General Example: Enabling the SUBSCRIPTRANGE Condition

SUBSCRIPTRANGE (abbreviation SUBRG) is the PL/I keyword for the

condition corresponding to an illegal subscript reference of the kind

13-13 First Edition

PL/I Reference Guide

illustrated above, PL/I does not monitor subscript errors unless you
direct it to. In PL/I terminology, this is expressed by saying that
SUBSCRIPTRANGE is disabled by default. You may enable the
SUBSCRIPIRANGE condition by using condition prefixes in the manner
described below.

Usually, you enable SUBSCRIPTRANGE for your entire main program or for
an entire external procedure. Do this by using a condition prefix
before the label of the PROCEDURE statement. Consider the following:

(SUBRG): UPD: PROC OPTIONS (MAIN) ;
eee

eo

END UPD;

The condition prefix for the PROCEDURE statement is (SUBRG). By
placing it prior to the label of the PROCEDURE statement, in the manner
shown above, you are specifying that the PL/I compiler is to generate
code to check for possible errors in any subscript reference that
appears within this main procedure. Similarly, you may use a condition
prefix prior to the label of any external procedure to cause PL/I to
generate code to monitor subscript errors throughout that procedure.

On the other hand, you may enable the SUBSCRIPIRANGE condition for a
single statement only. Do this by using a condition prefix on that
Single statement. Consider the following, for example:

(SUBSCRIPTRANGE): MAT(I, J) = MAT(I, K) * MAT(K, J);

The condition prefix on this assignment statement causes SUBSCRIPTRANGE
to be enabled for the assignment statement only. This means that PL/I
generates extra code to check that each of the three subscript lists
appearing in this assignment statement is valid.

Once you have enabled the SUBSCRIPIRANGE condition, use the ON
SUBSCRIPIRANGE statement to establish an on-unit for SUBSCRIPLRANGE, in
order to specify what action PL/I should take in case it discovers an
error in a subscript reference. For example, consider the following:

ON SUBSCRIPIRANGE BEGIN;
PUT SKIP LIST('SUBSCRIPT ERROR FOR ARRAY A‘);
GO TO RESTART;
END;

(SUBRG): A(J) = 4 * A(K):

First Edition 13-14

PL/I CONDITION HANDLING

SUBSCRIPTRANGE is enabled for the assignment statement that ends this
example, and if a subscript error occurs in that assignment statement,
the specified on-unit is invoked. If no on-unit had been established,
and a subscript error were detected, then PL/I would take the standard
system action, which is to print an error message and raise the ERROR
condition.

Note that there is no point in having an ON SUBSCRIPIRANGE condition
unless you use a condition prefix to enable SUBSCRIPIRANGE. The reason
is that PL/I never invokes a SUBSCRIPTRANGE on-unit unless
SUBSCRIPTRANGE is enabled.

A General Example: Disabling the CONVERSION Condition

As was discussed earlier in this chapter, PL/I raises the CONVERSION
condition when a conversion from a CHARACTER string fails because of an

invalid character in the string.

The CONVERSION condition is one of those conditions that are enabled by
default, but that you may disable by means of condition prefixes. This
means that PL/I checks for invalid characters in source strings unless
you specify otherwise. Disable the CONVERSION condition by specifying
NOOCONVERSION in a condition prefix, as in the following example:

(NOCONV): CHR: PROC OPTIONS (MAIN);
DECLARE X FLOAT;
DECLARE C CHARACTER(200) VARYING;

In this example, the condition prefix is (NOCONV), which precedes the
label of the PROCEDURE statement. As a result, CONVERSION is disabled

for the entire procedure. Therefore, in the statement X = C, if the
string C contains an invalid character, then PL/I misinterprets the

invalid character without signaling any error condition, and the result
of the conversion is unpredictable.

13-15 First Edition

PL/I Reference Guide

Enablement/Disablement Statesof Conditions

Most PL/I conditions are enabled at all times, and you may not disable

them. However, certain conditions may be enabled or disabled,

Gepending upon what condition prefixes you use, There are two groups
of such conditions:

@ Those conditions that are enabled by default and maybe
disabled. These conditions are CONVERSION, FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, ZERODIVIDE, and STRINGSIZE.

e Those conditions that are disabled by default and may be

enabled. Those conditions are SIZE, SUBSCRIPIRANGE, and

STRINGRANGE.

All other conditions are enabled by default and cannot be disabled.
Enable a condition for a statement or for a block by using the keyword
for that condition in the condition prefix for the statement or block.
Disable the condition by using NO together with the keyword in the
condition prefix in the same way. For example,

(SIZE, NOOVERFLOW): M =X +13

is an assignment statement with the SIZE condition enabled and the

OVERFLOW condition disabled.

Similarly, if a BEGIN block begins with the statement

(NOOVERFLOW, NOUNDERFLOW, NOZERODIVIDE):

BL: BEGIN;

the conditions OVERFLOW, UNDERFLOW, and ZERODIVIDE are disabled for all
statements within the block BL.

When you apply a condition prefix to a PL/I statement, the scope of the

condition prefix is the portion of your PL/I program to which that

condition prefix applies. The rules for the scope of a condition

prefix are as follows:

e@ The scope of a condition prefix applied to a BEGIN or PROCEDURE
statement is the entire block.

e@ The scope of a condition prefix applied to a DO statement is

just the DO statement itself. The condition prefix does not

apply to the entire DO group.

First Edition 13-16

PL/I CONDITION HANDLING

e The scope of a condition prefix applied to an IF statement is

only the expression immediately following the IF keyword. Thus,

the condition prefix applies only to the computation of this

logical expression. The condition prefix does not apply to the

THEN or ELSE clauses of the IF statement.

® The scope of a condition prefix applied to an ON statement does

not include the or-unit.

In all other cases, the condition prefix applies to the entire

statement.

If you use a condition prefix to enable or disable some conditions for

an entire block, you may override that condition prefix selectively

within the block by using condition prefixes within the block.

Consider the following example:

(NOOVF, SIZE): VARD: PROC OPTIONS (MAIN);

(NOSTZE): M=M+1;

(OVERFLOW): BEGIN;
ve a;

END VARD;

The SIZE condition is enabled for the entire main program, except for

the assignment statement, for which SIZE is disabled. The OVERFLOW

condition is disabled for the whole main program, except within the

BEGIN/END block.

Enabling Conditions for Debugging

During the debugging phase of program development, it is most useful

for you if PL/I monitors as many errors as possible, even if that means

sacrificing space and execution time. Once your program is debugged,

and you are ready to put it into production, you usually wish to get

maximum execution speed by suppressing some of the error checking.

In practical terms, this translates to the following advice: enable

the SIZE, SUBSCRIPTRANGE, and STRINGRANGE conditions during the

debugging phase of your program, and leave these conditions disabled

after your debugging is complete. For example, if you have a main

program called SCHED, you might code it according to the skeleton that

follows.

13-17 First Edition

PL/I Reference Guide

(SIZE, STRINGRANGE, SUBSCRIPTRANGE):
SCHED: PROC OPTIONS (MAIN);

END SCHED;

The three conditions are enabled by the condition prefix on the line
preceding the PROCEDURE statement, and so the compiler generates code
to check for these errors, When you have finished debugging, delete
the first line of the program (containing only the condition prefix)
and recompile the program, and no code is generated to check for these
errors. You will note when you do this that the program with no error
checking is smaller and executes faster.

THE REVERT STATEMENT

As has been stated already, when your program executes an ON statement
for a condition and that ON statement contains an on-unit, the action
specified by the on-unit is said to be established for that condition.
If the ON statement has the SYSTEM option rather than an on-unit, the
ON statement establishes the standard system action for that condition.

In either case, the action established by the ON statement remains
established until one of the following happens:

@ If the block in which the ON statement executed terminates, the
effect of the ON statement is terminated.

@ If the program executes another ON statement for the same
condition, the action established by the new ON statement
replaces the action specified by the previous ON statement for
the same condition.

@ If the program executes a REVERT statement for the same
condition, within the same block in which the ON statement
executed, the effect of the ON statement is wiped out. This is
described below.

To understand one important implication of these rules, suppose that
block A executes an ON statement and then invokes block B. The action
established by the ON statement in block A remains established in block
B.

But now suppose that block B executes another ON statement for the same
condition. Then the new ON statement establishes a new action to be
taken for that condition. However, when block B terminates, and
control returns to block A, the effect of the second ON statement is
wiped out, and the established action reverts to the action established
by the ON statement executed in block A.

This can be restated as follows: if an ON statement establishes an
action for a condition, then when the block containing the ON statement

First Edition 13-18

PL/I CONDITION HANDLING

terminates, the effect of the ON statement is also terminated, and the

established action for that condition reverts to what it was before the

block was invoked.

Use the REVERT statement to do the same thing without terminating the

block. Consider the following statement:

REVERT condition-name ;

When PL/I executes this statement, the effect of any ON statement, for

the same condition, executed in the same block is wiped out, and the

action established for this condition reverts to what it was before the

block was entered.

You may specify more than one condition in the REVERT statement. The

syntax is

REVERT condition-name, condition-name, ...;

The established action for each specified condition reverts to what it

was before the current block was invoked.

THE SIGNAL STATEMENT

The SIGNAL statement allows you to invoke an or-unit artificially,

without actually having the error for the specified condition occur.
The statement is structured as follows:

SIGNAL condition—name;
SIGNAL CONDITION (file);

SIGNAL CONDITION (user-condition name);

When PL/I executes this statement, PL/I raises the specified condition.

If the established action for the condition is the standard system

action, PL/I prints a message and continues execution of the program

with the statement following the SIGNAL statement.

But if the established action is an on-unit, PL/I invokes the on-unit.
If the on-unit terminates normally (that is, if your program executes

the END statement of the on-unit and does not execute a GO TO statement

that transfers out of the on-unit), then PL/I continues execution with
the statement following the SIGNAL statement.

13-19 First Edition

PL/I Reference Guide

The following are the three common uses of the SIGNAL statement:

@ To debug an on-unit that cannot easily be invoked by actually
having the specified error occur. For example, a TRANSMIT error
occurs very rarely and must usually be invoked artificially in
order to debug an on-unit.

@ To raise the CONDITION condition. This is described below.

@ To raise the ENDPAGE condition prior to doing any output to the
file, in order to have a page heading at the top of the first
page of your output. This is described in Chapter ll.

THE CONDITION CONDITION

The CONDITION condition is a user-defined condition that can be raised
only by the SIGNAL statement. For example, you may execute

ON CONDITION (BADVALUE) GO TO HANDLE;

to establish an onunit for the user-defined condition,
CONDITION (BADVALUE). The only way that this on-unit can be invoked is
if your program executes the statement

SIGNAL CONDITION (BADVALUE) ;

The identifier BADVALUE, by its appearance with the OONDITION
condition, is contextually declared to have the OONDITION attribute.
If you wish, you may make this declaration explicit with

DECLARE BADVALUE CONDITION;

In either event, the identifier BADVALUE may not also be used as a
variable or a named constant in your program, since there would be
conflicting declarations,

THE SNAP OPTION

To print a partial dump of memory status at the point where an error
occurs, use the SNAP option in this format:

ON condition SNAP statements

First Edition 13-20

PL/I CONDITION HANDLING

The SNAP option causes a trace of stack frame information, useful to

those familiar with Prime system architecture, to be displayed on the

screen, It may be sent to a file with the COMOUTPUT command, which is

explained in the Prime User's Guide in the chapter on command files and

phantoms. Sample snap dumps from ON ERROR for an attempt to open a

nonexistent file and from ON ZERODIVIDE are reproduced in Figures 13-1

and 13-2.

13-21 First Edition

PL/I Reference Guide

OK, seg restrictions

UNDEFINEDFILE (FILEL) raised in APPE at 4001 (3) /1261

Snap option stack trace for condition "ERROR" follows. (raise_)

Backward trace of stack from frame 2 at 40@1(3)/37546.

STACK SEGMENT IS 4@@1.

(2) @37546: CONDITION FRAME for "ERROR"; returns to 13 (3) /45536.

Condition raised at 4901(3)/24074; LB= 4002 (0) /4428, Keys= #14948

Return by on-unit is not permitted.

e

(8) 031676: Owner= APPE (LB= 4082 (@)/17748@).
Called from 4098 (3) /55573; returns to 408% (3) /55575.
Onunit for "ERROR" is 4@82(3)/35.

STACK SEGMENT IS 4808.

(9) 15@@62: Owner= (LB= 4000 (@)/55268).
Called from 40600(3)/1782; returns to 4088 (3)/1704.
Proceed to this activation is prohibited.

e

(23) 980352: Owner= (LB= 13(@)/10764@).

Called from 1(@)/110224; returns to 1 (8) /62083.

Error: condition "ILLEGAL_ONUNIT_RETURNS" raised at 13 (3) /34456.

ER! ‘

Snap Dump From Attempt to Open a Nonexistent File
Figure 13-1

First Edition 13-22

PL/I CONDITION HANDLING

OK, seg restrictions

Snap option stack trace for condition "ZERODIVIDE" follows. (raise_)

Backward trace of stack from frame 2 at 6002 (3) /10412.

STACK SEGMENT IS 6802.

(2) @1@412: CONDITION FRAME for “ZPRODIVIDE"; returns to 13(3)/42672.

Condition raised at 4001 (3)/30270; LB= 402 (8)/17672, Keys= 815140

Return by on-unit is not permitted.

(9) 150962: Owner= (LB= 4000 (@)/55268).

Called from 4090 (3)/1782; returns to 400@ (3) /1704.

Proceed to this activation is prohibited.

(18) 158812: Owner= (LB= 4900 (8) /5074) .

Called from 4000 (3)/1100; returns to 409% (3)/1102.

Onunit for "CLEANUPS" is 480 (3) /56378.

(11) 158680: Owner= (LB= 4000 (8) /5074) .

Called from @(0)/177776; returns to 0(8)/0.

STACK SEGMENT IS 6002.

(12) 987168: Owner= (LB= 13(3)/21530).

Called from 13(3)/6671; returns to 13(3)/6711.

Onunit for "CLEANUPS" is 13(3)/22215.

e

(35) 000352: Owner= (LB= 13 (8) /107640).

Called from 1(@)/110224; returns to 1(9) /6983.

Error: condition "ILLEGAL_ONUNIT_RETURNS" raised at 13 (3) 734456.

ER!

Snap Dump From ON ZERODIVIDE SNAP

Figure 13-2

13-23 First Edition

PL/I Reference Guide

LIST OF OCONDITIONS

In this section, the names of all the conditions that may be used in
the ON statement are listed. Under the Description heading the
circumstances under which PL/I raises the condition are explained.
Under the Enablement Status heading, there is a definition of whether
the condition is enabled or disabled by default, and, if enabled,
whether you may disable it. Under the Disabled Result heading, there
is an explanation of what happens if the error occurs, but the
condition is disabled. The Standard System Action is also described.
It tells what PL/I does if there is no established on-unit for the
condition. Under the Normal Termination Action heading, there is a
description of how PL/I handles the situation where an on-unit for the
condition terminates normally (without a GO TO statement that transfers
control out of the on-unit.)

Figure 13-3 shows how to interpret the descriptions of each condition
name by showing precisely how PL/I handles an error when one occurs.

The top two rows of the figure indicate what happens if there is a
condition keyword for the type of error. If the condition is disabled,
the result is as specified by disabled result. Otherwise, PL/I may
take one of the actions specified by either standard system action or
normal termination action, as shown in the figure. The dotted lines in
the figure indicate that for many conditions, the standard system
action and the normal termination action are to raise the ERROR
condition. For some conditions, the normal termination action is to
return to the point where the error occurred, and continue execution
from there. You must refer to the condition list to learn the precise
actions taken for a given condition.

The last two lines of the figure indicate how the ERROR and FINISH
conditions are handled. The ERROR condition is a general catch-all
condition that can be raised for any type of error, and the FINISH
condition is raised whenever your program is about to terminate for any
reason, whether because of a normal termination or because of an ERROR.
The standard system action and the normal termination action for the
ERROR condition are to raise the FINISH condition. The standard system
action and the normal termination action for the FINISH condition are
to terminate the program.

All the information given for a condition is valid only for the case
where the condition is raised as the result of a program error. If the
condition is raised as the result of a SIGNAL statement, the standard
system action and normal return action are to continue execution with
the statements following the SIGNAL statement.

First Edition 13-24

PL/I CONDITION HANDLING

uonnoexe
ayeulwuaL

 uonnoexe
ayeUIWeL

é

jaqe|
é

j
u
n
-
u
o

q
w
u
n
-
u
o

u
o
l
p
u
o
d

ye6ue}
uOlyeUIWIa}

:
OAUI

3
5

p
a
y
s
i
q
e
i
s
a
u
e

H
S
I
N
I
A

OL
O
d

[EWION
"

A
aleuy

ayy
asiey

S|
§

SOA

é

jeqe|
é

y
u
n
-
u
o

y
u
n
-
u
o

u
o
n
|
p
u
o
d

19612)
<= ~

uoNeUIUa}
B
Y
O
A
U

peysyqeise
ue

H
O
W
H
S

O
L
O
d

{
E
W
J
O
N

3104)
ay}

e
s
i
e
y

si

i

p
a
i
n
d
9
0
4013

I

a
1
a
y
M

j
u
i
o
d

A
m
m
m
m
y
T
e

e
e

4

0}
W
i
n
e
y

I
|

A

I
|

|

I
of

|

|
!

|

u
o
y
o
e

.dinsey

UORRUILUAL
uonoy

WeIshS
paiaesia,,

Aq
pay

JEWJON,,
OXEL

PABPURIS,,
D
E
L

4oads
se

n
s
o
y

é
é

é

jaqel
yun-uo

pajqeue

yore}
e
n
v
e
n
t
t

yun-uo
paysiqerse

ue
uorpuce

O
L
O
D

[eUoNn
@xOAU|

aay}
aut

Sl

SI

 JO}
p
r
o
m
A
e
y

U
O
T
I
p

-U09
©
3
4
9
}

 é
JO19

BUY

 SI

$1N990
J
O
U

Figure 13-3
Condition Handling

First Edition, Update 113-25

PL/I Reference Guide

The AREA Condition

Description: PL/I raises the AREA condition in either of the following
cases:

@ Your program executes an ALLOCATE statement with the IN option,
but the allocation fails because the specified area does not
have enough space remaining for the allocation. This can occur
if you use the ALLOCATE statement to specify a storage area that
is greater than one segment.

@ Your program executes an assignment of one area to another, but
the target area is too small to hold all the allocated space in
the source area.

Enablement Status: The AREA condition is enabled by default and you
may not disable it.

Standard System Action: If there is no established on-unit for the
AREA condition, PL/I raises the ERROR condition.

Normal Termination Action: If an AREA on-unit terminates normally,
PL/I takes the following action:

@ If the on-unit was invoked as the result of an error in an
ALLOCATE statement, PL/I returns to the ALLOCATE statement,
re-evaluates the IN option, and reattempts the allocation.
Therefore, in this case you should not terminate the on-unit
normally unless your on-unit takes steps to make the area
specified by the IN option larger. Normal termination without
enlargement of the area results in an infinite loop.

e If the on-unit was invoked as the result of an error in an area
assignment, PL/I returns to the point of interrupt and continues
the assignment, but with an undefined result.

The CONDITION Condition

Syntax: CONDITION (reference)

Abbreviation: COND for CONDITION

Description: This is the user-defined condition, and is described
earlier in the section on the SIGNAL statement. This condition cannot
be raised by a progran error, but only by the SIGNAL statement.

First Edition, Update 1 13-26

PL/I CONDITION HANDLING

The CONVERSION Condition

Abbreviation: CONV for CONVERSION

Description: The CONVERSION condition is raised whenever a conversion
from CHARACTER or pictured-character fails because the source string
contains an invalid character. Examples of the CONVERSION condition
are given earlier in this chapter.

Enablement Status: The CONVERSION condition is enabled by default.
You may disable it by means of a condition prefix specifying
NOOCONVERSION.

Disabled Result: If a conversion error occurs at a point in your
program where the CONVERSION condition is disabled, PL/I simply
misinterprets the invalid character, and continues with the conversion.
The result of the conversion is unpredictable.

Standard System Action: If there is no established on-unit for the
CONVERSION condition, PL/I raises the ERROR condition.

Normal Termination Action: In case of normal termination of a
CONVERSION on-unit invoked as the result of a conversion error, PL/I
returns to the statement in which the conversion error occurred, and
reattempts the conversion from the beginning of the source string. In
order for this to work properly, the CONVERSION on-unit should have
used the ONCHAR and ONSOURCE pseudovariables to modify the conversion
source string so that the new conversion attempt will succeed. As
examples given earlier in this chapter illustrate, it is very easy for
normal termination of a CONVERSION on-unit to result in an infinite
loop. For this reason, it is recommended that all CONVERSION on-units
terminate abnormally (with a GO TO out of the or-unit).

The ENDFILE Condition

tax: ENDFILE(file), where file is an identifier or expression with

the FILE attribute.

Description: PL/I raises the ENDFILE condition when a GET or READ
statement fails because input has reached end of file. In the case of
GET statement input, if end of file occurs in the middle of a stream
data item, then ERROR is raised instead; ENDFILE is raised only if the
end of file occurs between data items.

13-27 First Edition

PL/I Reference Guide

See Chapters 11 and 12 for more information on the ENDFILE condition.

Enablement Status: The ENDFILE condition is enabled by default and you
may not disable it.

Standard System Action: If there is no on-unit established for the
ENDFILE condition, PL/I raises the ERROR condition.

Normal Termination Action: If an ENDFILE on-unit invoked as the result
Of an end-of-file error terminates normally, PL/I continues execution
of the program with the statement following the GET or READ statement
that failed because of the end-of-file error. The end-of-file status

remains set so that subsequent READS of the same file with no
intervening CLOSE also cause the condition to occur.

The ENDPAGE Condition

Syntax: ENDPAGE(file), where file is an identifier or expression with

the FILE attribute.

Description: Although, strictly speaking, ENDPAGE is not an ERROR

condition, PL/I handles the ENDPAGE condition just like other

conditions that do arise from errors.

PL/I raises the ENDPAGE condition as the result of an operation in a
PUT statement to a PRINT file that attempts to begin a new line of
output beyond the page size for the file. See Chapter 11 for examples.

Enablement Status: The ENDPAGE condition is enabled by default and you

may not disable it.

Standard System Action: If there is no orm-unit established for the

ENDPAGE condition, PL/I skips to a new page and then returns to the PUT

statement to continue output.

Normal Termination Action: If an ENDPAGE on-unit terminates normally,

PL/I returns to the PUT statement to continue output. See Chapter 11

for examples using an ENDPAGE on-unit with normal return to print page

headings.

First Edition 13-28

PL/I CONDITION HANDLING

The ERROR Condition

Pesctiption: PL/I raises the ERROR condition under the conditions
Scri at the beginning of this section, usually because of an error

for which there is no condition keyword, or as the standard system
action or normal return action for another condition. Just prior to
invocation of the condition, the value of ONQODE is set to a code
indicating which error occurred. See Appendix F for a list of these
codes.

ON ERROR overrides any previously established on-units. If other
on-units are used in the same block, ON ERROR should be processed
first.

Enablement Status: The ERROR condition is enabled by default and you
may not disable it.

Standard Systen Action: If there is no on-unit established for the
ERROR condition, PL/I raises the FINISH condition.

Normal Termination Action: If an ERROR on-unit invoked as the result
of a program error terminates normally, PL/I raises the FINISH
condition.

The FINISH Condition

Description: PL/I raises the FINISH condition as the result of any
statement or error situation that might terminate your program's
execution. These cases are as follows:

@ If your program executes a STOP statement.

e If your program executes a RETURN statement from the main
procedure of your progran.

e If your program executes the END statement of the main procedure
of your progran.

@ Raising the FINISH condition is the standard system action and
normal termination action for the ERROR condition.

Enablement Status: The FINISH condition is enabled by default and you
may not disable it.

13-29 First Edition, Update 1

PL/I Reference Guide

Standard System Action: If there is no established on-unit for the
FINISH condition, PL/I simply terminates your program.

Normal Termination Action: If a FINISH on-unit terminates normally,
PL/I terminates execution of your program.

If your on-unit terminates abnormally, execution of your program
continues from the point that the GO 10 statement specifies.
Theretore, it is possible that your program will enter an infinite loop
and will never terminate.

The FIXEDOVERFLOW Condition

Note

In Prime implementations of PL/I, you must specify the
-OVERFLOW compiler option to enable hardware detection of the
FIXEDOVERFLOW condition.

Abbreviation: FOFL for FIXEDOVERFLOW

Description: PL/I raises the FIXEDOVERFLOW condition when the hardware
tects that a fixed-point binary or decimal result is too large to fit

into the hardware register or the decimal field. The hardware register
limit is implementation-defined; the decimal field limit is
user-defined. ‘The maximum number of digits is 31 for FIXED BINARY and
14 for FIXED DECIMAL.

Enablement Status: The FIXEDOVERFLOW condition is enabled by default.
You may disable it by means of a condition prefix specifying
NOFIXEDOVERFLOW.

Disabled Result: If a fixed overflow error occurs at a point in your
program where the FIXEDOVERFLOW condition is disabled, PL/I simply
ignores the error, and the result of the computation is undefined.

Standard Systen Action: If there is no established on-unit for the
FIXEDOVERFLOW condition, PL/I raises the ERROR condition.

Normal Termination Action: If a FIXEDOVERFLOW on-unit invoked as the
result of a fixed overflow error terminates normally, PL/I raises the
ERROR condition.

First Edition, Update 1 13-30

PL/I CONDITION HANDLING

The KEY Condition

Syntax: KEY(file), where file is an identifier or expression with the

FILE attribute.

Description: PL/I raises the KEY condition on operations on KEYED
files, when the value specified in the KEY or KEYFROM option is illegal
or causes any sort of error. Typical error situations are as follows:

e An attempt was made to adda record with a duplicate key to a
file.

e A record with the specified key cannot be found.

e@ The CHARACTER string value specified with the KEY or KEYFROM
option has an invalid format.

Enablement Status: The KEY condition is enabled by default and you may
not disable it.

Standard System Action: If there is no established on-unit for the KEY
condition, PL/I raises the ERROR condition.

Normal Termination Action: If a KEY on-unit invoked as the result of
an error in an input/output statement terminates normally, PL/I
continues execution with the statement following the input/output
statement that contains the key error.

The NAME Condition

Syntax: NAME(file), where file is an identifier or expression with the
FILE attribute.

Description: PL/I raises the NAME condition when a GET DATA statement
fails because of an invalid variable reference in the input stream.
The variable reference can be invalid because it contains illegal
characters, because the variable name is not recognized as legal for
the statement, or because a subscript list is missing or invalid.

Enablement Status: The NAME condition is enabled by default and you
may not disable it.

13-31 First Edition

PL/I Reference Guide

Standard System Action: If there is no om-unit established for the

NAME condition, PL/I continues execution of the GET DATA statement by
continuing with the next assignment in the input stream,

Normal Termination Action: If a NAME on-unit invoked as the result of

an error in a GET DATA statement terminates normally, PL/I continues

execution of the GET DATA statement with the next assignment in the

input stream.

The OVERFLOW Condition

Abbreviation: OFL for OVERFLOW

Description: PL/I raises the OVERFLOW condition during evaluation of

an expression when an intermediate FLOAT computation gives rise to a

value whose characteristic (exponent) is positive and too large to he

supported for a FLOAT value on a Prime computer.

Enablement Status: The OVERFLOW condition is enabled by default and

may be disabled by means of a condition prefix specifying NOOVEREFLOW.

Disabled Result: If an overflow error occurs at a point in your

program where the OVERFLOW condition is enabled, PL/I simply ignores

the error, and the result of the computation is undefined.

Standard System Action: If there is no established on-unit for the

OVERFLOW condition, PL/I raises the ERROR condition.

Normal Termination Action: If an OVERFLOW on-unit invoked as the

result of a floating-point overflow error terminates normally, PL/I

raises the ERROR condition.

First Edition 13~32

PL/I CONDITION HANDLING

The RECORD Condition

Syntax: RECORD(file), where file is an identifier or expression with
e FILE attribute.

Description: PL/I raises the RECORD condition whenever a READ, WRITE,
REWRITE, or LOCATE statement fails because the size of the record being
transmitted to the external file or device, as determined by the file
specifications, is inconsistent with the size of the FROM or INTO
variable. Typical errors are as follows:

@® In a READ statement, the size of the record being transmitted
does not equal the size of the INTO variable.

@ In a WRITE, REWRITE, or LOCATE statement, the size of the record
being transmitted is unacceptable for the specified file.

Enablement Status: The RECORD condition is enabled by default and you
may not disable it.

Standard System Action: If there is no established on-unit for the
RECORD COMETon, PL/I raises the ERROR condition.

Normal Termination Action: If a RECORD on-unit invoked as the result
o£ an error ina READ, WRITE, REWRITE, or LOCATE statement terminates
normally, PL/I continues execution with the statement following the one
that caused the error.

The SIZE Condition

Description: PL/I raises the SIZE oondition during arithmetic
conversion, when a value is too large to fit into the target data type.

To understand the difference between the SIZE condition and the
FIXEDOVERFLOW condition, consider the following progran:

(SIZE): COND: PROC OPIFIONS (MAIN) ;
DECLARE (A, B) FIXED DECIMAL(5);
DECLARE C FIXED BINARY(31);
A = 99999;
B=A*A * A; /* RAISES FIXEDOVERFLOW */
C=A+1;
B= C; /* RAISES SIZE */
END COND;

13-33 First Edition, Update 1

PL/I Reference Guide

The fifth statement of this program raises the FIXEDOVERFLOW condition
during the computation of A*A*A, because the result of this
computation exceeds 14 decimal digits, which is the maximum number of
digits that Prime PL/I supports for FIXED DECIMAL. On the other hand,
the seventh statement of the program does not raise FIXEDOVERFLON,
because the value of A + 1 is 100000, which is small enough to be
handled by the Prime PL/I FIXED BINARY data type. However, in
attempting to convert this value to the variable B, PL/I raises the
SIZE condition (if enabled), because B cannot accommodate more than
five decimal digits.

Enablement Status: SIZE is disabled by default, but you may enable it
by means of a condition prefix specifying the SIZE condition. For more
information, see the section Enabling Conditions for Debugging earlier
in this chapter.

Disabled Result: If a size error occurs with the SIZE condition
disabled, PL/I ignores the error and makes an invalid assignment, with
the result that the FIXED target variable has an unpredictable value.

Standard System Action: If there is no established on-unit for the
SIZE condition, PL/I raises the ERROR condition.

Normal Termination Action: If a SIZE on-unit invoked as the result of
a Size error terminates normally, PL/I raises the ERROR condition.

The STORAGE Condition

Description: PL/I raises the STORAGE condition when a_ storage
allocation fails because there is insufficient storage available for
your progran.

Enablement Status: The STORAGE condition is enabled by default and you
may not disable it.

Standard System Action: If there is no established on-unit for the
STORAGE condition, PL/I raises the ERROR condition.

Normal Termination Action: If a STORAGE on-unit invoked as the result
of an allocation failure terminates normally, PL/I returns to the point
where the allocation failed and reattempts the allocation. For this
reason, before a STORAGE on-unit terminates normally it should free
some storage so that the allocation reattempt will succeed; otherwise,
there may be an infinite loop.

First Edition, Update 1 13-34

PL/I CONDITION HANDLING

The STRINGRANGE Condition

Abbreviation: STRG for STRINGRANGE

Description: PL/I raises the STRINGRANGE condition whenever a
reference to the SUBSTR built-in function or pseudovariable fails
because the second argument or the third argument is out of range.
Specifically, a reference to

SUBSTR(c, i, 3)

either as a built-in function or a pseudovariable, raises STRINGRANGE,
unless it is true that

O<=i-l<ejti-1 < LAcH(c)

A reference to

SUBSTR(c, i)

raises the STRINGRANGE condition unless

0<=i-1 <= LENGH(c)

Enablement Status: The STRINGRANGE condition is disabled by default.
You may enable it by means of a condition prefix specifying
STRINGRANGE. For more information, see the section Enabling Conditions
for Debugging earlier in this chapter.

Disabled Result: If the second or third argument to SUBSTR is out of
range, and the STRINGRANGE condition is disabled, PL/I ignores the
error and either fetches or assigns the string value as if the argument
to SUBSTR were correct. This means that PL/I fetches characters from
or stores characters in storage areas that are not part of the storage
area associated with the first argument to SUBSTR. In this case the
results are unpredictable. In the case of the SUBSTR pseudovariable,
assignment may destroy crucial constants or pointers, so that your
entire program may execute unpredictably after that. For this reason,
it is recommended that you enable the STRINGRANGE condition during the
debugging phases of your progran development, as described in the
section Enabling Conditions for Debugging earlier in this chapter.

13-35 First Edition, Update 1]

PL/I Reference Guide

Standard Systen Action: If there is no STRINGRANGE on-unit, PL/I
raises the ERROR condition.

Normal Termination Action: If a STRINGRANGE on-unit invoked as_ the
result of an error in the SUBSTR built-in function or pseudovariable
terminates normally, PL/I raises the ERROR condition.

The STRINGSIZE Condition

Abbreviation: STRZ for STRINGSIZE

Description: PL/I raises the STRINGSIZE condition whenever either of
the following occurs:

@ Ina PUT EDIT statement, the data format iten is one of B(w),
Bl(w), B2(w), B3(w), or B4(w), and the corresponding scalar data
item, after being converted to BIT, contains too many bits to be
printed in the specified width w.

@ In an assignment to a CHARACTER, pictured-character, or BIT
variable, the source string is longer than the maximum length of
the assignment target.

Fnablement Status: STRINGSIZE is enabled by default. You may disable
it by means oF a condition prefix specifying NOSTRINGSIZE, or by
specifying the -NO_STRINGSIZE compiler option.

Disabled Result: PL/I detects a STRINGSIZE situation even when the
STRINGSIZE situation is disabled, and takes the standard system action,
but does not invoke a STRINGSIZE on-unit even if one has been
established.

Standard System Action: If either of the STRINGSIZE errors described
above occurs, and if the STRINGSIZE condition is disabled, or if there
is no established on-unit for the STIRINGSIZE condition, or if a
STRINGSIZE on-unit terminates normally, then PL/I truncates the source
string to the appropriate length for either the BIT data item of PUT
EDIT or the assignment target.

Normal Termination Action: If a STRINGSIZE on-unit raised as_ the
result of a STRINGSIZE error terminates normally, PL/I truncates the
source string as described above under Standard System Action.

First Edition, Update 1 13-36

PL/I CONDITION HANDLING

The SUBSCRIPIRANGE Condition

Abbreviation: SUBRG for SUBSCRIPTRANGE

Description: PL/I raises the SUBSCRIPTRANGE condition whenever a

Subscript computation is made and it is found that the computed

subscript value is outside the bounds permitted for that subscript

position in that array variable.

Enablement Status: The SUBSCRIPTRANGE condition is disabled ly

default. You may enable it by means of a condition prefix specifying

the SUBSCRIPTRANGE condition. For more information, see the section

Enabling Conditions for Debugging earlier in this chapter.

Disabled Result: If a SUBSCRIPTRANGE error occurs at a point in your

program where the SUBSCRIPIRANGE condition is disabled, PL/I ignores

the SUBSCRIPTRANGE error, and either fetches or stores the data value

as if the subscript value were correct. This means that PL/I fetches

data fron or stores data in storage areas that are not part of the

storage area associated with the array variable. This means that the

results are unpredictable. In the case of assignment to an array

variable with an out-of-bounds subscript value, the assignment

operation may destroy crucial constants or pointers, so that your

entire program may execute unpredictably after that. For this reason,

we recommend that you enable the SUBSCRIPIRANGE condition during the

debugging phases of your program development, as described in the

section Enabling Conditions for Debugging earlier in this chapter.

Standard System Action: If there is no established on-unit for the

SUBSCRIPERANGE condition, PL/I raises the ERROR condition.

Normal Termination Action: If a SUBSCRIPIRANGE on-unit raised as the

result of a SUBSCRIPTRANGE error terminates normally, PL/I invokes the

ERROR condition.

The TRANSMIT Condition

Syntax: TRANSMIT(file), where file is an identifier or expression with

the FILE attribute.

Description: PL/I raises the TRANSMIT condition whenever an

input/output statement fails because of a hardware data transmission

error.

13-37 First Edition

PL/I Reference Guide

Enablement Status: The TRANSMIT condition is enabled by default and
you may not disable it.

Standard System Action: If there is no established on-unit for the
TRANSMIT condition, PL/I raises the ERROR condition.

Normal Termination Action: If a TRANSMIT on-unit invoked as the result
of a hardware data transmission error in an input/output statement
terminates normally, PL/I returns to the point where the input/output
operation failed and continues execution. It is quite likely that the
next input/output operation will raise the TRANSMIT condition again.

The UNDEFINEDFILE Condition

Syntax: UNDEFINEDFILE(file), where file is an identifier or an
expression with the FILE attribute.

Abbreviation: UNDF for UNDEFINEDFILE

Description: PL/I raises the UNDEFINEDFILE condition whenever a file
opening, whether explicit (with an OPEN statement) or implicit, fails
for any reason. Possible reasons include the following:

@ An INPUT or UPDATE file is not found.

@ The attributes specified in the DECLARE statement for a file
conflict with the attributes specified in the OPEN statement,
resulting in an open attribute merge inconsistency.

@ The TITLE option string in the OPEN statement has an invalid
format.

Enablement Status: The UNDEFINEDFILE condition is enabled by default
and you may not disable it.

Standard System Action: If there is no established on-unit for the
UNDEFINEDFILE condition, PL/I raises the ERROR condition.

Normal Termination Action: If an UNDEFINEDFILE on-unit invoked as the
result of a failure in an explicit OPEN statement terminates normally,
PL/I returns to the point where the error occurred and continues
execution. The file is left open only if the on-unit successfully
opened the file; otherwise, the file is left closed.

First Edition 13-38

PL/I CONDITION HANDLING

Tf an UNDEFINEDFILE on-unit invoked because of an implicit file opening

failure in a GET, PUT, READ, WRITE, REWRITE, DELETE, or LOCATE

statement terminates normally, PL/I takes action as follows:

@ If the ormunit successfully opened the file, PL/I returns to the

point where the error was detected and continues execution of

the statement,

@ If the file is still closed after normal termination of the
on-unit, PL/I raises the ERROR condition.

The UNDERFLOW Condition

Abbreviation: UFL for UNDERFLOW

Description: PL/I raises the UNDERFLOW condition during evaluation of

an expression, when an intermediate FLOAT computation gives rise to a

value whose characteristic (exponent) is negative and too large in

absolute value for a FLOAT value on Prime computers.

Enablement Status: The UNDERFLOW condition is enabled by default. You

may disable it by means of a condition prefix specifying NOUNDERFLOW.

Disabled Result: I£ a floating-point UNDERFLOW condition occurs at a

point in your program where the UNDERFLOW condition is disabled, PL/I

ignores the UNDERFLOW error and sets the value of the invalid FLOAT

computation to 0.

Standard System Action: If there is no established on-unit for the

UNDERFLOW condition, PL/I returns to the point where the error is

detected to complete the computation, after setting the value of the

invalid FLOAT computation to 0.

Normal Termination Action: If an UNDERFLOW on-unit invoked as the

result of a floating-point UNDERFLOW error terminates normally, PL/I

returns to the point where the error was detected to complete the

computation, after setting the value of the invalid FLOAT computation

to 0.

13-39 First Edition

PL/I Reference Guide

The ZERODIVIDE Condition

Abbreviation: ZDIV for ZERODIVIDE

Description: PL/I raises the ZERODIVIDE condition during evaluation of
an expression when division by 0 is attempted.

Enablement Status: The ZERODIVIDE condition is enabled by default.
You may disable it by means of a condition prefix specifying
NOZERODIVIDE .

Disabled Result: If your program attempts division by 0 at a point

where the ZERODIVIDE condition is disabled, PL/I simply ignores the
division error, and the result of the computation is undefined.

Standard System Action: If there is no established or-unit for the
ZERODIVIDE condition, PL/I raises the ERROR condition.

Normal Termination Action: If a ZERODIVIDE on-unit invoked as_ the

result of an attempt to divide by 0 in a computation terminates
normally, PL/I returns to the point in the computation where the error
was detected and continues execution from that point, The result of

the invalid attempt to divide by 0 is unpredictable.

BUILT-IN FUNCTIONS RELATED TO ON-UNITS

PL/I may raise a given condition under many different circumstances,
and for many different errors. This means that if you write an on-unit
for a given condition, the on-unit must be capable of recovering from

many different types of errors. PL/I provides several built-in

functions that you may use within an on-unit to determine what problem

caused the on-unit to be invoked.

One of the most useful of these is ONOODE(). This built-in function

returns an integer value equal to the internal code for the error that

invoked the on-uit. The ONOODE built-in function can be used in an

on-unit for any condition, to determine the specific error that caused

the on-unit invocation. A list of error codes returned by ONCODE is in

Appendix F.

The built-in functions for condition handling are shown in Table 13-1.
Fach of these built-in functions returns a character value containing

the information specified in the table.

First Edition 13-40

PL/I CONDITION HANDLING

Each of these built-in functions should be used only within or-units

for the conditions shown in the table. If you use one of these

built-in functions elsewhere than within an on-unit for the condition

or conditions specified for that built-in function in the table, or if

you use the built-in function within an orn-unit invoked as the result

of a SIGNAL statement, then PL/I returns the null string as the value

for that built-in function invocation. The following are two

exceptions to this rule:

e ONGHAR() returns a CHARACTER(1) string containing a blank

character, rather than a null string.

® If ONLOC() is used in any context, it returns the value

indicated by Table 13-1.

ONCHAR and ONSOURCER are also pseudovariables, as described earlier in

the section Examples of ON CONVERSION.

13-41 First Edition

PL/I Reference Guide

Table 13-1
Built-in Functions for Condition Handling

Built-in
Function

To Be Used in On-units
for These Conditions

CHARACTER String Value
Returned by Built-in Function

ONCHAR ()

ONFIELD ()

ONFILE ()

ONKEY ()

ONLOC ()

ONSOURCE ()

ONCODE ()

CONVERS ION

NAME

ENDFILE, ENDPAGE, KEY,
NAME, RECORD, TRANSMIT,
UNDEFINEDFILE, CONVERSION

TRANSMIT, RECORD, KEY

Any

CONVERSION

Any

Character that caused

conversion error

Invalid input stream chars to
GET DATA

Name of FILE constant on

which error occurred

Invalid key value, or key of

record causing error

Name of entry point in
PROCEDURE in which condition
was raised

Entire source string for
which the conversion error
occurred

See Appendix F

First Edition 13-42

Built-in Functions and

Pseudovariables

This chapter discusses the use of built-in functions and

pseudovariables. It also contains a complete list of all built-in

functions and pseudovariables supported by Prime PL/I.

You may use a built-in function reference in any expression in any

statement of your program. The value returned by a built-in function

may have any data type, as determined by the rules for that built-in

function. It is also possible for a built-in function to return a

nonscalar aggregate value (such as an array value or a structure

value), as this chapter explains.

Certain built-in functions may also be used in a context where a value

is assigned to the function, When used in this way, such a built-in

function is called a pseudovariable. The built-in functions that are

also pseudovariables are as follows: IMAG, ONCIAR, ONSOURCE, PAGENO,

REAL, SUBSTR, and UNSPEC. ‘The use of pseudovariables is described at

the end of this chapter.

ARGUMENTS TO BUILT-IN FUNCTIONS

In this section, some general rules for the arguments of built-in

functionsare described. In the complete list of built-in functions

given later in this chapter, the specific rules for arguments of each

built-in function are described in detail.

14-1 First Edition

PL/I Reference Guide

Built-in Functions With No Arguments

Several built-in functions take no arguments at all. You must take
some special precautions when you use these built-in functions.

Consider the following statement:

PUT LIST (DATE) ;

The writer of this statement intended to invoke the DATE built-in
function, which takes no arguments and prints out the current date.
Unfortunately, in this statement, PL/I will interpret the identifier
DATE as an ordinary variable, rather than as the name of the built-in
function DATE.

If you wish PL/I to interpret DATE as a built-in function, the
identifier DATE must be given the BUILTIN attribute. There are two
different ways to do this. One is to write an empty pair of
parentheses after the identifier DATE, as in the following statement:

PUT LIST (DATE()) ;

The appearance of a left parenthesis following the identifier DATE
causes PL/I to declare DATE contextually to have the BUILTIN attribute.

The second method is to use the DECLARE statement to give the function
identifier the BUILTIN attribute, For example, the statement

DECLARE DATE BUILTIN;

gives DATE the BUILTIN attribute and permits you to reference the
built-in function DATE without using the empty pair of parentheses.

You must take similar precautions with each of the built-in functions
that take no arguments. These are as follows: COLLATE, DATE, EMPTY,
NULL, ONCHAR, ONGODE, ONFIELD, ONFILE, ONKEY, ONLOC, ONSOURCE, and
TIME.

First Edition 14-2

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

Aggregate Arguments to Built-in Functions

Usually an argument to a built-in function is a scalar variable or

scalar expression. However, most built-in functions permit you to use

nonscalar arguments, such as array or structure expressions, Different

built-in functions have different rules for handling arguments whose

aggregate types are nonscalar. ‘These rules can be classified as

follows:

@ Most built-in functions handle aggregate arguments in the same

way that arithmetic and string operators handle aggregates, as

described in Chapter 6. This is discussed more fully in the

next section, The General Rule for Aggregates.

e The array-handling built-in functions are a group of built-in

functions, at least one argument of which must be an array.

Fach of these functions returns a scalar result. They are

DIMENSION, HBOUND, and LBOUND, the first argument o£ which must

be an array, and DOT, PROD, and SUM, the first two arguments of

which must be arrays.

e@ ADDR, ALLOCATION, OFFSET, and POINTER are storage-handling

built-in functions that use only allocation information about

the argument, and so are indifferent to the aggregate type of

the argument.

@ STRING, SOME, and EVERY are built-in functions that permit a

string aggregate as an argument and that treat the aggregate as

one long string.

@ HIGH, LOW, UNSPEC, LINENO, PAGENO are built-in functions that

forbid arguments whose aggregate type is nonscalar.

Some built-in functions combine the rules above, following different

rules for different arguments. For example, the COPY built-in function

permits aggregates in the first argument, following the first rule

above, but forbids nonscalar aggregates in the second argument (last

rule).

The General Rule for Aggregates

As stated in the first rule above, most built-in fumctions handle

nonscalar aggregate arguments in the same way that arithmetic operators

handle them, as described in Chapter 6. In the complete list of

built-in functions given later in this chapter, such functions will be

described as following the general rule for aggregates. This section

explains more precisely what this means.

14-3 First Edition

PL/I Reference Guide

First, consider the built-in function ABS. If the argument of ABS is
aggregate, ABS returns a value of the same aggregate type. For
example, if S is an array of structures, ABS(S) returns an array of
structures, each of whose elements is computed by taking the absolute
value of the corresponding element of S.

A built-in function like MAX is more complicated, since it can have
several aggregate arguments. In this case, the rules for combining
different aggregate types, as described in Chapter 6, apply. For
example, if T is a simple array, and S is an array of structures, then
PL/I computes MAX(T, S) as follows:

1. PL/I checks to see whether T and S have compatible aggregate
types. In this particular case, PL/I must check to see that T
and S have identical array bounds.

2. PL/I promotes each argument to the common derived aggregate
type of all the arguments. In this case, PL/I must promote T
to an array of structures,

3. As the value of the built-in function, PL/I returns | an
aggregate value whose aggregate type is the common derived
aggregate type of the arguments. In this case, PL/I returns an
array of structures, each of whose elements is computed by
applying the MAX built-in function to the corresponding
elements of S and promoted value of T.

In the built-in function list, when the general rule for aggregates is
referred to for certain arguments, the rules outlined in Chapter 6 are
meant, and are illustrated above.

The Derived Data Types and Converted Precision

The rules for many of the built-in functions require that the arguments
have numeric data types. If you reference such a function with a
nonnumeric argument, PL/I must convert the argument to a numeric data
type before computation of the function can begin.

For example, suppose C is a CHARACTER variable, and you reference
ABS(C). ‘Then PL/I evaluates this reference as follows:

1. PL/I converts C to the derived base, scale, and mode of the
data type of C, and the converted precision of the data type of
C. These terms are defined in Chapter 6. In this particular
case, PL/I converts C to a new value, X, whose data type is
FIXED DECIMAL(14, 0) REAL.

2. PL/I then computes the absolute value of X.

First Edition 14~4

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Other built-in functions require that the arguments be strings, and

still others require not only that the arguments all be numeric or all

be string, but also that they all have the same numeric or string data

type. In the complete list of built-in functions given later in this

chapter, when the data type conversions of the arguments are descr ibed,

the following terms are used. These terms are defined in Chapter 6.

@ If it is necessary to convert a nonnumeric data type to a

numeric data type, the numeric data type usually has the derived

base, scale, and mode of the original data type.

e If it is necessary to convert two or more arguments to the same

numeric data type, that common data type usually has the common

derived base, scale, and mode of the data types of the

arguments.

e@ Once you know that you must convert a data type to a specific

base, scale, and mode, you need to know what the precision of

the numeric data type must be. This is ustally the converted

precision of the data type.

e If a nonstring value must be converted to a string data type

(CHARACTER or BIT), the string type is usvally the derived

string type of the data type.

® If two or more arguments of a built-in function must be

converted to the same string data type, the target data type is

usually the common derived string type of the arguments.

Arguments That Specify Precision: p and q

Several of the built-in functions have arguments to specify the

arithmetic precision of the result to be returned by the built-in

function. For example, if X and Y are FIXED DECIMAL scalar variables,

a reference to

ADD(X, Y, 7, 2)

returns the value of X + Y, with a target data type of FIXED DECIMAL(7,

2).

In the complete list of built-in functions given later in this chapter,

the letters p and q are used to indicate these precision arguments. As
is indicated in the description of each of these built-in functions, q

is always an optional argument, and sometimes both p and q are

optional.

14-5 First Edition

PL/I Reference Guide

For these built-in functions, the following rules apply:

The arguments p and q, if specified, may not be arbitrary PL/I
expressions, but must be decimal integer constants. The value
of p must be positive, while gq may be positive, zero, or

negative.

The base, scale, and mode of the value returned by the function
do not depend upon the values of p and q, or on whether you
specify p or q. Rather, the base, scale, and mode of the result

are computed as the derived common base, scale, and mode of the
argument or arguments that precede the argument p in the
argument list.

If the derived common scale is FLOAT, it is illegal to specify
the argument g. If you specify the argument p when the derived
common scale is FLOAT, the precision of the value returned by
the built-in function is (p).

If the derived common scale is FIXED, the argument gq is
optional. The default scale factor is 0. If you specify both p
and q, the precision of the value returned by the built-in
function is (p, q); if you specify only p, the precision of the
value returned by the function is (p, 0).

A consequence of the above rules is that the value of p may not
exceed the maximum number of digits permitted for the derived
common base and scale for the argument or arguments that precede
p in the argument list. ‘The maximum values for p are 31 for
FIXED BINARY, 14 for FIXED DECIMAL, 47 for FLOAT BINARY, and 14

for FLOAT DECIMAL.

If you specify neither p nor gq (in those built-in functions
where p is an optional argument), the precision of the result
returned by the function is the converted common precision of
the argument or arguments,

In the descriptions of these built-in functions, the current section is
referred to whenever p and g are arguments,

CLASSIFICATION AND SUMMARY OF BUILT-IN FUNCTIONS

This section classifies the functions into grovps with similar
functionality. In the following lists, arguments that are enclosed in
square brackets are optional.

First Edition 14-6

arguments.
to be mathemat

rather than REAL. AB

These functions perform simple arithmetic

(Note that some of these built-in functions are considered

ical built-in functions when the arguments are COMPLE

S is an example of such a function.)

Function

ABS (x)

ADD(X, Yr pl, a})

BINARY (x[, Pl, a]])

CET (x)

DECIMAL (x[, pl, a]])

DIVIDE(x, yy Pl, al)

FIXED(x, Ply @])

FLOAT (x, Pp)

FLOOR(x)

MAX(xL, x2, e+e, XM)

MIN(x1l, X2, soe, XM)

MOD(x, y)

MULTIPLY (x, yr Ply a)

PRECISION(x, pl, 41)

ROUND (x, n)

SIGN(x)

BUILTIXIN FUNCTIONS AND PSEUDOVARIABLES

The Arithmetic Built-in Functions

manipulations on

Returns

The absolute value of x

Value of x + y

Result of converting x to base

BINARY

smallest integer greater than or

equal to x

Result of converting x to base

DECIMAL

Value of x/y

Result of converting x to scale

FIXED

Result of converting x to scale

FLOAT

Largest integer less than or equal

to x

Maximum of the arguments

Minimum of the arguments

Remainder when x is divided by y

Value of x * y

Result of converting x to

specified precision

Result of rounding FIXED argument

to specified digit position; or

FLOAT argument. to specified number

of significant digits

+1, 0, -l, according to whether xX

is positive, zero, OF negative

the

14-7 First Edition

PL/I Reference Guide

Function Returns

SUBTRACT (x, y, pl, q]) Value of x - y

TRUNC (x) Integer obtained by truncating x

The Mathematical Built-in Functions

In most cases, PL/I computes the value of a mathematical built-in
function reference by means of a polynanial approximaton,

Function Returns

ACOS (x) The arc cosine of x, with the
result measured in radians

ASIN (x) The arc sine of x, with the result
measured in radians

AITAN (x) The arc tangent of x, with the
result measured in radians

ATAN(x, y) The arc tangent of y/x, with the
result measured in radians

ATAND (x) The arc tangent of x, with the
result measured in degrees

ATAND(x, y) The arc tangent of y/x, with the
result measured in degrees

ATANH (x) The arc hyperbolic tangent of x

COMPLEX (x, y) COMPLEX value whose real part is x
and whose imaginary part is y

CONTG (x) The COMPLEX conjugate of x

OOS (x) The cosine of x, with x measured
in radians

COSD (x) The cosine of x, with x measured
in degrees

COSH (x) The hyperbolic cosine of x

ERF (x) The error function of x

ERFC (x) The complement error function of

First Edition

xy 1 = ERF (x)

14-8

Function

EXP (x)

IMAG (x)

LOG (x)

LOG10(x)

SIND (x)

SINH (x)

SORT (x)

TAN (x)

TAND (x)

"'TANH (x)

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Returns

e°x

The imaginary part of x

The natural logarithm (logarithm
to base e) of x

The common logarithm (logarithm to
base 10) of x

The logarithm to base 2 of x

The real part of x

The sine of x, with x measured in
radians

The sine of x, with x measured in
degrees

The hyperbolic sine of x

The square root of x

The tangent of x, with x measured
in radians

The tangent of x, with x measured
in degrees

The hyperbolic tangent of x

The String-handling Built-in Functions

These built-in functions either take string arguments or return string

values.

Function

AFTER(S, C)

BEFORE (Ss, C)

BIT(x[, n])

Returns

The portion of s after substring c

The portion of s before substring

c

The result of converting x to a
BIT string of length n

14-9 First Edition

PL/I Reference Guide

Function

BOOL(X, Y, C)

BYTE (x)

CHARACTER (x[, n])

COLLATE ()

COPY(s, n)

DECAT(s, Cc, t)

EVERY(x)

HIGH (n)

INDEX(s, Cc)

LENGTH (s)

LOW (n)

RANK (x)

REVERSE(s)

SOME (x)

STRING (x)

SUBSTR(S, m, n)

First Edition

Returns

The result of performing logical
operations specified by c on BIT
strings x and y

(Prime extension) CHARACTER (1)
equivalent of numeric value x

Result of converting x to a
CHARACTER string of length n

String containing the entire
collating sequence

String containing n concatenated
copies of string s

Result of concatenating parts of s
and c specified by bit string t

Logical AND of all bits in x

String of length n containing n
occurrences of the highest
character in the collating
sequence

Position of substring c ins

Length of string s

String of length n containing n
occurrences of the lowest
character in the collating
sequence

(Prime extension) Numeric
equivalent of CHARACTER(1) value
of x

String obtained by reversing the
order of all characters or bits
ins

Logical OR of all bits in x

Result of concatenating all
elements of aggregate x

Substring of Ss starting at
position m and going for n
characters or bits

14-10

BUILT+IN FUNCTIONS AND PSEUDOVARIABLES

Function
Returns

SUBSTR(S, ™) substring of s starting at

position m and going to the end

of S

TRANSLATE (S, ry €) Result of translating characters

ins. that are in the set t to the

corresponding character in ©

TRIM(s, b[,t]) Result of removing blanks or

occurrences of t from string s, in

pattern indicated by b

VERIFY (s, t) Position of the first character in

s not also in string t

The Array-handling Built-in Functions

Each of these built-in functions has one or two arguments that must be

an array. Each function returns a scalar value.

Function
Returns

DIMENSION (x, 1) The dimension size of array x in

the nth dimension

por(x, ylr pl, all) Dot product of the arrays x and y

HBOUND (x, 1) Upper bound of array X in the nth

- dimension

LBOUND (x, n) Lower bound of array x in the nth

dimension

PROD (x) Product of the elements in array X

SUM (x) Sum of the elements in array x

14-11
First Edition

PL/I Reference Guide

The Storage-handling Built-in Functions

These built-in functions are related to the allocation and use of
storage, particularly CONTROLLED and BASED storage, as well as storage
allocated in an AREA,

Function

ADDER (x)

ALLOCATION(x)

EMPTY ()

NULL ()

OFFSET (ptr, a)

POINTER (0, a)

SIZE(v[, n])

Returns

POINTER address of x

The number of allocations of the
QONTROLLED variable x

An empty AREA value

A null POINTER value

The offset of POINTER ptr in AREA
a

POINTER to storage at OFFSET o in
AREA a

The size of the storage occupied
by variable v measured in unit n

The Condition-handling Built-in Functions

These built-in functions are discussed further in Chapter 13, PL/I
CONDITION HANDLING. Use them in an omunit to provide information on
why the on-unit was invoked. ONCODE() returns an integer value, while
all the others return a GHARACTER value.

Function

ONCHAR ()

ONCODE ()

ONFIELD()

ONFILE ()

ONKEY()

First Edition

Returns

The invalid character causing a
CONVERSION error

The internal integer value of the
error code

Bad input stream characters for
GET DATA

Name of file on which an
input/output error has occurred

Key value for keyed file error

14-12

Function

ONLOC ()

ONSOURCE ()

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Returns

Name of entry point to last
invoked procedure

Invalid CHARACTER string causing
CONVERSION error

Miscellaneous Built-in Functions

The remaining built-in functions do not fit into any of the above

classifications.

Function

DATE ()

LINENO(f)

PAGENO(£)

TIME ()

UNSPEC(x)

VALID (x)

Returns

Current date as CHARACTER(6)
value, 'yymmdd'

Current line number on PRINT file
£

Current page number on PRINT file
£

Current time of day as
CHARACTER(9) value, 'hhnmssfff'

BIT string internal representation
of variable x

BIT(1) logical test for validity
of string value of PICTURE
variable x

QOMPLETE LIST OF BUILT-IN FUNCTIONS

The following pages provide descriptions of each of the built-in

functions supported by Prime PL/I.

In these pages, PI is a FLOAT variable equal to 3.14159.

14-13 First Edition

PL/I Reference Guide

The ABS Arithmetic Built-in Function

ABS(x) returns the absolute value of x.

Format: ABS(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes ABS for each aggregate element.
Below, assume that x is scalar.

PL/I converts x to the derived base, scale, and mode of the data type
of x, and to the converted precision of the data type of x. In the
following, assume that x is the converted value.

Result DataType: If the mode of x is REAL, the data type returned by
ABS is the same as the data type ofx.

If the mode of x is COMPLEX, the base and scale of the data type
returned by ABSare the same as for the data type of x, the mode of the
data type returned by ABS is real. The precision returned is (p) for
FLOAT or (p, q) for FIXED, computed as follows: let r be the number of
digits in the precision of x, and s the scale factor,“it any, of the
data type of x. Let n equal the maximum number of digits for the base
and scale of x. Then:

p = MIN(n, r + 1)

q=s

Operation: PL/I returns the absolute value of x.

If x is REAL, this is merely the value of x with the sign made
positive.

If x is COMPLEX, ABS(x) returns:

SORT (REAL (x) **2 + IMAG (x) **2)

Examples: The following chart illustrates the ABS built-in function:

Line # Reference Returns

1 ABS (2.34) +2 34
2 ABS (-2 .34) +2 34

3 ABS (0) +0
4 ABS (3 .OE0-4E01) +5 .00EO

First Edition 14-14

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Lines 1 through 3 in the table illustrate the use of ABS with REAL

arguments. ABS makes the sign of the argument positive and returns

that result.

Line 4 illustrates ABS with a QOMPLEX argument. Notice that the

precision of the result is one greater than the precision of the

argument.

The AOOS Mathematical Built-in Function

The AGOS built-in function returns the arc cosine, in radians, of the

argument.

Format: ACOS(x)

Arguments: If x is not a scalar, PL/I applies the general rule for

agaregate arguments and computes AQOS for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x toa scale of FLOAT, with the derived base and mode of

the data type of x, and to the converted precision of the data type of

X. In the following, assume that x is the converted value.

It is an error if the mode of x is COMPLEX.

Result Data Type: The data type returned by AGOS is the same as the

ta type of x.

Operation: The value of x must be such that

-l <= x <= 41

Tt is an error if x is outside of this range.

The mathematical arc cosine function is a multiple-valued function.

PL/I returns the value w equal to the arc cosine of x such that

0 <=w <= PI

Examples: ACOS(1.000E0) returns +0.000E0. ACOS(0.0000) returns the

value 1.5707E0, which equals PI/2.

14-15 _ First Edition

PL/I Reference Guide

The ADD Arithmetic Built-in Function

The ADD built-in function returns the sum of its first two arguments in
the specified precision.

Format: ADD(x, y, p) or ADD(x, y;, py q)

Arguments: If x and y are not both scalars, PL/I applies the general
rule for aggregate arguments and computes ADD for each aggregate
element. Below, assume that x and y are scalar.

PL/I converts x and y to the derived common base, scale, and mode of
the data type of x and y, and to the converted precision of the data
type of the argument. In the following, assume that x and y are the
converted values.

For information on the arguments p and q, see the section Arguments
That Specify Precision earlier in this chapter.

Result Data Type: The result data type is as described in the section
Arguments That Specify Precision earlier in this chapter,

Operation: PL/I computes the value of x + y, and converts it to the
result data type.

Examples: The following chart illustrates the ADD built-in function:

Line # Reference Returns

l ADD(3, 5, 1) 8
2 ADD(3, 5, 3) 8
3 ADD(3, 5, 3, 1) 8.0
4 ADD(3E0, 5.2, 4) 8.200E0
5 ADD(3E0, 5.2, 4, 1) ERROR

Line 5 is invalid because gq is specified where the derived common scale
o£ the first two arguments is FLOAT.

The ADDR Storage-handling Built-in Function

The ADDR built-in function returns a POINTER address to the argument.

Format: ADDR(x)

First Edition 14-16

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Argument: The argument x must be a scalar variable reference,

Result Data Type: The ADDR built-in function returns a POINTER scalar
value.

Operation: PL/I returns the POINTER address of x.

If the storage class of x is CONTROLLED, but x has no allocations, PL/I

returns a null POINTER value.

The use of ADDR is discussed in Chapter 7.

The AFTER String-handling Built-in Function

The AFTER built-in function returns the portion of a string following a

substring.

Format: AFTER(S, C)

Arguments: If s and c are not both scalar, PL/I applies the general
rule for aggregate arguments and computes AFTER for each aggregate
element, Below, assume that s and c are scalar.

PL/I converts s and c to their common derived string type (CHARACTER or
BIT). In the following, assume that s and c are the converted values.

Result DataType: The data type returned by AFTER is the same as the
common derived string typeof s and c.

Operation: PL/I computes AFTER(s, c) as follows:

1. If s is a null string, PL/I returns a null string.

2. If cis a null string, PL/I returns s.

3. If cis not a null string, and c is not a substring of s, PL/I
returns a null string.

4, If cis not a null string but is a substring of s, PL/I returns
the portion of string s that follows the leftmost occurrence of
cins. More precisely, AFTER(s, c) returns

SUBSTR(S, INDEX(s, c) + LENGTH(c)).

14-17 First Edition

PL/I Reference Guide

Examples: The following chart illustrates the AFTER built-in function:

Line # Reference Returns

1 AFTER('', TABC') st

2 AFTER('ABC', '') "ABC!

3 AFTER('ABC', 'X') rm
4 AFTER('ABC', 'B') "cl

5 AFTER('ABC', 'BC') "
6 AFTER('ABCDABCD', 'BC') "DABCD'
7 AFTER('10110'B, '01'B) '10'B

Lines 1 and 2 illustrate the degenerate cases, where one of the
arguments is a null string.

In line 3, the second argument is not a subscript of the first
argument, and so PL/I returns the null string.

In lines 4 through 7, the second argument is a substring of the first.
In line 5, the substring 'BC' is right at the end of 'ABC', and so PL/I

returns the null string. Line 6 illustrates the case where the second
argument occurs more than once in the first argument; only the first
occurrence matters. Line 7 illustrates AFTER with BIT arguments.

The ALLOCATION Storage-handling Built-in Function

The ALLOCATION built-in function returns the number of allocations of a

CONTROLLED argument.

Abbreviation: ALLOCN for ALLOCATION

Format: ALLOCATION (v)

Arguments: The argument v must be a level~l variable with the
CONTROLLED storage class.

Result Data Type: ALLOCATION returns the integer data type FIXED

BINARY (15, 0) REAL.

Operation: If v has no allocations, PL/I returns the value 0;

otherwise, PL/I returns the number of allocations.

First Edition 14-18

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Example: Consider the following program segment:

DECLARE ARC(1000) CONTROLLED;

PUT LIST (ALLOCATION (ARC)) +

ALLOCATE ARC;
PUT LIST (ALLOCATION (ARC)) ;

ALLOCATE ARC;

PUT LIST (ALLOCATION (ARC)) 7

FREE ARC;

FREE ARC;

PUT LIST (ALLOCATION (ARC)) 3

The four PUT statements print the values 0, 1, 2, and 0, respectively.

The ASIN Mathematical Built-in Function

The ASIN built-in function returns the arc sine, in radians, of the

argument.

Format: ASIN(x)

Argument: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes ASIN for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to a scale of FLOAT, to the derived base and mode of

the data type of x, and to the converted precision of the data type of

X. In the following, assume that x is the converted value.

The mode of x must be REAL; if x is COMPLEX, the reference is illegal.

Result DataType: The data type of ASIN equals the data type of x.

Operation: The value of x must be in the range defined by

-l <= x <= 41

ASIN returns the value w equal to the arc sine of x, such that

-PI/2 <= w <= PI/2

14-19 First Edition

PL/I Reference Guide

Example: ASIN(1.0000E0) returns +1.57E0, which equals PI/2.
ASIN(0.0000) returns the value +0.0000E0.

ATAN Mathematical Built-in Function

The ATAN built-in function returns the arc tangent, in radians, of the
argument, or of the quotient of two arguments.

Format: ATAN(x) or ATAN(x, y)

Arguments: If x is not a scalar, or if y is specified and is not a
scalar, PL/I applies the general rule for aggregate arguments and
computes ATAN for each aggregate element. Below, assume that x is
scalar, and that y, if specified, is scalar.

PL/I converts xX and y (if specified) to a scale of FLOAT, with the
derived common base and mode of the data type of x (and y, if
specified), and to the converted precision or precisions of the data
types of the arguments. In the following, assume that x and y are the
converted values.

If y is specified, the derived common mode must be REAL; if it is
COMPLEX, the reference is illegal.

Result DataType: The base, scale, and mode of the data type returned
by ATAN are the same as for the data type of x. If y is not specified,
the precision of the data type returned by ATAN is the same as for x.
If y is specified, the precision of the data type returned by ATAN
equals the maximum of the precisions of the data types of x and y.

Operation: PL/I performs the following steps:

l. If is specified, it is illegal for y and x both to be 0.
PL/I returns a value w, equal to the arc tangent, in radians,
of y/x, such that

if y >= 0, then 0 <= w <= PI, and

if y < 0, then -PI <w< 0.

2. If y is not specified, and x is REAL, PL/I returns a value w,
equal to the arc tangent inradians of X, such that

~PI/2 < w < PI/2

First Edition 14-20

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

3. If y is not specified, and if x is COMPLEX, it is illegal for x
to have either..of .the values 1I or -lI. Otherwise, PL/I
returns a value W, equal to the arc tangent in radians of x,

such that

~PI < REAL(w) <= PI

Discussion and Examples: The major purpose of ATAN with two arguments
is to allow you to compute the arc tangent of a value near infinity.
ATAN(x, y) returns the arc tangent of y/x in the quadrant of the

coordinates of (x, y) as shown in Figure 14-1.

In particular, if x =0, so that y/x is infinite, then ATAN(x, y) is

defined and equals PI/2 if y > 0, and equals -PI/2 if y < 0.

(x,y)

ma ATAN (x,y)

Figure 14-1

ATAN With Two Arguments

14-21 First Edition

PL/I Reference Guide

The following chart illustrates the ATAN built-in function:

Line # Reference Returns

1 ATAN (0.0000) 0.000050
2 ATAN(1.0000,0) 1.5708E+00
3 ATAN (0,0) ERROR
4 ATAN(0 + OI, 1) ERROR
5 ATAN(0 + 11) ERROR
6 ATAN(-0.6878 + 0.15841) 1.8742E0 + 5.4321E -1I

Line number 1 computes the value of arc tangent 0, and returns 0. In
line number 2, ATAN(1, 0) computes the arc tangent of 1/0. Even though
Pu/I is computing the arc tangent of an infinite value, ATAN(1,0)
returns the value of PI/2.

Lines 3 through 5 illustrate the important error cases, and line 6
illustrates ATAN with a valid COMPLEX argument.

The ATAND Mathematical Built-in Function

The ATAND built-in function returns the arc tangent, in degrees, of the
argument, or of the quotient of two arguments.

Format: ATAND(x) or ATAND(x,y)

ATAND is like ATAN, except that PL/I returns the arc tangent measured
in degrees rather than in radians. ATAND does not permit COMPLEX
arguments,

To compute the value of ATAND, PL/I computes the value of ATAN with the
same argument or arguments and multiplies the result by 180/PI.

Example: ATAND(1.0000,0) returns 9E+01.

The ATANH Mathematical Built-in Function

The ATANH built-in function returns the inverse hyperbolic tangent of
the argument.

Format: ATANH(x)

First Edition 14-22

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Argument: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes ATANH for each aggregate element.

Below, assume that x is scalar.

PL/I converts x to a scale of FLOAT, with the derived base and mode of

the data typeof X, and to the converted precision of the data type of

x. ‘In the following, assume that x is the converted value.

Result Data Type: The data type of the value returned by ATANH is the

same as the data type of x.

Operation: If the mode of the data type of x is REAL, it is required

that

-“-l<x<d4

The reference is illegal otherwise.

If the mode of the data type of x is COMPLEX, the reference is illegal

if x equals either +1 or -l.

PL/I returns the inverse hyperbolic tangent of x.

Example: ATANH(1.0000,0) returns 9E+01.

The BEFORE String-handling Built-in Function

The BEFORE built-in function returns the portion of the first argument

that comes before the substring specified by the second argument.

Format: BEFORE(s, C)

Argument: If s and c are not both scalar, PL/I applies the general

rule for aggregate arguments and computes BEFORE for each aggregate

element. Below, assume that s and c are scalar.

PL/I converts s and c to the common derived string type (CHARACTER Or

BIT) of the data types of s and c. In the following, assume that s and

c are the converted values.

Result Data Type: The data type of the value returned by BEFORE is the

same as the data type of s.

14-23 First Edition

PL/I Reference Guide

Operation: PL/I performs the following steps:

1. If either s or c is a null string, PL/I returns a null string.

2. If cis not a null string, and c is not a substring of s, HFL/I
returns the string s.

3. If cis not a null string but is a substring of s, PL/I returns
the portion of string s that occurs to the left of the leftmost
occurrence of c ins. More precisely, BEFORE(s, c) returns the
following value:

Examples: The following chart illustrates the BEFORE built-in
function:

Line # Reference Returns

1 BEFORE ('!', 'ABC') m
2 BEFORE ('ABC','") "
3 BEFORE ('ABC', 'X') ‘ABC!

4 BEFORE ('ABC', 'B') tal

5 BEFORE('ABC', 'AB') ve

6 BEFORE('ABCDABCD! , 'BC') Tal

7 BEFORE (*10110'B, '01'B) "L'B

Lines 1 and 2 illustrate that BEFORE returns a null string whenever
either argument is a null string,

In line 3, 'X' is not a substring of 'ABC', and so PL/I returns the
first argument, 'ABC',

Lines 4 through 6 illustrate the case where the second argument is a
substring of the first argument. In line 4, 'B' is preceded by 'A' in
‘ABC'. In line 5, nothing precedes 'AB' in '‘'ABC', and so BEFORE
returns the null string, Line 6 illustrates the fact that if the
second argument occurs more than once as a substring of the first
argument, only the leftmost occurrence matters. Line 7 illustrates
BEFORE with BIT arguments.

The BINARY Arithmetic Built-in Function

The BINARY built-in function converts the base of the argument to
BINARY.

Abbreviation: BIN for BINARY

First Edition 14-24

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Format: BINARY(x) or BINARY(x, p) or BINARY(x; Py q)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes BINARY for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to the derived base, scale, and mode of the data type

of x, and to the converted precision of the data type of x. In the

following, assume that x is the converted value.

For information on the arguments p and gq, if specified, see the section

Arguments That Specify Precision, near the beginning of this chapter.

Result Data Type: The base of the data type returned by BINARY is

BINARY, and the scale and mode are the same as for the data type of x.

The precision of the data type returned by BINARY is determined as

described in the section Arguments That Specify Precision earlier in

this chapter.

Operation: PL/I converts x to the result data type and returns that

value.

Examples: The following chart illustrates the BINARY built-in

function:

Line # Reference Returns

1 BINARY (5) +0101B

2 BINARY(5, 3) +101B

3 BINARY (5, 5, 1) +0101,.0B

4 BINARY (5E0) +1 .010E2B
5 BINARY(5E0, 3) +1.01E2B

6 BINARY(5E0, 5, 1) ERROR

Lines 1 through 3 illustrate a FIXED conversion from DECIMAL to BINARY,

while lines 4 and 5 illustrate a FLOAT conversion.

The reference in line 6 is illegal because gq may not be specified for a

FLOAT data type.

14-25 First Edition

PL/I Reference Guide

The BIT String-handling Built-in Function

The BIT built-in function converts the argument to a BIT string.

Format: BIT(x) or BIT(x, n)

Arguments: BIT takes any numeric data type, or a character string
whose elements are all numbers (all 1's and 0's). If x is not a
scalar, PL/I applies the general rule for aggregate arguments and
computes BIT for each aggregate element. Below, assume that x is a
scalar.

The argument n must be a scalar, PL/I converts n to the integer data
type FIXED BINARY(15, 0) REAL. In the following, assume that nis the

integer value.

Result Data Type: The data type of the value returned by BIT is BIT.

Operation: PL/I converts x to the data type BIT.

If n is specified, PL/I either pads or truncates the result of the
conversion, so that the length of the resulting BIT string is n.
(Note: A negative value of n is an illegal reference.) If n is not
specified, the resulting length is the length obtained on conversion.

PL/I returns the BIT string.

Examples: The following chart illustrates the BIT built-in function:

Line # Reference Returns

1 BIT (5) 'OLOL'B
2 BIT (5,3) 'O1LO'B
3 BIT (5E0) '0101'B
4 BIT (5E0,3) 'O10'B
5 BIT(5.1E-3) '0000000'B
6 BIT (-5,3) '101'B

First Edition 14-26

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

The BOOL String-handling Built-in Function

The BOOL built-in function permits you to perform any of the 16 logical

operations on two BIT string values. You can use BOOL to get any

logical operation, including AND, OR, exclusive OR, equals, and

implies.

Format: BOOL(x, y, ¢)

Arguments: If x and y are not both scalar, PL/I applies the general

rule for aggregate arguments and computes BOOL for each aggregate

element. Below, assume that x and y are scalar.

PL/I converts x and y to BIT, If these strings have different lengths,

PL/I pads the shorter one with 0-bits, to the length of the longer

string. In the following, assume that x and y are the converted and

padded BIT strings. The result is that x and y are two BIT strings of

the same length.

The third argument, c, must be a scalar. PL/I converts c to BIT with a

length of 4. In the following, assume that c is the converted value.

Result Data Type: ‘The data type returned by BOQL is BIT. The length

of the string returned by BOCL is equal to the common length of x and

ye

Operation: Let bl, b2, b3, and b4 be the four bits inc. PL/I creates

anew BIT string, whose length is the same as the common length of x

and y, as follows: the value of the bit in the result BIT string is

determined by the bits in the corresponding position in the arguments x

and y, aS shown in Table 14-1.

Table 14-1
Value of Result String

Result Corresponds to

Bit in x Bit in y Bit inc

0 0 bl
0 1 b2
1 0 b3
1 1 b4

PL/I returns the resulting BIT string as the value of BOOL.

14-27 First Edition

PL/I Reference Guide

Discussion: There are 16 possible values of the BIT(4) string in the
third argument to BOOL, and these correspond to the 16 logical
functions on two truth values. The results of BOOL can be expressed in
terms of other logical operators, as shown in Table 14-2.

Table 14-2
Value of BOOL

Equivalent Logical
Expression for Logical

Value of c BOOL(X, Yr Cc) Description

'0000'B All bits '0'B False
'0001'B X&Y And
'0010'B xX&°y Does not imply
‘OO11'B 4
'0100'B “xy
‘0101'B y
'0110'B (x&°y) | (“x&y) Exclusive or
'0111'B xly Inclusive or
'1000'B “x&°y
'1001'B (x&y) | (*x&*y) Equivalent
'1010'B “y Not
'1011'B x|“y Reverse implies
'1100'B “x Not
'1101'B “xly Implies
'1110'B “x|*y
"1111°B All bits '1'B True

Examples: The following chart illustrates the BOOL built-in function:

Line # Reference Returns

1 BOOL('01101'B, '11100'B, ~*11110'B
*1101'B)

2 BOOL ('01101'B, '1'B, '10010'B
"1101'"B)

3 BOOL('01101'B, '11100'B, '10001'B
*0110'B)

4 BOOL('01101'B, '1'B, '11101'B
'0110'B)

First Edition 14-28

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

The third argument in lines 1 and 2 of this chart is '1101'B.

Therefore, these two references to BOOL are equivalent to applying the

logical operation implies to the first two arguments, In lines 3 and

4, the third argument is '0110'B, yielding the logical operation

exclusive OR.

In lines 2 and 4, the second argument is shorter than the first

argument, and so the second argument is padded with 0-bits to get

"10000'B.

The BYTE String-handling Built-in Function (Prime Extension)

The BYTE built-in function converts a numeric argument to its character

equivalent, according to its position in the collating sequence.

WARNING

BYTE is not an ANS PL/I function and is not available in other

implementations of PL/I.
Format: BYTE(x)

Arguments: The argument x must be a scalar.

PL/I converts x to the integer data type FIXED BINARY(15, 0) REAL. In

the following, assume that x is the converted value.

Result Data Type: The data type of the value returned by BYTE is

CHARACTER. The length of the string returned by BYTE is 1.

Operation: PL/I takes the integer value of x, forms a character out of

the rightmost seven bits in that value, and returns that character,

The value that PL/I returns is equivalent to

SUBSTR(COLLATE(), x +1, 1).

Example: BYTE(65) returns 'A'.

14-29 First Edition

PL/I Reference Guide

The CETL Arithmetic Built-in Function

The CEIL built-in function takes a noninteger argument and returns the
next higher integer.

Format: CEIL(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
agoregate arguments and computes CEIL for each aggregate element.
Below, assume that x is a scalar.

PL/I converts x to the derived base, scale, and mode of the data type
of x, and to the converted precision of the data type of x. In the
following, assume that x is the converted value.

The mode of the data type of x must be REAL; if x is OOMPLEX, the
reference is illegal.

Result Data Type: The base, scale, and mode of the data type returned
by CHIL are the same as those of the data type of x.

If the scale of the data type of x is FLOAT, the precision of the data
type of the value returned by CETL is the same as the precision of the
data type of x.

If the scale of the data type of x is FIXED, and the precision of the
data type of xis (r, s), the precision of the data type of the value
returned by CEIL is (p, 0), with a scale factor of 0, where

p = MIN(N, MAX(r - s + 1, 1))

and n is the maximum number of digits permitted for a scale of FIXED
witha base of x. (n is 31 for FIXED BINARY, and 14 for FIXED
DECIMAL.)

Operation: PL/I returns the smallest integer that is greater than or

equal to x.

First Edition 14-30

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Examples: The following chart illustrates the CEIL built-in function:

Line # Reference Returns

1 CEIL (2.3) +03
2 CEIL (-2.3) -02
3 CEIL (2) +02
4 CEIL (~2) -02
5 CEIL (2.3E0) +3 .0E0

Lines 1 and 2 illustrate CEIL with noninteger arguments, and lines 3
and 4 illustrate integer arguments. Line 5 illustrates a FLOAT
noninteger argument.

The CHARACTER String-handling Built-in Function

The CHARACTER built-in function converts the argument to a CHARACTER
string.

Format: CHARACTER(x) or CHARACTER(x, n)

Abbreviation: CHAR for CHARACTER

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes CHARACTER for each aggregate element.
Below, assume that x is a scalar.

If the argument n is specified, n must be a scalar. PL/I converts n to
the integer data type FIXED BINARY(15, 0) REAL. In the following,
assume that n is an integer value.

Result Data Type: The data type of the value returned by CHARACTER is
CHARACTER.

Operation: PL/I converts x to the CHARACTER data type.

If n is specified, PL/I either pads or truncates the CHARACTER result
of the conversion so that the length of the resulting string is n.
(Note: A negative value of n is an illegal reference.) If nis not
specified, the resulting length is the length obtained upon conversion.

PL/I returns this CHARACTER string.

14-31 First Edition, Update 1

PL/I Reference Guide

Example:

Line # Reference Returns

1 CHARACTER(5) '5!
2 CHARACTER(5.2) ‘5.2!
3 CHARACTER(5.2,5) 15.2 '

The COLLATE String-handling Built-in Function

The COLLATE built-in function returns the entire collating sequence.

Format: COLLATE()

Arguments: None

Result Data Type: The data type of the value returned by COLLATE is
CHARACTER. The length of the string returned by COLLATE is 128 when
the program is compiled with the -NO_EXTENDED_CHARACTERSET option (the
default), and 256 when the progran is compiled with the
—EXTENDED_CHARACTER_SET option.

Operation: PL/I returns a CHARACTER(256) string containing the entire
collating sequence.

The COMPLEX Mathematical Built-in Function

The COMPLEX built-in function converts two REAL arguments to a COMPLEX
value whose real and imaginary parts are the two arguments,
respectively.

Format: COMPLEX(x, y)

Abbreviation: CPLX for COMPLEX

Arguments: If x and y are not both scalar, PL/I applies the general
rule for aggregate arguments and computes COMPLEX for each aggregate
element. Below, assume that x and y are scalar.

PL/I converts x and y to the common derived base, scale, and mode of
the data types of x and y, and to the converted precision of each data
type. In the following, assume that x and y are the converted values.

First Edition, Update 1 14-32

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

The derived common mode must be REAL; if the derived common mode is
COMPLEX, the reference is illegal.

Result Data Type: The data type of the result returned by the COMPLEX
built-in function has a mode of COMPLEX, and a base and scale equal to
the common base and scale of the data types of x and y.

The precision of the data type returned by COMPLEX is determined as
follows:

@ I£ the common scale of the data types of x and y is FLOAT, the
precision of the data type returned by COMPLEX equals the
maximum of the precisions of the data types of x and y.

@ If the common scale of the data types of x and y is FIXED,
Suppose that the data type of x has a precision of (r, s), and
the precision of the data type of y has precision (t, u). Then
the precision of the value returned by COMPLEX is (p, q), where

p = MIN(n, MAX(r - s, t — u) + MAX(s, w))

q = MAX(s, u)

where n is the maximum number of digits permitted for a data
type with a scale of FIXED and the common base of xandy. (n
is 31 for FIXED BINARY and 14 for FIXED DECIMAL.)

Operation: PL/I forms a COMPLEX value whose real part is x and whose
imaginary part is y. PL/I returns this COMPLEX value.

Example: COMPLEX(2, 3) returns the value 2 + 3I.

The CONJG Mathematical Built-in Function

The CONJG built-in function returns the complex conjugate of a complex
argument.

Format: CONJG(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes CONJG for each aggregate element.
Below, assume that x is a scalar.

PL/I converts x to a data type with a mode of COMPLEX and with the
derived base and scale of the data type of x and the converted

14-33 First Edition, Update 1

PL/I Reference Guide

precision of the data type of x. In the following, assume that x is
the converted value.

Result Data Type: The data type of the value returned by CONJG has a
of COMPLEX and has the same base, scale, and precision as the data

type of x.

Operation: PL/I returns the complex conjugate of x. The conjugate of
a+ bi is a- bi.

Example: The reference CONJG(2 + 3I) returns the value 2 - 31.

The COPY String-handling Built-in Function

The COPY built-in function concatenates a string with itself a
specified number of times.

Format: COPY(s, n)

Arguments: If s is not a scalar, PL/I applies the general rule for
aggregate arguments and computes OOPY for each aggregate element.
Below, assume that s is a scalar.

PL/I converts s to the derived string type (CHARACTER or BIT) of the
data type of x. In the following, assume that x is the converted
value.

The argument n must be a scalar. PL/I converts n to the integer data
type FIXED BINARY(15, 0) REAL. In the following, assume that n is the
integer value.

Result Data Type: The data type of the value returned by COPY is the
same as the data type of x.

Operation: The reference is illegal if n < 0.

If n = 0, BL/I returns the null string.

If n > 0, PL/I returns a string of length n * LENGTH(s), which contains
n copies of the string s.

Examples: COPY('ABC', 3) returns 'ABCABCABC'. COPY('ABC', 0) returns
the null string. COPY('1011'B, 2) returns '10111011'B.

First Edition, Update 1 14-34

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

The COS Mathematical Built-in Function

The COS built-in function returns the cosine of the argument, where the

argument is given in radians.

Format: COS(x)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes (OS for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to the scale of FLOAT, to the derived base and mode of

the data typeof X, and to the converted precision of the data type of

X. ‘In the following, assume that x is the converted value.

Result DataType: The data type of the value returned by OOS is the
same as the data type of x.

ration: PL/I returns the cosine of x, where x is an angle measured

in radians.

Examples: COS(0) returns the value 1E0. COS(PI/2) returns 0.0000E0.

The COSD Mathematical Built-in Function

The COSD built-in function returns the cosine of the argument, where

the argument is measured in degrees.

Format: COSD(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes OOSD for each aggregate element.

Below, assume that x is scalar.

PL/I converts x to the scale of FLOAT, the derived base and mode of the

data type of x, and the converted precision of the data type of x. In

the following, assume that x is the converted value.

The mode of the data type of x must be REAL; if x is COMPLEX, the
reference is illegal.

Result DataType: The data type of the value returned by (OSD is the

same as the data type of x.

14-35 First Edition

PL/I Reference Guide

Operation: PL/I returns the cosine of x, where x is an angle measured
in decrees, |

Examples: OOSD(0) returns 1EO0. ©OSD(90.000) returns 1.0000E0.

The GOSH Mathematical Built-in Function

The COSH built-in function returns the hyperbolic cosine of the
argument.

Format: COSH(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes (OSH for each aggregate element.
Below, assume that x is scalar.

PL/I converts x to the scale of FLOAT, to the derived base and mode of
the data type of x, and to the converted precision of the data type of
xX. %In the following, assume that x is the converted value.

Result Data Type: The data type of the value returned by OOSH is the
same as the data type of x.

Operation: PL/I returns the hyperbolic cosine of x.

Examples: COSH(0) returns 1.E+00. GOSH (90 .0000) returns 8,5070E+37.

The DATE Built-in Function

The DATE built-in function returns the current date as a CHARACTER
string, in the format 'yymmdd'.

Format: DATE()

Arguments: None

Result Data Type: The data type of the value returned by DATE is
CHARACTER. The length of the string returned by DATE is 6.

First Edition 14-36

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Operation: PL/I returns a CHARACTER(6) value in the format 'yymmdd',
where yy represents the last two digits of the current year, mm
represents a two-digit value (01 to 12) for the current month, and dd
stands for the day of the month (01 to 31).

Example: On January 5, 1986, DATE() would return '860105'.

The DECAT String-handling Built-in Function

The DECAT built-in function breaks up a string as desired, according to
the position of a substring.

Format: DECAT(s, c, t)

Arguments: If s and c are not both scalar, PL/I applies the general
rule for aggregate arguments and computes DECAT for each aggregate
element. Below, assume that s and c are scalar.

PL/I converts s and c to the common derived string type (CHARACTER or
BIT) of the data types of s and c. In the following, assume that s and
c are the converted values.

The argument t must be a scalar, PL/I converts t to a BIT string value
of length 3. In the following, assume that t is the converted value.

Result Data Type: The data type of the value returned by DECAT is the
same as the data type of s.

Operation: PL/I defines three strings, as follows:

sl BEFORE (S, ¢)

‘t if c is not a substring of s
s2 Uu

c if c is a substring of s

S3 = AFTER(s, c)

PL/I returns the result of concatenating together two or all of the
strings sl, s2, and s3 determined by corresponding bit positions in the
BIT(3) valuet. Specifically, PL/I returns a value obtained by
concatenating together the intermediate strings specified in Table
14-3, depending upon the value of t.

14-37 First Edition

PL/I Reference Guide

Discussion: DECAT works by breaking up the string s into three parts,
sl, 82, and s3, such that sl || s2 || s3 is the same as the string s.

When c is a substring of s, the three parts are the portion of s before
cy Cc itself, and the portion of s after c, respectively. When c is not
a substring of s, the three parts are s, a null string, and “another

null string.

The third argument, t, lets you choose which combination of these three
parts PL/I should return as the value of DECAT.

Table 14-3
Values Returned for DECAT

Value Returned
Value of t for DECAT Comment

'000'B Null string
‘OO1'B s3 Same as AFTER(S, Cc)
'010'B s2
'O11'B s2||s3
'100'B sl Same as BEFORE(S, c)
'101'B s1||s3
'110'B sl ||s2
"111'B sl|{s2]|s3 Same as string s

Examples: The following chart illustrates the DECAT built-in
functions:

Line # Reference Returns

1 DECAT('ABC', 'B', '100'B) A‘
2 DECAT('ABC', 'B', '010"'B) ‘'B!
3 DECAT('ABC', 'B', '001'B) ‘c!
4 DECAT('ABC', 'B*, '101'B) "AC!
5 DECAT('100101'B, '101'B, '100'B

"101'B)

In lines 1 through 4, the first two arguments are the same, and the
second argument is a substring of the first. As a result, in each
case, PL/I breaks up the first string into three parts, with sl = 'A',
s2 = 'B', and s3 = 'C', In line 1, the third argument is '100'B, and
so PL/I returns only sl, or 'A', When the third argument is '100'B,
DECAT is the same as BEFORE. In line number 2, the third argument is

'010'B, and so 018, returns only s2, or 'B'. In line 3, the third
argument is '001'B, and so PL/I returns only s3, or 'C'. When the

First Edition 14-38

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

_third argument is '001"B, DECAT is the same as AFTER. In line number

4, the third argument contains two l-bits, in the first and third

position, and so PL/I returns sl || s3, or 'AC'.

Line number 5 illustrates DECAT with BIT string arguments.

As a final illustration, suppose that C is a CHARACTER VARYING

variable. Consider the following program segment:

DO WHILE(INDEX(C, ' ') > 0);

C = DEcAT(C, ' ', '101'B);
END?

The DO loop iterates as long as the string C contains a blank

character. The assignment statement in the DO loop removes the blank

character from C. Therefore, this loop removes all blanks from C.

The DECIMAL Arithmetic Built-in: Function

The DECIMAL built-in function converts the base of the argument to

DECIMAL .

Format: DECIMAL(x) or DECIMAL(x, p) or DECIMAL (x, Py q)

Abbreviation: DEC for DECIMAL

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes DECIMAL for each aggregate element.

Below, assume that x is scalar.

For information on arguments p and gq, see the section Arguments That

Specify Precision near the beginning of this chapter.

Result Data Type: The base of the data type returned by DECIMAL is

DECIMAL, and the scale and mode of the data type returned by DECIMAL

are the derived scale and mode of the argument x. ‘The precision of the

result is described in the section Arguments That Specify Precision

near the beginning of this chapter.

Operation: PL/I converts x to the result data type, and returns that

value.

14-39 First Edition

PL/I Reference Guide

Examples :

Line # Reference Returns

1 DECIMAL (101B) 5
2 DECIMAL (5.2E+0) 5.2E+00
3 DECIMAL (5.2E+0,10,2) ERROR

The DIMENSION Array-handling Built-in Function

The DIMENSION built-in function returns the dimension size of an array
argument for a specified dimension number.

Format: DIMENSION (x, n)

Abbreviation: DIM for DIMENSION

Arguments: The argument x must be an array. The argument n must be a
scalar. PL/I converts n to the integer data type FIXED BINARY(15, 0)
REAL. In the following, assume that n is the converted integer value.

Result Data Type: The value returned by the DIMENSION built-in
function is an integer value with data type FIXED BINARY(15, 0) REAL.

Operation: The value of n must be greater than or equal to 1, and less
than or equal to the number of dimensions in the array x; ifnis
outside of this range, the reference is illegal.

PL/I computes the dimension size for the subscript position specified
by n. The dimension size equals

(upper bound) - (lower bound) +1

Example: Suppose the array A is declared as follows:

DECLARE A(10, 2:6);

In this case, the reference DIMENSION(A, 1) returns the value 10, since
the dimension size in the first dimension is 10. ‘he reference
DIMENSION(A, 2) returns the integer value 5, since the dimension size
in the second dimension is (6 - 2 +1), or 5.

First Edition 14-40

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

The DIVIDE Arithmetic Built-in Function

The DIVIDE built-in function returns the quotient of two values in the

specified precision.

Format: DIVIDE(x, y, Pp) or DIVIDE(x, y, Pr Q)

Arguments: If x and y are not both scalar, PL/I applies the general

rule for aggregate arguments and computes DIVIDE for each aggregate

element. Below, assume that x and y are scalar.

PL/I converts x and y to the common derived base, scale, and mode of

the data types of x and y, and to the converted precision of the data

type of the respective argument. In the following, assume that x and y

are the converted values.

For information on the arguments p and g,° see the section Arguments

That Specify Precision near the beginning of this chapter.

Result Data Type: The data type of the result returned by DIVIDE is as

described in the section Arguments That Specify Precision near the

beginning of this chapter.

Operation: PL/I computes the value of x/y and converts it to the

result data type.

Examples: The following chart illustrates the DIVIDE built-in

function:

Line # Reference Returns

1 DIVIDE (8,2,1) 4

2 DIVIDE (8,2,3) 4

3 DIVIDE (8,2,/3,1) 4.0

4 DIVIDE (8E0 ,2.0,4) 4,.000E+00

5 DIVIDE (8E0,2.0,4,1) ERROR

In lines 1 through 3, the common derived base, scale, and mode are

FIXED DECIMAL REAL, and the quotient is 4. The value returned depends

upon the precision specified by the arguments p and q.

In line 4, the common derived scale is FLOAT, and the precision is 4.

Line 5 illustrates an invalid reference, because the argument gq is

specified when the derived scale is FLOAT.

14-41 First Edition

PL/I Reference Guide

The DOT Array-handling Built-in Function

The DOT built-in function returns the dot product of the two
one-dimensional arrays.

Format: DOT(x, y) or DOT(x, y, p) or DOT(x, y, Py q)

een The arguments x and y must be one-dimensional arrays, with
Tdentica1 dimension bounds,

PL/I converts the arrays x and y to new arrays with the derived base,
scale, and mode of thedata types of x and y, and to the converted
precision of the respective data types of the arguments. In the
following, assume that x and y are the converted array values.

For information on the arguments p and q, see the section Arguments
That Specify Precision near the beginning of this chapter,

Tf you do not specify the argumentsP and gq, the scale of x andy must
be FLOAT; if the derived scale is FIXED, and you do not specify the
arguments p and q, the reference is illegal.

Result Data Type: The value returned by the DOT built-in function is a
scalar, ‘and has a data type as specified in the section Arguments That
Specify Precision earlier in this chapter,

Operation: PL/I computes the dot product of the two arrays x and y, as
follows: let 1 equal the common lower bound of the arrays x and y, and
let u equal the common upper bound. PL/I computes the following value:

u

Wwe>xv
k=1

PL/I returns the value We Note that a dot product, or scalar product,
is the result of multiplication.

Example: Suppose that the arrays A and B are declared as follows:

DECLARE A(3) FLOAT DECIMAL (3) INITIAL (2,8,9);

DECLARE B(3) FLOAT DECIMAL (3) INITIAL(1,4,0) ;

First Edition 14-42

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

then PL/I computes the value of DOT(A, B) by computing the value

2*1+8%*4+9*0

and returns the value 3.40E+01.

The EMPTY Storage-handling Built-in Function

The EMPTY built-in function returns an empty AREA value.

Format: EMPTY ()

Arguments: None
tl

Result DataType: The value returned by the EMPTY built-in function is
a scalar with the AREA data type.

Operation: PL/I returns an empty AREA value.

Example:

DECLARE A AREA;
A = EMPTY();

The assignment statement shown above can be used at any time to free

all allocations within the area A.

The ERF Mathematical Built-in Function

The ERF built-in function returns the error function of the argument.

Format: ERF(x)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes ERF for each aggregate element.

Below, assume that x is a scalar.

14-43 First Edition

PL/I Reference Guide

PL/I converts x to the scale of FLOAT, to the derived base and mode of
the data type of x, and to the converted precision of the data type of
x. In the following, assume that x is the converted value.

The mode of the data type of x must be REAL; if x is OOMPLEX, the
reference is illegal.

Result Data Type: The data type of the result returned by ERF is the
same as the data type of x.

Operation: PL/I computes the following value:

x
+2

ceruf edt
0

PL/I returns this value.

The ERFC Mathematical Built-in Function

The ERFC built-in function returns the complement of the error function
of the argument.

Format: ERFC(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes ERFC for each aggregate element.
Below, assume that x is scalar.

The mode of the data type of x must-be REAL; if x is QOMPLEX, the
reference is illegal.

Result Data Type: The data type of the value returned by ERFC is the
same as the data type of x.

First Edition 14-44

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Operation: PL/I computes the value

1 — ERF(x)

and returns that value.

The EVERY String-handling Built-in Function

The EVERY built-in function tests whether all bits ina BIT scalar or

aggregate are l-bits and returns a single bit to indicate the result.

Format: EVERY (x)

Argument: The argument x must be either a scalar with the BIT data

type, Or an aggregate each of whose scalar elements has the BIT data

type. (If x is not a scalar, it does not follow the general rule for

aggregate arguments.)

Result Data Type: The data type of the value returned by EVERY is the
logical data type BIT. The length of the string returned by EVERY is

1.

ration: If x, or any scalar element of the aggregate x, contains a

0-bit, PL/I returns '0'B; otherwise, PL/I returns '1'B.

As a consequence of this rule, if the scalar x is a null string, or if

all the scalar elements of the aggregate x are null strings, PL/I

returns '1'B.

Examples: EVERY('11101'B) returns the value '0'B, since the argument

contains a O-bit. On the other hand, EVERY('111111'B) returns the

value '1'B, since the argument contains only 1-bits. EVERY(''B) also

returns '0'B.

As a further example, consider the following statements:

DECLARE A(10);

_IF EVERY(A > 0) THEN...

In this example, the THEN clause of the IF statement is taken if

EVERY(A > 0) is considered true; PL/I considers it true provided that

every element of A is positive.

14-45 First Edition

PL/I Reference Guide

The EXP Mathematical Built-in Function

The EXP built-in function takes an argument x and calculates e (the
base of the natural logarithm) to the power x.

Format: EXP(x)

Argument: If x is not a scalar, PL/I applies the general rule for
agoregate arguments, and computes EXP for each aggregate element,
Below, assume that x is a scalar.

PL/I converts x to the scale of FLOAT, to the derived base and mode of
the data typeof X, and to the converted precision of the data type of
x. ‘In the following, assume that x is the converted value.

Result Data Type: The data type of the value returned by EXP is the
same as the data type of x.

Operation: PL/I computes the value of e°x, where e is the base of the
natural logarithm (approximately 2.1718), and returns that value.

Example: EXP(0) returns the value 1E0. EXP(1.000) returns the value
2./718E0.

The FIXED Arithmetic Built-in Function

The FIXED built-in function converts the argument to the scale of

FIXED,

Format: FIXED(x, p) or FIXED(x, Pp, q)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes FIXED for each aggregate element.
Below, assume that x is a scalar.

For information on the arguments p and gq, see the section Arguments
That Specify Precision near the beginning of this chapter.

The data type of the value returned by the FIXED built-in function has
a scale of FIXED, and the derived base and mode of the data type of the
argument x.

The precision of the data type of the value returned by the FIXED
built-in function is as described in the section Arguments That Specify
Precision near the beginning of this chapter.

First Edition 14-46

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

Operation: PL/I converts x to the result data type, and returns that

value.

Examples: The FIXED built-in function is illustrated by the following

chart:

Line # Reference Returns

1 FIXED (3 ,4) 3

2 FIXED (3 ,5,1) 3.0

3 FIXED (2 .824E0,2,1) 2.8

In each of these cases, the value returned has a precision as specified

by the arguments p and q.

The FLOAT Arithmetic Built-in Function

The FLOAT built-in function converts the argument to a scale of FLOAT.

Format: FLOAT(x, p)

Arguments: If x is not a scalar, PL/I applies the general rule for

agoregate arguments and computes FLOAT for each aggregate element.

Below, assume that x is a scalar.

For information on the argument p, see the section Arguments That

Specify Precision near the beginning of this chapter.

Result Data Type: The data type of the result returned by the FLOAT

built-in function has a scale of FLOAT, and the derived base and mode

of the argument x.

The precision of the data type of the value returned by FLOAT is as

described in the section Arguments That Specify Precision.

Operation: PL/I converts x to the result data type and returns that

value.

14-47 First Edition

PL/I Reference Guide

Examples: The following chart illustrates the FLOAT built-in function:

Line # Reference Returns

1 FLOAT (3 , 4) +3 .000E0
2 FLOAT (3 ,5) +3 .0000E0
3 FLOAT (2 .82 450 , 2) +2 ..8E0

In each of these cases, PL/I converts the argument to FLOAT with a
precision specified by the second argument. Notice that truncation
takes place in line number 3.

The FLOOR Arithmetic Built-in Function

The FLOOR built-in function takes a noninteger argument and returns the
next lower integer.

Format: FLOOR(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
agoregate arguments and computes FLOOR for each aggregate element.
Below, assume that x is a scalar.

PL/I converts x to the derived base, scale, and mode of the data type
of x, and to the converted precision of the data type of xX. In the
following, assume that x is the converted value.

The mode of the data type of x must be REAL; if x is COMPLEX, the
reference is illegal.

Result Data Type: The base, scale, and mode of the data type of the
result returned by FLOOR are the same as for the data type of x.

If the scale of the data type of x is FLOAT, the precision of. the data
type returned by FLOOR is the same as the precision of the data type of
Xe

If the scale of the data type of x is FIXED, and the precision of the
data type of x is (r, s), the precision of the data type returned by
FIXED is (p, 0), where the scale factor is 0, and where

Pp = MIN(n, MAX(r - s + 1, 1))

First Edition 14-48

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

and n is the maximum number of digits permitted for a data type with a

scale of FIXED and the base of the data type of x. (nis 31 for FIXED

BINARY, and 14 for FIXED DECIMAL.)

Operation: PL/I returns the largest integer that is less than or equal

to xX.

Examples: The following chart illustrates the FLOOR built-in function:

Line # Reference Returns

1 FLOOR (2.7) +02
2 FLOOR(-2.7) -03
3 FLOOR(2) +02

4 FLOOR(-2) —02

5 FLOOR(2 .3E0) +2 .QE0

Lines 1 and 2 illustrate FLOOR with noninteger arguments, and lines 3

and 4 illustrate integer arguments. In lines 1 through 4, the argument

is FIXED, while in line 5, the argument is a FLOAT noninteger value.

The HBOUND Array-handling Built-in Function

The HBOUND built-in function returns the upper bound of the array

argument for the specified dimension number.

Format: HBOUND(x, n)

Arguments: The argument x must be an array. The argument n must be a

scalar.

PL/I converts n to the integer data type FIXED BINARY(15, 0) REAL. In
the following, assume that n is the converted integer value.

Result Data Type: The value returned by HBOUND is an integer value
with data type FIXED BINARY(15, 0) REAL.

Operation: The value of n must be greater than or equal to 1 and less

han or equal to the number of dimensions in the array x; if n is
outside of this range, the reference is illegal.

PL/I returns the upper bound for the subscript position specified by n

in the array x.

14-49 First Edition

PL/I Reference Guide

Example: Suppose the array A is declared as follows:

DECLARE A(10, 2:6);

In this case, HBOUND(A,1) returns the integer value 10, and HRBOUND(A,2)
returns 6.

The HIGH String-handling Built-in Function

The HIGH built-in function returns a CHARACTER string of specified
length, each of whose characters is the highest character in the
collating sequence.

Format: HIGH(n)

Arguments: The argument n must be a scalar. PL/I converts n to the
integer data type FIXED BINARY(15,0) REAL. In the following, assume
that n is the converted integer value.

Result Data Type: The data type of the value returned by HIGH is
CHARACTER. The length of the string returned by HIGH is the integer n.

Operation: If the value of n is negative, the reference is illegal.

If n = 0, PL/I returns the null string.

If n> 0, PL/I returns a CHARACTER string of length n, each of whose
characters equals the character that comes last in the collating
sequence,

Examples: HIGH(0) returns the null string.

HIGH(30) returns a string of length 30 that is guaranteed to compare as
greater than any other CHARACTER string of length 30.

First Edition 14-50

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

The IMAG Mathematical Built-in Function

The IMAG built-in function returns the imaginary part of a COMPLEX

argument.

Format: IMAG(x)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes IMAG for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to a data type with a mode of COMPLEX, to the derived

base and scale of the data type of x, and to the converted precision of

the data type of x. In the following, assume that x is a converted

value.

Result Data Type: The data type of the value returned by IMAG has a

mode of REAL and has the same base, scale, and precision as the data

type of x.

Operation: PL/I returns the imaginary part of x.

Example: The reference IMAG(2 + 3I) returns the value 3.

The INDEX String-handling Built-in Function

The INDEX built-in function returns the position of a specified

substring within a string.

Format: INDEX(s, C)

Arguments: If s and

c

are not both scalars, PL/I applies the general

rule for aggregate arguments and computes INDEX for each aggregate

element. Below, assume that s and c are scalar.

PL/I converts s and c to the common derived string type (CHARACTER or

BIT) of the data types of s and c. In the following, assume that s and

c are the converted values.

Result DataType: The value returned by the INDEX built-in function

has the integer data type FIXED BINARY(15, 0) REAL.

14-51 First Edition

PL/I Reference Guide

Operation: PL/I performs the following steps:

1. If either of the strings c or s is a null string, PL/I returns
the integer value 0.

2. If c is not a substring of s, PL/I returns the integer value 0.

3. If cis not a null string, but is a substring of s, PL/I
returns an integer value equal to the position of the leftmost
occurrence of the substring c ins.

Examples: The following chart illustrates the INDEX built-in function:

Line # Reference Returns

1 INDEX('ABCD', 'X') 0

2 INDEX ('ABCDEF', 'DE') 4

3 INDEX('ABCDABCD' , 'BCD') 2

4 INDEX('101101'B, '10'B) 1

In line 1, INDEX returns the integer value 0, since 'X' is not a
substring of 'ABCD'.

In line 2, 'DE' is a substring of 'ABCDEF' in the fourth and fifth
character positions, so INDEX returns the integer value 4. In line
number 3, the string 'BCD' is a substring of 'ABCDABCD' in two
different positions, but only the leftmost occurrence counts.

Line number 4 illustrates INDEX with BIT string arguments,

The LBOUND Array-handling Built-in Function

The LBOUND built-in function returns the lower bound of an array
argument for the specified dimension number.

Format: LBOUND(x, n)

Arguments: The argument x must be an array. The argument n must be a
scalar.

PL/I converts n to the integer data type FIXED BINARY(15, 0) REAL. In
the following,assume that nis the converted integer value.

Result Data Type: ‘The value returned by the LBOUND built-in function
is an integer value with a data type of FIXED BINARY(15, 0) REAL.

First Edition 14-52

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Operation: The value of n must be greater than or equal to 1 and less

than or equal to the number of dimensions in the array x. Jf n is out

of range, the reference is illegal.

PL/I returns the lower bound for the subscript position specified by n.

Examples: Suppose the array A is declared as follows:

DECLARE A(10,2:6);

then LBOUND(A,1) returns the integer value 1, and LBOUND(A,2) returns

26

The LENGTH String-handling Built-in Function

The LENGTH built-in function returns the length of a string argument.

Format: LENGTH (s)

Argument: If s is not a scalar, PL/I applies the general rule for

aggregate arguments and computes LENGTH for each aggregate element.

Below, assume that s is scalar.

PL/I converts s to the derived string type (CHARACTER or BIT) of the
data type of s. In the following, assume that s is the converted

value.

Result Data Type: The value returned by LENGTH is an integer value
with data type FIXED BINARY(15, 0) REAL.

Operation: PL/I returns the number of characters or bits in the string

s. If the string s is a null string, PL/I returns the integer value 0.

Examples: LENGTH('ABC') returns the value 3.

14-53 First Edition

PL/I Reference Guide

The LINENO Built-in Function

The LINENO built-in function returns the current output line number
position on the current page of a PRINT OUTPUT STREAM file,

Format: LINENO(£)

Arguments: The argument f must be a scalar. The argument £ must have
the FILE data type.

Result Data Type: The value returned by the LINENO built-in function
is an integer value with data type F"XED BINARY(15, 0) REAL.

ration: The file £ must be open with the STREAM OUTPUT PRINT
attributes; otherwise the reference is illegal.

PL/I finds the current line number on the current page and returns that
integer value.

The LOG Mathematical Built-in Function

The LOG built-in function returns the natural logarithm of the
argument.

Format: LOG(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes LOG for each aggregate element.
Below, assume that x is a scalar.

PL/I converts x to a data type with the scale of FLOAT, the derived
base and mode of the data type of x, and the converted precision of the
data type of x. In the following, assume that x is the converted
value,

Result Data Type: The data type of the value returned by LOG is the
same as the data type of x.

Operation: PL/I performs the following steps:

l. If the mode of the data type of x is REAL, the value of x must
be positive; otherwise, the reference is illegal. PL/I
returns the natural logarithm of x.

First Edition 14-54

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

2. If the mode of the data type of x is COMPLEX, the value of x

may not be 0; if the value of x is 0, the reference is

illegal. PL/I returns a value w of the natural logarithm of x,

such that

-PI < IMAG(w) <= PI

Discussion: LOG computes the logarithm of its arguments to the base e,

where e = 2.718281828...

The related built-in functions LOG2 and LOG1O compute the logarithm of

their arguments to the bases 2 and 10, respectively.

Examples: LOG(1) returns 0E0. 10G(2.71828) returns 1.00000E0.

The LOG1O Mathematical Built-in Function

The LOG1IO built-in function returns the common logarithm of the

argument.

Format: LOG10(x)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes LOG1O for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to a data type with a scale of FLOAT, the derived base

and mode of the data type of x, and the converted precision of the data

type of x. In the following, assume that x is the converted value.

The mode of the data type of x must be REAL; if x is COMPLEX, the

reference is illegal.

Result Data Type: The data type of the value returned by LOG1O is the

same as the data type of x.

Operation: The value of x must be positive; if x is negative, the
reference is illegal.

PL/I returns the common logarithm (logarithm to base 10) of x.

Examples: LOG10(1) returns the value OZO0. L0G10(10) returns 1.0E0.

14-55 First Edition

PL/I Reference Guide

The LOG2 Mathematical Built-in Function

The LOG2 built-in function returns the logarithm of its argument to the
base 2.

Format: LOQG2(x)

Argument: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes LOG2 for each aggregate element.
Below, assume that x is scalar,

PL/I converts x to the data type with the scale of FLOAT, to the
derived base and mode of the data type of x, and to the converted
precision of the data type of x. In the following, assume that x is
the converted value.

The mode of the data type of x must be REAL; if x is COMPLEX, the
reference is illegal.

Result Data Type: The data type of the value returned by LOG2 is the
same as the data type of x.

ration: The value of x must be positive; if x is negative the
reference is illegal.

PL/I returns the value of the logarithm of x to the base 2.

Examples: LOG2(1) returns 0E0. LOG2(2) returns 1E0.

The LOW String-handling Built-in Function

The LOW built-in function returns a CHARACTER string of specified
length, each of whose characters is the lowest character in the
collating sequence.

Format: LOW(n)

Arguments: The argument n must be a scalar. PL/I comverts n to the
integer data type FIXED BINARY(15,0) REAL. In the following, assume
that n is the converted integer value.

Result Data Type: The data type of the value returned by the LOW
built-in function is CHARACTER. The length of the string returned by
LOW is given by the integer value n.

First Edition 14-56

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Operation: If the value of n is negative, the reference is illegal.

Tf n = 0, PL/I returns the null string.

If n > 0, PL/I returns a CHARACTER string of length n, each of whose

characters is the character that comes first in the collating sequence.

Examples: LOW(0) returns the null string. LOW(30) returns a CHARACTER

String of length 30 that is guaranteed to compare as less than any

other string of length 30.

The MAX Arithmetic Built-in Function

The MAX built-in function computes the maximum of the values of its

arguments.

Format: MAX(xl, x2, «.., xn). There must be one or more arguments.

Arguments: If the arguments are not all scalar, PL/I applies the

general rule for aggregate arguments and computes MAX for each

aggregate element. Below, assume that xl, x2, ...,xn are all scalar.

PL/I converts each argument to the common derived base, scale, and mode

of the data types of the arguments, and to the converted precision of

the data type of the respective argument. In the following, assume

that xl, x2, ..., xn are the converted values.

Result Data Type: The data type of the value returned by MAX has the

common derived base, scale, and mode of the arguments. The precision

of the data type of the result returned by MAX is determined as

follows:

@ If the common derived scale of the arguments is FLOAT, the

number of digits in the precision of the data type returned by

MAX is the maximum of the precisions in the data types of xl,

x2, eoog xn.

@ If the common derived scale is FIXED, let (pl, ql), (p2, 2),

eee, (pn, gn) be the precisions of the data types of xl, x2,
eoey XN, respectively. Then the precision of the value returned

by MAX is (p, q), where

p = MIN(n, MAX(pl - ql, p2 - Q2, eee, PN - MN)

_ MAX (GL, q2, eves gn))

q= MAX (ql, q2, eooor qn)

14-57 First Edition

PL/I Reference Guide

where n is the maximum number of digits permitted for a data
type with a scale of FIXED and the common derived base of
the arguments. (n equals 31 for FIXED BINARY, and 14 for
FIXED DECIMAL.)

Operation: PL/I determines the maximum of the values of the arguments
Xl, X2, ».e., Xn. PL/I converts this value to the result data type and
returns the converted result.

Example: MAX(-5, 8, 4) returns the value 8.

The MIN Arithmetic Built-in Function

The MIN built-in function returns the minimum of its arguments. ~

Format: MIN(xl, x2, ..., xn). There must be one or more arguments.

Arguments: If the arguments are not all scalar, PL/I applies the
general rule for aggregate arguments and computes MIN for each
aggregate element. Below, assume that xl, x2, ..., xn are all scalar.

PL/I converts each of the arguments to the common derived base, scale,
and mode of the data types of the arguments, and to the converted
precision of the data type of the respective argument. In the
following, assume that xl, x2, ..., xn are the converted values.

The derived common mode of the data types of the arguments must be
REAL; if it is COMPLEX, the reference is illegal.

Result DataType: The data type of the value returned by the MIN
built-in function has the common derived base, scale, and mode of the
arguments. The precision of the data type of the value returned by the
MIN built-in function is determined as follows:

e@ If the common derived scale is FLOAT, the precision of the data
type returned by MIN equals the maximum of the precisions of the
data types of xl, x2, ..e, MM.

First Edition 14-58

BUILT-IN FUNCTIONS AND PSEUDOVARTIABLES

e If the common derived scale of the data types of the arguments

is FIXED, let (pl, ql), (p2, 2), «e+, (pn, om) be the
precisions of the data types of xl, X2, ese, My respectively.

Then the precision of the data type of the value returned by MIN

is (p, q), where

p = MIN(n, MAX(pl, ql, p2 - G2, «ee, PN ~ Qh)

- MAX(qL, q2, eoer gn))

q = MAX(ql, q2, eoe sr qn)

where n is the maximum number of digits permitted for a data

type with a scale of FIXED and the common derived base of the

arguments. (n equals 31 for FIXED BINARY, and 14 for FIXED

DECIMAL.)

Operation: PL/I computes the minimum of the values of the arguments

xl, X2,; ..e, XM. PL/I converts this value to the result data type, and

returns the result of the conversion.

Example: MIN(-5, 8, 4) returns -5.

~The MOD Arithmetic Built-in Function

The MOD built-in function returns the remainder resulting from the

division of two arguments.

Format: MOD(x, y)

Arguments: If x and y are not both scalar, PL/I applies the general

rule for aggregate arguments and computes MOD for each aggregate

element. Below, assume that x and y are scalar.

PL/I converts each of x and y to the derived common base, scale, and

mode of the data types of x and y, and to the converted precision of

the respective argument. In the following, assume that x and y are the

converted values.

The derived common mode of the arguments must be REAL; if either x or

y is COMPLEX, the reference is illegal.

14-59 First Edition

PL/I Reference Guide

Result Data Type: The base, scale, and mode of the data type of the
value returned by MOD are the same as the common derived base, scale,
and mode of the data types of x and y.

The precision of the data type of the result returned by MOD is
computed as follows:

e If the common derived scale is FLOAT, the precision of the data
type of the value returned by MOD equals the maximum of the
precisions of the data types of x and y.

@ If the common derived scale is FIXED, let (r, s) and (t, u) be
the precisions of the data types of x and y, respectively. Then
the precision of the data type of the value returned by MOD is
(Pr q), where

p = MIN(n, t — u + MAX(s, u))

q = MAX(s, uv)

where n is the maximum number of digits permitted for a data
type with the scale of FIXED and the common derived base of x
andy. (n equals 31 for FIXED BINARY, and 14 for FIXED
DECIMAL.)

ration: PL/I computes the remainder obtained when x is divided by
Ye This computation is made according to the following rules:

1. If y equals 0, PL/I returns the valve x.

2. If y is not equal to 0, PL/I returns the value

xX ~ y * FLOOR(x/y)

First Edition 14-60

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

Examples: The following chart illustrates the MOD built-in function:

Line # Reference Returns

1 MOD (11,4) 3
2 MOD (12,4) 0
3 MOD (13,4) 1
4 MOD(11.5,4) 3.5
5 MOD (12.26 ,4) 0.26
6 MOD(13.93 ,4) 1.93
7 MOD (-11,4) 1
8 MOD(-12 ,4) 0
9 MOD(~13 ,4) 3

10 MOD(11,-4) -1
ll MOD(12,-4) 0
12 MOD (13,-4) -3
13 MOD(5.3,2.5) 0.3
14 MOD(15.3E0,2.5) 3.00E-1

In line number 1, since 11 divided by 4 has a quotient of 2 with a

remainder of 3, MOD(11,4) returns 3. PL/I actually computes this as

follows:

11 - 4 * FLOOR(2.75)
11 - 4 * FLOOR(11/4)

=l1l-4%*2=3.

In line number 2, 12 divided by 4 has no remainder, so MOD(12,4)

returns 0. In line number 3, 13 divided by 4 has a quotient of 3 anda

remainder of 1, so MOD(13,4) returns the value l.

Lines 4 through 6 illustrate a noninteger numerator or first argument

to MOD. In line 4, 11.5 divided by 4 gives a quotient of 2, with a

remainder of 3.5, so MOD(11.5,4) returns 3.5. Lines 5 and 6 are

similar.

Lines 7 through 12 illustrate the fact that if the value returned by
MOD is not 0, it has the same sign as the denaminator of the division
(second argument to MOD); that is, if the denaminator is positive, the
value returned is 0 or positive, and if the denominator is negative,

the value returned is 0 or negative. In line 7, PL/I computes the

value of MOD(~11,4) as follows:

~ll -4 * FLOOR(-11/4)
-11 - 4 * FLOOR(-2.75)
-ll - 4 * (-3) =1t

o
u
t

14-61 First Edition

PL/I Reference Guide

Similarly, in line 10, PL/I computes the value of MOD(11,-4) as
follows:

-11 - (-4) * FLOOR(11/-4)
=]] - (-4) * FLOOR(-2.75)
= ll - (-4) * (-3) =-l

Lines 13 and 14 illustrate what happens when the denominator (second
argument to MOD) is not an integer. For line 13, when 5.3 is divided
by 2.5, the quotient is 2 and the remainder is 0.3, so MOD(5.3,2.5)
returns the value 0.3.

The MULTIPLY Arithmetic Built-in Function

The MULTIPLY built-in function returns the product of two values in the
specified precision.

Format: MULTIPLY(x, y, p) or MULTIPLY(x, yr Py q)

Arguments: If x and y are not both scalar, Pl/I applies the general
rule for aggregate arguments and computes MULTIPLY for each aggregate

element. Below, assume that x and y are scalars.

PL/I converts each of x and y to the derived base, scale, and mode of
the data types of x andy, and to the converted precision of the
respective data type. In the following, assume that x and y are the
converted values.

For information on the arguments p and gq, see the section Arguments
That Specify Precision near the beginning of this chapter.

Result Data Type: The data type of the value returned by MULTIPLY is
as described in the section Arguments That Specify Precision near the
beginning of this chapter,

Operation: PL/I computes the value of x * y and converts it to the
result data type.

First Edition 14-62

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Examples: The following chart illustrates the MULTIPLY built-in

function:

Line # Reference Returns

1 MULTIPLY (2,4,1) 8

2 MULTIPLY (2,4,2) 08

3 MULTIPLY (2,4,5,1) 0008.0

In all three cases, the first two arguments are 2 and 4. The function

returns the product of these two values in the various precisions

specified by the third and, possibly, fourth arguments.

The NULL Storage-handling Built-in Function

The NULL built-in function returns a null POINTER value.

Format: NULL()

Arguments: None

Result Data Type: The data type of the value returned by NULL is

POINTER

Qperation: PL/I returns a null POINTER value. The NULL built-in

unction is discussed in Chapter 7.

The OFFSET Storage-handling Built-in Function

The OFFSET built-in function converts a POINTER value to an OFFSET

value within a specified area,

Format: OFFSET(ptr, a)

Arguments: If ptr is not a scalar, PL/I applies the general rule for

aggregate arguments and computes OFFSET for each aggregate element.

Below, assume that ptr is a scalar.

The argument ptr must have the POINTER data type. The argument a must

be a scalar and must have the AREA data type.

14-63 First Edition

PL/I Reference Guide

Result DataType: The data type of the value returned by OFFSET is
OFFSET.

Operation: PL/I converts the POINTER value ptr to an OFFSET value
within the area specified by a.

The ONCHAR Condition-handling Built-in Function

The ONCHAR built-in function returns the invalid character that caused
PL/I to raise the CONVERSION condition.

Format: ONCHAR()

Arguments: None

Result DataType: The data type of the value returned by ONCIAR is
CHARACTER. The length of the string returned by ONCHAR is 1.

Operation: Use ONCHAR() in a CONVERSION or ERROR on-unit invoked as
the result of an error in attempting to convert a CHARACTER string to
some other data type. PL/I returns the invalid character that gave
rise to the conversion error,

If you use ONGHAR in some other context, or if the CONVERSION or ERROR
on-unit is invoked with a SIGNAL statement, PL/I returns a CHARACTER(1)
value containing a blank character.

For more information on the ONGHAR built-in function, see Chapter 13.

The ONOODE Condition-handling Built-in Function

The ONOODE built-in function returns an integer error code that you can
use in an on-unit to determine which error caused the or-unit to be
raised.

Format: ONCODE()

Arguments: None

Result Data Type: The value returned by the ONOODE built-in function
has the integer data type FIXED BINARY(15).

First Edition 14-64

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Operation: Use ONCODE() in an on-unit invoked as the result of an
error. PL/I returns an integer value indicating the type of error
causing the on-unit to be invoked.

For more information on the ONOODE built-in function, see Chapter 13.
The meanings of the error codes returned are given in Appendix F.

The ONFIELD Condition-handling Built-in Function

The ONFIELD built-in function returns the input stream characters that
caused the NAME condition to be raised from a GET DATA statement.

Format: ONFIELD()

Arguments: None

Result Data Type: The data type of the value returned by ONFIELD is
CHARACTER,

ration: Use ONFIELD() in a NAME or ERROR on-unit invoked as the
result of an error in a GET DATA statement. PL/I returns the string of
characters in the input stream that gave rise to the error.

If you use ONFIELD in some other context, or if the NAME or ERROR
on-unit is invoked with the SIGNAL statement, ONFIELD returns a null

string.

For more information on the ONFIELD built-in function, see Chapter 13.

The ONFILE Condition-handling Built-in Function

The ONFILE built-in function returns the name of the FILE constant for
which an input/output error on-unit was raised.

Format: ONFILE()

Arguments: None

Result Data Type: The data type of the value returned by ONFILE is
CHARACTER.

14-65 First Edition

PL/I Reference Guide

Operation: Use ONFILE() in an on-unit meant to handle an input/output
error. PL/I returns the name of the file constant on which the error
occurred.

If you use ONFILE() in some other context, or if the onm-unit was
invoked with a SIGNAL statement, ONFILE returns a null string.

For more information on the ONFILE built-in function, see Chapter 13.

The ONKEY Condition-handling Built-in Function

The ONKEY built-in function returns the key string in the input/output
statement for which a TRANSMIT, KEY, RECORD, or ERROR on-unit was

invoked.

Format: ONKEY()

Arguments: None

Result Data Type: The data type of the value returned by ONKEY is
CHARACTER.

Operation: Use ONKEY() in a KEY, TRANSMIT, RECORD, or ERROR on-unit
invoked as the result of an input/output error on a KEYED file, PL/I
returns the invalid key value, or the key of the record causing the
error.

If you use ONKEY in some other context, or if the on-unit was invoked

with a SIGNAL statement, ONKEY returns a null string.

For more information on the ONKEY built-in function, see Chapter 13.

The ONLOC Condition-handling Built-in Function

The ONLOC built-in function returns the name of the entry point for the
procedure from which an on-unit was invoked.

Format: ONLOC()

Result Data Type: The data type of the value returned by ONLOC is
CHARACTER.

First Edition 14-66

BUILT-IN FUNCTIONS AND PSEUDOVARTABLES

Operation: PL/I returns the name of the entry point of the most

recently invoked procedure.

Although you may use ONLOC in any context, it is most useful in an
on-unit.

The ONSOURCE Condition-handling Built-in Function

The ONSOURCE built-in function returns the invalid string that caused

PL/I to raise the CONVERSION condition.

Format: ONSOURCE()

Arguments: None

Result DataType: The data type of the value returned by ONSOURCE is
CHARACTER.

Operation: Use ONSOURCE() in a CONVERSION or ERROR on-unit invoked as

the result of an error in attempting to convert a CHARACTER or

pictured-character string to same other data type. PL/I returns the

invalid string that gave rise to the conversion error.

If you use ONSOURCE in some other context, or if the CONVERSION or

ERROR on-unit is invoked with a SIGNAL statement, PL/I returns a null

string,

For more information on the ONSOURCE built-in function, see Chapter 13.

The PAGENO Built-in Function

The PAGENO built-in function returns the page number of the specified

PRINT file.

Format: PAGENO(f)

Argument: The argument £ must be a scalar with the FILE data type.

Result Data Type: The value returned by the PAGENO built-in function
has the integer data type FIXED BINARY(15, 0) REAL.

14-67 First Edition

PL/I Reference Guide

ration: The file specified by the argument f must be open with the
STREAM OUTPUT PRINT attributes. PL/I returnsthe current output page
number,

For more information on page numbers in PRINT files, see Chapter 11.

The POINTER Storage-handling Built-in Function

The POINTER built-in function converts an OFFSET value within a
specified area to a POINTER value.

Format: POINTER(o, a)

Arguments: If the argument o is not a scalar, PL/I applies the general
rule for aggregate arguments and computes POINTER for each agaregate
element. Below, assume that the argument o is a scalar,

The argument o must have the OFFSET data type. The argument a must be
a scalar with the AREA data type.

Result Data Type: The data type of the value returned by POINTER is
FO

ration: PL/I interprets the argument o as an offset into the area a
ahd.converts the offset to a POINTER value, which PL/I returns.

The PRECISION Arithmetic Built-in Function

The PRECISION built-in function changes the precision of the argument
to the specified value.

Format: PRECISION(x, p) or PRECISION(x, p, q)

Abbreviation: PREC for PRECISION

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes PRECISION for each aggregate element.
Below, assume that x is a scalar.

For more information on the arguments p and gq, see the section
Arguments That Specify Precision near the beginning of this chapter.

First Edition 14-68

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

ResultDataType: The data type of the value returned by PRECISION has
the derived mode, base, and scale of the data type of the argument Xe
The precision of the data type of the value returned by PRECISION is as
described in the section Arguments That Specify Precision.

Operation: PL/I converts the argument x to the result data type and
returns that value.

Examples: The following chart illustrates the PRECISION built-in
function:

Line # Reference Returns

1 PRECISION (5,4) 5
2 PRECISION (5,4,1) 5.0

3 PRECISION (5E0,4) 5 .000E+00
4 PRECISION (5E0,4,1) ERROR

Lines 1 and 2 illustrate the use of PRECISION with a FIXED argument, .
and line 3 illustrates PRECISION with a FLOAT argument. The reference
in line number 4 is illegal, because the argument q may not be
specified for a FLOAT first argument.

The PROD Array-handling Built-in Function

The PROD built-in function returns the product of all the elements of
the specified array.

Format: PROD(x)

Argument: The argument x must be an array. It may not be an array of
structures.

Result Data Type: The value returned by PROD isa scalar. The data
type of the value returned by PROD has the derived base and mode of the
data type of an element of the array x. The scale and precision of the
data type of the value returned by PROD are determined as follows:

@ If the derived scale of the data type of an element of the array
x is FIXED and the scale factor of the converted precision is 0,
then the data type of the value returned by PROD has a scale of
FIXED with a precision of (n,0), where the scale factor is 0,
and where n is the maximum number of digits permitted for a data
type with a scale of FIXED and the derived base. (n equals 31
for FIXED BINARY, and 14 for FIXED DECIMAL.)

14-69 First Edition

PL/I Reference Guide

@® Otherwise, the data type of the value returned by PROD has a
scale of FLOAT and a precision equal to the converted precision
of the data type of an element of the array x.

Operation: PL/I converts each element of the array x to the result
data type, and then multiplies all these values together, PL/I returns
the product.

Example: Suppose an array A is declared as follows:

DECLARE A(4) FLOAT DECIMAL(5) INITIAL (1,2,3,4);

Then a reference to PROD(A) returns the product of the elements in the

array A and yields +2.4000E1.

The RANK String-handling Built-in Function (Prime Extension)

The RANK built-in function converts a character to its numeric
equivalent, according to its position in the ASCII collating sequence
(Appendix B).

WARNING

RANK is not an ANS PL/I function and is not available in other
implementations of PL/I.

Format: RANK(c)

Arguments: If c is not a scalar, PL/I applies the general rule for
aggregate arguments and computes RANK for each. aggregate element.

Below, assume that c is a scalar.

Note: c must be CHARACTER(1).

Result Data Type: The value returned by RANK has the integer data type
FIXED BINARY(15, 0) REAL.

Operation: PL/I takes the bits in the character c and treats them as
an unSigned binary integer, which it returns as thefunction value.

First Edition 14-70

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

RANK(c) is equivalent to

INDEX(COLLATE(), c) - 1

Examples: RANK('A') returns 193. RANK('5') returns 181.

The REAL Mathematical Built-in Function

The REAL built-in function returns the real part of a COMPLEX argument,

Format: REAL (x)

Argument: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes REAL for each agoregate element.

Below, assume that x is a scalar.

PL/I converts x to a data type with a mode of COMPLEX, to the derived

base and scale of the data type of x, and to the converted precision of

the data type of x. In the following, assume that x is the converted

value.

Result Data Type: The data type of the value returned by REAL has a

mode of REAL and the base, scale, and precision of the data type of x.

Operation: PL/I returns the real part of x.

Example: REAL(2 + 31) returns the value 2.

The REVERSE String-handlingBuilt-in Function

The REVERSE built-in function reverses the order of the characters or

bits in the argument and returns the resulting string.

Format: REVERSE (x)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes REVERSE for each aggregate element.

Below, assume that x is a scalar.

14-71 First Edition

PL/I Reference Guide

PL/I converts x to the derived string type (CHARACTER or BIT) of the
data type of x. In the following, assume that x is the converted
value,

Result Data Type: The data type of the value returned by REVERSE is
the same as the data type of x.

ration: PL/I forms a new string containing all the characters or
bits in x in reverse order, and returns that string.

Examples: REVERSE('ABCD') returns 'DCBA'. REVERSE('10110'B) returns
"01101'B.

The ROUND Arithmetic Built-in Function

The ROUND built-in function rounds a FIXED argument to a specified
digit position, and a FLOAT argument to a specified number of
significant digits. -

Format: ROUND(x, n)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes ROUND for each aggregate element.
Below, assume that x is a scalar.

PL/I converts x to the derived base, scale, and mode of the data type
of x, and tothe converted precision of the data type of x. In the
following, assume that x is the converted value.

The argument n must be a decimal integer constant. If the scale of the
data type of x is FLOAT, the value of the integer n must be positive.

Result Data Type: The data type of the value returned by ROUND has the
same base, scale, and mode as the data type of x. The precision of the
value returned by ROUND is determined as follows:

@ If the scale of the data type of xX is FLOAT, the precision of
the result returned by ROUND isn. (If n is larger than the
maximum number of digits permitted for a scale of FLOAT with the
base of the data type of x, PL/I uses the maximum number of
digits permitted.)

First Edition 14-72

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

® If the scale of the data type of x is FIXED, and the precision
of the data type of x is (r,“s), the precision of the value
returned by ROUND is (p, q), where

p
q

MAX(1, MIN(r - s+ 1 +n, N))

n

where N is the maximum number of digits permitted for a data
type with a scale of FIXED and the base of x. (N equals 31 for
FIXED BINARY, and 14 for FIXED DECIMAL.)

Operation: PL/I computes a value as follows:

1. If the scale of the data type of x is FIXED, PL/I computes a
value by rounding x in the nth position following the decimal
point (or binary point). If n is negative, rounding occurs to
the left of the decimal or binary point.

2. If the scale of the data type of x is FLOAT, PL/I computes a
new value by rounding x in the nth significant digit position.

PL/I returns the computed value as the value of ROUND.

Discussion: ROUND does not do what many programmers expect when the
first argument is FLOAT. It is tempting to think that ROUND
complements the functions CEIL, FLOOR, and TRUNC, by providing a way to
round a noninteger value to the nearest integer. In fact, the
reference

ROUND (x, 0)

rounds a FIXED value x to the nearest integer, but if x is FLOAT, the

reference is illecal.

The easiest way to round a FLOAT value x to the nearest integer is to

use FLOOR(x + .5).

14-73 First Edition

PL/I Reference Guide

Examples: The following chart illustrates the ROUND built-in function:

Line # Reference Returns

1 ROUND (32 .8743 ,3) +032 .874
2 ROUND (32 .8743 ,1) +032 .9
3 ROUND (32 .8743 ,0) +033
4 ROUND (32 .8743 ,-1) +03F1
5 ROUND (32 .8743E0,3) +3 .28E1

Line number 1 shows that ROUND(32.8743,3) rounds in the third position

after the decimal point, to get the value 32.874, shown as 032.874 in

the chart, since the result data type is FIXED DECIMAL(6,4).

Line number 2 shows rounding one position after the decimal point, and

line number 3 shows rounding to the nearest integer.

Line number 4 shows rounding to one digit position to the left of the
decimal point. ROUND(32.8743,-1) returns the value 30, shown as +03F1
in the chart, since the result data type is FIXED DECIMAL(2,-1).

Line number 5 shows rounding to the third significant digit for a FLOAT

value.

The SIGN Arithmetic Built-in Function

The SIGN built-in function returns a value +1, 0, or -1, depending upon
whether the argument is positive, zero, or negative, respectively.

Format: SIGN(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes SIGN for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to the derived base, scale, and mode of the data type
of x, and to the converted precision of the data type of x. In the

following, assume that x is the converted value.

The mode of the data type of x must be REAL; if x is QOMPLEX, the
reference is illegal.

Result DataType: The value returned by SIGN has the integer data type
FIXED BINARY(15,0) REAL.

First Edition 14-74

BUILT-IN FUNCTIONS AND PSEUDOVARLABLES

Operation: If x is negative, PL/I returns -1. TE x is 0, PL/I returns

0. if x is positive, PL/I returns +1.

Examples: The following chart illustrates the SIGN built-in function:

Line # Reference Returns

1 SIGN (23 .8) +1

2 SIGN(0) 0

3 SIGN(-15.4) -l

The chart illustrates the three cases of SIGN where the arguments are

positive, zero, and negative, respectively.

The SIN Mathematical Built-in Function

The SIN built-in function returns the sine of the argument, with the

argument measured in radians.

Format: SIN(x)

Arguments : If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes SIN for each aggregate element.

Below, assume that x is scalar.

PL/I converts x toa data type with the scale of FLOAT, to the derived

base and of the data type of x, and to the converted precision of

the data type of x. In the following, assume that x is the converted

value.

Result Data ‘Type: The data type of the value returned by SIN is the

Same as the data type of the argument xX.

Operation: PL/I returns the sine of x.

Examples : SIN(0) returns the value OE0. SIN(PI/2) returns the value

1.0000E0.

14-75 First Edition

PL/I Reference Guide

SINDMathematicalBuilt-inFunction

The SIND built-in function returns the sine of the argument, with the
argument measured in Gegrees.

Format: SIND(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes SIND for each aggregate element.
Below, assume that x is a scalar. |

PL/I converts x to a data type with the scale of FLOAT, to the derived
base and mode of the data type of xX, and to the converted precision of
the data type of x. In the following, assume that x is the converted
value,

The mode of the data type of x must be REAL; if x is COMPLEX, the
reference is illegal.

Result Data Type: The data type of the value returned by SIND is the
same as the data type of x.

ration: PL/I interprets x as an angle measured in degrees and
returns the sine of that angle.

Examples: SIND(0) returns the value OKO. SIND(90.0) returns the value
1.0050.

The SINH Mathematical Built-in Function

The SINH built-in function returns the hyperbolic sine of the argument.

Format: SINH(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes SINH for each aggregate element.
Below, assume that x is a scalar.

PL/I converts x to a data type with a scale of FLOAT, to the derived
base and mode of the data type of X, and to the converted precision of
the data type of x. In the following, assume that xis the converted
value,

First Edition 14-76

BUILTHIN FUNCEIONS AND PSEUDOVARIABLES

Result Data Type: ‘The data type of the value returned by SINH is the
———"

Same as the datatype of x.

Operation: PL/I returns the hyperbolic sine of x.

Examples: SINH(0) returns 0.E+00. SINH(90.0) returns 8.50E+37.

The SIZE Storage-handling Built-in Function(Prime Extension)

The SIZE built-in function returns the size of the storage area

occupied by a variable, measured in bits, bytes, words, double words,

or quadruple words.

WARNING

SIZE is not an ANS PL/I function and is not available in other

implementations of PL/I.
Format: SIZE(v) or SIZE(v, n)

Arguments: The argument v must be an unsubscripted scalar or aggregate

Variable. That is, it can be an array, but not an element of an array.

The argument n, if specified, must be one of the following integer

constants: 1, 2, 3, 4, Or 5.

Result Data Type: The data type of the value returned by SIZE is FIXED

BINARY (31) .

Operation: If n is not specified, let n= 3. The value of n must be

between 1 and 5.

PL/I computes the size of the storage area occupied by Vv, where the

unit of storage area is determined by the value of n according to the

following chart. PL/I returns the computed value.

Value ofn Unit

1 bit

2 byte (8 bits)

3 word (16 bits)

4 double word (32 bits)

5 quadruple word (64 bits)

14-77 First Edition

PL/I Reference Guide

The SOME String-handling Built-in Function

The SOME built-in function tests whether any of the bits in a BIT
scalar or aggregate are 1-bits and returns a logical value to indicate
the result,

Format: SOME (x)

Argument: The argument x must be either a scalar with the BIT data
type or an aggregate each of whose scalar elements has the BIT data
type. (If x is an aggregate, it does not follow the general rule for
aggregate arguments.)

Result Data Type: The data type of the value returned by SOME is BIT.
The length of the string returned by SOME is 1.

Operation: If x (or any scalar element of the aggregate xX) contains a
I-bit, PL/I returns '1'B; otherwise, PL/I returns '0'B.

Notice that as a consequence of the above, if xis anull BIT string,
SOME returns '0'B,

Examples: SOME('000100'B) returns '1'B. SCME('000000'B) returns '0'B.

Consider the following statements:

DECLARE A(10) ;

TF SOME(A > 0) THEN...

In this example, SOME(A > 0) is considered true if at least one element
of the array A is positive.

The SORT Mathematical Built-in Function

The SORT built-in function returns the square root of the argument.

Format: SORT(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes SORT for each aggregate element.
Below, assume that x is a scalar.

First Edition 14-78

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

PL/I converts x to a data type with a scale of FLOAT, to the derived

base and mode of the data type of x, and to the converted precision of

the data type of x. Jn the following, assume that x is the converted

value.

Result DataType: The data type of the value returned by SORT is the

same as the data type of x.

Operation: PL/I returns a value as follows:

1. If the mode of the data type of x is REAL, the value of x must

be 0 or positive; if x is negative, the reference is illegal.

PL/I returns the positive square root of x.

2. If the mode of the data type of x is COMPLEX, PL/I returns one

of the two COMPLEX square roots of x, u+ VI, such that either

u is greater than 0, or uis 0 andy is 0 o greater than 0.

Examples : SORT (4.0000) returns 2.0000E0. SORT(-4.0000) is an illegal

reference, Since the argument is REAL and negative. SORT(-4 + QI)

returns 0 + 2I (rather than 0 - 21).

The STRINGString-handling Built-in Function

The STRING built-in function concatenates together all elements of a

string aggregate.

Format: STRING(s)

Argument: The argument S may be a scalar or an aggregate. T£ it is an

aggregate, it does not follow the general rule for aggregate arguments.

Result Data ‘Type: The value returned by STRING is a scalar. The data

type of the result returned by STRING is the common derived string type

(CHARACTER or BIT) of all the scalar elements in S.

ration: PL/I converts each of the scalar elements in s to the

result data type and concatenates all of them together. PL/I returns

the concatenated string.

14-79
First Edition

PL/I Reference Guide

Example: Consider the following declaration:

DECLARE 1 REC,

2 A CHARACTER(3) INITIAL ('ABC'),
2 B FIXED DECIMAL(2) INITIAL (12),
2 C BIT(10) VARYING INITIAL ('101'B);

The common derived string type of the three elements of the aggregate
REC is CHARACTER, and so STRING(REC) returns 'ABC12101'.

The SUBSTR String-handling Built-in Function

The SUBSTR built-in function returns the specified substring of a given
string.

Format: SUBSTR(s, m, n) or SUBSTR(s, m)

If s,; m, and

n

are not all scalars, F/I applies the general rule for
aggregate arguments and computes SUBSTR for each aggregate element,
Below, assume that s, m, and n are scalar.

PL/I converts s to the derived string type (CHARACTER or BIT) of the
data type of s. In the following, assume S is the converted value.

PL/I converts m and n (if specified) to the integer data type FIXED
BINARY(15, 0) REAL. In the following, assume that m and n (if
specified) are the converted values.

Result Data Type: The data type of the value returned by SUBSTR is the
same as the data type of s.

Operation: Let k = LENGTH(s).

If n is not specified, let

n=k-m+1

PL/I tests the following inequalities, if STRINGRANGE checking is
enabled:

k+l-n

O
r

A
A i 3 “A it

First Edition 14-80

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

If these inequalities are not both satisfied, PL/I raises the

STRINGRANGE condition. However, if STRINGRANGE is disabled and these

inequalities are not both satisfied, the result is undefined.

PL/I returns a_ substring of s starting at character or bit position m

and continuing for n characters or bits.

Examples: The following chart illustrates the SUBSTR built-in

function:

Line # Reference Returns

1 SUBSTR ('ABCDEEFG' 7D72) RE!

2 SUBSTR ('ABCDEFG' 75,0) STRINGRANGE

3 SUBSTR ('ABCDEFG' ,3) ‘CDEFG'

4 SUBSTR ('101101'B,3,2) T11'B

Line number 1 computes the substring of 'ABCDEFG', starting at the

fifth character and going for two characters, and so returns 'EF',

In line 2, the starting position is the same, but the length is 0, and

so PL/I returns the null string.

Line 3 illustrates the fact that when the third argument is

unspecified, the substring goes to the end of the string.

Line 4 illustrates SUBSTR with a BIT string argument.

The SUBTRACT Arithmetic Built-in Function

The SUBTRACT built-in function returns the difference of two values in

the specified precision.

Format: SUBTRACT (x, y, Pp) or SUBTRACT (xX, yr Pr q)

Arguments: If x and y are not both scalar, PL/I applies the general

rule for aggregate arguments and computes SUBTRACT for each aggregate

element. Below, assume that x and y are scalar.

PL/I converts x and y to the common derived base, scale, and mode of

the data types of x andy, and to the converted precision of the

respective argument. In the following, assume that x and y are the

converted values.

For information on the arguments p and gq, see the section Arguments

That Specify Precision near the beginning of this chapter.

14-81 First Edition

PL/I Reference Guide

Result Data Type: The base, scale, and mode of the data type of the
value returned by SUBTRACT are the same as the common derived base,
scale, and mode of the data types of x andy. The precision of the
data type of the value returned by SUBTRACT is as described in the
section Arguments That Specify Precision near the beginning of this
chapter.

Operation: PL/I computes the value of x - y, and converts it to the
result data type.

Examples: The following chart illustrates the SUBTRACT built-in
function:

Line # Reference Returns

1 SUBTRACT (3 ,5,1) -2
2 SUBTRACT (3 ,5,3) -2
3 SUBTRACT (3 ,5,3,1) -2.0
4 SUBTRACT (5.2 ,3E0,4) 2.200E0
5 SUBTRACT (5.2,3H0,4,1) ERROR

Lines 1 through 3 illustrate the computation of 3 minus 5 with various
result precisions. Line 4 illustrates SUBTRACT with a FLOAT argument.

The reference in line 5 is illegal, since the argument gq may not be
specified with a FLOAT argument.

The SUM Array-handling Built-in Function

The SUM built-in function returns the sum of all the elements of the
array X.

Format: SUM(x)

Arguments: The argument x must be an array. It may not be an array of
structures.

First Edition 14-82

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Result Data Type: The value returned by SUM is a scalar. The base,

Scale, and mode of the data type of the value returned by SUM are the

derived base, scale, and mode of the data type of an element of the

array xX. ‘The precision of the data type of the value returned by SUM

is determined as follows:

@ If the scale of the data type of an element of the array xX is

FIXED, the precision of the data type of the value returned by

SUM is (n, q), where q is the converted scale factor of the data

type of an element of the array x, and n is the maximum number

of digits for a data type with a scale of FIXED and the derived

base. (n equals 31 for FIXED BINARY, and 14 for FIXED DECIMAL.)

e If the scale of the data type of an element of the array xX is .

FLOAT, the precision of the data type of the value returned by

SUM is the converted precision of the data type of an element of

the array X.

ration: PL/I converts each element of the array xX to the result

data type and adds all these values together. PL/I returns the sum.

Example: Suppose the array A is declared as follows:

DECLARE A(4) FLOAT DECIMAL (5) INITIAL (1,2,3,4) ?

Then SUM(A) returns the sum of the elements of the array A, OF 1.000E1.

The TAN Mathematical Built-in Function

The TAN built-in function returns the tangent of an argument, with the

argument given in radians.

Format: TAN(x)

Arguments: If x is not scalar, PL/I applies the general rule for

aggregate arguments and computes TAN for each aggregate element.

Below, assume that x is scalar.

PL/I converts x to the data type with a scale of FLOAT, to the derived

base and mode of the data type of xX, and to the converted precision of

the data type of x. In the following, assume that x is the converted

value.

Result Data Type: The data type of the value returned by TAN is the

same as the data type of x.

14-83 First Edition

PL/I Reference Guide

Operation: If the value of x is an odd multiple of PI/2, the reference
is illegal.

PL/I returns the tangent of x.

Examples: TAN(0) returns the value 0E0. ‘TAN(PI/4) returns the value
1.00000E0.

The TAND Mathematical Built-in Function

The TAND built-in function returns the tangent of an argument, with the
argument given in degrees.

Format: TAND(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes TAND for each aggregate element.
Below, assume that x is a scalar.

PL/I converts xX to a data type with a scale of FLOAT, to the derived
base and mode of the data type of x, and to the converted precision of
the data type of x. In the following, assume that x is the converted
value,

The mode of the data type of x must be REAL; if x is COMPLEX, the
reference is illegal.

Result Data Type: The data type of the value returned by TAND is the
same as the data type of x.

Operation: If the value of x is an odd multiple of 90 degrees, the
reference is illegal.

PL/I interprets x as an angle measured in degrees and returns the
tangent of that angle.

Example: TAND(0) returns the value O0E0. ‘TAND(45.00) returns the value
1.000E0.

First Edition 14-84

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

The TANH Mathematical Built-in Function

The TANH built-in function returns the hyperbolic tangent of the

argument.

Format: TANH(x)

Argument: If x is not a_ scalar, PL/I applies the general rule for

aggregate arguments and computes TANH for each aggregate element.

Below, assume that x is a scalar.

PL/I converts x to the data type with a scale of FLOAT, to the derived

base and mode of the data type of x, and to the converted precision of

the data type of x. In the following, assume that x is the converted

value.

Result Data Type: The data type of the value returned by TANH is the

same as the data type of x.

Operation: PL/I returns the value of the hyperbolic tangent of x.

Examples:

Line # Reference Returns

1 TANH (0) 0.E+00
2 TANH (PT4) 1.0000000008+00
3 TANH (45.00) 1.000E+00

The TIME Built-in Function

The TIME built-in function returns the current time of day asa

CHARACTER string, in the format 'hhmmssfff'.

Format: TIME ()

Arguments: None

Result Data Type: The data type of the value returned by TIME is

CHARACTER. The length of the string returned by CHARACTER is 9.

14-85 First Edition

PL/I Reference Guide

ration: PL/I returns a CHARACTER(9) value in the format
"hhmmssff££', where hh represents the hours from 00 to 23, mm represents
the minutes from 00to 59, ss represents the number of seconds from 00
to 59, and fff is the fraction of a second in milliseconds from 000 to
999.

Example: At precisely 1:23:45 p.m., TIME() returns the value
"132345000'.

The TRANSLATE String-handling Built-in Function

The TRANSLATE built-in function translates a string argument by
replacing characters in the string ona one-to-one basis with other
characters.

Format: TRANSLATE(s, r, t) or TRANSLATE(s, r)

Arguments: If s, xr, and t (if specified) are not all scalar, PL/I
applies the general rule for aggregate arguments and computes TRANSLATE
for each aggregate element. Below, assume that s, r, and t are all
scalars.

PL/I converts each of the arguments s, r, andt (if specified) to
CHARACTER. In the following, assume that s, r, and t are the converted
values.

Result Data Type: The data type of the value returned by TRANSLATE is
CHARACTER. The length of the string returned by TRANSLATE is the same
as the length of the string s.

Operation: If t is not specified, let t be a CHARACTER(256) string
containing the entire collating sequence. (This is the value returned
by a reference to the COLLATE built-in function.)

If string r is shorter than string t, PL/I pads r with blanks to the
length of t.

PL/I takes the CHARACTER string s and creates a new CHARACTER string v,
by taking s and making one-to-one character substitutions to get v.
PL/I does this as follows:

For each character in s, PL/I searches for that character int. If the
character is not in string t, PL/I uses that character untranslated in
string v. Otherwise, suppose the leftmost occurrence of the character
is at position nin string t. Then PL/I translates that character to
the character appearing in position n in string r.

First Edition 14-86

BUILTIN FUNCTIONS AND PSEUDOVARIABLES

PL/I returns the string v.

Since the above description is sanewhat difficult to understand, the

following example provides a user-defined function procedure that

performs the same function as TRANSLATE.

TRANSLATE: PROC(S, R, T) RETURNS(CHAR(*));

DCL (S, R, T) CHAR(*);
DCL V CHAR (LENGTH (S));
DCL C CHAR(1);
DCL (K, M) BIN FIXED;
V= 2 a

M=1 TO LENGTH(V);
= SUBSTR(V, M, 1);
= INDEX(T, C)?

F K > 0 THEN DO;
IF K > LENGTH(R)

THEN C = 'Fe
ELSE C = SUBSTR(R, K, 1);
SUBSTR(V, My, 1) = C;

Cc
K
I

Discussion and Examples: Use the TRANSLATE built-in function to take a

CHARACTER string and translate the characters ona one-to-one basis.

The translation lists are specified by the second and third arguments.

As an example, consider the following reference:

TRANSLATE ("AMICABLY', 'XYZ', 'ABC')

The second and third arguments to TRANSLATE set up a "translate" table,

as shown below.

x
X

>

<
<

N
—
—
—
O

14-87 First Edition

PL/I Reference Guide

When this translate table is applied to the string 'AMICABLY',
following substitutions are obtained:

Substitute X for A
No substitution
No substitution
Substitute Z for C
Substitute X for A
Substitute Y for B
No substitution
No substitutionK

E
W

P
r
P
O
H
S
P

V
E
U
L
L
Y

K
E
K
M
N
H
S

xX

Therefore, the above reference to TRANSLATE returns 'XMIZXYLY'.

Similarly, consider the reference:

TRANSLATE ('BROAD', 'XXZ', 'ABC')

This reference uses the same translation table as the preceding
example, because the second and third arguments are the same. When
this translation table is applied to the string 'BROAD', the following
character translations are obtained:

Substitute X for B
No substitutions
No substitutions
Substitute X for A
No substitutionsO

r
o
n
w

V
U
d
e

O
x
M
O
W

XM

Therefore, the above reference would return 'XROXD'.

One of the most common uses of the TRANSLATE built-in function is to
Change all lowercase letters in a string to uppercase characters.
Consider the following program segment:

DCL UPPER CHAR (26) INIT (' ABCDEFGHIJKLMNOPORSTUVWRYZ')
DCL LOWER CHAR(26) INIT('abcdefghijklmopgrstuvwxyz')

GET LIST (STR);
STR = TRANSLATE(STR, UPPER, LOWER):

°
f

e
e

The last statement changes all lowercase letters in the string STR to
their uppercase equivalents.

First Edition 14-88

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

I£ you omit the third argument after TRANSLATE, PL/I uses a default

argument that is a string containing the entire collating sequence.

This form is used in systems programming applications where CHARACTER

strings are being translated from one collating sequence to another,

The TRIM String-Handling Function

The TRIM function removes occurrences of a character from a string.

Format: TRIM(s, b) or TRIM(s, b, c)

Arguments: If s andc (if specified) are not scalar, PL/I applies the

general rule for aggregate arguments and computes TRIM for each

aggregate element. Below, assume that s and c are both scalars.

PL/I converts the value of the argument s to the data type CHARACTER.

In the following, assume that s is the converted value.

The argument b must be scalar. PL/I converts the value of the argument

b to the data type BIT(2). In the following, assume that b is the

converted value.

PL/I converts the value of the argument c, if specified, to the data

type CHAR(1). In the following, assume that c is the converted value.

Result Data Type: The data type of the value returned by TRIM is

CHARACTER,

Operation: If c is not specified, let c=' '.

PL/I takes the string s and creates a new CHARACTER string v by

starting with v = s and proceeding as follows:

@ If the first bit of bis a l-bit, PL/I removes any initial
occurrences of the character c from v.

@ If the second bit of bis al-bit, PL/I removes any trailing

occurrences of the character c from v. PL/I returns the string
Ve

14-89 First Edition

PL/I Reference Guide

Examples:

Line # Reference Returns

1 TRIM('XXABCXX', 'O0'B, 'X') "XXABCXX'
2 TRIM('XXABCXX', 'O1'B, 'X') "XXABC'
3 TRIM ('XXABCXX', '10'B, 'X') "ABCXX'
4 TRIM('XXABCXX', "11'B, 'X') "ABC!
5 TRIM(' ABC ', '11"B) "ABC!

Lines 1-4 illustrate the removal of the character 'X'. ‘The four
possible values in the BIT(2) second argument are illustrated.

Line 5 is similar to line 4 except that the third argument is omitted,
and so the space character is removed.

The TRUNC Arithmetic Built-in Function

The TRUNC built-in function truncates the argument to an integer value
by throwing away the fractional part.

Format: TRUNC(x)

Arguments: If x is not a scalar, PL/I applies the general rule for
aggregate arguments and computes TRUNC for each aggregate element.
Below, assume x is a scalar.

PL/I converts x to the derived base, scale, and mode of the data type
of x, and to the converted precision of the data type of x. In the
following, assume that x is a converted value.

The mode of the data type of x must be REAL; if x is COMPLEX, the
reference is illegal.

Result Data Type: The base, scale, and mode of the data type of the
value returned by TRUNC are the same as for the data type of x. The
precision of the data type of the value returned by TRUNC is determined
as follows:

@ If the scale of the data type of x is FLOAT, the precision of
the data type of the value returned by TRUNC is the same as for
the data type of x.

First Edition 14-90

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

@ If the scale of the data type of x is FIXED, and the precision

of the data type of x is (r, s), then the precision of the data

type of the value returned by TRUNC is (p, 0), with a zero scale

factor, where

p = MIN(n, MAX(r - s +1, 1))

and n is the maximum number of digits permitted for a data type

with the scale of FIXED and the base of the data type of x. (n

equals 31 for FIXED BINARY, and 14 for FIXED DECIMAL.)

Operation: PL/I returns an integer value, computed as follows:

1. I£ the value of x is nonnegative, PL/I returns the largest

integer value that is less than or equal to x.

2. If x is negative, PL/I returns the smallest integer value that

is greater than or equal to x.

Discussion: There are three related functions, CEIL, FLOOR, and TRUNC,

each of which changes a REAL value to an integer value. All three

functions leave an integer value unchanged. If the argumentis not an

integer,

@ FLOOR returns the next lower integer.

e@ CEIL returns the next higher integer.

e TRUNC returns the next integer in the direction of 0.

TRUNC is the same as FLOOR for positive arguments, and TRUNC is the

same as CEIL for negative arguments.

Note that the ROUND built-in function does not always return an integer

value, and so is ustwally not useful. ‘The easiest way to round an

argument x to the nearest integer is to use FLOOR(x + .5).

14-91, First Edition

PL/I Reference Guide

Examples: The following chart illustrates the CEIL, FLOOR, and TRUNC
built-in functions:

Line # Reference Returns

1 CEIL (2.7) +03
2 FLOOR(2.7) +02
3 TRUNC (2.7) +02
4 CBIL (-2.7) -02
5 FLOOR(-2.7) ~03
6 TRUNC (-2 7) -02
7 CEIL (2) +02
8 FLOOR(2) +02
9 TRUNC (2) +02

10 CEIL(12.35E0) +1.300E1
11 FLOOR(12.35E0) +1.200E1
12 TRUNC (12 .35E0) +1.200E1

Lines 1 through 3 illustrate CEIL, FLOOR, and TRUNC with a positive
argument, 2.7. C&IL(2.7) returns the value 3, which is shown as +03,
since the data type of the value returned by CEIL(2.7) is FIXED
DECIMAL(2, 0) REAL. FLOOR (2.7) and TRUNC(2.7) both return the value
2.

Lines 4 through 6 illustrate the same functions with negative
arguments,

Lines 7 through 9 illustrate the fact that these functions leave the
value of an integer argument unchanged.

Lines 10 through 12 illustrate the functions with a FLOAT argument.
Notice that the value returned is FLOAT even though it is an integer
value.

The UNSPEC Built-in Function

The UNSPEC built-in function returns a BIT string for the internal
representation of the argument.

Format: UNSPEC(x)

Argument: The argument x must be a scalar, and must be a reference to
a variable,

Result Data Type: The data type of the value returned by UNSPEC is
BIT.

First Edition 14-92

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Operation: PL/I returns a BIT string for the internal representation

of the argument x.

Discussion: Most PL/I functions are desiqed in such a way that they

give the same results under all implementations of PL/I. ‘The intention

is that if your PL/I program is run on two different implementations of

PL/I, the answers produced will be the same.

Some programmers, especially systems programmers, need to manipulate

data in its internal machine format, even though the resulting program

does not run correctly on other machines. The UNSPEC built-in function

permits a program to get at the internal bit representation of a data

item. There is also an UNSPEC pseudovariable, which allows you to

modify the bit representation of any data item.

Examp1es:

Reference Returns

UNSPEC(3.1416) '0000 0000 0000 0011' B
UNSPEC (ABCDE) '1100 0001 1100 0010 1100 0011 1100 0100 1100 0101' B

The VALID Built-in Function

The VALID built-in function determines whether the CHARACTER string

value of a PICTURE variable is valid.

Format: VALID(x)

Arguments: If x is not a scalar, PL/I applies the general rule for

aggregate arguments and computes VALID for each aggregate element.
Below, assume that x is a scalar.

The argument x must be a variable, and must have the PICTURE attribute.

The argument x may be either pictured-numeric or pictured-character.

Result Data Type: The VALID built-in function returns a logical value.

The data type of the value returned by VALID is BIT. The length of the

string returned by VALID is l.

Operation: PL/I checks the CHARACTER string value of the PICTURE

variable x to see whether it conforms to the picture specification for

the data type of x.

14-93 First Edition

PL/I Reference Guide

If the string conforms, PL/I returns '1'B; otherwise, PL/I returns
OB,

Example: Consider the following program segnent:

DECLARE VALS(20) PICTURE 'S$$S9V.99CR';

READ FILE(TAPE) INTO(VALS);
IF “~ EVERY (VALID (VALS))

THEN PUT SKIP LIST('INVALID TAPE RECORD);

The IF statement prints an error message if any of the CHARACTER string
values in the array VALS do not conform to the picture specification.

The VERIFY String~handling Built-in Function

The VERIFY built-in function tests a CHARACTER string to determine
whether all the characters in it are legal, in the specified sense.

Format: VERIFY(s, c)

Arguments: If s and c are not both scalar, PL/I applies the general
rule for aggregate arguments and computes VERIFY for each aggregate
element. Below, assume that s and c are scalar.

PL/I converts s and c to CHARACTER. In the following, assume that s
and c are the converted values,

Result Data Type: The value returned by VERIFY has the integer data
type FIXED BINARY(15,0) REAL.

Operation: PL/I tests each character of s to see whether that
character also appears in the string c. PL/I proceeds as follows:

1. If s is a null string, or if each character of the string s
also occurs in the string c, PL/I returns the value 0.

2. Otherwise, let k be the position of the leftmost occurrence of
a character of s that does not also occur inc. ‘Then PL/I
returns the value k.

Discussion and Examples: You can use the VERIFY function to determine
whether a CHARACTER string contains only legal characters.

First Edition 14-94

BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

For example, suppose an input string is supposed to contain a signed

decimal integer. You may use VERIFY to test whether all the characters

are legal, as follows:

DCL § CHAR(200) VAR;

GET LIST (S) ;
K = VERIFY(S, '4-.0123456789") ;
IF K > 0 THEN

PUT LIST('INVALID INPUT GHAR', SUBSTR(S, K, 1));

The assignment statement sets the variable K equal to the position of

the first character in S that is not a digit, decimal point, or sign.

If every character inS is a digit, decimal point, or sign, the

assignment statement sets K to 0. If there is an invalid character,

the PUT statement prints out the invalid character,

Another common use of VERIFY is to find the first nonblank character in

a string. The reference

VERIFY (S, ' ')

returns 0 if S is null or all blanks, and otherwise returns the

position of the first nonblank in S.

THE USE OF PSEUDOVARIABLES

You may use certain built-in function names as pseudovariables by

assigning them a value. The functions that may be used in this way are

IMAG, ONCHAR, ONSOURCE, PAGENO, REAL, STRING, SUBSTR, and UNSPEC.

Tf the first argument to the SUBSTR, IMAG, or REAL pseudovariable is

not a scalar, an aggregate assignment is performed, according to the

rules given in Chapter 6.

The IMAG and REAL Pseudovariables

If x is a numeric variable whose data type has a mode of COMPLEX, you
may assign a value to just the real or imaginary part of x by using the

REAL or IMAG pseudovariables, respectively. The syntax is either of
the following:

REAL (x)
IMAG (x)

expression;
expression;

14-95 First Edition

PL/I Reference Guide

For example, consider the following program segment:

DECLARE C FLOAT COMPLEX;

REAL (C) = 0;

IMAG(C) = 5;

The two assignment statements, taken together, are equivalent to the
following single assignment statement:

C=0 + 51;

The ONCHAR and ONSOURCE Pseudovariables

The ONCHAR and ONSOURCE pseudovariables are described in detail in
Chapter 13. Use them in a CONVERSION or ERROR on-unit invoked as the
result of an invalid character in a string being converted to some
other data type.

The PAGENO Pseudovariable

Use the PAGENO pseudovariable to change PL/I's internal page number
count for a specified PRINT file. A statement of the format

PAGENO(f) = expression;

is legal provided that f is a scalar with the FILE attribute, and that
the file has been previously opened with the STREAM OUTPUT PRINT
attributes. The assignment statement changes the page number for the
PRINT file £ to the value of the expression.

The STRING Pseudovariable

The STRING pseudovariable treats a string aggregate as one long string
scalar. The syntax is

STRING (x) = expression;

First Edition 14-96

BUILT~IN FUNCTIONS AND PSEUDOVARIABLES

where x is a string scalar or aggregate. All elements of x must be
NONVARYING UNALIGNED strings. One of the following must be true:

@ All elements of x are BIT.

@ All elements of x are CHARACTER, pictured-character, or
pictured-numeric.

This means that mixing BIT and CHARACTER strings is illegal.

For example, consider the following program segment:

DECLARE C(5) CHARACTER(1) ;

STRING (C) = "ABCDE';

The string array C in the assignment statement is treated as one single
string containing five characters.

The SUBSTR Pseudovariable

Assign a value to the SUBSTR pseudovariable to change the value of a
substring of a string. The syntax is

SUBSTR(S,; m, n) = expression;

to change the substring of string s starting from position m and going
for n characters or bits. Alternatively, use the syntax

SUBSTR(S, m) = expression;

to change the substring of string s starting from position m and going
to the end of string s.

For example, consider the following program segnent:

DECLARE CV CHARACTER(200) VARYING;

CV = 'ABCDEFGH'
SUBSTR (CV, 5 2) if

~
e

tyyi :

After the last assignment statement, CV has the value 'ABCDXYGH' , since
the assignment statement changes the two characters of CV starting at
position 5,

14-97 First Edition

PL/I Reference Guide

Continuing this example, suppose PL/I executes the statement

SUBSTR(CV,4) = 'QRSTU';

PL/I changes the substring of C starting from position 4 and going to
the end of the string, with the result that CV is given the value
"ABCORSTU' .

Assignment to the SUBSTR pseudovariable is always treated as a
NONVARYING assignment, even when the first argument is a VARYING
variable. Therefore, continuing the above example, the statement

SUBSTR(CV,4) = 'ORS';

would change the value of CV to 'ABOORSbb'", where b stands for a_ blank
character.

A consequence of this rule is that assignment to a SUBSTR of a VARYING
string never sets or changes the lengths of the string. This means
that it is illegal to use the SUBSTR pseudovariable on an undefined
VARYING string variable.

The restrictions on the second and third arguments to the SUBSTR
pseudovariable are the same as for the SUBSTR built-in function. If
they are out of range, PL/I raises the STRINGRANGE condition, if

enabled.

The UNSPEC Pseudovariable

Just as the UNSPEC built-in function allows you to fetch the value of a
data item as a BIT string in the internal computer format, the UNSPEC
pseudovariable allows you to set the value of a data item by specifying
the bit configuration that you wish to store. The syntax is

UNSPEC(x) = expression;

The argument x must be a scalar variable. PL/I converts the expression
to BIT and stores the BIT string in the storage area occupied by the
variable x.

First Edition 14-98

APPENDIXES

PL/I Keywords

LIST OF KEYWORDS

All language elements of Prime PL/I are shown below.
Prime extensions to ANSI Standard PL/I are underlined.
(P) after a keyword means that it is also a pseudovariable.

Statement Keywords and Statement Option Keywords

ALLOCATE DELETE

IN FILE

SET KEY

[assignment statement] DO
BY NAME TO

BEGIN BY

CALL WHILE

CLOSE REPEAT

ENVIRONMENT UNTIL,

FILE END

DECLARE ENTRY

DEFAULT OPTIONS (NONQUICK)

ERROR RECURSIVE

NONE RETURNS

RANGE

SYSTEM

A-1 First Edition

PL/I Reference Guide

IN
GET

COPY
DATA
EDIT

DO
FILE
LIST

DO
SKIP
STRING

GOTO (GO TO)
IF
THEN
ELSE

LEAVE
LOCATE

FILE
KEYFROM
SET

ON
SNAP
SYSTEM

OPEN
DIRECT
ENVIRONMENT
FILE
INPOT
KEYED
LINESIZE
OUTPUT
PAGES I2ZE
PRINT
RECORD
SEQUENTIAL
STREAM
TAB
TITLE
UPDATE

First Edition

PROCEDURE
OPTIONS(MAIN)
OPTIONS (NONQUICK)
RECURSIVE
RETURNS

PUT
DATA
EDIT

DO
FILE
LINE
LIST
DO

PAGE
SKIP
STRING
TAB

READ
FILE
IGNORE
INTO
KEY
KEYTO
SET

RETURN
REVERT
REWRITE

FILE
FROM
KEY

SELECT
WHEN
OTHERWISE

SIGNAL
STOP
WRITE

FILE
FROM
KEYFROM

SINCLUDE
SREPLACE
SPAGE

A-2

Attribute Keywords

ALIGNED
AREA
REFER

AUTOMATIC
BASED
BINARY
BIT

REFER
BUILTIN
CHARACTER
REFER

COMPLEX
CONDITION
CONSTANT
CONTROLLED
DECIMAL
DEFINED

iSUB
DIMENSION
REFER

DIRECT
ENTRY
OPTIONS (SHORTCALL)

ENVIRONMENT
EXTERNAL
FILE
FIXED
FLOAT
FORMAT
GENERIC
WHEN

Condition Names

AREA
CONDITION
CONVERSION
ENDPILE
ENDPAGE
ERROR
FINISH
FTXEDOVERFLOW
KEY
NAME
OVERFLOW
RECORD
SIZE
STORAGE
STRINGRANGE

INITIAL
INPUT
INTERNAL
KEYED
LABEL
LIKE
LOCAL
MEMBER
NONVARYING
OFFSET
OPTIONS
OUTPUT
PARAMETER
PICTURE
POINTER
OPTIONS (SHORT)

POSITION
PRECISION

PRINT
REAL
RECORD
SEQUENTIAL
STATIC
STREAM
STRUCTURE
UNALIGNED
UPDATE
VARIABLE
VARYING

STRINGSIZE
SUBSCRIPTRANGE
TRANSMIT
UNDEFINEDFILE
UNDERFLOW
ZERODIVIDE
NOCONVERSION
NOFIXEDOVERFLOW
NOOVERFLOW
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOSUBSCRIPTRANGE
NOUNDERFLOW
NOZERODIVIDE

PL/I KEYWORDS

First Edition

PL/I Reference Guide

Arithmetic Built-in Functions

ABS MAX
ADD MIN
BINARY MOD
CEIL MOLTIPLY
DECIMAL PRECISION
DIVIDE ROUND
FIXED SIGN
FLOAT SUBTRACT
FLOOR TRONC

Mathematical Built-in Functions

ACOs EXP
ASIN IMAG (P)
ATAN LOG
ATAND LOGLO
ATANH LOG2
COMPLEX REAL (P)
CONTG SIN
cos SIND
COSD SINH
COSH SORT
ERF TAN
ERFC TAND

TANH

String-handling Built-in Functions

AFTER INDEX
BEFORE LENGTH
Bit LOW
BOOL RANK
BYTE REVERSE
CHARACTER SOME
COLLATE STRING (P)
COPY SUBSTR (P)
DECAT TRANSLATE
EVERY TRIM
HIGH VERIFY

Array-handling Built-in Functions

DIMENSION LBOUND
DOT PROD
HBOUND SUM

First Edition A-4

Storage-handling Built-in Functions

ADDR OFFSET

ALLOCATION POINTER

EMPTY SIZE

NULL

Condition-handling Built-in Functions

ONCHAR (P) ONKEY

ONCODE ONLOC

ONFIELD ONSOURCE (P)

ONFILE

Miscellaneous Built-in Functions

DATE TIME

LINENO UNSPEC (P)

PAGENO

_

(P) VALID

PL/I KEYWORDS

First Edition

The Prime Extended

Character Set

As of Rev. 21.0, Prime has expanded its character set. The basic

character set remains the same as it was before Rev. 21.0: it is the

ANSI ASCII 7-bit set (called ASCII-7), with the 8th bit turned on.

However, the 8th bit is now significant; when it is turned off, it

signifies a different character. Thus, the size of the character set

has doubled, from 128 to 256 characters. This expanded character set

is called the Prime Extended Character Set (Prime ECS).

The pre-Rev. 21.0 character set is a proper subset of Prime ECS. These

characters have not changed. Software written before Rev. 21.0 will

continue to run exactly as it did before. Software written at

Rev. 21.0 that does not use the new characters needs no special coding

to use the old ones.

Prime ECS support is automatic at Rev. 21.0. You may begin to use

characters that have the 8th bit turned off. However, the extra

characters are not available on most printers and terminals. Check

with your System Administrator to find out whether you can take

advantage of the new characters in Prime ECS.

Table B-1 shows the Prime Extended Character Set. The pre-Rev. 21.0

character set consists of the characters with decimal values 128

through 255 (octal values 200 through 377). The characters added at

Rev. 21.0 all have decimal values less than 128 (octal values less than

200) .

B-1 First Edition, Update 1

PL/I Reference Guide

SPECIFYING PRIME ECS CHARACTERS

Direct Entry

On terminals that support Prime ECS, you can enter the printing
Characters directly; the characters appear on the screen as you type
then. For information on how to do this, see the appropriate manual
for your terminal.

A terminal supports Prime ECS if

@ It uses ASCII-8 as its internal character set, and

@ The TIY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your
System Administrator.

On terminals that do not support Prime ECS, you can enter any of the
ASCII-7 printing characters (characters with a decimal value of 160 or
higher) directly by just typing then.

Octal Notation

If you use the Editor (ED), you can enter any Prime ECS character on
any terminal by typing

“octal-value

where octal-value is the three-digit octal number given in Table B-1l.
You must type all three digits, including leading zeroes.

Before you use this method to enter any of the ECS characters that have
decimal values between 32 and 127, first specify the following ED
command:

MODE CKPAR

This command permits ED to print as “nnn any characters that have a
first bit of 0.

Character String Notation

The way in which you specify Prime ECS characters in character strings
in prograns depends on the character that you wish to specify. You can

First Edition, Update 1 B-2

THE PRIME EXTENDED CHARACTER SET

specify Prime ECS characters on any terminal by using one of the

notations shown below. However, the characters themselves can only

appear on a terminal that supports Prime ECS. Terminals that do not

support Prime ECS will not display the characters correctly.

The following rules describe how to specify Prime ECS characters in

character strings.

1. You can specify printing characters in character strings by

enclosing them in single quotation marks ('). For example:

‘Quoted string’

You can enter the characters using either direct entry or octal

notation as described at the beginning of this section.

2. You can specify any character in Prime ECS that has a mnemonic

as follows:

\(mnemonic)

where mnemonic is the Prime mnemonic shown for that character

in Table B-l. The parentheses are essential. You can specify

the mnemonic with either uppercase or lowercase characters.

Some characters have more than one Mnemonic; you may use any

one of these. In the table, the alternatives are separated by

a slash character (/). For example:

'A string'\(FF) 'with a form feed in it'

The compiler interprets the above example as a single character

string.

3. You can specify certain frequently used non-printing characters

as

\abbreviation

where abbreviation is one of the following:

B-3 First Edition, Update 1

PL/I Reference Guide

Abbreviation Meaning

Backspace
Escape
Form feed
Line feed
New line
Carriage return
Horizontal tab
Vertical tab

h
w

H
w
a
n

For example:

‘A string'\F'with a form feed in it'

4, You can specify control characters as

\"character

where “character is listed under "Graphic" in Table B-l. For
example:

‘A string'\"L'with a form feed in it'

You may use the commercial at sign (@) in place of the caret
(*). ~~

4) character specified with a backslash (that is, with notation 2, 3, or
4

@ Must appear outside quotation marks

@ Specifies a character string of length 1

@ Can be specified by itself, or with one or more additional
backslash-notation characters, or ‘juxtaposed with one or more
quoted character strings

Spaces between the Prime ECS character specification and the character
string are not significant, but there must be no spaces within the
Character specification itself.

First Edition, Update 1 B-4

THE PRIME EXTENDED CHARACTER SET

The following program example writes three strings that are specified

by Prime ECS syntax:

ECS_STRING: PROCEDURE OPTIONS(MAIN) 7

DECLARE SYSPRINT FILE;

DECLARE STR CHAR(32) VAR;

gtr = \(CR) 'HELLO' \(CR) 'THERE';

PUT LIST (STR) 3
PUT LIST (\R' HELLO' \R' THERE')

PUT LIST(\M 'HELLO' \"M 'THERE');

END ECS_STRING;

This program produces the following output:

HELLO
THERE
HELLO
THERE
HELLO
THERE

SPECIAL MEANINGS OF PRIME ECS CHARACTERS

PRIMOS, or an applications program running on PRIMOS, may interpret

some Prime ECS characters in a special way. For example, PRIMOS

interprets “P as a process interrupt. ED, the Editor, interprets the

backslash (\) as a logical tab. If you wish to make use of the Prime

ECS backslash character in a file you are editing with ED, you must

define another character as your logical tab.

For a detailed description of how PRIMOS interprets the following Prime

ECS characters, see the discussion in the Prime User's Guide of special

terminal keys and special characters:

~\ " 2? *p “Ss “Q and };.

PL/I PROGRAMMING CONSIDERATIONS

Remember that identifiers and program names may contain only letters,

numbers, and the dollar sign and underscore characters ($ and _).

These characters form a subset of the ASCII-7 character set.

Character strings, however, can contain any character in Prime ECS.

Such strings can be declared as constants, written, read, or assigned

to CHARACTER variables.

B-5 First Edition, Update 1

PL/I Reference Guide

You can use notations 2, 3, and 4, described above, alone or in
juxtaposition with any quoted string in your program. Thus, you can
use these notations in constant declarations, assignment statements,
and PUT LIST statements.

You cannot, however, use these notations in identifiers or in terminal
or file input to GET LIST statements. Therefore, if your terminal does
not support Prime ECS, you can enter as terminal input to a GET LIST
statement only those characters with decimal numbers greater than 127
(octal numbers greater than 177).

PRIME EXTENDED CHARACTER SET TABLE

Table B-1 contains all of the Prime ECS characters, arranged in
ascending order. This order provides both the collating sequence and
the way that comparisons are done for character strings. For each
character, the table includes the graphic, the mnemonic, the
description, and the binary, decimal, hexadecimal, and octal values. A
blank entry indicates that the particular item does not apply to this
character. The graphics for control characters are specified as
“character; for example, “P represents the character produced whenyou
type P while holding the control key down.

Characters with decimal values from 000 to 031 and from 128 to 159 are
control characters,

Characters with decimal values from 032 to 127 and from 160 to 255 are
graphic characters.

First Edition, Update 1 B-6

THE PRIME EXTENDED CHARACTER SET

Table B-1

The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

RES1 Reservedfor future 0000 0000 000 00 000

standardization

RES2 Reservedfor future 0000 0001 001 01 001

standardization

RES3 Reservedfor future 0000 0010 002 02 002

standardization

RES4 Reservedfor future 0000 0011 003 03 003

standardization

IND Index
0000 0100 004- 04 004

NEL Next line 0000 0101 005 05 005

SSA Start of selected area 0000 0110 006 06 006

ESA Endof selected area 0000 0111 007 07 007

HTS Horizontal tabulation set 0000 1000 008 08 010

HTJ Horizontal tab with 0000 1001 009 09 011

justify

VTS Vertical tabulation set 0000 1010 010 OA 012

PLD Partial line down 0000 1011 011 0B 013

PLU Partial line up 0000 1100 012 oc 014

Ril Reverse index 0000 1101 013 oD 015

ss2 Single shift 2 0000 1110 014 OE 016

Ss3 Single shift 3 0000 1111 015 OF 017

bcs Device controlstring 0001 0000 016 10 020

PU1 Private use1 0001 0001 017 1 021

PU2 Private use 2 0001 0010 018 12 022

STS Set transmission state 0001 0011 019 13 023

CCH Cancel character 0001 0100 020 14 024

MW Messagewaiting
0001 0101 021 15 025

SPA Start of protected area 0001 0110 022 16 026

EPA End of protected area 0001 0111 023 17 027

RES5 Reservedfor future 0001 1000 024 18 030

standardization

RES6 Reservedfor future 0001 1001 025 19 031

standardization

RES7 Reservedfor future 0001 1010 026 1A 032

standardization

csi Control sequence
0001 1011 027 1B -:033

introducer

ST String terminator 0001 1100 028 ic 034

osc Operating system 0001 1101 029 1D 035

command

PM Privacy message
0001 1110 030 1E 036

B-7 First Edition, Update 1

PL/I Reference Guide

Table B-1 (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

APC Application program 0001 1111 031 1F 037
command

NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation 0010 0001 033 21 041

mark
¢ CENT Centsign 0010 0010 034 22

=

=042
£ PND Pound sign 0010 0011 035 23 043
Oo CURR Currency sign 0010 0100 036 24 044
¥ YEN Yen sign 0010 0101 037 25 045

BBAR Broken bar 0010 0110 038 26 36046
§ SECT Section sign 00100111 039 27 047
“ DIA Diaeresis, umlaut 0010 1000 040 28 050
© COPY Copyright sign 0010 1001 041 29 051
a FOI Feminine ordinal 0010 1010 042 2A

=

052
indicator

« LAQM Leftangle quotation 0010 1011 043 2B O53
mar

™ NOT Not sign 0010 1100 044 2C . 054
SHY Soft hyphen 0010 1101 045 2D 055

® ™ Registered trademark 0010 1110 046 2E

=

056
sign

~ MACN Macron 0010 1111 047 2F

=

057
° DEGR Degree sign 0011 0000 048 30

=.

060
t+ PLMI Plus/minus sign 0017 0001 049 31 061

SPS2 Superscript two 0011 0010 050 32 §©062
3 SPS3 Superscript three 0011 0011 051 33 063
. AAC Acute accent 0011 0100 052 34

8

§=©6064
H LOMU Lowercase Greekletter 0011 0101 053 35 065

H, Micro sign
q PARA Paragraphsign, Pilgrow 00110110 054 36 066

sign
. MIDD Middle dot 00110111 055 37

=

067
5 CED Cedilla 0011 1000 056 38 070

' SPS1 Superscript one 0011 1001 057 39 071
2 MOI Masculine ordinal 0011 1010 058 3A

=:

072
indicator

» RAQM Right angle quotation 00111014 059 3B sO073
mark

Ya FR14 Commonfraction 00111100 060 3C

3.«

074
one-quarter

First Edition, Update 1 B-8

THE PRIME EXTENDED CHARACTER SET

Table B-1 (continued)

The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

1 FRi2 Commonfraction 0011 1101 061 3D 075

one-half

3/4 FR34 Commonfraction 00111110 062 3E 076

three-quarters

é INVQ Inverted question mark 00111111 063 3F 077

A UCAG UppercaseA with grave 0100 0000 064 40 100

accent

A UCAA UppercaseA with acute 0100 0001 065 41 101
accent

A UCAC Uppercase A with 0100 0010 066 42 102

circumflex

A UCAT UppercaseA withtilde 0100 0011 067 43 103

A UCAD Uppercase A with 01000100 068 44 104
diaeresis

A UCAR UppercaseA withring 0100 0101 069 45 105

above

FE UCAE pppercase diphthong 0100 0110 070 46 106

¢ uccc Uppercase C with 0100 0111 071 47 107

cedilla

E UCEG UppercaseE with grave 01001000 072 48 110
accent

E UCEA UppercaseE with acute 0100 1001 073 49 111
accent

E UCEC Uppercase E with 01001010 074 4A 112
circumflex

E UCED UppercaseE with 0100 1011 075 4B 113
diaeresis

] UCIG Uppercase| with grave 01001100 076 4c 114
accent

i UCIA Uppercase | with acute 01001101 077 4D 115
accent

7 UCIC Uppercase| with 01001110 078 4E 116
circumflex

7 UCID Uppercase| with 0100 1111 079 4F 117
diaeresis

D UETH UppercaseIcelandic 0101 0000 080 50 120

letter Eth

N UCNT UppercaseN withtilde 0101 0001 081 51 121

oO UCOG Uppercase O with grave 0101 0010 082 52 122

accent

UCOA Uppercase O with acute 0101 0011 083 53 123

accent

B-9 First Edition, Update 1

PL/I Reference Guide

Table B-1 (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

6 UCOC Uppercase O with 01010100 084 54 124
circumflex

6 UCOT Uppercase O with tilde 0101 0101 085 55 125
6 UCOD Uppercase O with 0101 0110 086 56 126

diaeresis
x MULT Multiplication sign used 0101 0111 087 57 127

in mathematics
D UCOO Uppercase O with 0101 1000 088 58 130

obliqueline

U UCUG Uppercase U with grave 0101 1001 089 59 131
accent

U UCUA Uppercase U with acute 0101 1010 090 5A 132
accent

0 UCUC Uppercase U with 0101 1011 091 5B 133
circumflex

U UCUD UppercaseU with 0101 1100 092 5C 134
diaeresis

Y UCYA UppercaseY with acute 01011101 093 5D 185
accent

b UTHN Uppercaseicelandic 01011110 094 5E 136
letter Thorn

B LGSS Lowercase German 0101 1111 095 5F 137
letter double s

a LCAG Lowercasea with grave 01100000 096 60 140
accent

a LCAA Lowercasea with acute 01100001 097 61 141
accent

a LCAC Lowercasea with 01100010 098 62 142
circumflex

a LCAT Lowercasea withtilde 01100011 099 63 143

a LCAD Lowercasea with 01100100 100 64 144
diaeresis '

a LCAR Lowercasea with ring 01100101 101 65 145
above

#2 LCAE Lowercase diphthong ae 01100110 102 66 146

¢ LCCC Lowercasec with cedilla 01100111 103 67 147

e LCEG Lowercasee with grave 0110 1000 104 68 150
accent

é LCEA Lowercasee with acute 0110 1001 105 69 151
accent

é LCEC Lowercasee with 0110 1010 106 6A 152
circumflex

First Edition, Update 1 B-10

THE PRIME EXTENDED CHARACTER SET

Table B-1 (continued)

The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

e LCED Lowercase e with 0110 1011 107 6B 153

diaeresis

1 LCIG Lowercasei with grave 0110 1100 108 6C 154

accent

i LCIA Lowercasei with acute 0110 1101 109 6D 155

accent

i LCIC Lowercasei with 01101110 110 6E 156

circumflex

1 LCID Lowercasei with 0110 1111 111 6F 157

diaeresis

3 LETH LowercaseIcelandic 0111 0000 112 70 160

letter Eth

n LCNT Lowercasen with tilde 01110001 113 71.

=

161

re) LCOG Lowercase 0 with grave 01110010 114 72 162

accent

0 LCOA Lowercase o with acute 01110011 115 73 163

accent

0 LCOC Lowercaseo with 01110100 116 74. 164

circumflex

O LCOT Lowercaseo with tilde 01110101 117 75

=

165

c LCOD Lowercase o with 01110110 118 76 166

diaeresis

+ DIV Division sign usedin 01110111 119 77 167

mathematics

¢ LCOO Lowercase o with 0111 1000 120 78 170

oblique line

u LCUG Lowercaseu with grave 0111 1001 121 79 #«#+171

accent

u LCUA Lowercase u with acute 01111010 122 7A 172

accent

u LGUC Lowercase u with 0111 1011 123 7B 173

circumflex

u LCUD Lowercase u with 01111100 124 7C 174

diaeresis

y LCYA Lowercase y with acute 01111101 125 7D 175

accent

p LTHN LowercaseIcelandic 01111110 126 7E 176

letter Thorn

y LCYD Lowercasey with 01111111 127 7F 177

diaeresis

B-1l First Edition, Update 1

PL/I Reference Guide

Table B-1 (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 1000 0000 128 80 200
“A SOH/TC1 Start of heading 1000 0001 129 81 201
“B STX/TC2 Start of text 1000 0010 130 82 202
“Cc ETX/TC3 End of text 1000 0011 131 83 203
“D EOT/TC4 End of transmission 1000 0100 132 84 204
“E ENQ/TC5

~—

Enquiry 1000 0101 133 85 205
“F ACK/TC6 Acknowledge 1000 0110 134 86 206
“G BEL Bell 1000 0111 135 87 207
“H BS/FEO Backspace 1000 1000 136 88 210
“| HT/FE1 Horizontal tab 1000 1001 137 89211
“J LF/NL/FE2 Line feed 1000 1010 138 8A 212
“K VT/FE3 Vertical tab 1000 1011 139 8B 218
*L FF/FE4 Form feed 1000 1100 140 8C

=

214
“M CRIFE5 Carriage return 1000 1101 141 8D 215
“N SO/LS1 Shift out 1000 1110 142 BE 216
“O SI/LSO Shift in 1000 1111 143 8F 217
“Pp DLE/TC7 Data link escape 1001 0000 144 90 220
“Q DC1/XON

_

Device control 1 1001 0001 145 91 221
“R DC2 Device control 2 1001 0010 146 92 222
‘Ss DC3/XOFF Device control 3 1001 0011 147 93 223
“T DC4 Device control 4 1001 0100 148 94 224
*U NAK/TC8

=

Negative acknowledge 1001 0101 149 95 225
“Vv SYN/TC9

—

Synchronousidle 1001 0110 150 96 226
“WwW ETB/TC10

—_—

End of transmission 1001 0111 151 97 227
block

“x CAN Cancel 1001 1000 152 98 230
“y EM End of medium 1001 1001 153 99

=

231
“Z SUB Substitute 1001 1010 154 9A 232
“I ESC Escape 1001 1011 155 9B

=.

233
“"“\ FS/IS4 File separator 1001 1100 156 9C 234
*] GS/IS3 Group separator 1001 1101 157 9D

=

=.235
“ RS/IS2 Record separator 1001 1110 158 9E 236
“_ US/IS1 Unit separator 1001 1111 159 9F 237

SP Space 1010 0000 160 AO 240
! Exclamation mark 1010 0001 161 Al 241
“ Quotation mark 1010 0010 162 A2 242
NUMB Numbersign : 10100011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percentsign 10100101 165 A5 245
& Ampersand 10100110 166 A& 246

First Edition, Update 1 B-12

THE PRIME EXTENDED CHARACTER SET

Table B-1 (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

, Apostrophe 10100111 167 A7 247

(Left parenthesis 1010 1000 168 A&B 250

) Right parenthesis 1010 1001 169 AQ 251

* Asterisk 1010 1010 170 AA 252

+ Plus sign 1010 1011 171 AB 253

; Comma 1010 1100 172 AC 254

- Minussign 1010 1104 173 AD 255

. Period 1010 1110 174 AE 256

/ Slash 1010 1111 175 AF 257

0 Zero 1011 0000 176 BO 260

1 One 1011 0001 177 Bi 261

2 Two 10110010 178 B2 262

3 Three 10110011 179 B3 263

4 Four 1011 0100 180 B4 264

5 Five 10110101 181 B5 265

6 Six 10110110 182 B6 266

7 Seven 10110111 183 B7 267

8 Eight 1011 1000 184 B&8 270

9 Nine 1011 1001 185 B9 271

: Colon 1011 1010 186 BA 272

; Semicolon 10111011 187 BB 273

< Less than sign 1011 1100 188 BC 274

= Equal sign 10111101 189 BD 275

> Greater than sign 10111110 190 BE 276

? Question mark 101171111 191 BF 277

@ AT Commercial at sign 1100 0000 192 Co 300

A Uppercase A 1100 0001 193 Ci 301

B Uppercase B 1100 0010 194 C2 302

Cc Uppercase C 11000011 195 C3 3303

D Uppercase D 1100 0100 196 C4 304

E Uppercase E 1100 0101 197 C5 305

F Uppercase F 1100 0110 198 C6 306

G Uppercase G 1100 0111 199 C7 307

H Uppercase H 1100 1000 200 C8 310

I Uppercase| 1100 1001 201 cg o3t1

J Uppercase J 1100 1010 202 CA 312

K Uppercase K 1100 1011 203 CB 313

L Uppercase L 1100 1100 204 CC 314

M Uppercase M 1100 1101 205 CD 315

N Uppercase N 1100 1110 206 CE 316

B-13 First Edition, Update 1

PL/I Reference Guide

Table B-1 (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

0 Uppercase O 1100 1111 207 CF 317
P Uppercase P 1101 0000 208 DO 320
Q Uppercase Q 1101 0001 209 D1 321
R Uppercase R 11010010 210 D2 322
Ss Uppercase S 1101 0011 211 D3 3323
T Uppercase T 11010100 212 D4 324

U Uppercase U 1101 0101 213 D5 325
Vv Uppercase V 11010110 214 D6 326
Ww Uppercase W 1101 0111 215 D7 327
x Uppercase X 1101 1000 216 D& 330
Y Uppercase Y 1101 1001 217 D9 3311

Zz Uppercase Z 1101 1010 218 DA 332

[LBKT Left bracket 1101 1011 219 DB 333
\ REVS Reverseslash, 1101 1100 220 DC 334

backslash

] RBKT Right bracket 1101 1101 221 DD 335

“ CFLX Circumflex 1101 1110 222 DE 336

_ Underline, underscore 11011111 223 DF 337

. GRAV Left single quote, grave 11100000 224 EO 340
accent

a Lowercase a 11100001 225 E1 341

b Lowercase b 11100010 226 E2 342
c Lowercase c 11100011 227 E3 343

d Lowercase d 11100100 228 E4 344

e Lowercase e 11100101 229 E5 345

f Lowercasef 11100110 230 E6 346

g Lowercase g 11100111 231 E7 347

h Lowercase h 1110 1000 232 E8 350

i Lowercasei 1110 1001 233 E9 351

j Lowercasej 1110 1010 234 EA 352

k Lowercase k 1110 1011 235 EB 353

| Lowercase| 1110 1100 236 EC 354

m Lowercase m 11101101 237 ED 355

n Lowercase n 11101110 238 EE 356

0 Lowercase o 11101111 239 EF 357

p Lowercase p 1111 0000 240 FO 360

q Lowercase q 11110001 241 F1 361

r Lowercase r 11110010 242 F2 362

s Lowercase s 11110011 243 F3 363

t Lowercaset 11110100 244 F4 364
First Edition, Update 1 B-14

THE PRIME EXTENDED CHARACTER SET

Table B-l (continued)
The Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

u Lowercase u 11110101 245 F5 365

Vv Lowercase v 11110110 246 F6 366

Ww Lowercase w 11110111 247 F7 367

x Lowercase x 1111 1000 248 F8 370

y Lowercase y 1111 1001 249 F9 371

z Lowercase z 11111010 250 FA 372

{ LBCE Left brace 11111011 251 FB 373

| VERT Vertical line 11111100 252 FC 374

} RBCE Right brace 11111101 253 FD 375

~ TIL Tilde 11111110 254 FE 376

DEL Delete 11111111 255 FF 377

B-15 First Edition, Update 1

Data Formats

OVERVIEW

PL/I supports the following data types:

FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL
COMPLEX FIXED BINARY
COMPLEX FIXED DECIMAL
COMPLEX FLOAT BINARY
COMPLEX FLOAT DECIMAL
PICTURE
CHARACTER
CHARACTER VARYING
CHARACTER ALIGNED

BIT
BIT VARYING
BIT ALIGNED
POINTER
LABEL
ENTRY
FILE

These data types and arrays of data types are described in Chapter 5.

The following descriptions show how the data is internally represented

in storage and give some details about each type of data. In the

statistics for each data type, P stands for the precision specified

when an item of the type is declared.

C1 First Edition

PL/I Reference Guide

FIXED BINARY DATA

A 15- or 3l-digit two's-complement binary number

Precision: 1 <= P <= 3]

Default Precision: (15, 0)

Alignment: word

Storage Requirements: P <= 15 for one word
P <= 31 for two words

Internal Representation:

Precision 1-15 (one word):

Bit 1: sign bit
Bits 2-16: digits

Precision 16-31 (two words):

Bit 1: sign bit
Bits 2-32: digits

FIXED DECIMAL DATA

FIXED DECIMAL data is stored as decimal type 3 packed decimal (one
cecimal digit per four-bit nybble) with a trailing sign nybble. FIXED
DECIMAL data is byte-aligned; therefore, the effective precision is
always odd. For example, FIXED DECIMAL (4,2) is represented in storage
as FIXED DECIMAL (5,2).

Precision: 1 <= P <= 14

Default Precision: (5, 0)

Alignment: byte

Storage Requirements: FLOOR((P + 2)/2) bytes

Internal Representation:

Each nybble holds one decimal digit. The last nybble holds an
indicator of the sign. ,

First Edition C2

FLOAT BINARY DATA

Precision: 1 <= P < 47

Default Precision: 23

Alignment: word

Storage Requirement: 1 <= P <= 23 for two words
24 <= P <= 47 for four words

t
tt

Internal Representation:

Precision 1-23 (two words) :

Bit 1: sign

Bits 2-24: mantissa

Bits 25-32: excess 128 exponent

Precision 24-47 (four words):

Bit l: sign
Bits 2-48: mantissa

Bits 49-64: excess 128 exponent

FLOAT DECIMALDATA

Precision: 1 <= P <= 14

Default Precision: 6

Alignment: word

Storage Requirement: 6 for two words

= 14 for four words

"1<=P<
1< aS

)

n
w t

Internal Representation:

Precision 1-6 (two words):

Bit 1: sign

Bits 2-24: mantissa

Bits 25-32: excess 128 exponent

Precision 7-14 (four words):

Bit 1: sign
Bits 2-48: mantissa

Bits 49-64: excess 128 exponent

DATA FORMATS

First Edition

PL/I Reference Guide

COMPLEX FIXED BINARY DATA

A 31- or 63-digit two's-complement binary number.

Precision: 1 <= P <= 31 for each part

Default Precision: (15, 0) for each part

Alignment: word

Storage Requirements: two or four words, depending on the precision
o£ each part.

Internal Representation for Both Parts:

Precision 1-31 (two words):

Bit 1: sign bit for real portion
Bits 2-16: digits for real portion
Bit 17: sign bit for imaginary portion
Bits 18-31: digits for imaginary portion

Precision 32-63 (four words) :

Bit 1: sign bit for real portion
Bits 2-32: digits for real portion
Bit 33: sign bit imaginary portion
Bits 34-63: digits for imaginary portion

COMPLEX FIXED DECIMAL DATA

The two parts of a COMPLEX DECIMAL number are each stored as type 3
packed decimal (one digit per four-bit nybble) with a trailing sign
nybble, They are byte-aliqed, so the precision is always odd.

Precision: 1 <= P <= 14 for each part

Default Precision: (5, 0) for each part

Alignment: byte

Storage Requirements: ((P + 2)/2) bytes

Internal Representation:

Each four-bit nybble holds one decimal digit, except that the last
nybble of each part holds the sign,

First Edition C4

DATA FORMATS

COMPLEX FLOAT BINARY DATA

Each part of the complex number is stored according to the rules for

FLOAT BINARY data above.

Precision: 1 <= P <= 47 for each part

Default Precision: 23 for each part

Alignment: word

Storage Requirement for Each Part: = 23 for two words
Pp <= 47 for four wordshe

be
A
A

"
o
u t
g A t

Internal Representation:

Precision 1-23 (two words) for each part:

Bit 1: sign
Bits 2-24: mantissa
Bits 25-32: excess 128 exponent

Precision 24-47 (four words) for each part:

Bit 1: sign
Bits 2-48: mantissa
Bits 49-64: excess 128 exponent

COMPLEX FLOAT DECIMAL DATA

Each part of the complex number is stored according to the rules for

FLOAT DECIMAL data above.

Precision: 1 <= P <= 14 for each part

Default Precision: 6 for each part

Alignment: word

Storage Requirement for Each Part: 1 <= P <= 6 for two words
1< <= 14 for four words

i
o
n

c-5 First Edition

PL/I Reference Guide

Internal Representation:

Precision 1-6 (two words) for each part:

Bit ls: sign
Bits 2-24: mantissa
Bits 25-32: excess 128 exponent

Precision 7-14 (four words) for each part:

Bit 1: sign
Bits 2-48: mantissa
Bits 49-64: excess 128 exponent

PICTURE DATA

Values to be assigned to a pictured variable are first converted to a
decimal value according to the normal conversion rules. This converted
value is then used as input to the XED machine instruction, which fills
the variable's storage with character data under the control of an edit
Subprogram. The edit subprogram is placed in the procedure section by
the compiler before any generated code.

Picture data is byte-aligned and requires n bytes of storage, where n
is the number of picture characters excluding any V character.

CHARACTER DATA

Default Length: 1

Alignment: The ALIGNED attribute has no effect; character data is
always byte-aligned.

Storage Requirement: n bytes, where nis the declared length of the
string,

Internal Representation:

One character per byte

First Edition C-6

DATA FORMATS

CHARACTER VARYING DATA

CHARACTER VARYING data is stored as a 16-bit length-word followed by

the string value. Only the number of characters specified by the

length-word are valid.

Default Length: 1

Alignment: word

Storage Requirements: FLOOR(((n + 1)/2) + 1) words. nis the declared

maximum length ofthe string.

Internal Representation:

Bits 1-16 hold the length of the string. Subsequent bytes hold one

character per byte.

BIT DATA

Default Length: 1

Alignment: Bit data begins on any bit by default. ALIGNED bit data is

word-aligned.

Storage Requirement: FLOOR((n + 15) /16) words for ALIGNED data, and n

bits for unaligned data, where n is the declared length of the string.

Internal Representation:

Each data bit is stored in one hardware bit.

BIT VARYING DATA

Default Length: 1

Alignment: word

Storage Requirement: FLOOR(((n + 1)/16) +1) words, where n is the
declared maximum length of the string.

Internal Representation:

Bits 1-16 hold the length of the string. Subsequent bits hold one data

bit each.

C7 First Edition

PL/I Reference Guide

POINTER DATA

Alignment: word

Storage Requirement: three words

Internal Representation:

Three words are used:

Bit l: fault code
Bits 2-3: ring number
Bit 4: data format indicator
Bits 5-16: segment number
Bits 17-32: word number
Bits 33-36: bit offset (if bit 4 is set)
Bits 37-48: reserved

POINTER OPTIONS (SHORT)

Alignment: word

Storage Requirement: two words

Internal Representation:

Two words are used:

Bit l: fault code
Bit 2-3: ring number
Bit 4: data format indicator
Bit 5-16: segnent number
Bit 17-32: word number

LABEL DATA

LABEL values are stored as a pair of two-word items. The first item is
created by taking the two-word pointer that addresses the code
referenced by the label and by interchanging the words so that the word
number portion is first. This interchange is performed so that label
values may be passed as arguments to routines that expect a
FORTRAN-style alternate return argument. The second item is a pointer
referencing the stack frame, which should be current after control is
transferred to the label.

Alignment: word

Storage Requirements: four words

First Edition c-8

DATA FORMATS

Internal Representation:

The first two words are the address of the executable statement:

Bits 1-16:
Bit 17:
Bits 18-19:
Bit 20:
Bits 21-32:

word number
fault code
ring number
data format indicator (always 0)

segment number

second two words are the address of the target stack frame:

Bit 33:
Bits 34-35:
Bit 36:
Bits 37-48:
Bits 49-64:

ENTRY DATA

fault code
ring number
data format indicator (always 0)
segnent number
word number

ENTRY values are stored as a pair of two-word items. The first item is

the address of the entry control block (ECB) of the referenced entry.

The second item is the first-level display pointer to be used by the

invoked procedure, The second pointer value is ignored by EXTERNAL

procedures invoked by the entry variable.

Ali ent: word

Storage Requirements: four words

Internal Representation:

The first two words are the ECB address:

Bit 1:
Bits 2-3:
Bit 4:
Bits 5-16:
Bits 17-32:

fault code
ring number
data format indicator (always 0)
segment number
word number

second two words are the display pointer):

Bit 33:
Bits 34-35:
Bit 36:
Bits 37-48:
Bits 49-64:

fault code
ring number
data format indicator (always 0)

segment number
word number

C9 First Edition

PL/I Reference Guide

FILE DATA

At Rev. 19, PL/I SEQUENTIAL files are in standard RDBIN/WRBIN
subroutine format, and STREAM files are in standard RDASC/WRASC format.
(For a discussion of these subroutines, see the PRIMOS Subroutines
Reference Guide.) DIRECT files are supported using the subroutine
PRWFSS to position to the appropriate word in the file, which is
calculated as:

(KEYVALUE * RECORDLENGTH)

A FILE data item contains the address of the file control block of the
indicated file.

Internal Representation:

Two words are used:

Bit 1: fault code
Bits 2-3: ring number
Bit 4: data format indicator (always 0)
Bits 5-16: segment number
Bits 17-32: word number

ARRAYS

Default Bounds: 1 to the number defined

Maximum Number of Elements: 32,768 per array

Maximum Number of Dimensions: 8

First Edition c-10

Function Return

Conventions and

Stack Frame Format

The following discussion is presented for the benefit of systems

programmers. It assumes a knowledge of Prime's PMA language and

operating system.

LOCATIONS OF RETURNED FUNCTION VALUES

Returns Type Where Returned

V-mode I-mode

fixed bin(1:15) A~register GR2 (H)

fixed bin(16:31) I-register GR2

float bin(1:23), FAC FAC]

float dec(1:6)

float bin(24:47) , DFAC DFACL
float dec(7:14)

bit (1:16) . A-register GR2 (H)

file L-register GR2

pointer FARO FARO

D-1 First Edition

PL/I Reference Guide

For all other data types, the calling procedure sets up FARO to point
to the location at which the function's value is to be returned. When
the function becomes active, it transfers the contents of FARO to
SB3+40 to SB%+42 of its stack frame.

STACK FRAME FORMAT

Figure D-l shows a typical stack frame format for a PL/I application.
The following notes explain the stack frame format entries.

Notes on Figure D-1

Bit 5 of FLAGS is set for PL/I procedure stack frames,

Bit 6 of FLAGS is set if dynamic condition handling is taking
place, that is, if a condition prefix exists on a statement
other than a block or procedure.

Bit 7 of FLAGS is set if the current stack frame belongs to a
PL/I library routine,

Bit 8 of FLAGS is set if static condition handling is taking
place (that is, if a condition prefix exists on a procedure or
block), and it is set as the default if no condition prefixes
exist. The default setting takes place because the BL/I
compiler must load a word containing the ANS PL/I default
enablement status of user-modifiable conditions. The ANS PL/I
defaults differ from the PRIMOS system defaults.

SBS+1 to SB%+9 (all offsets referenced in decimal) comprise the
hardware-defined portion of the stack.

SB%+18 points to the ECB (Entry Control Block) of the owning
PL/I block, for both procedure and begin blocks. The EC of a
PL/I procedure block is immediately followed by a char(*)var
giving the name of the procedure or entry it represents.

SB8+28 to SB3+33 is defined in the documentation for the
CONDITION mechanism in the PRIMOS Subroutines Reference Guide,

SB%+40 to SB%+42 is always present, whether the block is a
function or not. It is the last item in the stack which is
guaranteed to be present.

Display pointers are used by internal blocks to access autamatic
data declared in containing blocks; there is one for each level
of lookback used in the block. Each display pointer is the
stack pointer of the corresponding block. The display pointers,
if any, begin at §SB%+43 and are the last stack item to have a
fixed address. Each internal block is PCL'ed with the stack
pointer of its parent block in the L-register or GR2; this is

First Edition D-2

DECIMAL

10

12

14

16

20

22

24

26

28

30

32

34

36

38

40

42

44

46

FUNCTION RETURN CONVENTIONS AND STACK FRAME FORMAT

FLAGS

STACK ROOT SEGNO

Return PB

Return SB

Return LB

Return Keys

PBCL

Reserved for Future Use

Address of Owner's ECB

Runtime Support Scratch Space

ON-UNIT POINTER

CLEANUP ON-UNIT POINTER

NEXT EFH POINTER

Runtime Suppor Scratch Space

Address of Function Return Value

Display Pointer 1

Display Pointer n

Argument 1 Pointer

Argument 2 Pointer

 Automatic Storage

Figure D-l
Stack Frame Format

D-3

Q
o

10

12

16

20

22

24

26

30

32

34

36

40

42

44

46

50

52

54

56

OCTAL

First Edition

PL/I Reference Guide

stored as the first-level display pointer, Additional levels,
if needed, are set up by prologue code.

@ Argn pointers are the hardware-defined pointers used to
reference the parameters of a procedure; they begin immediately
following the display pointers.

@ ‘Two locations have been designated for use by the BL/I
condition-handling mechanism. Stack location SB%+40 and word 9
o£ the ECB have been reserved for a condition control word.

The condition control word is a 16~bit value whose leftmost nine
bits correspond to the enablement status of the nine
user-modifiable conditions. If dynamic condition handling is
taking place (that is, if bit 6 of FLAGS is set), then location
40 of the user stack contains the control word, If static
condition handling is taking place (that is, if bit 8 of FLAGS
is set), then word 9 of the EG@ contains the control word.

The following chart shows how the bits correspond to the
enablement status of the conditions:

Corresponding Default Enablement
Bit Condition Status

1 CONVERSION Enabled

2 FIXEDOVERFLOW Enabled

3 OVERFLOW Enabled
4 SIZE Disabled
5 STRINGRANGE Disabled

6 STRINGSIZE Enabled

7 SUBSCRIPTRANGE Disabled

8 UNDERFLOW Enabled
9 ZERODIVIDE Enabled

10-16 must be zero

If the condition is enabled, the bit value is one; if disabled,
zero. Thus the condition control word for a PL/I program with
no condition prefixes would appear as '1110010110000000'B in EG
word 9, The condition control word for a PL/I program with a
dynamic SIZE condition prefix would appear as
*1111010110000000'B in stack location 40. For more information
about enabling and disabling conditions, see Chapter 13.

First Edition D-4

Differences Among

ANS,IBM,and

Prime PL/I

PRIME EXTENSIONS TO THE ANSI STANDARD

Prime has implemented a large number of extensions to the ANSI
Standard. Custaners should not use these extensions if they want to

develop PL/I programs which can be compiled on other PL/I
implementations. However, if they plan to run_ their programs

exclusively on Prime systems, they can take advantage of powerful
mainframe syntax. The following list describes all PL/I extensions at
Rev. 19. Extensions also used by IBM are marked with an asterisk.

@ READ and WRITE on stream files

@e The LEAVE statement

@ The SELECT statement

@ The BYTE built-in function

@ The RANK built-in function

e The SIZE built-in function

e Use of the OPTIONS (SHORT) specifier in DECLARE statements to
control space allocation for pointer variables

@ Use of the OPTIONS (SHORTCALL) specifier in ENTRY declarations
to document space allocation for PMA subroutines

e Nonstandard properties of the device named TTY

E-1 First Edition, Update 1

PL/I Reference Guide

e Use of an A-format without a field width to read a
variable-length input line*

@ Use of both uppercase and lowercase characters in names

e Acceptance in DO statements of any arithmetic value as an index
variable

@ Passing of unconnected arrays to asterisked-extent parameters

e@ Use of OPTIONS (NONQUICK) to specify that a procedure is to be
called with the PCL assembly~language instruction

e Overlaying of any data type by another in storage*

@ %PAGE, %INCLUDE, and %REPLACE

@ %LIST* and *NOLIST* (for IBM $PRINT, %NOPRINT)

@ The TITLE options CILASA, FUNIT, DEVICE, APPEND, NOSIZE, RECL,
and FORMS

e@ The COMPLEX data types*

e Use of the # and $ characters in names*

ANS FEATURE NOT SUPPORTED IN PRIME PL/I

The use of subscripted label prefixes on PROCEDURE and FORMAT
statements is not supported by Prime.

IBM FEATURES NOT SUPPORTED IN PRIME PL/I

Preprocessor Facilities

e The preprocessor facilities of IBM PL/I are not supported.
These include the following statements:

SACTIVATE, ASSIGN, *DEACTIVATE, DECLARE, %DO, %END, %GOTO,
SIF, SNOTE, NULL, SPROCEDURE, *RETURN

@ The following listing control statements are not supported:

SCONTROL, SNOPRINT, SPRINT, %SKIP

Note, however, that %NOLIST and %LIST perform the same function

as %NOPRINT and %PRINT.

First Edition, Update 1 E-2

DIFFERENCES AMONG ANS, IBM, AND PRIME PL/I

Multitasking Facilities

The multitasking facilities of IBM PL/I are not supported. ‘These

include the following features:

@ The DELAY, EXIT, and WAIT statements

e The TASK, EVENT, and PRIORITY options of the CALL statement

@ The EVENT option of the READ and WRITE statements

e The TASK and EVENT data attributes

@ The COMPLETION, PRIORITY, and STATUS built-in functions and

pseudovariables

Diagnostic Facilities

The diagnostic facilities of IBM PL/I are not supported. These include

the following features:

e The GIECK condition prefix and the CHECK condition

e The CHECK, FLOW, NOCHECK, and NOFLOW statements

Program Elements

e The IBM 48-character set is not supported.

e Blanks are not permitted to appear within compound operators

such as <=, >= “=, “<, Il, >, and *K

Data Elements

Sterling constants are not supported.

Program Structure

e The following options of the PROCEDURE and ENTRY statements are

not supported:

ORDER, IRREDUCIBLE, REDUCIBLE, REORDER

@ The following options of the OPTIONS option of the PROCEDURE and
ENTRY statements are not supported:

COBOL, FORTRAN, NOMAP, NOMAPIN, NOMAPOUT, REENTRANT, TASK

E-3 First Edition

PL/I Reference Guide

Declarations and Attributes

@ The following attributes are not supported:

BACKWARDS, BUFFERED, CONNECTED, EVENT, EXCLUSIVE,
TRREDUCIBLE, REDUCIBLE, TASK, TRANSIENT, UNBUFFERED

e The following PICTURE characters are not supported:

G, H, M, Py, 6, 1, 8

@ The ENVIRONMENT attribute is not supported.

e The arithmetic default attributes are FIXED BINARY.

@ The ENTRY declaration for an EXTERNAL procedure may not be
omitted, as contextual declaration of an EXTERNAL procedure by
its appearance in a CALL statement is not supported.

@ The following ENVIRONMENT options are not supported:

F, FB, FS, FBS, V, VB, VBS, D, DB, U, RECSIZE(), BLKSIZE(),
BUFFERS(), BUFND(), BUFNI(), BUFSP(), CONSECUTIVE, INDEXED,
REGIONAL (1), REGIONAL(2), REGIONAL(3), TP(M), TP(R), LEAVE,
REREAD, SIS, SKIP, BKWD, REUSE, TOTAL CTLASA, CTIL360, COBOL,
INDEXAREA(), NOWRITE, ADDBUFF, GENKEY, NCP(), TRKOFL,
SCALARVARYING, KEYLENGTH(), KEYLOC(), ASCII, BUFOFF(),
PASSWORD ()

e@ The VALUE and DESCRIPTORS options of the DEFAULT statement are
not implemented.

@ Note that the rules for the promotion of one aggregate type to
another differ between IBM PL/I and ANS PL/I.

Built-in Functions

@ The following built-in functions are not supported:

ALL, ANY, COMPILETIME, COMPLETION, COUNTER, CURRENTSTORAGE,

DATAFTELD, NULLO, ONCOUNT, PARMSET, PLIRETV, POLY, PRIORITY,

REPEAT, SAMEKEY, STATUS, STORAGE

e@ The ANSI UNSPEC built-in function requires that the argument be
a reference. (In IBM PL/I, the argument may be any expression.)

Program Control

The EXIT statement is not supported.

First Edition E-4

DIFFERENCES AMONG ANS, IBM, AND PRIME PL/I

Conditions and Exception Control

The following conditions are not supported:

ATTENTION, CHECK, PENDING

Functions and Procedures

In Prime and ANSI specifications, a reference to a function with no

arguments returns an ENTRY value. An empty argument list is required

to cause invocation of a function without parameters. (In IBM PL/I, a

reference to a function with no arguments causes the implicit

invocation of the function if the context does not expect an ENTRY

value.)

Input/Output

e the following file attributes are not supported:

BACKWARDS, BUFFERED, EXCLUSIVE, TRANSIENT, UNBUFFERED

@ The DISPLAY and UNLOCK statements are not supported.

@ ‘The LEAVE, REREAD, and REWIND options of the CLOSE statement are

not supported.

e@ The FLOW and ALL options of the PUT statement are not supported.

e The EVENT option of the READ and WRITE statements is not

supported.

E-5 First Edition

ONCODEValues

The use of ONCODE in error handling is discussed in Chapters 13 and 14.

1 OPEN of input file for output
2 OPEN of output file for input
3 OPEN with inconsistent attributes
4 OPEN request failed
5 record size too large
6 append to existing file failed
7 OPEN of device already open
8 OPEN of >16 disk files
9 OPEN of SAM file for keyed I/O
10 append to SAM file for keyed I/O
ll input file not found
12 OPEN of device for keyed I/O
13 OPEN of DAM file without DIRECT
14 CLOSE request failed
15 output to input file
16 end of file
17 input from output file
18 input from DIRECT file without key
19 input from keyed file failed
20 input from nonkeyed file with KEY or KEYTO
21 input from nonkeyed file failed
22 output to DIRECT file without key
23 output to nonkeyed file failed
24 output to nonkeyed file with KEYFROM
25 output to nonkeyed file failed
26 DELETE from file not opened as KEYED and UPDATE

F-1 First Edition

PL/I Reference Guide

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037

DELETE without key
REWRITE file must be KEYED unless preceded by READ with
SET option

GET from other than STREAM INPUT file
format nesting or aborted GET/PUT stack too deep
PUT to other than STREAM OUTPUT file
invalid char after quoted string in GET LIST
PAGE, LINE, SKIP(0), or TAB with other than
STREAM OUTPUT PRINT file

field width too small for E format
field width too small for B format
field size omitted in B input format
OPEN with invalid device name
field size omitted in A input format
SKIP format used with STRING option

» COLUMN format used with STRING option
LINE format used with STRING option
input string exhausted
input ends inside quoted string
LOCATE file must be RECORD
QOPY file must be STREAM and OUTPUT
the disk is full
READ file with SET option must be REQGORD
REWRITE file must be UPDATE
REWRITE file must be RECORD
open with -NOSIZE on non-DIRECT file
KEY illegally omitted from KEYED SEQUENTIAL READ
KEYFROM omitted from KEYED SEQUENTIAL WRITE
KEY illegally omitted from KEYED SEQUENTIAL REWRITE
FROM illegally omitted from KEYED SEQUENTIAL REWRITE
KEYFROM omitted from KEYED SEQUENTIAL LOCATE
KEY illegally omitted from KEYED SEQUENTIAL DELETE
unable to unlock KEYED SEQUENTIAL record
FROM illegally omitted from REWRITE
OPEN of non-MIDAS file as KEYED SEQUENTIAL
unable to create KEYED SEQUENTIAL file
OPEN of KEYED SEQUENTIAL file failed
OPEN of MIDAS file with noncharacter keys
record size in TITLE option too large
-CILASA specified for non-PRINT file
ALLOCATE request too large
insufficient space for ALLOCATE
bad pointer in FREE request
decimal FIXEDOVERFLOW in MOD
user SIGNAL
SORT argument < 0
LOG argument <= 0
OVERFLOW in EXP
SUBSCRIPTRANGE
STRINGRANGE
single-precision OVERFLOW/UNDERFLOW
double-precision OVERFLOW/UNDERFLOW
Single~precision floating ZERODIVIDE
double-precision floating ZERODIVIDE

First Edition F-2

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

ONCODE VALUES

single-precision OVERFLOW/UNDERFLOW

FIXEDOVERFLOW in floating to fixed conversion

fixed binary ZERODIVIDE/FIXEDOVERFLOW

decimal FIXEDOVERFLOW

decimal ZERODIVIDE

decimal CONVERSION
no on-unit for ENDFILE
no or-unit for KEY
argument range in ASIN/AGOS
OVERFLOW in TAN
illegal conversion
unrecognized data type
SIZE in conversion
illegal character in conversion
OVERFLOW in conversion

negative argument raised to a floating power

Q raised to 0 or a negative power

invalid picture data
error in picture edit subroutine

argument range in ATANH
attempt to evaluate ATAN(0,0) or ATAND (0,0)

CLOG argument = 0

complex floating ZERODIVIDE

reference through null pointer

improper number of subscripts in GET DATA

invalid syntax in value field in GET DATA

in GET DATA

unmatched "''" in GET DATA
structure nesting too deep in GET DATA

name too long in GET DATA
name not followed by "=" in GET DATA

invalid syntax in name field in GET DATA

name not found in GET DATA
ambiguous reference in GET DATA
name not in DATA list
no on-unit for NAME
no or-unit for CONVERSION
no on-unit for SUBSCRIPIRANGE
assignment to BIT NONVARYING
assignment to CHAR NONVARYING
assignment to BIT VARYING
assignment to CHAR VARYING
FREE request in empty area
FREE request of already free item

target area too small for assignment

no on-unit for AREA
no on-unit for RECORD
no on-unit for TRANSMIT
no on-unit for UNDEFINEDFILE

illegal character in conversion to BIT

error in character concatenation
record size mismatch in READ
record not found in READ
unrecoverable READ error

F-3 First Edition

PL/I Reference Guide

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

record size mismatch in WRITE
record not found in REWRITE
unrecoverable REWRITE error
record size mismatch in WRITE
record already present in WRITE
unrecoverable WRITE error
record not found in DELETE
record not found in LOCATE
illegal key size
single-precision floating point
double-precision floating point
store exception
in float to fixed conversion
fixed binary
fixed decimal
unrecognized arithmetic fault
no or-unit for FIXEDOVERFLOW
no on-unit for OVERFLOW
no on-unit for SIZE
no on-unit for STRINGRANGE
no on-unit for ZERODIVIDE
no on-unit for STORAGE
OPEN of nonexistent INPUT file
OPEN failure
OPEN of non-MIDAS file as KEYED SEQUENTIAL
OPEN of nonexistent KEYED SEQUENTIAL file
OPEN of KEYED SEQUENTIAL file failed
OPEN of MIDAS file with noncharacter keys
error in character picture program
nondigit found in "9" character position
nonalphabetic character found in "A" character position
error in mantissa of floating-point picture program
insufficient precision in target of assignment

First Edition F~4

Glossary ofPL/I

‘Terms

activation of BEGIN block
The passing of control to the BEGIN statement in a normal

sequential manner. See also BEGIN block.

activation of a PROCEDURE block
The passing of control to a procedure by a procedure reference (a

function reference or CALL statement). See also PROCEDURE block.

aggregate
A logical collection of data items. See also scalar, array,

structure.

allocation
Association of a specified region of storage with a variable. See

also storage class.

argument
An expression in parentheses that is part of a procedure reference.
See also parameter, procedure reference.

argument passing
The process by which expressions are transferred from a procedure

to a subprocedure. Arguments are passed by reference and by value.

argument passing by reference
Passing an argument in such a way that the parameter and the

argument describe the same storage.

G1 First Edition

PL/I Reference Guide

argument passing by value
Passing an argument in such a way that argument is copied to a
temporary block of storage in the caller's stack frame. This block
is then passed to the parameter instead of the actual argument.
Any argument that is an expression, a function reference, a
built-in function reference, a constant, a parenthesized variable
reference, or a reference to a variable with a data type that does
not match the parameter, is passed by value.

arithmetic constant
A constant representing a DECIMAL value. (BINARY arithmetic values
have no constant representation, but DECIMAL constants can be
converted to BINARY by using them in a context that expects a
BINARY arithmetic value.) See also constant.

arithmetic data
Values that can be used in computation and whose data type has
base, scale, mode, and precision. See also complex data, base,
scale, mode, precision, pictured data, string data.

arithmetic operator
A symbol specifying an arithmetic operation, The arithmetic
operators are +, denoting addition or prefix positive; -, denoting
subtraction or prefix negative; *, denoting multiplication; /,
denoting division; and **, denoting exponentiation. See also
operator.

array
An n-dimensional ordered set of elements all having the same data
type. Elements of an array are referenced by their position within
the array. Each array has a specified (declared) number of
dimensions, and each dimension has a specified lower and upper
bound. See also aggregate, subscript.

array bound
That component of the dimension attribute that defines the upper or
lower limit of a dimension of an array.

array of structures
An array whose elements are structures. See also structure.

attribute factoring
Enclosure of a list of identifiers and partial attribute sets in
parentheses, followed by the set of attributes that are common to
all of then.

automatic storage
Storage that is allocated for a variable when the block in which it
is declared is activated and that is released when that block is
terminated. See also storage class.

base
The number system used to represent arithmetic data: in PL/I,
either BINARY or DECIMAL. See also arithmetic data,

First Edition G-2

GLOSSARY OF PL/I TERMS

based storage
Controlled storage that is identified and accessed by means of

pointer variables. See also controlled storage, pointer, storage

class.

BEGIN block
An internal block starting with a BEGIN statement and ending with

an END statement. See also block, activation of BEGIN block,

termination of BEGIN block.

bit string
A sequence of binary digits that can be operated on with the string

functions. See also character string, string data.

bit-string constant
A constant consisting of zero or more binary digits enclosed in

single quotation marks followed by the letter B. For example:

'0100'B

Bit-string constants may also be written in quartal, octal and

hexadecimal notation. For example:

'231'B2 (quartal notation)

'775'B3 (octal notation)

'A70'B4 (hexadecimal notation)

See also constant.

bit-string operator
A symbol specifying an operation on bit strings. The bit string

operators are *, denoting NOT; &, denoting AND; and | (or !),

denoting OR. See also operator.

block
A program section of organized statements beginning with a

PROCEDURE or BEGIN statement and ending with the matching END

statement. ‘These statements delimit the scope of all identifiers

that are declared within the block and that are not given the

EXTERNAL attribute. See also activation of BEGIN block, activation

of PROCEDURE block, BEGIN block, PROCEDURE block, termination of

BEGIN block, termination of PROCEDURE block.

built-in function
A function procedure supplied by the PL/I compiler. See also

function, procedure.

G3 First Edition

PL/I Reference Guide

character string
A sequence of characters that can be operated on with the string
functions. See also bit string, string data.

character-string constant
A constant consisting of zero or more characters enclosed in single
quotation marks. For example:

98 .6F

See also constant.

comparison operator
A symbol specifying a logical operation on bit strings. ‘the
comparison operators are >, denoting greater than; “%>, denoting
not greater than; >=, denoting greater than or equal to; =,
denoting equal to; “=, denoting not equal to; <=, denoting less
than or equal to; <, denoting less than; and *<, denoting not
less than. See also operator.

complex data
Arithmetic data consisting of a real part and an imaginary part.
See also arithmetic data,

compound statement

A statement that contains another statement, PL/I has two compound
statements: the IF statement and the ON statement. See also
statement.

condition
An event that takes place during execution of a statement that
alters or prevents the normal execution of the statement. See also
on-condition, on-unit.

condition name
A keyword that may be specified in ON or SIGNAL statements. ‘The
legal condition names are listed in Appendix A.

condition prefix
A parenthesized list of one or more condition names, placed before
a statement label, that specifies whether those conditions are
enabled. See also scope of a condition prefix.

constant

A sequence of characters that has no name and that represents a
particular value that cannot change. Also, an unsubscripted label
prefix, a file name, or an entry name. See also arithmetic
constant, bit-string constant, character-string constant, file
constant, fixed-point constant, floating-point constant, integer
constant,

Pirst Edition G-4

GLOSSARY OF PL/I TERMS

controlled storage
Storage whose allocation and freeing are wholly controlled by

ALLOCATE and FREE statements. See also based storage, storage

class.

conversion
fhe change in data type, if any, that is made when a value is

assigned to a variable.

data-directed input/output
Transmission of data to or from a stream file in the form of a list

of all declared variables and their values. See also edit-directed

input/output, list-directed input/output, stream file.

defined variable
A variable that is declared as occupying the same storage as

another variable.

direct access
A method of storing records in files that does not require a

sequential search of the file to finda particular record. See

also key, record file, sequential access.

dynamic storage
Storage that is allocated during execution of a program. See also

static storage, storage class.

edit-directed input/output
Transmission of data to or from a stream file by means of a format

list. See also format item, format list, data-directed

input/output, list-directed input/output, stream file.

entry name
An identifier associated with a procedure, by which reference may

be made to the procedure. Procedures that are not part of the

compiled module must be declared with the ENTRY attribute and, if

they are functions, with the RETURNS attribute. Entry data is used

to describe subroutines and functions that are not built-in.

(ENTRY is used instead of PROCEDURE because procedures can be

entered at points other than the PROCEDURE statement.)

extent
A value that determines a variable's storage size. Extent

expressions can be dimension bounds for arrays, maximum string

lengths, or AREA sizes. Extents are evaluated when storage is

allocated for the variable.

external block
See external procedure,

external procedure
A PROCEDURE block whose entry name is not within the scope of any

(other) block. Also called external block. See also procedure.

G5 First Edition

PL/I Reference Guide

file
An organized collection of data stored in the computer system's
memory. A file is referenced by using a file name declared with
the FILE attribute. See also record file, stream file,

file constant
A name declared with the FILE attribute. A file constant cannot be
the target of an assignment statement. See also constant,

file control block
A block of STATIC storage associated with each file constant in
which information about the current status of the file is kept
while the file is open.

file variable

A name declared with the FILE and VARIABLE attributes, A file
variable can be assigned file values.

file value
A value designating a file control block that can be opened or
closed and that can thereby be connected to various files and
devices known to the operating system. File values result from
references to file constants, file variables, and file-valued
functions,

fixed-point constant
A constant consisting of one or more numeric digits with optional
sign and decimal point. For example:

7.5

See also constant,

fixed-point scale
The format of arithmetic data in which the datum is a rational
binary or decimal number with a specified number of digits. See
also scale.

floating-point constant
A constant consisting of one or more numeric digits with an
optional decimal point. These digits are followed by the letter E,
followed by an optionally signed exponent representing an integral
power of 10. For example:

3.12E-11

See also constant,

First Edition G-6

GLOSSARY OF PL/I TERMS

floating-point scale
The format of an arithmetic datum in which the datum is a rational

number with a fractional part and an exponent part. See also

scale,

format item
An element of a format list, in edit-directed input/output. It can

specify either the representation of a data item or its positioning

in the stream. See also edit-directed input/output.

format list
A list of format items that controls the transmission of data to or

from a stream I/O file during the execution of an edit-directed GET

or PUT statement. See also edit-directed input/output.

fully qualified reference
A qualified reference that includes the name of each containing

structure from the major structure down to the referenced member.

See also partially qualified reference, qualified reference,

structure.

function
A procedure that returns a value. Also called function procedure.

See also procedure, subroutine.

identifier
See name,

infix operator
Any operator placed between expressions. See also operator.

integer constant
A constant consisting only of one or more numeric digits. For

example :

25

See also constant.

internal procedure block
See internal procedure.

internal procedure
A procedure whose entry name is within the scope of an encompassing

block. Also called internal procedure block, nested procedure,

subprocedure. See also procedure, external procedure.

key
A data item that identifies a record that is directly accessed.

See also record file, direct access.

G-7 First Edition

PL/I Reference Guide

keyword
An identifier that has a lanquage-defined or implementation~defined
meaning to the compiler when used in particular contexts.

label
A name that identifies a statement other than a PROCEDURE or ENTRY
statement. See also statement,

level number
A decimal constant in the declaration of a structure that specifies
the hierarchical position of a variable in the structure. See also
structure.

list-directed input/output
Transmission of data to or from a stream file without a
format-list. See also data-directed input/output, edit-directed
input/output, stream file.

mode
A characteristic of arithmetic data; in PL/I, either REAL or
COMPLEX. See also arithmetic data,

name
A string of up to 32 characters, which can be the alphanumeric
Characters, $, #, and the underscore (_) character. The first
character of a name must be a letter. Also called identifier. See
also scope of a name,

nested procedure
See internal procedure.

null character string
A character string of zero length. See also character string.

null pointer
A pointer value produced by the NULL built-in function. Anull
pointer is a unique value that addresses no variable and is used to
indicate that a pointer variable does not currently address
anything. See also pointer.

null statement
An empty statement, consisting only of a semicolon (7). It has no
effect. See also statement,

null string
A zero-length character-string or bit-string. See also string
data.

on-condition
A condition specified in an ON statement. See also condition.

First Edition G-8

GLOSSARY OF PL/I TERMS

on-unit
A BEGIN block or statement (other than PROCEDURE, DO, END, DECLARE

or FORMAT) that describes an action to be taken upon the occurrence

of an on-condition. See also condition, on-condition.

operand
A part of an expression that is not an operator. It may be a

constant, a variable reference, a function reference, a built-in

function reference, or another expression.

operator
A symbol specifying an operation. The operators used in PL/I are

as follows: +, —, *, J, ®*, = “=p <p > Se Ee “<ppy &e “|

(or !), and || (or !!). See also arithmetic operator, bit-string

operator, comparison operator, infix operator, prefix operator,

string operator.

parameter
An identifier in a PROCEDURE statement for which a value is

substituted by an invoking PROCEDURE reference. See also argument.

partially qualified reference
A qualified reference that is unique, but from which one or more of

the names of containing structures have been omitted. See also

fully qualified reference, qualified reference, structure.

pictured data
Values that can be either numeric or character, that

=

are

represented by means of precise specifications for the positions of

characters, and upon which computations can be performed. See also

arithmetic data, string data.

POINTER

An attribute specifying the declared identifier as a pointer

variable that contains the address of a based storage datum, See

also based storage.

pointer qualification
Identification of a based variable by the use of a pointer followed

by the pointer qualification symbol, such as Q->ALPHA.

Pointer-valued functions and pointer-valued built-in functions may

also be used as pointer qualifiers.

pointer qualification symbol
The character sequence ->, signifying that the pointer value on the

left of -> gives the address to be used with the BASED variable

reference on the right.

pointer value
A value whose data type is POINTER.

pointer variable
A variable, declared with the POINTER data type attribute, whose

value is an address in memory.

G-9 First Edition

PL/I Reference Guide

precision
The number of significant binary or decimal digits maintained for
the value of an arithmetic variable and, optionally, the number of
those digits that are fractional. As an attribute, it is specified
by a parenthesized decimal number or by a parenthesized pair of
numbers separated by a comma. See also arithmetic data,

prefix operator
Any of the operators +, -, and “, placed to the left of an
expression. See also operator.

procedure
A sequence of statements beginning with a PROCEDURE statement and
terminated by the matching END statement. Also called procedure
block. See also block, function, subroutine, internal procedure,
external procedure.

PROCEDURE block
See procedure.

PROCEDURE block name
See procedure name.

PROCEDURE block reference
See procedure reference,

procedure name
A name designating the entry point to a procedure (the name of the
PROCEDURE statement). Also called PROCEDURE block name,

procedure reference
Invocation of a procedure by a CALL statement or function
reference; any reference that is followed by an argument list
consisting of a parenthesized list of expressions separated by
commas, or followed by an empty argument list (). (An empty
argument list may be amitted in the procedure reference of a CALL
statement.) See also argument.

pseudovariable
A built-in function used on the left side of an assignment
statement. In each case, the built-in function acts as if it were
a variable. The pseudovariables are IMAG, ONCHAR, ONSOURCE,
PAGENO, REAL, STRING, SUBSTR, and UNSPEC, See also built-in
function,

qualified name

See qualified reference,

First Edition G-10

GLOSSARY OF PL/I TERMS

qualified reference
A reference to a variable in a structure, consisting of a sequence

of names written left to right in order of increasing level numbers

and separated by periods. Blanks may be inserted around the

periods. The sequence must include sufficient names to make the

reference unique. See also level number, fully qualified

reference, partially qualified reference, structure.

record file
A file organized into a set of discrete records that are either

accessible sequentially or accessible directly by key. See also

file, direct access, sequential access, stream file,

recursive PROCEDURE block
See recursive procedure.

recursive procedure
A procedure that can call itself. The idea of recursion is derived

from the mathematical concept of a recursive function, which is a

function that may be defined in terms of itself. For example, N!

(N factorial) is defined as

N! for N

N! *

1 =]
N (N- 1)! for NO1We

il

Also called recursive PROCEDURE block.

reference
The use, in a context other than in a Geclaration, of a name,

together with any subscripts, pointer qualifier, or structure names

necessary to indicate the object of the reference. References to

procedures or built-in functions may also contain an argument list.

In order to determine the meaning of the reference, the compiler

searches for the declaration of the name. This search resolves the

reference by associating it with a declaration of the name. See

also qualified reference, simple reference, subscripted reference.

scalar
A single data item. See also aggregate.

scale
The system of mathematical notation used to represent an arithmetic

value; in PL/I, either fixed-point (FIXED) or floating-point

(FLOAT). See also arithmetic data, fixed-point scale,

floating-point scale.

G-11 First Edition

PL/I Reference Guide

scope of a condition prefix
The region of a program to which a condition prefix applies.

The scope of a condition prefix applied to a BHGIN or PROCEDURE
statement is the entire block.

The scope of a condition prefix applied toa DO statement is
the DO stateanent itself. The condition prefix does not
apply to the entire DO group.

The scope of a condition prefix applied to an IF statement is
only the expression immediately following the IF keyword.
The condition prefix does not apply to the ‘THEN or ELSE
clauses of the IF statement.

The scope of a condition prefix applied to an ON statement does
not include the on-unit.

In all other cases, the condition prefix applies to the entire
statement.

See_also condition prefix.

scope of a name
The region of a program over which a name (identifier) is known and
can be referred to. The scope of a name includes the block in
which it is declared and all blocks contained within that block,
except those blocks in which the name is redeclared. See also
name.

scope of a declaration
The region of a program to which a particular declaration of a name
(identifier) applies. The scope of a declaration includes the
block in which it appears and all contained blocks, except blocks
in which the name has been redeclared.

separator
A character recognized by the compiler as a delimiter of program
elements, Separators are the following characters:
() , « ¢ : and the blank character.

sequential access
A method of storing records in files such that the file must be
searched from the beginning to find a particular record. See also
direct access, record file,

simple reference
A reference to a name without any subscripts, pointer reference, or
argument list. See also reference, qualified reference,
subscripted reference.

First Edition G-12

GLOSSARY OF PL/I TERMS

stack frame
A block of storage allocated on a stack used to hold information

that is unique to each procedure activation, such as the location

to which control should return from the procedure activation.

statement
A sequence of tokens (elements) ending with a semicolon, All

statements, except the assignment statement, begin with a keyword

that identifies the purpose of the statement. See also compound

statement, token.

statement identifier

A keyword naming a statement. For example, DO is the statement

identifier of the DO statement. See also keyword.

statement label
A name identifying a statement. See also label.

static storage
Storage that is allocated before execution of the program and is

released at program termination. See also dynamic storage, storage

class.

storage class
An attribute of a variable that determines how and when storage is

allocated for the variable. See also allocation, automatic

storage, based storage, controlled storage, dynamic storage, static

storage.

stream file

A file containing a sequence of characters organized into lines.

See also file, record file.

string data
Values consisting of a sequence of bits or characters on that

string operations are allowed. See also bit string, character

string, arithmetic data, pictured data.

string operator
The operator || (or !!) denoting concatenation. See also

operator.

structure
A hierarchically ordered set of variables that may be of different

data types. See also level number, qualified reference.

subprocedure
See internal procedure.

subroutine
A procedure that does not return a value. Also called subroutine

procedure. See also procedure, function.

G-13 First Edition

PL/I Reference Guide

subscript
An integer, or an expression evaluating to an integer, used to
reference an array element. Elements of an array are referenced
using as many subscripts as the array has dimensions. See also
array, simple reference,

subscripted reference
A reference to a name that has been declared as an array, followed
by a parenthesized list of subscript expressions. See also
reference, qualified reference, simple reference.

substructure

A structure that is itself a member of another structure. See also
structure,

termination of BHGIN block
The passing of control out of a BEGIN block, accomplished by
execution of the END statement for the block or of a nonlocal GO TO
statement. See also BEGIN block.

termination of PROCEDURE block
The passing of control out of a PROCEDURE block, accomplished by
execution of a RETURN statement, of the END statement for the
block, or of a nonlocal GO TO statement. See also procedure.

token
The basic element of the PL/I language. A token can be a name, a
constant, a punctuation symbol, a comment, or a compile-time
text~modification statement. See also statement.

variable
A named object that is capable of holding values. Each variable
has two properties: data type and storage class.

First Edition G-14

Use ofFORMS

with PL/I

The following briefly summarizes the use of FORMS with PL/I syntax.

For more information, consult the FORMS Programmer's Guide,

PDR3040-163P. You should make sure to declare FORMSI as an entry, to

call this procedure before doing any I/O, and to open a file with the

TITLE option, in any of the three ways described below.

@ TITLE('@TTY -FORMS')

Allows both input and output to be performed via the file

designator. The -FORMS option tells the compiler that FORMS

will be used, This MUST be in the title declaration as shown.

@ TITLE('SYSPRINT -FORMS')

Allows FORMS to be done in an OUTPUT mode only.

e TITLE('SYSIN -FORMS')

Allows FORMS to be done in an INPUT mode only.

The recommended manner is the first.

From then on, use normal ASCII I/O statements, You may use either PUT

EDIT or PUT LIST. Since FORMS is usually used in a formatted fashion,

PUT EDIT is recommended; it gives the user control over how the

formatting is done. With PUT LIST, the compiler determines the

formatting under predefined rules.

B-1 First Edition

PL/I Reference Guide

In addition, at load time, you must remember to load VFORMS before
invoking the PL1 or PLIG library.

Below is an example of the use of FORMS in a PL/I procedure:

Xs PROC;
DCL FORMSI ENTRY?

DCL F FILE STREAM;

DCL G FILE OUTPUT STREAM;
DCL A FIXED BIN;

DCL H FILE OUTPUT STREAM;

CALL FORMSI;
OPEN FILE(H) TITLE('@TTY -—FORMS') ;

PUT FILE(H) EDIT('##INVOKE DS1') (A(12));

PUT FILE(H) EDIT('##CLEAR') (A(7))3
END;

First Edition H-2

Using SEG

This appendix tells how to use Prime's older load utility, SEG.

LOADING AND EXECUTING PL/I PROGRAMS

To load an execute an object program produced by the PL/I compiler, use

the following steps if the object filename ends in .BIN.

1.

2.

Invoke Prime's loader with the SEG -LOAD command. SEG responds

with the prompt $.

Use the LOAD subcommand with either program.BIN or simply

program.

Use the LOAD subcommand with the names of any subroutines that

were compiled separately, loading them in the order called.

Use the LI command with any necessary Prime libraries.

Use LI with the PL/I library (PLILIB).

Use LI alone to load other systen library routines. If all

references are resolved, the message LOAD COMPLETE appears. If

this message is not displayed, enter MAP 3 for a display of

routines that are missing.

I-1 First Edition

PL/I Reference Guide

7. ‘Either leave SHG and store the newly created runfile with QUIT,
or start execution with EXEC.

Subsequent executions of the runfile can be started with

SEG program

For example, if your source program is stored ina PRIMOS file named
MYPROG.PL1, you can compile it with the command

PL1 MYPROG

This compilation produces an object file named MYPROG.BIN. Assume that
no Subroutines or special libraries (such as the sort library) are
needed. Load and execute the program with a dialog such as_ the
following:

OK, SEG -LOAD
[SEG rev 19.4]
$ LO MYPROG
$ LI PLILIB
$ LI
LOAD COMPLETE
$ EXEC

For subsequent executions, enter:

SEG MYPROG

First Edition I-2

INDEX

Symbols

1 (See |)

11 (See 11)

-> 7-9

$ (dollar sign),
in pictured-numeric
specification, 5-50

& (ampersand), |
logical operator, 6-35
logical operator, table, 6-35

* (apostrophe) ,
specification of BIT constants,

5-24
specification of CHARACTER

constants, 5-19
within CHARACTER constants,

5-22

* (asterisk),
in INITIAL values, 7-27
in parameter extent

expressions, 8-25
in pictured-numeric
specification, 5-45

in RETURNS descriptor, 8-20

Index

* (asterisk) (continued)
infix operator, 6-27
infix operator, table, 6-27
initializing arrays, 5-74
specifying array cross

sections, 5-62

** (double asterisk),
infix operator, 6-30

+ (plus sign),
in pictured-numeric
specification, 5-35, 5-46

infix operator, 6-25
infix operator, table, 6-26
prefix operator, 6-36
prefix operator, table, 6-37

, (comma),
in pictured-numeric

specification, 5-38
in structure declarations,

5-63

- (minus. sign),
in pictured-numeric
specification, 5-35, 5-46

infix operator, 6-25
infix operator, table, 6-26
prefix operator, 6-36
prefix operator, table, 6-37

First Edition, Update 1

PL/I Reference Guide

- (period),
in pictured-numeric
specification, 5-38

/ (slash),
in pictured-numeric
specification, 5-38

infix operator, 6-28
infix operator, table, 6-29

< (less than),
comparison operator, 6-32

<= (less than or equal to),
comparison operator, 6-32

= (equal sign),
comparison operator, 6-32
in assignment statement, 4-5

> (greater than),
comparison operator, 6-32

= (greater than or equal to),
comparison operator, 6-32

* (caret),
in Prime EDITOR, 6-4
pretix operator, 6-37
prefix operator, table, 6-37

“< (not less than),
comparison operator, 6-32

“= (not equal),
comparison operator, 6-32

“> (not greater than),
comparison operator, 6-32

| (vertical bar),
logical operator, 6-35
logical operator, table, 6-36

|| (double vertical bar),
infix operator, 6-31

Numbers

-64V compiler option, 2-4

First Edition, Update 1 X-2

9,
in pictured-numeric

specification, 5-32
in pictured-string
specification, 5-30

A

A,
in pictured-string
specification, 5-30

A data format iten,
input, introduction,
input, specifications,
input, table, 11-67
output, introduction,
output, specifications,
output, table, 11-47

11-21
11-66

11-8
11-47

ABS built-in function,
14-14

introduction,

14-4 f

4-30

ACOS built-in function, 14-15

ADD built-in function, 14-16

Addition operator, 6-25

ADDR built-in function, 7-22,
14-3, 14-16

AFTER built-in function, 14-17

Aggregates,
and GET LIST,
and PUT DATA,
and PUT EDIT,
and PUT LIST, 11-4
arguments to built-in
functions, 14-3

data conversion,
in expressions, 6-43
introduction, 4-42
promotion, introduction,
returning, from function
procedures, 8-16

6-43

6-1

ALIGNED attribute, 5-66

ALLOCATE statement, 7-7
errors in, 13-26
IN option, 7-15
raising AREA condition,
SET option, 7-8
syntax, 7-19

ALLOCATION built-in function,
7-7, 14-3, 14-18

13-26

ALLOCN (See ALLOCATION)

-ALLON_PRECONNECTION compiler
option, 2-4

And,
logical operation, 6-35

-ANSI option, 11-29

ANSI standard, 1-1

Apostrophes,
specification of BIT constants,

5-24
specification of CHARACTER
constants, 5-19

within CHARACTER constants,
5-22

~APPEND option,
with RECORD files,
with STREAM files,

12-9, 12-24
11-29

-APRE (See —ALLOW_PRECONNECTION)

AREA condition, 13-26

AREA variables, 7-14
(See also Noncomputational data

S
contextual declaration, 9-20

Arguments,
arrayS, 8-29
dummy, 8-25
for function procedures, 8-13
in CALL statement, 8-10
parameters, relation to, 8-2]

Arguments to built-in functions,
14-2

aggregate, 14-3
converted precision, 14-4

INDEX

Arguments to built-in functions
(continued)

derived data type,
specifying precision,

14-4
14-5

Arithmetic built-in functions,
ABS, 14-14
ADD, 14-16
BINARY, 14-24

CEIL, 14-30, 14-91
classification and summary,

14-7
DECIMAL ,

DIVIDE,

FIXED,

FLOAT,

FLOOR,

introduction,
MAX, 14-57
MIN, 14-58

MOD, 14-59
MULTIPLY, 14-62

PRECISION, 14-68

ROJND, 14-72
SIGN, 14-74

SUBTRACT, 14-81
TRUNC, 14-90

14-39
14-41

14-46
14-47
14-48, 14-91

4-30

Arithmetic data, (See also
Computational data types;
Data conversion)

constants, summary,

conversion, 6-38
conversion, introduction,
declaring variables,

introduction, 4-23
defined, 5-3
FIXED BINARY, 5-10

FIXED DECIMAL, 5-5

FLOAT BINARY, 5-13

FLOAT DECIMAL, 5-9

introduction, 4-22, 5-4
variables, declaring, 5-16

5-17

4-27

Arithmetic operators,
introduction, 4-11, 6-3

Array subscripts, 5-57
data conversion, 6-10
error checking with —RANGE,
2-10

errors, 13-13, 13-37

First Edition, Update 1

PL/I Reference Guide

Array subscripts (continued)
introduction, 4-43
SUBSCRIPTRANGE condition,

13-13, 13-37

Array-handling built-in
functions,

classification and summary,
14-11

DIMENSION, 8-30, 14-3, 14-40
DOT, 14-3, 14-42
HBOUND, 8-29, 14-3, 14-49
IBOUND, 8-29, 14-3, 14-52
PROD, 14-3, 14-69
SUM, 14-3, 14-82

Arrays, (See also Aggregate
promotion)

aggregate promotion, 6-44
as arguments and parameters,

8-29
bounds, 5-59
cross sections, 5-62
declaring with DEFINED

attribute, 5-68
in expressions, 6-43
initializing, 5-73, 7-26
internal representation, C-10
introduction, 4-43
iSUB defining, 5-70
multi-dimensional, 5-59
of file variables, 12-34
of structures, 5-65
of structures, aggregate

promotion, 6-46
of structures, initializing,

5-74
of structures, introduction,

4-45
one-dimensional, 5-56
returning, from functions,
8-16

ASCII character set, B-l

ASCII-8 character set, B-2

ASIN built-in function, 14-19

Assignment statement,
introduction, 4-5

First Edition, Update 1 X-4

Asterisk,
in INITIAL values, 7-27
in parameter extent
expressions, 8-25

in pictured-numeric
specifications, 5-45

in RETURNS descriptor, 8-20
initializing arrays, 5-74
specifying array cross

sections, 5-62

ATAN built-in function, 14-20
illustration, 14-21

ATAND built-in function, 14-22

ATANH built-in function, 14-22

Attributes, (See also File
attributes

ALIGNED, 5-66

BUILTIN, 14-2

defaults, overriding, 5-75

DEFINED, 5-67, 7-24

EXTERNAL, 7-30, 8-34
GENERIC, 8-39

INITIAL, 5-72

INTERNAL, 7-30

LIKE, 5-71, 9-13
POSITION, 5-69

UNALIGNED, 5-66

AUTOMATIC storage class, 7-4
defined, 7-3
in recursive procedures, 7-6
variables in extent and INITIAL

expressions, 7-28

B

By
in pictured-numeric
specification, 5-38

specification of BINARY
constants, 5-10, 5-13

specification of BIT constants,
5-24

-B (See -BINARY)

B data format iten,
input, specifications, 11-67
input, table, 11-68, 11-69
output, specifications, 11-48

Base of arithmetic data,
defined, 5-4
derived common, 6-18
derived common, table, 6-19
introduction, 4-23

BASED storage class, (See also
POINTER data)

AREA and OFFSET variables,
7-14

defined, 7-3
linked lists and, 7-10
locate mode input/output and,
12-18

POINTER variables and, 7-8
REFER option and, 7-29
STATIC storage and, 7-10
variables in extent and INITIAL

expressions, 7-29

Batch job progran environment,

BEFORE built-in fumction, 14-23

BEGIN statement,

Blocks)
block invocation and
temination, 10-28

scope of condition prefix,
13-16

(See also

-BIG compiler option, 2-4

BIN (See BINARY)

BINARY built-in function, 14-24

~BINARY compiler option, 2-4

BINARY data, (See also Base of

arithmetic data)
FIXED, 5-10

FLOAT, 5-13

BIND command, 3-1

INDEX

BIND commands,
FILE, 3-2
HELP, 3-3

LIBRARY, 3-2

LOAD, 3-2
MAP, 3-3

QUIT, 3-3

BIT built-in function, 14-26

BIT data, (See also CHARACTER
data; String data)

ALIGNED attribute and, 5-66
as logical variables, 5-25
assignment errors, 13-36
comparison operators and, 6-4
constants, 5-26
constants, table, 5-26
conversion from/to CHARACTER,
6-41

conversion from/to numeric,
6-40

data conversion,
discussion, 5-23
internal representation, C-7
NONVARYING, 5-24

null string, 5-26
octal notation, 5-27
other number bases, 5-27
other number bases, table,
5-28

string overlay defining,
VARYING, 5-25

6-24

5-70

Blocks, (See also Declarations;
DO groups; Scope rules)

active and inactive, 10-30
classification, 9-3, 10-27
containment of declarations,

9-23
dynamic storage area (DSA),

10-31, 10-39
environmental block invocation,
10-32

epilogue execution, 10-28
inheriting variables, 10-31
introduction, 4-50, 9-1

invocation, 10-27
invocation and termination,
summary, 10-47

invoking block invocation,
10-32

multiple closure END
statements, 9-5

First Edition, Update 1

BOL built-in function,

Boolean expressions

Built-in functions,

PL/I Reference Guide

Blocks (continued)
nesting, 9-4
on-units, implementation,

10-47
prologue execution,
SELECT, 10-25
storage management,
structure, 10-32
structure, static and dynamic,

10-29
termination,

10-28

10-28

10-22, 10-28

14-27
table, 14-27, 14-28

(See BIT
data; Logical expressions)

(See also
Arithmetic built-in
functions; Array-handling
built-in functions;
Condition—handling built-in
functions; Mathematical
built-in functions;
Miscellaneous built-in
functions; Storage-handling
built-in functions;
String-handling built-in
functions)

ABS, 14-4, 14-14
ACOS, 14-15
ADD, 14-16

AFTER, 14-17
aggregate arguments, 14-3
ALLOCATION, 7-7, 14-18
arguments, 14-2
arguments that specify
precision, 14-5

arithmetic, 14-7
array~-handling,
ASIN’ 14-19

ATAN, 14-20
ATAND, 14-22
ATANH, 14-22
BEFOREiF 14-23

BINARY, 14-24

BIT’ 14-26

BOGL, 14-27
BYTE, 14-29

CEIL, 14-30, 14-91
CHARACTER, 14-31

14-3, 14-11

First Edition, Update 1 X-6

Built-in functions (continued)
classification and summary,
14-6

COLLATE, 14-32
COMPLEX, 14-32
condition-handling,
CONJG, 14-33
contextual declaration, 9-17
converted precision, 14-4

COS, 14-35
COSD, 14-35
COSH, 14-36
data conversion,
14-4

DATE,

DECAT,

DECIMAL ,
defined, 14-1
DIMENSION, 8-30, 14-40
DIVIDE, 14-41
DOT, 14-42
EMPTY, 14-43
ERF, 14-43
ERIC, 14-44
EVERY, 14-45

expressions and, 6-8
FIXED, 14-46

FLOAT, 14-47
FLOOR, 14-48, 14-91
general rule for aggregates,

14-3
HBQUND,
HIGH,

14-12

6-16, 6-42,

14-2, 14-36
14-37

14-39

8-29, 14-49
14-50

IMAG, 14-51
INDEX, 4-38, 14-51
input/output-related, list of,
12-33

introduction, 4-28
IBOUND, 8-29, 14-52
LENGTH, 14-53
LINENO, 11-33, 14-54

LOG, 14-54
LOG1O, 14-55
LOG2, 14-56
LOW, 14-56
mathematical, 14-8
MAX, 14-4, 14-57

MIN, 14-58
miscellaneous,
MOD, 14-59
MULTIPLY, 14-62

NULL, 7-13, 14-63

14-13

Built-in functions (continued)
OFFSET, 7-18, 14-63
on-units and, 13-40
ONCHAR, 13-6, 14-64

ONCODE, 13-40, 14-64, F-1
ONFIELD, 14-65
ONFILE, 14-65
ONKEY, 14-66
ONLOC, 14-66
ONSOURCE, 13-6, 14-67
PAGENO, 11-33, 14-67
POINTER, 7-16, 14-68
PRECISION, 14-68

Prime extensions, 14-29,
14-70, 14-77

PROD, 14-69
RANK, 14-70
REAL, 14-71
REVERSE, 14-71
ROUND, 14-72
SIGN, 14-74

SIN, 14-75
SIND, 14-76

SIZE, 14-77

SORT, 14-78
storage-handling, 14-3, 14-12
STRING, 14-79
string-handling, 14-9
SUBSTR, 4-37, 13-35, 14~80
SUBTRACT, 14-81
SUM, 14-82

TAN, 14-83

TAND, 14-84
TANH, 14-85
terminology, 4-29
TIME, 14-85
TRANSLATE, 14-86
TRIM, 14-89
TRUNC, 14-90
UNSPEC, 14-92
VALID, 14-93
VERIFY, 14-94
without arguments, 14-2

BUILTIN attribute, 14-2
declaring, 14-2

BY NAME option, 5-65

BY option, 10-6

BYTE built-in function, 14-29

INDEX

Cc

C data format iten,
input, specifications, 11-70
input, table, 11-70
output, introduction, 11-8
output, specifications, 11-51
output, table, 11-52

CALL statement,
arguments, 8-10
introduction, 8-3

Case selection, 10-25

CEIL built-in function, 14-30,
14-91

introduction, 4-30

CHAR (See CHARACTER)

CHARACTER built-in function,
14-31

CHARACTER data, (See also BIT
data; String data;
String-handling built-in
functions)

ALIGNED attribute and, 5-67
apostrophes within constants,

5-22
assignment errors, 13-36
comparison, 4-36
computation with, 6-20
concatenation, 4-36
constants, introduction, 4-7,
4-34

constants, rules for forming,
5-21

constants, table, 5-22
conversion from/to BIT, 6-41
conversion fron/to numeric,
6-39
data conversion, 6-24
declaring, 4-33
initializing, 5-74
internal representation, C-6
introduction, 4-32
NONVARYING, discussion, 5-19
null string, 4-34, 5-22
operations, 4-35
output file representation,

11-33
repetition factors, 5-23

First Edition, Update 1

PL/I Reference Guide

CHARACTER data (continued)
replication factors, in INITIAL
values, 7-27

string overlay defining,
substrings, 4-37

VARYING, internal
representation, C-7

5-68

CLOSE statement,
effect on file attributes,
12-31

anission of, effect, 12-31
with sequential access files,

12-7

Code size, -
maximum, 1-4

COLLATE built-in function, 14-32

Colon,
as range specifier in GENERIC
declarations, 8-40

in array-bound spec, 5-59

COLUMN control format item,
input, introduction, 11-22
input, specifications, 11-71
output, introduction, 11-10
output, specifications, 11-52

Comma ,
in pictured-numeric
specifications, 5-38

in structure declarations,
5-63

Comments,
syntax, 4-10

Comparison operators,
and CHARACTER data,
discussion, 6-32
introduction, 4-15, 6-3
table, 6-3, 6-32

4-36

Compiler options,
-64V, 2-4

~ALLOW_PRECONNECTION, 2-4
-BIG, 2-4
—BINARY, 2-4

-COPY, 2-5

First Edition, Update 1 X-8

Compiler options (continued)

~ERRTTY, 2-6

~EXPLIST, 2-6

-FULL_OPTIMIZE, 2-7

~HELP, 2-7
-INPUT, 2-7

introduction, 2-2
~LCASE, 2-7, 4-8

~MAP, 2-8

—-MAPWIDE, 2-8

-NESTING, 2-9

-OFFSET, 2-9

-OPTIMIZE, 2-9

~-OVERFLOW, 2-10
-PRODUCTION, 2-10
-RANGE, 2-11
-SILENT, 2-11

~SOURCE, 2-11

-STATISTICS, 2-12
~STORE_OWNER_FIELD,

~STRINGSIZE, 2-13
table, 2-14
~TIME, . 2-13
-UPCASE, 2-13

2-12

Compiler-directing statements,
SINCLUDE, 10-53
$LIST, 10-53
SNOLIST, 10-53
SPAGE, 10-53
SREPLACE, 10-53

Compiling programs,
concepts, 8-31
with Prime PL/I compiler, 2-1

COMPLEX built-in function, 14-32

COMPLEX data, (See also Mode of
arithmetic data)

constants, table, 5-15

discussion, 5-14
FIXED BINARY, internal

representation, C-4
FIXED DECIMAL, internal

representation, C-4
FLOAT BINARY, internal

representation, C-5

COMPLEX data (continued)
FLOAT DECIMAL, internal

representation, C-5

Computational data types,
introduction, 5-3
scalar conversion rules, 6-38

Concatenation, 6-5
introduction, 4-36
operator, 6-31

COND (See CONDITION)

CONDITION condition, 13-20,
13-26

and SIGNAL statement, 13-20

Condition prefixes, 13-13
introduction, 4-50
overriding, 13-17
scope rules, 13-16
with BHGIN statement, 13-16
with DO statement, 13-16
with IF statenent, 13-17
with ON statement, 13-17
with PROCEDURE statement,

13-16

Condition—handling built-in
functions,

and SIGNAL statement, 13-41
classification and summary,

14-12
CNCHAR,
ONCODE,

ONFIELD,
ONFILE,
ONKEY,
ONLOC, 14-66
ONSOURCE, 13-6, 14-67
table, 13-42

13-6, 14-64
13-40, 14-64, F-1
14-65

14-65
14-66

Conditions, (See also ON
statement; On-units)

CONDITION, 13-20, 13-26
condition prefixes, 13-13
contextual declaration, 9-19
CONVERSION, 13-6, 13-15, 13-27
debugging with, 13-17
default states, 13-16
defined, 13-1
enabling, 13-13

X-9

INDEX

Conditions (continued)
enabling and disabling, 13-16
ENDFILE, 11-38, 13-4, 13-27
ENDPAGE, 11-33, 11-38, 13-28
ERROR, 13-9, 13-29
FINISH, 13-29
FIXEDOVERFLOW, 13-30, 13-32
flow chart, 13-25
input/output, list of,
introduction, 4-50
KEY, 13-31
list of, 13-24
NAME, 13-31
NOCONVERSION,
NOFIXEDOVERFLOW,
NOOVERFLOW, 13-32
NOSTRINGSIZE, 13-36
NOUNDERFLOW, 13-39
NOZERODIVIDE, 13-40
OVERFLOW, 13-32 .

PRIMOS condition-handling
mechanism, 1-8

raising artificially,
RECORD, 13-33
SIGNAL statement,
SIZE, 13-33
SNAP option, 13-20
stack frame representation,

D-2
standard system action,
STORAGE, 13-34
STRINGRANGE, 13-35
STRINGSIZE, 13-36
SUBSCRIPIRANGE, 13-13, 13-37
TRANSMIT, 13-37

UNDEFINEDFILE, 13-38

UNDERFLOW, 13-39
user-defined, 13-20
ZERODIVIDE, 13-40

12-32

13-15
13-30

13-19

13-19

13-2

CONJG built-in function, 14-33

CONSTANT file attribute, 12-33

Constants,
arithmetic, summary,
CHARACTER, 4-7, 4-34
data types, introduction, 5-2
declaring in statement labels,

9—14

5-17

ENTRY, 7-31, 9-14

First Edition, Update 1

PL/I Reference Guide

Constants (continued) DAM files (continued)
introduction, 4-9 expanding, 12-13
LABEL, 7-31, 9-14 introduction, 12-3

KEY option, 12-12
Control flow (See Flow of MIDASPLUS files, compared to,

control) 12-14
reading with KEYED DIRECT

CONTROLLED storage class, 7-6 INPUT, 12-10
defined, 7-3 updating with KEYED DIRECT
EXTERNAL attribute and, 7-30 UPDATE, 12-12
variables in extent and INITIAL

expressions, 7-28 -DAM option, 12-24

CONV (See CONVERSION condition) Data conversion,
among arithmetic variables,

Conversion (See Data conversion) introduction, 4-27
~~ arrays, 6-44

CONVERSION condition, 13-27 arrays of structures, 6-46
disabling, 13-15 BIT to CHARACTER, 6-41
use of, 13-6, 13-15 BIT to numeric, 6-41

built-in functions, 6-42, 14-4
COPY built-in function, 14-3, CHARACTER to BIT, 6-41

14-34 CHARACTER to numeric, 6-40
comparison expressions and,

-COPY compiler option, 2-5 6-32
computational data types,

COPY input option, rules, 6-38
introduction, 11-14 converted precision, 6-21
specifications, 11-72 converted precision, table,

6-23
COS built-in function, 14-35 derived common base, scale, and

COSD built-in function, 14-35 derived common string type,
6-24

COSH built-in function, 14-36 discussion, 6-9
from CHAR, use of CONVERSION

CPLX (See COMPLEX) condition, 13-6, 13-15,
13-27

CR, implicit conversion, 6-12,
in pictured-numeric 6-20
specification, 5-35 intermediate targets, 6-10

introduction, 6-1
Cross-reference listing (See numeric to BIT, 6-40

~XREF) numeric to CHARACTER, 6-39
numeric to numeric, 6-38

~CILASA option, 12-25 structures, 6-45
with PICTURE data, 6-41

DATA option, (See also GET DATA
D statement; PUT DATA

statement)
DAM files, input, specifications, 11-72

changing, 12-12 output, specifications, 11-53
creating sequentially, 12-10

First Edition, Update 1 X-10

Data sets

Data types,
data; PICTURE data; String
data)

arrays and structures, 5-56
classification, 5-2
default, introduction, 4-25
introduction, 5-1

(See Files)

DATE built-in function, 14-2,
14-36

DB,
in pictured-numeric

specification, 5-35

“DEBUG compiler option, 2-5

Debugging programs,
-DEBUG)

~PRODUCTION compiler option,
2-10

PUT DATA statement, 11-5
Source Level Debugger, 1-7
-STORE_OWNER_FIELD compiler

option, 2-12
use of conditions, 13-17
use of SIGNAL statement, 13-20

(See also

DEC (See DECIMAL)

DECAT built-in function, 14-37
table, 14-38

DECIMAL built-in function, 14-39

DECIMAL data, (See also Base of
arithmetic data)

FIXED, 5-5

FLOAT, 5-9

Declarations, (See also Blocks)
containment, 9-23
contextual, 9-16, 9-26
explicit, scope of, 9-23, 9-25
explicit, types of, 9-14
factored, 9~9
immediate containment, 9-24
implicit, 9-21, 9-26
multiple, 9-8, 9-27
of arithmetic variables, 5-16
o£ external procedures, IBM
versus ANS practice, 9-20

X-ll

(See also Arithmetic

INDEX

Declarations (continued)
resolving references, 9-27
scope rules, 9-21
structures, 9-7

DECLARE statement,
file attributes and, 12-20
for arithmetic variables, 4-23

for external procedures, 8-34
GENERIC attribute, 8-39
INITIAL attribute, 7-2, 7-26
introduction, 4-23, 9-6
LIKE attribute, 9-13
specifying data types with,

5-2
with STREAM files, 11-25

DEFAULT statement, 5-75
compiler application, 5-78
ERROR option, 5-79
format, 5-77
NONE option, 5-79
P-constants and, 5-79
SYSTEM option, 5-79

Defaults,
alignment, 5-67
arithmetic data attributes,

5-16
BIT data, 5-25
CHARACTER data, 5-20
data types, introduction, 4-25
in implicit declarations, 9-21
overriding with DEFAULT

statement, 5-75
scope, for FILE and ENTRY

constants, 7-3]
scope, for variables, 7-30
storage type, 7-3

DEFINED attribute, 7-24
BIT string overlay defining,

5-70
CHARACTER string overlay

defining, 5-68
defined, 7-3
isuB defining, 5-70, 7-25
POSITION attribute and, 5-69
simple defining, 5-67

DELETE statement, 12-14, 12-16

First Edition, Update 1

PL/I Reference Guide

-DEVICE option,
with RECORD files, 12-24
with STREAM files, 11-29

Devices, input/output,
table, 12-25

DEFT (See DEFAULT)

DIM (See DIMENSION)

DIMENSION built-in function,
8-30, 14-3, 14-40

Dimensioned variables (See
Arrays)

Direct access files, (See also
DAM files; MIDASPLUS files;
Sequential access files)

introduction, 12-2
keys, 12-4

DIRECT file attribute, 12-22

directories,
specifying those to search for

SINCLUDE file, 10-54

Disk storage,
RECORD input/output and, 12-2
sequential access files and,

12-9
STREAM input/output and, 11-24

DIVIDE built-in function, 14-41

Division,
by zero, ZERODIVIDE condition,

13-40
operator, 6-28

DO groups,
introduction, 4-15, 4-17
LEAVE statenent, 10-24
named, 4-20
termination, 10-22

DO statement, (See also DO
groups; Index variables)

in data item lists, 11-42
introduction, 4-15
REPEAT option, 10-16

First Edition, Update 1 X-12

DO statement (continued)
scope of condition prefix,
13-16

syntax, 10-4, 10-16
UNTIL option, 10-16
with IF statement, 10-21

DO WHILE statement,
introduction, 4-17
syntax, 10-5
with index variable, 10-13

DOT built-in function, 14-3,
14-42

Dummy arguments, 8-25

Dynamic storage area (DSA),
10-31

E

E,
in pictured-numeric
specification, 5-53

specification of FLOAT BINARY
constants, 5-13

specification of FLOAT DECIMAL
constants, 5-9

E data format iten,
input, specifications, 11-73
input, table, 11-75
output, introduction, 11-8
output, specifications, 11-55
output, table, 11-57

ECS (See Prime Extended
Character Set)

EDIT option, (See also GET EDIT
statenent; PUT EDIT
statement)

input, specifications, 11-76
output, specifications, 11-57

EDITOR,
“ (caret) and, 6-4

specifying ECS characters with,
B-2

ELSE option, 10-1

EMPTY built-in function, 14-43

Enabling conditions, 13-13
for debugging, 13-17

End of file, 13-1

END statement,
DO groups)

introduction, 4-3
multiple closure, 9-5
multiple closure, introduction,

4-21

(See also Blocks;

syntax, 4-4

End-of-file (See ENDFILE)

ENDFILE condition, 12-32, 13-27
terminal input, 13-5
use of, 13-4
with STREAM input/output,

11-38

ENDPAGE condition, 12-32, 13-28
and PRINT files, 11-33
with STREAM input/output,

11-38

ENTRY data, (See also
Noncomputational data types)

constants, declaring, 7-31
constants, explicit

declaration, 9-14
internal representation,
variables, 7-32, 8-42
variables, implenentation,

10-43
variables, with DO loops,

10-21

C-9

ENTRY option,
with EXTERNAL attribute, 8-34

Entry points, 8-35

ENTRY statement, 8-35

EPFs (See Executable Progran
Formats)

ERF built-in function, 14-43

X-13

INDEX

ERFC built-in function, 14-44

—-ERRLIST compiler option, 2-5

ERROR condition, 13-29
raised for incomplete file
attributes, 12-29

risks of, 13-11
standard system action for

ENDFILE, 13-9
SYSTEM option,
use of, 13-9

13-12

Error messages,
compiler, 2-2
suppressing with -NO_ERRITY,

2-6
suppressing with ~SILENT, 2-11

ERROR option, 5-79

Errors (See Conditions)

2-6

14-3,

~ERRITY compiler option,

EVERY built-in function,
14-45

Exception handling
Conditions)

(See

Executable Progran Formats, 3-1

EXP built-in function, 14-46

~-EXPLIST compiler option, 2-6

Exponentiation,
operator, 6-30

Expressions, (See also Aggregate
promotion; Data conversion;
Operators)

aggregates and, 6-43
built-in functions and,
introduction, 4-ll, 6-2
operators, discussion,

6-8

6-25

Extended Character Set (See
Prime Extended Character Set)

First Edition, Update 1

PL/I Reference Guide

Extent expressions,
defined, 7-1, 7-26
variable, and REFER option,

7-29
variable, for parameters, 8-24

variable, in RETURNS
descriptors, 8-19

variables in, 7-28

EXTERNAL attribute,
FILE and ENTRY constants, 7-31
in DECLARE statement, 8-34
variables, 7-30

External procedures,
EXTERNAL ENTRY declarations,

8-33
in other Languages, interface,

1-3
introduction, 8-31
PMA, and SHORICALL option,

8-44
variables, scope attributes,

7-30

{
3

specification of FIXED BINARY
constants, 5-10

specification of FIXED DECIMAL
constants, 5-5

F data format iten,
input, introduction,
input, specifications,
input, table, 11-77
output, introduction, 11-8
output, specifications, 11-58
output, table, 11-59

11-20
11-76

F(n),
in pictured-numeric

specification, 5-41

-FH (See -FULL_HELP)

FILE,

BIND command, 3-2

First Edition, Update 1 X-14

File attributes,
CLOSE statement and,

completing, 12-27
conflicting, 12-29
CONSTANTf 12-33

DIRECT, 12-22
implied in input/output
statements, table, 12-27

implied, table, 12-28
INPUT, 11-27
input/output statement

requirenents, 12-29
input/output statement
requirements, table,

introduction, 12-20
KEYED, 12-10, 12-22
merging, 12-27
QUTPUT, 11-27
PRINT, 11-27, 11-33, 12-22
required options, table, 12-30

SEQUENTIAL, 12-22
table, 12-21
table of legal statements,

12-22
UPDATE, 12-12

VARIABLE,

12-31

12-30

12-33

File data,
constants, with STREAM

input/output, 11-25
variables, introduction, 12-33
variables, with FILE option,

11-25

FILE data, (See also
Noncomputational data types)

constants, contextual
declaration, 9-18

constants, declaring, 7-31
internal representation, C-10
variables, 7-32

FILE option,
default, 11-24
input, specifications, 11-78
output, specifications, 11-60
with PUT or GET statements,

11-24
with READ or WRITE statements,

11-35

Files, (See also DAM files;
Direct access files; File
attributes; MIDASPLUS files;
RECORD input/output; SAM
files; Sequential access
files; STREAM input/output)

attribute merging and
completion, 12-27

default title, 12-26
ENDFILE condition, 13-27
ENDPAGE condition, 13-28
errors in reading or writing,

13-31
implicit and explicit opening,

12-26
KEY condition, 13-31
NAME condition, 13-31
STREAM, description, 11-31
text, inserting in program,

10-53
TRANSMIT condition, 13-37
UNDEFINEDFILE condition, 13-38

FINISH condition, 13-29

FIXED BINARY data,

assignments, table,
constants, table,
discussion, 5-10
internal representation,
variables, table, 5-12

5-13
5-ll

C-2

FIXED built-in function,
14-46

6-42,

FIXED data, (See also Scale

factor of arithmetic data;
Scale of arithmetic data)

declaring, 4-23

FIXED DECIMAL data,

discussion, 5-5
internal representation, C-2

FIXEDOVERFLOW condition, 13-30,
13-32

SIZE condition and, 13-33

FLOAT BINARY data,
constants, table,
discussion, 5-13
internal representation,

5-14

C-3

X-15

INDEX

FLOAT built-in function, 6-42,
14-47

FLOAT data, (See also Scale
factor of arithmetic data;
Scale of arithmetic data)

declaring, 4-26

FLOAT DECIMAL data,
discussion, 5-9
internal representation, C-3

Floating-point rounding
-FRN)

(See

FLOOR built-in function,
14-91

introduction,

14-48 t

4-30

10-1
4-13

Flow of control,

introduction,

FOFL (See FIXEDOVERFLOW)

-FOPE (See -FULL_OPTIMIZE)

FORMAT data, (See also
Noncomputational data types)

constants, declaring, 7-31
constants, explicit
declaration, 9-14

variables, 7-32, 11-45

FORMAT data type,
constants, 11-45

Format items,
A, 11-47, 11-66
B, 11-48, 11-67
C, 11-52, 11-70
classification, 11-44

COLUMN, 11-52, 11-71
data, matching data values to,

11-43
E, 11-55, 11-73
F, 11-58, 11-76
input control, list, 11-22
input data, list, 11-20
input data, table, 11-21
introduction, 11-6
LINE, 11-60

output control, list, 11-10
output data, list, 11-8
P, 11-62, 11-84

First Edition, Update 1

PL/I Reference Guide

Format items (continued)
PAGE, 11-63
remote, 11-44, 11-64, 11-85
SKIP, 11-64, 11-85
TAB, 11-65
X, 11-66, 11-86

Format lists,

introduction, 11-6
repetition factors, 11-44b
variables and expressions in,

11-44c

FORMAT statement, 11-44

FORMS Management System, 1-7
PL/I interface to, H-l

FORTRAN programming language,
and two-dimensional arrays,

5-61
control codes, putting in

files, 12-25
PL/I interface to, 1-3

FREE statement, 7-7
syntax, 7-19

-FRN compiler option, 2-6

FROM option, 11-35, 12-15

-FIN option, 12-26

~FULL_HELP compiler option, 2-6

-FULL_OPTIMIZE compiler option,
2-7

Function procedures, (See also
Built-in functions)

arguments and parameters,

8-13, 8-21
differences from subroutine
procedures, 8-21

introduction, 4-49, 8-11
referencing, 8~12
returned values, location in
memory, D-l

First Edition, Update 1 X-16

Function procedures (continued)
returning aggregate values,
8-16

returning file values,
returning from, 8-13

12-34

-FUNIT option, 12-25

G

GENERIC attribute, 8-39

GET DATA statement,
errors, 13-31
introduction,
NAME condition,
specifications,

4-49, 11-17
13-31
11-72

GET EDIT statement,

Format items)
control format items, list,

11-22
data format items, list,
data format items, table,

11-21
introduction,
specifications,

(See also

11-20

11-19
11-76

GET LIST statement,
flowchart, 11-81, 11-83
introduction, 4-4, 4-48, 11-15
specifications, 11-79
table, 11-82
with CHARACTERvariables,

introduction, 4-35
with STRING option, 11-23

GET statement, 11-36
aggregate data itens,
COPY option, 11-72
detailed specifications, 11-66
DO loops in data item lists,

11-42
establishing data items,
FILE option, 11-24, 11-78
files and devices, 11-24
introduction, 4-4, 11-13
SKIP option, 11-85
syntax, 11-13

11-42

11-42

GET STRING statement,
illegal options and format

items, 11-24
introduction,
specifications,
syntax, 11-23

11-23
11-85

Glossary of PL/I terms, Gl

GO TO statement, 10-22

block invocation and,

in on-units, 13-9
introduction, 4-21
on-units and, 13-4
with LABEL expressions,

10-40

10-24

GOO (See GO 10)

Groups (See Blocks; DO groups)

H

-H (See -HELP)

Hardware errors,
data transmission, TRANSMIT

condition, 13-37

HBOUND built-in function, 8-29,

14-3, 14-49

—-HELP compiler option, 2-7

(See also -FULL_HELP)

HELP, BIND command, 3-3

texadecimal notation,
for BIT constants, 5-27

HIGH built-in function,
14-50

14-3 r

L

I,
in pictured-numeric

specification, 5-52
specification of COMPLEX

constants, 5-15

X-17

INDEX

-I (See —INPUT)

IBM PL/I,
features not supported in Prime

Identifiers,
statement)

and noncomputational constants,
7-31

(See also DECLARE

generic, 8-39
introduction, 4-7
resolving references, 9-27

IF statement,
DO statement and, 4-14, 10-21

introduction, 4-13

nested, 10-3
scope of condition prefix,

13-17
syntax, 10-1

IGNORE option, 12-7

IMAG built-in function, 14-51

IMAG pseudovariable, 14-95

Implenentation-defined language

features, 1-2

IN option,
syntax, 7-19
with ALLOCATE statement, 7-15

ZINCLUDE statement, 10-53

use with search rules facility,
10-54

INDEX built-in function, 14-51

introduction, 4-38

Index variables,
statement)

introduction, 4-18
multiple specifications,
nonnumeric, 10-20

numeric, 10-6

(See also DO

10-19

Infix operators,
* 6-27
xk =§-30
/ 6-28

& |, and !, 6-35

First Edition, Update 1

PL/I Reference Guide

Infix operators (continued)
*, table, 6-27
+ and -, 6-25
+ and -, table, 6-26
/, table, 6-29
I] or !!, 6-31
comparison, 6-32

Inheriting variables, 10-31
(See also Scope rules)

INIT (See INITIAL)

INITIAL attribute, 7-26
arrays, 5-73
initializing variables, 7-2
scalars, 5-72
Structures, 5-74
variables in, 5-75

INITIAL expressions,
variables in, 7-28

Initializing variables (See
INITIAL attribute)

-INPUT compiler option, 2-7

INPUT file attribute, 11-27

Input/output, (See also RECORD
input/output ; STREAM
input/output; Terminal input)

devices, table, 12-25
introduction, 4-46

statements, required file
attributes, table, 12-30

Interactive program envirorment,
1-5

Interface to other languages,
1-3

(See also External procedures)
PMA, and SHORTCALL option,

8-44

INTERNAL attribute,
variables, 7-30

Internal buffers,
and RECORD input/output, 12-17

First Edition, Update 1 X-18

Internal procedures,
and NONQUICK option, 8-45
introduction, 8-4
placement in program, 8-8

INTO option, 11-35

iSUB defining, 5-70, 7-25

K

Ky
in pictured-numeric
specification, 5-53

KEY condition, 12-32, 13-31

KEY option, 12-12

KEYED file attribute, 12-10,
12-22

KEY condition, 13-31

KEYED SEQUENTIAL files (See
MIDASPLUS files)

KEYFROM option,
KEY condition, 13-31
updating DAM files, 12-13
with MIDASPLUS files, 12-15

Keys,
in direct access files,
defined, 12-4

KEYTO option, 12-17

L

-L (See -LISTING)

LABEL data, (See also
Noncomputational data types;
Statement labels)

constants, arrays of, 9-15
constants, declaring, 7-31
constants, explicit
declaration, 9-14

internal representation, C-8

LABEL data (continued)

subscripted label prefixes,

Prime restriction, E-2

variables, 7-32

variables, implementation,

10-40

IBOUND built-in function, 8-29,

14-3, 14-52

-LCASE compiler option, 2-7

(See also -UPCASE)

identifiers and, 4-8

LEAVE statement, 10-24

termination of multiple loops,

10-25

LENGTH built-in function, 14-53

Level numbers, 5-64, 9-7

(See also Structures)

LI (See LIBRARY)

LIKE attribute, 5-71, 9-13

Line editor (See EDITOR)

LINE output option and control

format item,

control format item,

introduction, 11-10

option, and PRINT files, 11-33

option, introduction, 11-2

specifications, 11-60

LINENO built-in function, 11-33,

14-3, 14-54

LINESIZE option, 11-27

error checking, 12-29

Linked lists,

and BASED storage class, 7-10

with DO loops, 10-21

Linking prograns, 3-1

with SEG loader, I-l

X-19

INDEX

LIST option (See GET LIST

statenent; PUT LIST

statement)

List processing (See Linked

lists)

ZLIST statement, 10-53

LIST_SEARCH_RULES command, 10-55

-LISTING compiler option, 2-8

new page, forcing, 10-54

suppressing and restarting,

10-54

LO (See LOAD)

LOAD, BIND command, 3-2

Locate mode input/output, 12-17

(See also LOCATE statement)

and BASED storage, 12-18

and POINTER data type, 12-18

output, 12-18

READ with SET option, 12-18

LOCATE statement,

and BASED structures, 12-19

and locate mode output, 12-19

RECORD condition, 13-33

syntax, 12-20

LOG built-in function, 14-54

LOG1O built-in function, 14-55

LOG2 built-in function, 14-56

Logical expressions,

BIT data)

introduction, 4-15

(See also

Logical operators, 6-4

* 6-37
& |, !, discussion, 6-35

“, table, 6-37

table, 6-5

Looping (See DO groups; DO

statement)

LOW built-in function, 14-3,

14-56

First. Edition, Update 1

PL/I Refe

LSR

rence Guide

Command)

M

Magnetic

table of devices,
tape,

~MAP compiler option,

MAP, BIND command,

~MAPWIDE compiler option,

Mathematical built-in functions,
ACOS,
ASIN,
ATAN,
ATAND,
ATANH,

14-15
14-19
14-20
14-22
14-22

3-3

(See LIST_SEARCH_RULES

12-25

2-8

Classification and summary,
14-8

COMPLEX,
CONTIG,

Cos, 1
COSD,

COSH,

ERFC,
EXP, 1

IMAG,
introduction,
Lo, 1
LOG10,
LOG2,

REAL,
SIN, 1
SIND,
SINH,
SORT,
TAN, 1
TAND,
TANH,

Matrixes

14-32
14-33

4-35
14-35
14-36
4-43
14-44
4-46
14-51

4-32
4-54
14-55

14-56
14-71
4-75
14-76
14-76
14-78
4-83
14~84
14-85

(See Arrays)

2-8

MAX built-in function,
14-57

and data conversion,
introduction, 4-31

14-4,

6-16

First Edition, Update 1 X-20

Memory dump,
use of SNAP option, 13-20

MIDASPLUS files, 1-6
basic statements, 12-15
DAM files, compared to,
DELETE statement and,

12-16
FROM option,
introduction, 12-3
KEYFROM option, 12-15
keys, 12-14, 12-17
KEYTO option, 12-17
READ statement, 12-16
REWRITE statement, 12-16
WRITE statement, 12-16

12-14
12-14,

12-15

MIN built-in function, 14-58
introduction, 4-31

Miscellaneous built-in functions,
classification and summary,

14-13
DATE,

LINENO,

PAGENO,

TIME,

UNSPEC,

VALID,

14-36
14-54
14-67

14-85
14-92

14-93

MOD built-in function, 4-31,
14-59

Mode of arithmetic data,
defined, 5-4
derived common, 6-17
derived common, table, 6-18

Modular programming, 8-1
(See also Blocks)

Multiple Index Data Access Systen
(See MIDASPLUS)

Multiplication operator, 6-27

MULTIPLY built-in function,
14-62

N

NAME condition, 12-32, 13-31

Named constants, 7-31

Names (See Identifiers)

Naming programs, 2-1

-NAPRE (See
—ALLON_PRECONNECTION)

-NB (See —BINARY)

-NBIG (See ~BIG)

-NCOP (See -COPY)

-NDBG (See —DEBUG)

-NERRL (See —-ERRLIST)

-NESTING compiler option, 2-9

-NEXP (See -EXPLIST)

-NFRN (See —FRN)

-NL (See —-LISTING)

-NMA’ (See -MAP)

-NNE (See —NESTING)

-NO_STRINGSIZE option, 2-13

(See also NOSTRINGSIZE
~condition)

NOCONVERSION condition, 13-15

-NOFF (See -OFFSET)

NOFLIXEDOVERFLOW condition, 13-30

$NOLIST statement, 10-53

Noncomputational data types,

and data conversion, 6-38
introduction, 5-3

NONE option, 5-79

NONQUICK option, 8-45

NOOVERFLOW condition, 13-32

-NOSIZE option, 12-25

X-21

INDEX

NOSTRINGSIZE condition, 13-36

(See also -NO_STRINGSIZE

option)

Not,
logical operation, 6-37

NOUNDERFLOW condition, 13-39

-NOVF (See -OVERFLOW)

NOZERODIVIDE condition, 13-40

-NPROD (See PRODUCTION)

-NRA (See —-RANGE)

-NSOF (See —STORE_OWNER_FIELD)

-NSTAT (See ~STATISTICS)

-NSTRZ (See -NO_STRINGSIZE)

NULL built-in function, 14-63

and linked lists, 7-13

Null string,
and BIT data, 5-26

and CHARACTER data, 5-22

introduction, 4-34

Numeric data (See Arithmetic
data)

-NXREF (See -XREF)

9
Octal notation,

for BIT constants, 5-27

OFFSET built-in function, 7-18,

14-3, 14-63

-OFFSET compiler option, 2-9

OFFSET data, (See also

Noncomputational data types)

variables, 7-14

OFL (See OVERFLOW)

First Edition, Update 1

PL/I Reference Guide

ON statement, 13-2
(See also Conditions; On-units)
REVERT statement and, 13-18
scope of condition prefix,
13-17

syntax, 13-2
SYSTEM option, 13-3, 13-12
with multiple condition names,

13-3
with sequential access files,

12-6

On-units, (See also Conditions;
ON statement)

abnormal termination, 13-4,
13-9

as blocks, 13-3
BEGIN/END block, 13-2
block invocation and

termination, 10-27
defined, 13-2
implementation, 10-47
normal termination, 13-4
ON statement, 13-4
pseudovariables in, 13-7
REVERT statement, 13-18
Single statement, 13-2
termination, 13-4, 13-18

ONCHAR built-in function, 14-64
and SIGNAL statement, 13-41
use in CONVERSION on-units,

13-6

ONCHAR pseudovariable, 13-7,
14-96

risks of, 13-9

ONOCODE built-in function, 14-64
use in on-units, 13-40

ONCODE messages,
for ERROR condition, 13-9

ONFIELD built-in function,
12-33, 14-65

ONFILE built-in function, 12-33,
14-65

ONKEY built-in function, 12-33,
14-66

First Edition, Update 1 X-22

ONLOC built-in function, 14-66
and SIGNAL statement, 13-41

ONSOURCE built~in function,
14-67

use in CONVERSION on-units,
13-6

ONSOURCE pseudovariable, 13-7,
14-96

risks of, 13-9

OPEN statement,
default file title, 12-26
errors, 13-38
file attributes and, 12-20
options, list, 11-27
sequential access files, 12-6
STREAM files, 11-25
TITLE option, with RECORD

files, 12-23
TITLE option, with STREAM

files, 11-26
UNDEFINEDFILE condition, 13-38

UPDATE option, 12-12

Operating environment,

Operating systen (See PRIMDS)

Operators, (See also Infix
operators; Prefix operators)

and parentheses, 6-6
arithmetic, 6-3
arithmetic, introduction, 4-11
comparison, 6-3
comparison, introduction, 4-15
concatenation, 6-5
exponentiation, 6-3
expression, discussion, 6-25
infix, 6-3
logical, 6-4
prefix, 6-3
priority, 6-6
priority, introduction, 4-11
priority, table, 6-7

-OPTIMIZE compiler option, 2-9
and NONQUICK procedures, 8-45

Options, (See also Compiler
options

-ANSI, 11-29
~APPEND, 11-29, 12-9, 12-24
BY, 10-6

COPY, 11-14, 11-72
~CILASA, 12-25
-DAM, 12-24
DATA, input, 11-17, 11-72
DATA, output, 11-4, 11-53

-DEVICE, 11-29, 12-24

11-76

EDIT, output , 11-6, 11-9,

11-57
ELSE, 10-1

ENTRY, 8-34

ERROR, with DEFAULT statement,
5-79

PILE,

11-78
file, required attributes,

table, 12-30
-FORMS , 12-26, H-1

FROM, 11-35, 12-15
-FIN, 12-26
-FUNIT, 12-25
IGNORE, 12-7
IN, 7-15

INTO, 11-35

KEYFROM, 12-13, 12-15
KEYTO, 12-17

LINESIZE, 11-27, 12-29
LIST, input, 11-15, 11-79

LIST, output, 11-4, 11-61
NONE, 5-79

NONQUICK, 8-45

-NOSIZE, 12-25
OPTIONS(MAIN) , introduction,

4-3
OTHERWISE, 10-25
PAGE, 11-2, 11-33, 11-40,

11-63
PAGE, output, introduction,

4-48
PAGESIZE, 11-27, 12-29
POINTER OPTIONS(SHORT),
~RECL, 12-25
RECURSIVE, 8-39

REFER, and BASED storage,
REPEAT, 10-16

11-24, 11-35, 11-60,

7-32

7-29

X-23

INDEX

Options (continued)
RETURNS, 8-12, 8-35

-SAM, 12-23
SET, 7-8, 12-18
SHORICALL, 8-44

SKIP, output, 11-2, 11-64

SKIP, output, introduction,
4-47

STRING, input, 11-23, 11-85
STRING, output, 11-12, 11-64
SYSTEM, 5-79, 10-49
TAB, 11-28, 12-29
THEN, 10-1

TITLE, with RECORD files,
12~20, 12-23

TITLE, with STREAM files,
11-26, 11-28

TO, 10-6
UNTIL, 10-16
WHEN , 8-40, 10-25

OPTIONS(MAIN) option,

introduction, 4-3

Or,

logical operation, 6-35

OTHERWISE option, 10-25

Output (See RECORD input/output ;
STREAM input/output)

OUTPUT file attribute, 11-27

-OVERFLOW compiler option, 2-10
and FIXEDOVERFLOW condition,

13-30

OVERFLOW condition, 13-32
(See also FIXEDOVERFLOW
condition)

Overlaying storage,
BASED storage, 7-21
DEFINED attribute and,
introduction, 7-20
machine independent,
simple overlaying,
string overlaying,

7-24

7-23
7-23
7-23

First Edition, Update 1

PL/I Reference Guide

P

P,
specifying system defaults for

constants, 5-79

P data format item,
input, specifications,
input, table, 11-84
output, introduction,
output, specifications,
output, table, 11-62

11-84

11-8
11-62

Page headings,
printing, 11-38

PAGE option, introduction, 4-48

PAGE output option and control
format iten,

control format item,
introduction, 11-10

option, and PRINT files, 11-33

option, introduction, 11-2
specifications, 11-63
with ENDPAGE on-unit, 11-40

SPAGE statement, 10-53

PAGENO built-in function,
14-3, 14-67

11-33,

PAGENO pseudovariable, 11-34,
14-96

11-28
12-29

PAGESIZE option,
error checking,

Paper tape,
table of devices, 12-25

PARAMETER storage type,
declaration, 9-14
defined, 7-3

Parameters,
arguments, relation to,
arrays, 8-29
dummy arguments and, 8-25
for function procedures,
for subroutine procedures,
scope rules, 8-10
variable extent expressions in,

8-24

8-21

8-13
8-9

First Edition, Update 1 X-24

Parentheses,
in expressions, 6-6

Period,
in pictured-numeric
specifications, 5-38

Phantom user program envirorment,
1-5

PICTURE data, (See also
Computational data types;
Pictured~numeric data)

ALIGNED attribute and, 5-67
assignment errors, 13-36
conversion, 6-41
defined, 5-3
DEFINED attribute and, 5-70
internal representation, C-6
introduction, 5-29
pictured-string, discussion,

5-29
repetition factors, 5-30

Picture-specification characters,
$ 5-50
* 5-42
+ 5-35, 5-46
r 9-38
- 5-35, 5-46
- 5-38
/ 5-38
9 v 5-30 ’ 5-32

Ar 5-30

B, 5-38
CR, 5-35

DB, 5-35
E, 5-53
F(n), 5-39
I, 5-52
K, 5-53
R, 5-52
S, 5-32, 5-46
T, 5-52
V, 5-39, 5-45
Xp 5-30

Y, 5-42
Zr 5-42

Pictured-numeric data,

assigning values, table, 5-34
COMPLEX pictures, 5-56
discussion, 5-31
drifting signs, 5-46

Pictured-numeric data (continued)
drifting signs, table, 5-48
FLOAT symbols, 5-53
FLOAT symbols, table, 5-54
insertion character symbols,

table, 5-38
insertion characters, 5-38
internal representation, 5-33
noninteger values, 5-39
overpunched sign symbols, 5-52
overpunched signs, table,

5-52, 5-53
representing signs, 5-35
scale factor symbols, 5-39
scale-factor symbols, table,

5~40
signed values, table, 5-37
static and drifting $, 5-50
static and drifting $, table,

5-51
V and zero suppression, 5-45
V and zero suppression, table,

5-47
zero suppression, 5-42
zero suppression, table, 5-43

PL/I Subset G,
and Prime PL/I, 1-1

PL1 command, 2-2

PMA (Prime Macro Assembler),
PL/I interface to, 1-3, 8-44

POINTER built-in function, 7-16,
14-3, 14-68

POINTER data, (See also
Noncomputational data types)

internal representation, C-8
linked lists and, 7-10
locate mode input/output and,
12-18

SHORT option, 7-32
variables, contextual

declaration, 9-19
variables, defined, 7-3

variables, referencing with ->
operator, 7-9

POINTER OPPIONS(SHORT) data,
7-32

internal representation, C-8

X-25

INDEX

POSITION attribute, 5-69

PREC (See PRECISION)

PRECISION built-in function,

14-68

Precision of arithmetic data,
arguments to built-in

functions, 14-5
conversion, for built-in

functions, 14-4
defined, 5-4
in data conversion, 6-21
introduction, 4-23

Prefix operators,
“6-37

+ and -, table, 6-37

Preopened file units (See
-ALLOW_PRECONNECTION)

Prime ECS (See Prime Extended
Character Set)

Prime Extended Character Set,
B-1

table of, B-7

Prime extensions to PL/I,
A input data format item with

no specification, 11-21
BYTE built-in function, 14-29
%INCLUDE statement, 10-53
LEAVE statement, 10-24
%LIST, 10-53
listed, E-l
SNOLIST, 10-53
SPAGE statement, 10-53
RANK built-in function, 14-70
READ and WRITE with STREAM

input/output, 11-31, 11-34,
11-35

SREPLACE statement, 10-53
SELECT statement, 10-25
SIZE built-in function, 14-77
UNTIL option of DO statement,

10-16

Prime restrictions to PL/I, 1-2
FIXEDOVERFLOW detection, 13-30

First Edition, Update 1

PL/I Reference Guide

Prime utilities,
FORMS Management System,
MIDASPLUS, 1-6

Source Level Debugger, 1-7

1-7

PRIMOS,

and PL/I, 1-4
envirorments, 1-5

PRIMOS commands,
BIND, 3-1

PLL, 2-2
RESUME, 3-3

SPOOL, -FIN option, 12-26

PRINT file attribute, 11-27,
11-33, 12-22

PRINT files,

ENDPAGE condition, 13-28

Printers,
and RECORD output,
table of devices,

12-2
12-25

PROCEDURE statement,
block invocation and

termination, 10-27
introduction, 4-3
RETURNS option, 8-12
scope of condition prefix,

13-16

Procedures, (See also Blocks;
External procedures; Function
procedures; Internal
procedures; Scope rules;
Subroutine procedures)

entry points, 8-35
external, introduction,

8-31
generic entry names,
internal, introduction,
introduction, 8-1
recursive, 8-37
SHORTCALL and NONQUICK, 8-44
subprocedures, dropping into,

8-7
subroutine and function,

differences, 8-21
summary of rules, 8-45

4-49 v

8-39
4-49

PROD built-in function,
14-69

14-3,

First Edition, Update 1 X~-26

-PRODUCTION compiler option,
2-10

Progran blocks (See Blocks)

Program envirormments,
batch job, 1-6
interactive, 1-5
phantan user, 1-5

2-1
4-3

Program names,
introduction,

Pseudovariables,
defined, 14-1
IMAG, 14-95

ONSOURCE, 13-7, 14-96
PAGENO, 14-96
REAL, 14-95
STRING, 14-96
SUBSTR, 13-35, 14-97
UNSPEC, 14-98
use in orr-units,
use of, 14-95

13-7

Punched cards,
and GET EDIT, 11-19
RECORD input/output,
12-8

STREAM input/output,

12-2 v

11-31

PUT DATA statement,
introduction, 4-49, 11-4
specifications, 11-53
structures and, 11-54
use in debugging, 11-5

PUT EDIT statement, (See also
Format items; Format lists)

control format items,

introduction, 11-9
data format items, table,
introduction, 4-48, 11-6
repetition factors, 11-12
specifications, 11-57
STRINGSIZE condition,

11-9

13-36

PUT LIST statement,
introduction, 4-6, 4-46, 11-4

specifications, 11-61

PUT statement, 11-36
aggregate data items, 11-42
detailed specifications, 11-46
DO loops in data item lists,

11-42
establishing data items,
FILE option, 11-24, 11-60
files and devices, 11-24
introduction, 4-6, 11-2
LINE option, 11-60
PAGE option, 11-40, 11-63
raising ENDPAGE condition,
13-28

SKIP option,
syntax, 11-2

11-42

4-47, 11-64

PUT STRING statement,
illegal options and format

items, 11-13
introduction,
specifications,
syntax, 11-13

11-12
11-64

Q

Qualified name,
defined, 5-63

Quartal notation,

for BIT constants, 5-27

QUIT, BIND command, 3-3

R

R, (See also Remote format item)
in pictured-numeric

specification, 5-52

~RANGE compiler option, 2-11

RANGE keyword,
variable-name test in DEFAULT

statement, 5-77

RANK built-in function, 14-70

READ statement,
IGNORE option,
RECORD condition,

12-7
13-33

X-27

INDEX

READ statement (continued)
SET option, 12-18
with DAM files, 12-11
with MIDASPLUS files, 12-16

with sequential access files,

12-6
with STREAM input/output,

11-31, 11-34, 11-35

REAL attribute (See Mode of

arithmetic data)

REAL built-in function, 14-71

REAL pseudovariable, 14-95

-RECL option, 12-25

RECORD condition, 12-32, 13-33

RECORD input/output, (See also
DAM files; Direct access
files; Files; MIDASPLUS
files; SAM files; Sequential
access files; STREAM
input/output)

data types, 12-8
introduction, 4-49, 12-1
keys, introduction, 12-4
locate mode, 12-17
noncharacter records,
punched cards, 12-2
STREAM input/output and,

8-39

12-8

12-1

RECURSIVE option,

8-37
7-6

Recursive procedures,
AUTOMATIC storage and,
block structure, 10-34

REFER option,
BASED storage and, 7-29

Remote format item,
FORMAT variables and,
input, specifications,
introduction, 11-44a
output, specifications,

11-45
11-85

11-64

REPEAT option, 10-16

Repetition factors,
in CHARACTER constants,
in format lists, 11-44b

5-23

First Edition, Update 1

PL/I Reference Guide

Repetition factors (continued)
in format lists, variables and
expressions in, 11-44c

in INITIAL values, 7-26
in pictured—numeric

specifications, 5-34
in pictured-string
specifications, 5-30

in PUT EDIT statement, 11-12

SREPLACE statement, 10-53

Replication factors,
and repetition factors, in

INITIAL values, 7-27

Reserved words,
absence of, 4-8

RESUME command, 3-3

RETURN statement,
FINISH condition, 13-29
for function procedures, 8-14
for subroutine procedures, 8-6

RETURNS option,
EXTERNAL attribute and, 8-35
function procedures, 8-12
syntax, 8-14
variable extent expressions,

8-19

REVERSE built-in function, 14-71

REVERT statement, 13-18
implementation, 10-50
syntax, 13-19

REWRITE statement,
RECORD condition, 1333
updating DAM files, 12-13
with MIDASPLUS files, 12-16

ROUND built-in function, 14-72

Runfiles, creating, 3-1

Running programs, 3-3

First Edition, Update 1 X-28

s

S,
in pictured-numeric
specification, 5-32, 5-46

SAM files (See Sequential access
files)

~SAM option, 12-23

Scalar data,
defined, 4-42

Scale factor of arithmetic data,
defined, 5-5
in data conversion, 6-21
introduction, 4-25

Scale of arithmetic data,
defined, 5-4

derived common, 6-14
derived common, table, 6-15

introduction, 4-23

Scope rules, 9-2]
contextual and implicit
declarations, 9-26

explicit declarations, 9-25
for condition prefixes, 13-16
for parameters, 8-10
for procedures, 8-8
for variables, 7-30

search rules facility,
use of with *INCLUDE

statements, 10-54

SEG loading utility, I-1

Segnent-spanning code (See ~BIG)

SELECT statement, 10-25

Separators,
for STREAM input, 11-16

Sequential access files, (See
also Direct access files; SAM
files)

~APPEND option, 12-9
appending to, 12-9
basic statements, 12-5
CLOSE statement, 12-7

Sequential access files
(continued)

disk files, 12-9
example, 12-5
IGNORE option,
introduction,
ON statement,
OPEN statement,

READ statement,

12-7
12-2
12-6

12-6
12-6

SAM files, introduction, 12-3
‘WRITE statement, 12-7

SEQUENTIAL file attribute, 12-22

SET option, 7-8, 12-18
syntax, 7-19

SET_SEARCH_RULES command, 10-55

SHORT option, 7-32

SHORTCALL option, 8-44

SIGN built-in function, 14-74

SIGNAL statement,

CONDITION condition and, 13-26
condition-handling built-in

functions and, 13-41
ONCHAR built-in function and,

13-41
ONLOC built-in function and,

13-41
syntax,
uses of,

13-19
13~20

~SILENT compiler option, 2-11

SIN built-in function, 14-75

SIND built-in function, 14-76

SINH built-in function, 14-76

SIZE built-in function, 14-77

SIZE condition, 13-33

and FIXEDOVERFLOW, 13-33

errors in FIXED DECIMAL
assignments, 5-7

SKIP option and control format
item,

X-29

INDEX

SKIP option and control format
iten (continued)

input control format iten,
introduction, 11-22

input option, introduction,
11-14

input, specifications,
output, 4-47, 11-3
output control format item,

introduction, 11-10
output option, introduction,

11-2

11-85

output, specifications, 11-64

SNAP option, 13-20

-SOF (See ~STORE_OWNER_FIELD)

SOME built-in function, 14-3,
14-78

-SOURCE compiler option, 2-11

Source Level Debugger, 1-7

Source listing (See -LISTING)

~SPACE compiler option, 2-11
(See also -TIME)

Spacing,
in statements, introduction,

4-10

SPOOL command,
-FIN option, 12-26

SORT built-in function, 14-78

SSR (See SET_SEARCH_RULES
Command)

Stack frane,
format, D=-2
obtaining information with SNAP

option, 13-21

Statement labels,
as named constants,
block containment,
introduction, 4-21
used in FORMAT statement,
11-44a

7-31, 9-14
9-23

First Edition, Update 1

First Edition, Update 1

PL/I Reference Guide

Statements,

ALLOCATE, 7-7
assignment, 4-5
assignment, introduction,
blocks, 9-1
CALL, 8-3

Classification, 4-2
CLOSE, 12-7, 12-31
DECLARE, for files,

12-20
DECLARE, introduction,

9-6
DEFAULT,

defined,
DELETE,

DO, 10-4

DO, groups, 4-17
DO, in data item lists,
DO, introduction, 4-15
END, introduction, 4-3
ENTRY, 8-35
FORMAT, 11-44
FREE, 7-7

GET, 11-13, 11-24, 11-36,
11-66

GET DATA,

GET EDIT,

GET LIST,

GET LIST,

4-48
GET STRING,
GET, introduction,
GO TO, 4-21, 10-22

groups, 9-l

IF, 4-13, 10-1, 10-21
SINCLUDE, 10-53
input/output, file attribute

requirenents, 12-29
input/output, file attribute
requirements, table, 12-30

keyword, 4-2

%LIST, 10-53

LOCATE, 12-19
maximum length,
SNOLIST, 10-53
ON, 13-2
ON, with sequential access

files, 12-6
OPEN, and file attributes,

12-20
OPEN, TITLE option,
OPEN, UPDATE option,

4-2

11-25,

4-23 v

5-75
4-2

12-14, 12-16

11-42

4-49, 11-17, 11-72
11-19, 11-21, 11-76
11-15, 11-79, 11-81
introduction, 4-4,

11-23, 11-85
4-4

4-2

12-23
12-12

X-30

Statements (continued)
OPEN, with sequential access

files, 12-6
OPEN, with STREAM files,
%PAGE, 10-53

PROCEDURE, introduction, 4-3
PUT, 11-2, 11-24, 11-36, 11-46
PUT DATA, 4-49, 11-4, 11-53
PUT EDIT, 11-6, 11-9, 11-57
PUT EDIT, introduction, 4-48
PUT LIST, 11-4, 11-61
PUT LIST, introduction,

4-46
PUT STRING,
PUT, introduction, 4-6
READ, IGNORE option, 12-7
READ, SET option, 12-18
READ, with DAM files, 12-11

READ, with MIDASPLUS files,

12-16
READ, with sequential access

files, 12-6
READ, with STREAM input/output,

11-34 to 11-36
%REPLACE, 10-53
RETURN, 8-6, 8-14

REVERT, 10-50
REWRITE, 12-13, 12-16
SELECT, 10-25
WRITE, 12-7, 12-13, 12-16
WRITE, with STREAM

input/output, 11-34 to 11-36

11-25

4-6 '

11-12, 11-64

STATIC storage class, 7-4
defined, 7-3
EXTERNAL attribute and, 7-30

~STATISTICS compiler option,
2-12

STOP statement,

FINISH condition, 13-29

Storage,
alignment of data,
allocation errors,
allocation, defined,
AUTOMATIC, 7-3, 7-4
BASED, 7-3, 7-8
class and type, defined,
classification, 7-2
CONTROLLED, 7-3, 7-6
DEFINED attribute, 7-3

DEFINED attribute and,

5-66
13-34
7-2

7-4

5-67

Storage (continued)
for block invocations,
formats, C-l
freeing, defined,
introduction, 7-1
overlaying, 7-20
PARAMETER, 7-3, 9-14
POINTER variables, 7-3, 7-32
restrictions on programs, 1-2
STATIC, 7-3, 7-4
STORAGE condition and,
temporary, defined, 7-4

10-28

7-2

13-34

STORAGE condition, 13-34

Storage~handling built-in
functions,

ADDR, 7-22, 14-3, 14-16
ALLOCATION, 7-7, 14-3, 14-18
classification and summary,

14-12
EMPTY,
NULL,

14-43
7-13, 14-63

OFFSET, 7-18, 14-3, 14-63
POINTER, 7-16, 14-3, 14-68
SIZE, 14-77

-STORE_OWNER_FIELD compiler

STREAM input/output, (See also
RECORD input/output)

description, 11-31
Gevice independence, 11-30
establishing data items, 11-42
file information pointers and
values, 11-34

formatting input, 11-19
formatting output, 11-6
input files, preparing,
introduction, 11-1
PRINT files, 11-33
program portability, 11-30
PUT and GET to files and

devices, 11-24
READ/WRITE vs GET/PUT (table),

11-36
RECORD input/output and, 12-1
specifications, introduction,

11-30
using nonstandard READ and
WRITE with, 11-31, 11-34,

11-35

11-15

X-31

INDEX

STRG (See STRINGRANGE)

STRING built-in function,
14-79

14-3 r

String data, (See also BIT data;
CHARACTER data; Computational
data types)

assignment errors, 13-36
conversion, 6-24
conversion, table, 6-24

defined, 5-3
initializing, 5-74
introduction, 5-18
STRINGSIZE condition, 13-36

STRING option, (See also GET

STRING statement; PUT STRING
_ statement)
‘input, specifications, 11-85
output, specifications, 11-64

STRING pseudovariable, 14-96

String-handling built-in
functions,

AFTER, 14-17

BEFORE, 14-23

BIT, 14-26
BOdL, 14-27

BYTE, 14-29

CHARACTER, 14-31
classification and summary,

14-9
COLLATE, 14-32
COPY, 14-34
DECAT, 14-37
EVERY, 14-45

INDEX, 14-51
introduction,
LENGTH, 14-53
LOW, 14-56
RANK, 14-70
REVERSE, 14-71
SOME, 14-78
STRING, 14-79
SUBSTR, 14-80
TRANSLATE, 14-86

TRIM, 14-89
VERIFY, 14-94

4-37

STRINGRANGE condition, 13-35

First Edition, Update 1

PL/I Reference Guide

-STRINGSIZE compiler option,
2-13

STRINGSIZE condition, 13-36

Structures,
promotion)

aggregate promotion,
arrays of, 5-65
BY NAME option,
card images and,
declaring, 9-7
DEFINED attribute and,
discussion, 5-63
in expressions, 6-44
initializing, 5-74
interleaved subscripts,
introduction, 4-44
level numbers, 9-7
LIKE attribute and,
Operations on, 6-44
PUT DATA and, 11-54
qualified names, 5-63, 9-28
resolving references, 9-28
returning, from functions,
8-17

6-45

5-65
12-8

5-70

9-28

5-71

STRZ (See STRINGSIZE)

-STRZ (See —STRINGSIZE)

SUBRG (See SUBSCRIPIRANGE)

Subroutine procedures,
arguments and parameters,
calling, 8-5
differences from function

procedures, 8-21
introduction, 4-49, 8-3
parameters, 8-9
point of invocation,
returning from, 8-6

8-6

Subscript errors, 13-13
SUBSCRIPIRANGE condition,

13-37

SUBSCRIPTRANGE condition, 13-37
enabling, 13-13

Subscripts (SeeArray
subscripts)

First Edition, Update 1

(See also Aggregate

8-21

X-32

Substitutions,
in program text, 10-54

SUBSTR built-in function, 14-80
introduction, 4-37

STRINGRANGE condition, 13-35

SUBSTR pseudovariable, 14-97
STRINGRANGE condition, 13-35

Substructures, 5-64

SUBTRACT built-in function,
14-81

Subtraction operator, 6-25

SUM built-in function, 14-3,
14-82

SYSIN, (See also Terminal input)
contextual declaration, 9-18
default FILE option, 11-24
terminal input file, 11-14

SYSPRINT,

and PRINT file attribute,
11-33

contextual declaration, 9-18
default FILE option, 11-24
terminal output file, 11-2

SYSTEM option, 5-79, 13-3
implementation, 10-49
with ERROR condition, 13-11

L

Ty
in pictured-numeric
specification, 5-52

TAB output option and control
format item,

format item, specifications,
11-65

option, error checking, 12-29
option, with OPEN statement,

11-28

TAN built-in function, 14-83

TAND built-in function, 14-84

TANH built-in function, 14-85

Tape storage,
and RECORD input/output,
and STREAM input/output,
table of devices, 12-25

12-2
11-24

Temporary variables,
introduction, 7-4

Terminal input, (See also SYSIN)
entering data values, 11-16
introduction, 4-4
use of ON ENDFILE, 13-5

Terminal output (See SYSPRINT)

Terminals,
table of devices, 12-25

Termination of progran,
and FINISH condition, 13-29

Text files,
inserting in program text,

10-53

THEN option, 10-1

TIME built-in function, 14-85

-TIME compiler option, 2-13
(See also -SPACE)

TITLE option,
-ANSI option, with STREAM

files, 11-29
~APPEND option, with RECORD

files, 12-9, 12-24
~APPEND option, with STREAM

files, 11-29
~CILASA option, 12-25
-DAM option, 12-24
—-DEVICE option, with RECORD

files, 12-24
-DEVICE option, with STREAM

files, 11-29
errors, 13-38
file attributes and,
formats, 12-23
-FORMS option,
~FUNIT option,

12-20

12-26
12-25

X-33

INDEX

TITLE option (continued)
-NOSIZE option, 12-25
-RECL option, 12-25
-SAM option, 12-23
STREAM files and, 11-26, 11-28

TO option, 10-6

Top-down programming, 8-1

TRANSLATE built-in function,

14-86

TRANSMIT condition, 12-32, 13-37
raising with SIGNAL statement,
13-20

TRIM built-in function, 14-89

14-90

Truncation,
of BIT data, 5-24
of CHARACTER data, 5-20
of FIXED DECIMAL variables,

5-7

U

UFL (See UNDERFLOW)

UNALIGNED attribute, 5-66

Unary plus and minus (See Prefix
operators)

UNDEFINEDFILE condition, 12-32,
13-38

UNDERFLOW condition, 13-39

UNDF (See UNDEFINEDFILE)

UNSPEC built-in function, 14-3,

14-92

UNSPEC pseudovariable, 14-98

UNTIL option, 10-16

First Edition, Update 1

PL/I Reference Guide

-UPCASE compiler option, 2-13
(See also -LCASE)

UPDATE file attribute,
REWRITE statement and,

with DAM files, 12-12
WRITE statement and,

12-13

12-13

User-defined functions (See
Function procedures)

Utilities (See Prime utilities)

v

Vy
in pictured-numeric

WRITE statement,
KEYFROM option,
RECORDcondition,
updating DAM files, 12-13
with MIDASPLUS files, 12-16
with sequential access files,

12-7
with STREAM input/output,

11-31, 11-34, 11-35

12-13
13-33

x

Xy
in pictured-string

specification, 5-30

X control format iten,
specification, 5-39, 5-45 input, introduction, 11-22

input, specifications, 11-86
VALID built-in function, 14-93 output, introduction, 11-10

output, specifications, 11-66
VARIABLE file attribute, 12-33

-XREF compiler option, 2-13
Variable-length lines,

processing unformatted, 11-34

Variables, Y
data types, introduction, 5-2 ~
ENTRY, 7732 Y,

FILE, 7-32 in pictured-numeric
FORMAT, 7-32 specification, 5-45
in extent and INITIAL
expressions, 7-28

initializing, 5-72
LABEL, 7-32 Z

scope, 7-30 ~

in pictured-numeric
VERIFY built-in function, 14-94 specification, 5-42

ZDIV (See ZERODIVIDE)

W ZERODIVIDE condition, 13-40

WHEN option,
with GENERIC attribute, 8-40
with SELECT statement, 10-25

WHILE option (See DO WHILE
statement)

First Edition, Update 1 X~34

SURVEY

READER RESPONSE FORM

DOCS5041-1LA PL/I Reference Guide

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

__excellent _very good _good _fair poor

2. Please rate the document in the following areas:

Readability: __hard to understand average ___very clear

Technical level: __too simple ___about right too technical

Technical accuracy: __poor _average very good

Examples: ___too many __about right too few

Illustrations: __too many about right ___too few

3. What features did you find most useful?

 4, What faults or errors gave you problems?

Name: Position:

Company :

Address:

Zip:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOCS5041-1LA PL/I Reference Guide

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent ___very good __good

J

fair

_

__poor

2. Please rate the document in the following areas:

Readability: __hard to understand

W_

average

-_

__very clear

Technical level: __too simple __about right ___too technical

Technical accuracy: __poor

_

average __very good

Examples: ___too many __about right ___too few

Illustrations: __too many ___about right ___too few

3. What features did you find most useful?

4, What faults or errors gave you problems?

Name : Position:

Company :

Address:

Zip:

| | | | NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postagewill be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC5041-1LA PL/I Reference Guide

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent __very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: __too simple ___about right too technical

Technical accuracy: __poor ___average very good

Examples: __too many about right ___too few

Illustrations: ___too many about right too few

 3. What features did you find most useful?

4, What faults or errors gave you problems?

Name : Position:

Company:

Address:

Zip:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

W
H

	Front Cover
	Title Page
	i
	ii
	iii
	iv
	Contents
	v
	vi
	vii
	viii
	ix
	x
	About This Book
	xi
	xii
	xiii
	xiv
	xv
	xvi
	Part I
	Overview of Prime PL/I
	I-0
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Using the PL/I Compiler
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	Linking and Executing PL/I
	3-1
	3-2
	3-3
	3-4
	Part II
	Prime PL/I Language Reference
	II-0
	The PL/I Language
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	Data Types and Data Attributes
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	Evaluating Expressions
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	Storage Management
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	Subroutine and Function Procedures
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	Program Blocks, Declarations and Scope Rules
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	Flow of Control
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	Stream Input/Output
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-44a
	11-44b
	11-44c
	11-44d
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	11-63
	11-64
	11-65
	11-66
	11-67
	11-68
	11-69
	11-70
	11-71
	11-72
	11-73
	11-74
	11-75
	11-76
	11-77
	11-78
	11-79
	11-80
	11-81
	11-82
	11-83
	11-84
	11-85
	11-86
	Record Input/Output
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	PL/I Condition Handling
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	Built-In Functions and Pseudovariables
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	14-55
	14-56
	14-57
	14-58
	14-59
	14-60
	14-61
	14-62
	14-63
	14-64
	14-65
	14-66
	14-67
	14-68
	14-69
	14-70
	14-71
	14-72
	14-73
	14-74
	14-75
	14-76
	14-77
	14-78
	14-79
	14-80
	14-81
	14-82
	14-83
	14-84
	14-85
	14-86
	14-87
	14-88
	14-89
	14-90
	14-91
	14-92
	14-93
	14-94
	14-95
	14-96
	14-97
	14-98
	Appendixes
	APP-0
	PL/I Keywords
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	The Prime Extended Character Set
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	Data Formats
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	Function Return Conventions and Stack Frame Format
	D-1
	D-2
	D-3
	D-4
	Differences and ANS, IBM, and Prime PL/I
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Oncode Values
	F-1
	F-2
	F-3
	F-4
	Glossary of PL/I Terms
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	G-10
	G-11
	G-12
	G-13
	G-14
	Use of FORMS With PL/I
	H-1
	H-2
	Using SEG
	I-1
	I-2
	INDEX
	X-0
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	X-22
	X-23
	X-24
	X-25
	X-26
	X-27
	X-28
	X-29
	X-30
	X-31
	X-32
	X-33
	X-34
	SURVEY
	S-0
	S-1
	S-2
	S-3
	S-4
	S-5
	S-6

