Prime Computer, Inc.

DOC5041-1LA

ide

PL/I Reference Gu

Pl /I Reference Guide

First Edition
by
John J. Xenakis

and

Camilla B. Haase
Updated for Translator Family
Release T1.0-21.0
by
Kim M. Seward

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities at Translator Family Release
T1..0-21.0.

Prime Computer, Inc.
Prime Park
Natick, Massachusetts 01760

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc., assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such

license.
Copyright © 1988 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of
Prime Computer, Inc. PERFORMER, PRIME/SNA, PRIME TIMER, PRIMECALC,
PRIMELINK, PRIMENET, PRIMEWORD, PRODUCER, PST 100, PT25, PT45, PT65,
PT200, PW153, PW200, PW250, RINGNET, 50 Series, 400, 750, 850, 2250,
2350, 2450, 2550, 2650, 2655, 2755, 6350, 6550, 9650, 9655, 9750, 9755,
9950, 9955, and 9955II are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (DOC5041-1LA) January 1986 for Release 1.0
Update 1 (UPD5041-11A) January 1988 for T1.0-21.0

CREDITS

Editorial: Bill Modlin, Thelma Henner

Project Support: Margaret Taft, Camilla Haase
Illustration: Marlene Bober

Illustration Support: Anna Spoerri

Graphic Support: Mingling Chang

Document Preparation: Julie Cyphers, Mary Mixon
Production: Judy Gordon

ii

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Custamers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800~322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800~651-1313 (within Hawaii)

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided
in the back of this book. Address any addltlonal comments on this or
other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

iii

ABOUT THIS BOOK
PART I — OVERVIEW OF PRIME PL/I
1 INTRODUCTION

The PL/I Language

Restrictions on PL/I Prograns

Interface to Other Languages

PL/I and the Editor '

PL/I Under PRIMOS

Program Enviromments

PL/TI and Prime Utilities

The PRIMOS Condition-Handling
Mechanism

2 USING THE PL/I COMPILER
Compiling a PL/I Program
Compiler Options

3 LINKING AND EXECUTING PL/I
Introduction
How to Use BIND

Basic Linking Commands
Running Your Program

Contents

Xi

1-1

1-2
1-3

1-5
1-6

1-8

3-1
3-1
3-3
3-3

PART II -- PRIME PL/I LANGUAGE REFERENCE

4 THE PL/I LANGUAGE

Simple PL/I Programs

Elements of a PL/I Program

Expressions

Flow of Control With IF, DO,
and GO TO

Numeric Data Types

Built—-in Functions

CHARACTER String Data Type

Operations on CHARACTER Strings

Arrays and Structures

4-1
4-11

4-13
4-22
4-28
4-32
4-35
4-42

Input/Output
Other Features of the PL/I
Language

5 DATA TYPES AND DATA ATTRIBUTES

Data Types: Introduction

Arithmetic Data Types:
Introduction

String Data Types:
Introduction

Pictured Data Types:
Introduction

Pictured-String

Pictured-Numeric

Arrays and Structures

The ALIGNED and UNALIGNED
Attributes

The DEFINED Attribute

The LIKE Attribute

The INITIAL Attribute

The DEFAULT Statement

6 EVALUATING EXPRESSIONS

Expressions, Data Conversions,

and Aggregate Promotions
Forming Expressions
Scalar Targets and Data
Conversions
PL/I Expression Operators
Scalar Conversion Rules for
Computational Data Types

Aggregate Targets and Promotion

7 STORAGE MANAGEMENT

Types of Storage

Techniques for Overlaying Storage
Extent Expressions and INITIAL

Attribute
Internal and External Scope
Attributes

Named Constants and Noncomputational

Variables
Advanced Programming Option:
POINTER OPTIONS(SHORT)

vi

4-46
4-49

5-1

5-18

5-29
5-29
5-31
5-56

5-66
5-67
5-71
5-72
5-75

6-1
6-2

6-9
6-25

6-38
6-43

8 SUBROUTINE AND FUNCTION PROCEDURES

Procedures 8-1
Subroutine Procedures 8-3
Function Procedures 8-11

Sumary of Differences Between
Subroutine and Function

Procedures 8-21
Relation Between Arguments

and Parameters 8-21
External Procedures 8-31
Recursive Procedures 8-37
Generic Entry Names 8-39
ENTRY Variables 8-42
Advanced Programming Options:

SHORTCALL and NONQUICK 8-44
Summary of Procedure Rules 8-45

9 PROGRAM BLOCKS, DECLARATIONS,
AND SCOPE RULES

PL/I Program Block Structures 9-1
The DECLARE Statement 9-6
Types of Declarations 9-13
Scope of a Declaration 9-21
Resolving References 9-27

10 FLON OF CONTROL

The IF Statement 10-1
The DO Statement 10-4
The GO TO Statement 10-22
The LEAVE Statement —— Prime

Extension 10-24
The SELECT Statement — Prime

Extension 10-25
PL/1I Program Blocks 10-27
Static and Dynamic Program

Block Structure 10-29
Compiler-directing Statements 10-53

11 STREAM INPUT/OUTPUT

Introduction to the PUT Statement 11-2
Introduction to the GET Statement 11-13
PUT and GET to Files and Devices 11-24

STREAM Input/Output Specifications 11-30
Establishing Data Items 11-42

vii

Matching Data Values to Format

Items 11-43
Detailed Specifications for the

PUT Statement 11-46
Detailed Specifications for the

GET Statement 11-66

12 RECORD INPUT/OUTPUT

Concepts of RECORD Input/Output 12-1
Sequential RECORD Input/Output 12-5
Direct Access with DAM Files 12-10

Direct Access with MIDASPLUS Files 12-14
RECORD Input/Output in Locate Mode 12-17
File Attributes, Attribute Merging,

and the OPEN Statement 12-20
Input/Output on Conditions and

Built—~in Functions 12-32
FILE Variables and Functions That

Return FILE Values 12-33

13 PL/I CONDITION HANILING

The ON Statement 13-2
Enabling Conditions With Condition

Prefixes 13-13
The REVERT Statement 13-18
The SIGNAL Statement 13-19
The CONDITION Condition 13-20
The SNAP Option 13-20
List of Conditions 13-24
Built-in Functions Related to

On-Units 13-40

14 BUILT-IN FUNCTIONS AND PSEUDOVARIABLES

Arguments to Built-in Functions 14-1
Classification and Sumary of

Built-in Functions 14-6
Complete List of Built-in

Functions 14-13
The Use of Pseudovariables 14-95

viii

APPENDICES

A PL/I KEYWORDS A-1

B THE PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters B-2

Special Meanings of Prime ECS
Characters B-5

PL/I Programming Considerations B-5

Prime Extended Character Set Table B-6

C DATA FORMATS

Overview Cc-1
FIXED BINARY Data C-2
FIXED DECIMAL Data Cc-2
FLOAT BINARY Data Cc-3
FLOAT DECIMAL Data Cc-3
COMPLEX FIXED BINARY Data C-4
OOMPLEX FIXED DECIMAL Data C-4
COMPLEX FLOAT BINARY Data C-5
COMPLEX FLOAT DECIMAL Data C-5
PICTURE Data C-6
CHARACTER Data C-6
CHARACTER VARYING Data c-7
BIT Data c-7
BIT VARYING Data c-7
POINTER Data Cc-8
POINTER OPTIONS {SHORT) c-8
LABFL Data C-8
ENTRY Data Cc-9
FILE Data C-10
Arrays C-10

D FUNCTION RETURN CONVENTIONS AND
STACK FRAME FORMAT

Locations of Returned Function
Values D-1
Stack Frame Format D=2

ix

E DIFFERENCES AMONG ANS, IBM, AND
PRIME PL/I

Prime Extensions to the ANSI
Standard

ANS Feature Not Supported in
Prime PL/I

IBM Features Not Supported in
Prime PL/I

F ONCODE VALUES

G GLOSSARY OF PL/I TERMS

H USE OF FORMS WITH PL/I

I USING SEG

INDEX

E-1

E-2

F-1

G-1

H-1

X-1

About
This Book

This book is a programmer's gquide to the PL/I language as implemented
on Prime systems. You are expected to be familiar with some high-level
language and with programming in general, but not necessarily with PL/I
or Prime computers. If you need additionmal background in programming
techniques or PI/I, consult an appropriate textbook, such as:

Conway, Richard, and Gries, David, An Introduction to Programming:
A Structured Approach Using PL/I and PL/C, Little, Brown, 1978.

Hughes, Joan K., PL/I Structured Programming, John Wiley & Sons,
Inc., 1979.

Pollack, Seymour V., and Sterling, Theodore C., A Guide to PL/I and
Structured Programming, Holt, Rinehart, and Winston, 1980.

NEW FEATURES

The following features are new to Prime PL/I at Translator Family
Release T1.0-21.0:

1. Search rules for $INCLUDE files. See Chapter 10.
2. 'The Prime Extended Character Set and the

~EXTENDED_CHARACTER_SET and -NO_EXTENDED_CHARACTER SET compiler
options. See Appendix B and Chapter 2.

xi

3. The -STRINGSIZE and -NO_STRINGSIZE compiler options. See
Chapter 2 and Chapter 13.

HON TO USE THIS BOOK

The following is a brief chapter-by-chapter description of the contents
of this book.

Part I — Overview of Prime PL/I

e Chapter 1 introduces PL/I and its implementation on Prime
computers.

e Chapter 2 provides information on the use of the PL/I compiler,
including compiler options.

@ Chapter 3 provides information on linking and executing programs
using Prime's BIND utility.

Part II —— Prime PL/I Lanquage Reference

® Chapter 4 provides an overview of the PL/I language.
® Chapter 5 describes PI/I data elements.

® Chapter 6 describes PL/I expressions, data type conversions, and
aggregate data structures.

e Chapter 7 describes PL/I storage management capabilities and the
types of storage available.

@ Chapter 8 explains the use of subroutines and functions and the
differences between them.

@ Chapter 9 describes PL/I program blocks and explains the rules
of scoping in declarations.

@ Chapter 10 describes the flow of control of a PI,/I program and
briefly discusses compiler-directing statements.

e Chapter 11 describes how to input and output data on the
terminal.,

® Chapter 12 describes how to input and output data by using files
and devices.

@ Chapter 13 describes PL/I condition handling.

xii

e Chapter 14 describes PL/I's built-in functions and

pseudovariables.
Appendixes

e Appendix A lists all PL/I keywords.

e Appendix B describes and lists the Prime Extended Character Set.

e Appendix C describes the internal representation of PL/I data
types.

e Appendix D describes PL/I function return conventions and the
stack frame format.

e Appendix E summarizes the differences between Prime PL/I and ANS
PL/I and between Prime PL/I and IBM PL/I.

e Appendix F lists PL/I error codes and their meanings.

e Appendix G provides a glossary of PL/I terms.

e Appendix H briefly describes the use of Prime's FORMS utility
with PL/I.

@ Appendix I summarizes the use of Prime's older linking utility,

SEG.

RELATED DOCUMENTS

In addition to the PL/I Reference Guide, there are several books
describing other Prime utilities that will help you with vyour
programming on Prime equipment. These documents are:

Prime User's Guide (DOC4130-4LA)

Prime PL/I Conversion Guide (DOC5769-1LA)

EMACS Primer (IDR6107-183) and EMACS Reference Guide (DOC5026-2LA)

New User's Guide to EDITOR and RUNOFF (DOC3104-4LA)

Programmer's Guide to BIND and EPFs (DOC8691-1LA)

SEG and LOAD Reference Guide (D0OC3524-192L)

xiii

Subroutines Reference Guide

Volume I (DOC10080~2LA)

Volume II (DOC10081-1LA)
Volume III (DOC10082-1LA)
Volume IV (DOC10083-1LA)

Source Level Debugger User's Guide (DOC4033-193L)

Guide to Prime User Documents (DOC6138-5PA)

PRIMOS Commands Programmer's Companion (FDR3250-192)

Other Sources of Information

In addition to the documents listed above,
following sources when looking for information about Prime PL/I:

@ The Software Release Document released

revision.

changes in Prime's user software.

e Prime's online HELP files.
displayed at your terminal.

please consider the

at each software

This document contains a summary of new features and

Information on PRIMDS commands is
A amulative list of manuals,

updates, and other material is also included.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention

UPPERCASE

lowercase

Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
They can be entered in
either uppercase or
lowercase.

In coomand formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

xiv

Example
SLIST

LOGIN user-id

Convention

Abbreviations

Underlining
in
examples

Brackets
Braces
Ellipsis

Parentheses

()

Hyphen

Explanation

If a command or statement
has an abbreviation, it is
indicated by underlining.
In cases where the command
or directive itself
contains an underscore, the
abbreviation is shown below
the full name, and the name
and abbreviation are placed
within braces.

In examples, user input
is underlined but system
prompts and output are not.

Brackets enclose a list
of two or more optional
items. Choose none, one,
or more of these items.

Braces enclose a list
of items. Choose one and
only one of these items.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement
formats, parentheses must
be entered exactly as
shown.

Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

Example
LOGOUT

SET_QUOTA

OK, RESUME MY_PRQOG
This is the output
of MY_PROG.CPL

0K,

SPOQL | -=LIST
~CANCEL

CLOSE) filename
ALL

itan_x [, iten—y] o

DIM array (row,col)

SPOOL ~LIST

PART I

Overview of Prime PL/1

Introduction

THE PL/I LANGUAGE

PL/I is a comprehensive general-purpose programming language combining
the best features of several other languages, including FORTRAN, COBOL,
and ALGOL. PL/I provides more powerful programming tools and methods
than any other language currently available, It is defined in the
American National Standards Institute (ANSI) document X3,53-1976.

Prime's PL/I is completely compatible with Prime's PL/I Subset G
(invoked by the ocommand PL1G). Any extensions available for Subset G
are also available for PL/I. You can recompile programs written in
Subset G with no changes using PL/I.

Differences Between Prime PL/I and Standard PL/I

Appendix E oontains a detailed comparison of Prime PL/I and ANSI
Standard PL/I. Differences between Prime PL/I and IBM PL/I are also
listed there.

1-1 First Edition

PL/I Reference Guide

Implementation—defined Features of PL/I

The ANSI standard for PL/I does not specify every detail of the
lanquage. Certain features that are inherently dependent on the
particular computer system used are designated in the standard as
implementation-defined. Each computer manufacturer sets its own
standard for such features.,

A general description of each implementation-defined feature is given
in the appropriate chapter of this guide. Specific details on Prime's
choices for each such feature are contained in Appendix C.

Programs that may have to run under a non-Prime version of PL/I should

be written to be minimally dependent on implementation—defined
features,

Compatibility of Prime PL/I Subset G

If PL/I-G programs are recompiled with full PL/I, you should load and
execute them using Rev. 19.4 or higher PRIMOS.

RESTRICTIONS ON PL/I PROGRAMS

The segmented nature of the Prime virtual memory system imposes a few
machine restrictions on PL/I programs., None of these restrictions is
contrary to the ANSI standard or need interfere with program design.

® The executable code (exclusive of data storage) for a
compilation unit may not occupy more than one segment (128K
bytes). For additional program space, break out procedures and
make them separate compilation units.,

e No program may have more than one segment of local static
storage, For additiomal storage, make some of the data static
external,

e No program unit may have more than one segment of dynamic
storage. Any additional storage must be made static.

e No data item in a static external aggregate may be split across
the boundary between two segments., When laying out a static
external aggregate, use the information on storage formats in
Appendix C to insure compliance with this rule.

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object code
level, and since all use the same calling conwventions, object modules

First Edition 1-2

INTRODUCT ION

produced by the PL/I compiler can reference or be referenced by modules
produced by the FORTRAN IV, FORTRAN 77, QOBOL, Pascal, and C compilers.
You must observe certain restrictions when a PL/I object module
interfaces one compiled from another language.

e All I/O routines must be written in the same language.

e There must be no conflict of data types for variables being
passed as arguments. For example, FIXED BINARY in PL/I should
be declared as INTEGER in FORTRAN 77. See Appendix C for a
description of PL/I data storage formats.

e Modules compiled in 64V or 32I mode cannot reference or be
referenced by modules compiled in any R mode., Modules in 64V or
321 may reference each other if they are otherwise compatible.

e A PL/I program cannot reference a FORIRAN complex-valued
function.

@ A label passed to a Prime FORTRAN IV (FTN) subroutine as an
alternate-return specifier must identify a statement in the same
block that contains the subroutine call.

You may use a PL/I static external structure to reference a FORTRAN or
PMA common block having the same name as the structure., Take care that
the data items in the structure and block correspond appropriately.

PL/I object modules can also interface with PMA (Prime Macro Assembler)
routines, See the Assembly Language Programmer's Guide.

You may input any data file to PL/I, providing it is written in either
ASCII compressed or binary form,

PL/I AND THE EDITOR

PL/I source code can be entered into Prime systems using the system
line editor, called EDITOR.

The characters up-arrow (”) and semicolon (;) have special meanings
for the EDITOR that conflict with their uses in PL/I. The " is the
EDITOR's escape character and PL/I's NOT character, while the ; is the
EDITOR's carriage return and PL/I's statement delimiter. A conflict
arises whenever you attempt to enter either of these characters into a
PL/I source program using the EDITOR.

The EDITOR functions of " and ; can be transferred to other symbols

for the duration of an EDITOR session by using the EDITOR's SYMBCL
command. While in EDIT mode, type:

SY SEMIQO a
SY ESCAPE b

1-3 First Edition

PL/I Reference Guide

where a and b must be single, currently non-special characters. (The @
and ~ characters may be useful.) The character a replaces the
semicolon as a carriage return, and b replaces the up-arrow as an
escape character. The semicolon and up-arrow are thereby freed for
ordinary use.

The semicolon may also be freed by typing in MODE NOSEMI in EDIT mode.
The up-arrow may be entered as the double symbol "” without changing
its function as an escape character.,

For more information, see the New User's Guide to EDITOR and RUNOFF.

More permanent solutions to this conflict are available through your
Prime field analyst. The EMACS capability is available as a separately
priced product.

PL/I UNDER PRIMDS

Implementation

Prime's PL/I runs on all Prime models. It operates under PRIMS,
Prime's operating system. Code generated by the PL/I compiler is the
same for all Prime processor models,

The maximum code size for a PL/I program is 64K.

Prime's processors execute an extended set of instructions directly,
including decimal arithmetic and character edits. They maximize
execution time efficiency better than processors that only recognize
the code as an unimplemented instruction trap and autamatically
substitute an equivalent software routine, Addressing modes and the
Prime instruction set hardware are presented in the System Architecture
Guide (DOC9473-11A), the Instruction Sets Guide (D0OC9474-11A), and the
Assembly Language Programmer's Guide (FDR3059-101A).

Operating Enviromment

Only one version of PRIMDS exists for all Prime models. It features
paged and segmented virtual memory management. The system is based on
demand paging from disk with 2048 bytes per page. A page-sharing
feature reduces overhead time, The system thus supplies paging
requirements for the application program immediately and autamatically.
For example, several users may share one copy of the EDITOR to enter or
modify their programs, rather than having multiple copies,

First Edition 1-4

INTRODUCT ION

PROGRAM ENVIRCNMENTS

Under PRIMDS, PL/I programs may be run in one of three enviromments:
e Interactive
@ Phantam user

e Batch job

Interactive
All phases of PL/I oompilation can be handled through interactive
terminals, Therefore, you can enter and modify source programs
directly at a teminal. You can create, edit, compile, 1list, d&ebug,
execute, and save a program in a single interactive session.,
Program execution 1is initiated directly by you. Programs run in real
time and are associated with a terminal. You can display program
output, as well as error messages, at the terminal,
Major interactive uses are

e Program development

@ Programs requiring short execution time

@ Data entry programs, such as order entry or payroll

e Interactive programs, such as the EDITOR

Phantam User

The phantam enviromment allows programs to be executed while not
associated with a terminal. ‘This frees the terminal for other uses,
Phantam users are programs that accept input from a command file
instead of a terminal; output directed to a terminal is either ignored
or directed to a file.
Major uses of phantams are

e Programs requiring long execution time, such as sorts

e Certain system utilities, such as line printer spooler

@ Any program, if the terminal should be free for another use

For more information on command files and phantam users, see the Prime
User's Guide.

1-5 First Edition

PL/I Reference Guide

Batch Job

Since the number of phantam users on a system is limited, phantams are
not always available. The batch enviroment allows users to submit
noninteractive command files as batch jobs at any time. The Batch
Monitor (itself a phantam) queues these jobs and runs them, one to six
at a time, as phantams become free.

For more information on command files and batch processing, see the
Prime User's Guide.

PL/I AND PRIME UTILITIES

Prime offers three major utility systems for use by Prime programmers.
These are

e Multiple Index Data Access System (MIDASPLUS)
e Forms Management System (FORMS)
e The Source Level Debugger
For complete information on any of these utilities, see the appropriate

reference quide. Below are brief descriptions of MIDASPLUS, FORMS, and
the Debugger.

Multiple Index Data Access System (MIDASPLUS)

MIDASPLUS is a system of interactive utilities and high-level
subroutines enabling the use of index-sequential and direct-access data
files at the applications level, MIDASPLUS autamatically handles
indexes, keys, pointers, and the rest of the file structure, Major
advantages of MIDASPLUS are

e lLarge data files

e Efficient search techniques

e Rapid data access

e Compatibility with existing Prime file structures

e Ease of building files

e Multiple user access to files

e Partial or full file deletion utility

First Edition 1-6

INTRODUCT ION

PL/I interfaces with MIDASPLUS through the use of MIDASPLUS subroutine
calls invoked by the OPEN, WRITE, REWRITE, and READ statements for a
file declared as KEYED SEQUENTIAL with the -DAM option. See Chapter 12
of this manual and the MIDASPLUS User's Guide (DOC9244-1IA). Since
MIDASPLUS subroutines are written in Prime FORTRAN IV, the restrictions
mentioned earlier in this chapter under INTERFACE TO OTHER LANGUAGES

apply.

FORMS Management System (FORMS)

The Prime FORMS Management System (FORMS) provides a convenient method
of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications
program that uses Prime's Input/Output Control System (IOCS), including
programs written in PL/I. Applications programs communicate with FORMS
through input/output statements native to the host language. Programs
that currently run in an interactive mode can easily be converted to
use FORMS,

FORMS allows cataloging and maintenance of form definitions available
within the computer system. For use within an applications program,
all form definitions reside within a centralized directory in the
system. This directory, under control of the System Administrator, may
be easily changed, allowing the addition, modification, or deletion of
form definitions.

The interface of PL/I with FORMS is identical to that of Prime
FORTRAN 1V.

See the FORMS Programmer's Guide, or Appendix H of this manual.

The Source Level Debugger

Prime's powerful interactive debugging tool, the Source Level Debugger,
may be obtained from Prime as a separately priced item. Use of the
Debugger can greatly expedite and simplify the debugging process.
Major features of the debugger enable you to

® Set both absolute and conditional breakpoints

® Request the execution of Debugger commands (action list) when a
breakpoint occurs

@ Execute the program step by step

@ Call procedures, subroutines, or functions from Debugger command
level

® Trace statement execution

1-7 First Edition

PL/I Reference Guide

@ Trace selected variables, printing a message when their value
changes

@ Print or change the value of any variable

e Create Debugger macros that stand for two or more Debugger
commands

e Print a subprogram call or return stack history (traceback)

e Examine the source file while executing within the Debugger,
eliminating the need for hard-copy listings

See the Source Level Debugger User's Guide.

THE PRIM)S CONDITION-HANDLING MECHANISM

PRIMDS has two ways of reporting and dealing with errors: error codes
and PRIMDS conditions.

When a PRIMDS subroutine is called, it returns an error code. This
code must be tested by the calling program to establish that the
subroutine has executed successfully.

Some errors cannot be dealt with by the return of an error code. For
each such error, a PRIMOS condition exists., When the error occurs, the
condition corresponding to the error is raised.

When a condition is raised, PRIMDS activates the condition-handling
mechanism. The condition handler notes what ocondition exists, then
calls an error-handling routine known as an on-unit to deal with the
error that has occurred,

PRIMDS supplies a default on-unit that handles all conditions. You can
specify an individual response to a condition by supplying an on-unit.
When a condition occurs for which a programmer-supplied on-unit exists,
the actions specified in the on-unit are taken, rather than those
specified in the PRIMOS default on-unit.

Information on the system default omunit and the method for
substituting programmer-supplied on-units is contained in the Prime
User's Guide. For complete information on the condition handler, see
the Subroutines Reference Guide.

First Edition 1-8

Using the PL/I

Compiler

Prime's PL/I compiler accepts a source program meeting the PL/I
standard. It translates the statements in the source program into an
object (binary) module that ocontains the machine code needed to link
and execute the program. It can also output a source listing, error
and statistics information, and various messages. Errors are reported
at the terminal as the compiler detects them.
This chapter describes:

@ How to compile PL/I programs

@ How to specify options to the compiler

e Compiler error messages

e Compiler options

OOMPILING A PL/I PROGRAM

After you have entered your source program into the system using ED or
EMACS, and have named the program with a .PL1 suffix, you are ready to
invoke the PL/I compiler.

2-1 First Edition

PL/I Reference Guide

Invoking and Specifying Options to the Compiler

To invoke the PL/I compiler from the PRIMOS command level, use the PLl
command:

PL1 pathname [-option 1] [-option 2] . . . [~option_n]

pathname is the pathname of the PL/I source program to be compiled. If
the source program has the suffix .PL1, pathname need only include the
part to the left of the period.

option is a PL/I compiler option. These options provide information
and input while you compile, link, and execute your program.

All compiler options begin with a hyphen (-). For example,

OK, PL1 TEST1 -RANGE -DEBUG -LISTING

causes TEST1.PL1 to be compiled with the options given. You may
specify more than one option on the command line, in any order.
However, if you issue conflicting options, an error message results.,

Compiler Error Messages

During compilation, the compiler outputs an error message each time it
encounters an error in your program. The error messages, which are
self-explanatory, assist you in £inding and correcting the errors in
your program. For every error found, the compiler displays information
about where the error occurred and the level of severity:

ERRCR xxxX SEVERITY y BEGINNING ON LINE zzz
explanation of message

XXX Error code
y Level of severity
Z22Z Line number where error begins

explanation Description of the error and possible remedies

First Edition 2-2

USING THE PL/I COMPILER

Errors are classified into four levels depending on the severity of the
error:

Severity Meaning
1 Warning —— a recoverable error, object file
produced,
2 Recoverable —— the compiler has supplied defaults
or a conversion; object file produced.
3 Nonrecoverable —— object file not produced.
4 Error that immediately aborts the compilation.

After the compilation process is complete, the compiler prints an
end-of-compilation message at the terminal. Its format is:

XxXxxXx ERRORS [PL1 Rev. 19.4]
MAX SEVERITY IS y

xxxx is the number of compilation errors; 0000 indicates a successful
compilation. If there are no errors, the second line of the message
does not appear.

After compilation, control returns to the PRIMOS level. The PRIMOS
error prompt appears after a compilation that results in error messages
of severity levels greater than 2. Any PRIM)S command that may be
entered after OK may also be entered after the error prompt. (The
default error prompt, which can be changed by users, is ER!)

COMPIL.ER OPTIONS

This section discusses the options available with the PL/I compiler.
Most of the options come in pairs, which act as switches to enable or
disable a particular action. The Prime-supplied defaults are indicated
by an asterisk. These defaults can be changed by your System
Administrator. Some options require an argument to the option
specification. The arqument follows the option and is not preceded by

a hyphen,

At the end of this section, Table 2-1 lists a summary of compiler
options and abbreviations.

2-3 First Edition

PL/I Reference Guide

B *-64v

The —-64V option generates 64V-mode code, which is a segmented virtual
addressing mode for 32-bit machines.

} *~ALLON_PRECONNECTION / -NO_ALLON_PRECONNECTION
Abbreviation: -APRE / -NAPRE

The —ALLON_PRECONNECTION option allows for the preconnection of a
listing output to a preopened file unit 2, or of a binary output to a
preopened file unit 3. When files have been preconnected, the compiler
displays a message indicating that preconnection has occurred.

When the -NO_ALLOW_PRECONNECTION option is used, PL/I always opens and
closes the listing and binary files (and uses dynamic file units).

B> -BIG / *-NO_BIG
Abbreviation: -BIG / -NBIG

-BIG generates segment-spanning code for aggregates (arrays or
structures) larger than one segment, when such aggregates are passed as
parameters or referenced in a subprogram. If -BIG is specified, a
BASED or PARAMETER aggregate can become associated with any aggregate,
whether or not a segment boundary is crossed.

~NOBIG specifies that a BASED or PARAMETER aggregate can become

associated only with an aggregate that does not cross a segment
boundary.

B> #-BINARY [pathname] / -NO_BINARY
Abbreviation: -B / -NB
The -BINARY option produces an object (binary) file with the name

source-program.BIN. To write the object code to a different file, use
the -BINARY option followed by pathname.

-NO_BINARY specifies that no binary object file is to be produced. Use
this option when only a syntax check or listing is desired,

First Edition 2-4

USING THE PL/I COMPILER

B *-oopY / -NO_COPY
Abbreviation: =-QOP / -NCOP

-COPY causes the oompiler to copy oonstants before calling
subprocedures, that is, to pass by value, so that when the new copy is
changed by a procedure, the corresponding value in the calling routine
is not changed.

-NO_COPY allows the programmer to suppress the copying of constants
into temporary variables for procedure calls. This feature must be
coded properly in the called procedure, for if the called routine
changes the value of one of its parameters which was passed as a
constant, the value of that constant in the calling program will be
changed, causing subsequent references to that constant to use the
wrong value. Use of the -NO_COPY option can save on the amount of
executable code generated.

P> -DEBUG / *-NO_DEBUG

Abbreviation: -DBG / -NDBG

~DEBUG controls generation of code for the debugger. The object file
is modified so that it will run under the Source Level Debugger.
Execution time increases, and the code generated is not optimized. Use
of the cJ=bugger on programs with external procedures is not supported.
-NO_DEBUG causes no debugger code to be generated.

The Source Level Debugger is a separately priced product. For full
information, see the Source Level Debugger User's Guide.

P> -FRRLIST / *-NO_ERRLIST

Abbreviation: -ERRL / -~NERR.

~ERRLIST produces a listing file (see below under -LISTING) that
contains only error messages. If both -LISTING and -ERRLIST are
specified, -ERRLIST takes precedence.

-NO_ERRL,IST has no effect; if both -LISTING and -NO_ERRLIST are
specified, the listing file still includes the error messages.

2-5 First Edition, Update 1

PL/I Reference Guide

P> *-ERRTTY / -NO_ERRITY
Abbreviation: <-FERRT / —NERRT
-ERRTTY prints error messages at the terminal during compilation.

-NO_ERRTTY suppresses listing of errors on the terminal. They are
still included in the source listing file, if there is one.

P> -EXPLIST / *-NO_EXPLIST (Implies -LISTING)
Abbreviation: -EXP / -NEXP

-EXPLIST inserts a pseudo-assembly ocode listing into the source
listing. Each statement in the source is followed by the pseudo-PMA
(Prime Macro Assembler) statements into which it was compiled. For
information on PMA, see the Assembly Language Programmer's Guide.

-NO_EXPLIST, if specified with -LISTING, causes no assembler statements
to be printed in the listing.

> -EXTENDED CHARACTER_SET / *~NO_EXTENDED CHARACTER SET
Abbreviation: -ECS / -NECS

The -EXTENDED CHARACTER SET option causes the COLLATE built-in function
to return a 256-character string, and causes the LOW built-in function
to return the character with numeric value zero. (See Chapter 14 for
information about these functions. The Prime Extended Character Set is
discussed in Appendix B.)

-NO_EXTENDED_CHARACTER_SET makes COLLATE return a 128-character string,
and makes LOW return the character with decimal value 128 (200 octal).

P> -FRN / *-NO_FRN
Abbreviation: -FRN / —-NFRN

The Floating-point Round option improves the accuracy of calculations
involving single~precision real (FLOAT BIN(23)) numbers.

When the -FRN option has been given, all single-precision numbers are
rounded each time they are moved from a register to main storage. The
method of rounding is as follows: if the last bit of the mantissa is
1, add a 1 to the second-to-last bit, then set the last bit to 0. This
rounding reduces loss of accuracy in the low-order bits when many
calculations are performed on the same number.

First Edition, Update 1 2-6

USING THE PL/I COMPILER

The -FRN option does not affect double-precision real numbers (FLOAT
BIN(47)). It causes a slight increase in execution time and should
therefore be used only when maximum accuracy is a major consideration.

~NO_FRN causes no rounding to be performed.

B> -ruLr mHELP
Abbreviation: -FH
~-FULL_HELP is similar to the -HELP option, except that in addition to

the usage summary, a description of the meaning of each compiler option
is given. The —HELP option is described below.

P> -FULI_OPTIMIZE
Abbreviation: -FOPT
~FULL_OPTIMIZE ensures that the maximum amount of optimization

available is used. A note in the listing file shows the current level
of optimization implied by the use of this option.

B -HELP
Abbreviation: -H

~HELP produces information on using the PL/I ocompiler. ‘The ocompiler
displays a usage summary and a list of all options available.

P> -INPUT pathname
Abbreviation: -I

-INPUT is an alternative way to specify the source file to be compiled,
it you do not name the file immediately after the PL1 command.
pathname specifies the name of the source program. If pathname is TTY,
input will come from the terminal. The pathname must not be designated
more than once. -INPUT is identical to Ee -SOURCE option; see the
discussion of that option for examples.

2-7 First Edition, Update 1

PL/I Reference Guide

B> -LCASE
Abbreviation: -LC

The -UPCASE and -LCASE options ocontrol mapping of lowercase to
uppercase letters in a source program.

-LCASE distinguishes between lowercase and uppercase letters. System
calls must be in uppercase. =-UPCASE is the default.

TTY
P> -LISTING | pathname | / *-NO_LISTING
SPOQL,

Abbreviation: -L / -NL

~LISTING causes the creation of a source listing file with the name
source-program.LIST. The file ordinarily has four components: a list
of compiler options selected (including defaults), the source code with
line numbers, a map of data and procedure names, and compiler error
messages. The following arguments may be used:

TTY The listing is displayed at the teminal.

SPOCL The listing is spooled directly to the line printer.
Default SPOOL arguments are in effect.

To write the listing to a specific file, use the -LISTING option
followed by pathname. :

=NO_LISTING causes no listing file to be created.

B -mp / *-No_MAP (Implies -LISTING)
Abbreviation: -MA / -NMA

~MAP produces a listing file that contains a reference map of data and
procedure names. To get a full cross-reference of usage information
for each symbolic name, use the -XREF option. =-MAP by itself is
identical to -~LISTING by itself.

-NO_MAP, if specified with -LISTING, produces a listing file that

includes only the source program and the error messages, without a
variable reference map.

First Edition, Update 1 2-8

USING T™E PL/I COMPILER

P> -MAPWIDE [decimal-integer] (Implies -MAP)
Abbreviation: -MAPW

-MAPWIDE specifies the width in characters of the cross-reference map
that appears in the listing file, as well as the width of the options
list section that appears at the beginning of the listing file. The
legal range of values for the decimal-integer arqument is from 80 to
160 inclusive. If a listing file is being produced and -MAPWIDE is not
specified, the default map width is 80. -MAPWIDE with no argument is
equivalent to -MAPWIDE 108.

P> -MAXERRORS [decimal integer]
Abbreviation: -MAXE

~MAXERRORS specifies the maximum number of compilation errors to be
reported. If in a given compilation the specified maximum is reached,
then a severity 4 error message is issued and the compilation is
aborted. The number of errors that can be reported can range from 1 to
32767. If -MAXERRORS is not specified, the default maximum number of
errors to report is 100; if -MAXERRORS is specified without a decimal
argument, the maximum number of errors to report is 32767.

P> -NESTING / *-NO_NESTING (Implies -LISTING)
Abbreviation: -NE / -NNE

~NESTING includes logical control nesting level in the source 1listing.
Each line in the source listing is printed with a number indicating how
many PROCEDURE statements, BEGIN blocks, and DO groups contain the
statement (s) on that line. This option is useful in tracing flow of
control and in matching END statements with their corresponding DO,
BEGIN, and PROCEDURE statements.

~NO_NESTING, if specified with -LISTING, produces a listing file that
contains no nesting level numbers.

B> -OFFSET / *-NO_OFFSET (Implies -LISTING)

Abbreviation: -OFF / -NOFF

~OFFSET appends an offset map to the source listing. For each
statement in the source program, the offset map gives the offset in the

object file of the first machine instruction generated for that
statement.

2-9 First Edition, Update 1

PL/I Reference Guide

-NO_OFFSET, if specified with -LISTING, causes no offset map to be
appended to the listing file.

B> *-OPTIMIZE [decimal-integer]
Abbreviation: -OPT

-OPTIMIZE controls the optimization phase of the compiler. Optimized
code runs more efficiently than non—optimized code, but takes samewhat
longer to ocompile. The decimal-integer that follows -—OPTIMIZE
specifies one of the following levels:

Level Meaning
0 Perform no optimizations. Turns optimization off.
1 Code pattern replacement.
2 Common subexpression elimination. (Default value)
3 Loop invariant removal, code pattern elimination,

and redundancy elimination. At this level,
internally nested procedures are made quick, that
is, called by a Jump To Subroutine instruction
rather than a Procedure Call, if oconditions allow.
The condition under which a procedure is made quick
is that it be called simply, that is, called from
only one place. For example, procedure C can be
quick if it is called only from procedure A. But if
it is also called from procedure B, where B is a
separate procedure from A, then C cannot be quick.
The last section of Chapter 8 explains how to use
the NONQUICK option to keep a particular procedure
from being made quick.

Note
Each optimization level performs all the optimizations of the

next lower level, plus those that are listed.

If you do not specify -OPTIMIZE, the default level is 2. -OPTIMIZE
with no arquments also produces the default level. The level of
optimization that you select is identified in the optimization note of
the compiler's listing output file.

First Edition, Update 1 2-10

USING THE PL/I COMPILER

B> -OVERFLOW / *-NO_OVERFLOW
Abbreviation: -OVF / -NOVF

~OVERFLON enables the integer ocondition handling mechanism when a
division by zero is encountered, or when integer arithmetic causes an
integer to be larger than the data type for which it was declared.
~OVERFLOW affects integer calculations only. It causes the
FIXEDOVERFLON condition to be raised at runtime if the result does not
fit.

-NO_OVERFL.ON disables the integer overflow condition.

P> -PRODUCTION / *-NO_PRODUCTION
Abbreviation: =PROD / —NPROD

~PRODUCTION generates controlling code for the debugger. It is similar
to -DEBUG, except that the code generated does not permit insertion of
statement breakpoints or tracepoints, nor does it allow single-stepping
through the program. Execution time increases less than when -DEBUG is
specified.

~NO_PRODUCTION causes nho production-type code to be generated.

P> -RANGE / *-NO_RANGE
Abbreviation: -RA / -NRA

-RANGE controls error checking for out-of-bounds values of array
subscripts and character substring indexes.

Error-checking code is inserted into the object file. If an array
subscript or character substring index takes on a value outside the
range specified when the referenced data item was declared, the ERROR
condition is signalled. (Note that range checking decreases the
eftficiency of the generated code.)

~NO_RANGE causes no code to be generated to check for out-of-range
values of subscripts and indexes.

P> -SILENT [decimal-integer]
Abbreviation: -SI
-SILENT, when used with a decimal argqument, suppresses the printing of

error and warning messages of the severity you specify in
decimal-integer. The error and warning messages are amitted from any

2-11 First Edition, Update 1

PL/I Reference Guide

listing files generated. Severity levels are listed above in the
section on Compiler Error Messages.

If -SILENT is not specified, a value of -1 is assumed: all error
messages appear. —SILENT with no arqument is equivalent to —SILENT 1.
The option header in the listing file (if any) shows the level of
severity you specify in decimal-integer. '

P> -SOURCE pathname
~-SOURCE is an alternative way to specify the source file to be
compiled, if you do not name the file immediately after the PLl
command. pathname specifies the name of the source program. If
thname is TTY, input will come from the terminal. -SOURCE is

1é g‘entical to the —INPUT option. The following are equivalent:

PL1 pathname -RANGE -BIG

PL1 -RANGE -BIG -I pathname

PL1 -BIG -S pathname -RANGE

The pathname must not be designated more than once.

B> -SPACE

~SPACE specifies that space reduction is to be given preference over
speed in optimization consideration. This option is the opposite of
~TIME, which favors speed over space in reducing the size of optimized
code. -TIME is the default.

P> -STATISTICS / *~NO_STATISTICS

Abbreviations =STAT / -NSTAT

-STATISTICS displays a list of compilation statistics at the terminal

after each phase of compilation. For each phase the list contains:
DISK Number of reads and writes during the phase,

excluding those needed to obtain the source file

SECONDS Elapsed real time

SPACE Internal buffer space used for symbol table, in 16K
byte units

First Edition, Update 1 2-12

USING THE PL/I COMPILER

NODES The number of symbol table nodes that the oompiler
is using in the program

PAGING Disk I/0 time

CPU CPU time in seconds, followed by the clock time when
the phase was completed

The —-NO_STATISTICS option does not display compilation statistics at
the teminal.

> *~STORE_OWNER_FIELD / =NO_STORE OWNER_FIELD
Abbreviation: =SOF / -NSOF

—-STORE, OWNER_FIELD stores the identity of the current program in a
known place for use by traceback routines. This option is useful for
debugging programs. Use of this option increases the size of the
generated code and linkage and slightly degrades execution time of
programs.

-NO_STORE_OWNER_FIELD omits this small ocode sequence for extremely
time-critical programs.

> *-~STRINGSIZE / -NO_STRINGSIZE
Abbreviation: -STRZ / —NSTRZ

~STRINGSIZE enables the STRINGSIZE condition for the entire compilation
unit. PL/I raises the STRINGSIZE condition if either of the following

circumstances occurs:

@ In a PUT EDIT statement with the data format item B[n](w), the
resulting conversion contains more bits than the specified width
We

@ A source string is longer than the maximum length of the
assignment target.

~NO_STRINGSIZE disables the STRINGSIZE ocondition. Execution time is
faster because code is not generated to check for string overflow at

runtime,

Chapter 13, PL/I Condition Handling, ocontains more detailed information
on the STRINGSIZE condition.

2-13 First Edition, Update 1

PL/I Reference Guide

B *-TIME
~-TIME specifies that speed is to be given preference over space

reduction in optimization selection. This option is the opposite of
~-SPACE, which favors space over speed in reducing the size of optimized

code.

P> *-UPCASE
Abbreviation: -UP

The -UPCASE and -LCASE options ocontrol mapping of lowercase to
uppercase letters in a source program.

~UPCASE treats all lowercase letters in the source as uppercase, except
in character constants.

P> -XREF / *-NO_XREF (Implies -LISTING)

Abbreviation: -XREF / -NXREF

-XREF appends a cross-reference to the source listing. A
cross-reference gives, for every variable, the numbers of all lines on
which the variable was referenced.

-NO_XREF does not generate a cross-reference listing.

First Edition, Update 1 2-14

USING THE PL/I COMPILER

Table 2-1
Summary of Compiler Options and Abbreviations
(Defaults are marked with asterisks.)

Option Abbreviation Significance

-64V * Produce 64V mode code

~ALLOW_PRECONNECTION * —-APRE Use preopened file

=NO_ALLON_PRECONNECT ION —~NAPRE

-BIG Allow boundary spanning

~NO_BIG * -NBIG

—~BINARY * -B Create object file

-NO_BINARY ~NB

~COPY * -Q0p Pass arguments by value

-NO_COPY -NCOP Pass arquments by reference

-DEBUG -DBG Generate debugger code

—NO_DEBUG * ~NIBG

—ERRL IST ~ERRL Produce an error file

~NO_ERRLIST * ~NERRL

~ERRTTY * ~ERRT List errors on the terminal

-NO_ERRITY ~NERRT

-EXPLIST -EXP Generate expanded source

—NO_EXPLIST * -NEXP listing

~EXTENDED_CHARACTER_SET -ECS Change values returned

—~NO_EXTENDED CHARACTER SET * -NECS by LON and COLLATE

~FRN Round floating-point numbers

—-NO_FRN * —NFRN in storage

—~FULIL, HELP -FH Display usage information,
option list, and description

~FULL,_OPTIMIZE -FOPT Optimize fully

-~HELP -H Display usage information
and option list

~INPUT -I Designate source file

~LCASE -LC Do not convert lowercase

2-15 First Edition, Update 1

PL/I Reference Guide

Table 2-1 (continued)
Summary of Compiler Options and Abbreviations
(Defaults are marked with asterisks.,)

Option Abbreviation Significance
-LISTING -L Create source listing
-NO_LISTING * =NL
-MAP -MA List data and procedure
-NO_MAP * -NMA names
~-MAPWIDE -MAPW Set width of listing map
~MAXERRORS -MAXE Specify maximum number

of reported errors
~NESTING -NE Indicate nesting level
—NO_NESTING * -NNE
—OFFSET -OFF Show offsets in source list
~NO_OFFSET * =NOFF
-OPTIMIZE * -OFT Optimize object code
—OVERFLON -OVF Enable integer overflow
—NO_OVERFLON * -NOVF
—PRODUCTION -PROD Generate production code
—NO_PRODUCTION * =NFRCD
~RANGE -RA Check subscript ranges
=NO_RANGE * -NRA
~SILENT -SI Suppress warning messages
—SOURCE -S Designate source file
—~SPACE Space over time in

optimization
—STATISTICS ~STAT Print compiler statistics
—~NO_STATISTICS * —-NSTAT
—~STORE_OWNER_FIELD * -SOF Store module names in
~NO_STORE_ONNER_FIELD ~NSOF program code for debugging
—STRINGSIZE * =STRZ Enable STRINGSIZE condition
~NO_STRINGSIZE -NSTRZ for entire compilation

unit

First Edition, Update 1 2-16

USING THE PL/I COMPILER

Table 2-1 (continued)
Summary of Compiler Options and Abbreviations
(Defaults are marked with asterisks.)

Option Abbreviation Significance

-TIME * Time over space in
optimization

~UPCASE * -UP Convert to uppercase

—XREF -XR Generate cross-reference

-NO_XREF * ~NXR

2-17 First Edition, Update 1

Linking and
Executing PL/1

INTRODUCTION

This chapter shows you how to create an Executable Program Format (EPF)
using BIND. The basic commands given in this chapter will be
sufficient for most of your linking needs. For more advanced 1linking
commands with BIND, see the Programmer's Guide to BIND and EPFs.

HOW TO USE BIND

After you have successfully compiled your program, you are ready to
link and execute it using BIND. You can do this in either of the
following two ways:

e Directly from the PRIMIS command line

e Interactively, by invoking subcommands of BIND

To run BIND from the PRIMDS command line, type:
BIND [EPF-filename] [arguments]

Invoking BIND in this way allows you to create your runfile (the
executable version of your program) in one PRIMOS command line. When
using BIND on PRIMIS command level, you must precede each command with
a hyphen (~). EPP-filename is the name of the existing EPF or the name

3-1 First Edition

PL/I Reference Guide

of the object file (binary file) that you want BIND to create, If
EPF-filename is missing, BIND uses the name of the first loaded binary
file for the EPF-filename base., Arquments given on this command line
correspond to internal BIND commands that are explained in the
following sections.

A sample linking session using one PRIMOS command line follows:

OK, BIND MYPROG =10 ADD =IO SUB -LI PLI1LIB -LI
[BIND rev 19.4]

BIND COMPLETE

OK,

The commands -I0 (or -LOAD) and -LI (or -LIBRARY) are explained below
in the section on BASIC LINKING COMMANDS. BIND saves your runfile in
your directory with the default name EPF-filename.RUN. In the example
above, BIND has saved your runfile with the name MYPROG.RUN.

You may also use BIND interactively by issuing commands to BIND one
command line at a time in response to the colon (:) prompt.

To invoke BIND interactively, type the command:
BIND

BIND then asks you with a colon prompt to load your files., Each time
you press the carriage return, you see this prompt. When you leave
BIND, your system prompt appears on the screen.

A sample of an interactive linking session using the same program as
the single-step link looks like this:

OK, BIND MYPROG
[BIND rev 19.4]
¢ LOAD ADD

: LOAD SUB

¢« LI PLILIB
BIND COMPLETE

: FILE

OK,

BIND saves the runfile in your directory as MYPROG.HIN.

First Edition 3-2

LINKING AND EXECUTING PL/I

BASIC LINKING COMMANDS

You can accomplish most of your loading and linking with the following
sequence of commands s

1. Ioad your program with the LOAD command, starting with the main
procedure followed by the subprograms in the order in which
they are called. (LOAD may be abbreviated LO.)

2. Ioad the PL/I 1library with the command LIBRARY PLILIB.
(LIBRARY may be abbreviated LI.)

3. ILoad the system library with the command LIBRARY,

4, When you receive the BIND OOMPLETE message, save the EPF
runfile and return to PRIMOS level with the command FILE.

The following commands are useful but not necessary to create an EPF.
They can be used at any time during the linking sequence.

e MAP can be used to identify references if you do not receive a
BIND COMPLETE message at your terminal. MAP -UNDEFINED, the
most useful form of this command, produces a list of unresolved
references.,

e QUIT returns you to PRIMOS level immediately without saving the
current EPF.

e HELP gives on—line help if you have problems during a BIND
session.

RUNNING YOUR PROGRAM

Once you have compiled and created an EPF, you are ready to run your
program using the RESUME command. (For more information on running
programs, see the Prime User's Guide.)

The RESUME command has the following format:
RESUME [EPF-filename]

Previously, we created a runfile with BIND called MYPROG.RUN. To
execute that runfile, type the PRIMIS level commands:

RESUME MYPROG

PRIMDS autcmatically looks in your directory for MYPROG.FRUN and begins
execution of the EPF,

3=3 First Edition

PL/I Reference Guide

If PRIMOS does not find a file with the name MYPROG.RJN, the following
message appears:

Not found. MYPROG (stdScp)

PRIMDS is telling you that you forgot to create a runfile using BIND.

First Edition 3-4

PART II

Prime PL/I Language Reference

The PL/I Language

This section begins by describing enough of the PL/I lanquage to get
you started writing simple programs. It assumes that you already know
general programming concepts, such as loops, subroutines, functions,
input/output, and so forth, and explains how to program these concepts
in PL/I.

Much of the material in this section is repeated later in the manual in
much more detail. For example, Chapter 9 contains more information on
the IF and DO statements, Refer to other chapters of this manual to
get further explanations of the topics discussed.

SIMPLE PL/I PROGRAMS

The following simple PL/I program accepts two data values, which it
interprets as the two sides of a rectangle. The program then computes
the perimeter of the rectangle, using the standard formula, and prints
out the result of the computation:

TEST: PROCEDURE OPTIONS(MAIN) ;
GET LIST(X, Y);
PERIMETER = 2 * (X + Y);
PUT LIST(PERIMETER) ;

END TEST;

The following paragraphs describe how this program works.,

4-1 First Edition

PI/I Reference Guide

PL/I Statements

The above program contains five PL/I statements. Each of the five
statements is on a separate line, although, as we will explain, this is
not required,

PL/I is a free form lanquage. This means that you are not required to
begin a statement in any particular column, as you are, for example, in
FORTRAN or (OBOL. PL/I recognizes the end of a statement by means of a
semicolon; each statement must end with a semicolon.

For example, in the above program, the second statement was written as
GET LIST(X, Y);
However, PL/I rules would have permitted you to write the statement as

GET
LIST
X, Y);
It does not matter that the statement now takes three lines.,

Conversely, it is perfectly okay to have several statements on a single
line., For example, the second and third statements in the example
program above could have been written as

GET LIST(X, Y); PERIMETER =2 * (X + Y);
PL/I knows that there are two statements because each of the statements

ends in a semicolon,

The maximum size of a source line is 255 characters. A statement may
have a maximum of 6143 elements or tokens.

Statement Types

Every PL/I statement has a statement type. Most statements are keyword
statements, because the statement type is determined by a special word,
called a keyword, in the statement. In the sample program above, all
but the third statement are keyword statements, The £first two
statements are PROCEDURE and GET statements, respectively, and the last
two statements are PUT and END statements, respectively. The third
statement is an assignment statement and is not determined by a
keyword,

First Edition 4-2

THE PL/I LANGUAGE

The PROCEIURE and END Statements

The sample PL/I program above begins with the following PROCEDURE
statement:

TEST: PROCEDURE OPTIONS(MAIN) ;
and ends with the following END statement:

END TEST;
In fact, each PL/I program must begin with a PROCEDURE statement and
end with an END statement.
The PROCEDURE statement that begins your program has the following
syntax:

name: PROCEDURE OPTIONS(MAIN) ;

The name, which should be no more than eight characters long, is the
name that you have chosen for your program. The first character must
be a letter of the alphabet, and the other seven characters may be
either letters or digits. In the sample program above, the name of the
program is TEST,

The phrase OPTIONS(MAIN) tells PL/I that this is a main procedure or
main program. ‘This rphrase is necessary because you can also use the
PROCEIURE statement to define subroutines, which are not main programs.
Since PROCEDURE is a fairly long keyword, PL/I permits you to

abbreviate it with the alternate keyword PROC. Therefore, the first
statement of the sample program above could be written

TEST: PROC OPTIONS(MAIN) ;

The use of the abbreviation PROC is entirely equivalent to the use of
the full keyword PROCELURE,

4-3 First Edition

PL/I Reference Guide

The syntax of the END statement that ends the program must be either
END:

or
END name;

In the second format, the name is the name of your program, which you
have already specified in the PROCEDURE statement. You may use either
format. The second format is often preferable because it is more
explicit, That is, your program can contain a number of END
statements. By specifying the name of the program in the END
statement, you are emphasizing the fact that this END statement is the
end of the program,

The GET Statement

The second statement of the sample program above is the following GET
statement:

GET LIST(X, Y);

This statement accepts input from your terminal. When PL/I reaches
this statement, execution of your program stops, and PL/I waits for you
to type values for the variables X and Y. For example, you might type

12, 3, R
where CR indicates pressing the return key. PL/I would set the value
of X to 12 and the value of Y to 3.
The syntax of the GET statement is

GET LIST(variable);

or

GET LIST(variable, variable, <...):

First Edition 4~-4

THE PL/I LANGUAGE

When PL/I executes a statement in one of these formats, it waits for
you to type values of the variables appearing in the statement at your
terminal.
More complicated formats for the GET statement enable PL/I to

@ Accept input from arbitrary files or devices

@ Accept formatted input

These are discussed in Chapter 11.

The Assignment Statement

The third statement of the sample program above 1is an assignment
statement:

PERIMETER = 2 * (X + Y);

PL/I computes the value of 2 * (X + Y), and assigns the result to the
variable PERIMETER. Since the asterisk is the PL/I symbol for
multiplication, PL/I computes 2 * (X + Y) by doubling the sum of X and
Y.

The simplest syntax of the assignment statement is
variable = expression;

PL/I computes the value of the expression on the right-hand side of the
assigmnment statement, and assigns that value to the variable on the
left~hand side of the statement. A more complex syntax is the
following:

variable, variable, ... = expression;
In this case, PL/I evaluates the expression and assigns the result to

each of the variables on the left-hand side of the statement.

The format of an expression is discussed in the section on expressions
below and in full detail in Chapter 6.

4-5 First Edition

PL/I Reference Guide

The PUT Statement

The fourth statement of the sample program is the following:
PUT LIST(PERIMETER) ;

Use the PUT statement to print a value on your terminal. The above
statement prints the value of the variable PERIMETER on your terminal.

The simplest forms of the PUT statement are
PUT LIST(expression);

or
PUT LIST (expression, expression, ...);

PL/I executes such a statement by evaluating each expression and
printing its value on your terminal.

More complex forms of the PUT statement perform formatted output or
perform output to arbitrary files and devices. See Chapter 11 for
details.,

You may use any expression in the PUT LIST statement. Therefore, in

the sample program at the beginning of this section, you could have
replaced the two statements

PERIMETER = 2 * (X + Y);
PUT LIST(PERIMETER) ;

with the single statement
PUT LIST(2 * (X + Y));
and gotten the same results.
Sametimes you wish to print out some words or text along with your

answer. You can enclose such text in apostrophes. For example,
consider the following statement:

PUT LIST('THE ANSWER IS', 2 * (X + Y));

First Edition 4-6

THE PL/I LANGUAGE

When PL/I executes this statement, if X =5 and Y =15, this HT
statement would print

THE ANSWER IS 40
The element
'THE ANSWER IS'

which appears in the PUT statement is a CHARACTER string constant.
These are described in the section on the CHARACTER data type below,
and in complete detail in Chapter 5. '

ELEMENTS OF A PL/I PROGRAM

The following are some of the basic syntactic elements of a PL/I
program: identifiers, oonstants, operators, parentheses, spacing,
expressions, and comments.

Identifiers
A PL/I identifier is a sequence of characters that serves as a name.
Usually it is the name of the program, a variable, or a keyword. The
following is a list of all the identifiers appearing in the sample
program given at the beginning of this section:
e The name of the program is TEST.
e The keywords are PROCEDURE, OPTIONS, MAIN, GET, LIST, PUT, END,
@ The variables are X, Y, PERIMETER.

Identifiers are used for other purposes besides the three just listed,
and these are described in appropriate places in the manual.

You may use any legal identifier as a variable name., A legal
identifier must follow these rules:

@ The first character of the identifier must be a letter.

@ Subsequent characters may be letters, digits, the break
character (), also called the underscore, the space character
(#), or the dollar sign ($).

e No more than 32 characters are permitted.

4-7 First Edition

PL/I Reference Guide

The following are legal PL/I identifiers:

A

WHITE

WHITE6S

RED#40

YOURS

MILES_PER GALLON

On the other hand, the following are not legal identifiers:

5XYZ (Does not begin with a letter)
THIS_ IS A VERY IONG_ IDENTIFIER WORD (Too long)

If you use a lowercase letter in an identifier, PL/I treats it as if it
were an uppercase letter. Therefore, the following would all be
considered equivalent variable names:

WHITE
white
White

However, this rule does not apply if you run the PL/I program with the
-LCASE option explained in Chapter 2. If you specify this option, the
three identifiers given just above would be considered three different
variables. Note, however, that even if you use the -LCASE compiler
option, PL/I would still consider list, when used as a keyword, to be
the same as LIST.

A feature of the PL/I language is that it has no reserved words,
identifiers that are illegal as variables because they are reserved for
use as keywords. Therefore, for example, the statement

PUT LIST(PUT + LIST);

is a perfectly legal PL/I statement, and PL/I recognizes that the first
uses of the identifiers PUT and LIST are as keywords, and that the
second uses are as variables. However, as a practical matter, you
should avoid using variables that are the same as keywords, because
your program will be confusing and difficult to understand.

First Edition 4-8

THE PL/I LANGUAGE

Constants

A constant is usually a number. The sample program given at the
beginning of this section contains only one constant., In the statement

PERIMETER = 2 * (X + Y);

2 is a constant.

PL/I constants come in many forms, as described in Chapter 5. Numeric
constants always begin with a digit or a decimal point., The following
are examples of numeric constants:

23.4
89E+12
1.10F-4BI
.862

PL/I also has string constants, which are described in Chapter 5. Each
such constant is enclosed in apostrophes. Some examples of string
constants are

"THE ANSWER IS'
'101101'B
'23BFF43'B4

Operators and Parentheses

The assignment statement

PERIMETER = 2 * (X + Y);

contains two arithmetic operators. These are the asterisk (*) for
multiplication and the plus sign (+) for addition. The statement also
contains parentheses, and the equal sign for assignment. The use of
operators and parentheses in expressions is described briefly in the
section on expressions below and in complete detail in Chapter 6.

4-9 First Edition

PL/I Reference Guide

Spacing

As has been previously stated, PL/I recognizes different individual
statements in your program by the fact that each PL/I statement ends
with a semicolon. You may write one statement per line if you wish, or
you may spread a single statement over several lines, or you rmay have
several statements on a single line.

You may space the statement in any way you wish, subject to some fairly
obvious rules. Consider the statement

PUT LIST (PERIMETER) ;

You may not insert spaces in the middle of a constant or identifier, or
in the middle of a two-character operator, such as <=, but you may
insert spaces anywhere else you wish. Therefore, the above statement
could have been written

PUT LIST (PERIMETER s

You must have spaces to separate two identifiers, or two constants, or
a constant and an identifier. Therefore, in the above statement, you
must have spaces between PUT and LIST, but spaces are optional between
TIST and the left parenthesis, and between PERIMETER and the right
parenthesis,

Comments

A comment has the syntax

/¥ comment %/

Any characters between the delimiters /* and */ are read as a comment,
You may insert a comment into your program anywhere you would use a
space. For example, you could change the PUT statenent shown above to
the following:

/*FINAL QUTPUT*/PUT LIST (PERIMETER/*ANSWER*/) §

PL/I considers a comment to be entirely equivalent to a blank.

First Edition 4-10

THE PL/I LANGUAGE

EXPRESSIONS

Almost every PL/I statement contains expressions. You have already
seen how they are used in assignment statements and PUT statements.
The full details about expressions are given in Chapter 6. This
section deals with some general concepts.

Arithmetic Operators

The following are the PL/I arithmetic operators:

rator Meanin
Meaning

Addition
Subtraction
Multiplication
Division

* Exponentiation

NG % 1+

You may combine these operators in expressions in any way you wish.
For example, if you wish to perform the algebraic assigmnment

use the following assignment statement:

X=(A+B*Y) / (A-B) ¥ N;

Priority of Operators

Unless you specify otherwise, by means of parentheses, PL/I performs
multiplication and division before addition or subtraction, and
exponentiation before any of these. Therefore, the statement

X=A*B+ C;
is equivalent to the statement

X= (A *B) +C;

4-11 First Edition

PL/I Reference Guide

Furthermore, the statement
X=A/B % C;
is equivalent to the statement
X=Aa/ (B *C);
In each case, the implied parentheses give higher priority to

multiplication over addition, and exponentiation over division.

When you have two adjacent multiplication or division operators, PL/T
computes them from left to right. For example, consider the following
statement:

X=A/B*C(C;

The expression on the right-hand side of the assignment statement
contains the operators for division and multiplication. Since there
are no parentheses, PL/I computes these from left to right. The result
is that the above statement is equivalent to the statement

X=(A/B) *C;

The same left to right rule applies to adjacent addition and
subtraction operators. For example, consider the statement

X=A-B+C+ D;

The addition and subtraction operations are performed left to right,
and so this statement is equivalent to

X=((A-B) +C) +D;

First Edition 4-12

THE PL/I LANGUAGE

Note that the operator "-" has two separate meanings. The examples
that you have seen for this operator are for subtraction. But the same
symbol is also used for a different operation called the negation
operation. The negation operation is illustrated by the following
statements:

X = -A;
Y = -A ¥ B;
When used for the negation operation, the "-" operator is called a

unary minus and is performed before multiplication or division. Thus
the last statement above is equivalent to the statement

Y = (-A) * B;

PL/I has a number of additional rules for determining the priority of
operations in expressions. (See Chapter 6.) The most important rule,
however, is

When in doubt, parenthesize!

That is, use parentheses in your expressions whenever you are unsure of
the precise priority rules specified by the PL/I language.

FLOW OF CONTROL WITH IF, DO, AND GO TO

Normally, PL/I executes the statements of your program in the order in
which they appear. That is, PL/I executes one statement, then the
statement following it, and then the statament following that.
However, you may use the IF, DO, and GO TO statements to modify the
order of execution of the statements of your program.

Conditional Execution With the IF Statement

Consider the following program, which inputs two data values and prints
the larger of the two input values:

LARGER: PROC OPTIONS(MAIN) ;
GET LIST(FIRST, SECOND):
IF FIRST > SECOND THEN HIGH = FIRST;
ELSE HIGH = SECOND;
PUT LIST(HIGH) ;
END LARGER;:

4-13 First Edition

PL/I Reference Guide

This program contains a new kind of statement, the IF statement. The
particular IF statement in this program says the following: if the
value of the variable FIRST is greater than the value of the variable
SECOND, then set the variable HIGH equal to FIRST; otherwise, set HIGH
to the value of SECOND. Therefore, HIGH is set to equal the larger of
the two input values. The PUT statement then prints out the larger
value. The simplest syntax of the IF statement is as follows:

IF logical—-expression THEN statement;
ELSE statement;

The logical expression is usually a simple comparison (such as
FIRST > SEOOND in the example above), but may be more ocomplicated, as
described below.

The syntax shown above uses two additional statements with the IF
statement., The statement following the keyword THEN in the above
syntax is called the THEN clause of the IF statement. The one
following the keyword ELSE is called the ELSE clause,

PL/I executes the IF statement by evaluating the logical expression to
determine whether it is true or false. If it is true, PL/I executes
the THEN clause. If the logical expression is false, PL/I executes the
ELSE clause,

You may, if you wish, omit the ELSE clause of the IF statement, using
the following syntax:

IF logical-expression THEN statement;

In this case, PL/I evaluates the logical expression, as before. If it
is true, PL/I executes the THEN clause. If it is falee, PL/I continues
sequential execution with the next statement.

Using a DO Group for the THEN or ELSE Clause of the IF Statement

Consider the following program segment:

IF X > 0 THEN DO;

FLAG = 1;
PUT LIST('POSITIVE');
END;
ELSE DO;
FLAG = 0
PUT LIST('NEGATIVE OR ZERO');
END;

First Edition 4-14

THE PL/I LANGUAGE

This example illustrates how your THEN clause or ELSE clause can
include more than just a single PL/I statament. 1In this example, if
the variable X is greater than 0, PL/I sets FLAG to 1 and prints the
word POSITIVE; otherwise, PL/I sets FLAG to 0 and prints the words
NEGATIVE OR ZERO.

In fact, your THEN or ELSE clause may contain as many statements as you
wish. The demarcation structure you use is a DO/END group, a group of
statements beginning with a DO statement and ending with an END
statement. Other uses of DO/END groups are discussed later in this
chapter.

Logical Expressions

A logical expression is a special kind of PL/I expression that is
either true or false. For example, in the IF statement illustrated in
the sample program above, FIRST > SEOOND is a logical expression that
is true if the value of the variable FIRST is larger than the value of
SECOND, and is false otherwise. In the next example above, X > 0 is
true if X is positive, and false if X is 0 or negative,

The simplest form of a logical expression is a comparison. The logical
expression FIRST > SECOND is a comparison, using the ocomparison
operator >, which stands for greater than. The following table lists
all PL/I comparison operators:

Comparison
Operator Meaning
> Greater than
< Less than
= Equal
<= Less than or equal
>= Greater than or equal
= Not equal
~> Not greater than (same as <=)
< Not less than (same as >=)

Note

In the Prime EDITOR, the operator NOT must be entered as "".

4-15 First Edition

PL/I Reference Guide

For example, the statement

IFX+Y<=R*S THEN ...;
ELSE o0}

is executed as follows: if X plus Y is less than or equal to R * S,
PL/I executes the THEN clause; otherwise, PL/I executes the ELSE
clause.

A logical expression may also combine comparisons with the logical
operators & for AND and | or ! for OR. Consider, for example, this
statement:

IF 3 <A &A<CD5) | A=0 T™EN X = 15;

The statement tests whether A is either between 3 and 5 or equal to 0.
If the result of this test is true, PL/I sets the value of X to 15.

Aword of warning: you may wish to test whether the value of X is
between 0 and 10 by using a comparison like the following:

IF 0 < X < 10 THEN ...;

The problem with this statement is that although it is a legal PL/I
statement, it does something quite different from what you expect. (In
fact, the result of evaluating 0 < X < 10 is always true. The full
rules for PL/I evaluation of expressions like this are in Chapter 5.)
Therefore, PL/I does not tell you that this is an illegal statement,
since it is in fact legal, The correct way to test whether X is
between 0 and 10 is to use the following:

IF0<KX & X<10 THEN ...

For introductory purposes, we have been using the words logical
expression somewhat imprecisely in this section. Chapter 5 defines a
Togical expression as a PL/I expression that has the BIT data type. In
fact, since PL/I can convert any numeric value to the BIT data type,
you may theoretically use any numeric expression as a logical
expression., However, most programmers will find these conversion rules
somewhat arcane, and so you should restrict your logical expressions to
simple comparisons and combinations of comparisons using & and |.

First Edition 4-16

THE PL/I LANGUAGE

The DO/END Group

In the discussion of the IF statement above, you saw how to use a
DO/END group to permit the THEN or ELSE clause to contain more than one
statement., One of the fundamental purposes of the DO/END group is to
allow you to define a group of statements to be used as a single unit.

By using a different form of the DO statement, you can use PL/I's
looping capability. This capability is similar to that provided by the
DO statement in FORTRAN, the FOR statement in BASIC, or the PERFORM
statement in COBOL. 'The looping capability is discussed in the next
few sections, and in full detail in Chapter 10.

Each DO statement, of whatever format, begins a group of statements to
be treated as a unit. For each DO statement in your program there must
be a matching END statement that terminates the DO/END group. If the
DO statement has no options (and this is the only type of DO statement
we have seen so far), the DO/END group is noniterative, meaning that
the statements in the group are executed precisely once. If the DO
statement has options (which are described below), the group is
iterative, since the options ocontrol the number of times the group
executes, or, in PL/I terminology, the number of iterations of the
loop.

The DO WHILE Statement

The following is a program that inputs one or more data values,
stopping when the value 0 is reached, and prints out their sum:

SUMER: PROC OPTIONS(MAIN) ;

SUM = 0;

GET LIST(X);
DO WHILE (X "=
SUM = SUM + X;
GET LIST(X);
END;

PUT LIST(SUM) ;

END SUMER;

0);

This program contains a DO/END group that begins with the following
statement:

DO WHILE(X "= 0);

This statement says, execute the statement inside the DO/END group over
and over, as long as X does not equal 0.

4-17 First Edition

PL/I Reference Guide

The syntax for a group of this type is as follows:

DO WHILE (logical-expression);

END;

The logical expression has the same form in the DO WHILE statement as
it does for the IF statement described before. PL/I executes all the
statements in the group over and over, as long as the logical
expression is true.

Be aware that so-called zero-trip DO loops are possible in PL/I. If
the logical expression is false the first time that it is tested, PL/I
does not execute the statements inside the group at all; execution
continues immediately with the statement following the END statement.
In the SUMER example shiown above, if the first input value for X is 0,
the statements inside the group does not execute, and execution
continues immediately with the PUT statement following the END
statement, which prints the value 0 for SUM.

DO/END Groups with Index Variables

Users of other programming languages may be more comfortable with the
form of the DO statement illustrated in the following program segment:

DO K =5 TO 20;
PUT LIST(K);
END;

This program segment prints out the integers 5, 6, 7; «.., 20. The DO
statement says, execute all the statements in the DO group 16 times,
The first time, let K equal 5; the second time, let K equal 6; and so
forth, until the sixteenth time, when K equals 20.

The variable K is called the index variable of the DO/END group. For
each iteration of the statements inside the group, PL/I first changes
the value of the index variable in the manner dictated by the options
of the DO statement. The options of the DO statement also determine
the number of iterations. In the example above, the DO statement says
that K is to have the value 5 for the first iteration, that the value
of K is to be increased by one for each subsequent iteration, and that
the loop is to terminate when the value of K exceeds 20.

There are many forms of DO statements with an index variable. See
Chapter 10 for details. This introductory section shows some examples
illustrating the most useful options of the DO statement with an index.

First Edition 4-18

TE PL/I LANGUAGE

In the example above, PL/I increments K by 1 for each repetition of the
loop. If you wish to increment by a different value, use the BY

option. For example, the loop

PO K =5 TO 20 BY 3;
PUT LIST(K):
END;

prints the values 5, 8, 11, 14, 17, 20. The TO and BY clauses may go
in either order. Therefore, the loop

DO K=5 BY 3 TO 20;
PUT LIST(K);
END;

is equivalent.

Any of the three values shown in the DO statement in the last example
may be an arbitrary PL/I expression. For example, a DO group like

DO COUNT = X + 3 TO 4 BY U + Z;

END;

is legal.

A final useful form permits you to make a list of the values that you
wish the index variable to take. For example, the program segment

mVALUE = 8, 12' —3' 4, 15, 2;
PUT LIST(VALUE);
END;

prints the values 8, 12, -3, 4, 15, and 2. FEach of the specifications
in the list may contain a TO and BY option. For example, the loop

DO VALUE = 3 TO 5, 8 TO 10, 15 T0 21 BY 2;
PUT LIST(VALUE);
END;

prints 3, 4, 5, 8, 9, 10, 15, 17, 19, and 21.

4-19 First Edition

PL/I Reference Guide

There are further examples of these DO statements later in this
section, especially in the discussion of arrays. For complete details,
see Chapter 10.

Named DO/END Groups

Recall that each PL/I program begins with a PROCEDURE statement
specifying the name of your program and ends with an END statement
specifying the same name., The syntax is

name: PROC OPTIONS(MAIN) ;

v0 e

END name;

The END statement matches the PROCEDURE statement. The name specified
in the MDD statement emphasizes that fact, since it is the same name
that appears in the PROCEDURE statement.

Just as you use an END statement to match a PROCEDURE statement, you
must also use it to match a DO statement. ‘There may be many DO
statements in your program. Each must have a corresponding END
statement, It is even possible to have one DO/END group nested inside
another group.

In order to make your program easier to understand, you may wish to
name your DO/END groups in the same way that you name your entire
program. For example, the SUMER program illustrated in the section on
The DO WHILE Statement could be changed as follows:

SUMER: PROCEDURE OPTIONS (MAIN) ;
SUM = 0;
GET LIST(X);
INLOOP: DO WHILE(X "=
SUM = SUM + X;
GET LIST(X):
END INLOOP;
PUT LIST(SUM):
END SUMER;

0);

In this revised example, the DO statement has a statement name of
INLOOP, This same name is referenced in the ocorresponding END
statement.

First Edition 4-20

THE PL/I LANGUAGE

Multiple Closure END Statements

In certain circumstances, you may use a single END statement to
terminate several DO statements simultaneously. A statement of the
form

END name;

closes off all unclosed nested DO groups back to the one whose
statement name is given in the END statement. For example, consider
the following:

LOOPl: DO ...y
m...;
DO...;

END LOOP1;

The END statement in this example closes off all three nested DO
groups.

Statement Labels and the GO TO Statement

You have already seen how you can name a program or a DO/END group by
putting a statement name on the PROCEDURE or IO statement,
respectively. The syntax is

name: PROC OPTIONS(MAIN);
for the PROCEDURE statement, and
name: DO options;

for the DO statement, In either case, the name is an identifier of
your choice for the name of your program or of the group, respectively.

4-21 First Edition

PL/I Reference Guide

You may use a similar syntax to provide a statement name, or statement
label, for any executable statement, and then you may use the GO TO
statement to cause your program to transfer control to the labelled
statement., The syntax of the GO TO statement is either of the
following:

GO TO name;
or
GOTO name;
where the name is the statement label of a statement.
You have previously studied the SUMER program, which inputs data values
until the value =zero is read as input, and then prints the sum of the

input values. The original program of this name was written using DO
WHILE. To write the same program using GO TO, type

SUMER: PROC OPTIONS(MAIN)
SUM = 0;
IOOP: GET LIST(X);

IF X = 0 THEN GO TO PUT _STMT;
SUM = SUM + X;
GC TO LOOP;
PUT _STMI': PUT LIST(SUM):
END SUMER;

Although this program works the same as the program using DO WHILE,
most practitioners of structured-programming techniques f£ind the DO
WHILE form of the program to be far clearer and more maintainable than
the above version using the GO TO statement.

NUMERIC DATA TYPES

In all the examples so far in this section, the constants and variables
always had integer values. If you wish to use noninteger data, you
must take some special precautions. For full details, see Chapter 5.

First Edition 4-22

THE PL/I LANGUAGE

DECLARE Statement for FIXED Integer Data Types

In the discussion of DO WHILE, a program called SUMER was used as an
example. Consider the following modification of that program example:

SUMER: PROC OPTIONS(MAIN) ;

DECLARE X FIXED DECIMAL(3);

DECLARE SUM FIXED DECIMAL(5):

SUM = 0;

GET LIST(X):
DO WHILE(X "=
SUM = SUM + X;
GET LIST(X);
END;

PUT LIST(SUM);

END SUMER;

0):

This program contains two DECLARE statements, which define the
respective data types of the variables X and SUM; that is, they
specify the type of data that these variables can accommodate.

The first of the DECLARE statements is as follows:
DECLARE X FIXED DECIMAL(3) ;

This statement specifies that the variable X is to have certain data
type attributes, FIXED DECIMAL(3), which have the following
significance:

e The variable X is given the FIXED attribute. This means that
the scale of the data type of X is FIXED. (The other possible
scale data type attribute is FLOAT; this is discussed later.)
For now, a scale of FIXED means that X can only have integer
values, but this is modified in the section Noninteger FIXED

@ The variable X is given the DECIMAL attribute. This means that
the base of the data type of X is DECIMAL. (The other possible
base data type is BINARY; this is discussed in Chapter 5.) A
base of DECIMAL means that PIL/I uses internal data
representation for X with decimal digits,

@ The element 3, following DECIMAL in the declaration, specifies
that the precision or mnumber of digits in the data type of X
is 3,

4-23 Pirst Edition

PL/I Reference Guide

Putting all the above together, you see that X is given the data type
FIXED DECIMAL(3), which means the following: X can have an integer
value containing three decimal digits. Such values may be either
positive or negative. Therefore, X can have any integer value greater
than or equal to =999 and less than or equal to +999., Typical values
that X can have are as follows:

-876 +000
-423 +005
~029 +042
-005 +259

Notice that, in the above list of values that X can have, each number
is shown with all three digits and the sign, in order to emphasize that
the data type is FIXED DECIMAL(3). Similar representations are used
elsewhere in this quide to emphasize the data type of the numeric
value,

In the current case, the variable X may have any integer value
containing three decimal digits. When your program assigns a different
kind of value to X, as in the statement

X = 28,9;

then PL/I truncates the value being assigned, and throws away the
fractional part. The result is that X is assigned the value +028. On
the other hand, it is illegal to assign to X a value such as 1842,
which is larger than +999.

In the actual program shown at the beginning of this section, the
variable X is assigned a value by means of a GET LIST statement, rather
than by means of an assignment statement. However, the rules are the
same, When PL/I reaches the GET LIST statement, execution stops and
PL/I waits for you to type the input value of X on your terminal. If
your typed input value is fractiomal, PL/I truncates it to an integer.
For example, if you type

28.9

then PL/I would assign to X the value +028. An input value larger than
+999 or smaller than -999 would be illegal.

The variable SUM in the sample program is declared with the following
statement:

DECLARE SUM FIXED DECIMAL(5) ;

First Edition 4-24

THE PL/I LANGUAGE

Therefore, the variable SUM has the attributes FIXED DECIMAL(5), which
differ from the data type attributes for X only in that the precision
or number of digits is 5 instead of 3. The result is that the variable
SUM can have any integer value between -99999 and +99999, inclusive.

In view of these declarations, the above program operates properly only

if the input values are between -999 and +999, and if the sum never
exceeds five digits. Any noninteger input values are truncated.

Default Data Types

Every variable of your program has a data type, whether you use a
DECLARE statement for the variable or not. If you do not declare the
variable, PL/I gives it the default attributes FIXED BINARY (15). The
base of this data type is BINARY (rather than decimal), and so a
variable with default attributes can accommodate any integer value with
up to 15 binary digits (or bits). Therefore, such a variable can have
any value between -32768 and +32767, inclusive.

Noninteger FIXED Data Types

Up to now, it has been implied that a variable whose data type is FIXED
can only take on integer data values. That statement was not entirely
true. Consider, for example, the following declaration:

DECLARE SALARY FIXED DECIMAL(7, 2):

For this declaration, the data type of the variable SALARY has a scale
of FIXED, a base of DECIMAL, and a precision of (7, 2). The precision
contains two integers, a number-of-digits value of 7, and a
scale—factor value of 2. This means that SALARY can take on any value
that can be represented in seven decimal digits, with two digits
following the decimal point. Therefore, SALARY can have, for example,
any of the following values:

+87429.78 +00000.00
+00723.00 -00045.16
+00005.10 -97423.,90

In fact, SALARY can have any value in this format from -99999.99 to
+99999.99.

4-25 First Edition

PL/I Reference Guide

Similarly, you can declare a variable to have other precisions and
scale factors. For example, if you declare

DECLARE VR FIXED DECIMAL(10, 3);

then the variable VR can have any value from =-9999999.999 to
+9999999.999 that can be represented in ten decimal digits, with three
digits following the decimal point. The maximum precision is fourteen
digits.

FLOAT Data Typres

If the data type of a numerical variable has a scale of FIXED, the
decimal point is always in a fixed position with respect to the digits
in the value. For example, the variable SALARY described above can
have a value with seven decimal digits, and the decimal point is always
in a fixed position, two digits from the end.

If the data type of a numeric variable has a scale of FLOAT rather than
FIXED, the position of the decimal point floats with respect to the
digit in the variable. For example, <consider the following
declaration:

DECLARE RANGE FLOAT DECIMAL(5);

The value of the variable RANGE can have up to five significant digits,
and the decimal point can be in any position with respect to those
digits. Therefore, RANGE can have such values as +8.7942, +1142.3, or
-.11015.

In this manual, to emphasize that a value is a FLOAT value, that value
is written in a special notatiomal form oorresponding to scientific
notation. The idea behind this format is that a FLOAT value really has
two parts: the significant digits in the value, and the position of
the decimal point with respect to those digits.

For example, when we write

2.84E5

we are representing the value 2.84X1075, which equals 284000. The
format 2.84E5 emphasizes the fact that the value has three significant
digits. The value could also be written

284E3

First Edition 4-26

THE PL/I LANGUAGE

with the same effect. The value to the right of the letter E specifies
the number of places to move the decimal point to the richt., If the
value following the letter E is negative, the decimal point is moved to
the left. ‘Iherefore, the number

284E-3

has the same value as .284.

Returning to the declaration of the FLOAT variable RANGE shown above,
RANGE may have any FLOAT value containing five significant digits.
Thus, for example, RANGE can have any of the following values:

+8.9742E0
+4,2675E20
~-4,7426E-15
-.87200E-2
+00000EO

The maximum precision is fourteen digits.,

Conversions Among Numeric Variables

PL/I supports many data types, and it follows the general rule that
when you use a variable or expression of one data type in an
enviroment that requires a different data type, PL/I converts the
value of the variable or expression to the correct data type.

The example of this concept that is easiest to understand is in the
assignment statement. Consider the following program segment:

DECLARE X FLOAT DECIMAL(8);
DECLARE K FIXED DECIMAL(5) ;
K = X;

X =K;

The first assigmment statement, K = X, assigns a FLOAT value to a FIXED
variable., PL/I converts the FLOAT value to FIXED, truncating a
noninteger value, if necessary. The second assigmment statement,
X = K, assigns a FIXED value to a FLOAT variable. Here the conversion
does not require truncation or other change of value, but it does
require a change to the internal representation of the value from a
fixed-point representation to a floating-point representation.

4-27 First Edition

PL/I Reference Guide

Another more complicated case is a statement like the following:
K=X+K;

where you assume that the declarations are the same as above. Because
PL/I cannot directly compute the sum of a FLOAT and FIXED value, it
converts the value of K from FIXED to FLOAT, storing the result of the
conversion in a temporary location. PL/I then adds the two FLOAT
values to get a FLOAT sum, comwverts this result to FIXED, and assigns
the result of this conversion to the variable K.

These examples illustrate the following rules:

e If an expression involves both FIXED and FLOAT values, FL/I
converts the FIXED value to FLOAT in order to compute the value
of the expression.

e If the right-hand side of an assignment statement has a
different data type from the variable on the left-hand side,
PL/I converts the value of the richt-hand side to the data type
of the variable on the left-hand side before doing the
assignment.

These two rules are simplifications of a collection of fairly

complicated rules involving expression evaluation and conversion. See
Chapter 6 for the full set of these rules.

BUILT-IN FUNCTIONS

PL/I's built-in functions give you additional capabilities not provided
by the ordinary operators (+, -, *, etc.). For example, the statement

A=B+ C;

uses the + operator to compute the sum of the values of B and C, and
stores the results in A, But there is no PL/I operator to compute the
maximum of two values. However, you can use the built-in function MAX
as follows:

A = MAX(B, C);
This statement computes the maximum of B and C and stores the result in

A,

First Edition 4-28

THE PL/I LANGUAGE

When discussing PL/I built-in functions, some special terminology is
used:

e The arguments of the built-in functions are the values enclosed
in parentheses following the name of the built-in function. For
example, in the last assignment statement, the arguments of the
MAX built—-in function are B and C.

@ A reference to a built-in function is the use of that built-in
function in a statement., For example, in the last assignment
statement, MAX(B, C) is a reference to the MAX built-in
function.

e The word returns is used to describe the result that PL/I
computes for the function. For example, you could say that the
MAX built—-in function returns a value equal to the maximum of
the values of its arguments.

The argument to a built-in function may be any PL/I expression. For
example, consider the following statement:

A=MX(B*C, X+Y+ 5);

This statement is legal. PL/I evaluates the expressions B * C and
X+ Y -5and returns the larger of these two values; the value
returned is then assigned to A.

You may use a built-in function within any PL/I expression, in any
statement. Consider, for example, the following:

A =3+ MAX(B * C, X) + MBX(Q, R);

This is an assigmment statement whose right-hand side is an expression
containing two different references to the MAX built-in function. PL/I
adds 3 to the sum of the respective values returned by these two
references to MAX, and assigns the result of that computation to the
variable A, ,

In some cases, the PL/I built-in functions are simply conveniences,
For example,

A = MAX(B, C);

4-29 First Edition

PL/I Reference Guide

is a convenient method for assigning to A the maximum of the values of
B and C. However, the statements

IF B > C THEN A = B;
FLSE A = C;

do the same thing by using an IF statement rather than the MAX built-in
function.
In the following sections, some of the most commonly used PL/I built-in

functions discussed. For full details on these built—-in functions, see
Chapter 14,

Arithmetic Built-in Functions

The PL/I arithmetic built-in functions perform simple arithmetic
computations.

BBS: The ABS huilt-in function returns the absolute value of its
arqument., Consider the following:

PUT LIST(ABS(X));

This statement prints the absolute value of X. The absolute value of a
number is that number with the sign made positive. Therefore, ABS(5)
returns 5, and ABS(-5) also returns 5. The above PUT statement could
have been replaced with

IF X >= 0 THEN PUT LIST(X);
ELSE PUT LIST(-X);

which does exactly the same thing.

TRUNC, CEIL, FLOOR: There are three related huilt-in functions, TRUNC,
CEIL, and FLOOR, which take a (possibly) noninteger argument and return
an integer value., These three functions operate as follows on a
noninteger argument:

® FLOOR of a noninteger argqument returns the next lower integer.
For example, FLOOR(2.7) returns the value 2, and FLOOR(-2.7)
returns -3,

First Edition 4-30

THE PL/I LANGUAGE

e CEIL of a noninteger argument returns the next higher integer.
For example, CEIL(2.7) returns the value 3, and CEIL(-2.7)
returns -2,

@ TRUNC of a noninteger argument returns the integer obtained by
truncating the argqument., For example, TRUNC(2.7) returns the
value 2, and TRUNC(-2.7) returns -2.

All three functions leave an integer argument unchanged. For example,
FLOOR(5) , CEIL(5), and TRUNC(5) all return the value 5.

Notice that FLOOR and TRUNC return the same value for positive
arguments, and CEIL and TRUNC return the same values for negative
arguments.

MOD: The MDD built-in function takes two arguments and returns the
remainder that results when the first argument is divided by the
second. For example, MOD(17, 5) returns the value 2, since 17 divided
by 5 has a quotient of 3 and a remainder of 2. One use of M)D is to
determine whether an integer value is odd or even, For example,

IF MOD(K, 2) = 0 THEN PUT LIST('EVEN'):;
ELSE PUT LIST('ODD');

prints the word EVEN or ODD, depending upon whether the value of K is
even or odd.

MAX, MIN: You saw an example of the MAX built-in function above. The
two related functions, MAX and MIN, return the maximum and minimum,
respectively, of the values of their arguments, Either may have two or
more arquments., For example, the statement

A = MAX(B, C, D);

assigns to A the maximum of the values of B, C, and D. As a further
example, consider

R=MIN(Q*S, 0O, S+ T, X);

which assigns to R the minimum of the four values shown in the
arguments,

4-31 First Edition

PL/I Reference Guide

Mathematical Built—in Functions

These built-in functions are useful in mathematical applications. 1In
most cases, PL/I uses a polynomial approximation to compute the value
returned by the function,

The SQRT built-in function returns the square root of the argument, the
nunber that, when multiplied by itself, results in the value of the
argument. Therefore, SQRT(25) returns 5, since 5 * 5= 25. SQRT
(2.000) returns 1.414.

There are two sets of trigonometric built-in functions, one in which
the angle is measured in degrees, and one in which the angle is
measured in radians.

SIN(X) returns the sine of X, where X is measured in radians, and
SIND(X) returns the sine of X, where X is measured in degrees. For
example, SIND(90) returns the value 1, while SIN(3.14159/2) returns the
value 1. Similarly, QS and COSD compute the cosine of the arqument
measured in radians and degrees, respectively, and TAN and TAND compute
the tangent.

The reference EXP(x) computes e"x where e is the transcendental number
approximately equal to 2.71828.

There are three logarithm functions, I0OG, I0Gl0, and LOG2. IOG
computes the natural logarithm (logarithm to base e) of the argument.
I0G10 computes the common logarithm (logarithm to base 10) of the
argument, and LOG2 computes the logarithm to base 2.

There are a number of other mathematical built-in functions. (See
Chapter 14.)

CHARACTER STRING DATA TYPE

Most variables have a numeric data type. That is, the value of the
variable is a numeric value. The type of numeric value (for example,
whether it must be an integer) depends upon the data type of the
variable,

This section discusses a different kind of data type, the CHARACTER
data type. The value of a CHARACTER variable is not a number, but
rather a string of characters.

The following paragraphs explain generally how this works. For a full
description of the CHARACTER data type, see Chapter 5.

First Edition 4-32

TE PL/I LANGUAGE

The CHARACTER String Declaration

Consider the following PL/I statements:

DECLARE C CHARACTER(5) ;

= 'SMITH';
PUT LIST(C);

The first of these statements is a DECLARE statement that specifies
that the variable C is to have the CHARACTER data type attribute, and
that the value of C is to be a string of five Ccharacters. 'The
assignment statement in the example assigns to C the characters
'SMITH'., The PUT statement prints

SMITH

since these are the five characters in the string value of C.
The value of C is always a string of precisely five characters, neither
more nor less. On the other hand, if you declare CV as follows:

DECLARE CV CHARACTER(5) VARYING;

then the value of the variable CV can have five or fewer characters.

If you assign to either C or CV a string of length greater than five
characters, PL/I truncates the string before assigning it. Consider,
for example, the following assignments:

' JOHNSON' ;
' JOHNSON' ;

nou

C
cv

In each of these cases, the string being assigned is too long for the
variable it is being assigned to, and so PL/I assigns to each of C and
CV the truncated string value 'JCHNS'.

The difference between C and CV is illustrated when you assign a string
shorter than five characters. Consider, for example, these statements:

'ABC';
'ABC';

C
v

4-33 First Edition

PL./I Reference Guide

These two assigmment statements are similar, hbut the results are
different, since C is CHARACTER and CV is CHARACTER VARYING, PL/I
assigns to C the value 'ABCbb', where b is a blank character; PL/I
pads the string 'ABC' with blanks to get a total padded length of five,
the length required for assigment to C. On the other hand, PL/I
assigns to CV the string 'ZBC'; no padding is done because CV has the
VARYING attribute, and can have a length of five or less. Therefore,
the length of C is always five, since PL/I pads a short string value
with blank characters to a length of five, but the value of CV can have
any length of five or less.

CHARACTER String Constants

A string of characters enclosed between apostrophes is called a
CHARACTER string constant. Consider, for example, the following two
statements:

PUT LIST('THE ANSAHER IS', X);
CV = '"JCGHNSON';

Each of these statements oontains a CHARACTER string constant. The
first contains 'THE ANSWER IS', and the second contains 'JOHNSON'.

Normally, you can put any characters you want between the apostrophes,
so that they will be in the CHARACTER string., However, special
problems arise when you wish to put an apostrophe itself into the

CHARACTER string constant. If you wish to & this, use two
apostrophes. Consider, for example, the following statement:

PUT LIST('I DON''T KNOW.');
This PUT statement prints
I DON'T KNOW.
The two apostrophes between the N and the T in the CHARACTER string

constant are printed as a single apostrophe.

There is a special C(HARACTER string constant called the null string.
For example, consider these statements:

DECLARE CV (HARACTER(5) VARYING;

7 = ll;

First Edition 4-34

T™E PL/I LANGUAGE

The assignment statement assigns to CV the null string, a string
containing no characters at all., The result is that CV has a value
whose length is 0.

GET LIST With CHARACTER String Variables

You may use GET LIST to input the value of a CHARACTER string variable.
For example, if WORD is a CHARACTER string variable, the statement

GET LIST (WORD) ;

inputs a value for the variable WORD from your terminal. When
execution of your program stops to wait for you to type an input value
for the GET statement, type any CHARACTER string constant, followed by
a blank or comma, as your input value. For example, if you type

TURKEY

then that CHARACTER string value is assigned to WORD.

OPERATIONS ON CHARACTER STRINGS

You can perform operations on CHARACTER string data, Jjust as you
perform operations on numeric data. The operations on numeric data are
usually addition, subtraction, multiplication, and division. For
string data, the operations do such things as pulling strlngs apart and
putting them together,

For numeric operations, PL/I uses the commonly accepted symbols +, —,

*, /, and ** to represent the operations. Other operations on
character strings are described below,

4-35 First Edition

PL/I Reference Guide

The Concatenation Operator

The CHARACTER string operation for oconcatenation can be represented
either by the symbol || or the symbol !!., For example, consider the
following statements:

DECLARE Cl1 CHARACTER(20) VARYING;
DECLARE C2 CHARACTER(4);
DECLARE C3 CHARACTER(10) VARYING;

Cl = 'QRS';
C2 = 'ABCD';
C3=Cl |] C2;

The last assignment statement uses the concatenation operator. PL/I
concatenates the two string values by sticking them together end to
end. The result is that C3 is assigned the value 'QRSABCD'.

CHARACTER String Comparisons

Just as you may compare two rumbers to determine which is greater, you
may also compare two CHARACTER string values. See Chapter 6 for the
precise meaning of CHARACTER string comparisons.

For the purposes of this introductory section, CHARACTER string
comparisons are samewhat like comparing two words for their relative
position in alphabetical order. That is, the word ANT comes before the
word ANVIL in a dictiomary, and so, PL/I considers the CHARACTER string
'ANT' to be less than the CHARACTER string 'ANVIL'.

The preceding section contained a program segment example illustrating
the concatenation operator. The following statements use the same
variables:

IF C1 < C2 THEN X = 1;
ELSE X = 2;

Recall that Cl = 'QORS' and C2 = 'BBCD'. Since QRS comes after ABCD in
alphabetical order, the comparison Cl < C2 is false, so PL/I sets X
equal to 2.

The above description of CHARACTER string comparisons is greatly
simplified, In fact, CHARACTER strings may contain more than letters;
they may also contain digits, blanks, and punctuation symbols, for
example. The complete set of characters that you may use is called the
ASCII collating sequence. (See Appendix B.) For a full set of rules
for comparing strings of characters, see Chapter 6.

First Edition 436

THE PL/I LANGUAGE

CHARACTER String Built—in Functions

Most CHARACTER string operations are performed by means of built-in
functions rather than operators. Therefore, to manipulate CHARACTER
string values, we must use CHARACTER string built—in functions.

The LENGTH built-in function takes a CHARACTER string argument and then
returns the length of the argument. The length of the string is the
number of characters in the string,

Several of the built-in functions use the concept of the position of a
substring of a string., For example, start with the string 'JCHNSON'.
Then 'CHN' is a substring starting in position 2, since it starts at
the second character position of 'JOHNSON'. Similarly, 'JCHN' is a
substring in position 1. On the other hand, 'J0S' is not a substring
of 'JOHNSON', since the characters of 'JOS' do not appear in
consecutive positions in "JCHNSCON'.

The built-in function reference
SUBSTR(c, m, n)

returns the substring of string ¢ starting at position m and going for
nh characters. For example, the reference

SUBSTR ("JOHNSON', 4, 3)
returns the substring 'NSO'. Similarly, the reference
SUBSTR ('JCGHNSON', 7, 1)

returns 'N',

As an example of the use of these functions, consider the following
PL/I program:

SPLIT: PROC OPTIONS(MAIN);
DECLARE STR CHARACTER(100) VARYING:
GET LIST(STR);
DO FOSITION = 1 TO LENGTH (STR);
PUT SKIP LIST(SUBSTR(STR, POSITION, 1));
END;
END SPLIT;

4-37 First Edition

PL/I Reference Guide

This program inputs a CHARACTER string, and prints out the string, one
character per line of output. For example, if the input is 'ABC', the
output is

QW

This program works as follows:

e The DECLARE statement specifies that STR is a CHARACTER string
variable whose maximum length is 100.

e The GET statement accepts a CHARACTER string value from your
terminal, and stores it into the variable STR.

e The DO statement uses an index variable called POSITION, which
varies from 1 to the number of characters in the input string,
as determined by use of the built-in function LENGTH.
Therefore, there is one execution of the locp for each character
in the input string.

e The PUT string prints out a single character on a new line. The
SKIP option in the PUT statement specifies that output is to be
ona new line. 'The reference to SUBSTR(STR, FPOSITION, 1)
returns a string containing the single character in the position
determined by the variable POSITION.

The net result is that the DO loop prints each character of the input
string on a new line of output.

The SUBSTR built-in function may also be used with only two arguments,
rather than three. A reference to N

SUBSTR(c, m)

returns the substring of string c starting at positionm and going to
the end of string c. For example, a reference to

SUBSTR (' JOHNSON' , 5)
returns the substring 'SON'.
You may use the INDEX built-in function to perform string searches.
The reference

INDEX(c, s)

First Edition 4-38

THE PL/I LANGUAGE

returns an integer value equal to the position of the first occurrence
of s as a substring of c. If s is not a substring of ¢, the built-in
function reference returns 0. For example, the reference

INDEX ('JCHNSON', 'HN')

returns the integer value 3, since 'HN' is a substring of 'JOHNSON'
starting at position 3. The reference

INDEX ("JCHNSON', 'N')

returns the integer value 4, since the first occurrence of 'N' in
'JOHNSON' is at position 4. On the other hand, the reference

INDEX (' JOHNSCN' , 'JOS')

returns the integer value 0, since 'JOS' is not a substring of
' JOHNSON'! .

Here is an example of a program that uses several of these built-in
functions:

WORDS: PROC OPTIONS(MAIN);

DECLARE SENTENCE CHARACTER(200) VARYING;

GET LIST(SENTENCE) ;

K = INDEX(SENTENCE, ' ');
DO WHILE(K > 0);
PUT SKIP LIST(SUBSTR(SENTENCE, 1, K - 1));
SENTENCE = SUBSTR (SENTENCE, K + 1);
K = INDEX(SENTENCE, ' "):
END;

PUT SKIP LIST(SENTENCE) ;

END WORDS ;

This program inputs a CHARACTER string value that is interpreted as a
sentence. The program then prints the sentence out, one word per line
of output. For example, if the input string is

THIS IS A STRING.,

4-39 First Edition

PL/I Reference Guide

then the program prints

THIS
IS

A

STRING.

The program assumes that a single blank separates each adjacent pair of
words in the sentence. The program works as follows:

1.

2.

The GET statement inputs a CHARACTER string into the string
variable SENTENCE.

The assignment statement
K = INDEX(SENTENCE, ' ');

computes the position of the first blank character in the
variable SENTENCE, and then assigns the result to the integer
variable K, If SENTENCE contains no blank characters, K is set
to 0. Notice that this statement appears in two places, Jjust
before the DO statement and just before the END statement that
terminates the DO group, so that K has a valid value each time
the loop is iterated.

The DO statement specifies that looping should continue as long
as K is positive; that is, looping continues as long as
SENTENCE contains a blank character.

The following PUT statement appears in the loop:
PUT SKIP LIST(SUBSTR(SENTENCE, 1, K - 1));

This PUT statement prints the first word in the variable
SENTENCE. It does this by printing the substring of SENTENCE
containing all characters up to, but not including, the £first
blank character in SENTENCE. For further explanation, see the
examples below.

First Edition 4-40

THE PL/I LANGUAGE

5. The next assigmment statement in the loop,
SENTENCE = SUBSTR(SENTENCE, K + 1);

recomputes the value of the variable SENTENCE by removing the
first word (and the blank following) £rom the front of the
string value of SENTENCE. For further explanation, see the
examples below.

6. The DO group terminates when there are no more blanks in
SENTENCE, which happens when SENTENCE contains a single word.
At that point, the PUT statement just before the end of the
program prints the last word in SENTENCE.

To understand how this program works, consider the following:

K=25

SENTENCE = ‘THIS IS A STRING!

v

SUBSTR (SENTENCE, K + 1)
SUBSTR (SENTENCE, 1, K — 1)

If SENTENCE has the value shown above, K = 5, since the first blank
occurs in the fifth position of SENTENCE. The program then prints the
value of SUBSTR(SENTENCE, 1, K - 1), which is the first word in the
sentence. Then the program recomputes the value of SENTENCE to the
value of SUBSTR(SENTENCE, K + 1), which throws away the first word and
blank of SENTENCE.

4-41 First Edition

PL/I Reference Guide

For the second execution of the loop, you have

o

SENTENCE =‘IS A STRING.
e . g

SUBSTR (SENTENCE, K + 1)
SUBSTR (SENTENCE, 1, K - 1)

After the PUT statement and the recomputation of SENTENCE, you have the
following for the third execution:

SENTENCE = ‘A STRING!
[
SUBSTR (SENTENCE, K + 1)
SUBSTR (SENTENCE, 1, K - 1)

Bfter the end of the third execution, SENTENCE equals 'STRING.', which
contains no blanks; the value of K is 0, and there is no fourth
execution of the loop. The final PUT statement prints out 'STRING.'.

For other string built-in functions, see Chapter 14.

ARRAYS AND STRUCTURES

Up to this point, each variable that has been used in the examples of
this section has been what is called a scalar, meaning that the
variable represents precisely one data value. By using the DECLARE
statement, you may specify that a given variable is to represent many
data values all by itself. Such a variable is called an aggregate,
There are two kinds of PL/I aggregates: arrays and structures.

First Edition 4-42

THE PL/I LANGUAGE

Arrays

What is called an array in the PL/I programming language is called a
dimensioned variable in other programming languages. Consider the
declaration

DECLARE SLOPES (5) FIXED DECIMAL(9);

which specifies that SLOPES is an array of five data values, each of
which is an integer that accommodates nine decimal digits. You may
refer to the five individual data values by means of the following
kinds of references:

SLOPES (1)
SLOPES (2)
SLOPES (3)
SLOPES (4)
SLOPES (5)

Therefore, for example, you could use statements like

SLOPES (3)
SLOPES (2)

15;
SLOPES(3) + 5

to set or fetch the various individual data values of the array SLOPES.
The numbers in parentheses are called subscripts of the array SLOPES.
For example, in the last assignment statement, the first reference to
SLOPES has a subscript of 2, and the second reference has a subscript
of 3.

The main advantage of the use of arrays is that you may use variables
or expressions in the subscripts., Consider, for example, the
statements

DD K=1T1T05;
SLOPES (K) = SLOPES(K) - 1;
END;

which make up a DO loop that decreases each element of the array SLOPES
by one.

4-43 First Edition

PL/I Reference Guide

You may also use a reference to the array SLOPES with no subscript at
all, to refer to all five elements of the array simultaneously. For
example, consider the assigmnment statement

SLOPES = 25;

which assigns the value 25 to each of the five elements of the array
SIOPES. Furthermore, the statement

PUT LIST (SLOPES) ;

prints out all five elements of the array SLOPES.

An array may have any PL/I data type. For example, consider this
DECLARE statement,

DECLARE NAMELIST(50) CHARACTER(10);

which specifies that NAMELIST is to be an array of 50 elements, each of
which contains 10 characters.,

See Chapter 5 for a more detailed discussion of arrays. For methods of
manipulating entire arrays of numbers, see the sections on aggregate
expressions in Chapter 6.

Structures

The second form of aggregate is called a structure. The structure is
similar to the file definition in the (OBCL programming language and to
the RECORD data type in Pascal, but a number of important differences
exist,

When you use a DECLARE statement to declare an array, all elements of
the array must have the same data type. However, the individual data
elements of a structure may have different data types. For example,
consider the following declaration:

DECLARE 1 STUDENT,
2 NAME CHARACTER(20),
2 QUIZ_AVG FIXED DECIMAL (4, 1),
2 EXAM GRADE FIXED DECIMAL(3),
2 LETTER GRADE CHARACTER(1);

First Edition 4-44

THE PL/I LANGUAGE

STULENT is a structure aggregate containing four individual data
elements, each of which has an additional name as well as a data type.
Note that elements of the structure are separated by commas.

You may refer to the individual elements of the structure STUDENT by
means of the following names:

STUDENT . NAME
STUDENT. QUIZ_AVG
STUDENT, EXAM_GRADE
STUDENT, LETTER GRADE

Therefore, for example, you may set or fetch any of the four individual
data elements by using the names as illustrated by the following
statements:

STUDENT. EXAM _GRADE = 83;
- ¥

STUDENT . LETTER_GRADE B';

These two statements set two of the individual data elements in the
structure STUDENT.

If you use the name STUDENT by itself, you are referencing the entire
structure aggregate collectively. For example, the statement

PUT LIST(STUDENT) ;

prints out all four elements of the structure.

Other Aggregate Options

PL/I supports two aggregate types, arrays and structures, However, you
may define aggregates of unlimited complexity by combining arrays and
structures in various ways. For example, you may define an array of
structures, which is an array each of whose elements is a structure;
or you may define a structure whose elements are arrays or other
structures., (See Chapter 5.)

PL/I allows you to manipulate aggregates just as you can manipulate
ordinary scalar variables., For example, under certain circumstances,
you can add an array to a structure and get an array of structures.
(See Chapter 6.)

445 First Edition

PL/I Reference Guide

INPUT/QUTPUT

You have already seen several examples of the GET and PUT statements,
which perform input from and output to your terminal. You may use
different forms of these same statements to perform input/output to
files and devices. For example, the arbitrary statement

PUT LIST(X + Y);
performs output to your temminal, while you might use a statement like
PUT FILE(CUTFILE) LIST(X + Y);

to perform output to another device or file, For a full description of
output to files, see Chapter 11, STREAM INFUT/QUTPUT, and Chapter 12,
RECORD INPUT/CUTPUT.

This section is restricted to simple forms of the PUT and GET statement
to do output only on your terminal.

The PUT LIST Statement

You may use the form
PUT LIST(expression);
or
PUT LIST(expression, expression; ...):
to print the values of one or more expressions on your terminal. Each
expression may be any expression, including one of the following:
@ A number or a variable, For example, the statement

PUT LIST(25, X);

prints the value 25, and then the value of X,

First Edition 4-46

THE PL/I LANGUAGE

@ A CHARACTER string constant. For example, the statement
FUT LIST('END OF PROGRAM');
displays the following output:
END OF PROGRAM
@ An arbitrary PL/I expression. For example, the statement
PUT LIST(A * B + C, Q + SQRT(X));
causes PL/I to evaluate each of the expressions and print their

values.

Before printing the value of each item, PL/I moves to the next of a
collection of predetermined tab stop positions on the output line. 1In
Rev. 19, these are every seventh column, starting with column 4.

The SKIP and PAGE Options

PL/I does not autamatically move to the next line of output until the
current line is filled. Therefore, for example, the two statements

PUT LIST(A)
PUT LIST(B)

H
H
have exactly the same effect as the following single statement:
PUT LIST(A, B):
In both cases, PL/I prints the values of A and B on the same line.
If you wish to print A and B on separate lines, use the following

statements:

POT LIST(B);
PUT SKIP LIST(B);

4-47 First Edition

PL/I Reference Guide

The SKIP option causes PL/I to skip to a new line before printing the
value of B.

You may use any one of the following options in the PUT statement:
e SKIP: Skip to a new line before printing.
e SKIP(n): Skip n lines before printing.

@ DPAGE: Skip to a new page before printing.

The GET LIST Statement

You may use either of the forms
GET LIST(variable);
or
GET LIST(variable, variable, ...);

to input the values of various variables from your terminal. When PL/I
reaches one of these GET statements, execution of your program stops
until you type values for the variables specified.

When you type input to the GET LIST statement, type each input value as
a constant., For example, when your program executes a statement like
GET LIST(A, B, C);

type something like the following as input:

25, 67, 43,

Other PUT and GET Statement Options

In addition to PUT LIST and GET LIST, PL/I provides the following:
e PUT EDIT, which allows formatted output. This is similar to the
formatted output capability provided by the FORTRAN language
PRINT statement and the BASIC language PRINT USING statement.

@ GET EDIT, which provides formatted input.

First Edition 4-48

THE PL/I LANGUAGE

® PUT DATA, used mostly for debugging. PL/I prints out each
variable name with its value,

@ GET DATA, which allows you to specify at execution time which
variables you wish to set on input,

See Chapter 11, STREAM INPUT/QUTPUT, for information on the use of
these options.

REQORD Input/Output

The PUT and GET statements discussed above are part of the STREAM
input/output capability of the PL/I language. When you use these
statements, PL/I treats the external file or device as a stream of
characters and generally ignores boundaries between records. For a
description of the features of STREAM input/output, see Chapter 11.

PL/I provides an additional set of input/output statements, called
RECORD input/output. An example of a RECORD input/output statement is

READ FILE(TAPE) INTO(S):

which could be used to read a tape record into a structure S. For a
description of RECORD input/output, see Chapter 12.

OTHER FEATURES OF THE FL/I LANGUAGE

This section summarizes other features of PL/I. For full details, see
the referenced sections of this manual.,

Subroutines and User-defined Functions

In PL/I terminology, a PL/I program is called a procedure. Remember
that your main program begins with a PROCEDURE statement and ends with
an END statement,

A user-defined function or subroutine is also called a procedure, Such
a function or subroutine also begins with a PROCEDURE statement and
ends with an END statement,

A subroutine or function procedure is classified as either internal or
external. An external procedure is compiled separately from the main
program, and then linked to the main program when the entire program is
loaded. (Your main program is also an external procedure.) BAn
internal procedure is nested in your main procedure (or any external
procedure), and is compiled at the same time,

4-49 First Edition

PL/I Reference Guide

For more information on subroutine and function procedures, see
Chapter 8.

Error and Condition Handling

A condition is any event that alters the normal execution of your
program, Examples of conditions are end of file and program errors.

Using the ON statement, you may specify what action your program may
take., For example, you may specify that when end of file occurs, your
program should transfer to another section of code, but that on a
floating-point arithmetic overflow error your program should print an
error message and stop.

Ry means of condition prefixes, you may control whether PL/I even
monitors certain errors., For example, PL/I does not normally check
your array subscript values to see if they are in range. But by means
of condition prefixes, you may specify that the PL/I compiler is to
generate additional code to check for subscript errors.

Chapter 13 contains a general discussion of condition handling.
Chapter 12 discusses how you specify action to be taken for
input/output conditions, such as end of file.

Block Structuring and Storage Allocation

PL/I is a block-structured lanquage, meaning that each program consists
of blocks ~of code, and that declarations are local to one or more of
these blocks of code. An example of a program block is a procedure,
mentioned above. For a discussion of the rules, see Chapter 9.

Related to the declaration of variables is the question of when storage
for variables is allocated. PL/I gives you a great deal of control
over managemenit of your storage allocation. (See Chapter 7.)

First Edition 4-50

Data Types and
Data Attributes

DATA TYPES: INTRODUCTION

In PL/I every constant and variable has both a value and a data type.
This chapter describes the major kinds of PL/I data types --
arithmetic, string, and pictured — and explains how to specify
constants and variables for each data type. The chapter also describes
aggregates. An aggregate may be either an array of values with the
same data type, or a structure of values with possibly different data
types. Finally, the chapter introduces the attributes of data types:
the ways in which you may specify how a constant or variable is stored
in memory.

An analysis of the following assignment statement demonstrates the
relationship between the value and the data type of variables and
constants:

FAHRENHEIT = 1.8 * CELSIUS + 32;

This statement uses two variables, FAHRENHEIT and CELSIUS, and two
constants, 1.8 and 32, to specify the familiar formula for converting a
temperature in degrees Celsius to degrees Fahrenheit.,

Values of Variables and Constants: The wvalue of a constant is
determined by the constant itself; for example, the constant 1.8 has
the value 1.8. The value of a constant remains the same throughout
execution of the PL/I program. On the other hand, the value of a
variable changes during execution of the program. For example, after

5-1 First Edition

PL/I Reference Guide

the above statement has been executed, the value of the variable
FAHRENHEIT would be changed to the value of the expression on the
right-hand side of the assignment statement.

Data Types of Constants: The constant 32 has the data type FIXED
DECIMAL (2) . This means that 32 contains two decimal digits. On the
other hand, the constant 1.8 has the data type FIXED DECIMAL (2,1) ,
indicating that the constant contains two decimal digits, one of which

follows the decimal point.

Data Types of Variables: You may specify the data type of a variable
by means of a DECLARE statement. For example, suppose that the program
containing the assignment statement shown above also contains the
following DECLARE statement:

DECLARE FAHRENHEIT FIXED DECIMAL(6,2) ;

This DECLARE statement specifies that the variable FAHRENHEIT occupies
a storage area large enough to accommodate six decimal digits, and that
two of these digits follow the decimal point. This means that the
variable FAHRENHEIT can be assigned any value from -9999.99 to 9999.99,
inclusive,

The keyword FIXED in the data type of FAHRENHEIT indicates that the
position of the decimal point in the digits representing FAHRENHEIT is
fixed; that is, FAHRENHEIT has a value of six digits, and two of these
digits always follow the decimal point. If you DECLARE a variable to
be FLOAT, rather than FIXED, you are specifying that the decimal point
may be in any position with respect to the digits in the value. For
example, suppose your program contained the following declaration:

DECLARE CELSIUS FLOAT DECIMAL(4);

This statement specifies that the variable CELSIUS occupies a storage
area large enough to hold four decimal digits, and that the decimal
point can appear anywhere with respect to those digits. For example,
CELSIUS could have the value 8.264x10712.

Data Types: Classification

Below is a sumary of the two major classes of PL/I data types:
computational data types and noncomputational data types.
Computational data types specify values that can be used 1in
computations, such as addition or multiplication. Noncomputational
data types specify values on which no such computations can be made.

First Edition 5-2

DATA TYPES AND DATA ATTRIBUTES

Computational Data Types

There are three groups of computational data types in PL/I, all of
which are described in detail in this chapter:

Values of the arithmetic data type are ordinary numbers that can
be combined by the usual arithmetic operations, such as
addition, subtraction, multiplication, and division.

Values of the string data type are sequences of characters or
bits. PL/I provides operators and functions that permit you to
pull strings apart and put them together, as well as to perform
various string searches and translations.

Values of the pictured data type are also sequences of
characters, but such sequences are constrained in various ways.
For example, you may declare a variable to be a pictured value
whose string of characters can contain only digits and a decimal
point.,

Noncomputational Data Types

Noncomputational data types are used for program control, input/output
control, and storage control. The noncomputational data types and the
chapters where they are discussed are as follows:

A value of the LABEL data type is the label of a PL/I statement
(4, 7, 10).

A value of the FORMAT data type is the label of a FORMAT
statement (11).

A value of the ENTRY data type is the entry point to a procedure
(81 10) °

A value of the FILE data type is an identifier associated with a
file (12).

A value of the POINTER data type is the storage address of data
(7).

A value of the AREA data type is a block of storage that you can
sub-allocate to store other variables (7).

A value of the OFFSET data type is the displacement of a storage
block within a given AREA (7).

5~3 First Edition

PL/I Reference Guide

ARITHMETIC DATA TYPES: INTRODUCTION

PL/I has many arithmetic data types. Each of these data types has a
base, scale, mode, and precision, and in the case of FIXED arithmetic
data types, a scale factor. These terms have the following meanings:

Base: The base of an arithmetic data type is either DECIMAL or BINARY.
Your choice of base indicates whether you want PL/I to manipulate the
data internally as a binary number or a decimal number. Most of the
time it does not make any difference whether you use DECIMAL or BINARY,
since you usually get the same answers either way. In fact, for FLOAT
data there is no difference whatsoever in the internal representation,
However, for FIXED, there are some differences: FIXED BINARY is
usually more efficient than FIXED DECIMAL when the values being
represented are integers (that 1is, the scale factor is 0). On the
other hand, FIXED DECIMAL is usually more accurate than FIXED BINARY if
the values are not integers, such as in dollars and cents computations.

Note

BINARY is used only with arithmetic data types, and is
different from the BIT data type, which is specified for
certain types of strings.,

Scale: The scale of arithmetic data is either FIXED or FLOAT. Data
having the FIXED attribute has its decimal point (or binary point) at a
fixed position with respect to the digits in the value. Data with the
FLOAT attribute can have its decimal (or binary) point in any position
‘with respect to the digits in the value. Ordinarily, use FIXED when
your data is going to be integers, or in commercial applications when
you are dealing with dollars and cents values that must be accurate to
the penny and that are within well-defined ranges. Ordinarily, use the
FLOAT data type in scientific applications when you are interested in
accuracy to a certain number of significant digits, regardless of where
the decimal point is in relation to those digits.

Mode: The mode of arithmetic data is either REAL or COMPLEX. You will
nearly always use REAL. Use the COMPLEX data type only in those
engineering or mathematical applications where it is necessary to
manipulate imaginary or complex numbers.

Precision: The precision of arithmetic data of scale FIXED is the
maximum number of digits in the value of the data. If the scale is
FLOAT, the precision is the number of significant digits in the
mantissa, If the base is DECIMAL, the precision is the number of
decimal digits; if the base is BINARY, the precision is the number of
binary digits or bits. PL/I allocates to the data element a block of
storage that is large enough to accommodate the number of digits
specified by the precision, as well as a sign.

First Edition 5-4

LATA TYPES AND DATA ATTRIBUTES

Scale Factor: The scale factor is applicable only to FIXED data, and
it specifies the number of digits following the decimal point or binary
point, If the scale factor is 0, the data value is always an integer.
If the scale factor is positive, it specifies the number of digits to
the right of the decimal point. If the scale factor is negative, it
specifies that the richtmost digit in the wvalue is one or more
positions to the left of the implied decimal or binary point.

The next few sections cover the arithmetic data types in more detail.

Arithmetic Data Types: FIXED DECIMAL REAL

The simplest kind of FIXED DECIMAL constant consists of one or more
decimal digits, possibly with a decimal point, possibly with a sign.
The precision of the constant is the number of digits, and the scale
factor of the oonstant is the number of digits following the decimal
point. If there is no decimal point, or if no digits follow the
decimal point, the scale factor is 0.

For example, the oconstant 23 has the attribute FIXED DECIMAL(2,0);
that is, 23 is FIXED DECIMAL with a precision of 2 and a scale factor
of 0. The constant 894.7 and the constant -482.3 each have the
attributes FIXED DECIMAL(4,1); that is, a precision of 4 and a scale
factor of 1. The constant .897 has a precision of 3 and a scale factor
of 3, since all digits follow the decimal point.

It is possible to have two FIXED DECIMAL constants with the same value
but with different precisions or scale factors. For example, the
constants 23, 023, and 23.0 all have the same value (23), but they have
precisions of 2, 3, and 3, respectively, and scale factors of 0, 0, and
1, respectively.

PL/I permits you to form a more complex type of FIXED DECIMAL constant
by appending to it the letter F followed by a decimal number
(optiomally signed) that specifies a power of ten by which the value of
the decimal number is to be multiplied. For example, the constant
23,892F1 has the value 238.92 (since Fl specifies that the value is to
be multiplied by ten), has a precision of 5 (since there are five
digits in the value portion of the constant, and since the digit 1
following the F does not contribute to the precision), and has a scale
factor of 2 since the last two digits of the value follow the decimal
point., '

A more complicated example is the constant 23F4. This constant has
value 230000, but has the attribute FIXED DECIMAL(2,-4), for the
following reasons: the precision is 2 because there are two digits in
the value portion of the constant 23F4., The scale factor is -4, since
the value digits in the constant (23) are four positions to the left of
the decimal point, Similarly, the constant 46.2F20 has the attributes
FIXED DECIMAL(3,-19), and has the value 46,2x10720.

5-5 First Edition

PI/I Reference Guide

The number following the F may be negative, in which case it means that
the decimal point is to be moved to the left. For example, the
constant 23.892F-1 has the value 2.3892, but has the attributes FIXED
DECIMAL (5,4), since four decimal digits in the value follow the decimal
point. The constant 23F-4 has the value .0023 and the attributes FIXED
DECIMAL(2,4); the precision is 2 because there are two digits (23) in
the value, and the scale factor is 4 because there are four digits
following the decimal point. Similarly, the constant 23.8F-20 has the
attributes FIXED DECIMAL(3,19), and the value 23.8x107-20.

You may use the DECLARE statement to specify that a variable is to be
FIXED DECIMAL and, at the same time, you may specify the precision and
scale factor of the variable, The simplest form of such a declaration
is

DECLARE variable FIXED DECIMAL(p,q) :

which indicates that the specified variable is FIXED DECIMAL, with a
precision of p and a scale factor of g, The precision of p indicates
that the variable occupies a storage block large enough to accommodate
p decimal digits and a sign. The scale factor of g indicates that g of
these digits follow the implied decimal point.

For example, if your program contains the statement
DECLARE SALARY FIXED DECIMAL(7,2):

then you are telling PL/I that the variable SALARY is to have seven
decimal digits, two of which follow the decimal point. This means that
SALARY can have a value as large as 99999.99 or a nedative value as
small as -99999.99.

If the scale factor is 0, you need not specify the scale factor in the
declaration. For example, the statement

DECLARE INDEX FIXED DECIMAL(3);

says that INDEX can have a value between -999 and +999, with no digits
following the decimal point (the scale factor is 0).

Tt is possible for a scale factor to be negative., In this case, the
decimal point is to the richt of the rightmost digit in the stored
value of the variable, For example, if a variable has the attributes
FIXED DECIMAL(2,-3), the variable may be assigned any value between
-99000 and +99000, as long as the value is a multiple of 1000. For
example, you may assign the value 86000 to such a variable, in which
case PL/I stores the digits 86 and remembers that the decimal point is
three positions to the right of the 6.

Pirst Edition 5-6

DATA TYPES AND DATA ATTRIBUTES

It is also possible for the scale factor to be positive and larger than
the precision., In this case, the decimal point is one or more
positions to the 1left of the leftmost position in the stored value of
the variable, For example, if a variable has the attributes FIXED
DECIMAL(2,5), it can take on any value between -.00099 and +.00099, If
you assigned the value .00086 to such a variable, PL/I would store the
two digits 86, and would remember that the decimal point was f£five
positions to the left of the 6.

Your program may, of course, assign any numeric value to any FIXED
DECIMAL variable. If the value being assigned has the same precision
and scale factor as the variable to which it is being assigned, PL/I
can perform the assignment directly. However, it is possible that the
value being assigned has a different precision or scale factor. 1In
this case, PL/I must modify the value being assigned before the
operation can be completed., Usually, this modification is precisely
what you would expect.

Consider, for example, the variable SALARY declared above as FIXED
DECIMAL(7,2). If a program contains the assignment statement

SALARY = 12345.67;

then PL/I can make the assignment directly, since the value being
assigned is also FIXED DECIMAL(7,2). On the other hand, if the program
contains the statement

SALARY = 23;

then PL/I actually assigns the value 00023.00 to SALARY. If the value
being assigned has extra digits to the right of the decimal point, PL/I
throws these additiomal digits away, or truncates the value.

For example, if your program contains the statement
SALARY = 482.937;

then PL/I assigns the value 00482.93 to SALARY, Notice that PL/I does
not round to 482.94; the value being assigned 1is truncated, meaning
that extra digits on the right are thrown away. Finally, if the value
being assigned has too many digits to the left of the decimal point,
the assignment produces a SIZE error. The assignment statement

SALARY = 1234567;
is an example of a SIZE error in the assignment.

5=7 First Edition

PL/I Reference Guide

As another example, suppose that the variable PART has the attributes
FIXED DECIMAL(2,-3). Then PART can only have values that are multiples
of 1000, and these values must lie between -99000 and +99000. If your
program attempts to assign a value greater than 99000 or smaller than
~99000 to the variable PART, the assignment produces a SIZE error. On
the other hand, if your program contains the assignment

PART = 43827;

then PL/I truncates the last three digits, with the result that PART is
assigned the value 43000.

In the preceding paragraphs, only assignment of constants to FIXED
DECIMAL variables has been discussed. The same rules apply, however,
whenever a variable or expression is assigned to a FIXED DECIMAL
variable,

For example, suppose that the variable A is FIXED DECIMAL(7,2), and the
variable B is FIXED DECIMAL(4,1). Suppose that your program contains
the assignment statement

A = B;

Since A has five digits to the left of the decimal point, and B has
three digits to the left of the decimal point, this assignment cannot
produce a SIZE error. Furthemore, since A has two digits to the right
of the decimal and B has one digit to the right of the decimal point no
truncation takes place. On the other hand, suppose that your program
contains the assignment statement

B = A;

How PL/I handles this depends upon the value of A, As long as A is
less than 999 and greater than -999, this assignment is legal; but if
A is outside of that range, the assignment causes a SIZE error. If the
assigmment is legal, B is assigned the value of A truncated after the
first digit to the right of the decimal point.,

For maximum precision, dJdefault precision, and the maximum and minimum
allowable scale factor of FIXED DECIMAL REAL numbers, see Appendix C,

First Edition 5-8

DATA TYPES AND DATA ATIRIBUTES

Arithmetic Data Types: FLOAT DECIMAL REAL

Data with the FIXED attribute have their decimal point in a fixed
position relative to the digits of the value; the scale factor is used
to specify that position. With FLOAT data, there is no scale factor,
since the decimal point may be in any position with respect to the
digits of the value.

A FLOAT DECIMAL, constant oontains one or more decimal digits
(optionally with a decimal point, and optionally preceded by a minus
sign) followed by the letter E followed by an (optionally signed)
decimal number. The value to the left of the letter E is called the
mantissa of the FLOAT constant, and the number to the right is called
the exponent or characteristic. The precision of the FLOAT constant is
the number of digits in the mantissa.

For example, the constant 2.34E+05 is a constant with the attributes
FLOAT DECIMAL(3). The mantissa is 2.34, and the exponent is 5. The
precision is 3, since there are three digits in the mantissa. 'The
value of the constant is 2.34x10”5. The constant 2.34E+05 has exactly
the same value as 2.34F+05, but the latter has the attributes FIXED
DECIMAL(3,-4). This means that, although the two constants have the
same value, PL/I uses different methods to represent the oconstants
internmally in your PL/I program. Use of the different constants may
produce different results.

As another example, the constant 894,267E-4 has the attributes FLOAT
DECIMBAL(6) , and has the same value as the constant .0894267. However,
the latter constant has the attributes FIXED DECIMAL(7,7) and so has a
different internal representation. In fact, any FIXED DECIMAL constant
can be rewritten as a FLOAT DECIMAL constant with the same value. For
example, the constant 23, which has the attributes FIXED DECIMAL(2),
can be rewritten as 23E+00 with the attributes FLOAT DECIMAL(2), or as
023, or as 023FE+00 with the attributes FLOAT DECIMAL(3). Or, the
constant 8.94E+00, with the attributes FIXED DECIMAL(3,2), can be
rewritten as .894El, with the attributes FLOAT DECIMAL(3).

You may use the DECLARE statement to specify that a variable is FLOAT
DECIMAL., For example, the statement

DECLARE SQOPE FLOAT DECIMAL(8);

specifies that the variable SCOPE is a FLOAT variable occupying enough
storage to accommodate eight decimal digits, or significant digits.
The decimal point may appear in any position with respect to these
digits.

For maximum exponent range and maximum precision of FLOAT DECIMAL, REAL
numbers, see Appendix C.

5-=9 First Edition

PL/I Reference Guide

Arithmetic Data Types: FIXED BINARY REAL

PL/I gives the programmer the option of storing constants and variables
using the binary, rather than the decimal, number base. Internally,
this means that PL/I stores your FIXED data as two's-complement binary
numbers, rather than the binary-coded decimal format used with the
DECIMAL attribute.

The simplest form of FIXED BINARY constant consists of a string of
binary digits (0's and 1's), with an optional sign and an optional
binary point., (The term binary point is used in the binmary number
system in the same way that the decimal point is used in the decimal
number system; in both cases, the function is to separate the integer
digits from the fractional digits.) The constant must end with the
letter B to indicate that it is a BINARY constant., For example, the
constant 10110B is a FIXED BINARY constant that has the same value as
the FIXED DECIMAL constant 22. :

The terms precision and scale factor are used for FIXED BINARY
constants and variables in the same way as for all FIXED DECIMAL
constants and variables, except that now the phrase "number of digits"
refers to binary digits, rather than decimal digits. For example, the
constant 1001.010B is a constant with the attributes FIXED BINARY(7,3);
the precision is 7 because there are seven binary digits, and the scale
factor is 3 since three of the digits follow the binary point. This
constant has the same value as the oconstant 9.25, which has the
attributes FIXED DECIMAL(3,2).

As in the case of FIXED DECIMAL constants, a FIXED BINARY constant may
contain the letter F, followed by a decimal constant, to specify the
number in decimal that a binary point should be moved to the right or
left, For example, the constant 11,01101F3B has the data type FIXED
BINARY (7,2) , and has the same value as 11011.01B. (In decimal, this
value could be written as 27.25.) Similarly, the constant 11011F5B has
the data type FIXED BINARY(5,-5), and has the value 1101100000B (equal
to decimal 864), which has the attributes FIXED BINARY(10,0).

Notice, in particular, that the value following the letter F is a
decimal constant, not a binmary constant. As another example, the
constant 1101F-25B has the attributes FIXED BINARY(4,25), and has a
value equal to 13x27(-25).

Further examples of FIXED BINARY constants are shown in Table 5-1.
This table illustrates various FIXED BINARY constants and indicates
their precisions and scale factors, as well as the values of the
constants in decimal,

First Edition 5-10

DATA TYPES AND DATA ATTRIBUTES

Table 5-1
Examples of FIXED BINARY Constants
Scale

Constant Precision Factor Value
101B 3 0 5
00101B 5 0 5
101.1B 4 1 5.5
101.100B 6 3 5.5
000101.100B 9 3 5.5
10100B 5 0 20
101F2B 3 -2 20
.101F5B 3 -2 20
.10100F5B 5 0 20
100.0F-3B 4 4 .5
10F-3B 2 3 25
1101F-20B 4 20 13x2"-20

You may use the DECLARE statement to specify that a variable is to have
FIXED BINARY attributes. For example, if the statement

DECLARE DATUM FIXED BINARY(3,0):

appears in your program, it specifies that DATUM is a variable for
which the ocompiler should allocate enough storage to accommodate three
binary digits and a sign. This means that DATUM can have values
between -111B, or -7, and 111B, or 7. Since the scale factor is 0,
DATUM can have any integer value between those two values.

Tn the declaration of a FIXED BINARY variable, the precision specifies
the number of binary digits in the value of the variable, and the scale
factor specifies the number of those digits that lie to the right of
the binary point. For example, if the statement

DECLARE LINK FIXED BINARY(5,2);

appears in your program, it specifies that LINK is a variable that can
hold five binary digits, and that two of these lie to the right of the
binary point. This means that LINK can have values as large as 111.11B
(or 7.75), and as small as -111.11B (or -8.00). It can take on any
value between these two extremes, only in increments of .OlB (or .25).

This means that the variable can take on such values as 3,25, 1.75, and
—6.5'

5-11 First Edition

PL/I Reference Guide

If the scale factor is negative, it specifies the number of implied
zeros that lie to the right of the rightmost digit in the value of the
variable, For example, if your program contains the DECLARE statement

DECLARE LONGITUDE FIXED BINARY (3,~4):

then LONGITUDE has enough storage allocated to hold three binary digits
and a sign, with four implied zeros following the rightmost of these
digits. This means that ILONGITUDE can have a value as large as
1110000B, or as small as -1110000B, in increments of 10000B. (Writing
these figures in decimal, the variable can have values as large as 112
or as small as =128, in increments of 16. This means that LONGTTUDE
can take on any of the following values, and only the following values:
112, 96, 80, 64, 48, 32, 16, 0, -16, =32, -48, -64, -80, -96, =112, and
-128).

Examples of FIXED BINARY variable data types are shown in Table 5-2.

Table 5-2
Examples of FIXED BINARY Variable Data Types

Data Type of Range of Values: In Increments
Variable From To of
FIXED BIN (3,9) -1000B (=-8) 1118 (=7) 1
FIXED BIN (7,0) -100000001B (=~128) 1111111B (=127) 1
FIXED BIN (5,2) -1000.90B (=-8) 111.11B (=7.75) .91B (=.25)
FIXED BIN (3,4) -.01118 +.0111B . 00018
FIXED BIN (3,-4) ~1110000B (=-112) +1110000B (=-112) 10000B (=16)

As in the case of assigmments to FIXED DECIMAL variables, if the value
assigned to a FIXED BINARY variable does not match the data type of the
target variable, PL/I changes the value being assigned to match the
target variable, If the value being assigned has too many digits to
the right of the binary point, the extra digits are truncated., If
there are too many digits to the left of the binmary point, a valid
assignment cannot be made, and a SIZE error occurs. Table 5-3
illustrates such assignments.

First Edition 5-12

DATA TYPES AND DATA ATTRIBUTES

Table 5-3 .
Examples of FIXED BINARY Assignments

Data Type of Value of Expression Value Actually
Target Variable Being Agsigned Assigned as a Result
FIXED BIN (3,0) 4 4
FIXED BIN (3,0) 4,9 4 (truncation)
FIXED BIN (3,0) -4.7 -4 (truncation)
FIXED BIN (3,0) 12 SIZE error
FIXED BIN (3,0) 5 5 (=101.00B)
FIXED BIN (15,2) 5.43 5.25 (=101.01B)

truncation

FIXED BIN (15,2) 1101.1011B 1101.10B (truncation)
FIXED BIN (15,-=2) 1110B 1100B (truncation)
FIXED BIN (15,-2) 87 84 (truncation)

Maximum precision and maximum scale factor for FIXED BINARY REAL
numbers are given in Appendix C.

Arithmetic Data Types: FLOAT BINARY REAL

FLOAT BINARY constants are written as a string of binary digits (zeros
and ones), optionally with a sign and a binary point, followed by the
letter E and then by a decimal number indicating the number of
positions that the binary point is to be shifted relative to the binary
digits in the value. The entire constant is ended with the letter B,
The terminology used with FLOAT BINARY values is similar to that used
with FLOAT DECIMAL values. The value to the left of the letter E is
called the mantissa of the FLOAT value, and the decimal constant to the
right of the letter E is called the exponent or characteristic of the
value. The precision of the FLOAT BINARY constant is the number of
digits in the mantissa. ‘There is no scale factor in FLOAT values,
since the position of the binary point, as specified by the
characteristic, may be in any position relative to the digits in the
mantissa.

For example, the constant 101E3B is a FLOAT BINARY(3) constant., 'The
precision is 3 since there are three digits in the mantissa. This
constant has the same value as the constant 101000B, but the latter has
the attributes FIXED BINARY(6,0). Each of these two BINARY constants
has the same value as the DECIMAL constant 40, the latter having the
attributes FIXED DECIMAL(2,0) .

5-13 First Edition

PL/I Reference Guide

A negative exponent indicates the number of positions that the binary
point is to be moved to the left with respect to the value in the
mantissa. For example, the constant 1011E-2B has the attributes FLOAT
BINARY (4) . It has the same value as the constant 10.11B, which has the
attributes FIXED BINARY (4,-2). It also has the scame value as the
constant 2.75, which has the attributes FIXED DECIMAL (3,2).

Table 5-4 illustrates several FLOAT BINARY constants, giving their
precisions and values.,

Table 5-4

Examples of FLOAT BINARY Constants
Constant Precision Value
101E0B 3 5
101E3B 3 40
000101E3B 6 40
101.000E3B 6 40
101EA5B 3 5%2745
1011E-2B 4 2.75
11011E-23B 5 27x2" (-23)

You may use the DECLARE statement to specify that a variable is to be
FLOAT BINARY. For example, if the statement

DECLARE RANGE FLOAT BINARY (47);

appears in your program, you are specifying that the variable RANGE
occupies enough storage to accommodate 47 significant binary digits
(bits), with the binary point in any position with respect to those
digits., Maximun precision of FLOAT BINARY REAL numbers is given in
Appendix C.

Arithmetic Data Types: COMPLEX

Up until now, all the arithmetic data types that have been oonsidered
have been REAL, meaning real in the mathematical sense of not using
complex or imaginary mumbers (numbers that are expressed using the
square root of =-1), If you are writing a mathematical or engineering
application requiring the use of imagimary or complex numbers, use the
(QOMPLEX data type supplied by the PL/I language.

First Edition 5=-14

DATA TYPES AND DATA ATTRIBUTES

In preceding sections, several different kinds of arithmetic constants
are described., All of these constants have REAL attributes, since REAL
is the default mode for arithmetic constants. If you take any of these
constants and append the letter I to the end, the result is a constant
that PL/I recognizes as representing an imagimary value,

Table 5-5 illustrates a number of (OMPLEX constants, Each of these
constants is identical to one in a preceding section, except that the
letter I has been added to the end. The data type of the constant is
derived as in preceding sections with the precision represented by the
nunber of digits, and, for FIXED constants, the scale factor
representing the number of digits following the decimal point or binary
point, 'The only difference in the data type is in the attribute
OMPLEX, where, in preceding sections, the constant has the implied
attribute REAL. The values of these constants are imaginary in the
mathematical sense, with each constant represented as a multiple of i,

the square root of -1,

Table 5-5
Table of COMPLEX Constants
Line # Constant Data Type Value
1 231 FIXED DECIMAL (2,0) COMPLEX 231
2 86 .45F31 FIXED DECIMAL (4,-1) COMPLEX 864501
3 45K01I FLOAT DECIMAL (2) COMPLEX 453
4 1101BI FIXED BINARY (4,0) COMPLEX 131
5 10F-4BI FIXED BINARY (2,4) COMPLEX 1251
6 10E-4BI FLOAT BINARY (2) COMPLEX 1251

If you declare a variable to be COMPLEX, you are specifying that the
storage allocated for the variable is large enough to hold two numbers,
one for the real part of the value of the variable, and one for the
imaginary part. For example, if the statement

DECLARE STRENGTH FIXED DECIMAL(10,2) COMPLEX;

appears in your program, STRENGTH is a variable whose storage area can
accommodate two numbers, one of which is the real part of the value of
STRENGTH, and one of which is the imaginary part; each of these
numbers can hold ten decimal digits, two of which follow the decimal
point.

Your program may contain expressions involving COMPLEX constants and

variables, PL/I can evaluate these expressions according to the
mathematical rules for complex numbers to achieve COMPLEX results. If

5-15 First Edition

PL/I Reference Guide

a OOMPLEX expression is assigned to a REAL variable, the real part of
the expression is assigned to the target variable, and the imaginary
part of the value of the expression is discarded. If a COMPLEX
expression is assigned to a (OMPLEX variable, the real part of the
value of the expression is assigned to the real part of the target
variable, and the imaginary part of the expression is assigned to the
imaginary part of the variable,

Finally, if a REAL expression is assigned to a COMPLEX variable, the
value of the expression is assigned to the real part of the variable,
and the value 0 is assigned to the imaginary part.

For assigning the real part or the imaginary part of a value, the rules
for truncation and SIZE errors are the same as those given above in the

sections on real constants. For example, if the program with the
declaration of STRENGTH contains the following assignment statement

STRENGTH = 23 + 45.7891I;

then the last digit of the imaginary part of the value is truncated,
with the result that STRENGTH is assigned the value 23 + 45.78I.

Declarations of Arithmetic Variables

Use the DECLARE statement to specify the attributes of an arithmetic
variable. Every arithmetic variable has a base, scale, mode, and
precision. Furthermore, if the variable is FIXED, a scale factor is
specified as part of the precision., If you omit one of these from the
list of attributes in the DECLARE statement, PL/I supplies a default.
The rules for base, scale, and mode are as follows:

@ The base is either BINARY or DECIMAL. If you prefer, you may
use the abbreviations BIN or DEC, respectively. If your DECLARE
statement specifies no base, the default of BINARY is supplied.

® The scale is either FIXED or FLOAT, If the DECLARE statement
does not specify a scale, PL/I supplies a default of FIXED.

@ The mode is either REAL or COMPLEX. If you prefer, you may use

the abbreviation CPLX for COMPLEX. If you do not specify a
mode, PL/I supplies a default of REAL,

First Edition 5-16

DATA TYPES AND DATA ATTRIBUTES

In your DECLARE statement, you may specify the base, scale, and mode in
any order. Specify the precision, and for FIXED variables the scale
factor, in parentheses following any one of the base, scale, or mode
attributes. If you do not specify a scale factor for a FIXED variable,
PL/I supplies a default of 0. Youmay, if you prefer, specify the
precision with a separate keyword PRECISION (abbreviation PREC). For
example, all of the following five declarations are equivalent:

DECLARE VALUE FIXED DECIMAL(5) REAL;
DECLARE VALUE FIXED(5) DEC REAL;

DECLARE VALUE DEC(5,0);

DECLARE VALUE FIXED DECIMAL REAL PREC(5,0);:
DECLARE VALUE DEC PRECISION(5);

These five DECLARE statements all give the same attributes of VALUE.
The attributes FIXED and REAL need not be specified, since they are the
defaults. The precision can be specified along with any of the
keywords, or with a separate PRECISION keyword. The scale factor of 0
need not be specified, since 0 is the default.

Summary of Arithmetic Constants

Below is a brief summary of the rules for formation of arithmetic
constants, and for deriving their data types.

An arithmetic constant oonsists of a number of characters, one
immediately following the other, with no blanks. These characters are
as follows:

1. An optional plus sign or minus sign.

2. A string of digits, optiomally containing a radix point. If
the base of the constant is BINARY, the digits may be only
zeros and ones.

3. An optional F or E, followed by a string of decimal digits.
The decimal digits may be preceded optionally by a plus sign or
minus sign.

4. An optional B.

5. An optiomal I.

All of the elements shown above are optional, except those listed in
Rule 2. That is, a constant must contain at least one digit.

5-17 First Edition

PL/I Reference Guide

The data type of the constant is derived according to the following
rules:

1. TIf the constant contains the letter B, the base is BINARY;
otherwise the base is DECIMAL.

2. If the constant contains the letter E, the scale is FLOAT;
otherwise, the scale is FIXED.

3, If the constant contains the letter I, the mode is COMPLEX;
otherwise, the mode is REAL.

4, The number of digits in the precision is the total number of
digits appearing in that section of the constant specified by
Rule 2 for number of characters above.

5, If the constant is FIXED, the scale is determined as follows:

o If the constant contains a radix point, let x equal the
number of digits to the richt of the radix point;
otherwise, let x = 0.

o If the constant contains the letter F, let y equal the
value of the decimal constant following the letter F;
otherwise, let y = 0. (It is possible for y to be
negative.)

0 The scale factor of the constant is (x - V).

STRING DATA TYPES: INTRODUCTION

String values are sequences of characters, PL/I contains two string
data types, CHARACTER strings and BIT strings. CHARACTER strings are
useful for representing text; BIT strings are used to represent
Boolean or logical values and to manipulate the internal representation
of other data types.

In many ways, BIT strings work the same way in PL/I as CHARACTER
strings; in fact, the PL/I language was designed to make these two
types of strings as similar as possible. The properties shared by
(HARACTER and BIT strings include the following: NONVARYING strings of
constant length, VARYING strings of variable length, and concatenation
and various built-in functions to put strings together and pull them
apart,

The two major differences between BIT and CHARACTER strings are as
follows:

® The individual elements of a CHARACTER string can be any of the
256 characters supported by PRIME hardware. On the other hand,
the individual elements of a BIT string may have only two
possible values: a 0-bit or a l1-bit.

First Edition 5-18

DATA TYPES AND DATA ATTRIBUTES

e In the internal representation of CHARACTER strings, each
character in the string occupies one byte of memory. Each
individual element of a BIT string occupies only one bit of
memory, making it possible to store eight bit values in a single
memory byte,

String Data Types: CHARACTER NONVARYING

The simplest form of CHARACTER constant consists of an apostrophe
followed by a string of characters and another apostrophe. The
characters between the apostrophes make up the value of the constant,
For example, 'ABCDE' is an example of a CHARACTER constant containing
the five characters ABCDE.

Use the CHARACTER attribute in a DECLARE statement to specify that the
value of the variable is to be a string of characters, rather than a
number. Follow the keyword CHARACTER with a parenthesized number to
indicate the precise number of characters in the variable. For
example, the statement

DECLARE NAME CHARACTER(8):

specifies that the variable NAME can have, as its value, a string of
precisely eight characters. This means that you may assign a string of
eight characters to the variable NAME., For example, the assignment
statement

NAME = 'JOHNSTON';

means that the variable NAME has as its value the eight characters in
JOHNSTON,

The value of the variable NAME must contain precisely eight characters,
no more and no less. If you assign to NAME a character string with a
different number of characters, PL/I must modify the value before
assigning it to NAME.

If the character string assigned to NAME oontains less than eidht
characters, PL/I pads the value by adding blank characters to it in

assigning the value to NAME. For example, if your program executes the
assignment statement

NAME = 'JONES';

then PL/I pads the value being assigned with three blanks so that,
after the assigmment, the variable NAME has the value 'JONESbbb', where

5-19 First Edition

PL/I Reference Guide

the symbol b indicates a blank, a nonprinting character. As another
example, if your program executes the assignment statement

NAME = 'RU’';

then PL/I assigns the value 'KUbbbbbb' to NAME.

If your program assigns to NAME a value containing more than eidht
characters, PL/I truncates the value by removing from it all characters
following the eighth. For example, if your program executes the
statement

NAME = 'ALEXANDERSON';

then PL/I truncates the value by discarding the last four characters,
so that the value assigned to NAME is 'ALEXANDE'.

Since the variable NAME must always have precisely eight characters as
its value, it is said that NAME has the CHARACTER NONVARYING
attributes. For example, the statement

DECLARE ADDRESS CHARACTER(30) NONVARYING;

specifies that ADDRESS is a variable oontaining precisely 30
characters, no more and no less., If you do not specify VARYING or
NONVARYING in the DECLARE statement, PL/I autamatically provides the
default attribute NONVARYING.

Under certain circumstances, you may use an arbitrary expression in
parentheses following CHARACTER., For example, the statement

DECLARE PRODUCT CHARACTER(X + Y);

is legal under certain circumstances. 'These circumstances are
described in the section Variables in Extent and INITIAL Expressions in
Chapter 7.

String Data Types: CHARACTER VARYING

The variables described in the preceding section have values that must
always contain the same number of characters. It is also possible to
declare that a variable can contain a varying number of characters.

First Edition 5-20

DATA TYPES AND DATA ATTRIBUTES

For example, if your program contains the statement

DECLARE CITY CHARACTER(8) VARYING;

then CITY is a variable whose value is a string containing eicght or
fewer characters. That is, CITY can have as its value a string
containing 0, 1, 2, 3, 4, 5, 6, 7, or 8 characters, but no more than
eight characters. Thus, if your program executes the statement

CITY = 'BOSTON';

then the value 'BOSTON' is actually assigned to CITY; PL/I does not
pad with blanks in this case. On the other hand, if your program
assigns a string longer than eight characters to CITY, truncation still
takes place. For example, if your program executes the statement

CITY = 'PHILADELPHIA';

then the 1last four characters of the value being assigned are
discarded, and the truncated value ‘PHILADEL' is assigned to CITY.

String Data Types: CHARACTER Constants

The simplest form of a CHARACTER constant is a string of characters
between two apostrophes. But PL/I has several other rules for forming
CHARACTER constants,

The discussion in this section refers to Table 5-6. Line number 1 of
that table illustrates the simple form of CHARACTER constant that has
already been discussed. The constant 'ABCDE' contains the five
characters ABCDE,

5-21 First Edition

PL/I Reference Guide

Table 5-6
CHARACTER Constants
Length (# of
Line # CHAR Constant Characters) Characters
1 "ABCDE' 5 ABCDE
2 T 0 (none)
3 'DOESN' ' T 7 DOESN'T
4 rere 1]
5 (6) 'A' , 6 AARAAAA
6 (4) 'ABC' 12 ABRCABCABCABC

The Null String: A null string is a string that contains no characters
at all, A null string constant consists of two apostrophes with no
characters between them.

When the null string is assigned to a CHARACTER NONVARYING variable,
PL/I pads the null string with blanks, so that the variable receives a
value of a string of blanks. If the null string is assigned to a
CHARACTER VARYING variable, no padding takes place, and the value of
the variable is itself the null string. For example, consider the
following statements:

DECLARE NAME CHARACTER(8);

DECLARE CITY CHARACTER(8) VARYING;
NAME = '!;

CITY = '!;

After these statements have been executed, the variable NAME has the
value 'bbbbbbbb'., The variable CITY has the value '', the null string.

Using an Apostrophe in a CHARACTER Constant: Since you may wish to
include an apostrophe in a CHARACTER constant, PL/I provides a special
rule for doing this, as illustrated in 1line 3 of the table. To
represent a single apostrophe within a CHARACTER constant, write two
apostrophes. For example, the two apostrophes between the letters N
and T in the constant 'DOESN!''T' are recognized by PL/I as representing
a single apostrophe, so that the CHARACTER constant really contains
only seven characters, DOESN'T,

Line 4 of the table illustrates a very special case of this, The
string contains exactly one character, that character being an
apostrophe. This CHARACTER constant is written '''',

First Edition 5-22

DATA TYPES AND DATA ATTRIBUTES

Repetition Factors: If your CHERACTER constant is made up of one or
more characters repeated over and over, then, for convenience, you can
use a repetition factor. The repetition factor is a decimal integer,
with no sign, enclosed in parentheses just before the first apostrophe
in the oonstant. For example, (6)'A' is a (HARACTER constant
containing six characters, AAAAAA, This constant could also have been
written as '"AAAAAA'; PL/I treats these two constants in exactly the
same way.

Line number 6 of the table illustrates the case where several
characters are being repeated. The constant (4)'ABC' contains twelve
characters, ABCABCABCABC. 'This constant could also have been written
' ABCABCABCABC' .

String Data Types: BIT NONVARYING and VARYING

The CHARACTER data types that have been described in the last few
sections are only one form of PL/I's string data types. The second
form of string data type is called BIT.

Note

Do not confuse the BIT data type with the BINARY data type.
BINARY variables are numeric, and have values that are numbers.
BIT variables are string variables, and their values are
strings of bits.

The BIT data type is used far less often by programmers than the
CHARACTER data type. The two main uses of the BIT data type are as
follows:

@ Other languages have a so-called logical or Boolean data type,
which the programmer uses to manipulate values that are either
true or false., In PL/I, the role of the logical data type is
played by a string declared as BIT(1). A BIT(l) string contains
one individual element, which is either a 0-bit or a 1-bit. The
1-bit represents true, and the 0-bit represents false.

® The PL/I lanquage was designed so that a programmer taking
reasonable precautions can write a program in an
implementation-independent manner, ‘This means that if the
program yuns on two different machines, it should give the same
answers., However, sometimes a programmer needs to write a
machine-dependent program that examines and manipulates the bit
formats of other data elements., PL/I allows this with the
UNSPEC built-in function and pseudo-variable, which are
described in Chapter 14.

5=23 First Edition

PL/I Reference Guide

The simplest form of a BIT constant is an apostrophe ('), followed by a
string of zeros and ones, followed by another apostrophe, followed
immediately by the letter B. For example, '10110'B is a BIT constant
containing five bit values, a l1-bit followed by a 0-bit followed by two
1-bits and another 0-bit. True and false are represented as 'l'B and
'0'B respectively.

The letter B is the crucial element that distingquishes a BIT constant
from a CHARACTER constant, For example, the oconstant '10110' is a
CHARACTER constant, containing the five characters shown. In terms of
the internal representation of PL/I data, the CHARACTER constant would
require five bytes of storage, while the BIT constant '10110'B would
require only five bits of storage, and so would occupy less space than
a byte, More complex forms of BIT constants are explained in the next
section.

Use the DECLARE statement to specify that a variable is to have a BIT

data type. For example, if your program contains the statement
DECLARE BST BIT(7):

then the variable BST has, as its value, a string containing seven

bits.

For example, if your program executes the statement
BST = '0110111'B;

the seven bits in the string '0110111°'B are assigned to the variable
BST.

The variable BST has as its value précisely seven bits, no more and no
less. If your program attempts to assign to BST a BIT string value
containing other than seven bits, PL/I must modify the value before
assigning it. As in the case of CHPRACTER strings, PL/I pads a short

string, and truncates a long string.

For example, if your program executes the statement
BST = '111000111000'B;

then PI/I truncates the string being assigned by throwing away or
truncating the last five of the twelve bits in the value on the
right-hand side. The result is that BST is assigned the value
"1110001'B. On the other hand, if your program executes

BST = '101'B;

First Edition 5-24

DATA TYPES AND DATA ATTRIBUTES

then PL/I pads the value being assigned by adding four 0-bits to it on
the right-hand side, so that BST is assigned the value '1010000'B.

As with (HARACTER strings, you may specify that a variable is to be BIT
VARYING, meaning that the length specified in the DECLARE statement is
a maximum length, and that the variable can have any length less than
or equal to that maximum. For example, if your program contains

DECLARE BSV BIT(6) VARYING;

then BSV is a variable whose value is a string of bits, and the string
contains six or fewer bits., It is still true, of course, that if your
program assigns to BSV a bit string longer than six bits, truncation
takes place.

It was mentioned above that the BIT(l) data type in PL/I performs the
same function that logical data types perform in other programming
languages. Suppose your program contains the following statements:

DECLARE TEST BIT(1);
TEST = (X < 0);

IF TEST THEN CALL NEGATIVE;

In this program segment, the variable TEST is specified to be a logical
variable, The assignment statement on the second line illustrates how
a truth value can be assigned to TEST. If the variable X is negative,
TEST is assigned the BIT(1l) value '1'B, which stands for true, If X is
0 or greater than 0, TEST is assigned '0'B, which stands for false.
The IF statement shows how your program may make a decision based on
this variable TEST; if TEST has the value '1'B, control is transferred
to the procedure NEGATIVE,

As in the case of CHARACTER strings, you may DECLARE a BIT string
explicitly to be NONVARYING. For example, the variable BST described
above could have been declared with the statement

DECLARE BST BIT(7) NONVARYING:
If you do not specify either VARYING or NONVARYING, PL/I supplies the
default of NONVARYING,
Also, as in the case of CHARACTER strings, it is possible under certain
circumstances for the length specified in the DECLARE statement to be

an expression containing variables. These circumstances are described
in a later section.

5-25 First Edition

PL/I Reference Guide

String Data Types: BIT Constants

The simplest form of a BIT constant is illustrated several times in the
preceding section, Such a constant begins with an apostrophe, followed
immediately by a string of =zeros and ones, followed by another
apostrophe and the letter B.

PL/I provides other rules for writing certain kinds of BIT constants
more corveniently than in the simple form just described. These rules
are illustrated in Table 5-7.

Table 5-7
BIT Constants
Length (#
Line # Bit Constant of Bits) Bits

1 '01101'B 5 01101

2 '1'B 1 1

3 "B 0 (None)

4 (5)'1'B 5 11111

5 (4)'101°'B 12 101101101101

6 '476'B3 9 100111110

7 "1'B3 3 001

8 tip3 0 (None)

9 (2)'67'B3 12 110111110111
10 "OF3'B4 12 100111110011
11 (3) 'FO'B4 24 111100001111000011110000
12 123021'B2 10 1011001001
13 (3)'2'B2 6 101010
14 '01101'B1 5 01101

Lines 1 and 2 of this table illustrate the simple form of the BIT
constant that has been described, Line 3 illustrates the null BIT
string, a BIT string containing no bits whatsoever. This corresponds
to the null string, which has been previously described in the section
on CHARACTER constants.

Line 4 illustrates the use of repetition factors in BIT constants. As
in the case of CHARACTER strings, the number 5 in parentheses tells
PL/I that the string is to be repeated five times, For this reason,
the constant (5)'1'B represents exactly the same value as the constant
111111'B, and both of these constants have the same data type, BIT(5).
Line 5 illustrates this concept further, where the repetition factor 4
applies to all three of the bits, 101,

First Edition 5-26

DATA TYPES AND DATA ATTRIBUTES

Octal Notation: For your convenience, PL/I also permits you to write
BIT constants using digits in the octal (base 8) number system. Lires
6 and 7 illustrate this. In the example '476'B3, the B3 signals to
PL/I that the characters between the apostrophes are to be interpreted
as octal digits, and that each of these digits is to be transmitted
into three bits to create the final BIT constant. Therefore, the 4
becomes 100, the 7 becomes 111, and the 6 becomes 110, using the
ctandard convention for translating octal digits to binary digits.
That is why PL/I considers this constant to be exactly the same as the
constant '100111110'B. Both constants have the same data type BIT(9),
and both constants have the same value in terms of the string of bits.
Line 7 also illustrates the use of B3. Here, the octal digit 1 is
translated into the three bits 001, and so the constant 'l'B3 is the
same as the constant ‘001'B.

Lines 8 and 9 illustrate the use of B3 constants with other features.
In line 8 the constant ''B3 is another way of writing the null BIT
string, which was described before as ''p, In line 9, the repetition
factor 2 applies to all the octal digits, so that the oonstant
(2)'67'B3 is considered identical to the constant '6767'B3, which in
turn is considered identical to the constant '110111110111'B. All
three of these constants specify the same bit values, and all three
have the data type BIT(12).

Other Number Bases: PL/I allows you to specify BIT constants in any of
the common number bases: binary (base 2), quartal (base 4), octal
(base 8), or hexadecimal (base 16). Specify your choice of the number
base by means of the suffix Bl, B2, B3, or B4, respectively. Note that
Bl is the same as B. Each character that you specify between the
apostrophes in a Bl, B2, B3, or B4 constant represents, respectively,
1, 2, 3, or 4 bits in the final BIT string value., Table 5-8 shows
which characters are legal for each of the four kinds of BIT constants,
and shows how each of these characters is translated into a string of
bits. Note that for hexadecimal (base 16) constants, which are
specified by the suffix B4, the letters A through F are used to
represent the hexadecimal digits for the decimal values 10 through 15.

5=27 First Edition

PL/I Reference Guide

Table 5-8

Characters Permitted in Bn Constants
and Corresponding Bit Values

Character Corresponds to These Bits
B or Bl B2 B3 B4
0 0 00 000 0000
1 1 01 001 0001
2 Invalid 10 010 0010
3 Invalid 11 011 0011
4 Invalid Invalid 100 0100
5 Invalid Invalid 101 0101
6 Invalid Invalid 110 0110
7 Invalid Invalid 111 0111
8 Invalid Invalid Invalid 1000
9 Invalid Invalid Invalid 1001
A Invalid Invalid Invalid 1010
B Invalid Invalid Invalid 1011
C Invalid Invalid Invalid 1100
D Invalid Invalid Invalid 1101
E Invalid Invalid Invalid 1110
F Invalid Invalid Invalid 1111

Lines 10 through 14 in Table 5-7 illustrate same of these other kinds
of BIT constants. In line 10, the constant '9F3'B4 is a hexadecimal
BIT constant. Each of the characters between the apostrophes is
translated into four bits, according to the usual hexadecimal to binary
corversion rules as shown in Table 5-8. The character 9 translates
into the bits 1001, the character F translates into the bits 1111, and
the character 3 translates into the bits 0011, so that the equivalent
constant is '100111110011'B. You may write this constant in either of
these two formats; PL/I will consider them to have the same value as
well as the same data type, BIT(12). 1In line 11, the repetition factor
3 applies to the two hexadecimal digits 10.

Lines 12 and 13 illustrate the B2 representation of a BIT constant. In
line 12 each of the characters gets translated into two bits. In line
13, the repetition factor 3 is used.

Line 14 illustrates the alternate way, using Bl, of writing the same
constant as in line 1. ’

First Edition 5-28

DATA TYPES AND DATA ATIRIBUTES

PICTURED DATA TYPES: INTRODUCTION

The CHARACTER data type, which has been described, is extremely
powerful and flexible. CHARACTER variables can have, as their values,
strings of any of the 256 characters supported by the Prime hardware.
The use of such variables thus provides the programmer with the
capability of manipulating any kind of character string in a wide
variety of applications.

Unfortunately, this power carries with it the disadvantage of being a
bit too general. In many applications, the programmer would like to
declare CHARACTER variables in such a way that the strings that may be
assigned to those variables are constrained to permit only certain
characters in certain character positions. For example, a programmer
may wish to specify that a certain CHARACTER variable may have as a
value a string that can contain only letters as character values. Or,
a programmer may wish to specify that a certain CHARACTER variable may
contain only digits in its character value. In the latter case, the
compiler should be able to interpret such a string as a numeric value
as well as a string value,

Pictured data types provide these capabilities, 'The two kinds of
pictured data types are pictured-string and pictured-numeric. They are
described in the next sections.

PICTURED-STRING

A variable that is pictured-string is 1like a CHARACTER NONVARYING
variable, except that only certain types of character string values may
be assigned to it. In particular, it is possible for you to specify
that certain character positions may contain only letters, and that
other character positions may contain only digits. (PL/I will permit a
blank in place of a letter or a digit.) You may also allow certain
character positions to have any character,

Consider the following statement:
DECLARE CODE PICTURE 'AAAX99';

Notice that there are six characters between the two apostrophes
following the keyword PICTURE., This declaration specifies that CODE is
a (HARACTER variable containing exactly six characters, that the first
three of these characters must be letters (represented by A), the next
character may be any character (represented by X), and the last two
characters must be digits (represented by 9). Thus, for example, the
variable CODE may be assigned the value 'I\IJT-64' but may not have the
value 'NI8-14' or the value "NUT-X4',

5-29 First Edition

PL/I Reference Guide

The simplest format for declaring a pictured string is as follows:
DECLARE variable PICTURE picture-specification;

where the picture specification has the format
'string-of-characters'

If such a declaration appears in your program, the specified variable
will be CHARACTER NONVARYING, with a length equal to the number of
characters between the apostrophes in the picture specification. The
characters between the apostrophes may be any of the following:

@ A specifies that the character in that position must be either a
letter or a blank.

e X specifies that any character is permitted in that position.

e 9 specifies that the character in that position must be either a
digit or a blank,

The picture specification must contain at least one A2 or X. If the
picture specification contains only occurrences of the character 9, the
variable is pictured-numeric, rather than pictured-string,
Pictured-numeric variables are described in the next section.

If the same character appears several times consecutively in the
picture specification, you may use a convenient shorthand notation., A
parenthesized number appearing in a picture specification is
interpreted as a repetition factor to be applied to the character
immediately following., For example, the statement

DECLARE TYPE PICIURE 'X(7)AX(4)9';
is completely equivalent to the declaration
DECLARE TYPE PICTURE 'XAAAAARAX9999':

In the first picture specification, the elements (7)A specify that the
A is to be repeated seven times; this is done explicitly in the second
picture specification. Similarly, the element (4)9 1is replaced by
9999. An example of a CHARACTER string that is valid for assignment to
TYPE is '*MAILBOX:8742', Another example of a string that is valid for
assignment to TYPE is ' *SLOTbbb:b233', where b stands for a blank.
This string is valid for assignment to TYPE because PL/I allows a blank

First Edition 5=30

DATA TYPES AND DATA ATTRIBUTES

to be used in a character position where an A or a 9 was used in the
picture specification.

In the declaration of a pictured variable, the keyword PICTURE may be
abbreviated PIC,

PICTURED-NUMERIC

PL/I's pictured-numeric data type capability is a flexible method for
constraining CHARACTER strings so that a legal wvalue will be a
character representation of a number in the format desired by the user.
Furthermore, PL/I will interpret that variable as having an appropriate
numeric value, if you desire. For example, you may specify that a
variable is to contain precisely seven characters, and that the f£fifth
of these seven characters must be a decimal point, while the others
must all be digits. The string '8742.56' would be a legal value for
that variable, but a string such as '-243492' would not be a valid
value,

The pictured-numeric data type combines the functional advantages of
the numeric data types with the functional advantages of the CHARACTER
data type. The format for declaring a pictured-numeric variable is as
follows:

DECLARE variable PICTURE picture-specification;

where PICTURE may be abbreviated to PIC. This is the same format as
for pictured-string, described in the previous section. The difference
is that the picture specification ocontains different characters for
pictured-mumeric, and these characters are interpreted quite
differently.

Any pictured-numeric variable has two values, a numeric value and a
CHARACTER value, When you use such a variable in a PL/I statement,
PL/I uses whichever of the two values is appropriate for the context.
For example, if the variable appears in an arithmetic expression, its
numeric value is used. If you use PUT LIST to print out the value of
the variable, its C(HARACTER value is used. This means that you can
manipulate the value of the variable numerically, and, when you print
it out, get the formatting advantages of using a CHARACTER string.

Although the pictured-numeric data type has a number of advantages, it
has one important disadvantage: numeric computations involving
pictured-numeric variables execute much more slowly than the same
computations involving ordinary numeric variables. This means that you
should choose carefully which of your variables are to be
pictured-numeric and which are to be numeric, based on how frequently
each variable is to be used in arithmetic expressions. Of course, you
may always use the assignment statement to assign to a pictured-numeric
variable the value of a numeric variable, or vice versa.

5-31 First Edition

PL/I Reference Guide

The S and 9 Picture Specification Characters

Suppose your progrem contains the statement

DECLARE POINTS PICTURE 'S999';

This statement specifies that POINTS is to be pictured-numeric, meaning
that it will have both a CHARACTER value and a numeric value.

CHARACTER Value: There are four characters in the picture
Specification above, and so the . CHARACTER data type for POINTS is
CHARACTER (4) NONVARYING. The first character in the CHARACTER value is
always a sign (that is, + or -), because the first character in the
picture specification is S. The next three characters in the CHARACTER
value are always digits, since each of these positions has a 9 in the
picture specification.

Numeric Value: The picture specification specifies that the variable
1s to contain three decimal digits. For this reason, the data type of
*he numeric value of POINTS is FIXED DECIMAL(3).

To understand how this variable is used, suppose your program executes
the following statements:

POINTS = 23;
POINTS POINTS+1 ;
PUT LIST(POINTS) ;

The first assignment statement assigns the numeric value 23 to POINTS.
When PL/I executes this statement, it edits the numeric value into a
character string that fits the specification given in your PICIURE
declaration. This means that POINTS is assigned the value '+023°.

The second assigmment statement increases the numeric value of POINTS
by 1. In evaluating the expression POINTS + 1, PL/I uses the numeric
value (23) of points, adds 1 to it, and then completes the assignment
statement by editing the result 24 into a string that conforms to the
picture specification. The result is that POINTS is assigned the value
14024'. When the PUT statement is executed, PL/I uses the string value
of POINTS, and prints the following output value:

+024

Thus, PL/I moves freely back and forth between the numeric and string
value of POINTS.

First Edition 5-32

DATA TYPES AND DATA ATTRIBUTES

Table 5-9 illustrates the effect of assigning various values to
pictured-numeric variables. Each line of this table shows what happens
when you assign a certain value to a variable with a specified picture
specification. The table shows what the resulting numeric and string
values of the PICIURE variable will be,

Note

Internal representation of the numeric value for PICIURE is
decimal data type.

Lines 1 through 6 illustrate what happens when various values are
assigned to POINTS, the variable we have been discussing with the
picture specification 'S999'., Lines 1 and 2 illustrate the basic
feature that the string value of the variable contains a plus or minus
sign, followed by three decimal digits, Line 3 of the table
illustrates how truncation works, just as for any FIXED decimal
variable, The fractional portion, point 8, of the value assigned is
simply thrown away, with the result that the variable has a numeric
value of 468 and a string value of '+468'. Line 4 illustrates what
happens when you assign a value containing too many digits to POINTS.
The result is a SIZE error, and the value of FOINTS is undefined.

Lines 5 and 6 illustrate that you may also assign a string value to a
pictured—-numeric variable, provided that the string value corresponds
to the requirements of the picture specification. In line 5, the value
'+764' is assigned to POINTS, with the result that POINT has a numeric
value of 764 and a string value of '+764'. Line 6 illustrates an
invalid assignment of this type, where the assigned value '+47.3' does
not conform to the picture specification, since the decimal point
appearing in the third character position is not a digit.

Line 7 illustrates an alternate way of writing a picture specification
when the same character is repeated several times. In this example,
PL/I interprets the statement

DECLARE MILES 'S(7)9';
exactly the same as the statement
DECLARE MILES 'S9999999';

That is, the group (7)9 is interpreted as meaning that the 9 is to be
repeated seven times.

5-33 First Edition

PL/I Reference Guide

Table 5-9

BAssigning Values to
Numeric PICIURE Variables

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 23 '5999! +023 '4+g23"
2 -23 '5999"! -@23 '-g23"
3 468.8 15999 +468 '+468"' Truncation
4 1874 15999 Invalid SIZE error -- too
many digits
5 '+764" 'S999! +764 '+764" CHARACTER
assignment
6 '+7.3" '5999" Invalid CHAR value does
not conform to
picture
specification
7 -4,.3E5 '5(7)9" 430000 '-0430000' Repetition factor
8 746 '999s! +746 1746+ Sign at end
9 =53 '999s! -@53 'g53-!
10 79942 199999" +79942 '79942" No sign
11 874 199999! +00874 '00@874°
12 =874 '99999! Invalid SIZE error -- no
character position
for sign
First Edition 5-34

DATA TYPES AND DATA ATTRIBUTES

Lines 8 and 9 illustrate that the plus or minus sign may appear at the
end of the string value, as well as at the beginning. If you assign
the value 746 to a pictured-numeric variable with picture specification
19999S', the variable has the numeric value 746 and a string value of
10746+'. If you assign -53 to the same variable, the string value is
'0053-'.

Lines 10 throuch 12 of the table illustrate a picture specification
that contains no sign at all. As shown in line 11, if you assign the
value 874 to a variable with a picture specification of '99999', the
variable has a numeric value of 874 and a string value of '00874'.

As illustrated in line 12, it is invalid to assign a negative value to

such a variable, since there is no sign position in the picture
specification, The result of such an assignment is a SIZE error,

Other Sign Symbols: -, +, CR, DB

It was explained above that an S in the picture specification is
replaced by a plus or minus sign in the string value of the picture
variable. PL/I provides a number of other ways to represent a sign in
the string value., Same of these are as follows:

e If the picture specification contains a minus sign, PL/I inserts
into the string value of the variable either a blank, if the
numeric value is positive or zero, or a minus sign if the
numeric value is negative., This form of string is, for many
people, the most natural representation of the sign since a plus
sign never appears, and a minus sign appears for negative
numbers, which is the usual conwvention.

e If the picture specification contains a plus sign, PL/I inserts
into the corresponding position in the string value of the
variable a plus sign if the numeric value is zero or positive,
and a blank if the numeric value is negative.

e In commercial applications involving billing, a negative value
is considered a credit, If you use CR in a picture
specification, PL/I inserts CR into the string value of the
variable if the numeric value is negative. It inserts two
blanks if the numeric value is zero or positive. CR may be used
only at the end of the picture specification.

e In some commercial accounting applications, a negative value is
considered to be a debit, If your picture specification
contains DB, PL/I puts DB into the corresponding characters in
the string value of the variable, provided that the numeric
value is negative. If the numeric value is positive or zero,
PL/I uses two blanks. Notice that, even though the terms credit
and debit have opposite meanings in accounting, CR and DB work
the same way in PL/I picture specifications.

5-35 First Edition

PL/I Reference Guide

Table 5-10 illustrates the use of these picture specification symbols.
Lines 1 through 6 illustrate the contrasting uses of S, +, and -.
Lines 7 through 12 illustrate similar examples, with the sign appearing
at the end of the picture specification. Lines 13 through 16
illustrate the use of CR and DB.

All of the examples in Table 5-10 have picture specifications with
three positions for digits. BAs a result, the data type of the numeric
value of the variable in each case is FIXED DECIMAL(3). The data type
for the string value of the variable is CHARACTER(4) for 1lines 1
through 12 and CHARACTER(5) for lines 13 through 16.

First Edition 5-36

DATA TYPES AND DATA ATTRIBUTES

Table 5-10

Assigning Values to
Signed PICTURE Variables

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment

1 23 '5999! +023 '+@23! Sign Positive

2 23 '-999! +023 'HE23! Sign Positive

3 23 '4+999! +023 t4+023! Sign Positive

4 =23 15999 -323 '-g23" Sign Negative

5 -23 '-999' -@23 '-g23! - 8ign Negative

6 =23 '+999! -§23 'p@23! Sign Negative

7 486 '9998" +486 1486+ Sign Positive
at End

8 486 1999~ +486 '486b' Sign Positive
at End

9 486 1999+ +486 t486+" Sign Positive
: at End

10 -486 19998 ~486 ‘486~ Sign Negative
at End

11 -486 '999-! -486 '486-"' Sign Negative
at End

12 ~486 1999+ -486 '486b! Sign Negative
at End

13 18 '993CR' +018 'g18bb’ Sign Positive
at End

14 18 '999DB! +018 '@18bb! Sign Positive
at End

15 =18 '999CR" -p18 'g18CR' Sign Negative
at End

16 -18 '999DB' -p18 '@18DB' Sign Negative
at End

5-37 First Edition

PL/I Reference Guide

Insertion Character Symbols: . , / B

When one of these four symbols appears in a picture specification, PL/I
inserts the ocorresponding character into the string value of the
variable. 1In the case of the symbol B in the picture specification,
PL/I inserts a blank into the string value of the variable,

Table 5-11 illustrates the use of these four insertion character
symbols. As this table illustrates, when a numeric value is assigned
to a variable with a picture specification containing one of the
insertion character symbols, PL/I inserts the appropriate character
into the string value of the variable,

Table 5-11
Insertion Character Symbols

PICTURE Spec Result: Values of
Value for Target PICTURE Variable
Line # Assigned Variable Numeric String Comment

8742935 '99,999,999"' +@8742935 '@8,742,935'

1

2 780213 '99,/99,/99' +780213 '78/02/13"

3 9643 '5999.99! +09643 ' 4+096,43"

4 -4 '99,99CR" -394 ‘30 . GACR'

5 783 '9,999.99" +0009783 'g,007.83"

6 2743 '-99B9B9' +2743 'h27b4b3"!

7 6.78 '5999.99" +30006 ‘000, 06" Truncation

It is important to note that the appearance of a decimal point in the
picture specification does not mean that the numeric value of the
PICIURE variable can contain a fraction., This is illustrated in lines
3, 5, and 7 in the table. In particular, line 7 illustrates that when
the value 6.78 is assigned to a variable with picture specification
¥5999,99', the numeric value is truncated with the result that the
variable has the numeric value 6 and the string value '+000.06°.

In each of the examples in Table 5-11, the string value of the variable
has a data type CHARACTER NONVARYING, with a string length equal to the
number of characters in the picture specification. The data type for
the numeric value of the variable is FIXED DECIMAL, with a precision
(number of digits) equal to the number of occurrences of 9 in the
picture specification., For example, a variable declared to have this
picture specification '99,999,999', as illustrated in line 1 of the
table, has a string data type of CHARACTER(10), and a numeric data type
of FIXED DECIMAL(8).

First Edition 5-38

DATA TYPES AND DATA ATTRIBUTES

Numeric Scale Factor Symbols: V and F(n)

All the numeric picture specifications we have discussed so far could
be used to represent only integer values. In other words, in all
cases, the data type of the numeric value of the PICTURE variable was
FIXED DECIMAL. with a scale factor of 0. This section deals with ways
of introducing a nonzero scale factor into the picture specification.

The easiest way to allow noninteger numeric values is to use V plus a
period (V.) as a single element to specify where the decimal point
occurs. This usage is illustrated in lines 1 through 6 of Table 5-12.
For example, line 1 shows the result of assigning the value 4 to a
variable with picture specification '-9v.99'. The symbol 9 appears
three times, meaning that the mmeric value of the variable ocontains
three decimal digits. Since two occurrences of 9 occur after V plus a
period, two of the digits in the numeric value of the variable appear
after the decimal point. The result is that when 4 is assigned to the
variable, the resulting numeric value is 4.00, and the resulting string
value is 'b4.00'. If —-8.6 is assigned to the same variable, the
resulting numeric is -8.60, and the resulting string value is '-8.60'.
If 7.894 is assigned to the same variable, then, since the variable can
only accommodate two digits after the decimal point, truncation takes
place, the resulting numeric value is 7.89, and the string value is
1b7.89', These results are illustrated in lines 2 and 3 of Table 5-12.

The symbol V is unusual because it appears in the picture specification
but does not correspond to any character in the string representation
of the value of the variable., That is, even thouch the picture
specification '-9V.99' contains six characters, the data type for the
string value of the variable is CHARACTER(5) . Each of the characters
in the picture specification contributes one character to the string
representation of the variable except for V, which is ignored in the
string representation, On the other hand, the V does affect the data
type of the numeric value of the variable, since the scale factor of
the data type is determined by the number of occurrences of 9 that
follow the V. Thus, the picture specification 1-9v,99' has a
corresponding numeric type of FIXED DECIMAL(3,2) .

Lines 4 and 5 illustrate another picture specification using V followed
by a period. In this case, each occurrence of 9 follows the V, meaning
that all the digits in the value of the variable follow the decimal
point. ‘The string data type of the value of the variable is
CHARACTER(5), and the numeric data type is FIXED DECIMAL(3,3). As
illustrated in line 5, attempting to assign a value greater than one to
such a variable yields a SIZE error.

5-=39 First Edition

PL/I Reference Guide

Table 5-12

Assigning Values to PICTURE
Variables with Scale Factors

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 4 '-9V,.99' +4.00 b4, 00
2 -8.6 '-9v,99! -8.60 '-8.60"
3 7.894 '-9V.99 +7.89 'b7.89! Truncation
4 02 'SV.999! +.200 '+.200°'
5 4 'SV.999' Invalid SIZE error
6 12.3 '99v. 99! +12.30 '12.30°
7 12.3 '99,99°' +0012 'g@.12" Truncation
8 12.3 '99va9! +12.30 1123¢"
9 83 '99v99' +83.00 '830¢!
10 «25 '99v99! +00.25 'g@25"
11 493 '99v99! Invalid SIZE error
12 03 'V,9999" +.3000 '.3000"
13 o3 '.9999' +.0000 '. 0000 Truncation
14 03 'v9999! +.3000 '3p00°!
15 829 'V9999' +.0290 'g29¢"
16 3 'V9999'" Invalid SIZE error
17 487000 '999F (3) ' +487F3 t487!
18 29763 '999F (3) ! +29F'3 929! Truncation
19 12.3 '99,99F (~-2)"' +12.30 '12.30" Same as lines 6-8
20 12.3 '99,99' - +0012 'gg.12"
21 12.3 '9999F (-2) +12.30 t1230°
22 .20003 '99F (-6) ' +30F-6 '30°
23 0008297 '99F (-6)" +29F-6 129! Truncation
24 43,782 '99V99F (1) ' +04.37 'g437" Truncation

It is not necessary to use the symbols V and period together. Farlier,
you saw that the period is an insertion character that PL/I copies to
the string value of the variable without affecting the numeric value of
the variable., On the other hand, the symbol V does not correspond to
any character in the string value of the PICTURE variable, but since
PL/I uses the V to determine the scale factor, this symbol does affect
the numeric value of the variable. Therefore, the period affects only
the string value of the PICTURE variable, and V affects only the
numeric value. When they are used together (V.), they affect both the
string and numeric values and they do so in a consistent manner, since
the position of the decimal point in the string value corresponds to
the scale factor in the numeric value.

Lines 6, 7, and 8 of Table 5-12 illustrate what happens when the period
and the V are used separately. In line 6, the value 12,3 is assigned
to a variable with picture specification '99V.99'. Here the V and the
period are used together, and, as shown, the resulting numeric value is

First Edition 5-40

DATA TYPES AND DATA ATIRIBUTES

12.3 and the resulting string value '12,30'., The string data type is
CHARACTER(5) , and the numeric data type is FIXED DECIMAL(4,2) .

In line 7, there is only a period in the picture specification. Since
there is no V, the scale factor of the numeric value is 0, and so the
numeric value can only have an integer value. For this reason, when
the value 12.3 is assigned, truncation occurs, and the resulting
numeric value is 12, corresponding with the numeric data type of FIXED
DECIMAL(4) . In the string value of the variable, the numeric value of
12 is represented by means of the digits 0012, but the period in the
picture specification is simply copied over to the string value of the
variable, resulting in a string value of '00.12'.

Line 8 has the first example of a picture specification containing a V
with no period. The data type of the numeric value of the variable is
FIXED DECIMAL(4,2). 'This example is identical to the one in line 6,
where the period appears, with the exception that there is no decimal
point appearing in the string value of the variable, However, the
numeric value is the same in both cases, and the digits appearing in
the string value are the same. Lines 10 and 11 provide two additional
examples of assignment to the same picture specification as in line 9.
Lines 12 through 16 of the table provide a further illustration of the
concepts just described. 1In this example, all of the digits appear
after the decimal point.

Lines 17 and 18 illustrate a new kind of picture specification. The
appearance of F(3) at the end of the picture specification indicates
that the numeric value of the variable will have three zeros following
the digits as they appear in the string value. Thus, for example, if
the wvalue 487000 is assigned to a variable with the picture
specification '999F (3) ', the resulting numeric value is 487000 (which
could also be written as 487F3), and the string value is '487', For
this picture specification, the numeric data type is FIXED
DECIMAL(3,-3), and the string data type is CHARACTER(3). In line 18,
the value 29763 is assigned to a variable with the same picture
specification. Truncation takes place, and so the resulting numeric
value is 29000, and the resulting string value is '029°'.

Like V, when F(n) appears in a picture specification it determines the
scale factor of the numeric value of the variable. The rule is as
follows: an increase of one in the value of n in the F(n) is
equivalent to moving the V to the left one position with respect to the
occurrences of 9 in the picture specification. Lines 19, 20, and 21
illustrate this. The picture specifications on these three lines are
entirely equivalent to the picture specification in lines 6, 7, and 8.
The appearance of F(-2) is equivalent to inserting V to the left of two
occurrences of 9 in the picture specification,

In lines 22 and 23, the implied decimal point is six positions to the
left of the rightmost digit appearing in the string value of the
variable. In line 23, truncation takes place.

It is even possible to use both V and F in the same picture
specification, resulting in their effects being combined. The picture

5-41 First Edition

PL/I Reference Guide

specification '99V99F (1) ' is equivalent to the picture specification
999V,

The following is a summary of the effects of V and F(n) on the numeric
and string data types of the variable. The string data type is
CHARACTER NONVARYING, with the length equal to the number of characters
in the picture specification, not including the V or the F(n). The
numeric data type is FIXED DECIMAL(p,q), where p equals the number of
occurrences of 9 in the picture specification, and g equals m-n, where
m is the number of occurrences of 9 following the symbol V, and n is
the integer appearing along with F.

Suppressing Zeros: %, *, and Y

One of the main purposes of PICTURE variables is to provide a method of
storing numeric values in a string form that is suitable for attractive
or functional output. One important feature of attractive output is
the suppression of leading zeros, For example, in printing 45, most
users would consider the output 0045 unattractive, because of the two
leading zeros.

In a string specification, the symbol Z has the same meaning as 9,
except that, in the string value of the variable, PL/I will substitute
a blank for the 7 if the digit that would have been substituted was a
leading zero. ‘

In Table 5-13, lines 1 through 5 illustrate what happens when various
values are assigned to a PICTURE variable with the picture
specification 'Z799'. ‘The data type of the numeric value of the
variable is FIXED DECIMAL(4), and the data type of the string value of
the variable is CHARACTER(4), just as if the picture specification were
19999', TIn fact, the Z is entirely equivalent to 9 in determining the
data types of the string and numeric values of the PICIURE variable,
The difference is that PL/I does not always substitute a digit for a 2
as it does for a 9.

First Edition 5-42

DATA TYPES AND DATA ATTRIBUTES

Table 5-13
Zero Suppression With PICTURE Variables

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 8002 '72299" +8002 '8gg2°’ No suppression
2 453 172299 +0453 'b453" One digit
suppressed
3 62 12299 +3062 'bb62'! Two digits
suppressed
4 4 17299" +0004 'bbg4!
5 @ 12799 +0000 '"bb@g!
6 400 V227" +400 ‘400" No suppression
7 5 AV +005 ‘bb5! Two digits
suppressed
8 g ‘222! +000 'bbb'! All digits
suppressed
9 =25 'S5z279" -325 '-b25"
10] '229s’ +000 bbb+’

11 4279365 '2,222,229" +4279365 '4,279,365' No suppression

12 279365 '%,227,229' +@279365 'bb279,365' Digit and comma

suppressed

13 143 '7,222,229' +0000143 ‘'bbbbbbl43' Both commas
suppressed

14 2 -'22/729/99" +(00092 'bbbb@/@2' Slash suppressed

15 8002 '%%99! +80@2 '80p2" Similar to lines
1-4

16 453 'R%9Q! +@453 '%453" Similar to lines
1-4

17 62 '%%99! +0062 YA Similar to lines
1-4

5-43 First Edition

PL/I Reference Guide

Table 5-13 (continued)
Zero Suppression With PICIURE Variables

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment

18 4 VR%9Q! +0004 TREQA! Similar to lines
1-4

19 143 Y Kkk ARG +0000143 ‘'HxEEE%E*1A3Y Gimilar to lines
13-14

20 2 VR* /%9 /99! 1000002 'kEkEG/g2!

21 10203 'Yyyyyy! +10203 '1b2b3"

22 100000 'YY/Y9/Y9"' +100000 'lb/b8/bd’

As line 1 of Table 5-13 shows, when the value 8002 is assigned to such
a variable, the resulting string value is '8002', since there are no
leading zeros. However, as line 2 shows, when 453 is assigned to the
same variable, the resulting string value is 'b453'. The leading zero
is replaced with a blank. When the value 62 is assigned, two leading
zeros are replaced with blanks, as illustrated in line 3. On the other
hand, when the wvalue 4 is assigned to the variable as illustrated in
line 4, only two of the three leading zeros are suppressed, since a 9
appears in the third position of the picture specification.
Furthermore, as line 5 shows, when the value 0 1is assigned, the
resulting string value is 'bb', since the two occurrences of 9 at the
end of the picture specification require actual digit substitution.

Lines 6, 7, and 8 illustrate assignment to a variable with a picture
specification consisting entirely of the character Z. For a variable
with picture specification 'ZzZ', the numeric value has data type FIXED
DECIMAL(3), and the string value has data type CHARACTER(2). When the
value 400 is assigned to this variable, the resulting string value is
'400', since there are no leading zeros. When the value 5 is assigned,
the resulting string value is 'bb5', since there are two leading zeros.
When the value zero is assigned, all three digits are suppressed, and
the resulting string value contains three blanks.

The use of the various sign symbols is not affected at all by the
suppression of leading zeros. Lines 9 and 10 of Table 5-13 illustrate
this.,

First Edition 5-44

DATA TYPES AND DATA ATTRIBUTES

An important feature of the suppression of leading zeros is that any
insertion characters encountered along the way during the editing
process are replaced with blanks if the preceding digits are replaced
with blanks. This feature is illustrated in lines 11 through 14.
These examples illustrate the suppression of the insertion characters
comma (,) and slash (/) when leading zeros are suppressed.

In certain commercial applications, such as the printing of checks, it
is desirable that leading zeros be replaced by some printing character,
rather than by a blank. The character most commonly used is the
asterisk (*), and PL/I provides this capability. When the symbol ¥
appears in a picture specification, it is treated precisely the same as
a 7, except that, when a digit is suppressed, it is replaced with an
asterisk rather than a blank. These features are illustrated by lines
13 through 20 of Table 5-13. These examples are identical to the
examples in lines 1 through 4 and 13 throuch 14, except that an
asterisk is used instead of Z.

The last zero-suppression symbol is Y. When this symbol appears in a
picture specification, the corresponding string value has any zero
replaced with a blank, whether the digit is leading or not. This is
illustrated in lines 21 and 22 of Table 5-13.

The symbols % and * may not be intermixed with one another, nor may
they be intermixed with 9 or Y. Also, 2 and * may not both appear in
the same picture specification. Furthermore, no 9 or Y may appear to
the left of either a 2 or an * in the picture specification. The
symbols 9 and Y may be intermixed as desired.

In the preceding section, the data types of the string and numeric
values of a pictured variable have been defined in terms of the number
of occurrences of 9. Now those rules must be amended to count
occurrences of the symbols 9, Z, *, and Y.

Suppressing Leading Zeros in Picture Specifications with V

When V appears in the same picture specification as either Z or *, some
special rules apply. These rules are as follows:

e If either Z or * appears in the picture specification to the
right of Vv, all digit positions in the picture specification
must be represented by Z or *, respectively.

e When your program assigns a mnumeric value to a picture
specification all of whose digits positions contain either 7 or
*, then, in creating the string value of the variable, PL/I does
not suppress any digit or insertion character appearing to the
right of a V, even a leading zero, umless the numeric value is
zero. In the latter case, all digits and insertion characters
are suppressed.

5-45 First Edition

PL/I Reference Guide

Table 5-14 illustrates these rules., In line 2, the insertion character
period is not suppressed, as it would be if the picture specification
contained no V., As illustrated in line 3, the picture specification
122V.79' is an illegal picture specification, since a Z appears to the
right of a V, but there is still a 9 in the picture specification.

The case where all digit positions are occupied by Z, with two of those
digit positions following a V, is illustrated in lines 4 through 7.
The only case where digits after the V are suppressed is illustrated in
line 7, where the numeric value is 0, and all digit positions, as well
as the insertion character period, are suppressed.

When the insertion character period appears to the left of V, as
illustrated in lines 8 and 9, it can be suppressed even if digits to
the right of V are not suppressed. In line 9, the resulting string
value 'bbb42' could cause confusion to somebody reading the output from
your program. 'That is why V followed by a period (V.) is considered
preferable in most circumstances to period followed by a V (.V).

Lines 10 through 13 of the table are similar to 1lines 4 through 7
except that the insertion character period has been omitted. This
serves to emphasize the point that a period is inserted into the string
value of the variable, and carries no meaning as regards the numeric
value of the variable, which is the function of V.

Lines 14 through 20 of the table are the same as lines 1 through 7 of

the table, except that the zero suppression character * replaces Z,
BAll other remarks are the same,

Drifting Signs: S, +, and -

In the string value of a PICTURE variable, in many cases you would
prefer that there be no blanks between the sign and the first nonzero
digit. The use of drifting signs solves this problem. When PL/I edits
a numeric value into the string value, it lets the sign drift to the
right so that it appears just before the first nonzero digit.

Table 5-15 illustrates the use of drifting signs. In the £irst two
lines, the symbol S is a static sign, so called because it can appear
in only one position, the leftmost position of the string value of the
variable, In line 2, where leading zeros have been suppressed, there
are blanks between the minus sign and the 2. Lines 3 through 9
illustrate the various results when different values are assigned to a
variable whose picture specification contains S as a drifting sign. 1In
each case, the sign appears in the position immediately preceding the
first significant digit.

First Edition 5-46

DATA TYPES AND DATA ATTRIBUTES

Table 5-14
Assigning Values to PICTUREs With V

PICTURE Spec Result: Values of

Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 8.42 172ZV.99" +38.42 'b8.42'
2 .42 '7ZV.99' +00 .42 ‘bb.42'
3 '7272V.29" Illegal picture
specification
4 8.42 VZ2ZV.22" +08.42 ‘bb,42'
5 .42 '722ZV.22" +00 .42 'bb.42'
6 02 V72V 22" +00.92 'bb.02' @ after V not
suppressed
7 @ '77ZV.22" +00.00 'bbbbb' All digits and
period suppressed
8 8.42 Y27 .VZZ' +08.42 b8, 42"
9 .42 '22,V22" +00.42 'bbb42'
19 8.42 'ZZvZz! +08.42 '842' Similar to lines 4=7
11 .42 '22vzz! +00.42 'bb42' Similar to lines 4-7
12 .02 '2Zvz22! +00.02 'bb@2' Similar to lines 4-7
13] 'Z2ZVZZ! +00.00 'bbbb' Similar to lines 4-7
14 8.42 TREy 99! +08.42 '%8,42'
15 <42 thky, 09! +00 .42 Thk 42"
16 ThEY, RO Illegal picture
specification
17 8.42 Viky k! +08.42 1%8,42!
18 W42 AL +00.42 Thk 42!
19 .92 VhEy Rk +00.02 thk p2' 0 after V not
suppressed
20] Viky wke) +00.00 texkkx! A1l digits and

period suppressed

5-47 First Edition

PL/I Reference Guide

Table 5-15
Assigning Values to PICIUREs With Drifting Signs
PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 -25 1599999 -00325 '-g@E@25' Static sign
2 =25 'SZ727279" -00025 '-bbb25' Static sign
3 -25 'SSSSS9! -00025 'bbb-25' Drifting sign
4 7} 'SS5559! +00000 'bbbb+@' Drifting sign
5 25 'SSSSS9! +00025 'bbb+25' Drifting sign
6 3875 1558559 +03875 'b+3875' Drifting sign
7 42765 '555589! +42765 '+42765' Drifting sign
8 ~42765 'SSSSS9! -42765 '~42765' Drifting sign
9 723463 1555859 Invalid SIZE error
19 25 'S5S8SSS! +00025 ‘bbb+25' Drifting sign,
all positions
11 /) 'SSSSSs! +00000 'bbbbbb'
12 4876 'SS,S8589! +4876 '+4,876' Comma inserted
13 876 'SS,SS89! +0876 'bb+876' Comma replaced
with sign
14 76 'ss,859! +0876" 'bbb+76' Comma replaced
with blank
15 .03 'SS9V. 99" +00.03 "b+0.03"
16 .03 'SSSV.99’ +00.03 ‘bb+.03"
17 .33 'SSSV.SS! +00.03 'bb+,03"
18 "] 'SSSV.SS! +00.09" 'bhbbbb !
19 'SSSV.S9! Illegal picture
specification
First Edition 5-48

DATA TYPES AND DATA ATTIRIBUTES

Table 5-15 (continued)
Assigning Values to PICTUREs With Drifting Signs

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
20 25 R 9! +@0025 'bbbb25' Other drifting
signs
21 -25 Voo 9! -00825 'bbb~25' Other drifting
signs
22 25 Y4+4+449° +00025 'bbb+25*' Other drifting
signs
23 =25 V449! -30925 'bbbb25' Other drifting
signs

Specify a drifting sign in a picture specification by using the sign
two or more times in the specification. If you use a drifting sign,
all occurrences of the drifting sign must appear to the left of any of
the digit symbols 9, Z or Y.

For computing the data type of the string value of the PICIURE
variable, each occurrence of the drifting sign symbol contributes one
character to the string value. Thus, a variable with a picture
specification of 'SSSSS9' would be CHARACTER(6); that is, all six
characters in the picture specification correspond to characters in the
string value. On the other hand, for computing the data type of the
numeric value of the picture variable, all but one of the occurrences
of the drifting sign symbol contribute to the precision. That is, if
there are n occurrences of a drifting symbol in the picture
specification, only (n - 1) of these contribute to the precision of the
numeric value of the PICTURE variable, For this reason, the picture
specification 'SSSSS9' has a numeric data type of FIXED DECIMAL(5).
The precision of 5 comes from the four digit positions contributed by
the five occurrences of S, plus one from the occurrence of 9.

It is possible for a picture specification to contain no digit symbols
other than the drifting sign symbols as illustrated in lines 10 and 11.
When zero is assigned to a variable with such a picture specification,
the string value contains all blanks. Notice that the data type of the
numeric value of a variable with picture specification 'SSSSSS' is
FIXED DECIMAL(5). The precision of 5 comes from the six occurrences of
S.

When an insertion character, such as a comma, appears in the picture

specification either in the midst of, or immediately following, a
string of drifting sign symbols, then PL/I includes the insertion

5-49 First Edition

PL/I Reference Guide

character, in a sense, as part of the drifting field. The sense is
that the insertion character can become any of the following in the
final edited string value of the PICTURE variable:

e If a nonzero digit appears before the insertion character, the
insertion character is left unchanged.

e If the first nonzero digit appears immediately after the
insertion character, the insertion character is replaced by a
sign, just as if the insertion character were rpart of the
drifting sign field.

e If the first nonzero digit appears after that point, the
insertion character is replaced with a blank, as usual.

These rules are illustrated in lines 12 through 14 of the table.
Notice, in particular, line 13, where the insertion character comma was
replaced with the plus sign.

A drifting sign interacts with V very much as Z does. If a drifting
sign appears to the right of a V, it must appear in all positions. No
digits to the richt of V are suppressed in the string value of the
PICTURE variable unless the mumeric value of the variable is 0, in
which case the entire field is suppressed. These rules are illustrated
in lines 15 through 19 of the table.

This discussion regarding the sign symbol S applies equally to the
symbols + and -. As usual, the minus sign is replaced by a blank if
the numeric value is greater than or equal to 0, and the plus sign is
replaced with a blank if the numeric value is less than 0.

Static and Drifting $

If you wish a currency symbol to appear in the string value of the
PICTURE variable, use a $ in the picture specification, If there is
only one $ in the picture specification, it is treated as a static
symbol, and PL/I simply copies it when editing the string value of the
picture variable, This is illustrated in line 1 of Table 5-16.

Pirst Edition 5=-50

DATA TYPES AND DATA ATTRIBUTES

Table 5-16
Static and Drifting Dollar Sign

PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 25 1822229 +00025 '$bbb25" Static $
2 25 1585889 +00925 'bbb$25! Drifting $
3 87425 1885589 +87425 1587425 Drifting $
4 2 1858559 +00002' 'bbbbg2' Drifting $
5 =23 1585589 Invalid SIZE error ——
no sign in
picture
specification

6 8742.63 '$$,S$SV.99DB' +8742.63 '$8,742,63DB'
7 -834,92 'S$,S$S5V.99DB' +0834.92 'bbSB834.92bb’
8 6.23 '$$,888V.99CR' +0006.23 'bbbb$6.23bb'

9 .02 '$$,585V.99CR' +0000.02 'bbbbb$.02bb'

10 ~7.63 '$$,$$$V,99CR' -0007.63 'bbb$7.63CR'

If there are two or more occurrences of $ in the picture specification,
it is treated as a drifting character, and the rules for it are the
same as for the drifting signs. ULines 2 through 10 of the same table
illustrate these features. Notice that the currency symbol drifts to
the right until it appears before the first digit in the string.

Since it is illegal to have a drifting sign in the same picture
specification as a drifting currency symbol, use either CR or DB to
indicate the sign of the numeric value. The use of CR is illustrated

in lines 6 through 10.

5-51 First Edition

PL/I Reference Guide

Overpunched Sign Symbols: T, I, and R

In the early days of punched-card usage with the BCD (binary-coded
decimal) character set, it was the convention that a signed number
could be punched by overpunching the last digit of the number with a
plus sign or minus sign. When such overpunching occurred, the result
was simply a new character. For example, when the digit 1 is
overpunched with a plus sign (12-punch), the result is the character A.
If 1 is overpunched with a minus sign (1l1-punch), the result is the
character J. Table 5-17 provides a complete list of these overpunched
codes.

Table 5-17
Digits With Overpunched Signs
Overpunched Digit
Digit With + With -

0 { }
1 A J
2 B K
3 C L
4 D M
5 E N
6 F 0
7 G P
8 H 0
9 I R

If you use the symbol T in the picture specification for a variable,
you are indicating that the sign of the number is to be specified by
one of these overpunched characters. The symbol T is handled exactly
like 9, except that the corresponding character in the string value of
the PICTURE variable will contain an overpunched digit rather than a
simple digit., This is illustrated in lines 1 through 6 of Table 5-18.
Motice that, as illustrated in lines 5 and 6, the symbol T need not
appear in the last position of the picture specification.

Note

Because of a Prime hardware limitation, only negative sign
overpunch is available in Prime PL/I.

First Edition 5-52

DATA TYPES AND DATA ATIRIBUTES

Table 5-18
PICTURE Variables With Overpunch
PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment

1 25 19991 +0025 'QO2E" + or - overpunch
2 =25 '999T! -0@25 ‘002N + or - overpunch
3 1282 '999T! +1282 '128B' + or - overpunch
4 -1282 '999T! -1282 '128K' + or - overpunch
5 1282 '99T9! +1282 '12H2' + or - overpunch
6 -1282 '99T9! -1282 '12Q2° + or - overpunch
7 1282 '999R' +1282 11282 - overpunch only
8 -1282 '999R’ -1282 '128K' - overpunch only
9 1282 '9991! +1282 '128B"' + overpunch only
19 -1282 '9991" -1282 '1282" + overpunch only

The symbol R is like T except that only a negative numeric value causes
an overpunch; if the numeric value is zero or positive, the R is
replaced with an ordinary digit in the string value of the PICIURE
variable. This is illustrated in lines 7 and 8 of the table,
Similarly, lines 9 and 10 illustrate the use of I, which causes an
overpunch only if the numeric value is zero or positive,

The following sign symbols have been discussed: S, +, -, (R, DB, $, T,
R, and I. Only one of these symbols may be used in any picture
specification, with the exception of the use of S, +, or - as a
drifting sign. In any case, two different sign symbols may not be used
in the same field. 1If no sign symbols appear, the numeric value of the
PICIURE variable must always be positive.

FLOAT Symbols: E and K

Up until now, all of the pictured-numeric variables that have been
discussed have had numeric data types with a scale of FIXED. This
section covers picture specifications that define variables with FLOAT
numeric data types.

A FLOAT number can be represented by means of two fixed numbers, the
mantissa and the characteristic (that is, the exponent). For this
reason, a FLOAT picture specification consists of two FIXED picture
specifications separated by the letter E,

5-53 First Edition

PL/I Reference Guide

Consider, for example, the picture specification 'SV.999ES99', which is
illustrated in lines 1 through 5 of Table 5-19. This FLOAT picture
specification contains two FIXED picture specifications. The first,
'5V.999', is for the mantissa, and the second, 'S99', is for the
characteristic of the numeric value of the PICIURE variable. In
creating the string value of the PICIURE variable, PL/I edits the
mantissa using the first picture specification, copies the letter E,
and then edits the characteristic using the second picture
specification.

Table 5-19
Assigning Values to PICTUREs With FLOAT Symbols
PICTURE Spec Result: Values of
Value for Target PICTURE PICTURE
Line # Assigned Variable Numeric String Comment
1 23 'SV,999ES99' +.230E2 '+.230E+22'
2 8.74 'SV.999ES99' +.874E1 '+.874E+01'
3 .0003 'SV.999ES99' +.300E-3 '+.300E-@3'
4 -23 'SV.999ES99' -.230E2 '-.230E+82'
5 -. 0003 'SV.999ES99' -.3@0E-3 '-.300E-03'
6 23 'S99V, 9ES99' +.23¢E2 '+23.0E+0@'
7 -.0003 'S99V.9ES99' -.3Q0E-3 '~30.QE-@5'
8 a- 'S99V, 9ES99' +.00QE¢ '+00.Q9E+0Q'
9 8.74 'SSSV.9ESS9' +.874E1 '+87.4Eb-1"
9 - @ 'SSSV.9ESS9' +.000ES 'bb+ . 0Eb+2"
11 87 '9E9" +,8E2 '8El!
12 -87 'SE9! Invalid SIZE error == no
sign in mantissa
13 +.0083 '9E9’ Invalid SIZE error —- no
sign in
characteristic
14 23 'SV.999KS99' +.230E2 '+.230+82'

First Edition 5-54

DATA TYPES AND DATA ATTRIBUTES

The scale factor of the mantissa portion of the picture specification,
as determined by the symbol V or F, determines the wvalue of the
characteristic, which is to be edited using the second portion of the
picture specification. For example, in line 1 of the table, V appears
before the first digit while, in line 6, V appears before the third
digit. Although, in both of these lines, the numeric value of the
variable is the same, the value appearing in the characteristic portion
of the string value is different because the scale factor in the
mantissa portion is different., (Compare lines 5 and 7 in the table.)

Use of drifting signs in the mantissa portion of a FLOAT picture
specification usually does not make sense, because when PL/I creates
the string value of the PICTURE variable, it uses as its first digit in
the mantissa the leading significant digit in the numeric value, This
means that there are usually no leading zeros to suppress (see line 9
of the table), The exception is when the numeric value is 0, as
illustrated in line 10.

Notice that the mantissa and characteristic portions of the picture
specifications have separate signs. It is possible to get a SIZE error
in either portion, if there is no provision for a negative sign. This
is illustrated in lines 11 through 13 where the picture specification
'9E9' has no provision for a sign in either the mantissa or the
characteristic.)

The use of K is identical to the use of E, except that no E is inserted
into the string value of the PICTURE variable, This is illustrated in
line 14 of the table, which is identical to line 1, except that K
appears instead of E in the picture specification, and no character
whatsoever appears in the string value of the PICIURE variable to
separate the mantissa and characteristic portions.

Same of the rules that have been stated in preceding sections must now
be modified. All rules that stated "you can't do such and such in a
picture specification” should now be rewritten as "you can't do such
and such in a single field of a picture specification," where a field
of a FLOAT picture specification is either the mantissa field or the
characteristic field. For example, the rule that you may not have two
different sign symbols in a picture specification must now be changed
to state that you may not have two different sign symbols in a single
field of a picture specification,

The rules for determining the data types for the numeric and string
values of a PICTURE variable with a FLOAT picture specification are as
follows: the numeric value has a data type of FLOAT DECIMAL, with a
precision equal to the precision of the mantissa portion of the picture
specification. (The FLOAT data type has no scale factor.) The string
value has a data type of CHARACTER NONVARYING. The length of the
string equals the sum of the length of the strings corresponding to the
mantissa portion and characteristic portion of the picture
specification. To this sum, add 1 if E is used in the picture
specification; do not add 1 if K is used.

5-55 First Edition

PL/I Reference Guide

(OMPLEX Pictures

If you wish the numeric value of a PICTURE variable to be COMPLEX,
rather than REAL, specify the keyword COMPLEX in the declaration of the
PICTURE variable, For example, suppose the statement

DECLARE CPP PICTURE 'S9V.99ES99' COMPLEX;

appears in your program. (OMPLEX is combined with the data type
derived from the picture specification, and the numeric value of CPP
has a data type of FLOAT DECIMAL(3) COMPLEX. The string value of CPP
contains two parts, one for the real part of the value, and one for the
imaginary part. For this reason, the data type of the string value of
CPP is CHARACTER(18) NONVARYING. For example, if your program executes
the statement

CPP = 3-2I;

then the resulting numeric value of CPP is +.300El-.200ELI, and the
string value of CPP is '+3.00E+00-2.00E+01'.

ARRAYS AND STRUCTURES

The preceding section dealt with the data types of individual PL/I data
elements. In all the cases discussed, each variable represented a
single data value, such as a number or a string, For this reason,
these variables are called scalars. When a variable can stand for many
individual data elements, it is an aggregate, and its value is called
an aggregate value. The two basic kinds of aggregates are the array
and the structure. In addition, it is possible to combine the basic
aggregate types to get more complex aggregates, such as arrays of
structures or structures of arrays.

One-dimensional Arrays

An array is an aggregate value all of whose individual data elements
have the same data type. Consider, for example, the following
statement:

DECLARE PRICES (50) FIXED DECIMAL(7,2):

First Edition 5-56

DATA TYPES AND DATA ATTRIBUTES

If this statement appears in your program, it specifies that PRICES is
an array containing 50 individual data elements or scalars. BEach of
these 50 individual data elements has the same data type, FIXED
DECIMAL(7,2) .

Figure 5-1 illustrates the array PRICES. When you wish to refer to all

50 scalar elaments in PRICES at once, use the identifier PRICES. For
example, a statement like

PRICES = 7;

says to set the entire array PRICES to 7, which PL/I interprets as
meaning that each of the 50 scalar elements of PRICES is to be assigned
the value 7. Similarly, the statement

PUT LIST(PRICES);

causes PL/I to print out each of the 50 data elements in the array
PRICES.

To refer to each of the 50 scalars individually, use a subscript. For
example, the statement

PRICES (49) = 15*PRICES(2);

is an assignment statement involving the individual elements of the
array PRICES. As shown in the figqure, PRICES(2) refers to the second
of the scalar elements, while PRICES(49) refers to the 49th of the
scalar elements. The subscripts are 2 and 49.

First Edition

(8]
I
(82}
~

PL/I Reference Guide

PRICES PRICES (1)

PRICES (2)

PRICES (3)

PRICES (4)

PRICES (48)

PRICES (49)

PRICES (50)

Representation of the Array PRICES
Figure 5-1

Most of the real programming power of arrays comes from the fact that
array subscripts may be variables or expressions. For example,
something like

DO INDEX = 1 TO 50;
PRICES (INDEX) = INDEX;
END;

is legal in PL/I, and permits you to do in a three-statement loop
something that would require 50 statements if you used 50 individual
variables rather than an array. Any PL/I expression may be used as a
subscript, so that a statement like

PRICES(K + L) = PRICES(2*M);

is perfectly legal.

First Edition 5-58

DATA TYPES AND DATA ATTRIBUTES

Array Bounds

The bounds of an array are the maximum and minimum values that a
subscript used with the array can have, The lower bound of the array
is the minimum value that a subscript can have, and the upper bound is
the maximum value. In the array PRICES shown in Figqure 5-1, the lower
bound is 1, and the upper bound is 50.

Use a colon (:) in your array declaration to specify that the lower
bound of the array should be other than 1. For example, the statement

DECLARE VECTOR(0:12) FLOAT;

specifies that VECTOR is an array of 13 elements, and that the lower
bound of the subscript values is 0 and the upper bound is 12, By using
this kind of declaration, you may make the lower bound any value you
want, including a negative value.

Under certain circumstances, PL/I allows you, in your array
declaration, to use as array bounds expressions containing variables.
For example, the statement

DECLARE VALUES (N) ;

is legal, even though the upper bound, represented by N, is variable.
The circumstances in which this is legal are discussed in the section
Variables in Extent and INITIAL Expressions in Chapter 7.

Multi-dimensional Arrays

The array examples just given were all one-dimensional arrays, meaning
that the individual scalar elements of the array were referenced by
means of a single subscript. PL/I permits arrays of two or more
dimensions as well, For example, consider the following declaration:

DECLARE MAT(4,3) FLOAT DECIMAL(7) ;

This statement specifies that MAT is a two-dimensional array
(informally called a matrix or table), containing four rows and three
columns,

5-59 First Edition

PL/I Reference Guide

Figure 5-2 illustrates the array MAT. When you use the symbol MAT by
itself, you are referring to all 12 scalar elements of the array. By
using two subscripts, such as in MAT(4,3), you are referring to a
single element of the array.

MAT
MAT (1,1) MAT (1,2) MAT (1,3)
MAT (2,1) MAT (2,2) MAT (2,3)
MAT (3,1) MAT (3,2) MAT (33)
MAT (4,1) MAT (4,2) MAT (4,3)

The Two—-dimensional Array MAT
Fiqure 5-2

First Edition 5-60

DATA TYPES AND DATA ATTRIBUTES

MAT (1, 1)

MAT (1, 2)

MAT (1, 3)

MAT (2, 1)

MAT (2, 2)

MAT (2, 3)

MAT (3, 1)

MAT (3, 2)

MAT (3, 3)

MAT (4, 1)

MAT (4, 2)

MAT (4, 3)

Layout of MAT in Memory
Fiqure 5-3

For example, the statement
PUT LIST(MAT);

prints out all 12 elements of the array, in the order MAT(1,1),
MAT(1,2) , MAT(1,3), MAT(2,1), ..., MAT(4,2), MAT(4,3). (This is known
as row-major order. Row-major order is how MAT is arranged in memory,
as illustrated by Figure 5-3. FORTRAN programmers should be aware that
FORTRAN uses column—major order.) On the other hand, the statement

PUT LIST(MAT(3,2));

prints only that one scalar element.

5-61 First Edition

PL/I Reference Guide

The bound specification, as applied to two-dimensional arrays, is used
separately with each of the dimensions. The array MAT, which has been
described, has a lower bound of 1 for both the first and second
dimensions, but has an upper bound of 4 for the first dimension and 3
for the second dimension. As in the case of singly dimensioned arrays,
you may use the colon to specify a lower bound other than 1. For
example, the statement

DECLARE GNP(1950:1970,4) FIXED DECIMAL(12);

specifies that the array GNP is a 21x4 two-dimensiomal array, with
lower bounds of 1950 for the first dimension and 1 for the second
dimension, and upper bounds of 1970 for the first dimension and 4 for
the second dimension.

Although they are very unusual, PL/I permits arrays of more than two
dimensions, For example,

DECLARE M(8,4,5:3,16) CHARACTER(5);

is a declaration for a four-dimensiomal array, M. The maximum number
of dimensions is eight.

Array Cross Sections

Use an asterisk (*) to refer to a particular single row or column of a
two-dimensional array. For example, MAT(3,*) refers to the third row
of MAT, where MAT is the two-dimensional array described above, 'The
statement

PUT LIST(MAT(3,%*));

prints out the three values, MAT(3,1), MAT(3,2), and MAT(3,3) , in the
third row of MAT, Similarly, MAT(*,2) refers to the second column of
the array MAT.

In multi-dimensional arrays, use an asterisk in any of the subscript
positions to specify that all subscripts in that subscript position are
to be included., For example, with the four-dimensiomal array M
described above, you may use M(*,I,*,3) to specify a two-dimensional
cross section.

First Edition 5-62

DATA TYPES AND DATA ATTRIBUTES

Structures

The second basic aggregate type is a structure. Whereas in an array
all the scalar elements have the same data type, in a structure the
individual scalars may have different data types.

Consider, for example, the following declaration:

DECLARE 1 INDIVIDUAL,
2 NAME (HARACTER(20) VARYING,
2 AGE FIXED BINARY,

2 SALARY FIXED DECIMAL(9,2):

Note

Commas, not semicolons, are used to separate elements within
the structure declaration. ILevel numbers are explained below.

This declaration specifies that INDIVIDUAL is a structure, and that it
contains three individual scalar elements, called members. Each of the
structure members has its own identifier. The first member, called
NAME, has the attributes CHARACTER(20) VARYING, the second member,
called AGE, has the attributes FIXED BINARY, and the third, called
SALERY, has the attributes FIXED DECIMAL(9,2). Thus, INDIVIDUAL is a
structure containing three scalar element members, with three different

data types.

When used by itself, the identifier INDIVIDUAL refers to all three
scalar elements in the structure., For example, the statement

PUT LIST (INDIVIDUAL) ;

prints out all three of the values.,

You may refer to each of the three nmembers separately as
INDIVIDUAL.NAME, INDIVIDUAL.AGE, INDIVIDUAL.SALARY. A name specified
in this fashion using a period is called a qualified name. You may
also use the unqualified identifiers, NAME, AGE, and SALARY, to refer
to the individual scalar elements, providing that doing so would not be
ambiguous. An example of a situation in which such use would be
ambiguous is a program containing declarations for different structures
with the same member names., In such a case, use the fully qualified
identifiers.,

5-63 First Edition

PL/I Reference Guide

It is possible for a member of a structure itself to be a structure;
it is then called a substructure. For example, consider the following
declaration:

DECLARE 1 SALE

2 PRODUCT,
3 SERIAL PIC 'AAX999',
3 DESCRIP CHAR(20),

2 DATE,
3 MONTH CHAR(3),
3 DAY FIXED DEC(2),
3 YEAR FIXED DEC(4),

2 PRICE PIC 'S$$S$S9V.99';

Here, the major structure name is SALE. Its first member is a
substructure called PRODUCT, which, itself, has two members called
SERIAL and DESCRIP., The second member of SALE is a substructure called
DATE, and the third member is a scalar called PRICE. This structure
contains six scalar elements. The first of these can be referenced by
means of the qualified name SALE.PRODUCT.SERTIAL. You may also use any
of the references SERIAL, PRODUCT.SERIAL, or SALE,SERIAL, provided that
there is no other declaration in your program that would make such a
reference ambiguous.

The numbers 1, 2, and 3 in the declaration above are called level
numbers and are used to indicate the depth of the identifier inside e the
‘structure or substructure. You need not specify these level numbers
consecutively. In fact, the preceding declaration is completely
equivalent to the following one:

DECLARE 1 SALE,

3 PRODUCT,
7 SERIAL PIC 'AAX999',
7 DESCRIP CHAR(20),

3 DATE,
9 MONTH CHAR(3),
9 DAY FIXED DEC(2),
9 YEAR FIXED DEC(4),

3 PRICE PIC 'SSSS9V.99';

The only requirement is that the level number of a member must be
greater than the level number for its structure name.

The maximum number of items in a structure is 1024,

First Edition 5-64

DATA TYPES AND DATA ATIRIBUTES

The BY NAME Option

If two structures have one or more member elements of the same name,
the assignment statement using the BY NAME clause moves the values of
like-named sources to targets. Consider the following two structures
and the assignment statement

DECLARE 1 A,

This statement moves values between elements whose names are found in
the same level of both structures. The result is that B and D of
structure A have the values of the like~named variables of X. The
value of Y in structure A is not changed.

Arrays of Structures

An array of structures is an array, each of whose elements is a
structure, The structure INDIVIDUAL, which was decribed above, can be
made into an array of structures as follows:

DECLARE 1 INDIVIDUAL(50),
2 NAME CHAR(20) VAR,
2 AGE BIN FIXED,
2 SALARY FIXED DEC(9,2);

INDIVIDUAL is here an array of 50 elements, each of which is a
structure containing three numbers. Therefore, INDIVIDUAL contains 150
scalar elements. You can reference various cross sections and
individual elements of this array of structures as follows:

e INDIVIDUAL(5) is the fifth structure in the array. It contains
three scalar elements.

e INDIVIDUAL(5).NAME, INDIVIDUAL(5).AGE, and INDIVIDUAL(5).SALARY
are the three scalar elements of INDIVIUAL(5). In referencing a
single scalar element in an array of structures, you may move
the subscript to the right of the qualified name. Thus, for
example, PL/I considers INDIVIDUAL.SALARY(8) to be equivalent to
INDIVIDUAL(8) . SALARY,

5-65 First Edition

PL/I Reference Guide

e INDIVIDUAL.NAME is a cross section array containing 50 elements,
which are, the NAME fields in each of the 50 structures in the
array of structures.

THE ALIGNED AND UNALIGNED ATTRIBUTES

Use the ALIGNED and UNALIGNED attributes to specify whether the storage
area occupied by a variable is to be aligned on a word boundary or not.

The purpose of these attributes is to permit you to specify what kind
of optimization criteria you wish to follow. If you specify that data
is to be ALIGNED, it may occupy more storage area, but accessing it is
faster: on the other hand, UNALIGNED data can be packed together to
save space, but is harder to access.

BIT ALIGNED and UNALIGNED Data

Normally, PL/I stores BIT NONVARYING data in whatever storage space is
available, whether aligned on a word boundary or not., This means that
several BIT NONVARYING data areas might be packed together, making the
data hard to access., If you specify ALIGNED with the BIT attribute,
the PL/I aligns the BIT string on a word boundary, so that the data can
be accessed faster.

Consider the following declarations:

DECLARE BARRAY (200) BIT(2) ALIGNED;
DECLARE BARRAY2(200) BIT(2) UNALIGNED;

Both BARRAY and BARRAY2 are BIT arrays, each oontaining 200 data
elements, where each of the data elements is a string ocontaining 2
bits. However, each of the 200 data elements of BARRAY is aligned on a
word boundary, so that BARRAY occupies 200 words of storage. On the
other hand, BARRAY2 is UNALIGNED, and so the bits of the data elements
are packed together. This means that BARRAY2 occupies a total of 400
bits, or 25 16-bit words,

If you do not specify either ALIGNED or UNALIGNED for a BIT NONVARYING
declaration, PL/I uses a default of UNALIGNED.

First Edition 5~66

DATA TYPES AND DATA ATTRIBUTES

ALIGNED and UNALIGNED With Other Data Types

PL/I gives every data variable either the ALIGNED attribute or the
UNALIGNED attribute., The default is UNALIGNED for BIT NONVARYING,
(HARACTER NONVARYING, and PICIURE data; otherwise the default is
ALIGNED. You may override these defaults by specifying either ALIGNED
or UNALIGNED in the declaration,

THE DEFINED ATIRIBUTE

The DEFINED attribute allows you to specify that the storage allocated
for one variable is to be shared by another variable. One use of this
attribute is to save storage by using a single area for twec separate

large aggregates.

However, that is not its main purpose. The DEFINED attribute is most
useful in providing you a convenient means of referencing the same
storage area in two different ways. For example,

e You may reference the same storage area by two different names,
or you may represent a portion of one variable's storage area by
a different name.

e You may reference the same storage area either as one long
CHARACTER string or as an aggregate containing several shorter
CHARACTER strings.

@ You may specify that the elements of an array are to be
automatically referenced in a different order from the one in
which they are stored in memory.

The following pages cover the different uses of the DEFINED attribute:
simple defining, string overlay defining, and iSUB defining.

Simple Defining

Consider the following declarations:

DECLARE X FIXED;
DECLARE Y FIXED DEFINED(X);

These statements specify that X and Y have the same data type, FIXED,
and that Y is to occupy the same storage area as X. The result is that
any reference to Y in any statement is the same as a reference to X in
that statement.

5=-67 First Edition

PL/I Reference Guide

A more useful example is illustrated by the following declarations:

DECLARE A(100);
DECLARE B DEFINED(A(23));

In this example, the variable B is specified as occupying the same
storage as the twenty-third element of the array A. An even more
sophisticated example is the following:

DECLARE C DEFINED(A(K)):

Like B, C is DEFINED on a single element of the array A. In this case
however, the number of the element is determined by the value of K. K
is reevaluated each time C is referenced, and so C might be equivalent
to any of the elements of A.

You may also use simple defining to specify that one variable is to be
used as a singly dimensioned cross section of a two-dimensioral array.
Consider, for example, the following declarations:

DECLARE MAT (10, 20);
DECLARE ROW3(10) DEFINED(MAT(3,%));
DECLARE ROW(10) DEFINED(MAT(K,*));

In this example, ROA3 is a singly dimensioned array equivalent to the
third row of the doubly dimensioned array MAT. ROW is another singly
dimensioned array, equivalent to the Kth row of MAT, where the value of
K is reevaluated each time ROW is referenced.

CHARACTER String Overlay Defining

Using string overlay defining, you can reference the storage area
occupied by an UNALIGNED CHARACTER NONVARYING string by means of an
aggregate whose elements are all UNALIGNED CHARACTER NONVARYING
strings. Alternatively, you can reference the storage occupied by one
aggregate of UNALIGNED CHARACTER NONVARYING strings by means of another
such aggregate.

Consider the following declarations:

DECLARE C CHARACTER(100);
DECLARE D(100) CHARACTER(1) DEFINED(C);

First Edition 5-68

DATA TYPES AND DATA ATIRIBUTES

The value of C is stored as 100 individual characters packed together
into a storage area. The declaration of D specifies that its 100
characters are to be the same as the 100 characters of C. Therefore,
for example, a reference to SUBSTR(C,5,1) is the same as a reference to
D(5). :

A DEFINED string need not overlay the entire storage area of the
variable over which it is DEFINED., For example,

DECLARE D2(20) CHARACTER(2) DEFINED(C);

specifies that D2 is to use as its storage area the first 40 characters
of the l00-character storage area occupied by C. It is not necessary
for the overlaid storage area to be at the beginning of the storage
area being overlaid. For example,

DECLARE D3(20) CHARACTER(2) DEFINED(C) POSITION(13);

specifies that D3 is to occupy the same storage as C, starting at the
thirteenth character of C. Since D3 occupies 40 characters of storage,
it uses characters 13 through 52 of the storage area occupied by C.

A useful application of string overlay defining is to break up a long
character string into separate fields, each of which is meaningful in
its own richt. For example, consider the following declarations:

DECLARE CARD CHARACTER(80) ;
DECLARE 1 S DEFINED (CARD),
2 NAME CHARACTER(30) ,
2 ADDRESS CHARACTER(20) ,
2 CITY CHARACTER(30) ;

In this example, the variable CARD contains a card image of 80
characters. The first 30 columns of the card contain a person's name,
the next 20 characters contain the address, and the last 30 characters
contain the city. By using string overlay defining, you can reference
the individual portions of the CHARACTER string CARD without having to
perform unnecessary copying operations from one variable to another.

5-69 First Edition

PL/I Reference Guide

As a final example, it is possible for one aggregate to be overlaid by
another. Consider the following declarations:

DECLARE 1 S(5),
2 T CHARACTER(3),
2 U(6),
3 V CHARACTER(1) ,
3 W CHARACTER(20) ;
DECLARE SD(129) CHARACTER(S) DEFINED(S);

S is an array of structures whose individual data elements are all
UNALIGNED CHARACTER NONVARYING strings. The total storage area for S
contains 645 characters, SD is an array aggregate, also containing 645
characters, which shares the same storage space as S.

For the purpose of string overlay defining, the PICIURE data type may
be overlaid in the same way that an UNALIGNED CHARACTER NONVARYING
string may be overlaid. Consider the following declarations:

DECLARE SALZRY PICTURE 'S$$,$$9V,.99';
DECLARE SAI, STRING CHARACTER(9) DEFINED (SALARY);

Both SALARY and SAL _STRING occupy the same nine characters of storage.

BIT String Overlay Defining

UNALIGNED BIT NONVARYING strings may be defined as string overlays in
the same way that UNALIGNED CHARACTER NONVARYING strings may be
overlaid. All the examples of the preceding subscripts are valid with
CHARACTER replaced by BIT, except that of course a BIT string may not
meaningfully overlay a PICTURE variable,

iSUB Defining

Sometimes you wish to reference the elements of an array in a different
order from the one in which they are stored in memory. You may do this
conveniently by means of iSUB defining. The expression iSUB refers to
one subscript or dimension of the area to be overlaid, and i is the
number of the subscript. Consider the following declarations:

DECLARE A(100) ;
DECLARE B(100) DEFINED(A(101 - 1SUB));

First Edition 5-70

DATA TYPES AND DATA ATIRIBUTES

The declaration of B says that a reference to an element of the array B
is equivalent to a reference to same element of the array A. In the
declaration, 1SUB stands for the subscript used in the reference to B.
For example, a reference to B(K + L) is equivalent to a reference to
A(101 - (K + L)). 'herefore, for example, a reference to B(l) is
equivalent to a reference to A(100), and a reference to B(100) is
equivalent to a reference to A(l). In fact, the array B is simply the
array A in reverse order.

A slightly more complicated example is the following:

DECLARE M(40,40);
DECLARE N(40,40) DEFINED(M(2SUB, 1SUB));

In this example, M and N are two-dimensional arrays occupying the same
storage. A reference to an element of N is replaced by a reference to
M with the subscripts reversed, because, in the declaration, the
element 2SUB stands for the second subscript expression in the
reference to N, and 1SUB stands for the first subscript reference,

You may define a singly-dimensioned array over the diagonal of the
two-dimensional array M as follows:

DECLARE DIAG(40) DEFINED(M(1SUB, 1SUB));

For example, a reference to DIAG(K) is equivalent to a reference to
M(K,K).

THE LIKE ATTRIBUTE

When you wish to specify that one structure or substructure has the
same members as another structure or substructure, you may simplify
your declaration by using the LIKE attribute. Consider the following
declarations:

DECLARE 1 A,

2 X FIXED,

2 Y FLOAT;
DECLARE 1 B LIKE A;

5-71 First Edition

PL/I Reference Guide

The declaration of B specifies that it is to be a structure with the
same members as A. These members have the same names, aggregate types,
and data types. Therefore, the above declaration of B is equivalent to
the following:

DECLARE 1 B,
2 X FIXED,
2 Y FLOAT;

When you specify that one structure is LIKE another structure, you are
specifying only that they have the same members; the attributes of the
structure (such as dimensioning or the storage class) need not be the
same, For example,

DECLARE 1 PRODUCTS (1000) CONTRCLLED,
2 NAME CHARACTER(20) VARYING,
2 STOCK_NUM PICTURE ‘'A999',
2 PRICE FIXED DECIMAL(7,2);
DECLARE 1 ITEM STATIC LIKE PRODUCIS;

specifies that ITEM is to be a structure with the same members as
PRODUCTS., Note, however, that PRODUCTS is an array of structures while
ITEM is a single structure, and that PRODUCTS has the CONTRCLLED
storage class attribute, while ITEM has the STATIC storage class
attribute. (Storage class attributes are defined and discussed in
Chapter 7.)

THE INITIAL ATTRIBUTE

Abbreviation: INIT for INITIAL

You must assign a value to each PL/I variable before you use that
variable in any other way. A convenient way to give an initial value
to a variable is to use the INITIAL attribute when you declare the
variable, to specify an initial value to be assigned to it.

Initializing Scalars

The following examples illustrate how to use the INITIAL attribute to
provide initial values for scalar variables:

DECLARE X FLOAT INIT(O);
DECLARE Y FIXED DECIMAL(5,2) INIT(7.3);
DECLARE C CHARACTER(200) VARYING INIT('');

First Edition 5-72

DATA TYPES AND DATA ATTRIBUTES

The variable X is initialized to 0, the variable Y is initialized to
7.3, and the string variable C is initialized to the null string. Like
other attributes, the INITIAL attribute may be factored in a DECLARE
statement. For example,

DECLARE (U,V) INITIAL(O);

can be used to initialize both U and V to 0.

Tnitializing Arrays

In order to initialize an array, specify an initial value for each of
the elements of the array. For example,

specifies that A is to be an array of five elements, and the initial
values of the array elements are 8, 7, 4, 25 and -15, respectively.
If you wish to initialize all the elements of the array to the same
value, you may use a repetition factor, as in the following example:

DECLARE B(10) FLOAT INITIAL((10)0);

Here, B is an array of 10 elements, all of which are initialized to 0.
For more complicated initializations, use repetition factors as often
as they are needed. Consider, for example, the following:

DECLARE C(100) INITIAL((25)0, 1, 2, 3, 4, 5, (70)-1);

In this example, C is an array of 100 elements., The first 25 of these
elements are initialized to 0, elements 26 through 30 are initialized
tol, 2, 3, 4 and 5, respectively, and elements 31 through 100 are
initialized to -1.

5-73 First Edition

PL/I Reference Guide

You do not have to initialize the entire array. For example, the
declaration

DECLARE D(10) INITIAL((5)0);

initializes the first five elements of D to 0 and leaves the last five
elements uninitialized.

Use an asterisk to specify explicitly that an element of the array is
to be left uninitialized, For example,

DECLARE E(10) INITIAL(*,(4)0,(4)%*,1);

specifies that the first element of E is to be left wuninitialized, the
next four elements are initialized to 0, the next four elements are
uninitialized, and the last element is initialized to 1.

A special consideration must be followed when you initialize arrays of
CHARACTER or BIT strings. Suppose you wish to declare a CHARACTER
string array called STR, and you wish to initialize each of the
elements of the array to the string 'A'. You might mistakenly try the
following declaration:

DECLARE STR(10) CHARACTER(100) VARYING INITIAL((10)'A');

However, PL/I misinterprets this statement as written. PL/I interprets
(10) 'A' as the character string constant equal to 'ARAAAAAAAA', PL/I
initializes STR(1) to this string, and leaves the other elements of STR
uninitialized. The proper declaration is the following:

DECLARE STR(10) CHARACTER(100) VARYING INITIAL((10) ('A')):

The extra set of parentheses around 'A' permits PL/I to interpret the
statement as you intend.

Initializing Structures and Arrays of Structures

To initialize a structure, specify the INITIAL attribute for each
element of the structure. For example, the declaration

DECLARE 1 S,
2 A FIXED INITIAL(O),
2 B FLOAT INITIAL(5);

First Edition 5-74

DATA TYPES AND DATA ATTRIBUTES

specifies that the structure element S.A is to be initialized to 0 and
S.B is to be initialized to 5.

To initialize an array of structures, remember that each of the members
of the structure inherits the dimensions of the structure. Therefore,
use the conventions described above under Initializing Arrays to
specify an initial value for each of the elements of the member arrays.
For example,

DECLARE 1 T(100),
2 A FIXED INITIAL((100)0),
2 B FLOAT INITIAL((50)5);

specifies that all 100 elements of the array T.A are to be initialized
to 0, and the first 50 elements of the array T.B are to be initialized
to 5. The last 50 elements of T.B are left uninitialized.

Using Variables in the INITIAL Attribute

A statement like
DECLARE COUNT (1000) INITIAL((K) (M+3)):

is legal under certain circumstances, as described in Chapter 7. If
the rules in that chapter are followed, then when QOUNT is allocated,
the values of K and M are determined, and the first K elements of the
array QOUNT are initialized to the value of M + 3.

THE DEFAULT STATEMENT

Abbreviation: DFT for DEFAULT

This is a rarely used statement. Use it to specify default attributes
and default rules to override the autamatic PL/I defaults.

Let's start with some examples:
e DEFAULT(RANGE(A:H) ! RANGE(0:Z))FLOAT;

Normally, if you use an undeclared variable in your program, oOr
if you declare a numeric variable but don't specify either FIXED
or FLOAT, then PL/I gives it the default attribute FIXED. This
was not true in older implementations of PL/I, however. Older
implementations followed the "I through N rule," which gave
variables beginning with the letters I, J, K, L, M, or N the

5-75 First Edition

PL/I Reference Guide

default attribute FIXED and all other variables the default
attribute FLOAT.

The above DEFAULT statement specifies that you wish to follow
the I through N rule. In this statement, RANGE(A:H) refers to
any variable beginning with the letters A through H. The phrase
RANGE (0:Z) refers to all variables beginning with the letters O
through %. The exclamation point is the symbol for OCR.
Therefore, this DEFAULT statement specifies that all variables
beginning with the letters A through H or O through 7 should
have the default attribute FLOAT. This means that all variables
beginning with I through N are still given the system default
attribute, FIXED.

The above example also makes the variable DEFAULT compatible
with IBM PL/I.

e DEFAULT (VARIABLE) STATIC;

In this statement, the keyword VARIABLE refers to any variable
in your program. ‘This DEFAULT statement says that every
variable of your program should have the default attribute
STATIC, unless declared otherwise. (STATIC is a storage class
attribute; the default storage class attribute is AUTOMATIC,
Storage attributes are described in Chapter 7.)

e DEFAULT (FIXED & DECIMAL) PRECISION(7, 2):

This statement specifies that any variable with both the
attributes FIXED and DECIMAL is to be given a default precision
of (7, 2), instead of the system default precision (5, 0).

If your program contains a DEFAULT statement, it is important to
remember that the statement only specifies default attributes. You may
override these defaults by declaring any variable explicitly with the
attributes that you want it to have. For example, if you declared the
variable COUNT with the FIXED attribute, the default attribute FLOAT
would not apply. FLOAT applies only when you do not specify either
FIXED or FLOAT.

A second important point to remember is that the default attributes
apply only when they are consistent with the other attributes of the

variable., For example, if a program containing the first DEFAULT
statement above contained the declaration

DECLARE STRING CHARACTER(5)

then PL/I would not give the default attribute FLOAT to STRING, since
FLOAT is inconsistent with the explicitly declared attribute CHARACTER.

First Edition 5-76

DATA TYPES AND DATA ATTRIBUTES

Format of the DEFAULT Statement

The DEFAULT statement has the following format:

DEFAULT (attribute-test) attribute-list [, attribute-list...]:

This statement specifies that PL/I is to apply the attribute-test to
each of the variables in your program and use the default attribute in
each of the attribute-lists, where oonsistent, for each of the
variables meeting the attribute-test.

The attribute~test is a logical combination of keywords testing either
attributes that the variable already has or the letters in the name of

the variable,

The keywords that test attributes are the following:

ALIGNED DEFINED INTERNAL PRECISION
ARFA DIMENSION KEYED PRINT
AJTOMATIC DIRECT LABEL REAL
BASED ENTRY LOCAL RECORD
BINARY ENVIRONMENT MEMBER RETURNS
BIT EXTERNAL NONVARYING SEQUENT IAL
BUILTIN FILE OFFSET STATIC
CHARACTER FIXED OPTIONS STREAM
COMPLEX FLOAT CUTPUT STRUCIURE
CONDITION FORMAT PARAMETER UNALIGNED
CONSTANT GENERIC PICIURE UPDATE
CONTROLLED INITIAL POINTER VARIABLE
DECIMAL INPUT POSITION VARYING

In addition to the attribute-test keywords, you may use the keyword
RANGE to test the letters in the variable name. The RANGE keyword has
two forms, The first is

RANGE (letter :letter)

It tests whether the first character in the variable name lies within
the specified range of letters. The form

RANGE (letters)

tests whether the variable identifier name begins with the specified
string of one or more letters.

5-77 First Edition

PL/I Reference Guide

You may combine these keyword tests into a full attribute-test by using
the logical operators & for AND, ! or | for OR and " for NOT. For
example, the statement

DEFAULT (RANGE(B:C) & (BIT ! CHAR) & ~ RANGE(CNV)) VARYING;

specifies that any variable beginning with the letters B or C and
having either the BIT or CHARACTER attribute, but not beginning with
the letters QW, should be given the default attribute VARYING, unless
declared otherwise.

The attribute keywords above test whether the variable has any
attribute using that keyword. For example, including the keyword
PRECISION tests whether any precision attribute has been specified for
the variable.

Use the DEFAULT statement to change the default length of strings., For
example,

DEFAULT CHAR CHAR(17);

changes the default length of character strings to 17.

Your program may contain as many DEFAULT statements as you wish. PL/1
applies the default statements in the order in which they appear in
your program. After PL/I has applied all the DEFAULT statements in
your program, it applies the system defaults.

It is legal for a DEFAULT statement to appear inside an internal

PROCEDURE or BEGIN block. In that case, the default rules apply only
to explicit declarations made within that block.

Compiler Application of the DEFAULT Statement

When you DECLARE a variable, you usually specify only a few of the
attributes and let PL/I apply the remaining ones.

For each variable in your program, PL/I forms a set of attributes for
that variable., PL/I starts with the attribute you specify in the
DECLARE statement, and uses the DEFAULT statements to add attributes as
follows:

1. PL/I uses the attribute-test in the DEFAULT statement to test

whether the attribute set so far satisfies the test. If so,
PL/I continues with the next step.

First Edition 5-78

DATA TYPES AND DATA ATTRIBUTES

2. For each of the attribute-lists in the DEFAULT statement, if
that list of attributes is consistent with the attribute set so
far, then PL/I adds the new attribute-list to the attribute
set.

PL/I performs these steps for each of the DEFAULT statements in your
program,

Other Forms of the DEFAULT Statement

Te form
DEFAULT SYSTEM;

specifies that the standard system default rules are to apply. Use
this statement in an inner block if you do not wish that block to
inherit the effects of a DEFAULT statement specified in an outer block.
Another form of the DEFAULT statement is

DEFAULT (attribute~test) ERROR:
to specify that certain attributes or combinations of attributes are to
be illegal in your program.
The form

DEFAULT NONE;

specifies that no defaults are applied, not even system defaults.

"P"-Constants and the DEFAULT Statement

Default attributes apply to all objects within their scope, including
constants., Consider the following code segment:

DEFAULT (DECIMAL) FLOAT:
DECLARE X DECIMAL(2):;
X = 10;

5-79 First Edition

PL/I Reference Guide

Under the system default attributes, the constant 10, which has by its
nature the attribute CONSTANT REAL DECIMAL(2), acquires the scale
attribute FIXED. However, in this example, the DEFAULT statement
establishes that any object with the attribute DECIMAL has FLOAT scale.
Thus, 10 as well as X has the scale attribute FLOAT.

This feature is convenient in that it prevents unnecessary routine
conversions. Sometimes, though, it is equally convenient to force a
constant to be interpreted according to system default attributes.
This can be done by appending a P after the oonstant, as in the
following example:

DEFAULT (DECIMAL) FLOAT;

DECLARE X DECIMAL(2);

DECLARE Y FIXED DECIMAL(5);

X = 10; /* 10 is FLOAT DECIMAL(2) */

Y = 00010P; /* 00010P is FIXED DECIMAL(5) */

First Edition 5-80

Evaluating Expressions

EXPRESSIONS, DATA CONVERSIONS, AND AGGREGATE PROMOTIONS

This chapter describes how PL/I evaluates expressions. It first
defines a PL/I expression, then discusses the following particular
aspects of the evaluation process:

e Data types. If you use a PL/I expression of one data type in a
context that requires a different data type, PL/I must convert
the value of your expression to the data type required by the
context., In addition, it may be necessary for PL/I to perform
conversion during evaluation of the expression to produce
intermediate results. This would happen, for example, if you
attempted to multiply a CHARACTER string value by a BIT string
value, This chapter covers the detailed rules for such
conversions,

e Aggregates. PL/I permits an expression to contain variables
that are aggregates (arrays or structures), with the result that
the entire expression has an aggregate value. An aggredate
expression has an aggregate type of scalar, array, structure, or
some combination of these. If an expression of one aggregate
type is used in a context that requires a different aggregate
type, an aggregate promotion must take place. 'This chapter
discusses the rules for aggregate promotions,

Almost all computer programs perform computations of some sort on data
values. In PL/I, the computation of new data values from old is done

6-1 First Edition

PL/I Reference Guide

by means of expressions. Expressions appear in almost all PL/I
statements, Consider, for example, the following assignment statement:

PARAMETER = 2 * (LENGTH + WIDIH);

This statement contains a variable, PARAMETER, to the left of the equal
sign, and an expression to the right of the equal sign. The statement
specifies that the value of the expression is to be ocomputed and
assigned to the variable on the left, Another example is

PUT LIST(X + Y);

Here, the expression X + Y is to be computed, and its value is to be
printed. As a final example, consider the following:

IF VALUE > 5 THEN GO TO BIG;

This IF statement contains an example of what is called informally a
logical expression. The expression VALUE > 5 is to be evaluated to
obtain what is informally called a truth value, in order to determine
whether control should transfer to the statement with label BIG. More
precisely, VALUE > 5 is a PL/I expression whose value will have the
data type BIT(l), which is the PL/I equivalent of what are called
logical data types in other languages.

FORMING EXPRESSIONS

An expression is composed of the following basic elements:
1. Variables and constants
2, Operators, such as +, *, or &
3. Parentheses
4, Built-in functions
The methods for referencing variables and constants are discussed in

Chapter 5. This section describes the other components of a PL/I
expression,

First Edition 6-2

EVALUATING EXPRESSIONS

Arithmetic Operators

Arithmetic operators are those whose operands must be arithmetic
(numeric), and whose results are also arithmetic., There are seven
arithmetic operators, and they may be grouped as follows:

l.

The four infix operators are the plus sign (+), minus sign (-),
asterisk (*), and slash (/). ‘These operators stand for
addition, subtraction, multiplication, and division,
respectively, of two operands.

The prefix operators are + and -, Infix minus is usually
called subtraction, while prefix minus is usually called

negation. The expression "-(A - B)" illustrates the
difference. The f£first minus sign in this expression is prefix
minus, because it has only one operand, (A - B), and it

operates by simply reversing the sign of that operand. The
second minus sign is infix minus, because it has twc operands,
A ond B, and it operates by subtracting the second operand from
the first.

The exponentiation operator, **, This operator takes two
operands, and operates by raising the first operand to the
power of the second. For example, the expression X**3 is
usually called X cubed, and has the value X * X * X,

The Comparison Operators

There are eight comparison operators, as shown in Table 6-1.

Table 6-1
Comparison Operators

Operator Meaning

Equals

Does not equal

Is less than

Is less than or equal

Is greater than

Is greater than or equal
Is not less than

Is not greater than

N\ ?

?

>

VALV IEA

6-3 First Edition

PL/I Reference Guide

Comparison operators are used most frequently in the IF statement, in
order to make some decision based on a comparison of two values. For
example, the statement

IF A = B THEN STOP;

contains the comparison A = B, The statement specifies that if A
equals B, the program should stop.

However, you should realize that the comparison operators can be used
in expressions in any context. A comparison operator is an operator
that takes two operands, and that operates by comparing the two
operands and producing a BIT(1) result, This result has the value '1l'B
if the comparison was true, and the value '0'B if the comparison was
false, Thus, for example, a program may contain the following
statements:

DECLARE TEST BIT(1):;

TEST = A = B;

IF TEST THEN STOP;
The middle statement in this example is an assignment statement with
the variable TEST on the lefthand side, and the expression A = B on the
righthand side. PL/I executes this assignment statement by comparing
the variables A and B for equality, and setting TEST to either '0'B or
'1'B, depending upon the result of the comparison. The last statement
of this example is an IF statement that uses the variable TEST as an
operand.

Note

In Prime ED, the operator "~ must be entered in duplicate, as

Logical Operators

The logical operators, ampersand (&), vertical bar (|), exclamation
point (!), and caret ("), are shown in Table 6-2.

First Edition 6-4

EVALUATING EXPRESSIONS

Table 6~-2
Logical Operators

Operator # of Operands Meaning

& 2 "Ang"
I 2 "O r L
! 2 "Or"
g 1 "Not "

Like the comparison operators, the logical operators are used most
frequently in the IF statement. 1In fact, usually the logical operators
are used with the comparison operators in order to provide for the
testing of two or more comparisons. For example, the statement

IF (CASE > 2 & CASE <= 5) | CASE = 23 THEN CALL SMALL;

contains three comparisons, joined by means of the operators & and |.
The statement says that if CASE equals 23, or is greater than 2 and
less than or equal to 5, then control should pass to the procedure
SMALL. An example using the " operator is

IF " (X >0 & X < ,0001) THEN GO TO LARGE;

which states that if it is not true that X is both positive and less
than .0001 (which is the same as saying that either X is negative or
zero or dgreater than or equal to .000l1), then control should pass to
the statement LARGE., :

Precisely speaking, the & and | each take two BIT operands and produce
a BIT result. The " operator takes a single BIT operand and computes a
BIT result. Like the comparison operators, the logical operators can
be used in any expression that can accommodate a BIT result.,

Note

"

In Prime ED, the operator NOT must be entered as "~,

Concatenation

Use the concatenation operator || or !! with two strings, either
CHARACTER or BIT, in order to stick them together (the precise temm is
concatenate) to form one long string.

6-5 First Edition

PL/I Reference Guide

Examples of PL/I concatenation for CHARACTER strings and BIT strings
follow:

DCL A CHAR(4);: DCL D BIT(2);
DCL: B CHAR(5) ; DCL E BIT(1):
DCL C CHAR(10) VARYING; DCL F BIT(3);
A= "SOME'; D= '01'B;

B = "HING'; E = '1'B;
C=A|| B; F=D1!E;

C has been assigned the C(HARACTER string 'SOMETHING', and F has been
assigned the BIT string '0l11'B.

Operator Priority and Parentheses

Consider the following three assignment statements:

These three assigmment statements are identical except for their use of
parentheses, These parentheses specify the order in which the
operations are to be performed. In the first assignment statement,
multiplication is to be performed first. 1In the second assignment
statement, addition is to be performed first.

In the absence of parentheses, PL/I performs multiplication before
addition, so that the third assignment statement is equivalent to the
first. This is precisely what one would expect from the usual rules of
algebra.,

Adjacent operators are two operators in an expression separated by a
single operand, with all parentheses between the two operands
completely matched. For example, in the expression

2*B+C;

the * and the + are adjacent operators separated by the operand B, 1In
the expression

A* B+ C) -D;

First Edition 6-6

EVALUATING EXPRESSIONS

the * and the - are adjacent operators separated by the single operand
(B+ C). The + operator is not considered adjacent to either of the
other operators, since, in each case, there is an unbalanced
parenthesis separating them.

PL/I provides precise rules for detemining, given two adjacent
operators, which operation will be performed first. Table 6-3
summarizes these rules. This table breaks up the collection of PL/I
operators into seven different priority levels. with 1 the highest
priority. The rules for the order of evaluation of two adjacent
operators in an expression are as follows:

1. If the two operations are at different priority levels in Table
6-3, the operation with higher priority is performed first.

2. If the two operations are at the same priority level in the
table, they are performed in the order indicated by the
rightmost column of the table., That is, at the top priority
level, the one on the right is performed first, while at the
other priority levels, the one on the left is performed first.

Table 6-3
Operator Priority

Ordering between operators

Level Operators at this level
1 Prefix +, prefix -,
k%, 7 Right-to-left
2 *, / Left-to-right
3 Infix +, Infix - Left-to-right
4 P, 1} Left-to-right
5 Comparison operators Left-to-right
=7 A’:'r 2 <y 2=y <=
>y <
6 & Left-to-right
7 |, 1! Left-to-right

For example, in the expression

2*B+ C;

since * is at level 2 while + is at level 3, the * is performed first,

6~7 First Edition

PL/I Reference Guide

In the expression
A+ B-C;

the two operators, + and -, are both at level 3 in the table. As
indicated by the table, these two operators will be performed from left
to right, so that the + will be performed before the - cperator. In
the expression

the — and ** operators are both at level 1, and, as indicated by the
table, are evaluated in right to left order. For this reason, the *¥
operator is performed before the - operator.

An important consequence of this rule is that same operator priorities
are not specified. For example, in the expression

A*B+ C/D

it is easy to see that the + operator is performed after either the *
operator or the / operator. However, there is no way of determining,
by PL/I rules, whether the * operator is performed before or after the
/ operator., The reason is that * and / are not adjacent operators in
this expression. In actual practice, the PL/I compiler uses various
optimization techniques to determine, statement by statement, the order
in which nonadjacent operators are computed.

Ruilt—-in Functions

Another important component of expressions is the built-in function,
For example, in the statement

X =3+ SQRT(B + C);
the function SQRT, which computes the square root of its argument, is

used, A complete list of built-in functions is provided in Chapter 14,

Notice that built-in functions can be used in any expression, and the
argument of a built-in function may itself be an expression.

First Edition 6-8

EVALUATING EXPRESSIONS

SCALAR TARGETS AND DATA CONVERSIONS

When an expression having one data type is used in a context that
requires a different data type, PL/I must convert the value of your
expression to the data type required by the context, This section
explains precisely when these conversions are required and what the
rules for the conversion are. In addition, precise definitions of the
data types of expressions are given.

Examples of Need of Conversions

Suppose the following statements appear in your program:

DECLARE A FLOAT, I FIXED;

A=1I+3;

PL/I computes the expression on the righthand side of the assignment
statement by adding 3 to the value of I to get a FIXED result. Since
this value is to be assigned to a FLOAT variable, PL/I must comwvert the
FIXED value to FLOAT, before the assignment can be made. In general,
PL/I computes the value of the expression on the right-hand side of the
assignment statement, and converts it to the data type of the variable
on the left-hand side of the assignment statement. This is an example
of how the context of an expression can require a comversion.

Another example occurs with the IF statement. The expression following
the IF keyword must be a BIT string value, If it is not, PL/I converts
it to BIT. For example, if your program contains the statement

IF T + 3 THEN GO TO L;

then PL/I evaluates the statement I + 3, and then converts it to a BIT
string value. Notice that this is an example of a conversion that is
not recommended, The rules for numeric to string conversion are quite
precise, and are described later in this chapter, but they are very
complicated and are full of traps for the unwary.

Arguments to built-in functions often have certain data type
restrictions, For example, if you use a FIXED argqument with the SQRT
built-in function, PL/I must convert the argqument to FLOAT, A final
example: if an array subscript expression is not fixed, PL/I converts
it to FIXED.

6-9 First Edition

PL/I Reference Guide

Use of Intermediate Targets

The mechanism PL/I uses to evaluate an expression involves the use of
intermediate targets. In the evaluation of an expression, PL/I stores
the result of each intermediate computation in a temporary location
called an intermediate target, with a data type determined by specific
rules.

The following program segment illustrates this concept:

DECLARE (A,B,C) FIXED DECIMAL(5);

The method PL/I uses to evaluate the last assignment statement is
illustrated in Figqure 6-1. The boxes in this figure represent storage
locations containing the values of the oonstants, variables, and
intermediate values in the computation of this assignment statement.

As this figure illustrates, the constant 20 is multiplied by the value
of B, and the result is stored in the intermediate target, which for
convenience we name TEMPl, The contents of that storage location are
then added to B, and the result is stored in TEMP2. This value is then
assigned to C. ‘

As this figqure also shows, each of these storage locations has a data
type, which is printed to the right of each box. The data type of the
constant 20 is FIXED DECIMAL(2), and the data type printed next to the
boxes for each of the variables A, B, and C is FIXED DECIMAL(5), as
declared. TEMPl has a data type of FIXED DECIMAL(8), and TEMP2 has a
data type of FIXED DECIMAL(9), for this reason: the data type of an
intermediate target of an operation depends only upon the operation and
the data types of the operands. It does not depend upon the value of
the operands.

The data type of TEMP2 is somewhat easier to understand than that of
TEMPL. TEMP? is an intermediate target resulting from the addition of
two values, one of which is FIXED DECIMAL(8) and the other FIXED
DECIMAL(5). PL/I reasons as follows: TEMP2 must be large enough to
accommodate any possible value obtained by adding the two operands.
Both operands are FIXED DECIMAL, so TEMP2 is FIXED DECIMAL. To
determine the precision, PL/I sees that the first operand has a data
type of FIXED DECIMAL(8). Therefore, the maximum value that the first
operand can have is +99999999. The second operand is FIXED DECIMAL(5) ,
and so its maximum value is +99999. Therefore, the maximum value that
TEMP2 can be expected to accommodate is 99999999 + 99999 = 100099998,

Since this maximum possible value has nine digits, we make the

precision of TEMP2 9. Thus, TEMP2 is FIXED DECIMAL(9). It has a scale
factor of zero because both operands have a scale factor of 0.

First Edition 6~-10

EVALUATING EXPRESSIONS

FIXED
+20 IDEC(2)
A FIXED
+ 00003 DEC(5)
B FIXED
* + 00012 DEC(5)
1]
TEMP1 FIXED
+ 00000060 DEC(8)
+
v
TEMP2 + 000000072 E‘ég(g)
Assign
¥
c FIXED

+ 00072 DEC(5)

Intermediate Targets
Figure 6-1

PL/I derives the data type of TEMP1 as follows: TEMPl is the
intermediate target of a multiplication operation, where the two
operands are FIXED DECIMAL(2) and FIXED DECIMAL(5). The data type of
TEMP1 is FIXED DECIMAL. To determine the precision, PL/I applies the
same reasoning as for addition. The first operand can have a maximum
value of 499, and the second operand can have a maximum value of
499999, (Of course, the first operand is the constant 20 and cannot
have a maximum value of anything other than 20. But don't forget the
general rule: the data type of the intermediate target depends only
upon the data types of the operands, and not on their values.)
Therefore, the maximum value that TEMP1 will have to accommodate is 99
* 99999 or 9899901, which has seven digits. Therefore, it would seem
that the precision of TEMP1 should be seven. However, 1 is added, for
the following scmewhat obscure but nonetheless very important reason:

6~-11 First Edition

PL/I Reference Guide

the rule for assigning the precision of an intermediate target must
take into account the possibility that the operands will be COMPLEX
rather than REAL, It is possible to multiply a FIXED DECIMAL(2)
COMPLEX operand by a FIXED DECIMAL(5) COMPLEX operand, and get a result
requiring eight digits in the real part or the imaginary part.
Therefore, TEMP1l is FIXED DECIMAL(8).

As another example, consider the following program segment

DECLARE (A,B) FLOAT DECIMAL(5);
DECLARE I FIXED DECIMAL(5);

== DN
4+ N~
H‘.
-e

3
463

> Hw
nonou
w

Note the last assignment statement. This example is quite different
from the preceding one because a FIXED variable is added to a FLOAT
variable. Because a FIXED quantity cannot be directly added to a FLOAT
guantity, PL/I performs an implicit comversion. 'The value of I is
converted to FLOAT, and that result is added to B.

Figure 6-2 illustrates how PL/I executes this assignment statement. As
this fiqure shows, the value of I is converted to FLOAT DECIMAL(5), and
the result of the conversion is stored in an intermediate target called
TEMP1., Then, B is added to TEMPL, with the result stored in a new
intermediate target called TEMP2. This result is then assigned to A.

The following pages contain the rules for determining whether an

implicit conversion is required and what the data types of intermediate
targets are.

First Edition 6-12

EVALUATING EXPRESSIONS

B FLOAT | FIXED
+.23000E2 DEC(5) +01463 DEC(5)
Convert
v
TEMP1 FLOAT
+
A
TEMP2 FLOAT

Assign

\

A FLOAT
+1486E4 | pEcis)

Implicit Conversions
Figure 6-2

Derived Common Base, Scale, and Mode

The last example showed that when a FLOAT operand is added to a FIXED
operand, PL/I converts the FIXED operand to FLOAT before performing the
addition operation.

Figure 6-3 illustrates what happens when a program adds two operands,
one of which is FIXED DECIMAL(8,2) COMPLEX and the other FLOAT
BINARY (12) REAL. This example is more complicated than the preceding
one because the two operands differ not only in the scale (one is FIXED
and the other is FLOAT), but also in the base (one is DECIMAI. and the
other is BINARY) and the mode (one is QOMPLEX and the other is REAL).
Figure 6-3 shows that PL/I performs two implicit cornversions. Each of
the two operands is converted to the derived common base, scale, and
mode, with the appropriate converted precisions, and the results are
stored in the two intermediate targets, TEMPl and TEMP2. This section
defines derived common base, scale and mode, The next section defines

6-13 First Edition

PL/I Reference Guide

converted precision. ‘These ooncepts make it possible to derive the
complete data types of TEMPl and TEMP2. A later section specifies the
rules for determining the complete data type for the result of the
addition, stored in target TEMP3.

FIXED FLOAT

DEC(8,2) BINARY(12)

COMPLEX REAL

Convert Convert
v v
TEMP1 FLOAT TEMP2 FLOAT
BINARY BINARY
COMPLEX COMPLEX
+
v
TEMP3 297

Conversion of Scale, Base, and Mode
Fiqure 6-3

Derived Common Scale: Table 6-4 gives the rules for defining the
derived common scale for two operands. Informally, one can say that
FLOAT is a higher data type than FIXED. More precisely, if either of
the operands is FLOAT, the derived common scale is FLOAT; otherwise,
the derived common scale is FIXED,

For example, consider the following program segment:

DECLARE (A,B) FLOAT;
DECLARE (I,J) FIXED;

A=1I+J+B;

The assigmment statement contains two addition operations, and, by the
priority rules, the + on the left is computed before the + on the
right, The result is illustrated in Figure 6-4. As this figure shows,
the value of I + J is computed as a FIXED quantity, and the result is
stored in TEMPl. ‘That quantity is then corwerted to FLOAT, and the
results stored in TEMP2, so that it can be added to the value of B,
which is FLOAT.

First Edition 6-14

EVALUATING EXPRESSIONS

Table 6-4
Derived Common Scale for Two Operands

Operand 1 Operand 2
Arithmetic or Arithmetic or Not either
pictured-numeric pictured-numeric arithmetic or

with scale=FLOAT with scale=FIXED pictured-numeric

Arithmetic
or pictured- FLOAT FLOAT FLOAT

numeric with
scale=FLOAT

Arithmetic
or pictured- FLOAT FIXED FIXED
numeric with
scale=FIXED
Not either
arithmetic FLOAT FIXED FIXED
or pictured-
numeric
! FIXED J FIXED
+
A
TEMP1 FIXED B FLOAT
Convert
y
TEMP2 FLOAT
|
+
v
TEMP3

Derived Common Scale
Figure 6-4

6-15 First Edition

PL/I Reference Guide

Note that PL/I executes this assignment statement differently from the
way other languages, such as FORIRAN, execute it. The FORTRAN language
would not perform any additions until all the operands had been
converted to floating point. This means that the value of I would be
converted to floating point, the value of J would be converted to
floating point, and then those two quantities would be added together
to the value of B to get a floating point result. PL/I, by contrast,
postpones all conversions as long as possible, performing only those
that are explicitly dictated by the operator rules.

Nonetheless, there are circumstances when more than two operands must
be converted to a common derived scale. Although this cannot happen
with any of the ordinary operators, it can happen with the MAX built-in
functions

DECLARE (A,B) FLOAT;
DECLARE (I,J) FIXED;

A = MAX(I,J,B);

This program segment is quite similar to the preceding one, in that the
final assignment statement assigns to A some operation performed on the
three variables I, J, and B. 1In the last example, the operation was
addition, which is performed on operands two at a time. In that case,
the value I + J was computed first without any regard for the data type
of B. In the current example, the MAX built-in function looks at all
three operands at once. This means that all three operands must be
converted to the common derived scale before any further progress can
be made. The result is illustrated in Figure 6-5. The value of I is
converted to FLOAT, and the result is stored in TEMPL. Similarly, the
value of J is converted to FLOAT and stored in TEMP2. At that point,
all three operands to MAX are FLOAT, and so the computation of which
mmber is the maximum can take place, with the results stored in TEMP3.

First Edition 6-16

EVALUATING EXPRESSIONS

] FIXED J FIXED B FLOAT
Convert Convert
\ TEMP2 ¥
TEMP1 FLOAT FLOAT
MAX bit
v
TEMP3 FLOAT

Derived Common Scale —— Three Options
Fiqure 6-5

In cases such as this, use a more complete rule for the derived common
scale of two operands: given two or more operands, the derived common
scale for the operands is FLOAT if at least one of the operands is
either arithmetic or pictured-numeric with a scale of FLOAT;
otherwise, the derived common scale is FIXED.

Derived Common Mode: The rule for the derived common mode for two
operands can be stated informally as follows: the COMPLEX data type is
higher than the REAL data type. The precise rule is given in Table
6-5.

6-17 First Edition

PL/I Reference Guide

Table 6-5
Derived Common Mode for Two Operands

Operand 1 Operand 2
Arithmetic or Arithmetic or Not either
pictured-numeric pictured-numeric arithmetic or

with mode=COMPLEX with mode=REAL pictured-numeric

Arithmetic

or pictured-

nuneric with COMPLEX COMPLEX COMPLEX
mode=COMPLEX

Arithmetic

or pictured-

numeric with COMPLEX REAL REAL
mode=REAL

Not either

arithmetic

or pictured- COMPLEX REAL REAL
numeric

Certain built-in functions, such as MAX, require the computation of the
derived common mode for more than two operands. The complete rule,
then, is as follows: given two or more operands, the derived common
mode for the operands is COMPLEX if at least one of the operands is
either arithmetic or pictured-numeric with a mode of COMPLEX;
otherwise, the derived common mode is REAL.

Derived Common Base: We may summarize the rule for deriving the common
base of two operands by saying that BINARY is a higher data type than
DECIMAL, but there is a slight additional complication. It is possible
that one of the operands is a BIT string, and for the purposes of
determining the derived common base, a BIT string is considered to be
BINARY. The precise rule is given in Table 6-6.

First Edition 6-18

EVALUATING EXPRESSIONS

Table 6-6
Derived Common Base for Two Operands

Operand 1 Operand 2
Arithmetic or Neither BIT string
base=BINARY BIT string nor BINARY arithmetic
Arithmetic
with base= BINARY BINARY BINARY
BINARY
BIT string BINARY BINARY BINARY
Neither BIT
string nor
BINARY BINARY BINARY DECIMAL
arithmetic

As in the case of scale and mode, certain built-in functions require
the derived common base for more than two operands simultaneously. The
complete rule, then, is as follows: given two or more operands, the
derived common base is BINARY if at least one of the operands either is
a BIT string or is arithmetic with a base of BINARY; otherwise, the
base is DECIMAL,

Refer to Figure 6-6. If the two operands are FIXED DECIMAL COMPLEX and
FLOAT BINARY REAL, the derived common scale, base, and mode are FLOAT
BINARY COMPLEX. As the figure shows, each of the operands must be
converted to the derived common scale, base, and mode before addition
can take place. This figure does not yet indicate the precision of
TEMP1 or TEMP2. The subject of converted precision will be treated in
the next section.

6-1¢ First Edition

PL/I Reference Guide

FIXED FLOAT
DEC(8,2) BINARY(12)
COMPLEX REAL
Convert Convert
X \
TEMP1 FLOAT TEMP2 FLOAT
BINARY BINARY
COMPLEX COMPLEX
o+
\ i
TEMP3 FLOAT
BINARY
COMPLEX

Derived Common Scale, Base, and Mode
Fiqure 6-6

As noted above, one of the operands could be a BIT string. Actually,
PL/I permits you to use operands of any computational data type in
arithmetic expressions. If you use a string, PL/I must comvert that
string to the appropriate arithmetic data type, with the derived common
base, scale, and mode. You are strongly urged to avoid such implicit
conversions from string to arithmetic., As an example of the trouble
you can get into, consider the following program segment:

DECLARE A FLOAT;

= 127" + '3.85";

In the assignment statement, you are adding together two CHARACTER
string values, presumably expecting A to be assigned the value 6.55.
Actually, something quite different happens, as illustrated in Figure
6-7. Since PL/I must add together two CHARACTER values, the derived
common base, scale, and mode are FIXED DECIMAL REAL, with a scale
factor of zero. The result is that each of the CHARACTER values is
converted to an integer before the addition takes place, and so A is
assigned the value 5.

First Edition 6-20

EVALUATING EXPRESSIONS

27 CHAR 3.85 CHAR
Convert Convert
v A
TEMP1 FIXED TEMP2 FIXED
2 DECIMAL 3 DECIMAL
REAL REAL
+
\
TEMP3 FIXED
5 DECIMAL
REAL
Convert
\
A FLOAT
5E1 BINARY
REAL

Conversion of CHARACTER Values
Fiqure 6-7

Converted Precision

This section deals with the precision and scale factor of the
intermediate target created as the result of an implicit conwversion
during the evaluation of an expression.

Consider the following program segment:

DECLARE K FIXED DECIMAL(5,2);
DECLARE 1. FIXED DECIMAL(7,1):
DECLARE A FLOAT DECIMAL(6) ;

K=L+ A;

The assignment statement in the last line adds together a FIXED and a
FLOAT value, and so an implicit conversion is required. Figure 6-8
illustrates the result. (In this figure, no mode is shown for any of
the data types, because the converted precision does not depend upon
the mode.) The derived common scale and base of the data types for L

6-21 First Edition

PL/I Reference Guide

and A are FLOAT DECIMAL. Therefore, PL/I cornverts the value of L to
FLOAT DECIMAL, and stores the result in a target called TEMPl. Since
the value of L contains seven digits, PL/I also gives TEMPl a precision
of 7, since no additional digits are necessary. The target precision
of 7 is the oonverted precision for the conversion of FIXED
DECIMAL(7,1) to FLOAT DECIMAL., Figure 6-8 also shows the precisions of
all temporary targets. The precision of TEMP2 is determined by the
rules for addition, which are discussed later in this chapter.

L FIXED A FLOAT
DEC(7,1) DEC(6)
Convert
v
TEMP1 FLOAT
DEC(7)
+
' .
TEMP2 FLOAT
DEC(7)
Convert
\i
TEMP3 FIXED
DEC(5,2)
Assign
v
K FIXED
DEC(5,2)

Converted Precision
Fiqure 6-8

The precision and scale factor of TEMP3 are determined by the precision
of the target variable K. For this reason, this precision does not
follow the rules for the converted precision described in this section,
because the conversion is considered explicit rather than implicit.

Table 6-7 spells out the rules for converted precisions in implicit
conversion in general. The values of the converted precisions depend
only upon the scale and base of the source and target data types; they
do not depend upon the mode of the source and target data types. This
table shows, for each combination of source scale and base with target
scale and base, the formulas for determining the converted precision.

First Edition 6-22

EVALUATING EXPRESSIONS

Table 6-7
Converted Precisions in Implicit Conversions
Source Data Type

Target

Data FIXED BINARY FIXED DECIMAL FLOAT BINARY FLOAT DECIMAL
Type (p,Q) (p,q) (p) ()
FIXED r=p r=MIN(31, No implicit No implicit
BINARY s=q CEIL (p*3.32)+1) conversion conversion
(r,s) s=CEIL (gq*3,.32) possible possible
FIXED r=CEIL(p/3.32) r=p No implicit No implicit
DECIMAL +1 s=q conversion conversion
(x,s) s=CEIL (q/3.32) possible possible
FLOAT r=p r=CEIL (p*3.32) r=p r=CEIL (p*3.32)
BINARY

(r)
FLOAT r=CEIL(p/3.32) r=p r=MIN(14, r=p
DECIMAL +1 CEIL (p/3.32))

(r)

These notes refer to Table 6-7:

In converting from FIXED to FLOAT, the oconverted precision of
the FLOAT target equals the number of digits in the FIXED
source. The reason is that in FLOAT targets we are 1nterested
only in the appropriate number of significant digits.

In the PL/I language, it is never possible to have an implicit
conversion from FLOAT to FIXED; FLOAT to FIXED conversions must
be explicit. That is why no formula is given in those four
positions in Table 6-7.

In going from DECIMAL to BINARY, or vice versa, the constant
3.32 is used. This constant is approximately equal to the
common logarithm (that is, the logarithm to the base 10) of 2.
This constant is chosen because it is possible to prove
mathematically that if you represent a large integer in both
BINARY and DECIMAL, it will require approximately 3.32 times as
many digits to represent it in BINARY as it does in DECIMAL. In
the table, the use of the function CEIL. is made in order to
indicate that the result of multiplying or dividing by 3.32
should be rounded up to the next higher integer.

In two cases, using the straightforward formula for the

converted precision would result in a precision that is larger
than the maximum permitted for that scale and base on Prime

6-23 First Edition

PL/I Reference Guide

equipment, In those two cases, the MIN built-in function is
used in order to indicate that, if the formula results in a
precision that is larger than the maximum allowed, the maximum
precision should be used.

Derived Common String Type

This section deals with operations performed on BIT or CHARACTER string
data. If you perform a string operation on two operands with different
string data types, PL/I must determine the derived common string type
for the two operands, and then convert the operands to that data type,
if necessary.

Table 6-8 gives the rules for the derived common string type. For
example, if you have a statement containing an expression that
concatenates two operands, PL/I uses this table to determine whether to
do a BIT string concatenation or a CHARACTER string concatenation.

Table 6-8
Derived Common String Type for Two Operands

Operand 1 Operand 2

BIT string CHARACTER string Not a string

BIT string BIT CHARACTER CHARACTER
CHARACTER CHARACTER CHARACTER CHARACTER
string
Not a CHARACTER CHARACTER CHARACTER
string

The rule can be specified as follows: given two operands, if both of
them are BIT string operands, the derived common string type is BIT;
otherwise, the derived common string type is CHARACTER.

First Edition 6-24

EVALUATING EXPRESSIONS

PL/I EXPRESSION OPERATORS

This section defines all of the PL/I operators used in the evaluation
of expressions. While you are reading this section, keep in mind the
following general rules:

Each operator has either one or two operands. If it has two
operands, it is called an infix operator. If it has only one
operand, it is called a prefix operator.,

PL/I evaluates an operator by creating a target of an
appropriate data type and then storing the result of the
operation in that target.

At the time that PL/I is compiling your program, it determines
the data type of the target. The data type of the target
depends only on the operator and on the data types of the
operands; the data type of the target does not depend upon the
value of the operands, even when the value is known at compile
time. (There 1is an exception to this rule in certain cases of

"the ** operator.)

While the data type of the target is determined at compile time,
the value of the target is determined when the program executes.

Infix + and - Operators

These operators perform ordinary arithmetic addition and subtraction.
Given the operands x and y, PL/I evaluates x + y or x - y according to
the following rules:

1.

2.

PL/I determines the derived common scale, base, and mode of the
data types for x and y.

PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in
either order.

PL/I creates a target having a data type with the derived
common base, scale, and mode, and a precision as defined by

PL/I performs the addition or subtraction of the operand
values, and stores the result in the target.

6-25 First Edition

PL/I Reference Guide

Table 6-9

Precision of Target Results for
AAdition or Subtraction of Two Numbers

Converted Converted
Derived Common Scale Precision Precision Precision of Target
& Base of x and y of x of y for x+y or x-y
FIXED BINARY (p,9) (x,s) (m,n) where
m=MIN (31,MAX (p~g,r=-s)+
MAX (qg,s)+1)
n=MAX (q,s)
FIXED DECIMAL (p,9) (x,s) (m,n) where
=MIN (14 ,MAX (p~gq,r-s)+
MAX (g,s)+1)
n=MAX (q,S)
FLOAT BINARY (p) (x) (m) where
m=MAX (p, x)
FLOAT DECIMAL (p) (r) (m) where
m=MAX (p,r)

In order to understand Table 6-9, consider the following example.
Suppose x has a data type of FIXED DECIMAL(2) and y has a data type of
FIXED DECIMAL(3). Then the maximum value that x can have is 99, and
the maximum value that y can have is 999. Therefore, the maximum value
of x +y is 99 + 999, or 1098. Since this result contains four digits,
PL/I creates a target of FIXED DECIMAL(4).

When a scale factor is involved, the reasoning is similar., For
example, suppose x has a data type of FIXED DECIMAL(2) and y has a data
type of FIXED DECIMAL(3,1). Then the maximum value of x is 99, and the
maximum value of y is 99.9, and so the maximum value of x +y is 198.9.
Since the maximum result oontains four digits, with one digit to the
right of the decimal point, the data type of the target is FIXED
DECIMAL(4,1) .

Occasionally the desired target precision is larger than the maximum
precision supported by PL/I. For example, if x and y are both FIXED
DECIMAL(14), the desired target precision is FIXED DECIMAL(15).
Unfortunately, this exceeds the maximum precision allowed, and so PL/I
uses a target of FIXED DECIMAL(14).

In the table, the rules for FLOAT BINARY and FLOAT DECIMAL follow a
general rule for FLOAT that holds for all the arithmetic operators.
The precision of the target is the maximum of the precision of the
operands. In practfcal terms, this means that if both operands are
single precision, the target is single precision; if at least one of
the operands is double precision, the target is double precision,

First Edition 6-26

EVALUATING EXPRESSIONS

Infix * Operator

The asterisk (*) is used for multiplication. Given the two operands X
and y, PL/I evaluates x * y as follows:

1.

2.

PI/1 determines the derived common base, scale, and mode for
the data types for x and y.

PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in
either order.

PL/I creates a target having a data type with the derived
common base, scale, and mode, and a precision as defined by
Table 6-10.

PL/I performs the multiplication operation, storing the result
into this target.

Table 6-10
Precision of Target Results for Multiplication of Two Numbers
Derived Common Converted Converted
Scale, Base of Precision Precision Precision of Target
x and y of x of y for x*y
FIXED BINARY (p,q) (r,s) (m,n) where
me=min (31, ptr+l)
n=gt+s
FIXED DECIMAL (p,9) (r,8) (m,n) where
m=min (14 ,ptr+l)
n=q+s
FLOAT BINARY (p) (r) (m) where
m=max (p,r)
FLOAT DECIMAL (p) (r) (m) where
me=max (P, r)

In Table 6-10, the reasoning is similar to the reasoning in the case of
addition and subtraction, although there is a slight additiomal
complication.

For example, suppose X has a data type of FIXED DECIMAL(2) and y has a
data type of FIXED DECIMAL(3). Then the largest value of x is 99 and
the largest value of y is 999. Therefore, the maximum value that x * y

6-27 First Edition

PL/I Reference Guide

can have is 98901, which contains five digits. This would seem to
indicate that PL/I should create a target having the data type FIXED
DECIMAL(5). However, the precisions defined in Table 6-10 must work
whether the mode is REAL or COMPLEX. If x were FIXED DECIMAL(2)
COMPLEX and y were FIXED DECIMAL(3) COMPLEX, then x * y could have six
digits in the real part or the imaeginary part of the result, For this
reason, PL/I adds 1 to the precision that you would expect, and the
target is FIXED DECIMAL(6) .

The reasoning in the other cases follows the reasoning for addition and
subtraction.

Infix / Operator

The slash (/) is used to perform arithmetic division. Given two
operands, x and y, PL/I evaluates x / y as follows:

1. PL/I determines the derived common base, scale, and mode of the
data types for x and y.

2. PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in
either order.

3. PL/I creates a target having a data type with the derived
common base, scale, and mode, and a precision as defired in

Table 6-11.

4. PL/I performs the division operation, and stores the result
into this target.

Table 6-11 contains a fundamental difference from the tables for
addition, subtraction, and multiplication, The difference is in the
FIXED case, where the precision of the target is always the maximum
allowed, irrespective of the precisions of the operands. The reason is
that division can produce approximate results, even when the operands
are exact. PL/I attempts to preserve as much accuracy as possible by
creating a target with a large number of digits to the right of the
decimal point, thus preserving as much accuracy in the quotient as
possible.

First Edition 6~28

EVALUATING EXPRESSIONS

Table 6-11
Precision of Target Results for Division
Derived Cammon Converted Converted
Scale Base of Precision Precision - Precision of Target
x and y of x of y X/y
FIXED BINARY (p,q) (r,s) (m,n) where
m=31
r=31-pta-s
FIXED DECIMAL (prQ) (r,s) (m,n) where
m=14
n=14-ptg-s
FLOAT BINARY (p) (r) (m) where
=max (p, r)
FLOAT DECIMAL (p) (r) (m) where
m=max (p, r)

For example, suppose x and y are each FIXED DECIMAL(l). This means
that x and y each contain only one decimal digit, and so x / y can have
at most one digit to the left of the decimal point. Since PL/I can
support a maximum precision of fourteen decimal digits, and since at
most one digit can appear to the left of the decimal point, PL/I
provides a target with thirteen digits to the right of the decimal
point. Therefore, the target has size FIXED DECIMAL(14, 13).

Similar reasoning is involved when x and y have nonzero scale factors.
In addition, the rules for FLOAT are similar to the rules for addition,
subtraction, and multiplication.

Be aware that the use of FIXED division can get you into unexpected
trouble., Consider, for example, the following statement:

A=25+1/3;

You may be surprised to learn that this statement cannot execute
properly according to the rules for PL/I. To understand why, consider
the data types of the temporaries used in the evaluation of the
expression 25 + 1/3.

Since 1 and 3 are single decimal digits, they have a data type of FIXED
DECIMAL(1) . Therefore, the target for the division operation will have
a data type of FIXED DECIMAL(14,13), as described in the preceding
paragraph. When the division operation is performed, the result stored
in the target will be 0.3333333333333., An examination of Table 6-9

6-29 First Edition

PL/I Reference Guide

will reveal that, since 25 has a data type of FIXED DECIMAL(2), the
target for the addition operation is FIXED DECIMAL(14,13) , which allcws
only one digit to the left of the decimal point. Therefore, the target
is not large enough to hold the value of the expression.

The reader should note that this is not a bug in the PL/I compiler, but
rather is a consequence of the precisely defined rules of the PL/I
language. Many mathematicians have examined these rules to try to
eliminate this fixed division problem., However, it has turned out that
any change to the rules has simply moved the problem somewhere else,
and so no satisfactory change has been found.

To the programmer who finds this situation disconcerting, remember the
following: never do FIXED division., If you wish to divide two FIXED
quantities, convert one of them to FLOAT before doing the division. Of
course, if you must maintain the accuracy provided by FIXED division,
by all means do it, but be certain that you check the sizes of the
targets in the expression, and make sure that they will be large enough
to hold all the intermediate results.

Infix ** Operator

The exponentiation operator, the double asterisk (**), is handled quite
differently from the other arithmetic operators because of some of its
unique mathematical properties. For example, PL/I will sometimes
handle a case like x**2 in a special way, because this equals x * x.
This means, for example, that in certain cases PL/I will use the fact
that the value of the constant in the exponent is 2 to define the data
type of the target of the operation. This is the only case where PL/I
uses the value of an operand to determine the data type of the target
of the operand.

Special cases: Let x and k be the two operands of **%, such that k is
an integer constant or variable; that is, such that the derived scale
and mode of k are FIXED REAL, with a scale factor of zero., Then the
cases are as follows:

1. If k is a positive integer constant, and the derived scale and
base of x are FIXED BINARY, and the converted precision of X is
(prq), such that (p+ 1) * k =1 <= 31, then the target data
type is FIXED BINARY(m,n), where m= (p+1) *k -1, and
n=gq*%k,

2. If k is a positive integer constant, and the derived scale and
base of x are FIXED DECIMAL, and the corverted precision of x
is (p,q), such that (p + 1) * k - 1 <= 14, then the target data
type is FIXED DECIMAL(m,n) where m= (p+1) *k -1, and
n=4g %Kk,

3. If neither of the above two cases holds, PL/I proceeds as
follows: it converts x to the derived base and mode of x, and
a scale of FLOAT, with the appropriate converted precision.

First Edition 6-30

EVALUATING EXPRESSIONS

The target of the ** operation will have the same data type as
the converted value of X.

The reasomng behind these spec1a1 cases is that if x is FIXED with a
small ©precision, and n is a fairly small constant, then the
exponentiation operation can be performed using ordinary FIXED
multiplication, and the result stored into a FIXED target. On the
other hand, if k is an integer value, but is either a large constant or
a variable, then the exponentiation operation can still be performed by
repeated multiplication, but the multiplication must be done using a
scale of FLOAT, to prevent a result that is too large for the target.

General case: 1If none of the special cases apply, the general rule
applies. ILet x and y be the two operands. Then the general rule for
the evaluation of x**y is as follows:

1. PL/I determines the derived common base and mode of the data
types of x and y. PL/I does not determine the derived common
scale, because FLOAT will be used.

2. PL/I converts x to the data type of the derived common base and
mode with FLOAT, and with the appropriate converted prec1s:Lon.
PL/I does the same for y. These conversions can take place in

either order,

3. PL/I creates a target having a data type with the derived
common base and mode, with a scale of FLOAT, and with a
precision equal to the maximum of the comnverted precisions of x
and y.

4. PL/I performs the exponentiation operation, storing the result
into the target.

Infix || Operator

The double vertical bar (]]|) is the concatenation operator. On Prime
terminals, it may be entered as || or !!. It is applied to two string
values, and the result of concatenating two string values is simply to
stick the strings together. Concatenation may apply to either
CHARACTER or BIT string values.

Let x and y be the two operands of the concatenation operation. Then
PL/I determines the value of x || y as follows:

1. PL/I determines the derived common string type of the data
types for x and y. PL/I converts X to the derived common
string type. PL/I does the same for Yo “These conversions can
take place in either order.

2. PL/I creates a target having a data type with the derived
common string type.

6-31 First Edition

PL/I Reference Guide

3. PL/I concatenates the two string values, storing the result in
the target.

Notice an interesting difference between the ways PL/I handles numeric
targets and string targets. The PL/I rules specify that the precision
of numeric targets must always be known at compile time. However, the
length of a string target need not be known until the program actually
executes,

Infix Comparison Operators

PL/I provides eight ocomparison operators. These operators are listed
in Table 6-12.

You may use any of the eight comparison operators to compare two REAL
numeric values or two string values. In addition, you may use either
of the first two (= or "=) to compare values of all other data types
(COMPLEX numeric or noncomputational). Use of any of the last six
comparison operators with any of these latter data types is illegal.

The target for any of the comparison operators is always BIT(1). If
the comparison is true, the value of the result is 'l'B. If the result
of the comparison is false, the result value is '0'B.

Table 6-12
Comparison Operators

Operator Meaning

Equals
Does not equal
‘ Is less than
Is less than or equal
Is greater than
Is greater than or equal
Is not less than
Is not greater than

>

N

NV
VALYV IIEA

>

When the two operands of the comparison operator have different data
types, PL/I must convert the operands to the same data type. The
conversion rules are as follows:

1. If at least one of the +two operands is numeric or

pictured-numeric, a numeric comparison is done. The rules are
described below.

First Edition 6-32

2.

EVALUATING EXPRESSIONS

If both of the operands are either string or
pictured-character, a string comparison is done. The rules are
described below.

If one of the operands has a noncomputational data type, the
other operand must have the same noncomputational data type.
The only exception is that a POINTER value may be compared with
an OFFSET value. For all noncomputational data type
comparisons, only the operators = and "= may be used.

Numeric comparisons: ILet x and y be the twe operands being compared.

PL/I compares them as follows:

1.

2.

PL/I determines the derived common base, scale, and mode of the
data types of X and y.

PL/I converts x to the data type of the derived common base,
scale, and mode, with the appropriate converted precision.
PL/I does the same for y. These conversions can take place in
either order.

PL/I creates a BIT(1l) target.

PL/I makes the appropriate comparison, and sets the target to
the '0'B if the result is false, and to '1'B if the result is
true. If the derived common mode of x and y is COMPLEX, only
the comparisons = and "= are permitted.

String comparisons: Let x and y be the two operands being compared.

PL/T compares them as follows:

1.

2.

PL/I determines the derived common string type of the data
types for x and y.

PL/I converts x to the derived common string type. PL/I does
the same for y. ‘These oconversions can take place in either
order.,

If the resulting strings do not have the same length, PL/I pads
the shorter one on the right, so that they do have the same
length., If the derived string type is CHARACTER, PL/I pads the
shorter string on the right with blanks. If the derived common
string type is BIT, PL/I pads the shorter string on the right
with 0-~bits.

PL/I creates a BIT(1l) target. PL/I uses the rules in the
following paragraphs to determine whether the two strings are
equal or whether one is greater than the other.

If the two strings of equal length are identical, they are
considered to be equal. Otherwise, to determine which is
larger, PL/I compares the two strings character by character or
bit by bit, moving from left to right in the two strings, until
it finds a pair of characters or bits that are unequal.

6-33 First Edition

PL/I Reference Guide

6. If the derived string type is CHARACTER, the two unequal
characters are compared in the ASCII collating sequence. If
the first character comes before the second character in this
collating sequence, the first string is considered smaller than
the second string; otherwise, the second string is considered
smaller,

7. If the derived string type is BIT, one of the unequal bits must
be a 0-bit, and the other must be a 1-bit. The string that
contains the 0-bit is considered smaller than the other string.

To illustrate the rule for CHARACTER string comparisons, take the
strings 'ANT' and 'ANVIL'. PL/I pads the shorter string with blanks to
the length of the longer string, with the result that the first string
becomes 'ANTbb'. ©PL/I then compares the two strings character by
character as follows:

> e T
Z i 7.
L e —|

The first pair of unequal characters are T and V. Since T comes before
V in the ASCII collating sequence, the first string is considered
smaller than the second. See Appendix B for the ASCII Collating
Sequence.

As a second example, suppose PL/I is comparing the strings 'ANT' and

"ANTELOPE'., PL/I pads the shorter of these strings with blanks, and
then compares the results character by character, as follows:

N T b b b b b

D> i T

N TETL OPE

The first pair of unequal characters is found in fourth position.
These characters are a blank and E. Since the blank comes before E in
the ASCII collating sequence, PL/I considers the first string to be
smaller than the second.

First Edition 6-34

EVALUATING EXPRESSIONS

Infix &, |, and ! Operators

The ampersand (&), vertical bar (]), and exclamation point (!) are the
logical operators. The symbol & represents AND; | and ! both stand
for OR. Normally, you think of these operators as simple logical
connectors, as in the statement:

IFA >3 & B =15 THEN STOP;

In reality, PL/I treats &, !, and | as operators on BIT strings. That
is, the operands of these operators must be BIT strings, and the
results are BIT strings.

Suppose x and y are two operands. Then PL/I computes x & y or x | y as
follows:

1. PL/I converts X to BIT. PL/I does the same for Y. These
conversions can occur in either order.

2. If these two BIT strings do not have the same length, PL/I pads
the shorter string with 0-bits, so that it is the same length
as the longer string.

3. PL/I creates a target having a data type of BIT and a length
equal to the common length of the two strings.

4. Moving from left to right, PL/I takes bits from corresponding
bit positions in the two operands, and produces a result bit
from these two operand bits. If the operator is &, the result
bit is shown in Table 6-13.

Table 6-13
Bit Results from &
Operand 1
0B 1B
0B 0B 0B
Operand 2
1B 0B 1B

If the operator is |, the result bit is shown in Table 6-14. PL/I
stores the result bit into the ocorresponding bit position of the
target.

6-35 First Edition

PL/I Reference Guide

Table 6-14
Bit Results from |
Operand 1
0B 1B
0B 0B 1B
Operand 2
1B 1B 1B

Prefix + and - Operators

The minus sign, the prefix - operator, takes one operand and negates it
by changing a positive number to negative or a negative number to
positive. The plus sign, the prefix + operator, also takes one
operand, but it has no effect whatsoever on the value of that operand
except to force a conversion to numeric, if the data type is not
already numeric.

Given an operand x, PL/I evaluates +x or -x as follows:

1. PL/I determines the derived base, scale, and mode of the data
type for x. Since there is only one operand, the derived base,
scale, and mode are the same as the base, scale, and mode of x,
unless x is not numeric.

2. PL/I converts x to the data type of the derived base, scale,
and mode with the appropriate converted precision. Notice that
no conversion is ever necessary if x is already numeric.

3. PL/I creates a target having a data type with the derived base,
scale, and mode, and a precision as defined by Table 6-15.

4. PL/I evaluates +x by simply using the converted value of x.
PI/I evaluates -x by reversing the sign of the converted value
of X.

Notice that in Table 6-15, the precision of the target for +x or -x 1is
the same as the data type for the converted value of Xx.

First Edition 6-36

EVALUATING EXPRESSIONS

Table 6~-15
Precision of Target for Unary Plus and Minus Operators
Derived Scale Converted Precision of Target for
and Base of x Precision +X or -X
FIXED BINARY (p,q) (m,n) where
=p
n=q
FIXED DECIMAL (p,9) (m,n) where
=p
n=q
FLOAT BINARY (p) (m) where
=p
FLOAT DECIMAL (p) (m) where
w=p

Prefix "~ Operator

The caret (") is the logical operator corresponding to NOT. It is a
prefix operator taking only one operand. That operand must be a BIT
string, and the result of the operation is BIT.

Given an operand x, PL/I computes “x as follows:
l. PL/I comverts x to BIT,

2. PL/I creates a BIT target that is the same length as the string
just discussed.

3. Proceeding from left to right, PL/I fetches a bit from the
operand, uses that bit to compute a result bit as shown in
Table 6-16, and stores the result bit in the corresponding
position of the result BIT string.

Table 6-16
Bit Results from °

Operand Result

'0'B '1'B

'1'B '0'B

6-37 First Edition

PL/I Reference Guide

SCALAR CONVERSION RULES FOR COMPUTATIONAL DATA TYPES

This section contains the rules for cornversion from one computational
data type to another —— numeric to numeric, string to numeric, and
numeric to string.

Most conversions among noncomputational data types are illegal in PL/I.
For example, it is illegal to convert POINTER to FIXED, or FORMAT to
LABEL, The one exception is that, under certain circumstances, it is
legal to convert POINTER to OFFSET, or vice versa. These corversions
are discussed in Chapter 7.

Numeric To Numeric Conversions

If a data value is converted from one numeric or pictured-numeric data
type to a different one, there may be a change in value. Such a
conversion would involve a change in one or more of the base, scale,
mode, and precision data attributes.

Change in base: If there is a change in base from BINARY to DECIMAL,
or vice versa, there is usually a round-off error in converting
noninteger values. Notice, however, that if the scale is FLOAT, there
is no difference in the internal representation of FLOAT DECIMAL and
FLOAT BINARY on Prime computers.

Change in scale: If there is a change in scale from FLOAT to FIXED,
truncation occurs if the FLOAT value contains more digits to the right
of the decimal or binary point than are provided for by the scale
factor of the FIXED data type. A conversion from FIXED DECIMAL or
FIXED BINARY to FLOAT usually has a round-off error, because, on Prime
equipment, FLOAT is always represented internally in binary. PL/I
performs a mode conversion from REAL to COMPLEX by using an imaginary
part of 0. PL/I corwverts COMPLEX to REAL by discarding the imaginary
part of the COMPLEX value.

Change of precision: 1In the case of FLOAT, an increase in precision
will mean no change in value, while a decrease in precision will result
in either no change in value or a truncation of significant digits in
going from an internal representation of double precision FLOAT to
single precision.

How a change in precision for FIXED data values works depends upon
whether digits are added to or removed from the left end of the number
or from the right end, and upon the position of the decimal point as
determined by the scale factors of the source and target data types.
If digits are added to either end, there is no change in value, because
PL/I does the conversion by filling the new positions with zeros. If
digits are removed from the right-hand end of the source value,
truncation takes place. If digits are removed from the left-hand end
of the source value, and if the values of these digits are nonzero,
then a SIZE error occurs,

First Edition 6-38

EVALUATING EXPRESSIONS

Numeric To CHARACTER Conversions

Since the rules are fairly complicated, it is not recommended to most
programmers to use numeric to CHARACTER comnversions. Programmers who
need to convert numeric values to CHARACTER values should do so by
means of PICTURE variables, which permit precise specification of the
CHARACTER string.

When you convert a numeric value to CHBRACTER, PL/I represents the
numeric value as a DECIMAL constant, where the constant has the data
type of the numeric variable, and stores the constant in the CHARACTER
string, usually with leading blanks. The precise rules are listed in
the following paragraphs. ’

If the base of the numeric value is BINARY, PL/I converts the value to
DECIMAL, with the appropriate converted precision. PL/I then proceeds
with the DECIMAL value, as described below.

If the value is FIXED DECIMAL(p,q) REAL, where g 1is greater than or
equal to zero and p is greater than or equal to g, then PL/I forms a
(HARACTER string containing p + 6 characters, There are three cases:

l. If g equals zero, the CHARACTER string contains up to p digits,
with a leading minus sign for negative numbers and a leading
space for positive mumbers. There is no decimal point in the
string.

2. If g is greater than zero and p equals g, PL/I forms a string
of the form 'SO.DDD...D', where the S is replaced by a blank if
the number is positive and by a minus sign if the number is
negative, and there are g digits following the decimal point.

3. If g is greater than zero and p is greater than g, PL/I forms a
constant containing at most p - q digits before the decimal
point, preceded by a minus sign for negative numbers with g
digits following the decimal point. There will always be at
least one leading blank.

If the numeric value is FIXED DECIMAL(p,q) REAL, where either q is
greater than p or g is less than zero, then PL/I forms a CHARACTER
string of the form 'Sddd...dFS(n)', where there are p digits and no
decimal point, and where the n is replaced by an integer constant with
as many digits as necessary to represent the position of the implied
decimal point.

If the numeric value is FLOAT DECIMAL(p) REAL, PL/I forms a character
string of the form 'Sd.ddd...dESAd', where there are p — 1 digits
following the decimal point, and there is a two-digit signed
characteristic. For double-precision numbers, the form is
'sd.ddd...dESdddd'. The 1ength of this CHARACTER string is p+ 6 for
single precision, and p + 8 for double precision.

6-39 First Edition

PL/I Reference Guide

If the numeric value is OOMPLEX, and if n is the length of the
character string for the corresponding REAL data type, then PL/I forms
a CHARACTER string of length 2n + 1, formed as follows:

1. Get the CHARACTER string representations of the real and
imaginary parts of the COMPLEX value. If the imaginary part is
positive, replace the last leading blank in the corresponding
CHARACTER string with a +.

2. Concatenate the two CHARACTER strings together, and concatenate
an I to the result.

3. Rearrange the characters in this string by moving all leading
blanks to the left-hand side.

CHARACTER to Numeric

A (HARACTER to mumeric conversion is legal if the CHARACTER string
contains a legal PL/I numeric constant, possibly with leading and
trailing blanks. The CHARACTER string may contain a COMFLEX constant,
consisting of a real and an imaginary part added together, with the
letter I following the imaginary part. In no case may the constant
contain any embedded blanks.

If the CHARACTER string contains only blanks, or is the null string,

the conversion is still legal, and the corresponding numeric value is
0.

Mumeric to BIT

This conversion is quite complicated and is not recommended. The
detailed rules are described in the following paragraphs.

If the data type of the numeric value is COMPLEX, take only the real
part of the numeric value. If the numeric value is negative, take its
absolute value,

The length of the BIT string will be p, where p depends upon the data
type of the mumeric value, as follows:

1. If the numeric value is FIXED BINARY (r,s), p equals r - s.

2. If the numeric wvalue is FIXED DECIMAL (r,s), P equals
CEIL(3.32 * (r = s)).

3, If the numeric value is FLOAT BINARY (r), p equals r.

4, If the numeric value is FLOAT DECIMAL (r), p -equals
CEIL(3.32 * r).

First Edition 6-40

EVALUATING EXPRESSIONS

In all four cases, if the resulting value of p is negative, p equals 0.
If p > 31, let p equal 31.

Convert the numeric value to the data type FIXED BINARY(p,0) REAL, to
obtain a nonnegative integer. Represent this integer as a binary
number containing p bits, and those bits will form the resulting BIT
string.

BIT to Numeric

When converting BIT to numeric, PL/I examines the BIT string and treats
the bits as an unsigned binary integer. This integer is evaluated and
converted to FIXED BINARY(31) REAL. This numeric value is then
converted to the appropriate data type.

BIT to CHARACTER

PL/I converts a BIT string to a CHARACTER string of the same length,
Each 0-bit in the BIT string is replaced with the character '0' in the
CHARACTER string, and each l1-bit in the BIT string is replaced with the
character 'l' in the (HARACTER string. For example, '1011'B would be
converted to '1011'.

CHARACTER to BIT

This conversion is legal only if the CHARACTER string contains only the
characters '0' and 'l'. PL/I translates the CHARACTER string to a BIT
string of the same length by replacing the character '1' with a 1-bit,
and the character '0' with a 0-bit. '

Conversions Involving PICTURE Variables

If a variable is pictured-string, its conversions are treated the same
as for CHARACTER.

When converting a value to a pictured-numeric data type, PL/I converts
the source value to numeric, and then forms the string value of the
PICIURE variable by performing the PICIURE editing rules. This is true
even if the source value is a CHARACTER string.

In conversions from a pictured-numeric value to a CHARACTER value, the

string value of the PICIURE variable is used. For converting to any
other data type, the numeric value of the PICTURE variable is used.

6-41 First Edition

PL/I Reference Guide

Special Conversion Built-in Functions

PL/I follows the conversion rules given in this chapter to determine
what data attributes and precisions should apply to conversion targets.

PL/I provides a number of built-in functions that allow you to specify
explicit cornversions. For example, consider the following statements:

DECLARE A FLOAT DECIMAL(7);
DECLARE B FIXED DECIMAL(5);
C=A+ B;

According to the rules, PL/I computes A + B by conwverting B to FLOAT
DECIMAL (5) and then performing a FLOAT addition.

However, suppose you would prefer that PL/I convert A to FIXED, and
then compute A + B using FIXED addition. You might do something like
the following:

C = FIXED(A, 9, 2) + B;

PL/I executes this statement by comverting A to the data type FIXED
DECIMAL(9,2) and then adding that result, using FIXED addition rules,
to the value of the variable B.

As another example, suppose the assignment statement is changed to
C = A + FLOAT(B, 15);

PL/I converts B to FLOAT DECIMAL(15) rather than FLOAT DECIMAL(5)
before performing the FLOAT addition operation.

FIXED and FLOAT are examples of PL/I built-in functions that allow you
to specify explicitly what kinds of conversions PL/I should make in
evaluating your expression. Other built-in functions provided for this
purpose are BINARY, DECIMAL, REAL, (OMPLEX, PRECISION, (HARACTER, and
BIT. These functions are fully described in Chapter 14.

In addition, PL/I allows you to specify the precision of the targets of
numeric operations. For example, using the same declarations as in the
preceding example, PL/I evaluates A + B in the statement

C=A+ B;

First Edition 6-42

EVALUATING EXPRESSIONS

by creating a target with the attributes FLOAT DECIMAL(7). To specify
a target with a different precision attribute, use the ADD built-in
function, as follows:

C = ADD(A, B, 12);

PL/I computes the value of A+ B by creating a target with the
attributes FLOAT DECIMAL(12).

In addition to ADD, you may use SUBTRACT, MJLTIFLY, and DIVIDE to

specify the target precision attributes for a numeric operation. These
functions are fully defined in Chapter 14.

AGGREGATE TARGETS AND PROMOTION

Expressions considered so far have involved only scalar elements., This
section deals with PL/I expressions involving aggregates, specifically
arrays, structures, and arrays of structures.

Aggregate Expressions without Promotions

Consider the following program segment:

DECLARE A(4);
DECLARE B(4) INITIAL(1,3,8,2):
DECLARE C(4) INITIAL(2,5,6,7);

A=B+ C;

In this assignment statement, the array B is added to the array C with
the results stored in the array A. When you add two arrays together,
the result is an array value. The array value is computed by adding
corresponding elements of the two arrays being added.

In the above assignment statement, B + C is computed to form the array
(3,8,14,9). This array value is then assigned to the array A.

In an assignment statement involving arrays, PL/I requires that all

arrays must have the same number of dimensions, and the same upper and
lower bounds. ‘

6-43 First Edition

PL/I Reference Guide

Similarly, it is possible to have structure expressions. Consider the
following program segment:

DECLARE 1 S, 2 A, 2 B;

DECLARE 1 T, 2 A INITIAL(5), 2 B INITIAL(6);
DECLARE 1 U, 2 A INITIAL(4), 2 B INITIAL(2);
S=T+U;

Here, the assigmment statement adds together two like structures., The
result is that the corresponding structure members are added together
to form a structure target. In this case, the structure target will
contain two members, and the values will be 9 and 8. This structure
target is then assigned tc the structure S, with the result that S.A
will have the value 9, and S.B will have the value 8.

These aggregate operations may be used with any infix or prefix
operators, or with any of the PL/I built-in functions. However, notice
that when you multiply two arrays together, you do not get what is
normally referred to as matrix multiplication. All operations are
performed by performing the operation on the individual corresponding
scalar members.

Scalar to Array Promotions

When scalars and arrays are involved in an expression or in an
assignment statement, it is often necessary to promote or corwert each
scalar to a corresponding array. Consider the following program
segment :

DECLARE A(4);
A=5;

In this assignment statement, a scalar constant, 5, is being assigned
toan array A. In order for PL/I to make this assignment, it must
promote the scalar 5 to the array (5,5,5,5). PL/I can then assign this
array to A,

Now consider the following program segment:
DECLARE A(4);
DECLARE B(4) INITIAL(2,3,4,5);

X = 4;
A=B*X;

First Edition 6—-44

EVALUATING EXPRESSIONS

The last assignment statement oontains the expression B * X, which
multiplies the array B by the scalar X.

In order for this expression to be evaluated, the scalar X must be
promoted to an array. Since X has the value 4, PL/I promotes X to the
array (4,4,4,4). PL/I then multiplies these two arrays to get a new
array value, (8,12,16,20). This array value is then assigned to A.

Note

These scalar-to-array promotion rules were affected by the 1976
changes in the ANS PL/I standard. Earlier implementations of
PL/I (for instance, IBM PL/I) may give unexpected answers to
program segments like the following:

DECLARE A(4) INITIAL(1,2,3,4);:
A= A(2) * A;

By the current rules, the scalar value A(2) is multiplied by
the array A, and the result is assigned back to A. As we have
described, A(2) is promoted to the temporary array (2,2,2,2).
This temporary array then multiplies A to form a new array,
(2,4,6,8).

On older compilers, however, this assignment statement is
performed differently. In fact, the assignment statement is
equivalent to the following three statements:

DO K=1T0 4;
A(K) = A(2) * A(K);
END;

As you can verify, the results of this assignment would be
(2,4,12,16) .

Scalar to Structure Promotions

Just as you can promote a scalar to an array, you can promote a scalar
to a structure. Consider the following example:

DECLARE 1 S, 2 A, 2 B;
S =17

6~-45 First Edition

PL/I Reference Guide

In this example, the scalar constant 7 is promoted to a structure
containing two elements, each of whose values is 7. This structure is
then assigned tec S, with the result that S.A =7 and S.B = 7.

Next, consider the following example:

DECLARE 1 S, 2 A, 2 B;

DECLARE 1 T, 2 A INITIAL(4), 2 B INITIAL(5);
X=17;

S =T%*¥;

To execute the last assignment statement, the scalar X is promoted to a
structure containing two elements, with the respective values 7 and 7.
This structure is multiplied by the structure T, and the result is
assigned to S, with the result that S.A equals 28 and S.B equals 35.

Promotion to Array of Structures

It is possible for any aggregate type, a scalar, an array, Or a
structure, to be promoted to an array of structures, Consider the

following example:

DECLARE 1S(4), 2A, 2B;
DECLARE 1C(4) INITIAL(5,6,7,8);
DECLARE 1T, 2D INITIAL(2), 2E INITIAL(3):

S=C+ T+ 4;

Whenever a structure and an array are added together, PL/I promotes
each of them to an array of structures. In this last assignment
statement, the array C, the structure T, and the scalar 4 are each
promoted to an array of structures, where the array contains four
members and each of these members is a structure containing two scalar
values. You may picture these promotions as resulting in the following
intermediate array of structure values:

55 23 4 4
6 6 23 4 4
77 23 44
8 8 23)44

First Edition 6-46

EVALUATING EXPRESSIONS

These three arrays of structures are added together to get a new array
of structures that may be pictured as follows:

11 12
12 13
13 14
14 15

These values are then assigned to the array of structures S.

6-47 First Edition

Storage Management

Whenever you use a computer system, you are limited as to the amount of
storage you may use. When you write a PL/I program, your program uses
some storage for the program instructions and some storage for the data
used by the program. This chapter deals with techniques for managing
areas occupied by the data of vyour program, covering the following
topics:

® The use of PL/I storage types to ocontrol the allocation,
initialization, and freeing of data storage. If you have a
program that is too large to run efficiently, you may be able to
use this information to reduce the amount of storage required by
your data. The technique for storage reduction is to ocontrol
the allocation of large blocks of data, so that each large block
occupies storage only while it is needed. This section also
covers list processing techniques.

e Techniques for overlaying storage. It is possible for two
variables to share the same storage area, or for one variable to
cshare a portion of the storage area of another variable. In
these cases, the storage of one variable is said to overlay the
storage of another variable., This section gives several
techniques for overlaying storage.

® Extent expressions and the INITIAL attribute. Extent
expressions and INITIAL attributes appear in declarations of
variables, An extent expression is an expression defining an
array bound or string length. An INTTIAL attribute specifies
how a variable is to be initialized. This section defines these

7-1 First Edition

PL/I Reference Guide

terms more fully and discusses how to use variables in these
options in order to have variable-sized arrays and strings.

e The EXTERNALL and INTERNALL scope attributes, This section
describes how to use the EXTERNAL attribute to permit one
external procedure to access the data areas that are used by a
second external procedure.

e Named constants. Certain PL/I constants have names. For
example, a statement label is a named constant. This section
explains how to specify named constants, and how the
corresponding noncomputational variable data types can be
declared.

TYPES OF STORAGE

In the PL/I language, the temms storage type and storage class usually
refer to the manner in which the storage is to be allocated,

initialized, and freed according to the specifications of your program.

The tem allocation refers to the operation of associating a specific
block of storage or memory with a variable. For example, suppose your
program contains the following declaration:

DECLARE A(1000) ;

This declaration specifies that A is to be an array that occupies 1000
words of storage. You may not use the array A until PL/I has allocated
a specific storage block of 1000 words, and associated that block with
A. Normally, PL/I does this autamatically without your even realizing
it. However, PL/I provides several optional techniques that give you
complete contrcl over when the storage block is allocated.

The term initialization refers to the operation of assigning an initial
value to a variable, by means of the INITIAL attribute in the DECLARE
statement., The INITIAL attribute is discussed more fully later in this
chapter. For now, look at the following example:

DECLARE RANGE FLOAT INITIAL(5.3);

This statement specifies that RANGE is a FLOAT variable, and that PL/I
is to give RANGE an initial value of 5.3. Initialization takes place
just after allocation. If allocation takes place more than once for a
given variable, initialization takes place the same number of times.

The term freeing refers to the operation of releasing a block of

storage that has been allocated and used by some variable. Under
certain circumstances, if you have finished using a particular

First Edition 7-2

STORAGE MANAGEMENT

variable, you may release the storage occupied by that variable, so
that other variables can use that same storage area. If you do this
carefully, you may be able to keep your program size smaller.

The following paragraphs list the types of storage supported by PL/I
and sunmarize the rules for when storage of each type is allocated,
initialized, and freed.

1.

If a variable has the STATIC storage class, it is allocated and
initialized when your program begins executing, and it is freed
when your program finishes executing. This is conceptually the
simplest storage class to understand, since you may assume that
the storage is always available.

The default storage type is AUTOMATIC. AUTOMATIC is the same
as STATIC for variables that are declared in your main
procedure. However, if an AUTOMATIC variable is declared in a
subroutine or function procedure, or within any BEGIN block or
ON unit, PL/I allocates and initializes the storage when the
block is invoked, and frees the storage when the block is
terminated. If the block is invoked and terminated several
times during execution of a program, the storage is allocated
and freed each time.

If a variable has the CONTROLLED storage class, allocation,
initialization, and freeing of the storage are done entirely
under your control. When your program executes an ALLOCATE
statement, PL/I allocates and initializes the storage for the
CONTROLLED variable, When your program executes a FREE
statement, PL/I frees the storage. No other allocation or
freeing operations take place except that, of course, when your
program ends, all storage is released.

The BASED storage class gives you the most control of all over
your storage management. As with CONTROLLED, BASED storage is
allocated and initialized only with an explicit. ALIOCATE
statement, and freed with an explicit FREE statement. However,
when used with POINTER variables, BASED storage provides a very
powerful capability for list processing and other applications
where you must handle sophisticated data structures in your
program,

A variable with the PARAMETER storage type is one that is
specified in a PROCEDURE statement. The allocation,
initialization, and freeing operations that we have discussed
do not really apply to PARAMETER variables, because such a
variable is simply a pointer back to the argument that was
specified when the procedure was called or referenced. This is
discussed more fully in Chapter 8 on procedures.

A DEFINED variable is one that does not have its own storage;
instead, it s<hares storage with a variable of a different
storage type. DEFINED variables are described later in the
section TECHNIQUES FOR OVERLAYING STORAGE.

7-3 First Edition

PL/I Reference Guide

7. A temporary variable is one that is invisible to you, the user,
but that PL/I requires in order to execute your program. For
example, when your program evaluates an expression, PL/I must
often allocate a storage area for intermediate results. This
is described in Chapter 6. ©PL/I allocates such temporary
storage when your program requires it, and frees that storage
when your program is finished with it. The programmer has no
direct control over allocation or freeing of temporary storage.

In PL/I terminology, the term storage type refers to any of the seven
classifications dJdescribed in the preceding paragraphs. The term
storage class is more restrictive, referring to those types described
in the rirst four of these paragraphs, namely STATIC, AUTOMATIC,
CONTROLLED, and BASED, The remainder of this chapter concentrates on
the four storage classes.

STATIC and AUTOMATIC Storage

The most elementary storage class is the STATIC storage class. Suppose
your program contains the following declaration:

DECLARE A FIXED STATIC INITIAL(O);

This declaration specifies that A is to be a FIXED variable, with the
STATIC storage class attribute, and is to be initialized to the value
zero., When your program begins execution, PL/I allocates the variable
A and initializes it to 0. The storage for A remains allocated until
your program terminates. This is true no matter where this declaration
appears in your program, even if it appears in a subroutine or function
procedure.

If you declare a variable and do not specify any storage class, PL/I
supplies the AUTOMATIC storage class by default. Consider the
following declaration in which AUTOMATIC is explicitly declared:

DECLARE B FIXED AUTOMATIC INITIAL(O);

This declaration is the same as that for A given above, except that now
the storage class is AUTOMATIC rather than STATIC. If this declaration
appears in the MAIN procedure, and not within any internal PROCEDURE or
BEGIN block, the result is the same as for STATIC; that is, when your
program begins execution, B is allocated and initialized to 0, and is
freed when your program terminates, On the other hand, if this
declaration appears within a subroutine or function procedure, or
within a BEGIN block, B is allocated and initialized each time the
block is invoked, and is freed each time the block is terminated.

First Edition 7-4

STORAGE MANAGEMENT

To understand more fully the differences between STATIC and AUTOMATIC,
consider the next example. This program contains declarations for four
variables, A B, X, and Y.

P: PROC OPTIONS(MAIN) ;
DECLARE A FIXED STATIC INIT(O):
DECLEARE B FIXED AUTOMATIC INTIT(O0);
PUT LIST(A,B);
CALL Q;
CALL Q;

Q: PROC;
DECLARE X FIXED STATIC INIT(5):;
DECLARE Y FIXED AUTOMATIC INIT(5):
PUT LIST(X,Y);

The first two declarations are the same as those already discussed,
Since these declarations are in the main procedure, and are not inside
any internal PROCEDURE or BHGIN block, the effects of the STATIC and
AUTOMATIC storage classes are essentially identical. Both A and B are
allocated and initialized to 0 when the program begins execution and
are freed when the program ends execution. The PUT statement in the
fourth line of the program prints the value 0 twice.

Note the declarations of X and Y in the same example. These
declarations appear inside the internal procedure Q. Because X has the
storage class STATIC, it is allocated and initialized only once, at the
time the program begins execution. This means that when procedure Q is
called the first time, X has the value 5. The PUT statement prints a
value of X equal to 5. Notice that the assignment statement on the
following line assigns the value 10 to X. This means that when
procedure Q is called the second time, X has the value 10, and so the
value 10 is printed by the PUT statement inside procedure Q, the second
time Q is called.

On the other hand, because Y is AUTOMATIC (the default), it is
allocated and initialized each time procedure Q is called, and is freed
each time procedure Q is terminated. This means that when the value 10
is assigned to Y the first time Q is called, that value is lost as soon
as Q 1is terminated, since Y is freed at that point. The second time Q
is called, Y is reallocated and reinitialized to the value 5, so that
the PUT statement prints a value of 5 for Y. In sumary, then, the
first time Q is called, the PUT statement inside Q prints the values 5
and 5. The second time Q is called, the same PUT statement prints the
values 10 and 5.

7-5 First Edition

PL/I Reference Guide

AUTOMATIC Storage in a Recursive Procedure

When a declaration for an AUTOMATIC variable appears inside a recursive
procedure, it is possible to have several different allocations of the
variable in existence at once. Consider the example below. The
procedure Q is recursive, and it contains declarations for a STATIC
variable X and an AUTOMATIC variable Y. When Q calls itself, there are
two simultaneous active invocations of Q. Since X is static, there is
only one allocation of X, and all imvocations of Q refers to the same
storage area for X.

P: PROC OPTIONS (MAIN) ;

0: PROC RECURSIVE;
DCL X FIXED STATIC INIT(5):
FIXED AUTOMATIC INIT(5);

On the other hand, Y is AUTOMATIC. If there are two or more active
invocations of Q at one time, there are an equal number of allocations
of Y in existence at the same time, This means that each invocation of
Q references a different allocation of Y.

The multiple allocation of an AUTOMATIC variable in a recursive
procedure is very much like a stack mechanism, since each invocation of
the procedure may reference only the most recent allocation of the
AUTOMATIC variable., CONTROLLED storage also implements a form of stack
mechanism,

(ONTRCLLED Storage Class

If you declare a variable to have the CONTROLLED storage class, you
have complete control over the allocation, initialization, and freeing
operations for the storage for that variable. For example, suppose
your program contains the declaration

DECLARE MAT(100,100) FLOAT QONTRCLLED;

First Edition 7-6

STORAGE MANAGEMENT

Then PL/I allocates no storage for MAT, and it is illegal to reference
MAT until you specify that storage is to be allocated. Use the
statement

ALIOCATE MAT;

to specify that PL/I is to allocate storage for MAT. (If the
declaration for MAT oontained an INITIAL attribute, PL/I would also
perform initialization, right after allocation.) Each ALLOCATE
statement can specify a maximum of one segment of storage. In the
above example, if MAT required more than one segment, you would have to
‘break it into several storage modules and use a separate ALLOCATE
statement for each one.

After your program has completed processing MAT, release the storage
for other use by executing the statement

FREE MAT;
This statement says that the allocation for MAT is to be released.

Use the ALLOCATE statement to create multiple allocations of a
CONTRQLLED variable. When you do this, a reference to the CONTRALLED
variable becomes a reference to the most recent allocation. Therefore,
PL/I supports multiple allocations of CONTRALLED storage as a stack
mechanism. The built-in function ALLOCATION takes a CONTRALLED
variable as an argument and returns the number of allocations of that
CONTRQLLED variable currently in existence.

Consider, for example, the following:

DECLARE C FIXED CONTRQLLED;
ALLOCATE C;

C=5;

ALIOCATE C;

C =10;

PUT SKIP LIST(ALLOCATION(C), C);
FREE C;

PUT SKIP LIST(ALLOCATION(C), C);
FREE C;

PUT SKIP LIST(ALLOCATION(C));

This program segment prints three lines of output. The program segment
begins by creating two allocations of C, setting the first one to 5 and
the second one to 10. Therefore, the first PUT statement prints the
values 2 and 10, since there are currently two allocations of C in
existence, and the most recent allocation has a value of 10. The
second PUT statement appears after a FREE statement. This FREE
statement frees the second allocation of C, so that the second PUT
statement prints the values 1 and 5. The second FREE statement leaves
no remaining allocations of C, with the result that the last PUT
statement prints the value 0.

7-7 First Edition, Update 1

PL/I Reference Guide

One of the most useful features of CONTRQLLED storage is that it allows
you to have arrays with variable-sized dimension bounds and strings
with variable-sized maximum lengths. Variable extent expressions are
discussed later in this chapter.

BASED Storage Class and POINTER Variables

BASED storage is the most elementary of the storage classes because it
reduces storage management to a set of operations that put everything
under the control of the programmer. On the other hand, it is the most
sophisticated of the storage classes since by using it the programmer
can implement very advanced list processing applications.

As in the case of CONTRC(LLED storage, you must allocate BASED storage
by means of an explicit ALLOCATE statement. However, in the case of
OONTRQLLED storage, multiple allocations are handled by PL/I by means
of a stack mechanism, which makes only the most recent allocation
available to the programmer. Furthermore, PL/I maintains total control

over the locations of CONTRQLLED storage.

In the case of BASED storage, it is the programmer who must write the
program so as to keep track of the location of each allocation of
storage. If there are several allocations in existence at the same
time, the programmer may reference any of the allocations at any time.
Furthermore, the programmer may free the allocations in any order.

The user keeps track of the location of each allocation by means of the
POINTER variable. POINTER is an example of a noncomputational data
type of PL/I, so called because you may not perform ordinary arithmetic
or string operations on it. A POINTER value is, conceptually, the
storage address of an allocation of storage. When you allocate a BASED
variable, you specify, in the ALLOCATE statement, the name of a POINTER
variable that PL/I will set to point to the block of storage being
allocated. 1If later you wish to reference that block of storage, do so
by means of the same POINTER value.

To illustrate these concepts, consider the following program segment:

DECLARE X FIXED BASED;
DECLARE (P,Q,R) POINTER;
ALLOCATE X SET(P);
ALLOCATE X SET(Q);
ALLOCATE X SET(R);

P=>X = 5;
Q->X = P=->X + 1;
R->X = P->X + O->X;

In this example, the variable X is BASED. We have also declared three
pointer variables, P, Q, and R, allowing us to keep track of three
different allocations of the BASED variable X. (Note that POINTER is a

First Edition, Update 1 7-8

STORAGE MANAGEMENT

data type, while BASED is a storage class. P, Q, and R all have a
storage class of AUTOMATIC, the default storage class.)

The program Segment above contains three ALLOCATE statements. FEach of
these statements causes PL/I to allocate a block of storage for X. In
each case, an appropriate POINTER variable P, Q, or R, as specified in
the ALLOCATE statement, is set by PL/I to point to the region just
allocated. The result of these three allocations is shown in Figure
7-1. As this fiqure shows, there are three blocks of storage, pointed
to respectively by P, O, and R.

P> Q-> R~>

Pointer Variables
Fiqure 7-1

By using the appropriate POINTER variable, you may reference any of
three allocations at any time. To do this, use the right arrow symbol
(-=>). Precede this symbol with the appropriate POINTER variable, and
follow this symbol with the BASED variable. Therefore, to reference
the first of three allocations in the example above, use P->X; to
reference the second, 0->X; and to reference the third, use R->X. The
last three assigmment statements in the program segment above use these
references to assign values to these three allocations. The resulting
values are shown in Figqure 7-2.

P-> 5 Q—> 6 R~> 11

Assignment With Pointer Variables
Figqure 7-2

Use the same symbol to free any of the allocations., For example, if
you wish to free the second allocation of the three in the example
above, use the statement

FREE Q->X;

7-9 First Edition

PL/I Reference Guide

Once this statement has been executed, the POINTER variable Q no longer
has a valid value.

Another way to understand BASED storage is to compare it to STATIC
storage. Suppose Y is declared as follows:

DECLARE Y FIXED STATIC;

Then the variables X and Y have the same data type, FIXED, but have
different storage classes, If you reference the variable Y in an
expression, PL/I autamatically knows from just the identifier Y both
what the data type is and where the storage is. However, this is not
the case with the BASED variable X. If you use X in an expression,
PL/I does not have enough information to get a value, since a BASED
varizble has a data type kut has no storage location., In order to
provide PL/I with a storage location, you must also use a POINTER
variable such as P->X. The P portion specifies the location of the
data, and the X portion specifies the data type of the value.

You may, if you wish, specify a default POINTER variable in your
DECLARE statement for a BASED variable., For example, the declaration
of X could be written

DECLARE X FIXED BASED(P);

This declaration for X specifies a default POINTER variable of P. This
means that if you reference X with no POINTER qualifier, PL/I assumes
that you mean a POINTER variable of P. You may still specify any
POINTER variable you wish with X simply by using the -> operator.

A List Processing Example

The following short example of list processing by means of a linked
list illustrates BASED storage and POINTER variables. The basic
declarations of our program example are

DECLARE 1 REC BASED,
2 NEXT POINTER,
2 NUMB FIXED;
DECLARE (FIRST, P, Q) POINTER;

In the first declaration, REC is a BASED structure, with two scalar
members NEXT and NUMB. This means that you may think of an allocation
of REC as looking something like Figqure 7-3. As that figure shows, an
allocation of REC is a block of storage containing two values, NEXT and
MNUMB.

First Edition 7-10

STORAGE MANAGEMENT

NEXT

NUMB

A BASFD Structure
Figure 7-3

A linked list is a ccllection of allocations of REC, with each block in
the list pointing to the next block in the list. That is, each
allocation of REC contains a POINTER value and a FIXED value. The
POINTER value can point to another allocation of REC. For example,
Figure 7-4 shows four allocations of REC, with each pointing to the
rext one in the list. The result is that this is a linked list of four
numbers, 8, 13, 22, and 5.

A Linked List
Figure 7-4

The fcllowing PL/I code segment creates a linked list from 50 values
that are input using GET LIST:

ALIOCATE REC SET(FIRST);

GET LIST (FIRST->NUMB) ;

P = FIRST;

DO K = 2 TO 50;
ALLOCATE REC SET(Q);

P->NEXT = Q;

GET LIST (Q->NUMB) ;
P=Q;

END;

P->NEXT = NULL();

7-11 First Edition

PL/I Reference Guide

The first statement allocates a storage block for REC, and sets the
pointer variable FIRST to point to that storage block. The second
statement inputs a data value, and stores it in the NUMB portion of the
newly allocated REC storage block. Notice that FIRST->NUMB is a
shorthand notation for FIRST->REC.NUMB. The third statement is an
assignment statement, assigning the POINTER value FIRST to the FPOINTER
variable P, The result is that P and FIRST now point to the same
storage block. If we assume that the first input value is 8, the
situation after the first three lines of the above code may be pictured
as follows:

"\

FIRST smemsnize-

The next six lines of code form a DO group that allocates the next 49
blocks in the linked list, and inputs the 49 data values to be stored
in the 49 storage blocks. Iet us examine what happens during the first
iteration of this loop. The statement ALLOCATE REC SET(Q) allocates a
new REC storage block, and sets the POINTER variable Q to point te it.
Next, the statement P->NEXT = Q specifies that the NEXT field of the
first block (the one pointed to by P) is to point to the same thing
that Q points to. The result is two allocated REC blocks, with the
first pointing to the second:

P\ Q

FIRST i 3o

The next statement of the locp inputs a data value, storing it into the
NUMB field of the second block, the one pointed to by Q. 'Then, the
assignment statement P = Q advances the pointer variable P so that it

First Edition 7-12

STORAGE MANAGEMENT

points to the same block pointed to by Q. The result, assuming that
the second data value is 13, may be shown as

o
‘r//-u

FIRST we—t-

Subsequent repetitions of the loop allocate additiomal blocks in the
linked list, setting them so that each points to the next one. This
process is accomplished by advancing the pointers P and Q as the
repetitions continue. For example, halfway through the first
repetition of the loop, when K = 3, the linked list may be thought of
as follows:

"\ \

FIRST cemesscas- 3 8

The last line of code in the preceding example illustrates a new
built-in function, NULL(). This built-in function takes no arguments,
and it returns a POINTER value that points nowhere., The assignment
statement P->NEXT = NULL() specifies that the NEXT field of the last
block in the linked list is to point nowhere.

The following loop prints out all the numbers in the linked list:

DO P = FIRST REPEAT (P->NEXT)
WHILE(P "= NULL()):

PUT LIST(P->NUMB);

END;

The DO statement specifies that the pointer P begins at the first block
in the 1list, the one pointed to by FIRST, and that in each subsequent
repetition the pointer P moves up to the next block in the linked list.
The repetitions continue until P equals NULL(), indicating the end of
the linked list.

7-13 First Edition

PL/I Reference Guide

The complete program for the above discussion follows.

LINK: PROCEDURE OPTIONS(MAIN) ;
DECLARE 1 REC BASED,
2 NEXT POINTER,
2 NUMB FIXED;
DECLARE (FIRST, P, Q) POINTER;
ALIOCATE REC SET(FIRST);
PUT LIST('ENTER FIRST NUMBER');
GET LIST(FIRST->NUMB) ;
P = FIRST;
DO K = 2 TO 20;
RLIOCATE REC SET(Q);
P->NEXT = Q;
PUT LIST('ENTER ANOTHER NUMBER') ;
GET LIST(Q->NUMB) ;
P=0Q;
END;
P->NEXT = NULL():
PUT SKIP LIST('END OF RUN');
FUT SKIP;
IO P = FIRST REPEAT P->NEXT
WHILE(P "= NULL):
PUT LIST(P->NUMB) ;
END;
END LINK;

BREA and OFFSET Variables

If you use the ALIOCATE statement to allocate several blocks of
storage, you have no control over where those blocks of storage are
located. In fact, it is possible for PL/I to allocate those blocks of
storage in such a way that they are scattered throughout memory. This
is not a problem in most applications, because you can use the POINTER
values to find those storage blocks, no matter where they are.
However, suppose you wish to allocate the blocks in such a way that
they are all collected in one place, so that you can use an output
operation to write all the blocks together out onto secondary storage.
For this, you must be able to tell PL/I to allocate all of its BASED
storage within a single larger region of storage, which we call an
area.

PL/I provides this kind of support by means of two noncomputational
data types, AREA and OFFSET., The value of an AREA variable is not a
value in the usual sense. Rather, the value of an AREA variable is a
block of storage from which you may suballocate smaller blocks of
storage for BASED variables. An OFFSET variable is like a POINTER
variable in that you use it with a BASED variable to specify the
location of the storage for the BASED variable, However, it differs
from a POINTER variable in that it is used only in conjunction with an
AREA variable, and its value is not the location of the storage block

First Edition 7-14

STORAGE MANAGEMENT

being allocated, but is rather the displacement or offset of the
storage block from the beginning of the area from which it was

suballocated.

To understand the relationships among BASED variables, AREA variables,
and OFFSET and POINTER variables, look at an example starting with some
basic declarations:

DECLARE (A,A2) AREA(2000);
DECLARE O OFFSET;

DECLARE P POINTER;
DECLARE X FIXED BASED;

The first declaration specifies that two variables, A and A2, are to be
ARFA variables, each representing a region of storage containing 2000
bytes. The second line specifies that O is an OFFSET variable. O here
represents displacements inside the two AREA variables.

Now consider the following statement:
ALLOCATE X IN(A) SET(P);

This statement specifies that an allocation of the BASED variable X is
to be made within the area A. The result may be pictured as shown in
Figure 7-5. In the figure, A represents a region of storage that is
one segment or less in size. PL/I uses the first portion of that
region as a header in which to store control information about what has
been allocated in the area. After the ALLOCATE statement has been
executed, a small portion of A is reserved for that allocation of X,
and the pointer P points to that allocation.

Header

e = Aliocation of X

Allocation Within an AREA
Figure 7-5

7-15 First Edition, Update 1

PL/I Reference Guide

The statement
ALLOCATE X IN(A) SET(O):;

causes a second allocation of X to be made, but this time the OFFSET
variable O is to be set rather than a POINTER variable. The result is
shown in Figure 7-6. There are now two allocations of X, and, as
indicated by the figure, the value of O is the displacement of the
second allocation from the beginning of the area.

A ,
Header I
, O
P et Allocation of X
Allocation of X _1_

Two Allocations of X
Figure 7-6

As with ordinary BASED variables, use the -> operator to reference a
specific allocation of X. For example, the statement

P->X = 5;

stores the value 5 into the first allocation of X.

On the other hand, a statement like
0->X = 5;

is not valid, because PL/I does not have enough information. This
statement tells PL/I that you want to reference an allocation at a
certain displacement from the beginning of an area, lbut PL/I has no
idea which area you mean. The -> operator must be preceded by a
POINTER value. Therefore, in order to reference the second allocation
of X, it is necessary to corvert the OFFSET variable O to a value. The
way to do this is by means of the built-in function POINTER. This
function takes two arguments, an OFFSET value and an AREA value, and
returns the corresponding POINTER value.

First Edition, Update 1 7-16

STORAGE MANAGEMENT

For example, the statement

POINTER(O,A)->X = 5;

is legal, because now you are telling PL/I both the AREA variable, A,
and the displacement or OFFSET value within that area.

It is legal to execute an assignment statement involving AREA
variables. For example, the statement

A2 = A;

assigns the entire area A to the area A2. The result is as shown in
Figure 7-7. The area A2 now contains two allocations of X. The OFFSET
variable O is a valid displacement to the second allocation of X in the
area A2. This is the value of OFFSET variables. When you assign one
area to another, the OFFSET values remain the same for the individual

suballocations.

A2 T
Header

Allocation of X

Allocation of X :|:

The OFFSET Variable
Figure 7-7

On the other hand, there is no way to access the first allocation of X
in A2, There 1is no OFFSET variable indicating its displacement, and
the POINTER variable P, used in the area A, has no meaning in the area

A2.

7-17 First Edition, Update 1

PL/I Reference Guide

In this situation, you could actually access the first allocation of X
in A2 by a somewhat roundabout method. @A built-in function, called
OFFSET, can be used to convert a POINTER variable to an OFFSET value.
If you used this built-in function on the POINTER value P, you would
have an OFFSET value to the first allocation of X in A that would also
be valid for the first allocation of X in A2. That OFFSET value could
then be used to access the first allocation in A2 in something like the
following method:

DECLARE 02 OFFSET;
02 = OFFSET(P,A);
POINTER(02,A2)-> = 10;

This group of statements would assign the value 10 to the first
allocation of X in A2,

Use the FREE statement with the IN option to free a suballocation
within an area. For example, the statement

FREE P->X IN(A);

is valid to release the first allocation of X in the area A.

Use the built-in function EMPTY if you wish to free all allocations in
an area simultaneously. For example, the statement

A2 = EMPTY();

assigns a cleared area to the AREA variable A2, with the effect that
all suballocations within A2 are freed.

As we have already stated, an OFFSET variable may not be used by itself
to indicate the location of a specific allocation. You must always
specify which AREA variable contains the allocation, and you do this
with the built-in function POINTER.

In the declaration of an OFFSET variable, you may specify a default
AREA variable, which PL/I is to use when you use the OFFSET variable by

itself without specifying an explicit AREA variable. For example, if
the declaration of O given above were changed to

DECLARE O OFFSET(A);

First Edition, Update 1 7-18

STORAGE MANAGEMENT

you could use a reference like 0->X, and PL/I would assume that you
meant the area A. In addition, statements like P=0 and O =P are
legal, since PL/I can supply the appropriate AREA variable. Note that
you could use the OFFSET variable O with any other AREA variable, by
using either the POINTER or the OFFSET built-in function. For example,
the statement

POINTER(O,A2)->X = 5;

is legal, with the explicit AREA variable A2 replacing the default AREA
variable A.

The ALLOCATE and FREE Statements

The format of the ALLOCATE statement is as follows:
ALLOCATE specification {,specification}...;

where each specification is of the form

variable {IN(area-variable)} {SET(locator)}

If there are multiple specifications, multiple allocations are done
with a single ALLOCATE statement, provided the total allocation does
not exceed one segment. PL/I raises the AREA ocondition if an
allocation exceeds one segment.

The variable must be either CONTRQLLED or BASED. If it is CONTRULLED,
the IN and SET options are illegal.

If the variable is BASED, you must specify a locator, either a POINTER
variable or an OFFSET variable. You may specify the locator either
explicitly by means of the SET option, or by default if a locator is
specified with the BASED attribute in the declaration of the variable.

If you wish the allocation to take place inside an area, you must
specify an AREA variable. You may do this either explicitly by means
of the 1IN option, or by default, if the locator is an OFFSET variable
with a default AREA variable.

The FREE statement has the format

FREE specification {,specification}...;

7-19 First Edition, Update 1

PL/I Reference Guide

where each specification is of the form

{locator->} variable {IN(area-variable)};

Multiple freeings take place if there are multiple specifications in
the FREE statement. The variable must be either CONTRQLLED or BASED.
If it is CONTRQLLED, the locator and the 1IN option may not be
specified.

If the variable is BASED, you must specify a locator, either explicitly
in the specification or else by default if the declaration for the
BASED variable contains a default locator. If the freeing is to take
place within an area, you must specify the area either explicitly by
means of the IN option, or by default if the 1locator is an OFFSET
variable with a default AREA variable.

TECHNIQUES FOR OVERLAYING STORAGE

The term overlaying storage describes the situation that occurs when
two variables share the same storage area. Of course, one reason to do
this might be simply to save space. However, it is more common for a
programmer to use these techniques to access the same block of data in
two different ways, either considering it as organized into aggregates
in two different ways or treating some of the data as having two
different data types.

To illustrate the last sentence, <consider the two following
declarations: :

DECLARE A(3) FIXED;
DECLARE 1 S,

2 X FIXED,

2 Y FIXED,

2 7 FIXED;

The variable A is an array, and the variable S is a structure. Each of
them is an aggregate containing three FIXED data values. If it were
possible for A and S to share the same storage area, large enough to
hold the three FIXED data values, then the first data value could be
accessed by either a reference to A (1) or a reference to S.X.
Similarly, the second data value could be referenced by either A (2) or
S.Y, and the third by A (3) or S.Z. This ability to organize the same
data area into two different aggregate oconfigurations can be very
valuable in certain applications.

First Edition, Update 1 7-20

STORAGE MANAGEMENT

In a different example,

DECLARE C CHARACTER(100);
DECLARE D(100) CHARACTER(1);

each of the variables C and D requires 100 characters of storage. If
it were possible for C and D to occupy the same storage, you would be
able to reference the same characters either as a single long CHARACTER
string, or else as members of a CHARACTER array.

As a final introductory example, consider the following declarations:

DECLARE F FLOAT BINARY(23) ;
DECLARE B BIT(32);

On the Prime computer architecture, the FLOAT variable F declared above
requires two words of storage, or 32 bits. Therefore, if F and B could
share the same two words of storage, your program could use F to refer
to those two words as a FLOAT number, and could use B to examine the
format of that FLOAT number as a BIT string. This is an example of a
situation in which the same storage area can be accessed using two
different data types.

The two types of overlaying of storage among variables are machine
independent and machine dependent. The first two examples just given
would be machine independent, because sharing storage in those
situations would have the same results on any implementation of PL/I on
any machine. The third example, where a FLOAT number is overlaid by a
BIT string, is an example of machine dependent overlaying. The reason
is that the BIT configuration of FLOAT numbers differs from machine to
machine, and so you might get different results on different machines
from overlaying that storage.

Overlaying of BASED Storage

Overlaying BASED storage is done fairly easily, since you need only use
the same POINTER variable with different BASED variables. Consider,
for example, the following declarations:

DECLARE P POINTER;
DECLARE C CHARACTER(100) BASED;
DECLARE D(100) CHARACTER(1) BASED;

7-21 First Edition

PL/I Reference Guide

Since you can use the pointer P with either of the BASED variables C or
D, you may reference the same block of storage as either a CHARACTER
string of length 100, or an array of 100 single characters. Consider,
for example, the following statements:

ALIOCATE C SET(P);
PUT LIST(P->C);
PUT LIST(P->D);

The first PUT statement prints out the region of storage as a single
CHARACTER string of length 100, The second PUT statement prints 100
individual characters, following the conventions of PUT LIST. Both
statements refer to the same section of storage.

Similarly, you can overlay any two BASED variables, even if they have

different data types and different aggregate types. Overlaying storage
of different types, however, produces machine dependent results.

The ADDR Built—-in Function

The preceding examples demonstrate how it is possible to overlay BASED
storage with a BASED variable of a different data type or aggregate
type. The ADDR built-in function allows you to overlay any storage,
STATIC, AUTOMATIC or CONTROLLED, with a BASED variable.

Consider the following program segment:

DECLARE C CHARACTER(100) STATIC;
DECLARE D(100) CHARACTER(1) BASED;
DECLARE P POINTER;

P = ADDR(C);

PUT LIST(P->D);

The ADDR built-in function, which is illustrated in this program
segment, takes one argument and returns a POINTER value for the storage
for that arqument. Therefore, the first assignment statement shown
above computes the address of the STATIC variable C and assigns that
address as a POINTER value to P. Therefore, the PUT statement prints
out the CHARACTER string C as an array of 100 individual characters.

By means of the ADDR built-in function, you can obtain a POINTER value
for the storage for any variable of any storage class. Therefore, you
can always overlay storage of any storage class with a BASED variable
of your choice.

First Edition 7-22

STORAGE MANAGEMENT

Machine Independent Overlaying Rules

Those programmers who plan to run their PL/I programs only on Prime
equipment may feel free to overlay storage of one data type with
storage of any other data type. However, £for some users it is
important that their PL/I programs run on different machines and
different implementations of PL/I and get the same results. These
programmers must follow certain rules if they are going to use
overlaying techniques.

There are two forms of machine independent overlaying: simple
overlaying and string overlaying. In simple overlaying, both variables
are either scalars with the same data type or are aggregates whose
scalar values have the same data types in the same order. For example,
consider the following declarations:

DECLARE 1 S(3) BASED,
2 A CHAR(20) VER,
2 B FIXED,
2 C CHAR(20) VAR,
2 D FIXED;
DECLARE 1 T(6) BASED,
2 X CHAR(20) VAR,
2 Y FIXED;
The aggregates S and T each contain 12 scalar values, with the data
types of these scalars alternating between CHARACTER (20) VARYING and
FIXED. As a result, if you overlay S and T, your program is still
machine independent.

In string overlaying, both variables are NONVARYING strings, either
CHARACTER or BIT., Furthermore, all strings involved must be UNALIGNED.
Consider, for example, the following declarations:

DECLARE CARD CHAR(80) BASED;
DECLARE 1 IMAGE BASED,
2 NAME CHAR(20),
2 CODES (25) CHAR(2),
2 FILLER CHAR(10);

Since CARD is a scalar and IMAGE is a structure containing 27 scalars,
CARD and IMAGE are not eligible for simple overlaying. However, notice
that both variables contain precisely 80 characters. As a result, they
fulfill the requirement for string overlaying, and so overlaying these
two variables does not make your program machine dependent.

7-23 First Edition

PL/I Reference Guide

It is possible to combine simple overlaying and string overlaying, and
still remain machine independent. For example, consider the following
declarations:

DECLARE 1 S BASED,
2 A(2) FIXED,
2 B BIT(40);
DECLARE 1 T BASED,
2 U FIXED,
2 V FIXED,
2 W(4) BIT(10):

Sand T do not qualify either for simple overlaying or for string
overlaying, However, the first two data items in both S and T are both
FIXED, and thus qualified for simple overlaying, and the last portion
of both structures consists of 40 BIT values, qualified for string
overlaying. As a result, overlaying the two structures is machine
independent.

If you attempt to overlay any two data items with different data types,
you will get machine dependent results. This includes the situation
where one of the data items is a VARYING string and the other is
NONVARYING.

The DEFINED Attribute

In preceding paragraphs, we have discussed how you can use a BASED
variable to overlay a storage block of one aggregate type or data type
with a variable of a different aggregate type or data type. PL/I also
provides a more autamatic mechanism for overlaying storage, called the
DEFINED attribute.

Consider the following example:

DECLARE A(100) FIXED DECIMAL(S);
DECLARE B(10,10) FIXED DECIMAL(5) DEFINED(A);

Both A and B contain 100 FIXED DECIMAL(5) data items, but A is a singly
dimensioned array and B is a doubly dimensioned array. This fits the
definition of simple overlaying described in the preceding section, and
so PL/I permits you to specify DEFINED(A) in the declaration of B to
indicate that A and B share the same storage. The variable A is said
to be the base variable for the DEFINED attribute for B.

ANS PL/I allows only simple overlaying or string overlaying with the
DEFINED attribute. Prime PL/I allows overlaying data of any type using
the DEFINED attribute, but such-overlaying produces machine dependent
effects. (Appendix C explains the underlying representations of PL/I

First Edition 724

STORAGE MANAGEMENT

data types on Prime hardware.) The base variable of a DEFINED
attribute may be neither DEFINED nor BASED.

When using string overlay defining, use the PFOSITION attribute to
specify that the DEFINED variable starts at a certain character
position within the base variable. Consider the following:

DECLARE CARD CHARACTER(80) ;
DECLARE NAME CHARACTER(20) DEFINED(CARD) POSITION(23);

In this example, CARD is a card image of 80 characters. The NAME field
in that card image occupies columns 23 throuch 42. The declaration of
NAME just above specifies that NAME is the 20-character field of CARD
beginning from the twenty-third character.

PL/I supports a third type of DEFINED attribute called iSUB. The
purpose of iSUB defining is to give you a way to define arrays in other
than linear or rectangular fashion. Consider the example:

DECLARE A(3,5):;
DECLARE B(5,3) DEFINED(A(2SUB, 1SUB));:

A and B are both two-dimensional arrays containing 15 scalar elements.
The expression in parentheses following the keyword DEFINED specifies
how to translate a subscript list for B from the desired subscript list
for A, The symbol 1SUB is to be replaced by the first subscript of A,
and the symbol 2SUB is to be replaced by the second subscript. For
example, if your program contains a reference to B(M + 1,N), this is
equivalent to a reference to A(N,M + 1). Therefore, this use of
DEFINED has the effect of reversing the way in which the subscripts

vary.

Consider a second example:

DECLARE MAT(20,20) ;
DECLARE DIAG(20) DEFINED(MAT(1SUB,1SUB));

Here, MAT is a two—dimensional matrix, and DIAG is a one-dimensional
array whose elements form a diagomal of the matrix. The expression
following the DEFINED keyword specifies that a reference to DIAG(K) 1is
to be replaced by a reference to MAT(K,K).

7-25 First Edition

PL/I Reference Guide

EXTENT EXPRESSIONS AND INITTAL ATTRIBUTE

This section deals with certain expressions that can appear in DECLARE
statements., Two types of such expressions are extent expressions,
which are used as dimension bounds for arrays, maximum string lengths,
and AREA sizes, and INITIAL expressions, which appear as iteration
factors or initialization values in the INITIAL attribute.

This section discusses what happens when there are variables in these
expressions.

The INITIAL Attribute

Use the INITIAL attribute in the declaration of a variable in order to
specify what initial value the variable should have. PL/I performs the
initialization just after it allocates storage for the variable.

For an ordirary scalar variable, specify the initial value in
parentheses following the keyword INITIAL, as in the following
examples:

DECLARE RATE FIXED INITIAL(O);
DECLARE STR CHAR(20) VAR INIT('XYZ');

In the first declaration, the FIXED variable RATE is to be initialized
to 0, and in the second declaration the CHARACTER variable STR is to be
initialized to 'XYZ'.

If the variable being initialized is an array, you must specify one
initial value for each element in the array. For example, the
statement

DECLARE M(5) BIN FIXED INIT(8,4,2,7,3);

specifies that the array M has five elements, which are to be
initialized to 8, 4, 2, 7, and 3, respectively. If the array is large,
and if you wish to initialize many of the elements of the same value,
then you can use a repetition factor. For example, the statement

DECLARE VECTOR(100) INIT((100)0);

specifies that the 100 elements in the array VECIOR are all to be
initialized to 0. A more complex example is the following:

DECLARE S(-10:10) INIT((10)-1,0,(10)1);

First Edition 7-26

STORAGE MANAGEMENT

The vector S contains 21 elements, with array subscripts varying from
-10 to 10. The INITIAL attribute specifies that the first 10 of these
values are to be initialized to -1, the 11th to zero, and the last 10
to 1.

If the INITIAL attribute does not specify enough values, PL/I does not
initialize the entire array. For example, the statement

DECLARE VECTOR(100) INITTAL((50)0);

specifies that the first 50 elements of the array VECTOR are to be
initialized to 0, and the last 50 elements are to be left
uninitialized. If the INITIAL attribute specifies more values than
there are elements in the array, PL/I ignores the extra values.

If you specify an asterisk (*) as an initial value, you are indicating
to PL/I that you do not wish any initialization for that particular
array element, For example,

DECLARE VECTOR(100) INIT((5) *,(10)0,%*,(9)2);

specifies that the first five elements of the array VECIOR are to be
uninitialized. Elements 6 through 15 are to be initialized to 0.
Element 16 is to be uninitialized and elements 17 through 25 are to be
initialized to 2.

When you are initializing a string array, a special problem arises when
you use a repetition factor with a string constant. The problem is
that PL/I could confuse the repetition factor for the initialization
with a replication factor for the CHARACTER string. Consider, for
example, the following declaration:

DECLARE CA(5) CHAR(50) VAR INIT((5)'A');

The writer of this statement intended that each of the five elements of
CA be initialized to 'A'., Instead, PL/I interpreted (5)'A' as a
replicated string constant equaling 'AAAAA'., The result is that PL/I
initializes CA(1) to 'AAAAA', and leaves the rest of the array
uninitialized. The easiest way for the programmer to accomplish the
multiple initialization is to insert a dummy string replication factor
of 1, as follows:

DECLARE CA(5) CHAR(50) VAR INIT((5) (1)'A');

In this case, PL/I interprets (1) as a string replication factor, and
so interprets (5) as an initialization repetition factor.

7-27 First Edition

PL/I Reference Guide

When you wish to specify initialization for a structure, specify an
INITIAL attribute for each of the scalar elements in the structure.
Consider, for example, the following:

DECLARE 1 S,
2 A INIT(O),
2 B INIT(5):

Here the structure S is initialized by initializing S.A to 0 and S.B
to 5.

If you are initializing an array of structures, your initialization
list must provide initialization values for all the elements resulting
from the inherited dimension. This is shown in the following:

DECLARE 1 S(10),
2 A INIT((10)0),
2 B INIT((5)0, (5)1);

Each of S.A and S.B is an array containing 10 elements, as a result of
having irherited the dimension from S. As shown, each INITIAL list
contains 10 elements for that reason.

Variables in Extent and INITIAL Expressions

Up until now, all extent and initial expressions have been constant®
Under certain circumstances, PL/I permits arbitrary expressions to
appear.

If the variable being declared is AUTOMATIC, extent and initial
expressions may contain variables, provided that the variables are not
AJTOMATIC and are declared in the same block. For example, the
statement

DECLARE A(N) INITIAL((N)O);

is legal, provided that the variable N is not AUTOMATIC and is declared
in the same block.

Variables are permitted in declarations for CONTROLLED storage as well.
There is no similar restriction on these variables.

For both AUTOMATIC and CONTRCLLED, the extent expressions and the
initial expressions are evaluated at the time that the variable is
allocated. The expressions are not evaluated at any other time. Thus,
in the example above, if the value of N should change after A has been

First Edition 7-28

STORAGE MANAGEMENT

allocated, that change would not affect the dimension size of the array
A, Even when PL/I frees the allocation of A, it does not re-evaluate
the expression; instead, it uses the value of the dimension size,
which it saved when it allocated A.

Variable extent and initial expressions are not permitted for STATIC
storage.

Variables and REFER Option for BASED Storage

The handling of variables in initial expressions for BASED storage is
the same as for QONTROLLED storage. The expressions in the INITIAL
attribute are evaluated only when the BASED storage is allocated by
means of an ALIOCATE statement.

However, the rules are somewhat different for variables in extent
expressions for BASED storage. If a BASED variable contains a variable
extent expression, the extent expression is evaluated not only when the
BASED variable is allocated, but also whenever the BASED variable is
even referenced. Consider the following program segment:

DECLARE A(N) BASED, P POINTER;
N = 10;

ALIOCATE A SET(P);

P->A = 5;

N=17;

PUT LIST(P->A);

At the time the ALIOCATE statement is executed, the value of N is 10,
and so PL/I allocates 10 words of storage for A, The next statement
assigns the value 5 to each of the 10 elements in the array A just
allocated, However, when the PUT statement is executed, only seven
array elements are printed. The reason is that the value N has been
changed to 7, and when PL/I references A in the PUT statement, it uses
the current value of N. Notice that if the value of N had been changed
so that it was larger than 10, execution of the program would have
produced unpredictable results.

PL/I provides one additional capability for variable sized BASED
storage. This feature, the REFER option, allows the value of an extent
expression to be part of a structure. Consider the following example:

DECLARE 1 STOCKITEM BASED,
2 NAME CHAR(30),
2 (QOUNT BIN FIXED,
2 (ODES(N + 1 REFER(COUNT))FIXED;

7-29 First Edition

PL/I Reference Guide

This declaration describes a BASED structure called STOCKITEM
containing three fields. The third of these fields is an array called
CODES, where the array bound contains two separate specifications, the
expression N+ 1 and the identifier QOUNT, the Ilatter enclosed in
parentheses following the keyword REFER. PL/I uses the expression
N + 1 when an ALLOCATE statement for STOCKITEM is executed., This
expression determines the size of the array at allocation time., PL/I
also stores the value of that expression into the COUNT field of
STOCKITEM. From that point on, whenever your program references
STOCKITEM, PL/I uses the value of COUNT to determine the size of the
(ODES array. This capability is particularly important in situations
involving input/output. If your program writes out an allocation of
STOCKITEM, and then reads the same allocation back at a later time,
your program will still know how large the CODES array is, since that
information is stored in the structure in the COUNT field.

The format of an extent expression using the REFER option is as
follows:

expression REFER(identifier)

This format can be used in any BASED structure in an extent expression
for an array bound, a string length, or an AREA size. PL/I evaluates
the expression when your program executes an ALLOCATE statement for the
BASED structure. The identifier must be a preceding member of the same
BASED structure. Whenever your program references the BASED structure
other than in an ALIOCATE statement, PL/I uses the member specified by
identifier to determine the size of the extent expression.

INTERNAL AND EXTERNAL SCOPE ATTRIBUTES

The scope of a variable is either INTERNAL or EXTERNAL. The default is
INTERNAL .,

If a variable has either the STATIC or CONTRCLLED storage class, you
may declare it to be EXTERNAL in addition. Consider the following
example:

DECLARE X FIXED DECIMAL(5)
STATIC EXTERNAL INITIAL(O);

If this declaration appears in several different external procedures of
your program, any reference to X in one of those procedures refers to
precisely the same variable as a reference to X in a different
procedure. Therefore, this method allows you to share data values
among external procedures without having to pass those values as
araquments.

First Edition 7-30

STORAGE MANAGEMENT

Note that this method does not work unless the declarations of the
EXTERNAL variable are identical in all procedures in which it is used.
Even the INITIAL attribute must be identical. If the EXTERNAL variable
is a structure, all the structure members must be declared with the
same attributes in all procedures, although it is permitted that the
member names be different in different procedures.

The EXTERNAL attribute may also apply to FILE and ENTRY constants. In
fact, EXTERNAL is the default for these constants.

NAMED CONSTANTS AND NONCOMPUTATIONAL VARTIABLES

If a value has a noncomputational data type, that value may not be used
in ordinary computations such as addition or concatenation. Previous
sections have covered the noncomputational data types POINTER, OFFSET,
and AREA, The following sections examine the other noncomputational
data types in the PL/I language.

Named Constants

You are already familiar with constants in computational data types.
For example, 23 is a constant with data type FIXED DECIMAL(2).

For noncomputational data types, there are special rules £for how you
specify constants. In all cases, the oonstant is specified by an
identifier, just as if it were a variable. The difference is that it
is illegal to assign values to these constants., Since these constants
are specified by identifiers, they are called named constants.

To declare an identifier to be a LABEL, FORMAT, or ENTRY constant, use
that identifier as the statement label for an appropriate statement.
If you use an identifier as a label of a FORMAT statement, the
identifier is declared as a FORMAT constant. If you use the identifier
as the label of a PROCEDURE or ENTRY statement, it is an ENTRY
constant., If you use it as a statement label for any kind of statement
other than FORMAT, PROCEDURE or ENTRY, it is a LABEL constant.

Use the DECLARE statement to declare either a FILE or ENTRY constant.
Here is an example:

DECLARE TAPE FILE RECORD INFUT;
DECLARE RANGE EXTERNAL. ENTRY;

The first of these statements declares TAPE to be a FILE constant, and
the second declares RANGE to be an ENTRY constant,

7-31 Pirst Edition

PL/I Reference Guide

Noncomputational Variables

The following program segment shows how to define variables of these
noncomputational data types:

DECLARE L. LABREL VARIABLE;
CGET LIST(X);
IF X = 0 THEN L = ADD;
ELSE L = PROD;
GO TO L
ADD:, .6

PROD:. ..

In this program segment, L is a LABEL variable, meaning that it is a
variable to which you may assign LABEL values. The third and fourth
lines of this program segment illustrate two such possible assignments,
under control of an IF statement. The GO TO statement on the following
line transfers control to either ADD or PROD, depending on which of
those LABEL values has been assigned to L.

Similarly, you may declare variables of the FORMAT, ENTRY, and FILE
data types. Consider the following program segment:

DECLARE (OUTFILl, OUTFIL2)
FILE OUTPUT STREAM PRINT;
OPEN FILE(CUTFILl), FILE(CUTFIL2);
DECLARE F FILE VARIABLE;
GET LIST(X);
IF X = 0 THEN F = QUTFILL;
ELSE F = CQUTFIL2;
FUT FILE(F) PAGE LIST(A + B);

In this example, the FILE variable F may be assigned either CUTFILL or
OUTFIL2. The PUT statement in the last line of the example may perform
output to either of these files, depending upon the current value of
the FILE variable F.

ADVANCED PROGRAMMING OPTION: POINTER OPTIONS (SHORT)

If your program makes extensive use of POINTER variables, you may wish
to econamize both on storage and execution time., To do this, you may
declare POINTER variables with the SHORT option, using the following
syntax:

DECLARE P POINTER OPTIONS (SHORT) ;

First Edition 7-32

STORAGE MANAGEMENT

The pointer occupies two words of storage, rather than three; see
Appendix C for more details. The compiler generates instructions that
assume no bit offset in the pointer value.

Two-word pointers, having no bit or byte address part, must point to
objects aligned on word boundaries. Therefore, you must make sure that
a SHORT pointer points to aligned data: BIT and CHARACTER data, for
instance, should be declared with the ALIGNED attribute, Because there
is no way to ensure that the SUBSTR of a CHARACTER string is word
aligned, do not permit a SHORT pointer to point to an object of this

tym e

7-33 First Edition

Subroutine and
Function Procedures

PROCEDURES

Every PL/I program is a procedure. We have seen numerous examples of
the PROCEDURE statement with OPTIONS(MAIN) to indicate the beginning of
a main program. If your program is very large, you may find it
convenient to break it into smaller programs, each of which performs a
single simple task. PL/I gives you this capability by allowing you to
break up a large procedure into two or more smaller procedures or
subprocedures.,

You may be familiar with the terms modular programming and top-down
programming, both of which are related to the use of subprocedures.
Modular programming refers to the practice of breaking a large program
into small pieces, known as modules., This is an important step in the
design of a computer program because you can take a large complicated
problem and break it up into smail components such that each of the
components can be programmed in a single small module. It is even
possible to assign different modules to different programmers and then
later to run all the modules together as one big program.

Top-down programming refers to a type of modular programming where the
modules are designed and coded in a certain way. To understand
top-down programming, see Figure 8-1.

8-1 First Edition

PL/I Reference Guide

| PAYROLL l

{ |
INPUT PROCESS OUTPUT
! | I |
RD_MASTER RD__TIMECARD WR_MASTER WR__PAYCHECK

I 1

SALARY TAXES BENEFITS

f |
FEDERAL FICA STATE INSURNCE

Top—down Design
Fiqure 8-1

Fiqure 8-1 is a hierarchy chart for a large payroll processing program.
Each of the boxes on this chart represents a single module in the
program. The lines in the chart indicate which modules are called from
which modules. For example, PAYROLL calls three modules, INFUT,
PROCESS, and OUTPUT. PROCESS itself calls three modules, SALARY,
TAXES, and BENEFITS. BENEFITS calls one other module, INSURNCE.
Top-down programming of this program has you write the procedures in
this chart starting from the top and working down. This means that you
write the procedure PAYROLL first, then the modules INPUT, PROCESS, and
QUTPUT, and so forth. With this method, you design your program in the
most logical style possible. If you code the module PAYROLL first, you
are forced to understand the overall flow of control in the program,
since this is the highest level module. In general, you work on the
conceptually broader modules before you get into the detailed
programming required by the lower level modules.

Another purpose of the procedure facility is to save space. Suppose
that your program containg the same group of statements in several
different places. You may take that group of statements and put them
together into a single procedure, and then invoke that procedure from
each of the places where the statements have been., This means that the
group of statements, which had appeared in several places in your
program, now appears only once, in a separate procedure, thereby saving
space. The example of a subroutine procedure in the next section
illustrates this.

First Edition 8-2

SUBROUTINE AND FUNCTION PROCEDURES

SUBRCUTINE PROCEDURES

PI/I permits you to write a procedure as either a subroutine procedure
or a function procedure. The difference between these two types is the
way in which you invoke them. You invoke a subroutine procedure by
means of a CALL statement, and you invoke a function procedure by
simply referencing the procedure name in any expression. Function
procedures can be very convenient, since they allow you to define your
own functions and use them just as you would use the built-in functions
that are supplied by the system,

Example of a Subroutine Procedure

Let us start with a simple example of a program that does not use a
procedure, and then change it to an equivalent program that does use a
procedure. The following program contains no subprocedure, but
contains the same group of five statements in two different places.
This program uses the GET LIST statement to input an entire array A.
The program then prints out the entire array A. Next, the program
makes computations that change the array A, and then prints out the
array once more., 'The program then prints END OF PROGRAM and
terminates.

P: PROCEDURE OPTIONS (MAIN) ;
DECLARE A(100) FIXED DECIMAL(5,2):
GET LIST(A);

"PUT PAGE LIST('PRINTOUT OF ARRAY A');
PUT SKIP(3):

DO K = 1 T0 100;

PUT SKIP LIST(K, A(K));

END:;

Computations that change the array A

PUT PAGE LIST('PRINTOUT OF ARRAY A');
PUT SKIP(3);

DO K =1 TO 100;

PUT SKIP LIST(K, A(K));

END;

PUT SKIP LIST('END OF PROGRAM'):
END P;

The brackets highlight the fact that the five statements that print out
the array A appear in two different places in the program. It is
possible to take these five statements, to put them into a separate

8-3 First Edition

PL/I Reference Guide

subprocedure, and then to use the CALL statement to invoke that
subprocedure from each of the two places where the array A is to be
printed out.

The result is shown in Figqure 8-2. The five statements that print out
the array A have been incorporated into a subprocedure called PRNTA,
which lies inside the procedure P, There is a CALL statement in each
of the two positions where, in the preceding example, the five
statements that print out the array A appeared. Fach of these CALL
statements causes the procedure PRNTA to be invoked, with the result
that the five statements that print out the array A are executed.

P: PROCETURE OPTIONS (MAIN) ;
DECLARE A(100) FIXED DECIMAL(5,2):
GET LIST(A);
CALL PRNTA;

Computations that change the array A

CALL PRNTA;
PUT SKIP LIST('END OF PROGRAM');

PRNTA: PROCEDURE ;
DECLARE K BINARY FIXED;
PUT PAGE LIST('PRINTOUT OF ARRAY A');
PUT SKIP(3):
DO K =1 T0 100;
PUT SKIP LIST(K, A(K)):

An Internal Procedure
Fiqure 8-2

PRNTA is an example of an internal procedure, because it lies entirely
inside another procedure. This concept is illustrated by Figure 8-3.
As that figure shows, the subprocedure PRNTA is internal to procedure
P, since the first lies entirely within the second.

First Edition 8~4

SUBROUTINE AND FUNCI'ION PROCEDURES

PROCEDURE P

Statements of Main Program

PROCEDURE PRNTA

Statements of
SubPROCEDURE

Representation of an Internal Procedure
Figure 8-3

Figure 8-3 also illustrates the distinction between the statements of
the main program and those of the subprocedure. The principal flow of
control in the program is dictated by the statements in the main
program, those statements that are part of procedure P, but are not
part of procedure PRNTA. It is only when the main program executes a
CALL statement that the statements of PRNTA are even executed.

CALL, PROCEDURE, and RETURN Statements

Figure 8-4 shows what happens when a program executes a CALL statement
for a subroutine procedure. This figure pictures the main program and
the subroutine as two separate programs, although, in the example
above, the subprocedure is physically a part of the main procedure.

8-5 First Edition

PL/I Reference Guide

Main program

Subprogram

[V RETURN:

next statement e e e e s — — — e

A Call to a Procedure
Figure 8-4

As the figqure illustrates, PL/I executes the statements in the main
program until it reaches the CALL statement. At that point, PL/I
suspends execution of the main program and begins executing the
statements of the subprogram., When PL/I reaches the RETURN statement
of the subprogram, it terminates execution of the subprogram and
resumes execution of the main program. Execution continues with the
statement following the CALL statement.

As part of the process that PL/I performs when it executes a CALL
statement, PL/I must remember where the CALL statement is located, so
that when the RETURN statement in the subprogram is executed, PL/I can
return to the oorrect place in the main program. A more complete
picture is shown in Figure 8-5. Execution begins in the main program,
and continues until the first CALL statement is reached. At that time,
following the 1line of dashes in the figure, PL/I remembers where the
CALL statement is, suspends execution of the main program, and executes
the statements in the subprogram. When control reaches the RETURN
statement in the subprogram, PL/I returns to the correct point in the
main program, according to what it remembers about the location of the
CALL statement., Execution of the main program then continues until the
second CALL statement is reached. Following the line of dots in the
figure, PL/I then suspends execution of the main program again,
transferring control to the subprogram. When PL/I reaches the RETURN
statement in the subprogram, control returns to the statement following
the second CALL statement.

For a subroutine procedure, the CALL statement is the point of
invocation of the subroutine procedure, This terminology is used
because the subroutine procedure is said to be invoked by the CALL
statement.

First Edition 8-6

SUBROUTINE AND FUNCTION PROCELURES

Main program

Subprogram
CALL -
next statement - -] | RETURN;
° - 1 ==
° - L=~
CALL ==~ .

next statement <=~

Multiple Procedure Calls
Fiqure 8-5

In surmary, then, when the main program executes a CALL statement, PL/I
performs the following steps:

1. PL/I suspends what it was doing in the main program and
remembers where the point of invocation (the CALL statement)
is,

2. PL/I invokes the subprocedure and starts to execute the
statements within that procedure.

3. When PL/I reaches the RETURN statement in the subprogram, it
terminates the subprogram and returns to the point of
invocation., This means that PL/I returns to the main program
and continues executing statements starting from the statement
following the CALL statement.

Dropping Into a Subprocedure

Take another look at Fiqure 8-2. Notice that the last statement of the
main program is

PUT SKIP LIST('END OF PROGRAM');

This statement immediately precedes the PROCEDURE statement for
procedure PRNTA, If your program drops into a subprocedure in this
way, PL/I simply skips over the subprocedure. This is illustrated by
Figure 8-6, As this figqure shows, after PL/I executes the FPUT
statement, control arrives at the PROCEDURE statement, PL/I simply
skips over the entire procedure, and continues execution with the

8-7 First Edition

PL/I Reference Guide

statement following the END statement for the procedure. In this
example, that statement is the END statement for the entire program, so

the program terminates at that point.

The general rule, then, is that a program executes the statements of a
subprocedure only if that procedure is correctly invoked. This means
that a CALL statement is necessary for subroutine procedures, and that
an appropriate function reference is necessary for function procedures.
(Function procedures are covered later in this chapter.) If your
program simply drops into a procedure, PL/I dJdoes not execute the
statements in the procedure, but rather skips over them.

|

PlllT SKIP LIST (‘END OF PROGRAM’).

PRNTA: PROCEDURE;

END PRNTA;

Y

END P;

An Embedded Procedure
Figqure 8-6

Notice that this rule implies that you may place your internal
procedures anywhere that you wish within your main procedure. Whenever
PL/I encounters a procedure within your program, it skips over it.
Although PL/I gives you this freedom, good structured programming
practice dictates that all of your internal procedures should appear at
the end of your main program, just before the final END statement.

Introduction to Scope Rules

Chapter 9 contains a detailed discussion of scope rules, as applied to
procedures and other blocks. This section covers enough of these rules
to clarify the preceding example and the other examples in this
chapter.

In Fiqure 8-2, which we have already examined, there is a declaration
of K within the internal procedure PRNTA, The scope of this
declaration is that part of the program to which this declaration
applies. If a declaration is made within an internal procedure, it
applies only within that internal procedure. In this case, the

First Edition 8-8

SUBROUTINE AND FUNCTION PROCEDURES

declaration of K applies only within procedure PRNTA, If there were a
variable called K used in the main program, it would be a different K,
just as if the variable name were different. If K were declared in the
main program as well, it could have a different data type or aggregate
type, without conflicting with the declaration of K within the internal
procedure.

On the other hand, consider the array variable A as used within the
internal procedure PRNTA. Since there is no declaration of A within
the internmal procedure, the internal procedure inherits that variable
from the main program. That is, when you use A within the internal
procedure, it is the same variable A as used within the main program.

The general rule, then, is as follows: if a declaration appears within
the main program, its scope is the entire program, excluding those
internal procedures in which another declaration of the same variable
appears. If a declaration appears within an internal procedure, its
scope is only that internal procedure,

Example of a Subroutine Procedure With Parameters

In Figure 8-2, the procedure PRNTA was a subroutine that printed out
the entire array A. In the next example, the internal procedure prints
out only a portion of the array A. The CALL statement specifies
exactly the portion of the array to be printed. This example differs
from Figure 8-2 in its CALL statement, in the PROCEDURE statement for
the internal procedure, and in the DO statement inside the internal
procedure.

P PROCEDURE OPTIONS(MAIN) ;
DECLARE A(100) FIXED DECIMAL(5,2);
GET LIST(A);
CALL PRNTA(15, 38);

Computations that change the array A and that
compute K and L

CALL PRNTA(K, L);
PUT SKIP LIST('END OF PROGRAM');

PRNTA: PROCEIURE (M, N);
DECLARE K BINARY FIXED;
PUT PAGE LIST('PRINTOUT OF ARRAY A');
POT SKIP(3);
DO K= MTO N;
PUT SKIP LIST(K, A(K)):;
END;
RETURN;
END PRNTA;

END P;

8-9 First Edition

PL/I Reference Guide

The CALL statement has two argquments, 15 and 38. These arguments
represent information that you wish the main program to pass to the
internal procedure. Arguments and parameters are defined more fully in
the section RELATION BETWEEN ARGUMENTS AND PARAMETERS.

The PROCEDURE statement for the procedure PRNTA has two parameters, M
and N, The parameters complete the mechanism for passing information
between the main program and the subprogram.

PL/I requires that the number of argquments in the CALL statement must
be equal to the number of parameters in the PROCEDURE statement. When
PL/I executes the CALL statement, it matches up the arguments and the
parameters as illustrated in Figure 8-7. While the statements of the
internal procedure are executing, M has the value 15 and N has the
value 38. This means that the statement

DO K= MTO N;

specifies that the loop is to be executed with K going from 15 to 38.

CALL PRNTA (15, 38);

PRNTA: PROCEDURE (M, N);

Passing Arguments
Figure 8-7

The parameters M and N have the values 15 and 38, respectively, only
while the procedure call is still active. As soon as your program
executes the RETURN statement in the internal procedure, these values
of M and N are lost. In fact, the scope rules for parameters are just
the same as for variables declared within an internal procedure, If
there were variables M and N in the main program, they would be
entirely different variables, just as if they had different names.
These rules are explained in more detail in Chapter 9.

Return now to the programming example, and look at the second CALL
statement. By the time control has reached this point in the main
program, the values of the array A have presumably been changed, and
that values of K and L have been set. PL/I matches these arguments, K
and L, with the parameters M and N, respectively, just as in the case
of the first CALL statement, During this execution of the internal
procedure, the parameters M and N have whatever values your program has
computed for the variables K and L. That is, the value of K is
assigned to M and the value of L is assigned to N for the duration of
this invocation of procedure PRNTA,

Pirst Edition 8-10

SUBROUTINE AND FUNCTION PROCEDURES

The word "assigned" is used loosely 1in the previous sentence: an
assignment is not made in the way that a value is assigned to a regqular
variable. There is a more complex relationship between an argument and
a parameter, which is discussed later in this chapter.

FUNCTION PROCEDURES

PL/I provides a large number of built-in functions, such as ABS and
LOG., You may use these functions in any expression to simplify
computations.

By means of function procedures, you may also define your own functions

to make computations of your choice. You may use these user-defined
functions in any expression, as you do built-in functions.

Example of a Function Procedure

The following procedure defines a function called HYP that takes two
arguments, representing the sides of a right triangle, and that returns
the value of the hypotenuse of that triangle., This function is part of
Figure 8-8.

P PROCELURE OPTIONS(MAIN) ;
C= HYP(A, B);

T LIST(HYP(Q + 3, R) + 15);

o0 e

HYP: PROCEIURE (X, Y) RETURNS (FLOAT) ;
DECLARE (X, Y) FLOAT;
DECLARE 7 FLOAT: '
Z2=8S0RT(X *X +Y *Y);
RETURN(Z) ¢
END HYP;

END P;

Example of a Function
Figure 8-8

This program contains an internal procedure called HYP. The PROCEDURE
statement is slightly different in format from the PROCEDURE statement
for a subroutine procedure. It contains two parameters, X and Y, and
these are specified the same way as for the subroutine procedure. The

8-11 ' First Edition

PL/I Reference Guide

difference is the option RETURNS(FLOAT). This option indicates that
HYP is to be invoked as a function rather than as a subroutine. In
simplest terms, the implication of this is as follows:

e To invoke the procedure HYP, do not use a CALL statement.
Instead, reference HYP just as you would reference an ordirary
built-in function. The program example illustrates this with
the statement C = HYP(A, B).

@ PL/I does not simply return from HYP as it does from a
subroutine procedure., Instead it returns a value, the computed
value of the function. The option RETURNS(FLOAT) in the
PROCEIURE statement for the internal procedure says that HYP
returns a float value., In other words, you are defining a
function called HYP whose value is FLOAT. The statement
RETURN(Z) says that the value of Z computed inside the internal
procedure is to be the returned value of the function HYP.

Unlike a subroutine procedure, a function procedure must always take an
argument list and contain a parameter list, even if both are empty. If
the procedure HYP did not take arguments (for instance, if it obtained
its data from user input during execution), it would be referenced by
the statement

C=HYP();
and would begin with the statement
HYP: PROCEDURE() RETURNS(FLOAT):

In the program example, the main program invokes HYP twice. The first
time is with the assignment statement

C = HYP(A, B);

Notice that HYP is invoked just as if it were a built-in function.
When the internal procedure computes that value, PL/I assigns that
value to the variable C, as specified by the assignment statement.
The second invocation of HYP in the program example is the £following
PUT statement:

PUT LIST(HYP(Q + 3, R) + 15);

This example uses the function HYP in a more complicated setting.
While in the preceding example, the arguments of HYP were simple

First Edition 8~-12

SUBROUTINE AND FUNCTION PROCEDURES

variables A and B, here the first arqument is an expression Q + 3.
Furthemore, the value returned by HYP is not simply assigned to a
variable, but is part of an expression that is tc be computed by adding
15 to the value returned by HYP,

These examples illustrate the important fact that, 1like built-in
functions, user—defined functions can interact with expressions in any
way you desire. This is true for the following two reasons:

® The arguments to a user-defined function may be arbitrary
expressions.

@ The user-defined function may be used within an arbitrary

expression, and the value returned by the function is used in
the computation of that expression,

Arguments and Parameters for Function Procedures

The rules for arquments and parameters for function procedures are
identical to the rules for subroutine procedures, 'The detailed
relationships between arguments and parameters are discussed later in
this chapter.

The following points clarify the previous example:

® The PROCEDURE statement for HYP specifies two parameters, X and
Y., For this reason, any reference to HYP as a function must
specify exactly two arguments. PL/I matches up these arguments
to the corresponding parameters exactly as in the case of
subroutine procedures.

® Notice that the internal procedure contains the following
statement:

DECLARE (X,Y) FLOAT;

The purpose of this DECLARE statement is teo specify the data
types of the parameters. 1In the absence of such a declaration,
the parameters receive the default data types, BINARY FIXED.

@ The arguments can be any expression.

Return Mechanism for Function Procedures

Although subroutine and function procedures are similar in many ways,
the difference between the two types is in the way you invoke the
procedure and in the way that the procedure returns to the point of
invocation. You invoke a subroutine procedure by means of a CALL

8-13 First Edition

PL/I Reference Guide

statement, and you invoke a function procedure by referencing the
procedure name in any expression, In both cases, you specify precisely
as many arquments as there are parameters in the PROCEDURE statement.
When the procedure ends, a subroutine procedure simply returns to the
point of invocation, so that execution can continue with the next
statement, On the other hand, a function procedure returns to the
point of invocation with a value, the computed value of the function.
PL/I normally continues execution by finishing the evaluation of the
expression in which the reference to the function procedure occurred.
In fact, a single expression may contain several references to function
procedures.

Because of the more complicated return mechanism from a function
procedure, when you write a function procedure you must specify the
data type and value to be returned when the function is invoked.

Specify the data type to be returned by the function procedure with the
option

RETURNS (descriptor)

in the PROCEDURE statement.

The descriptor is the data type of the value to be returned by the
function. (The next section explains that the descriptor also
specifies the aggregate type to be returned by the function.)

Specify the computed value to be returned by the function procedure by
means of the RETURN statement, in a different format from that used
with the subroutine procedure. For a function procedure, the RETURN
statement has the format

RETURN (expression) ;

where the expression is an arbitrary expression. PL/I executes this
form of the RETURN statement by evaluating the expression, converting
it to the data type and aggregate type specified by the RETURNS option
of the PROCEIURE statement, and returning with that value to the point
of invocation,

To illustrate the use of an arbitrary expression in the RETURN
statement, the following example rewrites only the internal procedure
portion of Figure 8-8. This new version of the internal procedure HYP
eliminates the need for the auxiliary variable 2 by simply computing
the expression to be returned entirely within the RETURN statement.

First Edition 8-14

SUBROUTINE AND FUNCTION PROCEDURES

HYP: PROCEDURE(X,Y) RETURNS(FLOAT);
DECLARE (X,Y) FLOAT;
RETURN(SQRT(X * X + Y * Y));
END HYP;

A user-defined procedure may return any data type that you desire,
Specify the desired data type in the descriptor of the RETURNS option
of the PROCEDURE statement,

For example, Figure 8-9 is a function procedure that returns a
CHARACTER(1) value. A reference to LET(K) returns the Kth letter of
the alphabet. The statements

K=3;
PUT LIST(LET(K));

print the third letter of the alphabet, C. Note that there is a little
"defensive programming” in the fourth 1line. If the argument is not
positive, or if it is greater than 26, then LET returns a dash,

LET: PROCEDURE(N) RETURNS(CHAR(1)):
DECLARE ALPH CHARACTER(26)
STATIC INIT('ABRCDEFGHIJKLMNOPQRSTUVWXYZ') ;
IFN<<=O0|N>26
THEN RETURN('-');
ELSE RETURN(SUBSTR(ALPH, N, 1)):;
END LET;

A Function That Returns a CHARACTER Value
Figure 8-9

As explained in Chapter 6, when PL/I evaluates an expression it
allocates targets in which to store intermediate results. PL/I uses
the same techniques for references to function procedures, The
following steps explain in detail how the return mechanism from a
function procedure works.

1. When the user—defined function is referenced in an expression,
PL/TI allocates a temporary storage location for storage of the
value of the function. The size of this storage location is
determined at compile time from the data type information
specified in the descriptor for the RETURNS option of the
PROCEDURE statement.

8-15 First Edition

PL/I Reference Guide

2. PL/I invokes the function, passing to it information about the
location of the newly allocated temporary storage location.
PL/I then starts executing statements inside the function.

3. When program execution reaches the RETURN statement of the
function, PL/I evaluates the expression in the RETURN
statement, converts the result to the data type and aggredate
type specified by the descriptor in the RETURNS option of the
statement for the function, and stores the resulting data value
in the temporary target storage area described in step 1.

4, PL/I then returns control to the point of invocation, the place
where the function was called., At that point, PL/I continues
to evaluate the expression in which the function reference
occurred. In order to evaluate that expression, PL/I finds the
value of the function reference in the temporary target storage
area allocated in step 1.

Note

The above steps are changed when there is an asterisk in the
RETURNS descriptor. The differences are described in a later
section,

Functions That Return an Array or Structure

In all the discussion and examples of function procedures so far, the
procedure has returned a scalar value, This means that the function
has returned, for example, a single FLOAT or a single CHARACTER value.

In fact, you may define functions that return any PL/I aggregate type.
Specify the aggregate, just as you specify the data type, in the
descriptor field of the RETURNS attribute in the PROCEDURE statement
for the function procedure.

The following example illustrates a function procedure that returns an
array value. This function, ADD5, has a single parameter that is a
FLOAT array with a dimension size of 10. The function returns a FIXED
array, also with a dimension size of 10.

ADD5: PROCEDURE(ARR) RETURNS((10) FIXED);
DECLARE ARR(10) FLOAT;
RETURN(ARR + 5);
END ADD5;

The RETURN statement in the third line of the function procedure
specifies that the value to be returned is ARR + 5. This means that
when the function procedure terminates and control returns to the point
of invocation, the value returned is obtained by adding 5 to each

First Edition 8-16

SUBRCUTINE AND FUNCTION PROCEDURES

element of the parameter array and converting each of those elements to
FIXED, The result is a FIXED array returned to the point of

invocation,

To see how the function ADD5 might be invoked, consider the following
statements that might appear in the main program:

DECLEARE A(10) FLOAT, B(10) FIXED;
PUT LIST(ADDS(B));
B = ADD5(3);

First look at the PUT statement in this example. The arqument is the
FLOAT array A, which is passed to the ADD5 procedure, to be matched up
with the parameter ARR. The value returned is the result obtained by
adding 5 to each element of A and converting the result to FIXED.
Therefore, the PUT statement prints out an array of 10 FIXED values.

The assignment statement on the next line references the same function,
with the same argument, but does not print it out. Instead, the array
value returned by ADD5 is assigned to the array B.

Similarly, it is possible for a function procedure to return a
structure aggregate value. Figure 8-10 is such a function procedure.
Since this is a more complicated example than any given previously,
look at it in some detail.

FIND is a function procedure that has a CHARACTER(20) parameter and
that returns a structure value. Examine the RETURNS option in the
PROCEDURE statement:

RETURNS(1,2 CHAR(20),2 FIXED DEC(7,2),
2 PICIURE 'A9X99');

The descriptor in this RETURNS attribute specifies a structure value
containing three individual scalar values. The three individual scalar
values have data types CHARACTER(20), FIXED DECIMAL(7,2), and PICTURE
'A9X99', If this RETURNS descriptor is confusing to you, compare it to
the declaration of the structure S in the same example., Notice that
the RETURNS descriptor is identical to the declaration of S, except
that the descriptor contains no variable names, either the name of the
structure or the names of any of the members. This is a useful trick
for figuring out how to write a descriptor: just write what you want
as an ordinary declaration, and delete the names of the variables.

8-17 First Edition

PL/I Reference Guide

FIND: PROCEDURE (NAME) RETURNS(1,
2 CHAR(20), 2 FIXED DEC(7,2),
2 PICTURE 'A9X99'):
DECLARE NAME CHARACTER(20):
DECLARE 1 S,
2 NAME CHAR(20),
2 PRICE FIXED DEC(7,2),
2 QODE PIC 'A9X99';
DECLZARE K FIXED BINARY;
DECLARE NAMLIST (5) CHAR(20) STATIC
INIT('TOY', 'BOAT', 'CLOCK', 'BOOK', 'PEN'):
DECLARE PRLIST(5) FIXED DEC(7,2) STATIC
INTT(7.43, 12,52, 8.92, 10.53, 7.50);
DECLARE CDLIST(5) PIC 'A9X99' STATIC
INIT('C3-42', 'C5-25', 'C4~99°',
'm-42, 'X3-25');
DO K =1 TO 5 WHILE(NAME "= NAMELIST(K)):
S.NAME = NAME;
END;
IF K <= 5 THEN DO;
S.PRICE = PRLIST(K):
S.Q0DE = CDLIST(K);
END;
ELSE DO;
S.,PRICE = 0;
S.CODE = '79~99';
END;
RETURN(S) ;
END FIND;

A Function That Returns a Structure
Figure 8-10

The FIND function is intended to be a rudimentary inventory control
routine. It takes one argument, the name of a product, and it returns
a structure containing three values: the name of the product, the
price of the product, and the inventory code for the product.

Inside the procedure FIND are declarations of three arrays. NAMLIST is
an array that is initialized to a list of all the products supported by
this rudimentary procedure. PRLIST and CDLIST are arrays that are
initialized to the prices and inventory codes, respectively, of all the
products in the NAMLIST array.

The procedure contains a two-line repetitive DO group, whose purpose is
to search for the product specified by the parameter NAME in the list
provided in the array NAMLIST. At the end of this loop, K equals the
index of the product within the array NAMLIST if the search is
successful, and K equals 6 if the search is unsuccessful.

First Edition 8-18

SUBROUTINE AND FUNCTION PROCEDURES

The next to last line of the procedure is the statement

RETURN(S) ;

This statement returns from the function procedure, passing as a value
the current value of the structure S, whose members have been assigned
the name, price, and inventory code of the product by the preceding
statements in the procedure.

For example, suppose that FIND is invoked by means of the statement

PUT LIST(FIND('CLOCK'));

When the procedure is invoked, the repetitive DO group computes a value
of K =3, since CLOCK is the value of the third element NAMLIST array.
S.NAME is set equal to 'CLOCK', S.PRICE is set equal to 8.92, and
S.(ODE is set equal to 'C4-99'., The value returned by FIND is a
structure containing these three scalar values, and the PUT statement
that invokes FIND prints out these three scalar values, Similarly, it
would be possible to invoke FIND from an assignment statement that
assigned the structure returned by FIND to another structure variable.

In summary, the RETURNS descriptor can specify any aggregate type and
any data types. Although you usually use only scalar RETURNS
descriptors, you may occasionally define a function that returns an
array, a structure, or an array of structures,

RETURNS Descriptor With Variable Extent Expressions

As defined in Chapter 7, the term extent expression refers to an
expression, usually a constant, that you specify in a DECLARE statement
for a string length, an array bound, or an AREA size, For example, in
the DECLARE statement

DECLARE CA(5) CHARACTER(20):

there are two extent expressions, the array bound 5 and the string
length 20. 1In this example, both extent expressions are constant,
which is the usual case.

Extent expressions also appear in RETURNS descriptors to represent
string lengths, array bounds, and AREA sizes. In all the examples
given previously, these extent expressions have been constant.

The restriction of extent expressions in RETURNS descriptors to
constants can be very inconvenient, particularly when the value being

8-19 First Edition

PL/I Reference Guide

returned is a CHARACTER string. The problem is that when you are
writing the function procedure, you do not know what the maximum string
size will be when the function procedure is executing with various
arguments. In such cases, PL/I permits you to use an asterisk for the
extent expression in the RETURNS descriptor to indicate that the extent
expression is not known at the time the program compiles, but will be
determined each time the function procedure is referenced, depending
upon the value returned by the RETURN statement of the function.

This point can be illustrated with a modification of a previous
example. Earlier, this section examined Figure 8-9, which defined a
function procedure that returned a CHARACTER(1) value equal to the
letter of the alphabet specified by the numeric argqument. For example,
LET(3) would return the value 'C', the third letter of the alphabet.
This example can be modified to create a new function, LET2, which
takes two argquments. The first argument is as before, and the second
arqument is the number of copies of the letter of the alphabet that you
wish returned. For example, a reference to LET2(4,6) would return a
CHARACTER string of length 6 containing six occurrences of the fourth
letter of the alphabet, or 'DDDDDD'. This is a simple example of a
function procedure that returns a CHARACTER string whose length is not
known at compile time, since LET2 may be called with any second
argument. Therefore, it is impossible to specify a constant string
length in the RETURNS descriptor for LET2.

The problem can be handled as shown in the example below. The RETURNS
descriptor specifies CHAR(*), indicating that the function can return a
CHARACTER value of any length, where the length is determined anew each
time the function procedure is invoked.

IET2: PROC(N,IL) RETURNS(CHAR(*));
DECLARE C CHARACTER(1):
DECLARE ALPH CHARACTER(26) STATIC
INITIAL (' ABCDEFGH LIJKLMNOPQRSTUVWXYZ')) ¢
IFN<=O0|N>2 THEN C = '=-';
ELSE C = SUBSTR(ALPH, N, 1);
RETURN(COPY (C, L));
END LET2;

The length of the string that is returned is determined by the RETURN
statement in the next to last line of the function procedure. As you
can see, the expression specified with this RETURN statement yields a
string of length L. CHAR(*) is appropriate in the RETURNS descriptor,
because you do not know when you write this procedure what the value of
L will be when the procedure is called.

Similarly, you can specify an asterisk for any extent expression in the
RETURNS descriptor, string length, array bound, or AREA size.
Furthermore, if the RETURNS descriptor is for a structure with several
members, any of the members can have an asterisk in its individual
extent expression,

First Edition 8-20

SUBROUTINE AND FUNCTION PROCEDURES

Notice that the steps outlined above in the section Return Mechanism
for Function Procedures do not apply when there is an asterisk in the
RETURNS descriptor. The problem is that PL/I cannot allocate the
temporary target area for the returned value when the function is
invoked, since the size of this target is not known until the RETURN
statement is executed., For that reason, PL/I postpones allocation of
the temporary storage area for the target until the RETURN statement is
executed., PL/I uses special techniques so that when your program
returns from the function procedure to the point of invocation, PL/I
can continue evaluating the expression in which the function reference
appeared by using special information on where the temporary target
storage area can be found,

SUMMARY OF DIFFERENCES BETWEEN SUBROUTINE AND FUNCTION PROCEDURES

The following list is a sumary of the differences in subroutine and
function procedures:

® A subroutine procedure is invoked by means of a CALL statement.
A function procedure is invoked by means of a reference to the
function name in any expression,

® The RETURNS option of the PROCEDURE statement is forbidden for a
subroutine procedure; it is required for a function procedure,

® Arguments and parameters are handled the same for subroutine and
function procedures.

@ The RETURN statement may not include an expression for a
subroutine procedure; it must include an expression for a
function procedure,

@ Executing the END statement of a procedure is equivalent to a

RETURN statement for a subroutine procedure; it is illegal for
a function procedure.

RELATION BETWEEN ARGUMENTS AND PARAMETERS

The preceding pages of this chapter gave a number of examples of
subroutine and function procedures using arguments and parameters. The
following sections examine the detailed rules oovering arguments,
parameters, and the relationships between them. Bear in mind that all
of these rules are identical for both function and subroutine
procedures,

In many mathematical, scientific, or engineering applications, the
terms argument and parameter mean the same thing. In the PL/I
language, these two terms have different meanings. An argument appears
in the statement that invokes a procedure, whether the invocation is by
means of a CALL statement for a subroutine procedure, or a £function

8-21 First Edition

PL/I Reference Guide

reference for a function procedure. A parameter appears in the
PROCEDURE statement. PL/I requires that the number of arguments in the
procedure invocation equal the number of parameters in the PROCEDURE
statement., When PL/I invokes the procedure, it matches up the
arguments in the invocation with the corresponding parameters in the
PROCEDURE statement. This section describes how PL/I does this,

How PL/I Handles Parameters

The statement that K has the value 5 means different things depending
on whether K is a parameter or an ordinary variable. If K is an
ordinary STATIC or AUTOMATIC variable, it means that there is a storage
area associated with K, and that the value 5 has been stored in that
storage area. If PL/I executes a statement in your program that
requires the value of K, PL/I simply fetches the value stored in the
storage area associated with K.

It is quite different when the variable is a procedure parameter. PL/I
handles parameters quite differently from ordinary variables. This
section explores how PL/I handles parameters, and what exactly it means
to say that a parameter has such and such a value.

Consider the next example., K is an ordinary variable to which the
first statement assigns the value 5. The CALL statement on the second
line uses K as an argument. When PL/I invokes the procedure SB, PL/I
matches this arqument with the parameter M. Since K has the value 5,
the parameter M also has the value 5 during execution of the procedure.

K = 5;
CALL SB(K);

SB: PROC(M);
T = 10;
M= 10;
PUT LIST(K);
RETURN;
END SB;

However, the statement that M has the value 5 means something quite
different in concept from the statement that K has the value 5. M is
not a variable in the ordinary sense, but is a parameter. When PL/1
executes the CALL statement, PL/I does not store the value 5 in the
storage area associated with M; instead, PL/I sets M as a pointer back
to the argument K.

This is the major difference between a parameter and an ordinary
variable., A parameter does have a storage area associated with it, but

First Edition 8-22

SUBRCUTINE AND FUNCTION PROCEDURES

that storage area is not used to store the value of the parameter.
Instead, that storage area is used to store a pointer to the argument.
Notice further that the term pointer is used here in an informal sense;
it does not refer to a POINTER variable,

Therefore, M does not equal 5 in the usual sense, but really names a
pointer to the argument K. Therefore, a reference within the procedure
to M is treated as a reference to the argument K.

This concept is illustrated by Figure 8-11 below. This figure shows
the storage associated with the variable K and the parameter M. Both K
and M can be said to have the value 5, but the meaning of that
statement is different for the two cases. The storage associated with
K actually contains the value 5, but the storage associated with M
contains a pointer to K.

To understand the implications of this concept, consider the statements
of procedure SB. First, look at the statement

T = 10;

This is an ordinary assignment statement, which assigns the value 10 to
the variable T. PL/I executes this statement by storing the value 10
in the storage area associated with T.

But now look at the statement on the following line:

M= 10;

This is also an ordinary assignment statement, but now the value 10 is
being assigned to a parameter M. PL/I executes this statement not by
storing the value 10 in the storage area associated with M, but by
storing the value 10 in the storage area pointed to by the area
associated with M. As you can see in Figure 8-11, this has the effect
of changing the wvalue of K to 10. As a result, the statement on the
next line,

PUT LIST(K);

prints the new value of K, 10,

8=23 First Edition

PL/I Reference Guide

address

Storage of Parameters and Values
Figure 8-11

Variable Parameter Extent Expressions

An extent expression in a declaration specifies a string length, array
bound, or AREA size., Most of the time, an extent expression is an
ordinary constant.

Suppose that you wish to write a subroutine or function procedure that
you may invoke with a string argument of any length. When you declare
the parameter inside the procedure, if you use a constant for the
string length, your procedure is limited to arguments of that string
size or maximum string size. Similarly, suppose you wish to write a
procedure that you would like to call with an array argument with any
upper bound or lower bound. Specifying constants for the array bounds
in the declaration of the array parameter would restrict you to arrays
of that dimension size.

Under such circumstances, PL/I permits you to use an asterisk for the
extent expression in the declaration of the parameter. When you use an
asterisk for a string length or array bound, you are telling PL/I that
it should assume that the length of the string parameter, or the
dimension size of the array parameter, is the same as that for the
argument that is matched with that parameter.

This is particularly important in the case of CHARACTER string

parameters. You need a procedure that can handle strings of any length
in the argument. The next example illustrates this concept.

First Edition 8-24

SUBRAUTINE AND FUNCTION PROCEDURES

INDEX: PROC(C, S) RETURNS(BIN FIXED):
DECLARE(C, S) CHAR(*);
DECLARE K BIN FIXED;
IF LENGTH(S) > 0 THEN
DO K =1 TO LENGTH (C) — LENGTH(S) + 1;
IF SUBSTR(C, K, LENGTH(S)) = S
THEN RETURN(K);
END:;
RETURN(0) ¢
END INDEX:

This example shows how you could write the built-in function INDEX as a
function procedure. There are two parameters, C and S, both of which
are declared with

DECLARE (C,S) CHAR(*);

This declaration specifies that the lengths of C and S are simply to be
taken from the lengths of the arguments that are matched with these
parameters. The result is that this INDEX function procedure can be
used with arquments of any length. Notice that, in the procedure, the
built-in function LENGTH is used to determine the actual length of the
arguments matched with the parameters C and S.

You may wish to write a user-cdefined function that can take an argument
string of any length and return a CHERACTER string of any length. In
such cases, use CHARACTER(*) in both the parameter data type and the
RETURNS descriptor, as in the next example., The UPCASE function is
invoked with a CHARACTER string arqument of any length; it returns the
same string with all the lowercase letters translated to uppercase.

UPCASE: FROC(C) RETURMS(CHAR(*)):
DECLARE C CHAR(*);
DECLARE LOWALF CHAR(26) STATIC
INIT('abcdefghijklmnopgrstuvwxyz') ;
DECLARE UPALF CHAR(26) STATIC
INIT (' ABCDEFGH LIKLMNOPQRSTUVWXYZ ') ;
RETURN (TRANSLATE (C, UPALF, LOWALF)):
END UPCASE;

The section on array parameters below illustrates the use of the
asterisk in the array bounds of an array parameter.

Dummy Arguments

As we have previously explained, PL/I does not handle a parameter the
way it handles other variables. The storage associated with a

8-25 First Edition

PL/I Reference Guide

parameter does not contain the value of the parameter, but rather
contains a pointer to the corresponding argument, which was matched to
that parameter when the procedure was invoked. (Recall that the temm
pointer is used in an informal sense here and should not be confused
with POINTER variables.) An important result is that when the
procedure assigns a new value to the parameter, it is the corresponding
argument that is changed.

Sometimes the argument is such that it does not make sense for the
parameter to point to it. In such cases, PL/I creates a dummy
arqument, which the parameter can point to.

There are three cases when PL/I creates a dummy argument:
e When the argument is a constant.

e When the arqument is an expression, but not a simple variable
reference. 'This includes the special case of a variable
reference that is enclosed in a set of parentheses.

e When the data type or the aggregate type of the argument is
different from the data type or aggregate type, respectively, of
the parameter.

To understand the concept of the dummy argument, look at the following
example. This program contains an internal procedure, S, with a single
parameter., The internal procedure contains an assignment statement,
L. = 25, which assigns a value to the parameter.

P: PROC OPTIONS(MAIN) ;
DECLARE K FIXED;

K = 53;

CALL S(K):

CALL S(53);
PROCEDURE (L)
DECLARE I, FIXED;

L = 25;

wn

RETURN;
END S
END P

~o e

There are two CALL statements that invoke S. In the first one, the
arqument is K, which has been assigned the value 53. When control
passes to the procedure S, the parameter L points to the argument K.
As a result, the assignment statement L = 25 changes the value of K to
25,

First Edition 8-26

SUBRCUTINE AND FUNCTION PROCEDURES

In the second CALL statement, the argument is a constant 53. It would
not make sense for the parameter L, to point to a oonstant. As a
result, PL/T allocates a block of storage to be used as a dummy
argument. This block of storage is large enough to hold a FIXED value,
PL/I stores the value 53 in this dummy argument before invoking S.
When PL/I invokes S, L points to the dummy argument that was created.
After the RETURN statement is executed, PL/I returns control to the
point of invocation, and the storage occupied by the dummy argument is
released, As a result, there is no permanent effect of the assignment
statement L = 25, In fact, all computations that affect the value of
the dummy argument are lost.

Suppose the same program contained the following statements:

DECLARE X FLOAT;
X = 46.2;
CALL S(X);

In this CALL statement the arqument X is FLOAT, while the corresponding
parameter L is FIXED. Because the data types do not match, it does not
make sense for the parameter L to point to the argument X. As a
result, PL/I creates a dummy arqument. That is, PL/I allocates a FIXED
temporary storage area, comnverts X to the FIXED value of 46, and stores
that FIXED value in the storage area. This temporary storage area is
the dummy argument to which the parameter L points during execution of
the internal procedure S. The statement L = 25 changes the value of
the dummy arcument, but does not affect the value of X. When the
RETURN statement is executed, PL/I frees the storage occupied by the
dummy argument and X still equals 46.2.

When an argument is an expression that is not a simple variable
reference, PL/I must create a dunmy arqument. For example, suppose the
same prodram contained the following statement:

CALL S(K + 3);

It could not make sense for the parameter L to point to the expression
K+ 3., As a result, PL/I creates a dummy argument, computes the value
of K+ 3, and stores that value in the dummy argument. During
execution of the internal procedure S, L points to this dummy argument,
and the value of K is not affected by assignment to the parameter.

A special case of dummy argument creation is the enclosure of a
variable in parentheses. An example is

CALL S((K))3:

8-27 First Edition

PL/I Reference Guide

Even though K is a variable that has the same data type as the
parameter L, PL/I creates a dummy argument, because K is enclosed in an
extra set of parentheses. As a result, the statement L = 25 does not
change the value of K.

On the other hand, the argument may be an element of an array without
PL/I's creating a dummy argument, For example, suppose the same main
program contained the following two statements:

DECLARE KA (100) FIXED;
CALL S(KA(4)):

Since KA(4) has the same data type as the parameter L, PL/I creates no
dunmy argument. The statement L = 25 inside the internal procedure
changes the value of the array element KA(4).

In fact, the arqgument subscript can be any expression. For example,
the statement

CALL S(RA(Z + 3)):

invokes the procedure S without the creation of any dummy argument. In
that case, the parameter L points to whatever array element is
indicated by the value of the expression Z + 3.

Similarly, the argument may be any element of a structure or an array
of structures., If it has the same data type as the parameter, no dummy
argument is created.

In all the examples so far in this chapter, the parameter was a scalar.
When the parameter is a scalar, the corresponding argument must also be
a scalar. If the parameter is a nonscalar aggregate, the argument must
be promotable to the aggregate type of the parameter, according to the
rules given in Chapter 6 for aggregate promotion. If the aggregate
type of the argument does not equal the aggregate type of the
parameter, PL/I creates a dummy argument, converts and promotes the
arqument to the data type and aggregate type of the parameter, and
stores the result in the dummy argument. The aggregate parameter then
points to the dummy argument.

First Edition 8-28

SUBRCUTINE AND FUNCTION PROCEDURES

Array Parameters

When the parameter is an array, the corresponding argument must either
be an array or be promotable to an array. If it is not an array, or if
it is an array with a data type different from the data type of the
parameter, then a dummy argument is created. The rules for the
argument or dummy argument are as follows:

@ The number of dimensions of the argument must equal the mnumber
of dimensions of the parameter. For example, if the parameter
is a three-dimensional array, the argument must also be a
three-dimensional array.

@ For each dimension, the lower bound and upper bound of the
argument must equal the lower bound and upper bound,
respectively, of the parameter. Alternatively, the declaration
of the parameter may contain an asterisk for the dimensions, in
which case the parameter will match any lower bound and upper
bound in the argument.

The example below contains an internal procedure with a parameter that
is declared to be an array with an asterisk for a dimension size. The
main program contains two CALL statements to this internal procedure.
For these two calls, the arguments are the arrays Q and R,
respectively, Since the parameter has an asterisk for an array bound,
no dumy argument is created. ‘The upper and lower bounds of the
parameter A depend on the upper and lower bounds for the argument. For
the first CALL, when the argument is Q, the lower bound for A is 1 and
the higher bound is 10. With the second CALL, when the argument is R,
the lower bound is 12 and the upper bound is 28.

P: PROC OPTIONS(MAIN);

DECLARE Q(10);

DECLARE R(12:28);

CALL PRNTAR(Q):

CALL PRNTAR(R);

PRNTAR: PROC(A);

DECLARE A(*);

DECLARE K BINARY FIXED:

PUT PAGE LIST('ARRAY PRINTCUT');
DO K = IBOUND(A,1) TO HBOUND(A,1);
PUT SKIP LIST(K,A(K)):;
END;

RETURN;

END PRNT2R;

END P;

The procedure PRNTAR in this example uses the built-in functions LBOUND
and HBOUND. Use these bhuilt~in functions in any circumstances where
the bounds of an allocated array are not known at the time you are

8-29 First Edition

PL/I Reference Guide

writing the program. This can happen for a CONTROL or AUTOMATIC array
with variable extent expressions, or it can happen in the current case
with a parameter, where the array bound is specified by an asterisk.

There are three related built-in functions for use in such
circumstances:

@ LBQUND(array,n)
® HBOUND(array,n)
e DIMENSION(array,n) or DIM(array,n)

For each of these built-in functions, the array is an array variable
and n is the dimension mmber for which the information is to be
computed, In the example above, the parameter A is a one-dimensional
array. Therefore, IBOUND(A,1) refers to the first (and only) dimension
of the parameter A.

The information computed by the three built-in functions is as follows:
IBOUND returns the lower bound of the specified dimension, HBOUND
returns the upper bound, and DIMENSION or DIM returns the value of the
dimension size, which equals (upper bound - lower bound + 1).

In the preceding example, consider the statement
DO K = IBOUND(A,1) TO HRQUND(2,1):

The statement specifies that the value of K is to vary from the lower
bound to the upper bound of the array A in the first dimension. The
values of the lower bound and the upper bound depend upon the
parameters, since the declaration for A contains an asterisk for the
dimension size, As a result, for the first CALL statement, when Q is
the argument, this DO statement executes with K going from 1 to 10.
For the second CALL statement, when R is the arqument, the value of K
goes from 12 to 28, In either case, the result is that K ranges over
all possible values of the subscript for the argument array, with the
further result that this DO loop prints out all values in the array.

If the parameter is a one-dimensiomal array, you may use as an argument
a cross section of a multidimensiomal array. For example, suppose the
main program of the last example contained the following statements:

DECLARE S(5, 15, 25);

CALL PRNTAR(S(*, I + 3, 1));

First Edition 8-30

SUBROUTINE AND FUNCTION PROCEDURES

The specified cross section of the three-dimensional array S is passed
as a one-dimensional array argument to the procedure PRNTAR., Within
PRNTAR, the DO statement is executed with K going from 1 to 5.

You may use appropriate cross sections in any other circumstances as
well, For example, you may use a two-dimensional cross section of a
four-dimensional array as an arqument, when the parameter is a
two~dimensional array.

EXTERNAL, PROCEDURES

All examples of procedures so far have been internal procedures. An
internal procedure is one that is part of another procedure (such as
the main program) and that is compiled as part of that procedure. By
contrast, an external procedure is separately compiled. Your main
program is an example of an external procedure, but it is also possible
to have subroutine or function procedures that are all external
procedures.

In order to understand the need for external procedures, it is
necessary to understand precisely what a compiler is, Figqure 8-12
illustrates how a compiler works. Your PL/I program is part of a
source file. The source file is used as input to the PL/I ocompiler,
which translates your PL/I program into machine language, storing the
result in an object file. ILater, the system loads the contents of the
object file into the computer's memory, so that the computer can
execute the machine language representation of your program.

Source
File

/

PL/I
Compiler

/

Object
File

Compilation
Figure 8-12

8-31 First Edition

PL/I Reference Guide

When your program contains two or more separately compiled external
procedures, the process is a little more complicated. Figure 8-13
illustrates what happens. This figure shows three external procedures,
in three separate source files, The first external procedure is the
main program, the second is a function procedure, and the third is a
subroutine procedure. ‘These external procedures are separately
compiled, and the result, as shown in the figure, is three separate
object files. 1In order to get a single executable program from the
three object files, you need another system program, called a linker,
The linker turns two or more object files into a single executable
program. It does this by recognizing and correctly handling the
situation where one object file references an external procedure
defined in a different object file., The resulting executable program
file, or runfile, can be locaded into the computer's memory and executed
by the computer.

Source File #1 Source File #2 Source File #3
main program function PROC subroutine PROC
Y / /
PL/ PLA PL/I
Compiler Compiler Compiler
4 / /
Object File #1 Object File #2 Object File #3

L

v

Lin@

v

Executable
Program

Compilation of External Procedures
Figure 8-13

Advantages of External Procedures

It is very convenient to include your subroutine and function
procedures as internal procedures that are part of your main program.

First Edition 8-32

SUBROUTINE AND FUNCTION PROCEDURES

But a very large program, such as a payroll application or a
manufacturing application, can consist of many PL/I statements, perhaps
in the millions, Since it is not practical, or even possible, to
maintain something so large as a single program, designers of such
large programs break them up into smaller chunks, called external
procedures. These small external procedures can be written and
compiled separately, and then, as a final step, linked together by
means of a linker. This method has two major advantages:

® If you change one of the small external procedures, you have no
need to recompile the entire system., Instead, simply recompile
the one external procedure that you modified, and then Ilink
together all object files with the new one,

e If you have many programmers working on the programming project,
you can assign different external procedures to different
programmers., FEach of the programmers can write an external
procedure, and can even debug it to some extent, separately.
Later, all the external procedures can be linked together to get
a single program.

The following sections cover techniques for writing external
procedures.

EXTERNAL ENTRY Declarations

External procedures pose certain problems for the compiler that are not
present with internal procedures. The problem arises because when the
compiler compiles the statement that invokes the procedure, whether a
CALL statement or a function reference, the ocompiler needs certain
information about the procedure. In the case of an internal procedure,
the internal procedure is compiled at the same time, and so the
compiler has complete information about it.

Figure 8-14 illustrates the kind of information that the compiler
needs, That example contains an internal procedure, Q, which is
invoked by the statement A = Q(3, B, C).

P: PROC OPTIONS(MAIN) ;
A= 0Q(3, B, C);
Q: PROC(X, Y, Z) RETURNS(FIXED DEC(5)):
DECLARE X FLOAT, Y(5) CHAR(20) VAR, Z BINARY FIXED;
END Q;
END P:

Internal Procedure Declaration
Fiqure 8-14

8-33 First Edition

PL/I Reference Guide

In order for PL/I to compile this assignment, it needs some information
about the procedure Q, which it figures out by simply examining the
procedure. Information that it figures out is as follows:

e 0 is a function procedure name. It is not a built-in function
or an array, which are other possibilities, since in the above
statement Q is immediately followed by a parenthesized list,

® 0 has three parameters. The aggregate types and data types of
these three parameters are scalar FLOAT, array CHARACTER(20)
VARYING, and scalar BINARY FIXED, respectively. The compiler
reeds this information when oompiling the above assignment
statement in order to know how to handle the three arguments 3,
B, and C, and to decide whether or not to create dummy arguments
for these arguments. *

e 0 is a user-defined function that returns a FIXED DECIMAL(5)
value. The compiler needs to know this information in order to
know what conversions must be done before the value returned by
0(3, B, C) can be assigned to A.

The compiler needs all this information in order to compile a reference
to the procedure Q. Now suppose Q is a separately compiled external
procedure. PL/I would not have -enough information to compile the
statement A = Q(3, B, C) because it would not have any of the
information in the three paragraphs above,

If you wish your program to be able to invoke a separately compiled
external procedure, you must insert a special declaration in your
program to give the compiler the information it needs. For example, in
Figure 8-14, if Q were not an internal procedure for P, lut were a
separately compiled externmal procedure, P would have to contain the
following declaration:

DECLARE Q EXTERNAL
ENTRY (FLOAT, (5) CHAR(20) VAR, BIN FIXED)
RETURNS (FIXED DECIMAL(S));

This declaration gives PL/I the information it needs to compile a
reference to Q. It provides the following information:

e It says that Q is an EXTERNAL ENTRY. This means that Q is a
separately compiled external procedure.

® The ENTRY option is followed by a parenthesized list containing
three descriptors. These three descriptors specify that Q has
three parameters, and that their aggregate and data types are
scalar FLOAT, array CHARACTER(20) VARYING, and BINARY FIXED,
respectively., This information allows the compiler to determine
whether the arquments in the reference to Q must be replaced by

dunmy arguments.,

First Edition 8=34

SUBROUTINE AND FUNCTION PROCEDURES

e The RETURNS option in the declaration says that Q is a function
procedure (not a subroutine procedure), and that the function
returns a FIXED DECIMAL(5) value.

Any procedure that calls another external procedure should have one of
these declarations. The general format of these declarations is as
follows:

DECLARE name EXTERNAL
ENTRY (parameter-descriptor-list)
[RETURNS (returns—descriptor)];

In this format, the parameter-descriptor-list is a list of descriptors
separated by commas, giving the data types and aggregate types of each
of the procedure parameters.

The RETURNS option must be specified in the declaration if the external
procedure is a function, and must be omitted if the external procedure
is a subroutine., The returns-descriptor is a descriptor giving the
data type and aggregate type of the value returned by the user—defined
function.

A returns-descriptor is described in the section Functions That Return
an Array or Structure earlier in this' chapter. Refer to that
discussion for more information on descriptors.

ENTRY Statements and Multiple Entry Points

The label of a PROCEDURE statement, whether the procedure is internal
or external, is called the entry point or primary entry point of the
procedure. By means of the ENTRY statement, it is possible for you to
establish secondary entry points within the procedure. These are
additional entry points, which you may use to invoke the procedure and
begin execution within the procedure, without having to begin execution
at the beginning of the procedure., The following example illustrates
the use of the ENTRY statement. There is a main external procedure, P,
which contains an internal procedure, The internal procedure has a
primary entry point, XSUB, and a secondary entry point, XFNC. XSUB is
the label of the PROCEDURE statement, and XFNC is the label of the
ENTRY statement. Notice that XSUB is a subroutine entry point, and
XFNC is a function entry point to the same procedure. The CALL
statement and assignment statement in the main program invoke each of
the entry points.

8-35 First Edition

PL/I Reference Guide

P: PROC OPTIONS (MAIN) ;
CALL XSUB(A);
B = XFNC(C);

%SUB: PROC(X) ;
DECLARE FUNC BIT(1):
DECLARE (X, Z) FLOAT;
FUNC = '0' B;
GO TO COMMDN;

XENC: ENTRY (X) RETURNS (FLOAT) ;
FUNC = '1"' B;

COMMON: Z = SQRT(SIN(X) + COS(X)):
IF FUNC THEN RETURN(Z);
/* RETURN FROM SUBRCUTINE XSUB */
X =27
RETURN;
END XSUB;
END P;

Although the internal procedure is a short one, it uses same techniques
that are common to the use of multiple entry points. The real work
done inside the procedure, for either entry point, begins at the
statement labeled COMMON. In this case, the work done consists of only
a single assignment statement, but typical procedures, of course, &
much more., Before reaching COMMDON, either entry point set the BIT
variable FUNC to indicate which entry point was used. That way, the
procedure can decide which type of RETURN statement to use. Similar
techniques can be used with more than two entry points.

The following general rules apply to multiple entry points:

e FEach of the entry points can have different parameters or the
same parameters.

@ Fach of the entry points can be a subroutine or function entry
point. Of course, your program must execute the correct form of
RETURN statement, depending upon which entry point the caller
used, If two or more entry points are function entry points,
they can have different RETURNS descriptors.

@ Any declaration inside the procedure applies to all of the entry
points. In particular, the INITIAL attribute for AJTOMATIC
variables is applied, and the declared variables are
initialized.

e Multiple entry points can be used with either internal or
external procedures. A secondary entry point to an external
procedure is also an external entry point, and can be invoked
from other external procedures.

First Edition 8-36

SUBRCUTINE AND FUNCTION PROCEDURES

e If, during execution of the statements inside a procedure,
control reaches an ENTRY statement, then control simply passes
around the ENTRY statement.

RECURSIVE PROCEDURES

To invoke a procedure recursively means to invoke it and then to invoke
it again while the first invocation is still active. (An invocation
remains active until it is terminated by a RETURN or GO TO.)

A recursive invocation can come about either directly or indirectly.
It can come about directly if a procedure invokes itself from inside
the procedure, as shown in the example below. A recursive invocation
can also happen indirectly, as when a procedure invokes a chain of
other procedures, one of which invokes the original procedure.

As an illustration of a recursive procedure, consider the factorial
function. The formula for this function is as follows:

nl=n*(n-1) * ,,. *2 %1

where n! is read "n factorial." The formula says that n factorial is
computed by multiplying together n with all the positive integers
smaller than n, For example, 3! equals 3 *2 *1 or 6. 6! equals
6 *5% 4% 3% 2%]1 or 720, In addition, the special case of 0! is
defined to equal 1.

Later, we are going to define a recursive procedure that computes the
factorial function, However, let us begin with a procedure that is not
recursive and that computes n factorial. Such a procedure is shown
below. Verify for yourself that FACl (3) returns the value 6, FAC1 (6)
returns 720, and FAC1(0) returns the value 1.

FACl: PROC(N) RETURNS(FIXED);
DECLARE (K, F) FIXED;

F=1;
DO K =1 TON;
F=F *K;
END;

RETURN(F) ;

END FACI:

8~37 First Edition

PL/I Reference Guide

The recursive procedure for n factorial is based on a different
definition of the factorial function, a so-called recursive definition.
This definition is as follows:

0! =1
Ifn>0, nl=n%*(n-1)!

This definition of n factorial has two lines. The first line specifies
what 0! is, and the second tells what n! is when n > 0. The second
line of this definition 1looks circular, since it seems to define the
factorial function in terms of the factorial function. Actually, the
definition is not circular, as you can see when we apply the recursive
definition to compute the value of 3!, Applying the second line of the
definition, we get

31 =3 * 21

As you can see, we have defined 3! in terms of 2!. This may not seem
like the direction in which we wish to go, but we have done samething:
we have reduced our problem to computing the value of the factorial of
a smaller number, If we are able to keep doing that, we will
eventually reach 0!, which we know the value of., We now apply the
recursive definition to 2! to get

31 21

* ¥

1
2 * 11)
!

[s) WIS RN

I un

(
1!
Applying the second line of the recursive definition to 1!, we get

3!

(o) We) ey
* & F

1!
(1 * 0!)
01!

i n

And finally, we apply the first line of the definition, which says that
0! equals 1, to get

3!

wowon
* o

| gadi o]
—

YO

Similarly, we could compute the value of n! for any positive 1nteger
n. We do this by repeatedly applying the second line of the recursive

First Edition 8-38

SUBROUTINE AND FUNCTION PROCEDURES

definition, until we have reduced the problem to 0!, which the first
line of the definition gives us.

The next example ocontains a recursive procedure that computes the
factorial function, This procedure computes factorial in the same way
the recursive definition works. The definition clause 0! = 1 becomes

IFN=0THEN F = 1;

The clause n! = n * (n - 1)! becomes

ELSE F = N * FAC2(N - 1);

It is this last line that makes FAC2 a recursive procedure., While FAC2
is active, it is possible for it to call itself, so that there are two
or more active invocations of FAC2 at the same time,

FAC2: PROC(N) RETURNS(FIXED) RECURSIVE;
DECLARE F FIXED;
IFN=0 TEN F = 1;
ELSE F = N * FAC2(N - 1);
RETURN(F) ;
END FAC2;

If you are going to invoke a subroutine or function procedure
recursively, specify the option RECURSIVE on the PROCEDURE statement.
Never specify the RECURSIVE option on an ENTRY statement.

Note

On Prime computers, a recursively invoked procedure works
properly whether or not the RECURSIVE option is specified.

CENERIC ENTRY NAMES

This is a rarely used capability., It allows you to use a single
identifier name to stand for two or more different but related
procedures, array names, or built-in functions. Whenever you reference
the common identifier name, PL/I uses the data types and aggregate
types of the arguments to determine which of the procedures, arrays, or
built-in functions to choose.

8-39 First Edition

PL/I Reference Guide

Here are some examples:
e DECLARE Q GENERIC (Ql WHEN (*), Q2 WHEN (*,*), Q3 WHEN (*,*,%));

This DECLARE statement might be used in a program that contains
three different but related procedures, Ql, 02, and Q3. The
program may reference Q as if it were a procedure name, and then
PL/I replaces the reference to Q with a reference to Q1, Q2, or
03, depending upon the arguments you specify in the referenced
Q. In the declaration Q shown above, the words Ql WHEN(*)
indicate that PL/I is to use QL for Q whenever the reference to
Q contains exactly one argument, The words Q2 WHEN(*,¥)
indicate that 02 is to be substituted for Q when the reference
to Q has exactly two arquments., And the words Q3 WHEN(*,*, %)
specify that Q3 is to be used when the reference to Q contains
exactly three arguments.

Therefore, PL/I would change a reference to Q(X) to a reference
to 01(X), and would change a reference to Q(X, Y+ 3) toa
reference to Q2(X, Y + 3). Therefore, the statement

Z=0X) *QX, Y+ 3);
would be equivalent to
Z=QL(X) * Q2(X, Y + 3);

e DECLARE LN ARRAY (5) FLOAT INIT(1, 2.7182818, 7.3890561,
20,0855369, 54.5981500) ;

DECLARE LN GENERIC (LN _ARRAY WHEN (FIXED (1:31, 0)),
IOG WHEN (*));

In the GENERIC declaration, the phrase FIXED(1:31, 0) refers to
any FIXED data type with a precision containing one to 31
digits, none of which follow the decimal (or binary) point.
Therefore, this is a way of representing an integer data type in
a GENERIC declaration.

The GENERIC declaration specifies that any reference to IN is to
be replaced with a reference to either the array LN ARRAY or the
built-in function 10G. If the argument to LN has one of the
integer data types just described, IN is replaced with LN_ARRAY;
but if an argument of any other data type is used, the built-in
function LOG replaces LN,

A programmer might use a declaration of this kind to improve
performance of a program, Since an array reference is
presumably faster than a built-in function reference, the
program references the array whenever the argument is an

First Edition 8-40

SUBROUTINE AND FUNCTION PROCEDURES

integer, and invokes the built-in function whenever the argument
is not an integer. Of course, the usefulness is rather limited,
since the generic choice is based not on whether the value of
the argument is an integer but rather on whether the data type
of the argument is integer. Furthermore, the program gets an
execution error if the argument tc LN has an integer data type
whose value is not in the range 1 to 5. For example, if I has
the attribute FIXED DECIMAL(5), PL/I replaces a reference to
IN(I) with a reference to LN ARRAY(I), and this reference is
illegal if the value of I is less than 1 or greater than 5.

The format of a GENERIC declaration is as follows:
DECLARE ident GENERIC(choice, choice, ...)?
where each choice is of the form
name WHEN (descriptor, descriptor, ...)

When your program references ident, PL/I replaces the reference to
ident with a reference to one of the choices of name, based on a
process of matching the arguments in the reference to ident with the
list of descriptors in each of the choices in the manner described

below.

If descriptor corresponds to one argument, it gives the range of data
types and aggregate types in the argument that can be used for this
particular choice of name. If the data types and aggregate types of
all the arguments in the reference to the ident satisfy the
specifications of the descriptors for a choice in the GENERIC
declaration, then the ident is replaced by the name for that choice.
If the arqument list satisfies the descriptor specifications for more
than one choice in the GENERIC declaration, the first choice is used.

The descriptor for a single argqument may be a structure descriptor like

1, 2 CHARACTER, 2 FIXED;

This descriptor would match an argument that was a structure containing
two members, the first of which is CHARACTER and the second of which is

FIXED.,

8~41 First Edition

PL/I Reference Guide

The descriptor may also include array bounds, specifying that the
corresponding arqument must be an array. In this case, you must
specify an asterisk for the value of the array bound. For example, the
descriptor

(*) FLOAT DECIMAL

matches any singly-dimensioned array that is FLOAT DECIMAL.

Each descriptor can specify any of the following attributes:

AL IGNED LABEL

AREA MEMBER

BINARY [(precision)] NONVARYING

BIT OFFSET

(HARACTER PICIURE 'picture specification'
QOMPLEX [(precision)] POINTER

DECIMAL [(precision)] PRECISION [(precision)]
DIMENSION(*, ...) REAL [(precision)]
ENTRY [([descriptor, ...])] RETURNS [(descriptor)]
FILE STRUCIURE

FIXED [precision] UNALIGNED

FLOAT [precision] VARYING

FORMAT

In each case in the above list where precision is specified, you may
specify either the mumber of digits or the number of digits and the
scale factor, Furthermore, you may specify either quantity as a range
by using the colon (:). For example, the descriptor

FIXED DECIMAL(1:10, -5:0)

refers to any FIXED DECIMAL data type with a precision of between one
and 10 digits, with a scale factor between -5 and 0.

ENTRY VARIABLES

The ENTRY data type is a noncomputational data type. The label of a
PROCEDURE or ENTRY statement is an identifier to which PL/I gives the
ENTRY data type. Such a statement label is considered to be a constant
of the ENTRY data type.

By means of an appropriate DECLARE statement, you may specify that an

identifier of your choice is to be an ENTRY variable, You may assign
ENTRY values, such as ENTRY constants or other ENTRY variables, to an

First Edition 8-42

SUBROUTINE AND FUNCTION PROCEDURES

ENTRY variable, but you may not ©perform ordinary arithmetic
computations or ordinary input or output operations on such variables.

The following example illustrates a simple use of ENTRY variables. 1In
this program segment, the DECLARE statement specifies that EV is to be
an ENTRY variable. The IF statement tests the variable K to decide
which ENTRY constant, P or Q, to assign to the ENTRY variable EV. The
CALL statement that follows specifies the ENTRY variable EV; the
actual procedure that is invoked by this CALL statement depends upon
the current value of EV, either P or Q.

DECLARE EV VARIABLE ENTRY:
IF K =1 THEN EV = P;
ELSE EV = Qg
CALL EV;
P: PROC;
END P;
Q: PROC;

END Q;

An ENTRY variable may be part of a structure or may be an array.
Arrays of ENTRY variables can provide a table-driven programming
capability. The next example illustrates this. In this case, the
ENTRY constants P, Q, and R are external procedures rather than
internal procedures. Fach of these external procedures has a single
scalar FLOAT parameter and is a £function procedure that returns a
scalar FLOAT value.

DECLARE (P, O, R) EXTERNAL
ENTRY (FLOAT) RETURNS (FLOAT) ;
DECLARE F(3) VARIABLE
ENTRY (FLOAT) RETURNS (FLOAT)
INITIAL(P, O, R);

X = F(K) (¥);

In this example, F is an array of three ENTRY variables. The INITIAL
attribute in the declaration of F specifies that F(1) is to be
initialized to the ENTRY constant P, F(2) is to be initialized to Q,
and F(3) is to be initialized to R. The declaration for F must also
specify the parameter—descriptors and the returns-descriptor, for the
same reasons that these descriptors must be specified for external
ENTRY constants. The PL/I compiler needs this information in order to
be able to decide whether to create dummy arguments and whether a
conversion of a return value is needed.

8-43 First Edition

PL/I Reference Guide

Notice the surprising assigmment statement

X =F(K)(¥);

This statement is valid only when K has the value 1, 2, or 3. F is an
array ENTRY variable, and F(K) has, as its value, one of the ENTRY
values P, Q, or R. Therefore, depending upon the value of K, this
assignment statement is equivalent to one of the three following:

fadla Tl o
nuwan
WO
HEE

Which of P, Q, or R is invoked depends upon the value of K.

ADVANCED PROGRAMMING OPTIONS: SHORTCALI: AND NONQUICK

Prime PL/I offers two options, SHORTCALL and NONQUICK, for programmers
who wish to have greater control over the procedure-calling mechanism,

If a PL/I program calls an external procedure written in PMA (Prime
Macro Assembler), you may declare that procedure with the SHORTCALL
option, using the following syntax:

DCL EXPROC EXTERNAL ENTRY OPTIONS (SHORTCALL) ;

The SHORTCALL option generates a JSXB rather than a PCL sequence for
invocations of this procedure. You should be aware of the following:

e You must code the PMA subroutine to use the runtime support
scratch space in the stack., See Appendix D, Figure D-1, for the
location of this scratch space.

e Parameters for a SHORTCALL subroutine are passed by reference,
and you must code the subroutine to handle them properly. If
the subroutine takes only one argument, the address of the
argument is placed in the IL~register. If it takes more than
one, the SHORTCALL option creates an array of pointer
temporaries, puts the address of each argument in that array,
and puts the address of the array into the L-register.

e If only one argument is passed to a SHORTCALL routine, it must

be word-aligned. If the routine takes multiple arguments, their
alignment does not matter,

First Edition 8-44

SUBROUTINE AND FUNCTION PROCEDURES

The second option, NONQUICK, applies to internal rather than external
procedures. If a program is to be compiled at an optimization level of
3 or above, the compiler ordinarily makes most non-recursive internal
procedures SHORTCALL. If you wish to prevent this from happening to a
particular internal procedure, use the following syntax:

INPROC: PROCEDURE OPTIONS (MONQUICK) ;

The procedure is then called with the PCL rather than the JSXB
sequence,

SUMMARY OF PROCEDURE RULES

This section summarizes some of the major rules in using procedures.

e The main procedure of your program begins with the statement
name: PROCEDURE OPTIONS(MAIN);

® The abbreviation for PROCEDURE is PROC.

e A subroutine procedure begins with a statement in the format
name: PROCEDURE [(parm-list)] [RECURSIVE];

The Er.m-list is the list of parameters for the procedure, and
is written as a list of one or more identifiers separated by
commas,

e Any declarations inside a procedure apply only within that
procedure. In particular, you may specify the data type of a
parameter by using a DECLARE statement within the procedure to
specify any attributes that you wish the parameter to have.

e A function procedure begins with a statement in the format

name: PROCEDURE [(parm-list)] [RECURSIVE]
RETURNS [(descriptor)];

The descriptor specifies the data type and aggregate type of the
value to be returned by the function procedure.

8-45 First Edition

PL/I Reference Guide

@ Invoke a subroutine procedure with a statement in the form
CALL name [(arg-list)];

e Invoke a function procedure by using a reference of the form
name [(arg-list)]

in an expression,

The arg-list is the list of arguments to be passed when invoking
the procedure. The list of arguments is one or more expressions
separated by commas. The number of arguments used when invoking
a procedure must equal the number of parameters in the PROCEDURE
statement.

e During execution of the invoked procedure, each of the procedure
parameters points back to the corresponding argument used in
invoking the procedure. In certain cases, PL/I creates a dummy
argument when invoking the procedure, and then the parameter
points back to the dummy argument. The cases where a dumny
arqument is created are as follows:

- When the argument is a constant.

- When the argument is an expression (as when it is
enclosed in a set of parentheses).

~ When the data type or aggregate type of the argument is
different from that of the parameter.

In order to determine whether a dumy argument is needed, the
compiler must know, at the time it is compiling the statement
that invokes a procedure, what the data types of the procedure
parameters are, If the procedure being invoked is an internal
procedure, the compiler can determine the data types of the
parameters, However, if the procedure being invoked is an
external procedure that is separately compiled, the invoking
program must contain a special declaration to indicate to the
compiler what the data types of the parameters are. The format
of this declaration is as follows:

DECLARE name EXTERNAL ENTRY (parm—-descriptors)
[RETURNS (returns-descriptor)];

The parm-descriptors are the descriptors for each of the
parameters of the procedure, separated by commas. There is one
descriptor for each parameter, and it specifies the data type

First Edition 8~46

SUBROUTINE AND FUNCTION PROCEDURES

and aggregate type of the parameter. Similarly, the
returns—-descriptor specifies the data type and aggregate type of
the value returned by the procedure, if it is a function
procedure.

@ To return from a subroutine procedure, your program must execute
the statement

RETURN;

or else the END statement of the procedure. To return from a
function procedure, your program must execute a statement of the
format

RETURN (expression) ;

It is 1illegal to execute the END statement of a procedure
invoked as a function.

e A procedure may have one or more secondary entry points. Each

secondary entry point is specified by the name of an ENTRY
statement in the following format:

name: ENTRY [(pam~list)] [RETURNS [(descriptor)]l]:

8-47 First Edition

Program Blocks,
Declarations, and
Scope Rules

PL/I PROGRAM BLOCK STRUCTURES

PL/I is a so-called block structured language, meaning that a PL/I
program consists of a group of nested blocks. This feature, described
in the following pages, gives the PL/I programmer & great deal of
power.,

Statement Groups and Blocks

Three statement types require a matching END statement: the DO,
PROCEDURE, and BHGIN statements. Each of these statements, along with
its corresponding END statement, identifies a collection of statements
to be handled in a special way.

For example, the entire compiled program is a collection of statements
beginning with a PROCEDURE statement and ending with an END statement.
This is called an external procedure. Within the external procedure,
there may be additional PROCEDURE, BBEGIN, and DO statements, each
matched with its own END statement. Depending upon the circumstances,
the collection of statements so defined might be a subroutine, a
user-defined function, a group of statements to be repeated, or an
error-handling routine,

9-1 First Edition

PL/I Reference Guide

Figure 9-1 illustrates the three statement types. In this example, P
is an external procedure, with the initial PROCEDURE statement matched
by the final END statement. Inside the procedure P, there are

@ A DO group. In this case, the group is a group of statements to
be executed iteratively. The DO statement is covered in Chapter
10,

@ Three internal blocks, each beginning with either PROCEDURE or
BEGIN, and ending with END.

According to PL/I terminology, DO and END define a group of statements,
while BEGIN and END or PROCEDURE and END define a block of statements.

This chapter deals with blocks. We mention the DO group in this
chapter only because both the group and the block require an END
statement. The full use of the DO statement is described in
Chapter 10,

P: PROCEDURE;

DO K =110 5;

END:;
BEGIN;
END;

ON ERROR BEGIN;

Statement Types
Fiqure 9-1

PL/I's block structure capability gives the user a great deal of power
in the following areas:

e Limiting the scope of a declaration: that is, you can specify
the range of statements over which the declaration applies.

First Edition 9-2

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

Modular programming: using the procedure capability to break up
a large program into small chunks. See Chapter 8 for details.

Error and condition handling: using the ON-unit to define what
happens when a condition or error occurs., See Chapter 13.

Recursive programming, the ability to have more than one
simultaneous activation of a block: this can be very powerful
in certain computer programs, such as compilers. See Chapter 8.

Only blocks (as opposed to DO groups) are relevant to these points.
The DO group provides for repetitive execution of a collection of
statements, but does not provide the kind of control described above
for blocks.

Types of Blocks

PL/I syntax recognizes three types of blocks, each of which begins with
either a PROCEDURE statement or a BHEGIN statement:

A PROCEDURE block, which begins with a PROCEDURE statement and
ends with an END statement. Use a PROCEDURE block to define
your main program or to create a subroutine or user-defined
function. Such procedures may be internal or external,
Procedures are defined in Chapter 8.

An ON-unit. This is a BEGIN block that is attached to an ON
statement, It is used for trapping errors or other conditions
that might make a program abort. The format is

ON condition-name [SNAP] BHEGIN:

END;

PL/I handles ON~units differently from the way it handles BEGIN
blocks that are not ON-units., Use ON-units for error and
condition handling, as described in Chapter 13.

A BEGIN block other than an ON-unit. Such a block provides
block structuring without the additional features provided by
PROCEDURE blocks or ON-units (subroutines and functions, and
error and condition handling).

9-3 First Edition

PL/I Reference Guide

Nesting of Blocks

A PL/I compiler compiles a module called an external procedure. This
external procedure may be a main program, a subroutine, or a function.
Inside the external procedure may be one or more internal blocks,
PROCEDURE blocks, BEGIN blocks, and ON-units. Each of these internal
blocks may have any other internal blocks inside it.

Figure 9-2 shows a program skeleton with several nested blocks of
various types. Compare this program with Figure 9-3. By comparing the
program with its representation, you can see the meaning of the block
nesting concept. An external procedure (the entire main program) has
five internal blocks. An internal BEGIN block has an ON-unit and a
PROCEDURE block inside of it. A PROCEDURE block has a BEGIN block
nested inside.

P: PROCEDURE OPTIONS(MAIN) ;
BEGIN;
ON ERRCR BEGIN;
END;
Q: PROC;
END Q;
END;
R: PROC;
BEGIN;
END;
END R;
END P:

Block Structure
Figure 9-2

First Edition 9-4

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

PROC
BEGIN
ON-unit
PROC
PROC
BEGIN

Representation of Block Structure
Fiqure 9-3

Multiple Closure END Statements

Each DO, BEGIN, and PROCEDURE statement in your program must have a
corresponding END statement. If you require several END statements in
a row, PL/I permits you to use a single END statement in the format

END identifier;

If you use an END statement in this syntax, PL/I supplies additional
END statements, to close off any unclosed groups or blocks, back to the
DO, PROCEDURE, or BEGIN statement whose label is the specified
identifier.

9~5 First Edition

PL/I Reference Guide

Consider this program segment, which has a DO group, a BEGIN block, and
a PROCEDURE block, all ending at the same point.

L: DO;
M: BEGIN:
N: PROCEDURE;

END L;

As a result of the statement END L, PL/I inserts two additional END
statements just before this statement, to close off the BEGIN block and
the PROCEIURE block. The result is as shown below. Of course, these
END statements do not appear in your program listings, since the
compiler inserts them internally without displaying the result.

L: DO;
M: BEGIN;

N: PROCELIURE;

°
1

°
14

END L;

THE DECLARE STATEMENT

Use the DECLARE statement to give identifiers the attributes of your
choice., For example, the DECLARE statement

DECLARE X FIXED BINARY STATIC;
specifies that the identifier X is to have the attributes FIXED,
BINARY, and STATIC.
The DECLARE statement has many formats. The simplest format is

DECLARE identifier [attribute-list]:

which specifies that the identifier is to have all the attributes in
the attribute-list. The attribute list may include some combination of
the keywords FIXED, FLOAT, DECIMAL, BINARY, COMPLEX, RERL, INITIAL, and
PICTURE discussed in Chapter 5.

First Edition 9-6

PROGRAM BLOCKS, DECLARATIONS, AND SQOPE RULES

The left and richt brackets in the above format indicate that the
attribute-list is optional, and so the DECLARE statement can be used to
declare an identifier without specifying any attributes., 1In this case,
the identifier is given the default attributes. For example, the
statement

DECLARE Z;

declares 7 to have the system default attributes, BINARY FIXED.,

Declaring Structure Level Numbers

When you use the DECLARE statement to declare a structure, specify
level numbers for the member names. In the following example, the
structure name EMPLOYEE has a level number of 1. EMPLOYEE has three
members, NAME, SALARY, and STARTDATE, each at level 2, SALARY and
STARTDATE are substructures, each with level 3 members.

DECLARE 1 EMPLOYEE(1000),
2 NAME CHARACTER(20) VARYING,

2 SALARY,

3 REGULAR PICTURE '$$$v.99',
3 OVERTIME PICIURE 'S$S$$V.99',

2 STARTDATE,
3 MONTH FIXED DECIMAL(2),

3 DAY FIXED DECIMAL(2),
3 YEAR FIXED DECIMAL(4);

Your structure declaration need not have consecutive level numbers.
The next example illustrates this.

9-7 First Edition

PL/I Reference Guide

DECLARE 1 EMPLOYEE (1000),
3 NAME CHARACTER(20) VARYING,
3 SALARY,

7 REGULAR PICTURE '$$$v.99',
7 OVERTIME PICTURE '$$S$V.99',

3 STARTDATE,

6 MONTH FIXED DECIMAL(2),
6 DAY FIXED DECIMAL(2),
6 YEAR FIXED DECIMAL(4);

This declaration has exactly the same effect as the one before it, but
the level numbers are different., Internally, when PL/I compiles your
program, PL/I changes your level numbers to the correct logical level
numbers. In the case of the declaration in the example below, the
logical level numbers are those in the preceding example. Of course,
PL/I changes the level numbers only internally; the level numbers you
specify appear in your listing.

Any declared identifier that is not a structure member has a level
number of 1, even if it is not a structure. If you declare an
identifier with no level number, PL/I assumes a level number of 1.
Consider the declarations below, In these examples, X, ¥, S, and T are
level-1l identifiers. Note that X and Y are level-1 scalars, while S
and T are level-1 structures. X and Y are considered level-l even
though they are not structures. A, B, C, and D are level-2 identifiers
that are members of structures.

DECLARE X FLOAT;
DECLARE 1 Y FLOAT;

DECLARE 1 S, 2 A, 2 B;
DECLARE 1 T, 2 C, 2 D;

Multiple Declarations

You may use a single DECLARE statement to declare two or more
identifiers, For example, the single DECLARE statement

DECLARE A FLOAT, B FIXED,
C(20) CHARACTER(100) VARYING;

First Edition 9-8

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

is equivalent to the following three DECLARE statements:

DECLARE A FLOAT;
DECLARE B FIXED;
DECLARE C(20) CHARACTER(100) VARYING;

In both cases, you are giving the identifiers A, B, and C exactly the
same attributes,

Factored Declarations

Many times when you are writing a program, you would 1like to give
several different identifiers the same or similar attributes. 1In such
cases, the technique of factoring declarations can greatly simplify
your DECLARE statements. Some examples follow.

If you wish to give several identifiers exactly the same attributes,
follow a parenthesized list of the identifiers with a 1list of the
common attributes., For example,

DECLARE (A, B, C) CHARR(20) VAR;

gives A, B, and C the same attributes, CHAR(20) VAR, and so is the same
as

DECLARE A CHAR(20) VAR, B CHAR(20) VAR,
C CHAR(20) VAR;

which does the same thing.

9-9 First Edition

PL/I Reference Guide

WARNING

A very troublesome error for beginners is to forget to
parenthesize the 1list of identifiers. For example, many
beginners would accidentally write the factored DECLARE
statement above as

DECLARE A, B, C CHAR(20) VAR;

The reason this is such a problem is that the DECLARE statement
without parentheses is completely legal, and so is not flagged
by the PL/I compiler, and yet it gives results that are totally
unexpected by the user. The DECLARE statement just above would
give A and B the default attributes (BINARY FIXED), and would
give C the attributes of CHAR(20) VAR, instead of, as the user
expects, giving all three identifiers the attributes CHAR(20)
VAR.

The factoring technique may be used even when the identifiers being
declared do not have all of their attributes in common, as long as they
share some attributes. In this case, it is possible to factor out just
the attributes that they do have in common. For example, the statement

DECLARE (M BINARY, N DECIMAL(5),
P DECIMAL(7)) FIXED;

is equivalent to the following three statements:

DECLARE M BINARY FIXED;
DECLARE N DECIMAL(5) FIXED;
DECLARE P DECIMAL(7) FIXED;

Here the parenthesized list contains not only the identifiers M, N, and
P being declared, but also the attributes that these identifiers do not
share (BINARY, DECIMAL(5), and DECIMAL(7)). The only factored
attribute is the shared attribute FIXED.

As another example, consider the following:

DECLARE (X FLOAT, Y DEC(2) FIXED)
STATIC COMPLEX;

First Edition 9-10

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

The two factored attributes here are STATIC and C(OMPLEX. ‘Therefore,
the two DECLARE statements

DECLARE X FLOAT STATIC COMPLEX;
DECLARE Y DEC(2) FIXED STATIC COMPLEX;

are equivalent to the one statement above,

If you wish to make several identifiers into an array, you may factor

out the parenthesized dimension list., For example, the statement
DECLZARE (LA, IB) (10) FIXED;

factors out the dimension specification, 10. Therefore, the statement
DECLARE LA{10) FIXED, IB(10) FIXED;

is equivalent.

Whenever a parenthesized list immediately follows the right parenthesis

of a factorization, PL/I treats the parenthesized list as a dimension
list., For example, the declaration ‘

DECLARE (A BIN, B DEC) (5,7):
factors out the dimension list (5,7). An equivalent declaration is
DECLARE A(5,7) BIN, B(5,7) DEC;

The (5,7) is treated as a dimension list, not as a precision to be
associated with BINARY and DECIMAL.

9-11 Pirst Edition

PL/I Reference Guide

You can also use several nested levels of factoring in your DECLARE
statement. For example, the statement

DECLARE ((F VAR, G) CHAR(20), H DECIMAL)
STATIC;

contains two nested levels of factoring, with three identifiers, F, G,
and H, being declared. This factored DECLARE statement is equivalent
to the following three DECLARE statements:

DECLARE F VAR CHAR(20) STATIC;
DECLARE G CHAR(20) STATIC;
DECLARE H DECIMAL STATIC;

You may also use the factoring technique to factor an entire structure.
For example, the declaration

DECLARE 1 (S, T), 2 A FIXED, 2 B FLOAT;

specifies that the two structures S and T are to have the same members.
Therefore, it is equivalent to the declarations

DECLARE 1 S, 2 A FIXED, 2 B FLOAT;
DECLARE 1 T, 2 A FIXED, 2 B FLOAT;

You may also factor structure members inside a structured declaration.
For example, the declaration :

DECLARE 1 ST, 2 (A, B) FLOAT;

defines a structure, ST, with two members, A and B, each of which is
FLOAT, Therefore, the declaration

DECLARE 1 ST, 2 A FLOAT, 2 B FLOAT;

is equivalent.

First Edition 9-12

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

The LIKE Attribute

Use the LIKE attribute when you wish to declare a structure to have the
same members as one declared elsewhere., In the following declarations,

DECLARE 1 S, 2 A FIXED, 2 B FLOAT;
DECLARE 1 T LIKE S;

the second declaration specifies that T is a structure that is to have
the same members as S. Therefore, the declaration

DECLARE 1 T, 2 A FIXED, 2 B FLOAT;
is an equivalent declaration for T.
The LIKE attribute can be used to copy the declarations of structure
members and their attributes from one structure declaration to another.

Tt does not copy storage type or dimension attributes for the structure
identifier itself. For example, the declarations

DECLARE 1 ST(20) AUTOMATIC, 2 X, 2 Y;
DECLARE 1 STB BASED LIKE ST;

give STB the same members (X and Y) as the array of structures ST.
However, the dimension attribute, 20, and the storage class AUTOMATIC,
are not copied to STB. In fact, STB is a BASED scalar. Therefore,

DECLARE 1 STB BASED, 2 X, 2 ¥;

is an equivalent definition for the structure STB.

TYPES OF DECLARATIONS

All identifiers (other than keywords) that appear in your PL/I program
are declared in one way or another. If you do not explicitly declare
such an identifier in one of the three ways below, PL/I supplies either
a contextual or an implicit declaration of its own. The rules for
explicit and nonexplicit declarations are described in this section.

9-13 First Edition

PL/I Reference Guide

Types of Explicit Declarations

PL/I recognizes three contexts that explicitly declare an identifier.
These contexts, and the resulting attributes that PL/I gives the
identifier, are as follows:

An identifier declared by a DECLARE statement is explicitly
declared to have the attributes specified in the DECLARE
statement.

An identifier appearing as a statement label is explicitly
declared to be a named constant. The precise attributes that
PL/I gives to such an identifier depend upon the kind of
statement being labeled. If it is a FORMAT statement, the
identifier is given the attributes FORMAT CONSTANT. If the
statement is a PROCEDURE or ENTRY statement, the identifier is
given the attributes ENTRY CONSTANT. In all other cases, the
identifier is given the attributes LABEL (ONSTANT. In the case
of an ENTRY constant, if the PROCEDURE statement is an external
procedure, or if the INTRY statement is for a secondary entry
point for an external procedure, then the identifier is given
the EXTERNAL attribute; otherwise, it is given the INTERNAL
attribute,

An identifier appearing in the context of a parameter in a
parameter list of a PROCEDURE or ENTRY statement is thereby
explicitly declared to have the PARAMETER attribute.

Figure 9-4 is a program skeleton containing a number of explicit
declarations., The explicit declarations are as follows:

Since P is a statement label for a PROCEDURE statement for an
external procedure, P has the attributes EXTERNAL ENTRY.

X, by virtue of its appearance in the DECLARE statement, is
explicitly declared to have the attribute FLOAT.

L is a statement label for a statement other than a PROCEDURE,
FNTRY, or FORMAT statement. Therefore, L is explicitly declared
to have the attributes LABEL CONSTANT.

FR is a statement label for a FORMAT statement, and so is
explicitly declared to have the attributes FORMAT CONSTANT
discussed in Chapter 11.

Of the three explicit declarations for A in the internal
procedure, two are in the context of a procedure parameter, and
one is in a DECLARE statement. As a vresult of these three
explicit declarations, A receives the attributes CHARACTER (20)
PARAMETER.

First Edition 9-14

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

@ B is explicitly declared to be a PARAMETER, because it appears
in the parameter list of the ENTRY statement., Since there is no
separate DECLARE statement for B, the data type attributes for B
are the system or program defaults.,

@ SB appears as the label of a PROCEDURE statement for an internal
procedure, and so SB receives the attributes INTERNAL ENTRY
(CHARACTER(20)) CONSTANT.

@ FN appears as the statement label for an ENTRY statement for an
internal procedure, and thereby receives the attributes INTERNAL
ENTRY (CHARACTER (20) , BINARY FIXED) RETURNS(FLOAT) CONSTANT.

P: PROC OPTIONS(MAIN) ;
DECLARE X FLOAT;
PUT EDIT(X) (R(FR));
FORMAT(F(5)) ;

o 5

SB: PROCEDURE(A);

DECLARE A CHARACTER(20) ;
FN: ENTRY(A,B) RETURNS(FLOAT):
END SB;
END P;

Explicit and Nomexplicit Declarations
Fiqure 9-4

LABEL. (ONSTANT Arrays: An identifier that appears in the context of a
statement label 1s thereby explicitly declared by such an appearance.
You may put subscripts on such identifier references to create a LABEL
CONSTANT array.

The next example illustrates the use of such an array. In this
example, the appearances of BRANCH in statement labels cause BRANCH to
be explicitly declared as a LABEL CONSTANT array, with a lower bound of
1 and an upper bound of 10. PL/I decides the upper and lower bounds by
finding the lowest and highest subscripts, respectively, that appear in
the statement label references.

9-15 First Edition

PL/I Reference Guide

GO TO BRANGH (K) ;

BRANCH (1) ¢ oo
BRANCH(2): ..o

BRANCH (3) =

BRANG'I(].O) H 00

If you use this method to declare LABEL C(ONSTANT arrays, all
appearances of the identifier in the context of a label must have the
same number of subscripts, and all subscripts must be constants.
Furthermore, the various subscript lists must all be different,

Contextual Declarations

Same other kinds of declarations are not explicit in the sense we have
described,

When you use an identifier in an explicit declaration, you do so for
the express purpose of telling the PL/I compiler what attributes the
identifier should have. This is true whether the explicit declaration
is performed by means of a DECLARE statement, a statement label, or a
PROCEDURE or ENTRY statement parameter list.

If you use an identifier (not a keyword) in your program, and there is
no explicit declaration for that identifier, then PL/I must supply a
declaration for you, In most cases, PL/I supplies an implicit
declaration, as described in the next section. However, if you happen
to use that identifier in your program in certain contexts, PL/1I makes
a contextual declaration of the identifier, giving the identifier

certain attributes, depending upon the context.

The following paragraphs define these contexts and the attributes
derived from the resulting contextual declarations.

First Edition 9-16

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RIJLES

Built-in Functions: The most common ocontextual declaration is for
built-in functions. Unless you explicitly declare the built-in
function identifier name to have the BUILTIN attribute, PL/I has no way
of knowing whether the identifier is to be an ordinary variable or a
built-in function. However, if the identifier appears in some
statement of your program in the context of being immediately followed
by a parenthesized argument list, PL/I assumes that it is a built-in
function and gives it the BUILTIN attribute in a ocontextual
declaration. For example, if

A = MAX(B,C);

appears in your program, and if there is no explicit declaration of MAX
as either an ENTRY or an array, then PL/I assumes that MAX is a
built-in function. PL/I contextually declares the identifier MAX to
have the BUILTIN attribute,

On the other hand, it is perfectly legal to use a built-in function
name as an ordinary variable in your program. For example,

MIN = X + Y3

is a valid assigmment statement to an ordinary variable called MIN,
provided that you do not use MIN as a built-in function elsewhere in
your program. If you do, MIN would be given the BUILTIN attribute, and
the above assignment statement would then be illegal.

It is important to understand the concept of contextual declarations
when you are using built-in functions that take no arguments, such as
DATE, TIME, and ONSQURCE. For example, if you use DATE in your program
in the statement

PUT LIST(DATE) ;

then, since DATE is not followed by a parenthesized argument list, PL/I
does not contextually declare DATE to be BUILTIN. As a result, DATE is
considered an ordinary variable, and the above PUT statement prints
some numeric value, usually 0. To make the above statement work
properly, follow DATE with a pair of empty parentheses, as in

PUT LIST(DATE()):

The empty arcument list following the identifier DATE causes PL/I to
make the correct contextual declaration. If you use the DATE built-in
function many times in your program, you only need to put the empty
arqument list after one occurrence. The contextual declaration then

9-17 First Edition

PL/I Reference Guide

applies to all occurrences. Of course, you could avoid the whole issue
by using an explicit declaration like

DECLARE DATE BUILTIN;

This would be an explicit declaration of DATE as BUILTIN, and SO ho
contextual declaration would be needed.

File Constant Identifiers: Another common contextual declaration is
for FILE QONSTANT identifiers. For example, if your program contains
the statement

READ FILE(TAPEIN) INTO (REC):

and if your program has no explicit declaration for the identifier
TAPEIN, then PL/I contextually declares TAPEIN to have the FILE
CQONSTANT attributes.

There are several contexts that would give an identifier the FILE
CONSTANT attributes in a contextual declaration., These are as follows:

e FILE(identifier) option in the OPEN, PUT, GET, READ, WRITE,
REWRITE, DELETE, or CLOSE statement.

e QOPY(identifier) option in the PUT statement.

® One of the file condition options in the ON, REVERT, or SIGNAL
statement. The file oonditions are ENDFILE(identifier),
UNDEFINEDFILE (identifier), ENDPAGE(identifier), KEY(identifier),
NAME (identifier), REQORD(identifier), and TRANSMIT (identifier).

Of course, if your program ocontains an explicit declaration for the
identifier —~ for instance, giving it the FILE VARIABLE attributes --
then no contextual declaration is made.

An interesting special case of FILE CONSTANT contextual declarations
occurs for SYSIN and SYSPRINT. For example, if your program contains a
GET statement with no FILE or STRING option, FILE(SYSIN) is assumed by

PL/I. As a result of this assumption, PL/I contextually declares SYSIN
to be FILE CONSTANT., Therefore, the statement

GET LIST(X);

is assumed by PL/I to mean the same thing as

GET FILE(SYSIN) LIST(X):

First Edition 9-18

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

and so SYSIN is contextually declared as a FILE CONSTANT. A similar
thing happens with SYSPRINT. If no FILE or STRING option occurs in a
PUT statement, PL/I assumes the FILE(SYSPRINT) option for the PUT
statement and contextually declares SYSPRINT to be a FILE CONSTANT.

The Condition Attribute: If an identifier appears with the CONDITION
option of the ON, REVERT, or SIGNAL statement, PL/I contextually
declares that identifier to have the CONDITION attribute. For example,
the statement

ON CONDITION(FILEERROR) GO TO HANDLE;

causes PL/I to declare FILEERROR contextually to have the CONDITION
attribute., See Chapter 13 for a full discussion of PL/I condition

handling.

The POINTER Attribute: In certain contexts, an undeclared variable is
given the POINTER attribute. These contexts are as follows:

e If the identifier appears to the left of the symbol ->. For
example, suppose your prodram contains the statement

P->S = 15

If P is not explicitly declared, then, as a result of this
statement, PL/I contextually declares P to have the POINTER
attribute.

e If the identifier appears in the SET option of the RERD or

ALIOCATE statement. For example, if P is undeclared, the
statement

READ FILE(TAPEIN) SET(P):
causes PI/I to declare P contextually with the FOINTER

attribute.

e If the identifier appears as the argument of the BASED attribute
in the DECLARE statement for some other identifier. For
example, if P is not explicitly declared, the statement

DECLARE S FIXED BASED(P):

9-19 Pirst Edition

PL/I Reference Guide

causes PI/I to declare P contextually with the POINTER
attribute.

The AREA Attribute: Certain contexts cause an undeclared identifier to
be declared contextually with the AREA attribute, These contexts are
as follows:

@ IN(identifier) option in the ALIOCATE and FREE statements

@ OFFSET(identifier) attribute of the DECLARE statement

Other Remarks: The above paragraphs contain a complete list of those
contexts that, according to ANSI rules, cause PL/I to make a contextual
declaration of an identifier that is not explicitly declared. Since
Prime supports the ANSI rules, the above is also a complete list of all
contextual declarations supported by Prime, To avoid confusion among
users who are accustaned to IBM or other older compilers, we mention
here a type of contextual declaration that is supported by older
compilers but that was discarded by the ANSI committee. In these older
compilers, an identifier used as the target of a CALL statement and not
explicitly declared would be contextually declared as an EXTERNAL
ENTRY. Furthermore, an identifier that is not recognized as a valid
built-in function name, but that appears in an expression followed by a
parenthesized argument 1list, is ocontextually declared as an EXTERNAL
ENTRY, if there is no explicit declaration for it.

Therefore, in these older compilers, the statements

CALL SBR(A):
A = FNC(B);

would cause SBR and FNC to be contextually declared as having the
EXTERNAL. ENTRY attributes, provided that there were no explicit
declarations for these identifiers. According to the ANSI rules, and
therefore according to PRIME rules, the above two statements would be
illegal without explicit declarations of SBR and FNC.

There are some final rules concerning contextual declarations:

e If an identifier appears in an explicit declaration, PL/I never
makes a contextual declaration for it.

¢ If an identifier that has not been explicitly declared appears
in two or more different contexts that would cause PL/I to make
contextual declarations according to the rules in the paragraphs
above, then the different contexts must lead to consistent sets
of attributes. For example, if the same undeclared identifier
appears in both a FILE option and an IN option, then your
program is in error, because the FILE attribute is inconsistent
with the AREA attribute.

First Edition 9-20

PROGRAM BLOCKS, DECLARATIONS, AND SQOPE RILES

Implicit Declarations

Tf you use an identifier (not a keyword) in your program, and if the
following two conditions hold:

e Your program contains no explicit declaration for the
identifier; and

@ Nowhere in your program does the identifier appear in any -
context that qualifies it for a contextual declaration,
according to the rules of the preceding section;

then PL/I implicitly declares the identifier. ‘This means that PL/I
declares the identifier with the default attributes (usually BINARY
FIXED REAL(31,0)). TImplicit declarations generate level-1 error
warnings at compilation time,

For example, if the variable X appears in your program in the
statements

X=A+ B;

PUT LIST(X);

and if X appears nowhere else in your program, then PL/I implicitly
declares X with the default attributes.

SOOPE OF A DECLARATION

If your program contains an explicit declaration of an identifier, that
explicit declaration may or may not apply to your entire program. That
portion of your program to which a declaration applies is called the
scope of the declaration.

Consider Figure 9-5. 'This program skeleton contains two explicit
declarations of X. The first of these is not inside an internal block,
but the second is inside an internal BEGIN block. The scope of the
second declaration is the internal BEGIN block, as shown by the bracket
lines to the richt of the figure. ‘This means that the second
declaration applies only within that BEGIN block. The scope of the
first declaration of X is all the rest of the program. This means that
any reference to X, except within the first BEGIN block, is to the
variable declared by the first DECLARE statement.

9-21 First Edition

PL/TI Reference Guide

P: PROC OPTIONS (MAIN) ; |

DECLARE X FIXED; Scope of

X = 5; first declaration
BEGIN; :1
DECLARE X FLOAT: Scope of
X = 10; second
coo declaration
END;
BEGIN;]
PUT LIST(X); Scope of
oo first declaration
END;

PUT LIST(X);

Scope of Declarations
Figure 9-5

In this program, the statement

is in the scope of the first declaration, as we have just described,
and so the identifier X in this statement refers to the X declared in
that declaration. On the other hand, the statement

X =10;

is in the scope of the second declaration, and so the X in that
statement refers to the X declared by the second DECLARE statement.
These two variables, both with the identifier X, are oompletely
different; they have different values and different data types. They
are just as different as if they had different identifiers.

The statement
PUT LIST(X);

appears twice in this program segment, both times within the scope of
the first declaration. Therefore, both PUT statements refer to the X
that was set to 5 near the beginning of the program. Unless same other
statement changes the value of this variable X, each of these PUT
statements prints the value 5. In particular, the value of X is not

First Edition 9--22

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

10, since Ait is a different X that was set to 10 within the BEGIN
block.

The following sections give the precise rules for determining the scope
of a declaration.

Block Contaimment of Explicit Declarations

The scope of an explicit declaration depends upon where the declaration
appears in the program as compared to the location of the various
internal blocks of the program. In particular, to understand the
concept of scope of a declaration, we must understand what it means for
a declaration to be inside a block, or contained in a block. In most
cases, it is perfectly obvious whether or not an explicit declaration
lies within a given block.

The case of the DECLARE statement is completely obvious, A DECLARE
statement is contained in a given block if the DECLARE statement lies
between the PROCEDURE or BEGIN statement that begins the block and the
END statement that ends the block. This means that a DECLARE statement
is contained in a given block if it lies within the block in the
obvious sense,

Almost as obvious is the case of statement labels for statements other
than PROCEDURE, BEGIN, or ENTRY statements. Consider, for example, the
following BEGIN block:

X w

HGIN
=5

- wo

END;

The explicit declaration for L is contained in the BHEGIN block shown.

Bnother type of explicit declaration is the case of an identifier in a
parenthesized list following the first keyword in either a PROCEDURE or
ENTRY statement. Such an identifier is thereby explicitly declared to
be a PARAMETER. 'This explicit declaration is oontained in the
PROCEDURE block for the PROCEDURE or ENTRY statement.

The only remaining case of an explicit declaration is the one that is
least obvious, the case of a statement label for a BEGIN, PROCEDURE, or
ENTRY statement. In all three cases, the explicit declaration
determined by the statement label is not contained in the block defined
by the PROCEDURE or BEGIN statement, or by the PROCEDURE statement
corresponding to the ENTRY statement. However, it is contained in the
next outer block.

Although it seems ,confusing, this is indeed true for the label on an
ENTRY statement. Even though such a label appears clearly to be

9-23 First Edition

PL/I Reference Guide

defined inside the procedure in which the ENTRY statement lies, PL/I
considers that declaration to be outside the procedure.

In the illustration below, SUBR is an internal procedure with a
secondary entry point, SUBR2. The box drawn in the example shows which
explicit declarations are contained in the PROCEDURE block. The
explicit declarations of A, B, C, and L are contained in the PROCEDURE
block, but the explicit declarations of SUBR and SUBR2 are not
contained in that block.

SUBR: PROCEDURE (A) ;

DCL: A FLOAT, B FIXED;

L: B = 10;

SUBR2: ENTRY (A,C) 3

FND SUBR;

Immediate Containment

Consider the next example, The ©procedure SUBB contains the
declarations of both A and B. However, the procedure does not
immediately contain the declaration for B, since that declaration is
inside an internal block. The PROCEDURE block immediately contains the
declaration for A, and the BEGIN block immediately contains the
declaration for B.

SUBB: PROCEDURE ;

DECLARE A FIXED;

BHGIN;

DECLARE B FIXED;

END SUBB;

First Edition 9-24

PROGRAM BLOCKS, DECLARATIONS, AND SQOPE RULES

A given block is said to contain immediately a given explicit
declaration if the block contains the declaration, but no inner block
also contains the declaration. Note that several blocks can contain a
given declaration, but only one block can contain a declaration
immediately.

Scope of an Explicit Declaration

That portion of your program to which an explicit declaration applies
is called the scope of the explicit declaration.

To get the scope of an explicit declaration,

e Start with the block that immediately contains the explicit
declaration., This includes all statements in this block,
including statements that are inside internal blocks within the
block.

e ILook for other explicit declarations of the same identifier in
internal blocks, Cross out any internal blocks that immediately
contain those explicit declarations.

Fiqure 9-6 illustrates the results of applying these rules. This
program skeleton contains a number of blocks, labelled P, S, U, V, W,
and X, respectively. Three declarations of B are shown, For the first
of these three declarations, the one following the PROCEDURE statement
for procedure S, the scope is shown by the brackets to the right of the
program skeleton. We obtained this result by starting with procedure
S, the block that immediately contains the first declaration, and then
crossing out blocks V and W, since these blocks immediately contain
explicit declarations of B., 'The result is the scope of the first
declaration.

9-25 First Edition

PL/I Reference Guide

+J

PROC OPT'IONS (MAIN)
PROC:
DECLARE B FIXED;
BEGIN;
BHEGIN:;
DCL B FLOAT;

END V;

END U;]
BEGIN;
DECLARE B;

We

FND W;

END S;]

BEGIN;
END X;
END P;

First Explicit Declaration of B
Figure 9-6

Scope of the

Scope of an Implicit or Contextual Declaration

PL./I considers an implicit or contextual declaration to be immediately
contained in the external procedure being compiled. With this
information, we can apply the general rules of the last section to get
the following rules for the scope of an implicit or contextual
declaration:

® Start with the entire external procedure.

e Cross out all internal blocks that immediately contain an
explicit declaration for the same identifier.

The result is the scope of the implicit or contextual declaration.

Figure 9-7 illustrates these rules.,

program consisting of an external procedure,
and W. There is an explicit declaration of the

BEEIN blOCkS 17 U’ VI
identifier B within the BEGIN block V,

explicit declaration is just the block V.

to the identifier B outside of the BEGIN
explicit declaration for

First Edition 9-26

these references.

This figure schows an entire
P, and three internal

and so the scope of this
There are other references
block V, and there is no
Therefore PL/I creates an

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

implicit declaration for B, This implicit declaration is immediately
contained in the external procedure P, To get the scope of this
implicit declaration, we apply the above rules, We start with the
external procedure P, and we cross out the BEGIN block V that
immediately contains an explicit declaration of the same identifier, B.
The result is the scope of the implicit declaration for B, and it is
indicated by the brackets to the right of the program in the figure,
If this program is executed, the PUT statement prints the value 5,
which is the value to which B was set inside the BEGIN block U.

#

P: PROC OPTIONS(MAIN) ;

U: BEGIN;
B = 5;
END U:

\'A BEGIN;
DECLARE B;
B = 10;
END V;

We BEGIN;
PUT LIST(B) ;
END W;
END P;

Scope of an Implicit Declaration of B
Fiqure 9-7

RESOLVING REFERENCES

Whenever any statement of your PL/I program references an identifier
that is not a keyword, the PL/I compiler must match that reference up
with some declaration, explicit, implicit, or contextual. This process
is called resolving the reference,

Multiple Declarations

As a general rule, if a program contains two declarations for the same
identifier, they must be immediately contained in different blocks of
your program. As a result, the two declarations have different scopes,
and, in fact, the scopes never overlap.

9-27 First Edition

PL/I Reference Guide

There are some exceptions to this general rule. Scme of these
exceptions have been illustrated in earlier sections; all of them are
summarized here, The precise rule for two or more explicit
declarations of the same identifier is as follows: two or more
explicit declarations of the same identifier may not be immediately
contained in the same block of your program, unless each pair of such
explicit declarations meets one of the following conditions:

e At least one of the two explicit declarations in the pair is for
a member of a structure. To put it another way, they must not
both be level-1 declarations of the same identifier.

e The two explicit declarations in the pair are for parameters in
the parameter lists of different PROCEDURE or ENTRY statements
immediately contained in the same PROCEDURE block.

e One of the explicit declarations is for a parameter in the
parameter list of a PROCEDURE or ENTRY statement, and the other
is a separate declaration of the same identifier in a DECLARE
statement, the purpose of which is to specify the data type and
aggregate type of the parameter.

e Both explicit declarations are subscripted labels for LABEL
CONSTANT arrays. In this case, it 1is required that the
subscripts be constant, that both references have the same
number of subscripts, and that the values of the subscripts be
different.

All of the above exceptions, except the first, have been illustrated

earlier in this chapter. The next section illustrates the first of
these exceptions.

Structure References

Suppose your program contains the following code and you wish to assign
the value 5 to the element A.B.C. Consider the four different
assignment statements at the end of the code. The reference to A.B.C
in the first statement of this example is called a fully qualified
reference. The others are called partially qualified references, since
one or more intermediate structure names are missing. If the program
contains no other declarations for the identifiers A or B or C, these
four assignment statements are all legal, and they are all equivalent,

First Edition 9-28

PROGRAM BLOCKS, DECLARATIONS, AND SCOPE RULES

DECLARE 1 A,
2 B,
3¢C,
3D,
2 E;

A.B.C = 5;

B.C = 5;

A.C = 5;

C = 5;

If there are other declarations of C in the program, not all of the
references in this example are legal. In such a case, the statement
C = 5 is certainly ambiguous, and is therefore invalid. The statement
A.B.C = 5, which contains the fully qualified reference, is always
valid. Whether the other two statements are valid depends on whether
there are any other declarations in the program that make these
statements ambiguous.

Interleaved Subscripts

Consider this declaration:

DECLARE 1 S(10),
2 A(5),
3 B,
3 C(20),
2 D;

A reference to S(I).A(3).C(K) is said to have interleaved subscripts,
since the subscript lists come between the various identifier qualifier
levels.

PL/I permits such a reference to be written with all subscripts to the
right, For the above example, this would be S.A.C(I,3,K), and, in
fact, PL/I considers these two references to be completely equivalent.

The rules for resolving structure references would then apply to S.A.C,
with the subscripts ignored for the purpose of reference resolution.

9-29 First Edition

Flow of Control

This chapter examines in detail the order in which statements are
executed, Normally, when PL/I executes a program, it executes the
statements of the program sequentially; that is, it executes one
statement of the program, and then executes the statement immediately
following. However, certain types of statements, such as those that
define program loops or certain types of conditions such as program
errors, can alter the sequential execution of a program,

The last part of Chapter 10 presents five statements that direct the
compiler to copy text, replace characters, skip to a new page, or
suppress and restart the printing of a source listing. The statements
do not themselves cause any object code to be generated.

THE IF STATEMENT

Introductory material on the IF statement is in Chapter 4. The format
of the IF statement is

IF expression THEN then-clause;
[ELSE else-clause;]

10-1 Pirst Edition

PL/I Reference Guide

The expression is any PL/I expression. The then-clause and the
else-clause are each one of the following:

® A single executable statement of one of the following types:
ALIOCATE, =, CALL, CLOSE, DELETE, FREE, GET, GOTO, LOCATE, NULL,
OPEN, PUT, READ, RETURN, REVERT, REWRITE, SIGNAL, STOP, or
WRITE,

e Another IF statement, with its own subclauses.

e An ON statement, possibly with its own ON-unit (discussed in
Chapter 13).

e A group of statements beginning with a DO statement and ending
with an END statement (discussed later in this chapter).

@ A block of statements beginning with a BEGIN statement and
ending with an END statement. For performance reasons, a block
is not recommended unless you need the full power of PL/I's
block mechanism.

PL/I executes the IF statement by first determining whether the
expression is true or false. It does this by evaluating the expression
and cornverting it to the BIT data type according to the rules given in
Chapter 6. If the resulting BIT string contains any 1-bit, PL/I
considers the expression to be true; if the BIT string is null, or if
it contains only 0-bits, PL/I considers the expression to be false.

Fiqure 10-1 is a flow chart showing the operation of the IF statement.
PL/I executes either the then-clause or the else-clause, depending upon
whether or not there is a 1-bit in the result obtained by evaluating
the expression and converting it to BIT. After executing either one
clause or the other, control passes to the next statement. Of ocourse,
this does not happen if the clause that is executed specifies a change
in flow of control, such as by means of a GOTO statement.

Then-clause
Any
1-bit in Next
expression statement
?
Else-clause

Flow of the IF Statement
Figure 10-1

First Edition 10-2

FLOA OF CONTRCL:

The IF statement format shown above uses the brackets ([]) to indicate
that you need not specify the ELSE option. If you use an IF statement
with no ELSE option, the execution is as shown in Figure 10-2.

Then-clause

Any
1-bit in

expression
?

Next
.| statement

No

IF With No ELSE
Figure 10-2

Nested IF Statements

If either the then—clause or the else-clause of an IF statement is
another IF statement, we have a case of nested IF statements. This is
illustrated in the following example. The nested IF statements are
combined to test the various possibilities shown in the chart below.

IF X >0 THEN IF X <= 10

&
2
e

Various values of X have the following results:

Tested Value Value Assigned
of X to A

> 0 but <= 10 1

> 10 2

0 3

<0 4

The danger in using nested IF statements is that it is very easy to
make a mistake in matching the ELSE options with the appropriate IF
statements. To understand the problem, look at the next example.

10-3 First Edition

PL/I Reference Guide

There is a missing ELSE clause in that example. To which of the two IF
statements does the single ELSE keyword belong?

IFX>0 THEN IF X <=10
THEN A = 1;
ELSE A = 2;

PL/I always matches each ELSE with the nearest unmatched IF. In the
example, this means that PL/I matches the ELSE with the second IF,
which may or may not have been the programmer's intention. For the
ELSE clause to match with the first IF, there must be a dummy ELSE
clause, as follows. In this example, the line ELSE specifies an ELSE
clause consisting of a null statement. This ELSE matches the second
IF, so that the second ELSE can match the first IF.

IF X >0 THEN IF X <= 10
THEN A = 1;
ELSE;
ELSE A = 2;

THE DO STATEMENT

Introductory material on the DO statement is in Chapter 4.
The DO statement has two purposes:

® To define a statement group. ‘The oollection of statements
between the DO statement and its corresponding END statement
form a group that, for several purposes, can be treated as a
single unit. We have already seen this use with the IF
statement in the THEN and ELSE clauses.

e To provide looping, by means of repetitive execution of such a
group of statements.

DO Statement with No Options

The simplest form of the DO statement is

DO;
statements
END;

In this format, where the DO statement has no options, we have merely
defined a group of statements. This is the most common format used in

First Edition - 10-4

FLON OF OQONTROL

the subclauses of the IF statement. No repetition is provided by this
format.

DO WHILE

The simplest form of iterative DO statement -has only a WHILE option.
The format is

DO WHILE (expression);
statements
END;

Before each iteration of the loop, PL/I must determine whether the
expression is true or false, It does this by evaluating the
expression, converting the result to the BIT data type and then
considering the expression to be true if there is a 1-bit in the
resulting BIT string, false otherwise., As long as the expression
remains true, PL/I continues to re—execute the statements in the group.

The operation of the DO loop shown in the format above is £flowcharted
in Figqure 10-3. Notice that PL/I evaluates the expression before the
first iteration of the loop, and then re—evaluates it after each
subsequent iteration.

Any
1-bit in
expression
?

No

Execute statements
inside DO-group

Next
statement

A

Operation of DO WHILE
Figure 10-3

10-5 First Edition

PL/I Reference Guide

One consequence of these rules is that a zero trip DO loop is possible.
This is a loop in which no iterations are executed. An illustration
follows. If the first GET statement inputs a negative value of A, the
expression A >= 0 is false immediately. As a result, there are no
iterations of the loop, and PL/I immediately transfers control to the
statement following the END statement.

GET LIST(A);
DO WHILE(A >= 0);
PUT LIST(A);
GET LIST(A);
END;

Another consequence of the above rules is that execution of the loop
does not terminate in the middle of an iteration, even if the
expression becomes untrue in the middle of an iteration. Consider the
example below., If, after several iterations, the GET statement inputs
a necative value, the PUT statement still executes., The loop does not
terminate until the test of the expression is made at the completion of
the iteration.

A=1;
DO WHILE(A >= 0);
GET LIST(A);
PUT LIST(A);
END;

DO with Numeric Index Variable

The DO statement in FORTRAN, the FOR statement in BASIC, and the
PERFORM statement in OOBOL give the user the capability of looping
under the control of an index variable,

In PL/I, the simplest format of DO with an index is

DO index = initial-expr [BY by-expr] [TO to-exprl;
statements
END;

In this format, the index is the DO loop variable, PL/I begins
execution of such a group by initializing the value of the index
variable to the value of the initial-expr.

The BY clause and the TO clause are optional. If both are specified,
they may appear in either order. ‘The rules for execution of this
format DO statement depend upon whether the BY option is specified and

First Edition 10-6

FLON OF CONTROL

whether the TO option is specified. The rules are given in the
remainder of this section,

The simplest case,
DO index = initial-expr;

has no BY option or T option. PL/I initializes the index variable to
the value of the initial-—expr, and then executes the statements in the
group once. ‘There are ho multiple iterations., For example, the DO

group

DO X = 50;
PUT LIST(X);
END;

contains a PUT statement that is executed only once, with the value of
X equal to 50.

Next, let us consider the case where you specify only the BY option:
DO index = initial-expr BY by-expr;

If PL/I executes a loop beginning with this DO statement, the result is
usually an infinite loop. PL/I initializes the index variable to the
value of the initial-expr, and then executes the statements inside the
group. After all the statements have been executed, PL/I adds the
value of the by-expr to the index variable, and then executes the
statements in the group again. The process of modifying the index
variable and executing the statements in the group continues
indefinitely, Such a DO loop cannot temminate normally, It continues
looping until either the program executes a GOTO statement that
transfers out of the loop, or until the program is stopped by some
external means.

Figure 10-4 shows, by means of a flowchart, how PL/I executes a DO loop
of this type. For example, the loop

DO K=1BY 1;
PUT LIST(K);
END;

prints the values 1, 2, 3, 4, and so forth, until something external
terminates the program.

10-7 First Edition

PL/I Reference Guide

1

Compute value of
initial-expr and
by-expr

v
Initialize index
variable to
value of initial-expr

S
S

|

Execute statements
inside DO-group

Add value of
by-expr to index
variable

Indexed DO Loop
Figure 10-4

Next, let us consider the case where only the TO option is specified:
DO index = initial-expr TO to-expr;

The TO option specifies an ending value for the index variable, to
terminate the loop normally. PL/I executes the lcop beginning with
this type of DO statement by initializing the index variable to the
value of the initial-expr for the first iteration of the loop, and then
incrementing the index variable by 1 for each new iteration, stopping
when the value of the to-expr is reached.

First Edition 10-8

FLOA OF CONTROL

Figure 10-5 is a flowchart that shows how PL/I executes a DO group that
begins with this type of DO statement. For example, the following
program segment prints the values 1, 2, 3, 4, and 5:

DO K=11T05;
PUT LIST(K);
END;

10-9 First Edition

PL/I Reference Guide

|

Compute value of
initial-expr and
by-expr

\

Initialize index
variable to value of
initial-expr

Is
value of
index variable No

< = value of
to-expr
?

Yes

Execute statements
inside DO-group

\

Add 1 to index
variable

Next statement |«=

DO Without BY
Fiqure 10-5

As you can see from the flowchart, PL/I decides whether to execute each
new iteration of the statements in the DO group by testing whether the

First Edition 10-10

FLON OF QONTROL

index variable is less than or equal to the value of the to-expr. This
means that the loop terminates even if the index variable comes to
exceed the value of the to-expr, without ever actually equalling it.
For example, the next program segment prints the values 2.5, 3.5, 4.5,
and 5.5. 'The variable X will never actually equal 6, because the loop
terminates after 5.5 has been printed. Although the last printed value
is 5.5, the variable X has a value of 6.5 as the loop is terminated.

DECLARE X FIXED DECIMAL(7,1);
DO X = 2.5 TO 6;
PUT LIST(X);
END;

The initial-expr and the to-expr may be arbitrary PL/I expressions,
PL/I evaluates each of them only once, when the DO loop is entered. To
understand the significance of this, consider the following example.
The loop in that example prints the values 1, 2, 3, 4, and 5. Note
that PL/I evaluates the to-expr only once to get the value 5, and does
not re-evaluate the expression after subsequent loop iterations.
Therefore, the change in the value of M to 2 during execution of the
statements in the group has no effect on the value of the to-expr.

M= 5;
DOK=1T0 M;
PUT LIST(K);
M= 2;
END;

It is apparent from the flowchart in Figure 10-5 that a zero-trip DO
loop is possible. Consider the program segment below. The way in
which PL/I executes the loop depends upon the value assigned to A as a
result of the GET statement, If A equals 7, the loop prints the values
5, 6, and 7. But if A equals 2, the loop sets K to the value 5 but
does not execute the PUT statement at all, resulting in a zero-trip
loop.

GET LIST(A);
DO K =5 TO A;
PUT LIST(K);
END;

Bs the flowchart shows, the index variable always has a well-defined
value when the loop terminates. Upon normal termination of the loop,
the index variable always exceeds the value of the to-expr. This means
that, except in the =zero-trip case, the final value of the index
variable is one greater than the value it had during the last iteration
of the loop. 'This is illustrated by the next example, where the loop

10-11 First Edition

PL/I Reference Guide

terminates with a value of K equal to 51. Therefore, the £final PUT
statement prints the value 51.

DO K =1 T0 50;
END;
PUT LIST(K);

The final format uses both the TO and BY options:

DO index

initial-expr BY by-expr TO to—expr;
or

DO index

initial-expr TO to—expr BY by-expr;

This is the most complicated case, but it is similar to the preceding
case (TO option but no BY option), except that, at the end of each
iteration of the loop, PL/I increments the index variable by the value
of the by-expr, rather than by 1.

For example, the next loop prints the values 1, 4, 7, 10, and 13. At
normal termination of the loop, the value of K is 16.

DO K=1BY 3 TO 14;
PUT LIST(K);
END;

There is an important special case, the case where the value of the
by-expr is negative. For example, the loop

DO K=5T01BY -1;
PUT LIST(K):;
END;

prints the values 5, 4, 3, 2, and 1. When the loop terminates
normally, the value of K is 0.

The rules for when the expression in the BY option is negative are
similar to those for when no BY option is used, except that

® PL/T decreases, rather than increases, the value of the index
variable at the end of each iteration; and

@ The test for loop termination is whether the index variable is
less than, rather than greater than, the value of the to-expr.

First Edition 10-12

FLON OF CONTRCL

WHILE Option With an Index Variable

Consider the following program segment:

SUM = 0;
DO K =1 TO 15 WHILE(SUM <= 20);
SUM = SUM + K;
END;

PUT LIST(K, SUM):

The loop in this example contains two different conditions for
teminations

e The value of K exceeds 15, as specified by the TO option.
e The value of SUM exceeds 20, as specified by the WHILE option,

PL/I temminates the loop as soon as either of these conditions occurs,
whichever comes first,

In the case of the program segment just above, the following happens:
during the sixth iteration, when K equals 6, the statement

SUM = SUM + K;

sets the value of SUM to 21. As a result of the specification in the
DO statement, PL/I increments the value of K to 7. The loop terminates
at this point, not because of the TO option, but because of the WHILE
option, since the value of SUM exceeds 20. At this normal termination,
the value of K is 7 and the value of SUM is 21. These are the values
that are printed by the final PUT statement in the example.

To clarify the precise rules, suppose your DO statement has the
following format: _

DO index = initial-expr TO to—expr WHILE (while—expr);

Figure 10-5 was a flowchart showing how PL/I handles this DO statement
format when there is no WHILE clause. Figure 10-6 is a modification of
that flowchart to show what happens when there is a WHILE clause,
Notice in particular that PL/I evaluates the initial-expr and the
to-expr only once, when the loop begins, (This is also true of the
by-expr when you specify a BY option.) On the other hand, the
while—expr is evaluated for each iteration of the loop.

10-13 First Edition

PL/I Reference Guide

Similar rules apply to other cases when you add a WHILE clause to an
index variable specification. For the format

DO index = initial-expr WHILE(while—-expr);

PL/I executes the statements inside the group at most one time. If the
while—expr is true, PL/I executes the statements once. There is no
execution at all if that expression is false,

BAs we have already seen, the case where there is a BY clause but no 71O
clause leads to an infinite loop. However, this is no longer the case
when you add a WHILE clause. A group beginning with a statement in the
format

DO index = initial-expr BY by—expr
WHILE (while-expr) ;

repeats indefinitely as long as the while—expr remains true. When it
becomes false the loop terminates normally. The next illustration
contains a DO statement of this type. This loop terminates normally
after six iterations, because the value of SUM exceeds 20. The HUT
statement in that example prints the values 7 and 21.

SUM = 0;

DO K = 1 BY 1 WHILE(SUM <= 20);
SUM = SUM + K;
END;

PUT LIST(K, SUM);

First Edition 10-14

|

Compute value of initial-expr
and to-expr

/

Initialize index variable to
value of initial-expr

v

/

Is
value of
index variable’

No

FLON OF CONTRCL

< = value of
to-expr
?

Evaluate while-expr and
connect value to BIT

No

value of
while-expr,

Execute statements
inside DO-group

/
Add 1 to index

variable

Next statement <=

DO WHILE With an Index Variable

Figure 10-6

10-15

First Edition

PL/I Reference Guide

The Complete Do Statement

The full format of the DO statement is

1. WHILE (expression) [UNTIL(expression)]
DO ;
UNTIL(expression) [WHILE(expression)]
2. TO expr [BY expr]
DO index = expr [WHILE(expr)] [UNTIL(expr)]:
BY expr [TO expr]
REPEAT expr

The REPEAT clause is explained below.

The UNTIL clause is a Prime extension and is similar to WHILE. The
expression following UNTIL is a logical expression. It allows the
programmer to assure that the DO statement does not loop indefinitely,
by establishing a condition for termination. The expression after
UNTIL is evaluated after each execution of DO and, when it is true,
control passes to the statement following DO. An UNTIL clause thus
ensures that the DO group is executed at least once. An example is

DO UNTIL(K > 100);
K=K+ 1;
END;

Index Variable with REPEAT Option

The REPEAT option is a more general form of the BY option. While the
BY option allows you to add a given value to the index variable after
each iteration of the loop, the REPEAT option lets you modify the index
variable in any way you want. For example, consider

DO K = 1 REPEAT 2 * K;
PUT LIST(K):
END;

This is an infinite loop. The initial value of K is 1, and after each
iteration, PL/I computes the value of the expression 2 * K and assigns
that as the new value of K. This means that, for each repetition, the
value of K is twice the vwvalue of K from the preceding iteration.
Therefore, this loop prints the values 1, 2, 4, 8, 16, 32, 64, ...,
looping indefinitely until the program halts for an external reason.

First Edition 10-16

FLOW OF CONTRCL

PL/I does not permit you to use the TO option with the REPEAT option.
Therefore, you have to use the WHILE option to prevent an infinite
loop. Consider this example:

DO K = 1 REPEAT 2 * K WHILE(K <= 32);
PUT LIST(K);
END;

This loop prints the values 1, 2, 4, 8, 16, and 32, After that, the
loop terminates, since the value of K is 64.

To make the rules precise, suppose that the format of the DO statement
is as follows:

DO index = initial-expr REPEAT repeat—expr
WHILE (while—expr) ;

Then PL/I executes the loop as specified in the flowchart in Figqure
10-7. Notice that the repeat-expr is like the while-expr, and unlike
the by-expr, in that it is evaluated for each iteration of the loop.

10-17 First Edition

PL/I Reference Guide

|

Compute value of initial-expr

Initialize index variable to
value of initial-expr

B

\

Evaluate while-expr and
connect value to BIT

No

value of
while-expr

Execute statements
inside DO-group

/

Evaluate repeat-expr

y

First Edition

Set index variable to
value of repeat-expr

Next statement <

The REPEAT Option
Figure 10-7

10-18

FLON OF CONTRCOL

The importance of the REPEAT option is that, while the BY option can
only be used to add a value to the index variable, the REPEAT option
can make each new value of the index variable any function of the
preceding value. Therefore, we can use samething like

DO K = 1 REPEAT(F(K)) WHILE(K > 0);

END;

which actually uses a user—defined function F to compute each new value
of K.

Index Variable with Multiple Specifications

We can now summarize all the index variable formats that we have seen
so far in this chapter as being in the format

DO index = specification;

where the specification includes, as we have seen, an initial-—expr with
optional BY, TO, REPEAT, and WHILE clauses.

We can now expand this format, PL/I permits you to use multiple
specifications of this type in a single DO statement, with the
specifications separated by commas. For example, in the loop

DDOK=1T03, 8 T010;
PUT LIST(K);
END:;

the DO statement has two specifications, 1 TO 3 and 8 TC 10. The loop
prints the values 1, 2, 3, 8, 9, and 10.

Another simple example is

II) K = 4, 25, 3, —18;
PUT LIST(K);
END;

This DO statement has four specifications, 4, 25, 3, and =18, Each of
these four specifications is of the type that has only an initial-expr,
with no optional BY, TO, REPEAT, and WHILE clauses. The loop prints
the values 4, 25, 3, and -18. ‘

10-19 First Edition

PL/I Reference Guide

To summarize, the format of the DO statement with multiple
specifications is

DO index = specification, specification, ...;

PL/I iterates the loop for each specification in turn. After one
specification terminates, PL/I goes on to the next one in the IO
statement. FEach specification has an initial-expr, with optional 10,
BY, REPEAT, and WHILE clauses. When the last specification terminates,
the entire loop is considered to have terminated normally.

Nonnumeric Index Variables

Tn all the examples so far, the index variable has had a numeric data
type. PL/I permits you to use an index variable with any data type,
including string, pictured, and even noncomputational data types. 1In
such cases, you usually use the REPEAT option to define the iteration
rule, and the WHILE option to define the termination condition for the
loop. You may not use the TO or BY clause with nonnumeric index
variables.

In the next example, C is an index variable with the CHARACTER VARYING
data type. During the first iteration of the loop, C has its initial
value of 'A'. During subsequent iterations, the value of C is 'BB',
'ABB', 'ABBB', and so forth. The loop prints each of these values,
terminating normally after the value 'ABBBBBB' has been printed.

DECLARE C CHARACTER(200) VAR;
DO C = 'A' REPEAT (C || 'B') WHILE(LENGTH(C) <= 7);
PUT LIST(C);
END;

In list processing applications, it is common to use the REPEAT and
WHILE options in a loop to follow along a chain of BASED blocks. For
example, suppose your program contains these declarations:

DECLARE (P, BASE) POINTER;
DECLARE 1 REC BASED,

2 NEXT POINTER,
2 VALUE FIXED;

First Edition 10-20

FLON OF CQONTRQL

These declarations define a linked list that might be pictured as in
Figqure 10-8.

BASE

A Linked List
Figure 10-8

If you wish to print out all the VALUE fields in each of the blocks of
the linked list, you can use the following locp. In this loop, the
POINTER variable P initially points to the first block in the linked
list., For each subsequent iteration, P points to the next block in the
list, The loop terminates after the last block in the 1list has been
processed.

DO P = BASE REPEAT (P->REC.NEXT) WHILE(P "= NULL()):
PUT LIST(P->REC,VALUE);
END;

For a data type 1like ENTRY VARIABLE, you can use multiple
‘specifications in your DO statement if you wish to have a loop index
variable with this data type. for example, if EV is a variable with
the ENTRY VARIABLE data type, and if El, E2, and E3 are ENTRY CONSTANT
values, the following loop can be used:

DOEV=E1, E2, E37
CALL EV;
END;

In this DO statement, there are three specifications, each one
consisting of an initial-expr.

DO Statement with the IF Statement

Earlier in this chapter, we illustrated the IF statement with THEN and
ELSE clauses containing only the simplest forms of DO groups. In fact,
any form of the DO statement may be used with the IF statement. For
example, the program segment below is legal.

10-21 First Edition

PL/I Reference Guide

IFA >0
THEN DO K = 1 TO 50;
PUT LIST(K);
END;

ELSE DO K = 50 TO 1 BY -1;

PUT LIST(K);
END;

THE GO TO STATEMENT

Subject to certain restrictions, use the GOTO (or GO TO) statement to
transfer control from one part of your program to any other part, The
restrictions are that you may not use GOIO to transfer into an inactive
group or block. (Active and inactive blocks are presented below in
Invocation and Termination of Blocks,)

The format of the GOTIO statement is

GO TO target;
or

GOIO taraget;

where target is a LABEL (ONSTANT, LABEL VARIABLE, or an expression
whose data type is LABEL.

Normal and Abnormal Termination of a Group or a Block

When a GOTO statement transfers control out of a group or a block, the

group or block is said to terminate abnormally. Consider the next

example. The lcop in that example can terminate in two different ways:
e Normally, when the value of K exceeds the value of N;

e Abnormally, when the IF statement executes and the test for SUM
being greater than 1000 is successful.

GET LIST(N);
SUM = 0;

THEN GO TO XL;
H—': e e o

First Edition 10-22

FLO4 OF CONTRCL

Whether the loop actually terminates normally or abnormally depends
upon the value of N set as a result of the GET statement.

Same DO loops cannot terminate normally, since the DO statement
provides no means for normal loop termination, Some examples of these

DO statements are

DO K=1BY1;
or
DO WHILE(2 = 2);
or

DO X = 2 REPEAT 2 * X;

Normal loop termination from a loop beginning with any of these IO
statements is impossible, since none of these statements specifies any
termination condition that will ever be satisfied. Such a loop will
always be an infinite loop, unless the statements inside the group
include a GOTO statement that can terminate the loop abnormally.

Tt is possible for a single GOTO statement to terminate several groups
and blocks simultaneously. When the following sample program segment
executes, the DO loop calls procedure Q, which calls procedure R. The
COTO statement in procedure R terminates the DO group, as well as the
two PROCEDURE block invocations for Q and R.

P: PROC OPTIONS(MAIN);
D K=11T0 10;
CALL Q;
END;
IB: ...
Q: PROCEIURE;
CALL R;

END Q3

R: PROCEDURE;
GO TO 1IB;
END R;
END P;

10-23 First Edition

PL/I Reference Guide

Whenever a block temminates abnormally, PL/I executes the block
epilogue, just as if the block had terminated normally. The block
epilogue is described later in this chapter.

The GOTO Statement with LABEL Expressions

Usually the target of a GOTO statement is a LABEL constant. In fact,
any expression that has a LABEL value may be used. For example, any of
the following can be used:

6 LABEL: CONSTANT

® Member of a LABEL (ONSTANT array

6 LABEL VARIABLE

® A reference to a user-defined function that returns a LABEL
value

THE LEAVE STATEMENT —— PRIME EXTENSION

This statement provides a means of terminating a group abnormally. The
syntax is

LEAVE;

It causes program execution to be transferred to the statement
following the END statement for the current group. In the next
example, if ENTRYl equals 0, the next statement executed is the PUT
statement.

DO X =1 TO 100;

GET LIST(ENTRY1):;

IF ENTRY1 = 0

THEN LEAVE;

TOTAL = TOTAL + ENTRY1;
END;
PUT SKIP LIST('END OF RUN'):

First Edition 10-24

FLON OF CONTRCL

Termination of Multiple Loops with LEAVE

The LEAVE statement in the form just described terminates the innermost
DO/END loop in which the DO statement lies. A more general form of the
LEAVE statement is

LEAVE ident;

The "ident" must be the label of a DO statement such that the LEAVE
ctatement lies within the corresponding DO/END group, When this form
is used, it is possible for a single LEAVE statement to terminate
several DO/END groups simultanecusly. Consider the following example:

OLUP: IO

|

K
K, J) =0
THEN CALL RND(A, K);
FLSE LEAVE OLUP;
END;
END;

Within this example, the statement
LEAVE OLUP;

if executed, terminates both DO/END groups, and control will pass to
the statement following the second END statement.

THE SFLECT STATEMENT —- PRIME EXTENSION

SELECT provides a case selection. A SELECT block has one of two
formats:

1. SELECT;
WHEN (if-expression list) statement;

[OTHERWISE statement;]
END;

10-25 First Edition

PL/I Reference Guide

2. SELECT (value);
WHEN (value list) statement:

[OTHERVISE statement;]
END;

In both SELECT formats, the statement is defined to be any simple
statement not including DECLARE, END, ENTRY, or PROCEDURE, The
statement may include a DO block or a BEGIN block of statements, or be
an IF statement. The if-expression list in the first format is either
a single expression that evaluates to a BIT(l) result as in an IF
statement, or a list of such expressmns separated by commas., The
value in the second format is any expression that has a scalar value,
and value list is either a value or a list of values separated by
commas,

A SELECT block is traversed by executing each WHEN clause until a TRUE
condition is found. A TRUE condition happens when the if-expression
part evaluates to '1'B or a value in the WHEN clause equals a value in
the SELECT statement. If a value in the WHEN clause is not of the same
data type as the value in the SELECT statement, it is converted to the
data type of the latter before the comparison is done. If none of the
WHEN clauses is satisfied, if an OTHERWISE clause exists, the OTHERWISE
clause is executed; if there is no OTHERWISE clause, ERROR is
signalled. After either a WHEN clause or the OTHERWISE clause 1is
executed, control passes to the first executable statement following
the SELECT block.

The following example illustrates the second type of SELECT block:

GET LIST(INPUT VALUE) ;

SELECT (INPUT_VALUE) ;

WHEN (VALUE_1) CALL UPDATE_RIN;

WHEN (VALUE_2) CALL DELETE_RTN;

OTHERWISE PUT SKIP LIST('ERROR —— ENTRY IGNORED');
END;

If the INPUT VALUE is equal either to VALUE.l or to VALUE 2, the
appropriate subroutine is called. 'The OTHERNISE statement catches
erroneous input.

First Edition 10~-26

FLON OF CONTROL

PL/I PROGRAM BLOCKS

This section and the next describe in detail how PL/I invokes and
terminates program blocks. These sections tie together information
presented in other chapters on such subjects as procedures, ON-units,
and storage management. They also provide those readers who are
interested with the abstract models on which the PL/I block mechanism
is based.

Types of Blocks

PL/I recognizes three types of blocks:

@ A PROCEIURE block begins with a PROCEDURE statement and ends
with an END statement,

e A BEGIN block begins with a BEGIN statement and ends with an END
statement.

@ An ON-unit is a collection of statements, beginning with a BEGIN
statement and ending with an END statement, which an ON
statement specifies as the action to be taken when an

appropriate error or oondition occurs. The ON-unit 1is
considered to be a different kind of block from an ordinary
BEGIN block.

Even though the BEGIN block and the ON-unit both begin with a BEGIN
statement, PL/I treats these as two quite different types of blocks.
When we use the term BEGIN block, we will be referring to one that is
not an ON-unit.

Invocation and Termination of Blocks

When your program invokes a block, that block is said to become active,
The block remains active until your program terminates it.

The method for invoking a block depends upon the type of block. The
methods are as follows:

@ Your program invokes a PROCEDURE block by referencing one of the
entry points. If the entry point is a subroutine entry point,
the reference should be by means of a CALL statement. For a
function entry point, your program should reference the function
as part of an expression in any type of statement.

@ An ON-unit is invoked when the appropriate error or condition

occurs. Your program can invoke an ON-unit artificially by
means of a SIGNAL statement.

10-27 First Edition

PL/I Reference Guide

e Your program invokes a BEGIN block by executing the BEGIN
statement that begins the block.

It is possible to terminate a block either normally or abnormally.
Your program terminates a block abnormally by means of a GOTO statement
that transfers control outside of the block.

The way to terminate a block normally depends upon the type of block.
The various ways are as follows:

e Your program terminates a PROCEDURE block by executing a RETURN
statement. If the PROCEDURE block was invoked as a subroutine,
the RETURN statement may not specify an expression; if the
FROCEDURE block was referenced as a function, the RETURN
statement must specify an expression. If the procedure was
invoked as a subroutine, executing the END statement is
equivalent to executing a RETURN statement.

e Your program terminates an ON-unit normally by executing the END
statement. For some ON conditions, normal termination is
illegal. A RETURN statement is illegal inside an ON-unit,
unless it appears inside a PROCEDURE block that is itself inside
the ON-unit,

e Your program terminates a BEGIN block normally by executing the
END statement. If the BEGIN block is inside a PROCEDURE block,
executing a RETURN statement terminates both the BEGIN block and
the PROCEDURE block. In this case, both terminations are
normal,

Prologues, Epilogues, and Storage Management

When your program invokes a block, PL/I executes a prologue before
executing any of the statements inside the block. The prologue dJoes
the following things:

1. PL/I allocates a dynamic storage area, or DSA, This is
described more fully in the next section.

2. If the block is a procedure, PL/I allocates storage for the
parameters and establishes pointers to the arguments from the
parameters. This is described in Chapter 8. The storage
allocated for the parameters is usually part of the DSA.

3. PL/I allocates storage for all AUTOMATIC variables ocontained
immediately in the block. This storage is usually part of the
DSA. PL/I then initializes all of the AUTOMATIC variables that
are declared with the INITIAL attribute,

When the block terminates, either normally or abnormally, PL/I executes

an epilogue for the block. The epilogue frees the DSA, and so frees
all AUTOMATIC and parameter storage allocated by the prologue.

First Edition 10-28

FLOA OF CONTROL

Recursion

Recursion occurs when a block that is already active is invoked again.
The result is that there can be two or more simultaneous activations of
the block.

Chapter 8 illustrates a recursive PROCEDURE block, An ON-unit will
also be invoked recursively if the same condition occurs while the
ON-unit is already active,

Prime procedures are recursive, whether the RECURSIVE option is
selected or not,

The next section explains more fully how recursion works.

STATIC AND DYNAMIC PROGRAM BLOCK STRUCIURE

This section is provided for programmers who need to understand exactly
how the PL/I block structure works, especially when recursion is
involved, The vast majority of programmers need only the s1mp1er rules
given earlier in this chapter.

This text defines the PL/I block structure rules by using an abstract
model of how a PL/I program executes with regard to its program block
structure, The abstract model is simply a diagram representing both
the static and dynamic block structures of the program. The following
paragraphs describe how the static diagram is defined when the program
is compiled, and how the dynamic diagram changes as the program
executes,

It is not the purpose of this section to describe the internal
implementation of PL/I. The actual PL/I compiler you are using may or
may not use data structures that oorrespond to the block structure
diagrams given in this chapter. These diagrams are only a model of how
the PL/I system produces its final results.

Block Structure versus Block Invocations

Consider the program segment shown in Figure 10-9, This program
consists of a main procedure called M, with a subprocedure called A.

10-29 First Edition

PL/I Reference Guide

M: PROCEDURE OPTIONS(MAIN) ;
CALL A;

A: PROCEDURE RECURSIVE;
END A;
END M;

A Program With Two Blocks
Figure 10-9

Fram the point of view of the PL/I call system, this program ocontains
two blocks, M and A, with A nested inside M.

From the point of view of the PL/I runtime system, however, the program
looks somewhat different, The program begins executing when procedure
M is invoked. When M executes the CALL statement, it invokes the
subprocedure A, Since A is RECURSIVE, it is possible for A to call
itself,

The concept that the program contains two blocks, one nested inside the
other, is a static concept in that it does not tell you how the program
executes. The block invocation described below is a dynamic concept
because the block invocation structure of a program causes it to change
constantly as the program executes.

In our example, the program begins executing with the invocation of
block M, With the CALL statement there is an invocation of block A,
If block A invokes itself recursively, there are several simultaneous
invocations of block A. Each time a RETURN is made from A, one of the
block invocations disappears, until finally the program returns to M,
at which time there is, once again, one block invocation.

Active and Inactive Blocks

During execution of a program, a block is said to be active if an
invocation of it exists. A block is inactive when no invocation of it
currently exists. During execution of a program, a block may change
from inactive to active or from active to inactive many times.

If, during execution of the program, there exists more than one
simultaneous invocation of a block, then at that point the block is
said to be recursively active.

In Figure 10-9 above, the program begins executing when M becomes
active. When the CALL statement is executed, block A becomes active.
If A calls itself, block A becomes recursively active. As the

First Edition 10-30

FLON OF CONTROL

invocation of A terminates, the status of A moves from recursively
active to nonrecursively active to inactive.

Inheriting Variables

When your program invokes a new block, PL/I allocates a dynamic storage
area (DSA) containing all the AUTOMATIC variables declared within that
block.

If the block is an internal block (that is, not an external procedure),
and if a statement within the block uses a variable not explicitly
declared within the block, then it inherits that variable from the
outer block that contains it.

Consider the program in Figure 10-10.

M: PROCEDURE OPTIONS(MAIN);
DECLARE X;
X = 5;
CALL A;
A: PROCEDURE;
DECLARE X;
X = 10;
CALL B;
RETURN;
END A;
B: PROCEIURE ;
PUT LIST(X):
END B;
END M;

Invoking and Containing Blocks
Figure 10-10

This program consists of an external procedure M, and two internal
blocks called A and B, Notice that there are two declarations of X,
one contained immediately in M and the second contained immediately in
block A. When this program executes, block M invokes block A, which
invokes block B. 1Inside B, the variable X used is inherited from the
containing block, M, rather than the invoking block A. Therefore, the
PUT LIST statement prints the value 5.

10-31 First Edition

PL/I Reference Guide

We use the phrase envirommental block invocation to specify the block
invocation from which a new block inherits variable values. ‘That is,
in Fiqure 10-10, when block B is invoked, there are two important
previous block invocations to consider:

e The invoking block invocation,

This is the block invocation that invoked the new block. In
this example, block B is invoked by an invocation of block A.

e The envirormmental block invocation.

This is the invocation from which the new block inherits the
values of variables not declared within the new block. In our
example, when block B is invoked, the envirommental block
invocation is an invocation of block M.

The invoking block invocation can refer to any block in the program,
while an envirommental block invocation must refer to the block that
contains immediately the new block being invoked.

Note the difference between the invoking block invocation and the
enviromental block invocation. Each of these invocations contributes
something to the new block. The invoking block contributes arguments,
established on-units, and values of on-condition built-in functions.
The envirommental block contributes values of variables not explicitly
declared within the new block.

The following sections use this abstract model to describe very

precisely how the invoking and envirommental block invocations
contribute these things to the new block.

The Static Block Structure Tree

The abstract model uses two different kinds of diagrams. The first
kind of diagram is called the static block structure tree, It
represents the block structure of the program as the compiler sees it.

For example, suppose your PL/I program consists of a main procedure
called A, which contains two internal procedures called B and C.
Figure 10-11 is the static block structure tree for this program. The
root node of this tree represents the main procedure, and each branch
represents a block contained immediately within the block represented
by the root.

First Edition 10-32

FLOW OF QONTRCL

Two Blocks Contained Within a Third
Fiqgure 10-11

Let's now consider a more complicated example, Figure 10-12 represents
a program whose main procedure is called A. This main procedure
contains immediately two internal blocks called B and D. These
internal blocks contain their own internal blocks as follows:

e Block B contains immediately an internal block C.

e Block D contains immediately two internal blocks, E and F.

Contairment and Immediate Contairment
Fiqure 10-12

10-33 First Edition

PL/I Reference Guide

Notice that the main procedure A contains five internal blocks, B, C,
D, E and F, but only two of these blocks, B and D, are contained

immediately.

If your PL/I program oontains several external procedures, each
external procedure is represented by the root node of a separate tree
in the static block structure tree diagram. For example, Figure 10-13
is the static block structure tree diagram for a program containing
three external procedures, A, D and F. These external procedures have
the following structures:

e The main procedure A contains immediately two internal blocks, B
and C,

e The external procedure D contains immediately a single block, E.

e The external procedure F contains immediately two internal
blocks, G and H, The internal block H contains immediately two
blocks internal to it, I and J.

External Procedures
Figure 10-13

The static block structure tree diagram is the first step in our
abstract model of how the PL/I Dblock structure mechanism operates.
This part of the model describes the block structure of the program in
the way the compiler sees it. We now turn to the block structure of
the program as it is seen at runtime.

Dynamic Block Invocation Chain

Consider the program illustrated in Figure 10-14. This program
contains a main procedure A, and two internal blocks, B and C.

First Edition 10-34

FLON OF CQONTRCL

A: PROCEDURE OPTIONS(MAIN) ;
DECLARE VALUE INIT(0):
B: BEGIN;
DECLARE M INIT(2):;
CALL C(M);
M=M+1;
CALL C(M);
END B;
PUT LIST(VALUE) ;
C: PROCEDURE (K) RECURSIVE;
DECLARE (L, K) FIXED:
DDL=1TOK~=-1;
CALL C(L);
END;
VALUE = VALUE + K:
RETURN;
END C;
END A;

Block Invocation Chain
Figure 10-14

Figure 10-15 is the static block structure tree diagram for this
program., The program begins when PL/I invokes block A. When block A
invokes block B, there are two active blocks, If block invocations
continue, we may have several active blocks at the same time.

Block Invocation —— Static Diagram
Figure 10-15

We represent the active block invocations in a diagram picturing each
block invocation as a circle pointed to by its invoking block.

For example, Figure 10-16 is the diagram of the dynamic block
invocation chain for the program illustrated above at the point where

10-35 First Edition

PL/I Reference Guide

block A has invoked block B. The numbers inside the circles are what
we call the block invocation numbers. FEach such number simply
represents the total number of block invocations that have occurred at
the point where this block invocation occurs.

O—O

A B

Block Invocation =— Dynamic Diagram
Figure 10-16

As Figure 10-16 illustrates, block invocation number 1 is an invocation
of block A, It has invoked block invocation number 2, which is an

invocation of block B.

If block B now invokes block C, the dynamic block invocation chain
diagram is as shown in Figure 10-17. This diagram shows three block
invocations, one for each of A, B and C.

B C

A

Three Block Invocations
Figure 10-17

If execution of the program continues, the diagram changes. This is
illustrated in Figure 10-18. Line 4 of this figqure represents what
happens after block C invokes itself recursively. There are then four
block invocations, and two of these invocations are for block C. When
each of these invocations temminates, the result is shown in lines 5
and 6 of the diagram. Notice that the diagram in line 6 is identical
to the diagram in line 2.

Line 7 shows what happens when block B invokes block C again, Notice
that the block invocation number is now 5, since this is the fifth
block invocation that has occurred since execution of the program
began.

Pirst Edition 10-36

FLON OF CONTROL

Representing the Envirommental Block Invocation

In Figure 10-18, as discussed, the dynamic block invocation chain
diagram indicates each block invocation and its invoking block
invocation. It is also important that the diagram indicate, for each
block invocation, its envirommental block invocation.

Action Invocation Chain Diagram
1. Program begins @
A
2. Ainvokes B @__,@
A B
3. B invokes C CD__,@—,@
: A B C
4. C invokes C @—»@_—p
recursively
A B c C

5. C returns 1 :/2\ >(3
- O—0—0
6. C returns .
O—@

A
et O—O—O©
A B C

Changing Block Invocations During Execution
Figure 10-18

10-37 First Edit.on

PL/TI Reference Guide

Dynamic Block
Action Invocation Chain Diagram

1. Program begins @

2. A invokes B

B invokes C

w

4. C invokes C @___, e
recursively

A B Cc
5. C returns (@———’

A B C
6. C returns

A B
7. B invokes C 2 5

again &/
A B C

Envirormental Block Invocations
Fiaqure 10-19

First Edition 10-38

FLON OF CONTRCL:

We use the convention that the circle representing a block invocation
will point back to the circle representing its enviromental block
invocation. If we modify the diagrams in Figure 10-18 to use this
convention, the result is as shown in Figure 10-19. Notice that, for
example, in line 4 of this £fiqure, there are three invocations of
internal blocks, and for each of these, the envirommental block
invocation is block invocation number 1. For this reason, each of the
circles representing block invocations 2, 3, and 4 points back to the
circle representing block invocation number 1.

If a block invocation calls an external procedure, there is no
envirommental block invocation.

Representing the Dynamic Storage Area

One dynamic storage area (DSA) is allocated for each block -invocation,
The DSA contains the parameters and AUTOMATIC storage allocated for
that block invocation.

In our dynamic diagram, we may indicate the DSA for each block
invocation as a box attached to the circle that represents the block
invocation. For example, consider line 4 of Figure 10-19. At the
point where the RETURN statement in procedure C is executed, the
diagram may be modified as shown in Figure 10-20. Notice that each of
the block invocation circles has a DSA box attached to it, and the box
shows the variables contained in the DSA. In the case where there are
two or more invocations of the same recursive block, the DSAs for the
different invocations will contain the same variables, possibly with
different values. 'This is illustrated in Figure 10-20 in block
invocation numbers 3 and 4.

DSA DSA DSA DSA
VALUE=1 M=2 K=2 K=1
L=1 L=1

Dynamic Storage Area (DSA) for Block Invocations
Figure 10-20

10-39 First Edition

PL/I Reference Guide

How LABEL Variables Are Implemented

A GO TO statement may terminate an active block. Such a termination is
said to be an abnormal termination.

If the target of a GO TO statement is a LABEL constant, as is usually
the case, then it is always clear to what block invocation the
statement is transferring. If