
Prime Computer,Inc.

FDR3059-101B

Assembly Language
Programmer’s Guide

Rey. 16.3

 



TheAssemblyLanguageProgrammer's Guide



The
AssemblyLanguage



Published by Prime Computer, Incorporated

Technical Publications Department

i45 Pennsylvania Avenue, Framingham, MA 01701

Copyright © 1981 by Prime Computer, Inc.
Third Printing January 1981

All rights reserved.

The information contained in this documentis subject

to change without notice and should not be construed

as a commitment by Prime Computer, Incorporated.

Prime Computer assumesno responsibility for any

errors that may appear in this document.

This document reflects the software as of Master Disk

Revision Level 16.

PRIMOS®is a trademark of Prime Computer, Inc.

Credits.

Concept and Production

William I. Agush

Typesetting.

Allied Systems

Covers.

Mark-Burton

Text.

Eastern Graphics

1 March, 1979 i-5 FDR 3059



1 INTRODUCTION

Introduction 1-1
Organization and usage 1-1

Related documents 1-1

2 CONVENTIONS

Prime conventions 2-1

Instruction description conventions 2-1

Function group definitions 2-2
Table 2-1. Function definitions 2-3

Format definitions 2-3

Table 2-2. Format definitions 2-3

General data structure 2-3

Table 2-3. Data structures 2-4

Processor characteristic 2-5

Table 2-4. Processor characteristics 2-5

Terminal session example 2-5

3 ASSEMBLING

Invoking the Prime Macro Assembler (PMA) 3-1
File usage 3-1
Assembler messages 3-2
Listing format 3-2

Figure 3-1. A-Register details 3-3
Figure 3-2. Example of assembly listing 3-4

4 LOADING R-MODE PROGRAMS

Introduction 4-1
Using the loader under PRIMOS 4-1
Normal loading 4-1
Load maps 4-3
Loader concepts 4-4

Figure 4-1. Examples of load maps 4-7

Command summary 4-8

5 LOADING SEGMENTED PROGRAMS

Introduction 5-1
Using SEG under PRIMOS_ 5-1
Normal loading 5-2
Load maps 5-3

Figure 5-1. Example of load map 5-5

Advanced SEG features 5-7
Command summary 5-8
SEG-level commands 5-9
LOAD subprocessor commands 5-10
MODIFY subprocessor commands 5-13

FDR 3059 i-6 1 March, 1979



Execution of unsegmented runfiles 6-1
Execution of segmented runfiles 6-2
Installation in the command UFD (CMDNCO0} 6-2
Run-time error messages 6-5

7 DEBUGGING

Tools 7-1
Advanced debugging techniques 7-2
Debugging-PRIMOSsevere errors 7-2
Memory overflow errors 7-3.

8 INTERFACING WITH THE SYSTEM LIBRARIES

Table 8-1. System libraries 8-1
Figure 8-1. SR Subroutine CALL conventions 8-2
Figure 8-2. VI subroutine CALL conventions 8-3

9 DATA AND INSTRUCTION FORMATS—SRVI

Data structures 9-1

Processor characteristics 9-8
Instruction formats—I-mode 9-16

Table 9-1. Address formation special case selection 9-18

10 MEMORY REFERENCE CONCEPTS(SRV)

Background concepts 10-1
Table 10-1. Memory referenceinstruction format 10-2

Memory reference instruction formats 10-4
Table 10-2. V-mode two word memory reference 10-9

Addressing mode summaries and flow charts 10-10
Figure 10-1. 16S address calculation 10-11
Figure 10-2. 32S address calculation 10-13
Figure 10-3. 32R address calculation (1 of 5) 10-16
Figure 10-4. 32R address calculation (2 of 5) 10-17
Figure 10-5. 32R address calculation (3 of 5)
Figure 10-6. 32R address calculation (4 of 5) 10-19
Figure 10-7. 32R address calculation (5 of 5) 10-20
Figure 10-8. 64R address calculation (1 of 5) 10-23

(Figure 10-9. 64R address calculation

(2

of 5) 10-242
Figure 10-10. 64R address calculation (3 of 5) 10-25
Figure 10-11. 64R address calculation (4 of 5) 10-26
Figure 10-12. 64R address calculation (5 of 5) 10-27
Figure 10-13. 64Vaddress calculation (1 of 3} 10-31
Figure 10-14. 64V addresscalculation (2 of 3) 10-32
Figure 10-15. 64V address calculation (3 of 3) 10-33

1 March, 1979 1-7 FDR 3059



Field operations—FIELD 11-15

Floating point arithmetic—FLPT 11-16

Table 11-3. Floating point exception codes 11-16

Table 11-4. Floating point mantissa and exponent ranges 11-17

11 INSTRUCTION DEFINITIONS

Addressing mode—ADMOD 11-1
Branch—BRAN 11-2

Character string operations—CHAR 11-5

Clear register—CLEAR 11-7
Decimal arithmetic—DEC!I 11-8

Table 11-1. Decimal data type 11-9

Table 11-2. Edit sub-operations 11-14

Key Manipulation—KEYS 11-31

Logical operations—LOGIC 11-32

Logical test and set—LTSTS 11-33
Machine control—MCTL 11-34
Move data—MOVE 11-39

Program control and jump—PCTLJ 11-43

Process exchange—PRCEX 11-49

Queue management—QUEUE 11-49

Shift group—SHIFT 11-50
Skip conditional—SKIP 11-53

Table 11-5. Combination skip group 11-55

12 |-MODE INSTRUCTIONS

Addressing mode—ADMOD 12-1
Branch—BRAN 12-1
Character operations—CHAR 12-3
Clear register and memory—CLEAR 12-14
Decimal arithmetic—DECI 12-5
Field Operations—FIELD 12-5
Floating point arithmetic—FLPT 12-6
Integer arithmetic—INT 12-9
Integrity check for hardware—INTGY 12-14
Input/output—I/O 12-14
Key manipulation—KEYS 12-14
Logical operations—LOGIC 12-15
Logical test and set—LTSTS 12-16
Machine control—MCTL 12-17
Move data—MOVE 12-17
Program control and jump—PCTL] 12-19
Process exchange-—PRCEX 12-10
Queue management—QUEUE 12-10
Shift—SHIFT 12-21

13 INSTRUCTION SUMMARY CHART

Instruction summary 13-1

FDR 3059 i-8 1 March, 1979



14 LANGUAGE STRUCTURE

Introduction 14-1

Lines 14-1

Statements 14-1

Figure 14-1. PMA statements 14-2

Figure 14-2. PMAline format 14-3

Memoryreferenceinstruction format 14-5
Instruction formats—I-Mode 14-5

Table 14-1. Assembler formats 14-7

How to write V or I mode code in PMA 14-8

15 DATA DEFINITION

Table 15-1. Numeric constants 15-2

Terms 15-5

Figure 15-1. Floating point data formats 15-6
Table 15-2. Modes 15-8

Expressions 15-8

Literals 15-10

Assembler attributes 15-11

16 psEUDO OPERATIONS

Introduction 16-1
Table 16-1. Pseudo-operation summary 16-2
Figure 16-1. Pseudo-operations 16-4

Assembly control psuedo-operations (AC) 16-5
Address definition pseudo-operations (AD) 16-7
Conditional assembly pseudo-operations (CA) 16-8
Data defining pseudo-operations (DD) 16-10
Listing control pseudo-operations (LC) 16-11
Literal control pseudo-operations (LT) 16-12
Loadercontrol pseudo-operations (LO) 16-13
Macro definition pseudo-operations (MD} 16-16
Program linking pseudo-operations (PL) 16-18
Storage allocation pseudo-operations (SA) 16-20
Symbol defining pseudo-operations (SD) 16-20

17 MACRO FACILITY

Introduction 17-1
Macro definition 17-2
Macro calls 17-3
Nesting macros 17-5
Conditional assembly 17-6
Macrolisting 17-6

1 March, 1979 i-9 FDR 3059



18 INTRODUCTION TO TAP, PSD, VPSD

Using TAP 18-1
Table 18-1. Debugging command summary 18-1

Using PSD 18-3
Table 18-2. PSD/VPSD versions 18-3

Using VPSD_ 18-3
Commandline format 18-4

Table 18-3. Input/output formats (PSD and VPSD) 18-5

19 TAP COMMAND SUMMARY

TAP command summary 19-1
Table 19-1. TAP terminators 19-1
Table 19-2. Keys 19-3

20 psp COMMMAND SUMMARY

PSD command summary 20-1
Table 20-1. PSD terminators 20-1
Table 20-2. Key values: Rand S mode 20-4

21-VvPsD COMMAND SUMMARY

Table 21-1. VPSD terminators 21-1
Table 21-2. Key values: Rand S modes 21-4
Table 21-3. Key values: V mode 21-5

A ASSEMBLER ATTRIBUTES

B ASCII CHARACTER SET

C ERROR MESSAGES

FDR 3059 i-10 1 March, 1979



 

 



 

Introduction
 

  



INTRODUCTION

This document is a comprehensive user guide for the Prime Macro Assembler (PMA}
programmer.In this one documentyouwill find almost everything you will need to know to
write, assemble, load, debug and execute an assembly language program. We assumethe
following background: you are an experienced assembly language programmeralthough
you may be unfamiliar with Prime’s PMA; and you have been introduced to Prime’s
PRIMOSoperating system andits major utilities through the use of a high-level language
such as FORTRAN and COBOL.(If not, we recommendyoureadoneof our other language
user guides before undertaking a PMA project.)

ORGANIZATION AND USAGE

This documentis organized into five major parts:

Part 1. Overview and conventions (Sections 1 and 2)

Part 2, PMA Usage (Sections 3 through 8)

Part 3. Machine Formats and Instructions (Sections 9 through 13)

Part 4. PMA Reference (Sections 14 through 17}

Part 5. Debugging Utilities Reference (Sections 18 through 21)

In addition to a tutorial section for the new PMA programmer(Part 2), it contains complete
descriptionsof:

Machineinstructions
Data structures
Assembler pseudo operations
Assembler macrofacilities
TAP, PSD and VPSD debuggingfacilities

RELATED DOCUMENTS

The FORTRAN Programmer’s Guide

Reference Guide, System Architecture

The New User’s Guide to Editor and Runoff

PRIMOS Commands Reference Guide

Reference Guide, PRIMOSSubroutines

PRIMOS Programmer’s Companion

FORTRAN Programmer’s Companion

Assembly Language Programmer's Companion

Reference Guide, LOAD and SEG

1 March, 1979 1-1 FDR 3059



 

Conventions
 



PRIME CONVENTIONS

Symbols, abbreviations, special characters and conventions frequently used in this docu-
mentare defined below.

Prime filename conventions

Filename Function

B_filename Binary (object) file

L_filename Listing file

C_filename Commandfile

filename Sourcefile

*filename Saved (executable) file

M__filename Mapfile
#filename SEG runfile

Note

Filenames may be a maximum of 32 characters.

Text conventions

An item in all capital letters must be included verbatim. Rust colored letters indicate
acceptable abbreviations. In TAP, PSD and VPSD commandsenteronly the rust colored
letters. A quote mark (apostrophe) preceding a number meansoctal.

INSTRUCTION DESCRIPTION CONVENTIONS

-ibes he instructionsin the context of the mode wheretheyarefirst
used. Toavoid‘dupli ‘eseriptions while facilitating retrieval, each instruction is
described once, butlisted in I-mode if appropriate.

eacn

ate

1 March, 1979 2-1 FDR 3059



2 PRIME CONVENTIONS
 

 

Formatillustration:
 

Instruction name Description of instruction

NN \ Instruction control flow in algebraic notation

LDA addr Load the register LO

(EA)16—7A

Load the contents of location addr into the A register. The contents of the address are

unaffected; the previous contents of the A register are lost. MODES =SRV, FORMAT =MR
OPCODE =02, G =unchanged, L=unchanged, CC =unchanged.

Modes, format, opcode, condition codes, C and L bit settings  
 

Instruction summary and description conventions

A Register (16-bits)
B Register (16 bits)

L L Register (A\B)

E E Register (32-bits)
F Floating Point Register
H

R

>

Half Register (16-bits, 1 Mode)
Full register (32-bits, I Mode)

C C-Bit in the keys
L-bit L-Bit in the Keys
CC Condition Codes
LB Link Base Register
SB Stack Base Register
PB Procedure Base Register
XB Temporary Base Register
S S-Mode
R R-Mode
V V-Mode
I I-Mode
FAR Field Address Register
FLR Field Length Register
> Replaces

FUNCTION GROUP DEFINITIONS

The instruction definitions are grouped by primary function, such as integer arithmetic.
Table 9.1 below eontaine tha dafinitinne far all tha funrtan no madacd Tf +araiamnm oh
BWA Ak VOCLU WUAALEALILD Lil Geriiniticns 401 G@id t1l10 iuncidi6on groups ang moaées. Ad you WwWis

to find a particular instruction, Section 13 contains an alphabeticlist.

FDR 3059 2-2 1 March, 1979



PRIME CONVENTIONS 2
 

 

 

Table 2-1. Function Definitions

Definition S R V I

Addressing Mode xX xX K X

Branch xX xX

Character xX xX

Clear field xX xX Xx

Decimal Arithmetic xX XxX

Field Register xX xX

Floating Point Arithmetic xX X X

Integer Arithmetic xX X X X

Integrity xX X& X XK

Input/Output xX xX XK xX

Keys xX XX X X

Logical Operations xX xX XK X

Logical Test and Set xX kK XK X

Machine Control xX xX XK X

Move xX X X X

Program Control and Jump X xK xX X

Process Exchange X xX

Queue Control xX xX

Shift X X xX xX
Skip X XK XK xX   

FORMAT DEFINITIONS

Each instruction has a format. The formats and their meaning are summarizedin Table 2-2.
The specific bit definitions are defined in Section 9—Data and Instruction Formats and
Section 10—Memory Reference Concepts.

 

 

Table 2-2. Format Definitions

Mnemonic Definition S R V I

GEN Generic xX XK XX xX

AP Address Pointer xX XxX

BRAN Branch xX

IBRN Branch I-mode x

CHAR Character xX XX

DEC] Generic Decimal xX xX

PIO ProgrammedI/O xX xk kK xX

SHFT Shift 4 x x x

MR Memory Reference - xX xX XxX
Non I-mode

MRFR Memory Reference - x
Floating Register

MRNR Memory Reference xX

Non Register

RGEN . Register Generic x   
1 March, 1979 2-3 FDR 3059



2 PRIME CONVENTIONS
 

 

GENERAL DATA STRUCTURES

Table 2-3. Data Structures—summarizesall the data structures manipulated by instructions.

 

Table 2-3. Data Structures

Class S R V I

Integer (Unsigned)

16-bit xX %X X XX

32-bit x x

Integer (Signed)

16-bit xX X XK X

31-bit xX x

32-bit xX xX

Floating Point

32-bit xX xk x
64-bit x xX XxX

Decimal x xX

Character String xX xX

Word

16-bit xX xX xX
32-bit . 4

Halfword - 16 bit x

Byte - X& X x xX

Indirect Pointer (IP) |

16-bit XX XxX xX
32-bit xX xX
48-bit xX xX

Address Pointer (AP) xX xX

Stacks

Segment Header
Frame Header

Argument Template

Entry Control Block

Queue Control Block O
S

~*
~

KR
OK
K
K

  
FDR 3059 2-4 1 March, 1979

 



PRIME CONVENTIONS 2
 

 

Table 2-4. Processor Characteristics

Class S R Vv I

Registers

S, R mode xX x
V. | mode xX xX

Field Registers xX x

Floating Registers xX xX

Keys

S, R mode xX ox
V. I mode x xX

C-Bit xX xX XK xX

L-Bit xX xX

Condition Codes xX xX

Modals xX xX 
 

SAMPLE TERMINAL SESSION

***k** FIRST, CREATE THE FILE *****
OK, ED

GO

INPUT

EDIT
TAB 19 15 25

INPUT
\SEG
\RLIT
STR\LDA\= ' 456
\STA\BUFF1
\STA\BUFF2
\PRTN
KEKE DATA AREA KKKK*

\DYNM\STCK(1)

\LINK
BUFF1\BSS\1
BUFF2\BSS\1
\ECB\STR
\END

EDIT
FILE TTY

RKKKK

**k*k ASSEMBLE THE FILE *****
KkAKK

1 March, 1979 2-5 FDR 3059

 



2 PRIME CONVENTIONS
 
 

OK, PMA TTY

GO
0000 ERRORS (PMA-REV 15.9)
KKKKK
kkKKK DMA LISTING *****

KKKKK

OK, SLIST L_TTY
GO

SEG
(2881) SEG
(9002) RLIT

BOOLOS: 02.900005 (8083) STR LDA ='456

GOOVR1: G4.G0G8490L (0004) STA BUFF1

GOVOG2: G@2.200012S (8905) LDA STCK

GO9O0O3: G4. 000401L (2006) STA BUFF2

POOOO4: 000611 (8907) PRIN

(0908) ***** DATA AREA *****

G8BH12 (8009) DYNM STCK (1)

(9019) LINK

GBD400> (0011) BUFF BSS l

G9G481> (8812) BUFF2 BSS 1

GGB402> GOHBOO (8013) ECB STR

009014
GOGG11
GOBWOS
177488
G1 4900

988422 (8014) END

G9BOO5: G0. BB0456A

TEXT SIZE: PROC 980906 LINK 208922 STACK 880013

BUFF1 QA0400L B804 B11

BUFF2 QOG401L BB05 G12

STCK Q88012S 8205 BBB9

STR 0B0080 8863 B813

0808 ERRORS (PMA-REV 15.9)

RKEKKK

*x*kkKK LOAD THE FILE *****
KkkeK

OK, SEG

GO
# LOAD
SAVE FILE TREE NAME: STTY1
$ LOAD B_TTY
LOAD COMPLETE
$ SAVE

iP OoFDR 3059
1 March, 1979



PRIME CONVENTIONS 2
 

 

S MAP
*START 962000 2000020 *STACK 904001 001906 *SYM G0VOO3

SEG. # TYPE LOW HIGH TOP
JB4061 PROC ## GG1B09 GG61805 801885
GB49G2 DATA BBOWB2 98021 9BBO21

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.
HHH 4092 @8289882 AQZ1 BG1 BBS O2CL14 BE2222 4882 177482
DIRECT ENTRY LINKS

COMMON BLOCKS

OTHER SYMBOLS

KRKKKK

***X*X EXECUTE THE PROGRAM *****
KkAKK
S$ EXECUTE

ACCESS VIOLATION *k*XX ERROR — CALL VPSD *****
ER! VPSD
GO

SSN 4801

SA 1000:S

4901/ 1068 LDA# 1805
4961/ 1801 STA# LB%+ 480
4901/ 1892 LDA# SB%t+ 12
4961/ 1903 STA# LB%+ 491
4001/ 1804 PRIN
4901/1885 DAC 456
4001/ 1006 HLT
SB 1008

SR 1880

4QG1/ 1000: LDA# 1905 A= B= X=9 K=14990 R=0 Y=12614

SB 1004

SPR

4901/ 1094: PRTN A=6 B=0 X=0 K=14000 R=0 Y=12614

SPR
ACCESS VIOLATION
ER! ED TTY
kkKkKKK

**%*** PROBLEM WAS INCORRECT ECB - NOTE THAT LOAD MAP *START
*x*** ENTRY HAD A ZERO VALUE. MAIN PROGRAM NEEDS END OPERAND
*k**k* REFERENCING THE ECB LABEL.
RKKKE

GO
EDIT

1 March, 1979 2-7 FDR3059



2 PRIME CONVENTIONS
 

 

TAB 19 15 25
L END

END
R \END\ECB1
N-1

ECB STR
Cc / /ECB1/

ECB1 ECB STR
FILE

OK, PMA TTY
GO
0Q00 ERRORS (PMA-REV 15.9)
SLIST LTTY
GO

SEG
(01)
(9002)

900000: 92.000905 (9003)
000001: 04.000400L (9904)
020002: 62.000012S (0005)
000003: 04.000401L (8006)
000004: 020611 (8007)

(208)
0G0G12 (8009)

(2018)
920400> (G11)
920401> (912)
900492> G29000 (0013)

GB0014
800011
900000
177400
014090

000422 (G01 4)

000005: 00. Q0B456A

TEXT SIZE: PROC 000006

BUFF1 620400L 9904 6011
BUFF2 OOO401L B06 B012
ECB1 000402L 0813 0014
STCK 920012S 8205 8009
STR 020008 8003 0013

286 ERRORS (PMA-REV 15.8)

ou
OK, vov

GO

FDR 3059

STR

SEG

RLIT

LDA

STA

LDA

STA

PRTN

='456
BUFF1
STCK
BUFF2

kkKKK DATA AREA KKKKK

BUFF1
BUFF2
ECB1

LINK 00622

2-8

DYNM

LINK

BSS

BSS

ECB

END

STCK (1)

1
1
STR

ECB1

STACK 998913

m
s
c
o
|1 March, g



PRIME CONVENTIONS 2
 

 

# DELETE STTY
# LOAD
SAVE FILE TREE NAME: STTY
$ LOAD BTTY

LOAD COMPLETE
$ SAVE
¢ MAP
*START 204002 @00002 *STACK 904001 091006 *SYM 009003

SEG. # TYPE LOW HIGH TOP
GB4001 PROC ## 801880 801005 881865
BB4BB2 DATA GOBBO2 BOOG21 888021

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.
HHT 4802 88882 4981 881009 088014 B9GG22 4882 177480

DIRECT ENTRY LINKS

COMMON BLOCKS

OTHER SYMBOLS

¢ EXECUTE
KKKKK

***** PROGRAM NOW WORKS. NOTE THAT LOAD MAP *START ENTRY HAS
*kxkK ADDRESS OF SEGMENT 4092 WORD 2, THE LOCATION TO START
*EEKK EXECUTION.
KKKKK

OK,

1 March, 1979 2-9 FDR 3059



 

  

  

PMA USAGE



 

Assembling
 



The Prime Macro Assembler (PMA) is a two pass assembler (three pass in SEG or SEGR
mode). The first pass generates a symbol table and identifies external references; the
second pass generates object code blocks for inputto the loader and, optionally, creates a
listing. The three pass assembly in SEG or SEGR modepermits optimization of stack and link
frame references.

INVOKING THE PRIME MACRO ASSEMBLER (PMA)

PMAis invoked by the command:

PMApathname[-option-1] [-option-2]. . .[-option-n]

where pathnameis the pathnameof the PMA sourcefile and option-1, option-2, etc. are the
mnemonicsfor one of the options described below.All options must be preceded by a dash

For example, the command: PMA ALPHA>BETA -ERRLIST means assemble the file
ALPHAlocated in UFD BETAandlist only the errors, while PMA ALPHA means, assemble
the file ALPHA located in the home UFD and produce whatever listing the program
specifies (see listing pseudo-operations in Section 16 - Pseudo-Operations). Thelisting name
(if any) will be L_ALPHA. PMA ALPHA -LISTING BETA means, assemblethe file ALPHA
located in the current UFD,generate a binaryfile, and produce whateverlisting the program
specifies. The listing filename will be BETA.

Option Meaning

-INPUT treename Input treename
-LISTING treename Listing treename

-BINARY treename Objectfile treename
-EXPLIST Generates full assembly listing (overrides the

pseudo-operation NLIST) andforceslisting file gen-
eration

-ERRLIST Generates errors-only listing, and forces listing file
generation

-XREFL Generates complete cross reference
-XREFS Omits from the listing symbols which have been

defined but not used

FILE USAGE

Three files may be involved during an assembly:

File Type PRIMOSFile unit

Source 1

Listing 2

Object 3

1 March, 1979 3-1 FDR 3059



3 ASSEMBLING
 

 

PMAautomatically opensfiles for listing and object output. B_source-filenameis the default

object name; L_—source-filenameis the default listing name. Use the -BINARYoption to

charge the object default and -LISTINGoption to changethelisting default.

The PRIMOS commands LISTING and BINARYpermit youto concatenatefiles, since they

remain open whenthe assemblerreturns control to PRIMOS.

ASSEMBLER MESSAGES

Whenthe assembler reads the END statementof the inputfile on the second pass,it prints

a message, terminates assembly, and returns control to PRIMOS commandlevel. The

message contains a decimalerror count and the version number of the assembler,as in:

@@G1 ERRORS (PMA-REV 16.2)

LISTING FORMAT

Figure 3-2 showsa section of a typical assemblylisting and illustrates the main features.

Each page begins with a header and a sequential page number. The first statement in a

program is used asthe initial page header. If column 1 of any source statement contains an

apostrophe(’), columns 10-72 of that statement become the headerfor all pages that follow,

until a newtitle is specified.

User-generated messages maybeinsertedinto the listing output by using the SAY pseudo-

operation in the source program. Such messages can be used to documentthe progressof a

complex conditional assembly operation.

FDR 3059 3-2 1 March, 1979



 

ASSEMBLING 3
 

 

DEVICE OPTIONS

 

          

LISTING CONTROL OMIT QO=NONE

OVERRIDE UNUSED 1=USER TERMINAL

SYMBOLS 3=Reserved For CARDS
LIST 4=Reserved for LINE PRINTER
ERRORS: ONLY 5=Reserved for MAGNETIC TAPE

6=Reserved for CASSETTE
7=DISK

EL. |LCO/OUS SOURCE LISTING | OBJECT

l 2 3 4 5 8 9 1@11 12 13 14 #15 16

Error listing (bit 2): If this bit is set, only the lines containing errors are listed.
Otherwise, listing is controlled by pseudo-operations in the source program.

Listing control override (bit 3): If this bit is set, the assembler overrides anylisting
control pseudo-operations in the source program andlists all statements, including
lines within macro expansions and lines that would be skipped by conditional
assembly. Otherwise, listing is controlled by pseudo-operations in the source program.

Omit unused symbols (bit 4): If this bit is set, symbols which have been definedbut not
referenced are omitted from the cross-reference.

Device options (bits 8-16): The last three octal digits of the A-register select source,
listing and object devices respectively.  Figure 3-1. A-Register Details
 

1 March, 1979 3-3 FDR 3059



3 ASSEMBLING

 

 

GBBOCG:
800881:
O0OBB2:
698003:
800004:

GBB400>
G868401>
008462>

060005:

TEXT SIZE:
BUFF1

BUFF2

ECB1

STCK

STR

02. 880885
04. 000400L
02.800812S
84. 900401L

009611

G0GG12

B8OB80
GOO014
800011
GELBOO
177488
014088

889422

00. 000456A

PROC 080006
GOC400L B8B4

BOG4G1L B286

089402L 8813

88200125 8805

B0LGCB B03

(9021)
(82082)
(6883)
(0094)
(8885)
(@886)
(8097)
(@888)
(8809)
(@818)
(@@11)
(0612)
(0813)

(001 4)

G@11

G12

6014

8889

8813

2890 ERRORS (PMA-REV 16.2)

Figure 3-2. Example of Assembly Listing

STR

keEEEX DATA AREA KKK

BUFF1
BUFF2
ECB1

LINK 990022

END ECB1

SEG
RLIT
LDA =='456
STA BUFF
LDA STCK
STA BUFF2
PRTN

DYNM STCK(1)
LINK
Bss 1
BSS 1
ECB. STR

STACK 008013

  
FDR 3059 3-4 1 March, 1979



ASSEMBLING 3
 
 

Cross-referencelisting (concordance)

At the end of the assemblylisting appears a cross-referencelisting of each symbol’s name
(in alphabetical order), the symbol’s location or address value, and listof all referencesto
the symbol. Thelocation and address valuesare in octal unless the PCVH pseudo-operation
specifies hexadecimallisting. Each referenceis identified by a four-digit line number. The
NLST pseudo-operation suppresses the cross-reference listing; the option -XREFS sup-
presses symbols which have been defined butnot used.

1 March, 1979 3-5 FDR 3059



4 LOADING R-MODE PROGRAMS
 

 

PBRK Program Break. Resume loading at a new location.

CH,SS,SY,XP Symbol control commands.

EN ENtire save; saves copy of load session for building of program
overlays.

ER Controls action taken by loader following errors.

SZ Controls use of Sector 0.

COMMAND SUMMARY

Following is a summaryof all LOAD commands,in alphabetical order. All file and directory
names may be specified by pathnames, except in the LIBRARY command.All numerical
values must beoctal.

ATTACH [pathname]

Attaches to specified directory.

AUTOMATIC base-length

Inserts base area of specified length at end of routine if >’300 locations loaded sincelast

base area.

CHECK[symbol-name] [offset-1]. . .[offset-9]

Checks value of current PBRK against symbol or number. symbol-nameis a 6 character
symbol defined in the symboltable. offset-1 through 9 are summed to form an address or
offset from symbol name. Numbers preceded by “-’‘ are negative.

COMMONaddress

Movestop/starting COMMONlocation to address.

DC [END]

Defers definition of COMMONblock until SAVE commandis given. (Low end of COMMON

follows top of load.} END turnsoff DC.

ENTIRE pathname

Saves entire state of loader as runfile, along with temporaryfile, for building overlays.

ERROR n

Determines action taken in case of load errors.

n Meaning

SZ errors treated as multiple indirect, others act as n=1.

1 Display multiple indirects on terminal but continue LOAD;abortloadoffile
for all other errors.

2 Abort to PRIMOS

EXECUTE[a] [b] [x]
Starts execution with specified register values.

FORCELOAD \
F/ LIBRARY [pathname] [parameters]aeee # RRARAE

| LOAD

FDR 3059 4-8 1 March, 1979



LOADING R-MODE PROGRAMS 4
 

 

Forceloads all modules in specified object file. See LOAD for parameters.

HARDWAREdefinition

Specifies expected level of instruction execution.

CPU Definition

P450 and up 100
P350,P400 o7

P300/FP 17 FP=Floating Point
P300 3

P200/HSA 1 HSA=High-speed arithmetic
P100/HSA 1

P200 0

P1006 6

HARDWARE,if given, must precede loading of UII library.

INITIALIZE [pathname] [parameters]

Initializes LOADERand,optionally, does a LOAD. See LOAD for parameters.

LIBRARY [filename] [loadpoint]

Attaches to LIB UFD,loads specified library file (FTNLIB is default), and re-attaches to
homedirectory.

LOAD[pathname] [parameters]

Loads the specified object module. The parameters may be enteredin three formats:

1. loadpoint [setbase-1]. . .[setbase-8]

2. * [setbase-1]. . .[setbase-9]

3. symbol [setbase-1]. . .[setbase-9]

In form 1, loadpoint is the starting location of the load. In form 2, the load starts at the
current PBRKlocation (*). In form 3, the load address can bestated symbolically (symbol).
The remaining numeric parameters(setbase-1, etc.) specify the size of linkage areas to be
inserted before and after modules during loading.If the last parameteris ‘177777, the loader
requests more setbase values.

MAP[pathname] [option]

Generates load-state map on terminal, orina file, if pathnameis specified.

Option Meaning
0 Load state, base area, symbol storage map; symbols sorted by address

(default)
1 Loadstate only
2 Load state and base area
3 Unsatisfied references only
4 Sameas 0
5 System Programmer map
6 Undefined symbols sorted alphabetically
7 All symbols sorted alphabetically

an
y

S
o Special symbol mapfor PSD(in a file)

1 March, 1979 4-9 FDR 3059



4 LOADINGR-MODE PROGRAMS
 
 

D32R
D64R

MODE4 pigs

D328

Specifies address resolution modefor next load module (32K Relative, D32R, is default). If

used, MODE must precede other LOAD commands.

FORCELOAD}
»

 

P/; LIBRARY [pathname] [parameters]

| LOAD \
Begins loading at next page boundary. See LOAD for parameters.

PAUSE

Leaves loader to execute internal PRIMOS command. Return via START.

[symbol-name] [offset-1]. . .[offset-9]
PBRK * offset-1 [offset-2]. . .[offset-9]

Sets a program breakto value of symbolplusoffset or a number.* treats sum of numbersas

offset from current PBRK. Offsets may be negative.

QUIT

Deletes temporaryfile, closes mapfile (if loader openedit), and returns to PRIMOS.

SAVE pathname

Writes a memory imageof the loaded runfile to the disk.

([base-start] [base-range] |
SETBASE ) * [base-range]

Defines starting location andsize of base area. * is current value of PBRK.

SS symbol-name

Save symbol. Exempts specified symbol from action oi XPUNGE.

\ symbol-name[offset-1] . . . [offset-6]
SYMBOL * offset-1 [offset-2] ... [offset-6]

Establishes locations in memory map for commonblocks,relocation load points,or to satisfy

references. * is current value of PBRK. Offsets are summed and maybe negative.

YES

Permits/prohibits links in sector zero.

VIRTUALBASEbase-start to-sector

Copies base sector from base-start to corresponding locations in to-sector. Used for building

RTOS modules.

XPUNGE dsymbols dbase

Deletes COMMON symbols, other defined symbols, and base areas.

FDR 3059 4-10 1 March, 1979



 

Loading
R-Mode programs
 



INTRODUCTION

The PRIMOS LOADutility converts object modules (such as those generated by PMA)into
runfiles that execute in the 32R or 64R addressing modes. (Runfiles to execute in the 64V
mode must be loaded using the segmentation utility, SEG.)

The following description emphasizes the loader commandsandfunctionsthat are of most
use to the PMA programmer. For a complete descriptionof all loader commands,including
those for advanced system-level programming, refer to Reference Guide, LOAD and SEG.

USING THE LOADER UNDER PRIMOS

The PRIMOS command:

LOAD

transfers control to the R-mode loader, which prints a $ prompt character and awaits a
loader subcommand. After executing a command successfully, the loader repeats the $
prompt character.

If an error occurs during an operation, the loader prints an error message,then the $ prompt
charcter. Loader error messges and suggested handling techniquesare discussed elsewhere
in this section and in Appendix C. Most of the errors encountered are caused by large
programs wherethe useris not making full use of the loader capabilities.

Whena system error (FILE IN USE, ILLEGAL NAME, NO RIGHT,etc.) is encountered, the
loader prints this system error and returnsits prompt symbol,$.

The loader remains in control until a QUIT or PAUSE subcommand returns control to
PRIMOS,or an EXECUTE subcommandstarts execution of the loaded program.

Load subcommands can be used in commandfiles, but comment lines result in a CM
(command error) message.

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
The loader also has many additional features to optimize runfile size or speed, perform
difficult loads, and deal with possible complications. The most frequently used load
commands and operations are presentedfirst; this enables immediate use of the loader.
Advanced features are then described followed by a summary of all loader commands.

The following commands (shownin abbreviated form) accomplish most loading functions:

PRiIMOS-Level commands:

FILMEM Initializes user space in preparation for load.

1 March, 1979 4-1] FDR 3059



4 LOADING R-MODE PROGRAMS
 

 

LOAD Invokes loader for entry of subcommands.

RESUME Starts execution of a loaded, SAVEd runfile.

LOAD subcommands:

MODEoption
D64R.

LOAD pathname loads specified objectfile.

LIBRARY [filename] Loads library object files from UFD LIB. (Default is

FTNLIB.}

MAP[option] Prints loadmap. Option 3 shows unresolved refer-

ences.

INITIALIZE Returns loader to starting condition in case of com-

manderrorsor faulty load.

SAVE pathname Saves loaded memory imageas runfile.

QUIT or PAUSE Return to PRIMOS.

Most loads can be accomplished bythe following basic procedure:

1.

7.

If these commands produce a LOAD COMPLETEmessage, then loading was accomplished.

If there is a problem, it will become apparent by the absence of a LOAD) COMPLETE

message or by someother loader error message. (See Appendix C for a complete list of all

loader error

After a successfulload, start runfile execution from LOAD commandlevel, or quit from the

loader andstart execution through the PRIMOS RESUME command.An example of such a

loadis:

Use the PRIMOS FILMEM commandto initialize memoryto binary

zeroes.

Invoke LOAD.

Use the MODE commandto set the addressing mode. if necessary (The

default is 32R mode.)

Use loader’s LOAD subcommandto load the object file (B_pathname]

and any separately assembled subroutines.

Use loader’s LIBRARY subcommandto load subroutines called from

libraries (the default is FTNLIB in the UFD LIB). Other libraries. such

as SRTLIB or APPLIB. must be named explicitly.

If you do not have a LOAD COMPLETE, do a MAP 3 to identify the

unsatisfied references, and load them.

SAVEthe runfile under an appropriate name.

messages and their probable cause and correction. ]

OK, LOAD
GO
S$ MO D64R
$ DC
S$ LO
$ LI

B ARRAY

Orderof loading

The following loading order is recommended:

1.

2.

Main program.

Separately assembled user-generated subroutines (preferably in order

of frequency of use).

FDR 3059 4-2 1 March, 1979

Sets runfile addressing mode as D32R (default) or



LOADING R-MODE PROGRAMS 4
 

 

7»
i

4. Standard FORTRANlibrary (LI).

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from the
file are loaded by the LIBRARY command given without a filename argument. If sub-
routines from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional
LIBRARY commandsare required which include the desired library as an argument.

LOAD MAPS

During loading the loader collects information aboutthe results of the load process, which
can be printed at the terminal (or written to a file) by the MAP command:

MAP[pathname] [option]

The information in the map can be consulted to diagnose problemsin loading,or to optimize
placement of modules, linkage areas and COMMONin complex loads.

Load information is printed in four sections, as shown in Figure 4-1. The amountof
information printed is controlled by MAP option codes such as:

Option Load MapInformation

None, 0 or 4 Load state, base area, and symbol storage; symbols sorted by
address

1 Load state only

2 Load state and base areas

3 Unsatisfied references only

6 Undefined symbols, sorted in alphabetical order

7 All symbols, sorted in alphabetic order

Load state

The load state area shows where the program has been loaded, thestart-of-execution
location, the area occupied by COMMON,thesize of the symbol table, and the UIIstatus.
All locations are octal numbers.

“START: The location at which execution of the loaded program will begin. The defaultis
"1000.

“LOW: The lowest memory image location occupied by the program. Executable code
normally starts at '1000, but sector 0 addresslinks (if any) begin at '200.

“HIGH: The highest memory image location occupied by the program (excluding any area
reserved for COMMON).

*PBRK:‘Program Break’’: The nextavailable location for loading. It normally is the location
following the last loaded module, but can be moved by PBRK or the LOAD family of
commands.

*CMLOW:The low end of COMMON,

*CMHGH: The top of COMMON.

“SYM: The numberof symbols in the loader’s symbol table. This is usually of not concern
unless the symbol space crowdsout the last remaining runfile buffer area. (There is room
for about 4000 symbols beforethis is a risk.)

1 March, 1979 4-3 FDR 3059



4 LOADING R-MODE PROGRAMS
 
 

*Ull: A code representing the hardware required to execute the instructions in loaded

modules. Codes and other information are describedlater in this section.

Base areas

The base area map includes the lowest, highest and next available locations for all defined

base areas. Each line contains four addressesasfollows:

*BASE XXXXXX YYYYYY ZZZZZZ WWWWWW

XXXXXX Lowest location defined for this area

YYYYYY Next available location if starting up from XXXXXX

ZLZZ2LZZ, Next available location if starting down from WWWWWW

WWWWWwWw Highest location defined for this area

Symbol storage

The symbol storage listing consists of every defined label or external reference name

printed fourper line in the following format:

namexx NNNNNN

or

**namexx NNNNNN

NNNNNNisa six-digit octal address. The ** flag meansthe referenceis unsatisfied(i.e., has

not been loaded).

Symbolsare listed by ascending address (default) or in alphabetical order (MA 6 or MA 7).

The list may be restricted to unsatisfied references only (MA 3 or MA6).

COMMONblocks

The low end andsize of each COMMONareaarelisted, along with the name(if any). Every

map includes a reference to the special COMMONblock LIST, defined as starting at

location 1.

LOADER CONCEPTS

When standard loading goes well, the user can ignore most of the loader’s advanced

features. However, situations can arise where some detailed knowledge of the loader’s

tasks, can optimize size or performanceof a runfile, or even make a critical load possible.

From that viewpoint, the main tasks of the loaderare:

* Convert block-format object code into a run-time version of the program (ex-

ecutable machine instructions, binary data and data blocks).

© Resolve addresslinkages (translate symbolic namesof variables, subroutine entry

points, data items etc. into appropriate binary address values).

® Perform address resolution (discussedlater).

® Detect and flag errors such as unresolved external references, memory overflow,

etc.

* Build (and, on request, print) a load map. The map mayalso be written to a file.

¢ Reserve COMMONareasas specified by object modules.

¢ Keeptrack of runfile’s hardware execution requirements and make user aware of

need to load subroutines from UII library.

FDR 3059 4-4 1 March, 1979



LOADING R-MODE PROGRAMS 4
 

 

The loader occupies the upper 32K wordsof the user’s 64K-word virtual address space.
Programs up to 32K words are loadeddirectly into the memory locations from which they
execute. Programs loaded in this mannercanbestarted by the loader’s EXECUTE command
without being saved. For larger 64R-modeprograms, the loader uses the available memory
as buffer space and transfers loaded pages of memoryto a temporaryfile that accomodates
a full 64K-word memory image. When loading is complete, the file must be assigned a name
by the loader’s SAVE command; it can then be executed either through the loader’s
EXECUTE command or the PRIMOS RESUME command.

The. loader remains attached to the working directory throughout loading, for access to the
temporaryfile. Files in other directories can be loaded by giving a pathname in a LOAD
command.

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filenameof a file within the LIB UFD.

Object code

Inputs to the loader are in the form of object code—a symbolic, block-formatfile generated
by all of Prime’s language translators. Prime’s standard library files consist of subroutines
in this format.

The loader combines the user’s main program object file with the object files of all
referenced subroutines (either those in the library, or those generated and separately
compiled by the user) into a single runfile. The runfile is then ready for execution, either
directly through the loader’s EXECUTE command or through the PRIMOS RESUME
command.

Runfiles

A runfile consists of a header block followed by the runfile text in memory image format.
The headercontains information that enables the runfile to be brought into memoryby the
PRIMOS RESTORE or RESUME command. Contents of the header can be examinedafter a
RESTORE by the PM command. (See PRIMOS CommandsReference Guide.)

Selecting the addressing mode

The 32R addressing modeis retained as the loader’s default for compatibility with existing
commandfiles. The only significant difference between 32R and 64R for small programsis
that 32R permits multiple indirect links, while 64R ellows only one level of indirection. In
certain situations such as processing of multi-dimensional arrays, 32R mode mayenable the
programmer to write a program that is somewhat more compact or runsslightly faster.
However,for programs that approach the 32K word boundary, 64R modeensuressuccessful
loading with no significant penalties of size or speed. Thus MODE D64Ris recommendedfor
most applications.

Base areas

“Base Area’ is discussed in Section 10—Memory Reference Concepts. When one of the
messagesis printed:

BASE SECTOR 0 FULL

symbolname XXXXXX NEED SECTOR 0 LINK

1 March, 1979 4-5 FDR 3059



4 {LOADING R-MODE PROGRAMS
 

 

This condition, usually encountered only when loading large programs, can be avoided in
several ways:

* Give the AUTOMATIC commandto enable the loaderto assign local linkage areas
before and after individual subroutines.

* Use setbase parameters with a LOAD or LIBRARY commandtoinsert local

linkage areas where they are needed.

* Use the SETBASE commandto designate a base areas whereit is required.

¢ During assembly, use the SETB pseudo-operation.

UII handling

The loader can keep track of the CPU hardware required to execute the instructions
generated by the modules already loaded. This is shown in the UII entry in the load state
section of a load map. The codesare:

UII Value CPU Required

100 Prime 450 and up

57 Prime 350 or 400

17 Prime 300 with FP Hardware

3 Prime 300

1 Prime 100 with HSA or 200 with HSA

0 Prime 100 or 200

If the UII code on the load mapis greater than the valuefor the target CPU. then it will be
necessaryto load part of the UII library to make execution possible. When a CPU encounters
an instruction not implemented by hardware, a UII (UnimplementedInstruction Interrupt)
occurs and controlis transferred to the appropriate UII routine. This routine simulates the
missing hardware with software routines.

However,the UII routine must be loaded by the commandLI UII, which should bethelast
LOAD command before the program is saved. The appropriate routines will be selected
from this library to satisfy the additional hardware requirements of the program.

To make sure that only the required subroutines are loaded, the user can ‘‘subtract”’
hardwarefeatures that are present in the CPU byentering a HARDWARE command. For

example, assume:

¢ A load session produces a load map UII value of 57.

¢ The target CPU is a Prime 300 with floating point (UII value 17).

The command:

HA 17

reduces the load state UII value to 40 {i.e., '57-'17) and ensures that the floating point
subroutines do not occupy space in the runfile.

If, after a HARDWARE command,the loadstate UII valueis 0, the UII library need not be

loaded.

System programming features

The following commands are primarily of interest to systems programmers. They are
described in more detail in the Reference Guide, LOAD and SEG:

F/ Prefix to LOAD and LIBRARY which forceloads unreferenced

modules.

P/ Prefix to LOAD and LIBRARYwhichstarts loading on next page
boundary. (Can reduce paging time.)

FDR 3059 4-6 1 March, 1979



LOADING R-MODE PROGRAMS 4
 

 

 

*START 921002 *LOW GO0200 *HIGH 987775 *PBRK 196376
*CMLOW 877777 *CMHGH 877777 *SYM 880078 *UIT GBA0C1

*BASE 888208 98080225 800777 800777
*BASE 601534 881688 801695 921605
*BASE 902576 682660 982661 862661
*BASE 03624 883663 883665 983665
*BASE 84664 @847086 894707 084707

**GHOST 981825 FSWA 801831 FSWX 881837 FSIO 881113
FSA1 801606 FSA3 981606 FSAS 881613 FSA2 Q91621
FSA6 981627 FSA7 881645 FSCB 992326 FSIOBF 9954085
WRASC 985507 IOCS$ 985514 IOCSST 995613 WATBL 685625
LUTBL 985644 PUTBL 985701 RSTBL 005736 OSADQ@7 625773
OSAD@8 06136 OSAAG1 806208 PRSPES 886235 OERRTS 886427
ERRPR$ 9087433 PRWFSS 987436 WILINS 887441 ERRSET 607444
FSER 007447 FSHT 007454 EXIT 907534 AC] 087537
AC2 687548 AC3 607541 Ac4 087542 AC5 687543
TNOU 807544 TONL 997634 T1OU 987641 T1IB G07661
T1O0B 887666 FSAT 997673 FSAT1 697675 GCHAR 887748
SCHAR 997755

COMMON BLOCKS

LIST G8OOC1 @87776 876480

A. Full Map [MAP]

*START 081000 *LOW GON208 *HIGH @87775 *PBRK 186376

*CMLON 877777 *CMHGH 077777 *SYM GNG872 SULT GBOR81

* BASE 880200 980225 880777 800777
*BASE 801534 81588 6881605 BG1G05
*BASE 002575 @82668 882661 0025461

* BASE 003624 883663 883655 08834655
* BASE @84564 884706 804707 3947087

ACl 087537 AC2 007546 AC3 697541 ACc4 807542
AC5 697543 ERRPRS 087433 ERRSET 007444 EXIT 887534
FSAI OG81 605 PSA2 081921 FSA3 681686 FSAS 891613
FSA6 001627 FSA7 081645 PSAT 607673 FSAT1 897675
FSCB AV2 325 FSER 607447 FSHT G87454 FSIO 861113
FSIOBF @05405 FSWA G01 831 FSWX 821037 GCHAR 687748

* *GHOST GB81825 TOCss 885514 TOCSST 085613 LUTBL 085644
OSAABL 986200 OSAD@7 685773 OSAD@8 886136 OERRTS 986427
PRSPES 9866235 PRWESS 0987435 PUTBL 685761 RSTBL 985736
SCHAR #87755 T1IB G87661 T1oB 807666 T10U 887641
TNOU 807544 TONL 697634 WATBL 885625 WRASC 805587
WTLINS 9807441

COMMON BLOCKS

887776 875488 LIST BOCOE1

B. Symbols Sorted Alphabetically [MA 7]

Figure 4-1. Examples of load maps  
 

1 March, 1979 4-7 FDR 3059



  
Loading

segmented programs
 



INTRODUCTION

The PRIMOSSEGutility converts object modules (such as those generated by the PMA)intosegmented runfiles that execute in either 64V or 32] addressing mode and take fulladvantage of the architecture and instruction set of the Prime 350 and up. Segmentedrunfiles offer the following advantages:

¢ Much larger programs: up to 256 segments per user program (32 Megabytes).
* Access to V-mode and I-modeinstructions and architecture (Prime 350 and up) for

faster execution.
¢ Ability to install shared code: single copy of a procedure can service manyusers,

significantly reducing paging time.
* Reentrant procedures permitted: procedure and data segments can be kept

separate.

The following description emphasizes the commands and functions that are of mostuse tothe PMA programmer.For a complete description of all SEG commands, including those foradvanced system-level programming, refer to the Reference Guide, LOAD and SEG.

USING SEG UNDER PRIMOS

SEG is invoked by PRIMOS command:

SEG [pathname]

A pathnameis given only when an existing SEG runfile is to be executed. Otherwise, thecommandtransfers control to SEG commandlevel, which prints a ‘‘#’’ prompt character andawaits a subcommand.After executing a subcommand successfully, the loader repeats theprompt character. SEG employs two subprocessors, LOAD and MODIFY, which acceptfurther subcommands. The subprocessors use the “$"’ prompt character.
If an error occurs during an operation, SEG prints an error message, then the promptcharacter. Error messages and suggested handling techniques are discussed elsewhere inthis section and in Appendix C.

Whena system error (FILE IN USE, ILLEGAL NAME,NO RIGHT,etc.) is encountered, SEGprints the system error and returns the prompt symbol. SEG remainsin control until a QUITsubcommandreturnscontrol to PRIMOS,or an EXECUTE subcommandstarts execution of
the loaded program.

SEG subcommands can be used in commandfiles, but comment lines are accepted onlywithin the LOAD subprocessor.

1 March, 1979 5-1 FDR 3059



§ LOADING SEGMENTED PROGRAMS
 

 

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commandsneeded.
SEG also has manyadditional features to optimize runfile size or speed, perform difficult
loads, load for shared procedures, and deal with possible complications. To facilitate
immediate use of SEG, the most frequently used commands and operations are described
first. Advanced features are then described, followed by a summaryof all SEG commands.

The following commands (shownin abbreviated form) accomplish most loading functions:

SEG-Level commands:

DELETE Deletes segmented runfile.

HELP Prints a list of SEG commandsatterminal.

LOAD Invokes loader subprocessor for entry of subcom-

LOAD subcommands:

LOAD pathname

LIBRARY[filename]

MAP[option]

mands.

Loadsspecified object file.

Loads library object files from UFD LIB. (Default is
PFTNLIB and IFTNLB,in that order.)

Prints loadmap. Option 3 shows unresolved refer-
ences.

INITIALIZE Returns loader to starting condition in case of com-
manderrorsor faulty load.

SAVE Saves loaded memory image as runfile.

RETURN Returns to SEG commandlevel.

QUIT Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

¢ Invoke SEG from PRIMOSlevel.

e Enter the LOAD commandto start the LOAD subprocessor ($ prompt)

¢ Use the load subprocessor’s LOAD subcommandto load the object file (B_
filename) and any separately assembled subroutines.

* Use load subprocessor’s LIBRARY subcommandto load subroutinescalled from
libraries (the default is PFTNLB and IFTNLB in the UFD LIB). Otherlibraries,
such as VSRTLB or VAPPLB, must be named explicitly.

* If you do not have a LOAD COMPLETE,do a MAP3 to identify the unsatisfied
references, and load them.

e SAVEthe runfile.

If these commands produce a LOAD COMPLETEmessage,then loading was accomplished.
If there is a problem, it will become apparent by the absence of a LOAD COMPLETE
message or someother SEG error message. (See Appendix C for a completelist of all SEG
error messages andtheir probable cause andcorrection.)

After a successful load, start runfile execution from loader commandlevel, or quit from the
loader and start execution through the PRIMOS RESUME command. An example of such a

loadis:

FDR 3059 9-2 1 March, 1979



LOADING SEGMENTED PROGRAMS 5
 

 

OK, SEG
GO
# LOAD
SAVE FILE TREE NAME: #ARRAY
$ LO BARRAY
$ LI
S SA
S MA MARRAY
S QU

Orderof loading

The following loading order is recommended:

1. Main program.

2. Separately assembled user-generated subroutines (preferably in order
of frequency of use).

3. Other Prime Libraries (LI filename).

Standard FORTRANlibrary (LI).

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from this
file are loaded by the LIBRARY command given without a filename argument. If sub-
routines from other libraries are used, such as VSRTLB or VAPPLB, additional LIBRARY
commandsare required which include the desired library as an argument.

LOAD MAPS

During loading, SEG collects (and stores, as part of the segmented runfile) information about
the results of the load process. This can be printed at the terminal (or written to a file) by
the load subprocessor’s MAP command:

MAP[pathname][option]

The information in the map can be consulted to diagnose problemsin loading, or to optimize
placement of modules, linkage areas and COMMONin complexloads.If a file pathnameis
given, the mapis written to a file instead of being printed at the terminal. The loadmapis
particularly useful for:

¢ Location where program halted (Link Base (LB) address after a crash).

¢ Modules not loaded (MA 3 or MA 6).

¢ Reason for stack overflow (Stack Base (SB) addressafter a crash).

Whena mapfile is specified, it is opened on PRIMOSUnit 13 and remains open until the
load session is completed. Any additional MAP commandsspecifying outputto a file will use
the one already opened; exiting from the Loader {via EXECUTE, QUIT, or RETURN)closes
the mapfile. If the user has openeda file on PRIMOS Unit13 prior to invoking SEG’s loader,
then this file will be used for the map.In this case, leaving the Loader doesnot closethefile.

1 March, 1979 5-3 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

The full SEG load map consists of seven sections, not all of which may be present in any

load. (See Figure 5-1) In particular, Section III may not be present in small SEG loads. The

amount of information printed is controlled by MAPoption codes:

Option Load Map Information

None, Extent, segment assignments, base areas, symbol storage (symbols

0 or 4 sorted by address), direct entry links, common blocks, and other

symbols.

1 Extent and segmentassignments only

2 Extent, segment assignments and base areas

3 Undefined symbols, sorted by address

6 Undefined symbols, sorted alphabetically

7 Full map, symbols, sorted in alphabetic order

10 Symbols, sorted by ascending address

11 Symbols, sorted alphabetically

Section I—Extent

The extent area shows wherethe program has beenloaded,thestart-of-executionlocation,

and the size of the symboltable. All locations are octal numbers.

*START: The segment numberand wordlocation forthe start-of-execution. At the beginning

of a load,the start addressis initialized to 000000 000000. SEGfills in *STARTforthefirst

segmented procedure encountered (usually the main program).

*STACK: Segment numberand wordlocation of the start of the stack; initialized to 177777

000000 at the start of a load. This value is not changed until a loader SAVE or EXECUTE

commandis invoked. The default stack is in the first procedure segment with 6000 (octal)

free locations at the top of memory.

*SYM: Address of the bottom of the symbol table (one word only as it is a 64R mode

address). Indicates to the user how muchspaceisleft for the symbol table. To determine the

location of the top of the symbol table, generate a mapprior to loading; the top and bottom

of the symbol table will be identical and *SYM will also be thelocation of thetop.

Section II—Segment assignments

Each segmentis labeled as procedure (PROC) or data (DATA); the segment chosen for the

stack is identified by ## following the segmenttype. Thelist is sorted in order of segment

assignment.

LOW:Lowest loadedlocation in the segment. (Not necessarily the lowest assignedlocation.)

Initialized to 177777 (-1) at segment creation; if the segmentis used only for uninitialized

COMMONareas, LOW is not changed.

HIGH: Highest loaded location in the segment. (Not necessarily the highest assigned

location.) Initialized to 000000 at segment creation; if the segment is used only for

uninitialized COMMONareas, HIGHis not changed.

FDR 3059 5-4 1 March, 1979



LOADING SEGMENTED PROGRAMS 5
 

 

 

*START @04002 080003 *STACK @64901 611720 *SYM 002146

SEG. # TYPE LOW HIGH TOP
804901 PROC## 800100 811723 811717
OB40882 DATA BOGBOO1 198462 188553

*BASE 804081 928100 880177 680777 80777

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.
HH HH 4062 880083 4901 881800 908012 B8880035 4802 177460
FSWB 4001 885371 4001 @81067 BOOC68 BAG127 48082 875035
FSRB 4881 885331 4001 881872 G280608 880197 4802 876035
FSDE 4001 685411 4921 881190 BOOB6R B80107 4882 876835
FSEN 4001 685431 4001 9811083 900058 880107 4882 876035
FSWA 4601 885351 4001 61123 GG0Q000 8801897 4882 975035
FSRA 4981 885311 4901 681126 O800580 888107 4882 876035

FSA1 4001 605451 4901 881528 Q82062 B80107 4082 876835
FSA2 4901 685471 4061 981523 820860 O88107 4002 876635
FSA5 4801 605511 4601 801525 GB0868 888187 4882 876035
FSA6 4001 985531 4801 981533 880060 BCC187 4882 876835
FSA7 4901 905551 4081 881536 OB0068 B801087 4882 876835
FSCB 4061 985571 4001 982232 8GG068 8898107 4882 876835
RDASC 4001 685736 4981 885611 Q00026 BB88006 4882 876344
RDBIN 4601 985756 4801 885656 888026 O80006 42002 976344
WRASC 4081 885776 4981 985676 BORB26 GOOZB6 4002 976344
WRBIN 4601 686916 4801 005716 Q89026 BO8886 4902 976344
Tocss 4901 686136 4001 906044 GB0040 BOGCC4 4882 876352
IOCSST 4081 886797 4081 @86174 Q09018 608152 486802 876356
ATTDEV 4081 886727 4881 886252 006014 880152 4882 876356
IOCSRA 4801 986747 4981 886313 808806 888152 4082 876356
I$BD87 4001 987117 4901 887884 800036 O82082 4082 876530
OSBD@7 4081 887236 4601 687142 Q00034 BBGGBG2 4802 76532
OSAD88 40801 907358 4061 87261 880034 BBAGG2 4082 876534
ISAA12 4891 9076516 4081 887373 880952 B08013 4882 - 876536
OSAAB1 4001 807781 4001 87652 009030 888002 48082 876551
FSIOER 4001 687752 4901 887722 G00014 880026 4802 876553
ISAD07 4002 977178 4001 818815 G0003% 880056 4802 875561
OSAD87 4682 677246 4801 198131 982830 682855 4802 976637
PRWFIL 4602 977323 4091 918245 @08846 880055 4802 9876715
PRSPES 4002 @77377 4881 919444 680844 680854 4882 876772
SEARCH 4092 977468 4681 9198685 000034 800121 48082 877846
OERRTS 4082 877574 4001 911014 888052 880662 486082 977167
FSERX 4001 911289 4001 611154 800820 800086 4882 1008051
TONL 4801 9811230 4001 911221 G8GG12 BBBGG2 4902 19809857
GCHAR 4081 11251 4981 11271 O80820 B08000 4902 198061
SCHAR 4001 911312 4901 611336 0880824 BB0809 4002 180261
T10B 4001 611374 4021 811355 G80846 BB8082 4062 180061
GETERR 4601 9811468 4981 611415 880849 B80008 4802 1898863
ERRSET 4001 911631 4001 911590 988034 O88271 4802 180063

DIRECT ENTRY LINKS
CNINS 4081 911652 ERKLS$ 4981 911656 ERRPRS 4061 #11662
EXIT 4801 811666 PRWE'SS 4801 11671 RDLINS 40G1 811575
SRCHS$S 4801 9117981 TNOU 4001 811705 TNOUA 4601 11719
WTLINS 4001 811714

COMMON BLOCKS
4902 6800035 876480

OTHER SYMBOLS
FSA3 4001 88545] **GHOST 4092 888033 FSIOBF 4002 876544
PUTBL 4602 977812 RSTBL 4882 77646

Figure 5-1. Example of Load Map   
1 March, 1979 5-5 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

TOP: Highest assigned location in the segment. Top should not be lower than HIGH.Ifit is,

the user may have specified incorrect load addresses. When not using default values, the

user is responsible for loading into correct areas. TOPis initialized to '177777 (-1} at segment

creation. When spaceis reserved for large COMMONblocks,the loader will only set TOP

to a maximum of '177776 even though the entire segment to ‘177777is reserved.

The reason for this is: a LOW, HIGH, and TOP of 177777 000000 177777 labels an empty

segment.

Section IIJ—Base areas

*BASE VVVVVV WWWWW XXXXX YYYYYY ZLLLLL4

VVVVVV Segment number

WWWWWW Lowest location for base area

XXXXXX Next available location if starting up from lowest location

YYYYYY Next available location if starting down from highest location

ZZZZZZ Highest location for base area

The lowest default location for the sector zero base areais ‘100.

There maybe a sectorzero base area in each procedure segment; there must be nonein data

segments. Base areas other than sector zero ones may be generated by PMA modules.

Section IV—Symbols

A main program or subroutine compiled in 64V or 321 modeiscalled a procedure. For a

complete discussion, see Sections 9 and 10 in this manual; also the Reference Guide, System

Architecture. A procedure is composedof a procedure frame(the executable code), an ECB

(the entry control block which points to the procedure frame), a link frame(static storage,

constants, transfer vectors) and a stack frame (dynamically allocated storage which is

assigned whentheroutineis called and released uponreturn from the routine). This section

of the map describes these items. The ECB is normally partof the link frame although the

programmer mayplaceit in the procedure frame. The procedure framewill be located ina

segment reserved for procedure frames. Link frames and COMMON blocks will be located

in segments reserved for data.

Thefirst pair of numbers in this section of the map is the segment and word addressfor the

ECB; the secondpair is the segment and word address for the procedure.

ST. SIZE: is the size of the stack frame (working area) created wheneverthe routine is

called. Its segment (and location therein) are assigned at execution time.

LINK FR:is the size of the link frame.

The last two columnsare the link frame segment and offset. Note that the offset is '400

locations lower than the actual position, for compatibility with the information printed by

the PRIMOS PM command.The segment numberis usually that for the ECB.

Procedures with no names,specifically a main program,are identified by #### in the name

field.

Section V—Direct entry links

PRIMOSsupports direct entry calls to the supervisor for certain routines. These are created

as fault pointers in the SEG runfile. Where references are satisfied by these fault pointers,

they will appear in the DIRECT ENTRY LINKSsection of the map.

Section VI—COMMONblocks

Lists each COMMONblock,its segment number,starting word address in the segment, and

size. .

FDR 3059 5-6 1 March, 1979



LOADING SEGMENTED PROGRAMS 5
 

 

Lists the symbol, its segment, and word addressin that segment. As in Section VI, the format
is three symbols perline. Unsatisfied references are preceded by **

The numbersfor unsatisfied references (segment and word address) locate the last request
for the routine processed bythe loader. This allows the routines calling missing routines to
be identified.

ADVANCED SEG FEATURES

When standard loading goes well, the user can ignore most of the SEG’s advanced features.
However, situations can arise where some detailed knowledge of SEG and segmented
runfile organization can optimize size or performanceof a runfile, or even makea critical
load possible. The following topics are particularly valuable.

Segment usage

A segmentis a 64K wordblock of user’s virtual address space. Segment ’4000 is the segment
that SEG and other external commandsoccupy wheninvoked. Segment ’4000 is the lowest-
valued non-shared segment in the PRIMOSsystem. SEG creates a runfile of up to 256
segments.

PRIMOSassigns memory segments to a user as they are accessed. These are not re-assigned
until logout. Since only a fixed number of segments are available for all users, extra
segments should not be invoked unless the user is actually executing or examining a
segmented program. Most of the functions of SEG use only one segment; only those options
whichrestore a runfile use extra segments, i.e, RESTORE, RESUME, and EXECUTE.

Segmented runfiles

A segmentedrunfile consists of segment subfiles in a segment directory. For this reason, you
cannot delete a SEG runfile with a PRIMOS-level DELETE command.Instead, use the
DELETE commandin SEG. (The TREDEL commandin FUTILalso worksbutis slower than
SEG’s DELETE.)

Note

It is good practice to use the PRIMOS DELSEG commandto
release segments assigned by SEG during a load session.
Otherwise those segments remain assigned to the user until
logout, precluding their use by anyoneelse.

Each segmentof the runfile consists of 32 {’40) subfiles of 4000 words each. Subfile 0 of the
runfile is used for startup information, the load map, and the memory image subfile map.
Memory image subfiles begin in segment subfile 1. Only the subfiles actually required for
the runfile are stored on the disk.

SEG’s loader

SEG has a virtual loader(i.e., it loads to a file rather than to memory) which requires the
name of the runfile before anything is loaded. The runfile may be new or may be a
previously used SEG runfile, and maybe in any directory. A runfile compiled and loaded in
32R or 64R mode maynot be used.

EG’s loader may beused to add modules to ans d
be saved with the SEG SAVE command and

odules may bereplaced in a SEG runfile.

As the symboltableis always available, S
existing runfile. Similarly, a partial load may
the load completedlater. In addition, selected m

1 March, 1979 0-7 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

Objectfiles

Objectfiles of the program modules must have beencreated using the SEG or SEGR pseudo-
operation. Modules written in other languages may also be loaded, if they have been
compiled or assembled in 64V or 321 mode.

Code and data are loaded in separate segments to support re-entrant procedures. Data
includes all COMMONblocks and link frames. The loader assigns code and data segments.
The first segment (’4001) is used for code. Usually segment '4002 will be used for data. The
loader loads data and codeinto appropriate segments and opens new segmentsas required.
It is possible to put both code and data in the same segmentto save space, using the MIXUP
subcommand of the LOAD subprocessor.

The stack

The loader assigns a stack (a dynamic work area) when SAVE or EXECUTEis invoked. The
stack is usually assigned as the nextfree location in the first procedure segment with ’6000
free words. If no such segmentexists, a new data segmentis assigned with thefirst location
in the stack set to 4; locations 0 to 3 are used for internal SEG information. The user may
force the location of the stack and/or may changeits size.

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filename of a file within the LIB UFD.

Base areas

Base areas normally present no problem unless the following messageis printed:

SECTOR 0 BASE AREA FULL

This condition, which is extremely unlikelyto occur, can be avoided by using the SETBASE
command or the SETB pseudo-operation to designate a base area whereit is required.

Locating COMMON

SEG makessurethere is no overlap of procedures and COMMON.Theuserhasthe option
of moving COMMON by a COMMONor SYM command,but he takes on the responsibility
of making sure it doesn’t run into the stack.

COMMAND SUMMARY

Following is a summaryof all SEG commands, in alphabetical order within three groups:

1. SEG-level commands

2. LOAD-subprocessor
RATOAINTOV kK
Vitvisit F SUODrOCESssor

Files and directory names may be specified by pathnames, except in the LIBRARY

commands. All numerical values must be octa!. The following conventionsare followedfor

parameters.

addr Word address within a segment.

segno Segment number.

psegno Procedure segment number.

Isegno Linkage segment number.

[a] [b] [x] Values for A, B, and X registers.

Note

Segment numbers maybe absolute orrelative.

FDR 3059 5-8 1 March, 1979



LOADING SEGMENTED PROGRAMS 5
 

 

Commandsat SEG level are entered in responseto the ‘“#’ prompt.

DELETE [pathname]

Deletes a saved SEG runfiles.

HELP

Prints abbreviated list of SEG commandsat terminal.

[V]LOAD[pathname]

Defines runfile name and invokesvirtual loaderfor creation of new runfile (if name did not
exist) or appendingto existing runfile (if name exists}. If pathname is omitted, SEG requests
one.

MAP pathname-1 [pathname-2] [map-option]

Prints a loadmapof runfile (pathname-1 or currentloadfile (*)} at terminal or optionalfile
(pathname-2).

Option Load Mapinformation

Full map (default)
Extent map only
Extent map and base areas
Undefined symbols only
Full map (identical to 0)
System programmer's map
Undefined symbols, alphabetical order
Full map, sorted alphabetically
Symbols by ascending address
Symbols alphabeticallyP

P
A
N
D
O
T

F
P
W
H
K
F

a
)

MODIFY[filename]

Invokes MODIFY subprocessor to create a new runfile or modify an existing runfile.

PARAMS[filename]

Displays the parameters of a SEG runfile.

PSD

Invokes VPSD debuggingutility.

QUIT

Returns to PRIMOS commandlevel and closesall openfiles.

RESTORE [pathname]

Restores a SEG runfile to memory for examination with VPSD.

RESU ME [pathname]

Restores runfile and begins execution.

1 March, 1979 5-9 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

SAVE [pathname]

Synonyin for MODIFY.

SHARE[pathname]

Converts portions of SEG runfile corresponding to segments below ’4001 into R-mode-like

runfiles.

SINGLE [pathname] segno

Creates an R-mode-like runfile for any segment.

TIME [pathname]

Prints time and date of last runfile modification.

VERSION

Displays SEG version number.

VLOAD

See LOAD.

LOAD SUBPROCESSOR COMMANDS

ATTACH[ufd-name] [password] [Idisk] [key]

Attaches to directory.

A/SYMBOL symbolname[segtype] segno size

Defines a symbol in memory andreservesspacefor it using absolute segment numbers.

,ABS],
COMMON OED segno

Relocates COMMONusingabsolute or relative segment numbers.

IL
LOAD

D/ LIBRARY
FORCELOAD
PL or RL

Continues a load using parameters of previous load command.

Note

D/ and F/ may be combined,as in D/F/LI.

EXECUTE[a] [bl] [x]

Performs SAVEand executes program.

FDR 3059 5-10 1 March, 1979



LOADING SEGMENTED PROGRAMS 5
 

 

/ IL \

LOAD
F/ LIBRARY

FORCELOAD
PL

\ RL

Forceloadsall routines in objectfile.

[pathname] [addr psegnoIsegno]

IL [addr psegnoIsegno]

Loads impure FORTRANlibrary IFTNLB

INITIALIZE [pathname]

Initializes and restarts load subprocessor.

LIBRARY[filename] [addr psegno Isegno]

Loadslibrary file (PFTNLB and IFTNLBif no filename specified).

LOAD [pathname] [addr psegnoIsegno]

Loads objectfile.

MAP[pathname] option

Generates load map (see SEG-level MAP command).

ON
MIXUP | DFE

Mixes procedure and data in segments and permits loading of linkage and commonareasin
procedure segments. Not reset by INITIALIZE.

MV[start-symbol move-block desegno]

Movesportionof loadedfile (for libraries). If options are omitted, information is requested.

OPERATORoption

Enables or removes system privileges 0=enable, 1=remove. Caution: this command is
intended only for knowledgeable creators of specialized software.

PL [addr psegno[segno]

Loads pure FORTRANlibrary, PFTNLB.

IL

LOAD
p/) LIBRARY

FORCELOAD

(

[pathname] option [psegno] [Isegno]
PL

\ RL

Loads on a page boundary. The options are: PR=procedure only, DA=link framesonly, none
=both procedure and link frames.

1 March, 1979 5-11 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

QUIT

Performs SAVEandreturns to PRIMOS commandlevel.

RETURN

Performs SAVEandreturns to SEG commandlevel.

RL pathname [addr psegno Isegno]

Replaces a binary module in an established runfile.

R/SYMBOLsymbol-name[segtype] segno size

Defines a symbol in memoryand reservesspace forit using relative segment assignment.
(Default=data segment).

SAVE[a] [b] [x]

Saves the results of a load on disk.

SETBASE segno length

Creates base area for desectorization.

( segno addr |
SPLIT <addr >

i addr segno addr lsegno|

Splits segment into data and procedureportions. Formats 2 and 3 allow R mode executionif
all loaded information is in segment 4000.

SS symbol-name

Saves symbol; prevents XPUNGEfrom deleting symbol-name.

STACKsize

Sets minimum stacksize.

SYMBOL[symbol-name] segno addr

Defines a symbol at specific location in a segment.

FOPL iereles > [pathname] [addr psegnolsegno]

| RL or LOAD

LIBRARY |
S/

Loads an objectfile in specified absolute segments.

XP dsymbol dbase

Expunges symbol from symboltable and deletes base information.

symbol Action

Q Delete all defined symbols—including GOMMONarea.

1 Delete only entry points, leaving COMMONareas.

FDR 3059 5-12 1 March, 1979



LOADING SEGMENTED PROGRAMS 9
 

dbase Aciion

0 Retain all base information.

1 Retain only sector zero information.

2 Delete all base information.

MODIFY SUBPROCESSOR COMMANDS

NEW pathname

Writes a new copy of SEG runfile to disk.

PATCHsegno baddrtaddr

Adds a patch (loaded between baddr and taddr) to an existing runfile and savesit on disk.

RETURN

Returns to SEG commandlevel.

ssize
Sk segno addr

ssize 0 esegno
| ssegno addr esegno

Specifies stack size (ssize) and location. esegno specifies an extension stack segment.

START segno addr

Changes program execution starting address.

WRITE

Writes all segments above '4000 of current runfile to disk.

1 March, 1979 5-13 FDR 3059



 

Executing
 



This section treats the followingtopics:

* Execution of program memory images savedbythelinking loader.
¢ Execution of segmented runfiles saved by SEG’s loader.
* Installation of programs in the command UFD (CMDNCO).
¢ Use of run time.

EXECUTION OF UNSEGMENTED RUNFILES

Use the PRIMOS RESUME commandto execute an unsegmented runfile:
RESUMEpathname

where pathnameis an R-mode runfile in the current UFD.
Programs whichareresidentin the user’s memory may be executed by a START command:

START

RESUME

RESUMEbrings the memory-image program pathname from the disk into the user’smemory, loads theinitial register settings, and begins execution of the program.Its formatis:

RESUMEpathname

Example:

OK, R *TEST User requests program
GO Execution begins
THIS IS A TEST Output of program

OK, PRIMOS requests next command

RESUMEshould not be used for segmented (64V or 321 mode} programs; use the SEGcommand(discussedlater) instead.

START

Oncea programis residentin memory(e.g., by a previous RESUME command) you can useSTARTto initialize the registers and begin execution.Its formatis:
START [start-address|

Upon completion of the program, control returns to PRIMOS commandlevel.

1 March, 1979 6-1 FDR 3059



§ EXECUTING
 
 

EXECUTION OF SEGMENTED RUNFILES

Use the SEG command to begin execution of a segmented program; e.g. SEG pathname

where pathnameis a SEG runfile. SEG loads the runfile into segmented memoryandstarts

execution. SEG should be usedfor runfiles created by SEG’s Loader; it should not be used

for program memory images created by the LOADutility.

Example:

OK, SEG #TEST user requests program

GO execution begins

THIS IS A TEST output of program

OK, PRIMOS requests next command

Upon completion of program execution, control returns to the PRIMOS command level.

You mayrestart a SEG runfile by the command: $ 1000, provided both the SEG runfile and

the copy of SEG usedto invokeit are in memory.

INSTALLATION IN THE COMMAND UFD (CMDNCO)

Run-time programs in the command UFD (CMDNCO0) can be invoked by keying in the

program namealone. This feature of PRIMOSis useful if a numberof users invoke this

program. Only one copy of the program needreside on the disk in UFD CMDNCO.

Even more space is saved during execution by multiple users if the program uses shared

code (64V and 321 modeonly).

Program memory images saved by LOAD

Installation in the command UFDis extremely simple, providing you have access to the

password. The runtime version of the program is copied into UFD CMDNCOusing PRIMOS'

FUTIL file handling utility.

Example: Assume you have written a utility program called FARLEY.This utility acts as a

“tickler” for dates. Using FARLEY, each user builds a file with important dates. The

FARLEYutility program, upon request, prints out upcoming events or occasions of interest

to the user.

Note

This utility does not necessarily actually exist; it is used as a

plausible example.

First, assemble the program.

OK, PMA FARLEY -64R Assemble in 64R mode

GO

6880 ERRORS (PMA-REV 16.2)ASSEMBLER MESSAGE

OK, LOAD Invoke the Loader

GO

SLO B_FARLEY Load the object file; the default

name is used

$ Load other required modules

FDR 3059 6-2 1 March, 1979



EXECUTING 6
 
 

SLI Load the FORTRAN library
LOAD COMPLETE Load is complete
SSA *FARLEY Save the memory image
SQU Return to PRIMOS

OK, FUTIL Invoke the file utility
GO
>TO CMDNC@ ORDER Defines the TO UFD as CMDNCQ;

password is ORDER
>COPY *FARLEY FARLEY Copies the runtime progran

*FARLEY into UFD=CMDNCQ

under the name of FARLEY
>QUIT Return to PRIMOS Command level

OK,

It was not necessary to define a FROM UFD:the default wasused. Any user can now invoke
this program:

OK, FARLEY Invoke program
GO Execution beings

HOW FAR: Asks for future time period

etc.

Segmented runfiles saved by SEG’s loader

A segmented program cannot be run directly from UFD CMDNCO because PRIMOS'’
commandprocessor cannot directly handle the SEG runfiles. The segmented program may
be invoked by meansof a non-segmentedinterlude program in CMDNCO.

The procedurefor creating an interludeis:

1. Create the desired SEG runfile.

Attach to UFD SEG.

3. Run the command file CMDSEG;it will ask for a runfile name—this
nameis the new SEG runfile nameusedin step four. This commandfile
will create the interlude program under the name *TEST.

4. Make a copy of the SEG runfile in UFD SEG using FUTIL’s TRECPY
command. The nameof the new SEG runfile should be the name used
in step three.

5. A copy of *TEST should be placed in UFD CMDNCO using FUTIL’s
COPY command.Thefile name should be that by which the program
will be invoked.

Note

If a pathnameis given in step three, the runfile need not
reside in UFD SEG(step four can be skipped).

Example:

1. Extensions to the FARLEY utility described above makeit desirable to
assemble and load it as a segmented program.

1 March, 1979 6-3 FDR 3059



6 EXECUTING
 
 

OK, PMA FARLEY —64V Assemble in 54V mode

GO
@000 ERRORS (PMA-REV 16.2)

OK, SEG Invoke SEG utility

GO
# LOAD #FARLEY Establish runfile name

S$ LO B FARLEY Load object file
S$.

$ LI Load 64V mode FORTRAN library
S SA Save the file

S$ QU Return to PRIMOS
OK,

2. Attach to UFD SEG.

OK, A SEG
OK,

3. The commandfile CMDSEGcreatesthe interlude program.

OK, CO CMDSEG

OK, * CMDSEG,SEG,CEH. 04/85/78
OK, * COMMAND. FILE.TO.CREATE. 'CMDNC@' .SEG. RUNFILES
OK, R *CMDMA
GO
RUN FILE NAME: FARLEY
OK, PMA SSSSEG 1/5707
e')
0206 ERRORS (PMA-REV 16.2)
OK, FILMEM
OK, LOAD
SSZ
SER 2
SMO D64R
SCO 1734092
SLO BSSSSEG 173480
SAU 2
SLO CMDLIB * 12 1414090129098 12
SAU @
SLI
SMA 2

FDR 3059 6-4 1 March, 1979



EXECUTING 6
 

 

SQU
OK, DELETE SSSSEG
OK, DELETE B_SSSSEG
OK, CO TTY

OK,

4. UFD SEG contains the SEG runfiles which are actually executed bythe interlude
programs. The SEGrunfile is copied here from the UFD in which it was SAVEd.

OK, FUTIL Invoke FUTIL

GO

>FROM MYUFD FROM UFD is user's old home UFD
>TRECPY #FARLEY FARLEY Make a copy under the invocation

Note

No TO UFDis defined since the default (home) is being used.

5. The interlude program *TESTis copied into the command UFD under the name
by whichit will be invoked.

>FROM * New FROM UFD - the current home

>TO CMDNCZ ORDER TO UFD=CMDNC@; password here
is assumed to be ORDER

PCOPY *TEST FARLEY Copy the interlude
PQUIT Return to PRIMOS command level

OK,

When FARLEYis entered at the user terminal, the FARLEY interlude program in CMDNCO
is executed. This program attaches to the SEG UFD,restores the segmented runfile FARLEY,
re-attaches to the user’s home UFD andbegins execution of the SEG runfile.

If the SEG runfile requires only one segmentof loaded information (procedure, link frames,
andinitialized common) in user space (segment ’4000 and above)it is possible to include the
interlude in the SEG runfile.

RUN-TIME ERROR MESSAGES

Appendix C containsa list of error messages which you mayreceive during execution, along
with their meaning and origin.

1 March, 1979 6-5 FDR 3059



 
 

    



Debuggingis really an art and an attitude, rather than a set of techniques. In accord with
this, we will present sometools and we hopeyouwill use them, develop your ownideas, and
tell us about them.

TOOLS

You have a variety of tools from which to choose. Which you select is extremely context
sensitive. The partial list below is intendedto be an initial guide.

Tool Where Described

PM command Described below

COMOUTPUT command Described below

PMA Error Messages Appendix C of this document

Load Maps Sections 4 and 5 of this document

Debugging Utilities Sections 18-21 of this document

RVEC parameters

The commands RESTORE, RESUME, SAVE, PM, and STARTprocess a group of optional
parameters associated with the PRIMOS RVECvector. These parametersare stored on disk
along with a starting address (SA) and ending address (EA), for every program savedby the
SAVE command.

Initial values for the RVEC parameters are usually specified in the PRIMOS SAVE
command, or by the Loader’s SAVE commandthat stored the program on disk.

Each parameter is a 16-digit processor word represented byupto six octal digits.

PM command

The PM (Post Mortem) commandprints the contents of the RVEC vector. PRIMOSfirst
prints labels for the items in RVEC,then prints the values on the line in the same order. PM
is an internal commandanddoes not overlay user memory.

The Prime 350 and above contain additional registers which PM displays: the procedure
base register (PB), the stack base register (SB), the link base register (LB), and the temporary
base register (XB). These 32-bit registers are displayed at the user terminal on a text line
separate from the other registers. Each of the Prime 400 registers is displayed as two 16-bit
octal numbersseparated by slash {(/) character.

Example:

OK, PM
SA, EA,P,A,B,X,K=
188 11763 5517 128248 28861 23534 14900

PB, SB,LB, XB:
62008/5517 64808/74812 4000/3400 11/15041

1 March, 1979 7-1 FDR 3059



7 DEBUGGING
 

 

The above example of PM under PRIMOSIV showsa PBof 64000/3043, which indicates: ring

3 (See the System Architecture Guide for a discussion of rings), segment ‘4000. The word

numberportion of PB indicates the same numberas the P parameter of PM.This number

specified the location within the segment to execute the next instruction upon possible

receipt of a START command.Theother base registers shown in the example contain a 0,

indicating that they have not been used since LOGIN.Programsthat run in one of the Prime

300 addressing modes use segment4000 ring 3, and give valuesas a result of invoking PM in

the form shownby the example.

COMOUTPUTfiles

PRIMOShasa very useful tool for anyone who is debugging — or who wishesto record a

particular situation. You maydirectall the interactive terminaldialogto a file. This means

that you can have a complete trace of a debugging session without a hard copy terminal. In

addition, you can edit this file, print it out and delete it as you chose. The commandis:

COMOUTPUTpathname

where pathnameis the output file. To stop the COMOfile creation process, type:

COMO -END

ADVANCED DEBUGGING TECHNIQUES

Section 9—Instruction and Data Formats, contains useful debugging data structures, such as

ECB andstack frame layouts

DEBUGGING—PRIMOS SEVERE ERRORS

The following list describes several severe error conditions.In all casesthe errorsarefatal.

NO VECTOR A fault occured and there is no user vector in segment '4000 to

processit. There are several possibilities as to why this condition

occurs:

1. Stack Overflow—Usually there is no vector becausethestackis

too small. Do a PM.If SB is close to top of its segment use SEG to

movestack andincreaseits size, or create a stack extension. With

the dynamic variables features of FTN, stack overflow may be-

come a problem.

2. FLEX (Floating Point Exception) If this occurs, your program

has wiped out segment ‘4000. Check to see that you are using ‘4000

properly. If so, your program is sick. To ascertain this, examine

location ’74 with PSD or TAP.If 0 then it is wiped out.

3. Others. The implication is that your program hasgoneoff into

random memory and has wiped things out.

POINTER FAULT Either there is a missing argument for some subroutinecall, you

did not get a load complete whenloading, or the program has

written over its link frame and/or procedure segment. Use VP5D

to examine the current stack frame and SEG to get a MAP 3 or

MAP6.

ILLEGAL SEGNO Probably somepointerin a link or stack frame has been wiped out

(i.e., referencing an array with subscripts out-of-range). Use VPSD

to examine the current andpast link and stack frames.

ACCESS VIOLATION An attempt was madeto access a segmentfor which the user does

not have properaccessrights. Cause usually the sameas anillegal

segno

FDR 3059 7-2 1 March,1979



DEBUGGING 7
 

 

Note

Most frequent cause of ILLEGAL SEGNO and ACCESS VIO-
LATION is an improperly dimensioned local or common
array. Try getting common awayfrom link framesbyreload-
ing.

MEMORY OVERFLOW ERRORS (MO)

As user programs become larger, MO (memoryoverflow) errors will become more common.
Several causes and solutions to these errors follow:

When an MOerroroccurs, do a MA 2 and examinethe resulting mapfor any of the following

situations:

1. The address of the bottom of the symbol table (*SYM)is at or close to

PBRK.This indicates that there is insufficient room below the loader

for the whole program. Using HILOADwill probably solve the problem,

unless of course the user is already using HILOAD.If this is the case

there are only two alternatives; redesign the entire program or make

hardware changes.

2. The sector zero base areais full. The next free location is 1000. The size
of the sector zero base area may be increased by using a SETB 100
commandat the beginningof the load (if locations 100 to 200 are free).
An AU xx command maybeusedto insert base areas throughout the
load, where xx is a small octal numberwhichsets the size of the base
area to be inserted.

3. *CMLOW is higher than *CMHGH.Thetotal size of all the common
blocks is too large causing commonto wrap around through zeroto high
memory. Possibly common may be movedto the top of memory,if not
already done.If there is more than 64K of common,and this cannot be
reduced, the program cannotbe run in ‘‘R’’mode. A segmented program

is required.

4. Others. The program requiresinitialized common. Commonis usually
defaulted to overwrite the space used by the Loader. The locations
between the bottom of the symboltable andthetop of the loader cannot
be initialized. This would destroy the loader. Use a COMMONcom-
mand to move commonoutof the way of the loader. HILOAD can be
used to permit commonto utilize locations normally used by LOAD.

1 March, 1979 7-3 FDR 3059



  4
with the system libraries
 



Most of the commonly used subroutines — I/O, math functions and EXIT, are either
embeddedin the operating system or are in one of the FORTRANlibraries. LOAD and SEG
automatically load the appropriate library when you type the commandLI during loading
sequence. Otherlibraries, such as APPLIB and MATHLIBrequirethe specification of their
name following LI — e.g. LI APPLIB causes the application library to be searched for
unresolved references.

Table 8-1 lists the commonly available system libraries. See the Reference Guide, PRIMOS
Subroutines for complete descriptions of the system subroutines.

All routines, regardless of mode, should use the CALL pseudo-operation to call subroutines.
S and R-mode arguments use DACpointers; V, and I-mode arguments use APpointers (see
Section 16 for the DAC and AP pseudo-operation formats). Figure 8-1 illustrates the SR
calling sequences and associated subroutine code; Figure 8-2 illustrates VI calling se-
quences andassociated subroutine code.

 

Table 8-1. System Libraries

Name Description Mode

FTNLIB FORTRANLibrary R

PFTNLB FORTRAN Library pure pro-

cedures V

IFTNLB FORTRAN Library impure pro-
cedures Vv

APPLIB Application Library R

VAPPLB Application Library V

SRTLIB Sort Library-Files R

VSRTLI Sort Library-Files V

MSORTS Sort Library-Memory R

MATHLB Matrix Routines R  
 

1 March, 1979 8-1 FDR 3059



8 INTERFACING WITH THE SYSTEM LIBRARIES

 

 

Main Program

Two or More ArgumentsNo Arguments One Argument

CALL SUBX CALL SUBX

DAC A

Subroutine

ENT SUBX ENT SUBX

REL REL

SUBX DAC ** SUBX DAC ** - SUBX
first instruction CALL FSAT

. DEC 1

. APTR DAC** APTR

. BPTR

JMP SUBX,* CPTR

JMP SUBX,*

Note

CALL SUBX is equivalentto:

EXT SUBX
JST SUBX

Figure 8-1. SR Subroutine CALL Conventions

CALL SUBX
DAC A
DAC B
DAC C

*

DAC @

ENT SUBX
REL

DAC **
CALL FSAT
DEC 3
DAC **
DAC kk

DAC **

first instruction

»

JMP SUBX,*

  
FDR 3059 8-2 1 March, 1979



INTERFACING WITH THE SYSTEM LIBRARIES 8
 

 

 

Main Program

No Arguments One Argument Two or More Arguments

CALL SUBX CALL SUBX CALL SUBX

AP A,SL AP A,S

AP B,S

AP C,S

AP n,SL

Subroutine

ENT SUBX, SBX1 ENT SUBX, SBX1 ENT SUBX, SBX1

SEG SEG SEG

SUBX first instruction SUBX ARGT SUBX ARGT
first instruction first instruction

PRTN PRTN PRTN

LINK

SBX1 ECB  SUBX DYNM APTR (3) DYNM. APTR (3)

LINK DYNM BPTR (3)

SBX1 ECB SUBX,,APTR, 1 DYNM CPTR (3)

DYNM DPTR (3)

DYNM nPTR (3)

LINK

SBX1 ECB SUBX,,APTR,n

Note

CALL SUBXis equivalentto:

EXT SUBX
PCL SUBX Figure 8-2. VI Subroutine CALL Conventions  
 

1 March, 1979 8-3 FDR 3059



‘ oso telat INSTRUCTION

 



  Data and instruction
formats -SRVI
 



DATA STRUCTURES

Wordlength

e 16

e 32

bits (SRV)
bits (I)

Byte length

¢ 8 bits (SRVI)

Characterstrings

¢ Variable length collection of bytes from 1 to 2**17-1.

Numbers

Unsigned 16 bit integers (SRV)(
(
(

 

   

 

      

 

       

 

       

 

   

   
 

e Unsigned 32 bit integers (SRVI)
e Unsigned 64 bit integers (J)
¢ Signed 16-bit integers (SRVI)

|
S| S = 0 = positive
1 2 16 S = 1=negative

« Signed 31-bit integers (SR)

S 0 S = 0= positive
1 2 16 17 32 S = 1 =negative

e Signed 32-bit integers (VI)

S S = 0 = positive
1 9 16 17 32 S = 1 = negative

¢ Signed 64-bit integers (VI)

S S = 0 = positive
1 2 32 33 64 S = 1= negative

¢ Floating Point - Single Precision 32 bits (RVI)

S MANTISSA S = 0 = positive
1 2 16 S = 1 = negative

MANTISSA EXPONENT(EXCESS128)

17 24 25 32

1 March, 1979 9-1 FDR 3059

 



9 DATA STRUCTURES
 

 

* Floating Point - Double Precision 64 bits (RVJ)

 

   
 

 

  
 

 

   

S MANTISSA S = 0 = positive

9 16 S = 1= negative

MANTISSA

17 32

MANTISSA

33 48
 

 EXPONENT — (EXCESS 128)

49 64
  

¢ Decimal - one to 63 digits in five forms (VI)

Decimal control word format (VI)

To specify the characteristics of the operation to be performed. most decimal arithmetic

instructions require a control word to be loadedin the L register (general register 2 in I-

Mode).

The general formatis as follows:
 

            
 

A;— |B}/C;}—|; T] D E F G H

1-6 78910 1112 13 14-16 17-22 23-29 30-32

A (Bits 1-6) Field 1, numberof digits

E (Bits 14-16) Field 1, decimal data type

B (Bit 9) If set, sign of field 1 is treated as opposite of its actual

value.

C (Bit 10) If set, sign of field 2 is treated as opposite of its actual

value. XAD, XMP, XDV, XCM only)

D (Bit 13) Round flag (XMV only}

F (Bits 17-22) Field 2, numberof digits

H (Bits 30-32) Field 2, decimal data type

G (Bits 23-29} Scale differential (KAD, XMV, XCM and numberof

multiplier digits in XMP}

T (Bit 12} Generate positive results always

Unused, must be zero

Thefields used by eachinstructionare listed in the instruction descriptions. Fields not used

by an instruction must be zero.

The scale differential specifies the difference in decimal point alignment between the

operator and fields for some instructions. This field is treated as a signed 7 bit two's

complement number. Its value is specified as Fx=F1-F2, where Fx is the number of

fractionaldigits in Field x. A positive value indicates a right shifting of Field 1 with respect

to Field 2, and a negative value indicates

a

left shifting.

VD
“Jwy

(
l

Two word pointer which follows AP instructions.

FDR 3059 9-2 1 March, 1978



DATA STRUCTURES 9
 

 

 

        
BITNO i — BR —_ WORDNO

1—4 5 6 7—8 9—16 17 32

BITNO (Bits 1-4) Bit number

I (Bit 5) Indirect bit

BR (Bits 7-8) Base register

WORDNO[Bit 17-32}

00 Procedure Base (PB)

01 Stack Base (SB)

10 Link Base (LB)

Word numberoffset from base register contents

Indirect word - one word memoryreference (SRV)
 

     

 

    

 

   

1; X 14-bit address 16S

1 2 3 16

l 15-bit address 3258

1 2 16 32R
16-bit address 64R

1 16 6aV
I (Bit 1) Indirect bit
X (Bit 2) Indexbit

Indirect pointer - two word memoryreference(IP) (VD
 

       
F |RR/| O SEGNO WORDNO

123 4 «5 16 17 32

F (Bit 1) Generate pointer fault if set. In the fault case, the
entire first word (bits 1-16) forms a fault code, and no
other bits are inspected.

RR (Bits 2-3) Ring of privilege - controls access rights
Bit 4 = 0 No third word. Bit number portion of effective ad-

dress is zero.

The segment numberportion of the effective address
The word numberportion of the effective address.

SEGNO(Bits 5-16)
WORDNO(Bit 17-32)

Indirect pointer - three word memoryreference(IP) (VI)
 

           
F;/RR|1| SEGNO WORDNO BITNO

12-3 4 5 16 17 32 33 36 37 48

F (Bit 1) Generate pointer fault if set. In the fault case, the
entire first word (bits 1-16) forms a fault code, and no
other bits are inspected.

RR (Bits 2-3) Ring of privilege — controls access rights.
Bit4 = 1 The third word is present and gives the bit number

portion of the effective address.

1 March, 1979 9-3 FDR 3059



Q DATA STRUCTURES
 

 

SEGNO(Bits 5-16) The segment numberportionof the effective address.

WORDNO(Bit 17-32) The word numberportion of the effective address.

BITNO (Bits 33-48) The bit numberportion of the effective address.

Stack segment header (VI)

 

FREE POINTER

 

Q
n

=
©

 
EXTENSION SEGMENT

POINTER  
 

Word

0,1

2,3

Meaning

Free pointer - segment number/word numberof available location at

which to build next frame. Must be even.

Extension segment pointer - segment number/word numberofloca-

tions at which to build next frame when current segmentoverflows.If

zero, a stack overflow fault occurs when current segment overflows.

PCL stack frame header (VJ)

 

0-0
 

STACK ROOT SEGMENT NUMBER
 

RETURN POINTER

 

CALLER’S SAVED STACK
BASE REGISTER
 

CALLER’S SAVED LINK

BASE REGISTER
 

CALLER’S SAVED KEYS
 

o
o
n

n
r

W
N

=
O
S

 LOCATION FOLLOWING CALL  
 

Word

2,3

4,5

6,7

FDR 3059

Meaning

Flag bits - set to zero by PCL when frameis created

Stack root segment number- for locating free pointer

Return pointer - segment number/word numberof return location

Caller’s saved stack base register

Caller’s saved link base register

Caller’s saved keys

Word number of location f
transfer templates, if any

~Vinwaians ona
ULLU Wills Lal

—
_

o
t

9-4 1 March, 1979



DATA STRUCTURES 9
 

 

©
) E ry stack frame hea

re “4ee r —
s
,

=

 

 

 

 

 

 

 

 

 

    

0 FLAG BITS.

1 STACK ROOT SEGMENT NUMBER

; RETURN POINTER

4 CALLER’S SAVED STACK

5 BASE REGISTER

6 CALLER’S SAVED LINK

7 BASE REGISTER

8 CALLER’S SAVED KEYS

9 LOCATION FOLLOWING CALL

10 FAULT CODE

Ms FAULT ADDRESS

13

14 RESERVED

15

Word Meaning

0 Flag bits - set to one by CALFfault

1 Stack root segment number- for locating free pointer

2,3 Return pointer - segment number/word numberof return location

4,5 Caller’s saved stack base register

6,7 Caller’s saved link base register

8 Caller’s saved keys

9 Word number of location following call - beginning of argument
transfer templates, if any

10 Fault code

11,12 Fault address

13-15 Reserved

1 March, 1979 9-5 FDR 3059



9 DATA STRUCTURES
 

 

Entry control block (ECB) (VJ)

 

 

 

 

 

 

 

 

  
 

0 POINTER TO CALLED

1 PROCEDURE

2 STACK FRAMESIZE

3 STACK ROOT SEGMENT NUMBER

4 ARGUMENTLIST DISPLACEMENT

5 NUMBER OF ARGUMENTS

6 LINK BASE REGISTER OF

7 CALLED PROCEDURE

8 KEYS

9

10

11

12 RESERVED

13

14

15

Word Meaning

0,1 Pointer (ring, segment, word number)to thefirst executable instruction

of the called procedure.

2 Stack framesize to create (in words). Must be even.

3 Stack root segment number.If zero, keep samestack.

4 Displacement in new frame of where to build argument list.

5 Number of arguments expected.

6,7 Called procedure’s link base (location of called procedure’s linkage

frame less '400).

8 CPU keys desired by called procedure.

9-15 Reserved, must be zero.

Entry control blocks which are gates must begin on a 0 modulo 16 boundary, and must

specify a new stack root.

FDR 3059 9-6 1 March, 1979



DATA STRUCTURES 9
 

eevee,

Queueconiroi biock (Vij

 

 

 

 

     
 

4 TOP POINTER 16

17 BOTTOM POINTER 32

Vv 000 HIGH ORDER ADDRESS

33 34 36 37 48

49 SIZE MASK 64

Bits Meaning

1-16 Top pointer-read

17-32 Bottom pointer-write

33 (V) Virtual/physical control bit

0 physical queue
1 virtual queue

34-36 Reserved - must be zero

37-48 Queue data block address

Segment numberif virtual queue

High order physical address bits if physical queue

49-64 Mask - value 2**K-1

Queuecontrol blocks must start on word boundaries whicharedivisible by four, if used for
DMQ.If not, a performance penalty is imposed, but the queue will work.

Argumenttransfer template (AP) (VI)

 

        

 

   
By) i j/—|BRiIL; S| — WORDNO

1-4 5 6 7-8 9 10 11-16 17 32

B (Bits 1-4) Bit number
I (Bit 5) Indirectbit
BR (Bits 7-8)

c
A

r
e (Bi

(Ra
{wy 1 bs

O,

WORDNO(Bits 17-32)

1 March, 1979

Base register
00 Procedure base (PB)
01 Stack base (SB)
10 Link base (LB)

Last template forthis call
Ctara arnguman + address Tant tamnilata fan thie ara _
wltuiwd Gi SF Usale aGar Goo. wadt LOLIale 1U1 Lillis aigu

ment.

Word numberoffset from base register

9-7 FDR 3059



Q DATA STRUCTURES
 

 

PROCESSOR CHARACTERISTICS

Registers (S)

Prime 100, 200 and 300 registers are 16 bits wide. All the program visible registers are

physically located in high speed memory and are addressed as memorylocations 0-37. In

restricted mode (normaluser operation) only 0-7 are accessable.

Memory Register
Address Designation Function

0 xX Index Register
1 A Arithmetic Register
2 B Extension Arithmetic Register

3

4

D

6 VSC Visible Shift Count
7 Pp Program Counter
10 PMAR(Prime 300 only) Page Map Address Register
11 FCODE Fault Code
12 FAR Fault Address Register

13-17. Reserved
20-37. DMA ‘20, ’22,... 36 WordPairs for DMA channels

(8 total) (address and word counts)

Registers (R)

Prime 100, 200 and 300 registers are 16 bits wide. All the program visible registers are

physically located in high speed memoryand are addressed as memorylocations 0-37. In

restricted mode (normal user operation) only 0-7 are accessable.

Memory Register
Address Designation Function

0 xX Index Register
1 A Arithmetic Register
2 B Extension Arithmetic Register
3 S Stack Register
4 FLTH Floating Point Accumulator - High
5 FLTL Floating Point Accumulator - Low

6 FEXP Floating Point Exponent
7 p Program Counter
10 PMAR(Prime 300 only) Page Map Address Register
11 FCODE Fault code
12 PFAR Page Fault Address Register

13-17. Reserved for microprogram
20-37 DMA ’20, ’22,... 36 Word Pairs for DMA channels

(8 total) (address and word counts)

FDR 3059 9-8 1 March, 1979



DATA STRUCTURES 9
 

Registers (VI)

Prime 350 and aboveregisters are 32 bits wide. Short form instructions reference the same
registers as in R-mode.

Register addresses used in LDLR and STLRinstructions are doubleword addresses. The
notation “2 H” meansthe high, orleft 16 bits of register address 2, while ‘2 L” means the
low,or right 16 bits.

The following registers should not be written into by STLR instructions, or anomalous
behavior will result.

PB The procedure base should be changed only via LPSW or pro-
grammedtransfers of control.

keys The keys should be changed only via LPSW or the various mode
control operations.

modals The modals should be changed only via LPSW orthe various mode
control operations. In no case should an LPSW ever attempt to
change the currentregister set bits of the modals.

VI-moderegister description

Definitions
TR Temporary Registers

TR7 - Saved return pointer on a halt (automatic save)
RDMX Register DMX

RDMX1- Used by DMC,bufferstart pointer
RDMX2- REAat time of DMX trap
RDMX3- Save RD during DMQ
RDMX4- Used as workingregister

RATMPL Read Address Trap Map to RP Low
RSGT Register Segmentation Trap

RSGT1 - SDW2 / address of Page Map
RSGT2 - contents of Page Map / SDW2

REOIV Register End of Instruction Vector
ZERO/ONE Constants
PBSAVE Procedure Base Save

saved return pointer whenreturn pointer used elsewhere
C377 Constant
PSWPB Processor Status Word Procedure Base

return pointer for interrupt return (also used for Prime 300
compatibility)

PSWKEYS Processor Status Word Keys
KEYSfor interrupt return (also used for Prime 300 compatibility)

PPA Pointer to Process A
PLA Pointer to Level A
PCBA Process Control Block A
PPB Pointer to Process B
PLB Pointer to Level B
PCBB Process Control Block B
DSWRMA Diagnostic Status Word RMA

RMAatlast Check Trap
DSWSTAT Diagnostic Status Word Status

1 March, 1979 9-9 FDR 3059



9 DATA STRUCTURES
 

 

DSWPB

RSAVPTR

GR
FARO
FLRO
FAR1
FLR1
PB

SB
LB
XB
DTAR
KEYS
MODALS
OWNER
FCODE
FADDR
TIMER

Diagnostic Status Word Procedure Base
Return pointer or PBSAVEatlast check
Register Save Pointer
Location of Register Save Area after Halt
General Register
Field Address Register 0
Field Length Register 0
Field Address Register 1
Field Length Register 1
Procedure Base
PBH - RPH

PBL - 0

Stack Base
Link Base
Temporary (auxiliary) base
Descriptor Table address registers
See below
See below
Pointer to PCB of process owning this register set
Fault Code
Fault Address
1-millisecond process timer (used for time-slice)

 

 

_CURRENT REGISTER SET (CRS)

 

MICROCODE SCRATCH. - DMX 2

RSO oe RS1 _ -RS2. RS3.__s—~ PRIME300 PRIME PRIME
_ ADR HIGH LOW, ADR HIGH LOW ADR ADRHIGH LOW 400 500
0. TRO. — Oo =~ — 100 140 — = ae GRO.

1 TR1 — 41 = — 101 141 — _ = — GRL

2. TR2 a 420 = = 102 9 142fA) 2(B) ob  GR2-
3 TRB = 4a = 10d 1a — E GR3-
4 TR4 — a — 104 144 —) _ a GR4.
5 TRS _ Boe — 105 145 3{S) _ yo GRE.

6 TRE ~ 46 — 106 146 — © on — GR6
7 TR? a AP — 107 147 :OfX] ~ Xx GR7

10 RDMX1 — 50 = 410-150 13 — FALRO - FALRO (FACO}

11 =RDMX2  — 51 = a 1140 151 _ FALRO - FALRO (FACO)

12000 ~ RATMPL 52 oe — 442 152. 4(FAC} 5(FAC} FALR1 (FAC) FALR1 (FAC1)

13 RSGT1. = 53 st oe 113.153. 6(FAC) FAG FALR1 (FAC} FALR1 (FAC1)

14 RSGT2. — 54 — on 114.154 ~~ PB —

15 RECC1 = 55 a — 115° 155 «14 15 SB —

16 RECC2 — 560 — 116 156 16— 17 LB ~

17 ee REOIV 57 Sade Abe a XB se

20 ZERO ONE 60 (20) (21). 120 160 «10 = DTAR3 —

21 PBSAVE as 61 — = 121. 161 os DTAR2 os

22. RDMX3 62 (22) (23) 122. 16200 — ~ DTAR1 a

23 RDMX4 a 63 — — 123 163 — = DTARO —

24. -€377 C377 64 (24) (25) 124 164 _ KEYS/MODALS. KEYS/MODALS

200° he 65. — — 125 165 = “ OWNER aa

26 a ~~ 66 (26) (27) 126 166 11{FCODE) .— © FCODE —

2700 = — 67 — ae 127. 1670 — 12(FADDR}. FADDR a

30 PSWPB ~ 70 (30) (31) 130 170 — a TIMER ~

31 PSWKEYS — 71 as — 1310047100 ~ oe at

32. PPA:PLA PCBA 72 (32) (33). 132-«4172 0 ot a =

33.- PPB:PLB PCBB 7330 0=— ~ 1338. «1738 = — _ _

34 DSWRMA — 74 (34) (35) 184 174 — = ~

35 DSWSTAT — 7S = 135.«175 — — —

36 DSWPB oe 76 (36) (37) 136. 176 — — ~ —

37. ~RSAVPTR  — 77 oo — 48700: 177 = a ao a

FDR 3059 9-10 1 March, 1979

 



DATA STRUCTURES 9
 

 

The eight general registers are numbered from 0-7. 1-7 maybeusedfor index registers. All
are used as fixed point and logical accumulators in register to memory and register to
register operations.

Floating point register - single precision (RVI) (2 registers in I-mode)

Register Contents

Prime 300 Prime 400 Prime 500

 

 

 

 

 

 

‘04 oH 10H {s| MANTISSA |
12 16

05 OL 10L MANTISSA |
17 32

06 13H nu [ EXPONENT (EXCESS 128) |
33 48

1 March, 1979 9-11 FDR 3059



9 DATA STRUCTURES
 
 

Floating point register - double precision (RVI) (2 registers in I-mode)

Register Contents

Prime 300 Prime 400 Prime 500

 

 

 

 

 

 

 

 

04 12H 10H Ls] MANTISSA |
12 16

05 12L 10L L MANTISSA |
17 32

"02 13L 11L L MANTISSA |
33 48

06 13H 41H | EXPONENT (EXCESS 128) |

49 64

Floating point registers - 64 bits (I)

The twofloating point registers are numbered 0 and1. Theyare usedas single and double

precision accumulators in register to memory and register to register operations. The two

floating point registers overlap the twofield length address registers on the Prime 500 and

care must be used in moving between floating point andfield registers.

Base registers (VI -Mode)

The four baseregisters:

Procedure Base Register PB

Stack Base Register SB

Link Base Register LB

Temporary Base Register XB

have the following format:

 

      
 

0 RING 0 SEGNO WORDNO

12 3.4 #=5 16 17 32

RING (Bits 2-3} Ring Number

SEGNO(Bits 5-16) Segment Number

WORDNO[Bits 17-32) Word Number

Field address and length registers (VI)

There are two address registers and two length registers for the manipulation of variable

length fields. They overlap the floating point accumulator.

 

        
0| RING| 0|SEGNO/| WORDNO LENGTH |BITNO| 0 LENGTH

1 2-3 4 5-16 17-32 33-48 49-52 53-59 60-64

  
 

FDR 3059 9-12 1 March, 1979



DATA STRUCTURES 9

RING(Bits 2-3) Ring Number

SEGNO(Bits 5-16) Segment Number

WORDNO[Bits 17-32} Word Number

LENGTH(Bits 33-48, 60-64] Length

BITNO (Bits 49-52) Bit Number

The meaningof the value in the field length field dependson the data type being used. For
a discussion of the available data types see the decimal and characterinstruction descrip-
tions.

Keys (SR)

Process status information is available in a word called the keys, which can be reador set
by the program.Its formatis as follows:

 

       
 

C| DBL —| Mode 0 Bits 9-16 of location 6

1 2 3 4-6 7-8 9 — 16

C (Bit 1) Set by arithmetic error conditions

DBL (Bit 2) 0 - Single Precision, 1 - Double Precision.
MODE(Bits 4-6) The current addressing modeasfollows:

000 16S

001 325

011 32R

010 64R

110 64V

100 32]

C-bit (SR): Bit 1 in the keys. Set by arithmetic error conditions and shifts (Bit 1).

Keys (VJ)

Process status information is available in a 16-bit register known asthe keys. It may be
referenced by the LPSW, TKA, and TAKinstructions.

 

C;0|L|MODE| F| X| LT EQ|DEX| 0O i Ss

123 46 7 8 9 10 11 12-14 15 16

             
 

C (Bit 1) C-Bit
L (Bit 3) L-Bit
MODE(Bits 4-6) Addressing Mode:

000 165

001 325

011 32R

010 64R

110 64V

100 321

1 March, 1979 9-13 FDR 3059



Q DATA STRUCTURES

 

F (Bit 7) Floating point exception disable:

0 take fault
1 set C-bit

X (Bit 8) Integer Exception enable

0 set C-bit
1 take fault

LT (Bit 9) Condition code bits:
EQ (Bit 10) LT negative

EQ positive

DEX (Bit 11) Decimal exception enable

0 set C-bit
1 take fault

I (Bit 15) In dispatcher- set/cleared only by process exchange

S (Bit 16) Save done - set/cleared only by process exchange

C-bit (VI): Set by error conditions in arithmetic operations and byshifts.

L-bit (VI): Set by an arithmetic or shift operation except IRS, IRX, DRX. Equalto carry out

of the most significant bit (bit 1) of an arithmetic operation. It is valuable for simulating

multiple - precision operations and for performing unsigned comparisonsfollowing a CAS

or a SUB.

Condition code bits (VI): The two condition-code bits are designated “EQ” and “LT”. EQ is

set if and onlyif the result is zero; if overflow occurs, EQ reflects the state of the result after

truncation rather than before. LT reflects the extendedsign of the result (before truncation,

if overflow), andis set if the result is negative.

Modals (VI)

Processorstatus is available in another 16-bit register knownas the ‘‘modals”’.

 

         
 

E| Vv 0 CURREG MIO P S

|

MCK

3-8 9-11 12 13. 14 15-16

E (Bit 1) _ Interrupts enabled

V (Bit 2) Vectored-interrupt mode

CURREG(Bits 9-11) Current register set (set/cleared only by process

exchange)

MIO (Bit 12) Mapped I/O mode

P (Bit 13) Process-exchange mode

S (Bit 14) Segmentation mode

MCK(Bits 15-16) Machine-check mode

Note

Never attemptto write into the keys or the modals with the

STLR instruction. The only valid way to change either the

keys or the modals is to use the LPSW instruction, the keys

operations OTK and TAK,or the various special-case instruc-

tions designed to manipulate specific bits of the status.

Furthermore, even LPSW should not be usedto alter the in-

dispatcher and save-donebits of the keys or the register-set

bits of the modals.

FDR 3059 9-14 1 March, 1979



DATA STRUCTURES 9

nr

GENERIC (SRVI)
 

   
1 16

The entire instruction word is an opcode. Bits 3-6 are always zero

SHIFT (SR}
 

  
OP SHIFT-NO

1 10 11 16

OP (Bits 1-10) Opcode- Bits 3-6 are always zero
SHIFT-NO (Bits 11-16) Two’s complementof the numberof places to be

shifted. Zero meansshift 63 places

 
 

 

      

I/O (SR)

CLASS 1100 FUNCTION DEVICE

1 2 3 6 7 10 11 16

CLASS(Bits 1-2) Type of I/O instruction

00 Control
01 Sense
10 Input

11 Output

Bits 3-6 1100

FUNCTION(Bits 7-10) Subdivision of class. Device dependent
DEVICE(Bits 11-16) Device type

DECIMAL(VI)
 

 
AP

 
 

1 16

OP (Bits 1-16} Opcode. This instruction uses previously set up field
registers and a previously set up control word in
register L (general register 2 in I-Mode). See decimal
control word in Data Structures.

CHARACTER(VI)
 

   
OP

1 16

OP (Bits 1-16) Opcode. This instruction uses previously set up field
registers.

1 March, 1979 9-15 FDR 3059



9 DATA STRUCTURES
 

 

GENERIC AP (VI)
 

oP |
 

 

   

 

  
 

 

  
 

 

  
 

1 16

AP

17 32

AP

33 48

OP (Bits 1-16) Opcode

AP Bits (17-48) Address Pointer - see AP in Data Structures.

BRANCH(V)

OP

1 16

WORDNO

17 32

OP (Bits 1-16) Opcode

WORDNO[Bits 17-32) Word numberoffset from procedure baseregister.

Memoryreference instruction format (SRV)

See Effective Addressing Formation in Section 10 - Memory Reference Concepts.

INSTRUCTION FORMATS — I-MODE

Purpose of I-Mode

The I-Modeinstruction formats provide a 32-bit general register environment, particularly

useful for:

* Heavyfloating point calculations.

* Heavylong integer calculations.

e Extensive complex computations with intermediate results.

Features

° V-mode data types are a subset of I-mode data types, so no conversionis needed.

© The user visible V-moderegistersetis a subset of the I moderegisters, so data can

be passed in a commonsubset.

* The procedurecall instruction automatically switches the addressing mode on a

subroutine basis so the programmercan organize programsto usethebest of V or

I mode.

° The generic format instructions have the same opcode and same function in V and

I mode.

o WL oe eee eer rlane
LHe WicloL GLGLyr é t

in addition to the base, index, and displacementfields.

FDR 3059 9-16 1 March, 1979



DATA STRUCTURES 9
 

 

¢ All forms of indexing and indirection are supported.

e The same memory referenceinstruction can includeregister to register, register
to memory and immediate data forms-special instructions are not required.

e The 16-bit format (register and non register generic) is included for additional
efficiency. In addition, the register to register and floating register-source ad-
dressing formats do not use the second 16-bit part (bits 17-32} of the instruction
word.

FORMATS

Non-register generic

These instructions are a subset of the V-mode generics and are processed the same way.

Register generic

These instructions operate on the specified register, which may begeneral,field, or floating
register. This class includes the branch instructions, where the branch address, in the
second word, is a 16-bit procedure base displacement.

Memory reference

There are three types of memory referenceinstructions:

MRNR-memory reference non register:
 

       
OP R AD Ss B D

1-6 7-9 10-11 12-14 15-16 17-32
Data types Integer, unsigned andlogical
Location of 2nd operand Memory

MRGR-memoryreference general register:
 

        
OP 110 OP AD Ss B D

1-3 4-6 7-9 10-11 12-14 15-16 17-32

Data types Integer, unsigned and logical
Location of 2nd operand Immediate, register memory

MRFR-memoryreferencefloating register:
 

         
 

OP 110 OP FR OP AD S B D

1-3. 4-6 7 8 9 10-11 12-14 15-16 17-32

Data type Floating point
Location of 2nd operand Immediate, register and memory

 

 

 

Index registers: General registers 1 to 7 may be usedas index register; 0 means no indexing.

Register to register: No indexing or indirection may be specified and the addressfield insert
may be an absolute value:

1. Oor1 if the instruction format is MRFR, or

2. 0-7 if the instruction format is MRGR

1 March, 1979 9-17 FDR 3059



 

Q DATA STRUCTURES
 

 

Table 9-1. Address Formation Special Case Selection

AD S B Effective Address/Instruction Type
3 >0 — (D+B)*+S f{indirect, post-index)
3 0 ~— (D+B)* (indirect)
2 >0 — (D+B+S)* (pre-index, indirect}
2 0 — (D+B)*{indirect}
1 >0 — D+B+S (indexed)
1 0 — D+B (direct)
0 20 0 REG-REG(5S specifies source register)
0 0 1 Immediate Type 1
0 >0 1 Immediate Type 2
0 0 2 Immediate Type 3
0 1 2 Floating Reg Source (FRO)
0 2 2 Undefined (will not generate UIJ)
0 3 2 Floating Reg source (FR1)
0 4-7 2 Undefined (will not generated UII)
0 — 3 Undefined (will not generate UII)

Field Mnemonics:

OP Opcode
R Destination register

AD Address computation code
S Source register
B Base register  FR Floating register
 

Immediate: There are three immediate data formats:

Immediate type 1

D _—

1 8 9 16

 

   
 

Require a 16-bit literal (no L suffix)

Immediate type 2

 

 
D

1 8 9 16

Sign extend full word generalregister instruction. Requires a 32-bitliteral (with L suffix).

Bit 17, the low ordersign bit, is extended through the high order16bits.

  
 

Immediate type 3

 

   
 

_ D

1 8 9 16
: : nrarieainn ‘ intFloating point register instruction (both single and double precision) requires floating pein

literal The fractional part is truncated to eight bits, stored in the instruction.

FDR 3059 9-18 1 March, 1979



DATA STRUCTURES 9
 

 

1 March, 1979 9-19 FDR 3059



  
Memory reference

concepts-SRV
 



BACKGROUND CONCEPTS

Memoryis addressed as a set of continuous word locations. The numberof wordsthat can
be addressed by an instruction, and the way in which the addressis calculated depends on
the current addressing mode of the machine andthe location of the addressrelative to the
instruction.

In turn, the addressing modesof the machinediffer in the size of the instruction word,the
number of bits allotted to the provisional address displacement, and the number and
meaning of the bits allotted to the operation code.

To reduce the number of memory references, designers wish to do as muchaspossible in
one word. For example, in the S and R addressing modes, a one word memory reference
instruction has nine bits (512 words) of direct addressability, four bits for operation codes,
one bit for indirection, one bit for indexing, and onebit to control out-of-range addresses.

Within each addressing mode, there are the following tradeoffs:

1. Size of program address space

2. Levels of indirection

3. Levels of indexing

4. Whether indexing is performed beforeor after indirection

5. Number of operation codes available

Through the discussion of the S, R, and V addressing modes, we shall show how these
variables are defined.

Memoryorganization

Sectors: (S-Mode and R-Mode when S=0). A sector is a contiguous group of 512 words. S-
Mode memory reference instructions have nine bits (D field) of addressability to any
location in a sector and onebit, the S-bit, to specify Sector 0 (S=0) or the current sector
(S=1}. D and S together give 10 bits, or 1024 words, of direct addressability.

Relative reach: (R-Mode and V-Mode when S=1). When S=1the D field is interpreted as a
signed numberin the range -255 to +256. When D<240 (R-Mode), or D<224 (V-Mode}, the
numberis treated as a code, not as a displacement. When -240<D<256 (R-Mode)or -224<D
<256 (V-Mode}, the addressis relative to the program counter.

Segmentation: (V-Mode and I-Mode). See the System Architecture Reference Guide for a
discussion of segmentation.

Effective address formation

Each memory reference instruction calculates an effective address. This calculation andits
results vary depending on addressing mode and instruction format; variables include pre-
and post-indexing, indirection, and base registers. For maximum clarity, we discuss the

1 March, 1979 10-1 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

classes by format types and present addressing mode flowcharts. Both the format dis-
cussions and the addressing mode flowcharts are cross referenced to each other. Table 10-1
summarizes the format classes and gives the addressing modes wheretheyare used.

Indexing: In general, if the X-bit of the instruction is set, the contents of the index register
are added to the D-field. If the indirect bit is set, the address mode and D-field determine
whether indexing occurs before or after indirection. The result is truncated to the number
of bits permitted by the addressing modes, andthe high orderbits are cleared. In V-Mode,
there are two index registers, X and Y. The displacementfield determines whichto use and
howto useit.

Note

The index register may be preset by the program to any value
between -32768 and +32767.

Indirection: In general, if the I-bit is set, the D-field plus index, if any, is an intermediate
address. The indirect address wordat that location may, depending on the address mode,
also contain X and I bits. The specific addressing mode discussion givesthe details.

Address truncation (SR): After effective address formation is complete, the resulting
address is truncated to the numberof bits appropriate to the addressing modein effect:

Mode Addressing Bits Size of Addressable Memory

168 14 16K

325 15 32K

32R 15 32K

64R 16 64K

Since the higher order bits of the address are zeroes, an address cannot be formedthat
addresses a memorylocation beyondthe rangeof the current addressing mode. However,it
is possible for an executing program to increment the program counter out of the current
range (instead of overflowing to zero).

 

Table 10-1. Memory Reference Instruction Format

Type No. Words’ $! D? CB Mode

Basic 1 0 0 - °777 — SR

Sector Relative 1 1 0 -'777 — S

Procedure Relative 1 1 — 241 to +255 —_ R

— 224 to + 255 — V

Stack Postincrement/ 1 1 ~ 256 to — 241 23 R
Predecrement

Base Register 1 0 0 - °777 — V

Relative

Long Reach 1 — 256 to — 241 02 #R

Stack Relative 1 — 256 to —241 1,3 R

Base Registers 1 — 256 to — 224 — V

1. Sector bit (S). Bit 7 in both one- and two-word memory reference
instructions. The meaning varies, depending on the addressing mode,
but in general is used to control out-of-range addresses.

2. Displacementfield (D). Bits 8-16 in the instruction word.Bit 8 is sign bit
except in Basic, Sector Relative, and Base Register types of instruction.

3. Class bits (CB). Bits 15 and 16 of the R mode two-word instructions
distinguish between Long Reach and Stack Relative instruction types.  
 

FDR 3059 10-2 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

Instruction range

The range that an instruction can directly address is called its addressing range. The
assembler and the loader analyze the assembler statement and set up both in-range and out-
of-range addresses. In the discussion below weshall examine the sectored and relative
address ranges and how theyareset up prior to execution. The segmentation concepts and
address ranges are discussed in the System Architecture Reference Guide.

Sectored: In S-mode, the memoryreference instructions can address any location in sector
0 or in the sectorof the instruction. When §=1, the nine bit displacementfield is a location
in the current sector. When S=0,the nine bit displacementis in sector9.

The software uses the S-bit to control out-of-range addresses in the following manner: the
assembler doesa preliminary analysis of the relation of the displacementfield (expression
or symbol)to the instruction location, and passesthis information to the leader, whichsets
up the final instruction for execution. The loader puts the object code received from the
assembler together with any other required routines (such as subroutines), resolves external
linkages andsets up sector 0, the communication and linkagearea.

Sector 0 can also be directly addressed by the program, a useful feature for handling
common datafields.

Relative: In R-mode when S=1, the field is interpreted as a signed numberin the range
-226 to +255. Whenthe twohigh orderbits are one (D < 240) the numberis treated as a code,
not as a displacement. When -240<D<255 the addressis relative to the program counter.

The loader analyzes the displacement field and if the effective address will be out of
relative range (-240 to +255) sets S=0, I=1, and the displacementfieldto pointto the address
wordin sector zero. Thus, in 64R,if the address is out of range, no indirection is possible
because the loader usesthe instruction wordindirectbit.

 

Assembler
Notation Location of ADDR

Sector 0 Same Sector , Other

LDA ADDR S=0 S=1 S=0
I=0 I=0 I=1

D=location in sector 0.
D=displacement in D=first available
same sector. link in sector 0. At

that location an in-

direct word is con-

structed with I=0.

pointing at ADDR
with a full 14 (165}
or 15 (32S. 32R) or 16

(64R} bit indirect
address.

LDA ADDR,* S=0 S=1 S=0
=] I=1 I=1

D=Location in sector 0 D=Location in same D=first available
which contains a pointer sector. It must contain link in sector 0. At
defined by the program pointer defined by that location an in-

program. direct word is con-
structed with I=1
and a full 14 (16S) or
15 (32S, 32SR) bitin-
directpointer to
ADDR. Not per-

mitted in 64R.  
 

1 March, 1979 10-3 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV

MEMORYREFERENCE INSTRUCTION FORMATS

BASIC (one word, S-bit=0) 16S, 32S, 32R, 64R

 

       
| X OP S D

1 2 3 ~~ 7 8 16

I (Bit 1) Indirect Bit

X (Bit 2) Index Bit

OP (Bits 3-6) Opcode

S (Bit 7) Sector Bit = 0
D (Bits 8-16) Displacementin sector 0

The D-field is a displacement in sector 0. The effective address is equal to bits 8-16 of the

instruction, with bits 0-7 equal to zero. Indexing and indirection are a function of the I and

X bits and the addressing mode.

 

Addressing
Mode I x

=

§ D EA Type
16S 0 0 0° 0 to '777 0|D Direct

0 1 0 Oto ’777 0|D+X Indexed
1 0 0 Oto '777 1(0|D) Indirect
1 1 0 0 to 777 1(0|D+X} Indirect,

preindexed

32S, 32R, 64R. 0 0 0 0. to. '777 0|D Direct

0 1 0 0 to. '777 0(/D+X Indexed

1 0 0. 0 to ’777 1(0|D) Indirect

1 1 0 0. to '77 I(0 |D+X) Indirect,

preindexed
1-1 0 7100 to ’777 1(0 |D)+X Indirect,

postindexed   
 

       

SECTOR RELATIVE (One word,S-bit=1) 168, 325

| x OP S D

1 2 3 6 8 16

I (Bit 1) Indirect Bit

X (Bit 2) Index Bit

OP (Bits 3-6) Opcode

S (Bit 7) Sector Bit = 1

D (Bits 8-16) Displacement within current sector

The D-field is a displacement in the current sector. The effective address is formed by

concatinating the D-field bits with the higher orderbits of the program counter (P). Indexing

and indirection are a function of the I and X bits and the addressing mode.Bits 1 and 2 (165)

or 1 (32S) of the final effective address are cleared. In effect, the program countergives the

sector number andthe D-field, the location within the sector.

FDR 3059 10-4 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

  
 

       

Addressing
Mode I xk § D EA Type

16S 0 oO 1 0 to °777 P|D Direct

0 1 1. 0 to '777 P{D+X Indexed

1 0 1 0 to '777 I(P|D) Indirect

1 1 1. Oto '777 I{P |D+X) Indirect,
preindexed

328 0 oO 1 0 to '777 P|D Direct

0 1 1 Oto °777 P|D+X Indexed

1 0 1 0 to °777 I(P|D} Indirect

1 1 1 0 to °777 I(P|D)+X Indirect,
postindexed

PROCEDURERELATIVE(One word, S-bit=1) 32R, 64R, 64V

I X OP S

1 2 3 6 7 8 16

I (Bit 1) Indirect Bit

X (Bit 2) IndexBit
OP (Bits 3-6] Opcode

S (Bit 7) Sector Bit=1

D (Bits 8-16) Location relative to the program counter
64V= — 224 to +255

64R= — 240 to +255

Addressingis relative to the current program countervalue, whichis the current instruction
location plus 1. The effective address is formed by adding the value of the D-field to the
updated program counter value (P). Indirection and indexing are a function of the I and X
bits and the addressing mode.

 

  

Addressing
Mode I S D EA Type

32R, 64R 0 0 1 — 240 to +255 P+D Direct

0 1 41 — 240 to +255 P+D+X Indexed

1 0 1 — 240 to +255 1(P+D) Indirect

1 1 1 — 240 to +255 I(P+D}+xX Indirect,
postindexed

64V 0 0 1 — 224 to +255 P+D Direct

0 1 1 — 224 to +255 P4+D+X Indexed

1 0 1 — 224 to +255 I{(P+D} Indirect

1 1 1 — 224 to +255 I(P+D) +X Indirect,
postindexed

1 March, 1979 10-5 FDR 3059

 

 



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

STACK PREDECREMENT, POSTINCREMENT(One word, S-bit=1) 32R, 64R

 

        
I X OP 11000 XX CB

1 2 3 6 7 12 1314 15 16

I (Bit 1) Indirect Bit

X (Bit 2) Index Bit

OP (Bits 3-6) Opcode

Bits 7-12 110000

XX (Bits 13-14) Opcode extension

CB (Bits 15-16) Class Bits

These classes use the stack pointer (SP) as the address displacement, and perform an

auxiliary postincrement or predecrementof the pointer. Instructions using these address

methods are always one-wordinstructions.
 

  
 

 

      

Addressing
Mode I S CB EA Type

32R, 64R 0 0 1 2 SP Postincrement

0 1 1 2 I(SP\ +X Postincrement,
indirect, post-
indexed

1 0 1 2 I(SP) Postincrement,
indirect

0 0 1 3 SP-1 Predecrement

0 1 1 3 ~ I(SP-1)+xX Predecrement,
indirect, post-
indexed

1 0 1 3 1(SP-1} Predecrement,
indirect

Note

If a fault occurs during the execution of these classes.

anomalous behavior can result.

BASE REGISTER RELATIVE (One word, S-bit=0) 64V

1 X OP S D

1 2 3 6 7 8 16

I (Bit 1) Indirect Bit

X (Bit 2) IndexBit

OP (Bits 3-6) Opcode

S (Bit 7) Sector Bit=0

D (Bits 8-16) Location relative to selected base register

This format provides 64V with one word based memoryreferenceinstructions, using the D-

field to encode both base and displacement.

ugh 16-bit pointers in the procedure segment and the finalAll indirection will b ou ointers CeO
Z4b LAA a ¥v e thr

effective address of indirect instructions will be in the procedure segment.

FDR 3059 10-6 1 March. 1979

 



MEMORY REFERENCE CONCEPTS—SRV 10
 

The effective address calculationis:
 

 
 

 

        

 

   

I xX S D Address Type

0 oO OO 0-7 register location Direct
'10-'377 SB+D

400-'777 LB+D

0 1 0 0-'377 if D+X<'10 then Indexed
EA=register location
else SB+D+X

'400-'777 LB+D+X

1 0 0 OF I(REG) Indirect
'10-'777 I(PB|D)

1 1 0 0-77 I[PB|D+X] Indirect
preindexed

1 1  O "100-777 I[PB|D] +X Indirect
postindexed

PB Procedure base register

LB Link base register

SB Stack base register

xX Index register

D Displacementfield

REG R-Moderegisters, i.e., A,B,X, etc.

LONG REACH(Two word, S-bit=1) 32R, 64R

I X OP 11000 XX CB

1 3 6 7 12 13 14 15 16

A

17 32

I (Bit 1) Indirect Bit

X (Bit 2) IndexBit

OP (Bits 3-6) Opcode

Bits 7-12 110000

XX (Bits 13-14)

CB (Bits 15-16)

A (Bits 17-32)

Opcode extension

Class Bits

Address word

The 16-bit address wordin the location following the instruction plus the I and X bits in the
instruction combine in effective address calculation. The direct instruction reach is
extended to 32K words (32R) or 64K words (64R), since the addressis in the word following
the instruction. In 32R, bit 1 is zero. In 64R, all 16 bits are used.
 

  
 

Addressing
Mode I xX S CB EA Type

32R, 64R 0 0 1 0 A Direct

0 1 1 0 A+X Indexed

1 0 1 0 I(A]} Indirect

1 1 1 0 I(A+X} Indirect, preindexed

1 1 1 2. I(A}+X Indirect, postindexed

1 March, 1979 10-7 FDR 3059

 



10 MEMORY REFERENCE CONCEPTS—SRV

 

 

      
 

 

  
 

STACK RELATIVE (Two Word,S-bit = 1) 32R,64R

| X OP 11000 XX CB

1 3 6 7 12 1314 15 16

A

17 32

I (Bit 1) Indirect Bit

X (Bit 2) Index Bit

OP (Bits 3-6) Opcode

Bits 7-12 110000

XX (Bits 13-14)
CB (Bits 15-16)
A (Bits 17-32)

Opcode extension

Class Bits

Address word

This class is identical to two-word long reach exceptthat the contents of the stack pointer

(SP) are added to the address word following the instruction word during the initial

effective address calculation.

Indexing and indirection take place under control of the I and X bits and the addressing

 

mode.

Addressing
Mode I X S CB EA Type

32R, 64R 0 0. 61 1 A+SP Direct
0 1 #1 1 A+SP+X Indexed
1 OO 1 1.  JT{A+SP} Indirect
1 42 4 1) J{A+SP+X) Indirect, preindexed
1 1 #4 38  T{A+SP}+X Indirect, postindexed 
 

TWO WORD MEMORY REFERENCE

 

        
 

 

 
 
 

64V

1 Xx OP 11000 Y XX BR

1 3—6 7 11 12 13 14 15-16

A

I (Bit 1) Indirectbit

X (Bit 2) X bit

OP (Bit 3-6) Opcode

Bits 7-12 110000

Y (Bit 12) Y bit

FDR 3059

XX (Bits 13-14)

BR (Bits 15-16)

A (Bits 17-32)

Opcode extension

Base register: 00=PB, 01=SB, 10=LB, 11=XB

16-bit word displacementrelativeto the base selected

by the BR bits

10-8 1 March, 1979

 

 



MEMORY REFERENCE CONCEPTS—SRV 10
 

Direct

Indexed by X

Indexed by Y

Indirect

Preindexed by X

Preindexed by Y

Postindexed by X

Postindexed by Y

All indirect words are either 32 or 48 bit format and the final effective address is always a

memory address (nevera register). Table 10-3 showsall possible combinations.

2 possible address combinations:

 

I

0

 

xX Y

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

Table 10-2. V-Mode Two Word Memory Reference

BR Effective Address Meaning

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

PBiD

SB+D

LB+D

XB+D

PBID+Y

SB+D+Y

LB+D+Y

XB+D+Y

PBID+X

5B+D+xX

LB+D+xX

XB+D+X

I({PB.D)

I(SB+D)
(LB+D}

(XB+D}

(PBID+Y}

(SB+D+Y)

(LB+D+Y)

(XB+D+Y)

(PB|D}+Y
(SB+D}+Y

(LB+D)+Y

(XB+D)+Y

(PBjD+X)

(SB+D+X)

(LB+D+X)}

(XB+D+X}

(PB|D) +X

(SB+D) +x

(LB+D) +X

1(XB+D)}+X

I

I

I

]

I

I

I

I

I

I

I

I

I

I

I

]

I

Direct

Indexed by Y

Indexed by X

Indirect

Pre-indexed by Y

Post-indexed by Y

Pre-indexed by X

Post-indexed by X

LDX and STX instructions may only be direct or indirect.

 

1 March, 1979 10-9 FDR 3059

 



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

ADDRESSING MODE SUMMARIES AND FLOW CHARTS

16S summary

Address length: 14 bits; 16K word address space

Format:

 

opcode S D Instruction

6 7 8-16

       

 

14-bit address Indirect address word
     

Indexing: Multiple levels. In an indirect word, the index calculation is done before the
indirection.

Indirection: Multiple levels.

 

 

Assembler
I xX § D EA Notation Type
0 0 0 0 to °777 0|\D LDA ADDR Direct

0 1 0 0 to 777 0ID+X LDA ADDR,1 Indexed
1 0 O 0 to’777 I(0|D) LDA ADDR,* Indirect
1 41 0 0 to’777 I(0|D+X) LDA ADDR,1* Indirect,

preindexed

0 0 1 0 to '777 PID LDA ADDR Direct

0 1 1 0 to 777 P|D+X LDA ADDR,1 Indexed

10 #1. 0Oto'777 I(PiD) LDA ADDR,* Indirect

1 #1 #1. «Oto’'777 I(PID+X) LDA ADDR,1* Indirect,
preindexed

. Pp Contents of program counterpriorto instruction fetch
(pointing at instruction).

o|D Displacement into sector 0. Sector bits of effective
address (bits 3-8) are zero.

PID Displacementin current sector formed by concatena-
tion of sector bits from program counter with dis-
placementfield in instruction word.

xX Contents of index register.

I(expression) Treat the effective address as indirect address.
ADDR Location addressed by the LDA.

 

Note

If D is 0-'7 and S=0, the effective addressis a register.

FDR 3059 10-10 1 March, 1979

 



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

 

 

 

|= INST bit 0 (1)
X = INST bit 2 (X)
OP = INSTbits 3-6

  

   
  BIT 7 (S)

  

    

YES OF INST NO
SET

v ? v

EA =P3_7/D EA=0ID

(Current sector) (sector 0)

      

Vv A   
 

 
 
 

EA = EA + (X)

   
 

 

 

|= [EA] bit 1
X = [EA] bit 2

EA = [EA] bits 3-16   
_|

Figure 10-1. 16S Address Calculation

 

  
1 March, 1979 10-11 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV

32S (Includes 32R when S=0) summary

Addresslength: 15 bits, 32K word address space

Format:

 

    
opcode S

 
D Instruction Word

 
 

6 7 8-16

 

  
15-bit address  
 

16

Indirect address

Indexing: One level. The 15-bit indirect address word eliminates the X bit. Done after all

indirection is complete, except for the special case shownin thetable below.

Indirection: Multiple levels.

 

 

I X § OD

0 0 0 0 to °777

0 1 0 0 to '777

1 0 0 0 to '777

1 1 0 0 to '77

1 1 0 100 to '777

0. 60 1 0 to '777

0 1 1 0 to '777

1 0 1 0 to ‘777

1 1 1 0 to ‘777

Pp

0|D

PID

Xx

I(expression)

ADDR

EA

oD

0D+xX

T(o,D}

1(0,D+X)

1(0|D) +X

PD

PID+X

I(PiD)

I{P/D) +X

Contents of program counterpriorto instruction fetch

Assembler

Notation

LDA ADDR

LDA ADDR,1

LDA ADDR,*

LDA ADDR,1*

LDA ADDR,*1

LDA ADDR

LDA ADDR,1

LDA ADDR,*

LDA ADDR,1*

(pointing at instruction).

Displacement into sector 0. Sector bits of effective
address (bits 3-8) are zero.

Displacementin current sector formed by concatena-
tion of sector bits from program counter with dis-
placementfield in instruction word.

Contents of index register.

Treat the effective address as indirect address.

Location addressed by the LDA.

Type

Direct

Indexed

Indirect

Indirect,

preindexed

Indirect

postindexed

Direct

Indexed

Indirect

Indirect
postindexed

  
FDR 3059

If D is 0-’7 and S=0, the effective address is a register.

1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10

 

 

 

}= INST bit 1 (1)
X = INST bit 2 (X)

  
 

 

  BIT 7 (S)
OF INST
SET

?

   

 

  

  

  

  
 

  
 

 

 

  
 

   
EA = EA +{X)

x=0

—>|<- J
einem

 

|= [EA] bit 1
EA = [EA] bits 2-16 YES

 

   
 

EA = EA+ (X)

| DONE

    
 

   Figure 10-2. 32S Address Calculation

 

1 March, 1979 10-13 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

32R summary

Addresslength: 15 bits; 32K word address space

 

       

 

        

 

   

 

   

 

 
 

Format:

1|X} opcode |S D Instruction Word:

123 678 16 S=0 or S=1
D>-240

Instruction Word:

1|X| opcode 110000 Xx CB S=1

123 67 1213141516 90-240

Address Word:

A Long Reach and

17 32 Stack Relative

1 15-bit address Indirect Address

12 16 Word

Indexing: Onelevel.

Indirection: Multiple levels.

Assembler

I x Ss CBD EA Notation Type

0 0 0 —. 0 to '777 0jD LDA ADDR .. Direct

0 1 0 — 0 to'777 oID+X LDA ADDR,1 Indexed

1 0 0 —  0:to °777 1(0/D} LDA ADDR,* Indirect

1 1 0 —  0to'77 1(0|D +X) LDA ADDR,1* Indirect,
preindexed

1.4. 0  —. 100 to '777 I(0jD)+X LDA ADDR,*1 Indirect,
postindexed

0 0 1 — -240 to +255 P+D LDA ADDR Direct

0 1 1 — -~240 to +255 P4D+X LDA ADDR,1 Indexed

1 0 1 —  -240 to +255 I(P+D) LDA ADDR,* Indirect

1 1 1 — ~-240 to +255 I(P+D}+X LDA ADDR,*1 Indirect,
postindexed

0 0 1 2 — SP LDA @+ Postincrement

0 1 1 2 — I(SP)+xX LDA @+,*1 Postincrement,
indirect,

postindexed

1 0 1 2 — I{SP} LDA @+,* Postincrement,
indirect

0 0 1 3 — SP-1 LDA -@ Predecrement

oO 1 1 30 — I(SP-1}+X LDA -@,*1 Predecrement,
indirect,

postindexed

1 0 1 3 — I{SP-1) LDA -@,* Predecrement,
indirect

FDR 3059 10-14 1 March, 1979

 



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

P

o\D

x

I{expression)

ADDR 
A+SP

A+SP+X

I(A+SP)

1(A+SP+X}

I(A+SP)+X

LDA% ADDR

LDA% ADDR,X

LDA% ADDR,*

LDA% ADDR,xX*

LDA% ADDR,*X

LDA @+ADDR

LDA @+ADDR,xX

LDA @+ADDR,*

LDA @+ADDR,X*

LDA @+ADDR,*X:

Direct,

long reach

Indexed,

long reach

Indirect,

long reach

Indirect,

preindexed
long reach

Indirect,

postindexed
long reach

Direct, stack

relative

Indexed, stack
relative

Indirect, stack

relative

Indirect,

preindexed,
stack relative

Indirect,

postindexed,
relative

Contents of program counterpriorto instruction fetch
(pointing at instruction).

Displacement into sector 0. Sector bits ‘of effective
address (bits 3-8) are zero.

Contents of index register.

Treat the effective address as indirect address.

Location addressed by the LDA.

 

1 March, 1979 10-15 FDR 3059

 



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

 

 

1= INST BIT 1
X =1NST BIT 2

   

       

  

   

BIT 7 (S)
OF INST
SET
 

Bits 8-16 < -240 EA = O/D

   
 

EA =

P+ 1+ Bits 8-16

   

 

 

   
    

 

    

EA = EA + (X)

x=0

—|e J

NO

1= [EA] bit 7

EA = [EA] bits 2-16 YES

EA = EA + (X}        
DONE

Figure 10-3. 32R Address Calculation (1 of 5)  
 

FDR 3059 10-16 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

   
   
   
   

 

Bits 15, 16 = 0?

Bits 15,16 = 1?

Bits 15,16 = 2?

NO

QO © Figure 10-4. 32R Address Calculation (2 of 5)   
1 March, 1979 10-17 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

 

 

 

EA=A EA =A (S)

     

 

   

NO

 

YES

 

EA=EA+{X)

NO

YES

|= [EA] bit 1
EA = [EA] bits 2-16 DONE

    
 

 

       Figure 10-5. 32R Address Calculation (3 of 5)  
 

FDR 3059 10-18 1 March, 1979



 

MEMORY REFERENCE CONCEPTS—SRV 19
 

 

 

 
 

     
 

  
 

 

 
 

       

EA=A EA=A+(S)

NO

YES

|= [EA] bit 1
EA = [EA] bits 2-16 EA = EA + (X)

  
DONE

Figure 10-6. 32R Address Calculation (4 of 5)
 

1 March, 1979 10-19 FDR 3059

 



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

 

 

 

   

 

 

 
S=(S)-1

EA = (S)

  

  

 

YES 

 

NO

 

{= [EA] bit
EA= [EA] bits 2-16

  
 

   

Figure 10-7. 32R Address Calculation 5 of 5)

NO

 

 
EA = EA + (X)

    
 

DONE  
 

FDR 3059 10-20 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

Addresslength: 16 bits; 64K word address space

 

       

 

        

 

   

 

   

 

 
 

Format:

1X opcode S D Instruction Word

123 678-16 205-1
D <-240

Instruction

1|X}opcode| 110000 XX; CB S=1

123 67 12 13-14 15-16 D<-240

Address Word:

A Long Reach and

17 32 Stack Relative

16-bit address Indirect Address

1 16 Word

Indexing: One level.

Indirection: Onelevel.

Assembler .

I xX § CB D EA Notation Type

0 0 0 — 0to'777 0;D LDA ADDR Direct

0 1 0 — 0 to ‘777 0D+X LDA ADDR,1 Indexed

1 0 0 — 0 to ‘777 T(oiD) LDA ADDR,* Indirect

1 1 0 — 0O0to'77 I(0/|D+X) LDA ADDR,1* Indirect.

preindexed

1 1 0 — ‘100 to '777 1(0/D) +X LDA ADDR*1 Indirect,

postindexed

0 0 1 —  -240 to +255 P+D LDA ADDR Direct

0 1 1 — -240 to +255 P+D+xX LDA ADDR,1 Indexed

1 0 1 — -240 to +255 I{P+D) LDA ADDR,* Indirect

1 1 1 — -240 to +255 I(P+D)+X LDA ADDR,*1 Indirect.
postindexed

0 0 1 — SP LDA @+ Postincrement

0 1 — I(SP}+x LDA @+,*1 Postincrement.

indirect,

postindexed

1 0 1 2 — I(SP} LDA G+,* Postincrement.

indirect

0 0 — SP-1 LDA -@ Predecrement

0 1 — I(SP-1)+X LDA -@,*1 Predecrement
indirect,

postindexed

1 March, 1979 10-21 FDR 3059

 



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

 

Pp

8)

x

I{expression}

SP

ADDR 

I(SP-1} LDA -@,*

A LDA% ADDR

A+X LDA% ADDR,X

I(A) LDA% ADDR,*

I(A+X) LDA% ADDR,X*

I(A} +X LDA% ADDR,*X

A+SP LDA @+ADDR

A+SP+X LDA @+ADDR.X

I(A+SP) LDA @+ADDR,*

I(A+SP+X) LDA @+ADDR,X*

I(A+SP]+X LDA @+ADDR,*X

Predecrement,
indirect

Direct,

long reach

Indexed,
long reach

Indirect,

long reach

Indirect,
preindexed
long reach

Indirect,
postindexed
long reach

Direct, stack

relative

Indexed,stack

relative

Indirect, stack
relative

Indirect,

preindexed,stack rela-
tive

Indirect,
postindexed,stack rel-
ative

Contents of program counter after instruction fetch
(pointing at instruction plus 1).

Displacement into sector 0. Sector bits of effective
address (bits 3-8} are zero.

Contents of index register.

Treat effective address as indirect address.

Stack pointer.

Location addressed by the LDA.

 

FDR 3059 10-22 1 March, 1979

 



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

 

 

{= INST BIT 4

X = INST BIT-2

   

   BIT 7 {S}
OF INST
SET

2

 

    

   
     

    

  

 

 
    

 

BITS 8-16
D, <-240?   G)=

EA.< ‘100

AND

X22?

NO
t NO

EA=P444

BITS 8-16

 

   

 

EA = EA +{X)

xX =0   

   

 

 

EA = [EA]

     
 

NO

YES

EA=EA+ (X}

   -

y
DONE

 

  Figure 10-8. 64R Address Calculation (1 of 5)
 

1 March, 1979 10-23 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

 

Bits 15, 16 = O?

  

  
 

 

  

 

Bits 15,16 = 1?
YES (c)

NO

NO YES
Bits 15, 16 = 2?

YES YES

NO NO

OQ) © O © Figure 10-9. 64R Address Calculation (2 of 5)  
 

FDR 3059 10-24 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10

 

  

EA=A

 
EA =A+({S)

  
 

 
 

  
 

NO

YES

 

EA = EA +(Xx)

  
  
 

 

 

 

  
  
 

  Figure 10-10. 64R Address Calculation (3 of 5)  
 
1 March, 1979 10-25 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

 

 
 

EA=A EA=A+(S)

-
     

 

   

 

    
 

NO

YES

EA = [EA]

EA = EA + (X)

   

DONE

Figure 10-11. 64R Address Calculation (4 of 5)  
  
FDR 3059 10-26 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

  

EA = (S) S=(S)-1
S={(S)+1 EA = (S)

      

   

NO

YES

  

 

  

    
 

 

NO

 

EA =EA+ (X)}

f

DONE

     
 

Figure 10-12. 64R Address Calculation {5 of 5)  
 

1 March, 1979 10-27 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

64V PROCEDURERELATIVE(One Word, S=1)

Addresslength: 16 bits; 64K word address space

 

       

 

   

Format:

1| X OP S D Instruction Word

12 3 6 7 8-16

16-bit Indirect address word

1 16

Indexing: One level

Indirection: One level
 

I x § D EA Type

0 0 1 — 224 to +255 P+D Direct

0 1 1 — 224 to +255 P+D+X Indexed

1 0 4 — 224 to + 255 1(P+D) ~ Indirect

1 41 #4 — 224 to + 255 I(P+D)+X Indirect, postindexed

P Contents of program counter after instruction fetch
(pointing at instruction plus one).

D Procedure segment displacement.

Xx Contents of X register.

I[expression]| Treat effective address as indirect address.  
 

64V BASE REGISTER RELATIVE (One Word, S=0)

Address Length: 3 64K segments

 

       

 

   

Format:

i1Xx OP $ D Instruction Word

12 3 6 7 8-16

16-bit Indirect address word

1 16

Indexing: One level

Indirection: One level

FDR 3059 10-28 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

 

S D

0 0-7
"10-'777

"400-'777

0 0~'377

"400-777

0 0-'7

‘10-777

0 0-77

0 "100-'777

REG

PB

LB

SB

x

D

(expression)

x

EA Type

register location Direct
SB+D

LB+D

if D+X<’10 then EA = register Indexed
location * else SB+D+X
LB+D+X

I{REG) Indirect
I(PB{D)

I(PB|D+X) Indirect,
preindexed

I(PB|D) +X Indirect,
postindexed

R-moderegisters, i.e., A, B, X, ete.

Procedure baseregister.

Link base register.

Stack base register.

Index register.

Displacementfield.

Treat effective address as indirect address.

This is called an address trap.
 

 
64V TWO WORD MEMORY REFERENCE

Address length: 28 bits; 4096 64K segments

 

         

 

  
 

 

     
 

 

   

 

    

Format:

4 OP 11000 Y XX BR

12 3 6 7 1112 13-14 15-16

A

17 32

F| RR|E SEGNO

123 4 5 16

WORDNO

17 32

BITNO

33 — 36 37 48

Indexing: X and Y

Indirection: 48 bit word

1 March, 1979 10-29 FDR 3059



10 MEMORY REFERENCE CONCEPTS—SRV
 

 

I xX

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1 

S
re BR Effective Address

W
N

R
F

SD
P
W
A
N

FP
F

C
F
W
H
R

CO
C
W
O
N

K
F

C
O
W
N

F
P

O
D
W
H
R

OD
O

WH
O

R
h

K
R

C
O
W
h
R
O

PBID

SB+D

LB+D

XB+D

PBID+Y
SB+D+Y

LB+D+Y

XB+D+Y

PBD+X

SB+D+xX

LB+D+X
XB+D+X

I(PBiD)
SB+D)

Meaning

Direct

Indexed by Y

Indexed by X

Indirect

Preindexed by Y

Postindexed by Y

Preindexed by X

Postindexed by X

 

FDR 3059 10-30 1 March, 1979

 



MEMORY REFERENCE CONCEPTS—SRV 10

 

YES

 

EAW=PC_W+d.+1

  
 

 

 

 

EA_S=PC_S
EA_R=PCR
R=TRUE  
 

  

 

  
BIT 7 (S)
OF INSTR.

SET
?

  

    

NO

 

EA_W = EA_W (Xx)
X=0 

 

 
 

YES

 

EA_W=0Old
  
 

  EAW<‘100AND
X=1

 

 

 

 

 

EAW= [EA]
  
 

Y

  

 Figure 10-13. 64V Address Calculation (1 of 3)

 

  

 

 

YES
EA_W = EA_W + (X)

  
 

  
 

1 March, 1979 10-31 FDR 3059



 

10 MEMORY REFERENCE CONCEPTS—SRV

t
EA_W=OID

YES
EA_W = EA_W + (Xx)

NO

D < ‘400

YES

 

 

 

 

  
 

 

  
 

 

EA_S=LB_S
EA_W=EA_W+LB_W
EA_R=EA_RVLB_R

R = FALSE

DONE

  
    
 

 

  
 

YES

DONE

EA_S=SB_S
EAW=EA_W+SB_W
EA_R=EA_RVSB_R

R = FALSE

| M WHEN SEG ENABLED = ‘10
M WHENSEGDISABLED= '40

DONE

Figure 10-14. 64V Address Calculation (2 of 3)  
 

FDR 3059 10-32 1 March, 1979



MEMORY REFERENCE CONCEPTS—SRV 10
 

 

 

EA_S=BR_S
EALW=BR_W+A
EA_R«BR_RVEA_R
R ~ FALSE

 

   

       

 

  

   

 

IXY = 001

[XY = 100?

IX¥ = 010

IXY = 110?

 

      EA_W = EA,W+4Y} EA_W=EAW+ (x)

    
be

YES
IX¥ = O00 V 001 V 010

YES

NO

 Y
EA S- [EA] bits 5-16
EA_W= [EA# 1] POINTER

EA R=EALR V FAULT

[EA} bits 2-3

!

 

  
 

NO NO

 

   
    
 

 

—

YES YES

EA _W = EA_W +(¥} EA_W = EA_W + (x)

}

DONE Figure 10-15. 64V Address Calculation (3 of 3)  
 

1 March, 1979 10-33 FDR 3059



 

Instruction
definitions-SRV
 



ADDRESSING MODE—ADMOD

Set the addressing mode of the machine.

> E16S Enter 16S mode

Use 16S address calculations to form subsequent effective addresses and enable S-mode
interpretation of instruction. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=000011, C=unchanged, L=unchanged, CC=unchanged.

> E32S Enter 32S mode

Use 328 address calculations to form subsequent effective addresses and enable S-mode
interpretation of instructions. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=000013, C=unchanged, L=unchanged, CC=unchanged.

> E32R Enter 32R mode

Use 32R address calculations to form subsequenteffective addresses and enable R-mode
interpretation of instructions. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=001013, C=unchanged, L=unchanged, CC=unchanged.

> E64R Enter 64R mode

Use 64R address calculations to form subsequent effective addresses and enable R-mode
interpretation of instructions. See section on addressresolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=001011, C=unchanged, L=unchanged, CC=unchanged.

> E64V Enter 64V mode

Use 64V addresscalculations to form subsequent effective addresses and enable 64V-mode
interpretation of instructions. See section on addressresolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=000010, C=unchanged, L=unchanged, CC=unchanged.

> E32I Enter 32] mode

Use 32] address calculations to form subsequent effective addresses and enable 321-mode
interpretation of instructions. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=001010, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-1 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

BRANCH—BRAN

The branch instructions are two word generics whichtest the contents of a register or the

result of a previous ARITHMETIC or COMPAREoperation, as indicated by the condition

codes (CC), the C-bit, and the L-bit. The bit layout is:

 

      
 

 

  
 

Word 1 = 1 1 0 0 OPCODE

1 2 3 4 5 _ 16

Word 2 = 16-bit word address in current procedure segment

1 16

Condition code branchestest six conditions based on the LTbit, the EQ bit, and the spcode.

Condition Meaning

< Branch if LT bit set and EQ bit cleared

< Branchif LT bit set or EQ bit set

Branch if EQ bit set

Branch if EQ bit cleared

Branch if LT bit cleared or EQ bit set

> Branchif LT bit cleared and EQbit cleared

MODES=V, FORMAT=BRAN, OPCODEs=seecharts below, C=unchanged, L=unchanged,

CC=unchanged.

WV
+

> Test condition code and branch

These instructions have the following format:

LT

LE

, sas EQ
Branch if condition code NE

GE

\ GT]

For example: BCLT addr meansBranchto addrif the condition codeis less than zero (LTbit

set and EQ bit cleared).

Mnemonic Function Opcode

BCLT addr If CC<, then addr-PC 141604

BCLE addr If CC<, then addr->PC 141600

BCEQ addr If CC=, then addrPC 141602

BCNE addr If CC#, then addr>PC 141603

BCGE addr li CC>, then addr>PC 141605

BCGTaddr If CC>, then addr—-PC 141601

FDR 3059 11-2 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

These instructions have the following format:

LT

LE

Branch to addr if L=1 and condition code ne

GE

GT

For example: BMLT addr means Branchto addrif the L-bit is set and condition codeis less
than 0 (LT bit set and EQ bit cleared).

Mnemonic Function Opcode

BMLT addr If L=1 and CC<, then addr>PC 141707

BMLEaddr If L=1 and CC, then addr-PC 141711

BMEQ addr If L=1 and CC=, then addr-PC 141602

BMNEaddr If L41 and CC¥, then addr-PC 141603

BMGEaddr If L=1 and CC>3, then addr-PC 141606

BMGTaddr If L=1 and CC>, then addr-PC 141710

> Test C-bit and branch

0

Branch if C-bit

1

BCR addr Branchif C-bit reset (equals zero): If C-bit=0, then addr>PC. OPCODE=141705.

BCS addr Branch if C-bit set (equals one): If C-bit=1, then addr>PC. OPCODE=141704.

Test L-bit

0

> Test L-bit
1

BLR addr Branchif L-bit reset (equals zero): If L-bit=0, then addr PC. OPCODE=141707.

BLS addr Branchif L-bit set (equals one): If L-bit=1, then addr-—PC.

> Branch on register

These instructions have the following format:

GE
GT a

LT

A-Register (blank) — LE

Branch if L-Register (L) EQ o
{ Fleating-Register (F) } | NE

1 March, 1979 11-3 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

For example: BLT addr means Branch to addrif the contents of the A register is less than
zero (LT bit is set and EQ bit is cleared). MODES=V, FORMAT=BRAN, OPCODES=see
chart below, C=unchanged, L=unchanged, CC=result.

Mnemonic Function Opcode

BLT addr If A<0, then addr>PC 140614

BLE addr If A<0, then addr>PC 140610

BEQ addr If A=0, then addr-PC 140612

BNE addr If A#0, then addr+PC 140613

BGE addr If A>0, then addr+PC 140615

BGT addr If A>0, then addr-PC 140611

BLLT addr If L<0, then addr>PC 140614

BLLE addr If L<0, then addr>PC 140700

BLEQ addr If L=0, then addr-PC 140702

BLNE addr If L40, then addr>PC 140703

BLGE addr If L>0, then addr>PC 140615

BLGT addr If L>0, then addr-PC 140701

BFLT addr If F<0, then addroPC 141614

BFLE addr If F<0, then addr—PC 141610

BFEQ addr If F=0, then addr—PC 141612

BFNE addr If F40, then addr>PC 141613

BFGE addr If F>0, then addr—PC 141615

BFGT addr If F>0, then addr-PC 141611

> Increment or decrement X or Y and branch

Increment x by 1 then branchto addrif result + 0
Decrement Y

MODES=V, FORMAT=BRAN, OPCODE=seechart below, C=unchanged, L=unchanged. CC
=unchanged.

Mnemonic Function Opcode

BIX addr X+15X; if X#0 then addr-PC 141334

BIY addr Y+1Y;if Y40 then addr-PC 141324

BDX addr X-1>X; if X40 then addr-PC 140734

BDY addr Y-1Y; if Y#0 then addr-PC 140724

> CGT Computed GOTO

If 1<A<, then [PC+A]>PC else PC+n3PC

Instruction word followed by n further words: word 1 contains integer n and words 2-n
contain branch addresses within the current procedure segment.

If the contents of register A is less than n and greater than or equalto 1, then control passes
to the address in PC+A; otherwise no branch is taken and contro! passes to PC+n. MODES
=V, FORMAT=GEN, OPCODE=001314, C=unspecified, L=unspecified, CC=unspecified.

FDR 3059 11-4 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

These instructions use the field address and length registers (FALR) which have beenset up
by field operation instructions prior to the use of these instructions. Character string
operations perform memory to memory operations on variable length characterfields. The
FAR is used as a byte pointer and the bit offset (low order 3 bits) is ignored.

Data type: Characters are 8-bit bytes. The format is unspecified and may be determined by
programmer, e.g., ASCII, EBCDIC, etc. The translate instruction (ZTRN)}, for example uses
a table set up by the programmerto translate one character code into another.

> LDC FALR Loadcharacter

If field length register FLR is nonzero, load the single character pointed to by field address
register FAR into A register bits 9-16. A register bits 1-8 are cleared. The field address
register is advanced8 bits to the next character, andthe field length register is decremented
by 1. Set condition code NE(clear EQ). If the specified field length register is zero, then set
the condition code EQ. MODES=V, FORMAT=CHAR, FALR 0 OPCODE=001302, FALR 1
OPCODE=001312, C=unchanged, L=unchanged, CC=result.

> STC FALR Store character

Store bits 9-16 of the A register into the character pointed to by field address register. The
field address register is advanced 8 bits to the next character, and the field length register
is decremented by 1. Set the condition code NE.If the field length register is zero, set the
condition code EQ and do not store. MODES=V, FORMAT=CHAR, FALR 0 OPCODE=
001322, FALR 1 OPCODE=001332, C=unchanged, L=unchanged, CC=result.

> ZCM Compare characterfield

Comparefield 0 to field 1 and set condition codes based on theresults. If the fields are not
of equal length, the shorter field is logically padded with ASCII blanks ('240).

Setup:

FAR 0 Field 0 address(byte aligned}.
FLR 0 Length of field 0 in characters.
FAR 1 Field 1 address (byte aligned).
FLR 1 Length of field 1 in characters.

Condition code Result

EQ Field 0=field 1

LT Field O0<field 1

GT ((LT and EQ)}} Field O>field 1

MODES=V, FORMAT=CHAR, OPCODE=001117, C=unchanged, L=unchanged, CC=results.

> ZED Edit character field

NAaAern nhanantana fnnm FinlAl ntntan finlA 1 wn Aann the nnwntinenl Af an AAS Rann een me neietad ta
AVAUVOE CLIGLALLTLS LIVI LItlUu UV OLELLU LICIlU tL ULIUE! Lit UULILEUL UL dail CULL pliUugsia il v MW1cu LU Uy

XB. Movement stops whenthe sourcefield is exhausted or whenthe endof the edit program

1 March, 1979 11-5 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

Edit Program Word:

 

    
 

L Last entry if set.

0 Mustbe zero.

E Edit opcode.

M Edit modifier.

Opcode (E) Mnemonic Definition

0 CPC Copy M characters from sourceto destination.

1 INL Insert literal character M.

2 SKC Skip M characters.

3 BLK Supply M blanks (ASCII ’240).

Setup:

FAR 0 Addressof sourcefield (byte aligned).

FAR 1 Address of destination field (byte aligned).

FLR 1 Numberof characters to moveandedit.

XB Address of edit program.

MODES=V, FORMAT=CHAR, OPCODE=001111, C=unchanged, L=unchanged, CC=un-

changed.

p>  ZFIL Fill field
Store the character contained in bits 9-16 of the A register into each characteroffield 1.

Setup:

A(9-16) Characterto fill.

FAR 1 Destination field address (byte aligned).

FLR 1 Destination field length in bytes.

MODES=V, FORMAT=CHAR, OPCODE=001116, C=unchanged, L=unchanged, CC=un-

changed.

> ZMV_ Movecharacterfield

Movecharacters from field 0 to field 1, going from left to right. If the source field is shorter

than the destination field, the destination field is padded with ASCII blanks (’240). If the

source field is longer than the destination field, the remainder of the source field is not

moved. The field address and length registers are left in an undefined state by this

operation.

Setup:

FAR 0 Source field address (byte aligned).

FLR 0 Source field length in bytes.

FAR 1 Destination field address length (byte aligned).

FLR 1 Destination field length in bytes.

MODES=V, FORMAT=CHAR, OPCODE=001114, C=unchanged, L=unchanged, CC=un-

changed.

FDR 3059 11-6 1 March, 1979

 



INSTRUCTION DEFINITIONS—SRV 11
 

 

Vv N < a oC a =

Movecharacters from field 0 to field 1. There is no padding or truncation since only the
numberof characters to be movedis specified.

Setup:

FAR 0 Source field address (byte aligned).
FAR 1 Destination field address (byte aligned).
FLR 1 Numberof characters to move.

MODES=V, FORMAT=CHAR, OPCODE=001115, =unchanged, L=unchanged, CC=un-
changed.

> ZTRN Translate character field

Use each characterin field 0 as an indexinto the 256 byte table addressed by the XBregister.
Store each selected table character in the successive characters of field 1. Source and
destination length are the same, specified by field length register 1.

Setup:

FAR 0 Source field address (byte aligned).
FAR 1 Destination field address (byte aligned).
FLR 1 Numberof characters to translate and move.
XB Address of 256-byte translate table.

For example: the source field contains a character A. The ASCII code is 301. Thus, the
translate table location '301, which contains a $, is accessed. This $ is put into the destination
field.

MODES=V, FORMAT=CHAR, OPCODE=001110, C=unchanged, L=unchanged, CC=un-
changed. .

CLEAR REGISTER—CLEAR

> CAL Clear A left byte

0-A(1-8)

Clear bits 1-8 of register A without affecting bits 9-16. MODES=SRV, FORMAT=GEN,
OPCODE=141050, C=unchanged, L=unchanged, CC=unchanged.

> CAR Clear A right byte

0A(9-16)
Clear bits 9-16 of register A without affecting bits 1-8. MODES=SRV, FORMAT=GEN,
OPCODE=141044, C=unchanged, L=unchanged, CC=unchanged.

> CRA Clear the A register

0A

Reset the contents of register A to zero. MODES-=SRV, FORMAT=GEN, OPCODE=140040, C
=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-7 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 
 

> CRB Clearthe B register

0-B

Reset the contents of register B to zero. MODES=SRV, FORMAT=GEN, OPCODE=140015, C

unchanged, L=unchanged, CC=unchanged.

P CRE ClearE

0-E

Reset the contents of register E to zero. MODES=V, FORMAT=GEN, OPCODE=141404, C=

unchanged, L=unchanged, CC=unchanged.

> CRL Clear long

0-L

Reset the contents of register L to zero. MODES=SRV, FORMAT=GEN, OPCODE=140010, C

—unchanged, L=unchanged, CC=unchanged.

> CRLE Clear L and E

0-L, 0-E

Reset the contents of registers L and E to zero. MODES=V, FORMAT=GEN, OPCODE=

141410, C=unchanged, L=unchanged, CC=unchanged.

DECIMAL ARITHMETIC—DECI

These instructions use the field address and length registers which have been set up byfield

operation instructions prior to the use of the decimal arithmetic instruction. The general

setupis:

EAFA 0 Source field address.

EAFA 1 Destination field address.

LDL Control word (described below) decimal operation.

Variations on this pattern are discussed in the appropriate instructions.

Decimal data types

The decimal instruction set operates on five types of decimaldata. Table 11-1 summarizes

the characteristics of each type.

FDR 3059 11-8 1 March, 1979



 

INSTRUCTION DEFINITIONS—SRV 11
 

 

Table 11-1. Decimal Data Type.

Size of
Type Code Decimal

Digit Comments

Leading 0 8 A plus sign (+) or a space represents a
Separate positive number. Operations generate +. A
Sign minus sign (-] represents negative number.

Trailing 1 8
Separate

Sign

Packed 3 4 Use 4-bit nibble to represent each digit, fol-
Decimal lowed bysign nibble. Requires odd numberof

digits and must start on byte boundary.

Leading 4 8 A single character represents a digit and the
Embedded sign of the field. When more than one charac-
Sign ter is listed, all will be recognized, but only

first will be given in result field.
Trailing 5 8 Embeddedsign charactersare as follows:
Embedded
Sign

Digit Positive Negative

0 0,+{ -,{

1 1A J
2 2B K

3 3C L

4 4D M

5 5E N
6 6F O

7 7G P
8 8H Q
9 9 I R   

1 March, 1979 11-9 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

Arithmetic instruction register usage (I-mode only)

All arithmetic instructions use general registers GRO, GR1, GR3, GR4, and GR6, FLRO, FLR1

as scratch registers. These registers are not guaranteed to remain the same if an arithmetic

instruction is executed.

Control word format

To specify the characteristics of the operation to be performed, most decimal arithmetic

instructions require a control word to be loaded in the L register (general register 2 in I-

mode).

The general formatis as follows:

 

             
A _ B Cc j|—|T D E F G H

1-6 7 8 9 10 11 12

=

«13 14-16 17-22 23-29 30-32

Where:

A Field 1, numberofdigits.

E Field 1, decimal data type (see Table 11-1).

B If set, sign of field 1 is treated as negation ofits actual value.

C If set, sign of field 2 is treated as negation of its actual value (XAD, XMP,

XDV, XCM only).

If set, then round (XMVonly).

Field 2, numberofdigits.

Field 2, decimal data type.

Scale differential (XAD, XMV, XCM only).

Generate positive results always.

- Unused, must be zero.

q
H
a
m
A
o

The fields used by each instructionare listed in the instruction descriptions. Fields not used

by an instruction must be zero.

The scale differential specifies the difference in decimal point alignment between the

operator and fields for some instructions. This field is treated as a signed 7 bit two's

complement number, wherea positive value indicates a rightshifting of field 1 with respect

to field 2, and a negative value indicatesa left shifting.

Decimal exception (DEX)

There are two ways that an exception is handled. If the program is running in decimal

exception mode, the a directed fault (similar to floating exception) is taken with the

following fault codes:

DEX Type (High) Sub Code (Low)

Overflow 7 0

Divide by zero 7 1

Conversion 7 2

Whennotin decimal exception mode,the C bit is set and execution continues with the next

instruction.

> XAD Decimal add

FDR 3059 11-10 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 
 

 

     
A _ Bi; Cc E F G H

1-6 7 8 9 10 11 — 13 14-16 17-22 23-29 30-32

     
 

Addthe source field to the destination field and place the results in the destinationfield.
The control word determines:

1. The operation—addition or subtraction.

2. The scaling of the results.

Operations: The B and C fields control whether the operation is an add or subtract.

B C Operation

0 0 + Source + Destination

0 1 + Source — Destination

1 0 — Source + Destination

1 1 — Source — Destination

Scaling: G Field. The scale differential field in the control word is used to adjust field 1 in
relationto field 2. If the scale differential is greater than zero, low orderdigitsin field 1 will
only affect the initial borrow from the low orderdigit of field 2. If the scale differentialis
less than zero, field 1 is considered to be logically extended with low order zeros when
applied to field 2. MODES=V, FORMAT=DECI, OPCODE=001100, C=overflow, L=un-
changed, CC=result.

» XBTDBinary to decimal conversion

 

A E H

1-6 7 13 «14-16 §=617 29 30-32

Converts a 16, 32 or 64 bit signed binary numberto decimal. TheH field in the control word
specifies the length and location of the binary source asfollows:

      
 

0 16 Bits, located in EH

1 32 Bits, located in E

2 64 Bits, located in F

The condition codes are undefinedfor this operation. A conversion error exception is taken
on overflow - see decimal exception.

This instruction converts the binary field present in EH,E or F (depending onfield type)
into a decimal field. Unlike the rest of the decimal arithmetic instructions, XBTD returns the
decimalfield in what elsewhere is knownasthe “source” field address register. MODES=
V, FORMAT=DECI, OPCODE=001145, C=unchanged, L=unchanged, CC=unchanged.

> XCM _Decimal compare

 

A —_ Bic E F G H           
1-6 7 8 9 10 11 13 14-16 17-22 23-29 30-32

Sets the condition codes to reflect the comparison Field 2 :: Field 1 The scale difference
applies as in XAD.

1 March, 1979 11-11 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

The condition codesareset as follows:

GT = Field 2 > Field 1

EQ = Field 2 = Field 1

LT = Field 2 < Field 1

MODES=V, FORMAT=DECI, OPCODE=001102, C=unchanged, L=unchanged, CC=result.

> XDTB Decimalto binary conversion

 

» m
i <

      
 

1-6 7 13 14-16 17 29 30-32

Converts the decimalfield to binary. The length of the binary field is specified in the H field

of the control wordas follows:

0 16 Bits, returned in A.

1 32 Bits, returned in L.

2 64 Bits, returned in L/E.

A conversion error exception is taken on overflow. The condition codes are undefined for

this operation.

Field addressregister 1 is not used by this instruction and can be used as an accumulator for

indexed pointers.

This instruction returns a 16, 32 or 64 bit integer in either the A, L, or L/E registers,

depending on the destination field type. MODES=V, FORMAT=DECI, OPCODE=001146, C

=unchanged, L=unchanged, CC=unspecified.

> XDV Decimal divide

 

       

1-6 7 8 9 10 11 32

Divide destination field by source field, placing both the quotient and remainderin the

destination field.

The data type must be trailing sign embedded. To allow room for both quotient and

remainderthe destination field must contain the same numberof leadingzerosasthe length

of the sourcefield.

After divide the destination field contains quotient of length (destination length—source

length) followed by remainder of source length. A decimal exception (DEX) occurs if the

source =0, the sign is not trailing embedded,or the destination is < source.MODES=V,

FORMAT=DECI, OPCODE=001107, C=unchanged, L=unchanged, CC=resullt.

FDR 3059 11-12 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

>  XED Numeric edit
Processes an edit sub-program addressed by the temporary base register (XB) to control the
editing of the source field into the destination field. The source field must have leading
separate sign, and must have the same numberof digits and the same decimal point
alignment as called for by the edit sub-program. Normal setup for the instruction would
consist of a decimal moveto correct the type, length, and alignment of the numberto be
edited. The A register must equal one if the source field is zero: otherwise the A register
must be zero.

The edit sub-program consists ofa list of words formatted as follows:

 

      
L 0 E M

1 2-4 5-8 9 16

Where:

L Last entry if set.

E Edit opcode.

M Edit modifier.

The XEDinstruction maintains several internal variables during its processing which are
used to control the operation. These variables are:

¢ Zero suppress character—initial value is blank (ASCII ’240).

¢ Floating edit character—initially not defined.

¢ Sign of the source field—established by fetching the first character of the source
field.

¢ Significance flag—records the end of zero suppression.

MODES=V, FORMAT=DECI, OPCODE=001112, C=unchanged, L=unchanged, CC=un-
changed.

> XMP Decimal multiply

 

       
A} — |B} c]|—-/|Tj] —- E F G H      
1-6 7-8 9 10 11 12 13 14-16 17-22 23-29 30-32

Multiply the multiplicand,in the sourcefield, by the multiplier,in the destination field. The
productis right justified in the destination field. To avoid overflow the destination field
length mustbe greater than or equalto the numberofsignificant digits in the multiplier plus
the numberofsignificantdigits in the multiplicand. For example,to multiply 1234 by 567set
A=4, F=7, G=3. Note that the temporary base register (XB) is usedby the instruction and may
change. MODES=V, FORMAT=DECI, OPCODE=001104, C=overflow, L=unchanged, CC=
result.

1 March, 1979 11-13 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

 

 

Table 11-2. Edit Sub-operations

Opcode Mnemonic Definition

00 ZS Zero suppress next M digits. Digits are consecutively fetched

from the sourcefield and the significance flag is checked.If the
significanceflag is set, the digit is copied to the destination field.
If the significance flag is clear and the digit is non-zero, the
significance flag is set, the floating character inserted (if it is
currently defined), and the digit is copied. Otherwise the zero
suppress character is substituted for the zero digit in the

destination field.

01 IL Insert literal M in destination field.

02 Ss Set zero suppress characterto M.

03 Ics Insert literal M if the significance flag set: otherwise insert zero

suppress character.

04 ID Insert M digits. If significance flag is clear, it is set and the

floating edit character inserted {if currently defined). Then
copy M digits into the destination field.

05 ICM Insert M if sign is minus; otherwise insert zero suppress

character.

06 ICP Insert M if sign is plus; otherwise insert zero suppress charac-

ter.

07 SFC Set floating character to M.

10 SFP Set floating character to M if sign plus: otherwise set floating

edit character to zero suppress character.

11 SFM Set floating character to M if sign minus: otherwise set floating

edit character to zero suppress character.

12 SFS Set floating character to sign.

13 JZ Jump M+1 locations ahead in edit sub program if source field

equals zero.

14 FS Fill next M characters with zero suppress character.

15 SF Set significanceflag.

16 Is Insert sign.

 

> XMV_ Decimal move

 

          A _ By;jc;—;T{O E F G H

1-6 7 8 9 10 11 #12

=

«13 14-16 17-22 23-29 30-32
   

Moves source to destination, changing the sign if the B bit in the control wordis set, and

rounding if the D bit is set and G, the scale differential, is greater than zero. If the scale

differential is negative then zeros are supplied before field 1 is used for a source. The

condition codes are set to reflect the state of the destination after the move.MODES=V,

FORMAT=DECI, OPCODE=001101, C=unchanged, L=unchanged, CC=result.

FDR 3059 11-14 1 March, 1979

 



INSTRUCTION DEFINITIONS—SRV 11
 

 

FIELD OPERATIO
These instructions set up and manipulate the field address and length registers, which are
used by both the decimal and characterstring instructions. The interpretation of the value
in the field length registers depends on the data type andinstruction using them.

> ALFA FAR AddL to field address

L+FAR=FAR

Addthe 32-bit integer in register L, which represents an offsetin bits, to the 26-bit unsigned
word and bit numberfields of the field address register. The low-order 26 bits of the sum
replace the word and bit numberfields of the field address register. All but the low order
20 bits of the sum must be zero. Example: to advance FAR 0 by 3 bytes, place 24 into the L
register and execute ALFA 0. MODES=V, FORMAT=GEN,FAR 0 OPCODE=001301, FAR 1
OPCODE=001311, C=unspecified, L=unspecified, CC=unchanged.

> EAFA FAR, addr Effective address to field address register

[EA]485FAR
Place the complete effective address, includingthe bit portion,in field address register FAR.
The associated field length register is unchanged. MODES=V, FORMAT=AP, FAR 0
OPCODE=001300, FAR 1 OPCODE=001310, C=unchanged, L=unchanged, CC=unchanged.

> LFLI FLR,DATA Loadfield length register immediate

DATA-FLR

Place the 16-bit unsigned integer in the second word of the instruction into field length
register FLR. Clear the high orderbits. This instruction loadsthefield length register with
a constantwhich is 65535or less. The associated field addressregisteris unchanged. MODES
=V, FORMAT=BRAN,FLR 0 OPCODE=001303, FLR 1 OPCODE=001313, C=unchanged, L=
unchanged, CC=unchanged.

> STFA FAR,addr Store field address register

FAR+[EA]32 or [EA]48
Store contents of field address register FAR into addr as a hardwareindirectpointer.If bit
numberfield of the field address register is zero, store the first two wordsofthe pointer and
clear the pointer’s extendbit; if bit numberfield is non-zero, store all three words of the
pointer andset the pointer’s extend bit. MODES=V, FORMAT=AP,FAR 0 OPCODE=001320,
FAR 1 OPCODE=001330, C=unchanged, L=unchanged, CC=unchanged.

> TFLL FLR Transfer field length register to L

FLR-L

Transfer the contents of field length register FLR to the L register as an unsigned 32-bit
integer. Clear the high order 11 bits of L. MODES=V, FORMAT=GEN,FLR 0 OPCODE=
001323, FLR 1 OPCODE=001333, C=unchanged, L=unchanged, CC=unchanged.

> TLFL FLR Transfer L-register to field length register

L+FLR

Transfer the 32-bit unsigned integerin the L register into field length register FLR. The high
order11 bits of L must be zero to makethe high order6 bits of the field length register equal
to zero. This instruction is used to load the field length register with a value computedat

1 March, 1979 11-15 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

execution time. The maximum allowable field length is 2**20 (21 bits) - the numberof bits

in a 64K segment. MODES=V, FORMAT=GEN,FLR 0 OPCODE=001321, FLR 1 OPCODE=

001331, C=unchanged, L=unchanged, CC=unchanged.

FLOATING POINT ARITHMETIC—FLPT

See Section 9 for a description of the processor dependentregister formats and the floating

point data structures.

Normalization

The result of every floating point calculation is normalized. In normal form, the most

significant digit of the mantissa followsthe binary point. If an operation produces a mantissa

that is smaller than normal, the mantissa is shifted left until the most significantbit differs

from the sign bit, and the exponentis decreased by onefor each shift. Bits vacatedat the

right are filled by zeros. If the result of an operation overflows the mantissa,it is shifted

right one place, the overflow bit is made the mostsignificantbit, and the exponentis

increased by 1.

Floating point exceptions

In the basic arithmetic operations, increasing the exponent in the floating point register

beyond 32639 is an overflow; decreasing it below —32896 is an underflow.

An attemptto store a single-precision numberwith an exponentgreater than 127 or less than

_128 in the two-word memoryformatresults in a different type of exception - see Table 11-2.

The numberin the floating pointregister is not altered by the FST operation and so can be

recovered if necessary.

Other detected exceptions are an attemptto divide by zero or to form an integer exceeding

+30 bits or about +1 billion decimal.

On the Prime 350 and up, the floating point exception is a fault rather than an interrupt and

is controlled by the floating point exception bit in the keys - see Section 9 - Data Formats.

 

Table 11-3. Floating Point Exception Codes

Register 11 (Precision) Register 12 Type of Exception

Single Double

$100 $200 — Overflow/Underflow (Exponent exceeds ap-
. prox. 10 +9800)

$101 $201 oe Division by zero

$102 — (EA) Attempt to store single precision exponent

exceeding 8-bit memory format (>127, <-128)

$103 — — Attempt to form integer exceeding capacity.
INT: AB (30 bits)
INTA: A (15 bits)
INTL: L (31 bits)

Note

$ indicates hexadecimal codes  
 

FDR 3059 11-16 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

 

Table 11-4. Floating Point Mantissa and Exponent Ranges

 

Single Single
Precision- Precision- Double

Field Memory Register Precision

Mantissa (two’s complement)

Bits 23 + Sign 31 + Sign 47 + Sign

Precision +8,388,607 +2,147,483,647 +140,737,488,355,327

Exponent

Bits 8 16 16

Range -128 to +127 -32896 to +32639 ~32896 to +32639

(10438) (10+9823,-9902) (10+ 9823,-9902)  
 

> DFAD addr Double precision floating add

F+[EA]649F
Add the double precision numberstarting at addr to the double precision numberin the
floating point register and leavetheresult in the floating pointregister. (Same procedureas
FAD except a 47-bit mantissa is produced.) MODES=RV, FORMAT=MR, OPCODE=0602, C
=overflow, L=unspecified, CC=unspecified.

> DFCM Double precision floating complement

-FoF

Two's complement the precision mantissa in floating point register and normalize if
necessary. MODES=RV, FORMAT=GEN, OPCODE=140574, C=overflow, L=unspecified,
CC=unspecified.

> DFCS addr Double precision floating point compare and skip

If F>[EA]64 then PC+PC
If F=[EA]64 then PC+)1+PC
If F<{EA]64 then PC+25PC

If the contents of the floating pointregister is greater than the contents of addr, execute the
next instruction.

If the contents of the floating point register equals the contentsof addr, skip the next location
in instruction sequence and execute the instruction at second location following.

If the contents of the floating point register is less than the contents of addr, skip next two
locations in instruction sequence and execute the instruction at third location following.
MODES=RV, FORMAT=MR, OPCODE=11 02, C=unspecified, L=unspecified, CC=un-
specified.

> DFDV addr Double precision floating divide

F/[EA]645F

iwi ; ; Satan Lz; a omumbkear in arden and ela 3Divide the contents of the floating point register by the number in addr and piace the
quotient in the floating point register with the mantissa normalized. MODES=RV, FORMAT
=MR, OPCODE=17 02, C=overflow division by zero, L=unspecified, CC=unspecified.

1 March, 1979 11-17 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

DFLD addr Double precision floating load

[EA]645F

Load the double precision floating point number contained in the four memory wordsat

addr into the floating point register. MODES=RV, FORMAT=MR, OPCODE=02 02, C=

unchanged, L=unchanged, CC=unchanged.

> DFLX addr Double precision floating load index

[EA]16*44X

Quadruple the contents of the effective address and load the result into the index register

X. This instruction is useful for addressing arrays or tables of element size four words.

MODES=V, FORMAT=MR, OPCODE=15 02, C=unchanged, L=unchanged, CC=unchanged.

> DFMP addr Double precision floating multiply

F*{EA]645F

Multiply the contents of the floating point register by the contents of addr andplace the

products in the floating point register with the mantissa normalized. MODES=RV, FORMAT

=MR, OPCODE=16 02, C=overflow, L=unspecified, CC=unspecified.

> DFSB addr Double precision floating subtract

F-[EA]644F

Subtract the double precision floating point numberstarting at addr from the double

precision floating point numberin the floating point register. (Same procedure as FSB

except a 47-bit mantissa is produced.) MODES=RV, FORMAT=MR, OPCODE=07 02, C=

overflow, L=unspecified, CC=unspecified.

> DFST addr Double precision floating store

Fo[EA]64

Store the double precision floating point numbercontained inthefloating point register into

the location specified by addr. Exponent and mantissabit capacities are the same so that no

floating point exceptions are possible. MODES=RV, FORMAT=MR, OPCODE=04 02, C=

unchanged, L=unchanged, CC=unchanged.

> FAD adar Floating add

F+[EA]325F

Addthe floating point numberat addrto the contentsof the floating pointregister and leave

the resulting floating point numberin thefloating point register. Addition of floating point

numbers is accomplished by right shifting the smaller number by the difference in the

exponents. After alignment, the mantissas are added.

If there is an overflow from the mostsignificantbit (not the sign), the sum mantissais shifted

right one place, the exponentis incremented by one andthe overflow bit becomesthe high-

orderbit in the normalized mantissa.If the result is otherwise not in normal form (as when

numberswith unlike signs are added), the result is normalized. Overflow cannotoccur. The

C-Bit is cleared. MODES=RV, FORMAT=MR, OPCODE=06 01, C=cleared, L=unspecified,

CC=unspecified.

FDR 3059 11-18 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

-FoF

Two’s complementthe double precision mantissa in floating point register and normalizeif
necessary. MODES=RV, FORMAT=GEN, OPCODE=140574, C=overflow, L=unspecified,
CC=unspecified.

> FCS addr Floating compare and skip

if F>[EA]32, then PC+PC
If F=[EA]32, then PC+1>PC
If F<[EA]32, then PC+24PC

If the contents of the floating point register is greater than the contents of addr, execute the
next instruction.

If the contentsof the floating point register equals the contents of addr, skip the next location
in instruction sequence and execute the instruction at second location following.

If the contents of the floating point register is less than the contents of addr, skip next two
locations in instruction sequence and execute the instruction at third location following.
MODES=RV, FORMAT=MR, OPCODE=11 01, C=unspecified, L=unspecified, CC=un-
specified.

> FDBL Convert single to double float

F>F

Convertthe single precision floating point numberin the floating pointregister to a double
precision precision floating point number in the floating point register. MODES=V,
FORMAT=GEN, OPCODE=140016, C=unchanged, L=unchanged, CC=unchanged.

>  FDV addr Floating divide

F/[EA]329F

Divide the contents of the floating point register by the number in addr andplace the
quotient, with the mantissa normalized, in the floating point register. MODES=RV, FOR-
MAT=MR, OPCODE=17 01, C=overflow division by zero, L=unspecified, CC=unspecified.

> FLD addr Floating load

|EA]325F

Load the double precision number contained in the two successive wordsat addrinto the
floating point register. MODES=RV, FORMAT=MR, OPCODE=02 01, C=unchanged, L=
unchanged, CC=unchanged.

> FLOT Convert 31-bit integer to float

Float(A|B)oF
Take the 31-bit integer in the combined AJB register and convertit into a normalized floating
point numberin the floating point register. MODES=R, FORMAT=GEN, OPCODE=140550,
C=unspecified, L=unspecified, CC=unspecified.

1 March, 1979 11-19 FDR 3059



 

11 INSTRUCTION DEFINITIONS—SRV
 

> FLTA Convertintegerto float

FLOT(A)3F

Convert the 16 bit integer inregister A to a single precision floating point numberin the
floating point register. MODES=V, FORMAT=GEN, OPCODE=140532, C=overflow, L=
unspecified, CC=unspecified.

> FLTL Convert long integer to float

FLOT(L)F

Convert the 32 bit integer in register L to a single precision floating point number in the
floating point register. MODES=V, FORMAT=GEN, OPCODE=140535, C=overflow, L=
unspecified, CC=unspecified.

p> FLX addr Floating load index

[EA]16*25X

Double the contents of the effective address and load the result into the index register X.
This instruction facilitates indexing sequences that involve double-word memoryreference
operations. It works directly for two-word indexing,e.g., 31-bit or 32-bit integer or floating
point. MODES=RV, FORMAT=MR, OPCODE=15 01, C=unchanged, L=unchanged, CC=

unchanged.

> FMP addr Floating multiply

F*[EA]324F

Multiply the contents of the floating point register by the contents of addr and place the
productin the floating point register, with the mantissa normalized. MODES=RV, FORMAT
=MR, OPCODE=16 01, C=overflow, L=unspecified, CC=unspecified.

> FRN Round up

If bit 25 of the mantissa in the floating point register is 1, add 1 to bit 24 and clear 25. MODES
=RV, FORMAT=GEN, OPCODE=140534, C=overflow, L=unspecified, CC=unspecified.

> FSB addr Floating subtract

F-[EA]320F

Subtract the contents of addr from the floating point register by aligning exponents, and
proceding as in FAD except that the [EA]32 is subtracted from the floating point register.
MODES=RV, FORMAT=MR, OPCODE=07 01, C=overflow, L=unspecified, CC=un-

specified.

> FSGT Floating skip if greater than zero

If floating point register is greater than zero, skip next location. MODES=RV, FORMAT=
GEN, OPCODE=140515, C=unchanged, L=unchanged, CC=unchanged.

> FSLE Floating skip if less than or equal to zero

If floating point register is less than or equal to zero, skip next location. MODES=RV,
FORMAT=GEN, OPCODE=140514, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 11-20 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

>. Ha. «aT —7 * s 2 ea :

roMi Floating skip ii minus

If the floating point register is less than 0, skip next location. MODES=RV, FORMAT=GEN,
OPCODE=140512, C=unchanged, L=unchanged, CC=unchanged.

> FSNZ_ Floating skip if not zero

If the floating point register is not equal to zero, skip next location. If the floating point
registeris less than 0, skip next location. MODES=RV, FORMAT=GEN, OPCODE=140511, C
=unchanged, L=unchanged, CC=unchanged.

> FSPL Floating skip if plus

If the floating point register is greater than 0, skip next location. MODES=RV, FORMAT=
GEN, OPCODE=140513, C=unchanged, L=unchanged, CC=unchanged.

> FST addr Floating store

Fo[EA]32
Store the single precision floating point numbercontainedin the floating point register in
two memory wordsstarting at addr. Bits 24-31 of the 31 bit mantissa are truncated when
written into the 23-bit capacity memory storage. However, the mantissa may be roundedto
bit 24 by a FRN instruction which adds1 to bit 24 if bit 25 is 1. MODES=RV, FORMAT=MR.
OPCODE=04 01, C=overflow, L=carry, CC=unchanged.

> FSZE Floating skip if zero

If the floating point register is equal to zero, skip next location. MODES=RV, FORMAT=
GEN, OPCODE=140510, C=unchanged, L=unchanged, CC=unchanged.

> INT Convert float to integer

Int(F)-AIB
Convert the single precision floating point numberin thefloating pointregister into a 32 bit
integer in register L. The fractional part of the floating point registeris lost. If the value in
the floating pointregisteris less than -(2**31) or greater than 2**31-1, set the C-bitorinitiate
a floating exception. MODES=V, FORMAT=GEN, OPCODE=140533, C=overflow, L=un-
specified, CC=unspecified.

> INTA Convert float to integer

INT(F]>A
Convert the single precision floating point numberin the floating point register into a 16 bit
in integer in register A. The fractional part of the floating point register is lost. Overflow
occursif the value in the floating pointregister is less than -(2**15) or greater than 2**15-1,
and sets the C-bit or initiates a floating exception. MODES=V, FORMAT=GEN, OPCODE=
140531, C=overflow, L=unspecified, CC=unspecified.

1 March, 1979 11-21 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 
 

> INTL Convert float to long integer

INT(F)oL

Convert the single precision floating point numberin the floating point register into a 32 bit

integer in register L. The fractional part of FAC islost. If the value in the floating point

register is less than -(2**31) or greater than 2**31-1, set the C-bit or initiate a floating

exception. MODES=V, FORMAT=GEN, OPCODE=140533, C=overflow, L=unspecified, CC=

unspecified.

INTEGER ARITHMETIC—INT

These instructions operate on 16, 31-bit and 32-bit signed integers. See Section 9 for a

description of the data formats.

> A1A_ Add one toA

A+1-A

Add 1 to the 16-bit integer in register A and puttheresult into A.If the number incremented

is 2 **15-1, set C and give a result of -2**15; otherwise clear C. MODES=SRV, FORMAT=

GEN, OPCODE=141206, C=overflow, L=carry, CC=result.

> A2A AddtwotoA

A+23A

Add 2 to the 16-bit integer in register A and putthe result into A. If the number incremented

is 2**15-2 or 2**15-1, set C and give a result of -2**15 or-(2**15-1); otherwise clear C.

MODES-=SRV, FORMAT=GEN, OPCODE=140304, C=overflow, L=carry, CC=result.

>» ACA Add C-bit to A

A+C-bitvA

Addthe C-bit to the 16-bit integer in register A and putthe result into A (Cis treated as same

order of magnitudeas bit 16 of A). If the numberoriginally in A is 2**15-1 and

C

set, set C

and give a result of -2**15; otherwise clear C. MODES=SRV, FORMAT=GEN, OPCODE=

141216, C=overflow, L=carry, CC=result.

> ADD addr Add

A+(EA]160A

Add the 16-bit integer at addr to the 16-bit integer in register A and put the result into

register A. If the sum is greaterthan 2**15 orless than or equal to -2**15, set C; otherwise,

clear C. In the first overflowcase, tne result has a minus sign, but a magnitudein positive

form equal to the sum minus 2**15; in the second,the result has a plus sign, but a magnitude

in negative form equal to the sum plus 2**15. MODES=SRV, FORMAT=MR, OPCODE=06,

C=overflow, L=carry, CC=result.

» ADLaddr Add long

L+[EA]329L

Addthe 32-bit integer at addr to the 32-bit integer in register L and putthe result into L. If

the sum is greater than 2**31 or less than -2**31, set C; otherwise, clear C. In thefirst

overflow case, the result has a minus sign, but a magnitude in positive form equal to the sum

minus 2**31: in the second,theresult has a plussign, but a magnitudein negative form equal

to the sum plus 2**31. MODES=V, FORMAT=MR, OPCODE=06 03, C=overflow, L=carry,

CC=result.

FDR 3059 11-22 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

cmP ADLL Add bit toL
L+keys(L)->L

Add thelink bit (L-bit in the keys) to the contents of the L register and putthe result into the
L register. Overflow may beset.

This instruction is useful in implementing multiple precision arithmetic. MODES-=V,
FORMAT=GEN, OPCODE=141000, C=overflow, L=carry, CC=result.

> CAS addr Compare A andskip

If A>[EA]16 then PC=PC
If A=[EA]16 then PC+14PC
If A<[EA]16 then PC+25PC

If the contents of the A register is greater than the contents of addr, execute the next
instruction.

If the contents of the A register equals the contents of addr, skip the next location in
instruction sequence and execute the instruction at the second location following.

If the contents of the A register is less than the contents of addr, skip the next two locations
in instruction sequence and execute the instruction at the third location following. MODES
=SRV, FORMAT=MR, OPCODE=11, C=unchanged, L=carry, CC=result.

> CAZ Compare A with zero

If A>O then PC=PC

If A=0 then PC+15)PC
If A<0 then PC+2—4PC

If the contents of the A register is greater than zero, execute the next instruction.

If the contents of the A register is equal to zero, skip the next location in instruction
sequence and execute the instruction at second location following.

If the contents of the A register is less than zero, skip the next location in instruction
sequence and executetheinstruction at third location following. MODES=SRV, FORMAT=
GEN, OPCODE=140214, C=unchanged, L=carry, CC=result.

> CHS Changesign

-A(1)-A(1)

Complement bit 1 of register A without affecting the rest of the register. MODES=SRV,
FORMAT=GEN, OPCODE=140024, C=unchanged, L=unchanged, CC=unchanged.

> CLS addr Compare

If L>[EA]32 then PB+1-PB
If L=[EA]32 then PB+24PB
If L<[EA]32 then PB+34PB

If the contents of the L register is greater than the contents of addr, execute the next
instruction.

If the contents of the L register equals the contents of addr, skip the next location in
instruction sequence and execute the instruction at second location following.

If the contents of the L register is less than the contents of addr, skip next two locations in
instruction sequence and execute the instruction at third location following. MODES=V,
FORMAT=MR, OPCODE=11 03, C=unchanged, L=carry, CC=result.

1 March, 1979 11-23 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> CSA Copysign of A

A(1)3C-bit;0-A(1)

Make C equal to bit 1 of register A and clear bit 1 of A without affecting the rest of the
register. Used when usingsingle precision arithmetic to do double precision work. MODES
—SRV, FORMAT=GEN, OPCODE=140320, C=result, L=unspecified, CC=unchanged.

> DAD addr Double add

AIB+[EA]31AB

Add the 31-bit integer at addr and addr+1 to the 31-bit integer in registers A|B, and put the
result into AJB.If the sum is >2**30 or <-2**30, set C; otherwise,clear C.In thefirst overflow
case, the result has a minus sign but a magnitudein positive form equal to the sum minus
2**3Q: in the second,the result has a plus sign but a magnitudein negative form equalto the

sum plus 2**30.

By definition, bit 1 of the low order word of a 31-bit integer must be 0. The instruction
executes only in double precision mode. MODES=SR, FORMAT=MR, OPCODE=06, C=

overflow, L=carry, CC=result.

> DBL Enter double precision mode

Enter double precision mode. Subsequent LDA, STA ADD and SUBinstructions handle 31-
bit integers. MODES=SR, FORMAT=GEN, OPCODE=000007, C=unchanged, L=unchanged,

CC=unchanged.

> DIV addr Divide

AIB/[EA]16-A;REM-B
Divide the 31-bit integer in register A|B by the 16-bit integer at addr and put the quotientinto
A, and the remainderinto B. Barring overflow,the results are defined such that A*[addr]+
B equals the original AJB and the remainderin B has the samesign as the dividend. Hence,
-42 divided by 5 gives A=-8 and B=-2. Overflow occurs (and the C-bit is set) whenever the
quotientis less than -(2**15)or greater than 2**15-1; The AJB register is unchanged. MODES
=SR, FORMAT=MR, OPCODE=17, C=overflow, L=unspecified, CC=unspecified.

> DIV addr Divide

L/[EA]16-A;REM-B

Divide the 32-bit integer in register L by the 16-bit integer at addr and put the quotientinto

A, and the remainderinto B. Barring overflow,the results are defined such that A*|addr]+

B equals the original L and the remainderin B has the samesign as the dividend. Hence, -42

divided by 5 gives A=-8 and B=-2.

Overflow occurs {and the C-bit is set) whenever the quotientis less than -(2**15) or greater

than 2**15-1. The PIDA instruction is useful for placing 16-bit dividends into L. MODES=V,

FORMAT=MR, OPCODE=17, C=overflow, L=unspecified, CC=unspecified.

> DSB addr Double subtract

A\B-[EA]31>AB

Subtract the 31-bit integer at addr and addr+1 from the 31-bit integer in registers A|B, and

place the result into AJB.If the difference is >2**30 or <-2**30, set C; otherwise,clear C.In

the first overflow case, the result has a minus sign but a magnitudein positive form equalto

the difference minus 2**30; in the second, the result has a plus sign but a magnitude in

negative form equalto the difference plus 2**30.

FDR 3059 11-24 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

Bit 1 of the low order word of a 31-bit integer must be 0. The instruction executes only in
double precision mode. To negate one 31-bit integer, simply subtract it from zero. MODES
=5R, FORMAT=MR, OPCODE=07, C=overflow, L=carry, CC=result.

> DVL addr Divide long

LIE/[EA]323L; REM-E

Divide the 64-bit integer in registers L|E by the 32-bit integer at addr and put the quotientinto
L, and the remainderinto E. Barring overflow,the results are defined such that L*{addr]+
E equals the original L|E and the remainderin E has the samesign asthe dividend. Hence,
+42 divided by -5 gives L=-8 and E=+2.

Overflow occurs (and the C-bit is set) wheneverthe quotientis less than -(2**31) or greater
than 2**31-1. MODES=V, FORMAT=MR, OPCODE=17 03, C=overflow, L=unspecified, CC
=unspecified.

> MPLaddr Multiply long

L*[EA]325LE
Multiply the 32-bit integer in register L by the 32-bit integer at addr, and put the 64-bit
integer result into LiE. This operation never overflows becausethere is always room for the
product. MODES=V, FORMAT=MR, OPCODE=16 03, C=cleared, L=unspecified, CC=
unchanged.

> MPYaddr Multiply

A*[EA]160L
Multiply the 16-bit integer in register A by the 16-bit integer at addr, and put the 32-bit
integer result into L. This operation never overflows because there is always room for the
product. MODES=V, FORMAT=MR, OPCODE=16, C=cleared, L=unspecified, CC=un-
changed.

> MPYaddr Multiply

A*[EA]16-AB
Multiply the 16-bit integer in register A by the 16-bit integer at addr, and put the 31-bit
integer result into registers A and B.If both the multiplier and multiplicand are -2**15 then
set C; otherwise clear C. MODES=SR, FORMAT=MR, OPCODE=16, C=cleared, L=un-
specified, CC=unchanged.

> NRM Normalize

Al A2...A16 B1 B2. . .B16

Shift the 31-bit integer in registers A and

B

left arithmetically, bringing zeros into bit 16 of
B, bypassing bit 1 of B, leaving bit 1 of register A unaffected, and droppingbits out of bit 2
of register A until bit 2 of register A is in the state opposite that bit 1 of register A. Since the
only data shifted out of bit 2 of register A is equal to the sign, no information is lost. Place
the numberof shifts performed in bits 9-16 of the keys. MODES=SR, FORMAT=GEN,
OPCODE=000101, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-25 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> PID Position for integer divide

A(2-16)»B(2-16};0>B(1):A (1) >A (2-16)

Convert the 16-bit integer in register A to a 31-bit integer in A/B by moving the contents of

bits 2-16 of register A to bits 2-16 of register B, clearing bit 1 of register B and extending the

sign in bit-1 of A through bits 2-16 of A. Intended to allow division of 16-bit A by 16-bit

[addr] resulting in two 16-bit integers. 16 in A to 31 in A/B simplifies integer arithmetic.

MODES=SR, FORMAT=GEN, OPCODE=000211, C=unchanged, L=unchanged, CC=un-

changed.

> PIDA Position for integer divide

A(1-16) >L (17-32) ;A(1)>A (2-16)

Convert the 16-bit integer in register A to a 32-bit integer in register L by moving bits 1-16 of

A to bits 17-32 of L and extending the sign in bit 1 of A through bits 2-16 of A. MODES=V,

FORMAT=GEN, OPCODE=000115, C=unchanged, L=unchanged, CC=unchanged.

> PIDL Position for integer divide-long

LoE:L (1) 9L (2-32)

Convert the 32-bit integer in register L to a 64-bit integer in registers L and E by moving the

contents of L to E and extendingthe sign in bit 1 of L through bits 2-32 of L. PIDL is useful

for placing 32 bit operands in LIE. MODES=V, FORMAT=GEN, OPCODE=000305, C=

unchanged, L=unchanged, CC=unchanged.

> PIM Position following integer multiply

B(2-16)A(2-16}

Convertthe 31-bit integer in registers A|B to a 16-bit integer in A by movingbits 2-16 of B into

bits 2-16 of A. MODES=SR, FORMAT=GEN, OPCODE=000205, C=unchanged, L=un-

changed, CC=unchanged.

> PIMA Position following integer multiply

L(17-31)A(1-16)

Convert the 32-bit integer in L to a 16-bit integer in register A by movingbits 17-32 of L into

bits 1-16 of A. Overflow if a loss of precision would result. MODES=V, FORMAT=GEN,

OPCODE=000015, C=overflow, L=unspecified, CC=unspecified.

>  PIML Position following integer multiply-long

LIE(33-64) +L (1-32)

Convert the 64-bit integer in registers L|E to a 32-bit integer in L by moving bits 33-64 of

register LE into bits 1-32 of register L. Overflow if a loss of precision would result. MODES

=V, FORMAT=GEN, OPCODE=000301, C=overflow, L=unspecified, CC=unspecified.

> S1A Subtract one from A

A-1-A

Subtract 1 from the 16-bit integer in register A and putthe result into A. If the number

decrementedis -2**15, set C and give a result of 2**15-1; otherwise clear C. MODES=SRV,

FORMAT=GEN, OPCODE=140110, C=overflow, L=carry, CC=result.

FDR 3059 11-26 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 
 

A-23A

Subtract 2 from the 16-bit integer in register A and put the result into A. If the number
decremented is -(2**15-1) or -2**15, set C and give a result of 2**15-1; otherwise clear C.
MODES=SRV, FORMAT=GEN, OPCODE=140310, C=overflow, L=carry, CC=result.

> SBL addr Subtract long

L-[EA]325L
Subtract the 32-bit integer at addr from the 32-bit integerin register L and put the result into
the L register. If the difference is greater than +2**31 or less than -2**31, set C; otherwise
clear C. In the first overflow case, the result has a minus sign but a magnitudein positive
form equal to the difference minus 2**31: in the second, the result has a plus sign but a
magnitude in negative form equalto the difference plus 2**31. MODES=V, FORMAT=MR,
OPCODE-=07 03, C=overflow, L=carry, CC=result.

> SCA

_

Load shift count into A

keys(9-16)-+A (9-16) ;0-A (1-8)

Load the contents of bits 9-16 of the keys into bits 9-16 of register A and clear bits 1-8 of
register A. MODES=SR, FORMAT=GEN, OPCODE=000041, C=unchanged, L=unchanged,
CC=unchanged.

> SGL_ Enter single precision mode

Return to single precision mode. Subsequent LDA, STA, ADD and SUB instructions handle
16-bit integers. MODES=SR, FORMAT=GEN, OPCODE=000005, C=unchanged, L=un-
changed, CC=unchanged.

> SSM

_

Set sign minus

1A(1)

Set bit 1 of register A to one without affecting the rest of the register. MODES=SRV,
FORMAT=GEN, OPCODE=140500, C=unchanged, L=unchanged, CC=unchanged.

> SSP Set sign plus

0A(1)
Clear bit 1 of register A without affecting the rest of the register. MODES=SRV, FORMAT
=GEN, OPCODE=140100, C=unchanged, L=unchanged, CC=unchanged.

> SUB addr Subtract

A-[EA]163A
Subtract the 16-bit integer at addr from the 16-bit integer in register A and puttheresult into
register A. If the difference is >2**15 or <-2**15, set C; otherwise clear C. In thefirst
overflow case, the result has a minus sign but a magnitude in positive form equal to the
difference minus 2**15; in the second,the result has a plus sign bui a magnitudein negative
form equal to the difference plus 2**15. MODES=SRV, FORMAT=MR, OPCODE=07, C=
overflow, L=carry, CC=result.

1 March, 1979 11-27 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 
 

> TCA Two’s complement A

-A3A

Form the two’s complementof the contents of register A and put the result into register A.

If the numberis -2**15, set C andgive

a

result of -2**15; otherwise clear C. MODES=SRV,

FORMAT-=GEN, OPCODE=140407, C=overflow, L=carry, CC=result.

> TCL Two’s complementlong

-LoL

Form the two’s complementof the contents of register L and putthe result into L. If the result

is -2**31, set C and give a result of -2**31; otherwise clear C. MODES=V, FORMAT=GEN,

OPCODE=141210, C=overflow, L=carry, CC=result.

INTEGRITY CHECK FOR HARDWARE—INTGY

> EMCM Enter machine check mode

In machine check mode the microprogram respondsto a machineparity error by causing a

machine check interruptif there is a non-zerovectorin the interruptlocation. If this location

is zero the machine halts. MODES=SRV, FORMAT=GEN, OPCODE=000508, C=unchanged,

L=unchanged, CC=unchanged.Restricted instruction.

» LMCM Leave machine check mode

A machineparity error sets the machine checkflag, but does not cause a check (V-mode) or

generate an interrupt (SR-mode}. MODES=SRV, FORMAT=GEN, OPCODE=000501, C=

unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> MDEI Memory diagnostic enable interleave

Enable the memoryinterleave capability. MODES=V, FORMAT=GEN, OPCODE=001304, C

=unchanged, L=unchanged, CC=unchanged.Restricted instruction.

> MDII Memorydiagnostic inhibit interleave

Inhibit the memory diagnostic interleave capability. MODES=V, FORMAT=GEN, OPCODE

001305, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

a MDIW Memorydiagnostic write interleaved

Write interleaved memory. MODES=V, FORMAT=GEN, OPCODE=001324, C=unchanged, L

unchanged, CC=unchanged.Restricted instruction.

» MDRS Memory diagnostic read syndromebits

Read memory syndrome bits) MODES=V, FORMAT=GEN, OPCODE=001306, C=un-

changed, L=unchanged, CC=unchanged.Restricted instruction.

> MDWC Memory diagnostic write control register

Write memory control register. MODES=V, FORMAT=GEN, OPCODE=001307, C=un-

changed, L=unchanged, CC=unchanged.Restricted instruction.

> RMC Clear machine check

Clear the machine check flag. MODES=SRV, FORMAT=GEN, OPCODE—000021, C=un-

changed, L=unchanged, CC=unchanged.Restricted instruction.

FDR 3059 11-28 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 
 

> sMOD‘VEU%

If the machine checkflagis zero (indicating no machine detected parity error), skip the next
instruction in sequence. (Whenthe processoris in machine check mode,this instruction has
no meaning and executes as a skip). MODES=SRV, FORMAT=GEN, OPCODE=100200, C=
unchanged, L=unchanged, CC=unchanged.

> SMCS Skip on machine checkset

If the machine checkflag is set (indicating a machine detected parity error), skip the next
instruction in sequence. (Whentheprocessoris in machine check mode,this instruction has
no meaning and executes as a NOP). MODES=SRV, FORMAT=GEN, OPCODE=101200, C=
unchanged, L=unchanged, CC=unchanged.

>  VIRY Verify
Execute the verification routine, and if there is a failure of any kind, go on to the next
instruction with the numberofthetest that failed in register A. If there are no errors, skip
the next instruction in sequence.

If the processor does not havethe verification routine, this instruction executes as no-op.
MODES-SRV, FORMAT=GEN, OPCODE=000311, C=unspecified, L=unspecified, CC=un-
specified. Restricted instruction.

> XVRY Verify the XIS board (Prime 500)

Executes a Prime 500 microcode diagnostic routine that checks the integrity of the XIS board.
If the XIS boardis not functional, the machine will not skip the next instruction and the A
register will hold the failed micro-diagnostic test number. If the machine passesthe verify
instruction, the next instruction is skipped. MODES=V, FORMAT=GEN, OPCODE=001113,
C=unspecified, L=unspecified, CC=unspecified. Restricted instruction.

The codes andtests are:

‘72 Data Move Test—Load and Unload XIS Board
73 Normalize Test—Adjust Test

‘74 Binary Multiply

"75 Binary Divide

‘76 Decimal Arithmetic

INPUT/OUTPUT—I/O

> CAI Clear active interrupt

Terminate the presently active interrupt so that the processor can recognize interrupt
requests from devices of lower priority {in higher slots) than the device for which the
current interrupt is being held. This instruction is effective only in vectored interrupt mode.
MODES=SRV, FORMAT=GEN, OPCODE=000411, C=unchanged, L=unchanged, CC=un-
changed. Restricted instruction.

EIO addr Execute I/O

Perform the I/O instruction represented bythe effective address, e.g., X='04 EIO '131000,X
will execute an INA with FUNC ="10 and DEV= '04. EQ = successful INA, OTA or SKS, NE
= unsuccessful INA, OTA or SKS. OCP alwayssuccessful, sets NE. MODES=V, FORMAT=
MR, OPCODE=14 01, C=unchanged, L=unchanged, CC=result. Restricted instruction.

1 March, 1979 11-29 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> ENB Enable interrupt

Enable the external interrupt system so the processor will respondto interrupt requests over

the I/O bus. This instruction takes effect following execution of the next sequential

instruction. MODES=SRV, FORMAT=GEN, OPCODE=000401, C=unchanged, L=un-

changed, CC=unchanged. Restricted instruction.

> ESIM_ Enterstandard interrupt mode

Enter standard interrupt mode sothat all interrupts are made through location '63. MODES

=SRV, FORMAT=GEN, OPCODE=000415, C=unchanged, L=unchanged, CC=unchanged.

Restricted instruction.

> EVIM Entervectored interrupt mode

Enter vectored interrupt modeso that the interrupt priority of a deviceis determinedbyits

position on the I/O bus (with lower devices having higherpriority) and each interruptis

madethrough the location specified by the interrupting device. MODES=SRV, FORMAT=

GEN, OPCODE=000417, C=unchanged, L=unchanged, CC=unchanged. Restricted instruc-

tion.

> INA FUNCIDEV InputtoA

Input data from device DEVinto register A. FUNC determines the type of data. If the device

does not respond ready, then do not perform the transfer, but execute the next instruction

in sequence.If the device respondsready, then perform the transfer specified by FUNC and

skip the next instruction in sequence. To perform the function specified by FUNC, the

processor reads the information from DEV into register A and performs whatever control

operations are appropriate to the function and the device. Depending on FUNC,the

information read may be data, status, an address, a word count, or anythingelse.

The numberof bits brought into register A dependsonthe type of information, the size of

the device register, the modeof operation,etc.

INA instructions for any device except device ‘20 use a ready test and skip the next

instruction if the device was ready. MODES=SR, FORMAT=PIO, OPCODE=54, C=un-

changed, L=unchanged, CC=unchanged. Restricted instruction.

> INH Inhibit interrupts

Inhibit the external interrupt system sothe processor will not respondto interrupt requests

over the 1/O bus. This instruction takes effect immediately. MODES=SRV, FORMAT=GEN,

OPCODE=001001, C--unchanged, L=unchanged, CC=unchanged.Restricted instruction.

> OCP FUNCIDEV Output control pulse

Send a control pulse for the function specified by FUNC(bits 7-10) to the device specified

by DEV(bits 11-16). This instruction neverskips andis used for such functionsasinitializing

a disk controller, or starting a transfer. MODES=SR, FORMAT=PIO, OPCODE=14, C=

unchanged, L=unchanged, CC=unchanged.Restricted instruction.

> OTA FUNCIDEV Out fromA

Transfer data from register A to DEV. FUNCtells the device which operation to perform.If

the device does not respondready, then donot perform the transfer but instead execute the

next instruction in sequence.If the device responds ready, then perform the transfer and

skip the next instruction in sequence. The processor sends the contents of register A to DEV

which performs whatevercontrol operations are appropriate to the function and the device.

FDR 3059 41-30 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

ThA wee haws a
L1ii0 11UiLLUCL UO e

re ts actually accepied by the device dependson thetype of information,the
size of the device register, the mode of operation, etc. The contents of register A are
unaffected.

Le:
U1

An OTAinstruction for any device except device '20 uses a ready test and the skipping
procedureas stated in the description of the instruction. An OTA to device ’20 makesnotest
and does not skip. MODES=SR, FORMAT=PIO, OPCODE=74, C=unchanged, L=unchanged,
CC=unchanged.Restriction instruction.

P SKS FUNCDEV Skipif satisfied
FUNC(bits 7-10) defines a condition to be tested by the SKS. Whenthe conditionis satisfied,
the device specified by DEV (bits 11-16) responds ready, and the next instruction in
sequence is skipped. MODES=SR, FORMAT=PIO, OPCODE=34, C=unchanged, L=un-
changed, CC=unchanged.Restriction instruction.

KEY MANIPULATION—KEYS

See Section 9 for the format of the keys.

ad INK Input keys

Read the keys into register A. MODES=SR, FORMAT=GEN, OPCODE=000043, C=un-
changed, L=unchanged, CC=unchanged.

> OTK Output keys

A-keys

Set up the keys from the contents of register A. Each bit position in register A corresponds
to the bit position in the keys, e.g., bit 1 of register A becomesthe C-bit in the keys. MODES
=5R, FORMAT=GEN, OPCODE=000405, C=loaded byinstruction, L=loaded by instruction,
CC=loaded by instruction.

> RCB Reset C-bit
0C

Clear the C-bit in the keys. MODES=SRV, FORMAT=GEN, OPCODE=140200, C=cleared, L
=unspecified, CC=unchanged.

>  SCB Set C-bit
13C

Set the C-bit in the keys) MODES=SRV, FORMAT=GEN, OPCODE=140600, C=set, L=
unspecified, CC=unchanged.

> TAK Transfer A to keys

A-keys

Transfer the contentsof register A to the keysregister. If the new value of the keys specifies
a different addressing mode, note that the new modetakeseffect on the next instruction.
MODES=V, FORMAT=GEN, OPCODE=001015, C=loaded by instruction, L=loaded by
instruction, CC=loadedby instruction.

> TKA Transfer keys to A

keysoA

Transfer the contents of the keys register to register A. MODES=V, FORMAT=GEN,
OPCODE=001005, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-31 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

LOGICAL OPERATIONS—LOGIC

» ANAaddr ANDtoA

A.AND.[EA]16-A

ANDthe contents of location addr with the contents of register A and place the result in

register A. A given bit of the result is 1 if the corresponding bits of both operandsare1;

otherwise the resulting bit is 0.

A BIT MemoryBit Resulting Bit

0 0 0

0 1 0

1 0 0

1 1 1

MODES=SRV, FORMAT=MR, OPCODE=03, C=unchanged, L=unchanged, CC=unchanged.

> ANL addr AND long
L.AND.[EA]323L

ANDthe contents of register L with the 32-bit quantity at addr, putting the result in L.

MODES=V, FORMAT=MR, OPCODE=03 03, C=unchanged, L=unchanged, CC=unchanged.

> CMA Complement A

NOT. Av-A

Form the ones complementof the contents of register A and putthe result in register A. Each

one becomesa zero; each zero becomes a one. MODES=SRV, FORMAT=GEN, OPCODE=

140401, C=unchanged, L=unchanged, CC=unchanged.

> ERA addr Exclusive OR to A

A.XOR.[EA]16>A

EXCLUSIVE ORthe contents of location addr with the contents of register A and place the

result in register A. A given bitof the result is 1 if the corresponding bits of the operands

differ; otherwise the resulting bit is 0.

A BIT MemoryBit Resulting Bit

0 0 0

0 1 1

1 0 1

1 1 0

MODES=SRV, FORMAT=MR, OPCODE=05, C=unchanged, L=unchanged, CC=unchanged.

> ERL addr Exclusive OR long

L.XOR.[EA]320L

EXCLUSIVE ORthecontents of register L with the 32-bit quantity at addr, putting the result

in L. MODES=V, FORMAT=MR, OPCODE-05 03, C=unchanged, L=unchanged, CC=un-
changed.

FDR 3059 11-32 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

A.OR.[EA]164)A

INCLUSIVE ORthe contents of register A with the 16-bit quantity at addr, putting the result
in A. MODES=V, FORMAT=MR, OPCODE=03 02, C=unchanged, L=unchanged, CC=
unchanged.

LOGICAL TEST AND SET—LTSTS

If the test is satisfied, then set the A register equal to 1. If the test is not satisfied, then set
the register equal to 0. These instructions simplify the analysis of complex logical ex-
pressions. .

/ A Register (Blank) -
Condition Code (C) EQ

If

<

L Register (L) 0, then 1>A;else 0-A
Floating Point (F) OE
Register | eT

> A-Register test

Mnemonic Function Opcode
LLT If A < 0, then 1A; else 0-A 140410
LLE If A <0, then 1A;else 0-A 140411

LEQ If A = 0, then 1>A; else 0-A 140413
LNE If A # 0, then 1A;else 0-A 140412
LGE If A >0, then 154A; else 03A 140414
LGT If A > 0, then 14A; else 0-A 140415

MODES=SRV, FORMATS=GEN, C=unchanged, L=unchanged, CC=result.

> Condition code test

Mnemonic

LCLT

LCLE

LCEQ

LCNE

LCGE

LCGT

MODES=V, FORMAT=GEN,C=unchanged, L=unchanged, CC=unchanged.

> L register test

Mnemonic

LLLT

LLLE

LLEQ

LLNE

LLGE

LLGT

Function

If CC < 0, then 153A; else 0-A

If CC < 0, then 15A; else 0-A

If CC = 0, then 135A; else 0-A

If CC + 0, then 1A; else 0-A

If CC > 0, then 1A; else 0-A

If CC > 0, then 135A; else 0-A

Function

IfL <9,

IfL <0,

If L =0,

If L + 0,

If L>0,

If L > 0,

then 1>A;

then 1A;

then 1A;

then 13A;

then 1A;

then 13A;

else 0-A

else 0-A

else 03A

else 03A

else 0A

else 0-A

Opcode

141500

141501

141503

141502

141504

141505

Opcode

140410

141511

141513

141512

140414

141515

MODES=V, FORMATS=GEN,C=unchanged, L=unchanged, CC=result.

1 March, 1979 11-33 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> Floating register test

Mnemonic Function Opcode

LFLT If F < 0, then 1-A; else 0-A 141110

LFLE If F < 0, then 1-A; else 0-A 141111

LFEQ If F = 0, then 13A; else 0-A 141113

LFNE If F + 0, then 13A; else 0-A 141112

LFGE If F > 0, then 1>A;else 0-A 141114

LFGT If F > 0, then 1A; else 0-A 141115

MODES=V, FORMAT=GEN, C=unchanged, L=unchanged, CC=result.

> LT Logic set A true

135A

Set A equal to one. MODES=SRV, FORMAT=GEN, OPCODE=140417, C=unchanged, L=

unchanged, CC=result.

> LF Logic set A false

0-A

Set A equal to zero. MODES=SRV, FORMAT=GEN, OPCODE=140416. C=unchanged, L=

unchanged, CC=result.

MACHINE CONTROL—MCTL

> CXCS Control extended control store

Move the A register to control register on writable control store board. MODES=V,

FORMAT=GEN, OPCODE=001714, C=unspecified, L=unspecified. CC=unspecified. Re-

stricted instruction.

> EPMJ addr Enter paging mode and jump (Prime300)

EA>PC

EPM]is a two-word instruction. Thefirst word is the opcode; the second wordcontains a 16-

bit address pointing to the final effective address which is transferred to the program

counter: the associative memoryregisters are cleared, and paging modeis enabled. MODES

—SR, FORMAT=MR, OPCODE=000217, C=unchanged, L=unchanged, CC=unchanged. Re-

stricted instruction.

® EPMX addr Enter paging mode and jump to XCS (Prime 300)

EA>PC

EPMXis a two-wordinstruction. The first word is the opcode; the second word containsa 16-

bit pointer to the location of the micro-instruction. Paging is enabled. MODES=SR,

FORMAT=MR, OPCODE=000237, C=unchanged, L=unchanged, CC=unchanged.Restricted

instruction.

> ERMJ addr Enterrestricted execution mode and jump (Prime 300)

EA>PC

ERM]is a two-word instruction. Thefirst wordis the opcode; ihe second word contains a 16-

bit address pointing to the final effective address which is transferred to the program

FDR 3059 11-34 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

counter; restricted execution mode is enabled, and interrupts are enabled. MODES=SR,
FORMAT=MR, OPCODE=000701, C=unchanged, L=unchanged, CC=unchanged.Restrictea
instruction.

> ERMX addr Enterrestricted execution mode and jump to XCS (Prime 300)

EA>PC

ERMxXis a two-word instruction. Thefirst is the opcode. The second word contains a 16-bit
pointer to the location of the micro-instruction. Restricted execution mode andinterrupts
are enabled. MODES=SR, FORMAT=MR, OPCODE-000721, C=unchanged, L=unchanged,
CC=unchanged. Restricted instruction.

> EVMJ addr Enter virtual mode and jump (Prime 300)

EA>PC

EVMJis a two-wordinstruction. The first word, which hasthe effect of an EPM]Jand ERMJ
combined, is the opcode; the second word contains a 16-bit address pointing to the final
effective address which is transferred to the program counter. Paging, interrupts. and
restricted execution mode are enabled. MODES=SR, FORMAT=MR, OPCODE=000703, C=
unchanged, L=unchanged, CC=unchanged.Restricted instruction.

> EVMX addr

_

Enter virtual mode and jump(Prime 300)

EA>PC

EVMXis a two-wordinstruction. The first word, which hasthe effect of an EPMX and ERMX
combined, is the opcode; the second word contains a 16-bit pointer to the location of the
micro-instruction. Paging, interrupts, and restricted execution mode are enabled. MODES=
SR, FORMAT=GEN, OPCODE=000000, C=unchanged, L=unchanged, CC=unchanged. Re-
stricted instruction.

> HLT Halt

Halt the processor with the STOPindicatorlit on the control panel and the program counter
pointing to the next instruction in sequence(the instruction that would have been executed
had the HLT been replaced by a no-op). The data lights display the next instruction. MODES
=5RV, FORMAT=GEN, OPCODE=000000, C=unchanged, L=unchanged, CC=unchanged.
Restricted instruction.

> ITLB Invalidate STLB entry

Invalidate the Segmentation Translation Lookaside Buffer (STLB) entry whose addressis in
L. This instruction must be executed wheneverthe pagetable entryfor the given addressis
changed.

If a Segment Descriptor Word (SDW) or a Descriptor Table Address Register (DTAR) is
changed,usually the entire STLB mustbe invalidated. This can be done by executing ITLB
once for each page of any single segment (except segment0).

If the segment numberportionofL is zero, the I/O TLB entry corresponding to address L
is invalidated. MODES=V, FORMAT=GEN, OPCODE=000615, C=unchanged, L=unchanged,
CC=unchanged. Restricted instruction.

> LIOT addr Load I/O TLB

Load the I/O Translation Lookaside Buffer with the following information:
1. Virtual address (VA) in segment 0. This is provided by the effective

1 March, 1979 11-35 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 
 

address computed from the address pointer, addr.

2. Physical address (PA) which is the translation of the virtual address.

This is obtained by the processor from segment0.If the fault bitis set,

a page fault will be generated.

3. Target virtual address (TVA) which is the segment number and page

numberofthe virtual addressthat will be used by procedures accessing

this information. This will be used to help invalidate the proper

locations in the cache. This is provided in the L register as a virtual

address. The low order10 bits (word numberin page) and the segment

numberare ignored.

Summary:

Information Source

VA AP

PA Segment numberpage table

TVA L

MODES=V, FORMAT=AP, OPCODE=000044, C=unspecified, L=unspecified, CC=un-

specified. Restricted instruction.

> LPID Load process ID

A-RPID

Load the process id register from bits 1-12 of Register A. MODES=V, FORMAT=GEN,

OPCODE=000617, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> LPMJ addr Leave paging mode and jump (Prime 300)

EAPC

LPM]is a two-wordinstruction.Thefirst wordis the opcode:the second word contains a 16-

bit address pointing to the final effective address which is transferred to the program

counter. Paging mode is disabled. MODES=SR, FORMAT=MR, OPCODE=000215, C=

unchanged, L=unchanged, CC=unchanged.Restricted instruction.

> LPMX addr Leave paging mode and jump to XCS (Prime 300)

EAPC

LPMxXis a two-word instruction. Thefirst word is the opcode. The second word contains a

16-bit pointer to the location of the micro-instruction. Paging is disabled. MODES=SR,

FORMAT=MR, OPCODE=000235, C=unchanged, L=unchanged, CC=unchanged.

> LPSW addr Load program status word

Load Program Status Word is a restricted operation which can change the status of the

processor.It can be executed only in ring zero. The instruction addressesa four-word block

at location addr containing a program counter(ring, segment, and word numbers) in the first

two words,keysin the third word and modalsin the fourth. The program counter and keys

of the running process are loaded fromthefirst three words, then the processor modals are

loaded from the fourth. If the new keys have the in-dispatcherbit (bit 16) off, the current

process continues in execution butat a location defined by the new program counter. If the

new keys have the in-dispatcher bit on, the dispatcher is entered to dispatch the highest

priority ready process. Wheneverthe current process again becomesthe highest priority

ready process, it will then resume execution at the point defined by its new program

counter. The modals are associated with the processor andnot the process, so in either case,

the new modals are effective immediately.

FDR 3059 11-36 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

This instruction is used to ioad the four wordsof the register set which cannotbe correctly
loaded with the STLRinstruction: the program counter (ring, segment, and word number),
the keys, and the modals. The STLRinstruction should not be used to set these words,asit
does not update the separate hardwareregisters in which the processor maintains duplicate
information to achieve higher performance.

The LPSW instruction must never attempt to change the current-register-set bits of the
modals (bits 9-11}. This implies that, unless for some reason the currentregisterset in effect
for the execution of the program is knownwith certainty, any program wishing to execute an
LPSW mustinhibit interrupts (to prevent an unexpected process and register exchange),

read the register set currently in effect from the present modals (as with an LDLR '24), mask
those register-set bits into the modals to be loaded, and then finally execute the LPSW.
Fortunately, in both usual applications of LPSW the needed register-set bits are predictable:
when LPSWisfirst used after Master Clear to turn on process-exchange mode,the current-
register-set bits should be 010 (the processoris alwaysinitialized to register set 2); and when
LPSWis used to return from a fault, check, or interrupt handledby inhibited code, whatever
register-set bits were stored away bythe fault, check, or interruptare still correct and can
simply be reloaded.

Similarly, except to load status correctly stored on a fault, check, or interrrupt, and LPSW
should never attemptto set either the save-donebit (bit 15) or the in-dispatcherbit (bit 16)
of the keys. The initial LPSW following a Master Clear should have both thesebits off.
MODES=V, FORMAT=AP, OPCODE=000711, C=loadedby instruction, L=loaded byinstruc-
tion, CC=loaded by instruction. Restricted instruction.

> LWCS Loadwritable control store

Load writable control store portion of extended control store board from the memory block
pointed to by XB. The control register loaded by CXCS modifies this instruction. MODES=
V, FORMAT=GEN, OPCODE=001710, C=unspecified, L=unspecified, CC=unspecified. Re-
stricted instruction.

> MIA addr Microcodeindirect A

Microcode entrance. MODES=V, FORMAT=MR, OPCODE=12 01, C=unchanged, L=un-
changed, CC=unchanged.

>  MIBaddr Microcodeindirect B

Microcode entrance. MODES=V, FORMAT=MR, OPCODE=13 01, C=unchanged, L=un-
changed, CC=unchanged.

> NOP Nooperation

PC+1>PC

Do nothing, but go on to the next instruction. MODES=SRV, FORMAT=GEN, OPCODE=
000001, C=unchanged, L=unchanged, CC=unchanged.

> PTLB Purge TLB

Purge either the entire non I/O Translation Lookaside Buffer (TLB) or a specified physical
page. The physcia! page numberis provided right-justified in the L register. The high-order
bit of L is set to indicate a complete purge. MODES=V, FORMAT=GEN, OPCODE=000064,
C=unspecified, L=unspecified, CC=unspecified. Restricted instruction.

1 March, 1979 11-37 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> RRST addr Restore registers

Restore the general, floating and XB registers from the save areastarting at location addr.
The format of the save area is as for RSAV below. MODES=V, FORMAT=AP, OPCODE=
000717, C=unchanged, L=unchanged, CC=unchanged.

> RSAV addr Saveregisters

Save the general, floating and XB registers in the save area starting at location addr. Only
those general and floating point registers which are not zero are saved. A save maskis
generated whichidentifies the registers which are not zero. With the exception of XB, which
is always saved, registers which are zero are not stored into the save area; their location
remains untouched.

The format of the RSAVareais:

 

           
 

Word Contents

1 Save Mask

2-5 FALR1 (FAC)
6-9 FALR 0

10 x

11-13 —

14 Y,S

15-17 —

18-19 E

20 A,LH

21 B,LL

22-25 —

26-27 XB

Save Mask:

MUST BE ZERO FALR 1, FAC FALR 0 X Y,S E L,B,A

1-4 5 —6 7—8 9 10 11 #=12 «13 14 15-16

The size of the RSAV area is 27 words. MODES=V, FORMAT=AP, OPCODE=000715, C=

unchanged, L=unchanged, CC=unchanged.

> STPM Store processor model number

Store the CPU model numberand microcoderevision numberin an eight-word field pointed
to oy the temporary base register (XB). |

Thefirst 32-bit field will define the processor model number.This field will not be modified
on any P400 or P500 since STPM executes as a SGL whichis similar to a NOP. Thus the
program is required to put a zerointo this field prior to executing the STPM. The following
long-integer codesare assigned:

OL P400, P500

3L P350

4L P450

5L P550

6L P656

7L P750

FDR 3059 11-38 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

The second 32-bit fieid wili define the microcode revision. it will be a unique numberthat
changes at each revision. The P400 and P500 do not implement this. The remaining 64-bits
are reserved for future expansion.

The recommended sequence for the STPMis:

EAXB Memory Buffer
CRL
STL XB%

STPM

MODES=V, FORMAT=GEN, OPCODE=000024, C=unchanged, L=unchanged, CC=un-
changed. Restricted instruction.

> SVC Supervisor call

An addressing mode independent method of making an operating system request. It is also
independentof operating system. Thecall protocol is such that an operation code(request)
followed by argument pointers (the 16-bit word number—on the Prime 400/500, segment
numberis the segment in which the SVCresides) is made available to the operating system.
PRIMOS has defined a uniform set of operation codes to provide operating system
independentservices.

Note

On the Prime 100-300 (and on the segmented CPU's in non
process exchange mode), the SVCis treated as an interrupt.
On the segmented CPU’s, the SVC is treated as a fault with
offset °14.

MODES=SRV, FORMAT=GEN, OPCODE=000505, C=unchanged, L=unchanged, CC=un-
changed.

> WCS  Writable control store

Reserved set of 64 op codesto serve as microcode entrances.
MODES=RV, FORMAT=GEN, OPCODE=0016xx, C=unchanged, L=unchanged, CC=un-
changed.

MOVE DATA—MOVE

> DLD addr Double load

[EA]32+A/B

Load the contents of location addr into register A and the contents of location addr+1 into
register B. This instruction executes only in double precision mode. MODES=SR, FORMAT
=MR, OPCODE=02, C=unchanged, L=unchanged. CC=unchanged.

> DST addr Double store

A[BO[EA]32
lAnatinn adAn and tha nanntante nf nactotan wm lRAntian

Store the content ister in 1ocation addr and the contents of TEZgistei B in iocation
ta ae nf reg

oftore tne contents oi regi

in tiaddr+1. This instruc
MR, OPCODE-04, C=unchanged, Cwnchanged. CC=unchanged.

1 March, 1979 11-39 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> IAB Interchange the A and registers

AB

Movethe contents of register A to register B and the contents of register B to register A.
MODES-=SRV, FORMAT=GEN, OPCODE=000201, C=unchanged, L=unchanged, CC=un-

changed.

> ICA Interchange characters in A

A(1-8] = A(9-16)

Movethe contents of register A bits 1-8 to bits 9-16 and the contents of bits 9-16 to bits 1-8.
MODES=SRV, FORMAT=GEN, OPCODE=141340, C=unchanged, L=unchanged, CC=un-
changed.

> ICL Interchange andclearleft

A(1-8)A (9-16);0+A (1-8)

Movethe contents of register A bits 1-8 to bits 9-16 and then clear the left byte (bits 1-8).
MODES=SRV, FORMAT=GEN, OPCODE=141140, C=unchanged, L=unchanged, CC=un-
changed.

> ICR Interchange andclear right

A(9-16)A (1-8) ;0-A (9-16}

Movethe contents of register A bits 9-16 to bits 1-8 and clear the right byte (bits 9-16]. The
original contents of bits 1-8 are lost. MODES=SRV, FORMAT=GEN, OPCODE=141240, C=

unchanged, L=unchanged, CC=unchanged.

> ILE Interchange L and E

LeE

Move the contents of register L to register E and the contents of register E to register L.

MODES=V, FORMAT=GEN, OPCODE=141414, C=unchanged, L=unchanged, CC=un-

changed.

> IMA addr Interchange memoryandtheA register

[EA]162A

Store the contents of the A register in location addrandloadthe original contents of location
addr into the A register. MODES=SRV, FORMAT=MR, OPCODE=13, C=unchanged, L=

unchanged, CC=unchanged.

LDA addr Loadthe register

[EA]164A

Load the contents of location addr into the A register. MODES=SRV, FORMAT=MR,

OPCODE=02, C=unchanged, L=unchanged, CC=unchanged.

> LDL addr Load long

FDR 3059 11-40 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

mnannel awn nwtnt-—résséa register

register(EA)W-L

Copy the contents of the register specified by the word numberportion of addrinto L. There
are three casesof this instruction which are summarized below. Only the word portion of
the effective address, (EA)W,is used.

Bit 2 of (EA)W = 1; Ignore Bits 1 and 3-9: (EA)W(10-16) - Absolute register number from
0-'177. Restricted instruction.

Bit 2 of (EA)W = 0: (EA)W(13-16) - Register 20-’37 in the current register set. Restricted
instruction.

Bit 12 of (EA)W = 0: (EA)W(13-16) - Register 0-’17 in the current register set.

> LDLE , fo

MODES=V, FORMAT=MR, OPCODE=05 01, C=unchanged. L=unchanged, CC=unchanged.

> LDX addr Load X

[EA]165X

Load the contents of location addr into the X register. The contents of addr are unaffected,
the previous contents of the X register are lost. This instruction cannotitself specify
indexing, although an address wordretrievedin the effective address calculation may do so
in 165 mode. MODES=SRV, FORMAT=MR, OPCODE=35, C=unchanged, L=unchanged, CC
=unchanged.

> LDY addr Load Y

[EA]32+Y
Movethe 16 bit quantity at location addr to register Y. Cannot be indexed. MODES=V,
FORMAT=MR, OPCODE=35 01, C=unchanged, L=unchanged, CC=unchanged.

> STA addr Store the A register

A>|[EA]16

Store the contents of the A register in location addr. The contents of the A register are
unaffected; the previous contents of addr are lost. MODES=SRV, FORMAT=MR, OPCODE
=04, C=unchanged, L=unchanged, CC=unchanged.

> STAC addr Store A conditionally

If [EA]16=B then A3[EA]16
Store the contents of A into location addr,if and only if, the contents of location addr equals
the contents of B.

The comparison andstore are guaranteed notto be separated by the execution of any other
instructions. Thatis, it is not possible for any other instruction to change the contents of the
addressed memory word after the comparison has been made but beforethestore takes
place. The condition-codebits are set ‘‘equal” if the store takes place, otherwise ‘‘unequal”’.
MODES=V, FORMAT=AP, OPCODE=001200, C=unchanged, L=unchanged, CC=result.

P STL addr Store long

Lo[EA]32
Store the contents of register L into the 32-bit long word at location addr. MODES=V,
FORMAT=MR, OPCODE=04 03, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-41 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> STLC addr Store L conditionally

If [EA]32=E then L>[EA}32

Store the contents of L into the 32-bit location at addr if and only if the contents of location

addr equals the contents of E.

STLC and STAC are provided to aid cooperating sequential processes in the manipulation

of shared data. They often permit removal of mutually exclusive critical sections, hence

possibly indefinite delays, from algorithms which would otherwise have required them.

Both of these instructions are interlocked against direct-memory input /output. Hence, these

instructions may be used to interlock a process with a DMA, DMC or DMQ channel, orto

interlock a memory location possibly being accessed by I/O. MODES=V, FORMAT=AP,

OPCODE=001204, C=unchanged, L=unchanged, CC=result.

> STLR addr Store L into addressed register

L-oregister (EA)W

Store the contents of L into the register location specified by addr. There are three casesof

this instruction which are summarized under LDLR.Only the wordportion of the effective

address, ((EA)W), is used. MODES=V, FORMAT=MR, OPCODE=03 01, C=unchanged, L=

unchanged, CC=unchanged.

> STX addr Store X register

X5[EA]16

Store the contents of the X register in location addr. The contents of the X register are

unaffected and the previous contents of addrarelost. This instruction cannotitself specify

indexing, although an address wordretrieved in the effective address calculation may do so

in 16S mode. MODES=SRV, FORMAT=MR, OPCODE=15, C=unchanged, L=unchanged, CC

=unchanged.

> STY addr Store Y

Yo[EA]32

Store the contents of Y into the location specified by addr. Cannot be indexed. MODES=V,

FORMAT=MR, OPCODE=35 02, C=unchanged, L=unchanged, CC=unchanged.

> TAB Transfer A to B

AB

Movethe contents of A to BB. MODES=V, FORMAT=GEN, OPCODE=140314, C=unchanged,

L=unchanged, CC=unchanged.

> TAX Transfer A to X

Av~X

Movethe contents of A to X. MODES=V, FORMAT=GEN, OPCODE=140504, C=unchanged,

L=unchanged, CC=unchanged.

> TAY Transfer A to Y

A~Y

xX -ooe 4h ~1twa ~f ~ 2Movethe contents of A to Y.MODES=V, FORMAT-=GEN, OPCODE=140505, C=unchangedU4iVittiisMurs,

L=unchanged, CC=unchanged.

FDR 3059 11-42 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

mM... -f_ _
i

BoA

Movethe contents of B to A. MODES=V, FORMAT=GEN, OPCODE=140604, C=unchanged,
L=unchanged, CC=unchanged.

> TXA Transfer X to A

XoA

Movethe contents of X to A. MODES=V, FORMAT=GEN, OPCODE=141034, C=unchanged,
L=unchanged, CC=unchanged.

> TYA Transfer Y to A

YoA

Movethe contents of Y to A. MODES=V, FORMAT=GEN, OPCODE=141124, C=unchanged,
L=unchanged, CC=unchanged.

> XCA_ Exchange andclearthe A register

A-B;03=A

Exchange (swap) the A and B registers: then clear A. MODES=SRV, FORMATS=GEN,
OPCODE=140104, C=unchanged, L=unchanged, CC=unchanged.

> XCB_ Exchange andclearthe B register

B+A;03B

Exchange (swap) the B and

A

registers; then clear register B. MODES=SRV, FORMAT=
GEN, OPCODE=140204, C=unchanged, L=unchanged, CC=unchanged.

PROGRAM CONTROL AND JUMP—PCTLJ

> ARGT Argumenttransfer

The Argument Transfer operation mustbethefirst executable instruction of any procedure
which takes arguments.It serves as a holding point for the program counter while argument
transfer is taking place into the new frame. The program counteris advanced past it when
argument transfer is complete. Procedures which specify zero arguments in their entry
control blocks must not begin with an ARGT.

The list of argumenttransfer templates followingthe caller’s PCL instruction is evaluated to
generatea list of actual argumentpointers in the new frame. The formatof each argument
transfer template is shown in Section 9. Each argument pointer may require one or more
templates for its generation. Thelast template for each argumenthasits S (store) bit set. The
last template for the last argumentin thelist hasits L (last) bit set to terminate the argument
transfer.

Each template specifies the calculation of an address by specifying a base register, a word
and bit displacement from that register, and an optional indirection. If further offsets or
indirections are required to generate thefinal argument address, the template will not have
its store bit set, and the addresscalculated so far will be placed in the temporary base (XB)
register (ring, segment, word numbers) and X-register (bit number) for access by the next
template. Only one level of indirection can be specified by each AP.

Each time a template withits store bit setis encountered, the calculated addressis stored in
the next argument pointer position in the new stack frame. Thefirst argument pointer

1 March, 1979 11-43 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

position is specified in the procedure’s ECB. If the address hasa zerobitoffset, the address

is stored in the two-word indirect format (with the E-bit clear) and the third word is not

modified. Otherwise it is stored in the three-word format(E-bit set). In either case, three

words are allocated to each pointer in the argumentlist.

If the caller’s template list generates fewer arguments than are expectedby the callee (as

specified in the entry control block), argument pointers containing the pointer-fault bit set

and all other bits reset (pointer-fault code 100000, ‘omitted argument’) are stored for the

missing arguments. The second andthird wordsare not modified. On the other hand,if the

caller’s list generates more arguments than are specified by the callee, the surplus

arguments are ignored.If the called procedure attempts to reference an omitted argument,

other than to simply pass it on in anothercall, it will experience a pointer fault. If it passes

on an omitted argument in anothercall, the argument will appear omitted to the newly

called procedure.

If a call intends to omit all expected arguments, it may be followed by an argument transfer

template with its last bit set but with its store bit cleared.

MODES=V, FORMAT=GEN, OPCODE=000605, C=unspecified, L=unspecified, CC=un-

specified.

>» CEA Computeeffective address

Interpret the contents of the A register as a 16-bit indirect address word in the current

addressing mode,calculate the effective address, and place the final effective address back

in the A register. MODES=SR, FORMAT=GEN, OPCODE=000111, C=unchanged, L=un-

changed, CC=unchanged.

> CREP addr Call recursive entry procedure

(P)+ > [(S) +4]
EA = (P}

Incrementthe program counter, P, and load P+1 into the location following the one specified

by the current R-modestack pointer. Load addr into the program counter and continue

execution from that location.

The CREPinstruction performs subroutine linkage for recursive or reentrant procedures.

CREP stores the return address in the second wordofa stack frame created by the ENTR

instruction, rather than in the destination addressas in a JST.

MODES=R, FORMAT=MR, OPCODE=10 02, C=unchanged, L=unchanged, CC=unchanged.

® EAA addr Effective address to A register

EA-A

Calculate the effective address and load it into register A. The contents of addr are

unaffected and the original contents of register A are overwritten and lost. MODES=R,

FORMAT=MR, OPCODE=01 01, C=unchanged, L=unchanged, CC=unchanged.

> EAL addr Effective addressto L

EA-L

Calculate the effective address and put it into the L register. MODES=V, FORMAT=MR,

OPCODE-=01 01, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 11-44 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 
 

> EALB addr Effective address to LB

EA>LB

Calculate the effective address andputit into the link base, LB. MODES=V, FORMAT=MR,
OPCODE=13 02, C=unchanged, L= unchanged, CC=unchanged.

> EAXB addr Effective address to XB

EA~XB

Calculate the effective address and putit into the temporary base,XB. MODES=V, FORMAT
=MR, OPCODE=12 02, C=unchanged, L=unchanged, CC=unchanged.

> ENTR n_ Enter R-moderecursive procedure stack

(S)1 > [(S)1-n]
(S)i-n — ($)2

Alter the R-Modestack pointer by subtracting the value of N and store the previous valueof S in the newlocation. .
The ENTRinstruction allocates a block of memory as a stack frame containing N locations:

The frameis created by subtracting N from the stack pointer contents,(S)1, to form (S)2, and
then storing (S}1 at that address. Thus, the first word of the frame points to the previous
frame. N may be negative or positive. MODES=R, FORMAT=MR, OPCODE=01 03, C=
unchanged, L=unchanged, CC=unchanged.

> JDX addr Jump and decrement X

X=X-1;if X=0, then EA>PC;else PC=PC+1

Decrementthe contents of the X register by one; then,if the contents of X are not equal to
zero, load addr into the program counter and continue sequential operation from that
location. Otherwise, execute the next sequential instruction. MODES=R, FORMAT=MR,
OPCODE=15 02, C=unchanged, L=unchanged, CC=unchanged.

> JEQ addr Jumpif equalto zero

If A=0, then EA>PC

If the contents of the A register are equal to zero, then load addrinto the program counter
and continue sequential operation from that location. MODES=R, FORMAT=MR, OPCODE
=02 03, C=unchanged, L=unchanged, CC=unchanged.

> JGE addr Jumpif greater than or equal to zero

If A>0, then EA>PC

If the contents of the A register are greater than or equal to zero, then load addrinto the
program counter and continue sequential operation from that location. MODES=R, FOR-
MAT=MR, OPCODE=07 03, C=unchanged, L=unchanged, CC=unchanged.

> JGT addr Jumpif greater than zero

If A>0, then EA>PC

If the contents of the A register are greater than zero, then load addr into the programcounter and continue sequential operation from that location. MODES=R, FORMAT=MR,OPCODE=05 03, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-45 FDR 3059



11. INSTRUCTION DEFINITIONS—SRV
 
 

> JIX addr Jump and incrementX

X=X4+1:if X=0, then EA~PC; else PC=PC+1

Increment the contents of the X register by one; then, if the contents of X are not equal to

zero, load addr into the program counter and continue sequential operation from that

location. Otherwise, execute the next sequential instruction. MODES=R, FORMAT=MR,

OPCODE=15 03, C=unchanged, L=unchanged, CC=unchanged.

> JLE addr Jumpif less than or equal to zero

If A<0, then EA+PCG

If the contents of the A register are less than or equalto zero, then load addr into the

program counter and continue sequential operation from that location. MODES=R, FOR-

MAT=MR, OPCODE=04 03, C=unchanged, L=unchanged, CC=unchanged.

> JLT addr Jumpif less than zero

If A<0, then EAPC

If the contents of the A register are less than zero, then load addrinto the program counter

and continue sequential operation from that location. MODES=R, FORMAT=MR, OPCODE

--06 03, C=unchanged, L=unchanged, CC=unchanged.

> JMP addr Jump

EAPC

Transfer control to location addr by loading addr into the program counter and continue

sequential operation from that location. MODES=SRV, FORMAT=MR, OPCODE=01, C=

unchanged, L=unchanged, CC=unchanged.

> JNE addr Jumpif not equal to zero

If A#0, then EAPC

If the contents of the A register are not equal to zero, then load addr into the program

counter and continue sequential operation from that location. MODES=R, FORMAT=MkR,

OPCODE=03 30, C=unchanged, L=unchanged, CC=unchanged.

> JST addr Jumpandstore

PC3[EA]16;EA+1>PC

Call a subroutine by storing the contents of the program counter (which points to the next

location after the JST instruction) in location addr. Continue execution at location addr+1.

In non-restricted mode,interrupts are inhibited for one instruction cycle following a JST.

The return addressis truncated according to the addressing mode beforeit is stored, and

higher-orderbits of the memory location are notaltered.It is thus possible to presetthe I or

X bits of such locations:

Mode Preset Allowed

16S I, X

32S, 32R I

64, 64V ~

FDR 3059 11-46 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

Nila
aNUL

Cannot be used in shared code.

MODES=SRV, FORMAT=MR, OPCODE=10, C=unchanged, L=unchanged, CC=unchanged.

&

> JSX addr Jumpandstore return in X

(PC)W4X;EA>PC

Increment the program counter by one and load into the X register. Load addr into the
program counter and continue sequential operation from that location. MODES=RV,
FORMAT=MR, OPCODE=35 03, C=unchanged, L=unchanged, CC=unchanged.

>  JSXB addr Jump and set XB

PC-XB;EA-PB

Save the 32-bit contents of the program counterin XB, andtransfer control to location addr.
JSXB may be used to make both intersegmentand intrasegmentsubroutine calls. MODES=
V, FORMAT=MR, OPCODE=14 02, C=unchanged, L=unchanged, CC=unchanged.

> JSY addr Jump andset Y

(PC) W-Y;EA>PB

Save the word number of the program counter in the Y register and transfer control to
location addr. Only the word numberportion of the return address is saved, JSY may
(usually) only be used to call subroutines that reside in the same procedure segment.
MODES=V, FORMAT=MR, OPCODE=14, C=unchanged, L=unchanged, CC=unchanged.

> PCL addr Procedurecall

Call procedure whose ECBis at addr. .

Step 1. Calculation of target ring number

1. If the caller has Read access to the segment (segment numberof addr)
containing the ECB, new ring=currentring.

2. If the caller has gate access to the segment containing the ECB, new
ring=ring field of ECB(PB). The ECB muststart on a modulo-16 bound-
ary in this case.

If neither 1. nor 2. holds, an access violation results.

Step 2. Stack frame allocation

1. If ECB(stack root)=0, then stack root=ECB(stack root), else stack root =
current stack segment.

2. Fetch the free pointer at location 0 of segment(stack root). If there is
sufficient room remaining (size needed given by ECB(SFSIZE), allocate
frame here and update free pointer in segmentstack root.

3. If no room in this segment, fetch the extension pointerat location 2 of
the segment pointed to by free pointer. If 0, generate stack overflow
fault. Else, use extension pointer as a new free pointer and gotostep 2.

Step 3. New frame headersetup

1. The flag word (word 0) is set to 0.

2. The caller’s PB, SB, LB and keys are saved (X,Y and XBarelost) in the
frame header. The ring field of PB properly reflects the ring of

1 March, 1979 11-47 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

execution of the caller. The saved PB at this momentpoints to the word

following the PCL instruction. It will be updated when argument

transfer (if any) is complete to point beyond the argument templates.

Word ‘11 of the stack frame is set to the word numberofthisinitial

value of saved PB(i.e., points to PCL+2).

Step 4. Callee state load

1. The callee’s PB, LB, and keys are loaded from the entry control block,

except thatthe ring field of PB has no effect if the ECBis not a gate. The

SB register is set to point at the new stack frame.

Step 5. Argument transfer

1. If ECB(NARGS)is 0, this step is skipped. Otherwise, the one or more
AP’s (argument templates) following the PCLinstruction are processed
to load argumentpointersinto the callee’s stack frame. At least one AP
must follow PCL if the callee expects arguments; no AP mayfollow if
the callee expects no arguments. The saved PBin callee’s stack frameis
updated to point beyond the AP’s when argumenttransferis done. See
the ARGTinstruction for a description of argumenttransfer.

MODES=V, FORMAT=MR, OPCODE=10 02, C=unspecified, L=unspecified, CC=un-

specified

> PRTN Procedure return

Deallocates the current stack frame and returns to the environment of the procedurethat

called it. The stack frameis deallocated by storing the current stack base register into the

free pointer. The caller's state is restored by loading his program counter, stack base

register, linkage base register, and keys from the frame being left. The ring numberin the

program counter is weakened with the current ring number. The current stack frame

consists of the frame created uponentryto the current procedureplusall extensions created

during the execution of the current procedure. MODES=V, FORMAT=GEN, OPCODE=

000611, C=loaded by instruction, L=loaded by instruction, CC=loaded byinstruction.

> RTN Return from R-moderecursive procedure

[(S) +1] -P[(S}]-s

Fetch the return address from word2 of the previous stack frame andloadtheresult in the

program counter; then transfer word 1 (the pointer to the preceding stack frame) to the S

register.

If the return addressis 0, (S) is unchanged and a PSU (Procedure Stack Underflow)fault is

taken (interrupt through location '75 in physical memoryis taken on the Prime 300). MODES

=SR, FORMAT=GEN, OPCODE=000105, C=unchanged, L=unchanged, CC=unchanged.

> STEX Stack extend

Obtains additional space in the procedure stack for automatic variables. Such spaceis

automatically deallocated and reclaimed for other uses when the procedurereturns,just

like the original frame created when the procedure wasentered. TheL register specifies the

desired contiguoussize of the extension in words. Thesize is rounded up to an even number

of words. The address of the extension is returned as a segment number/word number

pointer in the register. It is possible that the extension may not be contiguous with the

initial frame (there may have beeninsufficient room left in the same segment). Any number

of extensions may be made. This instruction can cause a stack overflow fault. MODES=V,wae

FORMAT=GEN, OPCODE=001315, C=unspecified, L=unspecified, CC=unspecified.

FDR 3059 11-48 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 
 

Vv Pe tr
y
) fo fu fu 3 rT ‘ ? 2

Execute the instruction at location addr, but do nottransfer control to that location. Not allinstructions can be executedbythe instruction.

No multi-word instructions can be executed properly. All one-wordinstructions can beexecuted properly except JMP, JST, and address-mode changing generics. Instructionswhich skip do so relative to the XEC instruction. On any fault or interrupt, the savedprogram counteris relative to the XEC instruction. MODES=RV, FORMAT=MR, OPCODE=01 02, C=unchanged, L=unchanged, CC=unchanged.

PROCESS EXCHANGE (RESTRICTED)—PRCEX

There are seven process exchangeinstructions:

Mnemonic Opcode C L cC
INBC 001217 unspecified unspecified unspecified
INBN 001215 unspecified unspecified unspecified
INEC 001216 unspecified unspecified unspecified
INEN 001214 unspecified unspecified unspecified
NFYB 001211 unspecified unspecified unspecified
NFYE 001210 unspecified unspecified unspecified
WAIT 000315 unchanged unchanged unchanged

See the System Architecture Manual for a complete discussion of the process exchangemechanism. All process exchangeinstructions are restricted.

QUEUE MANAGEMENT INSTRUCTIONS—QUEUE
The instructions provided for queue manipulation are of the generic-AP class, in which afollowing AP-pointer provides the addressto the queue control block. Section 9 contains thequeue control block description.

Datais to or from register A andthe results of the operation are given in the condition codebits for latertesting.

addr refers to a control block in virtual space. The virtual queue control block differs fromthe physical in that a segment numberis provided instead of a physical address. Ring zeroprivilege is required to manipulate physical queues; any nhon-ring zero attempt to accessphysical queues will result in a restrict mode violation fault. Also the ring numberdetermines the privilege of access into both the control block and the data block.

> ABQ addr Addto bottom of queue
Add the contents of the A-register to the bottom of the queue defined by the QCBat addr.The condition codes are set EQ if the queueis full, e.g., the word could not be added.MODES=V, FORMAT=AP, OPCODE=141716, C=unchanged, L=unchanged, CC=result.

> ATQ addr Addto top of queue
Add the contents of the A-register to the top of the queue defined by the QCB (QueueControl Block) at addr. The condition codes are set EQ if the queueis full, e.g., the wordcould not be added. MODES=V, FORMAT=AP, OPCODE=141717, C=unchanged, L=un-changed, CC=result.

1 March, 1979 11-49 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 
 

> RBQ addr Remove from bottom of queue

Removea single word from the bottom of the queue defined by the QCBat addr, and place

it in the A-register. If the queue is empty, set A—0 and condition codes EQ. MODES=V,

FORMAT=AP, OPCODE=141715, C=unchanged, L=unchanged, CC=result.

> RTQ addr Remove from top of queue

Removea single word from the top of the queue defined by the QCBat addr, andplaceit

in the A-register. If the queue is empty, set A=0 and condition codes EQ. MODES=V,

FORMAT=AP, OPCODE=141714, C=unchanged, L=unchanged, CC=result.

> TSTQ addr Test queue

Set the A-register to the numberof items in the queue defined by the QCB at addr.If the

queue is empty, set condition codes EQ. MODES=V, FORMAT=AP, OPCODE=141757, C=

unchanged, L=unchanged, CC=result.

SHIFT GROUP—SHIFT

Shifting is the movementof the contents of a register bit-to-bit. The instructions in this group

shift or rotate right or left the contents of A or the contents of A and B treated as a single

register with A on the left. Although these instructions are similar in format and operation,

functionally some are logical and others arithmetic.

A shift is logical or arithmetic simply in terms of the way the data wordis interpreted: a

logical shift treats it as a string of bits whereas an arithmetic shift treats it as a signed

number.

Rotation is a cyclic logical shift such that information rotated out at one endis put back in

at the other. Thelast bit rotated in at the right orleft is also savedin C.

In a logical rightorleft shift, the contents of the register or registers are movedbit-to-bit with

0’s brought in at the end being vacated. Information shiftedoutat the other endis lost. The

last bit shifted out goesto C.

A right arithmetic shift fills the vacated left positions with the sign bit. The C-bit reflects the

last bit shifted out on the right.

A left arithmetic shift includes the sign, but interprets a sign change as overflow.It fills the

vacated right positions with 0's and seis the C-bit on overflow.

Hence, arithmetic shifting is equivalent to multiplying or dividing the numberby a powerof

2, provided no information islost. These operationsalso use the C-bit to detect the loss of

any bit of significance in a left arithmetic shift, and in all other cases to save thelast bit

shifted out.

In a shift instruction word,bits 3-6 areall 0’s and the groupis indicated by 01 in bits 1 and

9. Bits 7-10 indicate the particular type of shift, and bits 11-16 specify the twos complement

of the numberof places to be shifted. Mnemonics are available for the individual types, so

the opcode may be regardedasthe left four digits of the instruction word, with the word

completed by addingthe right twodigits for the numberofplaces. Note that the mnemonics

are constructed using “‘logical” to mean a logical shift and ‘shift’ to mean specifically an

arithmetic shift.

FDR 3059 11-50 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

> ALLn

Shift the contents of register A left n places, bringing zeros into bit 16; data shifted outof bit
1 are lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,

OPCODE=0414xx, C=shift extension, L=unspecified, CC=unchanged.

> ALR n A left rotate

Ca—Aig a C

Shift the contents of register A left n places, rotating bit 1 into bit 16. The last bit rotated back
in at the right is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE=0416xx, C=shift
extension, L=unspecified, CC=unchanged.

> ALSn Aleft shift

A, — Ay — Aig 0
Shift the contents of register A left arithmetically n places, bringing zeros into bit 16. Data
shifted out of bit 1 are lost. The C-bit is initially cleared. If the sign (bit 1) changesstate, set
C. A sign change indicates that a bit of significance (a one in a positive number, a zero ina
negative) has been shifted out of the magnitude part. MODES=SRV, FORMAT=SHIFT,
OPCODE=0415xx, C=overflow, L=unspecified, CC=unchanged.

> ARL n Aright logical

Shift the contents of register A right n places, bringing zerosinto bit 1; data shifted outofbit
16 are lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0404xx, C=shift extension, L=unspecified, CC=unchanged.

>  ARRn Aright rotate

CLA,-Ajg—

Shift the contents of register A right n places, rotating bit 16 into bit 1. The last bit rotated
back in at the left is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE=0406xx, C
=shift extension, L=unspecified, CC=unchanged.

P ARSn right shift

Ay>Ag—AygC

Shift the contents of register A right arithmetically n places, leaving the sign (bit 1)
unaffected, but shifting it into the magnitude part, zeros in a positive number, ones in a
negative. Data shifted out of bit 16 are lost, except that the last bit shifted out is saved in C.
MODES=SRV, FORMAT=SHIFT, OPCODE=0405xx, C=shift extension, L=unspecified, CC=
unchanged.

> LLLn Longleft logical

Shift the contents of registers A and B left n places, bringing zeros into bit 16 of register B.
Bit 1 of register B is shifted into bit 16 of register A; data shifted out of bit 1 of register A are
lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0410xx, C=shift extension, L=unspecified, CC=unchanged.

1 March, 1979 11-51 FDR 3059



i1 INSTRUCTION DEFINITIONS—SRV
 

 

> LLR n_ Longleft rotate

LAj—Ajg -By—Big$C
Shift the contents of registers A and B left n places, rotating bit 1 of register A into bit 16 of
register B. Bit 1 of register B shifts into bit 16 of register A. The last bit rotated from register
A backto B is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE=0412xx, C=shift
extension, L=unspecified, CC=unchanged.

 

> LLS n_ Longleft shift

Ay -Ay—Alig By Bo—Big « 0

Shift the contents of the 31-bit integer in register AJB left arithmetically n places, bringing
zeros into bit 16 of register B, bypassing bit 1 of register B; Bit 2 of register B is shifted into
bit 16 of register A. Data shifted out of bit 1 of register A arelost. If the sign (bit 1 of register
A) changes state, set C; otherwise, clear C. MODES=SR, FORMAT=SHIFT, OPCODE=
0411xx, C=overflow, L=unspecified, CC=unchanged.

> LLS n_ Long left shift

CLy-Lo—L39 +0

Shift the contents of the 32-bit integer in the L register left arithmetically n places, bringing
zeros into bit 32. Data shifted out of bit 1 are lost. If the sign (bit 1} changesstate, set C;
otherwise clear C. MODES=V, FORMAT=SHIFT, OPCODE=0411xx, C=overflow. L=un-
specified, CC=unchanged.

> LRL n_ Longright logical

Shift the contents of register A and B right n places, bringing zeros into bit 1 of register A.
Bit 16 of register A is shifted into bit 1 of register B. Data shifted out of bit 16 of register B
are lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0400xx, C=shift extension, L=unspecified, CC=unchanged.

> LRR n_ Longright rotate

C+A1—Ay69B,—Big 4
Shift the contents of register A and B right n places, rotating bit 16 of register B into bit 1 of
register A. Bit 16 of register A is shifted into bit 1 of register B. The last bit rotated from
register B backto register A is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE
=0402xx, C=shift extension, L=unspecified. CC=unchanged.

 

> LRS n_ Longrightshift
JI

Ay~A2g—Aj6 By Bo—Byg9C

Shift the contents of the 31-bit integer in register A|B right arithmetically n places, leavingbit
1 of register A unaffected, bypassing bit 1 of register B, and shifting the sign (bit 1 of register
A) into the magnitude part (zeros in a positive number,onesin a negative). Bit 16 of register

A is shifted into bit 2 of register B; data shifted out of B bit 16 are lost, except that the last

bit shifted out is saved in C. MODES=SR, FORMAT=SHIFT, OPCODE=0401xx, C=shift.
ahjOH=OnK, PUA. V=Silit

extension, L=unspecified, CC=unchanged.

FDR 3059 11-52 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

Shift the contents of the 32-bit integer in the L register right arithmetically n places, leaving
bit 1 unaffected. Datashifted outof bit 32 are lost, except thatthe last bit shifted outis saved
in C. MODES=V, FORMAT=SHIFT, OPCODE=0401xx, C=shift extension, L=unspecified,
CC=unchanged.

SKIP CONDITIONAL—SKIP

> DRX Decrement and replace X

X-15X;if X=0 then PC+1-PC

Subtract 1 from the contentsof the X register and place the result back in that register. Skip
the next word in sequenceif the result is zero. MODES=SRV, FORMAT=GEN, OPCODE=
140210, C=unchanged, L=unchanged, CC=unchanged.

> IRS addr Increment memory,replace, and skip

[EA]16+1[EA]16; if [EA]16=0 then PC+15PC
Add1 to the contents of location addr and place the result back in addr. Skip the next word
in sequenceif the result is zero. MODES=SRV, FORMAT=MR, OPCODE=12, C=unchanged,
L=unchanged, CC=unchanged.

> IRX Incrementand replace X

X+1>X; if X=0 then PC+1—4PC

Add1 to the contents of the X register and placethe result back in that register. Skip the next
word in sequence if the result is zero. MODES=SRV, FORMAT=GEN, OPCODE=140114, C
=unchanged, L=unchanged, CC=unchanged.

> SAR n_ Skip on A-bit reset

If A(n)=0 then PC+14PC

If bit n in the A register is 0, skip the next word in sequence.

Note

The assembler will convert n to octal equivalent of the bit
number minus one.

MODES=SRV, FORMAT=GEN, OPCODE=10026x, C=unchanged, L=unchanged, CC=un-
changed.

P SASn Skip on A-bit Set

If A(n)=1 then PC+14PC

If bit n in register A is 1, skip the next instruction in sequence.

Note

The assemblerwill convert n to the octal equivalentofthe bit
number minus one.

MODES=SRV, FORMAT=GEN, OPCODE=10126x, C=unchanged, L=unchanged, CC=un-
changed.

1 March, 1979 11-53 FDR 3059



11 INSTRUCTION DEFINITIONS—SRV
 

 

> SGT Skip if A greater than zero

If A>0 then PC+1>PC

If the contents of register A is greater than zero, skip the next word in sequence. MODES=

SRV, FORMAT=GEN, OPCODE=100220, C=unchanged, L=unchanged, CC=unchanged.

id SKP n_ Skip group

Skip conditions are selected byindividual bits or combinations of them.

e Bits 1-6 are always 100000.

e Bit 7=1 meansif true, skip the next instruction.

e Bit 7=0 meansif false, skip the next instruction.

¢ Bit 9=0 means test a combinationofbits.

The various conditions, the bits that select them and the mnemonics and opcodesfor them

are given in Table 11-5. MODES=SRV, FORMAT=GEN, OPCODE=100000, C=unchanged,L

=unchanged, CC=unchanged.

> SLE Skip if A less than or equal to zero

If A<0 then PC+1—>PC

If the number containedin

A

is less than or equalto zero, skip the next word in sequence.

MODES-=SRV, FORMAT=GEN, OPCODE=101220, C=unchanged, L=unchanged, CC=un-

changed.

> SNR n_ Skip on sense switch reset

If sense switch n=0 then PC+1>PC

If sense switch

n

is off (not up), skip the next word in sequence. MODES=SRV, FORMAT=

GEN, OPCODE=10024x, C=unchanged, L=unchanged, CC=unchanged. Restricted instruc-

tion.

> SNS n_ Skip on sense switch set

If sense switch n=1 then PC+1-PC

If sense switch

n

is on (up), skip the next word in sequence. MODES=SRV, FORMAT=GEN,

OPCODE=10124x, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

FDR 3059 11-54 1 March, 1979



INSTRUCTION DEFINITIONS—SRV 11
 

 

 

Mnemonic

NOP

SKP

SMI

SPL

SLN

SLZ

SNZ

SZE

SS1

SR1

SS2

SR2

$83

SR3

SS4

SR4

SSSA
A
A
A
A
A
A
A

BA
a SSR

SSC

SRC 

Selector

Bits

10

10

11

11

12

12

13

13

14

14

15

15

12-15

12-15

16

16

Table 11-5. Combination Skip Group

Bit 7

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Skip on Condition Op Code

None (no-op} ‘101000

Skip unconditionally ‘100000

A Minus (A(1} = 1) 101400

A Plus (A(1} = 0) ‘100400
LSB Nonzero (A(16} = 1) ‘101100

LSB Zero (A(16) = 0) ‘100100
A Nonzero ‘101040

A Zero "100040

Sense Switch 1 Set ‘101020

Sense Switch 1 Reset ‘100020

Sense Switch 2 Set 101010

Sense Switch 2 Reset ‘100010

Sense Switch 3 Set ‘101004

Sense Switch 3 Reset ‘100004

Sense Switch 4 Set 101002

Sense Switch 4 Reset 100002

All Sense Switches 1-4 Set

"101036

Any of Sense Switches 1-4 Reset
‘100036

Set C ‘101001

Clear C : ‘100001

Skip conditions can be combined using SKP andgiving the bit 7-16 configuration for the
combination in the addressfield. All conditions combined must agree on bit 7. If bit 7
is set then the skip will take place if all conditions are true. If bit 7 is clear then the skip
will take place if any of the conditionsis true.
 

1 March, 1979 11-55 FDR 3059

 



 

Instruction definitions:I
 



ADDRESSING MODE—ADMOD

Defined in Section 11.

E16S Enter 16S Mode

E32R Enter 32R Mode

E32S Enter 32S Mode

E64R Enter 64R Mode

E64V Enter 64V Mode

E321 Enter 321 Mode

BRANCH—BRAN

The branch instructions are two word register generics whichtest the contents of a register
or the result of a previous ARITHMETIC or COMPAREoperation as indicated by the
condition codes (CC), the C-bit, and the L-Bit.

The bit layoutis:

 

Word1= 0 0| 1 0 REGISTER OP-CODE

1 2 3 4 — 6 7 — 9 10 _ 16

        

 

 
Word 2 = 16-bit word address in current procedure segment  
 

1 16

Condition code branchestest six conditions based on the LT bit, the EQbit, and the opcode.

Condition Meaning

< Branch if LT bit set and EQ bit cleared

< Branch if LT bit set or EQ bit set

Branch if EQ bit set

Branch if EQ bit cleared

Branch if LT bit cleared or EQ
Dranch Sf TT Wet walaaned and

ranch it us oil Ciearea anaVo
WV

+

r
r

bit
OY hi
W Uit

o

> Test Relation to 0 and branchif true

1 March, 1979 12-1 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

These instructions have the following format: LT

Register (R) EO

Branchif Half-Register (H) 0
Floating-Register (F) NE

GE
GT

For example: BRLT R,addr means Branch to addr if Register Less Than zero. FORMAT=
IBRN, OPCODES-=Seechart below, C=unchanged, L=unchanged, CC=result.

Mnemonic Function Opcode

BRLT R,addr If R<0, then addr-PC 104

BRLE R,addr If R<0, then addr-PC 100

BREQ R,addr If R=0, then addr—>PC 102

BRNER,addr If R40, then addr>PC 103

BRGER,addr If R>0, then addr>PC 105

BRGT R,addr If R>0, then addr-PC 101

BHLT RH,addr If RH<0, then addr-PC 104

BHLE RH,addr If RH<0, then addr>PC 110

BHEQ RH,addr If RH=0, then addr-PC 112

BHNE RH,addr If RH#0, then addr>PC 113

BHGE RH,addr If RH>0, then addr—-PC 105

BHGT RH,addr If RH>0. then addrPC 111

BFLT F,addr If F<0, then addr>PC 124

BFLE F,addr If F<0, then addr>PC 120

BFEQ F,addr If F=0, then addr-PC 122

BFNE F,addr If F#0, then addr-PC 123

BFGEF,addr If F>0. then addr>PC 125

BFGTF,addr If F>0, then addrPC 121

Test register bit and branch

BRBR R,BITNO,addr_ Branchif register bit reset (equals zero}: If R(BITNO}=0. then addr
~PC. FORMAT=IBRN, OPCODE=040-077, C=unchanged, L=unchanged, CC=unchanged.

BRBS R,BITNO,addr_ Branchif register bit set (equals one): If R(BITNO)=1, then addr-PC.
OPCODE=000-037, C=unchanged, L=unchanged, CC=unchanged.

Branch on incremented or decrementedregister

These instructions have the following format:

1

{ inorement \ resister \ by 2 then branch if result+0
Decrement Half Register ls

For example: BRI1 R,addr means Increment the contents of the Register by
Rranoch ta andar if tha raen Tt te nat aniia Tl tn varn TORNMAT_TROBNI ODRrNnneE

DJGININ, Wr UUsQyiudloli (VY GUidi LAL Lhivl LUOULE LO LLUL ouyuuUudL tu A2CLlv. £2 AAEINLYEL LAL Ad

below, C=unchanged, L=unchanged, CC=unchanged.

c
A

FDR 3059 12-2 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

Mnemonic Function Opcode

BRI1 R,addr R+1>5R; if R40, then addrsPC 130

BRI2 R,addr R+25R; if R40, then addr-PC 131

BRI4 R,addr R+45R; if R40, then addrsPC 132

BHI1 RH,addr RH+1->RH; if RH#0, then addr-PC 140

BHI2 RH,addr RH+2>RH; if RH#0, then addr—PC 141

BHI4 RH,addr RH+4>RH; if RH#0, then addrPC 142

BRD1 R,addr R-1-R; if R#0, then addrsPC 134

BRD2 R,addr R-2+R; if R#0, then addr-PC 135

BRD4 R,addr R-4>4R; if R#0, then addr>PC 136

BHD1 RH,addr RH-1>RH; if RH#0, then addr—PC 144

BHD2 RH,addr RH-2-RH; if RH#0, then addroPC 145

BHD4 RH,addr RH-4-RH; if RH#0, then addr—PC 146

> CGT R,n Computed GOTO

If 1<R<n, then |PC+R|>PC, else PC+n3PC

Instruction word followed by n further words: word 1 contains integer n and words 2-n
contain branch addresses within the current procedure segment.

If the contents of register R is less than n and greater than or equalto 1. then control passes
to the address in PC+R: otherwise no branchis taken and control passes to PC+n. FORMAT
=IBRN, OPCODE=026, C=unspecified, L=unspecified, CC=unspecified.

Defined in Section 11:

BCEQ Branch on condition code equal
BCGE Branch on condition code greater than or equal
BCGT Branch on condition code greater than
BCLE Branch on condition codeless than or equal
BCLT Branch on condition code less than
BCNE Branch on condition code not equal
BCR Branch if C-Bit=0
BCS Branch if C-Bit=1
BLR Branch if L-Bit=0
BLS Branch if L-Bit=1

BMEQ Branch if magnitude equal 0
BMGE Branch if magnitude greater than or equal0
BMGT Branch if magnitude greater than 0
BMLE Branchif magnitudeless than or equal 0
BMLT Branch if magnitude less than 0
BMNE Branch if magnitude not equal 0

CHARACTER OPERATIONS—CHAR

Theseinstructions use the field address and length registers (FALR) which have beenset up
by field operation instructions prior to the use of these instructions. Character string
operations perform memory to memoryoperations on variable length characterfields. The
FARis used as a byte pointer and thebit offset (low order3 bits) is ignored.

1 March, 1979 12-3 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

Data type: Characters are 8-bit bytes. The format is unspecified and may be determined by

programmer,e.g., ASCII, EBCDIC,etc. The translate instruction (ZTRN), for example, uses
a table set up by the programmerto translate one character code into another.

> LDC FALR,R Load Character

If the field length register FLR is nonzero, load the single character pointed to by field

address register FARinto register R, bits 9-16. Register R bits 1-8 are cleared. The low order

3 bits of the bit offset in the field address register are ignored, implying that the character

mustbe byte aligned. Thefield addressregister is advanced8 bits to the next character, and

the field length register is decremented by1. Set condition code NE(clear EQ). If the field

length register is zero, then set the condition code EQ. FORMAT=RGEN, FALRO OPCODE

—162, FALR1 OPCODE=172, C=unchanged, L=unchanged, CC=result.

> STC FALR,R Store Character

Store bits 9-16 of register R into the character pointedto by field address register FAR. The
low order 3 bits of the bit offset of the field address register are ignored, implying that the
character must be byte aligned. The field address register is advanced 8 bits to the next

character, and the field length register is decrementedby 1. Set the condition code NE(clear

EQ). If the field length register is zero, set the condition code EQ and do not store. FORMAT

—RGEN, FALRO OPCODE=166, FALR1 OPCODE=176, C=unchanged, L=unchanged, CC=

unchanged.

Summaryofinstructions defined in section 11

ZCM Compare Character Field

ZED Character Edit

ZFIL Fill Character Field

ZMV Move Character Field

ZMVD Move Equal Length Fields

ZTRN Translate Character Fields

CLEAR REGISTER AND MEMORY—CLEAR

> CR R_ Clear Register

0-R

Fill R with zeros. FORMAT=RGEN, OPCODE=056, C=unchanged, L=unchanged, CC=

unchanged.

> CRBLR_ Clear High Byte 1 Left

0-+-RH(1-8)

Fill bits 1-8 of R with zeros.FORMAT=RGEN, OPCODE=062, C=unchanged, L=unchanged,

CC=unchanged.

> CRBR R Clear High Byte 2 Right

Ball hitElias O1t 9.16 of R with zeros. FORMAT=RGENwsq
n

changed, CC=unchanged.

FDR 3059 12-4 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

>  CRHLR Clear Le

0>-RH

Fill bits 1-16 of R with zeros. FORMAT=RGEN, OPCODE=054, C=unchanged, L=unchanged,
CC=unchanged.

> CRHR R Clear Right Halfword

0-RL

Fill bits 17-32 of R with zeros. FORMAT=RGEN, OPCODE=055. C=unchanged, L=un-
changed, CC=unchanged.

> ZM addr Zero Memory Fullword

0-+[EA]32
Fill contents of addr with zeros. FORMAT=MRNR, OPCODE=43, C=unchanged, L=un-
changed, CC=unchanged.

> ZMH addr Zero Memory Halfword

0+|EA|16
Fill contents of addr with zeros. FORMAT=MRNR, OPCODE-=33. C=unchanged, L=un-
changed, CC=unchanged.

DECIMAL ARITHMETIC—DECI

Defined in Section 11:

XAD Decimal Add
XBTD Binary to Decimal Conversion
XCM Decimal Compare
XDTB Decimal to Binary Conversion
XDV Decimal Divide
XED Numeric Edit
XMP _ Decimal Multiply
XMV Decimal Move

FIELD OPERATIONS—FIELD

These instructions set up and manipulate the field address and length registers. which are
used by both the decimal and characterstring instructions. The interpretation of the value
in the field length registers depends on the data type andinstruction using them.

> ARFA FAR,R_ Add Register to Field Address Register

R+FAR>FAR

Add the contents of R to field address register FAR, putting the result in the field address
register. FORMAT=RGEN, FARO OPCODE=161. FAR1 OPCODE=171. C=unspecified. L=
unspecified, CC=unchanged.

> TFLR FLR,R Transfer Field Length to Register

FLR>R

Movethe contentsof field length register FLR to R. FORMAT=RGEN, FLRO OPCODE=1863.
FLR1 OPCODE=173, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 12-5 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 
 

> TRFL FLR,R_ Transfer Register to Field Length Register

R->FLR

Move the content of R to field length register FLR. FORMAT=RGEN, FLRO OPCODE=i65,

FLR1 OPCODE=175, C=unchanged, L=unchanged, CC=unchanged.

Summaryofinstructions defined in section 11

EAFA 0 Load Field Address Register 0
EAFA 1 Load Field Address Register 1

LFLI 0 Load Field Length Register Immediate 0

LFLI 1 Load Field Length Register Immediate 1

STFA 0 Store Field Address Register
STFA 1 Store Field Address Register

FLOATING POINT ARITHMETIC—FLPT

See Section 9 for a description of the processor dependentregister formats and the floating

point data stuctures.

Normalization

The result of every floating point calculation is normalized. In normal form. the most

signficantdigit of the mantissa followsthe binarypoint. If an operation produced a mantissa

that is smaller than normal, the mantissa is shifted left until the most significantbit differs

from the sign bit, and the exponentis decreased by onefor each shift. Bits vacated at the

right are filled by zeros. If the result of an operation overflows the mantissa. it is shifted

right one place, the overflow bit is made the most significant bit. and the exponentis

increased by 1.

Floating point exceptions

In the basic arithmetic operations, increasing the exponent in the floating point register

beyond 32639 is an overflow: decreasing it below -32896is an underflow.

An attemptto store a single-precision numberwith an exponentgreater than 127 or less than

_128 in the two-word memoryformatresults in a different type of exception—see Table 11-2.

The numberin the floating point register is not altered by the FST operation and so can be

recovered if necessary.

Other detected exceptions are an attemptto divide by zero or to form an integer exceeding

+30 bits or about +1 billion decimal.

On the Prime 350 and up, the floating point exception is a fault rather than an interrupt and

is controlled by the FLEX bit in the keys—see Section 9—Data Formats.

Single Precision—32 bits

> FA FR,addr Floating Add

FR1|EA|324FR

Addthe floating point numberataddrto the contentsofthe floating point numberin floating

point register FR, and leave the resulting floating point numberin the floating pointregister.

Additionof floating point numbersrequiresthat their exponents be the same power of two.

This is accomplished by right shifting the smaller number by the difference in the

exponents. After alignment, the mantissas are added. FORMAT=MRFR, FRO OPCODE=14,

FR1 OPCODE=16, C=overflow, L=unspecified, CC=unspecified.

FDR 3059 12-6 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

FR::|EA]|32

Compare the contents of floating point register FR with the contents of addr and set the
condition codes accordingly. FORMAT=MRFER, FRO OPCODE=04, FR1 OPCODE=06. C=
unchanged, L=unchanged, CC=result.

> FCM FR Floating Complement

-FRoFR

Two's complement the mantissa of floating point register FR and normalize if necessary.
FORMAT=RGEN, FRO OPCODE=100, FR1 OPCODE=110, C=overflow, L=unspecified, CC=
unspecified..

> FD FR,addr Floating Divide

FR/|EA|32>FR
Divide the contents of floating point register FR by the number in addr andleave the
normalized quotient in the floating point register.]
FORMAT=MRER, FRO OPCODE=30, FR1 OPCODE=32. C=overflow. L=unspecified, CC=
unspecified.

> FL FR,addr Floating Load

|EA]324FR

Load the floating point numbercontainedin addrinto floating point register FR. FORMAT
—MRFR, FRO OPCODE=00, FR1 OPCODE=02, C=unchanged, L=unchanged, CC=unchanged.

> FLT FR,R Convert Integer to Floating Point

Float (R)>FR

Convert the integer in R to a normalized floating point numberin floatingpointregister FR.
FORMAT=RGEN, FRO OPCODE=105, FR1 OPCODE=115, C=overflow, L=unspecified, CC=
unspecified.

> FLTH FR,R Convert Halfword Integer to Floating Point

FLOAT(RH)>FR
Convert the halfword integer in RH to a normalizedfloating point numberin floating point
register FR. FORMAT=RGEN, FRO OPCODE=102, FR1 OPCODE=112. C=overflow, L=
unspecified, CC=unspecified.

> FM FR,addr Floating Multiply

FR*|EA|325FR

Multiply the contents of floating point register FR by the contents of addr and place the
product in the floating point register with the mantissa normalized.FORMAT=MRER, FRO
OPCODE=24, FR1 OPCODE=26, C=overflow, L=unspecified, CC=unspecified.

> FRN FR Floating Round

If bit 25 of the mantissa in floating point register FR is 1, add 1 to bit 24 and clear 25.
FORMAT=RGEN, OPCODE=107, C=overflow, L=unspecified, CC=unspecified.

1 March, 1979 12-7 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

> FS FR,addr Floating Subtract

FR-[EA]32>FR

Subtract the contents of addr from floating point register FR by aligning exponents, and

proceding as in FA except that the contents of addr are subtracted from floating point

register. FORMAT=MRFR, FRO OPCODE=20, FR1 OPCODE=22, C=overflow, L=un-

specified, CC=unspecified.

> FST FR,addr Floating Store

FR3[EA]32

Store the single precision floating point numbercontainedin floating point register FR in

addr. Bits 24-31 of the 31 bit mantissa are truncated whenwritten into the 23-bit capacity

memory storage. However, the mantissa may be roundedto bit 24 by a FRN instruction

which adds1 to bit 24 if bit 25 is 1. FORMAT=MRFR, FRO OPCODE=10, FR1i OPCODE=12,

C=overflow, L=unspecified, CC=unchanged.

> INT FR,R Convert Floating Point to Integer

Int(FR)-R

Convert the floating point numberin floating point register FR to an integer in R. FORMAT

—RGEN, FRO OPCODE103, FR1 OPCODE 113, C=overflow, L=unspecified. CC=unspecified.

> INTH FR,R_ Convert Floating Point to Halfword Integer

Int(FR)-RH

Convertthe floating point numberinfloating point register FR to a halfword integer in RH.

FORMAT=RGEN,FRO OPCODE=101, FR1 OPCODE=111, C=overflow, L=unspecified, CC=

unspecified.

Double Precision—64 Bits

> DBLE FR Convert Single to Double

FR-FR

Convert single precision floating point numberin floating point register FR to double

precision floating point number in the floating point register. FORMAT=RGEN, FRO

OPCODE=106, FR1 OPCODE=116, C=unchanged, L=unchanged, CC=unchanged.

> DFA FR,addr Double Floating Add

FR+|EA|649FR

Add the contents of addrto the contents of floating point register FR and put theresult in the

floating point register. FORMAT=MRFR, FRO OPCODE=15, FR1 OPCODE=17, C=overflow,

L=unspecified, CC=unspecified.

> DFC FR,addr Double Floating Compare

FR::[EA]64

Compare the contents of addr with the contents of floating point register FR and set the

condition codes accordingly. FORMAT=MRER, FRO OPCODE=05, FR1 OPCODE=07, C=

unchanged, L=unchanged, CC=result.

FDR 3059 12-8 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

> DFCM FR Double Floating Complement

-FR>FR

Two's complementthe double precision mantissa in floating point register FR and normalize
if necessary. FORMAT=RGEN, FRO OPCODE=144. FR1 OPCODE=154, C=overflow. L=
unspecified, CC=unspecified.

> DFD FR,addr Double Floating Divide

FR/|EA|64>FR
Divide the double precisionfloating point numberinfloating point register FR by the double
precision floating point numberstarting at addr and leavethe result in the floating point
register. Exponents are subtracted, and after the divisor mantissa is divided into the
dividend mantissa, the quotient is normalized. FORMAT=MRER, FRO OPCODE=31, FR1
OPCODE=33, C=overflow, L=unspecified, CC=unspecified.

> DFL FR,addr Double Floating Load

|EA|64>FR

Load the double precision numbercontained in the four memory wordsat addrinto floating
point register FR. FORMAT=MRFR, FRO OPCODE=01, FR1 OPCODE=03. C=unchanged, L=
unchanged, CC=unchanged.

> DFM FR,addr Double Floating Multiply

FR+|EA|64FR
Multiply the double precision floating point numberin floating point register FR by the
double precision floating point numberstarting at addr andleave the result in the floating
point register. Exponents are added and. after mantissas are multiplied. the productis
normalized. FORMAT=MRFR, FRO OPCODE=23. FR1 OPCODE=27. C=overflow. L=un-
specified, CC=unspecified.

> DFS FR,addr Double Floating Subtract

FR -|EA|645FR

Subtract the contents of addr from the contents of floating point register FR and put the
result in the floating point register. FORMAT=MRFR. OPCODE=21. FRO OPCODE=21. FR1
OPCODE=23, C=overflow, L=unspecified. CC=unspecified.

> DFST FR,addr Double Floating Store

FR4|EA|64
Store the contents of floating point register FR into the four memory words at addr.
FORMAT=MRER. FRO OPCODE=11, FR1 OPCODE=13, C=unchanged. L=unchanged. CC=
unchanged.

INTEGER ARITHMETIC—INT

I-modeinteger arithmetic instructions operate on 16 and 32 bit integers. See Section 9 fora
description of the data formats.

Pm AR,addr Add Fullword

R+|EA]324R

1 March, 1979 12-9 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

Add the 32-bit integer at addr to the 32-bit integer in register R, and putthe result into R.

FORMAT=MRGR, OPCODE=02, C=overflow, L=carry, CC=result.

> ADLR R_ AddLink to Register

if keys (L)=1 then R+11>R

If the L bit is set in the keys then add 1 to the contents of register R. FORMAT=RGEN.

OPCODE=014, C=overflow, L=carry, CC=result.

> AH R,addr Add Halfword

RH+[EA]160RH

Addthe 16-bit integer at addrto the 16-bit integerin bits 1-16 of register R and put the result

into bits 1-16 of R. FORMAT=MRGR, OPCODE=12, C=overflow, L=carry, CC=result.

> C R,addr Compare Fullword

R::|EA]32; set CC.

Arithmetically compare the 32-bit integer in R with the 32-bit integer at addr andset the

condition codes to reflect the results). FORMAT=MRGR, OPCODE=61. C=unchanged. L=

carry, CC=result.

> CH R,addr Compare Halfword

RH::|EA|16:; set CC.

Arithmetically compare bits 1-16 of register R with the 16-bit integer at addr and set the

condition codes to reflect the results. FORMAT=MRGR, OPCODE=71. C=unchanged. L=

carry, CC=result.

> CHS R_ Change Sign

-R(1}>R(1)

Changebit 1 of register R to its opposite. FORMAT=RGEN, OPCODE=040. C=unchanged, L

=unchanged, CC=unchanged.

> CSRR CopySign
R(1)-C: 0-R(1)

Copythe sign bit of register R, (bit 1), into C and zero R(1). FORMAT=RGEN. OPCODE=041,

C=R(1}, L=unchanged, CC=unchangea

> DR,addr Divide Fullword
RIR+1/|EA|32>R; Remainder-R+1

Divide the 64-bit integer in registers R and R+1 by the 32-bit integer at addr, and put the

result in R and the remainder in R+1. The least significant bit of the dividendis in bit 64.

Overflow if the quotient is less than -(2**31) or greater than 2**31-1. R must be an even

register. FORMAT=MRGR, OPCODE=62, C=overflow/div by 0. L=unspecified, CC=un-

specified.

> DH R,addr Divide Halfword

R/|EA]16-RH; Remainder>RH

FDR 3059 12-10 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

Divide the 32-bit integer in register R by the 16-bit integer at addr, and put the quotientinto
bits 1-16 of R and the remainderinto bits 17-32 of R. Theleast significantbit of the dividend
is in bit 32. Overflow if the quotient is less than -(2**15) or greater than 2**15-1. FORMAT
=MRGR, OPCODE=72, C=overflow/div by 0, L=unspecified, CC=unspecified.

> DH1R_ Decrement Half Register by 1

RH-1-RH

Subtract one from RH and put the results into RH. FORMAT=RGEN, OPCODE=130, C=
overflow, L=carry, CC=result.

> DH2R_ Decrement Half Register by 2

RH-2>RH

Subtract two from RH and putthe result into RH. FORMAT=RGEN, OPCODE=131, C=
overflow, L=carry, CC=result.

> DM addr Decrement Memory Fullword

[EA|32-15|EA|32

Subtract one from the 32-bit integer at addr and putthe result into addr. FORMAT=MRNR,
OPCODE=60. C=unchanged, L=unchanged, CC=result.

> DMH addr Decrement Memory Halfword

[EA]16-14/EA|16
Subtract one from the 16-bit integer at addr and putthe result into addr. FORMAT=MRNR,
OPCODE=70, C=unchanged, L=unchanged, CC=result.

> DR1R_ Decrement Register by 1

R-13R

Subtract one from the contents of R and putthe result into R. FORMAT=RGEN, OPCODE=
124, C=overflow. L=carry, CC=result.

> DR2R_ Decrement Register by 2

R-2>R

Subtract two from the contents of R and putthe result into R. FORMAT=RGEN, OPCODE=
125, C=overflow, L=carry, CC=result.

> IH1 Increment Half Register by 1

RH+1-RH

Add oneto the contents of RH and putthe result into RH. FORMAT=RGEN, OPCODE=126,
C=overflow, L=carry, CC=result.

> {H2R Increment Half Register by 2

RH+2>RH

Addtwoto the contents of RH andputthe result into RH. FORMAT=RGEN, OPCODE=127.
C=overflow, L=carry, CC=result.

1 March, 1979 12-11 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

> IM addr Increment Memory Fullword

[EA]32+15[EA]32

Add one to the 32-bit integer at addr and put the result into addr. FORMAT=MRNR,
OPCODE=40, C=unchanged, L=unchanged, CC=result.

> IMH addr Increment Memory Halfword

[EA]164+14[EA]16

Add one to the 16-bit integer at addr and put the result into addr. FORMAT=MRNR,

OPCODE=50, C=unchanged, L=unchanged, CC=result.

> IR1 R_ IncrementRegister by 1

R+1-R

Add oneto the contents of register R and put the result in R. FORMAT=RGEN, OPCODE=

122, C=overflow, L=carry, CC=result.

> IR2 R_ Increment Register by 2

R+2>R

Add twoto the contents of register R and putthe result in R. FORMAT=RGEN, OPCODE=

123, C=overflow, L=carry, CC=result.

> M R,addr Multiply Fullword

R*[EA]32>RiR+1

Multiply the 32-bit integer in register R by the 32-bit integer at addr and put the 64-bit result

into R and R+1. The least significant bit is in bit position 64. R must be an evenregister.

FORMAT=MRGR, OPCODE=42, C=overflow, L=unspecified, CC=unchanged.

> MH R,addr Multiply Halfword

RH*[EAJ165R

Multiply the 16-bit integer in bits 1-16 of register R by the 16-bit integer at addr and putthe

32-bit result into R. Theleast significant bit is in bit position 32.FORMAT=MRGR, OPCODE

=52, C=overflow, L=unspecified, CC=unchanged.

> PID R_ Position For Integer Divide

RoR+1; R(1)-R(2-32)

Convert the 32-bit integer in register R to a 64 integer in registers R and R+1 by moving the

contents of R to R+1, and extending the sign in bit 1 of R through bits 2-32 of R. FORMAT=

RGEN, OPCODE=052, C=unchanged, L=unchanged, CC=unchanged.

> PIDHR Position Half Register For Integer Divide

RH=RL; R(1)>R(2-16)

Convert the 16-bit integer in RH to 32-bit integer in R by moving the contents of RH to RL,

and extendingthe sign in bit 1 through bits 2-16 of R. FORMAT=RGEN, OPCODE=053, C=

unchanged, L=unchanged, CC=unchanged.

FDR 3059 12-12 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

> PIM R_ Position After Multiply

R+13R

Convert the 64-bit integer in registers R and R+1 to a 32-bit integer in R by moving the
contents of R+1 to R. Overflowif a loss of precision would result. (i.e., bit 1 of R+1 is not the
same asall the bits of R). FORMAT=RGEN, OPCODE=50, C=overflow, L=unspecified, CC
=unspecified.

> PIMH R Position Half Register After Multiply

RL>RH

Convertthe 32-bit integer in register R to a 16-bit integer in RH by movingthe contents of RL
to RH. Overflow if a loss of precision would result. FORMAT=RGEN, OPCODE=51, C=
overflow, L=unspecified, CC=unspecified.

> S R,addr Subtract Fullword

R-[EA]32R
Subtract the 32-bit integer at addr from 32-bit integerin register R, and put the result into R.
FORMAT=MRGR, OPCODE=22, C=overflow, L=carry, CC=result.

> SH R,addr Subtract Halfword

RH-[EA]162RH
Subtract the 16-bit integer at addr from the 16-bit integer in bits 1-16 of register R and put
the result into bits 1-16 of R. FORMAT=MRGR, OPCODE=32, C=overflow, L=carry, CC=
results.

> SSM R_ Set Sign Minus

15R(1)
Set the sign bit of register R, (bit 1), equal to one. FORMAT=RGEN, OPCODE=042, C=
unchanged, L=unchanged, CC=unchanged.

> SSP R_ Set Sign Plus

05R(1)
Set the sign bit of register R, (bit 1), equal to zero. FORMAT=RGEN, OPCODE=043, C=
unchanged, L=unchanged, CC=unchanged.

> TC R_ Two’s ComplementRegister

-R+15R

Replace the contents of register R by its two’s complement. FORMAT=RGEN, OPCODE=
046, C=overflow, L=carry, CC=result.

> TCHR Two's Complement Half Register

-RH+1-RH

Replace the contents of RH by its two’s complement. FORMAT=RGEN, OPCODE=047, C=
overflow, L=carry, CC=result.

1 March, 1979 12-13 FDR 3059



12 INSTRUCTION DEFINITIONS—I1
 

 

» TMaddr Test Memory Fullword

[EA]32::0; set CC

Test the contents of addr andset condition code accordingly. FORMAT=MRNR, OPCODE=

44, C=unchanged, L=unchanged, CC=result.

> TMH addr Test Memory Halfword

[EA]16:0;set CC

Test the contents of addr and set condition code accordingly. FORMAT=MRNR, OPCODE=

54, C=unchanged, L=unchanged, CC=result.

INTEGRITY CHECK FOR HARDWARE—INTGY

Defined in Section 11.

EMCM Enter Machine Check Mode

LMCM Leave Machine Check Mode

MDEI Memory Diagnostic Enable Interleaved

MDII Memory Diagnostic Inhibit Interleaved

MDIW Memory Diagnostic Write Interleaved

MDRS Memory Diagnostic Read SyndromeBits

MDWC Load Write Control Register

RMC Clear Machine Check

VIRY Verify
XVRY Verify xis

INPUT/OUTPUT—I/O

> EIO addr Execute I/O

Interpret the low order 16bits of addr as a Prime 400 PIO instruction. Set EQ on successful

INA, OTA, SKS; OCP always sets NE. FORMAT=MRNR, OPCODE=34, C=unchanged. L=

unchanged, CC=result.

Summaryof instructions from section 11

CAI Clear Active Interrupt

ENB Enable Interrupts

ESIM Enter Standard Interrupt Mode

EVIM Enter Vectored Interrupt Mode

INH Inhibit Interrupts

IRTC Interrupt Return

IRTN Interrupt Return

KEY MANIPULATION—KEYS

Moveskeys to and from registers. See Section 9 for the formatof the keys.

> INK R_ Input Keys

1 Z, ~ r
g
) O 'D tr

y b a 3S ")70, C=unchanged, L=unchanged,

FDR 3059 12-14 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

K KR Output Keysad © m4

RH-~keys

Restore keys from RH. FORMAT=RGEN, OPCODE=071, C=loaded byinstruction, L=loaded
by instruction, CC=loaded by instruction.

Defined in Section 11:

RCB Reset C-Bit (Clear}

SCB Set C-Bit

LOGICAL OPERATIONS—LOGIC

> CMH RH Complement Half Register

NOT.RH-RH

Ones complement the contents of RH. FORMAT=RGEN, OPCODE=045, C=unchanged, L=
unchanged, CC=unchanged.

> CMR R_ Complement Register

NOT.R>R

Ones complement the contents of R. FORMAT=RGEN, OPCODE=044, C=unchanged, L=
unchanged, CC=unchanged.

> N R,addr AND Fullword

R.AND.|EA|324R

ANDthe contents of R and addr and putthe result into R. FORMAT=MRGR, OPCODE=03,
C=unchanged, L=unchanged, CC=unchanged.

> NH R,addr AND Halfword

RH.AND.|EA]16>RH

ANDthe contents of RH and addr and putthe result into RH. FORMAT=MRGR, OPCODE
=13, C=unchanged, L=unchanged, CC=unchanged.

> O R,addr OR Fullword

R.OR.|EA|324R

OR the contents of R and addr and put the result into R. FORMAT=MRGR, OPCODE=23. C
=unchanged, L=unchanged, CC=unchanged.

> OH R,addr OR Halfword

RH.OR.|EA}165RH
OR the contents of RH and addr and putthe result into RH. FORMAT=MRGR, OPCODE=
33, C=unchanged, L=unchanged, CC=unchanged.

> X R,addr_ Exclusive OR Fullword

R.XOR.|EA|32R

Exclusive OR the contents of R and addr and put the result into R. FORMAT=MRGR,
OPCODE=43, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 12-15 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

> XH R,addr Exclusive OR Halfword

RH.XOR.|EA]16RH

Exclusive OR the contents of RH and addrand putthe result into RH. FORMAT=MRGR.,
OPCODE=53, C=unchanged, L=unchanged, CC=unchanged.

LOGICAL TEST AND SET—LTSTS

Logical Test and Set (Logicize)

If the test is satisfied, then set the register equal to 1. If the test is not satisfied. then set the
register equalto 0. These instructions simplify the analysis of complex logical expressions.
The general formatis:

Condition Codes (C) LT

Register (blank) LE

If Half Register (H) EQ 0, then 1—R; else 0-R

Floating-Point [F] NE

Register GE

GT

For example: LCLT R means,if the condition codeis less than zero then set R equal to one,
else set R equalto zero. °

Mnemonic Function Opcode

LCLT R If CC<0, then 1— R: else 0 -R 150

LCLE R If CC <0, then1i-R: else0>R 151

LCEQ R If CC=0, then 1— R: else 0 +R 153

LCNE R If CC#0, then 1 > R: elseO +R 152

LCGE R If CC >0. then1 +R: elseO+R 154

LCGT R If CC>0. then 13> R: else 0 +R 155

FORMAT=RGEN, C=unchanged, L=unchanged. CC=unchanged.

Mnemonic Function Opcode

LLT R If R<0. then1 3 R; else OR 000

LLE R IfR <0.then1—>R:else0+R 001

LEQ R If R=0, then 1 —R:; else0-R 003

LNER If R40, then 1 > R: else O—R 002

LGE R If R>0, then1—5R: else0>R 004

LGT R If R>0, then 1 > R; else 0 +R 005

LHLT R If RH<0, then 1—R: else0-R N00

LHLE R if RH <0, then14+R;else04R Hid

LHEQ R If RH=0, then 1 > R; else 0 >R 013

LHNE R If RH#0, then 1 > R: else OR 012

LHGE R If RH >0, then1R: else 0+R 004

LHGT R If RH>0, then 1— R; elseO>5R 015

LFLT R If F<0, then1 +R; else0O>R 020,030

LFLE R If F <0, then1—5R; else 0>R 021.031

LFEQ R If F=0, then 1 > R; else OR 023,033

LFNE R If F40, then1 +R; else0>R 022.032

LFGE R If F > 0, then 1 > R; else0>R 024,034

LFGT R If F>0, then1 + R: else 0 5R 025,035

FDR3059 12-16 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

> LF R_ Logic set False

Set R equal to zero. FORMAT=RGEN, OPCODE=016, C=unchanged, L=unchanged, CC=
result.

> LT R_ Logic set True

Set R equal to one. FORMAT=RGEN, OPCODE=017, C=unchanged, L=unchanged, CC=
result.

MACHINE CONTROL—MCTL

Defined in Section 11.

CXCs Control Extended Control Store

HLT Halt

ITLB Invalidate STLB entry

LIOT Load TLB

LPID Load Process ID

LPSW Load Program Status Word

LWCS Load Writable Control Store

NOP No Operation

PTLB Purge TLB
RRST Restore Registers

RSAV Register Save

STPM Store Process Model Number

Wwcs Writable Control Store

XVRY Verify xis

MOVE DATA—MOVE

These instructions move data from one location to another.

> I R,addr Interchange Register and Memory—Fullword

Re|EA|32

Swap the contents of R and addr. FORMAT=MRGR, OPCODE=41. C=unchanged. L=
unchanged, CC=unchanged.

> ICBL R_ Interchange Bytes and Clear Left

RH(1-8)<+RH (9-16); 0|/RH(1-8)|

Swapbits 1-8 and bits 9-16 of RH. Thenset bits 1-8=0. FORMAT=RGEN, OPCODE=065. C
=unchanged, L=unchanged, CC=unchanged.

> ICBR R_ Interchange Bytes and Clear Right

RH(9-16}<2RH (1-8) :0--RH(9-16]

Swapbits 9-16 and bits 1-8 of RH. Thenset bits 9-16=0. FORMAT=RGEN, OPCODE=066, C
=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 12-17 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

> ICHL R_ Interchange Halfwords and ClearLeft

RH}RL:0-RH

Swap halves of R and set RH=0. FORMAT=RGEN, OPCODE=060, C=unchanged, L=

unchanged, CC=unchanged.

> ICHR R_ Interchange Register Halfwords and Clear Right

RH#RL;0-RL

Swap halves of R and set RL=0. FORMAT=RGEN, OPCODE=061, C=unchanged, L=

unchanged, CC=unchanged.

> IH R,addr Interchange Register and Memory—Halfword

RHe(EA]16

Swap the contents of RH and addr. FORMAT=MRGR, OPCODE=51, C=unchanged, L=

unchanged, CC=unchanged.

> IRB R_ Interchange Register Bytes

RH(1-8)<sRH(9-16)

Swapbits 1-8 of RH with bits 9-16 of RH. FORMAT=RGEN, OPCODE=064, C=unchanged,
L=unchanged, CC=unchanged.

> IRH R_ Interchange Register Halves

RH+RL

Swap halves of R. FORMAT=RGEN, OPCODE=057, C=unchanged, L=unchanged, CC=

unchanged.

> L R,addr_ Load Fullword

[EA]32>R

Load the contents of addr into R. FORMAT=MRGR, OPCODE=01, C=unchanged, L=

unchanged, CC=unchanged.

> LDAR R,addr Load Addressed Register

Stores the contents of R into the register specified by addr. There are three special cases of

this instruction which are summarized in Section 11 under LDLR. FORMAT=MRGR,

OPCODE=44, C=unchanged, L=unchanged, CC=unchanged.

> LH R,addr Load Halfword

[EA}162RH

Load the contents of addr into RH. FORMAT=MRGR, OPCODE=11, C=unchanged, L=

unchanged, CC=unchanged.

> LHL1 R,addr Load Halfword Left Shifted by 1

[EA]16.LS.1-RH

Left shift the contents of addr by 1 and put the result into RH. FORMAT=MRGR, OPCODE

=04, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 12-18 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

Yr> TYTa ™m 11 ¥ _ 1 TT 2 a

wr LHL2Z K,aaar LOad alfword Left Shifted by ;

[EA]16.LS.20RH

Left shift the contents of addr by 2 and putthe result into RH. FORMAT=MRGR, OPCODE
=14, C=unchanged, L=unchanged, CC=unchanged.

> ST R,addr Store Fullword

Ro[EA]32

Store the contents of R into addr. FORMAT=MRGR, OPCODE=21, C=unchanged, L=
unchanged, CC=unchanged.

> STAR R,addr Store Addressed Register

Stores the contents of the register specified by the contents of addr into R. There are three
special cases of this instruction which are summarized in Section 11 under LDLR. FORMAT
=MRGR, OPCODE=54, C=unchanged, L=unchanged, CC=unchanged.

> STCD R,addr Store Conditional Fullword

If R+1=[EA]32 then R[EA]32

If the contents of R+1 equals the contents of addr, then store the contents of R into addr.
FORMAT=MRGR, OPCODE=137, C=unchanged, L=unchanged, CC=result.

> STCH R,addr Store Conditional Halfword

If RL=[EA]16 then RH>|EA]16

If the contents of RL equal the contents of addr, then store the contents of RH into addr.

FORMAT=MRGR, OPCODE=136, C=unchanged, L=unchanged, CC=results.

> STH R,addr Store Halfword

RH=[EA]16

Store the contents of RH into addr. FORMAT=MRGR, OPCODE=31, C=unchanged, L=

unchanged, CC=unchanged.

PROGRAM CONTROL AND JUMP—PCTLJ

These instructions either transfer control to a different location or manipulate effective
addresses. They differ from branchinstructionsin the ability to move across segments. They
differ among themselves in the complexity of operations performed andin the handling of
the return address.

> EALB addr Effective Address to Link Base

EA-LB

Store the effective address of addr inthe link base register. FORMAT=MRNR, OPCODE=42,
C=unchanged, L=unchanged, CC=unchanged.

®» EAR R,addr Effective Address to Register

EA>R

Store the effective address of addr in R. FORMAT=MRGR, OPCODE=63, C=unchanged, L
—unchanged, CC=unchanged.

1 March, 1979 12-19 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 

 

> EAXB addr Effective Address to Temporary Base

EA-XB

Store the effective address of addr in the temporary base register. FORMAT=MRNR.
OPCODE=52, C=unchanged, L=unchanged, CC=unchanged.

> JMP addr Jump

EAPC

Jump to addr. FORMAT=MRNR, OPCODE=51, C=unchanged, L=unchanged, CC=un-
changed.

> JSR R,addr Jumpto Subroutine

- PC(16-32) -RH:EA=PC

Jump to addr and save the 16-bit word number position of the return address in .RH.
FORMAT=MRGR, OPCODE=73, C=unchanged, L=unchanged. CC=unchanged.

> JSXB addr Jumpand Set XB

PC>XB;EAPC

Jump to addr andsavethefull 32-bit return address in XB. FORMAT=MRNR. OPCODE=61.
C=unchanged, L=unchanged, CC=unchanged.

Summaryof instructions defined in section 11

ARGT Argument Transfer

CALF Call Fault Handler

PCL Procedure Call

PRTN Procedure Return

STEX Stack Extend

SVC Supervisor Call

PROCESS EXCHANGE—PRCEX

Defined in Section 11.

INBC Interrupt Notify

INBN Interrupt Notify

INEC Interrupt Notify

INEN Interrupt Notify

NFYB Notify

NFYE Notify
WAIT Wait

QUEUE MANAGEMENT—QUEUE

The instructions provided for queue manipulation are register generics with AP-pointer
providing the address to the queue control block. See Section 9 for a description of the queue
control block.

Data is to or from general register 2 and the results of the operation are given in the
condition codebits for later testing.

addr rafare tn a lanana
UULUCLGCLISNO iva i IPaue,

the physical in that a segment numberis provided instead of a physical address. Ring zero

antral hlaab in wintira
ALtLUL WAVEH iti Vii iudad 4ha uintial MWAIIA antn

Lid iiiuai yucue UUilIll

on
)

c
x — k diffare fra

Gil
n Mm
UE LOLS bivili

FDR 3059 12-20 1 March, 1979



INSTRUCTION DEFINITIONS—I 12
 

 

privilege is required to manipulate physical queues; any non-ring zero attempt to access
physical queues will result in a restrict mode violation fault. Also. the ring number
determines the privilege of access into both the control block and the data block.

> ABQ addr Add to Bottom of Queue

Addthe contentsof general register 2 to the bottom of the queue defined by the QCB (Queue
Control Block) at addr. The condition codes are set EQ if the queueis full. e.g.. the word
could not be added. FORMAT=RGEN, OPCODE=134. C=unchanged. L=unchanged. CC=
result.

> ATQ addr Add to Top of Queue

Add the contents of general register 2 to the top of the queue defined by the QCBat addr.
The condition codes are set EQ if the queue is full,. e.g.. the word could not be added.
FORMAT=RGEN, OPCODE=135, C=unchanged, L=unchanged. CC=result.

> RBQ addr Remove from Bottom of Queue

Removea single word from the bottom of the queue defined by the QCB at addr. and place
it in general register 2. But. if the queue is empty. set general register 2=0 and condition
codes EQ. FORMAT=RGEN, OPCODE=133, C=unchanged. L=unchanged. CC=result.

> RTQ addr Remove from Top of Queue

Removeasingle word from the top of the queue defined by the QCBat addr. and placeit
in generalregister 2. But if the queue is empty, set general register 2=0 and condition codes
EQ. FORMAT=RGEN, OPCODE=132. C=unchanged. L=unchanged. CC=result.

> TSTQ addr Test Queue

Set general register 2 to the numberof items in the queue defined by the QCBataddr.If the
queue is empty. set condition codes EQ. FORMAT=RGEN,. OPCODE=104. C=unchanged. L
=unchanged. CC=result.

SHIFT—SHIFT DATA

Register Shifts

> ROT R,addr Rotate

Rotate the bits in R. The low order 16 bits of addr tell how manybits to shift. in what
direction and whetherfull or halfword.

Bit 1=0=left

Bit t=l=right

Bit 2=0=word (32}

Bit 2=1=halfword

Bits 3-10=unused

Bits 11-16=two's complementof numberofbits to shift

FORMAT=MRGR,. OPCODE=24, C=shift extension. L=unspecified. CC=unchanged.

1 March, 1979 12-21 FDR 3059



12 INSTRUCTION DEFINITIONS—I
 
 

> SHA R,addr_ Shift Arithmetic

Shift R arithmetically. The low order 16 bits of addr tell how manybits to shift. in what

direction and whetherfull or halfword.

Bit 1=0=left

Bit 1=1=right

Bit 2=0=word (32)

Bit 2=1=halfword

Bits 3-10=unused

Bits 11-16=two's complementof numberofbits to shift

FORMAT=MRGR, OPCODE=15, C=shift extension, L=unspecified, CC=unchanged.

> SHLRaddr Shift Logical

Shift R logically. The low order 16 bits of addr tell how manybits to shift. in what direction

and whetherfull or halfword.

Bit 1—0=left

Bit 1=1=right

Bit 2=0=word(32)

Bit 2=1=halfword

Bits 3-10=unused

Bits 11-16=two's complement of numberofbits to shift

FORMAT=MRGR. OPCODE=05. C=shift extension. L=unspecified, CC=unchanged.

> SLi R Shift Register Left 1

Shift R left one bit logically. FORMAT=RGEN, OPCODE=072. C=shift extension, L=

unspecified, CC=unchanged.

> SL2 R_ Shift Register Left 2

Shift R left two bits logically. FORMAT=RGEN, OPCODE=073. C=shift extension. L=

unspecified, CC=unchanged.

P  SRIR Shift Register Right 1

Shift R right one bit logically. FORMAT=RGEN, GPCODE=074. C--shift extension, L=

unspecified, CC=unchanged.

> SR2R_ Shift Register Right 2

Shift R right two bits logically. FORMAT=RGEN, OPCODE=075, C=shift extension, L=

unspecified, CC=unchanged.

Half Register Shifts

> SHL1 R_ Shift Half Register Left 1

Shift RH left one bit logically. FORMAT=RGEN, OPCODE=076, C=shift extension, L=

unspecified, CC=unchanged.

FDR 3059 42-22 4 March. 1979



INSTRUCTION DEFINITIONS—I 12
 

aAwrrY,r ana Tm 2 TA —wint— Tf

Y SHL2 RR. Shift Half Register Left 2

Shift RH left two bits logically. FORMAT=RGEN, OPCODE=077, C=shift extension, L=
unspecified, CC=unchanged.

> SHR1 R_ Shift Half Register Right 1

Shift RH right one bit logically. FORMAT=RGEN, OPCODE=120. C=shift extension. L=
unspecified, CC=unchanged.

> SHR2 R_ Shift Half Register Right 2

Shift RH right two bits logically. FORMAT=RGEN. OPCODE=121. C=shift extension. L=
unspecified, CC=unchanged.

1 March, 1979 12-23 FDR 3059



 

Instruction
summarychart
 



INSTRUCTION SUMMARY

This chart contains a complete list of instructions for the Prime 100 through 500. Each
instruction is followed by its octal code, format, function information on addressing mode
and hardwareavailability, and a one line description of the instruction.

The columnsin the list are as follows:

R RESTRICTIONS

blank regular instruction

R instruction causes a restricted mode fault if ex-
ecuted in other than right 0

P instruction may causea fault depending on address

writable control store instruction, may be pro-
grammedin westo causea fault

Machinespecific—useonly on specified CPU. Usu-
ally an instruction reserved for operating system,
such as EPMJ.

MNEM a mnemonic namerecognized by the assembler PMA.
OPCODE Octal operation code of the instruction. The codes are indented so

that I/O instructions are isolated from generics, and the memory
reference and register instructions of the P500 are sorted apart
from the MRinstructions of the P100-400.

RI Register (R) and Immediate (I) forms available (P500 memory
reference instructions only); Y= YES, N = NO.

FORM Formatof instruction:

MNEMONIC DEFINITION

GEN Generic
AP Address Pointer
BRAN Branch
IBRN I-mode Branch
CHAR Character
DECI Decimal
PIO ProgrammedI/O
SHFT Shift

MR Memory Reference—non I-mode

MRFR Memory Reference—Floating Register
MRNR Memory Reference—Non Register

RGEN Register Generic

1 March, 1979 13-1 FDR 3059



13. INSTRUCTION SUMMARY CHART
 

 

FUNC

MODE

123

Column

FDR 3059

Function of instruction

MNEMONIC DEFINITION

ADMOD Addressing Mode
BRAN Branch
CHAR Character
CLEAR Clear field
DECI Decimal Arithmetic
FIELD Field Register
FLOAT Floating Point Arithmetic
INT Integer
INTGY Integrity

IO Input/Output
KEYS Keys
LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control
MOVE Move

PCTL] Program Control and Jump
PRCEX Process Exchange
QUEUE Queue Control
SHIFT Register Shift
SKIP Skip

Addressing modesin whichinstruction functions as defined:

S Sectored
R_ Relative
V_ 64V (P400-P500)
I 321 (P500)

Howinstruction is implemented

1 = Prime 100, 200, 300 series
2 = Prime 400 series
3 = Prime 500 series

Codesare:

- Not implemented. Do not use this mnemonic on this CPU.
H Implemented by standard hardware.
O Implemented by hardware option or UII library if option is

not present.

Implemented by UII library
UII on 100, 200, hardware on 300
Optional on 100, 200, hardware on 300
Not implemented on 100, optional on 200, 300
UII on 100, optional on 200, 300
Not implemented on 100, hardware on 200, 300
Not implemented on 100, 200, hardware on 300
Not implemented on 100, optional on 200, hardware on 300

Howinstruction affects C and L bits, codesare:
C and L are unchanged
C = unchanged, L = carry
C = overflow status, L = carry
C = overflowstatus, L = unspecified
C =status extension, L = unspecified
C = result, L = unspecified

Q
O
A
z
a
m
M
O
o
O
w
r
C

o
r

w
n
r
m
s
r
e

|

13-2 1 March, 1979



INSTRUCTION SUMMARY CHART 13
 

 

CC

DESCRIPTION

R MNEM OPCODE RI

A

A1A
A2A

ABQ
ABQ

ACA
ADD
ADL
ADLL

ADLR
AH

ALFA 0
ALFA 1

ALL
ALR

ALS
ANA —
ANL
ARFA 0
ARFA 1
ARGT

ARL
ARR

ARS
ATQ

ATQ
BCEQ

BCGE
BCGT

BCLE
BCLT

BONE
BCR

BCS
BDX

BDY
BEQ

BFEQ
BFEQ

BFGE
BFGE

BFGT
pram
Drul

BFLE
BFLE

02

141206

140304

141716

134

141216

06

06 03

141000

014

12

001301

001311

0414XX

0416XX

O415XX

03

03 03

161

171

000605

0404XX

0406XX

0405XX

141717

135

141602

141605

141601

141600

141604

141603

141705

141704

140734

140724

140612

141612

122

141615

125

141611

12]

141610

120

1 March, 1979

B CG —uneswa

7 C=loaded byinstruction, L = loaded byinstruction

Howinstruction affects condition codes, codes are:
- condition codesare notaltered
1 condition codes are set to reflect the result of arithmetic

operation or compare
4 condition codesaresetto reflect result of branch, compare or

logicize operandstate.
5 condition codes are indeterminant
6 condition codes are loaded byinstruction
7 special results are shownin condition codesfor this instruc-

tion

a brief description of the instruction

t
a

FORM FUNC MODE 1 2 3 C CC DESCRIPTION

YY MRGR INT I — — H 2 1 Add Fullword

GEN INT SRV H H H 2 1 Add OnetoA
GEN INT SRV H H H 2 1 Add TwotoA

AP QUEUE V — H H — 7 Add to Bottom of Queue
AP QUEUE I — ~ H — 7 Add to Bottom of Queue

GEN INT SRV H H H 2 1 Add C-Bit toA
MR INT SRV H H H 2 1 Add

MR INT Vv — H H 2 1 Add Long

GEN INT Vv — H H 2 1. Add LinkBit to L

RGEN INT I — — H 2 1 Add Link toR
YY MRGR INT I — — H 2 1. Add Halfword

GEN FIELD Vv — H H 6 5 Addl to Field Address

GEN FIELD Vv — H H 6 5. Add

L

to Field Address

SHFT SHIFT SRV H H H 4 — ALeft Logical
SHFT SHIFT SRV H H H 4 — ALeft Rotate

SHFT SHIFT SRV H H H 2 — ALeft Shift
MR LOGIC SRV H H H — — AND

MR LOGIC V — H H — — AND Long
RGEN FIELD I — — H 6 — Add

R

to Field Address

RGEN FIELD I — — H 6 — Add Rto Field Address

GEN PCTLI VI — H H 6 5 Argument Transfer

SHFT SHIFT SRV H H H 4 — ARight Logical
SHFT SHIFT SRV H H H 4 — ARightRotate

SHFT SHIFT SRV H H H 4 — ARight Shift
AP QUEUE V — H H — 7 Add to Top of Queue

AP QUEUE I — — H — 7 Add to Top of Queue
BRAN BRAN VI — H H — — Branchif CC -0

BRAN BRAN VI — H H — — Branch if CC 20
BRAN BRAN VI — H H — — Branch if CC >0

BRAN BRAN VI — H H — — Branchif CC <0
BRAN BRAN VI — H H — — Branch if CC <0

BRAN BRAN VI — H H — — Branch if CC eNEe 0
BRAN BRAN VI — H H — — Branchif C-Bit = 0

BRAN BRAN VI — H H ~— — Branchif C-Bit = 1
BRAN BRAN Vv — H H — — Decrement X and branch if X eNEe 0

BRAN BRAN Vv ~- H H — -— Decrement Y and branch if Y eNE* 0
BRAN BRAN V — H H — 4 Branch if A =0

BRAN BRAN Vv — H H — 4 Branch if F = 0
IBRN BRAN I — — H — 4 Branch if F =o

BRAN BRAN Vv — H H — 4 Branchif F >0
IBRN BRAN I — — H — 4 BranchifF>0

BRAN BRAN Vv — H H — 4 Branch if F >0
iIBRN BRAN I — — H — 4 Branchif F>0

BRAN BRAN Vv — H H — 4 Branch if F <0

IBRN BRAN I — — H — 4 BranchifF <0

13-3 FDR 3059



13 INSTRUCTION SUMMARY CHART
 

 

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 CG CG DESCRIPTION

BFLT 141614 BRAN BRAN Vv ~ H H — 4 Branchif F <0

BFLT 124 IBRN BRAN I — — H — 4 Branch if F <0

BFNE 141613 BRAN BRAN Vv — H H — 4 Branchif F eNEe0

BFNE 123 IBRN BRAN I — — H — 4 Branchif F eNE*0

BGE 140615 BRAN BRAN Vv — H H — 4 Branchif A>0

BGT 140611 BRAN BRAN Vv — H H — 4 BranchifA>0

BHD1 144 IBRN BRAN I — — H — — Decrement H by One; Branch if H *NE« 6

BHD2 145 IBRN BRAN I — — H — — Decrement H by Two; Branch if H eNEe 0

BHD4 146 IBRN BRAN I — — H ~— — Decrement H by Four; Branch if H eNE* 0

BHEQ 112 IBRN BRAN I — — H — 4 Branch if H=0

BHGE 105 IBRN BRAN I — — H — 4 Branchif H >0

BHGT 111 IBRN BRAN I — — H — 4 Branchif H >0

BHI1 140 IBRN BRAN I — — H — — Increment H by One;Branch if H eNEe0

BHI2 141 IBRN BRAN I — — H — — Increment H by Two;Branchif H «NEe 0

BHI4 142 IBRN BRAN I — — H — — Increment H by One; Branch if H eNEe 0

BHLE 110 IBRN BRAN I — — H — 4 Branch if H <0

BHLT 104 IBRN BRAN I — — H — 4 BranchifH <0

BHNE 113 IBRN BRAN I — — H — 4 Branchif H is not equal to 0

BIX 141334 BRAN BRAN Vv — H H — — Increment X and Branch if X e-NEe 0

BIY 141324 BRAN BRAN Vv — H H — — Increment Y and Branch if Y -NE« 0

BLE 140610 BRAN BRAN Vv — H H — 4 Branchif A <9

BLEQ 140702 BRAN BRAN Vv — H H — 4 Branch if L=0

BLGE 140615 BRAN BRAN Vv — H H — 4 Branchis L >0

BLGT 140701 BRAN BRAN Vv — H H — 4 BranchifL>0

BLLE 140700 BRAN BRAN Vv — H H — 4 BranchifL <0

BLLT 140614 BRAN BRAN Vv — H H — 4 BranchifL <0

BLNE 140703 BRAN BRAN Vv — H H — 4 Branchif L eNEe0

BLR 141707 BRAN BRAN VI — H H — — Branchif L-Bit = 0

BLS 141706 BRAN BRAN VI — H H — Branchif L-Bit = 1 (Set)

BLT 140614 BRAN BRAN Vv — H H — 4 Branchif A <0

BMEQ_ 141602 BRAN BRAN VI — H H — — Branchif Magnitude = 0

BMGE 141706 BRAN BRAN VI — H H — — Branchif Magnitude is > 0

BMGT 141710 BRAN BRAN VI — H H — ~~ Branch if Magnitudeis > 0

BMLE 141711 BRAN BRAN VI — H H — — Branch if Magnitudeis < 0

BMLT 141707 BRAN BRAN VI — H H — — Branch if Magnitude is < 0

BMNE 141603 BRAN BRAN VI — H H — Branch if Magnitude is eNE* 0

BNE 140613 , BRAN BRAN V — H H — 4 Branchif A *NEe0
BRBR 040-077 IBRN BRAN I — — H — Branchif R bit n= 0

BRBS 000-037 IBRN BRAN I — — H — — Branchif R bitn=1

BRD1 134 IBRN BRAN I — — H — — Decrement R by One; Branch if R -NE* 0

BRD2 135 IBRN BRAN I — — H — — Decrement R by Two; Branch if R sNE«d

BRD4 136 IBRN BRAN I — — H — — Decrement R by Four; Branch if R eNE« 0

BREQ 102 IBRN BRAN I — — H — 4 Branch if R = 0

BRGE 105 IBRN BRAN I — — H — 4 Branchif R 20

BRGT 101 IBRN BRAN I — — H — 4 Branchif R>0

BRI1 130 IBRN BRAN I — — H — — Increment R by one and branchif eNE* 0

BRI2 131 IBRN BRAN I — — H — — Increment R by2 and branch if eNEe 0

BRI4 132 IBRN BRAN I — — H — — Increment R by 4 and branch if NE* 0

BRLE 100 IBRN BRAN I — — H — 4 BranchifR <0

BRLT 104 IBRN BRAN J — — H — 4 BranchifR <0

BRNE 103 IBRN BRAN I — — H — 4 Branch if R e-NEe0

Cc 61 YY MRGR_ INT I ~~ — H 1 1 Compare Fullword

R CAI 000411 GEN 10 SRVI H H H — — Clear Active Interrupt

CAL 141050 GEN CLEAR SRV H H H — — Clear A Left

CALF 000705 AP PCTL] VI — H H 6 5 Call Fault Handler

CAR 141044 GEN CLEAR SRV H H H — Clear A Right Byte

CAS 11 MR SKIP SRV H H H 1 1 Compare A and Skip

CAZ 140214 GEN SKIP SRV H H H 1. 1. Compare A with Zero

CEA 000111 GEN PCTLI SR H H H — — Compute Effective Address

CGT 001314 GEN BRAN Vv — H H 6 5 Computed GOTO

CGT 026 RGEN BRAN I — — H — 7 Computed GOTO

CH 71 YY MRGR INT I — H 1. 1. Compare Halfword

CHS 140024 GEN INT SRV H H H — — Change Sign

FDR 3059 13-4 1 March, 1979



INSTRUCTION SUMMARY CHART 13
 

 

K MNEM OP CODE

CHS 040

CLS 11 03

CMA 140401
CMH 045

CMR 44

CR 056

CRA 140040
CRB 140015
CRBL 062

CRBR 063

CRE 141404
CREP 10 02

CRHL 054

CRHR 055
CRL 140010

CRLE 141410

CSA 140320

CSR 041
R CXCS 001714

D 62
DAD 06

DBL 000007
DBLE 106

DFA 15,17
DFAD 06 02

DFC 05,07

DFCM 140574

DFGM 144

DFCS 11 02

DFD 31,33
DFDV 17 02

DFL 01,03

DFLD 02 02

DFLX 15 02

DFM 25,27

DFMP 16 02

DFS 21,23

DFSB 07 02
DFST 14,13

DFST 04 02

DH 72

DH1 130
DH2 131

DIV 17

DIV 17

DLD 02

DM 60

DMH 70

DR1 124

DR2 125
DRX 140210

DSB 07

DST 04

DVL 17 03

E168 000011

E321 001010
E32R 001013

E32S 000013

E64R 001011

E64V 000010
EAA 01 01

EAFA 0 001300

1 March, 1979

Ri

YY

YY

YY

YY

YY

YY

YY

YY

NN

NN

nara

RGEN

MR

GEN

RGEN

RGEN

RGEN

GEN

GEN

RGEN

RGEN

GEN

MR

RGEN

RGEN

GEN

GEN

GEN

RGEN

GEN

MRGR

MR

GEN

RGEN

MRFR

MR

MRFR

GEN

RGEN

MR

MRFR

MR

MRFR

MR

MR

MRFR

MR

MRFR

MR

MRFR

MR

MRGR

RGEN

RGEN

MR

MR

MR

MRNR

MRNR

RGEN

RGEN

GEN

MR

MR

MR

GEN

GEN

GEN

GEN

GEN

GEN

MR

AP

INT
LOGIC
LOGIC
LOGIC
LOGIC
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
PCTL]
CLEAR
CLEAR
CLEAR
CLEAR
MOVE
MOVE
MCTL
INT
INT
INT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
INT
INT
INT
INT
INT
MOVE
INT
INT
INT
INT
SKIP
INT
MOVE
INT
ADMOD
ADMOD
ADMOD
ADMOD
ADMOD
ADMOD
MOVE
FIELD

SRV

SRV

“
S
w
e

SRV

SRV
|

I
x

| |

=
x

|

=
x

|

>
|

|
|

m
o
l

i

xr
|

=
|

=
|

r
m
a

>
|

|
r
m
]

=
|

| x
|

>
|

x
|

0
|

x
|

>
|

x

r
x

x
|

>

r
r
r

r
t
s
|

=x
x

|
r
o
i

T
r
i
n
|

13-5

T
o
r
t

r
t
r
a
t
e

rT
t
t

t
r
e
t
r
t
t

rT
r
r
r
t
T
t
r
t
r
t
r
t
t
t

rt
t
r
t
t
r
e
t
r

I
t
t
I
t
t
t
a
r
t
a
r
t
t
t
r
t
r
t
t
t
s
r

CGC DESCRIPTION

=
o

a
|

A
o
n
W
o
o
o
t
n

a
A
o

wn
g
n
w
a

w
t

|
m
e

S
e

o
w

e
s

Change Sign

Compare L and Skip

Complement A

Complement H

Complement R

Clear

Clear A

Clear B

Clear High Byte 1 Left

Clear High Byte 2 Right

Clear E

Call Recursive Entry Procedure

Clear Left Half Register

Clear Right Half Register

Clear L

Clear L and E

Copy Sign of A

Copy Sign of R

Control Extended Control Store

Divide Fullword

Double Add

Enter Double Precision Mode

Convert Single to Double Float

Double Floating Add

Double Floating Add

Double Floating Compare

Double Floating Complement

Double Floating Complement

Double Floating Compare and Skip

Double Floating Divide

Double Floating Divide

Double Floating Load

Double Floating Load

Load Double Floating Index

Double Floating Multiply

Double Floating Multiply

Double Floating Subtract

Double Floating Subtract

Double Floating Store

Double Floating Store

Divide Halfword

Decrement H by 1

Decrement H by 2

Divide

Divide

Double Load

Decrement Fullword

Decrement Halfword

Decrement R by One

Decrement R by Two

Decrement and Replace X

Double Subtract

Double Store

Divide Long

Enter 16S Mode

Enter 321 Mode

Enter 32R Mode

Enter 32S Mode

Enter 64R Mode

Enter 64V Mode

Effective Address to A

Effective Address to Field Address

Register 0

FDR 3059



13 INSTRUCTION SUMMARY CHART
 

 

R MNEM

EAFA 1

EAL
EALB

EALB
EAR

EAXB
EAXB

EIO
EIO

EMGM
ENB

ENTR
EPM]J

R EPMX
ERA

ERL
R ERMJ

W
m

w
A

a ERMX

ESIM

EVIM
EVM]

EVMX
FA

FAD
FC

FCM
FCM

FCS
FD

FDBL
FDV

FL
FLD

FLOT
FLT

FLTA
FLTH

FLTL
FLX

FM
FMP

FRN
FRN

FS
FSB

FSGT
FSLE

FSMI
FSNZ

FSPL
FST

FST
FSZE

R HLT

a
w
x

H

IAB
ICA

ICBL
ICBR

FDR 3059

OP CODE RI

001310

01 01
42

13 02
63

52
12 02

34
14 01

000503
000401

01 03
000217

000237
05

05 03
000701

000721

000415

000417
000703

000723
14,16

06 01
04,06

140530
100

11 01
30,32

140016
17 01

00,02
02 01

140550
705,115

140532
102,112

140535
15 O01

24,26
16 01

140534
107

20,22
07 01

140515
140514

140512
140511

140513
10,12

04 01
140510

000000
41

000201
141340

065
066

NN

NN

NN

NN

YY

YY

YY

YY

YY

YY

NN

YN

FORM

AP

MR
MRNR

MR
MRGR

MRNR
MR

MRGR
MR

GEN
GEN

MR
MR

MR
MR

MR
MR

MR

GEN

GEN
MR

MR
MRFR

MR
MRFR

GEN
RGEN

MR
MRFR

GEN
MR

MRFR
MR

GEN
RGEN

GEN
RGEN

GEN
MR

MRFR
MR

GEN
RGEN

MRFR
MR

GEN
GEN

GEN
GEN

GEN
MRFR

MR
GEN

GEN
MRGR

GEN
GEN

RGEN
RGEN

FUNG MODE 1 2

FIELD VI — H

PCTL] V —H
PCTL] I — —

PCTL] V — H
PCTL] I —_ —

PCTL] I —
PCTL] V —H

10 I _~ —
10 V —H

INTGY SRVI E H
10 SRVI H H

PCTL] R AH
MCTL SR H —

MCTL SR H —
LOGIC SRV H H

LOGIC V — H
MCTL SR H —

MCTL SR H —

10 SRVI H H

10 SRVI H H
MCTL SR F

MCTL SR F —
FLPT 1 —

FLPT RV A H
FLPT 1 —

FLPT RV CH
FLPT =I ——

FLPT RV AH
FLPT =I ——

FLPT Vv — H
FLPT RV DH

FLPT I ——
FLPT RV AH

FLPT  R CH
FLPT I —_ —

FLPT Vv — H
FLPT I ——

FLPT V —H
FLPT RV AH

FLPT I _
FLPT RV DH

FLPT RV DH
FLPT =I —_ =

FLPT I —
FLPT RV AH

FLPT RV CH
FLPT RV CH

FLPT RV CH
FLPT RV C H

FLPT RV CH
FLPT iI — -

FLPT RV AH
FLPT RV CH

MCTL SRVI H H
MOVE I —

MOVE SRV H H
MOVE SRV H H

MOVE 1 —~ —
MOVE I -~ —

13-6

x
[|
o
m
o

m
r
t
r
t

r
t

r
a
t

|
x

x
l

|
j
o
r

m
h

m
t

r
t

p
r
t
r
t

r
i
t
r
t

z
l

m
t
o
m
t

m
t

m
i
t
r
t

o
r
t
r
t

r
i
t
r
m

t
r
o

r
a
t

|
w
e

w
w

2
0

[|
OW

w
w

w
h

ww
w
e

w
w

|
w
|

pe
el

CC

w
l

=
V
I

u
n

|
o
t

O
l

o

DESCRIPTION

Effective Address to Field Address

Register 1

Effective Address to L
Effective Address to LB

Effective Address to LB
Effective Address to R

Effective Address to XB
Effective Address to XB

Execute I/O
Execute I/O

Enter Machine Gheck Mode

Enable Interrupts

Enter Recursive Procedure Stack
Enter Paging Mode and Jump

Enter Paging Mode and Jump to XCS
Exclusive OR to A

Exclusive OR to L
Enter Restricted Execution Mode

and Jump

Enter Restricted Execution Mode

and Jump to WCS
Enter Standard Interrupt Mode

Enter Vectored Interrupt Mode
Enter Vectored Mode and Jump

Enter Virtual Mode and Jump te WCS
Floating Add

Floating Add
Floating Compare

Floating Complement
Floating Complement

Floating Compare and Skip
Floating Divide

Convert Single to Double Float
Floating Divide

Floating Load
Floating Load

Convert 31-Bit Integer to Float
Convert Integer to Floating

Convert Integer to Floating
Convert Halfwordto Floating

Convert Long Integer to Floating
Load Double Word Index

Floating Multiply
Floating Multiply

Floating Round
Floating Round

Floating Subtract
Floating Subtract

Floating Skip if > 0
Floating Skip < 0

Floating Skip if Minus
— Floating Skip if Not Zero

Floating Skip if Plus
Floating Store

Floating Store
Floating Skip if Zero

— Halt
Interchange Register and Memory-

Fullword

Interchange A and B
Interchange Characters in A

Interchange Bytes and Clear Left
Interchange Bytes and Clear Right

1 March, 1979



INSTRUCTION SUMMARY CHART 13
 

 

a3

TH1
IH2

ILE
IM

IMA
IMH

INA
INBG

INBN
INEC

INEN
INH

INK
INK

INT
INT

INTA
INTH

INTL
IR1

IR2
IRB

IRH
IRS

R IRTC
R IRTN

IRX
R ITLB

JDX
JEQ

JGE
JGT

JIX
JLE

JLT
JMP

JMP
JNE

JSR
JST

JSX
JSXB

JSXB
ISY

m
e

y
r

W
I

L
LCEQ

LCEQ
LCGE

LGGE
LCGT

LCGT
LCLE

LCLE
LCLT

LCLT
LCNE

LCNE

061

141140

141240

51

126

127

141414

40

13

50

04

001217

001215

001216

001214
001001

000043
070

140554

103,113

140531

101,111

140533
122

123

064

057
12

000603
000601

140114
000615

15 02
02 03

07 03
05 03

15 03
04 03

06 03
51

01
03 03

73
10

35 03
61

14 02
14

01
141503

153
141504

154
141505

155
141501

151
141500

150
141502

152

1 March, 1979

YN

NN

NN

NN

NN

YY

RGEN
RGEN

GEN
MRNR

MR
MRNR

PIO
AP

AP
AP

AP
GEN

GEN
RGEN

GEN
RGEN

GEN
RGEN

GEN
RGEN

RGEN
RGEN

RGEN
MR

GEN
GEN

GEN
GEN

MR
MR

MR
MR

MR
MR

MR
MRNR

MR
MR

MRGR
MR

MR
MRNR

MR
MR

MRGR
GEN

RGEN
GEN

RGEN
GEN

RGEN
GEN

RGEN
GEN

RGEN
GEN

RGEN

FUNG

MOVE

MOVE
MOVE

MOVE
MOVE

INT
INT

MOVE
INT

MOVE
INT

IO
PRCEX

PRCEX
PRCEX

PRCEX
10

KEYS
KEYS

FLPT
FLPT

FLPT
FLPT

FLPT
INT

INT
MOVE

MOVE
SKIP

IO
IO

SKIP
MCTL

PCTLJ
PCTL]

PCTL]
PCTL]

PCTL]
PCTL]

PCTL]
PCTL]

PCTLI
PCTL]

PCTL]
PCTL]

PCTL]
PCTLI

PCTL]
PCTL]

MOVE
LTSTS

LTSTS
LTSTS

LTSTS
LTSTS

LTSTS
LTSTS

LTSTS
LTSTS

LTSTS
LTSTS

LTSTS

MOVE 1 2 3

RV

Vi
VI

SRV

“~
p
A

H
D

w
e
e
w
t

w
r

<
a

=
=

% <
i

<
<

4
%

<
n

x
o

x
]

,
m

x
|

m
o
a
t

+

|

|
=

|
oc

j
o

m
t

r
t

r
i
t

|
a

|
b

j
a

p
r
o
,
r
y
}
s

|

T
m
t

r
t

r
t

r
t

r
t

e
e

e
t

e
t

e
t

e
t

e
m

e
t

r
t

r
r

r
r

t
t
G
o
r
t

r
t

r
t

e
t

r
t

r
t

r
t

p
t

r
t

a
t

y
e

p
R
m
l

r
l

r
t

r
h

r
r

r
l

|
>

>
r
P
p
r

p
e
r

|
|

|
i

|
|

|
=

x
l

p
m

m
l
o
m
l

xm
l

w
l

w
l

w
t

y
z

r
l

s
z

| x
|

13-7

G CC DESCRIPTION

|
F
o
a

o
|

P
e

w
o

w
o

w
o

|

—

Interchange Halves and Clear Left

Interchange Halves and Clear Right
Interchange and Clear Left

Interchange and Clear Right
Interchange Register and Memory

Halfword

Increment by One
Increment by Two

Interchange L and E
Increment Fullword

Interchange Memory and A
Increment Halfword

Input to A

Interrupt Notify

Interrupt Notify
Interrupt Notify

Interrupt Notify
Inhibit Interrupts

Input Keys

Save Keys

Convert Floating to Integer
Convert Floating to Integer

Convert Floating io Integer
Convert Floating to Halfword Integer

Convert Floating to Integer Long
Increment R by One

Increment R by Two
Interchange Bytes

Interchange Halves
Increment MemoryReplace and Skip

Interrupt Return

Interrupt Return

Increment and Replace X
Invalidate STLB entry

Jump and Decrement X
Jumpif = 0

Jump if >0
Jump if >0

Jump and increment X
Jump if <0

Jumpif <0
Jump

Jump
umpif eNEe 0

Jump to Subroutine
Jump and Store PC

Jump and Store Return in X
Jump and Store Return in XB

Jump and Store Return in XB
Jump and Store Return in Y

Load
Test CC Equal to 0 and Set A

Test CC = 0 and Set R
Test CC >0 and Set A

Test CC > 0 and Set R
Test CC > 0 and Set A

Test CC > 0 and Set R

Test CC <0 and Set A

Test CC <0 and Set R
Test CC <0 and Set A

Test CC <0 and Set R
Test CC eNEe 0 and Set A

Test CC eNEe 0 and Set R

FDR 3059



13 INSTRUCTION SUMMARY CHART
 

 

R MNEM OPCODE RI FORM FUNG

LDA 02 MR MOVE
LDAR 44 NN MRGR MOVE
LDC 0 162 RGEN CHAR
LDC 1 (172 RGEN CHAR
LDC 0 001302 CHAR CHAR
LDC 1 001312 CHAR CHAR
LDL 02 03 MR MOVE

P LDLR 05 01 MR MOVE
LDX 35 MR MOVE
LDY 35 01 MR MOVE
LEQ 140413 GEN _LTSTS
LEQ 003 RGEN LTSTS
LF 140416 GEN  LTSTS
LF 016 RGEN LTSTS
LFEQ =141113 GEN LTSTS
LFEQ 023,033 RGEN LTSTS
LFGE 141114 GEN  LTSTS
LFGE 024,034 RGEN LTSTS
LFGT =141115 GEN LTSTS
LFGT 025,035 RGEN LTSTS
LFLE 144111 GEN  LTSTS
LFLE 021,031 RGEN LTSTS
LFLI 0 001303 BRAN FIELD
LFLI 1 001313 BRAN FIELD
LFLT —«-:141110 GEN LTSTS
LFLT 020,030 RGEN LTSTS
LFNE =:141112 GEN LTSTS
LFNE 022,032 RGEN LTSTS
LGE 140414 GEN  LTSTS
LGE 004 RGEN LTSTS
LGT 140415 GEN LTSTS
LGT 005 RGEN LTSTS
LH 11 YY MRGR MOVE
LHEQ 013 RGEN LTSTS
LHGE 004 RGEN LTSTS
LHGT 015 RGEN LTSTS
LHL1 =04 YN MRGR MOVE
LHL2 14 YN MRGR MOVE
LHLE 011 RGEN LTSTS
LHLT —_000 RGEN LTSTS
LHNE 012 RGEN LTSTS

R LIOT 000044 AP MCTL
LLE 140411 GEN  LTSTS
LLE 001 RGEN LTSTS
LLEQ =141513 GEN LTSTS
LLGE 140414 GEN LTSTS
LLGT 141515 GEN LTSTS
LLL 0410XX SHFT SHIFT
LLLE 141511 GEN LTSTS
LLLT 140410 GEN _LTSTS
LLNE =:141512 GEN  LTSTS
LLR 0412XX SHFT SHIFT
LLS 0411XX SHFT SHIFT
LLT 140410 GEN LTSTS
LLT 000 RGEN LTSTS

R LMCM _000501 GEN INTGY
LNE 140412 GEN LTSTS
LNE 002 RGEN LTSTS

R LPID 000617 GEN  MCTL
R LPMJ 000215 MR =MCTL
R LPMX 000235 MR  MCTL
R LPSW 000711 AP MCTL

FDR 3059

MODE

SRV

SRV

SRV

SRV

m
e
m
r
e
d
c
s

SRV

SRV

e
m
a
n
a
t
e

1 2 3 C CC DESCRIPTION

x mh

m
r
|
u
y

u
i

il

;
mo
),
|

2
]
m
a
r
r
r
r
s

|
| x=

| =
r
r
r

|

C
E
E

R
E
U
T
E
R
T
R
U
E

ET
M
E
M
E
L
E
E
T
E
T
L
T
M
T
E
T
R
E

T
L
E
T
L
E
E
T
T
T
E
E
E
t
e
t
e
t
e
t
T
e
T
s

|
ZI
]

x
|

ao an

oo x
|

r
o
z
i

|

T
E
r
T
r
t
r
T
i
r
i
r
I
a
r
t

|

i
w

i
o

t
o
y

[

|

13-8

=

»
b
p

&
P
F
P
F
P
f
P

pA
b
o
p
P
p

fF
D
F

|
l
a
e
w

|
B
p
F
p
P
o

ff
Pp

ob
|
e
a
e

|
d
o
e

|
B
D

Load A

Load From Addressed Register

Load Character

Load Character

Load Character

Load Character

Load Long

Load From Addressed Register

Load X

Load Y

Test A=0;SetA

Test R = 0; Set R

Logic Set A False

Logic Set R False

Test F = 0; Set A

Test F = 0;Set R

Test F >0; Set A

Test F >0; Set R

Test F >0; Set A

Test F >0; Set R

Test F <0; Set A

Test F <0; Set R

Load Field Length Register 0

Load Field Length Register 1

Test F< 0; Set A

Test F< 0; Set R

Test F eNEe 0; Set A

Test F eNEe 0; Set R

Test A20; Set A

Test R > 0; Set R

Test A>0; Set A

Test R > 0; Set R

Load Halfword

Test H = 0; Set H

Test H > 0; Set H

Test H >0; Set H

Load Halfword Left Shifted by 1

Load HalfwordLeft Shifted by 2

Test H < 0; Set H

Test H < 0; Set H

Test H eNEe 0; Set H

Load I/O TLB (Prime 750 only)

Test A <0; Set A

Test R< 0; Set R

Test L = 0; Set A

Test L>0; Set A

Test L>0; Set A

Long Left Logical

Test L<0; Set A

Test L< 0; Set A

Test L eNEe 0; Set A

Long Left Rotate

Long Left Shift

Test A<0; Set A

Test R <0; Set R

Leave Machine Check Mode

Test A eNEe 0; Set A

Test R eNEe 0; Set R

Load Process ID

Leave Paging Mode and Jump

Load Program Status Word

1 March, 1979



INSTRUCTION SUMMARY CHART 13
 

 

R MNEM OPCODE

LRL 0400KX

LRR 0402XX

LRS 0401XX

LT 140417

LT 017

R LWCS 001710

M 42

R MDEI 001304

R MDI 001305
R MDIW 001324

R MDRS 001306
R MDWC =001307

MH 52

MIA 64

MIA 12 01

MIB 74

MIB 13 01

MPL 16 03

MPY 16

MPY 16

N 03

R NFYB 001211

R NFYE 001210

NH 13

NOP 000001

NRM 000101

O 23

R OCP 14

OH 33

ORA 03 02

R OTA 74

OTK 000405

OTK 071

PCL 41

PCL 10 02

PID 000211

PID 052

PIDA 000115

PIDH 053

PIDL 000305

PIM 000205

PIM 50

PIMA 000015

PIMH 51

PIML 000301

PRTN 000611

R PTLB 000064

RBQ 141715
RBQ 133
RCB 140200

R RMC 000021

ROT 24
RRST 000717

RSAV 000715

RTN 000105

RTQ 141714

RTQ 132

S 22

S1A 140110

SZA 140310

SAR 10026X

SAS 10126X%

1 March, 1979

YY

YY

NN

NN

YY

YY

YY

YY

NN

NN

YY

MRGR

AP

AP

MRGR

GEN

GEN

MRGR

PIO

MRGR

MR

PIO

GEN

RGEN

MRNR

MR

GEN

RGEN

GEN

RGEN

GEN

GEN

RGEN

GEN

RGEN

GEN

GEN

GEN

AP

AP

GEN

GEN

MRGR

AP

AP

GEN

AP

RGEN

MRGR

GEN

GEN

GEN

GEN

INTGY
INTGY
INTGY
INTGY
INT
MCTL
MCTL
MCTL
MCTL
INT
INT
INT
LOGIC
PRCEX
PRCEX
LOGIC
MCTL
INT
LOGIC
10
LOGIC
LOGIC
10
KEYS
KEYS
PCTL]
PCTL]
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
PCTL]
MCTL
QUEUE
RGEN
KEYS
INTGY
SHIFT
MCTL
MCTL
PCTL]
QUEUE
QUEUE

INT
INT
INT
SKIP
SKIP

SRV

SRV

VI

Vi

VI

VI

VI

<
<
<
7
<
"
"

4

VI

SRVI

I

SRVI

SRVI

VI

VI

SR

~
—

SRV

SRV

SRV

SRV

a

N
O

a
o
t
m
t

“
o
t
r
a

| =x
|

i

n
o
m
e
x

|

| =

|

c
r
o

m
|

|
|

|
D
x

|

m
o

m
o

x x

|
fF
}

J
m
m

4

|
m
o
|

|
r
a
u
l

| x

|
|

|
a

|

|
m
m
}

oy
]
z
z

T
E
T

DT
E
T
E
T
E
T
E
T
T
T
T
E
T
E
T
T
T
P
E
t
T
e
r
r
r
t
r
e
e
t
e
r
r
r
r
r
r
:

T
I
T
E
R

L
o
r
e
r
r
r
r
t
r
r
r
.

| x

h
o
o

r
m

x=
|

r
r
n
r

x
|

r
u
T
t
r

13-9

o
D

a
p
o

C}
|

W
A
R
A
R

QA
w

@
N
N
O
D
F
m
o
a

C) ©) DESCRIPTION

Long Right Logical

Long Right Rotate

Long Right Shift

Set A=1

Set R=1

Load Writable Control Store

Multiply Fullword

Memory Diagnostic Enable Interleave

Inhibit Interleaved

Wriie inierieaved

Read SyndromeBits

Load Write Control Register

Multiply Halfword

Microcode Entrance

Microcode Entrance

Microcode Entrance

Microcode Entrance

Multiply Long

Multiply

Multiply

AND Fullword

Notify

Notify

AND Halfword

No Operation

Normalize

OR Fullword

Output Control Pulse

OR Halfword

Inclusive OR

Output from A

Restore Keys

Restore Keys

Procedure Call

ProcedureCall

Position for Integer Divide

Position for Integer Divide

Position for Integer Divide

Position for Integer Divide

Position Long for Integer Divide

Position After Multiply

Position After Multiply

Position After Multiply

Position After Multiply

Position After Multiply Long

Procedure Return

Purge TLB (Prime 750 only)

Remove From Bottom of Queue

Remove From Bottom of Queue

Clear C-Bit (Reset)

Clear Machine Check

Rotate

Register Restore

Register Save

Return

Remove From Top of Queue

Remove From Top of Queue

Subtract Fullword

Subtract One from A

Subtract Two from A

Skip on A Bit Clear

Skip on A Bit Set

FDR 3059



 

13 INSTRUCTION SUMMARY CHART
 

R MNEM OPCODE RI

SBL 07 03

SCA 000041
SCB 1406000

SGL 000005
SGT 100220

SH 32 YY
SHA 15 NN

SHL 05 NN
SHL1 076

SHL2 077
SHR1 120

SHR2 421
SKP 100000

R SKS 34

SL1 072

SL2 073
SLE 101220

SLN 101100
SLZ 100100

SMCGR 100200
SMCS 101200

SMI 101400

R SNR 10024X

R SNS 10124X

SNZ 101040

SPL 100400
R SR1 100020

SR1 074
R SR2 100010

SR2 075
R SR3 100004

R SR4 100002
SRC 100001

R sS1 101020
R S82 101010

R SS3 101004
R S84 101002

ssc 101001
SSM 140500

SSM 042
SSP 140100

SSP 043

R SSR 100036

R sss 101036
ST 21 NN

STA 04
STAC 001200

STAR 54 NN
STC 0 166

STC 1 176

STC 0 001322

STC 1 001332
STCD 137

STCH 136

STEX 001315

STEX 027

STFA 0 001320

STFA 1 001330
STH 31 NN

STL 04 03
STLC 001204

P STLR 03 01

FDR 3059

FORM FUNC MODE

MR INT Vv

GEN INT SR
GEN KEYS SRVI

GEN INT SR
GEN SKIP SRV

MRGR INT I
MRGR SHIFT I

MRGR_ SHIFT I
RGEN SHIFT I

RGEN SHIFT I
RGEN SHIFT I

RGEN SHIFT I
GEN _SKIP SRV

PIO IO SR
RGEN SHIFT 1

RGEN SHIFT I
GEN _SKIP SRV

GEN SKIP SRV
GEN SKIP SRV

GEN INTGY SRV
GEN INTGY SRV

GEN SKIP SRV
GEN SKIP SRV

GEN SKIP SRV
GEN SKIP SRV

GEN SKIP SRV
GEN SKIP SRV

RGEN SHIFT I
GEN SKIP SRV

RGEN SHIFT I
GEN SKIP SRV

GEN SKIP SRV
GEN SKIP SRV

GEN SKIP SRV
GEN SKIP SRV

GEN SKIP SRV
GEN SKIP SRV

GEN SKIP SRV
GEN INT SRV

RGEN INT I
GEN INT SRV

RGEN_ INT I
GEN SKIP SRV

GEN SKIP SRV
MRGR MOVE I

MR MOVE SRV
AP MOVE V

MRGR MOVE I
RGEN CHAR I

RGEN CHAR I
CHAR CHAR Vv

CHAR CHAR Vv
AP MOVE I!

AP MOVE I
GEN PCTLJ Vv

RGEN PCTL] I
AP FIELD VI

AP FIELD VI
MRGR MOVE I

MR MOVE V
AP MOVE V

MR MOVE V

1 2 3

—~ HH

H H H
H H H

H H H
H H H

——H
——H

——H
——H

——H
—~ — H

——H
H H H

H H H
——H

— —H
H H H

H H H
H H H

EH H
E H H

H H H
H H H

H H H
H H H

H H H
H H H

— —H
H H H

— — H
H H H

H H H
H H H

H H H
H H H

H H H
H H H

H H H
H H H

——H
H H H

— —H
H H H

H H H
—-—H

H H H
— HH

——-—H
——-—4H

— —H
— HH

— HH
——H

— —H
— HH

— —H
— HH

— HH
—-—H

— HH
— HH

— HH

13-10

oO
{
=
a
F

a
e
P
o
h

,
>

wo
|

CC DESCRIPTION

|
7%
a
n

u
N

N
N

~
|

Subtract Long

Load Shift Count into A

Set C-Bit in Keys

Enter Single Precision Mode
Skip if A Greater Than Zero

Subtract Halfword

Shift Arithmetic

Shift Logical
Shift H Left One

Shift H Left Two

Shift H Right One

Shift H Right Two

Skip

Skip if Satisfied
Shift R Left One

Shift R Left Two

Skip if A Less Than or Equal to Zero

Skip if LSB Nonzero (A(16)=1)
Skip if LSB Zero (A(16)=0)

Skip on Machine Check Reset
Skip on Machine Check Set

Skip if A Minus
Skip on Sense Switch Clear

Skip on Sense Switch Set
Skip if A Non-Zero

Skip if A Plus
Skip if Sense Switch 1 Clear

Shift R Right One
Skip if Sense Switch 2 Clear

Shift R Right Two
Skip ifSense Switch 3 Clear

Skip if Sense Switch 4 Clear
Skip if C-Bit is Clear

Skip if Sense Switch 1 Clear
Skip if Sense Switch 2 Clear

Skip if Sense Switch 3 Clear
Skip if Sense Switch 4 Clear

Skip if C-Bit is Set
Set Sign Minus

Set Sign Minus
Set Sign Plus

Set Sign Plus
Skip if Any Sense Switch is Clear

Skip if All Sense Switches are Set
Store Fullword

Store A
Store A Conditionally

Store into Addressed Register
Store Character

Store Character

Store Character

Store Character

Store Conditional Fullword

Store Conditional Halfword

Stack Extend

Stack Extend
Store Field Address Register

Store Field Address Register
Store Halfword

Store Long
Store L Conditionally

Store L into Addressed Register

1 March, 1979



INSTRUCTION SUMMARY CHART 13
 

 

R MNEM OPCODE RI

R STPM 000024

STX 15

STY 35 02
SUB 07

SVC 000505
SZE 100040

TAB 140314
TAK 001015

TAX 140504

TAY 140505

TBA 140604

TG 046

TCA 140407

TCH 047

TCL 141210

TFLL 0 001323

TFLL 1 001333

TFLR O 163

TFLR 1 =173

TKA 001005

TLFL 001321

TLFL 001331

™ 44
TMH 54
TRFL 0 165
TRFL 1 175
TSTQ 141757
TSTQ 104
TXA 141034

TYA 141124

R_ VIRY 000311

R WAIT 000315

wcs 0016XX

xX 43

XAD 001100

XBTD 001145

XCA 140104

XCB 140204

XCM 001102

XDTB 001146

XDV 001107

XEC 01 02

XED 001112

XH 53

XMP 001104-

XMV 001101

R XVRY 001113

ZCM 001117

ZED 001111

ZFIL 001116

ZM 43

7MH 53

ZMV 001114

ZMVD 001115

ZTRN 001110

1 March, 1979

NN
NN

YY

YY

NN

NN

FORM FUNC

GEN MCTL
MR MOVE

MR MOVE
MR INT

GEN PCTLJ
GEN SKIP

GEN MOVE

GEN KEYS

GEN MOVE
GEN MOVE

GEN MOVE
RGEN INT

GEN INT
RGEN_ INT

GEN INT
GEN FIELD

GEN FIELD
RGEN FIELD

RGEN FIELD
GEN KEYS

GEN FIELD
GEN FIELD

MRNR MCTL
MRNR_ INT

RGEN FIELD
RGEN FIELD

AP QUEUE

RGEN QUEUE

GEN MOVE
GEN MOVE

GEN  INTGY
AP PRCEX

GEN MCTL

MRGR_ LOGIC

DECI DECI
DECI DECI

GEN MOVE

GEN MOVE

DECI DECI

DECI DECI

DECI DECI

MR PCTL]

DECI DECI

MRGR_ LOGIC

DECI DECI

DECI DECI

MCTL GEN

CHAR CHAR

CHAR CHAR

CHAR CHAR

MRNR CLEAR

MRNR CLEAR

CHAR CHAR

CHAR CHAR

CHAR CHAR

VI
SRV

SRV

SRVI

n wn <

e
f
o
e
t
e
T
H
O
a
S

ec
7
T
H

a
c

=
7
~
m
f
e
S
a
e
s

SRVI

RVI

VI
VI

SRV

SRV

VI

VI

VI

RV

VI

VI

VI

VI
VI

VI
VI

VI
VI

s

H
Hx

|
c
o

x
|

|

S
a
t
i

l
c
l
e
S
e
S

p
l
e
G

c
S
e
B
e
C

y
O
r
t

e
r
t
)
,

z
|

;
|
o
t

i
]

P
T
r
t

h
y
)
D
e
t

e
t
p
t
e
t
e
e

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

O
H

H
H

H
H

H
H

H

H

H

H

H

H

H

H

H
H

H

H

H

H

H|

13-11

MODE 1 2 3 CG CC DESCRIPTION

— Store Processor Model Number

— Store X

— Store Y
1 Subtract

— Supervisor Call
— Skip if A Zero

— Transfer A to B
6 Move A to Keys

— Transfer A to X

— Transfer A to Y

— — Transfer BtoA

N
;
’

n
u
d

1 Two’s Complement R

1 Two’s Complement A
1 Two’s Complement H

1 Two’s Complement Long
— Transfer Field Length to L

— Transfer Field Length to L
— MoveField Length to R

— MoveField Length ta R
— Move Keys to A

— Transfer L to Field Length Register
— Transfer L to Field Length Register

1 Test Memory Fullword
1 Test Memory Halfword

— Transfer R to Field Length Register
— Transfer R to Field Length Register

7 Test Queve
7 Test Queue

— Transfer X toA
— Transfer Y to A

5 Verify
— Wait

— Writeable Control Store
— Exclusive OR Fullword

1 Decimal Add

— Binary to Decimal Conversion

— Exchange and Clear A

— Exchange and Clear B

1 Decimal Compare

5 Decimal to Binary Conversion

1 Decimal Divide
— Execute

— Numeric Edit

— Exclusive OR Halfword

1 Decimal Multiply

1 Decimal Move

5 Verify XIS

1 Compare Character Field

— Character Edit
— Fill Character Field

— Clear Fullword

~— Clear Halfword

~ Move Character Field

— Move Equal Length Fields

— Translate Character Fields

FDR 3059



PMA
REFERENCE

 



 

Language structure
 



INTRODUCTION

The Prime Macro Assembler’s languagestructure is both flexible and simple. For example,
here is a program which includes three pseudo-operations, a machine instruction and a
literal.

REL PSEUDO-OPERATION —- USE RELOCATABLE ADDRESSING
LDA ='123 MACHINE INSTRUCTION — LITERAL
CALL EXIT PSEUDO-OPERATION - SUBROUTINE CALL
END PSEUDO-OPERATION - END OF SOURCE CODE

This section describes the structure and function of PMA language statements, and the
elements, constants, symbols and expressions which comprise them.

LINES

Input to the assemblerconsists of instruction statements and comments (See Figure 14-1).
The basic unit of informationis the line (See Figure 14-2). Fields, statements and comments
within a line can be delimited by either spaces, commas or colons, depending on the
construction.

There are three basic line formats:

CommentLine Column 1 contains an asterisk (*). The entire line is
treated as a comment.

Change Page Column 1 contains an apostrophe ('). The rest of the
Heading Lines line is used as a pagetitle for subsequent pages.

Statements See below.

STATEMENTS

Types

Statements may be:

e Mnemonic represeniations of machineinstructions.

e Assembler pseudo-operations.

e Macro definitions and calls.

1 March, 1979 14-1 FDR 3059



14 LANGUAGE STRUCTURE

 

|
 

 

 

   

 

SOURCE FILE
MADE UP OF
SOURCE
STATEMENTS
 

 

 
SOURCE
STATEMENTS   ARE

 

   

     
 

 

   
 

   
 

|
 

  

 

  
   

         

 
 

 

 

        
 

 

     

  
 

   

 

 

 

 
  

   
 

 

  
 

 

INSTRUCTION COMMENTS
EITHER sTATEMENTS OR] sTATEMENTS

WHICH ARE
OF THREE
MAIN TYPES

ASSEMBLER MACRO
MeAUCTIONS OR PSEUDO oR DEFINITIONS

OPERATIONS AND CALLS

WHICH ARE
COMPOSED OF
ONE TO
FOUR FIELDS

LABEL OPERATION OPERANDS COMMENTS

WHICH ARE
COMPOSED
OF

EXPRESSIONS

WHICH ARE WHICH ARE
COMPOSED COMPOSED
OF OF

COMBINATION CHARACTER
TERMS OR oF TERMS STRINGS

WHICH ARE
COMPOSED OF
CHARACTERS

ASC)!
CHARACTER
SET

Figure 14-1. PMA Statements

FDR 3059 14-2 1 March, 1979

 



LANGUAGE STRUCTURE 14

 

 

    
   

 

       
 

 

     
  

 

   
  

 

   
 

 

OPTIONAL 1 OR MORE SPACES 2 SPACES OR COL.72
~~ “ A

fos Zt 7 |
SINGLE | 4 e yan
STATEMENT LABEL h STATEMENT | \ COMMENTS
LINE _

| /
jo 1 A

K COLON i \~ / |

| > yo |MULTIPLE +
STATEMENTS | LABEL STATEMENT : STATEMENT | COMMENTS
PER LINE 1

L |
~ | | SEMICOLON
~ | . ‘

™~ y

LABEL STATEMENT |
i

- MULTIPLE |
LINES PER |
STATEMENT '

STATEMENT CONTINUED

APOSTROPHE

CHANGE
PAPER HEADING , NEW PAGE HEADING TEXT
LINE

ASTERISK

COMMENTLINE ‘ COMMENTS
   
  Figure 14-2. PMA Line Format  
 

1 March, 1979 14-3 FDR 3059



14 LANGUAGE STRUCTURE
 
 

Syntax

Statements may have four possible fields, delimited by spaces:

[label] operation [operand] ... [comment]

Label: Assigns a nameto a program location, such as a subroutine entry point, the address

of a constant, or a storagefield.

The first character of a label must be in column 1 of a line. If a statement does not have a

label, the first column must be blank. Labels must be legal symbols.

Operation: Defines the action taken at assembly time (pseudo-operations, macrodefinitions

and calls) or at execution time (machine instructions). The operation is the only field

requiredin all types of instructions and must be entered exactly as shownin the individual

statement definition.

Operand: Contains information to be acted upon by the operation code. The numberof

operands and their meaning is operation-specific. Some statements do not require an

operand; others require several.

Comments: Ignored by PMA except for printing in the listing. Comments document the

meaning of the operation. All text following either column 72 or two spaces after the last

operand (ten spaces with macrocalls) is treated as a comment.

Elements

Statement elements — labels, operation codes and operands — are composedof constants.

symbols and expressions. These are a subsetof the printing ASCII characters. The entire

ASCII characterset, printing and non-printing, may be used in comments, macro instruction

operands and withinliteral text fields. ,

Constants: Constants are explicit data values. A constant may be anyofthe following data

types.

e Decimal

e Binary

e Hexadecimal

e Octal

e Character (ASCII)

e Address

Constants may be used in expressions to represent bit configurations, absolute addresses,

displacements anddata. Section 15, Data Definition, contains a full discussion of data types

and formats.
x 1

Symbols: Symbols are alphanumeric strings which represent locations or data. They maybe

from 1 to 32 characters in length. The first character must be a letter (A-Z), and the

remaining characters maybeletters, numerals (0-9), the dollar sign ($}, or underscore (_).

Symbols containing more than 32 characters are allowed in the source code, but only the

first 32 characters are examinedby the assembler.

Expressions: Expressions contain one or more constants or symbols, called terms, which

have single precision integer values. Multiple termsare joined by operators, which may be

arithmetic, relational, logical or shift. At assembly time, PMA evaluates an expression by

performingthe indicated operations,if any, thus producing a single precision integerresult.

Example Comment

a + q
o o
e

my L o
r c © p
h

FDR 3059 14-4 1 March, 1979



LANGUAGE STRUCTURE 14
 

 

¥Lift ~ ae so Lf esantahla. ait i ie (Aj and aA/5} Oniit expression consisti VariaD

sub-expression (ALPA/5).

BETA.GE.A+$FF Logic expression consisting of a variable (BETA) and
a sub-expression (A+SFF).

a)

You may use expressions as:

¢ Instruction operands

* Literals

* Part of macro definitions andcalls

* Symbol-defining pseudo-operation operands

Multiple statements per line: Statements may be packed two or more perline. Each
statementis separated from the onefollowing by a colon (:). The PMA assembler processes
the first non-space character following the colon as the operation of a new statement. The
last statement in the line is terminated by two spaces or column73, andthe restof the line
treated as a comment. If the line begins with a label, the label is assigned to thefirst
statement on that line. Since labels must begin in column 1, there can only be onelabel per
line, as in:

LABEL1 LDA = 123:LDA = 456 COMMENT2

Multiple lines per statement: Any statement may be interrupted by a semicolon (;) and
continued on the next line. The rest of the line following the semicolon is treated as a
comment. Processing of the statement continues with the first non-space character in the
following line. Semicolons appearing within comments are not interpreted as continuation
requests.

MEMORY REFERENCE INSTRUCTION FORMAT(SRV)

Operation Field

Mnemonic: The operation field must include one of the memory reference instruction
mnemonics.

Triple asterisk (dummyinstruction): A triple asterisk in place of an instruction mnemonicis
a pseudo-operation code that causes the assembler to form a memoryreference instruction
with an op-code of zero. Another asterisk may be addedto specify indirect addressing. The
variable field of such a statementis treated like any other memoryreferenceinstruction.

Percentsign (%): A % following the mnemonictells the assemblerto progessthis instruction
in two word (long-reach) format.

Poundsign (#): A 4 following the mnemonictells the assemblerto process this instruction in
one word format.

OperandField

The operandfield of a memory reference instruction contains an address expression, which
may be modified by indirection, indexing, and by case register references.

Symbolic addresses: Addresses can be specified by any constant, symbol, literal, or
expression which can be evaluated as a 16-bit number.

Indexing: Indexing is optional and is specified by a “1”, ‘“X”, or, in V or I mode. a “Y",
following the address expression. The form ‘‘0” is interpreted as non-indexing.

Indirection: An asterisk (*) tells the assembler that this address is a pointer to another
address.

1 March, 1979 14-5 FDR 3059



14 LANGUAGE STRUCTURE
 

 

Stack: An at sign (@) used alone in the address tells the assembler that this instruction

references the stack. This notation is not legal in 64V or 321; stack base—SB%W—notationis

used in these modes.

Base registers (V or I mode): A percent sign (%) following SB, LB, PB or XBtells the
assembler that the operandis relative to a particular base register.

Asterisk (current location): An asterisk (*) in the operand field represents the current value

of the assembler location counter.

Double asterisk (initial zero): A double asterisk (**) in the operand field causes the
assembler to load zeroes in the 9-bit address field and sector bit. (Indexing and indirect
addressing conventions are unchanged.) This convention is used whenthe desired location
is to be developed or modified by otherinstructions or is not knownat the time of assembly.

Equals sign (literals): A literal is a constant preceded by an equalssign,as in:

LDA ='100

The assembler associates the numerical value of each literal with the symbol used ("100 in
this case) and reserves a storage location for a constant of the value. The value in the
operandfield will be the addressoftheliteral.

Special Cases

The assembler will generate a long instruction if any of the following cases apply:

1. Indexing by Y is specified.

2. A percent (%} opcode modifier is used.

3. The opcode does not have a short form (zero opcode extension).

4. If the mode of the address is external of common (SEG/SEGR mode

only).

5. The address is linkage relative and not in the range ‘400 to °777.

6. The addressis stack relative and not in the range ‘10 to ‘377.

7. The address is temporarybaserelative.

8. Indirection is specified and a # opcode modifier is not used (SEG or

SEGR modeonly).

a1 .

! n error will be generated.ot .

the cases apply and a # opcode suffix was used,aa Grae J 2 kaa err (S
o

0

In SEG or SEGR mode, if the expression modeis absolute, it must be in the range 0 to 7 to
specify a compatible register address. If a long instruction is generated, an error will be
reported since register set addressing is only available with short instructions. Because of
rule 8 above, an instruction that specified indirection through a register must also have a #
opcodesuffix.

INSTRUCTION FORMATS- I-MODE

The assmbler formats for I-Mode instructions are listed in Table 14-1. See Section 9, Data

Structures, for the I-Mode machine formats.

FDR 3059 14-6 1 March, 1979



LANGUAGE STRUCTURE 14
 

 

* IBRN bit test

Table 14-1. Assembler Formats (I-Mode)

Instruction Type Assembler

MRGR op r,addr

MRFR op f,addr

MRNR op addr

IBRN

jz
op‘ ,word

op r,bitno, word

RGEN opr

GEN op

AP op ap

** RGENfield register op falr.r

** BRANfield register op falr,data

** AP field register op falr,ap

WORD

ADDR

AP

BIT

DATA

FALR
E

OPCODE

R 
* bitno selects a specific opcode
** FALR selects a specific opcode

Abbreviations

word number address field, no indirection or indexing

full segmented address field. optional indirection/indexing by
general registers 1-7

argument pointer, optional indirection

bit number (1-32)

16 bit data word

field register number (0-1)

floating register number(0-1)

instruction operation code

general register number(0-7]

 

1 March, 1979 14-7 FDR 3059

 



14 LANGUAGE STRUCTURE
 

 

(@GG1) ****** T-MODE ADDRESSING ILLUSTRATION *******
(Q882) *
(@293) *
(90864) SEGR

GOB8G4 (9805) IX EQU 4
(6885) *

GLQOWOO: O02240.9000032 (8007) STRT L 1,DATA DIRECT

GOGOG2: OH2548.0088030 (8008) L 2,PTR,* INDIRECT
G0BGG4: BO2674.080038 (2809) L 3,PTR,7 INDEXED
GQB80S: 803174. 088830 (9818) L 4,PTR,*7 POST-INDEXED, INDIRECT
Q0OG18: 9G3334.0808038 (0011) L 5,PTR,7* PRE-INDEXED, INDIRECT
880012: 883568.088030 (0812) L 6,PTR,* (IX) POST-INDEXED, INDIRECT
000014: 003738.089038 (0213) L 7,PTR, (TX+2) * PRE-INDEXED, INDIRECT

(8014) *
880916: BB2205.90B1A0A (8815) L 1,='1@@L GENERAL REGISTER IMMEDIATE

GOOG2G: BB3842.G088400L (015) L 4,='1234567L GENERAL REGISTER LITERAL

GGOB22: G149G82.840201A (9017) FL @,=1.0 FLOATING REGISTER IMMEDIATE

G800024: G14042.8804082L (9018) FL 8,=3.14159 FLOATING REGISTER LITERAL

(8019) *
880026: 802214 (8820) L 1,3 REGISTER TO REGISTER

880827: 814216 (8621) DFL @,1 FLOATING REGISTER TO REGISTER

(QG22) *
(8023) *

880030: (8824) PTR BSS 2
000032: (8825) DATA BSS 2

(Q626) *
(9027) *

GBVBG834 (8028 ) END

HOW TO WRITE V OR I MODE CODE IN PMA

In order to take advantage of the PMAfacilities, the structure of a V or I Mode program

should reflect the system architecture design for the separation of code and data (see

Reference Guide, System Architecture).

The recommendedstructureis:

Prologue

SEG/SEGR Sets up segmented address space

RLIT Puts literals in the procedure area

ENT Entry point declarations

Code

Executable code

Data Area

DYNM Stack variable declarations

LINK defines linkage area containing static variables

ECB entry control block

End

References ECB name.

PMA makesusing the segmentedarchitecture easy. Thus the programmercanwritestraight-

forward code, such as LDA ADDR. The assembler, depending on the definition of ADDR,

may generate a one wordor two wordinstruction, and mayreferenceeither the stack area,

the linkage area, the procedure area or a temporary area. This is possible because symbols

carry a great deal of state information with them.

FDR 3059 14-8 1 March, 1979



LANGUAGE STRUCTURE 14
 

 

_#*a

ECB: The ECB (entry control block) describes the environment the program runsin.It
includes the location to start execution, the name of the first argument, if any, and the
numberof arguments. The ECBis the link used by the system to run the module.It may be
located anywhere, but normally it goes in the linkage data area in order to produce pure
code.

Stack: The default stack size includes a stack frame header. Additionally, all the stack
variables defined by the DYNM pseudo-operation are addedto the stack frame size and the
size is automatically put into the ECB definition. Stack variables are defined sequentially
and may be anysize. For example DYNM STAR(1) generates one word, while argument
pointers, which are three wordindirect pointersto the first word of an argument, would be
defined as, for example, DYNM STPTR(3). Definition of stack variables by DYNM allows
the assemblerto build the appropriate addressing forms automatically e.g. DYNM STAR(1);
LDA STAR will cause the assembler to generate the address form explicitly shown by
LDA¢ SB%+STAR.

Code: The assembler automatically places code in the procedure segment; the PROC
pseudo-operation is not necessary unless you wantto put some codeafter the LINK pseudo-

operation which defines the linkage area.

Note

Since the assemblerpicks the instruction length for you, be
careful about using skips and compares—they assume a one
word instruction following them. Also, be awarethat, by
default, all pointers are long.

Linkage area: The LINK pseudo-operationtells the assemblerto tag the variables which are
definedafter it (using BSS, ECB, DATA,etc.) as linkage base relative. These are thestatic,
impure data and variables required for pure procedures.

Literals: The RLIT pseudo-operation will cause literals to be generated in the procedure
area.

Examples

The series of annotated examples beginning on page 14-10 below show a subroutine as a
programmer might write it in V-Mode, I-Mode, and R-Mode. Argument transfer and
referencing are also shown in Section 8—Interfacing with System Libraries.

1 March, 1979 14-9 FDR 3059



14 LANGUAGE STRUCTURE
 
 

ADDARY, jrw, 61/11/79

888408

688800
BOOBBO: 820685

OO080G81: 8022201.177766A
600003: 134741.880915S
GO0805: 022601.808000A

BBAGG7
000007: 022541.06001285
600011: 020513.800015
000013: 134141.00986155
GO08B15: 8246168
@00016: 134841.6800135S
G@600826: 826340.6080607

088022: 062641.808020S
80024: 114342.606426L
G6OG026: BOG160.8008843
940030: 8003008.00808058
G@00032: 114342.8608422L
000034: @80700.008020S
6860036: 114342.608424L

G@06G40: 922441.808020S
800042: 666611

00012
690015
OICC2B

FDR 3059

-32I MODE-

(@GG81) * ADDARY, jrw, 91/11/79 -32I MODE-

(@0G2) *

(@683) * Add the elements of a 19 dimensional array of 16-bit values, producing

(6004) * a 16-bit result and returning a count of the number of members of the

(@805) * array which were zero. The result is printed on the user terminal.

(@@G6) *
(8087) *

(9888) *
(8809) * Calling sequence (Fortran):

(9018) *

(@@11) * INTEGER ARY(1@), NZERO, ADDARY, RESULT

(@@12) * eae
(@013) * RESULT = ADDARY (ARY, NZERO)

(@014) *

(2815) *
(9616) * Calling sequence (PMA):

(2817) *

(@@18) * CALL ADDARY

(8819) * AP ARY,S ARRAY WHOSE ELEMENTS ARE TO BE SUMMED

(@828) * AP NZERO,SL RETURNED # ELEMENTS = @

(@@21) * eee RESULT RETURNED IN (A) (GR2H)

(9022) *

(8023) *

(@@24) *

(@@25) ENT ADDARY , ADDECB ENTRY DECLARATION

(8826) *

(0027) SEGR 32I-MODE SEGMENTED ADDRESSING

(8028) RLIT PLACE LITERALS IN PROCEDURE FRAME

(9829) *

(0830) *

(@831) ADDARY EQU * ECB CAUSES CONTROL TO BE PASSED HERE ON CALL

(8832) ARGT TRANSFER POINTERS TO ARGUMENTS

(@633) *

(0034) LH 1,=-1¢4 # ELEMENTS TO ADD

(0835) ZMH NZERO,* INITIALIZE # ELEMENTS WHICH = @

(8636) LH 3,=0 INITIALIZE ACCUMULATOR

(8637) *
(9838) *---LOOP TO PERFORM ACTUAL ADDITION:

(@039) ADDLP EQU *

(9040) LH 2,ARY,* PICK UP NEXT ARRAY ELEMENT

(09041) BHNE 2,LP18 TEST ZERO

(@@42) IMH NZERO,* VALUE IS ZERO, BUMP COUNTER

(9043) LP1d AH 3,2 COMPUTE NEW SUM (RESULT => GR3H)

(0644) IMH ARY+1 UPDATE WORD# OF POINTER TO NEXT ARRAY ELEMENT

(8045) BHI1 1,ADDLP BRANCH IF NOT DONE, PROCESS NEXT ELEMENT

(8846) *
(8047) *---PRINT RESULT ON USER TERMINAL...

(0848) STH 3,SUM SO WE CAN PRINT SUM

(@849) CALL TNOUA

(8058) AP =C'RESULT IS ',S

(8651) AP =10,SL

(6852) CALL TODEC PRINT DECIMAL RESULT

(8653) AP SUM,SL

(8054) CALL TONL PRINT NEW-LINE

(8855) *

(9856) *---THRU HERE WHEN DONE - RETURN WITH SUM IN THE GR2H (A-REGISTER).

(8057) LH 2,SUM

(8858) PRTN BACK TO CALLER

(8059) *

(86068) *
(@861) *---DATA DEFINITION:

(@862) *
(8863) DYNM ARY (3) ,NZERO(3) ,SUM

14-10 1 March, 1979



LANGUAGE STRUCTURE 14
 

 

(8864) *
(@865) *
(8866) LINK
(@867) *

BQBABS> BOBBGD (8868) ADDECB ECB
808022
GO8B12
GOA8B2
177486
G1B88B

(8669) *
(@07G) *
(@G71) *

688420 (8272) END

600043: @@.151305A
600044: 8@@.151725A
O06845: 062.146324A
BOBB46: @8.120311A
680047: 9@8.151646A
O80850: O8.080012A

OQG420> B2OB00 .O6BGBGHE
8208422> OB0008 .BOB00RE
OBB424> BO080G.GOBORGE

TEXT SIZE: PROC 980051 LINK 800926

ADDARY O2600808 8231 9868
ADDECB G26498L 9268
ADDLP O0800807 6839 9045
ARY 8608125 0646 6844 8863 8868
LP16 @@68015 8841 8043
NZERO O@20015S 6635 8842 6863
SUM G80828S 0648 0653 8657 8663
TNOUA BOOBBOE 2849
TODEC OOOGBGE BO52
TONL OBOBSZE BB54

09800 ERRORS (PMA-REV 16.2)

BO

qu
TTOM

1 March, 1979

ADDARY, , ARY,2

STACK 886621

14-11 FDR 3059



14 LANGUAGE STRUCTURE
 
 

ADDARY, JUWw, O1/11/79 -64R MODE-

(@O@G1) * ADDARY, jrw, @1/11/79 -64R MODE-

(@0802) *

(6803) * Add the elements of a 1@ dimensional array of 16-bit values, producing

(@084) * a 16-bit result and returning a count of the number of members of the

(@8085) * array which were zero. The result is printed on the user terminal.

(@606) *

(@087) *

(@608) *
(8889) * Calling sequence (Fortran):

(@618) *

(@B11) * INTEGER ARY(1@), NZERO, ADDARY, RESULT

(6012) * eee

(@813) * RESULT = ADDARY (ARY, NZERO)

(9014) *

(@615) *
(@G16) * Calling sequence (PMA):

(@817) *
(@818) * CALL ADDARY

(0819) * DAC ARY ARRAY WHOSE ELEMENTS ARE TO BE SUMMED

(@G20) * DAC NZERO RETURNED # ELEMENTS = @

(@@21) * DEC 0 (TO TERMINATE ARG LIST)

(@922) * STA RESULT RESULT RETURNED IN (A)

(8023) *

(6024) *

(@@25) *

ABV8AO (@026) ENT ADDARY ENTRY DECLARATION

(9027) *

(8028) Cé64R CHECK 64R MODE ADDRESSING VIOLATIONS

(0829) REL RELATIVE MODE ASSEMBLY

(@930) *

(@@31) *

BOOOOS: @@.@8@GGGA (86832) ADDARY DAC ak RETURN ADDRESS SAVED HERE BY ‘IST' INSTRUCTION

OGOGA1: 10.990@2@E (9833) CALL FSAT TRANSFER ARGUMENTS' ADDRESSES

OB0882: OO88982 (0834) DATA 2 (2 ARGUMENTS)

G00003: O8.@000080A (8835) ARY DAC ee PTR TO ARRAY

OBAGBA: @0.@08000A (@836) NZERO DAC xk PTR TO COUNTER FOR ELEMENTS W/ VALUE = 0

(9037) *

G80005: 35.080033 (8838) LDX =-16 # ELEMENTS TO ADD

O00G06: 148040 (8039) CRA INITIALIZE COUNTERS

OBOO87: 84.000032 (8940) STA SUM

860010: 44.000004 (@@41) STA NZERO, * # ELEMENTS WHICH = @

(@G@42) *
(9043) *---LOOP TO PERFORM ACTUAL ADDITION:

@00011 (@844) ADDLP EQU *

Q60011: 42.0800003 (8645) LDA ARY,* PICK UP NEXT ARRAY ELEMENT

Q@GOG12: 191049 (8046) SNZ TEST ZERO

080013: 52.9090004 (0047) IRS NZERO,* VALUE IS ZERO, BUMP COUNTER

OG0014: 06.0000832 (8048) ADD SUM COMPUTE NEW SUM

680015: @4.000032 (8849) STA SUM

000016: 12.8@000903 (2858) IRS ARY BUMP POINTER TO NEXT ARRAY ELEMENT

OOOG17: 140114 (0651) IRX TEST DONE

O0O820: 81.800011 (0852) JMP ADDLP NOT DONE, PROCESS NEXT ELEMENT

(@053) *
(8654) *---PRINT RESULT ON USER TERMINAL...

O8OG8G21: 19.000009E (8055) CALL TNOUA

O00022: 00.000034 (0056) DAC =C'RESULT IS ' TEXT TO BE PRINTED

890823: @8.000041 (8857) DAC =16 # CHARACTERS

080024: BOOGBAS (6858) DEC @

228025; 1A.GA8GSSE (8059) CALL TODEC PRINT DECIMAL RESULT

000026: 08.0009032 (8068) DAC SUM

O8BO027: 18.0@0@000E (8861) CALL TONL PRINT NEW-LINE

(9662) *

(9863) *---THRU HERE WHEN DONE - RETURN WITH SUM IN THE A~-REGISTER.

000030: 2.000032 (8864) LDA SUM

880031: 41.980009 (0865) JMP ADDARY ,* BACK TO CALLER

(8866) *

(@@67) *
(8868) *---DATA DECLARATION:

(@869) *

090832: (@878) SUM BSS 1 TEMPORARY SUM

(@@71) *
(@872) *

(@873) *

000833 (8874) END

0060633: O8.177766A

000034: @0.151305A

000035: 0@.151725A

FDR 3059 14-12 1 March, 1979



LANGUAGE STRUCTURE 14
 

 

822036: 90.146324A
GOBO37: 0@.126311A

OOBB48: O@8.151640A

G2QB841: 62 .9080012A

TEXT SIZE: @@9042 WORDS

“2147814

ADDARY O@2G088@ 68232 66865

ADDLP @80811 6844 9652

ARY 000003 @835 88645 88658

FSAT GOGOGOBE 8033

NZERO @00004 6236 9641 6847

SUM QG0032 @649 8848 8849 8866 8264 4879

TNOUA OCGBGGE BO55

TODEC BGGSBBE 8859

TONL OBG2QGGE BH61

000 ERRORS (PMA-REV 16.2)

BOTTOM

1 March, 1979 14-13 FDR 3059



14 LANGUAGE STRUCTURE
 

 

ADDARY, jrw, 01/11/79 -64V MODE-

(@0@@1) * ADDARY, jrw, @1/11/79 -64V MODE-

(882) *

(@863) * Add the elements of a 1@ dimensional array of 16-bit values, producing

(8904) * a 16-bit result and returning a count of the number of members of the

(8895) * array which were zero. The result is printed on the user terminal.

(0906) *
(@807) *

(9008) *

(8889) * Calling sequence (Fortran):
(9818) *

(@@11) * INTEGER ARY(160), NZERO, ADDARY, RESULT

(8812) * eee

(0813) * RESULT = ADDARY (ARY, NZERO)

(@@14) *

(@@15) *

(@616) * Calling sequence (PMA):

(0017) *

(8818) * CALL ADDARY

(@919) * AP ARY,S ARRAY WHOSE ELEMENTS ARE TO BE SUMMED

(@629) * AP NZERO,SL RETURNED # ELEMENTS = @

(@@21) * eee RESULT RETURNED IN (A) (GR2H)

(8022) *

(8823) *
(2824) *

GAA40G (2825) ENT ADDARY , ADDECB ENTRY DECLARATION

(8026) *

(8627) SEG 64V-MODE SEGMENTED ADDRESSING

(8828) RLIT PLACE LITERALS IN PROCEDURE FRAME

(@829) *
(2030) *

O86009 (8831) ADDARY EQU * ECB CAUSES CONTROL TO BE PASSED HERE ON CALL

O8G800: 880685 (28032) ARGT TRANSFER POINTERS TO ARGUMENTS

(9033) *

GOS8G1: 35.0080037 (8834) LDX =~19 # ELEMENTS TO ADD

OO9GA2: 148046 (8835) CRA INITIALIZE COUNTERS

8060003: O64.0809020S (8036) STA SUM

0600904: @€51421.0880815S (0837) STA NZERO,* # ELEMENTS WHICH = @

(9838) *

(9839) *---LOOP TO PERFORM ACTUAL ADDITION:

880086 (9848) ADDLP EQU *

@00@026: 8945421.900812S (9841) LDA ARY,* PICK UP NEXT ARRAY ELEMENT

666010: 148613.0008014 (8842) BNE LP1O TEST ZERO

@00812: 665421.800815S (8843) IRS NZERO,* VALUE IS ZERO, BUMP COUNTER

090014: 86.880820S (8044) LP1®@ ADD SUM COMPUTE NEW SUM

O00G15: 84.020020S (8945) STA SUM

000016: 12.0080013S (8046) IRS ARY+1 UPDATE WORD# OF POINTER TO NEXT ARRAY ELEMENT

0008017: 141334.6900006 (8847) BIX ADDLP BRANCH IF NOT DONE, PROCESS NEXT ELEMENT

(@048) *

(9049) *---PRINT RESULT ON USER TERMINAL...

900021: 061432.000420L (8858) CALL TNOUA

080023: @BG18G8.008040 (8851) AP =C'RESULT IS ',S

800625: 8090300.000845 (8852) AP =10,SL

060027: 861432.9900422L (9853) CALL TODEC PRINT DECIMAL RESULT

680831: B8H8708.a08820S (8054) AP SUM,SL
680033: 861432.906424L (8055) CALL TONL PRINT NEW-LINE

(@856) *

(89957) *---THRU HERE WHEN DONE - RETURN WITH SUM IN THE A-REGISTER.

@00035;: G@2.880G020S (8058) LDA SUM

000036: 808611 (8859) PRTN BACK TO CALLER

(0060) *

(@061) *

(8062) *---DATA DEFINITION:

(0063) *

860012 (8064) DYNM ARY (3) ,NZERO(3),SUM

800015

OG8020

(@065) *

(@@66) *

(8067) LINK

(@068) *
O8G400> 888000 (8869) ADDECB ECB ADDARY, ,ARY,2

888022
8689812

888002

17744048

8142000

FDR 3059 14-14 1 March, 1979



600037:
826840:
G@GG41:
GOG042:
O00843:
B6O9044:
O@40B45:

080420

68B422

802424

TEAT S

ADDARY

ADDECB

ADDLP

ARY

LP1@

NZERO

SUM

TNOUA

TODEC

TONL

8696 ERR

BOTTOM

LANGUAGE STRUCTURE 14
 

 

8660428

06.177766A
68.151385A
68.151725A
08.146324A
@6.120311A
68.151646A
O8.990B812A

> 6808000 . BBO000R8E
> 6800000. G20008E
> 820008 .G2000E

IZE: PROC 688046

620008 6831
G2940GL 6869
GOGGH6 BB4B
880012S 8841
698614 8842
@89015S 8837
O08826S 8H36
GOBBGDE AG5H
COBOBSE 8053
O@OBG0GE OB55

ORS (PMA-REV 16.2)

1 March, 1979

CSE RT OHN

{wusw)

(0871)
(9872)
(8673)

+
c
e

END

LINK 8868826

8069

0047
8246
0044
9643
GB44

BO64

8064
6845

g869

BB54 6258

STACK 888821

BO864

14-15 FDR 3059



 

Data definition
 



This section discusses ali aspects of the definition and usage of data constants within a
program.

CONSTANTS

Constants are divided into two major categories: numeric and character. They may be
explicitly defined by pseudo-operations, such as OCT and DEC,or implicitly defined by
usage within expressions and literals.

Constants are used in expressions, literals. and DATA statements. In expressions, each
constant must be one 16-bit word. See Data Defining Pseudo-Operationsfor a full discussion
of all data type pseudo-operations referencedin this section.

The format of a constant determines how PMA will processit. Table 15-1 shows the data
types and formats of all legal numeric constants. Normally, you would use DATAor DEC to
define stand-alone constants, and the form defined by data type symbol to express constants
in an expression or literal.

Integer constants

All integer constants are signed whole-number quantities and may be single or double
precision. Single precision is the default: double precision is expressed by appending the
letter L to the constant. The sign. if present, follows the data type symbol.

Precision Address Mode Range

Single SRVI From: —32.768 {(—2**15}

To: 432,767 (2**15-1)
Double SR From: —1,073.741.824 (—2**30}

To: +1,073,741.823 (2**30-1}

Double VI From: -2,147,483,648 [-2**31]
To: +2,147,483,647 (2**30-1)

Decimal: Whole number. base 10 quantities

Data Type Symbol: none

Precision Constant Listing Representation

Single Precision DATA 123 000173
DEC 123 000173

123 000173

Double Precision DATA 123L 000000 000173
DEC 123L 000000 000173

123L 000000 000173

1 March, 1979 15-1 FDR 3059



15 DATA DEFINITION
 

 

 

Table 15-1. Numeric Constants

Class Source Symbol Pseudo- Binary Notes Exponent Notes Precision Symbol Expression Example
Op Scale

I D _ DEC _— ] —_ — Single — YES 123
Double L2 NO 1234L

oO , OcT — — — — Single — YES 123
O ° OCT —_ = — — Double L3 NO 12341

H $ HEX — — —_ — Single — YES $1A8
x HEX —_ _ —_ _ Double L NO $1A8L

B Fe — — — — — Single — — _
Boo oo —_ _ — —_ Double — — =

FX OD _ DEC B Req. E Opt: Single — YES 12.5B2
BB Reg. E Opt. Double _ NO 12.5BB
BBB Req. E Opt. Triple — NO 12.5BBB
BBBB Req. E Opt Quadruple — NO 12.5BBBB

FP D — — — 4 E Opt. Single — NO 1.23E-2
— 4 D Reg. Double — NO 1.23D-6

B Binary

D Decimal
FP Floating point
FX Fixed Point
0 Octal
1 Decimal integers have no decimal point, binary scaling or exponent.
2 Generates 32-bit long integers without holes.
3 Octal digits should leave hole in high order bit of second wordif in non

SEG mode.
4 Must be absent.   

Octal: Whole number, base 8 quantities

Data Type Symbol: Apostrophe ('}, letter O plus single quotes (O' ').

Precision Constant Listing Representation

Single Precision DATA ‘123 000123
DATA O'123' 000123

OCT 123 000123

"123 000123

0'123' 000123

Double Precision DATA ‘123L 000000 000123

OCT 123L 0G0800 900123

123L 000000 000123

Hexadecimal: Whole number, base 16 quantities. The hexadecimal digit values are:

Hexadecimal Decimal

0-9 0-9

10

11

12

13

14
at
4dT

H
O
O
W
>

Data Type Symbol: Dollar Sign ($), letter X plus single quotes (''}.

FDR 3059 15-2 1 March, 1979



DATA DEFINITION 15
 

 

Precision Constant Listing Representation
Single Precision DATA $30BF’ 030277

DATA X’30BF 030277
HEX 30BF 030277

X’30BF’ 030277

Double Precision DATA $30BFL 000000 030277
HEX 30BFL 000000 030277

$30BFL 000000 030277

The hexadecimalandoctal are bit representations, not base conversions,so if you wishto
represent a 31-bit number(bit 17=0) you must explicitly specify the zero.

Binary: Whole number, base 2 quantities

Unlike the other integer data types (decimal, octal and hexadecimal), there are no special
binary pseudo-operations. The general data defining pseudo-operation, DATA, may be used
with the binary designator to define binary strings.

Data Type Symbol: Percent Sign (%), letter B plus single quotes (B’ ’).

Precision Constant Listing Representation
Single Precision DATA %11100101 000345

DATA B’11100101’ 000345

%'11100101’ 000345

B’'11100101’ 000345

Double Precision DATA %11100101L 000000 000345

Fixed point decimal constants

Fixed point decimal constants must have an explicit binary point, expressed as a binary
scale factor (see discussion below). These constants mayinclude a decimal point and/or an
exponent(see discussion below). The precision maybesingle, double, triple or quadruple
and is indicated by the numberofBsin the binaryscale factor, e.g.,

B=single
BB=double
BBB=triple
BBBB=quadruple

Binary scaling: Binary scaling, which is valid only for fixed point decimal constants,
determines wherethe binary point will be. The figure below shows the single precision
binary point positions. Bit 1 is the signbit.

 

 
1 2 3 4 5 6 7 8 9

|

10

|

11; 12

|

13

|

14

|

15

|

16                 

PPP TTP eT Ra PRR
 

 

 

 

BO Bi B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Constant Listing Representation Bit Pattern
123B15 000173 Lofofolofoloiololoji1f[al/a1’tlofa|4

1 2 3 4 5 6 7 8 9 10 14 12 13 14 «15 «16 4

B15

123B7 075400 | | (oe) a]1[e[oleloleleololo]
 

 

1 March, 1979 15-3 FDR 3059



15 DATA DEFINITION
 

 

123B6 gives an assembly error because there is not enough room to the left of the binary

point to contain the whole number representation of 123. This is true for all addressing

modes—see Assembly Control Pseudo-Operations—andall precisions. Negative scalingis,

however, permitted.

 

 

 

Constant Listing Representation Bit Pattern

123B18 000017 fo, ofo[olojojojole o;oj}0j1 1) a]1

1 2 3 4 5 6 7 8 9 10 4 12 #13 «14 «15 ~=«16

The binary digits that extendto the rightof the word are truncated withouterror.If this were

double precision, these bits would continue into the second word. Normally, you will

probably use B15 for single precision fixed point numbers.

Constant Listing Representation Bit Pattern

123.5B7 075600 jo|+i+i,4. 4 +,ol,ololojojol[o|

1 2 3 4 5 6 7 sAs 10 11 #12 #13 «14 «15

=

«(16

B7

Note the handling of the fractional portion of the number relative to the binary point.

 

 

Precision: As stated above, there are four levels of precision for fixed point decimal

numbers:

B=single—one16-bit word

BB=double—two 16-bit words

BBB=triple—three 16-bit words

BBBB=quadruple—four16-bit words

The format varies between SEG and non-SEG modes — see Assembly Control Pseudo-

operations. In SEG mode, the sign bit (bit 1) of each subsequent word followingthe first is

included in the binary count. Thus, in the truncation example above, bits 1 and 2=0, 3 and

4=1. In non-SEG modes,the sign bit of all subsequent wordsis always0, and binary point

counting continues from bit2 of each word. The truncation example would have bit 1=0 and

bits 2 and 3=1 and 4=0.

To generalize—PMA converts a constant entered as Kio By to Kz (2**-n), where Kiis the

decimal constant, Kz is the same constant expressedin binary, and nis the number following

the letter ‘‘B’’, “BB”, ‘BBB’, or ‘““BBBB”.

Powersof 10 (E): If an E codeis present,it must precede the required B code. The decimal

value of the constant is multiplied by the powerof 10, specified by the integer following the

E, before it is converted to binary. The exponent maybepositive or negative.

Again, be careful to ensure that there is enough room to theleft of the binary pointto hold

all the digits. If not, an error will occur.

SEG examples:

Precision Constant Listing Representation

Double Precision 123E1BB17 000463 100000

Single Precision 123E0B15 000173

123E1B15 002316

Non-SEG examples:

Precision Constant Listing Representation

Double Precision 123E1BB17 000463 040000

Single Precision 123E0B15 000173
123E1B15 002316

FDR 3059 15-4 1 March, 1979



DATA DEFINITION 15
 

 

ag point decimal constanis

Binary Scaling must not be used in floating point constants.

Single precision floating point: Single-precision floating point quantities are expressed by a
decimal fraction, with or without a decimal exponent (Emm).

Constant Listing Representation

1.28E2 040000 000210

1.28 050753 102601

—11.28 122702 107604

1.28E-14 071512 145122

The assembler converts the specified values to an 8 bit binary exponent anda 23 bit binary
fraction in two successive words, as shownin Figure 15-1. The exponentis represented in
excess-128 notation, and can range from 2**-127 to 2**+127 (roughly 10**-38 to 10**+38}. An
error messageis generatedif the exponent exceedsthis range. The assembler automatically
generates a normalized fraction of the largest possible value less than 1. Numbers specified
in this format havesignificant decimal digits.

Negative numbers are formed by generating a positive numberof the specified magnitude
and then forming the two’s complementof both data words, excluding the exponent. The
number zero is assembled as two consecutive all-zero data words.

Doubleprecision floating point: Double precision floating point quantities are expressed by
a decimal integer or fraction with a decimal exponent (Dmm).

The assembler converts the specified value to a 16-bit binary exponent and 47-bit binary
fraction, in four successive words, as shownin Figure 15-1. The exponentis represented in
the same excess-128 notation as single-precision floating point. The assembler automatically
generates a normalized fraction of the largest possible value less than 1.

Negative numbersare formed by generating a positive numberof the specified magnitude
and then taking the two’s complementof all three fraction words, excluding the exponent.
The numberzero is assembled as consecutive all-zero data words.

Character (ASCII) constants

ASCIUcharacter strings are specified by the letter C followed by the string enclosed in
apostrophes, and are packed two per 16-bit word. Colons (:} and semicolons (;) may be
encoded by preceding them with the PMA escapecharacter (an exclamation point).

Constant Listing Representation

C’AB’ 140702

C’A’ 140640

Single characters defined by C”are left-justified with the right half of the word filled with
a blank (ASCII representation '240). Single characters defined by R” are right-justified with
the left half of the word filled with zeros.

Constant Listing Representation

CA’ 140640

R'A’ 000301

TERMS

A ierm is the smallest element of PMA whichrepresents a separate anddistinct value. It has
a single precision integer value (fits in a 16-bit word) and may be a constant or a symbol.
Terms may be usedalone or in combination with other terms to form expressions.

1 March, 1979 15-5 FDR 3059



15 DATA DEFINITION

 

 

 

 

 

| s | MANTISSA |

1 2 16

| MANTISSA | EXPONENT (EXCESS 128) |

17 24 25 32

A. Single Precision Floating Point

 

| s | MANTISSA
 

 

MANTISSA |

17 32
 

 

MANTISSA |

 

 

33 48

| EXPONENT (EXCESS 128) |

49 64

B. Double Precision Floating Point   Figure 15-1. Floating Point Data Formats
 

FDR 3059 15-6 1 March, 1979



DATA DEFINITION 15
 

 

Every term, wheiher used alone or in an expression, has both a value and a mode whichare
either defined by the assembleror inherentin theterm itself. Symbols defined by the EQU,
SET, and XSET pseudo-operations receive both the mode and the value of the term or
evaluated expression; labels take the current mode and value of the program counter(see
Origin Control pseudo-operations for a discussion of how the modeof the program counter
is set). Examples include:

123 Octal constant.

C’A’ ASCII constant.

ALPHA Symbol.

1.23E2 Invalid becauseit is a floating point number; it does not have a
single precision integer value.

C’ABC’ Invalid because the valueis too large for a 16-bit word.

Value

The value of a term is the numeric representation which is assembledinto the object code.
It can be a location or data.

Symbol Usage Explanation

LABSYM LABSYM LDA LOC LABSYMis a label symbol whose valueis a
location (program counter value) of the
instruction LDA LOC.

DATSYM DATSYM DATA ‘10 DATSYMis a label symbol whose valueis
the location (program counter value) of the
constant ‘10.

ADSYM ADSYM DAC LOC ADSYMis a label symbol whose value is
the location (program countervalue) of the
address constant LOC.

ABSSYM ABSSYM EQU ‘10 ABSSYM is a symbol whosevalueis ‘10.

CHRSYM CHRSYM EQU C'A’ CHRSYM is a symbol whoseoctal valueis
140640.

Mode

The mode defines whetherthe value associated with a symbolis absolute or relative. Table
15-2 summarizes the use of the modes defined below.

Absolute: The value of the symbol does not change upon program relocation. Symbols
equated to constants and the results of expression operations other than addition and
subtraction have a modeof absolute.

Stack relative: The symbol is defined relative to the start of the stack area. Variables
defined by the DYNM pseudo-operation or by a + value (non-segmented addressing modes}
or by SB%+value (segmented addressing modes} have a modeofstackrelative.

External: The symbolis defined in a separately assembled module andis identified by an
EXT pseudo-operation.

Procedure absolute (SEG or SEGRonly): The symbolis defined relative to the start of the

procedure segmentandis identified by PB%+value.

Linkage baserelative (SEG or SEGR only): The symbolis definedrelative to the start of the

link frame andis identified by LB%+value,or * if the origin is LINK frame.

Temporarybaserelative (SEG or SEGRonly): The symbol!is defin

of the temporarybaseregister andis identified by XB%+value.

1 March, 1979 15-7 FDR 3059



15 DATA DEFINITION
 

 

Relative (Procedure relative (SEG or SEGR): The symbolis definedrelativeto thestart of

the module.

Common:The symbolis defined relative to a common data area which has been defined by

a COMMpseudo-operation. This common data area may be shared by several independen-

tly assembled routines.

 

Table 15-2. Modes

Mode Generated Symbol Usage Value Listing
By Representation

Absolute Labels! ABSSYM /-ABSSYM: EQU °123 4.23 000123A
Constants

Expression EXPSYM. EXPSYM EQU °3+'4 7 H00007A
Operations

Relative {non-SEG) Labels LABSYM LABSYM LDA LOC Current PC Current PC
Procedure (SEG)
Relative
Common COMMPseudo- B COMM A. By C(3}e Do. 718 960001C

Operation
Stack Relative DYNM -Pseudo- STKSYM.. DYNM- {°3] 3 6000038

Operation
@(Non-SEG mode} SKSYM2. SKSYM2 EQU @+'6 “6 o0e006S
SBir (SEG modes} SKSYM3 SKSYM3 EQU SB%4+'7 7 0000078

External EXT Pseudo- EXTSYM. EXT EXTSYM 0 000000E
Operation :

Procedure PBo PBSYM PBSYM EFQU PB‘. 4+'2. 2 Hgena2P
Absolute
Linkage Base LBo LBSYM LBSYM EQU LB%+'5..'5 H000051,
Relative LINK LBSYML. LINK

LBSYM DAC 5 5 o0ennsL

Temporary Base XB& XBSYM XBSYM EQU XB% +3. "3 000603T
Relative

Notes
y=PBoo or ABS .
2.--Offset from start of COMMON.  
 

EXPRESSIONS

As described in Section 14 - Language Structure, expressions contain one or more terms
(constants or symbols} joined byoperators.

Operators

Expressions maycontain arithmetic, logical, relational and shift operators.

Arithmetic operators: Perform addition, subtraction, multiplication. and division opera-

tions:

Operator Meaning Example Result (Ociaij

+ Addition 84+°4 000007

~ Subtraction ‘10-3 000005

* Multiplication ‘20*'10 000200

/ Division '20/°10 000002

Logical operators: Perform a logical operation on two 16-bit operands:

Operator Meaning Example Result (Octal)

OR. Logical OR '123.OR.'456 000577

XOR. Logical
Exclusive OR 123.XOR. 456 HOH575

AND. Logical AND '123.AND.°456 000002

FDR 3059 15-8 1 March, 1979



DATA DEFINITION 15
 
 

Relational operators: Perfurm a comparison of two i6-bit operands with a result of 0 if faise

Operator Relation Example Result (Octal)

EQ. Equal '123.EQ.123 000001
'123.EQ.456 000000

.NE. Not equal 123.NE.°123 000000

'123.NE.°456 000001

GT. Greater than '123.GT.123 000000
456.GT.123 000001

GE. Greater than '123.GE.123 000001
or equal '123.GE.' 456 000000

LE. Less than '123.LE.°123 000001
or equal '123.LE. 456 000001

LT. Less than ‘123.LT.456 000001
'456.LT. 123 000000

Shift operators: Perform logical right or left shift of an expression. using the syntax:

argument-expression ‘ast shift-count-expression
RS.

Operator Meaning Example Result (Octal)

.LS. Left shift '123.LS8.°3 001230

.RS. Right shift 123.RS.'3 000012

Usage

Space conventions: Operators may be preceded and/orfollowed bya single space (more
than one space causes PMAto treat the rest of the line as a comment).

Sign conventions: The operandsfor arithmetic operators maybesigned.

Operatorpriority: In expressions with more than one operator.the operator with the highest
priority is performedfirst. In cases of equal priority. the evaluation proceeds from left to
right. You may use parenthesesto alter the natural order of evaluation.

Priority Operator

Highest ~ /
—

RS. .LS.

GT. .GE. .EQ. .NE. .LE. .LT.

AND.

OR,

Lowest .XOR.

Resultant mode:For all operations other than addition and subtraction. the mode of both
operands must be absolute and the result is absolute.

When an addition operatoris used. at least one of the operands must be absolute. and the
result mode is the modeof the other operand.

When a subtraction operator is used. at least the second operand must be absolute. and the
result mode is the mode of the first operand.

1 March, 1979 15-9 FDR 3059



15 DATA DEFINITION
 

 

LITERALS

A literal is an expression preceded by an equal-sign (=), as in:

= ‘37

= *4+'37

You can use literals as operands in order to introduce data into your program. You cannot,
however, use a literal as a term in an expression.

The assembler places the data which you specified in a literal into a ‘literal pool’. It then
assemblesthe addressofthis literal into the object code of the instruction that contains the
literal specification. Thus the assembler saves you a programming step bystoring your
literal data for you.

Literals may be one or more words in length and maycontain anylegal data item or
expression. Note. however, that if you use colon (:) or semicolon (:] in a character constant

construction, you must precede it by an exclamation mark (!| escape character,

Non-SEG usage

When RLIT is used after a FIN statement. literals which have been alreadycollected in a
literal pool by the FIN will not be redefined. For example:

_ REL
(0801) REL
(9002) RLIT

B00000: 92.880801 (8003) LDA ='123 "123 IS AN OCTAL LITERAL
000001: Q0.000123A (8904) FIN

800002: 92.080001 (2805) LDA ='123 '123 IS IN THE SAME LITERAL
* POOL AS '123 ABOVE

800003: 84.908885 (8806) STA BUFF
000004: G2.800006 (8007) LDA ='456 '456 WILL BE IN BUFFER POOL

* AFTER END
G0G005: 00.00001GA (8008) BUFF DAC '1® DEFINE BUFFER AREA

900006 (8009) END END OF SOURCE CODE

G00085: 0.000456

SEG usage

Literals may be placed in either the procedure segmentorin the linkage segment. If an RLIT
pseudo-opis used. literals will be generated in the same wayas in a non-SEG assemblywith
an RLIT. If an RLIT pseudo-op is not used. the literals will be placed in the linkage frame.

The FIN pseudo-op maystill be used to control the placementofliterals. but the assembly
origin at the time a FIN occurs canaffect the literal placement.

lf RLIT modeis specified and a FIN occurs while in linkage origin, the FIN will act as:

HERE EQU *
PROC

FIN

ORG HERE

FDR 3059 15-10 1 March, 1979



DATA DEFINITION 15
 

 

will have the effect of:

HERE EQU *
LINK
FIN
ORG HERE

ASSEMBLER ATTRIBUTES

elAssemblerattributes can be specified by a number proceded by the pound character[¥}.
The attribute number may be a variable, or an expression within parentheses. as long as
such variables have been previously defined as absolute integer values. Attribute refer-
ences are evaluated as absolute integer values. and may be used in both macro definitions
and macro calls. See Appendix A for a completelist.

1 March, 1979 15-11 FDR 3059



 

Pseudo-operations
 



INTRODUCTION

Pseudo-operation statements are commands to the assembler, rather than executable
machine instructions. Pseudo-operation functions include:

e Assembly control (AC)

e Address definition (AD)

¢ Conditional assembly (CA)

e Data definition (DD)

e Listing control (LC)

e Literal (LT)

e Loader control (LO}

e Macro definition (MD)

e Program linking (PL)

¢ Storage allocation (SA)

¢ Symbol definition (SD)

Table 16-1 contains an alphabeticallistingof all the pseudo-operations, their functional class
andtheir restrictions, if any.

Pseudo-operations have an operation field and an operandfield separated by spaces. Labels
are usually optional, but some pseudo-operations either require a label to be present. or
prohibit it (see Figure 16-1).

The operation field contains the mnemonic namethatidentifies the pseudo-operation.

The operand field may contain one or more terms separated by single spaces or commas.
Terms may be constants, symbols, or expressions as defined in Section 15. In certain
operations, such as BCI, terms mayalso consist of ASCII character strings.

Symbols used in the operand field must be previously defined. unless otherwise stated in
the pseudo-operation definition.

Address expressions are evaluated as 16-bit integer values and used as a 16-bit memory
address, unless otherwise stated. Certain statements (DAC and XAC) accept indirect
address (*) and indexing (.1}) symbols. These are interpreted according to the addressing
mode whichisin effect.

1 March, 1979 16-1 FDR 3059



16 PSEUDO-OPERATIONS
 

 

 

 

Table 16-1. Pseudo-Operation Summary

Name

ABS

AP

BACK

BCI

BES

BSS

BSZ

C64R

CALL

CENT

COMM

D168

D321

D32R

D325

D64R

D64V

DAC

DATA

DDM

DEC

DFTB

DFVT

DUI

DYMN

DYNT

ECB

EJCT

ELM

ELSE

END

ENDC

ENDM

ENT

EVEN

EQU

EXT

FAIL

FIN

GO

HEX

IFTT

(FTF

IFVT

IFVF

IF

IFx

IP

LINK

Function

Set mode to absolute

Argument pointer

Loop back
Define ASCII string
Allocate block ending with symbol
Allocate block starting with symbol
Allocate block set to zeros
Check 64R
External subroutine reference
Conditional entry
FORTRAN compatible COMMON
Use 16S address mode
Use 321 address mode
Use 32R address mode
Use 32S address mode
Use 64R address mode
Use 64V address mode
Address definition (Prime 100-300}
Define data constant
Use default mode
Define decimal integer constant
Define table block
Define value table
Define Ul]
Define stack relative symbol
Direct entry definition
Entry control block
Eject page

Enter loader mode
Reverse conditional assembly
End of source statements
End conditional assemblyarea
End macro definition
Define entry point
Outputs NOP if current address not even
Fixed symbol definition
External reference
Force error message

Insert literals

Forward reference
Define hexadecimal integer constant
If table true
If table false
If value true
If value false
If true

Arithmetic conditional if

Indirect pointer
Put code in linkage segment

Class

AC

AD

CA

DD

SA

SA

SA

AC

PL

LO

SA

LO

LO

LO

LO

LO

LO

AD

DD

LO

DD

CA

CA

LO

SD

PL

PL

LC

LO

CA

AG

CA

MD

PL

AC

SD

PL

CA

LT

CA

DD

CA

CA

CA

CA

CA

CA

AD

AC

Restriction

Not in SEG/SEGR

MODE

SEG/SEGR mode
Macros only

SEG/SEGR mode

SEG/SEGR mode

SEG/SEGR mode

 

FDR 3059 16-2 1 March, 1979

 



PSEUDO-OPERATIONS 16
 

 

 

LIR Load if required LO
LIST Enable listing LC
LSMD List macro expansions data only LC
LSTM List macro expansions LC

MAC Begin macro definition MD
N64R Not 64R LO

NLSM Don't list macro expansions LC
NLST Inhibit listing LC
OCT Define octal integer constant DD
ORG Define origin location AC
PCVH Print cross reference values in HEX LC
PROC Put code in procedure segment AC SEG/SEGRmode
REL Set mode to relocatable AC Not in SEG/SEGR

MODE

RLIT Optimize literals LT
SAY Print message MD

SCT Select code within macro MD
SCTL Select code from macro list MD
SDM Set default mode LO
SEG Segmentation assembly ~— 64V AC Must be first

statement in listing
SEGR Segmentation assembly- 32I AC Must befirst

statementin listing
SET Changeable symbol definition SD
SETB Set base sector LO
SUBR Define entry point PL

' SYML Allows long external names PL SEG/SEGR mode
VFD Define variablefields DD
XAC External address definition AD
XSET Changeable symbol definition SD   

1 March, 1979 16-3 FDR 3059



16 PSEUDO-OPERATIONS
 

 

 

SPACES OR COMMA
2 SPACES OR COL.73

 

      
 

 

 

 

 

 

 

      
 

Figure 16-1. Pseudo-operations.

IF MORE THAN 10 SPACES FOLLOW THE

OPERATIONFIELD, THE ASSEMBLER
ASSUMES THERE IS NO OPERANDFIELD
AND TREATS THE REST OF THE LINE
AS COMMENTS.

LABEL OPERATION FIELD OPERANDFIELD COMMENTS

} ' t
MAY BE NOTE 1 OPTIONAL
REQUIRED, PSEUDO-OPERATION
OPTIONAL MNEMONICS
OR NULL

|

TERM 1 TERM 2 TERMN

NN SINGLEve
SPACE

OR COMMA

NOTE:

 
 

FDR 3059 16-4 1 March, 1979



PSEUDO-OPERATIONS 16
 

 

ACCTENADTV CONITDN
VOL £UVUINIANY

! pearTnm
£3 L¥AIds IN 2X POL vunu -T

aa iJ

Affect the actions of PMA during the assembly process.
 

  
 

Name Function Restriction

ABS Set mode to absolute Not in SEG/SEGR mode

C64R Check 64R

END End of source statements

EVEN Outputs NOP if current address not
even.

LINK Put code in linkage segment SEG/SEGR mode

ORG Define origin location

PROC Put code in procedure segment SEG/SEGR mode

REL Set modeto relocatable Not in SEG/SEGR mode

SEG Segmentation assembly - 64V Must appear before executable
code

SEGR Segmentation assembly-321 Must appear before executable
code

> ABS

Sets the assembly and loading modeto absolute, within the program address space. ABS
may be terminated by REL and vice versa. ABS modeis the default assembly mode.

>  Cé4R

Directs the assemblerto flag any instructions and/or memoryreference not compatible with
64R addressing mode. The following cases are detected:

1. An indirect or indexed DAC

2. An indirect, single-word memoryreferenceinstruction with an address
that is neither in sector zero nor within the relative reach of the

instruction.

> [label] END [address-expression]

Terminates assembly of the source program.All literals accumulated since either the start
of the program, or the last FIN statement, are assigned locations starting at the current
location count. If the program is segmented andliterals are in the linkage segment. refer to
Literal Control Pseudo-Operations for further information.

If an address-expression is not specified, the first location of the first module becomesthe
start address: otherwise, the address-expression defines the start address.

> [label] EVEN

Outputs a NOP if the current address is not even. Forces even alignment only for the
instruction or data immediately following the EVEN.

> LINK

Places subsequentcode in the linkage frame. The program countervalueis set to one more
than the highest value previously used in the linkage area. The modeisset to link. LINK may
be terminated by PROC andviceversa.

1 March, 1979 16-5 FDR 3059



16 PSEUDO-OPERATIONS
 

 

> [label] ORG address-expression

Sets the assembler location count equal to the value of the address-expression.

In non-SEG mode, the modeof the address-expression may be absolute, relative or common.

The value of the program counteris set to the value of the expression. If the modeof the

address-expression is common, then the modeof the program counter is set to common.If

the mode of the program counter is common, then it is set to the mode of the address-
expression. Otherwise, the mode of the program counter remains unchanged.

In SEG-mode, the mode of the address-expression may be absolute, procedurerelative,

linkage or common. The value of the program counteris set to the value of the address-

expression. If the mode of the address-expression is absolute, then the modeof the program

counter remains unchanged.In all other cases whetherrelative, linkage, or common both

the mode and the value of the program counter are set equal to that of the address-

expression.

> PROC

Places subsequentcode in the procedure segment. The value of the program counterisset

to one more than the highest value previously used in the procedure segment. The modeis

set to procedure relative. PROC maybe terminated by LINKorvice versa.

> REL

Sets the assembly and loading modeto relocatable. REL may be terminated by ABSandvice

versa.

> SEG

Directs the assemblerto create a 64V segmented mode assembly module. SEG must appear

before any instructions, pseudo-operations or macro calls which generate instructions, as

well as before any DYNM pseudo-operations. D64V (q.v.) only governsinstruction formats;

it does not create a segmented module. Modules assembled in SEG mode mustbe loaded by

SEG — the PRIMOSsegmented loaderutility.

SEG has the following effects:

° Sets the assemblerinto three pass assembly modeto optimize stack and link frame

references.

* Removesrestrictions on placement of DYNM pseudo-operations.

* Sets the instruction and address resolution mode to D64V.

¢ Initializes the assembler program counter to procedurerelative zero.

»  SEGR

Directs the assemblerto create a 32] segmented mode assembly module. SEGR must appear

before any instructions, pseudo-operations or macro calls which generate instructions, as

well as before any DYNM pseudo-operation. D321 (q.v.) only governsinstruction formats;it

does not create a segmented module. Modules assembled in SEGR mode must be loaded by

SEG — the PRIMOSsegmentedloaderutility.

SEGRhasthe following effects:

° Sets the assemblerinto three pass assembly modeto optimizestack andlink frame

references.

¢ Removesrestrictions on placement of DYNM pseudo-operations.

tion and address resolution mode to D321.a Masha oS -

* Initializes the assembler program counter to procedurerelative zero.

FDR 3059 16-6 1 March, 1979



 

PSEUDO-OPERATIONS 16
 

ADDRESS DEFINITION PSEUDO-OPERATIONS(AD)

Create address constants which maybe referenced byinstruction statements.
 

Name Function Restriction

AP Argument pointer SEG/SEGR mode

DAC Local address definition

IP Indirect pointer SEG/SEGR mode

XAC External address definition   
> [label] AP address-expression [,modifier]

Generates an argumentpointer in the form used by the 64 V/32I Procedure Call instruction
(PCL). address-expression is an argument variable, written in memory reference address
format. All 64V address forms may be used - except indexing. modifier controls the storage
of address-expression as follows:

S Set argumentstore bit.
SL Set argumentstore bit. Last argument.
*S Set argumentstore bit. Argumentis indirect.
*SL ‘Set argumentstore bit. Argumentis indirect andlast.
* Intermediate indirect argument. Do not store.

See Section 9 - Data Formats - for the argument pointer machine format.

> [label] DAC address-expression

Generates a 16-bit pointer in SR addressing format. address-expression is written in SR
addressing format, with indirect addressing and indexingspecified by * and .1 respectively.
If REL mode (see Assembly Control Pseudo-Operations) is in effect, the loader performs
relocation during loading.

The assembler generates a 16-bit constant which is acted upon by the loader as follows:

Addressing mode Address Length Index Indirection
16S 14 YES YES
325 15 NO YES
32R 15 NO YES
64R 16 NO NO
64V 16 NO NO

[label] DAC ** is a convention used to indicate a subroutine entry point (see Program
Linking Pseudo-Operations).

> [label] IP address-expression

Generates a 32-bit 64V/32] indirect pointer. address-expression must be one of the follow-
ing: procedurerelative, linkage relative, common or external. SEG sets up the pointerat
load time.

> [label] XAC symbol

Generates a 16-bit pointer to the external symbol. The symbol name maybe the same as a
local symbol without conflict. XAC is like a DAC exceptthat it references external symbols.
The address of the external symbolisfilled in at load time.

1 March, 1979 16-7 FDR 3059



 

16 PSEUDO-OPERATIONS
 

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS(CA)

Enable the programmerto selectively assemble portions of a sourcefile.
 

  
 

Name Function Restriction

_ BACK, - Loop back : Macros only
BACK TO
DFTB Define table block
DFVT Define value table

ELSE Reverse conditional assembly

ENDC End conditional assembly area

FAIL Force error message

GO Forward reference

IF Conditional

IFx Conditional
IFTF If table false »
IFTT If table true
IFVF If value false

IFVT If value true

BACK

> [label-1] label-2;
BACK TO

Directs the assembler to repeat source statements that have already been assembled.

beginning with the statement specified by label-2. Such backwardreferences are permitted

only within a macro definition. Both the BACK, BACK TO and label-2 must lie within the

same MAC-ENDM range.

> label DFTB (symbol, absolute-expression-1).,.. .

Creates a programmer symboltable. label is a table name, symbol is an argument whose

value is absolute-expression-1. The symbols defined have no conflict with existing symbols.

For example:

A EQU 5

X DFTB (A,1),(B,2)

X EQU 6

There are no conflicts since the two X’s and A’s are different types.

If a DFTB is defined with the same nameas a previously defined table, the contents are

appendedto the previoustable.

> label DFVT (absolute-expression-1, absolute-expression-2).,. . .

Creates a programmervaluetable. absolute-expression-1is the locator value and absolute-

expression-2 is the valueto be substituted.

>» ELSE

Reverses the condition set up by an IFx statement until the matching ENDC statement is

reached.If the IFx condition inhibited assembly, the ELSE statement enables assembly, ana
wmine NAG

vice versa. ELSE statements that lie within the bounds of other IFx-ENDC pairs nested

within the conditional assembly area are ignored.

FDR 3059 16-8 1 March, 1979



PSEUDO-OPERATIONS 16
 

 

Defines the end of a conditional assembly area started by an IFx statement. Every IFx
statement must have a matching ENDC.

> FAIL
Generates an Ferrorin the listing.

> [label] IF absolute-expression, statement

Provides the ability to selectively assemble code based on the results of a test. The operand
consists of an absolute-expression followed by a statement. If the expressionis true (has a
non-zero result) the statementis assembled; otherwise the statementis ignored and the next
line is processed. The operandof the IF statement cannot be continued onto the following
line, because the skip-if-false condition proceeds to the next physical, rather than logical,
line.

IFM
> [label] )IFP absolute-expression

IFZ
IFN

Sets specific tests to control code assembly. The absolute-expression is evaluated, andif the
result corresponds to the IF condition, assembly proceeds normally. Otherwise, the
assembler ignores all subsequent statements until an ENDC or ELSE statementis reached.

For every IFx statement there must be a matching ENDCstatement. IFx and ENDC pairs
may be nested within each other. The nesting depth count is checked evenin sections of
code that are being skipped bya previous IFx statement.

> label IFTF symbol

Searchesthe table, whose nameis label, for symbol. If symbolis not found, puts its value in
assemblerattribute 124 and assembles codeto the matching ELSE or ENDC.If the symbolis
found, skip to the line following the matching ELSE or ENDC.

> label IFTT symbol

Searches the table, whose nameis label, for symbol. If symbol is found puts its value in
assembler attribute 124 and assembles code to the matching ELSE or ENDC.If the symbolis
not found, skip to the line following the matching ELSE or ENDC.

> label IFVF symbol

Obtains a value in a value table. If symbol does not equal a locator valuein the value table
whose nameislabel, put its value in assembler attribute 124 and assemble the codeto the
matching ELSE or ENDC.If the locator value is found,skip to the line following the matching
ELSE or ENDC.

> label IFVT symbol

Obtains value in a value table. If symbol equals a locator value in the value table whose
name is label, puts its value is assembler attribute 124 and assembles the code to the
matching ELSE or ENDC.If the locator value is not found, skip to the line following the
matching ELSE or ENDC.

1 March, 1979 16-9 FDR 3059



16 PSEUDO-OPERATIONS
 
 

GO t label
> 160 TO \

Causes suspension of assemblyof all subsequent statements until a statement having the

specified label is found. The GO or GO TO statement must point forwardto a labelthatis

not yet defined. Anerror condition exists if the assembler reaches an END, MAC, or ENDM

statementbefore finding the specified label.

DATA DEFINING PSEUDO-OPERATIONS(DD)

Initialize memory locations to knownstarting values. For coding convenience, data and

address constants maybespecified ina variety of formats. Simple coding conventionsallow

the programmerto use decimal, octal, binary and hexadecimal integers. decimal floating

point, and ASCII character constants. The assembler interprets the notation and auto-

matically generates one, two or more data words in the proper internal binary format.

 

Name Function Restriction

BCI Define ASCII string

DATA Define data constant

DEC Define decimal integer constant

HEX Define hexadecimal integer constant

OCT Define octal integer constant VFD Define variable fields

> [label] BCI 1string l
n, string |

 

Loads ASCII character strings by packing the specified ASCII characters two per word,

starting with the mostsignificant 8 bits. Assembled wordsareloadedstarting at the current

location count.

In the first format, the string is delimited by any character other than a digit. If an odd

number of characters is specified, the least significant half of the last wordis filled with

zeroes.

In the second format, the string is preceded by a word count, n, which is the number of

characters divided by two and roundedup.

> [label] DATA [(absolute-expression-1)] absolute-expression-2,. . .

Defines absolute-expression-2 absolute-expression-1 times. Absolute-expression-1 is

assumedto be 1 if omitted.

The operand expression(s} are assembled into the current location. The operand may

contain any number of subfields, separated by commas. Subfields are assembled in

consecutive locations starting with the left-most subfield. If an expression requires more

than onelocation (e.g. floating point), consecutive locations are used. See Section 15 — Data

Definition - for a full discussion of allowable formats.

P [label] DEC decimal-integer-constant,...

Defines decimal integers. Each decimal-constant in the operandis evaluated as a decimal

constant, converted into one or more binary words, and loaded starting at the current
To nat All —.-u- nmin freemante arrantas xy rat ilocation. All numeric formats accepted by the DATAstatement may be used with DEC.

FDR 3059 16-10 1 March, 1979

 



PSEUDO-OPERATIONS 16
 

 

vrha ri 1 i: ? a a zs -

wr |labelj HEA hexadecimal-integer-constant,...

Defines hexadecimal integers by converting the hexadecimal-constants within the operand
to 16-bit integer values and loading them in consecutive locations starting at the current
location.

> [label] OCT octal-integer-constant, .. .

Defines octal integers. Each octal-constant in the operandis loaded at the currentlocation.

> [label] VFD absolute-expression-1, absolute-expression-2,.. .

Permits 16-bit data words to be formed with subfields of varying length. In the pairs of
constants, absolute-expression-1 gives the subfield size, absolute-expression-2 gives the
value. Thefirst pair is the most significant subfield; subsequentfield size value pairs load
less significant subfields of the 16-bit word. For any pair, if a value exceedsthe specified
field size, the more significant overflow bits are exclusive-OR’ed with the subfield to the
left. No error message is generated. If the entire wordis not specified, the least significant
end is filled with zeroes.

An error message is printed if the assembler attempts to load more than 16 bits.

LISTING CONTROL PSEUDO-OPERATIONS(LC)

Format the assembler listing.
 

Name Function Restriction

EJCT Eject page

LIST Enable listing

LSMD List macro expansions data only

LSTM List macro expansions

NLSM _Don't list macro expansions

NLST Inhibit listing

PCVH Print cross reference values in hexadecimal  
 

> EJCT

Causesthelisting device to eject the page (execute a form feed), print the current pagetitle
and page number, and feed three blank lines before resumingthelisting. This function is
operable only with devices having a mechanical form feed capability, such as a line printer.

> LIST

Lists all statements except those generated by macro expansions. Since this is the as-
sembler’s default mode, a LIST statement is not required unless a NLST statement has

previously inhibited listing.

>  LSMD

Lists macro calls plus any data generated by macros.

>  LsSTM

Lists macro call statements plusall lines generated by the macro expansion including code
and data values.

1 March, 1979 16-11 FDR 3059



 

16 PSEUDO-OPERATIONS
 

>  NLSM

Inhibits listing of statements generated by macro expansion. Only the macrocallis listed.

Ignored if -EXPLIST commandline option is specified.

> NLST

Inhibits listing of all subsequent statements until a LIST statement is encountered. LIST and

NLSTmaybe used togetherin sourcetext for selective control over the sectionsto belisted.

The LSTM, LSMD, and NLSMstatements provide control of listing for macro definitions.

Ignored if -EXPLIST commandline option is specified.

> PCVH

Prints symbol values in the cross reference in hexadecimal instead of octal.

LITERAL CONTROL PSEUDO-OPERATIONS(LT)

Govern the placementofliterals. Also see END, whichis described under Assembly Control

Pseudo-Operations.

 

Name Function

FIN Insert literals

RLIT Optimize literals

Restriction

 
 

> [label] FIN

Controls the placementofliteral pools. All literals defined since an RLIT statement,thestart

of the program,or the last FIN statement, are assembledinto literal pool starting at the

current location. Processing of subsequent statements beginsat the first location following

the literals. By using FIN, the programmercan distribute literals throughout the program,

and possibly reduce the numberof out-of-range indirect address links that must be formed

by the loaderto accessliterals.

> [label] RLIT

Directs the assemblerto optimizeliteral allocation for relative addressing modes(32R,64R,

64V, 321 modes). Normally (i.e., without RLIT), literais are assigned locations following a

FIN or END statement. If a defined literal is referenced following a FIN,it is assigned

another location following the next FIN or END statement. However, in a program that

contains an initial RLIT, a literal that has already been defined andis still within the

relative or multiword reach (see Section 10 - Memory Reference) is referenced directly,

without allocating a new location.

Note

RLIT must precede executable code.

Normally in SEG or SEGR mode, literals would be placed in the linkage segment; issuance

of RLIT causes placementofliterals in the procedure segment.

FDR 3058 16-12 i March, 1979

 



PSEUDO-OPERATIONS 16
 

ann AMAR TT. «

Usage (non-SEG or SEGR): When RLIT is used with a FIN statemeni, literals which have
been alreadycollected in a literal pool by a FIN will not be redefined. For example:

_ REL
(0001) REL
(002) RLIT

800000: 02.000001 (0003) LDA ='123 '123 IS AN OCTAL LITERAL
990001: 90.009123A (8004) FIN

990002: 92.000081 (805) LDA ='123 '123 IS IN THE SAME LITERAL
* POOL AS '123 ABOVE

999003: 4.990205 (2226) TA BUFF
900004: 2.000006 (8007) LDA ='456 '456 WILL BE IN BUFFER POOL

* AFTER END
900005: 69.900010A (0008) BUFF DAC ‘1d DEFINE BUFFER AREA

909006 (2099) END END OF SOURCE CODE

900006: 90. 000456A

Usage (SEG/SEGR): The FIN pseudo-operation may still be used to control the
placementof literals, but the assembly origin at the time a FIN occurs and the use of RLIT
can affect the literal placement.

If RLIT is specified and a FIN occurs while in linkage origin, the FIN will act as:

HERE EQU *

PROC

FIN

ORG HERE

Correspondingly, if RLIT is not specified and a FIN occurs while in procedureorigin, the
FIN will have the effectof:

HERE EQU *

LINK

FIN

ORG HERE

LOADER CONTROL PSEUDO-OPERATIONS(LO)

Provide control information for the loader. Addressing mode control pseudo-operations
(D165, D32S, D64R, Dé4V, D32]) control the assembler memory reference instruction
processing as well as loader address resolution mode. Mode commands entered during
loading set the loader’s current modeonly, and are overridden by mode contro! pseudo-
operations in the program.

Incompatible instructions (e.g., a 64V instruction in 32R mode), are flagged by the assembler.
The default mode of the assembleris relative, unless a SEG pseudo-operationis used, in
which case 64V modeis the default.

Note that DUI, LIR and CENT simplify the preparation of library packages that auto-
matically load the modules appropriate to the machine in which the codeis to be executed.

4 March, 1979 16-13 FDR 3059



16 PSEUDO-OPERATIONS
 
 

 

Name Function Restriction

CENT Conditional entry

D16S Use 16S addressing mode

D328 Use 328 addressing mode

D32R Use 328 addressing mode

D64R Use 64R addressing mode

D64V Use 64V addressing mode

D321 Use 32] addressing mode

DDM Use default mode

DUI Define UII

ELM Enter loader mode

LIR Load if required

N64R Not 64R

SDM Set default mode Not 64V or 321

SETB Set base sector  
 

> CENT symbol

Provides a conditional ENT capability. The loader will load a module containing a CENT

only if somethingelse in the module — such as an LIR — tells it to load the module. This is

true even if the CENT symbol matches an unresolved external reference.

Typically, a module containing a CENT will be part of a library.

> 16S

Directs the assembler and the loader to use 16R address resolution.

>  D32R

Directs the assembler and the loader to use 32R addressresolution.

> pees

Directs the assembler and the loader to use 32S address resolution.

>» D64R

Directs the assembler and the loader to use 64R address resolution.

> Desv

Directs the assembler and the loader to use 64V addressresolution.

> D321

Directs the assembler and the loaderto use 32I addressresolution.

> DpM
Nn te
VIPTCLLDS the assembler and t
is initially set at the start 0

i€é aSSém 4he default modeNAess
a SDM pseudo-operation.

ing mode,

FDR 3059 16-14 1 March, 1979



PSEUDO-OPERATIONS 16
 

 

V Go rs e

Triggers the loading of a UII package. absolute expression-1 is a bit mask, defining
instruction sets that the UII package emulates, and absolute-expression-2 is a bit mask,
defining hardwareinstruction sets that must be present to execute the UII package.

Bit number Meaning

1-9 Must be 0
10 Prime 450 and up

11 Prime 300, 400

12 Undefined

13 Double Precision Floating Point

14 Single Precision Floating Point

15 Prime 300 Only

16 High Speed Arithmetic

> ELM

Causes the loader to generate an enter addressing mode instruction in the current loader
addressing modeat the current counter.

> LIR absolute-expression

Controls library program loading. The program will be loaded if any of the instruction
groups specified have been used in previously loaded code. absolute-expression is a bit
mask, defining instruction groups thatare to trigger loading. Bit assignments are the same as
for DUIL.

> [label] N64R

Informs the loader that the program is not to be loaded in the 64R addressing mode. If such
a program is loaded in the 64R addressing mode, the loader will report a ‘N6error.

> SDM absolute-expression

Directs the loaderto set its default addressing mode to absolute-expression. Legal values of
the expression are:

0 16S Mode

1 32S Mode

2 64R Mode

3 32R Mode

SDM does not change the current addressing mode and cannot be used in 64V or 321 modes.

> [label] SETB address-expression-1, absolute-expression-2

Specifies the starting-address address-expression-1 and the size absolute-expression-2 of a
base area for out-of-range indirect addresslinks.

Normally, the loader generates address links starting at location ‘200 of sector zero. This
statement permits the loader to generate address links in the samesector as the instruction
whichrefers to them. Memorylocations to be usedfor this purpose mustbe reservedbythe
program.

The first SETB for a given base area determinesthe location at which the indirect word table
will begin in that sector. The table then grows upward(increasing addresses}. Other SETB

1 March, 1979 16-15 FDR 3059



16 PSEUDO-OPERATIONS
 
 

pseudo-operations referencing the same sector do not redefine the table for that sector —
table filling resumes whereitleft off.

At the end of each module, the base sector reverts to sector zero. The loader maintains a

record of the last location used in each base sector. Whenthe basesector reverts to zero, no

indirect wordsarelost.

MACRO DEFINITION PSEUDO-OPERATIONS (MD)

Create macros. See Conditional Assembly and Listing Control Pseudo-Operationsfor other
MACROspecific pseudo-operations.

 
Name Description

ENDM End macro definition

MAC Begin macro definition

  
 

SAY Print message

SCT Select code within macro

SCTL Select code from list within macro

> ENDM

Terminates assembly of a macro definition. ENDM mustbethe last statement in a macro

definition — just as ENDis the last statement in an assembler program.

dummy-words, ...
> label MAC argument-values,...

argument-identifiers, . ..

Begins the definition of the macro namedbythe label field. The nameis formedin the same

way as any variable or label. Following MAC are statements that make up the macro

definition; for example:

TRANSFER MAC
LDA <l>

STA <2>

The integers enclosed in angle brackets are argument references. During assemblytheyare

replaced by argument values specified in a macro call. Optional dummy words(‘noise

words”} and argumentidentifiers (‘positional noise words”) are described in Section 17 —

MacroFacility.

Macro definitions may contain macro calls to any depth, but macro definitions themselves

cannot be nested.

> [label] SAY ASCII-expression

Defines a message whichis printed starting in columnm 1 ofthe listing. Normally, the SAY

message is used within a macro to generate error comments or other messages. Macro

rgument references, enclosed by angle brackets are replaced by their equivalent characteroUs SUsssuaiar AWAWEL WEE ge Wha eee

string before output.

FDR 3059 16-16 1 March, 1979



PSEUDO-OPERATIONS 16
 

 

> [label] SCT absolute-expression

Assembles selected code groups based on absolute-expression. The expression must be a
constant or an expression that can be evaluated as a single-precision number. The argument
value may bepositive or negative, with a range to + 4000. This value determines which code
groups are assembled.

Code groups: Code using SCT must be in groups delimited by marker lines, which have a
percent symbol (%} in column 1 followed by a numeric argument:

Marker Meaning

To Ordinary markerline.

FoI If the preceding section of code was assembled, continue assembly
from this marker to the next marker.

% 2 If no other sections of code have been assembled, assemble from this
line to the next marker.

Go / End of control range.

The %2 markeris useful to identifiy a section of code that is to be assembledif the argument
value of the SCT statementis out of range.

Argument Assembly Condition
Value

0 Assemble from the SCT statementto the first % marker; then skip to the
%/ line.

1 Skip to the first % marker; assemble from there to the second %
marker; then skip to the %/ marker.

n Skip to the n’th % line marker, if any; assemble from there to marker n
+1; then skip to the %/ marker.If there is no n’th % marker, proceed as
for -n.

—n Skip to a %2 line marker, if any, and assemble from there to the next %
marker; then skip to the %/ line. If there is no %2 marker, skip to the
% line.

No other SCT statements may appear within the control range; SCT statements cannot be

nested.It is possible, however,to call another macro containing an SCT from within an SCT
area. |

> [label] SCTL absolute-expression-1, absolute-expression-2,.. .

Assembles selected code groups. The results of a comparison between thefirst absolute-
expression-1 and the rest of the argument list controls the selection of the code group.
Absolute-expression-1 and each expression in the argumentlist must be a constant or an
expression that can be evaluated as a single-precision number. The argument value may be
positive or negative, with a range to + 4000. This value determines which code groupsare
assembled.

Code groups: Code using SCTL must be in groups delimited by marker lines, which have a
percent symbol (%) in column 1 followed by a numeric argument:

1 March, 1979 16-17 FDR 3059



16 PSEUDO-OPERATIONS
 
 

Marker Meaning

%o Ordinary markerline.

Fo If the preceding section of code was assembled, continue assembly
from this marker to the next marker.

%2 If no other sections of code have been assembled, assemble from this
line to the next marker.

Go / End of control range.

The %2 markeris useful to identify a section of codethatis to be assembledif the argument
value of the SCTL statementis out of range.

Argument

Value Assembly Condition

0 Assemble from the SCTL statementto the first % marker; then skip to
the %/ line.

1 Skip to the first % marker; assemble from there to the second %
marker; then skip to the %/ marker.

n Skip to the n’th % line marker, if any; assemble from there to marker n
+1; then skip to the %/ marker.If there is no n’th % marker, proceed as
for -n.

—n Skip to a %2 line marker, if any, and assemble from thereto the next %
marker; then skip to the %/ line. If there is no %2 marker, skip to the
% line.

Expression comparison: The position on the argumentlist of the expression which equals
absolute-expression-1 determinesthe result:

Expression Position Meaning

absolute-expression-1=absolute-expression-2 SCT 0

absolute-expression-1=absolute-expression-n SCT n

no match SCT -n

No other SCTL statements may appearwithin the control range; SCTL statements cannot be
nested. It is possible, however, to call another macro containing an SCTL from within an

SCTL area.

PROGRAM LINKING PSEUDO-OPERATIONS(PL)

Coordinate the interaction of the assembler and loader in resolving address references
between main programs and external subroutines.
 

Name Function Restriction

CALL External subroutine reference

DYNT Direct entry call

ECB Define entry control block SEG/SEGR

EXT Flag external reference

SUBR,

ENT Define entry point  
 

> [label] CALL symbol

In non-64V modes, CALL generates a JST to symbol, which is defined by the assembler as

FDR3059 16-18 1 March, 1979



PSEUDO-OPERATIONS 16
 

 

xternal. Unlike EXT, there is no conflict betweena local variable and a CALL operand with

The operand must contain a single symbol(not an expression) of up to 6 characters, of which
the first must be alphabetic. A ,1 for indexing and * for indirect addressingis optional.

In 64V and 32I modes, CALL generates a PCL instruction to an external symbol.

> DYNTaddress-expression

Defines a direct entry point into the operating system. System libraries only.

> [label] ECB entry-point,[link base], displacement, n-arguments [ , stack-size]
[ , keys]

Generates an entry control block to define a procedure entry. It must go in the linkage frame
with the subroutine entry point pointing to the ECB.

Parameter Meaning

entry-point Procedurerelative value; entry point for subroutine.

link-base Link base register value.

displacement Displacement in stack frame for argumentlist. May
be stack relative or absolute expression.

n-arguments Numberof arguments expected; defaultis zero.
stack-size Initial stack frame size. Default is maximum area

specified in DYNM statements.

keys CPU keys for procedure. Default is 64V addressing
mode, all other keys zero.

For example:

ENT ECBNAM

LAB1 LDA ='123

LINK

ECBNAM ECB LABL

END

If the default value for a parameteris desired, the parameter may be omitted, leaving only
its delimiting comma. Anystring of trailing commas may be omitted.

Note

The main program — that which you call PRIMOSlevelusing
SEG#Name — is a subroutine to SEG and must, therefore,
have an ECB and the ECB name on the ENDstatement.It
need not have an ENT because SEG will give a dummyentry
point nameto a routine called at this level.

> [label] EXT symbol

Identifies external variables. The names appearing in the operand ofthis statement are
flagged as external references. Wheneverother statements in the main program reference
one of these names,a special block of object text is generated that notifies the loadertofill
in the address properly. The assemblerfills the address fields with zeroes.

Names defined by the EXT pseudo-operations are unique only in the first 6 characters
(loader restriction) and should not appear in a labelfield internal to the program.

1 March, 1979 16-19 FDR 3059



16 PSEUDO-OPERATIONS
 
 

> [label] SUBR symbol-1 or ENT symbol-1 [, symbol-2]

Link subroutine entry points to external names used in CALL, XAC or EXT statements in

calling programs. SUBR and ENTareidentical in effect. symbol-1 is the external name used

by calling program, whereas, symbol-2 is the entry name used in subroutine, if different

from symbol-1.

>  SYML SEG/SEGR

Allows long external namesupto eight characters to be generated by the assembler. Must

follow SEG or SEGRbut precede any generated code.

STORAGE ALLOCATION PSEUDO-OPERATIONS(SA)

Control the allocation of storage within the program address space.
 

  

Name Function Restriction

BSS Allocate block starting with symbol

BES Allocate block ending with symbol

BSZ Allocate block set to zeroes

COMM FORTRAN compatible COMMON
 

BSS
> [label]

;

BES absolute-expression
BSZ

Allocates a block of words of the size specified in the absolute-expression starting at the

currentlocation count.If there is a label,it is assignedto the first word of the block (BSS and

BSZ} or to the last word of the block (BES). For BSZ, all words within the block are set to

zeroes.

> [label] COMM symbol [(absolute-expression)|

Defines FORTRAN-compatible named COMMONareas. These areas are allocated by the

loader. The label assigns a nameto the block as a whole, and the operand field specifies

named variables or arrays within the block. Additional COMM statements with the same

block name are treated as continuations. symbol alone reserves a single location, the

optional absolute-expression reserves locations equal to its value. In SEG mode,the loader

sets up a 32-bit indirect pointer in the linkage segment which points to the commonarea.

SYMBOL DEFINING PSEUDO-OPERATIONS(5D)

Variables used as address symbols are usually defined when they appearin the label field

of an instruction or pseudo-operation statement. Symbolsso definedare given the relocation

mode and valueof the program counterat that location. The EQU, SET and XSETstatements

makeit possible to equate symbols to any numerical value, including onesthatlie outside

the range of addresses in a program.
 

Name Function Restrictions

DYNM Declarestack relative R and V only

EQU Symbol definition

SET Symbol definition

XSET Symboldefinition  
 

FDR 3059 16-20 1 March, 1979



PSEUDO-OPERATIONS 16
 

 

Declares stack relative symbols. Since references to stack relative symbols generate two-
wordinstructions, stack relative symbols must be declared before they are used (REL mode
only).

expression-1 is the stack size, symbol is the name, expression-2 is the numberof wordsto
allocate for that symbol and expression-3 is the stack offset.

In the following format descriptions, these abbreviations are used:

SC Currentstack allocation count (initially=2)

Note

Initially 142 in SEG mode. Note also that subroutine argument
addresses require three words and are specified: ARGn(3).

sm Maximumallocation count

symbol Symbol to be assignedstack relative offset

exp1 Expression defining numberof words for symbol

exp2 Expression defining stack offset

Format Description

1. symbol

e symbolis assigned offset=sc
* sc=sct1

¢ if (sc .GT. sm) sm=sc

2. symbol (exp1)

¢ symbol is assigned offset=sc
* sc=sc+expl

e if (sc .GT. sm) sm=sc

3. symbol=exp2

e symbolis assigned offset=exp2
e if (exp2+1 .GT. sm) sm=sc

4, symbol (exp1)=exp2

¢ symbol] is assigned offset=exp2
e if (exp2+exp1 .GT. sm) sm=exp2+exp1

o
r.= exp2

°¢ sc=exp2

> EQU
symbol 1 set absolute-expression [,symbol=absolute-expression]

XSET Format 1

P (EQU
SET symbol=absolute-expression,... Format 2
XSET

In format 1, the symbolin the field label is equated to the absolute-expression. which may
be any expression whichis legal in the current addressing mode. Any symbols usedin the
expression must already be defined.

In format 2, symbols are assigned numerical values by equality expressions in the operand
field. One or more equality expressions can be used, separated by commas.

1 March, 1979 16-21 FDR 3059



16 PSEUDO-OPERATIONS

Note that format 1 can be extended by symbol=value expressions.

EQU, SET and XSET perform the same functions; however, a symbol defined by EQU may
net be redefined, while a symbol once defined by SET or XSET may be redefined by
subsequent SET or XSET statements without causing an error message.

Symbols defined by XSET will not appear in the cross referencelisting.

FDR 3059 16-22 1 March, 1979



 

Macro facility
 



INTRODUCTION

The macro facility enables the programmer to define functions using simple English, or

other language phrases. For example, the macro:

TRANSFER DATA TO SAVE

replaces the simple but cryptic assembly coding:

LDA DATA

STA SAVE

Once a macro function has been defined, it can be called any numberof times within a

program. Different argument values (DATA and SAVEin the above example) can be

supplied with each call. Dummy words, such as TO or FROM,can be addedto increase

intelligibility. These words must be identified during macro definition so that they will not

be treated as additional arguments in a macrocall.

After a system-level programmerhas defineda set of macros, a specialist in an application

field can formulate macro calls to solve his particular problems. The application specialist

gains the advantage of macro’s capabilities without becoming involved in the details of

assembly language programming.

The example below illustrates a simple macro definition and call. The discussion which

follows describes each element.

_ REL
(0081) REL
(G002) LST
(0003) TRANSFER MAC
(9004) LDA <l>
(0805) STA <2>
(0006) ENDM
(G087) TRANSFER DATA SAVE

800000: 02.000002 (MLO1) LDA DATA
BOO001: 04.000003 (MLO1) STA SAVE

(ML@1) ENDM
080002: 900005 (8908) DATA ocT 5
900003: (009) SAVE BSS 2

000005 (0018) END

1 March, 1979 17-1 FDR 3059



17 MACRO FACILITY
 

 

MACRO DEFINITION

Each macrodefinition must begin with a MAC pseudo-operation. The MAC statement must
have a label (‘TRANSFER’) and may have optional dummy words (FROM‘TO’} and
argumentidentifiers in the variable field. Statements which make up the macro definition
follow, terminated by an ENDM pseudo-operation.

Argument references

Argument references are expressions enclosed within angle brackets. Any field of a
statement within a macro definition may contain an argument reference. The expression
may contain variables as well as absolute integers, provided the variable has been
previously defined as an absolute integer. For example:

REL

LST™

TRANSFER MAC

IDA <J>

STA <K>

ENDM

EQU 1

EQU 2

ENDM

m
o

is the same as the previous transfer macro example. The labelfield of the macrocall is not
automatically assigned; it replaces argument <0>, if any, during assembly.

Assemblerattribute references

Certain useful attributes of a macro can be specified by a number preceded by the pound
character (#). The attribute number maybe a variable, or an expression within parentheses.
as long as such variables have beenpreviously defined as absolute integer values. Attribute
references are evaluated as absolute integer values, and maybe used in both macro
definitions and macro calls. See Appendix A for a completelist.

Local labels within macros

Local labels, which do not conflict with labels outside of the macro, can be assigned within
a macro definition by using the ampersand character (&) as the first character of the label.
The ampersandis replaced by a 4-digit macro call number, thereby assuring uniqueness of
the label regardless of the macro’s environment. Use of the ampersand outside of a macro
will result in the substitution of 4 zeros.

Examples:
Assigned

Local Label Evaluation As In Macro Call

ABC 002ABC 0002

X3A 1739X3A 1739

MACRO CALLS

A macrocall is a special type of statement that uses the name of a defined macro in the
operation field:

arguments,...

[label] macro-name mm words, ...
argument identifiers,.

FDR 3059 17-2 1 March, 1978



MACRO FACILITY 17
 

 

For each macrocall, the assembler enters the in-line code of the defined macrostarting at
the current location. Argument references are replaced by argument values from the

variable field.

User defined macros must be defined in source statements preceding the macrocall.

Argument values

The variable field of a macro call usually contains one or more argumentvalue expressions.
An argumentvalue expression begins with thefirst non-space characterof the variable field
and continues until either a terminating commaor space appears. The commaorspaceis not
consideredto be part of the argument expression.

Argumentvalues in parentheses: Enclose argument value expressions in parentheses when
commas, spaces, or string delimiters within a single argument are desired. The outside
parentheses are not considered as part of the argument expression. A typical use of this
feature is in forming sub-lists of arguments for macro calls nested within a given macro

definition. See NESTING MACROS,below.

Argument substitution

During assembly of a macro call, the assemblersubstitutes the argumentvalues in the macro
call variable field for the argument references in the macro definition. Argument ex-

pressions are matched to argumentreferences in numerical orderfrom left to right. Thefirst

expression in the macrocall is assigned as argument1, the second as argument2, and soon.

Variable Field Argument <1> Argument <2> Argument <3>

A A 0 0

A+8 A+t3 0 0

X,Y-1,Z* A-1 xX Y-1 Z*A-1

X,B-C (Z3X2) x B-C Z3X2

(A, B-1), C A, B-1 C

(X, Y, (Z1+Z2).3) X.Y,(Z1+Z2).3 0 0

In the following call to the TRANSFER macro,

TRANSFER ARG] '1779

the variable ARG1 is argument 1 and the constant ‘1770 is argument2. Thus, the TRANSFER

macro shown would be assembledas:

LDA ARGI
STA ‘1778

Arguments that are not assigned values in a macrocall are set to zero by the assembler.

Self documentation of macros

An ordinary macro call like:

TRANSFER ARG] ARG2

although complete, provides only a vague descriptionofits function. Using additional words

in the variable field of a macrocall, the programmer can communicate the exact nature of

the function. Macro calls are made self-documenting by a combination of meaningful

argument symbols, such as DATA, MESSAGE.and PRINTER, dummywords, such as TO and

FROM, and argumentidentifiers. Dummy wordsarefor descriptive purposes only and are

ignored by the assembler, while argument identifiers act as argument keywords.

1 March,1979 17-3 FDR 3059



17 MACRO FACILITY
 

 

Dummywords: Dummywordsapplicable to a given macro are definedin the variablefield
of the MAC statementthat starts the macro definition. For example:

TRANSFER MAC FROM TO
IDA <l>

STA <2>

ENDM

In the above example, FROM and TOare defined as dummy words. In any subsequentcall
to this macro, the assembler ignores the words FROM and TO; all other expressions in the
variable field are interpreted as argument values, proceeding in numerical argumentorder
from left to right. These values are substituted for the argument references in the macro
definition statements, e.g., when the TRANSFER macro is called by TRANSFER FROM

ALPHA TO ‘7770, the assembler ignores the FROM and TO,and assembles the macroasif
the call statement were TRANSFER ALPHA, ‘7770.

A dummywordstring can be any combination and numberofletters, numerals, periods and
$ signs, terminated by a comma. Any number of dummywordstrings may be used.If thefirst
character of a dummy wordstring is an open parentheses, all characters, including spaces
and commas, up to the closing parentheses are considered part of the samestring. The
parentheses are not considered partof thestring.

Argumentidentifiers: While the self-documenting effect of dummy words improves the
description of macro calls, the programmer must still be careful to enter values for
arguments in the proper order. Argumentidentifiers increase the format flexibility of macro
calls by associating a particular argument numberwith a specific dummyword.regardless
of written order. In the TRANSFER macro, for example, identifiers can be defined so that
argument2 follows the dummy word TO,and argument1 follows FROM,regardlessof the
order in which TO and FROMappearin a macrocall.

Argument identifiers, like dummy words, are assigned in the variable field of a MAC
statement that starts a macro definition. To define an argumentidentifier. set a dummy
word, in parentheses, equal to the desired argument number:

TRANSFER MAC (FROM)=1 (TO)=2
LDA <l>

STA <2>

ENDM

Whena call to the macro uses a defined argumentidentifier in its variable field, the first
non-dummy expression immediately following the identifier is taken as the value of the
argument:

_ REL
(0001) REL
(0002) TRANSFER MAC (FROM)=1, (TO)=2
(083) LDA <1>
(0004) STA <2>
(0005) ENDM
(3006) TRANSFER FROM ALPHA TO BETA

000000: 2.000004 (MLO) LDA ALPHA
000001: 4.000006 (MLL) STA BETA

(0007) TRANSFER TO BETA FROM ALPHA

990002: 2.000084 (MLO1) LDA ALPHA
000003: 94.000006 (MLOL) STA BETA
000004: (G08) ALPHA BSS 2
BO0006: (9009) BETA BSS 2

000010 (001) END

FDR 3059 17-4 1 March, 1979



MAGRO FACILITY 17
 
 

Rat
AsJUL r

r ! is have the same effect. The expression following the dummy word FROM
is taken as argument <1>, and the expression following TO is taken as argument <2>.
Argumentidentifiers and dummy words may be usedtogether in the same macro. Ordinary
dummy wordsare ignored,as usual.

Arguments that are not associated with identifier words receive values in the usual
positional priority - the first non-dummywordis taken as the value forthefirst unspecified
argument, and so on. For example, the macro definedby:

MASK MAC (BY)=2, (TO)=3,MOVE,AND
LDA <I>

ANA <2>

LDA <3>

ENDM

canbecalled by,

(0001) REL
(9962) MASK MAC (BY)=2, (TO)=3,MOVE,AND
(8083) LDA <l>
(@0G4) ANA <2>

(9085) LDA <3>
(8086) ENDM
(6097) MASK INPUT BY 7 AND MOVE TO BUFFER

QOOOLO: G2.008903 (ML@1) LDA INPUT
OOOOR1: 03.800097A (MLG1) ANA 7
GOOOG2: 02.980004 (ML@1) LDA BUFFER
999003: 900456 (8888) INPUT OCT 456
GOO084: (9069) BUFFER BSS 1

020805 (8019) END

Using the identifier words BY and TO. argument 2 is given a value of 7 and argument3 is
equated to the label BUFF1. The only remaining variable in the call is INPUT. so it is
assigned asto the first unspecified argument. 1.

NESTING MACROS

Macro definitions may contain nested calls, as in the following example:

The WAIT1 macro, which calls another macro, TRANSFER.is defined by:

REL

TRANSFER MAC

LDA <I>

STA <2>

ENDM
WAIT MAC

IRS <l>

JMP *-]

TRANSFER <2>

ENDM

1 March, 1979 17-5 FDR 3059



17 MACRO FACILITY
 

 

is called by,

REL

TRANSFER MAC

LDA <i>

STA <2>

ENDM

WAIT MAC

IRS <l>

JMP ¥*-l

TRANSFER <2>

ENDM

WAIT 190, (INPUT,SAVE)
INPUT BSS 2
SAVE BSS 2

END

is assembledas:

WAIT 190, (INPUT, SAVE)

Macrodefinitions may not, however. contain nested macro definitions.

CONDITIONAL ASSEMBLY

There are a number of pseudo-operations which allow the programmerto control the

assembly of his macro. These pseudo-operations are discussed in the Conditional Assembly

Pseudo-operation section.

MACRO LISTING

Three levels of listing detail for macro calls are available.

LSTM Lists macro statements andall lines generated by expansion of the

macro, including code or data values.

LSTMD Lists macro call statements and anylines which generate code.

NLSM Inhibits the list of macro expansions. Onlythe call is listed.

The defauit condition is NLSM, which causes only the macro call statementto be listed. with

no expansion. These pseudo-operations remain in effect until a new macrolisting control

pseudo-operation is specified.

FDR 3059 17-6 1 March, 1979



VPSD COMMAND SUMMARY 21
 

 

 

 

 

Table 21-3. Key Values: V MODE

|c| pit] avr | F[ xi ni zl 0
1 2 3 4—6 7 8 9 10 11 = 16

Bit Name Meaning

1 C Carry Bit

D Precision; 0=Single: 1=Double

3 L Carry out of most significant bit

4-6 ADR Addressing Mode

00=165

01=328

011=32R

010=64R

110=64V

7 F 0=Floating point exception faults

8 x 1=Integer exception faults

9 N Negative result
10 Z Zero result

11-16 Must be zero   
> PROCEED[address] [a-reg] [b-reg] [x-reg] [keys]

Continue execution from breakpoint. Removes the current breakpoint if there is one,
optionally sets a new breakpoint at address, and does a RUN commandto the current
program counter address. a-reg, b-reg, x-reg and keys have the same meaningas in the RUN
command.

> QUIT

Returns to the PRIMOSoperating system. In SEG’s VPSD returns to SEG commandlevel.

> RELOCATEvalue

Sets a new value for the access-mode relocation counter.

> RUN[start-add] [a-reg] [b-reg] [x-reg] [keys]

Runs the executable program starting at start-add location. Prior to program entry, a-reg, b-
reg, x-reg, and keys are optionally loaded. Control does not return to the debugging utility
unless a breakpoint is encountered.

In VPSD, use SN to specify the segment in which to run; start-add is just the 16-bit word
number.

> SB seg-no word-no

Loadsthe stack base register with a segment number(seg-no) and a word number(word-no).

» SEARCH block-start block-end match-word [mask]

Searches memory from block-start to block-end for words equal to match-word under an
optional 16-bit mask.

1 March, 1979 21-5 FDR 3059



DEBUGGING

 



  
Introduction to

TAP PSD andVPSD
 



Prime supplies three interactive debugging programs:

e TAP (Trace And Patch} - for sectored addressing modes

e PSD (Prime Symbolic Debugger) - for sectored and relative addressing modes

e VPSD (Virtual Symbolic Debugger) - for sectored, relative and virtual addressing
modes.

TAP is a small (one sector}, octal format routine that examines, dumps and patches user
programs. It has a breakpoint capability and can trace 168 and 325 instruction execution.

PSD is a symbolic routine that can handle all of the PRIME-300 addressing modes. In
addition to the functions provided by TAP (except EXECUTE and PATCH)it has enhanced
functionality and additional input/outp"'t formats.

VPSDis a symbolic routine that can handle the segmented addressing modes, as well asall
of the PRIME-300 addressing modes. The functionality (except for instruction tracing) is
essentially the same as PSD.

Table 18-1 gives a complete alphabetical listing of all debugging commands and the
programs which use them.

USING TAP

Load the object program, using the PRIMOS commands LOAD or RESTORE,and then enter
the command TAP. Since TAPis in user memory along with your program, be sure TAP has
not overlaid part of your program. Whenready, TAPprints the $ prompt character and waits
for you to type in TAP commandstrings.

Terminating long operations: To terminate long operations such as DUMP,type CTRL to
return to PRIMOS commandlevel.

Restarting: Restart at XX000 where XX is the sector occupied by TAP. To determinethis
value, RESTORE TAP and do PM commandto printthe starting location (see Section 7 fora
a complete description of the PM command).

1 March, 1979 18-1 FDR 3059



18 INTRODUCTION TO TAP, PSD AND VPSD
 

 

 

 

Table 18-1. Debugging Command Summary{input rust colored letters in upper-case only}.

 

Command Meaning TAP PSD VPSD
ACCESS Access and print or alter contents of memory

word YES YES YES

BREAKPOINT Insert up to 10 breakpoints in program (TAP
permits only 1 breakpoint) YES YES YES

BR Display contents of base registers NO NO YES

COPY Copy block to block YES YES. YES

DEFINE Define local symbols NO YES. NO

DUMP Print contents of block (or, in PSD and VPSD,
write contents to optionalfile) YES YES YES

EFFECTIVE Search for effective address under mask NO YES YES

EXECUTE Execute a subroutine YES NO. NO

EXECUTE Execute segmented program NO NO YES

FILL Fill block with constant YES YES YES

GO Proceed from breakpoint NO YES NO

JUMPTRACE Trace JMP, JST, HLT instructions YES YES NO

KEYS Update CPU status NO YES YES

LB Load link base register NO NO YES

LIST Print contents of address YES YES YES

LS Load external symbols from map file and
enter symbolic address mode NO. YES NO

MAP Type out all symbols with their values NO. YES NO

MODE Address mode selection NO... YES YES

MONITOR Execute program, reporting any reference to
the specified effective address YES YES NO

NOT-EQUAL Not-equal search for constant under mask YES YES YES

OPEN Open file for memory dump or symbols NO. YES YES

PATCH Patch object program YES NO NO

PRINT Print parameters NO. YES YES

PROCEED Remove breakpoint and proceed NO YES YES

QUIT Return to PRIMOS(or SEG if SEG’s VPSD} NO YES YES

RELOCATE Alter relocation constant NO YES YES

RUN Run object program YES YES YES

SB Load stack base register NO NO YES

SEARCH Search memory block for constant under
mask YES YES YES

SN Set segment number NO NO YES

SYMBOL Enable/disable use of symbols in address
typeout NO YES NO

TRACE Trace object program YES YES NO

UPDATE Update memory word YES YES YES

VERIFY Compare contents of one block of memory
with another YES YES YES

VERSION Print PSD version andrestart location NO YES YES

WHERE List location and remaining repeat counts for
all breakpoints NO YES YES

XB Load temporarybase register NO NO YES

XR Load X register NO YES YES

YR Load Yregister NO NO YES

ZERO Zero breakpoint location NO YES YES

FDR 3059 18-2 1 March, 1979

 



INTRODUCTION TO TAP, PSD AND VPSD 18
 

 

Load the object program, using the PRIMOS commands LOAD or RESTORE. and then
decide which of the three versions of PSD you need to use. Since PSDis resident in user
memory with your program, you must take precautions to prevent your program from being
overlaid. See Table 18-2 for the name,starting location and suggested usage of each version.
Noneof the three versions is relocatable. When ready, PSD prints the $ prompt character
and waits for you to type in PSD commandstrings.

Terminating long operations: To terminate long operations such as DUMP.type CTRL P to
return to PRIMOS commandlevel.

Restarting: Restart at ‘XXXXX where "XXXXX is PSD’s starting address. To determinethis
value, type a VERSION commandto printthe starting location.

 

Table 18-2. PSD/VPSD Versions

Name Location Comments

PSD20 ‘20000 Use when your system is small.
i.e.. 16k

HPSD 150000 Use when your program is so

large that it overlays PSD

PSD ‘60000 Normal use

VPSD ‘60000 of segment ‘4000 Normal use
VPSD16 ‘160000 Use when your program is so

large that it overlays VPSD  
 

USING VPSD

There are two versions of VPSD: stand-alone VPSD and SEG’s VPSD. Bothreside in segment
‘4000. There are three ways to enter VPSD. each of which hasslightly different conse-
quences for debugging:

Action Usage/Consequence

1.

t
c

1 March, 1979

Load the object file using SEG’s loader.
Then return to‘'#’ level with the “RE”
command and issue the SEG command
PSD. Obtain the starting address of SEG's
VPSD with the VERSION command.
Memory may now be examined and
breakpoints set. Type “EX” to start the
program. If it crashes, issue the PRIMOS
level PM commandto obtain the data at
crash time. Then issue the PRIMOS com-
mand START using SEG's VPSDstarting
address.

load the runfile and enter VPSD via the

“SEGfilename 1t/1°’ command.

load and execute the runfile using SEG.
When the program crashes. use the
PRIMOS command VPSD to call the

stand-alone version of VPSD.

18-3

Used when no runfile exists. When
EXECUTEis given. the registers are
as SEG initialized them. Preserves
the entire program contents exactly

as it was at the time of the crash.
except for the program counter

whose value you obtain via the PM
command.

Used when runfile exists. When

EXECUTEis given. the registers are
as SEG initialized them.

Use only if SEG’s VPSD has been
macmiataAre Aro —~A Tha 4 t

destroy cu. Lile LEOEIOLCLS aitue iV

preserved.

FDR 3059



18 INTRODUCTION TO TAP, PSD AND VPSD
 

 

COMMANDLINE FORMAT

Each command is a one or two letter operation followed by one or more operands.

Separators may be spaces or commas, and values may be omitted by including extra

commas. Commands maybe terminated bya carriage return or a semicolon.

The ACCESS commanddiffers from the others in that it remains in control and allows you

to examine and/or alter more than one location without returning to command mode

(signalled by the prompt character). The next location to be accessed is selected bythe

terminator used. (See ACCESSfor details.)

A question mark (?) may be used to abort a commandstring and return to command mode.

If more than five octal digits are entered, only the last 16 bits are used.

In TAP, if the wrong function code letter is entered, simply follow it with the correct

character. (Only the last input letter of the commandfield is interpreted.) To cancel an

incorrect parameter, type an asterisk {*).

Effective address formation (PSD and VPSD only)

PSD processes input and outputin all Prime-300 addressing modes: VPSD,in all Prime 350
and up addressing modes the modeis set by the MODE command.

Whenthe indexregister is needed,the current valueof the X register is used; VPSD may use

the Y register where appropriate andso specified.

Wheneither VPSD or PSD prints an address,it applies the same address formation process

as the hardware,using the currentvaluesof the registers. For relative addresses, the access-

modecurrent location counter is used as the value of the P register.

Relocation constant (PSD and VPSDonly)

PSD can process addresses in a relocatable mode (equivalent to assembler REL) by

maintaining a relocation constant which pointsto the start of a module. All addresses that

are precededby arerelative to this relocation constant. For a relocation constant of °3121,

both $A>0 and $A ‘3121 would openlocation °3121.

The relocation constant is set by the RELOCATE command.Setting the relocation constant

io 0 disables this mode.

Forall output, any address which is larger than the relocation addressis printed as > n.

where n is the address minus the relocation address. Setting relocation constant=0 disables

symbolic I/O as does SY 0.

Input/output formats (PSD and VPSDonly)

While the default commandline scan is octal, PSD and VPSD can accept input parameters

and print output values in several different formats. The format is established by typing a

colon followed by a single formatletter. All input to the right of that format specifieris

interpreted in that format until you type a new format specifier or a terminator. Format

specifiers control the input for just the current line but havea global effect on output until

you type a new formatspecifier. Table 18-3 describes the format specifiers. The following

exampleillustrates their effects.

Fill and Dump Example:

F 100 200 :HAFAF Fills octal locations 100 to 200 with hexadecimaldigits
AFA

D 1280 130 The typeout on the terminal will be in hexadecimal.

FDR 3059 18-4 1 March, 1979



INTRODUCTION TO TAP, PSD AND VPSD 18
 

 

Symbolic instruction format: enables user to use standard PMA symbolic instruction format

for output and access mode input. The only restrictions are:

1. Expressions - only + and - operations

2. Noliterals

3. Symbol use - global symbols if the LS procedure has been used and any
symbols defned within PSD

4. Input is only legal in access mode, i.e., ‘‘S 100 200 :SAIA” is not legal

5. The suffixes ‘‘+ 1C” and ‘‘+ nB” maybe usedto indicate character and
bit offsets in VPSD

 

Table 18-3. Input/Output Formats (PSD and VPSD)

Format Code Input Output

ASCII :A Two characters accepted first may Two characters are
not be:>=@% ,.NL/? + printed. An @ is sub-
-:* () or blank Secondis re- stituted for a nonprint-
quired and may not be: / ? .NL. ing character
Note—to input ASCII charactersin
any format use ’CC (single quote
followed by two characters)

Binary :B Takes a sequence of 16 1's and 0’s_ Prints a sequence of
sixteen 1's and 0's

Decimal :D Accepts up to five decimal (0-9) Prints decimal digits
digits

‘Hexadecimal H Accepts up to four hexadecimal Prints hexadecimal
{o-9, A, B, D, C, E, F) digits digits .

Octal :0 Accepts up to six octal (o-7) digits Prints octal digits

Symbolic S Symbolic instructions Symbolic instructions
(See below}

AP * :P Symbolic instructions Prints address pointers

Long * iL Accepts 32 bit octal integers Prints 32 bit octal in-
tegers

*-AP and Long are VPSDonly.
Constants entered in :S mode are octal   

Commandline operands

These maybe constants, constant expressions, or symbols. The format of a constantis:

[: format] [>] +digits [:format]
ASCII-constant |

where:

format format specifier (see Table 18-3]

> relocatable mode

ASCII-constant two letter constant in format described in Table 18-3

digit decimal, octal, binary or hexadecimal. depending on
which formatis in control

1 March, 1979 18-5 FDR 3059



18 INTRODUCTION TO TAP, PSD AND VPSD

 

The format of a constant expressionis:

constant [+ constant]

Current location pointer (PSD and VPSD)

In access mode,a currentlocation pointer is maintained,starting with the valueofthestart-

address parameter of the ACCESS command. Thelocation pointer determines the next

location to be accessed.

During each access operation, PSD replaces the value in the open location with the new

value (if specified) and uses the line terminator to compute the next value of the current

location pointer. For the commaor CRline terminators, the pointeris incrementedafter

each access. Other line terminators provide different options.

FDR 3059 18-6 1 March, 1979



 
 



TAP COMMAND SUMMARY

Enter rust colored letters in upper-case only.

> ACCESSaddress

Accesses a word in memory. The debugging program types the address andits contents and
then waits for keyboard input in the following form: [value] terminator, where valueis an
octal number whichreplaces the contents of the accessed location, and terminatoris one of
the characters shown in Table 19-1.

 

Table 19-1. TAP Terminators

Terminator - Function ;

CR Alters contents of current location (if a value is given), moves to
current location +1, and prints its contents.

“or t Alters contents of current location (if a value is given), moves to
current location -1, and prints its contents.

/or? Exits from access mode. Does not close current location. 
 

> BREAKPOINTlocation

Sets a breakpoint at the specified location. If the program is later executed and control
reaches the breakpoint location, the debugging program prints CPU status and awaits
further commands. One breakpoint is permitted. The actual breakpoint jumpis placed in
the object program only at execution time, and is removed after each use, however, the
breakpoint address is retained for reuse. To remove the breakpoint completely, key in
B’17(CR).

> COPYsource-start source-endtarget

Copies a block of memory from source-start to source-end into a new block of memory
starting at target. If the target location lies between source start and source end, the non-
overlapped portion is propagated through the target area. The size of the target area is
always equal to the size of the source. If source-end equals source-start, the contents of
location source-start will be copied into target.

1 March, 1979 19-1 FDR 3059

 



19 TAP COMMAND SUMMARY
 

 

> DUMPblock-start block-end

Prints the contents of the block of memoryatlocations block-start through block-end on the
user terminal. The output formatis eight octal wordsperline, precededbythe octal address
of the first word on the line. Repetitious words and lines are suppressed asfollows:

1. If the remainderof the currentline is identical to the wordlast printed,
the line is terminated.

2. If one or more subsequentlines are identical to the wordlast printed,

the terminal skips oneline.

> EXECUTEsub-name[a-reg] [b-reg] [x-reg] [keys]

Executes a subroutine by branchingto location sub-name.TheA,B, and X registers and the
keys (see Table 19-2) may be changedprior to executing the subroutine. The subroutine
return should be via an indirect jump through its entry point, incremented by 0, 1 or 2,
depending on the numberof arguments,if any.

Upon return from the subroutine, the TRACE’ program prints the register contents as noted
under RUN except that one or two meaningless words mayprecedethe specified formatto
indicate that the subroutine has incrementedits return link by 1 or 2.

> FILL block-start block-end constant

Fills the memory block from block-start to block-end with the specified octal constant.

If block-end doesnot exceed block-start, only the first locationis filled. FILL is usefulto test
data area usage bypre-filling it with a visual pattern.

> JUMPTRACE[start-add] [a-reg] [b-reg]

Traces the execution of the object program starting with start-add (default is current
location). You mayset the A register and B registers. JUOMPTRACE,whichis very useful for
control-flow tracing, produces a diagnostic printout in the following format prior to the
execution of any JMP, JST or HLT instruction:

Location: instruction A= B= X= K= R=

Any typed character will stop the trace. SVC’s are not included in thetrace.

> LIST address

Prints the contents of address. Unlike ACCESS, LIST does not transfer the pointer to that
location, a useful feature when you wish to examine a location without going there.

> MONITOR[start-add] [a-reg] [b-reg] address

Traces the object program from start-add (default is current location) to address. You may
set the A and B registers.

If a memory reference instruction whose effective address equals address is encountered,
data in trace format is printed on the terminal prior to the execution of that instruction.
MONITORanswersthe question ‘‘Whereis the address being clobbered?”’

FDR 3059 19-2 1 March, 1979



TAP COMMAND SUMMARY 19
 

 

 

Table 19-2. Keys

 

|e} po] — | apr | — | SHIFT COUNT

1 2 3 45-—- 67-— 8 9 — 16
 

Bit Name Meaning

C Carry Bit

D Precision; 0=Single; 1=Double

- Not used

4 Not used

5-6 ADR Addressing Mode

00=16S

01=328

11=32R

10=64R

7 - Not used

8 ~ Not used

9-16 SHIFT COUNT Shift count — low order 8 bits
of the floating point accumulator
exponent register  
 

Typing any character will stop the trace after several more lines. The character typedis
considered part of the next command,so a spaceis the usual choice.

> NOT-EQUALblock-start block-end n-match [mask]

Searches memory betweenblock-start and block-end for words not equal to n-match under
an optional 16-bit mask.

The masking function is a 16-bit logical AND. If no mask is specified, the entire wordis
tested. When a non-matchis found, the address andits contents are typed out and the search
continues to block-end.

> PATCH patch-loc branch-loc

Inserts a patch in the object program. Theinstruction at branch-loc is replaced by a jump to
patch-loc. The previous branch-loc instruction is inserted at patch-loc and the ACCESSsub-
processoris entered with the currentlocation set to patch-loc. You may nowenterthe patch,
including a suitable return. Patch-loc must either be in the samesector as branch-locor in
Sector 0.

> RUN[start-add] [a-reg] [b-reg] [x-reg] [keys]

Runs the executable program starting at start-add location.

Prior to program entry, a-reg, b-reg, x-reg and keysare optionally loaded. Control does not
return to the debugging utility unless a breakpoint is encountered.

1 March, 1979 19-3 FDR 3059



19 TAP COMMAND SUMMARY
 

 

> SEARCHblock-start block-end match-word [mask]

Searches memoryfrom block-start to block-end for words equal to match-word under an

optional 16-bit mask.

If a maskis not specified, the entire word is tested. When a matchis found, the address and

its contents are typed out, and the search continuesuntil location block-end has beentested.

> TRACE[start-add] [a-reg] [b-reg] ‘ P-val[0] \
-1 interval

Dynamically traces executable program starting at start-add with a-reg and b-reg optionally
preset and prints a diagnostic printout prior to the interpretive execution of each object
instruction. The printout, defaults, and halt mechanism are described in the JUMPTRACE
command.

Whenp-valis specified, the printout occurs only when the program counter equals p-val. If
p-val is followed by0, printout occursthefirst time program counter equals p-val and every
instruction thereafter. .

When-1 intervalis specified, printout occurs every interval instructions.

HLTinstructions always cause a printout followed by a return to command mode.

> UPDATElocation contents

Puts contents into location and printsthe old and new contents of location.

> VERIFYsource-start source-end copy-start

Verify memoryblock at locations source-start to source-end against a copystarting at copy-
start.

The program types the address and content of each location in the block which does not
match the corresponding wordin the copy.

FDR 3059 19-4 1 March, 1979



TAP COMMAND SUMMARY 19
 

 

1 March, 1979 19-5 FDR 3059



 
 



PSD COMMAND SUMMARY

Enter rust colored letters in upper-case only.

> ACCESSaddress

Accesses a word in memory. The debugging program types the addressandits contents and
then waits for keyboard inputin the following form:

[ :format-symbol] [value] [ :new-format] terminator

where :format-symbolis one of the optional input/output format symbols (see Table 18-3).
The new formattakes effect immediately. For example :HAF enters the hexadecimal value
AF, regardless of the previous input/output mode. value replaces the contents of the
accessed location. The formatis the current input/output format. The :new-format symbol
is one of the optional input/output format symbols (see Table 18-3). The new format takes
effect immediately upon all subsequent output until a new format symbol is entered.
terminatesis one of the characters shown in Table 20-1.

Longinstructions are input and printed in the assembler format, e.g., LDA% 2000.

 

Table 20-1. PSD Terminators

Terminator Function .

CR Alters contents of current location (if a value is given), moves to
current location +1 and prints its contents.

Alters contents of current location {if a value is given], moves to
current location -1 and prints its contents.

/or? Exits from access mode. Does not close currentlocation.

n(CR} Movesto current location +n and prints its contents {n is octal).

-n(CR) Moves to current location -n and prints its contents (n is octal).

@ For memory reference instructions of the form ‘‘INST* location”
only. Saves a return address (current location +1), moves to the
effective address location, and prints its contents. Subsequent
accesses (terminated by CR, comma,,. or . -) are relative to the
effective address. A\ returns to the return address.

( Goes to effective address without indirection, but saves current
location as return address.

Returns to the return address saved bythelast @.

Returns to the return address saved bythelast(.

For memory reference instructions only; calculates and prints the
effective address and its contents. No change is made to the
current location or its contents.

! Close a location, setting it to a new valueif one was supplied, and
return to command mode.

—
lI  
 

1 March, 1979 20-1 FDR 3059



20 PSD COMMAND SUMMARY
 

 

> BREAKPOINTlocation

Sets a breakpoint at the specified location. If the program is later executed and control

reaches the breakpoint location, the debugging program prints CPU status and awaits

further commands. Upto ten breakpoints may beinserted.

The GO commandallows youto continue, leaving the breakpointset.

> COPY source-start source-endtarget

Copies the block of memory from source-start to source-end into a new block of memoryat

target. If the target location lies between source start and source end, the non overlapped

portion is propagated through the target area. The size of the target areais always equal to

the size of the source.

Example:

F 1000 1010 :HFFFF Fill locations 1000-1010 with hex FFFF

F 1011 1020 ‘-HAAAA Fill locations 1011-1020 with hex AAAA

D 1000 1020 Display locations 1000-1020

C1010 1016

8

1012 Propagate alternate words of FFFF andAAAA

D 1000 81020 Display locations 1000-1020

> DEFINE symbol value

Defines a symbol. The value may be a constant or a constant expression. If the symbol has

already been defined,it is given the new value.

Examples: »

DE FOO 108@ FOO = OCTAL 1900

RE 1200 SET RELOCATION COUNTER

DE FOO >3 FOO = OCTAL 1883

DE FOO :AXX FOO = 'XX'

DE FOO*: HF-A FOO = 5
DE FOO :D>19 FOO = OCTAL 1@12

Not allowed:

DE BAR FOO SYMBOLS NOT PERMITTED AS VALUES

DE FOO (1+>3) NO PARENTHESES

DE FOO >:HF BAD SYNTAX. SHOULD BE :H>F

DE FOO :AX MUST HAVE TWO CHARACTERS AFTER :A

DE FOO :A X FIRST CHARACTER AFTER :A MUST BE @-9, A-Z

DE FOO :SLT :S IS AN OUTPUT SPECIFIER ONLY

> DUMPblock-start block-end [words-per-line]

Prints the contents of the block of memoryat locations block-start through Block-end on the

use terminal or, optionall, in an external file. Words-per-line is number of words to be

printed per line. The defaults is eight.

You must open a file before dumpingto it. If there are severalfiles open, DUMPwill use

the last one opened. Close the dumpfile before ending yoursession. If you have used PSD

to open a file for a program use and you wish to dump to a terminal, issue an OPEN

command with no parametersprior to issuing the DUMP command.

FDR 3059 20-2 1 March, 1979



PSD COMMAND SUMMARY 20
 

 

The default output format is eight octal wordsper line, precededbythe octal! addressof the
first word on the line. Repetitious words are suppressed unless the number of words-per-
line parameteronly is specified.

Example:

O DMPFIL 1 2
D 1880 2000
9914

> EFFECTIVEblock-start block-end address [mask]

Searchesfor an instruction with the specified effective address in the block from block-start
to block-end, under an optional 16-bit mask.

If no maskis specified, the entire address is tested. When a matchis found,the instruction
and its address are printed at the user terminal. The search continues until location block-
end has beentested.

Maskis a 16-bit word which may be expressed in any of the legal formats.

EFFECTIVEis useful in finding locations where a particular location is referenced.

The current value of the X register is used in the calculation. Instructions are interpreted in
the current address/instruction mode as set by the MODE commandandshowninthe keys
by the PRINT command.

> FILL block-start block-end constant :format

Fills the block of memory locations block-start through block-end with the specified
constant. If block-end does not exceed block-start only the first location is filled. :format
must be specified if you do not want the octal default. Specifying a format changes
subsequentoutput formats. FILLis useful to test data area usage bypre-filling it with a visual
pattern.

Example:

F 1008 1007 :HFFFF
D 1880 1807
1600 FFFF

> GO [count] [a-reg] [b-reg] [x-reg] [keys]

Proceed from the current breakpoint, first executing the instruction at the breakpoint
location. count is number of times to execute instruction at breakpoint location before
breakpointis taken. Default is one. The A, B and X registers and the keys maybepreset(see
Table 20-3}.

A count may be overiddenbyresetting a breakpoint.

> JUMPTRACE[start-add] [a-reg] [b-reg]

Traces the execution of the object program from start-add. The default is current location.
The A and B registers maybe present; the default is old value.

1 March, 1979 20-3 FDR 3059



20 PSD COMMAND SUMMARY
 

 

 

  

Table 20-2. R and S Modes

clo[ — | apr | — | SHIFT COUNT
1 2 3 45 -—- 67— 8 9 _ 16

Bit Name Meaning

1 C Carrybit

D Precision; 0=Single: 1=Double

3 ~ Not used

— Not used

5-6 ADR Addressing Mode

00=16S

01=328

11=32R

10=64R

7 —_ Not used

8 — Not used

9-16 SHIFT COUNT Shift count—low order 8 bits of the floating point ac
cumulator exponentregister  

JUMPTRACE,whichis very useful for control-flow tracing, produces a diagnostic printout

in the following formatprior to the execution of any JMP, JST or HLT instruction:

Location: instruction A= B=X= K= R=

Anytyped character will stop the trace. SVC’s are not includedin the trace.

> KEYS value

Sets CPU status keys to the specified octal value. The bit assignments vary depending on

which mode youare in.

> LIST address

Prints the contents of address in the current output format.

Unlike ACCESS, LIST does nottransfer the pointerto that location, a useful feature when

you wish to examine a location without going there.

>» Ls

Enables the usage of external symbolic references during instruction typein and typeout.

To use the load map symbols:

1. Load the program and make a symbolfile.

2. Restore the user program, invoke PSD andload the convertedfile.

The LS commandputs PSDinto symbolic mode.All addressesare typed as an offset from the

nearest external symbol.

Once the load map is prepared in this manner, you can ena

interpretation with the SYMBOL command.

FDR 3059 20-4 1 March, 1979

 



PSD COMMAND SUMMARY 20
 

 

Leramn~nla:
HAGILIIPILC.

OK, LOAD CALL THE LOADER

GO
S LOAD BPROG LOAD THE PMA BINARY OBJECT PROGRAM

LOAD COMPLETE

S SAVE SPROG SAVE THE RUNFILE

S MAP LSYM 18 CREATE A SYMBOL FILE LSYM

$ QUIT
OK, RESTORE SPROG GET PROGRAM

OK, PSD GET PSD
GO

SO LSYM 11 OPEN SYMBOL FILE ON FUNIT 1 FOR READING

S LS LOAD SYMBOLS

SO 814 CLOSE FUNIT 1

> MA

Types the symbols and their definitions.

> D16S
D328

MO D32R
D64R

D16S means use 16S address mode; D32S, use 32S address mode; D32R, use 32R address

mode; and D64R, use 64R address mode.

Controls how effective addresses are interpreted by setting the address modebits of the

CPU status keys. See KEYSfor a full discussion of the CPU status keys. Other status bits are

unaffected. MODEis a fast symbolic way of setting just the address mode, when you don't

care about the other CPUstatus keybits.

> MONITOR[start-add] [a-reg] [b-reg] address

Traces the object program from start-add (the default is the current location} looking for

address. You mayprint the A and registers.

If a memory reference instruction whose effective address equals address is encountered,

data in trace format is printed on the terminal prior to the execution of that instruction.

MONITORanswers the question ‘‘Whereis the address being clobbered?”’

Typing any character will stop the trace after several more lines. The character typed is

considered part of the next command,so a spaceis the usual choice.

> NOT-EQUALblock-start block-end n-match [mask]

Searches memory between block-start and block-end for words not equal to n-match under
an optional 16-bit mask.

tested. When a non-matchis found, the addressandits contents are typed out and the search
continues to block-end.

1 March, 1979 20-5 FDR 3059



20 PSD COMMAND SUMMARY
 

 

> OPENfile namefile-unit key

Opensfile name onfile-unit to be used either as a DUMPoutputfile or symbol table input
file. key may be 1 (open for reading), 2 (open for writing), 3 (open for reading and writing).
4 (close).

The parameters are the sameas for the PRIMOS OPEN command.

> PRINT
Prints CPU/PSD parametersin octal as follows:

prectr: breakpoint a-reg b-reg x-reg keys relcon

prgctr Program counter at the time of breakpoint

relcon Current value of the access mode relocation constant

> PROCEED [address] [a-reg] [b-reg] [x-reg] [keys]

Continue execution from breakpoint. Removes the current breakpoint if there is one,
optionally sets a new breakpoint at address, and does a RUN commandto the current
program counteraddress. a-reg, b-reg, x-reg and keys have the same meaningas in the RUN
command.

> QUIT

Returns to the PRIMOSoperating system.

P RELOCATEvalue

Sets a new value for the access-mode relocation counter.

RUN[start-add] [a-reg] [b-reg] [x-reg[ [keys]

Runs the executable program starting at start-add location. Prior to program entry. a-reg, b-
reg, x-reg, and keys are optionally loaded. Control does not return to the debugging utility
unless a breakpoint is encountered.

> SEARCHblock-start block-end match-word [mask]

Searches memory from block-start to block-end for words equal to match-word under an

optional 16-bit mask.

If a maskis not specified, the entire wordis tested. When a matchis found, the address and

its contents are typed out, and the search continuesuntil location block-end has beentested.

> SYMBOL 43

Controls the use of symbols in address typeout: 1 means turn on symbol typeout; 0, turn off
symbol typeout.

; ; _ P-val[0] \> TRACE[start-add] [a-reg] [b-reg] {Pr interval
Dynamically traces executable program starting at start-add with a-reg and b-reg optionally
preset.

A diagnostic printout is produced prior to the interpretive execution of each object
instruction. The printout. defaults, and halt mechanism are described in the JUMPTRACE
command.

FDR 3059 20-6 1 March, 1979



PSD COMMAND SUMMARY 20
 

 

Whenp-valis specified, the printout occurs only when the program counter equals p-vai.if
p-val is followedby 0, printout occursthefirst time program counter equals p-val and every
instruction thereafter.

When-1intervalis specified, printout occurs every interval instructions.

HLTinstructions always cause a printout followed by a return to command mode.

> UPDATElocation contents

Puts contents into location and prints the old and new contents of a location.

> VERIFYblock-start block-end copy

Verifies memory from block-start through block-end against a copy starting at copy.

The program types the address and content of each location which does not match the
corresponding word in copy.

The format of a VERIFY printoutis:

location block-contents copy-contents

> VERSION

Prints the version numberand restart address of the PSD you are using. If your program gets
into a loop or dies after a RUN command,you can issue a PR or GO command,startingat this
restart address. This causes pseudo breakpoint, saving the registers and entering PSD. Only
the program counterregister value will be lost, and even this may be foundbyissuing a
PRIMOSP commandpriorto restarting PSD.

> WHERE

Lists all currently installed breakpoints and their remaining proceed counts. A proceed
count of oneis notlisted.

>  XREGISTERvalue

Loads the X register with value—for example, before executing a RUN commandordoing
an effective address calculation.

> ZERO [location]

Removesthe breakpoint at the specified location.

If location is omitted, Z removesthe breakpoint at the current program counterlocation. (P
will show the current location.)

1 March, 1979 20-7 FDR 3059



 

VPSD command
summary
 



Enter rust colored letters in uppercase only.

> ACCESSaddress
Accesses a word in memory. The debugging program typesthe addressandits contents and
then waits for the keyboard input in the following form:

[:format-symbol] [value] [:new-format] terminator

where:format-symbol is one of the optional input/output format symbols (see Table 18-3).
The new formattakes effect immediately. For example, :HAF enters the hexadecimalvalue
AF, regardless of the previous input/output mode.value replaces the contents of the access
location. The formatis the current input/output format. The :new-format symbolis one of
the optional input/output format symbols (see Table 18-3). The new format takes effect
immediately upon all subsequent output until a new format symbolis entered. terminatoris
one of the characters shownin Table 21-1.

Long instructions are input andprinted in the same wayas the assembler, e.g., LDA% 2000.

 

Table 21-1. VPSD Terminators

Terminator Function

CR Alters contents of current location (if a value is given}, moves to
current location +1 and prints its contents.

Alters contents of current location (if a value is given], moves to
current location -1 and prints its contents.

/ or? Exits from access mode. Does not close current location.

n(CR} Moves to current location +n and prints its contents (n is octal).

-n(CR) Movesto current location -n and prints its contents (n is octal).

@ For memory referenceinstructions of the form ‘‘INST* location”
only. Saves a return address (current location +1), moves to the
effective address location, and prints its contents. Subsequent
accesses (terminated by CR, comma,,. or -} are relative to the
effective address. A \ returns to the return address.

( Goes to effective address without indirection, but saves current
location as return address.

\ Returns to the return address saved bythe last @.

) Returns to the return address savedbythelast(.

{| For memory reference instructions only; calculates and prints the
effective address and its contents. No change is made to the
current location or its contents. If the instruction references a
register, the contents of the register are printed.  
 

1 March, 1979 21-1 FDR 3059



21 VPSD COMMAND SUMMARY
 

 

> BREAKPOINTlocation

Sets a breakpoint at the specified location. If the program is later executed and control
reaches the breakpoint location, the debugging program prints CPU status and awaits
further commands. Upto ten breakpoints maybeinserted.

> §BREGISTER

Prints the contents of the procedue base, stack base, link base and temporary baseregisters.

> COPY source-start source-end target

Copies the block of memory from source-start to source-end into a new block of memoryat
target. If the target location lies between source start and source end, the non-overlapped
portion is propagated through the target area. Thesize of the target area is always equalto
the size of the source.

Example:

F 1000 1010 :HFFFF Fill locations 1000-1010 with HEX FFFF

F 1011 1020 :HAAAA Fill locations 1011-1020 with HEX AAAA

D 1000 §©1020 Display locations 1000-1020

C1010 1016 1012 Propagate alternate words of FFFF and AAAA

D 1000 §=1020 Display locations 1000-1020

> DUMPblock-start block-end [words-per-line]

Prints the contents of the block of memoryat locations block-start through block-end on the
user terminalor optionally in an externalfile. words-per-line numberof wordsto be printed
per line. The default is eight.

You must open file before dumpingtoit. If there are severalfiles open, DUMPwill use the
last one opened.Close the dumpfile before ending yoursession. If you have used VPSDto
open a file for program use and you wish to dumpto a terminal, issue an OPEN command
with no parametersprior to issuing the DUMP command.

The default output formatis eight octal wordsperline, precededby the octal addressof the
first word on the line. Repetitious words are suppressed unless ihe numberof words-per-
line parameter is specified.

Example:

> EFFECTIVE block-start block-end address [mask]

Searchesfor an instruction with the specified effective address in the block from block-start
to block-end, under an optional 16-bit mask.

If no mask is specified, the entire address is tested. When a matchis found,the instruction
and its address are printed at the user terminal. The search continues until location block-

end has beentested.

Mask is a 16-bit word which may be expressed in any of the legal formats.

FDR 3059 21-2 1 March, 1979



VPSD COMMAND SUMMARY 21
 

 

ul in finding locations wherea particular location is referenced.

The current values of the X and Y registers are used in the calculation. Instructions are
interpreted in the current address/instruction mode as set by the MODE command and
shown in the keys by the PRINT command.

> EXECUTE

Begins execution of a segmented program by passing control to SEG. SEGsets the initial
register values; any other value at the time EXis issuedislost.

> FILL block-start block-end constant :format

Fillsthe block of memorylocations block-start through block-end with the specified constant.
If block-end does not exceed block-start only the first location is filled. :format must be
specified if you do not want the octal default. Specifying a format changes subsequent
output formats. FILL is useful to test data area usage by pre-filling it with a visual pattern.

Example:

F 1000 1007 :HFFFF
D 1980 1807
4901/1060 FFFF

> FA regno

Accesses field address register regno. New values may be entered to replace old ones.
Carriage return advancesto the ‘‘next”’ register, and ‘‘
“("’ will switch to access mode and display the location referenced by the field address
register in ASCII. A “‘)” will return to ‘FA’ mode.

> FL regno

Accesses field length register regno. New values may be entered to replace old ones.
Carriage return advancesto the “next’’ register and ‘‘

> KEYS value

Sets CPU status keys to the specified octal value. The assignments vary depending on which
mode youare in. See tables 21-2 and 21-3.

> LB seg-no word-no

Loadsthe link base register with a segment number(seg-no) and word number(word-no).

> LIST address

Prints the contents of address in the current output format. Unlike ACCESS, LIST does not
transfer the pointer to that location, a very useful feature when you wish to examine a
location without going there.

- 2168
D328

> MO D32R
D64R
D64V

D16S Means use 16S address mode; D32S, use 32S address mode; D32R, use 32R address

mode; D64R, use 64R address mode; and D64V, use 64V address mode.

1 March, 1979 21-3 FDR 3059



 

21 VPSD COMMAND SUMMARY
 

 

Controls how effective addresses are interpreted by setting the address modebits of the
CPU status keys. See KEYSfora full discussion of the CPU status keys. Otherstatus bits are
unaffected. MODEis a fast symbolic way of setting just the address mode, when you don’t
care about the other CPUstatus keybits.

D64V prints the segment and word numberfor all addresses(initial segment numberis
’4000) and interprets instructions as the Prime 400 hardware does. Base register references
for all long instructions are printed as PB%, SB%, LB%, or XB%. Short instructions which
reference $B or LB print SB or LB aspart of the address.

> NOT-EQUALblock-start block-end n-match [mask]

Searches memory betweenblock-start and block-end for words not equal to n-match under
an optional 16-bit mask.

The masking function is a 16-bit logical AND. If no mask is specified, the entire wordis
tested. When a non-matchis found, the address andits contents are typed out and the search
continues to block-end.

> OPENfile namefile-unit key

Opensfile nameonfile-unit to be used either as a DUMPoutput file or symboltable input
file. Key may be: 1 (open for reading), 2 (open for writing), 3 (open for reading and writing)

or 4 (close).

The key parameters are the same as for the PRIMOS OPEN command.

> PRINT
Prints CPU/PSD parameters in octal as follows:

prgctr breakpoint a-reg b-reg x-reg keys relcon |y-reg is VPSD|

prgctr The program counterat the time of breakpoint

relcon The current value of the access moderelocation

 

Table 21-2. Key Values: R and S Modes

 

| c | p | _ | apr | — | SHIFT COUNT |

1 2 3 45 —- 67 -— 8 9 —_ 16
 

Bit Name Meaning

1 C Carry Bit

2 D Precision; 0=Single; 1=Double

3 - Not used

4 - Not used

5~6 ADR Addressing Mode

00=16S

Q1=325

11=32R

10=64R

7 - Not used

8 - Not used

9-16 SHIFT COUNT Shift count—low order 8 bits of the floating point ac-

cumulator exponent register.

 

FDR 3059 21-4 1 March, 1979

 



21 vPSD COMMAND SUMMARY
 

 

If a mask is not specified, the entire word is tested. When a matchis found, the address and
its contents are typed out, and the search continuesuntil location block-end hasbeentested,

> SN seg-no

Use seg-no as the segment numberfor all commands where only a word numberis entered,
such as UPDATE, DUMP,etc. |

> UPDATElocation contents

Puts contents into location and prints the old and new contents of location.

> VERIFY block-start block-end copy

Verifies memory from block-start through block-end against a copy starting at copy. The
program types the address and content of each location which does not match the
corresponding word in copy.

The format of a VERIFY printoutis:

location block-contents copy-contents

> VERSION
Prints the version numberandrestart address of the VPSD youare using. If your program
goes into a loop or dies after a RUN command,you can issue a PR or GO command,starting

at this restart address. This causes a pseudo-breakpoint, saving the registers and entering
VPSD. Only the program counterregister value will be lost, and even this may be found by
issuing a PRIMOS P commandpriorto restarting VPSD.

> WHERE

Lists all currently installed breakpoints and their remaining proceed counts. A proceed
count of one is notlisted.

> XB seg-no word-no

Loads temporary base register with a segment number(seg-no}) and word number(word-no.

>  XREGISTERvalue

Loads the X register with value—for example, before executing a RUN commandordoing
an effective address calculation.

> YREGISTER value
Loads value into the Y index register

> ZERO[location]

Removesthe breakpoint at the specified location.

If location is omitted, Z removesthe breakpoint at the current program--counter location. (P
will show the currentlocation.)

FDR 3059 21-6 1 March, 1979



  
  

Assembler attribute table
 



APPENDICES
TEESSIDEeanesanmsseneeaeteateremeaeeneneieeemteaeemeenremnaneaeeerneetareatemeteseenmeetetmenrmememmrmemnetemeemmetmeatemrmeemeeneetmammemmemememermeenemretememaneatearmeatemremrnmanemramnsatamrntananmantanensatneateteataaashattahedeataatetattaeteatetattatcaatteeealeeeedetaeteeeeceateeiatateeaaneteemeaetecareeeereereereoeerreespeies



ASSEMBLER ATTRIBUTES

A list of the current assemblerattributes follows. For a complete discussion of the use and
function of assembler attributes see section 17, Macro Facility. .
 

Label

CC

CCM

CDYN

MDYN

MCLS

MCRC

MCRN

MODE

NCRD

NERR

NMFL

PASS

RPL

STAK

TC

TCHB

TCNT

IFLG

DFVL

SEG

ABM

PMB

LBM 

Number Description

0

1

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

. 128

Number of arguments in current macro call

Current macro call number

A-register

B-register

X-register

Current character pointer

Character count max of source line

Used by dynm (must precede cdyn}

Current dynamic storage pointer

Maximum dynamic stack space used

(spare}

Macro list control

Current extent of macro-call number

(spare)

Current macro nest number

Current mode of assembler

Current record number (card number)

Numberof lines in program with errors

No-macro-search flag {0=search)

Pass 1=0, pass 2=1

Current program counter value

Current temporary store stack limit

Last character fetched

TC held back flag

TC repeat count

Indirect operator flag (0=indirect)

Table search value

Seg modeflag (0, 1, -1)

Current abstract machine
0=S,R and 1=V,I

Procedure size max

Link size max
 

1 March, 1979 A-1 FDR 3059

 



 

ASCII character set
 



The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with devices. The

following points are particularly important to Prime usage.

* Output Parity is normally transmitted as a zero (space) unless the device requires

otherwise, in which case software will compute transmitted parity. Some con-

trollers (e.g, MLC) may have hardwareto assist in parity generations.

* Input Parity is ignored by hardware andby standardsoftware. Input drivers are

responsible for making the parity bit suit the host software requirements. Some

controllers (e.g., MLC) mayassist in parity error detection.

* The Prime internal standardfor the parity bit is one, i.e., ‘200 is addedto the octal

value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical escape character “ and

the octal value. The characteris interpreted by output devices according to their hardware.

Example: Typing °207 will enter one character into the text.

CTRL-P  ('220) is interpreted as a BREAK.
.CR. (215) is interpreted as a newline (.NL.)

” (°242) is interpreted as a character erase
2 ('277) is interpreted asline kill
\ (334) is interpreted as a logical tab (Editor)

1 March, 1979 B-1 FDR 3059



B ASCII CHARACTER SET
 

 

 

  

Table B-1. ASCII Character Set (Non-Printing)

Octal ASCII Control

Value Char Comments/Prime Usage Char

2.00 NULL Null character- filler ‘@

201 SOH __ Start of header (communications) “A

202 STX Start of text (communications) ‘*B

203 ETX End of text (communicaticns) ‘Cc

204 EOT End. of transmission (communications) “‘D
205 ENQ End of I.D. (communications) °E
206 ACK Acknowledge affirmative (communications) ‘F

207 BEL Audible alarm (bell} °G

210 BS Back space on position (carriage control) “H

211 HT Physical horizontal tab “]

212 LF Line feed: ignored as terminal input J

213 VT Physical vertical tab (carriage control) ‘*K

214. “FF Form feed (carriage control) ‘L
215 CR Carriage return (carriage control) (1) °*M

216 SO RRS-red ribbon shift ‘N

217 SI BRS-black ribbon shift ‘O

220 DLE RCP-relative copy (2) *P

221 DC1 RHT-relative horizontal tab [3) ‘QO.

222 DC2 HLF-half line feed forward (carriage control) ‘R

2.23 DC3. RVT-relative vertical tab (4) ‘S

224 DC4 HLR-half line feed reverse (carriage control} ‘T

225 NAK Negative acknowledgement (communications) ‘U

226 SYN Synchronocity (communications) ‘Vv

227 ETB End of transmission block (communications} “W

230 CAN Cancel “x

231 EM End of Medium “yy

232 SUB Substitute “ZL
233 ESC Escape “|
234 FS File separator “\

235 GS Group separator “|
236 RS Record separator .

237 US Unit separator —

Notes

1. Interpreted as .NL. at the terminal.

2. .BREAK.at terminal. Relative copyin file; next byte specifies number

of bytes to copy from corresponding position of precedingline.

3. Next byte specifies numberof spacesto insert.

4. Next byte specifies numberof lines to insert.

Conforms to ANSI X3.4-1968

The parity bit (200) has been added for Prime-usage. Non-printing characters (°c)

can be entered at most terminals by typing the (control) key and the character key

simultaneously.

FDR 3059 B-2 1 March, 1979

 



ASCII CHARACTER SET B
 

 

 

Table B-2. ASCII Character Set (Printing)

Octal ASCII Octal ASCII Octal ASCII
Value Character Value Character Value Character

240 SP. (1} 300 @ 340 (9)
241 | 301 A 341 a

242 "(2) 302 B 342 b
243 # (3) 303 C 343 C
244 $ 304 D 344 d

245 “Yo 305 E 345 e

246 & 306 F 346 f

247 " (4) 307 G 347 g
250 ( 310 H 350 h
251 } 311 I 351 i
252 * 312 j 352 j
253 + 312 K 353 k

254 , (5) 314 L 354 |
250 = 315 M 355 m

256 . 316 N 356 n

297 / 317 O 357 O

260 0 320 Pp 360 p
261 1 321 Q 361 q
262 2 322 R 362 r

263 3 323 S 363 s

264 4 324 T 364 t

265 ) 329 U 365 u

266 6 326 V 366 Vv

267 7 327 W 367 w

270 8 330 x 370 x

271 9 331 Y 371 y
272 : 332 Z 372 Z

273 333 | 373
274 < 334 \ 374

275 “= 335 375
276 > 336 ~ (7) 376 ~ (10)
277 ? (6) 337 __{8) 377 DEL (11)

Notes

1. Space forward one position

2, Terminal usage - erase previous character

3. £in British use

4. Apostrophe/single quote

5. Comma

6. Terminal usage - kill line

7. 1963 standard +; terminal use - logical escape

8. 1963 standard «

9. Grave

10. 1963 standard ESC

11. Rubout - ignored

Conforms to ANSI X3.4-1968
1963 variances are noted

The parity bit ('200) has been added for Prime usage.  
 

1 March, 1979 B-3 FDR 3059



  
Error messages
 



INTRODUCTION

Error messages are given in the following order:

1. PMA Error Messages

2. Loader Error Messages

3. SEG Loader Error Messages

4. Run-time Error Messages

In each group errors are listed alphabetically.

Run-time error messages beginning with a filename, device name, UFDname,etc., are
alphabetized accordingto the first word whichis constant. The user should have notrouble
in determining this word (the second word in the message). Leading asterisks, etc., are
ignored in alphabetizing. All run-time errors have been grouped togetherto facilitate lookup
by the user.

PMA ERROR MESSAGES

Coo:

F00:

F01:

F02:

F03:

Goo:

G01:

100:

101:

103:

104:

105:

1 March, 1979

INSTRUCTION IMPROPERLY TERMINATED
ILLEGAL TERMINATOR ON ARGUMENT# EXPRESSION
UNRECOGNIZED OPERATOR IN EXPRESSION
FAIL PSEUDO-OP ENCOUNTERED
OPERAND FIELD EMPTY; OPERAND REQUIRED
GO-TO OR BACK-TO USED OUTSIDE OF MACRO OR ARGUMENT
IS NOT SYMBOL
END/ENDM PSEUDO-OP IS WITHIN GO-TO OR BACK-TO SKIP
AREA
TAG MODIFIER ILLEGAL ON GENERIC, I/O, OR SHIFT INSTRUC-
TION
TAG MODIFIED NOT PERMITTED ON 32I MODE FIELD INSTRUC-
TION
CAN'T MAKE THIS INSTRUCTION SHORT(#}
ILLEGAL TAG MODIFIED FIELD ON 64V MODE LDX CLASS IN-
STRUCTION
TAG MODIFIED NOT PERMITTED ON 64V MODE BRANCH IN-
STRUCTION
ILLEGAL INDIRECT OR INDEX SPECIFICATION WITH COMMON/
EXTERNAL SYMBOL
INDEX SPECIFIED INVALID WITH AP/IP PSEUDO-OP
TAG MODIFIED FIELD NOT PERMITTED ON 321 MODE BRANCH
INSTRUCTION

C-1 FDR 3059



C ERROR MESSAGES
 

 

FDR3059

LOO:

L01:

L02:

Moo:

N00:

O00:

O01:

O02:

POO:

Qo00:

Q01:

Q02:

R00:

R01:

S00:

S01:

$02:

TO00:

U00:

U01:

V01:

V02:

V03:

Vo4:

V05:

V06:

V07:

V08:

V09:

V10:

Vii:

V12:

Vi13:

Vi14:

V15:

V16:

V17:

V18:
Via.
VLU.

V20:

IMPROPER LABEL (CONSTANT OR TERMINATOR IN LABEL
FIELD)
EXTERNALL VARIABLE DISALLOWEDIN LITERAL
ILLEGAL ARGUMENTIN EQU,SET, OR XSET
SYMBOL MULTIPLY DEFINED
‘END’ STATEMENT ENCOUNTERED WITHIN MACROORIF
UNRECOGNIZED OPCODE OR 32I-ONLY OPCODE IN NON-32I
MODE
THIS MEMORY REFERENCE INSTRUCTION ONLY PERMITTED IN
64V MODE
THIS MEMORY REFERENCE INSTRUCTION ONLY PERMITTED IN
S/R MODE
MISMATCHED PARENTHESIS
AP ONLY PERMITTED IN 64V/32I1 MODE
IP ONLY PERMITTEDIN 64V/321 MODE
ENDM PSEUDO-OP DISALLOWED OUTSIDE OF MACRO DEFINI-
TION
ARITHMETIC STACK OVERFLOW: REDUCE THE COMPLEXITY OF
THE EXPRESSION AND TRY AGAIN
MULTIPLY DEFINED MACRO OR MACRO NAMEFIELD EMPTY
INSTRUCTION REQUIRES DESCECTORIZATION (‘LOAD’ MODE)
INDIRECT DAC DISALLOWED IN C64R MODE
64V INSTRUCTION DISALLOWEDIN C64R MODE
SYNTAX ERROR IN 32] MODE TAG MODIFIED FIELD
UNDEFINED SYMBOLIN ADDRESS FIELD OR EXPRESSION
UNDEFINED SYMBOLIN 6ORG’ OR 6SETB'
CONTENTS OF BIT FIELD OUT OF RANGE
UNRECOGNIZED OPERATOR IN EXPRESSION
FUNCTION CODE OR DEVICE ADDRESS OUT OF RANGEIN I/O
INSTRUCTION
SHIFT COUNT OUT OF RANGEIN SHIFT INSTRUCTION
NO COMMA FOLLOWSFAR SPECIFICATION IN FIELD ADDRESS
INSTRUCTION
NO COMMA FOLLOWSREGISTER # IN 321 MODE REGISTER GE-
NERIC
NO COMMA FOLLOWS REGISTER # IN 321 MODE FLOATING PT
REGISTER GENERIC
NO COMMA FOLLOWS REGISTER # IN 321 MODEBIT TEST IN-
STRUCTION
NO COMMA FOLLOWBIT ¢ IN 321 MODE BIT TEST INSTRUCTION
BAD DELIMITER IN 321 MODE GENERAL REGISTER MEMORY
REFERENCE INSTRUCTION
BAD DELIMITER IN 321 MODE SHIFT INSTRUCTION
BAD SHIFT COUNTIN 321 MODE SHIFT INSTRUCTION
ILLEGAL TAG MODIFIED FIELD FOR 321 MODE SHIFT INSTRUC-
TION
BAD DELIMITER FOLLOWS REGISTER # IN 321 MODE PIO IN-
STRUCTION
LABEL REQUIRED ON DFTB/DFTV PSEUDO-OP
OPEN PARENTHESIS MISSING ON DFTB/DFVT ARGUMENT
CLOSE PARENTHESIS MISSING ON DFTB/DFVT ARGUMENT
LABEL REQUIRED ONIFTF,IFTT, IFVT, IFVF PSEUDO-OP
SYMBOL NOT FOUNDINIFTF, IFTT, IFVT, IFVF PSEUDO-OP
ABS/REL PSUEDO-OP ILLEGAL IN SEG/SEGR MODE

C-2 1 March, 1979



ERROR MESSAGES GC
 

 

V29:

V30:

V31:

V32:

V33:

V34:

V35:

V36:

V37:

V38:

V39:

V40:

V4i:

V42:

V43:

V44;

X00:

Y00:

Z00:

201:

Z02:

Z03:

Z04:

Z05:

Z06:

Z07:

Z08:

SEG/SEGR PSEUDO-OP SPECIFIED AF
ERATED
PROG/LINK SPECIFICATION ONLY ALLOWED IN SEG/SEGR
MODE
FIELD OUT OF RANGE IN DDM PSEUDO-OP
ILLEGAL ARGUMENT FOLLOWS‘EXT’ PSEUDO-OP
‘END’ PSEUDO-OP ENCOUNTERED WITHIN MAGRO
SYNTAX ERROR IN DYMN PSEUDO-OP ARGUMENT(S]
ILLEGAL ARGUMENT FOLLOWS SUBR/ENT PSEUDO-OP
16 BITS NOT DEFINED BY VFD PSEUDO-OP (UNDEFINEDBITS SET
TO 0)
OPERAND MISSING OR UNRECOGNIZED OPERATOR IN EX-
PRESSION
UNTERMINATED CHARACTER STRING
VALUE OVERFLOW IN FLOATING POINT NORMALIZE
VALUE OVERFLOW IN FLOATING POINT (RE-])NORMALIZE
SIGNIFICANCE LOST IN SCALED BINARY DATUM
FLOATING POINT VALUE OUT OF RANGE
‘BCI’ PSEUDO-OP REPEAT COUNT ERROR
ILLEGAL SYMBOL TYPEIN ‘BCI’ REPEAT COUNT SPECIFICATION
‘CALL’ PSEUDO-OP FOLLOWED BY CONSTANT OR TERMINATOR
BAD ADDRESS FIELD FOLLOWING ‘COMN’ PSEUDO-OP
ILLEGAL REPEAT COUNTIN DATA DEFINITION PSEUDO-OP
ILLEGAL ARGUMENT FOLLOW DEC/OCT PSEUDO-OP
RLIT SPECIFIED AFTER CODE HAS BEEN GENERATED
WCS ENTRANCE OUT OF RANGE—MUSTBE 0-63
SYML NOT PERMITTED AFTER CODE HAS BEEN GENERATED
SYML ONLY PERMITTED IN SEG/SEGR MODE
321 MODE REGISTER SPECIFICATION ERROR
PHASE ERROR—THE VALUE OF THE SYMBOL DEFINED ABOVE
DIFFERS BETWEEN PASS 1 AND PASS2
ILLEGAL ABSOLUTE REFERENCE IN SEG/SEGR MODE
ABSOLUTE REFERENCE OUTSIDE OF 0-7 DISALLOWED IN SEG
ABSOLUTE REFERENCE IN AP/IP DISALLOWED
ONLY 1 EXTERNAL NAMEIS ALLOWED WITHIN AN EXPRESSION
THE MODE ASSOCIATED WITH THE RESULT OF THE EXPRESSION
IS ILLEGAL WITH SPECIFIED INSTRUCTION
THE RESULTANT MODEOF THIS EXPRESSION IS ILLEGAL WHEN
USED WITH THE SPECIFIED OPCODE OR PSEUDO-OP
MORE THAN 1 OPERANDIS NON ABS/REL OR THE RIGHT-HAND
OPERAND IS NON ABS/REL
AN EXTERNAL NAMEIS NOT PERMITTED
NON-16-BIT INTEGER IS ILLEGAL IN AN EXPRESSION

LOADER ERROR MESSAGES

ALREADYEXISTS!

An attempt is being made to define a new symbol; however, the symbol nameis
already a defined symbolin the symboltable.

BAD OBJECT FILE

The object text 1s not nr h

load source code or whenthe object
loading.

1 March, 1979

Thi then aw att
ial iS usually occurs Wri©ll ail dil

S e
s

2 ©
:

a
q 3 o
D = @ m
o

ext was compiled or assem

C-3 FDR 3059



C ERROR MESSAGES
 

 

BASE SECTOR 0 FULL

All locations in the sector zero base area have been used. Use the AU commandto
generate base areas at regular intervals, or use the SETB or LOAD commandsto
specifically place base areas.

CAN’T DEFER COMMON, OLD OBJECT TEXT

The Defer Common commandhas beengiven and a module created with a pre-Rev.
14 compiler or assembler has been encountered.It is not possible to defer Common
in this case. The module must be recreated with a Rev. 15 or later compiler or
assembler.

CAN’T - PLEASE SAVE

The EXecute command has been given for a run file which has required virtual
loading. SAve the runfile and give the EXecute command.

CM$

Commandline error. Unrecognized commandgiven. Not fatal.

COMMON OUT OF REACH

COMMONabove ‘100000 is out of reach of the current load mode (168. 325 or 32R).
Use the MOde commandto set the load modeto 64R.

COMMON TOO LARGE

Definition of this COMMONblock causes COMMONto wrap around through zero.
Moving the top of COMMON- with the COMMON command - mayhelp.

sname ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine COMMONblock snameto a longer length. The
user's program should be examined for consistent COMMONdefinitions. At the
very least the longest definition for a COMMONblock should be first.

xxxxxx MULTIPLE INDIRECT

A module loading in 64R mode requires a secondlevelof indirection at location
xxxxxx. This message usually results when an attempt is madeto load code compiled
or assembled for 32R mode in 64R mode.It can also happenif code has accidentally
been loaded into base areasasthe result of a bad load command sequence.

sname xxxxxx NEED SECTOR ZERO LINK

At location xxxxxx a link is required for desectoring the instruction. No base areas
ara within roach avrant cactar zarn Tha tact rafaranrad euvmhal wac ename Thic
ui W¥itiibdl AWWA VAY Pt VUutYVL, OV. DREW AMAL 2A SA WAU wy ssa ¥VM%o Wwaestesaae. a2 ana

messageis only generated when the SZ commandhas been given. Sname maybethe

FDR 3059 C-4 1 March, 1979



ERROR MESSAGES C
 

 

COMMON bloa : ™
a oe a a¥ aN MIU i

f
, ie ame or

made, or the nameof the module being loaded.

xxxxxxX NO POST BASE AREA, OLD OBJECT TEXT

A post base area has beenspecified for module which wascreated with a pre-Rev.14
compiler or assembler. No base area is created. Recreate the object text with a
Rev. 15 or later compiler or assembler. This is not a fatal error.

PROGRAM-COMMON OVERLAP

The module being loaded is attempting to load code into an area reserved for
COMMON.Usethe loader’s COmmon command to move COMMONuphigher.

PROGRAM TOO LARGE

The program hasloadedinto the last location in memory and has wrapped around
to load in Location 0. The program size mustbe decreased. Alternatively, compile in
64V mode anduse SEG.

REFERENCE TO UNDEFINED COMMON

An attempt is being madeto link to a COMMONnamewhich hasnot beendefined.
This usually happens to users creating their owntranslators.

SECTORED LOAD MODEINVALID

A module compiled or assembled to load in R modehas been loaded in S mode. Use
the MOde commandtoreset the load mode. It might be a good ideato be surethat
all modules are correctly written, since the default load modeis 32R.

SYMBOL NOT FOUND

An attempt is being made to equate two symbols with the SYmbol commandandthe
old symbol does notexist.

SYMBOL TABLE FULL

The symbol table has expanded downto location 4000. The last buffer cannot be
assigned to the symbol table. Rebuild LOADto load in higher memorylocations, or
reduce the numberof symbols in the load.

SYMBOL UNDEFINED

An attempt is being made to equate two symbols; however, the old symbolis an
undefined symbol in the symboltable.

64R LOAD MODE INVALID

A module compiled or assembled to run in only 32K of memoryis being loaded in
64R mode. Recompile or reassemble or change the load mode with the loader’s
MOde command.

SEG LOADER ERROR MESSAGES

BAD OBJECT FILE

Useris attempting to load file which has faulty code. The file may not be an object
file or it may be incorrectly compiled. Fatal error, the load must be aborted.

i March, 1979 C-5 FDR 3059



C ERROR MESSAGES
 
 

CAN’T LOAD IN SECTORED MODE

The Loader is attempting to load codein sectored mode which hasnot been compiled

in sectored mode. This could arise if trying to load a module compiled or assembled

in 16S or 32S mode. It is unlikely that the average applications programmerwill

encounterthis. Fatal error, abort load.

CAN’T LOADIN 64V OR 64R MODE

The Loader is attempting to load code in 64V mode which is not compiled inthat

mode. This wouldariseif:

1. A program was compiled in a mode other than 64V.

29. A PMA module is written in code other than 64V andits modeis not

specified.

In case 1, the user should recompile the program.

In case 2, which the average applications programmeris unlikely to encounter, the

PMA module must be modified. Fatal error, abort load.

COMMAND ERROR

An unrecognized commandwasenteredorthe filenames/parameters following the

commandare incorrect. Usually not fatal.

EXTERNAL MEMORYREFERENCE TO ILLEGAL SEGMENT

An attempt was madeto load a 64R modeprogram,causing a reference to an illegal

segment number. Recompile in 64V mode. Fatal error, abort load.

ILLEGAL SPLIT ADDRESS

Incorrect use of the Loader’s SPLIT command. Segments may be split at 4000

boundaries only (i.e., 4000, ‘10000, ‘14000, etc.). Not fatal; resplit segment.

MEMORYREFERENCE TO COMMONIN ILLEGAL SEGMENT

An attempt was made to load a 64R mode program wherein COMMONwould be

allocated to an illegal segment number. Recompile in 64V mode.Fatal error, abort

load.

NO FREE SEGMENTSTO ASSIGN

All SEG’s segments have been allocated; no more are available at present. Use

SYMBOL commandto eliminate COMMONfrom assigned segments, thus reducing

the numberof assigned segments required. (User may needlarger version of SEG

and PRIMOS). Fatal error, abort load.

NO ROOM IN SYMBOLTABLE

Unlikely to occur; no user solution. A new issue of SEG with a bigger symbol table

is required. Check with analyst. As a temporary measure, user maytry to reduce

number of symbols used in program.Fatal error, abort load.

REFERENCE TO UNDEFINED SEGMENT

Almost always caused by improper use of the SYMBOL command to allocate

initialized COMMON.Initialized COMMONcannot be located with the SYMBOL

command: use R/SYMBOL or A/SYMBOLinstead.

FDR 3059 C-6 1 March. 1979



ERROR MESSAGES C
 

 

CECTNOD
WU be

7UDMN D
N 4UGNU D

A DLA PTT
~ AU AND &

TT
UbLL

Extremely unlikely to occur. Not correctable at applications level. Check with
analyst. Fatal error, abort load.

SEGMENT WRAP AROUND TO ZERO

An attempt has been madeto load a 64R mode program. The program has exceeded
64K andis trying to be loaded over code previously loaded. Recompile in 64V mode.
Fatal error, abort load.

RUN-TIME ERROR MESSAGES

ACCESS VIOLATION 64V mode

Attempt to perform operations in segments to which user hasnoright.

****AT) R-mode function

Overflow or underflow in double-precision addition/subtraction (A$66,S$66).

ALL REMOTE UNITS IN USE File System

Attempt made to assign a remote unit when none are available. (Network error]
[ESFUIU]

**** ALOG/ALOG 10 - ARGUMENT <=0 V-modefunction

Argumentnot greater than zero used in logarithm (ALOG, ALOG 10) function.

filename ALREADY EXISTS Old file call

Attempt to create a file or UFD with the nameof one already existing. |CZ|

ALREADYEXISTS File System

Attempt madeto create, in the UFD, a sub-UFD with the same name as one already
existing. (CREAS$$) [ESEXST]

eKAT
R-modefunction

Both arguments are zero in the ATAN2 function.

**** ATAN2 - BOTH ARGUMENTS= 0 V-modefunction

Both arguments are zero in the ATAN2function.

**** ATTDEV - BAD UNIT V-modecall

Incorrect logical device unit number in the ATTDEV subroutinecall.

BAD CALL TO SEARCH Oldfile call

Error in calling the SEARCH subroutine, e.g., incorrect parameter. |SA|

BAD DAM FILE Old file call

The DAM file specified has been corrupted - either by the programmer or by a
system problem. [SS]

BAD DAM FILE File System

The DAM file specified has been corrupted - either by the programmeror by a
system problem. (PRWF$$, SRCH$$). [E$BDAM|]

1 March, 1979 C-7 FDR 3059



C ERROR MESSAGES
 

 

BAD FAM SVC File System

System problem; will not be seen by applications programmer. [ESBFSV]

BAD KEY File System

Incorrect key value specified in subroutine argument. (ATCH$$, RDEN$$, SATR$8,

SRCH$$, SGDR$$) [ESBKEY]

BAD PARAMETER Oldfile call

Incorrect parameter value in subroutine call. [SA]

BAD PASSWORD Old file call

Incorrect password specified in ATTACH subroutine. Returns to PRIMOSlevel

attached to no UFD.[AN]

BAD PASSWORD File System

Incorrect password specified in ATCH$$ subroutine. Returns to PRIMOSlevel

attached to no UFD. [ATCH$$] [E$BPAS]

Note

To protect UFDprivacy the system doesnotallow the userto
trap BAD PASSWORDerrors.

BAD RTNREC PRIMOS

System error.

BAD SEGDIR UNIT File System

Error generated in accessing segmentdirectory, i.e, PRIMOSfile unit specified is

not a segmentdirectory. (SRCH$$) [ESBSUN]

BAD SEGMENT NUMBER File System

Attempt made to access segment numberoutside valid range. [ESBSGN]

BAD SVC PRIMOS

Bad supervisor call. In FORTRANusually caused by program writing overitself.

BAD TRUNCATE OF SEGDIR File System

Error encountered in truncating segment directory. (SGDR$$) [ESBTRN]

BAD UFD ile System

UFD has become corrupted. (ATCH$$, CREA$$, GPAS$$, RDEN$$, SATR$S,

SRCH$$) [E$BUFD]. Calls to RDEN$$ return this as a trappable error; other

commandsreturn to the PRIMOS commandlevel.

BAD UNIT NUMBER File System

PRIMOSfile unit number specified is invalid - outside legal range. (PRWF$8,
RDEN$S$, SRCH$$, SGDR$$). [E$BUNT]

BEGINNING OFFILE File System

Attempt was made to access locations before the beginning of the file. (PRWFSS,

RDENS$, SGDR$$) [E$BOF]

FDR 3059 C-8 1 March, 1979



ERROR MESSAGES C
 

 

***5BN n R-modefunciion

Device error in REWIND command on FORTRANlogical unit n.

BUFFER TOO SMALL File System

Buffer as defined is not large enough to accomodate entry to be read into it.
(RDEN$$) [E$BFTS]

**** DATAN - BAD ARGUMENT V-modefunction

The second argument in the DATAN2function is zero.

sekDE R-modefunction

The exponent of a double-precision numberhas overflowed.

DEVICE IN USE File System

Attempt was made to ASSIGNa device currently assigned to anotheruser. [ESDVIU]

DEVICE NOT ASSIGNED File System

Attempt was made to perform I/O operations on a device before assigning that
device. [ESNASS]

DEVICE NOT STARTED File System

Attempt was made to access a disk not physically or logically connected to the
system. If disk must be accessed, systems manager must start it up. [|ESDNS|

**** DEXP - ARGUMENT TOO LARGE V-modefunction
The argumentof the DEXP functionis too large; i.e., it will give a result outside the
legal range.

**** DEXP - OVERFLOW/UNDERFLOW V-mode function

An overflow or underflow condition occurred in calculating the DEXP function.

DIRECTORY NOT EMPTY File System

Attempt was madeto delete a non-empty directory. (SRCH$$) [ESDNTE]

DISK FULL Old file call

No more room for creating/extending any type of file on disk.[DJ]

DISK FULL File System

No more room for creating/extending any type of file on disk. (CREAS$, PRWFSS,
SRCH$$, SGDR$$). [ESDKFL]

Note

Space may be made available. Use the internal PRIMOS
commands ATTACH, LISTF, and DELETE to removefiles
which are no longer needed.

DISK I/O ERROR File System
sareita orrnar trae ancniuntares a3 diA read/write error was encountered in accessing disk. Returns immediatelyto

PRIMOSlevel. Not correctable by applications programmer. (ATTCH$$, CREA$S,
GPASS$, PRWF$$, RDEN$$, SATR$$, SRCH$$, SGDR$$). [ESDISK]

1 March, 1979 C-9 FDR 3059



C ERROR MESSAGES
 

 

DISK WRITE-PROTECTED File System

An attempt has been madeto write to a disk which is WRITE-protected. [ESWTPR]

DK ERROR Old file call

A read/write error was encountered in accessing disk. [WB]

****DL R-modefunction

Argument was not greater than zero in DLOG or DLOG2 function.

**** DLOG/DLOG2 - ARGUMENT< = 0 V-modefunction

Argument not greater than zero was used in DLOG or DLOG2function.

****DN n R-mode function

Device error (end of file) on FORTRAN logical unit n.

**** DSIN/DCOS - ARGUMENT RANGE ERROR V-modefunction

Argument outside legal range for DSIN or DCOSfunction.

**** DSQRT - ARGUMENT<0 V-mode function

Negative argument in DSQRT function.

*ee* DT R-modefunction

Second argumentis zero in DATAN2 function. (D$22)

DUPLICATE NAME Oldfile call

Attempt to create/renamea file with the nameof an existing file. [CZ]

FERETZ, R-modefunction

Attempt to divide by zero (double-precision).

END OF FILE File System

Attempt to access location after the end of the file. (PRWFS$. RDEN$$, SGDR$S)
|[ESEOF]

**** EQ R-mode function

Exponent overflow. (A$81)

*eEe EX R-modefunction

Exponent function value too large in EXP or DEXP function.

**** EXP - ARGUMENT TOO LARGE V-modefunction

The argument of the EXP function is too large, i.e., it will give a result outside the
legal range.

**** EXP - OVERFLOW V-modefunction

Overflow occurred in calculating the EXP function.

FAM ABORT File System

System error. [E$FABT]

FDR 3059 C-10 1 March, 1979



ERROR MESSAGES €
 

 

File System

System error. [E$FBST]

FAM OP NOT COMPLETE File System

Network error. [ESFONC]

eeeEE R-modefunction

Error in FORMATstatement. FORMATstatements are not completely checked at
compile time. (F$IO)

FILE IN USE File System

Attempt made to open a file already openedor to close/delete a file opened by
another user, etc. (SRCH$$} [ESFDEL]

FILE OPEN ON DELETE File System

‘Attempt madeto delete a file which is open. (SRCH$$) [E$FDEL]

FILE TOO BIG File System

Attempt made to increase size of segment directory beyond size limit. (SGDR$s)
[ESFITB]

****EN n R-modefunction

Device error in BACKSPACE command on FORTRANlogical unit n.

**** FSBN - BAD LOGICAL UNIT V-modefunction

FORTRANlogical unit numberout of range.

**** FSOFLEX - DOUBLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made to divide by zero.

**** FSFLEX - DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponentof a double-precision number has exceeded maximum.

**** FEFLEX - REAL => INTEGER CONVERSION ERROR 64V mode

Magnitude of real numbertoo great for integer conversion.

**** FSFLEX - SINGLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been madeto divide by zero.

**** FSFLEX - SINGLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a single-precision number has exceeded maximum.

**** ESTO - FORMAT ERROR V-modefunction

Incorrect FORMATstatement. FORMATstatements are not completely checked at
compile time.

**** FSTO - FORMAT/DATA MISMATCH V-mode function

Input data does not correspond to FORMATstatement.

**** FSIO - NULL READ UNIT V-modefunction

FORTRANlogical unit for READ statement not configured properly.

1 March, 1979 C-11 FDR 3059



C ERROR MESSAGES
 

 

*eeSTT R-mode function

Exponentiation exceeds integer size. (E$11)

ILLEGAL INSTRUCTIONAToctal-location R mode and 64V mode

Aninstruction at octal-location cannot be identified by the computer.

ILLEGAL NAME File System

Illegal namespecified for a file or UFD. (CREA$$, SRCH$$) [ESBNAM|]

ILL REMOTE REF File System

Attempt to perform network operations by user not on network. [E$IREM|]

ILLEGAL SEGNO 64V mode

Program references a non-existent segment or a segment numbergreaterthan those
available to the user.

ILLEGAL TREENAME File System

The string specified for a treenameis syntactically incorrect. [E$ITRE]

****IM R-modefunction

Overflow or underflow occurred during a multiply. (M$11, E$11)

filename IN USE Old file call

Attempt made to open file already opened, or to close/delete a file opened by
anotheruser,etc. [SI]

INVALID FAM FUNCTION CODE File System

System error. [ESFIFC]

*#** T**T — ARGUMENT ERROR V-modefunction

Exponentiation exceeds integer size.

KEEETG R-modefunction

Argumentnotgreater than zero in ALOG or ALOG10 function.

MAX REMOTE USERS EXCEEDED File System

No more users mayaccess the network. [ESTMRU]

NAME ‘TOO LONG File System

Length of name in argumentlist exceeds 32 characters. [ESNMLG]

NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none available. User should log out to release
assigned segments andtry again later.

NO PHANTOMS AVAILABLE File System

An atlempit has been made io spawn a phaniom. All cunfigured phanioms are
already in use. [E$SNPHA]

FDR 3059 C-12 1 March. 1979



ERROR MESSAGES C
 

 

Bil. Q.-nt.---NO RIGHT rio oystem

User does not have accessright to file, or does not have write access in UFD when
attempting to create a sub-UFD. (CREA$$, GPAS$$, SATRS$, SRCH$$, SGDR$$}
[ESNRIT]

NO ROOM File System

An attempt has been made to add to a table of assignable devices with a DISKS or
ASSIGN AMLC commandandthetable is already filled. [ESROOM|

NO TIME File System

Clock not started. System error. [E$NTIM]

NO UFD ATTACHED Oldfile call

User not attached to a UFD [AL, SL]. Usually occurs after attempt to attach with a
bad password.

NO UFD ATTACHED File System

User not attached to a UFD. (ATCH$$, CREAS$$, GPASS$S, SATRS$, SRCH$S).
[ESNATT] Usually occurs after attempt to attach with a bad password.

NO VECTOR R and 64V mode

User error in program has caused PRIMOSto attempt to access an unloaded
element.

1. A UII, PSU, or FLEX to location 0

2. Trap to location 0 |

3. SVC switch on, SVC trap and location ’65 is 0.

NOT A SEGDIR File System

Attempt to perform segmentdirector operations on a file which is not a segment
directory. (SRCH$$) [E$NTSD]

NOT A UFD Old file call

Attempt to perform UFD operations on a file which is not a UFD. |AR|

NOT A UFD File System

Attempt to perform UFD operations on file which is nota UFD. (ATCHS$, GPAS$$,
SRCH$$}. [ESNTUD]

device-name NOT ASSIGNED PRIMOS

User program hasattempted to access an I/O device whichhasnotbeenassignedto
the user by a PRIMOS command.

filename NOT FOUND Old file call

File specified in subroutine call not found. [AH, SH]

filename NOT FOUND File System

File specified in subroutine call not found. (ATCHS$$, GPAS$$, SATR$$, SRCH$$}
[ESFNTF]

1 March, 1979 C-13 FDR 3059



C ERROR MESSAGES
 

 

filename NOT FOUNDIN SEGDIR File System

Filename specified in subroutine call not found in specified segment directory.
(SRCH$$, SGDR$$) [E$FNTS]

NULL READ UNIT PRIMOS

Program has attempted to read with a bad unit number. This may be caused by a
program overwriting itself (array out of bounds).

OLD PARTITION File System

Attempt to perform,in an oldfile partition, an operation possible only in a newfile
partition; e.g., date/time information access. (SATR$$) [ESOLDP|

+2**DA R-mode function

PAUSEstatement n (octal) encountered during program execution

**** PAUSE n V-modefunction

PAUSE statement n (octal) encountered during program execution.

POINTER FAULT 64V mode

Reference has been made to an argumentor instruction not in memory. The two
usual causes of this are an incomplete load (unsatisfied references), or incomplete
argumentlist in a subroutine or function call.

POINTER MISMATCH PRIMOS

Internal file pointers have become corrupted. No user remedial action possible.
System Administrator must correct. [PC, DC, AC}

PROGRAM HALTAToctal-location R mode and 64V mode

Program contro! has been lost. The program has probablywritten over itself or the
load was incomplete {R-mode}.

PRWFIL BOF Old file call

Attempt by PRWFILsubroutine to access location before beginning of file. |PG|

PRWFIL EOF Oldfile call

Attempt by PRWFIL subroutine to access location after endoffile. |PE|

PRWFIL POINTER MISMATCH Oldfile call

The internal file pointers in the PRWFIL subroutine have becomecorrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to perform operations using a PRIMOSfile

unit number on which nofile is open.

PTR MISMATCH File System

Internal file pointers have become corrupted. No user remedial action possible.

(ATCH$$, CREA$$, GPAS$$, PRWF$$, RDEN$$, SATR$$, SRCH$$, SGDR$$)}.

[E$PTRM]. Consult system manager.

REMOTE LINE DOWN File System

Remote call-in access to computer not enabled. [ESRLDN]

FDR 3059 C-14 1 March, 1979



ERROR MESSAGES C
 
 

#HEENT
R-mode function

Argumentis too large for real-to-integer conversion. (C$12)

****RN n
R-mode function

Device error or end-of-file in READ statement on FORTRANlogical unit n.

eeeGE
R-mode function

Single precision exponent overflow.

SEG-DIR ER Old file call

Error encountered in segmentdirectory operation. [SQ]

SEGDIR UNIT NOT OPEN File System

Attempt has been made to reference a segment directory which is not open.
(SRCH$$) [ESSUNO]

SEM OVERFLOW File System

System error [ESSEMO]

**** SIN/COS - ARGUMENT TOO LARGE V-mode function

Argumenttoo large for SIN or COSfunction.

****SQ R-modefunction

Negative argument in SQRT or DSQRTfunction.

**** SQRT - ARGUMENT<0 V-mode function

Negative argument in SQRT function.

****ST n R-modefunction

STOP statement n (octal) encountered during program execution.

**** STOP n V-modefunction

STOP statement n (octal) encountered during program execution.

****SZ R-modefunction

Attemptto divide by zero (single-precision).

TOO MANY UFD LEVELS File System

Attempt to create more than 72 levels of sub-UFDs. This error occurs only on old file
partitions; new file partitions have no limit on UFDlevels. |ESTMUL|

UFD FULL Old file call

No more room in UFD.[SK]

UFD FULL File System

UFDhasno room for morefiles and/or sub-UFD’s. Occurs onlyin oldfile partitions.
(CREAS$, SRCH$$) [ESFDFL]

1 March, 1979 C-15 FDR 3059



C ERROR MESSAGES
 

UFD OVERFLOW Old file call

No more room in UFD.

UNIT IN USE Old file call

Attempt to open file on PRIMOSfile unit already in use. [5S]].

UNIT IN USE File System

Attempt to open file on PRIMOSfile unit already in use. (SRCH$$). [|ESUIUS]

UNIT NOT OPEN Oldfile call

Attempt to perform operations with a file unit number on which nofile has been

opened. [PD, SD]

UNIT NOT OPEN File System

Attempt to perform operations with a file unit number on which nofile has been

opened. (PRWF$$, RDEN$$, SRCH$$, SGDR$$). [ESUNOP|]

UNIT OPEN ON DELETE Oldfile call

Attempt to delete file without havingfirst closed it. [SD|

****0TN R-mode function

Device error or end-of-file in WRITE statement on FORTRANlogical unit n.

£eREYX R-mode function

Integer argument >32767.

FDR 3059 C-16 1 March, 1979



Index x
 

 

#, usage in PMA 14-5
%, usageinPMA 14-5
&, ampersandcharacterin

macros 17-2

*** dummyinstruction 14-5
** initial zero 14-6
* currentlocation 14-6
*CMHIGH, R-mode load map

entry 4-3

*CMLOW,R-mode load map
entry 4-3

*HIGH, R-mode load map
entry 4-3

“HIGH, SEG load mapentry 5-4
*LOW,R-mode load map

entry 4-3

*LOW, SEG load mapentry 5-4
*PBRK, R-mode load map

entry 4-3

*STACK, SEG load map entry 5-4
*START, R-mode load map

entry 4-3

*START, SEG load mapentry 5-4
*SYM, R-mode load map

entry 4-3

*SYM, SEG load map entry 5-4
*UII, R-mode load mapentry 4-4
16S addresscalculation

flowcharts 10-11
16S summary 10-10
32R addresscalculation

flowcharts 10-16
32R summary 10-13
32S (includes 32R when S=0)

summary 10-12

328 address calculation 10-13
64R addresscalculation

flowcharts 10-23
64R summary 10-20

64V address calculation
flowcharts 10-31

64V base register relative 10-28
64V procedure relative 10-28
64V two word memory

reference 10-29
:, assembler notation 15-10
=,PMAliterals 14-6
@ (non-SEG mode} assembler

notation 15-8

A
A left logical, ALL, (SRV) 11-51
A left rotate, ALR, (SRV) 11-51

A left shift, ALS, (SRV) 11-51

A register details 3-3
A right logical, ARL, (SRV) 11-51
A right rotate, ARR, (SRV) 11-51
A right shift, ARS, (SRV) 11-51
A (I) 12-9
A2A (SRV) 11-22
ABQ (I) 12-21
ABQ (V} 11-49
ABS 16-5

Absolute integers 17-2
AG, assembly control pseudo-

operations 16-1
ACA (SRV) 11-22
Access mode 18-6
AD,addressdefinition pseudo-

operations 16-1
Add

1 March 1979

C-bit to A, ACA, (SRV) 11-22

fullword, A, (I) 12-9
halfword, AH,(I) 12-10
L bit toL, ADLL, (V) 11-23
L to field address, ALFA,

(V) 11-15
link to register, ADLR,

(I) 12-10
long, ADL (V} 11-22
one toA, ALA (SRV) 11-22
register to field address

register, ARFA, {I} 12-5

to bottom of queue, ABQ,
(I) 12-21

to bottom of queue, ABQ,
(V) 11-49

to top of queue, ATQ,(I)
to top of queue, ATQ,

(V) 11-49
two to A, A2A (SRV)

ADD (SRV) 11-22

Adding modules to a SEG
runfile 5-7

Addition operator 15-9
Address

definition pseudo-operations,
AD 16-1

formation 18-4
special case selection 9-18
mode, selectingthe 4-5
pointer (AP) 9-2

resolution, role of
assembler 10-3

resolution, role of loader 4-4,
10-3

space, virtual 4-5
truncation (SR) 10-2

Addresses
relative 18-4
symbolic, PMA 14-5

Addressing mode, ADMOD,
(I) 12-1

Addressing mode, ADMOD,
(V) 11-1

ADL (V) 11-22
ADLL (V) 11-23
ADLR(I) 12-10
ADMOD(I) 12-1
ADMOD [(V) 11-1
Advanced debugging

techniques 7-2
Advanced features in loader, use

of 4-4
Advanced SEG features 5-7
AH (I) 12-10
ALA (SRV) 11-22
ALFA (V} 11-15
ALL (SRV) 11-51
ALR (SRV) 11-51
ALS (SRV) 11-51
Ampersand character in macros

(&) 17-2
ANA (SRV) 11-32

ANDfullword, N, (1) 12-15
ANDhalfword, NH,(I) 12-15
ANDlong, ANL, (V) 11-32
AND to A, ANA, (SRV) 11-32
ANL(V)} 11-32
AP, argumenttransfer

template 9-7
AP, pseudo-operation 16-7

12-21

11-22

APPLIB,system library 8-1
Application library 8-1
ARFA (I) 12-5
ARGT (I) 12-20
ARGT (V) 11-43
Argument

identifiers, macro 17-2, 17-3,
17-4

pointer pseudo-operation,
AP 16-7

references, macro 17-2,17-4
substitution, macro 17-3
transfer template, AP 9-7
transfer, ARGT, (I) 12-20
transfer, ARGT, (V) 11-43
value expressions, macro 17-3
values in parentheses,

macre 17-3

values, macro 17-1, 17-3, 17-4
Arguments, macro 17-2

Arithmetic instruction register
usage (I-mode only) 11-10

Arithmetic operators 15-8
ARL (SRV) 11-51
ARR (SRV) 11-51
ARS (SRV) 11-51
ASCII 18-5

character set B-1
character strings 15-5
constants 18-5

Assembler
attribute references 17-2
attributes 15-11, A-1
error messages C-1
formats (I) 14-7
messages 3-2

Assemblycontrol pseudo-
operations, AC 16-1

Asterisk (current location},
PMA 14-6

Asterisk, double, PMA 14-6
ATQ (I) 12-21
ATO (V)} 11-49
Attributes, assembler 15-11, 17-2,

A-1

B
BACKpseudo-operation 16-8
Base area problems, how to

resolve 4-5, 4-6, 5-8
Base areas, R-mode load map

description 4-4
Base areas, SEG load map

entry 5-6

Baseregister relative, memoryrefer-
reference instruction
formats 10-6

Base registers 9-12
Base registers, PMA formats 14-6
BCEQ (I) 12-3
BCEQ (V) 11-2
BCGE(1) 12-3
BCGE (V) 11-2
BCGT (I) 12-3
BCGT (V) 11-2
BCI pseudo operation 16-10
BCLE (I) 12-3
BCLE (V) 11-2
BCLT (I) 12-3
BCLT (V) 11-2
BCNE (V) 11-2

FDR 3059



X Index
 

 

BCNE(I) 12-3
BCR (I) 12-3
BCR (V) 11-3
BCS{
BCS (V) 11-3

BDX (V) 11-4
BDY (V) 11-4
Begin macrodefinition pseudo-

operation, MAC 16-16
BEQ (V) 11-4
BES pseudo-operation 16-20
BFEQ (I) 12-2
BFEQ (V) 11-4
BFGE(I} 12-2
BFGE (V) 11-4
BFGT (V) 11-4
BFGT (I) 12-2
BFLE (V) 11-4
BFLE (I) 12-2
BFLT (I) 12-2
BFLT (V) 11-4

BFNE(I) 12-2
BFNE (V) 11-4
BGE (V) 11-4
BGT (V) 11-4
BHD1(I) 12-3
BHD2(I) 12-3
BHD4 (I) 12-3
BHGE(I) 12-2
BHGT(I) 12-2
BHI2 (I) 12-3
BHI4 (I) 12-3
BHLE(I) 12-2
BHLT (J) 12-2

BHNE(I) 12-2

Binary 18-5
constants 15-3

exponent 15-5

fraction 15-5
point 15-3, 15-4
scaling 15-3, 15-5
to decimal conversion, XBTD,

(I) 12-5
BIX, increment X and branchif not

zero,(V} 11-4

BIY, increment Y and branchif not
zero, (V) 11-4

BLE, branchif A register less than
or equal to zero, (V) 11-4

BLEQ,branchif L register equal to
zero, (V) 11-4

BLGE,branchif L register greater
than or equalto zero -
(V} 414

BLGT,branchif L register greater
than zero, (V) 11-4

BLLE,branchif L register less than
or equal to zero, (V) 11-4

BLLT,branchif L register less than
zero, (V) 11-4

BLNE,branchif L register not
equal to zero, (V) 11-4

Block allocation 16-20
BLR,branchif L-bit reset, (I) 12-3
BLR,branchif L-bit reset,

(V) 11-3
BLS, branch if L-bit set, (I} 12-3
BLS, branch if L-bitset,(V) 11-3
BLT, branchif A registerless than

zero,(V} 11-4

FDR 3059

BMEQ,branch if magnitudeis
equalto zero, (I) 12-3

BMEQ,branch if magnitudeis
equal to zero, (V) 11-3

BMGE,branchif magnitudeis
greater than or equalto zero,
(I) 12-3

BMGE,branchif magnitudeis
greater than or equalto zero,
(V) 11-3

BMGT,branch if magnitudeis

greater than zero,({V)} 11-3
BMGT,branchif magnitudeis

greater than zero, (I) 12-3
BMLE.branchif magnitudeis less

than or equalto zero,
(I) 12-3

BMLE,branchif magnitudeis less
than or equalto zero,
(V) 11-3

BMLT,branch if magnitudeis less
than zero, (I) 12-3

BMLT, branch if magnitudeis less
than zero, (V) 11-3

BMNE,branchif magnitudeis not
equalto zero, (I) 12-3

BMNE,branchif magnitudeis not
equal to zero, (V}_ 11-3

BNE,branchif A register not equal
to zero, (V) 11-4

BRAN,branch (I) 12-1
BRAN, branch (V) 11-2
Branch instruction format 9-16
Branchif

A register equalto zero, BEQ,
(V) 11-4

A register greater than or equal
to zero, BGE, (V) 11-4

A register greater than zero,
BGT, (V) 11-4

A register less than or equalto
zero, BLE, (V) 11-4

A register less than zero, BLT,
(Vv) 11-4

A register not equal to zero,
BNE,(V} 11-4

C-bit reset (equals zero), BCR,
(V) 11-3

C-bit reset, BCR, (I) 12-3
C-bit set, BCS, (1) 12-3
C-bit set, BCS, (V) 11-3
condition code equal, BCEQ,

(V) 11-2
condition code equal, BCEQ,

(1) 12-3
condition code greater than or

equal BCGE, (V) 11-2
condition code greater than or

equal, BCGE, (I) 12-3
condition codegreaterthan,

BCGT, (V) 11-2
condition code greaterthan,

BCGT,(I) 12-3
condition codeless than or

equal, BCLE, (V) 11-2
condition code less than or

equal, BCLE,(I) 12-3
condition code less than BCLT,

condition codenot equal,
BCNE, (V) 11-2

condition code not equal,
BCNE,(I) 12-3

floating register equalto zero,
BFEQ,(I) 12-2

floating register equalto zero,
BFEQ, (V) 11-4

floating register greater than or
equal to zero, BFGE,
(I) 12-2

floating register greater than or
equal to zero, BFGE,
(Vv) 11-4

floating register greater than
zero, BFGT, (I) 12-2

floating register greater than
zero, BFGT, (V) 11-4

floating register less than or
equal to zero, BFLE,
(I) 12-2

floating register less than or
equal to zero, BFLE,
(V) 11-4

floating register less than zero,
BFLT, (I) 12-2

floating register less than zero,
BFLT, (V) 11-4

floating register not equalto
zero, BFNE,(I) 12-2

floating register not equal to
zero, BFNE, (V) 11-4

half register greater than or
equalto zero, BHGE,
(I) 12-2

half register greater than zero,
BHGT,(I) 12-2

half register less than or equal
to zero, BHLE, (I) 12-2

half register less than zero,
BHLT, (I} 12-2

half register not equal to zero,
BHNE,(I) 12-2

L register equal to zero, BLEQ,
(Vv) 11-4

L register greater than or equal
to zero, BLGE, (V} 11-4

L register greater than zero,
BLGT, (V) 11-4

L register less than or equalto
zero, BLLE, (V) 11-4

L register less than zero, BLLT,
(Vv) 11-4

L register not equalto zero,
BLNE, (V} 11-

L-bit reset, BLR, (V) 11-3
L-bit reset, BLR, (I) 12-3

L-bit set, BLS, (V) 11-3
L-bit set, BLS, (I) 12-3
magnitudeis equal to zero,

BMEQ,(I) 12-3
magnitudeis equalto zero,

BMEQ, (V) 11-3
magnitudeis greater than or

equal to zero, BMGE,
(I) 12-3

magnitudeis greater than or
equal to zero, BMGE,
(V) 11-3

magnitude!is greater than zero,

T, (I) 12-3

1 March 1979



Index: xX
 

 

magnitudeis greater than zero,
BMGT,(V} 11-3

magnitudeis less than or equal
to zero, BMLE,(I} 12-3

magnitudeis less than or equal
to zero, BMLE, (V) 11-3

magnitudeis less than zero,
BMLT,{I) 12-3

magnitudeis less than zero,
BMLT,(V) 11-3

magnitudeis not equalto zero,
BMNE,(I) 12-3

magnitudeis not equalto zero,
BMNE,(V) 11-3

register bit reset, BRBR,
(I) 12-2

register bit set, BRBS, (I) 12-2
register equals zero, BREQ,

(I) 12-2
register greater than or equal to

zero, BRGE,(I) 12-2
register greater than zero,

BRGT,(I) 12-2
register less than zero, BRLT,

(I) 12-2
register less than or equalto

zero, BRLE,(I) 12-2
register not equalto zero,

BRNE,(I) 12-2
Branch, BRAN {I} 12-1
Branch, BRAN, {V) 11-2
BRBR {I} 12-2
BRBS(I) 12-2
BRD1 (I) 12-3
BRD2(I) 12-3
BRD4(I) 12-3
BREQ (I) 12-2
BRGE(I) 12-2
BRGT(I) 12-2
BRI(I) 12-3
BRI2 (I) 12-3
BRI4 (I) 12-3
Bringing a program into

memory 6-1

BRLE {I} 12-2
BRLT (I) 12-2
BRNE{I} 12-2
BSS pseudo-operation 16-20
BSZ pseudo-operation 16-20

C
C, compare fullword,(I)
C-bit 9-14

Cé64R, check 64R pseudo-
operation 16-5

CA,conditional assembly pseudo-
operations 16-1

CAI (I) 12-14
CAI(SRV) 11-29
CAL(SRV) 11-7
CALFstack frame header 9-5
CALF (I) 12-20
Call conventions (SR} 8-2
Call conventions (VI) 8-3
Call fault handler, CALF,

(I) 12-20
CALL macro 17-1, 17-2

Call recursive entry procedure,
CREP, (R) 11-44

CALL pseudo-operation 16-18
CAR (SRV) 11-7

12-10

1 March 1979

CAS (SRV) 11-23
CAZ (SRV) 11-23
CEA (SRV) 11-44
CENT pseudo-operation 16-14
CGT (I) 12-3
CGT (V) 11-4
CH (I) 12-10
Changesigns, CHS, (I) 12-10
Change sign, CHS, (SRV) 11-23
CHAR (V) 11-5
CHAR(I) 12-3
Character 9-14

operations, CHAR (V) 11-5
(ASCII) constants 15-5
edit, ZED, (I) 12-4
operations, CHAR (I) 12-3

CHS(I) 12-10
CHS {SRV} 11-23
Class bits in R-mode long reach

instructionformat 10-7
Class bits in R-modestack

instruction format 10-6, 10-7
Clear

Aleft byte, CAL, (SRV) 11-7
Aright byte, CAR, (SRV) 11-7
A register, CRA (SRV) 11-7
active interrupt, CAI, {I} 12-14
active interrupt, CAI,

(SRV) 11-29
B register, CRB (SRV) 11-8
E, CRE, (V) 11-8
high byte 1 left, CRBI, (I) 12-4
high byte 2 right, CRBR,

(I) 12-4
Land E, CRLE,{V) 11-8
left halfword, CRHL,(I) 12-5
long, CRL, (SRV) 11-8
machine check, RMC,

(I) 12-14
machine check, RMC,

(SRV) 11-28
register and memory, CLEAR

(I} 12-4
register, CLEAR (V) 11-7
register, CR, (I) 12-4
right halfword, CRHR, (I) 12-5

Clear (V) 11-7
Clear (I) 12-4
Clearing memorywith

FILMEM 4-1

CLS (V) 11-23
CMA (SRV) 11-32
CMDNCO, command UFD 6-2
CMH(I) 12-15
CMR (I) 12-15
Colon, assembler notation 15-10
COMMpseudo-operation 15-8
COMM, FORTRANcompatible

COMMONpseudo-
operation 16-20

Commandfiles, loader
subcommands in 4-1

Commandline
format 18-4
operands 18-5
options, PMA 3-1

Command summary, SEG 5-8
Command UFD, CMDNCO_ 6-2
Command UFD,installation in

the 6-2
Commands, SEG level 5-9

Comments, PMA 14-4
COMMON

block descriptions in R-mode
load maps 4-4

blocks 5-6
blocks, SEG load map

entry 5-6

data area 15-8
locating with SEG 5-8

COMOUTPUTfiles 7-2

Compare
A with skip, CAZ, (SRV} 11-23
A with zero, CAZ, (SRV) 11-23
characterfield, ZCM,(I) 12-4
character field, ZCM, (V) 11-5
CLS, (V) 11-23
fullword,CG,(I)
halfword, CH,(J

Complement
A, CMA, (SRV) 11-32

Complementhalf register, CMH,
(lj 12-15

Complementregister, CMR,
(I) 12-15

Complement, FCM, (RV) 11-19
Compute effective address, CEA,

(SRV) 11-44
Computed GOTO, CGT,(I) 12-3
Computed GOTO, CGT, (V) 11-4
Concordance(cross

reference) 3-1, 3-5
Condition code bits 9-14
Condition code test 11-33
Conditional assembly 17-6
Conditional assembly pseudo-

operations,CA 16-1
Constant expressions 18-5, 18-6

Constants 15-1, 15-8, 18-5
integer 15-1

numeric 15-1, 15-2
PMA 14-4

Control extended controlstore,
CXCS, (I) 12-17

Control extendedcontrolstore,
CXCS, (V) 11-34

Control word format 11-10
Conventions

filename 2-1
instruction summary and

description 2-2
Prime 2-1

sign 15-9
space 15-9

text 2-1

Convert
31-bit integer to float, FLOT,

(R) 11-19
binary to decimal, XBTD,

(V) 11-11
float to integer, INT, (V)
float to integer, INTA,

(V) 11-21
float to long integer, INTL,

(V} 11-22
floating point to halfword

integer, INTH,(I) 12-8
floating point to integer, INT,

(I) 12-8
halfword integerto floating

point, FLTH,(I) 12-7
integerto float, FLTA,

12-10

12-10

11-21

FDR 3059



xX Index
 

 

(V) 11-20
integerto floating point, FLT,

(I) 12-7
long integerto float, FLTL,

(V) 11-20
single to double float, FDBL,

(Vv) 11-19
single to double, DBLE,

(I) 12-8
Copy sign of A, CSA, (SRV) 11-24
Copysign, CSR,(I) 12-10
CR{I) 12-4
CRA (SRV) 11-7
CRB(SRV) 11-8
CRBI (I) 12-4
CRBR(I) 12-4
CRE (V) 11-8
Creatingasystemcommand 6-2
CREP (R) 11-44
CRHL(I) 12-5
CRHR(I) 12-5
CRL (SRV) 11-8
CRLE (V) 11-8
Cross-referencelisting

{concordance} 3-5
CSA (SRV) 11-24
CSR (I) 12-10
CXCS(I} 12-17
CXCS (V) 11-34

D
D (I) 12-10
D16S pseudo-operation 16-14
D32] pseudo-operation 16-14
D32R pseudo-operation 16-14
D32S pseudo-operation 16-14
D64R, R-modeload

command 4-10
D64R pseudo-operation 16-14
D64V pseudo-operation 16-14
DAC pseudo-operation 16-7
DAD (SRV) 11-24
Data

constants 15-1
definition pseudo-operations,

DD 16-1
structures, mode usage 2-4
structures, useful in

debugging 7-1
types, decimal 11-8

DATA pseudo-operation 16-10
DBL (SRV) 11-24
DBLE(I) 12-8
DD,data definition pseudo-

operations 16-1
DDM pseudo-operation 16-14
Debugging 7-1

access violation message 7-1
advanced techniques 7-2
floating exception (FLEX) 7-1
illegal Segno message 7-1
interactive programs 18-1
MO-memoryoverflow 7-1
no vector message 7-1
pointer fault message 7-1
PRIMOSsevere errors 7-2
severe PRIMOS errors 7-1
stack overflow 7-1
using COMOUTPUTfiles 7-1
using the PM command 7-1
utilities 7-1

FDR 3059

DEC pseudo-operation 16-10
DECI 11-8, 12-5

Decimal 9-2, 9-14, 18-5
add, XAD,(I) 12-5
add, XAD, (V} 11-10
arithmetic, DEC 11-8
arithmetic, DECI (I) 12-5
compare, XCM,(I} 12-5
compare, XCM, (V) 11-11

constants 15-1
constants, fixed point 15-3
constants, floating point 15-5
control word format (VI) 9-2
datatypes 11-8
divide, XDV,(I) 12-5

divide, XDV, (V) 11-12
exception (CEX) 11-10
exponent 15-5

fraction 15-5
integer 15-5
move, XMV, (I) 12-5

move, XMV,{V] 11-14
multiply, XMP,(1) 12-5
multiply, XMP, (V) 11-13

Decimal to binary conversion,
XCTB, (I) 12-5

Decimal to binary conversion,

XCTB, (V) 11-12
Declare stack relative pseudo-

operation, DYNM_ 16-21
Decrement

and replace X, DRX,
(SRV) 11-53

half register by 1, DH1,
(I) 12-11

half register by 2 and branch,
BHD2, (I) 12-3

half register by 2, DH2,
(I) 12-11

half register by 4 and branch,
BHD4, (I) 12-3

memory fullword, DM,
(1) 12-11

memory halfword, DMH,
(1) 12-11

register by 1 and branch, BRD1,
(I) 12-3

register by 1, DR1, {I} 12-11
register by 2 and branch, BRD2,

(I) 12-3
register by 2, DR2, (I) 12-11
register by 4 and branch, BRD4,

(I) 12-3
X and branchif not zero, BDX,

(V} 11-4
Y and branchif not zero, BDY,

(V) 11-4
Definition, macro 17-1, 17-2, 17-4
Deleting SEG runfiles 5-7
DEX, decimal exception 11-10
DFA (I) 12-8
DFAD (RV) 11-17
DFC (I) 12-8
DFCM (I) 12-9
DFCM (RV) 11-17
DFCS (RV) 11-17
DFD (I) 12-9
DFDV (RV) 11-17

DFM (I) 12-9
DFMP (RV) 11-18

DFS (I) 12-9
DFSB (RV) 11-18
DFST (I) 12-9
DFST (RV) 11-18
DFTB pseudo-operation 16-8
DFVT pseudo-operation 16-8
DH (I) 12-10
DH1 (I) 12-11
DH2 (I) 12-11
Direct entry calls 5-6
Direct entry links, SEG load map

entry 5-6
Displacementfield meaning

base register relative 10-6
basic format 10-4
procedurerelative

format 10-5
sector relative format 10-4
two word memoryreference

(V-mode) 10-8
DIV (SR) 11-24

DIV (V) 11-24
Divide

fullword, D, (I) 12-10
halfword, DH, (I) 12-10
long, DVL, {V) 11-25

Divide, DIV, (SR) 11-24
Divide, DIV, (V) 11-24

DLD (SR) 11-39
DM (I) 12-11
DMH(I) 12-11
Double add, DAD, (SR) 11-24
Double asterisk (initial zero)

PMA 14-6

Double floating
add, DFA,(I) 12-8
compare, DFC, (I) 12-8

complement, DFCM,(1) 12-9
divide, DFD, (I) 12-9
load, DFL, {I} 12-9
multiply, DFM,(1) 12-9
store, CFST,(1} 12-9
subtract, DFS, (I) 12-9

Double load, DLD, (SR) 11-39
Double precision 15-1

64 bits, floating point 9-2
floating add, CFAD,

(RV) 11-17
floating complement, DFCM,

(RV) 11-17
floating divide, DFDV,

(RV) 11-17
floating load index, DFLX,

(V) 11-18
floating load, DFLD,

(RV) 11-18
floating multiply, DFMP,

(RV) 11-18
floating point 15-5
floating point compare and

skip, DFCS, (RV) 11-17
floating pointregister 9-12
floating store, DFSB,

(RV) 11-18
floating subtract, DFSB,

(RV) 11-18
Doublesubtract, DSB,

(SRV) 11-24
DR1 (I) 12-11

1 March 1979



Index XX
 

 

DR2 (i) 12-11
DRX (SRV) 11-53
DSB (SR) 11-24
DUII pseudo-operation 16-15
Dummyinstruction,triple asterisk,

PMA 14-5
Dummy words 17-1, 17-2, 17-4
DVL (V) 11-25
DYNM pseudo-operation 15-8,

16-21

DYNT pseudo-operation 16-19

E
E16S (I) 12-1
E16S (SRV) 11-1
E321 (I) 12-1
E321 (SRV) 11-1
E32R (I) 12-1
E32R (SRV) 11-1
E328 (I) 12-1
E328 (SRV) 11-1

(I} 12-1
(SRV) 11-1
(I) 12-1
SRV) 11-1

11-44

EAFA(I) 12-6
11-15

11-44

11-45

12-19

12-19

12-20

E64V(

ECB
descriptioninloadmap 5-6
entry control block 9-6
pseudo-operation 16-19

Edit
character field, ZED, (V) 11-5
program word 11-6
sub-operations 11-14

Effective address formation 10-1
Effective address formation (PSD

and VPSD only) 18-4
Effective addressto

A register, EAA, (R) 11-44
field address register, EAFA,

(V) 11-15
L register, EAL,(V)
link base, EALB, (I) 12-19
link base, EALB, (V) 11-45
register, EAR, (I) 12-19
temporary base, EAXB,

(1) 12-20
XB, EAXB,(V)

EIO (I) 12-14
EIO (V) 11-29
EJCT pseudo-operation 16-11
Elements of PMA 14-4
ELM pseudo-operation 16-15
ELSE pseudo-operation 16-8
EMCM(I) 12-14
EMCM (SRV) 11-28
Enable interrupts, ENB,

(SRV) 11-30
Enable interrupts, ENB,(I)
ENB (SRV) 11-30
ENB (lj) 12-14
END pseudo-operation 16-5
ENDC pseudo-operation 16-9

11-44

11-45

12-14

1 March 1979

ENDM pseudo-operation 16-16,
17-2

ENT pseudo-operation 16-20
Enter

16S mode, E168, (SRV) 11-1
16S mode, E168,(I) 12-1
32] mode, E32I, (I} 12-1
321 mode, E321, (SRV) 11-1
32R mode, E32R, (I) 12-1
32R mode, E32R, (SRV) 11-1
328 mode, E325,(I) 12-1
325 mode, E328, (SRV) 11-1
64R mode, E64R, (I) 12-1

64R mode, E64R, (SRV) 11-1
64V mode, E64V, (I) 12-1
64V mode, E64V, (SRV) 11-1
double precision mode-DBL,

(SR) 11-24
loader mode pseudo-operation,

ELM 16-15

machine check mode, EMCM,
(I} 12-14

machine check mode, EMCM,
(SRV) 11-28

paging mode and jump (Prime
300), EPMJ, (R) 11-34

paging mode and jump to XCS
(Prime 300}, EPMX,
(SR) 11-34

R-mode recursive procedure
stack, ENTR, (R) 11-45

restricted execution mode and
jump to XCS(Prime 300),
ERMX, (SR) 11-35

single precision mode, SGL,
(SR) 11-27

standard interrupt mode, ESIM,
(SRV) 11-30

standard interrupt mode, ESIM,
(I) 12-14

vector interrupt mode, EVIM,
(I) 12-14

vectored interrupt mode,
EVIM, (SRV) 11-30

virtual mode and jump(Prime
300), EVM], (SR) 11-35

virtual mode and jump(Prime
300), EVMX, (SR) 11-35

ENTR(R) 11-45
Entry control block, ECB 9-6
EPMJ (SR) 11-34
EPMX (SR) 11-34
EQUpseudo-operation 16-21
Equalssign (literals) 14-6
ERA (SRV) 11-32
ERL (V) 11-32
ERMX (SR) 11-35
Error messages

PMA 7-1

run-time 6-5

Errors (system), SEG’s action 5-1
Escape character assembler

notation 15-10
ESIM (I) 12-14
ESIM (SRV) 11-30

pseudo-operation 16-5
EVIM (I) 12-14
EVIM (SRV) 11-30
EVM] (SR) 11-35
EVMX(SR) 11-35
Examples, PMA 14-9

Exception codes,floating
point 11-6

Exceptions, floating point 11-16,
12-6

Excess-128 notation 15-5
Exchange andcleartheA register,

XCA, (SRV) 11-43
Exchangeandclearthe B register,

XCB, (SRV) 11-43
Exclamation mark, assembler

notation 15-10
Exclusive OR

fullword, X,{1)
halfword, XH,(I) 12-16
long, ERL, (V) 11-32
to A, ERA, (SRV) 11-32

Execute I/O, EIO, (I) 12-14
Execute I/O, EIO, (V) 11-29
Execute, XEC, (RV) 11-49
Executing PMA programs 6-1
Execution of segmented

runfiles 6-2
Execution of unsegmented

runfiles 6-1
Exponent

binary 15-5
decimal 15-5

Expressions 15-1, 15-5, 15-8,
15-10, 18-5

constant 18-5

PMA 14-4

EXT pseudo-operation 15-8,
16-19

12-15

F
FA (I) 12-6
FAD (R) 11-18
FAIL pseudo-operation 16-9
Fault pointers 5-6
FC (I) 12-7
FCM (RV) 11-19
FCM (1) 12-7
FCS (RV) 11-19
FD (I) 12-7
FDBL (V) 11-19
FDV (RV) 11-19
Field address and length

registers 9-12

Field operations, FIELD, (I) 12-5
Field operations, FIELD,

(V) 11-15
FIELD (I) 12-5
FIELD (V) 11-15
File types, PMA 3-1
Filename conventions 2-1
Fill character field, ZFH,(I) 12-4
Fill field, ZFIL, (V) 11-6
FILMEM, PRIMOSclear memory

command 4-1
FIN pseudo-operation 16-12
FIN, use of 15-10
Fixed point decimal

constants 15-3, 15-4
FL (I) 12-7
FLD (RV) 11-19
Floating

add, FA, (I) 12-6
add, FAD, (RV) 11-18
compareandskip, FCS,

(RV) 11-19
compare,FC, (I} 12-7

FDR 3059



X Index
 
 

complement, FCM, {I} 12-7
divide, FD, (1) 12-7
divide, FDV, (RV) 11-19

load index, FLX, (RV) 11-20
load, FL, (I) 12-7
load, FLD, (RV) 11-19
multiply, FM, (I) 12-7
multiply, FMP, (RV) 11-20
point arithmetic, FLPT (1) 12-6
point arithmetic, FLPT

(V) 11-16
point decimal constants 15-5
point exception codes 11-16
point exceptions 11-16, 12-6
point mantissa and exponent

ranges 11-17

pointregister, double
precision 9-12

point register, single precision,
(RVI) 9-10

pointregisters, 9-12
point, double precision 15-5
point, double precision 64

bits 9-2
point, single precision 15-5
round, FRN, (I) 12-7
skip if greater than zero, FSCT,

(RV) 11-20
skip if less than or equalto zero,

FSLE, (RV) 11-20
skip if minus, FSMI,

(RV) 11-21
skip if not zero-FSNZ,

(RV) 11-21
skip if plus, FSPL, (RV) 11-21
skip if zero, FSZE, (RV) 11-21
store, FST, (I} 12-8
store. FST, {RV) 11-21
subtract, FS, {I] 12-8
subtract, FSB, (RV) 11-20

FLOT (R) 11-19
FLPL (RV) 11-21
FLPT,floating point

arithmetic 11-16, 12-6
FLT (J) 12-7
FLTA (V) 11-20
FLTH (I) 12-7
FLTL (V) 11-20
FLX (RV) 11-20
FM (I) 12-7
FMP (RV) 11-20
Force loading 4-6
Formatspecifier 18-4
Formats

assembler {I-mo
PMA 14-7

assembler, PMA 14-7
instruction 9-14
instruction, PMA 14-6

FORTRANlibraries 8-1
Fraction, binary 15-5
FRN (I) 12-7
FRN (RV) 11-20
FS {I} 12-8
FSB (RV) 11-20
FSCT (RV) 11-20
FSLE (RV) 11-20
FSMI (RV) 11-21
FSNZ (RV) 11-21
FST (i) 12-8
FST (RV) 11-21

FDR 3059

FSZE (RV) 11-21
FTNLIB library, use withSEG 5-3
FTNLIB,system library 8-1

G
General data structures, mode

usage 2-4

Generalregisters, 32 bits 9-10
Generic

AP instruction formats 9-16
instruction formats 9-14
non-register instruction

formats 9-17
register instruction

formats 9-17
GO pseudo-operation 16-9

H
Halt, HLT,(I) 12-17
Halt, HLT, (SRV) 11-35
Header, stack segment 9-4
HEX pseudo-operation 16-11
Hexadecimal 18-5
Hexadecimal constants 15-2
HLT,halt, (1) 12-17"
HLT,halt, (SRV) 11-35
HPSD 18-3

I
I-modeinstructions

A 12-9

ABQ 12-21
ADLR 12-10

AH 12-10
ARFA 12-5

ARGT 12-20

ATQ 12-21
BCEQ 12-3

BCGE 12-3
BCGT 12-3

BCLE 12-3

BCLT 12-3

BCNE 12-3

BGR 12-3

BCS 12-3
BFEQ 12-2
BFGE 12-2

BFGT 12-2

BFLE 12+2

BFLT 12-2

BFNE 12-2

BHD1i 12-3

BHD2 12-3

BHD4 12-3

BHGE 12-2

BHGT 12-2

BHIL 12-3

BHI2 12-3

BHI4 12-3

BHLE 12-2

BHLT 12-2

BHNE 12-2

BLR 12-3

BLS 12-3

BMGE 12-3

BRBS 12-2
BRD1 12-3
BRD2 12-3
BRD4 12-3

BREQ 12-2
BRGE 12-2

BRGT 12-2
BRI1 12-3

BRI2 12-3

BRI4 12-3
BRLE 12-2
BRLT 12-2
BRNE 12-2
C 12-10
CAI 12-14

CALF 12-20

CGT 12-3
CH 12-10

CHS 12-10

CMH 12-15

CMR 12-15

CR 12-4

CRBI 12-4

CRBR 12-4
CRHL 12-5
CRHR 12-5
CSR 12-10

CXCS 12-17
D 12-10

DBLE 12-8
DFA 12-8

DFC 12-8
DFCM 12-9
DFD 12-9
DFL 12-9
DFM 12-9

DFS 12-9
DFST 12-9
DH 12-10
DH1 12-11

DH2 12-11

DM 12-11
DMH 12-11
DR2 12-11

DR1 12-11

E16S 12-1

E32] 12-1
E32R 12-1

E32 12-1
E64R 12-1

E64V 12-1
EAFA 12-6
EALB 12-19
EAR 12-19
EAXB 12-2
EIO 12-14

EMCM 12-14
ENB 12-14
ESIM 12-14
EVIM 12-14

FA 12-6

FC 12-7

FCM 12-7
FD 12-7

FL 12-7
FLT 12-7
SLTH 12-7
7M
FRN 12-7
FS 128
FST 12-8

1 March 1979



Index X
 

 

HLT 12-17
I 12-17
ICBL 12-17
ICBL 12-18
IBCR 12-17
ICHR 12-18
TH 12-18
IH2 12-11
IH1 12-11
IM 12-12
IMH 12-12
INBN 12-20
INEC 12-20
INEN 12-20
INH 12-14
INK 12-14
INT 12-8
INTH 12-8
IR1 12-12
IR2 12-12
IRB 12-18
IRH 12-18
IRTC 12-14
IRTN 12-14
ITLB 12-17
JMP 12-20
JSR 12-20
JSXB 12-20
L 12-18
LCEQ 12-16
LCGE 12-16

LCGT 12-16
LCLE 12-16
LCLT 12-16
LCNE 12-16
LDAR 12-18
LDC 12-4
LEG 12-16
LF 12-17
LFEQ 12-16
LFGE 12-16
LFGT 12-16
LFLE 12-16
LFLI 12-6
LFLT 12-16
LFNE 12-16
LGE 12-16
LGT 12-16
LH 12-18
LHEQ 12-16
LHGE 12-16
LHGT 12-16
LHL1 12-18
LHL2 12-19
LHLE 12-16
LHLT 12-16
LHNE 12-16
LIOT 12-17
LLE 12-16
LLT 12-16
LMCM 12-14
LNE 12-16
LPID 12-17
LPSW 12-17
LT 12-17
LWCS 12-17
M 12-12
MDEI 12-14
MDI 12-14
MDIW_ 12-14

MDRS 12-14

1 March 1979

MDWC. 12-14
MH 12-12
N 12-15
NFYB 12-20
NFYE 12-20
NH 12-15
NOP 12-17
O 12-15
OH 12-15
OTK 12-14
PCL 12-20
PID 12-12
PIDH 12-12
PIM 12-13
PIMH 12-13
PRTN 12-20
PTLB 12-17
RBQ 12-21
RCB 12-15
RMC 12-14
ROT 12-21
RRST 12-17
RSAV 12-17
RTQ 12-21
S 12-13
SCB 12-15
SH 12-13
SHA 12-22
SHL 12-23
SHL 12-22
SHL1 12-22
SHR1 12-23
SHR2 12-23
SL1 12-22
SL1 12-22
SR2 12-22
SRL 12-22
SSM 12-13
SSP 12-13

ST 12-19
STAR 12-19
STC 12-4

STCD 12-19
STCH 12-19
STEX 12-20
STFA 12-6
STH 12-19
STPM 12-17
SVC 12-20
TC 12-13
TCH 12-13
TFLR 12-5
TM 12-14
TMH 12-14
TSTQ 12-21
VIRY 12-14
WAIT 12-20
WCS 12-17
X 12-15
XAD 12-5
XBTD 12-5
XCM 12-5
XDTB 12-5
XED 12-5
XH 12-16
XMV_ 12-5
XVRY 12-14
XVRY 12-17
ZCM 12-4
ZDV 12-5
ZED 12-4

ZFH 12-4

ZM 12-5

ZMH 12-5

ZMV_ 12-4

ZMVD 12-4

ZIRN 12-4

I-mode
instruction formats 9-16
PMA 14-6

purpose 9-16

/O 914

input/output {I} 12-14
input/output (V) 11-29

IAB (SRV) 11-40
ICA (SRV) 11-40
ICBL (I) 12-17
ICBL (I) 12-18
ICBR (I) 12-17
ICHR(I) 12-18
ICL (SRV] 11-40
ICR (SRV) 11-40

IF pseudo-cperation 16-9
If (SRV) 11-34
IFTNLBlibrary, use withSEG 5-2
IFTNLB,system library 8-1
IFTT pseudo-operation 16-9
IFVF pseudo-operation 16-9
IFVT pseudo-operation 16-9
IFX pseudo-operation 16-9
IH halfword, (I) 12-18
IH1 (I) 12-11
TH2 (I) 12-11
ILE (V) 11-40
IM (I) 12-12
IMA (SRV) 11-40
Images saved by load 6-2
IMH (I) 12-12
Immediate

type 1, I-modeinstruction
format 9-18

type 2, I-modeinstruction
format 9-18

type 3, I-mode instruction
format 9-18

INA (SR) 11-30
INBC (I) 12-20
INBC (V) 11-49

INBC (V) 11-49
INBN(1) 12-20
Inclusive OR,ora, {V) 11-33
Increment

and replace X, IRX,
(SRV) 11-53

half register by 1 and branch,
BHIL, (I) 12-3

half register by 1, 1H, {I} 12-11
half register by 2 and branch,

BHI2, (I) 12-3
half register by 2, JH1,

(I) 12-11
memory fullword, IM,

(I) 12-12
memory halfword, IMH,

(I) 12-12
memory replace and skip, IRS,

(SRV) 11-53
register by 1 and branch,BRIL,

(I) 12-3
register by 1, IRi, {I} 12-12
register by 2 and branch, BRI2,

(I) 12-3

FDR 3059



X Index
 

 

register by 2, IR2, (I) 12-12
register by 4 and branch, BRI4,

(I) 12-3
X and branchif not zero, BIX,

(V) 11-4
Y and branchif notzero, BIY,

(V) 11-4
Index registers 9-17, 18-4
Indexing 10-2
Indexing, PMA 14-5
Indirect

links, 32R vs.64R 4-5
pointer pseudo-operation,

IP 16-7

pointer, three word memory
reference 9-3

pointer, two word memory
reference 9-3

word, one word memory
reference 9-3

Indirection 10-2
Indirection, PMA 14-5 |
INEC (I) 12-20
INEC (V) 11-49
INEN(I) 12-20
INEN (V} 11-49

INH (I) 12-14
INH (SRV) 11-30
Inhibit interrupts, INH,

(SRV) 11-30
Inhibit interrupts, INH, (I) 12-14
INK {I} 12-14
INK (SRV) 11-31
Input keys, INK, (I) 12-14
Input keys, INK, (SR} 11-31
Input parameters 18-4
Input to A, INA, {SR} 11-30
Input/output formats (PSD and

VPSD only} 18-4
Input/output, I/O (I) 12-14
Input/output, 1/O(V} 11-29
Installation in the command

UFD 6-2

Instruction
description conventions 2-1
format (SRV), memory

reference, PMA 14-5
format, memory

reference 10-2
format, mnemonic

definitions 2-3
formats 9-14
formats, -mode 9-16
formats, PMA 14-6
function group definitions 2-2
range, relative 10-3
range, sectored 10-3
summary and description

conventions 2-2
summary chart 13-1

INT (V) 11-21
INT (I) 12-8
INT (J) 12-9
INT (V) 11-22
INTA (V) 11-21
Integer arithmetic, INT (I) 12-9
Integer arithmetic, INT (V) 11-22
Integer constants 15-1
Integer valuesingle

precision 15-5
Integers, absolute 17-2

FDR 3059

Integers, decimal 15-5
Integrity check for hardware,

INTGY(I) 12-14
Integrity check for hardware,

INTGY(V) 11-28
Interactive debugging

programs 18-1

Interchange
andclearleft, ICL,

(SRV) 11-40
andclearright, ICR,

(SRV) 11-40
A and B registers, IAB,

(SRV) 11-40
bytes andclearleft, ICBL,

(I) 12-17
bytes and clearright, ICBR,

(I) 12-17
halfwordsandclearleft, ICBL,

(I) 12-18
Land E, ILE, (V) 11-40
memoryand the A register,

IMA, (SRV) 11-40
register and memory,fullword,

I, (I) 12-17
register and memory, halfword,

IH, (I) 12-18
register bytes, IRB, (I) 12-18
register halfwords and clear

right, ICHR, (I) 12-18
register halves, IRH, {I} 12-18

Interfacing with the system
libraries 8-1

Interlude program in
CMDNCO 6-5

Interlude programs 6-2
Interruptnotify

INBC,(I) 12-20
INBC, (V) 11-49

INBC, (V} 11-49
INBN,(I) 12-20
INECG,(I) 12-20
INEG, (V) 11-49
INEN, (I) 12-20
INEN, (V) 11-49

Interrupt return
IRTG, (I) 12-14
IRTN, (I) 12-14

INTGY (I) 12-14
INTGY (V) 11-28
INTH{]) 12-8

INTL (V) 11-22
Invalidate STLB entry, ITLB,

(I) 12-17
Invalidate STLB entry, ITLB,

(V) 11-35
IP pseudo-operation 16-7
IPVT pseudo-operation 16-16
IR1 (I) «12-12
IR2(I) 12-12
IRB (I) 12-18
IRH (I) 12-18
IRS (SRV) 11-53
IRTC (I) 12-14
IRTN (I) 12-14
IRX (SRV) 11-53
ITLB (I) 12-17
ITLB(V) 11-35

J
JDX(R) 11-45

JEQ(R) 11-45
JGE(R) 11-45
JGT (R) 11-45
JIX (R) 11-46
JLE (R) 11-46
JLT (R) 11-46
JMP (I) 12-20
JMP (SRV) 11-46
JNE(R) 11-46
JSR (I) 12-20
JST (SRV) 11-46
JSX (RV) 11-47
JSXB (1) 12-20
JSXB (V) 11-47
JSY(V) 11-47
Jump and

decrement X, JCX,(R) 11-45
incrementX, JIX,(R) 11-46

set XB, JSXB,(I) 12-20
set XB, JSXB, (V) 11-47
set Y, JSY,(V) 11-47

store return in X, JSX,

(RV) 11-47
store, JST, (SRV) 11-46

Jumpif
equal to zero, JEQ, (R) 11-45
greater than or equalto zero,

JGE, (R} 11-45
greater than zero, JGT,

(R} 11-45
less than or equalto zero, JLE,

(R) 11-46
less than zero, JLT, (R) 11-46
not equal to zero, JNE,

(R) 11-46
Jumpto subroutine, JSR, (I) 12-20
Jump, JMP, (I) 12-20
Jump, JMP, (SRV) 11-46

K
Key manipulation, KEYS (I) 12-14
Key manipulation, KEYS

(V}) 11-31
Keys (SR) 9-12

Keys (VI) 9-12

KEYS, key manipulation (I) 12-14
KEYS, key manipulation

(V) 11-31

L
L, load fullword, (I) 12-18
L-bit 9-14
Label, PMA 14-4

Labels 15-8
Language structure, PMA 14-1
LB%assembler notation 15-8
LC, listing control pseudo-

operations 16-1
LCEG (V) 11-33
LCEQ (I) 12-16
LCGE (V) 11-33
LCGE(I) 12-16
LCGT (I) 12-16
LCLE (V) 11-33
LCLE (I) 12-16
LCLT (V) 11-33
LCLT (I) 12-16
LCNE (V) 11-33
LCNE(I) 12-16
TNA (QQwW) 41_ANn
eukvid iv “ruav vj aa

LDAR(1) 12-18

1 March 1979



Index X
 
 

LDC (I) 12-4
LDC (V) 11-5
LDL (V}) 11-40
LDLR(V) 11-41
LDX (SRV) 11-41
LDY (V) 11-41
Leave machine check mode,

LMCM,(I) 12-14
Leave machine check mode,

LMCM,(SRV) 11-28
Leave paging mode and jump

(Prime 300), LPMJ,

(SR) 11-36
LEQ (V) 11-33
LEQ (I) 12-16
LF (I) 12-17
LFEQ (I) 12-16
LFGE (I) 12-16
LFGT(I) 12-16
LFLE (I) 12-16
LFLI (I) 12-6
LFLI(V) 11-15
LFLT (I) 12-16
LFNE (I) 12-16
LGE (V) 11-33
LGE (I) 12-16
LGT (V) 11-33
LGT (0 12-16
H (I) 12-18
LHEO (1 12-16
LHGE(I) 12-16
LHGT(I) 12-16
LHL1 (1) 12-18
LHL2 (I) 12-19
LHLE(I) 12-16
LHLT (I) 12-16
LHNE(I) 12-16
LIB UFDlibrary, use with

SEG 5-3
Library

subroutines, loading 4-3, 5-3
files sort 8-1
Memory sort 8-1

UI 4-4
Line format, PMA 14-3
Line terminator 18-6
Lines, PMA 14-1
Link frame description in load

map 5-6

LINK pseudo-operation 16-5
Linkage area, PMA 14-9
LIOT (V) 11-35
LIOT (I) 12-17
LIR pseudo-operation 16-15
List pseudo-operation 16-11
Listing control pseudo-operations,

LC 16-1

Listing
files 3-1
format 3-2
page headers 3-1
user generated messages

in 3-1
Literal pool 15-10
Literal pseudo-operations

LT 16-1

Literals 15-1, 15-10, 18-5
Literals, PMA 14-9
LLE (V} 11-33

LLE (I). 12-16
LLEQ(V) 11-33

1 March 1979

LLGE (V) 11-33
LLGT (V) 11-33
LLL (SRV) 11-51
LLLE (V) 11-33
LLLT (V) 11-33
LLNE (V) 11-33
LLR (SRV) 11-52
LLS (SR) 11-52
LLS (V) 11-52
LLT (V) 11-33
LLT (1) 12-16
LMCM(I) 12-14
LMCM (SRV) 11-28
LNE (V) 11-33
LNE (I) 12-16
LO loadercontro] pseudo-

operations 16-1
LOAD, R-modelinkingloader 4-1
LOAD

addressed register, LDAR,
(I) 12-18

character, LDC,(I) 12-4
character, LDC, (V) 11-5
command summary,R-

mode 4-8
field address register EAFA,

(I) 12-6
field length register immediate,

LFLI, (1) 12-6
field length register immediate,

LFLI, (V) 11-15
fullword, L, (I) 12-18
halfwordleft shifted by 1,

LHL1, (I) 12-18
halfwordshifted by 2, LHL2,

(I) 12-19
halfword, LH,(I) 12-18
I/O TLB, LIOT, (V) 11-35
L from addressedregister,

LDRL, (V) 11-41
long, LDL, (V)} 11-40
map entry (R-mode},

*CMLOW 4:3

map entry (R-mode},
*HIGH 4-3

map entry (R-mode},
*LOW 4-3

mapentry (R-mode},
*PBRK 4-3

mapentry (R-mode),
*START 4-3

maps 4-3

mapsinSEG 5-3
procedures, basic 4-2
process ID, LPID, {I} 12-17
process ID, LPID, (V) 11-36
program status word, LPSW,

(I) 12-17
program status word, LPSW,

(V) 11-36
shift count into A, SCA,

(SR) 11-27
state 4-3

subprocessor commands,
SEG 5-10

the A register, LDA, (SRV)
error messages 4-1
functions 4-4

Loading
library subroutines 4-3, 5-3
on page boundaries 4-6

order of (R-mode) 4-2
order of (SEG) 5-3
R-mode programs 4-1
SEG mode programs 5-2

Local address definition pseudo-
operation, DAC 16-7

Local labels within macros 17-2
Location pointer 18-6
Logic

set A false, LF, (SRV) 11-34
set A true, LT, (SRV) 11-34
set false, LF, (I) 12-17
set true, LT, (I) 12-17

Logical
operations (I) 12-15
operators 15-8

test and set, LTSTS,(I) 12-16
test and set, LTSTS, (V}_ 11-33

Long

left logical, LLL, (SRV) 11-51
left rotate, LLR, (SRV) 11-52
left shift, LLS, (SR) 11-52
left shift, LLS, (V) 11-52
reach memoryreference

instruction formats 10-6
right logical, LRL, (SRV) 11-52
right rotate, LRR, (SRV) 11-52
right shift, LRS, (SR) 11-52
right shift, LRS, (V) 11-53

LPID {I} 12-17
LPID (V) 11-36
LPM] (SR) 11-36
LPMX (SR) 11-36
LPSW (I) 12-17
LPSW (V) 11-36
LRL (SRV) 11-52
LRR (SRV) 11-52
LRS (SR) 11-52
LRS (V) 11-53
LSMD pseudo-operation 16-11
LSTM 17-6

LSTM pseudo-operation 16-11
LSTMD 17-6

LT,literal pseudo-
Operations 16-1

LT, (SRV) 11-34
LT (I) 12-17
LTSTS(I) 12-16
LTSTS (V) 11-33
LWGS(I) 12-17
LWGS (V) 11-37

M
M (I) 12-12
MACpseudo-operation 16-16,

17-2

Machinecontrol, MCTL,(I) 12-17
Machinecontrol, MCTL,

(V) 11-34
Macro

callnumber 17-2
calls 15-11, 17-1, 17-2

definition pseudo-operations,
MD 16-1

definitions 15-11, 17-1, 17-2,
17-4, 17-5, 17-6

facility 17-1
listing 17-6
nesiing 17-5
self documentation of 17-3

Mapfiles, using 5-3

FDR 3059



X Index
 

 

MATHLB,system library 8-1
Matrix routines 8-1
MCTL(I) 12-17
MCTL (V) 11-34
MD,macrodefinition pseudo-

operations 16-1
MDEI(V) 11-28
MDEI(I) 12-14
MDII(V) 11-28
MDII (1)12-14
MDIW (I) 12-14
MDIW (V) 11-28
MDRS(I) 12-14
MDRS(V) 11-28
MDWC(I) 12-14
MDWC(V) 11-28
Memory addressing

address truncation 10-1
indexing 10-1
indirection 10-1
parameters 10-1

Memorydiagnostic
enable interleave, MDEI,

(V) 11-28
enable interleave, MDEI,

(I) 12-14
inhipit interleave, MDII,

(V) 11-28
inhibit interleave, MDII, (0)

(I) 12-14
read syndromebits, MDRS,

(I} 12-14
read syndrome bits. MDRS,

(V) 11-28
write control register, MDWC,

(V) 11-28
write interleaved, MDIW,

(I) 12-14
write interleaved, MDIW,

(V) 11-28
Memoryorganization 10-1
Memoryoverflowerrors

(MO) 7-3
Memory reference 9-17

concepts (SRV) 10-1
floating register, MRFR 9-17
general register, MRGR 9-17
instruction formats 9-16, 10-1,

10-2

instruction formats (SRV),
PMA 14-5

instruction formats, base
register relative 10-1

instruction formats, base
registers 10-1

instruction formats,
basic 10-1, 10-4

instruction formats, long
reach 10-1

instruction formats, procedure
relative 10-1

instruction formats, sector
relative 10-1

instruction formats, stack
postincrement 10-1

instruction formats, stack
predecrement 10-1

instruction formats, stack
relative 10-1
egister, MRNR 9 173 4

3

~
lu

wo word 10-8

- i

7

FDR 3059

Messages, assembler 3-2
MH (I) 12-12
MIA (V) 11-37
MIB (V) 11-37
Microcodeindirect A, MIA,

(V) 11-37
Microcodeindirect A, MIB,

(V) 11-37
MO, memoryoverflow errors 7-3
Modals 9-14
Mode 18-4
Mode usage, general data

structures 2-4

Mode, access 18-6
Mode, resultant 15-9
Modify subprocessor

commands 5-13
Move

characterfield, ZMV, {I} 12-4
character field, ZMV, (V) 11-6
data, MOVE,(I) 12-17
data, MOVE,(V) 11-39
equallength fields, ZMVD,

(I) 12-4
equal length fields, ZMVD,

(V) 11-7
Move {I} 12-17
Move (V]} 11-39

MPL (V) 11-25
MPY (V) 11-25
MRER, memoryreferencefloating

register 9-17
MRGR, memoryreference general

register 9-17

MRNR, memoryreference non
register 9-17

MSORTS,system library 8-1

Multiply fullword, M, (I) 12-12
Multiply halfword, MH,{f) 12-12
Multiply long, MPL, (V) 11-25
Multiply, MPY, (V) 11-25

N
N (I) 12-15
N64R pseudo-operation 16-15
Negative numbers 15-5
Negative scaling 15-4
Nested calls 17-5
Nesting macros 17-5

NFE (1) 12-20
NFYB (I) 12-20
NFYB(V) 11-49
NFYE(V) 11-49
NH (ft) 12-1
NLSMpseud

17-6
NLST pseudo-operation 16-12
No operation, NOP,(I} 12-17
No operation, NOP, (SRV) 11-37
Non-register generic instruction

formats 9-17
NOP (I) 12-17
NOP (SRV}_ 11-87, 11-55
Normalization 11-16, 12-6
Normalize, NRM, (SR) 11-25
Normalized fraction 15-5
Not 64R pseudo-operation,

N64R_ 16-15

Notify,
NFYR,(T] 12-20
NFYB, (V) 11-49

X-10

NFYE,(1) 12-20

NFYE, (V) 11-49

NRM (SR) 11-25

Numeric
constants 15-1, 15-2

edit, XEC, (I] 12-5

edit, XED, (V) 11-13

O
O(I) 12-15
Object code, loader use of 4-5
Objectfile (SEG)

reorganization 5-8
Object files 3-1
Object filesinSEG 5-8
OCP (SR) 11-30
OCT pseudo-operation 16-11
Octal 18-5
Octal constants 15-2
OH (I) 12-15
One word memoryreference,

indirect word 9-3
Operand field, PMA 14-5
Operand, PMA 14-4
Operation field, PMA 14-5
Operation, PMA 14-4
Operations 15-8
Operator

addition 15-9
priority 15-9
subtraction 15-9

Operators 15-8, 15-9
arithmetic 15-8
logical 15-8
relational 15-9
shift 15-8, 15-9

Optimizing program performance,
SEG 5-7

Optimizing program size,
SEG 5-7

Options, PMA commandline 3-1
OR fullword, O, {I} 12-15
OR halfword, OH,(1) 12-15
ORA(V} 11-33
ORG pseudo-operation 16-6
Organization of memory 10-1
OTA (SR) 11-30
OTK (I) 12-14
OTK (SR) 11-31
Out from A, OTA, (SR) 11-30
Output control pulse, OCP,

(SR}] 11-30
Output keys, OTK, (1) 12-14
Output keys, OTK, (SR) 11-31
Output values 18-4

P
Page headerslisting 3-1
Parameter passing (SR) 8-1

Parameter passing (VI) 8-1
Pathname, use of inSEG 5-1, 5-8
Pathnames, use of 4-5
PB%assembler notation 15-8
PCL stack frame header 9-4
PCL (I} 12-20
PCL(V) 11-47
PCTL] (1) 12-19
PCTLJ (V}) 11-43
PCVH pseudo-operation 16-12
Percent sign. PMA 14-5
PFTNLBlibrary, use with

1 March 1979



Index X
 

 

SEG 5-2
PFTNLB,system library 8-1
PID (I) 12-12
PID (SR) 11-26
PIDA (V) 11-26
PIDH (I) 12-12
PIDL (V) 11-26
PIM (I) 12-13
PIM (SR) 11-26
PIMA (V) 11-26
PIMH(I) 12-13
PIML (V) 11-26
PL, program linking pseudo-

operations 16-1
PM 18-3

PMcommand 7-1
PMAconcepts and facilities

asterisk (current
location) 14-6

asterisk, double (initial
zero) 14-6

asterisk, triple (dummy
instruction) 14-5

base registers 14-6
code 14-9
command line options 3-1
comments 14-4

constants 14-4

elements 14-4
error messages
examples 14-9
expressions 14-4
filetypes 3-1
formats 14-7
I-mode 14-6
indexing 14-5
indirection 14-5
instruction formats 14-6
label 14-4

language structure 14-1
line format 14-3
lines 14-1
linkage area 14-9
literals 14-9
memory reference instruction

format (SRV) 14-5
operand 14-4
operand field 14-5
operation field 14-5
percent sign 14-5
pound sign (#) 14-5
stack 14-6
stack 14-8
statements 14-1, 14-2

symbolic addresses 14-5
symbols 14-4
syntax 14-4

types 14-1

PMAV or I mode code,howto
write 14-8

Position
after multiply, PIM, (I) 12-13
following integer multiply, PIM,

(SR} 11-26
following integer multiply,

PIMA,(V) 11-26
following integer multiply-long,

PIML, (V) 11-26
for integer divide, PID, (ij 12-12

(I} 12-12

for integer divide, PID,

7-1, C-1

1 March 1979

(SR) 11-26
for integer divide, PIDA,

(V} 11-26
for integer divide-long, PIDL,

(V) 11-26
half register after multiply,

PIMH,(I) 12-13
half register for integer divide,

PIDH,(I) 12-12
Poundsign(#) assembler

notation 14-5, 15-11
Powers of 10 (E} 15-4
PRCEX, process exchange(1] 12-20
PRCEX,process exchange (V) 11-49

(restricted) 11-49
Precision 15-4

double 15-1
single 15-1

Prime conventions 2-1

PRIMOSsevereerrors,
debugging 7-2

PROC pseudo-operation 16-6
Procedure

call, PCL, {I} 12-20
call, PCL, (V) 11-47
frame description in load

map 5-6

relative memoryreference
instruction formats 10-4

return, PRTN, {Ij} 12-20
return, PRTN, (V) 11-48

structure load map
description 5-6

Procedures with no names,
identification in load
maps 5-6

Process exchange, PRCEX,(V}
11-49

Process exchange, PRCEX,
(I) 12-20

Processor characteristics 9-8
Program control and jump, PCTLJ,

(I) 12-19
Program control and jump, PCTLJ,

(V) 11-43
Program linking pseudo-

operations, PL 16-1
Program memoryimagessaved by

load 6-2
PRTN,procedurereturn,

(I) 12-20
PRTN,procedurereturn,

(V) 11-48
PSD (Prime symbolic

debugger) 18-1,
18-3,18-4,20-1

command summary 20-1
terminators 20-1
using 18-3

PSD and VPSDinput/output
formats 18-4

PSD, VPSD terminators 21-1
PSD30 18-3

Pseudo-operation summary 16-2
Pseudo-operations

ABS 16-5

AP 16-7

BACK 16-8

BCI 16-10

BES 16-20

BSS 16-20

X-11

BSZ 16-20
C64R 16-5
CALL 16-18
CENT 16-14
COMM 16-20
D16S 16-14
D32I 16-14
D32R 16-14
D328 16-14
D64R 16-14
De4V 16-14
DAC 16-7
DATA 16-10
DDM 16-14
DEC 16-10
DFTB 16-8
DFVT 16-8
DUI 16-15
DYNM 16-21
DYNT 16-19
ECB 16-19
EJCT 16-11
ELM 16-15
ELSE 16-8
END 16-5
ENDC 16-9
ENDM 16-16
ENT 16-20
EQU 16-21
EVEN 16-5
EXT 16-19
FAIL 16-9
FIN 16-12
GO 16-9
HEX 16-11
IF 16-9
IFTF 16-9
IFTT 16-9
IFVE 16-9
IFVT 16-9
IFX 16-9
IP 16-7
IPVT 16-16
LINK 16-5
LIR 16-15
LIST 16-11
LSMD 16-11
LSTM 16-11
MAC 16-16
N64R 16-15
NLSM_ 16-12
NLST 16-12
OCT 16-11
ORG 16-6
PCVH 16-12
PROC 16-6
REL 16-6
RLIT 16-12
SAY 16-16
SCT 16-17
SCTL 16-17

SDM 16-15
SEG, 64V 16-6
SEGR,321 16-6
SET 16-21
SETB 16-15
SUBR 16-20
VFD 16-11
XAC 16-7
XSET 16-21

PTLB (I) 12-17

FDR 3059



X =Index
 

 

PTLB(V) 11-37
Purge TLB, PTLB, (1) 12-17
Purge TLB, PTLB, (V) 11-37
Purpose of I-mode 9-16

Question mark (?) 18-4
Queue control block (VI) 9-7
Queue management, QUEUE

(1) 12-20
Queue management, QUEUE

(V) 11-49
QUEUE, queue management

(I) 12-20
QUEUE, queue management

(V} 11-49

R
Rregisters 9-8
R-modeinstructions

A2A 11-22

ACA 11-22

ADD 11-22

ALA 11-22

ALL 11-51

ALR 11-51

ALS 11-51

ANA 11-32

ARL 11-51

ARR 11-51

ARS 11-51

CA] 11-29
CAL 11-7

CAR 11-7

CAS 11-23

CAZ 11-23
CEA 11-44

CHS 11-23

CMA 11-32

CRA 11-7

CRB 11-8

CREP 11-44

CRL 11-8

CSA 11-24

DAD 11-24

DBL 11-24

DFAD 11-17

DFCM 11-17

DFCS 11-17

DFDV 11-17

DFLD 11-18

DFMP_ 11-18

DFSB 11-18

DFST 11-18

DIV 141-24

DLD 11-39

DRX 11-53

DSB 11-24

E16S 11-1

E32] 11-1

E32R 11-1

E328 11-1

E64R 11-1

E64V 11-1

EAA 11-44
EMCM 111-28

ENB 11-39

EBTR 11-45
EPM] 11-34
ERA 11-382

ERMX 11-35

FDR 3059

ESIM 11-30
EVIM 11-30
EVM] 11-35
EVMX 11-35
EXB 11-43
FAD 11-18
FCM 11-19
FCS 11-19
FCST 11-20
FDV 11-19
FLD 11-19
FLOT 11-19
FMP 11-20
FRN 11-20
FSB 11-20
FSLE 11-20
FSMI 11-21
FSNZ 11-21
FSPL 11-21
FST 11-21
FSZE 11-21
HLT 11-35
IAB 11-40
ICL 11-40
ICR 11-40
IMA 11-40
INA 11-30
INH 11-30
INK 11-31
IRS 11-53
IRX 11-53
JDX 11-45
JED 11-45
JGE 11-45
JGT 11-45
JIX 11-46
JLE 11-46
JLT 11-46
JMP 11-46
JNE 11-46
JST 11-46
JSX 11-47
LDA 11-40
LDX 11-41
LF 11-34
LLL 11-51
LLR 11-52
LLS 11-52
LMCM 11-28
LPMI 11-36
LPMX 11-36
LRL 11-52
LRR 11-52
LRS 11-52
LT 11-34
NOP 11-37
NOP 11-55
NRM 11-25
OCP 11-30
OTA 11-30
OTK 11-31
PID 11-26
PIM 11-26
RCB 11-31
RMG 11-28
SLA 11-26
S2A 11-27
SAR 11-53
SAS 11-53
SCA 11-27
SCB 11-31

X-12

SGL 11-27

SGT 11-54

SKP 11-54, 11-55

SKS 11-31

SLE 11-54

SLN 11-55

SLZ 11-55

SMCR_ 11-29

SMCS 11-29

SMI 11-55

SNR 11-54

SNS 11-54

SNZ 11-55

SPL 11-55

SR2 11-55

SR3 11-55

SR4 11-55

SRC 11-55

SRL 11-55
SS1 11-55

$$2 11-55

$S3 11-55

$S4 11-55

SSC 11-55

SSM_ 11-27

SSP 11-27

SSR 11-55
SSS 11-55
STA 11-41

STR 11-48

STX 11-42

SUB 11-27

SVC 11-39
SZE 11-55

TCA 11-28

VIRY 11-29

WCS 11-39

XCA 11-43

XEC 11-49
R-mode programs, Loading 4-1
RBQ(V) 11-50
RCB (I) 12-15
RCB (SRV) 11-31
Recursive entry, R-mode 11-44
Register description VI-mode 9-9
Register generic 9-17
Register, index 18-4
Register save, RSAV,(I) 12-17
Register to register instruction

formats 9-17
Registers (R) 9-8
Registers (5) 9-8
Registers (V1) 9-9
Registers, base, PMA 14-6
REL pseudo-operation 16-6
Relational operators 15-9
Relative addresses 18-4
Relative base 10-6
Relative reach 10-1
Relocatable mode 18-4
Relocation constant 18-4
Remove

from bottom of queue, RBC,
(I) 12-21

from bottom of queue, RBC,
(V) 11-50

from top of queue, RTQ,
(I) 12-21

from top of queue, RTQ,
(V) 11-50

Replacing modules in a SEG

1 March 1979



Index X
 

 

runfile 5-7

Reset C-bit (clear), RCB, (I) 12-15
Reset C-bit, RCB, (SRV) 11-31
Restore registers, RRST, (I) 12-17
Restore registers, RRST,

(V) 11-38
Resultant mode 15-9
Return from R-moderecursive

procedure, RTN, {SR) 11-48
RLIT pseudo-operation 15-10,

16-12

RMC(J) 12-14
RMC (SRV) 11-28
ROT (I) 12-21
Rotate, ROT, (I) 12-21
Roundup, FRN,(RV)
RRST (Q) 12-17
RRST (V) 11-38
RSAV(I) 12-17
RSAV (V) 11-38
RTN (SR) 11-48
RTQ (I) 12-21
RTQ(V) 11-50
Run-time error messages 6-5
Runfiles 4-5

saved by SEG’s loader 6-3
segmented 5-7
segmented, advantages of 5-1

RVEC parameters 7-1
RVI, single precision, floating

point register 9-10

11-20

S
5S registers 9-8
S (I) 12-13
S2A (SRV) 11-27
SA,storage allocation pseudo-

operations 16-1
Sample terminal session 2-5
SAR (SRV) 11-53
SAS (SRV) 11-53
Save registers, RSAV, (V) 11-38
SAY pseudooperation, usage 3-1,

16-16

SB%(seg modes) assembler
notation 15-8

SBL (V) 11-27
SCA (SR) 11-27
Scale differential 9-2
Scaling, binary 15-5
Scaling, negative 15-4
SCB (I) 12-15
SCB (SRV) 11-31
SCT pseudo-operation 16-17
SCTL pseudo-operation 16-17
SD, symboldefinition pseudo-

operations 16-1
SDM pseudo-operation 16-15
Sector relative memoryreference

instruction formats 10-4
Sectors 10-1
SEG 18-3

filename 1/1 18-3
load mapcomponents 5-4
loader 5-7
VPSD 18-3

SEG level commands 5-9
SEG pseudo-operation 16-6
Segment directory subfiles 5-7
Segment usage bySEG 5-7
Segmentation 10-1

1 March 1979

Segmented programs, loading 5-1
Segmented runfiles 5-1, 5-7, 6-2,

6-3

SEGR pseudo-operation 16-6
Selecting the address mode 4-5
Self documentation of

macros 17-3

Semicolon, assembler
notation 15-10

Set C-bit, SCB, (I) 12-15
Set C-bit, SCB, (SRV) 11-31
Set sign minus, SSM, (I) 12-13
Set sign minus, SSM, (SRV) 11-27
Set sign plus, SSP,(I) 12-13
Set sign plus, SSP, (SRV) 11-27
SGL(SR] 11-27
SGT (SRV) 11-54
SH (I) 12-13
SHA (I) 12-22
Shift 9-14

arithmetic, SHA,(1)
data 12-21
group 11-50

half register left 1, SHL4,
(I) 12-22

half register left 2, SHL,
(I) 12-23

half register right 1, SHR1,
(I) 12-23

half register right 2, SHR2,
(I) 12-23

logical, SHL,(I)
operators 15-8

operators 15-9

register left 1, SL1, (I)
register left 2, SL2,(I)
register right 1, SRL,(I)
register right 2, SR2,(I)

SHL(I) 12-23
SHL 12-22

SHL1 (I) 12-22
SHR1 (I) 12-23
SHR2(I) 12-23
Sign bit 15-4
Sign conventions 15-9
Single precision 15-1
Single precision floating

point 15-5

Single precision integer
value 15-5

Skip conditional, SKIP (V) 11-53
Skip group, SKP, (SRV) 11-54
Skipif

A greater than zero, SGT,
(SRV) 11-54

less than or equalto zero, SLE,
(SRV) 11-54

condition A minus(a(1)=1),
SMI, (SRV) 11-55

condition A nonzero, SNZ,
(SRV) 11-55

condition A plus (a(1)=0), SPL,
(SRV) 11-55

condition A zero, SZE,
(SRV) 11-55

condition all sense switches 1~4
set, SSS, (SRV) 11-55

condition any of sense switches
i-4 reset, SSR,
(SRV) 11-0*

condition clear C, SRC,

12-22

12-22

12-22

12-22

12-22

12-22

X-13

(SRV) 11-55
condition Isb nonzero (a(16)=1),

SLN, (SRV) 11-55
condition lsb zero (a{16}=0),

SLZ, (SRV) 11-55
condition sense switch1 reset,

SRL, (SRV) 11-55
condition sense switch1 set,

SS1,(SRV) 11-55
condition sense switch 2 reset,

SR2, (SRV) 11-55
condition sense switch2 set,

$52, (SRV) 11-55
condition sense switch 3 reset,

SR3, (SRV] 11-55
condition sense switch 3set,

$S3, (SRV) 11-55
condition sense switch 4reset,

SR4, (SRV) 11-55
condition sense switch 4set,

884, (SRV) 11-55
condition set C, SSC,

(SRV) 11-55
satisfied, SKS, (SR) 11-31
A bitreset,SAR, (SRV) 11-53
A bit set, SAS, (SRV) 11-53
machine check reset, SMCR,

(SRV) 11-29
machine check set, SMCS,

(SRV) 11-29
sense switch reset, SNR,

(SRV) 11-54
sense switch set, SNS,

(SRV) 11-54
Skip unconditionally, SKP,

(SRV) 11-55
SKIP, skip conditional (V)
SKP (SRV) 11-54
SKS (SR) 11-31
SL1 (I) 12-22
SL2(I} 12-22
SLA (SRV) 11-26
SLE (SRV) 11-54
SLN (SRV) 11-55
SLZ (SRV) 11-55

SMCR (SRV) 11-29
SMCS (SRV) 11-29
SMI(SRV) 11-55
SNR (SRV) 11-54
SNS (SRV) 11-34
SNZ (SRV) 11-35
Sortlibrary 8-1
Sourcefiles 3-1

Space conventions 15-9
Special case selection address

formation 9-18

SPL (SRV) 11-55
SR address truncation 10-2
SR keys 9-12
SR subroutinecall

conventions 8-2

SR1 (I) 12-22
SR2 (I) 12-22
SR2 (SRV) 11-55
SR3 (SRV) 11-35
SR4 (SRV) 11-55
SRC 11-55
SRL (SRV) 11-55
SRTLIB, system library 8-1
SS1 (SRV) 11-55
SS2 (SRV) 11-55

11-53

FDR 3059



xX Index
 

$S3 (SRV) 11-55
SS4(SRV) 11-55
SSC (SRV) 11-55
SSM (I) 12-13
SSM (SRV) 11-27
SSP (I) 12-13
SSP (SRV) 11-27
SSR (SRV) 11-55
SSS (SRV) 11-55
ST (I) 12-19
ST.SIZE, SEG load mapentry 5-6
STA (SRV) 11-41
STAC (V) 11-41
Stack

assignment (SEG) 5-8
extend, STEX, (IJ) 12-10
extend, STEX, (V) 11-48
frame description in load

map 5-6

frame header CALF 9-5
frame header PCL 9-4
overflow, SEG load map

information 5-3
postincrementaddress

formation 10-6
predecrementaddress

formation 10-6
relative (R-mode) memory

reference instruction
formats 10-8

segment header 9-4
Stack, PMA 14-6, 14-8

Stack, SEG assignment of 5-8
STAR(I) 12-19
START 18-3
Starting a loaded program 6-1
Statements, PMA 14-1, 14-2
STC (V) 11-5
STC (I) 12-4
STCD (I) 12-19
STCH(I) 12-19
STEX (I) 12-20
STEX (V) 11-48
STFA (I) 12-6
STFA (V) 11-15
STH (I) 12-19
STL (V) 11-41
STLC (V) 11-42
STLR (V) 11-42
Storage allocation pseudo-

operations, SA 16-1
Store

A conditionally, STAC,
(V) 11-41

addressedregister, STAR,
(I) 12-19

character, STG,(I) 12-4
character, STC, (V} 11-5
conditional fullword, STCC,

(I) 12-19
conditional fullword, STCH,

(I) 12-19
field address register, STFA,

(I) 12-6
field address register, STFA,

(V) 11-15
fullword,ST,(I) 12-19
halfword, STH,(I) 12-19
L conditionally, STLC,

VW) 11_A9ivi ba 5S

L into addressed register, STLR,

FDR 3059

(Vv) 11-42
long, STL, (V) 11-41
process model number, STPM,

(I) 12-17
processor model number,

STPM,(V) 11-38
the A register, STA,

(SRV) 11-41
X register, STX, (SRV) 11-42
Y, STY, (V) 11-42

STPM (I} 12-17
STPM (V) 11-38
STX (SRV) 11-42
STY (V) 11-42
SUB (SRV) 11-27
SUBR pseudo-operation 16-20
Subroutine call conventions,

(SR) 8-2
Subroutine call conventions,

(VI) 8-3
Subroutine calling 8-1
Subroutines, loadinglibrary 4-3,

3-3

Subtract
fullword,S, (I) 12-13
halfword, SH,(I) 12-13
long, SBL, (V) 11-27
one from A, SLA, (SRV) 11-26
two from A, $2A, (SRV) 11-27

Subtract, SUB, (SRV) 11-27
Subtraction operator 15-9
Supervisor call, SVC,(I) 12-20
Supervisorcall, SVC,

(SRV) 11-39
SVC (I) 12-20
SVC (SRV) 11-39
Symboldefinition pseudo-

operations, SD 16-1
Symboldefinitions in load

maps 4-4

Symbolic addresses, PMA 14-5
Symbolicinstruction format 18-5
Symbols, PMA 14-4
Syntax, PMA 14-4
System error messages 1,C
System errors, SEG’s sotion 5-1
System libraries 8-1
System programming

features 4-6
SZE (SRV) 11-55

T
TAB (V) 11-42

TAK (V} 11-31
TAP (Trace And Patch) 18-1

command summary 19-1
terminators 19-1

using 18-1
TAX (V) 11-42

TAY (V) 11-42

TBA (v}) 11-43

C(t} 12-13

TCA (8RV) 11-28

TCH (I) 12-13

TCL (V} 11-28

Terminating long
operations 18-1, 18-3

Terminators 18-4

Terminators, PSD 20-1

Terminators, TAP 19-1

Terminators, VPSD 21-1

X-14

Terms 15-5

Test
A register equalto zero andset

A, LEG, (V) 11-33
A register greater than or equal

to zero andset A, LGE,
(V) 11-33

A register greater than zero and
set A, LGE, (V) 11-33

A register greater than zero and
setR, LGT, (I) 12-16

A register less than or equalto
zero and set A, LLE,
(V) 11-33

A register less than zero and set
A, LLT, (V) 11-33

A register not equalto zero and
set A, LNE, (V) 11-33

condition code equalto zero
and set A, LCEQ,
(V} 11-33

condition code equalto zero
and set R, LCEQ,
(I) 12-16

condition code greater than or
equalto zero and set A,
LCEG,(V) 11-33

condition codegreater than or
equalto zero and set R,
LCGE(I) 12-16

condition codegreater than
zero and set A, LCGT,
(V) 11-33

condition code greater than
zero and set R, LCGT,
(I) 12-16

condition codeless than or
equalto zero and set A,
LCLE, (V) 11-33

condition code less than or
equalto zero and set R,
LCLE, (1) 12-16

condition codeless than zero
and set A, LCLT,
(V) 11-33

condition codeless than zero
and set R. LCLT,(I) 12-16

condition code not equal to zero
and set A, LCNE,
(V) 11-33

condition code not equal to zero
and set R, LCNE,
(I) 12-16

floating register equal to zero
and set A, LFEQ,
(V) 11-34

floating register equal to zero
and set R, LFEQ, (I) 12-16

floating register greater than or
equalto zero and set A,
LFGE, (V) 11-34

floating register greater than or
equalto zero andset R,
LFGE,(I) 12-16

floating register greater than
zero and set A, LFGT,

(V) 11-34
floating register greater than

zero and set R, LFGT,
(1) 12-16

floating register less than or

1 March 1979



Index xX
 
 

equal to zero an
LFLE, (V) 11-3

floating register less than or
equal to zero andset R,
LFLE, (I) 12-16

floating register less than zero
and set A, LFLT,
(V) 11-34

floating register less than zero
and set R, LFLT, (I) 12-16

floating register not equalto
zero and set A, LFNE,
(V) 11-34

floating register not equal to
zero and set R, LFNE,

(I) 12-16
half register equal to zero and

set R, LHEQ,(I) 12-16
half register greater than or

equalto zero and set R,

LHGE, (I) 12-16
half register greater than zero

and set R, LHGT,
(I) 12-16

half register less than or equal
to zero and set R, LHLE,
(I) 12-16

half register not equal to zero
and set R, LHNE,

-l_-1A
a sei,

4

(I) 12-16
L register equal to zero andset

A, LLEQ, (V) 11-33
L register greater than or equal

to zero and set A, LLGE,
(V) 11-33

L register greater than zero and

set A, LLGT, (V)} 11-33
L register less than or equalto

zero and set A, LLLE,
(V} 11-33

L register less than zero andset
A, LLLT, (V) 11-33

L register not equal to zero and
set A, LLNE, (V) 11-33

L-bit 11-3

memory fullword, TM,
(1) 12-14

memory halfword, TMH,
(I) 12-14

queue, TSTQ, {I} 12-21
queue, TSTQ, (V} 11-50
register equal to zero and set R,

LEQ, {I) 12-16
register greater than or equalto

zero andset R, LGE,
(I) 12-16

register less than or equalto
zero and set R, LLE,

(I) 12-16
register less than zero andset R,

LLT, (I) 12-16
register not equalto zero and

set R, LNE, (I) 12-16
Textconventions 2-1
TFLL (V) 11-15
TFLR (I) 12-5
Three word memoryreference,

indirect pointer 9-3
TKA(V] 11-31
TLFL (V) 11-15
TM (I) 12-14

1 March 1979

TMH (I) 12-14
TOP, SEG load map entry 5-6
Transfer

Aor B, TAB, (V) 11-42
A to keys, TAK, (V) 11-31
Ato X, TAX, (V) 11-42
Ato Y, TAY, (V) 11-42
Bto A, TBA, (V} 11-43
field length register to L, TFLL,

(V) 11-15
field length to register, TFLR,

(I) 12-5
keys to A, TKA, (V) 11-31
X to A, TXA, (V) 11-43
YtoA, TYA, (V) 11-48

Translate character field, ZTRN,
(V) 11-7

Translate characterfields, ZTRR.
(I) 12-4

Triple asterisk (dummy
instruction), PMA 14-5

TSTQ (I) 12-21
TSTQ (V) 11-50
Two word memoryreference (V-

mode) 10-8
Two word memoryreference,

indirect pointer 9-3
Two’s complement

A, TCA, (SRV) 11-28
half register, TCH,(I)
long, TCL, (V) 11-28
register, TC, (I) 12-13

TXA (V}) 11-43
TYA (V) 11-43
Types, PMA 14-1

U
UII

handling 4-6
library 4-4
library, loader use of 4-4

Unsatisfied references 5-7
Unsegmentedrunfiles, execution

of 6-1
Using the assembler, terminal

session example 2-5
Using the R-mode loader under

PRIMOS 4-1

Using VPSD 18-3

V
V-modeinstructions
A2A 11-22

ABQ 11-49
ACA 11-22

ADD 11-22

ADL 11-22

ADLL 11-23

ALA 11-22

ALFA 11-15

ALL 11-51

ALR 11-51

ALS 11-51

ANA 11-32

ANL 11-32

ARGT 11-43

ARL 11-51

ARR 11-51

ARS 11-51
ATQ 11-49
BCEQ 11-2

12-13

X-15

CRL
CRLE
CSA
CXCS
DFAD
DFCM
DFCS
DFDV
DFLD
DFLX
DFMP
DFSB

DFST
DIV
DRX
DVL
E168
E32I
E32R
E328
Bear
E64V
EAFA

11-8

11-24

11-34

11-17

11-17

11-17

11-17

11-18

11-18

11-18

11-18

11-18

11-24

11-53

11-25

11-1

11-1

11-1

11-1

li-i

11-1

11-15

FDR 3059



xX Index
 

 

EAL 11-44
EALB 11-45
EAXB 11-45
EIO 11-29

EMCM 11-28
ENB 11-39
ERA 11-32
ERL 11-32
ESIM_ 11-30

EVIM 11-30
EXB 11-43
FAD 11-18

FCM 11-19

FCS 11-19

FCST 11-20
FDBL 11-19
FDV 11-19

FLD 11-19
FLTA 11-20

FLTL 11-20
FMP 11-20
FRN 11-20

FSB 11-20
FSLE 11-20
FSMI 11-21

FSNZ 11-21
FSPL 11-21
FST 11-21
FSZE 11-21
HLT 11-35
IAB 11-40
ICL 11-40
ICR 11-40
ILE 11-40
IMA 11-40
INBG 11-49
INBC 11-49
INEC 11-49
INEN 11-49
INH 11-30
INT 11-21

INTA 11-21

INTL 11-22

IRS 11-53
IRX 11-53
ITBL 11-35
]MP 11-46
JST 11-46
JSX 11-47
JSXB 11-47
JSY 11-47
LCEQ 11-33
LCGE 11-33
LCGT 11-33
LCLE 11-33
LCLT 11-33
LCNE 11-33

LDA 11-40
LDC 11-5
LDL 11-40

LDLR 11-41
LDX 11-41

LDY 11-41

LEQ 11-33
LF 11-34

LFEQ 11-34
LFGE 11-34
LFGT 11-34
LFLE 11-34
LFLI 11-15
LFLT 11-34

FDR 3059

LFNE 11-34

LGE 11-33

LGT 11-33

LIOT 11-35

LLE 11-33

LLEQ 11-33

LLGE 11-33

LLGT 11-33

LLL 11-51

LLLE 11-33

LLLT 11-33

LLNE 11-33

LLR 11-52

LLS 11-52

LLT 11-33

LMCM_ 11-28

LNE 11-33

LPID 11-36

LPSW_ 11-36

LRL 11-52

LRR 11-52

LRS 11-53

LT 11-34

LWCS 11-37

MDEI 11-28

MDII 11-28

MDIW 11-28

MDRS_ 11-28

MDWC 11-28
MIA 11-37

MIB 11-37

MPL 11-25

MPY 11-25

NFYB 11-49

NFYE 11-49

NOP 11-37

NOP 11-55
PCL 11-47

PIDA 11-26

PIDL 11-26

PIMA 11-26

PIML 11-26

PRTN 11-48

PTLB 11-37

RBQ 11-50

RCB 11-31

RMC 11-28

RRST 11-38

RSAV 11-38

RTQ 11-50

S1A 11-26

S2A 11-27

SAR 11-53

SAS 11-53

SBL 11-27

SCB 11-31

SGT 11-54

SKP 11-54

SLE 11-54

SLN 11-55

SLZ 11-55
SMCR 11-29

SMCS 11-29

SMI 11-55

RMQ 11-54

SNS 11-54

SNZ 11-55

SPL 11-55

SR2 11-55
SR3 11-55

SR4 11-55

X-16

SRG 11-55

SRL 11-55

$81 11-55

$82 11-55

SS3 11-55

$S4 11-55

SSC 11-55
SSM 11-27

SSP 11-27

SSR 11-55

SSS 11-55

STA 11-41

STAC 11-41

STC 11-5

STEX 11-48

STFA 11-15

STL 11-41

STLC 11-42

STLR 11-42

STPM 11-38

STX 11-42

STY 11-42

SUB 11-27
SVC 11-39

SZE 11-55
TAB 11-42

TAK 11-31

TAX 11-42

TAY 11-42

TBA 11-43

TCA 11-28

TCL 11-28

TFLL 11-15

TKA 11-31

TLFL 11-15

TSTQ 11-50
TXA 11-43

TYA 11-48

VIRY 11-29

WAIT 11-49

WCS 11-39
XAD 11-10

XBTD 11-11

XCA 11-43

XCM 11-11

XDTB 11-12

XDV 11-12

XEC 11-49

XED 11-13

XMP 11-13

XMV_ 11-14

XVRY 11-29

ZCM_ 11-5

ZED 11-5

ZFIL 11-6

ZMV_ 11-6

ZMVD_ 11-7

ZTRN 11-7

Values, output 18-4
VAPPLBlibrary, use with

SEG 5-2, 5-3

VAPPLB.system library 8-1
Variables, macro 17-2
Verify the XIS board (Prime 500),

XVRY, (V) 11-29
Verify XIS, XVRY,(I) 12-14
Verify XIS, XVRY, (I) 12-17
Verify, VIRY, (I) 12-14
Verify, VIRY, (SRV) 11-29

VFD pseudo-operation 16-11

1 March 1979



Index X
 

 

decimal control word
format 9-2

keys 9-12
queuecontrol block 9-7
registers 9-9
subroutine call

conventions 8-3

Virtual address space 4-5
Virtual loading 4-5
VIRY (I) 12-14
VIRY (SRV) 11-29
VPSD (virtual symbolic

debugger) 18-1, 18-3, 18-4
command summary 21-1
terminators 21-1
using 18-3

VPSD16 18-3

VSRTLBlibrary, use with
SEG 5-2, 5-3

VSRTLB,system library 8-1

WAIT (I) 12-20
WAIT (V) 11-49
WCS(I) 12-17
WCS (RV) 11-39
Writable control store, WCS,

(I) 12-17
Writable control store, WCS,

(RV) 11-39
Writing and debugging a program,

example 2-5
Writing V or I mode code in

PMA 14-8

X
X (I) 12-15
XAC pseudo-operation 16-7
XAD (I) 12-5
XAD (V) 11-10
XB% assembler notation 15-8
XBTD (I) 12-5
XBTD(V) 11-11
XCA (SRV) 11-43
XCB (SRV) 11-43
XCM (I) 12-5
XCM (V) 11-11
XDTB (I) 12-5
XDTB(V) 11-12
XDV (I) 12-5
XDV (V) 11-12
XEC (RV) 11-49
XED (I) 12-5
XED(V) 11-13
XH (I) 12-16
XMP(I) 12-5
XMP (V)} 11-13
XMV(I) 12-5
XMV (V) 11-14
XSET pseudo-operation 16-21
XVRY (V) 11-29
XVRY(I) 12-14, 12-17

Z
ZCM (I) 12-4
ZCM (V) 11-5
ZED (I) 12-4
ZED (V} 11-5
Zero memory fullword, ZM,

(I) 12-5

1 March 1979

Zero LGU id

(I} 12-5

Zero, VPSD 21-6

ZFH,fill character field, (I) 12-4
ZFIL,fill field, (V) 11-6
ZM, zero memoryfullword,(1)
ZMH,zero memoryhalfword,

(I) 12-5

12-5

ZMV, move characterfield, (I) 12-4

ZMV, move characterfield, (V)
ZMVD,moveequallengthfields,

(I) 12-4
ZMVD,moveequallengthfields,

(V) 11-7
ZTRN,translate characterfield,

(V) 11-7
ZTRN,transiate characterfields,

(I) 12-4

X-17

11-6

FDR 3059



DL TAN8S
KEV, 17,

AIDUS
Change sheet package

This is your AIDUS Change Sheet package for FDR3059, The Assembly Lan-
guage Programmer’s Guide.It contains replacement pages to update your
book to Master Disk Revision 17.

Two types of changes are indicated on these change pages. Changes that are
specific to Revision 17 are indicated by the following symbol: . The bar
extending up and down from the symbol, points out the overall area where
Revision 1'7 changes were made. Other changes, (errors fixed, information
missing at Revision 16 or earlier, or editorial changes) are shownbya simple
bar in the inner margin. All pages with changesofeither type are now dated 1
january 1980 in the folio line.

 

 

Change Sheet Package Number: COR3059-001
Date: January, 1980

Revision Number: 1'7

Number of pages enclosed: 14 Pages with changes: 8
List of pages enclosed (pages with changes are underlined): 4-3, 4-4, 5-9, 5-10,
5-11, 5-18, 5-13, 6-0, 6-1, 6-2, 8-1, 8-2, 16-19, 16-20   
 

Copyright© 1980 by Prime Computer, Incorporated
Published by Prime Computer, Incorporated
Technical Publications Department
500 Old Connecticut Path
Framingham, MA 01701

The information contained on these changepagesis subject to change without notice
and should not be construed as a commitment by Prime Computer, Incorporated. Prime
Computer, Incorporated assumes no responsibility for any errors that may appear in
this package.

PR1ME and PRIMOSare registered trademarks of Prime Computer.
PRIMENET and THE PROGRAMMER’S COMPANIONare trademarks of Prime
Computer, Inc.

Printing date: January, 1980

All correspondence on suggested changes to this document should be addressed to:

Rosemary Shields
Technical Publications Department
Prime Computer,Inc.
500 Old Connecticut Path
Framingham, MA 01701



LOADING R-MODE PROGRAMS 4
 

 

3. Other Primelibraries (LI filename).

4. Standard FORTRANlibrary (LI).

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from the
file are loaded by the LIBRARY commandgiven without a filename argument. If sub-
routines from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional
LIBRARY commandsare required which include the desired library as an argument.

LOAD MAPS

During loading the loader collects information about the results of the load process, which
can be printed at the terminal (or written to a file) by the MAP command:

MAP[pathname][option]

The information in the map can be consulted to diagnose problemsin loading,or to optimize
placement of modules, linkage areas and COMMONin complex loads.

Load information is printed in four sections, as shown in Figure 4-1. The amount of
information printed is controlled by MAPoption codessuchas:

Option Load Map Information

None, 0 or 4 Load state, base area, and symbol storage; symbols sorted by
address :

1 Load state only

2 Load state and base areas

3 Unsatisfied references only

6 Undefined symbols, sorted in alphabetical order

7 All symbols, sorted in alphabetic order

Loadstate

The load state area shows where the program has been loaded, the start-of-execution
location, the area occupied by COMMON,thesize of the symboltable, and the UII status.
All locations are octal numbers.

*START: The location at which execution of the loaded program will begin. The defaultis
‘1000.

*LOW: The lowest memory image location occupied by the program. Executable code
normally starts at '1000, but sector 0 addresslinks (if any) begin at 200.

*HIGH: The highest memory imagelocation occupied by the program (excluding any area
reservedfor initialized COMMON).

*PBRK:“Program Break’’: The next available location for loading. It normally is the location
following the last loaded module, but can be moved by PBRK or the LOAD family of
commands.

*CMLOW:The low end of COMMON.

*CMHGH:The top of COMMON.

*SYM: The numberof symbols in the loader's symbol table. This is usually of not concern
unless the symbol space crowdsoutthe last remaining runfile buffer area. (There is room
for about 4000 symbols beforethis is a risk.)

1 January 1980 4-3 FDR 3059



4 LOADING R-MODE PROGRAMS
 

 

*UII: A code representing the hardware required to execute the instructions in loaded
modules. Codes and other information are described later in this section.

Base areas

The base area map includesthe lowest, highest and next available locationsfor all defined
base areas. Each line contains four addressesas follows:

*BASE XXXXXX YYYYYY ZLZZZZ WWWWWW

XXXXXX Lowest location defined for this area

YYYYYY Next available location if starting up from XXXXXX

ZZZZZZ Next available location if starting down from WWWWWW

WWWWWW Highest location defined for this area

Symbol storage

The symbol storage listing consists of every defined label or external reference name
printed four perline in the following format:

namexx NNNNNN

or

**namexx NNNNNN

NNNNNNis six-digit octal address. The ** flag means the referenceis unsatisfied (i.e., has
not been loaded). :

Symbols are listed by ascending address (default) or in alphabetical order (MA 6 or MA 7).
The list may be restricted to unsatisfied references only (MA 3 or MA6).

COMMONblocks

The low end andsize of each COMMONareaarelisted, along with the name(if any). Every
map includes a reference to the special COMMONblock LIST, defined as starting at
location 1. .

LOADER CONCEPTS

When standard loading goes well, the user can ignore most of the loader’s advanced
features. However, situations can arise where some detailed knowledge of the loader's
tasks, can optimize size or performanceof a runfile, or even makea critical load possible.
From that viewpoint, the main tasks of the loaderare:

e Convert block-format object code into a run-time version of the program (ex-
ecutable machineinstructions, binary data and data blocks).

e Resolve address linkages (translate symbolic namesof variables, subroutine entry
points, data items etc. into appropriate binary address values}.

e Perform address resolution (discussed later).

e Detect and flag errors such as unresolved external references, memoryoverflow,
etc.

e Build (and, on request. print) a load map. The map mayalso be written to file,

e Reserve COMMONareasas specified by object modules.

e Keep track of runfile’s hardware execution requirements and make user awareof
need to load subroutines from UII library.

FDR 3059 4-4 1 March, 1979



LOADING SEGMENTED PROGRAMS 3B
 

 

SEG-LEVEL COMMANDS

Commandsat SEGlevel are entered in response to the ‘‘#’’ prompt.

DELETE [pathname]

Deletes a saved SEGrunfiles.

HELP

Prints abbreviated list of SEG commandsat terminal.

[V]JLOAD[*] [pathname]

Defines runfile name and invokesvirtual loader for creation of new runfile (if name did not
exist) or appendingto existing runfile (if name exists]. If pathnameis omitted, SEG requests
one.

MAPpathname-1 [pathname-2] [map-option]

Prints a loadmapof runfile (pathname-1 or current loadfile (*)} at terminal or optional file
(pathname-2).

Option Load Mapinformation

Full map (default)
Extent map only
Extent map and base areas
Undefined symbols only
Full map {identical to 0)
System programmer's map

Undefined symbols, alphabetical order
Full map, sorted alphabetically
Symbols by ascending address
Symbols alphabeticallye

R
e
N
D

o
O

R
P
O
h

©
n
o
)

MODIFY [filename]

Invokes MODIFY subprocessorto create a new runfile or modify an existing runfile.

PARAMS[filename]

Displays the parameters of a SEG runfile.

PSD

Invokes VPSD debugging utility.

QUIT

Returns to PRIMOS command level andcloses all openfiles.

RESTORE [pathname]

Restores a SEG runfile to memory for examination with VPSD.

RESUME[pathname]

Restores runfile and begins execution.

1 January 1980 5-9 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

SAVE [pathname]

Synonym for MODIFY.

SHARE [pathname]

Converts portions of SEG runfile corresponding to segments below ‘4001 into R-mode-like
runfiles.

SINGLE [pathname] segno

Creates an R-mode-like runfile for any segment.

TIME [pathname]

Prints time and date of last runfile modification.

VERSION

Displays SEG version number.

VLOAD

See LOAD.

LOAD SUBPROCESSOR COMMANDS

ATTACH [ufd-name] [password] [Idisk] [key]

Attaches to directory.

AUTOMATIC base-area-size

Automatically places base areas between procedures.

A/SYMBOL symbolname[segtype] segno size

Defines a symbol in memory andreserves space for it using absolute segment numbers.

COMMON ee segno

Relocates COMMONusingabsolute or relative segment numbers.

\

IL
LOAD

D/ <LIBRARY
FORCELOAD

| PL or RL

Continues a load using parameters of previous load command.

Note

D/ and F/ may be combined,as in D/F/LI.

EXECUTE[a] [b] [x]

Performs SAVE and executes program.

FDR 3059 5-10 1 January 1980



LOADING SEGMENTED PROGRAMS 5
 

 

IL
LOAD

F/ LIBRARY
FORCELOAD
PL
RL

Forceloadsall routines in objectfile.

[pathname]|[addr psegno Isegno]

IL [addr psegno Isegno]

Loads impure FORTRANlibrary IFTNLB

INITIALIZE [pathname]

Initializes and restarts load subprocessor.

LIBRARY[filename] [addr psegnoIsegno]

Loadslibrary file (PFTNLB and IFTNLBif no filename specified).

LOAD [pathname] [addr psegno Isegno]

Loads objectfile.

MAP[pathname]option

Generates load map (see SEG-level MAP command}.

MIXUP DFE

Mixes procedure anddata in segments and permits loading of linkage and commonareasin
procedure segments. Not reset by INITIALIZE.

MV [start-symbol move-block desegno]

Movesportion of loadedfile (for libraries). If options are omitted, information is requested.

OPERATORoption

Enables or removes system privileges 0—enable, 1=remove. Caution: this commandis
intended only for knowledgeable creators of specialized software.

PL [addr psegno [segno]

Loads pure FORTRANlibrary, PFTNLB.

IL
LOAD

P/ LIBRARY
FORCELOAD
PL
RL

[pathname] option [psegno] [lsegno]

Loads on a page boundary. Theoptions are: PR=procedure only, DA=link framesonly, none
=both procedure andlink frames.

1 March, 1979 9-11 FDR 3059



5 LOADING SEGMENTED PROGRAMS
 

 

QUIT

Performs SAVE and returns to PRIMOS commandlevel.

RETURN

Performs SAVEandreturns to SEG commandlevel.

RL pathname[addr psegno Isegno]

Replaces a binary module in an established runfile.

R/SYMBOL symbol-name[segtype] segno size

Defines a symbol in memory and reserves space for it using relative segment assignment.
(Default=data segment).

SAVE[a] [b] [x]

Saves the results of a load on disk.

SETBASEsegno length

Creates base area for desectorization.

segno addr
SPLIT addr

addr segno addr Isegno

Splits segment into data and procedureportions. Formats 2 and 3 allow R mode executionif
all loaded information is in segment 4000.

SS symbol-name

Saves symbol; prevents XPUNGEfrom deleting symbol-name.

STACKsize

Sets minimum stack size.

old-symbel-name| [octal-number|
SYMBOL new-symbol-name segno addr

*

 

Defines a symbolat a location and/or assigns a value of an already defined symbolor a
constant.

YES
SZ psegno )[NO]

Controls use of sector zero base area in procedure segments.

LIBRARY

S/ FORCELOAD

PL or IL

RL or LOAD

[pathname] [addr psegnoIsegno]

Loads an objectfile in specified absolute segments.

XP dsymbol dbase

Expunges symbol from symboltable and deletes base information.

FDR 3059 5-12 1 January 1980

 



LOADING SEGMENTED PROGRAMS 5
 

symbol Action

0 Delete all defined symbols—including COMMONarea.

1 Delete only entry points, leaving COMMONareas.

dbase Action

0 Retain all base information.

1 Retain only sector zero information.

2 Delete all base information.

MODIFY SUBPROCESSOR COMMANDS

NEW pathname

Writes a new copy of SEG runfile to disk.

PATCHsegno baddr taddr

Addsa patch (loaded between baddrandtaddr) to an existing runfile and savesit on disk.

RETURN

Returns to SEG commandlevel.

ssize
Sk segno addr

ssize 0 esegno
segno addr esegno

Specifies stack size (ssize) and location. esegno specifies an extension stack segment.

START segno addr

Changes program execution starting address.

WRITE

Writes all segments above '4000 of current runfile to disk.

1 January 1980 5-13 FDR 3059



 

Executing
 



This section treats the following topics:

¢ Execution of program memory images savedbythe linking loader.

e Execution of segmented runfiles saved by SEG’s loader.

¢ Installation of programs in the command UFD (CMDNCO0)}.

e Use of run time.

EXECUTION OF UNSEGMENTED RUNFILES

Use the PRIMOS RESUME commandto execute an unsegmented runfile:

RESUMEpathname

where pathnameis an R-moderunfile in the current UFD.

Programs whichareresident in the user’s memory maybe executed by a START command:

START

RESUME

RESUMEbrings the memory-image program pathname from the disk into the user's
memory,loads the initial register settings, and begins execution of the program.Its format
is:

RESUMEpathname

Example:

OK, R *TEST User requests program
GO Execution begins
THIS IS A TEST Output of program

OK, PRIMOS requests next command

Note

As of Rev. 17 PRIMOSnolonger prints GO in responseto a
command.

RESUMEshould not be used for segmented (64V or 321 mode) programs; use the SEG
command(discussedlater) instead.

START

Once a programis resident in memory(e.g., by a previous RESUME command) you can use

STARTto initialize the registers and begin execution. Its formatis:

START [start-address]

Upon completion of the program, control returns to PRIMOS commandlevel.

1 January 1980 6-1 FDR 3059



6 EXECUTING
 

 

EXECUTION OF SEGMENTED RUNFILES

Use the SEG commandto begin execution of a segmented program; e.g. SEG pathname
wherepathnameis a SEG runfile. SEG loads the runfile into segmented memoryandstarts
execution. SEG should beused for runfiles created by SEG’s Loader; it should not be used
for program memoryimagescreated by the LOADutility.

Example:

OK, SEG #TEST user requests program
GO execution begins
THIS IS A TEST output of program

OK, PRIMOS requests next command

Upon completion of program execution, control returns to the PRIMOS commandlevel.

You mayrestart a SEG runfile by the command: S 1000, provided both the SEG runfile and
the copy of SEG used to invoke it are in memory.

INSTALLATION IN THE COMMAND UFD (CMDNCO)

Run-time programs in the command UFD (CMDNCO) can be invoked by keying in the
program namealone. This feature of PRIMOSis useful if a numberof users invoke this
program. Only one copy of the program need reside on the disk in UFD CMDNCO.

Even more space is saved during execution by multiple users if the program uses shared
code (64V and 32I modeonly).

Program memory images saved by LOAD

Installation in the command UFDis extremely simple, providing you have access to the
password. The runtime versionof the program is copied into UFD CMDNCOusing PRIMOS’
FUTIL file handlingutility.

Example: Assume you havewritten a utility program called FARLEY.This utility acts as a
“tickler” for dates. Using FARLEY, each user builds a file with important dates. The
FARLEYutility program, upon request, prints out upcoming events or occasionsof interest
to the user.

Note

This utility does not necessarily actually exist; it is used as a
plausible example.

First, assemble the program.

OK, PMA FARLEY -64R Assemble in 64R mode

GO
@808 ERRORS (PMA-REV 16.2)ASSEMBLER MESSAGE

OK, LOAD Invoke the Loader

GO

SLO BFARLEY Load the object file; the default
name is used

S Load other required modules

FDR 3059 6-2 1 March, 1979



Most of the commonly used subroutines — I/O, math functions and EXIT, are either
embeddedin the operating system orare in one of the FORTRANlibraries. LOAD and SEG
automatically load the appropriate library when you type the commandLI during a loading
sequence. Other libraries, such as APPLIB and MATHLIBrequirethe specification of their
name following LI — e.g. LI APPLIB causes the application library to be searched for
unresolved references.

Table 8-1 lists the commonly available system libraries. See the Reference Guide, PRIMOS
Subroutines for complete descriptions of the system subroutines.

All routines, regardless of mode, should use the CALL pseudo-operationto call subroutines.
S and R-mode arguments use DACpointers; V, and I-mode arguments use APpointers(see

Section 16 for the DAC and AP pseudo-operation formats). Figure 8-1 illustrates the SR
calling sequences and associated subroutine code: Figure 8-2 illustrates VI calling se-
quences and associated subroutine code.

 

Table 8-1. System Libraries

Name Description Mode

FTNLIB FORTRANLibrary R

PFTNLB FORTRAN Library pure pro-
cedures V

IFTNLB FORTRAN Library impure pro-
cedures V

PLIGLB PL/I V and I ModeLibrary
NPFTNLB FORTRANLibrary V-Mode, Pure, non-shared

APPLIB Application Library R

VAPPLB Application Library V

SRTLIB Sort Library-Files R

VSRTLI Sort Library-Files V

MSORTS Sort Library-Memory R

MATHLB Matrix Routines R   
1 January 1980 8-1 FDR 3059



8 INTERFACING WITH THE SYSTEM LIBRARIES
 

 

 

Main Program

CALL SUBX is equivalentto:

EXT SUBX
JST SUBX

Figure 8-1. SR Subroutine CALL Conventions 

Two or More ArgumentsNo Arguments One Argument

CALL SUBX CALL SUBX

DAC A

Subroutine

ENT SUBX ENT SUBX

REL REL

SUBX DAC ** SUBX DAC ** SUBX

first instruction CALL FSAT
‘ DEC 1

APTR DAC** APTR
° BPTR

JMP SUBX,* CPTR

JMP SUBX,*

Note

CALL SUBX
DAC A
DAC B
DAC C

*

DAC @

ENT SUBX
REL

a

DAC **

CALL FSAT
DEC 3

DAC **
DAC **

DAC **

first instruction

JMP SUBX,*

  
FDR 3059 8-2 1 March, 1979



PSEUDO-OPERATIONS 16
 
 

external. Unlike EXT, there is no conflict between a local variable and a CALL operand with
the same symbol.

The operand must contain a single symbol(not an expression) of up to 6 characters, of which
the first must be alphabetic. A ,1 for indexing and * for indirect addressing is optional.

In 64V and 32I modes, CALL generates a PCL instruction to an external symbol.

> DYNT address-expression

Defines a direct entry point into the operating system. System libraries only.

> [label] ECB entry-point,[link base], displacement, n-arguments[ , stack-size]
[ , keys]

Generates an entry control block to define a procedure entry. It must go in the linkage frame
with the subroutine entry point pointing to the ECB.

Parameter Meaning

entry-point Procedurerelative value; entry point for subroutine.

link-base Link base register value.

displacement Displacementin stack frame for argumentlist. May
be stack relative or absolute expression.

n-arguments Number of arguments expected; default is zero.

stack-size Initial stack frame size. Default is maximum area
specified in DYNM statements.

keys CPU keys for procedure. Default is 64V addressing
mode, all other keys zero.

For example:

ENT ECBNAM

LAB1 LDA ='123

LINK

ECBNAM ECB LABI

END

If the default value for a parameteris desired, the parameter maybe omitted, leaving only
its delimiting comma. Anystring of trailing commas may be omitted.

Note

The main program — that which you call PRIMOSlevel using
SEG#Name — is a subroutine to SEG and must, therefore.

have an ECB and the ECB name on the ENDstatement.It
need not have an ENT because SEGwill give a dummyentry
point nameto a routine called at this level.

> [label] EXT symbol

Identifies external variables. The names appearing in the operand of this statement are
flagged as external references. Wheneverother statements in the main program reference
one of these names,a special block of object text is generated that notifies the loadertofill
in the address properly. The assemblerfills the address fields with zeroes.

Names defined by the EXT pseudo-operations are unique only in the first 6 characters
(loader restriction) and should not appearin a label field internal to the program.

1 March, 1979 16-19 FDR 3059



16 PSEUDO-OPERATIONS
 

 

> [label] SUBR symbol-1 or ENT symbol-1 [ , symbol-2]

Link subroutine entry points to external names used in CALL, XAC or EXT statements in
calling programs. SUBR and ENTareidentical in effect. symbol-1 is the external name used
by calling program, whereas, symbol-2 is the entry name used in subroutine,if different
from symbol-1. All SUBR and ENT pseudo-operations must appear before any generated
code.

> SYML SEG/SEGR

Allows long external names up to eight characters to be generated by the assembler. Must
follow SEG or SEGR but precede any generated code.

STORAGE ALLOCATION PSEUDO-OPERATIONS(SA)

Control the allocation of storage within the program address space.
 

  

Name Function Restriction

BSS Allocate block starting with symbol

BES Allocate block ending with symbol

BSZ Allocate block set to zeroes

COMM FORTRAN compatible COMMON
 

BSS
> [label] BES absolute-expression

BSZ

Allocates a block of words of the size specified in the absolute-expression starting at the
currentlocation count. If there is a label, it is assignedto the first word of the block (BSS and
BSZ) or to the last word of the block (BES). For BSZ, all words within the block areset to
Zeroes.

> [label] COMM symbol[(absolute-expression)|

Defines FORTRAN-compatible named COMMONareas. These areasare allocated bythe
loader. The label assigns a name to the block as a whole, and the operandfield specifies
named variables or arrays within the block. Additional COMM statements with the same
block name are treated as continuations. symbol alone reserves a single location: the
optiona! absolute-expression reserves locations equalto its value. In SEG mode. the loader
sets up a 32-bit indirect pointer in the linkage segment which points to the commonarea.

SYMBOL DEFINING PSEUDO-OPERATIONS(SD)

Variables used as address symbols are usually defined when theyappearin the label field
of an instruction or pseudo-operation statement. Symbols so defined are given the relocation
mode and valueof the program counterat that location. The EQU, SET and XSET statements
make it possible to equate symbols to any numerical value, including onesthat lie outside
the range of addresses in a program.
 

Name Function Restrictions

DYNM Declarestack relative R and V only

EQU Symbol definition

SET Symboldefinition

XSET Symbol definition    
FDR 3059 16-20 1 January 1980



TTCEYN cCIINwWrv
VOLIN OUNRVE!I

Tell us how we’re doing, and we'll send

you a free Programmer's Companion.
 

Your name

Companyor School

Address

City, State, Zip

 

 

 

 

 

1. Whatis yourjobtitle or function?

2. What specific task describes what you

10.

do?

- Does your company or school own a
Prime computer?

a. If YES, which model?

b. Is it networked with other Prime

computers?

c. Is it networked with any of these?

d. Which of these software packages do

you use?

e. Have you read any other Prime

documents?

f. If YES, which ones?

. Are you presently evaluating Prime?

Is the documentation playing a part?

- What book are you reviewing?

. Myinitial reaction to this book was:

. After reading it my reaction was:

If BETTER or WORSE why?

- How often have you used this book?

. Did the book have the content you
expected?

If NO, why?

Did you find the organization useful?

If NO, why?

 

 

[] YES [] NO

[] 450 ([]550 []650 [] 750 [] OTHER

[] YES []NO
[1 IBM [] CDC [j UNIVAC’ [] HONEYWELL

[] FORTRAN [] COBOL [] BASIC/VM
[] FORTRAN 77. [] PLI-G —_[[] POWER

 

[] MIDAS [] DBMS _[_] SPSS
[] RPGII [] FORMS  [] PRIMENET
[] RIE [] PASCAL [] OAS
[] DBG [_] DPTX

[] YES []NO

[] YES []NO
[] YES []NO

 

[] EXCELLENT [] GOOD [] FAIR
[] VERY GOOD [] FAIR

[.] BETTER [] THESAME WORSE

 

[_] EVERY DAY [_] FAIRLY OFTEN

L_] VERY OFTEN [_] JUST GOT IT

[] YES [] NO
 

[] YES [] NO

 



11.

12.

13.

14.

15.

16.

17.

18.

19.

How did you find the examples?

How did you find theillustrations?

Could you locate the information you

needed?

Wasthe index adequate?

Please evaluate our writing style and

edit quality?

a. Clarity

. Tone

. General writing quality

b

c. Technical level

d

e . Editorial quality

Which of these manufacturers docu-

mentation have you used the most?

Howis Prime compared to theirs?

Any comment on yourrating?

Please evaluate the graphic quality:

a. Rate the general presentation

b. Do youlike the paper color?

c. Did you find any quality defects?

d. Do youlike the way we've used color

for abbreviations and user input?

e. Did the shading over the tables and

charts make them EASIER or

HARDERto read?

f. Do youlike the Programmer’s Com-

panion concept?

g. Which form of bindery do you find

most useful?

Do you know about the AIDUS

program?

Any other comments:

[] TOO MANY [] ABOUT RIGHT [] TOO

[] TOO MANY [] ABOUT RIGHT [] TOO FEW

[] YES [] NO
C] YES [] NO

[-] VERY CLEAR  [_] AVERAGE [_] UNCLEAR

[] CORRECT [] NEUTRAL [] STILTED

[] TOO HIGH [] ABOUT RIGHT [] TOO LOW

[] EXCELLENT [] AVERAGE [] FAIR [] POOR

[] EXCELLENT [] AVERAGE [] FAIR [] POOR

[] IBM (J DIGITAL [] DG
(_] HP [] cpc [] UNIVAC
[-] HONEYWELL [] BURROUGHS ([_] WANG
[_] GE [_] XEROX C] ——

[] MUCH BETTER -__[] ALITTLE WORSE
(] ALITTLE BETTER [_] MUCH WORSE
[] SAME
 

( EXCELLENT [[] GOOD [] POOR
[] VERY GOOD [] FAIR
[Cl Yes [] NO
[1] YES [J] NO

[] Yes [NO

[] EASIER [] HARDER

C] Yes [JNO [ HAVENT SEEN ONE

[[] BOUND [] LOOSE-LEAF

[ll YES [[] NO

 

 

 

 

 

 

 

 

 

 

 



20. What book don’t weoffer that you’d like

to see?

Thank you for filling out the survey.
Choark nll wohiek Dengcrammar’c Cram
VMeCK O©rr Wilitn rrogrammMers COom-

panion you would like to receive.

 

[] PRIMOS
[_] FORTRAN 77
[_] ASSEMBLY
{_] ADMINISTRATOR

[] FORTRAN
[_] BASICIVM
[_] POWER
[_.] WORD PROCESSING



 

 
 

NO POSTAGE
NECESSARY

 

 

   
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760
ee

: : ee

Postagewill be paid by: —__
ee

eee

SSPRIME ——ne
Attention: Technical Publicati ja
Bidg108 echnica! Publications eee

Prime Park, Natick, MA 01760


	000
	001
	003
	005
	006
	007
	008
	009
	010
	1_0-00_Overview
	1_1-00
	1_1-01
	1_2-00
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	2_00-00_PMA_Usage
	2_03-00
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-08
	2_03-09
	2_03-10
	2_04-00
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_04-07
	2_05-00
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_05-09
	2_05-10
	2_05-11
	2_05-12
	2_05-13
	2_06-00
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_06-05
	2_07-00
	2_07-01
	2_07-02
	2_07-03
	2_08-00
	2_08-01
	2_08-02
	2_08-03
	3_00-00_Machine_Formats
	3_09-00
	3_09-01
	3_09-02
	3_09-03
	3_09-04
	3_09-05
	3_09-06
	3_09-07
	3_09-08
	3_09-09
	3_09-10
	3_09-11
	3_09-12
	3_09-13
	3_09-14
	3_09-15
	3_09-16
	3_09-17
	3_09-18
	3_09-19
	3_10-00
	3_10-01
	3_10-02
	3_10-03
	3_10-04
	3_10-05
	3_10-06
	3_10-07
	3_10-08
	3_10-09
	3_10-10
	3_10-11
	3_10-12
	3_10-13
	3_10-14
	3_10-15
	3_10-16
	3_10-17
	3_10-18
	3_10-19
	3_10-20
	3_10-21
	3_10-22
	3_10-23
	3_10-24
	3_10-25
	3_10-26
	3_10-27
	3_10-28
	3_10-29
	3_10-30
	3_10-31
	3_10-32
	3_10-33
	3_11-00
	3_11-01
	3_11-02
	3_11-03
	3_11-04
	3_11-05
	3_11-06
	3_11-07
	3_11-08
	3_11-09
	3_11-10
	3_11-11
	3_11-12
	3_11-13
	3_11-14
	3_11-15
	3_11-16
	3_11-17
	3_11-18
	3_11-19
	3_11-20
	3_11-21
	3_11-22
	3_11-23
	3_11-24
	3_11-25
	3_11-26
	3_11-27
	3_11-28
	3_11-29
	3_11-30
	3_11-31
	3_11-32
	3_11-33
	3_11-34
	3_11-35
	3_11-36
	3_11-37
	3_11-38
	3_11-39
	3_11-40
	3_11-41
	3_11-42
	3_11-43
	3_11-44
	3_11-45
	3_11-46
	3_11-47
	3_11-48
	3_11-49
	3_11-50
	3_11-51
	3_11-52
	3_11-53
	3_11-54
	3_11-55
	3_12-00
	3_12-01
	3_12-02
	3_12-03
	3_12-04
	3_12-05
	3_12-06
	3_12-07
	3_12-08
	3_12-09
	3_12-10
	3_12-11
	3_12-12
	3_12-13
	3_12-14
	3_12-15
	3_12-16
	3_12-17
	3_12-18
	3_12-19
	3_12-20
	3_12-21
	3_12-22
	3_12-23
	3_13-00
	3_13-01
	3_13-02
	3_13-03
	3_13-04
	3_13-05
	3_13-06
	3_13-07
	3_13-08
	3_13-09
	3_13-10
	3_13-11
	4_00-00_PMA_Reference
	4_14-00
	4_14-01
	4_14-02
	4_14-03
	4_14-04
	4_14-05
	4_14-06
	4_14-07
	4_14-08
	4_14-09
	4_14-10
	4_14-11
	4_14-12
	4_14-13
	4_14-14
	4_14-15
	4_15-00
	4_15-01
	4_15-02
	4_15-03
	4_15-04
	4_15-05
	4_15-06
	4_15-07
	4_15-08
	4_15-09
	4_15-10
	4_15-11
	4_16-00
	4_16-01
	4_16-02
	4_16-03
	4_16-04
	4_16-05
	4_16-06
	4_16-07
	4_16-08
	4_16-09
	4_16-10
	4_16-11
	4_16-12
	4_16-13
	4_16-14
	4_16-15
	4_16-16
	4_16-17
	4_16-18
	4_16-19
	4_16-20
	4_16-21
	4_16-22
	4_17-00
	4_17-01
	4_17-02
	4_17-03
	4_17-04
	4_17-05
	4_17-06
	4_21-05
	5_00-00_Debugging_Utils
	5_18-00
	5_18-01
	5_18-02
	5_18-03
	5_18-04
	5_18-05
	5_18-06
	5_19-00
	5_19-01
	5_19-02
	5_19-03
	5_19-04
	5_19-05
	5_20-00
	5_20-01
	5_20-02
	5_20-03
	5_20-04
	5_20-05
	5_20-06
	5_20-07
	5_21-00
	5_21-01
	5_21-02
	5_21-03
	5_21-04
	5_21-06
	A-00
	A-000
	A-01
	B-00
	B-01
	B-02
	B-03
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	_001
	_04-03
	_04-04
	_05-09
	_05-10
	_05-11
	_05-12
	_05-13
	_06-00
	_06-01
	_06-02
	_08-01
	_08-02
	_16-19
	_16-20
	replyA
	replyB
	replyC
	replyD

