
MAN1673

MACRO ASSEMBLER

User Guide

Revision A
May 1975

Computer,Inc.
145 Pennsylvania Ave.

Framingham, Mass. 01701

First Printing January 1973 | MAN 1673
Revision A April 1975

Copyright 1975 by

Prime Computer, Incorporated

145 Penhsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
subject to change without notice.

CONTENTS

Page

SECTION 1 INTRODUCTION | 1-1

SCOPE OF HANDBOOK 1-1

REFERENCE DOCUMENTS 1-1

PRIME 200 ASSEMBLY LANGUAGE 1-2

Basic Assembly Language Elements 1-3

Symbolic Instructions 1-6

Constants, Literals, Variables, and 1-8

Expressions
Symbolic Names 1-9

Pseudo Operations 1-10

Macro Facility 1-10

USING THE MACRO ASSEMBLER | 1-12

Two-Pass Assembly 1-12

Object Output 1-12

Listing Format. 1-13

Location Count 1-15

Symbol Cross Reference Listing 1-15

ASSEMBLER/LOADER INTERACTION 1-16

Desectorizing and Address Resolution 1-16

Extended Addressing Mode . 1-17

Loading Subroutines 1-17

Memory Map 1-18

LOADING AND OPERATING PROCEDURES 1-18

SECTION 2 GENERAL ASSEMBLY LANGUAGE RULES 2-1

FREE-FORM INPUT TEXT 2-1

Line Format oo 2-1

CONSTANTS, VARIABLES AND“EXPRESSIONS | . | 2-5

Constants | 2-5
Variables 2-7.

Expressions 2-8

SECTION 3 INSTRUCTION STATEMENTS

INSTRUCTION STATEMENT GENERAL FORMAT

Label
Operation Field
Variable Field

MEMORY REFERENCE INSTRUCTIONS

Operation Field
Variable Field

INPUT/OUTPUT INSTRUCTIONS

SHIFT INSTRUCTIONS

BIT REFERENCE INSTRUCTIONS

GENERIC INSTRUCTIONS

SECTION 4 PSEUDO -OPERATIONS

STATEMENT FORMAT

ASSEMBLY CONTROLLING PSEUDO- OPERATIONS

ABS (Set Mode to Absolute)
REL (Set Mode to Relocatable)
ORG (Define Origin Location)
FIN (Insert Literals)
MOR (More Input Required)
END (End of Source Statements)
CF1 Through CF5
GO, GO TO (Forward Reference)

LISTING CONTROL PSEUDO-OPERATIONS

LIST (Enable Listing)
NLST (Inhibited Listing)
EJCT (Eject Page)

“ LOADER CONTROLLING PSEUDO- OPERATION

EXD (Enter Extended Addressing Mode)
LXD (Leave Extended Addressing Mode)
SETB (Set Base Sector)

ii

>
$A

!
J

t
f

N
S
N
A
D
Q
O
P
E
A
R

BS
B

LF
LE

' C
o

t
i

C
O
M
”
C

i oe
)

p
h

>
>
p
b

>
P
H
P
P
H
P
p
P
A
H
P
A

>
t

0
t
o

DATA DEFINING PSEUDO-OPERATIONS

DATA (Set Data Constant)
DEC (Set Decimal Constant)
DBP (Set Double Precision Constant)
OCT (Set Octal Constant)
HEX (Set Hexadecimal Constants)
VED (Define Variable Fields)
BCI (Define ASCII String)
DAC (Local Address Definition) —

XAC (External Address Definition)
*** (Dummy Memory Reference Instruction,

VARIABLE (SYMBOL) DEFINING PSEUDO-OPERATIONS

EQU (Define Variable),
SET (Redefine Variable)

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS (Block Starting with Symbol)

BES (Block Ending with Symbol)
BSZ (Block Set to Zeroes)
SETC (Set Common Base Address) ©

COMN (Define Common Items)

PROGRAM LINKING PSEUDO-OPERATIONS

EXT (Flag External References)
CALL (External Subroutine, Reference)

SUBR, ENT (Define Entry Points)

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS

IF (Conditional Statement)
IFM (Continue Assembly if| Minus)

IFP (Continue Assembly if/ Plus)

IFZ (Continue Assembly if! Zero)

IFN (Continue Assembly if! Not Zero) |

ENDC (End Conditional Assembly Area)—

ELSE (Reverse Conditional, Assembly -
FAIL (Force Error Message) was

iii

Page

4-11

4-11
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

4-32

4-32
4-32

4-34

4-34
4-34
4-34
4-35
4-36

4-38

4-38
4-39
4-40

4-44

4-44
4-45
4-45
4-45
4-45
4-46
4-46
4-47

SECTION 5 MACRO FACILITY

MACRO DEFINITIONS AND CALLS

MAC (Begin Macro Definition)
ENDM (End Macro Definition)
Argument References
Macro Calls
Arguments Values
Argument Substitution
Argument Values in Parentheses
Dummy Words
Argument Identifiers
Assembler Attribute References
Local References Within Macros

MACRO LISTING AND ASSEMBLY CONTROL

LSTM (List Macro Expansions)
LSMD (List Macro Expansions - Data Only)
NLSM (No Listing of Macro Expansions)
BACK, BACK TO (Loop Back - Macros Only)
SAY (List Message to Operator)

MACRO EXAMPLES

SECTION 6 SOURCE FILE MERGING COMMANDS

a
N
i
m
o
o

ww
>

$ INSERT
$UPDATE
$ COPY
$DONE

APPENDICES

PRIME 200 Instructions (Op Code Order)

PRIME 200 Instructions (Class Order)

PRIME 200 Instructions (Mnemonic Order)

I/O Device Codes

ASCII Character Codes

Object File Formats

Assembler Error Messages

iv

W
U
n
n
o
o
o

o
n
t
n

i
t
o
4

c
o
m
n
u
i

&
S
B
W
N
W
L

W
G
t
o

5-10

5-10
5-11
5-12
5-13
5-13

5-15

Figure

1-1

ILLUSTRATIONS

Title

Example of PRIME 200 Macro Assembly
Language Statements

Interpretation of Symbolic Instruction

Example of Assembly Listing

Example of Memory Map

Source Input Line Formats

General Format of Instruction Statements

Assembly and Loading of Memory Reference
Instruction

Assembly and Loading of Input/Output
Instruction

Assembly and Loading of Shift Instructions

Assembly and Loading of Bit Reference
Instructions

Assembly and Loading of Generic Instructions

General Format of Pseudo-Operation Statements

Single Precision Fixed Point Constants

Double Precision Fixed Point Constants

Floating Point Word Formats

TABLES

Summary of PRIME 200 Instruction Codes

Summary of Pseudo-Operations

Numerical Formats in DATA Statements

Page

1-7

1-14

1-19

3-17

3-19

3-21

4-3

4-14

4-17

4-19

3-2

4-2

4-13

SECTION 1

INTRODUCTION

SCOPE OF HANDBOOK

This handbook is a detailed reference manual for the
PRIME 200 Macro Assembly Language. It is organized in
six sections for ease of reference.

This section introduces the assembly language, describes
the action of the program, and discusses the interaction
of the assembler with its companion program, the PRIME
200 Linking Loader.

Section 2 discusses statement formats and language features
common to all types of assembly language statements.

Section 3 contains the rules for forming instruction
statements using PRIME 200 instruction mnemonics.

Section 4 describes pseudo-operations (directives to the
assembler and loader).

Section 5 defines the Macro facility, a way to define
program statements that can be called for execution by
easily interpreted English language statements.

Section 6 defines commands used to invoke functions of
RDALN, routine that merges lines from two or more source
files-during assembly.

The handbook is concluded by several appendices and a
detailed subject index.

REFERENCE DOCUMENTS

The following publications are recommended to supplement
this handbook:

PRIME 200 Programmer's Reference Manual

PRIME 200 Operator's Guide

PRIME 200 DOS Reference Manual

PRIME 200 RTOS Reference Manual

1-1

PRIME 200 ASSFMBLY LANGUAGE

The PRIME 200 Macro Assembly Language has the usual
provisions for symbolic instructions, symbolic addresses,
and control pseudo-operations expected by computer
users. It also offers many other advanced features:

* Free Format:

* Symbols:

* Constants:

* Expressions:

* Pseudo-Operations:

Source statements are independent
of column boundaries and permit
free use of spaces. Multiple
statements per line are permitted,
and statements may be continued from
line to line.

Symbols or Variables assigned to
address and data locations may contain
up to 32 characters.

Wide variety of constant forms:
decimal, octal, hexadecimal, ASCII,
douhle precision, floating point,
literals.

Symbols and constants may be linked
in expressions using 14 different
arithmetic, logical, and shift
operators.

Over 50 pseudo-operations for assembly
control, listing control, loader con-
trol, data definition, variable
definition, storage allocation, program
linking, and conditional assembly.

* Macro Facility: Programmer can define macros to be
called by application-related
language statements. Arguments are
identified by position or flagged
-ty key words. Looping, local
references, and nesting are permitted.

The main purpose of an assembly language is to reduce the

clerical chores required to prepare a binary program that

can be executed by the computer. Of course, it is possible

to look up the binary code for a given instruction and key

it into a memory location using front panel controls. For

example, an instruction to load the A register from

location '377 of sector O would be the octal code '004377.

The octal code for any PRIME 200 instruction can be determ-

ined from the Programmer's Reference Manual. (Also see

Table 3-1.)

But manual key-in of programs is tedious, error prone, and

the bare binary codes can only be interpreted by a pains-

taking analysis. This mode of program entry is usually

limited to key-in loader bootstrap programs and short test

sequences. A symbolic assembly language has become the

universal means of preparing programs of any size. An

assembly language provides a vocabulary of symbolic, or

mnemonic, codes - and a grammar of statement forms - to

represent machine language instructions in a format that

is easily read and interpreted by the original programmer

or any other reader familiar with the language.

Basic Assembly Language Elements

Figure 1-1 illustrates a section of a typical program

written in PRIME 200 Macro Assembly Language. The basic

unit of information processed by the PRIME 200 assembler

is the line. When originated at an ASR-33 Teletype key-

board, a line consists of up to 72 ASCII characters (75

for ASR-35) occurring between carriage return - line feed

characters. When input is from unit record equipment, a

line consists of an 80-character card field.

There are statement lines, comment lines and change page

heading lines. A statement line has a space in column 1,

an optional label, one or more statements, and an optional

comment field. A comment line has an asterisk in column 1;

the rest of the line is ignored except for listing purposes.

1-3

A change page heading line has an apostrophe in column 1;
the rest of the Tine becomes the page heading for all
subsequent listing pages.

A label is an ASCII character string that identifies the
locations count of the first statement in the line.
Examples are the name of the entry point for a subroutine
or the symbolic name of a storage location. These and
other common features of the language are described in
detail in Section 2.

The PRIME 200 processes four types of statements, each
with a unique format: instructions, pseudo-operations,
macro calls, and file merging commands. These are
described in detail in Sections 3 through 6, respectively.

1-4

SECST

cars

FRA

ce

CaF “ See

IRA

NTA “APSA
SR,

JMEe Des

T Rts

JTF Far

7 Res
JTF E

rT

FRITL.

TTF in

rieT eaetslsts)

EHl

Figure 1-1.

DEMO PROGRAMM ERARMEL E

DISELAY FO REG IM PANEL ING

DATA TAG ICATORS COUNT SLL

DELIBERATE ERROR LINE

Example of PRIME 200 Macro
Assembly Language Statements

Symbolic Instructions

The A Register load operation mentioned ahove can he
represented in the form:

LDA '377

where LDA is the mnemonic of the LDA instruction and
'377 is the octal representation of the memory address
where the data is located. The programmer may also control
the flag and tag bits symbolically, as in:

LNA* '377,1

where the asterisk specifies indirect addressing and the ,1
specifies indexing. After heing processed by the assembler
and loader, this statement would be converted into a
hinary instruction word, shown in Figure 1-2. The resulting
word would have an octal value of '144377.,

LDA

 ’

*377e1

[

SO

0 O

\
1 oO O

OP ,
1 x JocSE |

SECTOR BIT

 +ADDRESS——___—

(DETERMINED BY LOADER)

Figure 1-2. Interpretation of
Symbolic Instruction.

1-7

Constants, Literals, Variables, and Expressions

This assembler permits a variety of forms for data
constants, thereby eliminating conversions from decimal
to binary, octal, or hexadecimal. Examples:

1123 -'777 '-1777 Octal

$89AB - $FFFF $-QOFF Hexadecimal

1234 -9999 32767 Decimal

The constant forms shown above are all single-precision
(le. are converted to a single 16-bit data word - 15
magnitude bits plus sign). For decimal numbers, double
precision and floating point quantities may be specified:

1.23BB6 1.23EE2BB6 Fixed Point

Double

Precision

1.23E2 1.1092 Floating Point
Single Precision

1.23EE2 Floating Point
Double Precision

The assembler also accepts ASCII constants:

C'A' (The letter A, left
justified in a 16-bit
word)

C'AB! (The letters A and B
packed into a 16-bit word.)

Another form of constant with a self-defining symbolic
name is the literal:

= '77 Octal

= $39FB Hexadecimal

= 199 Decimal

C'X' (one character) ASCII

ii C'txy' (two characters)

Variables, also called symbols or symbolic names, may
be assigned to identify memory locations. Symbols are
defined by being used in the label field of a statement,
or by the EQU or SET pseudo-operations. The assembler
accepts alphanumeric symbols of up to 32 characters:

A

ALPHA

ABCDEFGHIJKLMNOPQRSTUVWXYZ123456

Expressions may be formed using constants or variables,
linked by 14 different arithmetic, logical and shift
operators:

A+ 3 ALPA*(4 - B) A .LS.(ALPA/S)

A .AND. '3737 BETA .GE.A+$FF

Symbolic Names

Symbolic names may be coined by the programmer and assigned
to memory locations, so that data locations and program
entry points can be specified by self-explanatory codes
rather than numerical values. For example, the load A
instruction could be coded as

LDA* DATA,1

provided the symbol DATA is defined somewhere in the
program as equal to memory location '377. During the first
pass of an assembly operation, the assembler builds a

1-9

symbol table that relates each symbol (also called
variable, or symbolic name) to the location where it
1s defined. On the second pass, the numerical value
of each symbol is substituted for the alphanumeric
expression, wherever it is used in an address field.

Symbolic names can, in many cases, be modified or
processed hy arithmetic operators, as in

LDA DATA-1

LDA DATA*4-1

Pseudo Operations

In addition to instruction statements, the assembly
language provides pseudo operation statements that
give the programmer control of the assembly process
itself and of the loading operation that follows
assembly.

In the example of Figure 1-1, several pseudo-operations
are used. The program example begins with an ABS,
specifying absolute loading mode. An ORG statement sets
the assembler's location count (discussed later) to
"3000. A OCT statement equates the symbol DOS to the
octal quantity '30000. The program example ends with a
mandatory END statement. These and many other pseudo-
operations are described in detail in Section 4.

Macro Facility

The macro feature of this assembler enables the programmer
to define functions that can he expressed in easily
interpreted English (or other) language statements:

TRANSFER DATA TO DAC

TURN ON VALVE 312

Statements of this sort are made possible by a process
called macro definition. With the aid of the MAC and
ENDM pseudo-operations, a system programmer can create
macro prototypes.

1-10

The TRANSFER statement, above, might be defined by the

following sequence of statements:

TRANSFER MAC TO

LDA <1>

OTA <2>

ENDM

The MAC pseudo-operation introduces the macro definition

by assigning the name TRANSFER to the macro and identifying

the word TO as a dummy word (a word that can be used to

increase the intelligibility of macro calls without
being mistaken for an argument).

Variable fields of the LDA and OTA instructions call for

arguments, symbolized by numerals enclosed within angle

brackets. Values for arguments are supplied by the macro

call statements. For example the statement TRANSFER DATA

to DAC calls for the TRANSFER macro to be assembled, with

the symbol DATA substituted for argument <1> , and the

symbol DAC substituted for argument <2>. The TRANSFER

macro would then be assembled as follows:

After a set of macros has been defined by a system-level

programmer, a specialist in a particular application field

can formulate macro calls in plain language to solve his

application problems, without becoming involved in the

details of assembly language programming. Definition,

listing, and assembly are discussed in detail in Section 5.

USING THE MACRO ASSEMBLER

The Macro Assembler translates ASCII source files and
produces an object file, for processing by the Linking
Loader, and an optional listing file, to be printed as
a record of the source language statements and the
octal codes to which they have been translated. The
files may be printed or punched on tape during assembly
or they may simply be stored (on disk, for example) until
they are needed. Device options are specified by register
settings at the start of assembly.

Two-Pass Assembly

The assembler program itself is first loaded into
computer memory. The assembler occupies approximately
4K memory locations; the absolute location in CPU
memory depends on the amount of memory available, and
the type of system (DOS-based, stand-alone, etc.).

To use the assembler, the operator sets up an input
device containing a source program file. Devices to
receive the object files and listing output (optional)
are specified by entries in CPU registers and the
assembler is started.

This two-pass assembler first reads the source file to
locate and assign values to any alphanumeric variables
(symbols) used in instruction or pseudo-operation
variable fields. The source file is then returned to
the beginning and read again. On the second pass, the
assembler substitutes numerical values for all variables
and evaluates expressions, thus converting symbolic
references to 16-bit binary quantities. The assembler
then outputs the object file and a listing, if requested.

Object Output

The object output of the assembler is in a special format
suitable for input to the Linking Loader. Instructions,
data constants, and directives to the Loader are encoded
as blocks of data in various sizes and formats. (For
details, see Appendix F.) When object files are punched
On paper tape, they are in an "invisible" character
format; none of the frames punched on the tape will cause
printing on an ASR. (This saves paper by eliminating
nonsense printout when the ASR is used as the loading
device.)

1-12

Listing Format

The object file is in an arbitrary binary format that is

meaningful only to the loader, but the optional listing

file pairs an octal representation of the ohject code

with the actual source input statements they represent,

in a format that is meaningful to the programmer.

Figure 1-3 shows a section of a typical assembly listing

and defines the main features. The format is organized

in columns, but when long labels or other free format

features are encountered, extra space is used as required.

Each page of the listing begins with a header provided

hy the source statements, and a sequential page number.

The first statement in a program is used as the initial

page header, unless it starts with a quotation mark ('').

If column 1 of any statement contains an apostrophe ('),

columns 2-72 of that statement become the title for all

pages that follow until a new title is specified.

Columns 1-4 are reserved for error flags. (See Appendix G.)

Columns 5-9 contain an octal assignment address location

count and columns 11-19 contain the octal object code

generated by each statement. Columns 21-26 contain a

decimal line sequence number and columns 28-108 contain

the source statement (ASCII Image) truncated if necessary

depending on printer limitations.

CIEL oO oR SHMFT DEMO FROGRARL EXAMPLE

a
e

o
m r

PBs

os ee oy

(Fat 4

“Oo a “Pree

me fet],

~~ i
l

T
y

“
h
e
7

—__-, j(E-USPLAY FL REG IM PAWEL IN

t
d

4
w
a
h

t
o
tTe

7
*

at
Nk

:
=

nan
t

a2
S
r
a

r
e
i

is
m
e
“

—
_

‘t
e!

>

” i
i
7
, = +

a =
b
o

om
,’

"w
eL

y’

a
a

i HHS SS PpRa DYES

cy a TES

7
"

me
te
!

“a

— at
?

w
a
l

~
~
t
i

p
o
,

‘
ai
t

13 JHE FY
OB i ir

THE Bi
rc
PRT.

ATSOEE: TMF 8
JAAOGL DOS ONT Ree
PRT foCA B= PAT

CATA TMD DCATORS COUNT SLL

DELIBERATE ERROR LINE

we
e
A

T
y

e
e
e

a
o

r
e

.
:

ve
e
e

g
f
l

F
e
o
.

1
S
a
t
R
S

.

i
‘e
rs
t.

— —, h
e
e TI
i

n
n
,

Pe
a} = w
e
t

~ = sa
aa
de

or i
t

RL) eliet:

Me Le OF

IRI ee!
kCara: SS RES

PWD OL TMAPD TR Fore iieoS, Cho DOA FREph

Figure 1-3: Example of Assembly Listing

1-14

Location Count

The assembler assigns a sequential location count to each
element in the object code that will be converted to a
CPU memory location. (Instruction statements always
generate one line of code; data defining pseudo-operations
may generate one or more lines, depending on the constant
format.)

The starting value for the location count is zero, unless
another origin is specified by the ORG pseudo-operation.
The assembler normally increments the location count by 1
after each entry but a new count can be established by
another ORG statement at any point in a program. In the
example of Figure 1-3, an ORG statement sets the origin
to '3000 and the location count is stepped sequentially
from that value.

Figure 1-3 also shows how symbols are assigned numerical
values in relation to location counts. The symbol A for
example, is equated to '3000 when it is used in the label
field of the IRS instruction in that location.

The address field of the JMP instruction in location 3005
contains a reference to the symbol A. Notice that the JMP
instruction is assembled with the assigned value of A
('3004) in its address field.

Symbol Cross Reference Listing

At the end of the assembly listing appears a cross-
reference listing of each symbol's name (in alphabetical
order), the symbol's assignment address or value, and a
list of all reference to that symbol. Each reference is
identified by a 4-digit decimal line number.

The information necessary for the cross-reference listing
is stored in the symbol table. If, during assembly, the
symbol table becomes full, cross-reference information is
sacrificed in order for assembly to continue. If this
occurs, the cross-reference listing will contain only
the alphabetic symbol names and their assignment addresses.

If listing is inhibited (by NLST pseudo-operation), the
cross reference listing is not listed. The same listing
device is used for the cross-reference as is used for the
Pass 2 assembly listing. —

The last line of the listing specifies the version of the
assembler and the number of lines containing error flags.

1-15

ASSEMBLER/LOADER INTERACTION

The Linking Loader is required to interpret the object
code blocks, form 16-bit binary instruction and data
codes, and load them in the proper locations of main
memory. The actual location in which a word is loaded
depends on whether absolute (ABS) or relocatable (REL)
mode has been specified. (ABS is the assembler's
default mode.) In absolute mode, the assembler-assigned
location count becomes the actual instruction location.
In relocatable mode, an address offset, entered into a register
at the start mode of loading, is added to the location count.
The F32R and F64R addressing modes further modify this procedure.

Two or more relocatable programs can be packed together anywhere
in memory without wasted space, even though the final locations
are unknown at the time of programming. The "linking" feature
of the assembler-loader combination permits main programs and
subroutines to share common data locations and entry points.

Desectorizing and Address Resolution

In assembly language there is no way to specify that the
sector bit of memory reference instructions is to be set,
except to count instructions and data locations and
deliberately keep track of the current sector. Ina
program of any length, bookkeeping of this type would
become tedious. Instead, the assembler and loader take
over this function. They jointly keep track of sector
information and set or clear the sector bit of each memory
instruction at the time it is loaded.

The binary object code output of the assembler includes
a 14-bit or 15-bit address for each memory reference
instruction, depending on whether or not extended addressing
is in effect. (See EXD pseudo-operation).

In 164% sectored addressino mode (E16S). the assemhlerpresents a 14-bit binary address to the loader, along
with an indirect bit and indexing bit. As the loader
processes the instruction, it compares the instruction's
14-bit address with the current location count. If the
instruction and the address are in the same sector, the
loader truncates the address to 9 bits, loads it into
the instruction address field (bits 8-16) and sets the
instruction's sector bit (bit 7).

However, if the instruction's 14-bit address specifies

a different sector than the one containing the instruction,

the loader assigns a location in a table of cross-sector

indirect words and loads the 14-bit address (plus

indirect and indexing bits) in that location. The

indirect bit and address field of the instruction word

itself are set to point to the indirect word. Since

the indexing bit is moved to the indirect location, the

index bit of the instruction itself is cleared.

Ordinarily, the table of indirect words begins at location

'100 of Sector zero and grows upward as required. However,

another base sector can be specified by the SETB pseudo-

operation, and the starting location for the links can

be altered by a register setting at the time of loading.

Extended Addressing Mode

If extended addressing mode has been set up by the EXD

pseudo-operation, the assembler presents 15-bit addresses

to the loader. (Bit 2 of the address is interpreted as

a magnitude bit rather than the index bit.) The check for

cross-sector references is made as usual, and an indirect

link is formed if necessary. The full 15-bit address

is stored in a resulting indirect link location (indexing

cannot be specified).

It is important to specify that code be loaded in the

mode in which it is to execute. If the source program

contains a EXD pseudo-operation, extended addressing mode

must also be set up for the CPU by an E32S or E32R

instruction.

Loading Subroutines

If the main program calls for external subroutines, the

loader halts and waits for the user to assign the library

or other files containing subroutines to the input device

already selected. The loader then identifies and loads

every subroutine called by the main program. Subroutines

are desectorized and linked together in consecutive

memory locations unless new ORG values are assigned.

Memory Map

At any time during loading of a series of programs and
subroutines, the loader can be directed to print a
memory map. The map shows the locations occupied by
the program in memory, specifies locations for common
storage, shows subroutine entry locations, and identifies
subroutines that have been called but are not yet loaded.
A memory map for the program example discussed earlier
appears in Figure 1-4.

LOADING AND OPERATING PROCEDURES

Loading and operating procedures for the Macro Assembler
vary according to the type of installation, memory size,
and supporting software. Appropriate procedures are
available in one of the following documents:

PRIME 200 Operator's Guide

PRIME 200 DOS Operator's Guide

HOTART JVLOVI KHlGn Jovl4 *NAMES 20055 KOUNN Z2S7T7TT
*PBRK 0J0S5U014 KBASZ VJULOU LIst JIVI1

Figure 1-4. Example of Memory Map

1-19

SECTION 2

GENERAL ASSEMBLY LANGUAGE RULES

The following language features are common to all types of

statements. Features that are peculiar to instruction

statements, pseudo-operation statements, and macro calls

are defined in later Sections.

FREE-FORM INPUT TEXT

Input text for the PRIME 200 assembler may be prepared in

a number of ways. Perhaps the most common is text prepared

at a teleprinter with the aid of the PRIME 200 text editor.

The resulting source program exists as a file in memory or

on the disk, and can be punched on paper tape in ASCII

format. For text prepared in this way, the basic unit of

information is a line, as delimited by carriage return-line

feed (CRLF) characters. Because of the mechanical limitations

of most teleprinter devices, lines are usually limited to

72 or 75 characters.

Input text may also be coded by hand on paper forms which

are then keypunched to produce unit record cards. Each

card is equivalent to one teleprinter line, but may contain

up to 80 characters.

Line Format

PRIME-200 assembler input lines consist of labels, statements,

and comments strung together in a free (column independent)

format without regard for tabulation positions or arbitrary

column boundaries. The assembler recognizes statements within

a line, and subfields within statements, by delimiters

consisting of spaces, colons, commas, backslash (tab character),

and semicolons. (Labels and comments are optional.) For

examples see Figure 2-l.-

Labels: Labels are used to assign mnemonic codes to memory

locations - for example, the name of a subroutine entry

location or the symbolic address of a constant or storage

cell. Labels are optional. If a line includes a label,

the first character of the label must be in column 1 of the

line. (Otherwise column 1 must be blank.) Labels must —

conform to the character set and size prescribed for variables.

2-1

OPTIONAL | ORMORE SPACES 2 SPACES OR COL. 72

A
(’ UN Ay

SINGLE i \ a \
STATEMENT | LABEL / ; STATEMENT i COMMENTS
LIN | / | I \

\ fl 1 |N So COLON |

| gi ' 14MULTIPLE |
STATEMENTS | |LABEL STATEMENT |:

|

STATEMENT | COMMENTSPER LINE | | :

(ASTERISK !

| | |
COMMENT LINE

|

* | COMMENTS)
|
| | |

a | ! SEMICOLON
‘ ' |
LABEL STATEMENT

MULTIPLE
LINES PER ,
STATEMENT

STATEMENT CONTINUED

APOSTROPHE

CHANGE
PAPER HEADING

|

, NEW PAGE HEADING TEXTLINE

Figure 2-1. Source Input Line Formats

Statements: The PRIME 200 assembler accepts four types of

Statements: symbolic instructions, pseudo-operations, macro

calls and commands to the RDALN source file update program.

Each of these has a different sub-field format, and is

described in a later section of this manual.

If the line does not have a label, the first statement begins

with column 2 or the first non-space character. Otherwise

the statement begins with the first non-space character

following the label.

A statement is terminated by two spaces or column 73,

whichever comes first. Subsequent characters are assumed

to be comments and are ignored except for listing.

Multiple Statements per Line: Statements can be packed two
Or more per line, separated by colons (:). The first
non-space character following the colon is processed as
the first character of the next statement. The last
statement in the line is terminated by two spaces or column 73,

and the rest of the line treated as comments.

If the line begins with a label, the label is attached to
the first statement during assembly.

Continued Statements: The last statement in a line may be

interrupted by a semicolon (;) and continued on the next line.

The rest of the line following the semicolon is treated as
comments. Processing of the statement continues with the
first non-space character in the following line. Semicolons
occurring within comments are not interpreted as a continuation

request.

Comments: All text following column 72, or following a

Statement and two or more spaces, is treated as comments,

and ignored except for listing. Comments can contain all

printing ASCII characters.

Comment Lines: If column 1 of a line contains an asterisk

(*) the rest of the line is treated as comments. (Comment

lines can be used to continue comments begun in the preceding
statement line.)

Change Page Heading Lines: A line that contains an apostrophe
(tT) in column I is assumed to contain the text of all
subsequent page titles.

2-3

Examples:

of the free-form input features.

7 ie | wt " “t Dot cette eres sete sere T fe a T ri fe

ORPDSE CLS
Lad

Me OE F
fe REE PBLess 1 Dory

OE

CEL

ie

Hoe TEST OOF PREE
FES

Tot iLPL

RE OTR ALPRY

T Fees

Le

Pat BETR.

Lk. a CPEAl HovePEST
PIE

it FF

Ley 1:

MILT TLE:
BS ERA At me!
ieGEMS

 Gel GREET
ARIE Cheb RED: TARA STAG
BES EH,

2-4

LABELS,
MIEOe TEELOOPCRSThebesPa)ehSe

CEPT

TASTRLTRS

The following assembly listing illustrates many

LO ALPR
ABCDEPGH EDELMMORPGSTUMSEoSPPS

AID LOD AE CMTT MUAT De

CPEAT

PER LODME,
PRY

CONSTANTS, VARIABLES AND EXPRESSIONS

Constants

Symbolic names and address expressions used within the

assembler program statements may contain decimal, octal,

hexadecimal or ASCII constants.

Magnitudes: Numerical constants used in expressions are

Limited to the magnitudes that can be represented by the

single-precision (16-bit) PRIME 200 binary arithmetic word:

Type Max. Negative Max. Positive

Decimal -32768 +32767

Octal -'100000 +'777777

Hexadecimal -¢4000 +$7FFF

Leading zeroes can be omitted. If the sign is omitted, the

quantity is assumed to be positive.

Double precision and floating point constants may be set

up using the data defining pseudo-operations described in

Section 4. However, these constants cannot be used within

expressions.

Decimal Constants: All numerical quantities are assumed to

be decimal (base 10) unless they are tagged with the octal,

hexadecimal or ASCII designator symbols shown below.

Octal Constants: Octal constants (base 8) are identified

by an apostrophe or O designator:

'123 or O'123' or 0'123

'+123 or O'+123' or O'+123

'-123 or O-123' or O'-123

Note that the sign follows the octal designator. In

expressions, however, theminus operator must precede the

designator: SYMBOL-'123 is legal, but SYMBOL+'-123 is not.

Hexadecimal Constants: Hexadecimal constants (base 16) are

identified by a dollar sign or X designation:

‘$30BF or X'30BF!

$-30BF or X'-30BF'

2-5

Here also the sign follows the designator, but in expressions
the minus operator must precede the designator: SYMBOL-$30BF
1s legal, but SYMBOL+$-30BF is not.

The hexadecimal digit values are:

Hexadecimal Digit Decimal Value

0 O
o

0-9
10
11
12
13
14
15M

M
o
O
w
Y
S

ASCII Constants: One or two eight-bit ASCII character
codes can be represented by the following notation:

C'A' Represents the ASCII code for the
character A, left-justified in a 16-bit
Field with a trailing space character.

C'AZ' Represents the codes for the ASCII
characters A and Z, packed into a 16-bit
field with A left justified and Z
occupying the rightmost 8 bits.

Any printing character of the ASCII character set can be
used.

Examples:

PE Vee 0 GHEE Fe Deby CRT FA me
| RS EF CATR monRen

Variables

Variables are alphanumeric strings, often called "symbols"

or "symbolic names", that are equated to numerical values

in various ways. If a variable is used as the label of a

statement, it is assigned the value of the location count

for that statement. Variables may also be defined by the

SET, EQU and DAC pseudo-operations described in Section 4.

Variables can be from 1 to 32 characters long. The first

character must be a letter (A-Z),

may be letters, numerals (0-9) or

Variables containing more than 32
are allowed but only the first 32

by the assembler. Variable names

defined more than once).

Examples: The following examples

Variable "VARI35$" can be used.

Bons: GE AALSCRE Pee

Re Soe BMP

BERLE 4 CER VRB DS

BSA: GL ERLE Ce

2-7

and the remaining characters

the dollar sign ($).
characters
characters are recognized

must be unique (cannot be

show some of the ways a

Lor WAR T 254

LCF WAR TESE+ re"
ae SET “dese

Ihr HRP: Tekot

Expressions

Expressions consist of constants or variables joined by
operators. All variables within an expression must be
defined as single precision values or addresses. Absolute,
relative and external values cannot be used in the same
expression.

Examples:

opm Se eg SRE Bonde LD BLE —As seek er ype [USE abRLRES
CpALS rd esee =A

Operators: The PRIME 200 assembler is able to process the
following arithmetic, logical, relational and shift operators
while evaluating expressions in instruction address fields,
arguments in macro calls, etc.

* Arithmetic Multiply

/ Arithmetic Divide

+ Arithmetic Add

- Arithmetic Subtract

OR. Logical OR (16 bits)

.XOR. Logical XOR (16 bits)

. AND. Logical AND (16 bits)

EQ. Relational EQ (resulting in 0 or 1)

.NE. Relational NE (resulting in 0 or 1)

GT. Relational GT (resulting in 0 or 1)

LT. Relational LT

GE. Relational GE (resulting in 0 or 1)

LE. Relational LE (resulting in 0 or 1)

RS. Logical Right Shift (16 bits)

LS. Logical Left Shift (16 bits)

2-8

Space Conventions: Operators may be followed by a single

Space (optional). The logical, relational and shift operators

must be preceded with a space so that the period beginning

these symbols will not be interpreted as a decimal point.

Operator Priority: In expressions with more than one operator,

the order of evaluation is governed by operator priority.

The operator with the highest priority is performed first.

In cases of equal priority, the evaluation proceeds from

left to right. Parentheses may be used to alter the natural

order of evaluation. |

Priority Operator(s)

Highest x /
+ -

.RS. .LS.

.GT. .GE. .EQ. .NE. .LE. .LT.

.AND.
OR.

Lowest ~XOR.

Relational Operators: These are most often used in the

argument field of IF pseudo-operations. However they may

be used in other expressions. Examples of the correct

Syntax are:

qoTESTO RELAT LOMAL CRERATIOS

REALE) of AESTE OAT oS €o SB EM fe & . EGS a

AGRA

PAE

AAAS 0 CRETE meyTA SO ME B.S AE HE. &iT
;

+

ARIAT RSE DATA OS GT & & GT &. 6 2 GT =

LECTKae:

» LT. OS= ‘woh L
e a
e as —
~
4

=z L
h f~ — ft _f i

t
+ i
T ts

AAAI CSE CATA S&S GE & & .GE. & «& GE. &

et ght me, ert mee

fa
!
= "a
no
le
!

me “a
ua
le
’ Pz DATA S&S LE & S .LE. & & LE &

CASA,

PAS ETENA

Shift Operators: The shift operators perform a logical
right or left shift of an expression, using the syntax:

Argument _LS. Shift Count Expression
Expression

.RS.

where the shift count expression has a numerical value from
1 to 16.

Examples:

i
i
i

t
te
d

f
d

of

A tire een TEST SRD ET OPERTOR:
* PRT WEL ORS TE. A Loo, “PEL Los

i
t

i
d

t
S
)

Ra
hy

BS

MENA] er]

Ae AS

ASRSA

ELL Cpe DATA “LESLEY UR, Le
EE]et]

7
,
a

i

Wea ak

Z2-10

Logical Operators: Examples are shown below.

a m
h

dimerPEST LCI DAL CPERANTO16
Ae DATA “Adee mR ° Be

DATA LGR SR eee.
DATA TAL RIND Reed

t
y
)

ta
t

ta

Sea

Sign Conventions: In expressions containing the + and -
operators, integer constants nay be signed:

M2 BPI Coes Poe Lt SILCH-#2E
AS BLP OBL L. 2ILCH+#~ZE
M2. BLESS CoS L. ALPHA-* 27
C2 EP CGE LCF ALPHA 27
HOE CBP 2 TLICH DEC: B
AeA. CLS ALPHEY CATA Sey

-r
,

a
a

,

a

I

1 =

I

[

[

I

SECTION 3

INSTRUCTION STATEMENTS

This section defines the form of all PRIME 200 instruction

statements, shows how instructions are processed by the

assembler and loader, and covers syntax elements peculiar

to instruction statements.

Table 3-1 lists the instruction mnemonics acceptable to the

assembler. Note that some instructions have two mnemonics;

those in parentheses are accepted for compatibility with

other assemblers. Mnemonics in Table 3-1 are in order by

functional type. The instructions are sorted by op-code

in Appendix A, by class in Appendix B, and by mnemonic in

Appendix C.

INSTRUCTION STATEMENT GENERAL FORMAT

The essential elements of an instruction statement are an

operation field and a variable field, separated by spaces,

a comma, or a backslash tab symbol (\), as shown in

Figure 3-1. The content of each field depends on the type

of instruction being processed. Memory reference instructions

have different requirements than I/0, shift, bit reference,

or generic instructions. Label and comment fields are

optional.

Label

'f a label is present. it is assigned the current location

count and entered in the symbol table.

Operation Field

The operation field must contain one of the PRIME 200

instruction mnemonics listed in Table 3-1. An asterisk,

for indirect addressing, applies to memory reference

instructions only. Parentheses are ignored:

AAcade: OS Bee Cee iaa is

Rese ekRIE CLS LDF List

Aiodd: dt AeA S CLES LDR ie

A124: 82 AGES Calo CLD oe Lee

my) ASS
ee

ri

I

Pike

bye

he

rife

fib:

i

ri

ry

ie

(ike

rp

13

rm

V4

Wa

er

ia

ic)

%

ri

m4

fib

tik

CIP CUTE:

Table 3-1.

xe Senne eee rere tnt ese some tees boree onnee

{Ad

Lage4

ae

ite}

Le

LE

Ls

AAASEL

ebet

Leber

ADLh

Tt

ay

L428

LenS

Laeeiite

LahSLA

LebLobe

LanSee

Lange

Leticia

PICAES

MSLdL

Le

LY

Summary of PRIME 200
Instruction Codes

REG TSTER OFERATE

rR

RE

Fey

1 Ry

mT FY

Past

mT

THA

TAF

UE

mE

CER

sonze mst tees cneee bene

MLEAR A

CLEAR E

LOA CRLER

LOAD A

TORE.

| RALs

TIPE,

TRAMSPER &

T MISE

THDE Ss

MRETOM DS GER THT T Dok
ees nee meme meee apes nteee nome,

RrbAto Fi

CASSEBER

CASSEMBLE

THTERICHAMGE PETC

THMTERICHAMGE

TRANSFER A TO BG AND CLEA

TO RO AAD TLERAR

ABIL
mM RE

SE THESE
PEARS
FA

m
m

COMPUTE EFFECTIVE ADDRESS

ArT THAMETO
See mee teen CORRE mend eemtpe cutee ween wanes nenee

Allals

mal TFS

AY IFA

FF

CPLA

tSLR

Abt PEPR

ECTRIEST

Pol oA

PEPacey

ADD ONE TO Fi

Fults Tun Ti oA

FRC FY

SUETRALT CANE FROG

THO FRCP ASIETRAT
ADw mee LT

me Toh

STiGh CIF A

Diab CIF

= TOM OF A

COMPLEMENT FA

POSITION Fok THTEGER

Ps TTI Ch For

el

“FT

=F T

mHAMIGE

The

DTV IDE

Th A

Th m-EBTT.

PLUS

AMIS

mE. ToS TGhM mF

MOLT TFL

{THTEGER OTVIDE

~

H

BET.

TMi ETT 3

PL

bie

rr
PF
hr

Trt

To

1

yer

ri

i

Ta

Cy

i

Tj
M4

ie)

ie

ti

i

fe)

i

ie

Ne

m4

m

iaa

bit
aL
Be

a

re?

Leeee
L448

BASESfawn Faas Feo” vas!

a

+
t

Table 3-1 (Cont)

Catt
tee T
DRC
Pe

— DOWBLE PREC TS Tit

DOUBLE PREC TS TOM

DOUBLE FRETS DOM
DPOWBLE FRED TS TOM

THRELIT “cuiTRLT

fees cette onsee Seett meee ereee eaves camte thee

COTROL,

HLT

HME

Es

FeEs

AL.

DRL.

Erie

L.pirt

er:

Ek
one onwrt | .
at WAL

‘J T Fe ‘,!

CRIMP 3

E-Lec RRA

ESSCERA

sbres cones eeoee

CLITRUT

SRIF IF
IMFUT

LIAL
=TORE

AGT

i

CheTRCH.

SET

Th A

FULSE

QUITEUT FRC A

TMFLIT

QWITRLIT SER TAL

SERIAL THTERFACE Tt A

IHTERFACE FROM A

SET INTERRUPT MASE

HL.T
Mit ORERAT Dot

SET C-BIT

RESET

ENTER
ENTER
EMTER:
LEAWE
RESET
ENTER!
EMTER
EMTER:
SWFERY DT Sk

I—-B ITT

SINGLE FRECTSIONM MOtr

COWELE PRECTS TOM Mote

MACHINE CHEE MODE

HACHINE CHECK MODE

MACHINE CHECK.

LEE SECTOR ADDRESSING NODE

S2K SECTOR ADDRESSING MODE

EEK RELATIVE ADDRESSING MODE

ALLL.

VERTF

fife

bile

ia
1
a

ie

ry

i

i)

i

i
ri

i
mi
i

i

Ltd,

Lat

4847.2

LansLL

Jes4d14

148416

LAet1s

+LSNM

AAASAM

Bed LEMH

RLShed

Bel EANIM

iidad

Table 3-1 (Cont)

LG TRA.

FINF

ERA

Chr

LEG

1 WE

LE

LE

LT

eomee rees mens ape seams meen comet smnee

EM! Th

CAT

Thdk:

TK

A SLiGk >

CLG 3

AC To A
FeCLUSIVE OF To A

COMPLEMENT FF
COVERT A= TO TRUE
COVERT “CA=85 TO TRUE
COMMERT Fst) TO TRUE
CONVERT A=) TO TRUE
COVERT FAS To TRUE
CONVERT Ao To TRUET

h
a
T
T

ENABLE INTERRUPT

TINHTEIT INTERRUPT

EMTER STANCAROG INTERRUPT Moe

EMTER VECTOREO INTERRUPT Mone

CLEAR ACTIVE INTERRUET
TRANSFER CONFUT® STATUS KEYS To A
TRANSFER COUTFUTS FOTO STATUS KEYS

LEFT LOGICAL

RIGHT LOGICAL

LEFT ROTATE

EIGHT ROTATE

LEFT SHIFT

FETGHT SHIFT
LONG LEFT LOGICAL.

LOMG FIGHT LOGICAL

OMG LEFT ROTATE

LONG RIGHT ROTATE

Loh LEFT SHIFT

n
e
t
t

D
Y
T
D

3-4

3

i

i

Wi

mi

ie)

Ci

Pike

rife

iF

ie

C4

re
ry

7

ri

ri

ci
ie
i
i

Fite
Fh:
3

Mm

ie

Cy

a
d

ca
el

i
a
t

P
e

f
3

ma
i
m
f

i
m

P
R
s

i
m
i

i
,

i
y

S
s

m
i

—
,

m
i
i2

S
t

+ =
x

a
B
e

‘a
ke

:
=
,

s
a
d

—
,

=b
i - m
e =

m
i

f
j

a
fi

a
fe

o
i
m

‘a
t!
o
I

m
y a
!

‘aa
h!

m
I

‘on
to! a
t

=

Table 3-1 (Cont)

LPS LOM RIGHT SHIFT

Hr NORMAL. Tk

mA TEAMSFER SHIFT COUNTER TO A

BYTE MAN TRULAT TOM

TA TMTERCHANGE BY'TES OF A

Ti THTERCHANGE BYTES OF A AWD CLEAR LEFT BY'Te

Tike TNTERCHAHGE BYTES OF A AND CLEAR RIGHT BYTE

ee CLEAR LEFT BYTE OF A

CPAP CLEAR RIGHT BYTE OF A

TRANSFER AMD SE TP

JTF WIAD TT TOMA. UPF

aT JUMP TO ER + 2 ANG STORE F IN EA

ok UNCON T TIONAL SET

TRS THCRENENT. REPLACE MEMORY AMO SEP

Thr TNCREMNENT. REPLACE INDEANG SET

Dok DECREMENT REPLACE INDEX AND SE TP

mrs COMPARE WITH MEMORY

CAS COMPARE WITH ZERO

(SGE2 SETP OM PL

ShTo SE TF OM MIMS

(SEG? SETP Ch mERI

' CHES SETP OM HoT SER

=laT SKIP CM GREATER THAN SER

rd SET Ob LESS THAN CF EMUAL TO SERO

Shoe SEIF Ot BIT 16 SERCO

Sol. fd SE TF Cit BIT 16 ONE

Std SEIF itd BIT Mo SET

SARKd SE TF Ch BIT MW RESET

keen SKIF Ch C-BIT SET

mR SKIFF CW C-BIT RESET

SMSC SeSo SEIF Oh nACH INE CHECK SET

SMCRCSEMS SKIP ON MACHINE CHECK RESET

3
7
7
D
r
o
n

D
r
m
T
t
H
p
D
p
t

T
r

f
y

:
™
,

he
el

ao
t

a a

Table 3-1 (Cont)

ote oer
onwoe, bow
seed rast

ers cess

H COWBLE FRECTS TOM Protor

et: E

CLASS

SECUTED

ALTERNATE PNEMON TC

CODES :

E'

ER

5

ini

Pi Fe!
a

TRAE TO

E

BIT REF
~ GENERIC
~ INFUT
— MEMORY

SHIFT

SKIP
Se TP
SELF
SELF

itd

Ltd

itd

Citd

HONE

MOTE&

MUST BE

SUBRCWIT THE

CF

EREMICE

CITRLIT

REFEREMICE

Atl! OF

SENSE
EASE

TH EFFECT

SEMSE

MF SENSE

SWITCH HM

SMITCH WH RESET

CSEE

Sh THES.

SAM I THES

SET

DEL.

1-4 SET
i-4 SET

SGL.

ROMPATIEILITS WITH OTHER ASSEMBLERS

Variable Field

All except the generic instructions require an entry in the

variable field that can be evaluated as a 16-bit single-

precision quantity. The types of expression that can be

used are summarized in Figure 3-1. If the expression is

followed by ",1' (memory reference instructions only) the
index bit is set.

For memory reference instructions, the variable field,
indirect address bit, and indexing bit, interact to form the
instruction's effective address.

Input/Output instructions interpret the variable field as
the device code and function code of an I/O device
controller.

For shift instructions, the variable field specifies the
number of bit positions the A and B registers are to be
shifted.

For bit reference instructions, the variable field specifies
the panel sense switch (1-16) to be tested.

Generic instructions ignore the variable field.

Asterisk (Current Location): An asterisk in the variable
field represents the current value of the assembler location
counter. The asterisk is used in address expressions that
describe a displacement from the current location:

COUNT IRS ALPHA
JMP *-]

JMP COUNT
Both JMP instructions point to the same location, but the
one using the asterisk does so without using a symbolic
name.

Double Asterisk (Initially Zero): A double asterisk in
the variable field causes the assembler to load zeroes in
the. 9-bit address field and the sector bit. (Indexing and
indirect addressing are normal.) This convention is used
when the desired location is to be developed or modified by
other instructions or is not known at the time of assembly.
For example:

3-7

J
BACKSLASH(TAB)
SPACES OR COMMA

\.

LABEL OPERATION FIELD VARIABLE FIELD

OPTIONAL
(FIRST STATEMENT
IN A LINE ONLY)

' \
NOTE |

C oe

wool

C N

MNEMONIC % EXPRESSION iI

ASTERISK SPECIFIES ,| SPECIFIES
INDIRECT ADDRESSING INDEXING
(NOTE 2) (NOTE 2)

Ge >
"40 CONSTANTS
$20

NOTES EXAMPLE|. IF MORE THAN IO SPACES | SYMBOLIC NAMES:
FOLLOW THE OPERATION ALPHA VARIABLES OR
FIELD, THE ASSEMBLER SENDSTYP+CHAR ENTRY POINTS
ASSUMES THERE IS NO

AIRESCREDAND ALenneaEXAMPLE*2-1+ALPHA EXPRESSIONSTHE LINE ASCOMMENTS. exawPLE.LS.5
2. OPTIONAL. APPLIES
MEMORY REFERENCE =49
INSTRUCTIONS ONLY. 2°37

LITERALS
=SAF

ZAXY

*+3 RELATIVE TO
#-"77 CURRENT LOCATION
*+ALPHA

} 70TOBE ASSIGNED
a

Figure 3-1. General Format of Instruction Statements

3-8

, m
i

+,
U
S
A
)

o
e
h
g

4
d

~~
,

4
i

os
f
e
y

fs
,

'
H
e

o
y
T
m

Equals Sign (Literals): A literal is a constant preceded
by an equals sign, as in:

SSA TR BRASS CRFS La a Le COWSTRL

The assembler associates the numerical value of each literal

with the symbol used ('100 in this case) and reserves a

storage location for a constant of that value. Any later

reference to a literal of the same value addresses the same

reserved location, even if a different constant format is

used:

Bea IS RNS CEMSNE 9 LF seh CHESAIDED IMAL 3
SOS AT EE Ce LF = NEL TRI. 3

Literals are self-defining. The name of the literal
identifies the values of the constant to anyone reading the

listing, whereas names assigned to constant locations by

SET or similar pseudo-operations are meaningful only to
the original programmer:

K100 SET "100

LDA K100*3

Actual locations containing literals are not assigned until

the assembler reaches a FIN or END pseudo-operation. All

literals assigned up to that point are then assigned

sequential locations. On the final assembly pass, the

address fields of statements that reference the literals
are filled with the appropriate locations:

CREEL beeTEST CF LITERRLS AMD FIM PSEUO-OF

Gy: i Sees CBSE TFA a.

a Me BSACSL a aaLEE

re heb ASAS CBRE 3 = TRA ae LB

SRE RIEL be} GEIS FoR DUNE LITERALS HERE

Sel EA] BS

ALAR RAGA Ar

1GOS BSS Cet LCR =)Ge GENERATE NEM LITEFR..

ASAT: Ga ASA CBSO AEE mLBe

ASAE: FeBSRCRE =TA ae Leer

CARS 3 Fit

41: OS GERCet 1.CFA aeAES

qe: He GSS54 Cakes ADC axe EAL.

AWE: Geb Beas CABS =TR mee" TAS

ABSA CGP EMC

S4: Beds
S55: EISEh

ASCII Literals: Literals can be set to equal the binary
codes of one or two ASCII characters. The form = cry: loads
a character (X, for example) into the left-hand byte
(bits 1-8), and loads a space character into bits 9-16:

BSR TIEREOS CO RIRF SIS Lory aI RSCIT BTGIT #. PACKED LEFT

The form =AXY is loaded as two characters (X and Y, for
example), with X in the left-hand byte (bits 1-8) and Y in
the right-hand byte (bits 9-16):

ASAP A GS RE LCF as iD bite ASTI GLGITS iy

(For ASCII character codes see Appendix E.)

By Se Tabs

eye 15435

3-10

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions are assembled as shown in

Figure 3-2 and the following listing examples.

I ha
ck

!
Tm
,

h
y

I
,

§
t
y
)

t
a
t

b
s
s

m
t

Sa
ck

T
r
;

=
T
h

m
a

i
3

P
s
)

f
a

P
e
p

T
e
a

f
a
y

5
T
a
e

fe
ct
P
o
A
e

d
z

-
+

po
d

ta
i

3
—

+
re

n
5

r
a
e
e
|

w
e
e

e
e

it
)

£

CELEES

CeaSr

LALEe

CELBio

PELE

SELRE

SLE

MALee 3

PRMD ECS o

Leet

SELES

TELA

DLE

PALees

aa

PEELPE

PALPL

CALPS

CELPS 3

PLFh

CEPE

SELES

tes stsee neers meee

FALL. FFA

BETA

PTEPUFey

JF

LDF

AMR
=TR
FrFe
FLL

ml TEs

IT

TRS
Bee
fee:

PVE

ThA
Fis

fay
me
LCs

PL
CeeT
Erica

DSBak

REFERER Tht

” LE

ALFA

ALFA

FILA
sdALFA

AILLF'A

RETA
de

BETA

BETA

BETRA
GAIA

GAMA

46

BETA

BETA

BETH

BE TRA

BETA

BETA

Hood

i.

TNSTRLCT Tob.

SOURCE STATEMENT ERA* ALPAs

C1 FO 0 ALPA="I2I5

OCTAL PART ’
OF ASSEMBLY O1221: 65+ 81215 (#160)

 LISTING |

ASSUMES LOAD MODE
IS ABS. ALPA IS IN
SAME SECTOR AS
INSTRUCTION

ONOOO N GG \
INSTRUCTION ! 67 IG
WORD FORMED |!1/1! 0141/01 tlo414olooi4sls ;
BY LOADER jo f fj = I I i 1 ff

. 1 x~~ s * ~- J
op ADDR

Figure 3-2. Assembly and Loading of

Memory Reference Instruction

3-12

Operation Field

Mnemonic: The operation field must include one of the PRIME 200

memory reference instruction mnemonics shown above and

listed in Table 3-1.

Asterisk (Indirect Addressing): An asterisk following the

mnemonic specifies that the instruction word's indirect

address bit is to be set.

Triple Asterisk (Dummy Instruction): A triple asterisk in

place of an instruction mnemonic is a pseudo-operation

code that causes the assembler to form a memory reference

instruction with an op-code of zero. Another asterisk may

be added to specify indirect addressing. The variable field

of such a statement is treated like any other memory

reference instruction:

CRUSE ook

CRPSE eeeeeETT CREROTPe ss

GS Gaede 0es dads

ie GAALeis ages Las

TOS: ES RCs as Es

Gi GAAS CLSA oh: Lis

CEASEL ose

‘a
3

!
‘..

m
fh

“
C
P
s

=
o
m

ba
b

Ma
b

ta
y

ta
t

he
d.

t
t
e

l
s

i
i

ha
na

T

Variable Field

The variable field of a memory reference instruction contains

an address expression (symbolic address) and an optional

indexing symbol (,1).

Symbolic Addresses: Addresses are specified by any constant,

Variable, literal, or expression that can be evaluated as

a single-precision 16-bit number. The sign (bit 1) is

disregarded, and the magnitude bits (2-16) are interpreted

as a memory location in the range from 0 to 32,767.

Addresses may be processed further by the loader if

relocatable load mode is specified by the REL pseudo-

operation. After loading, the way the CPU interprets the

address depends on the addressing mode, controlled by E165,

E32S, and E32R instructions.

3-13

Indexing (,1): Indexing is specified by a "',1" following the
address expression (optional). The form ",0'" is interpreted
as non-indexing. Therefore the 1 or 0 can be replaced by
an expression using relational operators that returns a
value of 0 or 1. For example in the statement

Se AER) CGE EDARPTRLE LDR ALPHA. TEST El SSfan tees:

Oe CAGE TEST SET 5

aE

indexing results because the variable TEST equals 5 at the
time of assembly. This feature would be useful mainly tor
conditional assembly operations.

For the LDX command, the assembler set the index bit, and
for STX, the assembler clears the index bit. Indexing
cannot be specified in these instructions.

INPUT/OUTPUT INSTRUCTIONS

Input/Output instructions are assembled in the form shown
in Figure 3-3. Label and comment processing is normal.

Input/Output instructions are identified by a 6-bit operation
code that occupies the indirect bit and indexing bit positions.
Therefore, indexing and indirect addressing are not permitted.

The variable field must contain a four-bit function code
concatenated with six-bit device address code. The resulting
10-bit code is usually specified in octal notation, as in
Appendix D, but any kind of constant, variable, or expression
is acceptable if it can be converted into a meaningful
10-bit code.

Examples:

SEDGE eeeTE LASTRLICT Ls
isee ASAOba rin "es
ASS PRL Ceo Sk “La
AyAe LPRIAS CRPAaT 3 PTE “1h
BA SAY : TEBE Cede a THF “Lee
Fad- LPAY A CaS QTR “Las

CLSot

3-14

SOURCE STATEMENT OTA 123

OCTAL PART
OF ASSEMBLY
LISTING

INSTRUCTION
WORD FORMED
BY LOADER

@121@: 170123 (#145)

ipytoeetepetwpo o o;yo o t7yo t oFyO tt
A 1 A i i A A | A A

FUNCTION DEVICE

- OP CODE + CODE | ADDRESS"

Figure 3-3. Assembly and Loading of

Input/Output Instruction

3-15

SHIFT INSTRUCTIONS

Shift instructions are assembled in the form shown in
Figure 3-4. Label and comment processing is normal.

Shift instructions are identified by a 10-bit operation code
that occupies the indirect bit and indexing bit positions.
Therefore, indexing and indirect addressing are not permitted.

The variable field must contain an expression that can be
evaluated as a positive number representing the number
of shifts to be executed. (The assembler forms the 2's
complement of the quantity before setting it into bit
position 11-16 of the instruction word supplied to the loader.
Any variables in the expression must be defined numerically
by EQU or SET pseudo-operations (Section 4).

Examples:

CALDedteeSHIPT [TMSTRUCT TOS

BAL: BLA COLES ENTER LGL. A

AL AGTCB FILL
a BARS Caer ARS OL
Le Ga CLSHE s eR oF

AVFSe GARPN CRESS LGR =
Ma Pe Reba eM CELE FFL. =

Bl Adie CALE ALS 4
ed ae ALPS CLR FIL =

Bd ee H4arieoS COOLERS LAL 6
ier Mabe Fa Cee Les >

ee AaaFR CLES LER

Ev EN Adee CELE lle

Ah MLAS CLEP Lis 16

ania B4LenS COLE. LL Ad

3-16

SOURCE STATEMENT LRR 8

OCTAL PART
OF ASSEMBLY
LISTING

INSTRUCTION
WORD FORMED
BY LOADER

COMPLEMENT

tt
91200: 040270 (8135)

| v
(~ ot

iG’

O io o1;ro o o7;O0 | | | 0 0 O
A i A A A A i A A AL

 NO OF SHIFTS
IN 2'sCOMPL.

Figure 3-4. Assembly and Loading of

Shift Instructions

3-17

BIT REFERENCE INSTRUCTIONS

Bit reference instructions test the condition of the panel
sense switches; they are assembled as shown in Figure 3-5.
Label and comment processing is normal.

Bit reference instructions are identified by a 12-bit
operation code that occupies the indirect and indexing bit
positions. Therefore these operations are not permitted.

The variable field must contain an expression that can be
evaluated as a positive number between 1 and 16 decimal.
The number becomes the code that selects the sense switch
to be tested. Any variables in the expression must be
defined numerically by EQU or SET pseudo-operations
(Section 4).

Examples:

CMD4deseEDT REFEREMCE INSTRUCT TOMS.

ped LALek ORLA mh ‘1

AeLe: LABS Ad Cea mde =

Ap Ls Deises 0 edSet SAS LS

LeLb LEASee OLELS =PARR Le

3-18

SOURCE STATEMENT . SAR 16

~ Leo."
1000000084 0 ++ 1 +t Ft tt

OCTAL PART .
OF ASSEMBLY @1214: 190277 (#151)
LISTING ——

7 “~ .)

INSTRUCTION . 7
WORD FORMED 11/0 0 of|o 0 of|0 4 OF} Ft tye tot
BY LOADER L j L A A A i A. SENSE j

ae OP CODE SWITCH
CODE

‘OO=SWITCH |
‘17 =SWITCH I6

Figure 3-5. Assembly and Loading of

Bit Reference Instructions

3-19

GENERIC INSTRUCTIONS

Generic instructions (Figure 3-6) are fully defined by their
operation codes and do not require operands, addresses, or
other arguments in the variable field. The variable field
must be null. Labels and comments are handled normally.

Examples:

Spee nm oeTEEPE TMSTRETT eae
STRT HLT

Mie

ml aL..

MEL,

rae

BATE: AcE We
thet AARCae:
BPEL IRE Ce

Be Cees:

TAR
: Poh

’ Pots

Lepid

EP Pil

Eth

TAI

a
:

!
a
2

a
]

A AS MABoe Pet [°F

LIAS as Fed
i ABR{| ce aA
AT AEA FARARIE y BEE:
AT GVEA - LPT ce Paha te]
Se : AAA Fe oat
SAE ALAS Ck LF eahd
Leese BABtl ce MER
ALESS - asos Load Thi
5 WALT Ae El Te
aL BRS

| ttefe

1 teh—
an

7.
>.

je
k

o
k

i
e
—

ta
b

ba
t

i,
m
e

e
t

a
!

=
,

a
eS

"
2 ~s

t
e
i

fo
g

ft,

a
w
T

w
t
h
a

ic
e

r
o
m
a

“
,
;

@

= ‘a
oe

’

i r "w
ak
e
= r
a

‘wm
nll

e'
vr.

in
d

4
! = ut t

ag pe tte pet

1 a
t

n
b

a e
t ‘aa
h!
= a
s

r. — t — w
o fr: _ J

‘a
ne

~ a —
_

o
m
e

= ot
!
— pa
re

,
r
n
n
a

+ 3 = i
t P. _

a
t
t

~
r

a
t

‘
—

Fo
o

f
a
t

Te
A
e

7 oe
,
_ ac
he r. ~ m
a
- i > oa

t!

u
y
= wa
s

_

a
l
e

“
o
T
:

E
r

St:
G
m
:

B
h
a
n

SE

a
!

A
B
a

a
e
o
n

ra
m

m
y

fo
! EM [td

Lue

a EPH

dy SARS Eb eh EME:
BLAS GIESSEAS 0 EA I PT

Lie SSE TC Rep AT

Ae FIRSTS 0ae Ec ET

BT GES LS , EARi =

FE
e
t
e

~~
.

=
! I

-
,

‘ 2— a
!
= “
l
™

=
1
?

A

a m
m = "ma
ll,

"

i

m
o
m

e
t

o
y

sa
!

4

a i 1
4
a

mI
m
e

i
e
a

m
t

om
)

A
R
R
L
E
E

aA
“J

— o
m
r
y mn ~ ‘a
ke

=
,

‘w
ak

e

a
e

fa
!

ra
l

a ST

THH

n
=
i - ~~
.

t
a
e

-
,

b
e
t

* 5

m
i

i
a

m
a

Ty
r
a
m
y

a
t
e

m
S

o
h

LT
oA

La
A

be SRSCNEL oe

cae SST CS TST

at) GSH sa nk=
,

‘—
ie

=
=
,

-
=
a

m
e
l

i
M
e
e
a

k
a

k
k

R
e

L
k

=
;

=
,

a

=) ~1
‘2

“i —
_
3 = h
e, w
t

=
a

|
S
a
l
e

W
a a

ra
i
t

pe
b
a

w
y

ms
!

ts
!

Sn
ea
k

ot
)

te
mc
te

4 '

f
n

t
a
t

i

— wt
!

+
,
T
a

"1 a
!

p
e

m
e

“m
an
d

o
e

o
t
.

-
7
.

_
™

e
t
P
a a

A
C
A
A
n
a
n

~
y

_
t
’

a8
)

te
d

_ a
n

m
e

‘o
oo
h

= ~ 2
!

a
l
e

- m
e = ‘a
le

ay

i
l

i
m

7 u
y

SOURCE STATEMENT | MCB

OFASSEMBLY [7000sLISTING 01153 148204 C8112)

(~ ne

6.
INSTRUCTION
WORD FORMED | 1 o of;0 0 O70 t OF O O 0
BY LOADER A j i j A 1 A

OP CODE

Figure 3-6. Assembly and Loading of

Generic Instructions

3-21

RA] Pes

ELE

EVIeet

t
t

ak-

w
T
,
i

o
S

m
5

i
!

i
t

o
k

ER
EA
E
R

-
—

a
f

fa
l

m
e

“a
te
”

“o
ul
!

a

_ m
t

O
h

b
k
o
a

e
a

th
y

h
y

we
y

Le
"a

te
“e
ke

“
—
_

"m
al
e"

‘

>
,
w
e

- o
t

Aa
d

ft
m
a

im
a
m
a
t

r
e a
!

e
y

=;
~

“
=

‘a
h

ae
,

T
o
,

as
t

iy
i

—
_

~ an
}

“fit:

-
.

t
e

e
l
e

1
a
i
m
:

&
+

bo
a
h

T
t ok a

, ‘l
e!

t
a
l

?
a
a

4
!

-
,

or
,

i
a
t

b
a

b
e

i
y
w
s

t.
r.

r.
.

:
e
o

j
E
B
s

ma
t
T
E

to
se
,

L
e

b
k

ok

Lt
un

ca
ig

+
W
f

|

=
e
,

o
e
e
h
;

me
)
i

M
mi

m
e
m
e

P
n

ee
Pee

ML CRASao
SUCHENCCRT

LA ris

Lidiay

Laeit
“Ls

“LS

Lire

Sep) 9

‘LEeed is

Lidere

Lesa

“LEALSF

ECLAs

PE

LEME

Leerfits

ELLE

Lalas
LA

Lebet

LET PA

‘LALA

“LES

“LLAPS

La

 LAROES
L eh ric etl. c Bele

T

sn i

Lees oe

{

Leeched

L4aadie

TAGSCe
LGRCAE

Pebdeebe Ee :

LeaLeeSe CIR So”

Leet ce

L4Lesta ce

LaALine o¢

L41LSete o¢

L4hede ce

LAaLeeta ¢

L4netA

L4hedd &
Lone &

Load

L4eddF

L4eaqid oc

L4heh4 co

Lage «fe

L4hSi4 om

ee
e

,
b
y

c
m
t
a

a
y
a

=
m
e
i
e

P
o
a

a
e

u
t
t
a
l

3-22

= fet el.

Tink.

Tie

ALIA

se mee

A

LA

T Re

mE

Tafa
oo, oe omy

ae

1G - LARSBet CLE:

qe Tae COLE:
Te LaeCee

‘tet: Vane Cele:
‘et

|

|

1

i
9

F
A

ne
al
4

u
d

t
t

H
a
b
a
h

L
y

ts
,
i
y

mm
f4

fa
s

o
—

a
e

“ L461 Cerise

Tes: PektedLe aS

‘Leh: Paha Cele: I.

TES PteCmte ILEi

a
m
m
a
n
y

m
o
o

i
v
:

(
T
i

>
“1

“
a a,

~

w
a
t

m
i ~|

3-23

SECTION 4

PSEUDO -OPERATIONS

Pseudo-operation statements are commands (or directives) to

the assembler or loader, rather than instructions to be

assembled and executed in a user's program. Various classes

of pseudo-operation are provided, to control the assembly and

load modes, assign values to symbols and data constants,

define macros, link programs, allocate storage, and control

conditional assembly. The mnemonics of all the PRIME 200

assembler pseudo-operations are listed in Table 4-1.

Pseudo operations are described in this section according to

class, except for those used in Macro definitions (Section 5).

STATEMENT FORMAT

Pseudo-operations have an operation field and a variable field

separated by spaces, the backslash tab character, or a comma

((see Figure 4-1). In addition, some pseudo-operations
require a label to be present or absent. Therefore the
statement format description in the following paragraphs
includes the label field.

Constants, variables, and expressions used in pseudo-operations
conform to the general features defined in Section 2.

The operation field contains the mnemonic that identifies the
pseudo-operation.

The variable field may contain one or more arguments,
separated by single spaces or commas. Arguments may be
constants, variables, or expressions as defined in Section 2.

Arguments for certain operations such as BCI may also consist

of ASCII character strings. (Spaces and commas occurring
within such strings are not interpreted as argument delimiters.)

Symbolic names or other variables used in the variable field

must be previously defined, unless otherwise stated in the
pseudo-operation definition.

Address expressions are evaluated as single-precision values

and used as an absolute 16-bit memory address. If the relocatable

mode is in effect during loading, the relocation factor is

added to the address. Certain statements (DAC, XAC, ***) accept
the indirect address (*) and indexing (,1) symbols. These
are interpreted according to whether the extended addressing
mode is in effect. (See EXD and LXD pseudo-operations.)

4-1

Table 4-1. Summary of Pseudo-Operations

Mnemonic Definition Class*

ABS Set Mode to Absolute AS

BACK (TO)} Loop Back (Macros Only) MA

BCI Define ASCII String DA

BES Define Block Ending with Symbol ST

BSS Define Block Starting with Symbol ST

BSZ Define Block Set to Zeros ST

CALL External Subroutine Reference ST

CF1-CF5 Ignored (Provided for Compatibility with Other AS
Assemblers)

COMN Define Common Items ST

DAC Local Address Definition DA

DATA Set Data Constant DA

DBP Set Double Precision Constant DA

DEC Set Decimal Constant DA

ENT Define External Entry Points ST

GO (TO) Forward Reference AS

EJCT Eject Page (Start New Page) LI

ELSE Reverse Conditional Assembly CO

END End of Source Statements A

ENDC End Conditional Assembly Area CO

ENDM End of Macro Definition MA

EQU Define Variable SY

EXD Enter Extended Addressing Mode LO

EXT Flag External References ST

FAIL Force Error Message SP

FIN Insert Literals AS

HEX Set Hexadecimal Constants DA

TF Conditional Statement CO

I FM Continue Assembly if Minus CO

TFN Continue Assembly if Non-Zero CO

IFP Continue Assembly if Plus co

IFZ Continue Assembly if Zero CO

List Enable Listing LI

LSMD List Macro Expansions (Data Statements Only) MA
LSTM List Macro Expansions (All Statements) MA
LXD Leave Extended Addressing Mode LO
MAC Start Macro Definition MA

MOR More Input Required AS

NLSM No Listing of Macro Expansions MA
NLST Inhibit Listing LI

OCT Define Octal Constants DA

ORG Define Origin Location AS

SAY List Message to Operator (Within Macro Definitions) MA

SET Redefine a Variable SY

SETB Set Base Sector LO

SETC Set Common Base Address ST

SUBR Define Entry Points ST

REL Set Mode to Relocatable AS

VFD Define Variable Fields DA

XAC Define External Address DA

RK Dummy Memory Reference Instructions DA.

* CLASSES: AS - Assembly Control LO - Loader Control
CO - Conditional Assembly MA - Macro Definition
DA - Data Defining ST - Storage Allocation

LI - Listing Control SY - Symbol Defining

4-2

BACKSLASH,

SPACES OR COMMA 2 SPACES OR COL.73

LABEL FseanaTion FIELD VARIABLE FIELD COMMENTS

REQUIRED } NOTE | ' OPTIONAL
FOROTHERS, PSEUDO-OP
MUST BE MNEMONICS
NULL (SEE TABLE 4-1!)

A
C fa \

ARGUMENT | ARGUMENT 2 GARGUMENT N

SINGLE SPACE
OR COMMA

NOTES
I. IF MORE THAN IO SPACES

FOLLOW THE OPERATION
FIELD. THE ASSEMBLER
ASSUMES THERE 1S NO
VARIABLE FIELD AND
TREATS THE REST OF
THE LINE AS COMMENTS.

Figure 4-1. General Format of Pseudo-Operation Statements

ASSEMBLY CONTROLLING PSEUDO OPERATIONS

ABS (Set Mode to Absolute)

Label Operation Field Variable Field

Optional ABS Must be vacant

Sets to absolute the assembly and loading mode of all subse-
quent memory reference instructions. ABS may be terminated
by REL and vice-versa. The ABS mode is the normal default
mode of assembly ,

REL (Set Mode to Relocatable)

Label Operation Field Variable Field

Not Used REL Must be vacant

Sets to relocatable the assembly and loading mode of all
subsequent memory reference instructions. REL may be terminated
by ABS.

ORG (Define Origin Location)

Label Operation Field Variable Field

Optional ORG Address Expression

Sets up a new assembler location count equal to the value of the
address expression. This new origin is considered absolute
or relocatable depending on the current mode of the assembler
and loader. In absolute mode, program loading continues at
the location specified by the address expression. In relocatable
mode, program loading continues at the location specified by
the address expression plus the loader's relocation factor.

If the statement includes a label, the label variable is set
equal to the location count before the ORG is executed.

4-4

Examples:

ar

T
T

is = ‘e
we

_Look DEMONSTRATES REL AND AS

Shen! PEL. START RELOCATABLE

Sc Om
ed he

=TF 2AA SAVE REGISTERS
o
h

o
e

o
n

i

ra
it i
i

‘
o
m

=
,

at
!

{ i> na
!

p
g a
?

CARTEET RAIL ok
FAA Gees oe

AGIA ie GRP ae

AAUE eee cits Te Se

ARP Le RYE TAL : : J Fe iT Fe MEGATE COUNTER

ARIA CL BR CARES OD TPT AES JUMP To ABSOLUTE LOCATION

Ae mA mike es eves

Fibs

PIESSa LDF =a] STARTS AT LOMATION ~ Bene

Lets =TR Heb st

a Ih ‘, RETURM TO RELCCATABLE

i

d
k

na
te

a
t
m
w
,

an
te =

i3
,3

‘e
nd

,
7
.

S
e
m
,

O
p

T
y

et
e

e
k

“
E
r
,

1"
pa
i
l
t

t
a
l

"
=
.
=

—
_

‘o
od
.

7
,

o
e

‘o
nt

‘o
d!

=,
=
?

a‘

i

po
or

a
t

oy
.

=
i

ro
ar
s

t
a
o
y ‘a
h?
= ‘w

al
e

=

T
7

,

=
$
s

2
4

a
'
s
.
= ha

O
E
:

CAEL |
PET

eS

r
a

t

oe ae,

5 ‘ne
e’
= ‘m
ae

i

t
S

= t
a
s
+ e
t

h
i
h
i
k
e
e
R
P
P
e
R
B
R

M
o
i— - a

!
r
.

D
e
t

i
n
d

fs

ARIAS DE mt FEL.

RRON RIE COLE 4 LCF SAvA RESTORE REGISTERS
AAAS: 82 ASL CAT Lor SAME
BASE RCE CELE HL.
AAS? ERE CBS SRF DATA 8
AAT RE COREE SAYS DATA 8

r
a

ta
d

—
,
o
d

mtd

- T
m

—
,

‘ai
rB

e"
no

n

oa TR DATA
EMIES ENE:3

i
?

ai
:

= i
t

™ an
s

A
P

a. m
y

Ya
s

i
!

7
,

T
y

T
j

i }

Med IRRT

FIN (Insert Literals)

Label Operation Field Variable Field

Optional FIN Not used

All literals defined since the beginning of the program
(or the last FIN statement) are assembled into a "literal
pool", starting at the current location count. Processing of
subsequent statements begins at the first location count
following the literals. FIN performs the same functions as
the END statement, but does not terminate the assembly. By
using FIN, the programmer can distribute literals throughout
the program, and possibly reduce the number of cross-sector
indirect address links that must be formed by the loader.
(However it is important to make sure that the program
will jump over the pool of literals and not attempt to
execute them as instructions.)

MOR (More Input Required)

Label Operation Field Variable Field

Optional MOR Not used

When entered as the last statement on a source tape, MOR
causes the input device to stop. A continuation tape can
then be mounted. When the computer START switch is pressed,
assembly continues with the first statement on the continuation
tape.

END (End of Source Statements)

Label Operation Field Variable Field

Optional END Address expression

Terminates processing of the source program. All literals
accumulated since the beginning of the program (or the last
FIN statement) are assigned locations starting at the current
location count.

4-6

In a two-pass assembly, the computer halts on the first pass
when the END statement is reached. The operator must then
return the source tape to its starting point and restart the
computer to begin pass two. (New assembly parameters can be
specified on the second pass, if additional outputs are
required.)

When the END statement is reached on the second pass, the
address expression is included in the object text for action
by the loader, which can be directed to start program execution
at the specified location. If the address field is null,
the starting location is assumed to be the first location of
the program.

CFl Through CF5

Pseudo-operations CFl through CF5 have no effect on this
assembler. However, these statements are accepted without
generating error messages, in order to maintain compatibility
with other assemblers.

GO, GO TO (Forward Reference)

Label _ Operation Field Variable Field

Not used GO Statement label
or
GO TO

Assembly is suspended for all statements following this one
until a statement having the specified label is found. The
GO (GO TO) statement must point forward to a statement label
that is not yet defined- An error condition exists if the
assembler reaches an END, MAC, or ENDM statement before finding
the specified label.

Examples

GO TO K31

GO T174

IF (OPTION .EQ. 3) GO TO AL28

LDA X : ADD Y : GO TO Z20

LISTING CONTROL PSEUDO-OPERATIONS

LIST (Enable Listing)

Label Operation Field Variable Field

Not used LIST Not used

Causes all statements to be listed except those generated by
macro expansion. This is the assembler's default mode - a
LIST statement is not needed unless a NLST statement has
previously inhibited listing.

NLST (Inhibited Listing)

Label Operation Field Variable Field

Not used NLST Not used

Inhibits listing of all subsequent statements until a LIST
statement is encountered. LIST and NLST may be used together
in source text for selective control over the sections to be
listed. The LSTM, LSMD, and NLSM statements provide control
of listing for macro definitions; for details, see Section 5.

EJCT (Eject Page)

Label Operation Field Variable Field

Not used EJCT Not used

Causes the listing device to eject the page (execute a form
feed), print the current page title and page number, and feed
two blank lines before resuming listing. This function is
operable only with devices which have a mechanical form feed
capability, such as a line printer.

LOADER CONTROLLING PSEUDO OPERATIONS

The following statements generate special messages in the

object text that provide control information to the linking
loader. :

EXD (Enter Extended Addressing Mode)

Label Operation Field Variable Field

Optional EXD Not used

Notifies the loader that extended (32K) addressing mode is

in effect. The loader processes subsequent indirect address

words as having a 15-bit address field and an indirect bit,

but no index bit. The CPU must be set to extended addressing

mode by an E32S instruction.

LXD (Leave Extended Addressing Mode)

Label Operation Field Variable Field

Optional LXD Not used

Causes loader to leave extended mode and resume 16K addressing

mode (the normal default mode of the loader). In this mode

the loader processes indirect address words as having a

14 bit address field, an indirect bit, and an index bit.

However, the operator can override the LXD mode during loading,

and force extended addressing.

SETB (Set Base Sector)

Label Operation Field Variable Field

Optional SETB Address expression

4-9

Specifies a base sector and starting address for cross-sector
indirect address links.

Normally the loader generates address links starting at
location '100 of Sector zero. This statement permits the
loader to generate some address links in the same sector
as the program which refers to them. Memory locations to
be used for this purpose must be reserved by the program.

Examples:

ABSERG CRS CRG “ey START LIMES AT BEGTIMNIHG OF SECTOR S
BEB CBTPF ebeL JUMP OVER LINKS
HTB CAAA SETE #5

{GAGE > mS oka ALLOCATE 28 LOCATIONS FOR ADDRESS
LIKES STARTING AT ” See.

The first SETB pseudo-op for a given base sector determines
the location at which the indirect word table will begin
in that sector. The table then grows upward in successively
higher locations. Other SETB pseudo-ops referencing the same
sector do not re-origin the table for that sector --- table
filling resumes where it left off. During loading, the B-
Register setting may be used to assign a starting address
for the links; if so the B-Register setting is treated like
a SETB pseudo-operation preceding the first word to be
loaded.

At the end of each subprogram, the base sector reverts to
sector zero. The loader retains knowledge of the last
location used in each base sector. When the base sector
reverts to zero, no indirect words are lost.

Note that in general cross-sector reference pools may grow
unpredictably and overwrite program areas during loading,
so that extreme care must be used in assigning SETB areas.

4-10

DATA DEFINING PSEUDO-OPERATIONS

This group of pseudo-operations is used to initialize memory

locations to known starting values. Data and address constants

may be specified in a variety of formats, for coding convenience.

Simple coding conventions allow the programmer to use ASCII,

hexadecimal, octal, or fixed and floating point decimal

notation to specify constant values. The assembler interprets

the notation and automatically generates one, two, or more

data words in the proper internal binary format for single or

double precision, fixed or floating point arithmetic.

DATA (Set Data Constant)

This is the basic PRIME 200 pseudo-operation for presetting

memory locations to equal expressions, ASCII strings, or

numerical constants. Constants can be expressed in decimal,

octal, or hexadecimal form. Decimal quantities can be specified

in single or double precision, fixed or floating points, formats.

The basic format of the DATA statement is:

Label Operation Field Variable Field

Optional DATA One or more expressions,
ASCII strings, or numerical
data constants

The current location is set equal to the expression(s) in the

variable field. The variable field may contain any number

of subfields, separated by commas. Subfields are assembled

in consecutive locations starting with the leftmost subfield.

If an expression requires more than one location (e.g.

floating point), consecutive locations are used.

ASCII Strings: ASCII character strings are specified by the

letter © followed by the string enclosed in apostrophes. ASCII

characters so specified are packed two per word during assembly.

Single characters are left-justified with the remainder of the

word filled with zeroes. The number of characters per statement

is not limited.

The string portion of a data statement cannot be continued

on the next line. Within the string itself, the (!) character

permits the assembler to encode restricted characters such

as ' (end of string), <(start of macro arg. ref.) or CR

(end of statement). Examples:

BSG26: L4eede CARES CATA CRE
AALS L487R82 CBee CATA C" ABIDEF

ASAE : 141764

BSNS:. L4erne

SsSs LAFaS CRELE DATA mh AB! Le

SASS - L2E661
aSGE4: 1z124e 4-11

Numerical Constants: The form in which a constant is specified
determines whether the assembler will process it as single or
double precision, fixed or floating point. The general format
for numerical constants is:

[iw Number] |e (+) ma E (+) an |

Neen / aan J ae J

Number Decimal Binary
Exponent Scaling

If the number part of the statement is a decimal integer or
fraction, it can in some cases be modified by a decimal
exponent (E for single precision, EE for double precision)
or a binary scaling factor (B for single precision, BB for
double precision). Table 4-2 summarizes the legal combinations
of number, exponent, and scaling designators.

Fixed Point Single Precision: Constants in fixed point
Single precision format are assembled to form a sign bit and
15 magnitude bits, as shown in Figure 4-2A. The CPU internally
treats such arithmetic quantities as binary fractions ranging
between -1 and slightly less than +1. The assembler, however,
handles single precision words as signed integers ranging
between -32,768 and +32,767. Constants in DATA statements
may be expressed as integers within that range, using decimal,
octal, or hexadecimal notation.

Expressions must be capable of being evaluated as single-
precision constants only. Variables used in expressions must
be previously defined.

Examples:

Hexadecimal Octal Decimal Expressions

X'12AB' 0'1234' 12 X*2+3
X'-12AB' 0'-1234' -12 ALPHA
$12AB 0'1234 0 Y .AND. '77
$-12AB '1234
X'12AB '-1234
$EFFF °'077777 32767
$8000 "100000 -32768

1.23B6 (using binary scaling)
1.23E3B12 (using decimal exponent

and binary scaling)

4-12

Table 4-2. Numerical Formats in DATA Statements

Form of Number

Decimal
Exponent

(E or EE+mm)

Binary
Scaling

(B or BBtnn
Assembler Inter-
prets Constant As:

Expression using
Symbolic Variables --

Hexadecimal

Octal

Decimal Integer

Decimal Integer
or Fraction

Single Precision
Fixed Point

Decimal Fraction
-- B

E B

-- BB Double Precision

Fixed Point
EE BB

EE -- Double Precision
Floating Point

E -- Single Precision
Floating Point

4-13

CPU CALCULATIONS ASSUME BINARY
| POINT IS HERE

BT 12 3 4 5 6 7 8 F WO2 13 4 «15 oIeY
S
} o l Ll] j i 1 j | i i | i I 7 ASSEMBLER

UMES_
BINARY POINTSIGN \5 MAGNITUDE BITS IS HERE UN-
LESS OTHER-
WISE SPECI-
FIED BY "B*
NOTATION

A. DATA FORMAT

BIT | 2 3 45 67 8 SW 2 13 14 15 16
S

1 i

i i L l | I |]

fe eee eee eee ae gans
B CODE FOR-e8-1 80 BI B2 B3 B4 BS B6 B7 BB B9 BIO BIl Bi2 BI3 BI4 BISBINARY POINT 4
POSITION ASSEMBLER'S NORMAL BINARY POINT

B."B" CODES FOR BINARY SCALING

Figure 4-2. Single Precision Fixed Point Constants

4-14

Powers of 10 (E) and Binary Scaling (B): For single-precision

decimals only, the E and B notation provides flexibility in

scaling data constants. Expressions with binary scaling are

formed by a decimal integer or fraction in the range from

-32768 to +32767, followed by the letter B and an integer

from -1 to +15.

Examples:

Assembled As: Decimal Equivalent

12.5B6 0 001 100,100 000 000 6400

B6

0.5B8 0 000 000 001 000 000 64

B8

5B8 0 000 001 010 000 000 640

B8

In general terms, a constant entered as Kj9Bn is converted to

K,(2-"), where Kio is the decimal constant, K, is the same

constant expressed as a binary fraction, and n is the number
following the letter B. Positions for B values -1 through 15
are shown in Figure 4-2B. Any bits of the repositioned
binary fraction that extend to the left or right of the
15 magnitude bits of the data word are truncated.

In the first example, the fraction 12.5 is converted to the
binary value 1 100.1 and positioned in the 16 bit data word
so that the binary point is at position B6. The result is
equivalent to decimal 6400.

If an E code is present, the decimal value is multiplied by
the power of 10 specified by the integer following the E before
it is converted to binary. Thus a constant entered as Kj 9EmBn

is converted as K,(10")(2°"). The exponent, m, may be

negative (-) or positive (+ or unspecified).

In fixed-point single precision constant expressions, an
exponent (E) cannot be used unless binary scaling (B) is
also specified. If E is used alone (as in "5E2") the expression
is interpreted as floating point (described later).

4-15

Fixed Point Double Precision: The assembler handles fixed
point double precision words as integers ranging between - (230)

and +(230-1), (230 = 1,073,741,824.) Such constants are
assembled as two consecutive data words, in a format determined
by the CPU's double precision arithmetic procedures. (See
Figure 4-3A.) The first word must load in an even location;
if the location count happens to be odd, one location is
skipped. Negative numbers are represented in two's complement
notation, but bit 1 of the second word is always 0.

When expressed in DATA statements, fixed-point double precision
constants must include a binary scale factor (BBn). A decimal
exponent (EEn) is optional.

The BB codes for binary scaling are interpreted in the same
way as single precision B codes, but extend into the second
word of precision as shown in Figure 4-3B. The EE code, if
present, is interpreted in the same way as single precision
E codes and can only be used when a BB code is also present.

Examples:

Assembled as: Decimal Equivalent

12.5BB6 word 1 0 001 100 100 000 000 6400.00000
or 6.4EE3BB15 word 2 0 000 000 000 000 000

7BB16 word 1 0 000 000 000 000 011 3.50000
word 2 0 100 000 000 000 000

Bits of the scaled binary quantity that extend to the left
of word 1 or right of word 2 are truncated.

4-16

ert 23 4567 8 9 Ol 213 4 15 16F

WORD s ASSEMBLER
| ! i i | i l i Leu 1 at ASSUMES

aneYet

SIGN 5 MOST SIGNIFICANT MAGNITUDE BITS ISOR.

WORD 9 NOTATION
2 l 1 i j i j j L J i j l L l

ALWAYS I5 LEAST SIGNIFICANT MAGNITUDE BITS

A. DATA FORMAT

WORD s

‘fttttt ttt tri tee“BB"CODES
secret BB BB BB BB BB BB BB BB BS BB BB BB BB BB BB BB
POSITION + ote23 45678 9 OT 2 3 4 8

woro[5

u { t ! t f ! t t t t t t t t t

B. "BB" CODES FOR BINARY SCALING

Figure 4-3. Double Precision Fixed Point Constants

4-17

Single Precision Floating Point: Floating point data formats
are defined by the procedures of the floating point math
routines in the FORTRAN/Math Library. (See Figure 4-4.)

Single-precision floating point quantities are expressed by
a decimal fraction, with or without decimal exponent (Emm).
(Binary scaling must not be specified.)

Examples:

bbe: doe Caeleo ATR Lo SSeS
ry BSAIIEES

EES Ree CEL DATA Los

ESL: LeSens

BE LaPaSe CeLao BATA ~. s

BARE: Lede

SE BAeSs CIRE S DATA L. 2SE-1L4
a reLs4

The assembler converts the specified values to an 8 bit binary
exponent and 23 bit binary fraction in two successive words,
as shown in Figure 4-4A. The exponent is ygpresented in
excess-128 notation, and can range from 2714/to 2+127 (roughly 10-38
to 10+38) , An error printout occurs if the exponent exceeds
this range. The assembler automatically generates a normalized
fraction of the largest possible value less than 1. Numbers
specified in this format have about 6.8 significant decimal
digits (+ 8,388,607).

Negative numbers are formed by generating a positive number
of the specified magnitude and then forming the two's
complement of both data words, including the exponent. The
number zero is assembled as two consecutive all-zero data words.

Double Precision Floating Point: Double-precision floating
point quantities are expressed by a decimal integer or fraction
with a decimal exponent (EEmm). (Binary scaling must be
specified.)

The assembler converts the specified value to an 8-bit binary
exponent and 39-bit binary fraction, in three successive words,
as shown in Figure 4-4B. The exponent is represented in the
same excess-128 notation as single-precision floating point.
The assembler automatically generates a normalized fraction
of the largest possible value less than 1. Numbers specified
in this format can have about 11.5 significant decimal digits
(+549,755,000,000).

Negative numbers are formed by generating a positive number
of the specified maghitude and then taking the two-s complement
of all three data words, including the exponent. The number
zero is assembled as-three consecutive all-zero data words.

4-18

WORD

|

s EXP
l i L 4 4. 1 l l l l l iT

' JAF _/S
a a)

SIGN EXPONENT (EXCESS 7 MOST SIGNIFICANT

128 NOTATION) BITS OF FRACTION

WORD
2 l i L L. i dl J i i i l i |. j

XK _/
a ae

16 LEAST SIGNIFICANT BITS OF FRACTION

A. SINGLE PRECISION (REAL FORMAT)

WORD

|

s EXP
\ 1 1 4. 4 1] J J J LL.

_/ __JS
aan Pan

SIGN EXPONENT(EXCESS 7 MOST SIGNIFICANT

128 NOTATION) BITS OF FRACTION

WORD
2 l l i A i l I i l 4

XK _S
: an :

I6 NEXT-MOST SIGNIFICANT BITS OF FRACTION

WORD
3 iL L ah. a j l l j j L

Q _S+
iae

16 LEAST SIGNIFICANT BITS OF FRACTION

B. DOUBLE PRECISION

Figure 4-4, Floating Point Word Formats

4-19

Examples:
> if = am
l”

=
,

a
m
e

f
o

m
m
y
e

o
n
7

r
y

:

3

™
7
,

7
,
7

o
s

m
i at

i
m

iT
;

r
a
y

$3
r
n
i
n

on
¢

7
,

ha
's

T
y

i
j

i
A

In
}

fa
y
be

= “
a
n
t

O
h
,

Tr
,

=
a
a

‘=
,’

‘a
te

ra
?

i
f

3

T
e

r
e

a
t

y
t 7L

0m me, et ets,

ogee, att,

Repeated Constants: Constants that do not start with a digit

or a decimal point may be preceded with a repeat count "n"

(positive integer) which will cause the value to be generated

n times.

Examples:

3X'12AB!
OCTXX!
15'16
6 (ALPHA+1)
3(1.5E6)
5(-0.012EE-3)

Multiple and Implied DATA Statements: A DATA statement can

contain more than one constant, separated by commas.

Constants are converted to the appropriate number of data

words and loaded into consecutive memory cells starting with

the current location count.

The assembler will process any statement that starts with a

constant (not counting the optional label field) as an implied

DATA statement.

Examples:

DATA 16
DATA 3, 10, -2, -3, 0, 0, 10, AP3

DATA 3, '12, X'-02', -X'3', 20'0', $A, AP3+2-1;

16, 3, 10, -2, X¥Z-2
100
DATA -4, 1.23E4, +1176EE3BB24, 16(0.0)

DATA 4(X6*2-1)

4-21

Summary:
DATA statements.

The following examples show many varieties of
Table 4-2 summarizes the legal combinations

of constants, B and BB codes, and E and EE codes in numerical
values.

Lae :

Ss aepe

aBl

ASLe:

ASLes :

BS VLa-

EA]eh

BELee

ASLer

HAL

MTLPe

Bae:

RARet

BLPre

mer:

BSLee:

APLFr
ney raney

—
_

-
,
w
e
=
,

aa
a

i i

e
d

i
l
e

t +

m
r

e
e
r
t

r
m

‘o
na

m
a

=
{

7
.

u
s
t

m
m

“m
vk

s
a en
h

=
,

ak
’
7

ai

be
pe

~j
om
p

&

SAA
ae tig WL, a mee ate

TAHA

CREE]

mre

i = l
e

=
)

b
y
t

4
‘w
ok

e:

e
t

h
e fl

1 _
—i

7
f
d

a
h

Ae
s

ea
d

—
y
7 _ m
3

T
E

‘w
at
e!

on
l

y
i

tf

im
™y

¢
"o
ok
= "c
at
es
= aw

wt

t
i

t 1
i
s

$

_ ‘a
ls
= ‘a
nc

l
i ‘
ah =
,

‘o
ok

—

-

4 o
t

J J :1
t

i
b
f
h
e

wpcet es
roe .

BASS

ASIA,

AEA

i i

FARRIS|

—
.
,
— ‘o
te
!

_
£

1
d

in
l

ri
d

$s

R
a
i

Gt = on
de

4-22

DEC (Set Decimal Constant)

Label Operation Field Variable Field

Optional DEC One or more decimal, octal,
or hexadecimal constants
(separated by commas)

This statement is provided for compatibility with other

assemblers. Each constant in the variable field is evaluated

as a decimal constant, converted into one or more binary words,

and loaded starting at the current location count. All formats

accepted by the DATA statement may be used with DEC except

the repeated constant format (3X'12AB'). (See Table 4-2.)

Hexadecimal and octal constants are interpreted as single

precision fixed point.

Examples:

AAS: GREASE Came DEC LS
G5205: BOGE Cae9 DEC BAG S.A EF. Lee
A534: Beads
BS285: seams
ATE cee
aszar FEE.
ASE1a a

4-23

DBP (Set Double Precision Constant)

Label Operation Field Variable Field

Optional DBP One or more decimal, octal,
or hexadecimal constants

(separated by commas)

This statement provides compatibility with other assemblers.
Each constant in the variable field is evaluated as a decimal
constant, converted to double precision binary format, and
loaded in consecutive memory cells starting at the current
location count. The format of each expression determines
whether the result will be fixed or floating point. For
fixed point quantities, the assembler is forced to assign
the first word to an even location count. (If the current
count is odd, it is skipped.) The repeating constant format
of the DATA statement is not permitted.

Examples:

m4 BARGE CRIT DEE 16 EIMED POINT

ASL AGRISTA

Erno AREA © Bed 3 CRF 3.1. 2EBG. x 1A’. $F. “123
ASL RABae

BASSE AAA

ae edaLe

IS Ge
eS AAS

Beete} AAA

AMEE ARG?
1 halee AGAR

AES? : ALoe

BSEEG: BARECES DEF 4. 23 FLOATING POINT
BESS. - LE4424
AV23S: LEPers cade) DBF 456. 32615, 6. 6.6
WAS SS | Lider

i PRA

WD ES ABABA

ASASE BaP4A

ASe AIRE

4-24

OCT (Set Octal Constant)

Label Operation Field Variable Field

Optional OCT One or more octal constants
(separated by commas)

This statement is provided for compatibility with other
assemblers. Each constant in the variable field is evaluated
as an octal constant, converted to single precision fixed point
binary, and loaded at the current location count. Only the
following constant forms are allowed.

Examples:

Beet RTeC eteh iT Le
AAA PRL 8 eth CHT TRALS. Bel. Bry
Reeds ARIESed.

ASSe} BRE
aScebeh LPPPPP CRS CWT “LPPPPR. mL oe LE. tLeto Lee

ASehSh LEPEEE
ASeh es LPPres
Ae BAL
ASS ABEL Pe

4-25

HEX (Set Hexadecimal Constants)

Label Operation Field

Optional HEX

Variable Field

One or more hexadecimal
constants (separated by
commas)

This pseudo-op is provided for compatibility with other
assemblers. It converts the hex constants within the variable
field to single precision binary values and loads them in
consecutive locations starting at the current location count.
Only the following constant forms are allowed.

Examples:

AGES. : ALLE5E OaGSe o He Lerie
Bese ABAGLT © BBS. HE F. $F. -FRFFA. -$FFPL. $-FPPA
BIE3S | HERES
ASE- Aaa?
Eas - RABEL

ESS - BARELY
AAS: AALS53 CaaS > HE FISAE. tLe. +$:12AB. £412AE

BS361: B411252
BSee: BLLEa%

VFD (Define Variable Fields)

Label Operation Field Variable Field

Optional VFD One or more subfields of
the form:

Field Size,Value

This statement permits 16-bit data words to be formed in

subfields of varying length by pairs of constants (field size,

value) in the variable field. The first constant of each pair

specifies a number of adjacent bits, starting at the most

significant end of the 16-bit word. The second constant of

a pair is the value to be loaded. Subsequent field size value
pairs load less significant subfields of the 16-bit word. For

any pair, if a value exceeds the specified field size, the

more significant overflow bits are exclusive OR'ed with the

subfield to the left. (No error message is generated.)

If the entire word is not specified, the least significant end

is filled with zeroes. An error message is printed if the

assembler attempts to load more than 16 bits.

Examples:

VFD 8,C'A'-2, 8, 0

VFD SZ/4, X, SZ/4, Y, SZ/4, Z, SZ/4, X'F'

4-27

BCI (Define ASCII String)

Label Operation Field Variable Field

Optional BCI ‘STRING; (where ' is any
non-zero, non-digit delimiter)

or
#,STRING (where # is the
number of character pairs)

This statement loads ASCII character strings by packing the
specified ASCII characters two per word, starting with the
most significant 8 bits. Assembled words are loaded starting
at the current location count.

In the first format, the string is delimited by any character
other than zero or a digit:

Anes L4aPreae CBSE

ASS T40r he CMA)

AS L466
ASSPA TESses

ABST LEGEES

BCI «ABN
BCI AREASaH

f an odd number of characters is specified, the least
Significant half of the last word is padded with zeroes.

In the second format, the character string is preceded by a
word count (the number of characters divided by2 and rounded up):

aSr
AEPSs
Aas
Ae
Bae
Ase
hla
Sef)

a
=

7
O
O

o
y

i
i

T
E
S
e
a
i

i
f A
G
A

LA
oa

oA
on

B
R
E
E
L
L
R
R
L
E

i
i
t

b
e
i

R
e

S
h
i
E
e

a
n

t
e
d

=

“
a
e
m
E

o
y
A

ha
b
e

b
i
,
o
f

L
n

Lebe4o
Lene
Le62468
Leese
Lebe45
Lebe4e
L4nrane

Learns

141662

1T21bA4

TEs3e

L2ne4e
Lene4e

Lense
Lard

Leese

st}

jp an

a

h
a

f
a =

+
r

M
a

‘an
t!

f m
e

M
y

f
o

f
o

fe
a

fi
ao
e)

t
u

b

bpa
n

£

vk

%

c
a

=
,

t
s
!

i
3 ro
an

o
m

=Ae

4

ay BI

ts Ec I

Ay BZ: J

41 Ect

4-28

A

1. AB
+, ABCSS4a

if
;

Cle SPACES >

Cle SPACES »

DAC (Local Address Definition)

Label Operation Field Variable Field

Optional DAC Address Expression

or or

DAC* (indirect Address Expression,l

addressing) (Indexing)

This statement loads the current location with an address word

consisting of up to 15 address bits, with optional indexing

and indirect address bits. The address is specified by the

expression in the variable field. Indexing and indirect

addressing may be specified symbolically as in memory

reference instructions (* and,l). Address words formed by

DAC are subject to the effects of the EXD pseudo-operation

and the £16S, E32S, and E32R instructions. If relocatable

mode is in effect the loader performs relocation during loading.

Examples:

ASbLe: Ga FPP PP Cees o CA: ALL.FHA

Badd: Ge GSAS ceess CA: APS+S

AS41LS: Se GSS? CGHb4> KLEE GR mie 1

A416: 46. GORECees DAC KELA2+3

AS4-1.7:° SE BABS CREE CARs 7 SB

BSd2a: FO BRAG Caeer os SUE DAS ok CETYE LOCAL SUBROUTINE ENTRY:

In the assembler, the DAC pseudo-op generates a 16-bit

constant. The loader truncates this constant to 14 bits

if in the LXD mode, 15 bits if in the EXD mode, or does not

truncate it if absolute. The loader merges the index bit

with the address constant. It merges the indexing bit in

normal addressing mode, and ignores it in extended (E32S)

mode.

4-29

XAC (External Address Definition)

Label Operation Field Variable Field

Optional XAC External variable

or or

XAC* (Indirect | External Variable,1l
addressing) (Indexing)

Generates the same type of data word as DAC. However, the
variable field is interpreted as an external variable that
has no relation to, or conflict with, an internal variable
of the same name.

Examples:

AS421° 8. Bae CaaS XA FLAGS
Al4e2: 8G. GRRRE CARES Tee aA Ras
A423: Ge BaeCaeres BAC TEL. 1
ASdt4: 46. aaee Cor AAC TH
AS42725: 46 AAR CAPSS SAL OoTELL

4-30

*** (Dummy Memory Reference Instruction)

Label Operation Field Variable Field

Optional we Address Expression

or or
x*k**X (Indirect Address Expression,1l
Addressing) (Indexing)

Causes the assembler to create a dummy memory referencing

instruction with zeroes in the op-code field. Indirect

addressing is indicated by anasterisk, as usual (resulting

in a four-asterisk operation field) and indexing may be
specified. This statement is used when the op-code is to be
calculated and placed in the op-code field at run time, prior
to execution.

4-31

VARIABLE (SYMBOL) DEFINING PSEUDO-OPERATIONS

Variables used as address symbols are usually defined when
they appear in the label field of an instruction or pseudo
operation statement. Symbols so defined are given the numerical
value of the statement's location count. The EQU and SET
statements make it possible to equate symbols to any numerical
value, even ones that lie outside the range of addresses in a
program.

EQU (Define Variable),
SET (Redefine Variables)

Label Operation Field . Variable Field

Format A Contains a EQU or SET Address Expression
variable

Format B Blank EQU or SET One or more symbol
equality expressions
(separated by commas)

In format A, the variable in the label field is equated to
the address expression. Any variables used in the address
expression must already be defined:

AHOCREPZS I Ee =
Werere CAP4+o ALPHA SET SPR
revere CHAPS FROME EG “LPreese

Brrres CBOFEO BETA SET ALFPHA-+

In format B, symbols are assigned numerical values by equality
expressions in the address field. One or more equality
expressions can be used, separated by commas:

HARES CREPeo Ei T=3
BE4PPr CREPE Eri J=$35FF. ke Peer. LeAe

HAAGSS CES SET K=Le
MESSPS CBE SET K=T+$FF

Formats A and B can be combined in a single statement:

AAAS CawI SET 3. J=$SarP. be eerer

EQU and SET perform the same functions; however, a variable
defined by EQU may not be redefined, while a variable

4-32

once defined by SET may be redefined by subsequent SET

statements without causing an error message.

Examples:

:

fe gtty getty gate, geet 8

CBHG1> +CEMONSTRATES EGU AND SET

CRRAA REL.

CARBS 2 CHAR Er “Se OMA CHANMMEL 2

‘ 4° STRTACR SET BLIF1 STARTING ADDRESS IO TRANSFER

: MICE:
Rie

BCI?

‘i
t
a fava? Foal Fi

LN e
t

+

‘o
me =, “s

na
ke

o
e

‘a
wt
e"

m
y

“a
t! m
y

i
m

s
y

i
s
t

as
!

me
it

ha
t!

m
o
m

oT
:

= 3t
t

m
n

=
;

aa
!

m
y
e
f

LOA STRTADR:
* CHICISS 3 STF CHAM SET STARTING ADDRESS TO BUF.

£ i ia
f =, a! 7 h
a oo ‘a
n 4

- i
s
t

=
,
u
t Hr4
2

b
e
|

=, a HF

eH fs a PTF

K
e

m
i

ha
l

STRETACR=BUF2 CHANGE STARTING ADDRESS‘an
ole

5
!

a
t . SET

“
e

a
my
i ch
e

‘a
aa
h

-
,

‘na
abe

:
os

,

™
,

a
d

s m
i
3STRTAC a

a
im

s

b
y
t

f
y
)

i
e

w
s

ve
,

»
i
A

=
“

t
a
l

or
.

fa

‘o
we

:
oo in
t

=~
i 8

m
o

i
s

i
s

n
h
—
,

m
i

W
E
P
E
B
e
R
e
e

a
p
e

—t e
s

fo
!

-
,

‘a
nc
l

j
e
e

3
u
t
e

BEES EE Ae

EAE Re Aas

et im
i

i
i
l
i
e
d

h
e = "o

wl
s:

i
s
i
A
s

mt p
n

o
t

dn
t

do
g

ba
s

7 ‘ou
n
=“e
on

t
f

i
T a
,

o
t
s

ta
i

i i e
t

to LOA
STA
MF
HOF
Mi
END

f
n

S
o a

5 “ea
al

he
’

m
m
2

te
d

LF
]

FA
]

f
e

STRTAGE:
CHAM.

i m
t
- q
u

4-33

STARTING ADDRESS

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS (Block Starting with Symbol),

BES (Block Ending with Symbol),

BSZ (Block Set to Zeroes)

Label Operation Field

Optional BSS, BES or BSZ

Variable Field

Expression that specifies
number of words to be
allocated

These statements allocate a block of words of the size specified
in the variable field, starting at the current location count.
If there is a label, it is assigned to the first word of the
block (BSS: and BSZ) or to the last word of the block +1.(BES).
For BSZ, all words within the block are set to zeroes.

Examples:

Ll BSS

BSS

TI BES

BES

Z1 BSZ

BSZ

20

(I+3)/2

40

N*3-2

100

(AB-2)*3

4-34

SETC (Set Common Base Address)

Label Operation Field Variable Field

Not used SETC Address expression

The address expression specifies a location near the top of

memory to be used by the loader as the COMMON base (the highest

location in a pool of common items). In systems with over

16K of memory, the expression specifies an address in the

current 16K of memory. Variables in the address expression

must be defined and the result must be absolute.

Examples:

SETC '17770

SETC END-8

4-35

COMN (Define Common Items)

Label Operation Field Variable Field

Optional COMN One or more variables
(separated by commas)

This statement loads common variables in the COMMON area at
the top of memory. Each of the variables in a COMN statement
is assigned an address starting with a common base selected
by the loader or set by a SETC statement. Variables are
assigned addresses in the order they appear in the variable
field, and addresses are assigned in decreasing order. The
loader keeps track of the last COMMON address assigned, and
in subsequent COMN statements continues to assign lower
COMMON locations in sequence, until another SETC statement
is encountered.

Examples:

= m
l = “m

ak
e!

m
e
o
a

t
o
o
n PRCAPT Fi

ee

BAAR CREO END

CAS REL,
COME? SETC <aErrr SET COMMON BASE

GLE777 8884s COMM FFL REL AC ASSIGM THREE LOCATIONS IN Compared
LEPPE
Lares

AAA: GD Be CB LA =1
GOO. Gel LEPEF Cees STA AIF SET FLAG AR
AMS: LE LEPPS CAO) TRS Fc 0 OUPBATE COUNTER AC

RARE COE HLT FINISHED

AGIA ART,

AF BALEPe G4 Geae

RFE: ALE PPR Pte}.

Fue: Pel Fee FUEh] ABBAS

4-36

= t
t

m
I a
!

i
m
e

a
s +PROGRAM &

“gt

REL.
SETC "Aare? SET COMMON BRISE
COMM 6A. BE. BCL EO ASSIGH FOUR LOCATIONS IN COMM

= =
,
a
t

e
s

‘a
te

F
R

a
fr
t

m
i

h
t

i
d

e
e t
e

t
y
,
O
T

= = ~
~

"
it

t
E.

i
i
e
d

a
t {

L iLeree

ALEee

Spy ees

ALSe Ped

AAGIGHSE EES DCEPot

RIA. LGR

A LS Le eel CRE

SUGARS CSGe

Gee Ebb [CREcea eA

em
cal

CHEE PROGRAM FLEG™

w
t
~
,

e
y
_
5
3

a
1

r
o

2

“r
,

o
d

L
a
= 7
3

a
t

i

‘e
wa
n

a
k

:
m
S
2
4

:
m
e

E J
r
t

a
t

—
;

T
m
.

i
)

ta
t

!
= et
) a TRS EC UPDATE COUNTER Et

i

“i

i

t

- ‘w
el
"
.

P
p

i
m

iH
r
s

SET FLAG BE

i
= m
y
e

e
y

f
e
e

e
e
e

8
)

7
.

‘a
eo
le

m
y :

,

—
,

w
d m m
m

;

Mee EMEAt
b

tt
to

RUSStt

RRR, : COAG

ry ACESPe GENS

|

GREE

mE BLIPPe GES Ree

Br MFPS BREESE:

Ets CLEPEee GES BES

mn PROGRAM i CPOETRANS

mr DECLARR COMPM IN THE REVERSE NEDER OF FHA EXAMPLES

COMPOIN RE. Ro. on CE CF

rm CHECE FLAG OF POSER &

IF “CB? 10. Se. 18

AEAAFC JTF

LINE.

AGE ALL

AGRA DAI
mr WROATE COUNTFR CE

AGRA SHS

PAPett JME wl

LA CEHCBt+L.

C SET FLAG OF PROGRAM

ABBAS CALL bofote

CGAP, DAM. nF +

ABA? CALL Alese

PSEA Bs CA =" BoeSA

AVA CALL H#es
= DRI. CE +

s
o
m

S
G
)

c
h

7
,

‘
o
m
e

1 o
h

“
>
H
p

=
“

i
t
= Ti
e}
a
e

G
i

m
a a —
_
e

LINK oe
LOA ==" AGEL

mALL meile

MALL HESS

CRS CF +

STF

seas CALL FHT

AGERE CA re" AS

AEBS AHF AaaLS

ac
s
@ v
t

De
)

™ ‘
e
a
t
!
i
e = il

a
t

a
l

i
S
!

Mm
a

ik
e

aN
=

1
&

s
o “

ae

t
s
i

4

1 DE
A

m
t

‘
o
o
k

= “
a
a
h Fe,

PARES GAIT WALA
AEA= GRID 2A

LINK =" G4iiseis

AGAS mioy AeSan

GUS "OnT PURE

LINK =" BEGET

4-37

PROGRAM LINKING PSEUDO-OPERATIONS

This group of statements coordinates the interaction of the
assembler and loader in resolving address references between
main programs and external subroutines. EXT and CALL are
used in main programs to identify external names. ENT and
SUBR are used in subroutines to tell the loader what names
appear in the subroutine.

EXT (Flag External References)

Label Operation Field Variable Field

Optional EXT One or more external
entry point names

The names appearing in the variable field of this statement
are flagged as being external references. Whenever other state-
ments in the main program make reference to one of these names.
a special block of object text is generated that notifies the
loader that it must fill in the address properly. (The
assembler fills the address fields with zeroes.) If the
loader encounters any EXT statements while loading a main
program, it will print the MR message after loading is complete,
to notify the operator that the external subroutines containing
the names must be loaded also.

Names defined by the EXT pseudo-op are unique only in the first
6 characters (Loader restriction) and should not appear in a
label field internal to the program.

Examples:

LDA TST2

EXT TST2

If TST2 is a location in an external subroutine, the EXT
statement is required. Otherwise the loader will be unable
to resolve the address reference.

4-38

CALL (External Subroutine Reference)

Label Operation Field Variable Field

Optional CALL External Entry Point

(* for indirect (,1 for indexing is
addressing is optional)
optional)

This statement generates object coding that has the same

effect on the loader as a JST to the name specified in the

variable field followed by an EXT statement that defines

that name as external. For example, the statement CALL TST1

generates object coding that is equivalent to the statements:

JST TST1

EXT TST1

The variable field must contain a single variable (not an

expression) of up to 6 characters.

Examples:

CALL SIN

B3 CALL F$IO

CALL® TLIST

CALL TABLE6,1

CALL* ARRAY,1

4-39

SUBR, ENT (Define Entry Points)

These pseudo-operations are identical in effect. They are
used in external subroutines to link subroutine entry points
to external names used in CALL, XAC, or EXT statements in
main programs. Both mnemonics are provided for compatibility
with other assemblers. The form is:

Label Operation Field Variable Field

Optional SUBR or ENT Extname
or

Extname, Entryname

where Extname is the external name used in the main program,
and Entryname is the name of the entry point in the subroutine,
if different from Extname.

Examples:

Main
Program CALL TST1

External SUBR TSTI1

Subroutine .

TSTl DAC *

JMP * TST1
END

This is a simple case where external name TST1l is linked by
a SUBR statement to entry point TSTl of the external sub-
routine. When the main program uses a different external
name, the SUBR statement can equate names as follows:

4-40

Main CALL MAINTI1
Program .

External SUBR MAINT1,TST1

Subroutine .

TSTl DAC **

JMP * TST1
END

The name MAINT1 is equated to the actual entry point TST1 by

the SUBR statement.

ENT statements have the same effect as SUBR statements but

usually identify entry points or locations other than the

main subroutine entry point. For example:

Main CALL MAINT1,TST1
Program .

LDA TST2

JMP TST3

EXT TST2
EXT TST3

4-41

External SUBR MAINT1,TST1
Subroutine ENT TST2

ENT TST3

TST1 DAC **

TST2 OCT '77

TST3 LDA XYZ

Here, the main program refers to two locations in the external
subroutine, TST2 and TST3. The EXT statements in the main
program notify the loader that the names are external. The
ENT statements in the subroutine notify the loader that the
subroutine contains those names.

ENT statements also permit the main program to use different
names from those used in the subroutine; for example,

Main JMP TEST2

Program :

EXT TEST2

External

Subroutine ENT TEST2,TST2

TST2 LDA XYZ

4-42

As many SUBR or ENT statements may be used as are needed, and

the statements may appear anywhere within the subroutine.
However, only the object code following the pseudo-operation

will be loaded. Thus several subroutines can be packed in a

single tape or file, and only the ones that are specified by

SUBR or ENT statements will be loaded.

Since the loader restricts external names to 6 characters

maximum, only the first 6 characters of any name. in the

variable field of the ENT or SUBR statement are used as the

name internal to the main program.

4-43

CONDITIONAL ASSEMBLY PSEUDO OPERATIONS

IF (Conditional Statement)

Label Operation Field Variable Field

Optional IF (Expression) (Statement)
(Statement): (etc.)

The variable field consists of an expression followed by one
or more instruction or pseudo-operation statements separated
by colons. If the expression is true (has a non-zero result)
the rest of the line is assembled. Otherwise the rest of the
line is ignored and the next line is processed. The variable
field of the IF statement must not be continued into the
following line, because the skip-if-false condition proceeds
to the next physical rather than logical line.

Examples:

IF FLAG SET FLAG=O ; GO TO A24

IF (COUNT .LT. MAX) SET COUNT = COUNT + 1

IF (CONTROL .EQ. 134) GO TO FIXC

IF (N .NE. M) LDA N : AOA ; STA M

IF (OPTION .AND. '01000 .EQ. 1) GO TO S130

4-44

LFM (Continue Assembly if Minus)

IFP (Continue Assembly if Plus)

IFzZ (Continue Assembly if Zero)

IFN (Continue Assembly if Not Zero)

This group of pseudo-operations is provided for compatibility

with other assemblers.

Label Operation Field Variable Field

Optional IFM Expression

IFP
IFZ
IFN

The expression in the variable field is evaluated. If the

result matches the IF condition, assembly proceeds normally.

Otherwise, the assembler ignores all subsequent statements

until an ENDC statement is reached.

For every IFx statement there must be a matching ENDC statement.

IFx and ENDC pairs may be nested within each other. The

nesting depth count is checked even in sections of code that

are being skipped by a previous IFx statement.

Examples:

IFP B20 (continue assembly if B20 is 2 0)

IFM (I+3-24) (continue assembly if expression < 0)

0)

IFN X24-1 (continue assembly if expression # 0)

IFZ (ALPHA-6) (continue assembly if expression

4-45

ENDC (End Conditional Assembly Area)

Label Operation Field Variable Field

Not Used END C Not Used

Defines the end of a conditional assembly area started by an
IFP, IPM, IFZ, or IFN statement. Every IFx statement must
have a matching ENDC.

ELSE (Reverse Conditional Assembly)

Label Operation Field Variable Field

Not Used ELSE Not Used

Reverses the condition set up by an IFx statement until the
matching ENDC statement is reached. If the IFx condition
inhibited assembly, the ELSE statement enables assembly,
and vice versa. ELSE statements that lie within the bounds
of other IFx-ENDC pairs nested within the conditional assembly
area are ignored.

Examples:

CHE 2 kes—TEST OF ELSE WITH CLORSTYLE IFS.
CRT%s TFF FIVE

CRIEDET ELSE

CEP EMD

CRETE TFF CIT

asa ELSE

CRE Edom

CREPES TGF MTMic

CIEE TIFF FIVE

CEE ELSE

CERT} EMD

CREE 3 ELSE

VLBA GS. BEET? CRP 3 Lor r

EVES EMO

4-46

FAIL (force Error Message)

Label Operation Field Variable Field

Optional FAIL Not used

The assembler responds to a FAIL statement by printing the

error message "F", This notifies the operator of a logical or

range error, for example within the range of a conditional IFx

statement, that has caused the assembly to proceed to an

undesirable location.

4-47

SECTION 5

MACRO FACILITY

The macro feature of this assembler enables the programmer

to define functions that can be expressed in easily

interpreted English (or other) language statements, such

as:

TRANSFER DATA TO DAC

TURN ON VALVE 312

Once a macro function has been defined, it can be called

for use over and over again within a program. New argu-

ment values (DATA, DAC, ON 312) can be provided with every

call. Dummy words (TO, VALVE) can be used to increase

intelligibility. Such words can be identified during

macro definition so that they will not be treated as

arguments when they appear in a macro call.

After a set of macros has been defined by a system-level

programmer, a specialist in a particular application field

can formulate macro calls to solve his application problems,

without becoming involved in the details of assembly

language programming.

Macros are defined by the MAC and ENDM pseudo-operations.

These and other features of macro definition, listing, and

assembly are discussed in detail in this section.

5-1

MACRO DEFINITIONS AND CALLS

Two pseudo-operations are provided for macro definition:
The MAC and ENDM statements.

MAC (Begin Macro Definition)

Label Field Operation Field Variable Field

Name of macro MAC Optional dummy
(to be used words and/or
in operation argument
field of macro identifiers
calls) (see text)

separated by
commas.

A MAC statement begins the definition of a macro named
by the label field. The name is formed in the same way
as any variable or label. Following the MAC statement are
the statements that make up the macro definition; for
example:

TRANSFER MAC

LDA <1>

STA <2>

ENDM

The integers enclosed in angle brackets are argument
references. During assembly they are replaced by
argument values specified in a macro call. Optional
dummy words ("noise words'') and argument identifiers
("positional noise words") are described later.

Macro definitions may contain macro calls to any depth,
but macro definitions themselves cannot be nested.

5-2

ENDM (End Macro Definition)

The macro definition must be concluded by an ENDM statement:

Label Operation Field Variable Field

Optional ENDM Ignored

This statement terminates assembly of the macro.

Argument References

Argument references (in angle brackets) may be specified

in any field of a statement within a macro definition.

The number within the angle brackets may be a variable

or an expression, provided all variables within the

expression are previously defined as absolute integer

values at the time the macro is called.

Example: LDA <I> + <J-I+1>

Argument references may be nested to any desired depth.

Example: <I + <3 - <I -1>

Arguments <l> and up are replaced by argument values from

the variable field of a macro call during assembly.

Argument <0> is replaced by the label field of the macro

call during assembly. The label of the macro call is

not automatically assigned.

Example: <0> LDA <3> - 1

Macro Calls

A macro call is a special type of statement that uses

the name of a defined macro in the operation field:

Label Operation Field Variable Field

Optional Name of User- Argument value

Defined or expressions, plus

Library Macro optional dummy
words or argument
identifiers,
separated by commas
or blanks

For each macro call, the assembler enters the in-line code of

the defined macro starting at the current location. Argument

references are replaced by argument values from the variable

field. I

5-3

User-defined macros must be defined in source statements
preceding the macro call.

Here is a a typical call to the TRANSFER macro defined
above:

TRANSFER ARG1, '1770

Argument: Values

The variable field of a macro call usually contains one
or more expressions to be interpreted as argument values.
An argument value expression starts with the first non-
space character of the variable field and continues until
a terminating comma or space occurs. (The comma or space
is not considered part of the argument expression.)

Argument Substitution

During assembly of a macro call, the assembler substitutes
the argument values in the macro call variable field for
the argument references in the macro definition.
Argument expressions are matched to argument references
in numerical order from left to right:

 Variable Field Argument <1> Argument <2> Argument <3>

A A O O
At+3 At+3 0) 0
X,Y-1,Z*A-1 X Y-1 Z*A-1
X,B-C (23X2) X B-C Z3X2
(A,B-1), C A,B-1 C
(X,Y, (Z1+Z2),3) X,Y,Z1+Z2),3 0 0

The first expression in the macro call is assigned as
argument 1, the second as argument 2, and so on. In the
following call to the TRANSFER macro -

TRANSFER ARG1, '1770

The variable ARG] is argument 1 and the constant '1770
is argument 2 . Thus, the macro example is assembled
as:

LDA ARG1

STA '1770

Arguments that are not assigned values in a macro call
are set to zero by the assembler.

5-4

Argument Values in Parentheses

Argument value expressions may be enclosed in parentheses

to permit the use of commas, spaces, or string delimiters

within a single argument. (The outside parentheses are

not included as part of the argument expression.) One

use of this is in forming sub-lists of arguments for

macro calls nested within a given macro definition.

Examples:

MACRO WAIT MAC

DEFINITION IRS <1>

CONTAINING JMP * -1

CALL TO TRANSFER <2>

"TRANSFER" ENDM

MACRO

CALL TO WAIT 100, (ARG1, ARG2)
WAIT MACRO

ASSEMBLED IRS 100

AS JMP * -1
LDA ARG1
STA ARG2

Dummy Words

An ordinary macro like:

TRANSFER ARG1, ARG2

is simple, but cryptic. A few extra words in the variable

field of the macro call can improve the intelligibility

greatly as in:

TRANSFER ARG1 TO ARG2

TRANSFER DATA TO PRINTER

TRANSFER MESSAGE TO TTY

TRANSFER FROM CONSOLE TO DISPLAY

5-5

and so on. These macro calls are made self-documenting
by a combination of meaningful argument symbols (DATA,
MESSAGE, PRINTER etc.) plus "dummy" words, such as
TO, FROM. Dummy words are ignored by the assembler
(ie., not mistaken for argument symbols).

Dummy words applicable to a given macro are assigned in
the variable field of the MAC statement that starts the
macro definition, as in:

TRANSFER MAC TO

;
{

ENDM

In this statement, TO is defined as a dummy word. In any
subsequent call to this macro, the assembler ignores the
word TO (does not mistakenly assume it to be a symbol to
be substituted for an argument). All other expressions
in the variable field are interpreted as arguments
(proceeding in numerical argument order from left to
right) and substituted for the argument numbers in the
macro definition statements as usual. When TRANSFER
macro is called by a statement

TRANSFER ALPHA TO '7770

the assembler ignores the TO and assembles the macro as
if the call statement were TRANSFER ALPHA, '7770.

A dummy word string can be any number of ASCII characters
(letters, numerals, period and $ sign). Any number of
dummy word strings may be used in a macro call, separated
by commas. If the first character of a dummy word string
is an open parenthesis, all characters (including spaces
and commas) up to the closing parenthesis are considered
part of the same string. (The surrounding parentheses are
not included).

Here are some possible variations of the TRANSFER macro:

MAC Statement Macro Call

TRANSFER MAC DATA, FROM, TO TRANSFER DATA FROM ALPHA TO '7770

TRANSFER MAC VOLTS,TO,DIG OUT TRANSFER 3.22 VOLTS TO DIG OUT 14

TRANSFER MAC COUNTS,TO,PULSER TRANSFER 3374 COUNTS TO PULSER $FF

Arguments are underlined.

5-6

Other examples of typical macro calls using dummy words:

INPUT S1, Ml, S2, S3 AND M6

ADJUST K2 BY K3, T4 BY K3 AND TS BY Tl

MOVE 3 WORDS FROM X31 TO Z21

SUM Xi, X2, X3 AND X4

DISPLAY ALPHA

CONNECT 7.0 VOLTS TO PIN 5 ON CONNECTOR 1

Argument Identifiers

The self-documenting effect of dummy words improves the

intelligibility of macro calls, but the programmer must be

careful to enter values for arguments in the proper order.

Argument identifiers increase the format flexibility of

macro calls by associating a particular argument number

with a specific dummy word, regardless of order. For

example, identifiers can be defined so that argument 1

follows the dummy word "TO", and argument 2 follows "FROM",

regardless of the order in which TO and FROM appear in the

macro call.

Argument identifiers, like dummy words, are assigned in

the variable field of a MAC statement that introduces a

macro definition. An argument identifier word consists of

a dummy word enclosed in parentheses and equated to an

argument number:

TRANSFER MAC (FROM) = 1, (TO) = 2

ENDM

When a call to the macro uses a defined argument identifier

in its variable field, the first non-dummy expression

immediately following the identifier is taken as the value

of the argument:

TRANSFER FROM ALPHA TO BETA

TRANSFER TO BETA FROM ALPHA

Both of these calls have the same effect: the expression

following the dummy word FROM is taken as argument <l>, and

the expression following TO is taken as argument <2.

5-7

Argument identifiers and dummy words may be used together
in the same macro. Ordinary dummy words are ignored, as
usual.

Arguments that are not associated with identifier words
receive values in the usual positional priority - the
first non-dummy word is taken as the value for the first
unspecified argument, and so on. Example:

Macro

Definition: MASK MAC (BY)=2, (TO)=3, MASK, TRANSFER, AND

LDA <1>

ANA <2>

STA <3>

ENDM

Macro
Call: MASK INPUT BY =7 AND TRANSFER TO BUFF1

Here, argument 2 is =7 and argument 3 is BUFFl, as
located by identifier words BY and TO. Argument 1 is
assigned the value of the expression INPUT (the only other
non-dummy word in the variable field).

Assembler Attribute References

Certain useful attributes of a macro can be specified by a
number preceded by the pound character (#). The following
assembler attributes are presently available to the macro
programmer:

#1 Current Macro Call Number.

#2 Number of Arguments in Current Macro Call.

(others may be assigned later)

The attribute number may be a variable, or an expression
within parentheses, as long as such variables are previously
defined as absolute integer values. Attribute references
are evaluated as absolute integer values.

Examples: #3
#XYZ

(I+2)
<3>

5-8

Local References Within Macros

Local labels can be assigned within a macro definition by
using the ampersand character (§&) as the first character

of the label. Local labels do not conflict with labels
outside of the macro. The ampersand is replaced by a
4-digit macro call number, thereby assuring uniqueness of

the label regardless of the macro's environment. Use of

the "&'' outside of a macro will result in the substitution

of 4 zeros.

Examples: Local Label Evaluated As In Macro Call

GABC OOOZABC 0002

GX3A 1739X3A 1739

5-9

MACRO LISTING AND ASSEMBLY CONTROL

Three levels of listing detail for macro calls are provided.
The default condition is NLSM, which causes only the Macro
call statement to be processed (no detailed output). These
pseudo-ops are global in that they remain in effect until
a new macro listing control pseudo-op is specified.

The BACK (TO) and SAY statements control assembly of macros.

LSTM (List Macro Expansions)

Label Qperation Field Variable Field

Optional LSTM Not used

Directs assembler to list macro call statements and all
lines generated by expansion of the macro, including code
or data values.

Example:

(AOS 0 TRANSFER MACRO EXAMPLE
COMMAS yt
CREAT LSTh

GALACOGSTRT CR “LEH
CAGES > TRAMSEER MPIC To
OURS LOR “Los

AE riT FY ea

YEAS FeaE

ATLA3 Lary RITA

Tey: LPLee CML lib rR Dri.

BTcee CARRied

{

BAGS: fim Bele
t

CREE DRT EI a ae

HELPee COREL Gr ELT a

ALR. CREDos Ee haTo

5-10

LSMD (List Macro Expansions - Data Only)

Label Operation Field Variable Field

Not used LSMD Not used
only those

Directs assembler to list macro calls plus any lines

generated in the expansion of the macro that generate

data.

NLSM (No Listing Of Macro Expansions)

Label Operation Field Variable Field

Not used NLSM Not used

Inhibits listing of statements generated by the assembler
during macro expansion. Only the macro call is listed.

5-12

BACK, BACK TO (Loop Back - Macros Only)

Label Operation Field Variable Field

Optional BACK
or Statement label

BACK TO

This statement directs the assembler to repeat source

statements that have already been assembled, beginning

with the statement specified in the variable field. Such

backward references are permitted only within a macro

prototype. (Both the BACK, BACK TO and the specified

statement label must lie between the same MAC statement

and its corresponding ENDM).

Examples:

BACK TO AB16

BACK AB16

IF (X .NE. 0) BACK TO START+3

SAY (List Message to Operator)

Label Operation Field Variable Field

Optional SAY Any ASCII text string

The assembler responds to a SAY statement by printing the

content of the variable field, starting at column 1 of the

listing. Usually, the SAY statement is used within a macro

to generate error comments or other messages to the

operator. Macro argument references (enclosed by angle

brackets) are replaced by their equivalent character string

before output. ,

SAY statements generate output regardless of the setting of

the listing options, as long as a listing device is assigned.

5-13

Macro Definition:

(@351) OLOMAG MAC USING, AND
(8352)
(#353)
(9354)
(0355)

(8556)

(A357)
(A558)

(0359)

(9360)
(4361)

(9362)

(@363)
(@364)

NLST
SAY
SAY ROORROOOOOOER OKO ROKR KOROR KOK OR &

SAY OLD MACDONALD HAD A FARM, Eni ~E~-I-O-

SAY AND ON THIS FARM HE HAD SOME <1>, ErI-E-I-O-

SAY WITH A <2> «<2> HERE AND A «K2> <2> THERE,
SAY HERE A <2>, THERE A <2>,

DAY EVERYWHERFE A <2> <2>,

SAY OLD MACDONALD HAD A FARM, E-I-ErI-O-
SAY eR ORR OR OR OR ORR KK Rk kk OK KKK kkk OR ROR ok OR HOR kk RR 4k okKO

SAY

LIST
ENDM

Macro Calls:

(A365) OLOMAC, USING CHICKS AND CHEEP

ORRRORGRRROORRORROR ORR ROR RRR ROKK

OLD MACDONALD HAD A FARM, E-I-E-I-0.-
AND ON THIS FARM HE HAW SOME CHICKS, E-I-E-I-0.
WITH A CHEEP CHEFEP HERE AND A CHEEP CHEEP THERE,

HERE. A CHEEP, THERE A CHEEP,
EVERYWHERE A CHELP CHEEP,

OLD-MACDONALD HAD A FARM, E-J-E-1I-0.
OR OR OR ORO ok OK OK ok OK oR OKO ok oo oR ok ako KOK OK ok ok ok Kok ok ok ok ok ok ok kk Ook ook Ok kk

(63606) OLDMAC, USING DUCKS AND QUACK

BR ROR ERROR RRIOORROR IIRIGOROR RRR ok

OLD MACDONALD HAD A FARM, E-IT-E-1I-0-
AND ON THIS FARM HE HsAD SOME DUCKS, E-I-E-1 70+
WITH A QUACK QUACK HERE AND A QUACK QUACK THERE,

HERE A QUACK, THERE A QUACK,

EVERYWHERE A QUACK QUACK,
OLN MACDONALY HAD A FARM, E-IT-EcI-O-~
RRR ORO RORKOR KR KOR OR OK KR KK ROR KR Rk ORR fk gOKk ick ik ak kak ick OK oie ok

(0369) OLOMAC, USING NEWLYWEDS AND CBEEPJ

OR OROROGERROR OOK ORO RRR OIRO IORI ROR ORO HOR RR

OLO MACDONALN HAD A FARM, ErT-E-1-0-. ,

AND ON THIS FARM HE HAD SOME NEWLYWEDS, E-I-E~1-Q.

WITH A CBEFP] CREEP] HERE AND A CBEKP] CBEEPJ THERE,

HERI A CREP PJ, THERE A CSERPI,
EVERYWHERL A CKUREP] CBEEPI,

OLD MACDONALD HAD A FARM, E-TcE-17-0.6

RR ROR RE RO ROOK ORO RR ROR OR KORO RRR RO ROR RRO ORR ROR OK RRR REE EF

5-14

MACRO EXAMPLES

The following macro example makes use of local symbols,

assembly attributes, and looping. The number of arguments

processed by this macro is variable.

Definition:

ADJUST MAC BY, AND

SET GN = 1

G&L1 IF. (GN .GT. #2) CGO TO &L2

LDA (&N) ARG. #1, 3, 5, ETC.

MPY (&N+1) ARG. #2, 4, 6, ETC.

STA (&N)

SET GN = GN + 2

BACK TO +Ll

$L2 EBDN

Macro Calls: ADJUST A3 BY 16, A4 BY 20 AND AS BY 3

ADJUST METERI1 BY 100

ADJUST -X1,2 X2,2 X3,2 X4,50 X5,50 X6,2

Definition:

MOVE MAC WORD, WORDS, FROM, TO

IF (<1> .EO. 1) LDA <2>: STA <3>: GO TO &X

LDX = <1>

LDA <2> -1,1

STA <3> -1,1

DxS 1,1

JMP ®-5

&X ENDM

5-15

Macro Calls: MOVE 1, ALPHA, BETA

MOVE 20, LIST, TABLE

MOVE 1 WORD FROM ALPHA TO BETA

MOVE 20 WORDS FROM LIST TO TABLE

MOVE 3, FROM X31 to Z21

The following macro does not generate any coding, just an
answer. It demonstrates how macros can be used to
construct interpreters as well as compilers.

Definition:

FACTORIAL MAC OF

FACTA

Macro Calls:

FACTA <I> ,1

ENDM

MAC

IF (<I> .EO. 0) DATA <2>

SET A2 = <1> * <2>, Al =<b -1

IF (<2> .NE. 0) ACTA Al,A2

ENDM

FACTORIAL OF 5

FACTORIAL 7

5-16

The following example shows the type of "language" that

can be provided for business applications when a suitable

set of macros are prepared in advance. (The macro defini-

tions are not shown.)

#-------- FILE AND FIELD DEFINITION.

INPUTREC FILE CONTAINS 80 WORDS FROM UNIT 5

OUTPUTREC FILE CONTAINS 80 WORDS ON UNIT 6

AMOUNT FIELD OF INPUTREC FROM COLUMNS 25 TO 20, @ DECIMAL

POSITIONS

CODE FIELD OF INPUTREC FROM COLUMNS 25 TO 30

NAME FIELD OF INPUTREC FROM COLUMNS 65 TO 75

NAMEOUT FIRLF OF OUTPUTREC FROM COLUMNS 1 TO 10

CODEOUT FIELD OF OUTPUTREC FROM COLUMNS 11 TO 16

AMOUNTOUT FIELD OF OUTPUTREC FROM COLUMNS 17 TO 23,

2 DECIMAL POSITIONS

Wo ------- START EDITING PHASE OF PROGRAM.

START READ INPUTREC, IF END OF FILE, GO TO EOF

MOVE AMOUNT TO AMOUNTOUT

MOVE CODE TO CODEOUT

MOVE NAME TO NAMEOUT

WRITE OUTPUTREC

TO TO START

*#-------- FILE PROCESSING COMPLETE.

EOF END

5-17

SECTION 6

SOURCE FILE MERGING COMMANDS

The assembler includes a function called RDALN (read

alternate lines) that has the ability to merge lines from

two or more source files during assembly. File merging is

controlled by special command statements in the primary

source file that begin with a dollar sign:

$ INSERT
$UPDATE
$COPY
$DONE

The primary source file is the file (or device) specified

in the usual manner at the start of assembly. Secondary

files stored on disk or mounted on a specific input-gutput

device are selected by a filename or device code specified

in the variable field of a $INSERT or $UPDATE command.

Only disk-resident files can be identified by filename. When

non-disk devices are used, a device code is used instead

of a filename:

(A) ASR . (P) PTR (C) CARDS

(M) MAG TAPE (K) Cassette

The parentheses must be included in device codes. Only the

first character is needed to identify the device; other

characters may be included for documentation (as in ASR or

PAPER TAPE READER) but the extra characters are ignored.

File merging commands are allowed in the primary source file

only, not in secondary files.

$ INSERT

Label Operation Field Variable Field

Optional $ INSERT Filename or device code

When the assembler reaches an $INSERT command in the primary
source file, it opens the specified file (or starts the device}

and starts reading statements from the secondary file. The

6-1

secondary file is read in entirety, up to but not including
the end-of-file mark. The assembler then returns to the
primary file and resumes at the line following the $INSERT
command. Nesting of $INSERT commands is not allowed.

$UPDATE

Label Operation Field. Variable Field

Optional $UPDATE Filename or device code

When the assembler reaches an $UPDATE command in the primary
source file, it opens the named file (or starts the device)
but continues reading from the primary source file until a
$COPY command is found in the primary file.

If the primary file contains more than one $UPDATE command,
the one most recently processed determines the secondary
file to be accessed by $COPY commands.

$COPY

Label Operation Field Variable Field

Optional $COPY m,n

When a $COPY command is found in a primary source file, lines
m through n of the secondary file specified by the most
recent $UPDATE command are input to the assembler. After
line n has been processed, the assembler returns to the
primary file and processes the record following the $COPY
command.

$COPY commands may also be entered in the following forms:

$COPY m Copy line m of secondary
file only

$COPY ,n Copy from current position
in secondary file up to and
including line n

$DONE

Label Operation Field Variable Field

Optional $ DONE Not used

Upon reaching a $DONE statement, the assembler closes all

open files and shuts down all devices used for secondary

input.

APPENDICES

PRIME 200 Instructions (Op Code Order)

PRIME 200 Instructions (Class Order)

PRIME 200 Instructions (Mnemonic Order)

1/0 Device Codes

ASCII Character Codes

Object File Formats

Assembler Error Messages

0

3

ty

G

Ci

Ci

GF

rj

ie

Cj

rj

ie

Cj

Ci

Gi

Gi

i

ty

rj
Gi

Gi

ij

Ci

Ci

0

i
om

ie)

rr.

Mee
rir!

rf!

he

Pike

=H
=H

SH
=H
"aH

lH
lH
SH
SH

reg sUtig athe tht, stem, mb,

facet Toney eae Foae® Powe Foun’

renee Soene Manat Faana® Fone’

a7
}

m
I

i
a
t i ora
l

m
i
T
t

"o
ul
7

=

oI
ca
a

™
=~:

is
l

bs

= »
st

ES
E

ct

P
r
e
m
S
e

m
h

b
h
b
h
i
e
p

‘e
nd
s

= m
y
a

m
y

i

t
i

a
e

m
m

=
,

e
a
d

i
s

m
a

c
i

o
e

m
s

W
i
t
h
e
e

&

m
i

‘w
ak
e:

ai
la
t

En
t
t
i

7

c
o to
t
A

p
e

ne
t

y
e

f
a

mm
!
i

e
i

h
t

ts
!

o
e
,

Lo
d
i
t

*
*,

y
p
i
y
S
e

Gr
bs

be
pe

™
,

‘a
l
7

i
m

‘o
va
ls
= ‘a
l
= ad = cn
)

is
.

4

=
e
= 3

{

ai
‘on

ate
r

i

i
m
i
m
i

a
,

1
‘
n
d

‘m
al

e
=
,

i

“-~
on

o
m
e

~
S
L
T
a

a
t
o

p
e
a

m
i
2

F
s
o
S
o
e
c
s
O
O
|
a

m
a

mm
s
a
l
e

B
e m
l ms

o
e
}

=
,

St
!

i f

i =
a
h

Ts
%

fa
ta

l
v m
i m —- in
n

—
~
a
e

f
r

2
a

e
y
a
e
m
M
e

&
I
s

my
)

-
_ = = in

ASMP

GeliGdNM

Ad SNM

Ae Behe

A4-LANN

GtMM

B4Lehhy

+ =f
.

APPENDIX A

PRIME 200 INSTRUCTIONS

HLT

Mor

Sa

CoRL.

Las
a

E ot “et hoeAnJeon tore! Deg wee el

Fethic:

A

THK

het

CEA

TRAE

Prt

FTG
of Ma T Rey!

EME
LITE
AT
Es Th
EM Tt
L.A
Eich
Sl

Lat

(OP CODE ORDER)

CA
CERAD
CRMES

CLGE»

HALT

Hilt OFERAT I citd

ENTER SINGLE FRECISICM MoOpbeE

EMTER OOWBLE FRECISTION Mote

EMTEF: AGGRESS TMG
ENTER 32k SECTOR ADDRESSING

RESET MACHINE CHECE

TRANSFER SHIFT COUNTER To A

TRANSFER CINPUT? STATUS KES

MORMAL Te

COMPUTE EFFECTIVE ADDRESS

INTERCHANGE A AAD 6B

POSITION FOR INTEGER

POSITION FOR ITWTEGER

WERT F's

EHWAEBLE INTERRUPT
TEANMSFER COUTFLUT® A TO STATUS

CLEAR ACTIVE INTERRUPT

ENTER STANDARD INTERRUPT MOCE

EXTER VECTORED INTERRUPT MODE

LEAVE MACHINE CHECK MODE
ENTER MACHINE CHECE MODE

SUPER T SCR CALL.

INPUT SERIAL INTERFACE Tel A

QUTFUT SERIAL INTERFACE FROM A

INHIBIT INTERRUPT

ENTER =2K RELATIVE ADDRESSING Met

INCOM TT IONAL TUNE

DOUBLE FRECISTON LOR

LOAD A

AMO To A

DOUBLE FRECISION STORE

STORE FA

LONG FIGHT LOGICAL.

LOM FIGHT SHIFT

LOG RIGHT RCTATE

A RIGHT LOGICAL.

A RIGHT SHIFT

A RIGHT ROTATE

Lom LEFT LOGICAL

LONG LEFT SHIFT

LOG LEFT ROTATE

|

NOOE

Tit

MULTIFs

DIVIDE

BEM

A-1

=TH

hfe

bite

hr

bf

Pipe

hile!

i

5

{5

Cy

i

i

Mm

Fife

Fk

(4

j

Ue

i

i

i

i

tk

FR

ie

bik

PF

IF
TW

ie

Ue

fy

ty

ie)

i

ti

ie)

ie

Vi

i

ie
ie)

G

Ci

C
oy

GF

I

chAM

LSihltd

GL6HM
S
i

ni

f
y

ft
:

a
e

.
:

we
t

La
t

|
m
i

m
o
"
)
4

a
d

“J ha
t

t
— wt
!

e
o

‘ov
ale

{
h
,

‘n
at
e
, n
t

7
,

t
y
,

m
f

L
d

m
i

i
oo

,
f
e

al
i

41
s

a
,
E
t

=
,

m
i

f
h

ie
d
a
e

O
o
,

i

f
be
t
U
s

a
y

h
e

:

wo
ke

Po
t
A

a
t

wre, geet, om,
“Ss

y
m

m
i
i

= m a
S

m
i

“e
wa

dl

m
e

‘e
on

s

t
a
l

—
,

fea
ts

+
,
i
t

i
?

=
~

”

m
e ea BS

t
a
n

e
e

co
de

H
P
P
P
R
e
e
S
R
P
i

i t

+

t
7

fm
b
i

a

w
y
B
f

i
E

m
i
i

m
t

je
t

ee
t

m
y

i
m we

f
i
P
i
r
o
f
a
e

f
o

TALAZe

LEACLAAS

LaLa
LALA

Teese

A.

ALL

Fl

ERA

DAT

AMT

CE

LIE

TET

SF

Re

oeFe

Sk

LeLoede+e Sh
ray ate gy

LELZAG+hM SF

LEL4ee

LA.

L4an18

t4eo14

L4nee4

Lanes

14aLia4

T4811

L49114

Lanne

Léa2e4

1482168

L4hei4

Laem
148218
L4a328

L461

L4e4ar

146416

Late

148412

LEFT LOGICAL

LEFT SHIFT

LEFT ROTATE

ACLUSTVE CF To A

DOUBLE FRECTSION Abt

ADD MEMORY To A

COWELE FRECISION SUBTRACT
SWETRACT MEMES FRG A

JUMF TO EA + 1 ANG STORE F IN EA

UMCOAO TT IOMAL SEIF

SETF OH m-BtT RESET

SEIF OH WOME OF SESE SWITCHES ia-4 SET

SEIF ON A SER

SEIF CH A BIT Léa SER

SEIF OM MACHINE CHECK RESET

SEIF OH A GREATER THAN SER

SEIF OM SENSE SWITCH No RESET

SEIF ON A BIT WM RESET

SERIF OR A PLES

SKIP OR M-BTT SET

SKIFF Ch ABS OF SENSE SWITCHES i-4 SET

SKIFF Oh A MOT SERCO

SEIF CW A GIT Le OE

SEIF OM MACHINE CHECK SET

SERIF CM A LESS THAN OF EGURAL TO SeRO

SKIFF OH SEMSE SWITCH HO SET

SEIF OW A BIT Wo SET

SEIF OCW A MINUS

COMNFARE A WITH MEMRy

THCREMEMT. REPLACE MER AND SET

INTERCHANGE MEMORY AMD A
MUITRUT COATRL PULSE

LEAF LONG CA AA Be

LEAR 6

CHANGE SIGH OF A

LEAF FA

SET S1TGHM OF A PLUS

TRANSFER A TO 8 ANG CLEAR A

SUETRACT OME FRC A

THCRENENMT. REPLACE INCE AND SE IP

RESET C-BIT
TRANSFER E To A AND CLEAR &

CECREMENT REPLACE INCE AMG SRIP

COMPARE A WITH ZERO

ADD THO To A
SUBTRACT Thi FROM A

Cory STGM TO C-BIT:

COMPLEMENT A

THO S COMPLEMENT A

CONVERT FeO To TRUE

COMVERT Fec=C) To TRUE

COMVERT “¢A=e@> TO TRUE

R
u
t

Dd

SET SIGN OF A PLUS

GF

5

a

5

0

i

1
Ci

ie

Ci

i

Ci

tik:

fib

rie
hr:

TO

rt
iM

we

1419415

145414

L4a4d15

L4a588

Lhe

41844

L441ie

L4LiL4e

L41Lece.

L41218

T41ecde

T4134

LS

15

Le
17

“eh

me}

ret
~n
re

~
+
i
s

iT
< m
e

-
,

‘ou
st!

:

LEG

LiGE

LT

hd

mE

AR

FAL.

TC.

ANA

AA
Tick

TCA

Les

mT

bas!
[a 1 ‘!

KS

THA

MITA

Sk

a T
h

ROMVERT A= TO TRUE
COWVERT ASSO TO TRUE
COMVERT ADO TO TRUE

SET SIGN OF A MINS
SET -BIT
CLEAR RIGHT BYTE OF A
CLEAR LEFT BYTE OF A
INTERCHANGE BYTES OF A AND CLEAR LEFT BY'Te

ACG OME TO A
ADO C-BIT TO A
INTERCHANGE BYTES OF A ANG CLEAR RIGHT BYTE

INTERCHANGE BYTES OF A

LOAD INDEX “ASSEMBLER SETS INDEX BIT)

STORE INDEX CASSENBLER CLEARS INDEX BIT:

MULTIPLY
DIVIDE
SEIF IF SET
INMFLUT TO A

OUTFUT FROM A
SET INTERRUPT MASE

0
3
i
Ci
Gi

wes ashe, ome, htt,

foe Ot Trak Migat Fe

M11—
,

a
t

'

“b

i

i i
m

"e
na
le
= ro
ut

e’
7
,

‘m
at
e

in
t i

‘o
ve

ho
a

‘a
ti
n

m
i

r
a

“a
t

m
t

ex
H
b
R

L
P
G

h
a
h
i
e

m
P
R
E
U
P
R
R
h
R
e

Lt
f
e =

a
y

“a
ga
te

i
m
i

? H
&
i
i

&

ta
t

i a
,

p
m

‘w
ad
e’

i
a
t

w
y

u
t

fo
s

x
d

“w
ee
ks

o
T
,

a

5

o
n
e

‘a
le
=
,

=
j
-

= l
t

t

h
t

R
i
m

m
s

&

mr
it

+
,

“a
aa
:

o
u aw
e"

£
£

m
i
e
e
R
s

"a
ca

mE
i
e
a

=
=

ca
t
U
d

e
e

‘
o
d
e

= ts
i

et
1

i

d
t

{

re
,

‘a
nt
™
, "

na
t
, f
d

4

t
e

e i

7
,

or
,

"v
al

e

rm

“a
t

E4
2

is

m
i
i

i
o
n

1
iy
}

n
t

he
a

a
S
y

e
y

my
ee
e

e
s

‘w
h!

‘a
sh
e

f
i

m
a

E
e
e
e

m
t

"w
ar
t

u
s

‘o
nt

2
G 4 a ‘c
oa

l A

r
l ex

P
U
G
p
B
h

B
b

+

f
i
e
d
e
m
)

O
i

m
i

st

react Keun Com Sean! Sami tens!

m
m

~
=

ta
d

i
d

~
.

= im
i

m
i

1
2
7

s
d

m
i

=
~

ba
t

mi
2

i
j

j
i

m
y

a
s

bd
o
n

7
;

Se
te = ia
t

Sf
U
R

sa
ta

,
an
en
e,

a
t

ia
l

=
,
-

bo
t

p
e
L
d
, ‘a
ct

'

s
i
= ca

l

2 Fat Feet Fat Fogah Feen!

m
e

&
s

m
y

i
a

m
S

m
i

fe
.

in
d
G
o

4

c
i
m
a

M
y
a
e
e

B
f
h
e

ta
t

S
a
p
p

pe
pe
pe
p
e
p
b
p

=
m
t

= a P
P
O
O
m
&

m
o
1

Go
bo

T
y

F
R

m
e

S
s

E
s

jeow

LB1LB4°
161186
LAL2S68

i
L
a

APPENDIX B

PRIME 200 INSTRUCTIONS

(CLASS ORDER)

oho SKIF OM SENSE SWITCH HM RESET

Rh SKIF CM A BIT M RESET

ee SKIF Ch SENSE SHITCH N SET

eosBed SRIF CM A BIT MoOSET

HIT HALT
HOF MO OPERAT TOM

aL. ENTER SINGLE PRECISTON MODE

PRL ENTER OCUBLE FRECTSION MOGE

EVeS (DHA ENTER 16k SECTOR ADDRESSING MODE

EES CESAD ENTER ESE SECTOR ADDRESSING MODE

Rh CRAMP RESET MACHINE CHECK

tA TRANSFER SHIFT COUNTER TO A

THE TRANSFER INPUT? STATUS KEYS TO A

Hep MORMAL. TE

CEPA COMPUTE EFFECTIVE ADDRESS

TRAE INTERCHANGE A AMO E

Por POSITION FOR INTEGER MULTIPLY

Pits POSITION Fok INTEGER DIVIDE

me WT Rt VERIFY!
EHE EMWABLE THTERRUPT

OTK TEAMSFER COUTPUT® A TO STATIS KES

AT LEAR ACTIVE THMTERRUPT

ESTrt FNTER STANCARD INTERRUPT MODE

EM Tf FHTER VECTORED INTERRUPT MoOcE

Lied LEAWE MACHINE CHECK MOE

Err ENTER MACHINE CHECK MODE

ha SURFER T SOR CALL

TT IHFUT SERIAL INTERFACE TC A

057 OUTPUT SERIAL INTERFACE FROM A

THH THHIEIT INTERRUPT

ESE EMTER 22k RELATIVE ADDRESSING MODE

shFP UNCON T TICWAL SE IF

RI: SKIF Ch C-BIT RESET

Pe SKIF OM MOME OF SENSE SWITCHES 1-4 SET

SSE CSESKIP OM A SER

SL SKIF CM A BIT 16 2ERO

SMRSEH SEIF OM MACHINE CHECK RESET

Sat SKIF Of A GREATER THAN ZERO

SPL fSGE2 SKIP OW A PLUS

Sic SKIF Oh C-BIT SET

S55 SKIF ON ANY OF SENSE SHITCHES 1-4 SET

SWS <SNE> SKIF ON A NOT SERCO

SLA SKIF ON A BIT 16 OWE

SMHiScses: SKIF OM MACHINE CHECK SET

B~1l

i

a
i

(3

5

{5

Ue

Mi

Wi

1

Us
Ue

ie

i

C3

i

5

Vi

ri

ri

ri

my

i

a

ty

vi

5

ri

4

i

G

1

"4

Ue
me

TW

wt

TO

ae

a

like

rik

he

rik:

tke

bps

rife

rife

rife

hfe

ifs
rife

lke

LALSe

LALae

Laelia

L46814

Laid
L4se48

L448 1Lee

Late

L4iiie

Lte144

Lae
T4ace4

Loe

46214

Letaae

LHS16

L4A8S28
Leelee

L448"

Leetia

L441.

Leeto

1 edised 1=

LAB

L4o415

LAaaSsae

L4Ge68

L4Lat

L41LeSea

Ltda
L425

L4¢Leie
L41e4a

L41L24e8
1+}

m
i

M
e
a
l
a
h
n

b
*
f
p
S
R

CSLTS

I

SERIF OM A LESS THAN OF EQUAL To “ERO
SE IF OA AL MIMS
MLEAR LONG CA AR Eb
CLEAR &
CHANGE SIGH OF A
LEAR A

SET STGH OF A PLUS
TRAHSFER A TO B AND CLEAR F
SWETRACT OME FRO Fy

INCREMENT. REPLACE INGE Aho SEITE
RESET O-BIT
TRANSFER 6 TO A AW CLEAR &
PECREMENT REPLACE INDE ANG SEITE
COMPARE A WITH SER

ADD THO Ta A

SWETRACT THO FROM A

Oey TGA To C-BIT,

CORPLEMNENMT A

THO? S COMPLENMENMT Fy

COAVERT Fela TO TRUE
COAMERT Aste) To TRUE

ROVERT “oF=ao TO TRUE

COAVERT A= To TRUE

CONVERT Alt) TO TRUE

COMVERT AG To TRUE

SET SIGH OF A MIMS
SET C-B1T

CLEAR RIGHT BYTE OF F

CLEAR LEFT BYTE OF A
THTERCHANGE BYTES OF A AWD CLEAR LEET BYTE
AOD CHE To A

ACD m-BIT To A
THTERICHANGE BYTES OF A AW CLEAR RIGHT BYTE
INTERCHANGE BYTES GF A
MUITRUT CONTROL PULSE
SEIF [TF sET

INFUT TO A
OUTRLUT FRO A

SET INTERRUPT MASK
WACOTTIAL UP

SET SIGM OF A PLUS

ROUBLE PRECISION Lorn
LOAD A

AMD To A

OOUELE FREMISTON STORE
=TORE FA

EeACLIUSIVE OF To FA

DOUBLE FRECISION Abo

ACO MEMORY To A
COUBLE FRECTSION SUBTRACT

SUETRALT MEMORY FRCP FF
JUMF TO EA + 1 AND STORE F InN EF
COMPARE AO WITH MEMCR
THCREMENT. REPLACE MEMORY AWD SKI

B-2

Ls

LS

1

1A

Lr

Adeathd

ss

GMM

fitted hind

SE5hHh

AeeM

edLett

Be}Lele

AeLehit

Bettht

Fed.Sth

BeLenin

KF

‘

m
t

i
r

H
t

1
+
,

TMA
Lov
STH
hey
to I 4

LL.
LES
[FAR
FIFI.

ARS
FARR:
Lut
LAS
LLR
Flt
FILS
FlFe

“LGR?

HLGL

THMHTERCHANGE MEMORY AMO A
LOAD INDES CRSSENBLER SETS INDE BIT
STORE INDE CASSENBLER CLEARS INDE BIT:

MULTIPU
BPIVIBE
LOMG RIGHT LOGICAL
LONG RIGHT SHIFT

LONG FIGHT ROTATE
A RIGHT LOGICAL
A RIGHT SHIFT
A RIGHT ROTATE
Lon LEFT LOGICAL
LOM LEFT SHIFT
LOG LEFT ROTATE
A LEFT LOGICA.
A LEFT SHIFT
A LEFT ROTATE

ty

i

hike

mal

Mike

bike

Mm

Cy

0

Ti

ri

ie

i

9

bik:

i

hife

Pir

Ci

hfe

rile

ri

fe)

Mi

Ue

i

1

CF

{3
ie)

er
i

G

0

tq esd

{tee

ef Lahn

MedLeh

Ae Lett

ES

L41266

Bred ehdP

Beenehh

Ae.Shi

AerLL

L41e58

t4Lad4

LA

T4hei4

MALL

L484

Lesehid

L4ee4e

Laat

L46o1e

L4eSe8

LY

1

148218

I sa
d

=
,

mi
i
d

i

a a
m
T
,

ba
d

je
t

}

= ‘mh
’

1 ‘at
e

b
s

.,

i
i

i
i

cor
es,
a
,

4

et
2%

,
‘e
it
le

e
,

‘w
ak

e

m
i

‘e
am

‘o
wl

s
=

a
m

a
!ALAGTetMi

be
b
h

P
e

=
,

7
,

é 4

m
i
S
S
m
m

t
i 2
a
e = m
a

-
|

es

141245

of

she

el
dea

d
L
e
b

APPENDIX C

PRIME 200 INSTRUCTIONS

(MNEMONIC ORDER)

CLG}

Fay

AA

CALA

RR CLiGko

Erich

EME

ERA

ES Tht

EV Th
HLT

TRE
TA

Th

ICR

AOD Tac To FA

Abo C-BIT To A
ADD MEMORY To A
A LEFT LOGICAL
A LEFT ROTATE

A LEFT SHIFT
ANC To A
AOD OME TO A
A RIGHT LOGICAL
A RIGHT ROTATE
A RIGHT SHIFT
CLEAR ACTIVE INTERRUPT

CLEAR LEFT ESTE OF A

CLEAR RIGHT BYTE CIF A

COMPARE A WITH PENORY

COMPARE AO WITH SERCO

COMPLITE EFFECTIVE ADDRESS

CHANGE SIGH CF A
COMPLEMENT A

CLEAR A

ILERF E

CLEAR LONG CA ANE Bo

Coe STGN To C-BIT.
DOUBLE FPRERISION ADT

EMTER COWBLE PRECISION MOE

PIVIGDE

POWELE PRECISION COAG

CECREMENT REPLACE INDES AMO SET

COOWELE PRECISION SUBTRACT

DOUBLE PRECISION STORE

EMTER Lek SECTOR ADDRESSING MODE

ENTER E2EK RPELATIVE ADDRESSING MoOGeE

ENTER 32k SECTOR ADDRESSING MODE

ENTER MACHINE CHECK MODE

ENABLE INTERRUPT
EXCLUSIVE OF TO A
FHTER STAMDARD INTERRUPT MODE

FHTER VECTORED INTERRUPT MODE

HALT
INTERCHANGE
THTERCHANGE
THTERCHANGE
THTERCHANGE

SET SIGM OF A PLUS

mFA ARE
BYTES
BYTES
BYTES

oF A
oF A AO CLEAR LEFT BYTE|

OF AOANOG CLEAR RIGHT BYTS

C-1

rit

Tt

Ue

iy
Ue

Gi

ER

t
a
i

f
e

i
d

r
t

ot
“p
ol
e

m
m
i

=
i

™
i

t
e
l

m
i
!

F
™
,

S4
2

i
g
h

U,
a

pe

fa
nt
—
,

f
a o
b

L46114

BEE1

aL

Tae

LS

L442

L4ietis

THALES

4a.

bie} LANE

eldht

ee}Pn

L4iebie
ARSee

T4412

bpahd

aed

Bel earLMh

Le
rary ttt, Hm, nee vee

is

ARELAL
Let

ABETS

red
AREHAS

L426

AUS1

146218

LABSee+h

TAL

ACRE

AAAS

LALLA

I
J
a

i
)

:
=
,

:
i

L
a

fa
l

ta
s

t
l

a
o
a

oD
b
o
c

P
h
y

5!7
,

“a
ke
— ea

e

S
p
e

be
pe
p
t

o
t

m
=
)

a =
,

a
e

me
b
e

+‘o
ol

1
a
m

M
S

1
D

T
D
"

Mm
TH
m
a
p
a
s

—
_
—

—
-

a
b
e

S
E
S
p

ar
e
f
p

it
p
u
t
p

b
e
l

i
y
t

1
4

CRF 3

LSE o

{SIGE 3

THTERCHANGE MEMORY AnD A

THEUT To A

THHIEITT [THNTERRUPT

TRANSFER CIMPUT? STATUE KEYS

THICREMEMT: FEPLACE MEMORY AA

THCREMNENMT, REPLACE INDEX ANC

IHMFUT SERTAL INTERFACE To A

WACOMD T TIONAL UME

JUMP TO EA + 1 AR

LOAD FA

LOAD THDEM CASSEMBLER SETS

COAVERT A= TO TRUE

COMVERT ADS TO TRUE

CONVERT AO TO TRUE

CTOMVERT ASSO TO TRUE

LOG LEFT LOG TAL.

LOLEFT ROTATE

LOoniG LEFT SHIFT

COVERT FeCl TO TRUE

LEAVE MACHINE CHECK MOE

COAVERT “CA=8o To TRUE

LONG FIGHT LOG TGA.

LOG RTGHT ROTATE

LOMG RF TGHT SHIFT

PILTTP

Ho ORERAT TCH

HORMAL Tee
CWITRUT CONTROL PULSE

OUTPUT SERIAL INTERFACE FROM A

MUITEUT FROM A

TRANSFER COuUTPUTS A TO STATUS KEYS

POSITION FOR IHTEGER GIVE
POSITION FOR INTEGER MULT IFILL.

RESET (-BIT

RESET MACHINE CHECK

SWETRACRT Tho FRCP A

SEIF OM A BIT Wo RESET

SRIF OF A BLT Wo SET

TREAHWSFER SHIFT COUNTER

SET C-RIT

ENTER SINGLE FRECISION

SEIF Oh A GREATER THAM

LINCOM I TIONAL SERIF

SEIF IF SET

SRIF OM A LESS THAN OF EQUAL To FER
SKIF OH A BIT 16 ONE

SKIFF OM A BIT 16 SER

SKIF ON MACHINE CHECK RESET

SERIF ON MACHINE CHECK SET

SEIF CH A MINIS ,

SET INTERRUET MASK

SEIF OM A MOT SER

SUBTRACT CONE FROM A
SEIF CA A PLUS

SRIF OM O-EBIT

SEIF CA SEAMSE

Ta &

SK IF

SK TF

=TORE F IN ER

INCE EIT >

TO A

MAGE
ZERO

RESET
SWITCH MN RESET

C-2

"3 TELE. Sal SKIF OM C-BIT SET

vi 146588 Soh SET SIGN OF RAR MINUS

rik Valedoen Soh SEIF ON SENSE SHITCH N SET

ey LIGLee =f SET SIGN OF A PLUS

ce Lamaze mS Fe SKIF ON NOME OF SENSE SWITCHES 1-4 SET

ie LeLrse. me SKIF OM ANY CF SENSE SWITCHES 1-4 SET

re Fe} STA STORE Ft

be LS Ts STORE INDEX cCASSEMNBLER CLEARS INDEX BIT:

rb ay LIE SUETEACT MEMORY FROM A

i ht: SUPERVISOR CALL

ie SFE SSEQ> SEIF ON A ZERO

i ThA THO’ S COMPLEMENT A

m9 sek WTR! WERIF':

oi aA TRANSFER A TO G AND CLEAR A

‘ a TRANSFER & TO A AND CLEAR &
ii

=J
+

5

— =
a
i

o
t

S
i

“
3

7,
at

e'
y

"a
ok

y
—
.

me
es
e!

t
e
a we
t!
—
,

ao
t

O
T
)

ee
b
e

TS
ms

m
y

R
e
b
e

& bs
a

ai
o

m
t

ce
t

f
a
r
e
i
B
m

m
m
e

f
+

t
a
f
.

B
R
E

~
)
S
o

+ +

C-3

APPENDIX D

I/O DEVICE CODES

APPENDIX E

ASCII CHARACTER CODES

Octal Octal Octal
Character Code Character Code Character Code

0 260 X 330 SOM 201

1 261 Y 331 EOA 202

2 262 Z 332 EOM 203

3 263 (blank) 240 EOT 204

4 264 241 WRU 205

) 205 " 242 RU 206

6 266 # 243 BEL 207

7 267 $ 244 FE 210

8 270 245 H TAB 211

9 271 § 246 LINE FEED 212

A 301 ' 247 V TAB 213

B 302 (250 FORM 214

C 303) 251 RETURN 215

D 304 x 252 SO 216

E 305 + 253 SI 217

F 206 , 254 DCO. 220

G 307 _ 255 X-ON 221

H 310 . 256 TAPE AUX

J 311 / 257 ON 222

J 312 : 272 X-OFF 223

K 313 ; 273 TAPE OFF

L 314 274 AUX 224

M 315 = 275 ERROR 225

N 316 276 SYNC 226

0 317 277 LEM 227

P 320 @ 300 SO 230

Q 321 333 Sl 231

R 322 334 S2 232

S 323 335 S3 233

T 324 336 S4 234

U 325 337 SS 235

V 326 RUBOUT 377 S6 236

W 327 NUL 200 S7 237

E-1

APPENDIX F

OBJECT FILE FORMATS

F-1

n
w

©
ty

O
A

=

APPENDIX G

ASSEMBLER ERROR MESSAGES

Definition

Macro argument number not found, unrecognized

operand type, or FAIL pseudo-op executed.

Improper GO TO refergnce, or END or ENDM within a skip

area.

Improper indirect flag.

Improper label, or external label in a literal, or

missing label.

Multiply defined.

END within a Macro definition or an IF area.

Unrecognized Operator.

Mismatched parentheses.

ENDM not within a Macro definition.

Expression stack overflow, or improper Macro name.

Address out of range (LOAD mode), or improper string

termination.

Symbol table overflow.

Undefined variable.

Value is too large for field, has undefined variable,

is missing, is illegal type, or END pseudo-op is

within a Macro definition.

MAC pseudo-op is within a Macro definition.

Improper index tag, or improper external name.

G-1

APPENDIX H

ASSEMBLER IMPROVEMENTS - DISK REVISIONS 3 & 4

This appendix details additions and improvements to the assembly

language introduced on master disk revisions 3 and 4. Information

in this appendix was obtained from Prime internal memos PE-TN-47

and PE-TN-50.

PMA IMPROVEMENTS

The following improvements have beer. made in PMA for the Rev. 3 Master
Disk:

SUBR/ENT Logic

PMA formerly truncated the internal name of an entry point to four
characters when looking up the value for the entry point. The new
SUBR logic will first search for the name as given, and then, if
it was not found, truncate it to four cheracters and search again.
Because of this change, symbol references in SUBR/ENT statements
will not be included in the concordance.

Multi-Word Literals

Literal expressions may now be multi-word data items. For example:

DAC
DAC

C'012345678 '
2.51E4n

o
n

PCVH Pseudo-Op

The PCVH pseudo-op directs the assembler to print symbol values in
the concordcnce in hexadecimal instead of octal.

Phase Error Detection

The assembler will now flag phase errors (a symbol having a different
value in pass 2 than in pass 1) with a 'Y' error diagnostic.

XSET Pseudo-Op

The XSET pseudo-op is functionally equivalent to the SET pseudo-op,
except that symbols defined with XSET will not be included in the
concordance,

B and ¥ Register Attributes

The initial value of the B and X registers at the start of an assembly
ere now available as attribute numbers 101 and 102 respectively.

H-2

PMA LOADER CONTROL PSEUDO-OPS

The following loader control pseudo-ops have been added

D16S

D325

- Desector in 16K Sectored Mode

The D16S pseudo-op directs the loader to enter

desectorizaticn mode. It is equivalent to the

- Desector itn 32K Sectored Mode

D32R

D64R

The D32S pseudo-op directs the loader to enter

desectorization mode. It is equivalent to the

- Desector in 22K Relative Mode

The D32R pseudo-op directs the loader tu enter

desectorization mode.

Deseetor in 64K Relative Mode

The D64R pseudo-op directs the leader to cnter

desectorizavion mode.

SDM - Set Default Desectorization Moce

64K

to FMA:

sectored

pseudo-op.

sectored
pseudo-op.

K relative

relative

The SDM pseudo-op directs the loader +c set its default desec-

torization mode to the mode defined by the expression in the

variable field of the SDM pseudo-op. Legal values of the

expression are:

16K Sectored Mode
32K Sectored Mode

64K Relative Mode
32K Relative ModeW

N
o
r
©

The SDM pseudo-op does not change the current desectorization

mode.

DDM - Desector in Default Desectorization Mode

The DDM pseudo-op directs the loader to enter the desectorization
mode defined by its default desectorization mode. The default de-
sectorization mode is initially set at the start of a load and is
only changed by a SDM pseudo-op.

REV. 4 PMA EXTENSIONS

The following PMA extensions have been implemented for the Rev 4

master disk:

New Constant Forms

The following new constant forms are now proccssed:

1. Binary Constants

A percent sign followed by a string of binary digits or

the characters B' followed by a binary digit string fol-

lowed by a ' will be processed as a binary constant.

Examples:

B'iol1'
11011 u

f
f 5

"33

Single Character Constants

The form R'c', where c is any character, will be processed

as the character code of c.

Examples:

R'A' = '301
R' tt = 1247

C64R (Check 64K Relative) Pseudo-Op

The C64R pseudo-op directs the assembler to flag (with an 'S'

diagnostic} any instruction that is incompatible with the 64K

relative addressing mode. The following cases are detected:

1.

2.

An indirect DAC

An indirect single word memory refercnacc instruction whose

address is not in either sector zero or within the relative

reach of the instruction.

N64R (Not 64K Relative) Pseudo-Op

The N64R pseudo-op directs the assembler to output a flag
in the object text to inform the loader that the program
is not to be loaded in the 64K relative addressing mode.
If such a program is loaded in the 64K relative addressing
mode, the loader will report a 'N6' error.

SETB Pseudo-Op Extension

An additional form of the SETB pseudo-op is now processed
to allow the size of the desectorization to be specified.
The format is:

SETB expl, exp2

where:

expl - starting address of desectorization
area

exp2 - size of desectorization area

EQU, SET, and XSET Pseudo-Op Extensions

The EQU, SET, and XSET pseudo-ops will allow the assignment
of stack relative and external values to symbols.

DUII (Define UIT) Pseudo-Op

The DUII pseudo-op is used to trigger the loading of a UII
package based on the instruction set used by previously
loaded code and the hardware available on the machine the
program is to execute on. The format is:

DUIT expl, exp2

where:

expl - bit mask defining instruction groups
that UII package emulates

exp2 - bit mask defining instruction sets
that must be available for the execu-
tion of the UII package

The bit assignments for instruction set options are as

follows:

13 Double Precision Floating Point
14 - Single Precision Floating Point
15 - P300 only instructions
16 - High Speed Arithmetic

LIR (Load Is Required) Pseudo-Op

The LIR is used to trigger the loading of a program based

on the instruction groups used by previously loaded code.

The format is: |

LIR expl

where:

expl - bit mask defining instruction groups
that are to trigger loading. Bit
assignments are the same as for DUII.

The program will beloaded if any of the instruction groups

specified have been used in previously loaded code.

CENT (Conditional Entry) Pseudo-Op

The CENT pseudo-op is equivalent to the ENT pseudo-op except

that the loader will only process it if the decision to load

a2 module containing a CENT pseudo-op had been made prior to

the occurrence of the CENT statement.

DYNM (DYNAMIC) Pseudo-Op

The DYNM pseudo-op is used to declare stack relative symbols.

Since references tostack relative symbols generate two-word

instructions, stack relative symbols must be declared before

they are used. The format of A DYNM statment iS:

DYNM sl1,s2,....,5N

where:

si = a specifier in one of the following

formats:

1) symbol
2) symbol (expl)
3) symbol = exp2
4) symbol (expl) = exp2
5) = exp2

H-7

In the following descriptions of the formats, the following
abbreviations are used:

SC - current stack allocation count (#106)(initially = 2)
sm - maximum allocation count (#107)
symbol - symbol to be assigned stack relative offset
expl - expression defining number of words for symbol
exp2 - expression defining stack offset

1. symbol

- symbol is assigned offset = sc

- sc = sc +l

- if (sc .GT. sm) sm = sc

2. symbol (expl)

- symbol is assigned offset = sc

- sc = sc + exp2

- if (sc .GT. sm) sm = sc

3. symbol = exp2

- symbol is assigned offset = exp2

- if (exp2 + 1 .GI. sm) sm = sc

4. symbol (expl) = exp2

- symbol is assigned offset = exp2

- if (exp2 + expl .GT. sm) sm = exp2 + expl

5. = exp2

- sc = exp2

Index Field Extensions

The index field has been expanded to allow the specification
of both indexing and indirection. The possible contents of
this field are:

»l indexed
> indirect
,i* pre-index, indirect
»*1 indirect, post-index

H-8

Indirection may still be specified by an asterisk appended
to the op-code.

Expression Evaluation Extensions

The following modifications have been made to the expression
evaluator:

1.

mode of
left
operand

Stack Pre-Decrement Expression

A stack pre-decrement expression is an expression con-
sisting only of the characters -@. [It may only be used
in the address expression of a memory reference instruc-
tion.

Stack Post-Increment Expression

A stack post-increment expression is an expression con-
sisting only of the characters @+. It may only be used
in the address expression of a memory reference instruc -
tion.

Stack Relative Special Symbol

The symbol '@' has been the value of a zcro offset from
the stack base when used in an expression (other than in
the preceding two special cases).

Resultant Mode of Arithmetic Operations

All arithmetic operations other than addition and sub-
traction will give a result mode of absolute. ‘The
resultant mode of an addition or subtraction operation

depends on the modes of the left and right operands, as
shown in the following tables.

mode of right operand

+ abs m*rel stack + j*rel

abs abs m*rel stack + j*rel

n*rel n*rel (m+n)*rel stack +
(j+n)*rel

Stack + stack + stack + P i*rel i*rel Liem) rel

mode of right operand

- abs m*rel stack + j*rel

mode of

left abs abs -m*rel P
operand

n*rel n*rel (n-m)*rel P

stack + stack + stack + | P
i*rel J i*rel (i-m)*rel

NOTES: P = Prohibited
1l*rel = rel
O*rel = abs

S. Resultant Mode of Expression

The resultant mode of an expression must be one of the
following:

If the f
above, a

Absolute

1*rel

Stack + absolute

- External

inal
"7%

ao

Stack pre-decrement

Stack post-increment

mode of an expression is not one of the
diagnostic will be reported. Also, the

result mode must be one consistant with its usage.
if a relocatable expression appeared inFor example,

the address field of a BSS statement, a
be reported since BSS cannot correctly process a relocat-
able value.

Support of New Instructions

error would

All PRIME 300 and floating point instructions will be pro-
cessed by the assembler.

H-10

Generation of Special Relative Address Forms

A special relative address form will be generated for a

memory reference instruction if any of the following con-

ditions are met:

1. The address is stack relative.

2. The address is stack pre-decrement (-@).

3. The address is stack post-increment (@+).

4. If the instruction is pre-indexed (1*) with a non-

absolute address, or an absolute address 2 '100.

5. The instruction is post-indexed (*1) with an absolute

address < '100..

6. If the instruction does not have a non-special relative

form (non-zero op-code extension).

7. <A percent sign (%) is appended to the op-code.

Assembly Listing Changes

The following changes have been made in the assembly listing:

1. <All addresses are printed as six digits.

2. All instruction (and address constant) addresses have a

character appended to the end to indicate the mode of

the address. The following characters are used:

A - Absolute
space - Relocatable
E - External
S - Stack Relative

New Object Text Generation

j

‘ 4 ’ “mit

The object text generated by the assembler is in a new form

only accepted by the Rev 4 (and subsequent) loaders.

C

Geo
L
E
U

G
i
s

¢

R
A
U
B

O
B
h
k
y
e

e
e
p
h

*
d
J
O
-
O
N
n
N
S
S
d

3
1
3
5
S

«
d
o
p
b
o
b
e
e
b
e
k
e

5 2 8 ¥

“

4
De
St
“af

re

H
I
V
A
Y

S
A
I
L
Y
I
W
S
Y

J
O
L
O

“
L
O
S
Y
I
O
N
I

J
2
5
S
+
#

H
D
T

J
H
9

L
I
U
B
S
I
G
N
I
O
1
4

2
*
I
S

3
P
a
I

S
O
P
H
O
R

C
h
r

-
o
p
a
B
e
A

Ss
Y
E
S
S
R
D
S
B
r

-
P
o
o
e
o
a
a

S

ree NON

Salt Mel tedtat

d
h
e
b
c
h
b
b
e

*
d
O
-
D
O
N
I
S
d

A
r
o
s

*&
o
b
e
e
e
e
e
e
p
b
p
h
e

$s *

wi

Ci Cy fd ta ty el Ce) cd Gp ty te

OOM DM mo HO mo

=

NSO EN OS

QA Medi Merl ar am
wf

¥

Yo gqmwdgoga ase
we fs ‘at a

¥

wn,

Ne

A
2
P
C
R
A
D

-
2
e
o
8
0
8

L
V
L
B
A
S

-
A
5
6
0
0
8

T
A
T
A

:
T
E
S
B
R
a
S

T
A
T
S
a
s

‘
S
B
D
8
0
8

S
L
M
Y
G
L
O
N
O
D

Y
A
L
I
G
Y
O
H
I

A
V
I
N
I
S

e
e
e
d
O
6
9

L
U
G

W
Y
O
I

L
N
A
Y
S
S
A
T
O

“
L
N
B
S
H
O
D
S
W
S

L
O
s
e
T
E
T
:“a

H
U
L
U

L
M
K
L
S
N
O
D

A
M
U
N
I
G

e
e
E
U
O
T
T
T
.
2

B
L
E

on FS

drt igc

wt
ry

oe fe

ao
So 0 9ae

oO 2 9 @ G
“ws nd

om“,

= od
v nd

wrk’

at tad

oN

Saf

t
h
e
b
e
a
t
s

d
e
o
b
e
e

S
W
A
O
S

L
N
W
L
S
N
O
D
M
O
M

t
e
b
e
R
p
d
e
t

c
h
e
k
p
t

e
s
a

% +

“yO

Cay
mi ot
Gta
eo
et tah et ted

*

mn

“=
a!

a!
3

‘ad

w
h
R
I
E
T

P
H
O
T
S
N
A
L
A
U
d

F
A
S
Y

J
O

S
A
I
d
e
e

H-12

BELTING
8
8

‘Breese
20TH

MLNS
C6908)

FTPE
(
2
0
8
e
e

2eTa
SZ

Taco
anooge
c
e
n
a 44
8

4
0

7 iT)Li

C
B
s

tal
al

S
d
N
B
l
‘
T
d
W
S
L
(
C
B
S
A
S
I
A
I
N
G
(
C
O
N
SMWYEN

S
o
o
d

H
A
D

C
S
o
m
g
3

2
6
5
0
8
8

e
C

A
S
I
I
I
)

ww
C
A
R
D
E
D

d
e
e
b
d
e
e
b
t
k
e
k

*
C
O
a
o
R
B
x

*
J
O
-
O
0
N
S
S
d

W
H
A
d

+
*

C
P
O
B
D
D

s
h
e
e
o
b

*
C
2
7
4
6
)

*
C
L
O
T
S

#-

«
om
D
")
iy
Nat

O
3
S
N

L
I
N
I
O
d
O
N
I
L
Y
O
N
A

S
I
G
N
O
O

B
O
W
I
N
Y

B
I
O
N
I
S

s
l
O
O

S
T
T
s

y
m

C
E
S
D

*
C
D
S
E

*
C
2
C
R
E
D

*
C
9
C
H
G
s

v
e
e
d
e
a
e

*
C
G
I
S
U
S
)

*
dU-OONISd

Y
I

*
we

CPOBED
My

v
d
e
o
h
o
e
s

*
C
L
O
G
S

+
w

C
E
S
e
i
g
)

*
C
T
S
H
R

N
H
O
L
L
I
N
I
S
H
#
S
Y
O
s

D
I
L
B
W
H
L
I
S
Y

0
3
3
d
5
H
O
H

S
a
s
i
n
o
a
d

*
C
H
S
G
S
e
D

O
N
Y

A
N
I
O
d

O
N
I
L
H
O
N
S

N
O
I
S
I
S
S
e
d

3
V
E
N
O
D
I
N

I
I
O
N
I
S

*
C
E
P

S
B
I
A
S
I
L
H
S

L
Y
H
L
S
O
U
N
D

T
I
N

YU
s
o
s

T
I
N
G

F
'
P
t
-
.

T
i
n
g

C
O
P
A

*
C
2
P
E
O

*
C
O
P
E
D

*
€
S
P
H
g
)

S
e
e
b

e
e
e

oe
*
C
P
O

*
d
J
O
-
O
I
N
S
S
d
T
I
+

*
C
O
P
R
B

a
e
t
e
e
e
i
e
i
p
e
k
e
e
e
e
s

”
C
2
F
£
P
o
o
>

*
C
T
E

*
C
E
P
o
O
O
)

*
{
G
L
E

S
e

$
3
3

3
5
8

(
S
L
e
a
s
a
s

>
3
8
9
9
9
0

T
H
D

T
r
+n)

C
W
H
A
Q

YU
N
I

G
a
y
e
7
9
5
0

S
U
M

B
i
e
u
N
>

S
4
2

*
q
w
I
0
7a-+8)

C+9

FVIWVWYAY
WYOS

LHOHS
Bsnudaa

aByINDSY
-x-

W
2
0
7

S
W
Y
O
S

F
W
}

W
A
T
T

F
W
A

V
W
D
0
F
7

S
Y
A
0
4

B
A
I
L
W
I
S
Y

W
I
I
S
d
S
—
-
N
O
N
M

v

W
e
e
o
e

e
e
h
b
k

d
e
b
a
b
e

W
e
e
h
b
b
b
e
e

*
U
T

Y
J
O

S
N
S
O
S
T
W

3
0

N
O
I
L
Y
Y
S
N
3
S

«
S
O
O
O
o
h

o
e
o
p
dere

t
i
t
s

L
e
i

‘
T
L
‘
S
2
=

S
A
T
L
O
N
R
S
Y

W
I
I
B
G
s
S

S
N
G
4

B
H
L

1
3
D

a
y
]

tid
}

l
t

W
I

i
y

y
w
)

e
s
e

S
T

S
H
L

#
7

H
T
T

B
o
a
?

y
o

"
L
S
U
T
A

$
3
3

W
H
A

M
i
H
A
d

¥

eh NO

W
o
)

$5 $$ ¥ ¥ F

C
S
E
T
»

C
6
h
i
n
a
>

C
2
6
0
9

J
S

8

he

am ky

Mat

“~ e

ie 'D

@ &
alt

(
P
a
n
e
)

C
l
E
H
B
>

C
2
5
8
)

ris

rv
me

‘ef‘at

G
e

wat

09 @ ¢mf
me co ey a OT om ma ey a Ba

te

orm.

Oh

ee

=
hate

oP

Om Meo Cd ed tk UF LI fo a o <4

GFESII@ sos aoasgagea
Sat ea Ne te

6=
e

CS268
a

(
S
4
8
)

C
2
0

C
2
2
8
8
)

(
S
4
8
)

C
P
1
0
5
>

C
l
e
)

C
E
2
9
B
>

(
T
4
0
8
5

T
e
r
s
r
e
a

e
A
t
o
r
e

S
2
8
G
0
9
9
a

e

a
t)
my) i
“hy i

ne
tT oF
La
3°
@

ren)
a

wv Ww
mt tg

oO &

Deum
28o

ya

1

T
r
R
S
a
S
S

‘
a
a

B
9
F
r
S
o
8

T
e
e
s

“=e
T
r
S
s
e
s
S
P

T
r
O
S
D
R

‘ZZ
T
H
o
a
s
s
Z
o

mM ee) my
m) im

my
AR)

ror oh i to
QM Cd td Cd

vt
aaa e

me ayo oa oo

@ 7
mt
Ly

flhf 2 x
ry

oa?
~

Js

—

had
wDwre c

i
m ¢

ms
GSO & oO

Wu Lt ue
RS &

Co mt ct
mpa}

~
Noe

-*

2
0
3
3
0
9

P
E
E
D

“
S
t
a
e
s
s

“
P
o
s
e
s

-
S
P
o
o
e
s

‘
2
P
O
o
R
S

-
$
P
S
o
n
8

14

S
B
A
I
L
V
I
W
G
Y

M
O
W
L
S
F
O
I
L
O
N
G

a
+

B
A
I
L
Y
I
S
Y
S

H
O
Y
L
S

L
O
W
E
L
O
N
S
L
O
S

B
t

H
Y
O
M
M
S

“
W
H

+
N
O
W
L
S

S
I

L
o
n
s
a
d

*
+
8
)

H
O

‘
S
O
U

+
M
U
H
L
S

S
I

L
W
w
i
s
a
d

F
E
B

H
Y
O
Y
N
S

“
W
e
r
e

SIO
L
W
s
a
d

=
y
o
k
+
c
k
d
k

N
O
(
a
e
S
T
L
w
s
a
s

t
h
m
e
t
e

e
a
bok

P
e
e
o

o
t

t
h
i
b
u
p
e
h
h

e
e
k
e
k

*
S
3
0
0

N
O
I
S
S
S
Y
d
x
S

T
W
O
S
T
I
E

+
W
e
a
l
)

+
s
e
b
b
e
k
o
o
k
e

k

t
b
e
h
o
b
e
e
p
p
s

F
e
‘
S
t
a
g

Q
O
G
T
-
>

“
Q
S
x
¢
3
S
0
N
1
I
-
L
5
0
d

T
r
‘
S
E

-

#
*
}
(
S
S
5
e
0
d
s

G
G
T
.

=
<

“
Q
S
x
X
S
0
N
T
I
d
d

F
E
W
O
T

*
'B--

+0

#
T
o
d
a
L

#
T
W
O
]

J
H
a

i
y

e
m

|

3
0
7

7
)

w
o

y
o
y

y
a

I
T

H
d

w
y

w
T

#
7
)

w
d
7

w
u

+eee tt €

C
2
E
T
9

C
A
S
T
E
)

C
S
E
T

C
h
l
F
O

C
E
2
T
R
O

C
2
Z
T
A
D

C
T
Z
T
B

C
G
H
E
z
T
a
d

C
O
T
T
E

C
T
T
e
a

C
2
T
T
E
S

C
A
T
T

C
S
T
T
A
D

C
F
T
T
B
D

C
E
T
T
O
A
A

C
e
t
t
T
a
o

C
T
E

C
B
T
T
e
)

oN Se

Mot bd
Qao
x4 wd x
& ¢ @
vw, No

od
m
+

@
Af

C
T
B
T
)

Z
2
6
T
3
0
9

B
S
B
T
B
O
S

‘ZA
H
E
A
a
T
e
a
a

“=e
S
B
a
s
a
a
R
B
A

F
a
r
s
a
s

H
e
s
s
e
a
e
e
c
a

S
a
T
o
u
s

‘2a

SzEGGCHR
B
E

S
O
F
E
E
T

L
A
L
G
G
A
S
B
B

Z
a
r
G
r
t

S
Z
R
R
0
0
0

‘8S
TSEPGrt

T
r
E
C
e
a
8
8

G
a
P
s
r
t

Ml

L
a
r
s
o
r
T

E
S
r
s
y
t

S
S
z
t
T
e
a
D

O
6
8

T
F
E
a
r
s
e
t

T
P
R
E
G
S
B
B

B
O
o
r
s
o
t

sageSani

L
Q
y
y
T
e
a
a
e

“
S
O
T
a
C
e
s

P
A
T
O
!

-
£
e
a
T
H
a
S

-
2
e
T
e
a
s
s

:
F
B
T
R

-
S
B
T
B
S
S

~ fr
2°

> my ©

Moo DPM

%
mr

BRIoOsoogo

7~
ae
~

4moo t
mM O oD

‘
2
9
9
9
8
9

rE toINN

H-15

S
6
T
R

T
O
T
e

S
o
G
8

F
O
B
B

e
S
t
s

C
O
T
S

q)
m &
®

Yt {+

Slag
Z
8
T
2

C
T
T
a
a
s

G
a
n
a

S
2
8
0

2
2
8
9

2
t
A
o

~
e
G

S
a
l
e

A
n
g
e

r
e

2
2
0
8

2
f
A
a
n

C
U
B
S

F
2
b
B
e
8

B
T
-
-
i
d
>

S
S
.
0
0
0
8

S
P
e
o
e
a
s

S
E
G
a
o
g

T
H
O
S

4
8

S
a
4
2
1
U
g

2
8
8
0
0
5
8

S
C
H
e
B
o
B
S

S
l
o
H
e
a
G

S
d
O
0
w
I
a

9
a
e
g

S
I
W
S
L

T
H
A
W
S
L

£
L

c
L

T
L

S
h
i
u
r
d

W
I
T

S
3
9

Y
y
3
4
4
N
n
g

3
5
3

S
S
A
N
Q
0

J
Y

H-16

COMM PSEUDO-OP (FORTRAN COMPATIBLE COMMON)

This pseudo-op is for definition of FORTRAN-compatible named COMMON

areas, which are defined downward starting from the highest location

occupied by the loader version in use during actual loading. The

syntax is:

Label COMM S1, S2,....Sn

where 'Label' is the name of the common block and each 's' is a

specifier in one of the formats defined for the DYNM pseudo-operation.

'Label' assigns a name to the block as a whole and each 's' specifies

named variables or arrays within the block. Two counters are main-

tained on a per common block basis - a current allocation count and

a maximum allocation count - as in DYNM:

Initial

Counter Value

sc 0

sm 0

Additional COMM statements with the same block name are treated as

continuations of the earlier block.

RLIT PSEUDO-OP (LITERALS OPTIMIZED FOR RELATIVE MODES)

RLIT is a specification-type pseudo-operation that directs the

assembler to handle literals in a way that is optimized for relative

addressing modes. Normally (i.e., without RLIT), literals are

assigned locations following a FIN or END statement. If a defined

literal is referenced following a FIN, it is assigned another location

following the next FIN or END statement. However, in a program that

is proceeded by RLIT, a literal that has already been defined and is

still within the relative or multiword reach is referenced directly.

(A new location is not allocated.)

H-17

INDEX

e000COMMAND

=

Be
ZONE COMMAND
INSERT COMPMEINT!
4UEDATE COMMENES
ABSOLUTE CABS? MIME dee
ADDRESS RESOLUTION dete
ADORESSIES. SYMECL TG Ba
ADDRESSING. EXTENDED deL?
ARGUMENT IDENTIFTRES. MACROS S-?
HEGUMEMT REFERENCES. MACROS Se
ARGUMENT SUBSTITUTION, MACROS S-4
ARGUMENT VALUES. MAROS

9

es
ASCLIT CHARACTER CODES

9

Bea
ASCIT CONSTANTS 2-6
ASCIT STRINGS 414
ASSEMNELER ATTRIBUTE REFERENCES. NADROS S-5
NSSEMBLERMLOADER INTERACTION 16
HSSENBLA CONTROLLING FSEUDG OPERATIONS 4-4
CSSENBLY LANGUAGE BASIC ELEMENTS 1-2
O°SEMBLY LAMGURIGE. EXAMPLE OF STATEMENTS 2-5
FISSEMBL LANGUAGE. FEATURES 1-2
CSTERTSK. COWBLE CINITIALLY ZERO 3-7
MSTERISK. SIMGLE CCURBENT LOCATION 2-7
ASTERTSK, SINGLE CINDIRECT AGORESSINGs 3-12
SSTERISK. TRIPLE Cnn IMSTRUITION] B12
ATTRIRUTE REFERENCES. ASSEMBLER CMADROSs Sen
BAND BE NOTATION CDATA CONSTANTS > 445
COMARS SCALING CB NOTATION 4-15
KIT REFERENCE IMSTRUCTIOMS 2.8
CHLLS. MARIS AE
CHANGE FRGE HEAGTHMG LIMES 2-2
COMMENTS 2-2
CONOT TIONAL ASSEMELY PSEWIDC-CPERATIONS 4-44
COMSTANTS =1-8
CONSTANTS. DEF THEO a+
MOWSTANTS. NUMERICAL dee
POMSTANTS. REPEATED

9

4-2.
CROSS REFERENCE LISTING 4-45
DATA DEFIMIMG FSEUGO OPERATIONS

=

4-1
DATA STATEMENTS. MULTIPLE FING IMPLIED

9

4-24
DATA STATEMENTS. MULTIPLE FIND IMPLIED

9

4-2
DECIMFI CONSTANTS g-S
BDESECTORIZING I-16
DEVICE CORES. INFUITAOUTPLUIT GEVICES O-1
MOWBLE ASTERISK CINITIALLY ZEROS 3-7
GMWELE PRECISION FINED POINT

=

4-26
DOWEL E PRECISION FLOATING POINT *4-18
GUMMY! HORS. MAICRIIS Sin 8 a
EAN ER NOTATION cDATA CONSTANTS 2 4-15
EQUALS SIGH CLITERALS® 3-3
ERROR MESSAGES. ASSEMBLER G-1

f
oKS

a

X-1

INDEX (Cont'd)

EXPRESS IOMS 1-2
PXPRESS TUM. CEPIMED gf
FETENDED ADORESSING d-iF
FINED POINT OCUIELE PRECTSION 4—L6
PISED POINT SINGLE PRECISION 4-2
FLOATING POINT [OUBLE FRECTSION 4-16
FLOATING POINT SINGLE PRECISION 4-18
FORMAT. TMSTRUCTION STATEMENTS 4
FORMAT. GEJECT FILER F-4
FORMATS. NUMERTORL 4-13
FREE-FORM IMFUT TEXT gd
BEMERTC [MSTRUCTIONS 221
HEXADEC IMAL COMSTAHTS oH
IMPLTE® DATA STATEMENTS 4-2:
THDES IMG ¢. 29 Bede
IMPLTAOUTRIT INSTRUCTIONS 314
THSTRUCT IONS. MEMORY REFERENCE 2-44,
INSTRUCTION MMEMCNICS saz
TMSTRUCTION STATEMENTS Bt
THSTRUCTIONS. GIT REFEREHCE
THETRUITIONS. CLASS ORDER Bd
IMSTRUCT IONS. GENERIC 3-28
THSTRUCTIONS. INPUTAOUTFUT =-14
TMSTRUCT IONS. MNEMOMTO ORDER <4,
TMSTRUCT CONS. CF-CODE ORDER ARd
[MSTRLICTIONS. SHIFT a5
| ABEL. INSTRUCTION STATEMENTS 2-4
LHBELS a=
LTME FORMAT. ASSEMBLY LANGUAGE 2-1
LISTING CUNTROL PSEUDO-OPERATIONS 4-3
LISTING FORMAT =4-13
LISTING. ASSEMBLY 1-412
[ISTING, SYMECL CROSS REFERENCE 4-15
| ITERALS 1-8
| ITERALS 3-3
LITERALS: ASCII 2-16
LOADER CONTROLLING PSEUDO-OFERATIONS 4-3
LOROERASSEMBLER THTERAICTION =-d6
LORCING SUBROUTIMES 1-17
[OCR REFERENCES WITHIN MARROS

=

<3
LOCATION COUNT 4-15
LOGICAL. CRERATORS 2-11
MACRO FSSEMELER. LISTING FORMAT 4-12
NACRO ASSEMBLER. LOADING AND ORERATING PROCEDURES 1-15

MILE ASSEMBLER. OBJECT OUTPUT 1-12

HACE ASSEMBLER. US TMG 1-12

MACRO ASSEMBLY LANGUAGE. GENERAL RULES sod

MACRO DEF IMITIONS AND CALLS mer

MAR FRITILITY am iL

MACE FACICITY. TMTROGUCT Ton 1-15

MACROS. ARGUMENT TOENTIFTERS a

HACEOS. ARGUMENT REFERENCES Io

NACROS. ARGUMENT SUBSTITUT TO a4

X-2

INDEX (Cont'd)

MAIR

PSIRTS

MAMAS

MATES. LDSTING Pb

MARRIES, LCOAL REFERENCES

NAGMITUOES OF CONSTANTS

HAF PIEMICIRy feds

PEPare

MMERCRM TCS. TMSTRUOT Toh

MOLTIFLE CATA STATEMENTS

ARGUMENT VALLES

|te mine

MULTICLE STATEMENTS FER L

ORIELT CITRUT OF
OOTAL CONSTANTS
HPERAT ION FTELD.
PERATICN FIELC.
NPERATORS CAR ITHMET LOC,
POWERS OF Le Eo
PRICRIT,

ms=,
TH seers‘ a

4-4
ede

FESS,

PSELIOC-OPERAT DOS
PSEUIGC-OPERAT TOME.

ASSEMBLY COMTROLL DMG

BRAILEERICK TO

FiI

E
f=

adeat)
i

oer
ae

~~

St
iJ

Jf

ee!

fe
b
a
u

wal

|
CFA-CFS
Catered

CONDITIONAL ASSEMEL

CFIC:
DATA
GAITA
DEF
BEC:
EICT
ELSE
EME
EMEC:
EME
EMT
Er

EME
EAT

rastay LCR ne

BPSSSEPTEL Sf! ORTRec

REFERENCE [THSTRUCT DOM:

THSTRLICT ION STATEMENTS

MEMORY REFERENCE INSTRUCTIONS

LCWa TAL.

AITAT Tor

OPERATCHES eo

PRILOT ME TM ESEUOI-OPERAT DCMS

DEF TM TMG

Ean

Lo wen p
o

m
e

Bo eae ee)
one!

ma
a joeatt eres ae

zd.
oy ae,

att aetea gel
a Bases

4-21

THE eo

ASSEMBLER

~~

1-12

3-1
3-12

RELATLOMFIL, ANG SHIFT
4-15 =

4—-ES

4-E4
ded

SLE
4-28
dE
4-24
dE
4-35

de?
o$}TE

4-25
4-44

4-14
d-Z4

INDEX (Cont'd)

RSEUGC-OFPRATDOR. FRAIL ef-s

MIR hE

Goh To hanP

MES enBES

LF chem ch ol

LEMMA TPRAIPAATER

THTRGIRMST Ted

{TST eb

LISTING MmTre.

LOBBER COMTROLL DMG
1Ptls wae LoL

PosTh mmLS

LoD aa

i na

dm

ee

ho

MAUTR DER TATOO AME CALLS ee

MALAI LST Th ANE

PR he

ML. Saf Bamf

MLST eh ils

CHT ehoEy

Pie ch merch

PRGA LONE TMG

REL cfm ch

FY Re

SET hea

mkTEs cf--

SET cfEE,

STATEMENT FORMAT

STORAGE ALLOAT TOM

LIER PoRees

VAR TABLEEeePBL 3

WFC 2
rR “}~20

EAL Be mod
PCPEREAMCE DATUNMENTS bad
RELATIONAL OPERATORS ao)
RPLOCATABLE CRE MODE de
SCOEE OF HAMQECHE Led.

SHIFT THESTRLICT [ote Bohs
SHIFT OPERATORS ee

“SGM TOMWENT Tok eoLe
SINGLE PRECTSION FISED FOLMT homdt
STMGLE FRECTS TON FLOATING FOLMT fede

t
sSOURCE FILE MERGING COMMANDS 6-

SPACE CONVENTIONS. CPERATORS 2+
STATEMENTS Zed
STATEMEHTS. CONTINUED 2-2
STORAGE AL LOCATION PSEUDO-CFERAT TONS
STRINGS. FEIT dat
SUBROUTINES, LOADING 1-1?

ASSEMEL COOTPL,

4-8

etd

DEF TAT RMS 4-he

4—Z4.

i-=LS

INDEX (Cont'd)

SVMEOL CVARTAGLES DEP INNING FPSREUDD-OPERAT TOMS 4~-Ze
SVHEOL CROSS REFFRENCE LISTING L-1Ls
SS'HMEOL To ADDRESSES Sris
SMBTO TMSTRCT Tot 1-8
SA'MECL IG INSTRUCTION. INTERFRETAT LOh CF 1-?
SVAEML IC MAMES 1-3
THWO-FRAISS ASeSEMESL. ' 1-1:
VARTARLE SYMBOL” DEFINING FSEUOO OFERAT Tons 4q-ES

VARIABLE FIELD. INSTRUCTION STATEMENTS 3-7
VAR TABLE FIELO. MFMORY REFERENCE TNSTRUCTIONS 2-13
WAR T ARLES 1-5

PRIME
PRIME Computer, Inc., 145 Pennsylvania Avenue, Framingham, Massachusetts 01701

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	A-0
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	G-1
	G-2
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	X-1
	X-2
	X-3
	X-4
	X-5
	_back

