
Prime Computer

User Guide

For

BASIC

Interpretive Language

PRIME COMPUTER. INC.. 145 PENNSYLVANIA AVENUE. FRAMINGHAM, MA. 01701

MAN 1813

BASIC

INTERPRETIVE LANGUAGE

USER GUIDE

Revision A

May 1975

P 2
COMPLITER, INC.

[145 Pennsylvania Ave., Framingham, Mass., 01701]

First Printing May 1974 MAN 1813
Revision A May 1975

Copyright 1975 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
subject to change without notice.

li

CONTENTS

Page

SECTION 1 STRUCTURE OF A BASIC PROGRAM 1-1

STATEMENTS 1-1

STATEMENT FORMAT 1-1
STATEMENT EXECUTION 1-1

ENTERING BASIC 1-1
MODES OF OPERATION 1-1
CONVERSATIONAL MODE 1-2

ENTERING PROGRAM STATEMENTS
STORAGE OF STATEMENTS
REPLACING A STATEMENT
DELETING A STATEMENT
SUMMARY OF BASIC PROGRAM EDITING PROCEDURES bo

te
t
bt

bt
bs

&
W
H

EXECUTING A PROGRAM 1-5
BATCH MODE 1-5

EXAMPLES OF FILE COMMAND 1-5
LOADING AND RUNNING PROGRAMS 1-6
EXAMPLES OF LOAD COMMAND 1-6

TMMEDIATE MODE 1-7
COMMANDS 1-8
LOAD COMMAND 1-8
FILE COMMAND 1-8
LIST COMMAND 1-9
RUN COMMAND 1-9
NEW COMMAND 1-10
CLEAR COMMAND 1-10
CONTINUE COMMAND 1-10
RESTARTING BASIC 1-11

RESTARTING FROM DOS/VM 1-11
RESTARTING FROM DOS 1-11

ERROR MESSAGES 1-12

1ii

CONTENTS

SECTION 2 TYPES OF DATA

NUMERIC VALUES

RANGE OF NUMERIC VALUES

STRING VALUES
SCALAR VARIABLES

NUMERIC SCALAR VARIABLES
STRING SCALAR VARIABLES

ARRAY VARIABLES

ARRAY DECLARATION
ARRAY BOUNDS, DEFAULT BOUNDS, AND STORAGE ALLOCATION
ARRAY ELEMENT REFERENCES
RELATIONSHIP OF NAMES

SECTION 3 EXPRESSIONS AND FUNCTIONS

EXPRESSIONS

NUMERIC EXPRESSIONS
ORDER OF EXPRESSION EVALUATION
USE OF PARENTHESES
STRING EXPRESSIONS
RELATIONAL EXPRESSIONS
EXAMPLES OF RELATIONAL EXPRESSION USE
EVALUATION OF RELATIONAL EXPRESSIONS
STRING VALUES IN RELATIONAL EXPRESSIONS

FUNCTIONS

SYSTEM FUNCTIONS
EXAMPLES OF USE OF SYSTEM FUNCTIONS
USER FUNCTIONS

SECTION 4 FILES

DEFINITION
PROGRAM FILES
DATA FILES

LV

Page

2-1

'
S
H

>
m
e
B
N

W
N
D
N
b
h

A
E
A
E
G
R

G
g

a
e \ f
p

Z
S i

b+
p
e

CONTENTS

Page

SECTION 4 (Cont)

FILE NAMES 4-2
FILE NUMBERS 4-2
FILE EXPRESSIONS 4-3

SECTION 5 STATEMENTS 5-1

BREAK 5-2
CALL 5-3
DATA 5-4
DEF 5-5
DEFINE FILE/DEFINE READ FILE 5-6

FILE MODES 5-6A
RECORD SIZE 5-7

DIM 5-8
END 5-9
FOR 5-10
GOSUB 5-15
GOTO 5-14
IF 5-15
INPUT 5-17
LET 5-19
NEXT 5-20
ON 5-21
ON END 5-21
POSITION 5-22
PRINT 5-23

PRINTING NUMERIC EXPRESSIONS 5-23
PRINTING STRING EXPRESSIONS 5-24
COMMA SEPARATOR 5-25
COLON SEPARATOR 5-25
TAB REQUEST 5-26
PRINT LIST TERMINATION 5-26

PRINT USING 5-27

FORMAT FIELDS 5-27
NUMERIC FIELDS 5-27
STRING FIELDS 5-31
PRINTING SPECIAL CHARACTERS 5-33

READ 5-34
READ FILE 5-35

CONTENTS

SECTION 5 (Cont)

READ * FILE
REM
RESTORE
RETURN
REWIND
STOP
TRACE
WRITE FILE

READ AFTER WRITE CHECK

WRITE USING

SECTION 6 ARRAY MANIPULATIONS AND ARRAY STATEMENTS

ARRAY REDIMENSTIONING
INITIALIZATION STATEMENTS
ARRAY INITIALIZATION WITH REDIMENSIONING
ARRAY ASSIGNMENT
ARRAY ADDITION
ARRAY SUBTRACTION
ARRAY MULTIPLICATION
SCALAR MULTIPLICATION
PRODUCTS OF ARRAY
TRANSPOSE OPERATIONS
MAT READ
MAT READ FILE
MAT READ * FILE
MAT WRITE FILE
MAT INPUT
MAT PRINT STATEMENT

SECTION 7 INTERFACE CONVENTIONS

RELATING CALL TO SUBROUTINE
MODIFYING COMMAND FILE
RUNNING PROGRAM WITH CALL STATEMENTS

APPENDICES

v1

w
o
n
n
n
n

t
'

R
P
W
W
N
N
N
W
H
W

Y
I

A
O

W
O

G
C
A
E
N

D
N

O
N

I

_
—

D
D
D
D
D
D
D
N
D
A
D

A
D
H
N
A
D

D
H

O
N

(

e
b

k
t
r
t

C
O
C
O
H
I
O
I
A
I
N
N

F
E

~
~
]

t
t

(
p
=

N
r

O
C
©

~
J
o
~
J

“
I

t

~
1
n
R

FOREWORD

BASIC is easy to learn and easy to use. The rules of form and usage
are simple. This manual describes the Prime BASIC language processor
and demonstrates how it is used to solve problems and cope with features
common to computers. It is suitable for (1) people who know BASIC and
want to know what Prime's BASIC is like and (2) experienced programmers.
The tyro is advised to supplement this book with a primer on BASIC.

Prime BASIC is an extended subset resembling the BASIC developed at
Dartmouth College. It provides users with the ability to write programs
and get meaningful results from the computer in a relatively short
time. With a few hours of instruction and/or practice, most people
can produce worthwhile BASIC programs and obtain useful data from

em.

Section 1 describes the structure of a BASIC Program, gives
a few general rules about writing BASIC program
statements, and tells how to enter BASIC and how
to input, edit, and RUN programs.

Section 2 describes in detail how numeric and string data are
represented in BASIC, and gives limits of numeric and
string data values.

Section 3 describes both numeric and string expressions,

expression operators, and expression evaluation.

Section 4 describes the organization, and the input and output

of program and data files.

describes the statements available in the BASIC

language. The function and syntax of each statement

is described and examples of each statement are

given along with the description.

w
nSection

Section 6 describes the statements available to manipulate

matrices and vectors.

Section 7 describes how to interface called FORTRAN or PMA

language programs.

Appendix A gives some sample programs using the BASIC language.

Appendix B lists the error messages returned by the BASIC
language processor and the definitions of those
error messages.

Appendix C is a quick summary of all the features of BASIC.

Appendix D describes a utility program to renumber BASIC programs.

Appendix E describes the memory requirements for various versions
of Prime BASIC.

VERSIONS OF BASIC

On the master disk (i.e., that disk supplied to the Prime customer with
all the current software), there are three versions of the BASIC
language interpreter: BASIC, LBASIC, and DBASIC.

The version named BASIC contains a subset of the BASIC language that does
not include MAT functions or PRINT USING functions. It is intended for
user's who may have memory limitations or who may only want a simple form
of BASIC. LBASIC is a full version of the BASIC interpreter that
includes MAT functions and PRINT USING functions. DBASIC is a full
version of BASIC that takes advantage of Prime's double-precision
floating point arithmetic capabilities.

All versions of BASIC on the master disk may be copied to the users
command directory (CMDNCO) or to a user designated UFD and renamed
"BASIC" by use of the operating system's FUTIL and CNAME commands,
(Refer to the Disk and Virtual Memory Operating Systems User Guide).

DOUBLE PRECISION BASIC

Prime BASIC has been revised to include double precision floating point
representation. BASIC with double precision floating point is imple-
mented using floating point hardware; thus, coding that references
floating point operations is both in line and efficient.

All constants, variables, and array elements are represented in floating
point format with a 48-bit mantissa and a 16-bit exponent. This
representation allows numbers to have an accuracy up to 14.2 decimal
places. With double precision floating point, it is possible to repre-
sent a number up to:

9,999 ,999 ,999 ,999

or a dollar sum up to:

$99 ,999 ,999 ,999 .99

without resorting to the use of scientific format.

To use the double precision version of BASIC, type the command:

DBASIC

vill

Use of this version of BASIC, other than for the extensions
outlined, is identical to the use of BASIC described in this manual.

RELATED PUBLICATIONS

The following Prime documents should be available for reference:

Disk and Virtual Memory Operating Systems User Guide

Program Development Software User Guide

1x

SECTION 1

STRUCTURE OF A BASIC PROGRAM

STATEMENTS

A BASIC program consists of a series of sequentially ordered
statements.

Statement Format

Each statement is preceded by an integer called the statement
number. This number serves as both a statement sequence number as
well as a line identifier. An example of a BASIC statement is:

100 PRINT ‘AARDVARK’

Each statement must be contained on one line. The length of a line
is dependent on the number of characters that can be typed before a
carriage return is needed to prevent the line from overflowing.
BASIC will accept lines up to 120 characters in length.

Statement Execution

When a program written in the BASIC language is run, the statements
are executed in order of statement number (unless a statement such as

GOTO affects the normal order).

ENTERING BASIC

To enter BASIC from operating system command level, type:

BASIC

The system then replies:

GO
>

The character '>' indicates that the BASIC processor is awaiting a
command, and is printed as a prompt.

MODES OF OPERATION

The Prime BASIC language processor consists of a command processor,
a statement editor and a BASIC language interpreter.

1-1

After entering BASIC from operating system command level, GO is

typed. The user may:

1. Input, edit, and RUN programs written in the BASIC
language (conversational mode);

2. Execute existing programs written in BASIC language and

stored on disk or paper tape (batch mode);

3. Execute BASIC statements as they are typed at the terminal

(immediate mode).

CONVERSATIONAL MODE

Entering Program Statements

To enter a statement, type the statement number followed by the body

of the statement. All statements must be terminated by a carriage

return.

Statement Numbers: Statement numbers are integers that range from

IT to 9905. They do not have to be in cardinal sequence (i.e.,

1, 2, 3...n-1,n), but they must be in an ordered sequence (e.g., 10,

12, 15, 20...n). It is recommended that statements be numbered by

increments of 10 (100, 110, 120, 130...). Then, if a statement must

be inserted between 10 and 20, for example; it can be numbered 15,

and it is inserted between 10 and 20.

For example:

110 PRINT ‘NAME’, N$
120 PRINT 'ADDRESS', A$
130 PRINT 'cITy', C$

To insert lines between 110 and 120, and 120 and 130, in order to

make the output more readable, the user need only type:

115 PRINT
125 PRINT

at his terminal. The resulting program sequence is as follows:

110 PRINT 'NAME', N$
115 PRINT
120 PRINT ‘'ADDRESS', Ag
125 PRINT
130 PRINT 'CITY', C$

1-2

Body of Statement: In the conversational mode, each statement starts
after its statement number with a full or partial English word. This
word denotes the type of the statement.

Examples of BASIC statements are:

100 REM THIS IS A REMARK
110 LET X=2
120 PRINT X

Blanks: Blanks (spaces) have no significance except in string constants.
Generally, spaces are used to make the program more readable. For
example:

110 LET X =
110 LET X=
110 LETX=3.14

1
1

are equivalent. Thus, BASIC statements are free-formatted and the
user may employ spaces at will to format BASIC program text.

Special Characters: The following characters have special meaning:

tt removes the character previously typed.

? removes all previous characters on a line.

CARRIAGE RETURN Terminates a source statement.

This convention is consistent with the operating system and the
system Editor, (refer to the Disk and Virtual Memory Operating
System User Guide and the Program Development Software User Guide).

Storage of Statements

When the CARRIAGE RETURN is received by the BASIC language
processor, the statement is stored into the program storage area.
Statements may be entered in any order, but their execution occurs
in the order of their statement number.

1-3

Replacing a Statement

If a statement is entered with the same number as a statement
already in the program storage area; the previous statement is
removed, and the new statement is placed in the storage area

instead.

Example:

Existing statement is:

110 LET Xl = Y**2

Assume a new statement is typed as follows:

110 LET X1 = Yr2

The second statement numbered 110 replaces the first statement.

Deleting a Statement

To remove an existing statement without replacing it, type the
statement number followed by a CARRIAGE RETURN. Example:

110

deletes statement numbered 110.

Summary of BASIC Program Editing Procedures

To input a statement, type:

unused statement number, followed by statement, followed by
CARRIAGE RETURN.

To insert a statement, type:

a statement using a statement number between the two
statements surrounding the insertion.

To replace a statement, type:

a new statement with a statement number that is identical
with the number of the statement to be replaced.

To delete a statement, type:

the statement number, followed by a CARRIAGE RETURN.

1-4

EXECUTING A PROGRAM

To run all BASIC statements in the program storage area, the user
types:

RUN

This causes the BASIC language processor to interpret and execute
the program comprised of the statements in the program storage area.

BATCH MODE

In addition to input from a terminal, statements may be input to the
BASIC processor from source files on disk, or from off-line storage
devices such as paper tape, magnetic tape, or cards.

Data to be processed during RUN time may come either from the program

itself (DATA statements), from the terminal (via use of INPUT

statements), or from files on disk. Output data from a program

written in BASIC may either be printed at the terminal or placed in

a file on the disk.

Batch mode requires the reading and writing of files via the use of

the LOAD and FILE commands.

After a BASIC program is written, it may be saved in the User File

Directory (UFD) via a FILE command. (For information on the UFD,

see the Prime Disk and Virtual Memory Operating Systems User Guide.)
The syntax of the FILE command internal to BASIC is:

FILE 'FILENAME'

or

FILE ‘FILENAME’, Sl, S2

where FILENAME is the symbolic name of the file to be created or updated

enclosed in single quotes. The single quotes are delimiters necessary

to BASIC and are not part of the file name. The file FILENAME is

updated; however, the contents of the BASIC program storage area remain

unchanged. FILENAME may also be a parenthesized device name (see the

DEFINE FILE statement discussion in Section 5). The optional argument

S1 specifies the first statement number of the BASIC program to be

filed. If Sl is omitted, its default value is 1. The optional argu-

ment $2 is the last line to be filed. If S2 is omitted, its default

value is 9999. All statements having statement numbers in the inclu-

sive range S1 through S2 are output to the specified file or device.

Examples of FILE Command

FILE 'RANDXX'

creates a file named RANDXX in the UFD.

1-5

FILE '(PTP)', 100, 200

creates a file for output to the paper tape punch consisting of all
the statements in the program storage area with statement numbers
between 100 and 200 inclusive. The contents of the program storage
area remain unchanged,

Loading and RunningPrograms

To load and run a BASIC program that has been previously edited and

saved in a file, the user loads the program by using the LOAD

command, and executes the program by issuing a RUN command immediately

after issuing the LOAD command. :

The syntax of the LOAD command is:

LOAD ‘FILENAME’

or

LOAD ‘FILENAME’, Sl

where FILENAME is the name of a file in the UFD or a symbolic device

specification and the single quotes are delimiters required by BASIC.

The optional argument Sl is a statement number specifying that all

statements in the loaded source files are to be biased by the specified
statement number value, in order to avoid conflict with any program
already loaded. If Sl is omitted,statements in the program storage
area are numbered the same as the corresponding statements in the file.

The RUN command may have been written as the last line of the source

file by use of the system editor. In this case, the initial LOAD

command causes the program to be both loaded and run.

Examples of LOAD Command

The command line:

LOAD 'RANDXX'

loads the previously saved file RANDXX into the program storage area.

LOAD '(PTRJ', 1000

loads a file from the paper tape reader, and starts numbering the
stored statements at statement number 1000.

After the program, or programs are stored using the LOAD command,

the user executes all statements stored by typing:

RUN

1-6

The following is an annotated example of some trivial programs

written in BASIC. In shows simple editing of a series of program

statements in conversational mode and the loading and running of
programs using BATCH mode concepts. The use of the BASIC FILE,
NEW, LIST and LOAD commands is also illustrated. User input is
underlined.

OKs BASIC
GO
>10 REM START BASIC is invoked and a simple
>20 PRINT °“AARDVAARK’ program is typed in by the user
>30 END
>FILE °AARD’ ~<—Tlo save this program as a file
>NEW <—_——_—_—_—_——0 clear program storage area
>30 PRINT °SYZYGY’

>40 END <—— Typing a new program
>FILE °SYZYGY’
>it <——— To exit from BASIC

OKs ese

OKs BASIC

GO

~LOAD _AARD At a later time BASIC is entered andFe eSFUe

>LOAD _"SYZYGY the filed programs are loaded
aLiSi ~<~—————_To list the contents of the program

~

10° REM START storage area.
20 PRINT °AARDVAARK’
30 PRINT ’SYZYGY’
40 END

>RUN -~<——To execute program
AARDVAARK
SYZYGY Output from user program

nN AT fT n
D AT LINE 46

‘
@

1-6A

IMMEDIATE MODE

Immediate mode allows a user to type BASIC statements with no state-
ment number and thereby obtain immediate results. Such statements
are not stored in the program storage area. For example:

PRINT ‘XYZ!

causes the string XYZ to be printed at the terminal.

The immediate mode capability gives the user a super-calculator
with a rich choice of functions, automatic decimal point handling,

and up to 286 variables, as well as arrays available for partial

answer storage.

One use of immediate mode is to use the BASIC subsystem as a desk
calculator. For example:

X = 256*12

PRINT X

returns the product of 256 and 12.

The PRINT statement is a particularly useful immediate mode command.
For example:

LET Xl = 1.05

PRINT SIN (X1* 3.14959/180)

causes the appropriate value of the SIN function to be issued.

The immediate mode is useful at times for debugging programs written

in BASIC. For example, if the user has made use of the BREAK statement

(Section 5) to halt a program at some point, typing:

PRINT J2

prints the value of the variable J2 at the point that the execution
of the program was interrupted.

Similarly, it is possible to use the PRINT statement to print the
value of any and all variables at a point of interruption.

1-7

COMMANDS

The BASIC language processor provides a number of commands to be used
with the operating system and to initialize storage areas. Of these,
use of RUN, FILE and LOAD have been previously discussed.

These commands are usually executed in immediate mode, but they may be
part of a program statement.

The syntax and function of system commands are described in the follow-
ing paragraphs:

LOAD COMMAND

Syntax

LOAD 'FILENAME'

or

LOAD 'FILENAME', S1

"FILENAME' - is a string constant that specifies
the file to be created (or parenthe-
sized device specified). The single
quotes are delimiters required by BASIC.

Sl - is a relocation constant that is added to
every statement number in the program,
written in BASIC, to be loaded.

Function

The specified file (of BASIC Source Statements) is loaded into the
BASIC program storage area.

The loaded program is merged with any program already loaded. For
examples, see the previous section entitled "Examples of Load Command".

FILE COMMAND

Syntax
FILE ‘FILENAME’

or

FILE 'FILENAME', S1

or

FILE 'FILENAME', S1, S2

"FILENAME' - (is the same as described for
LOAD, above.)

Sl (optional) = first line to be filed (default = 1).

S2 (optional) = last line to be filed (default = 9999).

1-8

Function

All statements whose statement numbers are in the inclusive range
Sl through S2 are output to the specified disk file or output
device. Output is in the order of their statement nunbers.
Example.

LIST COMMAND

Syntax

Sl

S2

Function

The LIST command prints output at the terminal.

FILE 'NEWPRO'

LIST

or

LIST Sl

or

LIST S1, S2

first line to be listed (default

last line to be listed (default

= 1).

9999).

The LIST command
provides a means to print all or part of the previously edited state-
ments for the user's inspection.

Examples:

RUN COMMAND

Syntax

Sl

LIST

LIST 100, 250

RUN

or

RUN S1

statement number specifying the first statement
to be executed (default is the first statement
in the program).

1-9

Function

RUN clears all variables, allocates arrays from DATA statements,

and starts program execution.

NEW COMMAND

Syntax

Function

The NEW command deletes all existing program statements and de-

allocates all arrays and variables.

CLEAR COMMAND

Syntax
CLEAR

Function

The CLEAR command de-allocates all arrays and variables. Any

existing statements are not deleted.

CONTINUE COMMAND

syntax

CONTINUE

Function

The CONTINUE command restarts program execution at the point that it

was last interrupted by a BREAK, STOP or END statement.

1-10

RESTARTING BASIC

Restarting from DOS/VM

The user may desire to QUIT from running a BASIC program (e.g., to
avoid printing unwanted output), and then return to running under
control of BASIC. Naturally, it is desirable not to lose any inform-
ation in the program storage area or cause any unspecified operations.
For DOS/VM, the correct manner to achieve this result is to type the
following sequence of system command lines:

CONTROL-P (Quit by pressing terminal CTL
and P Keys simultaneously).

START 1002

Restarting from DOS

Under DOS, to QUIT from running a BASIC program, momentarily set
Sense Switch 1. The running program is interrupted and contro;
returns to BASIC command mode.

Return from INPUT

The user may type the sequence:

CONTROL-C To return from BASIC INPUT statement
execution to conversational mode
(Refer to Section 5).

1-11

ERROR MESSAGES

Statements are syntactically checked as they are entered. Errors that
can only be detected within the context of the entire program are
detected at run time. An example of a syntax error is:

100 PRINT "SUM OF A & B IS: X

The closing ' mark is missing and this would be detected immediately
upon entry. An example of a context error is an undefined statement
number in a GOTO statement.

If an error is detected during statement input, a two-line error is
printed at the terminal. The first line is the source statement in
error. The second line consists of first, a vertical arrow positioned
under the last character that BASIC examined before detectingthe
error, and then a two-character error code. These codes are listed as
source (S) errors in the table in Appendix B.

Errors detected during program input cause the line in error to be
removed from the program.

During program exectuion (RUN time), detected errors cause a one-line
message to be printed as follows:

ERROR XX LINE 385

where XX is the error code. These codes are listed as execution (E)
errors in the table in Appendix B.

Errors detected during program execution also cause a pause to
occur. Typing:

CONTINUE

causes processing to continue with the next statement,

1-12

SECTION 2

TYPES OF DATA

Two types of data are supported by Prime BASIC: numeric and string.

BASIC allows constants and variables of both types.

NUMERIC VALUES

A numeric value is a floating point number. Depending on the version

of BASIC being used, it may be single or double precision.

A numeric constant is written as a signed decimal number. It may
contain a decimal point, and it may be followed by an exponent.

The exponent field is optional and is written as the letter E
followed by an optionally signed decimal integer.

If the decimal point is omitted, it is assumed to be located immedi-
ately to the right of the last significant digit (right-most digit).

If the sign of either the numeric constant or the decimal integer
exponent is omitted, it is assumed to be positive.

Examples:

12

1.2

-6.666

-7

2.5E-2 (.025)

2.5E+12 (2.5 * (10)12)

-7.3E-2. (-.073)

SES (500000)

2-1

Range of Numeric Values

For single-precision values; all constants, variables and array
elements are represented in floating point format with a 24-bit
mantissa and an 8-bit exponent. This representation allows numbers
to have accuracy up to 6.2 decimal digits, and the exponent of a
single-precision numeric value may range between -38 and +38. (10 to
the -38 power, or 10 to the +38 power).

With single-precision format, it is possible to represent a number up
to: 999,999 or a dollar sum up to: $9,999.99 without resorting to
scientific format.

For double-precision values; all constants, variables, and array
elements are represented in floating point format with a 48-bit
mantissa and a 16-bit exponent. This representation allows a number
to have an accuracy up to 14.2 decimal places.

With double-precision floating point, it is possible to represent a
number up to: 9,999,999,999,999 or a dollar sum up to: $99,999,999 ,999.99.

2-1A

STRING VALUES

A string value is a string of ASCII characters.

A string constant is written as a set of 0 or more contiguous ASCII]
characters enclosed in delimiting single quotation marks
(or apostrophes). A string constant can contain any ASCII character
except: CARRIAGE RETURN, ?, or '. The maximm length
(number of characters) of a string value is a function of the line
size of the terminal or upon the available memory. Generally, this
is large enough to be of no problem to the user. It is suggested
that for convenience no string be greater than 80 characters.

‘THIS IS A CHARACTER STRING CONSTANT'

"DATE/TIME/YEAR'

" (null string)

112345!

SCALAR VARIABLES

A scalar variable is implicitly defined when it is used in a

BASIC program. The type of scalar variable (i.e., numeric or

string) is determined by the form of the variable name.

Numeric Scalar Variables

The name of a numeric scalar variable is a single letter (A-Z), or it

is a single letter (A-Z) followed by a single digit (0-9). Each

variable represents a single numeric value; there are 286 possible

numeric scalar variables. A numeric scalar variable is initialized

automatically to 0 at the start of the BASIC program that defines

it.

Examples of Numeric Scalars:

X

Al

G3

2-2

Example of Use of Numeric Scalars:

iT] L
A

ja
d
. ea
d

oa
)

m
m
]

20 LET Cl 3.1415'

22 LET -X C1*2

String Scalar Variables

The name of a string scalar variable consists of a single letter
foliowed by a doilar sign. A string scalar variabie represents a
character string of variable length. String variables are initial-
ized to a null (zero length) string at the start of the BASIC
program that defines it. The length of a string variable is auto-
matically set to the length of the string that is assigned to it.

Example of String Scalar Variable:

Bg

Example of Use:

100 LET BS = 'BALANCE IS:'

ARRAY VARTABLES

An array is an ordered set of values. All elements of an array
(array variables) have the same data type (i.e., either numeric or
string). The elements of an array are stored in contiguous
locations in storage and are referenced by an array subscript.
Arrays are stored in colum major order.

An array name is represented by a single letter followed by the
parenthesized list of one or two bounds.

An array element is designated by an array subscript that is either
one number (bound) in parentheses (one-dimension), or two numbers
(bounds) in parentheses and separated by commas (two-dimensions).
An array with one-dimension may be operated on as a vector; with two
dimensions, it may also be operated on as a matrix (See Section 6).

Examples :

A (6)

A (2, 3)

2-3

Conceptually, the array A (2,3) is:

A (0,0) A (1,0) A (2,0)

A (0,1) A (1,01) A (2,1)

A (0,2) A (1,2) A (2,2)

A (0,3) A (1,3) A (2,3)

Table 2-1. Example Array A (2,3)

Logically, the array A (2,3) maps into storage as shown in the
following table:

Relative
Location Element

0001 A (0,0)
0002 A (1,90)
0003 A (2,0)
0004 A (3,0)
0005 A (0,1)
0006 A (1,1)
0007 A (2,1)
0008 A (3,1)
0009 A (0,2)
00010 A (1,2)
00011 A (2,2)
00012 A (3,2)

Table 2-2. Array Mapped into Memory

Array Declaration

An array can be explicitly defined in a DIM statement, or implicitly
defined by its use in the program.

DIM statements, if used, may appear anywhere in the program,
since BASIC locates and interprets all DIM statements before
execution starts.

Examples:

DIM A (5)

defines a one-dimensional array of 6 locations A, A (0) through
A (5).

2-4

DIM A (2, 3)

defines a two-dimensional array of 3 columns and 2 rows, A (0,0
through A (2,3).

NOTE: The entire chart shown in Table 2-1 is the array
specified by the DIM statement, DIM A (2,3). Those
elements of the array that do not have zero subscripts
(e.g., A (1,2); A (1,3); A (2,1); A (2,2); A (2,3) define
the matrix A. This matrix may be manipulated via the MAT
statements described in Section 6.

If the DIM statement is omitted (i.e., an array is undeclared), the
array dimensions are established in any MAT statement encountered;
otherwise the array is either a one-dimensional array of no more than
10 elements (e.g., A(10)), or a two-dimensional array of bounds 10 by
10 (e.g., A(10,10)), depending on how the array is referenced.

Use of an array in a MAT statement can cause the array to be defined
either as a vector or matrix depending on the other arrays used in
the statement (refer to Section 6).

Array Bounds, Default Bounds, and Storage Allocation

The original bounds of an array are established by the DIM statement that
defines the array, by the first MAT statement that references the array,
or the implicit value ((10) or (10,10)). The original bounds of an
array specify the total amount of storage allocated for the array. The
MAT statement can reduce the size of an array, but the MAT statement
cannot increase the size of the array beyond that of the original
definition. though the dimensions of an array may be changed, the
storage allocation for the array does not change during execution of
the BASIC program.

Array Element References

Numeric Arrays: The name of a numeric array is a single letter
(A-Z). When a single element of an array is initialized to any
value, the remaining elements of numeric arrays are initialized to 0.

String Arrays: The name of a string array is a single letter followed
by a Sollar Sign, $. The elements of a string array are variable-
length character strings. These character strings may all be of
different lengths. Elements of a string array are initialized to a
null value when the array is established.

A reference to an array element consists of the array name followed
by a parenthesized list of one or two subscripts; i.e., A (Sl) or
A (Sl, S2), where A is the array and Sl and S2 are positive numeric
expressions (see Section 3 for a discussion of expressions).

2-5

Examples of Numeric Arrays:

A(S)

A(2,4)

A(K, J) where K and J are numeric scalar
variables

A(I+1, J/2)

A(ItJ, 3*K-2)

If the value of a subscript expression is fractional, the value of
the subscript is truncated to an integer before it is used to locate
the specified array element.

The value of any array subscript expression must be within the range
of the corresponding array dimension.

Examples of String Arrays:

A$ (5)

A$(I+1, 3*K-2/J)

A$ (A (T) /4)

Relationship of Names

A string variable and a string array may have the same name in a
program. Likewise, a numeric variable and a numeric array may have the
same name. However, these names all refer to entirely different
entities. The context in which the name is used is the determining
factor. For example:

10 BS = 'BBBBB!

20 DIM B$ (7)

25 B=2

30 DIM (7)

are different variables even though the names are apparently the
same. B$ references a string scalar variable; B$ (7) references
a string array of 8 elements (0-7); B references a numeric scalar
variable and B (7) references a numeric array.

2-6

SECTION 3

EXPRESSIONS AND FUNCTIONS

The first part of this section describes the arithmetic and string
expressions that may be constructed in the Prime BASIC language.
The second part describes functions, both user defined functions,
and system functions provided by BASIC, such as SIN, LOG, etc.

EXPRESSIONS

BASIC expressions are constructed from operators and operands. An
operand may be a constant, a scalar variable, subscripted array
element, or a function reference.

Operators that require two operands are called binary operators.
Operators that require one operand are called unary operators.

BASIC defines two types of expressions: numeric and string.
Numeric operands must not be used with string operators and string
operands must not be used with numeric operators. There is no
conversion between numeric and string values. The user must define
explicit conversion functions to convert from one data type to
another.

Numeric Expressions

BASIC defines two unary operators and five binary operators that
operate on numeric operands to produce a numeric value.

Operator Meaning Example

+ unary plus +I

- unary minus -I

+ addition I+J

- subtraction I- J

* multiplication I * J

/ division I/J

+ exponentiation I t+ 2

Table 3-1. Numeric Operators

The operators listed in Table 3-1 have their normal arithmetic
meaning. The operations are performed in floating-point arithmetic.

3-1

The user is cautioned that if he uses the system editor to create
a BASIC source program, then escape conventions must be observed
to produce some of the symbols desired. For example, using the
system editor, the exponentiation operator (+t) must be escaped by
typing a double vertical arrow (rr).

Order of Expression Evaluation

A numeric expression is evaluated in the order of operator priority.
This is determined by rules of precedence in the BASIC langauge
processor. These rules of precedence are:

Precedence Operator

3 t

2 unary (+,-); *, /

1 +, -

Operators with higher precedence are evaluated before operators with
lower precedence.

Operators with, equal precedence are evaluated from left to right.

Example:

A+B-C*D* Et FreG

is interpreted as:

(A + B) -((C * D) * (EFF) *G))

Use of Parentheses

Parentheses can be used to control the order of expression evaluation.
The operation inside of the parentheses is evaluated first.

Example:

(A+B) /2

The addition, A + B, is performed, then the division by 2 is
performed, even though / has higher precedence than binary +.

String Expressions

String expressions in BASIC are constructed using the concatenation
operator (+). This operator combines two string values to produce

3-2

a string having a value of the characters of the first string
immediately followed by the characters in the second string.

Examples:

A$ + BS

"HELLO' + U$ + 'WELCOME TO PRIME DOS VM'

"ABC' + B$

X $ (I-1) + 'QL' + S$

Relational Expressions

BASIC defines six relational operators that may be used in either
numeric or string expressions, as long as data types are not mixed.
The relational operators are shown in the following table:

Operator

<

Examples

20 IF SIN

30 IF S$ <> 'T¢

Meaning

less than

greater than

equal

less than or equal

less than or equal

greater than or equal

greater than or equal

not equal

not equal

Examples

X<Y x$ <Y$

X1>Y1 A$ >BS

I= Ji C$ = D§

J2 <= J3 A$ <= B$ + C$

J2 =< J3 A$ =< Y$

Z >= 10 A$ >= C$

10 => Ql C$ => BE

D<> 1 A$ <> '!

Al >< A2 + A3 A$ >< B$

Table 3-2. Relational Operators

of Relational Expression Use

THEN 450

3-3

(ABS (K - 3.14) - 1) = (I+1) - 1 THEN 200

Evaluation of Relational Expressions

The relational expressions are true if the expressions satisfy
the given expression. Examples:

120 IF X =< Y THEN 900

150 IF B$ = 'END' THEN 9999

160 IF B$>A$ THEN 120

String Values in Relational Expressions

When string values are compared in relational expressions, character
ordering is determined by ASCII code. If the strings being compared
are of different lengths, the shorter of the two strings is extended
by adding spaces to the right until the strings are of the same
length; then, the strings are compared. Use of string values in
relational expressions are given in statements 150 and 160 in the
previous set of examples.

FUNCTIONS

BASIC provides system functions and allows the user to provide
user-defined functions. A function reference consists of a function
name followed by a parenthesized arguement list containing one or
more arguments. Function arguments are evaluated before the function
is evaluated.

Arguments used in a function reference must match the number and
data type of arguments expected by the function.

Function references are evaluated at the point that their value
is required. They do not affect the order of operator evaluation.

System Functions

The following list gives the numeric and string functions provided
as system functions by the BASIC language processor. In all of the
descriptions in the list, X represents any numeric expression, I
and J represent any integers, and A$ represents any string expression.

3-4

SIN(X)

COS (X)

TAN (X)

ATN(X)

LOG (X)

EXP (X)

SQR(X)

ABS (X)

SGN (X)

INT (X)

RND(X)

LEN (AS)

SUB (A$, I,J)
or

SUB (A$, I)

computes the sine of X, X expressed in radians

computes the cosine of X, X expressed in radians

computes the tangent of X, X expressed in radians

computes the arctangent of X, result is in radians

computes the natural logarithm (base e) of X

computes e raised to the X power

computes the square root of X

computes the absolute value of X

returns a value based on the sign of X as follows:

X< 0 SGN(X) = -l

X=0 SGN(X) = 0

X> 0 SGN(X) = 1

If X >=0, returns the greatest integer >= X. If
X <0, returns the least integer >= X.

If X<0, uses X to initialize the random number
generator, and returns X as the function value.

If X>0, uses X to initialize the random number

generator, and returns a value in the range zero to

one. If X = 0, returns a random number in the

range zero < result < 1.

returns the length (number of characters) of the

string AS.

returns a substring that is composed of characters

I-J of string A$. If J is not specified, the result

is a one character substring consisting of character

I of string A$.

3-5

Examples of Use of System Functions

INT: One use of the INT function is to round numbers. Example:

INT (2.9 + .S) = INT (3.4) = 3

The INT function can also be used to round any specific numeric
value to any specific number of decimal places. Examples:

INT (10*X1 + .5) /10

rounds Xl to 1 decimal place.

INT (100 * X1 + .5) /100

rounds X1 to 2 decimal places.

RND: To produce twenty three-digit random integers, edit and run
the following BASIC program:

10 REM PROGRAM TO PRINT RANDOM NUMBERS OF S-DIGITS OR LESS.
20 FOR I=1 TO 2v
5U LET L=RNDOJ)
55 LeT LIZFINTCL*1000)
40 PRINT LI
5J NEXT I
60 END

EXAMPLE OF OUTPUT
RUN
2tl
$52
aul
T16
675
176
3335
S07
553
163
373
599
13
266
4712
6l
645
906
2l2
699

END AT LINE 60

w
w

a
n

The following example is a program that illustrates a use of each
of the system functions previously described; it is followed by
sample output so the user can get an idea of the results from using
the system functions.

Tod
110
120
13
145
15G
160
170
180
196
20U
210
22u
230
240)
25U
26f)
eri

280

290

300

310

32U

330

340

355

360

37g

36:3

396

400

410

420

439

440

450

46%)

470

REM

REM

REM

REM

a
f
T

m
o
m
a

|

5
:

~
<

H
MH

t
o
w

M
N

D
w

m
m
=

REM

$1
Se
$3
S4&
$5
C1
C2
C3
C4
c5
11
Te
T3
T4

T5
Ai
Ae
A3
AG
A5 H

o
e
o
n
h

W
@
W

th
to

n
o
u

®
tf

of
ho

ot
uw

om
w
e
t

EXAMPLE TO SHOW USE OF SYSTEM FUNCTIONS

MLG 11-29-74

V= 207745
1 DEGREE IN RADIANS
292359
- 78540
1.04719
1.57079
WeXeY¥rZ EQUIVALANTS 3045-60-90 DEGREES RESPECTIVELY

TRIGONEMETRIC FUNCTIONS CALCULATIONS

SIN (Vv)
SIN (CW)

SIN (X)

SIN (CY)
SIN (2)
cos (Vv)
tos (WwW)

cos (x)
cus ¢Y)

cos (2)

TAN CY)
TAN (CW)
TAN CX)

TAN CY)

FAN (CZ)

ATNCT1)
ATN(T2)
ATN(T3)
ATN(T4)

ATN(T5S)
PRINT "DEGREES','SIN'’s 'COS's "FAN's "ARCTAN®

PRINT

PRINT 14851-C€1-T17-A1

PRINT 3uiceS2eCeeoTesAed

PRINT 454S83-C3eT3rA3

3-6A

4&0

49

5c0

510

520

530

54U

55

549

570

5&0

590

OUU

61

620

630

64U

65U

66u

676

680

690

700

710

720

7390

740

750

760

7793

78U

099

800

810

&20

830

R4u

&50

S60

87)

8)

899

900

G1u

G20

930

94)

959

960

970

98u

PRINT 60 6S4,C4GeT44A4

PRINT 90S8S5-C5-7T5SeA5S

REM

REM ARITHMETIC FUNCTIONS (LOG ETC)

REM

X = 7.50

L = LOG(X)

E = ExPC(x)

@ = SQR(X)

A = ABS(X)

I = INTC(X)

P = SGNC(X)

PRINT

PRINT

PRINT "NUMBER =" 4X

PRINT "LOGCX) "SL

PRINT 'EXP',ZE

PRINT ‘SQUARE ROOT'.G

PRINT

PRINT "ABSCOX) 's TINT CX) 's *SIGN(X) &

PRINT

PRINT Av lsP

PRINT

PRINT

REM RANDOM NUMBER FUNCTIONS

REM

PRINT "RANDOM NUMBER FUNETIONS'

PRINT

PRINT "RNDCO)',*RNDOCN)'-*RNDCHN)'
PRINT

71 RNOD (GD)

Ze RND (1)

Z3 RNO(-1)

PRINT 21422773

PRINT

REM SFRING FUNCTIONS

REM

XB = "EVALUATION OF STRING EXPRESSIONS’

PRINT "VALUE UF A GIVEN STRING:'

PRINT

PRINT XS

PRINT

L1 = LEN(XS)

PRINT "LENGTH OF STRING:'
PRINT L1

PRINT

PRINT *SURSTRING POSITIONS 21-31:'

BS = SUB (xX3721,31)

PRINT 8

PRINT

EtiD

Sample Output:

HUMBER =

LOGe ws

EXP

SRUARE ROOT

RANDOM NUMBER:

RIND CG

fh ju f
=

fe
i

~
J
|

1. P44S1E-B2

. 45{
i W
O 8 ti fe
l

J ‘
i

a f
e

8
)
m
n

hug
h

i
v

T
H

h
i

ja
s

fe
o

a
n
_ f
s

j
c
t

- c
r

m
l
n
n © fa

INTiHs

FUNCT IONS

RMDhd

_ 211275

o mn

SIGHC Hy.

RMD ¢ -ho

3-6C

ARCTAM

Sample Output: (Cont)

VALUE OF A GIVEN STRING:

EVALUATION OF STRING EXPRESSIONS

LENGTH OF STRING:

wet

SUBSTRING POSITIONS 21-21:

ESFRESSDOM

EMD AT LIE Se

3-6D

User Functions

In addition to the system functions, BASIC allows the user to

define functions. These functions are local to the BASIC program
that contains them.

The name of a user-defined numeric function consists of the

letters FN followed by a single letter.

Example:

FNA (X)

A reference to a user defined function consists of the name of

the function followed by a parenthesized argument expression.

A user defined function is defined by use of the DEF statement

(see Section 5). For example:

120 DEF FNA (X2) = 3.14 * X1+2

A user defined function reference may be included as an operand

in an expression. Example:

170 LET Al = 3.14 / FNA (X21)

The argument of a user-defined function may be an arithmetic

expression. The expression in the function reference argument

is evaluated, and the value of the expression substituted for the

argument in the function definition. For example:

180 LET Al = 3.14 * FNA (X1 + COS (B(3,4))

3-7

SECTION 4

FILES

DEFINITION

A BASIC file is a set of data external to the BASIC program. Afile
is known to the operating system by its association with an
input/output device. The data in a BASIC file are organized into
sequential records. The contents of a file are made available
to the program by the execution of input/output statements that
transmit data between the file and the program.

The PRIME BASIC allows the user to create and use both program and
data files.

PROGRAM FILES

A program file may be created by using the operating system editor
(ED or FILED), to create a file consisting of sequentially ordered
BASIC statements. For details, refer to the Prime Disk and Virtual
Memory Operating System manual, and the Program Development System
User Guide.

Generally, a BASIC program file is created by first, editing a
program in conversational mode, as described in Section 1; then,
using the FILE command, described in Section 1, to write the
program file in storage. For example:

FILE 'RANDII'

stores the contents of the program storage area in a file on disk
named RANDIT.

After a program file has been created, it may be loaded and executed
by entering BASIC and typing the LOAD and RUN commands. For
example:

BASIC
GO
> LOAD 'RANDII'
> RUN

The word GO and the > character before the LOAD and RUN commands are
responses printed by the BASIC language processor.

DATA FILES

Data files for input to a BASIC program are created by using the
operating system editor (ED or FILED) to create files or by using
other BASIC or FORTRAN programs (Refer to Section 5, DEFINE FILE,
for a description of possible file formats).

4-]

An ASCII file, the most used type of file, is a string of ASCII
characters organized into lines followed by a CARRIAGE RETURN.
A line consists of a contiguous string of characters between a
CARRIAGE RETURN character and the next CARRIAGE RETURN character
in the file. The length of a record in a file can be up to 72

characters, including the commas and the CARRIAGE RETURN. Each

data item in the file must be separated from the other items by

a comma.

Data files are read, manipulated, and written, by DEFINE FILE,
DEFINE READ FILE, READ, REWIND andWRITE statements within any
programs written in the BASIC language, that reference data files.

File Names

The name of a file stored on disk is a string of six ASCII
characters enclosed in single quotes. This string is used by the
BASIC interpreter to locate the file. An example of a file name
is:

"RAND1X"

A file name may also be a parenthesized device name (see Section 5).

File Numbers

A BASIC program refers to files by means of a logical file number.
The range of file numbers is between 1 and 8 inclusive. The corres-
pondence between a file name and a file number is established by
the DEFINE FILE (or DEFINE READ FILE) statement. A file is considered
to be open if it is currently assigned a file number; otherwise,
it is considered to be closed.

A DEFINE FILE statement in a BASIC program causes an attempt to
locate the specified file. No error message is printed if the file
cannot be located, unless the file was referenced in a DEFINE READ
file statement, in this case, an error message is printed. However,
even if the absence of a specified file is not detected, subsequent
Statements that reference the file may produce an error message.

A file remains open until it is closed. A file can be closed when:

1. control returns from a BASIC program to an operating
system (either normally or abnormally). All files
Opened by that program are then closed.

2. a file is closed if its file mmber is used in a
subsequent DEFINE FILE statement.

4-2

File Expressions

The user can write an expression in a DEFINE FILE statement that is
evaluated to form a file number. The value of this expression
is truncated to an integer if it is a non-integer.

r
1

4-3

SECTION 5

STATEMENTS

This section describes all the BASIC statements implemented by the

Prime BASIC language processor except for the array manipulation

statements. These are described in Section 6.

In all the examples shown in this section and Section 6, the response

character, >, and the INPUT statement prompt character ! are not

shown unless deemed necessary for the purposes of the example.

Certain statements are only available on larger memory configurations

(16K memory), notably the MATand PRINT USING statements. Table

5-1 is a list of configurations and the extent of the BASIC implementa-

tion on those configurations. Appendix F gives further details with

regard to memory mapping and memory sizes.

Version of BASIC Memory
Size

BASIC without MAT or PRINT USING 16K

BASIC with MAT statements 32K

BASIC with PRINT USING statement 32K

BASIC with both MAT and PRINT USING 32K

statements

BASIC with Double Precision 32K
Table 5-1. List of Configurations and BASIC

System Statement Availability

5-1

BREAK

The BREAK statement selectively enables or disables breakpoints
at specific statements.

syntax

BREAK ON N1,...Nn

or

BREAK OFF N1l,...Nn

where N1...Nn is a list of statement numbers separated by commas.

If a statement at which a breakpoint is set is accessed during the
execution of a program, control is returned to the BASIC processor
command level (immediate mode) before the statement is executed.

If no statement numbers are specified with a BREAK OFF statement, all
breakpoints previously set ON are set OFF.

Example:
90 BREAK ON 40, 318, 215, 10, 45, 9999

195 BREAK OFF 10, 40

200 FOR X = 1 to 10

210 A = FNA (X)

215 REM, CHECKING VALUE OF A

220 NEXT X

235 BREAK OFF 215

5-2

CALL

The CALL statement is used to interface to a written subroutine that
is user-written in FORTRAN or assembly language.

syntax

CALL C

or

CALL CfL1, L2....in)}

where the constant C is an integer that serves as a subroutine
identifier. The value of the constant C is limited only by the
size of available memory; i.e., as many subroutines as will fit
in memory may be called. The subroutine identifier is related to
the address of the subroutine by a user supplied file. The format
and use of this file are described in Section 7, Interface Conventions.

Ll...Ln are items in a list that are argument specifications to

the subroutine calling sequence. The argument list may contain up

to 26 items. An argument specification can be a numeric or string

variable, a numeric expression, an array, a subscripted variable

or a function argument. String expressions or string constants

cannot be included in the argument list. Arrays, variables, or

subscripted variables can be redefined by the called subroutine.

However, the value of numeric constants or expressions cannot be

redefined by the called subroutine; they can only be passed to the

called subroutine. All items in the list L1...ln mst be separated by

commas.

Example

CALL 5S (Xl, X2, 6, A(10), X+1)

5-3

DATA

The DATA statement allows the user to specify a list of numeric or
string constants within the program. The constants must be
accessed by a READ statement.

Syntax:

DATA C1, C2, C3,...,Cn

where Cl...Cn are numeric and/or string constants separated by commas.
A trailing comma causes an error. The list of string or numeric
constants may be any length as long as the length of the line
is not exceeded. To extend the list of constants more than one line,
it is permissible to write subsequent DATA statements.

The DATA statement is a nonexecutable statement that creates a block
of data to be read by the READ statement. BASIC separates numeric
constants in DATA statements from string constants and maintans a
separate data pool for each type. Any number of DATA statements
can appear at any place in the program. Data from all of the DATA
statements in the program, taken in the order of the DATA statements,
are concatenated to create a block of numeric DATA and/or a block of
string data.

When there are no more DATA items to be read, the program prints
the message:

"OUT OF DATA AT N!

where N is a statement number; and the program terminates.

Examples:

100 DATA 2.3, 3.4, 3.7E02, 1, 2, 3

200 DATA 3.1415, 2.783, 0

300 DATA 'ITEMS', 300 'COST' 1.58

5-4

DEF

The DEF statement defines a function of a single variable.

syntax

DEF FNA(V)

where A is the function name and V is any variable. Vmay be an

expression that returns a value. For further explanation, refer to

"User Defined Functions" in Section 3.

The DEF statement defines a single-line function whose value is the

value of any expression that can refer to the optional function

parameters. The type of the expression must be the same as the type

of the function as defined. A particular function cannot be defined

by more than one DEF statement in the same program.

A function parameter (function term) is a scalar variable that is

local to the function body, and a function parameter has no relation-

ship to a variable of the same name elsewhere in the program. The

value of the function parameter is set to the value of the corresponding

function argument when the function is invoked.

DEF is a non-executable statement, and a DEF statement can be

written anywhere in the program.

Examples:
20 DEF FNX (B) = 2./COS(B)*3

100 DEF FNO (P) = 3.14159

5-5

DEFINE FILE/DEFINE READ FILE

The DEFINE FILE statement opens the specified BASIC logical file
unit for reading and writing.

Syntax:

DEFINE FILE #E1 = 'S', M, E2

where E is an arithmetic expression defining file unit numbers (1-8),
S is a string expression specifying file names or an I/0 device,
M is an optional parameter that specifies the mode of the file, and
E2 is an optional parameter that defines file record size.

DEFINE READ FILE #El = 'S', M, E2

The DEFINE READ FILE statement functions the same as DEFINE FILE,
except it opens the specified BASIC Logical Unit for reading only.
The parameters have the same meaning as in the DEFINE FILE statement.
For further examples of usage of DEFINE FILE and DEFINE READ FILE,
refer to Appendix C.

El 1s an arithmetic expression defining BASIC logical
unit number. BASIC allows eight logical units (1-8).

Device Names

S is a string expression defining file name. If the
name starts with a left parentheses, it is interpreted
as a device name of the format: (dxu) |

where: d = device identifier
x = don't care
u = unit specifier

Possible values for device identifier are:

A + ASR = pdev = 1
P - PTR/P + pdev = 2
C - Cards - pdev = 3
L - Line Printer - pdev = 4
M - Magnetic Tape « pdev = 5

The unit specifier, u, ranges from 0 to 9. If the
unit specifier is not a digit, the physical unit is
the BASIC unit plus 3.

Disk File names are one to six characters long and begin with a letter.
1/0 device identifiers are enclosed in parentheses and delimited by
single quotes. Valid I/O device identifiers are as follows:

 Device Identifier Device

"(A)! Teletype (terminal)

"(P)' Paper tape reader/punch

"(LPR)' Line printer

"(C)' Card reader

"(MT1)' Magnetic Tape #1

"(M12)" Magnetic Tape #2

*(MT3)' Magnetic Tape #3

"(MT4)' Magnetic Tape #4

The standard versions of BASIC do not contain drivers for physical
devices 3 to 5. They can be configured by modifying the BASIC IOCS
configuration module, BASIO, and rerunning the appropriate command
file

File Modes

The optional mode parameter M specifies the mode of the file (i.e., the
kind of file that it is). Possible entries are: .

Mode (M) Meaning

ASC ASCII fiie.

ASC SEP ASCII file. When writing to the file, BASIC
inserts a comma between output fields rather
than the spaces specified by the WRITE state-
ment item separators. The type of file
produced by specifying ASC SEP is suitable for
input to other BASIC programs (1.e., acceptable
to BASIC as a READ file).

BIN Binary file. Data written into this type of
file is in internal memory format instead of
being converted to ASCII strings. An arithmetic
item generates two words of data in the file,
a string item generates (C+2)/2 words of data
(where: C is the number of characters in the
string).

5-6A

Mode _(M) Meaning

BIN DA Same as BIN mode, except:

1. Fixed length records are written.

2. The file is opened as a DAM file (Refer
to the Disk and Virtual Memory Systems
User Guide).

3. The POSITION statement operates on the
file.

If the mode parameter, M, is omitted; its value is considered to be ASC.

Record Size

The optional parameter E2 is an arithmetic expression that defines the
record size of a file (number of words/record). The value of E2 may
range from 2 to 512. If the field E2 is omitted, a value of 60 is
assumed. The parameter E2 must be specified if mode M is specified
as BIN DA.

Examples of Use of DEFINE FILE:

10 REM CARD TO PRINT CONVERSION, DECK 1000 CARDS

20 DEFINE FILE #1 '(CRD)'

30 DEFINE FILE #2 (LPR)

35 REM N=CARD NUMBER; N$=BLANK OR END OF DECK;
C$=CARD IMAGE

50 FOR I = 1 to 10000

60 READ FILE #1, N, C$, N$

70 IF N$ = 'END OF DECK' THEN 99

75 REM STATEMENT 70 SHOWS ONE WAY TO HANDLE END OF FILE

76 REM SITUATIONS

77 REM SEE 'ON END' ...

80 WRITE FILE #2, C$

90 NEXT I

99 END

5-7

DIM

The DIM statement defines the number and size of the dimensions of
a numeric array or string array.

Syntax:

DIM A(C1)

or

DIM A(Cl, C2)

where A is a numeric or string array name and Cl, C2 are unsigned
numeric constants that specify the upper bounds of the corresponding
dimension.

The DIM statement specifically defines array names, establishes the
number of dimensions (one or two), and specifies the number of
elements in each dimension. The lower bound of each array dimension
is always 0. The upper bound of each array dimension is that value
specified for the element in the DIM statement. (Cl + 1) locations
are allocated for a single-dimension array (vector); and ((Cl + 1) *
(C2 + 1)) locations are allocated for a two-dimension array.

Any number of DIM statements can appear in a program. However, an
array name can be explicitly defined by a DIM statement only once in
a program. (However, it can be redimensioned any number of times by
subsequent MAT statements). A DIM statement is nonexecutable.

Examples:

100 DIM A(12)

declares a one-dimensional numeric array of thirteen locations
(A(0)...A(1])).

300 DIM A$(2,3)

declares a two-dimensional string array of 3 columns (0, 1, 2) and
4 rows (0, 1, 2, 3).

NOTE: The arrays defined by DIM statements may be used later as
matrices (e.g., the set of array dimensions that are non-
zero). These operations are discussed in Section 6.

END

The END statement terminates execution of the BASIC program.

Syntax

END

The END statement indicates the end of the main program. It is

equivalent to and has the same function as the STOP statement.

Examples:

9999 END

When this statement is executed, the message:

END AT 9999

is printed.

5-9

FOR

The FOR statement defines the beginning of a loop, (sequence of
statements to be executed more than once within the program).
The NEXT statement must be used subsequent to the FOR statement
to define the end of the loop.

Syntax

FOR V = El TO E2

Or

FOR V = El, E2

or

FOR V = El TO E2 STEP E3

or

FOR V = El TO E2, E3

or

FOR V = El, E2, E3

where V is a scalar numeric variable; and El, EZ, and E3 are
numeric expressions. The variable V is the control variable of the loop.
The first expression (El) defines the initial value of V. The
second expression (E2) defines the final value of V. The expression
E3 is optional and is the incremental value added to V when the
subsequent NEXT statement is executed. The words TO and STEP may be
omitted and replaced by commas.

When the "STEP E3"' or "E3'' term is omitted, the value +1 is used.

The value of the control variable (V) can be modified within the
loop. Its value will be available at the end of the loop. Also, the
loop may contain statements that jump out of the loop.

FOR-NEXT loops can be nested indefinitely as long as available memory
is not exhausted. FOR-NEXT loops cannot be interleaved. A nested
FOR-NEXT loop cannot use the same control variable as the FOR-NEXT
loop that contains it.

5-10

5 REM ANOTHER EXAMPLE

10 PRINT °PLEASE SPECIFY N; °
12 INPUT N
14 PRINT °PLEASE SPECIFY M;°
16 INPUT M
20 DIM BC1000)
30 FOR I=N TO M STEP .1
40 LET B(1)=5.1416*%I t2
50 PRINT 1,BCI)
60 NEXT 1
66 STOP

RUN
PLEASE SPECIFY N;
2
PLEASE SPECIFY MM;
30D
2 12.5664
201 15.8545
2e2 15.2053
2.5 16.6191
2-4 18.0956
2.9 19.655
2.6 21.2372
Z2e7 22.9022
2.8 24.6501
2.9 26.4208
3 28.2744
Sel 30.1907
See S2ei7
3.5 34.212
5.4 36.5169
505 58.4346

STOPPED AT LINE 6

The next example of FOR-NEXT assigns values to the elements of

a Single dimension array.

110 DIM X(10)

110 FOR I = 07010

120 READ X(I)

140 NEXT I

300 DATA 051,2535455,65758,49

One of the common reasons for using FOR-NEXT loops is to deal

with two-dimensional arrays. The idea is to use two subscript

9-11

variables to point to the column and row of the array controlled

by a loop. This is illustrated in the following example:

100
110
129
130
140
145
148
150
160
170
130
199
200
202
500
305
510
320
325
5350
350
400
405
410
420
440
999

RUN
16
256
D12
1046

34
300
13

READ C1,C2
FOR I=1 TO Cl
FOR J=i TO c2
LET ACI,J)=0
NEXT J
NEXT I
REM ELEMENTS OF ARRAY ASSIGNED TO ZERO
READ C3
IF C320 THEN 300
READ C4,X
LET A(C3,C4) =X
GOTO 150
REM STATEMENTS 150 TO 190 ASSIGN VALUES FROM THE DATA LIST TO
REM ELEMENTS OF ARRAY Ae
FOR I=1 TO Cl
FOR J=1 TO C2
PRINT ACI,J)
NEXT J
PRINT
NEXT I
REM ABOVE LOOP PRINTS VALUES OF ARRAY ELEMENTS.
DATA 3,4
DATA 1,1,16,1,2,256,1,3,512,1,4, 1046
DATA 241,34,2,25300,2,3,13 254,9037654E+08
DATA 341,995352,88535357777535456
DATA 0
END

Values assigned to A(1,1),..., A(1,4)

Values assigned to A(2,1),..., A(2,4)
9237654E+08

99
83
T7177
6

Values assigned to A(3,1),...,A(3,4)

END AT LINE 999

5-12

GOSUB

The GOSUB statement allows control to be passed to an internal
subroutine.

syntax

GOSUB N

where N is a statement number in the program, N is a statement
number that specifies the line at which the internal subroutine is
to start. The subroutine must contain a RETURN statement.

The GOSUB statement saves the line number of the statement that
follows it, and then transfers to the statement specified by the
line number N. When a RETURN statement is subsequently executed,
control returns to the statement whose line number was saved (i.e. the

statement that follows the referencing GOSUB statement).

A subroutine may itself contain a GOSUB statement. Up to eight
GOSUB statements may occur before the execution of a RETURN statement.
RETURN always causes control to be returned to the statement follow-
ing the most recent outstanding GOSUB statement.

173 GOSUB 1000

The following is an example of a trivial but valid program; the
statements are executed in the order: 10, 30, 50, 70, 60, 40, 20.

10 GTO 30

20 STOP

30 GOSUB 50

40 RETURN

50 GOSUB 70

60 RETURN

70 RETURN

5-13

GOTO

The GOTO statement causes program control to be passed to a non-
local, designated statement.

syntax

GOTO N

where N is a statement number of a valid statement.

The GOTO statement causes program execution to continue at the
statement specified by N.

Examples:

10

200

Example use of GOTO:

100

110

120

130

135

138

140

150

160

180

999

GOTO 75

GOTO 400

PRINT ‘INITIAL VALUE'

INPUT I

PRINT 'TYPE CHANGE’

INPUT C

REM C IS + OR -

IF C = 0 THEN 999

LET T=I+C

PRINT 'NEW VALUE IS', I

PRINT

GO TO 120

END

IF

The IF statement allows processing to be dependent on the true
or false value of a relational expression.

Syntax
IF El rel E2 THEN N

or

IF El rel E2 GO TON

where El and E2 are either both mmeric expressions or both string

expressions; rel is one of the following relational operators:

Operator Meaning

< less than

> greater than

<= OY =< _ less than or equal

>= OF => greater than or equal

= equal

<> OF >< not equal

N is either a statement number or 4 Statement, including another

IF statement. (N can only be a statement if the verb is THEN.)

If El and E2 satisfy the relation specified by rel, control is

transferred to the statement specified by N; otherwise, execution
mmmbameane «73 ehcontinues with the statement that follows the IF statement.

5-15

Examples

100

200

205

305

402

IF

IF

IF

IF

IF

A$ = 'YES' THEN 125

ABS (X-Y) < El THEN 75

Cl=>C2 GOTO 50

X <>0 THEN IF X < 100 GOTO 402

(TAN(X9)-1) = (T(J*Z-1) +3 THEN 350

If any of the above conditions are false, program execution continues
with the statement that follows the IF statement.

INPUT

The INPUT statement requests data from the user terminal.

Syntax

INPUT Ll, L2,...Ln

where L1,...ln is a list of references separated by commas. Trailing

commas are ignored. If more items are input then are on the

specified list Ll...Ln, the additional items are discarded.

The INPUT statement causes data to be read from the users terminal

and assigned to the references in the list Ll...Ln in the order

that they are typed. If there are any array references in the list

Ll...Ln, subscript expressions are not evaluated until all references

that precede the subscript expressions in the input list have been

assigned values.

The INPUT statement prints the prompt-character, !, to
indicate that input is desired. The user must be sure to type
input as his program requires.

Data items provided by the user must match the data type of the

corresponding reference in the list, Ll...In, in the INPUT state-

ment.

A single quote may be combined in a string typed in response to an

INPUT statement. It is transferred literally to the program area.

Example, typing:

ABC 'D

in response to an INPUT statement puts the string, ABC'D, in the

program storage area.

When a numeric value is expected, all characters up to the next comma

or CARRIAGE RETURN are input to the program. Spaces, blanks and tabs

are ignored.

5-17

Examples

10 INPUT Il

20 FOR 12=T11, 10

30 INPUT A (12)

40 NEXT 12

Sample Output

16

112345

11.3141579

12.45

19999999999

134

In the above example, the ! characters are typed by the system;
the numbers are input by the user in response to them.

Interrupting INPUT

The user can stop typing in a series of values in response to an INPUT
statement in his program and return to BASIC command level by typing
CONTROL-C (pushing the control and C key simultaneously. Example:

>10 INPUT A, B, C, D, E
>20 PRINT A, B, C, D, E
>RUN
! 1, 311 CTL-C +User interrupts INPUT
END OF DATA AT LINE 10 «Response from BASIC
> +Return has been made to

command level

5-18

LET

Tne LET statement allows an arithmetic variable or string variable

to be assigned a value.

Syntax
LET V = E

or

Ve=E

where V is a numeric variable or a string variable, and E is an
expression of the same data type as V.

The LET statement assigns the value of an expression to one or
more scalar variables or subscripted array elements. Subscripts
in the expression E are calculated before the expression is
evaluated and before any assignment is done.

Scalar arithmetic variables not explicitly assigned a value are
assigned a default value 0 when first referenced in a program.
Unassigned scalar string variables are assigned a value of a null
string ('').

Array elements not explicitly assigned a value are given a default
assigned value when the array is referenced. (See Section 2.)

5-19

Examples

10 I = 20

20 LET I = 2

100 LET xX(5) = 24

102 LET V = C

110 LET "STRING OF CHARACTERS’&

120 LET A$ B$ + C$

440 LET 13 = 5

500 A(J) = SIN(X-4.5) + Q3

500 LET S$(J+5) = M$ + *.00!

NEXT

NEXT is used in conjunction with the FOR statement to increment
the control variable of the FOR-NEXT loop.

Syntax

NEXT V

where V is the control variable used with the previous FOR
statement.

Refer to the description of the FOR statement for further details.

The NEXT statement marks the end of a FOR-NEXT loop; it is always
used in conjunction with a preceding FOR statement.

Example

700 FOR I = 1 TO 100

705 LET A = Atl

713° NEXT I

5-20

ON

ON allows control to be passed to one of a list of statements
depending on the value of an expression.

syntax

ON E GOTO Nil, N2, N3...Nn

where E is an expression and Nl...Nn are numeric expressions
separated by commas that represent statement numbers.

The ON statement uses the value of the numeric expression to select
one of the statement numbers as the target of a GOTO operation.
The value of the expression is truncated to yield an integer that
must be positive and also must be less than or equal to the number
of statement numbers (Nn) specified in the ON statement.

Examples:

20 ON (I-1) GOTO 100, 200, 300, 400

If I = 1, control goes to statement 100; if I = 2, control goes
to 200; if I = 3, control goes to 300; and if I = 4, control goes
to 400.

The ON statement is useful because the IF statement provides only
a two-way branch in a program. The ON statement can provide more
alternatives (i.e., a multi-way branch).

ON END

The ON END statement directs the transfer of control to a given
statement when an End of File is reached during a READ or POSITION
operation on the unit specified in the ON END statement.

Syntax

ON END #E GOTO N

where E is an expression that specifies a BASIC logical unit (1-8)
(Refer to DEFINE FILE); and N is a statement number. The ON END
statement does not test for End of File; it establishes action to

be taken when the last file record is read.

5-21

10 DEFINE FILE #1 = 'INPUT'

40 ON END #1 GO TO 20

50 READ #1, A$, A, BS, B

POSITION

POSITION positions a file on the unit specified to the start of the
record specified.

Syntax

POSITION #El1 TO E2

where El is an expression that specifies the BASIC logical unit (1-8)

and E2 is an expression that specifies the record in the file. Record

numbering starts at one. The unit (El) must have been defined to be

BIN DA mode (refer to DEFINE FILE).

If the record number specified is greater than the number of records
in the file, the file is positioned to the End of File and the ON END

action is taken.

5-22

PRINT

The PRINT statement causes information to be printed at the terminal.

Syntax

PRINT Li, L2,...,In

where Ll...In are 0 or more items in a list separated by commas or

colons. Individual list items Ll...In may be either numeric

expressions or string expressions.

The PRINT statement generates lines of output to be printed at the

terminal. A single PRINT statement can generate either one line,

several lines, or partial lines of information.

The format of the terminal line image is determined by the

elements in the print list. Each element in the list Ll...In is

evaluated to yield a string of characters to be placed on the

terminal print line.

Printing Numeric Expressions

A PRINT list item that is a numeric expression is evaluated and

converted to the equivalent character string representation. This

string begins with the sign character and ends with a blank.

If the value of the expression is positive, a blank is printed for

the sign character. If the value of the expression is negative,

a minus sign is printed for the sign character.

Integers: Numbers printed as integers consist of a string from one

to six decimal digits without a decimal point. Examples:

14

- 20796

1

Fractions: Numbers up to six decimal digits may be printed with a

decimal point.

Fractional format is used for nonintegers with an absolute image

in the range .1 to 99999.5. Examples:

5-23

2.5

12.4 3

-0.00796

0.00371

7.74186

Scientific Format: A number printed in scientific format is of
the form:

X E + Y

or

X E - Y

where X is a fractional number greater than one and less than ten,
and Y is an integer power of 10 ranging from -38 to +38. Scientific
format is used whenever integer or fractional format cannot be used
as shown in the following example:

LET X = 999999

LET X = X+l1

PRINT X

results are printed:

1.0 E+6

Other examples of numbers in scientific format are:

2.54 E+13

5.0 E+5

-l. E-32

Printing String Expressions

A string expression in the PRINT list Ll...Ln is evaluated and
the resulting string of characters is printed in the output at the
teletype. BASIC does not interpret contents of this character
string; therefore, unpredictable results may occur from the inclusion
of characters that do not advance the print line by one position
(such as combinations of 2 backspace with other characters).

5-24

Comma Separator

The output from the PRINT statement is normally divided into zones
of 14 characters each. The first zone starts in colum 0, the
second in colum 14, etc. The number of zones is determined by
characters, five zones are printed.

A comma in a print list causes the Teletype to advance to the first
character position of the next available zone. If character over-
flow occurs, the current line is printed and a new line is started.
If the last element of the print list is a comma, the partial line,
if any, is printed; and the Teletype is positioned at the start
of the next available zone.

Example Use of Comma in PRINT Statement

The statement:

100 PRINT I, J, K, L

might result in the following output:

1.0 2.4 1.416 75

Colon Separator

A colon in a PRINT list is used to separate PRINT elements and
inhibits the printing of items in different zones. A colon
specifies that the preceding items to be printed is to be followed
by a space rather than the number of spaces required to position
to the next print field.

Examples of Use of Colon in PRINT Statement

The previous example written as follows:

100 PRINT I: K

causes the following output:

1.024 1.41675

The statement:

200 PRINT 'A': 'B', 'CAT': ‘DOG'

prints:

A B CAT DOG

5-25

Tab Request

The tab print element requests that the Teletype be moved to a
specific character position (colum). The tab request is written
as:

TAB (E)

where E is a numeric expression. An example of the tab request
is:

100 PRINT X: TAB(40): Y

PRINT List Termination

If the print list does not end in a comma or colon, a CARRIAGE
RETURN character is appended to the print output and the line is
transmitted to the terminal. A null (empty) PRINT list causes the
previous line to be finished or a blank line to be printed.

PRINT Statement Examples

20 PRINT X, SIN (22 - Y 2)

30 PRINT 'VALUE IS': X-Y

40 PRINT ' ', A$ + SUB (B$, I, J)

50 PRINT

Example of Use of Print for Conservational Input/Output

10 PRINT ‘ENTER LENGTH IN INCHES':

20 INPUT L$(1,1)

30 LET X4 =~ L(1,1)/12

40 PRINT X4: 'FEET'

Sample results:

ENTER LENGTH IN INCHES ! 30

2.50 FEET

5-26

PRINT USING

A formatted print-statement (the PRINT USING statement) generates
formatted output.

syntax

PRINT USING S$, Ll, L2...Ln

or

PRINT USING S$, Ll: L2...In

where S$ is a string expression and Ll...Ln are items in a list
that are string or numeric expressions specifying values to be
printed, separated by commas or colons.

A single PRINT USING statement can generate one line, several lines,
or a partial line of printed output. The characters generated by
a PRINT USING statement are formatted as specified by a control
string.

Format Fields

The string specified by S$ contains a description of the editing
to be applied to the values in the list Ll...In. The string S$
is divided into a series of fields each of which controls the
formatting of a single value in the PRINT list Ll...Lln. The fields
describe a numeric or string value.

There are seven special characters for defining numeric fields in the
£, + amen et Ameo mane
LULINGAL. L1IDOSG VLIIAGLALLULO all.

> t Ft $

Their use in a format field is described in the following tables
and paragraphs.

There are three special characters for defining string fields in
the format. These are:

< > #

nett use in a format field is described under the heading "String
ields".

5-27

Numeric Fields

Pound Sign (#): For each pound sign in the field descriptor, a
digit 75) from the output value is substituted. Examples are
shown in the following table.

Field Format Datum Representation Remarks

HHH HF 25 25 Right justify digits
in field with leading
blanks.

Hitt# .-30 30 Signs and other non-
digits are ignored.

HEHEHE 1.95 2 Only integers are
represented; the
number is rounded
to an integer.

HtHHH 598745 RAKE If the datum is too
large for the field,
all asterisks are
printed.

Table 5-2. Pound Sign in Descriptor Field

Decimal Point (.): The decimal point places a decimal point within

the string of digits in the fixed character position in which it
appears. Digit positions to the right of the decimal point are not

blank filled. Examples are shown in the following table.

Field Format Datum Representation Remarks

HttHE HH 20 20.00 Fractional positions
are filled with zeroes.

HHtHH HH 29.347 29.35 Rounding occurs on
0.079 0.08 fractions.

#H#HHH HF 789012.34 REAKKK KK When the datum is too
large, a field of all
asterisks, including
the decimal position,
is printed.

Table 5-3. Decimal Point in Descriptor Field

5-28

Comma (,): A comma in a descriptor places a comma in the output
record at that character position unless all digits prior to the
comma are zero, in that case, a space is printed in that character
position. The following table gives examples of use of the comma.

Field Format Datum Representation Remarks

+$ ft HH 30.6 +$ 30.60 Space printed for
comma when leading
digits blank.

+$H ttt HF 2000 +$2,000.00 Comma printed.

+tHit Hii 00033 +00, 033 Comma is printed
when leading zeroes
are not suppressed.

Table 5-4. Comma in Descriptor Field

Vertical Arrow (tf): A string of four vertical arrows can be used
to indicate an exponent field which is filled by E+n where n is a

two digit integer. The following table gives examples of use of the

vertical arrow.

Field Format Datum Representation

+H# ## ttt? 170.35 +17.04E+01

+H ## tt tt 1,2 -20.00E-02

++H# ## 147t 6002.35 +600.24E+01

Table 5-5, Vertical Arrow in Descriptor Field

Plus or Minus Signs (+ -): A single plus sign as either the first
or last character in the format descriptor causes a + to be output
if the data item is positive, or a - if the data item is negative.

Two or more plus signs starting at the first character of the
descriptor cause the sign to be output (+ if positive, - if negative)
immediately to the left of the most significant nonzero digit of
the output item. If required, the second through the last plus sign
is used as digit positions as required by the magnitude of the
number.

A minus sign (or signs) has the same effect as plus signs , except
a space is output for a positive sign. The following table gives
examples of the use of + or - in formatted print output.

5-29

Field Format Datum Representation

+HHF 20.5 +20.50

+H ## 1.01 + 1.01

+Ht HH -1.236 - 1.24

+## FH -234.0 RARER

Hit, HH - 20.5 20.50

HHT HHH 000.01 0.01

Hit. HH - -1.236 1.24-

HHT HH - -234.0 234.00-

---,##- -20 -20.00

---,## -200 AARAKK

~-- Hf 2 2.00

Table 5-6

Remarks

Blanks precede the
number.

When the datum is
too large for the
specified format a
field of all asterisks
is printed.

The last leading
zero before the
decimal point is
not suppressed.

Second and third
Signs are treated
as digit positions
(#) on output.

When the datum does
not agree with the
specified field,
asterisks are printed.

Plus and Minus in Descriptor Fields

5-30

Dollar Sign ($): A single dollar sign as either the first or second
character in the descriptor causes a dollar sign to be output in
that position of the output record.

Multiple dollar signs starting at either the first or second
character of the descriptor cause a dollar sign to be placed
immediately to the left of the most significant nonzero digit.
The only character that may precede a dollar sign in a format
descriptor is a fixed sign (+ or -). The following table gives
examples of use of the $ in formatted print output.

Field Format Datum Representation Remarks

-$Htt tt 30.512 $ 30.51

Stat Hit -30.512 $ 30.51-

+$$$$H Hi 13.20 + $13.20 Extra $ signs may
be replaced by digits
as with floating
+ and - Signs.

S$Ht HH - -1.0 $01.00- Leading zeroes are
not suppressed in the
part of the field.

Table 5-7. Dollar Sign in Descriptor Field

String Fields

Pound Sign (#): Each pound sign in the descriptor field represents
a Character position from the second to the nth character position.
A character from the output (i.e., letter, numeral, or symbol) is
substituted in that position.

Examples are shown in Table 5-8.

Left Angle Bracket (<): This character in a descriptor field is
alwayS positioned first when it is used. It represents the first
character position and the first character from the output is
substituted for it. It also designates that the output string is
to be left justified in the PRINT statement field. An example is
shown in Table 5-8

5-31

Right Angle Bracket (>): This character in a descriptor field is
always the first character of the field. The first character of the
output is substituted for it and it designates that the output string
is to be right justified in the PRINT field. Table 5-8 shows an
example.

Field Format Datum Representation Remarks

> HtHTHE TWELVE TWELVE right -justified
<#HtHHE TWELVE TWELVE left-justified

Table 5-8. String Descriptor Fields

Print Using Statement Example

150 KEM doseeeEBAMPLE TO SHOW VARIOUS USES OF PRINT USING
166 REM
A7@ INPUT ALB. ©
400 LET Ef="EM--1-
196 PRINTUGING “CRPRBERSHRERERBHREREEES
200 PRINTUSIHG “>HoeoHEEHRHREHREREEER. ES
210 REM LAST THO LINES SHOW HOW JUSTIFICATION WORKS
22a LET FS="-8. HA
23G FPRINTUSING FS. A. EC
S40 PRINTUSING “SEeHeHE HH. FL BC
S5Q PRINTUSING “LS#EBEHBHHE TO 2°. EF
268 REM MOTE CONCATENASTION. RESULT IS PLACED IN FIELD SPECIFIED
278 INPUT ¥
20 VRINTUSING <-a. #. SORTS

Sample Output

>Re UN

123.34,3345.93,45
EX-~ 1

EX--1
25.54
KKOKOK IK

45.90
$J00235 254
$)35$45.98
$0UJV45.0V

eX--1 TO 2

1654
25.907

u
n t

U
n
b
o

Printing Special Characters

To print a literal copy of one of the characters used with special
meaning in a format field, a string field must be used with the PRINT
statement and the character must be passed as part of the print list.
For example, the following statement prints a period at the end of the
output line.

10 PRINT USING 'X IS -### ':'.',X

If the statement were written

10 PRINT USING 'X IS -###,',X

the decimal point would be part of the numeric field output.

5-33

READ

The READ statement is used in conjunction with a DATA statement.
DATA defines a series of data values (literals); READ sets a list
of variables equal to literals in the numeric and/or string data
pools.

Syntax

READ L1, ..., Ln

where Ll, ..., Ln is a list of references, which may be numeric
variables, string variables or arrays, separated by commas.

The READ statement causes numeric or string values stored in the data
pools by DATA statements to be assigned, starting at the next avail-
able element in the applicable data pool. The assignments are made
in the order specified by the references in the list specified with
the READ statement.

Subscript expressions in an array reference in the list Ll, ..., In
are not evaluated until all preceding references have been assigned
values.

If a data list is exhausted, a message is printed and program
execution is halted.

The RESTORE statement may be used to prepare to read the data again.

Examples:

100 READ X, Y, Z

110 READ X$, X, Y$, Y, 2$, Z

120 READ X(3)

For examples of READ, all of the DATA are treated as a single list
of numbers. Each READ operation takes the next available number
from the list and advances one position on the list. The following
example illustrates this principle:

5-34

10 DATA 1.314 1.817

20 BATA 1, 2, 3, 5, 8, 13, 21, 34

30 DATA 55, 89

40 READ Nl

50 READ N2

60 FOR KI+N1, N2

70 READ A(K1)

80 NEXT Kl

90 RESTORE

READ FILE

Input may be read from a formatted file prepared by the system
editor, from a file created by another BASIC program or from a
binary file created by a FORTRAN program. The format of the files
and their types and modes is defined by the DEFINE FILE statement.

Syntax

READ #N, Ll, ..., Im

where N is a file number and LI], ..., Ln are a list of all numeric
variables or all string variables separated by commas.

This variation of the READ statement reads from the file specified
by #N.

Initially, the READ FILE statement forces the reading of a new
record. The READ FILE statement reads values from the file starting
with the first data item in the record currently pointed to and the
file pointer is incremented by 1 after each data value is read.

If a file number specified in a READ FILE statement has not been
defined in a previous DEFINE FILE statement, the message:

ERROR UF AT LINE N

(where N is a statement number) is printed and execution of the BASIC
program halts, and the user's program returns to BASIC command level.

Examples:
100 READ #4, V(I), A

110 READ #4, Al, A2, A3

5-35

READ * FILE

Syntax

READ * #N, L1, ... In

The READ * FILE statement has the same effect as the READ FILE

statement except it does not initially force a new record to be

read from the unit specified. If data remains in the last record

read from the unit, it is used before the new records are read.

REM

This statement identifies a remark. It is not executed.

syntax

REM S

where S is any string of ASCII characters not including the carriage

return character.

The string of characters following REM is ignored by the BASIC

interpreter. The REM statement has no effect on the program; it

is provided for the convenience of the user.

Example:

10 REM PROGRAM TO PERFORM MEDIA CONVERSION

20 REM MLG MODIFIED BY SDH 10-15-72

30 REM
40 REM

RESTORE

The RESTORE statement resets the DATA list pointer so that the list

may be re-used by subsequent READ statements in the program.

syntax

RESTORE
RESTORE #

RESTORE $

The RESTORE statement re-initializes either or both of the data pools.

The next read statement executed reads the first data item in the

pool or pools restored.

The RESTORE statement resets each data pool. The RESTORE $ statement

resets the string data pool only. The RESTORE # statement resets

the arithmetic data pool only.

5- 36

112 READ A, B

115 LET C= A*B

120 PRINT A: '@' B, “PRICE": C

130 RESTORE

135 READ Z

140 PRINT 'NO OF ITEMS IS':z

900 DATA 100, 3.50

Output is:

100 @ 3.50 PRICE 350.

NO OF ITEMS IS 100

RETURN

The RETURN statement causes control to be returned from the sub-
routine that contains it to the statement immediately following
the GOSUB statement that invoked the subroutine (i.e., the last
outstanding GOSUB).

Syntax

RETURN

5-37

Examples:

100
110
111
120
130

300
301
310
320
325
330
340
350
360
370
380
400
410
420

INPUT A
GOSUB 300
INPUT A$
IF A$ <> 'END' THEN 100
END

REM 'SUBROUTINE TO CALCULATE IF A!
REM ‘NUMBER N IS PRIME'
FOR X = (A-2) TO 1 STEP -1

LET Ql = A/X
LET Q2 - INT(X.X)
LET R = Ql - Q2
GOSUB 400
NEXT X
IF R = 0 THEN 380
PRINT 'NUMBER' :A: ‘IS A PRIME’

RETURN
IF R >< THEN 420
PRINT 'NUMBER' :A: ‘IS NOT A PRIME'

RETURN

The RETURN statement in statement number 380 causes a return to the

statement 111; the RETURN statement in 420 causes a return to 350.

REWIND

The REWIND statement causes the specified I/O unit to "rewind".

syntax

REWIND #N

where N is an arithmetic expression defining a file unit (1-8).

If the REWIND statement refers to a disk file, it is reset to start

from the first record.

Examples :

100

110

120

130

140

150

DEFINE FILE #4 = 'ALPHA'

INPUT N

FOR I =1I1 TON

READ #4, A

NEXT I

REWIND #4

5-38

STOP

STOP causes the program to return to its caller.

Syntax
STOP

Any files opened by the program are closed. Executing a STOP

statement in a program is equivalent to an END statement.

Example

9999 STOP

causes a message to be printed such as:

STOPPED AT 9999

TRACE

The TRACE statement is used to turn trace mode ON or OFF.

Syntax
TRACE ON

or

TRACE OFF

When trace mode is ON, the statement number of each statement is

printed prior to its execution.

5-39

TRACE is useful in debugging a program that contains many GOTO
and/or GOSUB statements.

Examples: 110 TRACE ON
115 FOR I = 1 TO 10
120 A3 = Al + FNX (I) -3.1
130 IF A3 <0 THEN 400
150 GOSUB 6000
160 IF A3 = 0 THEN 500
170 GOSUB 7500
180 IF A3 > 0 THEN 600
190 GOSUB 9000
195 NEXT I
200 TRACE OFF

Assuming all conditions are true (in the first pass) a partial view
of the trace might look as follows:

[115]
[120]
[400]
[401]

[499]
[150]
[6000]

[6099]
[170]
[7500]
[7502]

[7550]
[180]
[600]

[650]
[190]
[9000]
[9010]
[9020]
[195]
[115]

5-40

WRITE FILE

The WRITE FILE statement directs output to a file.

"Syntax
WRITE #N

or

WRITE #N, L1,...Ln

where N is an expression that yields a file number (1-8) and

Ll,...Ln is an optional list of all numeric variables or all string
variables separated by commas or colons.

A print element in the list can be an expression or a TAB request.

WRITE statement output lines are appended to the specified file in

a stream.

Either full lines (terminated by a CARRIAGE RETURN character) or

partial lines (terminated by a comma or colon) may be output to a

file.

Read After Write Check

If an attempt is made to read on a unit after a WRITE has been

performed, without an intervening REWIND or redefinition of the unit,

a WR error diagnostic is printed. This check does not apply in the
case of writing BIN DA files.

5-41

10 DEFINE FILE #1 = '(LPR)'

20 FOR I = 1 TO 100

30 WRITE FILE #1,'ITEM-':X, 'COST-$ ' Y, 'ONE EACH'

40 NEXT L

120 DEFINE FILE #2 = 'ALPHA'

130 FOR X 1 TO 100

J35 LET N X2

140 WRITE #2, X, N

150 NEXT X

Statements 10 to 40 print 100 lines on the line printer (if it is
assigned); statements 120to 150 consecutively write 100 values
of X and 100 values of N onto a disk file ALPHA.

WRITE USING

Formatted output strings may be passed to a file by means of the
WRITE USING statement.

Syntax

WRITE USING S$, #N, L1,...,Ln

where N is a file number (1-8); S$ is a string expression, as in
the WRITE USING statement; and Ll,...,Ln are a list of expressions
separated by commas or colons.

This variation of the WRITE USING statement directs output to be
appended to a Teletype formatted file. A single WRITE USING state-
ment can generate one line, several lines, or a partial line of
output.

Example:

140 WRITE USING 'X COST IS S#t# ##', #3, A

5-42

SECTION 6

MATRIX MANIPULATIONS

AND

MATRIX STATEMENTS

The BASIC statements discussed in the previous section permit the
elements of a matrix to be defined and used as an element by element
basis. The MAT statement, discussed in this section, allows matrices
to be manipulated as a unit. In addition to the individual examples
given in this section, examples showing the use of the MAT statement
are given in Appendix A.

Although the arrays have a colum number 0 and a row nunber 0, the
MAT statement ignores all matrix elements that have one dimension
equal to zero (i.e., the MAT statement manipulates vectors and
matrices, 0 elements are indeterminate).

MATRIX REDIMENSIONING

The original bounds and the current bounds are determined by the
DIM statement, or by the default bounds value (10) or (10,10), or
by the first MAT statement that references a matrix. The current
bounds of a matrix can be changed within certain constraints.

The total amount of storage defined by the current bounds must be
less than or equal to the amount of storage set aside for the
original bounds. For example:

100 DIM A (10, 10)

300 MAT A = ZER (5, 5)

400 MAT A = ZER (3, 24)

500 MAT A = ZER (2, 29)

are all legal redimensions of the matrix A; but:

SSO MAT A = ZER (5, 25)

is not legal redimensioning of matrix A.

A matrix may be assigned the value of another matrix with different
current bounds, provided this operation conforms to the rules for
redimensioning just discussed. The current bounds of the target
matrix are automatically changed to be the same as the current bounds
of the matrix assigned.

6-1

When the current bounds of a matrix are changed, any elements of
that matrix with one or more subscripts equal to 0 are destroyed.

INITIALIZATION STATEMENTS

There are three MAT statements to facilitate the assignment of the
individual matrix elements.

Syntax
MAT A = CON

or

MAT A = IDN

or

MAT A = ZER

where A is a numeric matrix.

These matrix initialization statements set the matrix specified to
the left of the = to a constant matrix having the same bounds.
The values to the right of the = are called matrix constants.

The constant CON sets each element of the matrix defined by matrix
A to 1. Conversely, the constant ZER sets each element of the matrix
defined by A to 0.

The constant IDN sets the matrix defined by matrix A to the identity
matrix. This action is defined by the following algorithm:

A(I,J)=1 IF I=J

A (I,J) =0 IF I< J

For the IDN assignment to be valid, the matrix A must be two-dimen-
sional and the number of columns must equal the number of rows
(i.e., A must be a square matrix).

6-2

Examples

200 MAT V = CON

sets elements of matrix V to all ones

300 MAT Z = ZER

sets elements of matrix Z to all zeroes

340 DIMI = (4,4)

400 MAT I = IDN

sets matrix I to the identity matrix |
Elements of the matrix defined by matrix I
are assigned as follows:

Row Colum 1 2 3 4

1 = 1 0 0 0

2 = 0 1 0 0

3 = 0 0 1 0

4 = 0 0 0 1

MATRIX INITIALIZATION WITH REDIMENSIONING

Matrices may also be redimensioned in the MAT...CON, MAT...ZER
or MAT...IDN statments.

MAT A = CON (B1)

or

MAT A = CON (B1, B2)

OT

MAT A = ZER (B1)

or

MAT A = ZER (BL, B2)

or

MAT A = IDN (Bl, Bl)

where A is a numeric matrix and Bl and B2 are expressions which
define a matrix bound.

These matrix initialization statements set the matrix to the left
of the = to a constant matrix having the bounds specified by Bl
and B2; and in addition, assign values to the elements of the
matrix defined by matrix A according to the functions of the
specified MAT...ZER..., MAT...CON, and MAT...IDN statement.

les

20 DIM X(4,5)

30 MAT X = CON (3,3)

X is 1 1 1

60 DIM Y(3,3)

70 MAT Y = ER (4,2)

Yis 0 0

0 60

0 O

0 0

6-4

MATRIX ASSIGNMENT

A matrix may be assigned the value of another matrix.

Syntax
MAT A=B

where A and B are numeric matrices.

Both A and B must be either both one-dimensional (vectors) or both
two-dimensional (matrices).

The matrix assignment statement sets the matrix appearing to the

left of the = to the value of the matrix appearing to the right of

the =. The current bounds of the target matrix are charged to the
assigned matrix.

Examples

10 DIMA (6,6)

20 DIMB (5,4)

30 MATA=B

the assignment at statement 30 is a legal assignment; but

15 DIMC - (10, 10)

25 DIMD - (2, 10)

35 MATD=C

is not legal since the effect of the assignment is to try and

assign a larger storage area, (matrix C) into the smaller one

(matrix D) which would be charged with 80 more locations than were

originally allocated.

MATRIX ADDITION

Syntax

MAT A = B + C

where A, B, and C must all be either numeric vectors or numeric

matrices. The elements of A are set to the sum of the corresponding

elements of B and C. The matrices B and C must have the same current
bounds; the bounds of the target matrix A are changed to the bounds
of the input matrices (B and C).

Example
100 MAT X= YZ

220 MATY=X+Z

6-5

MATRIX SUBTRACTION

Syntax

MAT A=B-C

where A, B, and C must all be either numeric vectors or numeric
matrices. The matrix elements of A is set to the difference of
the corresponding elements B and C. B and C must have the same
current bounds, and the bounds of A are set to the current
bounds of B and C.

Example

142 MAT X=Y- Z

MATRIX MULTIPLICATION

Matrix elements may be multiplied by scalar quantities or by elements
of another matrix.

SCALAR MULTIPLICATION

Syntax

MAT A= (E) * B

where A and B are numeric matrices and E is a numeric scalar expres-
sion.

This form of matrix multiplication sets the matrix A to the value
of the product of each element of B times the value specified by E.

Matrices A and B must have the same number of dimensions. The current
bounds of A are changed to the current bounds of B.

Examples

300 MAT X (5) * Y

320 MAT X (SQR(1-X/Y)) * B

6-6

PRODUCTS OF MATRICES

Syntax

MAT X = Y * Z

X, Y, and Z are numeric two-dimensional matrices.

This form of matrix multiplication sets the matrix A to products
of the matrices to the right of the =.

When two matrices are multiplied, the number of rows in the first
matrix must equal the number of columns in the second matrix; the
result is a matrix with the same number of columsas the first

matrix and the same number of rows as the second matrix.

Examples

10 DIM A (10, 10)

20 DIM B (4, 5)

30 DIM C (3, 3)

Nn LAAT =ann +
i100 MAT A = B & C

NOTE: While the statements of the form:

MAT A=A+B
MAT A=A- B

are allowed, the statement:

MAT A=A*®B

causes an error when the program is run.

6-7

TRANSPOSE OPERATIONS

Syntax

MAT A = TRN (B)

where A and B are either both numeric one-dimensional matrices or

both numeric two-dimensional matrices.

To transpose statement sets the matrix A to the transpose of matrix
B; the columns (rows) of A are the rows (colums) of B. The current
bounds of A are changed. For example, if B is dimensioned M, N, the
bounds of A are changed to N, M.

Example:

100 DIM B (5, 4)

110 MAT A = TRN (B)

A would be a matrix, the same as if it were fined by the statement:

MAT A = INV (B)

where A is a two-dimensional numeric matrix and B is a square two-
dimensional numeric matrix.

The matrix A is set to the inverse of B. The bounds of A are set
to the bounds of B.

Note that the statement:

A = INV(A)

is allowed by the Prime BASIC.

MAT READ

The MAT READ statement causes an entire matrix to be read (input).

Syntax
MAT READ Al (D1, D2) ..., An (Dn, Dn)

where Al ..., An are a list of numeric or string matrix names
separated by commas, and D1 ... Dn are dimensions of the associated
specified matrices. Specifying of dimensions Dl ... Dn are optional.

6-8

The MAT READ statement causes values from the data pool starting
at the next available values, to be assigned, in order, to the matrix

elements of the matrices specified.

Enough data values are read from the data pool to fill a matrix
according to the current bounds of the matrix. If a matrix name
in the MAT READ statement is followed by a bound list, the matrix
is redimensioned to those bounds before any data is read.

Example

10 DIM A (3,5)

50 MAT A = ZER

100 MAT READ A

200 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9

210 DATA 10, 11, 12, 13, 14, 15

The statement at line 100 causes fifteen numbers to be read into

matrix A by colums. For example: A(1,1) = 1; A (2,1) = 2, etc.

MAT READ FILE

The MAT READ statement causes a matrix to be read from an external
data file and assigned, in order, to the matrix elements of the
matrix specified.

Syntax

MAT READ #N, Al,..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement, and Al,...,An is a list of matrix names.

The file N consists of an ordered list of values that defines the
contents of the elements of the matrix A. It may be created by a
previous MAT WRITE FILE statement in the same or a previosuly
executed program, or it may be created by the operating system
editor.

6-9

Example:

10 DIM V(10)

15 DEFINE FILE #1 = '(PTR)'

20 DIM M(10, 20)

25 DEFINE FILE #2 = ‘ARRAY’

30 MAT READ #1, V

40 MAT READ #2, M

The contents of the file #1 are read from the paper tape reader and
assigned to the elements of the vector V. The contents of the file
named ARRAY stored on the disk are read and assigned to the elements
of matrix M.

MAT READ * FILE

Same as MAT READ file except the statement does not force a new
record to be read. Any data remaining in a previous record are read
as elements of the matrix.

MAT WRITE FILE

The MAT WRITE FILE statements causes a matrix to be written to an
external data file.

Syntax

MAT WRITE #N, AL, ..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement. If the output file is in ASCII (print) format, the
character following matrix names in MAT WRITE FILE statements is
used to control the spacing of the matrix elements in the output
records. A comma specifies tabbed format and a colon specifies
packed format. The optional character following the last matrix
name controls the spacing of the elements of that last matrix and
does not inhibit the termination of the last output read. Al, ..., An
is a list of matrix names.

6-10

Example:
10 DEFINE FILE #1 = 'OUTPUT'

15 DIM A (100)

20 FOR K = 10100

25 X = 243.1416

30 A(K) = XK

40 NEXT K

SQ MAT WRITE #1, A

MAT INPUT

The MAT INPUT statement causes data values to be read from the
terminal and assigned, in order, to the elements of a specified
matrix.

Syntax

SFk OTMAT INPUT Al, ..., An

where Al, ..., An is a list of matrix names separated by commas. The
type of data provided must match the type of matrix being filled.

Example

10 DIM B (5)

ZO MAT INPUT B

allows information to be assigned to the elements of matrix B from
the terminal. After the . is printed, typing:

5, 10, 15, 20, 25

assigns those values to B(1) through B(5).

6-11

MAT PRINT STATEMENT

This statement causes an entire matrix to be printed.

Syntax

MAT PRINT Al, ..., An

where Al, ..., An is a list of matrix names separated by commas or

colons.

The MAT PRINT statement causes all the elements of a matrix with
subscripts that are not 0 to be printed colum by colum.

If a matrix name is followed by a colon, elements are printed with
one space; otherwise, elements are printed in zoned format.

Example
100 DIM M(2,6)

110 MAT READ M

120 MAT PRINT M

200 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

400 END

The above program yields the following output:

6-12

SECTION 7

INTERFACE CONVENTIONS

BASIC differs from compiler and assembly languages because its inter-

preter does not compile or assemble a reusable object text from the

source program. Therefore, the BASIC interpreter must be present

in high speed memory each time a user program is run. However, Prime

BASIC provides the CALL statement to call FORTRAN or PMA (macro-

assembly language) subroutines. Refer to Section 5 for detaiis of the

CALL statement format.

RELATING CALL TO SUBROUTINE

The user-supplied configuration file that is associated with the BASIC

CALL statement is a table. The entries to this table are the addresses

of PMA assembly language object text subroutines, or FORTRAN

language object text subroutines, or a combination of both PMA and

object text subroutines.

An example of two typical subroutines that may be called by a program

written in BASIC is as follows:

SUBROUTINE TO START CLOCK

+:

4:

a

ENT STRETCH

REL
>

STRTCE DAC He

CRA

STA “GA
OCF “Stel START CLOCK

IMP: STRTCE

EMG

é

C SUBROUTINE TO GET REAL TIME CLOCK WORD

Cc
Cc

CUBROUTINE GETCLE CHE>

COMMOnM “LIST.{“ LCISTCL>

Cc
ARG=LISTC20 613

RETURN

EMO

The configuration file is produced by modifying the CALLP source
file on the MFD then assembling it. The following listing is the
original source of the CALLP subroutine; immediately following that,
is a listing that shows how the CALLP source was modified to call one
PMA subroutine to start the real-time clock and one FORTRAN subroutine
to get the real-time clock word.

CALLE CBASICLATRANSLTR2 a4 JAH 4+

+

+

+ Uedaokokoaoooo

ok 4: of

+ ft CALL PRGMESOR a

+ oh oF
+ Bedokoeepoeoo

+

hooIAL SUBROUTINE NUMEER IN GUFCL3. ADORESS OF ARGS IN BUFCSS,
+ Ekle cso. 2. 2 og) 6EUIF CRED. CA THE HUMBER OF ARGS.
4

+

SUBR CALL. CALL.

FEL.
4

hh

FINGERT PicOMaH

of

i

CALL BAC wes

LDR ELIF

Cres

Hor

IMF CALL. 4

hee SUSROUIT TE CALL LOCAT DORs.

TAL MP 1

IMF oe

JIE S23

IMP &

IMP Seat

IMP las

IMP or

IMP oe

IMP oo

HomeDEFAULT SUBROUTINE CALLS

7-2

5
IMF CALS

TAF CALS

PF CALS

JME CALs

JIPMF CALS

MF CALS

IMF CALS

APF CALS

JF CALS

USIMPLEMENTED

CALL FERROR
DAC =’py

ELRIDS

SUBRITUIT DoE

7-3

The 'Modified'' CALLP follows:

CALLP CBADICLATRAMSLTR 3

dedobdchonkdddadedtde

4 i

ft CALL PROCESSOR 4
4: Lis

$podeeccofseofaes

GUERUOUT DME HUME Dit

EiLie oc Rd.

PL

EMUSa. gs

f
f

$
F
t

$$
€

$F
F
F
F
E
F

SER CAL LIP CoRLL.

FEL

ao
oe

FINGSERT PcOMired
a

he

CALL. BAC

Lis

fifeke

HOF
IMF

ak

SIF

CAL. La. 4.

—GUEREDUT IME CALL
IME GA
IMP 92
IMP 2
IMP S54
IMF S&
IME
IMP
INF
IMP o

w
iW
o
m

F

A

koePEPAULT SUBROUTINE GALLS.

7-4

sist TRIM m4

BP cio. FIDDRESS CF FRG

Ci THE RINGER Ce Fina

LAY) Tiibees.

It 2ae

oA CALL STRETCE

IMF CALL

oe {aR BUF+4

SLA

See

ARE CALS

CALL GETCLE

GAt+ ELIF+o

JMF+é CRLL

ATE CLS

IMF CALS

JhMF CALS

JAF CALS

JhTF CALS

JTF CALS

IMF CALS

F
U
V
w
u
u

w
w

oy
un
&

il

4--—--UM IMPLEMENTED
CALZ CALL RERROR

DAC =OBC
*

END

SUBRCHIT THE

7-5

START CLOCK

FETUR

TNSURE 2 ARGUMENT

HOT 1 ARG. ERROR

+ ARG

CALL.

MODIFYING COMMAND FILE

The source of the modified CALLP listed above is assembled. Then, the
command file must be modified. Depending on which version of BASIC
the user desires to use, one of the following command files must be
modified:

C ¢BASC *RASIC with no PRINT USING
OR MAT statements

C¢—BUSE *BASIC with PRINT USING
statement

C €-BMAT *BASIC with MAT statements

C BALL *BASIC with both PRINT USING
and MAT statements

Any or all of the above command files are modified using the editor,
ED, as follows:

1. Locate the command line:

LOAD B CALL

2. Insert LOAD commands for the subroutines to be called by
the program(s} written in BASIC. For example, to call
the subroutines listed in the sample modification of the
CALLP subroutine, the following statements are inserted:

LOAD B<— STRT

LOAD B<— GTCLK

NOTE: The above 'LOAD' is a command to the DOS/DOS-VM loader;
not to be confused with the BASIC command of the same
name.

7-6

RUNNING PROGRAM WITH CALL STATEMENTS

After inserting the proper LOAD commands, execute the command file
and save the results (see the Program Development Software User
Guide). At this time, the desired version of BASIC, the modified
CALLP subroutine, and the called subroutines are loaded as an entity
so that programs written in BASIC may call the designated subroutines.
For example, the following program starts the real-time clock and
prints a clock value every 300 microseconds.

>LIST
1@ CALL !
26 12388
38 CALL_2¢J>

48 IF I<>J GOTO 38

58 PRINT I»
68 12143868
76 GOTO 38

Sample Output:

>RUN
366 608 908 1208 1599
1880 21900 2488 2708 3080
>

7-7

‘APPENDIX A

SAMPLE ..JGRAMS

GIRL TM “ebebeesiach: EMAMPLE 1 rheiite

kt REM

@ REM PROGRAM TO DRLIRULATE MILES FER GALLON AND PRINT REPORT.

40 REM “gtk, agit

BO REP THIS FRCGERM GIVES in EsSIMA

Be REC GTA AGo STARE oo *

Te REM STATEMENT JE phe

Et REM . a

He REM OT,ratencen

PeESRT otSC.Ye APRGGLEMgses&
+
h REM», yoSTATE: Se_

_Cyc

ert PMECNTs LEO RIREED :

PHierages E 4CASSS GMMENT oO. FRTAT. AMD. DRTRR

eReBe, GATE’. “OOMETER 7 “MILES @. “GRILLONS*. ° ce ae

Pees f4 rad IMITIFILIZING SOME VAR TABLES USED LATER

ts

A
a

l
o
“
f
:
b
d

&,
s
o
b
B
s

a
r
s

-.
J

b
e

m
3

m
m

A
t
H o
x

pa
be

H
o
H

mi
gi

f
i

m
m
m
s

~ 7 my =~ i ps “s
or
te

REALS EE

Feb Pt To ODOMETER: RERIE TRS.

LET Kis ~

RPP BL tS SET TO CR TGTRAL. CROMETER READ IMG

REFS Pf

FS Fig MoS SET TO LATER ODOMETER READ DMS.

fy
.

e
e

FP
t
S

a
s
e

=
”

“m
ut
ta
!

t ba
l
(
M
M
P
e
e
B
p

w
t

iw

m
m

i
M
y

mh
U
k

ey
S
m

sf
a
4

3
fh,

270 REM MH TS ALSO USED AS FOPLAG TO TERMINATE LOUr.

268 KEM STATEMENT t4e 15 ENTRY INTO LOGe.

200 TF Mee THEM 4

[=FET WHER MA BD LOGCOATTMUS,

BLA READ

Sek REM © Ts Merve.

SEA REP Gy

S46 KEM G TS GALLOWS USED SINME LAST ODOMETER REPO TRIG.

met LET Meh

SEG REM M TS TMCREMENT OF TOTAL MILAGE,

es OO

TeG REM ML IS RUNNIRIG TOTAL GF MILES.

SSE LET Festi

466 RLM CALCULAT DOM Ce MTLES
$0 FRIAT OC. Ma PMGa F

$oud LET beh

4°05 KEM UPDATES KOTO LAST OOOMETER ERG ING

Ade LET t=

450°REPLWihaTS TOTAL GRLLORS
4:5 GOTT 2a

47°C BOOM CMT TMME LoiF LaRIT Th

Soh PRINT < TOTAL “1 bh. Gl.

Shas To.$0 RET ROIT& wee ce ae

SAG GTA 45ane b5d.05
, Eel GeyT Ft my4ay a ES, mmba 47SLEa

mom CFTR SITE, oh dh,SOS
Sa GPT RELTs.7. bess
Sa CITE BEETS. LT, Gs APBGP
Sa DATA SL5P4, 15. 2. 47E14

Biot DATA aDord, La. 7. 4F454

are BATRA TPeb eG es

Se TMRATR &F

a SSTe

5

ms

The following is the output from Example 1:

LOAD ‘EXAMPI' |
DATE “ODOMETER MILES
21574 46193 311
22274 46315 122
30174 46505 190
30874 46855 350
31574 47067 212
32274 47314 247
32974 47464 150
TOTAL 1582

STOPPED AT LINE 350

PER GALLIC,

LEGS

ie

SKIP

2 OT,

of WYooh
CME FRET EIT FTEL,£3.

GALLONS
16.8
924
12.7
17.6
13.2
14.7
10.6
97

MPG
18.5119
12.9787
14.9606
19.8364
153.9474
16.8027
14.1509
16.3093

SRDted: SAMPLE 2 deddeh:

se REM

[0 REM THE FOLLOWING STATEMENTS ARE A MODIFICATION OF EXAMPLE 21

40 REM 60 ALLO GATA TO BE READ FROM Fb FILE RATHER THAN DATA

SA REM STATEMENTS.

met FED

Fe CFINEFILE# 1=°GASDAT~

ma PRON “DATE. “OROMETER. “MILES “. “GALLONS. “MILES“GALLON?

sa
t

LET Mi=65

LET Beh

LET G&G

LET Ki=&

LET
FEM MUST SET INITIAL VALU OF EF BY Hn,

PERM OF FREAD IT IN FROM ANOTHER FILE TO PREVENT RECORD FROM BETNG

FEM DISCARDED.

LET KL=E

FREAD 2.0 0.6

REM FULL ITEMS MUST BE READ OF REST OF RECORG IS O1SCARDED.

IF H=8 THEN sot

LET Mane

Pa=Pe1+i

LET A=he-"G

FRIST ©. 0M. 1G. Ft

LET k=H
! fT ret =fptaG
fn Fo akTB t

p tt

.
™

~
K

a
e

‘
~
~

os
el

as
eh

a
m

o
m

=
,

S
t
o

f
h

Th
a

m
m

M
i

f
a

s
y

m
i

“
b
j
s

m
t

r
r

i
fi

M
m
S
m

ON
ned CUES ZL.

a
)

1
i

‘«

f
s i

: ™
m
S

‘v
w’

wo
rk

!
"a

yl
'

A
G
H
A
o
o
n

G
a
s

7 ’
:

e
y

1
ig T
t

a
,

G
h
P
D
B
R
R
R

e
b
p
e

me
o
y

1
UN

f
e

bd
f
a

e
e

7
“

a
f

a
h
a

fy
O
n

fe
Ld

ha
be

a
g
t

»

GOTO Laks
PRIMT “TOTAL. ° “. Mi. Gi. tk-KLoGd

SOFf
h

P
o

h
a

h
a
f
,

w
o

=]

The following is a sample of the output from Example 2. The results are

similar to Example 1 and are included for comparison. ~

LOAD "EXAMP2°

RUN
DATE ODOMETER MILES GALLONS MILES /GALLON

21574 46195 Sil 16.3 18.5119

22274 463515 lec 9e4 12.9787

50174 46505 190 12.7 14.9606

30374 46855 350 17.6 19.8864

31574 47067 2i2 15.2 15.9474

52274 47514 247 14.7 16.8027

32974 47464 150 10.6 14.1509

TOTAL 1582 97 16.5093

STOPPED AT LINE 350

A-3

=
ig

15

28

2a

a)
35
49
45
5a
55
6a
65
7a
=
ro
ae
oS

a6
a

198
Las
116
115
126
ae
ea.

136
135
148
145
156
L155
Lé6
165
17e
Les
Sa

{es

L236

Fre: M4

RET

ReM

REM

Bete Pt

REST

REM

REM

Pees

REM

RET

REM

REM

REM

sich ESAMPLE "Seed

THIS PROGRAM CRLCULATES THE FACTORS OF A POSITIVE

INTEGER GETNEEN 1 AND [oeo99o INCLUSIVE.

IF THE HUMBER HAS NO FACTORS. A MESSAGE IS RETURNED

THAT THE MUMBER IS PRIME. CHECKING IS MADE FOR SOME

SPECIAL CASES.

THE PROGRAM SHONS THE US OF GOSUB AND RETURN STATEMENTS

TO PRODUCE BOTH NESTED AND SEQUENTIAL SUBROUTINES

Ii A PROGRAM IT ALSO DEMONSTRATES THE USE OF THE PRINT

AND THE INPUT STATENENTS TO PRODUCE AN INTERACTIVE CON-

VERSATIONAL FPROGRAPS.

PRINT “PLEASE TYPE WOUR HUMBER: *:

INPUT A

5 LET P=1
LET S=:
LET H=4
Fitctt H INITIALIZING FLAGS.

GOSUB 375
GOSUB S56
FRINT “IS THIS SOUR LAST NUMBER: ~:
INFUT AF

IF ASTI VES” THEN 7S
EMD

Rich

REM

HeeEAD OF MAIN PROGRAM.

SUBROUTINE TO CHECK IF A IS NOT AW INTEGER.

IF A=INTCAD THEN 166

PRINT “HUMBER MUST GE AM INTEGER. *

GOSUB 5aa

RETURES

MEM SUBROUTINE RETURNS MESSAGE IF A > 2oGRog
IF Ase32323 THEN 165
PRINT “SORRY. AT PRESENT. HUMBER MAY MOT EXCEED Gaagaa,
GOSUB Zea
RETURH
Feet SUBROUTINE TO HANOLE A = t

A-4

4195
266
265
21
215

8
2e,h

f
)

A
i
y
i
)

ok

2c

246

245
258

—t

fa
f

™
Oy

On
a

cn
o

‘
O
h

BY
0

7d
cd

tl

P
I
M

P
P
I

MD
PQ

fo
IF ACSL THEM 215

PRINT H:°IG 1 AME IS GIVISIGLE BY ONL ITSELF AMD 1.”

PRINT “HOWEVER. IT IS MOT A PRIME NUMBER -

GOSUB See

RETUR
WEM SUBROUTINE TO CHECK IF A 15 & GE NEGATIVE.

IF AD=L THEM 245

PRINT “NUMBER MGY NOT GE EITHER ZERO OF A NEGATIVE VRILUE. -
PRINT “YOUR HUMBER’: A“IS INMMVALIO. *
GOSUB 56g
RETURN
REM SUBROUTINE TO HANDLE A = 2.3
IF ADS THEN IF ACS GOTO 276
GOSUE 256
GOSUE Sag
RETURH
iM SUBROUTINE TO PRINT HEADER LINE.
IF Pei THEN 3416 ,
If H=G@ THEN 216
PRITHT “NUMBERS -fl.°IS DIVISIBLE BY: ~
PRINT
PRINT A. AND. “4°. % %.7 “47 %
LET H=G
RETURN
REM SUGROUTINE THAT PRINTS OIVISORS AND QUOTIENTS.
If Pet THEN 245
PRINT 3. “ANG. 6° %.% “,0° ¢
IF #<2S THEN 345
PRINT “1°. “AND. A
PRINT
RETURN
KEM SUBROUTINE TO PRINT MESSAGE NHEN NMUMEER IS A PRIME.
IF F=G THEN 27
PRINT “HUMNBER’:-A:°IS A PRIME NUMBER. “
PRINT
RETURN
KEM PERFORM CALCULATION AND GET ROUTINES TO PRINT RESULTS.
IF S=8 THEN 426

A-5

365 FUR H=INTCRAS) TO s STEP ~t

390 LET Q1=Ftes

2345 LET Ga=INTCAe#a

408 LET F=Ot-O2

465 GOSUB 425

4160 HESXT &

415 GOSUE 6558

$260 RETURN

425 REM CALL PRINT ROUTINES ETC.

4260 IF Rtg THEN 456

455 LET P=

444 GOSUe 275

445 GOCUB S15

458 RETURN

455 KEM SUBROUTINE TO ENTER SPECIAL ROUTINES.

460 FEM IF A IS HEGATIVE Of SERG. CF 2.2.3, OF IF A IS A PRACTION

$55 GOSUB L468

47° GOSUE 145
47°75 IF ADS THEN 435

486 MODUB Loa

465 GOSUB SoG

490 GOOSUE 25a

$55 RETUREH

SAG PRINT

SHS LET G=e

519 RETURK

The following is same sample output from Example 3.

LOAD "EXAMPS°
RUN

PLEASE TYPE YOUR NUMBER: 0
NUMBER MAY NOT BE EITHER ZERO OR A NEGATIVE VALUE.

YOUR NUMBER O IS INVALID.
IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: |!
1 IS 1 AND IS DIVISIBLE BY ONLY ITSELF AND 1.
HOWEVER, IT IS NOT A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 2
NUMBER 2 IS A PRIME NUMBER.

Sample output from Example 3 (cont)

IS THIS YOUR LAST NUMBERs NO
PLEASE TYPE YOUR NUMBER: 4
NUMBER 4 IS DIVISIBLE BY:

4 AND l
2 AND 2

! AND 4

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: i7
NUMBER 17 IS A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 324567390125456789
SORRY, AT PRESENT, NUMBER MAY NOT EXCEED 999999-

PLEASE TYPE YOUR NUMBER: 56
NUMBER 56 IS DIVISIBLE BY:

36 AND |

28 AND 2

14 AND 4

3 AND 7

q AND 3

4 AND 14

2 AND 28

l AND 36

IS THIS YOUR LAST NUMBER: YES

END AT LINE 250

A-7

188
116
129
13a
149
156
166
176
126
138
280
216
228
225
238
240
258
266
278
228
23a
38a
318
Sad
326
338
346
344
342
356
351
352
366
376
388

REM tedekk =SAMPLE 4 Hoe

REPT

REM THIS PROGRAM USES THE ARRAY PROCESSING CRAPRBEILITIES

REM GF BASIC TO COMPUTE THE TOTAL DOLLAR VALUE OF THREE

REM FROOUCTS SOLD BY FIVE SALESMEN,.

REM

Ric VECTOR ELEMENT PCM) [5 THE PRICE GF THE N-TH PRODUCT.

REM MATRIX ELEMENT SCM.ND IS THE TOTAL NUMBER OF THE M-TH

REM PRODUCT SOLD BY THE N-TH SALESMARM,

REM

REM

DIM Ste, 45

DIM PC4)

T=8

MAT F= CON
MAT S= ZER

RERD PCLO. C25, PCRS

REHD Stt.19.5¢4,. 23,54. 35,5¢2, 15. 5¢2, 23, 502, 33

READ S¢3,143,.5¢3.23,505, 35. 504,15, 504, 29, St4, F5

READ S(5, 13. 5¢5,23,.5¢5, 3)
FOR I=i Ta 5
FOR J=1 TO 3
SCI, SSPEINSEL. JD
TaSci, J+T
PRINT I:J.5¢1, 3)
NEXT J
NEXT I
PRINT
PRINT
MATPRINT S
PRINT
PRINT “TOTAL SALES =°:T
DATA 41. 29,2. 54.5. 4
DHIA 47. 24,16, 56, 38,12, 76. 23,14, 76, 45,12. 45, 34, 23
STOP

A-8

The following is sample output from Example 4.

60.63

60.36
37.68

$6.52
65.76
93.04
23.242
16272

114.9
65.176
53.05

36.36
126.04

12.24 98.04 983.94

69.96 $6.92 38642

0 87.68 65.76

65.16 126.04 0 0

0 0

W
M
E
W
H
E
W
h
e
N
e
W
h
e

C
R
M
U
U
E
B
W
O
W

DN
f
o
e
e
e

e on &

TOTAL SALES = 1225.52

STOPPED AT LiWz 38J

A-9

58.05
114.3
76.72

1G

tia

Loe

Lea

146

Lae

L6G

Lro

Lee
126

=G

“16

Sah

#36

245

2568

=o

27
ieaes

228

S66

316

328

2236

346

SoS

Bog

73>
oe

338
$553
416
420
420
440
454
466
47a
426
428
8G
oe

FrePY ede ESAMPLE &S Me

REM

Reh MULTIPLE PLOT PROGRAM

FEM

REM

DEF FUP CS SSS THe)

DEF FHMGCHSLOGCMAMLOG 1a4

RERE AL B.S

FERO . O. td

LET H=(0--CiN

IF Mi=56 THEN 226

PRINT ~ OLY Se SUBOIVISTONS ALLOWED ON Y-AXIS?

STOP

DF cate =

PRINT “W-RATS: FROM 7:0: "TO 7:0: ° IN STEPS GF

FRINT

Lee’"

FoR [=1 TO Nei

LS=Lf+"--”

MEST I

PRIWT Lot.’

FOR H=A TO & STEF S

LET YW=FHFCH

LET Yi=FHRC CY-CaeHs

LET Y=FNGC>

LET V2=FHRC CY-CaeH
Lte--

FOF I=6 TO WW

IF T=" THEM 425

IF J='2 THEN 446

L$=Le+" ~

GOTO 456

Le=Lt+ oe”

GOTO 456

LS=L$+"° ”

HET I

PRINT Lo+” woo

HMEXT

DATA 1,14, 3

DATA -1. 1.56

CATA &

STOP

A-10

“Hd

OF 46-62TEF'S—
f.,Itd4

The following is sample output from Example 5.
S
A
M
A

A
n
H
n
A
B
A
A
n
A
O

H
D
O
G

H
A
A
A
A
H
A
A
A
H
A
A
A
A
R
A
A
A
A
G

T
H
A
m
n
a
h
a
h
i
a
A
a
a
h
a
d
i
A
a
a

A
O
A
A
n
A
A
A
A
A
A
A
M
A

G
a
H
a

M
W

o
i
a
l
t
e
a

w
a
w
d
w
O
a
t
h
M
w

m
h

H
o
d
d
N

M
N
M
A
E
S
F
O
R
O
M
A

%
*

+
+

4°
4

S$

°

£
+
+
+

+
+

+
+

+
+

+
+

£
~

o
l
e

~

+
+

+
+

+
‘-

¢
+

+
+

+

+
+

~
—
-

+

r
r

vt
-

a

+

+
=

+
+

+-

+
+

A-11

Las

Lig

Los

t=2ea

3.48

Lae
LEB

Lr

LEA

aoa

=e

21h

22'G

asks

BePo deeds FriaAMFLE & dhe

REM FIGOHAGICT NUMBER GENMCRATOR.

REM
INPUT
T=4
a

POR K=L TO E
F=t+J
l=]
J=F
FRIGHT F,
HEART EK

ELRaES

Sample output:

120
2 3

15 2 34
144 233 377

1597 2584 4181
1771] 28657

END AT LINE 230

A-12

29
619
8765

BY
987
LUS46

166
116
126
235
146
Lie
166
ive
186
136
68
216
a2
236
246

256
256
2,
238
23
388
316
328
338
343
358
3GG

SEG
328
456

416
426
$36
444
456
466

476

436

456
7286
O16
526
S30
348
SSB
566
S78
5368

REM #aedek EXAMPLE 7 derided:

RET

RLM LUNAR LANMOING PROGRAM

REM

PRINT

PRAHT “CONTROL CALL LUNAR MGOULE. MAHUAL CONTROL IS HECESSARY. ~

PRINT “YOU MAY RESET FUEL RATE K EACH 16 SECS TO G OR ANY VALUE”

FRIHT “BETWEEN &G & 2606 LBS-SEC. YOUVE 216666 Les. FUEL. ESTIMMATED-

FRIHT “FREE-FALL IMPACT TINE = 14126 SECS. CAPSULE WEIGHT = 32560 LES’

Bt= “HHH HHH HHRHH —~~---#. #HF HEHEHE. HHH”

PRINT “FIRST RADAR CHECK COMING UF. ”

PRINT

PRINT

PRINT

PRINT “COMMERCE LANOING PROCEDURE”

FRIRT

PRAT “TINE ALTITUBE”. “VELOCITY”. “FUEL CLES". “FUEL RATE~

PRINT “SECS MILES FEET“. ° MPH?

PRINT

L=
A=L26

od

M=32566

H=16566

G=1E-G=

2=1.6
PRINTUSING BS. 0,. INTCAS : INTCS2864CA-INTCRS OD. S664, MTL

PRINT “K=":

INPUT K

T=18

OF SGHCKI+2S GOTO 436. 465. 4165

IF K<& GOTG 426

IF Kt=c66 GOTO 4ca

PRINT “NOT FOSSIBLE”

PRINT TABCSS3:

GOTO 37rse

IF M-N<LE-GS GOTO SFr

IF T<iE-GS GOTO 266

S=T

IF CN+S4K9<¢=M GOoTG 518

S=CM—haHK

GOSUE 1626

IF I<=G@ GOTO 3285

IF V<=6 GOTO 556

IF J<G GOTS 3546

GOSUB S4&

GOTG 466

FRINT “FUEL GUT AT’ :-L- “SECS”
SeC—-V¥+SGQRCk+24946 392°C
VoV+4G+#5

A-13

6Se
G16

Ba

GBs
648
BoB
6e8
Gr
63G
628
roe
rig
728
rag
r4g
7a
76GB
ers

7328
SoG
Gis

26
os
S45
SSG

So
ora
sou
336

368
316
326
338
346
JSG
368
376
3380
336

16695
1616
1626
1636
1644
1654
16eag
16876
1666
1636
1166

1114
1126
1136

L=L+S

PRINT “OM THE MOGN AT” :L: “SECS”

W=seaGg4+'/?

PIT “TRMPACT VELOCITY OF °: MW: “MPH?

PRINT “FUEL LEFT I5°:°M-N: “LBS”

IF W>i GOTO 62a

PRINT “PERFECT LANDING! ~

GOTO FSG

IF Weig GOTO Fig

PRIHT “GOOO LAHDOING”

GOTO ree

IF W>2Sh GOTO F4e

PRINT “POOR LANDING”

GOTO oe

IF Woes GOTO FF

PRIN “CRAFT CAMAGEDs GOOD LUCK TO OU AND

GOTO se

PRINT “FATAL CRASH; NO SURVIVORS“

PRINT

PRINT “TRY AGAING” :

THPUT At

IF AF="VES” GOTO 266

IF A$="NO" THEN STOP
GOTG 726
L=L+S
T=T-S
MaM—Sak
A=1
v

RETURES

1F S<SE-83 GOTO 61s

S=2eASCVESORCW+oACGSeKM3 3

GOSUB 1626

GOSUB &4a

GOTO 268

N=td—MaeGe tCSK3g

SEMeye«2K!C+SORCW24SE-B2

GOUSUB LHaZ2e

i SGN T3542 GOTO 366, 266. 396

GOSUB &4a

Gri SGNM<Jo+2 GOTO 1616. 46a, 456

ON SGNCVO+2 GOTO 465, 456. 35a

B=S4K.Mh

GL=6

FOR Q2=2 TO 1 STEP -—1

GL=0« €1.G2+Q1>

HEXT Q2

J2¥4+G415-2401

OG1L=8
FOR Q2=3 TO 1 STEP -1

GL=O4(O141-002468241355

HEXT @2

LeA-Gtrors/2-V4S4+Z245401

RETURN

A-14

THE RED SON.”

Sample output from Example 7.

COMMENCE LANDING PROCED

lo
2U
SV
49
D0
6U
70
30
390
100
Llu
12u
15v
140
15u
160
170
130
190

ON THE MOON AT 193.354 SECS

ALTITUDE
MILES FEET

120 a
109 5015
99. 4223
39 =2903
79 1055
63 $959
58 1055
47-2908
37 1929
28 1334
20 1706
15 3399
3 1772
4 2795
2 2013
\ 1429
J 2943
0 1364
J 577
0 47

VELOCITY
MPH

560.000
$636.00J
$672.900
3708.000
5744.000
378).U00
$316.00
5332.000
9476.45)
3072.940
26357.460
2164.970
1649.140
1331.920
452.119
3947.U74
164.626
9027195

15.310

IMPACT VELOCITY OF .315765 MPH
PUEL LEFT IS 245.2i9 LBS
PERFECT LANDING!

A-15

FUcL (LBS)

16000.000
1600J.U00:
16000.990
16000,000
1600U.U00
16000.000
16000, 00
16000.0U0U
14J90V0.000
129J0.000
1JJJVI.000
3JI0 -UUU
6000.U0U
4000.00
2IJVI. 000
1600.009
1JJ0.J0U0
6V0.009U
22.009
520.009

FULL RATE

K= 190
K= 1)Q
K= !0
K= $9
K= 0
K= 30
K= JQ
K= 3200
K= 1200
K= 1200
K= 200
K= !200
K= !200
K= 209
K= 140
K= 160
K= 140
K= 18
K= 120
K= $19.4

4G REM tetcdeet: EXAMPLE & eek
26 REM
36 REM THIS PROGRAM SEARCHES A OATA FILE CONSISTING OF
49 REM STRING ITEMS ANDO RETURNS THE LINE CRECORD SEQUENCE)
5G REM NUMBER THAT DEFINES THE LOCATION OF THE STRINGS).

6G REM
“6 PRINT “ENTER FILENAME”,

38 INPUT FS
3G DEFINEFILE# 1=FS

166 PRINT “ENTER STRING”.
116 INPUT S$
tii C=1
126 IF S#=“NO MORE” THEN 266

136 READS 1.6%
148 FOR I=1 TO LENCES>
156 IF B4="E0T” THEN 286
4166 IF &8$=S% THEN 226
17G@ «IF SS=SUuB<CBS, I. LENCS295 THEN 236

tri =C+i
186 NEXT I
19G IF B$<>St THEN 1236
263 PRINT S$: “HOT FOUND.
21G REWIND# 1
226 GOTO 186
236 PRINT S#: “FOUND AT CHARACTER POSITION’ :C:”. ”

246 REWINO# 1
256 GOTO 166
264 END

Output from Example 8.

>RUN
ENT@eR FILENAME !SOURCE
ENTER STRING iGORGe
GORGE FOUND AT CHARACTER POSITION 65
ENTerR STRING !AARDVAARK
AARDVAARK FOUND AT CHARACTER POSITION 1}
ENTER STRING !SYZYG
SYZYGY FOUND AT CHARACTER POSITION 73
ENTER STRING IXXXX
XAXK NOT FOUND.
ENTER STrkiWa JAvZEe
ADZe FOUND AT CHARACTER PUSITION 19
ENTER STRING NO MORE

eND AT LINE 260

>

A-16

AG REM eet: EXAMPLE & aedog:

12 REM

44 REM THIS PROGRAM SIMULATES AM NM DIMENSIONAL ARRAY.

16 KEM

26 DIM V<i666>
3G INPUT 01.62.03

1216 FOR I=1 TO DL
411 FOR J=1 Ta De
412 FOR K=1 TO DS
445 Ketl-1)4D24+¢J-Li4#Datk

126 YeRoel+e2eJ4+K72
136 PRINT VCR,
146 NEXT K
156 PRINT
16G NEXT J
17°76 PRINT
166 NEXT I

264 STOF

Output from Example 9.

>RUN

25 as &

4 7 12 19

6 9 14 2]

8 1} 16 23

S 8 13 29

7 12 15 2°

9 12 17 24

A-17

CODE

3
S
2
2
2
0
R
2
0

m
M
m
M
o
n
m

w
m
m
n

S/E

m
o
n
a
”
1
~

t
r
t
y

~
”

K
n

M
O
M
M
M
O
N
M
n
w
w
H

APPENDIX B

ERROR MESSAGES DEFINITIONS .

REASON

OPERAND ERROR
STORAGE SPACE EXCEEDED
(OCCURS DURING ARRAY ALLOCATION)
A(OR A$(EXPECTED (E.G. DIM AS{...,);
MAT STMT ARRAY NAME ERROR
MATRIX DIMENSIONING ERROR
MAT DIM HAS IMPROPER FORMAT
PRINT/WRITE USING EXPR/FORMAT TYPE MISMATCH
(STRING EXPR IN LIST WITH ARITH FORMAT;
OR ARITH EXPR IN LIST WITH STRING FORMAT)
STMT # + LOAD BIAS > 9999;
STMT # NOT FOUND. WHERE EXPECTED
RECORD # IN POSITION <1 OR UNIT NOT BIN DA DISK
FILE I/O UNIT NUMBER NOT 1-8
ILLEGAL CHARACTER
CONSTANT EXPECTED
READ/WRITE UNIT IMPROPER
CHARACTER NOT EXPECTED
V= EXPECTED (E.G. POR I=...)
DEFINE FILE ERROR -
- RECORD SIZE SPECIFIED <2 OR >512
- NO STORAGE FOR RECORD BUFFER

_ ~ ERROR OPENING UNIT; DRIVER MESSAGE IS PRINTED
(NOTE: A DF ERROR CAN ALSO OCCUR ON A LOAD/FILE
STATEMENT IF OPEN ERROR OCCURS)
DEFINE FILE MODE SPECIFIER ERROR
EXPRESSION NOT OF TYPE EXPECTED
STRING EXPRESSION EXPECTED
ON END UNIT # EXPR IMPROPER
PRINT/WRITE USING FORMAT ERROR
FOR-NEXT MATCHING ERROR
UNDEFINED FN FUNCTION
FN FUNCTION NAME NOT A-Z
STORAGE SPACE EXCEEDED
(OCCURS DURING STRING OPERATIONS OR FOR STMT)
FUNCTION NAME NOT FOLLOWED BY (

where E/S means Source (S) or Execution (E).

A
m
e
S
Z
2
A
S
2
8

m
n
P
O
N
A
S

2
2
4
A
S
R
A

x
O
O
R
M
V

M
n
m
M
n
A
m
M
n
m
M
m
m
M
m
M
o
n
m
n
n

M
H
O
M
N
M
O
M
M
N
A
N
M
N
N
A
M
A
M
A
N
A
M
A
a
M
A
M
N
M

t
1
2
m
i
m

t
m

FOR SEPARATOR ERROR
MORE THAN 10 OUTSTANDING GOSUB'S
GOTO EXPECTED '
ARRAY DIMENSION < 1
UNRECOGNIZED STATEMENT
ILLEGAL MAT MPY EXPR (E.G. MAT A=B¥*A)
INTEGER > 32767
IO EXPECTED IN POSITION STMT
EXPRESSION FORMAT
LOG ARGUMENT <= 0
READ/INPUT LIST ERROR
DEF NOT FOLLOWED BY FNX (
MIXED MODE LET (E.G. I=A$; A$=1)
V) NOT FOUND IN DEF STMT
MIXED ARITH + STG ITEMS IN EXPR
ON EXPRESSION OUT OF RANGE
RIGHT PARENTHESIS REQUIRED
EXPRESSION PARENTHESIS > 10 DEEP
ONLY ONE ARGUMENT IN SUB FUNCTION REFERENCE
MIXED STRING § ARITHMETIC ITEMS IN EXPRESSION

BASIC USES AS INTEGER > 32767; OCCURS IN -
SUBSCRIPT/DIMENSION
I/O STATEMENT UNIT #
RECORD SIZE IN DEFINE FILE STMT
ON STATEMENT EXPRESSION
TAB FUNCTION ARGUMENT
SUB FUNCTION NUMERIC ARGUMENTS
SUBROUTINE # IN CALL STATEMENT

STRING CONSTANT NOT ALLOWED
ARITHMETIC OVERFLOW
EXPRESSION STACK FULL
STRING ITEM NOT ALLOWED OR ILLEGAL OP IN STRING EXPR

te
:

' MATRIX NOT INVERTABLE
UNDEFINED STATEMENT NUMBER
SQR FUNCTION ARGUMENT < 0
SUBSCRIPT. OUT OF RANGE OR WRONG # OF SUBSCRIPTS
UNTERMINATED STRING CONSTANT
DVIDE BY ZERO

DIVIDE BY ZERO
STORAGE SPACE FOR PROGRAM EXCEEDED
RETURN EXECUTED WITHOUT OUTSTANDING GOSUB
UNIT REFERENCED BY I/O STMT NOT DEFINED
WRITE # ERROR; DRIVER MESSAGE IS PRINTED
(ERROR IS NOT RECOVERABLE; BASIC MARKS
THE UNIT INDEFINED)
WRITE # TO UNIT DEFINED BY DEFINE READ FILE STMT
READ AFTER WRITE TO NON DA UNIT
READ/INPUT # EXCEED 10° (+/-38)
CONSTANT EXCEEDS 10- (+/-38)
SIN;COS;EXP ARGUMENT > 32767

B-2

APPENDIX C

BASIC SUMMARY

Specification Statements:

REM Comment Line
DIM. A (3), B (40,3)

DEF X(I} = 2/COS(I} *3

TRACE ON
TRACE OFF

BREAK ON 40,318,215,10
BREAK OFF 10,40
BREAK OFF

Definition Statements:

LET I3=SIN(K-4.5)+Q3
13 =SIN (X-4.5)+Q3
B$ *0001'

LET S$(J+5) = M$+D$+'.00'

-lInput/Output Statements:

DATA 2,3,4, - 3.7E2
RESTORE
READ Al, A2, A3
READ #3, Al, A2, A3
DEFINE FILE #3 ='TEST 3'
DEFINE FILE #(I+3) ='(LPR)'
REWIND #3
INPUT 13, Il, X(i,3)
PRINT X4, ‘BEET
WRITE #3, X4, 'FEET'
PRINT USING F$, X1, X4
WRITE USING F$, #3, X1, X4
ON END #1 GO TO 998
FormattedPrint Descriptors:

Insert Dec. Point
, Insert comma if needed
t++¢ Insert exponent field
+ Insert (+) or (-)
- Insert (SP) or (-)
++ Insert leading (+) or (-)
-- Insert leading (SP) or (-)

Insert dollar sign.
$$ Insert leading dollar sign.

 # Replace with Digit 7

Control Statements:

GO TO 50
GO SUB 30
RETURN
IF Cl< 1 G TO 40
If D4 = 'ANY' THEN 50
IF X = 5 THEN Z = 3
FOR Cl = 2 TO STEP 1
FOR Cl = 2, 10, 1
FOR A4 = 50, -4.5, -1.2
NEXT A4
ON (I-1) GO TO 10, 20, 60
STOP
END
CALL 5 (A3, 6, I-2)

CALL 1

Matrix Statements

MAT X = ZER
MAT X = CON
MAT X = IDN
MAT X = Yad
MAT X = Y-Z
MAT X = 4% 2Z

T X = (5) * Y

MAT X = TRN (Y)
MAT X = IN (Y)
MAT READ X, Y, Z

MAT READ #N,X, Y, Z

MAT WRITE #N>X, Y, Z

MAT INPUT X, Y, Z

MAT PRINT X, Y, Z

Functions:

SIN(X)
COS (X)
TAN (X)
ATN(X)
LOG (X)
EXP (X)
SQR(X)
ABS (X)
SGN (X)
INT (X)
RND (X)
LEN(X$)
SUB (X$,Y,Z)

Arithmetic
Opérators

ADD
SUB
MUL
DIV
EXPON

ional Operators

~
~

OF
I

+

wy © fm
t

$9 ct

“"¥

B
B
a
5

w
a
t
V
A

.GE

<> NE

><

[String Operator

+ _Concatenatinn |

RUN 45
LOAD'BETA', 1000
FILE'PNAME' , 1000, 1999
LIST 1000, 1999

APPENDIX D

"NUMBER' - UTILITY TO

NUMBER OR RE-NUMBER BASIC

PROGRAMS

PROGRAM DESCRIPTION

NUMBER is a FORTRAN program that reads a BASIC program and either
numbers or re-numbers its statements.

NUMBER is invoked as an external command by typing:

NUMBER

The program, NUMBER, then responds:

PARAMETERS

The parameters that may be specified are:

iFiLE - input file name (first 6 characters)
OFILE - output file name (first 6 characters)

START - starting statement number (Decimal 1 <START <9999)
INCR - statement number increment (Decimal 1 <INCR <9999)

The parameters, OFILE, START, and INCR are optional. However, if INCR
is specified, START must be specified also. If OFILE is omitted, the
output is placed in IFILE. If START and INCR are both omitted, their
vaiue is 1. If INCR aione is omitted, its value is 1.

The input file specified by IFILE can be either a completely numbered
file or a partially numbered file. If every statement has a statement
number, the file is re-numbered in the order of statement numbers of the
input file. For example, if the input file contained the following
statements:

LJ
l2
30
39
59
§9
73
39
99

95
110
120
139
139

DIM AC9,9)
MAT A= ZER
wi=O
w2=9

FOR K=1 TO 7

FOR I=1 TO 3

FOR JzI-1 TO 3
IF J<=1 THEN 95
GOSUB 290
NEXT J
NexT |
NaxT K
MATPRINT A
STOP

and the following sequence of command lines is initiated

NUMBER

PARAMETERS

INMAT OUTMAT 10 10

user types

system responds

user types

where INMAT is the input file, OUTMAT is the output file, the starting

statement number is 10, and increment is 10. The output becomes:

LJ
20
30
40
30
60
70
30
90
100
110
120
139
140

DIM AC9,9)
MAT A= ZER
W1=90
W2=0
FOR K=1 10 7

FOR I=1 TO 3
FOR J=I-1 TO 3
IF J<=l THEN 1900
GOSUB 290
NEXT J
NEXT I
NEXT K
MATPRINT A
STOP

The input file specified by IFILE can be only partially numbered,

NUMBER numbers statements in this type of file in the order of their

occurrence. In the following example, the file is sequential and

only the referenced lines contain numbers.

REM TEST OF THE HUMBER FROGRAM.

REM ORJECT IS TO SEE HOW A PARTIALLY HUMBERED PROGRAM IS HANOLED.

Recht

10 INPUT fe

PRIN “IS THIS THE END”:

THRLT NE

If hit ="“ENES THEN oo

GOSUE Se

on To 16

ka PRYNT “THIS TS THE LIVING END. ©

REM «edoBeGIN GUBRGUTINES. detested

Soa LET H=N 7 @

yom Lhehd

Sos Nes

i SiR CHES

PRTHMT BM: odereGS. Ws

PRINT

Soo RETURN

The results of the interaction

NUMBER
PARAMETERS
PTESIN 2 2

are as follows:

2 WEM TEST GF THE NUMBER PROGRAM.

4 FEM OBJECT IS To SEE HOW FA PARTIALL’? NUMBERED PROGRAM IS HANOLEC.

& FEM

a INPUT fH

46 PRINT “IS THIS THE EMD’:

42 INPUT Mt

44 IF N$=“ENG* THEN 26

416 GOSUB 26

46 GoTa s

om FRINT “THIS IS THE LIVING END ©

22 ENDfe fa

24 WEP detepdobheG Th SUERCUT I MES. sede

26 LET S=nHNT2

2G YWeoehl

30 Sone

32 =SGR CMD

z4 PRINT Fi: “ok 7, OG, Sa SOK

=6 PRINT

3 PE TURE:RETURN D-3

Note that statements are numbered by NUMBER using only as many
digits as required. Thus, '599' in the above example becomes '38'.

When the NUMBER program completes execution, the input file, IFILE, is
closed; and the output file, OFILE, is also closed if it was opened.

ERROR MESSAGES

Messages

BAD PARAMETERS

XXXXXX NOT FOUND

XXXX DUP LINE NUMBER

INPUT FILE NULL

MEMORY OVERFLOW

LINE NUMBER OVERFLOW

D-4

Remarks

If either START or INCR are
specified with more than 4
digits, NUMBER requests a
new parameter line.

The specified IFILE does
not exist. Control returns
to DOS.

XXXX occurs as a line number
more than once. Control
returns to DOS.

The specified IFILE is empty.
Control returns to DOS.

There is not enough memory
to contain a map of line
numbers. Control returns to
Dos.

A new line numer 9999.

Control returns to DOS.

APPENDIX E

MEMORY REQUIREMENTS

Memory
Resident DOS
System CONTROL

INTERPRETER INTERPRETER INTERPRETER

and * and x and

IOCS IOCS IOCS

Popo POIPsp
“VIP

RaeeS“Oe

Tables, Tables, Work SPTT
fiork Areas, Areas, Etc.

Etc. Tables,
DOS Work Areas,

5.4K Etc.

16K

MINIMUM
SYSTEM

DOS 6.6K

32K
MAXIMUM
SYSTEM

*See Tables on
Page E-2 for
memory
allocation

E-1

|
«
—
_
—
_
—
—
-
64

K
V
I
R
T
U
A
L
M
E
M
O
R
Y
U
S
E
R

S
P
A
C
E
*
—
—
—
>

DOS-VM
CONTROL

INTERPRETER

Tables,
Work Areas,

Etc.

 32K

Single Double|
Precision Precision

BASIC BASIC

BASIC 7.2K Re

BASIC with
PRINT USING 8.0K aR

BASIC with
MATRIX 8.2K aX

BASIC with
PRINT USING 10.2K ek
& MATRIX

Interpreter and IOCS Memory
Allocation

High Speed and -Memory Memory
Floating Point Required Required

Arithmetic Single-Prec. Double-Prec.

Neither 850 wis. ke

High Speed
Arith. only 640 wds. ae

High Speed §&
Floating Point 0 ws. ak

VIP (Virtual Instruction Package)

Memory Requirements

** to be supplied when double precision is
available.

E-2

Function Memory Required

Fixed Table 700 words (single prec.)

1300 words (Double prec.)

Program APPROX. 1 Word/2 char.
Storage

STATEMENT 2 Words/Statement Index

Packet String values
Storage and FOR-NEXT loop

parameters

Array Dependent upon size.
Storage

Memory Allocations for
Tabies, Work Areas, etc.

E-3

INDEX

ABS(X) 3-5

ABSOLUTE VALUE FUNCTION 3-5

ACCURACY 2-1A

AD B-1

ADDITION 3-1

AO B-1

AR B-1

ARCTANGENT 3-5

ARCTANGENT FUNCTION 3-5

ARGUMENT 3-4

ARGUMENT LIST 3-4

ARGUMENT: USER DEFINED FUNCTION 3-7

ARITHMETIC DATA POOL 5-36

ARITHMETIC OPERATORS 3-1

ARITHMETIC VARIABLE 5-19

ARRAY 1-7 e2-1Ar273 - 276757875-2076-1

ARRAY ADDITION 6-5

ARRAY ASSIGNMENTS 6-5

ARRAY BOUNDS 2-5

ARRAY CONSTANTS 6-2

ARRAY DATA TYPE 2-3

ARRAY DECLARATION 2-4

ARRAY DIMENSIONS WITH REDIMENSIONING 6-3

ARRAY DIMENSIONS 2-542-6

ARRAY ELEMENT REFERENCE 2-5

ARRAY ELEMENTS 27-345-19-6-2

ARRAY MANIPULATION STATEMENTS 5-1-6-1

ARRAY MULTIPLICATION 6-6

ARRAY NAME 2-3

ARRAY REDIMENSIONING 2-5-6-1

ARRAY STATEMENTS 6-1

ARRAY STORAGE 2-3

ARRAY STORAGE ALLOCATION 2-5

ARRAY SUBSCRIPT 2-3,42-522-6

ARRAY SUBTRACTION 6-5

ARRAY VARIABLES 2-3

ASC 5-6A

ASC SEP 5-6A

ASCII 2-24374275-6A5-36

ASCII FILE 4-2

ASR 5-6

ASSEMBLY LANGUAGE 5-3e/7-1

ASSIGNED 6-1

ATNCX) 3-5

BASE E 3-5
BASIC 1-1
BASIC FILE 4-1
BASIC LANGUAGE INTERPRETER 1-1-2-4

I-1

INDEX

BASIC PROGRAM 1-1

BASIO 5-6A

BATCH MODE 1-2e1-5 - 1-6A

BOD B-1

BE B-1

BIN 5-6A

BIN DA 5-75-2265-41

BINARY FILE S-6A

BINARY OPERATOR 3-1

BL B-1

BLANKS 1-3

BOUNDS 2-342-5

BP B-1

BREAK 5-2

BREAK STATEMENT 1-7

BREAKPOINTS 5-2

BU B~1

CALL STATEMENT 5-2e7-1

CALLP SOURCE 7-2

CARD READER S-6A

CARDS 1-5-5-6
CARRIAGE RETURN 1-2-1-3

CH B-1

CHARACTER ORDERING 3-4

CHARACTER OVERFLOW 5-25

CLEAR COMMAND 1-10

CLOSED FILE 4-2

CN 6-1

COLON SEPARATOR 5-25

COLUMN QO 6-1

COLUMN MAJOR 2-3

COMMA 2735 04-275-29

COMMA SEPARATOR 5-25

COMMAND 1-1-1-8
COMMAND FORMAT 1-8 - 1-12

COMMAND PROCESSOR 1-1

COMMAND SYNTAX 1-8 - 1-12

COMPARISON OF STRINGS 3-4

COMPILER 7-1

CON 6-22

CONFIGURATION FILE ?-147-2

CONSTANTS 2-1. 2-1A

CONTENTS OF FILE 4-1

CONTEXT ERROR 1-12

CONTINUE COMMAND 1-10

CONTROL VARIABLE 5-95-20

CONTROL-C 1-11

CONTROL-P 1-11

CONVERSATIONAL MODE 1-2 ~ 17-401-6A4-1

I-2

INDEX

CONVERSION 3-1
COS(xX) 3-5
COSINE FUNCTION 3-5
CP B-1
CR B-1
CURRENT BOUNDS 6-146-2

CV B-1

DAM FILE 5-7
DATA 17-544-145-4
DATA FILES 4-1
DATA LIST POINTER 5-36
DATA POOL 5-45-34s5-36,6-9

DATA STATEMENT 5-34
DATA TYPE: ARRAY 2-3
DATA TYPES 2-1 - 2-673-445-17
DEBUGGING 1-7,5-40
DECIMAL POINT 1-?7e2-15-28
DECIMAL POINT HANDLING 1-7

DEF STATEMENT 3-?745-5
DEFAULT ARRAY BOUNDS 2-5
DEFAULT ASSIGNED VALUE 5-19
DEFAULT VALUE 5-19
DEFINE FILE STATERENT 4-24¢5~-6¢5-3
DEFINE READ FILE STATEMENT 4-265-
DEFINING NUMERIC FIELDS 5-2?
DEFINING STRING FIELDS 5-27

DELETING A STATEMENT 1-4

DELIMITERS 1-5

DEVICE 1-541-601-974-145-6

DEVICE IDENTIFIER 5-645-6A

DEVICE NAME 17-5 747-245-6

DF B-1

DIM STATEMENT 2-4627-545-826-1

DIMENSIONS 2-3

DISK 1-5

DISK FILE 5~6Ae5-38

DIVISION 3-1

DM B-1

DOLLAR SIGN 2-35-31

DOS 1-11

DCS/VM 1-11

DOUBLE PRECISION 2-142-1A-5-1

5
6

E B-2
EDITOR 1-33-124-1
EE B-1 |
ELEMENT 2-346-146-2
ELEMENT: ARRAY 2-3
END OF FILE 5-21

I-3

INDEX

END OF PROGRAM 5-9

END STATEMENT 5-95-39

ENTERING BASIC 1-141-2

EQUAL 3-2

EQUAL PRECEDENCE 3-1

ERASE CHARACTER 1-3

ERROR MESSAGES 1-12sB-1,B-2

ERROR: CONTEXT 1-12

ERROR: EXECUTION 1-12,-8-1-B-2

ERROR: SOURCE 1-12-B-1-8-2

ERROR: SYNTAX 1-12

ERRORS 1-12,-8-1-B-2

ES B-1

ESCAPE CONVENTION 3-1

EVALUATION 3-143-3

EVALUATION: FUNCTION REFERENCE 3-4

EVALUATION: OF EXPRESSION 3-1

EVALUATION: OF RELATIONAL EXPRESSIONS 3-1

—X 8-1

EXECUTING A PROGRAM 1-5

EXECUTION 1-1421-3-1-5

EXECUTION ERRORS 1-1248-14B8-2

EXP(X) 3-5

EXPONENT 2-102-1Ase3-2

EXPONENT FIELD 2-1

EXPONENT FUNCTION 3-5

EXPRESSION EVALUATION 3-1

EXPRESSION: IN FUNCTION REFERENCE 3-7

EXPRESSIONS 3-1 - 3-745-5

EXPRESSIONS: FILE 4-3

F B-2

FALSE 5-15

FE B-1

FILE 1-5 71-6 01-924-1 ~ 4-345-39

FILE COMMAND 1-541-8,1-9,74-1

FILE CONTENTS 4-1

FILE EXPRESSIONS 4-3

FILE MODES 5-6A

FILE NUMBERS 4-275-41

FILE UNIT 5-22

FILE UNIT NUMBERS 5-6

FILENAMES 1-524-245-6

FILES CLOSED 5-39

FILES OPENED 5-39

FIXED LENGTH RECORDS 5-7

FLOATING POINT 2-1s42-1As35-1

FLOATING POINT ARITHMETIC 3-1

FLOATING POINT NUMBER 2-1

FM B-1

1-4

INDEX

FN B-1
FO B-1
FOR 5-20
FOR STATEMENT 5-10
FOR-NEXT LOOP 5-20
FORMAT 1-1 ,
FORMAT FIELDS 5-27
FORMATTED OUTPUT STRINGS 5-42
FORMATTED PRINT-STATEMENT 5-27

FORTRAN 5-3,-7-1

FP B-1
FRACTIONAL SUBSCRIPTS 2-6
FRACTIONS 5-23
FT B-2
FUNCTION 1-745-5
FUNCTION NAME 3-4
FUNCTION PARAMETER 5-5
FUNCTION REFERENCE EVALUATION 3-4
FUNCTION REFERENCE 3-463-7
FUNCTIONS 3-1,43-4 - 3-7

GO CERROR MESSAGE) B-2

GO 1-1
GOSUB 5-13
GOTO 5-14
GREATER THAN 3-2
GREATER THAN GR EQUAL 3-2
GREATEST INTEGER 3-5

GT B-2

1/0 UNIT 5-38
IC B-2
ID B-e
IDN 6-2
IE B-e
IF STATEMENT 5-1545-16
IMMEDIATE MODE 1-2¢1-f01-8
INITIAL LOAD 1-6
INITIALIZATION OF SCALAR VARIABLES 2-2
INITIALIZATION STATEMENTS 6-2
INPUT 5-17-5-18
INPUT OF STATEMENT 1-4
INPUT TO BASIC PROGRAMS 5-6A
INPUT/OUTPUT 4-1
INPUT/OUTPUT STATEMENTS 4-1
INSERTING A STATEMENT 174

INTOCX) 3-5
INTEGER FUNCTION 3-5
INTEGERS 2-145-23
INTERNAL SUBROUTINE 5-13

I-5

INDEX

INTERPRETER 1-147-1

INVOKING BASIC (SEE ENTERING BASIC)
10 B-2
I0CS 5-6A
IS B-2
IT 8-2

KILL CHARACTER 1-3

LANGUAGE 1-1
LANGUAGE INTERPRETER 1-1

LANGUAGE PROCESSOR 1-145-1
LEAST INTEGER 3-5
LEFT ANGLE BRACKET 5-31
LENCAS) 3-5
LENGTH FUNCTION 3-5
LENGTH OF FILE RECORD 4-2
LENGTH OF STRING 2@-2627-343-5
LESS THAN 3-2.
LESS THAN OR EQUAL 3-2
LET 5-10
LG B-2
LINE 1-1
LINE LENGTH 1-1
LINE NUMBER CSEE STATEMENT NUMBER)
LINE PRINTER 5-6s5-6A
LINE SIZE 2-2
LIST COMMAND 1-9
LIFERALS 5-34
LOAD COMMAND 1-541-8+/7-7
LOADING 1-6

LOADING A PROGRAM 1-6
LOG(X) 3-5
LOGARITHM FUNCTION 3-5
LOGICAL FILE NUMBER 4-2
LOGICAL FILE UNIT 5-6
LOGICAL UNIT 5-21
LOOP 5-10
LT B-2

MAGNETIC TAPE 41 5-6A
MAGNETIC TAPE #2 5-6A
MAGNETIC TAPE #3 5-6A
MAGNETIC TAPE #4 5-6A
MAGNETIC TAPE 1-555-6
MANTISSA 2-1A
MAT DIMENSION IMPROPER FORMAT B-1
MAT INPUT STATEMENT 6-11
MAT PRINT STATEMENT 6-12
MAT READ FILE STATEMENT 6-9

I-6

INDEX

MAT READ STATEMENT 6-8,6-9

MAT STATEMENTS 2-575-145-876-16-2

MAT WRITE FILE 6-10

MAT...-CON 6-3

MAT...IDN 6-3

MAT...Z2ER 6-3

MATRICES 6-1,6-3,6-7

MATRIX 2-362-5

MATRIX ADDITION 6-5

MATRIX ADDITION 6-5

MATRIX ASSIGNMENTS 6-5

MATRIX ASSIGNMENTS 6-5

MATRIX BOUNDS 2-5

MATRIX BOUNDS 2-5

MATRIX CONSTANTS 6-2

MATRIX CONSTANTS 6-2

MATRIX DATA TYPE 2-3

MATRIX DATA TYPE 2-3

MATRIX DECLARATION 2-4

MATRIX DECLARATION 2-4

MATRIX DIMENSIONS 2-552-6

MATRIX DIMENSIONS WITH REDIMBNSIONING 6-3

MATRIX DIMENSIONS 2-542-6

MATRIX DIMENSIONS WITH REDIMENSIONING 6-3

MATRIX ELEMENT REFERENCE 2-5

MATRIX ELEMENT REFERENCE 2-5

MATRIX ELEMENTS 2-3-5-19,6-2

MATRIX ELEMENTS 2-325-19-6-2

MATRIX MANIPULATION STATEMENTS 5-146-1

MATRIX MANIPULATION STATEMENTS 5-146-1

MATRIX MULTIPLICATION 6-6

MATRIX MULTIPLICATION 6-6

MATRIX NAME 2-3

MATRIX NAME 2-3

MATRIX REDIMENSIONING 2-5,6-1

MATRIX REDIMENSIONING 2-546-1

MATRIX STATEMENTS 6-1

MATRIX STATEMENTS 6-1

MATRIX STORAGE 2-3

MATRIX STORAGE 2-3

MATRIX STORAGE ALLOCATION 2-5

MATRIX STORAGE ALLOCATION 2-5

MATRIX SUBSCRIPT 2-3,-2-5,2-6

MATRIX SUBSCRIPT 2@-362-542-6

MATRIX SUBTRACTION 6-5

MATRIX SUBTRACTION 6-5

MATRIX VARIABLES 2-3

MATRIX VARIABLES: 2-3

MAXIMUM STRING LENGTH 2-2

MEMORY 2-245-1

I-7

INDEX

MEMORY MAPPING 5-1

MEMORY SIZES 5-1
MIXED DATA 3-e
ML B-2
MM B-2
MODE OF FILE 5-6
MODES OF OPERATION 1-141-2
MR B-2
MS B-2
MULTI-WAY BRANCH 5-21
MULTIPLE DOLLAR SIGNS 5-31

MULTIPLICATION 3-1

NAME OF USER DEFINED FUNCTION 3-7

NAMES 2-2¢27-30276

NATURAL LOGARITHM 3-5

NESTED 5-10

NEW COMMAND 1-10

NEXT 5-20

NEXT STATEMENT 5-10

NON-LOCAL 5-14

NOT EQUAL 3-2

NULL STRING 2-345-19

NUMERIC ARRAY 2-5

NUMERIC CONSTANT 2-145-4

NUMERIC EXPRESSION 3-143-265-1545 -23

NUMERIC FIELDS 5-28

NUMERIC OPERAND 3-1

NUMERIC SCALAR EXPRESSION 6-6

NUMERIC SCALAR VARIABLES 2-22-3

NUMERIC TO STRING CONVERSION 3-1

NUMERIC VALUES 2-142e2-1A

NUMERIC VARIABLE 5-19

0 B-2
ON 5-21
ON END 5-2145-22
ONE-DIMENSION 2-3
OPEN FILE 4-25-6
OPERAND 3-1

OPERATING MODES 1-161-2
OPERATING SYSTEM 1-141-3-1-8

OPERATOR 3-1
ORDER OF ARRAY 2-3
ORIGINAL BOUNDS 6-1
OUTPUT DEVICE 1-9
OV B-2

P B-2
PAPER TAPE 1-5

I-8

INDEX

PAPER TAPE READER PUNCH 5S-6A
PARENTHESES 3-145-6
PARENTHESES: IN EXPRESSION 3-1
PARTIAL LINE 5-25
PLUS OR MINUS SIGNS 5-29
PMA 7-1
PN B-2
PO B-2
POSITION STATEMENT 5-7-5-22
POUND SIGN 5-28+5-31
POWER 3-5

PR B-2
PRECEDENCE 3-1
PRINT ELEMENT 5-41
PRINT STATEMENT 1-345-23
PRINT USING STATEMENT 5-15-27
PRINTING NUMERIC STATEMENTS 5-23
PRINTING SPECIAL CHARACTERS 5-33
PRINTING STRING EXPRESSIONS 5-24
PRODUCTS OF ARRAYS 6-7
PROGRAM 1-1
PROGRAM FILES 4-1
PROGRAM STORAGE AREA 17-371-671-7
PROGRAM STRUCTURE 1-1 - 1-12
PROMPT 1-1
PROMPT CHARACTERs! 5-17
PTR/P 5-6

QUIT 1-11

R B-2
RADIANS 3-5

RANDOM NUMBER 3-5

RANDOM NUMBER GENERATOR 3-5

RANGE OF DIMENSION 2-6

RANGE OF FILE NUMBER 4-2

RANGE OF NUMERIC VALUES 2-1A

RE B-2

READ AN-L1,.../LN 5-35

READ * FILE 5-36

READ AFTER WRITE CHECK 5-41

READ FILE 5-35

READ STATEMENT 6-2 75 -4,5-34

READING 5-6

RECORD 4-15-22

RECORD NUMBER 5-22

RECORD SIZE 5-7

REDIMENSIONED 5-8

REDIMENSIONING 2-5

REFERENCE TO ARRAY ELEMENT 2-5

I-9

INDEX

REFERENCE: FUNCTION 3-4
RELATING CALL TO SUBROUTINE 7-1
RELATIONAL EXPRESSION 3-143-2,/5-15
RELATIONAL OPERATORS 3-2
RELOCATION CONSTANT 1-8
REM 5-36
REMARK 5-36
REPLACING A STATEMENT 1-4
RESTARTING 1-11
RESTARTING BASIC 1-11
RESTARTING FROM DOS 1-11
RESTARTING FROM DOS/VM 1-11
RESTORE # 5-34
RESTORE $ 5-36
RESTORE 5-3445-36
RETURN STATEMENT 5-13,5-26
REWIND STATEMENT 4-2¢5-38+5-41
RI B-2
RIGHT ANGLE BRACKET 5-32
RNB(X) 3-5
ROUNDING 3-6
ROW 0 6-1
ROW 6-7
RULES OF PRECEDENCE 3-1
RUN COMMAND 1-5s1-641-9
RUNNING A PROGRAM 1-6
RUNNING PROGRAM WITH CALL STATEMENTS 7-7

SC B-2

SCALAR MULTIPLICATION 6-6

SCALAR VARIABLES 2-225-19

SCIENTIFIC FORMAT 5-24

SE B-2

SECOND 6-7

SENSE SWITCH 1-11

SF B-2

SGN(X) 3-5

SI B-2

SIGN 2-1

SIGN CHARACTER 5-23

SIGN FUNCTION 3-5

SIGNED DECIMAL 2-1

SIGNIFICANT DIGIT 2-1

SINCX) 3-5

SINE FUNCTION 3-5

SINGLF PRECISION 2-1s2-1A

SINGLE QUOTES 1-541-642-2,5-17

SM B-2

SN B-2

SOURCE ERRORS 1-1208-1¢B-2

I-10

INDEX

SOURCE FILE 1-5,1-6

SPECIAL CHARACTERS 1-35-27
SQ B-2
SQR(X) 3-5
SQUARE ROOT FUNCTION 3-5
$S B-2
ST B-e
START 1002
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STEP 5-10
STOP 5-39
STORAGE 1-

1-11

1-1 - 1-291 ~-8s55-1 ~ 5-42

BODY 1-3

DELETION 1-4
EXECUTION 1-1
FORMAT 1-1
INPUT 1-4
INSERTION 1-4
NUMBER 1-1 - 1-361-61-7

REPLACEMENT 1-4
TERMINATOR CSEE CARRIAGE RETURN)

346-1

STORAGE ALLOCATION 2-5
STORAGE OF ARRAYS 2-3,2-4
STCRAGE OF STATEMENTS 1-3
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING
STRING

O-2re-5

ARRAY 2-5

COMPARISON 3-4

CONSTANT 2-265-46

DATA POOL 5-36

EXPRESSION 3271746372 2573053715 05723

FIELDS 5-31

LENGTH 2-2437-4

OPERANDS 3-1

OPERATOR 3-1

SCALAR VARIABLES 2-3

TO NUMERIC CONVERSION 2 3-1

VALUES 2-243-4%

VARIABLE NAME 2-3

VARIABLE 5-19

SUBCAS$sI¢5) 3-5
SUBROUTINE 5-3
SUBROUTINE IDENTIFIER 5-3
SUBSCRIPT
SUBSCRIPT
SUBSCRIPT
SUBSCRIPT
SUBSTRING
SUBSTRING

2-3 02-5 62-6 45-19
ARRAY ELEMENTS 5-19
EXPRESSION 27-645-1705-34
RANGE 2-6
3-5...
FUNCTION 3-5

SUBTRACTION 3-1

I-ll

INDEX

SYNTAX ERROR 1-12

SYSTEM COMMAND 1-2

SYSTEM EDITOR 17-343-144-1

SYSTEM FUNCTION 3-143-4 - 3-7

TAB REQUEST 5-41
TANCX) 3-5
TANGENT FUNCTION 3-5
TARGET ARRAY 45-1
TELETYPE S-6A
TERMINAL 1-5/5-6A
TO 5-16
TRACE 5-39

TRACE OFF 5-39
TRACE ON 5-39
TRAILING COMMA 5-4

TRANSFER INTO A COMPLETED LOOP 5-10
TRANSPOSE OPERATIONS 6-8 .
TRUE 3-345-15 _

TWO-DIMENSION 2-3
TWO-DIMENSIONAL 6-226-7
TYPE: SCALAR VARIABLES2-2
TYPES OF DATA 2-1 - 2-6

UF 5-35

UFD 1-5
UNARY MINUS 3-1
UNARY OPERATOR 3-1
UNARY PLUS 3-1

UNASSIGNED SCALAR STRING VARIABLES 5-19
UNDECLARED ARRAY 2-5
UNIT SPECIFIER 5-6
USER DEFINED FUNCTION NAME 3-7
USER DEFINED FUNCTION 3-1-3-7
USER DEFINED NUMERIC FUNCTION 3-7
USER FILE DIRECTORY 1-5

VARIABLE 1-14 1-7 a 2-142-1A 505-305-734

VARIABLE NAME 2-2

VARIABLES: ARRAY 2-342-4

VARIABLES: SCALAR 2-222-3

VARIABLES: SUBSCRIPTED 2-32-46

VECTOR 2-3e2-5

VERSION OF BASIC 5-1

VERTICAL ARROW 5-29

WR ERROR 5-41
WRITE FILE 5-41
WRITE STATEMENT 4-2
WRITE USING 5-42

T-12

INDEX

WRITING 5-6

X B-2

2 B-2
ZER 6-2
ZERO LENGTH STRING 2-3
ZERO SUBSCRIPTS 2-5
ZONES 5-25

I-13

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-06A
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-01A
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-06A
	3-06B
	3-06C
	3-06D
	3-07
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-06A
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13

