
Prime Computer

User Guide

For

Program Development Software

PRIME COMPUTER, INC., 145 PENNSYLVANIA AVENUE, FRAMINGHAM, MA. 01701

MAN 1879

PROGRAM DEVELOPMENT

SOFTWARE

USER GUIDE

December 1974

P A4
COMPUTER,INC.

[145 Pennsylvania Ave., Framingham, Mass. 01701]

First Printing December 1974

Copyright 1974 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
subject to change without notice.

ii

THUMB INDEX

Section Contents

1 INTRODUCTION

2 EDITORS

3 ASSEMBLER (PMA)

4 COMPILER (FTN)

5 LINKING LOADER

6 DEBUG UTILITIES (TAP, PSD)

7 PAPER TAPE UTILITIES (MDL, PTCPY)

8 LIBRARIES

9 PAPER TAPE PROGRAM DEVELOPMENT

111

CONTENTS

SECTION 1 INTRODUCTION

SCOPE
SUMMARY OF PROGRAM DEVELOPMENT
PROGRAM DEVELOPMENT EXAMPLE
SYMBOLS AND ABBREVIATIONS

SECTION 2 EDITORS

PART 1 TEXT EDITOR

EDITOR FUNCTIONS
CONFIGURATION
ENTERING AND LEAVING EDITOR CONTROL
EDITING IN DISK ORIENTED CONFIGURATIONS
EDITING WITH PAPER TAPE CONFIGURATIONS
EDITOR MODES
EDITING IN LINE MODE
EDIT MODE
LINE MODE COMMAND DESCRIPTIONS
EDITOR MESSAGES
EDITING IN BOX MODE
BOX MODE COMMAND DESCRIPTIONS
RECOVERY PROCEDURES

PART 2 BINARY EDITOR

LOADING AND STARTING UNDER DOS-DOS/VM
USING PAPER TAPE VERSION
EDB FEATURES
EDB COMMANDS
EXAMPLES

SECTION 3 MACRO ASSEMBLER (PMA)

SOURCE PROGRAMS
OPERATION UNDER DOS-DOS/VM
USING PAPER TAPE ASSEMBLER
ACTION OF ASSEMBLER
ASSEMBLER MESSAGES
A REGISTER (DETAILS)
LISTING FORMAT
CROSS REFERENCE LISTING (CONCORDANCE)

iv

M
W
Y
~
W
P
W
N
N
N
N
N
N
N
H

D
Y

1
t

1
‘

H
B
P
R
W
N
N
R
R
H
A
I
D
A
W
W
N
E
e

'
I

t
’

'
'

C
O
D
A
N
A
N
A
S
e

e
H

W
G
M
N
W
N
N
N
N
W
N

W
S

'

SECTION 4 FORTRAN COMPILER (FIN)

SOURCE PROGRAMS
OPERATION UNDER DOS-DOS/VM
USING PAPER TAPE COMPILER
ACTION OF COMPILER
COMPTLER MESSAGES
A REGISTER (DETAILS)
SOURCE PROGRAM LISTING FORMATS
ERROR MESSAGES
LIBRARY ERROR MESSAGES
TRACE PRINTOUTS

SECTION 5 LINKING LOADER (LOAD)

FEATURES
USING LOADER UNDER DOS-DOS/VM
USING PAPER TAPE VERSIONS
COMMAND DEFINITIONS
LOADER MESSAGES
UII HANDLING (INTERACTION OF LOAD, PMA, AND FTN)
REPLACING DEFAULT VALUES FOR MODE, COMMON, HARDWARE
LIBRARY MODE

SECTION 6 DEBUGGING UTILITIES - OCTAL (TAP)
AND SYMBOLIC (PSD)

PART 1 TRACE AND PATCH (TAP)

LOADING AND STARTING
COMMAND DESCRIPTIONS

PART 2 PRIME SYMBOLIC DEBUG (PSD)

LOADING AND STARTING UNDER DOS-DOS/VM
USING PAPER TAPE VERSION
NEW COMMAND DESCRIPTIONS
INPUT/OUTPUT MODES
ACCESS MODE ENHANCEMENTS

SECTION 7 TAPE PUNCH AND COPY UTILITIES

PART 1 MEMORY DUMP AND LOAD (MDL)

USING MDL UNDER DOS-DOS/VM
USING MDL IN PAPER TAPE SYSTEMS
ENTERING PARAMETERS
ADDRESS DISPLAY

' r
y

'
1

1
P
r
P
A
H
A

H
H
A
H
L
H
H

>
1

N
S
M
I
N
N
I
O
O
H
B
r
e

w
n t
o
y

'
t

4
'

M
e
H
O
W
E
H
e

H
H
O

m
m
m
o
o
u
u
w

N
H

-
D
X
N
N
D
W
N

'
k
K
F
©

C
O
C
O

u
k

SECTION 7 (Cont)

PART 2 PAPER TAPE COPY (PTCPY)

USING PTCPY UNDER DOS
USING PTCPY UNDER DOS/VM
USING PTCPY IN PAPER TAPE SYSTEMS
OPERATING PROCEDURES

SECTION 8 SUBROUTINE LIBRARIES

FORTRAN/MATH LIBRARY
UII LIBRARY
MATRIX LIBRARY

SECTION 9 PAPER TAPE PROGRAM DEVELOPMENT

SUMMARY OF PAPER TAPE SOFTWARE
GENERATING SELF-LOADING TAPES

APPENDICES

A PAPER TAPE SOFTWARE PACKAGES

vi

Page

~
w
w

i h
e

A-1

Figure

3-1

3-2

5-3

4-]

4-2

4-3

4-4

4-5

7-1

9-1

9-2

ILLUSTRATIONS

Macro Assembler A Register Settings

Example of Assembly Listing

Example of Symbol Cross-Reference Listing

Compiler A Register Settings

User Terminal Error Printout Example

Example of Brief Listing (LIST Statement
or A Bits 2, 3=0)

Example of Assembly-Like Listing (FULL LIST
Statement or A Bit 2=1 and Bit 3=0)

Example of Trace Printouts

Bit Assignments of Keys Parameter

Memory Areas for Utility Programs

Using Loader to Build Systems in Both Lower
and Upper Memory

vil

Page

3-3

3-7

3-9

4-3

4-9

4-10

4-11

4-15

7-1

9-5

9-7

Table No.

1-1

2-1

2-2

2-3

3-1

4-1

4-2

5-1

7-1

8-1

TABLES

Symbols and Abbreviations

Available Editors and Scope of Functions

Software Revisions, Editors and Their High

Addresses

Special Characters for LINE Mode Editing

Assembler Error Messages

Compiler Error Messages

FORTRAN Library Error Messages

Loader Versions and Memory Locations

PTCPY Command and Message Summary

Library Components

Vili

Page

1-6

2-2

2-3

2-8

3-10

4-12

4-14

5-2

7-8

8-2

FOREWORD

This user guide describes the Prime Program development software
used to generate, compile or assemble, load and debug FORTRAN or
assembly language application programs. It consists of the following
sections:

Section

Section

Section

Section

Section

Section

Section

Section

Section

8

9

Introduction

Editors (text, box and binary)

FORTRAN Compiler

Prime Macro Assembler (PMA)

Linking Loader

Debug Aids (TAP and PSD)

Paper Tape Utilities (MDL and PTCPY)

Library Subroutines

Paper Tape Program Development

Information in this guide applies both to systems with operating
system and file system support and to stand-alone systems using paper
tape input/output. Information in this user guide supersedes the
versions previously printed in the Prime Operator's Guide.

ix

SECTION 1

INTRODUCT ION

SCOPE

This user guide contains detailed reference information on the editors,
translators and utilities that are the essentail items of Prime program
development software. This family of software is required to compose the
source file of a FORTRAN or assembly language program, compile or assemble
it, load the resulting object file and related library routines, and
simulate execution and debug the result.

Related Publications

The following Prime documents should be available for reference:

Document No.

Prime CPU Operator's Guide (control panel and paper tape MAN 1672
device operation)

Prime CPU System Reference Manual (instruction set, MAN 1671
addressing modes, input/output programming)

Macro Assembler User Guide (assembly language MAN 1673
conventions, pseudo-operations, macro facility)

FORTRAN IV Language User Guide (FORTRAN source program MAN 1674
requirements

DOS-DOS/VM User Guide (Operating system keyboard MAN 1675

commands and description of file system)

Prime Software Library User Guide (calling formats MAN 1880
and functional description of all library subroutines)

Effects of Operating System

All programs described in this manual operate in the same way whether
the user is operating with file system support under DOS, DOS/VM or
RTOS/VM, or operating in a stand-alone system using paper tape input/
output. The only difference is in the way a program is loaded and
Started. (Paper tape users must mount paper tapes as required, and
there are a few command restrictions owing to the absence of a file
system.)

SUMMARY OF PROGRAM DEVELOPMENT SOFTWARE

The following paragraphs summarize the main functions of the program
development software as used in a DOS or DOS/VM environment with file
System support. For another summary emphasizing paper tape functions,
see Section 9.

1-1

Editors (Section 2)

The Text Editor, ED, is the basic tool for new program development.
This program permits source programs to be composed, edited, and listed
at the user terminal. After entering a rough copy of the program, the
programmer can locate and alter text strings, correct spelling, syntax,
or spacing errors, or move lines from one place to another by simple
keyboard commands.

Sections of the program can be printed for checking, or the entire
program can be listed. When the program is complete and ready to be
assembled or compiled, it is filed in the user's UFD. Other source
files can be read in, as well, to be expanded or merged with the
current version of the program.

A shorter version of the editor, EDLIN, excludes the box mode which
Simplifies generation of graphic or pictorial layouts. The box editing

feature is not applicable to program development.

The binary editor, BINED, operates on object modules containing library
subroutines. It is useful for examining the contents of library tapes
or building custom libraries.

Macro Assembler (Section 3)

Source programs in the Macro assembly language are processed by the
Macro Assembler program to form object program files. The assembler is
invoked by the PMA external command. The assembler reads the source file
and translates the symbolic codes of the source program into the binary
bit patterns required by the loader. This two-pass assembler reads the
source file twice - the first time to build a table of all symbolic
addresses used, and the second time to translate the mnemonic expressions
into an object program file. An optional listing file shows both the
source symbolic code and the translated binary equivalent of each
entry.

FORTRAN IV Compiler (Section 4)

Source programs in the FORTRAN IV language are processed in the same way
as assembly language programs. After the FORTRAN Compiler is invoked
by the FIN external command, it controls a one-pass reading of the
source program file. The output object file is similar in format to the
assembly language output file. An optional listing file, either:-a
straight listing of the source statements or an expanded listing showing
the assembly language breakdown of each statement, may also be created.

Linking Loader (Section 5)

Object files generated by the assembler or compiler require the Linking
Loader to interpret and complete the addressing information. Indirect
address links must be formed in sector zero (or another specified base
sector) when address references happen to fall across sector boundaries.

1-2

Once the loader is invoked by the LOAD external command, it prints a
prompt character and awaits commands from the user terminal. Through
keyboard commands, the user can load main program or library files,
specify addresses where loading is to start, define linkage areas for
cross-sector address references, and do many special-purpose operations.
The loader keeps track of instructions of the class which may be
unimplemented in a particular machine, and automatically generates
object code blocks to simplify loading of the appropriate segments of
the VIP (Virtual Instruction Package) library.

The user can request the loader to print a memory map, which defines
the memory areas occupied by the program and lists all subroutine calls
and external references.

Once a program has been loaded by the Linking Loader, it is fully trans-
lated into 16-bit machine language codes and is ready to execute or be
saved in SAVE file format.

Debug Aids (TAP or PSD) (Section 6)

During the early stages of program development and checkout, TAP and PSD
permit the programmer to examine, alter, and list the content of memory
locations in response to simple terminal keyboard commands. A ''trace"’
function controls dynamic execution of object programs, with diagnostic
printout of register contents at selected intervals (for example,
whenever a specified effective address is formed).

Tape Punch and Copy Utilities (Section 7)

Memery Dump and Load (MDL): Loading of an object program and acompanying
external library or subroutine programs is often a time consuming
operation. MDL saves the result of a program building session by
punching the entire loaded program on paper tape in the self-loading
format. The program can be restored to the same memory area from which
it was punched by using APL or the key-in loader. MDL uses the low- or
high-speed punch.

Paper TapeCopy (PTCPY): This utility program uses the high-speed
reader-punchto duplicate and verify paper tapes punched in any format
(ASCII, object, or self-loading).

Library Subroutines (Section 8)

Prime supplies an extensive library of math and input/output subroutines
to support the FORTRAN compiler and to supplement assembly language
programs. Most of the library is in a single disk file, FINLIB, which
is automatically loaded by the loader's LIbrary command. Section 8
identifies the main library components available to the user. For full
information on library subroutines and their use, refer to the Prime
Software Library User Guide.

1-3

PROGRAM DEVELOPMENT EXAMPLE

In operation under DOS or DOS/VM, each of the programs described in this
manual is invoked as an external command. (See DOS-DOS/VM manual for
details.) For example, the following DOS keyboard dialog creates, loads
and runs a simple FORTRAN program: (User input is underlined.)

OK; ED (Text editor is requested. OK; is the
GO DOS prompt message.)

INPUT (Editor is loaded and in input mode,
ready to accept FORTRAN program text.)

_WRITE (1,10) (\ is form feed character - tabs to
column 6. One space then starts text
on column 7 as required by FORTRAN
compiler.)

10\\ FORMAT ("TEST MESSAGE")

\ CALL EXIT (Ensures safe return to operating system)

\ EXD

(CR) Carriage return switches to edit mode.

EDIT

TOP ,PRINT 99 User takes a look at file.

«NULL.
WRITE(1,10)

10 FORMAT ('TEST MESSAGE!)
CALL EXIT
END

BOTTOM

FILE TEST User files it under name TEST.

OK;FIN TEST Control returns to DOS. User invokes
FORTRAN compiler to generate object file.

GO

NO ERRORS (FIN-1802.007)

OK; LOAD User invokes linking loader.
GO

$LO_B+TEST Dollar sign is loader's prompt character.
B+TEST is name of binary (object) file
created automatically by compiler. Loading
starts at default value of '1000.

1-4

*START
*CMLOW

*BASE
*BASE
*BASE
*BASE
*BASE

LIST
FSAl
FSA6
FSHT
AC4
IOCS$T
LUTBL
OSADES
OSAP02
OPSCHK
PiIN

LI command automatically loads supporting
LC subroutines from FORTRAN library. LC (load

complete) indicates completion.

$MA Load Map is requested.

001000 *LOW 000200 *HI GH 006311 #*PBRK 006312
063753 *CMHGH 063753 *SYM 057420 “Ul! 000001

0602060 000212 600777 6800777
001464 001526 901525 0061525
002447 062511 002510 062516
003335 068033668 6803365 603366
004071 O@04111 664114 004114

806001 FSWA 601626 FSWX 001026 FSIO 001102
001436 FSA3 001436 FSA2 061442 FSAS 001442
001447 FSCB 001766 FSIOBF 064611 FSER 004713
004726 ACI 605000 ACc2 005001 AC3 605002
005003 acs 005004 WRASC 005005 10CS$ 005012
605111 FSAT 005123 FSATI 005125 WATBL 005170
005201 PUTBL 005236 RSTBL 005273 OSADOE7 005330
005527 ISAA01 005571 ISAP02 9005603 OSAA01 005763
005767 PRWFIL 006063 EXIT 006866 ERRSET 006073
006076 TLIN 066127 TIIB 806236 T10B 006235
006242 P10U 006263 P10B 006301 PLIB 006365

$SA *TEST Program memory image is saved under
filename *TEST. Low, high, starting
location and other parameters are supplied
automatically by loader. (See Map.)

$ QU
OK;R *TEST Control returns to DOS. User uses Run

command to start test program, which
TEST MESSAGE takes control. Printed message indicates

successful operation

OK;

This simple example shows a typical interaction of DOS, ED, FIN and
LOAD. The user could also punch a self-loading tape of the memory
image using MDL, or use TAP or PSD to examine or alter the memory image.

Operating with paper tape is similar but programs must be loaded from
the supplied self-loading tapes.
tape operation appear in the appropriate sections of this guide.
Section 9 provides additional information for the paper tape user.

1-5

Any special instructions for paper

SYMBOLS AND ABBREVIATIONS

Symbols and abbreviations used throughout the test are defined in
Table 1-1.

Table 1-1. Symbols and Abbreviations

Symbol Definition

Number
Representations

1000 1000 decimal

"1000 1000 octal

$1000 1000 hexadecimal

Terminal Keyboard

Functions:

~CR. Carriage Return

LF. Line Feed

~NL. Next Line (Carriage Return or
Line Feed)

\ Backslash (upper case L)
used as tab character

" Delete character (cancels last
typed character)

? Kill character (deletes current
line)

Miscellaneous:

EA Effective Address

(EA) Content of Effective Address

[] Brackets enclose optional
parameters

a) Mandatory Space Character

1-6

SECTION 2

EDITORS

PART 1 TEXT EDITOR

EDITOR FUNCTIONS

Summa

Prime's text editor programs, generically ED, apply the data handling

ability of the Prime processor to the mechanics of generating source

programs or text files that are compatible with the DOS and/or DOS/VM

file structure. For example, the Editor program accepts characters

typed at the terminal and stores them in high-speed memory. Rough

text can be printed in part or in entirety and inspected for errors.

With editing requests, errors can be corrected, and text can be

inserted or deleted.

Completed text can be saved as named disk files or punched on paper

tapes. For a discussion of files, refer to the DOS (DOS/VM) User

Guide. Files created by the Editor can be transferred from disk to any

storage medium or printing device available in the system.

Through the use of the appropriate Editor module, existing tapes or

disk files can be read in memory and altered or appended to other text.

CONFIGURATION

For Prime software revision 6, there are four versions of
the Editor available on the master disk: ED, EDLIN, BPTRED and PTRED.

These versions differ in whether or not they handle BOX editing functions

and whether or not they handle file functions. (See Table 2-1.) The

different versions of the Editor are provided because BOX mode editing

functions are isolated into a separate module that can be optionally

loaded. In addition, all file operations are isolated within the

Editor File System (EFS) module. The BOX mode and the file operations

are independent and mutually exclusive. Thus, a degree of flexibility

and space saving is achieved by providing Editors with various

combinations of BOX, FILE, and standard editing modules and by allowing

the user to copy the desired version of the Editor program into the

user's command directory (usually CMDNC#). Refer to Table 2-1.

2-1

Table 2-1. Available Editors and Scope of Functions

Handles Files Does Not Handle Files Functions

ED BPTRED BOX Mode

EDLIN PTRED No BOX Mode
As indicated by the table, (1) the Editor, ED, has the full set of
functions (commands) described in this document; (2) EDLIN is used
for handling files and LINE editing but does not have the BOX editing
commands, thus it is smaller than ED and useful if the user does
not want to do BOX editing; (3) BPTRED is an Editor for use with
paper tape, and does not handle files but does provide the BOX
editing commands; and (4) PTRED is an editor for paper tape and line
editing only, and PTRED does not allow file handling or BOX commands.

Segregating Editor functions in four different versions allows a user
to achieve a significant saving of space. For instance, use of EDLIN
or PRTED vs. ED allows over three additional sectors of space to be
saved, which may be desirable if the user does not need BOX editing
(in the case of EDLIN) or BOX editing and file handling (in the case
of PRTED).

For the convenience of users that have chosen to operate with older
versions of Prime software and for users in the midst of updating
their software, Table 2-2 shows the versions of the Editor that were
available on previous software versions.

Table 2-2 lists the high address of the four current versions and all
previous versions of the Editor (based on a line size of 145
characters).

2-2

Table 2-2. Software Revisions, Editors and their
High Addresses

Version Rev. 3A Rev. 5 Rev. 6 Command File Name (Rev. 6)

ED "12044 "20733 "21267 C<ED
EDLIN "14771 C«EDLI
BPTRED "15367 C«BPTE
-PTRED "17164 "13776 C<PTED

FILED "12732

Note, at Rev. 5, two versions of the Editor existed; ED and PTRED.
The difference was in the Editor file system modules (EFS). Under

PTRED, no temporary files were allowed and the LOAD and FILE Editor
commands did not work. (However, UNLOAD, DUNLOAD, BOXIN and BOXOUT
commands did.) The high address of PTRED was over '17000, making

8K stand-alone operation difficult, At Rev. 6, editor commands
inconsistent with the configuration (e.g., UNLOAD for PTRED) result
in the illegal command message (?).

ENTERING AND LEAVING EDITOR CONTROL

Editor Command Syntax

For details of the operating system command language, refer to the
Prime Computer User Guide for Disk and Virtual Memory Operating
Systems (the DOS Manual).

In this description of the Editor and its commands, strings that are
to be specifically input are printed in all capital letters, variable
arguments have initial capital letters, and if an argument is optional,
it is enclosed within brackets [].

Entering Editor

The Editor may be started from DOS or DOS/VM command level by the
external command:

ED [Filename]

Similarly, the line editor EDLIN may be invoked by the external
command:

EDLIN [Filename]

2-3

The paper tape editor may be invoked by the external command:

PTRED

and the paper tape editor with BOX mode functions may be invoked by
the external command:

BPTRED

If Filename is specified, the operating system searches the current
UFD; if the file is found, the operating system loads it into the
Editor's text buffer in high-speed memury and starts the Editor in
EDIT mode.

Example: (In all examples in this section, user input is underlined.)

OK, ED FINXMP

GO

EDIT

DOS (DOS/VM) prints GO, indicating that the ED program has been loaded
and started; ED prints EDIT, indicating that ED is ready to accept
editing requests.

If no Filename is specified, ED starts in high-speed INPUT mode.
Example:

OK, ED

GO

INPUT

If the specified Filename is not found in the current UFD, DOS
(DOS/VM) prints an error message. Example:

OK, ED FTNXML

GO

FINXML NOT FOUND

ER, ED FTNXMP

GO

EDIT

2-4

EDITING IN DISK ORIENTED CONFIGURATIONS

Filenames

Filenames used by the text editors, ED and EDLIN, are formed
according to the same rules as any DOS or DOS/VM names.

Leaving Editor

The FILE, QUIT, and PAUSE requests, issued in EDIT mode, return the
user to DOS or DOS/VM command levels. The FILE request causes the
contents of the Editor's text buffer in high-speed memory to be
stored on disk under the specified Filename. Examples:

FILE TEXTF1

OK,

Using the specified filename, DOS or DOS/VM stores the file in the
current UFD and responds OK,. The specified Filename may differ
from the original. The user may prefer to file edited versions
under a different Filename in a temporary file until editing is
complete. When the final version is checked and verified, the old
versions can be deleted by the DELETE command and the final version
can be renamed by the CNAME command. (Refer to the DOS User Guide for
information about CNAME, and DELETE.)

The QUIT request makes it possible to return to DOS without writing
over the disk copy of the file that is being edited. This is useful
when an error or accident has badly garbled the contents of the
editor's text buffer or the edited file was only being examined.

The PAUSE request, unlike FILE and QUIT, does not terminate editing.
As long as the Editor memory image is intact, editing can be
resumed by issuing the DOS (DOS/VM) START command with no arguments
(e.g., typing: S).

Error Restart

If an error halts the processor, it is often possible to restart the
Editor without losing the edited text. For further information,
refer to ''Recovery Procedures".we J FS See

2-5

EDITING WITH PAPER TAPE CONFIGURATIONS

In previous revisions, paper tape handling with the Editor was

awkward, especially on the ASR paper tape reader-punch. At Rev. 6
the following improvements have been implemented:

Punching:

The punch is started by the Editor on the ASR, avoiding the
problem of garbage characters on the tape (notably carriage
return/line feed).

Blank leader is punched as well as trailer.

All punching is done by FTNLIB routines consistent with IOCS.

Reading:

The Editor automatically starts the ASR reader for each
record (DOS and DOS/VM).

Initial leader is read and ignored.

High-speed paper tape is punched with parity ON and ASR paper tape
is punched with parity OFF except for the XOFF- CR.-.LF. sequence
at the end of each record. Tapes punched on both devices can be
read by both the high-speed and ASR-readers. (Caution: punching
on the ASR punch must be done in BRIEF mode.)

EDITOR MODES

The editor has two general modes of operation: LINE (EDIT) mode and BOX
mode. LINE mode allows line-by-line editing of files consisting of
ASCII text (e.g., source files). BOX mode allows the editing of
two-dimensional files as pictures.

In LINE mode, it is possible to operate in both an INPUT mode and an
EDIT mode. INPUT mode is used for entry of new text. EDIT mode is
used to locate, alter, and print lines of text and to read/write
files and paper tapes. BOX mode is entered from LINE mode. BOX mode
contains no concept of input as defined by INPUT mode; and therefore,
the only way to enter INPUT mode from BOX mode isto first enter
LINE mode.

2-6

Character Set

In either INPUT, EDIT, or BOX mode, the Editor accepts any of the
characters of the 128 character ASCII subset. However, certain
special characters have special effects (See Table 2-3.) Non-print-
ing characters such as X-OFF and others that operate with the CTRL
key pressed can be entered, stored in the Editor's buffer, and filed.
However, when such characters are printed, the Editor converts them
to an up-arrow followed by the octal equivalent of the character.
For example, an X-OFF character is echoed as +223.

Strings

A string is a series of numerals, alphabetic characters, or
punctuation. Certain punctuation characters have special signifi-
cance. (See Table 2-3.)

EDITING IN LINE MODE

In the past, the semicolon was treated as a new line in both INPUT
and EDIT modes. It now behaves as follows:

Meaning of Comma and Semicolon in INPUT mode: In INPUT mode, the
commahas no special meaning. The semicolon, however, is treated as
a new line without reading a new line. Hence, the sequence:

A3B;3;C3;D

causes the file to contain:

A
B

C
D

Note the null line effected by ;; without space between them.

The sequence:

A;B;3

puts A and B into the file and enters EDIT mode.

Meaning of Comma and Semicolon in EDIT mode: In EDIT mode, the semi-
colon 1s synonymous withcomma except that it is recognized for all
commands including INSERT (I), RETYPE (R), OVERLAY (O), and APPEND (A).esatesee eeokeeak rete aM 4 24 4 sek Ce2 VS

2-7

Table 2-3. Special Characters for
LINE Mode Editing

Character Effect

(Shift L) INPUT Mode: Default ''TAB" character. Inserts spaces up
to next tab position. Standard tab positions

\ are in column 6, 12 and 30. Others may be set
up by TABset request. EDIT Mode: Do not use.

" INPUT or EDIT Mode: Default 'ERASE'' character. Deletes
preceding typed character. Each use of " deletes
another proceding character: For example,
ENTER " '' '! " ' deletes the word ENTER. The
erase character can be changed to another ASCII
character by the ERASE or SYMBOL request.

? INPUT or EDIT Mode: Default "KILL" character. Erases

entire line to the left of the character. The kill
character can be changed to another ASCII character
by the KILL or SYMBOL request,

#f EDIT Mode: Default ''BLANKS' character. Matches any
number of spaces in LOCATE or FIND requests. (Treated

as normal character in Change.) For example, L DEC 10

COMMENT could be located by L #DEC#10#COMMENT.

INPUT Mode: Normal printing character.

! EDIT Mode: Default "WILD" character. Matches any char-

acter in LOCATE or FIND requests. (Treated as normal

character in CHANGE.)(In OVERLAY, changes current char-

acter to space.) Example: L D!C locates a line contain-

ing either DEC or DAC. INPUT Mode: Normal printing char,

tor A INPUT or EDIT Mode: Default "ESCAPE" character.

(up arrow)

tddd - Enters a 3-octal-digit code for non-

printing ASCII control characters, such
as +223 for X-OFF.

tU, - Permits alphabetic characters to be stored
+L as capital or lower case codes. (Useful

only with upper/lower case printing devices.)
All characters after tL are stored as lower
case. All characters after +U are stored
as upper case. Does not affect symbols,

4N,+S,- Direction characters +, +, «, and > in
4E,t+W BOX mode.

- Except for above forms, + may be used as
a normal printing character by typing ++.

2-8

Table 2-3. (Cont'd)

Character Effect

* EDIT Mode: Abbreviation for XEC EDLIN when

entered in request string. (See XEC, MOVE.)
INPUT Mode: Normal printing character.

, EDIt Mode: Separates multiple request ona
Tine. INPUT Mode: Normal printing character.

3 EDIT Mode: Default ''SEMICOLON' character.
Terminates INSERT, REPLACE, OVERLAY and APPEND

requests in request lines, as in:

N,L TEST LINE, R TL;*
INPUT Mode: Acts as a new-line character.

$ EDIT Mode: Default "'CPROMPT" character. Printed
whenever the Editor is ready to accept a new
command line. Otherwise, $ is a normal printing
character.

 & INPUT Mode: Default 'DPROMPT" character. Printed
whenever the Editor is ready to accept a new
input line. Otherwise, & is a normal printing
character.

NOTE: The characters \, ", ?, #, !, +, 3, $, and §& are default
characters for TAB, ERASE, KILL, BLANKS, WILD, ESCAPE, SEMICOLON,
CPROMPT, and DPROMPT. These characters can be respecified by the
SYMBOL command.

2-9

Example (User input is underlined):

I_XXX,P,,3;P

XXX,P,,

R_Y,Y;P

Y,Y

O A!B,C;P

A B,C

Wherever a comma was used as a separator, a semicolon can be used
as in the following command line: I XX;P3;N5;*5;T;P30 which
inserts and prints XX every fifth line for 25 lines, does a TOP
operation and prints all 30 lines.

Two adjacent semicolons (or commas) put ED into INPUT mode. Example:

I XX; ;ABCD

inserts XX and goes into INPUT mode. The ABCD is then read as an
input line. The resulting text would be as follows:

XX
ABCD

An initial or terminal semicolon (or comma) also puts ED into INPUT
mode. Examples:

»ABC

N,P,

In a complex request string, to visualize the result; put the INPUT
command into the null spaces. Examples:

I XX; INPUT ;ABCE

and

I XX; 5ABCD

are equivalent. Also:

INPUT; ABC

2-10

and

; ABC

are equivalent. And:

N,P, INPUT (.NL.)

and

N,P,

are equivalent.

The INPUT request signals the editor to enter INPUT mode. The second
semicolon, comma or new line closes the command. In sequences, such

as

the third character is always interpreted in INPUT mode.

NOTE: The requests INPUT (PTR) and INPUT (ASR) change the device
immediately, thus the remainder of the typed line is ignored by ED.

Entering INPUT Mode

INPUT mode is in effect:

1. When the editor is started by the ED (EDLIN, PTRED, or BPTRED)
command without a Filename specified.

2. When a null line (two successive CR characters) or two successive
semicolons or commas are entered during EDIT mode. Any new text
follows the last line that was edited or printed.

2-11

The text of a new file may be typed into memory from the terminal.
In INPUT mode, the terminal is used as a typewriter; everything
entered at the terminal (except a few special control characters)
is stored in the Editor's buffer in high-speed memory. No response
is printed, so the text may be entered as fast as the user can type.

Lines

Text is entered a line at a time by the carriage return key (CR)
which is stored in the Editor's buffer as a new line (NL) character
('212). Each line thus consists of a string of ASCII characters
terminated by a NL character. Lines are stored in the same sequence
as they are entered. Subsequent editing is done a line at a time.

Correcting Typing Errors

The erase ('') and kill (?) characters may be used to correct typing
errors in either INPUT or EDIT mode. Each use of the erase character
deletes one of the preceding typed characters. For example, the line:

TEST LNN''INE 1 (CR)

is stored in the buffer as: TEST LINE 1.

The kill character is used when a line is so hopelessly garbled that
it must be retyped. It deletes all preceding characters on the line,
for example:

TJST LZ" " '" "' ' ' ER?TEST LINE 2 (CR)

After using the kill character, continue typing the desired line
before entering the text with a CR. If the kill character is
followed immediately by CR, it has the same effect as entering a
null line, and switches the editor to EDIT mode. The characters "'
and ? are the default erase and kill symbols. To free them for use
in text, other symbols can be assigned by the ERASE, KILL and SYMBOL
commands.

Tabulation

To simplify arrangement of text in vertical columns, ED recognizes
the FORM character (upper-case L) as the tabulation character.
On input, this character echoes as a backslash (\), but it is
interpreted as a signal to enter enough space characters to reach
the next tab stop.

2-12

Standard tab stops for ED are in columns 6, 12, and 30 (mainly for
convenience in coding PMA programs). However, up to eight tab
stops may be set in any columns using the TABSET request. For
example, in microprogramming the tab stops normally set by the
user are 8, 16, 21, 24, 32, 39, 45 and 51.

Tab stops are set for the life of the local invocation of the
Editor. If the user leaves the Editor via the QUIT, FILE requests,
or CTL-P; then the tab stops are reset to the default values.

Entering EDIT Mode

To enter EDIT mode from INPUT mode, enter a null line (i.e., two

CR's in a row or a CR following a kill (?) character, or two

semicolons, etc.).

EDIT MODE

The editor is in EDIT mode:

1. After ED is started from DOS (DOS/VM) by an ED command (or

other Editor commands) that specifies a Filename present in

the current UFD.

2. After two successive CR characters or a kill character followed

by a CR, or two successive semicolons entered in INPUT mode.

3, After a restart by the START command either at location "1000

(refer to the DOS Manual for a discussion of START).

In EDIT mode, the editor accepts editing commands from the terminal.

(The commands are described later in this section.)

Pointer Location

Most editing commands in LINE mode depend on the position of a

conceptual pointer that keeps track of the line to be edited. The

pointer is always considered to be located at the beginning of a

line; that is, between the CR that terminates the preceding line

and the first character of the line to which it points. The pointer

location can be altered by the BOTTOM, CHANGE, DELETE, DUNLOAD, FIND,
INSERT, LOAD, LOCATE, MODIFY, NEXT, PRINT, PUNCH, TOP, UNLOADUINLUAL 3

and XEQ commands.

2-13

To determine the present pointer location, give the PRINT or WHERE
commands. ED prints the line containing the pointer and waits for
further requests. After a VERIFY command, the line containing the
pointer is automatically printed after every canmand that changes
the pointer location or the line. (The Editor is initialized in
the BRIEF mode, which speeds editing by suppressing verification
printouts.

If the Editor is asked to print the top line (one above the first line)
of the file, the bottom line (one beyond the last line) or a newly
deleted line, it prints .NULL. If an attempt is made to move the
pointer beyond the limits of the text image, TOP or BOTTOM is printed.

When starting in INPUT mode with an empty buffer, there is no need to
pay attention to the pointer. Text can be entered at the terminal
just as if at a typewriter (except that the ", the ?, and the tab
(Shift L) characters cannot be entered indiscriminately).

When an existing file is specified for editing, the pointer is
initialized at the top of the file. If the user switches to INPUT
mode, anything that is typed is inserted at the beginning of the file.

During editing in LINE mode, the user must keep track of the pointer
position. After a switch to INPUT mode, any new text is inserted
following the line containing the pointer. As each new line is
entered, the pointer moves along with it. After entering a block of
new text in INPUT mode and returning to EDIT mode, the pointer is
positioned at the last line entered.

Verify/Brief Modes

The Editor is initialized in BRIEF mode for quicker editing. Nothing
is printed unless the user enters a PRINT request. After a VERIFY
request, every line that is located or altered by an editing request
is also printed.

Returningto INPUTfrom EDIT Mode

A null command (two CR's or semicolons in a row or a kill character

followed by a CR) returns the Editor to INPUT mode.

2-14

LINE MODE COMMAND DESCRIPTIONS

Commands may be either spelled out fully or abbreviated.
(Letters that are essential in the abbreviations are underlined.)
There must be one space between an Editor command (or abbreviation)
and its character arguments, if any.

If a command causes the pointer to reach the top of the file, TOP
is typed and the request is terminated. If the request causes
the pointer to reach the bottom of the file, BOTTOM is typed and the
request is terminated.

APPEND Stringl

Appends Stringl to the end of the current line. Trailing blank
characters, if any, are eliminated before Stringl is appended.
The string can be terminated by either a semicolon or CR character;
however, commas are treated as normal printing characters. A space
must separate the request APPEND and the argument Stringl. Example:

PRINT
KXXKK

APPEND _YYY
PRINT
XXXXXYYY

Tab characters are used in the APPEND command to space Stringl to
the first tab position beyond the end of the line. Example:

V,TAB 7, P
AAA

A X X
Pp
AAAX X

BOTTOM

Moves the pointer one beyond the last line of the file, (a dummy line).

2-15

BRIEF

Speeds editing by minimizing responses; only the PRINT request
causes printing. This is the Editor's normal (default) condition.
When the Editor is entered from DOS or DOS/VM command level,
BRIEF mode is automatically set in effect.

CHANGE %Stringl%String2% [n G]

Changes the first occurrence of String] to String2 on the current

line. If the optional argument n is supplied, CHANGE searches n

lines and changes Stringl to String2. If G is present (Global),

all occurrences of String] on the current line are changed to

String2. If both n and G are specified, then an n-line search is

made and all occurrences of Stringl are changed to String2.

The delimiter, %, may be any character that is not contained in
Stringl or String2 and is other than", ?, 3, or comma.

The pointer moves to the start of the nth line. Ifn is 0, 1, or
unspecified; only the current line is examined and the pointer does not
move. If n is greater than the number of lines in the text buffer
after the current line, the pointer is positioned at the bottan of
the file, and the message BOTTOM is printed. Examples:

V, P
STAZLOT
C%Z% 2%
ZLOT
STROG

DELETE [n}
TO String

DELETE [n]: Deletes n lines. The argument n may be positive or
negative. The current line is always included in the count.
If n is not specified or is +1, 0, or -1, only the current line is
deleted. The pointer is left at the last line deleted.

2-16

Example Deleting One Line:

Contents of a Command File Before Editing:

elJULL

AVAIL
AVAIL ONE

AVAIL TWO

AVAIL THREE

AVAIL FOUR

STATUS

Editor Request:

After:

T»F AVAIL TWO

D

eNULL e

AVAIL

AVAIL ONE
AVAIL THREE

AVAIL FOUR
STATUS

2-17

Example -- Deleting Multiple Lines:

Before:

3000 REM PROG TO WRITE HEADERS
3050 MS$=*
3060 NS$="*MNEMONIC*
3070 OS$=*OPCODE®
3080 FS=*FUNCTION®
3090 I$="*AVAILABLE ON*
3100 WRITE#2s "PRIME INSTRUCTION SET?
3110 WRITE# 25M$
3120 WRITE# 25MS
3130 WRITE# 2sNS$s0SsFSs "TYPE’s ‘OPTIONS
3140 WRITE#@ 25M
3150 WRITE# 3, *OCTAL OP CODES?
3160 WRITE# 35MS
3170 WRITE# 350$5NS»s "FUNCTIONAL DESCRIPTION ®
3180 WRITE 35M$
3190 WRITE# 4s *INSTRUCTION TIMING®
3200 WRITE# 4AsMS
3210 WRITE# 45MS
3220 WRITE# 45 *INSTRUCTION's 'P100's *P200's "P300 (750 NS)*'s*P300 ¢€600 NS
3230 WRITE# 45MS
3340 RETURN
5000 REM FILE MANIPULATOR TO PRODUCE MNEMONIC LIST

Editor Requests:

F 3000, P

3000 REM PROG TO WRITE HEADERS
D 21

After:

S000 REM FILE MANIPULATOR TO PRODUCE MNEMONIC LIST

2-18

Example -- Deleting When n is Negative

Before:

175 M$= "ABC!
195 GOSUB 3000
199 PRINT 'HEADERS WRITTEN
200 GOSUB 3050
210 READ# 1, A$, BS, C$

Editor Requests:

F 200

After:

175 M$= 'ABC!
210 READ# 1, A$, BS, C$

2-19

DELETE TO Stringl: deletes all lines until a line containing String]
is encountered. The current line is always deleted. The line containing
String] is not deleted. The pointer is set at the line containing
Stringl. Example:

Before:

NUMBER NAME ADDRESS CITY

0001 JANE DOE 13 13TH STREET BOSTON, MA

0013 JOHN DOE 1 ELM STREET CLEVELAND, O

0100 JOE SCHMOE 4 OAK STREET NATICK, MA

Requests:

L DOE

DELETE TO SCH

After:

NUMBER NAME ADDRESS CITY

0100 JOE SCHMOE 4 OAK STREET NATICK, MA

DUNLOAD

Refer to the description of UNLOAD.

ERASE %

Changes the current erase character to the character % (any ASCII
printing character except those defined in SYMBOL command). When
the Editor is entered from command level, the erase character is
set to ''. Example:

ERASE #;

INPUT
"FOUR SCORE AND 7# YRS###YEARS AGO

Resulting Text:

"FOUR SCORE AND SEVEN YEARS AGO

2-20

FILE [Filename]

Writes the contents of the Editor's text buffer into a file called
Filename in the current UFD. If Filename is not specified, the file
is stored under the original Filename specified in the Editor
command (e.g., ED). If no Filename has yet been specified, or if two
or more Filenames have been used, the Editor types the message
WHAT NAME?; the user should repeat the request using a valid
Filename. Example 1:

FILE ZILCH

OK,

The contents of the text buffer are written into the file ZILCH and
the Editor returns to DOS (or DOS/VM) command level.

Example 2:

ED OLDFIL
GO
EDIT
C _/AT/AM/300 G
FILE
OK;

The changed contents of the text buffer are written into the file OLDFIL
that was specified at the time ED was invoked.

Example 3:

ED MAIN
GO
EDIT
an

LOAD PROGI
yo!

LOAD PROG2
FILE
WHAT NAME
FILE PROG2

The contents of the text buffer are written into the file PROG2.,

File Handling

Name Syntax: File names must conform to the DOS/VM CMREAD rules. These
rules are:

1. All characters must be printing characters.
2. The name cannot contain "',?, or imbedded blanks.
3. The first character must be non-numeric.
4. Lower case letters are converted to upper case.

2-21

The Editor does not create files that cannot be accessed from the
user terminal under any Prime operating system.

SAM/DAM Files: Only SAM or DAM files can be accessed by the Editor.

If an attempt is made to access a segment directory or UFD,
the message:

Filename ILLEGAL EDIT FILE

is printed and the operation aborted.

Truncation: All file write operations (FILE, UNLOAD, DUNLOAD, and

BOXOUL) overwrite the old file and truncate as opposed to deleting

and rewriting. Hence, there is no danger of a complete loss of a

file because of an abnormal halt after the delete but before the

write.

Update Protection (DOS/VM only): When a file is edited, it is left open
in read/write mode on unit 5 for the duration of the edit (until QUIT or
FILE). As a result, multiple read access of a common file is pre-
cluded, but any edited file is protected from asynchronous updating
from two or more people. The fact that the file is left open is
functionally invisible to the original user, but causes the message:
Filename IN USE for all other users.

Unique Temporary Files: To resolve any possible conflicts, the
Editor uses temporary files T###XX where XX starts at 00 and proceeds,
if necessary, up to 99 until a suitable, unused file name is found.
For example, if two users were editing large files on the same UFD,
temporary files T###00, T###01, T###02, and T###03 would be used.
Which user gets which file names depends solely upon demand.

Error Messages

All error messages are precise and, when applicable, include the file
name. For example, the command LOAD FILEA when FILEA was not found
results in the message FILEA NOT FOUND.

FIND String]

Moves the pointer forward to the first line beginning with Stringl.

The FIND request facilitates location of lines by statement labels. If

an end of file is reached, the pointer is positioned at the last line of

the file and BOTTOM is printed. A blank (ASCII space) must separate the

2-22

FIND request and the argument String (e.g., F120 causes an error;
F 120 is the correct form). Example:

Before:

...* (Assume pointer is at some position, nearer the TOP
(beginning) of file)

DIMENSION SET(500)
READ (2,5,) SET(I), I = (, 200)

50 FORMAT (6F12.8)
TEXT = AVRG (SET, 200)

Requests:

VERIFY

F 50
50FORMAT (6F12.8)

After:

DIMENSION SET (500)
READ (2.5) SET(I), I = 1, 200)
50 FORMAT (6F12.8) « pointer position
TEXT = AVRG (SET, 200)

Text is unchanged but the pointer has been set to line that was found.

INPUT Device

Reads text from the input device specified by the argument Device. The
text is entered into the Editor's buffer in high-speed memory following
the current pointer position. Possible values for Device are:

(TTY) Read from terminal (default value).

(PTR) Read from high-speed paper tape reader.

(ASR) Read from ASR paper tape reader.

The close parentheses in the argument is optional. For example:

INPUT (ASR)

and

INPUT (ASR

2-23

are equivalent. With either terminal input or paper tape input, a
blank line (two successive CR's, or a semicolon followed by CR) in
the contents of the text input from Device will stop the input and
cause ED to return to EDIT mode. Blank leader and trailer is ignored.

INPUT (PTR) and INPUT (ASR) change the device immediately, so the

remainder of the line typed at the terminal is discarded. For example,

in the line:

INPUT (PTR); T; L SUBR BEGINS

the TCP and LOCATE requests are not executed and must be issued again

when control returns to the Editor after the INPUT (PTR) request 1s

complete.

Example:

INPUT (PTR)ae

HSMP1 REV XX*
*
*

x SENSE SWITCH:
* 1] HALT AT END OF PASS
* 2 BYPASS RELOCATION
* 3 NO ASR-HALT ON ERRORS

* 4 BYPASS MACHINE CHECK MODE
* 5 BYPASS PAGE TEST
FILE GDMT1

INSERT String]

Inserts Stringl as one text line without switching to INPUT mode.

(Stringl is inserted as the line following the line currently
pointed to.) The pointer is positioned to the beginning of the
inserted line. Either a semicolon or a CR may be used to terminate
this command. Also, a blank (ASCII space) must be typed between the
INSERT request and the argument Stringl; otherwise, an error message
is printed.

2-24

Example:

Before:

100 IF (ALT RIN .EQ. 0) GO TO 200
200 IF (A3 .NE. 0) GO TO 210

Request:

F 100
INSERT GO TO ALTRIN

After:

100 IF (ACT RIN ,EQ. 0 GO TO 200
GO TO ALTRTN

200 IF (A3 .NE. 0) GO TO 210

KILL 3

Changes the current kill character to the character % (any ASCII
printing character except those defined in the symbol command). When
the Editor is entered from the operating system command level, the kill
character is initially set to ?. Example:

KILL @;

INPUT

QWERTYIOUP@ Q1?CALL?TTYIOU

Resulting Text:

Q1?CALL?TTYIOU

LOAD Filename

Loads Filename into the Editor's text buffer following the current
line (current position of the pointer). The pointer moves to a null
line following the file loaded. Examples:

2-25

Contents of: File, BOX File, SUBR File, DECSN File, LEXIT

x

HMR XE KK

¥ *

* ¥

MRK ERK XX * * *
¥ kkk kK * XXx

* * * * N

* SsSo* * ze=">NNN
x * * x

kK Kk x
k x

Editor Requests, Case lL:

OK, ED BOX
CO
EDIT
B

LOAD DECSN
EDIT
LOAD SUBR
EDIT
LOAD BOX
EDIT
LOAD _LEXIT
EDIT

2-26

Resulting Text:

*x

KKKKKKKEKS

x *

* *

KKAEKKKKKK

< >= me >NNN

KEKKKKEKKK

* *

x *x

KaKKKKKKKK

*

x

XXX Position of Pointer

Editor Requests, Case 2:

OK, ED BOX
co
EDIT
LOAD SUBR

2-27

Result:

KaKaKKS

x S$SS5 *

kKkKaAEK*

*

x

kak kk kkk ®

* x

* k

KAAKKKKEKKK

*

Note: This time SUBR was inserted before BOX; this is because at the
initial invocation of the Editor, the pointer is positioned at the TOP
of the file. When the LOAD command was given, the file specified in
the LOAD command, SUBR, was inserted after the current position of
the pointer, the TOP of file BOX, and before the body of the text of
file BOX.

The user must pay attention to the current position of the pointer when
using the LOAD command to be sure text is arranged in the desired
order.

LOCATE Stringl.

Moves the pointer forward to the first line encounted that contains
the argument Stringl. The special meaning of the t, #, and !
characters is especially useful with this command (See Table 4-1
and the examples). The request LOCATE and the argument String] must

ALN SAT T

be separated by a blank (ASCII space) character. Example:

2-28

Contents of Text Line:

EVAL = F(ARG) + F(ARG/2)

The following locate requests would locate the above line (provided it
was unique in the area of text searched):

L EVAL = F(ARG)

L EI!

L Ci!

L_# F (ARG/

L_ +262 (ASCII 2)

2-29

MODE Parm

Indicates the mode change indicated by Parm. Parm may be:

PRUPPER

or

PRALL

or

PROMPT

or

NPROMPT

or

LINE

or

BOX [v h]

PRUPPER and PRALL are useful if devices with upper and lower case

capabilities are present.

The effect of PRUPPER is to cause +L to be printed before lower case
letters and +U before any upper case letters following lower case
letters. For example, the string:

My Name

would be printed as:

MtLY tUN*LAME

The effect of PRALL is to print lower case letters as lower case letters.
The string above would be printed as:

My Name

(if the device that the string is printed on has upper-lower case
capabilities and software interface).

2-30

The effect of PROMPT is to cause the Editor to print a prompt
character ($ in EDIT mode, § in INPUT mode) whenever the Editor
is ready to accept input from the terminal.

The effect of NPROMPT is to cause the Editor to stop printing the
prompt character.

The default values are PRUPPER and NPROMPT.

The use of the MODE command to specify PRUPPER or PRALL is independent
of and does not conflict with its use to specify PROMPT or NPROMPT.

MODIFY %Stringl%String2% [n G]

MODIFY has the same format as CHANGE, but the action is to locate the
string on the line, and copy String2 on top of Stringl. The alignment
of the remainder of the line is unaltered, since any portion of
String] that is not specifically replaced is replaced with blanks.

Example: The line:

1234567

is changed by the requests:

MOD /34/X/

to:

12X 567

The line:

1234567

is changed by the request:

MOD/34/XXX/

to:

12XXX67

2-31

MOVE Bufferl Buffer2

Moves one line of text to Bufferl from Buffer2. Available buffers are:

STRA, STRB, STRC Three string buffers

EDLIN Buffer containing the last request typed.

INLIN Buffer containing current line being edited.

Refer to the XECUTE Buffer request.

NEXT [n]

Moves the pointer n lines forward if n is positive, or backward if n is

negative. Ifn is 0 or not specified, it is assumed to be l.

OUTPUT Parm

If a 9600 baud display terminal is connected to Port 3 of the System

Option Controller (SOC), the output produced by verification prints can

be directed to that terminal rather than the user terminal. This is

done by specifying Parm as either:

QUTPUT (TTY)

or

OUTPUT (DISPLAY)

However, the output of an explicit PRINT request is always directed to

the user terminal.

OVERLAY String]

Overlays Stringl onto the line in the text buffer, starting at

the first character position. OVERLAY accepts a semicolon as a

legal terminating character. A space character within Stringl

leaves the original character in the text unaltered. The ! character

changes the original character to a space. The # character has no

special meaning when used with OVERLAY. Logical tabs are treated as

the appropriate number of spaces to fill to the next Tap stop. Example:

2-32

Before:

1234 89

Request:

TAB
OV X ! \ Z,A;P

After:

X24 82Z,A

PAUSE

Causes a return to operating system command level without changing

the Editor state. This command provides a graceful way of escaping

to the operating system and resume editing later. The Editor may be

restarted at the state where the PAUSE was issued by issuing the
DOS or DOS/VM START comand (simply typing: S).

PRINT [n]

Prints n lines starting with the current pointer position. n may be

positive or negative. The count always includes the current line.

Hence, P-1=P0=P=P1. In the case where n is less than -1l,

only the last line is printed. The general action of P-n is:

N- (n-1) ;P

The pointer is left pointing to the last line printed; it makes no

difference whether the value of n is positive, negative, or zero.

If the end of the file is reached BOTTOM is printed and the pointer

is positioned at the last line of the file, a dummy .NULL. line. If

the print request causes the pointer to reach the top of the file,

TOP is printed and the pointer is stationed at the .NULL. line. A

print request after a delete request or when the pointer is at the
top or bottom of the file prints .NULL. indicating a dummy line.

PTABSET Tabl ... Tab8

Provides for a setup of tabs on printing devices that have physical

(mechanical) tap stops.

PUNCH (ASR) [n]
(PTP) [n]

Punches a lines on high-speed or ASR paper tape punch. Each line is foll-

owed by XOFF, CR, LF, and the tape is closed with an additional XOFF, CR,

LF. Parm can be either (PTP) or (ASR); (PTP) is the default. n must be

greater than or equal to J. When not specified, n is considered to be l.

2-33

QUIT

Returns control to DOS (or DOS/VM) command level without writing the
content of the Editor's text buffer into a disk file.

RETYPE Stringl

The current line is replaced by Stringl. The pointer does not move. A
semicolon can terminate Stringl.

Example:

Before:

Copyright 1973

Request:

RETYPE Copyright 1974; P

Copyright 1974

The new text is the same as the system response shown above.

SYMBOL Name Char

The SYMBOL is a generalization of the KILL and ERASE requests. The
allowable characters to change are:

Name Default

KILL ?

ERASE "

WILD !

BLANKS #

TAB \

ESCAPE +

SEMICOLON ;

CPROMPT $

DPROMPT §

Char is the new character to be used for the
specified name. This character cannot
be a CR, comma, space, or asterisk, nor
the current character used as any of the
others in the above table. For example,
ESCAPE cannot be set to # unless BLANKS
is first set to something else.

2-34

The KILL and ERASE requests still have the syntax: COMMAND Char as

before, but the validity of Char is checked as specified above.

Example:

SYMBOL ESCAPE @

Changes the escape from + to @.

TABSET Tabl ... Tab8

Sets up to eight logical tab stops (\) in the columns specified, where:

Tab8 > Tab7 >... >Tabl.

TOP

Moves the pointer one above the first line of the text (a dumy line).

VERIFY

After a VERIFY request, any line that is located or altered is printed

as it exists after the completion of the editing command. Verification

output is printed or displayed at the device specified in the OUTPUT

request.

UNLOAD and DUNLOAD

UNLOAD (and DUNLOAD) perform the inverse function of LOAD and have

the forms:

UNLOAD Fname n
UNLOAD Fname TO String

DUNLOAD Fname n
DUNLOAD Fname TO String

The form: UNLOAD Fname n unloads (writes) n lines to the file Fname.

If n is omitted or J, it is assumed to be 1. A negative n causes the

preceding n-1 lines and the current line (in forward order) to be

written to Fname,

The form: UNLOAD Fname TO String unloads (writes) to file Fname all

lines, beginning with the current line, until a line containing String

is found. The line containing String is not written to the file.

DUNLOAD is identical to UNLOAD except each line written to Fname is also

deleted from the source file.

Care must be taken when specifying Fname since any existing file by that

name will be deleted.

2-35

WHERE

Prints the current line number. This number is not in the file; it
is a relative number updated and stored by the Editor. DELETE and
INSERT etc. cause the line numbers to change.

XEQ Buffer

Executes the content of the specified line buffer as a request line.
Possible buffers are STRA, STRB, STRC, EDLIN, and INLIN (See MOVE
request). X EDLIN (represented by*) causes repeated execution of a
command line, as in:

D,N-1,*

which deletes everything in the buffer from the current line to top;
or:

L XYA,P,*

which prints every line that contains the string XYZ.

* [n]

Where n is a repeat count. When the repeat count is exhausted, the
rest of the line is processed as specified by the previous Editor
commands on the line. If TOP or BOTTOM is encountered in the range
of a *, the entire line is terminated. If n is not specified, the
processing continues until TOP or BOTTOM is encountered.

Example, in the file with 3 X's, the command:

LX, *3,I Y;P

will produce:

X

X

X

Y

Since there is only a single counter for the * repeat count, a second

* on a line will always look like a terminal * with no repeat count.

For example:

I XX;N5,*5,W,*3,T,P100

inserts XX every fifth line and the WHERE every 25th until BOTTOM, and

never does the T, P100.

Any detected error condition terminates execution of the entire line.

2-36

EDITOR MESSAGES

Messages printed by the Editor in LINE Mode are:

Message

INPUT

EDIT

~NULL.

BOTTOM

TOP

Significance

Editor is in high-speed input mode waiting for text
input from the keyboard.

Editor is in Edit mode waiting for commands from the
keyboard.

Editor has been asked to print deleted line or dummy
line at top or bottom of file.

An Editor command has moved pointer to bottom of file.

Editing command has moved pointer to top of buffer.

Unrecognized command.

2-37

EDITING IN BOX MODE

Switching between BOX and LINE mode is accomplished with the MODE

request. Many requests that work in LINE mode do not work in BOX

mode, and those requests that do work often have expanded, though

analogous, meanings. Also, there are several new commands that work

in BOX mode only.

BOX Mode

BOX mode allows character (ASCII) files to be treated as two-dimensional

files. The x-coordinate, or character position, has equal status to

the y-coordinate, or line position. Except in the cases of the physical

bottom of the file and the physical end of the line, the two directions
are equivalent.

Coordinates

Coordinates in BOX mode are always specified as vertical, horizontal,

(v,h). The rationale for this is normal specification - as in a book -

of page number, line and character position, in that order. All
coordinates are one ordered.

The Box

The basic unit in BOX mode is the box. The box is used to define the
working area in the file. Anything that works on a line in LINE mode
works in a box in BOX mode. Of course, the size and the position of
the box can be varied just as line position can be varied in LINE mode.

The Point

The point indicates the current line and character (v,h). In LINE mode,
the point consists of line number only. In fact, the point does move
through a line (as in the CHANGE command) but is always left at the
beginning of the line. Thus, OVERLAY always begins in columone.
In BOX mode, the point has two coordinates: line and character, and
the point is always left wherever it might be. As a result, point
positioning in two dimensions becomes far more important in BOX mode
than in LINE mode. In addition, there are several ways of specifying
the point's location: relative to the file (absolute), relative to

the box (relative), or from current location (absolute or relative).
The important thing to remember is that there is only one point,
specifiable in several ways. The term absolute point means the point
specified relative to the file and the term relative point means the
point specified relative to the box. Therefore, a relative point of
(1,1) is at the upper left hand corner of the box, regardless of the
coordinates of the box. Similarly, an absolute point of (19,19) is at
line number 1%, character position 1$, regardless of where the box is
placed.

2-38

Direction

The point position can be specified relative to the current position
by specifying direction of motion. There are four directions: north,
south, east and west. They are indicated by tN, +S, tE, and +W where
+ is the escape character (as in tU or +277). These characters are
represented internally (and can be keyed in as such) as:

tN = '234

tS = '235

tE = '231

4W = '232

Directions are also represented by the four arrows +, ¥, >, and <
on the right side of the CRI terminal. Care should be exercised when
typing in the actual characters since on many devices they actually
move the screen curser whereas on others they are ignored. If entered
in the INPUT mode of LINE mode, they are echoed as +N, +S, +E, and
tW. The direction indicators apply to all point motions, including
those implied in various commands. For example:

OVERLAY XX*+SXXt*WXtStEYY specifies the string:

XX
X

XX
Y
Y

Note that the default direction is +E, and the combined directions
4StE yield southeast (combined directions work only in string
specification and not in point or box coordinate specification).
Note also that the direction specification causes a "'step" in that
direction before the next character is overlayed. In the case of an
initial direction indication, as in OVERLAY +SXX, this pre-step is not
taken. Thus, the first character of a string is always in the current
position, regardless of any initial direction specifications. Thus ,
OVERLAY X = OVERLAY +DX where D stands for N, S, E, or W.

Box Dragging

Although relative versus absolute are two ways of specifying the same
thing, namely point position, the consequences of using one method over
the other are different. The point, by definition, is always inside the
box. The point can be positioned relatively only inside the box. If
the indicated directions or coordinates would take the point outside
the box, the message BOX LIMIT is printed and the point is left

2-39

on the edge of the box at the coordinate (closest possible v position,
closest possible h position) to the requested final location. The point
can be positioned absolutely anywhere in the file and the box is
repositioned, if necessary, to keep the point inside the box. Similarly,
Since box position is specified in absolute coordinates, the point is
adjusted, if necessary, to keep it inside the box. These restrictions
also apply to any command that implicitly moves the point. Some
requests, like OVERLAY and MODIFY, are relative requests and do not go
outside the box. Others, like FIND and LOCATE, go outside the box, but
drag the box along with them. These examples are analogous to their
operation in LINE mode. OVERLAY and MODIFY are restricted to the
current line whereas FIND and LOCATE move across lines. Some requests,
like FIND, have a corresponding request that works only inside the box.
These requests are formed by adding an R to the beginning, as in RFIND,
meaning relative (or restricted) FIND. When the box is dragged, it is
dragged by its edge. Similarly, when the point is dragged by box
repositioning; it is dragged on the edge of the box.

Point Independent Commands

A few requests are only concerned with the box size and position and not
the point position. These are DISPLAY, BOXIN, and BOXOUT which operate
on the entire box without altering the point location.

BOTTOM in BOX Mode

Since there is no INPUT mode or its equivalent in BOX mode, the bottom
of the file defines an absolute lower limit which cannot be extended
while in BOX mode. In this sense, it is equivalent to the physical
line length which cannot be extended in any mode. Although the box
position does take into account the top, left and right limits
of the file, the bottan is an unknown entity until it is encountered.
Although the box will never be positioned so that it hangs
off the top, left or right of the file, it can hang overthe bottom.
If BOTTOM is ever encountered, the point is left, as in LINE mode,
positioned to the null line just past the last line of the file. If
BOTTOM is encountered by a request that does not move the point, i.e.,
DISPLAY, the point position remains where it was before the request and
the short box is displayed.

BOX MODE COMMAND DESCRIPTIONS

The following is a description of all commands that work in BOX mode.
All Strings can contain direction indicators.

BOX vh tD# tD#

Positions the upper left hand corner of the box to absolute position
(v,h) or from the current position, it is moved by tD# where +tD = tN,
+S, tE, or *W, and # is the number of positions. If v,h, and D#'s are

2-40

specified, the final position is calculated and then the box moved. If
the new position moves the box off the top, left, or right of the file,
the request is rejected as an error and the box is not moved. If v and
h are omitted, then the current position is used as a starting point.
If only v is specified, current is used for h. If h is specified, v must
also be specified. Explicit §'s cause an error. When the box is moved,
the point is also moved, if necessary, to keep it inside the box.

Special Case

If no parameters are specified, the upper left hand corner of the box
is positioned to the point, if possible, and the point is not moved.

Hence, the commands:

L string

W

BOX v h_ (wv and are point position read
— from WHERE)

are equivalent to the commands:

L string

BOX

BOXIN Fname Parm

The inverse operation of BOXOUT causes file Fname to be loaded into
the current box. Loading can be performed in two ways, according to
Parm. For Parm (parentheses mandatory):

(MODIFY) - the load is carried out analogously to the
MODIFY request. First the entire box is
filled with blanks, then the file is loaded
in. If any lines do not fit into the box, they
are truncated. If there are more lines in the
file than the box, they are not loaded.

(OVERLAY) - the load is carried out analogously to the
OVERLAY request. Each character in the file is
overlayed onto the corresponding character in
the box. Any blanks in the file leave the
original characters unaltered and ! characters
in the file cause the corresponding position in
the box to be filled with a blank. As in the
(MODIFY) mode, if any lines are too long, they are
truncated. If a line is too short, or the file
is too short, any unspecified positions are
treated as blanks,

2-41

The parameters (MODIFY) and (OVERLAY) may be abbreviated (M) or (0).
If Parm is not specified, it is assumed to be (MODIFY).

BOXOUT Fname

BOXOUT writes the current box to the file Fname. The contents of Fname
are exactly what is displayed by the DISPLAY command. BOXOUT does not
cause the editor to quit.

BRIEF

Same as in LINE mode.

DISPLAY

DISPLAY displays the contents of the box to either the user terminal
or the display tube on port 3 of the system option controller, depending
upon the directions implied by the OUTPUT command. If the display is
to the "DISPLAY" device on the system option controller, the screen
curser is positioned to the current point position. If the display is
to the user terminal, the curser position is left at the bottom of the
display.

ERASE Char

Same as in LINE Mode.

FILE Fname

Same as in LINE Mode.

‘INr
i String

FIND will find the specified string if it begins in the current horizon-
tal position. For example, if the point is at (19,5), the search will
be down colum 5. This command drags the box, if necessary.

KILL Char

Same as in LINE Mode.

2-42

LOCATE String

LOCATE locates the string if it begins at or after the current position.

The search algorithm is to move the pointer right first, then at end of the

line, move it to the far left of the file (X,1) and down until a match

is found or BOTTOM encountered. This request drags the box, if

necessary.

MODE Parm

Parm may be:

PRUPPER - same as in LINE Mode.

PRALL - same as in LINE Mode.

PROMPT - same as in LINE Mode.

NPROMPT - same as in LINE mode

LINE - go to LINE Mode. The current line number
remains unaltered but the character position
is reset to l.

BOX v h - go to BOX Mode. v and define the vertical
and horizontal SIZE of the box. If v orh is
omitted, the size in that direction is left
unaltered. If h is specified, v must also
be specified (but can = # indicating previous
value). The default box size is 20 x 8.

The use of the MODE command to specify PRUPPER, PRALL, PROMPT, or NPROMPT

is independent of and does not conflict with its use to specify LINE or
BOX. MODE BOX v h can be specified at any time to change the size of
the box, but care should be taken since the new box position might be
altered if the point should be outside the new box.

MODIFY /String1/String2/[G]

MODIFY performs the modify function within the box. The search for
Stringl is initiated from the current point position. The G option
causes all occurrences of Stringl in the box to be modified to Stringz.

Although a repeat count is not rejected as an error, it is ignored.

Stringl and String2 need not have any relation in either length or

directions other than that they both begin at the same position.

If the box edge is reached while replacing String2, the message BOX

LIMIT is printed and execution terminates and only that portion of
String2 which was in the box is replaced.

MOVE Namel Name2

As in LINE mode, Namel is the ''to'' and Name2 is the '"'from'' name.

The operation is exactly the same as in LINE mode except that data

cannot be moved to or from the buffer INLIN.

2-43

OUTPUT (Parm)

Same as in Line mode, but also includes DISPLAY output as well
as verification output.

OVERLAY String

Same as in LINE mode except the horizontal tab (\) is treated as a
normal printing character and not a tab character. If an OVERLAY reaches
the edge of the box, the message BOX LIMIT is printed and execution
terminates, and only that portion of string lying inside the box is
overlayed.

POINT v h *D# +D#

POINT positions the point absolutely to position (v,h) or, from
current position, tD# where +tD = +N, +S, +E, or +W and # is the
number of positions. If both v, h and *+D# are specified, the point
is first moved to (v,h), the box dragged, if necessary, and then moved
by tDi#, +D# and the box again dragged, if necessary. If v and

h

are
omitted, the current position is used as a starting point. If only v
is specified, current is used for h, but if h is specified, v must
be specified. Explicit $'s cause an error. If no parameters are
specified, the point is not moved. Specifying the point outside the
file (top, left or right) causes an error and does not move the point.
If the point is moved past BOTTOM, it is positioned at BOTTOM and the
box dragged accordingly.

PRINT

PRINT prints the current line in the box. The portion of the line, if
any, outside the box is not printed. A repeat count other than @ = -1 = 1
is rejected as an error as it would involve point repositioning.

PTABSET tabl...tab8

Same as in LINE Mode.

QUIT

Same as in LINE Mode.

RFIND String

RFIND is exactly the same as FIND except the search is restricted to
the box. If no match is found, the point is left at (BOXB,h) where
BOXB is the bottom of the box.

2-44

RLOCATE String

RLOCATE is exactly the same as LOCATE except the search is restricted
to the box. If no match is found, the point is left at (BOXB, BOXR)
where BOXB is the bottom ofthe box and BOXR is the right limit of the
box.

RPOINT vh D# Dé

RPOINI positions the point to RELATIVE position (v,h) or
from current position *+D# where *D = +N, +S, +E or +W and # is the
number of positions. If both (v,h) and +D# are specified, the new
point is calculated and, if outside the box, the message BOX LIMIT
is printed and the point is left at (nearest v, hearest h) coordinates.
If v and h are omitted, the current position is used as the starting
point. If only v is specified, current is used for h; but if h is
specified, v must be specified. Explicit @'s cause an error. If no
parameters are specified, the point is positioned to relative (1,1),
the upper left hand corner of the box (RP = RP 11). RPOINT will
never move the box.

SYMBOL Parm Char

Same as in LINE Mode.

VERIFY

VERIFY causes a verification DISPLAY whenever the contents of the box
changes (including point position). Unlike DISPLAY, however, if only
the point position changes, the box is not redisplayed. If the output,
via the OUTPUT command, is directed to the display tube on the system
option contoller, only the curser is moved to the new position. The
commands that cause this kind of display are:

POINT (if new position is inside current box)

RFIND

RLOCATE

RPOINT

2-45

WHERE

WHERE prints the following information:

BOX = v, hATv,h

POINT = v,h

RELPNT = v,h

the coordinates represent:

BOX = size AT position of upper left hand
corner

POINT = absolute position

RELPNT = relative position within box

XEQ name

Same as in LINE Mode, except INLIN cannot be executed

*y

Same as in LINE Mode,

2-46

RECOVERY PROCEDURES

Abnormal Editor aborts are of the following types:

1. Deliberate user action (QUIT);

2. A specified file was (a) ILLEGAL, (b) NOT FOUND,or
(c) IN USE;

3. The disk became full during a file write;

4. A file that was expected to be open was closed;

5. The disk was in WRITE-PROTECT.

The recovery procedures for each of the listed types of abort are
different. Details are given in the following paragraphs. In any case,
do not type the DOS (DOS/VM) command CLOSE ALL after an Editor abort.

User QUIT

A user QUIT consists of escaping to the operating system to stop such
conditions as an infinite loop in a mistyped Editor command or unwanted
printing at the terminal. (A QUIT is accomplished by pushing the QUIT
or BREAK or INTRRPT button at the terminal, or by typing CTRL-P in
DOS/VM, or by a HALT at the CPU Control Panel in DOS.)

Previously, a most common cause of forcing the Editor into an infinite
loop was by typing a * as the first character of a line (e.g., typing a
PMA comment line while in EDIT mode). This error is checked for and
results in the message:

BAD *

However, other infinite loops are still possible

(e.g., typing:

T, L XXX,T,*

or

P, *

or typing a * as the second character of
the line).

2-47

To abort an infinite loop and recover, issue the following commands:

CTL - P escape to the operating system as
appropriate

QUIT; operating system response
OK, START 1000

GO
EDIT
P to verify position of current line

File ILLEGAL, NOT FOUND, or IN USE

These three types of errors result in a message and a return is made

to the original user state and no action is taken as specified by Editor

command line that caused the error. Thus, if the error occurs when the

Editor is initially invoked with a Filename, a return is made to the

operating system and the message ER! is printed at the terminal. If

the error occurs at the time that a LOAD, UNLOAD, DUNLOAD, BOXOUT,

BOXIN, or FILE Editor command is issued; a return is made to EDIT mode

and the character ? is printed at the terminal.

The formats and the causes of the messages described here are given
in the following paragraphs:

Message Cause and Action

Filename ILLEGAL EDIT FILE Caused by trying to Edit (1) a SAM
segment directory, (2) a DAM segment
directory or (3) a UFD. (Try another

Filename)

Filename NOT FOUND Caused by trying to Edit a file not
in the current UFD. (Check UFD and get
correct UFD or file, or type name of
file correctly).

Filename IN USE Caused by trying to access a file being
used by another user. If the file, Filename,
is the original edit file (open on
Unit 5) this message can result if the
file is currently a "bottom" file
(to recover, type: BOTTOM
Reposition (N-X)
Retry operation

2-48

Disk or UFD Full

Under DOSVM: If a disk becomes full during a file write operation,

the message:

DISK FULL
ER!

is printed at the terminal and Editor returns to the operating system.
To recover, proceed as follows:

1. ATTACH, LISTF, and DELETE as necessary to create room on
the disk. If the file being edited is IN USE, do not CLOSE
and/or DELETE it.

2. ATTACH back to the original UFD.

3. Type the DOS (DOS/VM) START command.

The operation continues. Do not type: CLOSE ALL! Do not type: S 1000:

If the disk became full or the UFD was full on a file OPEN operation,
the message:

DISK FULL or UFD FULL
? ?

is typed. The Editor maintains control. To recover:

1. Escape to operating system. (Use the Editor PAUSE command.)

2. ATTACH, LISTF, and DELETE as necessary to create room on the
disk. If the file is IN USE, do not CLOSE it and then
DELETE it.

3. ATTACH back to the original UFD.

4. Type the DOS (DOS/VM) START command.

The operation continues. Do not type: CLOSE ALL! Do not type: S 1000:

Under DOS: At present, no adequate recovery procedure for this
condition is possible.

A File Expected to be Opened Was Closed

adis situation arises if the file was deliberately closed by the user,
an action that constitutes an error. If the file was being read from
(LOAD, BOXIN, or a "bottom" file), the error is treated as an End-of-
File with no error indication to the user. If a file was being written
to (UNLOAD, DUNLOAD, BOXOUT, FILE or a TOP file), the message:

Filename ON UNIT u NOT OPEN FOR WRITING
?

2-49

is typed and return is made to EDIT mode. Since closing and reopening
a file also rewinds it, it is not sufficient to simply OPEN the
requested file (Filename) on the specified unit (u). In general, the
message indicates that the Editor has already written to the file and
not closed it, but a subsequent write operation finds it closed. Two
possible procedures are possible, depending upon Filename.

If Filename is an Editor temporary file (T###XX):

1.

2.

Escape to operating system (PAUSE).

Under DOS/VM, use CNAME Filename to a different name (not
T###--). CAUTION - Under DOS, CNAME will destroy the
Editor. Under DOS, in order to change the name:

a) Type: PM

b) SAVE the Editor memory image using the PM parameters
except, use the end of memory instead of the high
address (second parameter).

c) CNAME the file.

d) RESTORE the saved Editor image.

d) DELETE the saved Editor image.

Open Filename on Unit u for reading and writing (e.g., OPEN
Filename u 3).

Type: S 1000.

FILE to a new name. The original file has now been "'split"
into the renamed temporary file (step 2) and the new file
(step 9).

Use the Editor to combine the two files. (Examine the last
line of the renamed temporary file and the first line of the
new file. These will probably be the start and end of one
line).

If Filename is a named file (original or new), proceed according to
what operation was specified. If this operation was:

UNLOAD, BOXOUT

1. Type PRINT to determine position.

2. Reposition to the point prior to the operation.

3. Retry the operation.

2-50

DUNLOAD

1. Type PRINT to determine position.

2. DUNLOAD the remainder of the file not written previously
to a different file.

3. Use the Editor to combine the two files or leave then
separate. There are no broken lines as in the case of an
Editor temporary file.

FILE

1. FILE to a different file.

2. Use the Editor to combine the two files. Abroken line
can be present, so examine the last line of the first
file and the first line of the second file.

Disk Write Protected

At present, no adequate recovery procedure for this condition is
possible.

General Rules For Recovery

In recovering from any of these situations, three general rules should

be kept in mind.

1.

2.

3.

DO NOT TYPE ''CLOSE ALL"!

If in doubt about what to do, consult this document.

If, at the completion of a recovery, any files are left open
or any temporary files (T###XX) are left on the UFD, type

''ED'', enter EDIT mode, and "QUIT". This should eliminate

any spurious files or open units resulting from the Editor

abort.

2-51

PART 2 BINARY EDITOR

EDB is a binary editor for operation on loader-compatible
object text blocks generated by the PRIME FORTRAN Compiler and Macro
Assembler programs. EDB is useful for creating and updating
library subroutine files on disk or paper tape. Input may be
from disk or paper tape; output may be to disk or paper tape.
Multiple input files may be open concurrently. EDB provides a
large command set and issues explicit error messages.

LOADING AND STARTING UNDER DOS-DOS/VM

EDB is loaded and initialized by a command line beginning with
"EDB'. In general, the command line for initialization is as
follows:

(PTR)
EDB| Inputfile

[(PTR)]
[Outputfile]

If either the input or output file is on paper tape, the
appropriate filename is(PTR). Output is optional, and, as
a result, an output file need not be specified. When an output
filename to disk is specified, a file of that name is created
in the current UFD.

When properly initialized, EDB types 'ENTER' and then loops for
user command input.

USING PAPER TAPE VERSION

EDB is supplied as a self-loading, self-starting paper tape (SLT 0745.002).
Once loaded, EDB types 'ENTER' and waits for user command input. The
object file to be examined must be mounted on the high-speed reader. If
paper tape output is desired, the high-speed punch must be turned on.

EDB FEATURES

Pointer

The user selects the next item to be processed by positioning a
binary location pointer at the beginning of the desired sub-
routine name or entry point label. When EDB is initialized, or
after a NEWINF command, the pointer is at the top of the input
file. The pointer position can be changed by the FIND and TOP
keyboard commands. During execution of the COPY, GENET and
OMITET commands (which copy blocks from the input file to an
output file), the pointer moves to the subroutine or entry point
following the last item copied.

2-52

Verify/Terse/Brief Modes

In VERIFY mode, EDB prints the name of each subroutine or entry
point reached by the pointer. From this printout, the user can
determine the current pointer location. EDB is initialized in
this mode. To speed binary editing, the user can specify TERSE
mode (printing of subroutine names only) or BRIEF mode (no
printing).

Special Action Blocks

Special action blocks ET, RFL, and SFL are written to the output
file by the commands of the same name. These blocks are ignored
(not copied) by the COPY, INSERT and OMITET commands. Thus
each user can insert the special action blocks he requires.

ET (End of Tape Mark) is written by the GENET command as well as the
ET command. On paper tape, ET consists of two successive characters,
both '223. On disk, ET is represented by a zero word.

SFL, the Set Force Load flag block, is used in files to force loading
of subroutines even if not called by a main program.

RFL, the Reset Force Load Flag block, resets the SFL condition and
allows the main program to specify which subroutines within a file
are to be loaded.

Messages

EDB prints the cue ENTER to show that it is ready to accept commands.
Most errors in command string input cause EDB to print a question mark
(?). Other messages include:

FILE NAME DOES NOT EXIST OR ALREADY OPEN

USER MUST SPECIFY INPUT FILE

YOUR INPUT FILE LOOKS LIKE SOURCE CODE

CHECKSUM ERROR- UNRECOVERABLE

BLOCK ERROR-UNRECOVERABLE

EDB COMMANDS

EDB responds to the following keyboard commands, listed in alpha-
betical order. Commands may be abbreviated to the underlinedSee Nt ee ee aee Ee ae OONOOSee

letters. Items enclosed inbrackets are optional.

2-53

BRIEF

Inhibits printout of subroutine names and entry points as they
are encountered by EDB. (See TERSE and VERIFY.)

Name
ALL |

Copies to the output file all main programs and subroutines (other
than special action blocks) from the pointer to (but not including)
the subroutine called 'Name' or containing Name as an entry point.
If Name is not encountered or COPY ALL is specified, EDB copies to
the end of the input file and types .BOTTCM. on the Teletype.
Pointer moves past the last copied item.

COPY

ET

Writes an end-of-tape mark on the output file (203g, 2239 on paper
tape; zero word on disk).

FIND Name

Moves the binary location pointer to a position on the input file
corresponding to the beginning of a subroutine called 'Name' or
containing Name as an entry point. If Name is not found, the
pointer is moved to the end of the input file and .BOTTOM. is
typed on the Teletype.

GENET [G]

Copies the subroutine to which the binary location pointer is
currently positioned and follows it with an end-of-tape mark.
The optional letter G specifies a global copy; all subroutines
from the current position of the pointer are copied, each fol-
lowed by an end-of-tape mark. When the bottom of the input file
is encountered, .BOTTOM. is printed on the Teletype. The
pointer moves to the next subroutine.

INSERT Name

Opens a second file, 'Name', for reading only and copies it
to the output file (omitting all special action blocks). After
the copy, the second input file is closed. The binary location
pointer remains positioned in the original input file. An INSERT
command operates only when the second input file and the output
file are both on disk (however, the original input file may be
paper tape).

2-54

NEWINF [Name]

Closes the current binary input file and opens a new input file
for reading only. The binary location pointer is placed at the
top of the new file. 'Name' must be specified to open a new file
on disk.

OMITET [G]

Copies the subroutine to which the binary location pointer is
currently positioned. The optional letter G specifies a global
copy; all subroutines from the current position of the pointer are
copied (omitting all special action blocks). When the bottom of
the input file is encounte~ed, .BOTTOM. is printed on the
Teletype. The pointer moves to the next subroutine.

OPEN [Name]

Opens an output file for writing only. 'Name' must be specified to
open a file on disk.

QUIT

Closes all files and exits to DOS. (When paper tape is the output
file, an end-of-tape mark is punched before closing.)

REL
Writes a reset-force-load-flag (library mode) block on the output
file. This block initializes a true library file by enabling the
loader to determine which subroutines within the file will be
loaded. (See SFL.) This command operates only when output is
to disk.

SFL
Writes a set-force-load-flag block on the output file. This
block places LDR (the loader) in force-load mode; all subroutines
in the files are loaded, whether or not they are called. SFL
mode is in effect until the loader encounters an RFL block. A
true library file should be terminated by an SFL block followed by
an end-of-tape mark. This command operates only when output is to
disk.

TERSE

Places the editor into 'terse' mode. Only the first name of each
subroutine name block encountered by EDB is output to the Teletype.
(See BRIEF, VERIFY.)

TOP

Moves the binary location pointer to the top of the input file.
(Useful only when the input file is on disk.)

VERIFY

Places the editor into 'verify' mode. All subroutine names and
entry points, as they are encountered by EDBIN, are printed on
the Teletype. EDBIN is initialized in the 'verify' mode. (See
BRIEF and TERSE.)

EXAMPLES

The following examples illustrate typical uses of EDB and show
many of the commands in action.

Deleting Routines from a Library

A user named USER] has a subroutine library under the filename
LIBE that contains six subroutines:

LIBE Subroutines

ROUT1
TEST1
TEST2Z
ROUT2
MORE
AGAIN

The following EDB commands create another version of the library
under the name LIBEV2, having the following contents:

LIBEV2 Subroutines

ROUT1
ROUT2
MORE
AGAIN

2-56

The commands are:

OK; A USER1

OK; EDB LIBE LIBEV2

GO

ENTER, BRIEF

ENTER, COPY TEST1

ENTER, FIND ROUT2

ENTER, COPY ALL

BOTTOM

ENTER, ET

ENTER, QUIT

OK;

After attaching to his UFD (i.e., USER1) the user invokes the
binary editor, with LIBE specified as the input file and LIBEV2
as the output file. A BRIEF command simplifies the Teletype
output. The first COPY command copies subroutine ROUT1 and the
pointer stops at the beginning of TEST1. The FIND ROUT2 command
moves the pointer past TEST1 and TEST2 (the two files to be
omitted) to the beginning of ROUT2. A COPY ALL from that point
copies the remainder of the file. An ET command is given to
insert an end-of-tape block. The user then QUITs and returns to
DOS.

Distributing Routines to Different Files

Assume the user has a collection of subroutines in a library file
named FILIN:

FILIN Subroutines

FILE1
FILE2
FILE3

The following commands distribute these files to three different
output files, named LIB1, LIB2, and LIB3, respectively:

2°57

OK; EDB FILIN LIB1
GO
ENTER, BRIEF
ENTER, COPY FILE2
ENTER, ET
ENTER, OPEN LIB2
ENGER, COPY FILE3
ENTER, ET
ENTER, OPEN LIB3
ENTER, COPY ALL
ENTER, ET
ENTER, QUIT
OK; LISTF

-UFD=USER1

FILIN LIB1 LIB2 LIB3
OK:

After the first output filename (LIB1) is specified by the initial
DOS command to start EDB, subsequent output filenames are set up
by OPEN commands (it is not necessary to return to DOS). Each
OPEN command closes the previous output file. Note that the user
is careful to write an ET after each file is copied. (Remember
that these files contain the object version of the specified sub-
routines.)

Combining Subroutines or Files Under One File Name

Assume that the same user wants to combine the separate binary
files LIB1, LIB2 and LIB3 under a single filename, CLIB:

OK; EDB LIB1 CLIB
ENTER, BRIEF
ENTER, COPYALL
BOTTOM
ENTER, INSERT LIB2
BOTTOMS
ENTER, INSERT LIB3
BOTTOM
ENTER, ET
ENTER, QUIT
OK;

2°58

The first file to be inserted into CLIB is specified by the DOS
command string that starts EDB. Thereafter, EDB INSERT commands
specify new input files to be appended. Note that the ET marks
at the end of the input files are not copied; the user explicitly
adds an ET to mark the end of file CLIB.

Obtaining Subroutine and Entry Point Listings

With the aid of the VERIFY mode of operation, a FIND command can
be used to print all subroutine and entry point names in a given
file. Example:

OK; EDB FILIN
GO
ENTER; FIND XXX
FILE1
FILE2
FILE3
BOTTOM
ENTER; QUIT
OK; ~~

In the FIND command, XXX is a dummy entry name that does not
exist in the file.

2-59

SECTION 3

MACRO ASSEMBLER (PMA)

SOURCE PROGRAMS

Source programs must meet the requirements of the Prime Macro
Assembly Language reference manual.

OPERATION UNDER DOS-DOS/VM

Loading and Starting Assembler

The Macro Assembler is loaded and started by the PMA external command
to DOS:

PMA Filename [Startadd Areg]

where 'Filename' is a Macro Assembly Language source program in the
current UFD, 'Startadd' is the P register starting option, and 'Areg'
is an A register setting that specifies listing detail, I/O devices,
and other assembly control parameters.

An alternate command format is:

PMA Filename [1/Areg]

This leaves the default starting address unaltered and modifies the
A register value only.

If 'Startadd' and 'Areg' are not specified by the command string, the
assembler uses the default values set up in the DOS RVEC vector at the
time the assembler was SAVEd. These values are usually:

PC "400 Normal start of assembly

A "000777 Normal listing detail, all input
and output files on disk

If in doubt, RESUME PMA and do a PM (Post Mortem) to determine the
values for PC and A.

Starting Location

Starting options for the assembler are:

"400 Normal start of assembly

('401 Option is no longer used)

3-1

A Register Setting

The A register setting selects input and output devices, controls the
amount of detail in the listing output, and includes other special

controls. (See Figure 3-1.)

File Usage

The assembler does an automatic two-pass assembly of the specified
input file, and generates object and listing outputs to the devices
specified by the A register. The object file is in relocatable binary
format suitable for processing and loading by Prime's Linking Loader.

When disk is used for the binary and listing files, filenames must be
established. Unless it is preceded by BINARY and LISTING commands,
the assembler will automatically open unit 2 to write a binary file
named B«XXXX, and open unit 3 to write a listing file named L<XXXX,
where XXXX is the first four letters of the input filename. The
assembler closes any units that it opens. (Units opened by BINARY
and LISTING commands are not closed.)

3-2

DEVICE OPTIONS

O = NONE
1 =ASR
2=PTR/PTP
3 = CARDS
4=LINE PRINTER
S = MAGNETIC TAPE

6 = CASSETTE
7 = DISK

SOURCE LISTING OBJECT
INPUT OUTPUT OUTPUT
DEVICE DEVICE DEVICE

fe oe

0 NG NG \

RA| 0 olo 0 0
i l i 1 i i | i l i

1= FORCE LISTING OF MACRO EXPANSIONS,
LINES SKIPPED BY CONDITIONAL
ASSEMBLY

|O= NORMAL

1=LIST LINES CONTAINING ERRORS ONLY
O=NORMAL

Figure 3-1. Macro Assembler A-Register Settings

3-3

USING PAPER TAPE ASSEMBLER

Procedure

The Macro Assembler is supplied as a self-loading tape (SLT 1080.013)

that loads through APL or the key-in loader.

1. Turn to STOP/STEP and press MASTER CLEAR.

2. Load the P register (location 7) with the starting address:

"00400 Normal start of assembly

3. Load the A register (location 1) with the assembly control

options shown in Figure 3-1.

NOTE

It often saves time to use the LIST ERROR LINES ONLY option and to

disable the object output the first time a program is assembled.

Any errors can be corrected and assembly repeated. When a no-errors

assembly is achieved, a full listing and object output can be specified.

4. Mount the source program tape in the selected reader. If a

low-speed reader is used make the following control settings:

ASR- 33 Turn punch OFF

ASR-35 Turn mode switch to KT position

5. Turn to RUN and press START. The Assembler reads the source

tape.

6. The computer halts after reading the source tape. If the A

register = 0, the MOR pseudo-operation was present. Place

additional source tapes on the input device and press computer

START. When the computer halts with A = '177777, pass 1 is

complete (the END pseudo-operation was encountered). If there

are errors, discontinue assembly and make the corrections.

7. To begin pass 2, return the source tape to the beginning and

press START. The assembler will read the source tape again.

If the program consists of several tape segments, the CPU will

halt for each tape, as in pass 1. ‘To resume pass 2, it is only

necessary to press START.

During pass 2, the assembler will output an object tape, and,

if specified, print a listing. While object tape is being

punched, the assembler first reads a section of source tape, then

punches a section of object tape, and so on, until the entire

program is processed. If the low-speed punch is used to punch

object tape, the CPU will halt to let the operator turn the punch

on and off. The sequence is:

a. Operator turns low speed punch OFF, presses CPU START.

Assembler reads a section of source tape, then halts.

b. Operator turns low speed punch ON, presses CPU START.

Assembler punches a section of object tape, then halts.

------- and so on.

3-5

ACTION OF ASSEMBLER

PMA is a two-pass assembler that reads the source program twice -
once to generate a symbol table and identify external references;
and a second time to generate object code blocks for input to the
linking loader. During the second pass, a listing output is
optional.

During operation under DOS-DOS/VMwhen the source file is on disk,
the assembler automatically returns to the beginning of the source
file for the second pass. In paper tape systems, the assembler halts
after the first pass and the user must rewind the source program to
the beginning before starting the second pass.

ASSEMBLER MESSAGES

When the assembler reads the END statement of the input file on the
second pass, it prints a message and terminates assembly (returns to
DOS or, in paper tape systems, halts the CPU.) The message contains
a decimal error count and version of the assembler, as in:

0001 ERRORS (PMA-1080.011)

A REGISTER (DETAILS)

Error Listing (Bit 2): If this bit is set, only the lines containing
errors are listed. Otherwise, listing is controlled by pseudo-
operations in the source program.

Listing Control Override (Bit 3): If this bit is set, the assembler
overrides any listing control pseudo-operations in the source program
and lists all statements, including lines within macro expansions and
lines that would be skipped by conditional assembly. Otherwise,
listing is controlled by the listing pseudo-operations in the source
program.

Device Options (Bits 8-16): The last three octal digits of the A
register select source input, listing input, and object output devices
respectively, as shown in Figure 3-1.

LISTING FORMAT

Figure 3-2 shows a section of a typical assembly listing and defines
the main features. The format is organized in columns, but when long
labels or other free format features are encountered, extra space is
used as required.

Each page begins with a header and a sequential page number. The
first statement in a program is used as the initial page header. If
colum 1 of any statement contains an apostrophe ('), columns 2-72
of that statement become the header for all pages that follow until
a new title is specified.

3-6

DECIMAL

LINE

COUNT SOURCE STATEMENT
OCTAL OBJECT f 1

LOCATION CODE i
COUNT (OOUL) *EXAMPLES OF CURRENT PMA FEATURES

(000P) *

\ (005) REL
0000003 (0004) ELM

OO0C00L: J0U0161 Cagus) DATA K'Y110004! BINARY CONSTANT
Coognve: “duLel (0006) WATA %L110004 SAME, ALTERNATE SYNTAX
OOO0OS: 0900303 (0007) DATA HICT, WET SINGLE RICGHT*=JUSTIFIFUD CHARACTER CONSTANTS
ou0004S A0VAd7

(Q0CR) »*

Qud0COSs 0,9000056 (NyU9) hac seé,S51b4 MUL TI@wORE LITERAL
CoG10) *

COOT1) *ALL ANDRESS FORMS FOR AN LDA

(O012) *

0000063 (9013) LGOCL HSS 1

CuuLa} *

000007: 02.000006 (0015) LDA LOCK”
ERROR 000010: 62.0u0usuAa (O16) LDA '3Ue1% PREINDEXED, <100
ELAGS OOO011S 095400 (uvl?) LbAK LUCE % REWUTRED BRECSUSE SHORT FURM AVAILABLE

O00dLe: 00.000006

0000133 0954601 Coole) LDA ait STACK KELATIVE
000014: 00,0000638
0000153 005401 (v019) LOA [TEMPS TEMP! TS STACK REL HECAUSE DECLARED IN NUTT (LATER)
0000163 00.0001268
0000178 005402 Code) LDA w+ STACK POSTINCREMENT

000020: 005403 (0024) LDA oma STACK PREDECREMENT
Z 0000213 O2,000NA1A (0022) LDA ats ERROR = CANNOT ADU STACK REL

(Ques) *
Cd0d4) CH4aPR

§ 0000¢2: 4N.CyV0000A (005) Dace OG FLAG JNDIRECT bac
§ 0000233 02,000424 (G2) Lae #4257 [MOTRECT, GUT JF REL REACH

(Oug7) *

0000 $1 (002K) SETR BASES 25
Y 0000243 (0029) RASE 65S es

(0030) *
(9931) DUTT 'taed SATISFIFS SP,OPFRE & REWUIRFS HS ARITH
(GN$2) *

(00435) LIR %1100 LOAD TF SP OR DPFR USED
(G034) *

00000e (9035) DYNM ADDR, WAME (C$) ,#UFFER(B0),TEMPY, TEMPO
00000%
0V00U06

000126 *- MODE (FORM AA.BBBBBBC ONLY)
(0036) *

000055: 005414 (0037) ENTR #8107 ~ s
000056! 00,0001 30A Blank=Relative

vov024 (0048) DYNM =20,11,72,T3 A=Absolute
0002 e

000025 S=Stack Relative
000026 E=External

(0039) »* _
(9060) *O THER VARIABLE MULES C=Common
(0041) *

0004300 (0042) ABS FW! ' $a ABSOLUTE
(0043) tXxT KiGE ik

000000 (udda) COMM JACK (24), KILL O49) RROTHRAR (PSO)
000030

000150

(0045) *
000057 (0046) END

Figure 3-2. Example of Assembly Listing

3-7

Columns 1 and 2 are reserved for error flags. Each flag is a single
character, interpreted as shown in Table 3-1. Two flags may be
combined (e.g., "FZ''). Columns 3-9 contain an octal location count.
Columns 10-18 contain an octal representation of the contents of the
location, in one of two formats. Non-memory-reference instructions
and all data values are represented by six octal digits corresponding
to a 16-bit binary value. Memory reference instructions and address
constants are in the following format:

AA. BBBBBBC

The first two digits (AA) represent a six-bit binary field consisting
of the indirect bit, the index bit, and (for memory reference
instructions) the four op-code bits. The next six digits (BBBBBB)
represent the displacement field of the instruction or a 16-bit address
value. The last digit (C) indicates the mode of the address value:

Blank Relative

A Absolute

S Stack-relative

E External

C Common

Columns 22-27 contain a decimal line sequence number and colums
29-108 contain the source statement (ASCII image) truncated if
necessary because of printer limitations.

User-generated messages may be inserted into the listing output by
SAY pseudo-operations in the source program itself. Such messages
can be used to document the progress of a complex conditional assembly
operation.

CROSS REFERENCE LISTING (CONCORDANCE)

At the end of the assembly listing appears a cross-reference listing of
each symbol's name (in alphabetical order), the symbol's location
or address value, and a list of all references to the symbol. (See
Figure 2+3.) The location and address values are in octal unless the
PCVH pseudo-operation specifies hexadecimal listing. Each reference
is identified by a 4-decimal-digit line number. If listing is
inhibited by the NLST pseudo-operation, the cross-reference is not
listed.

3-8

Table 3-1. Assembler Error Messages

Code Definition

C Instruction not terminated properly.

F Unrecognized operand type, or FAIL pseudo-op executed.

G Improper GO TO reference, or END or ENDM within a skip
area.

I Improper indirect flag.

L Improper label, or external label in a literal, or
missing label.

M Multiply defined.

N END within a Macro definition or an IF area.

O Unrecognized Operator.

P Parentheses mismatched or nested more than 7 deep.

Q ENDM not within a Macro definition.

R Expression stack overflow, or improper Macro name.

S Address out of range (LOAD mode), or improper string
termination.

T Symbol table overflow.

U Variable undefined, or not previously defined when
required to be.

V Value is too large for field, has undefined variable,
is missing, is illegal type, or END pseudo-op is
within a Macro definition.

X Improper index tag, or improper external name.

Z | Address Mode Error

3-9

ASSIGNED

ADDRESS LIST OF DECIMAL LINE

OR VALUE NUMBERS WHICH REFER

SYMBOL AND “ TO THE y

\ \ rT !

ARS 000 $00A O904e2

ADDR O090N02S Gu S5

RASE OVOAN2 § NDP QOS

BILL voousoC O0404

BUFFER gog000685 9045

HROTHGAR O0U015S0C Y04G4

JACK OQQNU0C 0044

LOCL 0009006 00143 9015 0017

NAME 0900048 0045

ROGER NDGODE 0043

TI VGOIDESS V038

Te QOdGQVESS C0 $8

13 OVINE 6S OO3R

TEMPL VOOLAS 9019 USS

TEMP VONLETS 9955

OOOH ERRORS (PMAe10RU.915)

\
ERROR SUMMARY

Figure 3-3. Example of Symbol Cross-Reference Listing

3-10

The information necessary for the cross-reference listing is stored
in the symbol table. If, during assembly, the symbol table becomes
full, cross-reference information is sacrificed in order for assembly
to continue. The cross-reference listing then contains only the
alphabetic symbol names and their assignment addresses.

The last line of the concordance specifies the version of the
assembler and the number of lines containing error flags.

3-11

SECTION 4

FORTRAN COMPILER (FTN)

Prime's FORTRAN IV Compiler processes source programs prepared in
USA Standard FORTRAN, as defined in American National Standard
ANSI X3.9-1966. In addition, many powerful extensions improve the
language's usefulness in writing high-level programs such as disk
or real time operating systems.

The one-pass compiler is compatible with Prime's Disk Operating
Systems and Real Time Operating System and is able to run in a
stand-alone environment as well. The compiler produces highly
optimized code and is supported by an extensive array of mathematical
functions and subroutines.

Object code generated by the compiler is in a binary block format
suitable for loading by Prime's Linking Loader. Library subroutines
are supplied in the same format.

SOURCE PROGRAMS

Source programs must meet the requirements of the Prime FORTRAN IV
Language Reference Manual.

A source program is typically prepared at a system terminal, using the
Prime text editor to enter the text, make insertions and deletions,
and correct errors. The resulting ASCII source file is stored on
disk, punched on paper tape, or recorded on magnetic tape. Source
programs may also be keypunched for input through a card reader.

OPERATION UNDER DOS-DOS/VM

Loading and Starting Compiler

The FORTRAN compiler is loaded and started by the FIN external command
to DOS:

FIN Filename [1000 Areg]

where 'Filename' is a FORTRAN source program in the current UFD, '1000
is the compiler starting address, and 'Areg' is an A register setting~~ we ww wien Vee enewe 4 ai aeawww 5 o

that specifies listing detail and input-output devices.

4-1

An alternate command format is:

FIN Filename [1/Areg]

This leaves the default starting address unaltered and modifies the
A register value only.

A Register Setting

If no A register setting is specified in the FTN command, the compiler
uses default values set up in the DOS RVEC vector at the time the
compiler was installed on the disk. Typically, the default setting
is '1707 (list errors on user's terminal, no listing file, input and
object output files on disk). If in doubt, resume FTN and do a PM
(post mortem) to determine the A register default value. Other A
register values may be set by providing parameters when FIN is
started, as in:

FIN Filnam 1/41777

41777 is an A register value that specifies listing of symbolic
instructions, causes errors to be listed on the user's terminal,
and uses the disk for input, listing and object files. For other
combinations, see Figure 4-1.

File Usage

When disk is used for the binary and listing files, filenames must be
established. Unless the FTN command is preceded by BINARY and LISTING
commands, the compiler will automatically open unit 2 to write a
binary file named B+«XXXX and open unit 3 to write a listing file
named L+XXXX, where XXXX is the first four letters of the input
filename. The compiler closes any units that it opens. (Units
opened by BINARY and LISTING commands are not closed.)

4-2

DEVICE OPTIONS

O= NONE

1=USE IN-LINE b= OPR/PTP
DESECTORIZATION 3= CARDS
(LFIN ONLY) 4=LINE PRINTER

- 5 = MAGNETIC TAPE
1=FORCE 6 = CASSETTE

NOLIST MODE | 7 = OISK
— ON

1=INCLUDE 7 c \
SYMBOLIC
INSTRUCTIONS
IN LISTING — SOURCE LISTING OBJECT

INPUT OUTPUT OUTPUT
DEVICE DEVICE DEVICE
ee a fo,

C NC NC ~\

RA |LC}|SY NL TR{64 DE AS

SPECIAL fi _
LIBRARY 1=LIST ERRORS ON USER TERMINAL

COMPILATION 1=PERMIT 64R MODE
FLAG

1=UNCONDITIONAL TRACE

i j i A A S.

Figure 4-1. Compiler A-Register Settings

4-3

USING PAPER TAPE COMPILER

The Prime FORTRAN compiler is supplied as a self-loading tape
(SLT 1082.406) for use in systems with 12K or more of memory.

Procedure

1, Use APL (or key-in loader) to load the compiler.

2. Mount the FORTRAN IV source program tape on the desired
input device.

3. MASTER CLEAR the processor, then set device selection
and listing option codes into the A register as shown
in Figure 4-1.

4, Turn to RUN and press START to begin compilation.
(Compiler starts at '1000.)

Device Selection

The input device may be the ASR, a card reader, or the high-speed
paper tape reader. The listing and object file devices may be
different; for example, the listing could be directed to the ASR
and the object output to the high-speed tape punch. Typically, the
user will generate listings only until an error-free compilation
is achieved, and then punch an object tape.

4-4

ACTION OF COMPILER

The compiler does a one-pass compilation of the specified input file,
and generates object and listing outputs to the devices specified by
the A register. A message is printed on the user's terminal after
each END statement. The object file is in relocatable binary block
format, suitable for processing and loading by Prime's Linking Loader.
The object output is compiled to rum in 32R addressing mode unless
bit 5 of the A register is set, which permits running in 64R mode.

COMPTLER MESSAGES

When the compiler reads the END statement of the source program, it prints
a message and the version of the compiler on the user's terminal.
In DOS-DOS/VM systems, control then returns to DOS command level.
In paper tape systems, the CPU halts.

The NO ERRORS message indicates that the program has been compiled
without errors. If any errors are encountered, the message ERRORS
is printed. If bit 7 of the A register is set, error lines are
printed on the console Teletype. Otherwise, the user must print the
listing file to find where the errors occurred. An end of file
also terminates compilation.

A REGISTER (DETAILS)

Device Spins: An essential function of the A register setting is
to tel e compiler which device contains the source file, and where
to output the listing and object code. The default values are:

Type of Compiler Source Listing Object

Paper Tape (Must be specified)

DOS Disk None Disk

Special Library Flag (Bit 1): When this bit is set, the compiler
accepts two special arithmetic assignment statements that load or
access Prime CPU accumulator registers. (Several library routines
use this feature.) The first form is:

=Expression

4-5

The compiler evaluates the expression and loads the appropriate CPU
accumilator according to the mode of the result:

Result Mode CPU Accumulator

Integer A Register

Real Registers 4, 5, 6

Double Precision Registers 4, 5, 2, 6

Complex Floating accumulators
AC1, AC2, AC3, AC4

Any of these accumulators can be accessed by a statement of the form:

Var=

which loads the variable 'Var' with the contents of the appropriate
accumulator. (i.e., if 'Var' is integer mode, it is loaded from the
A register.)

Listing Detail (Bits 2 and 3): These bits determine the content of
the listing output:

Bit 02 03 Listing Detail

0 0 Source statements and error messages, if
any.

1 0 Same as above plus an assembly-language-
like listing of the instructions generated
to implement each source statement.

0 1 No listing.

1 1 Assembly-language-like listing and errors
only (no source statements).

LIST, NO LIST or FULL LIST statements in the source program will
override these bit settings.

Unconditional Trace (Bit 4): If this bit is set, it has the effect of
an unconditional TRACE statement. During compilation, all arithmetic
statements, IF statements, and statement numbers result in object
coding that will cause trace printouts at run time. If the bit is
zero, such printouts occur under control of TRACE statements only.

64 Mode (Bit 5): If this bit is set, the object output is compiled
so that 1t can be loaded to run in 64R addressing mode (i.e., does not
generate code that requires multilevel indirects). (32R mode is
the default value.)

In-Line Desectorization (Bit 6): This option reduces the sector zero
requirements of large programs. When bit 6=1, the compiler generates
double-word memory reference instructions and uses the second word as
an indirect link for all references to the same item within the
relative reach. Use of this option reduces sector zero usage by 70
to 80% while increasing the program size 5 to 10%. Programs
compiled with this option can only be loaded in the relative address-
ing modes (a loader NS diagnostic is generated if an attempt is made
to load in a sectored addressing mode).

The compiler named FTN in CMDNCO on the master disk does not include
the ILD option. The version LFIN includes the option but, because
of its size, cannot be run in a 16K DOS environment.

List Errors (Bit 7): If this bit is set, errors detected during
compilation arelisted on the user's terminal. This feature is
especially useful when a corrected program is being recompiled, to
confirm that the errors have been corrected properly.

SOURCE PROGRAM LISTING FORMATS

Listings may be obtained at several different levels of detail. I¢£
A register bit 7 is set, errors only are listed on the user's terminal.
(Figure 4-2.)

Under control of A register bits 2 and 3, source program listings can
be generated with optional assembly-language-like code. (Figures 4-3
and 4-4),

ERROR MESSAGES

Coding errors and misprints are flagged on the listing by a line
containing a set of asterisks (to attract attention) and a 2-character
error message positioned under the source statement at the point where
the error was detected. If the row of asterisks begin with 'tt", the
error is in a previous line. If the message ends in EQ, the error is
in an EQUIVALENCE statement. Compiler error messages are summarized
in Table 4-1.

LIBRARY ERROR MESSAGES

Some of the library routines have the capability of detecting fault
conditions and delivering error messages during program execution.
Error messages generated by library subroutines are summarized in
Table 4-2,

TRACE PRINTOUTS

At object program run time, any trace coding inserted by the compiler
causes a line to be typed consisting of a variable name, an array name,

4-7

or a statement number, followed by an equal sign, followed by the
current decimal value assigned to that name. The decimal value is
typed in INTEGER, FLOATING POINT, or COMPLEX format. Array names
do not specify subscripts. See Figure 4-5 for sample lines of trace
information as typed at object run-time.

For some logical IF statements, TRACE will evaluate expressions and
print a numerical result rather than a relational value. The user can
then interpret the relational condition by inspection.

4-8

OK» FTN FITNERR
GO

READ(15,10).D
SHVEREHHEOE SE CH

IF (DeEWe-09GO TO 50
SRREBEBRHRET CH

ETAOIN SHRDLU
SUSGEHEAS2H ID

At+R=#D/2-
CHGPHOEDATE

@C=PI*/D
WT SoeEOPsooo

C=PI*/D
SHHKHEAOEHOD

DOUBLE PRECISION PIsA»RsCsD
Seeeene eeeEX

20 CALL EXIT
SESHEEYS

*# ERRORS (FITIN-1062-008).

OK»

Figure 4-2. User Terminal Error Printout Example

4-9

DEMO FORTRAN PROGRAM

PI=3- 1415926536
i WRITECIsA)
5 FORMAT ° DIAMETER=

READ(1510)5D
HHOFCHEEBEES CH
10 FORMAT(F20,12)

IF (DeEW-0)GO TO 50
SoSHBEEe H CH

ETAQIN SHRDLU
HHHHHHGRG ETH

At+R=D/2.

fee eeeeepane

AsP]*Ree#
PHUOPHtt a

C=PI#/p
Feetee eaaseewop

WRITEC1,20)A,C
20 FORMAT(°AREA#°»F20.12s CIRCUMF=",F20+12)

GO TO 1
DOUBLE PRECISION PIsA»sRsCoDSeetHOoe EEK

Rann

20 CALL EXIT
Sth eteneeeaMs

END
$0 END
** ERRORS (FTN-1082.008)

Figure 4-3. Example of Brief Listing (LIST Statement
or A Bits 2, 3 =0)

4-10

DEMO FORTRAN PROGRAM
a
Q
q
a
q
a

DOUBLE PRECISION PIsAsRsCsD

PIs3.1415926536

000000 ELM

000001 JMP 000000

000002 LINK 000001

000002 FLD =°962207

000004 CRB

000005 DFST PI

i WRITEC15s5)

000007 LDA =°900001

000010 JST FSWA

000011 DAC a)
000012 JST FSCB
5 FORMAT(’°DIAMETER®= °)
000013 LINK 5
000013 JMP 000000
000014 OCT 124247
000015 OCT 142311
000016 OcT 140715
000017 OCT 142724

000020 OCT 142722
000021 OCT 136640
000022 OCT 123651
000023 LINK 000013

READ(1210)D

000023 LDA =°000001
000024 JST FSRA

. 000025 DAC o11

™, "9026 JST FSA6
et “Ang

OO
00016u OCT Quve

000161 LINK #2#°00000c
000161 OCT 000002
000102 DAC 20
$0 END

NO ERRORS C(FTN-1082-008)

Figure 4-4, Example of Assembly-Like Listing (FULL LIST
Statement or A Bit 2 = 1 and Bit 3 = 0)

4-11

Table 4-1. Compiler Error Messages

Code Definition

AR Item not an array name.
BD Code generated within a block data subprogram.
BL Block data not first statement.
CE Constant's exponent exceeds 8 bits (Over 255).
CH Improper terminating character (punctuation).
CM Comma outside parenthesis, not in a DO statement.
CN Improper constant (data initialization).
CR Illegal common reference.
DA Illegal use of dummy argument.
DD Dummy item appears in an equivalence or data list.
DM Data and Data Name mode do not agree,
DT Improper DO termination.
EC Equivalence group not followed by comma or CR.
EQ Expression to left of equals, or multiple equals.
EX Specification statement appears after cleanup.
FA Function has no arguments.
FD Function name not defined by an arithmetic statement.
FS Function/Subroutine not the first statement.
HD Hollerith string too long in DATA statement.
HS Hollerith data string extends past end of statement.
IC Impossible common equivalencing.
ID Unrecognizable statement.
IE Impossible Equivalence grouping.
IF Illegal IF statement type.
IN Integer required at this position.
IO Error in Read/Write statement syntax.
IT Item not an integer.
MM Mode mixing error.
MO Data pool overflow.
MS Multiply defined statement number.
NA Name required.
NC Constant must be present.
ND Wrong number of dimensions.
NE No END statement prior to Control statement.
NS Subroutine name not allowed.
NT Logical NOT, not an unary operator.
NU Name already being used.
OP More than one operator in a row.
PA Operation must be within parenthesis.
PH No path leading to this statement.
PR Parenthesis missing in a DO statement.
PW * preceded by an operator other than a *.
RL More than 1 relational operator in a relational example.
RN Reference to a specification statement's number.

4-12

Table 4-1. (Cont)

Code Definition

RT Return not allowed in main program.
SC Statement number on a continuation card.
SP Statement name misspelled.
ST Illegal statement number format.
SU Subscript incrementer not a constant.
TF "TYPE" not followed by "FUNCTION" or List.
TO Assign statement has word TO missing.
UO Multiple + or - signs, not as unary operators.
US Undefined statement number.
VD Symbolic subscript not dummy in dummy array, or symbolic subscript appears on a non-dummy array.

4-13

Table 4-2. FORTRAN Library Error Messages

Code Routine Explanation

AT ATAN2 ARG = ARG2 = 0

BN FEBN device error in REWIND

DE F$FLEX double precision exponent overflow
DECODE FORMAT/DATA MISMATCH (literal)

DL DLOG/DLOG2 ARG <0

DN FS$DN device error in ENDFIEE

DT DATAN2 ARG1 = ARG2 = 0

DZ F$FLEX double precision divide by zero

EX DEXP, EXP exponential overflow

FE F$IO syntax error in FORMAT

FN F$FN device error in BACKSPACE

II E$11 exponential overflow

LG ALOG/ALOG10 ARG <0

READ FORMAT/DATA MISMATCH (literal)

RI C$21, FSFLEX ARG >32767

RN F$RN device error in READ

SE F$FLEX single precision exponent overflow

SQ SQRT ARG < 0

SZ F$FLEX single precision divide by zero

WN F$WN device error in WRITE

XX C$21G ARG >32767
NOTE: The routine F$FLEX is never explicitly called. It is the

handler for the hardware floating point exception interrupt.

4-14

PROGRAM TEXT

DO 1 J = 15188

DO 1 I=15188

TRACE X
x= I

TRACE X
X=X/5G6

ACI)=SINCX)

DO 1 J = 15180

DO 1 I1=1,1088

TRACE 2

X= 1

X= X/5G6

ACI)=SINCX)

CALL CLKOFF CI)

WRITE (152) I

RESULTING TRACE PRINTOUT

ITEM TRACE

FORMAT (///7HTIME = 16)

AREA TRACE

BENCHMARK PROG II

DIMENSION A(189)

CALL CLKON

DO 1 J = 145108

DO |! I=1,182

x=I1

K=X/5B6

ACI)=SINCX)

CALL CLKOFF CI)

WRITE €15,2) I

FORMAT (///7HTIME = 16)

(A Bit 4 set during compilation)

CALL EXIT

GO TO 5

END

Figure 4-5.

UNCONDITIONAL TRACE

Example of TRACE Printouts

4-15

X=

x=

X=

X=

1-8088080
2-SB0088
3+ 880608
4-0080800

(etc.)

1.020008
Q@-28QG0BGE-21

@e 1999865E-G61
2eBOS880

Je40G80G09E-G1

0-3998931E-01

(etc.)

1.200000
O-200000GE-B1

G@-1999865E-01
2-DLOB80

@-4G2BS0BE-B1

Be 39986931E-@1

3-B8BdOB

0-5999999E-@1

(etc.)

SECTION 5

LINKING LOADER (LOAD)

FEATURES

Prime's linking loader offers the following advanced features:

1. Operator control of the loading operation is greatly

simplified. The loader accepts command lines at the user's

terminal instead of requiring multiple starting options.

2. The loader is capable of loading code anywhere in 64K, above

or below itself or COMMON.

3. COMMON is movable by a keyboard command.

4, An indefinite number of linkage areas can be specified; the
loader automatically uses an available area which can be
reached directly rather than Sector 0.

5. The user can specify the instruction execution hardware avail-

able in the CPU on which the loaded program will execute. This

is coordinated with the UII object blocks in load modules so

that the proper VIP library routines will load automatically.

6. Partial or full load maps can be printed.

USING LOADER UNDER DOS-DOS/VM

Several versions of the loader are provided on DOS master disks, to

match the user's memory availability. The desired version is loaded

and started by the external command name listed in Table 5-1. No

parameters are required with the command name; all loader functions are

available through user terminal keyboard commands. When loaded, the

loader prints the ''$'' prompt character on the user terminal and awaits

a command line.

USING PAPER TAPE VERSIONS

The paper tape version of the loader, LOADAP, is supplied in both

self-loading and object versions. The self-loading tape is loaded by

APL or the key-in loader; when loading is complete, LOADAP takes control,

prints the "$" prompt character, and awaits a command line. See

Section 9 for instructions on loading the object version into different

memory areas than that occupied by the self-loading tape.

o-1

Table 5-1. Loader Versions and Memory Locations

Version* Low High Start Common

LOAD 60000 63777 61000 63752

LOAD40 40000 43777 41000 43752

LOAD74 74000 77777 75000 77752

LOAD20 20000 23777 21000 23752

LOADAP** 14000 17770 15000 17752

* DOS-DOS/VM

external command name

**Paper tape loader

5-2

COMMAND DEFINITIONS

Each loader command consists of a command name followed by a series
of arguments in the same format as the Prime DOS-DOS/VM command
line:

COMMAND Namel Name2 Argl Arg2.. .Argn

where COMMAND is the command name, each 'Name' is a DOS filename or
UFD name, and each 'Arg' is an octal argument of up to six octal digits.
Command names may be abbreviated to two characters. Arguments are
separated by spaces. Up to three alphanumeric names and nine arguments
are allowed. It is possible to skip the names and follow the command
with the first numerical argument. The kill character (?) may be used
to cancel a command line containing errors but the erase character ("')
is not accepted.

The commands are described below in alphabetical order.

ATtach [Ufd] [Password] [Ldisk] [Key]

Enables the user to attach to different UFD's. (Also see Library
command.) This command is converted into a CALL to the DOS sub-
routine ATTACH and has exactly the same effect. If the 'Ldisk'
parameter is omitted, the loaded searches only device 0 for the
specified UFD. If an Ldisk value of '100000 is specified, the
loader searches all started devices in logical unit order. The
values for 'Key' most likely to be useful during loading are:

1 Adopt named UFD as home UFD

0 Do not change home UFD

If the 'Ufd' parameter is blank, ATTACH attaches to the home UFD.

Do not use this command in paper tape systems.

QOmmon Address

Moves the starting location of FORTRAN-compatible COMMON to the address
specified. Space for COMMON items is allocated downward from the starting
location. Default values for the start of QOMMVON are shown in Table 5-1.

EXecute [Areg] [Breg] [Xreg]

Enables the user to start execution of the loaded program with optional
values preset into the A, B and X registers. Execution starts at the
location specified by the START entry of the loadmap.

5-3

FOrce Filename [Loadpoint] [Linkstart] ([Linkrange]

Has the same effect as a LOAD command.

HArdware Definition

Defines the instruction execution hardware of the CPU on which the loaded
program will operate. Any item specified by this command is removed from
the UII requirement. The 'Definition' parameter is the octal equivalent
of a 16-bit word with the following bit assignments:

Bit Hardware Available on Target CPU

1-12 (Must be zero)

13 1 = Double Precision Floating Point

14 1 = Single Precision Floating Point

15 1 = PRIME 300 Instruction Set

16 1 = High Speed Arithmetic

The default value is zero.

INitialize [Filename] [Loadpoint] [Linkstart] [Linkrange]

Initializes the loader and then performs the same actions as a LOad command.
In the loader's initialized state the symbol table is empty and the follow-
ing parameters are returned to their default values:

Load Map

*START 0
*LOW 177777
*HIGH 0
*PBRK 1000
*CMLOW XX752 XX = Last Sector
*CMHIGH XX752 Occupied by Loader
*SYM YY000 YY = First Sector
*UIT 0 Occupied by Loader

Load Parameters (if not specified

Loadpoint "1000
Linkstart '200
Linkrange "600

New load parameters may be assigned by the command string.

5-4

LOad Filename [Loadpoint] [Linkstart] [Linkrange]

Loads the specified object file ('Filename') into memory starting at
‘loadpoint' (if specified) or else at the current *PBRK location. The
optional 'Linkstart' and 'Linkrange' parameters enable the user to
define a linkage area as in a SEtbase command. When loading is complete,
*PBRK points to the location following the highest location used by the
object file. The other load map and load parameters are altered as
required. During the first LOad command after the loader is started,
all parameters have the values specified for the INitialize command.

In paper tape systems, do not specify a filename. The 'Loadpoint',
"Linkstart' and 'Linkrange' parameters are optional.

Library [Filename]

Temporarily attaches to the LIB UFD, loads from the specified filename,
and returns to the original UFD. FTNLIB is the default filename.

Loading of the library components begins at the *PBRK location of the
load map. To begin loading at another location, ATtach to LIB and
use the LOad command with a new loadpoint specified.

In paper tape systems, use the LOad command instead of Library. Position
the library tape at the beginning and do not spcify a filename.

MAp Option

Prints on the user's terminal part or all of a load map consisting of
three sections -- the load state, linkage area information, and un-
satisfied references. The 'Option' parameter selects what is to be
printed:

Null Full map

1 Load state only

2 Load state and linkage information

3 Unsatisfied references only

5-5

The eight parameters included in the load state are:

*LOW = the lowest location in memory loaded
*HT GH = the highest location in memory loaded
*START = the location at which execution will begin
*PBRK = the next location in memory to be loaded
*CMLOW = the lowest location in COMMON
*CMHIGI = the highest location in COMMON
*SYM = the lowest location used by the symbol table
‘UII = the net hardware/UII package requirement

(see HArdware command for meaning)

(See INitialize for default values.)

Each linkage area is described as follows:

*BASE XXXXXX YYYYYY ZZZZZZ WWWWWW

XXXXXX = lowest location defined for this area
YYYYYY = next available location if starting

from XXXXXX
ZZZZZZ = next available location if starting

from WWWWWW
WWWWWW = highest location defined for this area

Linkage information consists of every defined label or external reference
name printed four per line in the following format:

Namexx NNNNNN (loaded)

or

Namexx NNNNNN** (not loaded)

NNNNNN is a six-digit octal address. The ** flag means the reference
is unsatisfied (i.e., has not been loaded). Every map begins with a
reference to the special FORTRAN array LIST which is defined as starting
at location l.

Example

Following is a load map for the FORTRAN example described in Section 4.

5-6

$ MAP
*START
*CMLOW

*BASE
*BASE
*BASE
*BASE
*BASE

LIST
Ccsi2
FSWX
FSA2
FSIOBF
ACI
ACS
Iocss
RATBL
RSTBL
ISAA01
PRWFIL
TIIN
P10U

$

001000
063753

000200
002124
003107
003775
004531

000001
001307
001466
002102
005251
805606
005612
005625
006003
006117
006557
007051
007115
007251

*LOW
*CMHGH

000271
002166
003151
004020
004551

000066
063753

000777
002165
003150
004025
004554

*HIGH
*SYM

000777
002165
003150
004026
004554

E$61
FSRA
FS$IO
FSAS
F$FLEX
AC2
RDASC
IOCS$T
WATBL
I$AD07
ISAP02
EXIT
TIIB
P10B

001162
601320
001542
662102
005353
005607
005613
005724
006014
006154
006571
007054
007216
007267

5-7

D$62
FSRX
FSA1
FSA6
FSER
AC3
RDALN
FSAT
LUTBL
OSAD07
OSAA0!
ERRSET
TIOB
P1IIB

012106
057324

061242
001326
002076
002107
005521
005610
005613
005736
006025
006316
006751
007061
007223
007273

*PBRK
full

$$61
FSWA
FSA3
FS$CB
FSHT
AC4
WRASC
FSATI
PUTBL
OSADOS
OSAP02
OPSCHK
PiIN
UITI61

012107
000000

001270
001460
002076
002426
005526
005611
005620
805740
006062
066515
006755
007064
007230
007300

Mode Mode

Directs the loader to desector in one of the four CPU addressing modes:

Mode Parameter Addressing Mode

D16S 16K Sectored

D328 32K Sectored

D32R 32K Relative (default value)

Do4R 64K Relative

The mode set by this command may be overridden by mode control pseudo-
operations in the object text. If the program contains an ELM (Enter

Loader's Addressing Mode) this command enables the user to select the
addressing mode at load time.

Quit

Returns to the operating system with the user attached to the home UFD
or the last UFD specified in an ATtach command.

(Do notuse in paper tape systems.)

REcover

Enables loader to continue following a GI error message. The GI message
results from an incorrect filename, an unrecognizable piece of object
text, or a missing EOF or EOT. After giving this command, the user
can specify the correct file in another LOad or FOrce command and con-
tinue loading.

SAve Filename [Areg] [Breg] [Xreg]

Saves the loaded memory image under the name ‘Filename’ in the current
UFD. Also saved with the program are the low, high, start and keys
parameters obtained from the loader. (There is no option to set them.)
(do not use in paper tape system.)

SEtbase Linkstart Linkrange

Defines a linkage area that begins at 'Linkstart' and includes the number
of locations specified by 'Linkrange'. If the range is not specified
the end of the area is location '777 of the sector containing the 'Linkstart'
location. Multiple linkage area are allowed. A command to create a
linkage area that overlaps a previously defined area is ignored.

5-8

The default values are:

Linkstart "200

Linkrange *600

VIrtualbase Startlinks Tosector

Copies the base sector (from the 'Startlinks' location to the end) to

the corresponding locations of 'Tosector'. This command is intended

for use in building RTOS modules using dedicated sector zero or base

sector relocation.

LOADERMESSAGES

After executing a commandsuccessfully the loader types the gu

prompt character. Under some circumstances one of the following

messages may be printed. (Note that the MR message of previous

loader versions is no longer issued.)

CM - COMnand error.

Illegal command syntax or nonexistent filename specified.

GT - Group Type error.

The loader has encountered an unrecognizable piece of object

text. Loading is discontinued. To continue, enter the REcover

command .

LC - Load Complete.

All external references are satisfied. (This does not imply

satisfaction of all UII requirements.)

MI XXXXXX - Multiple Indirect.

While linking in 64R mode the loader attempted to add indirection

to an already indirect instruction at location XXXXXX. The

contents of XXXXXX are the proper flag, tag, and op code with

an address of zero. Loading continues.

MO - Memory Overflow.

An attempt has been made to overwrite the loader or its symbol

table, or the base sector is full of links. Loading 1s dis-

continued.

5-9

NS - Never Sectored

Code is being loaded in 16S or 32S mode which will not
properly execute in a sectored mode.

N6 - Never 64R mode.

Code is being loaded in 64R mode which will not execute
properly. Loading is discontinued.

UII HANDLING (INTERACTION OF LOAD, PMA, AND FTN)

PMA and FIN both output an object group which informs the loader of
any need for high speed arithmetic, floating point, etc., in a given
module. The object group contains one data word, in the same format
as the loader's HArdware command argument. The loader maintains an
internal sunmary of UII requirements for all modules loaded.

UII library modules are headed by an object group containing two data
words: the first describes the features offered by the module, and
second describes the hardware required. Both words are in HArdware
command format. A UII module which does not satisfy the loader's
summary of requirements is skipped, not loaded. The *UII value in
the load map is the total UII requirement less any requirements satis-
fied by a loaded UII module (as specified in a HArdware command), or
the target hardware. The following example shows the loader commands
required to load a program that requires floating point arithmetic
and is to run on a CPU that contains the high speed integer arithmetic
option. The VIP routines are in the file named UII in the LIB UEFD.

OKs LOAD
GO
$ LO BIFITND
$ LI
LC
$ MA 1
*START
*CMLOW

$ HA 1
$ MA 1
*START
*CMLOW

$ LI UII
LC
$ MA 1
*START
*CMLOW

001000
063753

001000
063753

001000
063753

*LOW
* CMHGH

*LOW
* CMHGH

*LOW
*CMHGH

000074
063753

000074
063753

000066
063753

5-10

*HIGH
*SYM

*HIGH
*SYM

*HIGH
*SYM

007277
057331

007277
057331

012106
057324

*PBRK
*ULT

*PBRK
#UII

*PBRK
*UIl

Loading is discontinued.

007300
000015

007300
000014

012107
000000

REPLACING DEFAULT VALUES FOR MODE, COMMON, HARDWARE

It is not necessary to know internal memory locations to adjust the

default values for the parameters of the Mode, COmmon, and HArdware

commands. The following DOS sequence will suffice:

OK: A CMDNCO
OK: REST LOAD
OK: PM

SA, EA, P, A, B, X, K =

OK: START

GO
$ MODE new value
$ COMMON new value -- As many as
$ HARDWARE new value desired
$ QUIT
OK: SAVE LOAD (use values from previous post-mortem)

LIBRARY MODE

The loader maintains an internal force-load flag which specifies that
an entire file (or tape) will be loaded whether or not all entry
points have been referenced by a previously loaded module. The force-
load flag is set when the loader is initialized and whenever an end-of-
file is reached. Only an RFL code at the beginning of an object file
(inserted by the binary editor) will clear the force-load flag and
establish library mode. In library mode, only the components with
previously specified entry points are loaded. Prime library files
contain RFL codes to ensure that the user will load only the components
he requires.

5-11

SECTION 6

DEBUGGING UTILITIES - OCTAL (TAP) AND SYMBOLIC (PSD)

Prime supplies two types of debug programs. TAP (Trace and Patch) is
a compact, one-sector octal-mode routine to examine, dump or update
programs from the user's terminal. It includes trace and breakpoint
insertion features for dynamic debugging under conditions of simulated
execution (in sectored addressing modes only). PSD (Prime Symbolic
Debugger) is a four-sector version that adds the ability to address
up to 64K of memory, and examine, dump and update memory locations in
octal, hexadecimal, alphanumeric, binary or memonic notation. In
mnemonic form, instructions are dis-assembled into an instruction
mnemonic and an address value, plus symbols for indirection (*) or
indexing (,1). Instructions of the extended classes (long reach, stack
relative, push-pop) are identified by a % symbol followed by a class
code from 0 to 3, as in LDA %2, which signifies an LDA instruction
Operating in extended addressing Class 2 (stack postincrement).

PART 1

TRACE AND PATCH (TAP)

TAP is an octal-mode debugging routine that permits the operator to
access memory locations, process memory blocks, and trace program
execution dynamically, by entering commands and octal values at the
teleprinter keyboard. The main functions are summarized below:

Function Command

Memory Words:

Access and print or alter contents A

List (print) contents L

Update (alter contents) U

Memory Blocks:

Copy block to block C

Print contents D

Fill with constant F

Search for constant under mask S

Verify block to block V

Not-equal search for constant under mask N

6-1

Executable Programs:

Breakpoint set B

Execute a subroutine E

Jump trace (print diagnostic after J
JMP or HLT instructions)

Monitor for effective address (execute M
program and print diagnostic if address
is formed)

Patch object program (insert JMP in P
specified location)

Run object program (print diagnostic if R
breakpoint is reached)

Trace object program (print diagnostic T
at specified intervals)

LOADING AND STARTING

Under DOS-DOS/VM: Enter the external command TAP. When loaded, TAP
types the "$" prompt character and awaits a command string from the
system terminal. To terminate long operations such as Dump, type
CTRL P for a return to DOS. Restart at 'XX000, where XX is the first
sector occupied by TAP.

Paper Tape Systems: TAP is provided as a self-loading, self-starting
system tape that can be loaded from the high or low speed reader
using APL. When properly loaded, TAP types the prompt character ''$"'
and awaits a command string.

The relocatable object version of TAP can be loaded at the beginning
of any sector except zero. Object programs to be debugged
dynamically must be in the same 16K of memory.

To terminate long operations like Dump, halt the CPU and restart at
'XX000, where XX is the first sector occupied by TAP.

Relocating TAP: During program development, it may be useful to load
TAP into more than one sector of memory. The following command string
replicates TAP in every sector of an 8K memory from location '2000 up:

$C 1000 16777 2000 (CR)

If a program error wipes out part of the TAP program, a copy of TAP
in another sector can be started without having to load again from
paper tape.

6-2

Startup of Other Programs: TAP permits the operator to start other
programs without having to load the P register at the control panel.
For example, the command string R 70000 starts execution at location
"70000.

Addressing Modes: TAP runs in the 32S addressing mode. If TAP is
used to start or trace a program that executes in 16S addressing mode,
TAP must be loaded in the first 16K of memory. TAP may not be used
to trace programs that execute in 32R or 64R addressing modes.
(See PSD.)

COMMAND DESCRIPTIONS

Each TAP command consists of a single letter function code followed
by one or more octal values, separated by spaces or commas. Each
command string is entered for execution by a CR. The commands are
defined below in alphabetical order.

All values are right-justified octal integers. If a value is
unspecified, it is considered zero (in the expression ''V1,,V3"
the omitted value, V2, is considered zero).

A slash (/) or question mark (?) may be used to abort a command
string and return to the starting condition (signalled by the $
character).

To cancel an incorrect octal value, type an asterisk (*). If more
than five digits are entered, only the last 16 bits are used.

If the wrong function code letter is entered, simply follow it with
the correct character. (Only the last input letter of the command
field is interpreted.)

Access memory A Startadd

Accesses word(s) in memory starting at 'Startadd'. The program types
'Startadd' and its contents, then waits for keyboard input. To
change the contents, key in the new octal value, followed by CR.
The program then types out the next higher address and its contents.
To progress to the next higher address without changing the contents
of the current location, key in a comma or CR. To backspace to the
previous location without changing the contents of the current
location, key in an up arrow (+). The look/change cycle continues
until the operator keys in a slash (/) or question-mark.

Breakpoint set B Location

Inserts breakpoint link in object program at 'Location'. If object
program is later executed, and if control reaches 'Location', an

6-3

indirect jump through location '00777 returns control to the TAP
program, which prints the register contents, then awaits further
commands. Print format is given under function R. Only one break-
point can be inserted in a program. The actual breakpoint jump is
placed in the object program only at execution time, and is removed
after each use. However, the breakpoint address is retained for
re-use and requires user action only to change it. To remove break-
point completely, key in B 17 (CR).

Copy memory C From To Newblock
block to memory

Copies memory block at locations 'From' through 'To' into block
Starting at 'Newblock'. If 'To' does not exceed 'From', only the
word at location 'From' is copied. If 'Newblock' lies between 'From'
and 'To', the block between 'From' and 'Newblock' is repeated
cyclically until location Newblock + To - From is reached.

Dump memory D From To
to teleprinter

Dumps memory block at locations 'From' through 'To' to user terminal.
The basic typing format is eight octal words per line, preceded by
the octal address of the first word printed on the line. Repetitious
words are suppressed as follows:

l. If the remainder of the current line is identical to word
last printed, the line is terminated.

2. If one or more subsequent lines are identical to word last
printed, one line is skipped.

Execute subroutine E Subr [Areg Breg Xreg Keys]

Executes a subroutine by performing a JST to location 'Subr'. Prior to
subroutine entry, the A, B, and X registers and Keys are optionally
preset. The subroutine return should be via indirect jump through
its entry point, incremented by 0, 1, or 2.

Fill memory
Block with
constant F From To Value

Fills memory block at locations 'From' through 'To' with 'Value'. If
'To' does not exceed 'From', only the first location is filled.

6-4

Jump trace object program J Startadd [Areg Breg]

Dynamically traces object program starting at location 'Startadd' with
an optional preset of registers A and B. A diagnostic printout is
produced prior to the interpretive execution of any JMP or JST or
HLT. (See function T for format.)

List memory word L Address

Lists contents of 'Address'.

Monitor object M Startadd Areg Breg Address
program for
effective address

Dynamically monitors object program starting at 'Startadd', with
registers A and B Preset. A diagnostic printout is produced prior to
the interpretive execution of any object memory-reference instruction
with an effective address equal to 'Address'. (See function T for
format.)

Not-equal search N From To Nmatch [Mask]

Searches memory block between 'From' and 'To' for words not equal to
'Nmatch' under an optional 'Mask'. The masking function is a 16-bit
logical AND. If no mask is specified, the entire word is tested.
When a non-match is found, the address and its contents are typed
out, and the search continues.

Patch object P V1 V2
program

Inserts patch in object program at location V2, by replacing instruction
at V2 with jump to location V1, storing the displaced instruction at
V1, and entering Access function at location V1. Operator must key
in desired patch,with suitable return. Either V1 and V2 must be in
the same sector or V1 must be in sector zero.

Run object R Startadd Areg Breg Xreg Keys
program

Runs object program by performing JMP to 'Startadd' location. Prior
to program entry, registers A, B, X, and Keys are optionally loaded.
Control does not return to the TAP program unless a breakpoint is
encountered. If a breakpoint is encountered, the print format Is:

INSTR (A) (B) (X) (KEYS)

6-5

Search memory S From To Match [Mask]
block under
mask

Searches memory block at 'From' through 'To' for words equal to 'Match!'
under an optional 'Mask'. (If no mask is specified, the entire word
is tested.) When a match is found, the address and its content are
typed out, and the search continues until location 'To' has been tested.

Trace object T Startadd [Areg Breg]
program

Dynamically traces object program starting at 'Startadd' with registers
A and B optionally preset. A diagnostic printout is produced prior
to the interpretive execution of each object instruction. Printout
is formatted as eight octal words, representing:

(P) INSTR EA (EA) (A) () (CQ) (CEEYS)

For non-memory-reference instructions, the third word is 000000 and
the fourth repeats the instruction word.

T Startadd Areg Breg Pval

Same as above, but printout occurs only when P='Pval'.

T Startadd Areg Breg 177777 Interval

Same as above, but printout occurs every 'Interval' instructions.

If 'Interval' is negative, its absolute value is used.
If zero, it is treated as 65536.

T Startadd Areg Breg Pval 0

Same as above, but printout occurs the first time P='Pval', and
every instruction thereafter.

T,J and M Function Restrictions

a. HLT instructions always cause printout, followed by a return
to TAP command mode.

b. Interrupts are executed in real time, not in interpretive
mode. Tracing resumes when interrupt routine exits.

c. Tracing of input-output routines is possible, but timing
should be investigated. Processing speed is reduced by a
factor of 60 to 80 when no printout is involved.

d. Programs to be traced can operate only in sectored addressing
modes (16S or 32S).

6-6

update memory U V1 V2
wor

Sets (V1)=V2. Prints old and new contents of V1.

Verify memory V From To Copy
Block against
copy in memory

Verifies memory block at 'From' through 'To' against a copy starting
at 'Copy'. The program types the address and content of each location
in the 'From' block which does not match corresponding word in 'Copy'.

6-7

PART 2

PRIME SYMBOLIC DEBUG (PSD)

PSD is an expanded version of TAP that provides the following
enhancements:

Mnemonic, binary, ASCII, and hexadecimal input/output

Expressions in input values - with current location count (*)
and relocation constant (>) symbols and + or - operators.

All four standard addressing modes (16S, 32S, 32R and 64R)

Full 64K addressability

Relocatable addressing (assembler REL)

Extended-class instructions

New commands

Several new access features, including effective address
calculations

PSD includes all of the normal TAP commands except Jump, Patch and
Trace, and adds several new commands. Commands which are common to
both TAP and PSD operate exactly as described for TAP except for the
parameters, which are entered in the current input mode. Output
(if any) is printed in the current output mode. In Access mode,
there are several new terminators and an address relocation offset
value can be specified.

LOADING AND STARTING UNDER DOS-DOS/VM

PSD is supplied in the CMDNCO UFD of DOS master disks in two versions.
The command PSD loads and starts a version that runs in locations '60000-
6377 (below DOS in a 32K memory). The command PSD20 loads and starts
a version that runs in locations '20000-23777 (below DOS in a 16K memory).
PSD is not relocatable as is TAP.

USING PAPER TAPE VERSION

PSD is supplied as a self-loading, self-starting paper tape (SLT0790.000)
that loads into locations '14000-17666.

6-8

NEW COMMAND DESCRIPTIONS

Effective Address E From To Match [Mask]
Search

Same as Search (TAP) but prints address/value when an effective address
equal to 'Match' under 'Mask' is found.

Keys K Keys
update

Sets the CPU status keys to the specified value. The bit assignments
are:

Shift Count

Cc] P * * ADR x *
j L i l j l l I i l

1 3 4 5 6 7 8 9 16

where:

C = State of C (Carry) bit

P = Arithmetic mode; 0 ~ single precision,
1 double precision

* = Must be zero

ADR = Addressing Mode:

Bit 5 Bit 6 Mode

0 0 16K Sectored (Normal)

0 1 32K Sectored

1 1 32K Relative

1 0 64K Relative

Shift = Bits 9-16 of location 6, which may
Count contain a normalize shift count

Mode MO |D16S}
(addressing) D32S

D32R
D64R

Selects the addressing mode in which address values are computed in
symbolic input/output mode. Sets bits 5 and 6 of the keys accordingly
and resets all other keys bits to zero.

6-9

Parameters P

Prints CPU/PSD parameters in octal as follows:

Breakpoint Breakpoint Areg Breg Xreg Keys Relcon
Contents

"Relcon' is the current value of the relocation constant.

Relocation RE Value
Constant or xX Value

Sets a value for the PSD internal relocation constant. To remove,
set to 0.

Quit Q or U

Returns to the operating system.

XRegister XR Value
Setup

Sets the value of the X register, for example before executing a Run
command or effective address calculation.

Breakpoint Processing

PSD has the ability to insert a Breakpoint and regain control when
execution of the Breakpoint location is attempted. The Breakpoint
location is defined by B and is inserted by R as defined for TAP.
When PSD regains control, it prints:

bp (bp) Areg Breg Xreg Keys Relcon

bp is Breakpoint location
(bp) is contents of breakpoint location
Areg is A register at breakpoint
Breg is B register at breakpoint
Xreg is X register at breakpoint
Keys is Keys at breakpoint

Verify Printout

The PSD format for printout during a Verify operation is:

Address Vl V2

where 'Address' is the location in the 'From' block, V1 is the contents
Compt location, and V2 is the contents of the corresponding word in

6-10

INPUT/OUTPUT MODES

PSD has the ability to accept input parameters and print output values
in five different modes. The mode is established by ending any command
with a colon followed by a single letter, as in:

A 1000:0

This accesses location '1000 and establishes the octal mode for all
subsequent input/output. The following mode-changing letters are
assigned:

cA ASCII
:B Binary
:H Hexadecimal
:0 Octal
7S Symbolic (i.e. mnemonic)

The effects during input and output are described below.

ASCII Input

Two characters are accepted followed by a terminator (described later).
Any even number of characters will be accepted with the last two
as the final value. The first character (or any odd character) may
not be:

>=@%,.nl. /? +-:% () +. blank

The second character is required and may not be:

/?, nl.

ASCIT Output

Two characters are printed - an @ is substituted for any non-printing
character. In a Dump, up to 8 character pairs are printed per line.

Binary Input

Any sequence of 1's and 0's are accepted with the last 16 being used
for the final value (if less than 16 are input, leading 0's are assumed).

Binary Output

A sequence of 16 1's and 0's is printed. In a Dump, up to 4 words are
printed per line.

Hex Input

Any sequence of characters from the set 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F, is accepted with the last four being used for the
final value (if less than four are input, leading 0's are assumed).

6-11

Hex Output

A sequence of four hexadecimal characters is printed. Leading zeroes
are supported. In a Dump, up to 8 words are printed per line.

Octal Input

Any expression is accepted (octal number or mnemonic op code).

Octal Output

A sequence of six characters (0-7) is printed with leading 0's replaced
by blanks. In a Dump, up to 8 words are printed per line.

Mnemonic Input.

Mnemonic input mode enables the user to enter instructions using
mnemonic rather than octal op codes. The general form for mnemonic
input of an instruction is:

Mnem [*] [%] [>] Expr [,1]

where:

Mnem is any legal instruction mnemonic (a DAC
is printed if the op code is not recognized)

x represents indirect addressing

o
e indicates that the instruction is of the

extended class

> specifies that the address expression is relative
to the relocation count

Expr is an expression (forms described later)

yi specifies indexing

The following examples show the format for most forms of a LDA instruc-
tion that addresses absolute location 1017:

LDA 1017 Direct addressing
LDA* 1017 Indirect
LDA 1017,1 Indexed
LDA* 1017,1 Indirect and indexed

Extended-class instructions (identified by the % symbol) contain, instead
of an octal address, one of the following codes to represent the class
code in bits 15 and 16 of the instruction word:

6-12

Long reach
Stack relative
Stack postincrement
Stack predecrementW

D
r
e
©

The displacement field of the instruction is set to -255+n, where n is
the class code.

A relative addressing mode (32R or 64R) must be set by the Mode
command in order for extended instructions to be input properly.

The first two classes are the two-word instruction types, for which
the second word is exprected to contain an address value. Indirection
and indexing can be specified as usual. Examples:

LDA %0 Long reach
DAC 1017 Address word

LDA* %0 Same, indirect
DAC 1017

LDA %0,1 Same, indexed
DAC 1017

LDA %1 Stack relative
DAC 100 Offset from stack pointer

LDA* %1 Same, indirect
DAC 100

etc.

The stack postincrement and predecrement instructions are one-word
types. Examples:

LDA %2 Postincrement
LDA* %2 Same, indirect
LDA %2,1 Same, indexed
LDA %3 Predecrement
etc.

Mnemonic Output

Mnemonic output is in the same form as the input but the % symbol for
extended instructions is shown as part of the mnemonic field and the
address value is in octal. Examples:

6-13

LDA% 0 Long reach
DAC 1017

LDA*% 1,1 Stack relative, indirect § indexed
DAC 1017

LDA% 2 Stack postincrement

LDA*% 3,1 Stack predecrement, indirect and indexed

Printouts of consecutive locations during Dump commands are formatted
four per line with the octal address of the first item at the
beginning of the line. Example:

$D 1015 1100358
1018S JST 1032.1 EPMJ HLT LDA 1017
1021 LDA 1017.1 LDA 1017 LDA* 1017 L.DA* 101751
1025 LDA* 101751 LDA« 3051 LDA % 0 DAC . 1017
1031 LDA*&% 0 DAG 1017 LDA % Os1 DAC 1017
1035 LDA*Z 221 DAC 1017 LDA*®% Os1 DAC 1017
1041 LDA*2Z Os1 DAC 1017 LDA*% 221 DAC 30
1045 LDA Z% i DAC 3 LDA Z l,i DAC 3
1051 LDA«% 1 DAC 3 LDA*% 301 DAC 3
1055 LDA*% isi DAC 3 LDA % 1 DAC 126
1061 LDA 2% 2 LDA Z% 221 LDA*% 2 LDA 2 2s _.
1066 LDA 2 3 LDA % 321 LDA*Z% 3 LDA 2% 301
1073 LDA 1073 LDA 170 LDA 2 1 HLT
1077 LDA 77 LDA 100

Expressions

An expression is:

a. A signed octal number of up to six digits. If more than six

digits are entered, the most recently entered six are kept.

Leading zeroes may be omitted and, in the absence of an explicit

indicator, + is assumed. Examples:

+123 ; -765 ; 127102700 (value is 102700)

The character * whose value is the Access Mode location counter.

(See "Access Mode Enhancements".)

An arithmetic expression which specifies the addition or sub -

traction of any number of expressions of type a or b. Examples:

*+123 ; *-1 ; *+1000-2

6-14

Relocation Constant

PSD has the ability to process addresses in a relocatable mode

(equivalent to assembler REL) by maintaining a relocation constant

which points to the start of a module. All addresses that are

preceded by > are relative to this relocation constant. For a

relocation constant of 3121, both

$A >0 and $A 3121

would open location 3121.

The relocation constant is set by the RE or X command. Setting the
relocation constant to 0 disables this mode.

For all output, any address which is larger than the relocation

address is printed as > n, where n is the address minus the relocation

address.

ACCESS MODE ENHANCEMENTS

PSD provides an Access command with the same general functions as the

TAP Access command but with several extensions:

A current location count is maintained.

All input and output modes are allowed.

The relative addressing symbol (>) may be used to specify

locations or update their contents.

Several new line terminator functions are added, including effective

address formation and a branch/return function for convenient

examination of subroutines or data tables.

Current Location Counter

In Access mode, a current location count is maintained, starting with

the value of the 'Startadd' parameter of the Access command. The

location count determines the next location to be accessed. For the

comma or .NL. line terminators, the counter is incremented.after each

access. Other line terminators provide different options.

PSD replaces the value in the open location with the new value (if

specified) and uses the line terminator to compute the next value of

the current location counter.

PSD accepts the new value in the current input mode, which may be

changed while entering the new value. Thus, :HAF enters the hex

value OOAF regardless of the previous mode.

6-15

The new value may be terminated by a new line (.nl.) or an up arrow
(+). Other terminators do not cause the new value to be accepted.

Line Terminators

There are several line terminators. Only .nl. or + should follow
a new value. The others may be used when no change is entered.

Terminator Next Location

| onl. current location +1

| + current location -l

» (comma) current location +1

n(.nl.) current location +n (n is an octal number)

.-n(.nl.) current location -n

@ effective address (if the instruction
is memory reference) or current location.
Saves the current address +1 as the
return address.

\ return address defined by last @

= current address.

When = is entered, the effective address
is calculated and printed in octal
followed by the contents of that location
in octal. No change takes place to
open location.

Effective Address Formation

PSD processes input and output in all four major addressing modes.
The mode is set by the MOde command.

When the index register is needed, the current value of the X register
is used (it may be changed by using the Run or XReg commands.

When PSD prints an address, it applies the same address formation
process as the hardware, using the current values of the X and S
registers. For relative addresses, the Access Mode current location
counter is used as the value of the P register.

6-16

SECTION 7

TAPE PUNCH AND COPY UTILITIES

PART 1

MEMORY DUMP AND LOAD (MDL)

MDL punches paper tapes of specified sections of memory in a self-
loading format that can be read by the automatic program load (APL)
function or an equivalent key-in loader. MDL tapes load into the
Same memory locations fromwhich they are punched.

MDL first punches part of itself, a second-level bootstrap loader
in 8-8 format (two tape frames per memory word image) followed by
a length of leader. The memory area to be saved is then punched
in a 256-word block format.

When the tape is read, the APL loader or key-in loader only needs
to load the 8-8 format bootstrap portion of the tape. Regular
program control is then transferred to the second level bootstrap,
which interprets the block-format data and loads it into memory. An
ASR reader is operated in full duplex so the printer is inactive
while a self-loading tape is being read.

MDL punches the contents of all memory locations between two
specified addresses. The area need not consist of solid code or
data, however. Any three or more consecutive identical memory
locations are compressed as follows:

Word 1 Pattern to be repeated
2 "70 (escape character)
3 '340 (repeating word flag)
4 Number of occurrences (256 max.)

USING MDL UNDER DOS-DOS/VM

Enter the MDL external command. MDL prints the cue:

SA, EA, P, K, L

and waits for a string of starting parameters to be entered from the
keyboard. (See "Entering Parameters".)

USING MDL IN PAPER TAPE SYSTEMS

Versions Supplied: MDL is provided in three versions for the
convenience of the user. One version is a self-loading tape of MDL
that loads into the last sector of an 8K memory ('17000-'17777).
Another self-loading 8K version of MDL, in combination with TAP,
is provided under the name of TAPMDL. The combination is loaded into
the top two sectors of an 8K memory (locations "16000-'17777). In

7-1

addition, an object tape of MDL is provided so that each user can
generate a self-loading version suitable to his particular memory
configuration and program development methods. Once it is loaded
into the desired area of memory, this version of MDL can be used to
punch a self-loading tape of itself. MDL occupies one sector
('777 locations) and runs in 64R addressing mode.

Loading Object (Relocatable) Version: Load linking loader (LOADAP)
according to the procedures of Section 5, and use it as follows:

1. Mount the MDL object tape on the selected input device and
prepare the device for operation.

2. Start the loader and enter the following commands:

$ MO D64R
$ LO Startadd

where 'Startadd' is the beginning of the sector in which MDL

is to load.

The MDL tape should load and stop, and the loader should print

"LC" (loading complete). Print a memory map to show the start-

ing address for future reference.

NOTE

Use MDL to punch a self-loading tape of
itself and this operation will not need
to be repeated.

Loading Self-Loading Version: A self-loading tape of MDL or TAPMDL

can be loaded from the high-or low-speed tape reader using the auto-

matic program LOAD function or key-in loader. The TAPMDL tape uses
the autostart feature; when the tape finishes loading, TAP
automatically starts and types the cue ''$".

Starting MDL: After MDL is loaded, start it as follows:

1. Set all sense switches OFF.

2. Make sure there is enough tape in tape punch to contain
the memory area to be copied. Feed a few folds of leader.

NOTE

Skip the next step if the program to be
punched uses any register file locations.

3. MASTER CLEAR the CPU.

4, If the TAPMDL self-loading tape was loaded, start MDL by
entering the TAP command R 17000.

7-2

NOTE

Start from the panel (Step 5) if the program
to be punched uses location '777. The TAP
RUN command uses location '777 as a return
link, so location '777 of the program may
be written over before being punched.

5. If an MDL self-loading tape was loaded, turn to STOP/STEP and
set the P register (Location 7) to the address specified on the
MDL tape label (typically, XX000, where XX is the highest
sector of memory.) Turn to RUN and press START.

6. After MDL is started, it responds by typing the cue:

SA, EA, P, K, L:

and waits for a string of starting parameters to be entered
at the system terminal keyboard. (See "Entering Parameters".)

Aborting a Punch Cycle: To abort a punching operation, turn sense
switch 02 ON momentarily. Punching will stop and the program will
request a new set of parameters. Remove the unwanted tape and feed a
new leader before restarting.

Entering Parameters from Panel: Parameters can be entered from the
control panel rather than the terminal. Before starting MDL, set
sense switch 01 and load the parameters into the following CPU
registers:

Parameter: Startloc Endloc Autostart Keys Bootloc

Location 0) 1 2 3 4

Then start MDL at the location specified on the tape. The parameters
have the same effect as when they are entered from the terminal
keyboard.

ENTERING PARAMETERS

The parameter string consists of five octal values separated by spaces
or commas and entered by the CR or LF key. Each parameter is an octal
value ranging from 0 to '177777. Leading zeros can be omitted. To
correct a typing error, retype the parameter without a space or comma;
the last six digits are retained. For a fresh start, strike any
non-octal key; the request for parameters will be repeated.

7-3

The parameters are:

Startloc Endloc Autostart Keys Bootloc (CR)

where:

Startloc

Endloc

Autostart

Keys

Bootloc

is the first memory location to be punched.
It must be at or above '30.

is the last memory location to be punched
(up to '177777).

is an autostart address. If specified, the
CPU automatically begins execution at
this location after reading the self-loading
tape being punched. If it is zero or unspec-
ified, the CPU halts after loading tape.

is a value to be inserted in the status bits
associated with the INK and OTK instructions
before the program begins execution. Bit
assignments are defined in Figure 7-1. Note
that bits 14, 15, and 16 have special meaning
for MDL.

is the first location to be occupied by the
second-level bootstrap loader, when it is
read from the MDL tape during program load.
If a value is not specified, the default value
is 'XXX600, where XXX is the memory area
occupied by MDL. (MDL runs in 64R addressing
mode.) This parameter is required only on the
first block (or tape) of a series, when bit

15 of 'Keys' is 0.

If only a starting and ending address are specified, MDL punches
that memory area on the high-speed punch, automatically adds
beginning-and end-
bootstrap so that

of-tape records, and punches the second-level
it will load into the memory area occupied by MDL

at the time the tape was punched. Other parameters are needed only if:

a. Autostart

b. ASR punch

feature is desired

is to be used

c. Second-level loader is to be relocated

d. Two or more non-contiguous memory areas are to
be punched on a single tape

d. Long program is to be split into two or more
separate tapes (second-level loader on first tape only)

7-4

Bit 123 4 5 6 7 14 15 16

0 0 ADR 010 0 0;0 0 Of{E B P

i | j 4. j i i ij | f

MDL Functions:

O=High Speed Punch
1=ASR Punch

O=Punch Beginning
of Tape (BOT)

1=Omit BOT

O=Punch End of
Tape (EOT)

1=Omit EOT t—— Addressing Mode:

Bit 5 Bit 6 Mode

0 0 16K Sectored

0 1 32K Sectored

1 1 32K Relative

1 0 64K Relative
Arithmetic Mode:

0 l Single precision

1 double precision State of C (Carry) bit

Figure 7-1, Bit Assignments of Keys Parameter.

7-5

Selecting Punch Mechanism: Bit 16 of the 'Keys' parameter determines
whether the MDL tape will be punched by the ASR or by the high-speed
punch. (The default value is 0 for high-speed punch.)

Punching Single Block: Set bits 14 and 15 of the 'Keys' parameter
to 0. The resulting tape will be punched with BOT and EOT records.
This is the default value.

Punching Multiple Blocks on Single Tape: To punch several non-
contiguous blocks of memory on a single tape, use the following
patterns in bits 14 and 15 of the 'Keys' parameter.

Keys Bit 14 15

First Block 1 0

Subsequent Blocks 1 1

Last Block 0 1

A 'Bootloc' should be specified when the first block is punched.

Punching Multiple Tapes: To break up a large program into several
easily handled tapes, use the following 'Keys' entries:

Keys Bit 05 06 14 15

First Tape 1 0 0 0

Subsequent Tapes 1 0 0 1

Last Tape Any 0 1

An 'Autostart' parameter and different addressing mode can be
specified only for the last tape of the series.

A 'Bootloc' should be specified when the first tape is punched. Tapes
prepared with this option can load only through the high-speed reader.

ADDRESS DISPLAY

When the parameter string is entered, the program takes control and
begins punching the self-loading tape on the selected device. If the
control panel ADDRESS/DATA switch is at DATA, the indicators will
display the address of each memory location being punched.

At the end of the memory block, the punch stops and the program requests
another set of parameters (or returns to TAP, if present). If this is
the last block to be punched, remove the tape from the punch.

7-6

PART 2

PAPER TAPE COPY (PTCPY)

PTCPY punches and verifies frame-for-frame duplicates of eight-level
paper tapes of any format (source, object, or self-loading). The
only tape requirements is that there be at least 12 inches of blank

trailer to identify the end of the tape. The high-speed reader/punch

is required as the input/output device. PTCPY is controlled by

commands entered at the system terminal keyboard. (See Table 7-1
for a summary of commands and messages.)

USING PTCPY UNDER DOS

Enter the PTCPY external command. PTCPY prints the prompt line:

L, P(N), V(N), FP or FV

and awaits a command from the keyboard. (See "Operating Procedures".)

USING PTCPY UNDER DOS/VM

1. Place the tape to be read in the high-speed reader.

2. Unassign, then assign the PTR. A small portion of the tape
will be read into the DOS/VM tape buffer.

3. Reposition the tape until blank leader is under the read head.

4. Enter the PTCPY external command and use the L (load) command to

read the master tape. Then proceed as under "Operating

Procedures".

5. To load, verify, force punch or force verify subsequent tapes,

quit from PTCPY (CTRL P) and repeat steps 1 through 3. Then enter
S (start) to restart PTCPY and proceed.

USING PTCPY IN PAPER TAPE SYSTEMS

PTCPY is provided as a self-loading paper tape that occupies locations
'200 through '3624 and loads into Sector 0. All of memory above PICPY

is available to hold the image of the tape to be duplicated.

Load the PTCPY tape using APL or a key-in loader. Start PICPY at

location '1000; it takes control and prints the cue:

L, P(N), V(N), FP OR FV

and awaits a command from the keyboard. (See "Operating Procedures''.)

7-7

Table 7-1. PTCPY Command and Message Summary

Code COMMANDS

L Load a master tape into memory from the
high-speed reader

Pn Punch n copies of memory image

Vn Verify n copies against memory image,
frame-for-frame

FP Read and simultaneously force-punch a copy
of a tape too large for memory

FV Verify a force-punched tape by counting the
number of frames punched

Q Quit to operating system

Code MESSAGES

LC Load complete

MO Memory overflow - tape too long to fit in
available memory

PC Punch operation complete

VC ON TAPE n

VE ON TAPE n

n/10 BOX NEEDED Verification complete on tape n

Errors found during verification of tape n

Specifies amount of tape required to
complete a P command. (Enter Y to proceed.)

7-8

OPERATING PROCEDURES

Loading Master Tape:

1.

2.

Mount the tape to be duplicated in the high-speed reader.

Enter the L command (load). The tape will begin reading and
load into memory. If loading is successful, PTCPY prints LC
message. If the tape to be loaded is larger than the available
memory, PICPY prints the MO message. (See ''Force Punching".)

PunchingCopies:

1. Enter the letter P followed by the number of copies to be punched,
as in:

PS

PTCPY responds by printing the amount of tape required to make the
copy, in 1/10th-in box increments.

Check whether there is enough tape in the box to make all the
copies; if not, the box should be changed. To proceed, type Y.

PTCPY punches the copies, with a one-inch block of fully punched
tape following each copy as a separator. When punching is
complete, PTCPY prints the PC message and repeats the prompt
line, awaiting a new command.

Verifying a Normally Punched Tape:

1. Mount a tape generated by a Punch command in the reader.
(It is not necessary to physically separate multiple copies.)

Enter the letter V followed by the number of copies on the tape,
as in:

V5

PTCPY checks each copy frame-for-frame against the loaded master in
memory and prints the message:

VERIFY ON TAPE n

for each valid copy. If an error is detected, PTCPY prints the
message:

ERRORS ON TAPE n

7-9

Force-Punching a Tape:

Use this procedure to duplicate a tape that is too long to fit into
the amount of memory available:

1.

2.

Position the tape to be copied in the high-speed reader.

Enter the FP (force-punch) command. PTCPY will simultaneously
read and punch a single copy. To verify a tape punched in this
way, use the FV (force-verify) command.

Force-Verifying a Tape:

Use this procedure to verify a tape punched by the FP (force-punch)

command.

1.

2.

Place the force-punched tape in the high-speed reader.

Enter the FV (force-verify) command. PTCPY reads and verifies
the tape by counting the number of frames and comparing the total
with the number of frames punched by the preceding FP command.

Example:

Following is a typical dialog while punching and verifying two copies
of a master tape:

PTCPY
GO
LeP(N)s UCN)» FP OR FV
L
LC
LsPC(N)sVCN)sFP OR FV
Pe

1/10 BOX NEEDED
XY
PC
L»P(N)sVCN)s FP OR FV
ve

vc ON TAPE 1
vc ON TAPE 2
L»sP(N)IsVCNIsFP OR FV

7-10

SECTION 8

SUBROUTINE LIBRARIES

FORTRAN/MATH LIBRARY

Prime's FORTRAN compiler is supported by an extensive library of
math, input/output and function subroutines. For FORTRAN users with
disk operating system support, use of the library is simplified by
the loader's LIbrary command. It automatically attaches to the
LIB UFD, and begins loading the library-mode object text in the
FINLIB file. In library-mode, only the subroutines with entry points
that have been cited in a previously loaded module are loaded. Since
the FORTRAN compiler inserts external library references automatically,
-the user need not know the names of the subroutines or their purpose.

Assembly language programmers also have access to any of the FORTRAN
subroutines which may prove useful. However, the user must use
calling sequences and data conventions as defined in the Prime
Subroutine Library User Guide, which also summarizes the available
routines and specifies the disk files/paper tapes on which they
reside. The subroutine entry points in the FINLIB file can be
printed out by the binary editor through the following DOS command
sequence:

OK;ATTACH LIB
OK;EDBFTNLIB
co

~ ENTER,FIND ALL

Users with paper tape systems use the library in the same way but must
mount the appropriate object paper tapes one at a time. Table 8-1
lists the tapes that correspond to the FINLIB disk file. The input/
output subroutines of IOCS occupy one tape; the math and function
routines are supplied on six others of convenient size (FLIB1 through 6). a
In practice, the user loads the loader by APL, uses it to load the
main FORTRAN program, and then mounts the library tapes one at a time
and enters LOad commands until a LC (load complete) message is
printed. The memory image is then ready to execute and can be saved
in the form of an MDL paper tape.

8-1

Table 8-1. Library Components

Filename in
LIB UFD of Paper Tape
Master Disk Name Contains

FTNLIB IOCS Supporting I/O math
FLIB1 and function sub-
FLIB2 routines for FORTRAN
FLIB3 Compiler (May be
FLIB4 referenced in Assembly
FLIBS Language programs also.)
FLIB6

UII UII Virtual Instruction
Package of unimplemented
instruction subroutines.

MATHLB MATHL1 Matrix and linear
MATHL2 equation operations.

8-2

UII LIBRARY

The assembler and FORTRAN compiler both keep track of any requirements
for hardware options beyond the standard instruction set, in the
following categories:

Double precision integer arithmetic and multiply-divide

Floating point arithmetic

Prime 300 Extended Instructions

Object text always contains the appropriate in-line instructions.
If the required hardware is not present in the CPU on which the program
is to execute, such instructions cause a UII (Unimplemented Instruc-
tion Interrupt). This is intended to divert control to a UII library
routine which simulates optional instructions by using instructions
which are actually present in the CPU.

To correlate the requirements of the object module with the hardware
capability of the CPU, the loader includes a UII handling feature.
With the HArdware command, the user can specify the optional instruc-
tions present in the CPU on which the program is to execute. If these
match the requirements of the program, the UII entry in the load map
is 0, and no UII software needs to be loaded. However, if the UII
word is other than 0, the user must load the UII library (also called
VIP, or Virtual Instruction Package). The object text contains code
blocks that specify the routines required, and the UII file contains
conditional load provisions so that only the required routines are
loaded - others are skipped. An example of the loading procedure
appears in Section 5.

MATRIX LIBRARY

A separate library file contains matrix arithmetic and statistical
routines that can be called from FORTRAN or assembly language programs.
Calling sequences are described in the Prime Software Library User
Guide. To load these routines, the user gives the loader command
LI MATHLB (or loads the paper tapes MATHL1 and MATHL2).

8-3

SECTION 9

PAPER TAPE PROGRAM DEVELOPMENT

For a Prime CPU operating in a stand-alone programming environment
(without a mass-storage device and operating system such as DOS),
eight-channel punched paper tape is assumed to be the basic medium for
storing and loading programs.

During program development, the facilities of the computer itself are
used to help programmers and operators. For example, the Text Editor
uses computer memory and data handling capacities to create and edit
source program text and punch source code tapes. The FORTRAN IV
Compiler and Macro Assembler convert the symbolic codes of source
program tapes into object code tapes. These in turn are loaded by
the Linking Loader, which resolves address references, watches for calls
to external subroutines, loads the program, and requests mounting of tapes
containing FORTRAN/Math/IO library or other external subroutines. Loaded
programs can be checked out and altered at the Teletype keyboard, using
Trace And Patch or Prime Symbolic Debug. Operational programs (or any
other section of memory) can be punchedon tape by Memory Dump and Load,
in the self-loading format that can be read by the Automatic Program
Load (APL) function or key-in loader. Tapes of any format can be
duplicated by the Paper Tape Copy utility. Test and verification
routines can be loaded and executed to verify operation of the central
processor and its peripheral devices.

SUMMARY OF PAPER TAPE SOFTWARE

Paper Tape Software Packages

Paper tape software for a Prime CPU is supplied in several versions,
depending on the peripheral devices available in the system. Appendix
A identifies all currently available paper tape software packages.
Tapes with the prefix "SLT'' are in the MDL self-loading format. Tapes
prefixed "OBJ'' are in object format and must be entered into memory
through the Linking Loader (LDRAP).

Editors (Section 2)

The Text Editor, PIRED, provided as a self-loading system tape, is the
tool for new program development. This program permits source programs
to be composed, edited, and listed at the user terminal keyboard.
After entering a rough copy of the program, the programmer can locate
and alter text strings, correct spelling, syntax, or spacing errors,
or move lines from one place to another by simple keyboard commands.

9-1

Sections of the program can be printed for checking, or the entire
program can be listed on the terminal as a reference copy. When the
program is complete and ready to be assembled or compiled, a source
program tape, in ASCII format, can be punched on paper tape from the
low or high-speed reader. (Previously punched tapes can be read in,
as well, to be expanded or merged with the current version of the
program.

A longer version of the editor, BPTRED, includes the box mode which
Simplifies generation of graphic or pictorial layouts. The box
editing facility is not applicable to program development.

The binary editor, BINED, operates on object modules containing library
subroutines. It is useful for examining the contents of library tapes
or building custom libraries.

Macro Assembler (Section 3)

Source programs in the Macro assembly language are processed by the
Macro Assembler program to form object program tapes. The self-loading
assembler is loaded (using the panel APL operation) and the source tape
is placed in the high- or low-speed reader. After placing instructions
to the assembler in a computer register (through the control panel),
the operator starts the computer, which reads the source tape and
translates the symbolic addresses used, and the second time to
translate the mnemonic expressions into an object program tape. An
optional listing shows both the source symbolic code and the translated
binary equivalent of each entry.

FORTRAN IV Compiler (Section 4)

Source programs in the FORTRAN IV language are processed in the same
way as assembly language programs. After the FORTRAN Compiler is
loaded, it controls a one-pass reading of the source program tape.
The output object tape is similar in format to the assembly language
output tape. An optional listing, either a straight listing of the
source statements or an expanded listing showing the machine language
breakdown of each statement, may also be printed.

Linking Loader (Section 5)

Object tapes punched by the assembler or compiler are not in the MDL
format required for APL or key-in loading. They are relocatable, and
require the Linking Loader to interpret and complete the addressing
information. Indirect address links must be formed in sector zero
(or another specified base sector) when address references happen to
fall across sector boundaries.

To load a program tape in object format, the self-loading Linking
Loader is first loaded. The operator then mounts the object tape on
the reader and supplies the loader with a start-of-load address (and
other parameters by keyboard inputs from the user terminal). The
loader then reads the object tape, resolves addresses, and loads the
program starting at the specifiec base location.

9-2

When loading of main programs and subroutines is complete, the user

can request the loader to print a memory map. The memory map defines

the memory areas occupied by the program and lists all subroutine
calls and external references.

Once a program has been loaded by the Linking Loader, it is fully
translated into 16-bit machine language codes and is ready to execute
or be converted to a self-loading tape by MDL.

Debug Aids (TAP or PSD) (Section 6)

During the early stages of program development and checkout, TAP and

PSD permits the programmer to examine, alter, and list the content of
memory locations in response to simple terminal keyboard commands.
A "trace" function controls dynamic execution of object programs, with
diagnostic printout of register contents at selected intervals
(for example, whenever a specified effective address is formed).

Trace, Punch and Copy Utilities (Section 7)

Memory Dump and Load (MDL): Loading of an object program and accom-

panying external library or subroutine programs is often a time consum-

ing operation. MDL saves the result of a program building session of

punching the entire loaded program on paper tape in the self-loading
format. The program can be restored to the same memory area from which
it was punched by using APL or the key-in loader. MDL uses the low-
or high-speed punch.

Paper Tape Copy (PTCPY): This utility program uses the high-speed

reader-punch to duplicate and verify paper tapes punched in any
format (ASCII, object, or self-loading).

Library Subroutines (Section 8)

Another function of the Loader is to recognize calls to subroutines
of the FORTRAN/Math library or other unloaded subroutines. After

completing the loading of a main program, the loader halts and requests

any referenced subroutines. The operator then mounts the library

tapes in the input device, and starts the computer again until a
"load completed'' message is printed.

9-3

GENERATING SELF-LOADING TAPES

Self-loading tapes are those that can be read automatically by the
Automatic Program Load option (panel LOAD) or the key-in loader.
They are punched from memory by MDL, and load only into the same
locations from which they were punched. Editor output tapes in
ASCII format, and the object output of the Macro Assembler and FORTRAN
IV Compiler, are not suitable for self-loading.

The Macro Assembler and FORTRAN Compiler always load into lower
memory (Sector 0 and above) since they are the only programs in the
computer while they are being used. Self-loading versions of these
programs are supplied for use with any computer configuration.

A self-loading version of the Linking Loader is supplied to aid the
user in setting up his own system software. The first task of the
loader is usually to load the object versions of both MDL and the
Linking Loader, in order to generate self-loading tapes of both these
programs for use in higher memory. To accomplish this, the 8K
self-loading version is loaded into lower memory. (See Figure 9-1A.)
It in turn is used to load the object version of MDL or TAPMDL in the
top sector of memory (or elsewhere, to suit user requirements).

The linking Loader is then usually loaded into higher memory, just
below MDL (Figure 9-1B). This location of the loader leaves all of
lower memory available for program loading, and the area occupied by
the loader itself can be assigned as a common area in response to
COMN (Assembler) or COMMON (FORTRAN) statements. The loader symbol
table can grow downward from the loader without wiping out MDL,
and the loader can detect memory overflow.

MDL can then be used to punch self-loading tapes of both the loader
and itself (the loader and MDL may be combined on a single tape).
The user then has a package of self-loading tapes to form systems
configured as shown in Figure 9-1A and B.

Some application programs may be so long that the space occupied by
a high version of MDL cannot be spared. To handle this situation,
another self-loading version of the loader can be loaded into the
highest sectors of memory. The self-loading version of MDL in lower
memory can be used to punch a self-loading tape of this loader.

The supplied self-loading version of TAP loads at '1000, but TAP can
replicate itself anywhere in memory. It is useful to generate
self-loading versions of TAP for other areas of memory, such as the
area initially occupied by the loader. Incidentally, TAP should be
loaded and used to clear memory before any other programs are loaded.
The MDL output tapes are then as compact as possible, since blocks
of identical memory locations are condensed into a few tape frames.

In situations where very large programs must be loaded, the user may
need to load versions of LOADAP and MPL to run in lower memory as well.

9-4

Sector 0

User
Programs

Symbol Table

Loader

8K
SLT Version of Loader
at Top of 8K Memory

Figure 9-1. Memory Areas

Sector 0

User
Programs

User
Programs

Symbol Table

8K

Loader

MDL or TAPMDL 16K

B. Typical Location of Loader
and MDL in 16K Memory

for Utility Programs.

9-5

Figure 9-2 shows how the two different sets of LOADAP and MDL can be
used to generate two self-loading tapes that together contain the
image of all the available memory. The self-loading tape of LOADAP
that occupies the top of an 8K memory is used to load self-loading
program components into lower memory. A load map is obtained; then a
self-loading version of MDL is loaded into upper memory and used to
punch a self-loading tape of the loaded components. Another version
of LOADAP (generated by the user from the supplied object version) is
then loaded into lower memory and used to load components in upper
memory. Location PBRK from the first load map is the next available
location to be loaded. When loading is complete, a lower-memory
version of MDL is loaded and used to punch a self-loading tape of
upper memory.

If the user programs contain address references between the upper and
lower sections of memory, the user may need to prepare and load a
program consisting of assembler ENT statements to resolve such
linkages.

9-6

Figure

SECTOR

N PONE

SYMBOLS

N OWER. SXNLOWER \

(FROM MEMORY MAP)

LOADER
OR MDL

“17777

A. LOADING IN LOWER MEMORY

feeee

SECTOR O

pe ee| ee

‘4000 (TYPICAL)

LOADER

OR MDL

‘7777

B. LOADING iN UPPER MEMORY

9-2. Using Loader to Build Systems in Both Lower
and Upper Memory.

9-7

APPENDIX A

PAPER TAPE SOFTWARE PACKAGES

Prime paper tape software is distributed in several packages according
to the hardware characteristics of the user's system:

Package Contents Supplied to

A Standard program development and test Users without MHD and
software for CPU and System Option Master Disk (4000,
Controller. 412X).

B Loaders and test programs necessary Users with MHD and
to install a DOS system. Master Disk but no

disk APL option.

C Basic software for building DOS on Users with FHD (410X).
FHD. (Packages A and B also
required).

D Tapes and listings for hardware As required.
options.

U Software updates. As required.

Contents of packages A through D are summarized in the following tables.
Package U contains updates or additions that are issued between master
disk revisions. It is initially empty.

I
N
v

S
a
d

+
>

&

TEM

0. NAME

1 LIADAP

2 LOADAP

3 PwA

4 FTN

5 1ocs
§ MATALI

7 MATHL 2

8 FLI31

3 FLI32
13 FLI33

11 FLI3%
12 FLI35

13 FLI3$

14 JII

135. ED
15 ED3

17 TAP

13 PS)

13? TAPMDL

2) WO.
21 PTc>y

22 CPJT1
23 cPJT2

24 CPIF3
2> 4ST

AITISTART

Table A-l.

\

PART NO.

SLT1985.9 32
9331985.932
SLT1989.413
SLT19382.9)95

9339109.095
93393905.995
9339595.9395
9357991.995
9339992.995
93399I93.9)95
93393994.995
93439995.995
93J39995.995
3331925.9)5

SLE IJ713.902
SLFI745.9)2
SLTI713.9)2
SLTI77).9))
SLT92)).2)%
9339714.9)95
SLTI799.3)3

SLTI717.993
SLTI712.9)9%
SLFI723.9)2
SLTI723.993

Package A (Rev. 6)

H134

1777)
N/A

15453
22347

V/ 4

N/A
N/A
V/A

N/A
V/A

N/A

N/7A

V/A
N/A

21423
1972)
17777
1499)
17777
N/A

29)

5592
5554
4952
1775

Ja

14399)
N/A

19)
19)

V/A
V/A
N/A
N/A

N/A

V/A
N/A

V/A
N/A
N/A

55
299
179909
1777$
15999
V/A

3524

5)
5)
299
5)

START

*15999
N/A

49)
1993)

N/A

N/A
N/A
N/A
N/A
N/A

N/A

V/A
N/A

N/A

#1992

#193)
#17390

#14999
#1599)

N/A

133)

1399
13999
193)
1923

TAPE

xX
X

x

x

e
K

O
K
K
O

K
K

M
R

K
M
m
K

O
M

P
P
E
E

LISTING

a
K
K

M
M

ITEM
VO. NAME

1 DIS399T

2 CPJT1

3 CPIT2
4 CPITS

5 HS4T1
+

te AJTOSTART

Table A-2.

PART NO.

SLT I743.492

SLTI717.9)93
SLFI712.9)%
SL19728.9)2
SLTI723.9)98

Package B

A-3

(Rev. 6)

LOW

19939

$9
53
23)
5)

START

*19)9)

1999)
1999)
1333)
139)

FAPE

m
x
m
M

M
K

LISTINGS

a
m

K
R

M
R

ITEM
VO. VAME
+

MACE
*DIS15
DIS2%
#99532
DI515
FILME
FTV
LOAD
PMA
FILCPY
JFCPY
DOSEXT
FIK2AT
MAC I<
PRSER
PRMPC
CRSER
CRYPC
SO2T
FILVERN

S
e
r
m
m

w
o
w
2
R
w

L
O
N
O
U
F
W
Y
a

O
w
W
n
R
W
&
W
I
=

O
O

+

* AUTOSTART

Table A-3.

PART NO.

SLT I729.493
SLT3$98.4)95
SLTI5393.4)5
SLT 9598.45
SLTI598.495
SLFI794.993
SLF1I982.4)3
SLF1I84.49%
SLT1989.415
SLTI7090.4)92
SLFI798.4)9)
SLTI795.493
SLT 97972493
SLTI743.9)1
$i 7791.39)
SLTI789.399
SLT I9722.7)2
SLTI758.7))
SLTI759.4))
SLFI758.999

Package C (Rev. 6)

HISH

11595
17775
17775
17775
37775
1135
21155
23752
15322
4319
414)
235)
11471
1997
453)
4341
7725
(722
1452)
257%

wow

55
799)
799)
799)
27393)
ee)
19)
2999)
19)
55
oe)
5))
55
133)
55
55
55
55
55
55

START

1)))
31999
91990
71990

*31)99)
199)
199)
21990
4))
199)
193)
1993
1993
139)
193)
139)
133)
199)
193)
199)

TAPE

e
m

K
R

M
K

M
R
K
O
K
K

LISTINGS

ITEM TYPE
VO. V2.
+

1 149)
249)
34))

2 322)
3 339)

332)
333)

4 332)
5 332)

333)
359)

5 5XX
? 5X xX
8 3991)

3333)
7 3391)

3993)
19 3393
11 3395
12 3395
13 3395
14 39)?
15 3127
15 3141)

3151)
3181)
3191)
3175)

17 £99
13 4301)

4392)
19 492)

2) 493)
21 5392)

9394)
22 3392)

5294)
3952)
3334)

23 5291
2% 54)2
25 $439)
25 $32)
27 799
23 7)3)

+

kt ASTOSTART

NAME

DSTI

FLFP)
ACSP

DFLT
FLTOT1

PASTI
°39)T!1

TTYT1

TCT

4S2>71

HS2>72
RTCT2
TTYT2

3PI9T1

LPTST1
DPCARD

JRATIF

dISCTI

“TIT
WAS?

MA39

OS<TT1

DSCTST

AMLCT1

MSLCOT1
MACIT4

A/DST1

JISINP
3P13T1

IPCHI

Table A-4. Package D (Rev. 6)

PART NO.

SLTQ711.902

SLTO779.90)
SLFO773.9091

$i.10755-)9)91
§L7075%.901

§LT0775.99)
§LT0721.39))
S$iLT0725.9)?7

SLT0729.9)%

SLTO724.9)98
SLTQ735.903
SLTO784.003
§L190733.99%
§$L70785.9)92
SLTO?775.9)9)
Si 16739.9)2

SLTO727.90%
SLTO737.9)01

SLTO715.902
93392)1.903

93592)2.905
§.Fu772.009
SLF0793.99)

SLTO751.9)9)

§.10752.992
$LT078).9091
§L70734.9)9%
SLTO731.9)9)
SLTO75).901
§.70733.9)9)

A-5

HISH

1552

w
t
I
Y

~
N

U
I

w
i
w

—™
~J

«
a
b

~
“

13939)
13915

2447
739)
5475

1554

2512
5393
5351
11313
5732
2923
23557

14777
15939

2442
V/A

N/A

11777

175)

3777

15777
3129
5727
4351
1574
5331

Lod

$))

5)
5)

53
5)

5)
$9
29)

1999

2))
53
6)
5)
§)
2))
55

14)
29)
5)
19)
(7?
23)

START

1999

1999
1999

13])
1930

1999
1990
1399

1939

19J9
199)
1939
1999
19I99
1999
19

1999
1999

1990
N/A

N/A

19)3
1999

3999

19395
1999
1999
1999
1999
1930

K
m

K
O
K

O
K

TAPE

X

~
x
K
M

K
M

K
M

M
R
M
M

LISTING

x

x
R
K
M
K

K
M

M
R

>
E
P
E
P

INDEX

64R COMPILATION MODE, FORTRAN COMPILER 47
A REGISTER SETTINGS,» FORTRAN COMPILER Ge}
A REGISTER SETTINGS, ASSEMBLER 3-3
ABBREVIATIONS 1-6
ACCESS MODE ENHANCEMENTSs+ PSD o-15
ADDRESSING MODEs LOADER 5-8
ASSEMBLER 3-1
ASSEMBLER A REGISTER SETTINGS 3-3
ASSEMBLER CROSS REFERENCE LISTING 3-8
ASSEMBLER ERROR MESSAGES 3-10
ASSEMBLER FILE USAGE 3-2
ASSEMBLER, ACTION OF 3-6
ASSEMBLER, LOADING AND STARTING 301
ASSEMBLY LIKE LISTINGe FORTRAN, EXAMPLE 4e11
AUTOSTART FEATURE, MOL 7o4
BINARY EDITOR 2-52
BINARY EDITUR EXAMPLES e756
BINARY EDITOR FEATURES 2-52
BINARY EDITOR LOADING AND STARTING 2°52
BLOCKS, SPECIAL ACTIONs BINARY EDITOR 2-53
BOX DRAGGING, EDITOR 2739
BOX MODE CUMMAND DESCRIPTIONS, EDITOR 2-40
ROX MODE, BOTTOM IN 2-40
BOX MODE, EDITOR 2-38
BRIEF LISTING, FURTRAN, EXAMPLE 4-10
CHARACTER SETe EDITOR e~7
CHARACTERS, SPECIAL, EDITOR 2-6
COMMAND AND MESSAGE SUMMARY, PICPY 7-8
COMMAND DEFINITIONS, LOADER 503
COMMAND DESCRIPTIONS, HINARY EDITOR 2°53
COMMAND DESCRIPTIONS, EDITOR LINE MODE 2-15
COMMAND DESCRIPTIONS, BOX MODE, EDITOR 2-40
COMMAND DESCRIPTIUNS, PSD o-9
COMMAND DESCRIPTIONS, TAP 6*3
CONCORDANCE, ASSEMBLER 3-6
COORDINATES, 80X MODE, EDITOR 2-38
CROSS REFERENCE LISTING, ASSEMBLER, EXAMPLE 3-9
CROSS REFERENCE LISTING, ASSEMBLER 3-6
CURRENT LOCATION COUNTER, PSD 6915
DEBUG AIDS he)
DEBUGGING UTILITIES 6-1
DEFAULT VALUES» LOADER Sell
DEVICE OPTIONS+ FORTRAN COMPILER ueS
DIRECTION, BOX “ODE, EDITOR e- 39
DRAGGING, 60X- EDITOR e-39
EDIT MODEs EDITOR 2-13
EDIT MODE, EDITOR e-7
EDIT MODF, ENTERING e-le2
EDITING IN BOX MODE 2°38
EDITING IN DISK SYSTEMS e-5
EDITING IN LINE MODE 2-7
EDITING WITH PAPER TAPE 2-6
EDITOR COMMAND SYNTAX e=3

EDITOR CONFIGURATIONS eo!
EDITOR FUNCTIONS emi
EDITOR MODES 2-6
EDITOR, BINARY 2°52
EDITOR, STARTING a=3
EDITORS 1-2
EFFECTIVE ADDRESS FORMATION, PSD 6°16
ERROR MESSAGES, ASSEMBLER 3-10
ERROR MESSAGES, FORTRAN COMPILER 4-12
ERROR MESSAGES, FORTRAN LIBRARY 4-14
ERROR MESSAGES, FORTRAN COMPILER de7
ERROR MESSAGES, FORTRAN LIBRARY 4-7
ERROR PRINTOUT EXAMPLE, FORTRAN 4-9
ERROR RESTART, EDITOR e-5
ERRORS, CORRECTING TYPING. EDITOR 2-12
ERRORS, LISTING ON USER TERMINAL 4e7
EXAMPLES, BINARY EDITOR 2-56
EXPRESSIONS, PSD 6°14
FILE USAGE, ASSEMBLER 3-2
FILE USAGE, FORTRAN COMPILER une
FILENAMES, IN EDITOR ee5

X-1

INDEX (Cont)

FORTRAN COMPILER 1-2
FORTRAN COMPILER A REGISTER SETTINGS Ge-3

FORTRAN COMPILER FILE USAGE de?

FORTRAN COMPILER OPERATION UNDER DOS@DOS/VM Gel

FORTRAN COMPILER SOURCE PROGRAM REQUIREMENTS Get

FORTRAN COMPILER, ACTION OF 4eS

FORTRAN COMPILER, LOADING AND STARTING UNDER DOS#DOS/VM 4-1
FORTRAN/MATH LIBRARY 8-1

IN@LINE DESECTORIZATION OPTION, FORTRAN COMPILER 4-7

INPUT MODEr EDITOR eo7
INPUT MODE, EDITOR, RETURNING TO 2-14

INPUT MODE, ENTERING, EDITOR enwit
INPUT/OUTPUT MODES, PSD 6ewil

KEYS PARAMETER, MOL 725

LIBRARIES, SUBROUTINE B-1

LIBRARY 1-3

LIBRARY COMPONENTS B-2

LIBRARY MODE (OBJECT FILES) Sell

LIBRARY ROUTINES- DELETING, BINARY EDITOR 2°56

LINE MODe COMMAND DESCRIPTIONS, EDITOR e715

LINE MODE, EDITOR emi
LINE MODE+s EDITOR e-7 4

LINE TERMINATORS, PSD 6°16

LINES, EDITOR erle
LINKING LOADER 1-2

LINKING LOADER 5-1

LISTING DETAIL, FORTRAN COMPILER Ge5

LISTING FORMAT, ASSEMBLER 3-6

LISTING FORMATS, FOKTRAN COMPILER de]

LISTING, ASSEMBLY. EX4MPLE OF 3-7

LISTING, ASSEYbLYeLI Kt, FORTRAN, EXAMPLE 4-11

LISTING, BRIEF, FORTRAN, EXAMPLE 4-10

LISTING, CROSS REFERENCE, ASSEMRLER 3-8

LISTINGS, SUBROUTINES AND ENTRY POINTS, BINARY EDITOR 2-59
LOAD PARAMETERS, INITIAL S-4

LOADER COMMAND DEFINITIONS 5e4

LOADER DEFAULT VALUES Se11
LOADER MESSAGES 5-9

LOADER VERSIONS AND MEMORY LOCATIONS 5-2

LOADER, LINKING Sel

LOADER, USING PAPER TAPE VERSIONS 5-1

LOADER, USING UNDER DOS*0DGS/VM S-1°

LOCATION COUNTERe PSD 6-15

MACRO ASSEMBLER 1-2

MACRO ASSEMBLER 3-1

MAP EXAMPLE, LOADER 5-7

MAP OPTIONS, LOADER 525
MATRIX LIBRARY, USING Bes

MDL 1-3
MDL, USING PAPER TAPE VERSIONS T=1
MDL, USING UWDER DOS*DDS/VM 7-1
MEMORY AREAS FOR UTILITY PROGRAMS 925
MEMORY DUMP AND LOAD (MDL) Jel
MEMORY, UPPER AND LOWER, LOADING IN 9-7

MESSAGES, ASSEMBLER 376

MESSAGES, BINARY EDITOR 2°53
MESSAGES, EDITOR 2-37
MESSAGES, ERROR, ASSEMBLER 3=10
MESSAGES» ERROR, FORTRAN COMPILER 4eT

MESSAGES» ERROR, FORTRAN LIBRARY u-7

MESSAGES. FORTRAN COMPILER 4e5
MESSAGES+ LOADER 5-9

MODES. EDITOR 2-6
MODES, INPUT/OUTPUT. PSD 6-11

OBJECT FILES, LIBRARY MODE 5-11
OBJECT ROUTINES, DISTRIBUTING, BINARY EDITOR 2-57
OPERATING PROCEDURES, PTCPY 7-9

OPERATING SYSTEM, EFFECTS OF 1-1
PAPER TAPE ASSEMBLER, USING 3e4
PAPER TAPE COMPILER, USING qed

PAPER TAPE COPYC(PTCPY) ToT

PAPER TAPE PROGRAM DEVELOPMENT 9}

PAPER TAPE SOFTWARE PACKAGES 9-1

PAPER TAPE SOFTWARE PACKAGES Aewj

PARAMETERS, MOL 7-3
POINT INDEPENDENT COMMANDS, EDITOR 2-40

X-2

INDEX (Cont)

POINT, BOX MODE, EDITOR 2°38

POINTER LOCATIONs EOITOR e-te
POINTER, BINARY EDITOR 2-S2
PRIME SYMBOLIC DEBUG (PSD) 6-6
PROGRAM DEVELOPMENT EXAMPLE t=4

PROGRAM DEVELOPMENT SOFTWARE, SUMMARY OF CUNDER DOS) inl

PSD COMMAND DESCRIPTIONS 6-9

PSD INPUT/OUTPUT MODES 6-11
PSD, LOADING AND STARTING UNDER DOS#DOS/VM 6-8

PSO, USING PAPER TAPE VERSION 6-8
PTCPY 1-3
PTCPY COMMAND AND MESSAGE SUMMARY 7-8

PTCPY OPERATING PROCEDURES 7-9

PTCPY, USING PAPER TAPE VERSIONS 77

PTCPY, USING UNDER DOS#DOS/VM 7-7

PUBLICATIONS, RELATED tel

QUIT COMMAND, EDITOR e747

RECOVERY PROCEDURES, EDITOR e747
RELOCATION CONSTANT,» PSD 6715

SCOPE OF MANUAL 1-1
SELFeLOADING TAPES, GENERATING 9-4

SOURCE PROGRAM RE UGUIREMENTS, FORTRAN COMPILER 4-1
SOURCE PRUGRAMS, ASSEMBLY LANGUAGE 3-1

SPECIAL ACTION BLOCKS, SINARY ECLITOR e753

SPECIAL LIBRARY FLAGe FORTRAN COMPILER 4e5

STRINGS, EDITOR 2-7
SUBROUTINES» COMBINING IN FILE+ biNARY EDITOR 2-58
SYMBOL CROSS REFERENCE LISTING, ASSEMBLER, EXAMPLE 309

SYMBOLS 1-6
TABULATION, EDITUR e-le
TAP COMMAND DESCRIPTIONS 6-3

TAP, LOADING AND STARTING o-2

TAPE PUNCH AND COPY UTILITIES fei
TAPE PUNCH AND CuoPY UTILITIES te3

TERMINATORS, LINEs PSD 6°16 ,

TRACE AND PATCH (TAP) 6-1
TRACE PRINTOUTS, FORTRAN, FXAMPLES a-15
TRACE PRINTOUTS, FORTRAN ue7

TRACE,» UNCUONDITIONALs FORTRAN COMPILER 4-6

UII HANDLING, LOADER 5-10

UII LIBRARY. USING B=-5$
UTILITY PROGRAMS, MEMIRY AREAS FOR 9-5

VERIFY/BRIEF MODES, EVITUR ers
VERIFY/TERSE/BRIEF MODES. tINARY EDITOR 2-53

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	A-01
	A-02
	A-03
	A-04
	A-05
	X-01
	X-02
	X-03

