
PRIME
Computer

PRIMOS SUBROUTINES
REFERENCE GUIDE
PDR3621

MAN 3251-001

PRIMOS SUBROUTINES
PDR3621
RevisionA

This guide documents the operation of the Prime Computer and its

supporting systems and utilities as implemented at Master Disk Revision

Level 17 (Rev. 17).

PRIME
PRIME Computer, Inc.

588 Old Connecticut Path
Framingham, Massachusetts 91761

ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the

non-team members, both customer and Prime, who contributed to and

reviewed this book.

Copyright © 1988 by
Prime Computer, Incorporated

508 Old Connecticut Path
Framingham, Massachusetts 91741

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime cConputer
Corporation. Prime Computer Corporation assumes no responsibility for

any errors that may appear in this document.

The software described in this document is furnished under a_ license
and may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime

Computer, Inc.

First Printing January 1980

All correspondence on suggested changes to this document should be
directed to:

Katherine S. Abrams
Technical Publications Department
Prime Computer, Inc.
588 Old Connecticut Path
Framinghan, Massachusetts @1781

ii

PDR3621

CONTENTS

PART I - OVERVIEW

1 INTRODUCTION TO MANUAL

Docunent Organization 1-1
Conventions 1-1

2 INTRODUCTION TO SUBROUTINES

Tocation of Libraries 2-1
File Handling Subroutines 2-3
Input Output (I/O) Subroutines 2-4
FORTRAN Library 2-5
Matrix Library 2-5
Applications Library 2-5
Sort Libraries 2-6
Synchronous and Asynchronous Controllers 2-6
Real-Time Subroutines 2-6
Calling Sequence Conventions 2-6

3. FILE MANAGEMENT SYSTEM CONCEPTS

Purpose of File Systen 3-1
Using the File System 3-1
File Types 3-4
File Directories 3-18

Disk Structures 3-12
File Access 3-12

PRIMOS—Level User Interaction 3-15

PART IT — PRIMOS SUBROUTINES

4 MANIPULATION SUBROUTINES

Introduction 4-1
Subroutine Descriptions 4-3

5 MISCELLANEOUS PRIMOS SUBROUTINES

6 SAMPLE PROGRAMS

Writing a SAM File 6-1
Writing a DAM File 6-2
Reading a SAM or DAM File 6-3
Creating a Segment Directory 45-6
Reading a Logical Record from a File 6-8
Reading a File in a Segment Directory 6-12

iii

CONTENTS

January 1980

CONTENTS PDR3621

PART III. MATH AND APPLICATION LIBRARY SUBROUTINES

7 FORTRAN STANDARD FUNCTIONS

Introduction 7-1

Function References 7-1

Single Argument Scientific Functions 7-2
FORTRAN 77 Functions 7-2

8 LOGICAL FUNCTIONS

9 ARITHMETIC OPERATIONS

Single Argument Functions 9-4
Two-Argument Functions 9-4

18 MATHIB (FORTRAN MATRIX SUBROUTINES)

Scope of MATHLB 10-1
Subroutine Conventions 10-1

11 APPLICATION LIBRARY (APPLIB)

General Description 11-1
APPLIB Routines 1ll-l
Naming Conventions 11-3
Library Implementation and Policies 11-4
String Manipulation Routines - Detailed Description 11-4
User Query Routines - Detailed Description 11-16
Systen Information Routines - Detailed Description 11-19
Conversion Routines - Detailed Description 11-22
File Systen Routines - Detailed Description 11-26
Parsing Routine - Detailed Description 11-39
APPLIB Summary and Keys 11-45
SYSCOM > ASKEYS 11-48

12 SORT LIBRARIES

Sort Subroutines Overview 12-1

SRTLIB (R-MODE) - Subroutine Descriptions 12-4
VSRTLI (V-MODE) - Subroutine Descriptions 12-6

SETUSS, RLSESS, CMBNSS, RTRNSS, CLNUSS-_ 12-13
Sample User Input Procedure 12-17
MSORTS - Subroutine Descriptions 12-20

PART IV INPUT/OUTPUT LIBRARY SUBROUTINES

13. INTRODUCTION TO I0CS

OWerview of ICCS 13-1

Temporary Device Assignment 13-5
CONTOC 13-6

January 1989 iv

14

15

16

17

18

19

21

22

PDR3621

T/O SUBROUTINES

Error Handling for I/O Subroutines 14-4

DEVICE INDEPENDENT DRIVERS

Data Formats 15-4
Subroutines for Device-Independent Drivers

DEVICE DEPENDENT DRIVERS

Subroutine Calling Sequence 16-1

DISK SUBROUTINES

Subroutine Description 17-1

USER TERMINAL SUBROUTINES

Calling Sequence 18-1
Keyboard Terminals and Paper Tape Subroutines

PERIPHERAL DEVICES

Line Printer Subroutines 19-2

Printer/Plotters 19-7

Magnetic Tapes 19-21

CONTENTS

15-5

18-2

PART V — COMMUNICATION CONTROLLERS AND REAL-TIME SUBROUTINES

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

Synchronous Controllers 20-1
Asynchronous Controllers 20-16

REAL-TIME AND SYNCHRONIZATION SUBROUTINES

Real-Time and Inter User Communication Facilities 21-1

User Semaphores and Timers 21-1

PART VI ~ LIBRARY MANAGEMENT

LIBRARY MANAGEMENT

LIBEDB 22-1
EDB 22-1
EXAMPLES 22-5

January 1986

CONTENTS PDR3621

PART VII -— CONDITION MECHANISM SUBROUTINES

23 CONDITION MECHANISM SUBROUTINES

Introduction 23-1

Creating and Using On-Units 23-1
Condition Mechanism Subroutines 23-4

System-Defined Conditions 23-10
Crawlout Mechanism 23-19

Recursive Mode Software 23-19

Data Structure Formats 23-21

APPENDICES

A FORTRAN INTERNAL SUBROUTINES

Internal Subroutines A-1

Intrinsic Functions A-4

Floating Point Exceptions A-4

B INDICATION AND CONTROL SUBROUTINES

Overview B-1L
Subroutine Descriptions B-l

C Sve INFORMATION

Svc's Called by PRIMOS Subroutines C-l
Svc Interface for I-O0 Calls C-3
Operating Systen Response to SVC C-6

D KEYS (SYSCOM > KEYS.F)

E INTERNAL FILE FORMATS

DSKRAT Formats E-1
Record Header Formats’~ E-2
UFD Header and Entry Formats’ £E-3
Segment Directory Formats E-5
DAM File Organization £E-6

F OB8SOLETE FILE SYSTEM SUBROUTINES

G ERROR MESSAGES AND CODES (SYSCOM ERRD.F)

Introduction G-l
New File System Error Handling Conventions G-3
Standard System Error Code Definitions G-4
Error Handling Routines G-5

INDEX

Index to Subroutine Names

January 1988 Vi

Part I

Overview

PDR3621 LIBRARY DESCRIPTIONS

SECTION 1

INTRODUCTION

This book describes the subroutines (including the operating system

subroutines) that can be called from PRIME's high-level languages or
the Prime Macro Assembler (PMA).

Procedures relating to building and modifying libraries and changing

Input/Output Control Systen device assignments are included for user

convenience. An overview of PRIMOS file system concepts and usage is

in Section 3.

Libraries with subroutines that are useful for programmers are
discussed in this guide. Other libraries, such as the COBOL (VCOBLB),
RPG (RPGLIB), or PL/I (PLIGLB) libraries contain subroutines which are

used exclusively by the appropriate compiler; the use of these

libraries is discussed in the corresponding language userguide. (See
Section 2 for a more detailed discussion).

DOCUMENT ORGANT ZATION

This manual is divided into six’ parts which are described in the Table
of Contents.

Overview
PRIMOS Subroutines
Math and Applications Library Subroutines
Input/Output Library Subroutines
Communication and Real-Time Library Subroutines
Library Management

e
°

A
M
D
W
H
.

e

CONVENTIONS

The following conventions are used in this guide.

Filename Conventions

filename Source file

Bfilename Binary (object) file; compiler convention

L_Filename Listing file; compiler convention

M_filename Map file

*filename Saved executable menory image (R-mode)

filename Saved executable segmented runfile (V-mode)

1 - ti January 1989

SECTION 1 PDR3621

C_filename Command file

PHfilename Phantom command input file.

Ofilename Command output file

Filenames may be up to 32 characters long, the first character of which
must be alphabetic (A-Z). Filenames can be composed only of the
following characters: A-Z, 0-9,#$&-*. and /.

Note

On some devices, underline (_) may print as_ back
arrow (<-).

Terminal Functions

(CR) or CR Carriage return

Character erase; deletes last character in current line

? Line kill; deletes all characters in current line

XXX _ Escape key for entry of non-printing character with
ASCII code xxx

REV. A 1 - 2

PDR3621 INTRODUCTION TO SUBROUTINES

SECTION 2

INTRODUCTION TO SUBROUTINES

The subroutines described in this guide include PRIMOS System

subroutines, Application Library subroutines and FORTRAN Mathematical
subroutines. In addition to the standard FORTRAN math functions,

Prime's library includes many other subroutines which can simplify

high-level language programming. PMA programmers can make explicit use
of the many low-level math and input/output subroutines that primarily
support the language translators, but high-level language programmers

will not normally need to call any of these low-level subroutines.

LOCATION OF LIBRARIES

The standard FORTRAN library subroutines for PRIMOS are contained in

the files FTNLIB (R mode) and PFTNLB and IFINLB (V mode) in UFD=LIB.

To get a list of all the libraries in the UFD LIB, use the commands:

ATTACH LIB

LISTF

To find the names of all the subroutines in any individual library, use

the commands:

ATTACH LIB

EDB Library
FIND ALL

QUIT ©

Shared FORTRAN, COBOL, FORMS, and MIDAS libraries may be installed at
system startup time. Note that Rev. 15 or Rev. 16 shared libraries
will not work with Rev. 17 PRIMOS and Rev. 17 shared libraries will

not work with earlier versions of PRIMOS. For more information refer
to the System Administrator's Guide.

A cross-reference of all subroutines described in this guide appears at
the conclusion of the index.

The libraries described in. this manual are:

Library R mode V_mode

Applications APPLIB VAPPLB
Fortran and FTINLIB PFTNLB
operating system IFTNLB

In-memory sorts MSORTS
Matrix MATHLB

2 - dl January 1989

SECTION 2 PDR3621

Sort SRTLIB VSRTLI

Spool SPOOLS VSPOOS

There are other libraries not described in this manual. They are:

Library R mode V mode

Block device BDVLIB

interface

COBOL — COBLIB VCOBLB
COBKID *

FORMS RFORMS VFORMS

MIDAS KIDALB VKDALB

PL/I PL1IGLB

PRIMENET VNETLB

RPG RPGLIB

RPGKID *

Unimplemented UII
Instruction

Interrupt

* if MIDAS files are used

The subroutines in some of these libraries, such as PRIMENET, The Block
Device Interface and MIDAS are discussed in other manuals. The calls
to subroutines in other libraries, such as RBG, are generated
automatically by compilers, etc. The details need never concern the
programmer.

Note

At Rev. 17 of PRIMOS, the FORTRAN, MIDAS, COBOL and FORMS

libraries and the UII package are assumed to be shared.

REV. A 2 - 2

PDR3621 INTRODUCTION TO SUBROUTINES

FILE-HANDLING SUBROUTINES

All file handling is done by a collection of special subroutines
(Section 4), some internal to PRIMOS, and others available as library
routines. These routines are used in common by PRIMOS and all Prime
system software for simplified and uniform file handling. They can
also be called from user programs. PRIMOS file handling subroutines
are described in Section 4,

All the file handling subroutines called by the user are loaded when

the FORTRAN library is loaded. Most of these subroutines are interlude
Subroutines which issue supervisor calls to PRIMOS in R-mode. Many
file-handling subroutines are direct entrance calls to PRIMOS in
V-mode. The appropriate subroutine in PRIMOS address space then
executes the appropriate file operation.

File Handling in User Programs

The file-handling subroutines simplify communication between the PRIMOS
file structure and user programs. In FORTRAN programs, for example,
the symbolic device unit numbers in formatted READ and WRITE statements
can be associated with PRIMOS file units. The following default
assignments are set up by the compiler:

FORTRAN Unit (u) File Unit (Funit)

5 1
6 2
7 3
8 4
9 5
10 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16

Example: to write a record to file Unit 1 (FORTRAN Unit 5), the user

could enter the command OPEN filename 1 2. The OPEN command associates
the file Filename with the file unit 1 and opens the file for writing
(code 2). During subsequent execution of a program containing a
formatted WRITE statement such as:

WRITE (5, 19) LINE

the contents of array LINE are written to the FORTRAN Unit 5 (File Unit

2 - 3 January 1989

SECTION 2 PDR3621

1), according to FORMAT statement 18.

At the program level, a filename and funit number can be associated by
the PRIMOS subroutine SRCHS$, as in:

CALL SRCHSS (KSWRIT, 'TEXT', 4, 1, type, code)

See Section 4 for a more thorough discussion of SRCHSS.

File Input/Output: With the aid of the PRIMOS subroutine PRWFSS, the
user can bypass formatted FORTRAN I/O and write directly from memory
arrays to the file system, as in:

CALL PRWFS$ (KSREAD, 1, LOC(text), 36, 900080, words, code)

This subroutine reads 36 words from the file associated with funit 1 to
memory array text. words and code are returned values (words - number
of words transferred, code - error code). 909090 is a 32-bit constant
@.

At the applications level, the Applications Library for file
manipulation is also available for use.

INPUT OUTPUT (I/O) SUBROUTINES

The I/O subroutines are those relating to data transfers and device
operations. The subroutines are managed by the Input/Output Control
System (IOCS). The IOCS subroutines perform input/output between the
Prime computer and the disks, terminals and peripheral devices within
the system configuration. The I/O subroutines include:

e Device Independent Drivers which allow the user to maintain

device independence by routing an I/O request to the independent
driver (See Section 15).

@ Device Dependent subroutines for non-data transferring functions
required by I/O devices (See Section 16).

e File system subroutines which perform file system input/output
operations (See Section 17).

e User Terminal subroutines which transfer data between a user

terminal or ASR Reader/Punch and memory (See Section 18).

@ Peripheral Device routines include routines that control line
printers, drive a printer/plotter, drive serial and parallel
card readers and drive 7-track and 9-track tapes (See Section
19).

REV. A 2 - 4

PDR3621 INTRODUCTION TO SUBROUTINES

FORTRAN LIBRARY

The FORTRAN Library File contains FORTRAN function subroutines and Math

Subroutines. :

e The FORTRAN function Library computational subroutines include
the ANSI-standard functions. (See Section 7 for a description
of these functions).

e Arithmetic subroutine calls are generated by the FORTRAN
compiler when certain operations are specified in the FORTRAN
program. These routines perform arithmetic operations on single
precision integers, single and double-precision floating point
and complex numbers. (See Section 9).

@ Bit manipulation functions are provided by the FORTRAN compiler.
In some cases the compiler will generate in-line code for these
functions. However, in general, the library subroutine is
needed. (See Section 8 for a description of these functions).

MATRIX LIBRARY

MATHLB (FORTRAN Matrix Subroutines)) contains subroutines to perform
matrix operations, solve systems of simultaneous linear equations and
generate permutations and combinations of elements. (See Section 19
for the scope and use of this library).

APPLICATIONS LIBRARY

The Application Library (APPLIB and VAPPLB) provides users with an
easy-to-use library of service routines. They range from the very
simple, which do little more that call a lower level routine, to those
that are fairly complex because of the function desired. This library
provides relatively high-level functions such as:

String handling routines

User query routines.

System information routines.

Mathematical routines

e Conversion routines

File system routines.

Parsing routines.

2 - 5 January 1980

SECTION 2 PDR3621

SORT LIBRARIES

There are three libraries containing sort subroutines:

@ SRTLIB subroutines are used to perform file sorting operations.

@ VSRTLI is the V-Mode version of SRTLIB.

@ MSORTS library contains several in-memory sort subroutines and a
binary search subroutine.

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

These subroutines perform the moving of raw data for assigned AMLC or
SMLC lines. (Section 20).

REAL-TIME SUBROUTINES

PRIMOS supports user applications that have real-time requirements or

the need to synchronize execution with other user programs. This
support is a set of subroutines that provide access to Prime's
semaphore primitives and to internal timing facilities. (See Section
21).

CALLING SEQUENCE CONVENTIONS

FORTRAN - Assembly Language Interface: The form of a call statement in
FORTRAN is:

CALL name

CALL name (argument-1)

CALL name (argument-l, argument-2,...,argument-—n)

where name is the subroutine name and argument-1,...,argument-n is a
list of arguments. FORTRAN translates the CALL statement into a JST or
PCL in the same way as the PMA CALL pseudo-operation. When arguments
are specified,the compiler generates a pointer in the the same way as a
PMA DAC statement for S-mode or R-mode code, or an AP statement for

V-mode or I-mode code. Figure 2-1 illustrates three calling sequences
for S-mode or R-mode: with no arguments, with one argument, and with
three arguments. The associated code is also presented. Table 2-2
illustrates the corresponding calling sequences for V-mode or I-mode.

REV. A 2 - 6

PDR3621

Main Program

No Arguments One Argument

CALL SUBX CALL SUBX

DAC A

Subroutine

ENT SUBX ENT SUBX

REL REL

SUBX DAC ** SUBX DAC **
first instruction CALL FSAT

° DEC 1

. APTR DAC**

. | first instr.
JMP SUBX,*

JMP SUBX,*

Note:

Figure 2-l.

CALL SUBX is equivalent to EXT SUBX
JST SUBX

INTRODUCTION TO SUBROUTINES

Two or More Arguments

CALL SUBX
DAC A
DAC B
DAC C

DAC @

ENT SUBX

REL

SUBX DAC **
CALL FSAT

DEC n

APTR DAC **

BPTR DAC **

CPTR DAC **

nPTR DAC **

first instruction

JMP SUBX,*

S—mode and R-mode Subroutine CALL Conventions

January 1980

SECTION 2

No Arguments

CALL SUBX

ENT SUBX,SBX1

SEG

PDR3621

Main Program

One Argument

CALL SUBX
AP A,SL

Subroutine

ENT SUBX,SBX1

SEG
SUBX first instruction SUBX ARGT

LINK
SBX1 ECB SUBX

first instruction

PRIN

DYNM APTR (3)
LINK

SBX1 ECB SUBX,,APTR,1

Note: CALL SUBX is equivalent to EXT SUBX

Figure 2-2.

REV. A

PCL SUBX

Two or More Arguments

CALL SUBX
AP A,S
AP B,S
AP C,S

AP n,SL

ENT SUBX , SBX1

SEG

ARGT

first instruction

PRTN

DYNM APTR(3)
DYNM BPTR(3)
DYNM CPTR(3)
DYNM DPTR(3)

DYNM nPTR(3)
LINK

SBX1 ECB SUBX, ,APTR,n

V-mode and I-mode Subroutine CALL Conventions

PDR3621 FMS CONCEPTS

SECTION 3

FILE MANAGEMENT SYS'TEM CONCEPTS

PURPOSE OF FILE SYSTEM

The purpose of the file system is to simplify the manipulation of large

quantities of data using the computer. The major goals of the file

system are:

1. Automatic (not manual) allocation of disk storage space for
files

+

2. Referencing files by name

3. Clustering related information together

To accomplish the first goal, PRIMOS keeps a special file on each disk
to record the available space on that disk. PRIMOS uses this
information to allocate disk space automatically, and the average user
need not concern himself with the allocation process, other than to
know that it works.

Referencing files by name means selecting the desired file by giving
the File Management System string of alphanumeric characters. The file
system reserves one special file as a directory; it contains the names
of other files and their locations on the disk. The system can find
this Master File Directory (MFD) readily because both its name and its
location are always the same.

The third goal is achieved in two ways. The first is to have many file
directories; this allows like files to have their names and locations
saved in one file directory. .The second way is to allow nested file
directories (i.e., a file directory may contain names not only of
files, but also of other file directories.) Thus, each user may divide
his files into appropriate groups and subgroups as he sees fit.

File directories also provide some degree of access protection to the
files contained within them, because a password may be associated with
each file directory. To examine the files in a directory, the user
must first supply the password for that directory.

USING THE FILE SYSTEM

To access files, the user must be attached to some file directory. A
file directory is a file that contains the names of other files on the
disk and the location on the disk of these files. A file directory may
contain the names of other file directories. To access files stored in
a directory, the user must give the password for that directory. A

3 - 1. January 1989

SECTION 3 . PDR3621

user is properly attached when the file system has been supplied with
the proper file directory name and password, and it has found and saved
the name and location of the file directory. It can therefore find and
operate on all files contained in that file directory.

File Operations

The major operations on files are: initialization for access (open);
access; shutdown and resource deallocations (close); and deletion.

File Units

A disk file which is opened for reading and/or writing has a set of
associated pointers and status indicators. They comprise a file unit,
and serve aS an access port for the exchange of data between the disk
file and the active program. ne file at a time can be assigned to
each unit. The files may be open on several different logical disk

units at once. There are 128 file units available per user (16 under
PRIMOS III, 15 under PRIMOS II). Units 1 thru 126 may be used for any

purpose. Unit @ is reserved for the system and unit 127 is reserved
for the COMOUTPUT File.

Opening a File

A file may be opened for reading only, for writing only, or for both
reading and writing. If a file is opened for reading only, it may be
read, but it cannot be changed.

The operation of opening a file does the following :

l. Searches the file directory to see if the filename requested is
there

2. Sets up tables and initializes buffers in the operating system

3. Defines a pseudonym for the file. This pseudonym is called the
file unit number, and is the only name used for transfer of
data to and from the file.

If a file is opened for writing only, or for reading and writing, it
may be changed; if the filename is not found in the directory, the
filename is added to the file directory, and a new file is created.
When a new file is created at the time of opening, no information is
contained in the file.

Using an Open File

Once a file has been opened, a file pointer is associated with the
file. The file pointer indicates the next binary word to be accessed.

REV. A 3 - 2

PDR3621 FMS CONCEPTS

To understand how the file pointer works, imagine that the words in a

file are serially numbered from 8. The file pointer is then the number
of the next word to be accessed in a file.

Use_of the Open and Close Commands

Various ways are provided to associate a specific filename (Filename)

with a PRIMOS file unit number. One method is the OPEN command.

Example:

OPEN filename funit key

Where filename is the name of a file listed in the UFD to which the
user is currently attached; funit is a PRIMOS file unit number
(1-126), and key is 1 for reading, 2 for writing, 3 for reading and

writing, etc.

From the terminal, the user can open files with the OPEN command, and

can close them with the CLOSE command. The OPEN command allows a user

to assign a file to a unit and specify the activity - reading, writing,

or both. For complete descriptions of commands, refer to the PRIMOS

Commands Reference Guide (FDR3198). File units 1 to 126 (1-15 under

PRIMOS II) may be specified by the user.

Unit 16 is reserved for system use under PRIMOS II.

When the user is communicating with the file structure through one of

the standard Prime translator or utility programs, files are referred

to by name only. PRIMOS, or the program itself, handles the details of

opening or closing files and assigning file units. For example, the

user can enter an external command such as ED FILE1, which loads and

starts the text editor and takes care of the details of assigning the

file FILE] to an available unit for reading or writing.

Because open-for-write files are subject to alteration (deliberate or

accidental), the user must keep files closed except when they are being

accessed. Open files absorb system resources and may also make these

opened files unavailable to other users. The CLOSE ALL command returns

all open file units to a closed and initialized state (except the

command output file). When control returns to PRIMOS via an error

condition, files are not closed.

On an open file, information may be read from the file starting at the

file pointer into high-speed memory, or information may be written to
the file starting at the file pointer.

Access and File Pointer

When a_ file is accessed, the file pointer is incremented once for each

binary word accessed.

3 - 3 . January 1980

SECTION 3 PDR3621

Positioning a File

The file pointer may also be moved backward and forward within a file
without moving any data. This is called positioning a file. The value
of a file pointer is called the position of the file. Positioning a
file to its beginning is often called rewinding a file.

Truncation of a File

It is possible to shorten a file by truncating it. When a file is
truncated, the part of the file that is located at or beyond the file
pointer is eliminated from the file. If the file pointer is positioned
at the beginning of the file, all of the information in the file is
removed but the filename remains in the file directory.

/

Closing a File

A file that has been opened may be closed. The file unit number
(pseudonym) and the corresponding table areas in the operating system
are "cleaned up" and released for reuse.

Deleting a File

A deleted file has its filename removed from the file directory, and
all of the disk memory that the file occupied is released for use by
other files.

Write-Protected Disks

Using the file management system, it is possible to run with
WRITE-PROTECTED disks.

FILE TYPES

A disk storage medium is composed of many separate blocks of data
recording space (disk records or sectors). How these blocks are put
together to make a file can greatly affect the efficiency of
positioning. Because of this, the file system has two different ways
of linking physical disk records together to form a file. The SAM
(Sequential Access Method), results in more compact storage on the disk

and requires less high-speed memory for efficient operation, but is
much slower for repeated random positioning over a file. The DAM
(Direct Access Method), results in quicker positioning over a file, but
requires more disk space and more high-speed memory. SAM and DAM files
are functionally equivalent in all other respects. The structural
differences between these two file types are transparent to the user.

REV. A 3 - 4

PDR3621 FMS CONCEPTS

SAM Files

A SAM file is the basic way of structuring disk records into an ordered

set; (i.e., a threaded list of physical disk records.) See Figure

3-1.

BEGINNING
RECORD

Figure 3-1. SAM File Structure

A SAM file is a collection of disk records chained together by forward

and backward pointers to and from each record (See Appendix E). Each

record in a SAM file (or any file) contains a pointer to the beginning

record address (BRA) of the file. The first record has a pointer to

the directory in which this file is an entry (father pointer). The

file system maintains the record headers and is responsible for the

structure of the records on the disk.

3 - 5 January 19898

SECTION 3 PDR3621

DAM Files

DAM (direct access method) file organization uses the SAM file method
of making an ordered set; a special technique is used to rapidly
access the i'th data record.

1. Logical file record @ of a DAM file is reserved for use by the
system. No user data is ever written in this record which is
always the top level index.

2. The top level index is always one record long (exactly). If
the file is short, the record address pointers point to records
containing user data. Otherwise, the pointers point to records
containing a lower level index. See Figure 3-2.

A DAM file index can exceed 512 entries on a storage module (220
entries for other devices). A multi-level index is maintained so that
any record in the file can be directly accessed. (See Section 6 for
DAM file creation example).

Figure 3-3 shows a typical relationship of DAM files within the PRIMOS
file hierarchy.

REV. A 3 - 6

PDR3621 FMS CONCEPTS

RECORD
HEADER

413

 425

450
 451

 1230 | | 439 y 2 y 1 y O

bn

Figure 3-2 DAM File Structure

3 - 7 January 198¢@

SECTION 3 PDR 3621

DSKRAT Al

MFD

DSKRAT

ALPHA

BETA
B SEG (1)
B SEG (2)

B SEG (4)
1 B SEG (3)

B SEG (4)
IN ANOTHER
SEGMENT
DIRECTORY

Figure 3-3. Hypothetical PRIMOS File Hierarchy with SAM and DAM
File Structures

REV. @ 3 - 8

PDR3621 FMS CONCEPTS

Record Formats

All files on PRIMOS disks are stored in fixed-length 448-word records,

(1940-word records for storage module disks), chained together by

forward and backward pointers. The number of records in a file is

limited only by physical storage space.

The first eight words of the record make up the record header (first 16

words for storage module record). Specific content of record headers
is discussed in Appendix E. All remaining words within the record,

following the record header, may be used to store ASCII character pairs

or 16-bit -words. For further information about disks and storage

modules, refer to the the System Administrator's Guide.

File Formats

A file is a series of records of the type described above, with the

distinction that the first record in such a chain is reached froma
pointer within a. User File Directory or an entry in a_ segment

directory.

Every file contains a series of 16-bit words. The format depends on
the type of data in the file and how they were originally entered into
the file system. The following types of files are in general use in

PRIMOS systems:

File Description

ASCII ASCII character text, packed two
uncompressed characters per word, as entered from a

terminal or from the Prime card reader,

paper-tape reader, etc. Each record is
followed by a word containing a new-line

character. This is the format of Source
files, text and data records for

sequential access.

ASCII Same as above, but successive spaces are
Compressed - replaced by a relative horizontal tab

character followed by a space count, and
lines are terminated by a LINE FEED
character.

Object Translation of a source file as generated

by the Macro Assembler and FORTRAN
compiler for processing by the linking
loader.

Memory Header block followed by a direct
Image transcription of high-speed memory. These

files are created by LOAD and applications
programs to be used as Runfiles.

3 - 9 January 1988

SECTION 3 PDR3621

Directories See Appendix E for format details.
(UFD and
Segment)

FILE DIRECTORIES

Directories are specialized files containing entries that point to
files or other directories. Directories are the nodes in the file
system tree structure hierarchy; files are the branches. Figure
3-3 illustrates this concept. Directories are either User File
Directories (UFD's) or segment directories. Each disk pack (or
device, in the case of non-removable media) has one special UFD
called a Master File Directory (MFD) that contains an entry for
each User File Directory (UFD) in the MFD. In turn, each UFD
contains an entry for every file or directory file in that
directory. UFDs and MFDs are accessed in the same way as other
files.

Segment directories differ from UFD's in one fundamental respect:
they contain file locations but not file names. As far as the file
system is concerned, the files in a segment directory have no
symbolic names. However the user may refer to files within a
segment directory by their entry number, which is a decimal number
enclosed in parentheses as:

(1)
(2)
(185)

All of the above are 'names' of files in segment directories.

Master File Directory (MFD)

Each disk unit contains one MFD file as an index to the first
physical record of each UFD in the MFD. The MFD has the same
format as any UFD. The first record of the MFD begins at physical
record 1 of the disk. Figure 3-3 shows a chain of pointers
extending from the MFD to UFD and segment directories, and to a DAM
or SAM file.

User File Directory (UFD)

A User File Directory (UFD) is a file that links PRIMOS filenames
to the physical record of a file.

A UFD is associated with each user, project, etc. ‘The UFD header
includes the two passwords for the UFD. After the header, the UFD
contains an entry for every file or directory named by the user.
Fach entry includes a filename and 2 words (INTEGER*4) that

REV. A 3 - 10

PDR3621 FMS CONCEPTS

contains the address of the first physical record of the file

(called the beginning record address or BRA).

(See Appendix E for UFD header and entry details.)

UFDS can span multiple records; there is no limit to the number of
files in a UFD.

UFD entries include an identification of special files; i.e.,

files having unique use in the file system and not normally

accessed by the user. These files are BOOT, DSKRAT, BADSPT, and

MFD.

Segment Directory Use

The segment directory file is opened for reading/writing on a unit
of the user's choice. The file directory segment is then
positioned to the segment directory entry number containing the

desired file.

A desired file may be opened, closed, deleted, or truncated by
giving the file unit number of the segment directory file rather
that the filename. Segment directories are organized as SAM files
or DAM files, consistent with the file structure the user wishes to

build.

Segment Directory Formatting

A segment directory is formatted in a manner similar to a UFD
except that entries are identified by a single entry number (from @
to 65535) which is the pointer to the beginning record of a file.
Segment directories are therefore limited to 65536 ('289909)

entries.

A UFD entry in a segment directory is illegal. ‘The only file types

allowed in a segment directory are SAM, DAM, and other segment

directories. See Section 6 for an example of creating segment
directories.

Date/Time Stamping

There is a field in a file's UFD entry that records the date and
time when the file was last modified. This field is updated when a
file is closed, and either of the following conditions exist:

@ An old file has been opened for writing or reading and

writing, and a write operation has been performed.

e A new file has been created.

3 - il January 1982

SECTION 3 PDR3621

Notes

The father UFD is updated whenever entries are changed
added, or deleted in that UFD.

Tne use of "last modified" rather than "last used" allows
the use of WRITE-PROTECTED disks.

DISK STRUCTURES

Disk Record Availability Table (DSKRAT)

PRIMOS maintains a file, whose name is the partition name (packname),

containing the used/unused status of every physical record on the disk.
The partition name is given when the disk is created by the MAKE
command. For example, the name of the documentation disk is DOCUMN,
and the name of the DSKRAT file for this disk is DOCUMN. Each record
is represented by a single binary bit; a 'l' means the record is
available, and a '#' means it is in use. (a typical PRIMOS disk, the
DSKRAT file is allocated several contiguous records. The DSKRAT file
is maintained as a file on the disk, starting at physical record 2.
The format of DSKRAT is shown in Appendix E.

Disk Organization

PRIMOS supports all Prime disk options. Prime software provides
facilities for keyed indexed direct access files. Multiple disks are
organized so that every fixed disk and every removable disk or
partition is a self-consistent volume with its own bootstrap, DSKRAT,
and MFD. Logical record zero is cylinder zero, head zero, sector zero
on all options.

FILE ACCESS

Attaching to a UFD

To access files or use PRIMOS utility functions, the user must be
attached to a UFD. Typically, during program development, each user
attaches to a UFD reserved for program files with the ATTACH command.
For further information, refer to PRIMOS Commands Reference Guide.
Within executable programs, the user can attach to other UFDs; for
example, to access data. At the program level, this is accomplished by
the subroutine ATCHS$ (see Section 4).

REV. A 3 - 12

PDR3621) FMS CONCEPTS

File Access Control

PRIMOS (including PRIMOS III) gives a_ user who attaches with owner
password (owner) the ability to open file directories to other users
with restricted rights to the owner's files. Specifically, the "owner"
of a file directory can declare, on a per-file-basis, the access rights
a "nonowner" has over each of the owner's files. These rights are
separated into three categories:

@ Read Access (includes Execute Access)

@e Write Access (includes over-write and append)

@e Delete/Truncate rights

The owner of a UFD can establish protection keys for any file in the
UFD: the owner access rights and the nonowner access rights. The
owner password is required to obtain owner privileges. The nonowner
password (if any) is required to obtain nonowner privileges. The
command:

PASSWD owner-password nonowner-—password

replaces the existing passwords in the UFD with a new owner-password
and a nonowner-password. This command must be given by the owner while
attached to the UFD. A nonowner is returned a "NO RIGHT" error. ‘The
command :

PROTECT filename okey nkey

replaces the existing protection keys on filename in the current UFD
EES

with the owner (okey) and nonowner (nkey) protection keys. Valid
numbers for these keys are:

@ no Access allowed

1 read Access only

2 write Access only

3. read and Write Access

4 delete/Truncate only

5 delete/Truncate and Read

6 delete/Truncate and Write

7 all Access allowed (Read/Write/Delete/Truncate)

The owner can restrict access to a file by the protection mechanism,
which can be useful in preventing accidental deletion or overwriting.
A nonowner cannot give the PROTECT command and achieve desired results.

3 - 13 January 1989

SECTION 3 PDR3621

The command will return the message "NO RIGHT" and return to PRIMOS

command level.

A user obtains owner status to a UFD by attaching to the UFD, giving

its name and owner password in the ATTACH command. A user obtains
nonowner status to a UFD by giving its name and nonowner password in
the ATTACH command.

A user can find out his owner status through the LISTF command. LISTF
types the name of the current UFD, its logical device and O, if the
user is an owner, or N if the user is a nonowner. LISTF then types the
names of all files in the current UFD. An owner can determine the
protection keys on all files in the current UFD through use of the file
utility, FUTIL.

Other Features of File Access

The owner/nonowner status is updated on every ATTACH command and
separately maintained for the current UFD and home UFD.

A user's privileges to files under a segment directory are the same as
his privileges with the segment directory.

The protection keys of a newly created file are:

owner has all rights (7)

nonowner has none (2)

The passwords of a newly created UFD are:

owner password is blank

nonowner password is zero (any password will match)

A nonowner cannot create a new file in a UFD, or successfully give the
CNAME, PASSWD, or PROTECT commands and a nonowner cannot open his
current UFD for reading or writing (see the ATCHSS command, Section 4
for further details).

In the context of file access control, the MFD has all the features of

a UFD. Therefore, an MFD can be assigned owner/nonowner passwords, and

the UFDs subordinate to the .MFD may have their access controlled by
protection keys, via the PROTECT command. If file access is violated,
the error message is: NO RIGHT

PRIMOS II File Access Control

The PRIMOS II operating system does not observe file access control
over individual files, but it is compatible to a degree with PRIMOS III
and PRIMOS. Under PRIMOS II, a user cannot obtain access to a UFD by

REV. A 3 - 14

PDR3621 FMS CONCEPTS

ATTACHing with the nonowner password. If the owner password has been
given, the ATTACH is successful, but subsequent access to files in the
directory is not checked. Files created under PRIMOS II are generated
with the same protection keys as under PRIMOS III and PRIMOS and the
passwords of a newly created UFD are the same.

File Data Access Methods

Under PRIMOS, the means of file access is the Sequential Access Method

(SAM) or the Direct Access Method (DAM) which are discussed earlier in
this section. With both methods, the file appears as a linear array of
words indexed by a current position pointer. The user may read or
write a number of words beginning at the pointer, which is advanced as
the data are transferred. A file service call (PRWFSS) provides the
ability to position the pointer anywhere within an open file. File
data can be transferred anywhere in the addressing range. When a file
is closed and re-opened, the pointer is automatically returned to the
beginning of the file. The pointer can be controlled by both the
FORTRAN REWIND statement and PRWFSS positioning.

With the DAM method of access, the file also appears to be a linear
array of words, but this method has faster access times in positioning
commands. PRIMOS keeps an index described earlier in this section to
allow fast random positioning. User calls to manipulate SAM and DAM
files are identical.

PRIMOS-LEVEL USER INTERACTION

PRIMOS commands fall into two major categories: the internal commands
(implemented by subroutines that are memory-resident as part of PRIMOS)
and external commands (executed by programs saved as disk files in the
command UFD, CMDNC@).

Command Activity

On receiving a command at the system terminal, PRIMOS checks whether it

is an internal command, and if so, executes it immediately. Otherwise,
PRIMOS looks in the command directory of Logical Disk Unit @ for a file
of that name. If the file is found, PRIMOS RESUMEs the file (loads it
into memory and starts execution). All files in the command directory
are assumed to be SAVEd memory image files, ready for execution. Most
are set up to return automatically to PRIMOS when their function is
complete or errors occur. The command line that caused the execution
of the saved program is retained and may be referenced by the program
to obtain parameters, options, and filenames via the RDIKSS subroutine.
To add new external commands, the user simply files a memory image
program (SAVEd file) under the command directory UFD (CMDNC@). Memory
image files may also be kept in other directories and executed by the
RESUME command.

3 - 15 January 19898

SECTION 3 PDR3621

Command Files

As an alternative to entering commands one at a time at the terminal,
the user can transfer control to a command file by the command:
COMINPUT. This command switches command input control from the
terminal to the specified file. All subsequent commands are read from
the file. One can assign any unit for the COMINPUT file and command
files may call other command files. For detailed information on the
COMINPUT command, refer to the PRIMOS Commands Reference Guide
(FDR3198).

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system. Command
files are also useful in system building when many files must be
assembled, concatenated, loaded, etc., (for example, generating library
files).

File Maintenance (FIXRAT)

To give the user an efficient and thorough way to check the integrity
of data on a PRIMOS disk, PRIMOS provides a file maintenance program,
FIXRAT, in the command directory, CMDNC@. When FIXRAT is invoked as an
external command, it checks for self-consistency in the structure of
pointers in every record, file, and directory on the disk. If there
are breaks in the continuity of double-strung pointers, discrepancies
between the DSKRAT file and the reconstructed Record Availability
Table, or other error conditions, FIXRAT prints appropriate error
messages. FIXRAT asks the user to specify whether or not to take
certain steps to repair a damaged file structure ona particular
logical disk unit. For details and examples, refer to the FIXRAT
description in the System Administrator's Guide (PDR3109).

REV. A 3 - 16

Part Il
PRIMOS Subroutines

Part II (Sections 4, 5 and 6) describes the PRIMOS subroutines: A

complete description of parameters is given for each subroutine;
followed by notes on usage, brief examples of calls, and notes on
conpatibility with old file system functions.

e In Section 4, file manipulation subroutines are described.

e Section 5 describes other calls to I/0 control system

subroutines.

@ The sample programs in Section 6 illustrate the use of the

subroutines.

e The real-time subroutines that set system-wide semaphores are

described in Section 22 and the old file system calls (obsolete)

are found in Appendix F.

PDR3621 FILE SUBROUTINES

SECTION 4

FILE MANIPULATION SUBROUTINES

INTRODUCTION

Key Definitions for File System Calls

All keys and error codes are specified in symbolic, rather than

numeric, form. These symbolic names are defined as PARAMETERS (for

FORTRAN programs) and EQUs (for PMA programs) in SINSERT files present

in a UFD on the master disk named SYSCOM. The key definition files are

named KEYS.F for FORTRAN and KEYS.P for PMA. The error definition

files are ERRD.F and ERRD.P. The user is urged to use these symbolic

names. For convenience in recognizing old file system keys, these

files are listed in Appendix G.

Error Handling Conventions

There are two error handling schemes. One scheme, called the integer

error return code scheme (described in Appendix G), handles file system

and semaphore subroutines. The other, involving alternate returns,

handles I/O subroutines. (See Section 14.)

Filenames

Filenames may be 1-32 characters in length, the first character of

which must be alphabetic. Filenames can be composed only of the

following characters: A-Z 0-9 #$ &*- .and/. Filenames may not
contain embedded blanks. 7

Direct-Entrance Calls to PRIMOS

PRIMOS supports direct-entrance calls to certain supervisory

procedures. Using this mechanism, routines such as SRCH$$, PRWFSS,
etc., can be invoked directly via a PCL instruction thereby
circumventing the overhead associated with a SVC entry into PRIMOS.
Direct-entrance calls are available only from V-mode programs and will
be correctly set up by using the V-mode FTN library.

Direct-entrance calls are through ECBs (entry control blocks) that are

contained in gate segment 5, of the supervisor. Invalid calls or other

references to segment 5 will cause the error messages UNDEFINED GATE or

TLLEGAL PAGE REF.

4 - 1 January 1986

SECTION 4 PDR3521

The PRIMOS routines that can be entered via direct call, described in
this section, are:

ATCHSS
CNAMSS
COMISS
Comoss
CREASS
FORCEW
GPASSS
GPATHS
NAMEQS
PRWESS
RDENSS
RDLINS
RESTSS
RESUSS
SATRSS
SAVESS
SGDRSS
SPASSS
SRCHSS
TSRCSS
UPDATE
WILINS

The PRIMOS I/O subroutines that can be entered via direct calls,

described in Section 14, are:

DSINIT
RRECL
WRECL

The error-handling subroutines that can be entered via direct calls and
are part of the error handling scheme via SVCs are (Section 14):

ERRSET

GETERR
PRERR

Wake-up and notify subroutines, useful for real-time programming and
synchronization between processes described in Section 21 are:

SEMSDR
SEMSNEF
SEMSTIN
SEMSTS
SEMSWT
SLEEPS

REV. A 4 - 2

PDR3621 FILE SUBROUTINES

Under R-mode memory images on PRIMOS II or PRIMOS III, all operating

systen subroutines use the SVC interface described in Appendix C.

SUBROUTINE DESCRIPTIONS

The File Manipulation Subroutines are described below in alphabetical

order.

Caution

Do not omit any arguments in calls to the subroutines described
in this section. Do not specify as 9 (or any constant) any
arguments returned by the subroutines. Never specify the
integer return code as 9. Always check the error code to see
if the subroutine call was successful. It is essential to
refer to Appendix G which covers the error handling scheme for
these subroutines.

P ArcHss

ATCHSS attaches to a UFD and, optionally, makes it the home UFD. In
attaching to a directory, the subroutine ATCHS$ specifies where to look
for the directory. ATCHSS specifies a User File Directory (UFD) in the
Master File Directory (MFD) on a- particular logical disk, a
sub-directory in the current UFD, or the home UFD as the

target-directory of the ATCHSS operation.

CALL ATCHSS (ufdnan,namlen,ldisk,passwd ,key,code)

ufdnam The name of the UFD to be attached. If key=0 and ufdnam
is the key KSHOME, the home UFD, is attached. If the
reference subkey is KSIMFD or KSICUR, ufdnam is either a
Hollerith expression or the name of a three-word array
that specifies a ufdname to attach to.

nanlen The length in characters (1-32) of ufdnam. namlen may

be greater than the length of ufdnam provided that

ufdnam is padded with the appropriate number of blanks.
If ufdnam=KSHOME, namlen is disregarded.

ldisk The number of the logical disk to be searched for ufdnamn
when key=KSIMFD. The parameter, Idisk, must be a
logical disk that is started up. Other values are:

KSALLD Search all started-up logical devices in
logical device order, and attach to the UFD in
which ufdnan appears in the MFD of the lowest
numbered logical device.

KSCURR Search the MFD of the disk currently attached.

A - 3 January 1980

SECTION 4 PDR3621

passwd A three-word array containing one of the passwords of
ufdnam. passwd can be specified as 9 if attaching to
the home UFD. If the reference subkey is KSIMFD or
KSICUR, passwl is either a Hollerith expression (1 to §
characters) or the name of a three-word array that
specifies one of the passwords of ufdnam. If passwi is
blank, it is specified as three words, each containing
two blank characters.

key Composed of two subkeys that are combined additively, a
REFERENCE subkey and a SETHOME subkey. The REFERENCE
subkey values are as follows:

KSIMFD Attach to ufdnam in MFD on ldisk.

KSICUR Attach to ufdnam in current UFD (ufdnam is a
subdirectory).

The SETHOME subkey, KSSETH, may be added to the
REFERENCE subkey, e¢.9., KSIMFD4+KSSETH, which will set
the current UFD to the home UFD after attaching. If the
REFERENCE subkey is KSICUR, or if ufdnam is @, ldisk is
ignored, and ldisk is usually specified as @.

code An integer variable set to the return code.

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found amd saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
AS an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATCHSS subroutine does not
change the home UFD unless the user specifies a change in the
subroutine call. The user gets owner status if he gives the owner
password, or gets nonowner status if he gives the nonowmer password.
The owner of a_ file directory can declare, on a per-file basis, what
access a nonowner has over the owner's files. The nonowner password
may be given only under PRIMOS and PRIMOS III. (Refer to the
description of the commands SPAS$$ and SATRSS in this section for more
information.)

A BAD PASSWD error condition does not return to the user's program.
PRIMOS command level is entered, and the user is not attached to any
UFD. Other errors leave the attach point unchanged.

REV. A 4 - 4

PDR3621 FILE SUBROUTINES

Examples

1. Attach to hone UFD:

CALL ATCHSS (KSHOME,2,%,0,@,CODE)

2. Attach to UFD named 'G.S.PATTON', password 'CHARGE' in current

UFD:

CALL ATCHSS ('G.S.PATTON' ,10,KSCURR, 'CHARGE' ,KSICUR , CODE)

P cnamss

CNAMSS changes the name of a file in the current UFD.

CALL CNAMSS (oldnam,oldlen ,newnam ,newlen ,code)

oldnam The name of the file to be changed.

oldlen The length in characters of oldnam.

newnam The new name of the file.

newlen The length in characters of newlen.

code An integer variable set to the return code.

The user must be the owner of the UFD of the file to change the name.

CNAMSS does not change the last modified date-time of the file or any

of the other attributes of the file. However, the last modified

date-time of the UFD in which the file resides is changed. CNAMSS may
cause the position of the file in the UFD to change with respect to the

other files if the new name is longer than the old name. It is illegal

to change the name of the MFD, BOOT, BADSPT. A NO RIGHT error message

is generated if this is attempted.

Pp comiss

COMIS$ switches the command input stream from the user's terminal to a

command file, or from a command file to the terminal.

CALL COMISS (filnam ,namlen,funit,code)

filnam The name of the command file to switch the command input

stream. If filnan is TTy, the command strean_ is

switched back to the terminal and funit is closed. If

filnam is PAUSE, the command stream is switched to the

4 - 5 January 19894

SECTION 4 PDR3621

terminal but the file unit specified by funit is not

closed. If filnam is CONTINUE, the command strean is
switched to the file already open on funit. The values:
-TTY, -PAUSE, and -CONTINUE cannot be used as option

names.

namlen The length in characters (1-32) of filnam.

funit The file unit (1-125 or 1-15 under PRIMOS II) on which

to open the command file specified by filnam. Normally,
File Unit 5 is used.

code An integer variable set to the return code.

 cov0ss

CoMOsS switches terminal output to file or terminal.

CALL COMOSS (key , £ilnam ,namlen ,xx ,code)

key A word of flags specifying the action to be taken:

2498001 Turn TTY output off.

:008962 Turn TTY output on.

7080804 Reserved.

:880018 Turn file output off.

2900820 Turn file output on.

:000049 Append to filnam if filnam is being opened;
close filnam if turning file output off.

7289100 Truncate filnam if Filnam is being opened.

filnam An array containing the name of the file to be opened or
A.

namlen The length in characters (1-32) of filnam or @.

XX Reserved. Should be specified as @.

code An integer return code from the file system.

Routing of the terminal output stream is modified as indicated by the
key. If TTY output is turned off, all printing at the terminal is
suppressed until TTY output is re-enabled or until a unit '77 error
message is generated. If a filename is specified, any current command
output file is first closed. The new file is opened for writing on the

REV. A 4 - 6

PDR3621 FILE SUBROUTINES

command output unit '77, and all subsequent terminal output is sent to

the file. TTY output continues wnless explicitly suppressed. Unless

the APPEND option bit is set, the current contents of the file is

overwritten. The parameter can be omitted by specifying a pair of

blanks or a length of 9@.

Error messages (from ERRRTN, ERRPRS$) force TTY output on, but leave the

command output file open (i.e., the error message will appear both on

the terminal and in the file). Disk error messages force TTY output on

and file output off for the supervisor user (the file is left open).

Unrecovered disk errors will do likewise for the user to whom the disk

is assigned.

Pp CREASS

CREASS creates a new UFD (a SUDUFD) in the current UFD and initializes

the new UFD entry.

CALL CREASS (filnam,namlen,opass ,npass ,code)

filnam The name to be given the new UFD.

namlen The length in characters (1-32) of filnam.

opass A three-word array containing the owner password for the

new UFD. If opass(1)=8, the omer password is set to

blanks.

npass A three-word array containing the nonowner password for

the new UFD. If npass(1)=@ the nonowner password is set

to @'s. Any password given to ATCHSS matches a nonowner

password of @'s.

code An integer variable to be set to the return code from

CREASS.

Passwords can be set such that the password cannot be entered from the

keyboard (i.e., the directory is accessible only from a program). In

any case, passwords can be, at most, six characters long. Passwords

less than six characters must be padded with blanks for the remaining

characters. Passwords are not restricted by filename conventions and

may contain any characters or bit patterns. It is strongly recommended

that passwords do not contain blanks, commas, or the characters = ! '

@{}f[1€) 3; %* <> or lower case characters. Passwords should not

start with a digit. If passwords contain any of the above characters

or begin with a digit, the passwords may not be given on a PRIMOS

command line to the ATTACH command.

4 - 7 January 19860

SECTION 4 PDR3621

Since the subroutine SRCH$$ does not allow creation of a new UFD,
CREASS must be used for this purpose. Under program control, CREASS
allows the action of the PRIMOS CREATE command.

CREASS requires owner rights on the current UFD.

For example, to create new UFD with default passwords of blanks for
owner and 3*@ for nonowner:

CALL CREASS ('NEWUFD' ,6,%,0,CODE)

> FORCEW

CALL FORCEW (%, funit)

funit A file unit number from 1 to 126 on which a file has
been opened.

The FORCEN subroutine immediately writes to the disk all modified
records of the file that is currently open on funit. Normally this
action is not needed, since the systen automatically updates all
changed file systen information to the disk at least once per minute.
Under PRIMOS II, the FORCEW routine has no effect.

BP GPAsss

GPASS$ returns the passwords of a SUBUFD in the current UFD.

CALL GPASS$ (ufdnam,nanlen ,opass ,npass ,code)

ufdnam The name of the UFD with passwords to be returned.
ufdnam is searched for in the current UFD.

namlen The length in characters (1-32) of ufdnam.

opass A three-word array that is set to the owner password of
ufdnan,.

npass A three-word array that is set to the nonowner password
of ufdnam.

code An integer variable set to the return code.

GPASS$ requires owner rights to the current UFD.

For example, to read passwords of SUBUFD into PASS (6) array:

CALL GPASSS ('SUBUFD',6,PASS (1) ,PASS (4) , CODE)

REV. A 4 - 8

p> GPATHS

PDR3621 FILE SUBROUTINES

GPATHS obtains a fully qualified pathname for an open file unit, or for

current or home attach points. GPATHS operates in V-mode only.

CALL GPATHS (key, funit, buffer, bufflen, pathlen, code)

key

funit

buffer

bufflen

pathlen

code

An integer variable specifying pathname to be returned

(INTEGER*2). Possible values are:

KSUNIT Pathname of file open on file unit specified by

funit will be returned (KSUNIT = 1).

KSCURA Pathname of current attach point will be
returned (KSCURA = 2).

KSHOMA Pathname of home attach point will be returned
(KSHOMA = 3).

Specifies file unit number if key is KSUNIT, otherwise

ignored.

The buffer where the pathname is to be returned.

Specifies maximun buffer length in characters. If the

pathname exceeds bufflen characters, data in buffer is

meaningless and a code of ESBFTS is returned.

Specifies the length in characters of the pathname

returned in buffer. Characters beyond pathlen in buffer

contain no useful information.

A standard error code. Possible values are:

900000 No errors.

ESBKEY A bad key was specified.

ESBUNT A bad unit number was specified in funit.

ESUNOP Unit specified in funit is closed and name

cannot be returned.

4 - @9 January 1989

SECTION 4 PDR3621

ESNATT Not attached to any node (keys KSCURA,KSHOMA).

ESBFTS The buffer specified with character length
bufflen is too small to contain full pathname.
The buffer contains no valid data.

The following are examples of information returned as the result of
using GPATH$. The lower-case names define what information the
examples (in upper caSe) actually represent.

<diskname>MFD

<SPOOLD>MFD

<d iskname> ufd name

<SPOOLD>SPOOLQ

<disk_name>ufd_namel>ufd_name2>filename

<SALESDOWEST. COAST>YTD. 1979>MARCH

<disk name>ufdname>segment directory nane
<OPSYST>PR4.64>VPRMOS

<disk name>ufd_name>segmentdirectory7name>entrynumber>entrynunber
<DBDISK>DICTIONARY>WORDS>22>68

p> NAMES

NAMEQS is a LOGICAL function that compares two filenames for
equivalence.

LOG = NAMEQS (filnaml,namleni,f£ilnam2,namlen2)

filnaml The first filename for comparison.

namlenl The length in characters of filnaml.

filnam2 The second filename for comparison.

namlen2 The length in characters of filnam2.

NAMEQS performs a character-by-character compare of filnaml and filnam2
for the length of namlenl or namlen2, whichever is shorter. The
trailing characters of the longer name (if the names are not the same
length) must be all blank for equality. The names supplied must be
valid filenames.

NAMEQS will work correctly on numeric fields only if namleni=namlen2.

REV. A 4 - 10

p> PRWESS

PDR3621 FILE SUBROUTINES

PRWFSS reads, writes, positions, and truncates SAM or DAM files.

CALL PRWE'SS (rwkey+poskeytmode , funit,LOC(buffer) ,nw,pos ,rnw,code)

rwkey

poskey

mode

This subkey, which cannot be omitted, indicates the

action to be taken. Possible values are:

KSREAD

KSWRIT

KSPOSN

KSTRNC

KSRPOS

A subkey
Possible

KSPRER

KSPOSR

KSPREA

KSPOSA

A subkey

Read nw words from funit into buffer.

Write nw words from buffer to funit.

Set the current position to the 32-bit. integer

in pos.

Truncate the file open on funit at the current

position.

Return the current position as a 32-bit integer

word number in pos.

indicating the positioning to be performed.

values are: (If omitted, same as KSPRER)

Move the file pointer of funit the number of

words specified by pos relative to the current

position before performing rwkey.

Move the file pointer of funit the number of

words specified by pos relative to the current

position after performing rwkey.

Move the file pointer of funit to the absolute

position specified by pos before per forming

rwkey.

Move the file pointer of funit to the absolute

position specified by pos after per forming

rwkey.

that may be omitted or used to transfer all or

a convenient number of words. Possible values are: (IE

omitted, read/write nw)

4 - ll January 1988

SECTION 4 PDR3621

KSCONV Read/write a convenient number of words (up to
the number specified by the parameter nw).

KSFRONW Perfornn write to disk from buffer before
executing next instruction in the program.

funit A file unit number (1 to 15 for PRIMOS II,
1-126 for PRIMOS) on which a file has been
opened by a call to SRCHS or by a command.
PRWFSS actions are performed on this file unit.

LOC The data buffer to be used for reading or writing.
(buffer) Tf buffer is not needed, it can be specified as INTL(@).

nw The nunber of words to be read or written (mode=9) or
the maximun nunber of words to be transferred
(mode=KSCONV). nw may be between % and $5535.

pos A 32-bit integer (INTEGER*4) specifying the relative or
absolute positioning value depending on the value of
poskey.

rnw A 16-bit unsigned integer set to the number of words
actually transferred when rwkey=KSREAD or KSWRIT. Other
keys leave rnw unmodified. For the keys KSREAD and
KSWRIT, rnw must be specified.

code An INTEGER*2 variable to be set to the return code,

pos is always a 32-bit integer, not a <record-number, word-—number>
pair. All calls to PRWFSS must Specify pos even if no positioning isrequested. An INTEGER*4 9 can be generatedby specifying 990900 or
INTL(®) in FTN, OL in PMA,

poskey is observed for all values of rwkey except KSRPOS, for which it
is ignored (the file position is never changed) .

If rwkey = KSPOSN, nw and rnw are ignored, and no data are transferred.

A call to read or write nw words causes nw words to be transferred to
or from the file, starting at the file pointer in the file. Following
a call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using boskey of KSPREA or KSPOSA,
the user may explicitly move the file pointer to pos before or afterthe data transfer operation. Using a poskey of KSPRERor KSPOSR, the
user may move the file pointer backward pos words from the currentposition, if pos is negative or forward pos words if pos if positive.Positioning takes place before or after the data transfer, depending on
the key, If nw is @ in any of the calls to PRWFSS, no data transfer
takes place, and PRWFSS performs a pointer position operation.

REV. A 4 - 12

PDR3521 FILE SUBROUTINES

The mode subkey of PRWFSS is most frequently used to transfer a

specific nunber of words on a call to PRWFSS. In these cases, the mode

is @ and is normally omitted in PRWFS$ calls. In some cases, Such as

in a program to copy a file from one file directory to another, a

buffer of a certain size is set aside in memory to hold information,

and the file is transferred, one buffer-full at a time. In the latter

case, the user doesn't care how many words are transferred at each call

to PRWFS$, so long as the number of words is less than the size of the

buffer set aside in memory.

Since the user would generally prefer to run a program as fast as

possible, the KSCONV subkey is used to transfer nw words, or less in

the call to PRWESS. The number of words transferred is a number

convenient to the system, and therefore speeds up program run time.

The nunber of words actually transferred is set in rnw. For an example

of PRWFSS use in a program, refer to Section 6.

The subkey KSFRCW guarantees that PRWFS$$ will not return until the disk

record (s) involved are written to disk. The write to disk will be

performed before executing the next instruction in the program. Since

the KSFRCW defeats the disk buffering mechanism, it should be used with

care as it increases the actual amount of disk I/O. It should only be

used wnen it is necessary to know that data is physically on a disk

(e.g., aS when implementing error recovery schemes).

The programmer is responsible for ensuring that only one process (user)

is involved in the PRWFSS call concurrently. The file may be open for

use by several processes. The forced write applies only to the data

written by the process performing the operation. See an example of the

use of the KSFRCW later in this section.

On a PRWESS BEGINNING OF FILE error or END OF FILE error, the parameter

rnw is set to the number of words actually transferred.

On a DISK FULL error, the file pointer is set to the value it had at

the beginning of the call to PRWESS. The user may, therefore, delete

another file ami restart the program (by typing START after using the

DELETE command). This feature does not work with PRIMOS ITI.

During the positioning operation of PRWFS$, PRIMOS maintains a file

pointer for every open file. The file pointer is a two-word integer,

because files may be longer than 55,535 words. When a file is opened

by a call to SRCH$$, the file pointer is set in such a manner that the

next word that is read is the first word of the file. The file pointer

position is @, for the beginning of file. If the user calls PRWFSS to

read 499 words, and does no positioning at the end of the read

operation, the file pointer is set to 490.

A - 13 January 1989

SECTION4 PDR3521

Note

In V-mode, PRWFS$ only transfers words into the same segment as
buffer. An attempt to read across a segment boundary will
Cause a wrap-around instead and read into the beginning of the
segment. This is also true of writing from the address space.

Examples

1, Read the next 79 words from the file open on unit 1:

CALL PRWPSS (KSREAD,1,LOC(BUFFER) ,79,000000,NMREAD,CODE)

2. Add 1924 words to the end of the file open on UNIT
(19000008 is just a very large number to get to the end of
the file):

CALL PRWFSS (KSPOSN+KSPREA, UNIT, LOC (9) ,0, 10000000 ,NMW,CODE)
CALL PRWFESS (KSWRIT,UNIT,LOC(BFR) ,1024,000000,NMW,CODE)

3. See what position is on File Unit 15 (INT4 is INTEGER*4) :

CALL PRWFSS (KSRPOS,15,LOC(9) ,@, INT4,9%,CODE)

4. Truncate file 14 words beyond the position returned by the
above call:

CALL PRWFSS (KSTRNC+XSPREA, 15,LOC(%) ,0, INT4+10,0,CODE)

5. Position the file open on unit nunber UNIT to the tenth
word used in the file and the first 10 words of ARRAY will
be written to it:

INTEGER*2 ARRAY (40), CODE,UNIT, RET
SINSERT SYSCOM>KEYS.F

CALL PRWFSS (KSWRIT+KSFRCW+KSPREA, UNIT, LOC (ARRAY),
x 10, INTL (18) ,RET,CODE)
IF (CODE .NE. 8) GOTO errorprocessor

The above FORTRAN call will cause the file open on unit number UNIT to
be positioned to the tenth word in the file, and the first 19 words of
ARRAY will be written to it. The next instruction in the user's
program will not be executed until the data has actually been written
to disk. If an error is encountered while writing to disk, the error
code ESDISK (disk I/O error) is returned. If more than one concurrent
user of the disk record is detected, the error code ESFIUS (file in
use) is returned. In this case, the write is not lost, but will not be
perfomed immediately.

REV. A 4 - 14

PB RDENSS

PDB3621 FILE SUBROUTINES

RDENSS positions in or reads from a UFD.

CALL RDENSS (key, funit ,buffer ,buflen,rnw,filnam ,namlen ,code)

key

funit

buf fer

buflen

rnw

filnam

namlen

code

An integer variable specifying the action to be taken.

Possible values are:

KSREAD Advance to the start of the first or next UFD

entry and read as much of the entry as will fit

into buffer. Set rnw to the number of words

read.

KSNAME Position to the start of the entry specified by

filnam and namlen. Read as much of the entry

aS will fit into buffer. Set rnw to the number

of wrds read. If the entry is not in the

directory, the code ESFNTF is returned. If

nanlen is zero, the next entry is returned.

KSGPOS Return the current position in the UFD as a

32-bit integer in filnam.

KSUPOS Set the current position in the UFD from the

32-bit integer in filnam.

A unit on which a UFD is currently opened for reading.

(A UFD may be opened with a call to SRCH$$.)

A one dimensional array into which entries of the UFD

are read.

The length, in words, of buffer.

An integer variable that will be set to the number of

words read.

A 32-bit integer variable used for keys of KSGPOS and

KSSPOS or a name for use with KSNAME.

A 16-bit integer variable specifying the length in

characters (0-32) of filnam. This variable is only used

with KSNAME

An integer variable to be set to the return error code.

4 - 15 January 1986

SECTION 4 PDR3621

RDENSS is used to read entries from a UFD. rnw words are returned in
buffer, and the file unit position is advanced to the start of the next
entry. Return code ESEOF means no more entries, ESBFTS means buffer is
too small for the entry.

In the file management system, UFDs are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file
is not necessarily found at the end of a UFD.

The complete format of currently defined entries is given here. (All
numbers are decimal unless preceded by a ':'.)

6 | ECW__| ENTRY CONTROL WORD (TYPE/LENGTH)
1 |F |

| 1 |
| LI
| E |
| ... | FILENAME (BLANK PADDED)
IN |
| A |
| Mi
| E |

17 | PROTEC | PROTECTION (OWNER/NON-OWNER)
18 |RESERVED| RESERVED FOR FUTURE USE
19 | FILTYP | FILETYPE <--- (END OF ENTRY FOR TYPE=1)
28 | DATMOD | DATE LAST MODIFIED
21 | TIMMOD | TIME LAST MODIFIED
22 |RESERVED| RESERVED FOR FUTURE USE
23 |RESERVED| RESERVED FOR FUTURE USE

ECW Entry Control Word. An ECW is the first word in any entry
and consists of two 8-bit subfields. The high-order 8 bits
indicate the type of the entry, the low-order 8 bits give the
length of the entry in words including the ECW itself.
Possible values of the ECW are as follows:

7800001 Type=6, length=l. This entry indicates either a UFD
header or a vacant entry. No information other than
the ECW is returned.

2900424 Type=1, length=2¢. Type=1 indicates an old
partition UFD entry. Words @-19 in the diagran
above are returned.

REV. A 4 - 16

FILENAME

PROTEC

FILTYP

PDR3621 FILE SUBROUTINES

:001030 Type=2, length=24. Type=2 indicates a new partition

UFD entry. All the above information is returned.

Reserved fields should be ignored.

User programs should ignore any entry-types that are

not recognized. This allows future expansion of the

file systen without unduly affecting old programs.

Up to 32 characters of filename, blank padded.

Qwner and nonowner protection attributes. The owner rights

are in the high-order 8 bits, the non-owner in the low-order

8 bits. ‘The meanings of the bit positions are as follows (a

set bit grants the indicated access right):

1-5,9-13 Reserved for future use.

6,14 Delete/truncate rights.
7,15 Write-access rights.
8,16 Read-access rights.

On a new partition, the low-order eight bits indicate the

type of the file as follows:

SAM file.
DAM file.
SAM Segment directory.
DAM Segment Directory.

UFD&
B
W
N
F
&

On an old partition, the filetype is invalid. The file must

be opened with SRCH$$ to determine its type. Of the high

order 8 bits, six are currently defined as follows:

bit 1 set only for the BOOT and DSKRAT files if they are

on a storage module disk.

bit 2 The dumped bit. This bit can be set by a call to

SATRSS and is reset whenever the file is modified.

This bit is used by the utility program that dumps

only modified files to magnetic tape. Users are

normally not interested in this bit.

bit 3 This bit is set by PRIMOS II when it modifies the

file and reset by PRIMOS (and PRIMOS III) when it

modifies the file. If this bit is set, the

time-date field for the file will not be current

because PRIMOS II doesn't update the date-time stamp

when it modifies a file.

4 - L7 January 1980

SECTION 4 PDR 34521 |

bit 4 This bit is set to indicate that this is a special
file. The only special files are BOOT, MED, BADSPT,
and the DSKRAT file which has the name packname.,
This bit, and this bit only is valid on both new and
old style partitions.

bits 5-6 Setting of the per-file read/write lock.

The PRIMOS file system supports individual values of the read/write
lock (RWLOCK) on a_ per-file basis, for those files residing on new
partitions. The read/write lock is used to regulate concurrent access
to the file, and was formerly alterable only on a system-wide basis.

The meaning of the lock values is:

Value bits 5,6 Meaning

g 3,0 Use system-wide RWLOCK to regulate
concurrent access,

1 8,1 Allow arbitrary readers or one writer.

2 1,9 Allow arbitrary readers and one writer.

3 1,1 Allow arbitrary readers and arbitrary
writers,

New files are initially created with a per-file read/write lock of
zero.

UFDSs do not have user-alterable read/write locks, though segment
directories do. Files in directory have the per-file read/write lockof the segment directory.

The per-file read/write lock value is read by RDENSS. It is set by a
SATRSS call with a key of K$RWLK. The desired value is supplied in
bits 15 and 16 of ARRAY(1), the remaining bits of which must be zero,
On old partitions, the SATRS$ call fails with an error code of ESOLDP.
Owner rights to the containing UFD are required, otherwise the call
fails with an error code of ESNRIT. An attempt to set the lock value
of a UFD fails with an error code of ESDIRE. If the SATRSS call
requests a lock value which is more restrictive than the Current usage
of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested aregoverned by the new lock value. It is unspecified what happens when
bits 1-13 of ARRAY(1) are not zero.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write
locks of zero, so the system-wide RWLOCK setting continues to control
access to such files,

REV. A 4 - 18

PDR3621 FILE SUBROUTINES

The FUTIL command copies the per-file read/write lock setting along

with the file when performing a TRECPY of a UFDCPY (but not a COPY)
operation. FUTIL prints the value of the per-file read/write lock if
the option RWLOCK is specified to the LISTF request.

DATMOD The date on which the file was last modified. The date,
which is valid only on new partitions, is held in the
binary form YYYYYYYMMMMDDDDD, where YYYYYYY is the year
modulo 188, MMMM is the month, DDDDD is the day.

TIMMOD The time at which the file was last modified. The time,
which is valid only in new partitions, is held in binary
seconds-since-midnight divided by four.

Examples

1. Read next entry from new or old UFD:

190 CALL RDENSS (KSREAD, funit, ENTRY, 24,RNW,@,9%,CODE)
IF (CODE .NE. 9) GOTO <error handler>

TYPE=RS (ENTRY(1) ,8) /* GET TYPE OF ENTRY JUST READ

IF (TYPE.NE.1.AND.TYPE.NE.2) GOTO 180 /* UNKNOWN

2. Position to beginning of UFD:

CALL RDENSS (KSUPOS,funit,9,9,%,090000,0,code)

BP RDLINS

RDLINS reads a line of characters from a compressed or uncompressed

ASCII disk file.

CALL RDLINS (funit, buf£, count, code)

funit A file unit (1-125) on which the file to be read is
open.

buff An array of count words in which the line of information

from the disk file is to be read.

count The size of buff in words.

code A return variable set to 9 if no errors, or an error

code if an error. See PRWFSS for a list of possible
error codes.

4 - 19 January 1986

SECTION 4 PDR3621

A line of characters from File Unit funit is read into Buffer buff, two
characters per word. Lines on the diskare separated by the new line
character. The character DC1l (221 octal) followed by a character count
when read from the disk is replaced by character-count blanks. If the
line on the disk is less than 2*count characters, the remaining space
in buff is filled with blanks. Ifthe line on the disk is greater than
2*count characters, only 2*count characters fill buff and the remaining
characters on the disk file line are ignored. In all cases, the new
line never appears as part of the line in buff. RDLINS is the same
routine as TISADO7 except that the altrtn argument has been replaced by
the code argument.

p> RESTSS

RESTSS reads an R-mode memory image from a file in the current UFD into
memory. The SAVE'd parameters for a file previously written to the
disk by the SAVE or SAVESS subroutine or the SAVE command are loaded
into the nine word array vector. The memory image itself is then
loaded into memory usingthestarting and ending addresses provided by
vector(1) and vector(2).

CALL RESTSS (vector ,filnan,namlen,code)

vec tor A nine word array set by RESTSS. vector(1) is set to
the first location in memory to be restored. vector (2)

is set to the last location to be restored. The rest of

the array is set as follows:

vector(3) saved P register
vector(4) saved A register

vector(5) saved B register
vector(5) saved X register

vector(7) saved Keys
vector(8) not used

vector(9) not used

f£ilnam The name of the file containing the memory image.

nanlen The length in characters (1-32) of filnam.

code An integer variable set to the return code.

Note

Use the PRIMOS command SEG to restore V-mode memory image from
a file.

REV. A 4 - 29

P RESUSS

PDR3521 FILE SUBROUTINES

RESUSS restores an R-mode memory image from a file in the current UFD,

initializes registers fron the saved parameters, and starts executing

the program.

CALL RESUSS (£ilnam ,namlen)

filnam The name of the file containing the memory image.

nanlen The length (1-32) in characters of filnan.

RESUSS does not have a code argument. If an error occurs, an error

message is typed and control returns to command level.

p> sATRSS

SATRSS allows the setting or modification of a file's attributes in its

UFD entry.

CALL SATRSS (key,filnam ,namlen,array ,code)

key An integer variable specifying the action to take.

Possible values are:

KSPROT

KSDTIM

KSDMPB

KSRWLK

Set protection attributes from array(1l).

array(2) is ignored for old partitions and must

be @ for new partitions (it is reserved for

expansion). The meaning of the protection bits

in array(1) is“given under the description of
RDENSS.

Set date/time modified from array(1) and

array(2). The format of the date/time is given

under the description for RDENSS.

Set the dumped bit. This bit is set by the

utility program that dumps modified files and

is reset by the operating system whenever the

file is modified. Users should not use this

key.

Users can set the per-file read/write lock on a

per-file basis. Bits 15 and 16 of array(1l) are

set by the user for specific lock values.

Refer to RDENSS for further information on the
read/write lock.

4 - 21 January 1986

SECTION 4 PDR3521

Note

The date-time-modified and the dumped bit are modified by
PRIMOS. When these fields are changed for a file, the
date-time-modified field of the UFD containing that file
(parent UFD) is not changed. However, when the name or
protection attributes of the file are changed, the
date-time-modified and the dumped bit of the parent UFD are
updated; and the dumped bit for the file is reset.

filnam The name of the file whose attributes are to be

modified. The current UFD is searched for filnam.

nanlen The length in characters of filnan.

array A two-word array containing the attributes. For KSPROT,
array(2) must be zero.

code An integer variable set to the return code.

Owner rights are required on the UFD containing the entry to be
modified.

The formats of the attributes in array are the same as those in a UFD
entry obtained from RDENSS.

An attempt to set the date/time modified, the dumped bit, or the
read-write lock on an old partition will result in an ESOLDP error
(error message 'OLD PARTITION').

Since a call to SATRS$S modifies the UFD, the date/time modified of the
UFD itself is updated.

Examples

l. Set default protection attributes on MYFILE:

ARRAY (1)=: 3488 /* OWNER=7, NON-OWNER=%3

ARRAY (2)=3 /* SECOND WORD MUST BE @

CALL SATRSS (KSPROT,'MYFILE' ,6,ARRAY(L) ,CODE)

N ° Set both owner and non-owner attributes to read-only (note
carefully bit positioning in two-word octal constant):

CALL SATRSS (KSPROT, 'NO-YOU-DON''T' ,12,:188208000,CODE)

REV. A 4 - 22

PDR3621 FILE SUBROUTINES

3. Set date/time modified from UFD entry read into ENTRY by

RDENSS: | ,

CALL SATRSS (KSDTIM, FILNAM ,6, ENTRY (21) ,CODE)

> sAvess

SAVESS is used to save an R-mode memory image as a file in the current

UF'D. .

CALL SAVESS (vector ,£ilnam ,namlen,code)

vector A nine word array the user sets up before calling SAVES$

vector(lL) is set to an

_

integer whnich is the first

Tocation in memory to be saved and vector(2?) is set to

the last location to be saved. The rest of the array is

set at the user's option and has the following meaning:

vector (3) saved P register

vector(4) Saved A register

vector(5) Saved B register

vector(6) Saved X register

vector(7) Saved Keys

vector(8) not used

vector(9) not used

filnam The name of the file to contain the memory image.

nanlen The length in characters (1-32) of filnam.

code An integer return code.

B scprss

SGDR$$ positions in a segment directory, reads entries, and allows

modification of a directory's size.

CALL SGDR$$ (key,funit,entrya ,entryb ,code)

key An integer specifying the action to be performed.

Possible values are:

KSSPOS Move the file pointer of funit to the position

given by the value of entrya. Return 1 in

entryb if entrya contains a file, return 9 if

entrya exists but does not contain a file,

Yeturn -1 if entrya does not exist (is beyond

FOF). If EOF is reached on KSSPOS, the file

4 - 23 January 1989

SECTION 4

KSFULL

KSFREE

KSGOND

KSGPOS

KSMS IZ

KSMVNT

PDR3621

pointer is left at EOF. ‘The directory must be
open for reading or both reading and writing.

Move the file pointer of funit to the position
given by the value of entrya. If the position
contains a file, set entryo to the value of
entrya. If the position is enpty, search for
the first non-enpty- entry following the
position specified. If a non-empty entry
exists, set entryb to the position of that
entry. If the EOF is reached and a entry with
a file has not been found, then return —-1. in
entryb. If EOF is reached on KSFULL, the file
pointer is left at EOF.

Act in the same manner as KSFULL, but find an
entry that does not contain a file.

Move the file pointer of funit to the
end-of-file position and return in entryp the
file entry number of the end of the file.

Return in entryb the file entry number pointed
to by the file pointer of funit.

Make the segment directory open on funit entrya
entries long. The file pointer is moved to the
end of file. The directory must be open for
both reading and writing.

The entry pointed to by entrya is moved to the
entry pointed to by entryb. The entrya entry
is replaced with a null pointer. Errors are
generated by KSMVWT if there is no file at
entrya, if there is already a file at entryb,
if either entrya or entryb are at or beyond
EOF. The file pointer is left at an undefined
position. The directory must be open for both
reading and writing.

funit The file unit on which the segment directory is open.

en tr ya An unsigned 16-bit entry number in the directory, to be
interpreted according to key.

entryb An unsigned 16-bit integer set or used according to key.

code An integer variable set to the return code.

When using SGDRSS, the
write-only access,

REV. A

segment directory must not be opened for

PDR3621 FILE SUBROUTINES

A KSMSIZ call with entrya=0 causes the directory to have no entries.

If the value of entrya is such as to truncate the directory, all

entries including and beyond the one pointed to by entrya must be null.

See SRCH$S for more segment directory information.

Note

When sequentially reading a directory (KSSPOS, entrya =

entryatl, KSSPOS, ...), entryb=-1 indicates the end of the

directory, NOT the return code ESEOF. ESEOF is returned when
entrya indicates a position beyond EOF, i.e., the entry

following the first KSPOS to return entryb=-l.

Examples

1. Read sequentially through the segment directory open on 6:

CURPOS=-1
188 CURPOS=CURPOS+1

CALL SGDRSS (KSSPOS,6,CURPOS, RETVAL, CODE)

IF (RETVAL) 209,309,400 /* BOTTOM, NO FILE, IS FILE

2. Make directory open on 2 as big as directory open on 1:

CALL SGDRS$S (KSGOND,1,8,SIZE,CODE)

IF (CODE.NE.@) GOTO <error handler>

CALL SGDRSS (KSMSIZ,2,SIZE,@,CODE)

B spasss

SPASSS sets the passwords of the current UFD.

CALL SPASSS (opass ,npass ,code)

opass A three word array that contains the password to set as

the owner password.

npass A three word array that contains the password to set as

the nonwoner password.

code An integer variable set to the return code.

Spasss requires owner rights to the current UFD. For passwords

intended to be typed from the terminal, passwords should not start with

a number nor should they contain blanks commas=! @{}[] () “<
or >. Passwords should not contain lower-case characters but may

contain any other characters including control characters.

Passwords which are not intended to be typed from the terminal (l.e.,

access through program only) can be any bit pattern.

4 - 25 January 1980

SECTION 4

> SRCHSS

PDR3621

SRCHS$ is used to open a file, close a file, delete a file, or check on
the existence of a file.

CALL SRCHS$$ (actiontreftnewfil ,filnam ,namlen,funit,type ,code)

action A subkey
Possible

KSREAD

KSWRIT

KSRDWR

KSCLOS

KSDELE

KSEXST

ref A subkey

KSIUFD

KSISEG

KSCACC

KSGETU

indicating the action to be

_

performed.
values are:

Open filnam for reading on funit.

Open filnam for writing on funit.

Open filnam for reading and writing on funit.

Close file by filnam or by funit.

Delete file filnam.

Check on existence of filnam.

modifying the action subkey as follows:

Search for file filnam in the current UFD (this

is the default).

Perform the action specified by action on the
file that is a segment directory entry in the
directory open on file unit filnan.

Change the access mode of the file already open
on funit to action, (KSREAD, KSWRIT, KSRDWR
only).

Open filnam on an unused file-unit selected by
PRIMOS. The unit number is returned in funit.
When this key is used, SRCH$$ supplies a unit
number not currently in use. See example of
use of this key later in this section.

PDR3621 FILE SUBROUTINES

newfil A subkey indicating the type of file to create if filnam

does not exist. Possible values are:

KSNSAM New threaded (SAM) file (this is the default).

KSNDAM New directed (DAM) file.

KSNSGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM) segment directory.

It is not possible to generate a new UFD with

SRCHS$; use CREASS instead.

filnam Name of the file to be opened (2 characters per word).

KSCURR can be used to open the current UFD (ACTION keys
KSREAD, KSWRIT, or KSRDWR only). If ref is KSISEG,
filnam is a file unit from 1 to 52 (1 to15 under PRIMOS
II) on which a segment directory is already open.

nanlen The length in characters (1-32) of filnam.

funit The nunber (1-15 under PRIMOS II, 1-162 under PRIMOS) of

the file unit to be opened or closed, or returned

argument with KSGETU key.

type An integer variable that is set to the type of the file

opened. type is set only on calls that open a file --
it is unmodified for other calls. Possible values of

type are:

SAM file
DAM File
SAM Segment Directory
DAM Segment Directory

UFDP
m
W
N

&

code An integer variable set to the return code.

SRCHSS is a complex subroutine that has multiple uses. The most common

use is to open and close files.

Opening and Closing Files

Opening a file consists of connecting a file to the file unit. After a

file is opened, the file may be accessed to transfer information to or

from the file or to position the current position pointer of a file

unit (file pointer). These actions are accomplished by other

subroutines, which reference the file through the attached file unit,

such as PRWFSS, SGDRS$$, RDENSS, RDLINS, WTLINS, ISAD@7, OSAD@7, RDASC,

A - 27 January 1989

SECTION 4 PDR3621

and WRASC. Information is also transferred through the statements in
specific languages, such as the READ and WRITE statements in FORTRAN.

On opening a file, SRCHSS specifies:

1. Allowable operations that may be performed by PRWFSS and other
routines (these operations are read-only, write-only or both
read and write).

2. Where to look for the file, or where to add the file if the
file does not currently exist. SRCH$S either specifies a
filename in the currently attached user file directory or a
file unit number on which a segment directory is open. In the
Segment directory reference, the file to be opened has its
beginning disk address given by the entry at the current
position pointer of the file unit.

Each file in a UFD has associated with it tw sets of access rights,
one for the owner and one for the nonowner of the UFD. These access
rights are initially owner-has-all, nonowner-has none. They can be
changed using the PROTECT comand or the SATRSS subroutine. These
access rights (reading allowed, writing allowed, or delete allowed,
etc.) are checked on any attempt to open

a

file. A NO RIGHT error
code (ESNRIT) is set if the user does not have the required rights.

If the file cannot be found on open for reading, SRCHS$S generates’ the
file-not-found error code (ESFNTF). If the file unit is already in
use, SRCHS$ generates the unit in use error code (ESULIUS).

The Read/write Interlock

Under default conditions, the system allows any nunber of readers if
there are no writers or a single writer and no readers for the same
file. The system prevents one user from opening a file for writing
when another user has the file open for reading or writing. The system
prevents one user from opening the file for reading or writing while
another user has the file open for writing. Furthermore, these
interlocks hold for a single user attempting to open a file on multiple
file units he has available. If the interlock is violated, the FILE IN
USE error code is generated (ESFIUS).

This interlock may be changed on a per-file basis. (Refer to RDENSS.)

On closing a file, it is possible to close by name or by file unit.
SRCHS$ attempts to close by filnam unless filnam is specified as 9 in
which case it closes the file unit specified. If filnam is not found,
an error is generated (code = ESFNTF), but if the file unit is
specified, SRCHSS ensures that the file unit specified by funit is
closed and never generates an error code (unless funit is out of
range). If the file has been modified while it was open, the date-time
stamp of the file is updated when the file is closed.

REV. A 4 - 28

PDR3621 FILE SUBROUTINES

Changing the Access Mode of an Open File

A user may change the access mode of a file that is open on funit to
open-for-reading, open-for-writing, or open for both reading and
writing, using the KSCACC key. Note that access rights and the
read/write interlock rules from the file are checked and the attempt to
change access may fail.

Adding and Deleting Files in UFDs

A call to SRCHSS to open a file for writing or both reading and
writing, causes SRCHS$ to look in the current UFD for the file. If the
file is not found in the UFD, a new file is created of @ length and an
entry for the file is put in the UFD. The date/time of the file is set
to the current date/time, the access rights are set to
owner-has-all-rights, nonowner-has-none, the read/write interlock is
set to the systen standard read/write lock and the file type to that
file type specified in the SRCHS call. If the file type is not
specified, it is a SAM file. Note that nonowners cannot generate new
files (error code returned is ESNRIT).

A call to delete a file must specify a legal funit although the file
systen does not use that file unit during the delete. Deleting a file
returns the records of the file to the DSKRAT pool of free records and
erases the entry from the UFD leaving a vacant hole. Vacant holes in
UFDs will be reused for new files if of the right size, so new files do
not always appear at the end of your UFD. These vacant holes take very
little room on the disk in most cases. These holes are compressed out
of UFDs when the FIXRAT maintenance program is run by the system
operator. See The Systen Administrator's Guide (PDR3199).

Checking the Existence of a File

If the user wishes to find out if a certain file exists in the current
ufd or segment directory, the SRCH$$ KSEXST key can be used. The file
is not affected in any way and access rights and the read/write
interlock are not checked.

Operations on Files that are UFDs

Files in the current UFD that are subUFDS can be opened only for

reading. The contents of entries of subUFDs can be read through calls

to RDENSS and GPASSS once the subUFD is open. The current UFD can be
opened for reading by specifying the key KSCURR in the filnam field of
the SRCH$$ call. Calls to the SATRSS or SPASSS subroutines require
that the current UFD not be open or the FILE IN USE error is generated.
New UFDs can only be created using the CREAS$ subroutine, not SRCHS$S.
UFDs may be deleted with SRCHSS only if the UFD contains no files. The
FUTIL command can delete a nested structure of UFDs.

4 - 29 January 1989

SECTION 4 PDR3621

Operations Involving Segment Directories

Segment directories are directories in wiich the files are referenced
by their position in the directory rather than a name. Furthermore,
the directory entry associated with a file contains the attributes such
as date/time, protection or the read/write lock, of the highest level
segment directory in the UFD. Segment directories are not attached but
are operated on using SRCHSS and SGDRSS.

To create a segment directory, use SRCHSS to open a new file for
reading and writing with the file type specified as SAM segment
directory or DAM segment directory.

With the file open, use SGDR$$ to make the segment directory contain a
certain number of null file entries (KSMSIZ key).

To create a file in a segment directory, first open the directory for
reading and writing on a funit (e.g. SUNIT) if it is not already open.
Next, use SGDRS$ to position to the null file entry desired. Next, use
SRCHS$ to open a new file for writing or reading and writing in the
segment directory by using the KSISEG reference key and placing the
SUNIT number of the segment directory in the filnam argument. The file
unit of the new file goes in the usual field (funit). SRCHSS will
create the new file and place a pointer to the new file in the segment
directory entry of SUNIT.

Use SRCHSS to close by unit or name (with KSISEG) a file in a segment
directory.

To open a file that already exists in a segment directory, open the
segment directory and position to the desired entry as explained above.
Use SRCHS$ to open the file as explained above. If the directory entry
already contains a pointer to the file, that file will be opened. If
not, and the attempt is to open for reading, the file not found error
is generated. Any type of file except a UFD may be created in a
segment directory.

To delete a file ina segment directory, open the segment directory,
position to the file desired, then use SRCHSS with the KSISEG and
KSDELE keys. SRCHS$ returns the record of the file to the DSKRAT and
replaces the pointer to the file with a null pointer in the segment
directory entry.

Finally, to delete a segment directory, the user must first delete all
files in the directory, set the size of the directory to 9 using
SGDRS$, close the directory, then delete it with SRCHSS. The FUTIL
command may be used to delete a segment directory at command level.

Files in a segment directory have the protection attributes of the
directory. The date/time field of the directory reflects the latest
change made to the directory or any file in the directory.

PDR36 21 FILE SUBROUTINES

Filenames

Filenames may be 1-32 characters in length, the first character of

which must not be numeric. Filenames can be composed only of the

following characters: A-Z 0-9 f S$ &*-.and/. Filenames may not

contain embedded blanks; filenames may be specified with trailing

blanks. An attempt to create a file with an invalid filename results

in the error code ESBNAM (illegal name).

Examples

1. Open new SAM file named RESULTS for output on file unit 2:

CALL SRCHSS (KSWRIT, 'RESULTS' ,7,2, TYPE, CODE)

2. Create new DAM file in the segment directory open on SGUNIT

and open for reading and writing on DMUNIT:

CALL SRCHSS (K SRDWR+K SISEG+KSNDAM, SGUNIT, 1, DMUNIT, TYPE,CODE)

3. Close am delete the file created in the above call:

CALL SRCHS$S (KSCLOS, @,@,DMUNIT, @,CODE)
CALL SRCHSS (KSDELE+KSISEG, SGUNIT, @,8,@,CODE)

4. See if filename 'MY.BLACK.HEN' is in current UFD:

CALL SRCHSS (KSEXST+XSLUFD, 'MY. BLACK. HEN’ ,12,0, TYPE, CODE)

IF (CODE.EQ.ESFNTF) CALL TNOU('NOT FOUND! ,9)

5. Create a new segment directory and a new SAM file as its

first entry:

CALL SRCHSS (KSRDWRHKSNSGS ,'SEGDIR' ,6, UNIT, TYPE , CODE)

CALL SRCHS$S (KSWRIT+KSNSAM+K SISEG, UNIT, 8,7,TYPE, CODE)

6. Open the file named 'FILE' in the user's currently attached

UFD:

CALL SRCHSS (KSREADHKSGETU, 'FILE' ,4,UNIT, TYPE,

x CODE)
IF (CODE .NE. @) GOTO error_processor

The above FORTRAN call will attempt to open the file named 'FILE' in

the user's currently attached UFD. If successful, the file unit number

on which 'FILE' has been opened is returned in UNIT. The type of the

file opened is returned in TYPE, and CODE is set to zero if there are

no errors. If there are any errors, CODE will be nonzero, and the

values of TYPE and UNIT are undefined.

4 - 31 January 1989

SECTION 4 PDR3621

If no file units are available, the error code ESFUIU (all units in
use) is returned. This code is returned if either the process (user)
has exceeded the maximun number of file units the process (user) may
have, or the total number of file units in use for all processes
(users) exceeds the maximum number of file units available to all
processes (users).

p TsRcss

TSRCSS AND TREENAMES

TSRCS$ is a subroutine to open a

_

file anywhere in the PRIMOS file
structure.

CALL TSRCSS (actiontnewfil, treename, funit, chrpos, type, code)

action A subkey indicating the action to be performed.
Possible values are:

KSREAD Open treename for. reading on funit.

KSWRIT Open treename for writing on funit.

KSRDWR Open treename for reading and writing on funit.

KSDELE Delete file treename.

KSEXST Check on existence of treename.

KSCLOS Close treename (not funit).

newf il A subkey indicating the type of file to create if
treename does not exist. Possible values are:

KSNSAM New threaded (SAM) file (this is default).

KSNDAM New directed (DAM) file.

KSNSGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM segment directory.

treenane A specification of any file in any directory or
subdirectory stored in array treename packed two
characters per word.

funit The nunber (1-126) of the file unit to be opened or
deleted. funit is closed before any action is
attempted.

REV. A 4 - 32

PDR3621 FILE SUBROUTINES

chrpos A two element integer array setup as follows:

chrpos(l) On entry, set to contain the first character

in the array that is part of the treename, the

count starting at @. On exit, it will be

pointing one past the last character that was

part of the treename. A comma, new line, or

carriage return will terminate the name, as

will end of array. In case of error,

chrpos(1) points one past the treename
component that caused the error. chrpos(1) is
always modified by this subroutine, therefore,

must be set up before each call.

chrpos(2) The number of characters in the treename

array.

type An integer variable set to the type of the file opened.

type is set only on calls that opena file; it is

unmodified for other calls. Possible values for type

are:

g SAM File
1 DAM File
2 SAM Segment Directory
3 DAM Segment Directory
4 UFD

code An integer variable set to the return code. If no

errors, code is @.

TSRCSS always closes the specified file wnit then

attaches to the user's home UFD before attempting any

action. If the user's home UFD differs from his current

UFD before calling TSRCS$$, he will find himself attached
to his home UFD following the call. See SRCH$S for more

details on file manipulation.

Caution

Do not use TSRCS$S to perform a change access

(KSCACC) .

Treename Definition

A treename is a syntax convention that allows the specification of any

file in any directory or subdirectory. A treename may be used to open

or delete a file using subroutine TSRCS$. Treenames may also be used

in place of simple filenames in most external commands such as SLIST.

Treename as used here, is synonymous with "pathname" as described in

the PRIMOS Commands Guide.

4 - 33 January 1980

SECTION 4 PDR3621

The simplest form of a treename is a simple file name as allowed by
SRCHS$. The file is assumed to be located in the home directory.

The general form is a starting directory specifier, zero, one, or more
subdirectory specifiers, and then the file name.

The starting directory specifier has the following formats (square
brackets ([{]) indicate an optional item):

lL. UFDname [password]>

2. *

3. <volumenane> UFMame [password] >

4. <logical-disk-number> UFDname [password] >

In form 1, all MFDs are searched for the named directory in logical
disk order.

In form 2, the home directory is the starting directory.

In form 3, the volume with the specified name is searched for the
Specified UFD name. If the volume name is a Single asterisk (*), the
MFD in the home volume is searched.

In form 4, the volume with the specified octal logical disk number is
searched for the specified UFD name.

A subdirectory specifier has the following format:

ufdname { password] >

The UFD is assumed to be in the directory specified by the preceding
Specifier. Spaces are not significant except that they may not occur
within a name and must separate a UFD from its password. If a name is
longer than 32 characters, the excess characters are ignored.

Examples

ABC File named ABC in home directory.

XYZ >ABC File named ABC in UFD=XYZ.

<INV>XYZ>ABC File naned ABC in UFD=XYZ on volume =INV.

<*>XYZ>ABC File named ABC in UFD=XYZ on home volume.

_ <5>XYZ>ABC File named ABC in UFD=XYZ on logical disk 5.

*>XYZ>ABC File named ABC in subUFD=XYZ in home

directory.

REV. A 4 - 34

PDR3621 FILE SUBROUTINES

*>XYZ>IJK>ABC File named ABC in subUFD IJK in subUFD=XYZ in

home directory.

XYZ DEF>ABC File named ABC in UFD=XYZ with password =DEF.

Treenames specified as parameters to external commands should not

contain spaces, as the space or comma is used to separate one parameter

from another. If a space must be specified due to a password, enclose

the entire treename in single quotes.

Pp UPDATE

CALL UPDATE (key,%)

key 1
——e

Update current UFD; DSKRAT buffers to disk,

if necessary; and undefine DSKRAT in memory.

This call is not normally used. This call is effective only under

PRIMOS II. Under PRIMOS III or PRIMOS it has no effect.

> wILIns

WILINS writes a line of characters in ASCII format to a file in

compressed ASCII format.

CALL WTLINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be written is

open for writing.

buffer An array of count words from which the line of

characters is to be written. It should contain 2

characters per word

count The size of buffer in 15-bit words.

code A return variable set to 9 if no errors, or an error

code if an error has occurred. Refer to Appendix G for

a list of error codes.

4 - 35 January 1980

SECTION 4 PDR3621

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced by the character DCl (271 octal)
followed by a character count. Trailing blanks are removed and the end
of record is indicated by adding a new line character, or a new line
character followed by null. WTLINS is the same routine as OSADO7,
except the altrtn argument has been replaced by the code argument.

REV. A 4 -—- 36

PDR3621 PRIMOS SUBROUTINES

SECTION 5

MISCELLANEOUS PRIMOS SUBROUTINES

This section describes subroutines which perform miscellaneous PRIMOS

functions. The PRIMOS routines described in this section are: BATCHS,
BREAKS, C1IN, CLSGET, CNINS, CQOMANL, DUPLX$, ERKLSS, ERRPRS, EXIT,

GINFO, LOGOSS, PHANTS, RDI'KS$, RECYCL, TEXTOS, TIMDAT.

> BATCHS

BATCHS starts a phantom user. BATCHS is the same as PHANTS, but has

the additional function of starting a phantom user under a different

login name (usrname). BATCHS is called by a_ procedure running under

control of the supervisor (user 1) or a phantom initiated by user 1.

CALL BATCHS (fname, fnlen, unit, usrnam, unlen, user, code)

fname Array containing name of command input file to be

started as a phantom (INTEGER*2).

fnlen Length (in characters) of fname (INTEGER*2).

unit File unit on which to open fnam. If value specified is

@, default is unit 6 (INTEGER*2).

usrnam User name the phantom is to be started under.

(INTEGER*2)

unlen Length of usrnam (INTEGER*2).

user User number that usrnam was assigned.

code Code returned to the user, indicating any

=

errors

(INTEGER*2). Possible values are:

@ No error.

ESNRIT Not called from process initiated from system

console or insufficient access rights to fname.

ESDIRE Fname is directory, not a file name.

ESNPHA No phantoms available.

5 - 4d January 1988

SECTION 5 PDR3621

> BREAKS

BREAKS inhibits or enables CONTROL-P for interrupting a program.

CALL BREAKS (.TRUE.)
CALL BREAKS (.FALSE.)

The LOGIN command initializes the user terminal so that the CONTROL-P
or BREAK key cause an

_

interrupt. Under PRIMOS III and PRIMOS, the
BREAKS routine, called with the argument -FALSE., enables the CONTROL-P
or BREAK key to interrupt a running program.

On the other hand, the BREAKS routine called with the argument .TRUE.,
inhibits the CONTROL-P or BREAK characters from interrupting a running
program.

This routine maintains a per-user QUIT inhibit master list. Each call
to BREAKS to inhibit or enable QUIT increments or decrements a counter.
QUITS are enabled only when the counter is zero; i.e., the counter
goes positive with inhibit and cannot be decremented below zero.

Under PRIMOS II, BREAKS has no effect.

 clLIN

This routine gets the next character from the terminal or a command
file, depending upon the source of the command stream.

CALL C1IN (char)

The next character is read or loaded into char (right-justified and
zero-filled). If the character is -CR., char is set to .NL. (new
line).

Line feeds are discarded by the operating system, and are not detected
by the ClIN subroutine,

P CLSGET

CLSGET reads a single line of input text from the currently defined
command input stream. The line is returned as a varying character
string without the newline character at the end. An empty command line
or one consisting of all blanks will compare equal to the null string.

REV. A 5 - 2

PDR3621 PRIMOS SUBROUTINES

CALL CLSGET (comline, comlinesize, status)

comline Varying character string into which the text will be

read from the command input stream.

comlinesize Maximum length, in characters, of comline. Because

comline is a varying string, it is not blank padded

to this size.

status Return error code.

p cNINS

This subroutine is the raw data mover used to move a specified number

of characters from the terminal or command file to the user program's

address space.

CALL CNINS (buffer, char-count, actual-count)

buffer A buffer in-which the string of characters read from

the input stream are to be placed (two characters

per word).

char-count The number of characters to betransferred from the

input stream to the buffer specified by buffer.

actual-count A return argument. It specifies the number of

characters read by the call to CNINS, If reading

continues until a new line character is encountered,

the count includes the line character.

CNINS reads from the input stream until either a NEW LINE character is

encountered or the number of characters specified by the char-count

argument are read. Characters are left-justified, and if an odd number

of characters are read, the remaining character space is not zero or

blank filled. The question mark and quotation mark characters are not

interpreted.

Input to CNINS is obtained from the terminal unless the user has

previously given the COMINPUT or PHANTOM commands, and these commands

are still in control. The COMINPUT or PHANTOM commands switch the

input stream so that it comes from a file rather than the terminal

(refer to the PRIMOS Commands Reference Guide (FDR3188) for further

information).

5 - 3 January 1989

SECTION 5 PDR3621

& coMANL

COMANL causes a line of text to be read from the terminal or from a
command file, depending upon the source of the command stream.

CALL CQMANL

The line is read into a supervisor text buffer. This buffer may be
accessed by a call to RDIK$$. The supervisor text buffer holds 80
characters. The supervisor text buffer is also used by CNINS and
TSAMLC. The contents of this buffer must be picked up by RDIKSS after
a call to COMANL and before calls to CNINS or TSAMIC.

> DUPLXS

The DUPLX$ subroutine is called to control the manner in which the
operating system treats the user terminal.

CALL DUPLXS$ (mode)

It returns the terminal configuration word and internal buffer number
as the value of the function. In addition, if the mode passed to
DUPLX$ is equal to -1l, no updating of the configuration word takes
place. In this case, the current value is returned. DUPLXS must be
declared as an INTEGER function if the returned value is to be used by
the calling program. Values for mode are:

Bit Mask Meaning if Bit is SET

1 109008 Half duplex

2 C4AGGBB Do not echo LINE-FEED after
CARRIAGE RETURN.

3 B2BBHS Turn on X-OFF/X-ON character
recognition.

4 918808 Output Currently suppress
(X-OFF received).

5-8 887480 Reserved.

9-16 9808377 Internal buffer number (read-only).

DUPLXS has no effect under PRIMOS ITI.

REV. A 5 - 4

PDR3621 PRIMOS SUBROUTINES

The mode of a user terminal is not affected by the LOGIN or LOGOUT

commands.

The mode of the user terminal may also be set at the supervisor

terminal by using the AMLC command.

User may use the PRIMOS TERM command to change their terminal

characteristics.

p> =ERKLSS

The FRKLS$ subroutine reads or sets erase and kill characters.

CALL ERKLSS (key ,erase ,kill ,code)

key A parameter specifying the action to be taken. Possible

values are:

KSWRIT Set erase and kill characters.

KSREAD Read erase and kill characters.

erase On key KSWRIT, the character contained in the right byte

of erase replaces the operating system's per-user erase

character. If erase is 8, no action takes place.

key KSREAD, the current per-user system erase character

is placed in erase, right-justified with leading zeros.

kill On key = KSWRIT, the character contained in the right

byte of kill replaces the operating system's per-user

kill. The current per-user systen kill character is

placed in kill right justified with leading zeros.

code An integer variable set to the return code. Possible

values are:

B Tf no errors.

ESBPAR If attempt to set characters is improper.

Erase and kill characters are reset to default values upon a logout of

login.

5 - 5 January 19808

SECTION 5 PDR3621

Erase and kill characters are interpreted by commands to the operating
System and through the subroutines COMANL, RIKS$, RDCOM, RDASC, ISAA12,
and ISAA#1. All language processors and I/O statements call RDASC to
get terminal input and, therefore, are affected.

RDCOM, RDASC, ISAA12, and ISAA@1 are library subroutines that read the
System's per-user erase and kill character only once when they are
First invoked. Therefore, changing the erase and kill characters after
acall to those subroutines does not affect erase and kill processing
in these subroutines until the next program is invoked. The main
purpose for users calling the ERKLSS subroutine is to read or set these
characters when the user programs do their own erase amd kill
processing.

Under PRIMOS II, the erase and kill characters may be read but any
attempt to set them is ignored. The erase and kill characters may be
Set at command level by the PRIMOS TERM command.

> ERRPRS

ERRPRS interprets a return code and, if non-zero, prints a_ standard
message associated with the error return code, code, followed by
optional user text. See Appendix G for more details on error handling.

CALL ERRPRS (key,code,text,txtlen,filnam,namlen)

key An integer specifying the action to take subsequent to
printing the message. Possible values are:

KSNRTN Exit to the system, never return to the calling
program.

KSSRIN Exit to the systen, return to the calling
program following an 'S' command.

KSIRTN Return immediately to the calling progran.

code An integer variable containing the return code fron the
routine that generated the error. If code is @, ERRPRS
always returns immediately to the calling program and
prints nothing.

text A message to be printed following the standard error
message. Text is omitted by specifying both text and
txtlen as @.

txtlen The length in characters of text.

PDR36 21 PRIMOS SUBROUTINES

filnam The name of the program or subsystem detecting or
reporting the error. filnam is omitted by specifying
both filnam and namlen as @.

nanlen The length in characters of filnam.

P EXIT

The EXIT subroutine provides a way to return fron a user program to

PRIMOS; it prints OK, (or OK:) at the terminal and PRIMOS awaits a
user command.

CALL EXIT

The user may open or close files or switch directories, and restart a
FORTRAN program at the next statement by typing S (i.e., START).

> GINFO

GINFO indicates whether or not the user is running under PRIMOS II. If

running under PRIMOS II, GINFO shows where PRIMOS II is loaded in the
user address space.

CALL GINFO (xervec, n)

GINFO moves n words from the supervisor into a buffer specified by
xervec.

Information for PRIMOS II:

xervec word Content

1 ‘Low boundary of PRIMOS II buffers (77777

octal if 64K PRIMOS II).

2 High boundary of PRIMOS II (77777 octal

if 64K PRIMOS II).

3 (not valid)

4 (not valid)

5 Low boundary of PRIMOS II and buffer
(64K PRIMOS II only).

6 High boundary of 64K PRIMOS II.

5 - 7 January 19868

SECTION 5 PDR3621

Information for PRIMOS III amd PRIMOS:

xervec word Content

l J

2 g

3-6 (not valid)

B Locoss

LOGOSS logs out a user. The routine can be used by the supervisor

terminal (user 1) to log out any user, or a user program may log out
any process it may have started.

CALL LOGOSS (key, user, usrnam, unlen, reserv, code)

key Operation to be performed (INTEGER*2). Possible values
are:

-l1 log out all users (supervisor only).

@ log out (same as LOG OUT command).

1 log out (Same as LOG OUT - NN).

2 log out specific user by name (Supervisor or
his phantoms only).

user User number to be logged out. This value is examined
only if key > @. (INTEGER*2).

usrnam Name of user to be logged out; must correspond to number
supplied in user. This value is examined only if

key = 2. (INTEGER*2).

unlen Length of usrnam (in characters). This value

examined only if key = 2. (INTEGER*2).

reserv Reserved for future use (INTEGER*4).

REV. A 5 - 8

PDR3621 PRIMOS SUBROUTINES

code Error code returned to user (INTEGER*2). Possible

values are:

Q No error

ESBKEY Bal key

ESBPAR Invalid number specified in user.

ESBNAM Username does not correspond to user.

ESNRIT Attempt to log out user. with name
different from requestor.

> PHANTS

PHANTS starts a phantom user.

CALL PHANTS (filnam,nanlen,unit,user ,code)

filnan Name of command input file to be run by the phantom.

nanlen Length of characters of filnam.

unit File unit on which to open filnam. If unit is 8, unit 6
will be used.

user A variable returned as the user number of the phantom.

code The return code. Tf 8, the phantom was initiated
successfully. If code = ESNPHA, no phantoms were
available. Other values of 'code' are file systen error
indications.

BP Rpr«ss

The subroutine RDTKS$$ parses the command line most recently read by a
call to COMANL. If no previous calls to CQOMANL have taken place,
RDTKS$ parses the last command line typed at PRIMOS command level by
the user. Parsing proceeds on a token by token basis. A command line
consists of tokens (or words) separated by delimiters. The current

delimiters are space, comma, /*, and newline. The characters
()* ()!€3;°"?:"I\.DEL. are reserved in command lines for future use.
However, one of these characters may be inclujed in a_ token by

enclosing the token in single quotes; for example, 'naughty(token)'.
The characters /*, if unquoted, begin a comment field that extends to
the end of the line and are ignored by RDTKSS.

‘5 - 9 . January 1980

SECTION 5 PDR3621

Rach call to RDTKSS reads a single token from the command line. RDTKSS
returns the literal text of the token, together with some additional
information about it. If the token is numeric, RDTKSS will provide
results of decimal and octal conversion attempts. RDIKSS will also
inform the caller if a numeric token can be interpreted as a register
setting (octal parameter) under the old PRIMOS command line structure.

Do not make calls to TSAMLC or CNINS or calls to subroutines that call
these such as FORTRAN formatted READ statement to the terminal, before
parsing the command line since these subroutines cause the replacement
of the information in the per-user supervisor buffer holding the
command line.

CALL RDIKSS (key, info ,ouffer ,bufl en ,code)

key The action to be taken by RDIKSS. Possible values are:

Read next token, convert to uppercase.
Read next token, leave in lowercase.
Reset to start of command line.

Read remainder of command line as raw text.

Initializes the command line.M
m
&
W
N
Y

E
e

in fo Set to contain the following information: (Only info(2)

is set for a key value 4.)

info(l): the type of the token. Possible values are:

1 Normal token (results of numeric conversions

returned).

2 (non-ignored) register setting parameter.

5 Null token.

§ End of line.

info(2): The length in characters of the token. A null
token has a 4 length.

info(3): Further information about the token. The

following bits of info(3) have the indicated

meaning when set:

bit 1 (: 180008) - decimal conversion —

successful (with no overflow,

value returned in info(A4).

buffer

buflen

code

PDR3621 PRIMOS SUBROUTINES

bit 2 (:8@40000) - octal conversion
successful, value returned in

info(5). This bit always set when

token type is 2.

bit 3 (:820008) - token begins with

unquoted minus sign, i.e., token
may be a keyword argument.

bit 4 (:819008) - this flag means that
an explicit position for a
register setting was given;
position value returned in
info(4).

bits 5-16: reserved for future use.

info(4): Contents depends on flags set in info(3). If

bit 4 is set, info(4) is the position number
for the register setting. (Note that if token
type is 2 and bit 4 is not set, the position
is implicit and must have been remembered by
the caller). If bit 1 is set, info(4) is the
converted decimal value. Else info(4) is
undefined.

info(5): Contents depends on flags in info(3). If bit
2 is set, info(5) is the converted octal
value. Else info(5) is undefined.

info (6)-info(8): reserved for future uSe.

An array into which the litéral text of the token is
written by RDIKS$, two characters per word am
blank-padded to length buflen (words).

Is the specified length, in wrds, of buffer. buflen
must be >= @.

A standard error code returned. Possible values are:

g No errors.

ESBKEY Value of key is illegal.

ESBPAR Bad parameter; buflen is less than @.

ESBFTS Buffer too small to contain the full text of

the token. The token is truncated.

5 - ll January 1989

SECTION 5 PDR3621

Delimiters

Delimiter characters have four functions: token separation, content
indication, literal text delineation, and line termination. The set of
delimiter characters is:

SP , ' NL /*

The meanings of these characters is as follows:

Blank Interpretation (SP): A single blank terminates a token. A
multi-blank field is precisely equivalent to a single blank. Blanks
surrounding another delimiter are ignored. Leading and trailing blanks

on the command line are ignored.

Comma Interpretation: A single comma terminates a token am is
equivalent to a blank. ‘Two or more commas in succession, however, will
generate null tokens. If a comma is the first or last character on the
command line, a null token will be generated. A command-line
consisting of just n commas (with no text) will generate ntl null
tokens.

Literal Text Character ('): Literal text strings start and end with
Single apostrophes. Any characters, including delimiters but excluding
a newline can appear inside a literal string; the entire string is
treated as a single token. Rules for literal apostrophes are the same
as FORTRAN's: each literal apostrophe in the string must be doubled:

"HERE''S A LITERAL '','

A token can be partially literal, for example, ABC'DEF'. Numbers in
literal text are interpreted as textual characters (see token
definitions below). A literal string is ended either with a_ single

apostrophe or by a newline.

Newline Delimiter (NL): A newline character terminates the preceding
token. If the newline is ina literal text field, the literal is
terminated. If a newline is encountered before any token text or
delimiter, an End-of-Line token is generated.

Comment Delimiter (/*): When the character pair /* is encountered, all
subsequent text on the command line is ignored. A /* in the beginning
of a command line will cause an immediate End-of-—Line token to be
generated.

REV. A 5 - 12

PDR3621 PRIMOS SUBROUTINES

Tokens

A token is any string of characters not containing a delimiter. A
token can be from @ to 8@ characters in length. The following are
examples of valid tokens:

FTN

LONG-FILENAME

1/707
6
98
String .even.Longer.than.thirty—two.characters
<tree>name
»NULL. (null string)

Literal text including delimiters can be entered in apostrophes using

FORTRAN rules:

"STRING WITH EMBEDDED BLANKS!

"HERE''S A LITERAL APOSTROPHE'

Token Types

Associated with each token is a type. Possible token types are
discussed in the following paragraphs.

Normal Token: A normal token is any string of characters except a
register setting token. The string may or may not incluwe literal
text. Examples of normal tokens are:

FTN

AOOO1
This.is.a.token.

PARTIALLY' LITERAL!

'8'xxx (Note: '8' is treated as a non-numeric.)
peereter (= '!")

Register Setting Token: Register-setting tokens (octal parameters) are
now considered obsolete. They are handled by RDTKSS solely to permit
existing software and command files to continue to function. New
software should not use such parameters; symbolic keywords should be
used instead, as in FIN XX -64V instead of FIN XX 2/400.

The rules for recognition of a register setting parameter as such are
as follows. A token of the form octal/octal is always recognized as a
register setting (unless enclosed in quotes). Initially, unembellished
octal integers are also recognized as implicit-position register
settings. If a token beginning with an unquoted minus sign, and which
does not successfully convert as a decimal integer, is found,
recognition of implicit-position register settings is disabled.
Recognition is re-enabled only by a subsequent occurrence of an
explicit-position register setting: octal/octal.

5 - 13 January 19808

SECTION 5 PDR3621

Null Token: A null token is generated when two delimiters are
encountered in a row (except for multiple context characters). Command
lines generating null tokens are the following:

, (Start of line is a delimiter in this case.)

End of Line Token: This token is generated when the end of the command
line is reached.

Usage

RDTKS$ maintains an internal pointer that points to the next character
in the command line to be scanned. This pointer is set to the start of
the command line by COMANL. It can also be reset to the start of the
line with a RESET (key=3) call to RDIKSS.

Following a PRIMOS command, the internal pointer is positioned after
the main command. If RESUME were the command, it is. positioned after
the RESUME filename.

Regardless of the token type, RDIKS$ always returns the literal text of
the token. Delimiter characters (unless inside apostrophes) are never

returned.

If a token is truncated (too long to fit in buffer), the next call to

RDIKSS will return the next token, not the truncated text.

For register setting tokens (octal parameters), the octal position
number is returned by RDIKSS only if explicitly given in the token
(e.g. 6/123). Hence, the current register setting position must be
remembered by the caller.

A buflen of 9 can be used to skip over a token. The error code ESBFTS
will be returned.

For key=4 (Read Raw Text), all text between the current RDTKSS pointer
amd the end of the command line (newline) is returned. No checking is

done for any delimiters or special characters other than newline. No
forcing to upper case is performed.

REV. A 5 - 14

PDR36 21 PRIMOS SUBROUTINES

> RECYCL

The RECYCL subroutine is called under PRIMOS to tell the system to
cycle to the next user. It is a "I have nothing to do for now" call.
Under PRIMOS II, RECYCL does nothing.

CALL RECYCL

Caution

Do not use this subroutine to simulate a time delay.

 TExTos

TEXTOS checks a filename for valid format.

CALL TEXTOS (filnam,nanlen,trulen,textok)

filnam An array containing the filename to be checked.

nanlen The length of filnam in characters.

trulen An integer set to the true number of characters in
filnam. trulen is valid only if textok is .TRUE.

textok A logical variable set to .TRUE. if filnam is a valid
filename, otherwise set to .FALSE.

trulen is the number of characters in filnam preceding the first blank.
If there are no blanks, trulen is equal to namlen. See SRCHSS for
filename construction rules.

For example, to read name from terminal, check for validity, and set
trulen to actual name length:

CALL ISAA12 (@,BUFFER, 80,$999)
CALL TEXTOS (BUFFER, 32,TRULEN,OK) /* SET TRULEN

IF (.NOT.OK) GOTO <bad-name>

5 - 15 January 1986

SECTION 5

p> TIMDAT

PDR3621

TIMDAT returns the date, time, CPU time, and disk I/O time used since

LOGIN, the users unique number on the system, and his login UFD name in

an array as follows:

CALL TIMDAT (array, num)

array (1)

(2)
(3)

(4)
(5)
(6)
(7)
(3)

(9)
(18)
(11)
(12)
(13)
(14)
(15)

Two ASCII characters representing month. Example: 11

Two ASCII characters representing day. Example: 30

Two ASCII characters representing year
Example: 75
Integer time in minutes since midnight.
Integer time in seconds.
Integer time in ticks.
Integer CPU time used in seconds.
Integer CPU time used in ticks
(standard is 338 ticks/second) .
Integer disk I/O time used in seconds. (see Note)

Integer disk I/O time used in ticks. (see Note)
Integer number of ticks per second.
User number.
Six-character login name, left-—justified.

Example: MSMITH

num Words of array are set. This routine does not

return any useful information under PRIMOS II.

Disk I/O time is from start of seek to end of transfer, including both

explicit file I/O and paging operations. CPU time used in controlling
the transfer is counted under CPU time, array(7) and array(8).

REV. A

PDR3621 SAMPLE PROGRAMS ~

SECTION 6

SAMPLE PROGRAMS

This section contains sample programs illustrating the use of the file
system subroutines. The programs are:

e Writing a SAM file

e Writing a DAM file

e Reading a SAM or DAM file

@ Creating a segment directory

e Reading a logical record from a file

@® Reading a file in a segment directory

> WRITING A SAM FILE

C SAMNWRT BIN 29NOV76 PROGRAM TO WRITE A SAM DATA FILE
C
C THE FILE IS 1988 WORDS LONG WRITTEN FROM ARRAY BUFF
C
C RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM
Cc

C
INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 SAMFIL /* FILE TYPE FOR SAM FILE
INTEGER*2 BUFLNG /* BUFFER LENGTH

C
; PARAMETER FUNIT1=1, SAMFIL=0, BUFLNG=1909
Cc

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* CONTAINS FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWESS
INTEGER*2 I
INTEGER*2 CODE /* HOLDS ERROR RETURN CODE

C
SINSERT SYSCOM>KEYS.F
C
Cc

C INITIALIZE BUFFER CONTENTS
DO 18 I= 1, BUFLNG

BUFF(I) =I

6 - 4d January 1988

SECTION 6 PDR3621

19 CONTINUE

C
C OPEN A NEW SAM DATA FILE CALLED 'SAMFIL' IN CURRENTLY ATTACHED
C UFD FOR WRITING ON FILE UNIT FUNITL
C
C SINCE KEYS.F (KEY DEFINITIONS) DEFINES THE KEYS AS PARAMETERS
C THE USE OF MULTIPLE MNEMONIC KEYS WILL NOT GENERATE MORE CODE
C THAN THE USE OF NUMERIC KEYS. THE USE OF MNEMONIC KEYS IS
C RECOMMENDED AT ALL TIMES.
C

CALL SRCHSS (KSWRIT+KSNSAM+KSIUFD, 'SAMFIL' ,6,FUNIT1,TYPE,
X CODE)

IF (CODE.NE.9) GO TO 9919
IF (TYPE .NE. SAMPIL) GO TO 99093 /* ERROR

C
C WRITE 19388 WORDS FROM BUFF INTO THE NEW DATA FILE
C

CALL PRWES$$ (KSWRIT, FUNIT1,LOC (BUFF) ,BUFLNG, INTL (9) ,NMREAD,
X CODE)

IF (CODE.NE.8) GO TO 9010
Cc
C KSCLOS FILE. THIS RELEASES UNIT FUNIT1 FOR RE-USE AND INSURES
C ALL FILE BUFFERS HAVE BEEN WRITTEN TO DISK. a
C NOTE PRIMOS WILL NOT AUTOMATICALLY KSCLOS FILES ON 'CALL EXIT'.
Cc
9900 CALL SRCHSS(KSCLOS, 9, 9%, FUNIT1, 8, CODE)

IF (CODE.NE.9) GO TO 9919

C RETURN TO PRIMOS

C

CALL EXIT

END

BP WRITING A DAM FILE

DAMWRT BIN 29NOV76 PROGRAM TO WRITE A DAM DATA FILE

NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL IS THE
'NEW FLILE' KEY SUPPLIED TO SRCHSS IN CREATING THE FILE

RESTRICTION: DAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM

A
O
A
a
A
Q
a
a
A
n
A

INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED

INTEGER*2 DAMFIL /* FILE TYPE OF DAM DATA FILE

INTEGER*2 BUFLNG /* DATA BUFFER LENGTH IN WORDS

PARAMETER FUNIT1=1, DAMFIL=L, BUFLNG=1300

REV. A 6 - 2

PDR3621 SAMPLE PROGRAMS

INTEGER*2 BUFF(BUFLNS) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHS$S
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED FROM FILE SYSTEM
INTEGER*2 I .

SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ERRD.F
C
C
C INITIALIZE BUFFER
C

pO 19 I =
BUFF (I)

QB CONTINUE

1, BUFLNG
= TI

Cl
i
r
e

=

INSURE THAT THE PILE 'DAMFIL' DOES NOT ALREADY EXIST

O
O

CALL SRCHSS (KSREAD+KSIUFD, 'DAMFIL' ,6,FUNIT1, TYPE ,CODE)
IF (CODE .NE. ESFNTF) GO TO 9000 /* FILE ALREADY EXISTS

OPEN A NEW DAM DATA FILE CALLED 'DAMFIL' IN THE CURRENT
UFD FOR WRITING ON FILE UNIT FUNIT1 (I.E. CREATE NEW DAM FILE)

A
d
a

CALL SRCHSS (KSWRIT+KSNDAMtXSIUFD, 'DAMFIL' ,6,FUNIT1,TYPE,
X CODE)

IF (CODE.NE.9) GO TO 90198
IF (TYPE .NE. DAMFIL) STOP /* WILL NEVER STOP

C
C WRITE THE BUFFER INTO THE FILE
Cc .

CALL PRWFSS (KSWRIT, FUNIT1,LOC (BUFF) ,BUFLNG, INTL(3) ,NMREAD,
X CODE)
IF (CODE.NE.%) GO TO 9019

C
C KSCLOS THE FILE AND EXIT
Cc

9888 CALL SRCHSS(KSCLOS, 8, 9, FUNIT1, TYPE, CODE)
IF (CODE.NE.9) GO TO 981d
CALL EXIT

C

9918 CALL ERRPRS (KSNRTN,CODE,0,0,0,0)

END

> READING A SAM OR DAM FILE

C REDFIL BIN 29NOV76 READ SAM/DAM FILE, PRINT LARGEST INTEGER

C

C THIS PROGRAM SHOWS HOW TO USE THE 'CODE' ERROR RETURN

6 - 3 | January 1939

SECTION 6 PDR3621

C MECHANISM AND SUBROUTINE ERRPRS TO PRINT ERROR MESSAGES.

NOTE THAT PROGRAM DOESN'T CHECK IF THE DATA FILE IS SAM OR DAM.
TO USER'S PROGRAM, SAM OR DAM FILES ARE FUNCTIONALLY EQUIVALENT
EXCEPT FOR ACCESS TIME TO RAMDOM POINTS IN THE FILE

RESTRICTIONS: NONE

Q
A
A
Q
A
A
I
A
A

INTEGER*2 FUNIT /* FILE UNIT TO BE USED
INTEGER*2 DAMFIL /* TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER IN WORDS

PARAMETER FUNIT=1, DAMPIL=2, BUFLNG=1992

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM
INTEGER*2 LARGST /* LARGEST UNSIGNED INTEGER IN FILE
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTEGER*2 I,N

C
INTEGER*4 POSITN /* 32BIT INTEGER POSITION FOR PRWESS

Cc
SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ERRD.F
Cc
Cc
C INITIALIZE AND GET FILE NAME FROM TERMINAL
Cc

LARGST = -32767 /* LARGEST UNSIGNED INTEGER
19 WRITE (1,100) /* FORTRAN UNIT 1 IS TERMINAL
1900 FORMAT ('TYPE FILE NAME’)
Cc

READ(1,1010) (FNAME(L), I=1,16)
1018 FORMAT (16A2)
nh

C OPEN FNAME IN CURRENTLY ATTACHED UFD FOR READING ON FILE UNIT 1
C (NOT THE SAME AS FORTRAN UNIT 1). CHECK FOR ERRORS.
C NOTE THAT THE NAME NEED NOT ACTUALLY BE 32 CHARACTERS LONG AS
C TRAILING BLANKS ARE IGNORED.
Cc

CALL SRCHS$$S (KSREAD+KSIUFD, FNAME, 32, FUNIT, TYPE , CODE)
IF (CODE .EQ. 3) GO TO 108 /* NO ERRORS

PRINT THE SYSTEM ERROR MSG AND IMMEDIATELY RTRN TO THIS PROGRAM
TF THE ERROR IS 'FILE NOT FOUND’, GET ANOTHER NAME.
GIVE UP ON ALL OTHER ERRORS

A
A
A
A
A

CALL ERRPRS (KSIRTN, CODE, FNAME, 32, 'REDFIL', 6)
IF (CODE.EQ.ESFNTF) GO TO 10 /*NOT FOUND-GET ANOTHER NAME
GO TO 9610 /* ANOTHER TYPE OF ERROR — GIVE UP

REV. A 6 - 4

PDR3621 SAMPLE PROGRAMS

THE FILE HAS BEEN OPENED.
MAKE SURE THE FILE IS NOT A DIRECTORY

QO IF (TYPE .GT. DAMFIL) GO TO 9080 £/* IS A DIRECTORY

Cc
Cc
C
Cc
lL
Cc
C READ AN 'OPTIMAL' NUMBER OF WORDS UP TO BUFLNG WORDS FROM FILE.
C SET LARGST TO THE LARGEST UNSIGNED INTEGER IN THE FILE.
C CHECK FOR END-OF-FILE.
C
30 CALL PRWFSS (KSREAD+KSCONV, FUNIT, LOC(BUFF) ,BUFLNG,

x INTL (9) ,NMREAD,CODE)
IF (CODE .EQ. ESEOF) GO TO 31 /* END-OF-FILE
IF (CODE .NE. 9) GO TO 9818 /* SOME OTHER ERROR

31 DO 49 T= 1, NMREAD /* FOR EACH WORD ACTUALLY READ
IF ((LARGST.LE.9) .-AND. (BUFF(I) .GE.9)) LARGST = BUFF(T)
IF (LARGST .LT. BUFF(I)) LARGST = BUFF(T)

40 CONTINUE
IF (CODE .NE. ESEOF) GO TO 30 /* MORE DATA IN FILE

FIND OUT IF THE DATA FILE IS EMPTY
GET CURRENT FILE POINTER POSITION WHICH IS NOW AT END-OF-FILE.
IF THE POSITION IS 9, THE FILE IS EMPTY

Q
A
Q
A
A
A
A

CALL PRWFSS (KSRPOS, FUNIT, 8, @, POSITN, NMREAD, CODE)
IF (CODE .NE. 3) GO TO 9919 /* ERROR
IF (POSITN .GT. 8) GO TO 50 /* NOT A NULL FILE
WRITE (1,1930)

1830 FORMAT ('FILE EMPTY')
GO TO 9908 /* EXIT

Cc
C FILE NOT EMPTY. PRINT LARGEST INTEGER
C
59 WRITE (1,1020) LARGST
1020 FORMAT ('LARGEST INTEGER IN FILE IS ',IS)

GO TO 9000 /* EXIT
C
C KSCLOS FILES EXIT
C PRINT ERROR MESSAGE IF NECESSARY
C
9919 CALL ERRPRS(KSIRTN, CODE, 9, @, 'REDFIL', 6)
Cc
9009 CALL SRCHSS(KSCLOS, 9, @, FUNIT, TYPE, CODE)

IF (CODE.NE.%) GO TO 90190
CALL EXIT
END

6 - 5 January 1989

SECTION 6 PDR3621

PB CREATING A SEGMENT DIRECTORY

C CRTSEG BIN 29NOV76 CREATE A SEGMENT DIRECTORY
C AND WRITE DATA FILE IN IT
C
C RESTRICTIONS: SEGDIR SHOULD NOT EXIST BEFORE RUNNING PROGRAM
C
Cc

INTEGER*2 BUFLNG /* DATA BUFFER LENGTH
INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
INTEGER*2 SGUNIT /* FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 FUNIT /* FILE UNIT FOR DATA FILE

o
O

PARAMETER BUFLNG=19, SAMSEG=2, SGUNIT=1, FUNIT=2

O
?

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWESS
INTEGER*2 I
INTEGER*2 CODE /* RETURN CODE STORED HERE
INTEGER*2 CODEA /* SCRATCH CODE

SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ERRD.F
Cc
C
C INITIALIZE DATA BUFFER CONTENTS
c

DO 18 t= 1, BUFLNG
BUFF(L) = I

g CONTINUE

OPEN A NEW SAM SEGMENT DIRECTORY CA LED 'SAMDIR' IN CURRENTLY

ATTACHED UFD FOR READING AND WRITINC ON FILE UNIT SGUNIT.

NOTE: SEGDIRS OPEN FOR WRITE ONLY WI \ NOT BE HANDLED CORRECTLY

I
Q
A
A
N
D
N
O

F
e

CALL SRCHSS$ (KSRDWR+KSNSGS+KSLIUFL, 'SEGDIR',6,SGUNIT,TYPE,
x CODE)
LF (CODE.NE.@) GO TO 95092
IF (TYPE.NE.SAMSEG) GO TO 959@ /* ERROR--MUST HAVE EXISTED

C

C ENTER A NEW SAM DATA FILE ([.E. OPEN SAM DATA FILE FOR WRITING)

C IN THE JUST CREATED SEGMENT DIRECTORY. THE NEW DATA FILE

C WILL BE ENTRY 9 IN THE SEGMENT DIRECTORY.

C

CALL SRCHSS$ (KSWRIT+KSNSAM+KSISEG, SGUNIT, 0,FUNIT, TYPE , CODE)

IF (CODE.NE.0) GO TO 9593

C

C WRITE THE DATA BUFFER INTO THE JUST CREATED SAM FILE.

C KSCLOS THE DATA FILE.

C

REV. A i) ~- 6

PDR3621 SAMPLE PROGRAMS

CALL PRWESS (KSWRIT,FUNIT,LOC(BUFF) ,BUFLNG, INTL (0) ,NMREAD,
x CODE)
IF (CODE.NE.G) GO TO 9590
CALL SRCHS$$ (KSCLOS, 9, @, FUNIT, 8, CODE)
IF (CODE.NE.%) GO TO 9599

C
C REPLACE BUFF WITH NEW DATA
C

DO 20 I= 1, BUFLNG
BUFF(I) =I * 18

Gg CONTINUE2
C
C OPEN A DIFFERENT NEW SAM DATA FILE ON FUNIT FOR WRITING
C (I.E. ENTER ANOTHER FILE IN SEGMENT DIRECTORY). THIS IS DONE
C IN TWO STEPS. FIRST THE FILE POINTER OF THE SEGMENT DIR UNIT IS
C POSITIONED TO THE ENTRY NUMBER DESIRED. THE SRCHSS IS
C CALLED AS ABOVE.
C

CALL SGDRS$$ (KSSPOS,SGUNIT, 1, I, COD&)
IF (CODE.NE.9) GO TO 9589
IF (tf .NE. -1) GO TO 9588 /* ERROR EXIT

NOTE THAT THE SEGMENT DIRECTORY OPEN ON SGUNIT HAS ONLY 1 ENTRY
(ENTRY 8) AT THIS TIME. THUS, POSITIONING TO ENTRY 1
WILL POSITION TO END-OF-FILE (NOT BEYOND) AND THE FOLLOWING
CALL TO SRCH$SS WILL CAUSE THE SEGMENT DIRECTORY TO BE EXTENDED
IN LENGTH BY ONE ENTRY.

A
A
A
A
A
N
A
A

CALL SRCHS$ (KSWRIT+KSNSAMHKSISEG, SGUNIT,@,FUNIT, TYPE , CODE)
IF (CODE.NE.9) GO TO 9509

WRITE DATA INTO THE SAM FILE THE KSCLOS THE FILE

a
q
Q
a
n

CALL PRWESS (KSWRIT, FUNIT, LOC(BUFF) ,BUFLNG, INTL(@) ,NMREAD,
X CODE)
IF (CODE.NE.9) GO TO 9599
CALL SRCHS$S (KSCLOS, 8, @, FUNIT, @, CODE)
IF (CODE.NE.9) GO TO 9500

REPLACE THE BUFFER WITH NEW DATA

a
a
n

DO 30 I= 1, BUFLNG
BUFF(I) =I * 108

B CONTINUE3
C
C MAKE THE SEGMENT DIRECTORY ITSELF LARGE ENOUGH TO CONTAIN
C 10 ENTRIES. PLACE A SAM FILE IN THE 10TH ENTRY.
C

CALL SGDRS$ (KSMSIZ, SGUNIT, 18, @, CODE)
IF (CODE.NE.%) GO TO 9509

C
C THE FILE POINTER ASSOCIATED WITH SGUNIT IS NOW AT END-OF-FILE.
C A CALL TO SRCH$S WITHOUT FURTHER POSITIONING THE SEGMENT

a) - 7 January 1989

SECTION 6 PDR3621

Cc
C

C
Cc

a
a
q
a

DIRECTORY'S FILE POINTER WOULD EXTEND THE SEGMENT DIRECTORY
AND ENTER THE NEW FILE AS TH 11TH ENTRY. THEREFORE, SGDRS$$
MUST BE CALLED TO POSITION TO THE 13TH ENTRY.

CALL SGDRSS (KSSPOS, SGUNIT, 108, I, CODE)
TF (CODE.NE.2) GO TO 9509
IF (I .NE. 0) STOP /* FILE CANNOT BE PRESENT

CALL SRCHSS (KSWRIT+KSNSAM+KSI SEG, SGUNIT, 0, FUNIT, TYPE , CODE)
IF (CODE.NE.0) GO TO 9509
CALL PRWESS (KSWRIT, FUNIT, LOC (BUFF) ,BUFLNG, INTL (@) ,NMREAD,

xX CODE)
IF (CODE.NE.9) GO TO 959d
CALL SRCHS$$ (KSCLOS, @, 98, FUNIT, TYPE, CODE)
IF (CODE.NE.8) GO TO 9500

KSCLOS SEGMENT DIRECTORY EXIT

CALL SRCHS$ (KSCLOS, 8, @, SGUNIT, TYPE, CODE)
IF (CODE.NE.@) GO TO 9589
CALL EXIT

ERROR EXIT. KSCLOS ALL UNITS. PRINT ERROR MESSAGE AND DO NOT
ALLOW RESTART. ESNULL IS THE NULL SYSTEM ERROR, I.E.,
NO SYSTEM ERROR MESSAGE IS PRINTED.

538 CALL SRCHS$(KSCLOS, 0, %, FUNIT, TYPE, CODBA)
CALL SRCHS$S (KSCLOS, @, 0, SGUNIT, TYPE, CODEA)
CALL ERRPRS (KSNRTN,CODE, "UNEXPECTED ERROR',16,'CRTSEG' ,6)

END

> READING A LOGICAL RECORD FROM A FILE

A
A
N
A
A
Q
A
N
A
A
R
A
A
A
N
A
N
A
A RDLREC BIN 29NOV76 READ A LOGICAL RECORD FROM A FILE

PROGRAM READS LOGICAL RECORD 'N' FROM A FILE CONSISTING
OF FIXED LENGTH RECORDS

IN THIS PROGRAM, THE FILE ACCESSED IS CONSIDERED TO CONTAIN AN
UNLIMITED NUMBER OF LOGICAL RECORDS. EACH RECORD CONTAINS 'M!'
WORDS. THE PROGRAM READS AND PRINTS TO THE TERMINAL THE
CONTENTS OF RECORD NUMBER N AS M INTEGERS. THE FIRST RECORD
OF A FILE IS RECORD NUMBER @ (ZERO).
NOTE THAT A LOGICAL RECORD IS MERELY A GROUPING OF WORDS IN A
FILE. THE LOGICAL RECORD SIZE HAS NO RELATION TO THE PHYSICAL
RECORD SIZE OF THE DISK.

RESTRICTIONS:

REV. A 6 - 8

PDR3621 SAMPLE PROGRAMS

« RECORD SIZE MUST BE BETWEEN 1 AND BUFFER LENGTH
- RECORD NUMBER MUST BE BETWEEN @ AND 32767
THE RECORD MUST Bf IN THE FILE

- THE PILE MUST PREVIOUSLY EXIST
- THE FILE MUST BE A DATA FILE (SAMFIL OR DAMFTIL)

A
A
A
R
A
A
R
A
A
A
A

O
l
®
W
H
F

INTEGER*2 FUNIT1 /* PRIMOS FILE UNIT USED FOR DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER

PARAMETER FUNIT1=1, BUFLNG=1099

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 FNAME (16) /* FILE NAME BUFFER
INTEGER*2 RECSIZ /* NUMBER WORDS IN A LOGICAL RECORD
INTEGER*2 RECNUM /* LOGICAL RECORD NUMBER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS$
INTEGER*2 NMREAD /* NUMBER WORDS READ, RETURNED BY PRWEFSS
INTEGER*2 CODE /* ERROR STATUS RETURNED BY FILE SYSTEM
INTEGER*2 I

A

INTEGER*4 POSITN /* 32BIT WORD NR USED AS POS TO PRWFSS
Cc
C
SINSERT SYSCOM>KEYS.F

SINSERT SYSCOM>ERRD.F
C
C
C ASK FOR FILE NAME
Cc
10 WRITE (1 ,10990) /* FORTRAN UNIT 1 IS TTY
1900 FORMAT ('TYPE FILE NAME‘)
Cc
C READ FILE NAME
C

READ(1L,1019) (FNAME(L) ,I=1,16)
1019 FORMAT (16A2)
Cc
C OPEN FNAME IN CURRENT UFD FOR READING ON FILE UNIT FUNIT1
Cc

CALL SRCHSS (KSREAD+KSIUFD, FNAME, 32, FUNIT1, TYPE, CODE)
fh IF (CODE.NE.@) GO TO 1089

ASK FOR LOGICAL RECORD SIZE

N
A
Q
Q

¥ WRITE (1, 1928)
1820 FORMAT ('TYPE RECORD SIZE')

READ (L,1038) RECSIZ
1038 FORMAT (15)

IF (RECSIZ .GE. 1 .AND. RECSIZ .LE. BUFLNG) GO TO 30
WRITE (1,1049)

1848 FORMAT ('BAD RECORD SIZE")
GO TO 20

6 - @9 January 1980

SECTION 6 PDR3621

ASK FOR RECORD NUMBER. FIRST RECORD IS NUMBERED @ (ZERO)
A
A
D

W39 WRITE (1,195)
1858 FORMAT ('TYPE RECORD NUMBER‘)

READ (1,1930) RECNUM
IF (RECNUM .GE. 8) GO TO 35
WRITE (1 ,1051)

1951 FORMAT (‘BAD RECORD NUMBER‘)
GO TO 3d

CALCULATE THE 32-BIT WORD NUMBER OF THE FIRST WORD IN THE

DESTRED RECORD. NOTE THAT IF BOTH RECSIZ AND RECNUM ARE BOTH

POSITIVE 16BIT NUMBERS, THE 32BIT WORD NUMBER MUST ALSO BE
POSITIVE.

POSITIONING MAY BE DONE TO AN ABSOLUTE WORD NUMBER OR RELATIVE
TO THE CURRENT POSITION. SINCE A JUST OPENED FILE IS ALWAYS
POSITIONED TO TOP-OF-FILE AND THE CALCULATED WORD NUMBER WILL
NEVER BE NEGATIVE, THE ARGUMENT FOR POSITION TO PRWESS WILL
BE THE SAME FOR BOTH CALLS IN THIS PROGRAM.

W
A
Q
A
A
N
A
A
A
A
Q
A
A
A
A
I
A
A
N

5 POSITN=INTL (RECSIZ) *INTL (RECNUM) /* POSITN IS INTEGER*4
IF (POSITN .GT. 32767) GOTO 199 /* ABSOLUTE POSITIONING

RECORD LESS THAN 32767 WORDS FROM THE 8EGINNING, USE RELATIVE

POS[TIONING.

NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A

RECORD ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORDS

BEYOND WORD 32767. RELATIVE IS SHOWN HERE ONLY FOR EXAMPLE.

NOTE ALSO THAT RELATIVE POSITIONING COULD BE USED TO POSITION

TO ANY WORD IN THE FILE, GIVEN THE RESTICTIONS ON RECSIZ AND
RECNUM.

WHEN REL POSITIONING IS USED, THE POS ARGUMENT (POSITN HERE)

IS CONSIDERED TO BE A SIGNED 32-BIT INTEGER.

A
A
M
D
A
A
D
A
A
A
N
A
A
R
A
A
A
N
A
A
N

CALL PRWFSS (KSREADHKSPRER, FUNIT1,LOC (BUFF) ,RECSIZ,POSITN,
x NMREAD, CODE)
S90 TO 289 /* SKIP OVER ABSOLUTE POSITION EXAMPLE

RECORD IS MORE THAN 32767 WORDS FROM THE BEGINNING OF FILE, USE

ABSOLUTE POSITIONING.

WHEN ABSOLUTE POSITIONING [S USED, POSITION ARGUMENT (POSITN)

IS CONSIDERED TO BE AN SIGNED 32-BIT INTEGER.

NOTE THAT THE ESBOF ERROR (BEGINNING OF FILE) CAN OCCUR.

R
P
A
A
N
Q
R
A
R
A
A
N
A
Y
A

9@ CALL PRWFSS (KSREAD+KSPREA, FUNIT1,LOC (BUFF) ,RECSIZ,POSITN,

X NMREAD, CODE)
C

200 IF (CODE .NE. 3) GO TO 390 /* ERROR DETECTED

REV. A 6 - 19

PDR3621 SAMPLE PROGRAMS

C
C HAVE READ RECORD, NOW TYPE IT.
C

WRITE (1,1068) RECNUM, RECSIZ
1960 FORMAT('RECORD ',16,' CONTAINS ',I6,' ENTRIES AS FOLLOWS')

WRITE(L,107%) (BUFF(I), I=l,RECSIZ)
1970 FORMAT (1017)
Cc
C RETURN TO PRIMOS AFTER CLOSING THE FILE
C
250 CALL SRCHSS (KSCLOS, @, 9, FUNIT1, TYPE, CODE)

LF (CODE.NE.@) GO TO 1002
CALL EXIT
GO TO 19 /* START COMMAND RESTARTS PROCRAM

ff

C FRROR WHILE ATTEMPTING TO READ THE RECORD

Cc
308 CALL ERRPRS(KSIRTN, CODE, @, @, 'RDLREC', 9)

IF (CODE .NE. ESEOF) GO TO 250 /* EXIT IF NOT END-OF-FILE
Cc

C END-OF-FILE REACHED.
C REWIND FILE AND TRY AGAIN
C

CALL PRWESS (KSPOSN+KSPREA, FUNIT1,@,@,INTL(%) ,NMREAD,

x CODE)
IF (CODE.NE.9) GO TO 1009
GO TO 29

C
10098 CALL ERRPRS (KSNRTN,CODE,@,8,0,8)

END

6 - dl January 1988

SECTION 6 PDR3621

> READING A FILE IN A SEGMENT DIRECTORY

C REDSEG BIN 29NOV76 READ FILE IN A SEGMENT DIRECTORY
C
C THIS PROGRAM READS FILE NUMBER N IN SEGMENT DIRECTORY AND
C TYPES WORD NUMBER M IN THAT FILE. THE FIRST FILE IN THE
C DIRECTORY IS FILE NUMBER 0. THE FIRST WORD IN THE FILE IS
C WORD NUMBER @.
C
C RESTRICTIONS:

1. THE SEGMENT DIRECTORY FILE MUST EXIST
2. THE FILE NUMBER MUST BE BETWEEN @ AND 32767

. THE FILE MUST BE IN THE SEGMENT DIRECTORY
- THE WORD NUMBER MUST BE BETWEEN 9 AND 32767
. THE WORD MUST BE IN THE FILE.

A
A
A
R
A
A
A
A
D
A

1
i
m

U
W

INTEGER*2 FUNIT /* PRIMOS FILE UNIT FOR DATA FILE
INTEGER*2 SGUNIT /* PRIMOS FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
INTEGER*2 DAMSEG /* FILE TYPE OF DAM SEGMENT DIRECTORY

Cc
PARAMETER FUNIT=2, SGUNIT=1, SAMSEG=2, DAMSEG=3

C
INTEGER*2 BUFF /* DATA BUFFER
INTEGER*2 SEGDIR(16) /* NAME OF SEGMENT DIRECTORY BUFFER
INTEGER*2 FILNUM /* FILE NR (ENTRY NR) OF FILE IN SEGDIR
INTEGER*2 WRDNUM /* WORD NUMBER IN DATA FILE TO BE READ
INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM
INTEGER*2 TYPE /* FILE TYPE.RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NR WORDS READ/WRITTEN/RTIRNED BY PRWFSS
INTEGER*2 I

Cc
SINSERT SYSCOM>KEYS .F
SINSERT SYSCOM>ERRD.F
C
Cc
C INSURE FILE UNITS TO BE USED ARE KSCLOSD
C ASK FOR AND READ SEGMENT DIRECTORY NAME FROM TERMINAL
C
10 CALL SRCHS$$ (KSCLOS, 8, @, SGUNIT, 8, CODE)

IF (CODE.NE.%) GO TO 109
CALL SRCHS$$(KSCLOS, 0, @, FUNIT, 9, CODE)
IF (CODE.NE.9) GO TO 109
WRITE (1, 1980)

1800 FORMAT ('TYPE SEGMENT DIRECTORY NAME')
READ (1,101) (SEGDIR(I), I=1,16)

1018 FORMAT (16A2)

REV. A 6 - 12

PDR3621 SAMPLE PROGRAMS

OPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT
Q
A
a
A
Q

CALL SRCHS$ (KSREAD+KSIUFD, 'SEGDIR', 6, SGUNIT, TYPE, CODE)

IF (CODE.NE.@) GO TO 199

TYPE CONTAINS THE FILE TYPE OF THE FIL& JUST OPENED.
MAKE SURE THE FILE IS EITHER A SAM OR DAM SEGMENT DIRECTORY.
ALLOWABLE TYPE VALUES ARE 2 AND 3.

A
Q
A
A
A
A

IF (TYPE .EQ. SAMSEG) GO TO 20
IF (TYPE .EQ. DAMSEG) GO TO 29

NOT A SEGMENT DIRECTORY - TRY AGAIN

a
A

WRITE (1 , 1929)
1920 FORMAT('FILE IS NOT A SEGMENT DIRECTORY‘)

GO TO 10
C
C ASK FOR FILE (ENTRY) NUMBER IN SEGMENT DIRECTORY

C
20 WRITE (1 , 1030)
1930 FORMAT ('TYPE FILE NUMBER")

READ (1,1048) FILNUM
1048 FORMAT (16)

IF (FILNUM .LT. 8) GO TO 20
C
C ASK FOR WORD NUMBER IN DATA FILE TO READ

C
30 WRITE (1 , 1935)
1035 FORMAT ('TYPE WORD NUMBER")

READ (1,1940) WRDNUM
TF (WRDNUM .LT. 8) GO TO 30

TRY TO POSITION TO WORD NUMBER IN THE SEGMENT DIRECTORY.
IF END-OF-FILE REACHED, FILE IS NOT IN SEGMENT DIRECTORY.
SGDRS$ RETURNS THE VALUE 1 IN THE 4TH ARGUMENT (TYPE) IF A

FILE IS ENTERED IN THE ENTRY POSITION. THIS PROGRAM DOES NOT

CHECK THE VALUE, SINCE SRCHS$ WILL RETURN THE PROPER ERROR CODE

(ESFNTS - FILE NOT FOUND IN SEGMENT DIRECTORY) ANYHOW.

A
A
A
A
A
N
A
I
A
N

CALL SGDRSS (KSSPOS, SGUNIT, FILNUM, TYPE, CODE)
IF (CODE .EQ. ESEOF) CODE = ESFNTS /* FILE NOT FOUND

IF (CODE .NE. @) GO TO 199

OPEN FILE IN SEGMENT DIRECTORY FOR READING

a
Q
A
Q
A
a

CALL SRCHSS (KSREAD+KSLSEG, SGUNIT, @, FUNIT, TYPE , CODE)
IF (CODE .NE. 9) GO TO 100

PRINT THE WORD, KSCLOS THE FILES, AND RETURN TO PRIMOS

a
a
a

WRITE (1,1050) WRDNUM,FILNUM, (SEGDIR(T), I= 1,16) ,BUFF

6 - 13 January 19808

SECTION 6 PDR3621

1958 FORMAT ('WORD',I6,' OF FILE (',16,') IN ',16A2,
X 'CONTAINS' ,I6)

59 CALL SRCHS$ (KSCLOS, @, @, FUNIT, %, CODE)
CALL SRCHS$ (KSCLOS, @, @, SGUNIT, @, CODE)
CALL EXIT
GO TO 18 /* START COMMAND RE-STARTS PROGRAM

a
A

C COMMON ERROR HANDLER
C NOTE THAT THE NEW FILE SYS PROPERLY DIFFERENTIATES THE VARIOUS
C ERRORS WHICH FORMERLY WERE GROUPED UNDER OLD ERROR CODE 'S9Q'
C
192 IF (CODE.EQ.ESFNTS) GO TO 110 /* FILE NOT FOUND IN SEGDIR

IF (CODE .EQ. ESEOF) GO TO 122 /* END-OF-FILE
CALL ERRPRS$ (KSIRTN,CODE,%,9,'REDSEG',6) /* PRINT ERROR MSG
GO TO 58 /* KSCLOS FILES EXIT

Cc
C FILE NOT FOUND IN SEGMENT DIRECTORY
C LET THE USER TRY AGAIN
C
119 WRITE(1L,1068) FILNUM, (SEGDIR(I), I=l, 15)
1069 FORMAT ('FILE (',16,') NOT FOUND IN ',16A2)

GO TO 10 /* RE-TRY
C
C END-OF-FILE
C CODE WILL CONTAIN ESEOF ONLY WHILE TRYING TO READ
C THE DATA FILE. ALLOW RE-TRY.

20 WRITE(1L,1972) WRDNUM, FILNUM, (SEGDIR(T) ,I=1,16)
978 FORMAT ('WORD',I6,' NOT IN FILE (',16,') IN ',16A2)

GO TO 19 /* RE-TRY

END

REV. A A - 14

 Partll |
Math andApplication.
Library Subroutines

PDR3621 FORTRAN STANDARD FUNCTIONS

SECTION 7

FORTRAN STANDARD FUNCTIONS

INTRODUCTION

The subroutines described in this section are Prime subroutines that

correspord to those defined as ANSI-standard FORTRAN functions. Table

7-1 describes these functions. They are all called using the standard

FORTRAN calling sequences for R or V mode functions.

FUNCTION REFERENCES

Library function references are of the form:

R = name (argument-1,...,argument-n)

where R is a variable defined within the scope of the program, name is

one of the library function names and argument-1,...,argument-n is a

list of arguments to be processed by the function. Most functions

require only one argument; e.g., A=SIN(X). See the FORTRAN

Programmers Guide for a discussion of function references and for

examples of their use.

Fixed Point Data Storage

Fixed point data is stored in the A-register (single precision). The

A-register may be referred to as the fixed point accumulator.

Extended Registers

Locations AC1l, AC2, AC3 and AC4 provide accumulators for compl ex

subroutines. These are global symbols defined in the FORTRAN library.

AC] and AC2 are for the real part and AC3 and Ac4 for the imaginary

part.

The global symbol AC5 contains error conditions which may be generated

by FORTRAN library subroutines.

7 - 4d January 1988

SECTION 7 PPR3621

SINGLE ARGUMENT SCIENTIFIC FUNCTIONS

The "SX" series are short callable (v-mode only) versions of common
scientific functions which take a single argument in the Single or
double precision floating accumulator. The routines available are:

ALOGSX
ATANSX
COS$X
DATNSX
DCOssx
DEXPSX
DL1@SX
DLOGSX
DLG2SX
DS INSX
DSORSX
EXPSX
SINSX
SORTSX

A FORTRAN user need not call these functions explicitly; the FORTRAN
compiler generates calls to them in response to normal function usage.

FORTRAN 77 FUNCTIONS

FORTRAN 77 applies all of the functions in Table 7-1 plus those listed
in Table 7-2. See the FORTRAN 77 Reference Guide (IDR4929) for more
details.

REV. A 7 = 2

Function

Absolute value:

- Real
- Integer

- Double precision
- Complex to real

Conversion:
- Integer to real

- Real to integer
- Double to real

- Real to double

- Complex to real
(obtain real part)

- Complex to real

(obtain imaginary

- part)

- Real to complex

Truncation:

- Real to real

- Real to integer
- Double to integer

- Double to double

Remaindering:

- Real

- Integer

~ Double precision

Maximum Value:

Minimum Value:

PDR3621

FORTRAN STANDARD FUNCTIONS

Table 7-1. FORTRAN Library Functions

Number of Type of

Subroutine Operation Arguments Argument Result

ABS larg| 1 Real Real

TABS (1) largl 1 Integer Integer

DABS laral 5 2.1/2 1 Double Double

CABS c= (x"+y") 1 Camplex Real

FLOAT 1 Integer REAL

IFIX Result is largest 1 Real Inteyer

SNGL integer <a 1 Double Real

DBLE 1 Real Double

REAL 1 Complex Real

AIMAG 1 Complex Real

CMPLX c=Arg,+i*Arg, 2 Real Complex

ATNT sign of arg* | 1 Real Real

INT largest integer 1 Real Integer

IDINT < arg 1 Double Integer

DINT 1 Double Double

AMOD The remainder 2 Real Real

MOD (1) when Arg 1 is 2 Integer Integer

DMOD divided by Arg 2 2 Double Double

AMAXO Integer Real

AMAX1 Real Real

MAXO Max (Arg, ,Arg,,---) (2, 3,0r a| Integer Integer

MAX1 Real Integer

DMAX1 Double Double

AMINO Integer Real

AMIN1L Real Real

MINO MIN (Arg, ,Arg5,-++) [2/3,0r a| Integer Integer

MINL Real INTEGER

DMINL Double Double

January 1988

SECTION 7

Function

Transfer of Sign:
~ Real

- Integer

- Double Precision

Positive Difference:
- Real
- Integer

Exponential:
- Real

~ Double
- Complex

Logarithm:
- Real

- Double

- Complex

Square Root:

- Real

~ Double

- Complex

Sine: (radians)

Cosine: (radians)
- Real

- Double

~ Camplex

REV. A

PDR3621

Table 7-1. (continued)

Subroutine Operation

SIGN

ISIGN Sgn (Arg.,) * g

DSIGN 2 [pr 1

DIM .IDIM [arsMinasres

EXP

DEXP Arg
CEXP

ALOG log (Arg)

ALOGLO log,, (Arg)
DLOG loge, (Arg)
DLOG2 logs (Arg)
DLOGLO logy9 (Arg)
CLOG log. (Arg)

SORT (Arg) 5
DSQRT (Arg) 1/2
CSORT c=(xtiy)

SIN

DSIN (2) {sin caro}
CSIN

Cos

DCOS (2) {c0s ars}
CCOS

7 - 4

Number of of

Arguments Argument Result

2 Real Real

2 Integer Integer

2 Double Double

2 Real Real

2 Integer Integer

1 Real Real

1 Double Double
lL Complex Complex

1 Real Real

1 Real Real

1 Double Double
1 Double Double

1 Double Double
1 Complex Complex

1 Real Real

1 Double Double

lL Complex Camplex

1 Real Real

1 Double Double
1 Complex Complex

i Real Real
1 Double Double
1 Complex Complex

PDR3621 FORTRAN STANDARD FUNCTIONS

Table 7-1. (continued)

Type of
Function Subroutine Operation Argument Result

Hyperbolic
- Tangent TANH tanh (Arg) Real Real

Arc Tangent:
- Real ATAN arctan (Arg) Real Real

- Double DATAN arctan (Arg) Double Double

- quotient of

two arguments ATAN2 arctan (Arg,/Arg.) 2 Real Real

DATAN2 arctan (Arg,/Arg.) 2 Double Double

Complex Conjugate CONIJG Arg=X+iY, CONJG=X-iY 1 Complex Complex

Random Number: (3)
RND pick a random number fram 1 Integer Real

G to 1.pP.

TRND pick a random rn x from 1 Integer Integer

0 to 32767 (21° -1)

Notes

(1) These functions are not in the library but are expanded in line by FORTRAN compiler.

(2) Ranges for DSIN and DCOS:

DSIN (X)

X¥< 3.37E9 For V-mode

X<.1.69E9 For R-mode

DCOS (X)

X<3.37E9 For V-mode

X<1.69E9 For R-mode

(3) The argument for RND and IRND is interpreted as follows:

Arg>@, Arg is used to initialize the random number generator. Arg is returned as the value

the call.

Arg=@, The function returns a random number: from @ to 1.0 for RND, 0 to 32767 for IRND.

Argé%, Initializes the random number generator and then returns a randem number as in the

Arg= case.

7 - 5 January 1988

 Result
Double

Compl ex*16
Complex*16
Compl ex* 16
Complex*16
Compl ex* 16

Integer

Character

Real

Double

Integer

Integer

Double

Double

Double

Integer

Integer

Double

Real

Double

Compl ex
Compl ex

Compl ex* 16

SECTION 7 PDR3621

Table 7-2. FORTRAN 77 Additional Functions

Number of Type of
Function Subroutine Arguments Argument

Numeric to DREAL 1 Compl ex*16
Double Precision

Numeric to DCMPLX 1 or 2 Integer
Compl ex*16 Real

Double
Complex
Compl ex* 16

Character to ICHAR 1 Character
Integer

Integer to CHAR 1 Integer
Character

Nearest whole ANINT L Real
Number DINT 1 Double

Nearest Integer NINT 1 Real
IDNINT 1 Double

Absolute value CDABS 1 Compl ex*16

Positive DDIM 2 Double
Difference

Double Precision DPROD 2 Real
Product

Length of LEN 1 Character
Character Entity

Index of a INDEX 2 Character
Substring

Real Part of DREAL 1 Compl ex* 16
Complex Argument

Imaginary Part AIMAG 1 Compl ex
of Complex DIMAG 1 Complex*16
Argument

Conjugate of a CONT 1 Compl ex
Complex Argument DCONT 1 Complex*16

Square root CDSORT 1 Complex* 16

REV. A 7 -

Function

Exponential

Natural

Logarithm

Sine

Cosine

Tangent

Arcsine

Arccosine

Hyperbolic Sine

Hyperbolic Cosine

Hyperbolic
Tangent

Lexically Greater
Than or Equal

Lexically Greater

Than

Lexically Less
Than or Equal

Lexically Less
Than

FORTRAN STANDARD FUNCTIONS

PDR3521

Table 7-2. (continued)

Number of Type of
Subroutine Arguments Argument

CDEXP 1 Compl ex*16

CDLOG 1 Compl ex* 15

CDS IN l Compl ex* 16

CDCOS 1 Complex*16

TAN 1 Real

DTAN 1 Double

ASIN 1 Real

DASIN l Double

ACOS 1 Real

DACOS 1 Double

SINH 1 Real

DSINH 1 Double

COSH 1 Real

DCOSH l Double

DTANH l Double

LGE 2 Character

LCT 2 Character

LLE 2 Character

LLT 2 Character

7 - 7

Result

Compl ex*16

Compl ex* 16

Compl ex* 16

Complex*16

Real

Double

Real

Double

Real

Double

Real

Double

Real

Double

Double

Logical

Logical

Logical

Logical

January 1986

PDR3621 LOGICAL FUNCTIONS

SECTION 8

LOGICAL FUNCTIONS

This section describes FORTRAN logical functions which are not Library

subroutines, but are expanded by the compiler. They are included in

this document for reference purposes. These functions accept long

integer as well as short integer arguments. The result of a mixed mode

AND, OR, or XOR is long integer. The short integer argument is

converted to long integer. Note that the conversion sign extends so

that if bit 1 of the short integer is 1, bits 1-17 will be 1 after
conversion to long integers; the result of a mixed mode shift or

truncate is the mode of its first argument.

P AnD

Performs a logical AND operation, bit by bit, on a variable list of

integers.

i = AND (il, i2, eooozs in)

P Ls

Shifts an integer variable left by a specified number of bits; vacated

bits are filled with zeroes.

i2=LS (il, ip)

ip is the number of bits on i2 to be shifted to the left. If ip<%, no
change is made to the integer.

P LT

Preserves a specified number of left-most bits and sets the reset to

zero (left truncation).

i2 =LT (il, ip)

The first ip bits are set from the left are saved and the rest of the
bits are set to zero. If ip <®, the entire integer is set to zero.

P oR

Performs a logical (inclusive) OR operation on a variable list of

integers.

i = OR (il, i2, oooy in)

8 - 4. January 19338

SECTION 8 PDR3621

P RS

Shifts an integer variable right by a specified number of bits;
vacated bits are filled with zeroes.

i2 =RS (il, ip)

ip is the number of bits to be shifted to the right on Integer "il".
If ip < 8, no change is made to the integer.

> RT

Preserves a specified number of right-most bits and sets the rest to
zero (right truncation).

12 = RT (il, ip)

The first ip bits of il from the right are saved and the rest of the
bits are set to zero. Ifip<@, the entire integer is set to zero.

P sHT

SHFT performs logical shift operations on integer variables. Format 1:

= SHFT (i,ipl)

performs a shift operation on the variable. If ipl>d@, the shift is to
the right; if ipl<@ the shift is to the left. If ipl=0, no shift
occurs. This operation is equivalent to the RS function, and is
provided for compatibility with other FORTRAN compilers. Format 2:

= SHFT (i, ipl, ip2)

performs two shift operations, first by ipl (setting zeroes in vacated
bits), then by ip2 (setting zeroes in vacated bits). The sign of ipl
and ip2 determine the direction of the shift while their magnitude
determines the number of bits to be shifted.

p> xXOR

Performs a logical exclusive OR on a variable list of integers.

= XOR (il, i2, ..., in)

REV. A 8 = 2

PDR36 21 ARITHMETIC OPERATIONS

SECTION 9

ARITHMETIC OPERATIONS

Calls to the routines which perform arithmetic are generated by the

FORTRAN compiler when arithmetic operations are specified in the
FORTRAN program. They should not be called explicitly by a FORTRAN
program, but may be called in a PMA program.

All of these subroutines are callable in 32R or 64R mode am are

contained in FTNLIB. The subset of these subroutines which are

necessary in the 64V mode are in PFTNLB.

Subroutine names are of the form pSxy or FS$pxy.

pis a prefix; x is the first argument (argument-l1); y is the second

argument (argument-—2).

The prefix specifies the action of the subroutine (see Table 9-1).
argument-l is a number specifying the register in which the first
argument is stored (see Table 9-2). argument-2 is a number specifying
the type of the second argument pointed to by a DAC (R mode) or AP (V
mode) following the subroutine call (see Table 9-2).

Note

In subroutines with only one argument, argument-2
has a slightly different meaning. This is
discussed under the specific subroutines.

Examples: AS22 Adds two single-precision floating-point numbers
(2 arguments).

CS$12 Floats a 16-bit integer to a single-precision
floating point number (1 argument).

A complete list of subroutines of this type follows:

A$21 C$26 D$51 E$27 FSDI11 FSSI11 M$77
AS51 C$27 D$52 ES5S1 FSDI71 FSSI71
AS52 c$51 DS$55 ES52 FSDI77 FSSI77 N$55
AS55 C$52 D$57 E$55 N$77
AS61 C$57 DS61 S57 FSMA1L1 #H$55
AS62 csé6l D$62 ES61 FSMA22 SS21
AS77 C$62 D$67 E$62 FSMA77 LS55 S$51

C$67 DS71 £$66 S$52
C$12 C$75 DS77 ES67 FSMI1L1 M$21 S$55
CSL5 C$76 ES71 FSMI22 MS51 SS6l
C$16 C$77 ES11 ES77 FSMI77 MS$52 S$62
C$21 | ES21 MS55 S$77
C$21G D$21 ES22 FSCL FSMO71 MS61
C$25 D$27 ES26 FSMO77 ™MS62 Z$80

9 - dl January 1988

SECTION 9 PDR3621

Table 9-1. Subroutine Prefix Explanations.

Prefix Meaning Number of Arguments

Addition
Conversion
Division
Exponentiation
Store complex number
Load complex number
Multiplication
Negation
Subtraction
Zero double-precision exponentN

Y
2
S
B
r
a
m
a
o
N
S

M
P
N
P
N
F
E
N
E
D

FORTRAN Support Subroutines (FS)

DI Positive difference 2
MA Maximum 2

MI Minimum 2
MO Remainder 2

SI Manitude of first times sign of second 2

n
NREV. A 9 -

PDR3621 ARITHMETIC OPERATIONS

Table 9-2. Data Type Codes.

Type code Register Type

1 A 16-bit integer (INTEGER*2)
2 FAC Single-precision floating-point number

(REAL or REAL*4)

5 AC1-AC4 Complex number (COMPLEX)
6 DFAC double-precision floating-point number

(DOUBLE PRECISION or REAL*3)

7 A+B Long integer (INTEGER*4)
8 -— Exponent part of a Double-precision number

Note

Some long integer subroutines may need to be
entered or exit in DBL mode (R mode only); this is
noted with the description of these subroutines.

A A register
FAC Floating-point accumulator
AC1-AC4 Complex accumulator addresses AC] to AC4
DFAC Double-precision floating-point accumulator
A+B Concontenated A and B registers

9 - 3 January 1988

SECTION 9 PDR3621

SINGLE ARGUMENT FUNCTIONS

Bach of these subroutines takes a single argument, stored in the
appropriate register, operates on it and stores the result in the same
or another register.

Conversion

P cSxy

Converts the type of the argument in the register identified by x to
the type of the argument identified by y and stores it in the proper
register for y-type variables. For example C$75 converts a long
integer in the AtB register into the real part of a complex number in
the complex accumulator (imaginary part is 0). See Table 9-3 for a
complete list.

Complex Number Manipulation

P 4S55

Stores the contents of the complex accumulator (ACl to AC4) at the
address specified by the DAC or AP following the call.

P 1555

Loads the complex accumulator (AC1 to AC4) from the four words pointed
to by the DAC or AP following the call.

Negation

PP NSxx

Negates the value of the argument in the register specified by x, and
stores it in that same register (see Table 9-3).

Zeroing

P 7589

Clears the exponent part of the double-precision floating-point
accumulator (DFAC). R mode only.

TWO-ARGUMENT SUBROUTINES

These subroutines perform arithmetic operations on two arguments:
addition, subtraction, etc. If the arguments do not have the same data
type, the data type of the result is that of the higher. The data
types, in descending order are:

REV. A 9 - 4

PDR3621 ARITHMETIC OPERATIONS

Table 9-3
Single Argument Subroutines
(Negation and Conversion)

xX y NS_(Negation) CS (Conversion)

1 lL n/a

1 2 Wa R
1 5 wWa R,V
1 6 Wa R
2 1 “na R
2 2 n/a
2 5 wa R,V
2 6 Wa R
2 7 Wa R
5 1 wae R,V
5 2 n/a R,V
5 5 R,V n/a
5 7 n/a R,V
6 1 wWa R
6 2 n/a R
6 6 na
6 7 Wa R,V
7 2 n/a
7 5S Wa R
7 6 Wa R,V
7 7 R (1) R

Not applicable

Used in R-mode only
Used in R or V modes

Argument type (see Table 9-2)
Result type (see Table 9-2)

Notes

l. Exit mode is DBL (R mode).

2. There is also a subroutine CS$21G (R mode only),

which performs the same functions as C$21 without

the use of any floating-point instructions.

9 - 5 January 198¢

SECTION 9 PDR3621

COMPLEX or DOUBLE PRECISION
REAL
LONG INTEGER (INTEGER*4)
16-BIT INTEGER (INTEGER*2)

There are no operations which combine COMPLEX and DOUBLE PRECISION
numbers, i.¢., there are no "56" or "65" subroutines. The result of a
two-argument subroutine is stored in the appropriate register for its
data type (see Table 9-2).

Examples; R mode

CALL A$21
DAC I

Floats the 16-bit integer I and adds it to the contents of the Floating
Point Accumulator (FAC).

V mode

CALL FSMI11

AP 12,SL

Loads I2 into the A register if I2 is less than the current contents of
the A register.

Addition

RP ASsxy

Adds argument of type y, pointed to by the DAC or AP following the
call, to an argument of type x in the appropriate register. See Table
9-4 for a complete list.

Division

BP Ddsxy

Divides the argument of type x in the appropriate register by the
argument of type y, pointed to by the DAC or AP following the call.
See Table 9-4 for a complete List,

Exponentlation

Pp Exy

Raises the argument of type x in the appropriate register to the power
specified by the argument of type y pointed to by the DAC or AP
Following the call. A complete list is given in Table 9-4,

Note

In all modes zero to the zeroth power is one.

REV. A 9 - §

PDR3621 ARITHMETIC OPERATIONS

Multiplication

P Moxy

Multiplies the argument of type x in the appropriate register by the
argunent of type y pointed to by the DAC or AP following the call. See

Table 9-4 for a complete list.

Subtraction

Pe ssxy

Subtracts the argument of type y, pointed to by a DAC or AP following
the call, from an argument of type x in the appropriate register. See

Table 9-4 for a complete list.

Positive Difference

p FSDIxy

Subtracts the argument of type y, pointed to by the DAC or AP following
the call, from the argument of type x in the appropriate register. If
the result is less than zero, the register is cleared. See Table 9-5

for a complete list.

Max imum

PP FsMaAxx

Places the maximum of the register specified by type x and the value of
the argument of type x pointed to by the DAC or AP, into the specified
register. See Table 9-5 for a complete list.

Minimum

PP FSMIxx

Places the minimum of the register specified by type x and the value of

the argument of type x pointed to by the DAC or AP, into the specified

register. See Table 9-5 for a complete list.

Remainder

> FSMoxy

Divides an argument of type x in the appropriate register by an

argument of type y, pointed to by the DAC or AP. The remainder is

placed in the appropriate register. See Table 9-5 for a complete list.

9 - 7 January 1980

SECTION 9 PDR3621

Table 9-4
Two-Argument

Arithmetic Subroutines (First Group)

x y AS S$ MS DS ES
_ . Addition Subtraction Multiplication Division Exponentiation

1 1 R,V
2 1 +R R R R,V R,V

2 2 R,V
2 6 R,V
2 7 R,V R,V
5 1 R,V R,V R,V R,V R,V

5 2 R,V R,V R,V R,V R,V

5 5 R,V R,V R,V R,V R,V
5 7 R,V R,V

6 1 R R R R,V R,V

6 2 R R R R,V R,V

6 6 R,V
6 7 R,V R,V
7 1 R,V R,V

7 7 R(L) R (1) R(1) R(1) R,V(1)

R Used in R mode only
R,V Used in R or V modes

Xx First argument, stored in appropriate register
y Second argument, pointed to by DAC (R mode)

or AP (V mode)

Notes

1. Exit mode is DBL (R mode)

REV. A 9 - 8

| |

“
J

~
J

N
O

o
r

~
J
r
'

w
R

e
e

R

PDR3621 ARITHMETIC OPERATIONS

Table 9-5
Two-Argument

Arithmetic Subroutines (Second Group)

FSMO FSSI FSDI FSMA FSMI

Remainder Sign and Positive Maximum Minimun

Magnitude Difference

R,V R,V R,V R,V
R,V R,V

R,V R,V R,V
R,V R,V R,V R,V R,V

Used in R mode only
R,V Used in R or V modes

X

Y

First argument, stored in appropriate register

Second argument, pointed to by DAC (R mode)

or AP (V mode).

9 - 9 January 1980

SECTION 9 PDR3621

Sign and Magnitude

P FSsIxy

Multiplies the argument of type x in the appropriate register by the
sign of the argument of type y pointed to by the DAC or AP amd stores
the result in the register for type x. See Table 9-5 for a complete
list.

Comparison (R mode only)

P FSCL

Compares the long integer, Ll, in the concatenated A and B registers
with the long integer, L2, pointed to by a DAC following the call.
Control passes as follows;

LL>L2 Next location
L1=L2 Skip one location
L1<L2 Skip two locations

The A and B registers are not modified.

Example: CALL FSCL
DAC L2

-.ereturn here if L1>L2

»-ereturn here if LL=L2

--ereturn here if L1<L2

REV. A 9 - 19

PDR3621 FORTRAN MATRIX SUBROUTINES

SECTION 10

MATHLB (FORTRAN MATRIX SUBROUTINES)

SCOPE OF MATHLB

MATHLB provides a set of subroutines that perform matrix operations,
solve systems of simultaneous linear equations, and generate
pemutations and combinations of elements. See Table 10-1 for a
summary.

SUBROUTINE CONVENTIONS

The following conventions are used in the subroutine descriptions in
this section:

Names

All calls are shown with their double-precision, integer, and complex
counterparts, if applicable, in brackets following the single-precision
name, For exanple, if the single-precision name is XXXX, the
double-precision, integer and complex names respectively are: DXXXX,
IXXXX, and CXXXX.

Parameters

All parameters must be specified. Variables and arrays are assumed to
be of the sane mode as the subroutine (i.e., REAL, DOUBLE-
PRECISION, INTEGER, COMPLEX). Matrix sizes and error flags must be

declared INTEGER. Parameters enclosed in parentheses follow the names.

Arrays

Arrays are expected by MATHIB subroutines to be doubly subscripted
arrays. The dimensions passed as arguments must agree with the array
sizes declared in the calling progran, or the elements cannot be
properly accessed. Except where otherwise noted, when more than a
Single array is passed as an argument, the arrays may be the same array
as in the calling program. For example, in matrix addition, it is
permissible to specify: A=A+A

Work Arrays

Work arrays must always be distinct arrays in the calling progran.

10 - 1 January 1989

SECTION 104 PDR3621

Table 16-1. Summary of Available Matrix Operations

Operation Integer Single Complex Double
Precision Precision

Setting matrix to identify matrix IMIDN MIDN CMIDN DMIDN

Setting matrix to constant matrix IMCON MCON CMCON DMCON

Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL

Matrix Addition IMADD MADD CMADD DMADD

Matrix Subtraction IMSUB MSUB OMSUB DMSUB

Matrix multiplication IMMLT MMLT CMMLT DMMLT

Calculating transpose matrix * IMTRN MTRN CMTRN DMTRN

Calculating adjoint matrix * IMADJ MADJ CMADJ DMADJ

Calculating inverted matrix * MINV CMINV DMINV

Calculating signed cofactor +* IMCOF MCOF CMCOF DMCOF

Calculating determinant * IMDET MDET CMDET DMDET

Solving a system of linear LINEQ CLINEQ DLINEQ
equations

Generating permutations k RM

Generating combinations COB

* For square matrices only

REV. A 1@ - 2

PDR3621 FORTRAN MATRIX SUBROUTINES

cop

COMB computes the next combination of nr out of n elements with a

single interchange each time it is called. ~The first call to comb

returns the combination 1, 2, 3,...,nr. This subroutine is self-
initializing and proceeds through all nt/(nr!*(nenr) !) combinations.
At the last combination, it returns a value of last = 1 and resets
itself. The comb subroutine may be re-initialized by the user by
passing a restrt value of 1 along with new values for n and nr. (The
restrt parameter is optional; if re-initialization is not desired
either omit this parameter from the calling sequence or set it to a

value of 9).

CALL COMB (icomb, n, nr, iwl, iw2, iw3, last, restrt)

Mode Subscript(s) Dimension(s) Comments

icomb Integer 1 nr return

n Integer pass

nv Integer pass

iwl Integer 1 n work

iw2 Integer 1 n work

iw3 Integer l n work

last Integer return

restrt Integer pass
(optional)

Note

The calling program should not attempt to modify icomb, iwl,

iw2, or iw3. For further details see: "Loopless Algorithms
for Generating Permutations, Combinations, and Other
Combinatorial Configurations", Gideon, Ehrlich, Journal of the
ACM, 28, Number 3 (July 1973) pp. 5000-5113.

p> LINE

LINEQ solves the set of n-linear equations in n unknowns represented by

(cmat) (xvect) = (yvect) where cmat is the nxn square matrix of

coefficients, yvect is the nxl column vector of unknowns in which the

solution is stored.

19 - 3 January 1989

SECTION 10 PDR3621

Note

For complex and double-precision numbers, use CLINEQ and DLINEOQ

respectively.

CLINEQ

CALL LINEQO (xvect, yvect, cmat, work, n, npl, ierr)
DLINEQ

Mode Subscript(s) Dimension(s) Comments

xvect * L n returned

yvect * 1 n passed

cmat * 2 n,n passed

work * 2 npl, npl work

n Integer passed

npl Integer passed (=N+1)

ierr Integer returned

* all of the same mode wnich determine the subroutine used.

The user is required to provide as a work area, a nplxnpl matrix work
(npl = ntl). The integer error flag ierr returns one of three possible
values.

 ierr

9 solution found satisfactorily
1 Coefficient matrix singular
2 npl # ntl

If ierr # 9 no modifications are made to xvect.

REV. A 1d - 4

PDR3621 FORTRAN MATRIX SUBROUTINES

p “ADD

MADD adds the nxm matrix mat2 to the nxm matrix matl and returns the
sum in a nxm matrix mats. in component form: mats (i,j) = matl (i,j)
+ mat2 (i,j) as i goes from 1 to n and j goes from 1 to m.

Note

For integer, complex and double-precision numbers use IMADD,

CMADD, and DMADD respectively.

DMADD

CMADD

CALL IMADD (mats, matl, mat2, n, m)

MADD

Mode Subscript (s) Dimension(s) Comments

mats * 2 n,m returned

matl * 2 n,m passed

mat2 * 2 n,m passed

n Integer passed

m Integer passed

* all of the same mode which determines the subroutine used

p> MADI

This subroutine calculates the adjoint of the nxn matrix mati and

stores it in the nxn matrix mato. Each element of the output matrix is

the signed cofactor of the corresponding element of the input matrix.

Note

For integer, complex, or double-precision numbers use IMADJ,

CMADJ, or DMADJ respectively

MADTJ

IMADJ
CALL)}CMADIJ (mato, mati, n, iwl, iw2, iw3, iw4, ierr)

DMADJ

10 - 5 January 1989

SECTION 19 PDR3621

Mode Subscript (s) Dimension(s) Comments

mato * 2 n,n returned

mati * 2 n,n passed

n Integer passed

iwl * 1 n work

iw2 * 1 n work

iw3 * 1 n work

iw4 * 1 n work

ierr Integer returned

* all of the same mode which determines the subroutine used.

The error flag, ierr, may have one of two values:

ierr

g Adjoint successfully constructed

1 n<2 - no adjoint may be constructed

Note

Mato and mati must be distinct.

cor

Calculates the signed cofactor of the element mat (i,j) of the nxn
matrix mat and stores this value in COP. If i = @ and j = @ the
determinant of mat is calculated.

Note

For integers, complex, or double-precision numbers use IMCOF,
CMCOF, or DMCOF respectively.

IMCOF

CMCOF

CALL MCOF (cof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)
DMCOF

O
VREV. A 16 -

PDR3621 FORTRAN MATRIX SUBROUTINES

Mode Subscript(s) Dimension(s) Comments

cof * returned

mat * 2 n,n passed

n Integer passed

iwl * 1 n work

iw2 * 1 n work

iw3 * 1 n work

iw4 * 1 n work

i Integer passed

5 Integer passed

ierr Integer returned

* all of the same mode which detemines the subroutine used.

The integer error flag ierr has two possible values:

jierr

9 Cofactor calculated successfully
1 No cofactor calculated for any of the

following reasons:

1) n<2 - no cofactor possible
2) i= j = n=0 - no determinant
3) i= 9% and j #8 or i # @ and J=8-

subscript error
4) i>n and/or j>n - subscript error

P CON

This subroutine sets every element of the NxM matrix MAT equal to a

constant CON.

Note

For integer, complex, or double-precision numbers use IMCON,

CMCON, or DMCON respectively.

1d - 7 January 19898

SECTION 14 PDR3621

IMCON

MCON
CALL CMCON (mat, n, m, con)

DMCON

Mode Subscript(s) Dimension(s) Comments

mat * 2 n,m returned

n Integer passed

m Integer passed

con | * passed

* all of the same mode which determines the subroutine used.

p> MDET

Calculates the determinant of the nxn matrix mat and stores it in det.

Note

For integer, complex, or double-precision numbers use IMDET,
CMDET, or DMDET respectively.

IMDET

MDET

CALL CMDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)
DMDET

Mode Subscr ipt(s) Dimension(s) Comments

det * returned

mat * 2 n,n passed

n Integer passed

iwl * 1 n work

iw2 * 1 n work

iw3 * 1 n work

iw4 * L n . work

ierr Integer returned

* all of the same mode which determines the subroutine used.

REV. A 19 - 8

PDR36 21 FORTRAN MATRIX SUBROUTINES

The integer error flag ierr may have one of two values:

ierr

8 Determinant formed successfully
1 n = 9 - no determinant possible

p> MIDN

This subroutine sets the nxn matrix mat equal to the nxn identity

matrix. That is,

MAT (I,J)

r
E

=
u

=—C
(U™

]

M
e
i

ih
K
W

q
a

For integer, complex, or double-precision numbers use IMIDN,

CMIDN, or DMIDN respectively.

IMIDN

MIDN

CALL CMIDN (mat, n)

DMIDN

Mode Subscr ipt(s) Dimension(s) Comments

mat * 2 n,n returned

n Integer passed

* the mode of this argument determines which subroutine is used

and the representation of 1 in matrix.

mode subroutine representation of 1

integer | IMIDN 1

single-precision MIDN 1. (SP)

compl ex CMIDN (1.,@) (each SP)

double-precision DMIDN 1. (DP)

13 - 99 January 1989

SECTION 19 PDR3621

P MINV

Calculates the inverse of the nxn matrix mati and stores it in mato if
successful. (The inverse of mati is mato if and only if

mati*mato = mato*mati = I

where * denotes matrix multiplication and I is the nxn identity
matrix). The user must supply a npl x npn scratch matrix work, where
npl = ntl and npn = ntn.

Note

For complex or double-precision numbers use the subroutines
CMINV or DMINV respectively. There is no integer form of this
Subroutine as there is no guarantee that the inverse of an
integer matrix will be an integer matrix.

CMINV

CALL

4

MINV (mato, mati, n, work, npl, npn, ierr)
DMINV

Mode Subscr ipt(s) Dimension(s) Comments

mato * 2 n,n returned

mati * 2 n,n passed

n Integer passed

work * 2 npl,npn work

npl Integer passed

npn Integer passed

ierr Integer returned

* all of the same mode which determines which subroutine is used.

The integer error flag ierr will return one of the following values.

REV. A 19 - 1g

PDR3621 FORTRAN MATRIX SUBROUTINES

ierr

Q matrix inverted - inverted matrix stored in mato.

1 matrix is singular - no inversion possible, mato is

filled with zeroes.
2 npl # n+l and/or npn_¥ ntn — return from subroutines

with no calculationsperformed.

P LT

This subroutine multiplies the nlxn2 Matrix matl (on the left) by the

n2xn3 matrix matr (on the right) andstores the resulting nixn3 product

matrix in matp.

Note

For integers, complex, or double-precision numbers use IMMLT,

CMMLT, or DMMLT respectively.

IMMLT

MMLT

CALL \CMMLT ((matp, matl, matr, nl, n2, n3)

. DMMLT

Note

matp must be distinct from matl and matr, although matl and

matr may be the same. For example:

CALL MMLT (A, B, C, Nl, N2, N3) LEGAL

CALL MMLT (A, B, B, N, N, N) LEGAL
CALL MMLT (A, A, A, N, N, N) ILLEGAL

CALL MMLT (A, A, B, N, N, N) TLLEGAL

CALL MMLT (A, B, A, N, N, N) ILLEGAL

Mode Subscript(s) Dimension(s) Comments

matp * 2 n1,n3 returned

mat] * 2 nl,n2 passed

matr * 2 n2,n3 passed

nl Integer passed

n2 Integer passed

n3 Integer passed

* all of the same mode which determines which subroutine is used.

10 - ll January 198

SECTION 14 PDR3621

P SCL

This subroutine multiplies the nxm matrix mati by the scalar constant
SCON and stores the resulting nxm matrix inmato. By components scalar
multiplication is understood to be: mato (i,j)= scon*mati (i,j) for i
from 1 ton, j from 1 tom.

Note

For integers, complex, or double-precision numbers use IMSCL,
CMSCL, or DMSCL.

IMSCL
MSCL

CALL CMSCL (mato, mati, n, m, scon)
DMSCL

Mode subscr ipt(s) Dimension(s) Comments

mato * 2 n,m returned

mati * 2 n,m passed

n Integer passed

m Integer passed

scon * . passed

* all of same mode which determines which subroutine is used.

REV. A 19 - 12

PDR3621 FORTRAN MATRIX SUBROUTINES

P suB

Subtracts the nxm matrix mat2 from the nxm matrix matl and stores the

difference in the nxm matrix matd.

Note

For integers, complex, or double-precision numbers use IMSUB,

CMSUB, or DMSUB respectively.

IMSUB

MSUB

CALL \}CMSUB((matd, matl, mat2, n, m)

DMSUB

Mode Subscr ipt(s) Dimension(s) Comments

matd * 2 n,m returned

matl * 2 n,m passed

mat2 * 2 n,m passed

n Integer passed

m Integer passed

* all of the same mode which determines the subroutine

to be used.

P MTRN

Calculates the transpose of the nxn matrix mati and stores it in the

nxn matrix mato. The relationship between mati and mato is: mato
ed

(i,j) = mati (j,i) for i, j = 1 ton. mato and mati must be distinct.

Note

For integers, complex, or double-precision numbers use IMTRN,

CMTRNM, or DMTRN respectively.

19 - 13 January 1939

SECTION 10 PDR3621

IMTRN
MTRN

CALL }CMTRN {(mato, mati, n)
DMTRN

Mode Subscript (s) Dimension(s) Comments

mato * 2 n,n returned

mati * 2 n,n passed

n Integer passed

* all of the same mode which determines the subroutine used.

p> PERM

PERM computes the next permutation of n elements with a_ single inter-
change of adjacent elements each time it is called. The first call to
PERM returns the permutation 1, 2, 3,..., n. This subroutine is
Self-initializing and proceeds through all n! pemutations. At the
last permutation it returns a value of last = 1 and resets itself. The
PERM subroutine may be re-initialized by the user by passing a new
value of n or by passing the restrt parameter with a value of 1. (The
restrt parameter is optional, if re-initialization is not desired
either omit this parameter from the calling sequence or set it to a
value of @.) The calling program should not attempt to modify iperm,
iwl, iw2, or iw3.

CALL PERM (iperm, n, iwl, iw2, iw3, last, restrt)

Mode Subscript(s) Dimension(s) Comments

iperm Integer 1 n returned

n Integer pass

iwl Integer 1 n work

iw2 Integer 1 n work

iw3 Integer 1 n work

last Integer return

restrt Integer passed (optional)

REV. A 19 - 14

PDR3621 FORTRAN MATRIX SUBROUTINES

For further details see:

"Toopless Algorithms for Generating Permutations, Combinations,
and Other Combinatorial Configurations," Gideon, Ehrlich,
Journal of the ACM, 20, Number 3 (July 1973) pp. 5090-5113.

January 1980

PDR3621 APPLICATION LIBRARY (APPLIB)

SECTION 11

APPLICATION LIBRARY (APPLIB)

GENERAL DESCRIPTION

APPLIB is a user-oriented library which provides users with a set of

service routines, designed for their ease-of-use. In many cases, the

APPLIB routines call a lower-level routine filling in arguments that

the caller isn't concerned about. The routines may also reformat the

data that the lower-level routine returns. The use of APPLIB routines

avoids a duplication of effort and provides a consistent interface for

the ternninal user.

All APPLIB routines are written as FORTRAN functions wnich return one

of the following: a status indication (.TRUE. or .FALSE.), an

appropriate value or an alternate value or format of a returned
argument. The caller is never returned a "CODE" type argument which
must then be decoded. All error detection, reporting, and, if

possible, recovery are performed by the routine which returns only an

indication of success or failure. This simplified error reporting

scheme assures the user that the error is reported and all possible

recovery procedures have been tried. In most cases, the reason for

failure is an “irrelevant difference" and is ignored.

APPLIB ROUTINES

The categories and functions provided by the Application Library are:

String Manipulation Routines

User Query Routines
System Information Routines
Mathematical Routines
Conversion Routines
File System Routines
Parsing Routines

String Manipulation Routines

Compare two strings for equality. CSTRSA
Compare two substrings for equality. CSUBSA
Fill a string with a character (e.g. Fill FILLSA

a name buffer with spaces).
Fill a substring with a given character. FSUBSA
Get a character from a packed string. GCHRSA
Left justify, right justify or center a JS'TRSA
string within a field.
Locate one string within another. LSTRSA

ll - 1 January 1989

SECTION 11 PDR3621

Locate one substring within another.
Move a character fron one packed string to
another.

Move one string to another.
Move one substring to another.
Determine the operational length of a string.
Rotate string left or right.
Rotate substring left or right.
Shift string left or right.
Shift substring left or right.
Test for treename.
Determine string type.

User Query Routines

Prompt and read a name.
Pranpt and read a number (binary, decimal,
octal, or hexadecimal) into an INTEGER*4
variable.
Ask question and obtain a yes or no answer.

System Information Routines

CPU time since login.
Today's date, American style.
Today's date as day of year ("Julian" date).
Disk time since login.
Today's date, European (Military) style.
Time of day.

Mathematical Routines

Generate random number and update "seed".
This generator is based upon a 32-bit word
Size and uses the Linear Congruential Method.
Initialize random number generator "seed",

Conversion Routines

Convert a string from lower case to upper
case or upper to lower.

Convert ASCII number to binary.
Convent binary number to ASCII.
ENCODE function that adjusts the "FORMAT" to
make the number printable if possible. If
not, the field is filled with asterisks.

REV. A 11 - 2

LSUBSA
MCHRSA

MSTRSA
MSUBSA
NLENSA
RSTRSA
RSUBSA
SSTRSA
SSUBSA
TREESA
TYPESA

RNAMSA
RNUMSA

YSNOSA

CTIMSA
DATESA
DOFYSA
DTIMSA
EDATSA
TIMESA

RANDSA

RNDISA

CASESA

CNVASA
CNVBSA
ENCDSA

PDR3621

APPLICATION LIBRARY (APPLIB)

Convert the DATMOD field (as returned by RDENS$) FDATSA

Convert the DATMOD field (as returned by RDENS$$) FEDTSA

in different format than FDATSA
Convert the TIMMOD field (as returned by RDENSS). FTIMSA

File System Routines

Function Subroutine

Close a file. CLOSSA

Delete a file. DELESA

Check for file existence. EXSTSA

Position to end-of-file. GENDSA

Open supplied name. OPENSA

Read name and open. OPNPSA

Open supplied name with verification and delay. OPNVSA

Read name and open with verification and delay. OPVPSA

Position file. POSNSA

Return position of file. RPOSSA

Rewind file. RWNDSA

Open a scratch file with unique name. - TEMPSA

Truncate file. TRNCSA

Scan the file system tree structure. TSCNSA

Check for file open. UNITSA

Parsing Routine

Parse PRIMOS type command line. CMDLSA

NAMING CONVENTIONS

All APPLIB routines follow a consistent naming convention designed to

avoid the possibility of a conflict with user written routines and

system routines. All APPLIB routines have a four letter mnemonic name

and the suffix "SA". For example, the routine to open a temporary file

is named "TEMPSA". Many routines have options which are specified by

named "parameter" keys which all begin with the prefix "AS".

Subroutines that are used internally by APPLIB routines have a_ suffix

of "SSA". These should not be used under ordinary circumstances.

All “parameter" keys are defined in a $INSERT file named SYSCOM>ASKEYS.

The key names, following the "A$" prefix are three or four letter

mnemonics specifying the allowable options for the various routines.

In addition, this file supplies all the appropriate FUNCTION type

declarations for the APPLIB routines, A complete listing of

SYSCOM>ASKEYS is included at the end of this section.

APPLIB and

in UFD=LIB.

its V-mode version, VAPPLB, exist as independent libraries

ll - 3 January 19808

SECTION 11 PDR3521

LIBRARY IMPLEMENTATION AND POLICIES

The routines have been coded to make them easily callable from most
other languages, including PL/I and 1977 ANST FORTRAN, both of which
can automatically generate string length arguments following string
arguments. As a result, in the argument pair name, nanlen, the name is
often updated by an APPLIB routine, but the nanlen argument is never
modified. If the namlen argument is not zero or greater, an error
message is displayed on the user terminal. Where applicable, the
function value returned is .FALSE.. The function NLENSA can be used to
determine the operational length of a returned name.

All APPLIB routines which either accept keyS as arguments or call other
APPLIB routines which do, use the SYSCOM>ASKEYS file to define those
keys. Also, these routines do not take advantage of any particular
numerical values these keys may have, should it become necessary either
to change these values or to add new keys with numerical values which
do not fit the previous pattern. For example, there are no camputed
GOTO'S on keys and no range checks for validity of a key. In this way,if a new SYSCOM>ASKEYS file is created, both the user programs amd the
routines they call will always agree on the meaning of a given key.
The same is true of the declared types of the APPLIB functions.

Library Building

All routines are compiled into a Single binary file which is then
converted into the appropriate library file with the EDB utility. At
present, the only difference between the R-mode and v-mode build
procedures is the FTN compile option used. For APPLIB, all routines
are compiled for 44R-mode loading. for VAPPLB, all routines are
Compiled for 64v-mode loading (SHG). In addition, all routinesincluded in VAPPLB are pure procedure and may be loaded into the shared
portion of a shared procedure.

Since several of the APPLIB routines call other APPLIB routines, the
load order is important. This order is specified in the command files
"C_APPLIB" and "C_VAPPLB" located in UFD = APPLIB.

STRING MANIPULATION ROUTINES - DETAILED DESCRIPTION

The string manipulation routines are designed to facilitate the
handling of character strings. All of these routines Operate on packed
Strings, unless stated otherwise. Most of the routines in this section
require that the physical length of a string (in characters) be passed
as an argument. The physical length is the actual storage allocated
for that string in bytes or characters (including any trailing blanks).
The operational length of a string does not include trailing blanks.
Since the length of a string is Specified as an INTRGER*2 variable, the
maximum string length is 32,767 characters.

REV. A 11 - 4

PDR3521 APPLICATION LIBRARY (APPLIB)

The majority of routines that operate on entire strings first truncate

then to their operational length. The routines that operate on

substrings treat any trailing blanks as part of the substring.

All string length specifications and substring delimiting character

positions are checked for validity and must conform to the following

rules.

1. Physical string length specifications must be greater than or

equal to zero. A value of zero indicates a null or empty

string.

2. Substring delimiting character positions must be greater than

or equal to zero. The length of the substring must be less

than or equal to the physical string length. The beginning

character position must be less than or equal to the ending

character position. A value of zero for either the starting or

ending character position indicates a null substring.

If these rules are violated, an error message will be displayed and the

logical functions will be .FALSE..

> cSTRSA

CSTRSA is a logical function used to compare two strings for equality.

The function will be .TRUE. if each character in string a matches the

corresponding character in string b, or if both strings aré null (i.e.,

length equal to zero). Otherwise,the function will be .FALSE.. Only

the operational lengths are used in the comparison (i.e., trailing

blanks are ignored).

LOG = CSTRSA(a,alen,b,blen)

a String to be compared, packed two characters per word.

alen Length of a, in characters (INTEGER*2). Length must

be zero or greater.

b String to be compared against, packed two characters per

word.

blen Length of b, in characters (INTEGER*2). Length must be

zero or greater.

APPLIB CALLS: CSUBSA, NLENSA

11 - 5 January 1980

SECTION 11 PDR3621

PB csuBsa

CSUBSA is a logical function used to compare Substrings for equality.

LOG = CSUBSA(a,alen,afc,alc,b,blen ,bfc ,blc)

a Array containing substring to be compared, packed two
characters per word, Data type does not matter.

alen Length of a, in characters (INTEGER*2). Length must be
zero or greater.

afc First character position of substring in a (INTEGER*2) .

alc Last character position of substring in a (INTEGER*2) .

b Array Containing substring to be compared against, packed
two characters per word. Data type does not matter.

blen Length of b, in chatacters (INTEGER*2), must be zero or
greater.

bfc First character position of substring in b (INTEGER*2) .

ble Last character position of substring in b (INTEGER*2) .

If each character in the a substring matches the corresponding
character in the b substring, or both substrings are null (i.e., length
equal to zero) the function will be .TRUE.. If two corresponding
characters do not match, or if the lengths of the substrings are not
equal the function will be .FALSE..

APPLIB CALLS: None

 FILLSA

FILLSA is an INTEGER function which fills the name buffer with the fill
character supplied. The function is INTEGER, but value is always @.

INT =FILLSA (name ,namlen,char)
CALL FILLSA(name ,nanlen ,char)

name Name of buffer to fill packed two characters
per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2) .

char Fill character in FORTRAN Al format. Data type
does not matter.

APPLIB CALLS: None

REV. A ll - 6

PDR3621 APPLICATION LIBRARY (APPLIB)

> FsuBSA

FSUBSA is a logical function used to fill a character substring with a

specified character. The substring delimited by fchar and Iichar are

filled with the character specified in filchar. The string parameters

are checked for validity and if an error is found, the function will be

.FALISE. and a message is printed. If all parameters are valid, the

function will be .TRUE..

LOG = FSUBSA(string, length, fchar, lchar, filchar)

CALL FSUBSA(string, length, fchar, Ichar, filchar)

string string containing substring to be filled, packed two

characters per word. Data type does not matter.

length length of string in characters (INTEGER*2).

fchar first character position of substring (INTEGER*2).

Ichar last character position of substring (INTEGER*2).

filchar fill character in FORTRAN Al format. Data type does
not matter.

APPLIB CALLS: None

> sCHRSA

GCHRSA is an INTEGER function which extracts a single character from a

packed string. The function value will be the accessed character in

FORTRAN Al format. The character returned will be left-justified and

padded with blanks.

INT GCHRSA(farray,fchar)
CALL GCHRSA(farray, fchar)

farray Source packed array. Data type does not matter.

fchar Character position in farray to be returned

(INTEGER*2) .

This routine replaces the FORTRAN statement:

CHAR = FARRAY (FCHAR)

When FARRAY is declared LOGICAL*L (IBM FORTRAN) or of a one character

data type.

APPLIB CALLS: None

11 - 7 January 1980

SECTION 11 PDR3621

> ISTRSA

JSTRSA is a logical function used to left justify, right justify or
center a string within itself.

LOG = JSTRSA(key,string,length)
CALL JSTRSA(key,string ,length)

key Determines direction of justification, possible values
are:

ASRGHT - right justify.

ASLEFT - left justify.

ASCNTR - center.

string String to be justified, packed two characters per word.
Data type does not matter.

length Length of string in characters (INTEGER*2), must be .GE.
zero.

The function will be .TRUE. if justification is successful, .PFALSE.
if the string length is less than zero or if a bad key is used.

APPLIB CALLS: NLENSA, FILLSA, MSUBSA, GCHRSA

p> LSTRSA

LSTRSA is a logical function used to locate one string within another.

LOG = LSTRSA(a,alen,b,blen,fcp,lcp)
CALL LSTRSA(a,alen,b,blen,fcp,lcp)

a String to be located, packed two characters per word.
Data type does not matter.

alen Length of a, in character (INTEGER*2) .

b String to be searched, packed two characters per
word. Data type does not matter.

blen Length of b, in characters (INTEGER*2).

fep First character position in b of substring that
matches string a (INTEGER*2).

lep Last character position in b of substring
that matches string a (INTEGER*2) .

REV. A ll - 8

PDR3621 APPLICATION LIBRARY (APPLIB)

LSTRSA will search string b for the first occurrence of string a. TE
string a is found, the function will be .TRUE. amd fcp and lcp will be
equal to the character positions of the substring in b that matches
string a. If string a is not found or if either string is null (i.e.,
length equal to zerol the function will be .FALSE. and fep and Icp
will be equal to zero. Each string is logically truncat to its
operational length before the search is performed (i.e., trailing
blanks are ignored).

APPLIB CALLS: LSUBSA, NLENSA

p> LSouBSA

LSUBSA is a logical function used to locate one substring within

another.

LOG = LSUBSA(a,alen,afc,alc,b,blen,bfc ,blc,fcp,lcp)
CALL LSUBSA(a,alen,afc,alc,b,blen ,bfc,blc,fcp,lcp)

a Array containing substring to be located, packed two
characters per word. Data type does not matter.

alen Length of a, in characters (INTEGER*2).

afc First character position of substring in a (INTEGER*2).

alc Last character position of substring in a (INTEGER*2).

b Array containing substring to be searched packed two

characters per word. Data type does not matter.

blen Length of b, in characters (INTEGER*2).

bfc First character position of substring in b (INTEGER*2).

ble Last character position of substring in b (INTEGER*2).

fep First character position in b of substring that matches

substring in a (INTEGER*2).

lep Last character position in b of substring .that matches
substring in a (INTEGER*2) .

LSUBSA searches the substring contained in bfor the first occurrence
of the substring contained in a. If a match is found, fcp and lcp will
be equal to the character positions in b of the matchingsubstring and
the function is .TRUE.. If a matching substring cannot be found or if
either substring is null (i.e. length equal to zero) the function will
be .FALSE. and fcp and icp will be equal to zero.

APPLIB CALLS: None

11 - 9 January 1989

SECTION 11 PDR3621

BP MCHRSA

MCHRSA is an INTEGER Eunction which moves a character from one packed
string to another.

CALL MCHRSA(tarray,tchar,farray,fchar)
I*2= MCHRSA(tarray,tchar , farray, fchar)
I*4= MCHRSA(tarray,tchar,farray,fchar)

tarray Receiving array of characters packed 2 per word, first
character on the left. This constitutes an APPLIB
standard string. (typeless)

tchar Character position in tarray of received character.
(INTEGER*2)

farray Source string. Data type does not matter.

fchar Source character position in farray. (INTEGER*2)

This routine replaces the FORTRAN statement:

TARRAY (TCHAR) = FARRAY (FCHAR)

when TARRAY and FARRAY are declared LOGICAL*1 (IBM FORTRAN) or of a one
character data type. Only the TCHAR'th character in TARRAY is
replaced.

The function value will be the character that was moved in FORTRAN Al
format, that is, the character in the left-most byte, right padded with
blanks.

APPLIB CALLS: None

REV. A ll - 19

PDR3521 APPLICATION LIBRARY (APPLI3)

p MSTRSA

MSTRSA is an integer function used to move the source string to the

destination string.

INT = MSTRSA(a,alen,b,blen)

CALL MSTRSA(a,alen,b,blen)

a Source string, packed two characters per word.

Data type does not matter.

alen Length of a, in characters (INTEGER*2).

b Destination string, packed two characters per
word. Data type does not matter.

blen Length of b, in characters (INTEGER*2).

If the source string is longer than the destination string it will be
truncated. If it is shorter, it will be padded with blanks. The
source and destination strings may overlap. The function value will be
equal to the number of characters moved (excluding blank padding). If
either string is null (i.e., length equal to zero) no characters are
moved and the function value will be equal to zero.

APPLIB CALLS: MSUBSA

> vsUBSA

MSUBSA is an integer function used to move the source substring
contained in a to the destination substring contained in b.

INT = MSUBSA(a,alen,afc,alc ,b,blen ,bfc ,blc)
CALL MSUBSA(a,alen,afc,alc,b,blen,bfc,blc)

a Array containing source substring, packed two characters
per word. Data type does not matter.

alen Length of a, in characters (INTEGER*2).

afc First character position of substring in a packed two
characters per word. Data type does not matter.

alc Last character position of substring in a (INTEGER*2).

b Array containing destination substring, packed two
characters per wrd. Data type does not matter.

blen Length of b, in characters (INTEGER*2).

ll - ll January 1988

SECTION ll PDR3621

bfc First character position of substring in b (INTEGER*2).

ble Last character position of substring in b (INTEGER*2).

If the source substring is longer than the destination substring it
will be truncated. If it is shorter it will be padded with blanks.
The source and destination substrings may overlap.

If either substring is null (ie. length equal to zero) no characters
are moved and the function will be equal to zero. Otherwise it is
equal to the number of characters moved (excluding blanks used for
padding) .

APPLIB CALLS: MCHRSA

> NLENSA

NLENSA is an INTEGER*2 function which returns, as its function value,
the operational length (not including trailing blanks) of the name in
name.

I*2= NLENSA (name ,namlen)
CALL NLENSA(name ,nanlen)

name Name buffer to be tested, packed two characters
per word. Data type does not matter.

nanlen Length of name in characters. (INTEGER*?2)

APPLIB CALLS: None

BP RSTRSA

RSTRSA is a logical function used to rotate a character string left or
right. The string is truncated to its operational length before the
rotate is performed, therefore trailing blanks are not included in
count. If length is less than zero, the function will be .FALSE.,
otherwise function will be .TRUE..

LOG = RSTRSA(String, length, count)
CALL RSTRSA(string, length, count)

string String to be rotated, packed two characters per word.
Data type does not matter.

length Length of string in characters (INTEGER*2) .

count Number of positions to rotate string. Negative count
causes left rotate, positive count right rotate
(INTEGER*2) .

REV. A ll - 12

PDR3621 APPLICATION LIBRARY (APPLI8)

This routine uses an algorithn that minimizes temporary storage and
execution time. Qne word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
Characters of the string. A character is moved directly from its
original position to its final destination position.

APPLIB CALLS: MCHRSA, NLENSA

> RSUBSA

RSUBSA is a logical function used to rotate a character substring left
or right. Only the characters of the substring, contained in string
are affected. The parameters are checked for validity and if there is
an error, a message is printed and the function will be .FALSE.. If no
error occurs, the function will be .TRUE..

LOG = RSUBSA(string, length, fchar, lchar, count)
CALL RSUBSA(String, length, fchar, lchar, count)

string String containing substring to be rotated, packed two
characters per word. Data type does not matter.

length Length of string in characters (INTEGER*2).

fchar First delimiting character position oof substring
(INTEGER*2) .

lchar Last delimiting character position oof substring
(INTEGER*2) .

count Number of positions to rotate substring. Negative
count causes left rotate, positive count causes right
rotate (INTEGER*2).

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character is moved directly from its
original position to its final destination position.

APPLIB CALLS: MCHRSA

P ssTRsA

SSTRSA is a logical function used to shift a character string left or
right. The string is shifted the specified number of characters am
the vacated positions are padded with the specified fill character.
Trailing blanks are not included in the shift. If length is less than
zero, an error messajye will be printed and the function will be
-PALSE., and no characters are shifted. If no error occurs, the

function will be .TRUE..

Ll - 13 January 1989

SECTION 11 PDR3621

LOG = SSTRSA(string, length, count, filchr)
CALL SSTRSA(string, length, count, filchr)

string Character string to be shifted, packed two characters
per word. Data type does not matter.

length Length of string in characters. Must be greater than
or equal to zero (INTEGER*2).

count Number of positions to shift string. Negative count
causes left shift, positive count causes right shift
(INTEGER*2) .

filchr Fill character which will pad the vacated positions.
Filchr is specified in Al format. Data type does not
matter.

APPLIB CALLS: FSUBSA, MCHRSA, NLENSA

p> SSUBSA

SSUBSA is a logical function used to shift a character substring left
or right. The substring is shifted the specified number of characters
and the vacated positions are padded with the specified fill character.
Any trailing blanks are inclujed in the shift. The parameters are
checked for validity and an error will cause a message to be printed
and the function will be .FALSE.. If no error occurs, the function
will be .TRUE.. If the substring is null, or length equal to zero,
there will be no shift.

LOG = SSUBSA(string, length, fchar, lchar, count, filchar)
CALL SSUBSA(string, length, fchar, lchar, count, filchar)

string String containing substring to be shifted, packed two
characters per word. Data type does not matter.

length Length of string in characters (INTEGER*2).

fohar First delimiting character position of substring
(INTEGER*2) .

lchar Last delimiting character position of substring

(INTEGER*2) .

count Number of positions to shift substring. Negative count
causes left shift, positive count causes right shift
(INTEGER *2) .

REV. A ll - 14

PDR3521 APPLICATION LIBRARY (APPLIB)

filchar Fill character with which to pad the vacated positions.
Filchar is specified in Al format. Data type does not
matter.

APPLIB CALLS: FSUBSA, MCHRSA

> TREESA

TREESA is a logical function which scans a File name and determines if
it is a tree name. If it is a tree name, the function is .TRUE. and
if not, it is .FALSE.. In addition, the final name (or entire name if
not in a tree) is located in the string. Note that if thename is
empty, FSTART=FLEN=0.

LOG = TREESA(name ,namlen,fstart,fleni

name Array containing file name, packed two characters per

word. Data type does not matter.

nanlen Length of name in characters (INTEGER*2).

Estart Character position in name of first character in final

name. (INTEGER*2)

flen Length of final file name in characters (INTEGER*2).

APPLIB CALLS: GCHRSA, NLENSA

p> TYPESA

TYPESA is a logical function which will test a character string to
determine if it can be interpreted as the type specified by key.

LOG = TYPESA(key,string ,length)

key String type to be tested for, possible keys are:

ASNAME can string be interpreted as a name,

ASBIN can string be interpreted as a binary
number,

ASDEC can string be interpreted as a decimal
nunber ,

ASOCT can string be interpreted as an octal
nunber ,

ASHEX can string be interpreted as a
hexadecimal number.

11 - 15 January 198d

SECTION ll PDR3621

string String to be tested, packed two characters
per word. Data type does not matter.

length Length of string, in characters (INTEGER*2).

A string is interpreted as a name if it contains at least one

alphabetic or special character (other than a leading + or -) a binary
number if it contains only the digits 9 - 9, a decimal number if it
contains only the digits @- 9. It is an octal number if it contains
only the digits @ - 7, and is a hexadecimal number if it contains only
the digits @- 9 and the characters A - F (upper case only). A number
inay have a leading sign and any number of blanks between the sign amd
the first digit. However imbedded blanks within the number itself are
not allowed. A number must also have at least one digit.

Leading and trailing blanks are ignored. The function is’ .TRUE. if
string satisfies the conditions required by the key used; otherwise it
is .FALSE. A null string (i.e., length equal to zero) will only return
a function value of true if key is ASNAME.

APPLIB CALLS: GCHRSA, NLENSA

USER QUERY ROUTINES - DETAILED DESCRIPTION

The user query routines provide a convenient means to input data from
the user's terminal. Each routine has the ability to prompt the
terminal user with a supplied message and then process his response.

> RNAMSA

RNAMSA is a logical function which prints the supplied message prompt
and appends the characters ":" to it. It then readS a user response
from the command stream. If the response is not a legal nane, or if
the nane provided is too long for the supplied buffer, an error message
will be typed and the message prompt will be repeated. If no name is
provided, the value of the function will be .FALSE.. If a legal name
is provided, the function value will be .TRUE.. The caller should be
aware that COMANL and RDIKSS (Section 5) are called to read the user

response, amd therefore the previous command line entered is
unavailable.

LOG = RNAMSA(msg ,msglen ,namkeyname ,namlen)

msg Message text, packed two characters per word.

Data type does not matter.

msglen Message length in characters (INTEGER*2).

REV. A LL - 15

PPR3621 APPLICATION LIBRARY (APPLIB)

namkey ASFUPP, force upper case.

ASUPLW, do not force upper case.

ASRAWI, read line as raw uninterpreted text
(keys cannot be combined).

name Returned name, packed two characters per word. Data

type does not matter.

nanlen Length of nane buffer in characters (.LE. 80)

(INTEGER*2) .

APPLIB CALLS: None

P RvUMSA

RNUMSA is a logical function used to input numeric data from the user
terminal. The routine prints the user-supplied message and appends the
character ":" to it. It then reads a user response and if the
response is not a legal number or if the number provided has too many
digits for an INTEGER*4 value, the error will be reported and the
message will be repeated. If no number is provided, the value of the
function will be .FALSE. and VALUE=%. If a legal number is provided,
the function will be .TRUE. and the value will be returned in value.
The caller should be aware that COMANL and RDIKSS (Section 5)are
called to read the user response, and therefore the previous command
line is unavailable. Numbers may be immediately preceded by "+" or
"~". Binary nunbers may have a maximum of 31 digits, octal a maximun
o£ 11 digits, decimal a maximum of 19 digits and hexadecimal a maximun
of 3 digits. Negative binary octal, or hexadecimal should not be
entered in 2's complenent, but the sane as a negative decimal number.

LOG = RNUMSA(msg ,msglen ,nunkey,value)

nsg Message text, packed two characters per word.
Data type does not matter.

msglen Message lengto in characters (INTEGER*2).

nunkey ASDEC, decimal.

ASBIN, binary.

ASOCT, octal.

ASHEX hexadecimal.

value Returned value.

APPLIB CALLS: None

ll - 17 January 1980

SECTION 11 PDR3621

B YSNOSA

YSNOSA is a logical function which prints the supplied message and

appends the character "?" to it. It then reads a user response. If
the answer is "YES" or "OK", the function value is .TRUE.. If the
answer is "NO", the function value is .FALSE.. If an illegal answer is
provided or if no default is accepted, the message will be repeated.
User responses may be abbreviated to the first 1 or 2 characters.

LOG = YSNOSA(msg ,msgylen,defkey)

msg Message text, packed two char.tters per word.
Data type does not matter.

msglen Message length in characters (INTEGER*2).

defkey ASNDEF, no default accepted.

ASDNO, default = "NO".

ASDYES, default = "YES".

APPLIB CALLS: None

REV. A LL - 18

PDR3621 APPLICATION LIBRARY (APPLIB)

SYSTEM INFORMATION ROUTINES - DETAILED DESCRIPTION

The system information routines return the systen date, system time,

CPU time and disk time in character string format.

BP crimsa

CTIMSA is a Double Precision function wiich returns CPU time elapsed

since login, in seconds, and as centisecomds in the cputim argument.

R*8 = CTIMSA(cputim)
CALL CTIMSA(cputim)

cputim CPU time in centiseconds (INTEGER*4).

The function value will be CPU time elapsed since login, in seconds.

This value may be received as either REAL*4 or REAL*8.

APPLIB CALLS: None

> DATESA

DATESA is a Double Precision function which returns the date in the

form "DAY, MON DD YEAR". The value of the function is the date in the
form "MM/DD/YY". This value must be received as REAL*8.

Note that this routine is good for the period January 1, 1977, through
December 31, 20756.

R*3 = DATESA (date)

CALL DATESA(date)

date Date in the form "DAY, MON DD YEAR". Data type does
not matter as long as it is at least 16 characters lon.

APPLIB CALLS: None

> DdOFYSA

DOFYSA is a Double Precision function which returns the day of the year
in the form "DDD". The value of the function is the date in the fomn
YR.DDD suitable for printing in FORMAT F6.3. This value can be
received as either REAL*4 or REAL*8. This routine is good for the
period January 1, 1977 through December 31, 2076.

R*8 = DOFYSA(dofy)
CALL DOFYSA(dofy)

ll - 19 January 1980

SECTION 11 PDR3621

dofy Day of year in the form "DDD" ("Julian" date). ‘The
data type does not matter as long as it is at least
4 characters long.

APPLIB CALLS: None

> vriMsa

DTIMSA is a Double Precision function which returns disk time since
login as INTEGER*4 centiseconds in the dsktim argument. The function
value will be disk time since login in seconds. This value may be
received as either REAL*4 or REAL*S8.

R*¥*8 = DTIMSA(dsktim)
CALL DTIMSA(dsktim)

dsktim Disk time in centiseconds (INTEGER*4).

APPLIB CALLS: None

> EDATSA

EDATSA is a Double Precision function which returns the date in the
European (military) form DAY, 'DD MON YEAR' in edate. The value of the
function is the date in the form 'DD/MM/yy'. This value must be
received in a REAL*8 variable. The routine is good for the period 1
January 1977 through 31 December 2076.

R*3 = EDATSA(edate)

CALL EDATSA(edate)

edate Date in the form "DAY, DD MON YEAR".

The type of the edate array does not matter as long as it is at least
16 characters long.

APPLIB CALLS: DATESA

> TIMESA

TIMESA is a Double Precision function which returns the time of day in
the form HR:MN:SC. The value of the function is the time of day in
decimal hours. This value may be received as either REAL*4 or REAL*3.

REV. A 1l - 20

PDR3621 APPLICATION LIBRARY (APPLIB)

R*8 = TIMESA(time)
CALL TIMESA(time)

time Time of day in the form HR:MN:SC packed two characters
per word. Data type does not matter as long as it is
at least 8 characters long.

APPLIB CALLS: None

MATHEMATICAL ROUTINES — DETAILED DESCRIPTION

The mathematical routines provide miscellaneous functions not available

in MATHLIB.

p> RANDSA

RANDSA is a Double Precision function which updates a seed to a new
seed (SEED) based upon the linear congruential method:

U(I1)=FLOAT (K (I)) /M

K(T) B*K (I-L) modulo M

B 16807.9

M 2**31-1 = 2147483647.

Band Mare fran: Lewis, Goodman, and Miller, "A Pseudo-random Number

Generator for the Systen/369", IBM Systems Journal, Vol. 8, No. 2,

1969, pp. 136-145.

K(I-1) is the input value of seed and K(I) is the returned value.

The value of the function is U(I) which represents a probability and is

between @.9 and 1.8. This value may be received as either REAL*4 or
REAL*8 .

R*4 RANDSA(seed)
R*8 RANDSA(seed)

CALL RANDSA(seed)

seed Input is previous seed, output is new seed (INTEGER*4).

APPLIB CALLS: None

11 - 21 January 1989

SECTION 11 PDR3621

RISA

RNDISA is a Double Precision function which returns the time of day in

centiseconds. The function value will be the time of day in seconds.
This value may be received as either REAL*4 or REAL*S8.

Note: Because this function is used to initialize a random number
generator, if the value is exactly 96, 1234567 and 12345.67 will be
returned instead.

R*4 RNDISA (seed)
R*3 RNDISA(seed)

CALL RNDISA(seed)

seed Time of day in centiseconds (INTEGER*4).

APPLIB CALLS: None

CONVERSION ROUTINES - DETAILED DESCRIPTION

> cCASESA

CASESA is a logical function which converts a string from upper case to
lower, or from lower case to upper. The function will be .FALSE. if
length is less than zero, otherwise .TRUE..

LOG = CASESA(key, string, length)
CALL CASESA(key, string, length)

key ASFUPP, convert all alphabetic characters in string
from lower case to upper case.

ASFLON, convert all alphabetic characters in string
from upper case to lower case.

Default: No conversion.

string Array containing character string to be converted,
packed two characters per word. Data type does not
matter.

length Length of string in characters (INTEGER*2).

APPLIB CALLS: GCHRSA, MCHRSA

PR cnvasa

CNVASA is a logical function that converts an ASCII digit string into
its binary value for decimal, octal am hexadecimal numbers. The

REV. A 11 - 22

PDR3621 APPLICATION LIBRARY (APPLIB)

numbers may be explicitly signed. Leading and trailing blanks are

ignored as well as blanks between the sign and the number. However,
blanks within the number are not allowed. Tf the number converts
successfully, the function is .TRUE. and value is the converted binary
value. If conversion is not successful, the function is .FALSE. and
value=. Note that for decimal conversions, overflow will be
considered as unsuccessful whereas for octal and hexadecimal
conversions, overflow is ignored.

LOG = CNVASA(numkey,name ,namlen ,value)
CALL CNVASA(nunkey,name ,nanlen ,val ue)

numkey ASDEC, decimal
ASBIN, binary
ASOCT, octal
ASHEX, hexadecimal.

name Array containing ASCII digit string, packed two

characters per word. Data type does not matter.
Maximum digits are: binary, 31 - octal, ll -
decimal, 18 - hexadecimal, 8. Maximum does not include
leading signs or blanks.

nenlen Length of name in characters (INTEGER*2) .

value Returned converted binary value (INTEGER*2) .«

APPLIB CALLS: GCHRSA, NLENSA

BPcnvBsAa

CNVBSA is an integer function used to convert a binary nunber to an
ASCII digit string.

I*2 = CNVBSA(nunkey,value ,name,namlens

CALL CNVBSA(nunkey,value ,name ,nanelen)

nunkey Number base to convert to; possible values are:

ASBIN binary number with leading blanks.

ASBINZ binary number with leading zeros.

ASDEC signed decimal number with leading blanks.

ASDECU unsigned decimal number with leading blanks.

ASDECZ signed decimal number with leading zeros.

ASOCT octal number, leading blanks.

ASOCTZ octal. leading zeros,

ll - 23 January 1989

SECTION 11 PDR3521

ASHEX hexadecimal, leading blanks.

ASHEXZ hexadecimal, leading zeros.

name array containing returned ASCII digit string packed
two characters per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2). Maximun

length for binary is 31, octal is 11, decimal is 19,
and hexadecimal is 8. Maximum does not inclwe
leading signs or zeros.

value Binary number to be converted (INTEGER*4) .

CNVBSA will convert a binary nunber into an ASCII digit string for
decimal, octal, and hexadecimal numbers. The returned digit string
will be right justified in name and preceded by leading blanks or zeros
depending upon nunkey specification.

If value is negative amd the number is to be treated as signed decimal,
the digit will begin with an initial "-" sign. If value is negative,
inary, octal and hexadecimal numbers will be in 2's complement form.
Tf the number converts successfully, the function value is the number
of digits and if not, it is zero.

APPLIB CALLS: FILLSA, MCHRSA

BP ENCDSA

ENCDSA is a logical function which attenpts to encode value in the
supplied Fw.d format if it will fit. If not, the dec argument is
decremented (moving the decimal point to the right) untilit will fit.
IE dec reaches 9, or is originally supplied as 9, value will be encoded
in Iw format if the number will fit into a 32-bit integer. If not, and
if the field is wide enough (width > 7), the value will be encoded in E
format. If the field is not wide enough, It will be filled with
asterisks.

Note that the largest value of width will be 16. If it is larger’ than
16, only the first 16 characters of array will be used.

The function value will be .TRUE. if the encode was successful, and

-FALSE. if the field was filled with asterisks.

Note that array is the only argument which is actually modified in the
calling program.

LOG = ENCDSA(array,width ,dec ,value)
CALL ENCDSA(array ,width ,dec ,val ue)

REV. A Ll - 24

PDR 3521 APPLICATION LIBRARY (APPLIB)

array Array to receive value, packed two characters per word.

Data type does not matter.

width Field width as in format Fw.d (should be even)

(INTEGER*2) .

dec Places to right of decimal point as shown in format Fw .d

(INTEGER*?) .

value Double precision value to be encoded (REAL*8).

APPLIB CALLS: None

> FDATSA

FDATSA is a REAL*8 function which converts the datmod field, returned

by RDENS$, to the format 'DAY, MON DD YEAR'. The function value is the

datmod field converted to 'MM/DD/YY' and must be received ina REAL*8

Variable. The routine is good for the period 1 January, 1972 to 31

December, 2071.

CALL FDATSA(datmod ,date)
R*8 EFDATSA(datmod ,date)

datmod Date returned by RDENSS. This is date the file was

last modified and is in the format YYYYYYYMMMMDDDDD.

YYYYYYY is the year modulo 140, MMMM is the month and

DDDDD is the day (INTEGER*2).

date Array containing the date as a character string, packed

two characters per word. Date is in format ‘DAY, MON

DD YEAR'. Data type does not matter as long as array

is at least 15 characters long.

APPLIB CALLS: CNVBSA

p> FEDTSA

FEDTSA converts the datmod field, returned by RDENS$S, to the format

'pDAY, MON DD YEAR' in date. The function value is datmod converted to

'MM.DD.YY' and must be reserved in a REAL*8 variable. The routine

includes the period 1 January, 1972 - 31 December, 2071.

ll - 25 January 198@

SECTION 11 PDR3621

CALL FEDTSA(datmod,date)
R*8 FEDTSA(datmod ,date)

datmod Date returned by RDENSS. This is date the file was
last modified and is in the format YYYYYYYMMMMDDDDD.
YYYYYYY is the year modulo 198, MMMM is the month and
DDDDD is the day (INTEGER*2).

date Array containing the date as a character string, packed
two characters per word. Date is in the format "DAY,
MON DD YEAR'. Data type does not matter as long as
array is at least 15 characters lon.

APPLIB CALLS: FDATSA

P Frivsa

FTIMSA is a REAL*4 or REAL*8 function which converts the timmod field,returned by RDENS$, to the format 'HH:MM:SS'. The function value is
the timmod field converted to decimal hours amd may be received as
either REAL*4 or REAL*8.

CALL FTIMSA(timmod,time)
R*3 =FTIMSA(timmod,time)
R*4 FTIMSA(timnod ,t ime)

timmod Time at which a file was last modified, in the format
"seconds since midnight' divided by 4 (INTEGER*2) .

time Array containing time a file was last modified, as a
character string in the format 'HH:MM:SS'. Data type
does not matter as long as array is at least 3
characters long.

APPLIB CALLS: CNVBSA

FILE SYSTEM ROUTINES - DETAILED DESCRIPTION

The file systen routines in APPLIB give the user a simple and
consistent way to specify the most common file System operations.
Accordingly, APPLIB does not provide the user with the full
capabilities of the file systen routines since for detailed operations
it is best to use the file systen routines, themselves. APPLIB
Supports both Sequential Access Method (SAM and Direct Access Method
(DAM files. There is no support for Segment directory type files as
the MIDAS subsysten provides the nigher level functions with these
files.

REV. A ll - 26

PDR3621 APPLICATION LIBRARY (APPLIB)

All routines except Open, Delete, and Check for File Existence use only

the file unit and not the file name. Also, each routine carries the

nane of its function, as above, with arguments consisting of only the

relevant information, usually only the unit number. Note that all file

names, except scratch files, may be pathnames.

The only complicated routines are the five Open routines, because of

the many ways programs can obtain the name of the file they wish to

open and the various options for verification or error recovery. Five

different routines exist to perform the varying levels of complexity.

In this way, the simple operations are represented by simple calling

sequences. Only complex operations need complex argument lists.

All OPEN routines allow selection of the file type (SAM or DAM and all

but TEMPSA allow specification of the open mode (READ, WRITE, or

READ/WRITE). TEMPSA (scratch) files are always opened for READ/WRITE.

All OPEN routines can choose the file unit number upon which a file

will be opened. The ASGETU key is used for this purpose and the file

unit selected by the routine will be returned to the user (in the

argument unit). If ASGETU is not used, the user must provide the

routine with a usable file unit nunber.

verification provides the following options:

1. Verifies that the file is new; otherwise, verifies that it is

O.K. to modify a file which already exists.

2. verifies that file may be modified and determines whether an

existing file is to be overwritten or appended.

3. Verifies that the file is old; that is, does not allow

creation of a new file. Note that if the open mode is READ,

this is the only possible verification option.

Delay provides the following options:

1. If and only if the file is "IN USE", waits a supplied number of

seconds (elapsed time) and tries again.

2. The ability to retry 1 above a specified number of times.

ll - 27 January 1989

SECTION 11 PDR3621

P cLossa

CLOSSA is a logical function that closes the file open on unit. If the
operation is successful, the function is .TRUE. and if unsuccessful,
the function is .FALSE..

LOG = CLOSSA(unit)
CALL CLOSSA(unitt

unit File unit. (INTEGER*2)

APPLIB CALLS: None

 dELESA

DELESA is a logical function which deletes the file named in name. If
the operation is successful, the function is .TRUE. and if
unsuccessful, the function is .PAISR..

LOG = DELESA(name ,namlen)
CALL DELESA(name ,namlen)

name File name (may be a treename) packed two characters
per word. Data type does not matter.

nanlen Length of name in characters. (Mode is INTEGER*2.)

APPLIB CALLS: TREESA, UNITSA, NLENSA

> EXSTSA

EXSTSA is a logical function which returns .TRUE. if the file exists
and .FALSE. if the file does not exist or if an error was encountered,

LOG = EXSTSA (name ,namlen)

name File name (may be a treename) packed two characters
per word. Data type does not matter.

nanlen Length of name in characters. (Mode is INTEGER*2.)

APPLIB CALLS: TREESA, UNITSA, NLENSA

REV. A ll - 28

PDR3621 APPLICATION LIBRARY (APPLIB)

> GENDSA

GENDSA is a logical function which positions the file open on unit to

Fnd-of-File. If the operation is successful, the function is .TRUE.

and if unsuccessful, the function is .FALSE..

LOG = GENDSA(unit)
CALL GENDSA(unit)

unit PRIMOS file unit. (Mode is INTEGER*2.)

APPLIB CALLS: None

> OPENSA

OPENSA is a logical function that opens a file of the given name on

unit. If the operation is successful, the function value is .TRUE.

and if the operation is unsuccessful, the function value is .FALSE..

LOG = OPENSA(opnkeyttypkeytuntkey ,name ,namlen , unit)

CALL OPENSA(opnkey+typkeytuntkey ,name,namlen,unit)

opnkey ASREAD, open for reading (.NE. ASWRIT or ASRDNR);

ASWRIT, open for writing;

ASRDWR, open for reading and writing.

typkey ASSAMF, SAM file (.NE. ASDAMF);
ASDAMF, DAM file.

untkey ASGETU, choose a file unit number to be returned in unit.

Qnission of this key requires that the routine be

provided with a unit number.

name File name (may be a treename) packed two characters per

word, Data type does not matter. ©

nanlen Length of name in characters (INTEGER*2).

unit PRIMOS file unit (returned if untkey = ASGETU; if not,

the caller must provide a legal file number in this

argument). (INTEGER*2).

APPLIB CALLS: TREESA, UNITSA, NLENSA

p> OPNPSA

OPNPSA is a logical function that gets a name from the user and opens

it on unit, If the operation is successful, the function value is

.TRUE. and if the operation is unsuccessful or no name is supplied,

the function value is .FALSE..

11 - 29 January 1980

SECTION 11 PDR3621

LOG = OPNPSA (msg msglen ,opnkeyttypkey+untkey ,name ,namlen ,unit)
CALL OPNPSA(msg ,msglen ,opnkey+typkey+ untkey,name ,nanlen, unit)

MS

msglen

opnkey

typkey

untkey

name

nanlen

unit

APPLIB CALLS:

 oprvsa

OPNVSA is a

Array containing prompt for name message, packed two
characters per word. Data type does not matter.

Length of msg in characters (INTEGER*2).

ASREAD, open for reading
ASWRIT, open for writing
ASRDWR, open for reading and writing.

ASSAMF, SAM file
ASDAMF, DAM, file.

ASGETU, choose a file unit number to be returned in unit.
OQnission of this key requires that the routine be
provided with a unit number.

Filename (may be a treename) packed two characters
per word. Data type does not matter.

Length of name in characters (INTEGER*2) .

File unit (returned if untkey =ASGETU. If not, user must
provide a legal file number in this argument).
(INTEGER*2) .

RNAMSA, NLENSA, TREESA, UNITSA

logical function that opens a file of the given name on
unit. Note that the functions of verification and delay as described

ow are independent of each other.

LOG = OPNVSA(opnkeyt+typkey+untkey ,name ynanlen,unit ,verkey,wtime ,retrys)
CALL OPNVSA (opnkey+typkeytintkey,name ,namlen ,unit ,verkeywt ime,retr ys)

opnkey

typkey

untkey

REV. A

ASREAD, open for reading
ASWRIT, open for writing
ASRDWR, open for reading and writing.

ASSAMF, SAM file
ASDAMF, DAM file.

AGETU, choose a file unit number to be returned in unit.
Onission of this key requires that the routine be
provided with a unit number.

ll - 36

PDR3621 APPLICATION LIBRARY (APPLIB)

name Filename (may be a treename) packed two characters per

word. Data type does not matter.

nanlen Length of name in characters (INTEGER*2). If namlen

is zero or less, the function value is .FALSE..

unit File unit (returned if untkey =ASGETU. If not, user must

provide a_ legal file number in this argument).

(INTEGER*2) .

verkey ASNVER, no verification

ASVNEW, verify new or ask if ok to modify if old

file.
ASOVAP, same as ASVNEW except user is prompted to

"OVERWRITE" or "APPEND" if file already exists.

ASVOLD, verify old; return .FALSE. if not

old file.

wt ime Number of seconds to wait if FILE IN USE (INTEGER* 2).

retrys Number of times to retry if FILE IN USE (INTEGER*2) .

APPLIB CALLS: RNAMSA, TIMESA, NLENSA, EXSTSA, UNITSA, TREESA, GENDSA

If wtime and retrys are specified non-zero and the file to be opened is

IN USE, the open will be retried the specified number of times, with

wtime seconds (elapsed time) between each attempt. If the number of

retries expires, or if either wtime or retrys is initially 06 and the

file is IN USE, the function returns .FALSE.

Verification

If verification is not requested (VERKEY=ASNVER), OPNVSA is identical

in function to OPENSA. If verification is requested (verkey .NE.

ASNVER) , the following actions will be taken:

ASVNEN If the file already exists and opnkey is either ASWRIT

or ASRDNR, the user will be asked if it is OK to modify

the old file. If the answer is "NO", the function

returns .FALSE.. If the answer is "YES", the file is

opened.

ASOVAP This is the same as ASVNEW except that if an old file is

to be modified, the user is also asked if the file

should be overwritten or appended. If the answer is

"append", the file will be positioned to End-of-File.

ASVOLD This is the default case if omkey=ASREAD. I£ any other

key is specified, and if the named file does not already

exist, a new file will not be created amd the function

returns .FALSE..

ll - 31 January 1980

SECTION 11 PDR3621

Errors

If any errors not covered above occur while opening the file or
positioning it (ASOVAP), the function returns .FALSF.. If the open is
ultimately successful, the function returns .TRUR..

> opvesa

OPVPSA is a logical function that gets a filename from the user and
opens it on unit. Note that the functions of verification and delay as
described below, are independent of each other.

LOG = OPVPSA(mnsg ,msglen sopnkey+typkey+untkey ,name ,nanlen , unit ,
verkey,wtime,retr ys)

CALL OPVPSA(mnsg ,;msglen ,opnkey+typkey+untkey ,name ,nanlen,unit,
verkey,wtime,retrys)

msg Array containing prompt message packed two characters per
word. Data type does not matter.

msglen Length of msg in characters (INTEGER*2) .

opnkey ASREAD, open for reading
ASWRIT, open for writing
ASRDWR, open for. reading and writing.

typkey ASSAMF, SAM file
ASDAMF, DAM file.

untkey AGETU, choose a file unit number to be returned in unit.
OQnission of this key requires that the routine be
provided with a unit number,

name Array containing filename (may be treename) , packed two
characters per word. Data type does not matter,

nanlen Length of name in characters (INTEGER*2). If nanlen is
zero or less, the function value is .FAISE..

unit File unit (returned if untkey = ASGETU. If not, user
must provide a legal file wnit in this argument) .
(INTEGER*2) .

verkey ASNVER, no verification,
ASVNEW, verify new file or ask if OK to modify if old

file.
ASOVAP, same aS ASVNEW except user is prompted to

"OVERWRITE" or "APPEND" iff file already exists.
ASVOLD, verify old. Function value is .FAISE. if not

old.

REV. A ll - 32

PDR3621 APPLICATION LIBRARY (APPLIB)

wtime Number of seconds to wait if FILE IN USE (INTEGER*2).

retrys Number of times to retry if FILE IN USE (INTEGER*2).

If wtime and retrys are specified non-zero and the file to be opened is

IN USE, the open will be retried the specified number of times, with

wtime seconds (elapsed time) between each attempt. If the number or

retries expires, or if either wtime or retrys is initially 9 and

_

the

file is in use, the function returns .FALSE..

APPLIB CALLS: RNAMSA, TIMESA, NLENSA, EXSTSA, UNITSA, TREESA, GENDSA

Verification

If verification is requested, the following are the possible actions:

ASVNEW If the file already exists and opnkey is ASWRIT or

ASRDR, the user will be asked if it is OK to modify the

old file. If the answer is "NO", the function returns

.FALSE.. If "YES", the file is opened.

ASOVAP If an old file is to be modified, (as answered "YES"

for ASVNEW the user is also asked if the file should

be overwritten or appended. If the answer is "APPEND",

the file will be positioned to End-of-File.

ASVOLD Default case if omkey = ASREAD. If any other key is

specified, and if the named file does not already

exist, a new file will not be created amd the

_

pranpt

message will be repeated.

Errors

If any errors not covered above occur while opening the file or

positioning it (ASOVAP), or a name is not supplied when requested, the

function returns .FALSE.. If the open is ultimately successful, the

function returns .TRUE..

tl = (33 January 1980

SECTION 11 PDR3621

P Posnsa

POSNSA is a logical function which positions the file open on unit to
the specified position. If the operation is successful, the function
is .TRUE. and if unsuccessful, the function is .FALSE..

LOG = POSNSA(poskey,unit ,pos)
CALL POSNSA(poskey,unit,pos)

poskey ASABS, absolute position (.NE. ASREL)
ASREL, relative position.

unit PRIMOS file unit (INTEGER* 2).

pos Postion (relative or absolute) (INTEGER*4).

APPLIB CALLS: None

B Rossa

RPOSSA is a logical function which returns the current absolute
position of the file open on unit. If the operation is successful, the
function is .TRUE. and if unsuccessful, the function is .FALSE..

LOG = RPOSSA(unit,pos)
CALL RPOSSA(unit, pos)

unit PRIMOS file unit (INTEGER*2).

pos Returned absolute position (INTEGER*4) .

APPLIB CALLS: None

p> RWNDSA

RWNDSA is a logical function that rewinds the file open on unit. If
the operation is successful, the function is .TRUE. and if
unsuccessful, the function is .PAISE..

LOG = RWNDSA(unit)
CALL RWNDSA(unit)

unit PRIMOS file unit (INTEGER*2).

APPLIB CALLS: None

REV. A ll —- 34

PDR3621 APPLICATION LIBRARY (APPLIB)

p> TEMPSA

This routine opens a unique temporary file in the current UFD for

reading and writing. This file will be named T$xxxx where xxxx isa

4-digit decimal number between 9000 and 9999 inclusive. The actual

name opened will be returned in the name buffer. If the operation is

Successful, the function value is .TRUE. and if the operation is

unsuccessful, the function value is .FALSE..

LOG = TEMPSA(typkeytuntkey ,name ,ynanlen, unit)

CALL TEMPSA(typkey+tuntkeyname ,namelen ,unit)

typkey ASSAMF, SAM file (.NE. ASDAMF)
ASDAMF, DAM file.

untkey ASGETU, choose a file unit number to be returned in unit.

Qnission of this key requires that the routine’ be

provided with a unit number.

name Returned name (§ characters packed two characters per

word). Data type does not matter.

nanlen Lengthof name buffer in characters (.GE. §)

(INTEGER*2) .

unit File unit (INTEGER*2).

APPLIB CALLS: FILLSA

p> TRICSA

TRNCSA is a logical function which truncates the file open on unit. If

the operation is successful, the function is . TRUE. and if

unsuccessful, the function is .FALSE..

LOG = TRNCSA(unit)
CALL TRNCSA(unit)

unit PRIMOS file unit (INTEGER*2).

APPLIB CALLS: None

ll - 35 January 1988

SECTION 11 PDR3621

Pe TSCNSA

TSCNSA is a logical function which scans the file system tree structure
(starting with the hane UFD) using the file subroutines RDENSS and
SGDRS$ to read UFD and segment directory entries into the entry array.

LOG= TSCNSA(key, units ,entry ,maxsiz,entsiz,maxlev,lev,code)
CALL TSCNSA (keyunits ,entry,maxsiz,entsiz,maxlev ,lev ,code)

key ASTREE, scan full tree
ASNUFD, do not scan subufds
ASNSEG, do not scan segment directories
ASCUFD, scan current ufd only
ASDLAY, pause when popping up to directory

units Array of unit numbers maxlev long (INTEGER*2).

entry Array maxsiz * maxlev long (INTEGER*2).

maxsiz Size of each entry in entry array (INTEGER*2) .

entsiz Set to size of current entry (INTEGER*2) .

maxlev Maximun number of levels to scan (INTEGER*2) .

lev Current level (INTEGER*2).

code Returned file system code (INTEGER*2) .

APPLIB CALLS: None

Bach call to TSCNSA returns the next file on the Current level or the
first file on the next lower level of the structure. The variable levis used to keep track of the current level. For example, after the
first call to TSCNSA (with lev=8), lev will be returned as 1, andentry(1,1) will contain the UFDentry describing the first file in thehome UFD. If this file is a subufd, following the next call to TSCNSA,lev will be 2, and entry(1,2) will contain the entry for the first file
in the subufd.

The values of key have the following meanings:

ASTREE All entries in the tree structure are returned up to maxlev
levels deep. (Levels below level maxlev are ignored.)

ASNUFD When a subufd is encountered (in the hane UFD), its entry
is returned, but no files under that subufd are returned.
In the absence of segment directories, this effectively
limits the tree scan to the home UFD.

ASNSEG Files inside Segment directories are not returned.

REV. A ll - 36

The

PDR3621 APPLICATION LIBRARY (APPLIBI

ASCUFD This is a logical combination of ASNUFD and ASNSEG -- only

files in the home UFD are returned.

ASDLAY This key is identical to ASTREE except that directory

entries are returned twice, once on the way down (as for

ASTREE) , and again on the way up. (This is necessary, for
exanple, to implement the tree-delete function since a
directory cannot be deleted until it has been emptied.)

following items should be considered when using TSCNSA:

lL. For the first call of TSCNSA, lev should be equal to 9.

Thereafter it should not be modified until EOF is reached on

the top level ufd at which point lev will be reset to @.

The entries in the entry array are in RDENSS format. For
"entries" inside a segment directory, all information from the
directory entry is first copied down a level. Entry(2,LEV) is
set to @ and entry(3,LEV) is then set to a 16-bit entry nunber.
For nested segment directories, the type field of the entry is
set appropriately by opening the file with SRCHSS. (The file
is then immediately closed again.)

The parameter entsiz is set to the number of words returned by
RDENSS. Inside segment directories, it should be ignored.

The type fields in the entry array -- entry(20,1) —- should not

be modified. (TSCNSA uses then to walk up and down the tree.)

When TSCNSA requires a file unit, it uses units(lev). By using

RDENSS and SGDRS$ read-position amd set-position functions
carefully, it is possible to dynamically reuse file wits

(e.g., to scan trees more than 15 levels degp.)

TSCNSA returns .TRUE. until a non-zero file system code is
returned or until ESEOF is returned with lev=0 (top level).
ESEOF on lower levels of the tree is "suppressed", and code is

returned aS zero.

TSCNSA requires owner rights in the home UFD.

ll - 37 January 1980

SECTION 11 PDR3621

The following program illustrates how TSCNSA can be used to perform a
tree LISTF:

SINSERT SYSCOM>ERRD. F

SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ASKEYS
Cc

i)
109

185

158

176
208

>

INTEGER MAXLEV,MAXSIZ
PARAMETER MAXLEV=16 /* MAXIMUM LEVELS TO SCAN
PARAMETER MAXSIZ=24 /* MAXIMUM SIZE OF RACH SLICE IN ENTRY
INTEGER I,L, ENTRY (MAXSIZ ,MAXLEV) ,UNITS (MAXLEV) ,CODE,NLEVSA
LOGICAL TSCNSA
DATA UNITS/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16/

L=@ /* INITIALIZE LEVEL COUNTER
IF (TSCNSA(ASTREE, UNITS ENTRY ,MAXSIZ,I,MAXLEV,L,CODE))GOTO 105
IF (CODE.NE.ESEOF) CALL ERRPRS$(ESNRTN, CODE,2,9,9,0)
CALL EXIT /* ALL DONE IF ESEOF
GOTO 108 /* RESTART IF 'S' TYPED

DO 208 I=1,L /* CONSTRUCT TREENAME
IF (ENTRY (2,1) .EQ.0) GOTO 159 /* BRANCH IF SEGDIR
CALL TNOUA (ENTRY (2,1) ,NLENSA (ENTRY (2,1) ,32))
GOTO 179

CALL TNOUA('(',1) /* FORMAT SEGDIR ENTRY NUMBER
CALL TODEC (ENTRY (3,TI))
CALL TNOUA(') ',1)

IF (I.NE.L) CALL TNOUA(' > ',3) /* TREENAME SEPARATOR
CONTINUE

CALL TONL
GOTO 186
END

UNITSA

UNITSA is a logical function which returns .TRUE. if the unit is open
and .FALSE. if the unit is not open.

LOG = UNITSA(unit)

unit PRIMOS file unit (INTEGER*2).

APPLIB CALLS: None

REV. A 11 - 38

PDR3621 APPLICATION LIBRARY (APPLIB)

PARSING ROUTINE - DETAILED DESCRIPTION

The parsing routine is designed to facilitate the design and

implementation of user interfaces in a program. It provides a means to

break a character string into tokens and return information regarding

each token.

Pe cCMDLSA Parse PRIMOS type command line.

CMDLSA is a logical function for parsing a PRIMOS type command line and

has the following calling sequence:

LOG = CMDLSA(key ,kwlist ,kwindx ,optbuf ,buflen ,option ,val ue ,kwinfo)

CALL CMDLSA(key,kwlist,kwindx ,optbuf ,buflen,option ,value ,kwinfo)

key ASREAD, return the next keyword entry in the command

line.

ASNEXT, call COMANL to get the next command line, turn on

default processing, and return the first keyword entry in

the new command line.

ASRSET, reset the command line pointer to the beginning

of the command line am turn on default processing. Use

of this key does not return a keywrd entry.

ASRAWI, return the remainder of the command line as raw

text and turn on the end of line indicator. Text starts

at the token following the option (if present) of the

last keyword entry read.

ASNKWL, turn on default processing and return the next

keyword entry in the command line. This key allows the

calling program to switch keyword lists in the middle of

a command line.

ASRCMD, permits the use of a keyword without a_ preceding

minus sign as the first token on a line (may only be used

for lines subsequent to the initial command line).

kwlist A one dimensional array containing control information, a

table of keyword entry descriptions, and a list of

default keywords. See kwlist format later in this

section for a complete description.

kwindx Keyword index, returned integer variable identifying the

keyword in a keyword entry, possible values are:

< 8, unrecognized keyword or CMDLSA was called with a key
of ASRSET or ASRAWI.

=9, end of line.
> @, valid keyword.

ll - 39 January 19808

SECTION 11 PDR3621

optbuf Packed array that normally contains the text of a keyword
option. However if an unrecognized keyword’ is
encountered OPTBUF contains the text of that keyword,
Data type does not matter.

buflen Specified length of optbuf in characters (INTEGER*2).
(must be .GE. zero.)

option Option type, returned integer variable that describes the
option following a keyword, possible values are:

ASNONE, no option, or option was null, optbuf will be
blank.

ASNAME, option was a name
ASNUMB, option was a number, results of numeric
conversion returned in value.
ASNOVE, option was a number and conversion resulted in
overflow (decimal numbers only).

valve Returned INTEGER*4 variable equal to the binary value of
an option if it was a number. Otherwise it is zero.

kwinfo An array that returns miscellaneous information and must
be dimensioned KWINFO(16) in the calling program.
kwinfo(L) is equal to the number of characters in optbuf
and kwinfo(2) - kwinfo(19) are reserved for future use.

APPLIB CALLS: CNVASA, CNVBSA, CSUBSA, FILLSA, JSTRSA, MSUBSA, MSTRSA,
NLENSA, SSUBSA.

CMDLSA was designed to simplify the processing of a PRIMOS type command
line while, at the same time, providing thé user with a great deal of
flexibility in defining his command environment.

This routine will parse a command line, a keyword entry at a time, and
return information about each entry it encounters. A keyword entry is
defined as a -keyword followed by an option. A default keyword entry
is defined as an option that is not preceded by a -keyword but, by
virtue of its position in the command line, implies a specified
-keyword (e.g., FTN SNARF, where SNARF implies the default keyword
-INPUT). Defaults may only occur at the beginning of a command line.

PDR3621 APPLICATION LIBRARY (APPLIB)

CMDLSA returns the following information for each keyword entry in the

command line:

Integer that identifies the -keywrd (kwindx).

Text of the keyword option, if present (optbuf).

Option type (option).

Results of numeric conversion, if option was a number (value).

Number of characters in the text of an option (kwinfo(1)).

Note that CMDLSA does not perform any action other than returning

information about the command line.

The following is a list of considerations that should be taken into

account when defining a command environment:

5.

A keyword may have, at most, one option following it.

A keyword must begin with a '-'.

A keyword may not be a decimal number (e.g., —-99).

Register setting parameters are not recognized as such.

Default keywords are only allowed at the beginning of a command
line. The first -keyword encountered turns off default
processing and all remaining options on the command line must
be preceded by a -keyword (this restriction can be circumvented

by using a key of ASNKWL, however the user must be aware of the
fact that when default processing is in effect each option is

treated as if it were preceded by a —-keyword.

A key of ASRAWI (or an option type of ASRAWI) will turn on the
end of line indicator and any further attempts to read from the
current command line will return an end of line condition. To

turn off the end of line indicator CMDLSA must be called with a

key of ASRSET or ASNEXT.

A buffer length that is too small to contain the text of an
option will cause that option to be truncated and an error

message to be displayed.

Default keyword entries that have a nuneric option should be
avoided as PRIMOS may intercept them as register settings.

A negative hexadecimal option that consists of only alphabetic
characters (e.g., -FF. will always be interpreted as a

—keyword.

ll - Al January 1986

SECTION

10.

ll.

12.

13.

11 PDR3621

Keyword entries in the keyword table with the same keywrd
indicies are considered synonyms. A keyword may have any
nunber of synonyms, each with different option specifications.
However, if a keyword with synonyms is also a default and
default processing is in effect, the option specifications for
the synonyns will be ignored (i.e., a default keyword option
always implies the first keyword in a synonym chain.

Null entries in the command line are only permitted for
keywords that have an option status of ASOPTL. All other null
entries will be treated as either a missing option or an
unrecognized keyword.

Calls to CMDLSA and RDTKSS on the same command line should be
avoided, as CMDLSA uses RDIKS$ to perform a look-ahead when a
-keyword is encountered.

All text is forced to upper case unless enclosed in quotes or
read as raw text (ASRAWI).

KWLIST FORMAT

The kwlist array consists of three sections. The first section
contains control information, the second contains the keywrd entry
table, and the third contains the default list.

CONTROL INFORMATION:

WORD 1 Number of keyword entries in table, must be
-GT. zero.

WORD 2 Maximun length of keyword text in characters,

REV. A

must be .GE. 2 and .LE. 80. All keywords
must have the same length and therefore it
may be necessary to pad them with blanks.

ll - 42

KEYWORD TABLE:

words 1 ton

Word n+l

Word m2

Word nt3

Word m4

Default List

Word 1

Words 2 ton

PDR3621 APPLICATION LIBRARY (APPLIB)

Text of keyword, the actual number of
characters must be equal to the max imum
keyword length.

Keyword index, must be .GT. zero.

Minimum nunber of characters in the keyword to
match including leading minus sign, must be .GE. 2?
and .LE. maximum keyword length. A zero or
negative value causes the keyword to be ignored
when the table is searched. This allows keywrd

text to exist as documentation.

Option status, possible values are:
ASNONE, no option may follow keyword,
ASOPTL, option may or may not follow keyword,
ASREQD, option must follow keyword.

Option type, possible values are:
ASNONE, if status is ASNONE
ASBIN, option must be a binary number
ASDEC, option must be a decimal number
ASOCT, option must be an octal number
ASHEX, option must be a hexadecimal number
ASNAME, option must be a name
ASNBIN, option may be a name or binary nunber
ASNDEC, option may be a name or a decimal number
ASNOCT, option may be a name or an octal number
ASNHEX, option may be a name or a_ hexadecimal
nunber (if the option consists of all alphabetic

characters, e.g., FACE, which also constitute a
valid hexadecimal number, it will be interpreted as
such) .
ASRAWI, option is the remainder of the command line
after the current -keyword is read as raw text.
Use of this option type will turn on the end of
line indicator in the same manner as a key of
ASRAWI.

Number of default keywords, must be .GE. zero

(Where nis equal to word 1) list of keyword
indices previously defined in the keyword entry
table, that will be used when default processing is
in effect. A default keyword entry may not have an
option status of ASNONE.

ll - 43 January 1980

SECTION 11 PDR3621

Error Messages

The function value will be false if any of the following errors occur:

BAD KEY

BUFFER LENGTH LESS THAN ZERO

NAME TOO LONG. (name text)

UNRECOGNIZED KEYWORD. (keyword text)
BAD KEYWORD OPTION. (option text)

' MISSING KEYWORD OPTION.

NO. OF KEYWORD ENTRIES MUST BE .GT. ZERO.
MAX KEYWORD LENGTH MUST BE .GE. 2 AND .LE. 89.
1ST CHARACTER OF KEYWORD MUST BE '-'. (keyword text)

KEYWORD MAY NOT BE A NUMBER. (keyword text)
KEYWORD INDEX MUST BE .GT. ZERO. (keyword text)
MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.
(keyword text)

INVALID OPTION STATUS. (keyword text)

INVALID OPTION TYPE. (Keyword text)

NO. OF DEFAULTS MUST BE .GE. ZERO.

DEFAULT NOT DEFINED IN KEYWORD LIST. (default index)

INVALID DEFAULT OPTION STATUS. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .GE. 2. (keyword text)

UNDETERMINED ERROR> (text of last keyword or option read)

REV. A 11 - 44

PDR3621 APPLICATION LIBRARY (APPLIB)

CMDLSA Sample Program

Cc TEST PROGRAM FOR CMDLSA
C

IMPLICIT INTEGER*2 (A-Z)
INTEGER*4 VALUE
DIMENSION BUFFER(1@) ,KWLIST (128) , INFO(19)

SINSERT SYSCOM>ASKEYS
C

DATA KWLIST /11,14,
* "any text ",1,0,ASREQD,ASDEC,
* '-NDECIMAL ',2,2,ASOPTL, ASNDEC,
* "-OCTAL ',4,2,ASREQD,ASNONE,
* '-NOCTAL ',4,3,ASOPTL,ASNOCT,
* '-HEXADECIMAL ',5,2,ASREQD,ASHEX,
* '-NHEXADECIMAL ',6,3,ASOPTL, ASNHEX,
* '-NAME ',7,5,ASREQD,ASNAME,
* '_MAYBE ',8,6,ASOPTL, ASNAME,
* '_NONE ',9,5,ASNONE,ASNONE,
* '-QUIT ",18,2,ASNONE, ASNONE,
* '_TITLE ',99,2,ASOPTL,ASRAWI,
* A, 1,2,8,7/

Cc
C

BUFLEN = 20
KEY = ASREAD

10 TF (CMDLSA (KEY, KWLIST, KWINDX, BUFFER, BUFLEN, TYPE, VALUE, INFO))
* GO TO 15

PRINT 99
99 FORMAT (/'TRY AGAIN, TURKEY !')

CALL EXIT
15 IF (KWINDX.EQ.10) CALL EXIT

IF (KWINDX.NE.ASNONE) GO TO 20
KEY = ASNEXT
GO TO 18

20 KEY = ASREAD
PRINT 100 BUFFER, KWINDX, TYPE,VALUE, INFO(L)

108 FORMAT(/18A2/'KWINDX TYPE VALUE CHARS'/2X,4 (13,6X))
GO TO 10
END

11 - 45 January 1989

SECTION 11

APPLIB SUMMARY AND KEYS

PDR3621

Below is a brief summary of the calling sequences for all the APPLIB

routines and a listing of the file SYSCOM>ASKEYS.

In the summary that follows, the type codes are defined as:

L = LOGICAL
I = INTEGER (subject to compile time option)

I*2 = INTEGER*2

R = REAL

DP = DOUBLE PRECISION

Group Name Type Arguments

File Systen TEMPSA L (TYPKEY , NAME, NAMLEN, UNIT)

OPENSA L (OPNKEY+TYPKEY+UNTKEY, NAME, NAMLEN,UNIT)

OPNPSA L (MSG , MSGLEN, OPNKEY+TYPKEY+UNTRKEY , NAME, NAMLEN,

UNIT)

OPNVSA L (OPNKEY+TYPKEY+UNTKEY , NAME, NAMLEN, UNIT, VERKEY,

WTIME, RETRYS)

OPVPSA L (MSG ,MSGLEN, OPNKEY+TYPKEY+UNTKEY, NAME, NAMLEN,

UNIT, VERKEY,WTIME, RETRYS)

CLOSSA L (UNIT)

RWNDSA L (UNIT)

GENDSA L (UNIT)

TRNCSA L (UNIT)

DELESA L (NAME, NAMLEN)

EXSTSA L (NAME, NAMLEN)

UNITSA L (UNIT)

RPOSSA L (UNIT, POS)
POSNSA L (POSKEY, UNIT, POS)

TSCNSA L (KEY, UNITS, ENTRY,MAXSIZ,

ENTS IZ ,MAXLEV, LEV,CODE)

REV. A Ii - 45

Group

String

User Query

Information

Mathematical

Conversion

Parsing

PDR3621 APPLICATION LIBRARY (APPLIB)

Name Type Arguments

FILLSA I (NAME, NAMLEN ,CHAR)
NLENSA I*2 (NAME, NAMLEN)
MCHRSA I (TARRAY, TCHAR, FARRAY, FCHAR)
GCHRSA I (FARRAY , FCHAR)
TREESA I (NAME, NAMLEN, FSTART, FLEN)
TYPESA L (KEY, STRING, LENGTH)
MSTRSA I*2 (A,ALEN,B,BLEN)
MSUBSA I*2 (A,ALEN,AFC,ALC,B, BLEN, BFC, BLC)
CSTRSA L (A,ALEN, B,BLEN)
CSUBSA L (A, ALEN, AFC, ALC, B, BLEN, BFC, BLC)
LSTRSA L (A, ALEN, B, BLEN, FCP, LCP)
LSUBSA L (A, ALEN, AFC, ALC, B, BLEN, BFC, BLC, FCP, LCP)
JSTRSA L (KEY, STRING, LENGTH)
FSUBSA L (STRING, LENGTH, FCHAR, LCHAR, FILCHAR)
RSTRSA L (STRING, LENGTH,COUNT)
RSUBSA L (STRING, LENGTH, FCHAR, LCHAR, COUNT)
SSTRSA L (STRING, LENGTH,COUNT,FI LCHAR)
SSUBSA L (STRING, LENGTH, FCHAR, LCHAR, COUNT, FILCHAR)
YSNOSA L (MSG ,MSGLEN, DEFKEY)
RNAMSA L (MSG, MSGLEN, NAMKEY, NAME, NAMLEN)
RNUMSA L (MSG ,MSGLEN,NUMKEY, VALUE)
TIMESA DP (TIME)
CTIMSA DP (CPUTIM)
DIIMSA DP (DSKTIM)
DATESA DP (DATE)
EDATSA DP (EDATE)
DOFYSA DP (DOFY)
RNDISA DP (SEED)
RANDSA DP (SEED)
ENCDSA L (ARRAY,WIDTH, DEC, VALUE)
CNVASA L (NUMKEY, NAME, NAMLEN, VALUE)
CNVBSA I (NUMKEY, VALUE , NAME, NAMLEN)
CMDLSA L (KEY, KWLIST, KWINDX,OPTBUF,BUFLEN

OPTION,VALUE, KWINFO)

11 - 47 January 1986

SECTION 11 PDR3621

SYSCOM>DASKEYS

C ASKEYS, APPLIB>SOURCE, ELS, 92/12/79

C Insert file for mnemonic APPLIB keys (FIN)
C Copyright 1977, PRIME COMPUTER, INC., Framinghan, MA.

A
A
A
R
Q
A
A
A
A

A
Q
A
A
A
Q
A
A
A
N
A

REV.

NOLIST

KRKKKEKKKREKKKKEKKIKIKEKAREREARERERERRERAREEREKERERRREREREKREREEKE
* i

* FUNCTION DECLARATIONS (TABSET 6 17) *
* *
KHEKKKEKKKEKRKEEREKEKRKEEREKEERERERRERERREKEREKEERREREEREREAKKRRKKKKKK

LOGICAL CLOSSA,RWNDSA,GENDSA, TRNCSA, DELESA, RPOSSA, POSNSA, TEMPSA,
OPENSA,OPNVSA,OPNPSA,OPVPSA, ENCDSA, YSNOSA, RNAMSA, RNUMSA,
TREESA, EXSTSA , UNITSA, CNVASA, CMDLSA, CSUBSA, CSTRSA, TYPESA,
TSCNSA,JSTRSA, LSUBSA, LSTRSA,FSUBSA, SSTRSA, SSUBSA, RSTRSA,
RSUBSA , CSPSSA, CASESA~

O
X

INTEGER MCHRSA,GCHRSA, FILLSA
INTEGER*2 NLENSA,MSUBSA,MSTRSA,CNVBSA

REAL *8 DOFYSA,DATESA, EDATSA, TIMESA, CTIMSA, DTIMSA, RNDISA, RANDSA,
X FEDTSA,FTIMSA,FDATSA

RKEEEKKEKERKEEREKREREEKEEREREEEEREEREREEREKEKERREERERKEEKAERKKKKE

* *

* KEY DECLARATIONS (TABSET 6 17) *
* *
KREKKEKKKEEKKHKKEKEKEKEKEERERKERREREKRAEREKRAEKRKEERARERERRKRERAREKEERERRRR

INTEGER*2 ASREAD, ASWRIT, ASRDWR, ASSAMF , ASDAMF,, ASNVER, ASVNEW , ASOVAP,
x ASVOLD,ASABS ,ASREL ,ASDEC ,ASOCT ,ASHEX ,ASNDEF,ASDNO ,
X ASDYES, ASFUPP, AS'JPLIN , ASRAWI, ASNONE, ASOPTL, ASREQD, ASNDEC,
x ASNOCT,ASNHEX,ASNAME,ASNUMB ,ASNEXT ,ASRSET,ASRCMD,ASNEWL,
x ASNOVE , ASTREE, ASDLAY, ASNUFD, ASNSEG, ASCUFD, ASDECZ , ASDECU,
x ASOCTZ ,ASHEXZ , ASRGHT,ASLEFT,ASCNTR, ASBACK, ASFLOW,ASBIN,
x ASNB IN, ASGETU, ASB INZ

PARAMETER
x
X [JRERRREREREEKIKERE ER REREKERERKKEKEREEREEREKREREERE */

x /* */
x /* KEY DEFINITIONS (TABSET 6 11 28 69) */
xX /* */
4 [ERRRKREKEEKEEKKKEEREKKEK OPENSA KREKKKKEEKREKEKRKKEKKEEKERKKKKKKKEKKEK */

x [RRREKKEEKREKEEKKEEKEEKKEKKE OPNPSA REKKEKKKKEKKKKKEKKEEKKKKEEKKKKEKKKKK */

xX [RERREREREREREREKKKEEKK OPNVSA KREEKEKKEKEKRKEKREEKEKEKKEEKKEKKEKKEKEKKEK */

Xx [BRRKEKEREKEKEKKKKKKEKE OPVPSA KKEKKERKKEKEEKKEKKKEKEKEKKKKKKKKEKKK */

x [EREKEKEKKKKKKKKKKKKKK TEMPSA REKKEKEKKEKEKEKEKKEKEKKKKKEKKKKKKKEK */

x /* kkkkkk OPNKEY KkkKKKK */

xX ASREAD = 1, /* READ */

A ll - 48

X ASWRIT = 2, /*
X ASRDWR = 3, /*
X /* RKEKKKK

X ASSAMF = 6, /*
X ASDAMF = :2000, /*
4 /* KKKKKK

X ASGETU = :49000, /*
XxX /* RKKKKK

X ASNVER = 1, /*
X ASVNEW = 2, /*
X ASOVAP = 3, /*
X ASVOLD = 4, /*
x /*
4 [BRERERERERERERERERERKE

x /* KRKKRKKK

X ASABS = 1, /*
X ASREL = 2, [*
x /*
Xx [RERRRRERKERERKEERERKE A

x /* KKEKKKK

X ASNDEF = -1, /*
X ASDNO = 49, /*
X ASDYES = 1, /*
x /*
4 [JBRRRRERRKEREREREEKEKE

x [RERRKKEREREKREERKEKKKK

Xx Jk KRKKKKK

X ASDEC = 1, /*
X ASOCT = 2, /*
X ASHEX = 3, /*
X ASBIN =9, /*
x /*
x /*
X [JRRRRERERKERRREEKKEKEEE

Xx /* RKKKKK

X /* ASDEC = 1, /*
x /* ASOCT = 2, /*
X /* ASHEX = 3, /*
X /* ASBIN = 9, /*
X ASDECZ = 4, /*
X ASOCTZ = 5, /*
X ASHEXZ = 5, /*
X ASDECU = 7, /*
xX /*
X ASBINZ = 8, /*
x /*
x /*
Xx [BRERRERKRKKEKEEERERKRKKKK

x /* KREKKKK

xX /* ASREAD = 1, /*
X ASNEXT = 2, /*
X ASRSET = 3, /*
X /* ASRAWT = 4, /*

PDR 3621 APPLICATION LIBRARY (APPLIB)

WRITE

READ/WRITE
TYPKEY REKKKK

OPEN NEW SAM FILE

OPEN NEW DAM FILE
UNTKEY kKkKKKK*

OPEN AND RETURN UNIT
VERKEY KKKKK:K

NO VERIFICATION
VERIFY NEW FILE (OK TO MODIFY)
ASVNEW + OVERWRITE/APPEND OPTION
VERIFY OLD FILE (DO NOT CREATE NEW)

RPOSSA KEKEKKEKEKKEREKEKREREEREREKKKEEKKEREEKE

POSKEY kKkKKKKR

ABSOLUTE POSITION

RELATIVE POSITION

YSNOSA KREEREKREKREKRKEEKREREREREEKRERKEKRKEREKK

DEFKEY ******
NO DEFAULT
DEFAULT
DEFAULT

‘NO!

'VRS!

RNUMSA KHKEKKEKEKEKEKRERKEEERKEEKEERKKKKKRKKKKEK

CNVASA RREEKKEKEKEKEKRERERKREREREEREKRKRKKKRKRK KEK

NUMKEY *****%

DECIMAL

OCTAL

HEXADECIMAL

BINARY

CNVBSA REKKEKEKEKREEKEKRKKRKEKKKKKE

NUMKEY ****%*%

DECIMAL, LEFT PADDED WITH BLANKS

OCTAL, LEFT PADDED WITH BLANKS

HEXADECIMAL, LEFT PADDED WITH BLANKS

BINARY, LEFT PADDED WITH BLANKS

DECIMAL, LEFT PADDED WITH ZEROS

OCTAL, LEFT PADDED WITH ZEROS

HEXADECIMAL, LEFT PADDED WITH ZEROS

UNSTGNED DECIMAL, LEFT PADDED WITH

BLANKS

BINARY, LEFT PADDED WITH ZEROS

CMDLSA FERRARAAHKKKKAK RKKARRRRRRRRRR
KRY KKKKKEK

READ NEXT ENTRY IN COMMAND LINE

READ FIRST ENTRY IN NEXT LINE

RESET TO BEGINNING OF COMMAND LINE

READ REMAINDER OF LINE AS RAW TEXT
*/
*/

ll - 49 January 1986

SECTION 11

ASNKWL = 5, /*
ASRCMD = 6, /*

/* KKEKKKE

/* ASDEC = 1, /*
/* ASOCT = 2, /*

/* ASHEX = 3, /*
/* ASRAWI = 4, /*

ASNDEC = 5, /*
ASNOCT = 4, /*
ASNHEX = 7, /*
ASNAME = 8, /*

/* ASBIN = 9, /*
ASNBIN =10, /*

/* KRKREERK

ASNONE = @, /*
/* ASNAME = 8, /*

ASNUMB = 9, /*
ASNOVF = 18, /*

/* KkkkKK

/* ASNONE = @, /*
ASOPTL = 1, /*
ASREQD = 2, /*

/*

[BEREREKEKEREREREERERK

O
S

OS
OK

OK
OK

OS
OK

OO
K
O
K
O

OO
O
O
K
O
O
K

O
O
O
K
O
O
O
O
O
O

O
K
O
K
O
K
O
O
O
O
O

OK
OK
O
K
O

OK
OK

OK
O
K

OK
O
K

O
K
O

OO
O
K
O

OX

/* KKKEKEK

ASFUPP = 1, /*
ASUPLW = 2, /*
ASRAWI = 4, /*

/*

/*

[RERRRERERKREREERRRERER

/* KkkK

ASTREE = 1, /*
ASNUFD = 2, /*
ASNSEG = 3, /*
ASCUFD = 4, /*
ASDLAY = 5, /*
ASBACK = 6, /*

/*

[RERERREREKRERERERERERE

/* KkREKK

ASRGHT = 1, [*
ASLEFT = 2, /*
ASCNTR = 3, /*

/*

[BRRKREREKREKERKRERERKK

/* KKKKKE

/* ASFUPP = 1, /*
ASFLOW = 5 /*

/*

[RREERERERERERERERERKKE

/* KEKKKE

/* ASBIN =9, /*

PDR3621

ACCEPT NEW KEYWORD LIST

FIRST TOKEN IS COMMAND (NO '-')
OPTYPE REKKKE

DECIMAL OPTION

OCTAL OPTION

HEXADEC IMAL OPTION

OPTION IS RAW. TEXT

NAME OR DECIMAL OPTION

NAME OR OCTAL OPTION

NAME OR HEXADECIMAL

NAME

BINARY OPTION

NAME OR BINARY OPTION
OPTION RKKKKK

NO OPTION PRESENT OR NULL OPTION

OPTION IS A NAME

OPTION IS A NUMBER (DIGIT STRING)

NUMERIC OVERFLOW
STATUS *#*#kKKK

NO OPTION TO FOLLOW KEYWORD

OPTION MAY OR MAY NOT FOLLOW KEYWORD

OPTION MUST FOLLOW KEYWORD

RNAMSA KRRKKEARKEREKREREREEREEREKEEKEREREKER

NAMKEY REKKKS

FORCE UPPER CASE

READ UPPER AND LOWER CASE

READ REST OF LINE

TSCNSA KKKEKKERERKEEKEKKEREKRRRRKERERRREEKE

KEY KKKKKK

ALL ENTRIES IN A TREE
DO NOT SCAN SUBUFDS
DO NOT SCAN SEGDIRS
DO NOT SCAN SUBUFDS OR SEGDIRS
STAY AT DIRECTORY WHEN GOING UP TREE
BACK UP ONE LEVEL (FOR ERROR HANDLING)

JSTRSA KEKKKEKKKEKKREKERERREERKEREREREKKRKESE

KEY KKEKKSK

RIGHT JUSTIFY
LEFT JUSTIFY
CENTER

CASESA KKKEKKERKEERKKEERERRREERREREKERKRER

KEY REKKKE

FORCE UPPER CASE
FORCE LOWER CASE

TYPESA KHKKAKAKRAKAKAAARRAKRRRRRERRREREE
KEY KKKKKE

BINARY NUMBER

ll - 56

PDR36 21 APPLICATION LIBRARY (APPLIB)

Xx /* ASDEC = 1, /* DECIMAL NUMBER */
X /* ASOCT = 2, /* OCTAL NUMBER */
X /* ASHEX = 3, /* HEXADECIMAL NUMBER */
X /* ASNAME = 8 /* NAME */
xX /* */

X [BRRRRERIKEERERERKEERKRERERERERRRRRRRRREREREREREERERERERERE */

LIST

ll - 51 January 1980

PDR3521 SORT LIBRARIES

SECTION 12

SORT LIBRARIES

SORT SUBROUTINES OVERVIEW

PRIMOS contains many routines for performing disk or internal sorts.
The subroutines are contained in the three libraries, described below.
A detailed description of each subroutine follows later in this
section.

SRTLIB is the R-mode library which contains two subroutines that call

for a disk SORT operation.

VSRTLI is the V-mode version of the SRTLIB routines. These routines
handle larger records and more data and record types than the R-mode
version. VSRTLI also has subroutines which provide for the user's ow
input and output procedures.

MSORTS library contains several in-memory sort subroutines and also has
a binary search/table building subroutine.

The following are the subroutines in each library.

SRILIB VSRTLI MSORTS

SUBSRT SUBSRT HEAP
ASCSS$ ASCSS$ QUICK

ASCSRT SHELL
SRTFSS RADXEX
SETUSS INSERT
RLSESS BUBBLE
CMBNS$S BNSRCH
RTRNSS
CLNUSS
MRG1SS —

Record Types

The following record types are handled by the sort library routines.

COMPRESSED SOURCE: Record with compressed blanks,
newline character (:212).

newline character.

delimited bya

Compressed source lines cannot contain data

which may be interpreted as a blank compression indicator (:221) or

UNCOMPRESSED SOURCE: Record with no blank compression, delimited by a
newline character (:212).. Uncompressed source lines cannot contain

data which may be interpreted as a newline character.

12 - 41 January 1980

SECTION 12 PDR3621

VARIABLE LENGTH: Record stored with length (in words) in the first
word. This length does not include the first word which contains the
count.

FIXED LENG?H: Record containing data but no length information. The
length must be defined as the maximun line size. (If a newline
character is appended to each record to make the file acceptable input
to EDITOR, the character must be incluwied in the length.)

Default depends upon the key-types specified (see Key Definitions,
below). Input type defaults to variable length if a single precision
integer, double precision integer, single or double precision real key
is specified. Otherwise, the default is compressed source. If the

output type is not specified, it is assumed to be the same as input
type.

TF MULTIPLE INPUT FILES ARE USED THEY MUST ALL CONTAIN RECORDS OF THE
SAME TYPE.

Record Length

The maximun record length allowed is 508 characters in R-mode and
32,768 characters in V-mode. "WARNING-LINE TRUNCATED" is printed
whenever the data (not including record delimiters) exceeds the maximum
record length and the excess data is ignored. Output record length
defaults to the input record length.

KeyDefinitions

Each key must start and end on a byte boundary. An improperly defined
key (e.g., record length is less than ending byte number of key) will
produce indeterminate results. With compressed source records, the key
is padded with spaces. In R-mode, 2@ keys with a maximun length of 312
characters may be specified. In V-mode, up to 5@ key fields may be
specified and the total length may not exceed maximum record length.
For fixed length records, key fields are verified to be within record
length. The following are the key types which are specified as a
parameter in the SORT subroutines.

ASCII keys are character strings, stored one character per byte. ASCII
keys are limited only by the length of the record.

SIGNED NUMERIC ASCII keys require one byte per digit and include the
following types:

Numeric ASCII, leading separate sign
Nuneric ASCII, trailing separate sign
Numeric ASCII, leading enbedded sign
Numeric ASCII, trailing embedded sign

REV. A 12 - 2

PDR3621 SORT LIBRARIES

A space will be treated as a positive sign. Signed numeric ASCII keys

may be up to 63 digits plus sign.

When the sign is separate, a positive number has a plus sign(+) and a
negative number has a minus sign(-). I£ the sign is embedded, a single
character is used to represent the digit and sign. tmbedded sign
characters are:

Digit Positive Negative

-,+,{ he

W
O
M
A
A
T
I
A
D
M
A
W
N
F

W
H
D
I
A
U
A
W
N
H
S

A
m
a

D
V
m
a
T
A
D

LY

P
O
V
O
L
Z
B
Z
r
R
U

UNSIGNED NUMERIC ASCII keys are stored one digit per byte ard are
limited only by the length of the record.

INTEGER and REAL keys include the following types:

KEY BYTE LENGTH RANGE

-32767 to +327467

—-2**31 to +2**31-1
+(10**-38 to 10**38)
+(19**-9992 to 19**9825)

SINGLE PRECISION INTEGER
DOUBLE PRECISION INTEGER
SINGLE PRECISION REAL
DOUBLE PRECISION REAL C

O
D
2
&

p
o

PACKED DECIMAL keys are stored two nibbles (digit or sign) per byte.
The last byte contains the final digit plus sign. A positive sign is
represented by hex C in the sign nibble and a negative field has a hex
D in the sign nibble. A packed field must have an odd number of digits
and may have up to 63 digits plus sign.

12 - 3 January 19898

SECTION 12 PDR3621

SRTLIB (R-MODE) - SUBROUTINE DESCRIPTIONS

> suBsRT

SUBSRT is used to sort a single input file, containing compressed
source records, on ASCII keys in ascending order. Maximum record
length is 508 characters and maximum key length is 312 characters.

CALL SUBSRT (tree-1,len-1,tree-2,len-2 ,numkey,nstart ,nend ,npass ,nitem)

tree-1 Input treename.

len-1 Length of input treename in characters up to 80.

tree-2 Output treename.

len-2 Length of output treename in characters up to 82.

numkey Number of pairs of starting and ending columns
(maximum 20).

nstart Vector containing starting columns of keys.

nend Vector containing ending colunns of keys.

npass Number of passes (returned).

nitemn Nunber of items in output file (returned) INTEGER*4.

B ascsss

ASCSSS is the R-mode subroutine which sorts or merges compressed or
variable length records depending on the. type of data specified in

ntype. When sorting on binary files, starting and ending columns mean
starting and ending bytes. When sorting equal keys, the input order is
maintained. Maximum record length is 508 characters and maximun key
length is 312 characters.

CALL ASCSSS tree-1,len-1,tree-2,len-2,numkey,nstart,nend ,npass

nitem ,nrev ,ispce ,mgcnt ,mgbuff ,len,LOC(buffer) ,msize
ntype ,linsiz,nunits,units)

tree-1 Input treename.

len-1 Length of input treename in characters,

REV. A 12 - 4

tree-2

len-2

numkey

nstart

nend

npass

niten

nrev

ispce

myjcnt

mgbuf ft

len

LOC (buffer)

msi ze

ntype

4

UI
®
W
N

Ee

linsiz

nunits

units

PDR3621 SORT LIBRARIES

Output treename.

Length of output treename in characters,

Nunber of pairs of starting and ending columns

(maximum 29).

Vector containing starting columns.

Vector containing ending columns.

Number of passes (returned).

Number of itens in output file (returned) INTEGER*4.

Vector containing order keys, %=Ascending,

1=Descending.

$=sort blank lines, l=delete blank lines.

Number of merge files (up to 10).

Array dimensioned (4*mgcnt) containing merge

filenames.

Vector containing length of merge filenames in
characters.

Location of presort buffer in words.

Size of presort buffer in words.

Vector containing type of each key.

ASCIT
SINGLE PRECISION INTGER
SINGLE PRECISION REAL
DOUBLE PRECISION REAL
DOUBLE PRECISION INTEGER

Maximum size of line in characters (default:

508 characters).

Number of file units available. (4 will be used)

Vector containing available file units.

12 - 5 January 1989

SECTION 12 PDR3621

Notes

1. Last 4 items are optional and may be omitted. Default
value of ntype is ASCII.

2. Treenames may be used in ASCSS$$ but may not exceed 89
characters in length.

3. Files specified as merge files will be sorted and
merged with the input file. Treenames may be used for
merge files, but only 19 merge files, no more than 890
characters in length may be used.

4. Presort buffer size should be as large as possible on
P1984 and P2808 systems. On virtual memory systems, the
best size must be determined by experimentation.

VSRTLI (V-MODE) - SUBROUTINE DESCRIPTIONS

VSRTLI routines follow a consistent naming convention to avoid possible
conflict between user-written routines and system routines. All entry
points end with the suffix $S - except SUBSRT and ASCSRT which remain
the same for compatibility with earlier versions of the library. The
names E§3$1, EB$2, §B$3, EBS$4, and EBS5 are no longer used. Subroutines
used internally by VSRTLI routines which have a suffix of $$S should
not be called from user routines. All parameters for all the routines
are INTEGER*2 unless otherwise stated.

PB suBSRT

SUBSRT is used to sort a single input file, containing compressed
source records, on ASCII keys in ascending order. Maximun record
length is 32,760 bytes.

CALL SUBSRT (tree-1, len-1,tree-2,1len-2 ,numkey,nstart,nend ,npass ,nitem)

tree-1 Input treename.

len-1 Length of input treename in characters, up to 80.

tree-2 Output treename,

len-2 Length of output treename in characters, up to 380.

nunkey Number of pairs of starting and ending columns, up

_

to
99. %If binary, specifies starting and ending bytes.
Default = 1.

nstart vector containing starting columns/bytes(must be >1).

REV. A 12 - 5

PDR36 21 SORT LIBRARIES

nend Vector containing ending columns/bytes. Each ending

column must be < linsiz.

npass Nunber of passes (returned).

nitem Number of itens in output file (returned) INTEGER*4.

p> AscsRT

ASCSRT (can also be called as ASCSSS as in SRTLIB) is the vV-mode

subroutine which handles larger records and additional types of sort

key fields, than the R-mode version. Maximum record length is 32,7650

bytes.

ASCSRT sorts or merges compressed source or variable length records

from and to disk files. Any of the supported key types (specified in

ntype) may be used, and there may be ascending and descending keys

within the same sort or merge. When sorting equal keys, the input

order is maintained.

CALL{ASCSS$| (tree-1,len-1,tree-2,len-2,numkey,nstart,nend ,npass

ASCSRT{ nitem,nrev,ispce ,mgent ,mgbuff ,len,LOC(buffer) ,msize

ntype ,Linsiz,nunits,units)

tree-1 Input treename.

len-1 Length of input treename in characters, up to 80.

tree~-2 Output treename.

len-2 Length of output treename in characters, up to 80.

nunkey Number of pairs of starting and ending columns,

up to 50. If binary, specifies starting and

ending bytes.
Default = l.

nstart Vector containing starting columns/bytes.

Each starting colunn must be >1l.

nend Vector containing ending colunns/bytes.

Each ending column must be < linsiz.

npass Number of passes (returned).

niten Number of itens in output file (returned) INTEGER*4.

12 - 7 January 1980

SECTION 12

nrev

ispce

mgcnt

mgbuff

len

LOC (buffer)

msi ze

ntype

|

n
e
u
n
n
t

PDR3621

Vector containing sort order for each key.
N=Ascending, 1=Descending.
Default: @ = Ascending

Option to specify treatment of blanks.
% = include blank lines in sort
1 = delete blank lines

Default: 8 = include blank lines

Number of merge files (up to 10).

Array dimensioned (4@*mgcnt) containing merge
filenames.

Vector containing length of merge filenames in
characters, up to 8@.

Location of presort buffer in words. For Rev. 17
and above, presort buffer is a common block,
PSRTSS, and this parameter is ignored.

Size (<65535) of presort buffer in words.
For Rev. 17 and above, corresponds to size of the
common block, PSRTSS: This parameter may be a full
16-bit unsigned integer but cannot be INTEGER*4. IF
nonzero, msize must be at least 1924 (one page)
and no more than 54 pages. If larger, the message
"WARNING-PRESORT BUFFER SHOULD NOT BE LARGER THAN

ONE SEGMENT" is issued, and the default is used.
Default: one segment (65536).

Vector containing type of each key.

ASCII
SINGLE PRECISION INTEGER
SINGLE PRECISION REAL
DOUBLE PRECISION REAL
DOUBLE PRECISION INTEGER

The additional types available for Rev.17 and above:

6
7

8
9
19

NUMERIC ASCII, LEADING SEPARATE SIGN
NUMERIC ASCII, TRAILING SEPARATE SIGN
PACKED DECIMAL

NUMERIC ASCII, LEADING EMBEDDED SIGN
NUMERTC ASCII, TRAILING EMBEDDED SIGN

11 NUMERIC ASCII, UNSIGNED
12

linsiz

REV. A

ASCII, LOWER CASE SORTS EQUAL TO UPPER CASE
Default: ALL ASCII Keys.

Maximum size of line in characters (bytes) .
Default: 327690

12 - 8

PDR36 21 SORT LIBRARIES

nunits Number of file units available. (4 will be used)

For Rev. 17 and above, parameter not used since file

units are supplied dynamically using the subroutine

SRCHSS with key KSGETU (See Section 4).

units Vector containing available file units. Obsolete

for Rev. 17 and above. See nunits above.

Notes

1. Last 4 items are optional and may be omitted.

2. Files specified as merge files will be merged with the

input file. Treenames may be used for merge files.

3. Presort buffer size should be determined by

experimentation on virtual memory systems.

B sRIFSS

SRTFSS will sort input files (maximum 20) into a single output file.

CALL SRTFSS (inbuff ,inlen,inunts,incnt,tree2,len2,outunt,

numkey,nstart,nend ,nrev ,ntype,
ercode ,inrec ,outrec ,spcels ,msi ze)

inbuf£ Array dimensioned(49,incnt) containing input filenames.

inlen Vector containing lengths of input treenames in characters,

up to 8@.

inunts Vector containing input file units (if open units are used).

inent Number of input files (up to 29).

tree2 Output file treename.

len2 Length of output treename in characters, up to 80.

outunt Output file unit (if an open wnit is used).

numkey Number of pairs of starting and ending columns

(starting and ending bytes if binary), up to 59%.

Default = l.

nstart Vector containing starting columns/bytes.
Each starting column must be >1.

12 - 9 January 1986

SECTION 12 PDR3621

nend Vector containing ending columns/bytes.
Each ending column must be < maximum input line size.

nrev Vector containing sort order for each key
@ = Ascending
1 = Descending
Default = 9 = Ascending.

ntype Vector containing type of each key
1 = ASCII
2 = SINGLE PRECISION INTEGER
3 = SINGLE PRECISION REAL
4 = DOUBLE PRECISION REAL
> = DOUBLE PRECISION INTEGER
5 = NUMERIC ASCII, LEADING SEPARATE SIGN
7 = NUMERTC ASCII, TRAILING SEPARATE SIGN
8 = PACKED DECIMAL
9 = NUMERIC ASCII, LEADING EMBEDDED SIGN

19 = NUMERIC ASCII, TRAILING EMBEDDED SIGN
11 = NUMERIC ASCII, UNSIGNED
12 = ASCII, LOWER CASE, SORTS EQUAL TO UPPER CASE.
Default = ALL ASCIT keys.

ercode Error code (returned) .

inrec Five word array containing input record information:
inrec(1) = input record type

1 = COMPRESSED SOURCE (blanks compressed)
2 = VARIABLE LENGTH

3 = FIXED LENGTH (inrec(2) must be specified)
4 = UNCOMPRESSED SOURCE (no blank conpression) .
Default depends on the key types specified in argument
ntype.

inrec(2) = Maximum input line size in characters (bytes) .
Default = 32760.
Required for sorting fixed length records.

inrec(3-5) must be zero, and are reserved for future use.

outrec Five word array containing output record information.
outrec(1) = output record type (see inrec)
outrec(2) = maximun output line size in characters (bytes) .
outrec(3-5) must be zero, and are reserved for future use.

spels Five word array containing:
spcls(1) = Space option

® = include blank lines in sort
1 = delete blank lines
Default = @ = include blank lines.

spcls(2-5) must be zero, and are reserved for future use.

REV. A 12 - 1

msi ze

P mRG1SsS

PDR36 21 SORT LIBRARIES

Size of presort buffer in pages (units of 1024 words), <64.
Note that the units used here are pages which differ
from the words used by ASCSRT.
Default is one segment (54 pages).

MRG1SS merges two to eleven previously sorted files into a single

output file.

CALL MRGLSS (inbuff£,inlen,inunts,incnt,tree2,1len2,outunt ,nunkey,

inbufE£

inlen

inunts

inent

tree2

len2

outunt

nunkey

nstart

nend

nrev

nstart ,nend ,nrev ,ntype ,ercode , inrec ,outrec,spcls ,oproc)

Array dimensioned (4@,incnt) containing input

filenames.

Vector containing lengths of input treenames_ in

characters, up to 8@.

Vector containing input file units(if open units are
used)

Number of input files (up to 20).

Output file treename.

Length of output treename in characters, up to 86.

Output file unit (if an open unit is used).

Number of pairs of starting and-~ ending columns
(starting and ending bytes if binary), up to 5@.
Default=1.

Vector containing Starting columns/bytes. Each

starting column must be >1.

Vector containing ending columns/bytes. Each ending

column must be < inrec(2).

Vector containing sort order for each key
8 = Ascending
1 = Descending.
Default = @ = Ascending.

12 - ll January 1980

SECTION 12

REV.

ntype

ercode

inrec

outrec

spels

oproc

A

PDR3621

Vector containing type of each key
1 = ASCII
2 = SINGLE PRECISION INTEGER
3 = SINGLE PRECISION REAL
4 = DOUBLE PRECISION REAL
5 = DOUBLE PRECISION INTEGER
6 = NUMERIC ASCII, LEADING SEPARATE SIGN
7 = NUMERIC ASCII, TRAILING SEPARATE SIGN
38 = PACKED DECIMAL

9 = NUMERIC ASCII, LEADING EMBEDDED SIGN
18 = NUMERIC ASCII, TRAILING EMBEDDED SIGN
11 = NUMERIC ASCII, UNSIGNED
12 = ASCII, LOWER CASE SORTS EQUAL TO UPPER CASE.
Default = ALL ASCII keys.

Error code (returned) .

Five word array containing input record information:
inrec(1) = input record type

1 = COMPRESSED SOURCE (blanks compressed)
2 = VARIABLE LENGTH

3 = FIXED LENGTH (inrec(2) must be specified)
4 = UNCOMPRESSED SOURCE (no blank compression).
Default depends on the key types specified in
ntype

inrec(2) = Maximum input line size in characters
(bytes). Default = 32760. Required for sorting
fixed length records.

inrec(3-5) must be zero, and are reserved for future
use.

Five word array containing output record information:
outrec(1) = output record type (see inrec)
outrec(2) = maximun output line size in
characters(bytes).
outrec(3-5) must be zero, and are reserved for future

use.

Five word array containing:

spels(l) = Space option

®@ = include blank lines in sort

1 = delete blank lines.

Default = 9 = include blank lines.

spcls(2-5) must be zero, and are reserved for future
use.

Output data destination
8 = Output file
1 = Output procedure.

12 - 12

PDR3621 SORT LIBRARIES

SETUSS, RLSES$S, CMBNSS, RTRNSS, CLNUSS

The following five routines allow the user's own input and output
procedures. These routines must all be called, and in the order given,
to assure that the sort is done correctly. Source records passed to
SORT from an input procedure must end with a newline character (:212).
If not, a "WARNING-LINE TRUNCATED” message will be issued and the last

character will be overwritten by a newline’ character. These
subroutines are available in V-mode only. All parameters are

INTEGER*2.

B sETUSS

SETUSS checks the parameters supplied by the user and sets up all

tables for the particular sort being defined.

CALL SETUSS (inbuff ,inlen,inunts,incnt,tree2,len2,outunt,
numkey,nstart ,nend ,nrev ,ntype ,ercode ,inrec,
outrec ,spcls ,msize,iproc ,oproc)

inbuff Array dimensioned(49,incnt) containing input filenames.

inlen Vector containing lengths of input treenames in characters,

up to 8@.

inunts Vector containing input file units (if open units are used).

incnt Number of input files (up to 29).

tree2 Output file treename.

len2 Length of output treename in characters, up to 80.

outunt Output file unit (if an open unit is used).

numkey Number of pairs of starting and ending colunns

(starting and ending bytes if binary), up to 5@.
Default = 1.

nstart Vector containing starting columns/bytes, (must be >1).

nend Vector containing ending columns/bytes, (must be < inrec(2))

12 - 13 January 1989

SECTION 12 PDR3621

nrev Vector containing sort order for each key
9 = Ascending
1 = Descending
Default = 9 = Ascending.

ntype Vector containing type of each key
1 = ASCII

2 = SINGLE PRECISION INTEGER
3 = SINGLE PRECISION REAL
4 = DOUBLE PRECISION REAL
> = DOUBLE PRECISION INTEGER
6 = NUMERIC ASCII, LEADING SEPARATE SIGN
7 = NUMERIC ASCII, TRAILING SEPARATE SIGN
8 = PACKED DECIMAL
9 = NUMERIC ASCII, LEADING EMBEDDED SIGN

12 = NUMERIC ASCII, TRAILING EMBEDDED SIGN
11 = NUMERIC ASCII, UNSIGNED
12 = ASCII, LOWER CASE.SORTS EQUAL TO UPPER CASE.
Default = ALL ASCII keys.

ercode Error code (returned).

inrec Five word array containing input record information:
inrec(1) = input record type

1 = COMPRESSED SOURCE (blanks compressed)
2 = VARIABLE LENGTH

3 = FIXED LENGIH (inrec(2) must be speci fied)

4 = UNCOMPRESSED SOURCE (no blank compression) .
Default depends on the key types specified in ntype.

inrec(2) = Maximun input line size in characters (bytes) .
Required for sorting fixed length records.
Default = 32769.

inrec(3-5) must be zero, and are reserved for future use.

outrec Five word array containing output record information.
outrec(1) = output record type (see inrec)
outrec(2) = maximun output line size in characters (bytes).
outrec(3-5) must be zero, and are reserved for future use.

spcls Five word array containim;:
spcls(1) = Space option

% = include blank lines in sort
1 = delete blank lines
Default = @ = include blank lines.

spels(2-5) must be zero, and are reserved for future use.

msi ze Size of presort buffer in pages (units of 1924 words), <64.
Default is one segment (64 pages).

iproc Input data source
9 = Input file
1 = Input procedure.

REV. A 12 - 14

PDR3621 SORT LIBRARIES

oproc Output data destination

8 = Output file
1 Output procedure.

P RLSESS

RLSESS transfers records to the initial phase of the sort. If an input
procedure is used, RLSESS is called once for each line released. If an
input file is used, RLSE$S should be called only once.

CALL RLSESS (rlbuf£ ,length)

rlbuf€ Buffer containing next record for sort.

length Length of record in characters or bytes. This is
not necessarily the full length of rlbuff.

If input is from a file, RLSESS arguments are not used, and multiple
calls to RLSESS result in multiple occurrences of each record when
sorted.

Pe crenss

CMBNSS performs the internal sort. If the sort cannot be done within
allocated memory, CMBN$S merges the strings previously sorted.

CALL CMBNSS

12 - 15 January 1980

SECTION 12 PDR3621

> RIRNSS

RTRNSS returns the sorted records. If an output procedure is used,

each call to RTRNSS obtains the next sorted record. If an output file

is specified, RTRNSS is called only once.

CALL RTRNSS (rtbuff ,length)

rtbuff Buffer containing next sorted record (returned).

Should be large enough to hold the longest record sorted.

length Length of record in characters or bytes (returned).
When all records have been returned, calls to
RLSESS return a record length of @.

I£ output is to a file, RTRNS$S arguments are not used.

Pe cluuss

CLNUSS closes all units opened by the sort routines and deletes any

temporary files.

CALL CLNUSS

REV. A 12 - 16

PDR3621 SORT LIBRARIES

SAMPLE USER INPUT PROCEDURE

The following sample program demonstrates the use of an input procedure with the
sort user-Subroutines.

OK, SLIST SAMPLE

C-----SAMPLE PROGRAM WHICH CALLS SORT
C-----TO DEMONSTRATE THE USE OF AN INPUT PROCEDURE BEFORE SORTING
C
C
SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ERRD.F
Cc

C

INTEGER

& BUFFER(19), /* Buffer for reading file
& ERCODE, /* Error code
& INREC(5), /* Input record information
& OUTREC(5), /* Output record information
& SPCLS (5), /* Flags for special options
& TYPE /* File type returned when file

opened
Cc

Cc

DATA
C Input records are fixed length (2@ characters)

& INREC / 3, 20, ®, ®, B /,
Cc Output records are uncompressed source (so the file can be EDited)

& OUTREC / 4, 20, 0, 0, 8 /,
Cc No special options

& SPCLS / @, @, 8, @, B/
C

Cc

C-----Open the input file
CALL SRCHS$ (KSREAD, 'INPUTFILE' ,9,1,TYPE, ERCODE)

IF (ERCODE .NE. 8) CALL ERRPRS (KSNRTN, ERCODE,@,0,0,9)
Cc

C-----Initialize sort tables

CALL SETUSS ;
& (2, /* no input filenames
& B, _ /* no lengths of filenames
& B, /* no input file units
& B, /* no input filenames
& "OUTPUTFILE', /* this is the output filename
& 10, /7/* 'OUTPUTFILE' is 10 characters long
& a, /* no output file unit is specified
& l, /* sort file on one key
& ly, /* starting at column one
& 20, /* ending at column twenty
& a, /* sort in ascending order

& l, /* the key is all ASCII characters
& ERCODE, /* an error code will be returned

12 - 17 January 1980

SECTION 12 PDR3621

& INREC, /* input record information

& OUTREC, /* output record information
& SPCLS, /* no special options requested

& 0, /* use default value for presort buffer
& l, /* input data is from procedure

& 9) /* output is to file.
IF (ERCODE .NE. @) CALL ERRPRS (KSNRTIN, ERCODE, 9,0,9,9)

Cc
C--~--Read records from input file
108 READ (5,208,END=309) BUFFER
200 FORMAT (19A2)
Cc
C—----Select records to be sorted,

C----- and pass them to sort with the record length (which is 20 characters)
IF (BUFFER(1) .EQ. 'AA') CALL RLSESS (BUFFER, 20)
GO TO 190 /* Go read next record

Cc
C—-~--Hit end of the input file, so finish up the sort

3808 CALL CMBNSS /* do the sort
CALL RTRNSS (8,9) /* output the records to the output file

CALL CLNUSS /* clean up after sorting
C

C---~--Close input file
CALL SRCHS$ (KSCLOS,8,8,1,8,ERCODE)
IF (ERCODE .NE. 9) CALL ERRPRS (KSNRTN, ERCODE,9,0,9,9)

CALL EXIT
END

OK, FTN SAMPLE -64V -DCLVAR
09008 ERRORS [<.MAIN. >FTN-REV17. 6H

OK, SEG
{SEG rev 17.4

LOAD #SAMPLE
S$ LO B SAMPLE
$ LI VSRTLI
$ LIB
LOAD COMPLETE
$ SAVE
S QU

OK, SLIST INPUTEILE

AA EMPLOYEEL

BB EMPLOYEES

BB EMPLOYEE 3

CC EMPLOYEE4

AA EMPLOYEE 2

AA EMPLOYEE6

CC EMPLOYEE7

AA EMPLOYEE@

OK, SEG #SAMPLE

REV. A 12 6«6- «218

PDR3621

OK, SLIST OUTPUTFILE
AA
AA
AA
AA

EMPLOYEE@
EMPLOYEE1
EMPLOYEE 2
EMPLOYEEO

SORT LIBRARIES

January 1988

SECTION 12 PDR3621

MSORTS - SUBROUTINE DESCRIPTIONS

The MSORTS library contains several in-memory sort subroutines and a

binary search/table building routine. The reference for most of the

algorithn and timing studies is Donald Knuth, ‘The Art of Computer

Programming, Volune 3, Sorting and Searching’. It should be pointed

out that the timing figures quoted are based upon Knuth's algorithms on

his fictional machine (MIX). Since the MSORTS routines are more

general, the Prime machines are different, and no in-house timing

studies have yet been done, the timing formulas quoted here should be

used only as an indication of the relative merits of each algorithm and

not as exact computational tools.

In-menory sorts can be grouped into four categories: 1) sorts

requiring very little additional memory; 2) sorts requiring a great

deal of additional memory; 3) sorts using threaded lists; and 4)

sorts based upon tree structures. Since available real memory space in

Prime machines could be small and since the value of in-memory sorts

using paged memory could be questionable, no sorts of categories 2 or 3

have been included in MSORTS. Also, since explicit tree structures

tend to be threaded, only a single representative of this class has

been included (HEAP).

The binary search routine (BNSRCH) can be used either for table lookup

in an ordered table or for building a sorted table.

The routines included in MSORTS are:

HEAP Heap Sort - based upon binary trees.

QUICK 'Quicksort' - partition-excharge.

SHELL Shell Sort - diminishing increment.

RADXEX Radix Exchange Sort.
INSERT Straight Insertion Sort.
BUBBLE 'Bubble' Sort - interchange.

BNSRCH Binary Search.

All routines accept multiword entries and multi-word keys located

anywhere within the entry. The restrictions are that all entries are

equal length and key words are contiguous (no secondary keys). An

attempt has been made to keep the calling sequences as similar as

possible. However, each sort has slightly different requirements.

Except for RADXEX, all routines have the same first five parameters

(arguments) .

REV. A 12 - 28

PDR3421 SORT LIBRARTES

Parameters Common to More Than One Subroutine

ptable Integer pointer to the first word of the table. For

example, if the table is in an array TABLE (a,b) , the

parameter ptable = loc (table). Ptable is a full 16 bit

pointer and can be in the upper 32K of memory.

nentry Number of Integer table entries (not words) in the table

(e.g., itens to be sorted or searched). This is a full

16 bit count, since there can be more than 32K entries in

the table.

nwis Number of words/entry. nwis> 9. Obviously if nwds >

32K, there can be only a single entry.

fword First word within the entry of the key field.

nkwds Number of words in key field, 9 <nkwdis < nwis. Also,

fword + nkwis - 1 <nwis. (i.e., the key field must be

contained within an entry).

npass Number of passes made (=9 if error).

altbp Alternate return for bad parameters.

RADXEX replaces the nkwrds parameter by the following:

foit First bit within fword of key. fbit > @ and fword +

(nbit + fbit -2)/15 < nwis; i.e., the key fieldmust be
contained within an entry.

nbit Number of bits in key. nbit > @ and fword + (nbit + fbit

-2)/16 < nwis; i.e., the key field must be contained

within an entry.

Also, the routines HEAP, QUICK, RADXEX, and BUBBLE require temporary

arrays of sizes:

HEAP, QUICK tarray (nwds)
RADXEX tarray (2nbit)

BUBBLE tarray (nkwds)

All routines (except RADXEX) sort the table in increasing order where

the key is treated as a single, signed multi-word integer. Therefore,

the numbers 5, ~-1, 18, -3 would be sorted to -3, -1, 5, 10. RADXEX,

since the key need not begin on a word boundary, treats the key as a

single, unsigned multi-word (or partial word) integer. Thus, the same

four numbers would be sorted by RADXEX to 5, 10, -3, —l.

12 - 2l January 1989

SECTION 12 PDR3621

> BNSRCH

Simple binary searching (opflag=8) tests each entry's keyfield for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the not
found alternate return (altnf) is taken. If altnf is not specified,
the normal return is found, it is deletedfrom the table as well as
returned in fentry. In this case, index specifies where the entry was.
Opflag=2 is the same as opflag=0 if the entry is found. If, however,
the entry is not found, the contents of fentry will be inserted into
the table and index will indicate the position of the new element.
Also, altnf will be taken, Opflag=3 is the same as opflag=9 if the
entry is not found. If the entry is found, the contents of fentry and
the found entry are interchanged, thus updating the table and returning
the old entry.

CALL BNSRCH (ptable, nentry, nwis, fword, nkwis, skey, fentry,
index, opflag, altnf, altbp)

The additional paraneters are:

skey Search key array (nkwds).

fentry Found entry array (nwds).

index Entry number of found entry.

opflag operation key

9=locate
l=locate and delete
2=locate or insert
3=locate amd update

altnf Not found alternate return.

BP BUBBLE

Bubble sorting is a simple interchange sort.

CALL BUBBLE (ptable, nentry, nwis, fword, nkwis, tarray, npass,
altbp, incr)

incr Same as in Insert; used to sort non-adjacent entries.
Default = 1 (sort adjacent).

tarray Must have nkwds words.

REV. A 12 - 22

PDR36 21 SORT LIBRARIES

Running Time: The average running time is proportional to N**2.
Bubble sorting is good only for very small N, but is not as good as
insertion sorting.

> HEAP

Heap sort is based on a non-threaded binary tree structure. The

algorithm consists of two parts: convert the table into a 'heap', and
then sort the heap by an efficient 'top-down' search of the tree. The

formal definition of a heap is:

The Keys K(1), K(2), K(3),++.e, K(N) constitute a 'heap' if
K(J/2) >K (J) for 1<JI/2<I<N.

CALL HEAP (ptable, nentry, nwis, fword, nkwds, tarray, npass, altbp)

tarray Must have nwis words.

Running Time: The average running time is proportional to 23*N*l1nN and
the maximun is 26*N*1nN. Heap sort tends to be inefficient if N<2000,
but for N>2000, it outperforms all other sorts except Quicksort.

> INSERT

Straight insertion sorting is based upon 'percolating' each element

into its final position.

CALL INSERT (ptable, nentry, nwis, fword, nkwis, npass, altbp,
incr)

incr Used to sort non-adjacent entries.

The incr parameter is used to sort nonm-adjacent entries. Tf, for
example, incr=3, every third entry will be included in the sort. The

default is incr=1. For example, with incr=3:

INPUT: 189874554321 8
OUTPUT: 1984657321089

Running Time: Although the average running time is proportional to
N**2, insertion sorting is very good for small tables (N<13) and tends
to be very efficient for nearly ordered tables, even for large N.

12 - 23 January 1989

SECTION 12 PDR3621

> QUICKSORT

Quicksort is a partition exchange sort. QUICK is a variation of the
basic quicksort called a median-of-three quicksort.

CALL QUICK (ptable, nentry, nwis, fword, nkwds, tarray, npass,
al tbp)

tarray Must have nwis words.

Running Time: The average running time is proportional to 12*N*I1nN,
but the maximum time is on the order of N**2, QUICK, on the average,
is the fastest sort in MSORTS, but in the worst case, is about the
Slowest. In fact, the worst case is a completely ordered table. QUICK
must not be used on tables that are already well ordered.

p> RADXEX

RADXEX 1S a radix exchange sort that treats the key as a series of
binary bits. It is based both on the method of radix sorting (like a
card sorter) and partitioning. As noted before, RADXEX does not sort

Signed numbers and will sort the numbers 5, -1l, 10, -3 to 5, 10, -3,
-1. RADXEX has the advantage that the key need not start on a word
boundary nor be an integral number of words lom.

CALL RADXEX (ptable, nentry, nwis, fwrd, fbit, nbit, tarray,
npass, altbp)

tarray Must have 2*nbit words; is used as partition stack.

Running Time: The average running time is proportional to 14*N*lnN,.
Radix exchange is very fast for large N (on the order of QUICK), but it
is inefficient if equal keys are present.

> SHELL

SHELL sort (named after Donald Shell) is a diminishing increment sort.
SHELL utilizes the straight insertion sort (INSERT) on each of its
passes to order the non-adjacent elements an increment (which is
decreased on each pass) apart. Increments are chosen by the formula:

Inc= (3**k-L)/2 where the initial increment is chosen so that
inc(k + 2)>N and subsequent increments by decrementing k.

CALL SHELL (ptable, nentry, nwis, fword, nkwis, npass, altbp)

REV. A 12 - 24

PDR3621 SORT LIBRARIES

Running Time: The average running time is proportional to N**1.25 and

the maximum time is N**L.5. A complete timing analysis on the SHELL
sort is not possible, but for N<2000, it is very good. For N>28@0, the
HEAP SORT is better.

Source Files

All source files are in UFD=MSORTS on the master disk. These files

are:

HEAP Heap Sort
QUICK Median-of-Three Quicksort
SHELL Shell Sort

RADXEX Radix Exchange Sort
INSERT Straight Insertion Sort
BUBBLE Bubble Sort

BNSRCH Binary Search/Table Building

The following source files reside on the master disk and are called by

the main library routines. They are not accessible by the user.

COMPAR
PERCOL
UCOMP
TSTBIT

12 - 25 January 1986

Part IV
Input/Output

Library Subroutines

PDR3621 INTRODUCTION TO IOCS

SECTION 13

INTRODUCTION TO IOCS

OVERVIEW OF IOCS

Tocs (the Input/Output Control System) is a group of subroutines that

perform input/output between the Prime computer and the disks,

teminals, and peripheral devices in the system. Generally, these

functions may be grouped into three levels:

Level 1 Device-independent drivers (e.g., routines to read and

write ASCII).

Level 2 Device specific drivers that issue the correct format

for a particular device, but allow the output to be

read later by device independent drivers.

Level 3. The lowest level of IOCS functions - routines to

perform raw data transters (e.g., TSMT).

I0CS relates logical and physical devices so that callers of I0CcS

routines may be device-independent. The IOCS concept differs fron the

usual concept of logical and physical device that is of significance to

the operating system.

Physical Devices

A physical device is a device type such as magnetic tape or a user

terminal. Each device type is identified by physical device number as

shown in table 13-1.

13 - 4d January 1980

SECTION 13 PDR3621

Table 13-1. Physical Devices Numbers

Physical Device Device

1 User terminal
2 Paper-tape reader or punch
3 MPC card reader
4 Serial line printer
5 9-track magnetic tape ASCII/BINARY
6 MPC line printer
7 PRIMOS file system (compressed ASCIT)
8 PRIMOS file system (uncompressed ASCIT)
9 Serial card reader

19 7-track magnetic tape ASCII/BINARY
ll 7-track magnetic tape BCD
12 (User terminal/command file) /command input
13 9-track magnetic tape EBCDIC
14 Versatec or Gould Printer/Plotter

Physical Unit

A physical unit designation distinguishes between the units of a
physical device that has multiple units, such as a magnetic tape
controller. For disk (file system), the Physical unit corresponds to
the file unit (FUNIT).

‘Logical Unit

The logical unit is the same as the unit number in FORTRAN READ and
WRITE statements. IOCS translates and relates the physical device and
logical units. The standard logical unit assignments are listed in
Table 13-2. Table 13-3 shows logical-unit-to-physical—unit translation
and Table 13-4 lists log ical-unit-to-physical-device translation.

REV. A 130 C= 2

PDR3621 INTRODUCTION TO IOCS

Table 13-2. Logical Device and Numbers

Logical Unit Number Physical Device or Unit

O
M
I
A
O
S
W
N

i
P
E
E
R
R
E
P
P
e
e

W
O
A
O
A
T
A
U
M
N
A
W
N
F

20
21
22
23
24
25
26
27
28

User terminal
Paper-tape reader or punch
MPC card reader

printerSerial

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

PRIMOS

line

file
file

file

file

file

file

file

file

file

file

file

file

file

file

file

file

unit
unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit

unit
9-track magnetic
9—-track magnetic
9-track magnetic
9-track magnetic
7-track magnetic
7-track magnetic
7-track magnetic
7-track magnetic

13

W
O
O
N

D
A
Y
S
P
w
W
N
K
H

19

11

12

13

14

15

16

tape

tape

tape

tape

tape

tape

tape

tape

unit

unit

unit

unit

unit

unit

unit

unit W
N
H
r
R
A
W
N
H
r
S

January 1980

SECTION 13 PDR3621

Table 13-3. Logical-Unit-To-Physical-Unit Translation

* PUTBL---LOGICAL UNIT=> PHYSICAL UNIT TRANSLATION TABLE
k
k
*

PUTBL DEC 8 G1 => 99
DEC @ G2 => BB
DEC 0 A3 => BB

DEC QD G4 => BD
DEC ‘1 05 => Bl

DEC 2 G5 => 82
DEC 3 G7 => 93
DEC 4 G8 => G4
DEC 5 39 => 85
DEC 6 19 => 06
DEC 7 ll => 97

DEC 8 12 => 98
DEC 9 13 => 99
DEC 16 14 => 123
DEC 11 15 = Ll
DEC 12 16 => 12
DEC 13 17 => 13
DEC 14 18 => 14

DEC 15 19 => 15
DEC 14 20 => 16
DEC A 21 => @
DEC 1 22 => 1
DEC 2 23 => 2

DEC 3 24 => 3
DEC 6 25 =>.B

DEC l 25 => 1

DEC 2 27 => 2

DEC 3 28 => 3.

PUTBLE EQU *

PDR 36 21 INTRODUCTION TO IOCS

Table 13-4. Logical-Unit-To-Physical-Device Translation

* LUTBL --- LOGICAL UNIT => PHYSICAL DEVICE TRANSLATION TABLE‘ :
*

LINK
*

LUT8L DEC 1 01 => Ol
DEC 2 G2 => G2
DEC 3 93 => 93
DEC 804 G4 => @4
DEC 7 05 => 07
DEC 7 06 => 07
nec 807 07 => 07
DEC 7 08 => 07
DEC 7 M9 => 97
DEC 7 10 => 07
DEC 7 1l => 97
DEC 87 12 => 07
DEC 7 13 => 97
DEC 7 14 => 07
DEC 7 15 => 97
DEC 7 15 => 07
DEC 7 17 => 07
DEC 7 18 => 07
DEC 7 19 => 97
DEC 7 20 => 07
DEC 5 21 => 95
DEC 85 22 => 05
DEC 5 23 => 95
DEC 5 24 => 05
DEC Oo. 25 => 10
DEC 10 26 => 10
DEC =—s«sW 27 => 10
DEC Osa 238 => 10

LUTBLE EQU *
*
*

*

TEMPORARY DEVICE ASSIGNMENT

The user may assign any device by calling the ATTDEV subroutine.

ATTDEV controls mapping of logical units into physical devices and

controls the record size associated with the logical unit.

Non-shareable devices are assigned on command level with the PRIMOS

'AS' command. When a permanent device assignment is desired the reader

should go on to the CONIOC description.

13 - 95 January 1980

SECTION 13 PDR3621

> ATTDEV

ATTDEV attaches specified devices by initializing both LUTBL,
associating logical-device to physical-device, and PUTBL, associating
the logical device to a specific unit or file of the device.

CALL ATTDEV (logical-device, physical-device, unit, buffer-si ze)

log ical-device The device-independent logical I/O unit for

WRASC, RDASC, WRBIN, RDBIN, and FORTRAN READ
and WRITE statements.

physical-device The position in the device-type tables.

unit The unit for multi-unit devices (e.g., for

disk, file unit number).

buffer-si ze The record size associated with the logical

unit. Must be as large as maximum record
size.

For the given logical-device, set the physical-device, unit, and
buffer-size in the LUTBL, PUTBL, and RSTBL so that the logical unit has
a current mapping.

Errors

If device is incorrect, ATTDEV returns the message: ATTDEV BAD UNIT
(unit-number) .

CONIOC

To facilitate changes to device assignments, the tables used by I0csS
(such as LUTBL and PUTBL) are ina file named CONIOC in a UFD named
IOCS for R-mode and IOCSV for V-mode. The user should list these files
on his system for reference before making any changes.

Note that the R-mode CONIOC in the FTNLIB supports only the user
terminal, the paper-tape reader, paper-tape punch, and the PRIMOS file
system. An attempt to perform I/O to a physical-device not supported
by CONIOC will fail. The default CONIOC for V-mode supports the user
terminal and PRIMOS file system only.

Users who consider that their programs need to use devices other than
the user terminal, the disks, or paper-tape reader or punch, must refer
to the discussion of IOCS tables which follows. Users who wish to
change the asignment of logical to physical devices must also refer to
the IOCS tables.

REV. A 13 - 5

PDR3621 INTRODUCTION TO IOCS

Tocs Tables

If a computer installation requires that user programs use devices not

suppor ted by CONIOC, the system administrator must modify the CONIOC

tables RATBL, RBTBL, WATBL, and WBTBL, and then rebuild the FORTRAN

library. Pile FULCON (in the UFD named I0CS5 for R-mode, I0OcSV for

v-mode) is a version of CONICC that contains all the available IOCS

drivers set up in the appropriate tables. The user should list this

file for reference before making any changes. The operator can use

FULCON as an example of how to set up CONIOC. The entries in the

tables that are not required can be set to zero.

The operator may also change the default log ical-to-physical-device

association as given in Tables 13-1 and 13-2 by changing the I0csS

tables RATBL, TBTBL, WATBL, and CNTBL. For example, the fifth entry of

LUTBL (indicating logical device 5) contains 7. ntry 7, the RATBL,

contains ISAD@7, which is a driver for the PRIMOS file system. Other

nunbers indicate physical devices, as shown in Table 13-1. PUTBL is

the sub-unit table. The sub-unit table contains the individual unit or

file nunbers as requird for multi-file devices. For exanple, LUTBL

contains the same number of logical devices 21, 22, 23, and 24,

indicating 9-track magnetic tape. PUTBL contains 8, 1, 2, and 3 for

logical devices 21, 22, 23, and 24 indicating ulnit @, 1, 2, and 3 of

9"-track magnetic tapes.

Modifying CONIOC To Change Device Assignment

Changing a device assignment is a system administrator responsibility

and not a user function, Thus, the systen administrator may add or

delete a device to:

RATBL Read ASCII table

RBTBL Read Binary table
WAIBL Write ASCII table
WBTBL Write Binary table
CNTBL perform control function (e.g., endfile,

rewind, etc.)

Input Only Devices

Input only devices (e.g., card reader) do not need WATBL and WBTBL

entries. Furthermore, an ASCII only device (e.g., line printer) does

not need RBTBL and WBTBL entries.

Order of Entries

The order of entries in the above mentioned tables correspond to

physical device numbers defined in Table 13-1.

13 - 7 January 1980

SECTION 13

R-Mode Procedures

Step Il:

Step 2:

Step 3:

Step 4:

V-Mode Procedures

Step 1:

Step 2:

Step 3:

Step 4:

PDR3621

Attach to IOCS of Master disk A,

Edit the appropriate tables within the CONIOC.

Replace the % with the corresponding Subroutine
name for the desired device.

Rebuild the FORTRAN Library.

Attach to IOCSV of Master. Disk A.

Edit the appropriate tables within the CONIOC.

Replace the word NULLDEVICE with the appropriate
device subroutine name.

Rebuild the FORTRAN Library.

How To Rebuild The FORTRAN Library After Modifying CONIOC

The FORTRAN Library must be rebuilt whenever CONIOC is modified. The
following explanations are R-Mode and V-Mode procedures.

R-Mode FORTRAN Library Re-building Procedures

The R-Mode FORTRAN Library must be remade after CONIOC has’ been
modified:

Step l:

Step 2:

Step 3:

Step 4:

REV. A

Attach to UFD = ICS, in Master Disk A.

Run Command File C<IOCS.

Attach to UFD = LIB, in Master Disk A.

Run Command File LIBMAK.

PDR3621 INTRODUCTION TO IOCS

V-Mode FORTRAN Library Re-building Procedures

The V-Mode FORTRAN Library must be remade after CONIOC has been

modified:

Step l: Attach to UFD = ILOCSV, in Master Disk A.

Step 2: Run Command File BNIOCS, in Master Disk A.

Step 3: Attach to UFD = LIB, in Master Disk A.

Step 4: Run Command File C_VLIB.

13 - 9 January 1980

PDR3621 T-O SUBROUTINES

SECTION 14

T-O SUBROUTINES

This section describes input/output subroutines that reside in PRIMOS

address space, rather than user address space, but are directly

callable by the user.

p DSINIT

The DSINIT routine is called to initialize disk devices.

CALL DSINIT (pdisk)

pdisk The physical disk number to be initialized.

DSINIT initializes the disk controller and performs a seek to cylinder

@ on pdisk. DSINIT must be called prior to any RRECL or WRECL calls.

pdisk must be assigned by the PRIMOS ASSIGN command before calling this

routine. DSINIT is normally used only by system utilities such as

FIXRAT, COPY, and MAKE.

> RRECL

Subroutine RRECL reads one disk record from a disk into a buffer in

memory. Before RRECL is called, the .disk must be assigned by the

PRIMOS ASSIGN command and DSINIT must be called to initialize the disk.

The RRECL routine is normally used only by system utilities such as

FIXRAT, MAKE, and COPY.

CALL RRECL (LOC(buffer) , length, n, ra, pdisk, altrtn)

buffer An array into which the length words from record ra

will be transferred.

length The number of words to be transferred.

n Bits 9-16 must be l.

Bit 1 set- perform current record address check.

Bit 2 set- ignore checksum error.

14 - dt January 1980

SECTION 14

ra

pdisk

altrtn

Tf an error

as follows:

Code

ERRVEC (1)
ERRVEC (2)

ERRVEC (1)
ERRVEC (2)

PDR3621

Bit 3 set- read an entire track (beginning at ra) into
a buffer 3520 words long, beginning at the buffer pointed
tobybuffer. (This feature may be used only if
RRECL isrunning under PRIMOS IT and is reading a disk
connected to the 4801/4902 controller and is a
32-sector pack.)

Bit 4 set- format the track. This bit
is only significant for storage module
disks.

A 32 bit integer (INTEGER*4) specifying a disk record
address. Legal addresses depend on the size of the disk.

Size ra_Range

Floppy disk 8-393
1.5M disk pack G-3247
3.0M disk pack 9-6495
30M disk pack G-64959
128K fixed-head disk 8-255
256K fixed-head disk 8-511
512K fixed-head disk 8-1823
1924K fixed-head disk Q-2047
e

The physical disk number of the disk to be read.
pdisk numbers are the same numbers available for use in

the ASSIGN and STARTUP commands.

An integer variable in the user's program to be used
as an alternate return in case of uncorrectable disk

errors. If this argument is 9 or omitted, an error
message is printed.

is encountered and control goes to altrtn, ERRVEC is set

WB
Q

Message Meaning

On supervisor terminal: 10 times Disk hardware
DISK RD ERROR pdisk ra_ status WRITE PROTECT

error

On user terminal:
UNRECOVERED ERROR

On user terminal: 18 times Current record
DISK RD ERROR pdisk ra_ status address error
followed by
UNRECOVERED ERROR

See The System Administrator's Guide (PDR 3109) for a description of
status error codes.

REV. A

PDR3621 T-O SUBROUTINES

Notes

Length must be between 9 and 448 unless pdisk is a storage

module, in which case length must be between @ and 1940. If

this number is not 448 and pdisk is 20-27 (diskette), a

checksum error is always generated; bypassing can be

accomplished by setting n bit 2=1. No check is made for

legality of ra.

On a DISK NOT READY, RRECL does not wait for the disk to

become ready under PRIMOS III or PRIMOS. Under PRIMOS II,

RRECL prints a single error message and waits for the disk to

becane ready.

On any other read error, an error message is printed at the

system terminal, followed by a seek to cylinder zero and a

reread of the record. If 10 errors occur, the message

UNRECOVERED ERROR is typed to the user or altrtn is taken.

The routine is not available through the FORTRAN library.

Pp WwRECL

Subroutine WRECL writes the disk record to a disk froma buffer in

memory. The arguments and rules of the WRECL call are identical to

those of RRECL except for bits 1 and 2 of n, which have no meaning on

write. For a call to write a record on the diskette, the buffer length

must be 448 words.

CALL WRECL (LOC(buffer), length, n, ra, altrtn)

The meaning of the parameters is the same as described above in RRECL,

except that the function of the command is to write rather than read

the specified records. The user of WRECL is responsible for being

careful to write only on areas of the disk that do not contain

significant user or operating system information.

An attempt to write on a write-protected disk generates the message:

DISK WT ERROR pdisk ra status

WRITE PROTECT

on the supervisor terminal and the message:

UNRECOVERED ERROR

at the user terminal. ERRVEC(1) will contain error code WB, unless

altrtn is taken. Other write errors are retried ten times in a manner

Similar to read errors (refer to RREC). This routine is not available

through the FORTRAN library.

14 - 3 January 1989

SECTION 14 PDR3621

ERROR HANDLING FOR I-O SUBROUTINES

The following discusses error handling for the I/O subroutines.
Generally, error message and status information

§

from PRIMOS 1/0
Subroutines, and some older PRIMOS routines, are placed in a
system-wide error vector, ERRVEC. If an error occurs, the user program
returns to PRIMOS command level and the error and/or status information
is placed in ERRVEC. Upon completion of a call to an I/O subroutine,
Status information is also placed in ERRVEC, which the user may acces
via a call to GINFO or PRERR. The contents of this vector are listed
later in this section. If the user so desires, it is possible to take
an alternate return if an error occurs. This is specified by use of
the altrtn parameter in the call to the I/O subroutine invoked by the
user program. If the user specifies alternate return then the location
of the return and the action taken is entirely up to the user.

Subroutines for Error Return and Printing

Three subroutines are useful for Setting or retreiving information in
ERRVEC: ERRSET, GETERR, PRERR.

> ERRSET

ERRSET sets ERRVEC, a system vector, then takes an alternate return or
prints the message stored in ERRVEC and returns control to the systen.

ERRSET has three forms:

1. CALL ERRSET (altval, altrtn)
2. CALL ERRSET (altval, altrtn, messag, nun)
3. CALL ERRSET (altval, altrtn, name, messag, num)

In Form 1, altval must have value 100900 octal and altrtn specifies
where control is to pass. If altrtn is 0, the message stored in ERRVEC
is printed and control returns to the system.

Forms 2 and 3 are similar; therefore, the arguments are described
collectively as follows:

altval A two-word array that contains an error code that
replaces ERRVEC(1) and ERRVEC(2). altval(1) must
not be equal to 190880 octal.

altrtn If altrtn is nonzero, control goes to altrtn.
If altrtn is zero, the message stored in ERRVEC,
is printed and control returns to PRIMOS.

REV. A 14 - 4

PDR3621 T-O SUBROUTINES

name The name of a three-word array containing a six-

letter word. This name replaces ERRVEC(3),

ERRVEC (4), and ERRVEC(5). If name is not an

argument in the call, ERRVEC(3) is set to @.

messag An array of characters stored two per word. A

pointer to this messag is placed in ERRVEC(7) .

num The number of characters in messag. The value of num

replaces ERRVEC (8).

If a message is to he printed; first, six characters starting at

ERRVEC(3) are printed at the terminal. Then the operating system

checks to determine the number of characters to be printed. This

information is contained in ERRVEC(8). The message to be printed is

pointed to by ERRVEC(7). The operating system only prints the number

of characters from the message (pointed to by ERRVEC(7)) that are

indicated in FRRVEC(8). If ERRVEC(3) is 8, only the message pointed to

by ERRVEC(7) is printed. The message stored in ERRVEC may also be

printed by the PRERR command or the PRERR Subroutine. The contents of

ERRVEC may be obtained by calling subroutine GETERR.

> GETERR

A user obtains ERRVEC contents through a call to GETERR.

CALL GETERR (xervec, n)

GETERR moves n words from ERRVEC into xervec.

On an alternate return: On a normal return:

ERRVEC(1) Error code PRWEIL:
ERRVEC(3) Record number

ERRVEC (4) Word number

ERRVEC(2) Alternate value
Key of read/write

convenient:

ERRVEC(2) No. of words

transferred

SEARCH:
ERRVEC (2) File type

14 - 5 January 1980

SECTION 14 PDR3621

> PRERR

PRERR prints an error message on the user's terminal.

CALL PRERR

Example of Use

A user wants to retain control ona request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the user
Calls SEARCH and gets an alternate return. He then calls to GETERR and
determines if an error occurred other than NAME NOT FOUND. To print
the error message while maintaining program control, the user calls
PRERR,

Description of ERRVEC

ERRVEC consists of eight words; their contents are as follows:

Word Content Remarks

ERRVEC (1) Code Indicates origin of error and
nature of error.

(2) Value On alternate return, this is the
value of the A-register. On normal
return, this may have special
meaning, (e.g., refer to PRWFIL
and SEARCH error codes).

(3)
(4)
(5)
(6)

ERRVEC (3), ERRVEC (4),
ERRVEC (5), and ERRVEC (6)

contain a six-character Filename
of the routine that caused the
error [ERRVEC (6) is available
for expansion of names].

m
M

OK
OO
S

x
x
x

(7) Pointer To For PRIMOS supervisor
Message usage.

(8) Message Length For PRIMOS supervisor
usage.

REV. A 14 - 6

PDR3621 I-O SUBROUTINES

PRWFIL Error Codes

PD UNIT NOT OPEN

PE PRWFIL EOF Number of words left.

(End of File) (Information is in ERRVEC (2))

PG PRWFIL EOF Number of words left.
(Beginning of (Information is in ERRVEC(2))

File)

PRWFIL Normal Return

ERRVEC (3) Record Number

ERRVEC (4) Word Number

PRWFIL Read—Convenient

ERRVEC (2) Number of words read.

SEARCH Error Codes

ERRVEC (1) Code, where code has the following values:

Code Meaning

SA SEARCH, BAD PARAMETER

SD UNIT NOT OPEN (truncate)

SD UNIT OPEN ON DELETE

SH <Filename> NOT FOUND

SI UNIT IN USE

SK UFD FULL

SL NO UFD ATTACHED

SQ SEG-DIR-ER

DJ DISK FULL

14 - 7 January 1980

SECTION 14 PDR3621

SEARCH Normal Return

ERRVEC (2) Type, where Type has the following values:

Type Meaning

g File is SAM

1 File is DAM

2 Segment Directory is SAM

3 Segment Directory is DAM

4 UFD is SAM

REV. A 14 - 8

PDR3621 DEVICE INDEPENDENT DRIVERS

SECTION 15

DEVICE INDEPENDENT DRIVERS

To maintain device independence, all data transfer is accomplished

through a set of device-independent drivers in I0CS. These device-

independent drivers route the 1/0 request to one of the

device-dependent drivers, as shown in Table 15-1 and Figure 15-1. Each

column of this table represents an I/O function, and each row a

specific physical device. All drivers in a single column are designed

to be compatible in terms of internal data format.

Notes to Table 15-1

l. Available in R-mode and V-mode. Listed in CONIOC and may be

called directly or via the device-independent drivers.

2. Available in R-mode only. Listed in CONIOC and may be called

directly or via the device-independent drivers.

3. Available in R-mode only. Listed in FULCON but not CONTOC. May

not be called via the device-independent drivers, unless FULCON is

assembled and loaded before the library is loaded.

4. Available in R-mode and V-mode. Listed in FULCON (FLCONV for

V-mode) . In V-mode programs, these routines may be called

directly or via the device-independent drivers if the default

FORTRAN library (PFTNLB) is loaded. If the R-mode or the

non-shared V-mode library (NPFTNLB) is loaded, the routine may not

be called via the device-independent drivers unless FLCONV or

FULCON is assembled and loaded before the library is loaded. See

Section 13 for a more complete discussion of I0CS table usage.

Routine may be called by name without specific procedures.

5. Available in R-mode and V-mode. For R-mode, is listed in CONIOC

and may be called directly or via the device independent drivers.

For V-mode, routine is listed in FLCONV and may be used in

=

same

manner aS R-mode as long as the default FORTRAN library (PFTNLB)

is loaded. In R-mode, or V-mode when the non-shared (NPFTNLB) is

loaded, the routine may not be called via the device-independent

drivers drivers unless FULCON (FLCONV) is assembled and loaded

before the library is loaded. See Section 13 for a more complete

discussion of IOCS table usage.

6. Available in R-mode and V-mode, but is not in CONIOC or FULCON

(FLCONV). To call the routines via the device independent

drivers, the appropriate table must be modified, assembled and

loaded before the library is loaded. See Section 13. The routine

may be called specifically without any special procedures.

15 - 1 January 1980

SECTION 15 PDR3621

Table 15-1. Relation of Device-Independent

Device

User terminal

Paper tape reader

Paper tape punch

MPC card reader

Serial line printer

9-track mag.tape

MPC line printer

PRIMOS file system
compressed ASCII/Binary

PRIMOS file system
uncompressed ASCII/Binary

Serial card reader

7-track magnetic
tape ASCII/Binary

7-track magnetic
tape BCD

Input command stream

9-track magnetic
EBCDIC

Versatec/Gould

printer/plotter

MPC card processor

RDASC

ISAAG]1 (6)

ISAP@2 (5)

ISAC@3 (3)

ISAM®5 (4)

ISADQ7 (1)

ISADQ7 (1)

ISAC@9 (3)

ISAM1@ (4)

ISAM11 (7)

ISAA12(1)

ISAM13 (7)

ISAC15 (3)

Numbers in parentheses refer to notes

REV. A 15

WRASC

OSAAQ1 (1)

OSAP@2 (5)

OSAC93 (3)

OSAL@4 (3)

OSAM@5 (4)

OSAL@6 (4)

OSAD@7 (1)

OSAD98 (1)

OSAM19 (4)

OSAM11 (7)

OS$AM13 (7)

OSAL14 (3)

OSAC15(3)

in the text.

and Device-Dependent Drivers

RDBIN

ITSBAQ1 (2)

ISBP@2 (2)

I SBM@5 (7)

I SBD@7 (1)

I $BD@7 (1)

I$BM19 (7)

WRBIN

OSBAQ1 (2)

OSBP@2 (2)

OSBM@5(7)

OSBD97(1)

OSBD8@7(1)

OSBM19 (7)

CONTRL

CSAG1 (2)

CSP#2 (5)

CSM@5 (4)

SEARCH (1)

SEARCH (1)

CSM19 (4)

CSM11 (7)

CSM13 (7)

PDR3621 DEVICE INDEPENDENT DRIVERS

LINE PRINTERS

PRIMOS SERIAL PARALLEL VERSATEC/GOULD

FILE SYSTEM (CENTRONICS) (MPC) PRINTER/PLOTTER

SEARCH

A

OSALO6

OSALO4 OSAL14

1$ADO7 (ASCII)

I$BDO7 (BINARY)

O$ADO7
(ASCIl COMPRESSED)

MAGNETIC TAPES

O$ADO8
(ASCII FIXED LENGTH RECORDS)

O$BDO7
O$SAMO5 9-TRACK

(BINARY) __{ C$MO5 ASCII
ISAMO5

COMMANDFILE

/ /
f IGAA12

\ \ O$AM13
\ \

—» -TRACK

Ne eee ea re ee —_
“a

CSMI3 EBCDIC

~« ISAM13

CARD READERS USER

> EMORY
PARALLEL ISACO3 MEMO

(MPC) .

—> OSAM10 7-TRACK
—{| C$M10 ASCII

; ro ISAM10

ISACO9
SERIAL

O$AM11 _
“{ cst as

PAPER TAPE ISAM 11

ISAPOZ/ISBPO2

READER
PUNCH O$AP02/0$BP02

X$SAMXX
TRANSFER ASCII DATA

O$BA01 XSBMXX

C$A01 _OSAA01 I$BAO1 TRANSFER BINARY DATA

ISAAO1

{

C$A01
C$A01

USER ASR
TERMINAL READER/PUNCH

Figure 15-1. Transfer of Data to and from High-Speed

15

User Memory

January 1980

SECTION 15 PDR3621

7. Available in R-mode and v-mode. V-mode is listed in FLCONV but
not in CONIOC. R-mode is not in CONIOC or FULCON. In V-mode, if
the non-shared library (NPFTNLB) is loaded, the routine may not be
called via the device-independent drivers unless FLCONV. is
assembled and loaded before the library is loaded.

In R-mode, the appropriate table must be modified, assembled and
loaded before the library is loaded.

In both modes, the routine may be called specifically without any
special procedures.

DATA FORMATS

All first and second level device drivers are uniform in the internal
representation of data. All ASCII data, for example, has the same
internal format regardless of the physical device.

ASCII Data

Data associated with logical I/O functions RDASC (Read ASCII) and WRASC
(Write ASCII) are represented internally as an ASCII string in card
image format. This string is of length N words with each word
containing ASCII coded characters (N is defined in the calling sequence
to the driver).

Notes

1. The "new-line" ('212) must not be used as data because it
is the end-of-record indicator.

2. ASCII drivers should only be used to transfer printable
ASCII characters.

Binary Data

Binary data is transferred using RDBIN and WRBIN. The external format
varies considerably from device to device, but the internal format
remains the same. Binary data can consist of anything and is not
interpreted by the driver in any way.

The parameter buffer (buffer address) in a call to RDBIN (Read Binary)
or WRBIN (Write Binary) defines the first word of the binary data. The
word count on output must be defined by the user.

REV. A 5 - 4

PDR3621 DEVICE INDEPENDENT DRIVERS

SUBROUTINES FOR DEVICE-INDEPENDENT DRIVERS

The device-independent drivers all have the same arguments. The

arguments are:

logical device The logical device to or from which data is to

be moved. (See Table 15-1)

buffer A buffer to or from which data is moved.

count The number of words to be transferred.

altrtn An integer variable assigned the value of a

label in the user's FORTRAN program to be used

as an alternate return in case of end-of-file or

other error (9 if no alternate return wanted).

Use of altrtn

If altrtn is omitted, the name of the device dependent driver and an

error message is typed, then control returns to PRIMOS. If altrtn is

not omitted, user code at the specified label must call GETERR (ERRVEC,

2) to pick up the error code. If the error code is the two ASCIT

characters 'IE', the error was end-fo-file. Other possible error

messages and codes are given in Appendix G. If the user wishes not to

handle a particular error type, he may CALL PRERR to print the error

message that would have been typed if altrtn were omitted, then CALL

EXIT to return control to PRIMOS. The FORTRAN statements of the form

READ (nam,num,ERR=,END=) handle end-fo-file for END= and format errors

for ERR=. Other errors are not handled.

Using altrtn of @ will not work in 64V mode - the argument must be

omitted!

> wRASC

The contents of buffer are moved from manory to the output device. The

format of the data on the output medium is device-specific. Memory is

assumed to consist of ASCII, two characters per word.

CALL WRASC (logical-device,buffer ,count,altrtn)

15 - 5 January 19380

SECTION 15 PDR3621

> RDASC

One record is brought into memory. Buffer is always Filled with count
ASCII characters, two per word. If the record was longer than count
words, buffer contains the first count words in the record and the next
successive read will give the first count words of the next record, not
the remaining words of the long record. If the record is less than
count words, the remainder of the buffer will be blank-—filled.

CALL RDASC (logical-device,buffer,count,altrtn)

 WwRBIN

The number of words specified by count are written from buffer to the
specific output device. The format of the data is device-dependent.

CALL WRBIN (logical-device,buffer,count,altrtn)

BP RDBIN

A record is read into memory. Count is the maximum number of words
which will be read into buffer. If the record is less than count long,
then count will be set to the number of words actually read. If the
record is longer than count, only the first count words will be read.

CALL RDBIN (logical-device,buffer,count,altrtn)

 cCONTRL

Certain non-data transfer functions, such as opening a PRIMOS file for
reading, are provided by use of the CONTRL subroutine. Functions not
applicable to a particular device are ignored; therefore, functions
can be requested in a device-independent way. See Table 15-2 for
operation effects.

CALL CONTRL (key, name, logical-unit, altrtn)

REV. A 15 - 6

key

name

logical-device

altrtn

O
n
n

B
w
W
N

P
r

PDR3621 DEVICE INDEPENDENT DRIVERS

open for reading

open for writing
open for read/write
close
delete file
move forward 1 file mark (MT only)

rewind to beginning of file
select device and read status

(MT only). Status is returned

in the A-Register.
write file mark (MT only)
backspace 1 record (MT only)

backspace 1 file mark (MT only)

rewind to beginning of tape
(MT only)

Filename (9 if none).

The logical device to be controlled.

An integer variable assigned the value

of a label to be used as an alternate

return in case the operation fails.
(omit if no alternate return wanted).

Note

For calls to CONTRL that are directed to the disk

files, key may have many other values. For disk

files, CONTRL calls SEARCH with the same arguments.

Keys other than 1-4 are not device-independent.

15 - 7 January 1980

SECTION 15

REV. A

PDR3621

Table 15-2, List of Keys and Operating Effects for CONTRL

Key
N
M
O
Q
U
I
O

SD
S
R
r
A
e
Y
T
O
M
O

A
A

T
Y
»

"”

a

Paper Tape
Terminal Read/Punch Mag tape Disk
CSAGL CSPG2 CSMXX SEARCH

a a a a

q q b b

q q Cc c

r r d P

-- — h e

q q 1 Zz

Ss Ss n £

_- -- k g

— — 1 Z

-- —_ m Zz

-- —_ n Zz

-— -- O Zz

open for read
open for write
open to read and write
rewind and close file
delete file
position to beginning of file
truncate file
move forward one record
move forward 1 file mark
select device and read status
write file mark
backspace one record
backspace one file mark

rewind to BOT (beginning of tape)
close file
turn on punch am punch leader
if device was open for output, punch trailer
and turn off paper-tape punch and reader
halts allowing operator to rewind tape
type 'START' to continue
abort ("Bad Key" Error)

Keys other than 1 through 4 are not device independent.

15 - 8

PDR3621 DEVICE DEPENDENT DRIVERS

SECTION 16

DEVICE DEPENDENT DRIVERS

This set of device-dependent subroutines provides a consistent calling

sequence for various non-data-transfer functions of several devices.

Arguments and functions not applicable to a particular device are

ignored.

SUBROUTINE CALLING SEQUENCE

The calling sequence contains all the information needed by the disk

control subroutine (SEARCH), and many of the parameters are ignored by

the non-disk control subroutines.

CALL xxxxx (key, name, physical-unit, [altrtn])

key Points to a value that defines the desired function

(see Table 15-2 in Section 15).

name Points to a 1-6 character file name(or points to zero

if no file name applicable). Where name is not

significant, it is usually specified as @.

physical Points to the physical device sub-unit number.

—unit If the device has only one unit, its sub-unit number is

1. If it is a multiple unit device (cassette, mag

tape, disk) , sub-units 1-8 may be specified (on disk, a

sub-unit is actually processed as file 1-8).

altrtn Specifies the transfer location if an error condition

is detected. This parameter is optional, and if not

present, error returnswill be made through the normal

return (with the A register set to non-zero).

Subroutine Name ('xxxxxx') Definitions:

XXXXXX = CSAO1 user terminal

CSP@2 paper-tape reader or punch
CSM85 9-track magnetic tape
CSM10 7-track magnetic tape

ASCII drivers read ASCII data format (units 9-7)

CSM11 7-track magnetic tape
ASCII drivers read BCD data format (units 9-7)

SEARCH PRIMOS disk files (units 1-126)

16 - dt January 1980

PDR3621 DISK SUBROUTINES

SECTION 17

DISK SUBROUTINES

This section defines the subroutines for Disk I/O operations.

SUBROUTINE DESCRIPTION

PB oSAd07

OSADO7 writes ASCII from buffer onto a disk file open on unit.

Information is written on the disk in compressed ASCII format.

Multiple blank characters are replaced with the character DCl (221

octal) followed by a character count. Trailing blanks are removed and

the end of record indicated by the new line character, or new line

followed by null.

CALL OSAD@7 (logical-unit ,buffer,count,altrtn)

p> ISAD07

ISAD07 reads information from the disk open on unit, in compressed

ASCII format.

CALL ISAD@7 (logical-unit ,buffer,count,altrtn)

B o$BD97

O$BD07 writes binary information to the file open on unit.

CALL O$BD@7 (logical-unit ,buffer ,count ,altrtn)

B 1SBD07

ISBD@7 reads binary information from the file open on unit.

CALL I$BD@7 (logical-unit ,buffer ,count ,altrtn)

17 - tl January 1988

SECTION 17 PDR3621

P osane0g

OSAD@8 writes ASCII from buffer onto disk upon file open on unit.
Information is written on the disk in fixed length records. Fach
record consists of count words followed by a word containing NL and
NULL (105808 octal). This driver is not in the standard CONIC‘
Supplied by Prime. It is useful in conjunction with POSFIL for those
users interested in using direct access files.

CALL OSAD@8 (unit ,buffer ,count ,altrtn)

REV. A 17 - n
N

PDR3621 USER TERMINAL SUBROUTINES

SECTION 18

USER TERMINAL SUBROUTINES

This section defines subroutines used to transfer data to and from a

user terminal or Reader/Punch (ASR). Subroutines which have special

options or error handling features are described in detail.

CALLING SEQUENCE

CALL {0|s {al ayy (sub-unit ,buffer,count,altrtn)
I B

I Input

O Output

A ASCII

B Binary

Z Qne-letter mnemonic giving general device class.

yy Two digit device types.

sub-unit Specifies unit for multi-unit device types.

This parameter is ignored for single-unit

device types.

buffer Memory buffer for data.

count Word count for transfer. Details are the

same as for RDASC, RDBIN, WRASC, and WRBIN.

The device-dependent I0CS drivers are shown in Table 15-1.

18 - dt January 19890

SECTION 18 PDR3621

KEYBOARD TERMINALS AND PAPER TAPE SUBROUTINES

User Terminal or OSAAG1
ASR Punch

Keyboard or TSAAG1
ASR Reader

HS Paper Tape ISAP@2
Reader

HS Paper Tape OSBP@2
Punch

RAW DATA MOVERS

HS Paper Tape P1LIB
Reader

REV. A

Outputs ASCII to the user terminal or
ASR punch. Calls the low level driver
TNOU.

Errors: none.

Inputs ASCII from user terminal or ASR
reader. The kill and erase characters
(question mark and quote mark) may
modify the input line, as with the
PRIMOS III command line.
The characters NUL, DEL, DLE, tw2, 03,
and DC4 are ignored. The character
ETX ('203), indicates end of file and is
used in reading tapes through the user
terminal. Note that ISAA91 is not the
entry for the user terminal in the
Prime-supplied CONIOC. Put ISAA@1 in
the table to read paper tapes with user
programs. The editor should be used to
read in the tape, then the user may read
the file from the disk.
Errors: none

Inputs ASCII from the high-speed paper-
tape reader. The kill and erase
characters (question mark and quote)
modify the input similar to PRIMOS III
command line. NUL, DEL, DLE, 0C2, be3,
and DC4 are ignored. The character
ETX ('283) indicates end of file.

Calls: PlIN, ERRSET

Error Message: ISAP@l EOF (IE)

Outputs binary data to the high-speed
paper-—tape punch. The format of the
Paper tape can be found in a Listing
of the driver.

Input one character from the high-speed
paper tape reader to the A Register.
(This routine also available in
in V-mode).

18 - 2

HS Paper Tape

Punch

HS Paper 'Tape
Punch

ASR Reader

User Terminal

User Terminal

User Terminal

Keyboard to
A Register

A Register to
User Terminal

P10B

P1OU

P1IN

TNOU

TNOUA

TOVFDS

T1IB

T1OB

PDR3621 JSER TERMINAL SUBROUTINES

Output one character to the high-speed
paper tape punch from the A Register.
(This routine also available
in V-mode) .

Output one character to the high-speed
paper tape punch. Zero the high order
bit before punching. No special action
is taken on carriage returns or line
feeds. (This routine also available

in V-mode.)

CALL P1OU (char)

Input one character from paper tape,
set high order bit, ignore line feeds,
send a line feed when carriage return
is read.

Outputs count characters to the user
terminal followed by the LINE FEED,

CARRIAGE RETURN. Buffer is expected to
contain 2 characters per word.

CALL TNOU (buffer, count)

Outputs Count characters to the user
terminal.

CALL TNOUA (buffer, count)

Outputs the 16-bit integer nun,
without any spaces, to the terminal
e.g. "123" or "-17".

CALL TOVFDS (num)

Reads one character from the user

terminal into the A Register.

Writes one character from the A Register
to the user terminal.

18 - 3 January 1980

SECTION 18

User Terminal to

Memory

To User Terminal

T1IN

T1OU

PDR3621

T1IN reads one character from the user

terminal. If a .CR. (CARRIAGE RETURN)
is read, .NL. (NEW LINE) is output and

char is set to .NL. If an .NL. is read,
a .CR. is output and char is set to
NL.

If .XOF. is read, carriage return and
new line are expected to follow. T1IN
ignores the .XOF., reads the .CR. and
-LF., then sets char to .NL. The .XOF.

characters are expected on paper tapes
to be read on the user terminal paper-
tape reader.

CALL TLIN (char)

Outputs char to the user terminal. If
char is .NL., the characters .CR.
and .NL. are output to the user
terminal.

CALL T1OU (char)

For all numeric input routines, the number may be preceeded by a "—" to
indicate that it is negative; but must not be a "+". Numbers may be
terminated by a RETURN or a space.

User Terminal

decimal Input

User Terminal

Octal Input

User Terminal

Hexadecimal Input

Memory to User

Terminal (decimal

output)

User Terminal

Hex Output

REV. A

TIDEC

TIOCT

TIHEX

TODEC

TOOCT

Inputs decimal number.

CALL TIDEC (variable)

Inputs an octal number.

CALL TIOCT (variable)

Inputs a hexadecimal number.

CALL TIHEX (variable)

Outputs a six-character signed
decimal number

CALL TODEC (variable)

Outputs a six-character unsigned
Octal number.

CALL TOOCT (variable)

18 - 4

Carriage Return/ TOHEX
Line feed to
Hexadecimal
data format

Memory to User TONL

Terminal with
carriage return

PDR3621 USER TERMINAL SUBROUTINES

Outputs a four-character unsigned
hexadecimal number.

CALL TOHEX (variable)

Outputs carriage return and
line feed

CALL TONL

A "2?" will be typed if number is improper and more input will then be
accepted. A NULL input (space or return) will return a @.

18 - 5 January 198@

PDR3621 PERIPHERAL DEVICES

SECTION 19

PERIPHERAL DEVICES

This section defines subroutines that control line printers,
printers/plotters, card readers and Magnetic tapes. These subroutines
are used for both formatted and raw data.

wn

LINE PRINTER SUBROUTINES

TOCS contains subroutines to control three types of line printers.
They are: OSAL@4 to print on a Centronics Line Printer connected to
the SOC; OSAL@6 to print on a parallel interface line printer
connected to the MFC Line Printer Controller; and OSAL14 to print on a
Versatec Printer/Plotter connected to a Versatec-SOC Controller.
OSAL14 also prints on a Gould Printer/Plotter connected to a Gould-Soc
Controller. All three subroutines have the same action on the
appropriate device; therefore only one description is given. (XX
below is 04, 06, or 14).

Subroutine Calling Sequence

CALL OSALxx (physical-unit ,buffer ,count,altrtn)

Physical-unit Line printer unit nunber.
@ = PRO, first controller
1 = PR1, first controller
2 = PR2, second controller
3 = PR3, second controller

buffer The name of the buffer where the text to be
printed resides. Print text is placed in the
buffer, two characters per word.

count The number of 16-bit words of data to be printed.

altrtn Never taken and is an optional calling sequence
parameter.

19 - d January 1982

SECTION 19 PDR3621

Printer Control

The action taken by OSALxx depends on the data in the buffer, and

_

the

current vertical control mode. Certain characters within the data

control the manner in which the data is printed. These characters

(codes) are described in the following paragraphs.

Vertical Control Modes

OSALxx has three vertical control modes:

e FORTRAN forms control

® header line and paginate control

@ no control

OSALxx checks the first character in the data buffer for an ASCII .SOM.

character (@@1). A .SOM. character signifies a change in the control

mode. If the first character in the buffer is not an .SOM., the line

is printed according to the current control mode. The default mode is

FORTRAN forms control.

FORTRAN Forms Control Mode

The FORTRAN forms control mode corresponds to ANSI FORTRAN forms

control conventions. The first character in the buffer is not printed;

instead, it is used for forms control. The character interpretations

are as follows:

Character Inter pretation

@ Skip a line.

1 Eject to top of next page.

+ Overprint last line.

- Skip two lines.

Any character
other than No action.

0, 1, +, -

REV. A 19

=

- 2

PDR3621 PERIPHERAL DEVICES

Header Line and Paginate Control Mode

In Header Line and Paginate Mode, OSALxx causes a header line to be
printed, followed by three blank lines followed by 38 text lines. The
header line consists of up to 43 characters followed by a page count
that is generated by OSALXX when printing in this mode.

No Control Mode

In No Control Mode, no actions are taken by OSALxx. A line containing
an ASCII form-feed (FF, :214) character causes the line preceding it to
print, followed by a page eject. Carriage return (CR, 7215) will cause
the line preceding it to print with no spacing. Line feed (LF, :212)
will cause the line preceding it to print followed by a line spacing
Operation. Any characters following a CR, LF, or FF are ignored.

Change of Mode Commands

Any data buffer beginning with a .SQM. character causes OSALXX to take
Some action to change control mode. The control mode change is
determined by the character following the .SOM. The character
interpretations are:

Character Interpretation

O20 Enter No Control Mode.

OO1 Enter FORTRAN Control

Mode.

036 New Header Line —- DO NOT

reset page count.

037 Enter new page size
specified by the 16-bit
number contained in the
next computer word.

All other Fnter Header Control Mode

characters,

19 - 3 January 198¢

SECTION 19 PDR3621

Early Buffer Termination

A LINE FEED (LF, :212) character terminates the print line in the

buffer, regardless of the count parameter.

Errors: none

Load information: OSAL@4 calls no other subroutines. OSAL@6 calls

TSEMPC and OSAL14 calls TSVG.

p> TSLMPC

The TSLMPC routine is the raw data mover that moves information from

the user to one line on the MPC line printer.

TSLMPC is called by the IOCS line printer driver OSAL@6. ‘The user

normally prints lines under progran control using either FORTRAN WRITE

statement or a call OSALG6. However, it is possible to call TSLMPC

directly.

CALL TSLMEC (logical-unit ,buffer,count,instr ,status)

logical-unit Line Printer unit (currently ignored) .

buffer A pointer to a buffer to hold information to be

printed on the line printer. Information is

expected to be packed two characters per word.

count Number of words to print on the current line.

instr The instruction required to be sent to the line

printer. Valid instructions are:

Instruction (Octal) Meaning

190800 Read status

4BBOD Print a line

20012 Skip a line

20014 Skip to top of page

20100-28113 Skip to tape channel @-11

29120-28137 Skip from 1 to 15 lines

REV. A 19 - 4

PDR3621 PERIPHERAL DEVICES

status A three-word vector that contains device code,

Status of printer, and a space. Possible printer
status is as follows:

Octal Value Condition

200 ON-LINE

106 Not Busy

Under PRIMOS, line printer output is buffered. If TSLMPC is called and
the buffer is full, the user is placed in output-wait state. Later,
when the buffer is no longer full, the user is rescheduled, and the
TSLMPC call is retried. The user may issue a status request call to
check if the buffer is full. If the buffer is full, then the not—busy
status is reset. Using this feature, a user program may check that the
buffer is not full, then output on line, or do another computation if
the buffer is full.

Under PRIMOS II, output is not buffered, and control does not return to
the user until printing is complete.

B SPOOLS

A user program can insert a file into the spool directory by calling
the SPOOLS subroutine from the applications program. This subroutine
SPOOLS is in the SPOOLS library (R-mode) and VSPOOS library (V-mode).

CALL SPOOLS (key, name, nanlen, info, buffer, buflen, code)

key 1 copy named file into queue.
2 open file on unit info(2) for writing.

name File to be copied (key=1).

Name to appear on banner (key=2).

nanlen Length of name, in characters (1-32).

info Information array, 12 elements, as follows:

l temp file unit 1 (may range from 1-126,
Rev. 17 and above)

2 temp file unit 2 (may range from 1-126,
Rev. 17 and above)

3 print option word (see below)

19 - 5 January 1988

SECTION 19

buffer

buflen

code

PDR3621

4-6 form type (6 ASCII characters)

7 plot raster scan size (plot only)

this represents #words/raster scan

8-10 spool filename (returned)

11 deferred print time (valid only if defer
bit specified in option word)

12 file size, returned if key 1.

Scratch buffer - this is used to set up control

info and to copy the file to the spool queue
(key=1) - it must be at least 49 words long.

Copy time is inversely proportional to buffer

size. Nominal size is between 300-2000 words.

length of buffer.

Return code (non-zero if file system error).

Word 3 of the information array (print option word) is defined as

follows:

REV.

Bit
ere

A

Meaning

FORTRAN format control (col 1 contains

carriage ctl info)

Expand compressed listing

Generate line #'s at left margin

Suppress header page

Don't eject page when done

No format control

Plot file - info (7) must be specified

Defer printing to specified time—info(11l)
must be valid

Print on local printer only

PDR3621 PERIPHERAL DEVICES

PRINTER/PLOTTERS

The Printer/Plotter subroutines are used to drive and control a

Versatec and Gould Printer/Plotter.

> TSG

TSVG exists in two versions. Me version interfaces with a Versatec
printer/plotter and the other interfaces with a Guld printer/plotter.

This version. of TSVG moves raw data from a buffer and prints the data
on the Versatec printer, connected to the Prime computer via a
controller designed for use with the Versatec printer/plotter.

CALL TSVG (unit,LOC(buffer) ,nwis,instruction,status)

unit Currently always 9@, since the controller
supports only one device.

LOC (buffer) Address of user's buffer.

nwis The number of words in the buffer, currently the
maximum is 180.

instruction A number from @ to 10 that specifies an action
that the device is to take. These instructions
are described in detail in the following
paragraphs.

status A two-word status array. Device status is
returned to status(2). status is returned only

on a status request instruction.

The interpretation of the bits that are set in status(2) are as

follows:

Bit Meaning

1 Always zero,

2 If=1, then paper is low.

3 If=0, then printer/plotter is READY.
If=1, printer/plotter is NOT READY.

19 - 7 January 19808

SECTION 19 PDR3621

4 If=6, printer/plotter is on line

otherwise, printer/plotter off line.

5-16 Always zero.

Printer/Plotter Instructions

Instructions to the printer/plotter are specified in the instruction
field of the calling sequence. They are a number 1 to 19 interpreted

as follows:

8

18

REV. A

Return printer/plotter status in status(2). The contents of
the status vector, status, are described in the calling
sequence description. Under PRIMOS III, TSVG waits until the
output buffer is empty before returning status. Therefore,
status requests should be used sparingly.

End-of-transmission. This instruction initiates a print cycle
and a paper advance. If the paper on the printer/plotter is
installed in roll form, this roll is advanced eight inches; if
the paper is fanfolded, it is spaced to the top of the next

form.

Reset. The reset instruction clears the buffer and initializes

all legic in the printer/plotter.

Form feed. ‘The form feed initiates a print cycle and a paper

advance.

If the paper on the printer/plotter is installed in roll form,
the paper is advanced 2-1/2 inches; If the paper is fanfolded
it is advanced to the top of the next form.

Clear buffer.

Reserved.

Print the contents of buffer (Print Mode).

Make a Plot, using the contents of buffer (Plot Mode).

Simultaneous print/plot PRINT (SPP Mode).

Simultaneous print/plot PLOT (SPP Mode) .

Return status of output queue in status(2). If there is no
room for the number of words specified by the parameter nwis,

set status(2) to zero. If there is room for the number of

words specified by nwds, set status(2) to anon zero value.

PDR3621 PERIPHERAL DEVICES

Print Mode: The Versatec Printer/Plotter may be operated as if it were

a line printer. ‘The printer/plotter accepts 6- or 8-bit ASCII code.
Control commands are transmitted by using the instructions described
for the calling sequence or by transmitting the following ASCII control
codes:

ASCII Code (Octal) Meaning

BGA End of transmission.

G14 Form Feed.

G12 Line Feed. The transmission of a Line

Feed code causes a print cycle and a paper
advance of one line, except when the 912
code follows either the printing of a full
buffer or a Carriage Return (015).

G15 Carriage Return. A Carriage Return causes
a print cycle and a paper advance of one
line, provided the buffer has at least one
character entered and provided the buffer
is not full.

When the 8-bit (128-character) ASCII character set is used, there are

no ASCII control codes.

Plot Mode: The printer/plotter performs plot operations ‘that are
standard to all printer/plotter devices connected via the contraller to
the Prime computer. Plot data consists of 8-bit, binary, unweighted
bytes. Each dot that is plotted at the printer/plotter corresponds to
a Single bit in the buffer. If bit is 1, a black dot is plotted at the
point corresponding to the bit position in the buffer. Bit 1 of a
memory word (2 bytes) is the most significant (i.e., leftmost) bit, and
Bit 16 of memory word is the least significant (i.e., rightmost) bit.

Simultaneous Print/Plot (SPP) Mode: SPP mode operation permits direct

overlay of character data which is generated by an internal matrix
character generator, with plotting data, which is generated on a
bit-to-dot correspondence. The SPP mode is an optional feature on some
printer/plotters. The SPP process makes use of both a print buffer and
a plot buffer, both specified in calls to TSVG. For example, using the
Printer/Plotter Model 110@A in SPP mode, the SPP operation consists of
first, placing up to 132 ASCII characters in the FRINT buffer
(Instruction= 8); and then placing 128 bytes of plot data in the
buffer (Instruction=9) ten times. When the plot data is transmitted to
the printer/plotter, the plot buffer is scanned, and a single row of
dots, corresponding to the binary content of the plot buffer, is
printed. During the scanning process, the print buffer is also
scanned. The corresponding dots of each print character are OR'd with
the plot buffer output; thus an overlay is formed consisting of the

19 - @9 January 19898

SECTION 19 PDR3621

printed and plotted data. Since the vertical height of an ASCII

character for the Model 11@@A Printer/Plotter is ten raster scans, the

user must make ten calls to plot data before the print buffer is

completely printed and ready for new data. Table 19-1 shows the number

of raster scans per print line for the various models of Versatec

Printer/Plotter optionally available with Pr ime computer

configurations.

Caution

For SPP mode, do not attempt to transfer more than the maximun
number of characters to the print buffer.

SPP mode requires a series of calls to the TS$VG driver. For

instance, in the example given, each print instruction was

followed by ten plot instructions. Do not interrupt such a

sequence with other instructions, because’ printer/plotter

output will be incorrect.

Table 19-1. Maximum Buffer Length for Versatec Printer/Plotters.

PLOT PRINT
No. Scans/Print Lines

Model Bits Bytes Chars. 64 Chars. 96 or 128 Chars.

220a 560 70 80 (78 in spp) 8 10
110@a 1824 128 132 10 12
1600a 1608 200 100 20 20

2000a 1856 232 232 10 12

2160a 2888 360 188 20 28

P TSG

This version of TSVG moves raw data from a buffer and prints the data

on the Gould Printer/Plotter, connected to the Prime Computer via a

controller designed for use with the Gould Printer/Plotter.

CALL TS$VG (unit,LOC(buffer) ,words,inst ,status)

unit @ - controller supports one device.

REV. A 19 - 19

PDR3621 PERIPHERAL DEVICES

LOC (buffer) Address of user's buffer.

words

inst

inst

g

Number of words for output (maximum is 180).

@- 18 (described below).

Meaning

Return device status in status(2). Status is

returned only on a status request instruction. Under
PRIMOS III, TSVG waits until buffer is empty, then
returns status. Therefore, status requests should
be done sparingly.

status(1) always @

status(2) bits: 1 1 for Guld
2 paper low if =1
3 Device ready if = @
4 Device on-line if = 0

5-15 Always zero
16 Device was deselected during

last operation. This indicates
an error condition only in high
speed graphics mode.

End-of transmission. This initiates paper advance of
2.56 inches.

Not used.

Form feed. This initiates a paper advance 1.28
inches of roll mede or to top of next page if fan-fold
mode.

Not used.

Cut paper.

Print words words from buffer.

Plot words words from buffer.

Set high-speed plot mode and plot words words
(PRIMOS II only).

Reset high-speed plot mode and plot words words
(PRIMOS II only).

19 - ll. January 1986

SECTION 19 PDR3621

1@ Return status of output queue in status(2). Set

status(2) to zero if no room for N wrds. Otherwise

set it equal to zero.

status Two-word status array.

Note

For instructions 6-7, the driver automatically initiates the
necessary write cycles to print or plot the outputted data.

Print Mode: The Gould accepts ASCII 7 or 8 level code. Control
commands may be transmitted by using the above instructions. A bad
code prints as solid black square.

Plot Mode: Plot operations are applicable to all matrix plotters and
printer/plotters. Plot data consists of 8-bit, binary, unweighted
bytes. For the number of bits per a complete raster scan, see the
maximum buffer length list below. Each dot corresponds to a single bit
in the buffer. If a bit is a '1', a black dot is plotted at the point
corresponding to the bit position in the buffer. Memory bit #1 is the
MSB, bit 15 is the LSB.

High-Speed Plot Mode: High-Speed Plot Mode is available only under
PRIMOS II. A user must call TSVG to set high- speed plot mode and plot
a line. He then must call TSVG every 98 milliseconds or less to plot a
raster line (inst = 8) or gaps will appear in his plot. The last two
lines of the plot must be generated with calls to TSVG with
instructions of 9 and 7, respectively. These two special calls are
required so the paper will decelerate and stop following the last
lines. A user may check to see if he is calling TSVG to plot often
enough by calling TSVG to get status after every plot call. Bit 16 of
Status(2) will be on if the user has failed to give the previous two
plot requests closely enough in time. Bit 16 should be ignored except
for checking in high-speed plot modes.

Maximum Buffer Length

Plot Print

Model Bits Bytes Characters

4821 600 75 85
4822 800 186 114
5080 19824 128 132
51988 2048 256 264

REV. A 19 - 12

PDR3621 PERIPHERAL DEVICES

> osaLi4

OSAL14 provides the IOCS interface to the Versatec Printer.

CALL OSAL14 (buffer ,count,altrtn)

buffer Buffer to/from which data are moved.

count Number of words to be transferred.

altrtn Never taken and is an optional calling sequence.

The action taken by OSAL14 depends upon the data in the buffer and the
current vertical control mode.

OSAL14 has three vertical control modes:

1. FORTRAN forms control

2. Header line and paginate control

3. No control

The default mode is FORTRAN forms control. OS$AL14 checks the first
character in the data buffer for an ASCII .SOM. (918). An .SOM.
character signifies a change in the control mode. If not an .SOM. the
line is printed according to the current control mode. Mode
descriptions follow:

FORTRAN Forms Control: This mode of OSAL14 honors ANSI FORTRAN forms
control conventions. The first character in a buffer is never printed
but is used for forms control. The character interpretations are:

4 Skip 1 line

1 Eject to top of next page

+ Print over last line (Not currently honored)

Other No action

Header line and paginate: In this mode OSAL14 permits a header line
followed by three blank lines, followed by 56 text lines. ‘The header
line is 42 characters followed by a page count which is kept
automatically by OSAL14 when in this mode.

19 = 13 January 1980

SECTION 19 PDR3621

No Control: In this mode no automatic actions are taken except that

any line containing a form-feed character will cause a page eject with
no further action.

Any data buffer beginning with an .SOM. will cause an internal change
by OSAL14. The change is determined by the character following the
-S@M.. The character interpretations follow:

OHO Enter non-control mode

O01 Enter FORTRAN control mode

936 New header line but do not reset page count

All others Enter header control mode

When entering header control mode the characters following the .SM.

are stored internally in OSAL14 for use as the header line.

All change of mode commands cause a page eject before any further

action.

CARD PROCESSING SUBROUTINES

CARD READER subroutines drive and control serial and parallel interface
type card readers.

P 1sacg3

Reads ASCII input from the parallel interface Card Reader.

CALL ISAC@3 (unit ,buffer,word-count,altrtn)

unit Logical device to or from which data is to be

moved.

®@ =CRO, first controller

1 =CR1, second controller

buffer Buffer which receives data from card reader.

word count Number of words to be transferred.

REV. A 19 - 14

PDR3621 PERIPHERAL DEVICES

altrtn Alternate return in case of end of file or other

error.

Card Format: Cards are expected to be in @29 format. '@26' cards may
be read by preceding the deck by a.card containing '$6' in columns 1
and 2. The conversion done for '@26' cards is shown below.

Card Code Converted to

(926 Symbol) (Character)

=

o
e

~
_

<)

@ '

& +

The driver can be switched back to '929' format by '$S9' in columns 1
and 2.

Pp ISace9

The subroutine ISAC@9 reads ASCII input from a serial interface card
reader.

CALL ISAC@9 (unit,buffer-name,word-count ,altr tn)

Load Information: ISAC@9 calls FSAT to fetch the arguments.

19 - 15 January 1988

SECTION 19 PDR3621

Note

ISAC@9 translates card codes to characters in memory as
follows:

Card Code Converted to

(926 Symbol) (Character)

4 =

% (

<)

+ &

& +

@ '

Card codes read are either 926 or 029. The last card in the

deck is .Q.

The ERRVEC(3) may have the following octal values. Combinations are

possible.

298 on line

40 illegal ASCII

20 DMx overrun

4 hopper empty

2 motion check

1 read check

RB ISacl5

Reads and interprets (prints) a card from a parallel interface card
reader.

CALL ISAC15(unit,buffer ,word-count ,altrtn)

REV. A 19 - 16

PDR3621 PERIPHERAL DEVICES

unit. Card reader unit.

@ =CR@, first controller
1 =CR1, second controller

buffer Buffer into which card is to be read.

wo rd-count Number of words to be read.

altrtn Alternate return in case of error.

p> TSCMFC

The TSCMPC routine is the raw data mover that moves a card of
information from the MPC card reader to the user's space.

CALL TSCMPC (unit ,LOC (buffer) ,word-count ,instruction ,status)

TSCMPC is called by the IOCS card reader driver ISAC@3. The user
normally reads cards under program control using either FORTRAN READ
statement or acall to ISAC@3. However, it is possible to call TSCMFC
directly.

unit Card reader number.

LOC (buf fer) A pointer to a buffer to hold a card of
information read from the card reader.

word-count The number of words to be read from the current

card.

instruction The instruction required to be sent to the card
reader. Valid instructions are:

Instruction Meaning

180008 (octal) = Reads status

49020 (octal) = Read card in ASCII
format

Read card in

Binary format
680028 (octal)

status A three-word vector.

19 - 17 January 1986

SECTION 19 PDR3621

status(1) Not used.

status (2) Card reader status.

Octal Value Condition

2908 ON-LINE

AQ Illegal ASCII
20 DMX overrun

4 Hopper Empty
2 Motion Check
1 Read Check

status (3) Number of words moved.

Example

40 DO 70 I =1, 23
50 CALL TSCMPC (8, CARDS, 40, :48090, STATUS)
60 CALL OS...-
70 CONTINUE

The above example reads an 8@-character card of ASCII data and places

the contents in CARDS.

Card Reading Operation

Under PRIMOS III and PRIMOS, card reader input is buffered. The user
must insert the card deck in the card reader and give the command:

ASSIGN CRn

n = 1 for PRIMOS III, 8 or 1 for PRIMOS

About ten cards are read to fill the input buffer (this is called
read-ahead and serves to buffer input). The user then starts the
program that uses the card reader by calling subroutines TSCMPC, TSPMPC
(at system level) or ISAC@3, ISAC15 (FORTRAN library). Tf TSCMFC is
called and the buffer is empty, the user will wait until more data is
read.

The user may issue a Status request call to check if the input buffer
is empty. If the buffer is empty, the ON-LINE status bit (bit 9 in the
Status word) is reset.

REV. A 19 - 18

PDR3621 PERIPHERAL DEVICES

Note

Under PRIMOS II, card reader input is not buffered and the card

reader is never OFF-LINE.

CARD PUNCH subroutines drive and control parallel interface type card

punches. .

B oSace3

Writes (punches) output to the parallel interface card punch.

CALL OSAC@3(unit ,buffer ,word-count,altrtn)

unit Card punch unit number.
= CR@, first controller

1 =CR1, second controller

buffer Buffer containing line to be punched.

word-count Number of words to be punched.

altrtn Alternate return in case of error.

B osacis

Writes (punches) cutput to the parallel interface card punch and
interprets the line (prints on card).

CALL OSAC15(unit ,buffer ,word-count ,altrtn)

unit Card punch unit number.
@ = CRO, first controller
1 =CR1, second controller

buffer Buffer containing line to be punched.

word-count Number of words to be punched.

altrtn Alternate return in case of error.

19 - 19 January 19890

SECTION 19 PDR3621

p> TSPMrC

TSPMPC is the raw data mover for the card punch. It is called by
OSAC@3, OSAC15 and ISAC15, the card punch drivers. These routines may
be called by the user.

CALL TSPMPC (unit, LOC(buffer), word count, inst, status)

unit Card punch unit.

LOC (buffer) A pointer to a buffer that holds data to be punched.

In ASCII mode, data are packed two characters per
word.

In binary mode, card punches are mapped into a 16-bit

word as follows:

bit punch row

1-4 not used

5 12

6 11

7-16 Q~-9

word count Number of wrds to punch on a card from buffer.

inst Instruction required to be sent to card punch.

Instructions are:

BitSet Instruction Meaning

l 2188800 Read status

3 2 20008 Process in binary mode
4 : 18900 Feed a card

5 :4800 Read a card

6 : 20008 Punch a card

7 : 1088 Print a card

8 2400 Stack a card

REV. A 19 - 20

PDR3621 PERIPHERAL DEVICES

To punch a card, instruction wuld be an octal :12408 meaning, for

example:

l. Feed a card

2. Punch a card and

3. Stack a card

status Three word status vector:

status (1) Not used

status (2) Device status

value condition

: 200 On-line
: 40 Tllegal code
218 Hardware error
24 Operator intervention required

status (3) Number of wrds read

MAGNETIC TAPES

The magnetic tape subroutines drive and control 7-and 9-track magnetic
tape devices. The subroutine names are:

9-Track

CSM95 Control for 9-track ASCII and Binary
CSM13 Control for 9-track EBCDIC
OSAM@5 Write ASCII
ISAM@ 5 Read ASCII
OSBM@5 Write binary
TSBM@5 Read binary
OSAM13 Write EBCDIC
I$AM13 Read EBCDIC

7-Track

CSM10 Control for 7-track ASCII and Binary
CSM11 Control for 7-track BCD

OSAM19@ Write ASCII

ISAM1@ Read ASCII
OSBM1@ Write binary
ISBM1@ Read binary
OSAM11 Write BCD

ISAM11 Read BCD

19 - 21 January 19808

SECTION 19 PDR3621

Restrictions

Currently, PRIMOS supports record sizes up to 6K words for 9-track
tapes and up to 4.5K words’ for 7-track tapes. Primos III does not
support record sizes larger that 512 words for 9-track ASCII, EBCDIC,
or binary records. There is no restriction under PRIMOS II. PRIMOS
III does not support record sizes larger than 348 words for 7-track
ASCII, BCD, or binary records. Under PRIMOS II, larger records may be
used only if the user declares a labeled common area in his own program
called MTIBUF7. The common area must have an array as its first entry
wnich is used aS an expansion buffer when reading or writing 7-track
magnetic tapes. The array must be 1.5 times as large as the biggest
record the user intends to use. Alternately, the subroutine MTBUF7 in
UFD IOCS can be modified appropriately and the FORTRAN library rebuilt.

B csmos5, cSMld, CSM11, CSM13

Since the subroutines are similar, they are described in groups.

CSMO5
CSM1d

CALL)CSM11 (key, name, unit, altrtn)
CSM13

key -4 for Rewind to BOF (Beginning of Tape)
-3 for Backspace one file mark
-2 for Backspace one record
-]1 for Write file mark
1 for Open to read
2 for Open to write
3 for Open to read/write
4 for Close (Write file mark and rewind)
5 for Move forward one record
6 for Move forward one file mark

7 for Rewind to BOF (Beginning of File)
8 for Select device and read status.

name Not applicable (may be anything).

unit 0, 1, 2, or 3 (depending on which device is
ASSIGNed) .

altrtn The alternate return. If altrtn = 9, it

means that an alternate return is not desired.

REV. A 19 - 22

PDR3621 PERIPHERAL DEVICES

These routines call TSMT and ERRSET.

Errors:

Message Meaning ERRVEC (1) ERRVEC (2)

CSMxx EOF End-of-file IE 1
CSMxx EOT End-o f-tape ID 2

CSMxx MINO Magtape not operational ID 3
CSMxx PERR Parity error ID 4
CSMxx HERR Hardware error ID 5
CSMxx BADC Bad call ID 6

All the other subroutines have the same calling sequence.

CALL subroutine (unit, buffer, n, altrtn)

unit Unit number = 9, 1, 2, or 3.

buffer Buffer.

n Number or words to be read or written.

Tf N = @, then the subroutine is to
write a file mark.

altrtn Is the alternate return. If altrtn= @,

it means that alternate returns are not

desired.

These subroutines all call TSMT and ERRSET.

Errors:

Message Meaning ERRVEC(1) ERRVEC(2)

subroutine EOF End-of-file IE 1
subroutine EOT End-—o f-tape ID 2
subroutine MTNO Magtape not ID 3

operational
subroutine PERR Parity error ID 4
subroutine HERR Hardware error ID 5

subroutine BADC Bad call ID 6

Note

It is:

Parity error, PERR, occurs only after 25 parity or raw errors.

January 1988

SECTION 19 PDR3621

> TST

The TSMT routine is the raw data mover that moves information from

magnetic tape to uSer address space, or from the user space to tape.
TSMT also performs other tape operations, such as backspacing, forward
Spacing and density setting. If TSMT is called without the code
argument, and an error condition is encountered, TSMT exits to the user
command level, rather than the calling program. If TSMT is called with
the code argument, the appropriate error code will be returned to the
calling program.

CALL TSMT (unit, pba, nw, instr, statv, code)

unit Magnetic tape drive - may be either physical (98-7) or
logical driver number. (INTEGER*2)

pba A pointer to a buffer address from wiich to read or write a
record of information (INTEGER*4). If neither a read or
write operation, pba is @.

nw Number of words to transfer. This number must be between @
and 6K words (INTEGER*®2) . 6K words can be transferred

under PRIMOS only if the buffer starts on a page boundry.
Otherwise, the maximum size is reduced by the offset of the
buffer from the page boundry.

instr The instruction request to the magnetic tape drivers.
Valid instructions are:

REV. A 19 - 24

Octal

QBWS4B
822100

Q201280

962100

06010808

PA

G202208

G62200

G68200

G22280

G20200

1288098

042220

042620

042200

G42600

052200

052600

G48220

Q4G620

044220

044620

G40202

GAG08

G44200

G44608

The following

Hexadecimal

BB20
2448
2040
6449
6049
2490
2090
6480
6080
2480
2080
8800
4490

4598

4489

4580

5488

5580

4090

4190

4898

4998

4980

4180

4880

4980

PDR3621 PERIPHERAL DEVICES

Meaning

Rewind to BOT, 7,9-track
Backspace one file mark, 9-track
Backspace one file mark, 7-track
Backspace one record, 9-track
Backspace one record, 7-track
Write file mark, 9-track
Write file mark, 7-track
Forward one record, 9-track
Forward one record, 7-track
Forward one file mark, 9-track
Forward one file mark, 7-track
Select transport, 7&9-track
Write record, one character per word,
9-track

Write record, two characters per word,
9-track
Read record, one character per word,
9-track
Read record, two characters per word,

9-track
Read and correct record, one character
per word, 9-track
Read and correct record, two characters
per word, 9-track
Write binary record, one character
per word, 7-track

Write binary record, two characters
per word, 7-track
Write BCD record, one character
per word, 7-track
Write BCD record, two characters
per word, 7-track

Read binary record, one character
per word, 7-track

Read binary record, two characters
per word, 7-track
Read BCD record, one character
per word, 7-track
Read BCD record, two characters
per word, 7-track

Note

instructions are only valid with version two or
three (in some cases both versions) magnetic tape controllers.
Use of these instructions with older versions of the controller
will cause an error message to be printed and the command will
be aborted.

later in this section.

A description of use of these commands is found

January 1989

SECTION 19 PDR3621

198020 8810 Erase a three-inch gap on the tape

(Version 2 and 3 controller).

100848 8020 Unload. Rewind tape and place drive offline
(Version 2 and 3 controller).

180106 8040 Set density to 160@ BPI (Version
2 and 3 controller).

1080128 8059 Set density to 6258 BPI (Version 3
controller).

180868 8039 Set density to 8@@ BPI (Version 2 controller
only).

8435008 4740 Read record backwards (Version 3 controller).

statv 8 word status vector containing the following:

statv (1) Status flag - 1 = operation in progress,

Q = operation finished.

statv (2) Hardware status word from magnetic tape

controller. Possible values are:

Bit Q@1 vertical parity error
@2 runaway

@3 CRC error
@4 IRC error
@5 false gap/insufficient DMA range
@6 uncorrectable error
Q7 raw error
@8 file mark detected
@9 selected transport ready
18 selected transport on-line
11 selected transport end of tape

detected
12 selected transport rewinding
13 selected transport beginning of

tape detected
14 tape write protected
15 DMX over-run or no formatter
16 rewind complete

statv (3) Number of words transferred (read and write

operations only).

statv(4-8) Reserved for future use.

REV. A 19 - 26

PDR3621 PERIPHERAL DEVICES

code Specifies that the appropriate error code is to be returned

to the calling program. If this argument is omitted,
ERRRTN is called and program will exit to user command
level in case of error. The possible error codes returned
are:

ESNASS Device specified in unit, not assigned.

ESIVCM Invalid command (e.g. attempt to set density on
Version @ controller).

ESDNCT Device specified in unit not connected, or no
controller.

ESBNWD Invalid number of words (nw <@ or >6144).

Magnetic tape I/O is not buffered under PRIMOS. A call to TSMT returns
immediately before the operation is complete. When the magnetic tape
operation is completed, the status flag in the user space is set to @.
Therefore, a user program may loop waiting for completion and do
another computation while waiting. If a user initiates another call to
TSMT before the first call has completed its magnetic tape operation,
the second call does not return to the user until the first magnetic
tape operation has been completed.

Density Selection: It is assumed that tapes are written with one
density. This assumption is enforced by only permitting changes in
density at the load point. For this reason, it is not necessary, or
possible, to set the density when reading a tape. When the first
record is read, the density of the tape is determined. The rest of the

tape will be read (or written) using that density.

For example, if the user set the density to 625@ BPI with the ASSIGN
command and read the first record of a 160% BPI tape, then the rest of
the tape would be read using 1600 BPI. If after reading that record, a
record was written onto the tape (without rewinding to the load point);
then that record would also be written at 1609 BPI. If the tape was
rewound and then a record was written, the density would be switched to
6258 BPI. Although the density setting of 6250 BPI is remembered, it
will not go into effect until a record is written at the load point.

If the user assigns a tape without specifying a density, the unit will
be left at the density from the previous use. The default density (at
system initialization time) is 1609 BPI.

Read Record Backwards: This request causes the tape to read a record
while moving the tape backwards. It is sometimes possible to read a
record backwards when a bad tape prevents reading the record in the
forward direction. After the record is read, it will be necessary to
reorganize the data. The wrds of the record will be in reverse order.
Each word will have the bytes reversed. The bits within each byte will
be in correct order.

19 - 27 January 1980

SECTION 19 PDR3621

Use of the TSMT WAIT Semaphore: Looping on the status done word uses

up CPU time while the process waits for the tape operation to complete.
This is not a good practice for two reasons. First, it ties up the CPU
needlessly and slows down system performance in general. Second, it
causes the process to waste some of its time slice without doing useful
work. This will result in the process being scheduled extra time and
the real time of program execution will be longer than necessary.

This problem can be solved by using a semaphore. If the process waits
on a semaphore, the wait time is not counted against its time slice.
Therefore, as soon as the tape operation completes, the process will be
scheduled to run again to finish up its time slice.

The program TSMT contains a wait semaphore that can be used for this
purpose. This semaphore is used to queue tape requests. If the
process makes a tape request when the controller is busy with another
operation, the process is put on the wait semaphore.

When the program wants to wait for a tape operation to complete, it can
call TSMT with a request for status. Since the tape controller is
already busy with the previous operation, the process will be put on
the TSMT wait semaphore.

Since the status request is fast and doesn't affect the tape, it is a
convenient tape operation to use to provide the semaphore wait. A

scratch status vector should be used so that the status from the
original call is not destroyed. Example of wait code:

INTEGER STATV(3) /* STATUS VECTOR SET BY TSMT
INTEGER UNIT /* MAG TAPE DRIVE NUMBER (9-7)
INTEGER BUF (10824) /* OUTPUT BUFFER
INTEGER XSTATV (3) /* SCRATCH VECTOR FOR WAIT

CALL TSMT (UNIT,LOC (BUF) ,,:@42620,STATV) /* WRITE 1024

/* OVERLAP EXECUTION WITH IO

C WAIT FOR TAPE WRITE TO COMPLETE.

190 IF (STATV(1).EQ.8) GOTO 120 /* SEE IF IO IS ALREADY DONE
CALL TSMT (UNIT,LOC(G@) ,@,:180800,XSTATV) /* WAIT
GOTO 189

120 eo ee

PDR3621 PERIPHERAL DEVICES

Error Recovery ® Writing

There are many possible error recovery schemes. The two that are
described here are based on different record formats. The first
algorithm can be used when records contain only data. ‘The other scheme
requires that the records contain extra information for error recovery.

The following schemes are provided as alternatives to using the I0CS
routines that FORTRAN uses. The error recovery provided in the IGS
routines correspond to that described for Simple Write Error Recovery.

Simple Write Error Recovery: The aim of the simple error recovery
program is to get by a possible bad spot on the tape by erasing part of
the tape where the error occurred and rewriting the record after that

gap.

The program does not try to rewrite the record on the same spot on the
tape even though repeated tries on the same spot may improve the tape
enough to permit the write to succeed. ‘The tape is considered marginal

at that spot and may not be readable at a later date.

Only the version three controller (MPC-3), which supports the 6250 BPI
tape drives, has an erase command. On other controllers, the tape can
be erased by writing a file mark and then backspacing over the file
mark. This will cause three inches of tape to be erased.

Program steps for write error recovery:

1. Check if error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file protected.

2. Backspace over the record.

3. Erase a three inch gap on the tape.

@ Write a file mark.

@ Backspace a record and check that the file mark detected bit
is set in the status word.

4. Attempt to re-write the record.

5. If the record was not written successfully, repeat steps 1-4 up
to twenty times (a maximum of five feet of erased tape).

19 - 29 January 19890

SECTION 19 PDR3621

Write Error Recovery with Sequence Numbers: There is a drawback to the
first scheme. Since the tape is bad at the spot where the error
recovery is being done, it is possible for errors to occur wile
backspacing. For example, if the bad record has a gap in the middle of
it, the program might detect tw short records when backspacing. If
the program has some way of identifying records, the program can be
sure that it has not lost position during error recovery.

One way to do this is to include a sequence number with every record.
Then when error recovery is attempted, the program backspaces two
records and then reads a record. This record should contain the
sequence number of the last good record before the error record.

Program steps for error recovery:

1. Check if error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file protected.

2. Position the tape after the last good record.

@ Backspace two records. This will place the tape before the
last good record.

@ Read a record and verify that its sequence number matches
the one expected for the last good record.

e If the 'good' record can't be read, then it is possible that
the tape is not positioned correctly. Backspace several
records and read those records to find the sequence number
of the last good record written.

3. Erase a three inch gap on the tape.

e Write a file mark.

@ Backspace a record and check that the file mark detected bit
is set in the status word.

4. Attempt to write the record again.

5. If the record was not written successfully, repeat steps 1-4 up

to twenty times, lengthening the gap each time.

REV. A 19 - 30

PDR3621 PERIPHERAL DEVICES

Error Recovery On Reading

Error recovery when reading a tape involves repeatedly rereading the
record. The problem of losing position can occur when doing error
recovery. Therefore, the procedure can be improved by verifying the
sequence number each time a record is read.

Program steps for read error recovery:

Check that error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready.

Backspace and reread the record eight times.

If unsuccessful, backspace eight records (or to the load point
if less than eight records away), space forward seven records
and then read the problem record. This sequence draws the tape
over the tape cleaner and could dislodge a possible dirt
particle.

Repeat steps 1-3 eight times.

19 - 31 January 1988

PartV
Communication Controllers
and Real-Time Subroutines

PDR3621 CONTROLLERS

SECTION 20

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

SYNCHRONOUS CONTROLLERS

This section defines the raw data mover for the assigned SMIC line.

p TSSLCA

The SMIC driver is loaded in PRIMOS. A user progran communicates with
the driver via FORTRAN-format calls to TSSLC@. The driver communicates
with the user address space via buffers in the user address space
specified by the user program. The data structure, which is used by
the driver, is "control block" and is provided by the user. This
control block is created by the user program in the user address space.
It contains pointers to the user status buffer and pointers to buffers
containing a message to be transmitted or set to receive a message. A

separate control block is required for each line.

CALL TSSLC@ (key,line,LOC(block) ,nwis)

key 1 Stop line. Mlykey + line required.

2 Define control block. The block is structured as in
Table 20-1. It defines an area to store status
information and, optionally, a message chain for
reception or transmission.

3 Array block contains five words which are to be
output to the controller - see Table 20-2 through
20-11 for details.

4 Array block contains a word which is to be used as
the next data set control word. See Table 20-12 for

details.

5 Array block contains two words which are to be used
as the next receive/transmit enable words. See

Table 20-13 for details.

6 The calling user process will go to sleep. It will
waken at the next SMLC interrupt or after
approximately 1 second. It will run with a full
time slice interval. The value line is ignored, as
are LOC(block) and nwis. If, however, the user
process does not own any SMIC lines, the call will

return immediately.

20 - tl January 1989

SECTION 29 PDR3621

7 Return model number. Model number will be returned
in block. When using this key, nwis must = 1. The
possible model numbers’ and their associated

protocols are:

Model Number (Octal) Protocols

J HSSMLC

5646 BISYNC and HDLC

5647 BISYNC and PACKET

5658 BISYNC and 1084/UT200/7029

5651 HDLC and 1804/UT208/7929

5652 PACKET and 1904/UT200/7029

5653 HDLC and PACKET

5654 BISYNC and GRTS

Note

Before calling TSSLC® to configure a line (KEY=3), a call with
(KEY=7) should be made to see if the Multi-line Data Link
Controller (MDLC) contains the proper protocol and to determine
what the line configuration should be. If an error occurs
during initialization, the following error messages are
printed:

No SMICxx -—(controller address)

No CONTROLLER CONFIGURED for SMLCyy (logical number)
UNDEFINED CONTROLLER ID for SMLCxx (controller address)

It is the responsibility of the caller to see that the line
configuration is correct for the model of MDILC being used.

line Octal line number 9-3.

LOC (block) Address of user's block. User's block must reside

entirely within one page.

nwds Number of words in block,

REV. A 23 - 2

PDR3621 CONTROLLERS

Timing

The user space progran runs asynchronously with message transfers. A

call to TSSLC@ returns immediately after executing whatever control

function was required. The progress of the communication must be

monitored by the user program by examination of the user space status

buffer contents.

Assigning Communication Lines

The communications lines must be assigned to a user space before they

can be used. The proper command is:

SMLCOO
SMLC@1

ASSIGN SMLCH 2
SMLC83

given at the user terminal. One or more lines may be assigned to a

given user.

20 - 3 January 1980

SECTION 20 PDR3621

Table 28-1. Key=2 SMLC Control Block

Word @ Last receiver/transmitter enable word sent to the
HSSMLC by the driver. (This word is written into
but not read by the driver.)

Bit 15 =1 : Transmitter on

Bit 16 = 1 : Receiver on

Word 1 Bit 1 : Valid line enable order in bits 2-16
Bits 2-16 : Line enable order. See Table 20-4,

word @.

Word 2 Bits 1-4 : Data set status mask (DSSM)

Bits 5-8 : Required data set status (RDSS)
Bit 9 : Set: no data set order - ignore word 2
Bits 13-15 : Data set control order (DSCO)

Note

Issue DSCO, wait for (DS status .AND. DSSM) = RDSS, then

issue line enable order

Word 3 Spare

Word 4 Pointer to top of status buffer

Word 5 Pointer to bottom + 1 of status buffer

Word 6 Pointer to next word in status buffer to receive
the status information. (This word is written into but
not read by the driver.)

Note

The status buffer must be completely contained in the same page
as the control block.

REV. A 29 - 4

PDR3621 CONTROLLERS

Table 20-1. Key=2 SMLC Control Block (continued)

Word 7 Bits 1-2 : '91' there exists a continuation
control block

Bits 3-6 : Word count of next block - 8
Bit 7 : @

Bits 8-16 : Offset in current 512 word page
of next block

Note

The continuation block must reside in the same page as the
control block from which it was continued.

Word 8 Bit 16 Set: Transnit

Clear: Receive

Note

If Word 8 given (nwis > 8) then at least one DMC address pair
must be given.

Words 9-19 DMC start and end address pointers.
11-12 Up to four pairs may be specified to allow
13-14 for channel chaining.
15-16

Note

Transmit/receive buffers may reside in any page, but their
starting and ending address pointers must reside in the sane
page.

20 - 5 January 1980

SECTION 20 PDR3621

Table 26-2. Key=3 Line Configuration Control Block (Bits 10-15)

word @ Bits 10 through 16, are constant for all controllers and
protocols. Bits 1 through 9 for each controller follow.

Bit 19 : Enable formatter option (Bi-Sync,
UT209, ICL 7028, 1004, Packet
Switch depending on HSSMLC
options)

Bit 11 : Enable reporting of data set
changes by interrupt and status
word.

Bits 12-14: 1 13014

Automatic Parity Enable
Parity Select @ = odd,
Note *
Parity Enable

*Automatic Parity Enable appends a parity bit to the
data while Parity Enable steals the most significant bit
of each data byte.

Bits 15-16: 15 16

Number of bits per character

If Automatic Parity is enabled with eight-bit data
enabled, no parity will be generated or checked (i.e.
no nine bit data formats)

Table 29-3. Key=3 Line Configuration Control Block (HSSMLC, bits 1-9).

HSSMLC

Word @ 12 3 4 6 7 8 9

leelect formatter mode

9 = EBCDIC

1 = ASCII

Select BCC

1 = LRC (for use with ASCII mode only)
@ = CRC-16

Unused control bits

REV. A 26 - 6

PDR3621 CONTROLLERS

Table 20-4. Key = 3 Line Configuration Control Block (5646, bits 1-9).

5646
BISYNC

word @ 1 2 3 4 5 6 7 8 9
2 20 @8 GB B@ Q

FBCDIC = @

ASCII =1

Enable LRC = 1

CRC1LS = @

|able "X.25" Operation

HDLC
word 9g 1 2 3 4 5 6 #7 9

1 @

Tx-End message on
left byte

Tx-Q8-FLAG line during

idle periods.
-1-MARK line during

idle periods. Enable GO-AHEADs
(loop mode) Tx-Start on right byte

Rx-Start on right byte
and generate encoded
status if message ends
with the left byte. HDLC Enable Enable All-Parties

Address Mode
 Enable Secondary Station

Mode

Secondary Station Mode, HDLC mode, Loop mode, and
All Parties Address Mode are enabled on a line-pair basis only.

20 - 7 January 19898

SECTION 20 PDR3621

Table 20-5. Key=3 Line Configuration Control Block (5647, bits 1-9).

5647

BISYNC

Word 9 123 4 5 67 8 9

6 6@B6BO BoB DB

EBCDIC = 9

ASIT =1

Enable LRC = 1
CRC15 = @

Enable "X.25" operation

PACKET

word @ 12 3 4 5 67 8 9
g 886@8o Bo BB

Enable CRC24

Enable Upper Bank

REV. A 28 - 8

PDR3621 CONTROLLERS

Table 20-6. Key = 3 Line Configuration Control Block (5659, bits 1-9).

565¢

BISYNC

Word @ 123 4 5 67 8 9
6886 BB 9

FBCDIC = @

ASCII =1

Enable LRC = 1

CRC16 = @

Enable "X.25" Operation

ICL7@ 20/UT200/1004

Word 9 123 4 5 67 8 9

186.2 @ |’ 1 1

Enable ICL 792

Enable 1004 (Default = UT229)

Recommended configurations

1604 "140722

UT200 "40723 (Add '4@ to enable DSS
ICL7@20 '42723 interrupts)

20 - @9 January 1989

SECTION 20 PDR3621

Table 20-7. Key = 3 Line Configuration Control Block (5651, bits 1-9).

5651

ICL7920/UT2080/1804

word @ 123 45 6 7 8 9
8 86 B BO 8 1 i.

Enable ICL702¢

Enable 1084 (Default = UT20@)

Recommended Configurations

UNIVAC "180722

UT200 '723 (Add '48 to enable DSS interrupts)
ICL7920 "2723

HDLC

word @ 1 2 3 4 5 6 7 8 9

1 DB

Tx-End message on
left byte

TX-@-FLIAG line during
idle periods.
-1-MARK line during

idle periods.

|mable GO-AHEADs

(loop mode)

 Tx-Start on right byte
Rx-Start on right byte
and generate encoded
status if message ends
with the left byte. HDLC Enable Enable All-Parties

Address Mode

 Enable Secondary Station
Mode

Secondary Station Mode, HDLC mode, Loop mode, and
All Parties Address Mode are enabled on a line-pair basis only.

REV. A 20 - 10

PDR3621 CONTROLLERS

Table 20-8. Key = 3 Line Configuration Control Block (5652, bits 1-9).

5652

ICL7020/UT 2080/1004

word @ 1 2 3 4 5 6 7 8 9
6 8 8 BB 9 1 1

Enable ICL7@2@

Enable 1004 (UT200=De fault)

Recommended Configurations

1804 188722

UT200 '723 (Add '48 to enable
ICL7@ 28 '2723 DSS interrupts)

PACKET

Word @ 1 2 3 4 5 6 7 8 9
Qg @ g 9 0 g YJ

Enable CRC24

Enable Upper Bank

an - ll January 1988

SECTION 29 PDR3621

Table 20-9. Key = 3 Line Configuration Control Block (5653, bits 1-9).

5653
HDLC

Word @ l

Q
n

Q
w

Tx-End message on
left byte

 TX-8-FLAG line during
idle periods.
-1-MARK line during

idle periods.

 -—__-Fnable GO-AHEADs
(loop mode) Tx-Start on right byte

Rx-Start on right byte
and generate encoded
status if message ends
with the left byte. HDLC Enable Enable All-Parties

Address Mode

 Enable Secondary Station
Mode

Secondary Station Mode, HDLC mode, Loop mode, and
All Parties Address Mode are enabled on a line-pair basis only.

PACKET

word @ Ll 2 ; 4 5 6 7 8 9
1

 Enable CRC24

REV. A 26 - 12

Table 20-192.

GRTS

Word @

D
e

Fr
"

NO
)

Q
w

Q
t

PDR3621

20

CONTROLLERS

Key = 3 Line Configuration Control Block (5654, bits 1-9)

EBCDIC
ASCII

Enable LRC

CRC15 Q
r

Enable "X.25" Operation

7 8 9

G

EFBCDIC = @

ASCII =1

GRTS uses ASCII

Enable LRC = l

CRC16 = @

GRTS uses LRC

Enable "X.25" Operation

Not used in GRTS

- 13 January 1980

SECTION 26 PDR3621

Table 28-11. Key = 3 Line Configuration Control Block (words 1-4).

Word 1 word configuration - Transmitter Bit settings

as for Word @.

Word 2 Special character (OTA '@@ ;: Function '1@)

Bits 7-8 : @0 Character 1

Ol Character 2

1¢ Character 3

ll Character 4
Bits 9-16 : Character

Word 3 Special Character
Bit settings as for Word 2

Word 4 Clock selection

B Reset internal clock to default 9.6 Kbps
1 Switch internal clock to 62.5 Kbps

REV. A 20 - 14

PDR3621 CONTROLLERS

Table 20-12. Key=4 Data Set Control Bits (OTA 'Q@:Function '@@)

Bit 13 : Not used
Bit 14 : Speed Select
Bit 15 : Request to send (RTS)
Bit 16 : Data Terminal Ready (DTR)

Table 20-13. Key=5 Receive/Transmit Mable (OTA '#@:Function '15)

Word @ Bit 11 : Select internal as receive clock

Bit 12 : Select internal as transmit clock
Bit 13-14 : @@ Normal (transnit out, receive in)

$1 Loop full duplex (transmit out,
receive in)

19 Echo full duplex (receive in,
transnit out)

11 Loop half duplex (pair combinations

must be: 1-2, 2-1, 3-4, 4-3)
Bit 15 : l=Enable/J=Disable transnitter

Bit 16 : 1L=Enable/#=Disable receiver

Word 1 Bit 16 : l=Enable transmitter
@=Enable receiver

Note

Transmitter and Receiver must be enabled/disabled separately.

29 - 15 January 1989

SECTION 20 PDR3621

ASYNCHRONOUS CONTROLLERS

The following describes the raw data mover for assigned AMIC lines.
Refer to the System Administrator's Guide for the AMLC command, amd how
to assign AMIC lines.

> TSAMLC

CALL TSAMIC (line, LOC(buffer) , cent, key, status)

line

LOC (buffer)

eccnt

key

status

REV. A

Octal line number.

Address of user's buffer.

Character count (max is 82).

1
2

&
W

Input ccnt characters.

Input cent characters or until new line
character, whichever occurs first.
Return actual number of characters
read in status(1).
Output cent characters.
Return number of characters in input

buffer in status(l) and state of
carrier in status(2). status(2) =@ if

carrier, not 9 if no carrier.
Return zero in status(1) if not room in
output buffer for ccnt characters or
one if there is room. State of carrier
is also returned in status(2).

Two word status vector, described in key.

PDR3621 REAL TIME SUBROUTINES

SECTION 21

REAL-TIME AND SYNCHRONIZATION SUBROUTINES

REAL-TIME AND INTERUSER COMMUNICATION FACILITIES

PRIMOS supports user applications that have real-time requirements or
that need to synchronize execution with other user programs. Part of
this support is the ability to modify the priority and timeslice
duration of any user via the CHAP command. Program support for
real-time applications and interuser synchronization is in the form of
a set of subroutines that provide access to the Prime 4008's semaphore
primitives (WAIT and NOTIFY) and to internal timing facilities.

USER SEMAPHORES AND TIMERS

Internal to PRIMOS is an array of 64 semaphores reserved for the use of
user processes. In the subroutines described below, all reference to a
user semaphore is by the index of the semaphore, an integer from 1 to
64. Other than ensuring a valid semaphore number, PRIMOS makes no
stipulations for semaphore use such aS which users can access which
semaphores, etc. Allocation and cooperative use of the Semaphores is
strictly under user control.

Of the 64 user semaphores, up to 15 can be used at any time as_ timed
semaphores, that is, semaphores that are periodically notified by the
system clock process (see the SEMSTN routine). Again, allocation of
timed semaphores is on a first-come first-served basis, and nothing is
done to prevent incorrect use of a timed semaphore.

Unless a user has inhibited quits from the user terminal, the typing of
CONTROL-P or BREAK while a user process is waiting on a user semaphore,
causes that semaphore to be notified and the process to enter command
mode. The START command then causes control to return to the point
following the call that resulted in the wait.

21 - 41 January 1989

SECTION 21 PDR3621

p> sEMSDR

SEMSDR sets the value of a semaphore to zero.

CALL SEMSDR(semnum,code)

semnum The number of the user semaphore (1-64) to be drained.

(INTEGER)

code An integer variable to be set to the return’ code.

(INTEGER) Its value may be:

9 = Request accepted.
ESBPAR = Invalid semaphore number.

If the value of the semaphore is negative (outstanding notifies), it is
set to zero. (Other access to the semaphore is inhibited between the
testing and setting to zero.) If the value of the semaphore is
positive, 'value' notifies are executed, thus releasing a number of
processes equal to the original value of the semaphore. Note that
other user processes may wait on the semaphore in the middle of the
notify loop. In this case, if the processes just entering the wait
list have priority equal to or less than those already waiting, they
will be left on the wait list at the conclusion of the SEMSDR call. If
the new processes have priority higher than those already waiting, they
will be immediately notified and some of the original processes will be
left on the wait list.

> seEMSNF

SEMSNF notifies a specified user semaphore.

CALL SEMSNF(sSemnum,code)

semnun The number of the user semaphore (1-64) to notify.
(INTEGER)

code An error or status code returned. (INTEGER) Its value may

be:

@ = Request accepted
ESBPAR = Invalid semaphore number
ESSEMO = too many notifies.

If the semaphore number is valid, the current value of the semaphore is
checked. If the value is less than -32767, the code ESSEMO is
generated, meaning that 32767 notifies have been issued with no

REV. A 21 - 2

PDR3621 REAL TIME SUBROUTINES

corresponding waits. (This is to prevent the semaphore value from

wrapping to a positive value.)

> sSmEMSTN

SEMSTN establishes a user accessible "clock",

CALL SHEMSTN(semnum,interval-1,interval-—-2,code)

semnum The number of the user Semaphore (1-64) to be used as

a timer. (INTEGER)

interval-1 A variable that contains an interval in milliseconds

to be awaited until the first notify of the semaphore.
(INTEGER*4)

interval-2 A variable that, if non-zero, specifies an interval in
milliseconds between all subsequent notifies.

(INTEGER*4)

code An error or status code returned. (INTEGER) Its value

may be:
®@ = Request accepted
ESBPAR = Invalid semaphore nunber
ESNTIM = No available timers.

SEMSTN first checks the validity.of semnum and ensures that there is an
available timer (i.e., that there are not already 15 active timer
semaphores). A control block is then constructed and brought to the
attention of the internal PRIMOS clock process. The clock process
subsequently decrements interval-l (in the control block) every tenth
of a second until it reaches zero (or becomes negative, if the interval
is not a multiple of 199 msecs.). The specified user semaphore is then
notified. If interval-2 is not @, interval-1 is then replaced. with
interval-2 (in the control block). The Semaphore will then be notified

every interval-2 msecs, until the timer is deactivated by a call to
SEMSTN with an interval-1 value of @ (INTEGER*4). If interval-l is @,
a search for the Specified timer is made, and ESNTIM is returned if the
timer is not found. If the timer is found, interval-1 is set to zero.

This effectively deactivates the timer and releases itfor other SEMSTN
calls.

SEMSTN does not suspend execution of the user process. Execution is
Suspended only when SEMSWT is called and the specified interval has not
expired. While the timed semaphore is in operation, it can be
specified in calls to SEMSWT, SEMSNF, SEMSTS, or SEMSDR.

If QUIT is typed while a timed semaphore is active, notifies will

accumulate while in command mode.

21 - 3 January 19890

SECTION 21 PDR3621

BP seEMsts

SEMSTS obtains the current count of waits/notifies

integer=S IMSTS (semnum ,code)

integer An integer variable set to the current value of the
semaphore. (INTEGER)

semnun The number of the user semaphore (1-64) to be tested.
(INTEGER)

code An error or Status code returned. (INTEGER)

may be:

@ = Request accepted
ESBPAR = Invalid semaphore number.

The current value of the semaphore is returned. If positive, the value
indicates the number of processes currently waiting on the
If negative, the value reflects the number of outstanding notifies.
Thus, in all cases,

value = waits - notifies

Note

The test operation is not interlocked against other access to

the semaphore. Other processes issuing WAITs or NOTIFYs may
change the value of the semaphore at any time after SEMSTS has
returned the value of the semaphore.

REV. A 21 - 4

Its value

semaphore.

PDR3621 REAL TIME SUBROUTINES

Pe smesur

SEMSWT enters the waitlist of specified sempahore.

CALL SEMSWT (Semnum,code)

semnun The number of the user semaphore (1-64) on which to wait.
(INTEGER)

code An integer error or status code returned. (INTEGER) Tts
value may be:

8 = Request accepted
ESBPAR = Invalid semaphore number.

If the semaphore number is valid, a WAIT instruction iS executed to
place the user process on the wait list of the specified semaphore.
The user process re-enters the ready list when the semaphore is
notified or when QUIT is typed at the user terminal. If the semaphore
has already been notified when SEMSWT is called, the WAIT instruction

is a no-op, and control returns immediately.

p> SLEEPS

SLEEPS suspends execution of a user process.

CALL SLEEPS (interval)

interval A variable containing the interval in milliseconds for
which execution is to be suspended. (INTEGER*4)

Execution of the user process is suspended for the specified interval.
An interval <@ will result in an effective no-op. A QUIT and START
from the userterminal will cause immediate return from the SLEEPS

call.

21 - 5 January 1980

Part VI
Library Management

PDR3621 LIBRARY MANAGEMENT

SECTION 22

LIBRARY MANAGEMENT

This section describes the Binary Editor (EDB) and LIBEDB. EDB is used
to create and modify libraries. LIBEDB is used once a library is
created to decrease loading time. Both of these programs operate on
object text blocks generated by Prime language translators (FTN, COBOL,
PMA, RPG). These objects text blocks form the input to LOAD and SEG.
The term 'loader' is used to identify both programs.

LIBEDB

This program is used for editing bypass information into library files.
The loader uses the bypass information to skip an unnecessary routine
efficiently instead of reading and discarding all the unwanted object
text. Depending on the size and number of unnecessary routines in a
Library, the loader may process library files up to 5@ percent faster
if they have been processed by LIBEDB.

LIBEDB is maintained as the run file *LIBEDB in the UFD 'LIB'. It
should be used on a library file after its creation and after each time
that the library is edited with the Binary Editor. The loader is
capable, however, of handling a library which is not, or is only
partially, processed by LIBEDS.

Since it is expected that LIBEDB will be used fairly infrequently, the
user/conputer interaction is self-explanatory. LIBEDB asks for an
input and output file name and for file type. In theory, a library
with large routines will load faster if it is created as a DAM file.
In practice, none of the regularly used libraries contain routines
large enough to warrant creating the library as a DAM file instead of
as a SAM file.

EDB

Start-up

_EDB is started up by the following command:

EDB input-file [output—file]

Both the input and output file may be pathnames. The input file should
be an existing library or the binary output of a Prime language
translator. The output file is optional; if specified, a file of that
name will be created if none exists. -ASR or -PTR instead of a file on
the command line specifies a user terminal or paper tape reader/punch

22 - 1 January 1986

SECTION 22 PDR3621

respectively. If these are not included, a PRIMOS file is assumed.

EDB types ENTER and then waits for user commands.

Operation

EDB maintains a pointer to the input file. When ED8 is initialized, or
after a TOP or NEWINF command, the pointer is at the top of the input
file. The pointer can be moved by the FIND command to the start of a
module. A module is identified by its subprogram or entry point name.
After a COPY command (which copies blocks from the input to output
file), the pointer is positioned to the module following the module

copied.

Command Summary

EDB responds to the following commands, 1isted in alphabetical order.
Commands may be abbreviated to the underlined letters. Items enclosed
in brackets are optional.

BRIEF

Inhibits printout of subroutine names and entry points as they are

encountered in the input file by EDB. (See TERSE and VERIFY.)

name, <SFL>, or <RFL>

COPY ALL

Copies to the output file, all main programs and subroutines from the
pointer to (but not including) the subroutine called name or containing
name aS an entry point. If name is not encountered or COPY ALL is
specified, EDB copies to the end of the input file and types’ .BOTTOM.
on the terminal. The pointer moves past the last copied item.

name, <SFL>, or <RFL>

FIND ALL

Moves the pointer to module of the input file containing a subroutine
called name or containing name as an entry point. If name is not
found, the pointer is moved to the end of the input file and .BOTTOM.
is typed on the terminal. In the VERIFY mode, the FIND ALL command can
be used to print all subroutines and entry names in the input file.

INSERT pathname

Copies all modules of pathname to the output file. The pointer to’ the

original input file is unchanged.

REV. A 22 - 2

PDR3621 LIBRARY MANAGEMENT

NEWINF pathname

Closes the current input file and opens pathname as the new input file.
The pointer is positioned to the beginning of pathname.

OPEN
on

Closes the current output file and opens pathname as the new output

file.

QUIT

Closes all files and exits to PRIMOS.

REPLACE (name) (pathname)

Replaces the object module containing (name) as an entry point by all

modules of pathname.

REL

Writes a reset-force-load flag block to the output file. All libraries
begin with an RFL. This block places a loader in library mode; only
those modules that are referenced are loaded. RFL mode is in effect

until the loader encounters an SFL block,

SFL

Writes a set-force-load flag block to the output file. This block
places a loader in force-load mode; all subsequent modules are loaded,
whether or not they are called. SFL mode is in effect until the loader
encounters an RFL block. A library file should be terminated by an SFL

block.

TERSE

Places the editor into TERSE mode. Only the first entry point name of
each module encountered by EDB is printed on the terminal. (See BRIEF,
VERIFY)

TOP

Moves the pointer to the top of the input file.

22 - 3 January 1989

SECTION 22 PDR3621

VERIFY

Places EDB into VERIFY mode. All subroutine names and entry points, as
they are encountered by EDB, are printed on the terminal. EDB is
initialized in the VERIFY mode. (See BRIEF and TERSE)

The following commands are outmoded but are included for the sake of
completeness:

ET

Writes an end-of-tape mark on the output file ('223, '223 on paper
tape; zero word on disk). Writing an ET to disk causes the loader to
ignore the remainder of the file.

GENET [G]

Copies the subroutine to which the pointer is currently positioned and
follows it with an end-of-tape mark. The pointer moves to the next
Subroutine. The optional letter G specifies a global copy; all
subroutines from the current position of the pointer are copied, each
followed by an end-of-tape mark. When the bottom of the input file is
encountered, .BOTTOM. is printed on the terminal.

OMITET [G]

Copies the subroutine to which the binary location pointer is currently
positioned. The pointer moves to the next subroutine. The optional
letter G specifies a global copy; all subroutines from the current
position of the pointer are copied. ‘When the bottom of the input file
is encountered, .BOTTOM. is printe*’:n the terminal.

EDB Error Messages

EDB prints ENTER to show that it is ready to accept commands. Most
errors in command string input cause EDP to print a question mark (?).
Other messages include:

BAD OBJECT FILE
usually a source file

BAD PARAMETERS

fatal

ERROR WHILE WRITING

fatal

REV. A 22 - 4

PDR3621 LIBRARY MANAGEMENT

EXAMPLES

Creating a Library

The following example creates a library from the files BFILE],
BFILE2, BFILE3, and BFILE4. Each file contains a single module
although BFILE] and BFILE2 contain multiple entry points.

The following terminal output shows the EDB commands to list the entry
points of each file, plus the commands necessary to combine them into a
library file, LIBEXP. Example:

OK, EDB BFILE1
GO
ENTER, F ALL
ENTIA ENT1B ENTIC
BOTTOM.
ENTER, NEWINF BFILE2
ENTER F ALL
ENT2D ENT2E
.BOTTOM,
ENTER, NEWINF BFILE3
ENTER, F ALL
ENT3G
-BOTTOM.
ENTER, NEWINF BFILE4
ENTER, F ALL
ENT4H
-BOTTOM.
ENTER, OPEN LIBEXP
ENTER, NEWINF BFILE1
ENTER, REL
ENTER, C ALL
ENT1A ENT1B ENTIC
.BOTTOM.
ENTER, I BFILE2
ENTER, I BFILE3
ENTER, I 8FILE4
ENTER, SFL
ENTER, QUIT

After a library is created, LIBEDB can be run on it to speed its
loading time.

Listing Entry Points

Notice the difference between the terminal output in VERIFY and TERSE
modes. ENTI1A, ENT1B, and ENTIC are all entry points of the first
module. In TERSE mode, only ENTIA is listed. Example:

22 - 5 January 1989

SECTION 22 PDR3621

OK, EDB LIBEXP
GO
ENTER, F ALL
ENTIA ENT1B ENTIC ENT2D ENT2E ENT3G ENT4H
.BOTTOM.
ENTER, TOP
ENTER, TERSE
ENTER, F ALL
ENTIA ENT2D ENT3G ENT4H
.BOTTOM.
ENTER, QUIT

Replacing an Object Module in the Library

The library file, LIBEXP, created above is edited to replace the module
containing entry point ENT3G with the module in BNFILE3 containing
entry points ENT3F and ENT3G. The output file is LIBNEW.

OK, EDB B_NFILE3
GO
ENTER, F ALL
ENT3F ENT3G
-BOTTOM.
ENTER, Q

OK, EDB LIBEXP LIBNEW
GO
ENTER, R ENT3G BNFILE3
ENT1A ENT1B ENTIC ENT2D ENT2E ENT3G
ENTER, C ALL
ENT4H
- BOTTOM.
ENTER, Q

OK, EDB LIBNEW
GO
ENTER, F ALL
ENTLA ENT1B ENTIC ENT2D ENT2E ENT3F ENT3G ENT4H
-BOTTOM.
ENTER, Q

REV. A 22 - 6

Part VIL
Condition Mechanism Subroutines

PDR3621 CONDITION MECHANISM

SECTION 23

CONDITION MECHANISM SUBROUTINES

INTRODUCTION

This section describes the subroutines used in the implementation of
the condition mechanisn. A condition is an unscheduled software
procedure call (or block activation) resulting from an "unusual event".
Such an "unusual event" might be a hardware-defined fault, an error
situation which cannot be adequately defined to the subroutine, or an
external event such as a QUIT from the user's terminal. The condition
mechanism has been created to:

e Provide a consistent and useful means for systen software to
handle error conditions

e Provide the capability to handle error conditions without
forcing a return to command level

@e Provide support for the condition mechanism of ANSI PL/I

CREATING AND USING ON-UNITS

Condition handlers are called "on-units" which may be procedures or
PL/I begin blocks. A begin block results from a PL/I <on statement
while a procedure results from the use of the subroutines:

MKONUS
MKONSF

The use of these subroutines is the only way to create an on-unit in a
non-PL/I environment. All users are automatically protected by PRIMOS
system on-units. When a condition is raised, the condition mechanism
searches within the existing procedure for on-units for the specific
condition. If none is found, but if an on-unit for the special
condition ANYS does exist, the ANYS on-unit is selected as the default
on-unit.

An on-unit may be invalidated by the PL/I <revert statenent> or by
using the subroutines:

RVONUS
RVONSF

23 - 1 January 19808

SECTION 23 PDR3621

The condition mechanism is activated whenever a condition is raised. A

condition is raised implicitly by some exception being detected during

regular program execution. A condition may be raised explicitly by the

PL/I <signal statement> or by a call to the subroutines:

SIGNLS
SGNLSF

Every on-unit has the name of the condition it is hamdling. A

condition name is a character string (up to 32 characters) and may

represent a system defined condition if the name is one reserved for

system use, or it may be a user-defined condition. The system-defined

conditions are described later in this section.

On-Unit Actions

An on-unit has several options on action it may take. An on-unit may:

1. Perform application specific tasks (e.g., closing files,

updating files).

2. Repair cause of condition and resume execution.

3. Decide that normal flow can be interrupted and

=

program

re-entered at "known point" by performing a nonlocal goto to

some previously defined label.

4, Signal another condition.

5. Transfer process to command level.

6. Continue search for more on-units.

7. Run diagnostic routines.

FORTRAN Considerations

The use of on-units and of nonlocal gotos from FORTRAN is somewhat

restricted, since there are no internal procedures or

_

blocks.

Tnerefore:

e FORTRAN on-units must be subroutines which, by definition, are

not internal to the subroutine or main program creating the

on-unit.

@ Nonlocal gotos will work only to the previous stack level since

the target statement label belongs to the caller of the

subroutine performing the nonlocal goto.

A full function nonlocal goto requires that the target label identify

both a statement and a_ stack frame of the progran that contains the

REV. A 23 - 2

PDR3621 CONDITION MECHANISM

statement. The subroutine MKLBSF will create a PL/I compatible label

and the subroutine PLISNL will perform a nonlocal goto to a specified

target label. Labels produced by MKLBSF are acceptable to PLISNL.

The PL/I interfaces utilize the PL/I datatype "character(*) varying".

This datatype is not available in FORTRAN, but 1977 ANSI FORTRAN

includes a datatype which is the equivalent of PL/I "character(*)

nonvarying". Interfaces are provided which utilize the nonvarying

character strings. These will not be as efficient as those using

varying character strings. It is possible to simulate varying

character strings in FORTRAN with an INTEGER*2 array in which the first

elenent contains the character count, and the remaining elements

contain the characters in packed format. For example:

PL/I

dcl name char(5) varying static initial ('QUITS');

FORTRAN
INTEGER*2 NAME (4)
DATA NAME/5, 'QUITS'/

The subroutines are documented in PL/I, and therefore FORTRAN users

must make a conversion between PL/I datatypes and FORTRAN datatypes.
The following is a table for such a conversion:

PL/I FORTRAN

char(n) var INTEGER (((n+l) /2)+1)
char(n) INTEGER ((n#1) /2)
fixed bin(15) INTEGER

fixed bin(31) INTEGER*4

label REAL*8
entry variable REAL*8
ptr options (short) INTEGER*4
bit(n) INTEGER (1<=n<=16)

Default On-Unit

The default on-unit, ANY$, may be created to intercept any condition

that might be activated during a procedure. (The ANYS on-unit is

created by a PL/I <on-statement> or a call to MKONUS or MKONSF.)

When a condition is raised, the condition mechanism first searches for

an on-unit for the specific condition. If a specific on-unit exists,

it is selected, but if none exists and an ANYS on-unit exists, it is

selected.

23 - 3 January 1980

SECTION 23 PDR3621

User programs should avoid the use of the ANY$S on-unit. If used, a
user ANYS on-unit should not attempt to handle most system-defined
conditions, and should pass then on by simply returning. Whenever an
ANYS on-unit is invoked, the continue switch is set and the user ANYS
on-unit must return with the continue switch still set. Failure to do
so can cause problems with PRIMOS.

The continue switch (cflags.continue sw) is used to indicate to the

condition mechanisn whether the on-unit that was just invoked (or any
of its dynanic descendants) wishes the backward scan of the stack for
on-units for this condition to continue upon the on-units return. The
Subroutine CNSIGS is used to request that the switch be turned on.

This switch is cleared before each on-unit (except ANYS$) is invoked.

CONDITION MECHANISM SUBROUTINES

> sIGNLS

SIGNLS is called to signal a specific condition. The stack is scanned
backwards to find an on-unit for this comition or a default (ANYS)

del signl$ entry (char(*) var, ptr, fixed bin, ptr, fixed bin,

bit(15) aligned);

CALL SIGNLS (conditionname, msptr, mslen, infoptr,
infolen, action);

conditionname Name of condition to be signalled.

msptr Pointer to stack frame header structure defining
the machine state at the time the specific
condition was detected. If ms ptr is null, a
pointer to the condition frame header, produced
by this call to SIGNLS will be used.

mslen Length (in words) of the structure named in
ms ptr. Not examined if ms ptr is null.

infoptr Pointer to structure containing auxiliary
information about the condition. If no auxiliary
info is available, info ptr should be null.

infolen Length (in words) of structure in info ptr. Not
examined if info ptr is null.

REV. A 23 - 4

action

> SGNLSF

PDR3621 CONDITION MECHANISM

Defines action to be taken.

dcl 1 action,
2 return_ok bit(1),

2 inaction ok bit(l),

2 crawloutbit(1),
2 mbz bit(12);

return_ok = '}'b if on-unit is to be

allowed to return.

't'b if on-unit may return

without taking corrective
action arm still expect
"defined" results. (return_ok

must also be '1'b.)

inaction_ok

crawlout = 'i'b if call to SIGNLS is

result of crawlout. Should

never be set by user.

specifier = '1l'b to signal PL/I I/0(PLIO)
condition. User program should
not use.

mbz = Must be zero.

SGNLSF signals a specific condition and supplies optional auxiliary

information. SGNLSF is the FORTRAN equivalent of SIGNLS but is less

efficient in use of time and space.

CALL SGNLSF (cname, cnamel, msptr, mslen, infopt, infoln, flags)

INTEGER*2 cname(--), cnamel, mslen, infoln, flags

INTEGER*4 msptr, infopt

cname

cnamel

msptr

mslen

infopt

Name of condition to be signalled.

Length of cname in characters.

Pointer to location of stack frame header describing

machine state at time the specific condition was

detected. User does not usually know this information
and should pass the null pointer value of :1777600000.

Length (in words) of stack frame header.

Pointer to location of user-suppl ied auxiliary

information array. If no information supplied user
should pass null pointer. (:1777600000).

23 - 5 January 1986

SECTION 23 PDR3621

infoln Length, in words, of array pointed to by infopt.

flags Action array specifying control action

BIT

1=1 On-unit may return

2=1 On-unit may return without taking action

3=1 Call is result of crawlout - should never be
set by user

4= Signal PLIO condition -. User should not set

5-15 Must be zero

BP cCNSIGS

CNSIG$ instructs the condition mechanism to continue scanning for more
on-units for the specific condition that was raised after the calling
on-unit returns. CNSIGS is called when an on-unit has been unable to
completely handle the condition. The continue switch is set in the
most recent condition frame.

dcl cnsig$ entry (fixed bin);

CALL cnsig$ (status);

status Standard system error code. Will be non-zero only if
there was no condition frame found in the stack.

Note

The continue switch is automatically set whenever an ANYS
on-unit is invoked. Therefore, an ANYS on-unit need not issue
a call to CNSIGS to continue to signal.

REV. A 23 - 6

PDR3621 CONDITION MECHANTSM

p> MKL8SF

MKLBSF converts a FORTRAN statement label or an integer variable with a

statement label value, into a PL/I compatible label value. This label

value can then be used with a call to the subroutine PLISNL, to perform

a full function nonlocal goto in a FORTRAN program.

CALL MKLBSF (stmt, label)
INTEGER*2 stmt
REAL*8 label

stmt Variable to which a FORTRAN statenent number has been

assigned by an ASSIGN statement, or is a statement number

constant in the format SXXXXX.

label Contains PL/I compatible label value for stmt after call

to MKLBSF.

p> PLISNL

PLISNL performs a full function nonlocal goto to the statement

identified in the call. Label values created by MKLBSF are suitable

arguments for PLISNL.

CALL PLISNL (label)
REAL*8 label

label PL/I compatible label value.

> MKONUS

MKONUS creates an on-unit for a specific condition or creates a default

on-unit for the ANYS condition. MKONUS cannot be called from the

PL/I-G version of PL/I. Instructions for PL/I-G users are in

description of MKONSF.

del mkonu$ entry (char(*) var, entry);

CALL mkonu$ (condition_name, handler);

condition_name Name (no trailing blanks) of condition for which

on-unit will be created. Any previous on-unit

for this condition within the activation, will be

over-written.

23 - 7 January 19808

SECTION 23 PDR3621

handler Entry value representing on-unit procedure to be
invoked when condition name is raised and this
activation is reached in the stack scan. Since
MKONUS$ does not save the display pointer
associated with on-unit entry, the entry value
must be external or declared in the block calling
MKONUS. (An entry constant declared in the block
containing the call to MKONUS will satisfy these
restrictions) .

Note

The stack frame of the caller is grow, if necessary, to add
the descriptor block for the new on-unit.

The caller must guarantee that the Storage occupied by
condition name will not be freed until the caller returns, or
the activation is aborted by a_ nonlocal goto. For PL/I
callers, this restriction means condition name may not be a
constant,

> MKONSF

MKONSF creates an on-unit for a specific condition and is intended for
the FORTRAN or PL/I-G user. The function is the same as MKONUS but is
substantially less efficient in terms of stack Space and execution
time. The FORTRAN usage is:

CALL MKONSF (cname, cnamel, unit)
EXTERNAL UNIT

INTEGER*2 CNAME (--) , CNAMEL

cname Array containing name of condition for which on-unit is
to be created.

cnamel Length (in characters) of cname

unit External subroutine which will be the on-unit handler.
This subroutine is called with

CALL UNIT (CP)
INTEGER*4 CP

CP is a pointer to the condition frame header (cfh) that
describes the condition.

REV. A 23 - 8

PDR3621 CONDITION MECHANISM

Note

FORTRAN programs using MKONSF must include the specification

statenent "STACK HEADER 34" and must be compiled with the SPO

option. This will reserve the stack space for on-unit

information. If MKONUS is used, its SHORTCALL specification

will reserve the space.

Cname and cnamel may be over-written by the caller once MKONSF

has returned, since they are copied into a stack frame

extension.

The PL/I-G usage is:

dcl MKONSF entry (char(*), fixed bin, ptr);

dcl ev entry variable;
dcl p ptr based;

ev = handler

CALL MKONSF (cond itionname,cond_name_len,addr(ev) -—>p->p);

condition_name Name of condition for which on-unit is to be

created.

condname_len Length of condition name in characters.

handler Entry value representing the routine to be invoked

as the on-unit. Restrictions described under

MKONUS apply here as well.

Note

This different calling sequence is required because FORTRAN and

PL/I-G differ in the way they represent entry (subroutine)

values.

Bw RVONUS

RVONUS disables (reverts) an on-unit for a specific condition. Once

disabled, the on-unit will be ignored during stack-frame scanning. The

on-unit may be re-instated only by another call to MKONUS or MKONSF. A

call to RVONUS affects only on-units within its own activation.

del rvonuS entry (char(*) var);
CALL rvonu$ (condition_name);

condition_name Name of condition for which the on-unit is to be

disabled.

23 - 9 January 1980

SECTION 23 PDR3621

Note

There is no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled. A call
to RVONUS will not affect on-units in any other activation.

Pp RVONSF

RVONSF disables an on-unit for a specific condition. Its effect is
identical to RVONU$ but is designed for the FORTRAN user, and is less
efficient in tems of space and execution time.

CALL RVONSF (cname, cnamel)
INTEGER*2 CNAME(--), CNAMEL

cname Name of condition for which the on-unit is to be
disabled.

cnamel Length (in characters) of cname

Note

There is no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled.

SYSTEM—-DEFINED CONDITIONS

The following are the standard systen-defined condition names, with the
meaning of each condition and, where available, the information
structure produced by each condition. The standard PL/I information
structure is:

del 1 info based,
2 fileptr, ptr options (short), /*PL/I file control block*/
2 info_struct_len fixed bin, /*Length in words of*/

/*structure*/
2 oncode value fixed bin, /*unique error code */
2 ret_addr ptr options (short), /*Points to statenent causing*/

/*error .*/

The condition frame header (cfh), stack frame header (sfh), fault frame
header (ffh) and

=

on-unit descriptor block formats are included at the
end of this section.

If not stated otherwise, the system default on-unit for each condition
prints an appropriate diagnostic message on the user's terminal, and
calls a new command level.

REV. A 23 - 10

PDR3621 CONDITION MECHANISM

B ACCESSVIOLATIONS

A CPU instruction which violated the access rules of the processor, has
been attempted.

ffh.fault_type "44'B3
ffh.faultaddr Improperly accessed virtual address
ffh.ret_po Points to instruction causing violation

> anys

ANYS is a special condition name used for default on-units. The
condition frame header will describe the actual specific condition.
There is no separate condition frame header for the condition ANYS
unless ANYS has been explicitly raised by a call to SIGNLS (not
recommended) .

P aRitus

An arithmetic exception has occurred.

ffh.faulttype "59 'B3

£fh.faultcode Hardware-defined Exception Code which
partially identifies cause of fault.

ffth.ret_pb Points to next instruction to be executed
upon return. There is no way to obtain a
pointer to the faulting instruction.

The static mode (see discussion of static mode under Recursive Mode
Software later in this section) default on-unit for this condition will
Simulate PRIME 30@ fault handling for Arithmetic Exception if the
appropriate word of segment '4999 (see the System Architecture Guide
for the exact location of the word), is non-zero. If not in static
mode, or if PRIME 300 vector word is zero, the standard handler for

this condition will resignal the ERROR condition (described below).

23 - ll January 1989

SECTION 23 PDR3621

> BADNONLOCALGOTOS

The nonlocal goto processor has been given an invalid display pointer.
The display (stack) pointer may actually be invalid or the target
activation may previously have been cleaned-up, or the user's stack may
have been overwritten. Information structure:

dcl 1 info based,
2 target_label, /*Target of nonlocal*/

/*go to*/
2 ptr to nlg call ptr options (short), /*Pointer to nonlocal*/
oO /*goto call*/

2 caller sb ptr; /*Pointer to calling*/
7 /*stack frane*/

> BADPASSWORDS ©

This condition is raised by the ATCHSS subroutine (Section 4) when an
attempt is made to attach to a directory with an incorrect password.

> CLEANUPS

The nonlocal goto processor raises this condition prior to actually
unwinding the stack. The on-unit for this condition should return
unless it encounters a fatal error. Calls to CNSIGS from a CLEANUPS
on-unit have no effect; the search for on-units continues until the
target activation is reached.

p

> ENDFILE (file) PL/I

This condition is raised when end-of-file is encountered while reading
a PL/I file with PL/I input/output statements. The value of the
onfile() builtin function identifies the file involved.

info.oncode_value Undefined
info.fileptr Identifies file

The default on-unit for this condition prints a diagnostic am
resignals the ERROR condition with an info.oncodevalue of 1044.

REV. A 23. - 12

PDR3621 CONDITION MECHANISM

> ENDPAGE (file) PL/I

End-of-page has been encountered while writing a PL/I file with PL/I
input/output statements. The value of the onfile() builtin function
identifies the file for which end-of-page was encountered. The default
on-unit for this condition performs a "put skip" on the file am
returns.

info.oncodevalue Undefined
info.fileptr Identifies file

> ERROR PL/I

This is the default on-unit for most PL/I-defined conditions. Many I/O
and conversion operations result in the raising of the ERROR condition.
Each distinct error has been assigned a unique info.oncode value. The
standard PL/I info structure is described above. 7

The default on-unit prints a diagnostic using the value of
info.oncodevalue, and calls a new command level unless the error is
one of the arithmetic errors that is handled "without comment". With
those errors, the appropriate action is taken and the on-unit returns
to the point of interruption.

> ERRRTNS

A non-ring-@ call to ERRRTN has been made with an ERRRTN SVC or a call
to ERRPRS$. The default on-unit for this condition simulates a call to
EXIT. This condition is used by PRIMOS to ensure the correct operation
of user programs and therefore, should not be handled by user programs.

P EXITS

The EXIT subroutine (Section 5) has been called directly or via an EXIT
Svc. This condition should not be handled by user programs since it is
used by the Source Level Debugger (DBG) to monitor the execution of
STATIC MODE programs.

> ILLEGALINSTS

An attempt has been made to execute an illegal instruction.

ffh.fault type '40'B3
£fh.ret pb Points to illegal instruction

—

—

23 - 13 January 1980

SECTION 23 PDR3621

> ILLEGALONUNITRETURNS

An on-unit has attenpted to return but return was disallowed by the

procedure that raised the condition. The information structure is a

standard-format condition frame header that describes the condition

whose on-unit has illegally attempted to return.

> ILLEGALSEGNOS

Reference has been made to a virtual address with an out-of-bounds

segment number.

ffh.faulttype '50'B3
FEh.ret_pb Points to instruction causing error

ffh. faultaddr Virtual address in error

p KEY (file) PL/I

This condition is raised when reading a PL/I file with a non-existent

key or writing with a key that already exists. The onfile() builtin

function identifies the file. The onkey() builtin function contains

the key in error. The default on-unit prints a diagnostic and

resignals the error condition with info.oncodevalue of 1045.

info.oncodevalue Undefined
info.fileptr Identifies file

> LINKAGEFAULTS

An indirect pointer (IP) with a valid unsnapped dynamic link has been

referenced but the desired entry point was not found in the dynanic

link tables. .

ffh.faulttype '64'B3
ffh.fault_addr Points to IP
ffh.ret_pb Points to instruction causing error.

Info structure:

dcl 1 info based,

2 entryname char(32) var; /*Nane of entry point not found*/

> LISTENER_ORDERS

This condition is used internally by the command loop to manage its

recursion. Users should never create on-units for this condition and

user default on-units (ANYS) should always pass this condition on by

returning.

REV. A 23 - 14

PDR3621 CONDITION MECHANISM

> NoAVAILSeEGsS

Reference has been made to a virtual address that refers to a segment
not yet created. The system has no free page tables to assign to the
segment. If the on-unit for this condition returns, the reference will
be retried and will succeed if a segment has become available.

ffh.fault_type '58'B3
ffh.ret_po Points to instruction causing error
ffh.fault_addr Virtual address referencing segment

> NONLCCALGoTos

A nonlocal goto is about to occur. This condition is signalled by
PLISNL immediately before setting up the stack unwind and therefore
prior to any call of CLEANUPS on-units. The default on-unit for this
condition simply returns. Any user-written procedure should return
(without setting the continue-to-signal) in order to allow the goto to
proceed. Information structure:

dcl 1 info based,
2 target_label, /*Target of nonlocal*/

/*go to*¥/
2 ptr_to nlg call ptr options (short) ,/*Pointer to PLILSNL*/
a /*call*/

2 info.caller sb; /*Pointer to stack frame*/
7 /*requesting nonlocal*/

/*goto .*/

> NULLPOINTERS

A reference has been made through an indirect pointer or base register
whose segment nunber is '7777'B3. This is considered to be a reference
through a null pointer, although user software should always use the
Single value 7777/0 for the null pointer. The default on-unit
resignals the ERROR condition.

ffh.faulttype ‘68 'B3
ff£h.ret_pbo Points to instruction making reference
ffh.fault addr Null pointer through which reference

7 was made.

23 - 15 January 1989

SECTION 23 PDR3621

p> ovT_OFBOUNDSS

Reference has been made to a page of some segment for which no main
memory or backing storage has been allocated, and allocation is not
permitted.

ffh.faulttype '10'B3
ffh.ret_pb Points to instruction making illegal reference
ffh.fault_addr Illegal virtual address

PAGEFAULTERRS

A valid virtual address has been referenced but because of a disk
error, the page control mechanism has been unable to load the page into
main memory. If the on-unit for this condition returns, the reference
will be retried. If the disk read succeeds, the reference will be

completed.

ffh.fault_type "10'B3
£fh.ret_po Instruction with illegal reference
ffh.fault_addr Virtual address causing problems

> PAUSES

A PAUSE statement has been executed in a FORTRAN program. This
condition is used by PRIMOS to ensure the proper operation of the PAUSE
statement, and should not be handled by user programs. The default
on-unit prints no diagnostic, but calls a new command level.

> POINTERFAULTS

Reference has been made through an indirect pointer (IP). The fault

bit of the pointer is on, but the pointer did not appear to be a valid
unsnapped dynamic link.

ffh.fault type '64'B3
ffh.faultaddr Points to invalid IP
ffh.retpo Points to instruction causing error

REV. A 23. - 16

PDR3621 CONDITION MECHANISM

— ours

The user has activated the quit button (Break key or Control-P) on the
terminal. The default on-unit flushes the input and output buffers of
the user's terminal, prints "QUIT" on the teminal and calls a new
command level.

ffh.faulttype "94'B3
ffh.ret_pb Points to next instruction to be executed

> REENTERS

This condition is raised by the PRIMOS REENTER (REN) command and
reenters a subsystem that has been tenporarily suspended due to another
condition (such as a QUIT signal).

> RESTRICTED_INSTS

Attempt has been made to execute an instruction restricted to ring @
procedures. Although some of these instructions in the I/O class can
be simulated by ring-@, an instruction causing this condition to be
raised, cannot be simulated.

ffh.faulttype '28'B3
ffh.ret_pb Points to instruction in error

> RO_ERRS

Aring 9 call to ERRPRS or ERRRTN has been made because of the
detection of a fatal error. The default on-unit prints no diagnostic
but calls a new command level.

> sTACcKoOvFs

The process has overflowed one of its stack segments, but the condition
mechanisn was able to locate a stack on which to raise this condition.
The static mode default on-unit will attempt to simulate the PRIMOS
Stack overflow fault, if the appropriate word of segment '4900 is
non-zero (see the System Architecture Guide for more information) . If
this word is zero, or if no static mode program is being executed,
standard default handling occurs,

ffh.faulttype '54'B3
ffh.faultaddr Last stack segment in stack that overflowed
ffh.ret_pb Points to instruction causing error

23 - 17 January 19898

SECTION 23 PDR3621

Be sToPs

A STOP statenent has been executed in a higher-level-language program.

This condition is used by PRIMOS to ensure the proper operation of the

crop statenent in the various languages. This condition should not be

handled by user programs, The default on-unit performs a nonlocal goto

back to the command processor invoking the procedure which executed the

STOP statement.

 svc_INsTS

An svc instruction has been executed, but the systen is unable to

perform the operation. If the user is in "svc virtual" mode, all svc

instructions raise this condition. For virtual SVC's, the static mode

default on-unit will simulate PRIMOS III fault handling for the Svc

fault, if the appropriate word of segment '498@ is non-zero (See Systen

Architecture Guide for word location). If this word is zero, or there

is no static mode progran in execution, the standard defualt handler

prints a diagnostic and calls a command level.

f£fh.fault_type "14'B3

ffh.ret_po Points to location following svc.

Information structure:

dcl 1 info based,
2 reason fixed bin;

values of info.reason are:

1 Bad SVC operation code or bad argument

2 Alternate return needed but was zero

3 Virtual SVC handling in effect

> UNDEFINEDGATES

The process has called an inner ring gate segment at an address within

the initialized portion of the gate segment, but no legal gate is found

at that address. This results from gate segments being padded to the

next page boundary with "illegal" gate entries.

REV. A 23 - 18

PDR3621 CONDITION MECHANISM

~ vUIIS

Tne process has executed an unrecognized instruction that caused an
Unimplemented Instructiion (UII) Fault, or the system UII handler
detected an error in processing the valid UII.

ffh.ret_pb points to next instruction
ffh.regs is not valid

CRAWLOUT MECHANISM

An event known as a crawlout occurs whenever the Condition Mechanisn
reaches the end of an inner ring stack (a ring other than 3) without
finding a selectable on-unit for the condition that has been raised.
Note that a crawlout can occur even when the inner ring has an on-unit
for the condition, if that on-unit signals another condition, or if the
on-unit calls CNSIGS and returns, causing a resumption of the stack
scan. The scan for on-units resumes on the stack of the ring which
invoked the inner ring. The outer ring receives a copy of the machine
state at the time the condition was raised.

RECURSIVE MODE SOFTWARE

The Recursive Command Enviroment provides a fully recursive command
processing loop that is also highly modular. The implementation of the
new environment partitions systen and user software into two categories
- recursive mode am static mode.

Static mode software:

e allocates its ow segments.

@® manages its own stack.

® manages its own shared libraries' initialization.

@ uses a "memory image" approach in which the progran is reloaded
each time it is called and therefore prograns may not be
recursively invoked from command level.

User on-units, any procedures they call, and all internal commands are
recursive mode software and therefore have the following properties:

@ use the system stack.

@ terminate by returning level.

e do not attempt to initialize shared libraries.

@® are not reloaded as memory image each time called.

23 - 19 January 1989

SECTION 23 PDR3621

A recursive mode procedure must terminate by returning, not by calling

EXIT. Arguments for recursive mode commands are passed as parameters

and are not obtained from some static buffer. Error information is

passed by setting a return parameter (error code) , printing an error

message and returning, or by signalling a condition. The ERRRTN call

must not be used and ERRPRS may be used only with the immediate-return

key.

The subroutines COMLVS and CMLVSE are available to the user in the

recursive environment.

p colLvs

COMLV$ invokes a new listener level of the PRIMOS Command Loop. When

the command loop returns, COMLV$ will return to its caller.

del comlv$S entry ();
CALL comlvs;

COMLV$ is used when there is no "command error" to report to the user.

 CVLVSE

CMLVSE invokes a new listener level of the PRIMOS Command Loop and is

used when "command error" processing at the new command level is

desired. The command input file (if any) is paused, command output to

the terminal is forced on, QUITS are enabled and "ER" is used for the

prompt message.

dcl onlvSe entry ();
CALL cmlv$e;

Note

COMLVS and CMLVSE switch stacks to the command processor stack,

if the process was not already executing on that stack.

REV. A 23. - 20

PDR3621 CONDITION MECHANISM

DATA STRUCTURE FORMATS

The data structures associated with the condition mechanism are
described below. Any user progran that uses these structures should
exanine the version number in the structure (if one is provided); if
the format of a structure changes, the version number will be
incremented. The user program can then take appropriate action if it
is presented with structures of different fornats.

The Condition Frame Header (CFH)

The following declaration shows the format of the Standard Condition
Frame Header:

del 1 cfh based, /* standard condition frame header */
2 flags,

backup_inh bit(1),
cond_fr bit(l),

cleanup done bit(1),

efhpresent bit(l),
userproc bit(1),

mbz bit(9),
fault_fr bit(2),

root,

3 mbz bit(4),
3 segno bit(12),

ret_po ptr,
ret_sb ptr,
ret_lb ptr options (short),
ret_keys bit(16) aligned,
after pel fixed bin,
hdr_reserved(8) fixed bin,
ownerptr ptr options (short),
cflags, .«
3 crawlout bit(1),

3 continue_sw bit(1l),
3 return ok bit(l),

3 inactionok bit(L),
3 specifier bit(1),
3 mbz bit(1l),
version fixed bin,

cond name ptr ptr options (short),
ms ptr ptr options (short),
info ptr ptr options (short),
ms len fixed bin,
info len fixed bin,
savedcleanuppb ptr options (short);

W
W
W
W
L
W

W
w

n
N

N
N
M
N

N
W
p
o
r

b
o

N
N
M
N
N
N
N

23 - 21 January 1980

SECTION 23 PDR3621

flags.backup_inh

will always be 'd'b in a condition frame. It is used in

regular call frames to control progran counter backup on

crawlout from an inner ring.

flags.cond_fr
identifies this frane as a condition frame, and will thus be

"1'b.

flags.cleanup_done
is 'l'b when this activation has been "cleaned up" by the

procedure unwind_, which helps to effect nonlocal goto's. When

this flag is set, the value of cfh.ret_pb no longer describes

the return point of the activation; that information is

available in cfh.saved_cleanuppb.

flags.efh_present
will always be 'S'b in a condition frame, It is used in a

regular call frame to indicate that an extended stack frame

header containing on-unit data is present.

flags.userproc
identifies stack frames belonging to "non-support" procedures,

and hence will be '8'b in a condition frame.

flags .mbz
is reserved and will be '@'b.

Flags.fault_fr
will always be '@@'b in a condition frame.

root .mboz

is reserved and must be '3'b.

root .seg_no

is the hardware-defined stack root segment number, and

indicates which segment contains the stack root for the stack

containing this fault frame.

ret po
— points to the next instruction to be executed following the

call to SIGNLS that caused this condition to be raised, unless

flags.cleanup done is '1L'b, in which case cfh.ret_pbo will point

to a special code sequence used during stack unwinds, and

cfh.savedcleanup_po will contain the former value of

cfh.ret_pb.

ret_sb
is the hardware-defined stack base of the caller of SIGNLS.
Thus, this value also points to the previous stack frame on the

stack.

REV. A 23 - 22

PDR3621 CONDITION MECHANISM

ret lb

7 is the hardware-defined linkage base of the caller of SIGNLS.

ret_keys
is the hardware-defined keys register of the caller of SIGNLS.

afterpel
is the hardware-defined offset of the first argument pointer
following the call to SIGNL$ that raised this condition.

hdr_reserved
is reserved for future expansion of the hardware-defined
PCL/CALF stack frame header, of which the totality of cfh is a
further extension.

ownerptr

is reserved to point to the ECB of the procedure that owns this
stack frame (usually SIGNLS).

cflags.crawlout .
is 'l'b if this condition occurred in an inner ring (a ring
number lower than the ring in which the on-unit is executing),
but could not be adequately handled there; otherwise it is
'S"b.

cflags.continue sw
is usedto indicate to the condition mechanism whether the
on-unit that was just invoked (or any of its dynamic
descendants) wishes the backward scan of the stack for on-units
for this condition to continue upon the on-unit's return. The
subroutine CNSIGS is used to request that cflajys.continue sw be
turned on; user programs should NOT attempt to set it
directly. This switch is cleared before each on-unit is
invoked (except ANYS on-units).

cflags.return_ok
is 'l'b if the procedure that raised the condition is willing
for control to be returned to it by means of the on-unit simply
returning. If '@'b, an attenpt by an on-unit for this
condition to return will cause the special comndition

ILLEGALONUNIT_RETURNS to be signalled. Note, however, that
the on-unit may return’ regardless of the state of
cfh.cflags.return_ok if cfh.cflags.continue_sw has previously
been set by a call to CNSIGS. This is because, in this case,
the on-unit return does not cause a return to the procedure
that raised the condition, but instead causes a resumption of
the stack scan,

cflags.inaction_ok

is 'L'b if the procedure that raised the condition has
determined that it makes sense for an on-unit for this

condition to return without taking any corrective action. IE
'O'b, the on-unit must take some corrective action before

23 - 23 January 1980

SECTION 23 PDR3621

returning, or else continued computation may be undefined.

Cflags. inaction ok will never be '1l'b unless cflags.return_ok
is 'l'b as well. No user program should change the state of
this or any other member of cfh.cflags.

cflajs.specifier
if 'l'b, indicates that this condition is a PL/I I/0 (PLIO)

condition that requires a specifier pointer as well asa

condition name to completely identify it. This specifier is

usually a pointer to a PLIO file control block. The specifier

must be the first member of the info structure.

cflags .mbz
is reserved for future expansion and must be '@'b.

version
identifies the version number (and hence the format) of this

structure, and will currently always be l.

condnameptr
is a pointer to the name (char(32) varying) of the condition
because of which the on-unit is being invoked.

ms ptr
— is a pointer to a structure which defines the state of the CPU

at the time the condition occurred. In the case of hardware
faults, msptr will point to a Standard Fault Frame Header
(ffhy. In the case of software-initiated conditions, msptr
will point to acfh. The two cases can be distinguished bythe
value of msptr -> cfh.flags.fault_fr: if '@0'b, the software

case obtains; otherwise, the hardware case obtains.

infoptr
is a pointer to an arbitrary structure containing auxiliary
information about the condition. If null, no information is
available. This pointer is copied directly fron the
corresponding argument to SIGNLS. If cflags.specifier is 'l'b,
the format of this structure is partially constrained as
described above.

ms len
7 is the length in words of the structure pointed to by msptr.

infolen
is the length in wrds of the structure pointed to by infoptr.

saved|cleanup_pb
is valid only if flags.cleanup_done is '1'b, and if valid is
the former value of cfh.ret_pb (which has been overwritten by

the nonlocal goto processor).

REV. A 23 - 24

PDR3621 CONDITION MECHANISM

Note

Any procedure attempting to interpret the data contained in a
cfh structure should be aware that, in the case of a crawlout,
cfh.ms ptr describes the machine state at the time the
condition was generated. The stack history pertaining to that
machine state has been lost as a result of the crawlout.

The machine state extant at the time the inner ring was entered
is available, and is pointed to by cfh.ret sb. This machine
state will be a cfhor an ffh according to whether the inner
ring was entered via a procedure call (cfh) or a fault (ffh).
The value of cfh.ret_sb -> cfh.flags.fault fr can be used to
distinguish these cases. ~

In the case where a crawlout has not occurred, cfh.msptr
points to the proper machine state, and no assumptions can be
made concerning cfh.ret_sb.

The Extended Stack Frame Header

Any procedure (or begin block) that desires to create one or more
on-units must reserve space in its stack frame header for an extension
that contains descriptive information about those on-units. This space
is allocated simply by including in such procedures, the proper
declaration for the subroutine MKONUS.

The format of the stack frame header (with extension) is:

del 1 sfh based, /* stack frame header */
2 flags,

3 backupinh bit(1),
3 cond_fr bit(1),
3 cleanup done bit(l),
3 efh_present bit(l),
3 userproc bit(1),

3 mbz bit(9),
3 faultfr bit(2),

root,

3 mbz bit(4),
3 segno bit(12),
ret_po ptr,
ret so ptr,
ret_lb ptr options (short),
ret keys bit(15) aligned,
after pel fixed bin,
hdr_reserved(8) fixed bin,
owner ptr ptr options (short),
tempsc(8) fixed bin,
onunitptr ptr options (short),
cleanup onunit ptr ptr options (short),
next_efh ptr options (short);

i
)

N
N
N
N
N
N
N
N
N
D

l
o

23 - 25 January 198¢

SECTION 23 PDR3621

flags.backup_inh
is exanined only if this stack frame is the "crawlout

frane" on an inner ring stack, and a crawlout is taking

place. If 'l'b, it indicates that sfh.ret_po is to be

copied to the outer ring as-is, so that the operation being

aborted by the crawlout will not be retried. If 'O'b,
sfh.ret_pb will be set to point at the pcl instruction so

that the inner ring call may be retried.

flags.condfr
will be '@'b unless the frame is a condition frame (and is

hence described by the structure "cfh").

flags.cleanupdone
is '1l'b if the nonlocal goto processor has "cleaned up"

this frame by invoking its CLEANUPS on-unit if any, and
resetting its sfh.ret_po to point to a special code
sequence to accomplish the unwinding of this stack frame.
When '1L'b, the former value of sfh.ret_po may be found in
sfh.tempsc(7:3) provided sfh.flags.efh_present is set.

flags.efhpresent
is 'L'b if the extension portion of this frame header has
been validly initialized. In the present implementation,
this implies that at least one call to MKONUS has been
made, since MKONUS is responsible for performing the
initialization. If '@'b, members of this structure below
marked (EFH) are not valid and may be used by the procedure

for automatic storage.

flags.userproc
is 'L'b if this stack frane belongs to a "non-Support"
procedure; else is '‘'S'b. I€ flags.user proc is 'L'b,
sfh.owner_ptr is guaranteed to be valid, andto point to an
ECB which is followed by the name of the entrypoint.

flags.mbz
is reserved and will be '3'b.

flags.fault_fr
is '90'b if this frame was created by a regular procedure
call; or '10' if this frame is a fault frame (ffh) with
valid saved registers; or '91'b if this frame is a fault
frame (f££h) in which the registers have not yet been saved.

root .nbz

is reserved and must be '3'b.

root.segno
is the hardware-defined segment number of the stack root of

the stack of which this frame is a member.

REV. A 23 - 246

PDR3521 CONDITION MECHANTSM

ret pb

points to the next instruction to be executed upon return
from this procedure.

ret_sb
contains the stack base belonging to the caller of this
procedure, and hence also points to the immediate
predecessor of this stack frame.

ret_lb

contains the linkage base belonging to the caller of this
procedure.

ret_keys
contains the hardware-defined keys register belonging to
the caller of this procedure.

afterpcl
is a value such that the pel instruction points to two
words beyond the procedure call (PCL) instruction that
invoked this procedure.

hdr_reserved (EFH)
is reserved for future expansion of the hardware—-defined
PCL stack frame header.

ownerptr (EFH)

points to the Entry Control Block (ECB) of the procedure
that owns this stack frame. This menber must be
initialized by the called procedure itself, as the PCL
instruction does not do it.

tempsc_(EFH)
is a fixed-position block of eight words to be used as
temporary storage by procedures called by this procedure
that have a “shortcall" invocation sequence and hence have
no stack frame of their own.

onunit ptr (EFH)

~ points to the start of a chain of on-unit descriptor blocks
for this activation. If onunit_ptr is null, this
activation has no onunit blocks, except possibly for the
condition CLEANUPS as described below.

cleanuponunit_ptr (EFH)

If nonnull, this activation has an on-unit for the special
condition CLEANUPS, and cleanup onunitptr points to the
ECB for that on-unit procedure (it does not point to an
on-unit descriptor block).

23 - 27 January 1980

SECTION 23 PDR3621

next_efh(EFH)

points to the first on a chain of additional stack frame

"header" blocks, so that these do not have to be allocated

at the beginning of the stack frame. Presently, next_efh

will always be null.

The Standard Fault Frame Header

Whenever a hardware fault occurs, the Fault Interceptor Module (FIM) is

expected to push a stack frane with the standard format shown below.

The standard fault frame header structure is;

del 1 ffh based, /* standard fault frane header */

2 flags,
backup inh bit(1l),
condfr bit(l),
cleanupdone bit(1l),
efh_present bit(l),

userproc bit(1),

mbz bit(9),
3 faultfr bit(2),

2 root,

3 mbz bit(4),
3 segno bit(12),
ret_po ptr,
ret_sb ptr,
ret lb ptr options (short),

ret_keys bit(16) aligned,
faulttype fixed bin,
fault code fixed bin,
faultaddr ptr options (short),
hdr_reserved(7) fixed bin,
regs,
3 savemask bit(16) aligned,

3 fac 1(2) fixed bin(31),
3 fac0(2) fixed bin(31),
3 genr(@:7) fixed bin(31),
3 xb reg ptr options (short),
saved cleanup po ptr options (short),
pad fixed bin;

N
M
M
N
N
N
M
M
N
W

d
O

W
W
W
W
W
W

N
N

flags.backup_inh
will be ignored by the Condition Mechanism for fault frames.

flags.cond_fr
will be '@'b in a fault frame.

REV. A 23. - 28

PDR3621 CONDITION MECHANISM

flags.cleanup_done
is set to 'L'b by the stack unwinder when it has "cleaned up"
this fault frame. The old value of ffh.ret_po has been placed
in ffh.saved_cleanup_po, provided flags.faultfr is '1@'b.

flags.efh_present

will be '9'b in a fault frame, implying that FIM's may not make
on-units.

flags.user_proc

will always be '#'b in a fault frame.

flags .moz
is reserved and will be '@'b.

flags.faultfr
will be '1@'b if this frame is indeed a standard format ffh amd

the registers have been validly saved in ffh.regs; else will
be '@1'b.

root.seg no
—

is the hardware-define stack root segment number.

ret_pb

points to the next instruction to be executed following a
return fron the fault. This will frequently also be the
instruction that caused the fault (the case for those faults
defined by the CPU reference manual as "backing up" the program
counter). If flags.cleanupdone is '1'b, ret_po will point to
a special "unwind" code sequence, and its former value will
have been saved if possible in ffh.saved_cleanuppb.

ret sb
7 contains the value of the SB register at the time of the fault,

and hence will usually point to the predecessor of this stack
frame.

ret lb
~ contains the value of the LB register at the time of the fault.

ret keys
~ contains the value of the KEYS register at the time of the

fault. This can be used to determine in what addressing mode
the fault was taken.

fault_type
is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (e.g. a Process Fault
results in a fault type of '@4'b3). This datum cannot be

guaranteed valid, as it is not set indivisibly with the
hardware-defined header information. Since FIM's usually set
fault_type just after saving the registers, it is very unlikely
for fault_type to be invalid.

23 - 29 January 1980

SECTION 23 PDR3521

faultcode
is the hardware-defined fault code produced by the fault that
was taken.

Fault_addr
is the hardware-defined fault address produced by the fault
that was taken.

hdr_reserved
is reserved for future expansion of the hardware-defined stack
header.

regs
is valid if flags.faultfr is '10'b,-and if valid contains the
saved machine registers at the time of the fault, in the format
produced by the RSAV instruction.

saved_cleanup_pod
is valid only if flags.faultfr is '1@'b and flags.cleanup done
is 'L'b, and if valid contains the value that was in retpo
before the latter was overwritten by the stack unwinder.

pad

exists only to make the size of this structure an even number
of words.

The On-Unit Descriptor Block

Each on-unit created by an activation is described to the condition
mechanisn by a descriptor block (except for the special condition
CLEANUPS, wiich has no descriptor). These descriptor blocks are
threaded together in a simple linked list, the head of which is pointed
to by sfh.onunitptr. The format of an on-unit descriptor is:

del lL onub based, /* standard onunit block */
2 ecb ptr ptr options (short),
2 next_ptr ptr options (short),
2 flags,

3 not reverted bit(1),

3 isproc bit(l),
3 specify bit(1),
3 snap bit(1l),

3 mbz bit(12),
pad fixed bin,
cond name ptr ptr options (short),
specifierptr options (short);N

M
M
w

N
M

REV. A 23 - 30

PDR3621 CONDITION MECHANISM

ecb ptr

points to the Entry Control Block (ECB) which represents the
procedure or begin block to be invoked when this on-unit is
selected for invocation.

nextptr

points to the next on-unit descriptor on the chain for this
activation, or else is null if at the end of the list.

flags.not_reverted
is 'L'b if this on-unit is still valid and has not been
reverted, and is '@'b if the on-unit has been reverted and is
to be ignored by the condition raising mechanism.

flags.isproc
is '1'b if this on-unit was made via a call to the primitive
MKONUS, and 'd'b if it was made via the PL/I <on statement>.

flags.specify
is 'L'b if the condition name does not fully identify which
condition this on-unit block is to handle: onub.specifier is a
further qualifier in this case.

flags.snap

is 'l'b if the <snap optiom> was specified in the PL/I <on
statement> that created this on-unit; otherwise it is 'O'b.

flags .mbz

is reserved and must be '@'b,

pad

is reserved and must be @.

cond_name_ptr

is a pointer to a varying character string containing the
condition name for which this on-unit is a handler. This name
may be an incomplete specification if onub.flags.specify is
"L'b.

specifier
is valid only if onub.flags.specify is 'L'b, and if valid
qualifies the condition name that is pointed to by
onub.cond_name_ptr. The primary use of onub.specifier is for
PL/I I/O conditions, in which the specification of the
condition requires both a name and a file descriptor pointer.

23 - 31 January 1939

PDR3621 FORTRAN INTERNAL SUBROUTINES

APPENDIX A

FORTRAN INTERNAL SUBROUTINES

INTERNAL SUBROUTINES

The following subroutines are used internally by the FORTRAN compiler.
They may be of sone value to the user and are briefly described. For
calling sequence and further information, refer to the compiler or
library source listings.

Table A-l. Subroutines Internal to FORTRAN

Subroutine

FSTR

FSRN

FSRNX

FSWN

FSWNX

FSDN

FSFN

FSBN

FSCB

FSA1

FSA2

FSA3

FSA5

FSA6

FSA7

FSBKSP

FSCG

Function

Perform the function of the FORTRAN TRACE

routine.

Read with no alternate returns.

Read with ERR= and END= alternate returns.

Write with no alternate returns

Write with ERR= alternate return.

Close (END-FILE) logical device specified.

Provide backspace function to FORTRAN run-time
programs.

Rewind logical device specified.

End of READ/WRITE statement.

Input/output 16-bit integer.

Input/output single-precision floating-point.

Input/output logical.

Input/output complex.

Input/output double—-precision floating-point.

Input/output long integer.

Backspace statement processor.

FORTRAN computed GOTO processor.

A - 1 January 1988

APPENDIX A

REV.

Subroutine

A

Table A-l.

FSCLOS

FSOPEN

FSRA

FSINQU

FSINOF

FSPAUS

FSRB

FSRAX

FSRBX

FSRX

FSSTOP

FSWA

FSWB

FSWAX

FSWBX

FSWX

FSEN

FSEND

FSDE

FSDEX

FSIOFTN

FSIO77

PDR3621

Subroutines Internal to FORTRAN (continued)

Close statement processor.

Open statement processor.

Read ASCII, no alternate returns.

Inquire by unit statement processor.

Inquire by file statement processor.

Pause statement processor.

Read BINARY, no alternate returns.

Read ASCII, with ERR= and END= alternate

returns.

Read BINARY with ERR= and END= alernate returns.

COMMON read handler.

Stop statement processor.

Write ASCII, no alternate returns.

Write BINARY, no alternate returns.

Write ASCII with ERR= and END= alternate

returns.

Write BINARY, with ERR= and END= alternate

returns.

COMMON write handler.

Encode statement processor.

Endfile statement processor.

Decode statement processor.

Decode statement processor with ERR=.

Read and write records in manner

compatible with FSIO

Read and write variable-length
records in default case of FSIO.

Table A-l.

Subroutine

FSIFW

FSIFR

FSINR

FSIBW

FSIBR

FSILDR

FSI LDW

FSIOBF

FSREW

FSRTE

FSAT

FSATI

PDR3621 FORTRAN INTERNAL SUBROUTINES

Subroutines Internal to FORTRAN (continued)

Initialize

Initialize

Initialize

Initialize

Initialize

Initialize

Initialize

Function

formatted write.

formatted read.

namelist read.

unformatted write.

unformatted read.

list-directed read.

lList-directed write.

FSIO buffer definition (up to 128 words,
for R-mode and non-shared V-mode; up to
16K-1 words in shared V-mode library).

Rewind statement processor.

FORTRAN RETURN statement processor.

FORTRAN R-mode argument transfer subroutine.

FORTRAN argument transfer subroutine for
PROTECTED subroutine.

A - 3 January 1980

APPENDIX A PDR3621

INTRINSIC FUNCTIONS

The following subroutines are the FORTRAN library intrinsic function

handlers:

Subroutine Function

FSLT Left truncate

FSRT Right truncate

FSLS Left shift

FSRS Right shift

FSSH General shift

FSOR Inclusive OR

FLOATING POINT EXCEPTIONS

The FLEX (and FSFLEX) subruotines are invoked by the compiler or
system. This subroutine is the floating point exception interrupt
processor. It determines the exception type, which may be:

Exponent over flow/under flow

Divide by zero

Store exception

Real-—integer exception

A message is returned as follows:

Exponent Overflow SE

Exponent Under flow DE

Divide by Zero DZ

Store Exception SE

Real-Integer Exception RI

For further information on floating point exception (FLEX), refer to

the System Architecture Reference Guide (PDR3969).

REV. A A - 4

PDR3621 CONTROL SUBROUTINES

APPENDIX B

INDICATION AND CONTROL SUBROUTINES

OVERVI EW

These subroutines return a message or an error indicator value in AC5

or set a value depending on some machine condition.

They include:

OVERFL
SLITE SLITET SSWTCH

DISPLY

These subroutines are not currently available in V-mode under PRIMOS.

SUBROUTINE DESCRIPTIONS

DISPLY

DISPLY updates the sense light settings according to argument Al. The
bit values of Al (1=ON, Q@=OFF) correspond to switch/light settings
which are displayed on the computer control panel.

CALL DISPLY (Al)

OVERFL

Argument Al in location AC5 is given.a value 1 if entry into FSER was
made; otherwise it is set to 2. FSER is left in the no error
condition. OVERFL is called to check if an overflow condition has

occurred.

CALL OVERFL (Al)

B - 4d January 1930

APPENDIX B PDR3621

oLITE

Sets the sense light specified in argument Al ON or sets all sense
lights OFF. If Al=@, all sense lights are reset OFF.

CALL SLITE (Al)

CALL SLITE (@)

SLITET

SLITET tests the setting of a sense light specified by the argument Al.
The result of this test (1 for ON, 2 for OFF) is in the location
specified by the argument R.

CALL SLITET (A1,R)

SSWTCH

SSWTICH tests the setting of a sense Switch specified by the argument
Al. The result of this test (L=SET, 2=RESET) is stored in the location
specified in argument R.

CALL SSWTCH (A1,R)

REV. A Be- 2

PDR3621 SVC INFORMATION

APPENDIX C

SVC INFORMATION

SvC's CALLED BY PRIMOS SUBROUTINES

This appendix

*1590
1499
9180

*Q507
*9691
9582
*1515
8113
1415

*Q604
*9600
*1516
1416
9693

*1523
D401
*1501
1481
9506
0419
*8705
*1524
*1462
9195
114

*9105
G40G

*GO115
G402

9110
112
*1594
1464
$412
G486
2407
G111

*1586
9300

ATCHSS
ATTACS
ATTACH
BREAKS
CLIN
CMREAD
CNAMSS
CNAME
CNAMES
CNINS
COMANL
COMISS
COMINS
COMINP
Comoss
CONECT
CREASS
CREATS
DSINIT
DISCON
DUPLX$
ERKLS$
ERRPR$
ERRRTN
ERRSET
EXIT
FAMSVC
FORCEW
GETCON
GETERR
GINFO
GPASS$
GPASSS
NETLNK
NETWAT
NTSTAT
PRERR
PRWFSS
PRWEIL

defines SVC's called by PRIMOS subroutines.

Note

* => Also Direct Entrance Call.

(ufdnam ,namlen,ldisk ,passwid, (key code))
(ufdnam,nanlen,ldisk,passwd,(key,loc (code)))

(ufdnam,disk ,paswd, (key,altr tn))
(offon)
(char)

(char)
(oldnam ,oldlen,newnam ,newlen,code)
(oldnam,newnam,altrtn)
(oldnam ,oldlen ,newnam ,newlen ,loc (code))
(buff ,charcnt ,statv (3))

(filnam ,namlen ,unit,code)
(filnam,nanlen, unit ,loc(code))
(filnam, unit, (altrtn))
(key ,£ilnam,namnlen ,xxxxxx ,code)
(tgtnam,tgtusr ,lun,data,statv,lintyp)
(ufdnam,nanlen,opass ,npass ,code)
(ufdnam ,namlen,opass ,npass,loc(code))

(pdev)
(lun ,data,statv)

(key)
(key,erasec ,killc,code)
(key ,code) ,text, txtlen ,name ,namlen)

(altrtn,name,msg ,msglen)
(altval,altrtn ,name ,msglen)

(al,a2,a3,a4,a5,a6,altrtn)
(key ,unit)

(target ,user ,data,statv)

(buff ,nw)
(buff ,nw)
(ufdnam,nanlen ,opass ,npass ,code)
(ufdnam ,namlen,opass ,npass ,code)

(statv)

(key,pl,p2,array)

(key, Funit,loc(bf) ,bflen,pos32,rnw,code)
(key, unit ,loc(buff) ,n,pos,altrtn)

January 19389

APPENDIX C

REV. A

PRWFLS

RDENSS
RDENTS
RDLIN
RDLINS
RDIKS$
RDTKNS
RECEIV
RECYCL
RESTSS
RESTOS
RESTOR
RESUSS
RESUMS
RESUME
RICON
RREC
RRECL
SATRSS
SATTRS
SAVE
SAVES
SAVESS
SEARCS
SEARCH
SEGDRS
GDRSS$
SEMSDR
SEMSNF
SEMSTN
SEMSTS
SEMSWT
SLEEPS
SPASSS$
SPASSS
SRCHS$
TSAMLC
TSCMPC
TSLMPC
TSPMPC
TSMT
TSVG
TSSLC
TIMDAT
TNOU
TNOUA
TRNMIT
UNLINK
WREC
WRECL
WTLIN
WILINS

PDR3621

(key, unit, loc(buff) ,nw,pos,rnw,loc(code))
(key ,funit ,bf ,b£1n,rnw,nam32 ,namln ,code)
(key,unit buff ,buflen,Rnw,name32,namlen,loc(code))
(unit ,line ,nw,altrtn)
(unit,line,nw,code)
(key, info(8) ,buff ,buflen,code)
(key, info(8) ,buff ,buflen,loc(code))
(lun, loc(buff) ,nw,statv)

(rvec ,name ,namlen ,code)

(rvec ,name ,nanlen,loc(code))

(rvec ,name,altrtn)

(name ,nanlen)
(name ,namlen)

(name)

(target ,user ,statv ,numtyp)
(loc(buff) ,buflen,n,ra,pdev,(altrtn))
(loc(buff) ,buflen,n,ra32,pdev,(altrtn))
(key ,name ,nanlen ,array,code)

(key,name ,namlen,array,loc(code))
(rvec ,name)
(rvec ,name ,namlen,loc(code))

(rvec ,name ,namlen ,code)
(key,nane,namlen,unit,type,loc(code))
(key,name,unit,(altrtn))

(key,unit,entrya,entryb,loc(code))
(key ,funit ,entrya,entryb,code)
(semnum ,code)

(semnum ,code)
(semnum,int32,int32,code)
(senmun,code) (int fcn)

(semnum ,code)
(int32)

(opass ,npass,loc(code))
(key ,name ,namlen, unit ,type ,code)
(key,name,namlen,unit,type ,code)
(line,loc(buff) ,nw,inst.statv)
(unit,loc(buff) ,nw,inst,statv)

(unit ,loc(buff) ,nw,inst ,statv)
(unit,loc(buff) ,nw,inst,statv)
(unit ,loc(buff) ,nw,inst ,statv)
(unit ,loc(buff) ,nw,inst,statv)
(key, Line ,loc(buff) ,nw)
(buff ,buflen)
(msg ,charcnt)
(msg ,charcnt)

(lun, loc(buff) ,cnt ,statv)

(loc(buff) ,buflen,n,ra,pev,(altrtn))
(loc(buff) ,buflen,n,ra32,pdev,(altrtn))
(unit,line,nw, (altrtn))

(unit ,line ,nw,code)

PDR3621 SVC INFORMATION

SVC INTERFACE FOR I-O CALLS

The I/0 subroutines described in Section 15 interface with the
operating system by means of supervisor call instructions (SVC's).
This Appendix describes these interfaces.

SVC INTERFACE CONSIDERATIONS

Disk

The disk interfaces with virtual memory through a supervisor call (SVC)

instruction to perform a READ or WRITE operation on a single physical
record of a physical disk. The disk must be assigned to the terminal

by the ASSIGN command. Refer to RREC and WREC in Section 6. For
information about the Svc instruction, refer to the Systems Reference

Manual and the PMA User Guide.

Magnetic Tape

Input/Output operations for magnetic tape are accomplished by PRIMOS
III through SVC calls. Refer to TSMT in the Section 15.

MPC Line Printer

Output to the parallel interface line printer is accomplished through

SVC calls. Refer to TSLMPC in the Section 15.

MPC Card Reader

Input from the parallel interface card reader is controlled through SVC
calls. Refer to TSCMPC in the Section 15.

Table C-L is a list of SVC codes used by PRIMOS III (SVC codes are

generally not applicable to PRIMOS users).

Cc - 3 January 1988

APPENDIX C PDR3621

Table C-L. SVC Numbers Used by PRIMOS III.

Svc Number Associated Call

108 ATTACH (ufdnam, ldev, passwi, key, altrtn)
1 SEARCH (key, name, unit, altrtn)
2 SAVE (rvec, name)

3 RESTOR (rvec, name, altrtn)
4 RESUME (name)

5 EXIT

6 ERRTN (altrtn, al, a2, a3)
7 UPDATE (1,9)

1190 GETERR (buff, nw)
1 PRERR

2 GINFO (abuf£, nw
3 CNAME (oldnam, newnam, altrtn)
4 ERRSET (altval, altrtn, al, a2, a3)
5 FORCEW (key, unit)

292 RDLIN (unit, line, nw, altrtn)
3 WILIN (unit, line, nw, altrtn)

300 PRWFIL (key, unit, LOC(buff), nw, posv, altrtn)

500 RREC (pbav, nw, nchn, ra, pdev, altrtn)
1 WREC (pbav, nw, nchn, ra, pdev, altrtn)
2 TIMDAT (buff, nw)

3 — reserved

4 -— reserved
5 RECYCL

6 DSINIT (pdev)
7 BREAKS (onoff)

519 TSMT (unit, LOC(buff), nw, inst, statv)
1 TSLMPC (unit, LOC(buff), nw, inst, statv)
2 TSCMPC (unit, LOC(buff), nw, inst, statv)
3 TSAMLC (line, ba, charent, key, statv, altrtn)
4 TSVG (unit, ba, nw, inst, statv)

688 COMANL

1 CLIN (char)
2 CMREAD (buff)
3 COMINP (name, unit, altrtn)
4 CNINS (buff, charent)

780 TLIN (char)

1 T1OU (char)

2 TNOU (msg, cnt)

3 TNOUA (msg, cnt)

4 TOOCT (num)

5 DUPLX$ (argument)

REV. A C - 4

1809

1100

1280

TSMT
TSSLC

TSLMPC

TSCMPC

PDR3621

See 519

(key, lin LOoC(buff), nw

See 5l1l

See 512

C - 5

SVC INFORMATION

January 1988

APPENDIX C PDR3621

OPERATING SYSTEM RESPONSE TO SVC

The operating system response to supervisor calls includes a "return to
sender" capability. The format is an SVC instruction followed by a

word encoded as follows:

 Bits Meaning

1 Use interlude routine

2 Return to sender

3-4 Zero

5-19 Svc class

11-16 SVC sub-class

When bit 1 is set, the operating system assumes the location preceding
the Svc is a subroutine entry point and looks for the arguments back
through that entry point.

When bit 2 is set, the operating system either performs the requested
function or, if the class and sub-class are not recognized, returns to
the caller at the location following the SVC code word.

The four legal syntaxes are:

1.

SVC
OCT QOxXyy

DAC
DAC

OCT 2

2.
Ent DAC **

SVC
OCT 10xxyy

REV. A Cc - 6

PDR3621 SVC INFORMATION

SVC

OCT @4xxyy
(return-to-sender location)

DAC

DAC

ocT g

4,
Ent DAC **

SVC

OCT l14xxyy
(return-to-sender location)

where xx 6 bit class
yy = 6 bit sub-class

The following classes are currently assigned:

@ RTOS

1 File system miscellaneous
2 Sequential File I/0
3 Direct File I/O
4 =

5 DOSVM only; never reflected
6 Command input/output
7 Typers
19 Mag Tape
11 Line Printer
12 Card Reader/Punch
13. SMLC
77 Reserved for Customer Usage

Cc - 7 January 1988

KEYS

PDR3621

APPENDIX D

(SYSCOM KEYS.F)

SVC INFO

This appendix summarizes the keys associated with PRIMOS subroutine
calls.

KEYS (SYSCOM>KEYS.F9

C SYSCOM>KEYS .F

C
Cc
C

NOLIST
MNEMONIC

TABSET 6 11 28 69

KEYS FOR FILE SYSTEM (FIN) 09/29/78

INTEGER*2 KSREAD, KSWRIT ,KSPOSN, KSTRNC , KSRPOS ,KSPRER, KSPREA,

m
M
M
M
K
K

OX

PARAMETER
Xx

KSPOSR,KSPOSA,K$CONV,KSRDWR,KSCLOS ,KSDELE,KSEXST,KSGETU,
KSIUFD, KSISEG, KSCACC , KSNSAM ,KSNDAM ,KSNSGS , KSNSGD,KSCURR,
KSIMFD,KSICUR,KSSETC,KSSETH ,KSALLD,KSSPOS ,KSGOND,KSMSIZ,
-KSGPOS , KSUPOS , KSNAME, KSFRCW,
KSPROT,KSDTIM,KSDMPB ,KSRWLK ,KSNRTN ,KSSRTN ,KSIRTN ,KSHOME,
KSMVNT ,KSRSUB , KSFULL, KSFREE , KSCPLM,KSLGLM,
KSUNIT,KSCURA,KSHOMA

XxX [BRRRRRERERERERERKEREREREERERERERERERERERKAERKRRERERERERERERERE/

xX /*

~ S
+

*
*

+
W
e
e
>

KSREAD
KSWRIT
KSPOSN
KSTRNC
KSRPOS

KSPRER
KSPREA
KSPOSR
KSPOSA

~S
\ *

KSCONV
KSFRCW

M
M
M
M

K
K
K
K
K
K
K
K
K
K

~
+

+
S
N

S
S

*

BREKKEKREKRERERERKKERREKE

KKK

zl, /*

22, /*

23, /*

34, /*
25, *

KkKAKKK

29, /*
216, /*
220, /*
230, /*

kKKK

7400, /*
240000, /*

RRKKEKEKKEKKKEKREKRKEKKKKKEKE

REKKKK

KEY DEFINITIONS

PRWEFSS RRKKEERKEEKKEKKKKAKKEE

RWKEY ****k*

READ .
WRITE

POSITION ONLY

TRUNCATE

READ CURRENT POSITION
POSKEY ******

PRE-POSITION RELATIVE

PRE-POSITION ABSOLUTE

POST-POSITION RELATIVE

POST-POSITION ABSOLUTE
MODE KKKKKK

CONVENIENT NUMBER OF WORDS

FORCED WRITE TO DISK

SRCHSS #XRKARAEKAAKKAKEKEEEKRE
ACTION ****e%

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

January 1986

APPENDIX D

REV.

PDR3621

OPEN FOR READ
OPEN FOR WRITE
OPEN FOR READING AND WRITING
CLOSE FILE UNIT
DELETE FILE
CHECK FILE'S EXISTENCE
SYSTEM
REF

RETURNS UNIT NUMBER
KKKKKK

FILE ENTRY IS IN UFD
FILE ENTRY IS IN SEGMENT DIRECTORY

CHANGE
NEWFIL

ACCESS
KKKKKK

NEW SAM FILE
NEW DAM FILE
NEW SAM SEGMENT DIRECTORY
NEW DAM SEGMENT DIRECTORY
CURRENTLY ATTACHED UFD

ATCHSS
KEY
UFD IS
UFD IS
KEYMOD

REKKREREKEKEREREKRERKEKE

RKKKEE

IN MFD
IN CURRENT UFD
KKKKKK

SET CURRENT UFD (DO NOT SET HOME)

KSUPOS

KSNAME

KSPROT zl,

KKEKKEKEREKEEKEKERERERERE

RKKKKE

/*

/*

/*

/*

/*

/
[REREREREREREREREREEREE

/ KKKKKK

/*

X /* KSREAD = :l, /*
X /* KSWRIT = :2, /*
X KSRDWR = :3, /*
X KSCLOS = :4, /*
X KSDELE = :5, /*
x KSEXST = :6, /*
xX KSGETU = :40000, /*
4 /* KkKKKK

X KSIUFD = :0, /*
X KSISEG = :100, /*
X KSCACC = :1090, /*
xX /* KRAKKKK

X KSNSAM = :0, /*
X KSNDAM = :2000, /*
x KSNSGS = :4000, /*
x KSNSGD = :6000, /*
X KSCURR = :177777,/*
xX *

4 CERiekkkikbis

xX /* KKK

X KSIMFD = :@, /*
xX KSICUR = :2, /*
x /* RKKKKK

x KSSETC = :0, /*
x KSSETH = :l, /*
Xx /* KkKKRKKE

4 KSHOME = :@, /*
X /* KKEKKE

X KSALLD = :100000,/*
X /* KSCURR = :177777,/*
4 *

xX REERERRMIRRRKi

x /* KRkkKKK

x KSSPOS = :l, /*
X KSGOND = :2, /*
X KSGPOS = :3, /*
X KSMSIZ = :4, /*
x KSMVNT = :5, /*
X KSFULL = :6, /*
4 KSFREE = :7, /*
X
4
x
4
X
x
X
X
x
Xx
x
X
X KSDTIM 22, /*

SET HOME UFD (AS WELL AS CURRENT)
NAME kkkkkk

RETURN TO HOME UFD (KEY=KSIMEFD)
LDISK kKKKKS

SEARCH ALL DISKS

SEARCH MED OF CURRENT DISK

SGDRSS KRKKERERKRKRKREKEKERER

KEY kkkkkk

POSITION TO ENTRY NUMBER IN SEGDIR

POSITION TO END OF SEGDIR
RETURN CURRENT ENTRY NUMBER
MAKE SEGDIR GIVEN NR OF ENTRIES
MOVE FILE ENTRY TO DIFFERENT POSITION
POSITION TO NEXT NON-EMPTY ENTRY
POSITION TO NEXT FREE ENTRY

RDENSS RAKAAKAAKAKRRARRERIK

KEY KKKAKK

READ NEXT ENTRY

READ NEXT SUB-ENTRY

RETURN CURRENT POSITION IN UFD

POSITION IN UFD
READ ENTRY SPECIFIED BY NAME

SATRSS FRKKRAAEKAKREEKEREER
KEY KkKKKK

SET PROTECTION
SET DATE/TIME MODIFIED

X KSDMPB = :3, /*
X KSRWLK = :4, /*
X /*
KX [RRRKKKERRRERRARRRERIK
x /* KRAKKK
X KSNRTN = :0, /*
X KSSRIN = :l, /*
X KSIRTN = :2, /*
xX /*
KX [RRRKEKKRKRRERERERERERK
Xx /* KARE
X /* KSREAD = :0, /*
X /* KSWRIT = :1, /*
x /* KK
X KSCPIM = :400, /*
X KSLGLM = :1000, /*
X /*
X /*
KX JRRRKREKERKRAERRERERERA
xX /* eKIK
X KSUNIT = :l, [*
X KSCURA = :2, /*
X KSHOMA = 33 /*
X /*

PDR3621 SVC INFO

SET DUMPED BIT */
SET PER FILE READ/WRITE LOCK */

*/
ERRPRS REEKKKKKKKRKKK: */

KEY KkkkKK */

NEVER RETURN TO USER */
RETURN AFTER START COMMAND */
IMMEDIATE RETURN TO USER */

*/
LIMITS REKKKKKAKKKKKRRRRKRA x/

KEY RkkKKRKE */

RETURNS INFORMATION */
SETS INFORMATION */
SUBKEY KkRRKK */

CPU TIME IN SECONDS */
LOGIN TIME IN MINUTES */

*/
*/

GPATHS REKKKRKERERKERERERERREEREREREREE/

KEY KkkKKKS */

PATHNAME OF UNIT RETURNED */
PATHNAME OF CURRENT ATTACH POINT */
PATHNAME OF HOME ATTACH POINT */

*/
xX L[BRRERERERKRRERERERERREREREEEREREREREREEREREEREREREREREEREEERE/

LIST

January 1980

PDR3621 INTERNAL FILE FORMATS

APPENDIX E

INTERNAL FILE FORMATS

The internal formats of all disk records for both the old and new file

management system are described below. They have been collected for
ease in noting the changes that have been made. User programs will
normally have no need to refer to the internal file system formats.
Where possible, field names are the same as those used by the internal
file system routines. Numbers preceeded by a '':' are octal, otherwise
they are decimal.

DSKRAT FORMATS

DSKRAT Format -- Old Partitions

Q | 5 | NUMBER OF WORDS IN DSKRAT HEADER = 5
1 | RECSIZ| DISK RECORD SIZE (448 or 1040)
2 | NMRECS | NUMBER OF RECORDS IN PARTITION
3 | UNUSED | UNUSED
4 | NHEADS | NUMBER OF HEADS IN PARTITION
5 | DATA | START OF DKSRAT DATA (ONE BIT/RECORD)

|

DSKRAT Format -- New Partitions

a | 8 | NUMBER WORDS IN HEADER = 8
1 |_RECSIZ_| RECORD SIZE
2 | NMRECS | NUMBER OF RECORDS IN PARTITON (TWO WORDS)

| | .
4 |NHEADS| NUMBER OF HEADS IN PARTITION
5 |RESERVED| RESERVED
6 |RESERVED| RESERVED
7 |RESERVED| RESERVED
8 | DATA | START OF DSKRAT DATA (ONE BIT/RECORD)

E - di January 1989

APPENDIX E PDR3621

RECORD HEADER FORMATS

Record header formats are the same for new and old partitions. The

format of a record header is a function of the physical record size.

Record Header Format -- 448-Word Records

® | REKCRA | RECORD ADDRESS (OF THIS RECORD)
1 | REKBRA | RA OF DIRECTORY ENTRY OR FIRST RECORD
2 | REKFPT | RA OF NEXT SEQUENTIAL RECORD
3 | REKBPT | RA OF PREVIOUS RECORD
4 | REKCNT | NUMBER OF DATAWORDS IN FILE
5 | REKTYP | TYPE OF THIS FILE
6 | REKLVL | INDEX LEVEL FOR NEW PARTITION DAM FILES
7 |RESERVED| RESERVED

Record Header Format -- 1049-Word Records

a | REKCRA | RECORD ADDRESS OF THIS RECORD (TWO WORDS)

| |
2 | REKBRA | BEGINNING RECORD ADDRESS (TWO WORDS)

|
4 | REKCNT | NUMBER DATA WORDS IN THIS RECORD
5 | REKTYP | TYPE OF THIS FILE
6 | REKFPT | RA OF NEXT SEQUENTIAL RECORD (TWO WORDS)

| |
8 | REKBPT | RA OF PREVIOUS RECORD (TWO WORDS)

| |
1@ | REKLVL | INDEX LEVEL FOR NEW PARTITION DAM FILES

11 | |
| |
|RESERVED| RESERVED (FIVE WORDS)

| |
15 | |

Notes

1. Storage Modules have 104@-word records. All other disks have

448-word records.

2. The BRA of the first record in a file points to the beginning

record address of the directory in which the file entry appears.

In all other records, the BRA points to the first record of the

file.

3. REKFPT contains the address of the next sequential record in the

file or @ if it is the last record in the file.

4. REKBPT contains the address of the previous record in sequence or

® if it is the first record in the file.

REV. A E - 2

5.

PDR3621 INTERNAL FILE FORMATS

REKTYP is valid only in the first record of a file. Legal values
are:

SAM File
DAM File

SAM Segment Directory
DAM Segment Directory
User File Directory (UFD)m

W
N
M
r
&

If the file is the record zero bootstrap (BOOT) or the disk

record availability table (DSKRAT or volume name) and the disk

has a 1840 record size (Storage Module), bit 1 (:100000) of
REKTYP will be set.

DAM files on new partitions are organized somewhat differently
from the above.

UFD HEADER AND ENTRY FORMATS

Old UFD Header Format

r
r
& 3 |

~OPASSW | OWNER PASSWORD (THREE WORDS)
|
|

SIZE OF HEADER — 8 WORDS

“NPASSW | NON-OWNER PASSWORD (THREE WORDS)

RESERVED| RESERVED

New UFD Header Format

r
e
&

23

|ECW| ECW (SEE NOTE 1 BELOW)
| OPASSW | OWNER PASSWORD (THREE WORDS)
| |
| |
| NPASSW | NON-OWNER PASSWORD (THREE WORDS)
| |
| |

| |
| |
|[RESERVED| RESERVED (SIXTEEN WORDS)
| |
|

E - 3 January 1989

APPENDIX E PDR3621

Old UFD Entry Format

9 | BRA | BEGINNING RECORD ADDRESS
1 | FILE | FILENAME (THREE WORDS)

|
| NAME |

4 | SPACES | TWO BLANKS FOR NAME EXPANSION (RESERVED)
5 | PROTEC | PROTECTION (OWNER/NON-OWNER)

Note

In an old UFD, the high-order eight bits of PROTEC
are the owner rights stored in complemented form
(9=>owner has right). The low-order eight bits are
non-owner protection, stored in true form (d=>no
right). On creation, PROTEC=@. After a ‘PROT 7
@', PROTEC=:174099.

New UFD Entry Format

CW ENTRY CONTROL WORD (TYPE/LENGTH)BE
BRA | BEGINNING RECORD ADDRESS (TWO WORDS)

|

t
—

|
|
|

3 |RESERVED| RESERVED (THREE WORDS)
|
| |

6 | PROTEC | PROTECTION (OWNER/NON-OWNER)
7 |RESERVED| RESERVED FOR FUTURE USE
8 | DATMOD | DATE LAST MODIFIED (YYYYYYYMMMMDDDDD)
9 | TIMMOD| TIME LAST MODIFIED (SECONDS-SINCE-MIDNIGHT/4)

18 | FILTYP | FILETYPE
11 | SCW | SUBENTRY CONTROL WORD FOR FILENAME
12 |F |

| 1 |
| L |
| E |
| ... | FILENAME (1-16 WORDS, BLANK PADDED)
IN |
| A |
| M |

N | El

Notes

1. The Entry Control Word (ECW) consists of two eight-bit subfields.
The top eight bits indicate the type of the following entry as
follows:

REV. A E - 4

PDR3621 INTERNAL FILE FORMATS

Old UFD Header

New UFD Header

Vacant Entry
New UFD File EntryW

N
H
O
r
&

The low-order eight bits give the size of the entry including the

Qe

3.

ECW itself.

The bits in PROTEC are stored in true form (%=> no right) for
both owner and non-owner fields.

The file type field is as before (see Old Record Header Format)

with following additional bits:

BIT MEANING WHEN BIT IS ON

1 File has 16-word header (DSKRAT and BOOT only).

2 Change bit. Set by call to SATRS$$, then reset
4 Special file (BOOT, DSKRAT, MFD, BADSPT).

The Subentry Control Word (SCW consists of two eight-bit
subfields. The top 8 bits are @, indicating subentry type 9.
The low-order 8 bits give the size of the subentry including the
SCW itself.

UFD entries are reused by the file management system. Therefore,
a new entry will not necessarily appear at the end of the UFD.

SEGMENT DIRECTORY FORMATS

Old Segment Directory Format

N
r
&

n BRAn

BRAG | BRA OF FIRST ENTRY IN DIRECTORY

BRA1l | BRA OF SECOND FILE
9808 | NULL ENTRY
eeee |

| BRA OF LAST FILE IN DIRECTORY

New Segment Directory Format

Q
N
o

BRAG | BRA OF FIRST FILE IN DIRECTORY (TWO WORDS)

|
BRAl | BRA OF SECOND FILE IN DIRECTORY (TWO WORDS)

|
9090 | NULL ENTRY (TWO WORDS)

Go00 |
eee |

|
BRAn | BRA OF LAST FILE IN DIRECTORY (TWO WORDS)

|

E a) January 1980

APPENDIX E PDR3621

Note

The only difference between old and new directories
is that each entry has been expanded to two words.
A null entry in a new directory is a 32-bit @.

DAM FILE ORGANIZATION

In old-style DAM files, the first physical record of the file was
reserved to be an index to the first 440 or 1024 (depending on physical
record size) records in the file. When this index was filled, however,
access to subsequently added records became sequential. For example,

in the file shown below, records @-439 can be accessed directly.
Records 440 and above must be searched for sequentially starting with
record 439.

INDEX DATA RECORDS

| BRA@ |---> RECORD @
| BRAlL |---> RECORD 1
|
| ose |

|
| B439 |---> RECORD 439---> RECORD 448---> RECORD 441—-—> ...

The major difference between new and old DAM files is that the index is
not limited to a single record, but can grow into a multi-level tree.
(Also, since pointers are now two words each, each index record holds
half the number of pointers in old index records.) An index can grow
to any size, and any data record can be directly accessed. The
following paragraphs explain how this multi-level index is built.

The handling of a DAM file on a new partition is identical to that on
an old partition up to the point at which the index record is full and
another record is to be added to the file. At this point the following
actions take place.

1. Three new records are obtained from the file system. One of
these records is to be the new data record, the other two are
used to construct the second index level.

2. The index entries from the full index record are copied into one
of the other new records. This record is to become the first

index record of the new index level.

3. Tne old index record is reinitialized to contain two pointers to
the two index records on the new level.

REV. A E - 6

PDR3621 INTERNAL FILE FORMATS

4, The other new index record is initialized with a single entry
pointing to the new data record.

5. Forward, backward, and father pointers are set up as shown in the
diagram below.

At this point, the creation of the new index level is complete. The
BRA in the directory entry for the DAM file still points to the
original index record, which is now the top of a two-level index.

| DIR | DIR = UFD or. Segment Directory

-@ = NULL POINTER

INDEX LEVEL 2: I] |- I
IK | | = FATHER POINTER

-||
|
| I

a
INDEX LEVEL 1: JIL [--K|IN |-9@

IM | | |
B- | el |

| T I

ae |
DATA LEVEL: LI |-—M| |---. ..—-N | |-2

| | | | | |
0-| |---| |---. ..---| |

The DIR entry points to the original index record (record 'I'), which

now contains just pointers to records 'J' and 'K' -- the two records on
the index level just created. Record 'J' contains the data record
pointers originally in 'L[' — 'L', 'M', etc. Record 'K' contains a
Single pointer to the newly created data record 'N'.

Once an index level is created, it is never deleted until the file
itself is deleted — there will always be at least one record on each
level. If the file is empty, there will be exactly one record on each
index level. This is to avoid undue thrashing when records are being

added and deleted near the threshold of an index's capacity. (The
overhead of the "unnecessary" levels is only one record per level.)

E - 7 January 1989

PDR3621 OBSOLETE SUBROUTINES

APPENDIX F

OBSOLETE FILE SYSTEM SUBROUTINES

The subroutines described in this appendix are no longer in use by the
current file management system. However, they are still in use by
users who choose to continue using older versions of the file system
and/or continue to use old style partitions. For this reason, they are
collected and described here. These subroutines are:

ATTACH
CMREAD
CNAMES
COMINP
PRWFIL
RESTOR
RESUME
SAVE
SEARCH

F - 1 January 1988

APPENDIX F PDR3621

RKEKKEKEEKEE

* ATTACH *
HEKKKKKKEK

The ATTACH subroutine has the same effect as the ATTACH internal

command. The calling sequence is:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)

To access files, the file system must be attached to some User File

Directory (UFD). This implies that the file system has been supplied

with the proper file directory name and either the owner or nonowner

password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
As an option, this information may be copied to another place in the
systen, referred to as the home UFD. The ATTACH subroutine does not
change the home UFD unless the user specifies to change it in the
subroutine call. The user gets owner status if he gives the owner
password, or gets nonowner status if he gives the nonowner password.
The owner of a file directory can declare on a per-file basis what
rights a nonowner has over the owner's files. The nonowner password
may be given only under PRIMOS III and IV. (Refer to the description
of the commands PASSWD and PROTECT of the PRIMOS Commands Guide

(FDR3108) for more information.)

In attaching to a directory, the subroutine ATTACH specifies where to
look for the directory. ATTACH specifies a User File Directory (UFD)
in the Master File Directory (MFD) ona particular logical disk, a
sub-directory in the current UFD, or the home UFD as_ the
target-directory of the ATTACH operation. The format is:

CALL ATTACH (name, ldisk, password, key, altrtn)

KEY is composed of two subkeys that are combined additively: REFERENCE
and SETHOME. All calls require a REFERENCE subkey. The REFERENCE
subkeys are shown in the following table:

REV. A F- - 2

REFERENCE

MEDUFD

CURUFD

PDR3621 OBSOLETE SUBROUTINES

Octal Value Meaning

G Attach to NAME in MFD on LDISK

2 Attach to NAME in current UFD

The SETHOME subkeys are required on call; these subkeys are shown
in the following table:

SETHOME

SETHOM

Octal Value Meaning

G Do not set home UFD to current

UFD after attaching.

1 Set home UFD to current UFD

after attaching.

The meaning of the remaining parameters on a call to ATTACH is as
follows:

name

ldisk

password

If the key is @ and NAME is @, the home UFD is
attached.

If the reference subkey is MFDUFD or CURUFD,
NAME is either a six-character Hollerith expression
or the name of a three-word array that specifies
a Ufdname to be attached.

If the reference subkey is MFDUFD, LDISK is the logical
disk on which the MFD is to be searched for UFD NAME.
LDISK must be a logical disk that has been started up
by the STARTUP command. The special LDISK octal code
100298 signifies: search all started-up logical
devices in order 9, 1, 2 ... n and attach to the UFD
in which NAME appears in the MFD of the lowest
numbered logical device. The special LDISK octal code
177777 signifies: search the MFD of the Ldisk
currently attached to NAME,

If the reference subkey is CURUFD, or
NAME is 6, LDISK is ignored and is usually
specified as @.

If the reference subkey is MFDUFD, CURUFD, or SEGUFD,
PASSWORD is either a six-character Hollerith
expression or the name of a three-word array that
specifies one of the passwords of UFD NAME. If the
password is blank, it is specified as three
words of two blank characters.

F - 3 January 1982

APPENDIX F PDR3621

altrtn An integer variable assigned the value of a label
in the user's FORTRAN program, to be used as an
alternate return in case of error. If this argument
is 9 or omitted, an error message is printed and

control returns to PRIMOS II or III.

A UFD attached through a segment directory reference does not have a

name. On LISTF, such a UFD is listed with a name of six asterisks.

If an error is encountered and control goes to Altrtn, ERRVEC(1L), a

PRIMOS II vector, is set to the error type as follows:

Code Message

AH Name NOT FOUND
AL No UFD ATTACHED

AR Not a UFD (detected by PRIMOS III only)

A user obtains ERRVEC through a call to GETERR. The error ‘Name NOT
FOUND' is printed if one of the following errors occur:

1. key bad.

2. name is not found in the specified directory.

3. ldisk is out of range or not started up.

4, Ina segment directory reference, NAME (1) is a closed unit or

the unit is at end of file.

If the error BAD PASSWORD is obtained, the alternate return is never
taken, and both the home UFD and current UFD are set to @ to indicate
that no UFD is attached. This feature is a system security measure to
prevent a user from writing a program to try all possible passwords on
a UFD.

Examples of ATTACH:

CALL ATTACH ('JHNDOE', -l, 'JJJ', @, ERR)

Searches for the UFD, JHNDOE, in the MFD (as specified in the Key) on
the current logical device. If JHNDOE is found and the password, JJJ,
matches the recorded password, then UFD JHNDOE is attached. The

current UFD (now JHNDOE) is not set as the home UFD (as specified in

the Key). The PRIMOS vector that points to the current UFD is set to
this new directory.

REV. A rFo- A

PDR3621 OBSOLETE SUBROUTINES

KKEEKRKKKRKEKKK

* CMREAD *
KEKEKKKRKKRKKEK

Calling Sequence

CALL CMREAD (ARRAY)

CMREAD reads 18 words (which represent the last command line input by
the user) into the system vector ARRAY, as follows:

array(1) Command (or spaces)
array (2)

array(3)

array (4)

array(5) namel (or spaces)
array (6)

array(7)

array(3) name2 (or spaces)
array (9)

array(1@) parl (or zero)
array(11) par2 (or zero)

array(18) par9 (or zero)

The command line may be accessed directly from array. namel and name2
are normally UFD's or filenames, and parl through par9 are octal
numbers,

The last command line that has been input by the user is replaced by a
new line of input by a call to the subroutines: COMANL, CNINS or
TSAMLC. If none of these subroutines have been called before the
CMREAD call, then CMREAD reads the last command line typed by the user
or reads the last command line obtained through a command file.

F - 5 January 1980

APPENDIX F PDR3621

KRRKEKKEKKEEKE

* CNAMES *
KREKEKKEEKEE

The CNAMES routine allows the same action at user program level as the

CNAMES command allows at command level.

The calling sequence is:

CALL CNAMES (oldnam, newnam, altrtn)

CNAMES changes the name of Oldnam in the current UFD to Newnam. The

user must have owner status to the UFD. The arguments are:

oldnam A filename to be changed

newnam The new filename for oldnam

altrtn If not 8, control goes to altrtn if any error

occurs. If 8, an error message is printed and

control returns to PRIMOS.

If an error is encountered and control goes to altrtn, ERRVEC(1) is set

to the error type as follows:

Code Message
CA newnam BAD NAME

CZ newnam DUPLICATE NAME

SH oldnam NOT FOUND

ST oldnam IN USE

SL NO UFD ATTACHED

SX oldnam NO RIGHT

CNAMES does not run under PRIMOS II.

REV. A FO - 6

PDR3621 OBSOLETE SUBROUTINES

RKEKKEKKKKK

* COMINP *
KKKKKKKKKE

The COMINP routine allows the user to perform the same action at

program level as the uSer command COMINPUT allows at command level.
Refer to the PRIMOS Commands Guide (FDR31988) for details of the
COMINPUT command. Briefly, COMINP causes PRIMOS to read input from a
file rather than a terminal.

The calling sequence is:

CALL COMINP (name, funit, altrtn)

The arguments are:

name Either a three-word array containing the filename
of a command file, or the words TTY, CONTIN, or PAUSE.

funit A File Unit (range 1 to 16; 1 to 15 under PRIMOS
II) that is to be used for reading the commard file.

altrtn I£ not 8, control goes to altrtn in the event of
an error while opening Name. If @, an error message

is printed and control returns to the operating
system in the event of an error while opening Name.

If an error is encountered and control goes to Altrtn, ERRVEC(1) is set
to the error type as follows:

Code Message

SD UNIT NOT OPEN

SH name NOT FOUND

SI name IN USE

ST UNIT IN USE

SL NO UFD ATTACHED

SX name NO RIGHT

A user obtains ERRVEC through a call to GETERR.

F - 7 January 19890

APPENDIX F PDR3621

REKEKKKKKEK

* PRWPFIL *
KEKKAKKAKK

Definition of PRWFIL

PRWFIL is used to read, write, and position a file open on a file unit.
A typical call to PRWFIL will read into a user buffer N words froma
file open on Funit, starting at the file pointer in the file. A user
may instead move the file pointer to an absolute position in the file.
The two operations of read ing—and-positioning or
writing-and-positioning may be combined into a single call, with
position occurring either before or after the read or write operation.

The calling sequence is:

CALL PRWFIL (key, funit, LOC (buffer), nwords, position, altrtn)

key is composed of three subkeys that are combined additively: rwkey,
poskey, and mode, The poskey is required only on those calls in which
positioning is requested. Subkeys with values of @ may be omitted from
the call. The PRWFIL call may be represented as:

CALL PRWFIL (rwkeyt+poskey+mode,funit,pbuffer ,nwords,position,altrtn)

The rwkey subkeys are shown in the following table:

rwkey Octal Value Meaning

PREAD 1 Reads nwords from funit into buffer

PWRITE 2 Write nwords from buffer

The poskey subkeys are shown in the following table:

poskey Octal Value Meaning

PREREL @ Moves the file pointer of funit
position words relative to the current
position before reading or writing

POSREL 29 Moves the file pointer of funit
position words relative to the current
position after reading or writing

PREABS 12 Moves the file pointer of funit to an
absolute position specified by position(1)
am position(2) before reading or
writing

POSABS 30 Moves the file pointer of funit to an
absolute position specified by position(1l)

REV. A F - 8

PDR3621 OBSOLETE SUBROUTINES

and POSITION (2) after reading and
writing

The MODE subkeys are shown in the following table:

MODE

PCONV

Octal Value Meaning

Q Reads or writes nwords

400 Reads or writes a convenient number of

words; less than or equal to nwords

The meaning of the remaining parameters in acall to PRWFIL are as

follows:

funit

buffer

nwords

position

A file unit number 1 to 16 for PRIMOS III and IV
(1 to 15 for PRIMOS II) upon which a file has been
opened by a call to SEARCH or a command.
PRWFIL actions are performed on this file unit.

Reading or writing is initiated at buffer.
Note that buffer is obtained through the
integer function LOC.

I£ the mode subkey is @, nwords is the number
of words to be transferred to or from a file unit
and a user buffer. If nwords is @, no words
are transferred.

If the mode subkey is PCONV, NWORDS is the
maximum number of words to be transferred.
The number actually transferred is
a number between 1 and nwords that is convenient

and fast for PRWFIL to transfer. If NWORDS is @,
no words are transferred. The user can establish

how many words were transferred from ERRVEC(2).

For either mode, nwords may be between @ and
65535.

If the POSKEY is PREREL or POSREL, POSITION

is a single signed integer word for relative posi-
tioning. Positioning is forward and backward
fron the file pointer, depending on the POSITION
Sign. If position is 8, no positioning is done.

Tf the key is PREABS or POSABS, position is a two-word
integer array (V-record-number, word-number) for
absolute positioning. If POSITION is (9,0)
(both values 8), the file pointer is moved to

the beginning of the file.

F - 9 January 19890

APPENDIX F PDR3621

altrtn An integer variable assigned the value of a label
in the user's FORTRAN program to be used as an
alternate return in case of uncorrectable errors.
If the argument is @ or omitted, an error message
is printed and control returns to PRIMOS.

If an error is encountered and control goes to altrtn, ERRVEC(1) is set
to the error type. This is a two-character code as follows:

Code Message Meaning

PD PRWFIL UNIT NOT OPEN Bad key, or file unit not open
for read/write

PE PRWFIL EOF End-of-file reached on read or
position

PG PRWFIL BOF Beginning of file reached on

read or position

DJ DISK FULL No room left on disk

A user obtains ERRVEC through a call to GETERR, which is described in
this section. A user may wish to handle one type of error and have the
system type all other error messages and return to PRIMOS II or IIT.
The user can tell PRERR to print the error message that would have been
printed without altrtn.

On a PRWFIL EOF or PRWFIL BOF error, ERRVEC(2), is set to the number of
words left to be transferred in the read or write requests. On all
normal returns from PRWFIL, ERRVEC(3) and ERRVEC(4) are set to the file
pointer of the file as a two-word array (record-number, word-number) .
On a call with the PCONV subkey, ERRVEC(2) is set to the number of
words read.

On a DISK FULL error, the file pointer is set to the value it had at
the beginning of the call. The user may, therefore, delete another
file and restart the program by typing START. This feature works only
with PRIMOS III ard IV.

During the positioning operation PRWFIL, PRIMOS maintains a file
pointer for every open file. Because a file may contain more than
65,535 words, the largest unsigned integer that can be represented in a
16-bit word, the file pointer occupies two words. The method of
representation chosen is two words, the first of which is the v-record
number and the second of which is a word number. Each V-record
contains 448 words of data so the word. number has a range of @ to 439.
The V-record number has a range of @ to 32767. Whena file is opened
by a call to SEARCH, the file pointer is set so that the next word read
is the first word of the file. The position pointer contains V-record
8, word 9, or briefly (9,0). If the user calls PRWFIL to read 49@
words and does no positioning, at the end of the read operation the

REV. A F -- 16

PDR3621 OBSOLETE SUBROUTINES

file pointer is (V-record 1, word 50) or briefly (1,50). The V-record

size (448) is constant for all disks and does not correspond to the

physical record size.

A call to read or write N words causes N words to be transferred to or

fran the file, starting at the file pointer in the file. Following a

call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using POSKEY of PREABS or POSABS,
the user may explicitly move the file pointer to (record number, word

number) before or after the data transfer operation. Using a POSKEY of

PREREL or POSREL, the user may explicitly move the file pointer forward

position words from the current position, if position is positive.

Using a POSKEY of PREREL or POSREL, the user may move the file point

backward position words from the current position, if POSITION is

negative. The maximum position that can be moved in the call is

therefore plus or minus 32767 words. Positioning takes place before or

after the data transfer, depending on the key. If nwords is @ in any

of the calls to PRWFIL, no data transfer takes place, so PRWFIL does

only a pointer position operation. On normal returns from PRWFIL,

ERRVEC (3) and ERRVEC (4) contain the file pointer as (record number,

word number).

The mode subkey of PRWFIL is most frequently used to transfer a

specific number of words on a call to PRWFIL. In these cases, the MODE

is @ and is normally omitted in PRWFIL calls. In some cases, Such as

ina program to copy a file from one file directory to another, a

buffer of a certain size is set aside in memory to hold information,

and the file is transferred a buffer full at a time. In the latter

case, the user doesn't care how many words are transferred at each call

to PRWFIL, so long as the number of words is less than the size of the

buffer set aside in memory.

As the user would generally prefer to run his program as fast as

possible, the PCONV subkey is used to transfer nwords, or less in the

call to PRWFIL. The number of words transferred is a number convenient

to the system, and therefore speeds up program run time. The number of

words actually transferred is put in ERRVEC (2).

F - lil January 1988

APPENDIX F PDR3621

RRKEKKKKKKK

* RESTOR *
KKKKKEKRKEKK

RESTOR has the same effect under program control as the RESTORE
command.

The calling sequenceis:

CALL RESTOR (vect, filename, altrtn)

RESTOR performs the inverse of the SAVE operation. The SAVEd
parameters for a filename previously written to disk by SAVE are loaded
into the nine-word array vect. The program itself is then loaded into
high-speed memory, using the starting and ending address provided by
VECT (1) and VECT (2).

If an error is encountered and control goes to altrtn, ERRVEC(1) is set
to the error type as follows:

Code Message

SH Name NOT FOUND

ST UNIT IN USE

SI Name IN USE

SL NO UFD ATTACHED

SX NO RIGHT

PE PRWFIL EOF

KKEKKEKKEKKE

* RESUME *
KKEKKKKKEKE

RESUME has the same effect under program control as the RESUME command.

The calling sequence is:

CALL RESUME (filenamel

REV. A F - 12

PDR3621 OBSOLETE SUBROUTINES

KKKKKKERKE

* SAVE *
KREKKEKRKKEKKE

SAVE has the same effect under program control as the SAVE command.

The calling sequence is:

CALL SAVE (vect, filename)

The user sets up a nine-word vector vect before calling SAVE. vect(1)

must be set to an integer which is the first location in memory to be

saved, and vect(2) must be set to the last location to be saved. The

rest of the vector may be set up at the programmer's option.

Location

vect (3) P Register 7

vect(4) A Register 1l

vect (5) B Register 2

vect(4) X Register 9

vect (7) Keys ——

vect(8) Spare -—

vect (9) Spare _—

SAVE writes, to the named disk file, the nine-word vector vect,

followed by the memory image starting at vect(1) and ending at vect (2).

F - 13 January 1980

APPENDIX F PDR3621

RRKKKKRKEEKE

* SEARCH *
KEKKKKREKE

Definition of SEARCH

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit, PRWFIL and other routines may be called, either to
position the current-position pointer of a file unit (file pointer) or
to transfer information to or from the file (using the file unit to
reference the file).

Opening a File

On opening a file, SEARCH specifies 1) allowable operations that may be
per formed by PRWFIL and other routines (these operations are read only,
write only, or both read and write); 2) where to look for a file or
where to add the file, if the file does not already exist; and 3)
whether the file is to be opened for writing only or both reading and
writing. SEARCH either specifies a filename in the currently attached
user file directory or a file unit number on which a segment directory
is open. In the segment directory reference, the file to be opened or
Closed has its beginning disk address given by the word at the current
position pointer of the file unit.

SEARCH Actions

On creating a new file, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to perform actions other than opening
and closing a file. SEARCH may delete a file, rewind a file unit, or
truncate a file.

Upon opening a file, SEARCH sets the file pointer to the beginning of
the file. Subroutines PRWFIL and others cause information to be
transfered to or from the file unit, starting at the file pointer.
After the transfer, the pointer is moved past the data transferred. A
call to SEARCH to rewind a file causes the file pointer to be set to
the beginning of the file. Subsequent calls to PRWFIL and other
routines cause information transfer to occur as if the file had just
been opened. A call to SEARCH to truncate a file causes all
information beyond the file pointer to be removed from the file. This
call is useful if one is overwriting a file with less information than
was originally contained in the file,

REV. A F - 14

PDR3621 OBSOLETE SUBROUTINES

Subroutine Call

SEARCH is used as in the following call:

Format:

CALL SEARCH (key, name, funit, altrtn)

key is composed of three subkeys that are combined additively: action,

reference, and newfile. Not all subkeys are required on every call,

and subkeys with values of zero can be omitted. The SEARCH call may

therefore be represented as:

CALL SEARCH (actiontreferencetnewfile, name, funit, altrtn)

All calls require an action subkey. The action subkeys are shown in

the following table:

action Octal Value Meaning

OPNRED 1 Open name for reading on funit

OPNWRT 2 Open name for writing on funit

OPNBTH 3 Open name for both reading and writing

on funit

CLOSE 4 Close file by name or by funit

DELETE 5 Delete file nam
EXIST 6 Check to see if file exists.
REWIND 7 Rewind file on funit
TRNCAT 10 Truncate file on funit

CNGACC 1080 Change access of file to funit

The reference subkeys are shown in the following table:

reference Octal Value Meaning

UFDREF @ Searches for file name in the current

user file directory (UFD) (as defined by a

previous ATTACH) and perform the action
in the action subkey on the specified file.

SEGREF 180 Performs the action specified in the action

subkey on the file with the location
indicated by the file pointer designated

within the array name(l).
This file unit must be an open
segment directory.

Only those calls to SEARCH that reference a file in a UFD or segment

directory need the reference key. Calls that reference file units

do not need this key.

F - 15 January 19890

APPENDIX F PDR3621

The following table lists the newfil subkeys:

newf il Octal Value Meaning

NTFILE @ New threaded (SAM) file
NDFILE 2008 New directed (DAM) file
NTSEG 4090 New threaded (SAM) segment directory
NDSEG 6089 New directed (DAM) segment directory
NEWUFD 19880 New User File Directory (SAM)

Only those calls to SEARCH that generate a new file require a newfil
subkey. On other calls, this subkey is ignored.

The name of the renaining parameters in a call to SEARCH are as
follows:

name

funit

altrtn

If the reference subkey is UFDREF, NAME is either a
Six-character Hollerith expression or the name of a three—word
array that specifies a filename (existing or not).

If the reference subkey is UFDREF and name(1) is -1, the
current UFD is opened. name = -1 must be used only in
configuration with action subkeys 1, 2, or 3. Owner status
of the current UFD is required.

If the reference subkey is SEGREF, name is a file unit(1-16;
1-15 under PRIMOS II) on which a segment directory is open.

On calls in which the action key requires only a file unit to
specify the file to be acted on, name is ignored and, usually,
Specified as @.

On calls that require a file unit number, funit is a number
1 to 16 (1-15 under PRIMOS II). On calls that require no unit
number, funit is ignored and usually specified as 1.

altrtn is an integer variable assigned the value of a label
return in the user's FORTRAN program to be used as an alter-
nate in case of uncorrectable errors (e.g., attempting to
open a file that is already open). If this argument is @ or
omitted, an error message is printed; control returns to
PRIMOS if any error should occur while using SEARCH.

Error Messages

If an error is encountered and control goes to altrtn, ERRVEC(1L) is set
to a two-character code as follows:

REV. A

Code

SA

SD

SD
SH
ol
SI
SK
oL

SQ
SX

Message

BAD CALL TO SEARCH

UNIT NOT OPEN

Name OPEN ON DELETE

Name NOT FOUND

Name IN USE

UNIT IN USE

UFD FULL
NO UFD ATTACHED

SEG-DIR ERROR

NO RIGHT

DISK FULL

*SEG-DIR ERROR:

Meaning

PDR3621 OBSOLETE SUBROUTINES

Meaning

Some parameter in call is invalid
Attempt to truncate or rewind
a file on a closed unit

Sel f-explanatory
File Name not in UFD
File Name is already open
File unit is already open
Sel f-explanatory
Self-explanatory
*SEG-DIR ERROR

Access rights violation
No room left on disk

1. If attempting to open an existing file in the
segment directory, *SEG-DIR ERROR means:

a. The segment directory unit specified in NAME

is not open for reading.

b. The file pointer of the segment directory unit
is at end of file, and therefore points to no disk

address.

c. The file pointer of the segment directory unit

points to a 9 entry.

2. If attempting to open a new file in the current
segment directory, *SEG-DIR ERROR means:

When a

section), control is to go to altrtn.
type of error and have the system print all other error messages and

The segment directory unit specified in NAME is
not open for both reading and writing.

user obtains ERRVEC through a call to GETERR (described in this
A user may wish to handle one

return to PRIMOS. The user can call PRERR to print the error message

that would have been printed without altrtn.

ERRVEC(2) is set to a file type on a normal return of a call to SEARCH

to open a file, using action keys of OPNRED, OPNWRT, or
codes are:

OPNBTH. The

January 19808

APPENDIX F PDR3621

ERRVEC (2) File Type

Threaded file (SAM)

Directed file (DAM)

Threaded segment directory (SAM)
Directed segment directory (DAM)
User File Directory (SAM)m

W
N
P

&

Access Rights and Call to SEARCH

Under PRIMOS III and IV, the access rights of files are checked when a
user attempts to open file through a call to SEARCH. Under PRIMOS
II, access rights are not checked.

A SEARCH call that creates a new file gives that file default access
rights. Defaults access rights are: owner has all rights; nonowner
has no rights.

Adding and Deleting Files

For references to user file directories, a call to SEARCH to open a
file for writing or both reading and writing causes SEARCH to look in
the current User File Directory for the file. If the file is not found
in the UFD, the file name and beginning disk address of a new file is
appended to the UFD, and the new file is opened for the appropriate
acitvity. A call to delete a file from a UFD removes the name and
beginning disk address from the UFD and shortens the UFD.

For references to segment directories, a call to SEARCH to opena file
for writing or reading and writing causes SEARCH to examine the word at
the file pointer of the referenced segment directory file unit. If the
word is not zero, SEARCH considers the word to be a beginning record
address of an already created file. SEARCH opens the file for writing
or reading and writing. If the word is zero, SEARCH writes the
beginning disk address of a new file in that word and opens the file.
If the file pointer is positioned at the end of file, the file is
lengthened one word and SEARCH writes the beginning disk address of a
new file in that word, and opens the file. A call to delete a file
from a segment directory causes the beginning disk address of a file at
the file pointer of the segment directory to be replaced by zero. The
segment directory is not shortened. An attempt to opena file for
reading in a segment directory when its file pointer points to zero or
is at end-of-file generates a SEG-DIR error. In no case is the file
pointer of a segment directory moved.

Closing and Opening Files

On a call to close a file, SEARCH attempts to close file NAME and
generates an error message or goes to the alternate return if NAME is
not found. FUNIT is ignored unless NAME is @. If NAME is @, SEARCH
ensures that FUNIT is closed. That is, it closes FUNIT if FUNIT is
open but does not generate an error message if the file unit is closed.

REV. A F - 18

PDR3621 OBSOLETE SUBROUTINES

Example:

CALL SEARCH (1, 'OBJECT', 1, $5@)

Searches for a file, OBJECT, in the current UFD and opens it for
reading; if file is not found, return via statement 5@ is made.

The user is allowed to open the current UFD for reading via a call to
SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -l, Funit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; i.e., the owner password must
have been given in the most recent call to ATTACH (or ATTACH command).
Control goes to Altrtn if there is no UFD attached, if Funit is already
in use, or if the user does not have owner rights to the UFD.

Changing the Access of a File

A user may change the access of a file that is open on FUNIT to
OPNREAD, OPNWRT, or OPNBTH.

Example;

CALL SEARCH (CNGACC + OPNWRT, 9%, FUNIT, 2@)

Access rights are checked to determine if the user has a right to
accomplish the requested operations.

Checking the Existence of a File

If the user desires to find out if a certain file exists in the current
UFD, the user can call SEARCH with the EXIST key. The file unit should

be specified as 1. The file is not affected in any way and access
rights are not checked.

Sharing Files

Two or more users may be attached to the same UFD at the same time.
Furthermore, two or more users may have the same file open for reading,
and they may be reading from the same file at the same time. File
interlocks are provided to prevent one user from opening the file for
reading or writing while another user has the file open for writing.
File interlocks also prevent one user from opening the file for writing
while another user has the file open for reading. If these interlock
Situations are detected by SEARCH, the user gets the error message:
FILE IN USE. The file interlocks also apply to the case of the same
user attempting to open the file on different file units (FUNITS).

F - 19 January 19890

INTRODUCTION

PDR3621 ERROR MESSAGES

APPENDIX G

ERROR MESSAGES AND CODES (SYSCOM>ERRD.F)

This appendix defines PRIMOS error messages and codes.

C ERRD.F, SYSCOM, OS GROUP, 93/29/79

Cc MNEMONIC CODES FOR FILE SYSTEM (FTN)

C Copyright 1978, Prime Computer, Inc., Wellesley, MA
NOLIST

A
A
A

TABSET 6 11 23 56 65

INTEGER*2 ESEOF, ESBOF, ESUNOP, ESUIUS, ESFIUS , ESBPAR, ESNATT,

M
K
M
M
K
K
K
M

MK
O
O
K

OK
OM
O
M ESFDFL, ESDKFL, ESNRIT, ESFDEL, ESNTUD, ESNTSD, ESDIRE,

ESFENTF , ESFNTS , ESBNAM, ESEXST, ESDNTE, ESSHUT, ESDISK,
ESBDAM, ESPTRM, ESBPAS, ESBCOD, ESBTRN, ESOLDP, ESBKEY,
ESBUNT, ESBSUN, ESSUNO, ESNMLG, ESSDER, ESBUFD, ESBFTS,
ESFITB, ESNULL, ESIREM, ESDVIU,ESRLDN, ESFULU,ESDNS,
ESTMUL, ESFBST, ESBSGN, ESFIFC, ESTMRU, ESNASS, ESBFSV,
ESSEMO, ESNTIM, ESFABT, ESFONC, ESNPHA, ESROOM, ESITRE,
ESWTPR , ESFAMU, ESTMUS , ESNCOM,ESNFLT, ESSTKF , ESSTKS ,
ESNOON, ESCRWL, ESCROV, ESCRUN, ESCMND, ESRCHR, ESNEXP,
ESBARG, ESCSOV, ESNOSG, ESTRCL, ESNDMC, ESDNAV, ESDATT,
ESBDAT, ESBLEN, ESBDEV, ESQLEX, ESNBUF, ESINWT, ESNINP,
ESDFD, ESDNC, ESSICM,ESSBCF,ESVKBL, ESVIA, ESVICA,
ESVIF, ESVFR, ESVFP, ESVPFC,ESVNFC,ESVPEF,ESVIRC,
ESIVCM, ESDNCT, ESBNWD,
ESLAST

PARAMETER

X
4 [RERRRERERERRERREREREREREREERERERRRREREREERERRERERKEEREREERE/

xX /*

wy
*S
S
*

x
M
K
K
O
K
K

OK
X
O CODE DEFINITIONS

*/
*/
*/
*/
*/

BE SEOF
ESBOF
ESUNOP=
ESULUS=
ESFIUS=
ESBPAR=
ESNATT=
ESFDFL=
ESDKFL= W

o
r
n

U
B
W

p
o
r

:_
2

FB
ey

VF
ea

VF
a

/*

/*

/*

/*

/*

/*

/*®

/*

/*

END OF FILE

BEGINNING OF FILE

UNIT NOT OPEN

UNIT IN USE

FILE IN USE

BAD PARAMETER

NO UFD ATTACHED

UFD FULL

DISK FULL

PE. */
*/

PD, SD */
SI

SI

SA

SL

DJ

*/
*/
*/

7 AL */
*/
*/

January 19868

APPENDIX G

m
M

OS
OS
O
K

OO
OK

OK
OK

OK
K
O
O

OK
OM

OK
OO

OK
OO
K

OO
OO
K

OO
K

OO
K
O
K
O
O
O
K

OK
OO
S

OO
K
O
O
S

OS
O
K
O

OK
OO
O
O

OK
O
O
O
K
K
O
M
K
K
X

REV. A

ESNRIT=10,
ESFDEL=11,
ESNTUD=12,
ESNTSD=13,
ESDIRE=14,
ESFNTIF=15,
ESFNTS=16,
ESBNAM=17,
ESEXST=18,
ESDNTE=19,
ESSHUT=20,
ESDISK=21,
ESBDAM=22,
ESPTRM=23,
ESBPAS=24,
ESBCOD=25,
ESBTRN=26,
ESOLDP=27,
ESBKEY=28,
ESBUNT=29,
ESBSUN=30,
ESSUNO=31,
ESNMLG=32,
ESSDER=33,
ESBUFD=34,
ESBFTS=35,
ESFITB=36,
ESNULL=37,
ESIREM=38,
ESDVIU=39,
ESRLDN=40,
ESFUIU=41,
ESDNS =42,
ESTMUL=43,
ESFBST=44,
ESBSGN=45,
ESFIFC=46,
ESTMRU=47,
ESNASS=48,
ESBFSV=49,
ESSEMO=50,
ESNTIM=51,
ESFABT=5 2,
ESFONC=53,
ESNPHA=54,
ESROOM=55,
ESWTPR=56,
ESITRE=57,
ESFAMU=58,
ESTMUS=59,
ESNCOM=50,
ESNFLT=61,
ESSTKF=62,

PDR3621

/* NO RIGHT
/* FILE OPEN ON DELETE
/* NOT A UFD
/* NOT A SEGDIR
/* IS A DIRECTORY
/* (FILE) NOT FOUND
/* (FILE) NOT FOUND IN SEGDIR
/* TLLEGAL NAME
/* ALREADY EXISTS
/* DIRECTORY NOT EMPTY
/* BAD SHUTDN (FAM ONLY)
/* DISK I/O ERROR
/* BAD DAM FILE (FAM ONLY)
/* PTR MISMATCH (FAM ONLY)
/* BAD PASSWORD (FAM ONLY)
/* BAD CODE IN ERRVEC
/* BAD TRUNCATE OF SEGDIR
/* OLD PARTITION
/* BAD KEY
/* BAD UNIT NUMBER
/* BAD SEGDIR UNIT
/* SEGDIRUNIT NOT OPEN
/* NAME TOO LONG
/* SEGDIR ERROR
/* BAD UFD
/* BUFFER TOO SMALL
/* FILE TOO BIG
/* (NULL MESSAGE)
/* ILL REMOTE REF
/** DEVICE IN USE
/* REMOTE LINE DOWN
/* ALL REMOTE UNITS IN USE
/* DEVICE NOT STARTED
/* TOO MANY UFD LEVELS
/* FAM — BAD STARTUP
/* BAD SEGMENT NUMBER
/* INVALID FAM FUNCTION CODE
/* MAX REMOTE USERS EXCEEDED
/* DEVICE NOT ASSIGNED
/* BAD FAM SVC
/* SEM OVERFLOW
/* NO TIMER
/* FAM ABORT
/* FAM OP NOT COMPLETE
/* NO PHANTOMS AVAILABLE
/* NO ROOM
/* DISK WRITE-PROTECTED
/* ILLEGAL TREENAME
/* FAM IN USE
/* MAX USERS EXCEEDED
/* NULL_COMLINE
/* NOFAULTFR
/* BAD STACK FORMAT

SH,AH

SQ
CA
CZ

BS
WB
SS
PC,DC,AC
AN

PDR36 21 ERROR MESSAGES

X ESSTKS=63, /* BAD STACK ON SIGNAL —_ */
xX ESNOON=64, /* NO ON UNIT FOR CONDITION — */
X ESCRWL=65, /* BAD CRAWLOUT — */
x ESCROV=66, /* STACK OVFLO DURING CRAWLOUT — */
x ESCRUN=67, /* CRAWLOUT UNWIND FAIL —_ */
xX ESCMND=68, /* BAD COMMAND FORMAT -- */
x ESRCHR=69, /* RESERVED CHARACTER — */
X ESNEXP=70, /* CANNOT EXIT TO COMMAND PROC — */
X ESBARG=71, /* BAD COMMAND ARG -— */
xX ESCSOV=72, /* CONC STACK OVERFLOW — */
x ESNOSG=73, /* SEGMENT DOES NOT EXIST — */
X ESTRCL=74, /* TRUNCATED COMMAND LINE —- */
x ESNDMC=75, /* NO SMLC DMC CHANNELS — */
xX ESDNAV=76, /* DEVICE NOT AVAILABLE DPTX */
xX ESDATT=77, /* DEVICE NOT ATTACHED — */
X ESBDAT=78, /* BAD DATA -- */
X ESBLEN=79, /* BAD LENGTH - */
X ESBDEV=89, /* BAD DEVICE NUMBER — - k/
x ESQLEX=81, /* QUEUE LENGTH EXCEEDED — */
X ESNBUF=82, /* NO BUFFER SPACE -— */
X ESINWT=83, /* INPUT WAITING — */
X ESNINP=84, /* NO INPUT AVAILABLE —_— */
x ESDFD =85, /* DEVICE FORCIBLY DETACHED — */
X ESDNC =86, /* DPTX NOT CONFIGURED -— */
x ESSICM=87, /* ILLEGAL 3278 COMMAND — */
x ESSBCF=88, /* BAD 'FROM' DEVICE — */
x ESVKBL=89, /* KBD LOCKED — */
X ESVIA =90, /* INVALID AID BYTE -- */
x ESVICA=91, /* INVALID CURSOR ADDRESS — */
4 ESVIF =92, /* INVALID FIELD -- */
X ESVER =93, /* FIELD REQUIRED — */
x ESVFP =94, /* FIELD PROHIBITED — */
x ESVPFC=95, /* PROTECTED FIELD CHECK — */
X ESVNFC=96, /* NUMERIC FIELD CHECK — */
x ESVPEF=97, /* PAST END OFFIELD — */
4 ESVIRC=98, /* INVALID READ MOD CHAR -- */
x ESIVCM=99, /* INVALID COMMAND — */
x ESDNCT=100, /* DEVICE NOT CONNECTED _ */
x ESBNWD=101, /* BAD NO. OF WORDS -_ */
x ESLAST=101 /* THIS ***MUST*** BE LAST — */
xX /* */

X /* */
X [BRRRRRREREREREREKERERREREREERERRRRERERERERERERERE/

LIST

NEW FILE SYSTEM ERROR HANDLING CONVENTIONS

Motivation

All the file management system routines described in Section 3 employ
error handling procedures that are standard to PRIMOS subsystems. The

G - 3 January 1988

APPENDIX G PDR3621

error handling facilities do not affect previously existing programs.
Only programs using the file management system calls need to be aware
of the error handling described in this section.

The error handling protocol was motivated by the following

considerations.

1.\Except for a few restricted cases, FORTRAN non-local GOTOs do not
work in 64V mode.

2.\Non-local GOTOs are a violation of good programming practice.

3.\Error information in a recursive/reentrant environment must be

associated with a particular call, not left in a single static
place (e.g., ERRVEC).

The Return Code Parameter

All error codes, formerly placed in ERRVEC, are now returned to the

user in a 16-bit user-supplied integer variable. For example, in the

call:

CALL PRWFS$ (KEY, UNIT, LOC(BFR) ,NW,POS, RNW, CODE)

CODE is an integer that PRWFSS sets to the appropriate return code.

CODE can be thought of as a replacement for the (optional)

alternate-return argument.

The effect of the old error handling scheme can be achieved through

code such as:

CALL CREASS (NAME, NAMLEN, OPASS, NPASS, CODE)
IF (CODE.NE.@) GOTO 99

which would be equivalent to supplying an alternate return (ALTRIN) of

$99 with old partitions (except, of course, that the subroutine GETERR

need not be called to obtain the error code). Note that CODE should
always be checked for zero or non-zero to ensure that errors do not go

unnoticed.

STANDARD SYSTEM ERROR CODE DEFINITIONS

Standard system error codes are FORTRAN PARAMETER or PMA EQU variables

with standardized names. In all cases, zero means no error. Any other
value identifies a particular error or exceptional (not necessarily
error) condition. All reference to specific code values (other than

zero) should be by the standardized names. For convenience, all names

are defined in two SINSERT files, ERRD.F for FORTRAN and ERRD.P for

PMA. These files are incluwied in the UFD SYSCOM on Volume 1 of the

master disk.

REV. A G - 4

PDR3621 ERROR MESSAGES

ERROR HANDLING ROUTINE

The following routine, ERRPRS, provides all the new error handling
facilities.

ERRPR$ —- Print Standard System Error Message

ERRPRS interprets a return code and, if non-zero, prints a standard
message followed by optional user text.

Calling Sequence

CALL ERRPRS (key,code,text,txtlen,name,namlen)

Parameters

key An integer specifying the action to take subsequent to
printing the message. Possible values are:

KSNRTIN Exit to the system, never return to the calling
program.

KSSRIN Exit to the system, return to the calling program
. following an 'S' command.

KSIRTN Return immediately to the calling program.

code An integer variable containing the return code from the
routine that generated the error.

text A message to be printed following the standard error message.
Text is omitted by specifying both text and txtlen as @.

txtlen The length in characters of text.

name The name of the program or subsystem detecting or reporting
the error. name is omitted by specifying both name and
namlen as @.

namlen The length in characters of name.

G - 5 January 1984

APPENDIX G PDR3621

Notes on Usage

If code is 8, no printing occurs, and ERRPRS immediately returns to the
calling program. The format of the message for non-zero values of CODE
is:

<standard text>. <user's text if any> (<name if any>)

The system standard text associated with code is not preceded by any

newline characters or blanks and ends witha period. If txtlen is

greater than zero, this is followed by a blank followed by no more than

64 characters of text. If namlen is greater than zero, this is
followed by a blank and no more than 64 characters of name enclosed in

parentheses. The line is terminated with a newline.

I£ ERRPRS is called with the special error code ESNULL, no system
message is printed. Other parameters behave normally.

If ERRPRS is called with an unrecognized value of code, the standard
system message is 'ERROR=ddddd', where ddddd is the decimal value of
code. This can be used to display user-defined errors. User defined
errors should use codes above 10000.

Examples
Following a call to PRWFS$, if CODE=ESUNOP, the call

CALL ERRPRS (KSSRTN,CODE,'DO A STATUS',11,'PRWFS$' ,6)

would result in the message:

UNIT NOT OPEN. DO A STATUS (PRWFSS)

To print a user-defined error message:

CALL ERRPRS (KSIRTN,10328,'MY MESSAGE',10,0,@)

will print:

ERROR=10328. MY MESSAGE

SA 11-1

A register, read one character
to, from teminal 18-3

A register, write one character
fron, to terminal 18-3

ASKEYS 11-48

Absolute position of pointer, get
11-34

Access mode, changing 4-29

Access, file 3-3

ACCESSVIOLATIONS 23-11

Adding files in UFD 4-29

Addition functions 9-6

Addition, matrix 18-5

Adjoint, matrix 18-5

Allocation of disk storage 3-1

AMLC lines, transfer data over
20-16

ANYS 23-11

ANYS 23-3

APPLIB 11-1

Application library 11-1

Application library 2-5

Application library
implementation 11-4

Application library keys 11-48

Application library summary
11-46

ARITHS 23-11

INDEX

Arithmetic operations 9-1

ASCII file, read character line
from 4-19

ASCII file, write character line
to 4-35

ASCII string, convert number to
11-23

ASCII string, convert to number
11-22

ASCII, compressed, read from disk
17-1

ASCII, compressed, write from
buffer to disk 17-1

ASCII, input from ASR reader
18-2

ASCII, input from high-speed
paper-tape reader 18-2

ASCII, input from user terminal
18-2

ASCII, output to ASR punch
18-2

ASCII, output to user terminal
18-2

ASCII, read from parallel
interface card reader 19-14

ASCII, read from serial interface

card reader 19-15

ASCII, uncompressed, write from
buffer to disk 17-2

Ask YES/NO question 11-18

ASR punch, output ASCII to
18-2

ASR reader, input ASCII from
18-2

INDEX

ASR reader, input one character Buffer, write compressed ASCIT

from 18-3 from, to disk 17-1

Assignment, temporary device Buffer, write to output device,

13-5 ASCII 15-5

Asynchronous controllers 2-6 Buffer, write to output device,

binary 15-5

Asynchronous controllers 20-16
Buffer, write uncompressed ASCII

Attach F-2 fron, to disk 17-2

Bad password 4-4 Calling sequence conventions

2-6

BAD_NONLOCAL_GOTO$ 23-12
Card processing subroutines

BASPASSWORDS 23-12 19-14

Binary editor 22-1 Card punch, MPC, output one card

to 19-28

Binary editor commands 22-2
Card punch, parallel interface,

Binary editor error messages punch card on 19-19

22-4
Card punch, parallel interface,

Binary editor, operation 22-2 interpret card on 19-19

Binary search 12-22 Card reader, parallel interface,

read ASCII from 19-14

Binary, output to high-speed
paper-tape punch 18-2 Card reader, parallel interface,

read card from 19-16

Binary, read from disk 17-1
Card reader, parallel interface,

Binary, write from buffer to disk interpret card on 19-16

17-1
Card reader, serial interface,

Boolean functions 8-1 read ASCII from 19-15

Bubble sort 12-22 Card, interpret on parallel

interface card reader 19-15

Buffer, fill with character
11-6 Card, interpret on parallel

interface card punch 19-19

Buffer, read into fron input
device, ASCII 15-6 Card, punch on parallel interface

card punch 19-19

Buffer, read into from input
device, binary 15-6 Card, read from parallel

interface card reader 19-16

Buffer, write binary from, to
disk 17-1 Carriage-return line-feed, output

to terminal 18-5

Change filename F-6

Change working directory F-2

Changing access mode 4-29

Changing directories 4-3

Changing file names 4-5

Character line, output to
terminal 18-3

Character line, read from ASCII
file 4-19

Character line, write to ASCII —
file 4-35

Character string, rotate 11-12

Character string, shift 11-13

Character string, test for type
11-15

Character, extract from string
11-7

Character, fill buffer with
11-6

Character, move between strings
11-12

Check existence of file anywhere
in PRIMOS file structure 4-32

Check file existence 4-26

Check file name for treename

11-15

Check filename for valid format

5-15

Check for file existence 11-28

Check is unit number in use

11-38

CLEANUPS 23-12

INDEX

Clock, user-accessible 21-3

CLOSE (PRIMOS command) 3-3

Close file A-25

Close file F-14

Close file anywhere in PRIMOS
file structure 4-32

Close file by unit 11-28 ©

Closing files 3-4

COBKID 2-2

COB LIB 2-2

COBOL library 2-2

CODE G-4

Codes, error G-l

Cofactor, matrix 10-6

Combinations 18-3

Command file input: see also
terminal input

Command files 3-16

Command input file, invoking
4-5

Command input file, invoking
F-7

Command input stream, switch
4-5

Command input stream, switch
F-7

Command line delimiters 5-12

Command line, parse 11-39

Command line, parse 5-9

3

Command line, read into systen

vec tor F-5

Command output file, open 4-6

Command output file, open F-7

Commands, binary editor 22-2

Commands, EDB 22-2

Common sort parameters 12-21

Communicate with SMLC driver

26-~1

Communications, real-time 21-1

Compare filenames for equivalence

4-19

Compare substrings for equality

11-6

Conpare tw strings for equality

11-5

Compar ison 9-18

Complex number functions 9-4

Compressed ASCII, read from disk

17-1

Canpressed ASCII, write from
buffer to disk 17-1

Condition frame header 23-21

Condition mechanism 23-1

Condition mechanisn, using with

FORTRAN 23-3

Condition switch 23-4

CONT OC 13-6

CONTRL, keys 15-8

Control I/0 devices 15-6

INDEX

Control magnetic tapes 19-22

Control mode, FORTRAN forms

19-2

Control modes, vertical 19-2

Control subroutines B-l

Control user terminal 5-4

Control, device, subroutines
16-1

CONTROL-P, enable 5-2

CONTROL-P, inhibit 5-2

Controllers, asynchronous

20-16

Controllers, synchronous 20-1

Conventions, calling sequence
2-6

Conventions, filename 1-1

Conversion functions 9-4

Conversion routines (APPLIB)

11-22

Convert ASCII string to number

11-22

Convert datmod field 11-25

Convert FORTRAN label to PL/I

23-7

Convert number to ASCII string
11-23

Convert string 11-22

Convert timod field 11-26

CPU time, get 11-19

CPU time, get 5-14

CRAWLOUT MECHANISM 23-19

Create new UFD 4-7

Create specific on-unit 23-7,
23-8

Creating a library | 22-5

Creating a segment directory
6-6

Creating on-units 23-1

Current UFD password, set 4-25

Current UFD, update 4-35

Current waits/notifies, get

21-4

Cycle to next user 5-15

DAM file organization E-5

DAM file, reading a 6-3

DAM file, writing a 6-2

DAM files 3-6

Data, input from magnetic tapes
19-24

Data, output to magnetic tapes
19-24

Data, transfer over AMLC lines
28-16

Date, European/military format,
get 11-28

Date, get 11-19

Date, system, get 5-15

Date/Time stamping 3-11

Datmod, convert 11-25

Day of year, get 11-19

INDEX

Day, time of, get 11-20

Decimal number, input from
terminal 18-4

Decimal number, output to
terminal 18-4

Default on-unit 23-3

Delete file 4-26

Delete file anywhere in PRIMOS

file structure 4-32

Delete file by name 11-28

Deleting files 3-4

Deleting files in UFD 4-29

Delimiters, command line 5-12

Density, magnetic tapes 19-27

Destination string, move source

string to 11-11

Destination substring, move
source substring to 11-11

Determinant 18-8

Device assignment, temporary
13-5

Device control subroutines

16-1

Device nunbers, logical 13-3

Device numbers, physical 13-2

Different name, phantom user

5-1

Diminishing increment sort
12-24

Direct access method: see also

DAM

Direct entrance calls 4-2

Directories, changing 4-3

Directories, file 3-10

Directories, segment 3-11

Directory, change working F-2

Disable on-unit 23-9, 23-190

Disk I/O time, get 5-16

Disk initialization 14-1

Disk organization 3-12

Disk oriented sort, R-mode
12-4

Disk oriented sort, V-mode
12-6, 12-7

Disk record availability table

3-12

Disk record, read one 14-1

Disk record, write one 14-3

Disk storage, allocation of

3-1

Disk time since login, get

11-298

Disk, read binary from 17-1

Disk, read compressed ASCII fron

17-1

Disk, write binary to, from
buffer 17-1

Disk, write compressed ASCII to,
from buffer L7-1

Disk, write modified records to
4-8

Disk, write uncompressed ASCII
to, from buffer 17-2

INDEX

Division functions 9-5

Drain semaphore 21-2

Driver, SMLC, comnuincate with

20-1

DSKRAT 3-12

DSKRAT formats E-1

EDB (PRIMOS command) 22-1

EDB commands 22-2

EDB error messages 22-4

Editor, binary 22-1

Enable CONTROL-P 5-2

Encode value to FORTRAN F format

11-24

End-of-file, position pointer to

11-29

ENDFILE 23-12

ENDPAGE 23-13

Enter waitlist of specified
semaphore 21-5

Entries in segment directory,
read 4-23

Entries, segment directory, read

11-36

Entries, UFD, read 11-36

Entry format, UFD E-3

Equality, compare substrings for
11-6

Equality, compare two substrings
for 11-5

Equate matrix to constant 18-7

Equate matrix to identity 18-9

Equation, linear, solution
19-4

Equivalence, compare filenames
for 4-16

Erase character, read 5-5

Erase character, set 5-5

ERRD.F G-l

ERROR 23-13

Error code, interpret 5-6

Error codes G-l

Error handling 4-1

Error handling conventions G-3

Error handling, I/O 14-4

Error message, print 14-6

Error message, system, print
G-5

Error messages G-l

Error messages, EDB/binary editor
22-4

Error vector 14-6

‘Error vector contents, get

14-5

Error vector message, print
14-4

Error vector, system, set 14-4

ERRRTNS 23-13

Establish user-accessible clock

21-3

European format date, get

11-20 .

INDEX

Execute memory image F-12

Execute, R-mode memory image,
restore and 4-21

Execution of user process,
suspend 21-5

Existence, file, check 4-26

Existence, file, check for
11-28

EXITS 23-13

Exponentiation functions 9-6

Extended registers 7-1

Extended stack frame header

23-25

Extract character from string
11-7

F format, FORTRAN, encode value

to 11-24

Fault frame header 23-29

File access 3-13

File access 3-3

File attributes, set in UFD entry
4-21

File close 4-26

File closing 3-4

File deletion 3-4

File directories 3-19

File existence, check 4-26

File existence, check for

11-28

File format 3-9

File formats, internal E-1

File header contents 4-15

File 1/0 2-4

File in UFD, adding 4-29

File in UFD, deleting 4-29

File maintenance 3-16

File organization, DAM E-5

File positioning 3-4

File routines (APPLIB) 11-26

File system structure, scan
11-36

File system, purpose of 3-1

File truncation 3-4

File types 3-4

File types 4-39

File unit '77 4-6

File unit-FORTRAN unit 2-3

File, ASCII, read character line
from 4-19

File, ASCII, write character line
to 4-35

File, close F-14

File, close by unit 11-28

File, DAM 3-6

File, delete 4-26

File, delete by name 11-28

File, open 4-26

File, open i

INDEX

File, open by name on unit

11-29

File, open tenporary 11-35

File, position F-8

File, put in spool queue from

program 19-5

File, read F-8

File, rewind by unit number

11-34

File, SAM 3-5

File, truncate on unit number
11-35

File, write F-8

Filename conventions 1-1

Filename, change F-6

Filename, changing 4-5

Filename, check for treename

11-15

Filename, check for valid format

5-15

Filename, get from terminal
11-16

Filename, get from terminal and

open 11-29, 32

Filenames 4-1

Filenames 4-30

Filenames, compare for
equivalence 4-19

Files, command 3-16

Files, opening “3-2

Files, position 4-11

INDEX

Files, read 4-11 FORTRAN internal subroutines

A-1
Files, referencing by name 3-1

FORTRAN intrinsic functions
Files, truncate 4-11 A-4

Files, write A-11 FORTRAN label to PL/I 23-7

Fill buffer with character FORTRAN library 2-5
11-6

FORTRAN mathematical functions
Fill substring with character 7-3

11-7

FORTRAN unit numbers 2-3
FIXRAT (PRIMOS command) 3-16

FORTRAN unit-file unit 2-3
Floating point exceptions A-4

FORTRAN, PL/I considerations
Format, European/military, get 23-2
date 11-298

Function references 7-1
Format, F, FORTRAN, encode value

to 11-24 Functions, addition 9-6

Format, file 3-9 Functions, Boolean 8-1

Format, record 3-9 Functions, complex nunber 9-4

Format, UFD header E-2 Functions, conversion 9-4

Format, UFD, entry E-3 Functions, division 9-6

Format, valid, check filename for Functions, exponentiation 9-6
5-15

Functions, FORTRAN 7-1
Formats, DSKRAT E-1

Functions, FORTRAN intrinsic
Formats, file, internal E-1 A-4

Formats, record header E-2 Functions, logical 8-1

Formats, segment directory E-4 Functions, mathematical, FORTRAN
7-3

FORMS library 2-2

Functions, max imun 9-7
FORTRAN F format, encode value to

11-24 Functions, minimum 9-7

FORTRAN forms control mode Functions, multiplication 9-7
19-2

Functions, negation 9-4
FORTRAN functions 7-1

INDEX

Functions,

9-7

positive difference

Functions, remainder 9-7

Functions, shift 8~1

Functions, sign and magnitude

9-19

Functions,
scientific

single argument
7-2

9-7Functions, subtraction

Functions, terminal 1-2

Functions, truncation 8=1

Functions, zeroing 9-4

Generate random number 11-21

Get absolute position of pointer

11-34

Get CPU time 11-19

Get CPU time 5-16

Get current waits/notifies

21-4

Get date 11-19

Get date, European/military
format 11-20

Get day of year 11-19

Get disk I/O time 5-16

Get disk time since login
11-29

Get error vector contents 14-5

Get filename from terminal

11-16

Get filename from terminal and

open file 11-29, 32

Get login UFD name 5-16

Get n characters from terminal

5-3

Get number from terminal 11-17

Get one character from terminal

5-2

Get operational string length

11-12

Get PRIMOS II information 5-7

Get subUFD password 4-8

Get system date 5-16

Get systen time 5-16

Get time of day 11-208

Get treename from terminal
11-16

Goto, nonlocal 23-7

Gould printer/plotter, output

data to 19-198

Header, file, contents 4-16

Header, record, formats E-2

Header, UFD, format E-2

Heap sort 12-23

Hexadecimal number, input from

terminal 18-4

Hexadecimal number, output to
terminal 18-5

High-speed paper-tape punch,
output binary to 18-2

High-speed paper-tape punch,
output one character to 18-3

High-speed paper-tape reader,
input ASCII from 18-2

19

High-speed paper-tape reader,
input one character from 18-2

I/O subroutines 14-1

Identity, equate matrix to
19-9

ILLEGALINSTS 23-13

ILLEGALONUNITRETURNS 23-14

ILLEGALSEGNOS 23-14

In-memory sorts 12-29

Indication subroutines B-1

Inhibit CONTROL-P 5-2

Initialize disk 14-1

Initialize random number
generator 11-22

Input ASCII from ASR reader
18-2

Input ASCII from high-speed
paper-tape reader 18-2

Input ASCII fran user terminal
18-2

Input data from magnetic tape
19-24

Input decimal number from
terminal 18-4

Input device, read into buffer
from, ASCII 15-6

Input device, read into buffer
from, binary 15-5

Input hexadecimal number fran
terminal 18-4

Input octal number from terminal
18-4

INDEX

Input one card from MPC card

reader 19-17

Input one character fran ASR
reader 18-3

Input one character fron
high-speed paper-tape reader

18-2 |

Input, single line 5-2

Input/output control system
13-1 ©

Input/Output subroutines 2-4

Input: see also read

Insertion sort 12-23

Integer, output to terminal
18-3

Interchange sort 12-22

Interface to Versatec printer
19-13

Interface, SVC C-3

Internal file formats E-1

Internal subroutines, FORTRAN
A-l

Interpret card on parallel
interface card reader 19-16

Interpret card on parallel
interface card punch 19-19

Interpret error code 5-6

Interuser communications 21-1

Intrinsic functions, FORTRAN
A-4

Invalidating on-units 23-1

Invert matrix 10-1¢

11

1ocs 13-1

Justify a string 11-8

KEY 23-14

Key definitions, sort. 12-2

Keys, operating systen D-1

KEYS .F 4-1

KEYS .F D-1

KEYS.P 4-1

Keyword table 11-43

KIDALB 2-2 |

Kill character, read 5-5

Kill character, set 5-5

Left justify a string. 11-8

Length, operational string, get
11-12

LIB 2-1

LIBEDB 22-1

Libraries, location of 2-1

Library management 22-1

Library, creating a 22-5

Line printer, MPC, output one
line to 19-4

Line printer, output line to
19-1

Line printers 19-1

Line, character, output to
terminal 18-3

Line, command, read into system
vector F-5

INDEX

Line, output to line printer

19-1

Linear equation solution 19-4

LINKAGEFAULTS 23-14

Listener level, invoke 23-20

Listener level, invoke with error
processing 23-20

LISTENER_ORDERS 23-14

Locate one string within another
11-8

Locate one substring within
ano ther 11-9

Location of libraries 2-1

Log out user 5-8

Logical device numbers 13-3

Logical functions 8-1

Logical record, reading a 6-8

Logical unit 13-2

Login UFD name, get 5-16

Login, get disk time since
11-26

Magnetic tape controllers
19-22

Magnetic tape density 19-27

Magnetic tape subroutines
19-21

Magnetic tapes, input data from

19-24

Magnetic tapes, output data to
19-24

Master file directory 3-108

12

Mathematical functions, FORTRAN
7-3

Mathematical routines (APLIB)

11-21

Matrix addition 19-5

Matrix adjoint 19-5

Matrix cofactor 10-6

Matrix inversion 10-18

Matrix library 19-1

Matrix library 2-5

Matrix multiplication 16-11

Matrix subtraction 19-13

Matrix transpose 18-13

Matrix, equate to constant
10-7

Matrix, equate to identity
18-9

Matrix, multiply by scalar
16-12

Maximum functions 9-7

Memory image, R-mode, read into
memory 4-208

Memory image, R-mode, restore amd
execute 4-21

Memory image, R-mode, save
4-23

Menory image, restore F-12

Memory image, restore amd execute
F-12—

Memory image, write to disk
F-13

INDEX

Merge files 12-11

Message, print error 14-6

Message, print error vector
14-4

Message, system error, print
G-5

Messages, error G-l

Messages, error, EDB/binary
editor 22-4

MED 3-19

MIDAS library 2-2

Military format date, get
11-298

Minimum functions 9-7

Mode, access, changing 4-29

Modify file attributes in UFD
entry 4-21

Modify segment directory size
4~23

Modifying CONIOC 13-7

Move character between strings
11-19

Move source string to destination
string 11-11

Move source substring to
destination substring 11-11

MPC card punch, output one card
to 19-20

MPC card reader, input one card
from 19-17

MPC line printer, output one line
to 19-4

13

MPC: see also parallel interface

MSORTS 12-1

Multiplication functions 9-7

10-11Multiplication, matrix

Multiply matrix by scalar
19-12

N characters, get fron terminal
5-3

Negation functions 9-4

New UFD password 4-7

Next user, cycle to 5-15

NO/YES question, ask 11-18

Nonlocal goto 23-7

NONLOCAL_GOTO$ 23-15

Notifies/waits, current, get
21-4

Notify semaphore 21-2

NOAVAILSEGS$ =23-15

NULL_POINTERS 23-15

Nunber, convert ASCII string to

11-22

Number, convert to ASCII string
11-23

Nunber, decimal, input fron
terminal 18-4

Nunber, decimal, output to
terminal 18-4

Nunber, get from terminal
11-17

Number, hexadecimal, input from
terminal 18-4

INDEX

Number, hexadecimal, output to

terminal 18-5

Number, octal, input from
terminal 18-4

Number, octal, output to terminal

18-4

Number, randan, initialize
generator 11-22

Number, randan, update seed for
generator 11-21

Obsolete subroutines F-1

Octal number, input from terminal
18-4

Octal number, output to terminal

18-4

Q-unit actions 23-2

Q-unit descriptor block 23-398

ON-unit scan 23-19

On-unit, disable 23-9, 23-10

Q-unit, FORTRAN Considerations

23-2

Qn—-unit, raising 23-2

Qn-unit, system conditions
23-18

Qn-units, creating 23-1

On-units, invalidating 23-1

Qne card, input from MPC card
reader 19-17

One card, output. to MPC card

punch 19-20

Qe character, get from terminal

5-2

14

One character, input fron ASR
reader 18-3

One character, input from
high-speed paper-tape reader

18-2

One character, output to

high-speed paper-tape punch
18-3

One character, read from terminal
to A register 18-3

One character, read from terminal
18-4

One character, write to terminal
from A register 18-3

One character, write to terminal
18-4

One disk record, read 14-1

One disk record, write 14-3

One line, output to MPC line
printer 19-4

OPEN (PRIMOS command) 3-3

Open file 4-25

Open file F-14

Open file after getting name from
terminal 11-32

Open file anywhere in PRIMOS file
structure 4-32

Open file by name on unit
11-29

Open file with retries 11-30,
32

Open file, verify 11-38, 32

Open temporary file 11-35

INDEX

Opening files 3-2

Operating system keys D-1

Operation of binary editor
22-2

Operational string length, get
11-12

Operations, arithmetic 9-1

Output ASCII to ASR punch 18-2

Output ASCII to user terminal
18-2

Output binary to high-speed
paper-tape punch 18-2

Output carriage-return line-feed
to terminal 1

Output character line to terminal
18-3

Output data to Gould
printer/plotter 19-19

Output data to magnetic tapes
19-24

Output data to Versatec
printer/plotter 19-7

Output decimal number to terminal
18-4

Output device, write buffer to,
ASCIT 15-5

Qutput device, write buffer to,
binary 15-6

Output hexadecimal number to
terminal 18-5

Output integer to terminal
18-3

Output line to line printer
19-1

15

Output octal number to terminal

18-4

Output one card to MPC card punch
19-29

Output one character to
high-speed paper-tape punch

18-3

Output one line to MPC line
printer 19-4

Output: see also write

OUT_OFBOUNDSS 23-16

Overflow condition, test for
B-l .

PAGEFAULT_ERRS 23-16

Paper-tape punch, high-speed,
output binary to 18-2

Paper-tape punch, high-speed,
output one character to 18-3

Paper-tape reader, high-speed,
input ASCII from 18-2

Paper-tape reader, high-speed,
input one character from 18-2

Parallel interface card punch,
punch card on 19-19

Parallel interface card punch,
interpret card on 19-19

Parallel interface card reader,
read ASCII from 19-14

Parallel interface card reader,
read card fron 19-16

Parallel interface card reader,
interpret card on 19-16

Parallel interface: see also MPC

Parse conmand line 11-39

INDEX

Parse command line 5-9

Parsing routine (APPLIB) 11-39

Partition exchange sort 12-24

PASSWD (PRIMOS command) 3-13

Password for new UFD 4-7

Password, bad 4-4

Password, get subUFD 4-8

Password, set current UFD 4-25

Passwords 3-1

Pathname: see also treename

PAUSES 23-16

Permutations 10-14

Phantom user, start 5-9, 5-1

Phantom user, start with
different name 5-1

Physical device numbers 13-2

Physical unit 13-2

PL/I 2-2

Plotter subroutines 19-7

Plotter/printer, Gould, output
data to 19-16

Plotter/printer, Versatec, output
data to 19-7

Pointer, get absolute position of
11-34

Pointer, position 11-34

Pointer, position to end-of-file

11-29

Pointer: see position

16

POINTER_FAULTS 23-16

Position file F-8

Position files A-11

Position in segment directory
4-23

Position in UFD 4-15

Position pointer 11-34

Position pointer to end-of-file
11-29

Position to start of file: see

rewind

Position, absolute, of pointer,
get 11-34

Positioning files 3-4

Positive difference functions

9-7

PR IMENET 2-2

PRIMOS command CLOSE 3-3

PRIMOS command EDB 22-1

PRIMOS command FIXRAT 3-16

PRIMOS command OPEN 3-3

PRIMOS command PASSWD 3-13

PRIMOS command PROTEC 3-13

PRIMOS II file access 3-14

PRIMOS II information, get 5-7

PRIMOS SVCs C-1

Print error message 14-6

Print error vector message
14-4

INDEX

Print system error message G-5

Printer, Versatec, interface to
19-13

Printer/plotter instructions
19-8

Printer/Plotter subroutines
19-7

Printer/plotter, Gould, output
data to 19-198

Printer/plotter, Versatec, output
data to 19-7

Process, user, suspend execution

of 21-5

Program, user, return fron 5-7

PROTEC (PRIMOS command) 3-13

Pseudonym 3-2

Punch card on parallel interface
card punch 19-19

Punch, ASR, output ASCII to
18-2

Punch, card, MPC, output one card
to 19-28

Punch, card, parallel interface,
punch card on 19-19

Punch, card, parallel interface,
interpret card on 19-19

Punch, high-speed, paper-tape,
output binary to 18-2

Punch, high-speed, paper-—-tape,
output one character to 18-3

Question, YES/NO, ask 11-18

Quicksort 12-24

QUIT 23-17

17

INDEX

R-mode menory image, read into Read into buffer from input

memory 4-28 device, binary 15-6

R-mode memory image, restore and Read kill character 5-5

execute 4-21

Read one character from terminal
R-mode memory image, save 4-23 to A register 18-3

Radix exchange sort 12-24 Read one character from terminal
18-4

Raising on-unit, explicitly
23-2 Read one disk record 14-1

Random number generator, Read R-mode memory image into
initialize 11-22 memory 4-28

Random number generator, update Read segment directory entries
seed for 11-21 11-35

Read ASCII from parallel Read single line of input 5-2
interface card reader 19-14

Read text line from terminal

Read ASCII fron serial interface 5-4
card reader 19-15

Read UFD entries 11-36

Read binary from disk 17-1
Read UFD entries 4-15

Read card fran parallel interface
card reader 19-16 _ Read/write interlock 4-28

Read character line fron ASCII Read: see also input

file 4-19
; Reader, ASR input one character

Read command line intoisystem from 18-3
vector F-5 |

Reader, ASR, input ASCII from
Read compressed ASCII from disk 18-2

17-1
Reader, card, MPC, input one card

Read entries in segment directory from 19-17
4-23 |

Reader, card, parallel interface,

Read erase character | 5-5 read ASCII from 19-14 ‘

Read file F-8 ! Reader, card, parallel interface,
read card from 19-16

Read files 4-11
Reader, card, parallel interface,

Read from UFD 4-15 interpret card on 19-16

Read into buffer from input Reader, card, serial interface,
device, ASCII 15-6 read ASCII from 19-15

Reader, high-speed, paper-tape,
input ASCII from 18-2

Reader, high-speed, paper-tape,
input one character from 18-2

Reading a DAM file 6-3

Reading a file in a segment
directory 6-12

Reading a logical record 6-8

Reading a SAM file 6-3

Real-time communications 21-1

Real-time subroutines 2-6

Record availability table 3-12

Record format 3-9

Record header formats E-2

Record types, sort 12-1

Record, logical, reading a 6-8

Record, read one, disk 14-1

Record, write one, disk 14-3

Recursive software 23-19

REENTERS 23-17

Referencing files by name 3-1

Registers, extended 7-1

Remainder functions 9-7

Reset semaphore 21-2

Restore and execute memory image
F-l2

Restore memory image F-12

Restore R-mode memory image and
execute 4-21

INDEX

RESTRICTED_INSTS 23-17

Retry when opening file
32

11-38 ,

Return code parameter G-4

Return fran user program 5-7

Rewind file by unit 11-34

Rewimd:
file

see position to start of

RFORMS 2-2

Right justify a string 11-8

Rotate character string 11-12

Rotate character string left
11-12

Rotate character string right
11-12

Rotate substring 11-13

Rotate substr ing left 11-13

Rotate substring right 11-13

RO_ERRS 23-17

RPG library 2-2

RPGKID 2-2

RPGLIB 2-2

SAM file, reading a 5-3

SAM file, writing a 6-1

SAM files 3-5

Sample user input procedure
12-17

Save R-mode memory image 4-23

Scalar, multiply matrix by
18-12

19

Scan file system structure

11-36

Scan for on-units 23-6

Scientific functions, single
argument 7-2

Search, binary 12-22

Seed for randan number generator,
update 11-21

Segment directories 3-11

Segment directories 4-30

Segment directory entries, read
11-36

Segment directory formats E-4

Segment directory size, modify
4-23 :

Segment directory, creating a
5-6

Segment directory, position in
4-23 |

Segment directory, read entries
in 4-23

Segment directory, reading a file
in 5-12

Semaphore, clock 21-3

Semaphore, drain 21-2

Semaphore, enter waitlist of
21-5 |

Semaphore, notify 21-2

Semaphores 21-1

Sense light setting test B-2

Sense light settings, update
B-1

INDEX

Sense lights, set B-2

Sense switch setting test B-2

Sequential access method: see
also SAM

Serial interface card reader,
read ASCII from 19-15

Set current UFD password 4-25

Set erase character 5-5

Set file attributes in UFD entry
4-21

Set kill character 5-5

Set sense lights B-2

Set system error vector 14-4

Setting, sense light, update
B-1

Setting, test for sense light
B-2

Setting, test for sense switch
B-2

Shared libraries 2-1

Shell sort 12-24

Shift character string 11-13

Shift character string left
11-13

Shift character string right
11-13

Shift functions 8-1

Shift substring 11-14

Shift substring left 11-14

Shift substring right 11-14

28

Sign and magnitwle functions
9-18

Signal specific condition

(FORTRAN) 23-5

Signal specific condition (PL/I)

23-4

Single argument scientific
functions 7-2

Single line of input, read 5-2

Single output file, sort 12-9

Size, segment directory, modify
4-23

SMLC driver, communicate with
20-1

SMLC timing 20-3

Sort into single output file
12-9

Sort key definitions 12-2

Sort libraries 12-1

Sort libraries 2-6

Sort parameters, common 12-21

Sort record length 12-2

Sort record types 12-1

Sort user parameter check
12-13

Sort user procedure, initial
phase 12-15

Sort, bubble 12-22

Sort, close units, user procedure
12-16

Sort, diminishing increment
12-24

INDEX

Sort, disk oriented, R-mode
12-4

Sort, disk oriented, V-mode

12-6, 12-7

Sort, heap 12-23

Sort, in-memory 12-26

Sort, insertion 12-23

Sort, interchange 12-22

Sort, internal, user procedure
12-15

Sort, partition exchange 12-24

Sort, radix exchange 12-24

Sort, shell 12-24

Sort, user input and output
procedures 12-13

Sort, user input procedure,
sample 12-17

Sort, user output procedure,
return 12-16

Source string, move to
destination string 11-11

Source substring, move to
destination substring 11-11

Specific on-unit, create 23-7,
23-8

Spool file from program 19-5

Spool queue, put file in 19-5

SPOOLS library 19-5

SRTLIB library 12-1

STACK HEADER 23-9

STACKOVFS$ 23-17

21

Start phantom user 5-9, 5-1

Static mode software 23-19

STOPS 23-18

String length, operational, get
11-12

String lower case to upper
11-22 /

String Manipulation Routines
(APPLIB# 11-4

String upper case to lower
11-22

String, ASCII, convert number to
11-23

String, ASCII, convert to number

11-22

String, character, test for type
11-15

String, destination, move source
string to 11-11

String, extract character from
11-7

String, left/right justify a
11-8

String, locate one within another
11-8

String, Source, move to
destination string L1-1L1

Strings, compare for equality
11-5 .

Strings, move character between
11-169

Strings, two, compare for
equality 11-5

Substring, destination, move
source substring to 11-11

INDEX

Substring, fill with character

11-7

Substring, locate one within
ano ther 11-9

Substring, rotate 11-13

Substring, shift 11-14

Substring, source, move to
destination substring 11-11

Substrings, compare for equality
11-6

Subtraction functions 9-7 .

Subtraction, matrix 18-13

SUbUFD password, get 4-3

Supervisor calls C-1

Supervisor logout user 5-8

Suspend execution of user process
21-5

SVC C-1

Svc interface C-3

SVCLINST$ 23-18

Switch command input stream
4-5

Switch command input stream
F~7

Switch terminal output 4-6

Switch terminal output F-7

Synchronous controllers 2-6

Synchronous controllers 20-1

SYSCOM>ASKEYS 11-48

SYSCOM>ERRD.F G-l

SYSCOM>KEYS .F D-1

Systen conditions 23-108

System date, get 5-16

System error message, print

G-5

System error vector, set 14-4

System time, get 5-16

System vector, read command line
into F-5

TSxXxxx (temporary file) 11-35

Table, keyword 11-43

Tape, magnetic, controllers
19-22

Tapes, magnetic, input data from
19-24

Tapes, magnetic, output data to
19-24

Temporary device assignment
13-5

Temporary file, open 11-35

Terminal functions 1-2

Terminal input, parse 11-39

Terminal input: see also command
file input

Terminal output, switch 4-6

Terminal output, switch F-7

Terminal subrout ines 18-1

Terminal, get filename from
11-16

Terminal, get filename from and
open 11-29, 32

INDEX

Terminal, get n characters from
5-3

Terminal, get number from
11-17

Terminal, get one character from

5-2

Terminal, get treename from
11-16

Terminal, input ASCII from
18-2

Terminal, input decimal nunber
from 18-4

Terminal, input hexadecimal
number from 18-4

Terminal, input octal number from
18-4

Terminal, output ASCII to 18-2

Terminal, output carriage-return
line-feed to 18-5

Terminal, output character line
to 18-3

Terminal, output decimal number
to 18-4

Terminal, output hexadecimal
number to 18-5

Terminal, output integer to
18-3

Terminal, output octal number to
18-4

Terminal, read one character from
to A register 18-3

Terminal, read one character from
18-4

Terminal, read text line from
5-4

Terminal, user, control 5-4

Terminal, write one character to
fron A register 18-3

Terminal, write one character to
18-4

Test character string for type
11-15

Test for overflow condition

B-l

Test sense light setting B-2

Test sense switch setting B-2

Text line, read fran terminal
5-4

Time of day, get 11-29

Time semaphore 21-3

Time, CPU, get 11-19

Time, CPU, get 5-16

Time, disk I/O, get 5-16

Time, disk, since login, get
11-20

Time, system,get 5-16

Time/date stamping 3-11

Timers 21-1

Timing, SMLC 26-3

Timod, convert 11-26

Token types 5-13

Tokens 5-13

Transfer data over AMIC lines

20-16

Transpose, matrix 18-13

INDEX

Treenane 4-33

Treename, check filename for
11-15

Treenane, get from terminal
11-16

Treenane: see also pathname

Truncate file on unit number

11-35

Truncate files 4-11

Truncating files 3-4

Truncation functions 8-1

Type, test character string for
11-15

UFD 3-14

UFD entries, read 11-36

UFD entries, read A-15

UFD entry format E-3

UFD entry, set file attributes in
4-21

UFD Header format E-3

UFD name, login, get 5-15

UFD password, current, set
4-25

UFD, adding files in 4-29

UFD, create 4-7

UFD, deleting files in 4-29

UFD, position in 4-15

UFD, read from 4-15

UIT 2-2

UIIS 23-19

Uncompressed ASCII, write fran
buffer to disk 17-2

UNDEFINEDGATES 23-18

Unit number in use, check for
11-38

Unit number, rewind file by
11-34

Unit number, truncate file on

11-35

Unit numbers, FORTRAN 2-3

Unit, close file by 11-28

Unit, openfile by name on
11-29

Update current UFD 4-35

Update seed for random number
generator 11-21

Update sense light settings
B-L

User file directory 3-16

User input procedures, sort

12-13

User output procedures, sort
12-13

User process, suspend execution
21-5

User program, return from 5-7

User terminal subroutines 18-1

User terminal, control 5-4

User, logout 5-8

User, logout by supervisor 5-8

INDEX

User, phantom, start 5-9, 5-1

User-accessible clock 21-3

Using condition mechanism with
FORTRAN 23-3

Valid format, check filename for
5-15

Value, encode to FORTRAN F format
11-24

VAPPLB library 11-3

VCOBLB library 2-2

Vector, system, read command line
into F-5

Verify when opening file
11-38, 32

Versatec printer, interface to
19-13

Versatec printer/plotter, output
data to 19-7

Vertical control modes 19-2

VEORMS library 2-2

VKDAIB library 2-2

WETLIB 2-2

VSPOOS library 19-5

VSRTLI library 12-1

Waitlist of specified semaphore,
enter 21-5

Waits/notifies, current, get
21-4

Working directory, change F-2

Write binary from buffer to disk
17-1

25

INDEX

Write buffer to output device,

ASCII 15-5

Write buffer to output device,

binary 15-6

Write character line to ASCII

file 4-35

Write compressed ASCII from
buffer to disk 17-1

Write file F-8

Write files 4-11

Write memory image to disk
F-13

Write modified records to disk

4-8

Write one character to. terminal

fran A register 18-3

Write one character to terminal

18-4

Write one disk record 14-3

Write uncompressed ASCII from

buffer to disk 17-2

Write-protected disks 3-4

Write: see also output

Writing a DAM file 6-2

Writing a SAM file 6-1

Year, day of, get 11-19

YES/NO question, ask 11-18

Zeroing functions 9-4

AS21 9-6

AS51 9-6

AS52 9-6

AS55 9-6

AS61 9-6

AS$62 9-6

AS77 9-6

ASxy 9-6

ABS 7-3

ACOS 7-7

AIMAG 7-3

AIMAG 7-6

AINT 7-3

ALOG 7-4

ALOGSX 7-2

ALOG1Z 7-4

AMAXS 7-3

AMAX1 7-3

AMING 7-3

AMINL 7-3

AMCD=—s« 7-3

AND 8-1

ANINT 7-6

ASCSS$ 12-2

ASCSRT 12-7

ASIN 7-7

ATAN 7-5

ATANSX

ATAN2

ATCHSS

ATTACH

ATTDEV

BATCHS

BNSRCH

BREAKS

BUBBLE

C$12

CSL5

CS16

C§2l

C$21G

C$26

C$27

CS51

C$52

C$57

c$51

C$62

c$67

C$75

C$76

C$77

CSAG1

CSMB5

SUBROUTINE NAME INDEX

7-2

16-1

16-1

xX -

CcSM85 19-22

CSM1@ 16-1

CSM1B =19-22

CSM11 16-1

CSM11 19-22

CSM13. 19-22

CSP8@2 16-1

CSxy. 9-4

CLIN 5-2

CABS 7-3

CASESA 11-22

CCOS 7-4

CDABS 7-6

CDCOS 7-7

CDEXP 7-7

CDLOG 7-7

CDSIN 7-7

CDSQRT 7-6

CEXP 7-4

CHAR 7-6

CLSGET 5-2

CLINEQ 19-3

CLNUSS 12-16

CLOG 7-4

CLOSSA 11-28

CMADD 19-5

CMADJ 10-5

27

CMBNSS

CMCOF

CMCON

CMDET |

CMDLSA

CMIDN

CMINV

CMLVSE

CMMLT

CMPLX

CMREAD

CMSCL

CMSUB

CMTRN

CNAMSS

CNAMES

CNINS

CNSIGS$

CNVASA

CNVBSA

COMANL

COMB

COMI$$

COMINP

COMLV$

ComOoss

12-15

19-6

18-7

18-8

11-39

10-9

19-16

23-28

19-11

19-12

19-13

16-13

4-5

F-6

CONT 7-6

CONIG 7-5

CONTRL 15-6

Cos 7-4

COSSX 7-2

COSH 7-7

CREASS 4-7

CSIN 7-4

CSQRT 7-4

CSTRSA 11-5

CSUBSA 11-6

CTIMSA 11-19

D$2l 9-6

DS27 9-6

D$51 9-6

D$52 9-6

DS55 9-6

DS57 9-6

D$61 9-6

D$62 9-6

DS67 9-6

D$71 9-6

D$77 9-6

DSINIT 14-1

DSxy 9-6

DABS 7-3

DACOS 7-7

DASIN 7-7

SUBROUTINE NAME INDEX

DATAN

DATAN2

DATESA

DATNSX

DBLE
DCMPLX

11-19

7-2

7-3

7-6

DCONT 7-6

DCOS

DCOSSX

7-4

7-2

DCOSH 7-7

DDIM 7-6

DELESA

DEXP

DEXPSX

DIM

11-28

7-4

7-2

7-4

DIMAG 7-6

DINT 7-6

DINT

DISPLY

DL19 SX

DLG2$X

DLINEQ

DLOG

DLOGSX

DLOG1

DLOG2

DMADD

7-3

xX -

DMADJ 19-5

DMAX1 7-3

DMCOF 16-6

DMCON 10-7

DMDET 10-8

DMIDN 18-9

DMINI 7-3

DMINV 10-18

DMMLT 10-11

DMOD 7-3

DMSCL 10-12

DMSUB 19-13

DMTRN 16-13

DOFYSA 11-19

DPROD 7-6

DREAL 7-6

DREAL 7-6

DSIGN 7-4

DS IN 7-4

DSINSX 7-2

DSINH 7-7

DSORSX 7-2

DSORT 7-4

DTAN 7-7

DTANH 7-7

DTIMSA 11-20

DUPLX$ 5-4

28

ES51L

E$52

ES$55

E$57

ES61

ES62

ES66

ES67

ES71

ESxy

EDATSA

ENCDSA

ERKLS$$

ERRPR$

ERRPRS$

ERRSET

EXIT

EXP

EXP$X

EXSTSA

FSA1

FSA2

9-6

9-5

9-6

9-6

9-6

11-20

11-24

5-5

5-6

14-4

FSA3

FSA5

FSA5

FSA7

FSAT

FSATI

FSBKSP

FSBN

FSCB

FSCG

FSCL

FSCLOS

FSDE

FSDEX

FSDI11

FSDI71

FSDI77

FSDIxy

FSDN

FSEN

FSEND

FSFN

FSIBR

FSIBW

FSIFR

FSIPW

FSILDR

A-3

A-3

SUBROUTINE NAME INDEX

FSILDW

FSINOF

FSINQU

FSINR

FSIO77

FSTOBF

FSIOFTN

FSLS

FSLT

FSMA11

FSMA22

FSMA77

FSMAXx

FSMI11

FSMI 22

FSMI77

FSMIxXx

FSMO7L

FSMO77

FSMOxy

FSOPEN

FSOR

FSPAUS

FSRA

FSRAX

FSRB

FSRBX

A-3

A-2

A-2

9-7

9-7

9-7

A-4

A-2

A-2

FSREWA

FSRN

FSRNX

FSRS

FSRT

FSRTE

FSRX

FSSH

FSST11

FSSI71

FSSI77

FSSIxy

FSTR

FSWA

FSWAX

FSWB

FSWBX

FDATSA

FEDTSA

FILLSA

FLOAT

FORCEN

FSUBSA

FTIMSA

29

A-3

A-l

A-l

A-4

A-3

A-2

A-4

9-19

9-19

9-19

9-18

11-25

11-25

11-6

7-3

4-8

11-7

11-26

GCHRSA

GENDSA

GETERR

GINFO

GPASS$$

GPATHS

H$55

HEAP

ISAAG1

TSAC@3

ISACO9

TSAC15

ISADO7

ISAP@2

I$BD07

TABS

11-7

11-29

14-5

12-23

18-2

19-14

19-15

19-16

17-1

18-2

17-1

7-3

ICHAR 7-6

IDIM

IDINT

IDNINT

IFIX

IMADD

IMAD.J

IMCOF

IMCON

IMDET

IMIDN

7-4

7-3

7-6

7-3

16-5

19-5

18-6

16-7

19-8

18-9

IMMLT 10-11

IMSCL 19-12

IMSUB 19-13

IMTRN 19-13

INDEX 7-6

INSERT 12-23

INT 7-3

IRND 7-5

ISIGN 7-4

JSTRSA 11-8

LEN 7-6

LGE 7-7

LG? 7-7

LINEQ 10-3

LLE 7-7

LLT 7-7

LOGOSS 5-8

LS 8-1

LSTRSA 11-8

LSUBSA 11-9

LT 8-1

M$21 9-7

M$51 9-7

M$52 9-7

MS55 9-7

MS61 9-7

MS62 9-7

MS77

MSxy

MADD

MADJ

MAXG

MAXL

MCHRSA

MCOF

MCON

MDET

MIDN

MING

MIN1

MINV

MKLBSF

MKONSF

MKONUS

MMLT

MOD

MRG1LS$S

MSCL

MSTRSA

MSUB

MSUBSA

MTRN

N$55

NS$77

SUBROUTINE NAME INDEX

9-7

19-5

18-5

11-18

19-6

18-7

18-8

18-9

7-3

10-10

23-7

23-8

23-7

10-11

12-11

19-12

11-11

18-13

11-11

18-13

x -

NSxx 9-4

NAMEQS 4-198

NINT 7-6

NLENSA 11-12

OSAAG1 18-2

OSACB3 19-19

OSAC15 19-19

OSAD97 17-1

OSAD@8 17-2

OSAL@4 19-1

OSAL#6 19-1

OSAL14 19-1

OSAL14 19-13

OSBD@7 17-1

OSBP62 18-2

OPENSA 11-29

OPNPSA 11-29

OPNVSA 11-398

OPVPSA 11-32

OR 8-1

OVERFL B-l

P1IB 18-2

P1IN 18-3

P108 18-3

P10U 18-3

PERM 16-14

PHANTS 5-9

38

PLINL

POSNSA

PRERR

PRWESS

PRWFIL

QUICK

RADXEX

RANDSA

RDASC

RDBIN

RDENSS

RDLIN$

RDTKS$

REAL

RECYCL

_ RESTSS

RESTOR

RESUSS

RESUME

RLSESS

RNAMSA

RND

RNDISA

RNUMSA

RPOSSA

RRECL

RS

23-7

11-34

14-6

4-11

12-24

12-24

11-21

15-6

15-6

A-15

4-19

5-15

4-20

F-12

4-21

F-12

12-15

11-16

7-5

11-22

11-17

11-34

14-1

RSTRSA

RSUBSA

RTRNS$S

RVONSF

RVONUS

RWNDSA

S$21

~SS$51

S$52

S$55

S$61

S$62

S$77

SSxy

SATRSS

SAVE

SAVESS

SEARCH

SEARCH

SEMSDR

SEMSNF

SEMSTN

SEMSTS

SEMSWT

SETUSS

SGDRSS

11-12

11-13

12-16

23-19

23-9

11-34

9-7

9-7

9-7

9-7

9-7

9-7

A-21

F-13

4-23

16-1

21-3

21-4

21-5

12-13

4-23

SGNLSF

SHELL

SHFT

SIGN

SIGNL$

SIN

SINSX

SUBROUTINE NAME INDEX

23-5

12-24

8-2

7-4

23-4

7-4

7-2

SINH 7-7

SLEEPS

SLITE

SLITET

SNGL

SPASSS

SPOOLS

SORT

SQRTSX

SRCH$S

SRTFSS

SSTRSA

SSUBSA

SSWTCH

SUBSRT

12-6

TSAMLC

TSCMPC

TSLMPC

TSMT

TSPMPC

21-5

B-2

B-2

7-3

4-25

19-5

7-4

7-2

4-26

12-9

11-13

11-14

28-16

19-17

19-4

19-24

19-20

xX -

TSSLCO

TSVG

T1IB

TLIN

T10

T10U

TAN 7-7

TANH

TEMPSA

TEXTO$

TIDEC

TIHEX

TIMDAT

TIMESA

TIOCT

TNOU

TNOUA

TODEC

TOHEX

TONL

TOOCT

TOVEDS

TREESA

TRNCSA

TSCNSA

TSRCS$$

TYPESA

31

20-1

19-7

18-3

18-4

18-3

18-4

7-5

11-35

5-15

18-4

18-4

5-16

11-298

18-4

18-3

18-3

18-4

18-5

18-5

18-4

18-3

11-15

11-35

UNITSA

UPDATE

WRASC

WRBIN

WRECL

WTLINS

XOR

YSNOSA

Z$80

11-38

4-35

15-5

15-6

14-3

A-35

	000
	001
	002
	003
	004
	005
	006
	01-00
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	16-01
	16-02
	17-01
	17-02
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	20-001
	20-002
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	22-001
	22-002
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-001
	23-002
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	a-1
	a-2
	a-3
	a-4
	b-1
	b-2
	c-1
	c-2
	c-3
	c-4
	c-5
	c-6
	c-7
	c-8
	d-1
	d-2
	d-3
	d-4
	e-1
	e-2
	e-3
	e-4
	e-5
	e-6
	e-7
	e-8
	f-01
	f-02
	f-03
	f-04
	f-05
	f-06
	f-07
	f-08
	f-09
	f-10
	f-11
	f-12
	f-13
	f-14
	f-15
	f-16
	f-17
	f-18
	f-19
	f-20
	g-1
	g-2
	g-3
	g-4
	g-5
	g-6
	x-01
	x-02
	x-03
	x-04
	x-05
	x-06
	x-07
	x-08
	x-09
	x-10
	x-11
	x-12
	x-13
	x-14
	x-15
	x-16
	x-17
	x-18
	x-19
	x-20
	x-21
	x-22
	x-23
	x-24
	x-25
	x-26
	x-27
	x-28
	x-29
	x-30
	x-31
	x-32

