| Computer
PRIMOS SUBROUTINES

REFERENCE GUIDE
PDR3621

MAN 3251-001

PRIMOS SUBROUTINES
PDR3621
Revision A

This guide documents the operation of the Prime Computer and its
supporting systems and utilities as implemented at Master Disk Revision
Level 17 (Rev., 17).

PRIML

PRIME Computer, Inc.
5¢0¢ 01d Connecticut Path
Framingham, Massachusetts 01791

ACKNONLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members, both customer and Prime, who contributed to and
reviewed this book.

Copyright © 1980 by
Prime Computer, Incorporated
53¢ 01d Connecticut Path
Framingham, Massachusetts 01741

The information in this document is subject to change without notice
anmd should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing January 19380

All correspondence on swygested charges to this document should be
directed to:

Katherine S. Abrams

Technical Publications Department
Prime Computer, Inc.

50@ 0l1d Connecticut Path
Framingham, Massachusetts @1701

ii

PDR3621 |

CONTENTS

PART I - OVERVIEW
1 INTRODUCTION TO MANUAL

Docunent Organization 1-1
Conventions 1-1

2 INTRODUCTION TO SUBROUTINES

Location of Libraries 2-1

File Handling Subroutines 2-3

Input OQutput (I/0) Subroutines 2-4
FORTRAN Library 2-5

Matrix Library 2-5

Applications Library 2-5

Sort Libraries 2-6

Synchronous and Asynchronous Controllers
Real-Time Subroutines 2-6

Calling Sequence Conventions 2-6

3 FILE MANAGEMENT SYSTEM CONCEPTS

Purpose of File System 3-1

Using the File System 3-1

File Types 3-4

File Directories 3-10

Disk Structures 3-12

File Access 3-12

PRIMOS-Level User Interaction 3-15

PART IT - PRIMOS SUBROUTINES

4 MANIPUIATION SUBROUTINES

Introduction 4-1
Subroutine Descriptions 4-3

5 MISCELLANEOUS PRIMOS SUBROUTINES
6 SAMPLE PROGRAMS
Writing a SaM File 6-1
Writing a DAM File 6-2

Reading a SAM or DAM File 6-3
Creating a Segment Directory 6-6

Reading a Logical Record from a File 6-8
6-12

Reading a File in a Segment Directory

iii

2-6

CONTENTS

January 1980

CONTENTS PDR3621

PART III MATH AND APPLICATION LIBRARY SUBROUTINES

7 FORTRAN STANDARD FUNCTIONS

Introduction 7-1

Function References 7-1

Single Argument Scientific Functions 7-2
FORTRAN 77 Functions 7-2

8 LOGICAL FUNCTIONS
9 ARITHMETIC OPERATIONS

Single Argument Functions 9-4
Two-Argumnent Functions 9-4

10 MATHIB (FORTRAN MATRIX SUBROUTINES)

Scope of MATHLB 10-1
Subroutine Conventions 10-1

11 APPLICATION LIBRARY (APPLIB)

General Description 11-1

APPLIB Routines 11-1

Naming Conventions 11-3

Library Implementation and Policies 11-4

String Manipulation Routines - Detailed Description
User Query Routines - Detailed Description 11-16
System Information Routines - Detailed Description
Conversion Routines - Detailed Description 11-22
File System Routines - Detailed Description 11-26
Parsing Routine - Detailed Description 11-39
APPLIB Summary and Keys 11-45

SYSCOM > ASKEYS 11-48

12 SORT LIBRARIES

Sort Subroutines Overview 12-1

SRTLIB (R-MODE) - Subroutine Descriptions 12-4
VSRTLI (V-MODE) - Subroutine Descriptions 12-6
SETUSS, RLSESS, CMBNSS, RTRNSS, CLNUSS 12-13
Sample User Input Procedure 12-17

MSORTS - Subroutine Descriptions 12-20

PART IV INPUT/QUTPUT LIBRARY SUBROUTINES
13 INTRODUCTION TO IOCS
Ooverview of IOCS 13-1

Temporary Device Assigmment 13-5
CONIOC 13-6

January 1980 iv

11-4

11-19

14

15

16

17

18

19

21

22

PDR3621 CONTENTS

I/0 SUBROUTINES
Error Handling for I/0 Subroutines 14-4
DEVICE INDEPENDENT DRIVERS

Data Formats 15-4
Subroutines for Device-Independent Drivers 15-5

DEVICE DEPENDENT DRIVERS

Subroutine Calling Sequence 16-1
DISK SUBROUTINES

Subroutine Description 17-1
USER TERMINAL SUBROUTINES

Calling Sequence 18-1
Keyboard Terminals and Paper Tape Subroutines 18-2

PERIPHERAL DEVICES
Line Printer Subroutines 19-2
Printer/Plotters 19-7
Magnetic Tapes 19-21
PART V — COMMUNICATION CONTROLLERS AND REAL-TIME SUBROUTINES

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

Synchronous Controllers 20-1
Asynchronous Controllers 20-16

REAL-TIME AND SYNCHRONIZATION SUBROUTINES

Real-Time and Inter User Communication Facilities 21-1
User Semaphores and Timers 21~1

PART VI - LIBRARY MANAGEMENT
LIBRARY MANAGEMENT
LIBEDB 22-1

EDB 22-1
EXAMPLES 22-5

v January 1980

CONTENTS PDR3621

PART VII - CONDITION MECHANISM SUBROUTINES
23 CONDITION MECHANISM SUBROUTINES
Introduction 23-1
Creating and Using On-Units 23-1
Condition Mechanism Subroutines 23-4
System-Defined Conditions 23-10
Crawlout Mechanism 23-19

Recursive Mode Software 23-19
Data Structure Formats 23-21

APPENDICES
A FORTRAN INTERNAL SUBROUTINES
Internal Subroutines A-1
Intrinsic Functions A-4
Floating Point Exceptions A-4

B INDICATION AND CONTROL SUBROUTINES

Overview B-1
Subroutine Descriptions B-1

C SVC INFORMATION
SVC's Called by PRIMOS Subroutines C-1
SVC Interface for I-0 Calls C-3
Operating System Response to SVWC C-6
D KEYS (SYSCOM > KEYS.F)
E INTERNAL FILE FORMATS
DSKRAT Formats E-1
Record Header Formats E-2
UFD Header and Entry Formats E-3
Segment Directory Formats E-5
DAM File Organization E-6
F OBSOLETE FILE SYSTEM SUBROUTINES
G ERROR MESSAGES AND CODES (SYSCOM ERRD.F)
Introduction G-1
New File System Error Handling Conventions G-3
Standard System Error Code Definitions G-4
Error Handling Routines G-5
INDEX

Index to Subroutine Names

January 1984 vi

Part I
Overview

PDR3621 LIBRARY DESCRIPTIONS

SECTION 1

INTRODUCTION

This book describes the subroutines (including the operating system

subroutines) that can be called from PRIME's high-level languages or
the Prime Macro Assembler (PMA).

Procedures relating to building and modifying 1libraries and changing
Input/Output Control System device assignments are included for user
convenience. An overview of PRIMOS file system concepts and usage is
in Section 3.

Libraries with subroutines that are useful for programmers are
discussed in this guide. Other libraries, such as the COBOL (VCOBLB),
REG (RPGLIB), or PL/I (PL1GLB) libraries contain subroutines which are
used exclusively by the appropriate compiler; the use of these
libraries is discussed in the corresponding language user guide. (See
Section 2 for a more detailed discussion).

DOCUMENT ORGANTIZATION

This manual is divided into six parts which are described in the Table
of Contents. ’

Overview

PRIMOS Subroutines

Math and Applications Library Subroutines
Input/Output Library Subroutines

Communication and Real-Time Library Subroutines
. Library Management

YLD W N
L]

CONVENTIONS
The following conventions are used in this guide.

Filename Conventions

filename source file
B filename Binary (object) file; compiler convention
L _filename Listing file; compiler convention

M filename Map file
*filename Saved executable memory image (R-mode)

Ffilename Saved executable segmented runfile (V-mode)

1 - 1 January 1980

SECTION 1 PDR3621

C_filename Command file
PH filename Phantom command input file.
O_filename Command output file
Filenames may be up to 32 characters long, the first character of which
must be alphabetic (A-Z). Filenames can be composed only of the
following characters: A-%Z, #-9, _# $ & - * ., and /.

Note

On some devices, underline () may print as back
arrow (<-).

Terminal Functions

(CR) or CR Carriage return
Character erase; deletes last character in current line
? Line kill; deletes all characters in current line

XXX Escape key for entry of non-printing character with
ASCII code xxx

REV. A 1 - 2

PDR3621 INTRODUCTION TO SUBROUTINES

SECTION 2

INTRODUCTION TO SUBROUTINES

The subroutines described in this guide include PRIMOS System

subroutines, Application Library subroutines and FORTRAN Mathematical
subroutines. In addition to the standard FORTRAN math functions,

Prime's library includes many other subroutines which can simplify

high-level language programming. PMA programmers can make explicit use
of the many low-level math and input/output subroutines that primarily

support the 1language translators, but high-level language programmers
will not normally need to call any of these low-level subroutines,

LOCATION OF LIBRARIES

The standard FORTRAN library subroutines for PRIMOS are contained in
the files FINLIB (R mode) and PFINLB and IFINLB (V mode) in UFD=LIB.

To get a list of all the libraries in the UFD LIB, use the commands:

ATTACH LIB
LISTF

To find the names of all the subroutines in any individual library, use
the commands:

ATTACH LIB
EDB library
FIND ALL
QUIT -

Shared FORTRAN, COBOL, FORMS, and MIDAS libraries may be installed at
system startup time. Note that Rev. 15 or Rev. 16 shared libraries
will not work with Rev. 17 PRIMOS and Rev. 17 shared libraries will

not work with earlier versions of PRIMOS. For more information refer
to the System Administrator's Guide.

A cross-reference of all subroutines described in this guide appears at
the conclusion of the index.

The libraries described in this manual are:

Library R mode V mode

Applications APPLIB VAPPLB

Fortran and FTNLIB PFTNLB
operating system IFTNLB

In-memory sorts MSORTS

Matrix MATHLB

2 - 1 January 1980

SECTION 2 PDR3621

Sort SRTLIB VSRTLI
Spool SPOOLS VSPOOS

There are other libraries not described in this manual. They are:

Library R mode V mode
Block device BDVLIB
interface
COBOL ~ COBLIB VCOBLB
COBKID *
FORMS RF'ORMS VFORMS
MIDAS KIDALB VKDALB
PL/T PL1GLB
PRIMENET WETLB
RPG RPGLIB
RPGKID *
Unimplemented UII
Instruction
Interrupt

* if MIDAS files are used

The subroutines in some of these libraries, such as PRIMENET, The Block
Device Interface and MIDAS are discussed in other manuals. The calls
to subroutines in other libraries, such as RPG, are generated
automatically by compilers, etc., The details need never concern the
programmer.

Note

At Rev, 17 of PRIMOS, the FORTRAN, MIDAS, COBOL and FORMS
libraries and the UII package are assumed to be shared.

REV. A 2 - 2

PDR3621 INTRODUCTION TO SUBROUTINES

FILE-HANDLING SUBROUTINES

All file handling is done by a collection of special subroutines
(Section 4), some internal to PRIMOS, and others available as library
routines. These routines are used in common by PRIMOS and all Prime
system software for simplified and uniform file handling. They can
also be called from user programs. PRIMOS file handling subroutines
are described in Section 4.

All the file handling subroutines called by the user are loaded when
the FORTRAN library is loaded. Most of these subroutines are interlude
subroutines which issue supervisor calls to PRIMOS in R-mode. Many
file-handling subroutines are direct entrance calls to PRIMOS in
V-mode. The appropriate subroutine in PRIMOS address space then
executes the appropriate file operation.

File Handling in User Programs

The file-handling subroutines simplify communication between the PRIMOS
file structure and user programs. In FORTRAN programs, for example,
the symbolic device unit numbers in formatted READ and WRITE statements
can be associated with PRIMOS file units. The following default
assignments are set up by the compiler:

FORTRAN Unit (u) File Unit (Funit)

5 1
6 2
7 3
8 4
9 5
16 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16

Example: to write a record to file Unit 1 (FORTRAN Unit 5), the user
could enter the command OPEN filename 1 2. The OPEN command associates
the file Filename with the file unit 1 and opens the file for writing
(code 2). During subsequent execution of a program containing a
formatted WRITE statement such as:

WRITE (5, 19) LINE

the contents of array LINE are written to the FORTRAN Unit 5 (File Unit

2 - 3 January 1980

SECTION 2 PDR3621

1), according to FORMAT statement 14.

At the program level, a filename and funit number can be associated by
the PRIMOS subroutine SRCHS, as in:

CALL SRCHSS (KSWRIT, 'TEXT', 4, 1, type, code)
See Section 4 for a more thorough discussion of SRCHSS.
File Input/Output: With the aid of the PRIMOS subroutine PRWF$S, the

user can bypass formatted FORTRAN I/0 and write directly from memory
arrays to the file system, as in:

CALL PRWFS$$S (KSREAD, 1, LOC(text), 36, 000000, words, code)

This subroutine reads 36 words from the file associated with funit 1 to
memory array text. words and code are returned values (words - number
of words transferred, code - error code). 000008 is a 32-bit constant
g.

At the applications 1level, the Applications Library for file
manipulation is also available for use.

INPUT OUTPUT (I/O) SUBROUTINES

The I/0 subroutines are those relating to data transfers and device
operations. The subroutines are managed by the Input/Output Control
System (IOCS). The IOCS subroutines perform input/output between the
Prime computer and the disks, terminals and peripheral devices within
the system configuration. The I/O subroutines include:

® Device Independent Drivers which allow the user to maintain
device independence by routing an I/O request to the independent
driver (See Section 15).

e Device Dependent subroutines for non-data transferring functions
required by I/0 devices (See Section 16).

e File system subroutines which perform file system input/output
operations (See Section 17).

e User Terminal subroutines which transfer data between a user
terminal or ASR Reader/Punch and memory (See Section 18).

® Peripheral Device routines include routines that control 1line
printers, drive a printer/plotter, drive serial and parallel
card readers and drive 7-track and 9-track tapes (See Section
19).

REV. A 2 - 4

PDR3621 INTRODUCTION TO SUBROUTINES

FORTRAN LIBRARY

The FORTRAN Library File contains FORTRAN function subroutines and Math
Subroutines.

@ The FORTRAN function Library computational subroutines include
the ANSI-standard functions. (See Section 7 for a description
of these functions).

@ Arithmetic subroutine calls are generated by the FORTRAN
compiler when certain operations are specified in the FORTRAN
program. These routines perform arithmetic operations on single
precision integers, single and double-precision floating point
and complex numbers. (See Section 9).

e Bit manipulation functions are provided by the FORTRAN compiler.
In some cases the compiler will generate in-line code for these
functions. However, in general, the 1library subroutine is
needed. (See Section 8 for a description of these functions).

MATRIX LIBRARY
MATHIB (FORTRAN Matrix Subroutines)) contains subroutines to perform
matrix operations, solve systems of simultaneous linear equations and

generate permutations and combinations of elements. (See Section 10
for the scope and use of this library).

APPLICATIONS LIBRARY
The Application Library (APPLIB and VAPPLB) provides users with an
easy-to-use library of service routines. They range from the very
simple, which do little more that call a lower level routine, to those
that are fairly complex because of the function desired. This library
provides relatively high-level functions such as:

e String handling routines

e User query routines.

e System information routines.

® Mathematical routines

e Conversion routines

e File system routines.

® Parsing routines.

2 - 5 January 1980

SECTION 2 PDR3621

SORT LIBRARIES

There are three libraries containing sort subroutines:

® SRTLIB subroutines are used to perform file sorting operations.
@ VSRILI is the V-Mode version of SRTLIB.

@ MSORTS library contains several in-memory sort subroutines and a
binary search subroutine.

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

These subroutines perform the moving of raw data for assigned AMIC or
SMIC lines. (Section 28).

REAL-TIME SUBROUTINES

PRIMOS supports user applications that have real-time requirements or
the need to synchronize execution with other user programs. This
support is a set of subroutines that provide access to Prime's
semaphore primitives and to internal timing facilities. (See Section
21).

CALLING SEQUENCE CONVENTIONS

FORTRAN - Assembly Language Interface: The form of a call statement in
FORTRAN is:

CALL name
CALL name (argument-1)
CALL name (argument-1, argument-2,...,argument-n)

where name is the subroutine name and argument-1,...,argument-n is a
list of arguments. FORTRAN translates the CALL statement into a JST or
PCL in the same way as the PMA CALL pseudo-operation. When arguments
are specified,the compiler generates a pointer in the the same way as a
PMA DAC statement for S-mode or R-mode code, or an AP statement for
V-mode or I-mode code. Figure 2-1 illustrates three calling sequences
for S-mode or R-mode: with no arguments, with one argument, and with
three arguments. The associated code is also presented. Table 2-2
illustrates the corresponding calling sequences for V-mode or I-mode.

REV. A 2 - 6

PDR3621

Main Program

No Arguments One Argument
CALL SUBX CALL SUBX
DAC A
Subroutine
ENT SUBX ENT SUBX
REL REL
SUBX DAC ** SUBX DAC **
first instruction CALL FSAT
. DEC 1
. APTR DAC**
. ' first instr.
JMP SUBX,*
JMP SUBX,*
Note: CALL SUBX is equivalent to EXT SUBX

JST SUBX

Figure 2-1.

INTRODUCTION TO SUBROUTINES

Two or More Arguments

SUBX

APTR
BPIR
CPTIR

nPTR

CALL SUBX
DAC A
DAC B
DAC C

DAC 4

ENT SUBX
REL

DAC **
CALL FSAT
DEC n
DAC * %k
DAC **
DAC **

DAC **
first instruction

JMP SUBX,*

S-mode and R-mode Subroutine CALL Conventions

January 1984

SECTION 2 PDR3621

Main Program

No Arguments One Argument Two or More Arguments
CALL SUBX CALL SUBX CALL SUBX
AP A,SL AP A,S
AP B,S
AP c,s
AP n,SL
Subroutine
ENT SUBX,SBX1 ENT SUBX, SBX1 ENT SUBX,SBX1
SEG SEG SEG
SUBX first instruction SUBX ARGT SUBX ARGT
first instruction first instruction
PRTN PRTN PRTN
LINK
SBX1 ECB SUBX DYNM APTR(3) DYNM APTR(3)
LINK DYNM BPTR(3)
SBX1 ECB SUBX, ,APTR, 1 DYNM CPTR(3)
DYNM DPTR (3)
DYNM nPTR(3)
LINK

S5BX1 ECB SUBX, ,APTR,n

Note: CALL SUBX is equivalent to EXT SUBX
PCL SUBX

Figure 2-2. V-mode and I-mode Subroutine CALL Conventions

REV. A 2 - 8

PDR3621 FMS CONCEPTS

SECTION 3

FILE MANAGEMENT SYSTEM CONCEPTS

PURPOSE OF FILE SYSTEM

The purpose of the file system is to simplify the manipulation of large
quantities of data using the computer. The major goals of the file
system are:

1. Automatic (not manual) allocation of disk storage space for
files

-

2. Referencing files by name
3. Clustering related information together

To accomplish the first goal, PRIMOS keeps a special file on each disk
to record the available space on that disk. PRIMOS uses this
information to allocate disk space automatically, and the average user
need not concern himself with the allocation process, other than to
know that it works.

Referencing files by name means selecting the desired file by giving
the File Management System string of alphanumeric characters. The file
system reserves one special file as a directory; it contains the names
of other files and their locations on the disk. The system can find
this Master File Directory (MFD) readily because both its name and its
location are always the same.

The third goal is achieved in two ways. The first is to have many file
directories; this allows like files to have their names and locations
saved in one file directory. The second way is to allow nested file
directories (i.e., a file directory may contain names not only of
files, but also of other file directories.) Thus, each user may divide
his files into appropriate groups and subgroups as he sees fit.

File directories also provide some degree of access protection to the
files contained within them, because a password may be associated with
each file directory. To examine the files in a directory, the user
must first supply the password for that directory.

USING THE FILE SYSTEM

To access files, the user must be attached to some file directory. A
file directory is a file that contains the names of other files on the
disk and the location on the disk of these files. A file directory may
contain the names of other file directories. To access files stored in
a directory, the user must give the password for that directory. A

3 - 1 January 1980

SECTION 3 ' PDR3621

user is properly attached when the file system has been supplied with
the proper file directory name and password, and it has found and saved
the name and location of the file directory. It can therefore find and
operate on all files contained in that file directory.

File Operations

The major operations on files are: 1initialization for access (open);
access; shutdown and resource deallocations (close); and deletion.

File Units

A disk file which is opened for reading and/or writing has a set of
associated pointers and status indicators. They comprise a file unit,
and serve as an access port for the exchange of data between the disk
file and the active program. One file at a time can be assigned to
each unit. The files may be open on several different 1logical disk
units at once. There are 128 file units available per user (16 under
PRIMOS III, 15 under PRIMOS II). Units 1 thru 126 may be used for any
purpose. Unit @ is reserved for the system and unit 127 is reserved
for the COMOUTPUT File.

Opening a File

A file may be opened for reading only, for writing only, or for both
reading and writing. If a file is opened for reading only, it may be
read, but it cannot be changed.

The operation of opening a file does the following :

1. Searches the file directory to see if the filename requested is
there

2. Sets up tables and initializes buffers in the operating system

3. Defines a pseudonym for the file. This pseudonym is called the
file unit number, and is the only name used for transfer of
data to and from the file.

If a file is opened for writing only, or for reading and writing, it
may be changed; if the filename is not found in the directory, the
filename is added to the file directory, and a new file is created.
When a new file is created at the time of opening, no information is
contained in the file.

Using an Open File

Once a file has been opened, a file pointer is associated with the
file. The file pointer indicates the next binary word to be accessed.

REV. A 3 - 2

PDR3621 FMS CONCEPTS

To understand how the file pointer works, imagine that the words in a
file are serially numbered from @#. The file pointer is then the number
of the next word to be accessed in a file.

Use of the Open and Close Commands

Various ways are provided to associate a specific filename (Filename)
with a PRIMOS file unit number. One method is the OPEN command.
Example:

OPEN filename funit key

Where filename is the name of a file listed in the UFD to which the
user is currently attached; funit is a PRIMOS file unit number
(1-126) , and key is 1 for reading, 2 for writing, 3 for reading and
writing, etc.

From the terminal, the user can open files with the OPEN command, and
can close them with the CLOSE command. The OPEN command allows a user
to assign a file to a unit and specify the activity - reading, writing,
or both. For complete descriptions of commands, refer to the PRIMOS
Commands Reference Guide (FDR3148). File units 1 to 126 (1-15 under
PRIMOS II) may be specified by the user.

Unit 16 is reserved for system use under PRIMOS II.

When the user is communicating with the file structure through one of
the standard Prime translator or utility programs, files are referred
to by name only. PRIMOS, or the program itself, handles the details of
opening or closing files and assigning file units. For example, the
user can enter an external command such as ED FILEl, which loads and
starts the text editor and takes care of the details of assigning the
file FILEl to an available unit for reading or writing.

Because open—for-write files are subject to alteration (deliberate or
accidental), the user must keep files closed except when they are being
accessed. Open files absorb system resources and may also make these
opened files unavailable to other users. The CLOSE ALL command returns
all open file units to a closed and initialized state (except the
command output file). When control returns to PRIMOS via _ an _error
condition, files are not closed.

On an open file, information may be read from the file starting at the
file pointer into high-speed memory, or information may be written to
the file starting at the file pointer.

Access and File Pointer

When a file is accessed, the file pointer is incremented once for each
binary word accessed.

3 - 3 ' January 1984

SECTION 3 PDR3621

Positioning a File

The file pointer may also be moved backward and forward within a file
without moving any data. This is called positioning a file. The value
of a file pointer is called the position of the file. Positioning a
file to its beginning is often called rewinding a file.

Truncation of a File

It is possible to shorten a file by truncating it. When a file is
truncated, the part of the file that is located at or beyond the file
pointer is eliminated from the file. If the file pointer is positioned
at the beginning of the file, all of the information in the file 1is
removed but the filename remains in the file directory.

/
Closing a File

A file that has been opened may be closed. The file unit number
(pseudonym) and the corresponding table areas in the operating system
are "cleaned up" and released for reuse.

Deleting a File

A deleted file has its filename removed from the file directory, and
all of the disk memory that the file occupied is released for use by
other files.

Write-Protected Disks

Using the file management system, it is possible to run with
WRITE-PROTECTED disks.

FILE TYPES

A disk storage medium is composed of many separate blocks of data
recording space (disk records or sectors). How these blocks are put
together to make a file can greatly affect the efficiency of
positioning. Because of this, the file system has two different ways
of linking physical disk records together to form a file. The SAM
(Sequential Access Method), results in more compact storage on the disk
and requires less high-speed memory for efficient operation, but is
much slower for repeated random positioning over a file. The DAM
(Direct Access Method), results in quicker positioning over a file, but
requires more disk space and more high-speed memory. SAM and DAM files
are functionally equivalent in all other respects. The structural
differences between these two file types are transparent to the user.

REV. A 3 - 4

PDR3621 FMS CONCEPTS

SAM Files

A SAM file is the basic way of structuring disk records into an ordered
set; (i.e., a threaded 1list of physical disk records.) See Figure
3-1 .

BEGINNING
RECORD

Figure 3-1. SAM File Structure

A SAM file is a collection of disk records chained together by forward
and backward pointers to and from each record (See Appendix E). Each
record in a SAM file (or any file) contains a pointer to the beginning
record address (BRA) of the file. The first record has a pointer to
the directory in which this file is an entry (father pointer). The
file system maintains the record headers and is responsible for the
structure of the records on the disk.

3 - 5 January 1980

SECTION 3 PDR3621

DAM Files

DAM (direct access method) file organization uses the SAM file method
of making an ordered set; a special technique is used to rapidly
access the i'th data record.

1. Logical file record @ of a DAM file is reserved for use by the
system. No user data is ever written in this record which is
always the top level index.

2. The top level index is always one record long (exactly). If
the file is short, the record address pointers point to records
containing user data. Otherwise, the pointers point to records
containing a lower level index. See Figure 3-2.

A DAM file index can exceed 512 entries on a storage module (220
entries for other devices). A multi-level index is maintained so that
any record in the file can be directly accessed. (See Section 6 for
DAM file creation example).

Figure 3-3 shows a typical relationship of DAM files within the PRIMOS
file hierarchy.

REV. A 3 - 6

PDR3621 FMS CONCEPTS

RECORD
HEADER

413

425

450

451

1230 —_—1 439 r 2 y 1 y O

b —— — — ——

Figure 3-2 DAM File Structure

3 - 7 January 1980

SECTION 3

MFD

DSKRAT O

ALPHA O+

BETA O
UFD
BETA

Figure 3-3.

REV. 0@

PDR 3621
DSKRAT A1
UFD
ALPHA A2
A1
A2
B
o1 —
B SEG B SEG (1)
[. BSEG
1 O4—
2 O N
3 O
B SEG (2)
4 O——\
J
L B SEG (4)
L L B SEG (3)
//,__———»
B SEG (4) 2 O
IN ANOTHER "
SEGMENT 3 O’/_.
DIRECTORY s O

Hypothetical PRIMOS File Hierarchy with SAM and DAM

File Structures

PDR3621 FMS CONCEPTS

Record Formats

All files on PRIMOS disks are stored in fixed-length 448-word records,
(104@-word records for storage module disks), chained together by
forward and backward pointers. The number of records in a file is
limited only by physical storage space.

The first eight words of the record make up the record header (first 16
words for storage module record). Specific content of record headers
is discussed in Appendix E. All remaining words within the record,
following the record header, may be used to store ASCII character pairs
or 16-bit .words. For further information about disks and storage
modules, refer to the the System Administrator's Guide.

File Formats

A file is a series of records of the type described above, with the
distinction that the £first record in such a chain is reached from a
pointer within a. User File Directory or an entry in a segment
directory.

Every file contains a series of 16-bit words. The format depends on
the type of data in the file and how they were originally entered into
the file system. The following types of files are in general use in
PRIMOS systems:

File Description
ASCII ASCII character text, packed two
uncompressed characters per word, as entered from a

terminal or from the Prime card reader,
paper-tape reader, etc. Each record is
followed by a word containing a new-line
character. This is the format of Source
files, text and data records for
sequential access.

ASCII Same as above, but successive spaces are

Compressed - replaced by a relative horizontal tab
character followed by a space count, and
lines are terminated by a LINE FEED
character.

Object Translation of a source file as generated
by the Macro Assembler and FORTRAN
compiler for processing by the linking

loader.
Memory Header block followed by a direct
Image transcription of high-speed memory. These

files are created by LOAD and applications
programs to be used as Runfiles.

3 - 9 January 1980

SECTION 3 PDR3621

Directories See Appendix E for format details.
(UFD and
Segment)

FILE DIRECTORIES

Directories are specialized files containing entries that point to
files or other directories. Directories are the nodes in the file
system tree structure hierarchy; files are the branches. Figure
3-3 illustrates this concept. Directories are either User File
Directories (UFD's) or segment directories. Each disk pack (or
device, in the case of non-removable media) has one special UFD
called a Master File Directory (MFD) that contains an entry for
each User File Directory (UFD) in the MFD. In turn, each UFD
contains an entry for every file or directory file in that
directory. UFDs and MFDs are accessed in the same way as other
files.

Segment directories differ from UFD's in one fundamental respect:
they contain file locations but not file names. As far as the file
system is concerned, the files in a segment directory have no
symbolic names. However the user may refer to files within a
segment directory by their entry number, which is a decimal number
enclosed in parentheses as:

(1)
(2)
(185)

All of the above are 'names' of files in segment directories.

Master File Directory (MFD)

Each disk unit contains one MFD file as an index to the first
physical record of each UFD in the MFD. The MFD has the same
format as any UFD. The first record of the MFD begins at physical
record 1 of the disk. Figure 3-3 shows a chain of pointers
extending from the MFD to UFD and segment directories, and to a DAM
or SAM file.

User File Directory (UFD)

A User File Directory (UFD) is a file that links PRIMOS filenames
to the physical record of a file.

A UFD 1is associated with each user, project, etc. The UFD header
includes the two passwords for the UFD. After the header, the UFD
contains an entry for every file or directory named by the user.
Each entry includes a filename and 2 words (INTEGER*4) that

REV. A 3 - 10

PDR3621 FM5 CONCEPTS

contains the address of the first physical record of the file
(called the beginning record address or BRA).

(See Appendix E for UFD header and entry details.)

UFDs can span multiple records; there is no limit to the number of
files in a UFD. ~

UFD entries include an identification of special files; i.e.,
files having unique use in the file system and not normally
accessed by the user. These files are BOOT, DSKRAT, BADSPT, and
MFD.

Segment Directory Use

The segment directory file is opened for reading/writing on a unit
of the user's choice. The f£file directory segment is then
positioned to the segment directory entry number containing the
desired file,

A desired file may be opened, closed, deleted, or truncated by
giving the file unit number of the segment directory file rather
that the filename. Segment directories are organized as SAM files
or DAM files, consistent with the file structure the user wishes to
build.

Segment Directory Formatting

A segment directory 1is formatted in a manner similar to a UFD
except that entries are identified by a single entry number (from @
to 65535) which is the pointer to the beginning record of a file.
Segment directories are therefore 1limited to 65536 ('200900)
entries.

A UFD entry in a segment directory is illegal. The only file types
allowed in a segment directory are SAM, DAM, and other segment
directories. See Section 6 for an example of creating segment
directories.

Date/Time Stamping

There is a field in a file's UFD entry that records the date and
time when the file was last modified. This field is updated when a
file is closed, and either of the following conditions exist:
e A old file has been opened for writing or reading and
writing, and a write operation has been performed.

e A new file has been created.

3 - 11 January 1980

SHCTION 3 PDR3621

Notes

The father UFD is updated whenever entries are changed
added, or deleted in that UFD.

The use of "last modified" rather than "last used" allows
the use of WRITE-PROTECTED disks.
DISK STRUCTURES

Disk Record Availability Table (DSKRAT)

PRIMOS maintains a file, whose name is the partition name (packname),
containing the used/unused status of every physical record on the disk.
The partition name is given when the disk is created by the MAKE
command. For example, the name of the documentation disk is DOCUMN,
and the name of the DSKRAT file for this disk is DOCUMN. Each record
is represented by a single binary bit; a 'l1' means the record is
available, and a '@' means it is in use. On a typical PRIMOS disk, the
DSKRAT file 1is allocated several contiguous records. The DSKRAT file
is maintained as a file on the disk, starting at physical record 2.
The format of DSKRAT is shown in Appendix E.

Disk Organization

PRIMOS supports all Prime disk options. Prime software provides
facilities for keyed indexed direct access files. Multiple disks are
organized so that every fixed disk and every removable disk or
partition is a self-consistent volume with its own bootstrap, DSKRAT,
and MFD. Iogical record zero is cylinder zero, head zero, sector zero
on all options.

FILE ACCESS

Attaching to a UFD

To access files or use PRIMOS utility functions, the user must be
attached to a UFD. Typically, during program development, each user
attaches to a UFD reserved for program files with the ATTACH command.
For further information, refer to PRIMOS Commands Reference Guide.
Within executable programs, the user can attach to other UFDs; for
example, to access data. At the program level, this is accomplished by
the subroutine ATCHSS (see Section 4).

REV. A 3 - 12

PDR3621 ' FMS CONCEPTS

File Access Control

PRIMOS (including PRIMOS 1III) gives a user who attaches with owner
password (owner) the ability to open file directories to other users
with restricted rights to the owner's files. Specifically, the "owner"
of a file directory can declare, on a per-file-basis, the access rights
a "nonowner" has over each of the owner's files. These rights are
separated into three categories:

® Read Access (includes Execute Access)
® Write Access (includes over-write and append)
® Delete/Truncate rights

The owner of a UFD can establish protection keys for any file in the
UFD: the owner access rights and the nonowner access rights. The
owner password is required to obtain owner privileges. The nonowner
password (if any) 1is required to obtain nonowner privileges. The
command :

PASSWD owner-password nonowner-password

replaces the existing passwords in the UFD with a new owner—password
and a nonowner-password. This command must be given by the owner while
attached to the UFD. A nonowner is returned a "NO RIGHT" error. The
command

PROTECT filename okey nkey

replaces the existing protection keys on filename in the current UFD

ot e

with the owner (okey) and nonowner (nkey) protection keys. Valid
numbers for these keys are:

@ no Access allowed
1 read Access only
2 write Access only
3 read and Write Access
4 delete/Truncate only
5 delete/Truncate and Read
6 delete/Truncate and Write
7 all Access allowed (Read/Write/Delete/Truncate)
The owner can restrict access to a file by the protection mechanism,

which can be wuseful in preventing accidental deletion or overwriting.
A nonowner cannot give the PROTECT command and achieve desired results.

3 - 13 January 1984

SECTION 3 PDR3621

The command will return the message "NO RIGHT" and return to PRIMOS
command level.

A user obtains owner status to a UFD by attaching to the UFD, giving
its name and owner password in the ATTACH command. A user obtains
nonowner status to a UFD by giving its name and nonowner password in
the ATTACH command.

A user can find out his owner status through the LISTF command. LISTF
types the name of the current UFD, its logical device and O, if the
user is an owner, or N if the user is a nonowner. LISTF then types the
names of all files in the current UFD. An owner can determine the
protection keys on all files in the current UFD through use of the file
utility, FUTIL.

Other Features of File Access

The owner/nonowner status is updated on every ATTACH command and
separately maintained for the current UFD and home UFD.

A user's privileges to files under a segment directory are the same as
his privileges with the segment directory.

The protection keys of a newly created file are:

owner has all rights (7)

nonowner has none (2)
The passwords of a newly created UFD are:

owner password is blank

nonowner password is zero (any password will match)
A nonowner cannot create a new file in a UFD, or successfully give the
CNAME, PASSWD, or PROTECT commands and a nonowner cannot open his
current UFD for reading or writing (see the ATCHSS command, Section 4
for further details).
In the context of file access control, the MFD has all the features of
a UFD. Therefore, an MFD can be assigned owner/nonowner passwords, and
the UFDs subordinate to the MFD may have their access controlled by

protection keys, via the PROTECT command. If file access is violated,
the error message is: NO RIGHT

PRIMOS II File Access Control

The PRIMOS II operating system does not observe file access control
over individual files, but it is compatible to a degree with PRIMOS III
and PRIMOS. Under PRIMOS II, a user cannot obtain access to a UFD by

REV. A 3 - 14

PDR3621 FMS CONCEPTS

ATTACHing with the nonowner password. If the owner password has been
given, the ATTACH is successful, but subsequent access to files in the
directory is not checked. Files created under PRIMOS II are generated
with the same protection keys as under PRIMOS III and PRIMOS and the
passwords of a newly created UFD are the same.

File Data Access Methods

Under PRIMOS, the means of file access is the Sequential Access Method
(SAM) or the Direct Access Method (DAM) which are discussed earlier in
this section. With both methods, the file appears as a linear array of
words indexed by a current position pointer. The user may read or
write a number of words beginning at the pointer, which is advanced as
the data are transferred. A file service call (PRWFS$S) provides the
ability to position the pointer anywhere within an open file. File
data can be transferred anywhere in the addressing range. When a file
is closed and re-opened, the pointer is automatically returned to the
beginning of the file. The pointer can be controlled by both the
FORTRAN REWIND statement and PRWFS$$ positioning.

With the DAM method of access, the file also appears to be a linear
array of words, but this method has faster access times in positioning
commands. PRIMOS keeps an index described earlier in this section to
allow fast random positioning. User calls to manipulate SAM and DAM
files are identical.

PRIMOS-LEVEL USER INTERACTION
PRIMOS commands fall into two major categories: the internal commands
(implemented by subroutines that are memory-resident as part of PRIMOS)

and external commands (executed by programs saved as disk files in the
command UFD, CMDNC@).

Command Activity

On receiving a command at the system terminal, PRIMOS checks whether it
is an internal command, and if so, executes it immediately. Otherwise,
PRIMOS looks in the command directory of Logical Disk Unit @ for a file
of that name. If the file is found, PRIMOS RESUMEs the file (loads it
into memory and starts execution). All files in the command directory
are assumed to be SAVEd memory image files, ready for execution. Most
are set up to return automatically to PRIMOS when their function is
complete or errors occur. The command line that caused the execution
of the saved program is retained and may be referenced by the program
to obtain parameters, options, and filenames via the RDTKSS subroutine.
To add new external commands, the user simply files a memory image
program (SAVEd file) under the command directory UFD (CMDNC@). Memory
image files may also be kept in other directories and executed by the
RESUME command.

3 - 15 January 1980

SECTION 3 PDR3621

Command Files

As an alternative to entering commands one at a time at the terminal,
the user can transfer control to a command file by the command:
COMINPUT. This command switches command input control from the
terminal to the specified file. All subsequent commands are read from
the file. One can assign any unit for the COMINPUT file and command
files may call other command files. For detailed information on the
COMINPUT command, refer to the PRIMOS Commands Reference Guide
(FDR3108) .

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system. Command
files are also useful in system building when many files must be
assembled, concatenated, loaded, etc., (for example, generating library
files).

File Maintenance (FIXRAT)

To give the user an efficient and thorough way to check the integrity
of data on a PRIMOS disk, PRIMOS provides a file maintenance program,
FIXRAT, in the command directory, CMDNC@. When FIXRAT is invoked as an
external command, it checks for self-consistency in the structure of
pointers in every record, file, and directory on the disk. If there
are breaks in the continuity of double-strung pointers, discrepancies
between the DSKRAT file and the reconstructed Record Availability
Table, or other error conditions, FIXRAT prints appropriate error
messages. FIXRAT asks the user to specify whether or not to take
certain steps to repair a damaged file structure on a particular
logical disk unit. For details and examples, refer to the FIXRAT
description in the System Administrator's Guide (PDR31@9).

REV. A 3 - 16

Part 11
PRIMOS Subroutines

Part II (Sections 4, 5 and 6) describes the PRIMOS subroutines: A
complete description of parameters 1is given for each subroutine;
followed by notes on usage, brief examples of calls, and notes on
conpatibility with old file system functions.

e In Section 4, file manipulation subroutines are described.

e Section 5 describes other calls to I/0 control system
subroutines.

e The sample programs in Section 6 illustrate the use of the
subroutines.

e The real-time subroutines that set system-wide semaphores are
described in Section 22 and the old file system calls (obsolete)
are found in Appendix F.

PDR3621 FILE SUBROUTINES
SECTIN 4
FILE MANIPULATION SUBROUTINES

INTRODUCTION

Key Definitions for File System Calls

All keys and error codes are specified in symbolic, rather than
numeric, form. These symbolic names are defined as PARAMETERs (for
FORTRAN programs) and EQUs (for PMA programs) in $INSERT files present
in a UFD on the master disk named SYSCOM. The key definition files are
named KEYS.F for FORTRAN and KRYS.P for PMA. The error definition
files are ERRD.F and ERRD.P. The user is urged to use these symbolic
names. For convenience in recognizing old file system keys, these
files are listed in Appendix G.

Error Handling Conventions

There are two error handling schemes. One scheme, called the integer
error return code scheme (described in Appendix G) , handles file system
and semaphore subroutines. The other, involving alternate returns,
handles I/0 subroutines. (See Section 14.)

Filenames

Filenames may be 1--32 characters in length, the first character of
which must be alphabetic. Filenames can be composed only of the
following characters: A-Z -9 # $ & * — . and /. Filenames may not
contain embedded blanks. -

Direct-Entrance Calls to PRIMOS

PRIMOS supports direct-entrance calls to certain supervisory
procedures. Using this mechanism, routines such as SRCH$$, PRWFSS,
etc., can be invoked directly via a PCL instruction thereby
circumventing the overhead associated with a SVC entry into PRIMOS.
Direct-entrance calls are available only from V-mode programs and will
be correctly set up by using the V-mode FTN library.

Direct-entrance calls are through ECBs (entry control blocks) that are
contained in gate segment 5, of the supervisor. 1Invalid calls or other
references to segment 5 will cause the error messages UNDEFINED GATE or
TLLEGAL PAGE REF.

4 - 1 January 1980

SECTION 4 PDR3521

The PRIMOS routines that can be entered via direct call, described in
this section, are:

ATCHSS
CNAMSS
COMISS
CcoMOS$
CREASS
FORCEW
GPASSS
GPATHS
NAMEQS
PRWF'SS
RDENSS
RDLINS
RESTSS
RESUSS
SATRSS
SAVESS
SGDRSS
SPASSS
SRCHSS
TSRCSS
UPDATE
WILINS

The PRIMOS I/0 subroutines that can be entered via direct calls,
described in Section 14, are:

DSINIT
RRECL
WRECL

The error-handling subroutines that can be entered via direct calls and
are part of the error handling scheme via SVCs are (Section 14):

ERRSET

GETERR
PRERR

Wake-up and notify subroutines, useful for real-time programming and
synchroni zation between processes described in Section 21 are:

SEMSDR
SEMSNF
SEMSTN
SEMSTS
SEMSWT
SLEEPS

REV. A 4 - 2

PDR3621 FILE SUBROUTINES

Under R-mode memory images on PRIMOS II or PRIMOS III, all operating
systan subroutines use the SVC interface described in Appendix C.

SUBROUTINE DESCRIPTIONS

The File Manipulation Subroutines are described below in alphabetical
order.

Caution

Do not omit any arguments in calls to the subroutines described
in this section. Do not specify as @ (or any constant) any
arguments returned by the subroutines. Never specify the
integer return code as #. Always check the error code to see
if the subroutine call was successful. It is essential to
refer to Appendix G which covers the error handling scheme for
these subroutines.

P ATCHSS

ATCHSS attaches to a UFD and, optionally, makes it the home UFD. In
attaching to a directory, the subroutine ATCHS$S specifies where to look
for the directory. ATCHSS specifies a User File Directory (UFD) in the
Master File Directory (MFD) on a particular logical disk, a
sub-directory in the current UFD, or the home UFD as the
target-directory of the ATCHSS operation.

CALL ATCHSS (ufdnam,namlen,ldisk,passwd,key,code)

ufdnam The name of the UFD to be attached. If key= and ufdnam
is the key KSHOME, the home UFD, is attached. If the
reference subkey is KSIMFD or KSICUR, ufdnam is either a
Hollerith expression or the name of a three-word array
that specifies a ufdname to attach to.

namlen The length in characters (1-32) of ufdnam. namlen may
be greater than the length of ufdnam provided that
ufdnam is padded with the appropriate number of blanks.
I1f ufdnam=KSHOME, namlen is disregarded.

1disk The nunber of the logical disk to be searched for ufdnam
when key=KSIMFD. The parameter, 1ldisk, must be a
logical disk that is started up. Other values are:

KSALLD Search all started-up logical devices in
logical device order, and attach to the UFD in
which ufdnam appears in the MFD of the lowest
numbered logical device.

KSCURR Search the MFD of the disk currently attached.

4 - 3 January 1980

SECTIN 4 PDR3621

passwd A three-word array containing one of the passwords of
ufdnam. passwd can be specified as g if attaching to
the home UFD. If the reference subkey is KSIMFD or
KSICUR, passwd is either a Hollerith expression (1 to 5
characters) or the name of a three-word array that
specifies one of the passwords of ufdnam. If passwd is
blank, it is specified as three words, each containing
two blank characters.

key Composed of two subkeys that are combined additively, a
REFERENCE subkey and a SETHOME subkey. The REFERENCE
subkey values are as follows:

KSIMFD Attach to ufdnam in MFD on 1ldisk.

KSICUR Attach to ufdnam in current UFD (ufdnam is a
subdirectory) .

The SETHOME subkey, KS$SETH, may be added to the
REFERENCE subkey, e.g., KSIMFD+KS$SETH, which will set
the current UFD to the home UFD after attaching. If the
REFERENCE subkey is KSICUR, or if ufdnam is ¢, 1ldisk is
ignored, and ldisk is usually specified as 0.

code An integer variable set to the return code.

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
As an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATCHSS subroutine does not
charge the home UFD unless the user specifies a change in the
subroutine call. The user gets owner status if he gives the owner
password, or gets nonowner status if he gives the nonowner password.
The owner of a file directory can declare, on a per-file basis, what

access a nonowner has over the owner's files. The nonowner password

may be given only under PRIMOS and PRIMOS 1III. (Refer to the
description of the commands SPASS$S and SATRS$S in this section for more

information.)

A BAD PASSWD error condition does not return to the user's program.
PRIMOS command level is entered, and the user is not attached to any
UFD. Other errors leave the attach point unchanged.

REV. A 4 - 4

PDR3621 FILE SUBROUTINES

Examples

1. Attach to home UFD:
CALL ATCHSS (KSHOME,?,0,0,@,CODE)

2. Attach to UFD named 'G.S.PATTON', password 'CHARGE' in current
UFD:

CALL ATCHS$ ('G.S.PATTON',10,KSCURR,'CHARGE',K$SICUR,CODE)
P cnamss

CNAMSS changes the name of a file in the current UFD.
CALL CNAMSS (oldnam,oldlen ,newnam,newlen ,code)
oldnam The name of the file to be changed.

oldlen The length in characters of oldnam. :

newnam The new name of the file.
newlen The length in characters of newlen.
code An integer variable set to the return code.

The user must be the owner of the UFD of the file to change the name.
CNAMSS does not change the last modified date-time of the file or any
of the other attributes of the file. However, the last modified
date-time of the UFD in which the file resides is changed. CNAMSS may
cause the position of the file in the UFD to change with respect to the
other files if the new name is longer than the old name. It is illegal
to change the name of the MFD, BOOT, BADSPT. A NO RIGHT error message
is generated if this is attempted.

P coMIss
COMISS switches the command input stream from the user's teminal to a
command file, or from a command file to the terminal.
CALL COMIS$S (filnam,namlen,funit,code)
filnam The name of the command file to switch the command input
stream. If filnam is TTY, the command stream is

switched back to the terminal and funit is closed. If
filnam is PAUSE, the command stream is switched to the

4 - 5 January 1984

SECTION 4 PDR3621

terminal but the file unit specified by funit is not
closed, If filnam is CONTINUE, the command stream is
switched to the file already open on funit. The values:
-TTY, -PAUSE, and -CONTINUE cannot be used as option
names.

namlen The length in characters (1-32) of filnam.

funit The file unit (1-126 or 1-15 under PRIMOS II) on which
to open the command file specified by filnam. Normally,
File Unit 6 is used.

code An integer variable set to the return code.
p CcoMoss

COMOS$ switches terminal output to file or terminal.
CALL COMOSS (key,filnam,namlen ,xx ,code)
key A word of flags specifying the action to be taken:

:098001 Turn TTY output off.
1000902 Turn TTY output on.
1000034 Reserved.
:000010 Turn file output off.
: 0030203 Turn file output on.

1000040 Append to filnam if filnam is being opened;
close filnam if turning file output off.

1003130 Truncate filnam if Filnam is being opened.

filnam An array containing the name of the file to be opened or
7

namlen The length in characters (1-32) of filnam or 0.

XX Reserved. Should be specified as 4.

code An integer return code from the file system.

Routing of the terminal output stream is modified as indicated by the
key. If TTY output is turned off, all printing at the terminal is
suppressed until TTY output is re-enabled or until a wunit '77 error
message 1s generated. 1If a filename is specified, any current command
output file is first closed. The new file is opened for writing on the

REV. A 4 - 6

PDR3621 FILE SUBROUTINES

command output unit '77, and all subsequent terminal output is sent to
the file. TTY output continues unless explicitly suppressed. Unless
the APPEND option bit is set, the current contents of the file is
overwritten., The parameter can be omitted by specifying a pair of
blanks or a lergth of #.

Error messages (from ERRRTN, ERRPR$) force TTY output on, but leave the
command output file open (i.e., the error message will appear both on
the terminal and in the file). Disk error messages force TTY output on
and file output off for the supervisor user (the file is left open).

Unrecovered disk errors will do likewise for the user to whom the disk
is assigned. ‘

P> CREASS

CREASS creates a new UFD (a subUFD) in the current UFD and initializes
the new UFD entry.

CALL CREASS (filnam,namlen,opass,npass,code)

filnam The name to be given the new UFD.

namlen The length in characters (1-32) of filnam.

opass A three-word array containing the owner password for the
new UFD. If opass(l)=0, the owner password 1is set to
blanks.

npass A three-word array containing the nonowner password for

the new UFD. If npass(l)=@ the nonowner password is set
to 0's. Any password given to ATCHSS matches a nonowner
password of @'s.

code An integer variable to be set to the return code from
CREASS.

passwords can be set such that the password cannot be entered from the
keyboard (i.e., the directory is accessible only from a program) . In
any case, passwords can be, at most, six characters lorg. Passwords
less than six characters must be padded with blanks for the remaining
characters. Passwords are not restricted by filename conventions and
may contain any characters or bit patterns. It is strongly recommended
that passwords do not contain blanks, commas, or the characters = ! !
@{}YI[1 (); ~ <> or lower case characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

4 - 7 January 1980

SECTION 4 PDR3621

Since the subroutine SRCHSS does not allow creation of a new UFD,
CREA$S must be used for this purpose. Under program control, CREAS$S
allows the action of the PRIMOS CREATE command.
CREASS requires owner rights on the current UFD.

For example, to create new UFD with default passwords of blanks for
owner and 3*g for nonowner:

CALL CREAS$ ('NEWUFD',G,0,0,CODE)

P> FORCEW

CALL FORCEW (9, funit)

funit A file unit number from 1 to 126 on which a file has
been opened.

The FORCEW subroutine immediately writes to the disk all modified
records of the file that is currently open on funit. Normally this
action is not needed, since the system automatically updates all

charged file system information to the disk at least once per minute.
Under PRIMOS II, the FORCEW routine has no effect.

P> GPasss

GPASSS returns the passwords of a SUBUFD in the current UFD.
CALL GPASS$ (ufdnam,namlen ,opass,npass,code)

ufdnam The name of the UFD with passwords to be returned.
ufdnam is searched for in the current UFD.

namlen The lemgth in characters (1-32) of ufdnam.

opass A three-word array that is set to the owner password of
ufdnam.

npass A three-word array that is set to the nonowner password
of ufdnam.

code An integer variable set to the return code.

GPASS$$ requires owner rights to the current UFD.
For example, to read passwords of SUBUFD into PASS (6) array:

CALL GPASSS ('SUBUFD',6,PASS (1) ,PASS (4) ,CODE)

REV. A 4 - 8

PDR3621 FILE SUBROUTINES

P> GPATHS

GPATHS obtains a fully qualified pathname for an open file unit, or for
current or home attach points. GPATHS operates in V-mode only.

CALL GPATHS (key, funit, buffer, bufflen, pathlen, code)

key An integer variable specifying pathname to be returned
(INTEGER*2) . Possible values are:

KSUNIT Pathname of file open on file unit specified by
funit will be returned (KSUNIT = 1).

KSCURA Pathname of current attach point will be
returned (KSCURA = 2).

K$HOMA Pathname of home attach point will be returned
(KSHOMA = 3) .
funit Specifies file unit number if key is KS$UNIT, otherwise
ignored.
buffer The buffer where the pathname is to be returned.
bufflen Specifies maximun buffer length in characters. If the

pathname exceeds bufflen characters, data in buffer is
meaningless and a code of E$BFTS is returned.

pathlen Specifies the length in characters of the pathname
returned in buffer. Characters beyond pathlen in buffer
contain no useful information.

code A standard error code. Possible values are:

gag0gd No errors.
ESBKEY A bad key was specified.
ESBUNT A bad unit number was specified in funit.

ESUNOP Unit specified in funit is closed and name
cannot be returned.

4 - 9 January 1989

SECTION 4 PDR3621

ESNATT Not attached to any node (keys KS$CURA,KSHOMA) .

ESBFTS The buffer specified with character lergth
bufflen is too small to contain full pathname.
The buffer contains no valid data.

The following are examples of information returned as the result of
using GPATHS. The lower-case names define what information the
examples (in upper case) actually represent.

<d isk__name>MFD
<SPOOLD>MFD

<d isk_name> ufd name
<SPOOLD>SPOOLQ

<d isk_name> ufd namel> ufd name2>fil e name
<SALESD>WEST.COAST>YTD. 1979>MARCH

<disk name>ufd name>segment directory name
<OPSYST>PR4.64 >VPRM0OS

<disk _name>ufd name>segment directory ’_name>entry number>entry number
<DBDISK>DICTIONARY>WORDS>22>68

P> NAMEQS
NAMEQS is a LOGICAL function that compares two filenames for
equivalence.
LOG = NAMEQ$ (filnaml,namlenl,filnam2,namlen2)

filnaml The first filename for camparison.

namlenl The length in characters of filnaml.

filnam2 The second filename for comparison.

namlen2 The length in characters of filnam2.
NAMEQS per forms a character-by-character compare of filnaml and filnam2
for the length of namlenl or namlen2, whichever is shorter. The
trailing characters of the longer name (if the names are not the same

length) must be all blank for equality. The names supplied must be
valid filenames.

NAMEQS will work correctly on numeric fields only if namlenl=namlen2.

REV. A 4 - 19

P> PRWFSS

PDR3621 FILE SUBROUTINES

PRWFSS reads, writes, positions, and truncates SAM or DAM files.

CALL PRWFS$ (rwkey+poskey+mode,funit,LOC(buffer),nw,pos,rnw,code)

rwkey

poskey

mode

This subkey, which cannot be omitted, indicates the
action to be taken. Possible values are:

KSREAD

KSWRIT

KSPOSN

KSTRNC

KSRPOS

A subkey

Possible

KS$PRER

KSPOSR

KSPREA

KSPOSA

A subkey

Read nw words from funit into buffer,

Write nw words from buffer to funit.

Set the current position to the 32-bit integer
in pos.

Truncate the file open on funit at the current
position.

Return the current position as a 32-bit integer
word number in pos.

indicating the positioning to be performed.
values are: (If omitted, same as K$PRER)

Move the file pointer of funit the number of
words specified by pos relative to the current
position before per forming rwkey.

Move the file pointer of funit the number of
words specified by pos relative to the current
position after performing rwkey.

Move the file pointer of funit to the absolute
position specified by pos os before performing
rwkey.

Move the file pointer of funit to the absolute
position specified by pos after per forming
rwkey.

that may be omitted or used to transfer all or

a convenient number of words. Possible values are: (If

omitted,

read/write nw)

4 - 11 January 1980

SECTION 4 PDR3621

KSCONV ~ Read/write a convenient number of words (up to
the number specified by the parameter nw) .

KSFROW Perform write to disk from buffer before
executing next instruction in the program.

funit A file unit number (1 to 15 for PRIMOS II,
1-126 for PRIMOS) on which a file has been
opened by a call to SRCH$S or by a command.
PRWFSS actions are performed on this file unit.

LocC The data buffer to be used for reading or writing.
(buffer) TIf buffer is not needed, it can be specified as INTL(?).

nw The nunber of words to be read or written (mode=g) or
the maximum nunber of words to be transferred
(mode=K$CONV) . nw may be between # and 65535.

pos A 32-bit integer (INTEGER*4) specifying the relative or
absolute positioning value depending on the value of
poskey.

rnw A 16-bit unsigned integer set to the number of words

actually transferred when rwkey=K$READ or K$WRIT. Other
keys leave rnw unmodified. For the keys KSREAD and
KSWRIT, rnw must be specified.

code An INTEGER*2 variable to be set to the return code,

Pos is always a 32-bit integer, not a <record-number, word-number>
pair. All calls to PRWFS$S must specify pos even if no positioning is
requested. An INTEGER*4 g can be generated by specifying 000000 or
INTL(3) in FTN, OL in PMA.

poskey is observed for all values of rwkey except KSRPOS, for which it
is ignored (the file position is never changed) .

If rwkey = K$POSN, nw and rnw are ignored, and no data are transferred.

A call to read or write nw words causes nw words to be transferred to
or from the file, starting at the file pointer in the file. Following
a call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using poskey of KS$PREA or K$POSA,
the user may explicitly move the file Pointer to pos before or after
the data transfer operation. Using a poskey of K$PRER or KSPOSR, the
user may move the file pointer backward pos words from the current
position, if pos is negative or forward pos words if pos if positive.
Positioning takes place before or after the data transfer, depending on
the key. If nw is @ in any of the calls to PRWF$$, no data transfer
takes place, and PRWF$$ perfoms a pointer position operation.

REV. A 4 - 12

PDR3621 FILE SUBROUTINES

The mode subkey of PRWFS$S is most frequently used to transfer a
specific number of words on a call to PRWFSS. In these cases, the mode
is @ and is normally omitted in PRWF$$ calls. In some cases, such as
in a program to copy a file from one file directory to another, a
buffer of a certain size is set aside in memory to hold information,
and the file is transferred, one buffer-full at a time. 1In the latter
case, the user doesn't care how many words are transferred at each call
to PRWFSS, so long as the number of words is less than the size of the
buffer set aside in memory.

Since the user would generally prefer to run a program as fast as
possible, the KSCONV subkey 1is used to transfer nw words, or less in
the call to PRWFSS. The number of words transferred is a number
convenient to the system, and therefore speeds up program run time.
The number of words actually transferred is set in rnw. For an example
of PRWF$S use in a program, refer to Section 6.

The subkey KSFRCW guarantees that PRWFSS will not return until the disk
record (s) involved are written to disk. The write to disk will be
performed before executing the next instruction in the program. Since
the KSFRCW defeats the disk buffering mechanism, it should be used with
care as it increases the actual amount of disk I/0. It should only be
Used when it is necessary to know that data is physically on a disk
(e.g., as when implementing error recovery schemes).

The programmer is responsible for ensuring that only one process (user)
is involved in the PRWFS$ call concurrently. The file may be open for
use by several processes. The forced write applies only to the data
written by the process performing the operation. See an example of the
use of the KSFRCW later in this section.

On a PRWFSS BEGINNING OF FILE error or END OF FILE error, the parameter
rnw is set to the number of words actually transferred.

On a DISK FULL error, the file pointer is set to the value it had at
the beginning of the call to PRWF$$. The user may, therefore, delete
another file and restart the program (by typing START after using the
DELETE command) . This feature does not work with PRIMOS II.

During the positioning operation of PRWFS$$, PRIMOS maintains a file
pointer for every open file. The file pointer is a two—word integer,
because files may be longer than 55,536 words. When a file is opened
by a call to SRCHSS, the file pointer is set in such a manner that the
next word that is read is the first word of the file. The file pointer
position is @, for the beginning of file. If the user calls PRWFSS to
read 499 words, and does no positioning at the end of the read
operation, the file pointer is set to 490.

4 - 13 January 1980

SECTION 4 PDR3521

Note

In V-mode, PRWFS$ only transfers words into the same segment as

buffer. An attempt to read across a segment boundary will

cause a wrap-around instead and read into the beginning of the

segment. This is also true of writing from the address space.
Examples

1. Read the next 79 words from the file open on unit 1:

CALL PRWFSS (K$READ,1,LOC(BUFFER) ,79,00007@, NMREAD,CODE)

N
.

Add 1924 words to the end of the file open on UNIT
(10000003 is just a very large number to get to the end of
the file):

CALL PRWFSS (XKSPOSNH+K$PREA,UNIT,LOC() ,0,10000000,NMW,CODE)
CALL PRWFSS (KSWRIT,UNIT,LOC(BFR),1024,000300,NVMW,CODE)

3. See what position is on File Unit 15 (INT4 is INTEGER*4):
CALL PRWFSS (X$RPOS, 15,L0C(7) ,#,INT4,?,CODE)

4. Truncate file 10 words beyond the position returned by the
above call:

CALL PRWFSS (KSTRNCHKS$PREA,15,L0C(4) ,8,INT4+10,0,CODE)

5. Position the file open on unit nunber UNIT to the tenth
word used in the file and the first 10 words of ARRAY will
be written to it:

INTEGER*2 ARRAY (441) , CODE,UNIT,RET
SINSERT SYSCOMDKEYS.F
CALL PRWFSS (KSWRIT+K$FRCWHKSPREA, UNIT, LOC (ARRAY) ,
X 1@, INTL (18) ,RET,CODE)
IF (CODE .NE. @) GOTO error_ processor

The above FORTRAN call will cause the file open on unit number UNIT to
be positioned to the tenth word in the file, and the first 10 words of
ARRAY will be written to it. The next instruction in the user's
program will not be executed until the data has actually been written
to disk. If an error is encountered while writing to disk, the error
code ESDISK (disk I/0 error) is returned. If more than one concurrent
user of the disk record is detected, the error code ESFIUS (file in
use) is returned. 1In this case, the write is not lost, but will not be
per fomed immediately.

REV. A 4 - 14

P> RDENSS

PDB3621 FILE SUBROUTINES

RDENSS positions in or reads from a UFD.

CALL RDENSS (key,funit,buffer ,buflen,rnw,filnam,namlen,code)

key

funit

buf fer

buflen

rnw

filnam

namlen

codé

An integer variable specifying the action to be taken.
Possible values are:

KSREAD Advance to the start of the first or next UFD
entry and read as much of the entry as will fit
into buffer. Set rnw to the nunber of words
read.

KSNAME Position to the start of the entry specified by
filnam and namlen. Read as much of the entry
as will fit into buffer. Set rnw to the number
of words read. If the entry is not in the
directory, the code ES$FNTF is returned. If
namlen is zero, the next entry is returned.

KSGPOS Return the current position in the UFD as a
32-bit integer in filnam.

KSUPOS Set the current position in the UFD from the
32-bit integer in filnam.

A unit on which a UFD is currently opened for reading.

(A UFD may be opened with a call to SRCHSS.)

A one dimensional array into which entries of the UFD
are read.

The length, in words, of buffer.

An integer variable that will be set to the nunber of
words read.

A 32-bit integer variable used for keys of K$GPOS and
K$SPOS or a name for use with KSNAME.

A 16-bit integer variable specifying the length in
characters (#-32) of filnam. This variable is only used
with K$SNAME

An integer variable to be set to the return error code.

4 - 15 January 1980

SECTION 4 PDR3621

RDENSS is used to read entries from a UFD. rnw words are returned in
buffer, and the file unit position is advanced to the start of the next
entry. Return code ESEOF means no more entries, ESBFTS means buffer is
too small for the entry.

In the file management system, UFDs are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file
is not necessarily found at the end of a UFD.

The complete format of currently defined entries is given here. (All
numbers are decimal unless preceded by a ':'.)

@ | ECW | ENTRY CONTROL WORD (TYPE/LENGTH)
1 |F I

I T I

| L |

l E |

| ... | FILENAME (BLANK PADDED)

IN I

| A |

l Mo

I E_|

17 | _PROTEC | PROTECTION (OWNER/NON-OWNER)

18 |RESERVED| RESERVED FOR FUTURE USE

19 | FILTYP | FILETYPE <-—— (END OF ENTRY FOR TYPE=l)
20 | DATMOD | DATE IAST MODIFIED

21 | TIMMOD | TIME LAST MODIFIED

22 |RESERVED| RESERVED F(R FUTURE USE

23 |RESERVED| RESERVED FCOR FUTURE USE

ECW Entry Control Word. An ECW is the first word in any entry
and consists of two 8-bit subfields. The high-order 8 bits
indicate the type of the entry, the low-order 8 bits give the
length of the entry in words including the ECW itself.
Possible values of the ECW are as follows:

1000001 Type=#, length=1. This entry indicates either a UFD
header or a vacant entry. No information other than
the ECW is returned.

1000424 Type=1, length=20. Type=1 indicates an old

partition UFD entry. Words @-19 in the diagram
above are returned.

REV. A 4 - 146

FILENAME

PROTEC

FILTYP

PDR3621 FILE SUBROUTINES

1001030 Type=2, length=24. Type=2 indicates a new partition
UFD entry. All the above information is returned.
Reserved fields should be ignored.

User programs should ignore any entry-types that are
not recognized. This allows future expansion of the
file system without unduly affecting old programs.

Up to 32 characters of filename, blank padded.

owner and nonowner protection attributes. The owner rights
are in the high-order 8 bits, the non-owner in the low~-order
8 bits. The meanings of the bit positions are as follows (a

set bit grants the indicated access right):

1-5,9-13 Reserved for future use.

6,14 Delete/truncate rights.
7,15 Write-access rights.
8,16 Read-access rights.

On a new partition, the low-order eight bits indicate the
type of the file as follows:

saM file.

paM file.

SAM Segment directory.
DAM Segment Directory.
UFD

S W N

Oon an old partition, the filetype is invalid. The file must
be opened with SRCH$S to determine its type. Oof the high
order 8 bits, six are currently defined as follows:

bit 1 set only for the BOOT and DSKRAT files if they are
on a storage module disk.

bit 2 The dumped bit. This bit can be set by a call to
SATRSS and is reset whenever the file is modified.
This bit is used by the utility program that dumps
only modified files to magnetic tape. Users are
normally not interested in this bit.

bit 3 This bit is set by PRIMOS II when it modifies the
file and reset by PRIMOS (and PRIMOS III) when it
modifies the file. If this bit is set, the
time-date field for the file will not be current
because PRIMOS II doesn't update the date-time stamp
when it modifies a file.

4 - 17 January 1980

SECTION 4 PDR3421

bit 4 This bit is set to indicate that this is a special
file. The only special files are BOOT, MFD, BADSPT,
and the DSKRAT file which has the name packname.
This bit, and this bit only is valid on both new and
old style partitions.

bits 5-6 Setting of the per-file read/write lock.
The PRIMOS file system supports individual values of the read/write
lock (RWLOCK) on a per-file basis, for those files residing on new
partitions. The read/write lock is used to regulate concurrent access
to the file, and was formerly alterable only on a system-wide basis.

The meaning of the lock values is:

vValue bits 5,6 Meaning
a 3,0 Use system-wide RNLOCK to regulate
concurrent access.
1 7,1 Allow arbitrary readers or one writer.
2 1,0 Allow arbitrary readers and one writer.
3 1,1 Allow arbitrary readers and arbitrary
writers,

New files are initially created with a per-file read/write lock of
zero.

UFDs do not have user-alterable read/write locks, though segment

directories do. Files in directory have the per-file read/write lock
of the segment directory.

The per-file read/write lock value is read by RDENSS. It is set by a
SATR$S call with a key of KSRWLK. The desired value is supplied in
bits 15 and 16 of ARRAY(l), the remaining bits of which must be zero.
On old partitions, the SATR$S call fails with an error code of ESOLDP.
Owner rights to the containing UFD are required, otherwise the call
fails with an error code of ESNRIT. An attempt to set the lock value
of a UFD fails with an error code of ESDIRE. If the SATR$SS call
requests a lock value which is more restrictive than the current usage
of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested are
governed by the new lock value. TIt is unspecified what happens when
bits 1-13 of ARRAY (1) are not zero.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write

locks of zero, so the system-wide RWLOCK setting continues to control
access to such files,

REV. A 4 - 18

PDR3621 FILE SUBROUTINES

The FUTIL command copies the per-file read/write lock setting along
with the file when performing a TRECPY of a UFDCPY (but not a COPY)
operation. FUTIL prints the value of the per-file read/write lock if
the option RNLOCK is specified to the LISTF request.

DATMOD The date on which the file was last modified., The date,
which is wvalid only on new partitions, is held in the
binary form YYYYYYYMMMMDDDDD, where YYYYYYY is the year
modulo 199, MMMM is the month, DDDDD is the day.

TIMMOD The time at which the file was last modified. The time,
which is wvalid only in new partitions, is held in binary
seconds-since-midnight divided by four.

Examples
1. Read next entry from new or old UFD:

100 CALL RDENSS (KSREAD,funit,ENTRY,24,RNW,d,d,CODE)
IF (CODE .NE. @) GOTO <error handler>
TYPE=RS (ENTRY (1) ,8) /* GET TYPE OF ENTRY JUST READ
IF (TYPE.NE.1.AND.TYPE.NE.2) GOTO 1090 /* UNKNOWN

2. Position to beginning of UFD:

CALL RDENS$S (X$UPOS,funit,®,9,0,000000,0,code)
P> RDLINS
RDLINS reads a line of characters from a compressed or uncompressed

ASCII disk file.

CALL RDLINS (funit, buff, count, code)

funit A file unit (1-125) on which the file to be read is
open.
buff An array of count words in which the line of information

from the disk file is to be read.
count The size of buff in words.
code A return variable set to # if no errors, or an error

code if an error. See PRWFSS for a list of possible
error codes.

4 - 19 January 1980

SECTION 4 PDR3621

A line of characters from File Unit funit is read into Buffer buff, two
characters per word. Lines on the disk are separated by the new line
character. The character DC1 (221 octal) followed by a character count
when read from the disk is replaced by character-count blanks. If the
line on the disk is less than 2*count characters, the remalnlng space
in buff is filled with blanks. Tf the line on the disk is greater than
2*cont characters, only 2*count characters fill buff and the remaining
characters on the disk file line are ignored. In all cases, the new
line never appears as part of the line in buff. RDLINS is the same
routine as T$ADO7 except that the altrtn argument has been replaced by
the code argument.

P> RESTSS

RESTSS reads an R-mode memory image from a file in the current UFD into
memory. The SAVE'd parameters for a file previously written to the
disk by the GSAVE or SAVESS subroutine or the SAVE command are loaded
into the nine word array vector. The memory image itself 1is then
loaded into memory using the starting and ending addresses provided by
vector (1) and vector(2).

CALL RESTSS (vector,filnam,namlen,code)

vector A nine word array set by REST$$. vector(l) is set to
the first location in memory to be restored. vector(2)
is set to the last location to be restored. The rest of
the array is set as follows:

vector (3) saved P register
vector(4) saved A register
vector (5) saved B register
vector(5) saved X register
vector (7) saved Keys
vector(8) not used
vector(9) not used

filnam The name of the file containing the memory image.
namlen The length in characters (1-32) of filnam.
code An integer variable set to the return code.

Note

Use the PRIMOS command SEG to restore V-mode memory image from
a file.

REV. A 4 - 20

PDR3521 FILE SUBROUTINES

P RESUSS

RESUSS restores an R-mode memory image from a file in the current UFD,
initializes registers from the saved parameters, and starts executing
the program.

CALL RESUSS$ (filnam,namlen)
filnam The name of the file containing the memory image.
namlen The length (1-32) in characters of filnam.

RESUSS does not have a code argument. If an error occurs, an error
message is typed and control returns to command level.

P SATRSS

SATRSS allows the setting or modification of a file's attributes in its
UFD entry.

CALL SATRSS (key,filnam,namlen,array,code)

key An integer variable specifying the action to take.
Possible values are:

K$PROT Set protection attributes from array(l).
array(2) is ignored for old partitions and must
be § for new partitions (it is reserved for
expansion) . The meaning of the protection bits
in array(l) is-given under the description of
RDENSS.

KSDTIM Set date/time modified from array(l) and
array(2). The format of the date/time is given
under the description for RDENSS.

KSDMPB Set the dumped bit. This bit is set by the
utility program that dumps modified files and
is reset by the operating system whenever the
file is modified. Users should not use this
key.

KSRWLK Users can set the per-file read/write lock on a
per-file basis. Bits 15 and 16 of array(l) are
set by the user for specific lock values.
Refer to RDENSS for further information on the
read/write lock,

4 - 21 January 1980

SECTION 4 PDR3A21

Note

The date-time-modified and the dumped bit are modified by
PRIMOS. When these fields are changed for a file, the
date-time-modified field of the UFD containing that file
(parent UFD) 1is not charged. However, when the name or
protection attributes of the file are charged, the
date-time-modified and the dumped bit of the parent UFD are
updated; and the dumped bit for the file is reset.

filnam The name of the file whose attributes are to be
modified. The current UFD is searched for filnam.

namlen The length in characters of filnam.

array A two-word array containing the attributes. For KS$SPROT,
array(2) must be zero.

code An integer variable set to the return code.

Owner rights are required on the UFD containing the entry to be
modified. ‘

The formats of the attributes in array are the same as those in a UFD
entry obtained from RDENSS.

An attempt to set the date/time modified, the dumped bit, or the
read-write lock on an old partition will result in an ESOLDP error
(error message 'OLD PARTITION').

Since a call to SATRSS modifies the UFD, the date/time modified of the
UFD itself is updated.

Examples
1. Set default protection attributes on MYFILE:
ARRAY (1)=:3400 /* OWNER=7, NON-OWNER=J

ARRAY (2)=3 /* SECOND WORD MUST BE #
CALL SATRSS (K$PROT,'MYFILE',6,ARRAY (1) ,CODE)

N
.

Set both owner and non-owner attributes to read-only (note
carefully bit positioning in two-word octal constant) :

CALL SATRSS (K$SPROT,'NO-YOU-DON''T',12,:100200000,CODE)

REV. A 4 - 22

PDR3621 FILE SUBROUTINES

3. Set date/time modified from UFD entry read into ENTRY by

RDENSS:

CALL SATRSS
P SAVESS

SAVESS is used to save
UFD.

(K$DTIM,FILNAM,6,ENTRY (21) ,CODE)

an R-mode memory image as a file in the current

CALL SAVESS (vector ,filnam,namlen,code)

vector A nine word array the user sets up before calling SAVESS

vector(l)
location
the last

is set to an integer which is the first
in memory to be saved and vector(?) is set to
location to be saved. The rest of the array is

set at the user's option and has the following meaning:

vector (3)
vector(4)
vector (5)
vector(h)
vector (7)
vector(8)
vector (9)

filnam The name

saved P register
Saved A register
saved B register
saved X register
Saved Keys

not used

not used

of the file to contain the memory image.

nanlen The length in characters (1-32) of filnam.

code An integer return code.

P> SGDRS$S

SGDR$$ positions in a

segment directory, reads entries, and allows

modification of a directory's size.

CALL SGDR$S (key,funit,entrya,entryb,code)

key An integer specifying the action to be per formed.

Possible

K$SPOS

values are:

Move the file pointer of funit to the position
given by the value of entrya. Return 1 in

entryb if entrya contains a file, return 0 if

entrya exists but does not contain a file,
return -1 if entrya does not exist (is beyond
EOF) . If EOF 1is reached on K$SPOS, the file

4 - 23 January 1980

SECTION 4

KSFULL

KSFREE

KSGOND

KSGPOS

KSMSIZ

KSMVNT

PLR3621

pointer is left at EOF. The directory must be
open for readiny or both reading and writing.

Move the file pointer of funit to the position
given by the value of entrya. If the position
contains a file, set entryb to the value of
entrya. If the position is empty, search for
the first non-empty entry following the
position specified. If a non-empty entry
exists, set entryb to the position of that
entry. If the EOF is reached and a entry with
a file has not been found, then return -1 in
entryb. If EOF is reached on KS$FULL, the file
Pointer is left at EOF.

Act in the same manner as K$FULL, but find an
entry that does not contain a file.

Move the file pointer of funit to the

end-of-file position and return in entryb the
file entry number of the end of the file.

Return in entryb the file entry number pointed
to by the file pointer of funit.

Make the segment directory open on funit entrya
entries long. The file pointer is moved to the
end of file. The directory must be open for
both reading and writing.

The entry pointed to by entrya is moved to the
entry pointed to by entryb. The entrya entry
is replaced with a null pointer. Errors are
generated by K$MUWNT if there is no file at
entrya, if there is already a file at entryb,
if either entrya or entryb are at or beyond
EOF. The file pointer is left at an undefined
position. The directory must be open for both
reading and writing.

funit The file unit on which the segment directory is open.

entrya An unsigned 16-bit entry number in the directory, to be
interpreted according to key.

entryb An unsigned 16-bit integer set or used according to key.

code An integer variable set to the return code.

When using SGDRS$S, the

write-only access.

REV. A

segment directory must not be opened for

PDR3621 FILE SUBROUTINES

A KSMSIZ call with entrya=g causes the directory to have no entries.
If the value of entrya is such as to truncate the directory, all
entries including and beyond the one pointed to by entrya must be null.
See SRCH$S for more segment directory information.

Note

When sequentially reading a directory (K$SPOS, entrya =
entrya+l, K$SPOS, ...), entryb=-1 indicates the end of the
directory, NOT the return code ESEOF. ESEOF is returned when
entrya indicates a position beyond EOF, i.e., the entry
following the first KSPOS to return entryb=-1.

Examples

1. Read sequentially through the segment directory open on 6:

CURPOS=-1
100 CURPOS=CURPOS+1
CALL SGDR$S (K$SPOS, 6,CURPOS, RETVAL,CODE)
IF (RETVAL) 200,300,400 /* BOTTOM, NO FILE, IS FILE

2. Make directory open on 2 as big as directory open on 1:
CALL SGDRS$S (KSGOND,1,9,SIZE,CODE)
IF (CODE.NE.@) GOTOQ <error handler>
CALL SGDRSS (K$MS1Z,2,SI1ZE,0,CODE)
P sPasss

SPASSS sets the passwords of the current UFD.
CALL SPASSS (opass,npass,code)

opass A three word array that contains the password to set as
the owner password.

npass A three word array that contains the password to set as
the nonwoner password.

code An integer variable set to the return code.

SPASSS requires owner rights to the current UFD. For passwords
intended to be typed from the terminal, passwords should not start with
a nunber nor should they contain blanks commas =t @ { } [1 () "<
or >. Passwords should not contain lower-case characters but may
contain any other characters including control characters.

pPasswords which are not intended to be typed from the terminal (i.e.,
access through program only) can be any bit pattern.

4 - 25 January 1980

SECTION 4

P SRCHSS

PDR3621

SRCHSS is used to open a file, close a file, delete a file, or check on

the existence of a file.

CALL SRCHS$ (actiontreftnewfil,filnam,namlen,funit,type,code)

action A subkey
Possible

KSREAD
KSWRIT
K$RDWR
K$CLOS
KSDELE

KSEXST

ref A subkey

KSIUFD

KSISEG

KSCACC

KSGETU

indicating the action to be performed.
values are:
Open filnam for reading on funit.
Open filnam for writing on funit.
Open filnam for reading and writing on funit.
Close file by filnam or by funit.
Delete file filnam.

Check on existence of filnam.
modifying the action subkey as follows:

Search for file filnam in the current UFD (this
is the default).

Perform the action specified by action on the
file that is a segment directory entry in the
directory open on file unit filnam.

Change the access mode of the file already open
on funit to action. (K$READ, KSWRIT, KSRDWR
only) .

Open filnam on an unused file-unit selected by
PRIMOS. The unit number is returned in funit.
When this key is used, SRCHSS supplies a unit
nunber not currently in use. See example of
use of this key later in this section.

PDR3621 FILE SUBROUTINES

newfil A subkey indicating the type of file to create if filnam
does not exist., Possible values are:

KSNSAM New threaded (SAaM) file (this is the default).
KSNDAM New directed (DAM) file.

KSNSGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM) segment directory.

It is not possible to generate a new UFD with
SRCHSS; use CREASS instead.

filnam Name of the file to be opened (2 characters per word).
KSCURR can be used to open the current UFD (ACTION Keys
KSREAD, KSWRIT, or KSRDWR only). If ref is KS$SISEG,
filnam is a file unit from 1 to 62 (1 to 15 under PRIMOS
II) on which a segment directory is already open.

namlen The length in characters (1-32) of filnam.

funit The nunber (1-15 under PRIMOS II, 1-162 under PRIMOS) of
the file unit to be opened or closed, or returned
argument with K$GETU key.

type An integer variable that is set to the type of the file
opened. type is set only on calls that open a file —-
it is unmodified for other calls. Possible values of

tzgg are:

Sav file

DAM File

SAM Segment Directory
DAM Segment Directory
UFD

W N

code An integer variable set to the return code.

SRCHSS is a complex subroutine that has multiple uses. The most common
use is to open and close files.

Opening and Closing Files

Opening a file consists of connecting a file to the file unit. After a
file is opened, the file may be accessed to transfer information to or
from the file or to position the current position pointer of a file
unit (file pointer). These actions are accomplished by other
swbroutines, which reference the file through the attached file unit,
such as PRWF$S, SGDR$S, RDENSS, RDLINS, WTLINS, ISADO7, O$SADJ7, RDASC,

4 - 27 January 19809

SECTION 4 PDR36A21

and WRASC. Information is also transferred through the statements in
specific languages, such as the READ and WRITE statements in FORTRAN.

On opening a file, SRCH$S specifies:

1. Allowable operations that may be performed by PRWF$S and other
routines (these operations are read-only, write-only or both
read ard write) .

2. Where to look for the file, or where to add the file if the
file does not currently exist. SRCH$$ either specifies a
filename in the currently attached user file directory or a
file unit number on which a segment directory is open. TIn the
segment directory reference, the file to be opened has its
beginning disk address given by the entry at the current
position pointer of the file unit.

Each file in a UFD has associated with it two sets of access rights,
one for the owner and one for the nonowner of the UFD. These access
rights are initially owner-has-all, nonowner-has none. They can be
changed using the PROTECT comand or the SATRSS subroutine. These
access rights (reading allowed, writing allowed, or delete allowed,
etc.) are checked on any attempt to open a file. A NO RIGHT error
code (ESNRIT) is set if the user does not have the required rights.

If the file cannot be found on open for reading, SRCHS$ generates the

file-not-found error code (ESFNTF). If the file unit is already in
use, SRCH$S generates the unit in use error code (ESUIUS).

The Read/Write Interlock

Under default conditions, the system allows any number of readers if
there are no writers or a single writer and no readers for the same
file. The system prevents one user from opening a file for writing
when another user has the file open for reading or writing., The system
prevents one user from opening the file for reading or writing while
another user has the file open for writing. Furthermore, these
interlocks hold for a single user attempting to open a file on multiple
file units he has available. 1If the interlock is violated, the FILE IN
USE error code is generated (ESFIUS).

This interlock may be changed on a per-file basis. (Refer to RDENSS.)

On closing a file, it is possible to close by name or by file unit.
SRCH$$ attempts to close by filnam unless filnam is specified as @ in
which case it closes the file unit specified. If filnam is not fourd,
an error 1is generated (code = ESFNTF), but 1f the file unit is
specified, SRCH$$S ensures that the file unit specified by funit is
closed and never generates an error code (unless funit is out of
range) . If the file has been modified while it was open, the date-time
stamp of the file is updated when the file is closed.

REV. A 4 - 28

PDR3621 FILE SUBROUTINES

Changing the Access Mode of an Qpen File

A user may change the access mode of a file that is open on funit to
open-for-reading, open-for-writing, or open for both reading and
writing, using the KSCACC key. Note that access rights and the
read/write interlock rules from the file are checked and the attempt to
change access may fail.

Adding and Deleting Files in UFDs

A call to SRCHSS to open a file for writing or both reading and
writing, causes SRCHS$S to look in the current UFD for the file. If the
file is not found in the UFD, a new file is created of # length and an
entry for the file is put in the UFD. The date/time of the file is set
to the current date/time, the access rights are set to
owner-has-all-rights, nonowner-has-none, the read/write interlock 1is
set to the system standard read/write lock and the file type to that
file type specified in the SRCHS$$ call. If the file type is not
specified, it is a SaM file. Note that nonowners cannot generate new
files (error code returned is ESNRIT) .

A call to delete a file must specify a legal funit although the file
system does not use that file unit during the delete. Deleting a file
returns the records of the file to the DSKRAT pool of free records ard
erases the entry from the UFD leaving a vacant hole. Vacant holes in
UFDs will be reused for new files if of the right size, so new files do
not always appear at the end of your UFD. These vacant holes take very
little room on the disk in most cases. These holes are compressed out
of UFDs when the FIXRAT maintenance program is run by the system
operator. See The System Administrator's Guide (PDR3109).

Checking the Existence of a File

If the user wishes to find out if a certain file exists in the current
ufd or segment directory, the SRCH$$ KSEXST key can be used. The file
is not affected in any way and access rights and the read/write
interlock are not checked.

Operations on Files that are UFDs

Files in the current UFD that are subUFDs can be opened only for
reading. The contents of entries of subUFDs can be read through calls
to RDENSS and GPASSS once the subUFD is open. The current UFD can be
opened for reading by specifying the key KS$CURR in the filnam field of
the SRCH$S call. Calls to the SATRSS or SPAS$S subroutines require
that the current UFD not be open or the FILE IN USE error is generated.
New UFDs can only be created using the CREA$S subroutine, not SRCHSS.
UFDs may be deleted with SRCHS$ only if the UFD contains no files. The
FUTIL command can delete a nested structure of UFDs.

4 - 29 January 1980

SECTION 4 PDR3A21

Operations Involving Segment Directories

Segment directories are directories in which the files are referenced
by their position in the directory rather than a name. Furthermore,
the directory entry associated with a file contains the attributes such
as date/time, protection or the read/write lock, of the highest level
segment directory in the UFD. Segment directories are not attached but
are operated on using SRCHSS and SGDRSS.

To create a segment directory, use SRCH$SS to open a new file for
reading and writing with the file type specified as SAM segment
directory or DAM segment directory.

With the file open, use SGIRS$$S to make the segment directory contain a
certain number of null file entries (KSMSIZ key).

To create a file in a segment directory, first open the directory for
reading and writing on a funit (e.g. SUNIT) if it is not already open.
Next, use SGDR$$ to position to the null file entry desired. Next, use
SRCH$S to open a new file for writing or reading and writing in the
segment directory by using the KSISEG reference key and placing the
SUNIT nunber of the segment directory in the filnam argument. The file
unit of the new file goes in the wusual field (funit). SRCHS$S will
create the new file and place a pointer to the new file in the segment
directory entry of SUNIT.

Use SRCH$S to close by unit or name (with KSISEG) a file in a segment
directory.

To open a file that already exists in a segment directory, open the
segment directory and position to the desired entry as explained above.
Use SRCHSS to open the file as explained above. If the directory entry
already contains a pointer to the file, that file will be opened. If
not, and the attempt is to open for reading, the file not found error
is generated. Any type of file except a UFD may be created in a
segment directory.

To delete a file in a segment directory, open the segment directory,
position to the file desired, then use SRCH$SS with the XK$ISEG and
KSDELE keys. SRCHSS returns the record of the file to the DSKRAT and
replaces the pointer to the file with a null pointer in the segment
directory entry.

Finally, to delete a segment directory, the user must first delete all
files in the directory, set the size of the directory to @ using
SGMR$$, close the directory, then delete it with SRCH$S. The FUTIL
command may be used to delete a segment directory at command level.

Files in a segment directory have the protection attributes of the

directory. The date/time field of the directory reflects the latest
charge made to the directory or any file in the directory.

REV. A 4 - 39

PDR35621 FILE SUBROUTINES

Filenames

Filenames may be 1-32 characters in length, the first character of
which must not be numeric. Filenames can be composed only of the
following characters: A-Z 9-9 # $ & * - . and /. Filenames may not
contain embedded blanks; filenames may be specified with trailing
blanks. An attempt to create a file with an invalid filename results
in the error code E$BNAM (illegal name) .

Examples

1. Open new SAM file named RESULTS for output on file unit 2:
CALL SRCHSS (KSWRIT,'RESULTS',7,2,TYPE,CODE)

2. Create new DAM file in the segment directory open on SGUNIT
and open for reading and writing on DMUNIT:

CALL SRCH$$(KSREWR+K$ISEG+K$NDAM,SGUNIT,1,DMUNIT,TYPE,CODE)
3. Close and delete the file created in the above call:

CALL SRCHSS (K$CLOS,@,9,DMUNIT,,CODE)
CALL SRCHS$S (KSDELE+KSISEG,SGUNIT,®,4,8,CODE)

4. See if filename 'MY.BLACK.HEN' is in current UFD:

CALL SRCHSS (KSEXSTHKSIUFD, 'MY.BIACK.HEN',12,8,TYPE,CODE)
IF (CODE.EQ.ESFNTF) CALL TNOU('NOT FOUND',9)

5. Create a new segment directory and a new SAM file as its
first entry:

CALL SRCHSS (KSRDWRHK SNSGS, ' SEGDIR' ,6,UNIT, TYPE,CODE)
CALL SRCHSS (K $WRIT+HK SNSAM+K SISEG,UNIT,d,7,TYPE,CODE)

6. Open the file named 'FILE' in the user's currently attached
UFD:

CALL SRCHS$ (KSREADHKSGETU,'FILE',4,UNIT,TYPE,
X CODE)
IF (CODE .NE. @) GOTO error_ processor

The above FORTRAN call will attempt to open the file named 'FILE' in
the user's currently attached UFD. If successful, the file unit number
on which 'FILE' has been opened is returned in UNIT. The type of the
file opened is returned in TYPE, and CODE is set to zero if there are
no errors, If there are any errors, CODE will be nonzero, and the
values of TYPE and UNIT are undefined.

4 - 31 January 1989

SECTION 4 PIR3621

If no file units are available, the error code ESFUIU (all units in
use) is returned. This code is returned if either the process (user)
has exceeded the maximum number of file units the process (user) may
have, or the total number of file units in use for all processes
(users) exceeds the maximum number of file units available to all
processes (users).

P> TSRCSS

TSRCS$ AND TREENAMES

TSRCSS is a subroutine to open a file anywhere in the PRIMOS file
structure.

CALL TSRCSS (actiontnewfil, treename, funit, chrpos, type, code)

action A subkey indicating the action to be performed.
Possible values are:
KSREAD Open treename for.reading on funit.
KSWRIT Open treename for writing on funit.
KSRDWR Open treename for reading and writing on funit.
KSDELE Delete file treename.
KSEXST Check on existence of treename.
KSCLOS Close treename (not funiv) .

newfil A subkey indicating the type of file to create if
treename does not exist. Possible values are:

KONSAM New threaded (SAM) file (this is default).
KSNDAM New directed (DaM) file.
K$NSGS New threaded (SAM) segment directory.
KSNSGD New directed (DAM segment directory.
treename A specification of any file in any directory or

subdirectory stored in array treename packed two
characters per word.

funit The number (1-126) of the file unit to be opened or
deleted. funit is closed before any action is
attempted.

REV. A 4 - 32

PDR3621 FILE SUBROUTINES

chrpos A two element integer array setup as follows:

chrpos(l) On entry, set to contain the first character
in the array that is part of the treename, the
count starting at @. On exit, it will be
pointing one past the last character that was
part of the treename. A coma, new line, or
carriage return will terminate the name, as
will end of array. In case of error,
chrpos(l) points one past the treename
component that caused the error. chrpos(l) is
always modified by this subroutine, therefore,
must be set up before each call.

chrpos(2) The number of characters in the treename
array.

type An integer variable set to the type of the file opened.
type is set only on calls that open a file; it is
umodified for other calls. Possible values for type

are:
2 SaM File
1 DAM File
2 SAM Segment Directory
3 DAM Segment Directory
4 UFD
code an integer variable set to the return code. If no

errors, code is d.

TSRCSS always closes the specified file unit then
attaches to the user's home UFD before attempting any
action. If the user's home UFD differs from his current
UFD before calling TSRC$$, he will find himself attached
to his home UFD following the call. See SRCH$$ for more
details on file manipulation.

Caution

Do not use TSRCSS to perform a charge access
(KSCACC) .

Treename Definition

A treename is a syntax convention that allows the specification of any
file in any directory or subdirectory. A treename may be used to open
or delete a file using subroutine TSRC$$. Treenames may also be used
in place of simple filenames in most external commands such as SLIST.
Treename as used here, is synonymous with "pathname" as described in
the PRIMOS Commands Guide.

4 - 33 January 1980

SECTION 4 PDR3621

The simplest form of a treename is a simple file name as allowed by
SRCH$S. The file is assumed to be located in the home directory.

The general form is a starting directory specifier, zero, one, or more
subdirectory specifiers, and then the file name.

The starting directory specifier has the following formats (square
brackets ([]) indicate an optional item):

1. UFDname [password]>

2. *®

3. <volumename> UFDname [password]>

4. <logical-disk-number> UFDname [password]>

In form 1, all MFDs are searched for the named directory in logical
disk order.

In form 2, the home directory is the starting directory.
In form 3, the volune with the specified name is searched for the
specified UFD name. If the volume name is a single asterisk (*), the

MFD in the home volume is searched.

In form 4, the volume with the specified octal logical disk number is
searched for the specified UFD name.

A subdirectory specifier has the following format:
ufdname [password]>
The UFD is assumed to be in the directory specified by the preceding

specifier. Spaces are not significant except that they may not occur
within a name and must separate a UFD from its password. If a name is

longer than 32 characters, the excess characters are ignored.

Exampl es
ABC File named ABC in home directory.
XYZ>ABC File naned ABC in UFD=XYZ.

<INV>XYZ>ABC File named ABC in UFD=XYZ on volume =INV.

<F>XYZOABC File named ABC in UFD=XYZ on home volume.
- <5>XYZ>ABC File named ABC in UFD=XYZ on logical disk 5.
*>XYZ>ABC File named ABC in subUFD=XYZ in home
directory.

REV. A 4 - 34

PDR3621 FILE SUBROUTINES

*>SXYZ>TIK>ABC File named ABC in subUFD IJK in subUFD=XYZ in
home directory.

XYZ DEF>ABC File named ABC in UFD=XYZ with password =DEF.
Treenames specified as parameters to external commands should not
contain spaces, as the space or comma is used to separate one parameter

from another. If a space must be specified due to a password, enclose
the entire treename in single quotes.

P> UPDATE

CALL UPDATE (key,®)
key 1

Update current UFD; DSKRAT buffers to disk,
if necessary; and undefine DSKRAT in memory.

This call is not normally used. This call is effective only under
PRIMOS II. Under PRIMOS III or PRIMOS it has no effect.

P WILINS

WILINS writes a line of characters in ASCII format to a file in
compressed ASCII format.

CALL WTLINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be written is
open for writing.

buffer An array of count words from which the 1line of
characters is to be written. It should contain 2
characters per word

count The size of buffer in 15-bit words.
code A return variable set to 9 if no errors, or an error

code if an error has occurred. Refer to Appendix G for
a list of error codes.

4 - 35 January 1980

SECTION 4 PDR3621

Information is written on the disk in compressed ASCITI format.
Multiple blank characters are replaced by the character DC1 (271 octal)
followed by a character count. Trailing blanks are removed and the end
of record is indicated by adding a new line character, or a new line
character followed by null. WrLINS is the same routine as O$ADO7,
except the altrtn argument has been replaced by the code argument.

REV. A 4 - 36

PDR3621 PRIMOS SUBROUTINES

SECTION 5

MISCELLANEOUS PRIMOS SUBROUTINES

This section describes subroutines which perform miscellaneous PRIMOS
functions. The PRIMOS routines described in this section are: BATCHS,
BREAKS, C1IN, CL$GET, CNINS, COMANL, DUPLX$, ERKLSS, ERRPRS, EXIT,
GINFO, LOGOSS$, PHANTS, RDTKS$$, RECYCL, TEXTOS, TIMDAT.

P BATCHS

BATCHS starts a phantom user. BATCHS is the same as PHANTS, but has
the additional function of starting a phantom user under a different
login name (usrname) . BATCH$ is called by a procedure running under
control of the supervisor (user 1) or a phantom initiated by user 1.

CALL BATCHS$ (fname, fnlen, unit, usrnam, unlen, user, code)
fname Array containing name of command input file to be
started as a phantom (INTEGER*2).
fnlen Length (in characters) of fname (INTEGER*2) .

unit File unit on which to open fnam. If value specified is
@, default is unit 6 (INTEGER*2).

usrnam User name the phantom is to be started under.
(INTEGER*2)

unlen Length of usrnam (INTEGER*2).

user User number that usrnam was assigned.

code Code returned to the user, indicating any errors
(INTEGER*2) . Possible values are:
@ No error.

ESNRIT Not called from process initiated from system
console or insufficient access rights to fname.

ESDIRE Fname is directory, not a file name.

ESNPHA No phantoms available.

5 - 1 January 1984

SECTION 5 PDR35621

P> BREAKS

BREAKS inhibits or enables CONTROL-P for interrupting a program.

CALL BREAKS (.TRUE.)
CALL BREAKS (.FALSE.)

The LOGIN command initializes the user terminal so that the CONTROL-P
or BREAK key cause an interrupt. Under PRIMOS III and PRIMOS, the
BREAKS routine, called with the argument .FALSE., enables the CONTROL-P
or BREAK key to interrupt a running program.

On the other hand, the BREAKS routine called with the argument L.TRUE.,
inhibits the CONTROL-P or BREAK characters from interrupting a running
program.

This routine maintains a per—user QUIT inhibit master list. Each call
to BREAKS to inhibit or enable QUIT increments or decrements a counter.
QUITs are enabled only when the counter is zero; 1i.e., the counter
goes positive with inhibit and cannot be decremented below zero.

Under PRIMOS II, BREAKS has no effect.

p cin

This routine gets the next character from the terminal or a command
file, depending upon the source of the command stream.

CALL C1lIN (char)

The next character is read or loaded into char (right-justified and
zero—filled). If the character is .CR., char is set to .NL. (new
line).

Line feeds are discarded by the operating system, and are not detected
by the ClIN subroutine.

P CLSGET

CLSGET reads a single line of input text from the currently defined
commnand input stream. The 1line is returned as a varying character
string without the newline character at the end. An empty command line
or one consisting of all blanks will compare equal to the null string.

REV. A 5 - 2

PDR3621 PRIMOS SUBROUTINES

CALL CLSGET (comline, comlinesize, status)

comline Varying character string into which the text will be
read from the command input stream.

comlinesize Maximum length, in characters, of comline. Because
comline is a varying string, it is not blank padded
to this size.

status Return error code.

P CNINS

This subroutine is the raw data mover used to move a specified number
of characters from the terminal or command file to the user program's
address space.

CALL CNINS (buffer, char-count, actual-count)

buf fer A buffer in which the string of characters read from
the input stream are to be placed (two characters
per word) .

char-count The number of characters to be transferred from the

input stream to the buffer specified by buffer.

actual-count A return argument. It specifies the number of
characters read by the call to CNINS. If reading
continues until a new line character is encountered,
the count includes the line character.

CNINS reads from the input stream until either a NEW LINE character is
encountered or the number of characters specified by the char-count
argument are read. Characters are left-justified, and if an odd number
of characters are read, the remaining character space is not zero or
blank filled. The question mark and quotation mark characters are not
interpreted.

Input to CNINS is obtained from the temminal unless the user has
previously given the COMINPUT or PHANTOM commands, and these commands
are still in control. The COMINPUT or PHANTOM commands switch the
input stream so that it comes from a file rather than the terminal
(refer to the PRIMOS Commands Reference Guide (FDR3198) for fur ther
information) .

5 - 3 January 1989

SECTION 5 PDR3621

P covanL

COMANL causes a line of text to be read from the teminal or from a
command file, depending upon the source of the command stream.

CALL CQMANL

The line is read into a supervisor text buffer. This buffer may be
accessed by a call to RDIKS. The supervisor text buffer holds 87
characters. The supervisor text buffer is also used by CNINS and
T$AMLC. The contents of this buffer must be picked up by RDIKSS after
a call to COMANL and before calls to CNINS or TSAMIC.

P DuPLXS

The DUPLXS$ subroutine is called to control the manner 1in which the
operating system treats the user terminal.

CALL DUPLXS$ (mode)

It returns the terminal configuration word and internal buffer number
as the value of the function. In addition, if the mode passed to
DUPLX$ is equal to -1, no updating of the configuration word takes
place. 1In this case, the current value is returned. DUPLXS must be
declared as an INTEGER function if the returned value is to be used by
the calling program. Values for mode are:

Bit Mask Meaning if Bit is SET

1 100008 Half duplex

2 240000 Do not echo LINE-FEED after
CARRIAGE RETURN.,

3 020000 Turn on X-OFF/X-ON character
recognition.

4 Pl000¢ Output currently suppress
(X-OFF received).

5-8 007400 Reserved.
9-16 00B377 Internal buffer number (read-only) .

DUPLX$ has no effect under PRIMOS ITI.

REV. A 5 - 4

PDR3621 PRIMOS SUBROUTINES

The mode of a user terminal is not affected by the LOGIN or LOGOUT
comands. '

The mode of the user terminal may also be set at the supervisor
terminal by using the AMIC command.

User may use the PRIMOS TERM command to change their terminal
characteristics.

P> ERKLSS

The ERKLSS subroutine reads or sets erase and kill characters.

CALL ERKLSS (key,erase , kill,code)

key A parameter specifying the action to be taken. Possible
values are:

KSWRIT Set erase and kill characters.

KSREAD Read erase and kill characters.

erase On key KSWRIT, the character contained in the right byte
of erase replaces the operating system's per—user erase
character. If erase is @, no action takes place. On
key KSREAD, the current per—user system erase character
is placed in erase, right-justified with leading zeros.

kill On key = KSWRIT, the character contained in the right
byte of kill replaces the operating system's per-user
kill. The current per-user system kill character is
placed in kill right justified with leading zeros.

code An integer variable set to the return code. Possible
values are:
2 If no errors.

ESBPAR If attempt to set characters is improper.

Erase and kill characters are reset to default values upon a logout or
login. '

5 - 5 January 1980

SECTION 5 PDR3621

Erase and kill characters are interpreted by commands to the operating
system and through the subroutines COMANL, RTK$$, RDCOM, RDASC, IS$AAl2,
and ISAAPl. All language processors and I/0 statements call RDASC to
get terminal input and, therefore, are affected.

RDCOM, RDASC, TIS$AAl2, and ISAAQl are library subroutines that read the
system's per-user erase and kill character only once when they are
first invoked. Therefore, changing the erase and kill characters after
a call to those subroutines does not affect erase and kill processing
in these subroutines until the next program is invoked. The main
purpose for users calling the ERKLSS subroutine is to read or set these
characters when the user programs do their own erase and kill
processing.

Under PRIMOS II, the erase and kill characters may be read but any
attempt to set them is ignored. The erase and kill characters may be
set at command level by the PRIMOS TERM command.

P> ERRPRS

ERRPRS interprets a return code and, if non—-zero, prints a standard
message associated with the error return code, code, followed by
optional user text. See Appendix G for more details on error handling.

CALL ERRPRS (key,code,text,txtlen,filnam,namlen)

key An integer specifying the action to take subsequent to
printing the message. Possible values are:

KSNRTN Exit to the system, never return to the calling
program.

KSSRTN Exit to the system, return to the calling
program following an 'S' command.

KSIRTN Return immediately to the calling program.

code An integer variable containing the return code from the
routine that generated the error. If code is @, ERRPRS
always returns immediately to the calling program and
prints nothing.

text A message to be printed following the standard error
message. Text 1is omitted by specifying both text and
txtlen as @.

txtlen The length in characters of text.

PDR3621 PRIMOS SUBROUTINES

filnam The name of the program or subsystem detecting or
reporting the error. filnam is omitted by specifying
both filnam and namlen as .

namlen The length in characters of filnam.

p EXIT

The EXIT subroutine provides a way to return fron a user program to
PRIMOS; it prints OK, (or OK:) at the terminal and PRIMOS awaits a
user command .

CALL EXIT

The user may open or close files or switch directories, and restart a
FORTRAN program at the next statement by typing S (i.e., START).

P GINFO

GINFO indicates whether or not the user is running under PRIMOS II. If
running under PRIMOS 1II, GINFO shows where PRIMOS II is loaded in the
user address space.

CALL GINFO (xervec, n)

GINFO moves n words from the supervisor into a buffer specified by
xervec.

Information for PRIMOS II:

xervec word Content

1 Low boundary of PRIMOS II buffers (77777
octal if 64K PRIMOS II).

2 High boundary of PRIMOS II (77777 octal
if 64K PRIMOS II).

3 (not valid)

4 (not valid)

5 [ow boundary of PRIMOS II and buffer

(64K PRIMOS II only) .

6 High boundary of 64K PRIMOS II.

5 - 7 January 1980

SECTION 5

PPDR3621

Information for PRIMOS III and PRIMOS:

xervec word Content
1 2
2 9]
3-6 (not wvalid)

P> 10G0oSS

LOGOSS logs out a user. The routine can be used by the supervisor

terminal (user 1) to log out any user, or a user program may log out
any process it may have started.

CALL LOGOS$S (key, user, usrnam, unlen, reserv, code)

REV. A

key

user

usrnam

unlen

reserv

Operation to be‘performed (INTEGER*2) . Possible values
are:

-1 log out all users (supervisor only).
g log out (same as LOG OUT command) .
1 log out (same as LOG OUT - NN).

2 log out specific user by name (supervisor or
his phantoms only) .

User number to be logged out. This value is examined
only if key > @#. (INTEGER*2).

Name of user to be logged out; must correspond to number
supplied in user. This value is examined only if
key = 2. (INTEGER*2) .

Length of usrnam (in characters). This value
examined only if key = 2. (INTEGER*2).

Reserved for future use (INTEGER*4) .

PDR3621 PRIMOS SUBROUTINES

code Error code returned to user (INTEGER*2). Possible
values are:

@ No error

E$BKEY Bad key

ESBPAR Invalid number specified in user.

ESBNAM Username does not correspond to user.
ESNRIT Attempt to log out user with name

different from requestor.

P> PHANTS

PHANTS starts a phantom user.

CALL PHANTS (filnam,namlen,unit,user,code)

filnam Name of command input file to be run by the phantom.
namlen Length of characters of filnam.

unit File unit on which to open filnam. If unit is @, unit 6
will be used.

user A variable returned as the user number of the phantom.
code The return code. If 0, the phantom was initiated
successfully. If code = RESNPHA, no phantoms were
available. Other values of 'code' are file system error
indications.
P> RDIKSS

The subroutine RDTK$S parses the command line most recently read by a
call to COvANL. If no previous calls to COMANL have taken place,
RDTKSS parses the last command line typed at PRIMOS command level by
the user. Parsing proceeds on a token by token basis. A command line
consists of tokens (or words) separated by delimiters. The current
delimiters are space, comma, /*, and newline. The characters
O 011{};""?:~I\.DEL. are reserved in command lines for future use.
However , one of these characters may be included in a token by
enclosing the token in single quotes; for example, 'nauwhty(token)'.
The characters /*, 1if unquted, begin a conment field that extends to
the end of the line and are ignored by RDTKS$S.

5 - 9 ~ January 1980

SECTION 5 PDR3621

Each call to RDTKSS reads a single token from the command line. RDTKSS
returns the literal text of the token, together with some additional
information about it. If the token is numeric, RDTKSS will provide
results of decimal and octal conversion attempts. RDIKSS will also
inform the caller 1if a numeric token can be interpreted as a register
setting (octal parameter) under the old PRIMOS command line structure.

Do not make calls to T$SAMIC or CNINS or calls to subroutines that call
these such as FORTRAN formatted READ statement to the terminal, before
parsing the command line since these subroutines cause the replacement
of the information in the per-user supervisor buffer holding the
command line.

CALL RITKSS (key,info ,buffer,buflen,code)
key The action to be taken by RDIX$$. Possible values are:

Read next token, convert to uppercase.

Read next token, leave in lowercase.

Reset to start of command line.

Read remainder of command line as raw text.
Initializes the command line.

[S2 I~ NS IN S I

info Set to contain the following information: (Only info(2)
is set for a key value 4.)
info(l): the type of the token. Possible values are:

1 Normal token (results of numeric conversions
returned) .

2 (non-ignored) register setting parameter.

5 Null token.

N

End of line.

info(2): The length in characters of the token. A null
token has a 4 length.

info(3): Further information about the token. The
following bits of info(3) have the indicated
meaning when set:

bit 1 (:100000) - decimal conversion

successful (with no overflow ,
value returned in info(4).

REV. A 5 - 10

buffer

buflen

code

PDR3621 PRIMOS SUBROUTINES

bit 2 (:040003) -~ octal conversion
successful, value returned in
info(5). This bit always set when
token type is 2.

bit 3 (:020000) - token begins with
unquoted minus sign, 1i.e., token
may be a keyword argument.

bit 4 (:010000) - this flag means that
an explicit position for a
register setting was given;
position wvalue returned in
info(4).

bits 5-16: reserved for future use.

info(4): Contents depends on flags set in info(3). If
bit 4 is set, info(4) is the position number
for the register setting. (Note that if token
type is 2 and bit 4 is not set, the position
is implicit and must have been remembered by
the caller). If bit 1 is set, info(4) is the
converted decimal wvalue. Else info(4) is
undefined.

info(5): Contents depends on flags in info(3). If bit
2 is set, info(5) 1is the converted octal
value. Else info(5) is undefined.

info(6)-info(8): reserved for future use.

An array into which the literal text of the token is
written by RDIK$S, two characters per word and
blank-padded to length buflen (words).

Is the specified length, in words, of buffer. buflen
must be >= 0.

A standard error code returned. Possible values are:

] No errors.
ESBKEY Value of key is illegal.
ESBPAR Bad parameter; buflen is less than 0.

ESBFTS Buffer too small to contain the full text of
the token. The token is truncated.

5 - 11 January 1980

SECTION 5 PDR3621

Delimiters

Delimiter characters have four functions: token separation, content
indication, literal text delineation, and line termmination. The set of
delimiter characters is:

SP , ' NL /*
The meanings of these characters is as follows:

Blank Interpretation (SP): A single blank terminates a token. A
multi-blank field is precisely equivalent to a single blank. Blanks
surrounding another delimiter are ignored. Leading and trailing blanks
on the command line are ignored.

Comma Interpretation: A single comma terminates a token and is
equivalent to a blank. Two or more commas in succession, however, will
generate null tokens. If a comma is the first or last character on the
command line, a null token will be generated. A command 1line
consisting of just n commas (with no text) will generate n+l null
tokens.

Literal Text Character ('): Literal text strings start and end with
single apostrophes. Any characters, including delimiters but excluding
a newline can appear inside a literal string; the entire string is
treated as a single token. Rules for literal apostrophes are the same
as FORTRAN's: each literal apostrophe in the string must be doubled:

'HERE''S A LITERAL ''.'

A token can be partially literal, for example, ABC'DEF'. Numbers in
literal text are interpreted as textual characters (see token
definitions below). A literal string is ended either with a single
apostrophe or by a newline.

Newline Delimiter (NL): A newline character terminates the preceding
token. If the newline is in a literal text field, the 1literal is
terminated. If a newline 1is encountered before any token text or
delimiter, an End-of-Line token is generated.

Comment Delimiter (/*): When the character pair /* is encountered, all
subsequent text on the command line is ignored. A /* in the beginning
of a command 1line will cause an immediate End-of-Line token to be
denerated.

REV. A 5 - 12

PDR3621 PRIMOS SUBROUTINES

Tokens

A token is any string of characters not containing a delimiter. A
token can be from § to 80 characters in length. The following are
examples of valid tokens:

FTN

LONG-F ILENAME

1/7@7

6

98
String.even.longer.than.thirty-two.characters
<{tree>name

NULL. (null string)

Literal text including delimiters can be entered in apostrophes using
FORTRAN rules:

'STRING WITH EMBEDDED BLANKS'
'HERE''S A LITERAL APOSTROPHE'

Token Types

Associated with each token is a type. Possible token types are
discussed in the following paragraphs.

Normal Token: A normal token is any string of characters except a
register setting token. The string may or may not include literal
text. Examples of normal tokens are:

FIN

AQ001

This.is.a.token.
PARTIALLY' LI TERAL'

'8'xxx (Note: '8' is treated as a non-numeric.)
Ty (='"")

Register Setting Token: Register—setting tokens (octal parameters) are
now considered obsolete. They are handled by RDT'KSS solely to permit
existing software and command files to continue to function. New
software should not use such parameters; symbolic keywords should be
used instead, as in FIN XX —-64V instead of FIN XX 2/404.

The rules for recognition of a register setting parameter as such are
as follows. A token of the form octal/octal is always recognized as a
register setting (unless enclosed in quotes). Initially, unembellished
octal integers are also recognized as implicit-position register
settings. If a token beginning with an unquoted minus sign, and which
does not successfully convert as a decimal integer, is found,
recognition of implicit-position register settings is disabled.
Recognition is re-enabled only by a subsequent occurrence of an
explicit-position register setting: octal/octal.

5 - 13 January 1980

SECTION 5 PDR3621

Null Token: A null token is generated when two delimiters are
encountered in a row (except for multiple context characters). Command
lines generating null tokens are the following:

' (Start of line is a delimiter in this case.)
X, Y

End of Line Token: This token is generated when the end of the command
line is reached.

Usage

RDTK$$ maintains an internal pointer that points to the next character
in the command line to be scanned. This pointer is set to the start of
the command line by COMANL. It can also be reset to the start of the
line with a RESET (key=3) call to RDTKSS.

Following a PRIMOS command, the internal pointer is positioned after
the main command. If RESIME were the command, it is positioned after
the RESWME filename.

Regardless of the token type, RDIKSS always returns the literal text of
the token. Delimiter characters (unless inside apostrophes) are never
returned.

If a token is truncated (too long to fit in buffer), the next call to
RDTKS$S will return the next token, not the truncated text.

For register setting tokens (octal parameters), the octal position
number is returned by RDIKSS only if explicitly given in the token
(e.g. 6/123). Hence, the current register setting position must be
remembered by the caller.

A buflen of @ can be used to skip over a token. The error code ES$SBFTS
will be returned.

For key=4 (Read Raw Text), all text between the current RDTKSS pointer
and the end of the comand line (newline) is returned. No checking is
done for any delimiters or special characters other than newline. No
forcing to upper case is performed.

REV. A 5 - 14

PDR3621 PRIMOS SUBROUTINES

P RECYCL

The RECYCL subroutine is called under PRIMOS to tell the system to
cycle to the next user. It is a "I have nothing to do for now" call.
Under PRIMOS II, RECYCL does nothing.

CALL RECYCL

Caution

Do not use this subroutine to simulate a time delay.

P TEXTOS

TEXTOS checks a filename for valid format.

CALL TEXTO$ (filnam,namlen,trulen,textok)

filnam An array containing the filename to be checked.
namlen The length of filnam in characters.

trulen An integer set to the true number of characters in
filnam. trulen is valid only if textok is .TRUE.

textok A logical variable set to .TRUE. if filnam is a wvalid
filename, otherwise set to .FALSE.

trulen is the number of characters in filnam preceding the first blank.

If there are no blanks, trulen is equal to namlen. See SRCH$S for
filename construction rules.

For example, to read name from terminal, check for validity, and set
trulen to actual name length:

CALL IS$AAl2 (@,BUFFER,80,$999)

CALL TEXTO$ (BUFFER,32,TRULEN,OK) /* SET TRULEN
IF (.NOT.OK) GOTO <bad-name>

5 - 15 January 1980

SECTION 5

p TIMDAT

PDR3621

TIMDAT returns the date, time, CPU time, and disk I/0 time wused since
LOGIN, the users unique number on the system, and his login UFD name in
an array as follows:

CALL TIMDAT (array, hum)

array (1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)

9)

(19)
(11)
(12)
(13)
(14)
(15)

Two ASCII characters representing month. Example: 11
Two ASCII characters representing day. Example: 30
Two ASCII characters representing year

Example: 75

Integer time in minutes since midnight.

Integer time in secords.

Integer time in ticks.

Integer CPU time used in seconds.

Integer CPU time used in ticks

(standard is 330 ticks/second) .

Integer disk I/0 time used in seconds. (see Note)
Integer disk I/O time used in ticks. (see Note)
Integer number of ticks per second.

User number.

Six-character login name, left-justified.

Example: MSMITH

num Words of array are set. This routine does not
return any useful information under PRIMOS II.

Disk I/0 time is from start of seek to end of transfer, including both
explicit file I/0 and paging operations. CPU time used in controlling
the transfer is counted under CPU time, array(7) and array(8).

REV. A

PDR3621 SAMPLE PROGRAMS

SECTION 6

SAMPLE PROGRAMS

This section contains sample programs illustrating the use of the file

system subroutines. The programs are:
e Writing a SaM file
e Writing a DAM file
e Reading a SAM or DAM file
e Creating a segment directory
e Reading a logical record from a file

® Reading a file in a segment directory

P> WRITING A SAM FILE

C SAMAWRT BIN 29NOV76 PROGRAM TO WRITE A SAM DATA FILE

C
C THE FILE IS 1909 WORDS LONG WRITTEN FROM ARRAY BUFF

C
C RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM

C

C
INTEGER*2 FUNITL /* FILE UNIT TO BE USED
INTEGER*2 SAMFIL /* FILE TYPE FOR SAM FILE
INTEGER*2 BUFING /* BUFFER LENGTH

C

. PARAMETER FUNIT1=1, SAMFIL=), BUFLNG=1000

C
INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* CONTAINS FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFS$S
INTEGER*2 I
INTEGER*2 CODE /* HOLDS ERROR RETURN CODE

C

SINSERT SYSCOMDKEYS.F

C

C

C INITIALIZE BUFFER CONTENTS
DO 19 I= 1, BUFLNG
BUFF(1) =1

6 - 1 January 1980

SECTION 6 PDR3621

19 CONTINUE

C
C OPEN A NEW SAM DATA FILE CALLED 'SAMFIL' IN CURRENTLY ATTACHED
C UFD FOR WRITING ON FILE UNIT FUNITL
C
C SINCE KEYS.F (KEY DEFINITIONS) DEFINES THE KEYS AS PARAMETERS
C THE USE OF MULTIPLE MNEMONIC KEYS WILL NOT GENERATE MORE CODE
C THAN THE USE OF NUMERIC KEYS. THE USE OF MNEMONIC KEYS IS
C RECOMMENDED AT ALL TIMES.
C
CALL SRCHSS (XSWRITHKSNSAM+KSIUFD, 'SAMFIL' ,6,FUNITL, TYPE,
X CODE)
IF (CODE.NE.3) GO TO 9010
IF (TYPE .NE, SAMFIL) GO TO 9903 /* ERROR
C
C WRITE 190¢ WORDS FROM BUFF INTO THE NEW DATA FILE
C

CALIL PRWF$$ (KSWRIT,FUNITL,LOC (BUFF) ,BUFLNG,INTL (@) ,NMREAD,
X CODE)
IF (CODE.NE.@) GO TO 9010

C
C KSCLOS FILE. THIS RELEASES UNIT FUNIT1 FOR RE-USE AND INSURES
C ALL FILE BUFFERS HAVE BEEN WRITTEN TO DISK. -
C NOTE PRIMOS WILL NOT AUTOMATICALLY K$CLOS FILES ON 'CALL EXIT'.
c
9

20@ CALL SRCHSS$ (XSCLOS, @, 9, FUNIT1, @, CODE)
IF (CODE.NE.?) GO TO 9919

C RETURN TO PRIMOS
cC

CALL EXIT
END

P> WRITING A DAM FILE

DAMANRT BIN 29NOV76 PROGRAM TO WRITE A DAM DATA FILE

NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL IS THE
"NEN FILE' KEY SUPPLIED TO SRCH$$ IN CREATING THE FILE

RESTRIZTION: DAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM

O000000a0nn

INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 DAMFIL /* FILE TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* DATA BUFFER LENGTH IN WORDS

PARMETER FUNIT1=1, DAMFIL=1, BUFLNG=12049

@]

REV. A 6 - 2

PDR3621 SAMPLE PROGRAMS

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED FROM FILE SYSTEM
INTEGER*2 I :

SINSERT SYSCOMMKEYS,.F

SINSERT SYSCOM>ERRD.F

C
C
C INITIALIZE BUFFER
C
DO 18 I =1, BUFLNG
BUFF(I) =1I

19 CONTINUE
("‘

C INSURE THAT THE FILE 'DAMFIL' DOES NOT ALREADY EXIST
C

~

CALL SRCHSS (KSREADHKSIUFD, 'DAMFIL',6,FUNITL, TYPE ,CODE)
IF (CODE .NE. ESFNTF) GO TO 9908 /* FILE ALREADY EXISTS

C
C OPEN A NEW DAM DATA FILE CALLED 'DAMFIL' IN THE CURRENT
C UFD FOR WRITING ON FILE UNIT FUNIT1 (I.E. CREATE NEW DAM FILE)
C
CALL SRCHS$$ (KSWRIT+K$SNDAM+KSIUFD, 'DAMFIL' ,6,FUNIT1, TYPE,
X CODE)
IF (CODE.NE.J) GO TO 9010
IF (TYPE .NE, DAMFIL) STOP /* WILL NEVER STOP
C
C WRITE THE BUFFER INTO THE FILE
c :
CALL PRWF$$ (K$WRIT,FUNIT1,LOC (BUFF) ,BUFLNG, INTL (@) ,NMREAD,
X CODE)
IF (CODE.NE.d) GO TO 90192
c
C K$SCLOS THE FILE AND EXIT
(‘

9900 CALL SRCHSS (X$CLOS, #, 9, FUNIT1, TYPE, CODE)
IF (CODE.NE.#) GO TO 9019

CALL EXIT

C

9919 CALL ERRPRS (K$NRTN,CODE,d,d,d,0)
END

P> READING A SAM OR DAM FILE

C REDFIL BIN 29NOV76 READ SAM/DAM FILE, PRINT LARGEST INTEGER
C
C THIS PROGRAM SHOWS HOW TO USE THE 'CODE' ERROR RETURN

5 - 3 " January 1980

SECTION 6 PDR3621

C MECHANISM AND SUBROUTINE ERRPRS TO PRINT ERROR MESSAGES.

NOTE THAT PROGRAM DOESN'T CHECK IF THE DATA FILE IS SAM OR DAM.
TO USER'S PROGRAM, SAM OR DAM FILES ARE FUNCTIONALLY EQUIVALENT
EXCEPT FOR ACCESS TIME TO RAMDOM POINTS IN THE FILE

RESTRICTIONS: NONE

QOO0 0000n

INTEGER*2 FUNIT /* FILE UNIT TO BE USED
INTEGER*2 DAMFIL /* TYPE OF DAM DATA FILE
INTEGER*2 BUFING /* LENGTH OF DATA BUFFER IN WORDS

PARAMETER FUNIT=1, DAMFIL=2, BUFLNG=1%0

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM
INTEGER*2 LARGST /* LARGEST UNSIGNED INTEGER IN FILE
INTEGER*2 FNAME (156) /* FILE NAME BUFFER
INTEGER*2 I,N

C
INTEGER*4 POSITN /* 32BIT INTEGER POSITION FOR PRWFS$S

C

SINSERT SYSCOM>KEYS.F

$INSERT SYSCOM>ERRD.F

c

C

C INITIALIZE AND GET FILE NAME FROM TERMINAL

C
LARGST = -32767 /* LARGEST UNSIGNED INTEGER

19 WRITE (1,1002) /* FORTRAN UNIT 1 IS TERMINAL

10603 FORMAT ('TYPE FILE NAME')

C
READ(1,1010) (FNAME(I), I=1,16)

910 FORMAT (16A2)

1

C

C OPEN FNAME IN CURRENTLY ATTACHED UFD FOR READING ON FILE UNIT 1
C (NOT THE SAME AS FORTRAN UNIT 1) . CHECK FOR ERRORS.

C NOTE THAT THE NAME NEED NOT ACTUALLY BE 32 CHARACTERS LONG AS

C TRAILING BLANKS ARE IGNORED.

C

CALL SRCHS$ (KSREAD+KSIUFD, FNAME, 32, FUNIT, TYPE ,CODE)
IF (CODE .EQ. 9) GO TO 103 /* NO ERRORS

PRINT THE SYSTEM ERROR MSG AND IMMEDIATELY RTRN TO THIS PROGRAM
IF THE ERROR IS 'FILE NOT FOUND', GET ANOTHER NAME.
GIVE UP ON ALL OTHER ERRORS

oNoNo N X!

CALL ERRPRS$ (X$SIRTN, CODE, FNAME, 32, 'REDFIL', 6)
IF (CODE.EQ.ESFNTF) GO TO 10 /*NOT FOUND-GET ANOTHER NAME
GO TO 9910 /* ANOTHER TYPE OF ERROR — GIVE UP

REV. A 6 - 4

PDR3621 SAMPLE PROGRAMS

C
C THE FILE HAS BEEN OPENED.
C MAKE SURE THE FILE IS NOT A DIRECTORY
C
196 IF (TYPE .GT. DAMFIL) GO TO 9080 /* IS A DIRECTORY
c
C READ AN 'OPTIMAL' NUMBER OF WORDS UP TO BUFLNG WORDS FROM FILE.
C SET LARGST TO THE LARGEST UNSIGNED INTEGER IN THE FILE.
C CHECK FOR END-OF-FILE.
C
30 CALL PRWFS (KSREAD+KS$CONV, FUNIT, LOC(BUFF) ,BUFLNG,
X INTL (9) ,NMREAD,CODE)
IF (CODE .EQ. ESEOF) G0 TO 31 /* END-OF-FILE
IF (CODE .NE. @) GO TO 9012 /* SOME OTHER ERROR
31 DO 49 I= 1, NMREAD /* FOR EACH WORD ACTUALLY READ
IF ((LARGST.LE.?) .AND. (BUFF(I) .GE.®)) LARGST = BUFF(I)
IF (LARGST .LT. BUFF(I)) LARGST = BUFF(I)
49 CONTINUE
IF (CODE .NE. ESEOF) GO TO 3@ /* MORE DATA IN FILE

FIND OUT IF THE DATA FILE IS EMPTY
GET CURRENT FILE POINTER POSITION WHICH IS NOWN AT END-OF-FILE.
IF THE POSITION IS @, THE FILE IS EMPTY

aOoaoon

CALL PRWF$S (KSRPOS, FUNIT, @, @, POSITN, NMREAD, CODE)
IF (CODE .NE. @) GO TO 9019 /* ERROR
IF (POSITN .GT. @) GO TO 5@ /* NOT A NULL FILE
WRITE (1,1030)

1039 FORMAT ('FILE EMPTY')
GO TO 9909 /* EXIT

C

C FILE NOT EMPTY. PRINT LARGEST INTEGER

c

50 WRITE(l,1020) LARGST

1020 FORMAT ('LARGEST INTEGER IN FILE IS ',I6)
GO TO 9000 /* EXIT

C

C KSCLOS FILES EXIT

C PRINT ERROR MESSAGE IF NECESSARY

c

9919 CALL ERRPRS (KSIRTN, CODE, 0, @, '"REDFIL', 6)

c

9009 CALL SRCHS$S (K$SCLOS, @, @, FUNIT, TYPE, CODE)
IF (CODE.NE.2) GO TO 9010
CALL EXIT
END

6 - 5 January 1989

SECTION 5 PDR3621
P> CREATING A SEGMENT DIRECTORY

C CRTSEG BIN 29NOV76 CREATE A SEGMENT DIRECTORY
C AND WRITE DATA FILE IN IT
C
C RESTRICTIONS: SEGDIR SHOULD NOT EXIST BEFORE RUNNING PROGRAM
c
C
INTEGER*2 BUFING /* DATA BUFFER LENGTH
INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY

INTEGER*2 SGUNIT /* FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 FUNIT /* FILE UNIT FOR DATA FILE

@]

PARAMETER BUFLNG=19, SAMSEG=2, SGUNIT=l1, FUNIT=2

@]

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFS$S
INTEGER*2 I
INTEGER*2 CODE /* RETURN CODE STORED HERE
INTEGER*2 CODEA /* SCRATCH CODE
SINSERT SYSCOMM>KEYS.F
SINSERT SYSCOM>ERRD.F

c
o
C INITIALIZE DATA BUFFER CONTENTS
c
DO 10 I= 1, BUFLNG
BUFF(I) = I
10 CONTINUE
C OPEN A NEW SAM SEGMENT DIRECTORY CA LED 'SAMDIR' IN CURRENTLY
C ATTACHED UFD FOR READING AND WRITINC ON FILE UNIT SGUNIT.
C NOTE: SEGDIRS OPEN FOR WRITE ONLY WI - NOT BE HANDLED CORRECTLY
c
CALL SRCHS$S (K$RDWR+KSNSGS+K$IUFL, ' SEGDIR',6,SGUNIT, TYPE,
X CODE)
IF (CODE.NE.®) GO TO 9502
IF (TYPE.NE.SAMSEG) 30 TO 9538 /* ERROR--MUST HAVE EXISTED
C

C ENTER A NEW SAM DATA FILE (I.E. OPEN SAM DATA FILE FOR WRITING)
C IN THE JUST CREATED SEGMENT DIRECTORY. THE NEW DATA FILE

C WILL BE ENTRY 9 IN THE SEGMENT DIRECTORY.

C

CALL SRCHSS (XSWRITHKSNSAM+KSISEG,SGUNIT,d, FUNIT, TYPE , CODE)
IF (CODE.NE.#) GO TO 9500

C

C WRITE THE DATA BUFFER INTO TYE JUST CREATED SAM FILE.

C KSCLOS THE DATA FILE.

C

REV. A 5 - 6

PDR3621 SAMPLE PROGRAMS

CALL PRWF$S (KSWRIT,FUNIT,LOC(BUFF) ,BUFLNG,INTL (9) ,NMREAD,
X CODE)
IF (CODE.NE.@) GO TO 9500
CALL SRCHSS (KSCLOS, 9, @, FUNIT, @, CODE)
IF (CODE.NE.®) GO TO 9580
c
C REPLACE BUFF WITH NEW DATA
C
DO 20 I= 1, BUFLNG
BUFF(I) =1 * 10
20 CONTINUE
C
C OPEN A DIFFERENT NEW SAM DATA FILE ON FUNIT FOR WRITING
C (I.E. ENTER ANOTHER FILE IN SEGMENT DIRECTORY). THIS IS DONE
C IN TWO STEPS. FIRST THE FILE POINTER OF THE SEGMENT DIR UNIT IS
C POSITIONED TO THE ENTRY NUMBER DESIRED. THE SRCHSS IS
C CALLED AS ABQVE.

C
CALL SGDR$$ (K$SPOS,SGUNIT, 1, I, CODE)
IF (CODE.NE.2) GO TO 9509
IF (T .NE. -1) GO TO 9500 /* ERROR EXIT
C

C NOTE THAT THE SEGMENT DIRECTORY OPEN ON SGUNIT HAS ONLY 1 ENTRY
C (ENTRY 9) AT THIS TIME. THUS, POSITIONING TO ENTRY 1

C WILL POSITION TO END-OF-FILE (NOT BEYOND) AND THE FOLLOWING

C CALL TO SRCH$$ WILL CAUSE THE SEGMENT DIRECTORY TO BE EXTENDED
C IN LENGTH BY ONE ENTRY.
C

CALL SRCHS$ (XSWRIT+KSNSAMHKSISEG, SGUNIT,d,FUNIT, TYPE ,CODE)
IF (CODE.NE.@) GO TO 9500

WRITE DATA INTO THE SAM FILE THE K$SCLOS THE FILE

[eECK®)

CALL PRWFS$$ (KSWRIT,FUNIT,LOC(BUFF) ,BUFLNG, INTL (3) ,NMREAD,
X CODE)

IF (CODE.NE.@) GO TO 9500

CALL SRCHSS (K$CLOS, @, @, FUNIT, @, CODE)

IF (CODE.NE.Z) GO TO 9500

REPLACE THE BUFFER WITH NEW DATA

aQn

DO 30 I= 1, BUFING
BUFF(I) =1 * 100

30 CONTINUE
C
C MAKE THE SEGMENT DIRECTORY ITSELF LARGE ENOUGH TO CONTAIN
C 19 ENTRIES. PLACE A SAM FILE IN THE 10TH ENTRY.
C

CALL SGDRSS (X$MSIZ, SGUNIT, 14, @, CODE)

IF (CODE.NE.J) GO TO 9509

C
C THE FILE POINTER ASSOCIATED WITH SGUNIT IS NOW AT END-OF-FILE.
C A CALL TO SRCHS WITHOUT FURTHER POSITIONING THE SEGMENT

"6 - 7 January 1980

SECTION 6 PDR3621

C
Cc
C
C

aQaa

C
C
C
c
cC

DIRECTORY'S FILE POINTER WOULD EXTEND THE SEGMENT DIRECTORY
AND ENTER THE NEW FILE AS TH 11TH ENTRY. THEREFORE, SGDR$$
MUST BE CALLED TO POSITION TO THE 12TH ENTRY.

CALL SGDRSS (KSSPOS, SGUNIT, 1@, I, CODE)
IF (CODE.NE.@) GO TO 9509
IF (I .NE. @) STOP /* FILE CANNOT BE PRESENT

CALL SRCHS$ (KSWRIT+KSNSAM+KSISEG,SGUNIT,d,FUNIT, TYPE, CODE)
IF (CODE.NE.@) GO TO 9509

CALL PRWF$$ (KSWRIT,FUNIT,LOC(BUFF) ,BUFLNG,INTL (3) ,NMREAD,
X CODE)

IF (CODE.NE.@) GO TO 9500

CALL SRCHSS (KSCLOS, 9, 8, FUNIT, TYPE, CODE)

IF (CODE.NE.@) GO TO 9500

K$CLOS SEGMENT DIRECTORY EXIT

CALL SRCHSS (KSCLOS, 0, @, SGUNIT, TYPE, CODE)
IF (CODE.NE.@) GO TO 9509
CALL EXIT

ERROR EXIT. KSCLOS ALL UNITS. PRINT ERROR MESSAGE AND DO NOT
ALLON RESTART. ES$NULL IS THE NULL SYSTEM ERROR, I.E.,
NO SYSTEM ERROR MESSAGE IS PRINTED.

9520 CALL SRCHSS (KSCLOS, @, @, FUNIT, TYPE, CODEA)

CALL SRCHS (KSCLOS, @, @, SGUNIT, TYPE, CODEA)
CALL ERRPRS (KSNRTN,CODE, ' UNEXPECTED ERROR',16,'CRTSEG',6)

END

P> READING A LOGICAL RECORD FROM A FILE

QOO0 0000O00000n

RDLREC BIN 29NOV76 READ A LOGICAL RECORD FROM A FILE

PROGRAM READS LOGICAL RECORD 'N' FROM A FILE CONSISTING
OF FIXED LENGTH RECORDS

IN THIS PROGRAM, THE FILE ACCESSED IS CONSIDERED TO CONTAIN AN
UNLIMITED NUMBER OF LOGICAL RECORDS. EACH RECORD CONTAINS 'M'
WORDS. THE PROGRAM READS AND PRINTS TO THE TERMINAL THE
CONTENTS OF RECORD NUMBER N AS M INTEGERS. THE FIRST RECORD
OF A FILE IS RECORD NUMBER ¢ (ZERO).

NOTE THAT A LOGICAL RECORD IS MERELY A GROUPING OF WORDS IN A
FILE. THE LOGICAL RECORD SIZE HAS NO RELATION TO THE PHYSICAL
RECORD SIZE OF THE DISK.

RESTRICTIONS:

REV. A 6 - 8

PDR3621 SAMPLE PROGRAMS

. RECORD SIZE MUST BE BETWEEN 1 AND BUFFER LENGTH
. RECORD NUMBER MUST BE BETWEEN @ AND 32757

THE RECORD MUST BZ IN THE FILE

. THE FILE MUST PREVIOUSLY EXIST

. THE FILE MUST BE A DATA FILE (SAMFIL OR DAMFIL)

ONOEPNO NP NORY!
Ul Wi
.

INTEGER*2 FUNIT1 /* PRIMOS FILE UNIT USED FOR DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER

Q

PARAMETER FUNIT1=1, BUFLNG=1099

INTEGER*2 BUFF(BUFING) /* DATA BUFFER
INTEGER*2 FNAME (16) /* FILE NAME BUFFER
INTEGER*2 RECSIZ /* NUMBER WORDS IN A LOGICAL RECORD
INTEGER*2 RECNUM /* LOGICAL RECORD NUMBER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ, RETURNED BY PRWFSS$
INTEGER*2 CODE /* ERROR STATUS RETURNED BY FILE SYSTEM
INTEGER*2 I
~ ,
INTEGER*4 POSITN /* 32BIT WORD NR USED AS POS TO PRWFSS
o
C
SINSERT SYSCOMDKEYS.F
$INSERT SYSCOM>ERRD.F
C
c
C ASK FOR FILE NAME
C
19 WRITE(1,1220) /* FORTRAN UNIT 1 IS TTY
1909 FORMAT ('TYPE FILE NAME')
c
C READ FILE NAME
C
READ(1,1019) (FNAME(T),I=1,16)
1019 FORMAT (16A2)
C
C OPEN FNAME IN CURRENT UFD FOR READING ON FILE UNIT FUNIT1
C
CALL SRCHSS (KSREAD+KSIUFD, FNAME, 32, FUNIT1, TYPE, CODE)
+ IF (CODE.NE.#) GO TO 1000

ASK FOR LOGICAL RECORD SIZE

NOQOQO

Y/ WRITE (1,1020)

1020 FORMAT ('TYPE RECORD SIZE')
READ(1,1039) RECSIZ

193¢0 FORMAT (I%)
IF (RECSIZ .GE. 1 .AND, RECSIZ .LE. BUFLNG) GO TO 30
WRITE (1,1043)

1640 FORMAT ('BAD RECORD SIZE')

GO TO 20

6 - 9 January 1980

SECTION 5 PDR3621

C
C
C

ASK FOR RECORD NUMBER. FIRST RECORD IS NUMBERED @ (ZEROQ)

39 WRITE(1,1858)
1959 FORMAT ('TYPE RECORD NUMBER')

READ (1,1930) RECNUM
IF (RECNUM .GE. @) GO TO 35
WRITE(1,1051) :

1851 FORMAT ('BAD RECORD NUMBER')

WwOOQOOOOOOOO0O0000n

QOO0 000n0

QN

OO

C

GO TO 30

CALCULATE THE 32-BIT WORD NUMBER OF THE FIRST WORD IN THE
DESIRED RECORD. NOTE THAT IF BOTH RECSIZ AND RECNUM ARE BOTH
POSITIVE 16BIT NUMBERS, THE 32BIT WORD NUMBER MUST ALSO BE
POSITIVE.

POSITIONING MAY BE DONE TO AN ABSOLUTE WORD NUMBER OR RELATIVE
TO THE CURRENT POSITION. SINCE A JUST OPENED FILE IS ALWAYS
POSITIONED TO TOP-OF-FILE AND THE CALCULATED WORD NUMBER WILL
NEVER BE NEGATIVE, THE ARGUMENT FOR POSITION TO PRWFS$S WILL
B8E THE SAME FOR BOTH CALLS IN THIS PROGRAM.

5 POSITN=INTL (RECSIZ) *INTL (RECNUM) /* POSITN IS INTEGER*4

IF (POSITN .GT. 32767) GO TO 109 /* ABSOLUTE POSITIONING

RECORD LESS THAN 32767 WORDS FROM THE BEGINNING, USE RELATIVE
POSITIONING.

NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A
RECORD ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORDS
BEYOND WORD 32767. RELATIVE IS SHOWN HERE ONLY FOR EXAMPLE.

NOTE ALSO THAT RELATIVE POSITIONING COULD BE USED TO POSITION
TO ANY WORD IN THE FILE, GIVEN THE RESTICTIONS ON RECSIZ AND
RECNUM,

WHEN REL POSITIONING IS USED, THE POS ARGUMENT (POSITN HERE)
IS CONSIDERED TO BE A SIGNED 32-BIT INTEGER.

CALL PRWFS$S (XK$READ+KSPRER, FUNIT1,LOC (BUFF) ,RECSIZ,POSTTN,
X NMREAD, CODE)
G0 TO 209 /* SKIP OVER ABSOLUTE POSITION EXAMPLE

RECORD IS MORE THAN 32767 WORDS FROM THE BEGINNING OF FILE, USE
ABSOLUTE POSITIONING.

WHEN ABSOLUTE POSITIONING IS USED, POSITION ARGUMENT (POSI'TN)
IS CONSIDERED TO BE AN SIGNED 32-8IT INTEGER.
NOTE THAT THE E$BOF ERROR (BEGINNING OF FILE) CAN OCCUR.

3¢ CALL PRWFS$ (KSREAD+KSPREA,FUNITL,LOC (BUFF) ,RECSIZ ,POSITN,

X NMREAD, CODE)

200 IF (CODE .NE.) 50 TO 30¢ /* ERROR DETECTED

REV. A 6 - 19

PDR35621 SAMPLE PROGRAMS

o
C HAVE READ RECORD, NOW TYPE IT.
C
WRITE(1,1063) RECNUM,RECSIZ
196% FORMAT ('RECORD ',I6,' CONTAINS ',I6,' ENTRIES AS FOLLOWS')
WRITE(1,1079) (BUFF(I), I=1,RECSIZ)
197@ FORVMAT (1017)
C
C RETURN TO PRIMOS AFTER CLOSING THE FILE
C
25¢ CALL SRCHSS$ (KSCLOS, @, @, FUNIT1, TYPE, CODE)
IF (CODE.NE.@) GO TO 1409
CALL EXIT :
GO TO 19 /* START COMMAND RESTARTS PROCRAM
,‘1
C ERROR WHILE ATTEMPTING TO READ THE RECORD
C
309 CALL ERRPRS$ (KSIRTN, CODE, @, @, 'RDLREC', 6)
IF (CODE .NE. ESEOF) GO TO 25@ /* EXIT IF NOT END-OF-FILE

END-OF-FILE REACHED.
REWIND FILE AND TRY AGAIN

S NP NSE?!

CALL PRWFS$S (XKSPOSN+KSPREA, FUNIT1,@,0,INTL (%) ,NMREAD,
X CODE)

IF (CODE.NE.@) GO TO 1009

GO TO 29

1990 CALL ERRPRS$ (K$NRTN,CODE,9,9,0,0)
END

6 - 11 January 1980

SECTION 6

PDR3621

P> READING A FILE IN A SEGMENT DIRECTORY

C REDSEG BIN 29NOV76 READ FILE IN A SEGMENT DIRECTORY

C

C THIS PROGRAM READS FILE NUMBER N IN SEGMENT DIRECTORY AND
C TYPES WORD NUMBER M IN THAT FILE. THE FIRST FILE IN THE
C DIRECTORY IS FILE NUMBER @. THE FIRST WORD IN THE FILE IS

C WORD NUMBER 4.

R

QOO0 0n

c

ES
1
2
3
4
5

TRICTIONS:

THE SEGMENT DIRECTORY FILE MUST EXIST

. THE FILE
. THE FILE
. THE WORD
. THE WORD

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

PARAMETER

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

NUMBER MUST BE BETWEEN @ AND 32767
MUST BE IN THE SEGMENT DIRECTORY
NUMBER MUST BE BETWEEN @ AND 32767
MUST BE IN THE FILE.

FUNIT /* PRIMOS FILE UNIT FOR DATA FILE

SGUNIT /* PRIMOS FILE UNIT FOR SEGMENT DIRECTORY
SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
DAMSEG /* FILE TYPE OF DAM SEGMENT DIRECTORY

FUNIT=2, SGUNIT=1, SAMSEG=2, DAMSEG=3

BUFF /* DATA BUFFER

SEGDIR(16) /* NAME OF SEGMENT DIRECTORY BUFFER
FILNUM /* FILE NR (ENTRY NR) OF FILE IN SEGDIR
WRDNUM /* WORD NUMBER IN DATA FILE TO BE READ
CODE /* ERROR CODE RETURNED BY FILE SYSTEM
TYPE /* FILE TYPE.RETURNED BY SRCH$S

NMREAD /* NR WORDS READ/WRITTEN/RTRNED BY PRWFS$S
I

SINSERT SYSCOMDKEYS.F
SINSERT SYSCOM>ERRD.F

C
C

C INSURE FILE UNITS TO BE USED ARE KSCLOSD
C ASK FOR AND READ SEGMENT DIRECTORY NAME FROM TERMINAL

C
10

1000

CALL SRCHSS (KSCLOS, 0, @, SGUNIT, @, CODE)
IF (CODE.NE.%) GO TO 109

CALL SRCHS (K$CLOS, @, @, FUNIT, @, CODE)
IF (CODE.NE.Z) GO TO 1092

WRITE(1,1000)

FORMAT ('TYPE SEGMENT DIRECTORY NAME')

READ (1,1019)

(SEGDIR(I) , I=1,16)

1219 FORMAT (16A2)

REV.

A

12

PDR3621 SAMPLE PROGRAMS

OPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT

[OES NP

CALL SRCHS$S (KSREAD+KSIUFD, 'SEGDIR', 6, SGUNIT, TYPE, CODE)
IF (CODE.NE.@) GO TO 109

TYPE CONTAINS THE FILE TYPE OF THE FILE JUST OPENED.
MAKE SURE THE FILE IS EITHER A SAM OR DAM SEGMENT DIRECTORY.
ALLONABLE TYPE VALUES ARE 2 AND 3.

oNoNoNONS!

IF (TYPE .EQ. SAMSEG) GO TO 20
IF (TYPE .EQ. DAMSEG) GO TO 24

NOT A SEGMENT DIRECTORY — TRY AGAIN

Qa0

WRITE(1,1029)
1029 FORMAT('FILE IS NOT A SEGMENT DIRECTORY')
GO TO 19
C
C ASK FOR FILE (ENTRY) NUMBER IN SEGMENT DIRECTORY
C
20 WRITE(1,1@30)
1030 FORMAT ('TYPE FILE NUMBER')
READ (1,1040) FILNUM
104¢ FORMAT (I%)
IF (FILNUM .LT. @) GO TO 20
C
C ASK FOR WORD NUMBER IN DATA FILE TO READ
o
30 WRITE(1,1035)
1935 FORMAT ('TYPE WORD NUMBER')
READ (1,1740) WRDNUM
IF (WRDNUM .LT. @) GO TO 30

TRY TO POSITION TO WORD NUMBER IN THE SEGMENT DIRECTORY.

IF END-OF-FILE REACHED, FILE IS NOT IN SEGMENT DIRECTORY.
SGDRSS RETURNS THE VALUE 1 IN THE 4TH ARGUMENT (TYPE) IF A
FILE IS ENTERED IN THE ENTRY POSITION. THIS PROGRAM DOES NOT
CHECK THE VALUE, SINCE SRCHS$S WILL RETURN THE PROPER ERROR CODE
(ESFNTS - FILE NOT FOUND IN SEGMENT DIRECTORY) ANYHOW.

QOO0

CALL SGDR$S (KSSPOS, SGUNIT, FILNUM, TYPE, CODE)
IF (CODE .EQ. ESEOF) CODE = ESFNTS /* FILE NOT FOUND
IF (CODE .NE. @) GO TO 190

OPEN FILE IN SEGMENT DIRECTORY FOR READING

QN0

CALL SRCHSS (KSREAD+KSISEG, SGUNIT,d,FUNIT, TYPE,CODE)
IF (CODE .NE. @) GO TO 109

PRINT THE WORD, KSCLOS THE FILES, AND RETURN TO PRIMOS

Qoo

WRITE(1,1050) WRDNUM,FILNUM, (SEGDIR(T), I= 1,16),BUFF

6 - 13 January 1989

SECTION 6 PDR3621

1950 FORMAT ('WORD',I6,' OF FILE (',I6,') IN ',16A2,
X 'CONTAINS',I5)
50 CALL SRCHS$S (XSCLOS, @, @, FUNIT, @, CODE)
CALL SRCHSS (KSCLOS, @, @, SGUNIT, @, CODE)
CALL EXIT
GO TO 18 /* START COMMAND RE-STARTS PROGRAM

[OR®!

C COMMON ERROR HANDLER

C NOTE THAT THE NEW FILE SYS PROPERLY DIFFERENTIATES THE VARIOUS

C ERRORS WHICH FORMERLY WERE GROUPED UNDER OLD ERROR CODE 'SQ’

C

198 IF (CODE.EQ.E$FNTS) GO TO 110 /* FILE NOT FOUND IN SEGDIR
IF (CODE .EQ. E3EOF) GO TO 123 /* END-OF-FILE
CALL ERRPRS (K$IRTN,CODE,@,9, 'REDSEG',6) /* PRINT ERROR MSG
GO TO 50 /* KSCLOS FILES EXIT

C

C FILE NOT FOUND IN SEGMENT DIRECTORY

C LET THE USER TRY AGAIN

C

118 WRITE(1l,1060) FILNUM, (SEGDIR(I), I=1l, 15)

1060 FORVMAT ('FILE (',I6,') NOT FOUND IN ',16A2)
GO TO 18 /* RE-TRY

C

C END-OF-FILE

CODE WILL CONTAIN ESEOF ONLY WHILE TRYING TO READ

THE DATA FILE. ALLOW RE-TRY.

20 WRITE(1,107%) WRDNUM,FILNUM, (SEGDIR(T),I=1,16)
@70 FORMAT ('WORD',I6,' NOT IN FILE (',16,') IN ',16A2)
GO TO 19 /* RE-TRY

HiE= OO0

@]

END

REV. A A - 14

- PartIII
Maith and Application
Library Subroutines

PDR3621 FORTRAN STANDARD FUNCTIONS

SECTION 7

FORTRAN STANDARD FUNCTIONS

INTRODUCTION

The subroutines described in this section are Prime subroutines that
correspond to those defined as ANSI-standard FORTRAN functions. Table
7-1 describes these functions., They are all called using the standard
FORTRAN calling sequences for R or V mode functions.

FUNCTION REFERENCES
Library function references are of the form:
R = name (argument-1,...,argument-n)

where R is a variable defined within the scope of the program, name is
one of the library function names and argument-1,...,argument-n is a
list of arguments to be processed by the function., Most functions
require only one argument; e.g., A=SIN (X) . See the FORTRAN
Programmers Guide for a discussion of function references and for
examples of their use.

Fixed pPoint Data Storage

Fixed point data is stored in the A-register (single precision). The
A-register may be referred to as the fixed point accunulator.

Extended Registers

Locations ACl, AC2, AC3 and AC4 provide accumulators for complex
subroutines. These are global symbols defined in the FORTRAN library.
AC1 and AC2 are for the real part and AC3 and AC4 for the imaginary

part.

The global symbol AC5 contains error conditions which may be generated
by FORTRAN library subroutines.

7 - 1 January 1980

SECTION 7 PDR3621

SINGLE ARGUMENT SCIENTIFIC FUNCTIONS

The "SX" series are short callable (V-mode only) versions of common
scientific functions which take a single argument in the single or
double precision floating accumulator. The routines available are:

ALOGSX
ATANSX
CosS$X

DATNSX
DCOSSX
DEXPS$X
DL1@SX
DLOGSX
DLG2SX
DSINSX
DSOR$X
EXPSX

SINSX

SQRTSX

A FORTRAN user need not call these functions explicitly; the FORTRAN
compiler generates calls to them in response to normal function usage,
FORTRAN 77 FUNCTIONS

FORTRAN 77 applies all of the functions in Table 7-1 plus those listed

in Table 7-2. See the FORTRAN 77 Reference Guide (IDR4029) for more
details.

REV. A 7 - 2

Function

Absolute value:

- Real

- Integer

- Double precision
- Camplex to real

Conversion:

- Integer to real

- Real to integer

- Double to real

- Real to double

- Complex to real
(obtain real part)

- Complex to real
(obtain imaginary

- part)

- Real to complex

Truncation:

- Real to real

- Real to integer
- Double to integer
- Double to double

Remaindering:

- Real

- Integer

- Double precision

Maximum Value:

Minimum Value:

PDR3621

FORTRAN STANDARD FUNCTIONS

Table 7-1. FORTRAN Library Functions
Nurber of Type of

Subroutine Operation Arguments Argument Result
ABS larg| 1 Real Real
IABS (1) largl 1 Integer Integer
DABS laral 2 2.1/2 1 Double Double
CABS c=(x"+y") 1 Complex Real
FLOAT 1 Integer REAL
IFIX Result is largest 1 Real Inteyer
SNGL integer < a 1 Double Real
DBLE 1 Real Double
REAL 1 Complex Real
AIMAG 1 Complex Real
CMPLX c=Arql+i*Arq2 2 Real Complex
ATNT sign of arq*' 1 Real Real
INT largest integer 1 Real Integer
IDINT < arg 1 Double Integer
DINT 1 Double Double
AMOD The remainder 2 Real Real
MOD (1) when Arg 1 is 2 Integer Integer
DMOD divided by Arg 2 2 Double Double
AMAXO0 Integer Real
AMAX1 Real Real
MAXO Max (Arql ,Arg2 sens) {2, 3,0r 4‘ Integer Integer
MAX1 Real Integer
DMAX1 Double Double
AMINO Integer Real
AMIN1 Real neal
MINO MIN (Argl,Argz, ved) ‘2,3,or 4] Integer Integer
MIN1 Real INTEGER
DMINL1 Double Double

January 1989

SECTION 7

Function

Transfer of Sign:
- Real
- Integer

— Double Precision

Positive Difference:

- Real
- Integer

Exponential :
- Real

~ Double

- Camplex

Logarithm:
- Real

- Double

- Camplex

Square Root:
- Real

- Double

- Camplex

Sine: (radians)
- Real

- Double

- Caomplex

Cosine: (radians)
- Real

- Double

~ Camplex

REV. A

PDR3621

Table 7-1. (continued)

Subroutine Operation

SIGN

ISIGN Sgn(Arg.) * |arg]

DSIGN { 2 ’Ar 1!

DIM ,

IDIM {Arngl“(Argl’Argz):

EXP

DEXP Arg

CEXP €

ALOG log (Arg)

ALOG10 loglO(Arg)

DLOG loge (Arg)

DLOG2 log, (Arg)

DLOGL0 logy, (Arg)

CLOG loge (Arg)

SORT (Arg) ijg

DSQRT (Arg) 1/2

CSQRT c=(x+1iy)

SIN

DSIN (2) {sin (Arg)}

CSIN

cos

CCOs

DCOS (2) {cos (Arg)’

Number of of

Arguments Argument Result
2 Real Real
2 Integer Integer
2 Double Double
2 Real Real
2 Integer Integer
1 Real Real
1 Double Double
1 Complex Camplex
1 Real Real
1 Real Real
1 Double Double
1 Double Double
1 Double Double
1 Complex Camplex
1 Real Real
1 Double Double
1 Canplex Camplex
1 Real Real
1 Double Double
1 Complex Complex
1 Real Real
1 Double Double
1 Complex Camplex

PDR3621 FORTRAN STANDARD FUNCTIONS

Table 7-1. (continued)

Nunber of Type of
Function Subroutine Operation Arguments Argument Result
Hyperbolic
- Tangent TANH tanh(arg) 1 Real Real
Arc Tangent:
- Real ATAN arctan{Arg) 1 Real Real
~ Double DATAN arctan (Arg) 1 Double Double
- quotient of
two arguments ATAN2 arctan (Argl/ArgZ) 2 Real Real

DATAN2 arctan (Arg l/Argz) 2 Double Double
Complex Conjugate CONJG Arg=X+iY, CONJG=X-iY 1 Complex Complex
Random Number: (3)

RND pick a random number fram 1 Integer Real

g to 1.4,
TRND pick a random ilgmbe:)c from 1 Integer Integer

0 to 32767 (2

Notes

(1) These functions are not in the library but are expanded in line by FORTRAN compiler.

(2) Ranges for DSIN and DCOS:

DSIN (X)
X< 3.37E9 For V-mode
X< 1.69E9 For R-mode

DCOS (X)
X< 3.37E9 For V-mode
X<1.69E9 For R-mode

(3) The argument for RND and IRND is interpreted as follows:

Arg>@, Arg is used to initialize the randam nurber generator. Arg is returned as the value
the call.

Arg=g, The function returns a randam number: from @ to 1.0 for RND, 0 to 32767 for IRND.

Arg<df, Initializes the random number generator and then returns a randem nuvber as in the
Arg=@ case.

7 - 5 January 1980

REV. A

SECTION 7 PDR3621
Table 7-2. FORTRAN 77 Additional Functions
Number of Type of
Function Subroutine Arguments Argument Result
Numeric to DREAL 1 Complex*16 Double
Double Precision
Numeric to DCMPLX 1l or?2 Integer Complex*16
Complex*16 Real Complex*16
Double Complex*16
Complex Complex*16
Complex*16 Complex*16
Character to ICHAR 1 Character Integer
Integer
Integer to CHAR 1 Integer Character
Character
Nearest whole ANINT 1 Real Real
Number DINT 1 Double Double
Nearest Integer NINT 1 Real Integer
IDNINT 1 Double Integer
Absolute value CDABS 1 Complex*16 Double
Positive DDIM 2 Double Double
Difference
Double Precision DPROD 2 Real Double
Product
Length of LEN 1 Character Integer
Character Entity
Index of a INDEX 2 Character Integer
Substring '
Real Part of DREAL 1 Complex*16 Double
Complex Argument
Imaginary Part AIMAG 1 Complex Real
of Complex DIMAG 1 Complex*16 Double
Argument
Conjugate of a CONgT 1 Complex Compl ex
Complex Argument DCONT 1 Complex*16 Complex
Square root CDSQRT 1 Complex*16 Complex*16

Function
Exponential

Natural
Logarithm

Sine
Cosine

Tangent

Arcsine

Arccosine
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic

Tangent

Lexically Greater
Than or Equal

Lexically Greater
Than

Lexically Less
Than or Equal

Lexically Less
Than

PDR3521
Table 7-2. (continued)
Number of Type of
Subroutine Arguments Argument
CDEXP 1 Complex*16
CDLOG 1 Complex*16
CDSIN 1 Complex*16
CDCOoS 1 Complex*16
TAN 1 Real
DTAN 1 Double
ASIN 1 Real
DASIN 1 Double
ACOS 1 Real
DACOS 1 Double
SINH 1 Real
DSINH 1 Double
cosH 1 Real
DCOSH 1 Double
DTANH 1 Double
LGE 2 Character
LGT 2 Character
LLE 2 Character
LLT 2 Character
7 - 7

FORTRAN STANDARD FUNCTIONS

Result

Complex*16

Complex*16

Complex*16
Complex*16

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double
Double
Logical
Logical

Logical

Logical

January 1980

PDR3621 LOGICAL FUNCTIONS

SECTION 8

LOGICAL FUNCTIONS

This section describes FORTRAN logical functions which are not Library

subroutines, but are expanded by the compiler. They are included in
this document for reference purposes. These functions accept long

integer as well as short integer arguments. The result of a mixed mode

AND, OR, or XOR is long integer. The short integer argument is
converted to long integer. Note that the conversion sign extends so
that if bit 1 of the short integer is 1, bits 1-17 will be 1 after
conversion to long integers; the result of a mixed mode shift or
truncate is the mode of its first argument.

p anD

Performs a logical AND operation, bit by bit, on a variable list of
integers.

i=2AaND (i1, i2, ..., in)

p s

shifts an integer variable left by a specified number of bits; wvacated
bits are filled with zeroes.

i2 = Ls (i1, ip)

ip is the number of bits on i2 to be shifted to the left. Tf ip<9, no
change is made to the integer.

p LT

Preserves a specified nunber of left-most bits and sets the reset to
zero (left truncation).

i2 = LT (i1, ip)

The first ip bits are set from the left are saved and the rest of the
bits are set to zero. If ip <@, the entire integer is set to zero.

P or

Performs a logical (inclusive) OR operation on a variable list of
integers.

i =o0R (i1, i2, ..., in)

3 - 1 January 1989

SECTION 3 PDR3621

P RS

Shifts an integer variable right by a specified number of bits;
vacated bits are filled with zeroes.

i2 = RS (i1, ip)

ip is the number of bits to be shifted to the right on Integer "il".
If ip < @, no change is made to the integer.

P RT

Preserves a specified number of right-most bits and sets the rest to
zero (right truncation).

i2 =RT (i1, ip)

The first ip bits of il from the right are saved and the rest of the
bits are set to zero. If i@, the entire integer is set to zero.
P SHFT
SHFT performs logical shift operations on integer variables. Format 1:

= SHFT (i,ipl)
performs a shift operation on the variable. 1If ipl>3, the shift is to
the right; if ipl<# the shift is to the left. If ipl=@, no shift
occurs. This operation is equivalent to the RS function, and is
provided for compatibility with other FORTRAN compilers. Format 2:

= SHFT (i, ipl, ip2)

performs two shift operations, first by ipl (setting zeroes in vacated
bits), then by ip2 (setting zeroes in vacated bits). The sign of ipl
and ip2 determine the direction of the shift while their magnitude
determines the number of bits to be shifted.

P xoRr

Performs a logical exclusive OR on a variable list of integers.

= XOR (il, i2, ..., in)

REV. A 8 - 2

PDR3521 ARITHMETTIC OPERATIONS

SECTION 9

ARITHMETIC OPERATIONS

Calls to the routines which perform arithmetic are generated by the
FORTRAN compiler when arithmetic operations are specified in the
FORTRAN program. They should not be called explicitly by a FORTRAN
program, but may be called in a PMA program.

All of these subroutines are callable in 32R or 64R mode and are
contained in FINLIB. The subset of these subroutines which are
necessary in the 64V mode are in PFTNLB.

Subroutine names are of the form pSxy or FS$pxy.

p is a prefix; x is the first argument (argument-l); y is the second
argument (argument-2).

The prefix specifies the action of the subroutine (see Table 9-1).
argunent-1 is a number specifying the register in which the first
argument is stored (see Table 9-2). argument-2 is a number specifying
the type of the second argument pointed to by a DAC (R mode) or AP (V
mode) following the subroutine call (see Table 9-2).

Note

In subroutines with only one argument, argument-2
has a slightly different meaning. This is
discussed under the specific subroutines.

Examples: AS$22 Adds two single-precision floating-point numbers
(2 arguments) .

C$12 Floats a 16-bit integer to a single-precision
floating point number (1 argument).

A complete list of subroutines of this type follows:
A$21 C$26 D$S51 ES$27 FSDI11l FS$SIll M$77

AS51 Cc$27 D$52 ES51 FSDI71 FS$SI7L
AS$52 C$51 D$55 ES52 FSDI77 F$SI77 NS$S55

AS$55 C$52 D$57 E$55 N$77
AS61 C$57 DS61 ES$57 FSMAll HS$55
A$62 Ccs61 D$62 ES61 FSMA22 S$21
AS77 C$62 D$67 ES62 FSMA77 LS55 S$51
Cc$67 DS$S71 £$66 5$52
Cc$12 C$75 D$77 E$67 FSMT11 MsS21 S$55
C$15 C$76 ES71 FSMI22 MS51 S$61
CS$16 cs77 ES11 ES77 FSMI77 MS$52 S$$62
cs21 ' ES21 M$55 S$77
C$21G DS$21 ES$22 FSCL FSMO71 MS61
C$25 D$27 ES26 FSMO77 MS$62 Z7$80

9 - 1 January 1980

SECTION 9 PDR3621

Table 9-1. Subroutine Prefix Explanations.

Prefix Meaning Number of Arguments

Addition

Conversion

Division

Exponentiation

Store complex number

Load complex number
Multiplication

Negation

Subtraction

Zero double-precision exponent

NnNzZRroaoamooay
NN NN N

FORTRAN Support Subroutines (F$)

DI Positive difference 2
MA Max imum 2
MI Minimum 2
MO Remainder 2
ST Manitude of first times sign of second 2

N

REV. A 9 -

PDR3621 ARITHMETIC OPERATIONS

Table 9-2. Data Type Codes,

Type code Register Type

1 a 16-bit integer (INTEGER*2)
2 FAC Single-precision floating—point number
(REAL or REAL*4)
5 AC1-AC4 Complex number (COMPLEX)
6 DFAC double-precision floating-point number
(DOUBLE PRECISION or REAL*3)
7 A+3 Long integer (INTEGER*4)
8 - Exponent part of a Double-precision number
Note
Some long integer subroutines may need to be
entered or exit in DBL mode (R mode only); this is
noted with the description of these subroutines.
A A register
FAC Floating—point accumulator
AC1-AC4 Complex accumulator addresses ACl to AC4
DFAC Double-precision floating-point accumulator
A+B Concontenated A and B registers

9 - 3 January 1980

SECTION 9 PDR3621

SINGLE ARGUMENT FUNCTIONS

Each of these subroutines takes a single argument, stored in the
appropriate register, operates on it and stores the result in the same
or another register.

Conversion

P Csxy

Converts the type of the argument in the register identified by x to
the type of the argument identified by y and stores it in the proper
register for y-type variables. For example C$75 converts a long
integer in the A+B register into the real part of a complex number in
the complex accumulator (imaginary part is). See Table 9-3 for a
complete list.

Complex Number Manipulation

P HS55

Stores the contents of the complex accumulator (ACl to AC4) at the
address specified by the DAC or AP following the call. ‘

P> Ls55

Loads the complex accumulator (ACl to AC4) from the four words pointed
to by the DAC or AP following the call.

Negation

P NSxx

Negates the value of the argument in the register specified by x, and
stores it in that same register (see Table 9-3).

Zeroing
P 2389

Clears the exponent part of the double-precision floating-point
accumulator (DFAC). R mode only.

TWO-ARGUMENT SUBROUTINES

These subroutines perform arithmetic operations on two arguments:
addition, subtraction, etc. If the arguments do not have the same data
type, the data type of the result is that of the higher. The data
types, in descending order are:

REV. A 9 - 4

PDR3621 ARITHMETIC OPERATIONS

Table 9-3
Single Argument Subroutines
(Negation and Conversion)

X y NS (Negation) C$ (Conversion)
1 1 n/a
1 2 n/a R

1 5 n/a R,V
1 6 n/a R

2 1 n/a R

2 2 n/a
2 5 n/a R,V
2 6 n/a R

2 7 r/a R

5 1 n/a R,V
5 2 n/a R,V
5 5 R,V n/a
5 7 n/a R,V
6 1 n/a R

6 2 n/a R

6 6 n/a
6 7 n/a R,V
7 2 n/a

7 5 n/a R

7 6 n/a R,V
7 7 R (1) R

n/a Not applicable

R Used in R-mode only
R,V Used in R or V modes

X Argument type (see Table 9-2)
y Result type (see Table 9-2)

Notes

1. Exit mode is DBL (R mode) .
2. There is also a subroutine C$21G (R mode only),

which performs the same functions as C$21 without
the use of any floating-point instructions.

9 - 5 January 1980

SECTION 9 PDR3621

COMPLEX or DOUBLE PRECISION
REAL
LONG INTEGER (INTEGER*4)
16-BIT INTEGER (INTEGER*2)

There are no operations which combine COMPLEX and DOUBLE PRECISION
nunbers, i.e., there are no "55" or "65" subroutines. The result of a
two—argument subroutine is stored in the appropriate register for its
data type (see Table 9-2).

Examples: R mode

CALL A$21
DAC I

Floats the 16-bit integer I and adds it to the contents of the Floating
Point Accumulator (FAC).

V mode

CALL F$MI1l
AP I2,SL

Loads I2 into the A register if I2 is less than the current contents of
the A register.

Addition

P asxy

Adds argument of type vy, pointed to by the DAC or AP following the
call, to an argument of type x in the appropriate register. See Table
9-4 for a complete list.

Division
P DSxy

Divides the argument of type x in the appropriate register by the
argument of type y, pointed to by the DAC or AP following the call.
See Table 9-4 for a complete list.

Exponentiation
p E3xy

Raises the argument of type x in the appropriate register to the power
specified by the argument of type y pointed to by the DAC or AP
following the call. A complete list is given in Table 9-4.

Note

In all modes zero to the zeroth power is one.

REV. A 9 - 5

PDR3621 ARITHMETIC OPERATIONS

Multiplication

> MSxy

Multiplies the argument of type x in the appropriate register by the
argunent of type y pointed to by the DAC or AP following the call. See
Table 9-4 for a complete list.

Subtractiqg

P sSsxy

Subtracts the argument of type y, pointed to by a DAC or AP following
the call, from an argument of type x in the appropriate register. See
Table 9-4 for a complete list.

Positive Difference

p FSDIxy

Subtracts the argument of type y, pointed to by the DAC or AP following
the call, from the argument of type x in the appropriate register. If
the result is 1less than zero, the register is cleared. See Table 9-5
for a complete list.

Max imum
P FoMaxx
Places the maximum of the register specified by type x and the value of

the argument of type x pointed to by the DAC or AP, into the specified
register. See Table 9-5 for a complete list.

Minimum

P FSMIxx

Places the minimum of the register specified by type x and the value of
the argument of type x pointed to by the DAC or AP, into the specified
register. See Table 9-5 for a complete list.

Remainder

P FSMoxy

Divides an argument of type x in the appropriate register by an

argument of type y, pointed to by the DAC or AP. The remainder is
placed in the appropriate register. See Table 9-5 for a complete list.

9 - 7 January 1980

SECTION 9 PDR3621

Table 9-4
Two—-Argument
Arithmetic Subroutines (First Group)

X y AS S$ MS D$ ES
__ AMdition Subtraction Multiplication Division Exponentiation
1 1 R,V

2 1 R R R R,V R,V

2 2 R,V

2 6 R,V

2 7 R,V R,V

5 1 R,V R,V R,V R,V R,V

5 2 R,V R,V R,V R,V R,V

5 5 R,V R,V R,V R,V R,V

5 7 R,V R,V

5 1 R R R R,V R,V

6 2 R R R R,V R,V

6 6 R,V

6 7 R,V R,V

7 1 R,V R,V

7 7 R(l) R(1) R(1) R(1) R,V (1)

R Used in R mode only
R,V Used in R or V modes

X First argument, stored in appropriate register
y Second argument, pointed to by DAC (R mode)
or AP (V mode)
Notes

1. Exit mode is DBL (R mode)

REV. A 9 - 8

|
|

NN -

PDR35621 ARITHMETIC OPERATIONS

Table 9-5
Two-Argument
Arithmetic Subroutines (Second Group)

y FSMO F$SI F$DI FSMA FSMI
Remainder Sign and Positive Maximum Minimum

Magnitude Difference

NN~

R
R
R
R,V

X
Y

’
4

R,V R,V R,V R,V
R,V R,V

\ R,V R,V
\' R,V R,V R,V R,V

Used in R mode only
Used in R or V modes

First argument, stored in appropriate register
Second argument, pointed to by DAC (R mode)
or AP (V mode) .

January 1980

SECTION 9 PDR3621

Sign and Magnitude
P FS$sIxy

Multiplies the argument of type X in the appropriate register by the
sign of the argument of type y pointed to by the DAC or AP and stores
the result in the register for type x. See Table 9-5 for a complete
list,

Comparison (R mode only)

P FsCL

Compares the long integer, L1, in the concatenated A and B registers
with the long integer, L2, pointed to by a DAC following the «call.
Control passes as follows:

L1>L2 Next location
L1=L2 Skip one location
L1<L2 Skip two locations

The A and B registers are not modified.

Example: CALL FS$CL
DAC L2
...return here if LI>L2
...return here if L1=0L2
...return here if LI1<KL2

REV. A 9 - 19

PDR35621 FORTRAN MATRIX SUBROUTINES

SECTION 14

MATHLB (FORTRAN MATRIX SUBROUTINES)

SCOPE OF MATHLB

MATHLB provides a set of subroutines that perform matrix operations,
solve systems of simultaneous linear equations, and generate
permutations and combinations of elements. See Table 10-1 for a
summary.

SUBROUTINE CONVENTIONS

The following conventions are used in the subroutine descriptions in
this section:

Names

All calls are shown with their double-precision, integer, and complex
counterparts, if applicable, in brackets following the single-precision
name, For example, if the single-precision name is XXXX, the
double-precision, integer and complex names respectively are: DXXXX,
IXXXX, and CXXXX.

Parameters

All parameters must be specified. Variables and arrays are assumed to
be of the sane mode as the subroutine (i.e., REAL, DOUBLE-
PRECISION, INTEGER,COMPLEX) . Matrix sizes and error flags must be
declared INTEGER. Parameters enclosed in parentheses follow the names.

Arrays

Arrays are expected by MATHIR subroutines to be doubly subscripted
arrays. The dimensions passed as arguments must agree with the array
sizes declared in the calling program, or the elements cannot be
properly accessed. Except where otherwise noted, when more than a
single array is passed as an argument, the arrays may be the sane array
as in the calling program. For example, in matrix addition, it is
permissible to specify: A=A +A

Work Arrays
Work arrays must always be distinct arrays in the calling program.

10 - 1 January 1989

SECTION 10 PDR3621

Table 18-1. Summary of Available Matrix Operations

Operation Integer Single Complex Double
Precision Precision
Setting matrix to identify matrix IMIDN MIDN CMIDN DMIDN
Setting matrix to constant matrix IMCON MCON CMCON DMCON
Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL
Matrix addition IMADD MADD CMADD DMADD
Matrix Subtraction IMSUB MSUB oMsuB DMSUB
Matrix multiplication IMMLT MMLT CMMLT DMMLT
Calculating transpose matrix *# IMTRN MTRN CMTRN DVTRN
Calculating adjoint matrix * IMADJ MADJ CMADJ DMADJ
Calculating inverted matrix * MINV CMINV DMINV
Calculating signed cofactor * IMCOF MCOF CMCOF DMCOF
Calculating determinant * IMDET MDET CMDET DMDET
Solving a system of linear LINEQ CLINEQ DLINEQ
equations
Generating permutations I "RM
Generating combinations CO®B
* For square matrices only

REV. A 10 - 2

PDR3621 FORTRAN MATRIX SUBROUTINES

p comB

COMB computes the next combination of nr out of n elements with a
single interchange each time it is called. The first call to comb
returns the combination 1, 2, 3,...,nr. This subroutine is self-
initializing and proceeds through all n!/(nr!*(n-nr)!) combinations.
At the 1last combination, it returns a value of last = 1 and resets
itself. The comb subroutine may be re-initialized by the user by
passing a restrt wvalue of 1 along with new values for n and nr. (The
restrt parameter is optional; if re-initialization is not desired
either omit this parameter from the calling sequence or set it to a
value of 0).

CALL COMB (icomb, n, nr, iwl, iw2, iw3, last, restrt)

Mode Subscript(s) Dimension(s) Comments
icomb Integer 1 nr return
n Integer pass
nr Integer pass
iwl Integer 1 n work
iw2 Integer 1 n work
iw3 Integer 1 n work
last Integer return
restrt Integer pass

(optional)
Note

The calling program should not attempt to modify icomb, iwl,
iw2, or iw3. For further details see: "Loopless Algorithms
for Generating Permutations, Combinations, and Other
Combinatorial Configurations", Gideon, Ehrlich, Journal of the
ACM, 20, Number 3 (July 1973) pp. 5000-5113.

P LINEQ

LINEQ solves the set of n-linear equations in n unknowns represented by
(anat) (xvect) = (yvect) where cmat is the nxn square matrix of
coefficients, yvect is the nxl column vector of unknowns in which the
solution is stored.

10 - 3 January 1989

SECTION 19 PDR3621

Note

For complex and double-precision numbers, use CLINEQ and DLINEQ

respectively,
CLINEQ
CALL 4 LINEQ (xvect, yvect, cmat, work, n, npl, ierr)
DLINEQ
Mode Subscript(s) Dimension(s) Comments

xvect * 1 n returned
yvect * 1 n passed
cmat * 2 n,n passed
work * 2 npl, npl work
n Integer passed
npl Integer passed (=N+1)
ierr Integer returned

* all of the same mode which determine the subroutine used.

The user is required to provide as a work area, a nplxnpl matrix work

(npl = n+l). The integer error flag ierr returns one of three possible
values.

lerr

] Solution found satisfactorily
1 Coefficient matrix singular

2 npl # n+l

If ierr # 9 no modifications are made to Xvect.

REV. A 19 - 4

PDR3621 FORTRAN ‘MATRIX SUBROUTINES

p MADD

MADD adds the nxm matrix mat2 to the nxm matrix matl and returns the
sum in a nxm matrix mats. in component form: mats (1,3) = matl (i,3)
+ mat2 (1,]) as 1 goes from 1 to n and j goes from 1 to m.

Note

For integer, complex and double-precision numbers use IMADD,
CMADD, and DMADD respectively.

DMADD
CMADD
CALL)} IMADD [(mats, matl, mat2, n, m)
MADD
Mode Subscript(s) Dimension(s) Comments

mats * 2 n,m returned
matl * 2 n,m passed
mat2 * 2 n,m passed
n Integer passed
m Integer passed

* all of the same mode which determines the subroutine used

'» MADJ

This subroutine calculates the adjoint of the nxn matrix mati and
stores it in the nxn matrix mato. Each element of the output matrix is
the signed cofactor of the corresponding element of the input matrix.

Note

For integer, complex, or double-precision numbers use IMADJ,
CMADJ, or DMADJ respectively

MADJ
IMADJ

CALL YCMADJ ((mato, mati, n, iwl, iw2, iw3, iw4, ierr)
DMADJ

10 - 5 January 1989

SECTION 19 PDR3621

Mode Subscript(s) Dimension(s) Comments
mato * 2 n,n returned
mati * 2 n,n passed

n Integer passed
iwl * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iwd * 1 n work

ierr Integer returned

* all of the same mode which determines the subroutine used.

The error flag, ierr, may have one of two values:

ierr

Y] Adjoint successfully constructed

1 n<2 - no adjoint may be constructed

Note
mato and mati must be distinct.

P MCOF
Calculates the signed cofactor of the element mat (1,]) of the nxn
matrix mat and stores this value in COF. If i =29 7 and j =0 the

determinant of mat is calculated.

Note

For integers, complex, or double-precision numbers use IMCOF,
CMCOF, or DMCOF respectively.

IMCOF
CMCOF

CALL § MCOF (cof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)
DMCOF

REV. A 19 -

[€))

PDR3521 FORTRAN MATRIX SUBROUTINES

Mode Subscript(s) Dimension(s) Comments
cof * returned
mat * 2 n,n passed
n Integer passed
iwl * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iwd * 1 n work
i Integer passed
j Integer passed
ierr Integer returned

* 311 of the same mode which determines the subroutine used.

The integer error flag ierr has two possible values:

ierr

3 Cofactor calculated successfully
1 No cofactor calculated for any of the
following reasons:

no cofactor possible

1) n<2 -
i = j=n=0 - no determinant

subscript error
4) i>n and/or j>n - subscript error

P MCON

This subroutine sets every element of the NxM matrix MAT equal to a
constant CON.

Note

For integer, complex, or double-precision numbers use IMCON,
CMCON, or DMCON respectively.

19 - 7 January 1980

SECTION 190 PDR3621

IMCON
MCON
CALL)} CMCON ((mat, n, m, con)
DMCON
Mode Subscript(s) Dimension(s) Comments
mat * 2 n,m returned
n Integer passed
m Integer passed
con * passed

* all of the same mode which determines the subroutine used.

p MDET
Calculates the determinant of the nxn matrix mat and stores it in det.

Note

For integer, complex, or double-precision numbers use IMDET,
CMDET, or DMDET respectively.

IMDET
MDET
CALL) CMDET | (det, mat, n, iwl, iw2, iw3, iwd, ierr)
DMDET
Mode Subscript(s) Dimension(s) Comments

det * returned
mat * 2 n,n passed
n Integer passed
iwl * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iwd * 1 n _ work
ierr Integer returned

* all of the same mode which determines the subroutine used.

REV. A 19 - B

PDR3621 FORTRAN MATRIX SUBROUTINES

The integer error flag ierr may have one of two values:

ierr
4 Determinant formed successfully
1 n = 9 - no detemminant possible

p MIDN

This subroutine sets the nxn matrix mat equal to the nxn identity
matrix. That is,

MAT (I,J)

S
-
I
[F]

For integer, complex, or double-precision numbers use IMIDN,
CMIDN, or DMIDN respectively.

IMIDN
MIDN
CALL)} CMIDN { (mat, n)
DMIDN
Mode Subscript(s) Dimension(s) Comments
mat * 2 n,n returned
n Integer passed
* the mode of this argument determines which subroutine is used

and the representation of 1 in matrix.

mode subroutine representation of 1
integer TMIDN 1
single-precision MIDN 1.(SP)
complex CMIDN (l.,2) (each SP)
double-precision DMIDN 1. (DP)

12 - 9 January 1989

SECTION 19 PDR3621

p MINV

Calculates the inverse of the nxn matrix mati and stores it in mato if
successful. (The inverse of mati is mato if and only if

mati*mato = mato*mati = I

where * denotes matrix multiplication and I is the nxn identity
matrix) . The user must supply a npl x npn scratch matrix work, where
npl = ntl and npn = ntn.

Note

For complex or double-precision numbers use the subroutines
CMINV or DMINV respectively. There is no integer form of this
subroutine as there 1is no guarantee that the inverse of an
integer matrix will be an integer matrix.

CMINV
CALL 4 MINV (mato, mati, n, work, npl, npn, ierr)
DMINV
Mode Subscript(s) Dimension(s) Comments

mato * 2 n,n returned
mati * 2 n,n passed
n Integer passed
work * 2 npl,npn work
npl Integer passed
npn Integer passed
ierr Integer returned

* all of the same mode which determines which subroutine is used.

The integer error flag ierr will return one of the following values.

REV. A 19 - 19

PDR3621 FORTRAN MATRIX SUBROUTINES

ierr

matrix inverted - inverted matrix stored in mato.

matrix is singular - no inversion possible, mato is
filled with zeroes.

2 npl # ntl and/or npn # ntn - return from subroutines
with no calculations performed.

—~ X

p MMLT

This subroutine multiplies the nlxn2 matrix matl (on the left) by the
n2xn3 matrix matr (on the right) and stores the resulting nlxn3 product
matrix in maLp.

Note

For integers, complex, or double-precision numbers use IMMLT,
CMMLT, or DMMLT respectively.

IMMLT
MMLT

CALL YCMMLT { (matp, matl, matr, nl, n2, n3)
DMMLT

Note

matp must be distinct from matl and matr, although matl and
matr may be the same. For example:

CALL MMLT (A, B, C, N1, N2, N3) LEGAL

CALL MMLT (A, B, B, N, N, N) LEGAL

CALL MMLT (A, A, A, N, N, N) ILLEGAL

CALL MMLT (A, A, B, N, N, N) ILLEGAL

CALL MMLT (A, B, A, N, N, N) ILLEGAL

Mode Subscript(s) Dimension(s) Comments

matp * 2 nl,n3 returned
matl * 2 nl,n2 passed
matr * 2 n2,n3 passed
nl Integer passed
n2 Integer passed
n3 Integer passed

* 311 of the same mode which determines which subroutine is used.

19 - 1 January 1980

SECTION 10 PDR3621

P MSCL

This subroutine multiplies the nxm matrix mati by the scalar constant
SCON and stores the resulting nxm \ matrix in mato. By components scalar
multiplication is understood to be: mato (i,J) = scon*mati (i,J) for i
from 1 ton, j from 1 to m. T T -

Note

For integers, complex, or double-precision numbers use IMSCL,
CMSCL, or DMSCL.

IMSCL
MSCL
CALL) CMSCL { (mato, mati, n, m, scon)
DMSCL
Mode Subscript(s) Dimension(s) Comments
mato * 2 n,m returned
mati * 2 n,m passed
n Integer passed
m Integer passed
scon * passed

* all of same mode which determines which subroutine is used.

REV. A 1% - 12

PDR3621 FORTRAN MATRIX SUBROUTINES

p Msus

Subtracts the nxm matrix mat2 from the nxm matrix matl and stores the
difference in the nxm matrix matd.

Note

For integers, complex, or double-precision numbers use IMSUB,
CMSUB, or DMSUB respectively.

IMSuB
MSUB
CALL YCMSUB((matd, matl, mat2, n, m)
DMSUB
Mode Subscript(s) Dimension(s) Comments
matd * 2 n,m returned
matl * 2 n,m passed
mat2 * 2 n,m passed
n Integer passed
m Integer passed

* all of the same mode which determines the subroutine
to be used.

P MIRN

Calculates the transpose of the nxn matrix mati and stores it in the
nxn matrix mato. The relationship between mati and mato is: mato
(i,j) = mati (3,i) for i, j = 1 to n. mato and mati must be distinct.

Note

For integers, complex, or double-precision numbers use IMTRN,
CMIRNM, or DMTRN respectively.

19 - 13 January 1939

SECTION 10 PDR3621

IMTRN
MTRN
CALL } CMTRN ((mato, mati, n)
DMTRN
Mode Subscript(s) Dimension(s) Comments

mato * 2 n,n returned
mati * 2 n,n passed
n Integer passed

* all of the same mode which determines the subroutine used.

P> PERM

PERM computes the next permutation of n elements with a single inter-
change of adjacent elements each time it is called. The first call to
PERM returns the permutation 1, 2, 3,..., n. This subroutine is
self-initializing and proceeds through all n! permutations. At the
last permutation it returns a value of last = 1 and resets itself. The
PERM subroutine may be re-initialized by the user by passing a new
value of n or by passing the restrt parameter with a value of 1. (The
restrt parameter is optional, if re-initialization is not desired
either omit this parameter from the calling sequence or set it to a
value of @.) The calling program should not attempt to modify iperm,
iwl, iw2, or iw3.

CALL PERM (iperm, n, iwl, iw2, iw3, last, restrt)

Mode Subscript(s) Dimension(s) Comments
iperm Integer 1 n returned
n Integer pass
iwl Integer 1 n work
iw2 Integer 1 n work
iw3 Integer 1 n work
last Integer return
restrt Integer passed (optional)

REV. A 1 - 14

PDR3621 FORTRAN MATRIX SUBROUTINES

For further details see:

"Loopless Algorithms for Generating Permutations, Combinations,
and Other Combinatorial Configurations," Gideon, Ehrlich,
Journal of the ACM, 20, Number 3 (July 1973) pp. 5000-5113.

19 - 15 January 1989

PDR3621 APPLICATION LIBRARY (APPLIB)

SECTION 11

APPLICATION LIBRARY (APPLIB)

GENERAL DESCRIPTION

APPLIB is a user-oriented library which provides users with a set of
service routines, designed for their ease-of-use. In many cases, the
APPLIR routines call a lower-level routine filling in arguments that
the caller isn't concerned about. The routines may also reformat the
data that the lower-level routine returns. The use of APPLIB routines
avoids a duplication of effort and provides a consistent interface for
the ternminal user.

All APPLIB routines are written as FORTRAN functions which return one
of tha following: a status indication (.TRUE. or .FALSE.), an
appropriate value or an alternate value or format of a returned
argunent. The caller 1s never returned a "CODE" type argument which
must then be decoded. All error detection, reporting, and, if
possible, recovery are performed by the routine which returns only an
indication of success or failure. This simplified error reporting
scheme assures the user that the error is reported and all possible
recovery procedures have been tried. In most cases, the reason for
failure is an "irrelevant difference" and is ignored.

APPLIB ROUTINES
The categories and functions provided by the Application Library are:

String Manipulation Routines
User Query Routines

System Information Routines
Mathematical Routines
Conversion Routines

File System Routines

Parsing Routines

String Manipulation Routines

Compare two strings for equality. CSTRSA
Compare two substrings for equality. CSUBSA
Fill a string with a character (e.g. fill FILLSA
a nane buffer with spaces).

Fill a substring with a given character. FSUBSA
Get a character from a packed string. GCHRS$A
left justify, right justify or center a J3TRSA
string within a field.

Ipcate one string within another. LSTRS$A

11 - 1 January 1980

SECTION 11 PDR3621

Locate one substring within another. LSUBSA
Move a character from one packed string to MCHRS$A
another.

Move one string to another. MSTRSA
Move one substring to another. MSUBSA
Determine the operational length of a string. NLENSA
Rotate string left or right. RSTRSA
Rotate substring left or right. RSUBSA
shift string left or right. SSTRSA
shift substring left or right. SSUBSA
Test for treename. TREESA
Determine string type. TYPESA

User Query Routines

Prompt and read a name. RNAMSA
Praonpt and read a number (binary, decimal, RNUMSA
octal, or hexadecimal) into an INTEGER*4

variable.

Ask question and obtain a yes or no answer. YSNOSA

System Information Routines

CPU time since login. CTIMSA
Today's date, American style. DATESA
Today's date as day of year ("Julian" date). DOFY$A
Disk time since login. DTIMSA
Today's date, European (Military)style. EDATSA
Time of day. TIMESA

Mathematical Routines

Generate random number and update "seed". RANDSA
This generator is based upon a 32-bit word

size and uses the Linear Congruential Method.

Initialize random number generator “seed". RNDISA

Conversion Routines

Convert a string from lower case to upper CASESA
case or upper to lower.

Convert ASCII number to binary. CNVASA
Convent binary number to ASCII. CNVBSA
ENCODE function that adjusts the "FORMAT" to ENCDSA

make the number printable if possible. If
not, the field is filled with asterisks.

REV. A 11 - 2

PDR3621 APPLICATION LIBRARY (APPLIB)

Convert the DATMOD field (as returned by RDEN$S) FDATSA
Convert the DATMOD field (as returned by RDEN$$) FEDT$A
in different format than FDATSA

Convert the TIMMOD field (as returned by RDENSS) . FTIMSA

File System Routines

Function Subroutine
Close a file. CLOSSA
Delete a file. DELESA
Check for file existence. EXSTSA
Position to end-of-file. GENDSA
Open supplied name. OPENSA
Read name and open. OPNPSA

Open supplied name with verification and delay. OPNVSA
Read name and open with verification and delay. OPVPSA

Position file, POSNSA
Return position of file. RPOS$A
Rewind file. RWNDS$A
Open a scratch file with unique name. . TBMPSA
Truncate file. TRNCSA
Scan the file system tree structure. TSCNSA
Check for file open. UNITSA

Parsing Routine

Parse PRIMOS type command line. CMDLSA

NAMING CONVENTIONS

All APPLIB routines follow a consistent naming convention designed to
avoid the possibility of a conflict with user written routines and
system routines. All APPLIB routines have a four letter mnemonic name
and the suffix "SA". For example, the routine to open a temporary file
is named "TEMPSA". Many routines have options which are specified by
named "parameter" keys which all begin with the prefix "AS".

Subroutines that are used internally by APPLIB routines have a suffix
of "$sA". These should not be used under ordinary circumstances.

All "parameter" keys are defined in a $INSERT file named SYSCOM>ASKEYS.
The key names, following the "A$" prefix are three or four letter
mnemonics specifying the allowable options for the various routines.
In addition, this file supplies all the appropriate FUNCTION type
declarations for the APPLIB routines. A complete 1listing of
SYSCOMDASKEYS is included at the end of this section.

APPLIB and its V-mode version, VAPPLB, exist as independent libraries
in UFD=LIB.

11 - 3 January 1980

SECTION 11 PDR3621

LIBRARY IMPLEMENTATION AND POLICIES

The routines have been coded to make them easily callable from most
other larguages, including PL/I and 1977 ANSI FORTRAN, both of which
can automatically generate string length arguments following string
arguments. As a result, in the argument pair name, namlen, the name is
often updated by an APPLIB routine, but the namlen argument is never
modified. If the namlen argument is not zero or greater, an error
message is displayed on the user terminal. Where appl icable, the
function value returned is .FALSE.. The function NLENSA can be used to
determine the operational length of a returned name.

All APPLIB routines which either accept keys as arguments or call other
APPLIB routines which do, use the SYSCOM>ASKEYS file to define those
keys. Also, these routines do not take advantage of any particular
nunerical values these keys may have, should it become necessary either
to change these values or to add new keys with numerical wvalues which
do not fit the previous pattern. For example, there are no computed
GOTO's on keys and no range checks for validity of a key. 1In this way,
if a new SYSCOMDASKEYS file is Created, both the user programs and the
routines they call will always agree on the meaning of a given key.
The same is true of the declared types of the APPLIB functions.

Library Building

All routines are compiled into a single binary file which is then
converted into the appropriate library file with the EDB utility. At
present, the only difference between the R-mode and V-mode build
procedures is the FTN compile option used. For APPLIB, all routines
are compiled for A/4R-mode loading. For VAPPIB, all routines are
caupiled for 64v-mode loading (SEG)., In addition, all routines
InCluded in VAPPLB are pure procedure and may be loaded into the shared
pPortion of a shared procedure.

Since several of the APPLIB routines call other APPLIB routines, the
load order 1is important. This order is specified in the command files
"C__APPLIB" and "C_VAPPLB" located in UFD = APPLIB.

STRING MANIPULATION ROUTINES - DETAILED DESCRIPTION

The string manipulation routines are designed to facilitate the
handling of character strings. All of these routines operate on packed
strings, unless stated otherwise. Most of the routines in this section
require that the physical length of a string (in characters) be passed
as an argument. The physical length is the actual storage allocated
for that string in bytes or characters (including any trailing blanks) .
The operational length of a string does not include trailing blanks.
Since the length of a string is specified as an INTEGER*? variable, the
maximum string length is 32,767 characters.

REV. A 11 - 4

PDR35621 APPLICATION LIBRARY (APPLIB)

The majority of routines that operate on entire strings first truncate
them to their operational length, The routines that operate on
substrings treat any trailing blanks as part of the substring.

all string length specifications and substring delimiting character
positions are checked for validity and must conform to the following
rules.

1. Physical string length specifications must be greater than or
equal to zero. A value of gzero indicates a null or empty
string.

2. Substring delimiting character positions must be greater than
or equal to zero. The length of the substring must be less
than or equal to the physical string length. The beginning
character position must be less than or equal to the ending
character position. A value of zero for either the starting or
ending character position indicates a null substring.

1f these rules are violated, an error message will be displayed and the
logical functions will be .FALSE..

P CSTRSA

CSTRSA is a logical function used to compare two strings for equality.

The function will be .TRUE. if each character in string a matches the
corresponding character in string b, or if both strings aré null (i.e.,
lergth equal to zero). Otherwise, the function will be .FALSE.. Only
the operational lengths are used in the comparison (i.e., trailing

blanks are ignored).
LOG = CSTRS$A(a,alen,b,blen)

a String to be compared, packed two characters per word.

alen Length of a, in characters (INTEGER*2) . Length must
be zero or greater.

b Sstring to be compared against, packed two characters per
word.

blen Length of b, in characters (INTEGER*2). Length must be

zero or greater.

APPLIB CALLS: CSUBS$A, NLENSA

11 - 5 January 1980

SECTION 11 PDR3621

P cCsussa
CSUBSA is a logical function used to compare substrings for equality.
LOG = CSUBSA(a,alen,afc,alc,b,blen,bfc,blc)
a Array containing substring to be compared, packed two
characters per word. Data type does not matter.

alen Length of a, in characters (INTEGER*2). [ength must be
zZero or greater.

afc First character position of substring in a (INTEGER*2).
alc Last character position of substring in a (INTEGER*2) .

b Array containing substring to be compared against, packed
two characters per word. Data type does not matter.,

blen Length of b, in characters (INTEGER*2) , must be zero or
greater.

bfc First character position of substring in b (INTEGER*2).

blc Last character position of substring in b (INTEGER*2) .
If each character in the a substring matches the corresponding
character in the b substring, or both substrings are null (i.e., length
equal to zero) the function will be .TRUE.. If two corresponding
characters do not match, or if the lengths of the substrings are not
equal the function will be .FAISE..

APPLIB CALLS: None

P FILLSA

FILLSA is an INTEGER function which fills the name buffer with the fill
character supplied. The function is INTEGER, but value is always @.

INT =FILLSA(name,namlen,char)
CALL FILLSA(name ,namlen,char)

name Name of buffer to fill packed two characters
per word. Data type does not matter.

namlen Length of name in characters (INTEGER*?).

char Fill character in FORTRAN Al format. Data type
does not matter.

APPLIB CALLS: None

REV. A 11 - 6

PDR3621 APPLICATION LIBRARY (APPLIB)

p Fsussa

FSUBSA is a logical function used to fill a character substring with a
specified character. The substring delimited by fchar and lchar are
filled with the character specified in filchar. The string parameters
are checked for validity and if an error is found, the function will be
JFAISE. and a message is printed. If all parameters are wvalid, the
function will be .TRUE..

LOG = FSUBSA(string, length, fchar, lchar, filchar)
CALL FSUBS$A(string, length, fchar, lchar, filchar)

string string containing substring to be filled, packed two
characters per word. Data type does not matter.

length length of string in characters (INTEGER*2).

fchar first character position of substring (INTEGER*2).

lchar last character position of substring (INTEGER*2) .

filchar fill character in FORTRAN Al format. Data type does
not matter.

APPLIB CALLS: None

P> GCHRSA
GCHRS$A is an INTEGER function which extracts a single character from a
packed string. The function value will be the accessed character in

FORTRAN Al format. The character returned will be left-justified and
padded with blanks.

INT GCHRSA(farray,fchar)
CALL GCHRSA(farray,fchar)

farray Source packed array. Data type does not matter.

fchar Character position in farray to be returned
(INTEGER*2) .

This routine replaces the FORTRAN statement:
CHAR = FARRAY (FCHAR)

when FARRAY is declared LOGICAL*1 (IBM FORTRAN) or of a one character
data type.

APPLIB CALLS: None

11 - 7 January 1989

SECTION 11 PDR3621

P> JISTRSA

JSTRSA is a logical function used to left justify, right justify or
center a string within itself.

LOG = JSTRS$SA(key,string,length)
CALL JSTRSA(key,string,length)
key Determines direction of justification, possible values
are:
ASRGHT - right justify.
ASLEFT - left justify.
ASCNTR - center.

string String to be justified, packed two characters per word.
Data type does not matter.

length Length of string in characters (INTEGER*2) , must be .GE.
zero.

The function will be .TRUE. if justification is successful, .FALSE.
if the string length is less than zero or if a bad key is used.

APPLIB CALLS: NLENS$A, FILLSA, MSUBSA, GCHRS$A

P LSTRSA
LSTRSA is a logical function used to locate one string within another.

LOG = LSTR$A(a,alen,b,blen,fcp,lcp)
CALL LSTR$A(a,alen,b,blen,fcp,lcp)

a String to be located, packed two characters per word.
Data type does not matter,

alen Length of a, in character (INTEGER*2) .

b String to be searched, packed two characters per
word. Data type does not matter.

blen Iength of b, in characters (INTEGER*2).

fcp First character position in b of substring that
matches string a (INTEGER*?) .

lep Last character position in b of substring
that matches string a (INTEGER*2) .

REV. A 11 - 8

PDR3621 APPLICATION LIBRARY (APPLIB)

LSTRSA will search string b for the first occurrence of string a. 1f
string a is found, the function will be .TRUE. and fcp and lcp will be
equal to the character positions of the substring in b that matches
string a. If string a is not found or if either string is null (i.e.,
length equal to =zerol the function will be .FALSE. and fcp and lcp
will be equal to zero., Each string 1is logically truncat to 1ts
operational length before the search is performed (i.e., trailing
blanks are ignored) .

APPLIB CALLS: LSUB$A, NLENSA

P LSUBsA

ISUBSA is a logical function used to locate one substring within
another.,

LOG = LsUBSA(a,alen,afc,alc,b,blen,bfc,blc,fcp,lcp)
CALL [SUBSA(a,alen,afc,alc,b,blen,bfc,blc,fcp,lcp)
a Array containing substring to be located, packed two
characters per word. Data type does not matter.
alen Length of a, in characters (INTEGER*2).
afc First character position of substring in a (INTEGER*2).

alc Last character position of substring in a (INTEGER*2) .

b Array containing substring to be searched packed two
characters per word. Data type does not matter.

blen Length of b, in characters (INTEGER*2) .
bfc First character position of substring in b (INTEGER*2).
blc Last character position of substring in b (INTEGER*2) .

fcp First character position in b of substring that matches
substring in a (INTEGER*2) .

lcp Last character position in b of substring .that matches
substring in a (INTEGER*2).

LSUBSA searches the substring contained in b for the first occurrence
of the substring contained in a. If a match is found, fcp and lcp will
be equal to the character positions in b of the matching substring and
the function is .TRUE.. If a matching substring cannot be found or if
either substring is null (i.e. length equal to zero) the function will
be .FALSE. and fcp and lcp will be equal to zero.

APPLIB CALLS: None

11 - 9 January 1989

SECTION 11 PDR3621

P MCHRSA

MCHR$A is an INTEGER function which moves a character from one packed
string to another.

CALL MCHR$A(tarray,tchar,farray,fchar)
I*2= MCHRS$A(tarray,tchar,farray, fchar)
I*4= MCHR$A (tarray,tchar,farray,fchar)

tarray Receiving array of characters packed 2 per word, first
character on the 1left., This constitutes an APPLIB
standard string. (typeless)

tchar Character position in tarray of received character.
(INTEGER*2)

farray Source string. Data type does not matter.

fchar Source character position in farray. (INTEGER*2)

This routine replaces the FORTRAN statement:

TARRAY (TCHAR) = FARRAY (FCHAR)
when TARRAY and FARRAY are declared LOGICAL*1 (IBM FORTRAN) or of a one
character data type. Only the TCHAR'th character in TARRAY is
replaced.
The function value will be the character that was moved in FORTRAN Al
format, that is, the character in the left-most byte, right padded with
blanks.

APPLIB CALLS: None

REV. A 11 - 19

PDR3521 APPLICATION LIBRARY (APPLIB)

P MSTRSA

MSTRSA is an integer function used to move the source string to the
destination string.

INT = MSTR$A(a,alen,b,blen)
CALL MSTRSA(a,alen,b,blen)

a Source string, packed two characters per word.
Data type does not matter,

alen [Length of a, in characters (INTEGER*2).

b Destination string, packed two characters per
word, Data type does not matter.

blen ILength of b, in characters (INTEGER*2).
If the source string is longer than the destination string it will be
truncated. If it is shorter, it will be padded with blanks. The
source and destination strings may overlap. The function value will be
equal to the number of characters moved (excluding blank padding). If
either string is null (i.e., length equal to zero) no characters are
moved and the function value will be equal to zero.

APPLIB CALLS: MSUBSA

P MSUBSA

MSUBSA is an integer function used to move the source substring
contained in a to the destination substring contained in b,

INT = MSUBSA(a,alen,afc,alc,b,blen,bfc,blc)
CALL MSWBSA(a,alen,afc,alc,b,blen,bfc,blc)
a Array containing source substring, packed two characters
per word. Data type does not matter.

alen Length of a, in characters (INTEGER*2) .

afc First character position of substring in a packed two
characters per word. Data type does not matter.

alc Last character position of substring in a (INTEGER*2).

b Array containing destination substring, packed two
characters per word. Data type does not matter.

blen Length of b, in characters (INTEGER*2) .

11 - 11 January 19809

SECTION 11 PDR3621

bfc First character position of substring in b (INTEGER*2).
blc Last character position of substring in b (INTEGER*2) .

If the source substring is longer than the destination substring it
will be truncated. If it is shorter it will be padded with blanks.

The source and destination substrings may overlap.

If either substring is null (ie. length equal to zero) no characters
are moved and the function will be equal to zero. Otherwise it is
equal to the number of characters moved (excluding blanks used for
padding) .

APPLIB CALLS: MCHRSA

P NLENSA

NLEN$A is an INTEGER*? function which returns, as its function value,
the operational length (not including trailing blanks) of the name in
name.

I*2= NLENSA (name ,namleni
CALL NLENSA(name ,namlen)

name Name buffer to be tested, packed two characters
per word., Data type does not matter.

nanlen Length of name in characters. (INTEGER*2)

APPLIB CALLS: None

P RSTRS$A

RSTR$A is a logical function used to rotate a character string left or
right. The string is truncated to its operational 1length before the
rotate is performed, therefore trailing blanks are not included in
count, If length is less than zero, the function will be .FAISE.,
otherwise function will be .TRUE..

LOG = RSTR$A(string, lemgth, count)
CALL RSTRS$A(string, length, count)

string String to be rotated, packed two characters per word.
Data type does not matter.

length Length of string in characters (INTEGER*2).

cont Number of positions to rotate string. Negative count

causes left rotate, positive count right rotate
(INTEGER*2) .

REV. A 11 - 12

PDR3621 APPLICATION LIBRARY (APPLIB)

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
characters of the string. A character 1is moved directly from its
original position to its final destination position.

APPLIB CALLS: MCHRSA, NLENSA

P RsUBSA

RSUBSA is a logical function used to rotate a character substring left
or right. only the characters of the substring, contained in string
are affected. The parameters are checked for validity and if there is
an error, a message is printed and the function will be .FALSE.. If no
error occurs, the function will be .TRUE..

LOG = RSUBSA(string, length, fchar, lchar, count)
CALL RSUBSA(string, length, fchar, lchar, count)

string String containing substring to be rotated, packed two
characters per word. Data type does not matter.

length Length of string in characters (INTEGER*2).

fchar First delimiting character position of substring

(INTEGER*2) .

lchar Last delimiting character position of substring
(INTEGER*2) .

count Number of positions to rotate substring. Negative
count causes left rotate, positive count causes right
rotate (INTEGER*2).

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the 1length in
characters of the string. A character is moved directly from its
original position to its final destination position.

APPLIB CALLS: MCHRSA

P> SSTRsa

SSTRSA is a logical function used to shift a character string left or
right, The string 1is shifted the specified nuaber of characters and
the vacated positions are padded with the specified fill character.
Trailing blanks are not included in the shift. If length is less than
zero, an error messaje will be printed and the function will be
.FAISE., and no characters are shifted. If no error occurs, the
function will be .TRUE..

11 - 13 January 1980

SECTION 11 PDR3621

LOG = SSTR$A(string, length, count, filchr)
CALL SSTR$A(string, length, count, filchr)

string Character string to be shifted, packed two characters
per word. Data type does not matter.

length Length of string in characters. Must be greater than
or equal to zero (INTEGER*2).

count Number of positions to shift string. Negative count
causes left shift, positive count causes right shift
(INTEGER?*2) .

filchr Fill character which will pad the vacated positions.
Filchr is specified in Al format. Data type does not
matter.

APPLIB CALLS: FSUBSA, MCHR$A, NLENSA

P> SsuBSA

SSuBSA is a logical function used to shift a character substring left
or right. The substring is shifted the specified number of characters
and the vacated positions are padded with the specified fill character.
Any trailing blanks are included in the shift. The parameters are
checked for wvalidity and an error will cause a wessage to be printed
and the function will be .FALSE.. If no error occurs, the function
will be .TRUE.. If the substring is null, or length equal to zero,
there will be no shift.

LOG = SSUB$A(string, length, fchar, lchar, count, filchar)
CALL SSUBSA(string, length, fchar, lchar, count, filchar)

string String containing substring to be shifted, packed two
characters per word. Data type does not matter.

length length of string in characters (INTEGER*2).

fchar First delimiting character position of substring

(INTEGER*2) .

lchar Last delimiting character position of substring
(INTEGER*2) .

count Number of positions to shift substring. Negative count

causes left shift, positive count causes right shift
(INTEGER*2) .

REV. A 11 - 14

PDR3621 APPLICATION LIBRARY (APPLIB)

filchar Fill character with which to pad the vacated positions.
Filchar is specified in Al format. Data type does not
matter.

APPLIB CALLS: FSUBSA, MCHRSA

P> TREESA

TREESA is a logical function which scans a file name and determines if
it is a tree name. If it is a tree name, the function is .TRUE. and
if not, it is .FALSE.. 1In addition, the final name (or entire name if
not in a tree)l 1is located in the string. Note that if the name is
empty, FSTART=FLEN=0.

LOG = TREES$A (name,namlen,fstart,flen
name Array containing file name, packed two characters per
word. Data type does not matter.
nanlen Length of name in characters (INTEGER*2).

fstart Character position in name of first character in final
name. (INTEGER*2)

flen Length of final file name in characters (INTEGER*2).

APPLIB CALLS: GCHRSA, NLENSA

P TYPESA

TYPESA is a logical function which will test a character string to
determine if it can be interpreted as the type specified by key.

LOG = TYPESA(key,string,length)
key String type to be tested for, possible keys are:
ASNAME can string be interpreted as a name,

ASBIN can string be interpreted as a binary
number ,

ASDEC can string be interpreted as a decimal
nunber ,

ASOCT can string be interpreted as an octal
number ,

ASHEX can string be interpreted as a
hexadecimal number.

11 - 15 January 1980

SECTION 11 PDR3621

string String to be tested, packed two characters
per word. Data type does not matter.

lergth Length of string, in characters (INTEGER*2).

A string is interpreted as a name if it contains at least one
alphabetic or special character (other than a leading + or -) a binary
nunber if it contains only the digits 2 - 9, a decimal number if it
contains only the digits @ - 9. It is an octal number if it contains
only the digits @ - 7, and is a hexadecimal number if it contains only
the digits @ - 9 and the characters A - F (upper case onlyl. A number
may have a leading sign and any number of blanks between the sign ard
the first digit. However imbedded blanks within the number itself are
not allowed. A number must also have at least one digit.

Ieading and trailing blanks are ignored. The function is .TRUE. if
string satisfies the conditions required by the key used; otherwise it
is .FALSE. A null string (i.e., length equal to zero) will only return
a function value of true if key is ASNAME.

APPLIB CALLS: GCHRS$A, NLENSA

USER QUERY ROUTINES - DETAILED DESCRIPTION

The user query routines provide a convenient means to input data from
the user's terminal. Each routine has the ability to prompt the
temminal user with a supplied message and then process his response.

p RNAMSA

RNAMSA is a logical function which prints the supplied message prompt
and apperds the characters ":" to it. It then reads a user response
from the command stream. If the response is not a legal name, or if
the name provided is too long for the supplied buffer, an error message
will be typed and the message prompt will be repeated. 1If no name is
provided, the value of the function will be .FALSE.. If a legal name
is provided, the function value will be .TRUE.. The caller should be
aware that COMANL and RDIKSS (Section 5) are called to read the user
response, and therefore the previous command 1line entered is
unavailable.

LOG = RNAMSA (msgy,msJylen, namkey,name,namlen)

msg Message text, packed two characters per word.
Data type does not matter.,

msglen Message length in characters (INTEGER*2) .

REV. A 11 - 16

PDR3621 APPLICATION LIBRARY (APPLIB)

namkey ASFUPP, force upper case.
ASUPLW, do not force upper case.

ASRMNI, read line as raw uninterpreted text
(keys cannot be combined) .

namne Returned name, packed two characters per word. Data
type does not matter.

namlen Lergth of name buffer in characters (.LE. 89)
(INTEGER*2) .

APPLIB CALLS: None

P RNUMSA

RNUMSA is a logical function used to input numeric data from the user
terminal. The routine prints the user-supplied message and appends the
character ":" to it. It then reads a wuser response and if the
response is not a legal number or if the number provided has too many
digits for an INTEGER*4 value, the error will be reported and the
message will be repeated. If no number is provided, the value of the
function will be .FAISE. and VALUE=g. 1If a legal number is provided,
the function will be .TRUE. and the value will be returned in value.
The caller should be aware that COMANL and RDIKS$S (Section 5) are
called to read the user response, and therefore the previous command
line is unavailable. Numbers may be immediately preceded by ™"+" or
"-", Binary numbers may have a maximum of 31 digits, octal a maximum
of 11 digits, decimal a maximum of 19 digits and hexadecimal a maximum
of 3 digits. Negative binary octal, or hexadecimal should not be
entered in 2's complement, but the same as a negative decimal number.

LOG = RNUMSA(msg,ms3len,nunkey,value)

nsy Message text, packed two characters per word.
Data type does not matter.

msglen Message length in characters (INTEGER*2) .
numkay ASDEC, decimal.

ASBIN, binary.

ASOCT, octal.

ASHEX hexadecimal.
value Returned value.

APPLIB CALLS: None

11 - 17 January 1989

SECTION 11 PDR3621

P vSNOSA

YSNOSA is a logical function which prints the supplied message and
apperds the character "?" to it. It then reads a user response. If
the answer is "YES" or "OK", the function value is .TRUE.. If the
answer is "NO", the function value is .FALSE.. If an illegal answer is
provided or if no default is accepted, the message will be repeated.
User responses may be abbreviated to the first 1 or 2 characters.

LOG = YSNOS$A (msg ,msgylen,defkey)

msgy Message text, packed two char.~ters per word.
Data type does not matter.

msglen Message length in characters (INTEGER*2).
defkey ASNDEF, no default accepted.

ASDNO, default = "NO".

ASDYES, default = "YES".

APPLIB CALLS: None

REV. A 11 - 18

PDR3621 APPLICATION LIBRARY (APPLIB)

SYSTEM INFORMATION ROUTINES - DETAILED DESCRIPTION

The system information routines return the system date, system time,
CPU time and disk time in character string format.

p crivsa

CTIMSA is a Double Precision function which returns CPU time elapsed
since login, in secords, and as centiseconds in the cputim argument.

R*8 = CTIMSA(cputim)
CALL CTIMS$A (cputim)

cputim CPU time in centiseconds (INTEGER*4).

The function value will be CPU time elapsed since login, in seconds.
This value may be received as either REAL*4 or REAL*S.

APPLIB CALLS: None

P DATESA

DATESA is a Double Precision function which returns the date in the
form "DAY, MON DD YEAR". The value of the function is the date in the
form "MM/DD/YY". This value must be received as REAL*8.

Note that this routine is good for the period January 1, 1977, through
December 31, 2076.

R*3 = DATES$A (date)
CALL DATESA(date)

date Date in the form "DAY, MON DD YEAR". Data type does
not matter as long as it is at least 16 characters lorg.

APPLIB CALLS: None

P DoFysa

DOFYSA is a Double Precision function which returns the day of the year
in the form "DDD". The value of the function is the date in the form
YR.DDD suitable for printing in FORMAT F6.3. This value can be
received as either REAL*4 or REAL*8, This routine is good for the
period January 1, 1977 through December 31, 2076,

R*3 = DOFY$A(dofy)
CALL DOFY$A(dofy)

11 - 19 January 1980

SECTION 11 PDR3621

dofy Day of year in the form "DDD" ("Julian" date). The
data type does not matter as long as it is at least
4 characters long.

APPLIB CALLS: None

P DrImMsa

DTIMSA is a Double Precision function which returns disk time since
login as INTEGER*4 centiseconds in the dsktim argunent, The function
value will be disk time since login in secomds. This value may be
received as either REAL*4 or REAL*3.

R*8 = DTIMS$A(dsktim)
CALL DTIMS$A (dsktim)

dsktim Disk time in centiseconds (INTEGER*4).

APPLIB CALLS: None

P EDATSA

EDAT$A is a Double Precision function which returns the date in the
European (military) form DAY, 'DD MON YEAR' in edate. The value of the
function is the date in the form 'DD/MM/YY'. This value must be
received in a REAL*8 variable. The routine is good for the period 1
January 1977 through 31 December 2076.

R*3 = EDATSA (edate)
CALL EDATSA(edate)

edate Date in the form "DAY, DD MON YEAR".

The type of the edate array does not matter as long as it is at 1least
16 characters long.

APPLIB CALLS: DATESA

> TivESA
TIMESA is a Double Precision function which returns the time of day in

the form HR:MN:SC. The value of the function is the time of day in
decimal hours. This value may be received as either REAL*4 or REAL*S.

REV. A 11 - 20

PDR3621 APPLICATION LIBRARY (APPLIB)

R*8 = TIMESA(time)
CALL TIMES$A(time)

time Time of day in the form HR:MN:SC packed two characters
per word. Data type does not matter as long as it is
at least 8 characters long.

APPLIB CALLS: None

MATHFEMATICAL ROUTINES - DETAILED DESCRIPTION

The mathematical routines provide miscellaneous functions not available
in MATHLIB.

P> RANDSA

RANDSA is a Double Precision function which updates a seed to a new
seed (SEED) based upon the linear corgruential method:

U(T)=FLOAT(K(I))/M

K(T) B*K (I-1) modulo M

B 16807.0

M 2%%3]1-1 = 2147483647.9
B and M are from: Lewis, Goodman, and Miller, "A Pseudo-random Number
Generator for the System/360", IBM Systems Journal, Vol. 8, No. 2,
1969, pp. 136-145.
K(I-1) is the input value of seed and K(I) is the returned value.
The value of the function is U(I) which represents a probability and is
between 9.4 and 1.0. This value may be received as either REAL*4 or
REAL?*3.,
R*4 = RANDSA (seed)
R*3 = RANDSA(seed)
CALL RANDSA (seed)

seed Input is previous seed, output is new seed (INTEGER*4).

APPLIB CALLS: None

11 - 21 January 1980

SECTION 11 PDR3621

P rRNDISA

RNDISA is a Double Precision function which returns the time of day in
centiseconds. The function value will be the time of day in secords.
This value may be received as either REAL*4 or REAL*3.,

Note: Because this function is used to initialize a random number
generator, if the wvalue 1is exactly 0, 1234567 and 12345.67 will be
returned instead.

R*4 RNDISA (seed)
R*3 = RNDISA(seed)
CALL RNDISA (seed)

seed Time of day in centiseconds (INTEGER*4).

APPLIB CALLS: None
CONVERSION ROUTINES - DETAILED DESCRIPTION

P casesa

CASESA is a logical function which converts a string from upper case to
lower , or from lower case to upper. The function will be .FALSE. if
length is less than zero, otherwise .TRUE..

LOG = CASE$A(key, string, length)
CALL CASES$A(key, string, length)
key ASFUPP, convert all alphabetic characters in string

from lower case to upper case.

ASFLON, convert all alphabetic characters in string
from upper case to lower case.

Default: No conversion.

string Array containing character string to be converted,
packed two characters per word. Data type does not
matter.

length Length of string in characters (INTEGER*?2).

APPLIB CALLS: GCHRSA, MCHRSA
P convasa
CNVASA is a logical function that converts an ASCIT digit string into

its binary value for decimal, octal and hexadecimal numbers. The

REV. A 11 - 22

PDR3621 APPLICATION LIBRARY (APPLIB)

numbers may be explicitly signed. Leading and trailing blanks are
ignored as well as blanks between the sign and the number. However,
blanks within the number are not allowed. If the number converts
successfully, the function is ,TRUE. and value is the converted binary
value., If conversion is not successful, the function is .FALSE. and
value=f. Note that for decimal conversions, overflow will be
considered as unsuccessful whereas for octal and hexadec imal
conversions, overflow is ignored.

LOG = CNVASA (numkey,name,namlen,value)
CALL CNVASA(numkey,name ,nanlen,value)

nunkey ASDEC, decimal
ASBIN, binary
ASOCT, octal _
ASHEX, hexadecimal.

name Array containing ASCII digit string, packed two
characters per word. Data type does not matter.
Max imum digits are: binary, 31 - octal, 11 -
decimal, 1@ - hexadecimal, 8. Maximum does not include
leading signs or blanks. ~

namlen Length of name in characters(INTEGER*2) .

value Returned converted binary value (INTEGER*2) .

APPLIB CALLS: GCHRS$A, NLENSA

P cNvBsSA

CNVB$A is an integer function used to convert a binary number to an
ASCII digit string.

I*2 = CNVBSA (numkey,value,name,namlend
CALL CNVBSA(numkey,value,name ,namelen)

nunkey Number base to convert to; possible values are:
ASBIN binary number with leading blanks.
ASBINZ binary number with leading zeros.
ASDEC signed decimal number with leading blanks.
ASDECU unsigned decimal number with leading blanks.
ASDECZ signed decimal number with leading zeros.
ASOCT octal number, leading blanks. |

ASOCTZ octal. leading zeros,

11 - 23 January 1989

SECTION 11 PDR3521

ASHEX hexadecimal, leading blanks.
ASHEXZ hexadecimal, leading zeros.

namne array containing returned ASCII digit string packed
two characters per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2). Maxinun
length for binary is 31, octal is 11, decimal is 14,
and hexadecimal is 8. Maximum does not include
leading signs or zeros.

value Binary number to be converted (INTEGER*4) .

CNVBSA will convert a binary number into an ASCII digit string for
decimal, octal, and hexadecimal numbers. The returned digit string
will be right justified in name and preceded by leading blanks or zeros

depending upon numkey specification.

If value is negative and the number is to be treated as signed decimal,
the digit will begin with an initial "-" sign. 1If value is negative,
binary, octal and hexadecimal numbers will be in 2's complement form.
If the number converts successfully, the function value is the number
of digits and if not, it is zero.

APPLIB CALLS: FILL$A, MCHRSA

P ENCDSA

ENCD$A is a logical function which attempts to encode value in the
supplied Fw.d format if it will f£fit. If not, the dec argument is
decremented (moving the decimal point to the right' until it will fit.
If dec reaches @, or is originally supplied as 9, value will be encoded
in Iw format if the number will fit into a 32-bit integer. If not, and
if the field is wide enough (width > 7), the value will be encoded in E
format. If the field is not wide enowh, 1t will be filled with
asterisks.

Note that the largest value of width will be 16. If it is larger than
16, only the first 16 characters of array will be used.

The function value will be .TRUE. 1if the encode was successful, and
LFAISE., if the field was filled with asterisks.

Note that array is the only argument which is actually modified in the
calling program.

LOG = ENCDSA(array,width,dec,value)
CALL ENCDSA(array,width,dec,value)

REV. A 11 - 24

PDR3621 APPLICATION LIBRARY (APPLIB)

array Array to receive value, packed two characters per word,
Data type does not matter.

width Field width as in format Fw.d (should be even)
(INTEGER*2) .

dec places to right of decimal point as shown in format Fw.d
(INTEGER*?) .

value Double precision value to be encoded (REAL*3).

APPLIB CALLS: None

> FDATSA

FDATSA is a REAL*3 function which converts the datmod field, returned
by RDENSS$, to the format 'DAY, MON DD YEAR'. The function value is the
datmod field converted to "MM/DD/YY' and must be received in a REAL*3
variable. The routine is good for the period 1 January, 1972 to 31
December, 2071.

CALL FDATSA(datmod,date)
R*8 FDATSA(datmod ,date)

datmod Date returned by RDENS$. This is date the file was
last modified and is in the format YYYYYYYMMMMDDDDD.
YYYYYYY is the year modulo 14¢, MMMM is the month and
DDDDD is the day (INTEGER*2) .

date Array containing the date as a character string, packed
two characters per word. Date is in format 'DAY, MON
DD YEAR'. Data type does not matter as long as array
is at least 15 characters long.

APPLIB CALLS: CNVBSA

p FEDTSA

FEDTSA converts the datmod field, returned by RDENSS, to the format
'DAY, MON DD YEAR' in date. The function value is datmod converted to

'"MM.DD.YY' and must be reserved in a REAL*3 variable. The routine
includes the period 1 January, 1972 - 31 December, 2071,

11 - 25 January 1980

SECTION 11 PDR3621

CALL FEDTS$A(datmod ,datel
R*8 FEDTSA(datmod,date)

datmod Date returned by RDEN$$. This is date the file was
last modified and is in the format YYYYYYYMMMMDDODD.
YYYYYYY is the year modulo 140, MMMM is the month and
DDDDD is the day (INTEGER*2) .

date Array containing the date as a character string, packed
two characters per word. Date is in the format 'my,
MON DD YEAR'. Data type does not matter as long as
array is at least 15 characters long.

APPLIB CALLS: FDATSA

P FrIvsA

FTIM$A is a REAL*4 or REAL*8 function which converts the timmod field,
returned by RDIN$$, to the format 'HH:MM:SS'. The fundtion value is
the timmod field converted to decimal hours and may be received as
either REAL*4 or REAL*S.

CALL FTIMSA(timmod,time)
R*8 PTIMSA(timmod,time)
R*4 FTIMSA(timmod,time)

timmod Time at which a file was last modified, in the format
'seconds since midnight' divided by 4 (INTEGER*2) .

time Array containing time a file was last modified, as a
Character string in the format 'HH:MM:SS'. Data type
does not matter as long as array is at least 8
characters long.

APPLIB CALLS: CNVBSA

FILE SYSTEM ROUTINES - DETAILED DESCRIPTION

The file system routines in APPLIB give the user a simple and
consistent way to specify the most common file system operations.
Accordingly, APPLIB does not provide the wuser with the full
capabilities of the file system routines since for detailed operations
it is best to use the file system routines, themselves. APPLIB
supports both Sequential Access Method (SAM) and Direct Access Method
(DAM files. There is no support for segment directory type files as
the MIDAS subsystem provides the higher level functions with these
files.

REV, A 11 - 25

PDR3621 APPLICATION LIBRARY (APPLIB)

All routines except Open, Delete, and Check for File Existence use only
the file unit and not the file name., Also, each routine carries the
name of its function, as above, with arguments consisting of only the
relevant information, usually only the unit number. Note that all file
names, except scratch files, may be pathnames.

The only complicated routines are the five Open routines, bhecause of
the many ways programs can obtain the name of the file they wish to
open and the various options for verification or error recovery. Five
different routines exist to perfomm the varying levels of complexity.
In this way, the simple operations are represented by simple calling
sequences. Only complex operations need complex argument lists.

All OPEN routines allow selection of the file type (SAM or DAMY and all
but TEMPSA allow specification of the open mode (READ, WRITE, or
READ/WRITE) . TEMP$A (scratch) files are always opened for READ/WRITE.

All OPEN routines can choose the file unit number upon which a file
will be opened. The ASGETU key is used for this purpose and the file
unit selected by the routine will be returned to the user (in the
argument unit) . If ASGETU is not wused, the user must provide the
routine with a usable file unit number.

Verification provides the following options:

1. Verifies that the file is new; otherwise, verifies that it is
0.K. to modify a file which already exists.

2. Verifies that file may be modified and determines whether an
existing file is to be overwritten or appended.

3. Verifies that the file is old; that 1is, does not allow
creation of a new file., Note that if the open mode is READ,
this is the only possible verification option.

Delay provides the following options:

1. If and only if the file is "IN USE", waits a suppl ied number of
seconds (elapsed time) and tries again.

2. The ability to retry 1 above a specified number of times.

11 - 27 January 1989

SECTION 11 PDR3621

P CcLossa

CLOSSA is a logical function that closes the file open on unit. If the
operation is successful, the function is .TRUE. and if unsuc”essful,
the function is .FALSE..

LOG = CLOSSA(unit)
CALL CLOSSA(uniti

unit File unit. (INTEGER*2)

APPLIB CALLS: None

P> DELESA

DELESA is a 1og1ca1 function which deletes the file named in name. If
the operation is successful, the function is .TRUE. “and if
unsuccessful , the function is .FAISE..

LOG = DELESA(name ,namlen)
CALL DELESA(name,namlen)

name File name (may be a treename) packed two characters
per word. Data type does not matter.

nanlen Length of name in characters. (Mode is INTEGER*2.)

APPLIB CALLS: TREESA, UNITSA, NLENSA

P EXSTSA

EXST$A is a logical function which returns .TRUE. 1if the file exists
and .FALSE., if the file does not exist or if an error was encountered.

LOG = EX3T$A(name,namlen)

name File nane (may be a treename) packed two characters
per word. Data type does not matter.

nanlen Length of name in characters. (Mode is INTEGER*2.)

APPLIB CALLS: TREES$A, UNITS$A, NLENSA

REV. A 11 - 28

PDR3621 APPLICATION LIBRARY (APPLIB)

P GENDSA

GEND$A is a logical function which positions the file open on unit to
End-of-File. If the operation is successful, the function is .TRUE.
and if unsuccessful, the function is .FALSE..

LOG = GEND$A(unit)
CALL GEND$A(unit)

unit PRIMOS file unit. (Mode is INTEGER*2.)

APPLIB CALLS: None

P> OPENSA

OPENSA is a logical function that opens a file of the given name on
unit. If the operation is successful, the function value is .TRUE.
and if the operation is unsuccessful, the function value is .FALSE..

LOG = OPEN$A(opnkey+typkey+untkey,name ,namlen,unit)
CALL OPENSA (opnkey+typkey+untkey,name,namlen,unit)

opnkey ASREAD, open for reading (.NE. ASWRIT or ASRDAR);
ASWRIT, open for writing;
ASRDWR, open for reading and writing.

typkey AS$SAMF, SAM file (.NE. ASDAMF);
ASDAMF, DAM file.

untkey ASGETU, choose a file unit number to be returned in unit.
onission of this key requires that the routine be
provided with a unit number.

name File name (may be a treename) packed two characters per
word., Data type does not matter.

namlen Length of name in characters (INTEGER*2) .
unit PRIMOS file unit (returned if untkey = ASGETU; if not,
the caller must provide a 1legal file number in this

argument) . (INTEGER*2) .

APPLIB CALLS: TREESA, UNITS$A, NLENSA

P OmPSA

OPNPSA is a logical function that gets a name from the user and opens
it on unit, If the operation is successful, the function value is
.TRUE. and if the operation is unsuccessful or no name is supplied,
the function value is .FALSE..

11 - 29 January 1980

SECTION 11

PDR3621

LOG = OPNPS$A (msgy ,msylen Opnkey+typkey+untkey,name,namlen,unit)
CALL OPNP$A(msg,msglen Opnkey+typkey+untkey,name ,namlen ,unit)

msgy

msglen

opnkey

typkey

untkey

hame

namlen

unit

APPLIB CALLS:

P omwsa

OPNVSA is a

Array containing prompt for name message, packed two
characters per word. Data type does not matter.

Length of msy in characters (INTEGER*2).

ASREAD, open for reading
ASWRIT, open for writing
ASRDWR, open for reading and writing.

ASSAMF, SAaM file
ASDAMF, DAM, file.

ASGETU, choose a file unit number to be returned in wunit.
Omission of this key requires that the routine be
provided with a unit number.

Filename (may be a treename) packed two characters
per word, Data type does not matter.

Length of name in characters (INTEGER*2) .

File unit (returned if untkey =ASGETU. If not, user must
provide a legal file number in this argument) .
(INTEGER*2) .

RNAMSA, NLENSA, TREES$A, UNITSA

logical function that opens a file of the given name on

unit. Note that the functions of verification and delay as described
below are independent of each other.

LOG = OPNV$A(opnkey+typkey+untkey,name (namlen,unit,verkey,wtime,retrys)
CALL OPNV$A(opnkey+typkey+untkey,name,namlen,unit,verkey,wtime,retrys)

opnkey

typkey

untkey

REV. A

ASREAD, open for reading
ASWRIT, open for writing
ASRDAR, open for reading and writing.

ASSAMF, SaM file
ASDAMF, DAM file.

AGETU, choose a file unit number to be returned in unit.

Onission of this key requires that the routine be
provided with a unit number.

11 - 30

PDR3621 APPLICATION LIBRARY (APPLIB)

name Filename (may be a treename) packed two characters per
word, Data type does not matter.

namlen Length of name in characters (INTEGER*?2) . If namlen
is zero or less, the function value is .FALSE..

unit File wnit (returned if untkey =ASGETU. If not, user must
provide a legal file number in this argument).
(INTEGER*2) .

verkey ASNVER, no verification
ASUNEW, verify new or ask if ok to modify if old
file.
ASOVAP, same as ASUNEW except user is prompted to
"OVERWRITE" or "APPEND" if file already exists.
ASVOLD, verify old; return .FAISE. if not
old file.

wtime Number of seconds to wait if FILE IN USE (INTEGER*2).

retrys Number of times to retry if FILE IN USE (INTEGER*2) .
APPLIB CALLS: RNAMSA, TIMESA, NLENSA, EXST$A, UNITS$A, TREESA, GENDSA
If wtime and retrys are specified non-zero and the file to be opened is
IN USE, the open will be retried the specified number of times, with
wtime seconds (elapsed time) between each attempt. I1f the number of

retries expires, or if either wtime or retrys is initially @ and the
file is IN USE, the function returns .FALSE.

Verification

If verification is not requested (VERKEY=A$NVER), OPNV$A is identical
in function to OPENSA. 1f verification is requested (verkey .NE.
ASNVER) , the following actions will be taken:

ASVNEW If the file already exists and opnkey is either ASWRIT
or ASRDNR, the user will be asked if it is OK to modify
the old file. If the answer is "NO", the function
returns .FALSE.. If the answer is "YES", the file is
opened.

ASOVAP This is the same as ASVNEW except that if an old file is
to be modified, the user is also asked if the file
should be overwritten or appended. If the answer is
"append", the file will be positioned to End-of-File.

ASVOLD This is the default case if opnkey=ASREAD. If any other
key is specified, and if the named file does not already
exist, a new file will not be created and the function
returns .FALSE..

11 - 31 January 1984¢

SECTION 11 PDR3621

Errors
If any errors not covered above occur while opening the file or

positioning it (ASOVAP), the function returns .FALSE.. If the open is
ul timately successful, the function returns .TRUE. .

P opvpsa
OPVP$A is a logical function that gets a filename from the user and
opens it on unit. Note that the functions of verification and delay as
described below, are independent of each other.

LOG = OPVPS$A(msg ,msglen Opnkey+typkey+untkey,name ,namlen,unit,

verkey,wtime,retrys)
CALL OPVP$A(msg,msglen,opnkey+typkey+untkey,name,nanlen,unit,
verkey,wtime,retrys)
msy Array containing prompt message packed two characters per

word. Data type does not matter.
msgylen ILength of msy in characters (INTEGER*2).

opnkey ASREAD, open for reading
ASWRIT, open for writing
ASRDWR, open for. reading and writing.

typkey ASSAMF, saM file
ASDAMF, DAM file.

untkey AGETU, choose a file unit number to be returned in unit.
Omission of this key requires that the routine be
provided with a unit number.

name Array containing filename (may be treename) , packed two
characters per word. Data type does not matter.

nanlen Length of name in characters (INTEGER*2). If namlen is
zero or less, the function value is .FAISE..

unit File unit (returned if untkey = ASGETU. If not, user
must provide a 1legal file uwnit in this argument) .
(INTEGER*2) .

verkey ASNVER, no verification.
ASUNBW, verify new file or ask if OK to modify if old
file.
ASOVAP, same as ASVNEW except user is prompted to
"OVERWNRITE" or "APPEND" if file already exists,
ASVOLD, verify old. Function value is .FAISE. if not
old.

REV. A 11 - 32

PIR3621 APPLICATION LIBRARY (APPLIB)

wtime Nunber of secords to wait if FILE IN USE (INTEGER*2).
retrys Number of times to retry if FILE IN USE (INTEGER*2).

If wtime and retrys are specified non-zero and the file to be opened is
IN USE, the open will be retried the specified number of times, with
wtine seconds (elapsed time) between each attempt. If the number or
retries expires, or if either wtime or retrys is initially @ and the
file is in use, the function returns .FALSE..

APPL.IB CALLS: RNAMSA, TIMESA, NLENSA, EXST$A, UNITS$A, TREESA, GENDSA

Verification

If verification 1is requested, the following are the possible actions:

ASVNEW If the file already exists and opnkey 1is ASWRIT or
ASRDR, the user will be asked if it is OK to modify the
old file. If the answer is "NO", the function returns
.FAISE.. If "YES", the file is opened.

ASOVAP 1f an old file is to be modified, (as answered "YES"
for ASUNEW the user is also asked if the file should
be overwritten or appended. If the answer is "APPEND",
the file will be positioned to End-of-File.

ASVOLD Default case if opnkey = ASREAD. If any other key is
specified, and if the named file does not already
exist, a new file will not be created and the prompt
message will be repeated.

Errors
If any errors not covered above occur while opening the file or
positioning it (A$OVAP), or a name is not supplied when requested, the

function returns .FAISE.. If the open is ultimately successful, the
function returns .TRUE..

11 - 33 January 1980

SECTION 11 PDR3621

P> Posnsa

POSNSA is a logical function which positions the file open on unit to
the specified position. If the operation is successful, the function
is .TRUE. and if unsuccessful, the function is .FAILSE..

LOG = POSN$A(poskey,unit,pos)
CALL POSN$A(poskey,unit,pos)

poskey ASABS, absolute position (.NE. ASREL)
ASREL, relative position.

unit PRIMOS file unit (INTEGER*2) .
pos Postion (relative or absolute) (INTEGER*4).

APPLIB CALLS: None

P> RPOSSA

RPOS$A is a logical function which returns the current absolute
position of the file open on unit. If the operation is successful, the
function is .TRUE. and if unsuccessful, the function is ,FALSE..

LOG = RPOS$A(unit,pos)
CALL RPOSS$SA(unit,pos)

unit PRIMOS file unit (INTEGER*2).
pos Returned absolute position (INTEGER*4).

APPLIB CALLS: None

P> RwNDSA

RWNDSA is a logical function that rewinds the file open on unit. If
the operation is successful, the function is .TRUE. and if
unsuccessful, the function is .FAISE..

LOG = RWNDSA(unit)
CALL RWNDS$A(unit)

unit PRIMOS file unit (INTEGER*2).

APPLIB CALLS: None

REV. A 11 - 34

PDR3621 APPLICATION LIBRARY (APPLIB)

p TEPSA

This routine opens a unique temporary file in the current UFD for
reading and writing. This file will be named TSXxXXX where XXX is a
4-digit decimal number between 2008 and 9999 inclusive. The actual
name opened will be returned in the name buffer. If the operation is
Successful,, the function value is .TRUE. and if the operation is
unsuccessful, the function value is .FALSE..

LOG = TBEMPSA(typkey+untkey,name,namlen,unit)
CALL TEMPS$A (typkey+untkey,name,namelen,unit)

typkey A$SAMF, SAM file (.NE. ASDAMF)
ASDAMF, DAM file.

untkey ASGETU, choose a file unit number to be returned in unit.
onission of this key requires that the routine be
provided with a unit number.

name Returned name (6 characters packed two characters per
word) . Data type does not matter.

nanlen Length of name buffer in characters (.GE. 5)
(INTEGER*2) .

unit File unit (INTEGER*2).

APPLIB CALLS: FILLSA

P TRNCSA

TRNCSA is a logical function which truncates the file open on unit. 1If
the operation is successful, the function is .TRUE. and if
unsuccessful , the function is ,FALSE..

LOG = TRNC$A(unit)
CALL TRNCSA(unit)

unit PRIMOS file unit (INTEGER*2).

APPLIB CALLS: None

11 - 35 January 1980

SECTION 11 PDR3621

P Tscnsa

TSCN$A is a logical function which scans the file system tree structure
(startiny with the home UFD) using the file subroutines RDENSS and
SGDRS$$ to read UFD and segment directory entries into the entry array.

LOG= TSCN$A(key,units,entry,maxsiz,entsiz,maxlev,lev,code)
CALL TSCN$A(key,units,entry,maxsiz,entsiz,maxlev,lev,code)

key A$TREE, scan full tree
ASNUFD, do not scan subufds
ASNSEG, do not scan segment directories
ASCUFD, scan current ufd only
ASDIAY, pause when popping up to directory

units Array of unit numbers maxlev long (INTEGER*2).

entry Array maxsiz * maxlev long (INTEGER*2).

maxsiz Size of each entry in entry array (INTEGER*2).
entsiz Set to size of current entry (INTEGER*2) .

maxlev Maximum number of levels to scan (INTEGER*2) .

lev Current level (INTEGER*2).
code Returned file system code (INTEGER*?) .

APPLIB CALLS: None

Each call to TSCN$A returns the next file on the current level or the
first file on the next lower level of the structure. The variable lev
is used to keep track of the current level. For example, after the
first call to TSCN$A (with lev=3), lev will be returned as 1, and
entry(l,1) will contain the UFDTEHtrz describing the first file in the
home UFD. 1If this file is a subufd, following the next call to TSCNSA,
lev will be 2, and entry(1,2) will contain the entry for the first file
in the subufd.

The values of key have the following meanings:
ASTREE All entries in the tree structure are returned up to maxlev
levels deep. (Levels below level maxlev are ignored.)
ASNUFD When a subufd is encountered (in the home UFD), its entry
is returned, but no files under that subufd are returned.
In the absence of segment directories, this effectively

limits the tree scan to the hame UFD.

ASNSEG Files inside segment directories are not returned.

REV. A 11 - 36

The

PDR3621 APPLICATION LIBRARY (APPLIB)

ASCUFD This is a logical combination of ASNUFD and ASNSEG —- only

files in the home UFD are returned.

ASDIAY This key is identical to AS$TREE except that directory

entries are returned twice, once on the way down (as for
ASTREE) , and again on the way up. (This is necessary, for
example, to implement the tree-delete function since a
directory cannot be deleted until it has been emptied.)

following items should be considered when using TSCNSA:

l.

For the first call of TSCN$SA, lev should be equal to 4.
Thereafter it should not be modified until EOF is reached on
the top level ufd at which point lev will be reset to 0.

The entries in the entry array are in RDENSS format. For
"entries" inside a segment directory, all information from the
directory entry is first copied down a level. Entry(2,LEV) 1is
set to ¥ and entry(3,LEV) is then set to a 16-bit entry number.
For nested segment directories, the type field of the entry is
set appropriately by opening the file with SRCHSS. (The file
is then immediately closed again.)

The parameter entsiz is set to the number of words returned by
RDENS$S. Inside segment directories, it should be ignored.

The type fields in the entry array —— entry(20,1) -—- should not
be modified. (TSCNSA uses them to walk up and down the tree.)

When TSCN$A requires a file unit, it uses units(lev). By using
RDENSS and SGDR$S read-position amd set-position functions
carefully, it is possible to dynamically reuse file units
(e.g., to scan trees more than 15 levels degp.)

TSCNSA returns .TRUE. until a non-zero file system code is
returned or until ESEOF 1is returned with lev=p (top level).
ESEOF on lower levels of the tree is “"suppressed", and code is
returned as zero.

TSCNSA requires owner rights in the home UFD.

11 - 37 January 1984

SECTION 11 PIR3621

The following program illustrates how TSCN$A can be used to perform a
tree LISTF:

$INSERT SYSCOM>ERRD. F
$INSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ASKEYS
c
INTEGER MAXLEV,MAXSIZ
PARAMETER MAXLEV=16 /* MAXIMUM LEVELS TO SCAN
PARAMETER MAXSIZ=24 /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I,L,ENTRY (MAXSIZ ,MAXLEV) ,UNITS (MAXLEV) ,CODE,NLEVSA
[LOGICAL TSCNSA
DATA UNITS/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16/

19 L=g /* INITIALIZE LEVEL COUNTER

108 IF(TSCNSA(ASTREE,UNITS,ENTRY,MAXSIZ,I,MAXLEV,L,CODE))GOTO 145
IF (CODE.NE.ESEOF) CALL ERRPRS$ (ESNRTN,CODE,?,0,0,0)
CALL EXIT /* ALL DONE IF ESEOF
GOTO 18 /* RESTART IF 'S' TYPED

195 DO 200 1=1,L /* CONSTRUCT TREENAME
IF (ENTRY(2,I).EQ.0) GOTO 150 /* BRANCH IF SEGDIR
CALL TNOUA(ENTRY(2,I) ,NLENSA(ENTRY(2,I),32))

GOTO 170
c
150 CALL TNOUA('(',1) /* FORMAT SEGDIR ENTRY NUMBER
CALL TODEC (ENTRY (3,1I))
CALL TNOUA(')',1)
c
170 IF (I.NE.L) CALL TNOUWA(' > ',3) /* TREENAME SEPARATOR
200 CONTINUE
CALL TONL
GOTO 100
END
> UNITSA

UNIT$A is a logical function which returns .TRUE. if the unit is open
and .FALSE. 1if the unit is not open.

LOG = UNITSA(unit)
unit PRIMOS file unit (INTEGER*2).

APPLIB CALLS: None

REV. A 11 - 38

PDR3621 APPLICATION LIBRARY (APPLIB)

PARSING ROUTINE - DETAILED DESCRIPTION

The parsing routine is designed to facilitate the design and
implementation of user interfaces in a program. It provides a means to
break a character string into tokens and return information regarding
each token.

p ovMpLsa Parse PRIMOS type command line.

CMDLSA is a logical function for parsing a PRIMOS type command line and
has the following calling sequence:

LOG = CMDLSA(key,kwlist,kwindx ,optbuf ,buflen,option,value, kwinfo)
CALL CMDLSA (key,kwlist,kwindx ,optbuf,buflen,option,value, kwinfo)

key ASREAD, return the next keyword entry in the command
line.

ASNEXT, call COMANL to get the next command line, turn on
default processing, and return the first keyword entry in
the new command line.

ASRSET, reset the command line pointer to the beginning
of the command line and turn on default processing. Use
of this key does not return a keyword entry.

ASRMNI, return the remainder of the command line as raw
text and turn on the end of line indicator. Text starts
at the token following the option (if present) of the
last keyword entry read.

ASNKWL, turn on default processing and return the next
keyword entry in the command line. This key allows the
calling program to switch keyword lists in the middle of
a command line.

ASRCMD, permits the use of a keyword without a preceding
minus sign as the first token on a line (may only be used
for lines subsequent to the initial command line).

kwlist A one dimensional array containing control information, a
table of keyword entry descriptions, and a list of
default keywords. See kwlist format later in this
section for a complete description.

kwindx Keyword index, returned integer variable identifying the
keyword in a keyword entry, possible values are:

< @, unrecognized keyword or CMDL$A was called with a key

of ASRSET or ASRAWI.
=g, end of line.
> @, valid keyword.

11 - 39 January 1980

SECTION 11 PDR3621

optbuf packed array that normally contains the text of a keyword
option. However if an unrecognized keyword is
encountered OPTBUF contains the text of that keyword.
Data type does not matter.

buflen specified length of optbuf in characters (INTEGER*2).
(must be .GE. zero.)

option Option type, returned integer variable that describes the
option following a keyword, possible values are:

ASNONE, no option, or option was null, optbuf will be
blank.

ASNAME, option was a name

ASNUMB, option was a number, results of numeric
conversion returned in value.

ASNOVF, option was a number and conversion resulted in
overflow (decimal numbers only) .

value Returned INTEGER*4 variable equal to the binary value of
an option if it was a number. Otherwise it is zero.

kwinfo An array that returns miscellaneous information and must
be dimensioned KWINFO(1¢) in the calling program.
kwinfo(l) is equal to the number of characters in optbuf
and kwinfo(2) - kwinfo(19) are reserved for future use.

APPLIB CALLS: CNVASA, CNVBSA, CSUB$A, FILLS$A, JSTR$A, MSUB$A, MSTRSA,
NLENSA, SSUBSA.

CMDLSA was designed to simplify the processing of a PRIMOS type command
line while, at the same time, providing the user with a great deal of
flexibility in defining his command environment.

This routine will parse a command line, a keyword entry at a time, and
return information about each entry it encounters. A keyword entry is
defined as a -keyword followed by an option. A default keyword entry
is defined as an option that is not preceded by a -keyword but, by
virtue of its position in the command 1line, implies a specified
-keyword (e.g., FTN SNARF, where SNARF implies the default keyword
-INPUT) . Defaults may only occur at the beginning of a command line.

PDR3621 APPLICATION LIBRARY (APPLIB)

CMDLSA returns the following information for each keyword entry in the
command line:

Integer that identifies the -keyword (kwindx) .

Text of the keyword option, if present (optbuf).

Option type (option).

Results of numeric conversion, if option was a number (valuel.

Number of characters in the text of an option (kwinfo(l)).

Note that CMDLSA does not perform any action other than returning
information about the command line.

The following is a 1list of considerations that should be taken into
account when defining a command environment:

1.

2.

5.

A keyword may have, at most, one option following it.
A keyword must begin with a '-'.

A keyword may not be a decimal number (e.g., -99).
Register setting parameters are not recognized as such.

Default keywords are only allowed at the beginning of a command
line. The first -keyword encountered turns off default
processing and all remaining options on the command line must
be preceded by a -keyword (this restriction can be circumvented
by using a key of ASNKWL, however the user must be aware of the
fact that when default processing is in effect each option is
treated as if it were preceded by a -keyword.

A key of ASRAWI (or an option type of ASRAWI) will turn on the
end of line indicator and any further attempts to read from the
current command line will return an end of line condition. To
turn off the end of line indicator CMDLSA must be called with a
key of ASRSET or ASNEXT.

A buffer length that is too small to contain the text of an
option will cause that option to be truncated and an error
message to be displayed.

Default keyword entries that have a numeric option should be
avoided as PRIMOS may intercept them as register settings.

A negative hexadecimal option that consists of only alphabetic

characters (e.g., -FF. will always be interpreted as a
—keyword.

11 - 41 January 1980

SECTION

1a.

11.

12.

13.

11 PDR3621

Keyword entries in the keyword table with the same keyword
indicies are considered synonyms. A keyword may have any
number of synonyms, each with different option specifications.
However, if a keyword with synonyms is also a default and
default processing is in effect, the option specifications for
the synonyms will be ignored (i.e., a default keyword option
always implies the first keyword in a synonym chain.

Null entries in the command 1line are only permitted for
keywords that have an option status of ASOPTL. All other null
entries will be treated as either a missing option or an
unrecogni zed keyword.

Calls to CMDLSA and RDTKSS on the same command line should be

avoided, as CMDL$A uses RDIKSS to perform a look-ahead when a
-keyword is encountered.

All text is forced to upper case unless enclosed in quotes or
read as raw text (ASRAWI).

KWLIST FORMAT

The kwlist array consists of three sections. The first section
contains control information, the second contains the keyword entry
table, and the third contains the default list.

CONTROL INFCRMATION:

WORD 1 Number of keyword entries in table, must be

.GT. zero,

WORD 2 Maximum length of keyword text in characters,

REV. A

must be .GE. 2 and .LE. 80. All keywords
must have the same length and therefore it
may be necessary to pad them with blanks.

11 - 42

KEYWORD TABLE:

Words 1 to n

Word n+l

Word nt?2

Word nt3

Word nt+4

Default List

Word 1

Words 2 to n

PDR3621 APPLICATION LIBRARY (APPLIB)

Text of keyword, the actual number of
characters must be equal to the max imum
keyword length.

Keyword index, must be .GT. zero.

Minimum nunber of characters in the keyword to
match including leading minus sign, must be .GE. 2
and .(LE. maximum keyword lerngth. A zero or
negative value causes the keyword to be ignored
when the table is searched. This allows keyword
text to exist as documentation.

Option status, possible values are:

ASNONE, no option may follow keyword,

ASOPTL, option may or may not follow keyword,
ASREQD, option must follow keyword.

Option type, possible values are:

ASNONE, if status is ASNONE

ASBIN, option must be a binary number

ASDEC, option must be a decimal number

ASOCT, option must be an octal number

ASHEX, option must be a hexadecimal number

ASNAME, option must be a name

ASNBIN, option may be a name or binary number
ASNDEC, option may be a name or a decimal number
ASNOCT, option may be a name or an octal number
ASNHEX, option may be a name or a hexadecimal
nunber (if the option consists of all alphabetic
characters, e.g., FACE, which also constitute a
valid hexadecimal number, it will be interpreted as
such) .

ASRAWI, option is the remainder of the command line
after the current -keyword is read as raw text.
Use of this option type will turn on the end of
line indicator in the same manner as a key of
ASRAWI.

Number of default keywords, must be .GE. zero

(Where n is equal to word 1) 1list of keyword
indices previously defined in the keyword entry
table, that will be used when default processing is
in effect. A default keyword entry may not have an
option status of ASNONE.

11 - 43 January 1980

SECTION 11 PDR3621

Error Messages

The function value will be false if any of the following errors occur:

BAD KEY

BUFFER LENGTH LESS THAN ZERO

NAME TOO LONG. (name text)

UNRECOGNIZED KEYWORD. (keyword text)

BAD KEYWORD OPTION. (option text)
- MISSING KEYWORD OPTION.

NO. OF KEYWORD ENTRIES MUST BE .GT. ZERO.

MAX XKEYWORD LENGI'H MUST BE .GE. 2 AND .LE. 87.

1ST CHARACTER OF KEYWORD MUST BE '-'. (keyword text)
KEYWORD MAY NOT BE A NUMBER. (keyword text)

KEYWORD INDEX MUST BE .GT. ZERO. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.
(keyword text)

INVALID OPTION STATUS. (keyword text)

INVALID OPTION TYPE. (keyword text)

NO. OF DEFAULTS MUST BE .GE. ZERO.

DEFAULT NOT DEFINED IN KEYWORD LIST. (default index)
INVALID DEFAULT OPTION STATUS. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .GE. 2. (keyword text)
UNDETERMINED ERROR> (text of last keyword or option read)

REV. A 11 - 44

PDR3621 APPLICATION LIBRARY (APPLIB)

CMDL$A Sample Program

C TEST PROGRAM FOR CMDLSA
C

IMPLICIT INTEGER*2 (A-Z)

INTEGER*4 VALUR

DIMENSION BUFFER(10) ,KWLIST(128) ,INFO(10)
$SINSERT SYSCOM>ASKEYS

C
DATA KWLIST /11,14,
* '*any text ',1,9,ASREQD,ASDEC,
* '"_NDECIMAL ',2,2,AS0PTL, ASNDEC,
* '-OCTAL ',4,2,ASREQD,ASNONE,
* '-NOCTAL ',4,3,AS0PTL, ASNOCT,
* '-HEXADECIMAL ',5, 2,ASREQD,ASHEX,
* '-NHEXADECIMAL ',6, 3,AS0OPTL,ASNHEX,
* '-NAME ',7,5,ASREQD,ASNAME,
* '-MAYRE ',8,6,AS0PTL, ASNAME,
* '_NONE ',9,5,ASNONE,ASNONE,
* '-QUIT ',10,2,ASNONE, ASNONE,
* '_TITLE ',99, 2,AS0PTL,ASRMI,
*4,1,2,8,7/
C
C
BUFLEN = 20
KEY = ASREAD

19 IF (CMDLSA(XEY,KWLIST,KWINDX, BUFFER, BUFLEN, TYPE, VALUE, INFO))
* GO TO 15
PRINT 99
99 FORMAT (/' TRY AGAIN,TURKEY !')
CALL EXIT
15 IF (KWINDX.EQ.1@) CALL EXIT
IF (KWNINDX.NE.ASNONE) GO TO 20
KEY = ASNEXT
GO TO 190
20 KEY = ASREAD
PRINT 179 BUFFER,KWINDX, TYPE,VALUE, INFO(1)
100 FORMAT (/18A2/'KWINDX TYPE VALUE CHARS'/2X,4(13,6X))
GO TO 19
END

11 - 45 January 1989

SECTION 11

APPLIB SUMMARY AND KEYS

PDR3621

Below is a brief summary of the calling sequences for all the APPLIB
routines and a listing of the file SYSCOM>ASKEYS.

In the summary that follows, the type codes are defined as:

LOGICAL

L
I
I*2
R

REAL

Dp

INTEGER (subject to compile time option)
INTEGER*2

DOUBLE PRECISION

Type Arguments

Group Name

File System TEMPSA
OPENSA
OPNPSA

OPNVS$A
OPVPS$A

CLOSSA
RWNDSA
GENDSA
TRNCSA
DELESA
EXSTSA
UNITSA
RPOSS$A
POSNSA
TSCNSA

REV. A

L
L
L

-

-

[l ol o B S e o o S o

(TYPKEY, NAME, NAMLEN, UNIT)
(OPNKEY+TYPKEY+UNTKEY, NAME, NAMLEN, UNIT)
(MSG,MSGLEN, OPNKE Y+TYPKE Y+UNTKEY, NAME, NAMLEN,
UNIT)

(OPNKEY+TYPKEY+UNTKEY, NAME, NAMLEN, UNIT, VERKEY,
WTIME, RETRYS)

(MSG, MSGLEN, OPNKEY+TYPKE Y+HINTKEY , NAME , NAMLEN,
UNIT,VERKEY,WTIME,RETRYS)

(UNIT)

(UNIT)

(UNIT)

(UNIT)

(NAME, NAMLEN)

(NAME, NAMLEN)

(UNIT)

(UNIT, POS)

(POSKEY, UNIT, POS)

(KEY,UNITS, ENTRY,MAXSIZ,

ENTSIZ ,MAXLEV,LEV,CODE)

11 - 45

Group
String

User Query

Information

Mathematical

Conversion

Parsing

PDR3621 APPLICATION LIBRARY (APPLIB)

Name Type Arguments

FILLSA T (NAME, NAMLEN,CHAR)

NLENSA I*2 (NAME,NAMLEN)

MCHRSA I (TARRAY, TCHAR, FARRAY, FCHAR)
GCHRSA I (FARRAY, FCHAR)

TREESA I (NAME, NAMLEN, FSTART,FLEN)

TYPESA L (KEY, STRING, LENGTH)

MSTRSA I*2 (A,ALEN,B,BLEN)

MSUBSA I*2 (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
CSTRSA L (A,ALEN, B,BLEN)

CSUBSA L (A, ALEN, AFC, ALC, B, BLEN, BFC, BLC)
LSTRSA L (A,ALEN,B,BLEN,FCP, ICP)

[SUBSA L (A,ALEN, AFC, ALC, B, BLEN,BFC, BLC, FCP, LCP)
JSTRSA L (KEY,STRING, LENGTH)

FSUBSA L (STRING, LENGTH, FCHAR, LICHAR, FILCHAR)
RSTRSA L (STRING, LENGTH,COUNT)

RSUBSA L (STRING, LENGTH, FCHAR, LCHAR, COUNT)
SSTRSA L (STRING, LENGTH,COUNT,FILCHAR)
SSUBSA L (STRING, LENGTH, FCHAR, LCHAR, COUNT, FILCHAR)
YSNOSA L (MSG ,MSGLEN, DEFKEY)

RNAMSA L (MSG,MSGLEN, NAMKEY , NAME, NAMLEN)
RNUMSA L (MSG ,MSGLEN,NUMKEY, VALUE)

TIMESA DP (TIME)

CTIMSA DP (CPUTIM)

DTIMSA DP (DSKTIM)

DATESA DP (DATE)

EDATSA DP (EDATE)

DOFYSA DP (DOFY)

RNDISA DP (SEED)

RANDSA DP (SEED)

ENCDSA L (ARRAY,WIDTH, DEC, VALUE)

CNVASA L (NUMKEY, NAME, NAMLEN, VALUE)

CNVBSA I (NUMKEY, VALUE , NAME, NAMLEN)
CMDLSA L (KEY, KWLIST, KWINDX,OPTBUF,BUFLEN

OPTION,VALUE, KNINFO)

11 - 47 January 1989

SECTION 11 PDR3621

SYSCOM>ASKEYS

C ASKEYS, APPLIB>SOURCE, EIS, 92/12/79
C Insert file for mnemonic APPLIB keys (FTN)
C Copyright 1977, PRIME COMPUTER, INC., Framingham, MA.

oNoNoNoNeo N K

oNoNoNoNO RO RS

REV.

NOLIST

SRR R TR L P T Y T T e Y T T
* ¥*
* FUNCTION DECLARATIONS (TABSET 6 17) *
* *

khkkhkkhhhhkhhhhhhhhAhkkhkhhArARhhhkkhhdhhhhkhhkkhhkhhrhhhkhrhhhkhkrkkhhhhhkk

LOGICAL CLOSSA,RWNDS$A,GENDSA, TRNCSA, DELESA , RPOSSA, POSNSA , TEMPSA,
OPENSA,OPNVS$A,OPNP$A,OPVPSA, ENCDSA, YSNOSA, RNAMSA, RNUMSA,
TREESA, EXST$A, UNITSA , CNVASA , CMDLSA , CSUBSA , CSTRSA, TYPESA,
TSCNSA,JSTRSA, LSUBSA, LSTRSA ,FSUBSA, SSTRSA, SSUBSA, RSTRSA,
RSUBSA, CSPSSA, CASESA

X)X X X

INTEGER MCHRS$A,GCHRSA,FILLSA
INTEGER*2 NLENSA,MSUBSA,MSTRS$A,CNVBSA

REAL *3 DOFYSA,DATESA, EDATS$A, TIMESA, CTIMSA, DTIMSA, RNDISA , RANDSA,
X FEDTS$A,FTIMSA,FDATSA

Khkkkhkhkhkhkhhhhhhhhhhhkhhkhkhhkkhhhhkhkhhkhhkhhkhhkhhkhkhkhkhkrhhkhhkhhkhrkhkhk

* *
* KEY DECLARATIONS (TABSET 6 17) *
* *

KAk AKAkhKAAR A AR I A AR ARk R AR AR AR A AR A AR KA ARk AA A kAR h Ak hhxdhkkdhkhkhk

INTEGER*2 ASREAD, ASWRIT,ASRDWR, ASSAMF , ASDAMF, ASNVER, ASUNEW, ASOVAP,

X ASVOLD,A$ABS ,ASREL ,ASDEC ,ASOCT ,AS$HEX ,ASNDEF,ASDNO ,
X ASDYES, ASFUPP, ASUPLIW, ASRAWT , ASNONE, ASOPTL, ASREQD, ASNDEC,
X ASNOCT,ASNHEX,ASNAME,ASNUMB ,ASNEXT,ASRSET,ASRCMD, ASNKWL,
X ASNOVF ,ASTREE, ASDLAY, ASNUFD, ASNSEG, ASCUFD, ASDECZ , ASDECU,
X AS$OCTZ ,ASHEXZ ,ASRGHT,ASLEFT,ASCNTR,ASBACK,ASFLOW,ASBIN,
X ASNBIN,ASGETU, ASBINZ

PARAMETER

X

X /*** */
X /* */
X /* KEY DEFINITIONS (TABSET 6 11 28 69) */
X /* */

X /********************* OPEN$A khhkkhkhkkhhkhkhkhhkhkhkhkhkhhkhkhkhhrhhkhhkkk */
X /********************* OPNP$A khkhkkhkhkhkhkhkhhkhkhkhkkhkkhkhdkhkhkhkihkhhkk */
X /********************* OPNV$A khkkhkhkkhkhkhkhkhkhkhkhkhkhkkhkkkkhhkkrhkhkhkhhhh */
X /********************* opvp$A khkkkkhhhhhkhkhkhkkhhkbkkhkhhkkhkhkhkhkhihhkk */
X /********************* TB“P$A dhkkhkhkhkhhkhkhkhhkhkhkkrhhkhhkhkhkhhhhhhkk */

X /* *kkkkk OPNKEY **kkk*k */
X ASREAD = 1, /* READ */
A 11 - 48

ASWRIT = 2, /%
ASRDWR = 3, /*
/* kkkkkhx
ASSAMF = g, /*
ASDAMF = :2000, /*
/* kxkkkk
ASGETU = :40000, /*
/* kkkkkk
ASNVER = 1, /*
ASUNEW = 2, /*
ASOVAP = 3, /*
ASVOLD = 4, /*
/*
/*********************
/* kkkkkk
ASABS = 1, /*
ASREL = 2, /*
/*
/*********************
/* *kdkkk
ASNDEF = -1, /*
ASDNO = g, /*
ASDYES = 1, /*
/*

/*********************
/*********************

e e T I T T i e R R T T R R R R I R T

/* *hkkk*k
ASDEC =1, /*
ASOCT = 2, /*
ASHEX = 3, /*
ASBIN = 9, /%

/*

/*

/*********************

/* *kkkk*k

/* ASDEC =1, /*

/* ASOCT = 2, /*

/* ASHEX = 3, /*

/* ASBIN = 9, /*
ASDECZ = 4, /*
ASOCTZ = 5, /*
ASHEXZ = 5, /*
ASDECU = 7, /*

/*

ASBINZ = 8, /%

/*

/*

/*********************

/* k% kkkk

/* ASREAD = 1, /*
ASNEXT = 2, /*
ASRSET = 3, /*

/* ASRAWI = 4, /%

PDR3621 APPLICATION LIBRARY (APPLIB)
WRITE */
READ/WRITE */
TYPKEY kkhkkkhkk */
OPEN NEW SAM FILE */
OPEN NEWN DAM FILE */
UNTKEY *kkkkk */
OPEN AND RETURN UNIT */
VERKEY Xkhkkkkk */
NO VERIFICATION */
VERIFY NEW FILE (OK TO MODIFY) */
ASUNEN + OVERWRITE/APPEND OPTION */
VERIFY OLD FILE (DO NOT CREATE NEW) */

*
RPOS$A Khkkkhkkkkhkkhkhkhkhhkhhhkhhkhhhkhhkhkhkhkkhkk *;
POSKEY kkkkkk */
ABSOLUTE POSITION */
REIATIVE POSITION */
*
YSNO$A khkhhhhhhhkhhhkhkhhhkhhkkhhhkhkhhkkhk *;
DEFKEY *kkkkk */
NO DEFAULT */
DEFAULT = 'NO' */
DEFAULT = 'YES' */
*/
RNUM$A khkkhkkkhkhkhkkhkhkhkhhkhhhkhrkhhkhkk */
CNVA$A hhkkhkkhkhkhkhkkhkhkhhkkhkhkdhhkhkhhkhhkhhkkihktkx */
NUMKEY Khkkkkk */
DECIMAL */
OCTAL */
HEXADECIMAL */
BINARY */
*/
*/
CNVB$A Ahkhkkkkkhkkhkkhkkhkhhhhikdhkx */
NUMKEY *kkkkk */
DECIMAL, LEFT PADDED WITH BLANKS */
OCTAL, LEFT PADDED WITH BLANKS */
HEXADECIMAL, LEFT PADDED WITH BLANKS */
BINARY, LEFT PADDED WITH BLANKS */
DECIMAL, LEFT PADDED WITH ZERCS */
OCTAL, LEFT PADDED WITH ZEROS */
HEXADECIMAL, LEFT PADDED WITH ZEROS */
UNSTGNED DECIMAL, LEFT PADDED WITH */
BLANKS */
BINARY, LEFT PADDED WITH ZEROS */
*
o
CMDLSA hhkhkhhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhhhkhhkkhkkkkk */
KEY k*kkkkk */
READ NEXT ENTRY IN COMMAND LINE */
READ FIRST ENTRY IN NEXT LINE */
RESET TO BEGINNING OF COMMAND LINE */
READ REMAINDER OF LINE AS RAW TEXT */

11 49

January 1980

SECTION 11

REV.

X ASNKWL = 5, /*
X ASRCMD = 6, /*
X /* kkkkkk
X /* ASDEC =1, /*
X /* ASOCT = 2, /*
X /* ASHEX = 3, /*
X /* ASRAWI = 4, /*
X ASNDEC = 5, /*
X ASNOCT = 6, /*
X ASNHEX = 7, /*
X ASNAME = 8, /*
X /% ASBIN = 9, /*
X ASNBIN =10, /*
X /* kkhkkkkk
X ASNONE = 7, /*
X /* ASNAME = 8, /*
X ASNUMB = 93, /*
X ASNOVF = 10, /*
X /* kkkkkk
X /* ASNONE = @, /*
X ASOPTL = 1, /*
X ASREQD = 2, /*
X /*

X /*********************
X /* *hkkkkk
X ASFUPP =1, /*
X ASUPIW = 2, /*
X ASRAWI = 4, /*
X /*

X /*

X /*********************
X /* *kkkkk
X ASTREE = 1, /*
X ASNUFD = 2, /*
X ASNSEG = 3, /*
X ASCUFD = 4, /*
X ASDIAY = 5, /*
X ASBACK = 6, /*
X /*

X /*********************
X /* kxkkkk
X ASRGHT = 1, /*
X ASLEFT = 2, /*
X ASCNTR = 3, /*
X /*

X /*********************
X /* khkkkkx
X /* ASFUPP = 1, /*
X ASFLOW = 5 /*
X /*

X /*********************
X /* *kkkkk
X /* ASBIN =9, /*

A

PDR3621

ACCEPT NEW KEYWORD LIST

FIRST TOKEN IS COMMAND (NO '-')
OPTYPE kkkkkk

DECIMAL OPTION

OCTAL OPTION

HEXADECIMAL OPTION

OPTION IS RAW.TEXT

NAME OR DECIMAL OPTION

NAME OR OCTAL OPTION

NAME OR HEXADECIMAL

NAME

BINARY OPTION

NAME OR BINARY OPTION

OPTION kkkkkk

NO OPTION PRESENT OR NULL OPTION
OPTION IS A NAME

OPTION IS A NUMBER (DIGIT STRING)
NUMERIC OVERFLOW

STATUS ****kx

NO OPTION TO FOLLON KEYWORD
OPTION MAY OR MAY NOT FOLLON KEYWORD
OPTION MUST FOLLON KEYWORD

RNAMSA *#kkkkkhhkkkhhkdhhkhhkkhkkhhhrhsk

NAMKEY *%*%%%
FORCE UPPER CASE
READ UPPER AND LONER CASE
READ REST OF LINE

TSCN$A kkkkkkkhkhkhhkhkhhkhkhkhkhhkkkhkkkkk
KEY kkkkkk

ALL ENTRIES IN A TREE

DO NOT SCAN SUBUFDS

DO NOT SCAN SEGDIRS

DO NOT SCAN SUBUFDS OR SEGDIRS

STAY AT DIRECTORY WHEN GOING UP TREE
BACK UP ONE LEVEL (FOR ERROR HANDLING)

JSTR$A khkkkhkhkkkkkhhkkkkkkkhkkhkhhhhhkkkd
KEY kkkkkk

RIGHT JUSTIFY
LEFT JUSTIFY
CENTER

CASESA kkkhkkkkhkhkkhkhhkhhkkhhhhhhhhhhkhk
KEY kkkkkk

FORCE UPPER CASE
FORCE LOWER CASE

TYPEsA kkhkkkkhkhkkhkkkhkhkhkhkhhkkkkkhkkkk
KEY kkkhkkk

BINARY NUMBER

11 - 50

PDR3621 APPLICATION LIBRARY (APPLIB)

X /* ASDEC = 1, /* DECIMAL NUMBER */
X /* ASOCT = 2, /* OCTAL NUMBER */
X /* ASHEX = 3, /* HEXADECIMAL NUMBER */
X /* ASNAME = 3 /* NAME */
X /* */

X /*** */
LIST

11 - 51 January 1980

PDR3621 SORT LIBRARIES

SECTION 12

SORT LIBRARIES

SORT SUBROUTINES OVERVIEW

PRIMOS contains many routines for performing disk or internal sorts.
The subroutines are contained in the three libraries, described below.
A detailed description of each subroutine follows later in this
section,

SRTLIB is the R-mode library which contains two subroutines that call
for a disk SORT operation.

VSRTLI is the V-mode version of the SRTLIB routines. These routines
handle larger records and more data and record types than the R-mode
version. VSRTLI also has subroutines which provide for the user's own
input and output procedures.

MSORTS library contains several in-memory sort subroutines and also has
a binary search/table building subroutine.

The following are the subroutines in each library.

SRTLIB VSRTLI MSORTS
SUBSRT SUBSRT HEAP
ASCSSS ASCSSS QUICK
ASCSRT SHELL
SRTFSS RADXEX
SETUSS INSERT
RLSESS BUBBLE
CMBNSS BNSRCH
RTRNSS
CLNUSS
MRG1$S

Record Types

The following record types are handled by the sort library routines.

COMPRESSED SOURCE: Record with compressed blanks, delimited by a
newline character (:212). Compressed source lines cannot contain data
which may be interpreted as a blank compression indicator (:221) or
newline character.

UNCOMPRESSED SOURCE: Record with no blank compression, delimited by a

newline character (:212). Uncompressed source lines cannot contain
data which may be interpreted as a newline character.

12 - 1 January 1980

SECTION 12 PDR3621

VARIABLE LENGTH: Record stored with length (in words) in the first
word. This 1length does not include the first word which contains the
count.

FIXED LENGIH: Record containing data but no length information. The
length must be defined as the maximum 1line size. (If a newline
character is appended to each record to make the file acceptable input
to EDITOR, the character must be included in the length.)

Default depends upon the key-types specified (see Key Definitions,
below) . Input type defaults to variable length if a single precision
integer, double precision integer, single or double precision real key
is specified. Otherwise, the default is compressed source. If the
output type is not specified, it is assumed to be the same as input
type.

IF MULTIPLE INPUT FILES ARE USED THEY MUST ALL CONTAIN RECORDS OF THE
SAME TYPE.

Record Length

The maximun record length allowed 1is 508 characters in R-mode and
32,760 characters in V-mode. "WARNING-LINE TRUNCATED" is printed
whenever the data (not including record delimiters) exceeds the maximum
record length and the excess data is ignored. Output record length
defaults to the input record length.

Key Definitions

Each key must start and end on a byte boundary. an improperly defined
key (e.g., record length is less than ending byte number of key) will
produce indeterminate results. With compressed source records, the key
is padded with spaces. In R-mode, 20 keys with a maximun length of 312
characters may be specified. 1In V-mode, up to 50 key fields may be
specified and the total 1length may not exceed maximum record length.
For fixed length records, key fields are verified to be within record
length. The following are the key types which are specified as a
paraneter in the SORT subroutines.

ASCII keys are character strings, stored one character per byte. ASCII
keys are limited only by the length of the record.

SIGNED NUMERIC ASCII keys require one byte per digit and include the
following types:

Numeric ASCII, leading separate sign
Nuneric ASCII, trailing separate sign
Numeric ASCII, leading embedded sign
Muneric ASCII, trailing embedded sign

REV. A 12 - 2

PDR3621 SORT LIBRARIES

A space will be treated as a positive sign. Signed numeric ASCII keys
may be up to 63 digits plus sign.

When the sign is separate, a positive number has a plus sign(+) and a
negative nunber has a minus sign(-). If the sign is embedded, a single
character is wused to represent the digit and sign. Bnbedded sign
characters are:

Digit Positive Negative

b -

-
-
+
~-
—~

CoONAOAUTdwWwNHF
OCOJAAUNTDdSWNH®
HEQIB@OQDP |
$UIO_"UOZZF‘7¢C4

UNSIGNED NUMERIC ASCII keys are stored one digit per byte and are
limited only by the length of the record.

INTEGER and REAL keys include the following types:

KEY BYTE LENGTH RANGE

SINGLE PRECISION INTEGER
DOUBLE PRECISION INTEGER
SINGLE PRECISION REAL
DOUBLE PRECISION REAL

-32767 to +32767

—2%*%31 to +2%*31-1
+(LO**-38 to 10**38)

T (18*%-9992 to 17**9825)

[oe NI

PACKED DECIMAL keys are stored two nibbles (digit or sign) per byte.
The last byte contains the final digit plus sign. A positive sign is
represented by hex C in the sign nibble and a negative field has a hex
D in the sign nibble. A packed field must have an odd number of digits
and may have up to 63 digits plus sign.

12 - 3 January 1980

SECTION 12 PDR3621

SRTLIB (R-MODE) - SUBROUTINE DESCRIPTIONS
P> SuBSRT

SUBSRT is used to sort a single input file, containing compressed
source records, on ASCII keys in ascending order. Maximun record
lergth is 508 characters and maximum key length is 312 characters.

CALL SUBSRT(tree-1,len-1,tree-2,len-2,numkey,nstart ,nend ,npass,nitem)

tree-1 Input treename.

len-1 Length of input treename in characters up to 84.

tree-2 Output treename.

len-2 Length of output treename in characters up to 84%.

numkey Number of pairs of starting and ending columns

(max imum 29) .

nstart Vector containing starting columns of keys.

nend Vector containing ending columns of keys.

npass Number of passes (returned).

nitem Number of items in output file (returned) INTEGER*4.
P ASCSS$

ASCS$$ is the R-mode subroutine which sorts or merges compressed or
variable length records depending on the type of data specified in
ntype. When sorting on binary files, starting and ending columns mean
starting and ending bytes. When sorting equal keys, the input order is
maintained. Maximum record length is 508 characters and maximum key
length is 312 characters.

CALL ASCS$$ (tree-l,len-1,tree-2,len-2,numkey,nstart,nend,npass
nitem,nrev,ispce,mgcnt ,mgbuff,len,LOC(buffer) ,msize
ntype,linsiz,nunits,units)

tree-1 Input treename.

len-1 Length of input treename in characters.

REV. A 12 - 4

tree-2
len-2

numkey

nstart
nend
npass
nitem

nrev

ispce
mycnt

mgbuf £

len

LOC (buffer)

msize

ntype

—
g wN -

linsiz

nhunits

units

PDR3621 SORT LIBRARIES

Output treename.
Length of output treename in characters.

Number of pairs of starting and ending columns
(max imum 29) .

Vector containing starting columns.

Vector containing ending columns.

Nunber of passes (returned).

Number of items in output file (returned) INTEGER*4.

Vector containing order keys, =Ascending,
1=Descending.

g=sort blank lines, l=delete blank lines.
Number of merge files (up to 10).

Array dimensioned (4@*mgcnt) containing merge
filenames.

Vector containing length of merge filenames in
characters.

Location of presort buffer in words.
Size of presort buffer in words.

Vector containing type of each key.

ASCII

SINGLE PRECISION INTGER
SINGLE PRECISION REAL
DOUBLE PRECISION REAL
DOUBLE PRECISION INTEGER

Maximun size of line in characters (default:
508 characters) .

Number of file units available. (4 will be used)

Vector containing available file units.

12 - 5 January 1989

SECTION 12 PDR3621

Notes

1. Ttast 4 items are optional and may be omitted. Default
value of ntype is ASCII.

2. Treenames may be used in ASCSS$$ but may not exceed 80
characters in length.

3. Files specified as merge files will be sorted and
merged with the input file. Treenames may be used for
merge files, but only 19 merge files, no more than 80
characters in length may be used.

4. Presort buffer size should be as large as possible on
P190 and P209 systems. On virtual memory systems, the
best size must be determined by experimentation.

VSRTLI (V-MODE) - SUBROUTINE DESCRIPTIONS

VSRTLI routines follow a consistent naming convention to avoid possible
conflict between user-written routines and system routines., All entry
points end with the suffix $S - except SUBSRT and ASCSRT which remain
the same for compatibility with earlier versions of the 1library. The
names E3S1, EB$2, EBS$3, EB$4, and EBSS are no longer used. Subroutines
used internally by VSRTLI routines which have a suffix of $$S should
not be called from user routines. All parameters for all the routines
are INTEGER*2 unless otherwise stated.

P> SUBSRT
SUBSRT is used to sort a single input file, containing compressed
source records, on ASCII keys in ascending order. Maximun record

lemgth is 32,760 bytes.

CALL SUBSRT(tree—l,len—l,tree—2,1en—2,numkey,nstart,nend,npass,niten)

tree-1 Input treename.

len-1 Length of input treename in characters, up to 84.

tree-2 Output treename.

len-2 Length of output treename in characters, up to 80.

nunkey Number of pairs of starting and ending columns, up to
50. If binary, specifies starting and ending bytes.
Default = 1.

nstart Vector containing starting columns/bytes(must be >1).

REV. A 12 - 5

PDR3621 SORT LIBRARIES

nend Vector containing ending columns/bytes. Each ending
column must be < linsiz.
npass Nunber of passes (returned) .
nitem Number of items in output file (returned) INTEGER*4.
P> ASCSRT

ASCSRT (can also be called as ASCS$S as in SRTLIB) is the V-mode
subroutine which handles larger records and additional types of sort
key fields, than the R-mode version. Maximum record length is 32,750
bytes,

ASCSRT sorts or merges compressed source or variable length records
from and to disk files. Any of the supported key types (specified 1in
ntype) may be used, and there may be ascending and descending keys
within the same sort or merge. When sorting equal keys, the input
order is maintained.

cALL(AscssS| (tree-1,len-1,tree-2,len-2,numkey,nstart,nend,npass
ASCSRT| nitem,nrev,ispce,mgcnt,mgbuff,len,LOC(buffer) ,msize
ntype,linsiz,nunits,units)

tree-1 Input treename.

len-1 Length of input treename in characters, up to 80.

tree-2 Output treename.

len-2 Length of output treename in characters, up to 80.

numkey Number of pairs of starting and ending columns,
up to 50. If binary, specifies starting and
ending bytes.
Default = 1.

nstart Vector containing starting columns/bytes.

Each starting column must be >1.

nend Vector containing ending columns/bytes.
Each ending column must be < linsiz.
npass Number of passes (returned) .
nitem Number of items in output file (returned) INTEGER*4.

12 - 7 January 1980

SECTION 12

nrev

ispce

mycnt
mgbuf £

len

LOC (buffer)

msize

ntype

3
U'I»bwt\.)t—'}ﬁ

PDR3621

Vector containing sort order for each key.
fi=Ascending, l=Descending.
Default: @ = Ascending

Option to specify treatment of blanks.
g = include blank lines in sort

1 = delete blank lines

Default: @ = include blank lines

Number of merge files (up to 10).

Array dimensioned (40*mgcnt) containing merge
filenames.

Vector containing length of merge filenames in
characters, up to 84.

Location of presort buffer in words. For Rev. 17
and above, presort buffer is a comnon block,
PSRTSS, and this parameter is ignored.

Size (<65535) of presort buffer in words.

For Rev. 17 and above, corresponds to size of the
common block, PSRT$S: This parameter may be a full
16-bit unsigned integer but cannot be INTEGER*4, If
nonzero, msize must be at least 1024 (one page)

and no more than 64 pages. If larger, the message
"WARNING-PRESORT BUFFER SHOULD NOT BE LARGER THAN
ONE SEGMENT" is issued, and the default is used.
Default: one segment (65536) .

Vector containing type of each key.

ASCII

SINGLE PRECISION INTHEGER
SINGLE PRECISION REAL
DOUBLE PRECISION REAL
DOUBLE PRECISION INTEGER

The additional types available for Rev.17 and above:

O oo

19

12

linsiz

REV. A

NUMERIC ASCII, LEADING SEPARATE SIGN
NUMERIC ASCII, TRAILING SEPARATE SIGN
PACKED DECIMAL

NUMERIC ASCII, LEADING EMBEDDED SIGN
NUMERIC ASCII, TRAILING EMBEDDED SIGN
NUMERIC ASCII, UNSIGNED

ASCII, LONER CASE SORTS EQUAL TO UPPER CASE
Default: ALL ASCII Keys.

Maximum size of line in characters (bytes).
Default: 32760

12 - 8

PDR3621 SORT LIBRARIES

nunits Nunber of file units available. (4 will be used)

units

P> SRIFSS

For Rev. 17 and above, paramneter not used since file
units are supplied dynamically using the subroutine
SRCHS$S with key KS$GETU (See Section 4).
Vector containing available file units. Obsolete
for Rev. 17 and above., See nunits above.

Notes

Last 4 items are optional and may be omitted.

Files specified as merge files will be merged with the
input file. Treenames may be used for merge files.

Presort buffer size should be determined by
experimentation on virtual memory systems.

SRTFSS will sort input files (maximum 20) into a single output file.

CALL SRTFSS (inbuff,inlen,inunts,incnt,tree2,len2,outunt,

inbuff

inlen

inunts
inent
tree2
len2
outunt

nunkey

nstart

numkey,nstart,nend ,nrev ,ntype,
ercode ,inrec,outrec,spcls msize)

Array dimensioned(4@,incnt) containing input filenames.

Vector containing lengths of input treenames in characters,
up to 84.

Vector containing input file units (if open units are used).
Number of input files (up to 28).
Output file treename.
Length of output treename in characters, up to 80.
Ooutput file unit (if an open unit is used).
Number of pairs of starting and ending columns
(starting and ending bytes if binary), up to 54.
Default = 1.

Vector containing starting columns/bytes.
Each starting column must be >1.

12 - 9 January 1983

SECTION 12 PDR3621

nend Vector containing ending columns/bytes.
Each ending column must be < maximum input line size.

nrev Vector containing sort order for each key
@ = Ascending
1 = Descending
Default = 9 = Ascending.

ntype Vector containing type of each key

1 = ASCII

2 = SINGLE PRECISION INTEGER

3 = SINGLE PRECISION REAL

4 = DOUBLE PRECISION REAL

5 = DOUBLE PRECISION INTEGER

6 = NUMERIC ASCII, LEADING SEPARATE SIGN
7 = NUMERTIC ASCII, TRAILING SEPARATE SIGN
8 = PACKED DECIMAL

9 = NUMERIC ASCII, LEADING EMBEDDED SIGN
10 = NUMERIC ASCII, TRAILING EMBEDDED SIGN
11 = NUMERIC ASCII, UNSIGNED

12 = ASCII, LOWER CASE, SORTS EQUAL TO UPPER CASE.

Default = ALL ASCII keys.
ercode Error code (returned).

inrec Five word array containing input record information:
inrec(l) = input record type

1 = COMPRESSED SOURCE (blanks compressed)

2 = VARIABLE LENGTH

3 = FIXED LENGTH (inrec(2) must be specified)
4 = UNCOMPRESSED SOURCE (no blank compression) .

Default depends on the key types specified in argument
ntype.
inrec(2) = Maximum input line size in characters {bytes) .
Default = 32760.
Required for sorting fixed length records.
inrec(3-5) must be zero, and are reserved for future use.

outrec Five word array containing output record information.
outrec(l) = output record type (see inrec)
outrec(2) max imun output line size In characters (bytes).
outrec(3-5) must be zero, and are reserved for future use.

|

spcls Five word array containing:
spcls(l) = Space option
g = include blank lines in sort
1 = delete blank lines
Default = @ = include blank lines.
spcls(2-5) must be zero, and are reserved for future use.

REV. A 12 - 19

PDR3621 SORT LIBRARIES

msize Size of presort buffer in pages (units of 1024 words), <64.
Note that the units used here are pages which differ
from the words used by ASCSRT.
Default is one segment (54 pages).

P MRG1SS

MRG13S merges two to eleven previously sorted files into a simgle
output file.

CALL MRG1$S (inbuff,inlen,inunts,incnt,tree2,len?,outunt ,nunkey,
nstart ,nend,nrev,ntype,ercode,inrec ,outrec,spcls,oproc)

inbuff Array dimensioned (40,incnt) containing input
filenames.
inlen Vector containing lengths of input treenames in

characters, up to 84.

inunts Vector containing input file units(if open units are
used)

incnt Number of input files (up to 20).

tree2 Output file treename.

len2 Length of output treename in characters, up to 84,

outunt output file unit (if an open unit is used).

numkey Number of pairs of starting and ending columns
(starting and ending bytes if binary), up to 580.
Default=1.

nstart Vector containing starting columns/bytes. Each

starting column must be >1.

nend Vector containing ending columns/bytes. Each ending
column must be < inrec(2).

nrev Vector containing sort order for each key
@ = Ascending
1 = Descerding.
Default = 9 = Ascending.

12 - 11 January 1930

SECT

REV.

ICN 12

ntype

ercode

inrec

outrec

spcls

oproc

A

PLR3621

Vector containing type of each key

1 = ASCII

2 = SINGLE PRECISION INTEGER

3 = SINGLE PRECISION REAL

4 = DOUBLE PRECISION REAL

5 = DOUBLE PRECISION INTEGER

6 = NUMERIC ASCII, LEADING SEPARATE SIGN
7 = NUMERIC ASCII, TRAILING SEPARATE SIGN
8 = PACKED DECIMAL

9 = NUMERIC ASCII, LEADING EMBEDDED SIGN
18 = NUMERIC ASCII, TRAILING EMBEDDED SIGN
11 = NUMERIC ASCII, UNSIGNED

12 = ASCII, LONER CASE SORTS EQUAL TO UPPER CASE.
Default = ALL ASCII keys.

Error code (returned) .

Five word array containing input record information:
inrec(l) = input record type

1 = COMPRESSED SOURCE (blanks compressed)

2 = VARIABLE LENGTH

3 = FIXED LENGTH (inrec(2) must be specified)

4 = UNCOMPRESSED SOURCE (no blank compression).

Default depends on the key types specified in
ntype

inrec(2) = Maximum input line size in characters
(bytes). Default = 3276@. Required for sorting
fixed length records.

inrec(3-5) must be zero, and are reserved for future

use.

Five word array containing output record information:
outrec(l) = output record type (see inrec)

outrec(2) = maximum output line size in
characters(bytes) .

outrec(3-5) must be zero, and are reserved for future
use.

Five word array containing:
spcls(l) = Space option
@ = include blank lines in sort
1 = delete blank lines.
Default = § = include blank lines.
spcls(2-5) must be zero, and are reserved for future
use.

Output data destination

@ = Output file
1 = Output procedure.

12 - 12

PDR3621 SORT LIBRARIES

SETUS$S, RLSESS, CMBNSS, RIRNSS, CLNUSS

The following five routines allow the wuser's own input and output
procedures. These routines must all be called, and in the order given,
to assure that the sort is done correctly. Source records passed to
SORT from an input procedure must end with a newline character (:212).
If not, a "WARNING-LINE TRUNCATED" message will be issued and the last
character will be overwritten by a newline character. These
subroutines are available in V-mode only, All parameters are
INTEGER*2.,

P SETUSS
SETUSS checks the paraneters supplied by the user and sets up all
tables for the particular sort being defined.
CALL SETUSS (inbuff,inlen,inunts,incnt,tree2,len2,outunt,
numkey,nstart ,nend ,nrev,ntype ,ercode,inrec,
outrec,spcls msize,iproc,oproc)
inbuff Array dimensioned(46,incnt) containing input filenames.

inlen Vector containing lengths of input treenames in characters,
up to 84.

inunts Vector containing input file units (if open units are used).
incnt Number of input files (up to 20).
tree2 Qutput file treename.
len2 Length of output treename in characters, up to 80.
outunt Output file unit (if an open unit is used).
numkey Number of pairs of starting and ending columns
(starting and ending bytes if binary), up to 5@.
Default = 1.

nstart Vector containing starting columns/bytes, (must be >1).

nend Vector containing ending columns/bytes, (must be < inrec(2))

12 - 13 Januvary 1980

SECTION 12 PDR3621

nrev Vector containing sort order for each key
2 = Ascending
1 = Descending
Default = 4 = Ascending.

ntype Vector containing type of each key

= ASCII

SINGLE PRECISION INTEGER

SINGLE PRECISION REAL

DOUBLE PRECISION REAL

DOUBLE PRECISION INTEGER

NUMERIC ASCII, LEADING SEPARATE SIGN
NUMERIC ASCII, TRAILING SEPARATE SIGN
PACKED DECIMAL

NUMERIC ASCII, LEADING EMBEDDED SIGN
NUMERIC ASCII, TRAILING EMBEDDED SIGN
11 = NUMERIC ASCII, UNSIGNED

12 = ASCII, LOWER CASE.SORTS EQUAL TO UPPER CASE.
Default = ALL ASCII keys.

OO~ UlDS W

L I | T R | I 1 I

12

ercode Error code (returned).

inrec Five word array containing input record information:
inrec(l) = input record type

1 = COMPRESSED SOURCE (blanks compressed)

2 = VARIABLE LENGTH

3 = FIXED LENGIMH (inrec(2) must be specified)
4 = UNCOMPRESSED SOURCE (no blank compressmn) .

Default deprands on the key types spec1f1ed in ntype.
inrec(2) = Maximum input line size in characters (bytes) .
Required for sorting fixed length records.
Default = 32764.
inrec(3-5) must be zero, and are reserved for future use.

outrec Five word array containing output record information.
outrec(l) = output record type (see inrec)
outrec(2) = maximum output line size in characters (bytes).
outrec(3-5) must be zero, and are reserved for future use.

spcls Five word array containing:
spcls(l) = Space option
= include blank lines in sort
1 = delete blank lines
Default = 0 = include blank lines.
spcls(2-5) must be zero, and are reserved for future use.

msize Size of presort buffer in pages (units of 1924 words), <64.
Default is one segment (64 pages).

iproc Input data source
g = Input file
1 = Input procedure,

REV. A 12 - 14

PDR3621 SORT LIBRARIES

oproc Output data destination
= Output file
1 Output procedure.

P> RLSESS

RLSESS transfers records to the initial phase of the sort. If an input
procedure is used, RLSESS is called once for each line released. If an
input file is used, RLSES$S should be called only once.
CALL RLSESS (rlbuff,length)

rlbuff Buffer containing next record for sort.

lemth Length of record in characters or bytes. This is
not necessarily the full length of rlbuff.

If input is from a file, RLSE$S arguments are not used, and multiple

calls to RLSES$S result in multiple occurrences of each record when
sorted.

P CMBNSS
CMBNSS performs the internal sort. If the sort cannot be done within
allocated memory, CMBNSS merges the strings previously sorted.

CALL CMBNS$S

12 - 15 January 1980

SECTION 12 PDR3621

P> RIRNSS

RTRNSS returns the sorted records. If an output procedure is wused,
each call to RTRNSS obtains the next sorted record. 1If an output file
is specified, RTRNSS is called only once.

CALL RTRNSS(rtbuff ,length)

rtbuff Buffer containing next sorted record (returned).
Should be large enough to hold the longest record sorted.

length Length of record in characters or bytes (returned).
When all records have been returned, calls to
RISESS return a record length of 4.

If output is to a file, RTRNS$S arguments are not used.
P CcInuUss

CINUSS closes all units opened by the sort routines and deletes any
temporary files.

CALL CINUSS

REV. A 12 - 16

PDR3621 SORT LIBRARIES

SAMPLE USER INPUT PROCEDURE

The following sample program demonstrates the use of an input procedure with the
sort user-subroutines.

OK, SLIST SAMPLE

C——-—-5AMPLE PROGRAM WHICH CALLS SORT

C——- TO DEMONSTRATE THE USE OF AN INPUT PROCEDURE BEFORE SORTING
C

C

SINSERT SYSCOM>KEYS,F
SINSERT SYSCOM>ERRD.F

c
C
INTEGER
& BUFFER(10), /* Buffer for reading file
& ERCODE, /* Error code
& INREC(5), /* Input record information
& OUTREC(5) , /* Output record information
& SPCLS (5), /* Flags for special options
& TYPE /* File type returned when file
openad
C
Cc
DATA
C Input records are fixed length (20 characters)
& INREC / 3, 20, 0, @, @ /,
C Output records are uncompressed source (so the file can be EDited)
& OUTREC / 4, 20, @, @, 9 /,
C No special options
& seCcLs /@, 9, 0, 9, 9 /
C
Cc
C-————-0Open the input file
CALL SRCH$$ (KSREAD,'INPUTFILE',9,1,TYPE, ERCODE)
IF (ERCODE .NE. @) CALL ERRPRS$ (KSNRTN,ERCODE,®,9,0,9)
C
C—-—-Initialize sort tables
CALL SETUSS .
& 2, /* no input filenames
& a, "~ /* no lengths of filenames
& 7, /* no input file units
& @, /* no input filenames
& 'OUTPUTFILE", /* this is the output filename
& 10, /* 'OUTPUTFILE' is 10 characters long
& a2, /* no output file unit is specified
& 1, /* sort file on one key
& 1, /* starting at column one
& 20, /* ending at column twenty
& 2, /* sort in ascending order
& 1, /* the key is all ASCII characters
& ERCODE, /* an error code will be returned

12 - 17 January 1980

SECTION 12 PDR3621

& INREC, /% input record information
& OUTREC, /* output record information
& SPCLS, /* no special options requested
& a, /* use default value for presort buffer
& 1, /* input data is from procedure
& @) /* output is to file.
IF (ERCODE .NE. @) CALL ERRPR$ (K$NRTN,ERCODE,%,9,%,9)
C
C—---Read records from input file

108 READ (5,200,END=300) BUFFER
200 FORMAT (19A2)

C

C—--=Select records to be sorted,

C———- and pass them to sort with the record length (which is 20 characters)
IF (BUFFER(1l) .EQ. 'AA') CALL RLSESS (BUFFER,20)
GO TO 140 /* Go read next record

C

C—-—-Hit end of the input file, so finish up the sort

300 CALL CMBNS$S /* do the sort .
CALL RTRNSS (9,0) /* output the records to the output file
CALL CLNUSS /* clean up after sorting

C

C-——-—Close input file

CALL SRCHSS (KSCLOS,0,9,1,9,ERCODE)

IF (ERCODE .NE. @) CALL ERRPRS (KSNRTN,ERCODE,?,@,d,9)
CALL EXIT

END

OK, FTN SAMPLE -64V -DCLVAR
P30A ERRORS [<.MAIN.>FTN-REVL7.0H

OK, SEG

[SEG rev 17.0
LOAD #SAMPLE
$ LO B SAMPLE
$ LI VSRTLI

$ LIB

LOAD COMPLETE
$ SAVE

$ QU

OK, SLIST INPUTFILE
AA BEMPLOYEEL
BB EMPLOYEES
BB FMPLOYEE3
CC EMPLOYEGE4
AA BEMPLOYEE?2
AA EMPLOYEE6
cC EMPLOYEE7
AA EMPLOYEEQ

OK, SEG #SAMPLE

REV. A 12 - 18

PDR3621

OK, SLIST OUTPUTFILE

AA
AA
AA
AA

EMPLOYEEQ
EMPLOYEE1
EMPLOYEE?2
EMPLOYEEG6

SORT LIBRARIES

January 1980

SECTION 12 PDR3621

MSORTS - SUBROUTINE DESCRIPTIONS

The MSORTS library contains several in-memory sort subroutines and a
binary search/table building routine. The reference for most of the
algorithm and timing studies is Donald Knuth, 'The Art of Computer
Programming, Volune 3, Sorting and searching'. It should be pointed
out that the timing figures quoted are based upon Knuth's algorithms on
his fictional machine (MIX). Since the MSORTS routines are more
general, the Prime machines are different, and no in-house timing
studies have yet been done, the timing formulas quoted here should be
used only as an indication of the relative merits of each algorithm and
not as exact computational tools.

In-memory sorts can be grouped into four categories: 1) sorts
requiring very little additional memory; 2) sorts requiring a dgreat
deal of additional memory; 3) sorts using threaded lists; and 4)
sorts based upon tree structures. Since available real memory space in
Prime machines could be small and since the value of in-memory sorts
using paged memory could be questionable, no sorts of categories 2 or 3
have been included in MSORTS. Also, since explicit tree structures
tend to be threaded, only a single representative of this class has
been included (HEAP) .

The binary search routine (BNSRCH) can be used either for table lookup
in an ordered table or for building a sorted table.

The routines included in MSORTS are:

HEAP Heap Sort - based upon binary trees.
QUICK 'quicksort' - partition-exchange.
SHELL Shell Sort - diminishing increment.
RADXEX Radix Exchange Sort.

INSERT Straight Insertion Sort.

BUBBLE 'Bubble' Sort - intercharnge.

BNSRCH Binary Search.

All routines accept multiword entries and multi-word keys located
anywhere within the entry. The restrictions are that all entries are
equal length and key words are contiguous (no secondary keys). An
attempt has been made to keep the calling sequences as similar as
possible. However, each sort has slightly different requirements.
Except for RADXEX, all routines have the same first five parameters
(arguments) .

REV. A 12 - 20

PDR3521 SORT LIBRARIES

Parameters Common to More Than One Subroutine

ptable Integer pointer to the first word of the table. For
exanple, if the table is in an array TABLE (a,b), the
parameter ptable = loc (table). Ptable is a full 16 bit
pointer and can be in the upper 32K of memory.

nentry Number of Integer table entries (not words) in the table
(e.g., items to be sorted or searched). This is a full
16 bit count, since there can be more than 32K entries in
the table.

nwds Number of words/entry. nwids > 9. Obviously if nwds >
32K, there can be only a single entry.

fword First word within the entry of the key field.

nkwds Number of words in key field, ¢ <nkwds < nwis. Also,
fword + nkwds - 1 < nwds. (i.e., the key field must be
contained within an entry) .

npass Number of passes made (=0 if error).

altbp Alternate return for bad parameters.

RADXEX replaces the nkwrds parameter by the following:
fbit First bit within fword of key. fbit > 0 and fword +

(nbit + fbit -2)/16 < nwds; i.e., the key field must be
contained within an entry.

nbit Number of bits in key. nbit > # and fword + (nbit + fbit
-2) /16 < nwds; i.e., the key field must be contained
within an entry.

Also, the routines HEAP, QUICK, RADXEX, and BUBBLE require temporary
arrays of sizes:

HEAP, QUICK tarray (nwds)
RADXEX tarray (2nbit)
BUBBLE tarray (nkwds)

All routines (except RADXEX) sort the table in increasing order where
the key is treated as a single, signed multi-word integer. Therefore,
the nunbers 5, -1, 18, -3 would be sorted to -3, -1, 5, 10@. RADXEX,
since the key need not begin on a word boundary, treats the key as a
single, unsigned multi-word (or partial word) integer. Thus, the same
four numbers would be sorted by RADXEX to 5, 1@, -3, -l.

12 - 21 January 1989

SECTION 12 PDR3621

P> BNSRCH

Simple binary searching (opflag=0) tests each entry's keyfield for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the not
found alternate return (altnf) is taken. If altnf is not specified,
the normal return is found, it is deleted from the table as well as
returned in fentry. 1In this case, index specifies where the entry was.
Opflag=2 is the same as opflag=0 if the entry is found. If, however,
the entry is not found, the contents of fentry will be inserted into
the table and index will indicate the position of the new element.
Also, altnf will be taken. Opflag=3 is the same as opflag=8 if the
entry is not found. If the entry is found, the contents of fentry and

the found entry are interchanged, thus updating the table and returning
the old entry,

CALL BNSRCH (ptable, nentry, nwds, fword, nkwds, skey, fentry,
index, opflag, altnf, altbp)

The additional parameters are:
skey Search key array (nkwdis) .
fentry Found entry array (nwds) .

index Entry number of found entry.

opflag operation key
9=locate
1=locate and delete
2=locate or insert
3=locate and update

altnf Not found alternate return.

P> BUBBLE

Bubble sorting is a simple interchange sort.

CALL BUBBLE (ptable, nentry, nwis, fword, nkwds, tarray, npass,
altbp, incr)

incr Same as in Insert; used to sort non-adjacent entries.
Default = 1 (sort adjacent) .

tarray Must have nkwds words.

REV. A 12 - 22

PDR3621 SORT LIBRARIES

Running Time: The average running time is proportional to N**2,
Bubble sorting is good only for very small N, but is not as good as
insertion sorting.

P HEAP

Heap sort is based on a non-threaded binary tree structure., The
algorithm consists of two parts: convert the table into a 'heap', and
then sort the heap by an efficient 'top-down' search of the tree. The
formal definition of a heap is:

The Keys K(1), K(2), K(3) ;+.., K(N) constitute a 'heap' if
K(J/2)>K (J) for 1<J/2<I<N.

CALL HEAP (ptable, nentry, nwds, f£word, nkwds, tarray, npass, altbp
tarray Must have nwds words.
Running Time: The average running time is proportional to 23*N*1nN and

the maximum is 26*N*1nN. Heap sort tends to be inefficient if N<2009,
but for N>2000, it outperforms all other sorts except Quicksort.

P> INSERT

Straight insertion sorting is based upon 'percolating' each element
into its final position.

CALL INSERT (ptable, nentry, nwds, fword, nkwds, npass, altbp,
incr)

incr Used to sort non—-adjacent entries.
The incr parameter is used to sort non-adjacent entries. If, for
example, incr=3, every third entry will be included in the sort. The
default is incr=1. For example, with incr=3:
INPUT: 10 9 8 7 ¢
OUTPUT: 1 9 8 4

[e))]

54321 @
5732100
Running Time: Although the average running time 1is proportional to

N**2, insertion sorting is very good for small tables (N<13) and tends
to be very efficient for nearly ordered tables, even for large N.

12 - 23 January 1989

SECTION 12 PDR3621

P> QUICKSORT

Quicksort is a partition exchange sort. QUICK is a variation of the
basic quicksort called a median-of-three quicksort.

CALL QUICK (ptable, nentry, nwds, fword, nkwds, tarray, npass,
al tbp)

tarray Must have nwds words.

Running Time: The average running time is proportional to 12*N*1nN,
but the maximum time is on the order of N**2, QUICK, on the average,
is the fastest sort in MSORTS, but in the worst case, is about the
slowest. 1In fact, the worst case is a completely ordered table. QUICK
must not be used on tables that are already well ordered.

P RADXEX

RADXEX is a radix exchange sort that treats the key as a series of
binary bits. It is based both on the method of radix sorting (like a
card sorter) and partitioning. As noted before, RADXEX does not sort
signed numbers and will sort the numbers 5, -1, 10, -3 to 5, 10, -3,
-1. RADXEX has the advantage that the key need not start on a word
boundary nor be an integral number of words long.

CALL RADXEX (ptable, nentry, nwds, fword, fbit, nbit, tarray,
npass, altbp)

tarray Must have 2*nbit words; is used as partition stack.
Running Time: The average running time is proportional to 14*N*1nN,

Radix excharge is very fast for large N (on the order of QUICK), but it
is inefficient if equal keys are present.

P> SHELL

SHELL sort (named after Donald Shell) is a diminishing increment sort.
SHELL utilizes the straight insertion sort (INSERT) on each of its
passes to order the non-adjacent elements an increment (which is
decreased on each pass) apart. Increments are chosen by the formula:

Inc= (3**k-1) /2 where the initial increment is chosen so that
inc(k + 2)>N and subsequent increments by decrementing k.

CALL SHELL (ptable, nentry, nwids, fword, nkwds, npass, altbp)

REV. A 12 - 24

PDR3621 SORT LIBRARIES

Running Time: The average running time is proportional to N**1.25 and
the maximum time is N**1.5, A complete timing analysis on the SHELL

sort is not possible, but for N<200@, it is very good. For N>200¢, the
HEAP SORT is better.

Source Files

All source files are in UFD=MSORTS on the master disk. These files
are:

HEAP Heap Sort

QUICK Median-of-Three Quicksort
SHELL Shell sort

RADXEX Radix Exchange Sort

INSERT Straight Insertion Sort
BUBBLE Bubble Sort

BNSRCH Binary Search/Table Building

The following source files reside on the master disk and are called by
the main library routines. They are not accessible by the user.

COMPAR
PERCOL
ucovp

TSTBIT

12 - 25 January 1980

Part IV

Input/Output
Library Subroutines

PDR3621 INTRODUCTION TO IOCS

SECTION 13

INTRODUCTION TO IQCS

OVERVIEW OF IOCS

I0CS (the Input/Output Control System) is a group of subroutines that
per form input/output between the Prime computer and the disks,
terminals, and peripheral devices in the system. Generally, these
functions may be grouped into three levels:

Level 1 Device-indeperdent drivers (e.g., routines to read and
write ASCIT).

Level 2 Device specific drivers that issue the correct format
for a particular device, but allow the output to be
read later by device independent drivers.

Level 3 ~ The lowest level of IOCS functions - routines to
perform raw data transters (e.g., TSMT).

I0CS relates logical and physical devices so that callers of 1I0CS
routines may be device-independent. The IOCS concept differs from the
usual concept of logical and physical device that is of significance to
the operating system.

pPhysical Devices

A physical device is a device type such as magnetic tape or a user
terminal. Each device type is identified by physical device number as
shown in table 13-1.

13 - 1 January 1980

SECTION 13 PDR3621

Table 13-1. physical Devices Numbers

Physical Device Device

User terminal

Paper-tape reader or punch

MPC card reader

Serial line printer

9-track magnetic tape ASCII/BINARY

MPC line printer

PRIMOS file system (compressed ASCII)
PRIMOS file system (uncompressed ASCIT)
Serial card reader

19 7-track magnetic tape ASCII/BINARY

11 7-track magnetic tape BCD

12 (User temminal/command file)/command input
13 9-track magnetic tape EBCDIC

14 Versatec or Gould Printer/Plotter

oAU W -

Physical Unit

A physical unit designation distinguishes between the units of a
physical device that has multiple units, such as a magnetic tape
controller. For disk (file system), the physical unit corresponds to
the file unit (FUNIT).

‘Logical Unit

The logical unit is the same as the unit number in FORTRAN READ and
WRITE statements. IOCS translates and relates the physical device and
logical wnits. The standard logical unit assigrments are listed in
Table 13-2. Table 13-3 shows logical-unit-to-physical-unit translation
and Table 13-4 lists logical-unit-to-physical-device translation.

REV. A 13 - 2

PDR3621 INTRODUCTION TO IOCS

Table 13-2. Logical Device and Numbers

Logical Unit Number Physical Device or Unit

1 User terminal

2 Paper-tape reader or punch

3 MPC card reader

4 Serial line printer

5 PRIMOS file unit 1

5 PRIMOS file unit 2

7 PRIMOS file unit 3

8 PRIMOS file unit 4

9 PRIMOS file unit 5

10 PRIMOS file unit 6

11 PRIMOS file unit 7

12 PRIMOS file unit 8

13 PRIMOS file unit 9

14 PRIMOS file unit 10

15 PRIMOS file unit 11

16 PRIMOS file unit 12

17 PRIMOS file unit 13

18 PRIMOS file unit 14

19 PRIMOS file unit 15

20 PRIMOS file unit 16

21 9-track magnetic tape unit @
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic tape unit 0
26 7-track magnetic tape unit 1
27 7-track magnetic tape unit 2
28 7-track magnetic tape unit 3

13 - 3 January 1980

SECTION 13 PDR3621

Table 13-3. Logical-Unit-To-Physical-Unit Translation

* PUTBL---LOGICAL UNIT=> PHYSICAL UNIT TRANSIATION TABLE

*

*

*

PUTBL DEC g g1 => 09
DEC @ @2 => 90
DEC 1 93 => 20
DEC 2 g4 => a0
DEC 1 35 = g1
DEC 2 g5 => 92
DEC 3 @7 = 03
DEC 4 28 => B4
DEC 5 79 => 05
DEC 6 12 => 06
DEC 7 11 => 07
DEC 8 12 => 048
DEC 9 13 => 99
DEC 10 14 => 12
DEC 11 15 = 11
DEC 12 16 => 12
DEC 13 17 => 13
DEC 14 18 => 14
DEC 15 19 => 15
DEC 14 20 => 16
DEC a 21 => 9
DEC 1 22 => 1
DEC 2 23 = 2
DEC 3 24 => 3
DEC @ 25 =.0
DEC 1 26 => 1
DEC 2 27 => 2
DEC 3 28 => 3.

PUTBLE EQU *

*

*
*

PDR3621 INTRODUCTION TO ICCS

Table 13-4. Logical-Unit-To-Physical-Device Translation

* LUTBL —-- LOGICAL UNIT => PHYSICAL DEVICE TRANSIATION TABLE

. .

*
LINK

*

LUTBL DEC 1 a1 = g1
DEC 2 a2 => 92
DEC 3 g3 => 03
DEC 4 g4 => 04
DEC 7 a5 = 97
DEC 7 g6 => 07
DEC 7 a7 = 07
DEC 7 g8 => g7
DEC 7 a9 => 47
DEC 7 19 => 07
DEC 7 11 = 07
DEC 7 12 => 07
DEC 7 13 = 97
DEC 7 14 => @7
DEC 7 15 => 07
DEC 7 16 => 97
DEC 7 17 = 97
DEC 7 18 => 07
DEC 7 19 => 07
DEC 7 20 => 07
DEC 5 21 => 95
DEC 5 22 => 05
DEC 5 23 => 05
DEC 5 24 => 05
DEC 10 25 => 10
DEC 10 26 => 10
DEC 10 27 => 10
DEC 10 28 => 10

LUTBLE EQU *
*

*
*

TEMPORARY DEVICE ASSIGNMENT

The user may assign any device by calling the ATTDEV subroutine.
ATTDEV controls mapping of logical units into physical devices and
controls the record size associated with the logical unit.
Non-shareable devices are assigned on command level with the PRIMOS
'AS' command. When a permanent device assigmment is desired the reader
should go on to the CONIOC description.

13 - 5 January 1980

SECTION 13 PDR3621

P ATTDEV

ATTDEV attaches specified devices by initializing both LUTBL,
associating logical-device to physical-device, and PUTBL, associating
the logical device to a specific unit or file of the device.

CALL ATTDEV (logical-device, physical-device, unit, buffer-size)

logical-device The device-independent logical 1/0 unit for
WRASC, RDASC, WRBIN, RDBIN, and FORTRAN READ
and WRITE statements.

physical-device The position in the device-type tables.

unit The unit for multi-unit devices (e.g., for
disk, file unit number).

buffer-size The record size associated with the 1logical
mnit. Must be as large as maximum record
size.

For the given logical-device, set the physical-device, unit, and
buffer-size in the LUTBL, PUTBL, and RSTBL so that the logical unit has
a current mapping.

Errors

If device is incorrect, ATTDEV returns the message: ATTDEV BAD UNIT
(unit-nunber) .

CONIOC

To facilitate changes to device assigmments, the tables used by IOCS
(such as LUTBL and PUTBL) are in a file named CONIOC in a UFD named
IOCS for R-mode and IOCSV for V-mode. The user should list these files
on his system for reference before making any changes.

Note that the R-mode CONIOC in the FTINLIB supports only the user
terminal, the paper-tape reader, paper-tape punch, and the PRIMOS file
system. An attempt to perform I/O to a physical-device not supported
by CONIOC will fail. The default CONIOC for V-mode supports the user
terminal and PRIMOS file system only.

Users who consider that their programs need to use devices other than
the user teminal, the disks, or paper-tape reader or punch, must refer
to the discussion of 1I0CS tables which follows. Users who wish to
charge the asigmment of logical to physical devices must also refer to
the IOCS tables.

REV. A 13 - 6

PDR3621 INTRODUCTION TO ICCS

IOCS Tables

If a computer installation requires.that user programs use devices not
suppor ted by CONIOC, the system administrator must modify the CONIOC
tables RATBL, RBTBL, WATBL, and WBTBL, and then rebuild the FORTRAN
library. File FULCON (in the UFD named IOCS for R-mode, IOCSV for
v-mode) is a version of CONIOC that contains all the available IOCS
drivers set up in the appropriate tables. The user should list this
file for reference before making any changes. The operator can use
FULCON as an example of how to set up CONIOC. The entries in the
tables that are not required can be set to zero.

The operator may also change the default logical-to-physical-device
association as given in Tables 13-1 and 13-2 by changing the IOCS
tables RATBL, TBTBL, WATBL, and CNTBL. For example, the fifth entry of
LUTBL (indicating 1logical device 5) contains 7. Entry 7, the RATBL,
contains I$AD@7, which is a driver for the PRIMOS file system. Other
nunbers indicate physical devices, as shown in Table 13-1. PUTBL is
the sub-unit table. The sub-unit table contains the individual unit or
file numbers as requird for multi-file devices. For example, LUTBL
contains the same number of logical devices 21, 22, 23, and 24,
indicating 9-track magnetic tape. PUTBL contains ¢, 1, 2, and 3 for
logical devices 21, 22, 23, and 24 indicating ulnit @, 1, 2, and 3 of
9"-track magnetic tapes.

Modifying CONIOC To Change Device Assignment

Cchanging a device assignment is a system administrator responsibility
and not a user function, Thus, the system administrator may add or
delete a device to:

RATBL Read ASCII table

RBTBL Read Binary table

WATRL Write ASCII table

WBTBL Write Binary table

CNTBL perform control function (e.g., endfile,
rewind, etc.)

Input Only Devices

Input only devices (e.g., card reader) do not need WATBL and WBTBL
entries. Furthermore, an ASCII only device (e.g., line printer) does
not need RBTBL and WBTBL entries.

Order of Entries

The order of entries in the above mentioned tables correspond to
physical device numbers defined in Table 13-1.

13 - 7 January 1980

SECTION 13

R-Mode Procedures

Step 1:
Step 2:

Step 3:

Step 4:

V-Mode Procedures

Step 1:
Step 2:

Step 3:

Step 4:

PDR3621

Attach to IOCS of Master disk A.
Edit the appropriate tables within the CONIOC.

Replace the 7 with the corresponding Subroutine
name for the desired device.

Rebuild the FORTRAN Library.

Attach to IOCSV of Master Disk A.
Edit the appropriate tables within the CONIOC.

Replace the word NULLDEVICE with the appropriate
device subroutine name.

Rebuild the FORTRAN Library.

How To Rebuild The FORTRAN Library After Modifying CONIOC

The FORTRAN Library must be rebuilt whenever CONIOC is modified. The
following explanations are R-Mode and V-Mode procedures.

R-Mode FORTRAN Library Re-building Procedures

The R-Mode FORTRAN Library must be remade after CONIOC has been

modified:
Step 1:
Step 2:
Step 3:

Step 4:

Attach to UFD = I0CS, in Master Disk A.
Run Command File C<IOCS.
Attach to UFD = LIB, in Master Disk A.

Run Command File LIBMAK.

PDR3621 INTRODUCTION TO IOCS

V-Mode FORTRAN Library Re-building Procedures

The V-Mode

modified:

Step 1:
Step 2:
Step 3:

Step 4:

FORTRAN Library must be

remade after CONIOC has been

Attach to UFD = IOCSV, in Master Disk A.

Run Command File BNIOCS, in Master Disk A.

Attach to UFD = LIB, in Master Disk A.

Run Command File C_VLIB.

January 1980

PDR3621 I-0 SUBROUTINES

SECTION 14

I-0 SUBROUTINES

This section describes input/output subroutines that reside in PRIMOS
address space, rather than user address space, but are directly
callable by the user.

P DSINIT

The DSINIT routine is called to initialize disk devices.
CALL D$INIT (pdisk)

pdisk The physical disk number to be initialized.
DSINIT initializes the disk controller and performs a seek to cylinder
9 on pdisk. D$INIT must be called prior to any RRECL or WRECL calls.
pdisk must be assigned by the PRIMOS ASSIGN command before calling this

routine. DSINIT is normally used only by system utilities such as
FIXRAT, COPY, and MAKE.

P> RRECL

Subroutine RRECL reads one disk record from a disk into a buffer in
memory. Before RRECL is called, the .disk must be assigned by the
PRIMOS ASSIGN command and DSINIT must be called to initialize the disk.

The RRECL. routine is normally used only by system utilities such as
FIXRAT, MAKE, and COPY.

CALL RRECL (LOC(buffer), length, n, ra, pdisk, altrtn)

buffer An array into which the length words from record ra
will be transferred.

length The number of words to be transferred.
n Bits 9-16 must be 1.
Bit 1 set- perform current record address check.

Bit 2 set— ignore checksum error.

14 - 1 January 1980

SECTION 14

ra

pdisk

altrtn

If an erro

as follows:

Code

ERRVEC(1)
ERRVEC (2)

ERRVEC(1)
ERRVEC(2)

r

PDR35621

Bit 3 set~ read an entire track (beginning at ra) into

a buffer 3520 words long, beginning at the buffer pointed
to by bu buffer. (This feature may be used only if

RRECL Is running under PRIMOS II and is readlng a disk
connected to the 4001/4902 controller and is a

32-sector pack.)

Bit 4 set- format the track. This bit
is only significant for storage module
disks.

A 32 bit integer (INTEGER*4) specifying a disk record
address. Legal addresses depend on the size of the disk.

Size ra Range
Floppy disk 0-3493
1.5M disk pack @-3247
3.0M disk pack 9-56495
30M disk pack #-64959
128K fixed-head disk @-255
256K fixed-head disk g-511
512K fixed-head disk 2-1023

1824K fixed-head disk 3-2047
'y

The physical disk number of the disk to be read.
pdisk numbers are the same numbers available for use in

the ASSIGN and STARTUP commands.

An integer variable in the user's program to be used
as an alternate return in case of uncorrectable disk
errors. If this argument is @ or omitted, an error
message is printed.

is encountered and control goes to altrtn, ERRVEC is set

Message Meaning
WwB On supervisor terminal: 19 times Disk hardware
a DISK RD ERROR misk ra status WRITE PROTECT

error

On user terminal:

UNRECOVERED ERROR
w8 On user terminal: 10 times Current record
CR DISK RD ERROR pdisk ra status address error

followed by
UNRECOVERED ERROR

See The System Administrator's Guide (PDR 3109) for a description of
status error codes.

REV. A

PDR3621 1-0 SUBROUTINES

Notes

Length must be between % and 448 unless pdisk is a storage
module, in which case length must be between @ and 1940. 1f
this number is not 448 and pdisk is 20-27 (diskette), a
checksum error is always generated; bypassing can be
accomplished by setting n bit 2 =1. WNo check is made for
legality of ra.

On a DISK NOT READY, RRECL does not wait for the disk to
become ready under PRIMOS TIII or PRIMOS. Under PRIMOS II,
RRECL prints a single error message and waits for the disk to
becaome ready.

On any other read error, an error message is printed at the
system terminal, followed by a seek to cylinder zero and a
reread of the record. If 10 errors occur, the message
UNRECOVERED ERROR is typed to the user or altrtn is taken.

The routine is not available through the FORTRAN library.

P> WRECL

Subroutine WRECL writes the disk record to a disk from a buffer in
menory. The arguments and rules of the WRECL call are identical to
those of RRECL except for bits 1 and 2 of n, which have no meaning on
write. For a call to write a record on the diskette, the buffer length
must be 448 words.

CALL WRECL (LOC(buffer), length, n, ra, altrtn)

The meaning of the parameters is the same as described above in RRECL,
except that the function of the command is to write rather than read
the specified records. The user of WRECL is responsible for being
careful to write only on areas of the disk that do not contain
significant user or operating system information.

An attempt to write on a write-protected disk generates the message:

DISK WT ERROR pdisk ra status
WRITE PROTECT

on the supervisor terminal and the message:

UNRECOVERED ERROR
at the user terminal. ERRVEC(1l) will contain error code WB, unless
altrtn is taken. Other write errors are retried ten times in a manner

similar to read errors (refer to RREC). This routine is not available
through the FORTRAN library.

14 - 3 January 1989

SECTION 14 PDR3621

ERROR HANDLING FOR I-O SUBROUTINES

The following discusses error handling for the 1I/0 subroutines.
Generally, error message and status information from PRIMOS I/0
subroutines, and some older PRIMOS routines, are placed in a
system-wide error vector, ERRVEC. If an error occurs, the user program
returns to PRIMOS command level and the error and/or status information
is placed in ERRVEC. Upon completion of a call to an I/0 subroutine,
status information is also placed in ERRVEC, which the user may acces
via a call to GINFO or PRERR. The contents of this vector are listed
later in this section. If the user so desires, it is possible to take
an alternate return if an error occurs. This is specified by use of
the altrtn parameter in the call to the I/0 subroutine invoked by the
user program. TIf the user specifies alternate return then the location
of the return and the action taken is entirely up to the user.

Subroutines for Error Return and Printing

Three subroutines are useful for setting or retreiving information in
ERRVEC: ERRSET, GETERR, PRERR.

P> ERRSET

ERRSET sets ERRVEC, a system vector, then takes an alternate return or
prints the message stored in ERRVEC and returns control to the system.

ERRSET has three forms:

1. CALL ERRSET (altval, altrtn)
2. CALL ERRSET (altval, altrtn, messag, num)
3. CALL ERRSET (altval, altrtn, name, messag, num)

In Form 1, altval must have value 100009 octal and altrtn specifies
where control is to pass. If altrtn is 2, the message stored in ERRVEC
is printed and control returns to the system.

Forms 2 and 3 are similar; therefore, the arguments are described
collectively as follows:

altval A two-word array that contains an error code that
replaces ERRVEC(1) and ERRVEC(2) . altval(l) must
not be equal to 1090900 octal.

altrtn If altrtn is nonzero, control goes to altrtn.

If altrtn is zero, the message stored in ERRVEC,
is printed and control returns to PRIMOS.

REV. A 14 - 4

PDR3621 I-O SUBROUTINES

name The name of a three-word array containing a six-
letter word. This name replaces ERRVEC(3),
ERRVEC (4) , and ERRVEC(5). If name is not an
argument in the call, ERRVEC(3) 1is set to 0.

messag An array of characters stored two per word. A
pointer to this messag is placed in ERRVEC(7) .

num The number of characters in messag. The value of num
replaces ERRVEC(8) .

If a message is to be printed; first, six characters starting at
ERRVEC(3) are printed at the terminal. Then the operating system
checks to determine the number of characters to be printed. This
information is contained in ERRVEC(8). The message to be printed is
pointed to by ERRVEC(7). The operating system only prints the number
of characters from the message (pointed to by ERRVEC(7)) that are
indicated in ERRVEC(8). If ERRVEC(3) is @, only the message pointed to
by ERRVEC(7) 1is printed. The message stored in ERRVEC may also be
printed by the PRERR command or the PRERR subroutine. The contents of
ERRVEC may be obtained by calling subroutine GETERR.

P> GETERR

A user obtains ERRVEC contents through a call to GETERR.
CALL GETERR (xervec, n)
GETERR moves n words from ERRVEC into xervec.

On an alternate return: On a normal return:

ERRVEC(1) Error code PRWFIL:
ERRVEC (3) Record number
ERRVEC (4) Word number
ERRVEC(2) Alternate value
Key of read/write
convenient:
ERRVEC(2) No. of words
transferred

SEARCH:
ERRVEC(2) File type

14 - 5 January 1980

SECTION 14 PDR3621

P> PRERR

PRERR prints an error message on the user's terminal.
CALL PRERR

Exanple of Use

A user wants to retain control on a request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the user
calls SEARCH and gets an alternate return. He then calls to GETERR and
determines if an error occurred other than NAME NOT FOUND. To print
the error message while maintaining program control, the user calls
PRERR.

Description of ERRVEC

ERRVEC consists of eight words; their contents are as follows:

Word Content Remarks
ERRVEC (1) Code Indicates origin of error and

nature of error.

(2) value On alternate return, this is the
value of the A-register. On normal
return, this may have special
meaning, (e.g., refer to PRWFIL
and SEARCH error codes).

(3)
(4)
(5)
(6)

ERRVEC (3), ERRVEC (4),

ERRVEC (5), and ERRVEC (6)
contain a six-character Filename
of the routine that caused the
error [ERRVEC (6) is available
for expansion of names].

XXX
XXX X

(7) Pointer To For PRIMOS supervisor
Message usage.

(8) Message Length For PRIMOS supervisor
usage.

REV. A 14 - 6

PDR3621 I-0 SUBROUTINES

PRWFIL Error Codes

PD UNIT NOT OPEN

PE PRWFIL EOF Number of words left.
(End of File) (Information is in ERRVEC(2))

PG PRWFIL EOF Number of words left.
(Beginning of (Information is in ERRVEC(2))
File)

PRWFIL Normal Return

ERRVEC (3) Record Number

ERRVEC (4) Word Number

PRWFIL Read-Convenient

ERRVEC (2) Number of words read.

SEARCH Error Codes

ERRVEC (1) Code, where code has the following values:
Code Meaning
SA SEARCH, BAD PARAMETER
SD UNIT NOT OPEN (truncate)
SD UNIT OPEN ON DELETE
SH <Filename> NOT FOUND
SI UNIT IN USE
SK UFD FULL
SL NO UFD ATTACHED
SQ SEG-DIR-ER
DJ DISK FULL

14 - 7 January 1980

SECTION 14 PDR3621

SEARCH Normal Return

ERRVEC (2) Type, where Type has the following values:
Type Meaning

Y/ Filé is sam

1 File is DaM

2 Segment Directory is SAM

3 Segment Directory is DAM

4 UFD is saM

REV. A 14 - 8

PDR3621 DEVICE INDEPENDENT DRIVERS

SECTION 15

DEVICE INDEPENDENT DRIVERS

To maintain device independence, all data transfer 1is accompl ished
through a set of device-independent drivers in IOCS. These device-
independent drivers route the I/0 request to one of the
device-dependent drivers, as shown in Table 15-1 and Figure 15-1. Each
column of this table represents an I/0 function, and each row a
specific physical device. All drivers in a single column are designed
to be compatible in terms of internal data format.

Notes to Table 15-1

1. Available in R-mode and V-mode. Listed in CONIOC and may be
called directly or via the device-independent drivers.

2. Available in R-mode only. Listed in CONIOC and may be called
directly or via the device-independent drivers.

3. Available in R-mode only. Listed in FULCON but not CONIOC. May
not be called via the device-independent drivers, unless FULCON is
assembled and loaded before the library is loaded.

4. Available in R-mode and V-mode. Listed in FULCON (FLCONV for
V-mode) . In V-mode programs, these routines may be called
directly or via the device-independent drivers if the default
FORTRAN library (PFINLB) is loaded. If the R-mode or the
non-shared V-mode library (NPFTNLB) is loaded, the routine may not
be called via the device-independent drivers unless FLCONV or
FULCON is assembled and loaded before the library is loaded. See
Section 13 for a more complete discussion of IOCS table usage.
Routine may be called by name without specific procedures.

5. Available in R-mode and V-mode. For R-mode, is listed in CONIOC
and may be called directly or via the device independent drivers.
For V-mode, routine is listed in FLCONV and may be used in same
manner as R-mode as long as the default FORTRAN library (PFTNLB)
is loaded. In R-mode, or V-mode when the non-shared (NPFINLB) is
loaded, the routine may not be called via the device-independent
drivers drivers unless FULCON (FLCONV) is assembled and loaded
before the library is loaded. See Section 13 for a more complete
discussion of IOCS table usage.

6. Available in R-mode and V-mode, but is not in CONIOC or FULCON
(FLCONV). To call the routines via the device independent
drivers, the appropriate table must be modified, assembled and
loaded before the library is loaded. See Section 13. The routine
may be called specifically without any special procedures.

15 - 1 January 1980

SECTION 15

PDR3621

Table 15-1. Relation of Device-Independent

Device

User terminal

Paper tape reader
Paper tape punch
MPC card reader
Serial line printer
9-track mag.tape
MPC line printer

PRIMOS file system

compressed ASCII/Binary

PRIMOS file system

uncompressed ASCII/Binary

Serial card reader

7-track magnetic
tape ASCII/Binary

7-track magnetic
tape BCD

Input command stream

9-track magnetic
EBCDIC

Versatec/Gould
printer/plotter

MPC card processor

RDASC

ISAAQL (6)

ISAPG2(5)

ISACO3(3)

ISAMPS (4)

ISAD@7 (1)

ISADO7 (1)
ISACA9 (3)

I$AM10 (4)

ISAM11(7)

ISAAL12(1)

ISAM13(7)

ISAC15(3)

Numbers in parentheses refer to notes

REV. A

15

WRASC

OSAAQL (1)

O$APG2 (5)
0SACH3(3)
OSAL@4 (3)
OSAMPS5 (4)

OSAL@6 (4)

OSAD@7 (1)

0$AD@8 (1)

OSAM17 (4)

0$AM11 (7)

0$AM13(7)

O$AL14(3)

O0SAC15(3)

in the text.

and Device-Dependent Drivers

RDBIN

I$BAGL (2)

I$BP@2(2)

I$BM@5(7)

1$BD@7 (1)

I$BD@7 (1)

I$BM12(7)

WRBIN

0S$BAJ1 (2)

0$BP92(2)

0$BMP5 (7)

0$BD@7 (1)

OSBD@A7(1)

0$BM10(7)

CONTRL

CsAgl (2)

C$P92(5)

CSMA5 (4)

SEARCH(1)

SEARCH(1)

CsM14 (4)

CSM11(7)

C$M13(7)

PDR3621

DEVICE INDEPENDENT DRIVERS

LINE PRINTERS

PRIMOS SERIAL PARALLEL VERSATEC/GOULD
FILE SYSTEM (CENTRONICS) (MPC) PRINTER/PLOTTER
SEARCH
O$ALO6
0$ALO4 OS$AL14
1$ADO7 {ASCII)
1$8DO7 (BINARY)
O0$ADO7
(ASCIl COMPRESSED) MAGNETIC TAPES
0$ADO8
(ASCII FIXED LENGTH RECORDS)
0$B8DO7 0$AMOS5
9.TRACK
(BINARY) _ | Csmo05 ZSUI
I1SAMO5
COMMAND FILE
/ /
! ! ISAA12
T
\ \ 0$AMI
N \ $AM13 — 9-TRACK
e - EBCDIC
T 15AMI3
CARD READERS USER
MEMORY
PARALLEL I$ACO3 ©
{(MPC)
OSAM10 7-TRACK
— 1 csmi0 ASCI]
ISAM10
ISACO9
SERIAL
0$AM11
1 csmn TEEQfK
PAPER TAPE ISAM11
1$AP02/1$BPO2
C$PO2 $ $
READER|_ =
PUNCH - 0$AP02/0$BP0O2
cspPO2 XSAMXX
TRANSFER ASCII DATA
03$BAO1 XSBMXX
C$AO1 0$AAO01 1$BAO1 TRANSFER BINARY DATA
ISAAO1
C$A01
C3A01
USER ASR
TERMINAL READER/PUNCH

Figure 15-1. Transfer of Data to and from High-Speed User Memory

15

January 1980

SECTION 15 PDR3621

7. Available in R-mode and V-mode. V-mode is listed in FLCONV but
not in CONIOC. R-mode is not in CONIOC or FULCON. In V-mode, if
the non-shared library (NPFINLB) is loaded, the routine may not be
called via the device-independent drivers unless FLCONV is
assembled and loaded before the library is loaded.

In R-mode, the appropriate table must be modified, assembled and
loaded before the library is loaded.

In both modes, the routine may be called specifically without any
special procedures.

DATA FORMATS

All first and second level device drivers are uniform in the internal
representation of data. All ASCII data, for example, has the same
internal format regardless of the physical device.

ASCIT Data

Data associated with logical I/0 functions RDASC (Read ASCII) and WRASC
(Write ASCII) are represented internally as an ASCII string in card
image format. This string is of length N words with each word
containing ASCII coded characters (N is defined in the calling sequence
to the driver).

Notes

1. The "new-line" ('212) must not be used as data because it
is the end-of-record indicator.

2. ASCII drivers should only be used to transfer printable
ASCIT characters.

Binarz Data

Binary data is transferred using RDBIN and WRBIN. The external format
varies considerably from device to device, but the internal format
remains the same. Binary data can consist of anything and is not
interpreted by the driver in any way.

The parameter buffer (buffer address) in a call to RDBIN (Read Binary)

or WRBIN (Write Binary) defines the first word of the binary data. The
word count on output must be defined by the user.

REV. A 5 - 4

PDR3621 DEVICE INDEPENDENT DRIVERS

SUBROUTINES FOR DEVICE-INDEPENDENT DRIVERS
The device-independent drivers all have the same arguments. The

arguments are:

logical device The logical device to or from which data is to
be moved. (See Table 15-1)

buffer A buffer to or from which data is moved.
count The number of words to be transferred.
altrtn An integer variable assigned the value of a

label in the user's FORTRAN program to be used

as an alternate return in case of end-of-file or

other error (3 if no alternate return wanted).
Use of altrtn

If altrtn is omitted, the name of the device dependent driver and an
error message 1is typed, then control returns to PRIMOS. If altrtn is
not omitted, user code at the specified label must call GETERR (ERRVEC,
2) to pick up the error code. If the error code is the two ASCII
characters 'IE', the error was end-fo-file. Other possible error
messages and codes are given in Appendix G. If the user wishes not to
handle a particular error type, he may CALL PRERR to print the error
message that would have been typed if altrtn were omitted, then CALL
EXIT to return control to PRIMOS. The FORTRAN statements of the form
READ (nam,num,ERR=,END=) handle end-fo-file for END= and format errors
for ERR=. Other errors are not handled.

Using altrtn of @ will not work in 64V mode - the argument must be
omitted!

P WRASC

The contents of buffer are moved from memory to the output device. The
format of the data on the output medium is device-specific. Memory is
assumed to consist of ASCII, two characters per word.

CALL WRASC (logical-device,buffer,count,altrtn)

15 - 5 January 1980

SECTION 15 PDR3621

P RDASC

One record is brought into memory. Buffer is always filled with count
ASCII characters, two per word. If the record was longer than count
words, buffer contains the first count words in the record and the next
successive read will give the first count words of the next record, not
the remaining words of the long record. If the record is 1less than
count words, the remainder of the buffer will be blank-filled.

CALL RDASC (logical-device,buffer,count,altrtn)

P> WRBIN
The number of words specified by count are written from buffer to the
specific output device. The format of the data is device-dependent.

CALL WRBIN (logical-device,buffer,count,altrtn)

P> RDBIN

A record is read into memory. Count is the maximum number of words
which will be read into buffer. 1If the record is less than count long,
then count will be set to the number of words actually read. If the
record is longer than count, only the first count words will be read.

CALL RDBIN (logical-device,buffer,count,altrtn)

P> CONTRL

Certain non-data transfer functions, such as opening a PRIMOS file for
reading, are provided by use of the CONTRL subroutine. Functions not
applicable to a particular device are ignored; therefore, functions
can be requested in a device-independent way. See Table 15-2 for
operation effects.

CALL CONTRL (key, name, logical-unit, altrtn)

REV. A 15 - 6

PDR3621 DEVICE INDEPENDENT DRIVERS

key 1 open for reading
2 open for writing
3 open for read/write
4 close
5 delete file
6 move forward 1 file mark (MT only)
7 rewind to beginning of file
8 select device and read status
(MT only) . Status is returned
in the A-Register.
-1 write file mark (MT only)
-2 backspace 1 record (MT only)
-3 backspace 1 file mark (MT only)
-4 rewind to beginning of tape
(MT only) '
name Filename (2 if none).
logical-device The logical device to be controlled.
altrtn An integer variable assigned the value

of a label to be used as an alternate
return in case the operation fails.
(omit if no alternate return wanted).

Note

For calls to CONTRL that are directed to the disk
files, key may have many other values. For disk
files, CONTRL calls SEARCH with the same arguments.
Keys other than 1-4 are not device-independent.

15 - 7 January 1989

SECTION 15 PDR3621

Table 15-2. List of Keys and Operating Effects for CONTRL

Paper Tape

Terminal Read/Punch Mag tape Disk

Key CSAll CsSP@2 CSMXX SEARCH
1 a a a a
2 q q b b
3 9 q c c
4 r r d P
5 - — h e
6 g9 q 1 Z
7 S S n £
8 - - k g
-1 -— - 1 z
-2 - — m z
-3 — — n Z
-4 - — o z

open for read

open for write

open to read and write

rewind and close file

delete file

position to beginning of file

truncate file

move forward one record

move forward 1 file mark

select device and read status

write file mark

backspace one record

backspace one file mark

rewind to BOT (beginning of tape)
close file

turn on punch and punch leader

if device was open for output, punch trailer
and turn off paper-tape punch and reader
halts allowing operator to rewind tape
type 'START' to continue

z abort ("Bad Key" Error)

RQTO S BHATQU MO QLQAT O

0

Keys other than 1 through 4 are not device independent.

REV. A 5 - 8

PDR3621 DEVICE DEPENDENT DRIVERS

SECTION 16

DEVICE DEPENDENT DRIVERS

This set of device-dependent subroutines provides a consistent calling
sequence for various non-data-transfer functions of several devices.
Arguments and functions not applicable to a particular device are
ignored.

SUBROUTINE CALLING SEQUENCE

The calling sequence contains all the information needed by the disk
control subroutine (SEARCH), and many of the parameters are ignored by
the non-disk control subroutines.

CALL xxxxx (key, name, physical-unit, [altrtn])

key Points to a value that defines the desired function
(see Table 15-2 in Section 15).

name Points to a 1-6 character file name(or points to =zero
if no file name applicable). Where name 1is not
significant, it is usually specified as 0.

physical Points to the physical device sub-unit number.

—-unit If the device has only one unit, its sub-unit number is
1. If it is a multiple unit device (cassette, mag
tape, disk), sub-units 1-8 may be specified (on disk, a
sub-unit is actually processed as file 1-8).

altrtn Specifies the transfer location if an error condition
is detected. This parameter is optional, and if not
present, error returns will be made through the normal
return (with the A register set to non-zero).

Subroutine Name ('xxxxxx') Definitions:

XXXxxx = C$AQ1 user terminal
Cc$P@2 paper—tape reader or punch
CSMd5 9-track magnetic tape
C$M10 7-track magnetic tape
ASCII drivers read ASCII data format (units 0-7)
CsM1l 7-track magnetic tape

ASCII drivers read BCD data format (units 0-7)
SEARCH PRIMOS disk files (units 1-126)

16 - 1 January 1989

PDR3621 DISK SUBROUTINES

SECTION 17

DISK SUBROUTINES
This section defines the subroutines for Disk I/O operations.

SUBROUTINE DESCRIPTION

P 0$ADa7

0$AD@7 writes ASCII from buffer onto a disk file open on unit.

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced with the character DCl (221
octal) followed by a character count. Trailing blanks are removed and

the end of record indicated by the new line character, or new line
followed by null.

CALL 0$AD@7 (logical-unit,buffer,count,altrtn)

P 132D07

I$SADO7 reads information from the disk open on unit, 1in compressed
ASCII format.

CALL 1$ADA7 (logical-unit,buffer,count,altrtn)

P> 0$8DE7

0$8DJ7 writes binary information to the file open on unit.

CALL 0$BD@7 (logical-unit,buffer,count,altrtn)

p 158DO7

I$BDP7 reads binary information from the file open on unit.

CALL ISBD@7 (logical—unit,buffer,count,altrtn)

17 - 1 January 1980

SECTION 17 PDR3621

P 03apes

OSADP8 writes ASCII from buffer onto disk upon file open on unit.
Information is written on the disk in fixed length records. Each
record consists of count words followed by a word containing NL and
NULL (105000 octal) . This driver is not in the standard CONIOC
supplied by Prime. It is useful in conjunction with POSFIL for those
users interested in using direct access files.

CALL O$AD@3 (unit,buffer,count,altrtn)

N

REV. A 7 -

PDR3621 USER TERMINAL SUBROUTINES

SECTION 18
USER TERMINAL SUBROUTINES
This section defines subroutines used to transfer data to and from a
user terminal or Reader/Punch (ASR). Subroutines which have special
options or error handling features are described in detail.
CALLING SEQUENCE

CALL lO‘S‘A‘zyy (sub-unit,buffer,count,altrtn)
I B

I Input

0] Output

A ASCII

B Binary

A One-letter mnemonic giving general device class.
vy Two digit device types.

sub-unit Specifies unit for multi-unit device types.
This parameter is ignored for single-unit
device types.

buffer Memory buffer for data.

count word count for transfer. Details are the
same as for RDASC, RDBIN, WRASC, and WRBIN.

The device-dependent IOCS drivers are shown in Table 15-1.

18 - 1 January 1980

SECTION 13

PDR3621

KEYBOARD TERMINALS AND PAPER TAPE SUBROUTINES

User Terminal or
ASR Punch

Keyboard or
ASR Reader

HS Paper Tape
Reader

HS Paper Tape
Punch

RAW DATA MOVERS

HS Paper Tape
Reader

REV. A

0sAAQ1

ISAAQL

ISAPG2

0$BP@2

P1IB

Outputs ASCII to the user terminal or
ASR punch. Calls the low level driver
TNOU.

Errors: none,

Inputs ASCII from user terminal or ASR
reader. The kill and erase characters
(question mark and quote mark) may
modify the input line, as with the
PRIMOS III command line.

The characters NUL, DEL, DLE, DC2, DCs3,
and DC4 are ignored. The character

ETX ('203), indicates end of file and is
used in reading tapes through the user
terminal. Note that I$AAJ] is not the
entry for the user terminal in the
Prime-supplied CONIOC. Put I$AAG] in
the table to read paper tapes with user
programs. The editor should be used to
read in the tape, then the user may read
the file from the disk.

Errors: none

Inputs ASCII from the high-speed paper-
tape reader. The kill and erase
characters (question mark and quote)
modify the input similar to PRIMOS III
command line. NUL, DEL, DLE, DC2, DC3,
and DC4 are ignored. The character

ETX ('203) indicates end of file.

Calls: P1IN, ERRSET
Error Message: IS$APJ1 EOF (IE)

Outputs binary data to the high-speed
paper—tape punch. The format of the

paper tape can be found in a listing

of the driver.

Input one character from the high-speed
paper tape reader to the A Register.
(This routine also available in

in V-mode) .

18 - 2

PDR3621 USER TERMINAL SUBROUTINES

HS Paper Tape P10B Output one character to the high-speed
Punch paper tape punch from the A Register.
(This routine also available
in V-mode) .

HS Paper /Tape P10OU Output one character to the high-speed
Punch paper tape punch. Zero the high order
bit before punching. No special action
is taken on carriage returns or line
feeds. (This routine also available
in V-mode.)

CALL P1OU (char)

ASR Reader P1IN Input one character from paper tape,
set high order bit, ignore line feeds,
send a line feed when carriage return
is read.

User Terminal TNOU Outputs count characters to the user
terminal followed by the LINE FEED,
CARRIAGE RETURN. Buffer is expected to
contain 2 characters per word.

CALL TNOU (buffer, count)

User Terminal TNOUA Outputs Count characters to the user
terminal.

CALL TNOUA (buffer, count)

User Terminal TOVFD$ Outputs the 16-bit integer num,
without any spaces, to the terminal
e.g. "123" or "-17".

CALL TOVFDS$ (num)

Keyboard to T1IB Reads one character from the user

A Register terminal into the A Register.

A Register to T10B Writes one character from the A Register
User Terminal to the user terminal.

18 - 3 January 1980

SECTION 18 PDR3621

User Terminal to T1IN T1IN reads one character from the user

Memory terminal. If a .CR. (CARRIAGE RETURN)
is read, .NL. (NEW LINE) is output and
char is set to .NL. If an .NL. is read,

a .CR. is output and char is set to
.NL.

If .XOF. is read, carriage return and
new line are expected to follow. TI1IN
ignores the ,XOF., reads the .CR. and
.LF., then sets char to .NL. The .XOF.
characters are expected on paper tapes
to be read on the user terminal paper-
tape reader.

CALL T1IN (char)

To User Terminal T10U Outputs char to the user terminal. If
char is .NL., the characters .CR.
and .NL. are output to the user
terminal.

CALL T10U (char)

For all numeric input routines, the number may be preceeded by a "-" to
indicate that it is negative; but must not be a "+". Numbers may be
terminated by a RETURN or a space.

User Terminal TIDEC Inputs decimal number.
decimal Input
CALL TIDEC (variable)

User Terminal TIOCT Inputs an octal number.
Octal Input
CALL TIOCT (variable)

User Terminal TTHEX Inputs a hexadecimal number.
Hexadecimal Input
CALL TIHEX (variable)

Memory to User TODEC Outputs a six-character signed
Terminal (decimal decimal number
output)

CALL TODEC (variable)
User Terminal TOOCT Qutputs a six-character unsigned
Hex Output Octal number.

CALL TOOCT (variable)

REV. A 18 - 4

PDR3621 USER TERMINAL SUBROUTINES

Carriage Return/ TOHEX Outputs a four-character unsigned
Line feed to hexadecimal number.

Hexadecimal

data format

CALL TOHEX (variable)

Memory to User TONL Outputs carriage return and
Terminal with line feed
carriage return

CALL TONL

A "?" will be typed if number is improper and more input will then be
accepted. A NULL input (space or return) will return a 9.

18 - 5 January 1980

PDR3621 PERIPHERAL DEVICES

SECTION 19

PERIPHERAL DEVICES

This section defines subroutines that control line printers,
printers/plotters, card readers and magnetic tapes. These subroutines
are used for both formatted and raw data.

LINE PRINTER SUBROUTINES

I0CS contains subroutines to control three types of 1line printers.
They are: O$ALO4 to print on a Centronics Line Printer connected to
the SOC; O0S$AL@6 to print on a parallel interface line printer
connected to the MEC Line Printer Controller; and OS$AL14 to print on a
Versatec Printer/Plotter connected to a Versatec-SOC Controller.
OSAL14 also prints on a Gould Printer/Plotter connected to a Gould-SOC
Controller. All three subroutines have the same action on the
appropriate device; therefore only one description is given. (xx
below is 94, 06, or 14).

Subroutine Calling Sequence

CALL OS$SALxx (physical—unit,buffer,count,altrtn)

physical-unit Line printer unit nunber.
@ = PRO, first controller
1 = PR1, first controller
2 = PR2, second controller
3 = PR3, second controller
buffer The name of the buffer where the text to be

printed resides. Print text is placed in the
buffer, two characters per word.

count The number of 16-bit words of data to be printed.
altrtn Never taken and is an optional calling sequence
parameter.

19 - 1 January 1980

SECTION 19 PDR3621

Printer Control

The action taken by O0$ALxx depends on the data in the buffer, and the
current vertical control mode. Certain characters within the data
control the manner in which the data is printed. ‘These characters
(codes) are described in the following paragraphs.

Vertical Control Modes

0%ALxx has three vertical control modes:

e FORTRAN forms control

e header line and paginate control

¢ no control
O%ALxx checks the first character in the data buffer for an ASCII .SQOM.
character (991). A .SOM. character signifies a change in the control
mode. If the first character in the buffer is not an .SOM., the line

is printed according to the current control mode. The default mode is
FORTRAN forms control.

FORTRAN Forms Control Mode

The FORTRAN forms control mode corresponds to ANSI FORTRAN forms
control conventions. The first character in the buffer is not printed;
instead, it is used for forms control. The character interpretations
are as follows:

Character Interpretation
) Skip a line.
1 Eject to top of next page.
+ Overprint last line.

- Skip two lines.
Any character

other than No action.
@r 1r +, -

REV. A 19 - 2

PDR3621 PERIPHERAL DEVICES

Header Line and Paginate Control Mode

In Header Line and Paginate Mode, O$ALxx causes a header line to be
printed, followed by three blank lines followed by 38 text lines. The
header line consists of up to 43 characters followed by a page count
that is generated by OSALXX when printing in this mode.

No Control Mode

In No Control Mode, no actions are taken by O$ALxx. A line containing
an ACIT form-feed (FF, :214) character causes the line preceding it to
print, followed by a page eject. Carriage return (CR, :215) will cause
the line preceding it to print with no spacing. Line feed (LF, :212)
will cause the line preceding it to print followed by a 1line spacing
operation. Any characters following a CR, LF, or FF are ignored.

Change of Mode Commands

Any data buffer beginning with a .SQM. character causes OSALXX to take
some action to change control mode. The control mode change is
determined by the character following the .SOM. The character
interpretations are:

Character Interpretation
200 Enter No Control Mode.
291 Enter FORTRAN Control
Mode.
236 New Header Line - DO NOT

reset page count.

B¥37 Enter new page size
specified by the 16-bit
number contained in the
next computer word.

All other Enter Header Control Mode
characters.

19 - 3 January 1980

SECTION 19 PDR3621

Early Buffer Termination

A LINE FEED (LF, :212) character terminates the print line in the
buffer, regardless of the count parameter.

Errors: none

Load information: O$AL@4 calls no other subroutines. OSAL@6 calls
TSLMPC and OSALI4 calls TSVG.

P TSIMEC

The TSLMPC routine is the raw data mover that moves information from
the user to one line on the MPC line printer.

TSLMPC is called by the IOCS line printer driver O$AL@6. The user
normally prints lines under program control using either FORTRAN WRITE
statement or a call O$AL@6. However, it is possible to call TSLMPC
directly.

CALL TSLMPC (logical-unit,buffer,count,instr ,status)
logical-unit Line Printer unit (currently ignored) .
buffer A pointer to a buffer to hold information to be
printed on the 1line printer. Information is
expected to be packed two characters per word.

count Number of words to print on the current line.

instr The instruction required to be sent to the line
printer. Valid instructions are:

Instruction (Octal) Meaning
1000008 Read status
40000 Print a line
20012 Skip a line
20014 Skip to top of page
20100-20113 Skip to tape channel 9-11
20120-20137 Skip from 1 to 15 lines

REV. A 19 - 4

PDR3621 PERIPHERAL DEVICES

status A three-word vector that contains device code,
status of printer, and a space. Possible printer
status is as follows:

Octal value Condition
200 ON-LINE
100 Not Busy

Under PRIMOS, line printer output is buffered. If TSIMPC is called and
the buffer is full, the user is placed in output-wait state. Later,
when the buffer is no longer full, the user is rescheduled, and the
TSIMPC call is retried. The user may issue a status request call to
check if the buffer is full. If the buffer is full, then the not-busy
status is reset. Using this feature, a user program may check that the
buffer is not full, then output on line, or do another computation if
the buffer is full.

Under PRIMOS II, output is not buffered, and control does not return to
the user until printing is complete.

P SrooL$

A user program can insert a file into the spool directory by calling
the SPOOLS subroutine from the applications program. This subroutine
SPOOLS is in the SPOOL$ library (R-mode) and VSPOOS$ library (V-mode) .
CALL SPOOL$ (key, name, namlen, info, buffer, buflen, code)

key 1 copy named file into queue.
2 open file on unit info(2) for writing.

name File to be copied (key=l).
Name to appear on banner (key=2).

namlen Length of name, in characters (1-32).
info Information array, 12 elements, as follows:

1 temp file unit 1 (may range from 1-126,
Rev. 17 and above)

2 temp file unit 2 (may range from 1-126,
Rev. 17 and above)

3 print option word (see below)

19 - 5 January 1980

SECTION 19

buf fer

buflen

code

PDR3621

4-6 form type (6 ASCII characters)

7 plot raster scan size (plot only)
this represents #words/raster scan

8-19 spool filename (returned)

11 deferred print time (valid only if defer
bit specified in option word)

12 file size, returned if key 1.

Scratch buffer - this is used to set up control
info and to copy the file to the spool queue
(key=1) - it must be at least 4@ words long.
Copy time is inversely proportional to buffer
size. Nominal size is between 300-2000 words.
[ength of buffer.

Return code (non-zero if file system error).

word 3 of the information array (print option word) 1is defined
follows:

REV.

Bit

A

Meaning
FORTRAN format control (col 1 contains
carriage ctl info)
Expand compressed listing
Generate line #'s at left margin
Suppress header page
Don't eject page when done
No format control
Plot file - info (7) must be specified

Defer printing to specified time-info(11l)
must be valid

Print on local printer only

as

PDR3621 PERIPHERAL DEVICES

PRINTER/PLOTTERS

The Printer/Plotter subroutines are wused to drive and control a
Versatec and Gould Printer/Plotter.

P TG

TSVG exists in two versions. One version interfaces with a Versatec
printer/plotter and the other interfaces with a Gould printer/plotter.

This version of T$VG moves raw data from a buffer and prints the data
on the Versatec printer, connected to the Prime computer via a
controller designed for use with the Versatec printer/plotter.

CALL TSVG (unit,LOC(buffer) ,nwids,instruction,status)

unit Currently always @, since the controller
supports only one device.

LOC (buffer) Address of user's buffer.

nwds The number of words in the buffer, currently the
maximum is 180.

instruction A number from @ to 18 that specifies an action
that the device is to take. These instructions
are described in detail in the following

paragraphs.

status A two-word status array. Device status is
returned to status(2). status is returned only
on a status request instruction.

The interpretation of the bits that are set in status(2) are as
follows:

Bit Meaning
1 Always zero.
2 If=1, then paper is low.
3 If=0, then printer/plotter is READY.

If=1, printer/plotter is NOT READY.

19 - 7 January 1980

SHCTION

19 PDR3621

4 I1f=0, printer/plotter is on line
otherwise, printer/plotter off line.
5-16 Always zero.

Printer/Plotter Instructions

Instructions to the printer/plotter are specified in the instruction
field of the calling sequence. They are a number 1 to 19 interpreted
as follows:

0]

10

REV. A

Return printer/plotter status in status(2). The contents of
the status vector, status, are described in the calling
sequence description. Under PRIMOS III, T$VG waits until the
output buffer is empty before returning status. Therefore,
status requests should be used sparingly.

End-of-transmission. This instruction initiates a print cycle
and a paper advance. If the paper on the printer/plotter is
installed in roll form, this roll is advanced eight inches; if
the paper is fanfolded, it is spaced to the top of the next
form.

Reset., The reset instruction clears the buffer and initializes
all legic in the printer/plotter.

Form feed. The form feed initiates a print cycle and a paper
advance.

If the paper on the printer/plotter is installed in roll form,
the paper 1is advanced 2-1/2 inches; If the paper is fanfolded
it is advanced to the top of the next form.

Clear buffer.

Reserved.

Print the contents of buffer (Print Mode).

Make a Plot, using the contents of buffer (Plot Mode).
Simultaneous print/plot PRINT (SPP Mode).

Simultaneous print/plot PLOT (SPP Mode).

Return status of output queue in status(2). If there is no

room for the number of words specified by the parameter nwds,

set status(2) to zero. If there is room for the number of
words specified by nwds, set status(2) to a non zero value.

PDR3621 PERIPHERAL DEVICES

Print Mode: The Versatec Printer/Plotter may be operated as if it were
a line printer. The printer/plotter accepts 6- or 8-bit ASCII code.
Control commands are transmitted by using the instructions described
for the calling sequence or by transmitting the following ASCII control
codes:

ASCII Code (Octal) Meaning
204 End of transmission.
914 Form Feed.
@12 Line Feed. The transmission of a Line

Feed code causes a print cycle and a paper
advance of one line, except when the 912
code follows either the printing of a full
buffer or a Carriage Return (015).

215 Carriage Return. A Carriage Return causes
a print cycle and a paper advance of one
line, provided the buffer has at least one
character entered and provided the buffer
is not full.

When the 8-bit (128-character) ASCII character set is used, there are
no ASCII control codes.

Plot Mode: The printer/plotter performs plot operations ‘that are
standard to all printer/plotter devices connected via the contraller to
the Prime computer. Plot data consists of 8-bit, binary, unwgighted
bytes. Each dot that is plotted at the printer/plotter corresponds to
a single bit in the buffer. 1If bit is 1, a black dot is plotted at the
point corresponding to the bit position in the buffer. Bit 1 of a
memory word (2 bytes) is the most significant (i.e., leftmost) bit, and
Bit 16 of memory word is the least significant (i.e., rightmost) bit.

Simultaneous Print/Plot (SPP) Mode: SPP mode operation permits direct
overlay of character data which 1is generated by an internal matrix
character generator, with plotting data, which is generated on a
bit-to-dot correspondence. The SPP mode is an optional feature on some
printer/plotters. The SPP process makes use of both a print buffer and
a plot buffer, both specified in calls to T$VG. For example, using the
Printer/Plotter Model 1100A in SPP mode, the SPP operation consists of
first, placing up to 132 ASCII characters in the PRINT buffer
(Instruction= 8); and then placing 128 bytes of plot data in the
buffer (Instruction=9) ten times. When the plot data is transmitted to
the printer/plotter, the plot buffer is scanned, and a single row of
dots, corresponding to the binary content of the plot buffer, is
printed. During the scanning process, the print buffer 1is also
scanned. The corresponding dots of each print character are OR'd with
the plot buffer output; thus an overlay is formed consisting of the

19 - 9 January 1980

SECTION 19 PDR3621

printed and plotted data. Since the vertical height of an ASCII
character for the Model 110@A Printer/Plotter is ten raster scans, the
user must make ten calls to plot data before the print buffer is
completely printed and ready for new data. Table 19-1 shows the number
of raster scans per print line for the various models of Versatec
Printer/Plotter optionally available with Prime computer
configurations,

Caution

For SPP mode, do not attempt to transfer more than the maximum
nunber of characters to the print buffer.

SPP mode requires a series of calls to the T$VG driver. For
instance, in the example given, each print instruction was
followed by ten plot instructions. Do not interrupt such a
sequence with other instructions, because printer/plotter
output will be incorrect.

Table 19-1. Maximum Buffer Length for Versatec Printer/Plotters.

PLOT PRINT
No. Scans/Print Lines

Model Bits Bytes Chars. 64 Chars. 96 or 128 Chars.

22@8a 560 70 80 (70 in spp) 8 10
1100a 1024 128 132 10 12
1600a 1600 200 100 20 20
2000a 1856 232 232 10 12
2160a 2880 360 180 20 20
P TG

This version of T$VG moves raw data from a buffer and prints the data
on the Gould Printer/Plotter, connected to the Prime Computer via a
controller designed for use with the Gould Printer/Plotter.

CALL TSVG (unit,LOC(buffer) ,words,inst,status)

unit @ - controller supports one device.

REV. A 19 - 19

PDR3621 PERIPHERAL DEVICES

LOC (buffer) Address of user's buffer.

words Number of words for output (maximum is 180).
inst @ - 10 (described below).
inst Meaning

@ Return device status in status(2). Status is
returned only on a status request instruction. Under
PRIMOS III, TSVG waits until buffer is empty, then
returns status. Therefore, status requests should
be done sparingly.

status(l) always @

status(2) bits: 1 1 for Gould
2 paper low if =1
3 Device ready if = ¢
4 Device on-line if =40

5-15 Always zero
16 Device was deselected during
last operation. This indicates
an error condition only in high
speed graphics mode.

1 End-of transmission. This initiates paper advance of
2.56 inches.

2 Not used.

3 Form feed. This initiates a paper advance 1.28
inches of roll mode or to top of next page if fan-fold
mode.

4 Not used.

5 Cut paper.

6 Print words words from buffer.

7 Plot words words from buffer.

8 Set high-speed plot mode and plot words words
(PRIMOS II only).

9 Reset high-speed plot mode and plot words words
(PRIMOS II only).

19 - 11 January 1980

SHCTION 19 PDR3621

13 Return status of output queue in status(2). Set
status(2) to zero if no room for N words. Otherwise
set it equal to zero.

status Two-word status array.

Note

For instructions 6-7, the driver automatically initiates the
necessary write cycles to print or plot the outputted data.

Print Mode: The Gould accepts ASCII 7 or 8 level code. Control
commands may be transmitted by using the above instructions. A bad
code prints as solid black square.

Plot Mode: Plot operations are applicable to all matrix plotters and
printer/plotters. Plot data consists of 8-bit, binary, unweighted
bytes. For the number of bits per a complete raster scan, see the
maximum buffer length list below. Each dot corresponds to a single bit
in the buffer. 1If a bit is a '1', a black dot is plotted at the point
corresponding to the bit position in the buffer. Memory bit 91 is the
MSB, bit 15 is the LSB.

High-Speed Plot Mbde: High-Speed Plot Mode is available only under
PRIMOS II. A user must call T$VG to set high- speed plot mode and plot
a line. He then must call TS$VG every 90 milliseconds or less to plot a
raster line (inst = 8) or gaps will appear in his plot. The last two
lines of the plot must be generated with calls to T$VG with
instructions of 9 and 7, respectively. These two special calls are
required so the paper will decelerate and stop following the last
lines. A user may check to see if he is calling TSVG to plot often
enough by calling TSVG to get status after every plot call. Bit 16 of
status(2) will be on if the user has failed to give the previous two
plot requests closely enough in time. Bit 16 should be ignored except
for checking in high-speed plot modes.

Maximum Buffer Length

Plot Print
Model Bits Bytes Characters
4821 60o0 75 85
4822 800 100 114
5000 1924 128 132
5100 2048 256 264

REV. A 19 - 12

PDR3621 PERIPHERAL DEVICES

P 0sAL14

OSAL14 provides the IOCS interface to the Versatec Printer.
CALL 0%AL14 (buffer,count,altrtn)

buffer Buffer to/from which data are moved.

count Number of words to be transferred.

altrtn Never taken and is an optional calling sequence.

The action taken by 0$AL14 depends upon the data in the buffer and the
current vertical control mode.

0SAL14 has three vertical control modes:
1. FORTRAN forms control
2. Header line and paginate control
3. No control

The default mode is FORTRAN forms control. OS$AL14 checks the first
character in the data buffer for an ASCII .SOM. (918). An .SOM.
character signifies a change in the control mode. If not an .SOM. the
line is printed according to the current control mode. Mode
descriptions follow:

FORTRAN Forms Control: This mode of O$AL14 honors ANSI FORTRAN forms
control conventions, The first character in a buffer is never printed
but is used for forms control. The character interpretations are:

7 Skip 1 line
1 Eject to top of next page
+ Print over last line (Not currently honored)

Other No action

Header line and paginate: 1In this mode OSAL14 permits a header 1line
followed by three blank lines, followed by 56 text lines. The header
line is 42 characters followed by a page count which is kept
automatically by O$AL14 when in this mode.

19 - 13 January 1980

SECTION 19

PDR3621

No Control: In this mode no automatic actions are taken except that
any line containing a form-feed character will cause a page eject with

no further action.

Any data buffer beginning with an .SOM.
by 0$ALl4. The change is determined by the character

.SM.. The character interpretations follow:

000 Enter non-control mode
291 Enter FORTRAN control mode
@36 New header line but do not reset page count

All others Enter header control mode

When entering header

will cause an internal change
following the

control mode the characters following the .SM.
are stored internally in O$AL14 for use as the header line.

All change of mode commands cause a page eject before any Efurther

action.

CARD PROCESSING SUBROUTINES

CARD READER subroutines drive and control serial and parallel interface

type card readers.

p 1%ace3

Reads ASCII input from the parallel interface Card Reader.

CALL ISACO3 (unit,buffer,word-count,altrtn)

unit

buffer

word count

REV. A

Logical device to or from which data is to
moved.

@ = CR@, first controller

1 = CR1, second controller

Buffer which receives data from card reader.

Number of words to be transferred.

19 - 14

be

PDR3621 PERIPHERAL DEVICES

altrtn Alternate return in case of end of file or other
error.

Card Format: Cards are expected to be in @29 format. '026' cards may
be read by preceding the deck by a.card containing '$6' in columns 1
and 2. The conversion done for '026' cards is shown below.

Card Code Converted to
(026 Symbol) (Character)

4 =
% (
<)
Q '
& +

The driver can be switched back to '929' format by '$9' in columns 1
and 2.

P 15ACE9

The subroutine IS$SAC@9 reads ASCII input from a serial interface card
reader.

CALL ISAC@9 (unit,buffer-name,word-count,altrtn)

Ioad Information: ISAC@9 calls FSAT to fetch the arguments.

19 - 15 January 1980

SECTION 19 PDR3621

Note

ISACA9 translates card codes to characters in memory as
follows: :

Card Code Converted to
(826 Symbol) (Character)

=
3 (
<)
+ &
& +
Q '

Card codes read are either 926 or ¢929. The last card in the
deck is .Q.

The ERRVEC(3) may have the following octal values. Combinations are
possible.

209 on line
49 1illegal ASCII
2@ DMx overrun
4 hopper empty
2 motion check

1 read check

P 13AC15

Reads and interprets (prints) a card from a parallel interface card
reader.

CALL ISAC15(unit,buffer ,word-count,altrtn)

REV. A 19 - 16

PDR3621 PERIPHERAL DEVICES

unit‘ Card reader unit.
g = CR@, first controller

1 = CR1, second controller
buffer Buffer into which card is to be read.
word—-count Number of words to be read.
altrtn Alternate return in case of error.

P TSCMEC

The TSCMPC routine is the raw data mover that moves a card of
information from the MPC card reader to the user's space.

CALL TS$CMEC (unit,LOC (buffer) ,word-count,instruction,status)

TS$CMPC is called by the IOCS card reader driver ISACA3. The user
normally reads cards under program control using either FORTRAN READ
statement or a call to ISACA3. However, it is possible to call TSCMEC
directly.

unit Card reader number.

LOC(buffer) A pointer to a buffer to hold a card of
information read from the card reader.

word-count The number of words to be read from the current
card.

instruction The instruction required to be sent to the card

reader. Valid instructions are:
Instruction Meaning

100009 (octal)
40000 (octal)

Reads status

Read card in ASCII
format

Read card in
Binary format

60008 (octal)

status A three-word vector.

19 - 17 January 1980

SECTION 19 PDR3621

status(1l) Not used.
status(2) Card reader status.
Octal Value Condition
200 ON-LINE
40 Illegal ASCII
20 DMX overrun
4 Hopper Empty
2 Motion Check
1 Read Check
status(3) Number of words moved.
Example

40 DO 70 I =1, 23

50 CALL T$CMPC (@, CARDS, 40, :40000, STATUS)
60 CALL OS....

70 CONTINUE

The above example reads an 8@-character card of ASCII data and places
the contents in CARDS.

Card Reading Operation

Under PRIMOS III and PRIMOS, card reader input is buffered. The user
must insert the card deck in the card reader and give the command:

ASSIGN CRn
n =1 for PRIMOS III, @ or 1 for PRIMOS

About ten cards are read to fill the input buffer (this is called
read—-ahead and serves to buffer input). The user then starts the
program that uses the card reader by calling subroutines TSCMPC, TS$SPMPC
(at system level) or I$AC@3, ISAC15 (FORTRAN library). If TSCMEC is
called and the buffer is empty, the user will wait until more data is
read.

The user may issue a status request call to check if the input buffer
is empty. If the buffer is empty, the ON-LINE status bit (bit 9 in the
status word) is reset.

REV. A 19 - 18

PDR3621 PERIPHERAL DEVICES

Note

Under PRIMOS II, card reader input is not buffered and the card
reader is never OFF-LINE.

CARD PUNCH subroutines drive and control parallel interface type card
punches. ‘

P o0sace3
Writes (punches) output to the parallel interface card punch.
CALL OSAC@3 (unit ,buffer,word-count,altrtn)
unit Card punch unit number.
@ = CR@, first controller
1 = CR1, second controller
buffer Buffer containing line to be punched.

word-count Number of words to be punched.

altrtn Al ternate return in case of error.

p o0sacls

Writes (punches) output to the parallel interface card punch and
interprets the line (prints on card).

CALL 0OSAC15(unit,buffer ,word-count,altrtn)

unit Card punch unit number.
g = CR@, first controller
1 = CR1, second controller
buffer Buffer containing line to be punched.

word-count Number of words to be punched.

altrtn Alternate return in case of error.

19 - 19 January 1980

SECTION 19 PDR3621

P TSPMEC

T$PMPC is the raw data mover for the card punch. It is called by
OSAC@3, 0S$AC15 and ISAC1S5, the card punch drivers. These routines may
be called by the user.
CALL TSPMPC (unit, LOC(buffer), word count, inst, status)

unit Card punch unit.

LOC (buffer) A pointer to a buffer that holds data to be punched.

In ASCII mode, data are packed two characters per
word,

In binary mode, card punches are mapped into a 16-bit
word as follows:

bit punch row

14 not used

5 12
6 11
7-16 @-9

word count Number of words to punch on a card from buffer.
inst Instruction required to be sent to card punch.

Instructions are:

Bit Set Instruction Meaning
1 :100000 Read status
3 : 20000 Process in binary mode
4 210000 Feed a card
5 24000 Read a card
6 22000 Punch a card
7 : 1000 Print a card
8 + 400 Stack a card

REV. A 19 - 20

PDR3621 PERIPHERAL DEVICES

To punch a card, instruction would be an octal :12409 meaning, for

example:
1. Feed a card
2. Punch a card and

3. Stack a card

status Three word status vector:
status(l) Not used
status(2) Device status
value condition
: 200 On-line
:40 Illegal code
210 Hardware error
:4 Operator intervention required

status(3)

MAGNETIC TAPES

Number of words read

The magnetic tape subroutines drive and control 7-and 9-track magnetic
tape devices. The subroutine names are:

9-Track

C$M@5
C$M13
0$AM@5
ISAMP 5
OSBM@5
I$BM@5
0$AM13
1$AM13

7-Track

CSM19

Cc$M11

0S$SAM109
I1$AM1Q
O$BM19
ISBM1Q
0$AM11
I$AM11

Control for 9-track ASCII and Binary
Control for 9-track EBCDIC

Write ASCII

Read ASCII

Write binary

Read binary

Write EBCDIC

Read EBCDIC

Control for 7-track ASCII and Binary
Control for 7-track BCD

Write ASCII

Read ASCII

Write binary

Read binary

Write BCD

Read BCD

19 - 21 January 1980

SECTION 19 PIR3621

Restrictions

Currently, PRIMOS supports record sizes up to 6K words for 9-track
tapes and up to 4.5K words for 7-track tapes. Primos III does not
support record sizes larger that 512 words for 9-track ASCII, EBCDIC,
or binary records. There 1is no restriction under PRIMOS II. PRIMOS
III does not support record sizes larger than 340 words for 7-track
ASCII, BCD, or binary records. Under PRIMOS II, larger records may be
used only if the user declares a labeled common area in his own program
called MTBUF7. The common area must have an array as its first entry
which is used as an expansion buffer when reading or writing 7-track
magnetic tapes. The array must be 1.5 times as large as the biggest
record the user intends to use. Alternately, the subroutine MIBUF7 in
UFD IOCS can be modified appropriately and the FORTRAN library rebuilt.

P CsMo5, CSM1@, CSM1Ll, C$M13

Since the subroutines are similar, they are described in groups.

CSMP5
CSM19
caLL)CcsMll (key, name, unit, altrtn)
CSM13
key -4 for Rewind to BOT (Beginning of Tape)
-3 for Backspace one file mark
-2 for Backspace one record
-1 for Write file mark
1 for Open to read
2 for Open to write
3 for Open to read/write
4 for Close (Write file mark and rewind)
5 for Move forward one record
6 for Move forward one file mark
7 for Rewind to BOF (Beginning of File)
8 for Select device and read status.
name Not applicable (may be anything).
unit @, 1, 2, or 3 (depending on which device is

ASSIGNed) .

altrtn The alternate return. If altrtn = g, it
means that an alternhate return is not desired.

REV. A 19 - 22

PDR3621 PERIPHERAL DEVICES

These routines call TSMT and ERRSET.

Errors:

Message Meaning ERRVEC (1) ERRVEC(2)
CSMxx EOF End-of-file IE 1
CSMxx EOT End-of-tape ID 2
CéMxx MINO Magtape not operational ID 3
CSMxx PERR Parity error ID 4
CSMxx HERR Hardware error ID 5
C$Mxx BAIDC Bad call ID 6

All the other subroutines have the same calling sequence.

CALL subroutine (unit, buffer, n, altrtn)

unit thit number = @, 1, 2, or 3.
buf fer Buffer.
n Number or words to be read or written.

If N = g, then the subroutine is to
write a file mark.

altrtn Is the alternate return. If altrtn = @,
it means that alternate returns are not
desired.

These subroutines all call TSMT and ERRSET.

Errors:

Message Meanigg ERRVEC (1) ERRVEC(2)
subroutine EOF End-of-file IE 1
subroutine EOT End-of-tape D 2
subroutine MINO Magtape not ID 3

operational
subroutine PERR Parity error ID 4
subroutine HERR Hardware error ID 5
subroutine BADC Bad call D 6
Note

It is:

Parity error, PERR, occurs only after 25 parity or raw errors.

January 1980

SECTION 19 PIR3621

P TSMT

The TSMT routine is the raw data mover that moves information from
magnetic tape to user address space, or from the user space to tape.
TSMT also performs other tape operations, such as backspacing, forward
spacing and density setting. If TSMT 1is called without the code
argument, and an error condition is encountered, TSMT exits to the user
command level, rather than the calling program. If TSMT is called with
the code argument, the appropriate error code will be returned to the
calling program.

CALL TSMT (unit, pba, nw, instr, statv, code)

unit Magnetic tape drive - may be either physical (#-7) or
logical driver number. (INTEGER*2)

pba A pointer to a buffer address from which to read or write a
record of information (INTEGER*4). If neither a read or
write operation, poa is 0.

nw Number of words to transfer. This number must be between 0
and 6K words (INTEGER*2) . 6K words can be transferred
under PRIMOS only 1if the buffer starts on a page boundry.
Otherwise, the maximum size is reduced by the offset of the
buffer from the page boundry.

instr The instruction request to the magnetic tape drivers.
Valid instructions are:

REV. A 19 - 24

PDR3621 PERIPHERAL DEVICES

Octal Hexadec imal Meaning

200040 2020 Rewind to BOT, 7,9-track

322100 2440 Backspace one file mark, 9-track

220100 2040 Backspace one file mark, 7-track

762100 6440 Backspace one record, 9-track

360100 6049 Backspace one record, 7-track

222220 2490 Write file mark, 9-track

320229 2090 Write file mark, 7-track

362200 6480 Forward one record, 9-track

760200 6080 Forward one record, 7-track

322200 2480 Forward one file mark, 9-track

220200 2080 Forward one file mark, 7-track

100009 8000 Select transport, 7&9-track

042220 4490 Write record, one character per word,
9-track

342620 4590 Write record, two characters per word,
9-track

042200 4489 Read record, one character per word,
9-track

342600 4580 Read record, two characters per word,
9-track

352200 5480 Read and correct record, one character
per word, 9-track

052600 5580 Read and correct record, two characters
per word, 9-track

040220 4099 Write binary record, one character
per word, 7-track

040620 41990 Write binary record, two characters
per word, 7-track

344220 4890 Write BCD record, one character
per word, 7-track

944620 4990 Write BCD record, two characters
per word, 7-track

340200 4080 Read binary record, one character
per word, 7-track

040600 4180 Read binary record, two characters
per word, 7-track

044200 4880 Read BCD record, one character
per word, 7-track

344600 4980 Read BCD record, two characters

per word, 7-track

Note

The following instructions are only valid with version two or
three (in some cases both versions) magnetic tape controllers.
Use of these instructions with older versions of the controller
will cause an error message to be printed and the command will
be aborted. A description of use of these commards is found
later in this section.

19 - 25 January 1980

SECTION 19

199029
100040
100139
100120
100060

243500

statv

REV. A

8010
8020
8040
8050
8039

4740

PDR3621

Erase a three-inch gap on the tape
(Version 2 and 3 controller).
Unload. Rewind tape and place drive offline
(Version 2 and 3 controller).

Set density to 1600 BPI (Version
2 and 3 controller).

Set density to 6250 BPI (Version 3
controller) .

Set density to 800 BPI (Version 2 controller
only).

Read record backwards (Version 3 controller).

8 word status vector containing the following:

statv (1)

statv(2)

statv(3)

statv (4-8)

Status flag - 1 = operation in progress,
@ = operation finished.

Hardware status word from magnetic
controller. Possible values are:

Bit 01
g2
33
24
@5
26
a7
28
29
19
11

12
13

14
15
16

vertical parity error

runaway

CRC error

IRC error

false gap/insufficient DMA range

uncorrectable error

raw error

file mark detected

selected transport ready

selected transport on-line

selected transport end of tape
detected

selected transport rewinding

selected transport beginning of
tape detected

tape write protected

DMX over-run or no formatter

rewind complete

Number of words transferred (read and
operations only).

Reserved for future use.

tape

write

PDR3621 PERIPHERAL DEVICES

code Specifies that the appropriate error code is to be returned
to the calling program. If this argument is omitted,
ERRRTN is called and program will exit to user command
level in case of error. The possible error codes returned
are:

ESNASS Device specified in unit, not assigned.

ESIVCM Invalid command (e.g. attempt to set density on
Version @ controller).

ESDNCT Device specified in unit not connected, or no
controller.

ESBMND Invalid number of words (nw <@ or >6144).

Magnetic tape I/0 is not buffered under PRIMOS. A call to TSMT returns
immediately before the operation is complete. When the magnetic tape
operation is completed, the status flag in the user space is set to 4.
Therefore, a user program may loop waiting for completion and do
another computation while waiting. If a user initiates another call to
TSMT before the first call has completed its magnetic tape operation,
the second call does not return to the user until the first magnetic
tape operation has been completed.

Density Selection: It is assumed that tapes are written with one
density. This assumption is enforced by only permitting changes in
density at the 1load point. For this reason, it is not necessary, or
possible, to set the density when reading a tape. When the first
record is read, the density of the tape is determined. The rest of the
tape will be read (or written) using that density.

For example, 1if the wuser set the density to 625¢ BPI with the ASSIGN
command and read the first record of a 160¢ BPI tape, then the rest of
the tape would be read using 1600 BPI. If after reading that record, a
record was written onto the tape (without rewinding to the load point);
then that record would also be written at 1609 BPI. If the tape was
rewound and then a record was written, the density would be switched to
6250 BPI. Although the density setting of 6250 BPI is rememnbered, it
will not go into effect until a record is written at the load point.

If the user assigns a tape without specifying a density, the unit will
be left at the density from the previous use. The default density (at
system initialization time) is 1600 BPI.

Read Record Backwards: This request causes the tape to read a record
while moving the tape backwards. It is sometimes possible to read a
record backwards when a bad tape prevents reading the record in the
forward directinn. After the record is read, it will be necessary to
reorganize the data. The words of the record will be in reverse order.
Each word will have the bytes reversed. The bits within each byte will
be in correct order.

19 - 27 January 1980

SECTION 19 PDR3621

Use of the TSMT WAIT Semaphore: Looping on the status done word uses
up CPU time while the process waits for the tape operation to complete.
This is not a good practice for two reasons. First, it ties up the CPU
needlessly and slows down system performance in general. Second, it
causes the process to waste some of its time slice without doing useful
work. This will result in the process being scheduled extra time and
the real time of program execution will be longer than necessary.

This problem can be solved by using a semaphors. If the process waits
on a semaphore, the wait time is not counted against its time slice.
Therefore, as soon as the tape operation completes, the process will be
scheduled to run again to finish up its time slice.

The program TSMT contains a wait semaphore that can be wused for this
purpose. This semaplore 1is used to queue tape requests. If the
process makes a tape request when the controller is busy with another
operation, the process is put on the wait semaphore.

hhen the program wants to wait for a tape operation to complete, it can
call TSMT with a request for status. Since the tape controller is
already busy with the previous operation, the process will be put on
the TSMT wait semaphore.

Since the status request is fast and doesn't affect the tape, it is a
convenient tape operation to use to provide the semaphore wait. A
scratch status vector should be used so that the status from the
original call is not destroyed. Example of wait code:

INTEGER STATV(3) /* STATUS VECTOR SET BY TS$MT
INTEGER UNIT /* MAG TAPE DRIVE NUMBER (9-7)
INTEGER BUF (1024) /* OUTPUT BUFFER

INTEGER XSTATV (3) /* SCRATCH VECTOR FOR WAIT

CALL T$MT (UNIT,LOC(BUF),,:042620,STATV) /* WRITE 1024
.« o /* OVERIAP EXECUTION WITH IO
C WAIT FOR TAPE WRITE TO COMPLETE.
199 IF (STATV(l).EQ.0) GOTO 120 /* SEE IF IO IS ALREADY DONE
CALL TSMT (UNIT,LOC(®),9d,:100000,XSTATV) /* WAIT

GOTO 100
126 . ..

REV. A 19 - 28

PDR3621 PERIPHERAL DEVICES

Error Recovery n Writing

There are many possible error recovery schemes. The two that are
described here are based on different record formats. The first
algorithm can be used when records contain only data. The other scheme
requires that the records contain extra information for error recovery.

The following schemes are provided as alternatives to using the IOCS
routines that FORTRAN uses. The error recovery provided in the IQCS
routines correspond to that described for Simple Write Error Recovery.

Simple Write Error Recovery: The aim of the simple error recovery
program is to get by a possible bad spot on the tape by erasing part of
the tape where the error occurred and rewriting the record after that

gap.

The program does not try to rewrite the record on the same spot on the
tape even though repeated tries on the same spot may improve the tape
enough to permit the write to succeed. The tape is considered marginal
at that spot and may not be readable at a later date.

Only the version three controller (MPC-3), which supports the 6250 BPI
tape drives, has an erase command. On other controllers, the tape can
be erased by writing a file mark and then backspacing over the file
mark. This will cause three inches of tape to be erased.

Program steps for write error recovery:

1. Check if error recovery is possible., Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file protected.

2. Backspace over the record.

3. Erase a three inch gap on the tape.

® Write a file mark.

® Backspace a record and check that the file mark detected bit
is set in the status word.

4. Attempt to re-write the record.

5. If the record was not written successfully, repeat steps 1-4 up
to twenty times (a maximum of five feet of erased tape).

19 - 29 January 1980

SECTION 19 PDR3621

Write Error Recovery with Sequence Numbers: There is a drawback to the
first scheme. Since the tape is bad at the spot where the error
recovery is being done, it 1is possible for errors to occur while
backspacing. For example, if the bad record has a gap in the middle of
it, the program might detect two short records when backspacing. 1f
the program has some way of identifying records, the program can be
sure that it has not lost position during error recovery.

One way to do this is to include a sequence number with every record.
Then when error recovery 1is attempted, the program backspaces two
records and then reads a record. This record should contain the
sequence number of the last good record before the error record.

Program steps for error recovery:

1. Check if error recovery 1is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file protected.

2. Position the tape after the last good record.

® Backspace two records. This will place the tape before the
last good record. :

® Read a record and verify that its sequence number matches
the one expected for the last good record.

e If the 'good' record can't be read, then it is possible that
the tape is not positioned correctly. Backspace several
records and read those records to find the sequence number
of the last good record written.

3. Erase a three inch gap on the tape.

e Write a file mark.

e Backspace a record and check that the file mark detected bit
is set in the status word.

4. Attempt to write the record again.

5. If the record was not written successfully, repeat steps 1-4 up
to twenty times, lengthening the gap each time.

REV. A 19 - 30

PDR3621 PERIPHERAL DEVICES

Error Recovery On Reading

Error recovery when reading a tape involves repeatedly rereading the
record. The problem of losing position can occur when doing error
recovery. Therefore, the procedure can be improved by verifying the
sequence number each time a record is read.

Program steps for read error recovery:

1. Check that error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready.

2. Backspace and reread the record eight times.

3. If unsuccessful, backspace eight records (or to the load point
if less than eight records away), space forward seven records
and then read the problem record. This sequence draws the tape
over the tape cleaner and could dislodge a possible dirt
particle.

4, Repeat steps 1-3 eight times.

19 - 31 January 1989

Part V
Communication Controllers
and Real-Time Subroutines

PDR3621 CONTROLLERS

SECTION 20

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

SYNCHRONOUS CONTROLLERS

This section defines the raw data mover for the assigned SMIC line.

P TSSICH

The SMIC driver is loaded in PRIMOS. A user progran communicates with
the driver via FORTRAN-format calls to T$SIC@. The driver communicates
with the user address space via buffers in the user address space
specified by the user program. The data structure, which is used by
the driver, is "control block" and 1is provided by the user. This
control block is created by the user program in the user address space.
It contains pointers to the user status buffer and pointers to buffers
containing a message to be transmitted or set to receive a message. A
separate control block is required for each line.

CALL TS$SSICO (key,line,LOC(block) ,nwds)

key 1 Stop line. Only key + line required.

2 Define control block. The block is structured as in
Table 29-1. It defines an area to store status
information and, optionally, a message chain for
reception or transmission.

3 Array block contains five words which are to be
output to the controller - see Table 2¢-2 through
20-11 for details.

4 Array block contains a word which is to be used as
the next data set control word. See Table 20-12 for
details,

5 Array block contains two words which are to be used
as the next receive/transmit enable words. See
Table 20-13 for details.

6 The calling user process will go to sleep. It will
waken at the next SMLC interrupt or after
approximately 1 second. It will run with a full
time slice interval. The value line is ignored, as
are LOC(block) and nwdis. If, however, the user
process does not own any SMIC lines, the call will
return immediately.

20 - 1 January 1989

SECTION 20 PDR3621

REV.

7 Return model number. Model number will be returned

in block. When using this key, nwds must = 1.

possible model numbers and their associated

protocols are:

Model Number (Octal) Protocols
2 HSSMLC
5646 BISYNC and HDLC
5647 BISYNC and PACKET
5650 BISYNC and 1004/UT200/7020
5651 HDLC and 1004/UT200/7320
5652 PACKET and 1004/UT200/7029
5653 HDLC and PACKET
5654 BISWC and GRTS
Note

Before calling TSSICO to configure a line (KEY=3), a call with
(XEY=7) should be made to see if the Multi-line Data Link
Controller (MDIC) contains the proper protocol and to determine
what the line configuration should be., If an error occurs
during initialization, the following error messages are
printed:

No SMICxxX - (controller address)
No CONTROLLER CONFIGURED for SMLCyy (logical number)
UNDEFINED CONTROLLER ID for SMICxX (controller address)

It is the responsibility of the caller to see that the line
configuration is correct for the model of MDLC being used.

line Octal line number 9-3.

LOC (block) Address of user's block. User's block must reside

entirely within one page.

nwds Number of words in block.

A 20 - 2

PDR3621 CONTROLLERS

Timing

The user space progran runs asynchronously with message transfers. A
call to TSSIC@ returns immediately after executing whatever control
function was required. The progress of the communication must be
monitored by the wuser program by examination of the user space status
buffer contents.

Assigning Communication Lines

The communications lines must be assigned to a user space before they
can be used. The proper command is:

SMLCOJ
SMLCAL
ASSIGN SMLCP 2
SMICA3

given at the wuser terminal. One or more lines may be assigned to a
given user.

20 - 3 January 1980

SECTION 20 PDR3621

Table 2¢-1. Key=2 SMIC OGontrol Block

Word @ Last receiver/transmitter enable word sent to the
HSSMLC by the driver. (This word is written into
but not read by the driver.)

Bit 15 =1 : Transmitter on
Bit 16 = 1 : Receiver on
Word 1 Bit 1 : Valid line enable order in bits 2-16
Bits 2-16 : Line enable order. See Table 20-4,
word 9.
Word 2 Bits 1-4 : Data set status mask (DSSM)
Bits 5-8 : Required data set status (RDSS)
Bit 9 : Set: no data set order - ignore word 2

Bits 13-16 : Data set control order (DSCO)

Note

Issue DSCO, wait for (DS status .AND. DSSM) = RDSS, then
isswe line enable order

Word 3 Spare

Word 4 Pointer to top of status buffer

Word 5 Pointer to bottom + 1 of status buffer

Word A Pointer to next word in status buffer to receive

the status information. (This word is written into but
not read by the driver.)

Note

The status buffer must be completely contained in the same page
as the control block.

REV. A 20 - 4

PDR3621 CONTROLLERS

Table 20-1. Key=2 SMLC Control Block (cbntinued)

Word 7 Bits 1-2 : '"01' there exists a continuation
control block
Bits 3-6 : Word count of next block - 8
Bit 7 : @
Bits 8-16 : Offset in current 512 word page

of next block

Note

The continuation block must reside in the same page as the
control block from which it was continued.

Word 8 Bit 16 Set: Transmit
Clear: Receive

Note

If Word 8 given (nwds > 8) then at least one DMC address pair
must be given.

Words 9-10 DMC start and end address pointers.
11-12 Up to four pairs may be specified to allow
13-14 for channel chaining.
15-16
Note

Transmit/receive buffers may reside in any page, but their
starting and ending address pointers must reside in the samne

page.

20 - 5 January 1980

SECTION 20 PDR3621

Table 20-2., Key=3 Line Configuration Control Block (Bits 1@-15)

Word @ Bits 10 through 16, are constant for all controllers and
protocols. Bits 1 through 9 for each controller follow.

Bit 19 : Enable formatter option (Bi-Sync,
ur2g), ICL 7020, 1004, Packet
Switch depending on HSSMLC
options)

Enable reporting of data set
changes by interrupt and status
word.,

Bits 12-14 : 1 13 14

Bit 11

Automatic Parity Enable
Parity Select ¢ = odd,
Note *

Parity Enable

*Automatic Parity Enable appends a parity bit to the
data while Parity Enable steals the most significant bit
of each data byte.

Bits 15-16: 15 16

t———Number of bits per character
If Automatic Parity is enabled with eight-bit data

enabled, no parity will be generated or checked (i.e.
no nine bit data formats)

Table 20-3. Key=3 Line Configuration Control Block (HSSMIC, bits 1-9).

HSSMLC

Word @ 1 2 3 4 6 7 8

5 ¢ 9
I-Select formatter mode

Y EBCDIC
1 = ASCII

elect BCC
LRC (for use with ASCII mode only)

S
1 =
@ = CRC-16

Unused control bits

REV. A 20 - 6

Table 20-4.

5646
BISYNC

Word @

HDLC

Word @

1

PDR3621 CONTROLLERS

Key = 3 Line Configuration Control Block (5646, bits 1-9).

2 3 4
g 9 4
2 3 4
1 9

[\l o]

6 7 8 9
g |—
EBCDIC = @
ASCII =1
Enable IRC =1
CRC15 = 0

Enable "X.25" Operation

Tx-Bnd message on
left byte

Tx-0-FIAG line durirg
idle periods.

-1-MARK line during
idle periods.

Enable GO-AHEADS
(loop mode)

Tx-Start on right byte
Rx-Start on right byte
and generate encoded
status if message erds
with the left byte.

HDIC Enable

Enable All-Parties
Address Mode

Enable Secondary Station
Mode

Secondary Station Mode, HDLC mode, Loop mode, and
All parties Address Mode are enabled on a line-pair basis only.

20 - 7 January 1980

SECTION 20 PDR3621

Table 20-5. Key=3 Line Configuration Control Block (5547, bits 1-9).

5647
BISYNC
Word @ 1 2 3 45 6 7 8 9
2 0 20 0 0 g 9
EBCDIC =9
ACIT =1
Enable IRC =1
CRC15 = 0
Enable "X.25" operation
PACKET
Word 0 1 2 3 45 6 7 8 9
] g 0 0 0 0 0
Enable CRC24

Enable Upper Bank

REV. A 20 - 8

PDR3621 CONTROLLERS

Table 20-6. Key = 3 Line Configuration Control Block (565@, bits 1-9).

5650
BISWYNC
Word g l 2 3 4 5 6 7 8
2 0 0 0 @ 4]
EBCDIC = ¢
ACII =1
Enable IRC =1
CRC16 = @
Enable "X.25" Operation
ICL7020/UT200 /1004
Word @ 1 2 3 45 6 7 8 9
1 0 0 0 l_ g 1 1
Enable ICL 7020
Enable 1004 (Default = UT209)

Recommended configurations

1004 1140722

UT209 '40723 (Add '40 to enable DSS
ICL7020 '42723 interrupts)

20 -9 January 1980

SECTION 20 PDR3621

Table 20-7. Key = 3 Line Configuration Control Block (5651, bits 1-9).

5651
ICL7020/UT200/1004
Word @ 1 2 3 45 6 7 8 9
g @ 2 0 g 1 1
Enable ICL7020
Enable 1004 (Default = UT200)
Recommended Configurations
UNIVAC 109722
uT200 1723 (A3 '40 to enable DSS interrupts)
ICL79208 12723
HDLC
Word @ 1 2 3 4 5 6 7 8 9
1]

Tx-End message on
left byte

TX-@-FIAG line during
idle periods.

-1-MARK line during
idle periods.

Enable GO-AHEADs
(loop mode)

Tx-Start on right byte
Rx-Start on right byte
and generate encoded
status if message ends
with the left byte.

HDILC Enable

Enable All-Parties
Address Mode

Enable Secondary Station
Mode

Secondary Station Mode, HDLC mode, Loop mode, and
All parties Address Mode are enabled on a line-pair basis only.

REV. A 20 - 10

PDR3621

Table 20-8. Key = 3 Line Configuration Control Block (5652
5652
ICL70920/UT 200 /10804
Word @ 1 2 3 4 5 6 7 8 9
ﬂ@o@lﬂll
Enable ICL7020
Enable 1004 (UT200=Default)
Recommended Configurations
1004 '100722
UT200 '723 (Add '40 to enable
ICL7020 12723 DSS interrup
PACKET
Word @ 1 2 4 5 6 7 8 9
Y] 2 g Y] g 9
Enable CRC24
Enable Upper Bank
20 - 11

CONTROLLERS

, bits 1-9).

ts)

January 1980

SECTION 20 PDR3621

Table 20-9. Key = 3 Line Configuration Control Block (5653, bits 1-9).

5653
HDLC

Word @ 1

=N
W

Tx-End message on
left byte

Tx-0-FIAG line during
idle periods.

-1-MARK line durirg
idle periods.

Enable GO-AHEADs
(loop mode)

Tx-Start on right byte
Rx~-Start on right byte
and generate encoded
status if message ends
with the left byte.

HDLC Enable

Enable All-Parties
Address Mode

Enable Secondary Station
Mode

Secondary Station Mode, HDLC mode, Loop mode, and
All pParties Address Mode are enabled on a line-pair basis only.

PACKET

Word 0@ 1 2 3 4 5 6 7 8 9

Enable CRC24

REV. A 20 - 12

PDR3621 CONTROLLERS

Table 20-10. Key = 3 Line Configuration Control Block (5654, bits 1-9)

5654
BISYNC
Word o 1 2 3 4 5 6 7 8 9
g 9 9 0 0 /)
EBCDIC = @
ASCII =1
Enable IRC =1
CRC16 = 0
Enable "X.25" Operation
GRTS
Word 0 1 2 3 4 5 6 7 8 9
2 1)]]]
EBCDIC = 0
ASCITI =1
GRTS uses ASCII
——FEnable LRC = 1
CRC15 =0

GRTS uses LRC

———Enable "X.25" Operation
Not used in GRTS

20 - 13 January 1980

SECTION 20 PDR3621

Table 20-11. Key = 3 Line Configuration Control Block (words 1-4).

Word 1 Word configuration - Transmitter Bit settings
as for Word 4.
Word 2 Special character (OTA '@ : Function '19)
Bits 7-8 s 00 Character 1
a1 Character 2
10 Character 3
11 Character 4

Bits 9-16 : Character

Word 3 Special Character
Bit settings as for Word 2

Word 4 Clock selection

2 Reset internal clock to default 9.6 Kbps
1 Switch internal clock to 62.5 Kbps

REV. A 20 - 14

PDR3621 CONTROLLERS

Table 20-12, Key=4 Data Set Control Bits (OTA '0@:Function '08)

Bit 13 : Not used

Bit 14 : Speed Select

Bit 15 : Request to send (RTS)

Bit 16 : Data Terminal Ready (DIR)

Table 20-13. Key=5 Receive/Transmit Enable (OTA '@#:Function 'l5)

Word 0

Word 1

Bit 11 :+ Select internal as receive clock
Bit 12 + Select internal as transmit clock
Bit 13-14 : @@ Normal (transmit out, receive in)
@1 Loop full duplex (transmit out,
receive 1in)
19 Echo full duplex (receive in,
transmit out)
11 TLoop half duplex (pair combinations
must be: 1-2, 2-1, 3-4, 4-3)

Bit 15 : 1=Enable/g=Disable transmitter
Bit 16 :+ 1=Enable/@=Disable receiver
Bit 16 : 1=Enable transmitter

Jd=Enable receiver

Note

Transmitter and Receiver must be enabled/disabled separately.

29 - 15 January 1989

SECTION 20 PDR3621

ASYNCHRONOUS CONTROLLERS

The following describes the raw data mover for assigned AMIC lines.
Refer to the System Administrator's Guide for the AMLC command, and how
to assign AMIC lines.

p TsaMLC

CALL TSAMLC (line, LOC(buffer), cent, key, status)

line Octal line number.

LOC (buffer) Address of user's buffer.
cent Character count (max is 80) .
key 1 TInput ccnt characters.

2 Input cent characters or until new line
character, whichever occurs first.
Return actual number of characters

read in status(l).

Qutput ccnt characters.

Return number of characters in input

buffer in status(l) and state of

carrier in status(2). status(2) =@ if
carrier, not 9 if no carrier.

5 Return zero in status(l) if not room in
output buffer for ccnt characters or
one if there is room. State of carrier
is also returned in status(2).

LoV

status Two word status vector, described in key.

REV. A 20 - 16

PDR3621 REAL TIME SUBROUTINES

SECTION 21

REAL-TIME AND SYNCHRONIZATION SUBROUTINES

REAL-TIME AND INTERUSER COMMUNICATION FACILITIES

PRIMOS supports user applications that have real-time requirements or
that need to synchronize execution with other user programs. Part of
this support is the ability to modify the priority and timeslice
duration of any wuser via the CHAP command. Program support for
real-time applications and interuser synchronization is in the form of
a set of subroutines that provide access to the Prime 400's semaphore
primitives (WAIT and NOTIFY) and to internal timing facilities.

USER SEMAPHORES AND TIMERS

Internal to PRIMOS is an array of 64 semaphores reserved for the use of
user processes. In the subroutines described below, all reference to a
user semaphore is by the index of the semaphore, an integer from 1 to
64. Other than ensuring a wvalid semaphore number, PRIMOS makes no
stipulations for semaphore use such as which users can access which
semaphores, etc. Allocation and cooperative use of the semaphores is
strictly under user control.

Of the 64 user semaphores, up to 15 can be used at any time as timed
semaphores, that is, semaphores that are periodically notified by the
system clock process (see the SEMSTN routine). Again, allocation of
timed semaphores 1is on a first-come first-served basis, and nothing is
done to prevent incorrect use of a timed semaphore.

Unless a user has inhibited quits from the user terminal, the typing of
CONTROL-P or BREAK while a user process is waiting on a user semaphore,
causes that semaphore to be notified and the process to enter command
mode. The START command then causes control to return to the point
following the call that resulted in the wait.

21 - 1 January 1980

SECTION 21 PDR3621

P> SEMSDR

SEMSDR sets the value of a semaphore to zero.

CALL SEMSDR (semnum,code)

semnum The number of the user semaphore (1-64) to be drained.
(INTEGER)

code An integer variable to be set to the return code.
(INTEGER) Its value may be:

3 = Request accepted.
ESBPAR = Invalid semaphore number.

If the value of the semaphore is negative (outstanding notifies), it is
set to zero. (Other access to the semaphore is inhibited between the
testing and setting to zero.) If the value of the semaphore is
positive, 'value' notifies are executed, thus releasing a number of
processes equal to the original wvalue of the semaphore. Note that
other user processes may wait on the semaphore in the middle of the
notify loop. 1In this case, 1if the processes just entering the wait
list have priority equal to or less than those already waiting, they
will be left on the wait list at the conclusion of the SEMSDR call. If
the new processes have priority higher than those already waiting, they
will be immediately notified and some of the original processes will be
left on the wait list.

P> SEMSNF

SEMSNF notifies a specified user semaphore.
CALL SEMSNF(semnum,code)
semnum The number of the user semaphore (1-64) to notify.
(INTEGER)

code An error or status code returned. (INTEGER) Its value may
be:

@ = Request accepted
ESBPAR = Invalid semaphore number
ESSEMO = too many notifies.

I1f the semaphore number is valid, the current value of the semaphore is

checked. If the value 1is 1less than -32767, the code ESSEMO is
generated, meaning that 32767 notifies have been issued with no

REV. A 21 - 2

PDR3621 REAL TIME SUBROUTINES

corresponding waits. (This is to prevent the semaphore value from
wrapping to a positive value.)

P SHMSTN

SEMSTN establishes a user accessible "clock".
CALL SIMSTN (semnum,interval-l,interval-2,code)
semnum The number of the user semaphore (1-64) to be used as
a timer. (INTEGER)

interval-1 A variable that contains an interval in milliseconds
to be awaited until the first notify of the semaphore.

(INTEGER*4)

interval-2 A variable that, if non-zero, specifies an interval in
milliseconds between all subsequent notifies.
(INTEGER*4)

code An error or status code returned. (INTEGER) Its value
may be:

@ = Request accepted
ESBPAR = Invalid semaphore number
ESNTIM = No available timers.

SEMS$TN first checks the validity of semnun and ensures that there is an
available timer (i.e., that there are not already 15 active timer
semaphores) . A control block is then constructed and brought to the
attention of the internal PRIMOS clock process. The clock process
subsequently decrements interval-l (in the control block) every tenth
of a second until it reaches zero (or becomes negative, if the interval
is not a multiple of 109 msecs.). The specified user semaphore is then
notified. If interval-2 is not @, interval-1 is then replaced with
interval-2 (in the control block). The semaphore will then be notified
every interval-2 msecs, until the timer is deactivated by a call to
SEMSTN with an interval-l value of @ (INTEGER*4). If interval-l is @,
a search for the specified timer is made, and ESNTIM is returned if the
timer is not found. 1If the timer is found, interval-l is set to zero.
This effectively deactivates the timer and releases it for other SEMSTN
calls.

SEMSTN does not suspend execution of the user process. Execution is
suspended only when SEMSWT is called and the specified interval has not
expired. While the timed semaphore is in operation, it can be
specified in calls to SEMSWT, SEMSNF, SEMSTS, or SEMSDR.

If QUIT is typed while a timed semaphore 1is active, notifies will
accumulate while in command mode.

21 - 3 January 1980

SECTION 21 PDR3621

P> SEMSTS

SEMSTS obtains the current count of waits/notifies

integer=SMMS$TS (semnum,code)

integer An integer variable set to the current value of the

semaphore. (INTEGER)

semnum The number of the user semaphore (1-64) to be tested.
(INTEGER)

code An error or status code returned. (INTEGER)
may be:

@ = Request accepted
ESBPAR = Invalid semaphore number.

The current value of the semaphore is returned. If positive, the value
indicates the number of processes currently waiting on the semaphore.
If negative, the value reflects the number of outstanding notifies.

Thus, in all cases,
value = waits - notifies

Note

The test operation is not interlocked against other

access to

the semaphore. Other processes issuing WAITs or NOTIFYs may
change the value of the semaphore at any time after SEMSTS has

returned the value of the semaphore.

REV. A 21 - 4

Its wvalue

PDR3621 REAL TIME SUBROUTINES

P SEMSWT

SEMSWT enters the waitlist of specified sempahore.

CALL SEMSWT (semnum,code)

semnum The number of the user semaphore (1-64) on which to wait.
(INTEGER)

code An integer error or status code returned. (INTEGER) Tts
value may be:

= Request accepted
ESBPAR = Invalid semaphore number.

If the semaphore number is valid, a WAIT instruction 1is executed to
place the wuser process on the wait list of the specified semaphore.
The user process re-enters the ready list when the semaphore is
notified or when QUIT is typed at the user terminal. If the semaphore
has already been notified when SEMSWT is called, the WAIT instruction
is a no-op, and control returns immediately.

P> SLEEPS

SLEEPS suspends execution of a user process.

CALL SLEEPS (interval)

interval A variable containing the interval in milliseconds for
which execution is to be suspended. (INTEGER*4)

Execution of the user process is suspended for the specified interval.
An interval <@ will result in an effective no-op. A QUIT and START
from the user terminal will cause immediate return from the SLEEPS
call.

21 - 5 January 1980

Part VI
Library Management

PDR3621 LIBRARY MANAGEMENT

SECTION 22

LIBRARY MANAGEMENT

This section describes the Binary Editor (EDB) and LIBEDB. EDB is used
to create and modify libraries. LIBEDB 1is used once a library is
created to decrease loading time. Both of these programs operate on
object text blocks generated by Prime language translators (FIN, COBOL,
PMA, RPG). These objects text blocks form the input to LOAD and SEG.
The term 'loader' is used to identify both programs.

LIBEDB

This program is used for editing bypass information into library files.
The loader uses the bypass information to skip an unnecessary routine
efficiently instead of reading and discarding all the unwanted object
text. Depending on the size and number of unnecessary routines in a
library, the loader may process library files up to 50 percent faster
if they have been processed by LIBEDB.

LIBEDB is maintained as the run file *LIBEDB in the UFD 'LIB'. It
should be used on a library file after its creation and after each time
that the library is edited with the Binary Editor. The loader is
capable, however, of handling a 1library which is not, or is only
partially, processed by LIBEDB.

Since it is expected that LIBEDB will be used fairly infrequently, the
user/computer interaction 1is self-explanatory. LIBEDB asks for an
input and output file name and for file type. In theory, a 1library
with large routines will load faster if it is created as a DAM file.
In practice, none of the regularly used libraries contain routines
large enough to warrant creating the library as a DAM file instead of
as a SAM file,

EDB

Start—-up
EDB is started up by the following command:

EDB input-file [output-file]
Both the input and output file may be pathnames. The input file should
be an existing library or the binary output of a Prime language
translator. The output file is optional; if specified, a file of that

name will be created if none exists. -ASR or -PTR instead of a file on
the command line specifies a user terminal or paper tape reader/punch

22 - 1 January 1980

SECTION 22 PDR3621

respectively. If these are not included, a PRIMOS file is assumed.

EDB types ENTER and then waits for user commards.

Operation

EDB maintains a pointer to the input file. When EDB is initialized, or
after a TOP or NEWINF command, the pointer is at the top of the input
file. The pointer can be moved by the FIND command to the start of a
module. A module is identified by its subprogram or entry point name.
After a COPY command (which copies blocks from the input to output
file) , the pointer is positioned to the module following the module
copied.

Command Summary

EDB responds to the following commands, listed in alphabetical order.
Commands may be abbreviated to the underlined letters. Items enclosed
in brackets are optional.

BRIEF

Inhibits printout of subroutine names and entry points as they are
encountered in the input file by EDB. (See TERSE and VERIFY.)

name, <SFL>, or <RFL>
copy ALL

Copies to the output file, all main programs and subroutines from the
pointer to (but not including) the subroutine called name or containing
name as an entry point. If name is not encountered or COPY ALL is
specified, EDB copies to the end of the input file and types .BOTTOM.
on the terminal. The pointer moves past the last copied item.

name, <SFL>, or <RFL>
FIND |ALL

Moves the pointer to module of the input file containing a subroutine
called name or containing name as an entry point. If name 1is not
found, the pointer is moved to the end of the input file and .BOTTOM.
is typed on the terminal. In the VERIFY mode, the FIND ALL command can
be used to print all subroutines and entry names in the input file.

INSERT pathname

Copies all modules of pathname to the output file. The pointer to the
original input file is unchanged.

REV. A 22 - 2

PDR3621 LIBRARY MANAGEMENT

NEWINF pathname

Closes the current input file and opens pathname as the new input file.
The pointer is positioned to the beginning of pathname.

OPEN

Closes the current output file and opens pathname as the new output
file. ‘
QUIT

Closes all files and exits to PRIMOS.

REPLACE (name) (pathname)

Replaces the object module containing (name) as an entry point by all
modules of pathname.

RFL

Writes a reset-force-load flag block to the output file. All libraries
begin with an RFL. This block places a loader in library mode; only
those modules that are referenced are loaded. RFL mode is in effect
until the loader encounters an SFL block,

SFL

Writes a set-force-load flag block to the output file. This block
places a loader in force-load mode; all subsequent modules are loaded,
whether or not they are called. SFL mode is in effect until the loader
encounters an RFL block. A library file should be terminated by an SFL
block.

TERSE

Places the editor into TERSE mode. Only the first entry point name of
each module encountered by EDB is printed on the terminal. (See BRIEF,
VERIFY)

TOP

Moves the pointer to the top of the input file.

22 - 3 January 1980

SECTION 22 PDR3621

VERIFY

Places EDB into VERIFY mode. All subroutine names and entry points, as
they are encountered by EDB, are printed on the terminal. EDB is
initialized in the VERIFY mode. (See BRIEF and TERSE)

The following commands are outmoded but are included for the sake of
completeness:

ET
Writes an end-of-tape mark on the output file ('223, '223 on paper
tape; zero word on disk). Writing an ET to disk causes the loader to
ignore the remainder of the file.

GENET [G]

Copies the subroutine to which the pointer is currently positioned and
follows it with an end-of-tape mark. The pointer mgves to the next
subroutine. The optional letter G specifies a global copy; all
subroutines from the current position of the pointer are copied, each
followed by an end-of-tape mark. When the bottom of the input file is
encountered, .BOTTOM. is printed on the terminal.

OMITET [G]

Copies the subroutine to which the binary location pointer is currently
positioned. The pointer moves to the next subroutine. The optional
letter G specifies a global copy; all subroutines from the current
position of the pointer are copied. %When the bottom of the input file
is encountered, .BOTTOM. 1is printe® (n the terminal.

EDB Error Messages

EDB prints ENTER to show that it is ready to accept commands. Most
errors in command string input cause EDR to print a question mark (?).
Other messages include:

BAD OBJECT FILE
usually a source file

BAD PARAMETERS
fatal

ERROR WHILE WRITING
fatal

REV. A 22 - 4

PDR3621 LTBRARY MANAGEMENT

EXAMPLES

Creating a Library

The following example creates a library from the files B FILEl,
B FILE2, B_FILE3, and B FILE4. Each file contains a single module
although B FILEl and B FILE2 contain multiple entry points.

The following terminal output shows the EDB commands to list the entry
points of each file, plus the commands necessary to combine them into a
library file, LIBEXP. Example:

OK, EDB B FILEl

GO

ENTER, F ALL

ENT1A ENT1B ENT1C
.BOTTOM.

ENTER, NEWINF B FILE2
ENTER F ALL

ENT2D ENT2E

.BOTTOM.

ENTER, NEWINF B FILE3
ENTER, F ALL

ENT3G

.BOTTOM.

ENTER, NEWINF B FILE4
ENTER, F ALL

ENT4H

.BOTTOM.

ENTER, OPEN LIBEXP
ENTER, NEWINF B FILE1
ENTER, RFL

ENTER, C ALL

ENT1A ENT1B ENT1C
.BOTTOM.

ENTER, I B_FILE2
ENTER, I B FILE3
ENTER, I B FILE4
ENTER, SFL

ENTER, QUIT

After a library is created, LIBEDB can be run on it to speed its
loading time.

Listing Entry Points

Notice the difference between the terminal output in VERIFY and TERSE
modes, ENT1A, ENT1B, and ENTIC are all entry points of the first
module. In TERSE mode, only ENTIA is listed. Example:

22 - 5 January 1989

SECTION 22 PDR3621

OK, EDB LIBEXP

GO

ENTER, F ALL

ENT1A ENT1B ENTIC ENT2D ENT2E ENT3G ENT4H
.BOTTOM.

ENTER, TOP

ENTER, TERSE

ENTER, F ALL

ENT1A ENT2D ENT3G ENT4H
.BOTTOM.

ENTER, QUIT

Replacing an Object Module in the Library

The library file, LIBEXP, created above is edited to replace the module
containing entry point ENT3G with the module in B NFILE3 containing
entry points ENT3F and ENT3G. The output file is LIBNEW.

OK, EDB B_NFILE3
GO

ENTER, F ALL
ENT3F ENT3G
.BOTTOM.

ENTER, Q

OK, EDB LIBEXP LIBNEW

GO

ENTER, R ENT3G B NFILE3

ENT1A ENT1B ENT1C ENT2D ENT2E ENT3G
ENTER, C ALL

ENTA4H

.BOTTOM.

ENTER, Q

OK, EDB LIBNEW

GO

ENTER, F ALL

ENT1A ENT1B ENT1C ENT2D ENT2E ENT3F ENT3G ENT4H
.BOTTOM.

ENTER, Q

REV. A 22 - 6

Part VII

ition. Mechanis

1 Subroutines

PDR3621 CONDITION MECHANISM

SECTION 23

CONDITION MECHANISM SUBROUTINES

INTRODUCTION

This section describes the subroutines used in the implementation of
the condition mechanism. A condition 1is an unscheduled software
procedure call (or block activation) resulting from an "unusual event".
Such an "unusual event" might be a hardware-defined fault, an error
situation which cannot be adequately defined to the subroutine, or an
external event such as a QUIT from the user's terminal. The condition
mechanism has been created to:

® Provide a consistent and useful means for system software to
handle error conditions

e Provide the capability to handle error conditions without
forcing a return to command level

® Provide support for the condition mechanism of ANSI PL/I

CREATING AND USING ON-UNITS

Condition handlers are called "on-units" which may be procedures or
PL/I begin blocks. A begin block results from a PL/I <on statement>
while a procedure results from the use of the subroutines:

MKONUS$
MKONSF

The use of these subroutines is the only way to create an on-unit in a
non-PL/I environment. All users are automatically protected by PRIMOS
system on-units. When a condition is raised, the condition mechanism
searches within the existing procedure for on-units for the specific
condition. 1If none is found, but if an on-unit for the special
condition ANYS does exist, the ANYS on—unit is selected as the default
on-unit.

An on-unit may be invalidated by the PL/I <revert statement> or by
using the subroutines:

RVONUS$
RVONSF

23 - 1 January 1980

SECTION 23 PDR3621

The condition mechanism is activated whenever a condition is raised. A
condition is raised implicitly by some exception being detected during
regular program execution. A condition may be raised explicitly by the
PL/I <signal statement> or by a call to the subroutines:

SIGNLS
SGNLSF

Every on-unit has the name of the condition it is handling. A
cordition name is a character string (up to 32 characters) and may
represent a system defined condition if the name is one reserved for
system use, or it may be a user-defined cordition. The system-defined
conditions are described later in this section.

On-Unit Actions

An on-unit has several options on action it may take. An on-unit may:

1. Perform application specific tasks (e.g., closing files,
updating files).

2. Repair cause of condition and resume execution.

3. Decide that normal flow can be interrupted and program
re-entered at "known point" by performing a nonlocal goto to
some previously defined label.

4. Signal another condition.

5. Transfer process to command level.

6. Continue search for more on-units.

7. Run diagnostic routines.,

FORTRAN Considerations

The use of on-units and of nonlocal gotos from FORTRAN is somewhat
restricted, since there are no internal procedures or blocks.
Therefore:

e FORTRAN on-units must be subroutines which, by definition, are
not internal to the subroutine or main program creating the
on—-unit.

e Nonlocal gotos will work only to the previous stack level since
the target statement label belongs to the caller of the
subroutine performing the nonlocal goto.

A full function nonlocal goto requires that the target label identify
both a statement and a stack frame of the program that contains the

REV. A 23 - 2

PDR35621 CONDITION MECHANISM

statement. The subroutine MKIBSF will create a PL/I compatible label
and the subroutine PLISNL will perform a nonlocal goto to a specified
target label. Labels produced by MKLBS$F are acceptable to PLLSNL.

The PL/I interfaces utilize the PL/I datatype "character(*) varying".
This datatype is not available in FORTRAN, but 1977 ANSI FORTRAN
includes a datatype which is the equivalent of PL/I "character(¥*)
nonvarying". Interfaces are provided which utilize the nonvarying
character strings. These will not be as efficient as those using
varying character strirgs. It is possible to simulate varying
character strings in FORTRAN with an INTEGER*2 array in which the first
element contains the character count, and the remaining elements
contain the characters in packed format. For example:

PL/1
dcl name char(5) varying static initial ('QUITS');

FORTRAN
INTEGER*2 NAME (4)
DATA NAME/5, "QUITS'/

The subroutines are documented in PL/I, and therefore FORTRAN users
must make a conversion between PL/I datatypes and FORTRAN datatypes.
The following is a table for such a conversion:

PL/I FORTRAN
char(n) var INTEGER (((n+1) /2)+1)
char (n) INTEGER((n+1) /2)
fixed bin(15) INTEGER
fixed bin(31) INTEGER*4
label REAL*8
entry variable REAL*S
ptr options (short) INTEGER*4
bit(n) INTEGER (1<=n<=16)

Default On-Unit

The default on-unit, ANYS, may be created to intercept any condition

that might be activated during a procedure. (The ANYS on-unit is
created by a PL/I <on-statement> or a call to MKONU$ or MKONSF.)

When a condition is raised, the condition mechanism first searches for
an on-unit for the specific condition. If a specific on-unit exists,
it is selected, but if none exists and an ANY$ on-unit exists, it is

selected.

23 - 3 January 1980

SECTION 23 PDR3621

User programs should avoid the use of the ANY$S on-unit. If used, a
user ANYS on-unit should not attempt to handle most system-defined
conditions, and should pass them on by simply returning. Whenever an
ANYS on-unit is invoked, the continue switch is set and the user ANYS
on-unit must return with the continue switch still set. Failure to do
so can cause problems with PRIMOS.

The continue switch (cflags.continue sw) is wused to indicate to the
condition mechanism whether the on-unit that was just invoked (or any
of its dynamic descendants) wishes the backward scan of the stack for
on-units for this condition to continue upon the on-units return. The
subroutine CNSIGS 1is wused to request that the switch be turned on.
This switch is cleared before each on-unit (except ANY$) is invoked.

CONDITION MECHANISM SUBROUTINES
P> SIGNLS

SIGNLS is called to signal a specific condition. The stack is scanned
backwards to find an on-unit for this condition or a default (ANYS)
on-unit,

dcl signl$ entry (char(*) var, ptr, fixed bin, ptr, fixed bin,
bit(15) aligned);

CALL SIGNL$ (condition name, ms ptr, ms len, info ptr,
info len, action);

condition name Name of condition to be signalled.

ms ptr Pointer to stack frame header structure defining
the machine state at the time the specific
condition was detected. If ms ptr is null, a
pointer to the condition frame header, produced
by this call to SIGNLS will be used.

ms len Lergth (in words) of the structure named in
ms ptr. Not examined if ms ptr is null.

info ptr Pointer to structure containing auxiliary
information about the condition. 1If no auwxiliary
info is available, info ptr should be null.

info len Length (in words) of structure in info ptr. Not
examined if info ptr is null.

REV. A 23 - 4

action

P SGNLSF

PDR3621 CONDITION MECHANISM

Defines action to be taken.

decl 1 action,
2 return ok bit(1l),
2 inaction ok bit(1),
2 crawlout bit(l),
2 mbz bit(12);

return ok = '"1'b if on-unit is to be
allowed to return.

"1'b if on-unit may return
without taking corrective
action ard still expect
"defined" results. (return ok
must also be '1'b.)

inaction ok

crawlout = '"1'b if call to SIGNLS is
result of crawlout. Should
never be set by user.

specifier = '1'b to signal PL/I 1/0(PLIO)
condition. User program should
not use.

nbz = Must be zero.

SGNLSF signals a specific condition and supplies optional auxiliary

information.

SGNLSF is the FORTRAN equivalent of SIGNLS but is less

efficient in use of time and space.

CALL SGNLSF (cname, cnamel, msptr, mslen, infopt, infoln, flags)
INTEGER*2 cname(--), cnamel, mslen, infoln, flags
INTEGER*4 msptr, infopt

chame
cnhamel

msptr

mslen

infopt

Name of condition to be signalled.

Length of cname in characters.

Pointer to location of stack frame header describing
machine state at time the specific condition was
detected. User does not usually know this information
and should pass the null pointer value of :1777600000.
Iength (in words) of stack frame header.

Pointer to location of user-supplied auxiliary

information array. If no information supplied user
should pass null pointer. (:1777600000) .

23 - 5 January 1980

SECTION 23 PDR3621

infoln Length, in words, of array pointed to by infopt.
flags Action array specifying control action

BIT

1=1 On-unit may return

2=1 On-unit may return without taking action

3=1 Call is result of crawlout — should never be
set by user

4=1 Signal PLIO condition - User should not set

5-15 Must be zero

P CNSIGS

CNSIGS instructs the condition mechanism to continue scanning for more
on-units for the specific condition that was raised after the calling
on-unit returns. CNSIG$ is called when an on-unit has been unable to
completely handle the condition. The continue switch is set in the
most recent condition frame.

dcl cnsig$ entry (fixed bin);
CALL cnsig$ (status);

status Standard system error code. Will be non-zero only if
there was no condition frame found in the stack.

Note

The continue switch is automatically set whenever an ANYS
on~unit is invoked. Therefore, an ANYS on-unit need not issue
a call to CNSIGS to continue to signal.

REV. A 23 - 6

PDR3621 CONDITION MECHANISM

P> MKIBSF

MKLBSF converts a FORTRAN statement label or an integer variable with a
statement label value, into a PL/I compatible label value. This label
value can then be used with a call to the subroutine PLISNL, to perform
a full function nonlocal goto in a FORTRAN program.

CALL MKLBSF (stmt, label)
INTEGER*2 stmt
REAL*3 label

stmt variable to which a FORTRAN statement number has been
assigned by an ASSIGN statement, or is a statement number
constant in the format SXXXXX.

label Contains PL/I compatible label value for stmt after call
to MKLBSF.

P PLISNL

PLISNL performs a full function nonlocal goto to the statement
identified in the call. Label values created by MKLBSF are suitable
argunents for PL1SNL.

CALL PLLSNL (label)
REAL*3 label

label PL/I compatible label value.

P MKONUS

MKONUS creates an on-unit for a specific condition or creates a default
on-unit for the ANYS condition. MKONUS cannot be called from the
PL/I-G version of PL/T. Instructions for PL/I-G users are in

description of MKONSF.
dcl mkonu$ entry (char(*) var, entry);
CALL mkonu$ (condition name, bhandler);
condition name Name (no trailing blanks) of condition for which
on-unit will be created. Any previous on-unit

for this condition within the activation, will be
over-written,

23 - 7 January 1980

SECTION 23 PDR3621

handler Entry value representing on-unit procedure to be
invoked when condition name is raised and this
activation is reached iIn the stack scan. Since
MKONU$ does not save the display pointer
associated with on-unit entry, the entry value
must be external or declared in the block calling
MKONUS. (An entry constant declared in the block
containing the call to MKONUS will satisfy these
restrictions).

Note

The stack frame of the caller is grown, if necessary, to add
the descriptor block for the new on-unit.

The caller must guarantee that the storage occupied by
condition name will not be freed until the caller returns, or
the activation is aborted by a nonlocal goto. For PL/T
callers, this restriction means condition name may not be a
constant.,

P> MKONSF

MKONSF creates an on-unit for a specific condition and is intended for
the FORTRAN or PL/I-G user. The function is the same as MKONUS but is
substantially less efficient in terms of stack space and execution
time. The FORTRAN usage is:

CALL MKONSF (cname, cnamel, unit)
EXTERNAL UNIT
INTEGER*2 CNAME (--), CNAMEL

cname Array containing name of condition for which on-unit is
to be created.

cnamel Length (in characters) of cname
unit External subroutine which will be the on-unit handler.

This subroutine is called with

CALL UNIT (CP)
INTEGER*4 CP

CP is a pointer to the condition frame header (cfh) that
describes the condition.

REV. A 23 - 8

PDR3621 CONDITION MECHANISM

Note

FORTRAN programs using MKONSF must include the specification
statement "STACK HEADER 34" and must be compiled with the SPO
option. This will reserve the stack space for on-unit
information. If MKONU$ is used, its SHORTCALL specification
will reserve the space.

Cname and cnamel may be over-written by the caller once MKONSF
has returned, since they are copied into a stack frame
extension.

The PL/I-G usage is:
dcl MKONSF entry (char(*), fixed bin, ptr);
dcl ev entry variable;
dcl p ptr based;
ev = handler
CALL MKONSF (condition name ,cond__name__len,addr(ev) ->p->pP ;
condition name Name of condition for which on-unit is to be
created.
cond name len Length of condition name in characters.
handler Entry value representing the routine to be invoked
as the on-unit. Restrictions described under

MKONUS apply here as well.

Note

This different calling sequence is required because FORTRAN and
PL/I-G differ in the way they represent entry (subroutine)
values.

P RVONUS

RVONUS disables (reverts) an on-unit for a specific condition. Once
disabled, the on-unit will be ignored during stack-frame scanning. The
on-unit may be re-instated only by another call to MKONU$ or MKONSF. A
call to RVONUS affects only on-units within its own activation.

dcl rvonu$ entry (char(*) var);
CALL rvonu$S (condition name);
condition name Name of condition for which the on-unit is to be
disabled.

23 - 9 January 1980

SECTION 23 PDR3621

Note

There is no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled. A call
to RVONUS will not affect on-units in any other activation.

P> RVONSF

RVONSF disables an on-unit for a specific condition. Tts effect is
identical to RVONUS but is designed for the FORTRAN user, and is less
efficient in tems of space and execution time.

CALL RVONSF (cname, cnamel)
INTEGER*2 CNAME (--), CNAMEL

cname Name of condition for which the on-unit is to be
disabled.
cnamel Lerngth (in characters) of cname
Note

There is no effect if an on-unit does not exist for the named
condition, or if the on-unit has already been disabled.

SYSTEM-DEFINED CONDITIONS

The following are the standard system-defined condition names, with the
meaning of each condition and, where available, the information
structure produced by each condition., The standard PL/I information
structure is:

dcl 1 info based,
2 file ptr, ptr options (short), /*PL/I file control block*/

2 info_struct len fixed bin, /*Length in words of*/
/*structure*/
2 oncode value fixed bin, /¥unique error code */

2 ret_addr ptr options (short), /*Points to statement causing*/
/*error .*/

The condition frame header (cfh), stack frame header (sfh) , fault frame

header (ffh) and on-unit descriptor block formats are included at the
end of this section.

If not stated otherwise, the system default on-unit for each condition

prints an appropriate diagnostic message on the user's terminal, and
calls a new command level.

REV. A 23 - 10

PDR3621 CONDITION MECHANISM

P> ACCESS VIOLATIONS

A CPU instruction which violated the access rules of the processor, has
been attempted.

ffh.fault type '44'B3

ffh.fault addr Improperly accessed virtual address

ffh.ret pb Points to instruction causing violation
P ANYS

ANYS is a special condition name used for default on-units. The
cordition frame header will describe the actual specific condition.
There is no separate condition frame header for the condition ANYS
unless ANYS has been explicitly raised by a call to SIGNLS (not
recommended) .

P ARITHS
An arithmetic exception has occurred.
ffh.fault type '59'B3

ffh.fault code Hardware-defined Exception Code which
partially identifies cause of fault.

ffh.ret pb Points to next instruction to be executed
upon return. There is no way to obtain a
pointer to the faulting instruction.

The static mode (see discussion of static mode under Recursive Mode
Software later in this section) default on-unit for this condition will
simulate PRIME 30@ fault handling for Arithmetic Exception if the
appropriate word of segment '4003 (see the System Architecture Guide
for the exact 1location of the wtd), is non-zero. If not in static
mode, or if PRIME 300 vector word is zero, the standard handler for
this condition will resignal the ERROR condition (described below) .

23 - 11 January 1980

SECTION 23 PDR3621

P> BAD NONLOCAL GOTOS

The nonlocal goto processor has been given an invalid display pointer.
The display (stack) pointer may actually be invalid or the target
activation may previously have been cleaned-up, or the user's stack may
have been overwritten. Information structure:

dcl 1 info based,
2 target label, /*Target of nonlocal*/
/*goto*/
2 ptr_to nlg call ptr options (short), /*Pointer to nonlocal*/
/*goto call*/
2 caller sb ptr; /*Pointer to calling*/
- /*stack frame*/

P> BAD PASSWORDS -

This condition is raised by the ATCHS$SS subroutine (Section 4) when an
attempt is made to attach to a directory with an incorrect password.

P> CLEANUPS

The nonlocal goto processor raises this condition prior to actually
unwinding the stack. The on-unit for this condition should return
unless it encounters a fatal error. Calls to CNSIGS from a CLEANUPS
on-unit have no effect; the search for on-units continues until the
target activation is reached.

v
P ENDFILE (file) PL/1
This condition is raised when end-of-file is encountered while reading
a PL/T file with PL/I input/output statements. The value of the
onfile() builtin function identifies the file involved.

info.oncode value Undefined
info.file ptr Identifies file

The default on-unit for this condition prints a diagnostic and
resignals the ERROR condition with an info.oncode value of 1044.

REV. A 23 - 12

PDR3621 CONDITION MECHANTSM

P> ENDPAGE (file) PL/I

End-of-page has been encountered while writing a PL/I file with PL/I
input/output statements. The value of the onfile() builtin function
identifies the file for which end-of-page was encountered. The default
on-unit for this condition performs a "put skip" on the file and
returns,

info.oncode value Undefined
info.file ptr Identifies file
P> ERRR PL/T

This is the default on-unit for most PL/I-defined conditions. Many I/0
and conversion operations result in the raising of the ERROR condition.
Each distinct error has been assigned a unique info.oncode value. The
standard PL/T info structure is described above. -

The default on-unit prints a diagnostic using the value of
info.oncode value, and calls a new command level unless the error is
one of the arithmetic errors that is handled "without comment". With
those errors, the appropriate action is taken and the on-unit returns
to the point of interruption.

P> ERRRTNS

A non-ring- call to ERRRTN has been made with an ERRRTN SVC or a call
to ERRPRS. The default on-unit for this condition simulates a call to
EXIT. This condition is used by PRIMOS to ensure the correct operation
of user programs and therefore, should not be handled by user programs.

P EXITS
The EXIT subroutine (Section 5) has been called directly or via an EXIT

SVC. This condition should not be handled by user programs since it is
used by the Source Level Debugger (DBG) to monitor the execution of

STATIC MODE programs.
P> ILLEGAL INST$
An attempt has been made to execute an illegal instruction.

ffh.fault type '40'B3

ffh.ret pb Points to illegal instruction

23 - 13 January 1980

SECTION 23 PDR3621

P> ILLEGAL ONUNIT RETURNS

An on-unit has attempted to return but return was disallowed by the
procedure that raised the condition. The information structure is a
standard-format condition frame header that describes the condition
whose on-unit has illegally attempted to return.

P> ILLEGAL SEGNOS$

Reference has been made to a virtual address with an out-of-bounds
segment number.

ffh.fault type '53'B3
ffh.ret pb Points to instruction causing error
ffh.fault addr Virtual address in error

P KEY (file) PL/I

This condition is raised when reading a PL/I file with a non-existent
key or writing with a key that already exists. The onfile() builtin
function identifies the file. The onkey() builtin function contains
the key in error. The default on-unit prints a diagnostic and
resignals the error condition with info.oncode value of 1045.

info.oncode value Undefined
info.file ptr Identifies file
P> LINKAGE_FAULTS
An indirect pointer (IP) with a valid unsnapped dynamic link has been

referenced but the desired entry point was not found in the dynamic
link tables.

ffh.fault type '54'B3
ffh.fault addr Points to IP
ffh.ret po Points to instruction causing error.

Info structure:

dcl 1 info based,
2 entry name char(32)var; /*Name of entry point not found*/

P> LISTENER _ORDERS$
This condition is used internally by the command loop to manage its
recursion. Users should never create on-units for this condition and

user default on-units (ANYS) should always pass this condition on by
returning.

REV. A 23 - 14

PDR3621 CONDITION MECHANISM

P> NO_AVAIL SEGS$

Reference has been made to a virtual address that refers to a segment

not yet created. The system has no free page tables to assign to the
segment. If the on-unit for this condition returns, the reference will

be retried and will succeed if a segment has become available.

ffh.fault type '50'83
ffh.ret po Points to instruction causing error
ffh.fault addr Virtual address referencing segment

P> NONLOCAL GOTOS$

A nonlocal goto is about to occur. This condition is signalled by
PLLSNL immediately before setting up the stack unwind and therefore
prior to any call of CLEANUPS on-units. The default on-unit for this
condition simply returns. Any user-written procedure should return
(without setting the continue-to-signal) in order to allow the goto to
proceed. Information structure:

dcl 1 info based,

2 target label, /*Target of nonlocal*/
/*goto*/
2 ptr_to nlg call ptr options (short) ,/*Pointer to PL1$NL*/
- /*call*/
2 info.caller sb; /*Pointer to stack frame*/
/*requesting nonlocal*/
/*goto . */

P> NULL POINTERS

A reference has been made through an indirect pointer or base register
whose segment number is '7777'B3. This is considered to be a reference
through a null pointer, although user software should always use the
single value 7777/8 for the null pointer. The default on-unit
resignals the ERROR condition.

ffh.fault type '60'B3

ffh.ret_pg Points to instruction making reference
ffh.fault addr Null pointer through which reference
was made.

23 - 15 January 1980

SECTION 23 PDR3621

P> OUT OF BOUNDSS$

Reference has been made to a page of some segment for which no main
memory or backing storage has been allocated, and allocation is not
pemitted.

ffh.fault type '19'B3
ffh.ret pb Points to instruction making illegal reference
ffh.fault addr Illegal virtual address

P> PAGE FAULT ERRS

A valid virtual address has been referenced but because of a disk
error, the page control mechanism has been unable to load the page into
main memory. If the on-unit for this condition returns, the reference
will be retried. If the disk read succeeds, the reference will be
completed.

ffh.fault type '19'B3
ffh.ret pb Instruction with illegal reference
ffh.fault addr Virtual address causing problems

P PAUSES

A PAUSE statement has been executed in a FORTRAN program. This
condition is used by PRIMOS to ensure the proper operation of the PAUSE
statement, and should not be handled by user programs. The default
on-unit prints no diagnostic, but calls a new command level.

P> POINTER FAULTS
Reference has been made through an indirect pointer (IP). The fault
bit of the pointer is on, but the pointer did not appear to be a valid
unsnapped dynamic link.

ffh.fault type '64 'B3

ffh.fault addr Points to invalid IP
ffh.ret po Points to instruction causing error

REV. A 23 - 156

PDR3621 CONDITION MECHANISM

p ourrs

The user has activated the quit button (Break key or Control-P) on the
teminal. The default on-unit flushes the input and output buffers of
the user's terminal, prints "QUIT" on the terminal and calls a new
command level,

ffh.fault type '34'83
ffh.ret pb Points to next instruction to be executed

P> REENTERS

This condition 1is raised by the PRIMOS REENTER (REN) command and
reenters a subsystem that has been temporarily suspended due to another
condition (such as a QUIT signal) .

P> RESTRICTED INSTS

Attempt has been made to execute an instruction restricted to ring 0
procedures. Although some of these instructions in the I/0 class can
be simulated by ring-@, an instruction causing this condition to be
raised, cannot be simulated.

ffh.fault type '30'B3
ffth.ret pb Points to instruction in error

P> RO ERRS

Aring 8 call to ERRPRS or ERRRTN has been made because of the
detection of a fatal error. The default on-unit prints no diagnostic
but calls a new command level.

P> STACK OVF$

The process has overflowed one of its stack segments, but the condition
mechanism was able to locate a stack on which to raise this condition.
The static mode default on-unit will attempt to simulate the PRIMOS
stack overflow fault, if the appropriate word of segment '4000 is
non-zero (see the System Architecture Guide for more information) . If
this word is zero, or if no static mode program is being executed,
standard default handling occurs.

£fh.fault type '54'B3
ffh.fault addr Last stack segment in stack that overflowed
ffh.ret po Points to instruction causing error

23 - 17 January 1980

SECTION 23 PDR3621

P sTOPS

A STOP statement has been executed in a higher-level-language program.
This condition is used by PRIMOS to ensure the proper operation of the
STOP statement in the various languages. This condition should not be
handled by user programs. The default on-unit per forms a nonlocal goto
back to the command processor invoking the procedure which executed the
STOP statement.

P SVC_INSTS

An SVC instruction has been executed, but the system is unable to
per form the operation. If the user is in "svC virtual"™ mode, all SVC
instructions raise this condition. For virtual SWC's, the static mode
default on-unit will simulate PRIMOS III fault handling for the SVC
fault, if the appropriate word of segment '400@ is non-zero (See System
Architecture Guide for word location). 1If this word is zero, or there
is no static mode program in execution, the standard defualt handler
prints a diagnostic and calls a command level.

fth.fault type '14'83
ffh.ret_pb Points to location following SVC.

Information structure:

decl 1 info based,
2 reason fixed bin;

Values of info.reason are:
1 Bad SVC operation code or bad argument
2 Alternate return needed but was zero
3 virtual SWC handling in effect
P> UNDEFINED GATE$S
The process has called an inner ring gate segment at an address within
the initialized portion of the gate segment, but no legal gate is found

at that address. This results from gate segments being padded to the
next page boundary with "illegal" gate entries.

REV. A 23 - 18

PDR3621 CONDITION MECHANISM

p UIIs

The process has executed an unrecognized instruction that caused an
Unimplemented Instructiion (UII) Fault, or the system UII handler
detected an error in processing the valid UII.

ffh.ret ph points to next instruction
ffh.regs is not valid

CRAWLOUT MECHANISM

An event known as a crawlout occurs whenever the Condition Mechanism
reaches the end of an inner ring stack (a ring other than 3) without
finding a selectable on-unit for the condition that has been raised.
Note that a crawlout can occur even when the inner ring has an on-unit
for the condition, if that on-unit signals another condition, or if the
on-unit calls CNSIG$ and returns, causing a resunption of the stack
scan. The scan for on-units resumes on the stack of the ring which
invoked the inner ring. The outer ring receives a copy of the machine
state at the time the condition was raised.

RECURSIVE MODE SOFTWARE
The Recursive Command Environment provides a fully recursive command
processing loop that is also highly modular. The implementation of the
new environment partitions system and user software into two categories
- recursive mode and static mode.
Static mode software:

e allocates its own segments.

® manages its own stack.

® manages its own shared libraries' initialization.

® uses a "memory image" approach in which the program is reloaded

each time it 1is called and therefore programs may not be

recursively invoked from command level,

User on-units, any procedures they call, and all internal commands are
recursive mode software and therefore have the following properties:

® use the system stack.
e terminate by returning level.
e do not attempt to initialize shared libraries.

@ are not reloaded as memory image each time called.

23 - 19 January 1930

SECTION 23 PDR3621

A recursive mode procedure must termminate by returning, not by calling
EXIT. Arguments for recursive mode commands are passed as parameters
and are not obtained from some static buffer., Error information 1is
passed by setting a return parameter (error code) , printing an error
message and returning, or by signalling a condition. The ERRRTN call
must not be used and ERRPRS may be used only with the immediate-return
key.

The subroutines COMLVS and CMLVSE are available to the user in the
recursive environment.

P CcouLvs

COMLVS invokes a new listener level of the PRIMOS Command Loop. When
the command loop returns, COMLVS will return to its caller.

dcl comlv$ entry ();
CALL comlvs;

COMLVS is used when there is no "command error" to report to the user.

p CMLVSE

CMLVSE invokes a new listener level of the PRIMOS Command Loop and is
used when "command error" processing at the new command level is
desired. The command input file (if any) is paused, command output to
the terminal is forced on, QUITS are enabled and "ER" is used for the
prompt message.

dcl omlvSe entry ();
CALL cmlvS$e;

Note

COMLVS and CMLVSE switch stacks to the command processor stack,
if the process was not already executing on that stack.

REV. A 23 - 20

PDR3621 CONDITION MECHANISM

DATA STRUCTURE FORMATS

The data structures associated with the condition mechanism are
described below. 2Any user program that uses these structures should
exanine the version number in the structure (if one is provided); if
the format of a structure changes, the version number will be
incremented. The user program can then take appropriate action if it
is presented with structures of different formats.

The Condition Frame Header (CFH)

The following declaration shows the format of the Standard Condition
Frame Header:

dcl 1 cfth based, /* standard condition frame header */
2 flas,

3 backup_inh bit(1),

3 cond_fr bit(l),

3 cleanup done bit(l),

3 efh present bit(l),

3 user proc bit(l),

3 mbz bit(9),

3 fault fr bit(2),

root,

3 mbz bit(4),

3 seg _no bit(12),

ret po ptr,

ret sb ptr,

ret lb ptr options (short),

ret keys bit(16) aligned,

after pcl fixed bin,

hdr_reserved(8) fixed bin,

owner_ptr ptr options (short),

cflags, -

crawlout bit(1l),

continue sw bit(l),

return ok bit(1l),

inaction ok bit(l),

specifier bit(l),

3 mbz bit(1l),

version fixed bin,

cond name ptr ptr options (short),

ms _ptr ptr options (short),

info ptr ptr options (short),

ms len fixed bin,

info len fixed bin,

saved _cleanup pb ptr options (short);

DN NN O N N
wwwww

NN N

23 - 21 January 1980

SECTION 23 PDR3621

flags.backup inh
will always be '@'b in a condition frame. It is wused in
regular call frames to control program counter backup on
crawlout from an inner ring.

flags.cond_fr
identifies this frame as a condition frame, and will thus be
'1'b.

flags.cleanup done
is '1"b when this activation has been "cleaned up" by the
procedure unwind , which helps to effect nonlocal goto's. When
this flag is set, the value of cfh.ret pb no longer describes
the return point of the activation; that information 1is
available in cfh.saved cleanup ph.

flags.efh present
will always be '@'b in a condition frame. It 1is wused in a
regular call frame to indicate that an extended stack frame
header containing on-unit data is present.

flags.user proc
identifies stack frames belonging to "non-support" procedures,
and hence will be '@'b in a condition frame.

flags.mbz
is reserved and will be '@'b.

flags.fault fr
will always be '98'b in a condition frame.

root .mbz
is reserved and must be '9'b.

root .seg no
is the hardware-defined stack root segment number, and
indicates which segment contains the stack root for the stack
containing this fault frame.

ret pb
N points to the next instruction to be executed following the
call to SIGNLS that caused this condition to be raised, unless
flags.cleanup done is 'l'b, in which case cfh.ret_pb will point
to a special code sequence used during stack unwinds, and
cfh.saved cleanup po will contain the former value of
cfh.ret pb.
ret sb

is the hardware-defined stack base of the caller of SIGNLS.
Thus, this value also points to the previous stack frame on the
stack.

REV. A 23 - 22

PDR3621 CONDITION MECHANISM

ret 1lb
- is the hardware-defined linkage base of the caller of SIGNLS.
ret keys
is the hardware-defined keys register of the caller of SIGNLS.
after pcl

is the hardware-defined offset of the first argument pointer
following the call to SIGNL$S that raised this condition.

hdr_reserved
is reserved for future expansion of the hardware-defined
PCL/CALF stack frame header, of which the totality of cfh is a
further extension.

owner_ptr
is reserved to point to the ECB of the procedure that owns this
stack frame (usually SIGNLS).

cflags.crawlout ,
is "1'b if this condition occurred in an inner ring (a ring
number lower than the ring in which the on-unit is executing),
but could not be adequately handled there; otherwise it is
'a'b.

cflags.continue sw

is used to indicate to the condition mechanism whether the
on-unit that was Jjust invoked (or any of its dynamic
descendants) wishes the backward scan of the stack for on-units
for this condition to continue upon the on-unit's return., The
subroutine CNSIGS is used to request that cflags.continue sw be
turned on; user programs should NOT attempt to set it
directly. This switch is cleared before each on-unit is
invoked (except ANY$ on-units).

cflags.return ok

is '1'b if the procedure that raised the condition is willing
for control to be returned to it by means of the on-unit simply
returning. If '@¢'b, an attempt by an on-unit for this
condition to return will <cause the special condition
ILLEGAL ONUNIT RETURNS to be signalled. Note, however, that
the on-unit may return regardless of the state of
cfh.cflags.return ok if cfh.cflags.continue sw has previously
been set by a call to CNSIGS. This is because, in this case,
the on-unit return does not cause a return to the procedure
that raised the condition, but instead causes a resunption of
the stack scan.,

cflags.inaction ok
is '1'b if the procedure that raised the condition has
determined that it makes sense for an on-unit for this
condition to return without taking any corrective action. If
'9'b, the on-unit must take some corrective action before

23 - 23 January 1980

SECTION 23 PDR3621

returning, or else continued computation may be undefined.
Cflags.inaction ok will never be 'l'b unless cflags.return ok
is '"1'b as well. No user program should change the state of
this or any other member of cfh.cflags.

cflags.specifier
if '1'b, indicates that this condition is a PL/I 1/0 (PLIO)
condition that requires a specifier pointer as well as a
condition name to completely identify it. This specifier is
usually a pointer to a PLIO file control block. The specifier
must be the first member of the info structure.

cflags .mbz
is reserved for future expansion and must be '¢'b.

version
identifies the version number (and hence the format) of . this

structure, and will currently always be 1.

cond name ptr
is a pointer to the name (char(32) varying) of the condition

because of which the on-unit is being invoked.

ms ptr

- is a pointer to a structure which defines the state of the CPU
at the time the condition occurred. In the case of hardware
faults, ms ptr will point to a Standard Fault Frame Header
(fEf. In the case of software-initiated conditions, ms ptr
will point to a cfh. The two cases can be distinguished by the
value of ms ptr -> cfh.flags.fault fr: if '@@'b, the software
case obtains; otherwise, the hardware case obtains.

info ptr
is a pointer to an arbitrary structure containing awxiliary
information about the condition., If null, no information is
available. This pointer is copied directly from the
corresponding argument to SIGNLS. If cflags.specifier is 'l'b,
the format of this structure is partially constrained as
described above.

ms len
- is the length in words of the structure pointed to by ms ptr.

info len
is the length in words of the structure pointed to by info ptr.

saved cleanup pb
T is valid only if flags.cleanup done is 'l'b, and if valid is
the former value of cfh.ret pb (which has been overwritten by
the nonlocal goto processor) .

REV. A 23 - 24

PDR3621 CONDITION MECHANISM

Note

Any procedure attempting to interpret the data contained in a
cfh structure should be aware that, in the case of a crawlout,
cfh.ms ptr describes the machine state at the time the
condition was generated., The stack history pertaining to that
machine state has been lost as a result of the crawlout.

The machine state extant at the time the inner ring was entered
is available, and is pointed to by cfh.ret sb. This machine
state will be a cfh or an ffh according to whether the inner
ring was entered via a procedure call (cfh) or a fault (ffh).
The value of cfh.ret sb -> cfh.flags.fault fr can be used to
distinguish these cases. -

In the case where a crawlout has not occurred, cfh.ms ptr
points to the proper machine state, and no assumptions can be
made concerning cfh.ret sb.

The Extended Stack Frame Header

Any procedure (or begin block) that desires to create one or more
on-units must reserve space in its stack frame header for an extension
that contains descriptive information about those on-units. This space
is allocated simply by including in such procedures, the proper
declaration for the subroutine MKONUS.

The format of the stack frame header (with extension) is:

dcl 1 sfh based, /* stack frame header */
2 flags,

3 backup‘inh bit(1l),

3 cond fr bit(l),

3 cleanup done bit(l),

3 efh present bit(l),

3 user_proc bit(l),

3 mbz bit(9),

3 fault fr bit(2),

root,

3 mbz bit(4),

3 seg no bit(12),

ret po ptr,

ret sb ptr,

ret 1lb ptr options (short),

ret - keys bit(16) aligned,

after ~pcl fixed bin,

hdr reserved(8l fixed bin,

owner ptr ptr options (short),

tempsc(8) fixed bin,

onunit ptr ptr options (shorti,

cleanup onunit ptr ptr options (short),

next efh ptr options (short);

N

NN DNNDNNDDNND

23 - 25 January 19809

SECTION 23 PDR3621

flags.backup_ inh

is exanined only if this stack frame 1is the "crawlout
frame" on an inner ring stack, and a crawlout is taking
place. If 'l'b, it indicates that sfh.ret po is to be
copied to the outer ring as-is, so that the operation being
aborted by the crawlout will not be retried. If '0'b,
sfh.ret pb will be set to point at the pcl instruction so
that the inner ring call may be retried.

flags.cond fr
will be '@'b unless the frame is a condition frame (and is
hence described by the structure "cfh").

flags.cleanup done
is '"U"b if the nonlocal goto processor has "cleaned up"
this frame by invoking its CLEANUP$ on-unit if any, and
resetting its sfh.ret po to point to a special code
sequence to accomplish the unwinding of this stack frame.
When 'L'b, the former value of sfh.ret pb may be found in
sfh.tempsc(7:8) provided sfh.flags.efh present is set.

flags.efh present

is "L'b if the extension portion of this frame header has
been validly initialized. In the present implementation,
this implies that at least one call to MKONUS has been
made, since MKONUS is responsible for performing the
initialization. 1If '@'b, members of this structure below
marked (EFH) are not valid and may be used by the procedure
for automatic storage.

flags.user proc
is '"1'b if this stack frane belongs to a "non-support"
procedure; else is '@'b. If flags.user proc is 'L'b,
sth.owner ptr is guaranteed to be valid, and to point to an
ECB which is followed by the name of the entrypoint.

flags.mbz
is reserved and will be '3'b.

flags.fault fr
is '?9'b if this frame was created by a regular procedure
call; or '1@' if this frame is a fault frame (f£fh) with
valid saved registers; or '21'b if this frame is a fault
frame (ffh) in which the registers have not yet been saved.

root .mbz
is reserved and must be '3'b.

root.seg no

1s the hardware-defined segment number of the stack root of
the stack of which this frame is a member.

REV. A 23 - 25

PDR3621 CONDITION MECHANISM

ret pb
points to the next instruction to be executed upon return
from this procedure.

ret sb
contains the stack base belonging to the caller of this
procedure, and hence also points to the immediate
predecessor of this stack frame,

ret 1b
contains the linkage base belonging to the caller of this
procedure.

ret keys
contains the hardware-defined keys register belonging to
the caller of this procedure.

after pcl

is a value such that the pcl instruction points to two
words beyord the procedure call (PCL) instruction that
invoked this procedure.

hdr_reserved (EFH)
is reserved for future expansion of the hardware-defined

PCL stack frame header.

owner ptr (EFH)
points to the Entry Control Block (ECB) of the procedure
that owns this stack frame. This member wmust be
initialized by the called procedure itself, as the PCL
instruction does not do it.

tempsc (EFH)
is a fixed-position block of eight words to be used as
temporary storage by procedures called by this procedure
that have a "shortcall" invocation sequence and hence have
no stack frame of their own.

onunit ptr (EFH)

" points to the start of a chain of on-unit descriptor blocks
for this activation. If onunit ptr is null, this
activation has no onunit blocks, except possibly for the
condition CLEANUPS as described below.

cleanup onunit ptr (EFH)
If nonnull, this activation has an on-unit for the special
condition CLEANUPS, and cleanup onunit ptr points to the
ECB for that on-unit procedure (it does not point to an
on-unit descriptor block) .

23 - 27 January 1980

SECTION 23 PDR3621

next efh(EFH)
points to the first on a chain of additional stack frame
"header" blocks, so that these do not have to be allocated
at the beginning of the stack frame. Presently, next efh
will always be null.

The Standard Fault Frame Header

Whenever a hardware fault occurs, the Fault Interceptor Module (FIM) is
expected to push a stack frame with the standard format shown below.

The standard fault frame header structure is:

dcl 1 f£fh based, /* standard fault frame header */
2 flags,
backup inh bit(1),
cond_fr bit(l),
cleanup done bit(l),
efh present bit(l),
user_proc bit(1l),
3 mbz bit(9),
3 fault fr bit(2),
2 root,
3 mbz bit(4),
3 seg no bit(12),
ret po ptr,
ret sb ptr,
ret lb ptr options (short),
ret keys bit(16) aligned,
fault type fixed bin,
fault code fixed bin,
fault addr ptr options (short),
hdr_reserved(7) fixed bin,
regs, '
3 save mask bit(16) aligned,
3 fac 1(2) fixed bin(3l),
3 fac @ (2) fixed bin(31),
3 genr(@:7) fixed bin(31),
3 xb reg ptr options (short),
2 saved cleanup pb ptr options (short),
2 pad fixed bin;

wwwww

DN NN DN

flags.backup_inh
will be ignored by the Condition Mechanism for fault frames.

flags.cond_fr
will be '"0'b in a fault frame.

REV. A 23 - 28

PDR3621 CONDITION MECHANISM

flags.cleanup done
is set to 'l'b by the stack unwinder when it has "cleaned up"
this fault frame. The old value of ffh.ret pb has been placed
in ffh.saved cleanup pb, provided flags.fault fr is '10'b.

flags.efh present
will be '9'b in a fault frame, implying that FIM's may not make
on—units.

flags.user proc
will always be ''b in a fault frame.

flags .mbz
is reserved and will be '9'b.

flags.fault fr
will be '19'b if this frame is indeed a standard format ffh and

the registers have been validly saved in ffh.regs; else will
be 'g1'b.

root.seg no

is the hardware-define stack root segment number.

ret pb

points to the next instruction to be executed following a
return from the fault. This will frequently also be the
instruction that caused the fault (the case for those faults
defined by the CPU reference manual as "backing up" the program
counterd . If flags.cleanup done is 'l'b, ret po will point to
a special "unwind" code sequence, and 1ts former value will
have been saved if possible in ffh.saved cleanup pb.

ret sb
- contains the value of the SB register at the time of the fault,
and hence will usually point to the predecessor of this stack
frame.

ret 1b
- contains the-value of the LB register at the time of the fault.

ret keys
- contains the value of the KEYS register at the time of the
fault. This can be used to determine in what addressing mode
the fault was taken.

fault type

is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (e.g. a Process Fault
results in a fault type of '04'b3). This datum cannot be
guaranteed valid, as it is not set indivisibly with the
hardware-defined header information. Since FIM's usually set
fault type just after saving the registers, it is very unlikely
for fault ._type to be invalid.

23 - 29 January 1980

SECTION 23 PDR3521

fault code
is the hardware-defined fault code produced by the fault that
was taken.

fault addr
is the hardware-defined fault address produced by the fault

that was taken.

hdr reserved
is reserved for future expansion of the hardware-defined stack
header.

regs
is valid if flags.fault fr is '1@'b,-and if valid contains the
saved machine registers at the time of the fault, in the format
produced by the RSAV instruction.

saved cleanup pb
is valid only if flags.fault fr is '10'b and flags.cleanup done
is '"l'b, and if valid contains the value that was in ret pb
before the latter was cverwritten by the stack unwinder.

pad

exists only to make the size of this structure an even number
of words.

The On-Unit Descriptor Block

Each on-unit created by an activation is described to the condition
mechanism by a descriptor block (except for the special condition
CLEANUPS, which has no descriptor). These descriptor blocks are
threaded together in a simple linked list, the head of which is pointed
to by sfh.onunit ptr. The format of an on-unit descriptor is:

del 1 onub based, /* standard onunit block */
ecb ptr ptr options (short),

next ptr ptr options (short),
flags,

3 not reverted bit(l),

3 is proc bit(l),

3 specify bit(l),

3 snap bit(l),

3 mbz bit(12),

pad fixed bin,

cond name ptr ptr options (short),
specifier ptr options (short);

N NN

NN N

REV. A 23 - 30

PDR3621 CONDITION MECHANISM

ecb ptr
points to the Entry Control Block (ECB) which represents the
procedure or begin block to be invoked when this on-unit is
selected for invocation.

next ptr
points to the next on-unit descriptor on the chain for this
activation, or else is null if at the end of the list.

flags.not _reverted
is 'Ll'b if this on-unit is still valid and has not been
reverted, and is '0'b if the on-unit has been reverted and is
to be ignored by the condition raising mechanism.

flags.is proc
is '1'b if this on-unit was made via a call to the primitive
MKONUS, and '@'b if it was made via the PL/I <on statement>.

flags.specify
is 'L'b if the condition name does not fully identify which
condition this on-unit block is to handle: onub.specifier is a
further qualifier in this case.

flags.snap
is '"1'b if the <snap option> was specified in the PL/T <on
statement> that created this on—-unit; otherwise it is 'g'b.

flags.mbz
is reserved and must be '0'b.

pad
is reserved and must be @.

cond name ptr
is a pointer to a varying character string containing the
condition name for which this on-unit is a handler. This name
may be an incomplete specification if onub.flags.specify is
'"1'b,

specifier
is valid only if onub.flags.specify is 'l'b, and if valid
qualifies the condition name that is pointed to by
onw.cond name ptr. The primary use of onub.specifier is for
PL/I 1I/0 conditions, in which the specification of the
condition requires both a name and a file descriptor pointer.

23 - 31 January 1930

PDR3621 FORTRAN INTERNAL SUBROUTLNES

APPENDIX A

FORTRAN INTERNAL SUBROUTINES

INTERNAL SUBROUTINES

The following subroutines are used internally by the FORTRAN compiler.
They may be of some value to the user and are briefly described. For
calling sequence and further information, refer to the compiler or
library source listings.

Table A-l. Subroutines Internal to FORTRAN

Subroutine Function
FSTR Per form the function of the FORTRAN TRACE
routine.
F$RN Read with no alternate returns.
FSRNX Read with ERR= and END= alternate returns.
FSWN Write with no alternate returns
FSWNX Write with ERR= alternate return.
FS$DN Close (END-FILE) logical device specified.
FSFN Provide backspace function to FORTRAN run-time
programs.
FS$BN Rewind logical dewvice specified.
FSCB End of READ/WRITE statement.
F$Al Input/output 16-bit integer.
FSA2 Input/output single-precision floating-point.
FS$A3 Input/output logical.
FSAS Input/output complex.
FSA6 Input/output double-precision floating-point.
FS$A7 Input/output long integer.
F$BKSP Backspace statement processor.
FS$CG FORTRAN computed GOTO processor.

A - 1 January 1980

APPENDIX A

REV.

Subroutine

A

Table A-1.

F$CLOS
FSOPEN
FSRA

FSINQU
FSINQF
FSPAUS
FSRB

F$SRAX

FSRBX
FSRX
F$STOP
FSWA
FOWB

FSWAX

FSWBX

FSWX
FSEN
FSEND
FSDE
FSDEX

FSIOFTN

F$1077

PDR3621

Subroutines Internal to FORTRAN (continued)
Function

Close statement processor.

Open statement processor.

Read ASCII, no alternate returns.

Inquire by unit statement processor.

Inquire by file statement processor.

Pause statement processor.

Read BINARY, no alternate returns.

Read ASCII, with ERR= and END= alternate
returns.

Read BINARY with ERR= and END= alernate returns.
COMMON read handler.

Stop statement processor.

Write ASCII, no alternate returns.

Write BINARY, no alternate returns.

Write ASCII with ERR= and END= alternate
returns.

Write BINARY, with ERR= and END= alternate
returns.

COMMON write handler.

Encode statement processor.

Endfile statement processor.

Decode statement processor.

Decode statement processor with ERR=.

Read and write records in manner
compatible with FS$IO

Read and write variable-length
records in default case of FSIO.

PDR3621 FORTRAN INTERNAL SUBROUTINES

Table A-1. Subroutines Internal to FORTRAN (continued)

Subroutine Function
FSIFW Initialize formatted write.
FSIFR Initialize formatted read.
FSINR Initialize namelist read.
FSIBW Initialize unformatted write.
FSIBR Initialize unformatted read.
FSILDR Initialize list-directed read.
FSILDW Initialize list-directed write.
FS$IOBF FSIO buffer definition (up to 128 words,

for R-mode and non-shared V-mode; up to
16K-1 words in shared V-mode library).

FSREW Rewind statement processor.

F$SRTE FORTRAN RETURN statement processor.

FSAT FORTRAN R-mode argument transfer subroutine.
FSATI FORTRAN argument transfer subroutine for

PROTECTED subroutine,

A - 3 ‘ January 1980

APPENDIX A PDR3621

INTRINSIC FUNCTIONS

The following subroutines are the FORTRAN library intrinsic function
handlers:

Subroutine Function
FSLT Left truncate
FSRT Right truncate
FSLS Left shift
FS$RS Right shift
FSSH General shift
FSOR Inclusive OR

FLOATING POINT EXCEPTIONS
The FLEX (and FSFLEX) subruotines are invoked by the compiler or
system. This subroutine is the floating point exception interrupt
processor. It determines the exception type, which may be:

Exponent over flow/under flow

Divide by zero

Store exception

Real-integer exception

A message is returned as follows:

Exponent Overflow SE
Exponent Under flow DE
Divide by Zero Dz
Store Exception SE
Real-Integer Exception RI

For further information on floating point exception (FLEX), refer to
the System Architecture Reference Guide (PDR3063) .

REV. A A - 4

PDR3621 CONTROL SUBROUTINES

APPENDIX B

INDICATION AND CONTROL SUBROUTINES

OVERVIEW

These subroutines return a message or an error indicator value in AC5
or set a value depending on some machine condition.

They include:
OVERFL
SLITE SLITET SSWTCH
DISPLY

These subroutines are not currently available in V-mode under PRIMOS.

SUBROUTINE DESCRIPTIONS
DISPLY
DISPLY updates the sense light settings according to argument Al. The

bit values of Al (1=ON, @=0OFF) correspond to switch/light settings
which are displayed on the computer control panel.

CALL DISPLY (Al)

QOVERFL
Argument Al in location AC5 is given.a value 1 if entry into FSER was
made; otherwise it is set to 2. FSER is 1left 1in the no error

condition. OVERFL is called to check if an overflow condition has
occurred.

CALL OVERFL (Al)

B - 1 January 1980

APPENDIX B PDR3521

SLITE

Sets the sense 1light specified in argument Al ON or sets all sense
lights OFF. 1If Al=0, all sense lights are reset OFF.

CALL SLITE (Al)

CALL SLITE (@)
SLITET
SLITET tests the setting of a sense light specified by the argument Al.
The result of this test (1 for ON, 2 Ffor OFF) is in the location
specified by the argument R.

CALL SLITET (Al,R)

SSWTCH

SSWTCH tests the setting of a sense Switch specified by the argument
Al. The result of this test (1=SET, 2=RESET) is stored in the location
specified in argument R.

CALL SSWTCH (Al,R)

REV. A B - 2

PDR3621 SVC INFORMATION

APPENDIX C

SVC INFORMATION

SVC's CALLED BY PRIMOS SUBROUTINES
This appendix defines SVC's called by PRIMOS subroutines.

Note

* => Also Direct Entrance Call.

*1500 ATCHSS (ufdnam,namlen,ldisk,passwd, (key code))
1499 ATTACS (ufdnam,namlen,ldisk,passwd, (key,loc (code)))
9199 ATTACH (ufdnam,ldisk,paswd, (key,altrtn))

*P5¢7 BREAKS (offon)

*3601l CLlIN (char)

@602 COMREAD (char)
*1515 CNAMSS (oldnam,oldlen,newnam,newlen,code)

#113 CNAME (oldnam,newnam,altrtn)

1415 CNAMES (oldnam,oldlen,newnam,newlen,loc(code))

*@604 CNINS (buff,charcnt,statv(3))

*3609 COMANL

*¥1516 COMISS (filnam,namlen,unit,code)

1416 COMINS (filnam,namlen,unit,loc(code))
P603 COMINP (filnam,unit,(altrtn))

*1523 COMOSS (key,filnam,namlen ,xxxxxx,code)

%401 CONECT (tgtnam,tgtusr,lun,data,statv,lintyp)

*15¢01 CREASS (ufdnam,namlen,opass,npass,code)

1401 CREATS (ufdnam,namlen,opass,npass,loc(code))
2506 DSINIT (pdev)
P419 DISCON (lun,data,statv)

*3705 DUPLXS (key)

*1524 ERKLSS (key,erasec,killc,code)

*1402 ERRPRS (key,code) ,text,txtlen,name,namlen)
$106 ERRRTN (altrtn,name,msg,msglen)

@114 ERRSET (altval,altrtn,name,msglen)

*3105 EXIT
0400 PFPAMSVC (al,a2,a3,a4,a5,a6,altrtn)

*3115 FORCEW (key,unit)

@402 GETCON (target,user,data,statv)
@110 GETERR (buff,nw)
3112 GINFO (buff,nw)

*1504 GPASS$S (ufdnam,namlen,opass,npass,code)
1404 GPASS$ (ufdnam,namlen,opass,npass,code)
3412 NETLNK (statv)

3406 NETWAT
A497 NTSTAT (key,pl,p2,array)
@111 PRERR

*1506 PRWFSS (key,Funit,loc(bf) ,bflen,pos32,rnw,code)

9300 PRWFIL (key,unit,loc(buff) ,n,pos,altrtn)

C - 1 January 1930

APPENDIX C PDR3621

1496 PRWFLS (key,unit,loc(buff) ,nw,pos,rnw,loc(code))
*15¢07 RDENS$S (key,funit,bf,bfln,rnw,nam32,namln,code)

1487 RDENTS (key,unit,buff,buflen,Rnw,name32,namlen,loc(code))

9202 RDLIN (unit,line,nw,altrtn)

*1525 RDLINS (unit,line,nw,code)
*1517 RDIKSS (key,info(8) ,buff,buflen,code)
1417 RDTKNS (key,info(8) ,buff,buflen,loc(code))
#4¢4 RECEIV (lun,loc(buff) ,nw,statv)
*}J505 RECYCL
*1520 RESTS$$ (rvec,name,namlen,code)
142@ RESTOS (rvec,name,namlen,loc(code))
@193 RESTOR (rvec,name,altrtn)
*1521 RESUSS (name,namlen)

1421 RESUMS (name,namlen)

@104 RESUME (name)

@463 RJICON (target,user,statv,numtyp)

3503 RREC (loc(buff) ,buflen,n,ra,pdev,(altrtn))

@516 RRECL (loc(buff) ,buflen,n,ra32,pdev,(altrtn))
*1510 SATRS$S (key,name,namlen,array,code)

1410 SATTRS (key,name,namlen,array,loc(code))

#0132 SAVE (rvec,name)

1422 SAVES (rvec,name,namlen,loc(code))

*1522 SAVESS (rvec,name,namlen,code)

1411 SEARCS (key,name,namlen,unit,type,loc(code))

@101 SEARCH (key,name,unit,(altrtn))

1414 SEGDRS (key,unit,entrya,entryb,loc(code))
*1512 SGIR$S (key,funit,entrya,entryb,code)

* —— SEMS$DR (semnum,code)

* —— SEMSNF (semnum,code)

* —— SEMSTN (semnum,int32,int32,code)
* — SEMSTS (semmun,code) (int fcn)
¥ — SEMSWT (semnum,code)

* - SLEEPS (int32)

*1513 SPASS$S (opass,npass,loc(code))

1413 SPASS$ (key,name,namlen,unit,type,code)
*1511 SRCH$$ (key,name,namlen,unit,type,code)
*3513 TSAMLC (line,loc(buff) ,nw,inst.statv)

*3512 TSCMPC (unit,loc(buff) ,nw,inst,statv)
*P511 TSLMPC (unit,loc(buff) ,nw,inst,statv)
*3515 TSPMPC (unit,loc(buff) ,nw,inst,statv)
*351¢ TSMT (unit,loc(buff) ,nw,inst,statv)
*3514 TSVG (unit,loc(buff) ,nw,inst,statv)
1001 TSSLC (key,line,loc(buff) ,nw)

*35@2 TIMDAT (buff,buflen)

*3732 TNOU (msg ,charcnt)

*3703 TNOUA (msg,charcnt)

@405 TRNMIT (lun,loc(buff) ,cnt,statv)

#411 UNLINK

#5@1 WREC (loc(buff) ,buflen,n,ra,pev, (altrtn))

8517 WRECL (loc(buff) ,buflen,n,ra32,pdev,(altrtn))

@203 WTLIN (unit,line,nw,(altrtn))

*1526 WTLINS (unit,line,nw,code)

PDR3621 SVC INFORMATION

SVC INTERFACE FOR I-O CALLS

The I/0 subroutines described in Section 15 interface with the
operating system by means of supervisor call instructions (SVC's).
This Appendix describes these interfaces.

SVC INTERFACE CONSIDERATIONS

Disk

The disk interfaces with virtual memory through a supervisor call (SVC)
instruction to perform a READ or WRITE operation on a single physical
record of a physical disk. The disk must be assigned to the terminal
by the ASSIGN command. Refer to RREC and WREC in Section 6. For
information about the SVC instruction, refer to the Systems Reference
Manual and the PMA User Guide.

Magnetic Tape

Input/Output operations for magnetic tape are accomplished by PRIMOS
IIT through SVC calls. Refer to TSMT in the Section 15.

MPC Line Printer

Output to the parallel interface line printer is accomplished through
SVC calls. Refer to TSIMPC in the Section 15.

MPC Card Reader

Input from the parallel interface card reader is controlled through SVC
calls. Refer to TSCMPC in the Section 15.

Table C-1 is a 1list of SVC codes used by PRIMOS III (SVC codes are
generally not applicable to PRIMOS users).

c - 3 January 1980

APPENDIX C PDR3621
Table C-1. SVC Numbers Used by PRIMOS III.
SVC Number Associated Call
100 ATTACH (ufdnam, ldev, passwd, key, altrtn)

1 SEARCH (key, name, unit, altrtn)
2 SAVE (rvec, name)
3 RESTOR (rvec, name, altrtn)
4 RESUME (name)
5 EXIT
6 ERRTN (altrtn, al, a2, a3)
7 UPDATE (1,9)

110 GETERR (buff, nw)
1 PRERR
2 GINFO (abuff, nw
3 CNAME (oldnam, newnam, altrtn)
4 ERRSET (altval, altrtn, al, a2, a3)
5 FORCEW (key, unit)

202 RDLIN (nit, line, nw, altrtn)
3 WTLIN (unit, line, nw, altrtn)

300 PRWFIL (key, unit, LOC(buff), nw, posv, altrtn)

500 RREC (pbav, nwv, nchn, ra, pdev, altrtn)
1 WREC (pbav, nw, nchn, ra, pdev, altrtn)
2 TIMDAT (buff, nw)

3 — reserved
4 —_ reserved
5 RECYCL

6 DSINIT (pdev)

7 BREAKS (onoff)

519 TSMT (unit, LOC(buff), nw, inst, statv)
1 TSLMPC (unit, LOC(buff) , nw, inst, statv)
2 TSCMPC (unit, LOC(buff), nw, inst, statv)
3 TS$SAMLC (line, ba, charent, key, statv, altrtn)
4 TSVG (unit, ba, nw, inst, statv)

690 COMANL
1 CLIN (char)

2 CMREAD (buff)
3 COMINP (name, unit, altrtn)
4 CNINS (buff, charent)
700 T1IN (char)
1 T10U (char)
2 TNOU (msg, cnt)
3 TNOUA (msg, cnt)
4 TOOCT (num)
5 DUPLX$ (argument)

REV. A

1009

1100

1200

TSMT
TSSLC

TSLMPC

TSCMPC

PDR3621

See 519
(key, lin LOC(buff), nw)
See 511
See 512
C - 5

SVC INFORMATION

January 1980

APPENDIX C PDR3621

OPERATING SYSTEM RESPONSE TO SVC

The operating system response to supervisor calls includes a "return to
sender" capability. The format is an SVC instruction followed by a
word encoded as follows:

Bits Meaning

1 Use interlude routine
2 Return to sender

3-4 Zero

5-1% SVC class

11-16 SVC sub-class

When bit 1 is set, the operating system assumes the location preceding
the SVC is a subroutine entry point and looks for the arguments back
through that entry point.

When bit 2 1is set, the operating system either performs the requested
function or, if the class and sub-class are not recognized, returns to
the caller at the location following the SVC code word.

The four legal syntaxes are:

l.
svC
ocT AARXYY
DAC
DAC
oCcT 2
2.
Ent DAC **
SvC
OCT 10xxyy

REV. A c - 6

PDR3621 SVC INFORMATION

SVC
oCcT BAxxyy
(return—-to—-sender location)

DAC
DAC

oCcT @

Ent DAC *%
SvC
OCT 1l4xxyy
(return—to-sender location)

.

where xX = 6 bit class
yy = 6 bit sub-class

The following classes are currently assigned:

] RTOS

1 File system miscellaneous

2 Sequential File 1/0

3 Direct File 1/0

4 -

5 DOSVM only; never reflected
6 Command input/output

7 Typers

180 Mag Tape

11 Line Printer

12 Card Reader/Punch

13 SMLC

77 Reserved for Customer Usage

c - 7 January 1980

KEYS

PDR3621

APPENDIX D

(SYSCOM KEYS.F)

SVC INFO

This appendix summarizes the keys associated with PRIMOS subroutine
calls.

KEYS (SYSCOM>KEYS.FY)

29/29/78

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

C SYSCOM>KEYS.F MNEMONIC KEYS FOR FILE SYSTEM (FIN)
NOLIST
c
C TABSET 6 11 28 69
C
INTEGER*2 KSREAD,KSWRIT,KSPOSN,K$TRNC ,KSRPOS,KSPRER, KSPREA,
X KSPOSR,K SPOSA,K$SCONV,KSRDWR, K SCLOS, K $DELE, K SEXST ,K $GETU,
X KSIUFD,KSISEG, KSCACC, K$NSAM , KSNDAM ,KSNSGS , KSNSGD, KSCURR,
X KSIMFD,K$ICUR,K$SETC,KSSETH,KSALLD,K$SPOS,KSGOND,KSMSTZ,
X K$GPOS,KSUPOS,KSNAME, KSFRCW,
X K$PROT,KSDTIM,KS$DMPB ,K$SRWLK ,K SNRTN,K $SRTN,K$IRTN, K SHOME,,
X KSMVNT ,KSRSUB ,KSFULL , KSFREE , KSCPLM, KSLGLM,
X KSUNIT,KSCURA,KSHOMA
C
PARAMETER
;i/***/
X /*
X /*
X /* KEY DEFINITIONS
X /*
X /*
X /********************* PRWF$$ dhkhkkhkkkhkhhkhkkhkkkkkk
X /* kkkkkk RWKEY kkkkkk
X KSREAD = :1, /* READ
X KSWRIT = :2, /* WRITE
X KSPOSN = :3, /* POSITION ONLY
X KSTRNC = :4, /* TRUNCATE
X KSRPOS = :5, * READ CURRENT POSITION
X /* kkkkkk POSKEY kkkkkk
X KSPRER = :4, /* PRE-POSITION RELATIVE
X KSPREA = :10, /* PRE-POSITION ABSOLUTE
X K$POSR = :20, /* POST-POSITION RELATIVE
X KSPOSA = :30, /* POST-POSITION ABSOLUTE
X /* *khkkk MODE *kkkkk
X KSCONV = :400, /* CONVENIENT NUMBER OF WORDS
X KSFRCW = :40000, /* FORCED WRITE TO DISK
*
§ ;********************* SRCH$$ khkhkkhkhkhkkkhhkkkhkkkhkkk
X /* Xkkkkk ACTION dkhkkkkk

January 1980

APPENDIX D

X /* KSREAD = :1, /*
X /* KSWRIT = :2, /*
X KSRDWR = :3, /*
X KSCLOS = :4, /*
X KSDELE = :5, /*
X KSEXST = :6, *
X KSGETU = :40000, /*
X /* kxkkkk
X KSIUFD = :0, /*
X K$ISEG = :100, /*
X KSCACC = :1090, /*
X /* *khkkkkk
X KSNSAM = :0, /*
X KSNDAM = :2000, /*
X KSNSGS = :4000, /*
X KS$NSGD = :60008, /*
X KSCURR = :177777,/*
X /*

X /*********************
X /* *kkkk*k
X KSIMFD = :0, /*
X KSICUR = :2, /*
X /* kkkkkk
X KSSETC = :0, /*
X KSSETH = :1, /*
X /* khkkkkk
X KSHOME = :0, /*
X /* dkkkik
X KSALLD = :100000,/*
X /* KSCURR = :177777,/*
X /*

X /*********************
X /* *kkkkk
X K$SPOS = :1, /*
X KSGOND = :2, /*
X KSGPOS = :3, /*
X KSMSIZ = :4, /*
X KSMVNT = :5, /*
X KSFULL = :6, /*
X KSFREE = :7, /*
X /*

X /*********************
X /* kkkkkk
X /* K$SREAD = :1, /*
X K$RSUB = :2, /*
X /* KS$GPOS = :3, /*
X KSUPOS = :4, /*
X KSNAME = :5, /*
X /*

X /*********************
X /* kkkkkk
X KSPROT = :1, /*
X KS$DTIM = :2, /*

REV.

PDR3621

OPEN FOR READ

OPEN FOR WRITE

OPEN FOR READING AND WRITING
CLOSE FILE UNIT

DELETE FILE

CHECK FILE'S EXISTENCE
SYSTEM RETURNS UNIT NUMBER
REF kkkkkk

FILE ENTRY IS IN UFD

FILE ENTRY IS IN SEGMENT DIRECTORY
CHANGE ACCESS

NEWFIL kkkkkk

NEW SAM FILE

NEW DAM FILE

NEW SAM SEGMENT DIRECTORY
NEW DAM SEGMENT DIRECTORY
CURRENTLY ATTACHED UFD

ATCHSS *hkkdkkkkskhkdkhkkkkkhk
KEY Kkkkkk

UFD IS IN MFD

UFD IS IN CURRENT UFD

KEYMOD **%**%%

SET CURRENT UFD (DO NOT SET HOME)
SET HOME UFD (AS WELL AS CURRENT)
NAME *kkkkk

RETURN TO HOME UFD (KEY=KSIMFD)
LDISK kkkkkk

SEARCH ALL DISKS

SEARCH MFD OF CURRENT DISK

SGDRSS ***kkkkkkhkkkkkkkhkik
KEY Kk ok ok

POSITION TO ENTRY NUMBER IN SEGDIR
POSITION TO END OF SEGDIR

RETURN CURRENT ENTRY NUMBER

MAKE SEGDIR GIVEN NR OF ENTRIES

MOVE FILE ENTRY TO DIFFERENT POSITION

POSITION TO NEXT NON-EMPTY ENTRY
POSITION TO NEXT FREE ENTRY

RDEN$$ hhkkkhkkkkkhkkkkkkkkkkk
KEY kkk Kk k%

READ NEXT ENTRY

READ NEXT SUB-ENTRY

RETURN CURRENT POSITION IN UFD
POSITION IN UFD

READ ENTRY SPECIFIED BY NAME

SATRSS *hkkkkkhkkkhkdkhkkkdhk
KEY *okkk kK

SET PROTECTION

SET DATE/TIME MODIFIED

X KSDMPB = :3, /*
X KSRWLK = :4, /*
X /*

X /*********************
X /* *kkkkk
X KSNRTN = :0, /*
X KSSRIN = :1, /*
X KSIRTN = :2, /*
X /%

X /*********************
X /* Kkkkkkk
X /* KSREAD = :0, /*
X /* KSWRIT = :1, /*
X /* *kkkkk
X KSCPIM = :40¢9, /*
X KSLGLM = :1000, /*
X /*

X /*

X /*********************
X /* kkkkkk
X KSUNIT = :1, /*
X KSCURA = :2, /*
X KSHOMA = :3 /*
X /*

PDR3621 SVC INFO
SET DUMPED BIT */
SET PER FILE READ/WRITE LOCK */

*/
ERRPR$ khkkkhkkhkhkhhhhhkkhhhhhx */
KEY *hkkkkk */
NEVER RETURN TO USER */
RETURN AFTER START COMMAND */
IMMEDIATE RETURN TO USER */

*/
LIMIT$ khkkkhkhkhkhkhhrhhhhhkhkhhkkhkk */
KEY kkkkkk */
RETURNS INFORMATION */
SETS INFORMATION */
SUBKEY *****% */
CPU TIME IN SECONDS */
LOGIN TIME IN MINUTES */

*/

*/
GPATHS ***kkkkdkkkikkkkkkhhkhkkkkhkhkkhk /
KEY kkkkkk */
PATHNAME OF UNIT RETURNED */
PATHNAME OF CURRENT ATTACH POINT */
PATHNAME OF HOME ATTACH POINT */

*/

X /***/

LIST

January 1980

PDR3621 INTERNAL FILE FORMATS

APPENDIX E

INTERNAL FILE FORMATS

The internal formats of all disk records for both the old and new file
management system are described below. They have been collected for
ease in noting the changes that have been made. User programs will
normally have no need to refer to the internal file system formats.
Where possible, field names are the same as those used by the internal
file system routines. Numbers preceeded by a ':' are octal, otherwise
they are decimal.

DSKRAT FORMATS

DSKRAT Format —— 0ld Partitions

| 5 | NUMBER OF WORDS IN DSKRAT HEADER = 5
| RECSIZ | DISK RECORD SIZE (448 or 1040)

| NMRECS | NUMBER OF RECORDS IN PARTITION

| UNUSED | UNUSED

| NHEADS | NUMBER OF HEADS IN PARTITION

: DATA | START OF DKSRAT DATA (ONE BIT/RECORD)
coee |

Ol WN — R

DSKRAT Format —— New Partitions

g 1 8 | NUMBER WORDS IN HEADER = 8

1 | RECSIZ | RECORD SIZE

2 | NMRECS | NUMBER OF RECORDS IN PARTITON (TWO WORDS)
| | -

4 |'NHEADS | NUMBER OF HEADS IN PARTITION

5 |IRESERVED| RESERVED

6 |RESERVED| RESERVED

7 |RESERVED| RESERVED

8 | DATA | START OF DSKRAT DATA (ONE BIT/RECORD)

E - 1 January 1989

APPENDIX E PDR3621

RECORD HEADER FORMATS

Record header formats are the same for new and old partitions. The
format of a record header is a function of the physical record size.

Record Header Format -- 448-Word Records

@ | REKCRA | RECORD ADDRESS (OF THIS RECCRD)

1 | REKBRA | RA OF DIRECTORY ENTRY OR FIRST RECORD

2 | REKFPT | RA OF NEXT SEQUENTIAL RECORD

3 | REKBPT | RA OF PREVIOUS RECORD

4 | REKCNT | NUMBER OF DATA WORDS IN FILE

5 | REKTYP | TYPE OF THIS FILE

6 | REKLVL | INDEX LEVEL FOR NEW PARTITION DAM FILES
7 |RESERVED| RESERVED

Record Header Format — 1049-Word Records

@ | REKCRA | RECORD ADDRESS OF THIS RECORD (TWO WORDS)
I

2 | REKBRA | BEGINNING RECORD ADDRESS (TWO WORDS)
l

4 | REKCNT | NUMBER DATA WORDS IN THIS RECORD

5 | REKTYP | TYPE OF THIS FILE

6 | REKFPT | RA OF NEXT SEQUENTIAL RECORD (TWO WORDS)

I
I
I
I
I
I
|
| l
8 | REKBPT || RA OF PREVIOUS RECORD (TWO WORDS)
I

I

I

I

|

I

I

1 | REKLVL | INDEX LEVEL FOR NEW PARTITION DAM FILES
11 I
[
RESERVED| RESERVED (FIVE WORDS)
[
15 l

Notes

1. Storage Modules have 104@-word records. All other disks have
448~word records,

2. The BRA of the first record in a file points to the beginning
record address of the directory in which the file entry appears.
In all other records, the BRA points to the first record of the
file.

3. REKFPT contains the address of the next sequential record in the
file or @ if it is the last record in the file.

4. REKBPT contains the address of the previous record in sequence or
g if it is the first record in the file.

REV. A E - 2

PDR3621 INTERNAL FILE FORMATS

5. REKTYP is valid only in the first record of a file. Legal values
are:

SAM File

DAM File

SAM Segment Directory

DAM Segment Directory

User File Directory (UFD)

SWwhhHER

6. If the file is the record zero bootstrap (BOOT) or the disk
record availability table (DSKRAT or volume name) and the disk
has a 1040 record size (Storage Module), bit 1 (:100000) of
REKTYP will be set.

7. DAM files on new partitions are organized somewhat differently
from the above.

UFD HEADER AND ENTRY FORMATS

0ld UFD Header Format

SIZE OF HEADER — 8 WORDS
OWNER PASSWORD (THREE WORDS)

OPAS

%|w

| I
| OP? |
I |
I I
4 | NPASSW | NON-OWNER PASSWORD (THREE WORDS)
I I
| I
7 | |

RESERVED| RESERVED

New UFD Header Format

@ |_ECW | ECW (SEE NOTE 1 BELOW)
1 | OPASSW | OWNER PASSWORD (THREE WORDS)
I |
I I
4 | NPASSW | NON-OWNER PASSWORD (THREE WORDS)
I I
I I
7 | |
[I
IRESERVED| RESERVED (SIXTEEN WORDS)
[I
23 | I

E - 3 January 1989

APPENDIX E PDR3621

0ld UFD Entry Format

0 | BRA | BEGINNING RECORD ADDRESS
1 | FILE | FILENAME (THREE WORDS)

| |

| NAME |

4 | SPACES | TWO BLANKS FOR NAME EXPANSION (RESERVED)
5 | PROTEC | PROTECTION (OWNER/NON-OWNER)

Note

In an old UFD, the high-order eight bits of PROTEC
are the owner rights stored in complemented form
(3=>owner has right). The low-order eight bits are
non-owner protection, stored in true form (#=>no
right). On creation, PROTEC=@. After a 'PROT 7
@', PROTEC=:174009.

New UFD Entry Format

o | ECW | ENTRY CONTROL WORD (TYPE/LENGTH)
1] BRA | BEGINNING RECORD ADDRESS (TWO WORDS)
| I
3 |RESERVED!|! RESERVED (THREE WORDS)
I I
[|
6 | PROTEC | PROTECTION (OWNER/NON-OWNER)
7 |RESERVED| RESERVED FOR FUTURE USE
8 | DATMOD | DATE LAST MODIFIED (YYYYYYYMMMMDDDDD)
9 | TIMMOD | TIME LAST MODIFIED (SECONDS-SINCE-MIDNIGHT/4)

10 | FILTYP | FILETYPE

11 | _SCW | SUBENTRY CONTROL WORD FOR FILENAME
12 |F I
| 1 I
I L |
I E |
| ... | FILENAME (1-16 WORDS, BLANK PADDED)
[N I
I A I
I Mo
N | E_I

Notes
1. The Entry Control Word (ECW) consists of two eight-bit subfields.

The top eight bits indicate the type of the following entry as
follows:

REV. A E - 4

PDR3621 INTERNAL FILE FORMATS

0ld UFD Header
New UFD Header
Vacant Entry

New UFD File Entry

wWwNHH

The low-order eight bits give the size of the entry including the

2.

3.

ECW itself.

The bits in PROTEC are stored in true form (2=> no right) for
both owner and non-owner fields.

The file type field is as before (see Old Record Header Format)
with following additional bits:

BIT MEANING WHEN BIT IS ON

1 File has 16-word header (DSKRAT and BOOT only).
2 Change bit. Set by call to SATR$$, then reset
4 Special file (BOOT, DSKRAT, MFD, BADSPT).

The Subentry Control Word (SCW) consists of two eight-bit
subfields. The top 8 bits are @, indicating subentry type 0.
The low-order 8 bits give the size of the subentry including the
SCW itself.

UFD entries are reused by the file management system. Therefore,
a new entry will not necessarily appear at the end of the UFD.

SEGMENT DIRECTORY FORMATS

0ld Segment Directory Format

N+

n

BRAN

BRAP | BRA OF FIRST ENTRY IN DIRECTORY
BRAl | BRA OF SECOND FILE
@009 | NULL ENTRY
X XK] l
| BRA OF LAST FILE IN DIRECTORY

New Segment Directory Format

[

N

BRAQD

| BRA OF FIRST FILE IN DIRECTORY (TWO WORDS)
l
BRA1 | BRA OF SECOND FILE IN DIRECTORY (TWO WORDS)
1
@099 | NULL ENTRY (TWO WORDS)
goos |
* o o0 |
1
BRAn | BRA OF LAST FILE IN DIRECTORY (TWO WORDS)
I

E - 5 January 1980

APPENDIX E PDR3621

Note

The only difference between old and new directories
is that each entry has been expanded to two words.
A null entry in a new directory is a 32-bit @.

DAM FILE ORGANIZATION

In old-style DAM files, the first physical record of the file was
reserved to be an index to the first 449 or 1024 (depending on physical
record size) records in the file. When this index was filled, however,
access to subsequently added records became sequential. For example,
in the file shown below, records @-439 can be accessed directly.
Records 440 and above must be searched for sequentially starting with
record 439.

INDEX DATA RECORDS

| BRA@G |---> RECORD 0

| BRAl |-—-> RECORD 1

| I

I LI) |

| |

| B439 |---> RECORD 439-—-> RECORD 44¢0---> RECORD 441—-> ...

The major difference between new and old DAM files is that the index is
not limited to a single record, but can grow into a multi-level tree.
(Also, since pointers are now two words each, each index record holds
half the number of pointers in old index records.) An index can grow
to any size, and any data record can be directly accessed. The
following paragraphs explain how this multi-level index is built.

The handling of a DAM file on a new partition is identical to that on
an old partition up to the point at which the index record is full and
another record 1is to be added to the file. At this point the following
actions take place.

1. Three new records are obtained from the file system. One of
these records is to be the new data record, the other two are
used to construct the second index level.

2. The index entries from the full index record are copied into one
of the other new records. This record is to become the first
index record of the new index level.

3. The old index record is reinitialized to contain two pointers to
the two index records on the new level,

REV. A E - 6

PDR3621 INTERNAL FILE FORMATS

4. The other new index record is initialized with a single entry
pointing to the new data record.

5. Forward, backward, and father pointers are set up as shown in the
diagram below.

At this point, the creation of the new index level is complete. The
BRA in the directory entry for the DAM file still points to the
original index record, which is now the top of a two-level index.

| DIR | DIR = UFD or. Segment Directory

—@ = NULL POINTER

INDEX LEVEL 2: I|J |-0 I
IR | | = FATHER POINTER
-1 |
|
| I
R
INDEX LEVEL 1: JIL |-—KIN |-9
M | | |
g—'_ol:_o“'_—l l
I T I
r l__
DATA LEVEL: Ll |——M| |———...—N| | -0
I | ! | | I
g~ f——1 === .= I

The DIR entry points to the original index record (record 'I'), which

now contains just pointers to records 'J' and 'K' —— the two records on
the index 1level just created. Record 'J' contains the data record
pointers originally in '1' — 'L', 'M', etc. Record 'K' contains a

single pointer to the newly created data record 'N'.

Once an index level 1is created, it is never deleted until the file
itself is deleted — there will always be at least one record on each
level. If the file is empty, there will be exactly one record on each
index level. This is to avoid undue thrashing when records are being
added and deleted near the threshold of an index's capacity. (The
overhead of the "unnecessary" levels is only one record per level.)

E - 7 January 1989

PDR3621 OBSOLETE SUBROUTINES

APPENDIX F

OBSOLETE FILE SYSTEM SUBROUTINES

The subroutines described in this appendix are no longer in use by the
current file management system. However, they are still in use by
users who choose to continue using older versions of the file system
and/or continue to use old style partitions. For this reason, they are
collected and described here. These subroutines are:

ATTACH
CMREAD
CNAMES
COMINP
PRWFIL
RESTOR
RESUME
SAVE

SEARCH

F - 1 January 1980

APPENDIX F PDR3621

kkkkkkkkkk

* ATTACH *
Kk dekkdkk

The ATTACH subroutine has the same effect as the ATTACH internal
command. The calling sequence is:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
As an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATTACH subroutine does not
change the home UFD unless the user specifies to change it in the
subroutine call. The user gets owner status if he gives the owner
password, or gets nonowner status if he gives the nonowner password.
The owner of a file directory can declare on a per-file basis what
rights a nonowner has over the owner's files, The nonowner password
may be given only under PRIMOS III and IV. (Refer to the description
of the commands PASSWD and PROTECT of the PRIMOS Commands Guide
(FDR3198) for more information.)

In attaching to a directory, the subroutine ATTACH specifies where to
look for the directory. ATTACH specifies a User File Directory (UFD)
in the Master File Directory (MFD) on a particular logical disk, a
sub-directory in the current UFD, or the home UFD ~ as the
target-directory of the ATTACH operation. The format is:

CALL ATTACH (name, ldisk, password, key, altrtn)
KEY is composed of two subkeys that are combined additively: REFERENCE

and SETHOME. All calls require a REFERENCE subkey. The REFERENCE
subkeys are shown in the following table:

REV. A F- - 2

REFERENCE
MFDUFD

CURUFD

PDR3621 OBSOLETE SUBROUTINES

Octal Value Meaning
4] Attach to NAME in MFD on LDISK
2 Attach to NAME in current UFD

The SETHOME subkeys are required on call; these subkeys are shown
in the following table:

SETHOME

SETHOM

Octal Value Meaning
] Do not set home UFD to current

UFD after attaching.

1 Set home UFD to current UFD
after attaching.

The meaning of the remaining parameters on a call to ATTACH is as

follows:

name

1disk

password

If the key is @ and NAME is @, the home UFD is
attached.

If the reference subkey is MFDUFD or CURUFD,

NAME is either a six-character Hollerith expression
or the name of a three-word array that specifies

a Ufdname to be attached.

If the reference subkey is MFDUFD, LDISK is the logical
disk on which the MFD is to be searched for UFD NAME.
LDISK must be a logical disk that has been started up
by the STARTUP command. The special LDISK octal code
100900 signifies: search all started-up logical
devices in order 9, 1, 2 ... n and attach to the UFD
in which NAME appears in the MFD of the lowest
numbered logical device. The special LDISK octal code
177777 signifies: search the MFD of the Ldisk
currently attached to NAME.

If the reference subkey is CURUFD, or
NAME is #, LDISK is ignored and is usually
specified as 4.

If the reference subkey is MFDUFD, CURUFD, or SEGUFD,
PASSWORD is either a six-character Hollerith
expression or the name of a three-word array that
specifies one of the passwords of UFD NAME. If the
password is blank, it is specified as three

words of two blank characters.

F - 3 January 1980

APPENDIX F PDR3621

altrtn An integer variable assigned the value of a label
in the user's FORTRAN program, to be used as an
alternate return in case of error. If this argument
is 3 or omitted, an error message is printed and
control returns to PRIMOS II or III.

A UFD attached through a segment directory reference does not have a
name., On LISTF, such a UFD is listed with a name of six asterisks.

If an error is encountered and control goes to Altrtn, ERRVEC(l), a
PRIMOS II vector, is set to the error type as follows:

Code Message

AH Name NOT FOUND

AL No UFD ATTACHED

AR Not a UFD (detected by PRIMOS III only)

A user obtains ERRVEC through a call to GETERR. The error 'Name NOT
FOUND' is printed if one of the following errors occur:

1. key bad.
2. name is not found in the specified directory.
3. 1ldisk is out of range or not started up.

4, 1In a segment directory reference, NAME (1) is a closed unit or
the unit is at end of file.

If the error BAD PASSWORD is obtained, the alternate return is never
taken, and both the home UFD and current UFD are set to @ to indicate
that no UFD is attached. This feature is a system security measure to

prevent a user from writing a program to try all possible passwords on
a UFD.

Examples of ATTACH:
CALL ATTACH ('JHNDOE', -1, '3JJJ', @, ERR)

Searches for the UFD, JHNDOE, in the MFD (as specified in the Key) on
the current logical device. TIf JHNDOE is found and the password, JJJ,
matches the recorded password, then UFD JHNDOE is attached. The
current UFD (now JHNDOE) is not set as the home UFD (as specified in
the Key). The PRIMOS vector that points to the current UFD is set to
this new directory.

REV. A r - 4

PDR3621 OBSOLETE SUBROUTINES

khkkkkikxnkkkk

* CMREAD *
ek kok ke dok koK

Calling Sequence

CALL CMREAD (ARRAY)

CMREAD reads 18 words (which represent the last command line input by
the user) into the system vector ARRAY, as follows:

array(1) Command (or spaces)
array(2)

array(3)

array (4)

array(5) namel (or spaces)
array (6)

array(7)

array(3) name2 (or spaces)
array(9)

array(19) parl (or zero)
array(1l) par2 (or zero)
array(18) par9 (or zero)

The command line may be accessed directly from array. namel and name2
are normally UFD's or filenames, and parl through par9 are octal
numbers.)

The last command line that has been input by the user is replaced by a
new line of input by a call to the subroutines: COMANL, CNINS or
TSAMIC. If none of these subroutines have been called before the
QMREAD call, then CMREAD reads the last command line typed by the user
or reads the last command line obtained through a command file.

F - 5 January 1980

APPENDIX F PDR3621

*kkkkkkkkkk

* CNAMES *
*kkhkkhkkkkkx

The CNAMES routine allows the same action at user program level as the
CNAMES command allows at command level.

The calling sequence is:
CALL CNAMES (oldnam, newnam, altrtn)

CNAMES changes the name of Oldnam in the current UFD to Newnam. The
user must have owner status to the UFD. The arguments are:

oldnam A filename to be changed

newnam The new filename for oldnam

altrtn 1f not @, control goes to altrtn if any error
occurs. If @, an error message is printed and
control returns to PRIMOS.

If an error is encountered and control goes to altrtn, ERRVEC(l) is set
to the error type as follows:

Code Message

CA newnam BAD NAME

Cz newnam DUPLICATE NAME
sH oldnam NOT FOUND

S1 oldnam IN USE

SL NO UFD ATTACHED

sX oldnam NO RIGHT

CNAMES does not run under PRIMOS II.

REV. A F - 6

PDR3621 OBSOLETE SUBROUTINES

kkkkkkkhkk

* COMINP *
Kk kdkkkhkk

The COMINP routine allows the user to perform the same action at
program level as the user command COMINPUT allows at command level.
Refer to the PRIMOS Commands Guide (FDR3108) for details of the
COMINPUT command. Briefly, COMINP causes PRIMOS to read input from a
file rather than a terminal.

The calling sequence is:
CALL COMINP (name, funit, altrtn)
The arguments are:

name Either a three-word array containing the filename
of a command file, or the words TTY, CONTIN, or PAUSE.

funit A File Unit (range 1 to 16; 1 to 15 under PRIMOS
IT) that is to be used for reading the command file.

altrtn If not @, control goes to altrtn in the event of
an error while opening Name. If 9, an error message
is printed and control returns to the operating
system in the event of an error while opening Name.

If an error is encountered and control goes to Altrtn, ERRVEC(l) is set
to the error type as follows:

Code Message

SD UNIT NOT OPEN
SH name NOT FOUND
SI name IN USE

ST UNIT IN USE

SL NO UFD ATTACHED
SX name NO RIGHT

A user obtains ERRVEC through a call to GETERR.

F - 7 January 1980

APPENDIX F PDR3621

kkkkkkkkkk

* PRWFIL *
*kkkkkkkkk

Definition of PRWFIL

PRWFIL is used to read, write, and position a file open on a file unit.
A typical call to PRAFIL will read into a user buffer N words from a
file open on Funit, starting at the file pointer in the file. A user
may instead move the file pointer to an absolute position in the file.
The two operations of read ing-and-positioning or
writing-and-positioning may be combined into a single call, with
position occurring either before or after the read or write operation.

The calling sequence is:

CALL PRWFIL (key, funit, LOC (buffer), nwords, position, altrtn)
key is composed of three subkeys that are combined additively: rwkey,
poskey, and mode. The poskey is required only on those calls in which
positioning is requested. Subkeys with values of @ may be omitted from
the call. The PRWFIL call may be represented as:

CALL PRWFIL (rwkey+poskey+mode,tunit,pbuffer,nwords,position,altrtn)

The rwkey subkeys are shown in the following table:

rwkey Octal value Meaning
PREAD 1 Reads nwords from funit into buffer
PWRITE 2 Write nwords from buffer

The poskey subkeys are shown in the following table:

poskey Octal Value Meaning

PREREL %) Moves the file pointer of funit
position words relative to the current
position before reading or writing

POSREL 29 Moves the file pointer of funit
position words relative to the current
position after reading or writing

PREABS 10 Moves the file pointer of funit to an
absolute position specified by position(l)
and position(2) before reading or
writing

POSABS 30 Moves the file pointer of funit to an
absolute position specified by position(l)

REV. A F - 8

PDR3621 OBSOLETE SUBROUTINES

and POSITION (2) after reading and
writing

The MODE subkeys are shown in the following table:

MCDE Octal Value Meaning
—] Reads or writes nwords
PCONV 400 Reads or writes a convenient number of

words; less than or equal to nwords

The meaning of the remaining parameters in a call to PRWFIL are as
follows:

funit A file unit number 1 to 16 for PRIMOS III and IV
(1 to 15 for PRIMOS II) upon which a file has been
opened by a call to SEARCH or a command.

PRANFIL actions are performed on this file unit.

buffer Reading or writing is initiated at buffer.
Note that buffer is obtained through the
integer function LOC.

nwords If the mode subkey is @, nwords is the number
of words to be transferred to or from a file unit
and a user buffer. If nwords is @, no words
are transferred.

If the mode subkey is PCONV, NWORDS is the
maximum number of words to be transferred.

The number actually transferred is

a number between 1 and nwords that is convenient
and fast for PRWFIL to transfer. If NWORDS is @,
no words are transferred. The user can establish
how many words were transferred from ERRVEC(2).

For either mode, nwords may be between @ and
65535.

position If the POSKEY is PREREL or POSREL, POSITION
is a single signed integer word for relative posi-
tioning. Positioning is forward and backward
from the file pointer, depending on the POSITION
sign. If position is @, no positioning is done.

If the key is PREABS or POSABS, position is a two-word
integer array (V-record-number, word-number) for
absolute positioning. If POSITION is (9,0)

(both values 9), the file pointer is moved to

the beginning of the file.

F - 9 January 1980

APPENDIX F PDR3621

altrtn An integer variable assigned the value of a label
in the user's FORTRAN program to be used as an
alternate return in case of uncorrectable errors.
If the argument is @ or omitted, an error message
is printed and control returns to PRIMOS.

If an error is encountered and control goes to altrtn, ERRVEC(l) is set
to the error type. This is a two-character code as follows:

Code Message Meaning

PD PRWFIL UNIT NOT OPEN Bad key, or file unit not open
for read/write

PE PRWFIL EOF End-of-file reached on read or
position

PG PRWFIL BOF Beginning of file reached on

read or position

DJ DISK FULL No room left on disk

A user obtains ERRVEC through a call to GETERR, which is described in
this section. A user may wish to handle one type of error and have the
system type all other error messages and return to PRIMOS II or III.
The user can tell PRERR to print the error message that would have been
printed without altrtn.

On a PRWFIL EOF or PRWFIL BOF error, ERRVEC(2), is set to the number of
words left to be transferred in the read or write requests. On all
normal returns from PRWFIL, ERRVEC(3) and ERRVEC(4) are set to the file
pointer of the file as a two-word array (record-number, word-number) .
On a call with the PCONV subkey, ERRVEC(2) is set to the number of
words read.

On a DISK FULL error, the file pointer is set to the value it had at
the beginning of the call. The user may, therefore, delete another
file and restart the program by typing START. This feature works only
with PRIMOS ITII and IV.

During the positioning operation PRWFIL, PRIMOS maintains a file
pointer for every open file. Because a file may contain more than
65,535 words, the largest unsigned integer that can be represented in a
16-bit word, the file pointer occupies two words. The method of
representation chosen is two words, the first of which is the V-record
nunber and the second of which is a word number. Each V-record
contains 440 words of data so the word. number has a range of @ to 439.
The V-record number has a range of # to 32767. When a file is opened
by a call to SEARCH, the file pointer is set so that the next word read
is the first word of the file. The position pointer contains V-record
0, word 9, or briefly (4,08). If the user calls PRWFIL to read 49¢
words and does no positioning, at the end of the read operation the

REV. A F - 10

PDR3621 OBSOLETE SUBROUTINES

file pointer is (V-record 1, word 5@) or briefly (1,58). The V-record
size (449) is constant for all disks and does not correspond to the
physical record size.

A call to read or write N words causes N words to be transferred to or
from the file, starting at the file pointer in the file. Following a
call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using POSKEY of PREABS or POSABS,
the user may explicitly move the file pointer to (record number, word
nunber) before or after the data transfer operation. Using a POSKEY of
PREREL or POSREL, the user may explicitly move the file pointer forward
position words from the current position, if position is positive.
Using a POSKEY of PREREL or POSREL, the user may move the file point
backward position words from the current position, 1if POSITION is
negative., The maximum position that can be moved in the call is
therefore plus or minus 32767 words. Positioning takes place before or
after the data transfer, depending on the key. If nwords is @ in any
of the calls to PRWFIL, no data transfer takes place, so PRWFIL does
only a pointer position operation. On normal returns from PRWFIL,
ERRVEC (3) and ERRVEC (4) contain the file pointer as (record number,
word number) .

The mode subkey of PRWFIL is most frequently used to transfer a
specific number of words on a call to PRWFIL. 1In these cases, the MODE
is @ and is normally omitted in PRWFIL calls. 1In some cases, such as
in a program to copy a file from one file directory to another, a
buffer of a certain size is set aside in memory to hold information,
and the file is transferred a buffer full at a time. In the latter
case, the user doesn't care how many words are transferred at each call
to PRWFIL, so long as the number of words is less than the size of the
buffer set aside in memory.

As the user would generally prefer to run his program as fast as
possible, the PCONV subkey is used to transfer nwords, or less in the
call to PRWFIL. The number of words transferred is a number convenient
to the system, and therefore speeds up program run time. The number of
words actually transferred is put in ERRVEC (2).

F - 11 January 1984

APPENDIX F PDR3621

kkkkhkkkkk

* RESTOR *
*kkkkhrkkk

RESTOR has the same effect under program control as the RESTORE
command.

The calling sequence is:
CALL RESTOR (vect, filename, altrtn)

RESTOR performs the inverse of the SAVE operation. The SAVEd
parameters for a filename previously written to disk by SAVE are loaded
into the nine-word array vect. The program itself is then loaded into
high-speed memory, using the starting and ending address provided by
VECT (1) and VECT (2).

If an error is encountered and control goes to altrtn, ERRVEC(l) is set
to the error type as follows:

Code Message
SH Name NOT FOUND
SI UNIT IN USE
SI Name IN USE
SL NO UFD ATTACHED
SX NO RIGHT
PE PRWFIL EOF
kkkkkkkkkk
* RESUME *
*kkkkkkhkk

RESUME has the same effect under program control as the RESUME command.
The calling sequence is:

CALL RESUME (filenamel

REV. A F - 12

PDR3621 OBSOLETE SUBROUTINES

*kkkkkkkhk
* SAVE *

kkkkkkkkkk
SAVE has the same effect under program control as the SAVE command.
The calling sequence is:
CALL SAVE (vect, filename)
The user sets up a nine-word vector vect before calling SAVE. vect(l)
must be set to an integer which is the first location in memory to be

saved, and vect(2) must be set to the last location to be saved. The
rest of the vector may be set up at the programmer's option.

Location
vect(3) P Register 7
vect(4) A Register 1
vect(5) B Register 2
vect(6) X Register]

vect (7) Keys -
vect(8) Spare _—
vect(9) Spare _

SAVE writes, to the named disk file, the nine-word vector vect,
followed by the memory image starting at vect(l) and ending at vect(?2) .

F - 13 January 1980

APPENDIX F PDR3621

kkkkkkkkkd

* SEARCH *
Kk hkdkkkk

Definition of SEARCH

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit, PRWFIL and other routines may be called, either to
position the current-position pointer of a file unit (file pointer) or
to transfer information to or from the file (using the file unit to
reference the file).

Opening a File

On opening a file, SEARCH specifies 1) allowable operations that may be
per formed by PRAFIL and other routines (these operations are read only,
write only, or both read and write); 2) where to look for a file or
where to add the file, if the file does not already exist; and 3)
whether the file is to be opened for writing only or both reading and
writing. SEARCH either specifies a filename in the currently attached
user file directory or a file unit number on which a segment directory
is open. 1In the segment directory reference, the file to be opened or
closed has its beginning disk address given by the word at the current
position pointer of the file unit.

SEARCH Actions

On creating a new file, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to perform actions other than opening
and closing a file. SEARCH may delete a file, rewind a file unit, or
truncate a file.

Upon opening a file, SEARCH sets the file pointer to the beginning of
the file. Subroutines PRANFIL and others cause information to be
transfered to or from the file unit, starting at the file pointer.
After the transfer, the pointer is moved past the data transferred. A
call to SEARCH to rewind a file causes the file pointer to be set to
the beginning of the file. Subsequent calls to PRWNFIL and other
routines cause information transfer to occur as if the file had just
been opened. A call to SEARCH to truncate a file causes all
information beyond the file pointer to be removed from the file. This
call is wuseful if one is overwriting a file with less information than
was originally contained in the file.

REV. A F - 14

PDR3621 OBSOLETE SUBROUTINES

Subroutine Call

SEARCH is used as in the following call:
Format:
CALL SEARCH (key, name, funit, altrtn)
key is composed of three subkeys that are combined additively: action,
reference, and newfile. Not all subkeys are required on every call,

and subkeys with values of zero can be omitted. The SEARCH call may
therefore be represented as:

CALL SEARCH (actiontreferencetnewfile, name, funit, altrtn)

All calls require an action subkey. The action subkeys are shown in
the following table:

action Octal Value Meaning

OPNRED 1 Open name for reading on funit

OPNWRT 2 Open name for writing on funit

OPNBTH 3 Open name for both reading and writing
on funit

CLOSE 4 Close file by name or by funit

DELETE 5 Delete file nam

EXIST 6 Check to see if file exists.

REWIND 7 Rewind file on funit

TRNCAT 19 Truncate file on funit

CNGACC 1000 Change access of file to funit

The reference subkeys are shown in the following table:

reference Octal Value Meaning

UFDREF a Searches for file name in the current
user file directory (UFD) (as defined by a
previous ATTACH) and per form the action
in the action subkey on the specified file.

SEGREF 100 Per forms the action specified in the action
subkey on the file with the location
indicated by the file pointer designated
within the array name(l) .

This file unit must be an open
segment directory.

Only those calls to SEARCH that reference a file in a UFD or segment

directory need the reference key. Calls that reference file units
do not need this key.

F - 15 January 1980

APPENDIX F PDR3621

The following table lists the newfil subkeys:

newfil Octal Value Meaning
NTFILE 2 New threaded (SAM) file
NDFILE 2000 New directed (DAM) file
NTSEG 4000 New threaded (SAM) segment directory
NDSEG 6009 New directed (DAM) segment directory
NEWUFD 13600 New User File Directory (SAM)

Only those calls to SEARCH that generate a new file require a newfil

subkey.

On other calls, this subkey is ignored.

The name of the remaining parameters in a call to SEARCH are as

follows:

name

funit

altrtn

If the reference subkey is UFDREF, NAME is either a
six-character Hollerith expression or the name of a three-word
array that specifies a filename (existing or not).

If the reference subkey is UFDREF and name(l) is -1, the
current UFD is opened. name = -1 must be used only in
configuration with action subkeys 1, 2, or 3. Owner status
of the current UFD is required.

If the reference subkey is SEGREF, name is a file unit(1-16;
1-15 under PRIMOS II) on which a segment directory is open.

On calls in which the action key requires only a file unit to
specify the file to be acted on, name is ignored and, usually,
specified as 4.

On calls that require a file unit number, funit is a number
1 to 16 (1-15 under PRIMOS IT). On calls that require no unit
number, funit is ignored and usually specified as 1.

altrtn is an integer variable assigned the value of a label
return in the user's FORTRAN program to be used as an alter-
nate in case of uncorrectable errors (e.g., attempting to
open a file that is already open). If this argument is @ or
omitted, an error message is printed; control returns to
PRIMOS if any error should occur while using SEARCH.

Error Messages

If an error is encountered and control goes to altrtn, ERRVEC(l) is set
to a two-character code as follows:

REV. A

PDR3621

OBSOLETE SUBROUTINES

Code Message Meaning

SA BAD CALL TO SEARCH Some parameter in call is invalid

SD UNIT NOT OPEN Attempt to truncate or rewind
a file on a closed unit

sDh Name OPEN ON DELETE Sel f~explanatory

SH Name NOT FOUND File Name not in UFD

SI Name IN USE File Name is already open

ST UNIT IN USE File unit is already open

SK UFD FULL Sel f-explanatory

SL NO UFD ATTACHED Self-explanatory

S0 SEG-DIR ERROR *SEG-DIR ERROR

SX NO RIGHT Access rights violation

DJ DISK FULL No room left on disk

*SEG-DIR ERROR:

Meaning

1. If attempting to open an existing file in the
segment directory, *SEG-DIR ERROR means:

a. The segment directory unit specified in NAME
is not open for reading.

b. The file pointer of the segment directory unit
is at end of file, and therefore points to no disk
address.

c. The file pointer of the segment directory unit
points to a @ entry.

2. If attempting to open a new file in the current
segment directory, *SEG-DIR ERROR means:

The segment directory unit specified in NAME is
not open for both reading and writing.

When a user obtains ERRVEC through a call to GETERR (described in this
section), control is to go to altrtn. A user may wish to handle one
type of error and have the system print all other error messages and
return to PRIMOS. The user can call PRERR to print the error message
that would have been printed without altrtn.

ERRVEC(2) is set to a file type on a normal return of a call to SEARCH

to open a file, using action keys of OPNRED, OPNWRT, or OPNBTH. The
codes are:

January 1989

APPENDIX F PDR3621

ERRVEC(2) File Type

Threaded file (SaM)

Directed file (DAM)

Threaded segment directory (SAM)
Directed segment directory (DAM)
User File Directory (SAM)

W N

Access Rights and Call to SEARCH

Under PRIMOS III and IV, the access rights of files are checked when a
user attempts to open a file through a call to SEARCH. Under PRIMOS
II, access rights are not checked.

A SEARCH call that creates a new file gives that file default access
rights. Defaults access rights are: owner has all rights; nonowney
has no rights. ‘

Adding and Deleting Files

For references to user file directories, a call to SEARCH to open a
file for writing or both reading and writing causes SEARCH to look in
the current User File Directory for the file. If the file is not found
in the UFD, the file name and beginning disk address of a new file is
appended to the UFD, and the new file is opened for the appropriate
acitvity. A call to delete a file from a UFD removes the name and
beginning disk address from the UFD and shortens the UFD.

For references to segment directories, a call to SEARCH to open a file
for writing or reading and writing causes SEARCH to examine the word at
the file pointer of the referenced segment directory file unit. If the
word is not =zero, SEARCH considers the word to be a beginning record
address of an already created file. SEARCH opens the file for writing
or reading and writing. If the word is zero, SEARCH writes the
beginning disk address of a new file in that word and opens the file.
If the file pointer is positioned at the end of file, the file is
lengthened one word and SEARCH writes the beginning disk address of a
new file in that word, and opens the file. A call to delete a file
from a segment directory causes the beginning disk address of a file at
the file pointer of the segment directory to be replaced by zero. The
segment directory is not shortened. An attempt to open a file for
reading in a segment directory when its file pointer points to zero or
is at end-of-file generates a SEG-DIR error. In no case is the file
pointer of a segment directory moved.

Closing and Opening Files

On a call to close a file, SEARCH attempts to close file NAME and
generates an error message or goes to the alternate return if NAME is
not found. FUNIT is ignored unless NAME is @#. If NAME is @, SEARCH
ensures that FUNIT is closed. That is, it closes FUNIT if FUNIT is
open but does not generate an error message if the file unit is closed.

REV. A F - 18

PDR3621 OBSOLETE SUBROUTINES

Example:
CALL SEARCH (1, '"OBJECT', 1, $50)

Searches for a file, OBJECT, in the current UFD and opens it for
reading; if file is not found, return via statement 50 is made.

The user is allowed to open the current UFD for reading via a call to
SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -1, Funit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; i.e., the owner password must
have been given in the most recent call to ATTACH (or ATTACH command).
Control goes to Altrtn if there is no UFD attached, if Funit is already
in use, or if the user does not have owner rights to the UFD.

Changing the Access of a File

A user may change the access of a file that is open on FUNIT to
OPNREAD, OPNWRT, or OPNBTH.

Example:
CALL SEARCH (CNGACC + OPNWRT, @, FUNIT, 9)

Access rights are checked to determine if the user has a right to
accomplish the requested operations.

Checking the Existence of a File

If the user desires to find out if a certain file exists in the current
UFD, the user can call SEARCH with the EXIST key. The file unit should
be specified as 1. The file is not affected in any way and access
rights are not checked.

Sharing Files

Two or more users may be attached to the same UFD at the same time.
Furthermore, two or more users may have the same file open for reading,
and they may be reading from the same file at the same time. File
interlocks are provided to prevent one user from opening the file for
reading or writing while another user has the file open for writing.
File interlocks also prevent one user from opening the file for writing
while another user has the file open for reading. If these interlock
situations are detected by SEARCH, the user gets the error message:
FILE IN USE. The file interlocks also apply to the case of the same
user attempting to open the file on different file units (FUNITS).

F - 19 January 1980

PDR3621

APPENDIX G

ERROR MESSAGES AND CODES (SYSCOM>ERRD.F)

INTRODUCTION

This appendix defines PRIMOS error messages and codes.

C
C
C

[ONONQ]

ERRD.F, SYSCOM, OS GROUP, #3/29/79

MNEMONIC CODES FOR FILE SYSTEM (FTN)

Copyright 1978, Prime Computer, Inc., Wellesley, MA

NOLIST

TABSET 6 11 23 56 65

ERROR MESSAGES

INTEGER*2 E$EOF,ESBOF, ESUNOP, ESUIUS, ESFIUS, ESBPAR, ESNATT,

ESIVCM, ESDNCT, ES$BNWD,
ESLAST

RKXHKX XXX XXX XX

PARAMETER
X

ES$FDFL,ESDKFL,ESNRIT, ESFDEL, ESNT'UD, ESNTSD, ESDIRE,
ESFNTF, ESFNTS, ESBNAM, ESEXST, ESDNTE, ESSHUT , ESDISK,
ESBDAM,ESPTRM, ESBPAS, ESBCOD, ESBTRN, ESOLDP, ESBKEY,
ESBUNT, ESBSUN, ESSUNO, ESNMLG, ESSDER, ESBUFD, ESBFTS,
ESFITB,ESNULL,ESIREM,ESDVIU,ESRLDN,ESFUIU,ESDNS,
ESTMUL, ESFBST, ESBSGN, ESFIFC, ESTMRU, ESNASS, ESBFSV,
ESSEMO, ESNTIM,ESFABT, ESFONC, ESNPHA, ESROOM, ESITRE,
ESWTPR, ESFAMU, ESTMUS , ESNCOM , ESNFLT, ESSTKF , ESSTKS,
E$NOON, ESCRAL, ESCROV, ESCRUN, ESCMND, ESRCHR, ESNEXP,
ESBARG, ESCSOV, ESNOSG, ESTRCL, ESNDMC, ESDNAV, ESDATT,
ESBDAT,ESBLEN,ESBDEV,ESQLEX, ESNBUF , ESINWT, ESNINP,
ESDFD, ESDNC, ESSICM,ESSBCF,ESVKBL,ESVIA, ESVICA,
ESVIF, ESVFR, ESVFP, E$VPFC,ES$VNFC,ESVPEF,ESVIRC,

X /***/

/* CODE DEFINITIONS

X

X

X

X ESEOF =1, /* END OF FILE

X ESBOF 2, /* BEGINNING OF FILE
X ESUNOP= 3, /* UNIT NOT OPEN

X , /% UNIT IN USE

X , /* FILE IN USE

X /* BAD PARAMETER

X /* NO UFD ATTACHED
X /* UFD FULL

X /* DISK FULL

ESFDFL=
ESDKF L=

g

>

3

I |
O oo~ Ul

. - n o

PE.

*/
*/
*/
*/
*/
*/
*/

pPD,SD */

SI
ST
SA
SL

DJ

*/
*/
*/

/AL */

*/
*/

January 1980

APPENDIX G

XXM RKIN KKK AEKNX KRR XXX E XXX XXX XXX XXX X

REV. A

ESNRIT=19,
ESFDEL=11,
ESNTUD=12,
ESNTSD=13,
ESDIRE=14,
ESFNTF=15,
ESFNTS=16,
ESBNAM=17,
ESEXST=18,
ESDNTE=19,
ES$SHUT=20,
ESDISK=21,
ESBDAM=22,
ESPTRM=23,
ESBPAS=24,
ESBCOD=25,
ESBTRN=26,
ESOLDP=27,
ESBKEY=28,
E$BUNT=29,
ESBSUN=30,
ESSUNO=31,
ESNMLG=32,
E$SDER=33,
ESBUFD=34,
E$BFTS=35,
ESFITB=36,
ESNULL=37,
ESIREM=38,
ESDVIU=39,
ESRLDN=40,
ESFUIU=41,
ESDNS =42,
ESTMUL=43,
ESFBST=44,
ESBSGN=45,
ESFIFC=46,
ESTMRU=47,
ESNASS=48,
ESBFSV=49,
E$SEMO=58,
ESNTIM=51,
ESFABT=52,
ESFONC=53,
ESNPHA=54,
ES$ROOM=55,
ESWTPR=56,
ESITRE=57,
ESFAMU=58,
ES$STMUS=59,
ESNCOM=50,
ESNFLT=61,
ESSTKF=62,

PDR3621

/* NO RIGHT

/% FILE OPEN ON DELETE

/* NOT A UFD

/* NOT A SEGDIR

/* IS A DIRECTORY

/* (FILE) NOT FOUND

/* (FILE) NOT FOUND IN SEGDIR
/* TILLEGAL NAME

/* ALREADY EXISTS

/* DIRECTORY NOT EMPTY

/* BAD SHUTDN (FAM ONLY)
/* DISK I/0 ERROR

/* BAD DAM FILE (FAM ONLY)
/* PTR MISVATCH (FAM ONLY)
/* BAD PASSNORD (FAM ONLY)
/* BAD CODE IN ERRVEC

/* BAD TRUNCATE OF SEGDIR
/* OLD PARTITION

/* BAD KEY

/* BAD UNIT NUMBER

/* BAD SEGDIR UNIT

/* SEGDIR UNIT NOT OPEN
/* NAME TOO LONG

/* SEGDIR ERROR

/* BAD UFD

/* BUFFER TOO SMALL

/* FILE TOO BIG

/* (NULL MESSAGE)

/* ILL REMOTE REF
/**DEVICE IN USE

/* REMOTE LINE DOWN

/* ALL REMOTE UNITS IN USE
/* DEVICE NOT STARTED

/* TOO MANY UFD LEVELS

/* FAM - BAD STARTUP

/* BAD SEGMENT NUMBER

/* INVALID FAM FUNCTION CODE
/* MAX REMOTE USERS EXCEEDED
/* DEVICE NOT ASSIGNED

/* BAD FAM SVC

/* SEM OVERFLOW

/* NO TIMER

/* FAM ABORT _

/* FAM OP NOT COMPLETE

/* NO PHANTOMS AVAILABLE
/* NO ROOM

/* DISK WRITE-PROTECTED
/* ILLEGAL TREENAME

/* FAM IN USE

/* MAX USERS EXCEEDED

/* NULL COMLINE

/* NO_FAULT FR

/* BAD STACK FORMAT

CA
Cz
BS
WB
SS
pPC,DC,AC
AN

PDR3621 ERROR MESSAGES

X E$STKS=63, /* BAD STACK ON SIGNAL — */
X ESNOON=64, /* NO ON UNIT FOR CONDITION —_ */
X ESCRWL=65, /* BAD CRAWLOUT — *x/
X ESCROV=56, /* STACK OVFLO DURING CRAWLOUT — */
X ESCRUN=67, /* CRMNLOUT UNWIND FAIL — */
X ESCMND=68, /* BAD COMMAND FORMAT - */
X ESRCHR=69, /* RESERVED CHARACTER — */
X ESNEXP=7@, /* CANNOT EXIT TO COMMAND PROC — */
X ESBARG=71, /* BAD COMMAND ARG — */
X ESCSOV=72, /* CONC STACK OVERFLOW — */
X ESNOSG=73, /* SEGMENT DOES NOT EXIST — */
X ESTRCL=74, /* TRUNCATED COMMAND LINE — */
X ESNDMC=75, /* NO SMLC DMC CHANNELS — */
X ESDNAV=76, /* DEVICE NOT AVAILABLE DPTX */
X ESDATT=77, /* DEVICE NOT ATTACHED — */
X ESBDAT=78, /* BAD DATA -— */
X ESBLEN=79, /* BAD LENGTH — */
X ESBDEV=8(), /* BAD DEVICE NUMBER — N
X ESQLEX=81, /* QUEUE LENGTH EXCEEDED — */
X ESNBUF=82, /* NO BUFFER SPACE -_— */
X ESINWT=83, /* INPUT WAITING — */
X ESNINP=84, /* NO INPUT AVAILABLE _— */
X ESDFD =85, /* DEVICE FORCIBLY DETACHED — */
X ESDNC =86, /* DPTX NOT CONFIGURED — */
X E$SICM=87, /* ILLEGAL 3270 COMMAND o */
X E$SBCF=88, /* BAD 'FROM' DEVICE —_ */
X ESVKBL=89, /* KBD LOCKED — */
X ESVIA =90, /* INVALID AID BYTE — */
X ESVICA=91, /* INVALID CURSOR ADDRESS — */
X ESVIF =92, /* INVALID FIELD —_ */
X ESVFR =93, /* FIELD REQUIRED —_— */
X ESVFP =94, /* FIELD PROHIBITED - *x/
X ESVPFC=95, /* PROTECTED FIELD CHECK — */
X ESVNFC=06, /* NUMERIC FIELD CHECK — */
X ESVPEF=97, /* PAST END OF FIELD —_ */
X ESVIRC=98, /* INVALID READ MOD CHAR - */
X ESIVCM=99, /* INVALID COMMAND — */
X ESDNCT=10@, /* DEVICE NOT CONNECTED — */
X ESBNWD=101, /* BAD NO. OF WORDS — */
X ESLAST=101 /* THIS ***MUST*** BE [AST — */
X /* */
X /* */
X /***/
LIST

NEW FILE SYSTEM ERROR HANDLING CONVENTIONS
Motivation

All the file management system routines described in Section 3 employ
error handling procedures that are standard to PRIMOS subsystems. The

G - 3 January 1980

APPENDIX G PDR3621

error handling facilities do not affect previously existing programs.
Only programs using the file management system calls need to be aware
of the error handling described in this section.

The error handling protocol was motivated by the following
considerations.

1.\Except for a few restricted cases, FORTRAN non-local GOTOs do not
work in 64V mode.

2.\Non-local GOTOs are a violation of good programming practice.

3.\Error information in a recursive/reentrant environment must be
associated with a particular call, not left in a single static
place (e.g., ERRVEC).

The Return Code Parameter

All error codes, formerly placed in ERRVEC, are now returned to the
user in a 16-bit user-supplied integer variable. For example, in the
call:

CALL PRWFS$$S (KEY,UNIT,LOC(BFR) ,NW,POS,RNW,CODE)
CODE is an integer that PRWFS$$ sets to the appropriate return code.

CODE can be thought of as a replacement for the (optional)
alternate-return argument.

The effect of the o0ld error handling scheme can be achieved through
code such as:

CALL CREAS$S (NAME,NAMLEN,OPASS,NPASS, CODE)
IF (CODE.NE.() GOTO 99

which would be equivalent to supplying an alternate return (ALTRTN) of
$99 with old partitions (except, of course, that the subroutine GETERR
need not be called to obtain the error code). Note that CODE should
always be checked for zero or non-zero to ensure that errors do not go
unnoticed.

STANDARD SYSTEM ERROR CODE DEFINITIONS

Standard system error codes are FORTRAN PARAMETER or PMA EQU variables
with standardized names. In all cases, zero means no error. Any other
value identifies a particular error or exceptional (not necessarily
error) condition. All reference to specific code wvalues (other than
zero) should be by the standardized names. For convenience, all names
are defined in two SINSERT files, ERRD.F for FORTRAN and ERRD.P for
PMA., These files are included in the UFD SYSCOM on Volume 1 of the
master disk.

REV. A G - 4

PDR3621 ERROR MESSAGES

ERROR HANDLING ROUTINE

The following routine, ERRPRS, provides all the new error handling
facilities.

ERRPR$ —-— Print Standard System Error Message

ERRPRS interprets a return code and, if non-zero, prints a standard
message followed by optional user text.

Calling Sequence

CALL ERRPRS (key,code,text,txtlen,name,namlen)
Parameters

key An integer specifying the action to take subsequent to
printing the message. Possible values are:

KSNRTN Exit to the system, never return to the calling
program.,

K$SSRIN Exit to the system, return to the calling program
. following an 'S' command.

KSIRTN Return immediately to the calling program.

code An integer variable containing the return code from the
routine that generated the error.

text A message to be printed following the standard error message.
Text is omitted by specifying both text and txtlen as 0.

txtlen The length in characters of text.

name The name of the program or subsystem detecting or reporting
the error. name 1is omitted by specifying both name and
namlen as 0.

namlen The length in characters of name.

G - 5 January 1980

APPENDIX G PDR3621

Notes on Usage

If code is @, no printing occurs, and ERRPRS immediately returns to the
calling program. The format of the message for non-zero values of CODE
is:

<standard text>. <user's text if any> (<name if any>)

The system standard text associated with code is not preceded by any
newline characters or blanks and ends with a period. If txtlen is
greater than zero, this is followed by a blank followed by no more than
64 characters of text. If namlen 1is greater than zero, this is
followed by a blank and no more than 64 characters of name enclosed in
parentheses. The line is terminated with a newline.

If ERRPRS is called with the special error code ESNULL, no system
message is printed. Other parameters behave normally.

If ERRPRS is called with an unrecognized value of code, the standard
system message is 'ERROR=ddddd', where ddddd is the decimal value of
code. This can be used to display user-defined errors. User defined
errors should use codes above 10V00.
Examples

Following a call to PRWF$$, if CODE=E$UNOP, the call

CALL ERRPRS (K$SRTN,CODE,'DO A STATUS',1l,'PRWFS$S',6)
would result in the message:
UNIT NOT OPEN. DO A STATUS (PRWFS$)
To print a user-defined error message:
CALL ERRPRS (KSIRTN,10328,'MY MESSAGE',10,0,0)
will print:

ERROR=10328. MY MESSAGE

REV. A G - 6

SA 11-1

A register, read one character
to, fram teminal 18-3

A register, write one character
from, to terminal 18-3

ASKEYS 11-48

Absolute position of pointer, get
11-34

Access mode, changing 4-29
Access, file 3-3
ACCESS_VIOLATIONS 23-11

Adding files in UFD 4-29
Addition functions 9-6
Addition, matrix 10-5

Adjoint, matrix 19-5
Allocation of disk storage 3-1

AMIC lines, transfer data over
20-16

ANYS 23-11

ANY$ 23-3

APPLIB 11-1

Application library 11-1
Application library 2-5

Appl ication library
implementation 11-4

Application library keys 11-48

Application library summary
11-46

ARITHS 23-11

INDEX

Arithmetic operations 9-1

ASCITI file, read character line
from 4-19

ASCII file, write character line
to 4-35

ASCII string, convert number to
11-23

ASCII string, convert to number
11-22

ASCII, compressed, read from disk
17-1

ASCII, compressed, write from
buffer to disk 17-1

ASCII, input from ASR reader
18-2

ASCII, input from high-speed
paper-tape reader 18-2

ASCII, input from user terminal
18-2

ASCIT, output to ASR punch
18-2

ASCII, output to user terminal
18-2

ASCII, read from parallel
inter face card reader 19-14

ASCII, read from serial interface
card reader 19-15

ASCII, uncompressed, write from
buffer to disk 17-2

Ask YES/NO question 11-18

ASR punch, output ASCII to
18-2

ASR reader, input ASCII from
18-2

ASR reader, input one character
from 18-3

Assigrment, temporary device
13-5

Asynchronous controllers 2-6
Asynchronous controllers 20-16
Attach F-2

Bad password 4-4

BAD NONLOCAL_GOT0DS 23-12

BAS PASSWORDS ~ 23-12

Binary editor 22-1

Binary editor commands 22-2

Binary editor error messages
22-4

Binary editor, operation 22-2
Binary search 12-22

Binary, output to high-speed
paper-tape punch 18-2

Binary, read from disk 17-1

Binary, write from buffer to disk
17-1

Boolean functions 8-1
Bubble sort 12-22

Buffer, fill with character
11-6

Buffer, read into fram input
device, ASCII 15-6

Buffer, read into from input
device, binary 15-6

Buffer, write binary from, to
disk 17-1

INDEX

Buffer, write compressed ASCII
from, to disk 17-1

Buffer, write to output device,
ASCII 15-5

Buffer, write to output device,
binary 15-6

Buffer, write uncompressed ASCII
from, to disk 17-2

Calling sequence conventions
2-6

Card processing subroutines
19-14

Card punch, MPC, output one card
to 19-20

Card punch, parallel interface,
punch card on 19-19

Card punch, parallel interface,
interpret card on 19-19

Card reader, parallel interface,
read ASCII from 19-14

Card reader, parallel interface,
read card from 19-16

Card reader, parallel interface,
interpret card on 19-16

Card reader, serial interface,
read ASCII from 19-15

Card, interpret on parallel
interface card reader 19-15

Card, interpret on parallel
inter face card punch 19-19

Card, punch on parallel interface
card punch 19-19

Card, read from parallel
interface card reader 19-14

Carriage-return line-feed, output
to terminal 18-5

INDEX

Change filename F-6 Clock, user-accessible 21-3
Change working directory -2 CLOSE (PRIMOS command) 3-3

Changing access mode 4-29 Close file 4-26

Changing directories 4-3 Close file F-14

Changing file names 4-5 Close file anywhere in PRIMOS

file structure 4-32
Character line, output to

terminal 18-3 Close file by wnit 11-28
Character line, read from ASCII Closing files 3-4
file 4-19

COBKID 2-2
Character line, write to ASCII

file 4-35 COBLIB 2-2

Character string, rotate 11-12 COBOL library 2-2

Character string, shift 11-13 CODE G-4

Chaiictgr string, test for type Codes, error G-1
-1

Cofactor, matrix 10-6
Character, extract from string

11-7 Combinations 19-3
Character, fill buffer with Command file input: see also
11-6 terminal input
Character , move between strings Command files 3-16
11-10

Command input file, invoking
Check existence of file anywhere 4-5
in PRIMOS file structure 4-32

Command input file, invoking

Check file existence 4-26 F-7

Check file name for treename Command input stream, switch
11-15 4-5

Check filename for valid format Command input stream, switch
5-15 F-7

Check for file existence 11-28 Command line delimiters 5-12

Check is unit number in use Command line, parse 11-39
11-38

Command line, parse 5-9

CLEANUPS 23-12

Command line, read into system
vector F-5

Command output file, open 4-6
Command output file, open =7
Commands, binary editor 22-2
Commands, EDB 22-2

Common sort parameters 12-21

Communicate with SMLC driver
20~-1

Communications, real-time 21-1

Compare filenames for equivalence
4-19

Compare substrings for equality
11-6

Compare two strings for equality
11-5

Compar ison 9-19
Complex number functions 9-4

Compressed ASCII, read from disk
17-1

Compressed ASCII, write from
buffer to disk 17-1

Condition frame header 23-21
Condition mechanism 23-1

Condition mechanism, using with
FORTRAN 23-3

Condition switch 23-4
CONICC 13-6
CONTRL, keys 15-8

Control I/0 devices 15-6

INDEX

Control magnetic tapes 19-22

Control mode, FORTRAN forms
19-2

Control modes, vertical 19-2
Control subroutines B-1
Control user terminal 5-4

Control, device, subroutines
16-1

CONTROL-P, enable 5-2
CONTROL-P, inhibit 5-2

Controllers, asynchronous
20-16

Controllers, synchronous 20-1

Conventions, calling sequence
2-6

Conventions, filename 1-1
Gonversion functions 9-4

Conversion routines (APPLIB)
11-22

Convert ASCII string to number
11-22

Convert datmod field 11-25

Convert FORTRAN label to PL/I
23-7

Convert number to ASCII string
11-23

Convert string 11-22
Convert timod field 11-26
CPU time, get 11-19

CPU time, get 5-14

CRAWLOUT MECHANISM 23-19
Create new UFD 4-7

Create specific on-unit 23-7,
23-8

Creating a library = 22-5

Creating a segment difectory
6-6

Creating on-units 23-1

Current UFD password, set 4-25

Current UFD, update 4-35

Current waits/notifies, get
214

Cycle to next user 5-15
DaM file organization E-5
DAaM file, reading a 6-3
DaM file, writing a 6-2

DAM files 3-6

Data, input from magnetic tapes
19-24

Data, output to magnetic tapes
19-24

Data, transfer over AMLC lines
20-16

Date, European/military format,

get 11-20

Date, get 11-19

Date, system, get 5-16
Date/Time stamping 3-11
Datmod, convert 11-25
Day of year, get 11-19

INDEX
Day, time of, get 11-20

Decimal number, input from
terminal 184

Decimal number, output to

terminal 18-4
Default on-unit 23-3
Delete file 4-26

Delete file anywhere in PRIMOS

file structure 4-32

Delete file by name 11-28
‘Deleting files 3-4
Deleting files in UFD 4-29
Delimiters, command line

Density, magnetic tapes

Destination string, move source

string to 11-11

Destination substring, move
source substring to 11-11
Determinant 10-8

Device assignment, temporary
13-5

Device control subroutines
16-1

Device numbers, logical
Device numbers, physical

Different name, phantom user

5-1
Diminishing increment sort
12-24
Direct access method: see also
DAM
- 5

5-12

19-27

13-3

13-2

Direct entrance calls 4-2
Directories, changing 4-3
Directories, file 3-10
Directories, segment 3-11
Directory, change working F-2
Disable on-unit 23-9, 23-19
Disk I/0 time, get 5-16
Disk initialization 14-1
Disk organization 3-12

Disk oriented sort, R-mode
12-4

Disk oriented sort, V-mode
12-6, 12-7

Disk record availability table
3-12

Disk record, read one 14-1
Disk record, write one 14-3

Disk storage, allocation of
3-1

Disk time since login, get
11-29

Disk, read binary from 17-1

Disk, read compressed ASCII from
17-1

Disk, write binary to, from
buffer 17-1

Disk, write compressed ASCII to,
from buffer 17-1

Disk, write modified records to
4-8

Disk, write uncompressed ASCII
to, from buffer 17-2

INDEX

Division functions 9-6
Drain semaphore 21-2

Driver, SMLC, commuincate with
20-1

DSKRAT 3-12

DBKRAT formats E-1

EDB (PRIMOS command) 22-1
EDB commands 22-2

EDB error messages 22-4
Kditor, binary 22~1
Enable CONTROL-P 5-2

Encode value to FORTRAN F format
11-24

End-of-file, position pointer to
11-29

ENDFILE 23-12
ENDPAGE 23-13

Enter waitlist of specified
semaphore 21-5

Entries in segment directory,
read 4-23

Entries, segment directory, read
11-36

Entries, UFD, read 11-36
Entry format, UFD E-3

Equality, compare substrings for
11-6

Equality, compare two substrings
for 11-5

Equate matrix to constant 10-7

Equate matrix to identity 19-9

Equation, linear, solution
194

Equivalence, compare filenames
for 4-10

Erase character, read 5-5
Erase character, set 5-5
ERRD,F G-1

ERROR 23-13

Error code, interpret 5-6
Error codes G-1

Error handling 4-1

Error handling conventions G-3
Error handling, I/0 14-4
Error message, print 14-6

Error message, system, print
G-5

Error messages G-1

Error messages, EDB/binary editor
22-4

Error vector 14-6

Error vector contents, get
14-5

Error vector message, print
14-4

Error vector, system, set 14-4
ERRRTNS 23-13

Establish user-accessible clock
21-3

European format date, get
11-209 '

INDEX

Execute memory image F-12

Execute, R-mode memory image,
restore and 4-21

Execution of user process,
suspend 21-5

Existence, file, check 4-246

Existence, file, check for
11-28

EXITS 23-13
Exponentiation functions 9-6
Extended registers 7-1

Extended stack frame header
23-25

Extract character from string
11-7

F format, FORTRAN, encode value
to 11-24

Fault frame header 23-29
File access 3-13
File access 3-3

File attributes, set in UFD entry
4-21

File close 4-26

File closing 3-4

File deletion 3-4

File directories 3-10

File existence, check 4-26

File existence, check for
11-28

File format 3-9

File formats, internal E-1
File header contents 4-16
File 1/0 2-4

File in UFD, adding 4-29
File in UFD, deleting 4-29
File maintenance 3-16

File organization, DAM E-5
File positioning 3-4

File routines (APPLIB) 11-26

File system structure, scan
11-36

File system, purpose of 3-1
File truncation 3-4

File types 3-4

File types 4-30

File unit '77 4-6

File unit-FORTRAN unit 2-3

File, ASCII, read character line
from 4-19

File, ASCII, write character line

to 4-35

File, close F-14

File, close by unit 11-28
File, DAM 3-6

File, delete 4-26

File, delete by name 11-28
File, open 4-26

File, open F-14

INDEX

File, open by name on unit
11-29

Filé, open temporary 11-35
File, position F-8

File, put in spool queue from
program 19-5

File, read F-8

File, rewind by unit number
11-34

File, saM 3-5

File, truncate on unit number
11-35

File, write 8
Filename conventions 1-1
Filename, charge F-6
Filename, changing 4-5

Filename, check for treename
11-15

Filename, check for valid format
5-15

Filename, get from terminal
11-16

Filename, get from terminal and
open 11-29, 32

Filenames 4-1

Filenames 4-3¢

Filenames, compare for

equivalence 4-10
Files, command 3-16
Files, opening 3-2

Files, position 4-11

Files, read 4-11

Files, referencing by name 3-1
Files, truncate 4-11

Files, write 4-11

Fill buffer with character
11-6

Fill substring with character
11-7

FIXRAT (PRIMOS command) 3-16
Floating point exceptions A-4

Format, European/military, get
date 11-29

Format, F, FORTRAN, encode value
to 11-24

Format, file 3-9
Format, record 3-9
Format, UFD header E-2
Format, UFD, entry E-3

Format, valid, check filename for
5-15

Formats, DSKRAT E-1

Formats, file, internal E-1
Formats, record header E-2
Formats, segment directory E-4
FORMS library 2-2

FORTRAN F format, encode value to
11-24

FORTRAN forms control mode
19-2

FORTRAN functions 7-1

INDEX

FORTRAN internal subroutines
A-1

FORTRAN intrinsic functions
A-4

FORTRAN label to PL/I 23-7
FORTRAN library 2-5

FORTRAN mathematical functions
7-3

FORTRAN unit numbers 2-3
FORTRAN unit-file unit 2=-3

FORTRAN, PL/T considerations
23-2

Function references 7-1
Functions, addition 9-6

Functions, Boolean 8-1

Functions, complex number 9-4
Functions, conversion 9-4
Functions, division 9-6
Functions, exponentiation 9-6

Functions, FORTRAN 7-1

Functions, FORTRAN intrinsic
A-4

Functions, logical 8-1

Functions, mathematical, FORTRAN
7-3

Functions, maximum 9-7
Functions, minimum 9-7
Functions, multiplication 9-7

Functions, negation 9-4

INDEX

Functions, positive difference Get login UFD name 5-16
7 Get n characters from terminal
Functions, remainder 9-7 5-3
Functions, shift 8-1 Get number from terminal 11-17
Functions, sign and magnitude Get one character from terminal
9-19 5-2
Functions, single argument Get operational string length
scientific 7-2 11-12
Functions, subtraction 9-7 Get PRIMOS II information 5-7
Functions, teminal 1-2 Get subUFD password 4-8
Functions, truncation 8-1 Get system date 5-16
Functions, zeroing 9-4 Get system time 5-16
Generate random number 11-21 Get time of day 11-20
Get absolute position of pointer Get treename from terminal
11-34 11-16
Get CPU time 11-19 Goto, nonlocal 23-7
Get CPU time 5~16 Gould printer/plotter, output

data to 19-10
Get current waits/notifies

214 Header, file, contents 4-16
Get date 11-19 Header , record, formats E-2
Get date, Furopearymilitary Header, UFD, format E-2

format 11-20
Heap sort 12-23
Get day of year 11-19
Hexadecimal number, input from

Get disk I/0 time 5-16 terminal 18-4

Get disk time since login Hexadecimal number, output to
11-29 terminal 18-5

Get error vector contents 14-5 High-speed paper-tape punch,

output binary to 18-2
Get filename from terminal
11-16 ‘ High-speed paper-tape punch,
output one character to 18-3
Get filename from terminal and
open file 11-29, 32 High-speed paper-tape reader,
input ASCII from 18-2

High-speed paper-tape reader,
input one character from 18-2

I/0 subroutines 14-1

Identity, equate matrix to
19-9

ILLEGAL INSTS 23-13

ILLEGAL ONUNIT RETURNS$ 23-14
ILLEGAL SEGNOS 23-14
In-memory sorts 12-29
Indication subroutines B-1
Inhibit CONTROL-P 5-2
Initialize disk 14-1

Initialize random number
generator 11-22

Input ASCII from ASR reader
18-2

Input ASCII from high-speed
paper-tape reader 18-2

Input ASCII fram user terminal
18-2

Input data from magnetic tape
19-24

Input decimal number from
terminal 18-4

Input device, read into buffer
from, ASCII 15-6

Input device, read into buffer
from, binary 15-6

Input hexadecimal number from
terminal 18-4

Input octal number from terminal
18-4

INDEX

Input one card from MPC card
reader 19~-17

Input one character fram ASR
reader 18-3

Input one character from

high-speed paper-tape reader
18-2

Input, single line 5-2

Input/output control system
13-1 -

Input/Output subroutines 2-4
Input: see also read
Insertion sort 12-23

Integer, output to terminal
18-3

Interchange sort 12-22

Interface to Versatec printer
19-13

Interface, SVC C-3
Internal file formats E~-1

Internal subroutines, FORTRAN
A-1

Interpret card on parallel
interface card reader 19-16

Interpret card on parallel

inter face card punch 19-19
Interpret error code 5-6
Interuser communications 21-1

Intrinsic functions, FORTRAN
A4

Invalidating on-units 23-1

Invert matrix 10-19

11

I0Cs 13-1

Justify a string 11-8

KEY 23-14

Key definitions, sort 12-2
Keys, operating systetﬁ D-1
KEYS.F 4-1

KEYS.F D-1

KEYS.P 4-1

Keyword table 11-43

KIDALB 2-2

Kill character, read 5-5
Kill character, set 5-5
Left justify a string: 11-8

Lerngth, operational string, get
11-12

LIB 2-1

LIBEDB 22-1

Libraries, location of 2-1
Library management 22-1
Library, creating a 22-5

Line printer, MPC, output one
line to 19-4

Line printer, output line to
19-1

Line printers 19-1

Line, character, output to
terminal 18-3

Line, command, read into system
vector F-5

INDEX

Line, output to line printer
19-1

Linear equation solution 190-4
LINKAGE FAULTS 23-14
Listener level, invoke 23-20

Listener level, invoke with error
processing 23-20

LISTENER ORDER$ 23-14

Locate one string within another
11-8

Iocate one substring within
another 11-9

Iocation of libraries 2-1

Log out user 5-8

Logical device numbers 13-3
Logical functions 8-1

Iogical record, reading a -8
[ogical unit 13-2

[pgin UFD name, get 5-16

I[pgin, get disk time since
11-20

Magnetic tape controllers
19-22

Magnetic tape density 19-27

Magnetic tape subroutines
19-21

Magnetic tapes, input data from
19-24

Magnetic tapes, output data to
19-24

Master file directory 3-14

12

Mathematical functions, FORTRAN
7-3

Mathematical routines (APLIB)
11-21

Matrix addition 19-5
Matrix adjoint 19-5
Matrix cofactor 10-6
Matrix inversion 10-19
Matrix library 19~1
Matrix library 2-5
Matrix multiplication 10-11
Matrix subtraction 19-13
Matrix transpose 19-13

Matrix, equate to constant
10-7

Matrix, equate to identity
10-9

Matrix, multiply by scalar
19-12

Maximun functions 9-7

Memory image, R-mode, read into
memory 4-20

Memory image, R-mode, restore and
execute 4-21

Memory image, R-mode, save
4-23

Memory image, restore F-12

Memory image, restore and execute
F-12-

Memory image, write to disk
F-13

INDEX

Merge files 12-11
Message, print error 14-6

Message, print error vector
14-4

Message, system error, print
G-5

Messages, error G-1

Messages, error, EDB/binary
editor 22-4

MEFD 3-19
MIDAS library 2-2

Military format date, get
11-20

Minimum functions 9-7
Mode, access, changing 4-29

Modify file attributes in UFD
entry 4-21

Modify segment directory size
4-23

Modifying CONIOC 13-7

Move character between strings
11-10

Move source string to destination
string 11-11

Move source substring to

destination substring 11-11

MPC card punch, output one card
to 19-20

MPC card reader, input one card
from 19-17

MPC line printer, output one line
to 19-4

13

MPC: see also parallel interface

MSORTS 12-1
Multiplication functions 9-7
Multiplication, matrix 10-11

Multiply matrix by scalar
19-12

N characters, get from terminal
5-3

Negation functions 94
New UFD password 4-7
Next user, cycle to 5-15
NO/YES question, ask 11-18
Nonlocal goto 23-7
NONLOCAL_GOTO$ 23-15

Notifies/waits, current, get
21-4

Notify semaphore 21-2

NO AVAIL SEGS$ 23-15

NULL_POINTERS 23-15

Number , convert ASCII string to
11-22

Number , convert to ASCII string
11-23

Number , decimal, input fram
terminal 18-4

Number , decimal, output to
terminal 18-4

Number , get from terminal
11-17

Number , hexadecimal, input from
terminal 18-4

INDEX

Number , hexadecimal, output to
terminal 18-5

Number, octal, input from
terminal 18-4

Number, octal, output to terminal
18-4

Number, random, initialize
generator 11-22

Number, random, update seed for
generator 11-21

Obsolete subroutines F-1

Octal number, input from terminal
18-4

Octal number, output to terminal
18-4

-unit actions 23-2

n-unit descriptor block 23-30
ON-unit scan 23-19
On-unit, disable 23-9, 23-10

On-unit, FORTRAN Considerations
23-2

n-unit, raising 23-2

On-unit, system conditions
23-10

n-units, creating 23-1
On-units, invalidating 23-1

one card, input from MPC card
reader 19-17

One card, output to MPC card
punch 19--20

One character, get from terminal
5-2

14

One character, input from ASR
reader 18-3

One character, input from

high-speed paper-tape reader
18-2

One character, output to

high-speed paper-tape punch
18-3

One character, read from terminal
to A register 18-3

One character, read from terminal
18-4

One character, write to terminal
from A register 18-3

One character, write to terminal
18-4

One disk record, read 14-1
One disk record, write 14-3

One line, output to MPC line
printer 19-4

OPEN (PRIMOS command) 3-3
Open file 4-26
Open file F-14

Open file after getting name from
terminal 11-32

Open file anywhere in PRIMOS file
structure 4-32

Open file by name on unit
11-29

Open file with retries 11-39,
32

Open file, verify 11-39, 32
Open temporary file 11-35

INDEX

Opening files 3-2
Operating system keys D-1

Operation of binary editor
22-2

Operational string length, get
11-12

Operations, arithmetic 9-1
Output ASCII to ASR punch 18-2

Output ASCII to user terminal
18-2

Output binary to high-speed
paper-tape punch 18-2

Output carriage-return line-feed
to terminal 1

Output character line to terminal
18-3

Output data to Gould
printer/plotter 19-19

OQutput data to magnetic tapes
19-24

Output data to Versatec
printer/plotter 19-7

Output decimal number to terminal
18-4

Qutput device, write buffer to,
ASCIIT 15-5

Output device, write buffer to,
binary 15-6

Output hexadecimal number to
terminal 18-5

Qutput integer to terminal
18-3

Output line to line printer
19-1

15

Output octal number to temminal
18-4

Output one card to MPC card punch
19-29

Output cne character to

high-speed paper-tape punch
18-3

Output one line to MPC line
printer 19-4

Output: see also write

OUT_OF BOUNDSS 23-16

over flow condition, test for
B-1 ‘
PAGE _FAULT ERRS 23-16

Paper-tape punch, high-speed,
output binary to 18-2

Paper-tape punch, high-speed,
output one character to 18-3

Paper-tape reader, high-speed,
input ASCII from 18-2

Paper-tape reader, high-speed,
input one character from 18-2

Parallel interface card punch,
punch card on 19-19

Parallel interface card punch,
interpret card on 19-19

Parallel interface card reader,
read ASCII from 19-14

Parallel interface card reader,
read card from 19-16

Parallel interface card reader,
interpret card on 19-16
Parallel interface: see also MPC

Parse command line 11-39

INDEX

Parse command line 5-9
Parsing routine (APPLIB) 11-39
Partition exchange sort 12-24

PASSAD (PRIMOS command) 3-13
Password for new UFD 4-7
Password, bad 4-4

Password, get subUFD 4-8
Password, set current UFD 4-25
Passwords 3-1

Pathname: see also treename
PAUSES 23-16
Permutations 10-14
Phantom user, start 5-9, 5-1

Phantom user, start with
different name 5-1

Physical device numbers 13-2
Physical unit 13-2

PL/I 2-2

Plotter subroutines 19-7

Plotter/printer, Gould, output
data to 19-10

Plotter/printer, Versatec, output
data to 19-7

Pointer, get absolute position of
11-34
Pointer, position 11-34

Pointer, position to end-of-file
11-29

Pointer: see position

16

POINTER_FAUET$ 23-16
Position file F-8
Position files 4-11

Position in segment directory
4-23

Position in UFD 4-15

Position pointer 11-34

Position pointer to end-of-file
11-29

Position to start of file: see
rewind

Position, absolute, of pointer,
get 11-34

Positioning files 3-4

Positive difference functions
9-7

PRIMENET 2-2

PRIMOS command CLOSE 3-3
PRIMOS command EDB 22-1
PRIMOS command FIXRAT 3-16
PRIMOS command OPEN 3-3
PRIMOS command PASSWD 3-13
PRIMOS command PROTEC 3-13
PRIMOS II file access 3-14
PRIMOS II information, get 5-7
PRIMOS SVCs C-1

Print error message 14-6

Print error vector message
14-4

INDEX

Print system error message G-5

Printer, Versatec, interface to
19-13

Printer/plotter instructions
19-8

Printer/Plotter subroutines
19-7

Printer/plotter, Gould, output
data to 19-19

Printer/plotter, Versatec, output
data to 19-7

Process, user, suspend execution
of 21-5

Program, user, return from 5-7
PROTEC (PRIMOS command) 3-13
Pseudonym 3-2

Punch card on parallel interface
card punch 19-19

Punch, ASR, output ASCII to
18-2

Punch, card, MPC, output one card
to 19-20

Punch, card, parallel interface,
punch card on 19-19

punch, card, parallel interface,
interpret card on 19-19

Punch, high-speed, paper-tape,
output binary to 18-2

Punch, high-speed, paper-tape,

output one character to 18-3
Question, YES/NO, ask 11-18
Quicksort 12-24

QUIT 23-17

17

R-mode memory image, read into
memory 4-20

R-mode memory image, restore and
execute 4-21

R-mode memory image, save 4-23
Radix exchange sort 12-24

Raising on-unit, explicitly
23-2

Random number generator,
initialize 11-22

Random number generator, update
seed for = 11-21

Read ASCII from parallel

interface card reader 19-14

Read ASCII from serial inter face
card reader 19-15

Read binary from disk 17-1

Read card fram parallel interface
card reader 19-16

Read character line from ASCII
file 4-19

Read command line into system
vector F-5

Read compressed ASCII from disk
17-1

Read entries in segment directory
4-23

Read erase character j 5-5

Read file F-8 |

Read files 4-11

Read fram UFD 4-15

Read into buffer from input
device, ASCII 15-6

INDEX

Read into buffer from input
device, binary 15-6

Read kill character 5-5

Read one character from terminal
to A register 18-3

Read one character from terminal
18-4

Read one disk record 14-1

Read R-mode memory image into
memory 4-20

Read segment directory entries
11-36

Read single line of input 5-2

Read text line from terminal
5-4

Read UFD entries 11—36

Read UFD entries 4-15

Read/write interlock 4-28

Read: see also input

Reader, ASR input one character
from 18-3

Reader, ASR, input ASCII from
18-2

Reader, card, MPC, input one card
from 19-17

Reader, card, parallel interface,
read ASCII from 19-14 ‘

Reader, card, parallel interface,
read card from 19-16

Reader, card, parallel interface,
interpret card on 19-16

Reader, card, serial interface,
read ASCII from 19-15

18

Reader, high—lspeed, paper-tape,
input ASCII from 18-2

Reader , high-speed, paper-tape,
input one character from 18-2

Reading a DAM file 6-3

Reading a file in a segment
directory 6-12

Reading a logical record 6-8
Reading a SAM file 6-3
Real~time communications 21-1
Real-time subroutines 2-6
Record availability table. 3-12
Record format 3-9

Record header formats E-2
Record types, sort 12-1

Record, logical, reading a 6-8

Record, read one, disk 14-1
Record, write one, disk 14-3
Recursive software 23-19
REENTERS 23-17

Referencing files by name 3-1

Registers, extended 7-1
Remainder functions 9-7
Reset semaphore 21-2

Restore and execute memory image
F-12

Restore memory image F-12

Restore R-mode memory image and
execute 4-21

INDEX

RESTRICTED_INSTS 23-17

Retry when opening file
32

ll—3g ’

Return code parameter G-4
Return fran user program 5-7
Rewind file by unit 11-34

Rewind:
file

see position to start of

RFORMS 2-2
Right justify a string 11-8
Rotate character string 11-12

Rotate character string left

11-12
Rotate character string right
11-12
Rotate substring 11-13
Rotate subshtring left 11-13
Rotate suwbstring right 11-13

RO ERRS 23-17

RPG library 2-2

RPGKID 2-2

RPGLIB 2-2

sAM file, reading a 6=3
saM file, writing a 6-1
SaM files 3-5

Sample user input procedure
12-17

Save R-mode memory image 4-23

Scalar, multiply matrix by
19-12

19

Scan file system structure
11-36

Scan for on—-units 23-6

Scientific functions, single
argument 7-2
Search, binary 12-22

Seed for random number generator,
update 11-21

Segment directories 3-11
Segment directories 4-30

Segment directory entries, read
11-36

Segment directory formats E-4

Segment directory size, modify
4-23 1

Segment directory, creating a
6-6

Segment directory, position in
4-23

Segment directory, read entries
in 4-23

Segment directory, reading a file
in 6-12

Semaphore, clock 21-3
Semaphore, drain 21-2

Semaphore, enter waitlist of
21-5 ‘

Semaphore, notify 21-2
Semaphores 21-1
Sense light setting test B-2

Sense light settings, update
B-1

INDEX

Sense lights, set B-2
Sense switch setting test B-2

Sequential access method: see
also SAM

Serial interface card reader,
read ASCII from 19-15

Set current UFD password 4-25
Set erase character 5-5

Set file attributes in UFD entry
4-21

Set kill character 5-5
Set sense lights B-2
Set system error vector 14-4

Setting, sense light, update
B-1

Setting, test for sense light
B-2

Setting, test for sense switch
B-2

Shared libraries 2-1

Shell sort 12-24

Shift character string 11-13

Shift character string left
11-13

shift character string right
11-13

Shift functions 8-1

shift substring 11-14
Shift substring left 11-14
Shift substring right 11-14

20

Sign and magnitude functions
9-10

Signal specific condition
(FORTRAN) 23-5

Signal specific condition (PL/I)
23-4

Single argument scientific
functions 7-2

Single line of input, read 5-2
Single output file, sort 12-9

Size, segment directory, modify
4-23

SMLC driver, communicate with
20-1

SMLC timing 20-3

Sort into single output file
12-9

Sort key definitions 12-2
Sort libraries 12-1
Sort libraries 2-6
Sort parameters, common 12-21
Sort record length 12-2

Sort record types 12-1

Sort user parameter check
12-13

Sort user procedure, initial
phase 12-15
Sort, bubble 12-22

Sort, close units, user procedure
12-16

Sort, diminishing increment
12-24

INDEX

Sort, disk oriented, R-mode
12-4

Sort, disk oriented, V-mode

12-6, 12-7
Sort, heap 12-23
Sort, in-memory 12-20
Sort, insertion 12-23
Sort, interchange 12-22

Sort, internal, user procedure
12-15

Sort, partition exchange 12-24

Sort, radix excharge 12-24

Sort, shell 12-24

Sort, user input and output
procedures 12-13

sort, user input procedure,
sample 12-17

Sort, user output procedure,
return 12-16

Source string, move to

destination string 11-11

Source suwbstring, move to

destination substring 11-11

Specific on-unit, create 23-7,

23-8

Spool file from program 19-5
Spool queue, put file in 19-5
SPOOLS library 19-5

SRTLIB library 12-1

STACK HEADER 23-9

STACK_OVFS$ 23-17

21

Start phantom user 5-9, 5-1

Static mode software 23-19

STOPS 23-18

String length, operational, get
11-12

String lower case to upper
11-22 :

String Manipulation Routines
(APPLIB) 114

String upper case to lower
11-22

String, ASCII, convert number to
11-23

String, ASCII, convert to number
11-22

String, character, test for type
11-15

String, destination, move source
string to 11-11

String, extract character from
11-7

String, left/right justify a
11-8

String, locate one within another
11-8

String, source, move to
destination string 11-11

Strings, compare for equality
11-5

Strimgs, move character between
11-10

Strings, two, compare for
equality 11-5

Substring, destination, move
source substring to 11-11

INDEX

Substring, fill with character
11-7

Substring, locate one within
another 11-9

Substring, rotate 11-13
Substring, shift 11-14

Substring, source, move to
destination substring 11-11

Substrings, compare for equality
11-6

Subtraction functions 9-7
Subtraction, matrix 10-13

SubUFD password , get 4-3

Supervisor calls c-1

Supervisor logout user 5-8

Suspend execution of user process
21-5

svC C-1
SVC interface Cc-3
SVC_INST$ 23-18

Switch commarkl input stream
4-5

Switch command input stream
F-7

Switch terminal output 4-6

Switch teminal output =7

Synchronous controllers 2-6
Synchronous controllers 20-1
SYSCOM>ASKEYS 11-48

SYSCOM>ERRD.F G-1

SYSCOM>KEYS.F D-1
System conditions 23-10
System date, get 5-16
System error message, print

G-5
System error vector, set 14-4
System time, get 5-16

System vector, read command line
into -5
11-35

TSxxxX (temporary file)

Table, keyword 11-43

Tape, magnetic, controllers
19-22

Tapes, magnetic, input data from
19-24

Tapes, magnetic, output data to
19-24

Temporary device assignment
13-5

Temporary file, open 11-35
Terminal functions 1-2
Terminal input, parse 11-39

Terminal input: see also command

file input

Terminal output, switch 4-6
Terminal output, switch -7
Terminal subroutines 18-1

Terminal, get filename from
11-16

Terminal, get filename from and
open 11-29, 32

INDEX

[\
w

Terminal, get n characters from
5-3

Terminal , get number from
11-17

Terminal, get one character from
5-2

Terminal , get treename from
11-16

Terminal, input ASCII from
18-2

Terminal, input decimal number
from 18-4

Terminal, input hexadecimal
nunber from 13-4

Terminal, input octal number from
18-4
Terminal, output ASCII to 18-2

Terminal, output carriage-return
line-feed to 18-5

Terminal, output character line
to 18-3

Terminal , output decimal number
to 18-4

Terminal, output hexadecimal
number to 18-5

Terminal, output integer to
18-3

Terminal , output octal number to
18-4

Terminal, read one character from
to A register 18-3

Terminal, read one character from
18-4

Terminal, read text line from
5-4

Terminal, user, control 5-4

Terminal, write one character to
fran A register 18-3

Terminal, write one character to
18-4

Test character string for type
11-15

Test for overflow condition
B-1

Test sense light setting B-2
Test sense switch setting B-2

Text line, read fram terminal
5-4

Time of day, get 11-20
Time semaphore 21-3
Time, CPU, get 11-19
Time, CPU, get 5-16
Time, disk I/0, get 5-16

Time, disk, since login, get
11-20

Time, system,get 5-16
Time/date stamping 3-11
Timers 21-1

Timing, SMLIC 20-3
Timod, convert 11-26
Token types 5-13
Tokens 5-13

Transfer data over AMIC lines
20-16

Transpose, matrix 19-13

INDEX

Treename 4-33

Treenamne, check filename for
11-15

Treename, get from terminal
11-16

Treename: see also pathname

Truncate file on unit number
11-35

Truncate files 4-11
Truncating files 3-4
Truncation functions 8-1

Type, test character string for
11-15

UFD 3-10

UFD entries, read 11—36
UFD entries, read 4-15
UFD entry format E-3

UFD entry, set file attributes in
4-21

UFD Header format E-3
UFD name, login, get 5-16

UFD password, current, set
4-25

UFD, adding files in 4-29
UFD, create 4-7

UFD, deleting files in 4-29
UFD, position in 4-15

UFD, read from 4-15

UII 2-2

UIIS 23-19

Uncompressed ASCII, write from
buffer to disk 17-2

UNDEFINED_GATES 23-18

Unit number in use, check for
11-38

Unit number, rewind file by
11-34

Unit number, truncate file on
11-35

Unit numbers, FORTRAN 2-3
Unit, close file by 11-28

Unit, open file by name on
11-29

Update current UFD 4-35

Update seed for random number
generator 11-21

Update sense light settings
B-1

User file directory 3-19

User input procedures, sort
12-13

User output procedures, sort
12-13

User process, suspend execution
21-5

User program, return from 5-7
User terminal subroutines 18-1
User termminal, control 5-4
User, logout 5-8

User, logout by supervisor 5-8

INDEX

User, phantom, start 5-9, 5-1
User-accessible clock 21-3

Using condition mechanism with
FORTRAN 23-3

Valid format, check filename for
5-15

Value, encode to FORTRAN F format
11-24

VAPPIB library 11-3
VCOBIB library 2-2

Vector, system, read command line
into F-5

Verify when opening file
11-39, 32

Versatec printer, interface to
19-13

Versatec printer/plotter, output
data to 19-7

Vertical control modes 19-2
VFORMS library 2-2

VKDALB library 2-2

WETLIB 2-2

VSPOO$ library 19-5

VSRTLI library 12-1

Waitlist of specified semaphore,
enter 21-5

Waits/notifies, current, get
21-4

Working directory, change F-2

Write binary from buffer to disk
17-1

25

Write buffer to output device,
ASCII 15-5

Write buffer to output device,
binary 15-6

Write character line to ASCII
file 4-35

Write compressed ASCII from
buffer to disk 17-1

Write file F-8
Write files 4-11

Write memory image to disk
F-13

Write modified records to disk
4-8

Write one character to. terminal
fram A register 18-3

Write one character to teminal
18-4

Write one disk record 14-3

Write uncompressed ASCII from
buffer to disk 17-2

Write-protected disks 3-4
Write: see also output
Writing a DAM file 6-2
Writing a sM file 5-1
Year, day of, get 11-19
YES/NO question, ask 11-18

Zeroing functions 9-4

INDEX

SUBROUTINE NAME INDEX

A$21 9-6 ATANSX 7-2 céMa5 19-22 CMBNSS 12-15
AS51 9-6 ATAN2 7-5 céM1g 16-1 CMCOF 1¢-6
A$52 9-6 ATCHSS 4-3 céM1p 19-22 CMCON 10-7
A$55 9-6 ATTACH F-2 CsM11l 16-1 CMDET - 10-8
A$61 9-6 ATTDEV 13-6 C$M11 19-22 CMDLSA 11-39
AS52 9-6 BATCHS 5-1 C$M13 19-22 CMIDN 10-9
AS$77 9-6 BNSRCH 12-22 cépPg2 16-1 OMINV 10-10
ASxy 9-6 BREAKS 5-2 Céxy . 9-4 CMLVSE 23-20
ABS 7-3 BUBBLE 12-22 ClIN 5-2 CWLT 19-11
ACOS 7-7 cs12 9-4 CABS 7-3 CMPLX 7-3
AIMAG 7-3 c$15 9-4 CASESA 11-22 OMREAD F-5
AIMAG 7-6 C$16 9-4 Ccos 7-4 CMSCL 1¢-12
AINT 7-3 cs$21 9-4 CDABS 7-6 aMsuB - 19-13
ALOG 7-4 C$21G 94 cpcos 7-7 CMTRN 10-13
ALOGSX 7-2 C$26 9-4 CDEXP 7-7 CNAMS$S 4-5
ALOGlg 7-4 C$27 9-4 CDLOG 7-7 CNAMES F-6
AAX@ 7-3 C$51 9-4 CDSIN 7-7 CNINS 5-3
AMAX1 7-3 CS$52 9-4 CDSQRT 7-6 CNSIGS 23-6
AMING 7-3 C$57 9-4 CEXP 7-4 CNVASA 11-22
AMIN1 7-3 c$A1 9-4 CHAR 7-6 CNVBSA 11-23
amMm 7-3 C$62 9-4 CL$GET 5-2 COVANL 5-4
AND 8-1 C$67 9-4 CLINEQ 104-3 COVMB 10-3
ANINT 7-6 c$75 9-4 CLNUSS 12-16 COMISS 4-5
ASCS$S 12-2 c$76 9-4 CLOG 7-4 COMINP F-7
ASCSRT 12-7 c$77 9-4 CLOSSA 11-28 COMLVS 23-20
ASIN 7-7 CSAll 16-1 CMADD 10-5 COMOSS 4-6
ATAN 7-5 CéMA5 16-1 | CMADJ 10-5 CNJ 7-6

X - 27

CONJG 7-5

CONTRL 15-6

Ccos 7-4
CoS$X 7-2
CosH 7-7
CREASS 4-7
CSIN 7-4
CSQRT 7-4
CSTR$A 11-5
CSUBSA 11-6

CTIM$A 11-19

D$21 9-6
D$27 9-6
D$51 9-6
D$52 9-6
D$55 96
D$57 9-6
D$61 9-6
D$62 9-6
D$67 9-6
D$71 9-6
D$77 9-6
DSINIT 14-1
DSXy 9-6
DABS 7-3
DACOS 7-7

DASIN 7-7

SUBROUTINE NAME INDEX

DATAN
DATAN2
DATESA
DATNSX
DBLE

DCMPLX

7-5

11-19

DCONT 7-6

DCO5

DCOSS$X

7-4

7-2

pcosH 7-7

DDIM 7-6

DELE$A 11-28

DEXP
DEXP$X

DIM

7-4

7-2

7-4

DIMAG 7-6

DINT 7-6

DINT
DISPLY
DL13$X
DLG2$X
DLINEQ
DLOG
DLOG$X
DLOG10
DLOG?2

DMADD

7-3

B-1

DMADJ 10-5
DMAXL 7-3
DMCOF 10-6
DMCON 10-7
DMDET 10-8
DMIDN 19-9
DMIN1 7-3
DMINV 10-10
DMMLT 10-11
DM(D 7-3
DMSCL 10-12
DMSUB 10-13
DMTRN 10-13
DOFY$SA 11-19
DPROD 7-6
DREAL, 7-6
DREAL 7-6
DSIGN 7-4
DSIN 7-4
DSINSX 7-2
DSINH 7-7
DSQRSX 7-2
DSQRT 7-4
DTAN 7-7
DTANH 7-7
DTIM$A 11-20
DUPLX$ 5-4

28

ES11
ES21
E$22
ES26
ES$S27
ES$51
E$52
ES$55
E$57
E$61
ES62
ES66
ES67
ES71
ESXY
EDATSA
ENCDS$A
ERKLS$S
ERRPRS
ERRPRS
ERRSET
EXIT
EXP
EXP$X
EXSTSA
FSAl

F$A2

9-6
9-6
9-6

9-6
11-20
11-24
5-5
5-6
G-8

14-4

7-4
7-2
11-28

A-1

F$A3
F$A5
F$A6
Fsa7
FSAT
FSATI
FS$BKSP
F$BN
FSCB
FSCG
FSCL
F$CLOS
F$DE
FSDEX
F$DI11
F$DI71
FSDI77
F$DIxy
FSDN
FSEN
FSEND
FSEN
FSIBR
FSIBW
FSIFR
FSIFW

FSILDR

aA-l

9-19

A-2

A-3

A-3

SUBROUTINE NAME INDEX

FSILDW
FSINQF
F$INQU
FSINR
F$1077
FSIOBF
FSIOFTN
FSLS
FSLT
F$MALl
FSMA22
FSMA77
FSMAxXxX
FSMI1l
FSMI 22
FSMI77
FSMIxx
FSMO71
FS$MO77
FSMOxy
FSOPEN
FSOR
FSPAUS
FSRA
FSRAX
FSRB

FSRBX

A-3

A-2

9-7
9-7

9-7

FSREWA
FSRN
FSRNX
FS$RS
FSRT
FSRTE
F$RX
FS$SH
FSSI1l
F$SI71
F$S177
F$SIxy
F$TR
FSWA
FSWAX
F$WB

FSWBX

FDATSA
FEDTS$A
FILLSA
FLOAT

FORCEN
FSUBSA

FTIM$A

29

A-3

A-1

A-3
A-2
A-4
9-190
9-10

11-25
11-25

11-6

11-7

11-26

GCHRS$A
GENDSA
GETERR
GINFO
GPASSS
GPATHS
HS$55
HEAP
1SAAQL
1$ACO3
1$AC09
1$AC15
1SAD@7
ISAPQ2
1$BD@7
IABS
ICHAR
IDIM
IDINT
IDNINT
IFIX
IMADD
IMADJ
TMCOF
IMCON
IMDET

IMIDN

11-7
11-29

14-5

12-23
18-2
19-14
19-15
19-16
17-1
18-2
17-1
7-3
7-5

7-4

7-3

7-3

10-5
10-5
10-6
10-7
10-8

10-9

IMMLT 10-11
IMCL 19-12
IMSUB 10-13
IMTRN 10-13
INDEX 7-6

INSERT 12-23

INT 7-3
IRMD 7-5
ISIGN 7-4
JSTRSA 11-8
LEN 7-6

LGE 7-7

Gr 7-7
LINEQ 10-3
LLE 7-7

LLT 7-7
LOGOSS 5-8
LS 8-1
LSTRSA 11-8
LsuB$A 11-9
LT 8-1
M$21 9-7
M$51 9-7
M$52 9-7
M$55 9-7
M$61 9-7
M$62 9-7

SUBROUTINE NAME INDEX

M$77
MSxy
MADD
MADJ
MAX®
MAXL
MCHRS$A
MCOF
MCON
MDET
MIDN
MING
MIN1
MINV
MKLBSF
MKONSF
MKONUS
MMLT
MOD
MRG1$S
MSCL
MSTRS$A
MSUB
MSUBSA
MTRN
N$55
N$77

11-19

10-6

18-7

10-8

10-109
23-7

23-8

12-11
19-12
11-11
1A-13
11-11

19-13

X -

NSxx

NAMEQS

9-4

4-10

NINT 7-6

NLENSA
0$AAPL
0S$ACE3
0$AC15
0$ADG7
0$ADO8
0$ALA4
O$ALO6
0$AL14
0$AL14
0$BDO7
0$BPO2
OPENSA
OPNPSA
OPNVSA
OPVPS$A
OR
OVERFL
P1IB
P1IN
P18
P1loU
PERM

PHANTS

30

11-12
18-2
19-19
19-19
17-1
17-2
19-1
19-1
19-1
19-13
17-1
18-2
11-29
11-29
11-30
11-32

8-1

18-3
10-14

5-9

PLINL
POSNS$A
PRERR
PRWF$$
PRWFIL
QUICK
RADXEX
RANDSA
RDASC
RDBIN
RDENS$$
RDLINS
RDTKSS
REAL

RECYCL

" RESTSS

RESTOR
RESUS$
RESUME
RLSESS
RNAMSA
RND
RNDISA
RNUMSA
RPOSS$A
RRECL

RS

23-7
11-34
14-6
4-11
F-8
12-24
12-24
11-21
15-6
15-6
4-15
4-19

5-15
4-20
F-12
4-21
F-12
12-15

11-16

11-22
11-17
11-34

14-1

RSTRSA

RSUBSA

RTRNSS
RVONSF
RVONU$
RWNDS$A
s$21
1 5$51
5$52
S$55
S$61
5$62
S$77
SSXy
SATRSS
SAVE
SAVESS
SEARCH
SEARCH
SEMSDR
SEMSNF
SEMSTN
SEMSTS

SEMSWT

SETUSS

SGDRSS

11-12

11-13

12-16
23-19
23-9

11-34

4-21
F-13
4-23
16-1
F-14
21-2
21-2
21-3
214
21-5
12-13

4-23

SUBROUTINE NAME INDEX

SGNLSF 23-5
SHELL 12-24
SHFT 8-2
SIGN 7-4
SIGNLS 23-4
SIN . 74
SINSX 7-2
SINH 7-7

SLEEPS 21-5
SLITE B-2

SLITET
SNGL 7-3
SPASSS
SPOOLS
SQORT 7-4
SQRTSX 7-2
SRCHSS
SRTF$S
SSTRSA
SSUBSA
SSWTCH

SUBSRT
12-6

TSAMLC 20-16
T$SCMPC 19-17
TSIMPC 19-4
TSMT 19-24

TSPMPC 19-20

X -

TSSICH 20-1
TSVG 19-7
T1IB 18-3
T1IN 18-4
T108 18-3
T10U 18-4
T™N 7-7

TANH 7-5
TEMPSA 11-35
TEXTO$ 5-15
TIDEC 18-4
TIHEX 18-4
TIMDAT 5-16
TIMESA 11-20
TIOCT 18-4
TNOU 18-3
TNOUA 18-3
TODEC 18-4
TOHEX 18-5
TONL 18-5
TOOCT 18-4
TOVFD$S 18-3
TREESA 11-15
TRNCSA 11-35
TSCNSA 11-36
TSRCSS 4-32
TYPESA 11-15
31

UNITSA
UPDATE
WRASC
WRBIN
WRECL
WTLINS
XOR
YSNOSA

Z580

11-38
4-35
15-5

15-6

	000
	001
	002
	003
	004
	005
	006
	01-00
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	16-01
	16-02
	17-01
	17-02
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	20-001
	20-002
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	22-001
	22-002
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-001
	23-002
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	a-1
	a-2
	a-3
	a-4
	b-1
	b-2
	c-1
	c-2
	c-3
	c-4
	c-5
	c-6
	c-7
	c-8
	d-1
	d-2
	d-3
	d-4
	e-1
	e-2
	e-3
	e-4
	e-5
	e-6
	e-7
	e-8
	f-01
	f-02
	f-03
	f-04
	f-05
	f-06
	f-07
	f-08
	f-09
	f-10
	f-11
	f-12
	f-13
	f-14
	f-15
	f-16
	f-17
	f-18
	f-19
	f-20
	g-1
	g-2
	g-3
	g-4
	g-5
	g-6
	x-01
	x-02
	x-03
	x-04
	x-05
	x-06
	x-07
	x-08
	x-09
	x-10
	x-11
	x-12
	x-13
	x-14
	x-15
	x-16
	x-17
	x-18
	x-19
	x-20
	x-21
	x-22
	x-23
	x-24
	x-25
	x-26
	x-27
	x-28
	x-29
	x-30
	x-31
	x-32

