User’s Guide for the
Georgia Tech C Compiler

Second Edition

Daniel H. Forsyth, Jr.
Edward J. Hunt
Jeanette T. Myers
Arnold D. Robbins

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

October, 1984

TABLE OF CONTENTS

Getting Started

Prerequisitesttt ettt

Calling the C Compileriuiiiiiiinnennn.
Cc ——— compile a@a C Programeeeeeeeeeenns
Ccl ——- compile and load a C program
Ucc —-—- compile and load a C program

Compile —-——- general purpose compile and load

C Program Development —-—— An Example

Features of Georgia Tech C

Standard Implementediiiiiiiiiinnennnn

Additional FeatUresttt nnnnnneanenns

Compile Time Facilities

Include File Organization
=incl=/swt_def.C.dl .+ttt
=incl=/stdio.h ...ttt e e e
=incl=/ctype.h ... e e e
=incl=/swWt.h ...ttt e et
=incl=/aSCii.h ..ttt e et
=incl=/assert.h ittt i
=incl=/debug.h i e
=incl=/KeysS.h ..ttt i e e e e
=incl=/lib_def.h0iiiiiiiiiiiiinnnnnn
=incl=/math.httt eennnnnn
=incl=/memory.hiiiiii ittt
=incl=/setjmp.ht i e e
=incl=/SWt_COmM.h ittt it ittt enennens
=incl=/varargs.hiiiiiiii i i

- 1iii -

NNDN R

Loading C Programs For Bare Primosc.ceiiiieeeennnns

Run Time Environment

Calling Primos and Subsystem Routinescc00c...
The Main PrOgIraAMttt nnneenneenneenneenneenneennenn

C RUN Time Library ..t ittt ittt ieaeeseeeeenenenaessasenas
UNIX System Calls ...ttt iiinneeeeeenenneeeeennnnns
The C Standard I/O Library «.eeieueteneeeneeeneeenennnn
Unix Subroutines FOr C ProgramsSeeeeeeeeeeanenns
The C Math Library ... iiiiiiite ettt tnnenneeeeeennnns
Unix Special Library Routinesciiiiiiieennenn.
Other Routines Not From UnixXoeeiiiiiiiinnnnneens

Conversion

C Program Checkerttt itnenneeeeennanns

Incompatabilities With PDP—11 Cttt teeennenenennn
Include Statements ...ttt nnnnas
2@ 15 o o=
Program and Data Object Size Restrictions
6o K 0wl I o =
N ol a1
Identifiers —-—— Naming Restrictions
Character Representation and Conversion
NUMETLICALl ittt ittt ittt ettt ettt et iesaeeeeeeeenennnns
Library Incompatibilitiesuiiiiiiiiiiineeenennn
Unix File System Incompatibilities
= o
Static Initializers ...ttt nnnnnns
2T e = o
The Type VOid .ttt ettt ittt nneeeeeeeenns

KNOWIN BlUGS vt ittt ittt ettt eenneseeeeennneaseeeeannnesenes 65
Technical Information
Implementation . v ittt et ettt eeeeeeeeeeeseseneneananssas 67
2l e B 1= o X 68
Subsystem Managers Section
Installation ProcCedureuiiiitteeeneeeeeeonaneeanenas 70
Georgia Tech C Installation Packageciiiiinnn 70
Release Tape Contentsttt ttttnneeeeennnnnenns 70
Logical Tape I ittt it tee et ttteessennneeeeeennns 70
Logical TaAPe 2 i ittt it eeeeeeeeaeeeeeeseeanasesasenns 71
Logical Tape 3 i ittt ittt ittt eeaneneeeseennanesesenns 71
Logical Tape 4 ittt ittt ettt 72
Logical TaPe 5 i ittt ittt ittt et eeeeeeeseeanasenanonns 72
Loading the Tape ... ittt ittt ittt ittt 72
Installation ...ttt ittt ettt et e 73

Foreword

The Georgia Tech C compiler and run time support library
provide a C programming environment on Prime computer systems.
The Georgia Tech C Compiler runs under and requires the Georgia
Tech Software Tools Subsystem, Version 9 or later. Both =run on
PRIME 400, 500 and 50-series computers.

This guide documents the second version of the Georgia Tech
C compiler and run time library which is released with Version 9
of the Software Tools Subsystem. The eight chapters of this
guide

1) explain the use of the compiler,

describe the machine-dependent features of the
implementation,

describe the compile time environment provided,

detail the behavior of the run time package,

enumerate problems of conversion from other systems,
document known compiler bugs and shortcomings,

provide some technical information on the implementation
and performane of the C compiler, and

8) outline actions necessary to manage the C system.

N

~N o oW

A complete description of C can be found in The C
Programming Language by Brian W. Kernighan and Dennis M.
Ritchie (Prentice-Hall, 1978). Further information on individual
commands 1in the C system can be obtained from the Software Tools
Subsystem Reference Manual, accessible both on paper and through
the Subsystem ’"help’ command. The C run time library is only
documented here. There are no ’'help’ entries for the individual
subroutines.

Wherever a routine or facility has been changed from the
first release of the C compiler, it will be explicitly noted as
such.

It is to be noted that wherever it appears in this document,
the term "Unix" is a trademark of AT&T Bell Laboratories, Inc.

C User’s Guide

Getting Started

Prerequisites

We assume that you are already familiar with the Subsystem;
that you can create, delete, edit and list files; redirect input
and output; obtain on-line documentation, etc. We also assume
that you are familiar with the C programming language. If you
are not, you should examine the Software Tools Subsystem User’s
Guide and The C Programming Language by Kernighan and Ritchie
before continuing in this guide.

Throughout this guide, we boldface user input in our exam-—
ples, as is the convention in the Software Tools Subsystem User’s
Guide.

Calling the C Compiler

There are several commands that call the C compiler:

cc - compile a C program
ccl — compile and load a C program
ucc — "Unix-like" C compile and load

compile - general purpose compiler interlude

We follow with a brief description of each. For detailed
information and examples refer to the Reference Manual entries
for each command, e.g.:

] help cc

Cc ——- compile a C program

"Cc’ behaves much like the other Subsystem compiler inter-
faces. It is a program that takes a file whose name ends in ".c"
and calls the programs necessary to convert it into a relocatable
object program in a file whose name ends in ".b". ’Cc’ calls two
major programs: the compiler front end ’cl’, and the code
generator ’‘vcg’. If you have no compile-time errors in your
program, you will not see any messages at all from either
program. ’'Cc’ automatically "includes" the file "=cdefs=" (which
is "=incl=/swt_def.c.i") containing macros and external data
declarations for the C Standard I/0 Library and for interfacing
with the Subsystem.

C User’s Guide

Ccl ——— compile and load a C program

"Ccl’ compiles a ".c" file in the same way as ’‘cc’; it then
calls ’1d’, the Subsystem loader interface, to produce an
executable program in a file with no suffix. Unfortunately, the
Prime loader is somewhat noisy, so you receive a good bit of out-
put during the execution of ’1d’.

Ucc —-—— compile and load a C program

"Ucc’ 1is a "Unix-style" C compiler and loader. It is not,
however, exactly 1like Unix’s 'cc’ or any other known Unix
program! "Ucc’ recognizes file naming conventions for Subsystem
supported languages and will wuse the appropriate preprocessor
and/or compiler to process non-C files. Consequently, it can be
used to compile and load several files of different languages
into an executable program, as long as the main program is writ-
ten in C. ’'Ucc’ now depends on the new ’'compile’ program to do
most of 1its work. It is Jjust smart enough to arrange to call
"compile’ properly; it no longer knows about all the details of
the C compiler, or how to go about compiling other languages.

Compile ———- general purpose compile and load

"Compile’ is a general purpose compiler interlude. It knows
about the Subsystem naming convention for the more popular
languages available under SWT and Primos. It will arrange to

call the proper compiler for each source file, based on the
suffix. You may tell it to pass options on to each different
compiler or preprocessor, and also to tell it what is the "main"
language, in order for it to load any necessary libraries and/or
start-off routines. ’'Ucc’ now just rearranges its arguments, and
calls ’"compile’.

C Program Development --- An Example

For this example, the file "inout.c" contains the following
C program:

main () /* copy input to output until EOF */
{

int c;

while ((c = getchar()) != EOF)
putchar (c);

}

We can compile and load (i.e., link-edit) "inout" with the com-
mand

C User’s Guide

] ccl inout.c

Consistent with Subsystem convention, ’ccl’ places the executable
version of "inout.c" in a file named "inout". You can execute

"inout" as follows:

] inout

a

a

echo me if you dare
echo me if you dare
<control-c>

1

C User’s Guide

Features of Georgia Tech C

Standard Implemented

The Georgia Tech C compiler is based on the specifications
contained in The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie, Prentice-Hall, 1978.

Additional Features

The Georgia Tech C compiler provides the following
extensions to C:

1. Unions may be initialized. The first type entry in the union
will be used to determine the format of the data. For exam-—
ple, "union {int a; double b;} x = 1;" would initialize "x"

as an int, not a double.

2. Except for external names, all characters in all names are
significant. External names are up to 8 characters in
length, with no case significance. To allow access to Primos
system calls, the dollar sign ("$") is also a legal character
in identifiers. The external names in the object code
produced by the compiler can be up to 32 characters long; it
is the SEG loader that restricts their lengths to 8 charac-
ters. The ’'bind’ EPF loader does pay attention to the full
32 character names.

3. The late Unix Version 7 enhancements, structure assignment
and "enum" types, are implemented (but not thoroughly
tested) .

4. C functions can call Fortran, PL/1l, etc. routines, and vice
versa. C uses the same calling sequence as all other Prime

supported languages. SHORTCALL procedure calls (using the
JSXB instruction) are not supported by Georgia Tech C.

5. The Ratfor/Algol68 radix notation may be used to specify
integer constants. In addition to wusing a leading 0 for
specifying octal and Ox for hexadecimal, Georgia Tech C
recognizes the Ratfor radix syntax for integer constants up
to base 36. (For instance, "7rl123" is 123 base 7, i.e. 66.)

6. Single quotes may be used to specify packed character strings
as 1n Fortran. The Georgia Tech C compiler treats a single
character enclosed in apostrophes as a character constant,
while more than one character enclosed in apostrophes is
considered a pointer to an array of integers containing a
packed "hollerith" character constant.

C User’s Guide

10.

11.

The data type "long unsigned" is supported, giving access to
32-bit unsigned numbers.

Initialization of automatic aggregates 1s supported. (The
code generator is not particularly smart about it, though, so
initializing huge automatic arrays is incredibly space-
inefficient.)

Macro definitions ("#define"s) can be specified on the com-
mand line using the "-D" compiler option.

Directories to be searched for include files may be specified
on the command line using the "-I" compiler option.

The special macros "__FILE__" and "__LINE__" are supported to
provide access to the source file name and source line number
(as a string constant and an integer constant), respectively.

C User’s Guide

Compile Time Facilities

Include File Organization

The C compiler package comes with several standard header
files which perform a number of functions for the C programmer.
All include files are kept in the directory =incl=.

To maintain compatibility with the previous release of the C
compiler, the file "=cdefs=" which the C compiler automatically
includes (unless you use the n_f" option) is still
"=incl=/swt_def.c.i". This 1is also in accordance with the Sub-
system naming convention for other "standard" include files.
However, all other C include files end in ".h" (for "header"),
which is the Unix convention (this should make porting code a
little easier as well).

The "=cdefs=" file itself has been considerably reorganized
for the second release. This organization is discussed below.

=incl=/swt_def.c.i

This file now contains very few actual definitions.
Instead, i1t #includes separate files to provide the same func-
tionality as it previously did.

We have reorganized the include files to both increase the
available functionality, and to separate the features into
appropriate, self-contained, "modules". So that previous
programs which depend on "=cdefs=" to contain everything need
from breaking, "=cdefs=" includes the files it needs. All the
include files have been organized so that they may be included
more than once. The definitions will only take effect the first
time.

The following identifiers are defined in "=cdefs=" for use
in determining what kind of hardware and software environment the
program will run in. This is useful for writing code designed to
be ported to more than one computing system. The identifiers
are:

/* using Software Tools */
/* os is primos */

/* hardware is prime */

/* another name for prime */

#define gtswt
#define primos
#define prime
#define prlme

s

We have #defined the identifier "gtswt" instead of just plain
"swt", since "swt" is the name of the routine you have to call in
order to exit to the Subsystem.

C User’s Guide

You would use these identifiers for tailoring your code to
different environments. For instance

#ifdef gtswt

/* code to do nifty stuff for Software Tools */
felse
#ifdef unix

/* code to do nifty stuff for Unix */

#else
/* code to do nifty stuff in a generic environment */
#endif
#endif
"=cdefs=" then includes the following four files (discussed

below) .

#include "=incl=/stdio.h"
#include "=incl=/ctype.h"
#include "=incl=/swt.h"

#include "=incl=/ascii.h"

Following the discussion of these four main files, we Dbriefly
discribe the other include files which are available.

=incl=/stdio.h

This file contains the declarations and definitions needed
to use the C Standard I/O Library.

The following functions, macros, and symbolic constants are
available for the programmer to use. (There are others, whose
names begin with ’_’, which the programmer should not need to
use, so they aren’t discussed here).

typedef ... FILE; The standard type FILE.

/* declaration of functions */

extern long ftell();

extern FILE *fopen(), *fdopen(), *freopen (), *popen();

extern char *fgets (), *gets();

extern char *strcat (), *strcpy(), *strncpy(), *strpbrk(), *strtok();
extern char *strchr(), *strrchr(), *index (), *rindex();

stdin Standard Input.

stdout Standard Output.

stderr Standard Error Output (Standard Output 3).
stdinl Subsystem name for stdin.

stdoutl Subsystem name for stdout.

stdin2 Standard Input Port 2.

stdout2 Standard Output Port 2.

stdin3 Standard Input Port 3.

stdout3 Standard Output Port 3 (Error Output).

tty File pointer which is always the terminal.
errin Another name for stdin3.

C User’s Guide

errout Subsystem name for stderr.

EOF End of file indicator (not a valid character).

NULL The empty pointer.

BUFSIZ A convenient buffer size (used a lot on Unix).

TRUE Represents logical true.

FALSE Represents logical false.

L_cuserid The length of a string to hold a user id.

L_ctermid The length of a string to hold a terminal name.
L_tmpnam The length of a string to hold a temporary file name.
P_tmpdir The (string) name of a directory for temporary files.
getchar () Get a character from stdin.

putchar (ch) Put a character on stdout.

feof (fp) Did EOF happen on this file?

ferror (fp) Did an error occur on this file?

clearerr (fp) Clear all error flags for this file.

fileno (fp) Give the SWT file descriptor for the FILE pointer.

Any functions which don’t return int, and which are not
declared in "=incl=/stdio.h", should be declared before they’re
used. (The type of each function in the C library is given in
the chapter on the run time environment, below.)

=incl=/ctype.h

This file defines the character testing macros discussed in

the chapter on the run time environment. These macros are very
useful, and are often faster than writing an explicit test (e.g.
islower (c) should Dbe faster than (c >= ’"a’ && c <= "z")). The

macros have been rewritten to only evaluate their argument once,
so that they won’t bite vyou if the argument has side effects
(.e.g. 1islower (*c++)).

=incl=/swt.h

This file provides most of the functionality that the Ratfor

programmer obtains from "=incl=/swt_def.r.i". Some of the Ratfor
specific declarations have Dbeen deleted (for example, the
"dynamic memory" routines). The programmer is referred to Appen-—

dix D of the User’s Guide for the Ratfor Preprocessor and the
"swt.h" file itself for details.

One thing that may need clarifying: The SET_OF_7?* macros
are used in the following way:

C User’s Guide

switch (c = getchar()) {

case SET_OF_UPPER_CASE:
/* stuff for upper case */
break;

case SET_OF_LOWER_CASE:
/* stuff for lower case */
break;

case SET_OF_DIGITS:
/* stuff for digits */
break;

default:
/* stuff for default */
break;

In other words, you supply the leading case and the trailing
colon; the macro supplies everything else.

=incl=/ascii.h

This file contains definitions for the ASCII mnemonics, as
well as for the control characters. E.g. Both BEL and CTRL_G
are defined as octal 0207. The synonyms BACKSPACE, TAB, BELL,
RHT, and RUBOUT for other characters are also defined.

=incl=/assert.h

This file defines the '’assert’ macro. It must be
specifically included in order to use it. See the chapter on the
run time environment for what the ’assert’ macro does.

=incl=/debug.h

This file declares a macro "debug" which is useful for put-
ting debugging code into your programs. For instance:

#include <debug.h>

debug (fprintf (stderr, "i == %d\n", 1));
/* note the balanced parentheses */

If the symbol "DEBUG" has been defined before <debug.h> is
included, then whatever occurs as an argument to the "debug"
macro will Dbe placed into the source code. Otherwise, "debug"
becomes a null macro. The easiest way to turn debugging on is to

C User’s Guide

put "debug" statements in your code, and then do a "-DDEBUG" on
the compiler command line. For larger blocks of code, you can do

#ifdef DEBUG
/*
* a lot of debugging code
*/

#endif

=incl=/keys.h

This file declares the symbolic keys for the Primos file
system. It is the analogue of "=incl=/keys.r.i".

=incl=/1ib_def.h

This file 1is analogous to the Ratfor include file
"=incl=/lib_def.r.i". It contains symbolic constants and macros
which are useful for dealing with the low level Software Tools
Library routines.

=incl=/math.h

This file contains declarations for all the mathematical
routines in the C library. These routines all return double.

=incl=/memory.h

This file contains declarations of mem?* functions. These
functions are similar to the str?* functions, but work on
arbitrary areas of memory, and do not care about the =zero word,
"\0’. This file should be included before using the functions,
although you can always just declare each function before wusing
it.

=incl=/setjmp.h

This file must be included if you intend to use the ’setjmp’
and ’longjmp’ non-local goto functions.
=incl=/swt_com.h

This file contains the necessary #defines and declarations
for accessing the Software Tools common blocks from a C program.

It has not Dbeen extensively tested. See the file for more
details.

C User’s Guide

=incl=/varargs.h

This file contains definitions which allow you to portably
write functions which expect a variable number of arguments. The
macros are discussed below, in the chapter dealing with the run
time environment. They have not been extensively tested, but do
seem to work.

Loading C Programs For Bare Primos

Several of the routines 1in the C Library depend on the
shared Subsystem libraries to do some of their work.

In order for you to write C programs to run under bare
Primos, we have provided a second run time library with alternate
versions of these few subroutines, as well as a second C start
off routine. Most routines perform the same under both the Sub-
system and bare Primos. Those few which behave differently under
bare Primos are detailed in the chapter on run time facilities.
In particular, they always return the wvalue that indicates an
error has occurred.

The alternate C start off routine and run time library are
in the files =lib=/nc$main and =lib=/nciolib, respectively.
Since loading programs for bare Primos is not simple, ’1d’ does
not have an option for loading C programs for running without the
Subsystem. You must do it yourself, by hand.

To load a C program for use with bare Primos, follow this
procedure:

1) Load the file =lib=/ncS$main. This is the alternate
startoff routine, which does some extra initialization.

2) Load your C binaries.

3) Load =lib=/nciolib. This library contains versions of
the few routines which act differently under bare
Primos. This library also contains a special version
of 'getarg’, to allow ‘’argc’ and ’argv’ to work
properly. The environment pointer, ’'envp’ (see below),
will be set to NULL when a program is loaded for run-
ning under bare Primos.

4) Load =lib=/ciolib. This contains the rest of the C run
time library.

5) Load =lib=/vswtmath, if your C program uses the C math
routines.

C User’s Guide

This is the non-shared

6) Load =lib=/nvswtlib.
which does most of the

the Subystem library,

7) Load any system libraries, e.g. the Fortran

You should actually be able to wuse ’1d’

program, following this outline:

]
[-1 vswtmath]

version of
real work.

library.

to load your

1ld -dnu -1 nc$main <binaries> -1 nciolib -1 ciolib _
-1 nvswtlb -t -m -0 <executable_file>

You will probably not have too many programs to be run under

bare Primos,

but we have provided for this possibility.

C User’s Guide

Run Time Environment

Calling Primos and Subsystem Routines

C programs have access to all Primos system and library
subroutines and Software Tools library routines. Georgia Tech C
follows Prime’s established conventions for parameter passing,
thus allowing C routines to call or be called by programs written
in other high-level languages or in assembly language. For exam-
ple the following C program uses the Ratfor subroutine 'putch’
for output:

main () /* copy input to output until EOF */
{

int c;

while ((c = getchar()) != EOF)
putch (c, STDOUT);

"Ccl’ and ’'ucc’ both wuse the Subsystem loader interface ’1d’.
When loading C programs, ’‘1ld’ automatically includes the C Stan-
dard I/0 Library, "ciolib", the SWT math library, "vswtmath", the
shared shell library, "vshlib", and the shared Subsystem I/O and
utility library "vswtlb". However, 1f another 1library is
required, e.g. one of your own making, "mylib", then the follow-
ing command must be used:

] ccl <program_name> -1 mylib

The Main Program

All complete C programs must have a function named ’'main’,
which is where execution will Dbegin. The ’'main’ function in
Georgia Tech C Programs may have zero, one, two, or three
arguments. If there are arguments, the first is an integer,
which indicates the number of command line arguments there were
(including the command name). The second 1s a pointer to an
array of character strings containing the text of the arguments.
The final element in the array will be equal to NULL. The third
argument 1is a similar pointer to an array of character strings

containing a list of name=value pairs. These are your shell
variables and their wvalues. (This is Jjust 1like the Unix
environment pointer, although shell variables aren’t as heavily
used under Software Tools.) Try this sample program (call it
junk.c) :

C User’s Guide

main (argc, argv, envp)

int argc; /* argument count */
char **argv; /* argument values */
char **envp; /* environment pointer */
{

int i;

for (i = 0; i < argc; i++)

printf ("$s\n", argv[il]);
for (i = 0; envp[i] != NULL; i++)

printf ("%s\n", envp[i]);

}
Compile and run it with:

] ccl junk.c
1 junk foo bar baz

You should see something like:

junk

foo

bar

baz

HOME=/uc/arnold

_prt_dest=LPB
_search_rule="int, “var, &,=ubin=/&,=1lbin=/&,=bin=/&

The program printed its arguments, and then the names and wvalues
of any shell variables you may have set.

C Run Time Library

The Georgia Tech C Run Time Library, "ciolib", is a version
of the C Standard I/O library. It is automatically loaded with C
programs by ’‘ccl’ and 'ucc’. This section describes the routines
available in "ciolib".

We have attempted to provide almost all the routines in Sec-—
tion 3 of the UNIX User’s Manual, for Release 1 of UNIX System V.
In particular, "ciolib" contains all of the routines marked "33"
(the Standard I/0 Library), most of the routines marked "3M" (the
Math 1library), as many as possible of the routines marked "3C"
(routines automatically loaded with every C compilation), and
even some of the routines marked "3X" (routines from specialized
libraries). In addition, there are routines to emulate some of
the more useful (and easy to implement) Unix system calls. These
should help when porting programs originally written to run under
Unix. Finally, there are a few routines which are not provided
under Unix at all, but which allow access to certain features of
Primos, or which are just generally useful.

C User’s Guide

NOTE: The calling sequences of two routines, ’‘cS$ctov’ and
"c$vtoc’, have changed since the first release of the C compiler.
The original motivation for these routines was that the C end-of-
string character (’\0’) was different from the Subsystem EOS.
Since they are now the same, these routines have been brought
closer in line with the behavior of the other C string routines.
If you need them the old way, take a look at ’ctov’ and ’vtoc’ in
section 2 of the Software Tools Subsystem Reference Manual. No
other routines have been changed in how they are called, although
the functionality and/or implementation of a routine may have
changed.

In the following, NULL denotes the null pointer (defined in
"=incl=/stdio.h" as " (char *) 0"). Note that, on the Primes,
ASCII NUL 1is represented as octal 0200, while ’\0’, the zero
character, has the octal value 0.

Finally, remember that "=cdefs=" includes the files
"=incl=/stdio.h", "=incl=/ctype.h", "=incl=/swt.h", and
"=incl=/ascii.h", so their contents are automatically available,
unless you specify the "-f" option.

UNIX System Calls

This section describes the routines in "ciolib" which are
not part of the Standard I/0 Library per se, but which emulate
Unix system calls.

The Unix i/o system calls operate on integers, called file
descriptors. Due to the similarity with Software Tools file
descriptors, these routines wusually act as interludes to their
SWT counterparts, but return the values described in the Unix
User’s Manual.

chdir —-—- change directory

Calling Information:

int chdir (path)
char *path

’Chdir’ is used to change the current working directory. It
uses the SWT routine ’getto’ to actually change directory.
'Chdir’ returns 0 if it succeeded, -1 if it failed.

Note that under Primos, if a program does a 'chdir’, you
will be 1in the new directory when the program exits, not
where you were when the program started.

C User’s Guide

close ——— close an open fd

Calling Information:

int close (fd)
int fd;

"Close’ closes a file associated with the file descriptor

"fd’ returned by ’creat’ or ’‘open’. ’Close’ flushes any
data buffers associated with the file and returns 0 if it
was successful. If an error occurs, ’'close’ returns -1.
This is not the same as SWT’s ’close’ (it’s a macro), so
"=incl=/stdio.h" must be included for ’'close’ to work as
described.

creat ——— create a file

Calling Information:

int creat (name, mode)
char *name;
int mode; /* protection mode; not used on Prime */

"Creat’ creates and opens the file ’'name’ with WRITE access
and returns a file descriptor. The new file has protection
keys of "a/" (owner has all permissions). If the file
"name’ already exists, ‘creat’ opens it for writing and
truncates it to length 0. An existing file must have either
"wt/" or "a/" protection keys (owner has both write and
truncate permission). A return value of -1 indicates that
the file cannot be created or that an attempt was made to
"creat’ an existing file with the wrong protection keys.
"Mode’ is ignored in this implementation.

open ——-— open a file, return a SWT fd

Calling Information:

int open (name, mode)
char *name;
int mode;

"Open’ provides a "Unix-style" call to open a file for read-
ing and/or writing and returns a file descriptor. ’Mode’ =
0 specifies &read access, 1 specifies write access, and 2
specifies read/write access. A return value of -1 indicates
that the file does not exist (as determined by filtst(2)),
or cannot be opened (access mode does not match protection

keys, or no free file descriptors are available) or that
'mode’ was 1invalid. The C ’"open’ is not the same as SWT’s
"open’ (it’s a macro), and requires that "=incl=/stdio.h" be

included to function correctly.

C User’s Guide

exit —-—— exit from this program

Calling Information:

int exit (exit_val)
int exit_val; /* not used on the Primes */

"Exit’ closes all open files and returns to the Subsystem

(or to Dbare Primos). Temporary files that may have been
created during program execution remain in directory
"=temp=". 'Exit_val’ is unused.

getpid ——— return the current process number

Calling Information:

int getpid()
'Getpid’” returns the current process number. It uses the
Subsystem routine ’date’ to retrieve this information from
Primos.
lseek —-——- position to a designated word in file

Calling Information:

long lseek (fd, offset, origin)
int fd, origin;
long offset;

"Lseek’ positions the read/write pointer for the file
associated with file descriptor ’fd’ (returned by ’creat’ or

"open’) to the word designated by ’'offset’ and ’'origin’. If
"origin’ = 0, ’"offset’ is the number of words from the
beginning of the file. If 'origin’ = 1, ’'offset’ is the
number of words forward(backward) from the current position.
If ’'origin’ = 2, 'offset’ is the number of words
past (before) the end of the file. See ’'fseek’ for further
discussion.

If ’"lseek’ succeeds, it returns the current file position;
otherwise it returns -1. ’lseek’ calls 'markf’, which will
flush the buffers associated with ’fd’.

C User’s Guide

read ——— read raw words from a file

Calling Information:

int read (fd, buf, nw)
int fd, nw;
char *buf;

"Read’ reads words from the file associated with the file
descriptor ' fd’ (returned by ’'creat’ or ’‘open’) until ’'nw’
words have been read or until it encounters the end of file.
If ’'fd’ is attached to a terminal device, 'read’ will col-
lect characters until it encounters a NEWLINE.

If an error occurred, 'read’ returns -1; if 'read’
encounters the end of the file or if a disk error occurred,
it returns 0, so Dboth -1 and 0 should be taken as error
returns. Otherwise, ’read’ returns the number of words

transferred to 'buf’.

unlink —--- delete a file

Calling Information:

int unlink (path)
char *path;

Since Primos does not support links to files, "unlink’

always removes the file. If the file is open by any other
user, or 1if the file does not have protection keys "t/" or
"a/" (owner has truncate permission) "unlink’ will fail.

’Unlink’ returns -1 on failure and 0 otherwise.

write ——— write raw words to a file

Calling Information:

int write (fd, buf, nw)
int fd, nw;
char *buf;

'"Write’ writes ’'nw’ words from ’'buf’ to the file associated
with a file descriptor "fd’ (returned by ’‘creat’ or 'open’).
If an error occurs or if ’'fd’ is attached to "/dev/null",
'write’ returns -1. Otherwise, ’'write’ returns the number
of words written.

The C Standard I/0 Library

The following routines are those listed as "33", i.e. the
actual Standard I/O Library. Input/Output operations in the
Standard I/0 Library occur on objects of type "FILE *". These

are known variously as file pointers, or I/0 streams.

C User’s Guide

The routines are listed below in roughly alphabetical order.
However, logically associated routines (and/or macros) are
grouped together.

ctermid —--- return a filename for a terminal

Calling Information:

char *ctermid (s)
char *s;

"Ctermid’ returns the standard Georgia Tech SWT terminal

name "/dev/tty". If ’s’ is not NULL, then ’ctermid’ copies
"/dev/tty" into it, and returns ’‘s’. 'S’ should be at least
"L_ctermid’ characters long. 'L_ctermid’ is defined 1in

"=incl=/stdio.h".
cuserid —-—-- return the user’s login name

Calling Information:

char *cuserid (s)
char *s;

"Cuserid’ returns the wuser’s login name consisting of
"L_cuserid’ - 1 or fewer lower case non-blank ASCII charac-
ters followed by "\0'. (" L_cuserid’ is defined 1in
"=incl=/stdio.h".)

fclose ——— close a stream

Calling Information:

int fclose (stream)
FILE *stream;

"Fclose’ closes the file and flushes the Dbuffer associated
with ’"stream’. ’'Fclose’ returns 0 if the close was success-—

ful, EOF (-1) otherwise.

ferror --- indicate 1if an error has occurred on a given
stream

Calling Information:

int ferror (stream)
FILE *stream;

"Ferror’ returns TRUE if an error has occurred while doing
i/o on 'stream.’ It returns FALSE otherwise. This is
actually a macro in "=incl=/stdio.h".

C User’s Guide

feof ——— indicate if EOF has occurred on a given stream

Calling Information:

int feof (stream)
FILE *stream;

'Feof’ returns TRUE if EOF has occurred on 'stream’, and
FALSE otherwise. "Feof’ should be used to find out if EOF
has actually occurred, particularly when using ' fread’ and
'fwrite’. This is actually a macro in "=incl=/stdio.h".

clearerr --—- clear any errors associated with a given
stream.

Calling Information:

int clearerr (stream)
FILE *stream;

"Clearerr’ will clear all of the error and EOF flags
associated with /stream’. This 1is actually a macro in
"=incl=/stdio.h".

fileno ——— return a Subsystem file descriptor

Calling Information:

int fileno (stream)
FILE *stream;

'Fileno’ is a macro in "=incl=/stdio.h" which returns the
Software Tools Subsystem file descriptor associated with
’stream’ . (Each FILE structure contains a Subsystem file
descriptor, along with other information that the programmer
should not need to access.) This permits you to use Sub-
system routines that require a file descriptor rather than a
file pointer, for instance:

FILE *fp;
fp = fopen ("file", "w");

/* do formatted i/o with a Subsystem routine */
print (fileno (fp), "i = *d*n", 1i);

C User’s Guide

fflush ——— flush all buffers for a stream

Calling Information:

int fflush (stream)
FILE *stream;

"Fflush’ ensures that the contents and position of the open
file reflect all output and positioning operations performed
by the program. In other words, any in-memory C library and
operating system buffers are flushed to disk, so that the
permanent file matches the "logical" file (the file that the
program has been working with). This is analogous to making
changes to a file with the screen editor, and then issuing a
"w" command to force the changes back out to the permanent
file.

Please note that 'fflush’ <called on a disk file anywhere
other than after a NEWLINE has been read or written may

cause undesirable results, since Primos measures file
positions in words and the i/o library writes in units of
bytes. Flushing in the middle of a line can cause the

compressed-blank count to be lost on an input file or can
cause an additional ’\0’ (padding the last word) to be writ-—
ten to an output file. 'Fflush’ also dumps the stream’s
"ungetc’ buffer.

'Fflush’ returns EOF (-1) if the flush failed, 0 if it was
successful.

fopen ——— open an i/o stream

Calling Information:

FILE *fopen (name, mode)
char *name, *mode;

"Fopen’ opens a file ’'name’ and returns a pointer to an i/o
stream. If the file does not exist, ’'fopen’ will create it.
The stream has the mode specified in ’'mode’:

Mode equivalent SWT mode

"r" read, file not truncated

"r+" read/write, file not truncated

"w" write, file truncated

"wt" read/write, file truncated

"an" append for writing, file not truncated

"at+" read/append for writing, file not truncated
Opening a file for write ("w", "w+") access truncates the
file to 1length 0, while opening it for read ("r", "r+") or
append ("a", "a+") access does not. The file ©pointer is

positioned to the Dbeginning of the file for both read and
write access, and to the end of the file for append access.
Append mode forces all writes to occur on the end of the

C User’s Guide
file, even if the file was opened for reading as well, and
it is not currently at the end of the file.
"Fopen’ returns NULL if no streams are available, if an
invalid mode is supplied, if any of the arguments are bad,
or 1f the access mode does not match the Primos protection
keys.

freopen -—-- associate a new file with an opened stream

Calling Information:

FILE *freopen (name, mode, stream)
char *name, *mode;
FILE *stream;

"Freopen’ closes the file currently associated with
"stream’, opens the file ’"name’ with mode 'mode’ (same as in
"fopen’), and associates it with ’stream’. This function

finds use in associating named files with the standard
stream identifiers ’stdin’, ’stdout’, and ’stderr’.

'Freopen’ returns NULL if the mode specified is invalid or
if the file ’'name’ cannot be opened. If the file does not
exist, ’freopen’ will create it. 1In any case, ’stream’ will
be closed first.

Use of this routine is normally not possible in a non-Unix
environment; Software Tools is an exception, since its file
descriptors are very similar to those wused by Unix i/o
system calls.

fdopen --- associate a stream with an opened file

Calling Information:

FILE *fdopen (fd, mode)
int fd;
char *mode;

"Fdopen’ gets an i/o stream and associates it with the file

descriptor ’fd’ returned by ’‘creat’ or ’open’. The stream
has the mode specified in ’'mode’; ’'mode’ may take the same
values as the "mode’ argument to ’fopen’. This implementa-

tion of ’fdopen’ does not check to make sure that modes of
the file descriptor and the stream are the same.

The function returns NULL if an invalid mode is specified or
if there are no free 1i/o0 streams. Successful execution
returns a pointer to the newly assigned stream.

C User’s Guide

fread ——— read raw words from a stream

Calling Information:

int fread (ptr, itemsize, nitems, stream)
char *ptr;

int itemsize, nitems;

FILE *stream;

'Fread’ reads ’'nitems’ * ’'itemsize’ words from ’stream’ into
the Dbuffer addressed by ’'ptr’. (' ITtemsize’ may be
determined using the sizeof operator.) The function returns
the number of items of size ’itemsize’ read without error.
If an error occurs or if it encounters end-of-file, " fread’
returns O. Results are unpredictable if more words are
requested than there is space in the buffer.

fwrite ———- write raw words to a stream

Calling Information:

int fwrite (ptr, itemsize, nitems, stream)
char *ptr;

int itemsize, nitems;

FILE *stream;

"Fwrite’ writes ’itemsize’ * ’'nitems’ words onto ’stream’
from the Dbuffer pointed to by ’'ptr’. If an error occurs,
"fwrite’ returns 0; otherwise it returns the number of suc-
cessfully written items of size ’itemsize’.

fseek —-—- position to a designated word in a stream

Calling Information:

int fseek (stream, offset, origin)
FILE *stream;

long offset;

int origin;

'Fseek’ first flushes the stream buffers (including the
"ungetc’ buffer) to clear up any pending i/o on ’stream’ and
then positions the read/write pointer to the word specified
by ’'offset’ and ’'origin’. If ’'origin’ = 0, ’'offset’ is the
number of words from the beginning of the file. If ’origin’
=1, 'offset’ is the number of words forward (backward) from
the current position. If ’"origin’ = 2, 'offset’ is the num-
ber of words past (before) the end of the file. "Fseek’
returns -1 if an error occurs or 0 if it succeeds.

There are several things to note about ’fseek’. First, it
is not possible to seek past the end of a Primos file; zero
words ("\0’"s) must be written to extend the file. Second,

positioning to the end of a Primos sequential-format file
requires Primos to read all of the blocks in the file (i.e.
"origin’ = 2 can be quite slow). Third, since Primos text

- 23 -

C User’s Guide

files contain blank compression and ’'\0’ padding, an ’fputs’
of a 30-character string will probably not change the file
pointer’s position by 30; ’ftell’ at the beginning of a line
is the only reliable way to obtain a file position of a line
in a text file. Finally, flushing the stream buffers may
have undesirable results if it occurs during the formation
of a line (i.e. Dbefore ’fputs’, ’fprintf’, etc. have put
out a complete line).

rewind ——— rewind to beginning of stream

Calling Information:

int rewind (stream)
FILE *stream;

"Rewind’ positions the read/write pointer associated with

"stream’ to the beginning of the file. It is equivalent to
"fseek (stream, OL, 0)". Returns 0 if it was successful or
-1 if an error occurred. (Under Unix, ’'rewind’ returns no
value) .

ftell --- return absolute position in a stream

Calling Information:

long ftell (stream)
FILE *stream;

"Ftell’ returns the current word position in ’stream’ after
flushing the stream buffers (and the 'ungetc’ buffer) to

clear any pending i/o on the stream.

Under Primos, ’ftell’ may actually corrupt (slightly) an

output text file when it flushes the stream buffers. On
text files, ’'markf’ is the only reasonable way to determine
the position of the beginning of a line. See the comments
under ’fseek’. 'Ftell’ returns -1 if an error occurs.

getc ——— get a character from a stream

getchar -—-- get a character from ’stdin’

Calling Information:

int getc (stream)
FILE *stream;

int getchar ()
'Getc’ obtains the next character from ’stream’. If there
are no more characters, or if an error occurs, "getc’

returns EOF (-1).

"Getchar’” 1s a macro; it 1is defined as ’'getc(stdin)’ in
"=incl=/stdio.h".

C User’s Guide

fgetc ——— get next character from stream

Calling Information:

int fgetc (stream)
FILE *stream;

"Fgetc’ 1is another function which does what ’‘getc’ does. It
was initially created to serve as a real function that one
could take the address of etc., since under Unix, ’‘getc’ is
a macro. On the prime, both ’"getc’ and 'fgetc’ are func-
tions.

getw —-- get a machine word from a stream

Calling Information:

int getw (stream)
FILE *stream;

"Getw’ returns a single 16-bit word from a stream or EOF
(-1) if an error occurred or no more characters were
available. If ’'stream’ 1is attached to a terminal, ’getw’
returns EOF when a NEWLINE is encountered. Since EOF could
be an actual word value, ’feof’ should be used to see if end
of file has actually occurred.

gets ——— get a string (up to a newline) from ’stdin’

Calling Information:

char *gets (s)
char *s;

"Gets’ copies the next line from ’stdin’ into ’s’, discard-

ing the NEWLINE and terminating ’'s’ with "\0’. If ’'gets’
returns a line, the function return value is ’'s’; otherwise
it is NULL.

fgets ——— get a string from a stream

Calling Information:

char *fgets (line, size, stream)
char *line;

int size;

FILE *stream;

"Fgets’ fetches the next 1line from ’'stream’ by copying
characters into ’line’ from the stream buffer until ’'size’-1
characters have been copied or until it encounters the next
NEWLINE character. The NEWLINE character 1is kept. The
function appends ’\0’ as the last character in ’line’.
"Fgets’ returns ’line’ if it obtained a 1line, and NULL
otherwise.

C User’s Guide

popen ——— initiate a "pipe" to/from a process
pclose ———- close a stream obtained from popen

Calling Information:

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

"Popen’ takes two string arguments. The first, ’command’,
is a command to be executed by the Software Tools shell.
The second, "type’, is either "r" or "w", to read from the
standard output of the command, or to write to the standard
input of the command, respectively. The function return is
a stream which can be treated like any other object of type
"FILE *n .

"Popen’ will return NULL if 1) another "pipe" is still open,
2) the 'type’ argument is invalid, 3) the shell could not
execute the command, or 4) needed temporary files could not
be created.

"Pclose’ closes the stream obtained from ’'popen’. It
returns 0 if it could successfully close the "pipe", other-
wise it returns -1.

For programs that wuse "=lib=/nciolib", ’'popen’ always
returns NULL, and ’'pclose’ always returns -1.

See the help on shell(2) in the Software Tools Subsystem
Reference Manual for some caveats when dealing with the
shell.

printf ——— formatted output to ’stdout’
fprintf --- formatted output to a stream
sprintf --- formatted memory to memory conversion

Calling Information:

int printf (control [, argl, arg2, ..., arglO])

char *control;

untyped argl, arg2, ..., arglO;

int fprintf (stream, control [, argl, arg2, ..., argl0])

FILE *stream;
char *control;

untyped argl, arg2, ..., arglO;
int sprintf (string, control [, argl, arg2, ..., arglO])

char *string;
char *control;

- 26 -

C User’s Guide

untyped argl, arg2, ..., arglO;

"Printf’ formats its arguments (’argl’, ..., "argl0’) accor-
ding to conversion specifications in ’control’ and outputs
the resulting character string on ’stdout’. The arguments
may be pointers (i.e., to strings) or names of variables
(e.g., ints, floats, ...). 'Fprintf’ does the same thing,
but to the named ’stream’. ’Sprintf’ places the formatted
output into ’string’. These routines take care of accessing
the arguments according to the specifications of the
control’ string. In the following discussion ’‘printf’
should be taken as a generic name for all three functions.

The ’control’ string contains literal characters, which are
copied to the "output" directly, and up to 10 conversion
specifiers, each of which must have a corresponding
argument. These routines conform as closely as possible to
the specifications given for ’'printf’ in the UNIX System V
User’s Manual (Release 1).

A conversion specifier may consist of the following:

required % Begins conversion specification.
optional flag Modifies the meaning of the conver-—

sion specifier.

optional <number> Minimum field width. More space
will be used if needed. If
<number> begins with "0", then "O"
will be wused as a padding charac-
ter; otherwise, ’printf’ pads the
output field with blanks.

optional . Separates field width and
precision.
optional <number> Precision: maximum number of

characters to print from a string
or maximum number of digits to the
right of the decimal point in a
real number.

optional [1h] Size of argument indicator. r1r
indicates a 1long integer, ’'h’ a
short. The "h' modifier is

recognized, but has no effect on
the conversion.

required Conversion specifier.

A field width or precision may be a ’"*’ instead of a decimal
integer. 1In this case, the next argument in the argument
list will Dbe treated as an integer and used for the field
width or precision.

C User’s Guide

The flag may be one of the following:

<blank>

Left justify the conversion within the field.

The result of a signed conversion 1is always
signed. I.e. a '+’ will Dbe prepended if the
result is positive.

If the first character of a signed conversion 1is
not a minus sign, the result will be prepended
with a blank. The "+’ flag overrides the <blank>
flag.

Convert the result to an alternate form. This
flag has no effect on the ¢, d, s, and u conver-—
sion specifiers. For o conversion, the precision
is increased so that the result has a 1leading 0.
For x (X) conversion, the result will have a lead-
ing 0x (0X). For e, E, f, g, and G conversions,
the result should always have a decimal point,
even 1f there are no digits following the decimal
point.

The conversion characters and their meanings are:

d,o,u,x,X Interpret the corresponding argument as a

decimal, octal (no leading "O0"), unsigned
decimal or hexadecimal (no leading "O0x"),
integer, respectively. For x conversion, the
letters abcdef are used, while for X conver-
sion, the letters ABCDEF are used.

Interpret the argument as a character (unpac-—
ked) .

The argument is a ’\0’-terminated string:
output characters until the correct precision
has been achieved, or until "\0’ is
encountered, whichever comes first.

Interpret the corresponding argument as a
double-precision floating-point number and
print it in the form

[-]lm{m}.n{n}etxx.

E format will cause the exponent to start
with E instead of e.

C User’s Guide

f Interpret the corresponding argument as a
double-precision floating-point number and
print it in the form

[-]m{m}.n{n}

with 'precision’ digits to the right of the

decimal point. If 'precision’ 1is greater
than 14, at most 6 significant digits will be
printed.

g,G Use the shortest of %e and %f formats. G

format indicates %$E instead of %e.

If the character "$" follows the initial "%" of the control
specifier, the pair 1is taken as a literal character "&"
"Printf’ returns the number of successfully printed charac-
ters or EOF (-1) if an error occurred.

Note that the old style (undocumented) capital letter con-

version specifiers, which indicated ’long’ arguments (e.g.
%D for long int), are not supported. Use %$1d (for example)

instead of %D.
putc ——— put a character on a stream
putchar —-—- put a character onto ’stdout’

Calling Information:

int putc (ch, stream)
char ch;
FILE *stream;

int putchar (c)

char c;
"Putc’ puts the single character in ’“ch’ on ’stream’. If an
error occurs, 'putc’ returns EOF (-1); otherwise it returns

the character just written.

’Putchar’ is a macro; it is defined as ’putc(c, stdout)’ in
"=incl=/stdio.h".

fputc ——— put a character on a stream

Calling Information:

int fputc (c, stream)
char c;
FILE *stream;

"Fputc’ is another function which does what ’‘putc’ does. It
was initially created to serve as a real function that one
could take the address of etc., since under Unix, ’'putc’ is

a macro. On the prime, both ’"putc’ and ' fputc’ are func-

- 29 -

C User’s Guide

tions.
putw ——— put raw words on a stream

Calling Information:

int putw (w, stream)
int w;
FILE *stream;

"Putw’ writes a single 16-bit word on ’'stream’. After a
successful write ’putw’ returns the word written, while it
returns EOF (-1) if an error occurred. If ’'stream’ is

attached to "/dev/null", ’'putw’ always returns EOF.
puts —— put a string on ’stdout’

Calling Information:

int puts (s)
char *s;

"Puts’ appends a NEWLINE to the ’\0’-terminated string ’'s’
and prints it on standard output. If an errors occurs,
'puts’ returns EOF (-1).

fputs -—- put a string on a stream

Calling Information:

int fputs (s, stream)
char *s;
FILE *stream;

'Fputs’ puts the ’"\0’-terminated string 's’ on ’'stream’.
Note that ’s’ need not contain a NEWLINE character and that
" fputs’” will not supply one. ’'Fputs’ returns EOF (-1) if an
error occurred, zero otherwise.

scanf ——— formatted input conversion from ’stdin’
fscanf --- formatted input conversion from stream
sscanf —--- formatted input conversion from a string

Calling Information:

int scanf (control [, argl, arg2, ..., argl0])

char *control;

char *argl, *arg2, ..., *arglO;

int fscanf (stream, control [, argl, arg2, ..., argl0])

FILE *stream;
char *control;
char *argl, *arg2, ..., *arglO;

C User’s Guide

int sscanf (string, control [, argl, arg2, ..., argl0])
char *string;

char *control;

char *argl, *arg2, ..., *arglO;

’Scanf’ reads characters from ’stdin’, formats them accord-
ing to conversion specifications in the control string, and
stores the results in the variables pointed to by correspon-—

ding arguments 1-10. ’Fscanf’ reads its input from the
named 'stream’. "Sscanf’ reads characters from the named
"string’”. In the following discussion, ’scanf’ should be

taken as a generic name for all three functions.

The control string may contain white space, which is skip-
ped, literal <characters (which must match corresponding
characters from the input stream) and at most 10 conversion
specifiers consisting of the following:

required % Begins conversion specification.
optional * Suppresses assignment of input

field (does not skip argument).

optional <number> Numeric field width.

optional 1 Read variable as ’long’.
optional h Read variable as ’short’.
required Conversion specifier:

"'[' [*"]<char>[-<char>] {<char>[-<char>]}"]’

Input a string of characters until finding
a character not included in the Dbracketed
set. E.g., "[a-zA-Z]" stops reading when a
non-alphabetic character is encountered.
If the first character in the set is 7/,
input characters are read until finding a
character included in the Dbracketed set.
E.g., "[” 1" reads until a blank is found.

d,o,u, x Input decimal, octal, unsigned decimal, or
hexadecimal integers.

c Read single character(s) including blanks.

s Input a string delimited by white space, or
until <width> characters have Dbeen read.
The variable in which the string is to be
stored must be long enough to contain the
string followed by a ’"\0’.

C User’s Guide

e, f,g Read a floating point number of the form
[xlm{m}.n{n} [E[+]x{x}].
The wvalue returned in Dboth cases 1is a
float. Use the "1" option to specify a

double value.

If the character ’%’ follows the initial "%’ of the control

)

specifier, the pair is taken as a literal character ’%’.
"Scanf’ conversions stop when EOF is seen, when the control
string 1s exhausted, or when an input character conflicts

with the control string.

"Scanf’ returns the number of successfully assigned input
items, or EOF (-1) if none were found.

setbuf ——— set buffering on a stream

Calling Information:

setbuf (stream, buf)
FILE *stream;
char *buf;

Under Software Tools and Primos, ’setbuf’ is a null (do

nothing) function. Under Unix, 1t allows the wuser to
associate a character array as the buffer for a given
stream. 'Setbuf’ is provided to make porting of programs
easier. It is an actual function, just in case there is

code which takes its address, or does something else strange
of this nature.

system —-—— pass a command to the Software Tools Shell

Calling Information:

int system (cmd)
char *cmd;

’System’ passes a command ‘cmd’ to the Software Tools shell
to be executed, and returns TRUE if the call was successful.
If the call failed, ’system’ returns FALSE. See the help on
shell (2) in the Software Tools Subsystem Reference Manual
for some caveats when dealing with the shell.

For programs that wuse "=lib=/nciolib", ’system’ always
returns FALSE.

NOTE: This routine has changed from the previous release of
the C compiler. Before Version 9 of Software Tools, it was
not possible to call the Software Tools shell, so the
"system’ routine called the Primos command interpreter. If
you still need to call Primos, see the help on sys$$(2) in
the Software Tools Subsystem Reference Manual.

C User’s Guide

tmpfile ——— create a temporary file

Calling Information:

FILE *tmpfile ()

"Tmpfile’” returns a pointer to a temporary file opened with
"w+" access. The name of the file 1is 1inaccessible from
inside a program. The file actually created bears the
process unique name "=temp=/tm###" (where ### ranges from
1-999) and remains 1in the "=temp=" directory after the
creating process terminates. If no file can be created,
"tmpfile’ returns NULL.

tmpnam --- return a filename for a temporary file

Calling Information:

char *tmpnam (s)
char *s;

" Tmpnam’ returns a unique temporary file name
"=temp=/ct=pid=###" where ### is a process unique number
0-999 and =pid= 1is the current process id. Names are
recycled after all 1000 have been used.

tempnam --- return a filename for a temporary file

Calling Information:

char *tempnam (dir, pfx)
char *dir, *pfx;

" Tempnam’ 1is designed to give the user a little more control
over the name of his temporary file. The directory for the
tempfile will be taken from the environment variable TMPDIR,
if it exists. Otherwise, if 'dir’ is not NULL, ’'dir’ will
be used. If ’'dir’ is NULL, the directory will be P_tmpdir
(defined in "=incl=/stdio.h").

If ’'pfx’ is not NULL, it will be used as the prefix for the
file name. Otherwise, the prefix will be "ct".

The full file name will consist of the directory name, a
/', then the prefix, the process id number, and a number

between 0 and 999. The number changes after each call to
’tempnam’ . After all 1000 have been used, they will be
recycled.

’Tempnam’ uses 'malloc’ to create space for the string
containing the file name. The pointer returned by ’tempnam’
can be used later in a call to ’free’.

" Tempnam’ returns NULL if it could not allocate enough space
for the string to hold the generated file name.

C User’s Guide

ungetc ——— push a single character back on an input stream

Calling Information:

int ungetc (ch, stream)
char ch;
FILE *stream;

"Ungetc’ places ’‘ch’ in a single-character buffer associated
with ’"stream’. The next call to "getc’ or ’fgetc’ retrieves
"ch’. Attempting to push more than one character back onto
the input stream or wusing ’‘ungetc’ on a closed stream
produces an error return of EOF (-1). Otherwise, ’ungetc’
returns ‘ch’.

ftrunc ——— truncate a stream at the current position

Calling Information:

int ftrunc (stream)
FILE *stream;

"Ftrunc’ flushes all file and ’ungetc’ buffers for the file
associated with ’stream’ and truncates the file at its
current position. The file must be opened with write
access. (If ’"fopen’ is used to open the file, then the only
really wuseful values for 'mode’ are "r+" and "at", because
read access 1is usually necessary to position the file
correctly and because opening the file for write ("w", "w+")
access always truncates the file.) 'Ftrunc’ returns 0 if it
succeeded, -1 otherwise.

"Ftrunc’ is not part of the Standard I/O Library per se, but
is provided in order to allow access to this capability of
the Primos file system.

Unix Subroutines For C Programs
The following routines are those listed as "3C", i.e. the

routines which are loaded along with every Unix C program, but
which are not guaranteed to be on other non-Unix systems.

The character testing macros discussed below (’isalnum’,
"isdigit’, etc.) are valid on integers in the range -1 to 0377
(EOF to ASCII DEL). They merely return FALSE on characters in
the range -1 to '\177’. The result of these macros on values

less than -1 or greater than 0377 is undefined.

These macros do not necessarily return "true" values equal
to the symbolic constant TRUE defined in "=incl=/stdio.h".
Rather, they return logical true, i.e. non-zero, and logical
false, i.e. zero. They should be used as conditions, not compared
against TRUE and FALSE. In other words, use:

C User’s Guide

if (islower (c)) { /* stuff */ }
and not
if (islower (c) == TRUE) { /* stuff */ }

The routines are listed below in roughly alphabetical order.
However, logically associated routines (and/or macros) are
grouped together.

a64l --- convert base-64 string to long integer

164a —--- convert long integer to base-64 string

Calling Information:

long a64l (s)
char *s;

char *164a (1)
long 1;

"A641’ takes a ’'\0’-terminated string containing a base-64
representation, and returns the corresponding long. If the
string has more than six characters, only the first six are
used. 'Lé64a’ takes a long integer, and returns a pointer to
a string with the corresponding base-64 representation.

These routines use the following characters as digits in the

base-64 notation. r.r for 0, '/’ for 1, '0’ through "9’
for 2-11, 'A’ through 'Z’ for 12-37, and ’"a’ through 'z’ for
38-63.

abort —--- generate a "fault"

Calling Information:

int abort ()
Under Unix, ’abort’ generates a SIGIOT fault, which causes
the program to exit and dump core. The user may catch this
signal. Under Software Tools or Primos, this routine simply
exits.

abs ——— return integer absolute value

Calling Information:

int abs (x)
int x;

"Abs’ returns the absolute value of its integer argument.
This 1is a fast, assembly language routine, local to the C
library.

C User’s Guide

atof ——— convert character string to double precision real

Calling Information:

double atof (str)
char *str;

Converts a string of characters ’'str’ to a double precision
real number. Conversion stops when ’atof’ encounters a non-
numeric character.

atoi —-—- convert character string to integer

Calling Information:

int atoi (str)
char *str;

"Atoi’ converts a string of characters ’'str’ to a base-10

integer. Conversion stops when ’‘atoi’ encounters a non-
numeric character. "Atoi’ uses 'gctoi’, so it will
recognize the Ratfor "radix notation" (e.g. 8r377) .

atol —-—-- convert character string to long integer

Calling Information:

long atol (str)
char *str;

"Atol’ converts a string of characters ’"str’ to a Dbase-10

long (32-bit) integer. Conversion stops when ’atol’
encounters a non-numeric character in ’str’. "Atol’ uses
"gctol’, so it will recognize the Ratfor "radix notation"

(e.qg. 8r377) .
strtol ——— convert string to arbitrary base long integer

Calling Information:

long strtol (str, ptr, base)
char *str;

char **ptr;

int base;

"Strtol’ takes a ’'\0’-terminated string in ‘’str’, and

returns the long integer it represents. ’Base’ is the base
of the string. If base is less than zero or greater than
36, ’strtol’ will return. If base is zero, it will attempt

to determine the base from the string itself. A leading ’0’
indicates octal, ’'0x’ or ’"0X’ indicates hexadecimal; other-
wise, the string is assumed to be in decimal.

If the value of ’"ptr’ is not (char **) 0, the address of the

character which terminated the string will be placed in
*ptr. If no integer can be converted from the string, *ptr

- 36 -

C User’s Guide

is set to ’'str’, and 0 is returned.
getcwd —--- get pathname of current working directory

Calling Information:

char *getcwd (buf, size)
char *buf;
int size;

"Getcwd’ returns a pointer to a string containing the SWT
path name of the current directory. If ’'buf’ is not NULL,
"getcwd’ will use ’'buf’ a buffer in which to place the name.
Otherwise, it will wuse 'malloc’ to dynamically allocate a

buffer. 1In this case, the returned pointer can be used
later in a call to ’'free’. ’'Size’ is the size of the buffer
to be ’'malloc’ed, so it must include room for the trailing
"\0’.

"Getcwd’ returns NULL if size is less than or equal to 1, if
'malloc’ could not allocate enough memory, or if one of the
SWT routines ’follow’ or ’'gcdir$’ failed.

getenv —--- return value for "environment" variable

Calling Information:

extern char **environ;

char *getenv (var)
char *var;

"Getenv’ scans the environment list of name=value pairs
pointed to by the external variable ’environ’. If ’'var’ is
found, 'getenv’ returns a pointer to its value. Otherwise,
it returns NULL.

For programs which use "=lib=/nciolib", ’getenv’ will always
return NULL, and ’'environ’ is always equal to NULL.

getlogin —-—-- get the login name

Calling Information:

char *getlogin()

If the current process 1is a phantom, ’‘getlogin’ returns
NULL. Otherwise, it returns the wuser’s login name, as
obtained from ’cuserid’.

C User’s Guide

getopt ——— get option letter from argument vector

Calling Information:

extern char *optarg;
extern int optind;

int getopt (argc, argv, optstring)
int argc;

char **argv;

char *optstring;

"Getopt’ returns the next option letter in ’argv’ that
matches a letter in ‘optstring’. If a letter in ’'optstring’
is followed by a colon, then that option is supposed to have
an argument, that may or may not be separated from it by
white space. 'Optarg’ is set to point to the beginning of
the argument to the current option when ’getopt’ returns.

"Getopt’ sets 'optind’ to the index of the next argument in
"argv’ to be processed. Since 'optind’ is external, it is
initialized to zero.

When all options have been processed (i.e. when the first
non-option 1s encountered), "getopt’ returns EOF. The
special option —-- <can be wused to delimit the end of the
options. 'Getopt’ will return EOF, and will skip the —--.

'Getopt’ returns a ’?’ and prints an error message on
"stderr’ when it finds an option that is not in ’optstring’.

getpass ——— read a password

Calling Information:

char *getpass (prompt)
char *prompt;

" Getpass’ disables echoing, and prints ’prompt’ on ’stderr’.

It then reads up to a newline or EOF from the terminal. It
returns a pointer to a ’\0’-terminated string of at most
eight characters. If 'getpass’ cannot wuse the TTY file
descriptor, and if it cannot open "/dev/tty", it will read
from ’"stdin’. ’Getpass’ turns echoing back on before retur-
ning.

isalnum --- indicate if a character is alphanumeric

Calling Information:

int isalnum (ch)
char ch;

"Isalnum’ returns TRUE if ’‘ch’ falls in the range 'A’
through ’Z’, inclusive, in the range 'a’ through 'z’,
inclusive, or if it lies between "0’ and ’"9’, inclusive. It

C User’s Guide
returns FALSE otherwise. To wuse this macro, the file
"=incl=/ctype.h" must be included first.
isalpha ——- indicate if a character is alphabetic

Calling Information:

int isalpha (ch)
char ch;

’Isalpha’ returns TRUE if ’‘ch’ lies between 'A’ and 'Z2’,
inclusive, or if it lies between ’"a’ and ’'z’, inclusive. It
returns FALSE otherwise. To wuse this macro, the file
"=incl=/ctype.h" must be included first.

isdigit —-—- indicate if a character is a decimal digit

Calling Information:

int isdigit (ch)
char ch;

'Isdigit’ returns TRUE if ’‘ch’ lies between ‘0’ and '9',
inclusive. It returns FALSE otherwise. To use this macro,
the file "=incl=/ctype.h" must be included first.

isxdigit —--- indicate if a character is a hexadecimal digit

Calling Information:

int isxdigit (ch)
char ch;

"Isxdigit’ returns TRUE if ’'ch’ falls between 0’ and '9',
inclusive, or if it falls between ’'A’ and ’'F’ inclusive, or

"a’ and ’'f’ inclusive. It returns FALSE otherwise. To wuse
this macro, the file "=incl=/ctype.h" must Dbe included
first.

isupper —-—- indicate if a character is an upper case letter

Calling Information:

int isupper (ch)
char ch;

" Isupper’ returns TRUE if ’‘ch’ lies between 'A’ and 'Z2’,
inclusive. It returns FALSE otherwise. To use this macro,
the file "=incl=/ctype.h" must be included first.

C User’s Guide

islower ——- indicate if a character is an lower case letter

Calling Information:

int islower (ch)
char ch;

"Islower’ returns TRUE if ’"ch’ lies between ’'a’ and 'z’,
inclusive. It returns FALSE otherwise. To use this macro,
the file "=incl=/ctype.h" must be included first.

isprint —--- indicate if a character is printable

Calling Information:

int isprint (ch)
char ch;

'Isprint’ returns TRUE if ’‘ch’ 1is a printable character.
This includes all punctuation, letters, digits, and the

space character ’ ’. It returns FALSE otherwise. To use
this macro, the file "=incl=/ctype.h" must Dbe included
first.

isgraph ——- indicate if a character is printable and visible

Calling Information:

int isgraph (ch)
char ch;

"Isgraph’ is similar to 'isprint’ above, except that it
excludes the space character '’ ’. It returns TRUE if ’ch’
has a graphic representation, FALSE otherwise. To use this
macro, the file "=incl=/ctype.h" must be included first.

ispunct —-—- indicate if a character is punctuation

Calling Information:

int ispunct (ch)
char ch;

"Ispunct’ returns TRUE 1if ’‘ch’ is neither an alphanumeric
nor a control character. To wuse this macro, the file
"=incl=/ctype.h" must be included first.

C User’s Guide

iscntrl ——- indicate if a character is a control character

Calling Information:

int iscntrl (ch)
char ch;

"Iscntrl’” returns TRUE if ’"ch’ is an ASCII control charac-
ter, i.e., if ’'ch’ falls in the range ’'\200’ to '\237’,
inclusive, or if ’ch’ equals ’"\377’ (DEL). It returns FALSE
otherwise. To wuse this macro, the file "=incl=/ctype.h"
must be included first.

isascii --- indicate if <character is within the ASCII
character set

Calling Information:

int isascii (ch)
char ch;

"Isascii’ returns TRUE if ’ch’ lies in the range ’\200’ to
'\377', inclusive (Prime’s ASCII representation) . It
returns FALSE otherwise. To wuse this macro, the file
"=incl=/ctype.h" must be included first.

isspace —-—-- indicate if a character is white space

Calling Information:

int isspace (ch)
char ch;

"Isspace’ returns TRUE if ’‘ch’ is a space, a tab, a newline,
a carriage return, a form feed or a vertical tab. It
returns FALSE otherwise. To wuse this macro, the file
"=incl=/ctype.h" must be included first.

malloc ——- allocate memory

alloc —-—- allocate memory (old name)

Calling Information:

char *malloc (n)
int n;

char *alloc (n)
int n;

"Malloc’ allocates ’'n’ words of memory and returns a pointer

to the beginning of the storage block. If 64K words are
requested or 1if zero words are requested, ’'malloc’ returns
NULL.

"Alloc’ is the name of the pre-Version 7 UNIX storage

C User’s Guide

allocator. It performs the same function as 'malloc’. Its
use in new programs is strongly discouraged. It is provided
to make porting code easier, and because it was in the first
release of the C compiler.

calloc ——- allocate memory for arrays or structures

Calling Information:

char *calloc (n, size)
int n, size

"Calloc’ allocates ’'n’ * ’size’ words of memory for storing

'n’” objects of ’‘size’ words each. If successful, ’calloc’
initializes all words to zero, and returns a pointer to the
first word of the storage block. If 64K or more words are
requested or if zero words are requested, ’calloc’ returns
NULL.

realloc —--- change the size of previously allocated memory

Calling Information:

char *realloc (ptr, size)
char *ptr;
int size;

"Realloc’ reallocates a block of memory of ’'size’ words for
a storage block previously allocated by 'malloc’ or ’calloc’
(0 < "size’ < 64K). The contents of the original storage
block are preserved by copying to the newly allocated block.
Therefore, the pointer ’"ptr’ passed as a parameter to ’'real-
loc’ must point to the beginning of a block allocated by
'malloc’ or ’'calloc’ in order for the copy to work properly.
Any existing pointers to the original data structure must be
changed. (I.e. the contents of the old memory are preser-—
ved, but the same actual block of memory may not be used.)

"Realloc’ returns a pointer to the first word of the new
storage block or NULL if an error occurred.

free ——— free allocated memory
cfree —-—- free allocated memory (old name)

Calling Information:

free (ptr)
char *ptr

cfree (ptr)
char *ptr;

"Free’ frees a block of memory previously allocated by 'mal-
loc’, ’'realloc’, or ’'calloc’. "Free’ will fail miserably if
handed an arbitrary pointer; only pointers returned by 'mal-

C User’s Guide

loc’, ’"realloc’ or ’'calloc’ are valid parameters.

"Cfree’ is the name of the pre-Version 7 UNIX storage
releaser. It performs the same function as ’free’. Its use
in new programs is strongly discouraged. It is provided to
make porting code easier, and because it was in the first
release of the C compiler.

memccpy ——— copy characters up to a character or some number

Calling Information:

char *memccpy (sl, s2, c, n)
char *sl, *s2, c;
int n;

"Memccpy’ copies characters (words, on the Prime) from the
memory pointed to by ’sl’ into ’s2’ until it encounters ’‘c’,
or until 'n’ characters have been copied. It returns a
pointer to the character after the first occurrence of ‘c’,
or NULL if ’"c¢’ was not found in the first ’'n’ characters of
rsl’.

memchr —--- return a pointer to a char within a memory area

Calling Information:

char *memchr (s, c, n)
char *s;
int ¢, n;

'Memchr’ returns a pointer to the first occurrence of ’'c’
within the first ’'n’ characters (words, on the Prime) of
's’. It returns NULL if ’'c¢’ does not occur.

memcmp —--- compare arbitrary areas of memory

Calling Information:

int memcpmp (sl, s2, n)
char *sl, *s2;
int n;

'Memcmp’ looks only at the first ’'n’ words of its first two
arguments. It returns an integer less than zero, equal to
zero, or greater than zero, according as ‘’'sl’ is
lexicographically less than, equal to, or greater than ’s2’.

C User’s Guide

memcpy ——— copy arbitrary areas of memory

Calling Information:

char *memcpy (sl, s2, n)
char *sl, *s2;
int n;

'Memcpy’ copies 'n’ characters from ’s2’ to ’sl’. It
returns ’'sl’.

memset —--- initialize memory to a given value

Calling Information:

char *memset (s, c, n)
char *s;
int ¢, n;

"Memset’” sets the first ’n’ characters (words) of s’ to
rc’. It returns ’'s’.

mktemp —--- make a unique file name

Calling Information:

char *mktemp (template)
char *template;

"Mktemp’ replaces the contents of the string pointed to by
"template’ with a unique file name, and returns ’template’.
'Template’ should look like a file name with six trailing
Xs; 'mktemp’ replaces the Xs with a unique letter and the
process id. (This implementation only requires four Xs; six
is recommended for portability to/from Unix systems.)

If there are no Xs in the ’template’, ’'mktemp’ returns NULL.
The "unique" letter will recycled after 26 «calls to
"mktemp’ .

So that this &routine does not conflict with the SWT
"mktemp’, it is actually a macro, so "=incl=/stdio.h" must
be included in order to use it.

rand —--- return a random integer

srand ——— seed the random number generator

Calling Information:

int rand()

srand (seed)
unsigned seed;

"Rand’ wuses ’rand$m’ in the SWT Math Library. It returns a

C User’s Guide

number between 0 and 2716-1. 'Srand’ uses ’'seed$m’ to seed
the random number generator. In keeping with the Unix
semantics, if the user calls ’'rand’ before calling ’'srand’,
the random number generator will be seeded with 1.

setjmp —--—- set up for non-local goto

longjmp —--- perform a non-local goto

Calling Information:

#include <setjmp.h>

int setjmp (env)
jmp_buf env;

longjmp (env, status)
jmp_buf env;

int status;

"Setjmp’ saves the current stack frame in ’'env’ for later

use. On every call, ’'setjmp’ returns O. "Longjmp’ takes
"status’ and performs a non-local "goto" to an environment
("env’) saved by a previous call to ’'setjmp’. The result of

that operation allows execution to continue as if 'setjmp’
had returned 'status’ rather than 0 at the point of
invocation. Use of these routines requires inclusion of
"<setjmp.h>" Dbefore either of the routines is called. 1In
particular "<setjmp.h>" does a typedef on the type
"Jmp_buf’, and contains a macro definition which is needed
for ’"setjmp’ to return properly.

sleep ——- sleep for the given number of seconds

Calling Information:

int sleep (amount)
unsigned amount;

"Sleep’ will sleep for ’amount’ seconds. "Sleep’ simply
calls the Primos ’sleep$’ routine. It returns no value.
strcat ——— concatenate two strings

Calling Information:

char *strcat (t, s)
char *t, *s;

’Strcat’ concatenates string ‘s’ to string ‘t’, terminating
"t’ with "\0’. The target string ’'t’ is assumed to be large
enough to accommodate all of the characters copied from ’'s’.
’Strcat’ returns a pointer to ’'t’, or NULL if either ’'s’ or
't’ is NULL.

C User’s Guide

strncat —-—- concatenate substring to string

Calling Information:

char *strncat (t, s, n)
char *t, *s;
int n;

Concatenates at most ’'n’ characters of string ’s’ to string

't’. If ’s’ contains fewer than ’'n’ characters, then only
"strlen (s)" characters will Dbe copied. In any case,
"strncat’ terminates ’t’ with ’\0’ and returns a pointer to
Tt

strcmp —--- compare strings

Calling Information:

strcmp (sl, s2)
char *sl, *s2;

'Strcmp’ compares strings ’sl’ and ’s2’ and returns 0 if
they are equal or if sl = NULL and s2 = NULL. If *sl > *s2

or 1if s2 = NULL, 'strcmp’ returns a positive value; it
returns a negative value if *sl < *s2 or if sl = NULL.
strncmp —-—-- compare substrings

Calling Information:

int strncmp (sl, s2, n)
char *sl, *s2;
int n;

’Strncmp’ compares at most ’‘n’ characters of ’"sl’ and ’'s2’.
It returns 0 if equal or if sl = NULL and s2 = NULL; a
positive value if *sl > *s2 or if s2 = NULL; or a negative
value if *sl < *s2 or if sl = NULL.

strcpy ——— copy string

Calling Information:

char *strcpy (t, s)
char *t, *s;

Copy string ’s’ to string ’'t’. 'Strcpy’ assumes that ’'t’ is
large enough to receive all characters contained in ’'s’. TIf
't’ is NULL ’strcpy’ returns NULL; if ’s’ is NULL and 't’ is
non-NULL, ’'t’ is set to the empty string ("").

C User’s Guide

strncpy ——- copy substring to string

Calling Information:

char *strncpy (sl, s2, n)
char *sl, *s2;
int n;

"Strncpy’ copies at most ’‘n’ characters from string ’s2’ to
string ’"sl’. If ’"s2’ contains more than ’'n’ characters,
then ’sl’ will not Dbe ’"\0’-terminated. If ’s2’ contains
fewer than ’'n’ characters (including a terminal ’\0’), then
"sl’ is ’\0’-padded until it contains ’n’ characters.

strlen —--- return length of string

Calling Information:

int strlen (s)
char *s;

"Strlen’ returns the length of a string ’s’ excluding the
terminating ’\0’ character.

strchr ——— find character in string

Calling Information:

char *strchr (s, c¢)
char *s, c;

Returns pointer to first occurrence of character 'c¢’ in
string ’"s’; if ’'c’ is not found ’strchr’ returns NULL.

strrchr --- find character in string (last occurrence of)

Calling Information:

char *strrchr (s, c)
char *s, c;

"Strrchr’ returns a pointer to the last occurrence of the

character ¢’ in the string ’s’. If 'c¢’ does not occur in
’s’, NULL 1is returned. ("Strrchr’ also works if ’'c¢c’ =
"\0".)

strpbrk -—- find one of a class of characters in a string

Calling Information:

char *strpbrk (sl, s2)
char *sl, *s2;

Returns a pointer to the first character in ’sl1’ matching
any character in string ’'s2’, or NULL if no character in
's2’” is in ’sl’. Both ’sl’ and ’'s2’ must be non-NULL.

C User’s Guide

strspn ——— find qualified substring

Calling Information:

int strspn (sl, s2)
char *sl, *s2;

"Strspn’ returns the length of the initial substring of ’sl’
that is made entirely of characters from ’'s2’. If either
’sl’” = NULL or ’s2’ = NULL, ’strspn’ returns O.

strcspn ——- find qualified substring

Calling Information:

int strcspn (sl, s2)
char *sl, *s2;

"Strcspn’ returns the length of the initial substring of
’sl’ not having any characters contained in ’'s2’.

strtok ——— find tokens in a string

Calling Information:

char *strtok (sl, s2)
char *sl, *s2;

’Strtok’ returns a pointer to the start of each token in
rsl’. Tokens are defined as contiguous strings of charac-
ters delimited by separators. ’'Strtok’ skips over any lead-
ing separators. ’S2’ contains 1 or more characters to be
considered as token separators. When '/strtok’ finds a
token, it replaces the terminating delimiter with "\0’. If
it can’t find a token with the current set of delimiters,
"strtok’ returns NULL; however, if ’sl’ has already Dbeen
successfully searched for a token, the terminating ’\0’ in
’sl’” is considered a valid delimiter. Thus, the final token
in ’sl’ can be retrieved without any special finagling (the
"\0’" of ’'s2’ 1is never considered a valid separator during
the scan of ’"sl’ for delimiters).

On the first call to ’strtok’, ’sl’ should point to a wvalid
string, while on subsequent calls ’'sl’ should be NULL so
that the entire string is scanned. The characters in 's2’
may change from call to call searching the same ’'sl’.

index --- find character in string

Calling Information:

char *index (s, c)
char *s, c;

Same as 'strchr’. This is the V7 (and Berkeley) UNIX
routine; the name was changed with UNIX System III.

- 48 -

C User’s Guide

rindex —-—— find the last occurrence of character in string

Calling Information:

char *rindex (s, c¢)
char *s, c;

Same as ’‘strrchr’. This 1is the V7 (and Berkeley) UNIX
routine; the name was changed with UNIX System IIT.

toascii --- convert a char/int to a valid ASCII value

Calling Information:

char toascii (ch)
char ch;

"Toascii’ returns its argument converted into a valid ASCII
value. When unpacking packed character strings, 'toascii’
can be used to obtain the high character after shifting the
packed word right by 8 bits. The low character can be got-
ten Dby passing the whole integer to ’"toascii’. To use this
macro, the file "=incl=/ctype.h" must be included first.

toupper ——- convert lower case character to upper case

Calling Information:

char toupper (ch)
char ch;

If 'ch’ is a lower <case letter, ’'toupper’ returns the
corresponding upper case letter. Otherwise it returns ’ch’

unchanged. This is actually a fast, assembly language
routine, declared in "=incl=/ctype.h".
tolower ——- convert upper case character to lower case

Calling Information:

char tolower (ch)
char ch;

If ’'ch’” 1is an upper case Jletter, ’'tolower’ returns the
corresponding lower case letter. Otherwise it returns ’ch’
unchanged. This 1s actually a fast, assembly language
routine, declared in "=incl=/ctype.h".

C User’s Guide

_toupper ——— blindly convert a character to upper case

Calling Information:

char _toupper (ch)
char ch;

! _toupper’ returns ’ch’ converted to upper case. It does
not check that its argument is indeed a lower case letter.
This function performs the Unix Version 7 'toupper’, which
was changed to ’_toupper’ in Unix System III to accommodate
those who may still want it. To use this macro, the file
"=incl=/ctype.h" must be included first.

_tolower —--- blindly convert a character to lower case

Calling Information:

char _tolower (ch)
char ch;

! _tolower’ returns ’ch’ converted to lower case. It does
not check that its argument is indeed an upper case letter.
This function performs the Unix Version 7 ’'tolower’, which
was changed to ’_tolower’ in Unix System III to accommodate
those who may still want it. To use this macro, the file
"=incl=/ctype.h" must be included first.

ttyname —--- return the name of the terminal

Calling Information:

char *ttyname (£fd)
int fd;

"Ttyname’ takes an integer file descriptor as an argument.
If the device which is attached to the file descriptor is a
terminal, it returns the string "/dev/tty", otherwise it
returns NULL. (Under Unix, it would return the actual
device name.)

The associated ’isatty’ function already exists in SWT. It
may used as is.

The C Math Library

The following routines are those listed as "3M", i.e. the C
Math Library. These routines all take arguments of type double,
and return type double.

You should include the file "=incl=/math.h" which declares
these routines, before using them. This can be done with the
line:

C User’s Guide

#include <math.h>

Most of these routines simply call the corresponding routine
in the SWT math library, "vswtmath". See the SWT Math Library
User’s Guide for details on how these routines work, and under
what condition(s) they will raise an error condition.

acos ——— take arc cosine of a real

Calling Information:

double acos (x)
double x;

This routine returns the value obtained from ’'dacs$m’ in SWT
math library.

asin —--- take arc sine of a real

Calling Information:

double asin (x)
double x;

This routine returns the value obtained from ’'dasn$m’ in SWT
math library.

atan —-—-- take arc tangent of a real

Calling Information:

double atan (x)
double x;

This routine returns the value obtained from ’‘datn$m’ in SWT
math library.

atan2 ——- take arc tangent of x/y

Calling Information:

double atan2 (x, V)
double x, y;

This routine first divides x by y. It passes the result of
the division to the SWT math library routine ’datn$m’,
returning its result.

ceil —--- return smallest integer not less than x

Calling Information:

double ceil (x)
double x;

C User’s Guide

This routine uses the ’dint$m’ routine in the SWT Math
Library to remove the fractional part, and then adds 1.0 if
its argument was positive.

cos —-—— take cosine of a real

Calling Information:

double cos (Xx)
double x;

This routine returns the value obtained from the ’dcos$m’
routine in the SWT math library.

cosh ——- take hyperbolic cosine of a real

Calling Information:

double cosh (x)
double x;

This routine returns the value obtained from the ’'dcsh$m’
routine in the SWT math library.

exp ——— compute exponential (base e) of a real

Calling Information:

double exp (x)
double x;

This routine returns the value obtained from the 'dexp$m’
routine in the SWT math library (Raise e to ’'x’ power).

fabs —-—— compute the absolute value of a real

Calling Information:

double fabs (x)
double x;

This routine returns the absolute value of its double
precision argument. It is a fast, assembly language
routine, local to the C library.

fmod -—— do floating point modulus operation

Calling Information:

double fmod (x, V)
double x, y;

’ Fmod’ returns ’'x’ if 'y’ is zero. Otherwise, it returns a
number £, of the same sign as x, such that x = iy + £ for
some integer i, and |£| < |y]|.

C User’s Guide

hypot ——— return Euclidean distance function

Calling Information:

double hypot (x, V)
double x, y;

"Hypot’ returns
sqrt (x * x +y * y)

It does not check for overflow of the multiplication and
addition operations (although it should).

floor —--- return largest integer not greater than x

Calling Information:

double floor (x)
double x;

This routine uses the ’dint$m’ routine in the SWT Math
Library to remove the fractional part, and then subtracts
1.0 if its argument was negative.

log ——— take the natural log (base e) of a real

Calling Information:

double log (x)
double x;

This routine returns the value obtained from the ’'dln$m’
routine in the SWT math library.

logl0 -—-- take the log base 10 of a real

Calling Information:

double logl0 (x)
double x;

This routine returns the value obtained from the ’'dlogS$m’
routine in the SWT math library.

pow ——— provide exponentiation for C programs

Calling Information:

double pow (a, b)
double a, b;

"Pow’ computes ’"a’ to the ’'b’. 'Pow’ calls ’'powr$Sm’ in the
SWT math library. It may raise ’SWT_MATH_ERRORS’ if the
first argument is negative, or if the first argument is
zero, and the second is negative or zero. The exception

- 53 -

C User’s Guide

will also be raised if the results of the calculation would

cause an overflow.

sin ——— take sine of a real

Calling Information:

double sin (x)
double x;

This routine returns the value obtained from the ’'dsin$m’
routine in the SWT math library.

sinh —--- take hyperbolic sine of a real

Calling Information:

double sinh (x)
double x;

This routine returns the value obtained from the ’dsnhS$m’
routine in the SWT math library.

sqrt —--- take square root of a positive real

Calling Information:

double sqgrt (x)
double x;

This routine returns the value obtained from the ’'dsgt$m’
routine in the SWT math library.

tan ——— take tangent of a real

Calling Information:

double tan (x)
double x;

This routine returns the value obtained from the ’'dtan$m’
routine in the SWT math library.

tanh —--- take hyperbolic tangent of a real

Calling Information:

double tanh (x)
double x;

This routine returns the value obtained from the ’'dtnhS$m’
routine in the SWT math library.

C User’s Guide

Unix Special Library Routines

The following routines are those listed as "3X", i.e. the
routines which require special libraries and/or include files.

assert —--— put assertions into C programs

Calling Information:

#include <assert.h>

assert (expression)
int expression;

The ‘’assert’ function is actually a macro which tests the
boolean expression. If the expression 1is FALSE, 'assert’
prints a message to ’‘stderr’, and exits. The error message
will contain the file name and line number of the ’'assert’
statement. The ’assert’ macro is written in such a way that
it can Dbe wused as a regular statement in a C program; it
will not mess up if-else nesting, for instance.

Defining NDEBUG before including "<assert.h>" or on the ’cc’
(or "ccl’ or 'ucc’) command line will turn ’assert’ into a
null (empty) macro.

logname —--- return login name of user

Calling Information:

char *logname ()

"Logname’ returns a pointer to a string containing the
user’s login name. If the LOGNAME environment variable
exists, ’logname’ returns its value. Otherwise, if the tem-
plate =user= has a value, that wvalue 1is returned. If
neither of those work, ’logname’ returns NULL. Both of
these methods are subject to counterfieting.

varargs —-—— portably write functions with a variable number
of arguments

Calling Information:

#include <varargs.h>

function (va_alist)
va_dcl

va_list pvar;

va_start (pvar);

f = va_arg (pvar, type);
va_end (pvar);

The file "=incl=/varargs.h" contains a set of macros which

allow you to write functions which will have a variable num-—
ber of arguments in a portable (if slightly opaque) fashion.

- 55 -

C User’s Guide

va_alist is wused 1in ©place of the argument list
inside the parentheses of a function
header, to declare a variable argument

list.
va_dcl declares the "type" of the wvariable
argument list. Note that there is no

semicolon after the "va_dcl".

va_list is a "type" for declaring the wvariable
pvar. Pvar is a variable which will be

used to step through the argument 1list.
One such variable must be declared.

va_start (pvar) initializes pvar to the beginning of
the argument list.

va_arg (pvar, type) returns the next argument in the
list pointed to by pvar. It will be a
value of type type. Variables of
different types may be mixed, but it is
up to the called routine to determine
their types, since this cannot be done
at compile time.

va_end (pvar) is used to finish up.

The list can be traversed multiple times, as long as each
traversal starts with a ’'va_start’ and ends with ’"va_end’.

While 'varargs’ originated at Bell Labs, and is available

with System V, it is not documented there. Instead, its use
was popularized with the Berkeley versions of Unix (which do
document it). In any case, you should be able to wuse the

'varargs’ macros to portably write functions which take a
variable number of arguments (like ’'printf’ does).

The current implementation of ’varargs’ allows a maximum of
ten arguments in the ’'va_alist’.
Other Routines Not From Unix

The following routines are not routines found on Unix, but
are supplied in "ciolib", since they are generally useful.

C User’s Guide

basename ——- return the file name part of a path name
dirname --- return all but the last part of a path name

Calling Information:

char *basename (str)
char *str;

char *dirname (str)
char *str;

’Basename’ returns a pointer to the last part of the SWT
path name contained in ’str’. If there are no slashes in
"str’, it returns ’‘str’, otherwise it returns a pointer to
somewhere in the middle of ’str’.

"Dirname’ returns a pointer to the directory part of the SWT

path name contained in ’str’. It copies ’str’ into a
private buffer (of length MAXPATH), and then replaces the
final slash with a ’"\O0’. If there are no slashes, it
changes no characters in the buffer. In all cases, it
returns the address of the buffer; the original ’str’ is not
modified.

The following example should clariy what these routines do:

basename ("path/file"); returns "file"
dirname ("path/file"); returns "path"
c$ctov —--- convert C string to PL/I string

Calling Information:

int c$ctov (dest, src)
int *dest;
char *src;

Converts the C string in ’src’ to a PL/I varying string in
"dest’ . (A PL/I string is an array of integers. The first
element contains the number of characters in the string.
The rest of the array contains the characters, packed two to
a word.) Conversion terminates when a ’\0’ is encountered
in ’src’. The function return is the number of characters
converted to ’‘var’. Like other C string routines, no bounds
checking is performed (see ctov(2) in the Software Tools
Subsystem Reference Manual, though).

NOTE: This routine has been changed from the previous
release of the C compiler.

C User’s Guide

c$vtoc ——— convert PL/I string to C string

Calling Information:

int c$vtoc (dest, src)
char *dest;
int *src;

Converts a PL/I varying string ’src’ to a C string 'dest’.
The function returns the number of characters copied into to
"'str’. Again, no Dbounds checking is done (see vtoc(2) in
the Software Tools Subsystem Reference Manual) .

NOTE: This routine has been changed from the previous
release of the C compiler.

C User’s Guide

Conversion

The Georgia Tech C compiler is based on the specifications
contained in The C Programming Language by Kernighan and Ritchie.
However the C compiler environment is not totally compatible with
the Unix C implementation. Simulation of a Unix environment
under Primos can be done only with an unreasonable loss of per-—
formance. Therefore, Unix C programs require some conversion to
execute on Prime systems. (Programs that depend intimately upon
the Unix process mechanism or the Unix file system layout are
more difficult to convert. Likewise, programs that make heavy
use of Unix inter-process ’signal’ interfaces will be difficult
to convert.)

C Program Checker

There exist the beginnings of a "C Program Checker" to flag
possibly dangerous C program constructs when it encounters them;
e.g. type mismatches. The "C Program Checker" can be called by
using the "-y" option with ’cc’, ’‘ccl’, or ’'ucc’. It currently
reports on mismatched formal/actual parameters and misdeclared
function return values.

Incompatabilities With PDP-11 C

The C compiler is compatible with PDP-11 C where possible.
The following list enumerates those features of the Georgia Tech
C compiler which are not compatible with PDP-11 C.

Include Statements

The compiler will complain about semicolons appearing at the
end of include statements.

Note that the Georgia Tech C compiler automatically includes
the standard definitions in "=cdefs=" so that the typical Unix-
style "#include <stdio.h>" is optional. The compiler will search
for an include file starting with the the current working direc-
tory, through the directories 1listed with the "-I" compiler
option 1in the order listed, and ending with the system include
directory "=incl=". Use of angle brackets (e.g., <filename>)
rather than double quotes (e.g., "filename") in the include
statement directs the compiler to skip the search of the current
working directory.

C User’s Guide

Pointers

It 1is currently not possible to make pointers and ints the
same length. Pointers are 32 bits, ints are 16 bits. The com—
piler tries to warn of pointer truncation, but cannot always
detect it.

If NULL pointers are to be passed as arguments, they must be
of type pointer (e.g. you cannot pass 0 or OL as a NULL pointer.
Use the symbolic constant NULL which is defined in
"=incl=/stdio.h" to be " (char*) 0").

Pointers to dynamically linked objects cannot be compared.
Pointers to dynamically linked objects (currently only functions
are dynamically linked) are actually faulting pointers to charac-
ter strings. At run time, these pointers are filled in with the
correct linkage address (the links are "snapped") the first time

the pointer is referenced indirectly. The C compiler must
generate a constant pointer to each external object in each C
object file. If relocatable files are linked together, during

execution it is possible to have one file’s constant pointer
snapped, and the other’s untouched. The object code generated by
the compiler to compare these pointers does not reference through
the pointers; it merely treats them as 32-bit integers. Because
of this, comparisons of pointers to dynamically 1linked objects
may give inconsistent results. A significant performance penalty
would be required to guarantee consistent results in such a
limited case.

Program and Data Object Size Restrictions

No source file may require more than 65536 words of static
data. The static data for each C source file is compiled into a
single linkage frame, and the linkage frame size restriction 1is
imposed by the system architecture.

If you do require very large data objects, you may be able
to get around this restriction with some work. You must declare
the data object as an extern and write a Fortran subroutine that
declares the data object name as a common block. Then when
accessing the contents of this large Dblock you must somehow
insure that an object never crosses a segment boundary (start it
at the Dbeginning of the next segment just as Fortran does). If
you attempt to address an object (such as a double) across a seg-
ment boundary, part of your reference simply wrap around to the
beginning of the segment you are trying to reference beyond.

No source file may require more than 65536 words of
procedure text. The compiler generates all procedures in the
same PMA (Prime Macro Assembler) module. Currently PMA restricts
the module size to 65536 words.

No function may generate more than 65536 words of internal-
format PMA (currently around 16K statements). This is a code-
generator workspace restriction. It has only been encountered

C User’s Guide

with output from YACC -- functions this huge are Jjust not
normally found around PDP-1ls. (YACC is an LALR(l) parser
generator. Its reads a BNF grammar, and produces a C function

which will parse the grammar. This generated output has many
large tables.)

Functions

In C, all arguments are passed by value. In Georgia Tech C,
as long as arguments match in type they are, in all outward
appearances, also passed by value. However, the internal

mechanism for parameter passing is different from Unix C and will
give different side effects if arguments do not match in type and
in number.

The Prime architecture maintains a stack for local variables

and provides a 64V mode procedure call argument transfer
primitive for passing pointers, Dbut not data values. We have
used this mechanism to take advantage of its speed. Therefore,

pointers are passed by value, just as in Unix C, but data values
are not passed by value; a pointer to the data wvalue 1is passed
into the stack frame of the called procedure; the data value is
then copied into the 1local stack frame Dby the procedure
initialization code. This scheme is transparent as long as there
are no type mismatches. For this reason, an attempt to cast a
pointer argument to a non-pointer type will fail.

A variable number of arguments can be used, but not in the
same manner as in Unix. The strategy is to declare as many
arguments as you will ever need (make them pointers so that the
compiler does not try to copy them). You will actually ignore
all but the first of these names in the function. This trick
forces the compiler to leave enough room for your arguments in
the procedure’s local stack frame. When the function is called,
you will find the first argument pointer at the address of the
first argument, the second argument pointer at the address of the
first argument plus 3, the third at the address of the first
argument plus 6, etc. Note that because of software conventions,
i.e., the procedure initialization code, functions that are
declared with zero arguments must be called with exactly =zero
arguments; and functions that are declared with one or more
arguments must not be called with zero arguments.

Programs that depend on the order of parameter evaluation
will fail.

You cannot call a function with single precision floating
point arguments nor can you ever expect a function to return a
single precision floating point argument. Remember, C turns them
into double precision.

If a structure is to be a return value, the compiler adds on
an additional first argument through which it passes a pointer to
a temporary area in the calling procedure for the return value.
Needless to say, type or length mismatches could cause

- 61 -

C User’s Guide

significant nastiness.

The side effects of type mismatches are quite predictable
and can be useful for calling non-C procedures. For example, if
you pass a non-pointer argument to a pointer argument, it will
behave exactly as if a pointer had been passed (i.e. possibly
allowing the supposed "value" argument to be modified). If you
pass a pointer argument to a simple variable argument it Dbehaves
just like you passed the value of the argument instead.

Be wary of non-C routines which modify their arguments
(particularly Subsystem routines like ’ctoi’); 1if you pass a
constant, the "constant” might end up with a different wvalue in
it than it had before the routine was called!

Arrays

Although it is possible to index outside of array bounds,
doing so 1is very dangerous. In 64V mode, indexed instructions
are much faster than 32-bit pointer arithmetic. As a
consequence, the compiler generates 16-bit indexed instructions
wherever possible. The only side effect of this performance
improvement is that indexing outside the bounds of arrays may not
give the expected results.

Identifiers ——— Naming Restrictions

Because the C compiler originally generated symbolic assem-
bly language which was then processed by PMA, the Prime Macro
Assembler, variable and function names had to follow PMA’s naming
conventions which require that names begin with an alphabetic
character. To achieve the necessary compatibility, variable and
function names beginning with an underscore are prefixed with
"z$". Even though ’vcg’ now generates object code directly, this
naming restriction is still in effect.

Field names within structs must be unique since the C com-
piler does not maintain a separate symbol table for each struct.
This behavior is in accordance with K&R and the V7 Unix C com-—
piler. (Berkeley Unix, System III, and System V, all keep
separate symbol tables for each structure.)

Character Representation and Conversion

Character values run from 128-255, not 0-127.

Characters are not sign extended when promoted to integers.

Numerical

Programs that use data of type double may lose precision in
trade for increased magnitude.

C User’s Guide

See the SWT Math Library User’s Guide for more details on
Prime’s floating point hardware and software.

Library Incompatibilities

The Unix call 'fork’” cannot be efficiently implemented
because of operating system restrictions, and is therefore not
available with Georgia Tech C.

"Read’ and ’'write’ calls that do not use ’'sizeof’ to compute
the buffer length will probably have to be changed.

Programs that open other users’ terminals can not be sup-
ported.

Unix File System Incompatibilities

Programs that depend intimately on the Unix directory struc-
ture (’..’, directory layout, 1links) will not be easily con-
verted.

Programs that depend on the order and behavior of Unix file
descriptors will not be easily converted.

You cannot depend on file descriptors 0, 1, and 2 always
being connected to standard input, standard output, and standard
error respectively. Instead, use the macros STDIN, STDOUT, and
STDERR (defined in "=incl=/swt.h", which is automatically
included by "=cdefs=").

Tabs

Tabs are not supported in exactly the same manner on the
Prime as in Unix. C programs which produce tabs in their output
should be run piping their output into the Subsystem program
"detab’ (’'detab +8’ is recommended) .
Static Initializers

Initializers for static data objects which involve the
"address-of" operator may only consist of "&objectreference".

For example, while the statement "static char *x = &A" is okay,
the statement "static char *x = &A+1" cannot be handled by the
Georgia Tech C compiler. The restriction arises from the

inability of PMA/SEG to handle address expressions of external
symbols when forming 32-bit pointers.

Registers
In 64V mode, the Prime is essentially a single accumulator

machine. Thus, while the compiler recognizes the register

- 63 -—

C User’s Guide

keyword, there is no effect on the size or speed of the generated
code.

The Type void

Berkeley and System III Unix introduced the new type void
into the C language. A void function is one which is guaranteed
not to return a value (i.e. a true procedure). Only functions
may be declared to be of type void, although you may also cast a
function call to void. Georgia Tech C does not directly support
void, but you may get around it with the simple statement:

#define void int

which should allow you to port practically any code which uses
void. Admittedly, this defeats some of the type checking that
the new type provides, but it will allow you to port code,
without having to modify it.

C User’s Guide

Known Bugs

The following is a list of known problems with the C com-

piler, as well as important enhancements that need to be made.

1.

In certain instances, the compiler’s attempt at parsing
error correction fails to accept an input token. This can
result 1in an infinite loop in the parser as it encounters
and reports the same error repeatedly. A good example is
placing an extra semicolon after the right brace of the
statement in an if, before the corresponding else. The com-
piler will halt after reaching a limit of 50 such messages.

Bit fields must be initialized by execution time
assignments; compile time initialization does not work
correctly.

If "f" and "g" are type float, then "f*=g" is performed in
single precision, whereas "f=f*g" 1is performed in double
precision. We have not made a detailed analysis of the
ramifications of this situation; it may be that no loss of
precision can be detected. Regardless, because of the
structure of the code generator, it will be very difficult
to alter this situation.

The preprocessor does not support the "#if" construct.

The parameter-checking option ("-y") does not check calls to
the C library.

A duplicate case in a switch is not detected by the first

pass of the compiler. It will cause an error (with no
information regarding the location of the error!) message
to be reported by ’'vcg’. In some cases, no error is

reported, but ’vcg’ generates unreasonable code.

There are several problems involving duplicated declarations
for an external/global identifier (e.g. "extern aj; int
a;"). Most reasonable redeclarations are handled correctly,
but some of the more obscure cases are probably not handled
the way the Unix compilers handle them. In general, correct
handling of these odd cases is not described explicitly--to
find out how they "should" be handled, you have to ask a
Unix compiler (and they often give different answers).

The sequence of declarations "extern int afll; int af[b5]1;"
generates a warning message that "a" is being redeclared
improperly. This is caused by the differing array bounds
confusing the compiler into thinking that the second
declaration is unreasonable. This is a definite Dbug (as

C User’s Guide

10.

11.

opposed to a question of interpretation).

The constant -27-31 (smallest 32-bit negative number) is
mishandled in all bases ('gctoi’ goofs on it). For the time
being, instead of wusing "0x80000000", wuse " (1<<31)" 9or
"(TOX7FFFFFFF)". These will give identical results because

the constant folder gives correct results.

The construct "p++->x" confuses the compiler and causes it
to complain about missing parentheses. This is because "->"
is of higher precedence than "++" and thus confuses the
recursive—-descent parser. You should write the expression
as " (p++)-—>x".

The new version of the code generator still has some bugs in

it. If it ©produces an object file which causes an error
from the loader, you may wish to compile the program with
the "-s" option, to generate PMA in a ".s" file. Then use
"pmac’ to assemble it, and load the new binary. This will

usually work; it will simply take longer to compile.

C User’s Guide

Technical Information

Implementation

The C compiler accepts C source code as input and in two
"passes" produces 64V-mode relocatable object code as output.
The first compilation pass 1is implemented by a Ratfor program
known as the "front end," and the second pass by a Ratfor program
known as the "back end." The front end is the Subsystem program
"cl’ and the back end is ’'vcg’.

| | | | |
| | | | | | -—-> Entry Points
c --->| 1n |---»| cMP |--->| PARSE |---> Static Data
| | | | | | -———> Function Bodies
| | | | |
!
4

Mode Table
Symbol Table
Expression Table

The "Front End." LA is the lexical analyzer, or scan-
ner. CMP is the C macro preprocessor. PARSE 1is the
parser and intermediate code generator.

The front end 1s a classical recursive-descent compiler,
employing a lexical analyzer (to break the stream of input
characters into tokens), a preprocessor (to handle macro
definitions and source file inclusion), and a parser (to analyze
the program, diagnose syntactic and semantic errors, and produce
an "intermediate form" output stream).

C User’s Guide

[S
Entry Points —>| | |
Static Data ->| IN | | ouT |-> PMA
Function Bodies —>| | ——>| | ——>| |-—>| |
— I	cooe		opT		
tree—>					
mach		(mach			
inst.		inst.)			

The "Back End." IN reads the intermediate code produced
by the front end. CODE attempts to "intelligently"
generate machine instructions. OPT performs some sim-—
ple peephole optimizations to remove redundant loads
and stores. OUT converts the internal instruction form
to 64V-mode object code, or, optionally, to Prime Macro
Assembly Language.

The back end is a reusable general-purpose code generator.
It accepts the linearized intermediate form tree produced by the
front end, rebuilds the tree internally, converts the tree to a
linked list of machine instruction representations, performs
peephole optimizations on that list, and then produces 64V-mode
object code, ready for link editing and subsequent execution.
"Vcg’ has an option for producing symbolic assembly language
instead of object code. The assembly language that ’vcg’
produces 1is suitable for processing by the Prime Macro Assembler,
PMA.

For those of vyou wishing to supply your own front-ends to
the code generator, there is a V-mode Code Generator User’s Guide
(use the Subsystem command ’"guide’) and a Reference Manual entry
for ’"vcg’.

Performance

The C compiler requires parts of 5 segments to run. The
previous version of the C compiler, which used to call PMA, ran
almost twice as fast as Prime’s Fortran 77 and Pascal compilers
(700 lines per minute vs 400 lines/minute on a PRIME 550 running
under Primos 18.1). Hand inspection and informal benchmarks
indicate that the code produced is superior to that produced by
Pascal, PL/1 and Fortran 77; in particular, fewer base register
loads are generated, and operations on packed data structures are
performed without resorting to the field manipulation instruc-
tions.

C User’s Guide

The compile time requirements for each phase were
approximately as follows: ’‘cl’: 23%, 'vcg’: 27%, "pma’: 50%.

Roughly half of 'vcg’s time was spent in the assembly-language
output routines.

For the second release, ’'vcg’ has been changed to produce
64V-mode object modules directly. This substantially reduces
compile time. We have not measured the new version of the com-
piler, but the compile time requirements for each phase are about
equal. The total compile time is now approximately half of what
it was, since PMA is not involved in the process.

C User’s Guide

Subsystem Managers Section

The machine-readable text of the User’s Guide for the
Georgia Tech C Compiler is in the file "=doc=/fguide/cc" (already
formatted) and in the directory "=doc=/guide/cc" (unformatted)
(assuming that you have already installed the C compiler accord-
ing to the directions below).

Installation Procedure

The C compiler and its support programs are intended to be
part of the Subsystem. Source, documentation and executable ver-
sions "drop in" to appropriate Subsystem directories so that they
are accessible as standard Subsystem tools. This section covers
the procedures necessary for installation of the C compiler.

Georgia Tech C Installation Package
The C 1Installation Package as sent from Georgia Tech
contains the following items:

1 Release Tape
1 Copy of the C User’s Guide

Release Tape Contents

The C Release Tape contains all files and directories neces-—
sary for proper operation of the C compiler under the Software
Tools Subsystem. It is in standard MAGSAV/MAGRST format and
contains 5 "logical tapes." Each logical tape contains a number
of files that "drop in" to Subsystem directories.

Logical Tape 1

The first logical tape contains executable files that are to
be placed in "=bin=",

cc ccl compile ucc vcg vcgdump
"Cc’ is the Subsystem C compiler, ’ccl’ is a shell file that com-—

piles and 1loads a C program, 'ucc’ is a ’'Unix-like’ C compiler
and ’'vcg’ is the V-mode code generator. ’Vcg’ is used by the C

- 70 -

C User’s Guide

compiler Dbut can also be used separately by those users who have

their own "front ends." ’'Vcgdump’ reads the intermediate files
produced by ‘cl’, and prints a human-readable version of the
intermediate form tree. ’Compile’ is a general purpose compiler
interlude.

Logical Tape 2
The second logical tape contains libraries for "=1lib=",

ciolib c$main nciolib vcglib vcg_main

"Ciolib" contains the executable version of the C run time
library; "c$main" is a small startup program that must be loaded
with every C main program. "Nciolib" is the version of the C run
time library for programs which are to run under bare Primos.

'Vcglib’ 1is a library of regular and shortcall routines for
range testing and other purposes. ’'Vcg’ generates calls to these
routines for their operations, instead of generating code.
"Vcg_main’ is a small general purpose start off routine. These
are not used by C programs, but are necessary if vyou wish to
provide your own "front end" for ’vcg’.

Logical Tape 3

The third logical tape contains files for "=extra=",

bin/ (cl cc cckl cck2 compile ucc)

incl/ (swt_def.c.1i ascii.h assert.h ctype.h
debug.h lib_def.h keys.h math.h
memory.h setjmp.h stdio.h swt.h
swt_com.h varargs.h)

incl/ (vcg_defs.h vcg_defs.p.1i vcg_defs.r.i)

"Cl’” is the "front end" for the C compiler and is called by ’cc’,
"ccl’, and ’"ucc’. 'Compile’ is a general purpose compiler inter-—
lude. "Ucc’ calls it. ’'Cckl’ and ’'cck2’ are the "trouble spot-
ters" for C programs. They will flag potentially dangerous
constructs 1in a C program and are invoked by compiling a program
with "ucc -y". Subsystem definitions for the C compiler are
contained 1in "swt_def.c.i". The ©?*.h files are other header
files, discussed above in the chapter on the compile time
environment.

The vcg_defs.?* files contain constant definitions for use
in writing "front ends" for ’'vcg’.

C User’s Guide

Logical Tape 4
The fourth logical tape contains documentation for "=doc=",

man/sl/ (cc.d ccl.d ucc.d
veg.d vcgdump . d compile.d)

man/s5/ (cl.d cckl.d cck2.d)

fman/sl/ (cc.d ccl.d ucc.d
veg.d vcecgdump . d compile.d)

fman/s5/ (cl.d cckl.d cck2.d)
guide/ (cc vcg)

fguide/ (cc vcg)

Logical Tape 5
The fifth logical tape contains source files for "=src=",

std.sh/ (cc.sh ccl.sh ucc.sh compile.sh)

ext.c # new directory with source files for C interludes
ext.r/ (cckl.r cck2.r cck2_com.r.i cck2_def.r.i)
1ib/ (cio cSmain nc$main vcg vcg_main)

spc/ (cl.u vcg.u)
std.r/ (vcgdump.r vcgdump_com.r.i)
If you do not have a source license then you will not recieve any

of the source files. In fact, the "src" directory will not be on
the tape.

Loading the Tape

To load the release tape, follow the instructions below:
1. Assign a tape drive:
ASSIGN MTO
2. Mount the release tape on the assigned drive.
3. Attach to directory "=bin=":

ATTACH BIN <owner-password>

C User’s Guide

or if the tape is being restored to an ACL or priority ACL
protected partition, type

ATTACH BIN
4. Load the contents of the first logical tape with MAGRST:
MAGRST
Tape Unit (9 Trk): O
Enter logical tape number: 1
<tape label information>
Ready to Restore: yes
(This loads the files "cc", "ccl", "ucc", "compile", "vcg",
and "vcgdump".)

5. Attach to directory "=lib=":

6. Load the contents of the next logical tape (i.e., reply "O"
to the "Enter logical tape number:" prompt) with MAGRST.
(This loads the library files for ’‘cc’ and ’'vcg’.)

7. Attach to directory "=extra=":

8. Load the contents of the next logical tape with MAGRST.
(This loads the support programs for the compiler inter-—
faces.)

9. Attach to directory "=doc=":

10. Load the contents of the next logical tape with MAGRST.
(This loads the formatted and unformatted ’'vcg’ and C com-
piler guides, and the formatted and wunformatted Reference
Manual (help) entries.)

11. Attach to directory "=src=":

12. Load the contents of the next logical tape with MAGRST.
(This loads the source code for the C compiler, the run_time
library, the compiler interfaces, the V-mode code generator,
and the vcg support routines.) If you do not have a source
license, and/or you have received a demonstration tape, this
logical tape will not be present.

This completes the loading of the C compiler from tape.
Installation
Once vyou have loaded the tape, the C compiler is ready to
use. However, for the C compiler programs to appear 1in the
"help" index, you must rebuild it by executing ’‘man_index’ in
"=doc=/build".

C User’s Guide

Finally, for the ’'locate’ and ’'source’ commands to work
correctly, you have to rebuild the =srcloc= file. To do this,
"cd’ to "=src=/misc", and execute the file "make_srcloc". This
completes the integration of the C compiler with the rest of the
Subsystem.

	Title Page
	i
	ii
	Table of Contents
	iii
	iv
	v
	Foreword
	vi
	Getting Started
	1
	2
	3
	Features of Georgia Tech C
	4
	5
	Compile Time Facilities
	6
	7
	8
	9
	10
	11
	12
	Run Time Environment
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	Conversion
	59
	60
	61
	62
	63
	64
	Bugs
	65
	66
	Technical Information
	67
	68
	69
	System Managers Section
	70
	71
	72
	73
	74

