Software Tools Text Formatter
User’s Guide

Terrell L. Countryman
Perry B. Flinn
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

July, 1984

TABLE OF CONTENTS

2 T e o1 T
L= e
Commands and TexXt ...ttt it ittt tneeteenennneeeeannnns

Filling and Margin Adjustmentc.ciiiiiitiiennnenn.
Filled TeXt it iiiiiiiiit ittt eennneeeeeeeeeennnnnneees
Hyphenation ...ttt ittt ittt ettt enennnaeeens
Margin Adjustmentttt ittt tteneneeeeeoenananns
[0 o L T ol 15 o Y
Sentence PuUnctUationieeeeiiiiiiiiineeeeienennnnnns
Summary - Filling and Margin Adjustment

Spacing and Page Controliiiiiiiiiiiiinnnennnenns
Line SPaACINg t v ittt it ittt eeeeeeeeeeeeeseeanasesasenns
Page Division it iiiiii ittt eeteeeeeeeenenneeeeeannanns
"NO—SpPaCe’ MOAE .ttt ittt ittt ittt eennnneeeeeennnnns
Summary - Spacing and Page Controlcceeeee...

Margins and Indentation 0.,
= el B 0o =
Top and Bottom Margins it iiiineeteeeneneeenenns
Left and Right Marginsiiiiiiiiii ittt ininneaeeens
Indentation ...ttt ittt i i ittt i
Page Offset ittt ittt ittt ittt it iiiie it
Margin Characters ...ttt ittt ittt ittt teteeennnnnns
Summary - Margins and Indentation

Headings, Footings and TitlesSiuiuieiiiitiininnnnneeenns
Three Part Titles ...ttt ittt eeeenns
Page Headings and Footingsiiiiiiiiiiinereennnnns
Summary - Headings, Footings and Titles

Tabulationttt ittt ittt
=Y 0
Summary — Tabulationc..iiiiiiienineeeeennnenanns

Miscellaneous COMMANAS .. vt v vttt ttneennnnnneeeeeeennnnnns
{3 111111 0 1
Boldfacing and Underliningoeeeeet it ennnnnneeens
Control CharaCter S i it ittt ittt eeeeeeeneeeesansanennnss
2) 113 0 i 15'o L
Premature Terminationcceiuiiiiiitiiinnneeeennnnns
Summary — Miscellaneous COmMANdSeeeeeeeeennnnnnnns

- 1iii -

N

G D ww DN

@ 0 o U1 U1

12
12
13
15

15
15
17

17
17
17
18
19
19

Input/Output ProCeSSiNng . i v iiiinnetnneeeneeeneeenenenns 20

Input File Control ...ttt ittt eeeneneeeeennnnnenns 20
Output File Control ...t iiiiiiiiite et ttenennnnnaeeens 21
Functions, Variables and Special Characters 22
Number Registers ...ttt ittt ittt tteneneeeeennnnnenns 23
5 oY @ wie I o = 23
Variables ...ttt i i i et e e e 24
Special CharacCters ...t ittt ittt ettt eneeeeennnnnenns 25
Summary — Input ProcCcessingiuiuiuiiiuieeeiinnnnnnnnns 27
= Y = 27
Macro Definition ...ttt ittt ittt ittt 27
Macro InvocCation ...ttt ittt ittt nnnnnas 28
Appending TO A MACTO ittt e eeeteenneneeesennnesseses 30
SUMMATYY — MACTOS vttt ittt tttseeeeeennnneeeeennnneeees 30
Conditional Line ProcCesSSing ...ttt ittt nneeeeeeeseeenns 30
IntrodUCTion .ottt ittt ettt i ittt e e e 30
The .if commandiiiiiiiiieetitieeennnneeeeeeeenns 30
Conditional Functionsiiiiiiiiiiiiiinnnnnnneenes 31
Summary - Conditional Line Processingo... 32
Applications NOteS ..ttt ittt tteeeeeeeeeeesoesenenenas 33
S et o=) o - 33
SUb—headings ...ttt ittt ittt ettt 33
Major Headings ...ttt iiitinieeteenneneeeeennnanenns 34
Tables of Contentsttt ittt iiiiieeeennn 34
(015 o} it il I o T 36
I o 5 36
BoldfaCing i ittt et ettt e e 36
EXAMP LS ittt ittt et eeeeeeeseeeeeeeeesaneeeeasseananns 37
Table Constructioniiiiiiiiii ittt eeeennn 37
Subsystem Macro Packages ... iiiiiiiintteeeeeeenanenanenas 38
IntroducCtion ...ttt it ittt i ettt e 38
Accessing The User Guide MaCTOS .. .iviiiieeettiennnnnnnns 38
Using The User GuUide MaCrOS .. ieeeeeeeeneeeneeannnns 39
The Printing Environment And The .HE Macro 41
CONCLUSION t ittt ettt ettt ettt ettt ettt e 42
Summary of Commands Sorted Alphabetically 43

Foreword

"Fmt’ is a program designed to facilitate the preparation of
neatly formatted text. It provides many features, such as
automatic margin alignment, paragraph indentation, hyphenation
and pagination, that are designed to greatly ease an otherwise
tedious job.

It is the intent of this guide to familiarize the user with
the principles of automatic text formatting in general and with
| the capabilities and usage of ’"fmt’ in particular.

Text Formatter User’s Guide

Basics

Usage

"Fmt’ takes as input a file containing text with intersper-
sed formatting instructions. It 1is invoked by a command with
various optional parameters, discussed below. The resultant out-
put is appropriately formatted text suitable for a printer having
backspacing capabilities. The output of ’"fmt’ is made available
on its first standard output port, and so may be placed in a
file, sent to a line printer, or changed in any of a number of
ways, simply by applying standard Software Tools Subsystem I/0
redirection.

When ’"fmt’ is invoked from the Subsystem, there are several
optional parameters that may be specified to control its
operation. The full command line syntax is

fmt [-s] [-p<first>[-<last>]] { <file name> }

A brief explanation of the cryptic notation: the items enclosed
within square brackets ("[]") are optional -- they may or may not
be specified; items enclosed between braces ("{}") may occur any
number of times, including zero; items enclosed in angle brackets
("<>") designate character strings whose significance is sug-
gested by the text within the brackets; everything else should be
taken literally.

And now for an explanation of what these parameters mean:

-s If this option is selected, ’'fmt’ will pause at the top
of each page, ring the bell or buzzer on your terminal,
and wait for a response. This feature is for the
benefit of people using hard-copy terminals with paper
not having pin-feed margins. The correct response, to
be entered after the paper is mounted, is a control-c
(hold the ’"control’ key down and type ’"c’).

P ... This option allows selection of which pages of the
formatted document will actually be printed.
Immediately following the "-p", without any intervening
spaces, should be a number indicating the first page to
be printed. Following this, a second number may be
specified, separated from the first by a single dash,
which indicates the last page to be printed. If this
second number is omitted, all remaining pages will be

produced.
<file> Any number of file names may be specified on the com-
mand line. "Fmt’ will open the files 1in turn,

formatting the contents of each one as 1if they
constituted one big file. When the last named file is
processed, 'fmt’ terminates. If no file names are
specified, standard input number one is used. In
addition, standard input may be specified explicitly on

Text Formatter User’s Guide

the command line by using a dash as a file name.

Commands and Text

"Fmt’, like almost every other text formatter ever written,
operates on an input stream that consists of a mixture of text
and formatting commands. Each command starts at the beginning of
a line with a ’'control character’, usually a period, followed by
a two character name, in turn followed by some optional
"parameters’. There must not be anything else on the line. For
example, in

.ta 11 21 31 41

the control character is a period, the command name is ta, and
there are four parameters: "1i", "21", "31" and "41". Notice
that the command name and all the parameters must be separated
from each other by one or more blanks. Anything not recognizable
as a command is treated as text.

Filling and Margin Adjustment

Filled Text

"Fmt’ collects as many words as will fit on a single output
line before actually writing it out, regardless of 1line boun-
daries in its input stream. This is called 'filling’ and 1is
standard practice for "fmt’. It can, however, be turned off with
the "no-fill’ command

.nf

and lines thenceforth will be copied from input to output unal-
tered. When you want to turn filling back on again, you may do
so with the "fill’ command

fi
and ’fmt’ will resume its normal behavior.

If there is a partially filled line that has not yet been
written out when an nf command is encountered, the line is forced
out before any other action is taken. This phenomenon of forcing
out a partially filled 1line is known as a ’'break’ and occurs
implicitly with many formatting commands. To cause one
explicitly, the ’'break’ command

.br

is available.

Text Formatter User’s Guide

Hyphenation

If, while filling an output line, it is discovered that the
next word will not fit, an attempt is made to hyphenate it.
Although 'fmt’ 1is usually quite good in its choice of where to
split a word, it occasionally makes a gaffe or two, giving reason
to want to turn the feature off. Automatic hyphenation can be
disabled with the ’'no-hyphenation’ command

.nh

long enough for a troublesome word to be processed, and then
reenabled with the "hyphenate’ command

.hy

Neither command causes a break.

Margin Adjustment

After filling an output line, ’fmt’ inserts extra Dblanks
between words so that the last word on the line is flush with the
right margin, giving the text a "professional" appearance. This
is one of several margin adjustment modes that can Dbe selected
with the ’"adjust’ command

.ad <mode>

The optional parameter <mode> may be any one of four single
characters: "b", "c", "1" or "r". If the parameter is "b" or
missing, normal behavior will prevail -- both margins will be
made even by inserting extra blanks between words. This is the
default margin adjustment mode. If "c" is specified, lines will
be shifted to the right so that they are centered between the
left and right margins. If the parameter is "1", no adjustment
will be performed; the line will start at the left margin and the
right margin will be ragged. If "r" is specified, lines will be
moved to the right so that the right margin is even, leaving the
left margin ragged.

The ’'no-adjustment’ command
.na
has exactly the same effect as the following ’adjust’ command:
.ad 1
No adjustment will be performed, leaving the left margin even and

the right margin ragged. 1In no case does a change in the adjust-
ment mode cause a break.

Text Formatter User’s Guide

Centering

Input lines may be centered, without filling, with the help
of the ’'center’ command

.ce N

The optional parameter N is the number of subsequent input lines
to be centered between the left and right margins. If the
parameter 1is omitted, only the next 1line of input text is
centered. Typically, one would specify a large number, say 1000,
to avoid having to count lines; then, immediately following the
lines to Dbe centered, give a ’center’ command with an parameter
of zero. For example:

.ce 1000
more lines
than I care
to count
.ce 0
It is worth noting the difference between
.ce
and
.ad c
When the former is used, an implicit Dbreak occurs before each
line 1is printed, preventing filling of the centered lines; when

the latter is used, each line is filled with as many words as
possible before centering takes place.

Sentence Punctuation

By default, 'fmt’ adds an extra blank after punctuation at
the end of a sentence; specifically, after periods, colons,

exclamation points and question marks. This may not be
desirable, particularly when abbreviations or a person’s initials
are involved. Thus, it can be turned on and off at will. The

"single-blank’ command
.sb

turns the mode off, while the ’'extra-blank’ command
.xb

turns it back on again. As with hyphenation, neither command
causes a break.

Text Formatter User’s Guide

Summary - Filling and Margin Adjustment

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.ad <mode> "b" "b" no Set margin adjustment
mode.

.br - - yes Force a break.

.ce N N=0 N=1 yes Center N input text
lines.

fi on - no Turn on fill mode.

.hy on - no Turn on automatic
hyphenation.

.na - - no Turn off margin adjust-
ment.

.nf - - yes Turn off f£ill mode.
(Also inhibits adjust-
ment.)

.nh - - no Turn off automatic
hyphenation.

.sb off - no Single blank after end of
sentence.

.xb on - no Extra blank after end of

sentence.

Spacing and Page Control

Line Spacing

"Fmt’ usually produces single-spaced output, but this can be
changed, without a break, using the ’line-spacing’ command

.1s N

The parameter N specifies how many lines on the page a single
line of text will use; for double spacing, N would be two. If N
spacing is reinstated.

is omitted, the default (single)

Blank lines may be produced with the ’space’ command

.sp N

Text Formatter User’s Guide

The parameter N is the number of blank lines to produce; if omit-
ted, a value of one is assumed. The sp command first causes a
break; this not only causes a partially filled line to be output,
but if the current line spacing is more than one, the break will
cause the extra blank lines to be output as well. Then the blank
lines generated by sp are output. Thus, if output is being
double-spaced and the command

.sp 3

is given, four blank 1lines will be generated: one from the
double-spacing that is in effect, and three from the sp command.
If the wvalue of N calls for more blank lines than there are
remaining on the current page, any extra ones are discarded.
This ensures that, normally, each page begins at the same
distance from the top of the paper.

Page Division

"Fmt’ automatically divides its output into pages, leaving
adequate room at the top and bottom of each page for running
headings and footings. There are several commands that
facilitate the control of page divisions when the normal behavior
is inadequate.

The ’'begin-page’ command
.bp N

causes a break and a skip to the top of the next page. If a
parameter is given, it serves to alter the page number and so it
must be numeric with an optional plus or minus sign. If the
parameter is omitted, the page number is incremented by one. If
the command occurs at the top of a page before any text has been
printed on it, the command is ignored, except perhaps to set the
page number. This is to prevent the random occurrence of blank
pages.

The optionally signed numeric parameter 1is a form of
parameter used by many formatting commands. When the sign is
omitted, it indicates an absolute value to be used; when the sign
is present, it indicates an amount to be added to or subtracted
from the current value.

The page number may be set independently of the ’'begin-page’
command with the ’page—-number’ command

.pn #N

The next page after the current one, when and if it occurs, will
be numbered +N. No break is caused.

The length of each page produced by ’'fmt’ 1is normally 66
lines. This 1s standard for eleven inch paper printed at six
lines per inch. However, if non-standard paper is wused, the

Text Formatter User’s Guide

printed 1length of the page may easily be changed with the ’page-
length’ command

.pl +N

which will set the length of the page to #N lines without causing
a break.

It is possible skip an arbitrary number of pages in a
controlled fashion. To do this, use the ’'page-skip’ command

.ps <max> <modulus>

<Max> 1s the maximum number of pages plus one that ’'fmt’ will
skip. <Modulus> is the number which ’fmt’ uses modulo the next
output page number to count skipping pages. It works as follows:
"Fmt’ sees the .ps command. It computes the page number of the
current page plus one, and then takes the remainder of that num-

ber divided by the <modulus>, and saves it. 'Fmt’ skips pages,
adding one to this saved value. As long as this wvalue is less
than <max>, it continues to skip pages. For instance, if the

current page is 15, and you issue a

.ps 3 5
command, ’fmt’ would compute ((15 + 1) mod 5), yielding (16 mod
5), which 1is one (16 divided by 5 is 3, with 1 left over). It

will then skip two pages, since it started with one, then skipped
one, which is two. This is still less than three, so it skips
one more page, yielding three, which is not less than three, so
it stops. It is really quite simple. For instance, to skip to
the next even page, use

.ps 2 2
and to skip to the next odd page, use
.ps 1 2

This feature is particularly useful for writing macros which aid
with large documents. For example, it may be necessary that a
chapter always start on an odd numbered page. So the ’begin
chapter’ macro would have a ’'.ps 1 2’ as one of its lines. (See
later for more details on how to write macros.)

Finally, if it is necessary to be sure of having enough room
on a page, say for a figure or a graph, use the ’"need’ command

.ne N

"Fmt’ will cause a break, check if there are N lines left on the
current page and, if so, will do nothing more. Otherwise, it
will skip to the top of the next page where there should be
adequate room.

Text Formatter User’s Guide

’No-space’ Mode

"No-space’ mode is a feature that assists 1in preventing
unwanted blank 1lines from appearing, usually at the top of a
page. When in effect, certain commands that cause blank lines to
be generated, such as bp, ne and sp, are suppressed. For the
most part, ’‘no-space’ mode is managed automatically; it is turned
on automatically at the top of each page before the first text
has appeared, and turned off again automatically when a line of
output 1is generated. This accounts for the suppression of bp
commands at the top of a page and the discarding of excess blank
lines in sp commands.

"No-space’ mode may be turned on explicitly with the ’'no-
space’ command

.ns
and turned off explicitly with the ’restore-spacing’ command
.rs

Neither command causes a break.

Summary - Spacing and Page Control

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.bp N N=1 next yes Begin a new page.

.1s N N=1 N=1 yes Set line spacing.

.ne N - N=1 yes Express a need for N
contiguous lines.

.ns on - no Turn on ’'no-space’ mode.

.pl N N=66 N=66 no Set page length.

.pn N N=1 ignored no Set page number.

.ps N M N=M=0 N=M=0 yes Skip pages while (page
number mod M) is 1less
than N.

.rs - - no Turn off ’"no-space’ mode.

.sp N - N=1 yes Put out N blank lines.

Text Formatter User’s Guide

Margins and Indentation

Margins

All formatting operations are performed within the framework
of a page whose size is defined by four margins: top, bottom,
left and right. The top and bottom margins determine the number
of lines that are left blank at the top and bottom of each page.
Likewise, the left and right margins determine the first and last
columns across the page into which text may be placed.

Top and Bottom Margins

Both the top and the bottom margins consist of two sub-
margins that fix the location of the header and footer lines.
For the sake of clarity, the first and second sub-margins of the
top margin will be referred to as ’'margin 1’ and ’'margin 2’, and
the first and second sub-margins of the bottom margin, ’margin 3’
and ’'margin 4'.

The value of margin 1 is the number of lines to skip at the
top of each page before the header line, plus one. Thus, margin
1 includes the header line and all the blank lines preceding it
from the top of the paper. By default, its value is three. Mar-
gin 2 is the number of blank lines that are to appear between the
header 1line and the first text on the page. Normally, it has a
value of two. The two together form a standard top margin of
five lines, with the header line right in the middle. It is easy
enough to change these defaults if they prove unsatisfactory;
just use the ’'margin-1’ and 'margin-2’ commands

.ml +N
.m2 +N

to set either or both sub-margins to #+N.

The bottom margin is completely analogous to the top margin,
with margin 3 being the number of blank lines between the last
text on a page and the footer line, and margin 4 being the number
of lines from the footer to the bottom of the paper (including

the footer). They may be set using the 'margin-3’ and ’'margin-4'
commands

.m3 +N

.m4 +N

which work just like their counterparts in the top margin; none
causes a break.
Left and Right Margins

The left and right margins define the first and last columns
into which text may be printed. They affect such things as

Text Formatter User’s Guide

adjustment and centering. The left margin 1is normally set at
column one, though this is easily changed with the ’'left-margin’
command

.1lm +N

The right margin, which is normally positioned in column sixty,
can be set similarly with the ’'right-margin’ command

.rm +N
To ensure that the new margins apply only to subsequent text,
each command causes a break before changing the margin value.
Indentation

It is often desirable to change the effective value of the
left margin for indentation, without actually changing the margin

itself. For instance, all of the examples in this guide are
indented from the left margin in order to set them apart from the
rest of the text. Indentation 1is easily arranged wusing the

"indent’ command,
.in #N

whose ©parameter specifies the number of columns to indent from
the left margin. The initial indentation value, and the one
assumed if no parameter is given, is zero (i.e., start in the
left margin).

For the purpose of margin adjustment, the current indenta-
tion value is added to the left margin value to obtain the effec-
tive left margin. In this respect, the 1lm and in commands are
quite similar. But, whereas the left margin value affects the
placement of centered lines produced by the ce command, indenta-
tion is completely ignored when lines are centered.

Paragraph indentation poses a sticky problem in that the
indentation must be applied only to the first 1line of the
paragraph, and then normal margins must be resumed. This can’t
be done conveniently with the ’indent’ command, since it causes a
break. Therefore, ’"fmt’ has a ’temporary-indent’ command

.ti AN
whose function is to cause a break, alter the current indentation
value by +N wuntil the next line of text is produced, and then
reset the indentation to its previous value. So to begin a new

paragraph with a five column indentation, one would say

.ti +5

Text Formatter User’s Guide

Page Offset

As 1if control over the left margin position and indentation
were not enough, there is yet a third means for controlling the

position of text on the page. The concept of a page offset
involves nothing more than prepending a number of blanks to each
and every line of output. It is primarily intended to allow out-—

put to be easily positioned on the paper without having to adjust
margins and indentation (with all their attendant side effects)
and without having to physically move the paper. Although the
page offset is 1initially =zero, other arrangements may be made
with the ’'page-offset’ command

.po N
which causes a break.

"Eo’ and ’'oo’ commands allow you to specify different page
offsets for even- and odd-numbered pages respectively. Like
"po’, they are initialized to zero and revert to that value when
no parameter is specified. For instance,

.eo N
will change the even-numbered page offset by N (or to N if no

sign is specified).

Margin Characters

It is common practice in the revision of technical
literature to indicate parts of the text that are different from
previous versions of the same document. Such changes are usually
indicated by "revision bars" which are vertical lines in the left
margin of lines that are new or revised. ’'Fmt’ provides for this
capability with two formatting commands. The ’'margin-offset’
command,

.mo +N

without causing a break, specifies that tN columns are to be
reserved between the ’page-offset’ columns and the 'left-margin’
column for revision bars or other marginal characters. The mar-
gin offset starts out at zero, and reverts to that wvalue if no
parameter is specified.

Once a non-zero margin offset has been set, any arbitrary
character may be placed in the leftmost column of the area with
the ’'margin-character’ command:

.mc <char>

Initially, and when <char> is omitted, this character has blank
as its value. For revision bars, <char> would be specified as
", Whatever character is specified, it is placed next to the
left margin on every line of output as long as the margin offset

Text Formatter User’s Guide

is non-zero.

Summary — Margins and Indentation

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.eo0 N N=0 N=0 yes Set even page offset.

.in +N N=0 N=0 yes Indent left margin.

.1lm N N=1 N=1 yes Set left margin.

.ml +N N=3 N=3 no Set top margin before and
including page heading.

.m2 +N N=2 N=2 no Set top margin after page
heading.

.m3 +N N=2 N=2 no Set bottom margin before
page footing.

.m4 +N N=3 N=3 no Set bottom margin includ-
ing and after page
footing.

.mc <char> BLANK BLANK no Set margin character.

.mo +N N=0 N=0 no Set margin offset.

.00 *N N=0 N=0 yes Set odd page offset.

.po N N=0 N=0 yes Set page offset.

.rm +N N=60 N=60 yes Set right margin.

.ti N N=0 N=0 yes Temporarily indent left
margin.

Headings, Footings and Titles

Three Part Titles

A three part title is a line of output consisting of three
segments. The first segment is left-justified, the second is
centered between the left and right margins, and the third is
right-justified. For example

left part center part right part

Text Formatter User’s Guide

is a three part title whose first segment is "left part", whose
second segment is "center part", and whose third segment is
"right part".

To generate a title at the current position on the page, the
"title’ command is available:

.tl /left part/center part/right part/

In fact, this command was used to generate the previous example.
The parameter to the title command is made up of the text of the
three parts, with each segment enclosed within a pair of
delimiter characters. Here, the delimiter is a slash, but any
other character may be used as long as it is used consistently
within the same command. If one or more segments are to be omit-
ted, indicate this with two adjacent delimiters at the desired
position. Thus,

.tl ///Page 1/

specifies only the third segment and would produce something like
this:

Page 1
It is not necessary to include the trailing delimiters.

To facilitate page numbering, you may include the sharp
character ("#") anywhere in the text of the title; when the com-
mand is actually performed, ’'fmt’ will replace all occurrences of
the "#" with the current page number. To produce a literal sharp
character in the title, it should be preceded by an "@"

Q#
so that it loses its special meaning.

The first segment of a title always starts at the left mar-
gin as specified by the 1lm command. While the third segment
normally ends at the right margin as specified by the rm command,
this can be changed with the ’length-of-title’ command:

.1t N

which changes the 1length of subsequent titles to #N, still
beginning at the left margin. Note that the title 1length is
automatically set by the 1lm and rm commands to coincide with the
distance between the left and right margins.

Page Headings and Footings

The most common uses for three part titles are page headings
and footings. The header and footer lines are initially blank.
Either one or both may be set at any time, without a break, by
using the ’'header’ command

Text Formatter User’s Guide

.he /left/center/right/
to set the page heading, and the ’footer’ command
.fo /left/center/right/

to set the page footing. The change will become manifest the
next time the top or the bottom of a page is reached. As with
the tl command, the "#" may be used to access the current page
number.

It 1is often desirable when producing text to be printed on
both sides of a page to have different headings and footings on
odd- and even-numbered pages. Although the he and fo commands
affect the headings and footings on all pages, it is possible to
set up 1independent headings and footings for odd- and even-
numbered pages. For odd-numbered pages, the ’'odd-header’ and
"odd-footer’ commands are available:

.oh /left/center/right/
.0of /left/center/right/

while the ’even-header’ and ’'even-footer’ commands are provided
for even—numbered pages:

.eh /left/center/right/
.ef /left/center/right/

As an illustration, the following commands were used to generate
the page headings and footings for this guide:

.eh /Text Formatter User’s Guide///
.oh ///Text Formatter User’s Guide/
.fo //- # -//

Text Formatter User’s Guide

Summary - Headings, Footings and Titles

Command Initial If no Cause
Syntax Value Parameter Break Explanation
.ef /1/c/r/ blank blank no Set even—-numbered page
footing.
.eh /1/c/r/ blank blank no Set even-numbered page
heading.
.fo /1/c/r/ blank blank no Set running page footing.
.he /1/c/r/ Dblank blank no Set running page heading.
.1t N N=60 N=60 no Set length of header,
footer and titles.
.0of /1/c/xr/ Dblank blank no Set odd—-numbered page
footing.
.oh /1/c/xr/ Dblank blank no Set odd—-numbered page
heading.
.tl /1/c/xr/ Dblank blank yes Generate a three part
title.
Tabulation
Tabs
Just like any good typewriter, 'fmt’ has facilities for

tabulation. When it encounters a special character in its input
called the ’'tab character’ (analogous to the TAB key on a
typewriter), it automatically advances to the next output column
in which a ’'tab stop’ has been previously set. Tab stops are
always measured from the effective left margin, that is, the left
margin plus the current indentation or temporary indentation
value. Whatever column the left margin may actually be in, it is
always assumed to be column one for the purpose of tabulation.

Originally, a tab stop is set in every eighth column, start-
ing with column nine. This may be changed using the ’tab’ com-
mand

.ta <col> <col>
Each parameter specified must be a number, and causes a tab stop
to be set in the corresponding output column. All existing stops

are cleared Dbefore setting the new ones, and a stop is set in
every column beyond the last one specified. This means that if

- 15 -

Text Formatter User’s Guide

no columns are specified, a stop is set in every column.

By default, "fmt’ recognizes the ASCII TAB, control-i, as
the ’'tab character’. But since this is an invisible character
and 1s guaranteed to be 1interpreted differently by different
terminals, it can be changed to any character with the 'tab-
character’ command:

.tc <char>

While there 1is no restriction on what particular character is
specified for <char>, it is wise to choose one that doesn’t occur
too frequently elsewhere in the text. If you omit the parameter,
the tab character reverts to the default.

When ’fmt’ expands a tab character, it normally puts out
enough Dblanks to get to the next tab stop. In other words, the
default ’replacement’ character 1is the Dblank. This too may
easily be changed with the ’'replacement-character’ command:

.rc <char>

As with the tc command, <char> may be any single character. If
omitted, the default is used.

A common alternate replacement character is the period,
which 1is frequently wused in tables of contents. The following
example illustrates how one might be constructed:

.ta 52

.te \

Section Name\Page

.rc

.sp

.nf

.ta 53

Basics\1

Filling and Margin Adjustment\2
Spacing and Page Control\5
.sp

Jfi

The result should look about like this:

Section Name Page

2= = I 1

Filling and Margin Adjustment...........ciiiiiuinne.. 2

Spacing and Page Control..... .ttt iiineeeeeeennnnens 5
A final word on tabs: Since the default replacement charac-—
ter is a blank you might think that, in the process of adjusting
margins (i.e., when the adjustment mode is "b"), ’fmt’ might
throw in extra blanks between words that were separated by the
tab character. Since this 1s definitely not the expected or

Text Formatter User’s Guide

desired behavior, ’"fmt’ uses what is called a "phantom blank" as
the default replacement character. The phantom blank prints as
an ordinary blank, but is not recognized as one during margin
adjustment.

Summary - Tabulation

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.ta N ... 9 17 ... all no Set tab stops.

.tc ¢ TAB TAB no Set tab character.

.rc c BLANK BLANK no Set tab replacement

character.

Miscellaneous Commands

Comments

It is rare that a document survives its writing under the
pen of Jjust one author or editor. More frequently, several
different people are likely to put in their two cents worth

concerning its format or content. So, 1if the author is
particularly attached to something he has written, he 1is well
advised to say so. Comments are an ideal vehicle for this

purpose and are easily introduced with the ’comment’ command
.# <commentary text>
Everything after the # up to and including the next newline
character is completely ignored by ’fmt’.
Boldfacing and Underlining

"Fmt’ makes provisions for boldfacing and underlining lines
or parts thereof with two commands:

Dbf N
boldfaces the next N lines of input text, while

.ul N
underlines the next N lines of input text. In both cases, 1if N
is omitted, a value of one is assumed. Neither command causes a

break, allowing single words or phrases to be boldfaced or under-
lined without affecting the rest of the output line.

Text Formatter User’s Guide

It is also possible to use the two 1in combination. For
instance, the heading at the beginning of the table of contents
was produced by a sequence of commands and text similar to the
following:

.bf
.ul
TABLE OF CONTENTS

As with the ’center’ command, these two commands are often used
to bracket the 1lines to be affected by specifying a huge
parameter value with the first occurrence of the command and a
value of zero with the second:

.bf 1000

.ul 1000

lots of lines
to be
boldfaced
and
underlined
.bf O

.ul 0

Control Characters

As mentioned in the first section, command lines are
distinguished from text by the presence of a ’'control character’

in column one. In all the examples cited thus far, a period has
been wused to represent the control character. It is possible to
select any character for this purpose. In fact, several

occasions arose in the writing of this guide which called for use
of an alternate control character, particularly in the construc-—
tion of the command summaries at the end of each section. The
"control-character’ command may be used anywhere to select a new
value:

.cc <char>

The parameter <char>, which may be any single character, becomes
the new control character. If the parameter is omitted, the
familiar period is reinstated.

It has been shown that many commands automatically cause a
break before they perform their function. When this presents a
problem, it can be altered. If instead of wusing the basic
control character the ’'no-break’ control character is used to
introduce a command, the automatic break that would normally
result is suppressed. The standard no-break control character is
the grave accent ("'"), but may easily be changed with the fol-
lowing command:

.c2 <char>

Text Formatter User’s Guide

As with the cc command, the parameter may be any single charac-
ter, or may be omitted if the default value is desired.
Prompting

Brief, one-line messages may be written directly to the
user’s terminal using the ’prompt’ command

.er <brief, one-line message>
The text that is actually written to the terminal starts with the
first non-blank character following the command name, and
continues up to, but not including, the next newline character.
If a newline character should be included in the message, the
escape sequence

@n
may be used. Leading blanks may also be included in the message
by preceding the message with a quote or an apostrophe. "Fmt’
will discard this character, but will then print the rest of the
message verbatim. For instance,

.er / this is a message with 10 leading blanks

would write the following text on the terminal, leaving the cur-
sor or carriage at the end of the message

this is a message with 10 leading blanks
For a multiple-line message, try
.er multiple@nline@nmessage@n
The output should look like this:
multiple

line
message

Prompts are particularly useful in form letter applications
where there may be several pieces of information that ‘fmt’ has
to ask for in the course of its work. The next section describes
how "fmt’ can dynamically obtain information from the user.
Premature Termination

If ’"fmt’ should ever encounter an ’exit’ command

.ex

in the course of doing its Jjob, it will cause a break and exit
immediately to the Subsystem.

Text Formatter User’s Guide

Summary — Miscellaneous Commands

Command Initial If no Cause

Syntax Value Parameter Break Explanation

C# - - no Introduce a comment.

.bf N N=0 N=1 no Boldface N input text
lines.

.c2 c N N no Set no-break control
character.

.cc c . . no Set basic control charac-—
ter.

.er text - ignored no Write a message to the
terminal.

.ex - - yes Exit immediately to the
Subsystem.

.ul N N=0 N=1 no Underline N input text
lines.

Input/Output Processing

Input File Control

Up to this point, it has been assumed that ’'fmt’ reads only
from its standard input file or from files specified as

parameters on the command line. It 1is also possible to
dynamically include the contents of any file in the midst of
formatting another. This aids greatly in the modularization of

large, otherwise unwieldy documents, or in the definition of
frequently used sequences of commands and text.

The ’source’ command is available to dynamically include the
contents of a file:

.so <file>

The parameter <file> is mandatory; it may be an arbitrary file
system pathname, or, as with file names on the command 1line, a
single dash ("-") to specify standard input number one.

The effect of a ’source’ command is to temporarily preempt
the current input source and begin reading from the named file.
When the end of that file is reached, the original source of
input is resumed. Files included with ’source’ commands may
themselves contain other ’'source’ commands; in fact, this

Text Formatter User’s Guide

"nesting’ of input files may be carried out to virtually any
depth.

"Fmt’ provides one additional command for manipulating input
files. The ’'next file’ command

.nx <file>

may be used for either one of two purposes. If you specify a
<file> parameter, all current input files are closed (including
those opened with so commands), and the named file becomes the
new input source. You can use this for repeatedly processing the
same file, as, for example, with a form letter. TIf you omit the
<file> parameter, ’'fmt’ still closes all of its current input
files. But instead of using a file name you supply with the nx
command, it uses the next file named on the command line that
invoked " fmt’. If there 1s no next file, then formatting
terminates normally.

Neither the so command nor the nx command causes a break.

Output File Control

The output of the formatter 1is always written on STDOUT
unless you divert it with the divert output stream command, ’'dv’.
"Dv’ can be used to divert fmt’s output to a named file:

.dv <file>

All output is written in <file> until a ’dv’ command with no
parameter 1s specified. ’Dv’ can also be used to divert output
to a temporary file that can be later read with the ’so’ command.
This is useful for generating tables of contents for documents
(see the "Application Notes" section). The command

.dv N

diverts output to stream 'N’ and can be read at any time and
repeatedly by the command

.so N

Output will be diverted until the the ’'dv’ command is seen again
without parameters. (N can be an integer between 1 and 100; the
upper limit may be somewhat less for you —-—- it depends on the
number of file wunits that you can have open and the number of
file units that you actually have open at the time the command is
executed) .

The basic difference between the two variants of ’dv’ is
that 'dv <file>’ opens <file> for WRITE access; <file> cannot be

used as an input file. "Dv N’ opens a temporary file for
READ/WRITE access; therefore, ’'so N’ causes the temporary file to
be rewound and read. If the command ’'dv N’ occurs a second,

third, fourth etc. time, diverted lines are appended to the end

Text Formatter User’s Guide

of that same temporary file.

One final important comment is necessary. We were hesitant
to even tell you about ’'dv’ because of its rather nasty habit of
executing commands instead of diverting them. Since it is the
only way for you to generate automatic table of contents we
decided to document it. Just keep in mind that when you want to
divert commands, precede them by a character other than your
control character; you can later designate that character as your
control character before you read the stream.

Functions, Variables and Special Characters

Whenever ’'fmt’ reads a 1line of input, no matter what the
source may be, there is a certain amount of ’pre-processing’ done
before any other formatting operations take place. This pre-
processing consists of the interpretation of ' functions’,
"variables’ and ’special characters’. A ' function’ is a
predefined set of actions that produces a textual result, pos-
sibly based on some user supplied textual input. For example,
one hypothetical function might be named ’'time’, and its result
might be a textual representation of the current time of day:

01:22:49

A ’'variable’ is simply one of ’fmt’s internal parameters, such as
the current page length or the current line-spacing value; the
name of each variable is the same as the two-character name of
the corresponding command to set the wvalue of that parameter.
The result of a variable is just a textual representation of that
value.

A ’'special character’” 1is like a function or wvariable, but
its result is a single character that cannot be conveniently
generated from the keyboard.

From the standpoint of a wuser, functions, variables and
special characters are all very similar. In fact, they are
invoked identically by enclosing the appropriate name, plus any
text to be used as arguments, in square brackets:

[bf This text to be boldfaced]
[1s]
[alpha 5]

Such a construct is known as a "function call."

When ’fmt’ sees a function call in an input line, it excises
everything in between the brackets, including the brackets them-
selves, and inserts the results in its place. Naturally, anyth-
ing not recognizable is left alone. If by chance you want the
name of a function, variable or special character enclosed in
square brackets included literally as part of the text, you can
inhibit evaluation by preceding the left bracket with the escape
character:

Text Formatter User’s Guide

Q[time]

Similarly, a right bracket may appear literally inside a function
call when preceded by an escape character:

[bf [item 1Q@]]

It is also possible to "nest" function calls so that the results
of one may be used as arguments to another:

[bf [ldate]]

Number Registers

The ’'number registers’ are a group of 200 accumulators (num-—

bered 1-200) on which simple arithmetic operations may be per-
formed. They find their greatest wuse 1in the preparation of
documents with numbered sections and paragraphs. Number

registers are accessed and manipulated by a special set of func-
tions. The ’set’ function

[set reg value]

assigns the integer ’'value’ to the register ’'reg’ and yields the
empty string as its result. The ’add’ function

[add reg value]

adds the integer ’'value’ (which, by the way may be positive or

negative) to the register ’'reg’. This function too yields an
empty result. Finally, the 'num’ function

[num reg]
yields the current value of the register ’'reg’ as its result. 1In
addition, ’'reg’ may either be prefixed or postfixed by a plus or
minus sign. If the sign appears before the register number, the

register is incremented or decremented (according to the sign) by
one before the function’s result is yielded. If the sign follows
the register number, though, the register’s current value is
yielded and then the register is incremented or decremented.

Functions

The following table summarizes the available functions:

add Add constant to number register

bf Boldface the arguments on output

cu Output the arguments with a continuous underline
date Current date; e.g., 11/27/84

day Current day of the week; e.g., Tuesday

ldate Current date: e.g., November 27, 1984

num Output value of number register with optional pre-

- 23 -

Text Formatter User’s Guide

rn
RN

set
sub

sup

time

ul

letter
LETTER
vertspace

even
odd

cap

small

plus

minus
header
evenheader
oddheader
footer
evenfooter
oddfooter
cmp

icmp
bottom

top

Variables

or post-incrementation or decrementation
Convert the argument to a lower-case Roman numeral

Convert the argument to an wupper—-case Roman
numeral

Set number register to value

Output the arguments as a subscript (requires
post-processor, e.g. ’sprint’)

Output the arguments as a superscript (requires

post—-processor)

Current time of day; e.g., 01:22:54

Underline the arguments on output

Convert a number to its lower case equivalent
Convert a number to its upper case equivalent
Change the vertical spacing on a NEC Spinwriter
(requires spinwriter)

Test if number is even

Test if number is odd

Capitalize Text

Map all characters of text to lower case

Add two numbers

Subtract two numbers

Return the page header

Return the even page header

Return the odd page header

Return the page footer

Return the even page footer

Return the odd page footer

Perform string comparison

Perform integer comparison

Return the number of the last printed line
Return the number of the first printed line

The formatting parameters whose values are available through
function calls are summarized in the following table:

cc
c2
in
1m
1n
1s
1t
ml
ml
m2
m3
mé
ns
pl
pn
po
rm
tc

Current basic control character
Current no-break control character
Current indentation value

Current left margin value

Current line number on the page
Current line-spacing value

Length of titles

Current macro invocation level
Current margin 1 value

Current margin 2 value

Current margin 3 value

Current margin 4 value

True or false if no-space is in effect
Current page length value

Current page number

Current page offset value

Current right margin value

Current tab character

Text Formatter User’s Guide

ti Current temporary indentation wvalue
tcpn Current page number, right justified in 4 charac-
ter field

Special Characters

The following table summarizes the available special charac-—
ters. In each case, a positive integer may be included as an
argument following the name to produce multiple instances of the
character. For example, "[bl 5]" yields five contiguous phantom
blanks. NOTE: in order for the Greek letters and mathematical
symbols to be printed correctly, a post-processor such as
"dprint’ (see Section 3 of the Software Tools Subsystem Reference
Manual) and/or special printing equipment is required.

bl Phantom blank
bs Backspace
alpha lower—-case Greek alpha

* ALPHA upper—-case Greek alpha
beta lower—case Greek beta

* BETA upper—-case Greek beta
chi lower—case Greek chi
CHI upper-case Greek chi
delta lower—-case Greek delta

* DELTA upper—-case Greek delta
epsilon lower—-case Greek epsilon

* EPSILON upper-case Greek epsilon
eta lower—case Greek eta

* ETA upper—-case Greek eta
gamma lower—case Greek gamma
GAMMA upper—-case Greek gamma
infinity infinity symbol
integral integration symbol

* INTEGRAL large integration sign

* iota lower—-case Greek iota

* IOTA upper-case Greek iota

* kappa lower—-case Greek kappa

* KAPPA upper—-case Greek kappa
lambda lower—case Greek lambda
LAMBDA upper—-case Greek lambda
mu lower—-case Greek mu

* MU upper-case Greek mu
nabla inverted delta (APL del)
not EBCDIC-style not symbol
nu lower—-case Greek nu

* NU upper—-case Greek nu
omega lower—case Greek omega
OMEGA upper—-case Greek omega
omicron lower—case Greek omicron
OMICRON upper-case Greek omicron
partial partial differential symbol
phi lower—case Greek phi
PHI upper-case Greek phi
psi lower—-case Greek psi
PSI upper-case Greek psi

- 25 -

Text Formatter User’s Guide

pi lower—-case Greek pi
PI upper-case Greek pi
rho lower—-case Greek rho

* RHO upper-case Greek rho
sigma lower—-case Greek sigma
SIGMA upper-case Greek sigma
tau lower—-case Greek tau

* TAU upper-case Greek tau
theta lower—case Greek theta
THETA upper—-case Greek theta

* upsilon lower—case Greek upsilon

* UPSILON upper-case Greek upsilon
xi lower—-case Greek xi

* XTI upper-case Greek xi
zeta lower—case Greek zeta

* ZETA upper—-case Greek zeta

* downarrow arrow pointing down

* uparrow arrow pointing up

* backslash back slash symbol

* tilde tilde symbol

* largerbrace large square right brace

* largelbrace large square left brace

* proportional proportional symbol

* apeq approximately equal to

* ge greater than or equal to

* imp implies

* exist there exists

* AND logical and

* ne not equal to

* psset proper subset

* sset subset

* le less than or equal to

* nexist there does not exist

* univ for every

* OR logical or

* iso congruence

* 1floor left floor

* rfloor right floor

* lceil left ceiling

* rceil right ceiling

* smallO a small O

* smalll a small 1

* small2 a small 2

* small3 a small 3

* smalléd a small 4

* smallb a small 5

* smallé a small 6

* small7 a small 7

* small8 a small 8

* small9 a small 9

* scolon semicolon

* dquote double quote

* dollar dollar sign

The special characters marked with an asterisk (*) are only
available on the NEC Spinwriter, and so the output of ’'fmt’ must

- 26 -

Text Formatter User’s Guide

be post-processed with ’sprint’.

In particular, these characters require that the special
Times—-Roman/Mathematics type wheel be in the Spinwriter. This
wheel, in order to accommodate the special characters, lacks
certain of the regular ASCII graphics. These are substituted for
by special functions. For example, [scolon] is used to produce a
semi-colon.

Summary - Input Processing

Command Initial If no Cause
Syntax Value Parameter Break Explanation

.dv [stream] - end ’.dv’ no Temporarily divert the
output stream to a
"filename" or to a tem-
porary file designated by
an integer "N" (to Dbe
later read by a ".so N"
command) until a ’dv’
command with no arguments
is seen.

.nx file - next arg no Move on to the next input
file.

.so0 <stream> - ignored no Temporarily alter the
input source. "Stream
can be a "-" to indicate
standard input, a
"filename," or an integer
"N" corresponding to a
temporary file created by
a previous '.dv N’ com-
mand.

Macros

Macro Definition

A macro is nothing more than a frequently used sequence of
commands and/or text that have Dbeen grouped together under a
single name. This name may then be used just 1like an ordinary
command to invoke the whole group in one fell swoop.

The definition (or redefinition) of a macro starts with a
"define’ command

Text Formatter User’s Guide

.de xx

whose parameter is a one or two character string that becomes the

name of the macro. The macro name may consist of any characters
other than blanks, tabs or newlines; upper and lower letters are
distinct. The definition of the macro continues until a matching

"end’ command
.en xx

is encountered. Anything may appear within a macro definition,

including other macro definitions. The only processing that is
done during definition is the interpretation of variables and
functions (i.e. things surrounded by square brackets). Other

than this, lines are stored exactly as they are read from the
input source. To include a function call in the definition of a
macro so that its interpretation will be delayed until the macro
is invoked, the opening bracket should be preceded by the escape
character "@". For example,

.# tm —-—— time of day
.de tm
@[time]
.en tm

would produce the current time of day when invoked, whereas

.# tm -—— time of day
.de tm
[time]
.en tm

would produce the time at which the macro definition was proces-—
sed.

Macro Invocation

Again, a macro 1is invoked 1like an ordinary command: a
control character at the beginning of the line immediately fol-
lowed by the name of the macro. So to invoke the above ’'time-of-
day’ macro, one might say

.tm
As with ordinary commands, macros may have parameters. 1In
fact, anything typed on the 1line after the macro name is
available to the contents of the macro. As usual, blanks and
tabs serve to separate parameters from each other and from the
macro name. If it is necessary to include a blank or a tab
within a parameter, it may be enclosed in quotes. Thus,

"parameter one"

would constitute a single parameter and would be passed to the

- 28 -

Text Formatter User’s Guide

macro as
parameter one

To include an actual quotation mark within the parameter, type
two quotes immediately adjacent to each other. For instance,

" "llquoted String" nn
would be passed to the macro as the single parameter
"quoted string"
Within the macro, parameters are accessed in a way similar

to functions and variables: the number of the desired parameter
is enclosed is square brackets. Thus,

[11]
would retrieve the first parameter,
[2]

would fetch the second, and so on. As a special case, the name
of the macro itself may be accessed with

[0]
Assume there is a macro named "mx" defined as follows:

.# mx —-—— macro example

.de mx

Macro named ' [0]’, invoked with two arguments:
"[1]1" and ' [2]".

.en mx

Then, typing
.mx "param 1" "param 2"
would produce the same result as typing
Macro named 'mx’, invoked with two arguments:

'param 1’ and ’'param 2’.

Macros are quite handy for such common operations as start-
ing a new paragraph, or for such tedious tasks as the construc-
tion of tables like the ones appearing at the end of each section
in this guide. For some examples of frequently used macros, see
the applications notes in the following pages.

Text Formatter User’s Guide

Appending To A Macro

It is possible to add text to the body of a previously
defined macro, using the ’append macro’ command:

.am XX

where xx is a previously defined macro. It is an error to append
to a macro which has not been previously defined. The additional
text of the macro 1is terminated with a ’.en xx’ command, Jjust
like the initial definition of the macro. The rules for the
additional text of the macro are the same as for the initial
text, i.e. any function calls or special characters must be
escaped with an "@" sign to prevent their immediate evaluation.

Summary - Macros

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.de xx - ignored no Begin definition or
redefinition of a macro.

.en xx - ignored no End macro definition.

.am xXx - ignored no Add additional text to

the Dbody of a previously
defined macro.

Conditional Line Processing

Introduction

This sections discusses the features of ’'fmt’ which provide
you with considerable control and flexibility over the formatting
of your documents.

The .if command

"Fmt’ allows you to test a condition and if that condition
is true, it will execute a command. Optionally, you may specify
a command to be executed if the condition is not true (an ’'else’
part). This is done using the ’'if’ command:

.if cond delim true_part [delim else_part]
This evaluates a condition (’cond’) which, if it is true, will

cause ’true_part’ to be executed, just as if ’'true_part’ had been
on a line by itself. If the condition 1is false, and the

Text Formatter User’s Guide

"else_part’ is present, then ’else_part’ will be executed as if
it had been on a line by itself. The ’'delim’ is any single non-
blank character. For instance, the command

.if [odd [pn]] / .er odd page@n / .er even page@n
will write either ’odd page’ or 'even page’ to the terminal,
depending on whether or not the current page is odd (the [odd]

function will be discussed shortly).

The ’cond’ can be negated by putting a "7’ in front of it.
Note that "fmt’ only checks for a single ’"’ to see if the condi-

tion 1is to be inverted. "Fmt’ 1is not a true programming
language! It is probably almost always better to rewrite your
condition than to use a ’'"’ to negate it. The functions discus-

sed below, and the ability to specify an ’else’ part, provide
ample flexibility to do whatever needs to be done.

A .if command with no arguments has no effect on the format-
ted output. The .if command may or may not cause a break, depen-
ding on the contents of the ’"if’ and ’else’ parts.

Conditional Functions

"Fmt’ provides four function calls which return either true
or false (1 or 0) depending on the truth values of the conditions

specified in their arguments. The four functions are as follows:

odd Return true (false) if its integer argument 1is odd
(even) .

even Return true (false) 1f 1its integer argument is even
(odd) .

cmp Does a string comparison on its arguments, returning
true 1if the specified relation is true, false other-
wise. The form of this call is described below.

icmp Does an integer comparison on its arguments, returning
true 1if the specified relation is true, false other-
wise.

The two comparison functions are called with three

arguments, the first operand, a relational operator, and the
second operand. The relational operators are:

<= Less than or equal to.
=< Less than or equal to.
< Less than.
== Equal to.
= Equal to.

= Not equal to.

Text Formatter User’s Guide

<> Not equal to.
>< Not equal to.
>= Greater than or equal to.
=> Greater than or equal to.
> Greater than.

A missing or incorrect operator is an error, and will cause ’fmt’
to exit. As an example, to determine where you are, you could do
the following:

This must be
.if [cmp [day] = Tuesday] / Belgium. / Somewhere.

would cause the output to be "This must be Belgium." if it were
Tuesday. Otherwise your text would simply wonder where it is.

Summary - Conditional Line Processing

Command Initial If no Cause
Syntax Value Parameter Break Explanation
.if <args> - ignored maybe Conditional execution of

an input line.

Text Formatter User’s Guide

Applications Notes

This section will illustrate the capabilities of ’"fmt’ with
some actual applications. Most of the examples are macros that
assist in common formatting operations, but attention has also
been given to table construction. All of the macros presented
here are available for general use in the file
"//extra/fmacro/report", which may be named on the command line
invoking ’"fmt’ or may be included with a ’source’ command as fol-
lows:

.so =fmac=/report

Paragraphs

One standard way of beginning a new paragraph is to skip a
line and indent by a few spaces, as was done throughout this
guide. This can be done by giving an sp command followed by a ti
command. A better way 1is to define a macro. This allows
procrastination on deciding the format of paragraphs and
facilitates change at some later date without a major editing
effort.

Here is the paragraph macro used in this document:

.# pp ——— begin paragraph
.de pp

.sp

.ne 2

.ti @[in]

.ti +5

.ns

.en pp

First a 1line 1is skipped via the ’space’ command. Then, after
checking that there is room on the current page for the first two
lines of the new paragraph, a temporary indentation 1is set up
that is five columns to the right of the running indentation with
the two ti commands. Finally, no-space mode is turned on to sup-—
press unwanted blank lines.

Sub-headings

Sub-headings such as the ones used here may be easily
produced with the following macro:

Text Formatter User’s Guide

.# sh ——— sub-heading
.de sh

.sp 2

.ne 4

.ti @[in]

.bf

[11

-PpP

.en sh

First, two blank lines are put out. Then it 1is determined if
there are four contiguous lines on the current page: one for the
heading itself, one for the blank line after the heading, and two
for the first two lines of the next paragraph. The temporary
indentation value is then set to <coincide with the current
indentation value. Next, the first parameter passed to the macro
(the text of the sub-heading) is boldfaced and a new paragraph is
begun. The "pp" macro will insert the blank line after the
heading.

Major Headings

Each section of this guide is introduced by a major heading
that 1is boldfaced, wunderlined and centered on the page. The
macro used to produce these headings is the following:

.# mh ——— major heading
.de mh
.sp 3
.ne 5
.ce
.ul
.bf
[1]
.sp
-pPp
.en mh

This is similar to the sub-heading macro: three blank lines are
put out; a check for enough room is made; the parameter is
centered, underlined and boldfaced; another blank 1line is put
out; and a new paragraph is begun.

Tables of Contents

Table of contents can be automatically generated by writing
the contents to a temporary file, then at the end reading that

file to produce the table of contents. In the examples above we
could divert subheadings and headings to a temporary file; e.g.,
add the following to the ’"sh’ and 'mh’ macros. (These examples

are similar to what is used to produce the table of contents of
this guide; for pedagogical reasons we have simplified it a lit-
tle).

Text Formatter User’s Guide

.# generate a table of contents entry for a heading
.dv 5

.cc #

#sp

#ne 8

[bf [1]] @[tcl@[tcpn]

#cc .

.dv

.# table of contents entry for sub-heading
.dv 5

.cc #

#ne 4

[1] @[tc]@[tcpn]

#br

#cc

.dv

Each time a heading is printed a line 1is written to temporary
file "5" containing the heading, boldfaced, followed by a blank,
a tab and finally the current page number right justified in four
columns. Each time a subheading is printed a 1line 1is written
containing three Dblanks, the subheading, a blank, a tab and
finally the current page number. Note that we precede diverted
commands by a different control character Dbecause ’'dv’ will
execute commands instead of diverting them.

The very last command of the document would be a generate
table of contents macro, e.g.,

.# TC —-—-— generate table of contents
.de TC

.cc #

#bp

#fo ..- Q[rn Q[pn]] -..
#ce "TABLE OF CONTENTS"
#rm -6

#ta Q[rm]

#rm +6

#rc

#ns

#so 5

#cc .

.en TC

This macro will set the control character to correspond to the
control characters written to output stream "5," advance to the
top of the next page, center the heading "TABLE OF CONTENTS", set
the footer to print the page number in small roman numerals (the
page number must be set prior to calling ’TC’), set the tab
column to 6 columns to the 1left of the right margin (this
generates 2 blanks followed by the page number which 1s right
justified in four columns), sets the replacement tab character to
"." and reads the contents of temporary file "5".

Text Formatter User’s Guide

Quotations

Lengthy quotations are often set apart from other text by
altering the left and right margins to narrow the width of the
quoted text. Here 1s a pair of macros that may be used to
delimit the beginning and end of a direct quotation:

.# bg ——— begin direct quote
.de bg

.sp

.ne 2

.in +5

.rm -5

.1t +5

.en bg

.# eq ——— end direct quote
.de eq

.sp

.in -5

.rm +5

.en eq

Notice the 1t command in the first macro. To avoid affecting
page headings and footings, the 1left margin is not adjusted;
rather, an additional indentation is applied. But to increase
the right margin width, there is no other alternative but to use
the rm command. The ’'title-length’ command is thus necessary to
allow headings and footings to remain unaffected by the interim
right margin.

Italics

Since most printers can’t easily produce italics, they are
frequently simulated by underlining. The following macro
"italicizes’ its parameter by underlining it.

.# it —-—— italicize (by underlining)
.de it

.ul

[1]

.en it

Boldfacing

While ’"fmt’ has built-in facilities for boldfacing, their
use may be somewhat cumbersome if there are many short phrases or
single words that need boldfacing; each phrase or word requires
two input lines: one for the bf command and one for the actual
text. The following macro cuts the overhead in half by allowing
the command and the text to appear on the same line.

Text Formatter User’s Guide

.# bo ——— boldface parameter
.de bo

.bf

[1]

.en bo

Examples

This guide is peppered with examples, each one set apart
from other text Dby surrounding blank lines and additional
indentation. The next two macros, used like the "bg" and "eqg"
macros, facilitate the production of examples.

.# bx ——— begin example text
.de bx

.sp

.ne 2

.nf

.in +10

.en bx

.# ex ——— end example text
.de ex

.sp

Cfi

.in -10

.en ex

Note that the definition of the "ex" macro causes the ex command
to become inaccessible.

Table Construction

One example of table construction (for a table of contents)
has already been mentioned in the section dealing with tabs.
Another type of table that occurs frequently is that used in the
command summaries in this guide. Each entry of such a table
consists of a number of 'fields’, followed on the right by a body
of explanatory text that needs to be filled and adjusted.

The easiest way to construct a table 1like this involves
using a combination of tabs and indentation, as the following
series of commands illustrates:

.in +40
.ta 14 24 34 41
.te \

The idea is to set a tab stop in each column that begins a field,
and one last one in the column that is to be the left margin for
the explanatory text. The extra indentation moves the effective
left margin to this column. To begin a new entry, temporarily

- 37 -

Text Formatter User’s Guide

undo the extra indentation with a ti command, and then type the
text of the entry, separating the fields from one another with a
tab character:

.ti -40
field 1\field 2\field 3\field 4\Explanatory text

The first 1line of the entry will start at the old left margin.
Then all subsequent lines will be filled and adjusted between
column forty-one and the right margin (inclusive).

Subsystem Macro Packages

Introduction

The previous section discussed how you might go about writ-
ing macros which do all kinds of nifty things, including building
a table of contents. Fortunately, you do not have to write your
own macro packages, since the Subsystem comes with several
already written.

The two major packages are the User Guide Macros, and the
Report macros. The Report macros are an older set of macros;
their use is discouraged in favor of the User Guide Macros, which
can actually be easily adapted for almost any kind of paper you
may have to write. Users who wish to use the Report macros may
print them off to see what they do and how they work. They are
in =fmac=/report and =fmac=/ds_report for single- and double-
spaced reports, respectively.

There are also macros for formatting Master’s and Ph.D.

theses. These are contained in =fmac=/gt_thesis. They are meant
to be wused Dby themselves, without any of the =fmac=/ev?* files
(discussed below). The macros are documented in the file itself;

see there for details on using them. You will probably want to
change them to have your school’s name, instead of Georgia Tech.
Accessing The User Guide Macros
To wuse the User Guide Macros in your paper, you may hame
them on the command line, or more conveniently, use one of the
lines
.so =fmac=/ugh
- or -
.so =fmac=/ugnh
as the first line in your ’'fmt’ input file. The first command

provides you with a report that uses plain headings (like the
ones 1in this guide), while the second provides you with numbered

- 38 -

Text Formatter User’s Guide

headings (useful for technical reports). In either case, the
macros are used in an identical fashion. You should not need to
change the text of your document in order to get either numbered
or plain headings; you just need to switch macro packages.

Each of these files sets up the macros for headings, and
then does a

.so =fmac=/ugm

to include the rest of the User Guide macros.

Using The User Guide Macros

The User Guide macros will automatically produce a title

page and table of contents. The macros and their functions are:

.TP Start the Title Page.

.AU List the name(s) of the author(s).

.PD [<date>] Give the publication date.

.CH [<heading text>] Chapter heading.

.MH [<heading text>] Major heading (within a chapter).

.SH [<heading text>] Sub-heading (within a major
heading) .

.PH [<heading text>] Paragraph heading (within a sub-
heading) .

.pp Start a new paragraph (do not use
after .PH).

.bg [<length>] Begin an indented quote.

.eq End an indented quote.

.be [<length>] Begin an example.

.ee End an example.

.ep Skip to an even page.

.op Skip to an odd page.

.HI Produce a hanging Indent. Used for

lists like this one.

Text Formatter User’s Guide

| .IC Generate the table of contents
| (reset the page number with a
| .bp n, first).

| So, a full paper might look something like this:

.TP

On The Preservation Of The Arithmetic IF
.AU

Arnold D. Robbins

Eugene H. Spafford

.PD "[ldate]"

.op

.HE "Saving The Arithmetic IF"

.# The .HE macro will be explained shortly
'fo rr o_ # —_rr

.CH "Chapter 1"

.MH "Major 2"

.SH "Sub 3"

.PH "Par 4"
.bp 3
.TC

The title page produced would look just like the title page
of this guide. You may want to change the .PD macro in
=fmac=/ugm to have the name and address of vyour school or
business, instead of Georgia Tech.

The heading macros each use two additional macros; one to
help generate the table of contents, and one to actually produce
the heading. For instance, .CH calls .Ch to produce the table of
contents entry, and .ch to produce the chapter heading. The
other header macros are implemented in a similar fashion. It 1is
occasionally useful to access these macros directly; for instance
in order to produce a foreword to a document, without having the
foreword show up in the table of contents.

You should use all the .?H macros when writing your papers,

i.e., the .CH macro, as well as the .MH and .SH macros. If you
do not use the .CH macro, and you wish to wuse the numbered
headings macros, your major sections will be sections 1, 2, 3,

of Chapter 0, not Chapter 1, so bear this in mind.

It is never necessary to use a .pp macro after any of the
heading macros, since they all do a .pp for you. In particular,
the .PH heading macro should not be followed by a .pp; while
after the other macros a .pp will only cause an extra line to be
skipped.

The .be and .bg macros each take an optional argument, which
is the the length of the example or quote. For a small quote or

- 40 -

Text Formatter User’s Guide

example, you probably do not need to provide the length.

Since your entire document has to be formatted before the
table of contents can be produced, the .TC macro should come at
the end of your paper. You need to do a .bp n to the proper page
for the table of contents (usually n = 3). The macros use diver-—
sion stream number five for the table of contents, so you should
not use stream five for doing any of your own diversions.

The Printing Environment And The .HE Macro

The User Guide macros are designed so that a paper which
uses them may be formatted on a variety of output devices,
without changing the text of the paper. This is done by defining
the printing environment in a macro; specifically the .EV macro.
This macro takes care of setting the margin values, the page and
margin offsets, the even and odd offsets, and the page length,
among other things.

There are different environment files for different output

devices. The files and the environments they are designed for
are:
=fmac=/evd Format output for the Diablo.
=fmac=/evp Format output for the line printer.
=fmac=/evl Format output for the Georgia Tech Xerox
9700 laser printer (See the help on
’1z"). These macros are for the User
Guides.
=fmac=/evl12 Format output for the Georgia Tech Xerox
9700 laser printer. These macros are

for the Reference Manual.

=fmac=/evt Format output for "typesetting” on the
Spinwriter. The output produced is
designed to be photo-reduced to 8 1/2"
by 11".

Unless you are positive that you will always use a
particular output device, these files should not be included in
your ’'fmt’ input file. Instead, they should be named on the com-
mand line. The .TP macro automatically calls the .EV macro to

reset the environment.

The ev? files also define the .HE macro, which is used for
designating the page headings. For single sided output, .HE is:

.de HE <left> <center> <right>
@[cclhe “M[1]“[2]“[3]"
.en HE

Text Formatter User’s Guide

while for double sided output (like the printed user guides), .HE
is:

.de HE <left> <center> <right>
@lccleh “[1]7[2]7[3]"

@lccloh “[3]1'[2]'[1]"

.en HE

The .HE macro should be placed right after the .bp 1 command
for the first page of your document, and before the first .CH
command .

There is no special macro for footers. They are left to the
.fo command. The usual choice is:

o - =17
which places the page number at the bottom of the page.

There are environment files for the Report macros as well.
The files are =fmac=/envd and =fmac=/envp for the Diablo and line
printer, respectively.

Conclusion

The macros available to vyou with the Subsystem should
satisfy most of your documentation needs, particularly with the
variety of output devices that are supported. They can also be
easily changed to suit your requirements, since the source files
for the macro packages are included with the Subsystem.

Text Formatter User’s Guide

Command
Syntax

.ad

.am

.bf

.bp £

.c2

.CC

.ce

.de

.dv

.ef

.eh

.en

XX

XX

<stream>

/1/c/x/

/1/c/x/

XX

.€0 T

.er

text

Summary of Commands Sorted Alphabetically

Initial
Value

both

blank

blank

If no
Paramete

both

ignored

end ' .dv

blank

blank

ignored

Cause
r Break

no

no

no

no

yes

yes

no

no

yes

’ no

no

no

yes

no

43 -

Explanation
Introduce a comment.

Set margin adjustment
mode.

Add additional text to
the Dbody of a previously
defined macro.

Boldface N input text
lines.

Begin a new page.
Force a break.

Set no-break control
character.

Set basic control charac-—
ter.

Center N input text
lines.

Begin definition or
redefinition of a macro.

Temporarily divert the
output stream to a
"filename" or to a tem—
porary file designated by

an integer "N" (to Dbe
later read by a ".so N"
command) until a ’dv’

command with no arguments
is seen.

Set even—numbered page
footing.

Set even—numbered page
heading.

End macro definition.
Set even page offset.

Write a message to the
terminal.

Text Formatter User’s Guide

Command Initial
Syntax Value
.ex -

Cfi on
.fo /1/c/r/ blank
.he /1/c¢/r/ blank
.hy on
.if <args> -

.in +N N=0
.1m +N N=1
.1s N N=1
.1t N N=60
.ml +N N=3
.m2 +N N=2
.m3 +N N=2
.m4 +N N=3
.mc <char> BLANK
.mo +N N=0
.na -

.ne N -

.nf -

.nh -

If no
Parameter

blank

blank

ignored

Cause
Break

yes

no
no
no

no

maybe

yes
yes
no

no

no

no

no

no

no

no

no

yes

yes

no

Explanation

Exit immediately to the
Subsystem.

Turn on fill mode.
Set running page footing.

Set running page heading.

Turn on automatic
hyphenation.
Conditional execution of

an input line.
Indent left margin.
Set left margin.
Set line spacing.

Set length of
footer and titles.

header,

Set top margin before and
including page heading.

Set top margin after page
heading.

Set bottom margin before
page footing.

Set bottom
ing and
footing.

margin includ-
after page

Set margin character.

Set margin offset.

Turn off margin adjust-
ment.

Express a need for N
contiguous lines.

Turn off fill mode.
(Also inhibits adjust—
ment.)

Turn off automatic
hyphenation.

Text Formatter User’s Guide

Command
Syntax

.ns

.Nx

.of

.oh

.00 H

.ps

.rc

.rm A

.rs

.sb

. SO

.sp

.ta

.tc

file

/1/c/x/

/1/c/x/

<stream>

Initial
Value

on

blank

blank

BLANK

off

If no
Paramete

next arg

blank

blank

N=0
N=66
ignored
N=0

N=M=0

BLANK

ignored

Cause
r Break

no

no

no

no

yes

no

no

yes

yes

no

yes

no

no

no

yes

no

no

yes

45 -

Explanation
Turn on ’'no-space’ mode.

Move on to the next input
file.

Set odd—numbered page
footing.

Set odd—numbered page
heading.

Set odd page offset.

Set page length.

Set page number.

Set page offset.

Skip pages while (page
number mod M) is 1less

than N.

Set tab replacement
character.

Set right margin.
Turn off ’"no-space’ mode.

Single blank after end of
sentence.

Temporarily alter the

input source. "Stream
can be a "-" to indicate
standard input, a

"filename," or an integer
"N" corresponding to a
temporary file created by
a previous ’.dv N’ com-
mand.

Put out N blank lines.
Set tab stops.
Set tab character.

Temporarily indent left
margin.

Text Formatter User’s Guide

Command Initial If no Cause

Syntax Value Parameter Break Explanation

.tl "1'c’r’” Dblank blank yes Generate a three part
title.

.ul N N=0 N=1 no Underline N input text
lines.

.xb on - no Extra blank after end of
sentence.

	Title Page
	i
	ii
	Table of Contents
	iii
	iv
	Foreword
	v
	Basics
	1
	Filling and Margin Adjustment
	2
	3
	4
	Spacing and Page Control
	5
	6
	7
	8
	Margins and Indentation
	9
	10
	11
	Headings, Footings and Titles
	12
	13
	14
	Tabulation
	15
	16
	Miscellaneous Commands
	17
	18
	19
	Input/Output Processing
	20
	21
	22
	23
	24
	25
	26
	Macros
	27
	28
	29
	Conditional Line Processing
	30
	31
	32
	33
	34
	35
	36
	37
	Subsystem Macro Packages
	38
	39
	40
	Summary of Commands Sorted Alphabetically
	41
	42
	43
	44
	45
	46

