
GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION

Date: 	7/24/81

Project Title: Workshop on Interprocess Communication in Highly Distributed Systems

Project No: 	G-36-632

Project Director: Dr. Phillip H. Enslow, Jr.

Sponsor: U. S. Army Res earch Office; Research Triangle Park, NC. 27709

Effective Termination Date: 	8/12/79

Clearance of Accounting Charges: 	8/12/79

 Grant/Contract Closeout Actions Remaining:

x Final Invoice and Closing Documents

Final Fiscal Report

x Final Report of Inventions

x Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other

Assicned to: 	I & CS 	 (School/Laboratory)

COPIES TO:

Admini s trative Coordinator
Research Property Management
Accounting Office
Procurement Office/EES Supply Services
ReSearch Security Services

► Reports Coordinator (OCA)
. Suspense

Legal Services (OCA)
Library, Technical Reports
EES Research Public Relations (2)
Project File (OCA)
Other:

re

4

I

AD
FINAL TECHNICAL REPORT

: 	GIT—ICS-79/11

INTERPROCESS COMMUNICATION IN
HIGHLY DISTRIBUTED SYSTEMS

---A Workshop Report---
20-22 November, 1978

By

Philip H. Enslow, Jr.
Robert L. Gordon

Prepared for
U. S. ARMY RESEARCH OFFICE
P. O. BOX 12211
RESEARCH TRIANGLE PARK, N. C. 27709
Under

Contract No. DAAG29-79—C-0010

ARO Project No. P-16334—A—EL

GIT Project No. G36-632

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

THE RESEARCH PROGRAM IN
FULLY DISTRIBUTED PROCESSING SYSTEMS

1979

INTERPROCESS COMMUNICATION IN

HIGHLY DISTRIBUTED SYSTEMS

--- A Workshop Report ---

20 - 22 November, 1978

FINAL TECHNICAL REPORT

GIT-ICS-79/11

Philip H. Enslow Jr.
Robert L. Gordon*

December, 1979

U.S. ARMY RESEARCH OFFICE
P.O. Box 12211

Research Triangle Park, North Carolina 27709

ARO Grant Number DAAG29-79-C-0010
ARO Project Number P-16334-EL

GIT Project Number G36-632

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

* (PRIME Computer, Inc.)

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN

OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR
DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

Georgia Institute of Technology 	 IPC WORKSHOP

Unclassified
	

Page iii
EC RiTY CLASSIFICATION OF THIS PAGE (1Vhon Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. 3OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. 	TITLE (end Subtitle)

Interprocess Communication in Highly Distributed
Systems - A workshop Report - 20 to 22, November
1978.

5. TYPE OF REPORT & PERIOD COVERED

Final Technical Report,
13 Nov 1978 - 12 Aug 1979
6. PERFORMING ORG. REPORT NUMBER

GIT-ICS-79111
8. CONTRACT OR GRANT NUMBER(*)

DAAG29-79-C-0010

I

T. 	AUTHOR(*)

Philip H. Enslow, Jr.
Robert L. Gordon (Prime Computer, Inc.)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

School of Information and Computer Science,
Georgia Institute of Technology
Atlanta, Georgia 30332

10. PROGRAM ELEMENT, PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

U. S. Army Research Office
P. 0. 	Box 12211
Research Triangle Park, .0 	27709

12. REPORT DATE

December 1979
13. NUMBER OF PAGES

14. MONITORING AGENCY NAME 6 Al3DRESS(i(different from Controlling Office)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

15. SECURITY CLASS. (of thi• report)

Unclassified
Isa. 	DECLASSIFICATION/DOWNGRADING

SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

N/A

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Interprocess Communication 	 Computer Networks
IPC 	 Distributed Operating Systems
Distributed Processing

20. ABSTRACT (Continue on reverse side il necessary and identify by block number)

Interprocess Communication (IPC) has been recognized as a critical issue in the
design and implementation of all modern operating systems. 	IPC policies and
mechanisms are even more central in the design of highly distributed processing
systems -- systems exhibiting short-term dynamic changes in the availability
of physical and logical resources as well as interconnection topology. 	A
workshop on this subject was held at the Georgia Institute of Technology in
November 1979. Four working groups, 1) Addressing, Naming,

_ --
DD 1 SAN773 1473 	EDITION OF I NOV 65 IS OBSOLETE

Unclassified

ccr.lotTv ri ACCI r.r 11,71/11.1 nr TWIG ID A r; F elVhan Mete Fre f wrown

Page iv

20. cont.
and Security, 2) Interprocess Synchronization, 3) Interprocess Mechanisms,
and 4) Theory and Formalism, addressed the current state of the art in these
areas as well as problems and future research directions. This report
incorporates much of the material and working papers from those fields
as well as selected references useful in understanding the topic.

Page v

ABSTRACT

Interprocess Communication (IPC) has been recognized as
a 	critical 	issue 	in the design and implementation of all
modern operating systems. 	IPC policies and mechanisms are
even more central 	in the design of highly distributed
processirid systems -- systems exhibiting short-term dynamic
changes 	in the availability of physical and logical resour-
ces as well as interconnection topology. 	A workshop on this
subject was held at the Georgia Institute of Technology in
November 1979. Four working groups, 1) Addressing, Naming,
and Security, 2) Interprocess Synchronization, 3)
Interprocess Mechanisms, and 4) Theory and Formalism, ad-
dressed the current state of the art in these areas as well
as problems and future research directions. This report
incorporates much of the material and working papers from
those fields as well as selected references useful in under-
standing the topic.

Georgia Institute of Technology 	 IPC WORKSHOP

Page vi

PREFACE

The workshop organizing committee had originally intended to
utilize the material developed by the individual working
groups to prepare a summary report of the proceedings. This
concept was abandoned when it was recognized that a "summary
report" would not adequately report on and document all of
the work and topics that were covered during the meeting.
It was obvious that documentation much more thorough than
merely a summary report was warranted, so the members of the
organizing committee decided to directly utilize as much as
possible of the material and notes prepared by the working
groups and assemble and edit that material into an organized
workshop report. It was'felt that this approach would much
better capture the true flavor of the workshop and the
breadth of the material covered there.

December, 1979 	 Philip H. Enslow, Jr.
Robert L. Gordon

ACKNOWLEDGEMENTS

Certainly the most important acknowledgement for assistance
in the preparation of this report goes to the working group
leaders who prepared the summary reports for their in-
dividual groups and to those individuals who acted as recor-
ders during the working groups sessions. To a great extent
the material developed by those individuals has been
utilized exactly as it was prepared with only minor editing.
We would also like to acknowledge the invaluable assistance
of two Georgia Tech students who were responsible for the
mechanical organization and preparation of the report
utilizing our text editing system - Timothy Saponas, who
also served as our resident translator for the hieroglyphic
notes prepared by session records, and Shelly Smith.

We would also like to acknowledge the support of the U.S.
Army Research Office and the U.S. 	Air Force Office of
Scientific Research in funding the Workshop as well as the
Office of Naval Research which also partially supported the
preparation of this report.

December, 1979 	 Philip H. Enslow, Jr.
Robert L. Gordon

Georgia Institute of Technology 	 IPC WORKSHOP

Page vii

IAILL OF QQNTJILL

Section 1. INTRODUCTION 	 1

.1 OBJECTIVES OF THE WORKSHOP 	 1

.2 WORKSHOP ORIGINS 	 1

.3 PURPOSE AND SCOPE OF THE WORKSHOP 	 2

.4 STRUCTURE OF THE WORKSHOP 	 3

.5 ATTENDEES 	 4

.6 ORGANIZATION OF THIS REPORT 	 7

Section 2. BACKGROUND 	

.1 INTRODUCTION 	 8

.2 PROCESS MODEL OF COMPUTATION 	 9

.3 HIGHLY DISTRIBUTED SYSTEMS 	 9

.4 IPC STRUCTURES 	 10

.5 INTERPROCESS CONTROL STRUCTURES 	 10

Section 3. ADDRESSING, NAMING, and SECURITY 	 12

.1 WORKING GROUP SUMMARY REPORT 	 12

.2 AMPLIFYING MATERIAL 	 15

.3 CASE STUDIES 	 18
.1 Distributed Data Bases 	 18
.2 Mininet 	 18
.3 Discussion 	 20

.4 POSITION PAPERS 	 23
.1 Hamilton 	 23
.2 Sunshine 	 24
.3 Gordon 	 26
.4 Chesson 	 27

Section 4. INTERPROCESS SYNCHRONIZATION 	 30

.1 WORKING GROUP SUMMARY REPORT 	 30
.1 Statement of the Problem 	 30
.2 Solution Space 	 30
.3 Some Existing Solutions 	 32
.4 Attributes 	 33
.5 Other Issues 	

.2 POSITION PAPERS 	 34
.1 Lee 	 34

Section 5. MECHANISMS 	 36

.1 WORKING GROUP SUMMARY REPORT 	 36

.2 AMPLIFYING MATERIAL 	 42
.1 Prepared by the Working Group 	 42
.2 Prepared by Peebles 	 44

.1 Introduction and Explanation 	 44

.2 Desirable Properties 	 44

.3 IPC Taxonomy 	 46

Georgia Institute of Technology 	 IPC Workshop

Page viii

.1 Non-message-based IPC 	 46

.2 Message-based IPC 	 47

.3 Higher-level Mechanisms 	 47
.4 References 	 47

.3 POSITION PAPERS 	 49
.1 Peebles 	 49
.2 Wallentine 	 51

Section 6. THEORETICAL WORK 	 55

.1 WORKING GROUP STUDY REPORT 	

.2 AMPLIFYING MATERIAL 	
.1 Specification 	

.1 Applicative Programming 	

.2 Teletype Paradigm 	

.3 Behavior by Interleaved Teletype Rolls

.4 State-based methods 	

.5 State Graphs 	

.6 Jellybean Example 	

.7 How to Specify Complex Systems 	
.2 Models 	

.1 The Test-and-Set Model of IPC 	

.2 Bit Transmission Model 	

.3 SS Model 	

.4 Other Models 	

.5 Relevance of Models 	

.6 Problem Areas 	
.3 Analysis 	

.1 State Graph Analysis 	

.2 Critical Region Algorithm Proof 	

.3 Global Assertions 	

.4 Fault Tolerance 	

.5 measurements 	

.6 Space Complexity for IPC 	

.7 Time Complexity Measures for IPC 	

.8 Data Transfer Performance 	

.9 Performance Results 	

Section 7. CURRENT TECHNIQUES AND EXPERIENCE 	 71

.1 4 PROCESS BASED COMPUTER SYSTEM 	 71

.2 IPC IN HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS 	74
.1 Introduction 	 74
.2 Fundamental Quantities in a Computer System 	75
.3 Naming Conventions 	 76
.4 Implementation in a Distributed Environment 	76
.5 Examples 	 77

.3 PROTECTED MAILBOXES AS AN IPC MECHANISM 	 79
.1 Introduction 	 79
.2 Proposed IPC Primitives 	 79

.3 POSITION PAPERS
.1 Abelson 	
.2 Fischer 	
.3 Lamport 	
.4 Lynch 	
.5 Smoliar 	

55
57
57
57
57
57
58
58
58
58
59
59
59
59
60
60
61
61
61
61
61
62
62
63
63
64
64
65
65
66
67
67
69'

Georgia Institute of Technology 	 IPC Workshop

Page ix

.3 Initialization 	

.4 Security 	

.5 Synchronization 	

.6 Fault Tolerant Aspects 	

.7 Summary 	
.4 BRIEF DESCRIPTION OF DSYS-PLITS 	
.5 MODELS OF CONCURRENT COMMUNICATION ACTIVITIES
.6 PRIME IPC CONFERENCE REPORT 	

.1 Introduction 	

.2 Synchronization/IPC Facilities 	
.1 Process Communication in DEMOS 	
.2 UNIX Process Control/Communication 	
.3 Interprocess Communication in TANDEM 	

80
80
81
81
82
83
87
91
91
92
92
93
94
95
96
97

.4 Process Communication in Vax 	

.5 The Muttics IPC Facility 	

.6 Event Counting and Sequencing

.7 Intertask Communication Primitives For PRIMOS98
.3 Conclusions and Future Directions 	 101

.7 DATA COMMUNICATION SOFTWARE 	 104

.8 DISTRIBUTED IPC ANC SIGNALLING 	 113
.1 The General Context 	 113
.2 The Problems 	 115

.1 Multiple Sender/Single Receiver Systems 	 115

.2 multiple Sender/Multiple Receiver Systems 	115
.3 Looking for a Solution: Requirements 	 116

.1 Parallelism and Response Time 	 117

.2 Resiliency 	 117

.3 Overhead 	 117

.4 Permanent Rejection 	 117

.5 Fairness 	 117

.6 Extensibility 	 117

.7 Simplicity 	 118
.4 A Solution 	 118
.1 A Virtual Ring Structure 	 118

.1 Mutual Suspicion 	 119

.2 Explicit Message Acknowledgement 	 119
.2 Ring Reconfiguration 	 119
.3 The Extensibility Property 	 120
.4 The Control Token Mechanism 	 121

.1 Resiliency 	 121

.2 Distributed Signalling 	 122
.1 Fortuitous Serialization 	 123
.2 Enforced Serialization 	 124
.3 Performance Considerations 	 124

.5 Conclusion 	 128

Section 8. SUMMARY AND FUTURE DIRECTIONS 	 129

.1 GENERAL OBSERVATIONS AND CONCLUSIONS 	 129

.2 WORKSHOP SUMMARY 	 131
.1 Addressing, Naming. and Security 	 131
.2 Interprocess Synchronization 	 131
.3 Interprocess Mechanisms 	 132
.4 Theoretical Work 	 132

.3 CONCLUSIONS AND RETROSPECT 	 133

Georgia Institute of Technology 	 IPC Workshop

Section 9. SELECTED READINGS AND REFERENCES

Page x

	135

135
	137

.1 SELECTED READINGS 	

.2 LIST OF REFERENCES

Georgia Institute of Technology 	 IPC Workshop

Section 1
	

INTRODUCTION
	

Page 1

SECTION 1

INTRODUCTION

1 0 1 aliM1n2 a Idl

The subject of the workshop was Interprocess Communication
Mechanisms with a particular focus on process-to-process
communications in highly distributed systems. Highly
distributed systems are characterized by very loose coupling
between physical resources as well as between logical
resources. 	Such systems also exhibit dynamic, short-term
changes in the 	topology and organization of the total
system. 	These characteristics place new requirements on the
design and performance of IPC mechanisms; these requirements
are assuming extreme importance in advancing the state-of-
the-art in all forms of distributed systems.

1 • 2 1012ta 01i1112

The last meeting that focused on interprocess communication
was the "ACM SIGCOM/SIGOPS Interprocess Communications Work-
shop" held 24-25 March, 1975. CIPC 75]

One might conclude from the paucity of material published on
this 	topic 	since that workshop that the problem is totally
under control. 	(The BBN "Network Operating Systems" study
[THOM 78] cites only one reference since 1974.) 	Such is
definitely not the case. Work on 	IPC•s has been covered
within projects on operating systems; however, many im-
plementation and performance problems are only partially
solved or solved only on an ad hoc basis, and it appeared
that the time was ripe to again focus a meeting of
specialists 	onto 	this topic, especially in view of its key
role in the operation and performance of 	distributed
systems.

Since 1975 advances in the field of computer communications
have provided mechanisms for connecting computers together
in a variety of configurations. For instance, high speed
serial communication paths EMETC 76, GORD 79] have permitted
effective local networks CCLAR 78], in which many computers
share specialized resources (storage, printing facilities,
etc.), 	while each node still 	retains some degree 	of
autonomy. 	In addition, many mini-computers support Large
address spaces, and a corresponding high degree of mul-

Georgia Institute of Technology 	 IPC Workshop

Section 1 	 INTRODUCTION 	 Page 2

tiprogramming. 	One natural way to construct the software
for such systems is to base the software architecture on the
notion that most tasks will be performed by a collection of
communicating asynchronous processes, running on the same or
different processors. Such systems are known as "highly
distributed systems", and are characterized by a very 	loose
coupling between physical 	resources as well as between
logical 	resources, 	and they 	allow 	dynamic, 	short-term
changes 	in 	the 	topology and organization of the total
system.

The fact that these systems are very Loosely coupled, both
physically and logically, places quite different demands on
IPC from those applicable to more tightly coupled contem-
porary systems, even those incorporating a Local network as
the interconnection mechanism. Practical attempts to
construct 	such systems immediately direct ones attention to
available Interprocess Communication 	(IPC) 	mechanisms 	and
their shortcomings. Lack of well constructed and well un-
derstood mechanisms is the root of most of the difficulties

 in bildin2 diliLibgied Inferno.

1 0 3 EIRP212 Ah2 222EL QE Ihl IOU=

The "Workshop on 	Interprocess Communications in Highly
Distributed Systems" was intended to bring together a selec-
ted group of workers in the subject area to address the five
general goals listed below:

1) Assess the present state-of-the-art for IPC
mechanisms 	in distributed data processing
systems

2) Identify the data 	available on the 	actual
performance 	of 	various 	IPC policies and
mechanisms.

3) Assess the potential 	value of various IPC
mechanisms 	satisfying the operational and
performance 	requirements 	for 	highly
distributed systems.

4) Identify 	shortcomings 	in the present state-
of-the-art and identify promising areas for
future research and experiment on this sub-
ject.

5) Identify possible standardization 	levels 	of
IPC.

Georgia Institute of Technology 	 IPC Workshop

Section 1 	 INTRODUCTION 	 Page 3

The scope of the workshop will be limited to IPC mechanisms
for use in distributed systems. (This acknowledges fairly
common agreement among the research community that the fol-
lowing are not DDP•s --- multiprocessors, computer networks
per se, intelligent terminal systems, and satellite proces-
sor systems.)

1 . 4 	2E ItL 111211 P2

Workshop attendees were selected from individuals actively

	

working 	in the field, 	and the size of the workshop was
purposely limited to approximately 40 attendees. Special
attention was given to obtain participants who met one or
more of the following criteria:

- Had had practical experience in the design and
implementation of IPC policies and mechanisms in
highly distributed systems.

- Had analyzed and/or measured the actual per-
formance of various IPC mechanisms.

- Would contribute a written submission to the
workshop.

The workshop was held from 12:00 noon, 20-November, thru
12:00 noon, 22-November, 1978, at the Atlanta Townehouse
Motor Hotel, immediately adjacent to the Georgia Tech cam-
pus.

Before the workshop, invitees were requested to identify
their areas of interest. Based on that input, the organiz-
ing committee established six working groups:

1) Addressing and Security
2) Fault Tolerance
3) Synchronization, Signalling. and Flow Control
4) Theory and Formalism
5) Hardware and Primitives
6) Programming Issues

However, as often (usually?) 	happens 	in such 	situations,
when the groups met and discussed their areas of interest,
realignments in the working group organization resulted in
four working groups rather than six.

1) Addressing, Naming, and Security
2) Interprocess Synchronization
3) Mechanisms
4) Theory and Formalism

Georgia Institute of Technology 	 IPC Workshop

Section 1
	

INTRODUCTION 	 Page 4

The output of these four groups is the basis for this
report.

1.5 1%JUN/ell

.L JIMMIE

LIII QE @IIE^IQLF

0, Members of the Organizing Committee)

Hal Abelson
Laboratory for Computer Science
Massachusetts Institute of Technology

Allen Akin
Georgia Institute of Technology
School of Information & Computer Science

Edwin Basart
Hewlett-Packard Co.
General Systems Division

Morton I. Berstein
System Development Corp.

BILL Buckles
General Research Corp.

James E. Burns
Georgia Institute of Technology
School of Information & Computer Science

Gregory Chesson *
Bell Laboratories

Wushow Chou
North Carolina State University
Computer Studies

Phillip Crews
Georgia Institute of Technology
School of Information & Computer Science

Richard A. DeMillo
Georgia Institute of Technology
School of Information & Computer Science

Georgia Institute of Technology 	 IPC Workshop

Section 1
	

INTRODUCTION 	 Page 5

Philip H. Enslow, Jr. *
Georgia Institute of Technology
School of Information & Computer Science

Michael Fischer
University of Washington
Department of Computer Science

Mark Gang
Ford Aerospace & Communications Corp.
Western Development Laboratories

Robert L. Gordon *
PRIME Computers

Jim Hamilton
Digital Equipment Corp.

Mohommad Hassan
MODCOMP

Steven F. Holmgren
Digital Technology, Inc.

Doug Jensen *
Honeywell Research
(Presently Carnegie-Mellon University)

Richard Kain
University of Minnesota
Department of Electrical Engineering

Steve Kimbleton
Institute for Computer Science & Technology
National Bureau of Standards

Peter Koschewa
U.S. Army Institute for Research in Management

Information and Computer Sciences

Leslie Lamport
SRI International

David Lapin
Burroughs Corporation
Computer Systems Group

Thomas Lawrence
Rome Air Development Center
U.S. Air Force

Richard LeBlanc
Georgia Institute of Technology
School of Information & Computer Science

Georgia Institute of Technology 	 IPC Workshop

Section 1 	 INTRODUCTION 	 Page 6

Gerard Le Lann
SIRIUS
IRI (France)

Edward Y.S. Lee
TRW Defense & Space Systems Group

Jon Livesey
University of Waterloo
Computer Communications Network Group

James R. Low
University of Rochester
Department of Computer Science

Nancy A. Lynch
Georgia Institute of Technology
School of Information & Computer Science

Edith Martin
Georgia Institute of Technology
Engineering Experiment Station

Wayne McCoy
Kennedy Space Flight Center
NASA

Nancy Meisner
University of Waterloo
Computer Communications Network Group

Ira Newman
Department of Defense

Richard Peebles
Digital Equipment Corp.

Steve Ratzel
U.S. Army Institute for Research in Management

Information and Computer Sciences

Donald Sharp
Georgia Institute of Technology
School of Information & Computer Science

David Sincoskie
University of Delaware
Department of Electrical Engineering

Stephen W. Smoliar
General Research Corp.

John Staudhammer
U.S. Army Research Office

Georgia Institute of Technology 	 IPC Workshop

Section 1 	 INTRODUCTION 	 Page 7

Carl Sunshine
Rand Corporation
(Present location: ISI, University of Southern California)

Joseph S. Sventek
Lawrence Berkeley Laboratories
Computer Science & Applied Mathematics

P. S. Thiagarajan
Institut fuer Informations-systemforschung
GMD

Virgil E. Wallentine
Kansas State University
Department of Computer Science

Don Weir
Telenet Communication Corp.

Douglas E. Wrege
Georgia Institute of Technology
Engineering Experiment Station

1.6 alANIZAIION a Ihil ALLIAI

Following this introductory section, there is a 	short sec-
tion on the general background of interprocess communication
techniques. The main body of this report is Sections 3, 4,
5, and 6 which cover the results of each of the Working
Groups. Within each section, the first material presented
is a summary of the Working Group presentation made at the
end of the workshop. Following that, there is, in some
instances, a collection of amplifying material 	and selec-
tions 	from the position papers that were prepared prior to
the workshop and distributed to the attendees.

Section 7 contains several longer papers that were either
prepared specifically for distribution at the workshop or
were felt by the authors to be applicable to the workshop
and were distributed to the attendees there. Section 8 is a
very brief summary and discussion of future directions for
IPC and Section 9 contains the references utilized in the
report.

Georgia Institute of Technology 	 IPC Workshop

Section 2
	

BACKGROUND
	

Page 8

SECTION 2

BACKGROUND

2 0 1 11118229S112N

Probably the single most important hindrance to the develop-
ment of interprocess communication has been the lack of
general acceptance and agreement on the notion and abstrac-
tion of a "process." Until the "process model" of computa-
tion becomes generally accepted and used as the basis of
software architectures, there will be little motivation for
interprocess communication mechanisms.

In most systems the abstraction of a "process" has not been
developed well enough for it to be treated as an "object" in
its own right so that "processes" can be used conveniently
by system architects and others as building blocks.
Primitives for the creation, synchronization, addressing,
and communication of processes have in the past only been
generally available to operating system developers, and
therefore not widely used by application programmers in ap-
plications software systems. Unfortunately operating system
developers tend. to live with and use poorly documented ex-
perimental primitives and other ag h2i mechanisms. The
notable exceptions to this rule form the core body of clas-
sic literature in this field EBRIN 69, DIJK 68b, DIJK 71,
DALE 68]. For the most part, application programmers in the
past have been restricted to conventional I/O using shared
files as a pragmatic method of interprocess communication,
with only partial success.

When the notion of a "process" becomes recognized as a fun-
damental building block • for distributed applications,
stronger support and documentation will have to be provided
by the system suppliers and manufacturers, thus making
available to application coders a robust set of "process-
based" primitives. After such widespread support
materializes, the design experience and performance
statistics will provide the basis for a fuller understanding
of all aspects of interprocess communication.

A comprehensive survey of the present state-of-the-art in
interprocess communication is presented in paragraph 7.6.

Georgia Institute of Technology 	 IPC Workshop

Section 2 	 BACKGROUND 	 Page 9

2.2 EBILLII 11212e1 2 iSMEILIAII0

An excellent 	survey of the "process model of computation"
can be found in [HORN 73]. Prior to this, articles on
operating systems developed the notion of a "process" or
"task," as an entity that could be scheduled and own other
resources in multiprogrammed systems, but they did not treat
a process as a structuring methodology in its own right.
Examples of these notions can be found in [SALT 66] and [IBM
71].

Access to resources in early operating systems presented the
very first examples of interprocess communication, but these
early IPC techniques varied widely from one implementation
to the next. For example, in most systems, the line printer
daemon (or process) owned the line printer, and access to
the printer was restricted to ordinary "write" statements at
the language level coupled with "logical unit" assignment at
the job control of command language level. Other examples
may be found where the login process "owns" the communica-
tion lines, or a file manager owns the file system as in the
MERT operating system ELYCK 78]. An early message-based
operating system structured around processes is the RC4000
operating system [BRIN 69, BRIN 70].

Trends in software engineering, applications, and technology
certainly point to an increasing awareness of a process as a
fundamental method of structuring systems. 	The prolifera-
tion of 	inexpensive processors and low cost bandwidth sug-
gest a process model of computation, even if there is only
one process per processing element, since control and shar-
ing of common resources must be by some form of interprocess
communication. New architectures are now being proposed
that exploit these trends, e.g. [NELS 78]. The CNELS 783
proposal is based on a high-speed packet-oriented bus inter-
connecting a large number of processor-memory pairs, 	termed
"cells." 	Each cell includes a CPU, a primary memory system
(typically one or two megabytes), a packet bus node control-
ler, and possibly some peripherals such as disks or com-
munications devices. The architecture supports applications
decomposed at the process level; the entire system is viewed
as a set of cooperating processes, distributed among the
cells to improve performance, cost, or availability.

2.3 WILILI 2IIIRIAUILD 1/2102

Highly distributed systems are characterized by very 	loose
coupling 	between physical as well as logical resources. 	In
addition they exhibit dynamic, short-term changes in the

Georgia Institute of Technology 	 IPC Workshop

Section 2 	 BACKGROUND 	 Page 10

topology and organization of the total system. The fact
that these systems are very loosely coupled, both physically
and logically, places quite different demands on IPC from
those applicable to more tightly coupled contemporary
systems, even those incorporating a "network" as the inter-
connection mechanism.

Such 	systems should support multiple name spaces, including
the management and translation of file and unit names in
these name spaces. In addition, such systems should handle
abstractions built from collections of communicating proces-
ses and provide mechanisms for addressing and synchronizing
groups of processes. High bandwidth message transport
mechanisms will potentially allow multiple logical connec-
tions between processes to he constructed whenever con-
venient, but system support must be available for those con-
nections to be useful. To date, very Little experience is
available to assist a designer attempting to construct com-
plex systems out of communicating processes.

2 6 4 In IIIMUIL2

Most existing IPC primitives and structures are based on a
"two-party" communication model, in which there is a single
"sender" and a single "receiver" 	for each transaction or
message. 	(This 	is 	certainly the basis for IPC facilities
built around the X.25 level 3 protocol 	CCCIT 78].) 	Other
kinds of 	communication facilities may better support ring,
tree and general graph models of process networks.
Protocols involving more than two processes are called "N-
process" protocols CPARD 7971 they should find use in shared
data base and electronic mail systems.

The major functions supporting these protocols are storing,
forwarding and routing variable length messages. These
functions can be difficult 	to 	implement 	if 	communication
links, 	processing nodes, 	or other resources are only
partially available.

2,5 IIIIRPRULII OthIADI IIEUZIMELI

Communication links between processes can be allocated
strictly 	to control 	functions. 	In fact, 	the degree of
separation of control and data is an important research 	is-

Georgia Institute of Technology 	 IPC Workshop

Section 2 	 BACKGROUND 	 Page 11

sue. 	A path primarily used for the transport of data may
have no mechanism for control or "out of band" signalling,
which may make error detection and recovery difficult, if
not impossible. The system's control path structure is
primarily determined by the "control model" used during
system development. The "classical" system organizations
are a) master/slave, b) hierarchical, c) democratic, or d)
autonomous. The first two are well understood and readily
implemented, while the latter control organizations are not
well understood (in an algorithmic sense) and are the sub-
ject of much research [HOAR 78].

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING. and SECURITY 	Page 12

SECTION 3

ADDRESSING, NAMING, and SECURITY

3 0 1 YQR Sz 1E20 =BARI !LEW

What are objects

files, processes, devices

Uniform mechanism?

File metaphor -- UNIX

Process metaphor -- MININET, RC4500

Abstractions -- WEB

Worldview: 	(a La DISY)

Universe >>> Systems >>> Objects

Distinguish between:

NAMES -- what

ADDRESSES -- where

ROUTES -- how to reach

Basic Problem: map

NAMES >>> ADDRESSES

Desirable features:

Generic naming

Context independence

Location independence

Broadcast (group name)

Uniclueness

Path addressing

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 13

Other concerns:

Flat vs. 	hierarthical

Centralized vs. 	distributed

Steps

Search rules

Connections

Transactions

Merging two systems:

I. one below other

2. both below new prefix

3. corresponding unused addresses

Name >>> Address mapping may be 112ALAII from IPC.

IPC between specific addresses

Directory object with well-known address

DISY nhulaun

Generic naming

Location independent

Uniqueness

Object pointer

Resource limits

Access controls

ItamLiix

Main attributes of subject:

Logical identity

Physical Location

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 14

Problems:

1. authentication 	 access
control of location

2. storing authorization on areas
outside security environment

3. moving objects if encryption
based on location

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 15

3.2 AIELLEIIhi EAILEIAL

What are objects? 	files, devices, processes

- What things should be in a list of primitive ob-
jects?

- Should we choose one object type to represent
all objects?

Should there be a uniform mechanism for all objects?

- file "metaphor" - Unix [THOM 74]
- process "metaphor" - Mininet [PLEB 783, RC 4000

(performance?)
- abstractions

- WEB at DEC (performance?)
- Capability based systems

Uniform mechanism is a good thing. 	Being able to do this
requires picking one of the above. Not sure we can.

Worldview: ANSI/SPARC/DISY CDESJ 78] or ISO SC 16 model

- Universe consists of multiple systems.
- Systems have many objects.

Distinguish Between Ngmea (what), Agguasgs (where), Rgutes
(how to reach). 	(see CSHOC 78])

Basic Problem: mapping NAMES to ADDRESSES.

Desirable features of this mapping:

1) 	generic naming - many potential servers

- within 	one 	system or across
systems

- selected 	by 	server 	or 	by
requestor 	("request for service"
facility 	is 	just 	latter 	[FARB
73])

2) location independence - same name may be used
no matter where server is located

3) broadcast - (group name) - communication with
multiple servers

4) uniqueness - only one name for given object
or set of objects at some level

5) path addressing or source routing - source
specifies sequence of addresses to reach ob-

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 16

ject. 	Useful 	if 	"system" does not know
route, 	or 	if 	destination is outside normal
name space.

Additional mapping concepts:

1) Flat vs. 	hierarchical - latter 	allows 	each
directory 	or switch to know only about
elements at its own level 	--> many 	smaller
directories vs. one large one.

2) Centralized vs. 	distributed - centralized
can be reliable, but requires roundtrip delay
to get 	information, 	high 	load at 	center.
Distributed may allow 	local lookup, or may
require broadcast. 	Update more complex.

3) There may be many directories, and many
"steps" in the address lookup. Example: "my
name" to global name, global name to system
address/Local name, (send to remote system),
local name to local address.

4) Search rules - each user may have rules for
tailoring lookup to his needs.

NAME --> ADDRESS mapping may be costly. Hence desire to do
it once for many successive messages to same destination.
Leads to c2nng.g. ti2n notion. 	May include route setup.
Cacheing of 	recently used names/addresses also helpful.
Connection also needed when desired that successive messages
to a given name go to the same object, in order. If
transactions are independent, then a different instance of
the named object can serve each - no connection needed.
CNSW 763

Problem of merging two previously independent systems:

1)

2)
3)

May add "prefix" to all addresses (a higher
level in hierarchy) to distinguish systems.
Make one system "below" other in hierarchy.
Make unused 	addresses 	in 	each 	system
correspond to addresses 	in other system.
Only good for small numbers.

NAME --> ADDRESS translation may be separate from basic 	IPC
which is between specific a4drelsel only. Then directory
object (process) with well-known address can be accessed to
provide translation, with result returned via basic IPC.
In requestor does basic IPC with specific address of ser-
vice actually desired. Examples: ARPANET Initial Connec-
tion Protocol, Mininet CPEEB 783.

Important Example: 	Our view of DISY "mailbox" CDESJ 783 has
properties or components:

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 17

- generic name
- location independent
- uniqueness
- pointer to object (process) mailbox stands for
- resource control (how many in use)
- access controls, owner

Security:

1) Does 	n21 	include 	reliability, 	failure
recovery.

2) Does include authentication, access controls,
encryption, correctness.

3) Basic 	goal - allow objects to be accessed
only by specified subject.

4) Two main attributes of subject:

- logical identity
- physical location

5) 	Problems:

a) Allow object 	to be accessed
from one glall but not another
(e.g., not via dial-in). 	Must
authenticate 	location as well
as identity.

b) Removable media plus unsecured
sources: Can authorization
information be stored in areas
outside of physical control?

c) Encryption 	problem. 	If
authorizations are encrypted
based on 	location of object,
how can object move? 	(Two
constraints: 	need to give
authorizations to others, 	but
must not be forgeable (hence
encryption)).

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 18

3.3 Vi S) mauls

3.3.1 211Irikulzi QA 2alti

by

Edward Lee
TRW

Most DOB protocols seem to assume that Data Base Managers
can figure out how to communicate between themselves and
that naming one another is not a problem. 	Is it 	reasonable
to 	assume that 	file system operations and process IPC are
basically the same mechanism? 	DISY has process as the basic
communicating object. You basically open a channel 	to a
process 	and 	then 	communicate directly with it. 	It is the
Session Controller (DISY) which opens the channel for you.

3.3.2 nalagi

by

J. Livesey
University of Waterloo

Mininet 	is 	a 	system 	in 	which addressing 	is basically
separate from IPC. 	In many systems some form of addressing
method (name --> address translation) is implicit in IPC.

In Mininet, IPC consists solely of 	the 	transmission of 	a
message from a SIner Task to a Racaiyac Talk which has to
be identified by an 	integer 	Task 	Identifier 	(an address
rather than a name). 	In the distributed case the host id is
concatenated with the task identifier within the host.

The question then is how to get the task identifier for a
task to perform a particular function.

In fact, all system resources (tasks, files, devices, direc-
tories, ...) 	are formalized as tasks. 	A task has code and
data segments. A file, for instance, is a task whose code
segments are the Accels Methad and whose data segments are
code segments. A file task gets messages of the form:

read (record #)

and reacts by returning a message to the user containing the
record data.

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 19

There is only one well-known task 	in each host, 	the
2ireltory Task which has the responsibility to maintain a
list 	relating 	function name 	(a character string) to task
identifier for each task in this host. 	As the ultimate
parent of each task he can find out their task ids. (Task
identifier of a new task is returned to the creating task,
the parent.) Now, when user task A, for instance wants to
perform

open (filename)

it does so by asking the directory task for the identifier
of 	the "file-open" task. 	Assuming this exists locally, the
directory task returns its task 	id. 	The user now com-
municates 	directly with "file-open" (a la DISY session) and
sends it a message

"open (filename)"

The task "file-open" now creates a file task whose data seg-
ments are the data records of "filename" and returns the
"file" task identifer to the user task.

The user task now communicates with 	the "file" task (a
second host session a La DISY) with messages

"read (record #)"
"write (record #)"
"close ()"

The "file-open" task handles mutual exclusion on the file
(by 	refusing to create new file tasks for the same file as
Long as someone has it open to write). 	The "file" task han-
dles record mutual exclusion.

In the case where no task exists in the local hosts to hand-
le function "X" the local directory task talks to remote
directory tasks, who are responsible for knowing which tasks
exist in their hosts (and which can be created to do "X").
Directory tasks announce themselves to one another at boot
time.

References:

CPEEE 78]

CLIVE 78a]

CLIVE 78b]

Georgia Institute of Technology 	 IPC Workshop

Section 	3 	ADDRESSING,

3 . 3 . 3 2111S1211212

NAMING, and 	SECURITY 	Page 	20

than 	a 	straight 	function
Meisner:

Is 	this 	more 	complicated
CALL/RETURN 	system?

Livesey:
Yes, 	but 	more 	flexible 	since you 	can 	impose a 	function
CALL/RETURN 	system on 	top of 	the 	basic 	task/message-
passing 	system 	using library routines 	if 	you 	want. It
is 	also 	assumed 	that we 	have a 	homogeneous 	system.

Sunshine:
Clearly 	we 	can 	have 	server
minister

processes 	to 	guard 	and ad-

directories
open function
file tasks
etc.

Lapin:
We need hardware to support process invocation/context
switch better than at present.

Livesey:
Yes, but future hardware should not lock us into func-
tion call/process invocation capabilities, etc.

Sunshine:
Curiously, in Mininet, every 	resource 	(object) 	is a
task 	(process), but the creation of a process involves
reading a file (an object 	containing its code seg-
ments).

Ens low:
Lee says that 	his distributed data base should be
redundant. 	Does the system itself select 	the optimal
record!

Lapin:
Redundancy increases the reliability of the system.

Livesey:
We have both homogeneous and heterogeneous redundancy
here.
Homogeneous

- identical copies of data
- increases reliability

Heterogeneous

- copies of non-identical objects to perform
similar functions, eg. 	FORTRAN compilers

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING. and SECURITY 	Page 21

- increases system band width

McCoy:
Can we get a system to give us both!

Sunshine:
To do it across several systems has a cost and we have
to ask if the utility of redundancy is worth the cost.
The ARPANET Resource Sharing Executive (RSEXEC) was a
stripped-down operating system for remotely Logged-
inusers who actually executed on the first available
DEC 10 but never knew which one. This was also an at-
tempt to provide a network-wide file system. Multiple
server systems such as the Irvine Net 	recognize the
need to go accross the system to get resources. 	To use
this we may need utility programs to perform

Local COBOL --> ANSI COBOL

and maybe even

ANSI COBOL --> Local COBOL

Livesey:
May also have a network JCL so that a user only uses
the JCL of his local machine, and then we need to be
able to do the translation

Local JCL #1 --> Network JCL --> Local JCL #2

Lapin:
There are two approaches to a multi UNIX system file
system. We can have

/net

as a special file and address files on machines 	Alp 	E.
etc. 	as

/net/A/pathname
/net/B/pathname

We can also localize host id in the pathname explicitly

partl/part2
partl: host id 	part2: pathname

Sunshine:
There is a conflict between REAL and IDEAL worlds. 	In
the Real World, we tend to involve the user in specify-
ing the location of a function (service). 	In the Ideal
World, we would like to give the user atItrAlti2n.

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 22

generic naming and location independent naming.

Livesey:
Part of the problem is that the concept of the size of
the universe (of which the system forms a part) is 	im-
plicit 	in the system at a high cost. 	One is then for-
ced to choose between add-on features such as:

/net/A/resource

which are not location independent on the one hand, and
a more or Less complete rewrite on the other hand.
UNIX is an example of such a system that makes assump-
tions about the size of the universe.

Meisner:
We now have choices between

i) Centralized Directories
which can now be made very, reliable

ii) Distributed Knowledge
iii) Tree Structures

Livesey:
(iii) is just a disguised directory method. 	There 	are
really two choices: 	centralized and distributed.

Hassan:
Efficiency may dictate tree 	structures 	rather than
directory tasks. 	This was a factor in the MULTICS
design.

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 23

3.4 E2111101 PALM

3.4.1 Huallan

Addressing and Security

by

Jim Hamilton
Digital Equipment Corporation

Because of ever increasing complexity of software develop-
ment and maintenance, providing any programming environment
which 	complicates software development would be a mistake.
This argument leads 	to a view of distributedness as a
property of the implementation of a system, and not of the
application development environment.

Addressing and protection are critically 	important 	in 	ap-
plication development. 	The above view of distributedness
implies that addressing must be location independent. 	That
is, 	local and remote objects must be addressed identically.
Furthermore. I believe that addresses should also be in-
dependent of the context of reference (different processes
should address the same object in the same way), and uniform
across all object types (hardware defined objects, system
defined objects, and application defined objects should all
be addressed similarly).

I also believe that the use of 	processes 	to 	abstract 	all
other objects is a mistake, for several reasons: 1) it
restricts the flexibility of the environment for the execu-
tion of functions, 2) it often forces the invention of ad-
ditional addressing mechanisms within the application, 3) it
is inadequate to address system and hardware defined objects
(e.g., devices), 4) it inevitably colors the application
designer's 	conceptualization of the system, and finally, 5)
it does not appear to be necessary.

To achieve a distributed implementation, it 	will 	still 	be
necessary 	to 	solve the problems of physical communication
and its associated addressing problems at 	a 	lower 	level.
But the problems are considerably simplified since the
mechanisms can now be highly specialized, because they are
not visible to the application designer.

I 	believe that 	the notion of capability based addressing,
when properly interpreted and implemented, provides all of
the properties mentioned above. Moreover, it can be
naturally extended to provide capability based protection,
which is further discussed below. The challenge is to
achieve an implementation which is cost-effective, and which
still has all of the necessary properties. A failure in

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING,,and SECURITY 	Page 24

either domain will be fatal. 	An even greater challenge is
to convince the computer industry that the inevitably higher
cost of the basic system will be more than offset by the
reduced cost of software.

I 	believe 	that the issue of sharing is partially separable
from that of addressing. 	Context independent addressing is
a prerequisite for sharing, but its existence does not imply
concurrent 	access by separate processes. 	Concurrent access
to immutable objects should be possible, 	for performance
reasons, 	out 	concurrent 	access to mutable objects now ap-
pears to be a dangerous mistake. 	By precluding this kind of
sharing, we also simplify the 	construction 	of 	distributed
implementations.

Given an addressing mechanism with the properties mentioned
above, a 	variety of protection mechanisms can be 	im-
plemented. Capability based protection still seems to be
the most promising of these, although it has been criticized
as inappropriate for distributed implementations. I tend to -
reject this criticism, but the notion of self-authenticating
capabilities has been developed at Berkeley to address this
problem.

The notion of system security has many different aspects.
Included among these are physical security, 	correctness of
implementation, 	and the logical access control model being
implemented. 	In 	comparison 	with 	centralized 	im-
plementations, 	distributed ones seem notably weaker 	in
physical 	security, 	and 	possibly 	weaker 	in 	correctness
because of greater complexity. 	The access control model
should not, in principal, depend upon the implementation. 	I
believe that these are inherent 	problems with 	distributed
implementation, 	but 	that, with the suitable use of encryp -
tion, such systems can still be acceptably secure.

3.4.2 %mating

Addressing

by

Carl Sunshine
RAND Corporation

Any discussion of addressing must start by making a clear
distinction between NAMES (who), ADDRESSES (where), and
ROUTES (how to get there), on which John Shoch of Xerox PARC
has written an excellent note. CSHOC 78]

Several key concepts or capabilities must be included 	in a
good distributed IPC system. 	These include generic naming,
location independence, request for service, source routing,
and extensibility. 	Each will be described separately in the
following 	paragraphs, 	although 	there are clearly 	some

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 25

relationships between them.

Generic naming is the ability to request communication from
a 	service without 	specifying 	the exact process that will
provide the service. This is normally useful when multiple
instances of a process providing the desired service are
available. A specific process is selected (or created) at
the time of the initial request, and bound to the source for
the duration of the interaction. This binding may require
transmitting the specific process 	ID to the source, 	or
merely keeping it at the destination. 	The classic example
of this facility is a timesharing login service.

Location independence is the ability to 	request communica-
tion with a process by name without knowing its location or
address. 	Since the source user does not supply the address,
it must be found by the IPC system in some directory. 	Such
name-to-address directories may be maintained at sources, at
a central server, or at destinations (the names are normally
handled at the source, with the consequent need to change
all tables whenever a host address or name changes or is ad-
ded; IBM's SNA centralizes lookup in the SSCP; and the Ir-
vine DOS kept name tables in destination machines, requiring
broadcast of requests to be recognized by the appropriate
destination. The ARPA Internet Name Server proposed by Jon
Postel in a recent note is another centralized example. A
major feature of location independence is the ability for a
named process to move to a different location without its
users knowledge. (Of course the directories must be up-
dated.)

Request 	for 	service 	is the ability to broadcast a request
for service to an unknown 	(to the source) number of
potential 	providers of the service, who return bids to per-
form the requested service, thereby identifying themselves.
This 	is 	similar to generic naming, but includes facilities
for the source 	to select among multiple bids. 	Such a
facility was implemented in the Irvine OCS.

Source routing is the ability for the source to identify the
destination by specifying a route to it. 	This is necessary
in loosely concatenated systems where no global address
space exists. 	The route is given in terms of a sequence of
addresses through successive 	switching points or systems
which each have independent address spaces. Hence this
concept is also called path addressing. 	Disadvantages 	are
the need for the source to maintain connectivity in-
formation, and the variation of a given destination's "name"
(consisting of the route) depending on the location of the
source.

Extensibility is the ability to add new users (addresses) to
the system. To add new users at an existing level of the
address space, sufficient room must be available in address
fields, or they must be extensible. Adding additional
layers of addressing often proves a bigger problem, 	for

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 26

example replacing a user by a network of many users. 	If the
hierarchy 	is 	fixed 	(e.g., 	<net/local>), 	then the bottom
"leaves" of the addressing tree cannot be replaced by sub-
trees. 	In this case, addressing must be used to deal with
networks outside the fixed hierarchy. This is a serious
problem with attachment of private networks to public data
networks.

Interconnecting two previously independent systems is an im-
portant subcase of extensibility. All the users of one
system can be given new addresses in the other system if
such widespread changes are acceptable. Alternatively, some
unused local addresses in each of the systems may be mapped
into addresses in the other system if only a limited number
of users must be accessable. Finally, if the addressing
hierarchy is extensible, one system can be attached as a
subtree of the other, or both can be made subtrees of a
higher level.

3.4.3 igaIn

Addressing & Security

by

Robert L. Gordon
PRIME Computers

An extremely important aspect of interprocess communication
is the scheme used for addressing and naming the processes
and communication paths used. 	The importance of this sub-
ject stems from the fact that 	in any addressing scheme
protection and control 	mechanisms are explicitly or im-
plicitly present and either aid or hinder the users ability
to share objects. 	Many current systems have inadequate
facilities for identifying names and controlling access to
the processes within the same host, let alone for processes
residing on other hosts. Part of the problem stems from an
inconsistent view of the relationship between the names and
uses of files, devices, processes, users, mailboxes, generic
and specific system services. The utility of abstracting
many of the above objects as processes has increased the im-
portance of "process naming" and "process addressing" in
overall system design. Therefore until these basic issues
are settled the design of specific interprocess communica-
tion primitives is difficult since they cannot focus on the
fundamental objects that they will be dealing with.

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 27

Fault Tolerance & Security

by

Robert L. Gordon
PRIME Computers

Any communication 	is inherently an error prone process due
to both the natural distortion of the medium and the contex-
tual requirements needed for 	interpreting the transmitted
message. 	In attempting to design robust interprocess com-
munication primitives one of the more difficult tasks is the
defining and handling of the many (natural) errors that 	can
occur. 	Control of communication mechanisms between proces-
ses fundamentally depends on how the designer envisions
process relationships. If process relationships are tree
structured, then the status and control of a processes' com-
munication with other processes might be monitored and
controlled by the parent. On the other hand if each process
wants to maintain the concept of sovereignty then the basic
challenge is either how to provide the ability for cooperat-
ing processes to establish a monitor process that is capable
of controlling the communication paths between the proces-
ses, or how to build into the communication primitives
mechanisms for the detection of and recovery from errors.
Since error recovery must make assumptions about lines of
authority and responsibility between system components, many
of the issues associated with system security are pertinent
to this discussion.

3.4.4 f11112n

IPC Opinions

by

G. L. Chesson
Bell Laboratories

Pros.es2 Naming

Process names, 	file names, and 	I/O stream names should
reside in the same name space. This avoids the tyranny of
the "access method" and attendant ISroblems of making a
program that can "talk" to anything in a system. One can
allow process names to be passed into processes in the same
way that file names and I/O streams are passed around, and
this in turn permits progress toward interactive command
processors that can set up graph-Like structures of proces-
ses, file I/O, and IPC streams.

N212=2u2kikali2a 21 te.h.dnilm

Georgia Institute of Technology 	 IPC Workshop

Section 3
	

ADDRESSING, NAMING, and SECURITY 	Page 28

A philosophy 	that has been proven many times over in
language design may be stated as follows: 	it 	is 	"bad" 	to
provide more 	than one mechanism for a particular operation
or function. 	This is a roundabout way of saying that 	there
are benefits 	to be gained by 	providing a 	single 	IPC
mechanism for use by "local" processes, i.e. 	on 	the 	same
machine* and "remote" processes on different machines.

Transport Mechanism

It 	is 	fine 	to 	use 	shared 	objects 	(memory, 	files) for
interprocess communication, but it is important to hide this
fact. 	The reason is that explicit sharing of objects is not
portable with respect to different 	machine and operating
system architectures and should be considered a local op-
timization. 	Thus, IPC primitives at the compiler or operat-
ing system Level should appear as I/O-like interfaces that
imply copying of data even if they do not actually copy data
on some systems.

IPC in Programming Languages

Most 	IPC proposals 	for inclusion in programming Languages
amount 	to 	little 	more 	than 	interfaces 	to 	subroutine
libraries which a) cannot be inherited by processes across
process fork operations, b) belong in the operating system
anyway, and c) were done better by Rurroughs Corp in DCALGOL
10 years aco. The result of adding IPC to a language is
analogous and about as useful as the notion of a file system
in Pascal. 	A representation of the fundamentals of IPC that
belongs more to the programming 	language realm than the
operating system realm has yet to be demonstrated, and would
fill a much-needed gap.

HardwAre

There are applications 	for which IPC bandwidths must ap-
proach or exceed disk speeds. 	It is clear 	that 	such 	per-
formance cannot be obtained with software (or even firmware)
alone. 	Although there may not be much interest in this sort
of 	thing at 	the 	IPC workshop, I have been working toward
hardware and firmware 	implementations of 	my 	software
mechanisms.

Flow Control

Ipc 	mechanism need flow control. 	It is better to have a
scheme where the sender selfblocks than schemes which depend
on "stop" messages from the receiver. For most applications
the scheme used in UNIX for pipes and other things would
seem to work well the sender blocks (sleeps) on a queue

Georgia Institute of Technology 	 IPC Workshop

Section 3
	ADDRESSING, NAMING, and SECURITY 	Page 29

length upper limit and is awakened when the Queue drains
below a lower limit. There exists a timeout call which can
wake the writer if the queue drains too slowly or is other-
wise delayed. An additional non-blocking mechanism has been
built into the mpx software (see section 7.7) which is
useful in those few cases where blocking cannot be tolerated
-- network servers and the like. This avoids the problems
that occur with varying process and communication delays or
loss of control messages.

Synchronization

Cognoscienti agree that message-passing IPC schemes are
equivalent in "power" to schemes which employ shared objects
although 	the message 	schemes seem "harder". 	This has not
been proved or disproved mathematically, although there 	is
substantial 	empirical 	evidence that pairs of processes can
be synchronized by exchanging messages.

Food for Thought

I submit that it is seductively easy to synchronize process
pairs, 	but 	that 	strategies 	are needed for synchronizing
groups of processes in various ways. 	Is 	it 	reasonable 	to
set up "overseer" processes that arbitrate and synchronize
things, or are there better ways that can be proven correct?
For some things, like call-processing in my network I use
overseer processes because they reduce complexity and can be
made reasonably efficient. For other things, like synch-
ronizing a process group carrying out 	a parallel 	com-
putation, 	I 	would try to eliminate the Deus ex machina and
use direct process to process methods.

Portability

It is important to demonstrate univeral 	IPC 	ideas and to
distinguish local optimizations and special cases within the
universal model. One would hope that a suitable IPC model
could be used with protable operating system ideas to bring
up compatible IPC mechanisms on dissimilar machines. Sec-
tion 7.7 on Data Communications Software outlines some ideas
that have been partially demonstrated to have portability
properties.

Georgia Institute of Technology 	 IPC Workshop

- ->1 	I
I S I

-->1___I

-->1 	1
S

-->I___I

•
•
•

I-->
I R I
I___1-->

INTERPROCESS SYNCHRONIZATION 	 Page 30 Section 4

SECTION 4

INTERPROCESS SYNCHRONIZATION

4 6 1 i21611i osue auttuax austai

4 . 1 . 1 SIIIIMID1 21 th Zukila

1) Synchronization via explicit communication (messages).
2) No global memory.
3) System-wide control with only inaccurate/incomplete in-

formation on the system state, without any centralized
procedure, data or hardware.

4) Transit delays are: 	variable, unpredictable, unboun-
ded.

5) Loss, error, desequencing, duplicate.
6) Other failures (processors).

4.1.2 Ssaiglign lull

2=110

■■■ ■■■■■■■■■■■■■■

GENERAL CONFIGURATION (LOGICAL)
FOR A SINGLE SET OF MESSAGES

Georgia Institute of Technology 	 IPC Workshop

IDEN.
■■■■■■■

DIFF.
IMP •Moll••■■■ 1■1, ■■■

INTERPROCESS SYNCHRONIZATION 	 Page 31

1) Distributed service.
2) Survive sender/receiver failures.
3) Non-technical reasons.
4) Modularity (growth, ...).
5) Performances.

UNLI121A112/1:

a) "Single Sender / Single Receiver"
Single Path Signalling
End-to-end Synchronization
(Used to achieve flow control for example)

b) Single Sender / Multiple Receivers
Multiple Path Signalling

PROCESSING AT
RECEIVERS

_____----------

Section 4

MESSAGE

CONTENT
.•■=1111■1111111.11111■■••■•11.1

IDEN.

1
11••■■••■•••■■■■■■

3

OIMOINIMINM•M•401•INIM

DIFF.

•=1••••■■•••••■■■■•

2

••••■■■••••■•■••••■

4

(1) Pure broadcasting in a fully replicated system.

(2) Pure broadcasting in a heterogeneous replicated
data base.

(3) Transaction processing in a homogenous
(replicated?) system.

(4) Transaction processing in a heterogeneous
replicated data base.

OBJECTIVE: 	To maintain a unique ordering of incoming
messages 	for 	all 	receivers 	(whether 	initially
fortuitous or enforced).

Georgia Institute of Technology 	 IPC Workshop

Section 4
	

INTERPROCESS SYNCHRONIZATION 	 Page 32

c) Multiple Senders / Single Receiver
Multiple Path Signalling
OPJECTIVE: 	Reveal/Cause/Express relationships between

incoming messages belonging to different flows.

d) Multiple Senders / Multiple Receivers
multiple Path Signalling

1) Fully replicated systems
same objective as (b)

2) Partioned systems
same objective as (c)

3) Mixed systems
same objective as 	(b) 	for dynamically changing
subsets of 	receivers plus the same objective as
(c)

4 • 1 • 3 222t

a) Logical Clocks: L. Lamport
To implement a sequential (T. Ord.) 	processing 	in a
distributed manner (each process has an image of "The
Waiting Queue") - may be used to achieve mutual ex-
clusion.

b) Physical Clocks: L. Lamport
How 	to 	implement 	logical clocks on a set of physical
clocks (unique physical time frame).

c) Logical Clocks plus Voting: R. Thomas
How 	to 	resolve 	conflicts 	between
simultaneous/concurrent 	processes 	competing 	for
identical resources (fully replicated systems).

d) Eventcounts• Sequencers: Reed/Kanodia
To observe (READ, AWAIT) or to express the occurence of
some event (ADVANCE) - to serialize events.

e) Circulating Token: G. Le Lann

- Without tickets
To achieve mutual exclusion.

- With tickets
To 	serialize, 	to express
between events

relationships

f) 	Some "naive" or less general solutions:

- Shared Variables: 	E. 	Dijkstra
- Monitors and Messages: 	P. 	Brinch-Hansen

Georgia Institute of Technology 	 IPC Workshop

Section 4
	INTERPROCESS SYNCHRONIZATION 	 Page 33

4.1.4 Alitikmill

a) Response time.
b) Overheads (traffic, processing, storage).
c) Extensibility 	(is 	full 	connectivity required, global

knowledge of the system status, ...).
d) Deterministic synchronization 	/ 	probabilistic 	synch-

ronization / convergence.
e) Fault tolerance.

- Detection.
- Recovery.

f) 	Simplicity 	(correctness 	proving, 	implementability
headaches, ...).

4 9 1 4' 5 IthIL 111211

a) Effects of probabilistic synchronization.
b) System considerations:

- Hard/soft partitioning.
- Application 	processing 	system 	processing
partioning.

c)
	

Evaluation of solutions with respect to
- Attribute space.
- Problem space.

d) Policies (fairness, enforced priorities).
e) Adequacy to resource management.
f) Classification of solutions.

Georgia Institute of Technology 	 IPC Workshop

Section 4
	

INTERPROCESS SYNCHRONIZATION 	 Page 34

4.2 E221110 PAPLEI

4.2.1 1.11

Interprocess Synchronization

by

Edward Y. S. Lee
TRW Defense and Space System Group

My interest 	in 	IPC is mainly connected with update synch-
ronization in redundant distributed data bases 	(DOR). 	The
protocols developed for IPC must be viable and be able to
satisfy the following major requirements for DOB operations:

1) Performance (response time)
2) Efficiency
3) Deadlock prevention
4) Error recovery (surviving errors and faults

and continue operation)
5) Security

Recent state-of-the-art developments in this area can be
divided in two major categories:

1) Protocols associated with 	a 	centralized
control approach CALSB 76, BADA 78, ELLI 77,
ESWA 76, ROTH 77]

2) Protocols 	relying on distributed 	control
EGRAP 76, JOHN 75, ROTH 77, STON 78, THOM 77]

However, most of the Protocols do not 	include serious
considerations of interprocessor communication, but 	rather
take the approach that some kind of messages can be passed
among the distributed processors for communication and let
someone else to worry about it.

There are 	considerable difficulties in taking this kind of
approach in a Loosely coupled distributed system. 	Because
IPC 	is the 	life 	line of the system, it is needed for the
distributed control 	(operating system), 	distributed data
base operation, recovery of the system as well as the DDB
under fail-soft and fail-safe condition, and reconfiguration
of the network when one or more processors are disabled.
All these essential functions of a distributed system demand
efficient and fail-safe IPC mechanisms.

Georgia Institute of Technology 	 IPC Workshop

Section 4
	

INTERPROCESS SYNCHRONIZATION 	 Page 35

The second obstacle is the lack of evaluation criteria and
methodologies to test and measure:

1) Performance
2) Efficiency
3) Validity
4) VerfiabilitY

of any protocol that is being proposed as the best protocol
for DDB. There are some efforts present in this area EGARC
78, SUNS 76], but a lot more work will be required.

In a practical system, it is very 	likely that 	a mix 	of
several protocols will be used for updating redundant
distributed data bases depending on the specific situation
and requirement. 	However, it should be possible to have a
unified approach to IPC for all protocols. 	Additional
research in this area is needed.

Georgia Institute of Technology 	 IPC Workshop

Section 5
	

MECHANISMS
	

Page 36

SECTION 5

MECHANISMS --- IMPLEMENTATION, UTILIZATION, and PERFORMANCE

5.1 12 11111121/AAAR/ BLEOI

Intergstin2 Ilsues Not gisualtd

Data Interface to program not resolved
Control interface to program

"To poll or not to poll"
Events, interrupts, on-conditions

Mechanisml

Signals
Events
Semaphores
Shared Memory
Monitors
Message Queues
Pipes
Ports
Full Duplex Streams
Virtual Procedure Calls

Georgia Institute of Technology 	 IPC Workshop

■■■••• •■••

0
•■■■•■■•■•

Section 5
	

MECHANISMS 	 Page 37

VIALAratrixilll 2/ Ills AsshAnilli

SHARED OBJECTS

EXPLICIT DATA MOVEMENT

EVENT OPERATING BY

PROCESS CREATION
SIDE EFFECTS

I 	EASE OF DISTRIBUTED
I 	IMPLEMENTATION

I 	I
_____Y_____T Y_____T__

Signals

Events

Semaphores

Shared Memory

Monitors

Message Queues

Pipes

Ports

Full Duplex Streams

Virtual Procedure Calls

■.■11.11■■••■• !WM .1■•■• ■11■11

N
■•••■■111.11■411111.

na
UM11,6■■••■•■

N

N na N
■■■■■•■■ - ■•■••■ •■■•■111••■IMIN ■•■■•■••■•

NMI =MINI 1■0

41114■••••••• ■■• ;MD

41■ 0111■■■■■•

■ 11 ■•■•■•■••

•■■■■••■■•

N

N

■••■■ •••1■•

■•■■•■ •■■■

■•••■•■ •■■10

S/R

R

na
■■ ••■■•■•■••■

■■••■■••■■•

N

N

N

S/U S/R/T
■■■■■■• =MIMED ■•••■■••■■■■ ■••■■••■••• ■11■••■•■•■111 MINIM ■■■■■

U na N
■••■•■■••■• NED GM MD =NIP • ■■•■•-■■••• IMD6/1. ■•• ■•• MS NM 0■■•■

e■■■■•■■■

•■■••■■■•■■•

S/U

U

■• •■••■ •11■■•1

■•■•■• •■•■•

na

R N

N
■•■••■■• NIB

111■■■■•■■■

MS NM .1■•■

U
SEM •■■■•■■•■•• ■•••■•••■• WEB M1•11•■•■•

S = Shared
U = Unshared

S = Sender
R = Receiver
T = Transport

Mechanism
na = not applicable

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 38

Desirabig Quaiiiiftl 21 telhaailml

Performance
Bandwidth
Delay

Provability
Correctness of use
Correctness of implementation

Security
Transparency

Naming
Location (Physical)
Environment (Logical)

Separation of control from data
Complete and small set of primitives
Fault tolerance

Encapsulation
Detection
Recovery
Size of fault set covered

NOTES: 	The priorities used to weight these desirable
qualities

depend on:
- Application
- Level
- Environment

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 39

2111Lakil ilaiii111 2/ tuttnills.

Capabilities--
Fault Set Covered--

Error Recovery--
Error Detection--

Encapsulation--
Primitive Completeness/Size--
Control/Data Separation--

Transparency (Environment)--
Transparency (Location)--

Transparency (Naming)--1

	

Security-1 	1

	

Provability--1 	I 	I

	

Performance--1 	1 	1 	I

	

I 	I 	I 	1

Signals IM• AD AD C

Events

IMMN NNW IMMN

AD

NINO

C

•■■■■•■••■ •■■■■••■■ MIN

AD

NI■1, OIONI

INNII■■■■ •■■■ .1Mm ■ INIMPIND ■1, M11.■ .1■■•■ INWIN/••••

Semaphores AD AD C
sMENNI ■■■ ■■■■•••■■ ■11=1,ND

Shared AD AD

■•■■ ■ •=1•1•=0 11M

Memory
NNI■

Monitors

MEN ■■■ • =1.1011M

AD

N11,1■Ma

AD

r■• =MOND ■■ •■••■■■ 11=1.1■.= NMI

C/D

Message

■IN1, MEIN OMNI .1•■ =MI

C/D

MMON NANO.=

Queues
OMPNI IMMON ■111.N ■.■ ■••••=1 r■I.M1.■••••• 4=1N 11■•NOMI.

Pipes D
•No■IMI■ ■■■ NM. ■■■ 11=1■1•11N

Ports D
■I=IN I■ 	■1, .11=1 ■■■ ■IMMN d■MIINNION IMMIN ■11•1=.11001= 411•IN

Full 	Duplex
Streams • C/D

•■■ IMMII■ Ni■■■ filpw.•• ■■■■■ ■141INDOIM NOD 1N■ 1••• ■■■••■■••■ ••••••■•••••■

Virtual
Procedure AD AD C/D
Calls

MIN ■•••■•■• samiNi■ ■■ •INN • ■■■■■IN

	

AD = Addressing 	C = Control only 	C = Control

	

Mechanism 	 0 = Data
Dependent

Georgia Institute of Technology 	 IPC Workshop

Section 5
	

MECHANISMS 	 Page 40

commenia 2a Mtlhaniam 91.121i1122

1) A 	functionally 	complete 	IPC
mechanism requires both data and
control capabilities

2) All were considered to be "basic"
mechanisms -> No embellishments to
improve desirable programs

3) Thus ability to recover from faults
depends on implementation

4) Another trade - 	Bandwidth 	vs.
status consistency

5) Perceived hierarchy 	(in mechanism
list)

6) Omissions
- Broadcasts
- Addressing
- IPC mechanisms ??

7) 	A design exercise to try to over-
come "-Is" in table would be
interesting --- Also table comple-
tion

PROBLEMS

1) Migration 	of 	applications from
centralized to 	distributed 	en-
vironment

2) Not 	enough 	known 	about these
mechanisms:
- Complexity of IMPL
- Size of IMPL
- Efficiency of IMPL
- Useful hardware assists

3) 	Common 	understanding 	of 	all
mechanisms
- Dictionary

4) Lack of a number of implementations
5) Cost / time / complexity
6) Premature standardization
7) Difficulty 	of 	modifying 	/ ex-

perimenting with hardware support
devices

8) Premature vendor mechanism selec-
tion

9) Compatibility
- Obstacle
- Objective

10) Evaluation criteria
11) Papers don't tell 	reasons 	for

designs 	(some designs based on few
examples)

12) Definitions of universes

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 41

Research Questions:

1) 	Identify collections of 	primitives
for
- Easy programmer understanding
- Efficiency
- Match to application
(Answer probably depends on en-
vironment)

2) Fault Tolerance of IPC mechanisms
not well understood

3) Trade -- User or IPC mechanism?
4) How much must user be aware of

process creation/existence?
5) How 	should 	responsibility 	be

distributed? 	Visibility 	of fault
responsibility.

6) How to decouple bindings:
- Modules to graph
- Process to nodes
- Resources to processes

7) 	What set of IPC mechanisms is
- Easy to use
- Complete
- Efficient

8) Refine 	virtual 	procedure 	call
mechanism.

9) Tools for top-down design
10) How to select architectures from

option criteria
11) How to decompose applications

Georgia Institute of Technology 	 IPC Workshop

Section 5
	

MECHANISMS 	 Page 42

5.2 AteLiFYINi MATLEIAL

5.2.1 PLuarla kx ihl /gains fiLIM2

An attempt was made to define "a set of primitives that al-
lows an application software engineer to design the best
solution for his problem." 	It 	was quickly 	realized that
this is not an easy task. 	Some of the issues involved are:

1) Some applications 	require highly 	reliable
IPC, while in others, 	communicated informa-
tion becomes useless after a certain period
of time. 	A single set of primitives 	to 	im-
plement 	IPC may not solve both types of
problems.

2) Should IPC primitives be operating system
services or should IPC constructs be parts of
various programming 	languages? 	A relevant
reference to this 	latter proposal may be
found in [HOAR 783.

At 	this point• it was felt that it was necessary to outline

	

the hierarchy of levels at which IPC mechanisms can be 	in-
voked. 	For each level, we attempted to describe those ob-
jects which may be manipulated and those 	IPC operations
which may be performed on each object, if any.

Hierarchy of Levels

Command Level
High Level Languages
Operating System
Instruction Level
Microcode Level
Hardware Levet

The description of objects and IPC operations can be
enumerated for three different situations:

1) Accepted practice 	those 	commercially
available

2) State of the art - current practices of
researchers in the field

3) Wish list

Enmmeralion of Omanliliep for Accepted Practice

i2mmaaA Ltxtl:

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 43

objects - process, file, link, device• program,
task graph, directory

IPC operations -

files: 	file locks (control function)
pipes

processes: create
delete
link via a pipe
suspend
resume
status

links: 	creation
temporary files
link management in DEMOS

Reference: 	[BASK 77].

Note: 	Though not all types of objects are available on many
systems, some of them can be used to emulate those
capabilities which are unavailable. For example, tem-
porary files are used in UNIX to emulate pipes.

High Leyel Langgagel:

objects - typed objects (integers, reals, characters, etc.)
semaphore
monitors
events
ports
shared common (typed objects)

Except for the use of shared typed objects (via global com-
mon areas), current languages commonly available do not use
the other objects for IPC (e.g., PL/I). 	Almost 	invariably,
one must drop 	into a 	runtime library routine or to the
operating system to perform IPC functions.
PL/I is most progressive
Algol 68 provides some capabilities
APL supports shared variables

Milcellaneokl noiel:
There was some discussion concerning the two types of com-
monly used IPC mechanisms: message-oriented vs. procedure-
oriented (monitor). A good reference to this area is CLAUE
79].

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 44

5.2.2 PtUALIg kx EtAtitl

5.2.2.1 Introduction and Explanation

The IPC mechanisms described here are known as upri•itive"
for several 	reasons; 	they are primitive in the sense 	that
they are 	low-level 	building blocks 	from 	which 	more
sophisticated forms of IPC can be built, they are mostly
oriented towards two-party communication, the simplest case,
and they are mostly derived from existing uniprocessor
systems.

5.2.2.2 Desirable Properties

It is fairly easy to list some desirable properties that any
interprocess communication mechnisms should have:

Performance -- In terms of bandwidth and also
delay. 	We would 	like mechanisms with a
minimum of overhead, in order to maximize
performance. THis should not, of course,
reduce functionality.

Provability -- A desirable property for any IPC
mechanism should be that it lend itself to
the verification of systems which are built
up using processes.

Security -- By this we mean protection of two com-
municating parties from one another, and also
with respect to third parties, in terms of
leakage and interference.

TranIkarency -- This refers back to the issues of
naming and location. The users of an
interprocess communication mechanism sdhould
not have to deal with that mechnism at other
than the advertised 	level, nor should they
have to be aware of the details of 	its im-
plementation.

Separation of Data and Control -- It may or may
not be a good property of an IPC mechanism to
contain elements of both data and control.
In some implementations, data and control
(signal) transfer from sender to receiver are
carried out in the same operation. Separate
data and control transfer operations can, of
course, be combined in higher-level non-
primitive interprocess communication
operations.

Com2letenell and Smallne21 	Interprocess com-

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 45

munication 	primitives 	should 	certainly 	be
complete, in the sense that one should be
able to do any operation which is valid in
the given system without 	introducing new
primitive 	operations. 	It 	is not so clear
that they should be small, 	consistent, of
course, with performance.

Fault Tolerance --This leads to the concepts of
encapsulation and recovery. In order to
achieve fault tolerance, an operation should
fulfill the following conditions:

- faults should be detected.
- faults should be handled at the

appropriate level, and not simply
passed back upwards towards the
user.

- faults generated at a lower 	level
should not terminate a user ses-
sion. 	Instead, 	they should be
recovered at a 	level 	close to
that at which they occurred.

- in interprocess communication, 	if
data or control transfer fails,
it may be 	sufficient 	to inform
the sender, or, in some critical
applications, it may be necessary
to inform both the sender and the
receiver that some message or
control 	signal 	did 	not get
through.

The concept of encapsulation suggestes the
enforced localization of errors, so that an
error in the communication between two proc-
cessors can have no effect on any others.
The concept of recovery suggests that
whatever errors do not occur are cleaned up
in such a way that a consistent system state
is restored, and that unresolved error states
are not simply passed up the line. Error
messages of the form:

SURNETWORK ERROR - PLEASE LOG IN AGAIN
should never occur.

	

,pt -- The concept of cost is very difficult 	to
define exhaustively, but one can suggest some
kinds of cost which can be incurred:
- implementation
- performance
- application flexibility

Note that in the evaluation of primitive mechanisms given in

	

section 5.1 we assume a fairly standard implementation. 	The
properties above clearly depend in part on implementation

Georgia Institute of Technology 	 IPC Workshop

Section 5
	

MECHANISMS 	 Page 46

and we cannot give any hard and fast rules.

5.2.2.3 IPC Taxonomy

One of 	the most obvious dimensions 	along 	which 	to
differentiate IPC mechanism is whether they are message-
based or not. Mechanisms can, of course, be data-transfer
based, without being message-based.

Examples: 	Pipes, ports, full-duplex streams.

5.2.2.3.1 Non-mgssan=tAsId
These are clearly the 	IPC mechnisms favored in those
distributed systems which are themselves not message-based.
Instead of messages, these depend on a variety of'communica-
tion mechanisms:

1) Signals
Signals are process interrupts, which can
arrive with or without accompanying type in-
formation, and perhaps the identifier of the
originator. 	A signal may cause a transfer of
control 	inside the receiver process, and
there 	may 	be enable/disable mechanisms,
analogous to those for hardware interrupts.

2) Events
An eyenl is a state variable. One should be
able to test it and set it. It should be
possible to implement a wail on the event by
means of a test in a loop.

3) Semaphores
A semaghgrt is a storage cell with an as-
sociated queue of processes, and with two
operations, 	wait and signal. (no relation to
signals in section 3.2.1.1) which 	have 	side
effects.

4) Shared Memory
SLargd mgagry consists of data cells which
are accessible to sending and to receving
processes, perhaps with an associated access
discipline which is designed to avoid
critical 	section problems 	in accessing the
shared resource.

5) Ports
P2r11 are input/output channels belonging to
processes. Ports in corresponding processes
can be connected together by links to form
communiccation channels.

6) Full Duplex Streams
A full duplex stream is effectively a bi-
directional pipe. 	In place of a sender and
receiver, 	the processes at either end of the
full-duplex stream can both send and receive.

 Naturally, in order to achieve some measure
of synchronization, a read should suspend

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 47

until a corresponding write is executed at
the other end of the full duplex stream, and
vice versa.

5.2.2.3.2 Message-based IPC
These are the IPC mechanisms which depend on messages
between processes. They can be further subdivided along the
following lines:

1) Single send pl --> p2
2) Single receive pl <-- p2
3) Multiple send p1 --> subset of P
4) Multiple receive pl <-- subset of P

212.01ins ani NauzIalatkina Primitivtl

A further way of 	subdividing interprocess communication
primitives is on the basis of whether they are blocking or
non-blocking in nature. A kig .c. king primitive is one which
causes its invoking process to be suspended until the
primitive operation is completed. Thus, after invoking a
blocking receive, a process will suspend (sleep) until some
message does arrive.

Distributed 	systems have been implemented with blocking
send/receive, with blocking send and non-blocking receive,
and with non-blocking send/receive.

Virtual PL2SIAULI

Virtual procedure calls scan be viewd as a highly stylized
form of message passing but entail a great deal more
semantics. They are used in support of an object model -
processes access objects and objects are controlled by other
processes. IPC consists of one process invoking a function
on an object and another process executing that function.

5.2.2.3.3 higherzievei MIslanilma
There are also higher-level mechanisms which can be produced
using the primitive operations as building blocks. 	For
instance, one frequently encounters virtual 	circuits built
on message passing combined with signalling.

5.2.2.4 References

The following 	references may be helpful in explaining the
specific IPC concepts identified:

1) Semaphores, Signals, Events, Monitors, Pipes:
EHOLT 78b3

2) Virtual Procedure Calls:
EHAMI nd]

3) Message Passing Operating Systems:
[MANN 77]

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 48

4) 	Message Passing versus Procedure Calls:
ELAUE 793

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 49

5 4,3 12211112N PAW-LI

5.3.1 PeebL1A

PROGRAMMING ISSUES

by

Richard Peebles
Digital Equipment Corporation

A Programmer's environment (Language, operating system ser-
vices and model of process structure) 	tends to be a
religious issue. 	My religion calls for the simplest pos-
sible environment by providing a set of "orthogonal basis
vectors" for programming. The result is a set of primitives
that allows an application software engineer to design the
best solution for his problem. Orthogonality of software
tools means that one piece, or primitive, does not preempt
design choices for the others. This is to be contrasted
with another approach to simplicity which preempts almost
all choices.

In 	addition, 	my 	religion calls 	for the 	removal 	of
representational irrelevancies to the highest degree pos-
sible. As a consequence, the underlying process structure
is not visible at all to most programmers, nor is the
distributed nature of the machine that implements his ap-
plication.

Practical Issues

The difficult part of religion is applying it to our 	daily
lives. 	Just 	what are 	these primitives; 	what makes an
orthogonal set; can we find a set of "basis vectors"?
Furthermore, can we reasonably expect to hide the process
and machine structure from programmers? In my view, most
research in distributed systems is (should be) aimed at ans-
wering these questions.

Constraints on IPC Melhanilm

The above goals for the proaramming environment impose
several constraints on the IPC mechanism. First it should
be location independent. The same mechanism should be used
for both inter-host and intra-host communication. This
means that a programming decision does not preempt a
process-location decision and vice-versa. 	A more difficult
question 	is whether the IPC mechanism should he visible as
such to the programmer. 	It is possible to provide him with
an extended machine in which IPC appears as the application

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 50

of an operator to an operand; this is the approach taken in
our experimental WEB system. 	It is a simple matter to
construct both datagram and virtual 	circuit abstractions
with this mechanism 	if 	"communicating 	processes" 	is a
relevant abstraction. It is considerably more difficult to
provide the operator/operand abstraction mechanism than a
simple send/receive mechanism; particularly if abstractions
are to be enforced.

Statg 2f the Art

In vendor-implemented products neither location transparency
nor process structure transparency is usually provided.
Research systems have, for the most part, made IPC an ex-
plicitly separate concept among other abstract extensions of
the operating system. The WEB operator-invocation architec-
ture is seeking to provide a single mechanism that will ser-
ve as a general basis for "operating system" and user func-
tions - they are not distinguishable. It is, however, only
in the final stages of design - about to be implemented.

2bstacles

The most significant obstacle to providing an IPC mechanism
that least perturbs the programming interface is historical
artifact. 	Finding a 	design that is ideal and that allows
reasonably simple migration of customer applications 	is a
hard problem. 	We may be forced to throw up our hands and
call on users to swallow yet 	another conversion effort.
Will we do it again in 1988 when distributed systems go out
of vogue? Hence my strong belief in the need for process
and machine structure independence of IPC. Early standards
will be a hindrance to this but may be inevitable given the
state of the art and user impatience to build. If that is
accepted, the next biggest obstacles are thin wires and
different architectures. Hiding the network structure is
hard when physical links are under 100K bps. Then too there
is the problem of the complexity of the WEB abstraction ap-
proach - it•s hard to understand.

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 51

5 • 3 4. 2 lailsalial

PROGRAMMING ISSUES IN DISTRIBUTED SYSTEMS

by

Virg Wallentine
Kansas State University

Problem

The programmer in a distributed processing environment must
be provided with a 	set 	of 	facilities which permit 	easy
specification of 	the 	distributive 	properties of his/her
program. The word program here is used to refer to either
the output of a single compilation or the output of indepen-
dent compilations of program modules which are to be com-
municating via an IPC. These distributive properties
include the specification of the concurrency, data flow,
resource requirements (memory, devices, etc.), and
intraprogram 	(intermodule) 	protocol properties inherent in
the execution of a configuration 	(system) 	of 	cooperating
software modules. 	Given a description of these properties,
an operating system must he able to distribute the user's
program across multiple machines 	in a manner which is
transparent to the programmer. 	Traditional approaches to
providing these facilities include the concurrency support
in high-level languages and the resource allocation and
concurrency support in conventional operating systems.

C2rren1 A22roachel

Several high-level Languages such as Concurrent Pascal EBRIN
77] and SP/K [HOLT 78] have incorporated the monitor EBRIN
733 [HOAR 74] concept to provide structured concurrency.
This concept is excellent in a centralized system but relies
on shared data 	(and therefore shared memory), and is
therefore not an appropriate concept 	on which to base a
distributed 	system. 	However, an effort is underway at the
National Physical 	Laboratory 	EDOWS 	78] to distribute a
Concurrent 	Pascal 	program 	across 	loosely 	coupled
microprocessors. The distribution of passive system com-
ponents (such as monitors) on disjoint machines implies many
coot' operations for parameters and also additional active
system components (processes) which do not appear in the
program text.

A much more appropriate high-level 	language concept for
distributed programs is proposed by C.A.R. 	Hoare 	in
reference [HOAR 78]. Each function is a sequential process
which is connected to other communicating sequential proces-
ses via input/output. This concurrency support is based on
data flow and not shared data; therefore, it is not depen-
dent on shared memory. As a result, each function is
distributable. 	However, 	it 	seems that buffering of data
between processes is necessary to improve performance in

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 52

distributed systems with slow speed connections. Since the
compiler for such a language presumably can generate the
resource requirements for the proaram, since processes are
identified by name, and since the protocol between processes
is fixed, enough knowledge is available to distribute a set
of processes which are compiled together.

A second area of programmer concern for distribution occurs
because concurrent program functions 	(modules) may 	be
separately generated (compiled). These may well be existing
programs or just separate functions based on programming
style. The interconnection of these modules into a program
is dynamic and therefore requires operating system support.
In early conventional operating systems, the support 	for
combining these functions 	into a configuration of com-
municating concurrent software functions 	is 	specified at
three 	levels. 	First, overlap of CPU and I/O are made
available for standard I/O file functions. 	Second, added
concurrency 	is 	achieved only with unstructured (low-level)
facilities for process creation, naming, and communication.
Third, complex job control languages are provided to achieve
allocation of resources to run these functions. In a
distributed system, these JCL steps must be synchronized
across machines. Complex resource control in a distributed
system should certainly not be the programmer's
responsibility. 	This 	is alleviated by viewing distributed
operating systems and their executable programs as cooperat-
ing processes. 	A highly 	successful 	system 	is 	the
Distributed Computing System of Farber CFARB 73]. In this
system, the structure and distribution of the set of proces-
ses is transparent to the user; and a high level of
concurrency is achieved without use of low-levet process
control primitives.

Process naming of cooperating processes is still burdensome
to the programmer. 	The same problem also occurs in current
"mailbox" schemes as epitomized by the VAX 11/780 	system
[DEC 77]. 	The naming or numbering of mailboxes must be
known to the programmer or a creating process. This is com-
monly referred to as the IPC-setup problem, coined by Elliot
Oraanick in reference CORGA 72]. 	The designers of UNIX
[THOM 74] CRITC 78] sought to alleviate this problem. 	They
invented the "pipe." 	In UNIX a user program, running in its
own process, may take the place of a file in a manner which
is transparent 	to the original program. Each program may
have its standard input and output 	files replaced by
programs, 	thus building via the UNIX shell arbitrarily long
linear chains (a pipeline) of programs. 	UNIX automatically
transfers the data between processes and synchronizes the
process as it intercepts the standard input and output file
operations.

Georgia Institute of Technology 	 IPC Workshop

Section 5 	 MECHANISMS 	 Page 53

UNIX "pipes" eliminate the need for process naming and treat
concurrency, resource allocation, and inter-process protocol
as a data flow problem. 	Interprocess protocols are treated
simply as simplex data streams. 	The job control 	language
provided by the UNIX shell becomes a pseudo data flow
language and 	resource allocation 	is transparent 	to the
programmer. 	However, there are a considerable number of
programmer protocols which are not served by "pipes." 	As
acknowledged in reference ERITC 78], "pipes" cannot be used
to construct multi-server subsystems.

UNIX will 	support 	general 	interprocess 	communication
protocols but these are not generated by the shell. These
can be programmed as a set of child processes whose "pipes"
have been setup by a parent process.

A Research Direction

If we are to be successful in distributing programs across
highly distributed systems, we must provide the programmer
of dynamically interconnected cooperating processes a job
control language (software configuration control) as easy to
use as Hoare's, communicating sequential processes. 	It seems
that the most promising direction is to extend 	the concept
of the UNIX shell to automatically generate the more complex
protocols available to the parent processes previously
described. 	It must 	then also be extended to generate
(representations of) 	distributable configurations of com-
municating processes.

Work in this area is underway at Kansas 	State University.
The project* 	involves development of a Network Adaptable
Executive (NADEX)EYOUN 79]. The attempt is to permit the
user to specify data fLow at the command level and have the
command interpreter generate a distributable software con-
figuration of nodes connected by full duplex data transfer
stream connections (DTS connections) to form an undirected
graph. 	In general, a node may be thought of as a process.
Each of the connections consists of two independent 	bi-
directional data transfer streams. One of these streams
uses small parameters while the other uses a standard-sized
data buffer. The data buffers carry along with them size
and status indicators whereas the parameter buffers contain
only a small amount of user-supplied data.

A user program running in a node performs serial buffered
READ and WRITE operations in its various connections. 	The
connections 	are 	numbered, 	and 	the proaram attaches
particular meanings and implements particular protocols 	for
each of 	its 	connections. 	A connection can connect a node
either to a user program or to a system process used to ac-
cess a 	file or an I/O device. 	The program cannot tell the
difference between these modes of operation. 	This clearly
provides all of the power of the UNIX pipelines while remov-
ing the linearity constraint on the structure of the connec-

Georgia Institute of Technology 	 IPC Workshop

Section 5
	

MECHANISMS 	 Page 54

tion graph. 	Also, 	the 	connections are bi-directional so
that, for example, a write-request/read-response protocol to
access a random file can be implemented.

For these serial buffered READ and WRITE operations, a
priori protocol knowledge can be specified to the underlying
data fLow implementation (buffer control) to enable it to
maintain a check for validity of user protocol (in terms of
data flow) during execution. This protocol checking is
critical in "un-debugged" (user-written) nodes. 	Examples of
such protocol violations occur many times in the facilities
of SOLO EBRIN 76]. 	Deadlock detection is also performed
based on data flow in a configuration which 	is distributed
across machines connected by a network IPC. Multiserver
subsystems, such as a data base management system, are im-
plementable as a configuration with multi-connection READ
(multiple condition WAITs) and conditional WRITE operations
provided on data transfer streams. Interconfiguration con-
nections are also provided. Finally, the command
interpreter and the node interface (PREFIX) provide all the
mapping of logical data streams (ports) onto implementation
data streams.

* Supported in part by the Army Research Office under Grant
Number P-16160-A-EL.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 55

SECTION 6

THEORETICAL WORK

6.1 MUM 1120 2122/ 11112RI

STRUCTURE of Discussion:
Distributed system without central (or any) control
Free ranging, undirected (no standards)
Principles, not mechanisms
Theory, not formalism
Independent of Technology
Outline: Target drawn around arrows

WHAT IS A DISTRIBUTED SYSTEM?
A distriuild syktem is one in which the communication
of data between processes takes a significant amount of
time compared to the time needed to execute one step of
a process.

Examale: PDP.10

SPECIFICATION

(Note: 	Numbers 	in parentheses are "pointers" to am-
plifying material in paragraph 6.2.)

Definition: 	A specification is 	that 	which 	lets 	one
decide if a running system is behaving correctly.

State-free Methods
Applicative programming (6.2.1.1)
Teletype paradigm (6.2.1.2)
Observable I/O behavior (6.2.1.3)

State-based Methods (6.2.1.4)
State graphs (6.2.1.5)
Critical sections (6.2.1.3)

Problems
Avoid explicit state description (6.2.1.6)
How to specify complex systems (6.2.1.7)

MO D EL S

Definition: 	A model exhibits the properties of an im-
plementation

MODELS CONSIDERED (Procedures and Files)
General test and set model (6.2.2.1)
Bit transmission model (6.2.2.2)
Interpretive model (6.2.2.3)

OTHER MODELS (6.2.2.4)
Actor- induction

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 56

LISP
etc.

RELEVANCE OF MODELS (6.2.2.5)
PROBLEM AREAS (6.2.2.6)

Existence of single basic model

ANALYSIS

Inferring a system's behavioral properties
Formal 	proofs 	of 	correctness 	(6.2.3.1, 	6.2.3.2,

6.2.3.3)
Fault tolerance (6.2.3.4)
Performance

measurements (6.2.3.5)
Complexity

Space (6.2.3.6)
Time (6.2.3.7)

Data transfer (6.2.3.8)
Simulation/emulation (6.2.3.9)

Problems (6.2.3.5)
Trade-off techniques
Relevance of models

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 57

6.2 MEL/ELM !AI i91.

" 2"

4

6.2.1.1 Applicative Programming

Want to represent a system as composition of side-effect-
free functions.

Can extend a "pure" applicative programming language with
constructs for multiprocessing:

- Suspended evaluation of subexpressions.
- Multisets - unordered collection of expressions

which becomes ordered as evaluations terminate.

Encapsulation of expression evaluations gives alternatives
of distribution of compution: factor problem into assigning
"capsules" to processing nodes.

Potential disadvantage: 	in any "real" situation, there is a
need for some global reference; such a reference cannot be
handled if side-effects are forbidden.

Reference: 	CBUCK]

6.2.1.2 Teletype Paradigm

All that the user knows about a system is what goes 	in and
what 	comes out. 	What happens behind the panels is of no
concern to him. 	This view 	is 	captured by the following
paradigm. 	There 	are N users, each sitting at a teletype.
The system behavior consists of the N rolls of paper. The
correctness of this behavior must be decidable just from
looking at those teletype rolls.

6.2.1.3 Behavior by Interleaved Teletype Rolls

If I/O behavior is to be described in a way suitable 	for
reasoning about composition of systems, it is not sufficient
to consider only the separate "teletype rolls." It is pos-
sible for two systems with the same individual port behavior
to be incorporated as modules in a larger system, causing
different external behavior for the larger system. A
sufficiently inclusive behavior description to avoid this
problem can be given by describing the interleavld teletype
rolls. Thus far, such descriptions have been used for sim-
ple synchronization and data base behavior, and appear to be

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 58

quite natural and usable.

6.2.1.4 State-based methods

A state-based specification method was used for the al-
gorithms in [BURN 78]. There the appropriate mutual ex-
clusion behavior was expressed by grouping process states
into "regions" comprising critical states, other program
states, and protocol states. Desired exclusion, deadlock-
free and fairness behavior was then described in terms of
the progress of processes through their regions. Such
description led to clean formal reasoning about the proces-
ses. The description, however, does not appear to be very
easily suited for reasoning about the system as a building
block for Larger systems.

6.2.1.5 State Graphs

Thiagarajan has used the global state model to give a simple
definition of Shapiro's algorithm for the maintenance of
redundant data bases in a distributed environment. This
permits an elegant and simple proof of correctness.

6.2.1.6 Jellybean Example

There are examples of simple systems in which one cannot
talk about the state of the system at any particular point
in time. The example involves two processes modifying the
number of jellybeans in a factory, and one process counting
the total number of jellybeans. The behavior of these three
operations cannot be explained by any sequential ordering of
their executions. How can we specify correctness of this
system in a sufficiently general way to allow this type of
implementation?

Reference: 	CLAMP 76].

6.2.1.7 How to Specify Complex Systems

We are faced with a dilemma. We do not want to have to men-
tion states in our specification. But it is very difficult
to write any non-trivial specification without talking about
states. For example, try specifying a memory cell without
talking about states.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page, 59

6.2.2 taglil

6.2.2.1 The Test-and-Set Model of IPC

The Test-and-Set primitive is a powerful indivisible opera-
tion for accessing a shared variable for communication among
asynchronous processes. 	The model treats 	asynchronous
operation by considering timing sequences. 	Correct al-
gorithms must work for all timing sequences. Fairness
properties may require that the timing sequences be restric-
ted to those satisfying "finite delay." A sequence satis-
fies finite delay if no process has to wait forever for a
timing message.

The Test-and-Set primitive is in one sense the most powerful
primitive possible. Hence, the lower bounds results for
this model apply directly to all weaker primitives.

To model general distributed systems, 	it is necessary to
model processes and significant-distance communication. 	To
model a message channel in the simplest 	and most natural
way, we think of it as a special type of process with access
to two variables, one at each of its ends. The process sim-
ply reads the contents of one of the variables and writes
the result in the other variable, ad infinitum. We imagine
this process to be asynchronous with respect to the other
processes in the system. 	Thus communication delays are as-
sumed to be arbitrary. 	This model seems simple and general
enough to provide a basis for simulating and comparing
distributed systems of practically any type.

6.2.2.2 Bit Transmission Model

Lamport 	favors a more Low-level IPC model: 	transmission of
1 bit of information from one process to another. Requires
a 1 bit storage device which can be written by process A and
concurrently read by process B. Non-trivial to implement on
atomic register which acts as if reads and writes are total-
ly ordered. Some results are in CLAMP 777, others are un-
published.

6.2.2.3 SS Model

The applicative technique uses an interpretive language to
describe a distributed 	system. 	An 	interpreter for ap-
plicative language may then serve to model system behavior.
The unordered evaluation of expressions 	in a multiset
becomes implemented as a scheduler. 	Communication may be
modeled in terms of the elapsed simulated time associated
with each parameter passing operation.

Georgia Institute of Technology
	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 60

6.2.2.4 Other Models

Certain models, although significant, failed to receive 	at-
tention due to the lack of advocates in the group. Most
notable were the Actor-Induction Model of Carl Hewitt and
Petri Nets.

6.2.2.5 Relevance of Models

Models of distributed systems are abstractions of real or
hypothetical systems. The relevance of any abstraction
depends strongly on its intended application -- the abstrac-
tion should preserve the important features of the situation
being modelled and discard the unimportant. Models reflect-
ing details of current technology are appropriate for under-
standing present-day distributed systems but they become
quickly obsolete as the technology shifts. models attempt-
ing to capture the universal constraints on any system im-
posed by basic laws of physics are more fundamental, but
evaluating their relevance to digital systems requires a
considerable understaning of electronics and physics, and
they will likely be too primitive and detailed to shed much
light on higher-level issues such as those discussed el-
sewhere in this report.

For example, 	most models of parallel systems include some
sort of synchronization primitive whether it be P and V,
monitors, 	message-passing, or whatever, and most practical
systems have hardware which 	implements these primitives
satisfactorially. However, the glitch problem aparently
prevents the construction of a perfect arbiter (as oppsed to
one which is satisfactory because its probability of failure
is infinitesimally small), so any physical realization of an
arbiter has a possibility of failure through infinite delay.
The test-and-set model and the 1-bit transmission model can
both 	describe 	perfect arbiters and so both must be
considered only approximations to reality. 	While test-and-
sets seem at 	first 	sight 	to be far from primitive, they
encompass operations such as read, write, increment memory,
etc. 	which might or might not be atomic in a given system,
so lower bounds on complexity apply to all 	such weaker
models. 	The fact that a fair arbiter is needed for a hard-
ware realization of the model does not 	detract from its
usefulness 	in describing solutions to the critical section
problem, for building critical section solutions with strong
fairness properties (bounded-waiting, FIFO) from arbiters
only known to be free from lockout is a non-trivial task.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 61

6.2.2.6 Problem Areas

Although 	a number of models were proposed for interprocess
communication, we observed that there was no "basic unit" by
means of which all of them could be implemented. Identify-
ing such a basic unit would give a uniform scale for compar-
ing different communication mechanisms.

6.2.3 AaA1/111

6.2.3.1 State Graph Analysis

See 6.2.1.5

6.2.3.2 Critical Region Algorithm Proof

A formal proof has been developed for one of the mutual ex-
clusion algorithms given in [BURN 78]. 	Although the proof
follows the general 	format of invariant-assertion proofs,
the major ideas in the parts of the proof that deal 	with
fairness are contained in precisely-stated 	lemmas which
mirror natural intuitive understanding of the algorithms.
The parts of the proof that deal with reachability of states
have a less intuitive and more case-analytic flavor. A
current effort is to decompose the invariants in a way that
will allow reachability properties also to be verified in a
way that accords intuition.

6.2.3.3 Global Assertions

There are well-developed techniques for proving correctness
properties of non-distributed multiprocess programs. Lam-
port used to feel that they were not 	good for distributed
systems 	because (1) they used global assertions which imply
a global system state, which is undesirable 	(see 6.2.1.6),
and 	(2) they require that communication arcs be represented
by processes, which means lots of processes. 	However, he
has 	recently discovered that these techniques do work well,
since (1) there seem to be a class of "good" global as-
sertions, and (2) you have to specify the communication arcs
very carefully anyway.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 62

6.2.3.4 Fault Tolerance

We consider two types of failure: 	unannounced halting
(sleeping) and announced shutdown 	(dying). 	Peterson and
Fischer 	[PETE 77] and Rivest 	and Pratt [RIVE 76] give
critical section algorithms in a shared-variable 	read/write
model 	that are immune to process dying, i.e., the remaining
processes continue correct operation.

Performance and tolerance to failure by sleeping are closely
related. 	If one process can be hung up forever because it
is 	waiting 	for a failed process, then its performance will
be degraded by a non-failed process that is 	simply running
very slowly.

We have algorithms for the test-and-set model solving the
k-critical section problem which in a sense have k 	indepen-
dent paths to the critical section. That is, even if k - 1
processes fail, the other processes will not be waiting on
them and will continue operating and gaining access to the
remaining resources.

6.2.3.5 Measurements

The traditional measures of "time" and "space" do not form
an adequate framework for assessing the complexity of
distributed computations. 	In order to understand the "cost"
of a distributed computation, we need to enlarge and 	refine
our 	collection of 	cost measures. 	For example, "time" may
refer to total time or time measured at an individual 	site.
Similarly 	"space" 	could refer 	to either the size of the
total system, or the size of individual sites. In addition
to the "time" and "space" required to perform a computation,
we should also consider the "amount of interprocess com-
munication," both the total traffic flow over the whole
system, 	and 	the bandwidth requirements of individual chan-
nels.

In analyzing sequential processes, we are used to thinking
in terms of time-space tradeoffs. 	Are there analogous
tradeoffs for distributed systems? 	For example, one can
usually get by with smaller individual processors if one is
willing to have more processors, 	and consequently, more
interprocessor 	communication. 	Can 	this 	tradeoff of
interorocess communication vs. complexity of individual
process be made precise? Again, one usually has the choice
of either implementing shared global resources or duplicat-
ing these, resources at different sites. Are there
guidelines for deciding which of these strategies to pursue?
In general, we need to deal with the following sorts of
questions: (i) What are the characteristics of those
problems which allow one to make 	effective 	use 	of
distributed computation? 	(ii) Conversely, can we learn to
recognize problems whose solution would require such large
amounts of interprocessor communication as to render these

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 63

problems inherently unsuited for solution in a distributed
manner? (iii) Can we identify techniques for tailoring
distributed architectures to the solution of particular com-
putational problems? (iv) Can we formulate a theory which
combines concerns for time-space complexity with concerns
for minimizing interprocess communication, thus providing an
adequate framework for assessing the complexity of
distributed computations.

6.2.3.6 Space Complexity for IPC

In measuring space complexity for IPC, the shared variable
models provide a natural measure - simply the number of
states necessary in the shared variables. Tight upper and
lower bounds on the communication space required have been
demonstrated for certain synchronization problems using the
Test-and-Set model. Additional bounds are anticipated for
other problems and primitives.

Reference: 	[BURN 78]

6.2.3.7 Time Complexity Measures for IPC

A great deal of work has been done in the time complexity of
sequential algorithms. Synchronous parallel computations
commonly use a "tree depth" measuere for the time com-
plexity. These techniques do not extend easily to asynch-
ronous parallel processing because there is no direct
measure of global time directly derivable from the steps of
the individual processes. For example, if any process
reaches a state where it must wait for communication from
another process, it may take an unbounded number of steps
before the remainder of the system changes state. Since a
simple sum of all processor steps would often give unbounded
lower bounds for many problems, (and hence are
uninteresting), new measures are needed. Current work is
proceeding examining time bounds of test-and-set algorithms
using the following types of bounds.

1) Count 	the total number of "transitions"
between two events of interest.

2) Count the number of 	transitions 	of 	a
particular process between two events.

3) Count the total number of transitions between
two events divided by the number of processes
involved.

(A "transition" is a step of a process which causes a change
in the shared variable) Each of these bounds appears to be
of interest.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 64

6.2.3.8 Data Transfer Performance

Abelson LABEL 783 has 	recently developed techniques for
proving inherent Lower bounds on the amount of interprocess
communication required for performing computations 	in a
distributed system. 	Using these techniques, he has analyzed
distributed systems 	which perform matrix operations and
solve systems of linear equations. His work shows that,
from the point of view of minimizing communication, the ob-
vious techniques are optimal.

6.2.3.9 Performance Results

An alternative (perhaps a copout) to formal analysis 	is to
use a simulation or emulation. This, however, is not an
entirely straightforward proposition. First, a suitably ac-
curate description of the distributed system must be derived
and second, the artificialities of the simulation/emulation
must be factored out.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 65

6 . 3 E211112h Ealll

6.3.1 Aklinn

Theoretical Issues in Distributed Computation

by

Harold Abelson
MIT

Current 	research 	in the area of distributed computation
focuses almost exclusively on algorithms and systems, while
the problem of determining the inherent complexity of
distributed computations 	remains 	virtually 	unexplored.
Moreover, most theoretical work in the area of parallel
processing relies on a model of computation in which all
processors have ready access to all memory registers --- an
assumption which is unrealistic when dealing with
distributed computations. For example, although the solu-
tion of n linear equations in n unknowns can be accomplished
in order (log n)**2 steps if one ignores information trans-
fer, it can be shown that, for typical interconnection con-
figurations among n processors the interprocessor data
transfers alone require on the order of n steps.

We need to address directly the problem of interprocessor
data transfer and to establish bounds on the amount of com-
munication required for a wide variety of problems in a wide
variety of distributed architectures. 	In general, we need
to deal with the following sorts of questions: 	(i) What are
the characteristics of those problems which allow one to
make effective use of distributed computation? 	(ii) Conver-
sely, can we 	learn to recognize problems whose solution
would require such large amounts of interprocessor com-
munication as to render these problems inherently unsuited
for solution in a distributed manner? (iii) Can we identify
techniques for tailoring distributed architectures to the
solution of particular computational problems? 	(iv) Can we
formulate a theory which combines concerns 	for time-space
complexity with concerns for minimizing interprocess com-
munication, thus providing an adequate framework for asses-
sing the complexity of distributed computations.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 66

6.3.2 Elul=

Time Complexity of Distributed Computations

by

Michael J. Fischer
University of Washington

A 	fundamental question in the theory of distributed comput-
ing is how well a particular system does its job. To
determine this, one needs a specification of the job and a
means of comparing the efficiency of the given system with
other candidate systems.

Three aspects of distributed systems complicate considerably
the 	specification of 	the desired behavior. 	First of all,
non-terminating computations tend to be the rule rather than
the exception, 	so infinite execution sequences must be
described. 	Secondly, because of variablity in the relative
speeds of the different processes, the system is inherently
non-deterministic. 	While 	determinate 	behavior 	is
nonetheless possible, 	it may not be required, so the
specification must allow for variablity in the observed
behavior. Finally, the inputs and outputs of a distributed
system may be dispersed over a number of sites, and the com-
munication aspects of the problem need to be captured in a
natural way.

Finding a satisfactory time measure for distributed systems
is much more difficult than for sequential programs. 	In the
latter case, 	elapsed time is just the sum of the times of
the basic instructions. 	With parallel computations, certain
steps may execute concurrently, so the simple linear depen-
dence of elapsed time on the instruction speed is lost. For
this reason, it becomes attractive to look instead at the
dependencies between steps of various processes rather than
at elapsed time. When these dependencies are represented as
a partial order, the longest path through the order gives a
natural measure that reflects the time necessary, assuming
maximum concurrency.

Once we have a satisfactory notion of the execution time for
a particular interleaved sequence of steps, it is still not
clear how to base a comparative analysis of systems on this
information, for different systems solving the same problem
will not necessarily exhibit the same interleavings. What
is needed is a set of parameters common to all solution
systems in terms of which the time can be expressed.

Finally, the relative efficiency of a system may depend
strongly on whether one is interested in some notion of
total system throughput or in response time at a given site
for in some other auantity).

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 67

6 . 3 . 3 kg222Li

Theory and Formalism

by

L. Lamport
SRI International

Formal methods are needed to specify and prove the correct-
ness of distributed systems. 	The primary requirement for a
specification 	is that it be understandable by humans, since
only a human can 	determine 	the 	correctness 	of 	a
specification. 	Moreover, a specification involving program
variables does not meet this criterion, since prooram
variables are part of the solution, and are of no concern to
the user. There has been very little progress in this area.
It is rare to find even a precise informal statement of what
a simple distributed algorithm is supposed to do -- let
alone a specification of an entire system.

A formal specification is 	useful 	only 	if 	there 	is 	some
formal 	method 	for 	deciding 	if a 	system meets its
specification. Currently, there exist formal methods for
proving properties of non-distributed muttiprocess systems.
We need to discover how these methods can be extended to
distributed systems, or else develop new methods. There has
been some progress in this area, but we are very far from
being able to handle real, complex systems.

I feel that in order to make progress in these areas, it 	is
necessary to be able to deal formally with non-atomic
operations -- to describe the system as a collection of
operations which do not act as if they were executed in any
sequential order. I have some vague, preliminary ideas on
how this can be done.

6.3.4 lansi

Complexity Theory of Distributed Systems

by

Nancy Lynch
Georgia Institute of Technology

Most of the current work in theory of distributed systems
seems to me to focus on a rather high level of programming.
Virtual machines and networks, Hoare-style communication
mechanisms which combine powerful synchronization and value-
passing behavior, related mechanisms which assume preserva-
tion of unbounded numbers of messages, serializers, abstract
data types with "nonatomic" elements, etc. are all user-
oriented abstractions which allow 	logical organization of
complex algorithmic behavior without concern for troublesome

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 68

implementation 	detail. 	Unfortunately, 	there are good
reasons why such detail cannot entirely be suppressed.
Efficiency of operation of a distributed system is of
paramount concern to the user. There are so many more pos-
sible variations in implementation in a distributed en-
vironment than in more traditional 	computing environments
that 	knowledge of the implementation method cannot help but
influence the user's program design; 	indeed, 	some such
knowledge . is 	probably 	necessary for even acceptably
efficient use of the system.

It is important to complement 	high-level 	theoretical and
language-design work with a firmly-based theory of lower-
level distributed programming, geared particularly to
measurement of the efficiency of performance. Very simple
and general primitives such as shared variables and one-way
arbitrary-delay communication channels should be used as a
general basis for such a theory. Various appropriate
measures of resource use and performance (e.g., communica-
tion "bandwidth", total number of changes to variables that
occur, total "depth" of the computation) can then be defined
precisely. Then the costs of implementing the various high-
level mechanisms mentioned above can be assessed objectively
and compared. While the user might not need to know precise
implementation details, 	he would at 	least 	benefit from
knowledge of these colts in resource use, 	for the various
available mechanisms.

As for sequential 	computing, the theory of distributed
systems will not ultimately be concerned with implementation
of different system primitives, but with efficient 	fulfill-
ment of application requirements. 	Thus, the theory can be
expected to focus on design and analysis of systems exhibit-
ing certain desired behavior, in application areas 	suitable
for 	distributed computing (e.g., load-sharing, multiple use
of databases, mail communication, synchronization). 	A 	low-
level model and elementary complexity measures such as those
described 	will 	form a useful basis for such analysis, with
higher-level constructs used along the way. 	Also important
for such a theory will be the development of reasonably
consistent means of specifying desirable behaviors 	for
systems. 	Such behaviors might involve the input-output
interface of a system or the internal state behavior of
processes.

A prototypical development has been carried out (jointly
with Michael J. Fischer and graduate students J. Burns, P.
Jackson, and G. Peterson) for simple mutual exclusion
behavior. Further work is currently in progress.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 69

6.3.5

Theory and Formalism

by

Stephen W. Smoliar

Conventional modes of programming and algorithmic specifica-
tion have many potential shortcomings in the design and im-
plementation of distributed systems. In his 1977 ACM Turing
Award Lecture, John Backus cited seven "inherent defects at
the most basic level" in traditional programming languages:
"their primitive word-at-a-time style of programming in-
herited from their common ancestor--the von Neumann com-
puter, their close coupling of semantics to state
transitions, 	their division of programming into a world of
expressions and a world of statements, their inability to
effectively use powerful combining forms for building new
programs from existing ones, and their lack of useful
mathematical properties for reasoning about programs." Un-
fortunately, a good deal of thinking about distributed
systems has become bogged down precisely because of a
preconceived commitment to these same inherent defects.

A fruitful 	alternative 	is 	the functional 	style of 	ap-
plicative 	programming. 	The 	central 	idea 	is that 	all
programs are expressed as functions. The coupling of a
function with its arguments constitutes an exarellion, and a
process is that computational activity involved in the
evalialian of an expression. The most important aspect of
this approach is that it has eliminated the need for the as-
signment statement, since the only allowable assignments are
parameter bindings. 	Recursive composition of functions
eliminates the need for loops 	(and with it many of the
concerns of structured programming). Finally, input/output
functions may be transcended by a view of files as arguments
and values of expressions.

Multiprogramming concepts may be best expressed 	in ap-
plicative terms by introducing a data structure known as a
mall -fut. A multiset may be viewed as an unordered collec-
tion of expressions whose evaluations may proceed in paral-
lel. Retrieval of data from a multiset is contingent upon
termination (also known as convIrgeasg) of at least one
evaluation process; and retrieval effectively transforms a
multiset from an unordered collection of expressions into an
ordered sequence of values. Furthermore, multisets may be
constructed through multiple applications of the same func-
tion to each of the elements of an already-constructed mul-
tiset. Finally, the conventional conditional expression may
be extended to control whether or not an evaluation process
ever converges: 	if the predicate of a zuaLded conditional
is not 	true, then the evaluation process automatically
diverges.

Georgia Institute of Technology 	 IPC Workshop

Section 6
	

THEORETICAL WORK 	 Page 70

It 	is thus possible to formulate algorithms for distributed
systems in terms of a rather simple applicative language.
In fact, the applicative language provides a very powerful
tool for the study of distributed systems; this toot is the
Language's inierlarellr. 	Such an interpreter must know how
to implement the evaluation of expressions; 	but, more im-
portantly, 	its definition must include a protocol for how
muttisets are constructed and how their elements 	are
evaluated. This protocol may be instrumented to reflect the
behavior of a real-time environment. The interpreter thus
provided a basis for simulation experiments within which one
may investigate how multiple processors may be profitably
applied to multiset interpretation.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 71

SECTION 7

CURRENT TECHNIQUES AND EXPERIENCE

7 • 1 A E/21L11 /AIER =EMILE. 1/1ILB

An Informal Paper

by

Ed Basart
Hewlett-Packard Company

Processes are the basic entity in our computer system. When
a program runs, it exists as a process, and gives a program
the illusion that it has its own private processor. The
system is then constructed to support processes effectively
by making process communication and switching efficient and
inexpensive. As a consequence, multiple processors can be
used to increase the parallelism of the processes running in
the system.

The advantages of such a computer system are program
modularity, 	increased 	performance through parallelism,
growth by adding processors, and physical distributability
of functions. 	Processes are used as the single "object"
that unifies operating system services and resources. 	The
operating system exists as a collection of processes, and
process primitives are used as the kernel of the operating
system.

Processes communicate using queues and the send and receive
primitives. 	Multiple queue writers 	are permitted, 	while
only a single queue reader is allowed. Send and receive
handle the details of the path between processes for any ar-
bitrary hardware configuration of processors. This includes
providing mutual exclusion for processors sharing memory and
invoking data communication drivers in systems not 	sharing
memory. 	The data communications processes resolve the con-
nection between processors, whether the connection is a high
speed bus, through telephone lines, or an indirect path
through more than one processor.

In order to send a message to another process, the sending
process must first establish a link to a 	receiving process
queue. 	Links are made by the file system. Opening a link
is very much like opening a disc file. Capabilities and ac-
cess rights to queues are checked at open time by the file
system, 	which eliminates message verification for the send
and receive primitives, 	and also for the communicating
processes.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 72

After a link is open, the sending process sends a message to
a receiving process by specifying a link number, along with
the data. 	The receiving process reads its queue by specify-
ing its queue number and issuing a receive. 	The receiving
process 	creates a queue initially by asking the file system
to allocate space for the queue and grant the receiver
"queue" access. 	Linking a sending and a receiving process
establishes half duplex communication. Full duplex com-
munication may be established by creating another queue and
opening another link in the opposite direction between the
two processes.

As the file system opens a link, it determines whether the
two processes are residing on different computers. 	If 	so,
the address placed in the 	link is that of a surrogate
process, a data communications driver that handles the
details of the communication line. 	At the other end of the
line is another surrogate data communications process. 	This
process has a link pointing to the receiving process queue.
This mechanism allows uniform process communication for both
local and remote processes.

Creating a 	single queue for multiple writers seems to be a
mixed blessing. One advantage is that the system makes a
single space allocation for the queue, and no new al-
locations need to be made for each writer. Another ad-
vantage is that the reader goes to only one location to read
messages. This is particularly important when the writers
and reader exists on different computers.

The disadvantage of a single queue is that a "mad" writer
can clog the queue. There are two solutions to this
problem. The system can be made cognizant of a writer's
"message rate," and a process can be given lower execution
Priority if its rate becomes too high. The other solution
is to maintain a message count for each writer. The reader
then decrements the count as the queue is read.

Neither of these solutions is very attractive. 	They both
suggest high cost to protect against the mad writer. For
the present the approach is to make queues large enough to
absorb an 	initial outburst from the writer. 	The reader is
given a "break link" function 	that disallows any 	further
messages from a particular writer. This forces detection of
the problem on the communicating processes while relieving
the send and receive primitives of an added complication.

Three similar computer systems have been influential in the
design of our system. They are: 	1) the Tandem 16 computer
system manufactured in Cupertino, California, 2) 	the Demos
operating system for the Cray-1 computer at Los Alamos, New
Mexico, and 3) the Thoth operating system developed at the
University of Waterloo, Ontario.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 73

Our system has two primary differences from the mentioned
ones. 	The first 	is 	in handling all 	types of physical
processor interconnections at 	the primitive level, rather
than doing it in the operating system. The second is in
making much greater use of processes and messages. All of

the above systems break away from their message systems for
certain types of functions that are considered to be too ex-
pensive to be done in a message system.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 74

7 • 2 	IN ELIKRULNL221 2IIIRIAU112 LUEUILI !ILIUM

HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS
AND INTERPROCESS COMMUNICATION THEREIN

by

J. S. Sventek
Lawrence Berkeley Laboratory

7.2.1 IaL2S199112n

The primary focus of the Advanced Systems Group in CSAM is
the question of distributed processing in a network consist-
ing of hosts with vastly differing architectures. Our main
goal, at this point in time, is to provide a distributed en-
vironment which is easily used by people with very diverse
needs; for example:

1) a research group developing a distributed
relational database system

2) administrative personnel maintaining current
accounting databases

3) graphics researchers exploring new and novel
representations

4) high energy physicists designing systems to
collect and sample on-line vast quantities of
experimental data

In order to achieve the goal of easy use, we are somewhat
less concerned with "efficiency" issues than with merely
making the system functional. From empirical studies of a
working system, we hope to discern the "inefficient" aspects
of the system, and may devise algorithms to alleviate the
problems. 	Efficiency, in this context, 	is only concerned
with throughput.

Two entities must exist before an easily used distributed
system can be realized:

1) a common shell 	(command 	line interpreter).
It 	is of somewhat limited utility to provide
virtual terminal capabilities on the hosts in
the network if the user must 	learn 	a
different 	language to communicate with each
one. Much of our recent research has been in
the development of just such a portable
shell. 	A prototype of this shell is current-
ly running on the following systems: 	PDP-
11/780 	(VMS), 	PDP-11/70 	(IAS), 	CDC 	6600
(homegrown operating system).

2) a common file naming convention. 	Current
research (based on a pathname structure) 	is

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 75

progressing in this area, and a prototypical
system is operational on the PDP-11/70 (IAS)
system.

The 	rest of the discussion will asume that these two
entities exist on all hosts in the network.

7 • 2 • 2 Emnaananiai imaniiiial in a laaamiar Sxligs
There are three basic quantities in a civilized computer en-
vironment which a programmer must be able to manipulate.
They are:

1. file - this category includes non-file struc-
tured 	devices 	(e.g., 	ttO, mt0, etc.), data
files, and executable image files.

2. process - this entity describes an image file
plus its context (standard input, output, and
error files, default 	directory, 	priveleges.
etc.) which is currently in a schedulable
state or waiting upon some resource in order
to become schedulable in a particular host.

3. vertex 	- this 	"virtual" 	entity allows two
processes to extablish an interprocess com-
munication Link.

Several operating system primitives are necessary to allow a
programmer to manipulate these quantities.

Elie 2LitnItd

open
close
create
delete
rename
getc
putc
mark
seek
prompt

open a file
close a file
if file exists, open it; else create it
delete file
rename file
get a character from a file
put a character into a file
note current position in a file
position a file
output string with no terminating carriage

control

EL2LS.11 2Litalla

spawn 	spawn process, sending specified arguments
to it

pstat 	query status of a process
kill 	terminate process
suspnd 	suspend process
resume 	resume suspended process

Vertex oriented

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 76

pipe 	create a vertex and open a link to it

A few more words concerning vertices are in order. A vertex
is a valid input parameter to the open and close primitives.
In this way, subprocesses may be linked together by redirec-
ting the respective standard outputs and standard inputs to
a vertex. The subprocess itself is oblivious to the source
or destination of its information. A vertex is also a
transitory quantity, in the sense that when all links to it
have been terminated (via a close operation), it vanishes.
All I/O through a vertex should be synchronous to avoid all
of the problems inherent in buffering asynchronous I/O in
dynamic system memory.

7 . 2 . 3 hamlna lanxtallana
Files are known globally by their pathnames:

/hostname/default directory/filename

Once a process has established a link to a file (via an open
or create), the file is then known internally to the process
by the id returned as the value of the primitive function
invoked.

Processes are known globally by the id returned as a
parameter of the spawn primitive:

/hostname/processid

Vertices are known globally by the following pathname:

/hostname/processid/vertexname

One sees that as long as the first field of a file pathname
can never assume the value of a process id field, this nam-
ing convention uniquely identifies all quantities.

7.2.4 isailaanialian in a Iiialtikulag Inxitansta
A skeleton of a typical primitive would look as follows

if (local (ARGUMENTS) == YES)

perform function

else

reformulate request (if necessary)
forward request to KERNEL
wait for result

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 77

The purpose of the local function is to determine if 	the
request can be performed within the requesting process.
(File and process oriented primitives can usually be per-
formed locally if they involve local files and processes.)
If it cannot be performed internally, the request may have
to be reformulated to include process context information,
and is then forwarded to the KERNEL, which is an extension
of the native operating system. Due to differences in the
services provided by most native operating systems, one sees
that the Local function will be system dependent. The KER-
NEL is a separate process, one per host, which has access to
the physical links of all hosts in the network which are
directly connected to the current host. The KERNEL fields
three types of requests:

1. local 	requests 	for 	local 	services not
provided by the native operating system

2. local requests for services on remote hosts
in the network

3. remote 	requests for local services on behalf
of a requestor on a remote host

For the first type of request, the KERNEL will perform 	the
service, and return status and any other information to the
requestor. The last two types of requests are linked in
their function. 	For type 2, the KERNEL forwards the request
to its counterpart, which receives a request of type 3.
This request is performed, and return information is forwar-
ded to the original requestor through the network.

All types of distributed activity are then supported in such
a network environment. The following examples will serve to
emphasize this point.

7.2.5 LAWARill

Virtual terminal

User is currently interacting with the shell on host A with
standard input, output, and error files being ttn, and
default directory DEFAULT. User wishes to establish virtual
terminal connection with host B. To do so, he/she issues
the following command at his/her terminal

B/shell

A/shell detects that this is a request to spawn a process at
another host, so it reformulates the command as

B/shell <A/ttn >A/ttn >*A/ttn (DEFAULT)

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 78

and forwards 	request to A/KERNEL, which, in turn, forwards
the request to B/KERNEL, which performs the service and
returns status to the requesting process via A/KERNEL. The
next prompt that the user sees will be that of the shell
operating on host B, with the shell on A being suspended
until B/shell has received an end of file on the standard
input.

Host IranlaALanix la Ualilt uliiilita

User on host A wishes to copy a file from host A to host El;
he issues the following command:

copy file B/path/file

The shell will spawn copy, copy will open file, and 	attempt
to open B/path/file. The open request will be forwarded to
A/KERNEL, which in turn forwards 	request to B/KERNEL.
B/path/file 	will 	be opened, 	and all writes to it will be
directed through the KERNELs and the network link.

Intergrocess communication between proces2es on different
hostl

User on host A wishes to analyze a data file with a utility
available on host B, directing the output of that utility to
a graphic display program on host A which displays the
results on the user's graphics terminal.

% B/analyze <mydata 1 A/graphit

A/shell will issue a spawn request to A/KERNEL with the fol-
lowing command line

B/analyze <A/DEFAULT/mydata >A/shellid/pipel &

where A/shellid/pipel 	is a vertex created by A/shell. 	The
ampersand (&) indicates that A/shell does not wish to 	wait
for the completion of 	the spawned process. 	A/shell will
also 	spawn 	A/graphit, 	redirecting 	its 	input 	to
A/shellid/pipel. A/shell can then sit back and monitor the
progress of the two cooperating processes, regaining control
when they complete or terminating them if errors occur dur-
ing their execution.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 79

7 • 3 MIL012 EAILUAL2 Al AI 1U ELOANIII

by

R.L. Gordon
PRIME Computer, Inc.

Keywords: 	mailbox, IPC primitives, switch-board tasks,
access lists

7.3.1 initagullian
It 	is 	the 	thesis 	of 	this short note that IPC facilities
built around the notion of a protected mailbox could provide
the basis for a robust set of primitives. 	Robustness, 	in
this case, implies their utility in conventional mul-
tiprogrammed uniprocessor systems as well as shared memory
multiprocessors, loosely coupled multiprocessors and local
and long haul networks. The proposed mechanism can support
different communication forms (N-process protocols), addres-
ses security issues, and assists users in the synchroniza-
tion of what is basically an asynchronous phenomenon
(process communication).

7.3.2 EL222Alg Ij Eallii11

Mailboxes are created by a process "P" executing a primitive
of the form:

u = create(Access_List, T)

which 	is 	sufficient 	to bind 	the process name "P" to the
unique descriptor "u" of the created mailbox, and associate
the 	list 	of 	processes appearing in the "Access_List" with
the mailbox "u". 	In addition the create primitive specifies
a maximum time "T" between mailbox use (I assume mailboxes
that 	are not 	used are not useful). 	Thereafter, if the
identifier "u" is valid, (e.g. not equal to ERROR) then any
process "Pe" appearing on the "Access_List" and wishing to
send mail to the process "P" would use a system call of the
form:

send message(buf, u)

and continue execution. 	This primitive would have the
effect of eventually placing the contents of "buf" in the
mailbox "u" of process "P" along with the name of the sender
"P 9 ". Process "P", wishing to receive messages in mailbox
"u", would make a system call of the form:

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 80

receive message(buf, u)

which would prohibit 	any 	further progress of "P" until
either a message is received from a process on the
"Access_List" or no message has been received during the
time interval "T", specified in the "Create" primitive.
Notification of this fact would would appear as a message in
"buf" if the user had included a system process responsible
for communication monitoring in his "Access_List". [See
Section 7.3.6 on Fault Tolerant Aspects.) To complete the
set of primitives a system call of the form:

delete(u)

would cause the mailbox "u" to be retired forever.

7 • 3 0 3 InitljLLtion

Initial 	dialogues are established 	by 	"receiving" 	an
identifier "s" of the current system mailbox in a mailbox
"r" that was originally created with only the name of a well
known system process on the access list. The system mailbox
identifier "s," would then be used to send messages to the
system kernel, with replies being received in mailbox "r".

One of the more difficult issues is with the design of the
mechanism needed to establish communication with generic
processes, (e.g. processes that represent a single service
but may have multiple instantiations) and with discovery of
newly created processes. The trouble stems from the fact
users are incapable of establishing a dialogue with any
process not known to them, and therefore cannot include them
on the access list. For these reasons, it seems desirable
to provide a "switch-board process" whose sole function is
to provide a generic to specific name mapping. For example,
such a service would be used to return the specific process
name (or names) of the latest version of a fancy text
formatter, when supplied with the generic name "format".

7 . 3 . 4

A unique descriptor represents a sort of capability (at
least for communication purposes) since possession of a
mailbox identifier provides the possesser with the potential
for sending messages and requests to the process bound to
the identifier. However, if the target mailbox does not
have the sender on the access list the message may be
discarded by the system, thus essentially controlling com-
munication through the maintainence and enforcement of the
"Access_List." It is clear, therefore that security issues
revolve around the ability to control changes to the
"Access_List," an issue already explored by file system
designers.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 81

If one takes the view that a message is an attempt to access
an object 	by a principal 	EGRAH 72], then this facility
contains all the elements of the access matrix model ELAMP
713 of protection. 	By having different processes act as
monitors of objects one has a formalization of 	the access
model since the identification of the accessor and the ob-
ject being sought are both available to the monitor process.

7 • 3 • 5 autuallaliga

The availability of the senders identification coupled with
the access control list provides the means to achieve
solutions to synchronization of processes and to detection
of boolean combinations of events. Creation of mailboxes
with only one process name on the "Access_List" provide the
facilities for a simple "pipe" (one way communication chan-
nel) 	that can be used to construct a self 	clocking
"pipeline" 	with 	the 	"send" and 	"receive" primitives.
Logical "or"-ing of the input from two processes, say A and
B, 	can be accomplished by simply including A and B on the
"Access_List." more complicated forms of 	synchronization
can be accomplished by creation of an intermediate process
that performs the appropriate level of demultiplexino.
Broadcast transmissions are simply achieved by iteration
over a set of available mailbox identifiers.

7 0 3,6 FAST I2iltani Al21111

There appear to be many forms of communication errors that
are recoverable by the technology underlying the IPC level.
Failure of underlying mechanisms can easily be reported to a
process if it opens a channel for that purpose by including
the name of a system process on the "Access_List" on an al-
ready opened mailbox, or opening one for just that purpose.
It seems to me that users who do not want to be concerned
with error handling, should not be forced to carry along a
lot of extra apparatus for those who do. One nagging
concern of mine is whether the system should force error
messages (especially for timeouts) into mailboxes that have
not included the communication monitor on the "Access_List."

Positive acknowledgement is purposefully not 	included in
this scheme, but is left to the user to construct his own by
setting up a duplex path between processes. As an aid, the
design of the "create" primitive must have a value "T" for
the maximum time between messages. Since the primitives are
designed to be used over a wide range of situations most ap-
plications will have some knowledge of how long it is
reasonable to wait for a reply or input from a 	cooperating
process.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 82

7.3.7 2amiatz

A set of primitives for interprocess communication have been
proposed that seem suitable for implementation in a wide
variety of circumstances. Only briefly mentioned however,
is the issue of process addressability when communication is
desired between several processes. The solution of this
problem requires the development of a name space architec-
ture that tackles the relationship between files, devices,
processes, users and many other system objects, certainly
beyond the scope of this short note.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 83

7.4 GLEE 4L10.21121 a 2011111III

by

James R. Low
University of Rochester

The M2dgi 2f C2mgiali2a

The model of interprocess communication that we use in DSYS-
PLITS has evolved from that used in the RIG (Rochester
Intelligent Gateway) Operating System. Basically, we think
of a program being composed of several independent processes
(we call them "modules") communicating with each other only
through messages. There is no directly shared memory.
Processes are relatively stable and to "fork" a process
means to create a totally new environment independent from
that of the creator. Our basic model does not force any
hierarchy on the processes though it is relatively easy for
a programmer to think in terms of hierarchies if he wishes.

2SYS (2istributed Sysiem)

DSYS 	is basically a 	set 	of facilities added to existing
programming languages and operating systems to support
inter-process communication across a network of heterogenous
machines (DEC PDP-10 running DECSYSTEM-10, Data General
ECLIPSEs running RIG, and XEROX ALTOs running the ALTO
operating system). DSYS consists of operating system inter-
faces and user interface procedures.

Processes communicate via messages. The SEND primitive sup -
ported by DSYS takes three parameters: 	the message to be
sent; the process identifier of the destination 	(originally
obtained through 	interactions with a name service process,
or provided in a message from some other process); and a
transaction key 	(analogous to a "port"). 	All connections
between processes are implicit. If a process has obtained
another processes name it can send that process a message
without any explicit "open" command. Of course, the proces-
ses themselves may ignore messages which do not conform to
higher Level (user-specified)) protocols. Transaction keys
are used to separate various conversation streams. DSYS
will guarantee that all messages with a specific transaction
key sent from one particular process to another will arrive
in the proper order. No guarantee is made about messages
with different transaction keys. Details of the reliable
transmission and flow-control mechanisms in the DSYS subnet
may cause messages from one process to another with
different keys to arrive in a different order than they were
SENT.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 84

Selective reception of messages is provided. A process may
state that 	it wishes to receive only messages from a
specific set of other processes or about 	specific transac-
tion keys. Thus the general form of RECEIVE is

RECEIVE msg FROM (sndris sndr2,... sndr3)
ABOUT (trnil, trns2...)

If there is more than one message that has suitable SENDER
and TRANSACTION, an arbitrary one is selected (subject to
the constraint of ordering within a SENDER-TRANSACTION pair
mentioned above). If the user wishes to enforce more
general priority mechanisms he may use the PENDING construct
to see if there are suitable high priority messages before
he receives lower priority ones. PENDING takes the same ar-
guments as RECEIVE and returns TRUE if there are suitable
messages and FALSE otherwise. 	It does not actually perform
the RECEIVE so the message queues are left intact. 	If all
else fails and the user wants more general reception
criteria then he can ask to receive all messages and then do
his own local oueing. We believe this to be very rare and
have not seen this done in the programs coded so far.

DSYS performs all queue management, reliable transmission,
and flow control. Application programs are notified of ex-
ceptional conditions (communication lines going down, other
processes in the "distributed job" breaking) via emergency
messages.

PLITS MellAgt1

DSYS itself considered messages as just strings of bits. We
have found it desirable to provide higher level message sup-
port to applications programs. This higher level message
support is called PLITS.

Traditionally, fixed message formats have been used for ap-
plication programs. To design a new message type, a
programmer would lay out an explicit template for his data.
He would have to state the number of pieces of data, their
data-types; the external representation of the data type;
and the translation routines to use to translate between the
external (used in messages) representation and the internal
(used in his program variables) representation of the data.

In PLITS, we try to remove the burden of message template
design. 	By automating the process we also remove one class
of possible errors. 	In PLITS, the applications programmer
sees a message as a set of keyword value pairs. We call
these pairs, "slots". To construct a message he specifies
the particular set of slots he desires. The receiver can
determine (for individual messages) which slots are present

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 85

and their values. 	Thus, a message to a file server might
Look like:

SEND (action -openfite9 mode -update, name - "MYFILE",
directory - s<mydir>", initiatposition - 09 bytesize - 8)
TO FileServer ABOUT OPNTransaction;

"action", "mode", "name" and so forth are the keywords 	(or
slotnames). 	The message would be identical as far as the
receiver were concerned if the sender had specified a
different order of the slots. We do not require that every
message contain a specific set of slots, but of course it is
an error if a process attempts to fetch the value on a non-
existent slot. Defaults may be easily implemented using the
PRESENT 	IN primitive. 	For example, the file server above
might wish to assume that the directory is "<SYSTEM>" 	if
none is specified.

RECEIVE msg FROM ANYSENDER ABOUT ANYTRANSACTION;

IF NOT (directory PRESENT IN msg) THEN
PUT (directory - "<SYSTEM>") IN msg;

thedirect := msg.directory;

When a user wants to use a slot in his program he must
declare the keyword and the type of its value both in the
sending and receiving process.

STRING SLOT filename;

MODULE SLOT continuation;

In the existing 	implementation of PLITS (see below) the
data-type of each slot is sent in the message and
consistency is checked during the translation from the ex-
ternal format of messages to the internal format of messages
during reception of the message. Implementation is underway
to have a "loading" 	time 	(when a 	process 	joins 	a
"distributed job") when the consistency of slot definitions
would be checked. Small identifiers for each slot would
also be given at this time. This would decrease the over-
head of the slot mechanism (currently in addition to the
data, a type code and a character string are sent for each
slot).

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 86

In the current implementation the "data-type" of a slot im-
plies the external representation of the value of the slot
within messages. Thus we have several INTEGER types.

INTEGER16 SLOT small;

INTEGER32 SLOT large;

with implied external representations of sixteen and thirty-
two bits. Note: this does not imply that the internal
representation for the value of the two slots above must
necessarily be different. For example, in the PDP-1()• both
values would be represented using 36-bit integers. When a
message is sent, however, a check is made during the encod-
ing into the external format that the values are in the ap-
propriate ranges. Future implementations may have a
"negotiation" phase during "loading" in which the various
processes "agree" on the external precision necessary for
each data value (one "negotiation" strategy would be to use
enough bits for the maximal declared range).

Current Slate of Implementation

The DSYS has been running since last Spring on the POP-10
and ECLIPSE computers. 	A distributed vision application was
encoded this past Summer. 	Recently an ALTO DSYS support
package has been used to link ALTO•s to the ECLIPSE. 	The
PLITS message format has been running on the POP-10 for over
a year (using a preliminary version of DSYS that ran only on
the POP-10). A design for the support facilities necessary
for PLITS on the ECLIPSEs and ALTOs has been completed.

Almost all the support software has been written either in
SAIL (on the PDP-10) or BCPL (on the ECLIPSEs or ALTOs).

Georgia Institute of Technology 	 IPC Workshop

Section 7
	CURRENT TECHNIQUES AND EXPERIENCE 	Page 87

7 . 5 alma 2E 121228BLAI 22EAUAI2AII21 92IIIIIILA

PARAMETRIC MODELS OF CONCURRENT COMMUNICATION ACTIVITY

by

Bill Buckles
General Research Corporation

INTRODUCTION

Using a distributed system to feign, simulate, or emulate a second
distributed system is of interest primarily to those engaged in design. The
principal problem in this approach is the inherent timing discrepancies between
the existing and target systems. Lamport [1] has made invaluable contributions
applicable to this area and this study is directed at specializing his results
to emulation.

MODELS AND STATES

The goals are to determine (1) what aspects of communication behavior
can be observed from an emulation? (2) what ancillary relationships must be
embedded in an emulation to assure that the primary behavioral attributes can
be extracted? and (3) if the ancillary relationships are not exact, how much
confidence may we place in the extracted primary behavioral attributes? In
order to achieve this, a definition of process state has been derived that
deals only with aspects of inter-process communication. The target process
state is distinct from the emulation process state, but the former is embedded
within the latter. Additionally a progression of six communication models have
been defined, each an elaboration of the previous one.

Model 1 is a single process emulating itself. It may be schematically
represented as

Atodmo 	‘It2/m1 	
V:4/m2 	at5/E3 	tt8/m4

1 	At3 	at 5 	ate

Work sponsored by the Ballistic Missile Defense Advanced Technology Center,
P. O. Box 1500, Huntsville, Alabama 35807 under contract number DASG60-78-C-0058.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 88

where At
i
denotes a time interval, m a message, and the even intervals denote

active communication periods. Model
i
2 is a single process emulating a second

process with uniform time distortion (either rate increase or decrease). Model 3
is a single process emulating a second process with both uniform time distortion
and non-uniform perturbations (strictly slow-down). In this model, the emulation
process may contain more periods than the target process. However, there must
exist an order-preserving mapping from the target process periods to the emulation
process periods. Model 4 advances to multiple processes with equal time distortions
and perturbations. Model 5 relaxes the equality constraints on distortions and
perturbations, but requires the two be balanced. That is, inequality among the
time distortions of various processes must be offset by perturbation. Model 6
is completely unconstrained with respect to both distortion and perturbation.

The state of a single target process, i, at time period j is denoted by
the pair s

ij
= [At, n] where At is the duration of the most recently completed

period and n is the information sent or received. The state of the target

	

system is denoted S = [s
lj

, s
2j2 	

n

	

, 	s
nj

]. The state of a single emulation
i

process i after time period k is denoted by the 5-tuple a ik = [s
ij

, Atl,p,r,p(k)]

where s
ij

is the state of the target process, At' is the duration of the most

recently completed period, is the information sent or received during the last
period, r, a constant, is the uniform time distortion, and p(k) is the
instantaneous perturbation at the beginning of the current period. A system
state is denoted by E = [a

lk '
a
2k ''

a
nk J. A system state change occurs

1 	2
when exactly one a

ij
assumes a new value.

PRELIMINARY RESULTS

Time models are inherently continuous while
above is discrete. Lower and upper bounds on the
desirable to fix the amount of error between state
distortion) is constant, only p (the perturbation)

F1 glb(p) = p(n) [1 - (At' / 	Ati)]
i=1
n-1

lub(p) = 0(n) + [At +1 / r 	At!
1
]

i=1

the state model described
time relationships are
changes. Because r (the
may introduce error:

Unfortunately, lub(p) required the prediction of the period duration, At v+i ,
of a current target process. An assumed order-preserving mapping illustrating
the lower and upper bound errors follow.

Georoia Institute of Technoloov 	 IPC Workshon

EMULATED) 	
PROCESS / lub Example

REGION

EMULATION
PROCESS

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 89

EMULATED
PROCESS) 	 (glb Example

/ I\

N1EMULATION / 	f 	t 	NJ

DIVERGENCES
REGION

PROCESS

Model 6, being the most general, is of interest. For example, determining
what measures must be taken to preserve the state transition ordering in the
emulation to reflect accurately the state transition ordering in the target
process is necessary. If S a < Sb in time and the transition to S a is embedded

in E
x

and the transition to S
b is embedded in E them we would desire that

E
x
< E. Let a., be the specific substate that changes value at E

x
and a

km y x 13 	 y
be the specific substate that changes value at E . Both S

a
< S

b
and E

x
< Ey if

y-1 	 x-1 2= w] 	T
w

	

Y 1J 	 y 13 	x km
w=x 	 =0

	

where 1p p qv 	p
= a qv

(p(v)) • paqv (r) and
T
w

is the normalized elapsed emulation

time in period w-1. In symbols:

Tw = r • aii (p(w) • au (s(60).

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 90

CONCLUSIONS

These and other relationships dealing with the communication behavior
of emulation processes have been formally proved. Some knowledge on the problem
of what information to collect and how to analyze it has been gained. It is
believed that future investigation will further strengthen the utility of the
models.

REFERENCES

1. 	Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System," CACM 21,.7 (July 1978), 558-565.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 91

7 . 6 EILIL aa MLLE-aka REPORT

by

Robert L. Gordon
and

Jack A. Test

The enclosed Prime research note is partly based upon a
couple of early 1978 internal Prime R&D meetings concerned
with "Task Control and Communication for Multiple Processor
Systems". It discusses the synchronization and interprocess
communication mechanisms used in a number of important
operating systems and explores the importance of these
mechanisms for the development of future computer systems•
and is offered as additional material for the current tech-
niques and experience section of the conference report,
since it summarizes a review of mechanisms used in several
well known systems.

7.6.1

Two in-house meetings concerned with "Task Control and Com-
munication for Multiple Processor Systems" were held on
January 11, 1978, and March 22, 1978. The purpose of the
meetings was to provide a forum for the discussion of exist-
ing operating system mechanisms for process management and
interprocess communication as related to Prime's efforts in
process-based computer network architectures.

The 	two 	meetings consisted of a series of informal
presentations by members of Primes R&D staff on other
systems and discussions on related PRIMENET communication
meetings. The particular topics were: (1) "Process Com-
munication In DEMOS". (2) "Process Control And Communication
In UNIX"• (3) "TANDEM And VAX Process Structure", (4) "The
Multics IPC Facility"• (5) "Event Counting And Sequencing In
Distributed Systems"• and (6) "Communication Primitives For
PRIMOS".

The purpose of this note is to discuss the synchronization
and interprocess communication mechanisms developed for the
systems mentioned above and to explore future directions in
the development of process-based computer networks. Obser-
vations concerning the IPC facilities of the operating
systems discussed are based upon the authors' knowledge of
the systems• available literature, and the Prime Conference
talks. Accordingly. Section II of this note presents brief
summaries of the IPC facilities, and Section III states some
conclusions and future directions. The References & Selec-
ted Readings, 	at 	the end of this note, 	lists several
articles 	pertinent to the study of 	Interprocess Com-
munications.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 92

7.6.2 ualtunized2VIES EA11111111

Included in 	this 	section 	are 	discussions 	of 	the
synchronization/ipc mechanisms developed for the systems
mentioned in the Introduction. 	For additional 	information
regarding each system, 	refer to any of the pertinent
references.

7.6.2.1 Process Communication in DEMOS

DEMOS is an operating system under development at the Los
Alamos Scientific Laboratory for the CRAY-1 computer [BASK
777. A task or process in DEMOS consists of a program and
its associated state information which includes a link
table. The primary mechanism for communicating between user
and operating system tasks is by passing messages over
links. Links are associated with, but maintained outside
the address space of sender tasks and are essentially one-
way (simplex) communication paths. All operations on links
are performed by the kernal of the operating system which
insures their integrity.

Appropriate siandkrd liail are provided by the system for
user tasks requesting operating system services. These are
provided in an automatic and transparent way, one such stan-
dard link being to a lAitchk2Azd talk. Switchboard tasks
can arrange to get two or more mutually cooperating proces-
ses together, and since tasks may under certain conditions
pass link identification information as a message, dynamic
process networks may be easily constructed.

Links resemble capabilities, so their management must take
into account many of the well known difficulties of managing
capabilities. Some of these, such as lack of control over
link passing and link duplication have been partially al-
leviated by classifying links into specific types and
restricting specific operations to these types. Other
facilities include data Igamlni iinki and &hannlil that are
associated with links in order to provide facilities for
multiple event handling and windows into task address
spaces.

The communication mechanism of DEMOS is not pure in several
ways. First, data segments are an escape from communication
only by messages; and second, conditional receives and chan-
nel interrrupts provide an escape from the sychronization
provided only by message primitives. However, with proper
hardware support these escapes might not be necessary.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 93

7.6.2.2 UNIX Process Control/Communication

The UNIX system was developed at Bell Telephone Laboratories
for the DEC 11/40, 45, and 70 minicomputers. The basic
literature reference to the system CRITC 74] provides a good
explanation of the principle ideas incorporated in the UNIX
design.

In UNIX, a "process" is defined to be the execution of an
"image" where an image is a computer execution environment,
namely: allocated core, register values, open files, etc.
Images are small in litaX, roughly 32K words + status in-
formation, and the system is oriented around their execution
manipulation.

Processes are organized in a parent-child tree-structure
within the UNIX system environment. Parent processes can
spawn (create) child processes dynamically through a fork
system call. Initially, the child process is a copy of the
parent process but with a different return value from the
fork call. The child inherits the parent's environment
(i.e. 	open files, register values, etc.) 	but does 	possess
its own memory 	image. 	Typically, 	a 	child process will
initiate an erect system call which will overlay the child
image with the startup image of a program named in the
call. In this manner, a parent process can create any child
process it desires.

The main form of communication between parent and child
processes is accomplished through pipes created by the
parent process. Since the parent's environment is lost when
a child process overlays itself, the pipe descriptor must be
passed as an argument to the overlaying "exec" system call.
Pipes serve as serial data paths with one "write end" and
one "read end". 	Multiple processes can write or read
single pipe but data can be intermixed if the pipe is not
locked on writes. 	In addition to the pipe mechanism in the
original release of UNIX, new versions of the operating
system allow processes to communicate through messaged that
are routed and queued for unique process identifications.
Messages in UNIX serve as a more 	general 	form 	of
interprocess communication than pipes since "unrelated"
processes can communicate using them. For mutual exclusion
and synchronization purposes, the UNIX system provides both
wait/lianal. and 12uaiin2 semaphores for use by user proces-
ses.

There are a number of 	limitations 	to the current IPC
mechanisms available in UNIX. Specifically, pipes, because
of their serial nature, must be used carefully in order to
avoid mixed streams on the write end or lost streams on the
read end. In addition, the message mechanism in UNIX
requires the process-id of sending and receiving processes.
Unfortunately, this information is not available through any
system administered switchboard and must be handled by the
processes themselves in some arbitrary manner. The naming

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE
	

Page 94

of processes, therefore, is not adequately addressed in
UNIX.

In summary, the UNIX timesharing system provides a dynamic
and flexible process environment with a high degree of
modularity. Some notable shortcomings in the UNIX IPC
facility (in addition to the problems discussed above) are:
(1) the inability of a process to wait for multiple piped or
message inputs, (2) the small address space available per
process, admittedly a PDP-11 imposed limitation, and (3) the
lack of any network process management capability.

7.6.2.3 Interprocess Communication in TANDEM

The Guardian Operating System [BART 77] for the Tandi , m Com-
puters model 16 computer has as its foremost goal the
maintainance of a failure-tolerant computing environment.
Even though the underlying Tandem hardware consists of mul-
tiple computers and multiple dual-ported I/O devices, the
operating system is designed to give the appearance to the
user of a unified system through the novel application of
several software abstractions.

The first abstraction provided is that of a 2L2s.ell• 	Each
processor module may have one or more processes residing on
it, however a process may not execute on any other processor
than the one it was initially created on. Each process in
the system has a unique identifier or process-id of the
form: <cpu ft, process if), which allows it to be referenced
on a system wide basis.

Process 	synchronization 	primitives 	include 	cokniin2
stmaghgre2 and process local tunt fun. Semaphores may be
only used for synchronization between processes within the
same processor and are typically used to control access to
resources such as resident memory buffers and message
control blocks. Event flags are predefined for up to eight
different events and are signalled within a processor by
either hardware events, such as device interrupts, or by the
function AWAKI. All event signals are queued so that they
are not Lost if the event is signaled when a process is not
waiting on it, and a process may wait for the first of one
or more events via the function WAIT. Processes may also
soecify a maximum time to block which, if exceeded, results
in the return of an error condition to the process that
requested it.

The message system used for communication between processes
residing on different 	processors uses 	five 	primitive
operations: LINK, LISTEN. READLINK, WRITELINK, and
aRLAKLI16, to implement what can be best thought of as
dialogues between requestor/server pairs. Messages are
queued for processes and result in the setting of an event
flag for processes wanting to "LISTEN".

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 95

With the implementation of processes and messages, processor
boundaries effectively disappear. System wide access to I/O
devices is provided by the mechanism of 2rocess lairs. An
I/O process-pair consists of two cooperating processes
located in two different processors that control a
particular I/O device. One of the processes is considered
the "primary" one and the other the "backup" process. The
primary process handles requests sent to it but sends in-
formation to the backup process via the message system in
order to assure that the backup process will have all the
information needed to take over control of the device in the
event of an I/O channel or device error. Because of the
distributed nature of the system, it is not possible to
provide a "block" of driver code that could be called direc-
tly to access the device. While potentially more efficient,
such an approach would preclude access to every device in
the system by every process in the system.

Processes are not grouped in classical ancestry trees. 	No
process is considered subservient to any other process on
the basis of parentage, and two processes, one created by
the other will be treated as equals by the system. When a
process "A" creates another process "B", via a call to the
procedure NEWPROCESS, no record of B is attached to A. The
only record kept is in process B where the creation "id" of
A is saved and is known as B's "mom". When process B stops,
a STOP message is sent to process A. If B wants to know
whether A has stopped it must "adopt" its mom.

The innovative aspects of the Guardian Operating System lie
not in any new concepts, but 	in the synthesis of pre-
existing ideas. 	Of particular note are the low level
process and message abstractions. 	By using these, all
processor boundries can be hidden from both the application
programs and most of the operating system. These initial
abstractions are the key to the system's ability to tolerate
failures and provide the configuration independence neces-
sary to run over a wide range of system sizes.

7.6.2.4 Process Communication in Vax

The VMS operating system architecture EDEC 77] supported by
the VAX hardware is a process structured system. Because of
this, the designers of VMS were motivated to look for and
evaluate the utilization of alternate process communication
schemes in order to ease the design and implementation of
VMS. It is significant that this study resulted in three
different mechanisms for process comunication in order not
to force-fit applications into using any one particular
type.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 96

The three interprocess communication facilities provided by
VMS are all software implemented. The first facility is ap-
parently used for trusted processes (e.g. Kernal processes)
and consists of the notion of event flags, event flag
clusttrl, and mtIkl that allow boolean combinations of event
flags. Since it is well known that this form of (semaphore)
type communication can be easily abused by naive users it
apparently is restricted only to trusted processes.

The second type of interprocess communication used in VMS
(internal communication) consists of lend receive gmegts
that have implicitly associated event flags. This mechanism
serves as a way of passing variable quantities of data
between trusted processes with a fairly high degree of
efficiency. Each user process builds its own buffer (data
packet) and sends it to a "receive" queue, which then sets
the associated event flag for the receiving process.

The third type of interprocess communication mechanism
(generalized communication) consists of primitives for hand-
ling mailbgxes. Mailboxes can also be thought of and im-
plemented as queue or FIFO files, thus they can use the same
protection mechanisms as files. Of course mailboxes, like
files, can be classed as both temporary and permanent so
that interprocess communication can take place while proces-
ses are "absent" or dormant, a useful feature for writing to
logged out terminals. 	In addition, processes communicate
with mailboxes in a fashion similar to record-oriented 	I/O
thus providing a framework for advanced concepts such as I/O
redirection.

VAX/VMS supports not only processes, but also lobs that
constitute a collection of subprocesses and grgmg2 that are
sets of processes that share resources. Subprocesses can be
spawned and can have the rights of the creator as well as
the rights of the spawned image thus allowing a form of en-
hanced rights.

It seems that the VMS operating system provides a rich set
of interprocess communication primitives; whether it is a
consistent set and can be managed over the life of the
system remains to be seen.

7.6.2.5 The Multics IPC Facility

The interprocess communication facility supported by the
Multics system is based upon the concept of tylai
The primary purpose of an event channel is to provide synch-
ronization between processes.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 97

Event channels (which can be thought of as a numbered slots
in the ipc-facility tables) are either evInizAl211 or eyent-

_call channels. The event-wait channel receives events that
have occured and awakens the process that established the
channel if it is blocked waiting for an event on that chan-
nel. The event-calf channel responds to the occurence of an
event by calling a specified procedure if the process which
established the channel is blocked waiting for any event.

For events to be noticed by explicitly cooperating proces-
ses, event channel identifier values are typically placed in
known locations of a shared segment. Processes can block
waiting for an event to occur or can explicitly check to see
if the event has occured. If an event occurs before the
target process blocks, the process is immediately awakened
when it does block.

In summary, the event-channel facility in Multics provides a
flexible synchronization mechanism. Typically, processes
establish channels and wait for events on one or more of the
channels they have created. The utility of this approach is
clearly demonstrated by the use of the ipc-facility
throughout Multics for all user process coordination and
terminal I/O handling.

7.6.2.6 Event Counting and Sequencing

Synchronization of concurrent processes is usually required
for the relative ordering of events internal to each
process. Most currently favored synchronization techniques
such as monitors [HOAR 74] and semaphores involve mutual ex-
clusion, a technique that only indirectly notes the oc-
currence of an event. A alternate set of synchronization
primitives have been proposed by Reed and Kanodia CREED 771
where a process controls its synchrony with respect to other
processes by observing and signalling the occurrence of
events through operations on objects called eyenics2unta. An
eventcount is an abstraction representing the number of
events in some class of interest that have occurred.
Operations on eventcounts are: ADVANCE(E) - Signal one
event; READ(E) - Return the number of previous ADVANCES on
E; and AWAIT(E,V) - Suspend a process until READ(E) >= V.
ADVANCE purely transmits information, READ and AWAIT purely
observe. In contrast the P operation on a semaphore is not
a pure observation primitive since it can modify the
semaphore. 	Pure observation or signalling primitives are
more attractive for use in secure systems CLAMP 73]. 	If
only one process executes ADVANCE operations on an
eventcount, ADVANCE and READ can be concurrent. If more
than one process does ADVANCES, a different eventcount can
be given to each process, and the sum of those eventcounts
gives the total number of events in the class.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 98

When mutual exclusion is needed (when events must be ordered
dynamically, such that the ordering is not known in ad-
vance), a sequencer can be used. A sequencer operates like
the ticket machine in a bakery, and has one operation called
TICKET, that returns the number of previous ticket
operations on that sequencer. An eventcount and a sequencer
can be used to implement a semaphore. Several eventounts
and sequencers can be used to implement semaphores that al-
low a process to wait for several different events.

There seem to be at least two attractive advantages over
other alternate synchronization schemes that eventcounts
have for distributed systems. The first advantage is that
the ADVANCE operation affords a natural broadcast mechanism
to all processes that might be waiting on an event, because
unlike simple semaphores the signaller need not know the
names of the intended observers. The second advantage is
the avoidance of mutual exclusion where only the relative
ordering of events is required, thus tending to limit the
amount of serialized code 	in systems, 	code that often
results in performance bottlenecks. Eventcounts and
sequencers could be used by an operating system, instead of
user-visible semaphores, for implementing more general
interprocess communication mechanisms with shared files and
this mechanism could be made available to the user to coor-
dinate the use of shared resources.

7.6.2.7 Intertask Communication Primitives For PRIMOS

Several intertask communication capabilities currently exist
within the Prime operating system (PRIMOS). Both
lock/unigck and Kounling semaphores, are implemented at the
microcode level, and are available for system and user
tasks. In addition to these basic synchronization
primitives for communication between processes on the same
processor PRIMOS supports a set of PRIMENET inter-process
communication capabilities based on x.25 flavored "virtual
circuits". These capabilities allow a user process to
establish a full-duplex virtual connection to another user
process whether local or remote.

Virtual circuits can be managed at the user program level by
the proper use of a collection of subroutine calls to PRIMOS
and provide a "Level 3", X.25 Interprocess Communication
Facility (IPCF).

The major services provided are for forming a connection,
breaking a connection and transmitting or receiving data.
Generally, two different forms of a service are provided.
The first form is an abbreviated calling sequence, with only
a minimum amount of information needed to be supplied by a
user in order to establish and use a virtual circuit. The
second form is a more detailed one that allows a user full
access to all fields of the X.25 "Level 3" defined packet

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 99

formats. 	The 	latter form is intended primarily for users
wishing to form X.25 connections to non-Prime hosts on
Public Data packet networks.

Eleven network primitives currently compose PRIMENET and
provide capabilities to: establish status as a network user
(X$ASGN), establish a network connection (X$CONN), get local
connect information (X$GCON), accept a connection (X$ACPT),
clear a connection (X$CLR), hand off a connection (X$GVVC),
receive via a connection (X$RCV), transmit via a connection
(XSTRAN), wait on transmit or receive (X$WAIT), get network
status (X$STAT), and terminate network user status (X$UASN).
This set of PRIMENET primitives is based upon the X.25
protocol and is due for release under REV 17 of PRIMOS. The
chief shortcoming to the current PRIMENET set of primitives
is the inability to support multiple readers and/or multiple
writers per connection.

The addressability defined in the basic X.25 specifications
refers only to a single 14-digit address per host, although
it is not uncommon for a host (Like PRIMOS) to handle mul-
tiple processes and users. Therefore, in order to decide
which user or operating system service should control a con-
nection, each incoming "call request packet" in PRIMENET
must specify a network "port." This port, coupled with the
14-digit address of the target system, designates a target
process.

Each host in Ringnet has a pool of 255 available ports that
may be assigned to any process on a first come, first served
basis by a call on the operating system. 	However, only
ports 1 	through 99 are available for users; the rest are
reserved for system use. Permanent port assignments to a
process are possible by controlling the order in which
Processes are initiated just after system startup; 	other-
wise, 	there is no absolute guarantee that a particular
process is associated with a given port number.

The short form of the initial connection protocol uses an
ASCII host name (e.o. "ENG.15") instead of the long 14-
digit address and a port number previously acquired by the
target process. The "connect" function is typical of the
IPCF primitives and the request for it is shown as a partial
example of how a circuit is formed at the program level.

CALL X$CONN (VCID, PORT, ADR, ADRL, VC_STAT)

The variable ADR points to a string containing the name of
the intended host (i.e ENG.15), ADRL contains the length of
the name (6), and VC_STAT represents the status of the
requested service. Upon completion of a successful connec-
tion, a "virtual circuit identifier" (VCID) is returned that
can be used for the subsequent transmission of data. Incom-
ing calls for a particular port in a host are queued on a
first come first served basis. Information concerning a
call request at the head of a port queue can be obtained via

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 100

a system call, so that connections can be accepted, refused,
cleared, etc. 	Calls are kept pending for 90 seconds, during
which the requestors• 	status 	is that of 	"connection in
progress." Other X.25 services are provided to users that
allow for waiting on the completion of a network event, ac-
cepting or clearing a call, passing off a virtual circuit to
another process in the same host, and obtaining status in-
formation about a particular circuit.

At a level above the PRIMENET primitives, PRIMOS supports a
remote-login capability (RLOGIN) and a network file-access-
method (FAN). The File Access Manager (FAM) is a PRIMOS
subsystem that extends the functions of the PRIMOS file
system to a network of hosts. Virtualization of the file
system is accomplished by permanently assigning a port (255)
to the local FAM process of each host, over which virtual
circuits to neighboring FAMS are used to accomplish remote
file operations on behalf of a user.

A FAM process in a host fields requests from local users for
file operations on remote hosts, handles incoming file
requests from remote hosts, and maintains status and update
information concerning the current state of network connec-
tions and file system devices. When the PRIMOS supervisor
decides that a particular user request is destined for a
remote device, it queues the request for the local FAM
process and suspends the user. FAM packages this request in
a message and passes it off to the appropriate remote FAN,
which performs the requested file operations on behalf of
the user. The remote FAM process sends the original request
and the requested data back to the local FAM, which copies
the returned values into the user's address space and causes
the user to be rescheduled. Because certain file primitives
are guaranteed to be "atomic" operations, all file functions
are performed to completion just as if they occurred 	local-
ly, even 	if they require multiple messages or updating of
Local supervisor tables.

Since both local and remote operations on a particular file
are handled through the file system of the host that owns
the particular file, all of the normal file protection and
other mechanisms, such as locking a particular record while
writing, are automatically accomplished. Applications using
remote data as well as local data run without any change.

In a similar fashion, the ability of 	a 	user 	to 	"remotely
log-in," 	as 	if 	their terminal were physically attached to
the host of their choice, is achieved by the operating
system multiplexing all remote terminal traffic through port
"0." When a user "logs in," they may designate a system to
be attached to as:

LOGIN SMITH -ON ENG.15

At this point the local login server establishes 	a virtual
circuit 	to the target host and requests the initiation of,

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 101

and connection to, a process in the remote host. From then
on the local terminal buffers are effectively diverted to
the input and output buffers of the remote process running
on the selected node.

A proposal for an implementation of pigel [SCHE 78] was
discussed as an alternative to virtual circuits. The pipe
mechanism does allow multiple readers and multiple writers
and thus, together with the X.25 PRIMENET, would facilitate
most applications that demand IPC facilities incorporating
multiple readers and writers.

In summary, the current PRIMOS interprocess communication
capabilities allow local and remote process cooperation
through X.25 flavored "virtual circuits", in addition to the
semaphore primitives for local communication. These "point-
to-point" mechanisms may not suffice for distributed process
applications demanding N-process protocols; however the set
of applications demanding such protocols at this time seem
small.

7.6.3 g.ansaullana and Emil= 21r11112nx

As this report has 	illustrated, 	the process concept 	has
become increasingly central, in recent years, to the design
of computer systems both at the hardware and software
levels. 	There are many reasons for this development, two
important ones being: 	(1) the continuing decomposition of
systems and applications problems into sets of cooperating
parallel programs 	for greater modularity, 	functionality,
flexibility, and maintainability; and (2) the increasing
cheapness of processors and memory allowing the assianment
of processes to processors in an economical way. As proces-
ses have become "cheaper" to create, maintain, and destroy,
the flexibility, scope, power, and economy of interprocess
communication mechanisms has become increasingly central to
the effectiveness of multi-process systems.

A wide variety of mechanisms for interprocess communication
have been surveyed in this report. Perhaps the major reason
for such a variety comes from a desire to provide in one set
of primitives: (1) flexible process synchronization tools,
(2) data transfer mechanisms, and (3) communication control
and error recovery. 	Some of the major issues involved in
the design of 	interprocess communication mechanisms are
briefly discussed below.

1. 	Process Naming. : 	Many systems have inadequate
facilities for identifying names of processes
within the same host, let alone for processes
residing on different hosts. Part of the
problem stems from an inconsistent view of
the relationship between the set of allowable
names for files, devices, processes, users,

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 102

mailboxes, generic 	system 	services, 	and
specific system services. 	Until this problem
is 	settled 	the 	design 	of 	specific
interprocess communication primitives 	cannot
focus on the set of fundamental objects that
they 	will 	be 	dealing with. 	This 	is 	a
difficult issue, since it is here that many
of the system security issues are also ad-
dressed.

2. Control Of Links Between Processes: Control
of communication paths between processes fun-
damentally depends upon the nature of process
relationships. 	If process relationships are
tree structured, then the status of a child's
communication with other processes might be
monitored and controlled by the parent. 	On
the other hand, 	if each process wants to
maintain the concept of sovereignty then the
basic challenge is how to provide the ability
for cooperating processes to establish a
monitor process that is capable of control-
Ling the communication paths between them.

3. LITIL21 121 2a, a Ekui ttilittn EL2LftlIti: The
need for a flexible set of operations to
control data-flow between processes is of
major importance 	in the design 	of 	IPC
mechanisms. 	This 	issue 	involves providing
processes with the ability to: 	control 	mul-
tiple 	links, respond to out-of-band signals,
receive/transmit/flush stream and 	message
data 	types, 	and 	receive/transmit 	link
capabilities. 	A 	number 	of 	additional
capabilities might also be considered, such
as allowing processes to define data-type-
links that facilitate the passing and
manipulation of complex data structures.

4. sxnhLanizatian 01 Er.211111: 	Clearly, a
major function of interprocess communication
is to provide 	either 	explicit 	or 	implicit
synchronization between processes. Early
forms of interprocess communication depended
only on the correct use of explicit synch-
ronization primitives for sharing sections of
main memory. 	In some systems, temporary
files 	serve as synchronizing points between
job steps (implicit), while in other 	systems
processes synchronize and exchange data by
signalling (explicit). Whether explicit or
implicit synchronization primitives should be
provided is still very much an open question.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 103

With the advent of cheap communications and distributed
systems these issues are becoming more important each day to
both the manufacturers and users of computer systems. 	A
workshop addressing 	IPC design is, therefore, scheduled to
be held in Atlanta, Georgia, on the 20-22 of November, that
will bring together a selected group of researchers in this
subject area to address the five general topics listed
below:

(1) Assess the present state-of-the-art for IPC
mechanisms in distributed data processing
systems.

(2) Identify 	the data 	available on the actual
performance of various IPC policies 	and
mechanisms.

(3) Assess the potential value of various IPC
mechanisms satisfying the operational and
performance 	requirements 	for 	highly
distributed systems.

(4) Identify shortcomings in the present 	state-
of-the-art and identify promising areas for
future research and experiments on this sub-
ject.

(5) Identify possible 	standardization levels in
IPC design.

Some of the issues the workshop is intending to examine in
detail are: 	addressing issues, hardware support, transport
mechanisms, 	flow control, 	out-of-band 	signalling, 	fault
tolerance, 	security, 	synchronization, 	and performance and
application programming impact. Prime Research is actively
participating in this workshop which also has the support of
both IEEE Computer Society and the three ACM Special
Interest Groups, SIGOPS, SIGARCH and SIGCOMM.

In conclusion, there are far reaching ramifications to the
demand for, and the development of, interprocess communica-
tion facilities and cheap processes. At the user level, a
greatly enhanced system functionality and flexibility can be
achieved, and at the operating system and hardware levels,
the need to efficiently support this functionality is lead-
ing to new architectures and OS designs. As the section on
PRIMOS in this report suggests, Prime is developing new IPC
mechanisms for the enhancement of current systems and is at-
tempting to incorporate some of the ideas developed in other
systems. 	In addition, as new computer architectures are ex-
plored at Prime, 	the need to include hardware support for
critical IPC functions is an area that 	requires study and
understanding.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 104

7 0 7 aAIA aataNiaAII2li alai/UAL

DATA COMMUNICATION SOFTWARE

by

G. L. Chesson
Bell Laboratories

Introduction

Distributed computing environments are based upon, and whol-
ly depend upon, data communications. Although there exists
a sizable and growing hardware technology for data com-
munication, software has not generally kept apace in recent
years. Better software tools and techniques are needed in
order to experiment with the new hardware devices that are
available in the laboratory as well as to improve the
capabilities for cooperation between our normally monolithic
operating systems. These notes outline the direction and
status of communication-oriented software research with the
context of the 7th edition of the UNIX operating system.

Several software components are being experimented with in
computer systems at Murray Hill, 	including a PDP-11/45,
11/70•s, 	an Interdata 8/32, and LSI-11•s. 	Some of the
software is part of the UNIX kernel, or 	resident operating
system, 	and the remainder consists of programs that utilize
the new kernel facilities. 	The software components in the
kernel include:

1) primitives 	for managing intermediate-sized
contiguous areas of kernel data space,

2) a "packet driver" which can be used to impose
framing, 	sequencing, 	checksumming, 	and
retransmission 	procedures on a character
device,

3) multiplexed and non-multiplexed interprocess
communication channels.

The 	salient 	characteristics 	of these components are
described in the next three sections. The organization of
the higher-level codes which use these components will not
be discussed here.

52aLa 112adall/at Primitives

The previously existing space-management procedures in the
UNIX kernel were used to implement the terminal character
lists and the disk buffer cache. Since the size of an al-
location permitted by these routines is either one byte or
512 bytes, it is not surprising that an additional mechanism
was needed for data communications. There are but two

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 105

primitives needed: 	one to allocate and one to release. 	The
new primitives manage contiguous memory segments that are
some multiple of 32 bytes in size up to a maximum of 512
bytes.

It 	was 	intended that the buffer management primitives be
fast enough to be invoked from within interrupt 	routines.
This means that 	recombination or garbage collection must
also be capable of being done at 	interrupt time. 	These
considerations 	lead to a strategy which employs a few
judiciously chosen bit-map tricks in conjunction 	with 	the
constant allocation sizes mentioned above.

The 	allocator may be 	called 	with a 	flag which directs
whether it should sleep when space is not available or
whether it should return a failure indication. This was
built in because the allocator must not be allowed to sleep
when called from an interrupt routine. However, it may be
equally distressing to have it fail. Current practice in-
volves building strict space bounds into interrupt processes
that cannot live with allocation failures. This way space
requirements are known in advance, and the allocator is used
to dedicate a private buffer pool where it is needed.

Although the new space management primitives are useful for
allocating "ordinary" I/O buffers, their real usefulness is
in supporting the fifo queues needed for data rate balancing
between readers and writers. Because of the address-space
limitations of the POP-11, memory is a critical resource,
and it is not possible to devote as much space to data
queues as many high-bandwidth applications require. As the
software described below matures, it will become necessary
to extend fifo mechansims to secondary storage or to non-
kernel memory space. The _methods used in the current
primitives can, and probably will, be applied in these other
circumstances.

Pa,iket 2river

The packet driver consists of a group of routines similar in
name and function to the parts that make up the typewriter
control software; 	namely, 	there are open, 	close, 	read,
write, ioctl, read interrupt, and write interrupt entries.
A software switch, called the Line-discipline switch, placed
at the proper locations in a character device driver selects
whether a call should be made to the standard system control
routines, or to the corresponding entries in the packet
driver or other line-discipline. This switch mechanism may
be thought of as a bidirectional filtering process which may
be selectively inserted between a device driver and a user
program.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 106

The packet driver is designed to operate character devices
in a packet mode with the error checking and flow controls
that are necessary for reliable data communication. The im-
plementation is organized so that flow control functions are
at a high level and are independent of framing and other
details of link control. This means that device charac-
teristics are transparent at the flow control level, allow-
ing the code to be used in different contexts - e.g. with
both bit-oriented and byte-oriented lines, or DMA and non-
DMA devices. Also, implementations exist for the UNIX ker-
nel, as a user-level subroutine package, and currently for
one non-UNIX system. Emphasis has been placed on learning
how to produce communication software that is operating
system-independent as well as machine-independent. In prac-
tice this means that the packet driver implementations
listed above consist of protocol routines which are common
in all cases plus io and clock routines which are system
dependent. Since protocol changes invariably affect only
the common code, the logistics of making network-wide im-
provements or repairs simplify to updating a common file and
reloading the appropriate system programs.

There 	exist 	numerous 	link control and flow control
procedures, however they were judged not suitable for our
uses for a variety of reasons. Some typical complaints are
that flow control procedures are not really end-to-end, pac-
ket formats are complicated and verbose requiring a fair
amount of real-time scanning, multiplexing is usually
defined in immutable ways, and error control, framing, mul-
tiplexing, and flow control are usually mixed together
instead of 	being 	separated 	where 	possible. 	These
considerations led to the following:

1) flow control 	is based on a sliding "window"
of sequence-numbered packets. The numbers
are modulo-8, the maximum window size is 7,
and the window sizes are controlled by the
receivers. The retransmission strategy uses
either "go-back-N" or selective single packet
retransmission at the receiver's discretion.

2) packet sizes and window sizes are negotiated
between two communicating packet drivers.
The packet and window sizes in each direction
need not be the same.

3) packets may range in size from 32 bytes to a
maximum of 4096 as determined by the formula
32 * (2 ** k) where k is an integer, 0 < k <
7.

4) all message headers are the same size, unlike
x.25 and other similar protocols.

5) it 	is possible to multiplex the link at the
packet level, or within packets, or both.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 107

The software overhead of running the packet driver on 9600
baud 	lines 	is quite low. 	The implementation is efficient
enough that data rates exceeding 50K baud have 	been
demonstrated with this software using a a PDP-11/45 and non-
DMA devices. 	As one would expect the overhead at higher
data rates consumes the available cpu resources. 	For this
reason the packet driver is looked upon as an algorithmic
testbed and intermediate step toward improved computer
peripheral hardware for communications.

Interproce21 and Procels-deyice CommMnicalion

Multiple independent asynchronous data streams and events
comprise the greater part of the environment for data com-
munication software. It has been observed many times that
"blocking" I/O as implemented in the UNIX timesharing system
does not provide direct methods for dealing with these
entities, and there are sound architectural reasons why it
does not. Nevertheless, a process that must read from more
than one source sould not have to wait on idle data sources
since input data will be missed or delayedd on lines that
are actively producing data while the process is blocked.
(It is assumed that polling techniques are unacceptable.)
Also, the flow-control scheme used throughout the system
causes writer to block if the total amount of written data
exceeds a threshold. Such processes sleep until the
corresponding reader (process or device) 	consumes some or
all of the waiting data. 	A communications process typically
must write to several processes and/or lines at once. 	It is
somewhat 	inefficient to force such a process to block on a
"slow" device or process when there are other readers that
can be written to. Thus it would apppear that an operating
system must provide techniques for dealing with asynchronism
and blocking or flow-control problems as well as supply a
useful means for establishing data bpaths between the
various data sources and sinks. The mechanism outline below
accomplishes these immediate goals in a simple and direct
manner.

Two entities are defined: channels and multiplexed chan-
nels, also called channel groups or groups due to the
similarity with 	existing notions in telephony. 	A channel
consists of a pair of full-duplex communication paths. One
pair is designated as the "data" path and the other as the
"control" or "signaling" path. This architecture explicitly
recognizes the need for what is usually called "out-of-band"
signalling by dedicating a 	communication path for the
purpose. 	In the implementation, each path has some amount
of fifo or data queuing built into the transport mechanism.
However, the actual data transport is dealt with indirectly:
in order to avoid unnecessary copying of data from place to
place within the system, the data is placed somewhere using
a buffering mechanism, tokens indicating where the data can
be found are passed from place to place. This decoupling of

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 108

the fifo and buffering functions from the data transport
mechanism increases the efficiency of data movement and

permits insertion of or tuning of buffering mechanisms in a
transparent manner.

A channel 	can be thought of as a software null-modem: a
null-modem consists of two plugs connected by some wires
(fifo/buffering) so that data and signals transmitted at one
plug are received at the other and vice versa. In the hard-
ware world one may connect computers, computer terminals,
and various other digital devices to one another via null-
modems. In the software world one may attach processes,
devices, other channels, and groups (see below) to the ends,
or plugs, or a channel.

The multiplexed channel construct is a bundling mechanism
("Bundling" is a convenient term to describe a construct
which fans-in, fans-out, or otherwise merges data. Examples
include the PORT mechanism developed at RAND and elsewhere,
certain aspects of the C.mmp system, and the UNIX timeshar-
ing system tee command.) which supplies both a multiplexing
discipline for merging data from many channels and the in-
verse mechanism for sending data to the individual channels
in a bundle, or group. A process can areange to have
various devices and processes "plugged-in" to the ends of
channels and bundle all the opposite endings together in a
multiplexed channel, or group. In this way a read command
issued on the multiplexed channel will return any and all
data (up to the requested limit) available from all the at-
tached channels. 	This eliminates 	the blocking 	reader
problem mentioned above.

It 	is possible to bundle the multiplexed stream associated
with a group into another bundle, or super-bundle. This al-
lows tree-structured data path networks to be built up. The
maximum tree height and fan-in at each group is fixed at 4
and 16 respectively. By numbering the channels bundled into
a group, a unique name for every possible tree node is
defined as the pathname, or sequence of channel numbers
encountered along a path from the "top," or root, of the
tree to any particular node. The pathname or sequence num-
bering of a particular node is referred to as an index. (An
index is represented as a 16-bit quantity interpreted as a
sequence of 4-bit numbers.) All exchanges between the
operating system and a process owning channels and groups
are carried out using indices.

Multiplexed channels are created using the following C code:

fd = mpx ("namelmode);

which has the same effect as crest 	("name",mode) 	in that
"name" is placed in the file system. In addition reads and
writes on "fd" are translated by the operating system into
I/O operations on channels attached to the group.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 109

I/O operations on a group are carried out via the standard
UNIX timesharing system calls:

cc = read (fd,buf,count);

cc = write (fd,buf,count);

The contents of "buf" are a concatenation of some number of
variable-length structures each having the form of an index
followed by a byte count followed by the indicated number of
data bytes. (Control channel data is distinguished from
data channel data by an escape convention based on the mes-
sage byte count. If the count indicates a zero-length mes-
sage, then the actual byte count follows the zero and is in
turn followed by control channel data.) The "buf" formats
for reading and writing are identical, and in both cases
"cc" indicates the number of bytes actually transferred out
of a total request of "count" bytes. (Another form of write
is provided in which "buf" consists of indices, byte counts,
and pointers to the actual data. This format reduces the
buffer filling overhead on output and improves the per-
formance of certain programs.) On write operations if "cc"
< "count" and the contents of "buf" were destined for more
than one channel, then it is known that at least one channel
fifo threshold was exceeded or some error condition was
encountered. Precise information can be obtained by reading
the group because the system immediately passes back status
information. The index numbers of blocked channels and the
number of data, one ,essage for each blocked data channel.
When the previously written data is finally consumed,
another control message is sent to the group owner indicat-
ing the readiness of a channel to accept data. These "bloc-
king" and "unblocking" messages allow a process to continue
to serve channels even though it temporarily cannot transmit
to all its channels. A complementary function is provided
whereby a process can enable or disable incoming data trans-
fers on selected channels.

If 	"d" is a character device file descriptor obtained via a
call resembling

d = open ("/dev/name",2);

then a channel can be created and the character device at-
tached to the channel by executing

ch = join (d,xfd);

where "xfd" is the file descriptor for the multiplexed chan-
nel and "ch" is the new channel number.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 110

Multiplexed channels may be joined or "bundled" to other
channels by using the join primitive as outlined above and
letting "d" be the file descriptor of a multiplexed channel.
There are additional primitives for "unbundling" and
manufacturing file descriptors that map into channels.
Moreover the non-multiplexed file descriptors for channels
may be used as the standard input or output for any UNIX
program. (The multiplexed file dexcriptors provide direct
access to the 	control 	paths of 	channels, 	but 	this not
meaningful for the non-multiplexed case. Currently, ioctl
commands on the non-multiplexed end of a channel are treated
as messages on the control path of the channel.) The
preceding discussion indicates how channels and devices can
be attached to groups. It remains to indicate how channels
are attached to processes. There are two techniques. One
involves using the extract primitive, which is a converse of
the join operation, to manufacture a file descriptor from a
channel. Using standard techniques found, for example, in
the UNIX shell one arranges fro an extracted file descriptor
to be the standard input and output for a new process by
executing UNIX close and dup calls usually followed by
fork/exec. The second method has more interesting
Properties - if "name" is the name of a group, then

fd = open ("name"92);

triggers the following sequence of events:

1) the kernel notices that an open is being done
on a group rather than an ordinary file.

2) if a new channel 	cannot be joined to the
group or if the process which created the
group is no longerrunning, the open fails im-
mediately.

3) otherwise, 	a message is sent on the control
channel of the group to the owner process
stating that an open was requested. The
effective UID of the opening process as well
as the index, 	x9 of 	a new 	channel are
included in the message.

4) the owner process may respond with either at-
tach(x) or detach(x) which respectively com-
plete the job of hooking channel x between
the group and returning file descriptor fd,
or cause the open to fail.

An open sequence as described above results in the creation
of a channel. The file descriptor returned to thr process
executin ght open will be "plugged-in" to one end of the
channel, and the other end of the channel will be attached
to the group. A read on the file descriptor will be satis-
fied by writing on the channel through the group, and con-
versely for writing on the file descriptor and reading the
group. An immediate application of this facility is in im-

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 111

plementing virtual terminals, or a "telnet server" as it is
called by the Arpanet community. A process first
establishes a group and arranges for one channel to be a
data path to a similar process runing on another computer.
If the remote process sends a message asking that an
interactive environment be established, then the local
process forks, opens its own group, and starts up the shell
with the file descriptor returned from the open as the stan-
dard input and output. Meanwhile the original local process
arranges to copy data from the newly created channel to the
remote computer and vice versa. Of course there are certain
niceties involving access permission, process groups, and
other details which are not explained here, but they can all
be handled neatly within the channel/group organization.

The method outlined above provides a form of 	"port"
facility. 	Its 	main disadvantage is that one must know a

port name. System or network-wide services would presumably
have well-known names, but it is important to have a class
of unbound names that the system can recognize. 	Interpreta-
tion of such names might 	require searching for a remote
machine having a certain service facility or might require a
simple translation of some sort. In order to accomplish
this a mechanism has been established whereby a multiplexed
channel may be designated as the unique interpreter for all
such unbound port names. In the operating system any open
requests on names containing "!" 	are treated as open
requests on the special channel. 	One use of this mechanism
is to treat "namel!name2" as a request for a file with name
name2 on a machine designated by namel. Since strings of
this form may be passed in to any program on the system, one
may write

diff machinel!filel machine2!fi1e2

and expect the UNIX diff command to be run with input from
machinel and machine2.

For some applications the bandwidth that can be achieved by
implementing data stream switching between channels in a
user process, implying a copy operation from the kernel to
the switch process and back to the kernel and then a final
copy to the destination process or device, may he quite
adequate. The primary example is the virtual terminal
scheme outlined above. 	However this is not true for many
other applications especially those involving file transfer
or file access. 	For these cases a connect primitive is sup-
plied 	which establishes a "short-circuit" connection in the
kernel between a channel and file descriptor. That is, at
the place in the operating system where data buffered in a
channel would be copied to a user process as part of a read
operation, the data is handled as though a write on the file
descriptor had been done. The connect primitive specifies
whether the symmetric short-circuit path is also meant to be
established - that is, whether writes on the file descriptor
should induce a direct copy to the agent reading the "other"

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 112

end of a channel. A disconnect operation is also provided
to break open short circuits.

The semantics of carrying out a normal open call on a mul-
tiplexed channel name provide a useful range of interprocess
communication capabilities. This is what one expects from a
process communication system. However, by making slight ad-
justments to the name recognition algorithms in the system a
wider class of file names can be "trapped" by the open
routines 	in the kernel and passed as messages to a program
for further interpretation. 	This comprises a very powerful
mechanism for distributing system functions in interesting
and useful ways: once a channel has been established via
this name translation procedure, subsequent I/O on the chan-
nel by the process can be redirected to other computers or
other process at will and without modification to the
initiating program.

p

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 113

7.8 oisTRItlaill 	AN2 210111.L in

DISTRIBUTED INTERPROCESS COMMUNICATION AND SIGNALLING

by

G. Le Lann
IRIA/SIRIUS

7 . 8 . 1 Mt 2tnsLai igalta

let us consider a system including several processors being
linked together through an interconnection structure. We
will distinguish between processors being accessed by exter-
nal users who wish to initiate activities and processors
which run these activities and may return results to some
external users. Initiation of activities, execution control
and transmission of data are accomplished through transmis-
sion of messages. In the following, we will refer to these
processors respectively as senders and receivers of messages
(see figure 1). We will not make any assumption regarding
the size of these messages.

Georgia Institute of Technology
	

IPC Workshop

CURRENT TECHNIQUES AND,EXPERIENCE 	Page 114 Section 7

A .1 A 12h222112 122t22221.21.122 2/ Ill 1/2121

■■•■■ •■■■■■■•■■■■■■•■•■■■1

I 	I
•••••••■•■ > 1

Is ' 	 	 I RI
1 -----

•
I 	1 •
I 	S •
1 	1 	

• I - - ------

-- --> 1 	1
• 	 IRI
• 1- 	- 	 - - 	 - I ■ >1---1

■•■■

1 	1 ----- g■ I- 	- - 	- 	>1 	I
I 	S 	I 	 ------ 	R

1
■•■■■■■•■■■■■■•■■■■■■■■■■•■

senders 	 interconnection 	 receivers
structure

> Flow of messages

Our assumptions will be:

- senders and receivers may be micro, mini or
maxi processors,

- these processors may fail,
- the interconnection structure is any resilient
hardware structure (using alternate routes in
telecommunication 	networks, 	multiple
busses/cables in multiprocessors/multicomputers,
radio frequencies, etc.),

- errors, duplicates and losses are possible dur-
ing the transmission of messages,

- message transit delays are variable,
- there is no privileged processor in charge of
handling either communication or interprocessor
cooperation.

We would like first to describe some of the problems we see
to exist in such systems and, second, to present a solution.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 115

7 . 8 . 2

7.8.2.1 Multiple Sender/Single Receiver Systems

Let us consider a system as depicted in figure 1 but includ-
ing only one receiver. We can identify two different
problems:

i) for any sender, 	it may be necessary to
maintain a strict sequencing of messages be-
ing sent to the receiver

ii) the various message flows converging at the
receiver may have to be serviced by the
receiver 	according 	to 	a 	particular
discipline, which may be dynamically changed
and not be known statically or guessed by the
receiver.

Problem (i) is a problem of end-to-end signalling or single-
path signalling (sps). Solutions to the sps problem are
well known. The "window" technique is an example of such a
solution.

Problem 	(ii) 	raises 	the issue of multiple-path signalling
(mps) that is the problem of serializing incoming messages
issued in parallel by different asynchronous sources. A
mechanism is needed whereby senders may enforce distantly a
particular serialization of messages at any time. For exam-
ple, this is needed when two senders A and B wish to
establish a particular ordering 	for 	initiating activities
(e.g., A before B).

7.8.2.2 Multiple Sender/Multiple Receiver Systems

Let us now consider a system including several receivers.
We will distinguish between two cases:

i) 	 redmndani Ixlieml

Major 	motivations 	for 	running 	several
identical receivers are to make the system
able to survive receiver failures, to provide
for a geographically dispersed but unique ac-
tivity visible from various locations
(receiver areas), 	or to 	relax constraints
regarding system maintenance.

The serialization 	of 	incoming 	messages
(either 	fortuitous or enforced) 	must 	be
unique for all receivers. 	This 	is an mps
problem.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 116

ii) Partially 	redundant 	systems, partitioned
systems

These systems include several receivers run-
ing activities which may be strictly
identical for some of the receivers, as well
as activities which are different for all
receivers.

In addition to the motivations already mentioned, other
reasons for considering such systems are to provide for
various activities being run in parallel and to allow for a
modular and dynamic growth of the system. In these systems,
an activity being initiated by a sender may span several
receivers. This raises the need for coordinating the
various 	individual 	serialization processes over these
receivers. Finally, according to user requests, the mapping
between senders and receivers, i.e. the need to set and
reset cooperation paths between senders and receivers will
be constantly changing with time.

To summarize, we want to maintain a unique serialization of
incoming messages for those receivers which act as "twins."
In addition to this, we want to be able to achieve:

- For every receiver, a specific 	and 	local
serialization of messages 	in step with the
dynamically changing subset of senders 	it 	is
cooperating with

- decentralized 	coordination 	between 	those
receivers which have to serialize messages
related to multi-receiver activities in order to
avoid conflicts between such activities.

This is again an mps problem.

7 •8• 3 isalkin2 12r. A 121m1i2n: Atguirsasnil

Potential advantages of distributed computing systems are
numerous. However, it is not so simple to find a solution
to a particular design problem which does not annihilate
some of these advantages. A number of requirements which
are considered to be of primary importance for a
"distributed solution" to the mps problem are listed below.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 117

7.8.3.1 Parallelism and Response Time

A solution should take full advantage of the parallel nature
of the system; parallelism in processing as well as in com-
munication may result in a good resource utilization ration.
This has a non-negligible impact on system costs and
response time.

7.8.3.2 Resiliency

A solution should survive failures. 	Actually, 	we need a
more precise measurement of such a property which would ex-
press the number of simultaneous 	failures a solution may
survive. 	This is the notion of resiliency.

7.8.3.3 Overhead

Costs of a solution may be low, monstrous, or acceptable.
It is necessary to evaluate overheads as regards traffic
(number and size of additional messages), processing (handl-
ing of additional messages) and storage (for "control" in-
formation).

7.8.3.4 Permanent Rejection

When conflicts occur (between "simultaneous" activities, for
example), how does a solution lend itself naturally to avoid
infinite waiting, without resorting to any exotic or ad-hoc
mechanism?

7.8.3.5 Fairness

Again, 	when conflicts 	occur, 	a solution should not favor
systematically the same processor(s).

7.8.3.6 Extensibility

If a solution may keep on working under dynamic system
reduction 	(failures), then it is necessary to show how this
solution matches the requirement of dynamic 	system ex-
tension. What this means is that it should he possible to
reinsert or to add processors to the system without disrupt-
ing the functioning of the system.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 118

7.8.3.7 Simplicity

When time has come to implement a system, problems of under-
standing, specifying, debugging and maintaining the software
corresponding to a particular solution become preponderant.
This last requirement may well be one to look at very
carefully when considering to build a real system.

7.8.4 A Isamilsan

We have seen that an mps mechanism is needed if one wishes
communications between several senders and receivers to ex-
hibit some specific properties. Obviously, signalling in a
distributed system will be accomplished through the exchange
of messages, i.e. signalling will rely on communication.

This apparently recursive problem requires some structuring.
We will then assume that any convenient technique is used in
the system for solving the sps problem.

On top of this "layer," we will build our mps mechanism.

7.8.4.1 A Virtual Ring Structure

Sending processors are given permanent identities. 	If n is
the predicted maximum number of these processors, identities
will be integers belonging to the interval CO, n - 17. As a
result, it is possible to view these processors as being
sequencially located along a virtual ring. Each processor i
has a well known predecessor and a well known successor, i -
1 and i + 1 in the absence of failure (the marks - and +
stand for operations modulo n). There is no assumption made
regarding the mapping of processor identities on physical
addresses. In other words a virtual ring strructure does
not assume any particular physical topology.

As processors are located on a virtual 	ring: 	it 	is only
needed for each of them to know the identity of their
respective predecessor (pred) and successor (suc).

A permanent and virtual communication path is established
between adjacent processors. A message sent on such a path
may travel over different physical links as provided by the
interconnection structure. Specific techniques may keep the
failure of a particular link transparent to processors.
However, occurrence of one or several failures may preclude
communication between adjacent processors. Detection of a
communication path breakdown as well as detection of a
processor failure can be achieved by using one of the fol-
lowing techniques.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 119

7.8.4.1. 1 Mutual Suspicion
Every processor sends regularly "life messages" to its suc-
cessor on the ring. These messages should be acknowledged.
If the successor fails to return acknowledgements for a
given period of time, it is declared dead and its predeces-
sor undertakes a ring reconfiguration. Actually, there is
no difference between an abnormal behaviour of a successor
and a breakdown of a communication path. In both cases, the
successor should not be maintained on the ring.

Acknowledgement of life messages is bound to some internal
checking 	procedure which, if successful, indicates that the
processor is safe. 	In order to achieve correctness checking
transitivity along the ring, it is necessary to bind the
transmission of life messages to this checking procedure as
well.

Consequently, a processor 	cannot 	be 	returning 	ack-
nowledgements to its predecessor and fail in checking its
successor.

7.8.4.1.2 Explicit Meslage Acknowledgement
It may be required for messages sent over a communication
path to be acknowledged. A number of retransmissions are
allowed before deciding that the communication path is
broken. Numerous examples of protocols aimed at monitoring
transmission on various transmission media can be found in
the literature. They will not be detailed here. Also, it
may happen that messages are not acknowledged because the
successor has failed. As explained before, whatever the
case, that successor should not be kept on the ring any
longer.

Thus, every processor on the ring must be provided with a
reconfiguration protocol to be used every time a failure
leads to a ring breakdown. A simple example of such a
protocol is given below.

7.8.4.2 Ring Reconfiguration

Let us consider a situation where processor i and processor
i+2 are respectively predecessor and successor of processor
1+1 when this processor fails or when the communication path
between i and 1+1 is broken. It is only necessary for
processor i 	to send to i+2 a specific 	message, to be
referred to as a reconfiguration message, meaning that from
now on predecessor or processor 1+2 is processor i. 	This
message must be acknowledged by 1+2. 	If an acknowledgement
is not 	received by i after several attempts, i will send a
reconfiguration message to 1+3, thus excluding i+2 from the
ring. The extreme situation is that of a ring including
only one processor.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 120

The decision of initiating a reconfiguration being taken ex-
clusively by one processor for any particular failure, it is
easy to infer that no incoherence can arise because of the
exclusion of a processor from the ring. Because it is
required for a reconfiguration message to be acknowledged,
it is possible to devise some more elaborate scheme (for
instance, utilizing passwords) to avoid the 	possibility 	of
having a 	single faulty processor excluding all the others
from the ring. 	An example of a protocol using passwords is
given below.

7.8.4.3 The Extensibility Property

If processors are allowed either to fail or to leave, it
should be possible to reinsert on the ring a processor which
has been repaired or which decides that it 	is "on" again.
Also, we want 	it possible to expand the system while the
system is running. To this end, a three-party protocol is
needed such that the ring is always correctly configurated.
This protocol must survive failures itself and should entail
as small a disturbance as possible. Let us assume that
processor j has to be inserted on the ring.

To this end, 	j 	must 	send a specific message, called an
"insert" message, containing its identity j to its potential
successor (5+1, J+2, ...). 	Let us assume that k is on 	the
ring. 	Processor k 	knows the identity of 	its current
predecessor. 	Let us assume that pred Ck1 is processor i.

Upon receiving such a message, k checks that the following
condition holds:

pred Ck2 < identity within insert message < k

(< is modulo n).

If 	it 	is 	so, 	k checks for an exchange of m life messages
with j and then sends to I a message meaning that 	i 	should
accept j as its new successor. 	This message contains a pas-
sword X. 	Upon reception of this request, i checks for an
exchange of m life messages with j. 	When this is completed,
i sends to k a "switch" message containing the password X.
This message is intended to avoid processors i and k being
fooled by a malicious processor j and it is also used as a
means to perform safely message transmission switching on
the new path (i, j, k) as explained below.

Upon receiving the "switch" message, k acknowledges it and
listens to j to detect the reception of a message containing
code X.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 121

Upon receiving this acknowledgement, I performs the update
suc (i) := j; the first message to be sent to j is a message
including code X. This message and other subsequent mes-
sages are passed on to k by j.

When receiving a message with code X, k updates pred [k]
with value j and then stops listening to i.

There is no interruption of message transmission on the
ring. 	If something goes wrong with j no disturbance is
introduced on the existing ring. 	The message containing
code X 	is a good vehicle to maintain a FIFO message trans-
mission on the ring should this be required. 	There is no
special provision made to guarantee that loss of messages
does not occur between i and k just before or after recon-
figuration of the ring performed by k. Loss of control mes-
sages is accepted on the ring and is harmless as will be
shown later.

If transmission between i and j or between j and k turns out
to be impossible, then a normal ring reconfiguration is un-
dertaken.

7.8.4.4 The Control Token Mechanism

Cooperation between processors located on a virtual ring can
be achieved by providing them with some control privilege.
The solution suggested here is to have a particular message,
called the control token, circulating on the ring. Only
when holding the token should a processor be allowed to
initiate some specific activity. 	Upon completion, the token
is sent to the successor. 	Obviously, in the case the token
is lost, it should be possible to regenerate it.

We begin by describing how the control token mechanism is
made resilient. Then, we show how this mechanism can be
used to solve the mps problem.

7.8.4.4.1 Reliliencx
We assume that every processor owns a timer and that timer
values being used by the various processors on the rina are
not necessarily identical. Processors are allowed to read
headers of messages circulating on the ring.

Transmission of a token between adjacent processors is
monitored through a positive acknowledgement + retransmis-
sion protocol. The token carries with it an integer value,
called the cycle number, which is incremented for every com-
plete revolution on the ring. This incrementation is per-
formed by processor x such that x > suc (x). 	At 	any 	time,
this processor is unique. Also, the numbering cycle to be
used should be chosen so that duplicate detection can be
performed safely. This is possible if maximum "hardware"
transit delays are known.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 122

Timer values being used by processors correspond to the ex-
pected round-trip time with the successor on the ring. A
timer is reset when the token has been acknowledged by the
successor.

Each processor keeps a recording of the value (N) carried
within the token during its last visit. 	Next real token to
be received (not duplicates) must carry value N + 1. When
the sender's timer awakes, transmission is tried again, up
to a maximum number of attempts. Should this Limit be
reached, a ring reconfiguration is undertaken. The token is
not lost.

If failure of a processor 	is noticed through the mutual
suspicion protocol, 	then it may be the case that the token
was held by this processor which failed. 	Detection of such
a situation and regeneration of the token can be performed
as follows.

Let h be the identity of the predecessor of that processor
which has failed and i 	the identity of the successor.
Processor h undertakes a ring reconfiguration. 	The recon-
figuration message carries 	with it value N(h), last token
value known in h. Upon reception of this message, processor
i runs the following algorithm:

if 	(i 	> h 	and N(h) t N(i)) or
(i 	< h 	and N(h) = N(i)) then

create token N(I) := N(i) + 	1:

With such an algorithm, it is possible 	to assert 	that 	a
token is never lost and that, at any time, there is only one
such token circulating on the ring (or zero for a finite and
hopefully short period of time).

7.8.4.4.2 Distributed Signallina
A simple way to achieve a specific signalling sequence in a
distributed system is to have the processors serializing
themselves so that at any time, only one processor is "ac-
ting." This can be done very simply by using the control
token as a vehicle to achieve mutual exclusion between these
processors. However, the speed of this signalling technique
is very much dependant on the time spent within the critical
section. The problem is that very often, both the number
and the nature of mutually exclusive actions are given
beforehand and it may be very difficult to adjust the size
of the critical section so that response time requirements
are matched. Such a technique could slow down a system
artifically.

Instead of this, it is suggested to uncouple completely the
sionalling mechanism and the execution of the critical sec-
tion. 	As a 	result, 	mutually exclusive actions 	will 	be
initiated in parallel. 	A proper sequencing can be built by
assigning identifiers to them. 	The control 	token will 	be

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 123

used for the purpose of distributing sequencial identifiers
within the system. These sequential identifiers will be
referred to as tickets. Every message issued by a sender
must be ticketed.

If we want receivers to service incoming messages according
to a purely sequential ordering, then we need one ticket
space per receiver category. In a fully redundant system,
we have only one category of identical receivers. One tic-
ket space is needed. In a partitioned or partially redun-
dant system, we need one ticket space for each partition.
Then, according to the system under consideration, the token
will carry either a ticket value or an array of ticket
values.

It has been shown how the birtual ring t token structure can
survive failures. But ticket allocation must also he
resilient. To this end, one may require that a processor
should be either selecting tickets or using them but not
both. What this means is that those tickets which are
selected by a processor should not be used until the token
has been acknowledged by the successor. As a consequence,
should a failure occur in the midst of ticket selection, the
correct ticket value or array of ticket values can be
regenerated with the token exactly like this is done for the
cycle number (see 7.8.4.4.1). Another issue is that of
failures interrupting processing at random. In particular,
what should be done with those messages which have been is-
sued by a processor which failed later on? Another problem
is what to do with tickets not being used because they were
held by a processor which died.

Actually, 	the whole issue would require a complete discus-
sion which is out of the scope of this paper.

7.8.4.4.2.1 Fortuitous Serialization
i) Signalling within fully rIllungara axlitml

The broadcasting of a ticketed message to all receivers may
be done by the sender (parallel broadcasting). 	The usual
problem with this technique is 	that 	the 	sender may fail
while issuing messages. 	However, because tickets must be
sequential, it is simple for a receiver to detect 	such an
unsafe situation. A copy of the missing message may be ob-
tained from another receiver.

Another approach to broadcasting consists in organizing
receivers along a virtual ring. 	This ring is intended to be
a resilient vehicle for message broadcasting. 	Only one copy
of a message must be created by the sender which hands it
over to one of the receivers. 	This 	receiver is then in
charge of 	initiating the revolution of the message on the
ring.

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 124

ii) 	Signalling within garlioned or partially redundant
systems

The transmission of ticketed messages is done by the sender
which selects tickets from the ticket spaces correspodning
to the relevant partitions.

7.8.4.4.2.2 Enforced Serialization
Let us assume that two senders A and B want the receivers to
process messages issued by A first and then messages issued
by R. This is done very simply by having A sending to B a
"go-ahead" message after A has ticketed its last message.
There is no need for serializing the 	related activities
outside 	the system (for example, A waits until its activity
is over and then sends a message to B).

Senders A and B may also wish to initiate co-related ac-
tivities which, in a partitioned system, share at least one
partition. These activities are such that the message from
A should be serviced before the message from B and also the
message from r should not be processed if the activity
initiated by A could not be completed.

The following protocol may be suggested. In the "go-ahead"
message, A stores the value of the ticket used for its mes-
sage. It is then only needed to provide for a flag and a
field in message headers to be used as follows. When a mes-
sage M is received with the flag set, the receiver should
read the ticket value stored in the field. If the
corresponding activity could not be completed, message M is
discarded and the sender is told that its activity was not
initiated.

7.8.4.4.2.3 Performance Considerations
We want the signalling mechanism not to put any artificial
limitation upon the system performances. Consequently, this
mechanism should not be dependent upon the rotating time
period of the token on the virtual ring. Senders should be
able to ticket and to issue messages at any time. This
means that senders should be allowed to select tickets not
only for pending messages but also for "future" messages,
i.e. messages to be created and issued between two succes-
sive visits of the token.

Let 	p be a sender. 	At token visit Si, let C.i(p) be the
exact number of messages which are pending when the control
token is received, f.i(p) be the predicted number of future
messages, T.i(p) be the current value of the relevant ticket
space upon reception of the token and Tti(p) be the new tic-
ket value when the token is sent on the ring.

Sender p is allowed to acquire C.i(p) 	f.i(p) 	consecutive
tickets, 	starting 	from 	T.i(p). 	Ideally, 	during token
revolution #1+1, P needs exactly f.i(p) 	tickets. 	Clearly,
predictions are only predictions. Furthermore, the token
circulating speed is variable. 	Hence, it 	is necessary to

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 125

consider two possible situations:

- a rune Ihsari of IiLkatl: it has to wait for
reception of the token.

- some tickets are not 	used when the token is
back: 	let u.i(p) be the number of unused tic-
kets. 	Because of the 	mutual 	independence
principle, 	these tickets should be used up im-
mediately. For that purpose, we provide for the
utilization of 	a no-operation code. 	Exactly
u.i(p) 	"fake" messages carrying a NOP code will
be isued by p.

When needed, and as long as tickets are available, new mes-
sages are issued.

Probably, 	this will achieve a good parallelism between sen-
ders but it is not clear whether or not this will result 	in
a good average response time. Response time for a given
sender is dependent on how fast predecessors use up their
tickets.

Should such an interference be judged unacceptable, another
solution is needed.

What we would Like to build is a mechanism whereby current
pending messages and future messages are distinguishable, so
that current pending messages for any sender receive tickets
"smaller" than those given to future messages.

Let us make it clear that we do not attempt to build a per-
fect chronological ordering of messages. We only try to
achieve some system-wide statistical FIFO service so that
the average response time for every sender can be kept below
a reasonable value.

The way this can be done 	is 	rather simple. 	It 	is only
needed to maintain two ticket values T and 9, in the token
instead of one (or two arrays instead of one). T as above,
is to be used for ticketing current pending messages and 8
for ticketing future messages. By the time the token is
back in p, only one of the three following conditions can
hold:

- u.i(p) = C.i(p) = 0 (ideal case)
- C.i(p) messages are waiting because p is Lacking

tickets, 	u.i(p) 	= 	0, 	C.i(p) 	> 	0 	(under-
estimation)

- u.i(p4 	tickets are still available, u.i(p) > 01
C.i(p) = 0 (over-estimation).

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 126

A requirement regarding the ticketing function is that the
two sets of numbers being used to assign a value to T and 8
should not be overlapping.

Two numbering cycles N(T) and N(8) should be chosen so that
tickets Lifetime is conveniend (see computations below).

As T-ticketed messages and 8-ticketed messages will be
received interleaved by receivers• it is necessary to
provide for some means whereby receivers are able to decide
when to stop processing T-ticketed messages and start
processing 8-ticketed messages as well as the reverse.

Such a "switching" should correspond to a complete revolu-
tion of the token on the virtual ring. We need a sender to
flag the corresponding I and 8 ticket values.

That 	sender could be x such that successor (x) < x. 	Due to
the properties of the virtual ring, this processor is unique
and always exists.

The algorithm to be followed by sender p upon reception of
the token is described below (+ and - operations are modulo
N(T) or N(8)).

BEGIN
IF suc (p) < p and C.i(p) = 0 THEN

2LkIN
C.1(p) := 1;
creat Fake message

END;
iE C.i(p) > 0 TEEN To.i(p) := T.i(p) + C.1(p)

(acquisition of tickets #T.i(p), 	#1.1(p) + C.i(p) - 1)
El SE IF u.i(p) > 0 THEN

send u.i(p) Fake messages (ticketed with the u.i(p)
highest 8-tickets obtained during the Last
token visit);

assign a value to f.1(p);
IF suc (p) < p AND f.i(p) = 0 THEN

BEGIN
f.i(p) := 1;
create Fake message

END;
8 9 .1(p) := 8.1(p) + f.i(p)

(acquisition of tickets #8.1(p). 	#8.1(p) + f.i(p) - 1);
IF suc (p) < p THEN FLag messages carrying tickets

#T.1(p) + C.i(p) - 1 and #8.1(p) + f.i(p) - 1;
END

Georgia Institute of Technology 	 'PC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 127

The algorithm to be followed by a receiver is given below.

Notations:

X stands for either state T ("current") or
state 8 ("future");

X - = T if (x=e),
= 8 if (X=T);

t(X) is a local variable containing the ticket value of the
last processed message, i.e. 	t(T) or t(8).

WHEN IN STATE X DO
LOOP: 	Scan for, or wait for reception of message

X-ticketed t(X)+1;
CASE1 (X-ticket t' > t(x)+1 is received):

mod
Record request;

CASE2 (X - -ticket is received):
Record request;

CASE3 (X-ticket t(x)+1 is present or received):
BEGIN initiate processing;

IF message t(X)+1 is flagged
THEN

switch to state X -
ELa

t(X) := t(X)+1
END

CASE4 (timeout):
Marks itself out of synchronization and initiate a

recovery procedure.

A simple way to provide for two separate numbering schemes
of equal length 	is to use one bit to distinguish between
T-tickets and etickets. 	However, one should mention that,
if predictions are not too inaccurate, 9-tickets are to be
used up more rapidly than T-tickets. Then an equal share of
the ticket number space may not be the best solution.

We will discuss only briefly the 	issue of fairness 	in
estimating 1.1(p). 	We consider two cases:

- senders 	are 	processors 	(maxis, minis, micros)
cooperating within a distributed computing
system to be viewed as a unique system by users.
Algorithms to be followed by senders are
designed by system builders who are responsible
for choosing convenient values for f.i(p).

- senders are computers connected on a computer
network. Over-estimation is costly to senders
because 	(i) 	processing wasted in handling NOP

Georgia Institute of Technology 	 IPC Workshop

Section 7
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 128

messages cannot be used to process useful mes-
sages (throughput is lower), (ii) a sender is
billed for messages carrying NOP code and for
the corresponding processing in the distant com-
puter.

Because of the "pipe-line" nature of this mechanism, there
will be no interruption of message transmission. What this
means is that receivers may be kept as busy as desired. If
used cleverly, the signalling mechanism using anticipation
can achieve any desired throughput.

Tickets Lifetime

For 16 bit tickets, values are re-used after 65 seconds if
ticketed messages are issued every millisecond for the whole
system, after IR hours and 12 minutes if ticketed messages
are issued ever second.

For 32 bit tickets, lifetime is much longer. 	Values are re-
used respectively after 1 hour and 12 minutes, 119 hours or
136 years when ticketed 	messages 	are 	issued 	every
microsecond, 100 microseconds or second in the whole system.

7.8.5

In this paper, a solution to the problem of multiple-path
signallino in distributed computing systems 	has 	been
described. This solution is based on the utilization of a
particular control structure which can achieve a distributed
and resilient generation of sequential identifiers. In ad-
dition to solving the mps problem, this solution can be used
in distributed 	systems which should be resilient and where
unique names need to be generated dynamically. 	Also, a
side-effect 	of 	this solution is to allow for a safe detec-
tion of duplicate messages at a high level in the system.

Georgia Institute of Technology 	 IPC Workshop

Section 8
	

SUMMARY AND FUTURE DIRECTIONS 	Page 129

SECTION 8

SUMMARY AND FUTURE DIRECTIONS

8.1 GENERAL 2110AAII01 AN UNLIWOUS

The idea of a process has not been fully absorbed by
programming languages or by modern hardware. Consequently,
the concept of an abstraction of a process and its support
is left to the realm of operating systems (which sit between
the language and the hardware), resulting in little or no
standardiztion of a "process" (especially when compared to
the level of standardization enjoyed by other features or
aspects 	of 	higher 	level 	languages 	and 	hardware).
Nevertheless, as this report has illustrated, the process
concept is becoming central to the design of computer
systems both at the hardware and software levels. There are
many reasons for this development, probably the two most im-
portant ones being: (1) the decomposition of systems and
applications problems 	into 	sets of 	cooperating parallel
processes 	for 	greater 	modularity. 	functionality,
flexibility, and maintainability; and (2) the increasing
cheapness of processors and memory allowing the assignment
of processes to processors in an economical way.

As processes have become "cheaper" to create, maintains and
destroy, the flexibility, scope, power, and economy of
interprocess communication (IPC) mechanisms has become an
important key to the effectiveness of multi-process systems
in general, and highly distributed systems in particular.
However• there currently exists a wide variety of mechanisms
for interprocess communication, resulting in what one
researcher ESALT 79) has termed the "IPC Jungle". 	Perhaps
the major 	reason for such a variety comes from a desire to
provide in one set of primitives all of the following
capabilities:

1) Flexible process and/or data synchronization
tools,

2) Data transfer mechanisms, and
3) Communication control 	and error 	recovery

mechanisms.

Surprising to some researchers at the workshop was the lack
of attention paid to security, fault tolerance, and error
recovery; however, this may be taken as an indication of the
general state of affairs of a young technology. In such
cases, attention is usually first focused on achieving a
certain level of functionality before much effort is devoted
to engineering those features that make the technology
robust enough to be put into wide-spread use.

Georgia Institute of Technology 	 IPC Workshop

Section 8
	

SUMMARY AND FUTURE DIRECTIONS 	Page 130

Finally, dissemination of information about 	IPC techniques
and options with respect to both implementation and per-
formance has been extremely poor in the past, and there do
not appear to be any immediate advances being made on this
aspect of the problem.

Georgia Institute of Technology 	 IPC Workshop

Section 8
	

SUMMARY AND FUTURE DIRECTIONS 	Page 131

8 . 2 121312112E 1UBBAII

Below is a summary of the major focus areas of the workshop
and their conclusions.

8.2.1 AstALIsling , NAM1D2 , lad

Many systems have inadequate facilities for identifying
names of processes within the same host, 	let alone for
processes 	residing on different hosts. 	Many existing
systems almost totally sidestep the naming issue. 	Part of
the 	problem 	stems from an inconsistent view of the
relationship between the set of allowable names for files,
devices, processes, users, mailboxes. generic system ser-
vices, and specific system services. As Livesy pointed out
during the workshop, the concept of the size of the naming
universe (of which the system forms a part) is implicit in
the system at a very deep level. One is forced to choose
between "add-on"naming techniques such as:

/net/A/resource

which are not location independent on the one hand, and a
more or less complete redesign of the naming architecture on
the other hand. 	UNIX is an example of a system that makes
assumptions about the size of the universe. Until. this
problem is settled, the design of specific interprocess com-
munication primitives cannot focus on the set of fundamental
objects that must be dealt with. This is a difficult issue,
since 	it 	is here that many of the system security issues
must also be addressed.

8 0 2 . 2 inimasulil lzuhunizailln

Clearly, a major function of interprocess communication is
to 	provide 	either explicit 	or 	implicit 	synchronization
between processes and/or access to shared data. Early forms
of interprocess communication depended only on the correct
use of explicit synchronization primitives for sharing ob-
jects (usually sections of main memory). In some systems.
temporary files served as synchronizing pointes between job
steps (implicit), while in other systems. processes ex-
plicitly exchange data by signaling. Whether synchroniza-
ticn primitives should be explicit or implicit is still very
much an open question.

It is also becoming clear to some of the researchers in the
field that error recovery may be integral to the question of
synchronization. 	Visibility of the state of a computational
process 	is at 	the heart of the synchronization and error
recovery issues. Concern over the "atomicity" of an opera-
tion is becoming more of a focal point for distributed
systems as the dimensions of time and space for com-,

Georgia Institute of Technology 	 IPC Workshop

Section 8
	

SUMMARY AND FUTURE DIRECTIONS 	Page 132

putational 	operations 	begin 	to change by orders of
magnitude. This concern is reflected in the recent
literature concerning synchronization in distributed systems
(see the 1978-79 references), and in some of the recent
theoretical work. However, their effectiveness using
current technology is 	Largely unknown until prototype im-
plementations appear.

8 • 2 • 3 Laituussil h DILL

At Least ten currently used IPC mechanisms were identified
along with some estimate of their support of certain
qualities deemed desirable by the workshop attendees. There
was more agreement on the set of desirable qualities than
there was on which mechanisms fulfilled those qualities. It
was also obvious that none of the present mechanisms did
everything that everybody hoped for, which should tell us
that we have yet to obtain maturity of abstraction (in the
sense that the abstraction of a subroutine is well under-
stood) for a general IPC mechanism. For these reasons, it
seems reasonable to keep exploring new mechanisms while we
also continue to build real-world systems with the best
techniques we have heard about.

In addition it appears important to devote some additional
work to selection the factors to be utilized in assessing
trade-offs between provability versus convenience of im-
plementation and use. Many of the mechanisms discussed at
the workshop present enormous obstacles to rigorous proof.

8.2.4 Thevtlual knk

Distributed systems present new theoretical challenges to
researchers, largely because the specification of a
distributed computation involves time and space boundaries
that are difficult to define, and may be constantly
changing. Variability in speeds and state definition may
even make a "system" inherently non-deterministic. Such
difficulties throw much of the previous work in proogram
specification and correctness into disarray when applied to
distributed systems. There is little agreement whether to
approach the problem using "state-free" or "state-based"
descriptions, or whether to grapple with atomic or non-
atomic actions, or even what are relevant measures of "time"
and "space". Once again, this seems to reflect the im-
maturity of the whole field of distributed systems.

Georgia Institute of Technology 	 IPC Workshop

Section 8
	

SUMMARY AND FUTURE DIRECTIONS 	Page 133

8 . 3 221121.21I2h2 Ah2 IL1121E22I

Lastly, we should be honest as to how well we achieved our
original goals. Each goal is repeated here with a short
comment as to our view of the Level of success we enjoyed
and the reasons for it.

1) Assess the present state-of-the-art for IPC
mechanisms in distributed data processing
systems.

*** Successful. 	A reading of many of the
enclosed working papers and the references
should adequately reflect the present state-
of-the-art.

2) Identify the data available on the actual
performance 	of various IPC policies and
mechanisms.

* Unsuccessful. An attempt was made, however
lack of agreement on appropriate measures
(see mechanisms) has probably prevented any
great data base being built up.

3) Assess the potential value of various 	IPC
mechanisms in satisfying the operational and
Performance 	requirements 	for 	highly
distributed systems.

** Moderately successful. 	Many of the ad-
vantages and disadvantages of the functional
aspects of current mechanisms in use were
examined, although, obviously, more thorough
operational and performance assessments must
await more "distributed" implementations.

4) Identify shortcomings in the present 	state-
of-the-art and identify promising areas for
further research and experiments on this sub-
ject.

*** Successful. 	A 	reading of the report
reflects many of the shortcomings of current
techniques. 	Promising areas 	for 	further
research 	were not specifically addressed in
all 	areas; 	however, they are 	indirectly
identified by many of the authors.

5) Identify 	possible standardization levels in
IPC design.

* Unsuccessful. The plethora of available
abstractions and the notable lack of any
single outstanding set useful for distributed

Georgia Institute of Technology 	 IPC Workshop

Section 8
	

SUMMARY AND FUTURE DIRECTIONS 	Page 134

applications reflect the immaturity of the
field and possible premature standardization.

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 135

SECTION 9

SELECTED READINGS AND REFERENCES

9 . 1 ILLEIIL2

2n PrQrgss Mgdeil and aiL2LI2L11

[HORN 73]
CDIJK 68a]
[HOAR 783

On AddLesling and Naging

[SALT 781
CSHOC 783

On Thegrelical Considerations

CMILN 77]
CZAV 76]

On Procell Synchronization

CDIJK 68b3
CHOAR 74]
CHABE 72]

On Message Based Operating Systems

CBRIN 69]
CBRIN 70]
CBALL 76]
CLYCK 78]
CNELS 783
CFARB 73]

On Local Networks

[CLAP 78]
EMETC 76]
CGORD 79]

On Pgrtl• Piggs an .d. Virtual LiE.QUill

[WALD 723
[THOM 74]
ECCIT 781

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 136

Qn the larly Treatmlni 21 EL2g.2.1111 and IF1 in 2ntLatina
Systems

[DALE 68]
[SALT 66]
EDIJK 713
CIBM 71]

Qn IPL. Pr2tol2is

EPARD 793
CDESJ 78]

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 137

9.2 1.121 aE ELEFallaL2

[ABEL 78] Harold Abelson, 	"Lower Bounds on 	Information
Transfer in Distributed Computations," Proceedings
of the Ningtelpth Annual SymppAium pn Fpunpatipna
of Computer Science, October 16-18, 1978, pp 151-
158.

[ALSB 76] P. 	A. 	Alsberg, 	G. C. Belford, and S. R. Brunch,
"Synchronization and Deadlock," Center for Ad-
vanced Computation, Doc. No. 185, University of
Illinois, March 1976.

[BACH 78] Charles W. Bachman, 	"Provisional 	Model of Open
System Architecture," Proceedings of the Third
LitrilLtX liaLlataa an Qistributgd pats manaatmant
and Computer Net2orks, August 29-31. 1978.

[RADA 78] D. Z. 	Badal 	and G. J. 	Popek, "A Proposal for
Distributed Concurrency Control 	for 	Partially
Redundant Distributed Data Base Systems,"
Proceedings of the Third Berkeley Workshop on
Distributed DalA mAnapemept ,end Computer Netwpris,
August 29-31, 1978.

[BALL 76] J. 	E. Ball, J. Feldman, J. R. Low, R. Rashid, and
P. Rovner, "RIG, Rochester's Intellicent 	Gateway:
System Overview," 	IEEE Tranlactionl on Software
Engineering, vol. SE-2, no. 4, December 1976. pp.
321-328.

[BART 77] J. 	F. 	Bartlett, 	"A •NonStop• Operating System,"
orplApinps of the Hawaii International Conference
of System Sciences, January 1978.

[BASK 77] F. Baskett, J. H. Howard, and J. T. Montague,
"Task Communication in DEMOS," Proceedings of the
Sixth Symposium on Operating System Principles,
6-18 Nov 1977. Reprinted in Operating Systems
Review. Vol. 11, no. 5, November 1977.

CBOBR 72] D. G. Bobrow, J. D. Burchfiel, D. L. 	Murphy, 	and
R. S. Tomlinson, "TENEX - A Paged Time Sharina
System for the POP-10," Communications of the ACM,
Volume 15, Number 3, March 1972.

[BRIM 69] Per Brinch 	Hansen, 	"RC 4000 	Software: 	Mul-
tiprogramming System," Regnecentralen, Copenhagen,
Denmark, April 1969.

[BRIN 70] Per Brinch Hansen, "The Nucleus of a Multiprogram-
ming System," Communications of the ACM, vol. 13,
no. 4, April. 1970, pp. 238-50.

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 138

CBRIN 73] Per Brinch Hansen, Ogsrsling axsiggs aingig112,
Prentice-Hall, 1973.

CBRIN 76] Per Brinch Hansen, 	"The SOLO Operating System,"
Sgftware Prsgligg agg EAggrigngl, vol. 6, no. 2,
April-June 1976, pp. 141-206.

CBRIN 77] Per Brinch Hansen, The Architecture of Concurrent
Programs, Prentice-Hall, 1977.

EPURN 78] J. E. Burns, M. J. 	Fischer, 	P. 	Jackson, 	N. 	A.
Lynch, and G. L. Peterson, "Shared Data
requirements for Implementation of Mutual Ex-
clusion Using a Test-and-Set Primitives"
Proceedings of the 1978 International Conference
on Parallel Processing, August 22-25, 1978, Pp 79-
87.

CCCIT 78J CCITT, Provisional Recommendations X.3, X.25, X.28
and X.29 gn Packet Switched Data Translission
Services, Geneva, 1978.

[CLAP 78] D. C. Clark, K. T. Pogran, and D. 	P. 	Reed, 	"An
Introduction to Local Area Networks", Proceedings
of the 'LEE, vol. 66, no. 11, November 1978, pp.
1497-1517.

[DALE 68] R. C. Daley and J.B. Dennis., "Virtual Memory,
Processes, 	and 	Shaping 	in 	Multics".9
Communications 	of 	the 	ACM, 	vol. 11, no. 5, pp.
306-12, May 1968.

[DEC 77] VAX11 	SgftwaLe 	Handbook, 	Digital 	Equipment,
Corporation 1977.

CDESJ 78] Richard 	desJardins 	and 	George White, 	"ANSI
Reference Model for Distributed Systems,"
Proceedings of COMPCON 1978, Washington, D.C.,
September 1978, pp. 144-149.

CDIJK 68a] E. W. Dijkstra, "The Structure of 	the 	'THE' 	-
Multiprogramming System," Communications of the
AL.M9 vol. 11, no. 5, May 1968, pp. 341-346.

CDIJK 68b) E. W. Dijkstral "Cooperating Sequential Proces-
ses," in Programming Languages, (Editor: F.
Genuys), Academic Press, New York, 1968.

CDIJK 71] E. W. Dijkstra, "Hierarchal Ordering of Sequential
Processes," Acta Informatica vol. 1, no. 2, 1971,
pp. 115-38.

CDOWS 78] Y. Dowson9 "The DEMOS Multiple Processor Technical
Summary," National Physical Laboratory Technical
Report, NPL Report 101, April, 1978, Teddington,
'Middlesex TWII OLW, UK.

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 139

CELLI 77] Clarence 	A. Ellis, "A Robust Algorithm for Updat-
ing Duplicate Databases," Proceedings of 	the
Seppgd 	BIrkelly Wprkahgp gn Distributgg Data
Management and Computer Networks, May 25-27, 1977.

CESWA 76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger, "The Notions of Consistency and Predicate
Locks in a Database System," Communications of the
ACM, vol. 19, no.11, November 1976, pp. 624-633.

CFARB 73] D. 	J. 	Farber, 	J. Feldman, F. R. Heinrich, M. D.
Hopwood, C. Larson, C. Loomis, and L. A. Rowe,
"The Distributed Computing System," Digest of
Papgrs frpm COMPCON 71, San Francisco, California,
27 February - 1 March 1973, pp. 31-34.

EGARC 78] Hector Garcia-Molina, "Performance Comparison of
Two Update Algorithms for Distributed Databases,"
Proceedings of the Third Berkeley Workshop on
Distributed Data Management and Computer Networks,
August 29-31, 1978.

CGORD 79] R. 	L. 	Gordon, 	"Ringnet: A Packet Switched Local
Network 	with 	Decentralized 	Control," 	4th
Cpnierence 	on 	Lpagl ipmpOer Netwprks, Min- .
neapolis, Minn., October 1979, pp. 13-19.

EGRAH 72] G. S. Graham and P. 	J. 	Denning, 	"Protection --
Principles 	and 	Practice," 	AFIPS 	Conference
Proceedings, 1972 SJCC, pp. 417-429.

EGRAP 76] Enrique Grapa, and Geneva G. Belford, 	"Techniques
for Update Synchronization in Distributed Data
Bases," unpublished paper, 1976.

[RABE 72] A. N. Habermann, "Synchronization of Communicating
Processes," Co2municalions of the ACM, vol. 15,
no. 3, March 1972, pp. 171-76.

CHAMI nd3 J. 	Hamilton, "The Functional Specification of the
WEB 	Kernel," 	Digital 	Equipment 	Corporation,
Coproate Research Group, ML3-2/E41, no date.

[HOAR 74] C. A. R. Hoare, "Monitors: An Operating System
Structuring Concept," ipaakgicaiipna gf thg Ail,
vol. 17, no. 5, October 1974, pp. 549-557.

CHOAR 783 C. 	A. R. Hoare, "Communicating Sequential Proces-
ses," iggmligligiigga pf Ihg ACM, vol. 21, no.
August 1978, pp. 666-677.

[HOLT 78] R. 	C. Holt, G. S. Graham, E. D. Lazowshka, and M.
A. Scott, "Announcing Concurrent SP/K," Opgrgting
System Review, vol. 12, no. 2, April 1978.

[HOLT 78b] R. 	C. 	Holt, 	et al, Struptuheg Cong,urhggi

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 140

Programming tiih 2121r2iiD2 luitma
Addison-Wesley Series in Computer Science, 1978.

[HORN 73] J. 	J. 	Horning, 	and B. Randall., "Process Struc-
turing," ACM Computing Sgryeys, vol. 5, no. 1, May
1973, pp. 5-30.

[IBM 71? IBM System/360 Operating System Supervisor Ser-
vices, IBM Systems Reference Library, Order Number.
GC28-6646-4, 1971.

CIPC 75] ACM SIGCOMM/SIGOPS WORKSHOP, 	ACM SIGOPS Review,
MARCH 1975.

CJOHN 75] P. R. Johnson and R. H. Thomas, 	"The Maintenance
of Duplicate Databases," RFC No. 677, NIC No.
31507, January 1975, 	ARPA Network Information
Center, 	SRI-Augmentation Research Center, Menlo
Park, CA 94025.

CJONE 777 A. K. Jones, R. J. Chansler, I. Durham, P. Feller,
and K. Schwans, "Software Management of Cm* - A
Distributed Multiprocessor," AEIPS ignferenge
Proceedings, Volume 46, 1977 NCC.

CLAMP 76] L. Lamport, "Towards a Theory of Correctness for
Multi-user Data Bases," Mass. Computer Associates,
Inc., CA-7610-0711, October 7, 1976.

CLAMP 77] L. Lamport, 	"On Concurrent Reading and Writing,"
Communicationl of the ACM, vol. 20, no. 11, Novem-
ber 1977, pp. 806-811.

CLAMP 71] S. W. Lampson, "Protection," Proceediogi Qf ihg
Fifth Annual Conference on Information Sciences
and Systems, Department of Electrical Engineering,
Princeton University, March 1971 pp. 437-443.

CLAMP 73] B. 	W. Lampson, 	"A Note on 	the 	Confinement
Problem," CgmmunigAtighl Qf the ACM, vol. 16, no.
5, October 1973, pp. 613-615.

CLAUE 79] H. C. Lauer and R. M. Needham, "On the Duality of
Operating System Structures," Oagrating Syliams
Review, vol. 13, no. 2, April 1979.

CLIVE 78a] N. J. Livesey and E. G. Manning, "Protection in a
Transaction Processing System," Prgceldinga of the
7th Texas Conference on Computing Systems, October
1978.

CLIVE 78b] N. J. Livesey and E. G. Manning, 	"What 	Mininet
Taught Us About Programming Style," Proceedingl of
COMPSA.Q Z1, Chicago, Illinois, November 1978, pp.
692-697.

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 141

ELYCK 783 H. Lycklama and D. L. Bayer, "The MERT Operating
System," The BELL System Technical Journal, vol.
57, no. 6, Part 2, July-August 1978, pp. 2049-86.

[MANN 77] E. G. Manning and R. 	W. Peebles, 	"A Homogenous
Network for Data Sharing: Communications,"
Cpmpuler Networks ► Vol. 1, No. 4, 1977, pp 211-
224.

EMETC 76] R. 	M. 	Metcalfe and D. 	R. 	Boggs, 	"Ethernet:
Distributed Packet Switching for Local Computer
Networks," .Qpmmuhipatipn2 pi the ACM, vol. 19, no.
7, July 1976, pp. 395-404.

CMILN 77] G. 	Milne and R. MiLner ► "Concurrent Processes and
their Syntax," University of Edinburgh, Department
of Computer Science Report CSR-2-77, May 1977.

[NELS 78] D. L. Nelson and R. L. Gordon, "Computer Cells - A
Network Architecture for Data Flow Computing,"
Prppeedings of a2MP2X 7A, Washington, D.C., Sep-
tember 1978, pp. 296-301.

[NSW 76] NSW Protocol 	Committee, 	"MSG: 	The 	Interprocess
Communication Facility for the National Software
Works," BBN Report No. 	3483, 	Massachusetts Com-
puter 	Associates Document 	No. CADD-7612-2411,
December 1976.

[ORGA 72] E. I. Organick, The MULTILS Syliem: An lxamination
of Its Structure, MIT Press, 1972.

[PARD 79] R. 	Pardo 	and 	M. 	T. 	Liu, 	"Multi-Destination
Protocols for Distributed Systems," Proceedings of
the 1979 L.pmguter Network Symppsium, Gaithersburg,
Md., December 1979.

[PEED 783 Richard Peebles and Eric Manning, 	"System Ar-
chitecture 	for Distributed 	Data 	Management,"
Computer, vol. 11, no. 1, January 1978, pp. 40-47.

[PETE 77] Gary 	L. 	Peterson 	and 	Michael J. Fischer,
"Economical Solutions to the Critical Section
Problem in a Distributed System," Proceedings of
the 1977 Ninth Ann.ual Symposium on Thlory of
Computing, May 2-4, 1977, pp 91-97.

[POWE 77] M. 	L. Powell, "The Demos File System," "Task Com-
munication in DEMOS," Proceedings of the Sixth
Symppliuh on Operating System Principles ► 16-18
Nov 1977. Reprinted in Operating Systems Review,
vol. 11, no. 5, Nov. 1977.

[REED 77] O. 	P. 	Reed and R. K. Kanodia, "Synchronization
with Eventcounts 	and 	Sequencers," 	Operating
Syliems Review, vol. 11, no. 5, pp. 91-92.

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 142

CREED 78] D. 	P. Reed, 	"Naming and Synchronization 	in a
Decentralized Computer System," MIT 	LCS Report
MIT/LCS/TR-205, September 1978.

ERITC 74] D. 	M. 	Ritchie 	and 	K. 	L. 	Thompson, 	"The UNIX
Timesharing System," Communications of the 	ACM,
July 1974.

CRITC 78] D. 	M. 	Ritchie,"A Retrospective on the UNIX Time-
sharing Systems" The 	Bell 	System 	Ttphnical
Journal, vol. 57, no. 6, part 2, July-August 1978.

[RIVE 76] R. 	L. 	Rivest 	and V. 	R. Pratt, "The Mutual Ex-
clusion 	Problem 	for 	Unreliable 	Processes:
Preliminary Report," Proceedings of the
Seventeenth Annual Sympopium on Loundations of
Computer Science, 1976, pp 1-8.

CROTH 77] J. 	B. Pothnie and N. Goodman, 	"A Survey of
Research and Development in Distributed Database
Management," Proceedings of 3rd International
Conference on Very Larae Data Bases, Tokyo, Japan,
October 1977.

CSALT 66] J. H. Saltzer, "Traffic Control in 	a 	Multiplexed
Computer System," Project MAC Technical Report
MAC-TR-30 (Thesis), Massachusetts Institute of
Technology, July 1966.

[SALT 78] J. H. Saltzer, "Naming and Binding of Objects," in
Operating Systems - An Advanced Courle, R. Bayer,
R. M. Graham, and G. Seegmuller (eds.), Berlin,
Springer-Verlag, 1978, pp. 99-208.

[SALT 79] J. 	H. 	Saltzer, Comments at the "7th Symposium on
Operating Systems Principles," 	November, 1979,
concerning distributed systems.

[SOME 78] L. Scheffler, "Pipes - Interprocess Communication
for PRIMOS and PRIMENET," (PE-T in final
preparation).

FSHOC 78] John F. Shoch, "Inter-Network Naming, Addressing,
and Routing," Propeedingl of i2MPC2N 7a, Washing-
ton, D.C., September 1978, pp. 72-79.

CSTON 78] Michael 	Stonebraker, 	"Concurrency Control 	and
Consistency 	of 	Multiple Copies 	of 	Data 	in
Distributed INGRES," PLpceedingl of the Third
6trAtitx lisullat22 QII Diairilzdag 2ala Manage tni
and ComplateL Networks, August 29-31, 1978.

CSUNS 763 Carl 	A. 	Sunshine, 	"Survey of 	Communication
°rotocol Verification Techniques," Prpceedingp of
the Symposium on Computer Networks: Trends and
Applicptipp, Gaithersburg, MD, November 17, 1976.

Georgia Institute of Technology 	 IPC Workshop

Section 9
	

SELECTED READINGS AND REFERENCES 	Page 143

[THOM 77] Robert H. Thomas, "A Majority Consensus Approach
to Concurrency Control for Multiple Copy Data
Bases," Bolt Beranek and Newman, Inc., BBN Report
No. 3733, December 1977.

[THOM 78] Robert H. Thomas, Richard E. Schantz, and Harry C.
Forsdick, 	"Network 	Operating 	Systems," 	Bolt
Beranek and Newman, Inc., 6BN Report No. 	3796,
March 1978.

[THOM 74] K. T. Thompson and D. M. Ritchie, "The UNIX Time-
sharing System," igmmunicgtigni gf the ACM, vol.
17, no. 7, July 1974, pp. 365-375.

EWALD 72] D.C. Walden, "A System for Interprocess Communica-
tion 	in a Resource Sharing Computer Network,"
Communications of the A CM, vol. 15, no. 	4, 	April
1972.

[WILK 79] Maurice V. 	Wilkes and D. J. Wheeler, "The Cam-
bridge Digital Communication Ring," Prggeedings of
the Local Area Communication Networks Symposium,
Mitre Corporation and National Bureau of Stan-
dards, Boston, May 1979.

[WULF 74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. 	Levin,
C. 	Pierson, and F. Pollack, "HYDRA: The Kernal of
a Multiprocessor Operating System," Cgmmunigati2ns
of the ACM, Volume 17, Number 6, June 1974.

[YOUN 79] R. Young and V. 	Wallentine, 	"The NADEX Core
Operating System Services," Kansas State Univer-
sity Department of Computer Science Technical
Report, no. CS 79-11, November, 1979.

HAVE 76] P. 	Zave, "On the Formal Definition of Processes,"
Proceeding2 gf 	the 	Conference 	on 	Par&ttel
Processing, 	Wayne State University, IEEE Computer
Society, 1976.

Georgia Institute of Technology 	 IPC Workshop

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155

