GEORGIA INSTITUTE OF TECHNULUGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION

Date: 7/24/81

Project Title: Workshop on Interprocess Communication in Highly Distributed Systems

% ProjectNo: G-36-632
Project Ditector: Dr. Philiip H. Enmslow, Jr.

- Sponsor: U. S. Army Research Office; Research Triangle Park, NC. 27709

" Effective Termination Date: 8/12/79

!

- Clearance of Accounting Charges: 8/12/79

- 'Grant/Contract Closeout Actions Remaining:

- i

.

-

%X Final Invoice and Closing Documents
__ Final Fiscal Report
x_ Final Report of Inventions -

x_ Govt. Property Inventory & Related Certificate .
Classified Material Certificate

_ Other
~ Assigned to: I&cCs (SI:hoolanboratory)
COPIES TO:
Adminlstrative Coordinator ‘ Legal Services (OCA)

o ' Rescarch Property Management Library, Technical Reports

e Accounting Office EES Research Public Relations (2)
: Procurcment Office/EES Supply Services Project File (OCA)

Reésearch Security Scrvices © Other:

/Reports Coordinator (0OCA)
. Suspense :

B S I S

SH W AT

R T A

TR T T ITRRL CoWRENT YOy hy L, T s et D
- YRS -". >, " - ‘q’h we g, L " o -
WS "

:‘ v ,f ?
ADé 36032

FINAL TECHNICAL REPORT
GIT-I1CS-79/11

INTERPROCESS COMMUNICATION IN
HIGHLY DISTRIBUTED SYSTEMS

———A Workshop Report———
20—22 November, 1978

By
Philip H. Enslow, Jr.
Robert L. Gordon

Prepared for
U.S. ARMY RESEARCH OFFICE

P. 0. BOX 12211
RESEARCH TRIANGLE PARK, N. C. 27709

Under
Contract No. DAAG29-79—-C—-0010

ARO Project No. P—16334—A—EL
GIT Project No. G36—632

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF INFORMATION AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

THE RESEARCH PROGRAM IN
FULLY DISTRIBUTED PROCESSING SYSTEMS

THE VIEWSe OPINIONSs AND/OR FINDINGS CONTAINED IN THIS REPORT
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITIONs POLICYs OR
DECISIONs UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

Georgia Institute of Yechnology IPC WORKSHCP

Unclassified Page iii

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEr EAD INSTRUCTIONS
1. REPORT NUMBER 2. SOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
8. TITLE (and Subtlile) 5. TYRPE OF REPORT & PERIOD COVERED

Interprocess Communication in Highly Distributed |Final Technical Report,
Systems - A workshop Report - 20 to 22, November [13 Nov 1978 - 12 Aug 1979

1978. 6. PERFORMING ORG. REPORT NUMBER
GIT-ICS-79/11
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Philip H. Enslow, Jr.

Robert L. Gordon (Prime Computer, Inc.) DAAG29-79-C-0010

FERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
. . AREA & WORK UNIT NUMBERS

School of Information and Computer Science,

Georgia Institute of Technology

Atlanta, Georgia 30332

1,

CONTROLLING OFFICE NAME AND ADDRESS '2. REPCRT DATE
U. S. Army Research Office December 1979
P. 0. Box 12211 13. NUMBER OF PAGES

Research Triangle Park, .iC 27709

4. MONITORING AGENCY NAME & ADDRESS(if different (rom Controlling Oftice) 15. SECURITY CLASS. (of thie report)

U.S. Army Research Office

P.0. Box 12211 Unclassified
Research Triangle Park, NC 27709 \Sa. ggﬁggﬁf;ﬁCA70Nf00WNGRANNG
N/A

16.

DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17.

DISTRIBUTION STATEMENT (of the abstract entered In Block 20, ! different {rom Report)

N/A

. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, poliecy, or decision, unless so designated by other documentation.

19.

KEY WORDS (Contlnue on teverse side if necessary and identily by block number)

Interprocess Communication Computer Networks
IPC Distributed Operating Systems
Distributed Processing

20.

ABSTRACT (Continue on reverse aide |f necovsary and identify by block number)

Interprocess Communication (IPC) has been recognized as a critical issue in the
design and implementation of all modern operating systems. IPC policies and
mechanisms are even more central in the design of highly distributed processing
systems —- systems exhibiting short-term dynamic changes in the availability

of physical and logical resources as well as interconnection topology. A
workshop on this subject was held at the Georgia Institute of Technology in
November 1979. Four working groups, 1) Addressing, Naming,

DD , ﬁi’ﬁ"n 1473 ECITION OF 1 NOV 65 iS5 OBSOLETE

Unclassified
CEAIITY C1 ASSIFICATIAN NF THIS PAGE rWhan Nata Entarad)

Page iv

20. cont.

and Security, 2) Interprocess Synchronization, 3) Interprocess Mechanisms,
and 4) Theory and Formalism, addressed the current state of the art in these
areas as well as problems and future research directions. This report
incorporates much of the material and working papers from those fields

as well as selected references useful in understanding the topic.

Page Vv
ABSTRACT

Interprocess Communication (IPC) has been recognized as
a critical dissue in the design and implementation of all
modern operating systemse IPC policies and mechanisms are
even more central in the desian of highly distributed
processing systems -- systems exhibiting short-term dynamic
changes 1in the availability of physical and logical resour-
ces as well as interconnection topologye A workshop on this
subject was held at the Georgla Institute of Technology in
November 1979. Four working groupss 1) Addressings Namingy
and Securitys 2) Interprocess Synchronizations 3)
Interprocess Mechanismse and 4) Theory and Formalisme ad=-
dressed the current state of the art in these areas as well
as prohlems and future research directionse This report
incorporates much of the material and working papers from
those fields as well as selected references useful in under-
standing the topice.

Georgia Institute of Technology IPC WORKSHOP

Page vi

PREFACE

The workshop organizing committee had originaliy intended to
utitize the material developed by the individual working
groups to prepare a summary report of the proceedingss This
concept was abandoned when it was recoanized that a "summary
report” would not adequately report on and document all of
the work and topics that were covered during the meeting.
It was obvious that documentation much more thorough than
merely a summary report was warrantedsy so the members of the
organizing committee decided to directly utilize as much as
possible of the material and notes prepared by the working
groups and assemble and edit that material into an organized
workshop reporte It was'felt that this approach would much
better capture the true flavor of the workshop and the
breadth of the material covered there.

Decembery 1979 Philip He Ensiows Jr.
Robert L. Gordon

ACKNOWLEDGEMENTS

Certainly the most important acknowledgement for assistance
in the preparation of this report goes to the working group
leaders who prepared the summary reports for their in-
dividual groups and to those individuals who acted as recor-
ders during the working groups sessionss To a great extent
the material developed by those individuals has been
utilized exactly as it was prepared with only minor editing.
We would also Like to acknowledge the invaluable assistance
of two Georgia Tech students who were responsible for the
mechanical organization and preparation of the report
uttlizing our text editing system - Timothy Saponass who
also served as our resident translator for the hierogtyphic
notes prepared by session recordss and Shetly Smith.

We would also Like to acknowltedge the support of the UsSe.
Army Research 0ffice and the U.Se Afr Force Office of
Scientific Research in funding the Workshop as well as the
ODffice of Naval Research which also partiatly supported the
preparation of this report.

Decembery 19795 Philip He Enslows Jre
Robert L. Gordon

Georgia Institute of Technology IPC WORKSHOP

Page vii

IABLE OF CONTENTS

Section le INTRONUCTIONesesoeesoccscceccsscacsosscsssnnssnsossnnsoesl

.1 OB\JECTIVES OF THE NORKSHOP...........I.....I..........l
.2 NORKSHOP ORIGINS............................I.........l
.3 PURPOSE AND SCOPE OF THE wORKSHOP.....................2
.4 STRUCTURE OF THE wORKSHOP.............................3

.5 ATTENDEES.........l.....'............l.....I..........q’

.6 ORGANIZATION OF THIS P\EPORT...........................7
Section 2« BACKGROUNDeesssoossssvecesosvssscsvssccsssossasocsssnasnsel

.1 INTRODUCTION......................I...................8

«2 PROCESS MODEL OF COMPUTATICONeeesssessccsssccccossssssnes’d
.3 HIGHLY DISTRIBUTED SYSTEMS...............l.'..........g
.4 IPC STRUCTURES....................................l..lﬂ
«5 INTERPROCESS CONTROL STRUCTURESeescescccoscsssasesssaecll

Section 3. ADDRESSING, NAMINGQ and SECURITY-....ooo.oaooool2

.l WORKING GROUP SUMMARY RE‘PORT.........................12
.2 AMPLIFYING MATERIAL..............................'...15
.3 CASE STUDIES......................'..................18
el Distributed Data BasSeSesecessceccsccsrscssosccsscscsencsesly
.2 Mininet.............'..............................18

5 NiSCUSSTONeesssessscsosnsssoscscncssnssscssscsesncssssssesell

o4 POSITION PAPERSeeescoecosncsosnscsscscencsssscssssssncaell
el HamiltoNeseseosoosassssssnsscvrsosccssccessncssassncell
02 SUNSNhINCeeosesessccsesnsescsncnssnvossscssossascsncsonseslh
o3 GOrdONesecscsscscssvesssesccsasscnsssssscncsnscesscssssasscseslh

o4 CheSSONeseessvscssnscscncscncsasssnssncsncssosnssssnscsasell

Section 4. INTERPROCESS SYNCHRONIZATIONeeosseosococsnscsnssseil

el WORKING GROUP SUMMARY REPORTessevecscessesccssccsnceell
«1 Statement of the ProblemMesssescecsscsssscsscssssansell
e2 Solution Space...........o-.o-...........o.....i...30
«3 Some Existing SolutionSessccsscesenvsescsscssssessssnsel?
o4 AttributeSeececesocssccccssssncrsasscssscsssscsssseasesnsld
«5 Other ISSUGS.QQ..oocoooooooooooo-oco;ooo-oo..ocoooo33
e2 POSITION PAPERSeesossscessscssccccsasscssscscsscccnssssedhh

.1 Lee........l.......................................34
Section S MECHANISMS.......coooooc-ooooooooocooooc00000‘036

el WORKING GROUP SUMMARY REPORTesesscccssccsscessccnssnselbd
e2 AMPLIFYING MATERIALeeevosacosesossscocssnssccncscccsnsacsi?
el Prepared by the Uorkinq GrouUuPDesssecasscscssscnscnseei?
2 PrEDGPGd by PeebleSeeesssosncssscssccscscscnsncnssansakih
el INtroduction and Explanatﬁon..-.........-o.o.....44

«2 Desirabtle Properties..................-..........44

«3 IPC Taxonomy.........................-..-........46

Georgia Institute of Technology IPC Workshop

Page viii

o1 Non—message—baSEd IPC.....-..oo-ooooo.oooo.-00046

«? MESSage—based IPC.....oooo.oaooo.o-.o.-oooooooo47

«3 Hiqher-LeveL MechaniSmSeesssseosscsessecsvcscccnsci?

e4 FReferenCeSesssescsssscsscscescsssncsscsscsssscsssnsssail

e3 POSITION PAPERSeeeseessevesescessccsosnssssssccsccccsensid
el PeebleSesssesencsosscssscssssccsasssssssnsssssnnssssshd

o2 WallentinCeeososssescsecosssssoscscosccconssscssscscenssensedl

Section 6e¢ THEQRETICAL WORKeseoosoossseooscoscscessessessseesd

o1l WORKING GROUP STUDY REPORTseeseceessvesosscccsscssccesesh
o2 AMPLIFYING MATERIAlL seessesecsoconcscccsccssccsosscsosscnsocn’
o1 Specification....-.....-.......-.........-..-...-..57
o1 AppLicative ProgramminNQeassecsscsscsssscssscessnsessd?
o2 Teletype Paradigmesssssssessasescassssccccsccosnscsesnt/
«3 Behavior by Interleaved Teletype ROLLlSeesceceeseeS?
et State~based methodSeeeoseocsecrecscscccsosssccossecsssB
«5 State Graphs.....................................58
6 Jellybean ExampLe..-................-..-.........58
«7 How to Specify CompLex Systems...................58
22 MOOELSeeesssscecscssscscscosnsccceasssssscsconcscscccasanesd
el The Test-and=Set Model Of IPCoesecscssssccsessesees?
e?2 Bit Transmission Modeleesscosssosssoscsosscecssanses s’
¢e3 SS ModElesssescsessoossccsscesosssosnsnscscssssescscess el
¢4 Jther ModelSescesesccsesenossvscsvsesconnsesoncsonsnssceebl
«5 Relevance 0f ModelSeeosssecccesscesosssscsscssesescnocahl
o6 Problem ArecasSeeeccccescscssssssssscessscnssosncsossnnebl
*J AnaLysis.......................-...................61
«1 State Graph Analysis.-...........................61
¢e2 Critical REQiOH Algorithm Proofesesecescssscescsnssetl
o3 Global AssertionSescscssscssccsccscsscscnsssssccscsssssbtdl
o4 Fault ToleranCEessossssessvcssssssccscsnssosscsscceseb?
e MeasurementSeeesescessscsccsccocscsssscscsccscsscssssceeb?
e Space CompLeX1tY TOr IPCesscesscoscsccncscsssssncecnebl
o7 Time Complexity Measures for IPCesescsssccscsccceeabd
8 Data Transfer PerformanCeCecccsscssssssscssssssscsbd
e8 Performance ResUlLtSeesssenossccscnscsecssossccssscsbd
3 POSITION PAPERSeseessecsssvscsscosncssccsscscosnssssssneeht
el AbElSONessssaccessssssscsnssnsocssscssssssssscsscsscsnceb’d
o2 FiScheErescessssencensscescsscoscsscscsscescssscscsssscsssenebthb
3 Lamport.--..............-......--.-...............-67
o4 LyNnChoeesesosoesevnesosscescccsscscsosscncenssscscsssncnccssssscseb/

e SMOLiAreesescesscscnssscssscocossscsnencossocessssosscnnebd’

Section 7« CURRENT TECHNIQUES AND EXPERIENCEeesececensossell

«1 A4 PROCESS BASED COMPUTER SYSTEMesesevsssscsscesccccns/l
«2 IPC IN HETEROGENEOQUS DISTRIBUTED COMPUTER NETWORKSeseT74
el INtroductioNeecsssssssecsccscscscsscscsssscsccscnncsnnocelb
«2 Fundamental Quantities in a Computer SysteéMeecesesealS
o3 Naming ConventionNSeesecessescscsccsescccscosnsscsansaelb
o4 Implementation in a Distributed Environmentecesesss?6
5 ExampLes..-......-....-.-................-.........77
«3 PROTECTED MAILBOXES AS AN IPC MECHANISMeseseeccecscossl9
ol Introduction....-.....-......-.-..-..-.-......-....79
e2 Proposed IPC Primitives-..-.-........--....-....-..79

Georgia Institute of Technology IPC Workshop

Page ix

e3 INitializatioNeecsassoscceescscacncsecscssasosccscnscncecnesail
o4 Security................-....-.....................80
5 SynChrOhizatiOhoooooooooonoooooooonoo.ooooonooo000081
o6 Fault Tolerant ASpECtSooooooooooooooooooooo-no.o.oogl
e7 SUMMABrYeesesoacsscscsscscssosssncocssscsncccsoscsssnsoscsscsoeil
o4 SBRIEF DESCRIPTION OF DSYS«PLITSeeecoscessssssccscnnsose8l
«5 MODELS OF CONCURRENT COMMUNICATION ACTIVITIESeeeecease87
o6 PRIME IPC CONFERENCE REPORTaseccasacecssssscccsnsessscesll
el INtroductiONececeasssscessccscscsccsnsnsssccsossnsssnsennsl
o2 Synchronization/IPC FacilitieSeeeseosscessosscsnnsesi?
el Process Communication in DEMOSessscescccscscsscsce?

o2 UNIX Process Control/Communicationecececsescccscceedl

«3 Interprocess Communication 4n TANDEMesecosoenoosseTé

o4 Process Communication in VaAXeesoesssonsesesessoesed’

«5 The Multics IPC FaCiLity..ooooonooooooooooooo000096

«6 Event Counting and Sequencingecsessssssecoscoscsesesd?

«7 Intertask Communication Primitives For PRIMOSeees98

«3 Conclusions and Future Directionseecscscscscsessnceslll
o7 DATA COMMUNICATION SOFTWARE aesesscnscessencscssoncenlld
«8 DISTRIBUTED IPC AND SIGNALLINGesesseceesccosasossenslld
el The General Contexteesecscevsocsssoscsssesscnnsnensaelll
e2 The ProblemsSescssescesscessscnssscscscsoscsnsssonsnsssssell’
«1 Multiple Sender/Single Receiver SystemSessssesesll5

«2 Multiple Sender/Multiple Receiver SystemSesesseslls

«3 Looking for a Solution! RequirementSeeecesosecccsescaesllb
el Parallelism and Response TiMEesveacesssoscncsossssnall?

2 Resiliency..................-.....-.............117

3 Overheadeeesssescssesosscssocssvsccsnsocsssnnnsnscsnsll?

«4 Permanent REjectionoooooonoooooonooooooooo.o.oooll?

o5 FairnesSeeesocessescesossncsssesssesossccssscssnncncsssnell?

«6 ExtensibiLity...................................117

o7 SimpLiCity.ooooooooooooooonooooo.nooooooooononoolla

o A SOLUtTONesesssssssesosnsscssssssnssssensnssscsnasllt
«1 A Virtual Ring Structureececesccoscscscescnssencsnesallf

el Mutual Suspic1on..-...........................119

o2 Explicit Message Acknowledaoementeeecsosescsoseeell?d

2 Ring ReconfiauratioNesseccescessccsscsscsscascssessecellt

3 The ExtensibiLity Propertysccesccscsccscsosssssessenel?i

«4 The Control Token MechanisMaeecssesesssssoscsccssselll

el Resiliency....................................121

2 DistributEd Siqnallinq................-0000000122

el Fortuitous SerializatioNesscesccescsscsescsceeel?3

e?2 Enforced SerfalizatioNecscscessssescscnscnsenslly

«3 Performance ConsiderationSecesescscescsescseselll

.5 COnClus"onooooooooo.ooooo.oo.oooo.ooooo00000000000128

Section B8+ SUMMARY AND FUTURE DIRECTIONSeeecsccssecsscecseesll?

ol GENERAL OBSERVATIONS AKND CONCLUSIONSesesesccesseeneel?S
o2 WORKSHOP SUMMARYesssesscecsccesscscosnsscsnscsssnsssssseselll
o1 Addressing, Namings and SecUrityeeceescesssssoscesncasldl
«2 Interprocess SYnChrOniZationooooooooooooooo.00..0.131
«3 Interprocess MechanisMSeesoscscoossescoscsescscssnssseseell?
e Theoretical WOrkeeseseosooosssencsossecccssscosnsccssessseld?
e3 CONCLUSIONS AND RETROSPECTasesscesceccccoscsnsscecseeslld

Georgia Institute of Technology IPC Workshop

Page x

Section 9e SELECTED READINGS AND REFERENCESeeecsescsenceeslls

.1 SELECTED READIhlGS....................l..............155
.2 LIST OF REFERENCES........I....................I....137

Georgia Institute of Technology IPC Workshop

Section 1 INTRODUCTION Page 1

SECTION 1

INTRODUCTION ‘

1.1 QBJECTIVES OF IHE HORKSHOQP

The subject of the workshop was Interprocess Communication
Mechanisms with a particular focus on process-to-process
communications in highly distributed systemss Highly
distributed systems are characterized by very Loose coupling
between physical resources as well as between Logical
resourcese. Such systems also exhibit dynamics short-term
changes in the topology and organization of the total
systems These characteristics place new requirements on the
design and performance of IPC mechanismss these requirements
are assuming extreme importance in advancing the state-of-
the-art in all forms of distributed systemse.

1.2 WORKSHOP QRIGINS

The Last meeting that focused on interprocess communication
was the "ACM SIGCOM/SIGOPS Interprocess Communications Work-
shop®" held 24-25 Marchsy 1975. [IPC 751

One might conclude from the paucity of material published on
this topie since that workshop that the problem is totally
under controle. (The BBM "Network Operating Systems" study
LTHOM 783 <cites only one reference since 1974.) Such 1is
definitely not the case. #Work on IPC*s has been covered
within projects on operating systems3 howevers many im-
plementation and performance problems are only partially
solved or solved only on an ad hoc basise and it appeared
that the time was ripe to again focus a meeting of
specialists onto this topice especially in view of #ts key
role in the operation and performance of distributed
systems.

Since 1375 advances in the field of computer communications
have provided mechanisms for connectina computers together
in a wvariety of configurationse For instancees high speed
seriat communication paths {METC 76+ GORD 791 have permitted
effective Llocal networks [CLAR 781y in which many computers
share <specialized resources (storagey printing facilitiess
etce)s while each node still retains some degree of
autonomy. In additions many mini-computers support lLarge
address spacessy and a corresponding high degree of mul-

Georaia Institute of Technology IPC Workshop

Section 1 INTRODUCTION Page 2

tiprogramminge. One natural way to construct the software
for such systems is to base the software architecture on the
notion that most tasks will be performed by a coliection of
communicating asynehronous processess running on the same or
different processorses Such systems are known as "highly
distributed systems"y and are characterized by a very Lloose
coupling between physical resources as well as between
Logical resourcess and they allow dynamice short-term
changes {in the topoloay and oraoanization of the total
system,

The fact that these systems are very lLloosely coupleds both
physically and Logicallys places quite different demands on
IPC from those applicable to more tightly <coupled contem-
porary systemss even those incorporating a Local network as
the 1interconnection mechanism, Practical attempts to
construct such systems immediately direct ones attention to
available Interprocess Communication (IPC) mechanisms and
their shortcomingse. Lack of well constructed and well un-
derstood mechanisms is the root of most of the difficulties
in bujlding distributed systems.

1.3 PURPOSE ANR SCOPE QF THE WORKSHOP

The "Yorkshop on Interprocess Communications in Highly
Distributed Systems" was intended to bring together a selec-
ted group of workers in the subject area to address the five
general goals Listed below:

1} Assess the present state-of-the-art for IPC
mechanisms in distributed data processing
systems

2) Identify the data available on the actual
pverformance of wvarious IPC policies and
mechanismse

3) Assess the potential wvalue of wvarious IPC
mechanisms satisfying the operational andg
performance requirements for highly
distributed systemse.

4) Identify shortcomings in the present state-

of-the-art and identify promising areas for
future research and experiment on this sub-
jecte

5) Identify possible standardization Llevels of
IPC.

Georgia Institute of Technology IPC Workshop

Section 1 INTRODUCTION Page 3

The scope of the workshop will be Limited to IPC mechanisms
for use in cdistributed systemse (This acknowledges fairly
common agreement among the research community that the fol-
Lowing are not DDP*s =-=-- multiprocessorse computer networks
per sey intelligent terminal systemss and satellite proces-
sor systemss)

l.4 SIRUCIURE QF IHE WORKSHOP

Workshop attendees were selected from dindividuals actively
working in the fields and the size of the workshop was
purposely limited to approximately 40 attendees. Special
attention was given to obtain participants who met one or
more of the following criteriat

- Had had practical experience in the design and
implementation of IPC policies and mechanisms in
highly distributed systemse

- Had analyzed and/or measured the actual per-
formance of various IPC mechanismse

- Would contribute a written submission to the
workshope.

The workshop was held from 12:00 noone 20=-Novembers thru
12:00 noons 22-Novembery 1978y at the Atlanta Townehouse
Motor Hotelsy immediately adjacent to the Georgia Tech cam-
pUSe

Before the workshops invitees were requested to fidentify
their areas of interest. Based on that inpute the organiz-
ing committee established six working groups:

1) Addressing and Security

2) Fault Tolerance

3} Synchronizations Signallings and Flow Control
4) Theory and Formalism

5) Hardware and Primitives

6) Programming Issues

Howevery as often (usually?} happens 1in such situations,
when the groups met and discussed their areas of interest,
realignments in the working group organization resulted in
four working groups rather than sixe.

n Addressings Namings and Security

2) Interprocess Synchronization
33 Mechanisms
4) Theory and Formalism

Georgia Institute of Technology IPC Workshop

o -

Section 1 INTRODUCTION Page 4

The output of these four groups ds the basis for this
reporte.

1.5 ATTLNDEES

1BC MORKSHOP
LISI QF AIIENDEES

(x Members of the Organizing Committee)

Hal Abelson
Laboratory for Computer Science
Massachusetts Institute of Technology

Allen Akin
Georgia Institute of Technology
School of Information & Computer Science

Edwin Basart
Hewlett=-Packard Coe
General Systems Division

Morton I. Berstein
System Development Corps

Bill Buckles
General Research Corpe

James Eo. Burns
Georglta Institute of Technology
School of Information & Computer Science

Gregory Chesson »*
Bell Laboratories

Wushow Chou
North Carolina State University
Computer Studies

Phillip Crews
Georgia Institute of Technology
School of Information & Computer Science

Richard A. DeMillo

Georgia Institute of Technology
School of Information & Computer Science

Georgia Institute of Technology IPC Workshop

Section 1 INTRODUCTION

Philip He Enslows Jre *
Georgia Institute of Technology
School of Information & Computer Science

Michael Fischer
University of Washington
Department of Computer Science

Mark Gang
Ford Aerospace & Communications Corpe
Western Development Laboratories

Robert Les Gordon «
PR1IME Computers

Jim Hamilton
Digital Equipment Corpes

Mohommad Hassan
MODCOMP

Steven F. Holmgren
Digital Technologys Ince.

Doug dJensen =
Honeywell Research
(Presently Carnegie-Mellon University)

Richard Kain
University of Minnesota
Department of Electrical Engineering

Steve Kimbleton
Institute for Computer Science & Technoloay
National Bureau of Standards

Peter Koschewa
UeSe Army Institute for Research in Management
Information and Computer Sciences

Leslie Lamport
SRI International

David Lapin
Burrouahs Corporation
Computer Systems Group

Thomas Lawrence
Rome Air Development Center
UeSe Air Force

Richard LeBlanc

Georgia Institute of Technology
School of Information & Computer Science

Georgia Institute of Technology

Page 5

IPC Workshop

Section 1 INTRODUCTION Page &

Gerard Le Lann
SIRIUS
IRI (France)

Fdward Ye«Se Lee
TRW Defense & Space Systems Group

Jon Livesey
University of Waterloo
Computer Communications Network Group

James Res LOwW
University of Rochester
Department of Computer Science

Nancy Ae Lynch
Georgia Institute of Technology
School of Information & Computer Science

Edith Martin
Georgdia Institute of Technology
Engineering Experiment Station

Wayne McCoy
Kennedy Space Flight Center
NASA

Nancy Meisner
University of Waterloo
Computer Communications Network Group

Ira Newman
Department of Defense

Richard Peebles
Digital Equipment Corps

Steve Ratzel
UeSe Army Institute for Research in Management
Information and Computer Sciences

Donald Sharp
Georgia Institute of Technology
School of Information & Computer Science

David Sincoskie
University of Delaware
Department of Electrical Engineering

Stephen We Smoliar
General Research Corp.

John Staudhammer
YUeSe Army Research O0ffice

Georgia Institute of Technology IPC Workshop

Section 1 INTRODUCTION Page 7

Carl Sunshine
Rand Corporation
(Present (ocation: ISIs Unfiversity of Southern California)

Joseph Se Sventek
Lawrence Berkeley Laboratories
Computer Science & Applied Mathematdics

Pe Se Thiagarajan
Institut fuer Informations-systemforschung
GMD

Virgil E. Wallentine
Kansas State University
Department of Computer Science

Don WYWeidir
Telenet Communication Corpe

Douglas Es Wrege
Georgia Institute of Technology
Engineering Experiment Station

le6 QRGANIZATION QOF IHIS REPQRI

Following this introductory sectione there is a short sec-
tion on the general background of interprocess communication
techniquesa. The main body of this report is Sections 3y 4
Ss and 6 which cover the results of each of the Working
Groups. Within each sections the first material presented
is a summary of the Working Group presentation made at the
end of the workshope Following thate there isy in some
instancese a collection of amplifying material and selec-
tions from the position papers that were prepared prior to
the workshop and distributed to the attendees.

Section 7 contains several Longer papers that were edither
prepared specifically for distribution at the workshop or
were felt by the authors to be applicable to the workshop
and were distributed to the attendees theree Section 8 1s a
very brief summary and discussion of future directions for
IPC and Section 9 contains the references utilized 1in the
reporte.

Georgia Institute of Technology IPC Workshop

Section 2 BACKGROUND Page 8

SECTION 2

BACKGROUND

2.1 INIRQDUCIION

Probably the single most dmportant hindrance to the develop-
ment of dnterprocess communication has been the lack of
general acceptance and agreement on the notion and abstrac-
tion of a "proctessas” Until the ®"process model" of computa~-
tion becomes generally accepted and used as the basis of
software architecturess there will be Llittle motivation for
interprocess communication mechanismse

In most systems the abstraction of a "process" has not been
developed well enough for it to be treated as an "object" in
its own right so that "processes™ can be used conveniently
by system architects and others as building blockse
Primitives for the <c¢reations synchronizations addressing,
and communication of processes have in the past only been
generally available to operating system developerss and
therefore not widely used by application programmers in ap-
plications software systems. Unfortunately operating system
developers tend. to Live with and use poorly documented ex~-
perimental primitives and other ad hog mechanismse. The
notable exceptions to this rule form the core body of clas-
sic Literature in this field [BRIN 699y DIJUK 68be DIUK 71,
DALE 68l1s For the most parte application programmers in the
past have been restricted to conventional I/0 using shared
files as a pragmatic method of Jnterprocess <communication,
with only partial successs

When the notion of a “process®™ becomes recognized as a fun-
damental building block for distributed applications,
stronger support and documentation will have to be provided
by the system suppliers and manufacturerse thus making
avajlable to application <coders a robust set of "process~-
based™" primitivess After such widespread support
materializess the design experience and performance.
statistics will provide the basis for a fuller understanding
of all aspects of interprocess communicatione.

A comprehensive survey of the present state-~of-the-art in
interprocess communication is presented in paragraph 7.6

Georgia Institute of Technology IPC Workshop

Section 2 BACKGROUND Page 9

2.2 PROCESS MODEL QF CQMPUTATION

An excellent survey of the "process model of computation®
can be found in [HORN 731, Prior to thiss articles on
operating systems developed the notion of a "process"™ or
"tasks" as an entity that could be scheduled and own other
resources in multiprogrammed systemss but they did not treat
a process as a structuring methodology in its own right.
Examples of these notions can be found in [SALT 661 and [1IBM
711,

Access to resources in early operating systems presented the
very first examples of interprocess communications but these
early IPC techniques varied widely from one Jimplementation
to the next.s For exampley in most systemssy the Line printer
daemon (or process) owned the Line printers and access to
the printer was restricted to ordinary "write" statements at
the Language level coupled with "logical unit” assignment at
the job control of command language level. Other examples
may be found where the Llogin process "owns®™ the communica-
tion Linessy or a file manager owns the file system as in the
MERT operating system [LYCK 78]J. An early message-based
operating system structured around processes is the RC4000
operating system [BRIN 69y BRIN 7017,

Trends in software engineeringes applicationse and technology
certainly point to an increasing awareness of a process as a
fundamental method of structuring systemse. The prolifera-
tion of 1inexpensive processors and low cost bandwidth sug-
gest a process model of computations even if there dis only
one process per processing elementy since control and shar-
ing of common resources must be by some form of interprocess
communications New architectures are now being proposed
that exploit these trendss eege [NELS 78Je The [NELS 7813
proposal 1s based on a high-speed packet-oriented bus inter-
connecting a Llarge number of processor-memory pairss termed
"cellse® Fach cell includes a CPUsy a primary memory system
{typically one or two megabytes)es a packet bus node control-
Lery and possibly some peripherals such as disks or com~-
munications devicese The architecture supports applications
decomposed at the process Levels the entire system is viewed
as a set of cooperating processessy distributed among the
cells to improve performancesy costese or availability.

2.3 HIGHLY DISTRIBUTED SYSILHD

Highly distributed systems are characterized by very Lloose
coupling between physical as well as logical resources. In
addition they exhibit dynamices short=term changes 1n the

Georgia Institute of Technology IPC Workshop

Section 2 BACKGROUND Page 10

topology and organization of the total systeme The fact
that these systems are very loosely coupledy both physically
and Logicallyy places quite different demands on IPC from
those applicable to more tightly coupled contemporary
systemsy even those incorporating a "network" as the 1inter-
connection mechanisme

Sueh systems should support multiple name spacesy including
the management and transiation of file and wunit names 1in
these name spaceses In additione such systems should handle
abstractions built from collections of communicating proces-
ses and provide mechanisms for addressing and synchronizing
groups of processes, High bandwidth message transport
mechanisms will potentially allow multiple Llogical <connec-
tions between processes to be constructed whenever con-
venients but system support must be avadilable for those con-
nections to be useful. To datey very Little experience s
available to assist a designer attempting to construct com-
plex systems out of communicating processese.

2.4 IPC SIRUCTURES

Most existing IPC primitives and structures are based on a
"two-party"™ communication modelsy in which there is a single
"sender® and a single "receiver®” for each transaction or
messages (This ds certainly the basis for IPC facilities
built around the X+25 Llevel 3 protocol [CCIT 781.) Cther
kinds of communication facilities may better support ring,
tree and general graph models of process networksae
Protocols dnvolving more than two processes are called "N-
process® protocols [PARD 7913 they should find use in shared
data base and electronic majl systemse.

The major funections supporting these protocols are storingy
forwarding and routing variable Length messages. These
functions can be difficult to implement {f communication
Linkss processing nodesy or other resources are only
partially available.

245 INTERPROCESS CONTROL STRUCTURES

Communication Links between processes can be allocated
strictly to <control functionss In facty the degree of
separation of control and data is an important research {s-

Georgia Institute of Technology IPC Workshop

Section 2 BACKGROQUND Page 11

Su€ce A path primarily used for the transport of data may
have no mechanism for control or "out of band®" signallings
which may make error detection and recovery difficulty if
not impossible. The system®s control path structure 1is
primarily determined by the "control model®™ used during
system developments The "classical™ system organizations
are a) master/slavey b) hierarchicals ¢) democratics or d)
autonomouss The first two are well understood and readily
implementeds while the Latter control organizations are not
well understood (in an algorithmic sense) and are the sub-
ject of much research [HOAR 783,

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGe NAMINGe and SECURITY Page 12

SECTION 3

ADDRESSINGe NAMINGe and SECURITY

3.1 WORKING GROQUP SUMMARY REPORI

What are objects
filese processesy devices

Unfform mechanism?

File metaphor =-- UNIX
Process metaphor =-- MININETe RC4500
Abstractions =-- WEB

Worldview: (a la DISY)
Universe >>> Systems >>> 0Objects

Distinguish between:

NAMES == what
ADDRESSES -~ where
ROUTES =~- how to reach

Basic Problem: map
NAMES >>> ADDRESSES
Desirable features:
Generic naming
Context independence
Location independence
Broadcast (group name)
Unifaueness

Path addressing

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGs and SECURITY

Other concerns:
Flat vse hierarthical
Centralized vses distributed
Steps
Search rules
Connections
Transactions
Merging two systems:
l« one below other

2« both below new prefix

Page 13

2« corresponding unused addresses

Name >>> Address mapping may be geparate from IPC.

IPC between specific addresses

Directory object with well=-known address

DISY "MAILBOX®
Generic naming
Location independent
Uniqueness
Object pointer
Resource Limits
Access controls

Segurity

Main attributes of subject:
Logical identity

Physical location

Georgia Institute of Technology

IPC Workshop

Section 3 ADDRESSINGs NAMINGe and SECURITY Page 14

Problems:

ie authentication + access
control of location

20 storing authorization on areas
cutside security environment

e moving objects if encryption

based on Location

Georgia Institute of Technology IPC Workshop

Section 3 AODRESSINGe NAMINGs and SECURITY

3.2 AMPLIFYING MATERIAL

What are objects? filess devicess processes

Page 15

- what things should be in a List of primitive ob-

jects?

= Should we choose one object type to represent

all objects?

Should there be a uniform mechanism for all objects?

- file "metaphor™ - Unix [THOM 741

- process “metaphor" = Mininet [PEEB 78]

(performance?)
- abstractions

- WEB at DEC (performance?)
- Capability based systems

RC 4000

Uniform mechanism 1is a good thing. Being able to do this
requires picking one of the aboves Not sure we cane

Worldview: ANSI/SPARC/DISY [DESJ 781 or IS0 SC 16 model

-~ Universe consists of multiple systemse
- Systems have many objectse.

Distinguish Between Names (what)s Addresses (wheredy PRgutes

thow to reach). (see [SHOC 781
Basic Problem: mapping NAMES to ADDRESSES.

Desirable features of this mapping:

n generic naming - many potential servers
- Wwithin one system or across

systems
- selected by server or by

requestor ("request for service™"

facility ds just Llatter [FARB
7301
29 location independence - same name may be used
no matter where server is located
3) broadcast - (group mame) = communication with
multiple servers
4) uniqueness = only one name for given object

or set of objects at some level
5) path addressing or source routing

source

specifies seqguence of addresses to reach ob-

Georgia Institute of Technology

IPC Workshop

Section 3 ADDRESSINGs NAMINGe and SECURITY Page 1l¢

fecte. Useful 1if "gystem"™ does not know
rcutey or {if destination 1s outside normal
name spacCe.

Additional mapping concepts:

1) Flat vse hierarchical - latter allows each
directory or switch to know only about
elements at its own level ==-> many smaller
directories vse one lLarge onee

2) Centralized 'vse distributed - centralized

can be reliables but requires roundtrip delay

to get dinformationes high Load at centere.

Distributed may allow Local Llookupe or may

require broadcaste Update more complexe

There may be many directoriess and many

"steps" in the address Llookupe. Example: ‘'"my

name" to global names global name to system

address/local names (send to remote system),

Local name to local addresse

4) Search rules = each user may have rules for
tailoring lookup to his needs.

[}
~

NAME =-~> ADDRESS mapping may be costly. Hence desire to do
it once for many successive messages to same destination.
Leads to connegtion notion. May dnclude route setup.
Cacheing of recently used names/addresses also helpful.
Connection also needed when desired that successive messages
to a given name go to the same objects 4in ordere. if
transactions are dindependents then a different instance of
the named object can serve each = no connection neededs

CNSW 761
Problem of merging two previously independent systems:

1 May add "prefix®™ to all addresses (a higher
Level in hierarchy) to distinguish systems.

2) Make one system *"below"™ other in hierarchy.

3) Make unused addresses in each system
correspond to addresses in other system.
Snly good for small numberse.

NAME =-=-> ADDRESS translation may be separate from basic IPC
which is between specific addresses only. Then directory
object (process}) with well=-known address can be accessed to
provide translations with result returned via basic IPCe.
Ihen requestor does basic IPC with specific address of ser-
vice actually desiredes Examples: ARPANET Initial Connec-
tion Protocols Mininet [PEEB 7817

Important Example: Our view of DISY "mailbox" [DESJ 781 has
properties or components:

Georgia Institute of Technology IPC Workshop

Section 3

ADDRESSINGy NAMINGs and SECURITY

- generic name
- Location independent
- unigueness

- pointer to object

- resource control (how many in use)
- access controlsy owner

Security:
1)
2)
3)

4)

Does not include reliability,

recoverye.

Page 17

(process) mailbox stands for

failure

Does include authentications access controlsy

encryptions correctnesse

Basic goal - allow objects to be accessed

only by specified subject.
Two main attributes of subject:

- Llogical identity
- physical Llocation

Problems:

al AlLlow object to be

accessed

from one plage but not another

(eegesy not via dial=1n).

Must

authenticate LlLocation as well

as 1dentity.

b) Removable media plus unsecured
sources: Can authorization
information be stored in areas

outside of physical control?
c) Encryption problem,

authorizations are

Tf

encrypted

based on Location of objects

how <can object move?

constraints: need

authorizations to otherss

(Two
give
but

must not be forgeable {(hence

encryption)).

Georgia Institute of Technology

IPC Workshop

Section 3 ADDRESSINGs NAMINGe and SECURITY Page 18

3.3 CASE SIUDIES

3301 Distributed Data Bases
by

Edward Lee
TRW

Most DDB protocols seem to assume that Data Base Managers
can fiagure out how to communicate between themselves and
that naming one another is not a probleme Is it reasonable
to assume that file system operations and process IPC are
basically the same mechanism? DISY has process as the basic
communicating objiecte You basically open a channel to a
process and then communicate directty with ite It is the
Session Controller (DISY) which opens the channel for yous

34342 Mininet
by

Je Livesey
University of Waterloo

Mintnet s a system 1in which addressing 1s basically
separate from IPCe 1In many systems some form of addressing
method (name =--> address translation) is implicit in IPC.

In Mininets IPC consists solely of the transmission of a
message from a Sender Task to a Receiver Task which has to
be identified by an 1integer Task Identifier (an address
rather than a name)s In the distributed case the host id is

concatenated with the task identifier within the hoste.

The question then 1s how to get the task identifier for a
task to perform a particular function.

In facts all system resources (tasksy filess devicessy direc-
toriessy eee) are formalized as taskse A task has code and
data segments, A files for instancesy is a task whose code
segments are the Access Methgd and whose data segments are
code segmentss A file task gets messages of the form:

- read (record #)

and reacts by returning s message to the user containing the
record data.

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGy and SECURITY Page 19

There is only one well-known task {in each hosts the
Directory lask which has the responsibility to maintain a
list relating function name (a character string) to task
identifier for each task in this hoste. As the wultimate
parent of each task he can find out their task ids. (Task
identifier of a new task is returned to the <c¢reating taskse
the parent.) Nows when user task As for instance wants to

perform

open (filename)

it does so by asking the directory task for the iJdentifier
of the "file-open" taske Assuming this exists Locallys the
directory task returns its task d{d. The user now com-
municates directly with "file-open" (a La DISY session}) and
sends it a message

"open (filename)®
The task "file-open" now creates a file task whose data seg-

ments are the data records of "filename®™ and returns the
"file” task jdentifer to the user taske

The wuser task now communicates with the "file" task (a
second host sessicn a La DISY) with messages

"read (record #)*%
"write (record #3"
"close ()

The "file~-open™ task handles mutual exclusion on the file
by refusing to create new file tasks for the same file as
Long as someone has it open to write)de The "file" task han-
dles record mutual exclusione

In the case where no task exists in the Local hosts to hand-
le function "X" the local directory task talks teo remote
directory taskss who are responsible for knowing which tasks
exist 4n their hosts (and which can be created to do "X%"),
Directory tasks annocunce themselves to one another at boot
t“me-

References:

[PEEB 781
CLIVE 78a1

CLIVE 78b1

Georgia Institute of Techneclogy IPC Workshop

Section 3 ADDRESSINGs NAMINGs and SECURITY Page 20

3+3.3 Disgyssion

Medisner:
Is this more complicated than & straight function
CALL/RETURN system?

Livesey:
Yesy but more flexible since you can impose a function
CALL/RETURN system on top of the basic task/message~-
passino system using library routines if you wante It
is also assumed that we have a homogeneous systems

Sunshine:
Clearly we —can have server processes to guard and ad-

minister
directories
open function
file tasks
etce
Lapin:

We need hardware to support process 4fnvocation/context
switch better than at present.

Livesey:
Yesy but future hardware should not lock us into func-
tion call/process invocation capabilitiess etce

Sunshine:
Curiouslys in Mininets every resource (object) s a
task (process)ys but the creation of a process involves
reading a file (an object containing 1ts <code seg-
ments)e

Enslow:
Lee says that his distributed data base should be
redundant. Does the system itself select the optimal
record!?

Lapin:?
Redundancy increases the reliability of the systeme
Livesey:
We have both homogeneous and heterogeneous redundancy
heres
Homogeneous

- identical copies of data
- increases reliability

Heterogeneous

- copies of non-identical objects to perform
similar functionse ege FORTRAN compilers

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGe NAMINGe and SECURITY Page 21

- increases system band width

McCoys
Can we get a system to give us both!

Sunshine?

To do it across several systems has a cost and we have
to ask if the utility of redundancy is worth the coste.
The ARPANET Resource Sharing Executive (RSEXEC) was a
stripped-down operating system for remotely Llogged-
tnusers who actually executed on the first available
DEC 10 but never knew which one. This was also an at-
tempt to provide a network-wide file systeme Multiple
server systems such as the Irvine Net recognize the
need to go accross the system to get resources. To use
this we may need utility programs to perfornm

Local COBOL ~~> ANSI COBOL
and maybe even

ANSI COBOL --> Local COBOL

Livesey:
May also have a network JCL so that a user only uses
the JCL of his Local machines and then we need to be
able to do the translation

Local JCL #1 =-=> Network JCL ==-> Local JCL #2

Lapint
There are two approaches to a multi UNIX system file
systems We can have

/net

as a special file and address files on machines Ay Ry
etce as

/net/A/pathname see
/net/B/pathname esee

We can also localize host id in the pathname explicitly

partl/part2
partl: host id part2: pathname

Sunshine?
There 1is a conflict between REAL and IDEAL worldse In
the Real Worlde we tend to involve the user in specify-
ing the Location of a function (service)e In the Ideal
Worlds we would Like to give the user absitractions

Georaia Institute of Technology IPC Workshop

Section 3 ADDRESSINGe NAMINGs and SECURITY Page 22

generic naming and location independent naming.

Livesey.:
Part of the problem is that the concept of the size of
the unijverse {(of which the system forms a part) is dim-
plicit 1in the system at a high coste One is then for-
ced to choose between add-on features such as:

/net/A/resource

which are not location independent on the one hand, and
a more or lLess complete rewrite on the other hande
UNIX is an example of such a system that makes assump-
tions about the size of the universee. :

Meisner:
We now have choices between

i) Centralized Directories

which can now be made very reliable
1) Distributed Knowledge
i§1) Tree Structures

Livesey:
{ii§) is jfust a disguised directory methods. There are
really two choices: centralized and distributed. N

Hassan:
Efficiency may dictate +tree structures rather than
directory taskse This was a factor in the MULTICS
designe

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGy NAMINGe and SECURITY Page 23

3.4 PQSITIQN PAPERS

30401 Hamilton
Addressing and Security

by

Jim Hamilton
Digital Equipment Corporation

Because o¢f ever increasing complexity of software develop-
ment and maintenances providing any programming environment
which complicates software development would be a mistake.
This argument lLleads to a view of distributedness as a
property of the implementation of a systems and not of the
application development environmente.

Addressing and protection are critically important in ap-
ptication development. The above view of distributedness
implies that addressing must be lLocation independent. That
ise local and remote objects must be addressed {identically.
Furthermorey I believe that addresses should also be in-
dependent of the context of reference (different processes
should address the same object in the same way)s and uniform
across all object types (hardware defined objectss system
defined objectss and application defined objects should all
be addressed similarly).

I also believe that the use of processes to abstract all
other objects s a mistakey for several reasons: 1) it
restricts the flexibility of the environment for the execu-
tion of functionss 2) it often forces the invention of ad-
ditional addressing mechanisms within the applications 3) it
is inadequate to address system and hardware defined objects
(eegey devices)y 4) 1t dnevitably colors the application
designer?s conceptualization of the systems and finallys 5}
it does not appear to be necessarye

To achieve & distributed implementations it will still be
necessary to solve the problems of physical communication
and its associated addressing problems at a Lower Llevele
But the problems are considerably simolified since the
mechanisms can now be highly specializedy because they are
not visible to the application designere.

1 believe that the notion of capability based addressings
when properly interpreted and implementeds provides all of
the properties mentioned above. Moreovers it can be
naturally extended to provige capability based protection,
which 1dis further discussed belows The <challenge is to
achieve an implementation which is cost-effectives and which
still has all of the necessary propertiese A failure 1in

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGes NAMINGes and SECURITY Page 24

either domain will be fatale An even greater challenge s
to convince the computer industry that the inevitably higher
cost of the basic system will be more than offset by the
reduced cost of softwaree.

I believe that the issue of sharing is partially separable
from that of addressing. Context independent addressing {s
a prerequisite for sharings but its existence does not imply
concurrent access by separate processese Concurrent access
to immutable objects should be possiblee for perfeormance
reasonss but concurrent access to mutable objects now ap=-
pears to be a dangerous mistakee« By precluding this kind of
sharingsy we also simplify the construction of distributed
implementationse.

Given an addressing mechanism with the properties mentioned
aboves @a variety of protection mechanisms c¢an be im=-
plemented. Capability based protection still seems to be
the most promising of theses although it has been criticized
as inappropriate for distributed implementationse [tend to -
reject this criticismy but the notion of self-authenticating
capabilities has been developed at 2erkeley to address this
probleme

The notion of system security has many different aspectse
Included among these are physical securitys correctness of
implementationsy and the logical access control model being

implemented. in comparison with centralized im=-
plementationsy distributed ones seem notably weaker 1in
physical securitys and possibly weaker in correctness
because of greater complexity. The access control model

should notse in principalsy depend upon the implementation. I
helieve that these are inherent problems with distributed
implementations but thatse with the suitable use of encryp-
tione such systems can still be acceptably secure

3+4¢2 Sunshine

Addressing
by

Carl Sunshine
RAND Corporation

Any discussion of addressing must start by making a clear
distinction between NAMES (whole ADDRESSES (wheredly and
ROUTES (how to get therel)s on which John Shoch of Xerox PARC
has written an excellent notes [SHOC 781

Several key concepts or capabilities must be included in &
good distributed IPC systems These include generic naming,
Location independences request for services source routings
and extensibilitys FEach will be deseribed separately in the
following paragraphsy although there are clearly some

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGe and SECURITY Page 25

relationships between theme

Generic naming is the ability to request communication from
a service wWithout specifying the exact process that will
provide the services This is normally useful when multiple
instances of a process providing the desired service are
_availables A specific process is selected (or created) at
the time of the inftial requesty and bound to the source for
the duration of the interactione This binding may require
transmitting the specific process ID to the sources or
merely keeping it at the destinatione. The classic example
of this facility is a timesharing login servicee.

Locatijon independence is the ability to request communica-
tion with a process by name without knowing 4ts location or
addresse Since the source user does not supply the addresss
it must be found by the IPC system in some directorye Such
name=-to=-address directories may be maintained at sourcessy at
a central servery or at destinations (the names are normally
handled at the sourcey with the consequent need to change
all tables whenever a host address or name changes or is ad-
dedi IBM*s SNA centralizes lookup in the S5CP3 and the Ir-
vine DCS kept name tables in destination machinessy requiring
broadcast of reguests to be recognized by the appropriate
destination. The ARPA Internet Name Server proposed by Jon
Postel in a recent note is another centralized example. A
major feature of location independence is the ability for a
named process to move to a different location without dts
users knowledgee. (Of course the directories must be up-
datedes)

Request for service s the ability to broadcast a reqguest
for service to an unknown <(to the source) number of
potential providers of the services who return bids to per-
form the requested servicey thereby identifyinc themselvese.
This 1s similar to generic namings but includes facilities
for the source to select among multiple bidse. Such a
facility was implemented in the Irvine DCS.

Source routing is the ability for the source to identify the
destination by specifying a route to ite This s necessary
in Loosely concatenated systems where no global address
space existse The route is given in terms of a sequence of
addresses through successive switching points or systems
which each have independent address spacess Hence this
concept 1s also called path addressinge. Disadvantages are
the need for the source to maintain connectivity in-
formatione and the variation of a given destination*s "name"
(consisting of the route) depending on the Location of the
sourcee

Extensibility is the ability to add new users (addresses) to
the systems To add new users at an existing lLevel of the
address spacey sufficient room must be available in address
fieldss or they must be extensible. Adding additional
Layers of addressing often proves a bigger problemy for

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGy and SECURITY Page 26

example replacing a user by a network of many users. If the
hierarchy 15 fixed (eegese <net/locald>)y then the bottom
“Lteaves" of the addressing tree cannot be replaced by sub-
treese In this casesy addressing must be used to deal with
networks outside the fixed hierarchys This 1is & serious
problem with attachment of private networks to public data
networkse

Interconnecting two previously independent systems 4s an im-
portant subcase of extensibility. ALL the users of one
system <can be given new addresses in the other system 1f
such widespread changes are acceptables Alternativelys some
unused Local addresses in each of the systems may be mepped
into eaddresses in the other system if only a Llimited number
of users must be accessables Finallysy 1f +the addressing
hierarchy 1is extensibles one system can be attached as a
subtree of the others or both can be made subtrees of a
higher Levele.

3043 Gordon
Addressing & Security

by

Robert L. Gordon
PR1iME Computers

An extremely important aspect of interprocess communication
is the scheme used for addressing and naming the ©processes
and communication paths useds The importance of this sub-
ject stems from the fact +that in any addressing scheme
protection and control mechanisms are explicttiy or im-
plicitly present and either aid or hinder the users ability
to share objectse Many current systems have inadequate
facilities for identifying names and controlling access to
the processes within the same hosts let alone for processes
residing on other hostse Fart of the problem stems from an
inconsistent view of the retationship between the names and
uses of filesy devicess processesy usersy mailboxess generic
and specific system servicess The utility of abstracting
many of the above objects as processes has increased the im-
portance of "process naming" and "orocess addressing” in
overall system destans Therefore until these basic issues
are settled the design of specific interprocess communica-
tion primitives is difficult since they cannot focus on the
fundamental objects that they will be dealing withe

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGy and SECURITY Page 27

Fault Tolerance & Security
by

Robert L. Gordon
PR1ME Computers

Any communication ds inherently an error prone process due
to both the natural distortion of the medium and the contex-
tual requirements needed for fdinterpreting the transmitted
messSages In attempting to desian robust interprocess com-
munication primitives one of the more difficult tasks is the
defining and handling of the many (natural) errors that can

oCCUre Control of communication mechanisms between proces-
ses fundamentally depends on how the designer envisions
process relationshipse. If process relationships are tree

structuredy then the status and control of 2 processes® com-
munication with other processes might be monitored andg
controlled by the parente 0On the other hand if each process
wants to maintain the concept of sovereignty then the basic
challenge is etther how to provide the ability for cooperat-
ing processes to establish a monfitor process that is capable
of controlling the communication paths between the proces-
sesy or how to build 1dntoe the communication primitives
mechanisms for the detection of and recovery from errorse
Since error recovery must make assumptions about Llines of
authority and responsibility between system componentss many
of the issues associated with system security are pertinent
to this discussione.

Se4e4 Chesson
IPC Opinions
by
Ge Le Chesson

Bell Laboratories

Process Naming

Process namess file namess and I1/0 stream names should
reside in the same name spaces This avoids the tyranny of
the "access method"™ and attendant ®Hroblems of making a
program that can "talk" to anything in a system. One can
allow process names to be passed into processes in the same
way that file names and I/0 streams are passed arounds and
this d4n turn permits progress toward interactive command
processors that can set up graph-Like structures of proces-
sesy file 1/0s and IPC streams.

Non=Dupljcation of Mechanism

Georglia Institute of Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGs and SECURITY Page 28

A philosophy that has been proven -many times over 1in
language design may be stated as follows: it is "™bad" to
provide more than one mechanism for a particular operation
or functione. This 1s a roundabout way of saying that there
are benefits to be gained by providing a single IPC
mechanism for use by "local" processess iees on the same
machinesy and "remote" processes on different machines.

Transport Mechanism

It 3s fine to use shared objects (memorys files) for
interprocess communications but 4t is important to hide this
facte The reason is that explicit sharing of objects 1s not
portable with respect to different machine and operating
system architectures and should be considered a Local op-
timizatione Thuse IPC primitives at the compiler or operat-
inz system level should appear as 1/0-Like 1interfaces that
imply copying of data even if they do not actually copy data
on some systems.

IPC in Programming Languages

Most IPC proposals for inclusion in programming languages
amount to Little more than dnterfaces to subroutine
lLibraries which 2a) cannot be dnherited by proctesses across
process fork operationss b) belong in the operating system
anyways and ¢) were done better by Burroughs Corp in DCALGOL
10 years aaoe The result of adding IPC to a language 1is
analocous and about as useful as the notion of a file system
in Pascales A representation of the funcdamentals of IPC that
helongs more to the oprogramming lanauage realm than the
operatina system realm has yet to be demonstrateds and would
fill & much-needed gape

There are applications for which IPC bandwidths must ap-
proach or exceed disk speedse It is clear that such per-
formance cannot be obtained with software (or even firmware)
alones Althouah there may not he much interest in this sort
of thing at the IPC workshops I have been working toward
hardware and firmware 1implementations of my software
mechanismse.

Flow Control

Ipc mechanism need flow <controle It i1s better to have a
scheme where the sender selfblocks than schemes which depend
on "stop" messuages from the receiver. For most applications
the scheme used in UNIX for pipes and other things would
seem to work well: the sender blocks {(sleeps) on a queue

Georgia Institute of Technology IPC Workshop

Section 3 ADCRESSINGs NAMINGy and SECURITY Page 29

Length upper Llimit and is awakened when the aqueue drains
below a lower limite There exists a timeout call which can
wake the writer if the gueue drains too slowly or is other-
wise delayede An additional non-blocking mechanism has been
built dinto the mpx software (see section 7.7) which is
useful in those few cases where blocking cannot be tolerated
-=- network servers and the likes This avoids the problems
that occur with varying process and communication delays or
loss of control messagess

Synchronization

Cognoscienti agree that message~passing IPC schemes are
equivalent in "power"™ to schemes which employ shared objects
although the message schemes seem "harder". This has not
been proved or disproved mathematicallys although there 1is
substantial empirical evidence that pairs of processes can
be synchronized by exchanging messagese

Food for Thought

I submit that it is seductively easy to synchronize process
pairse but that strategies are needed for synchronizing
groups of proctesses in various wayse Is it vreasonable to
set wup "overseer" processes that arbitrate and synchronize
thingss or are there better ways that can be proven correct?
For some thingss Like call=-processing in my network I use
overseer processes because they reduce complexity and can be
made reasonably efficient. For other thingse Like synch=-
ronizing a process aroup carrying out a paratlel com~-
putationes I would try to eliminate the Deus ex machina and
use¢ direct process to process methodse

Portability

It is important to demonstrate univeral IPC iJdeas and to
distinguish local optimizations and special cases within the
universal models, One would hope that a suitable IPC model
could be used with protable operating system ideas to bring
up compatible IPC mechanisms on dissimilar machinese Sec~
tion 7«7 on Data Communications Software outlines some ideas
that have been partially demonstrated to have portability
properties.

Georagia Institute of Technology IPC Workshop

Secti

on 4 .INTERPROCESS SYNCHRONIZATION Page 30

SECTION 4

INTERPROCESS SYNCHRONIZATION

4«1 WORKING GRQUP 3SUMMARY REPOQRY

4elel
1)
2}
3)
4)
5)
6)

4ele2

Geaorg

Statement of the Probtem

Synchronization vie explicit communication (messages).
No global memory.

System-wide control with only dinaccurate/incomplete in=-
formation on the system statecs without any centralized
procedures data or hardwarea

Transit delays are: wvariables unpredictables unboun-
dede

Lossy errors deseguencings duplicate.

Other failures (processors).

Solution Space

SOLUTION SPACE

w
1
]
]
]
]
]
[}
]
]
]

---------- | R |
| I [
| I
— I I —
| | | | |==>
S |=========- I |========-- I R |
— | ! e 1==>
I I
I | .
| | .
L] I l []
I |
— I I ——
I i | | |==>
S |=========- | mm==em———- | R |
—l I | |l ==>

GENERAL CONFIGURATION (CLOGICAL)
FOR A SINGLE SET OF MESSAGES

ia Institute of Technology IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION Page 31

MOIIVATIIONS:

n Distributed servicee

2) Survive sender/receiver failurese.
3 Non=technical reasonse

4) Modularity (growths eee)e

5) Performancese

CONFIGURATIONS:

a) "Single Sender /7 Single Recelver®
Single Path Signalling
End-to-end Synchronization
(Used to achieve flow control for example)

b) Single Sender / Multiple Receivers
Multiple Path Signalling

PROCESSING AT

I I

| RECEIVERS |

| I

| I |

| IDEN. | DIFF. |

I I I

I I I I

MESSAGE | IDENe | 1 | 2 |
| I I I

I I I I

CONTENT | DIFFe | 3 | 4 |
l I I |

(1) Pure broadcasting in a fully replicated system.

(2) Pure broadcasting 1in a heterogenecus replicated
data basee.

(3) Transaction processing in a homogenous
(replicated?) systeme.

{4) Transaction processing in a hetercgenecus

replicated data basee.

OBJECTIVE: To maintain a unique ordering of incdming
messages for all receivers (whether dinitially
fortuitous or enforced)e.

Georgla Institute of Technology IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION Page 32

c)

d)

Multiple Senders / Single Receiver

Multiole Path Signalling

ORJECTIVE: Reveal/Cause/Express relationships between
intoming messages belonging to different flowse.

Multiple Senders / Multiple Recetvers
Multiple Path Signalling

1) Fully replicated systems
same objective as (b)

2) Partioned systems
same objective as (c)

3) Mixed systems

same objective as (b)) for dynamically changing
subsets of receivers plus the same objective as
(c)

4,143 Some Ex3isting Solutlions

a)

b)

c)

d)

e)

f)

Logical Clocks: L. Lamport

To implement a sequential (T. Orde) processing in a
distributed manner (each process has an image of "The
Waiting Queue®™) - may be used to achieve mutual ex-
clusione

Phystcal Clocks? Ls Lamport

How to implement Llogical clocks on a set of physical
clocks {(unique physical time framel.

Logical Clocks plus Voting: Re Thomas

How to resolve conflicts hetween
simultaneocus/concurrent processes competing for
identical resources (fully replicated systems).
Eventcountss Sequencers! Reed/Kanodia

To observe (READs AWAIT) or to express the occurence of
same event (ADVANCE) - to sertfalize eventse.

Circulating Token: G. Le Lann

- Without tickets
To achieve mutual exclusione.

- With tickets
To serializesy to express relationships
between events

Some "naive®™ or lLess general solutions:

-~ Shared Variables: E. Dijkstra
- Monitors and Messages: Ps Brinch-Hansen

Geargia Institute of Technolagy IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION

40144 Attributes

a) Response timee
b) Overheads (trafficsy processings storage)le.

Page 33

c) Fxtensibility (is full connectivity reguireds global

knowledge of the system statuse eeede

d) Deterministic synchronization / probabilistic synch=

ronization / convergence.
e) Fault tolerancee.

- Detectione.

- Recoverye

) Simplicity {correctness proving, impleéementability

headachess seede

4+1.5 Qther Lssues

al Effects of probabilistic synchronizatione.
b) System considerations:
- Hard/soft partitioninge
- Application processing / system
partioning.
c) Evaluation of solutions with respect to
- Attribute spacee.
- Problem spacees

d) Policies (fairnesse enforced priorities)e.
e) Adequacy to resource managemente
f) Classification of solutions.

Georgia Institute of Technology

processing

IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION Page 34

402 PQSITION BAPERS

40201 Lee
Interprocess Synchronization
by

Edward Ye Se Lee
TRW Defense and Space System Group

My dnterest din IPC 1s mainly connected with update synch-
ronization in redundant distributed data bases (DDR). The
protocols developed for IPC must be viable and be able to
satisfy the following major requirements for DDB operations:

1) Performance (response time)

2) Efficiency

3) Peadlock prevention -

4) Error recovery {(surviving errors and faults

and continue operation)
5) Security

Recent state-of-the=-art developments din this area can be
divided in two major categories:

1) Protocols associated with a centralized
control approach CALSB 76¢ BADA 784 ELLI 77,
ESWA 769 ROTH 771

2) Protocols relying on distributed control
LGRAP 769 JOHN 75¢ ROTH 77+ STON 78y THOM 771

Howevere most of the oprotocols do not dinclude serious
considerations of interprocessor communications but rather
take the approach that some kind of messages can be passed
among the distributed processors for communication and Let
someone else to worry about ite.

There are considerable difficulties in taking this kind of
approach in a loosely coupled distributed systema Because
IPC is the Life Line of the systemy it is needed for the
distributed control <(operating systemls distributed data
base operations recovery of the system as well as the DDB
under faifl-soft and fail-safe conditions and reconfiguration
of the network when one or more processors are disabledes
ALL these essentfal functions of a distributed system demand
efficient and fail-safe IPC mechanismse.

Georgia Institute of Technology IPC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION Page 35

The second obstacle is the Lack of evaluation criteria and
methodologies to test and measure:

1 Performance
2) Efficiency
3) Validity

4) Verfiability

of any protocol that is being proposed as the best protocot
for DDBe. There are some efforts present in this area [GARC
78¢ SUNS 761e but a lot more work will be requirede

In a practical systemsy it is wvery Likely that a mix of
several protocols will be wused for updating redundant
distributed data bases depending on the specific situation
and requirement. Howevers it should be possible to have a
unified approach to IPC for all protocols. Additional
research in this area is needed.

Georgia Instfitute of Technology IPC Workshop

Section 5 MECHANISMS Page 36

SECTION 5

MECHANISMS ==~ IMPLEMENTATIONe UTILIZATIONe and PERFORMANCE

5.1 WORKING GROUE SUMMARY REPORT

Interesting lIssues Not Discussed

Data Interface to program not resolved
Control interface to program

“To poll or not to poll™

Eventss interruptss on-conditions

Mechanismg

Signatls

Events

Semaphores

Shared Memory

Monitors

Message Queues

Pipes

Ports

Full Duplex Streams
Virtual Procedure Calls

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 37

Characteristics of the Mechanisms

SHARED OBJECTS
I

| EXPLICIT DATA MOVEMENT
I |
| | EVENT OPERATING BY
| | |
| | | PROCESS CREATION
| | | | SIDE EFFECTS
| | |
| | | | EASE OF DISTRIBUTED
| | | | | IMPLEMENTATION
| | | | |
Y Y Y Y |
: | | | | | |
Signals I U | N | na | N | <+ |
| | | | | |
| | | | | |
Events |l U | N | na | N | + |
| | I | | I
| | | | | |
Semaphores | 8 | N | na|] N | - |
| | | | | |
| | | | | I
Shared Memory | 8§ | N | S/R} N | - |
| I | | | |
| |] | | |
Montitors Il s | Y | R | N | 0 |
| | | | | |
| | | | | |
Message fQueues | SZ7U | Y |S/R/T] Y |} + |
| | | | | |
| | | | | |
Pipes | Vv | Y | na | N | + |
| | | | | |
| | | | | I
Ports | SZu | Y | na | N | <+ |
| | | | | _|
| | | | | |
Full Duplex Streams | U } Y | R | N | =+ |
| | | ! | |
| | | |] |
Virtual Procedure Callts | U | Yy | 1T | Y } <+ |
I | | | | |
S = Shared S = Sender
U = Unshared R = Receiver
T = Transport

Mechanism
na = not applicable

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 38

Desirable Quabtities of Meghanisms

Performance

Randwidth

Delay
Provability

Correctness of use

Correctness of implementation
Security
Transparency

Naming

Location (Physical)

Environment (Logical)
Separation of control from data
Complete and small set of primitives
Fault tolerance

Encapsulation

Detection

Recovery

Size of fault set covered

NOTES: The priorities used to weight these desirable
gualities
depend on:
- Application
- Level
- Environment

Georgia Institute of Technology IPC Workshop

Page 39

MECHANISMS

Section 5

Desirable Qualitles of Mechanisgms

Capabilities~--

Fault Set Covered=--

Error Recover

]
]
-~
-
c
[T |
E)
-~
[0 =
| S =)
o o |
>0
cC O~
Ll O O) =
- O C)
-]
Nw E >
w Q =
CXxXEr
O U w L
. C 3
OO o
Qt v o
wocw
cCoawe
© v e
-~ Ca
- o 0
- 0
- C
O
[=
[

Provability=--|

Performance-~|

— — —— i —— — —— — — — — —— — ——

— v —————— — — — —— ——— — — — — — — — T — —— — —- S——

Signals

Events
Semaphores

Shared

Memory

Monfitors
Message
Queues

Pipes
Ports

[@] [=]
~ ~
(5] (8]
]
+]
+ +
+ +
+ +
(=]
+ g
(=]
+ g
+
+ +
x
o
e o
o [
S0 -3
(=} ® O
a Jov o
- @ L)
-t - O
3 - f 0O
[T 7} >0 0

= Control only

c

= Addressing
Mechanism
Dependent

AD

IPC Workshop

Georgia Institute of Technology

Section B MECHANISMS Page 40

1) A functionally complete IPC
mechanism requires both data and
control capabilities

2) ALL were considered to be ‘"basic"
mechanisms => No embellishments to
improve desirable programs

3) Thus abjlity to recover from faults
depends on implementation

4) Another trade = Bandwidth VSe
status consistency

5) Perceived hierarchy (in mechanism
List)
6) Omissions

- Broadcasts
- Addressing
- IPC mechanisms 2?7

1) A design exercise to try to over-
come Hetgn in table would be
interesting =-=-=- Also table comple-
tion

1) Migration of applications from

centralized to distributed en=-
vironment
2) Not enough known about these

mechanisms:
= Complexity of IMPL
- Sjze of IMPL
- Efficiency of IMPL
- Useful hardware assists
3) Common understanding of all
mechanisms
- Dictionary

4) Lack of a number of implementations
5) Cost /7 time / complexity
6) Premature standardization

7) Difficulty of modifying / ex-
perimenting with hardware support

devices

83 Premature vendor mechanism selec-
tion

3) Compatibility
- Obstacle

- Objective

10) Evaluation criteria

11) Papers dont*t tell reasons for
designs (some designs based on few
examples)

12) Oefinitions of universes

Georgia Institute of Technology IPC Workshop

Section 5

Research Questions:

1)

21

3)
4)

5)

&)

A

8)
3)
10)

11)

Georgia Institute of Technology

MECHANISMS Page

Identify collections of primitives
for

- Easy programmer understandinag

- Efficiency

- Match to application

(Answer probably depends on en-
vironment)

Fault Tolerance of IPC mechanisms
not well understood

Trade == User or IPC mechanism?

How much must wuser be aware of
process creation/existence?

How should responsibility be
distributed? Visibility of fault
responsibilitye

How to decouple bindings:

- Modules to graph

- Process to nodes

- Resources to processes

What set of IPC mechanisms is

- Easy to use

- Complete

- Efficient

Refine virtual procedure call
mechanisme.

Tools for top~down design

How to select architectures from
option criteria

How to decompose applications

41

IPC Workshop

Section 5 MECHANI

562 AMPLIFYING MATERIAL

SMS Page 42

5¢2.1 Prepared by the Working Group

An attempt was made to define

Lows an application software
solution for his problemes" It
this is not an easy taske Some
1) Some applications re
IPCs while in othersy
tion becomes useless
of times A single set
plement 1IPC may not
problemss
2) Should IPC primitives

services or should IPC
various programming
reference to this
found in [HOAR 781,

La

At this pointe it was felt that
the hierarchy of Llevels at which
vokede For each Levels we att
jects which may be manipulated

which may be performed on each o

Hierarchy of Levels

Command Level

High Level Languages
Operating System
Tnstruction Level
Mjcrocode Level
Hardware Level

The description of objects a
enumerated for three different s
1) Accepted practice -
available
2) State of the art -
" researchers in the fie
3 Wish Llist

Enumeration of Quantities

"a set of primitives that

al-

engineer to design the best
was quickly realized that
of the issues involved are:?

auire highly reliable
communicated informa-
after a certain period
of primitives to 1im-

solve both types of

be operating system
constructs be parts of
languages? A relevant
tter proposal may be

it was necessary to outline
IPC mechanisms can be in-
empted to describe those ob-

and those IPC operations
bjects if any.
nd IPC operations can be

ituations:
those commercially

current
Ld

practices of

for Accepted Practice

Commangd Level:

Georgia Institute of Technology

IPC Workshop

Section 5 MECHANISMS Page 43

objects = processy fileo Links devicesy programs
task graphey directory

IPC operations -

files: file Locks (control function)
pipes

processes: create
delete
Link via a pipe
suspend
resume
status

Links: <creation
temporary files
Link management in DEMOS

Reference: [BASK 7713,

Note: Though not all types of objects are available on many
systemsy some of them can be used to emulate those
capabilities which are unavailable. For examples tem-
porary files are used in UNIX to emulate pipes.

High Leyel Languages:

objects - typed objects (integersy realsy charactersy etce)

semaphore

monitors

events

ports

shared common (typed cobjects)

Except for the use of shared typed objects (via global com-
mon areas)y current languages commonly available do not use
the other objects for IPC (eeges PL/I)e Almost dnvariably.
one must drop dinto a runtime Llibrary routine or to the
cperating system to perform IPC functionss

PL/I is most progressive

Algol 68 provides some capabilities

APL supports shared variables

Miscellaneous notes:

There was some discussion concerning the two types of com-
monly used IPC mechanisms: message-oriented vse procedure-
orfented (monitor)e A good reference to this area is [LAUE
791

Georgia Institute of Technology IPC MWorkshop

Section 5 MECHANISMS Page 44

5e.2e2 Prepared by Peebles

Se2e2el Introduction and Explanation

The IPC mechanisms described here are known as ‘“Yprimitive®
for several reasonsi they are primitive in the sense that
they are LlLow=~lLevel building blocks from which more
sophisticated forms of IPC <can be builts they are mostly
orfented towards two-party communications the simplest cases
and they are mostly derived from existing wuniprocessor
systemse

5¢2¢2«2 Desirable Properties

It 4s fairly easy to List some desirable properties that any
interprocess communication mechnisms should have!

Performance =-- In terms of bandwidth and also
delay. We would ULike mechanisms with a
minimum of overheads 1in order to maximize
performances THis should note of <coursey
reduce functionality.

Provability -- A desirable property for any IPC
mechanism should be that it Llend idtself to
the wverification of systems which are built
up using processeses

Security -- By this we mean protection of two com-
municating parties from one anothery and also
with respect to third partiess in terms of

Leakage and interferencee.

Trangparency =- This refers back to the issues of
naming and Location. The users of an
interprocess communication mechanism sdhould
not have to deal with that mechnism at other
than the advertised Levels nor should they
have to be aware of the details of its 1im-
plementatione.

Separatlon of Data and Conirol =-- It may or may
not be & good property of an IPC mechanism to
contain elements of both data and controle.
In some dmplementationsy data and control
(signal) transfer from sender to receiver are
carried out in the same operatione. Separate
data and control transfer operations cans of
coursey be combined 4n higher-Level non-
primitive interprocess communication
operationse

Completeness and Smatlness =-- Interprocess com-

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 45

munication primitives should certainly be
completes in the sense that one should be
able to do¢ any operation which is valid in
the given system without 4introducdng new
primitive operationse It 4s not so clear
that they should be smally consistents of
courses with performance.

Fault JTolerance ==-This Leads to the concepts of
encapsulation and recoverye. In order to
achieve fault tolerancesy an operation should
fulfill the following conditions:

faults should be detected.
faults should be handled at the
appropriate lLevely and not simply
passed back upwards towards the
USEre
faults generated at a Lower Level
should not terminate a user ses=-
siones Insteads they should be
recovered at a LlLevel <close to
that at which they occurrede.
in interprocess communicationsy 1f
data or control transfer failss
1t may be sufficient to inform
the senders ors in some critical
applicationss 1t may be necessary
to inform both the sender and the
receiver that some message or
control signal did not get
throughe

The concept of encapsulation suggestes the
enforced Localfzation of errorsy so that an
error in the communication between two proc-
cessors c¢an have no effect on any otherse
The <concept of recovery suggests that
whatever errors do not occur are cleaned up
in such a way that a consistent system state
is restoredy and that unresolved error states
are not simply passed up the Lines Error
messages of the form:
SUBNETWORK ERROR - PLEASE LOG IN AGAIN

should never occur.

Cost -- The concept of cost is very difficult to
define exhaustivelys but cne can suggest some
kinds of cost which can be incurred:

- implementation
- performance
- application flexibility

Note that in the evaluation of primitive mechanisms given in

section 5.1 we assume a fairly standard implementation. The
properties above <clearly depend in part on implementation

Georgia Institute of Technology TPC Workshop

Section 5 MECHANISMS Page 46

and we cannot give any hard and fast rulese.

S5e2e23 IPC Taxonomy

One of the most obvious dimensions along which to
differentifate IPC mechanism is whether they are message=-
-based or note Mechanisms cans of coursesy be data-transfer
basedy without being message-based.

Fxamples: Pipess portss full-duplex streamse

These are clearly the IPC mechnisms favored 1in those
distributed systems which are themselves not message-based.
Instead of messagesy these depend on a variety of communica-
tion mechanisms:

1) Signals
Signals are process interruptse which can
arrive with or without accompanying type in-
formations and perhaps the identifier of the
originators 4 signal may cause a transfer of

control inside the receiver processs and

there may be enable/disable mechanismsy
analogous to those for hardware interruptses
2) Events

An event is a state variablees One should be
able to test it and sgt ite It should be
possible to implement a wait on the event by
means of a test in a Loope.

3) Semaphores
A semaphore 1is a storage cell with an as-
sociated gqueue 0of processess and with two
operationse wait and signal (no relation to
signals in section 3.2414l1) which have side
effectse

4) Shared Memory
Shared memory consists of data cells which
are accessible to sending and to receving
processess perhaps with an associated access
discipline which 1is designed to avoid
critical section problems 1in accessing the
shared resource.

5) Ports
Ports are input/output channels belonging to
Processess Ports iIn corresponding processes

can be connected together by Links to form
communiccation channelse.

&) Full Duplex Streams
A full duplex stream is effectively a bi=-
directional pipe. In place of a sender and
receivers the processes at either end of the
full-duplex stream can both send and receive.

Yaturallys in order to achieve some measure
of synchronizationy a read should suspend

Georgia Institute of Technology IPC Workshop

Section S MECHANISMS Page 47

until a corresponding write {s executed at

the other end of the full duplex streams and
vice versa.

S5e2e2e342 Message=-based IPC

These are the IPC mechanisms which depend on messages
between processese They can be further subdivided along the
following Llines:

1) Single send pl =-=> p2

2} Single receive pl == p2

3) Multiple send pl ==> subset of P

4) Multiple receive pl <~-- suybset of P

Blocking and Nop=blogcking Primitives

A further way of subdividing 1interprocess communication
primitives is on the basis of whether they are blocking or
non-blocking "in nature. A blockipng primitive 1s one which
causes 1ts 1invoking process to be suspended until the
primittve operation is completede Thuse after invoking a
blocking receives a process will suspend (sleep) until some
message does arrive.

Distributed systems have been 4implemented with blocking
send/receives with blocking send and non-blocking receivey
and with non-blocking send/receivee.

Yirtual Procedure Calls

YVirtual procedure <calls ccan be viewd as a highly stylized
form of message passing but entail a great deal more
semanticse They are wused in support of an object model -
processes access objects and objects are controlled by other
processese IPC consists of one process invoking a function
on an object and another process executing that function.

5e2e2e¢3e3 Higher-Level Meghanisms

There are also higher-level mechanisms which can be produced
using the primitive operations as building blockse For
instancey one fregquently encounters virtual circuits buflt
on message passing combined with signalling.

Se2s2+4 References

The following references may be helpful in explaining the
specific IPC concepts identified:

1 Semaphoress Signalsy EFventss Monitorse Pipes:
LHOLT 78b12

2) Virtual Procedure Calls:
CHAMI nd]

3) Message Passing Operating Systems:
CMANN 771

Georgia Institute of Technology IPC Workshop

Sectfon 5 MECHANISMS Page 48

4) Message Passing versus Procedure Calls?:
[LAUE 791

Georgia Institute of Technology IPC Workshop

Section S MECHANISMS Page 49

S¢3 EQSITION PAPLRS

5.3.1 Peebles
PROGRAMMING ISSUES

by

Richard Peebles
Digital Equipment Corporation

Religious lssugs

A Programmer®s environment (languages operating system ser-
vices and model of process structure) tends to be a
religious issuees My religion calls for the simplest pos~-
sible environment by providing a set of "orthogonal basis
vectors" for programming. The result is a set of primitives
that allows an application software engineer to design the
best solution for his problems Orthogonality of software
tools means that one pieces or primitives does not preempt
design choices for the otherse This is to be contrasted
with another approach to simplicity which preempts almost
all choicese

In addition, my religjon calls for the removal of
representational irrelevancies to the highest degree pos-
sible. As a conseguences the underlying process structure

Is not visible at all to most oprogrammersy nor {s the
distributed nature of the machine that implements his ap~-
plication,

Practical Issues

The difficult part of religion is applying it to our daily
Livess Just what are these primitives;s what makes an
orthogonal sets can we find a set of "basis wvectors®"?
Furthermores can we reasonably expect to hide the process
and machine structure from programmers? In my views most
research in distributed systems is (should be) aimed at ans-
wering these questionse.

The above goals for the programming environment impose
several constraints on the IPC mechanisme First it should
be Location independente The same mechanism should be used
for both 1inter-host and fintra-host communicatione. This
means that a programming decision does not preempt a
process-Loc§t1on decisfon and vice-versae. A more difficult
guestion 1is whether the IPC mechanism should be visible as
such to the programmere It is possible to provide him with
an extended machine in which IPC appears as the application

Georgia Institute of Technology IPC Workshop

Section S MECHANISMS Page 50

of an operator to an operands this is the approach taken 1in
our experimental WEBR systeme. It 1s a simple matter to
construct both datagram and virtual circuit abstractions
with this mechanism 1if *"communicating processes®™ s a
relevant abstractione It is considerably more difficult to
provide the operator/operand abstraction mechanism than a
simple send/receive mechanismi particularty if abstractions
are to be enforceds

In vendor=implemented products neither Location transparency
nor process structure transparency 1is usually provided.
Research systems haves for the most parts made IPC an ex-
plicitly separate ctoncept among other abstract extensions of
the operating systeme The WEB operator-invocation architec~
ture is seeking to provide a single mechanism that will ser-
ve as a general basis for "operating system"™ and user func-
tions - they are not distinguishablee It iss howevers only
in the final stages of design = about to be implemented.

The most significant obstacle to providing an IPC mechanism
that Least perturbs the programming interface is historical
artifacte Finding a design that 1s ideal and that allows
reasonably simple migration of customer applications 1s =&
hard problems We may be forced to throw up our hands and
call on users to swallow yet another conversion efforte
Will we do it again in 1988 when distributed systems go out
of vogue? Hence my strong belief in the need for process
and machine structure independence of IPCe FEarly standards
will be 2 hindrance to this but may be inevitable given the
state of the art and user impatience to builde If that is
acceptedy the next biggest obstacles are thin wires and
different architecturese. Hiding the network structure is
hard when physical Links are under 100K bpse Then too there
is the problem of the complexity of the WEB abstraction ap-
proach - ft*s hard to understand.

Georgia Institute of Technology IPC Workshop

Section S MECHANISMS Page 51

5.3.2 ¥alleniine
PROGRAMMING ISSUES IN DISTRIBUTED SYSTEMS

by

Virg Wallentine
Kansas State University

The programmer in a distributed processing environment must
be provided with a set of facilities which permit easy
specification of the distributive properties of his/her
programe The word program here 1s used to refer to either
the output of a single compilation or the output of indepen-
dent compilations of program modules which are to be com-

municating via an 1IPC, These distributive properties
include the specification of the concurrencys data flows
resource requirements {(memorys devicesys etcedy and

intraprogram (intermodule) protocol properties inherent in
the execution of a configuration (system) of <cooperating
software moduless Given a description of these propertiess
an operating system must he able to distribute the user®s
program across multiple machines 4in a manner which is
transparent to the programmere. Traditional approaches to
providing these facilities include the concurrency support
in high-Level languages and the resource allocation andg
concurrency support in conventional operating systemse

Current Approaches

Several high~Level languages such as Concurrent Pascal [BRIN
773 and SP/K [HOLT 78] have 1incorporated the monitor [BRIN
73] [HOAR 741 concept to provide structured concurrencye
This concept is excellent in a centralized system but relies
on shared data tand therefore shared memory)s and s
therefore not an appropriate concept on which to base a

distributed systeme Howevery an effort 1s underway at the
National Physical Laboratory [DOWS 781 to distribute a
Concurrent Pascal program across loosely coupled

microprocessorse The distribution of passive system com-
ponents (such as monitors) on disjoint machines implies many
copy operations for parameters and also additional active
system components (processes) which do not appear idn the
program texte.

A much more appropriate high-Level Llanguage concept for
distributed programs s proposed by CJAsRe Hoare in
reference [HOAR 78Je Each function is a sequential process
which 1s connected to other communicating sequential proces-
ses via input/outpute This concurrency support is based on
data flow and not shared dataj; thereforee 1t is not depen-
dent on shared memorys As a resultsy each function s
distributables Howevery it seems that buffering of data
between processes is necessary to improve performance in

Georgia Institute of Technology IPC Workshop

Section & MECHANISMS Page 52

distributed systems with slow speed connectionse Since the
compiler for such a Language presumably can generate the
resource requirements for the programs since processes are
identified by namey and since the protocol between processes
is fixeds enough knowledge is available to distribute a set
of processes which are compiled togethere.

A second area of programmer concern for distribution occurs
because concurrent program functions (modules) may be
separately generated (compiled)e These may well be existing
programs or just separate functions based on programming
styles The dinterconnection of these modules into a program
is dynamic and therefore requires operating system supporte
In early conventional operating systemss the support for
combining these functions 1into a configuration of com-
municating concurrent software functions 1is specified at
three Llevelse Firste overlap of CPU and I/0 are made
available for standard I/0 file functions. Secondy added
concurrency 1s achieved only with unstructured (low=Llevel?
facilities for process creationy namings and communicatione.
Thirde complex job control languages are provided to achieve
allocation of resources to run these functions. In a
distributed systemy these JCL steps must be synchronized
across machinese Complex resource control in a distributed
system should certainly not be the programmer?®s
responsibilitye. This 1is alleviated by viewing distributed
operating systems and their executable programs as cooperat-
ina processese A highly successful system is the
Distributed Computing System of Farber [FARB 73]e In this
systemy the structure and distribution of the set of proces-
ses is transparent to the usery and a high Llevel of
concurrency 1is achieved without wuse of Llow~level process
control primitivese

Process naming of cooperating processes is still burdensome
to the programmer. The same problem also occurs in current
Ymailbox" schemes as epitomized by the VAX 11/780 system
CDEC 7713 The naming or numbering of mailboxes must be
known to the programmer or a creating processe This is com-
monly referred to as the IPC-setup problems coined by Elliot
Orcanick in reference [ORGA 72]. The designers of UNIX
LTHOM 743 LRITC 78] sought to alleviate this probleme They
invented the "pipes" In UNIX a user programs running in its
own processs may take the place of a file in a manner which
is transparent to the original programe Each program may
have +1ts standard 1input and output files replaced by
programsy thus building via the UNIX shell arbitrarily Llong
lLinear chains (a pipeline) of programs. UNIX automatically
transfers the data between processes and synchronizes the
process as it intercepts the standard input and output file
operationse

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 53

UNIX "pipes” eliminate the need for process naming and treat
concurrencys resource allocationsy and inter-process protocol
as a data flow problems Interprocess protocols are treated
simply as simplex data streams. The Job control Llanguage
provided by the UNIX shell becomes a pseudo data flow
Language and resource allocation 14s transparent to the
programmers, Howevers there are a considerable number of
programmer protocols which are not served by "pipesa" As
acknowledged in reference [RITC 781y "pipes"™ cannot be used
to construct multi-server subsystemse.

UNIX wWwill support general interprocess communication
protocols but these are not generated by the shelle. These
can be programmed as a set of child processes whose "pipes"
have been setup by a parent processe.

A Research Rirection

If we are to be successful in distributing programs across
highly distributed systemsy we must provide the proogrammer
of dynamically 1interconnected cooperating processes a job
control Llanguage (software configuration control) as easy to
use as Hoarets communicating sequential processess It seems
that the most promising direction is to extend the <concept
of the UNIX shell to automatically generate the more complex
protocols available to the parent processes previously
described. It must then also be extended to generate
(representations of) distributable configureations of com=-
municating processes.

Work in this area is underway at Kansas State University.
The projectx dnvolves development of a Network Adaptable
Executive (NADEX)LYOUN 791s The attempt is to permit the
user to specify data flow at the command Llevel and have the
command interpreter generate a distributable software con-
figuration of nodes connected by full duplex data transfer
stream connections (DTS connections) to form an wundirected
graphe In generals a node may be thought of as a processe.
fach of the connections <consists of +two 1independent bi-
directional data transfer streams. One of these streams
uses small parameters while the other uses a3 standard-sized
data buffere. The data buffers carry along with them size
and status indicators whereas the parameter buffers contain
only a small amount of user-supplied data.

A user program running in a node performs serial buffered
READ and WRITE operations in its various <connectionse The
connections are numbered, and the proagram attaches
particular meanings and implements particular protocols for
each of {dts connectionss A connection can connect a node
either to a user program or to a system process used to ac-
cess a file or an I1/0 devices The program cannot tell the
difference between these modes of operationa This clearly
provides all of the power of the UNIX pipelines while remov-
ing the Llinearity constraint on the structure of the connec~

Georgia Institute of Technology IPC Workshog

Section § MECHANISMS Page 54

tion graphe Alsoe the connections are bi~directional so
thaty for exampley a3 write~reguest/read-response protocot to
access a random file can be implemented.

For these serial buffered READ and WRITE operationss a
oriori protocol knowledge can be specified to the underlying
data flow 1implementation (buffer control) to enable it to
maintain a check for validity of user protocol (in terms of
data flow) during executione. This protocol checking is
critical in "un-debugged" (user-written) nodess. Examples of
such protocol violations occur many times in the facilities
of SOLO [BRIN 7617, Deadlock detection is also performed
based on data flow in a configuration which 1s distributed
across machines connected by a network IPC. Multiserver
subsystemse such as a data base management systems are im-
plementable as a configuration with multi-connection READ
(multiple condition WAITs) and conditional WRITE operations
provided on data transfer streams. Interconfiguration con-
nections are also provided. Finally, the command
interpreter and the node interface (PREFIX) provide all the
mapping of Logical data streams (ports) onto implementation
data streamse.

* Supported in part by the Army Research Office under Grant
Number P=156160-A-EL.

Georgia Institute of Technology IPC Workshop

Section 6 THEOQORETICAL WORK Page 55

SECTION 6

THEORETICAL WORK

6.1 WORKING GROQUP STUDY REPORT

STRUCTURE of Discussion:
Distributed system without central (or any) control
Free rangings undirected (no standards)
Principless Nnot mechanisms
Theorys not formalism
Independent of Technology
Dutline: Target drawn around arrows

WHAT IS A DISTRIBUTED SYSTEM?
A distributed system is one in which the communication
of data between processes takes a significant amount of
time compared to the time needed to execute one step of
a processe

Exagmple: POP.10

SPECIFICATION

(Note: Numbers in parentheses are “"pointers® to am-
plifying material in paragraph 6e2)

Definition: A specification is that which Llets one

decide if a running system is behaving correctly.

State-free Methods)
Applicative programming (6e2s1s1)
Teletype paradigm (6e2+6142)
Observable 1/0 behavior (6e2¢l4¢3)
State-based Methods (6e2sle4)
State graphs (6e2ele5)
Critical sections (6e2sle3)
Problems
Avoid explicit state description (6e2e146)
How to specify complex systems (6e2s1e7)

MOBELS

Befinit
pl

on: A model exhibits the properties of an im-
mentation
MODELS CONSIDERED (Procedures and Files)
General test and set model (6e2e241)
Bit transmission model (6e¢2¢242)
Interpretive model (6+202432
OTHER MODELS (6e2e24¢%)
Actor- induction

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 56

LISP

etce
RELEVANCE OF MQDELS (6e42¢245)
PROBLEM AREAS (6e2e2e6)

Existence of single basic model

ANALYSIS
Inferring a system®s behavioral properties
Formal proofs of correctness (Be2e30ly Beleldels
Heledel)

Fault tolerance (6e2e344)
Performance
. Measurements (6624345}
Complexity
Space (Ee2e3eb)
Time (6e2e3e7)
Data transfer (fe2e3+48)
Simulation/emulation (6e2¢349)
Problems (£42¢345)
Trade=-off technigues
Relevance of models

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 57

6.2 AMPLIFYING MAILRIAL
R

6+2+1 Specification

6e2elel Applicative Programming

Want to represent a system as composition of side-effect-
free functions.

Can extend a "pure® applicative programming Llanguage with
constructs for multiprocessing:

- Suspended evaluation of subexpressionse.
- Multisets - unordered collection of expressions
which becomes ordered as evaluations terminate.

Encapsulation of expression evaluations gives alternatives
of distribution of compution: factor problem into assigning
"capsules™ to processing nodese.

Potential disadvantage: 1in any "real®" situations there is a
need for some global reference’ such a reference cannot be
handled if side-effects are forbiddene.

Reference: U[BUCK 3]

£e2ale2 Teletype Paradigm

AlLL that the user knows about a system is what goes in and
what comes oute. What happens behind the panels is of no
concern to hime This view s captured by the following
paradigme. There are N userss egach sitting at a teletypee.
The system behavior consists of the N rolls of papere. The
correctness of this behavior must be decidable just from
looking at those teletype rollse.

fe2e¢1+3 Behavior by Interteqved Teletype Rolls

I1f I/0 behavior is to be described in a way suitable for
reasoning about composition of systemse it is not sufficient
to consider only the separate "teletype rollse” It is pos-
sible for two systems with the same individual port behavior
to be incorporated as modules in a Llarger systems causing
different external behavior for the Llarger system. A
sufficiently dnclusive behavior description to avoid this
problem can be given by describing the initerteaved teletype
rollse Thus fary such descriptions have been used for sim-
ple synchronization and data base behaviors and appear to be

Georgia Institute of Technology IPC Workshop

Section 6 THEQORETICAL WORK Page 58

guite natural and usable.

£eleled State-based methods

A state-based specification method was used for the al~-
gorithms in [BURN 78]« There the appropriate mutual ex-
clusion behavior was expressed by grouping process states
into "regions” comprising critical statessy other program
statess and protocol statese Desired exclusions deadlock=-
free and fairness behavior was then described 1in terms of
the progress of processes through their regionse Such
description Led to clean formal reasoning about the proces-
S€Se The descriptions howevers does not appear to be very
easily suited for reasoning about the system as a building
block for larger systemse

6el2ele5 State Graphs

Thiagarajan has used the global state model to give a simple
definition of Shapiro®s algorithm for the maintenance of
redundant data bases in a distributed environmente. This
permits an elegant and simple proof of correctnesss

6e2elet Jellybean Example

There are examples of simple systems in which one cannot
talk about the state of the system at any particular point
in time. The example involves two processes modifying the
number of jellybeans in a factorys and one process counting
the total number of jellybeanss The behavior of these three
operations cannot be explained by any sequential ordering of
their executionse. How c¢an we specify correctness of this
system in a sufficiently general way to allow this type of
implementation?

Referencet: L[LAMP 761J.

Ee2ele?7 How to Specify Complex Systems

We are faced with a dilemmas We do not want to have to men-
tion states in our specificatione But it is very difficult
to write any non-trivial specification without talking about
statese For examples try specifying a memory cell without
talking about statese

Georaia Instijtute of Technology IPC Workshop

Section 6 THEORETICAL WORK _ Page. 59

6e2.2 Mgdels

6e2e2e1 The Test-and=Set Model of IPC

The Test-and-Set primitive is a powerful indivisible opera-
tion for accessing a shared variable for communication among

asynchronous processese The model treats asynchronous
operation by <considering timing sequences. Correct al-
gorithms must work for all timing sequences. Fairness

properties may require that the timing sequences be restric-
ted to those satisfying "finite delay." A sequence satis-
fies finite delay if no process has to wait forever for a
timing message.

The Test-and=-Set primitive is in one sense the most powerful
primitive possible. Hencey the Lower bounds results for
this model apply directly to all weaker primitivess

To model general distributed systemss it 1s necessary to
model processes and sfaganificant=-distance communication. To
model a message channel in the simplest and most natural
wayYes Wwe think of it 2s a special type of process with access
to two variabless one at each of its endse The process sim-
ply reads the contents of one of the variables and writes
the result in the other variables ad infinitum. We 1imagine
this process to be asynchronous with respect to the other
processes in the systems Thus communication delays are as-
sumed to be arbitrary. This model seems simple and general
enough to provide a basis for simulating and comparing
distributed systems of practically any typee.

6e242¢2 Bit Transmission Model

Lamport favors a more low-Llevel IPC model: transmission of
1 bit of information from one process to anothere. Requires
a 1l bit storage device which can be written by proecess A and
concurrently read by process Be MNon=-trivial to implement on
atomic register which acts as 1f reads and writes are total-
ly orderedes Some results are in [LAMP 771y others are un-
publishede.

6e2e2¢3 SS Model

The applicative technique uses an interpretive LlLanguage to
describe a distributed system. An interpreter for ap-
plicative Language may then serve to model system behavior.
The wunordered evaluation of expressions in a multiset
becomes implemented as a scheduler. Communication may be
modeled in terms of the elapsed simulated time associated
with each parameter passing operation.

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 60

feles2es% Other Models

Certain modelss although significanty failed to receive at-
tention due to the Llack of advocates in the groups Most
notable were the Actor=-Induction Model of Carl Hewitt and
Petri Nets.

6e2e2e5 Relevance of Models

Models of distributed systems are abstractions of real or
hypothetical systems. The relevance of any abstraction
depends stronagly on its intended application =~ the abstrac-
tion should preserve the important features of the situation
bheing modelled and discard the unimportant. Models reflect-
ing details of current technology are appropriate for under-
standina present-day distributed systems but they become
quickly obsolete as the technology shifts. Models attempt-
ing to «capture the universal constraints on any system im-
posed by basic laws of physics are more fundamentale but
evaluating their relevance +to digital systems requires a
considerable understaning of electronics and physicse and
they wWwill Likely be too primitive and detailed to shed much
lLight on higher-level dissues such as those discussed el~
sewhere in this report.

For exampley most models of parallel systems include some
sort of synchronization primitive whether it be P and Vy
monitorsy message-passingy or whatevers and most practical
systems have hardware which implements these primitives
satisfactorially. Howevery the gliteh problem aparently
prevents the construction of a perfect arbiter (as oppsed to
one which 1s satisfactory because its probability of failure
is Infinitesimally small)y so any physical realization of an
arbiter has a possibility of failure through infinite delay.
The test=-and=set model and the 1-bit transmission model can
both describe perfect arbiters and so both must be
considered only approximations to reality. While test-and-
sets seem at first sight to be far from primitives they
encompass operations such as ready writes increment memory,

etce which might or might not be atomic in a given systemy
so Lower bounds on complexity apply to all such weaker
modelse The fact that a fair arbiter is needed for a hard-

ware realization of the model does not detract from 1ts
usefulness 1in describing solutions to the critical section
problemsy for building critical section solutions with strong
fairness properties (bounded-waitings FIFO) from arbiters
only known to be free from lockout is a non=trivial task.

Georagia Institute of Technoloay IPC Workshop

\

Section 6 THEORETICAL WORK Page 61

6e2e2e6 Problem Areas

Although a number of models were proposed for interprocess
communicationy we observed that there was no "basic unit"™ by
means of which all of them could be implemented. Identify-
ing such a basic unit would give a uniform scale for compar-
ing different communication mechanismse

60203 Apalysis

6e243.1 State Graph Analysis

See Geleled

6e2e3+42 Critical Region Algorithm Proof

A formal proof has been developed for one of the mutual ex-
celusion algorithms given in LBURN 78le Although the proof
follows the general format of invariant-assertion proofsy
the major ideas in the parts of the proof that deal with
fairness are <contained 1n precisely~stated Lemmas which
mirror natural intuitive understanding of the algorithms.
The parts of the proof that deal with reachability of states
have a LlLess intuitive and more case-~analytic flavore. A
current effort is to decompose the invariants in a way that
will allow reachability properties also to be verified in a
way that accords intuition.

fel2e3e3 Global Assertions

There are well=-developed techniques for proving correctness
properties of non-distributed multiprocess programs. Lam-
port used to feel that they were not good for distributed
systems because (1) they used global assertions which imply
a global system states which is undesirable (see 6e2eleb)y
and (2) they reguire that communication arcs be represented
by processesy which means lots of processes. Howevers he
has recently discovered that these technigues do work well,
since (1) there seem toc be a <c¢class of "good"™ global as-
sertionsy and (2) you have to specify the communication arcs
very carefully anywaye ‘

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 62

Gelede4 Fault Tolerance

We consider two types of failure: unannounced halting
(sleeping) and announced shutdown (dyingl. Peterson and
Fischer [PETE 771 and Rivest and Pratt ([RIVE 763 give
critical section algorithms in a shared-variable read/write
model that are immune to process dyingy f.ee9 the remaining
processes continue correct operatione

Performance and tolerance to failure by sleeping are closely
relatede. If one process can be hung up forever because it
is waiting for a failed processs then its performance will
be degraded by a non-failed process that is simply running
very slowlye

We have aloorithms for the test-and=set model solving the
k-critical section problem which in a sense have k 1indepen-
dent paths to the critical section. That isy even if k =1
processes falls the other processes will not be waiting on
them and will continue operating and gaining access to the
remaining resourcess

Ee2e3e5 Measurements

The traditional measures of "time" and "space® do not form
an adequate framework for assessing the complexity of
distributed computations. In order to understand the %“cost®
of a distributed computations we need to enlarace and refine
our collection of <cost measuress For exampley “time" may
refer to total time or time measured at an individual sitee.
Similarly vspace" could refer to either the size of the
total systemy or the size of individual sites. In addition
to the "time" and "space" required to perform a computations
we should also consider the "amount of interprocess com-
munications" both the total traffic flow over the whole
systemy and the bandwidth reguirements of individual chan-
nelse

In analyzing sequential processesy we are used to thinking
in terms of time-space tradeoffs, Are there analogous
tradeoffs for distributed systems? For examplesy one can
usually get by with smaller individual processors if one is
willing to have more processorss and consequentlys more
interprocessor communicatione Can this tradeoff of
interprocess communication vs. complexity of individuat
process be made precise? Againe one usually has the choice
of either implementing shared global resources or duplicat-
ing these, resources at different sitese Are there
guidelines for deciding which of these strategies to pursue?
In generals we need to deal with the following sorts of

questions: (i) What are the —characteristics of those
problems which allow one to make effective use of
distributed computation? (ii) Converselys can we lLearn to

recognize problems whose solution would require such Large
amounts of dinterprocessor communication as to render these

Georgia Institute of Technology IPC Workshep

Section b6 THEORETICAL WORK Page 63

problems inherently unsuited for solution in a distributed
manner? {ii4) Can we 1dentify techniques for tailoring
distributed architectures to the solution of particular com-
putational problems? (iv) Can we formulate a theory which
combines concerns for time-space complexity with concerns
for minimizing interprocess communicationes thus providing an
adequate framework for assessing the complexity of
distributed computationse.

6624346 Space Complexity for IPC

In measuring space complexity for IPCy the shared variable
models provide a natural measure - simply the number of
states necessary 1in the shared variables. Tight upper and
Ltower bounds on the communication space required have been
demonstrated for certain synchronization problems using the
Test=-and=Set models Additional bounds are anticipated for
other problems and primitives.

Reference: [BURN 783

6e2e3+7 Time Complexity Measures for IPC

A great deal of work has been done in the time complexity of
sequential algorithms. Synchronous parallel computations
commonly use a "tree depth" measuere for the time com=-
plexitye These techniques do not extend easily to asynch-
ronous parallel processing because there is no direct
measure of global time directly derivable from the steps of
the individual processes. For examplesy 1if any process
reaches a state where 1t must wait for communication from
another processes it may take an unbounded number of steps
before the remainder of the system changes state. Since a
simple sum of all processor steps would often give unbounded
Lower bounds for many problemse tand hence are
uninteresting)ey new measures are neededs Current work 1is
proceeding examining time bounds of test-and-set algorithms
using the following types of boundse

1) Count the total number of "transitions®
between two events of dinterest.,

2) Count the number of transitions of a
particular process between two events.

3) Count the total number of transitions between

two events divided by the number of processes
involvede.

(A "transition” is a step of a process which causes a change

in the shared variable) Fach of these bounds appears to be
of interest.

Georgia Institute of Technology IPC Workshop

Section 6 THEOQORETICAL WORK Page 64

6e2+3.8 Data Transfer Performance

Abelson [ABEL 783 has recently developed techniques for
proving 1inherent Lower bounds on the amount of {interprocess
communication required for performing computations in a
distributed systems Using these techniqueses he has analyzed
distributed systems which perform matrix operations and
solve systems of Linear equationse His work shows thaty
from the point of view of minimizing communications the ob-
vious techniques are optimale.

6e2e3e2 Performance Results

An alternative (perhaps a copout) to formal analysis is to
use a simulation or emulatione Thisse howevery is not an
entirely straightforward propositione Firstse a suitably ac-
curate description of the distributed system must be derived
and secondy the artificialities of the simulation/emulation
must be factored oute

Georgia Institute of Technology IPC Workshop

Section & THEQRETICAL WORK Page 6%

63 POSITION RARERS

63«1 Abelson
Theoretical Issues in Distributed Computation

by

Harold Abelson
MIT

Current research din the area of distributed computation
focuses almost exclusively on algorithms and systemss while
the problem of determining the 1dinherent complexity of
distributed computations remains virtually unexplorede
Moreovery most theoretical work {in the area of parallel
processing relies on a model of computation in which all
processors have ready access to all memory registers === an
assumption which is unrealistic when dealing with
distributed <computations. For exampley although the solu-
tion of n Linear equations in n unknowns can be accomplished
in order (lLog n)**2 steps if one dignores information trans-
fery 1t can be shown thats for typical interconnection con-
figurations among n processors the Jinterprocessor data
transfers alone require on the order of n steps.

We need to address directly the problem of interprcocessor
data transfer and to establish bounds on the amount of com-
munication required for a wide variety of problems in a wide
variety of distributed architectures. In generals we need
to deal with the following sorts of guestions: (i) Wwhat are
the characteristics of those problems which allow one to
make effective use of distributed computation? (ii) Conver-
selys can we Learn to recognize problems whose solution
would require such Large amounts of 1interprocessor com-
munication as to render these problems inherently unsuited
for solution in a distributed manner? (41i1) Can we identify
technigues for tailoring distributed architectures to the
solution of particular computational problems? (iv) Can we
formulate a theory which combines concerns for time-space
complexity with <concerns for minimizing interprocess com=
munications thus providing an adequate framework for asses-
sing the complexity of distributed computations.

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 66

6¢3.2 Fischer
Time Complexity of Distributed Computations

by

Michael J« Fischer
University of Washington

A fundamental question in the theory of distributed comput-
ina is how well a particular system does 1its Jjobe. To
determine thissy one needs a specification of the job and a
means of comparing the efficiency of the given system with
other candidate systems.

Three aspects of distributed systems complicate considerably
the specification of the desired behaviore First of alls
non-terminating computations tend to be the rule rather than
the exceptions so 1infinite execution sequences must be

describede. Secondlys because of variabiity in the relative
speeds of the different processesy the system is dnherently
non-deterministice. While determinate behavior is

nonetheless possibley it may not be requireds so the
specification must allow for wvariablity 1in the cobserved
behavior. Finallyse the inputs and cutputs of a distributed
system may be dispersed over a number of sitessy and the com-
munication aspects of the problem need to be captured in a
natural waye

Finding a satisfactory time measure for distributed systems
is much more difficult than for sequential programse. In the
Latter cases elapsed time is just the sum of the times of
the basic instructionse With parallel computationss certain
steps may execute concurrentlys so the simple Linear depen-
dence of elapsed time on the instruction speed is lost. For
this reasone 1t becomes attractive to Look instead at the
dependencies between steps of various processes rather than
at elapsed timee When these dependencies are represented as
a partial orders the longest path through the order gives a
natural measure that reflects the time necessarys assuming
maximum cONCUrrencys

Once we have a satisfactory notion of the execution time for
a particular interleaved sequence of stepss it is still not
clear how to base a comparative analysis of systems on this
informations for different systems sclving the same problem
Wwill not necessarily exhibit the same dinterieavings. What
is needed 1s a set of parameters common to all solution
systems in terms of which the time can be expressede.

Finallys the relative efficiency of a =system may depend
strongly on whether one 1s {nterested in some notion of
total system throuahput or in response time at a given site
(or in some other auantity).

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 67

6e343 ngu

Theory and Formalism
by

Le Lamport
SRI International

Formal methods are needed to specify and prove the correct-
ness of distributed systemse The primary reaquirement for a
specification is that it be understandable by humanse since
only a human can determine the correctness of a
specifications Moreovery a2 specification involving program
variables does not meet this <criterions since oprogranm
variables are part of the solutiony and are of no concern to
the users There has been very Little progress jn this areae.
It is rare to find even a precise informal statement of what
a simpte distributed algorithm 4{s supposed to do -- Llet
alone a specification of an entire systeme

A formal specification is useful only 1f there 1{s some
formal method for deciding if a system meets its
specificationes Currentlyy there exist formal methods for
proving properties of non-distributed multiprocess systems.
We need to discover how these methods <can be extended to
distributed systemss or else develop new methodse There has
been some progress 1in this areas but we are very far from
being able to handle reals complex systemse

I feel that in order to make progress in these areass it is
necessary to be able to deal formally with non-atomic
operations -~ to describe the system as a collection of
cperations which do not act as if they were executed in any
sequential order. I have some vagues preliminary ideas on
how this can be donee.

6¢3¢4 Lynch
Complexity Theory of Distributed Systems

by

Nancy Lynch
Georgia Institute of Technology

Most of the current work in theory of distributed systems
seems to me to focus on a rather high lLevel of programming.
Virtual machines and networkss Hoare-style communication
mechanisms which combine powerful synchronization and value-
passing behaviors related mechanisms which assume preserva-
tion of unbounded numbers of messagess serializers, abstract
data types with "nonatomic" elementss etce are all user-
"oriented abstractions which allow Logical organtzation of
complex algorithmic behavior without concern for troublesome

Georgia Institute of Technology IPC Workshop

Section & THEORETICAL WORK Page 68

implementation detaile. Unfortunatelys there are good
reasons why such detail cannot entirely be suppressede
Efficiency of operation of a distributed system 1is of
paramount concern to the users. There are so many more pos-
sible wvarjations in implementation in a distributed en-
vironment than in more traditional <computing environments
that knowledge of the implementation method cannot help but
influence the user's program design3i indeeds some such
knowledae | is probably necessary for even acceptably
efficient use of the systems

1t is important to complement high-Level theoretical and
language~design work with a firmly-based theory of lower-
Level distributed programmings geared particularly to
measurement of the efficiency of performances Very simple
and general primitives such as shared variables and one-way
arbitrary-delay communication channels should be used as a
general basis for such a theory. Various appropriate
measures of vresource use and performance (eege» communica-
tion "bandwidth"y total number of changes to variables that
occure total "depth®™ of the computation) can then be defined
preciselys Then the costs of implementing the various high-
Level mechanisms mentioned above can be assessed objJectively
and compared. Whitle the user might not need to know precise
implementation detailse he would at Least benefit from
knowledge of these costs in resource uses for the various
available mechanismse '

As for sequential computings the theory of distributed
systems will not ultimately be concerned with implementation
of different system primitivessy but with efficient fulfill-
ment of application requirementse Thuse the theory can be
expected to focus on design and analysis of systems exhibit-
ing certain desired behaviors in application areas suitable
for distributed computing (eeges Load-sharings multiple use
of databasess mail communications synchronization). A Low-
Level model and elementary complexity measures such as those
described will form a useful basis for such analysissy with
higher-Level constructs used alona the waye Also 1important
for such a theory wWwill be the development of reasonably
consistent means of specifying desirable behaviors for
systemse Such behaviors might dinvolve the input-ocutput
interface of a system or the 1internal state behavior of
Processess

A prototypical development has been carried out (jointly
with Michael Joa Fischer and graduate students Js Burnss Pe.
Jacksone and Ge Peterson) for simple mutual exclusion
behaviore Further work is currently in progresse

Georaia Institute of Technoloaqy IPC Workshop

Section & THEORETICAL WORK Page 70

It 4s thus possible to formulate algorithms for distributed
systems in terms of a rather simple applicative Llanguage.
In facte the applicative Language provides a very powerful
tool for the study of distributed systems3 this tool is the
language®s interpreter. Such an interpreter must know how
to implement the evaluation of expressionsi bute more im-
portantlys 1its definition must dnclude a protocol for how
multisets are constructed and how their elements are
evaluateds This protocol may be jnstrumented to reflect the
tehavior of a real-time environment. The interpreter thus
provided a basis for simulation experiments within which one
may investigate how multiple processors may be profitably
applied to multiset interpretatione.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 71

SECTION 7

CURRENT TECHNIQUES AND EXPERIENCE

Te1 A BROCESS BASED COMPUJER SYSIEM

An Informal Paper
by

Ed Basart
Hewlett-Packard Company

Processes are the basic entity in our computer systems. When
a program runsey it exists as a processs and gives a program
the 1llusion that 1t has its own private processore The
system s then constructed to support processes effectively
by making process communication and switching efficient and
fnexpensive. As a consequencey multiple processors can be
used to increase the parallelism of the processes running in
the systeme.

The advantages of such a computer system are program
modularitys increased performance through parallelisme
growth by adding processorss and physical distributability
of functionse Processes are wused as the single "object®
that unifies operating system services and resourcese. The
operating system exists as a collection of processess and
process primitives are used as the kernel of the operating
systeme

Processes communicate using queues and the send and receive
primitivess Multiple queue writers are permitteds while
only a single gueue reader is allowWwede Send and recefve
handle the details of the path between processes for any ar-
bitrary hardware configuration of processorse This includes
providing mutual exclusion for processors sharing memory and
invoking data communication drivers in systems not sharing
memorys The data communications processes resolve the con-
nection between processorss whether the connection is a high
speed buse through telephone Llinesy or an indirect path
through more than one processor.

In order to send a message to another processsy the sending
process must first establish a Llink to a receiving process
queue. Links are made by the file system. Opening a Llink
is very much Llike opening a disc filee Capabilities and ac-
cess rights to gueues are checked at open time by the file
systemy which eliminates message verification for the send
and receive primitivess and also for the communicating
processess

Georgla Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 72

After a Link is opens the sending process sends a message to
a receiving process by specifying a Link numbers along with
the datas The receiving process reads its queue by specify-
ina its queue number and dssuing a receive. The receiving
process creates a queue initially by asking the file system
to allocate space for the queue and grant the receiver
"agueue" accessSe Linking a sending and a receiving process
establishes half duplex communication. Full duplex com-
munication may be established by creating another gueue and
opening another Link in the opposite direction between the
two processese.

As the file system opens a Linky 1t determines whether the
two processes are residing on different computers. If soe
the address placed 3Jin the Llink 1is that of a surrogate
processy a data communications driver that handles the
details of the communication Line« At the other end of the
Line is another surrogate data communications processe This
process has a Link pointing to the receiving process cgueues
This mechanism allows uniform process communication for both
local and remote processese.

Creating a single queue for multiple writers seems to be a
mixed blessings One advantage {is that the system makes a
single space allocation for the aqueuee and no new al-

locations need to be made for each writere Another ad-
vantage is that the reader goes to only one Location to read
messagesSs This s particularly dimportant when the writers

and reader exists on different computerse.

The disadvantage of a single gqueue is that a "mad" writer
can clog the queue. There are two solutions to this
probleme The system can be made cognizant of a writer®s
"message rates™ and a process can be given lower execution
priority if its rate becomes too highe The other solution
is to maintain a message count for each writers The reader
then decrements the count as the queue is reade.

Neither of these solutions is very attractive. They both
suggest high <cost to protect against the mad writer. For
the present the approach is to make gueues large enough to
absorb an initial outburst from the writer. The reader is
given a "break Link®" function that disallows any further
messages from a particular writere This forces detection of
the problem on the communicating processes while relieving
the send and receive primitives of an added complicatione.

Three similar computer systems have been influential in the
design of our systems They are: 1) the Tandem 16 computer
system manufactured in Cupertinos Californias 2) the Demos
operating system for the Cray=-1 computer at Los Alamose New
Mexicos and 3) the Thoth operating system developed at the
University of wWaterloos Ontario.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 73

Qur system has two primary differences from the mentioned
onese« The first 1is 4in handling all types of physical
processor 1interconnections at the primitive Levelsy rather
than doing it in the operating system. The second 1s 1in
making much greater use of processes and messagess AlLL of
the above systems break away from their message systems for
certain types of functions that are considered to be too ex~-
pensive to be done in a message system.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 74

7.2 IPC IN HETEROQGENEOUS DISTRIQUIED COMPUIER NEINORKS

HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS
AND INTERPROCESS COMMUNICATION THEREIN

by

Je Se Sventek
Lawrence Berkeley Laboratory

7¢241 Introduction

The primary focus of the Advanced Systems Group in CSAM is
the question of distributed processing in a network consist-
ina of hosts with vastly differing architecturese Qur main
goals at this point in times is to provide a distributed en-
vironment which is easily used by people with very diverse
needss for example:

1) a research group developing a distributed
relational database systenm

2) administrative personnel maintaining current
accounting databases

3) graphics researchers exploring new and novel

representations
4) high energy physicists designing systems to
: collect and sample on=-Line vast gquantities of
experimental data

In order to achieve the goal of easy usesy we are somewhat
less concerned with "efficiency" 4ssues than with merely
making the system functionale From empirical studies of a
working systems we hope to discern the "inefficient" aspects
of the systems and may devise algorithms to alleviate the
problemss Efficiencys in this contexts 4s only concerned
with throughpute

Two entities must exist before an easily used distributed
system can be realized:

1) a common shell {command Line dinterpreter).
It 1is of somewhat Limited utility to provide
virtual terminal capabilities on the hosts in
the network iJif the user must Learn a
different Llanguage to communicate with each
ones Much of our recent research has been in
the development of Jjust such a portable
shells A prototype of this shell is current-
Ly running on the following systems: PDP-
11/780 (VMS)e PDP=-11/70 (IASYe CDC 6600
(homegrown operating system)e.

2) a common file naming convention. Current
research (based on a pathname structure) is

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 75

progressing 1in this areas and a prototypical
system is operational on the PDP-11/70 (IAS)
systeme

The rest of the discussion will asume that these two
entities exist on all hosts in the networke.

7.2.2 Eyndamenial Quantities ip a2 Computer Sysiem

There are three basic quantities in a civilized computer en-
vironment which a programmer must be able to manipulate.
They are:

1. file - this category includes non-file struc-
tured devices (esges tt0s mtOsy etced)s data
filess and executable image files.

2e process - this entity describes an image file
plus its context (standard inputs outputs and
error filesy default directorys privelegess
etce) which s currently in a schedulable
state or waiting upon some resource in order
to become schedulable in a particular hoste

3. vertex = this "virtual" entity allows two
processes to extabhlish an interprocess com-
munication Linke.

Several operating system primitives are necessary to allow a
programmer to manipulate these quantitiese.

Eite oriented

open open a file

close close a file

create if file existses open its else create it

delete delete file

rename rename file

getc get a character from a file

putc put a character into a file

mark note current position in a file

seek position a file

prompt output string with no terminating carriage
control

Process orjented

spawn spawn processs sending specified arguments
to it

pstat query status of a process

kill terminate process

suspnd suspend process

resume resume suspended process

Vertex orjented

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 7é

pipe create a vertex and open a link to it

A few more words concerning vertices are in ordere A vertex
is a valid input parameter to the open and close primitives.
In this wayes subprocesses may be lLinked together by redirec~
ting the respective standard outputs and standard inputs to
a vertexe The subprocess itself is oblivious to the source
or destination of dts dinformatione A vertex is also a
transitory aquantitys In the sense that when all links to it
have been terminated (via a close operation)s it vanishese.
ALL I/0 through a vertex should be synchronous to avoid all
of the problems dnherent in buffering asynchronous I/0 in
dynamic system memory.

7T«2+3 Naping Convenitions

Files are known globally by their pathnames:
/fhostname/default directory/filename

Once a process has established a Link to a file {via an open
or create)y the file is then known internally to the process
by the 1d returned as the value of the primitive function
invoked.

Processes are known globally by the 1id returned as a
parameter of the spawn primitive:

/hostname/processtd

Vertices are known globally by the following pathname:

/hostname/processid/vertexname

One sees that as long as the first field of a file pathname
can never assume the value of a process id fields this nam-
ing convention uniguely identifies all quantities.

Te2+4 Implementation ln a DRistributed Enviropment

A skeleton of a typical primitive would Look as follows

if (Local (ARGUMENTS) == YES)
{
perform function
}
else
{
reformulate reguest (if necessary)
forward reaquest to KERNEL
wait for result

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGUES AND EXPERIENCE Page 77

The purpose of the lLocal function is to determine 1if the
request <can be performed within the requesting processe
(File and process oriented primitives can wusually be per-
formed Llocally 1f they itnvolve Llocal files and processess)
If it cannot be performed internallys the request may bhave
to be reformulated to include process context informations
and is then forwarded to the KERNELs which is an extension
of the native operating systeme Due to differences in the
services provided by most native operating systemss one sees
that the Local function will be system dependente The KER~
NEL is a separate processy one per hosts which has access to
the physical Links of all hosts in the network which are
directly connected to the current hoste The KERNEL fields
three types of requests:

l. Local requests for Local services not
provided by the native operating system

2e Local requests for services on remote hosts
in the network

Je remote requests for lLocal services on behalf

of a requestor on a remote host

For the first type of requests the KERNEL will perform the
servicesy and return status and any other information to the
requestore. The last two types of requests are Linked 1in
their functiones For type 2y the KERNEL forwards the request
to 1ts counterparty which receives a request of type 3.
This request 1s performeds and return information is forwar~
ded to the original requestor through the network.

ALL types of distributed activity are then supported in such

a network environment. The following examples will serve to
emphasize this pointe

Te2+5 Lxamples

Virtual terminal

User is currently interacting with the shell on host A with
standard dinputs outputs and error files being ttns and
default directory DEFAULT. User wishes to establish virtual
terminal connection with host Be To do soe he/she dssues
the following command at his/her terminal

% B/shell

A/Zshell detects that this is a request to spawn @ process at
another hosty so it reformulates the command as

B/shell <A/ttn >A/ttn >*A/ttn {(DEFAULT}

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 78

and forwards regquest to A/KERNELs whichs in turny forwards
the request to B/KERNELs which performs the service and
returns status to the requesting process via A/KERNEL. The
next prompt that the user sees will be that of the shell
operating on host B8y with the shell on A being suspended
until B/shell has received an end of file on the standard
input.

Host transparency to native utiLitig;

User on host A wishes to copy a file from host A to host B}
he issues the following command:?

% copy file B/path/file

The shell will spawn copyes copy will open files and attempt
to open B8/path/files The open request will be forwarded to
A/KERNELe which din turn forwards request to B/KERNEL.
B/path/file will be openeds and all writes to it will be
directed through the KERNELs and the network Linke.

Interprocess communication between processes on different
hosts

User on host A wishes to analyze a data file with a utility
avajlable on host Bs directing the output of that utility to
a graphic display program on host A which displays the
results on the usert*s graphics terminale.

% B/analyze <mydata | A/graphit

A/shell will dissue a spawn request to A/KERNEL with the fol-
lowing command Line

B/analyze <A/DEFAULT/mydata >A/shellid/pipel &

where A/shellid/pipel is a vertex created by A/shell. The
ampersand (&) indicates that A/shell does not wish to wait
for the completion of the spawned processes A/Zshell will
also spawn A/graphits redirecting its input to
A/shellid/pipele. A/shell can then sit back and monitor the
progress of the two cooperating processesy regaining control
when they complete or terminating them {1f errors occur dur-
ing their execution.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 79

7.3 BROIECIED MAILBOXES AS AN IBC MECHANISH

by

RelLe Gordon
PR1ME Computers Ince

Keywords: mailboxse IPC primitivess switch-board taskse
access Llists

Te3.1 Iptroduction

It 1s the thesis of this short note that IPC facilities
built around the notion of 2 protected mailbox could provide
the basis for a robust set of primitivese Robustnesss in
this <cases dJmplies their wutility 1n conventional mul-
tiprogrammed uniprocessor systems as well as shared wmemory
multiprocessorsy toosely coupled multiprocessors and local
and Long haul networkse The proposed mechanism can support
different communication forms (N-process protocols)s addres-
ses security dissuesy and assists users in the synchroniza-
tion of what 1is basically an asynchronous phenomenon
{process communication)e.

Te3+.2 Proposed IPC Primitives

Mailboxes are created by a process "P" executing a primitive
of the form:

u = create(Access_Listy T)

which 1s sufficient to bind the process name "P" to the
unique descriptor "u" of the created mailboxe and associate
the Llist of processes appearing in the ™Access_List" with
the majlbox "u®e In addition the create primitive specifies
a maximuym time “T" between mailbox use (I assume mailboxes
that are not used are not wuseful)s Thereafters if the
fdentifier "u" is valide (eegs not equal to ERROR) then any
process "P®" appearing on the "Access_List" and wishing to
send mail to the process “P" would use a system call of the
form:

send messagel(bufe u)

and continue executione. This primitive would have the
effect of eventually placing the contents of "buf" in the
mailbox "u® of process "P®" along with the name of the sender
#pen, Process "P"y wishing to receive messages 1in mailbox
"yhe woulkd make a system call of the form:

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 80

receive message(bufy u)

which would prohibit any further progress of "P" until
either a2 message 1is received from a process on the
"Access_List" or no message has been received during the
time interval "T"y specified 1in the "Create" primitive.
Notification of this fact would would appear as a message in
"huf" Jif the user had included a system process responsible
for communication monitoring 1in his "Access_List", [See
Section 74346 on Fault Tolerant Aspectsel To complete the
set of primitives a system call of the form:

delete(u)

would cause the mailbox "u" to be retired foreveres

7Te3+3 Initializatien

Initial dialogues .are established by "receiving" an
identifier v"g" of the current system mailbox in a mailbox
"r" that was originally created with only the name of a well
known system process on the access Liste The system mailbox
jdentifier "se" would then be used to send messages to the
system kernely Wwith replies being received in mailbox "r*.

One of the more difficult issues is with the design of the
mechanism needed to establish communication with generic
processess {eege processes that represent a2 single service
but may have multiple instantiations) and with discovery of
neWwly created processess The trouble stems from the fact
users are incapable of establishing a dialogue with any
process not known to thems and therefore cannot include them
on the access lLliste For these reasonsy it seems desirable
to provide a "switch=-board process”" whose sole function 1s
to provide & generic to specific name mappings For exampley
such a service would be used to return the specific process
name {or names?) of the Latest version of a fancy text
formattery when supplied with the generic name "format".

Te3e4 Securiiy

A unique descriptor represents a sort of capability (at
least for communication purposes) since possession of a
mailbox identifier provides the possesser with the potential
for sending messages and requests to the process bound to
the identifiers Howevers if the target mailbox does not
have the sender on the access List the message may be
discarded by the systems thus essentially controlling com=-
munication through the maintainence and enforcement of the
"Access_Liste™ It is clears therefore that security dssues
revolve around the ability to <controlL changes to the
"Access_Lists" an issue already explored by file system
designerse

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 81

1f one takes the view that a message is an attempt to access
an object by a principal [GRAH 721y then this facility
contains all the elements of the access matrix model U[LAMP
711 of protectione By having different processes act as
monitors of objects one has a formalization of the access
model since the identification of the accessor and the ob-
ject being sought are both available to the monitor process.

T.3.5 Synchronizatien

The availability of the senders fdentification coupled with
the access control List provides the means to achieve
solutions to synchronization of processes and to detection
of boolean combinations of eventss Creation of mailboxes
with only one process name on the "Access_List" provide the
facilities for a simple "pipe" (one way communication chan-
nel) that can be wused to construct a self clocking
"oipeline" with the "send" and "receive" primitivese.
Logical %or®"-ing of the input from two processess say A and
By can be accomplished by simply including & and B on the
"Access_Liste" More complicated forms of synchronization
can be accomplished by creation of an intermediate process
that performs the appropriate Llevel of demultiplexinge.
Broadcast transmissions are simply achieved by fteration
over a set of available mailbox identifiers.

T«3.6 Faylt Iolerant Aspects

There appear to be many forms of communication errors that
are recoverable by the technology underiying the IPC level.
Failure of underilying mechanisms can easily be reported to a
process 1f 1t opens a channel for that purpose by 1{including
the name of a system process on the "Access_List" on an al-
ready opened mailboxe or opening one for just that purpose.
It seems to me that users who do not want to be concerned
with error handlingy should not be forced to carry along a
tot of extra apparatus for those who dos. One nagging
concern of mine is whether the system should force error
messages (especially for timeouts) into mailboxes that have
not included the communication monitor on the "Access_Lists"

Positive acknowledgement is purposefully not 1included in
this schemes but is left to the user to construct his own by
setting up a duplex path between processes. #As an aids the
design of the v"create" primitive must have a value "T" for
the maximum time between messagess Since the primitives are
designed to be used over a wide range of sttuations most ap-
plications will have some knowledge of how Long it is
reasonable to wait for a reply or input from a cooperating
processe

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 82

7Te3.7 Symmary

A set of primitives for interprocess communication have been
proposed that seem suitable for implementation in a wide
variety of circumstancese Onlky briefly mentioned howevery
is the issue of process addressability when communication is
desired between several processess The solution of this
problem reguires the development of 2 name space architec-
ture that tackles the relationship between filess devicess
processesy users and many other system objectsse certainly
beyond the scope of this short note.,

Georaia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 83

To4 BRIEE QESCRIPYION QF DSYS=PLIIS

by

James Re LoOwW
University of Rochester

The Model of Computation

The model of interprocess communication that we use in DSYS-
PLITS has evolved from that used in the RIG (Rochester
Intelitigent Gateway) Operating Systeme Basicallys we think
of a program being composed of several independent processes
(we call them "modules®") communicating with each other only
through messageses There 4s no directly shared memorye.
Processes are relatively stable and to "forkY a process
means to create a totally new environment 1independent from
that of the <creator. Qur basic model does not force any
hierarchy on the processes though it is relatively easy for
a programmer to think in terms of hierarchies if he wishese

DSYS (Distributed System)

DSYS 1{s basically a set of facilities added to existing
programming Languages and operating systems to support
inter-process communication across a network of heterogenous
machines (DEC PDP-10 running DECSYSTEM-10s Data General
ECLIPSEs running RIGs and XEROX ALTOs running the ALTO
operating system)e DSYS consists of operating system inter-
faces and user interface procedurese.

Processes communicate via messagese The SEND primitive sup~-
ported by DSYS takes three parameters: the message to be
senty the process identifier of the destination (originally
obtained through interactions with a name service processs
or provided in a message from some other process); and &
transaction key (analogous to a "port™)e AlLL connections
between processes are implicite If a process has obtained
another process®s name it can send that process a message
without any explicit "open" command.s Of courses the proces-
ses themselves may ignore messages which do not <conform to
higher Llevel (user-specified)) protocolse Transaction keys
are used to separate wvarious conversation streamse. DsSYS
will guarantee that all messages with a specific transaction
key sent from one particular process to another will arrive
in the proper order. No guarantee is made about messages
with different transaction keys. Details of the reliable
transmission and flow-control mechanisms in the DSYS subnet
may cause messages from one process to another with
different keys to arrive in a different order than they were
SENT.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERTENCE - Page B84

Selective reception of messages 1s provided. A process may
state that it wishes to receive only messages from a
specific set of other processes or about specific transac-
tion keyse Thus the general form of RECEIVE dis

RECEIVE msg FROM (sndrls sndr2seees sndr3)
ABOUT (trndly trns2ess)

If there 1s more than one message that has suitable SENDER
and TRANSACTIONs an arbitrary one is selected (subject to
the <constraint of ordering within a SENDER~-TRANSACTION pair
mentioned above). If the wuser wishes +to enforce more
general priority mechanisms he may use the PENDING construct
to see if there are suitable high priority messages before
he receives Lower pricority oness PENDING takes the same ar-
guments as RECEIVE and returns TRUE if there are suitable
messages and. FALSE otherwisees It does not actually perform
the RECEIVE so the message qgueues are left intacte. If all
else fails and the wuser wants more ogeneral reception
criteria then he can ask to receive all messages and then do
his own Local gueing. We believe this to be very vrare and
have not seen this done in the programs coded so fare

DSYS performs all queue managements reliable transmissiony
and flow controle Application programs are notified of ex-
ceptional <conditions (communication Lines going downy cother
processes in the "distributed job"™ breaking) wvia emergency
MESSagese

PLITS Messages

DSYS dtself considered messages as just strings of bitse . We
have found it desirable to provide higher lLevel message sup-
port to applications programse This higher level message
support is called PLITS,

Traditionallyy fixed message formats have been used for ap-
plication programse. To desian a new message typey a
programmer would lay out an explicit template for his data.
He would have to state the number of pieces of datas thedir
data-typess the external representation of the data types
and the transtation routines to use to translate between the
external (used 1n messages) representation and the internal
(used in his program variables) representation of the datae.

In PLITSy we try to remove the burden of message template
designe 3y automating the process we also remove one class
of possible errorse In PLITSy the applications programmer
sees a message as a set of keyword value pairss We call
these pairss "slots". To construct a message he specifies
the particular set of slots he desiress The receifver can
determine (for individual messages) which slots are present

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 85

and their valuese. Thuse a message to a file server might
Look Like:

SEND Caction “openfiles mode “updates name “"MYFILE™,
directory “"<mydir>", 1nitialposition ~0y bytesize ~8)
TO FileServer ABOUT OPNTransactions

"action"s "mode", "name"™ and so forth are the keywords (or
slotnames). The message would be identical as far as the
receiver were concerned if the sender had specified a
different order of the slotse. We do not require that every
message contain a specific set of slotse but of course it is
an error if a process attempts to fetch the value on a non-
existent slote Defaults may be easily implemented using the
PRESENT IN primitive. For exampley the file server above
might wish to assume that the directory s "<SYSTEM>" if
none 1s specifiede.

RECEIVE msg FROM ANYSENDER ABOUT ANYTRANSACTIONS

IF NOT (directory PRESENT IN msg) THEN
PUT (directory™ <SYSTEM>") IN msg}

thedirect := msg.directorys

When a wuser wants to wuse a slot in his program he must
declare the keyword and the type of its value both dn the
sending and recefving processe

STRING SLOT filename;

MODULE SLOT continuations

In the existing implementation of PLITS (see below) the
data-type of each slot 1is sent in the message and
consistency 3s checked during the translation from the ex-
ternal format of messages to the internal format of messages
during reception of the message. Implementation is underway
to have a "lLoading" time (when a process joins a
"digtributed Job") when the consistency of slot definitions
would be checkede Small identifiers for each slot would
also be given at this timee This would decrease the over-
head of the slot mechanism (currently 1in addition to the
datas a type code and a character string are sent for each
slot?.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 86

In the current implementation the "data-type"™ of a stot im-
plies the external representation of the value of the slot
within messagese Thus we have several INTEGER typese

INTEGER16 SLOT smalls
INTEGER32 SLOT Larges

with implied external representations of sixteen and thirty-
two bitse Note: this does not dmply that the dnternal
representation for the value of the two slots above must
necessarily be different. For examples in the PDP-104 both
values would be represented using 36-bit integerse. When a
message is senty howevers a check is made during the encod-
ing dJnto the external format that the values are in the ap-
propriate ranges. Future implementations may have a
"negotiation” phase during "lLoading"™ in which the various
processes "aaree" on the external precision necessary for
each data value (one "negotiation" strategy would be to use
enough bits for the maximal declared range)e.

Current State of Implementation

The DSYS has been running since Last Spring on the PDP=1§
and ECLIPSE computerse A distributed vision application was
encoded this past Summer. Recently an ALTO DSYS support
package has been used to Link ALTO's to the ECLIPSE. The
PLITS message format has been running on the PDP=10 for over
a year (using a preliminary version of DSYS that ran only on
the PDP-10)se A design for the support facilities necessary
for PLITS on the ECLIPSEs and ALTOs has been completede.

Almost all the support software has been written eilther in
SAIL (on the PDP=10) or BCPL (on the ECLIPSEs or ALTOSs).

Georgla Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 87

7¢5 MQDELS OF CONCURRENT COMMUNICATION ACTIVIIILS

PARAMETRIC MOOELS OF CONCURRENT COMMUNICATION ACTIVITY
by

BilLl Buckles
General Research Corporation

INTRODUCTION

Using a distributed system to feign, simulate, or emulate a second
distributed system is of interest primarily to those engaged in design. The
principal problem in this approach is the inherent timing discrepancies between
the existing and target systems. Lamport [1] has made invaluable contributions
applicable to this area and this study is directed at specializing his results
to emulation.

MODELS AND STATES

The goals are to determine (1) what aspects of communication behavior
can be observed from an emulation? (2) what ancillary relationships must be
embedded in an emulation to assure that the primary behavioral attributes can
be extracted? and (3) if the ancillary relationships are not exact, how much
confidence may we place in the extracted primary behavioral attributes? 1In
order to achieve this, a definition of process state has been derived that
deals only with aspects of inter-process communication. The target process
state is distinct from the emulation process state, but the former is embedded
within the latter. Additionally a progression of six communication models have
been defined, each an elaboration of the previous one.

Model 1 is a single process emulacing itself. It may be schematically
represented as

AtG/ma aty/my at,/m, _Ats/ﬁé btg/m,
W e S ™
AtT At3 Ats At7

*
Work sponsored by the Ballistic Missile Defense Advanced Technology Center,
P. 0. Box 1500, Huntsville, Alabama 35807 under contract number DASG60-78-C-0058.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 88

where At, denotes a time interval, m, a message, and the even intervals denote
active communication periods. Model™2 is a single process emulating a second
process with uniform time distortion (either rate increase or decrease). Model 3
is a single process emulating a second process with both uniform time distortion
and non-uniform perturbations (strictly slow-down). In this model, the emulation
process may contain more periods than the target process. However, there must
exist an order-preserving mapping from the target process periods to the emulation
process periods. Model 4 advances to multiple processes with equal time distortioms
and perturbations. Model 5 relaxes the equality constraints on distortions and
perturbations, but requires the two be balanced. That is, inequality among the
time distortions of wvarious processes must be offset by perturbation., Model 6

is completely unconstrained with respect to both distortion and perturbation.

The state of a single target process, i, at time period j is denoted by
the pair sij = [At, n] where At is the duration of the most recently completed

period and n is the information sent or received. The state of the target
system is denoted S = (s,. , s.. s esey S_.]. The state of a single emulation
lJl 232 g

process 1 after time period k is denoted by the 5-tuple O = [Sij’ Att g, r,p(k)]
where sij is the state of the target process, At' is the duration of the most

recently completed period, pis the information sent or received during the last
period, r, a constant, is the uniform time distortion, and p(k) is the
instantaneous perturbation at the beginning of the current period. A system
state is denoted by I = [o s O s so1y O 1. A system state change occurs
1k 2k nk
1 2 n
when exactly one Oij assumes a new value.

PRELIMINARY RESULTS

Time models are inherently continuous while the state model described
above 1is discrete. Lower and upper bounds on the time relationships are
desirable to fix the amount of error between state changes. Because r (the
distortion) is constant, only p (the perturbation) may introduce error:

n
glb(p) = p(n) [1 - (at* /3 aeh]
n i=l 1
n-1]
lub{(p) = o(n) + [At / r At!
v+1 E;i i

Unfortunately, lub(p) required the prediction of the period duration, At .
of a current target process. An assumed order-preserving mapping illustrating
the lower and upper bound errors follow.

Georaia Institute of Technoloay IPC Workshono

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 89

EMULATED B A |
PROCESS).—[_—lr glb Example
/ I\

N
/
/K-,J \\"\\
TN /. | \AJ

PROCESS DIVERGENCE
REGICN

EMULATED /"_I'_L ——
PROCESS { N -

EMULATION y/ / , ,’[

PROCESS

lub Example

— N\
IVERGENCE
R GI%N -—I

Model 6, being the most general, is of interest. For example, determining
what measures must be taken to preserve the state transition ordering in the
emulation to reflect accurately the state transition ordering in the target
process is necessary. If Sa < Sb in time and the tramsition to Sa is embedded

in Zx and the transition to Sb is embedded in I then we would desire that
L < L . Let g,, be the specific substate that changes value at IZ_and o
X y x ij y km

be the specific substate that changes value at Ey. Both Sa < Sb and Zx < I if

y-1] %i%
VFUREED SR S U DURE S A B B
y ij s v y ij x km w0 v

where ¢ = g (p(v)) » o (r) and Tt is the normalized elapsed emulation
P av P qv P qv w
time in period w-1. In symbols:

T, =T "9 (p(w) . o, j(S(At))

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 90

CONCLUSIONS

These and other relationships dealing with the communication behavior
of emulation processes have been formally proved. Some knowledge on the problem
of what information to collect and how to analyze it has been gained. It is
believed that future investigation will further strengthen the utility of the

models.

REFERENCES

1. Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System,'’ CACM 21, 7 (July 1978), 558-565.

-

Georgia Institute of Technoloay IPC Workshoo

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 91

7.6 PRIME IPC CONFERENCE REPORJ

by

Robert L. Gordon
and
Jack A. Test

The enclosed Prime research note 1is partly based upon a
couple of early 1978 internal Prime R&D meetings concerned
with "Task Control and Communication for Multiple Processor
Systems®™. It discusses the synchronization and interprocess
communication mechanisms wused {in a number of {important
operating systems and explores the dJmportance of these
mechanisms for the development of future computer systemsy
and 1s offered as additional material for the current tech-
niques and experience section of the conference reports
since it summarizes a review of mechanisms used in several
well known systemse.

Te.6.1 Introduction

Two in-house meetings concerned with "Task Control and Com-
munication for Multiple Processor Systems® were held on
January 11y 1978y and March 22¢ 1978 The purpose of the
meetings was to provide a forum for the discussion of exist-
ing operating system mechanisms for process management and
interprocess communication as related to Prime's efforts 1in
process=based computer network architecturese.

The two meetings consisted of a series of 1dinformal
presentations by members of Primes R&D staff on other
systems and discussions on related PRIMENET communication
meetingse The particular toplics were? (1 "Process Com-
munjcation In DEMOS"™y (2) "Process Control And Communication
In UNIX", (3) "TANDEM And VAX Process Structure®™y (4) "The
Multics IPC Facility"s (53 "Event Counting And Sequencing In
Distributed Systems”s and (6) "Communication Primitives For
PRIMOS",

The purpose of this note is to discuss the synchronization
and interprocess communication mechanisms developed for the
systems mentioned above and to explore future directions in
the development of process~based computer networks. Obser-
vations concerning the IPC facilities of the operating
systems discussed are based upon the authors® knowledge of
the systemse available Literatures and the Prime Conference
talkse Accordinglys Section II of this note presents brief
summaries of the IPC facilitiesy and Section III states some
conclusions and future directionss The References 8 Selec-
ted Readingsey at the end of +this notes Lists several
articles pertinent to the study of Interprocess Com-
municationse. -

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 92

T7e6+2 Synghronization/IPC Facilities

Included 1in this section are discussions of the
synchronization/ipc mechanisms developed for the systems
mentioned in the Introduction. For additional information
regarding each systemy refer to any of the pertinent
referencese.

Teabe2e1 Process Communication in DEMOS

DEMOS is an operating system under development at the Los
Alamos Scientific Laboratory for the CRAY=-1 computer [BASK
773e A task or process in DEMOS consists of a program and
its associated state information which dncludes & Llink
tablees The primary mechanism for communicating between user
and operating system tasks 1s by passing messages over
Linkse. Links are associated withe but maintained outside
the address space of sender tasks and are essentially one-
way (simplex) communication pathse AlLL operations on Links
are performed by the kernal of the operating system which
insures their integrity.

Appropriate standard Links are provided by the system for
user tasks requesting operating system services. These are
provided in an automatic and transparent ways one such stan=-
dard Llink being to a gwitchboard taske Switchboard tasks
can arrange to get two or more mutually cooperating proces-
ses togethers and since tasks may under certain conditions
pass Link identification information as a messages dynamic
process networks may be easily constructed.

Links resemble capabilitiess so their management must take
into account many of the well known difficulties of managing
capabilitiess Some of theses such as lack of control over
link passing and Llink duplication have been partially al-
leviated by classifying Links 1into specific types and
restricting specific operations to these typese Other
facilities include data seament Links and ghannels that are
associated with Links in order to provide facilities for
multiple event handling and windows 1nto task address
spacess

The communication mechanism of DEMOS dis not pure in several
wayse Firste data segments are an escape from communication
only by messagess and seconds conditional receives and chan=
nel interrrupts provide an escape from the sychronization
provided only by message primitives. Howevers with proper
hardware support these escapes might not be necessary.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 93

Tebe2e2 UNIX Process Control/Communtcation

The UNIX system was developed at Bell Telephone Laboratories
for the DEC 11/40e 45¢ and 708 minfcomputerss The basic
Literature reference to the system [RITC 741 provides a good
explanation of the principle ideas incorporated in the UNIX
designe

In UNIXe a "process" i1s defined to be the execution of an
"image" where an image is a computer execution environmentys
namely: allocated cores register valuess open filese etce
Images are small {in UWNIXs roughly 32K words + status in-
formations and the system is oriented around their execution
manipulation.

Processes are organized 1in a parent-child tree-structure
Wwithin the UNIX system environment. Parent processes can
spawn {(create) child processes dynamically through a fork
system callese Initiallys the child process is a copy of the
parent process but with a different return value from the

fork call. The <child 4dnherits the parent?s environment
(1.« open filess register valuess etce? but does possess
its own memory 1fmage. Typicallysy a child process will

initiate an exeg system call which will overlay the child
image with the startup 4image o¢f a program named in the
calte In this manners a parent process can create any child
process it desirese

The main form of communication between parent and child
processes 1is accomplished through pipes created by the
parent processe Since the parent?s environment is Lost when
a child process cverlays itselfys the pipe descriptor must be
passed as an argument to the overlaying "exec" system calle.
Pipes serve as serial data paths with one "write end" and
one ®"read end®. Multiple processes can write or read a
single pipe but data can be intermixed if the pipe is not
Locked on writese In addition to the pipe mechanism in the
original release of UNIXe new versions of the operating
system allow processes to communicate through messageg that
are routed and aqueued for unique process identificationse.
Messages 1in UNIX serve as a more general form of
interprocess communication than pipes since T"unrelated"”
processes can communicate using thems For mutual exclusion
and synchronization purposess the UNIX system provides both
wait/sigpal and coupting semaphores for use by user proces-
S€Se

There are a number of Limitations to the current IPC
mechanisms available in UNIX. Specificallys pipess because
of their serial natures must be used carefully in order to
avoid mixed streams on the write end or Lost streams on the
read ende In additione the message mechanism Jn UNIX
requires the process=-1d of sending and receiving processeses
Unfortunatelyy this information is not available through any
system administered switchboard and must be handled by the
processes themselves in some arbitrary mannere. The naming

Georgia Institute of Technology IPC wWorkshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 34

of processesy thereforesy 1s not adequately addressed in
UNI X

In summarys the UNIX timesharing system provides a dynamic
and flexible process environment with a high degree of
modularitys Some notable shortcomings 1in the UNIX IPC
facility (in addition to the problems discussed above) are:
(1) the inability of a process to wait for multiple piped or
message inputse (2) the small address space available per
processy admittedly a PDP=-11 imposed Limitatione and (3) the
Lack of any network process management capability.

Tebe2e3 Interprocess Communication in TANDEM

The Guardian Operating System [BART 77] for the Tandém Com-
puters model 16 <computer has as 1ts foremost goal the
maintainance of a failure=tolerant computing environment.
Even though the underlying Tandem hardware consists of mul-
tiple computers and multiple dual-ported I/0 devicess the
operating system is designed to give the appearance to the
user of a unified system through the novel application of
several software abstractionse.

The first abstraction provided is that of a processe. Each
processor module may have one or more processes residing on
its however a process may not execute on any other processor
than the one it was initially created one Fach process in
the system has a wunique identifier or process=1d of the
form: <cpu #s process #>y which allows it to be referenced
on a system wide basise.

Process synchronization primitives include counting
semaphgores and process Local event flaase Semaphores may be
only used for synchronization between processes within the
same processor and are typically used to control access to
resources such as resident memory buffers and message
control blockse Event flags are predefined for up to efght
different events and are signalled within a processor by
etther hardware eventss such as device interruptss or by the
function AWAKE. AlLL event signals are queued so that they
are not lost if the event i1s signaled when a process fs not
waiting on its and a process may wait for the first of one
or more events via the function WAIT. Processes may" also
specify a maximum time to block whiche 1f exceededs results
in the return of an error condition to the process that
requested ite

The message system used for communication between processes

residing on different processors uses five primitive
operations: LINKs LISTEN, READLINKSs WRITELINKs and
BREAKLINKs to implement what can be best thought of as
dialogues between requestoer/server pairse Messages are

queued for processes and result in the setting of an event
flag for processes wanting to "LISTEN®",

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 95

With the implementation of processes and messagessy processor
boundaries effectively disappear. System wide access to I/0
devices is provided by the mechanism of process palrse An
I1/0 process=pair consists of two <cooperating processes
located in two different processors that <control a
particular 1/0 devicee One of the processes 1is considered
the *"primary?” one and the other the "backup™ processs The
primary process handles requests sent to it but sends in-
formation to the backup process via the message system in
order to assure that the backup process will have all the
information needed to take over control of the device in the
event of an I/0 channel or device errore. Because of the
distributed nature of the systemes it 1s not possible to
provide a "block" af driver code that could be called direc-
tly to aeccess the devices While potentially more efficientys
such an approach would preclude access to every device in
the system by every proctess in the system.

Processes are not grouped in classical ancestry treess No
process {is considered subservient to any other process on
the basis of parentages and two processess one created by
the other will be treated as equals by the system. When a
process “A" creates another process "B", via a call to the
procedure NEWPROCESSs no record of B is attached to A« The
only record kept {is in process B where the creation "4d" of
A is saved and is known as B8's "mom". When process B stopss
a STOP message 1is sent to process Aes If B wants to know
whether A has stopped 1t must "adopt" its mome

The innovative aspects of the Guardian Operating System Lie
not {in any new conceptsy but in the synthesis of pre-
existing idease O0f particular note are the Llow Llevel
process and message abstractionse. By wusing theses all
processor boundries can be hidden from both the application
programs and most of the operating systeme These initial
abstractions are the key to the system®s ability to tolerate
failures and provide the configuration {independence neces-
sary to run over a wide range of system sizes.

Tebe2e4 Process Communication in Vax

The VMS operating system architecture [DEC 771 supported by
the VAX hardware is a process structured systeme Because of
thisy the designers of VMS were motivated to Llook for and
evaluate the utilization of alternate process communication
schemes in order to ease the design and {implementation of
VMS,. It s significant that this study resulted in three
different mechanisms for process comunication in order not
to force-fit applications dnto wusing any one particular
typee

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 96

The three interprocess communication facilities provided by
VMS are all software implementede The first facility is ap-
parently used for trusted processes (ee.ge Kernal processes)
and consists of the notion of eyent flagss event flag

flaagse Since 1t is well known that this form of (semaphore)
type communication can be easily abused by naive wusers it
apparently is restricted only to trusted processese

The second type of interprocess communication used in VMS
(internal communication) consists of gend receiye gueues
that have fmplicitly associated event flagse This mechanism
serves as a way of passing variable gquantities of data
between trusted processes with a fairly high degree of
efficiencye. Each wuser process builds 1ts own buffer (data
packet) and sends it to a "receive" queues which then sets
the associated event flag for the receiving processe

The third type of dinterprocess communication mechanism
(generalized communication) consists of primitives for hand-
Ling mailboxes. Mailboxes can also be thought of and dim-
plemented as queue or FIFO filesy thus they can use the same
protection mechanisms as filese Of course mailboxessy Like
filesy can be classed as both temporary and permanent so
that interprocess communication can take place while proces~-
ses are "absent” or dormants a useful feature for writing to
Logaed out terminalse In additions processes communicate
with mailboxes in a fashijon similar to record-oriented 1/0
thus providing a framework for advanced concepts such as I/0
redirectione

VAX/VMS supports not only processess but also jobs that
constitute a collection of subprocesses and groups that are
sets of processes that share resourcese. Subprocesses can be
spawned and can have the rights of the creator as well as
the rights of the spawned image thus allowing a form of en-
hanced rightse

It seems that the VMS operating system provides a rich set
of interprocess communication primitives: whether dt 1s a
consistent set and c¢an be managed over the life of the
system remains to be seene

7e6e2¢5 The Multics IPC Facility

The interprocess communication facility supported by the
Multics system is based upon the concept of event ghanpels.
The primary purpose of an event channel is to provide synch-
ronization between processese

Georgia Institute of Technology 1PC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 97

Event channels (which can be thought of as a numbered slots
in the ipc-facility tables) are either gvent-waijt or event-
_call channelse The event-wait channel receives events that
have occured and awakens the process that established the
channel if 1t is blocked waiting for an event on that chan-
nele The event-call channel responds to the occurence of an
event by calling a specified procedure if the process which
established the channel is blocked waiting for any event.

For events to be noticed by explicitly <cocoperating proces-
sesy event channel identifier values are typically placed in
known Locations of a shared segment. Processes can block
waiting for an event to occur or can explicitly check to see
if the event has occurede If an event occurs before the
target process blockss the process is immediately awakened
when it does blocke

In summarys the event-channel facility in Multics provides a
flexible synchronization mechanisme Typicallysy processes
establish channels and wait for events on one or more of the
channels they have createds The utility of this approach is
clearly demonstrated by the wuse of the 1ipc-facility
throughout Multics for all wuser process coordination and
terminal I/0 handling.

Teba2e6 Event Counting and Sequencing

Synchronization of concurrent processes is usually reaquired
for the vrelative ordering of events dnternal to each
pProcess. Most currently favored synchronization techniques
such as monitors [HOAR 74] and semaphores involve mutual ex-
clusions a technique that only 1dndirectly notes the oc-
currence of an event. A alternate set of synchronization
primitives have been proposed by Reed and Kanodia [REED 771
where a process controls its synchrony with respect to other
processes by observing and signalling the occurrence of
events through operations on objects called eyentcountse An
eventcount is an abstraction representing the number of
events 1in some <class of dinterest that have occurrede.
Operations on eventcounts are:l ADVANCE(EY - Signal one
eventi READ(E) - Return the number of previous ADVANCES on
Es and AWAIT(Es+V) = Suspend a process until READ(E) >= Ve
ADVANCE purely transmits informations READ and AWAIT purely
observee In contrast the P operation on a semaphore is not
a pure observation primitive since it can modify the
semaphores Pure observation or signalling primitives are
more attractive for wuse 1in secure systems [LAMP 73J. 1If
only one process executes ADVANCE operations on an
eventcounts ADVANCE and READ can be concurrente If more
than one process does ADVANCESy a different eventcount can
be given to each processs and the sum of those eventcounts
gives the total number of events In the class.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 98

When mutual exclusion is needed (when events must be ordered
dynamicallyes such that the ordering 1s not known 1in ad-
vancels a sequencer can be usede A sequencer operates Like
the ticket machine in a bakerys and has one operation catled
TICKETs that returns the number of previous ticket
operations on that sequencer. An eventcount and a sequencer
can be used to implement a semaphores Several eventounts
and sequencers can be used to implement semaphores that al-
Low a process to wait for several different eventse.

There seem to be at Least two attractive advantages over
other alternate synchronization schemes that ‘eventcounts
have for distributed systems. The first advantage is that
the ADVANCE operation affords a natural broadcast mechanism
to all processes that might be waiting on an events because
unlike simple semaphores the signaller need not know the
names of the 1dintended observers. The second advantage is
the avoidance of mutual exclusion where only the relative
ordering of events is requireds thus tending to Limit the
amount of serialized c¢ode 1in systemse <code that often

results in performance bottlenecks. Eventcounts and
sequencers could be used by an operating systems instead of
user-visible semaphoresy for fimplementing more general

interprocess communication mechanisms with shared files and
this mechanism could be made available to the user to coor-
dinate the use of shared resources.

7e6e2e7 INtertask Communication Primitives For PRIMOS

Several intertask communication capabilities currently exist
Wwithin the Prime operating system (PRIMOS). Both
Ltock/unlock and gounting semaphoress are implemented at the
microcode levely and are available for =system and user
taskse In addition to these basfic synchronization
primitives for communication between processes on the same
processor PRIM0OS supports a set of PRIMENET inter-process
communication capabilities based on x«25 flavored ‘"virtual
circuits®. These capabilities allow a wuser process to
establish a full-duplex virtual connection to another user
process whether local or remote.

Virtual circuits can be managed at the user program Level by
the proper use of a collection of subroutine calls to PRIMOS
and provide a YLevel 3"y Xe25 Interprocess Communication
Facility (IPCF).

The major services provided are for forming a connectiony
breaking a connection and transmitting or receiving data.
Generallys two different forms of a service are provided.
The first form is an abbreviated calling sequencey with only
a minimum amount of information needed to be supplied by a
user in order to establish and use a virtual circuite The
second form ds a more detailed one that allows a user full
access to all fields of the X.25 "Level 3" defined packet

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 99
N

formatse The LlLatter form is intended primarily for users
wishing to form Xe25 <connections to non-Prime hosts on
Public Data packet networkse.

Eleven network primitives currently compose PRIMENET and
provide capabilities to! establish status.as a network user
(X$ASGN)s establish a network comnection (X3CONN)s get Local
connect information (X$GCON)e accept a connection (XSACPT).
clear a connection (X3CLR)y hand off a connection (X3GVVC),
receive via a connection (X3RCV)e transmit via a3 connection
(X$TRAN)es wait on transmit or receive (X3WAIT)e get network
status (X$STAT)s and terminate network user status (XSUASN).
This set of PRIMENET primitives 1s based wupon the X.25
protocol and is due for release under REV 17 of PRIM0Se. The
chief shortcoming to the current PRIMENET set of primitives
is the inability to support multiple readers and/or multiple
writers per connectione.

The addressability defined in the basic X.25 specifications
refers only to a single 14~-digit address per hosts although
it is not uncommon for a host (lLike PRIM(OS) to handle mul-
tiple processes and users. Therefores in order to decide
which user or operating system service should control a con-
nectionsy each incoming "call request packet®™ in PRIMENET
must specify a network "porte"™ This ports coupled with the
l4-digit address of the target systeme desianates a target
processes

Each host in Ringnet has a pool of 255 available ports that
may be assigned to any process on a first comesy first served
basis by a call on the operating systems Howevers only
ports 1 through 99 are available for users; the rest are
reserved for system use. Permanent port assignments to a
process are possible by controllina the order in which
processes are initiated just after system startups other-
wises there 1is no absolute guarantee that a particular
process is assoctated with a given port number.

The short form of the initial connection protocol wuses an

ASCII host name (eeqe "FNGe15") instead of the long 14~
digit address and a port number previously acquired by the
target processe The "™connect" function §s typical of the

IPCF primitives and the request for it is shown as a partial
example of how a circuit is formed at the program Levele.

CALL XSCONN (VCIDy PORTe ADRs ADRLe VC_STAT)

The variable ADR points to a string containing the name of
the dntended host (jee ENG.15)s ADRL contains the Length of
the name (6)y and VC_STAT represents the status of the
requested service. Upon completion of a successful connec-
tioney a "virtual circuit identifier" (VCID) is returned that
can be used for the subsequent transmission of datae Incom=-
ing calls for a particular port in a host are queued on a
first come first served basise Information concerning a
catl request at the head of a port queue can be obtained via

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 100

a system calle so that connections can be accepteds refuseds
clearedsy etce Calls are kept pending for 90 secondss during
which the requestors? status 1s that of M"connection 1in
progresse" Other Xe«2% services are provided to users that
allow for waiting on the completion of a network events ac-
cepting or clearing a calle passing off a virtual circuit to
another process in the same hoste and obtaining status in-
formation about a particular circuite

At a level above the PRIMENET primitivess PRIMOS supports a
remote-Login <capability (RLOGIN) and a network file-access-
method (FAM)s The File Access Manager (FAM) is a PRIMOS
subsystem that extends the functions of the PRIMOS file
system to a network of hostse Virtualization of the file
system is accomplished by permanently assigning a port (255)
to the Local FAM process of each hostse over which virtual
circuits to neighboring FAMS are used to accomplish remote
file operations on behalf of a user.

A FAM process in a host fields requests from Local users for
file operations on remote hostse handles 1incoming file
reguests from remote hostse and maintains status and wupdate
information concerning the current state of network connec-
tions and file system devices. When the PRIMOS supervisor
decides that a particular wuser request is destined for a
remote devices 1t queues the request for the Llocal FAM
process and suspends the usere. FAM packages this request in
a message and passes it off to the appropriate remote FAM,
which performs the requested file operations on behalf of
the usere. The remote FAM process sends the original request
and the requested data back to the Local FAMe which copies
the returned values into the user?s address space and causes
the user to be rescheduleds Because certain file primitives
are guaranteed to be "atomic” operationsy all file functions
are performed to completion just as if they occurred Llocal=-
Lyey even if they require multiple messages or updating of
local supervisor tablese

Since both Local and remote operations on a particular file
are handled through the file system of the host that owns
the particular filey all of the normal file protection and
other mechanismss such as locking a particular record while
writinge are automatically accomplisheds Applications using
remote data as well as local data run without any change.

In a similar fashions the ability of a user to “"remotely
Log=ine" &as {if their terminal were physically attached to
the host of their choices 1is achieved by the operating
system multiplexing all remote terminal traffic through port
LRI When a user “"logs ine" they may designate a system to
be attached to as: .

LOGIN SMITH -0ON ENG.13

4t this point the Llocal Login server establishes a virtual
circuit to the target host and requests the initiation of,

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 101

and connection toes 2 process in the remote hoste From then
on the Llocal terminal buffers are effectively diverted to
the input and output buffers of the remote process running
on the selected node.

A proposal for an implementation of pipes [SCHE 781 was
discussed as an alternative to virtual circuits. The pipe
mechanism does allow multiple readers and multiple writers
and thuse together with the X.25 PRIMENET,y would facilitate
most applications that demand IPC facilities incorporating
multiple readers and wrjterse.

In summarys the current PRIMOS 1Jnterprocess communication
capabilities allow Local and remote process cooperation
through Xe25 flavored "virtual circuits™e in addition to the
semaphore primitives for Local communication. These "point-
to-point" mechanisms may not sufffce for distributed process
applications demanding N=-process protocolsi however the set
of applications demanding such protocols at this time seem
smalle

7.6¢3 Conglusions and Future Directions

As this report has 4{llustrateds the process concept has
become dincreasingly centrals in recent yearss to the design
of computer =systems both at the hardware and software
levels. There are many reasons for this developments two
important ones being: (1) the continuing decomposition of
systems and applications problems into sets of cooperating
parallel programs for greater modularitys functionality,
flexibilitys and maintainabilitys and (2) the increasing
cheapness of processors and memory allowing the assignment
of processes to processors in an economical waye As proces-
ses have become "cheaper" to createy maintains and destroys
the flexibilitys scopes powers and economy of interprocess
communication mechanisms has become increasinaly central to
the effectiveness of multi-process systems.

A wide variety of mechanisms for interprocess communication
have been surveyed in this report. Perhaps the major reason
for such a variety comes from a desire to provide in one set
of primitives: (1) flexible process synchronization toolse
(2) data transfer mechanismsy and (3) communication control
and error recoverye Some of the major issues involved in
the design of dnterprocess communication mechanisms are
briefly discussed belowe

le Process Naming: Many systems have inadequate
facilities for identifying names of proctesses
within the same hosts let alone for processes
residing on different hosts, Part of the
problem stems from an dnconsistent view of
the relationship between the set of allowable
names for filesy devicess processess uUsSerse

Georgia Institute of Technology IPC Workshop

Section 7 " CURRENT TECHNIQUES AND EXPERIENCE Page 102

mailboxese generic system servicesy and
specific system serviceses Until this problem
is settled the design of specific
interprocess communication primitives cannot
focus on the set of fundamental objects that
they witl be dealing withe This s a
difficult dssues since it is here that many
of the system security 1ssues are also ad-
dressed.

2 Control 0f Links Between Processes: Control
of communication paths between processes fun-
damentally depends upon the nature of process
relationshipss If process relationships are
tree structureds then the status of a child?’s
communication with other processes might be
monitored and controiled by the parent. on
the other handy 1f each process wants to
maintain the concept of sovereignty then the
basic challenge is how to provide the ability
for cooperating processes to establish a
monitor process that is capable of control=-
Ling the communicatfon paths between them.

3« Conirol 0Qf Data Elow Between Processes: The
need for a flexible set of operations to
control data-flow between processes 1is of
major dmportance din the design of IPC
mechanisms. This 4ssue 1nvolves providing
processes with the ability to: control mul-
tiple Llinkss respond to out-of-band signals,

receive/transmit/flush stream and message
data typesy and receive/transmit Link
copabilitiese. A number of additional

capabilities might also be considereds such
as allowing processes to define data-type-
Links that facilitate the passing and
manipulation of complex data structures.

4« Synchronization 03f Progcesses: Clearlys, a
major function of interprocess communication
is to provide either explicit or implicit
synchronization between processess Farly
forms of interprocess communication depended
only on the <correct use of explicit synch-
ronization primitives for sharing sections of
main memorye In some systemss temporary
files serve as synchronizing points between
job steps (implicit)y while in other systems
processes synchronize and exchange data by
signalling (explicit)e Whether explicit or
implicit synchronization primitives should be
provided is still very much an open question.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 103

with the advent of <cheap communications and distributed
systems these issues are becoming more important each day to
both the manufacturers and users of computer systemse. A
workshop addressing IPC desdign 1ss therefores scheduled to
be held in Atlantas Georgiay on the 20-22 of Novembery that
Wwill bring together a selected group of researchers in this
subject area to address the five general topics Llisted
below: ”

(1) Assess the present state~-of-the-art for IPC
mechanisms 1”, distributed data processing
systemse.

2) Identify the data avatlable on the actual
performance of wvarious IPC policies and
mechanismse

(3) Assess the potentdial value of various IPC
mechanisms satisfying the operational and
performance requirements for highly
distributed systems.

(4) Identify shortcomings in the present state-
of-the-art and iJdentify promising areas for
future research and experiments on this sub-
jecte.

(5) Identify possible standardization LlLevels 1in
IPC designe

Some of the issues the workshop is intending to examine in
detail are: addressing issuessys hardware supports transport
mechanismse flow controle out-of=band signallings fault
tolerances securitysy synchronizations and performance and
application programming impacte Prime Research is actively
participating in this workshop which also has the support of
both IEEE Computer Society and the three ACM Special
Interest Groupsy SIGOPSe SIGARCH and SIGCOMM.

In conclusione there are far reaching ramifications to the
demand fors and the development ofs interprocess communice-
tion facilities and cheap processes. At the user Llevely a
greatly enhanced system functionality and flexibility can be
achievedy and at the operating system and hardware levelssy
the need to efficiently support this functionality is Llead-
fng to new architectures and 0S designse. As the section on
PRIMOS 4n this report suggestsy Prime is developing new IPC
mechanisms for the enhancement of current systems and is at-
tempting to incorporate some of the ideas developed in other
systemss In additions as new computer architectures are ex-
plored at Primey the need to include hardware support for
eritical IPC functions is an area that requires study and
understandinge

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 104

Te7 DATA COMMUNICATION SOFINARE

DATA COMMUNICATION SOFTWARE
by
Ge Le Chesson

Bell Laboratories

Introduction

Distributed computing environments are based upons and whol~-
Ly depend upons data communicationse. Although there exists
a sizable and growing hardware technology for data com-
munications software has not generally kept apace in recent
yearse. Better software tools and techniques are needed 1in
order to experiment with the new hardware devices that are
available in the Laboratory as well as to dimprove the
capabilities for cooperation between our normally monolithic
operating systemse These notes outline the direction and
status of communication-oriented software research with the
context of the Tth edition of the UNIX operating system.

Several software components are being experimented with in
computer systems at Murray Hille idncluding a PDP-11/45,
11/70*sy an Interdata 8/32y and LSI-11ts. Some of the
software 1s part of the UNIX kernelsy or resident operating
systems and the remainder consists of programs that utilize
the new kernel facjlitiese The software components in the
kernel include:

1) primitives for managing 1Jintermediate-sized
contiguous areas of kernel data spacey

2) a "packet driver" which can be used to impose
framings sequencings checksummingys and
retransmission procedures on a character
devices

3 multiplexed and non-multiplexed {interprocess

communication channels.

The salient characteristics of these components are
described in the next three sectionse The organization of
the higher-Level codes which use these components will not
be discussed here,

Space Managgment Primitives

The previously existing space-management procedures 4n the
UNIX kernel were used to implement the terminal character
Lists and the disk buffer caches Since the size of an al-
location permitted by these routines is either one byte or
512 bytesy it is not surprising that an additional mechanism
Wwas needed for data communications. There are but two

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 105

primitives needed: one to allocate and one to releasees The
new primitives manage <contiguous memory segments that are
some multiple of 32 bytes in size up to a maximum of 512
bytes.

It was 1intended that the buffer management primitives be
fast enough to be invoked from within {dnterrupt routinese.
This means that recombination or garbage collection must
also be capable of being done at interrupt time. These
considerations Llead to a strategy which employs a few
judiciously chosen bit-map tricks in conjunction with the
constant allocation sizes mentioned above.

The allocator may be called with a flag which directs
whether it should sleep when space 1Js not available or
whether 1t should return a failure indications This was
built in because the allocator must not be allowed to sleep
when called from an interrupt routine. Howevers it may be
equally distressing to have it fail. Current practice in-
volves building strict space bounds into interrupt processes
that <cannot Live with allocation failurese This way space
requirements are known in advances and the allocator is used
to dedlicate a private buffer pool where it is needed.

Although the new space management primitives are useful for
allocating "ordinary" 1/0 bufferss their real usefulness is
in supporting the fifo gqueues needed for data rate balancing
between readers and writers. Because of the address-space
Limitations of the POP=-114 memory is a critical resourcey
and 1t is not possible to devote as much space to data
queues as many high-bandwidth applications reguire. As the
software described below maturess it will become necessary
to extend fifo mechansims to secondary storage or to non-
kernel memory spaces’ The methods wused in the current
primitives cany and probably willy be applied in these other
circumstancese.

Pagcket Driver

The packet driver consists of a group of routines similar in
name and function to the parts that make up the typewriter
control softwarey namelys there are opens closes ready
writey do0ctls read dinterrupts and write interrupt entries.
A software switchs called the Line-discipline switchs placed
at the proper locations in a character device driver selects
whether a call should be made to the standard system control
routinessy or to the corresponding entries in the pactket
driver or other line-discipline. This switch mechanism may
be thought of as a bidirectional filtering process which may
be selectively inserted between a device driver and a user
programe

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 106

The packet driver s designed to operate character devices
in a packet mode with the error checking and flow controls
that are necessary for reliable data communication. The im-
plementation is organized so that flow control functions are
at a high Level and are independent of framing and other
details of Link control. This means that device <charac-
teristics are transparent at the flow control Levels allow-
ing the code to be used 1n different contexts = €40 with
both bit-oriented and byte-oriented Liness or DMA and non-
DMA devicess Alsos implementations exist for the UNIX ker-
nely as a user-Level subroutine packages and currently for
one non-UNIX systems Emphasis has been placed on Learning
how to produce communication software that 1s operating
system=-independent as well as machine-independent. In prac-
tice this means that the packet driver implementations
Listed above <consist of protocol routines which are common
in all cases plus io and clock routines which are system
dependent. Since protocol changes invariably affect only
the common codesy the Llogistics of making network-wide im-
provements or repairs simplify to updating a common file and
reloading the appropriate system programse

There exist numerous Link control and flow control
proceduresy however they were judged not suitable for our
uses Tfor a variety of reasonses Some typical complaints are
that flow control procedures are not really end-to-ends pac-
ket formats are complicated and verbose requiring a fair
amount of real-time scannings multiplexing 1{1s wusually
defined in immutable wayss and error controle framinges mul-
tiplexings and flow control are usually mixed together
instead of being separated where possible. These
considerations Led to the following:

1) flow control 1is based on a sliding "window"
of sequence-numbered packetse The numbers
are modulo=-8s the maximum window size is 7y
and the window sizes are controlled by the
receiverss The retransmission strategy uses
either "go=back-N" or selective single packet
retransmission at the receivert®s discretione.

2) packet sizes and window sizes are negotiated
petween two communicating packet driverss
The packet and window sizes in each direction
need not be the same.

3) packets may range in size from 32 bytes to a
maximum of 4096 as determined by the formula
32 * (2 ** k) where k is an integery 0 £ k ¢
Te

4) all message headers are the same sizes unlike
Xe25 and other similar protocols.

5) it 1is possible to multiplex the Link at the
packet Levels or within packetss or botha

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 107

The software overhead of running the packet driver on 9600
baud Lines 1s quite lLowe The implementation is efficient
enough that data rates exceeding 50K baud have been
demonstrated with this software using a a PDP=11/45 and non-
DMA devices, As one would expect the overhead at higher
data rates consumes the available cpu resourcese For this
reason the packet driver is looked upon as an algorithmic
testbed and 1intermediate step toward improved computer
peripheral hardware for communicationsa

Interprocess and Process-device Communication

Multiple 1independent asynchronous data streams and events
comprise the greater part of the environment for data com-
munjcation softwares It has been observed many times that
"hlocking® I/0 as implemented in the UNIX timesharing system
does not provide direct methods for dealing with these
entitiess and there are sound architectural reasons why it
does note Neverthelesssy a process that must read from more
than one source sould not have to waft on idle data sources
since input data will be missed or delayedd on Lines that
are actively producing data while the process 1s blocked.
(It is assumed that polling techniques are wunacceptable.)
Alsos the flow-control scheme used throughout the system
causes writer to block if the total amount of written data
exceeds a threshold. Such processes sleep until the
corresponding reader (process or device) consumes some or
all of the waiting datae A communications process typically
must write to several processes and/or Lines at once. It is
somewhat 1inefficient to force such a process to block on a
"slow" device or process when there are other readers that
can be Wwritten toe Thus it would apppear that an operating
system must provide techniques for dealing with asynchronism
and blocking or flow=-control problems as well as supply a
useful means for establishing data bpaths between the
various data sources and sinkses The mechanism outline below
accomplishes these immediate goals in a simple and direct
mannerae

Two entities are defined: channels and multiplexed chan-
nelsy also called channel groups or groups due to the
similarity with existing notions in telephonye A channel
consists of a pair of full=-duplex communication pathse. One
pair dis designated as the "data"™ path and the other as the
"econtrol™ or "signaling™ pathe. This architecture explicitly
recognizes the need for what 1is usually called "out-of-band"
signalling by dedicating a communication path for the
puUrposece In the implementations each path has some amount
of fifo or data queuing built into the transport mechanisme.
Howevery the actual data transport is dealt with indirectly:
in order to avoid unnecessary copying of data from place to
place within the systems the data is placed somewhere wusing
a buffering mechanisms tokens indicating where the data can
be found are passed from place to places This decoupling of

"Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 108

the fifo and buffering functions from the data transport
mechanism 1increases the efficfency of data movement and
permits insertion of or tuning of buffering mechanisms in a
transparent mannere.

A channet c¢an be thought of as a software null-modem: a
null-modem consists of two plugs connected by some wires
(fifo/buffering) so that data and signals transmitted at one
plug are received at the other and vice versas In the hard-
ware world one may connect computersy computer terminalse
and various other digital devices to one another via null-
modemse In the software world one may attach processesy
devicesy other channelss and groups (see below) to the ends,
or plugse or a channel.

The multiplexed channel construct ¥s a bundling mechanism
("Bundling" 1s a convenient term to describe a construct
which fans=insy fans-outs or otherwise merges data. GExamples
include the PORT mechanism developed at RAND and elsewheres
certain aspects of the C.mmp systems and the UNIX timeshar-
ing system tee commande) which supplies both a multiplexing
discipline for merging data from many channels and the in-
verse mechanism for sending data to the individual channels
in a bundley Or groupe. A process can arrange to have
various devices and processes "plugged-in" to the ends of
channels and bundle altl the opposite endings together in a
multiplexed channels or groups In this way a read command
jssued on the multiplexed channel will return any and altl
data (up to the requested timit) available from all the at-
tached channels. This eliminates the blocking reader
problem mentioned abovee.

It ds possible to bundle the multiplexed stream associated
with a group into another hbundles or super-bundle. This al-
Lows tree-structured data path networks to be built upe The
maximum tree height and fan-in at each group 1s fixed at 4
and 16 respectivelye By numbering the channels bundled into
a gqgroups a unique name for every possible tree node is
defined as the pathnamee or sequence of channel numbers
encountered along a path from the "tope" or roots of the
tree to any particular nodes The pathname or sequence num-
bering of a particular node is referred to as an index. (An
index is represented as a 16-bit quantity interpreted as a
sequence of 4-bit numberse.) AlLL exchanges between the
operating system and a process owning channels and groups
are carried out using indices.

Multiplexed channels are created using the following C code:
fd = mpx ("name"smode);

which has the same effect as creat ("name"ymode) in that

"name® Js placed in the file systeme In addition reads and

writes on "fd" are translated by the operating system into
1/0 operations on channels attached to the groupe.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 109

1/0 operations on a group are carried out via the standard
UNIX timesharing system calls?

cc read (fdebufecount)s;

write (fdebufecount)s

cc

The contents of "buf® are a concatenation of some number of
variable=-length structures each having the form of an index
followed by a byte count followed by the indicated number of
data bytese (Control channel data s distinguished from
data channel data by an escape convention based on the mes~-
sage byte count. If the count indicates a zero-length mes-
sagey then the actual byte count follows the zero and is in
turn followed by control channel datae«) The "buf®"™ formats
for reading and writing are identicale and in both cases
"ee" indicates the number of bytes actually transferred out
of a total request of "count"™ byteses (Another form of write
is provided in which "buf" consists of indicess byte countsy
and pointers to the actual datas. This formaet reduces the
buffer filling overhead on output and 1improves the per-
formance of certain programse) On write operations if "cc"
< "count" and the contents of "buf" were destined for more
than one channely then it is known that at least one channel
fifo threshold was exceeded or some error condition was
encountereds Precise information can be obtained by reading
the group because the system immediately passes back status
information, The index numbers of blocked channels and the
number of datas one sessage for each blocked data channel.
When the previously written data 1s finally consumeds
another control message is sent to the group owner indicat-
ing the readiness of a channel to accept data. These "bloc-
king" and "unblocking” messages allow a process to continue
to serve channels even though 1t temporarily cannot transmit
to all 1ts channelss A complementary function 1is provided
whereby a process can enable or disable incoming data trans-
fers on selected channelss

1f ®dg" §s a character device file descriptor obtained via a
call resembling

d = open ("/dev/name"42)3

then a channel can be created and the character device at-
tached to the channel by executing

ch = join (dexfd)i

where "xfd" is the file descriptor for the multiplexed chan-
nel and *ch" is the new channel number.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 110

Multiplexed channels may be joined or "bundled” to other
channels by using the join primitive as outlined above and
letting "d" be the file descriptor of a multiplexed channele.
There are additional primitives for ‘"unbundling" and
manufacturing file descriptors that map 1into <channelse
Moreover the non-multiplexed file descriptors for channels
may be used as the standard input or output for any UNIX
programe (The multiplexed file dexcriptors provide direct
access to the <control paths of <channelsy but this not
meaningful for the non=-multiplexed cases Currentlys foctl
commands on the non-multiplexed end of a channel are treated
as messages on the <control path of the <channels) The
preceding discussion indicates how channels and devices can
be attached to groupse It remains to indicate how <channels
are attached to processeses There are two techniques. One
involves using the extract primitives which is a converse of
the join operations to manufacture a file descriptor from a
channel. Using standard techniques founds for examplesy in
the UNIX shell one arranges fro an extracted file descriptor
to be the standard input and output for a new process by
executing UNIX close and dup c¢calls wusually followed by
fork/execs The second method has more interesting
properties - 1f "name" 1s the name of a groups then

fd = open ("name"¢2)3

triggers the following sequence of events:?

1) the kernet notices that an open is being done
on a group rather than an ordinary file.
2) if a new channel cannot be joined to the

group or if the process which <created the
aroup is no longerrunnings the open fafils im-
mediatelye

3) otherwisesy a message is sent on the control
channel of the group to the owner process
stating that an open was requesteds. The
effective UID of the opening process as well
as the indexs x¢ of a new channel are
included in the message.

4) the owner process may respond with either at-
tach(x) or detach{(x) which respectively com-
nlete the Job of hooking channel x between
the group and returning file descriptor fds
or cause the open to faile.

An open sequence as described above results in the creation
of a channele The file descriptor returned to thr process
executin ght open will be “plugged=-in" to one end of the
channely and the other end of the channel will be attached
to the groupe. A read on the file descriptor will be satis-
fied by writing on the channel through the groups and con-
versely for writing on the file descriptor and reading the
groupe An immediate application of this facility is in im-

Georgia Institute of Technology I°C Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 111

plementing virtual terminalse or a "telnet server" as it is
called by the Arpanet community. A process first
establishes a group and arranges for one channel to be a
data path to a similar process runing on another computer.
If the remote process sends a message asking that an
interactive environment be establisheds then the Llocal
process forksey opens its own groups and starts up the shell
Wwith the file descriptor returned from the open as the stan-
dard input and outpute Meanwhile the original lLocal process
arranges to copy data from the newly created channel to the
remote computer and vice versa. Of course there are certain
niceties 1involving access permissions process groupss and
other details which are not explained herey but they can all
be handled neatly within the channel/group organization.

The method outlined above provides a form of "port®
facility. Its main disadvantage 1s that one must know a
port namee System or network-wide services would presumably
have well-known namese but 1t is important to have a «class
of unbound names that the system can recognize. Interpreta-
tion of such names might require searching for a remote
machine having a certain service facility or might require a
simple translation of some sorte. In order to accomplish
this a mechanism has been established whereby a multiplexed
channel may be designated as the unique interpreter for all
such unbound port namess In the operating system any open
requests on names containing ®in are treated as open
requests on the special channel. One use of this mechanism
is to treat "namel'name2" as a request for a file with name
name2 on a machine designated by namel. Since strings of
this form may be passed in to any program on the systems one
may write

diff machinel!filel machine2!file2

and expect the UNIX diff command to be run with dnput from
machinel and machine2.

For some applications the bandwidth that can be achieved by
implementing data stream switching between channels in a
user processy Iimplying a copy operation from the kernel to
the switch process and back to the kernel and then a final
copy to the destination process or devices may be quite
adequatee. The primary example 1s the virtual terminal
scheme outlined above. However this is not true for many
other applications especially those involving file transfer
or file accesse For these cases a connect primitive is sup-
pltied which establishes a "short=circuit" connection in the
kernel between a channel and file descriptor. That 1ss at
the place 4n the operating system where data buffered in a
channel would be copied to a user process as part of a read
operations the data is handled as though a write on the file
descriptor had been done. The connect primitive specifies
whether the symmetric short=-circuit path is also meant to be
established - that iss whether writes on the file descriptor
should induce a direct copy to the agent reading the "other®

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 112

end of a channel. A disconnect operation is also provided
to break open short circuitse

The semantics of carrying out a normal open call on a mul=-
tiplexed channel name provide a useful range of interprocess
communication capabilitiess This is what one expects from a
process communication systeme HoOwevery by making slight ad-
justments to the name recognition algorithms in the system a
wider class of file names <can be Ytrapped®™ by the open
routines 1in the kernel and passed as messages to a program
for further interpretations This comprises a very powerful
mechanism for distributing system functions in interesting
and useful ways: once a channel has been established via
this name translation procedures subseguent I/0 on the chan-
nel by the process can be redirected to other computers or
other process at will and without modification +to the
initiating programe.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 113

7.8 DISTRIBYTED IPC AND SIGNALLING

DISTRIBUTED INTERPROCESS COMMUNICATION AND SIGNALLING

by

Gs Le Lann
IRIA/SIRIUS

T+8+1 The General Context

Let wus consider a system including several processors being
Linked together through an 1{interconnection structuree. We
will distinguish between processors being accessed by exter-
nal wusers who wish to initiate activities and processors
which run these activities and may return results to some
external users. Initiation of activitiess execution control
and transmission of data are accomplished through transmis-
sion of messagess In the followings we will refer to these
processors respectively as senders and receivers of messages
(see figure 1), We will not make any assumption regarding
the size of these messages.)

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND,EXPERIENCE Page 114

Eigure 1 - A Schematic Representation of the System
— | | —
| = ===} == === === |= === |
| S |=========| |=========] R |
= = == == -} j= === === == =231

| | | |
—_— | | | | .
| | | | | | .
| S I-------- | | | | .
| ol il B | |
(I | | —
. | | = =)= == === |= == =3] |
| | |=========| R |
| 1= === -] I= === ==>|___I
| | | | |
— | | | | ! —
| = = == =|=- == -] I= =)= = |= === >} |
| S |=========| | |=========| R |
N L | (I
I |

senders interconnection receivers

structure

- = « > Flow of messages

OQur assumptions will be?

Wwe wWould Like first to describe some of the problems we see
to exist in such systems ande seconds

Georgia Institute of Technology

senders and receivers may be micros mini or
maxiprocessorsse

these processors may fails

the 1interconnection structure is any resilient
hardware structure (using alternate routes 1n
telecommunication networkss multiple
busses/cables in multiprocessors/multicomputers,
radio frequenciess etcesdo

errorse duplicates and Llosses are possible dur-
ing the transmission of messages,

message transit delays are variables

there 1is no privileged processor in charge of
handling either communication or 1interprocessor
cooperation.

to present a solution.

IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 115

TeB+2 Ihe Problems

7.8+2.1 Multiple Sender/Single Receiver Systems

Let us consider a system as depicted in figure 1 but includ-
ing only one receivere. We c¢can 1dentify two different
problems!?

1) for any senders it may be necessary to
maintain a strict sequencing of messages be-
ing sent to the receiver

§i) the wvarious message flows converging at the
receiver may have to be serviced by the
receiver according to a particular
disciplinesy which may be dynamically changed
and not be known statically or guessed by the
receivere.

Problem (i) is a problem of end=-to-end signalling or single-
path signalling (sps)e. Solutions to the sps problem are
well knowne The "window®" technique {is an example of such a
solutione.

Problem (i1) raises the issue of multiple-path signalling
{mps) that {is the problem of serifalizing 1dincoming messages
issued 1in parallel by different asynchronous sources. A
mechanism is needed whereby senders may enforce distantly a
particular serjalization of messages at any time. For exam=
ples this 1{s needed when two senders A and B wish to
establish a particular ordering for initiating activities
(eeges A before Bl

TeRe2.2 Multiple Sender/Multiple Receiver Systems

Let us now consider a system including several receiverse.
we will distinguish between two cases:

H Fully redundant systems

Major motivations for running several
jdentical receivers are to make the system
able to survive receiver failurese to provide
for a geographically dispersed but unique ac-
tivity visible from various Locations
(receiver areas)y or to relax constraints
regarding system maintenance.

The serialization of incoming messages
teither fortuitous or enforced) must be
unique for all receivers. This 1is an mps
problem.

Georgia Institute of Technology 1PC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 116

1) Partially redundant systemse partitioned
systenms

These systems include several receivers run-
ing activities which may be strictly
jdentical for some of the recefjverss as well
as activities which are different for atl
receiversa

In addition to the motivations already mentioneds other
reasons for <considering such systems are to provide for
various activities being run in paraltlel and to allow for a
modular and dynamic growth of the systems In these systemsy
an activity bpeing 1initiated by a sender may span several
recejverse This raises the need for coordinating the
various individual serialization processes over these
receiverse Finallys according to user requestss the mapping
between senders and receiverse 1eee the need to set and
reset cooperation paths between senders and receivers will
be constantly changing with times

To summarizes we want to maintain a unigque serialization of
incoming messages for those receivers which act as "twins."”
In addition to thiss we want to be able to achieve!

- For wevery vreceivery a specific and local
serijalization of messages in step with the
dynamically changing subset of senders 1§t s
cooperating with

- decentralized coordination between those
receivers which have to serialize messages
related to multi-receiver activities in order to
avoid conflicts between such activities.

This 1§ again an mps propleme.

7.8¢3 Looking for 2 Solution: Reguiremenis

Potential advantages of distributed computing systems are
numerous. Howevers it 4s not so simple to find a solution
to a particular design problem which does not annihilate
some of these advantagess A number of requirements which
are considered to be of primary iJmportance for a
tdistributed solution® to the mps problem are Llisted belowe

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 117

7e8e3s1 Parallelism and Response Time

A solution should take full advantage of the parallel nature
of the systems: parallelism in processing as well as in com-
munication may result in a good resource utilization ration.
This has a non-negligible dimpact on system costs and
response time. ‘ '

TeB8e3s2 Resiliency

A solution should survive failures. Actuallys we need a
more precise measurement of such a property which would ex-
press the number of simultaneous failures a solution may
survives This 1s the notion of resiliency.

T7e8e32a3 Overhead

Costs of a solution may be lows monstrouss or acceptable.
It is necessary to evaluate overheads as regards traffic
(number and size of additional messages)s processing (handl-
ing of additional messages) and storage (for "control" in-
formation}.

TeB8e3e4 Permanent Rejection

When conflicts occur (between "simultaneous”™ activitiess for
example)sy how does a solution Llend itself naturally to avoid
infinite waitinge without resorting to any exotic or ad-hoc
mechanism?

7¢8¢3¢5 Fairness

Againe when conflicts occure a solution should not favor
systematically the same processor(s).

TeBa3ebt Extensibility

If a solution may keep on working wunder dynamic system
reduction (failures)s then it is necessary to show how this
solution matches the vrequirement of dynamic system ex-
tensione What this means is that it should be possible to
reinsert or to add processors to the system without disrupt-
ing the functioning of the systeme.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 118

Te8e3a7 81NDL1C1tY

When time has come to implLement a systems problems of under-
standingsy specifyings debugging and maintaining the software
corresponding to @ particular solution become preponderante
This Llast reguirement may well be one to look at very
carefully when considering to build a real system.

7+8.4 A Solution

We have seen that an mps mechanism is needed 1f one wishes
communications between several senders and receivers to ex-
hibit some specific propertiess Obviouslys signalling in a
distributed system will be accomplished through the exchange
of messagessy i1ece signalling will rely on communication.

This apparently recursive problem reguires some structuring.
We will then assume that any convenient techniacue is used in
the system for solving the sps problem.

on top of this "layers" we will build our mps mechanisme.

7eB8e4e1 A Virtual Ring Structure

Sending processors are given permanent identitieses If n is
the predicted maximum number of these processorss identities
will be integers belonging to the interval [0s n - 1]e As a
results it is possible to view these processors as being
sequencially located along a virtual ringe Each processor i
has a well known predecessor and a well known successory 1 =-
1 and 1 + 1 in the absence of failure (the marks - and +
stand for operations modulo n)e There is no assumption made
regarding the mapping of processor fidentities on physical
addresseses In other words a virtual ring strructure does
not assume any particular physical topology.

As processors are located on a8 virtual ringes it d§s only
needed for each of them to know the identity of their
respective predecessor (pred) and successor (suc)e

A permanent and virtual communication path 1s established
between adjacent processorse A message sent on such a path
may travel over different physical Llinks as provided by the
interconnection structures Specific technigques may keep the
failure of a particular Link transparent to processorss
Howevers occurrence of one or several failures may preclude
communication between adjacent processorse. Cetection of a
communication path breakdown as well as detection of a
processor failure can be achieved by using one of the fol-
lowing techniguese.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 119

7Te8edelel Mutual Suspicion

Every processor sends regularly "Life messages" to its suc-
cessor on the ringe These messages should be acknowledcede.
I1f the successor fails to return acknowledgements for a
given period of times it is declared dead and its predeces~-
sor undertakes a ring reconfigurationes Actuallys there is
no difference between an abnormal behaviour of a successor
and a breakdown of a communication pathe In both casess the
successor should not be maintained on the ringe.

Acknowledgement of Life messages is bound to some {nternal
checking procedure whichy if successfuly indicates that the
processor is safees In order to achieve correctness checking
transitivity along the ringsy it 4s necessary to bind the
transmission of Life messages to this checking procedure as
welle.

Consequentlys a processor cannot be returning ack=
nowledgements to its predecessor and fail in checking its
successore.

TeBetelo2 Explicit Message Acknowledgement

It may be required for messages sent over a communication
path to be acknowledgede A number of retransmissions are
allowed before deciding that the communication path ids
brokens Numerous examples of protocols aimed at monitoring
transmission on various transmission media can be found 1in
the Literature. They will not be detailed heree Alsos it
may happen that messages are not acknowledged because the
successor has failede. As explained befores whatever the
casey that successor should not be kept on the ring any
Longere.

Thusey every processor on the ring must be provided with a
reconfiguration protocol to be used every time a failure
leads to a ring breakdowne. A simple example of such a
protocol is given belowe.

Te8obe? R1ng Reconfiguration

Let us consider a situation where processor § and processor
1+2 are respectively predecessor and successor of processor
1+1 when this processor fails or when the communication path
between § and i+1 1s brokens It 1s only necessary for
processor 9§ to send to {+2 a specific messages to be
referred to as a reconfiguration messages meaning that from
now on predecessor or processor i+2 is processor ie. This
message must be acknowledged by 1+2. If an acknowledgement
is not recejved by 1 after several attemptss 1 will send a
reconfiguration message to i+3s thus excluding i+2 from the
ringe The extreme situation 4ds that of a ring including
onkLy one processore.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 120

The decision of initiating a reconfiguration being taken ex-
clusively by one processor for any particular failures it is
easy to infer that no incoherence can arise because of the
exclusion of a processor from the ringe Because it is
required for a reconfiguration message to be acknowledgedy
{t 1s possible to devise some more elaborate scheme (for
instancey utilizing passwords) to avoid the possibility of
having a single faulty processor excluding all the others
from the ringe An example of a protocol using passwords fis
given helowe

7e8¢4¢3 The Extensibility Property

1f processors are allowed either to fail or to leavesy it
should be possible to reinsert on the ring a processor which
has been repaired or which decides that it 1is "™on" againe.
Alsoes we want it possible to expand the system while the
system is running. To this ends a three-party protocol s
needed such that the ring is always correctly configurated.
This protocol must survive failures itself and should entail
as small a disturbance as possible. Let wus assume that
processor j has to be inserted on the ringe.

To this endy J must send a specific messagesy called an
"jnsert" messages containing its identity j to its potential
successor (j+le J*+2¢ eseede Let us assume that k is on the
ringe Processor k knows the {dentity of 4ts current
predecessore Let us assume that pred [kl 1s processor .

Upon receiving such a messagesy k checks that the following
condition holds:

pred [kl ¢ identity within insert message < k
(< is modulo n).

If Jt 1d4s soe k checks for an exchange of m Life messages
with j and then sends to i a message meaning that 1 should
accept j as its new successore This message contains a pas-
sword X Upon reception of this requests § checks for an
exchange of m Life messages with je When this is completed,
¥ sends to k a "switch" message containing the password X.
This message 1is intended to avoid processors 1 and k being
fooled by a malicious processor j and it is also used as a
means to perform safely message transmission switching on
the new path (ie je k) as explained belouwe

Upon receiving the "switch® messages k acknowledges 4t and

Listens to § to detect the reception of a message containing
code X

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 121

Upon receiving this acknowledgemente i1 performs the update
suc (1) = j3 the first message to be sent to i is a message
1ncluding code Xs This message and other subsequent mes-
sages are passed on to k by je

When receiving a message with code Xo k updates pred [k1J]
with value J and then stops listening to i.

There is no interruption of message transmission on the
ringe. If something goes wrong with j no disturbance is
introduced on the existing ring. The message containing
code X ds a good vehicle to maintain a FIFD message trans-
mission on the ring should this be required. There 4{s no
special provision made to guarantee that lLloss of messages
does not octcur between 1 and k just before or after recon-
figuration of the ring performed by ke Loss of control mes-
sages 1is accepted on the ring and is harmless as will be
shown Llatere.

If transmission between 1 and J or between j and k turns out
to be impossibles then a normal ring reconfiguration is un-
dertaken.

Te8s4+4 The Control Token Mechanism

Cooperation between processors located on a virtual ring can
be achieved by providing them with some control privilege.
The solution suggested here is to have a particular messages
talled the control tokene circulating on the ringe. Only
when holding the token should a processor be allowed to
initiate some specific activitye Upon completione the token
is sent to the successor. Obviouslyes in the case the token
is Losts 1t should be possible to regenerate 1it.

We begin by describing how the control token mechanism is
made resiliente Thens we show how this mechanism can be
used to solve the mps probleme

We assume that every processor owns a timer and that timer
values being used by the various processors on the rina are
not necessarily 1identical. Processors are allowed to read
headers of messages circulating on the ringe.

Transmission of a token between adjacent oprocessors is
monitored through a positive acknowledgement + retransmis-
sfon protocole The token carries with it an integer values
called the cycle numbers which is incremented for every com-
plete revolution on the ringe This dncrementation is per-
formed by processor x such that x > suc (x)s At any timey
this processor 1s unigues Alsoe the numbering cycle to be
used should be chosen so that duplicate detection <can be
performed safely. This 1dis possible if maximum "hardware®
transit delays are known.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 122

Timer values being used by processors correspond to the ex-
pected round-trip time with the successor on the ringe. A
timer is reset when the token has been acknowledged by the
SUCCEeSSOrs

Fach orocessor keeps a recording of the value (N) carried
within the token during its last visits Next real token to
be received <(not duplicates) must carry value N + 1. VWhen
the sender®s timer awakessy transmission is tried againe up
to a maximum number of attemptse Should this Limit be
reacheds a ring reconfiguration is undertakene The token is
not loste.

If fajture of a processor is noticed through the wmutual
suspicion protocols then it may be the case that the token
was held by this processor which failede Detection of such
a situation and regeneration of the token can be performed
as follows.

Let h be the identity of the predecessor of that processor
which has failed and § +the ddentity of the successore.
Processor h undertakes a ring reconfigurationes The recon-
figuration message carries with it value N(h)s last token
value known in he Upon reception of this messages processor
i runs the following algorithm:

if (1 > h and NC(h) # N(1)) or
(i < h and N(h) N{%)) then

create token N(I) = NC(i) + 13

With such an altgorithme i1t is possible to assert that a
token is never Lost and thate at any timey there is only one
such token c¢irculating on the ring (or zero for a finite and
hopefully short period of time)de.

7TeBete4e2 Distributed Signalling

A simple way to achieve a specific sianalling sequence in a
distributed system is to have the processors serializing
themselves so that at any times only one processor 1is ®ac~-
tings" This tan be done very simply by wusing the <control
token as a vehicle to achieve mutual exclusion between these
processorss Howevers the speed of this signalling technique
is very much dependant on the time spent within the critical
sections The probtem 1s that very oftens both the number
and the nature of mutually exclusive actions are gaiven
beforehand and it may be very difficult to adjust the size
of the critical section so that response time requirements
are matched,. Such a technigue could slow down & system
artifically.

Instead of thiss it s suggested to uncouple completely the
sicnalling mechanism and the execution of the critical sec~-
tione As a results mutually exclusive acttons wiltl be
initiated 1in parallel. A proper sequencing can be built by
assigning identifiers to thems The control token will be

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 123

used for the purpose of distributing sequencial identifiers
within the systeme These sequential ddentifiers will be
referred to as ticketse Every message issued by a sender
must be ticketede.

If we want receivers to service incoming messages according
to a purely sequential orderings then we need one ticket
space per receiver categorye In a fully redundant systems
we have only one category of identical receiverse. One tic-
ket space i1s needed. In a partitioned or partially redun-
dant systems we need one ticket space for each partitione.
Thens according to the system under considerations the token
will carry either a ticket value or an array of ticket
values.

It has been shown how the birtual ring + token structure can
survive failures. But ticket allocation must also be
resilients To this ends one may requjre that a processor
should be either selecting tickets or using them but not
bothe What this means ds that those tickets which are
selected by a processor should not be used until the token
has been acknowledged by the successore As a consequences
should a failure occur in the midst of ticket selections the
correct ticket wvalue or array of ticket wvalues can be
regenerated with the token exactly Like this is done for the
cycle number (see T7e8as4s4el)e Another 1issue s that of
failures dnterrupting processing at randome In particulary
what should be done with those messages which have been is-
sued by a processor which failed Later on? Another problem
is what to do with tickets not being used because they were
held by a processor which died.

Actuallys the whole issue would require a complete discus-
sfon which is out of the scope of this papere.

TeBoebdasttel2el Fortuitous Serialization
i) Signalling within fully redundant systems

The broadcasting of a ticketed message to all receivers may
be done by the sender (parallel broadcasting)e The usual
problem with this technique is that +the sender may fail
while issuing messagese Howevers because tickets must be
sequentiale §t §s simple for a receiver to detect such an
unsafe situatione A copy of the missing message may be ob-
tained from another receiver.

Another approach to broadcasting consists in organizing
recetvers along a virtual ringe This ring is intended to be
a resitient vehicle for message broadcastince Only one copy
of a2 message must be created by the sender which hands it
over to one of the receiverss This receiver 1is then in
charge of 1initiating the revotution of the message on the

ring.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGUES AND EXPERIENCE Page 124

i i

) Signalling within partioned or partially redundant
ystems

I

The transmission of ticketed messages is done by the sender
which selects tickets from the ticket spaces correspodning
to the relevant partitionse.

TeBehate2e?2 Enforced Serfalization

let us assume that two senders A and B want the receijvers to
process messages issued by A first and then messages issued
by Re This 4s done very simply by having A sending to B a
"go-ahead" message after A has ticketed its lLast messagee.
There is no need for serializing the related activities
outside the system (for examples A waits until dts activity
is over and then sends a message to B)e.

Senders A and B may also wish to initifate co-related ac-
tivities whichey in 2 partitioned systemy share at least one
partition. These activities are such that the message from
A should be serviced before the message from B and also the
message from B should not be processed §if the activity
initiated by A could not be completede.

The following protocol may be suggestede In the "go-ahead"
messagey A stores the value of the ticket used for its mes-
sage. It 4is then only needed to provide for a flag and a
field in message headers to be used as followss When a mes-
sage M is received with the flag sets the receiver should
read the ticket wvalue stored 1in the field. If the
corresponding activity could not be completeds message M is
discarded and the sender is told that its activity was not
inftiated.

TeBehebde2e3 Performance Considerations

We want the signalling mechanism not to put any artificial
Limitation upon the system performances. Consequentlys this
mechanism should not be dependent upon the rotating time
period of the token on the virtual ringe Senders should be
able to ticket and to 1issue messages at any time. This
means that senders should be allowed to select tickets not
only for pending messages but also for "future" messages,
fece messages to be created and issued between two succes-
sive visits of the token.

Let p be a sender. At token visit #is Llet Coei(p) be the
exact number of messages which are pending when the control
token s receiveds foi(p) be the predicted number of future
messagess Tei(p) be the current value of the relevant ticket
space upon reception of the token and Tti(p) be the new tic-
ket value when the token 1s sent on the ringe.

Sender p ts allowed to acquire Cef(p) + fai(p) consecutive
ticketss starting from Te.i{pl. Ideallys during token
revolution #i+1y P needs exactly fai(p) tickets. Clearlys
predictions are only predictionse Furthermores the token
circulating speed is variable. Hencey it is necessary to

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 125

consider two possible situations:

- p rung sghort of tickets: 1t has to wait for
reception of the token.

- some tickets are not wused when the token is
bagk: let wuei(p) be the number of unused tic-
ketse Because of the mutual independence
principles these tickets should be used up im-
mediatelys For that purposes we provide for the
utilization of & no-operation code. Exactly
uei(p) “fake" messages carrying a NOP code will
be isued by pe

When neededs and as Long as tickets are availablee new mes-
sages are fissued.

Probabtye this will achieve a good parallelism between sen-
ders but 1t ¥s not clear whether or not this witt resutt in
a good average response time. Response time for a given
sender is dependent on how fast predecessors wuse wup their
ticketse

Should such an interference be judged unacceptables another
solution i1s needed.

What we would Like to build §s a mechanism whereby current
pending messages and future messages are distinguishables so
that current pending messages for any sender receive tickets
"smaller®" than those given to future messages.

Let wus make it clear that we do not attempt to buitd a per-
fect chronological ordering of messagese We only try to
achieve some system~-wide statistical FIFO service so that
the average response time for every sender can be kept below
a reasonable valuee

The way this can be done 1s rather simples It 14s only
needed to maintain two ticket values T and 8+ in the token
instead of one (or two arrays instead of one)se T as aboves
is to be used for ticketing current pending messages and 8
for ticketing future messagess By the time the token s
back 1in ps only one of the three following conditions can
hold:

- Usi(p) = Coitp) = 0 (ideal case)

- Ceitp) messages are waiting because p is Lacking
ticketsey usi(p) = 0o Ceilp) > 0 (under-
estimation)

~ Ueil{ps tickets are still availables uesitp) > 0O
Ceitp) = 0 (over-estimation).

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 126

A reguirement regarding the ticketing function is that the
two sets of numbers being used to assign a value to T and 8
should not be overlapping.

Two numbering cycles N(T) and N(8) should be chosen so that
tickets Lifetime 1s conveniend (see computations below).

As T-ticketed messages and ©-ticketed messages will be
received 1interleaved by receiverse it 1is necessary to
provide for some means whereby receifvers are able to decide
when to stop processing T-ticketed messages and start
processing 8-ticketed messages as well as the reversee.

Such a "switching™ should correspond to a complete revolu-
tion of the token on the virtual ring. We need a sender to
flag the corresponding T and 8 ticket values.

That sender could be x such that successor (x) < xe Due to
the properties of the virtual ringe this processor is unique
and always existse

The algorithm to be followed by sender p upon reception of
the token is described below (+ and - operations are module
NCTY or N(8)).

N
F suc (p) < p and Cei¢(p) = 0 THEN
BEGIN
Cellp) 1= 13
creat Fake message
ENMD3
IE Ced(p) > 0 IHEN T®ei(p) 2= Tailp) + Coilp)
Cacguisition of tickets #Tei(ple sees #Tei(p) + Collp) = 1)
ELSE LE uei(p) > 0 THEN
send u.ilp) Fake messages (ticketed with the u«.i(p)
highest 8-tickets obtained during the Last
token visit);
assiagn a value to fei(p)i
IF suc (p) < p AND faitp) = 0 IHEN
BEGIN
feitp) = 13
create Fake message
ENDS
8%'.1(p) = B.1i(p) + foilp)
(acquisition of tickets #8e1(p)ly seey H#B.i(p) + foi(p) - 1)}
IF suc (p) < p THEN Flag messages carrying tickets
£§Tei(p) + Ceilp) - 1 and #8e3¢p) + foi(p) - 13

END

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 127

The algorithm to be followed by a receiver is given belows
Notations:

X stands for either state T ("current®™) or
state 8 ("future");

X~ T 1f (X=8),

6 1f (X=T)3

t(Xx) is a lLlocal variable containing the ticket value of the
last processed messagesys 1ee€e t(T) or t(8).,

WHEN IN STATE X DO
LOOP: Scan fors or wait for reception of message
X=-ticketed t(X)+1:
CASEl (X-tdicket t* > t{(x)+1 §s received):
mod
Record request}
CASE2 (X"=ticket is received):
Record request;
CASE3 (X-ticket t(x)+1 is present or received):
IFE message t(X)+1 is flagged
THEN
switch to state X7
ELSE
t(X) 1= t(X)+1
END
CASE4 (timeocut):
Marks itself out of synchronization and initiate a
recovery procedure,

A simplte way to provide for two separate numbering schemes
of equal Llength 4ds to use one bit to distinguish between
T-tickets and B8tickets.s Howeversy one should mention thaty
if predictions are not too inaccurates 8~tickets are to be
used up more rapidly than T-ticketss Then an equal share of
the ticket number space may not be the best solutione

We will discuss only briefly the dssue of fairness in
estimating f.i(p)e We consider two cases:

- senders are processors (maxise miniss micros)
cooperating within a distributed computing
system to be viewed as a unique system by userss
Algorithms to be followed by senders are
designed by system builders who are responsible
for choosing convenient values for fei(p).

~ senders are computers <connected on a computer
networke Over-estimation is costly to senders
because (i) processing wWasted in handling NOP

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 128

messages cannot be used to process useful mes-
sages (throughput ds Lower)e (14) a sender 1is
billed for messages carrying NOP code and for
the corresponding processing in the distant com-
puter.

Because of the "pipe-Line®" nature of this mechanisms there
will be no interruption of message transmissione What this
means 1is that receivers may be kept as busy as desireds If
used cleverlyy the signalling mechanism using anticipation
can achieve any desired throughpute.

Tickets Lifetime

For 16 bit ticketssy values are re-used after 65 seconds 1f
ticketed messages are issued every millisecond for the whole
systemy after 18 hours and 12 minutes if ticketed messages
are issued ever seconde

For 32 bit ticketsy Lifetime is much longer. Values are re-
used respectively after 1 hour and 12 minutesy 119 hours or
136 years when ticketed messages are issued every
microseconds 100 microseconds or second in the whole system,

Te8e5 Conglusion

In this papers a solution to the problem of multiple-path
sianallina 4Jn distributed computing systems has been
described. This solution is based on the utilization of a
particular control structure which can achieve a distributed
and resilient generation of seguential identifierse In ad-
dition to solving the mps problems this solutijon can be used
in distributed systems which should be resilient and where
unigue names need to be generated dynamicallye. Alsos a
side-effeet of this solution is to allow for a safe detec-
tion of duplicate messages at a high Level in the system.

Georgia Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 129

SECTION 8

SUMMARY AND FUTURE DIRECTIONS

8.1 GENERAL QBSLRYATIONS AND CONCLUSIONS

The idea of a process has not been fully absorbed by
programming Languages or by modern hardwaree« Consequently,
the concept of an abstraction of a process and {ts support
is Left to the realm of operating systems (which sit between
the Llanguage and the hardwarel)s resulting in Little or no
standardiztion of a "process" (especially when compared to
the Level of standardization enjoyed by other features or
aspects of higher Level Languages and hardware).
Neverthelessy as this report has illustratedy the process
concept is becoming central to the design of computer
systems both at the hardware and software Levels. There are
many reasons for this developmentsy probably the two most im=-

portant ones being: (1) the decomposition of systems and
applications problems into sets of cooperating parallel
processes for greater modularity. functionalitys

flexibilityy and maintainabilitys and (2) the increasing
cheapness of processors and memory allowing the assignment
of processes to processors in an economical way.

As processes have become "cheaper®" to creates maintains and
destroys the flexibilitye scopeese powery and economy of
interprocess communication (IPC) mechanisms has become an
important key to the effectiveness of multi-process systems
in generals and highly distributed systems din particulare.
Howevers there currently exists a wide variety of mechanisms
for interprocess communicationes resulting 1in what one
researcher [SALT 791 has termed the "IPC Jungle"e. Perhaps
the major reason for such a variety comes from a desire to
provide in one set of primitives all of the following
capabilities:

1) FlLexible »process and/or data synchronization
toolss

2) Data transfer mechanismse and

2) Communication control a&and error recovery

mechanismse

Surprising to some researchers at the workshop was the lack
of attention paid to securitys fault tolerances and error
recoverys howevers this may be taken as an indication of the
general state of affairs of a young technology. In such
casesy attention 4s usually first focused on achieving a
certain level of functionality before much effort is devoted
to engineering those features that make the technology
robust enough to be put into wide-spread use.

Georgla Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 130

Finallys dissemination of information about IPC techniques
and options with respect to both implementation and per-
formance has been extremely poor in the pasts and there do
not appear to be any immediate advances being made on this
aspect of the problem.

Georgia Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 131

8+2 BORKSHOP SUMMARY

Below 1s a summary of the major focus areas of the workshaop
and their conclusions.

B8e241 Addressinges Namings and Securify

Many systems have 1nadequate facilities for identifying
names of processes within the same hosts lLet alone for

processes residing on different hostse. Many existing
systems almost totally sidestep the naming issuee Part of
the problem stems from an inconsistent view of the

relationship between the set of allowable names for files,
devicesy processesy usersy mailboxess generic system ser-
vicessy and specific system servicese As Livesy pointed out
during the workshops the concept of the size of the naming
unjverse (of which the system forms a part) 4s 4mplicit in
the system at a very deep level. One is forced to choose
between "add-on"naming techniques such as:

/net/A/resource

which are not lLocation independent on the one hands and a
more or less complete redesign of the naming architecture on
the other hande UNIX 4is an example of a system that makes
assumptions about the size of the unjverse. until this
problem is settleds the design of specific interprocess com-
munication primitives cannot focus on the set of fundamental
objects that must be dealt withe This s a difficult issue,
since it 1is here that many of the system security issues
must also be addressed.

8+.2.2]Ipnterprocess Synchrepization

Clearlys 2 major function of interprocess communication is
to provide either explicit or impliecit synchronization
between processes and/or access to shared data. Early forms
of dnterprocess communication depended only on the correct
use of explicit synchronization primitives for sharing ob-
jects (usually sections of main memory)s In some systemsy
temporary files served as synchronizing pointes between job
steps (implicit)y while 4dn other systemss processes ex-
plicitly exchange data by signaling. Whether synchroniza-
ticn primitives should be explicit or implicit 1s still very
much an open question.

It is also becoming clear to some of the researchers in the
field that error recovery may be integral to the question of
synchronizatione Visibility of the state of a computational
process Js at the heart of the synchronization and error
recovery issuese. Concern over the "atomicity" of an opera-
tion 1s becoming more of a focal point for distributed
systems as the dimensions of time and space for com=-

Georgia Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 132

putational operations begin to <change by orders of
magnitude. This concern 1is reflected 1in the recent
Literature concerning synchronization in distributed systems
{see the 1978-79 references)y and 1in some of the recent
theoretical worke Howevers their effectiveness using
current technology ds Largely unknown until prototype im-
plementations appeare.

8+2+3 Interprocess Mechanisms

At Least ten currently used IPC mechanisms were dJdentified
atong with some estimate of their support of certain
gualities deemed desirable by the workshop attendeess There
was more agreement on the set of desirable aqualities than
there was on which mechanisms fulfilled those gualities.s It
was also obvious that none of the present mechanisms did
everything that everybody hoped fors which should tell wus
that we have yet to obtain maturity of abstraction (in the
sense that the abstraction of & subroutine 1is well under-
stood) for a general IPC mechanisme For these reasonsy it
seems reasonable to keep exploring new mechanisms while we
also continue to build real=-world systems with the best
technigues we have heard about.

In addition it appears important to devote some additional
work to selectina the factors to be utilized in assessing
trade~-offs between provability versus convenience of im-
plementation and usee. Many of the mechanisms discussed at
the workshop present enormous obstacles to rigorous proof.

8¢2+4 Theoretical Work

Distributed systems present new theoretical <challenges to
researcherssy lLargely because the specification of a
distributed computation involves time and space boundaries
that are difficult to defines and may be constantly
changings. Variability in speeds and state definition may
even make a "system™ dinherently non-deterministices Such
difficulties throw much of the previous work in proogram
specification and correctness into disarray when applied to
distributed systemse There is Little agreement whether to
approach the problem using Ystate-free" or "state-based"
descriptionssy or whether to grapple with atomic or non~-
atomic actionss or even what are relevant measures of "time"
and ‘Ysgpace", Once agains this seems to reflect the dim=-
maturity of the whole field of distributed systemse

Georgia Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 133

83 CONCLUSIONS AND REIRQSPECT

Lastlyes we should be honest as to how well we achifeved our
original goalse Each goal 1is repeated here with a short
comment as to our view of the level of success we enjoyed
and the reasons for 1te.

1) Assess the present state-of-the-art for IPC
mechanisms 1in distributed data processing
systemse

**xx Syccessfule A reading of many of the
enclosed working papers and the references
should adequately reflect the present state-
of-the-art.

2) Identify the data available on the actual
performance of wvardious IPC policies and
mechanismse

* Unsuccessfule An attempt was madey however
Lack of agreement on appropriate measures
(see mechanisms) has probably prevented any
great data base being built upe

'3) Assess the potential value of wvarious IPC
mechanisms in satisfying the operational and
performance requirements for highly

distributed systemsas

** Moderately successfule. Many of the ad-
vantages and disadvantages of the functional
aspects of <current mechanisms in use were
examinedy althoughs obviouslys more thorough
operational and performance assessments must
await more "distributed” implementationse

4) Identify shortcomings in the present state-
gf-the-art and identify promising areas for
further research and experiments on this sub-
ject.

»*xwx Syuccessful. A& reading of the report
reflects many of the shortcomings of current
techniquese Promising areas for further
research were not specifically addressed in
atl easy howevers they are indirectly
identified by many of the authorse.

5) Identify possible standardization Levels in
IPC designa

* Unsuccessfule The plethora of available

abstractions and the notable Lack of any
singlte outstanding set useful for distributed

Georaia Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 134

applications reflect the 1immaturity of the
field and possible premature standardizatione

Georgia Institute of Technology IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES

SECTION 9

SELECTED READINGS AND REFERENCES

9e1 SELECIED READINGS

On Process Models and Structures

CHORN 731
[DIJK 68al
CHOAR 781

On Addressing and Naming

[SALT 781
(SHOC 781

On Thepretical Considerations

CMILN 771
CZav 751

On Process Synchronization

[DIJK &8b1
CHOAR 7473
CHABE 721

On Message Based Operating Systems

[BRIN 691
{BRIN 701
CBALL 7813
CLYCK 781
CNELS 781
CFARB 731

On Local Networks

CCLAR 781
CMETC 7613
CGORD 791

On Portss Pipes and ¥Yirtual Circuits

CWALD 7213
CTHOM 7413
CCCIT 781

Georgia Instijtute of Technology

Page 135

IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 136

0n the Early ITreatmeni of Progcesses and IPC ip Operating

[DALE 681
[SALT 661
[DIJK 711
1M 711

Qn IPC Protocols

CPARD 791
[LDESJ 781

Georgia Institute of Technology IPC Workshop

Section ©

SELECTED READINGS AND REFERENCES Page 137

9.2 LISI QF REEERENCES

LABEL

[ALSB

[BACH

[BADA

[BALL

[BART

£ BASK

{BOBR

CBRIN

[BRIN

781

761

781

781

761

7713

721

691

703

Harold Abelsons "Lower Bounds on Information
Transfer in Distributed Computationse" Proceedings
of the Nineteenth Annual Symposium on Foundations
of Computer Sciences October 16-184 1978y pp 151-
158

P« Ae Alsberge Ge Ce Belfords and S. Re Brunchy
*Synchronization and Deadlocks”™ Center for Ad-
vanced Computations Doce Noe 185¢ University of
Itlinoise March 1976,

Chartes We Bachmane "Provisjonal Model of Open
System Architectures" Proceedinas of the Third

Berketey Workshop on Disfributed Data Management
and Computer Networkss August 29-31y 19578,

De 2o Badal and Ge Je Popeksy "A Proposal for
Distributed Concurrency Control for Partially
Redundant Cistributed Data Base Systemse"
Proceedings of the Third Berkeley Workshop on
Ristributed Data Yanagement and Computer Networkss
August 29-31, 1978,

Je Ee Ballse Jeo Feldmany Je Re Lows Re Rashide and
Pe Rovnere "RIGe Rochester*s Intelligent Gateway:
System Overviews" IEEE Transactions on Socftware
Engineerings vols SE=24 noe 49 December 19764 Dpp.
321-328.

Je Fe Bartlettey ™A *NonStop* Operating Systems"
Progeedings of the Hawaii International Conference
of System Sciencess January 1978,

Fe Basketty Je He Howards and Je Te HMontagues
*"Task Communication in DEMOSe" Proceedings of the
Sixth Symposium on Operating System Principless

6=-18 Nov 1977. Reprinted din Qperating Systems
Reviews vole 11y noe 5¢ November 1977.

De Ge Bobrowe Je De Burchfiely Ds Le HMurphys and
Re Se Tomlinsons "TENEX = A Paged Time Sharing
System for the PDP-10+" Communications of the ACM.
Volume 15¢ Number 3y March 1972.

Per Brinch Hansens "“RC 4000 Software: Mul-
tiprogramming Systems”" Regnecentralens Copenhageny
Denmarks April 1969,

Per Brinch Hansens "The Nucleus of a Multiprogram-
ming Systemy" Communications of the ACMs vole 13,
NOe 44 Apr‘il 1970, PDe 238=50.

Georgia Institute of Technology IPC Workshop

Section 9

CBRIN

C3RIN

C8RIN

[BURN

fCcCcIT

CCLAR

CDALE

731

761

771

781

781

681

LpEC 7713

[DESJ

[DIJK

[DIJK

[DIJK

LDOWS

731

SELECTED READINGS AND REFERENCES Page 138

Per Brinch Hansens Operating Sysiems Pringcipless
Prentice=-Hally 1973,

Per Brinch Hansensy "The SOLO Operating Systems"

Software Practice and Experiences vole. 6y noe 2
April=June 1976y ppe 141-206.

Per 8rinch Hansens The Architecture of Concurrent
FProgramss Prentice=Hally 1977

Je Eo Burnsy Me Je Fischers Pe Jacksons Ne Ae

Lynchye and Ge Le Petersonsy "Shared Data
RPequirements for Implementation of Mutual Ex-
clusion Using a Test=-and=Set Primitive,”

Proceedings of the 1878 International Conference
on Parallel Processings Aucust 22-25y 19784 Dp 79~
87.

CCITTy Provisional Recommendations Xe.
and Xe23 on Packet Switched Data

Servicess Genevay 1978

Ss Xe23y Xe28

L
Transmission

De Ce Clarks Xe Te Pograns anc De Pe Reedy "An
Introduction to Local Area Networks"s Proceedings
of the ILEEs vole 663 noe 1ls November 1378y¢ ppe
1437-1517.

Re Ce Daley and JeBe Dennises ®Virtual Memory,
Processesy and Shaping in Multics™ay
Communications of the ACMs wvole 11y noe 5¢ ppe
306=129y May 1968,

YAX1l Software Handbooks Digital Equipment

Corporation 1977,

Richard desdJardins and George Whites "ANSI
Reference Model for Distributed Systemse¢®
Proceedings of COMPCON 19784 Washingtons DeCas
September 1978s ppe 144=149,

68al FEe We Dijkstrae "The Structure of the YTHE* =

Multiprogramming Systeme" Communications of the

ACMy vole. 119 noe 59 May 1968y pDpe 341-346.

68b] £+ We Dijkstrase "Cooperating Sequential Proces-

711

781

sesy" in Programming Languagess (Editor: F.
Genuys)s Academic Presss New Yorkse 1968.

Ee We Dijkstras "Hierarchal Ordering of Segquential
Processess" Acta Informatica vole 1y noe 2¢ 1971,
ppe 115-38,

Ms Dowsone "The DEMOS Multiple Processor Technical
Summarys" National Physical Laboratory Technical
Reporte NPL Report 101s Aprils 1978y Teddington,
Middlesex TWII OLWe UK.

Georgia Institute of Technology IPC Workshop

-

Section 9

CELLI

CESWA

LFARE

CGARC

CGORD

[LGRAH

CGRAP

[HABE

CHAMI

EHOAR

CHOAR

CHOLT

771

1613

7313

781

791

7213

761

7213

ndl

741

781

781

SELECTED READINGS AND REFERENCES Page 139

Clarence Ae ElLLlise "A kobust Algorithm for Updat-
ing Duplicate Databasess™ Proceedipngs of the
Segond Berkeley Workshop gon Distriputed Data

Management and Computer Networkse May 25-27y 1977,

Ke Pe Eswarans Je Ne Grayes Re Ae Loriey and Ie Lo
Traigery "The Notions of Consistency and Predicate
Locks in a Database Systems® Communications of ithe
ACMs vole 199 noells November 1976¢ ppe 624-633.

De Je Farbere Je Feldmany Fe Re Heinrichy Me Do
Hopwoods Ce Larsony Ce Loomises and Le As PRowey
"The ©Distributed Computing Systems" Digest of
Papers from COMPCON 73» San Franciscos Californiay
27 February = 1 March 19734y ppe 31=34e.

Hector Garcia-Molinas "Performance Comparison of
Two Update Algorithms for Distributed Databasess"
Proceedings of the IThird Berkeley dorkshop gon

Distributed Data Management and Computer Networkss
August 29-314 1978,

Re Le Gordons "Ringnet: A Packet Switched Local
Network with Pecentralized Controls® 4th
Conference on Local (Computer Networkss Min-
neapolise Minnes October 1979¢ ppe 13-19.

Ge Se Graham and Pe Je Dennings "Protection =--
Principles and Practiceq" AF]IPS Conference
Proceedingss 1972 SJCCe ppe 417-429.

Enriqgue Grapas and Geneva Ge Belfords "Techniques
for Update Synchronization 1in Distributed Data
Basess" unpublished papers 1976

Ae Ne Habermanns ®"Synchronization of Communicating
Processese® Communicatjons of the ACMs vole 159

noe 39 March 19724 ppe 171~T76.

Je Hamiltons "The Functional Specification of the
WEB Kernels® Digital Equipment Corporationys
Coproate Research Groups ML3I-2/E41s no date.

Ce Ae Re Hoaresy "Monitors: An Operating System

Structuring Concepts™ Communications of the ACM»
vole 179 noe Sy October 1974¢ ppe 549-557.

Ce Ae Rs Hoaresy "Communicating Sequential Proces-

sese" Communications of the ACMs vole 21y noe 8y
August 1978s ppe 666~-6TTe

Re Ce HOLtes Geo Se Grahamy Ee De Lazowshkae and M.
Ae Scotte "Announcing Concurrent SP/Ke" Operating
System Reviews vole 12y noe 2y April 1978,

[HOLT 78b1] Re Ce Holty et als Structured Congurrent

Georgia Institute of Technology IPC Workshop

Section 9

CHORN

731

{1em 7112

LIPC 751

L JOHN

CJONE

CLAMP

CLAMP

CLAMP

CLAMP

CLAUE

CLIVE

CLIVE

751

771

763

771

711

731

791

SELECTED READINGS ANG REFERENMCES Page 140

{0

rogramming with Operatipg Sysiems Applicatiopss
ddison-Wesley Series in Computer Sciencesy 1978,

Je Je« Hornings and Be. Randalles "Frocess Struc-
turinge" ACM Computing Surveyss vole S5y no. 1y May
1973y ppe 5~30.

IBM System/360 Operating System Supervisor Ser-
vicesy IEBM Systems Reference Librarys Order Number
GC28-6646~4y 1971,

ACM SIGCOMM/SIGOPS WORKSHOPs ACM SIGOPS Reviews
MARCH 1975

Pe Re JOhnson and Re He Thomase "The Maintenance
of Duplicate UDatabasese"™ RFC Noe 6T77s NIC Noe
31507y January 1975e ARPA Network Information
Centers SRI-Augmentation Research Centers Menlo
Parks CA 94025,

Ae Ko Joness FRe Je Chanslers Ie Durhams Pe Felilers
and Xe Schwanssy "Software Management of Cmx = A
Distributed Multiprocessors™ AEIPS Conference
Proceedingss Volume 469 1977 NCC.

Le Lamports "Towards a Theory of Correctness for
Multi-user Data Basess”™ Masss. Computer Associates,
Inces CA-T610~0711y October 74 1976

Le Lamports *0On Concurrent Reading and Writinge"
Communications of the ACMs vole 204 noe 11s Novem-

ner 1977+ ppe 806=811e.

B¢ We Lampsons "Protections" Proceedings o¢f the
Fifth Annual Conference on Information Sciences
and Systemss Department of Electrical Engineering,

Princeton Universitys March 1971 ppe 437-443,

Be We Lampsons "A Note on the Confinement
Problems" Communications of the ACMs vol. 169 no.
5¢ October 19734 ppe 6£13=-615.

He Ce Lauer and Re Me Needhams "On the Duality of
Operating System Structuress® Operating Systems
Reviews vole 139 noe 29 April 1879.

78a] Ne Jeo Livesey and Ee Ge Manninas "Protection 1n a

Transaction Processing Systems" Proceedings of the
7th Texas Lonference on Computing Systemss October
1378.

78b1 Ne Je Livesey and Ee Ge Mannings "What Mininet

Taught Us About Programming Styles" Proceedings of

COMPSAC 1I8e Chicagos Illinoiss November 1978y ppe

692-697.

Georgia Institute of Technology IPC Workshop

Section 9

CLYCK

CMANN

CMETC

CMILN

CNELS

781

771

761

771

781

[NSW 761

LORGA

CPARD

[PEES

CLPETE

[POWE

[REED

721

791

781

771

771

771

SELECTED READINGS AND REFERENCES Page 141

He Lycklama and De Le Bayery "The MERT Operating
Systeme™ The BELL System Technical Journalse vole
57+ nNoe 69 Part 2y July=Aucust 1978y ppe 2049-86«

Fe Ge Manning and Re We Peeblesy "A Homogenous
Network for Data Sharing: Communicationss"
Computer Networkss Vole 1le Noe 49 1977y pp 211-
224,

Re Me Metcalfe and 0De Re Boggsye "Ethernet:
NDistributed Packet Switching for Local Computer
Networkss" Communications of the ACMs vole 19, noe.
To JULY 1976 Ppe 395=404,

Ge Milne and Re Milners "Concurrent Processes and
their Syntaxe" University of Edinburghs Department
of Computer Science Report CSR=2=774 May 1977.

Je Le Nelson and Re Le Gordons "Computer Cells - A
Network Architecture for Data Flow Computings"
Proceedings of COMPCON 78+ Washingtony DeCes Sep-
tember 1978+ ppe 296-30L.

NSW Protocol Committeee "MSG: The Interprocess
Communication Faciltity for the National Software
Workse" BBN Report Noes. 3483y Massachusetts Com=
puter Associates Document Noe CADD=-7612-2411,
December 1976

Ee Te Organicks The MULTICS System: An Examination
of Its Structures MIT Presss 1972,

Re Pardo and Me T, Lius "Multi-Destination
Protocols for Distributed Systemss" Proceedings of
the 1379 Computer Network Symposiums Gaithersburos
Mdey December 1979,

Richard Peebles and Eric Manningsy "System Ar-
chitecture for Distributed Data Managemente"
Computers vole 1ly noe. le January 1978y ppe 40-47.
Gary Le Peterson and Michael J. Fischery
"Fconomicalt Solutijons to the Criticatl Section
Probltem din a Distributed Systems" Proceedings of
the 1977 Ninth Annuat Symposjum on ITheory of
Computings May 2-4s 19774 pp 91=-97.

Me Le Powells "The Demos File Systeme® "Task Com-
munication in DEMOSs" Proceedings of the Sixth
Symposium on Operating System Principless 16-18
Nov 1977« Reporinted in Operating Systems Reviews

VOolLe 1l9 Noe H¢ NOVe 1977,

De Pe Reed and Re Ke Kanodias "Synchronization
with Eventcounts and Sequencerss" Sperating
Systems Reviews vole 1lls noe 59 ppe. 91-92.

Georgifa Institute of Technology IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 142

CREEDC 781 De Pe Reeds "Naming and Synchronization in a
Decentralized Computer Systeme™ MIT LCS Report
MIT/LCS/TR=205¢ September 1978

[RITC 741 D Me Ritchie and Ke Le Thompsone "The UNIX
Timesharing Systeme" Communications of the ACM,
July 1974,

CRITC 7837 De Mae Ritchies™A Retrospective on the UNIX Time-
sharing Systeme®™ The Bell Sysiem Technical
Journale volse 57¢ Nnoe 69 part 2y July-August 1978,

e e e s o e

ERIVE 763 Re Le Rivest and Ve Re Pratty "The Mutual Ex=-
clusion Problem for Unreliable Processes:
Preliminary Report+" Proceedings of the
Seventeenth Annual Symposium on Foundatidéns of

Computer Sciences 1976y pp 1-8.

CROTH 771 Je Be Rothnie and Ne Goodmans "A Survey of
Research and Development in Distributed Database
Management,” Proceedings of 32Ird International

2 Basess Tokyos Japans

October 1977

CLSALT 661 Je He Saltzers "Traffic Control in a Multiplexed
Computer Systemes” Project MAC Technical Report
MAC=-TR=30 (Thesis)s Massachusetts Institute of
Technologys July 1966€e.

[SALT 781 Je He Saltzery "Naming and Binding of Objectss" in
Jperating Systems - An Advanced Courses Re Bayer,
Rea Me Grahame and Ge Seegmuller (edse)s Berling
Springer-Verlagse 1978+ ppe 99-2(8.

[SALT 79] Je He Saltzery Comments at the "7th Symposium on
Operating Systems Principless" Novembery 1979,
concerning distributed systemse.

LSCHE 781 Le Schefflery "Pipes - Interprocess Communication
for PRIMOS and PRIMENET,® (PE-T in final
preparation)e.

FTSHOC 781 John Fae Shochy "Inter-Network Namings Addressings
and Routinge™ Proceedings of COMPCON 78+ Washing-
tone DeCes September 13578y ppe 72-79.

CSTON 781 Michael Stonebrakery M™Concurrency Control and
Consistency of Multiple Copies of Data in
2%stributed INGRESs"™ Proceedings of the Ihird

Berkeley MWorkshop on Disiributed [Data Management
and Computer Networkss August 29-31, 1978.

[SUNS 763 Carl Ao Sunshine, "Survey of Communication
Protocol Verification Techniquess" Proceedings of
the Symposium on Computer Networks: JTrends and
Applications Gaithersburgs MDs November 17y 1976,

Georgia Institute of Technology IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 143

CLTHOM 77] Robert He Thomasey "A Majority Consensus Approach
to Concurrency Control for Multiple Copy Data
Basess" Bolt Beranek and Newmans Inces BBN Report
Noe 3733« December 1977.

[LTHOM 78] Robert He Thomase Richard Ee Schantzs ancd Harry Ce
Forsdicky "Network Operating Systemses™ Dolt
Reranek and Newmans Inces BBN Report Noe 37969
March 1978,

[LTHOM 74] Ke Te Thompson and De Me Ritchies "The UNIX Time-
sharing Systems" Communications of the ACMs wvol.
174 noe 79 July 1974e ppe 365-375.

[WALD 721 DeCe Waldensy "A System for Interprocess Communica-
tion in a Resource Sharing Computer Networks"
Communications of the ACMs vole 159 noe 49 April
1972

[WILK 791 Maurice Ve Wilkes and De. Jeo Wheelery "The Cam=-
bridge Digital Communication Rings"® Progeedings cof
the Local Area Commuynication Networks Symposium,
Mitre Corporation and National Bureau of Stan-
dardss Bostons May 1979,

CWULF 747 Ye Wulfe Fe Coheng We Corwine Ae Joness Re Leving
Ce Piersons and Fe Pollacks "HYDRA: The Kernal of
a Multiprocessor Operating Systems® Communications
of the ACMy Volume 174 Number 6¢ June 1974,

CLYOUN 791 Re Young and Ve MWallentines "The NADEX Core
Dperating System Servicess" Kansas State Univer-
sity Department of Computer Science Technical
Reports noe CS 79-114 Novembers 1979.

CZAVE 761 P. Zavey "On the Formal Definition of Processesq"
Proceedings of the Conference on Parallel

Processings Wayne State Universitys IEEE Computer
Societys 1976,

Georgia Institute of Technology IPC Workshop

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155

