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ABSTRACT 

Interprocess Communication (IPC) has been recognized as 
a 	critical 	issue 	in the design and implementation of all 
modern operating systems. 	IPC policies and mechanisms are 
even more central 	in the design of highly distributed 
processirid systems -- systems exhibiting short-term dynamic 
changes 	in the availability of physical and logical resour- 
ces as well as interconnection topology. 	A workshop on this 
subject was held at the Georgia Institute of Technology in 
November 1979. Four working groups, 1) Addressing, Naming, 
and Security, 2) Interprocess Synchronization, 3) 
Interprocess Mechanisms, and 4) Theory and Formalism, ad-
dressed the current state of the art in these areas as well 
as problems and future research directions. This report 
incorporates much of the material and working papers from 
those fields as well as selected references useful in under-
standing the topic. 
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PREFACE 

The workshop organizing committee had originally intended to 
utilize the material developed by the individual working 
groups to prepare a summary report of the proceedings. This 
concept was abandoned when it was recognized that a "summary 
report" would not adequately report on and document all of 
the work and topics that were covered during the meeting. 
It was obvious that documentation much more thorough than 
merely a summary report was warranted, so the members of the 
organizing committee decided to directly utilize as much as 
possible of the material and notes prepared by the working 
groups and assemble and edit that material into an organized 
workshop report. It was'felt that this approach would much 
better capture the true flavor of the workshop and the 
breadth of the material covered there. 
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SECTION 1 

INTRODUCTION 

1 0 1  aliM1n2 a Idl 

The subject of the workshop was Interprocess Communication 
Mechanisms with a particular focus on process-to-process 
communications in highly distributed systems. Highly 
distributed systems are characterized by very loose coupling 
between physical resources as well as between logical 
resources. 	Such systems also exhibit dynamic, short-term 
changes in the 	topology and organization of the total 
system. 	These characteristics place new requirements on the 
design and performance of IPC mechanisms; these requirements 
are assuming extreme importance in advancing the state-of-
the-art in all forms of distributed systems. 

1 • 2  1012ta 01i1112 

The last meeting that focused on interprocess communication 
was the "ACM SIGCOM/SIGOPS Interprocess Communications Work-
shop" held 24-25 March, 1975. CIPC 75] 

One might conclude from the paucity of material published on 
this 	topic 	since that workshop that the problem is totally 
under control. 	(The BBN "Network Operating Systems" study 
[THOM 78] cites only one reference since 1974.) 	Such is 
definitely not the case. Work on 	IPC•s has been covered 
within projects on operating systems; however, many im-
plementation and performance problems are only partially 
solved or solved only on an ad hoc basis, and it appeared 
that the time was ripe to again focus a meeting of 
specialists 	onto 	this topic, especially in view of its key 
role in the operation and performance of 	distributed 
systems. 

Since 1975 advances in the field of computer communications 
have provided mechanisms for connecting computers together 
in a variety of configurations. For instance, high speed 
serial communication paths EMETC 76, GORD 79] have permitted 
effective local networks CCLAR 78], in which many computers 
share specialized resources (storage, printing facilities, 
etc.), 	while each node still 	retains some degree 	of 
autonomy. 	In addition, many mini-computers support Large 
address spaces, and a corresponding high degree of mul- 
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tiprogramming. 	One natural way to construct the software 
for such systems is to base the software architecture on the 
notion that most tasks will be performed by a collection of 
communicating asynchronous processes, running on the same or 
different processors. Such systems are known as "highly 
distributed systems", and are characterized by a very 	loose 
coupling between physical 	resources as well as between 
logical 	resources, 	and they 	allow 	dynamic, 	short-term 
changes 	in 	the 	topology and organization of the total 
system. 

The fact that these systems are very Loosely coupled, both 
physically and logically, places quite different demands on 
IPC from those applicable to more tightly coupled contem-
porary systems, even those incorporating a Local network as 
the interconnection mechanism. Practical attempts to 
construct 	such systems immediately direct ones attention to 
available Interprocess Communication 	(IPC) 	mechanisms 	and 
their shortcomings. Lack of well constructed and well un-
derstood mechanisms is the root of most of the difficulties 

 in bildin2 diliLibgied Inferno. 

1 0 3  EIRP212 Ah2 222EL QE Ihl IOU= 

The "Workshop on 	Interprocess Communications in Highly 
Distributed Systems" was intended to bring together a selec-
ted group of workers in the subject area to address the five 
general goals listed below: 

1) Assess the present state-of-the-art for IPC 
mechanisms 	in distributed data processing 
systems 

2) Identify the data 	available on the 	actual 
performance 	of 	various 	IPC policies and 
mechanisms. 

3) Assess the potential 	value of various IPC 
mechanisms 	satisfying the operational and 
performance 	requirements 	for 	highly 
distributed systems. 

4) Identify 	shortcomings 	in the present state- 
of-the-art and identify promising areas for 
future research and experiment on this sub-
ject. 

5) Identify possible standardization 	levels 	of 
IPC. 
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The scope of the workshop will be limited to IPC mechanisms 
for use in distributed systems. (This acknowledges fairly 
common agreement among the research community that the fol-
lowing are not DDP•s --- multiprocessors, computer networks 
per se, intelligent terminal systems, and satellite proces-
sor systems.) 

1 . 4 	2E ItL 111211 P2 

Workshop attendees were selected from individuals actively 

	

working 	in the field, 	and the size of the workshop was 
purposely limited to approximately 40 attendees. Special 
attention was given to obtain participants who met one or 
more of the following criteria: 

- Had had practical experience in the design and 
implementation of IPC policies and mechanisms in 
highly distributed systems. 

- Had analyzed and/or measured the actual per-
formance of various IPC mechanisms. 

- Would contribute a written submission to the 
workshop. 

The workshop was held from 12:00 noon, 20-November, thru 
12:00 noon, 22-November, 1978, at the Atlanta Townehouse 
Motor Hotel, immediately adjacent to the Georgia Tech cam-
pus. 

Before the workshop, invitees were requested to identify 
their areas of interest. Based on that input, the organiz-
ing committee established six working groups: 

1) Addressing and Security 
2) Fault Tolerance 
3) Synchronization, Signalling. and Flow Control 
4) Theory and Formalism 
5) Hardware and Primitives 
6) Programming Issues 

However, as often (usually?) 	happens 	in such 	situations, 
when the groups met and discussed their areas of interest, 
realignments in the working group organization resulted in 
four working groups rather than six. 

1) Addressing, Naming, and Security 
2) Interprocess Synchronization 
3) Mechanisms 
4) Theory and Formalism 

Georgia Institute of Technology 	 IPC Workshop 
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The output of these four groups is the basis for this 
report. 

1.5 1%JUN/ell 

.L JIMMIE 

LIII  QE @IIE^IQLF 

0,  Members of the Organizing Committee) 

Hal Abelson 
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1.6 alANIZAIION a Ihil ALLIAI 

Following this introductory section, there is a 	short sec- 
tion on the general background of interprocess communication 
techniques. The main body of this report is Sections 3, 4, 
5, and 6 which cover the results of each of the Working 
Groups. Within each section, the first material presented 
is a summary of the Working Group presentation made at the 
end of the workshop. Following that, there is, in some 
instances, a collection of amplifying material 	and selec- 
tions 	from the position papers that were prepared prior to 
the workshop and distributed to the attendees. 

Section 7 contains several longer papers that were either 
prepared specifically for distribution at the workshop or 
were felt by the authors to be applicable to the workshop 
and were distributed to the attendees there. Section 8 is a 
very brief summary and discussion of future directions for 
IPC and Section 9 contains the references utilized in the 
report. 
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SECTION 2 

BACKGROUND 

2 0 1  11118229S112N 

Probably the single most important hindrance to the develop-
ment of interprocess communication has been the lack of 
general acceptance and agreement on the notion and abstrac-
tion of a "process." Until the "process model" of computa-
tion becomes generally accepted and used as the basis of 
software architectures, there will be little motivation for 
interprocess communication mechanisms. 

In most systems the abstraction of a "process" has not been 
developed well enough for it to be treated as an "object" in 
its own right so that "processes" can be used conveniently 
by system architects and others as building blocks. 
Primitives for the creation, synchronization, addressing, 
and communication of processes have in the past only been 
generally available to operating system developers, and 
therefore not widely used by application programmers in ap-
plications software systems. Unfortunately operating system 
developers tend. to live with and use poorly documented ex-
perimental primitives and other ag h2i mechanisms. The 
notable exceptions to this rule form the core body of clas-
sic literature in this field EBRIN 69, DIJK 68b, DIJK 71, 
DALE 68]. For the most part, application programmers in the 
past have been restricted to conventional I/O using shared 
files as a pragmatic method of interprocess communication, 
with only partial success. 

When the notion of a "process" becomes recognized as a fun-
damental building block •  for distributed applications, 
stronger support and documentation will have to be provided 
by the system suppliers and manufacturers, thus making 
available to application coders a robust set of "process-
based" primitives. After such widespread support 
materializes, the design experience and performance 
statistics will provide the basis for a fuller understanding 
of all aspects of interprocess communication. 

A comprehensive survey of the present state-of-the-art in 
interprocess communication is presented in paragraph 7.6. 
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2.2 EBILLII 11212e1 2 iSMEILIAII0 

An excellent 	survey of the "process model of computation" 
can be found in [HORN 73]. Prior to this, articles on 
operating systems developed the notion of a "process" or 
"task," as an entity that could be scheduled and own other 
resources in multiprogrammed systems, but they did not treat 
a process as a structuring methodology in its own right. 
Examples of these notions can be found in [SALT 66] and [IBM 
71]. 

Access to resources in early operating systems presented the 
very first examples of interprocess communication, but these 
early IPC techniques varied widely from one implementation 
to the next. For example, in most systems, the line printer 
daemon (or process) owned the line printer, and access to 
the printer was restricted to ordinary "write" statements at 
the language level coupled with "logical unit" assignment at 
the job control of command language level. Other examples 
may be found where the login process "owns" the communica-
tion lines, or a file manager owns the file system as in the 
MERT operating system ELYCK 78]. An early message-based 
operating system structured around processes is the RC4000 
operating system [BRIN 69, BRIN 70]. 

Trends in software engineering, applications, and technology 
certainly point to an increasing awareness of a process as a 
fundamental method of structuring systems. 	The prolifera- 
tion of 	inexpensive processors and low cost bandwidth sug- 
gest a process model of computation, even if there is only 
one process per processing element, since control and shar-
ing of common resources must be by some form of interprocess 
communication. New architectures are now being proposed 
that exploit these trends, e.g. [NELS 78]. The CNELS 783 
proposal is based on a high-speed packet-oriented bus inter- 
connecting a large number of processor-memory pairs, 	termed 
"cells." 	Each cell includes a CPU, a primary memory system 
(typically one or two megabytes), a packet bus node control-
ler, and possibly some peripherals such as disks or com-
munications devices. The architecture supports applications 
decomposed at the process level; the entire system is viewed 
as a set of cooperating processes, distributed among the 
cells to improve performance, cost, or availability. 

2.3 WILILI 2IIIRIAUILD 1/2102 

Highly distributed systems are characterized by very 	loose 
coupling 	between physical as well as logical resources. 	In 
addition they exhibit dynamic, short-term changes in the 
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topology and organization of the total system. The fact 
that these systems are very loosely coupled, both physically 
and logically, places quite different demands on IPC from 
those applicable to more tightly coupled contemporary 
systems, even those incorporating a "network" as the inter-
connection mechanism. 

Such 	systems should support multiple name spaces, including 
the management and translation of file and unit names in 
these name spaces. In addition, such systems should handle 
abstractions built from collections of communicating proces-
ses and provide mechanisms for addressing and synchronizing 
groups of processes. High bandwidth message transport 
mechanisms will potentially allow multiple logical connec-
tions between processes to he constructed whenever con-
venient, but system support must be available for those con-
nections to be useful. To date, very Little experience is 
available to assist a designer attempting to construct com-
plex systems out of communicating processes. 

2 6 4  In IIIMUIL2 

Most existing IPC primitives and structures are based on a 
"two-party" communication model, in which there is a single 
"sender" and a single "receiver" 	for each transaction or 
message. 	(This 	is 	certainly the basis for IPC facilities 
built around the X.25 level 3 protocol 	CCCIT 78].) 	Other 
kinds of 	communication facilities may better support ring, 
tree and general graph models of process networks. 
Protocols involving more than two processes are called "N-
process" protocols CPARD 7971 they should find use in shared 
data base and electronic mail systems. 

The major functions supporting these protocols are storing, 
forwarding and routing variable length messages. These 
functions can be difficult 	to 	implement 	if 	communication 
links, 	processing nodes, 	or other resources are only 
partially available. 

2,5  IIIIRPRULII OthIADI IIEUZIMELI 

Communication links between processes can be allocated 
strictly 	to control 	functions. 	In fact, 	the degree of 
separation of control and data is an important research 	is- 
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sue. 	A path primarily used for the transport of data may 
have no mechanism for control or "out of band" signalling, 
which may make error detection and recovery difficult, if 
not impossible. The system's control path structure is 
primarily determined by the "control model" used during 
system development. The "classical" system organizations 
are a) master/slave, b) hierarchical, c) democratic, or d) 
autonomous. The first two are well understood and readily 
implemented, while the latter control organizations are not 
well understood (in an algorithmic sense) and are the sub-
ject of much research [HOAR 78]. 
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SECTION 3 

ADDRESSING, NAMING, and SECURITY 

3 0 1  YQR Sz 1E20 =BARI !LEW 

What are objects 

files, processes, devices 

Uniform mechanism? 

File metaphor -- UNIX 

Process metaphor -- MININET, RC4500 

Abstractions -- WEB 

Worldview: 	(a La DISY) 

Universe >>> Systems >>> Objects 

Distinguish between: 

NAMES -- what 

ADDRESSES -- where 

ROUTES -- how to reach 

Basic Problem: map 

NAMES >>> ADDRESSES 

Desirable features: 

Generic naming 

Context independence 

Location independence 

Broadcast (group name) 

Uniclueness 

Path addressing 
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Other concerns: 

Flat vs. 	hierarthical 

Centralized vs. 	distributed 

Steps 

Search rules 

Connections 

Transactions 

Merging two systems: 

I. one below other 

2. both below new prefix 

3. corresponding unused addresses 

Name >>> Address mapping may be 112ALAII from IPC. 

IPC between specific addresses 

Directory object with well-known address 

DISY nhulaun 

Generic naming 

Location independent 

Uniqueness 

Object pointer 

Resource limits 

Access controls 

ItamLiix 

Main attributes of subject: 

Logical identity 

Physical Location 
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Problems: 

1. authentication 	 access 
control of location 

2. storing authorization on areas 
outside security environment 

3. moving objects if encryption 
based on location 
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3.2 AIELLEIIhi EAILEIAL 

What are objects? 	files, devices, processes 

- What things should be in a list of primitive ob-
jects? 

- Should we choose one object type to represent 
all objects? 

Should there be a uniform mechanism for all objects? 

- file "metaphor" - Unix [THOM 74] 
- process "metaphor" - Mininet [PLEB 783, RC 4000 

(performance?) 
- abstractions 

- WEB at DEC (performance?) 
- Capability based systems 

Uniform mechanism is a good thing. 	Being able to do this 
requires picking one of the above. Not sure we can. 

Worldview: ANSI/SPARC/DISY CDESJ 78] or ISO SC 16 model 

- Universe consists of multiple systems. 
- Systems have many objects. 

Distinguish Between Ngmea (what), Agguasgs (where), Rgutes 
(how to reach). 	(see CSHOC 78]) 

Basic Problem: mapping NAMES to ADDRESSES. 

Desirable features of this mapping: 

1) 	generic naming - many potential servers 

- within 	one 	system or across 
systems 

- selected 	by 	server 	or 	by 
requestor 	("request for service" 
facility 	is 	just 	latter 	[FARB 
73]) 

2) location independence - same name may be used 
no matter where server is located 

3) broadcast - (group name) - communication with 
multiple servers 

4) uniqueness - only one name for given object 
or set of objects at some level 

5) path addressing or source routing - source 
specifies sequence of addresses to reach ob- 
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ject. 	Useful 	if 	"system" does not know 
route, 	or 	if 	destination is outside normal 
name space. 

Additional mapping concepts: 

1) Flat vs. 	hierarchical - latter 	allows 	each 
directory 	or switch to know only about 
elements at its own level 	--> many 	smaller 
directories vs. one large one. 

2) Centralized vs. 	distributed - centralized 
can be reliable, but requires roundtrip delay 
to get 	information, 	high 	load at 	center. 
Distributed may allow 	local lookup, or may 
require broadcast. 	Update more complex. 

3) There may be many directories, and many 
"steps" in the address lookup. Example: "my 
name" to global name, global name to system 
address/Local name, (send to remote system), 
local name to local address. 

4) Search rules - each user may have rules for 
tailoring lookup to his needs. 

NAME --> ADDRESS mapping may be costly. Hence desire to do 
it once for many successive messages to same destination. 
Leads to c2nng.g. ti2n notion. 	May include route setup. 
Cacheing of 	recently used names/addresses also helpful. 
Connection also needed when desired that successive messages 
to a given name go to the same object, in order. If 
transactions are independent, then a different instance of 
the named object can serve each - no connection needed. 
CNSW 763 

Problem of merging two previously independent systems: 

1)  

2) 
3)  

May add "prefix" to all addresses (a higher 
level in hierarchy) to distinguish systems. 
Make one system "below" other in hierarchy. 
Make unused 	addresses 	in 	each 	system 
correspond to addresses 	in other system. 
Only good for small numbers. 

NAME --> ADDRESS translation may be separate from basic 	IPC 
which is between specific a4drelsel only. Then directory 
object (process) with well-known address can be accessed to 
provide translation, with result returned via basic IPC. 
In requestor does basic IPC with specific address of ser-
vice actually desired. Examples: ARPANET Initial Connec-
tion Protocol, Mininet CPEEB 783. 

Important Example: 	Our view of DISY "mailbox" CDESJ 783 has 
properties or components: 
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- generic name 
- location independent 
- uniqueness 
- pointer to object (process) mailbox stands for 
- resource control (how many in use) 
- access controls, owner 

Security: 

1) Does 	n21 	include 	reliability, 	failure 
recovery. 

2) Does include authentication, access controls, 
encryption, correctness. 

3) Basic 	goal - allow objects to be accessed 
only by specified subject. 

4) Two main attributes of subject: 

- logical identity 
- physical location 

5) 	Problems: 

a) Allow object 	to be accessed 
from one glall but not another 
(e.g., not via dial-in). 	Must 
authenticate 	location  as well 
as identity. 

b) Removable media plus unsecured 
sources: Can authorization 
information be stored in areas 
outside of physical control? 

c) Encryption 	problem. 	If 
authorizations are encrypted 
based on 	location of object, 
how can object move? 	(Two 
constraints: 	need to give 
authorizations to others, 	but 
must not be forgeable (hence 
encryption)). 
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3.3 Vi S) mauls 

3.3.1 211Irikulzi QA 2alti 

by 

Edward Lee 
TRW 

Most DOB protocols seem to assume that Data Base Managers 
can figure out how to communicate between themselves and 
that naming one another is not a problem. 	Is it 	reasonable 
to 	assume that 	file system operations and process IPC are 
basically the same mechanism? 	DISY has process as the basic 
communicating object. You basically open a channel 	to a 
process 	and 	then 	communicate directly with it. 	It is the 
Session Controller (DISY) which opens the channel for you. 

3.3.2 nalagi 

by 

J. Livesey 
University of Waterloo 

Mininet 	is 	a 	system 	in 	which addressing 	is basically 
separate from IPC. 	In many systems some form of addressing 
method (name --> address translation) is implicit in IPC. 

In Mininet, IPC consists solely  of 	the 	transmission of 	a 
message from a SIner Task to a Racaiyac Talk which has to 
be identified by an 	integer 	Task 	Identifier 	(an address 
rather than a name). 	In the distributed case the host id is 
concatenated with the task identifier within the host. 

The question then is how to get the task identifier for a 
task to perform a particular function. 

In fact, all system resources (tasks, files, devices, direc- 
tories, ...) 	are formalized as tasks. 	A task has code and 
data segments. A file, for instance, is a task whose code 
segments are the Accels Methad and whose data segments are 
code segments. A file task gets messages of the form: 

read (record #) 

and reacts by returning a message to the user containing the 
record data. 
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There is only one well-known task 	in each host, 	the 
2ireltory Task which has the responsibility to maintain a 
list 	relating 	function name 	(a character string) to task 
identifier for each task in this host. 	As the ultimate 
parent of each task he can find out their task ids. (Task 
identifier of a new task is returned to the creating task, 
the parent.) Now, when user task A, for instance wants to 
perform 

open (filename) 

it does so by asking the directory task for the identifier 
of 	the "file-open" task. 	Assuming this exists locally, the 
directory task returns its task 	id. 	The user now com- 
municates 	directly with "file-open" (a la DISY session) and 
sends it a message 

"open (filename)" 

The task "file-open" now creates a file task whose data seg-
ments are the data records of "filename" and returns the 
"file" task identifer to the user task. 

The user task now communicates with 	the "file" task (a 
second host session a La DISY) with messages 

"read (record #)" 
"write (record #)" 
"close ()" 

The "file-open" task handles mutual exclusion on the file 
(by 	refusing to create new file tasks for the same file as 
Long as someone has it open to write). 	The "file" task han- 
dles record mutual exclusion. 

In the case where no task exists in the local hosts to hand-
le function "X" the local directory task talks to remote 
directory tasks, who are responsible for knowing which tasks 
exist in their hosts (and which can be created to do "X"). 
Directory tasks announce themselves to one another at boot 
time. 

References: 

CPEEE 78] 

CLIVE 78a] 

CLIVE 78b] 
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than 	a 	straight 	function 
Meisner: 

Is 	this 	more 	complicated 
CALL/RETURN 	system? 

Livesey: 
Yes, 	but 	more 	flexible 	since you 	can 	impose a 	function 
CALL/RETURN 	system on 	top of 	the 	basic 	task/message- 
passing 	system 	using library routines 	if 	you 	want. It 
is 	also 	assumed 	that we 	have a 	homogeneous 	system. 

Sunshine: 
Clearly 	we 	can 	have 	server 
minister 

processes 	to 	guard 	and ad- 

directories 
open function 
file tasks 
etc. 

Lapin: 
We need hardware to support process invocation/context 
switch better than at present. 

Livesey: 
Yes, but future hardware should not lock us into func-
tion call/process invocation capabilities, etc. 

Sunshine: 
Curiously, in Mininet, every 	resource 	(object) 	is a 
task 	(process), but the creation of a process involves 
reading a file (an object 	containing its code seg- 
ments). 

Ens low: 
Lee says that 	his distributed data base should be 
redundant. 	Does the system itself select 	the optimal 
record! 

Lapin: 
Redundancy increases the reliability of the system. 

Livesey: 
We have both homogeneous and heterogeneous redundancy 
here. 
Homogeneous 

- identical copies of data 
- increases reliability 

Heterogeneous 

- copies of non-identical objects to perform 
similar functions, eg. 	FORTRAN compilers 
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- increases system band width 

McCoy: 
Can we get a system to give us both! 

Sunshine: 
To do it across several systems has a cost and we have 
to ask if the utility of redundancy is worth the cost. 
The ARPANET Resource Sharing Executive (RSEXEC) was a 
stripped-down operating system for remotely Logged-
inusers who actually executed on the first available 
DEC 10 but never knew which one. This was also an at-
tempt to provide a network-wide file system. Multiple 
server systems such as the Irvine Net 	recognize the 
need to go accross the system to get resources. 	To use 
this we may need utility programs to perform 

Local COBOL --> ANSI COBOL 

and maybe even 

ANSI COBOL --> Local COBOL 

Livesey: 
May also have a network JCL so that a user only uses 
the JCL of his local machine, and then we need to be 
able to do the translation 

Local JCL #1 --> Network JCL --> Local JCL #2 

Lapin: 
There are two approaches to a multi UNIX system file 
system. We can have 

/net 

as a special file and address files on machines 	Alp 	E. 
etc. 	as 

/net/A/pathname 
/net/B/pathname 

We can also localize host id in the pathname explicitly 

partl/part2 
partl: host id 	part2: pathname 

Sunshine: 
There is a conflict between REAL and IDEAL worlds. 	In 
the Real World, we tend to involve the user in specify- 
ing the location of a function (service). 	In the Ideal 
World, we would like to give the user atItrAlti2n. 
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generic naming and location independent naming. 

Livesey: 
Part of the problem is that the concept of the size of 
the universe (of which the system forms a part) is 	im- 
plicit 	in the system at a high cost. 	One is then for- 
ced to choose between add-on features such as: 

/net/A/resource 

which are not location independent on the one hand, and 
a more or Less complete rewrite on the other hand. 
UNIX is an example of such a system that makes assump-
tions about the size of the universe. 

Meisner: 
We now have choices between 

i) Centralized Directories 
which can now be made very, reliable 

ii) Distributed Knowledge 
iii) Tree Structures 

Livesey: 
(iii) is just a disguised directory method. 	There 	are 
really two choices: 	centralized and distributed. 

Hassan: 
Efficiency may dictate tree 	structures 	rather than 
directory tasks. 	This was a factor in the MULTICS 
design. 
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3.4 E2111101 PALM 

3.4.1 Huallan 

Addressing and Security 

by 

Jim Hamilton 
Digital Equipment Corporation 

Because of ever increasing complexity of software develop- 
ment and maintenance, providing any programming environment 
which 	complicates software development would be a mistake. 
This argument leads 	to a view of distributedness as a 
property of the implementation of a system, and not of the 
application development environment. 

Addressing and protection are critically 	important 	in 	ap- 
plication development. 	The above view of distributedness 
implies that addressing must be location independent. 	That 
is, 	local and remote objects must be addressed identically. 
Furthermore. I believe that addresses should also be in-
dependent of the context of reference (different processes 
should address the same object in the same way), and uniform 
across all object types (hardware defined objects, system 
defined objects, and application defined objects should all 
be addressed similarly). 

I also believe that the use of 	processes 	to 	abstract 	all 
other objects is a mistake, for several reasons: 1) it 
restricts the flexibility of the environment for the execu-
tion of functions, 2) it often forces the invention of ad-
ditional addressing mechanisms within the application, 3) it 
is inadequate to address system and hardware defined objects 
(e.g., devices), 4) it inevitably colors the application 
designer's 	conceptualization of the system, and finally, 5) 
it does not appear to be necessary. 

To achieve a distributed implementation, it 	will 	still 	be 
necessary 	to 	solve the problems of physical communication 
and its associated addressing problems at 	a 	lower 	level. 
But the problems are considerably simplified since the 
mechanisms can now be highly specialized, because they are 
not visible to the application designer. 

I 	believe that 	the notion of capability based addressing, 
when properly interpreted and implemented, provides all of 
the properties mentioned above. Moreover, it can be 
naturally extended to provide capability based protection, 
which is further discussed below. The challenge is to 
achieve an implementation which is cost-effective, and which 
still has all of the necessary properties. A failure in 
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either domain will be fatal. 	An even greater challenge is 
to convince the computer industry that the inevitably higher 
cost of the basic system will be more than offset by the 
reduced cost of software. 

I 	believe 	that the issue of sharing is partially separable 
from that of addressing. 	Context independent addressing is 
a prerequisite for sharing, but its existence does not imply 
concurrent 	access by separate processes. 	Concurrent access 
to immutable objects should be possible, 	for performance 
reasons, 	out 	concurrent 	access to mutable objects now ap- 
pears to be a dangerous mistake. 	By precluding this kind of 
sharing, we also simplify the 	construction 	of 	distributed 
implementations. 

Given an addressing mechanism with the properties mentioned 
above, a 	variety of protection mechanisms can be 	im- 
plemented. Capability based protection still seems to be 
the most promising of these, although it has been criticized 
as inappropriate for distributed implementations. I tend to -
reject this criticism, but the notion of self-authenticating 
capabilities has been developed at Berkeley to address this 
problem. 

The notion of system security has many different aspects. 
Included among these are physical security, 	correctness of 
implementation, 	and the logical access control model being 
implemented. 	In 	comparison 	with 	centralized 	im- 
plementations, 	distributed ones seem notably weaker 	in 
physical 	security, 	and 	possibly 	weaker 	in 	correctness 
because of greater complexity. 	The access control model 
should not, in principal, depend upon the implementation. 	I 
believe that these are inherent 	problems with 	distributed 
implementation, 	but 	that, with the suitable use of encryp - 
tion, such systems can still be acceptably secure. 

3.4.2 %mating 

Addressing 

by 

Carl Sunshine 
RAND Corporation 

Any discussion of addressing must start by making a clear 
distinction between NAMES (who), ADDRESSES (where), and 
ROUTES (how to get there), on which John Shoch of Xerox PARC 
has written an excellent note. CSHOC 78] 

Several key concepts or capabilities must be included 	in a 
good distributed IPC system. 	These include generic naming, 
location independence, request for service, source routing, 
and extensibility. 	Each will be described separately in the 
following 	paragraphs, 	although 	there are clearly 	some 
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relationships between them. 

Generic naming is the ability to request communication from 
a 	service without 	specifying 	the exact process that will 
provide the service. This is normally useful when multiple 
instances of a process providing the desired service are 
available. A specific process is selected (or created) at 
the time of the initial request, and bound to the source for 
the duration of the interaction. This binding may require 
transmitting the specific process 	ID to the source, 	or 
merely keeping it at the destination. 	The classic example 
of this facility is a timesharing login service. 

Location independence is the ability to 	request communica- 
tion with a process by name without knowing its location or 
address. 	Since the source user does not supply the address, 
it must be found by the IPC system in some directory. 	Such 
name-to-address directories may be maintained at sources, at 
a central server, or at destinations (the names are normally 
handled at the source, with the consequent need to change 
all tables whenever a host address or name changes or is ad-
ded; IBM's SNA centralizes lookup in the SSCP; and the Ir-
vine DOS kept name tables in destination machines, requiring 
broadcast of requests to be recognized by the appropriate 
destination. The ARPA Internet Name Server proposed by Jon 
Postel in a recent note is another centralized example. A 
major feature of location independence is the ability for a 
named process to move to a different location without its 
users knowledge. (Of course the directories must be up-
dated.) 

Request 	for 	service 	is the ability to broadcast a request 
for service to an unknown 	(to the source) number of 
potential 	providers of the service, who return bids to per- 
form the requested service, thereby identifying themselves. 
This 	is 	similar to generic naming, but includes facilities 
for the source 	to select among multiple bids. 	Such a 
facility was implemented in the Irvine OCS. 

Source routing is the ability for the source to identify the 
destination by specifying a route to it. 	This is necessary 
in loosely concatenated systems where no global address 
space exists. 	The route is given in terms of a sequence of 
addresses through successive 	switching points or systems 
which each have independent address spaces. Hence this 
concept is also called path addressing. 	Disadvantages 	are 
the need for the source to maintain connectivity in-
formation, and the variation of a given destination's "name" 
(consisting of the route) depending on the location of the 
source. 

Extensibility is the ability to add new users (addresses) to 
the system. To add new users at an existing level of the 
address space, sufficient room must be available in address 
fields, or they must be extensible. Adding additional 
layers of addressing often proves a bigger problem, 	for 
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example replacing a user by a network of many users. 	If the 
hierarchy 	is 	fixed 	(e.g., 	<net/local>), 	then the bottom 
"leaves" of the addressing tree cannot be replaced by sub- 
trees. 	In this case, addressing must be used to deal with 
networks outside the fixed hierarchy. This is a serious 
problem with attachment of private networks to public data 
networks. 

Interconnecting two previously independent systems is an im-
portant subcase of extensibility. All the users of one 
system can be given new addresses in the other system if 
such widespread changes are acceptable. Alternatively, some 
unused local addresses in each of the systems may be mapped 
into addresses in the other system if only a limited number 
of users must be accessable. Finally, if the addressing 
hierarchy is extensible, one system can be attached as a 
subtree of the other, or both can be made subtrees of a 
higher level. 

3.4.3 igaIn 

Addressing & Security 

by 

Robert L. Gordon 
PRIME Computers 

An extremely important aspect of interprocess communication 
is the scheme used for addressing and naming the processes 
and communication paths used. 	The importance of this sub- 
ject stems from the fact that 	in any addressing scheme 
protection and control 	mechanisms are explicitly or im- 
plicitly present and either aid or hinder the users ability 
to share objects. 	Many current systems have inadequate 
facilities for identifying names and controlling access to 
the processes within the same host, let alone for processes 
residing on other hosts. Part of the problem stems from an 
inconsistent view of the relationship between the names and 
uses of files, devices, processes, users, mailboxes, generic 
and specific system services. The utility of abstracting 
many of the above objects as processes has increased the im-
portance of "process naming" and "process addressing" in 
overall system design. Therefore until these basic issues 
are settled the design of specific interprocess communica-
tion primitives is difficult since they cannot focus on the 
fundamental objects that they will be dealing with. 
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Fault Tolerance & Security 

by 

Robert L. Gordon 
PRIME Computers 

Any communication 	is inherently an error prone process due 
to both the natural distortion of the medium and the contex- 
tual requirements needed for 	interpreting the transmitted 
message. 	In attempting to design robust interprocess com- 
munication primitives one of the more difficult tasks is the 
defining and handling of the many (natural) errors that 	can 
occur. 	Control of communication mechanisms between proces- 
ses fundamentally depends on how the designer envisions 
process relationships. If process relationships are tree 
structured, then the status and control of a processes' com-
munication with other processes might be monitored and 
controlled by the parent. On the other hand if each process 
wants to maintain the concept of sovereignty then the basic 
challenge is either how to provide the ability for cooperat-
ing processes to establish a monitor process that is capable 
of controlling the communication paths between the proces-
ses, or how to build into the communication primitives 
mechanisms for the detection of and recovery from errors. 
Since error recovery must make assumptions about lines of 
authority and responsibility between system components, many 
of the issues associated with system security are pertinent 
to this discussion. 

3.4.4 f11112n 

IPC Opinions 

by 

G. L. Chesson 
Bell Laboratories 

Pros.es2 Naming 

Process names, 	file names, and 	I/O stream names should 
reside in the same name space. This avoids the tyranny of 
the "access method" and attendant ISroblems of making a 
program that can "talk" to anything in a system. One can 
allow process names to be passed into processes in the same 
way that file names and I/O streams are passed around, and 
this in turn permits progress toward interactive command 
processors that can set up graph-Like structures of proces-
ses, file I/O, and IPC streams. 

N212=2u2kikali2a 21 te.h.dnilm 
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A philosophy 	that has been proven many times over in 
language design may be stated as follows: 	it 	is 	"bad" 	to 
provide more 	than one mechanism for a particular operation 
or function. 	This is a roundabout way of saying that 	there 
are benefits 	to be gained by 	providing a 	single 	IPC 
mechanism for use by "local" processes, i.e. 	on 	the 	same 
machine* and "remote" processes on different machines. 

Transport Mechanism 

It 	is 	fine 	to 	use 	shared 	objects 	(memory, 	files) for 
interprocess communication, but it is important to hide this 
fact. 	The reason is that explicit sharing of objects is not 
portable with respect to different 	machine and operating 
system architectures and should be considered a local op- 
timization. 	Thus, IPC primitives at the compiler or operat- 
ing system Level should appear as I/O-like interfaces that 
imply copying of data even if they do not actually copy data 
on some systems. 

IPC in Programming Languages 

Most 	IPC proposals 	for inclusion in programming Languages 
amount 	to 	little 	more 	than 	interfaces 	to 	subroutine 
libraries which a) cannot be inherited by processes across 
process fork operations, b) belong in the operating system 
anyway, and c) were done better by Rurroughs Corp in DCALGOL 
10 years aco. The result of adding IPC to a language is 
analogous and about as useful as the notion of a file system 
in Pascal. 	A representation of the fundamentals of IPC that 
belongs more to the programming 	language realm than the 
operating system realm has yet to be demonstrated, and would 
fill a much-needed gap. 

HardwAre 

There are applications 	for which IPC bandwidths must ap- 
proach or exceed disk speeds. 	It is clear 	that 	such 	per- 
formance cannot be obtained with software (or even firmware) 
alone. 	Although there may not be much interest in this sort 
of 	thing at 	the 	IPC workshop, I have been working toward 
hardware and firmware 	implementations of 	my 	software 
mechanisms. 

Flow Control 

Ipc 	mechanism need flow control. 	It is better to have a 
scheme where the sender selfblocks than schemes which depend 
on "stop" messages from the receiver. For most applications 
the scheme used in UNIX for pipes and other things would 
seem to work well the sender blocks (sleeps) on a queue 
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length upper limit and is awakened when the Queue drains 
below a lower limit. There exists a timeout call which can 
wake the writer if the queue drains too slowly or is other-
wise delayed. An additional non-blocking mechanism has been 
built into the mpx software (see section 7.7) which is 
useful in those few cases where blocking cannot be tolerated 
-- network servers and the like. This avoids the problems 
that occur with varying process and communication delays or 
loss of control messages. 

Synchronization 

Cognoscienti agree that message-passing IPC schemes are 
equivalent in "power" to schemes which employ shared objects 
although 	the message 	schemes seem "harder". 	This has not 
been proved or disproved mathematically, although there 	is 
substantial 	empirical 	evidence that pairs of processes can 
be synchronized by exchanging messages. 

Food for Thought 

I submit that it is seductively easy to synchronize process 
pairs, 	but 	that 	strategies 	are needed for synchronizing 
groups of processes in various ways. 	Is 	it 	reasonable 	to 
set up "overseer" processes that arbitrate and synchronize 
things, or are there better ways that can be proven correct? 
For some things, like call-processing in my network I use 
overseer processes because they reduce complexity and can be 
made reasonably efficient. For other things, like synch- 
ronizing a process group carrying out 	a parallel 	com- 
putation, 	I 	would try to eliminate the Deus ex machina and 
use direct process to process methods. 

Portability 

It is important to demonstrate univeral 	IPC 	ideas and to 
distinguish local optimizations and special cases within the 
universal model. One would hope that a suitable IPC model 
could be used with protable operating system ideas to bring 
up compatible IPC mechanisms on dissimilar machines. Sec-
tion 7.7 on Data Communications Software outlines some ideas 
that have been partially demonstrated to have portability 
properties. 
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SECTION 4 

INTERPROCESS SYNCHRONIZATION 

4 6 1  i21611i osue auttuax austai 

4 . 1 . 1  SIIIIMID1 21 th Zukila 

1) Synchronization via explicit communication (messages). 
2) No global memory. 
3) System-wide control with only inaccurate/incomplete in-

formation on the system state, without any centralized 
procedure, data or hardware. 

4) Transit delays are: 	variable, unpredictable, unboun- 
ded. 

5) Loss, error, desequencing, duplicate. 
6) Other failures (processors). 

4.1.2 Ssaiglign lull 

2=110 

■■■ ..... ■■■■■■■■■■■■■■ 

GENERAL CONFIGURATION (LOGICAL) 
FOR A SINGLE SET OF MESSAGES 
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1) Distributed service. 
2) Survive sender/receiver failures. 
3) Non-technical reasons. 
4) Modularity (growth, ...). 
5) Performances. 

UNLI121A112/1: 

a) "Single Sender / Single Receiver" 
Single Path Signalling 
End-to-end Synchronization 
(Used to achieve flow control for example) 

b) Single Sender / Multiple Receivers 
Multiple Path Signalling 

PROCESSING AT 
RECEIVERS 

_____---------- 

Section 4 

MESSAGE 

CONTENT 
.•■=1111■1111111.11111■■••■•11.1 

IDEN. 

1 
11••■■••■•••■■■■■■ 

3 

OIMOINIMINM•M•401•INIM 

DIFF. 

•=1••••■■•••••■■■■• 

2 

••••■■■••••■•■••••■ 

4 

(1) Pure broadcasting in a fully replicated system. 

(2) Pure broadcasting in a heterogeneous replicated 
data base. 

(3) Transaction processing in a homogenous 
(replicated?) system. 

(4) Transaction processing in a heterogeneous 
replicated data base. 

OBJECTIVE: 	To maintain a unique ordering of incoming 
messages 	for 	all 	receivers 	(whether 	initially 
fortuitous or enforced). 
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c) Multiple Senders / Single Receiver 
Multiple Path Signalling 
OPJECTIVE: 	Reveal/Cause/Express relationships between 

incoming messages belonging to different flows. 

d) Multiple Senders / Multiple Receivers 
multiple Path Signalling 

1) Fully replicated systems 
same objective as (b) 

2) Partioned systems 
same objective as (c) 

3) Mixed systems 
same objective as 	(b) 	for dynamically changing 
subsets of 	receivers plus the same objective as 
(c) 

4 • 1 • 3  222t 

a) Logical Clocks: L. Lamport 
To implement a sequential (T. Ord.) 	processing 	in a 
distributed manner (each process has an image of "The 
Waiting Queue") - may be used to achieve mutual ex-
clusion. 

b) Physical Clocks: L. Lamport 
How 	to 	implement 	logical clocks on a set of physical 
clocks (unique physical time frame). 

c) Logical Clocks plus Voting: R. Thomas 
How 	to 	resolve 	conflicts 	between 
simultaneous/concurrent 	processes 	competing 	for 
identical resources (fully replicated systems). 

d) Eventcounts• Sequencers: Reed/Kanodia 
To observe (READ, AWAIT) or to express the occurence of 
some event (ADVANCE) - to serialize events. 

e) Circulating Token: G. Le Lann 

- Without tickets 
To achieve mutual exclusion. 

- With tickets 
To 	serialize, 	to express 
between events 

relationships 

f) 	Some "naive" or less general solutions: 

- Shared Variables: 	E. 	Dijkstra 
- Monitors and Messages: 	P. 	Brinch-Hansen 
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4.1.4 Alitikmill 

a) Response time. 
b) Overheads (traffic, processing, storage). 
c) Extensibility 	(is 	full 	connectivity required, global 

knowledge of the system status, ...). 
d) Deterministic synchronization 	/ 	probabilistic 	synch- 

ronization / convergence. 
e) Fault tolerance. 

- Detection. 
- Recovery. 

f) 	Simplicity 	(correctness 	proving, 	implementability 
headaches, ...). 

4 9 1 4' 5  IthIL 111211 

a) Effects of probabilistic synchronization. 
b) System considerations: 

- Hard/soft partitioning. 
- Application 	processing 	system 	processing 
partioning. 

c) 
	

Evaluation of solutions with respect to 
- Attribute space. 
- Problem space. 

d) Policies (fairness, enforced priorities). 
e) Adequacy to resource management. 
f) Classification of solutions. 
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4.2 E221110 PAPLEI 

4.2.1 1.11 

Interprocess Synchronization 

by 

Edward Y. S. Lee 
TRW Defense and Space System Group 

My interest 	in 	IPC is mainly connected with update synch- 
ronization in redundant distributed data bases 	(DOR). 	The 
protocols developed for IPC must be viable and be able to 
satisfy the following major requirements for DOB operations: 

1) Performance (response time) 
2) Efficiency 
3) Deadlock prevention 
4) Error recovery (surviving errors and faults 

and continue operation) 
5) Security 

Recent state-of-the-art developments in this area can be 
divided in two major categories: 

1) Protocols associated with 	a 	centralized 
control approach CALSB 76, BADA 78, ELLI 77, 
ESWA 76, ROTH 77] 

2) Protocols 	relying on distributed 	control 
EGRAP 76, JOHN 75, ROTH 77, STON 78, THOM 77] 

However, most of the Protocols do not 	include serious 
considerations of interprocessor communication, but 	rather 
take the approach that some kind of messages can be passed 
among the distributed processors for communication and let 
someone else to worry about it. 

There are 	considerable difficulties in taking this kind of 
approach in a Loosely coupled distributed system. 	Because 
IPC 	is the 	life 	line of the system, it is needed for the 
distributed control 	(operating system), 	distributed data 
base operation, recovery of the system as well as the DDB 
under fail-soft and fail-safe condition, and reconfiguration 
of the network when one or more processors are disabled. 
All these essential functions of a distributed system demand 
efficient and fail-safe IPC mechanisms. 
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The second obstacle is the lack of evaluation criteria and 
methodologies to test and measure: 

1) Performance 
2) Efficiency 
3) Validity 
4) VerfiabilitY 

of any protocol that is being proposed as the best protocol 
for DDB. There are some efforts present in this area EGARC 
78, SUNS 76], but a lot more work will be required. 

In a practical system, it is very 	likely that 	a mix 	of 
several protocols will be used for updating redundant 
distributed data bases depending on the specific situation 
and requirement. 	However, it should be possible to have a 
unified approach to IPC for all protocols. 	Additional 
research in this area is needed. 
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SECTION 5 

MECHANISMS --- IMPLEMENTATION, UTILIZATION, and PERFORMANCE 

5.1 12 11111121/AAAR/ BLEOI 

Intergstin2 Ilsues Not gisualtd 

Data Interface to program not resolved 
Control interface to program 

"To poll or not to poll" 
Events, interrupts, on-conditions 

Mechanisml 

Signals 
Events 
Semaphores 
Shared Memory 
Monitors 
Message Queues 
Pipes 
Ports 
Full Duplex Streams 
Virtual Procedure Calls 
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VIALAratrixilll 2/ Ills AsshAnilli 

SHARED OBJECTS 

EXPLICIT DATA MOVEMENT 

EVENT OPERATING BY 

PROCESS CREATION 
SIDE EFFECTS 

I 	EASE OF DISTRIBUTED 
I 	IMPLEMENTATION 

I 	I 
_____Y_____T ..... Y_____T__ 

Signals 

Events 

Semaphores 

Shared Memory 

Monitors 

Message Queues 

Pipes 

Ports 

Full Duplex Streams 

Virtual Procedure Calls 

■.■11.11■■••■• !WM .1■•■• ■11■11 

N 
■•••■■111.11■411111. 

na 
UM11,6■■••■•■ 

N 

N na N 
■■■■■•■■ - ■•■••■ •■■•■111••■IMIN ■•■■•■••■• 

NMI =MINI 1■0 

41114■••••••• ■■• ;MD 

41■ 0111■■■■■• 

■ 11 ■•■•■•■•• 

•■■■■••■■• 

N 

N 

■••■■ •••1■• 

■•■■•■ •■■■ 

■•••■•■ •■■10 

S/R 

R 

na 
■■ ••■■•■•■••■ 

■■••■■••■■• 

N 

N 

N 

S/U S/R/T 
■■■■■■• =MIMED ■•••■■••■■■■ ■••■■••■••• ■11■••■•■•■111 MINIM ■■■■■ 

U na N 
■••■•■■••■• NED GM MD =NIP • ■■•■•-■■••• IMD6/1. ■•• ■•• MS NM 0■■•■ 

e■■■■•■■■ 

•■■••■■■•■■• 

S/U 

U 

■• •■••■ •11■■•1 

■•■•■• •■•■• 

na 

R N 

N 
■•■••■■• NIB 

111■■■■•■■■ 

MS NM .1■•■ 

U 
SEM •■■■•■■•■•• ■•••■•••■• WEB M1•11•■•■• 

S = Shared 
U = Unshared 

S = Sender 
R = Receiver 
T = Transport 

Mechanism 
na = not applicable 
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Desirabig Quaiiiiftl 21 telhaailml 

Performance 
Bandwidth 
Delay 

Provability 
Correctness of use 
Correctness of implementation 

Security 
Transparency 

Naming 
Location (Physical) 
Environment (Logical) 

Separation of control from data 
Complete and small set of primitives 
Fault tolerance 

Encapsulation 
Detection 
Recovery 
Size of fault set covered 

NOTES: 	The priorities used to weight these desirable 
qualities 

depend on: 
- Application 
- Level 
- Environment 
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2111Lakil ilaiii111 2/ tuttnills. 

Capabilities-- 
Fault Set Covered--

Error Recovery-- 
Error Detection-- 

Encapsulation-- 
Primitive Completeness/Size-- 
Control/Data Separation-- 

Transparency (Environment)-- 
Transparency (Location)--

Transparency (Naming)--1 

	

Security-1 	1 

	

Provability--1 	I 	I 

	

Performance--1 	1 	1 	I 

	

I 	I 	I 	1 

Signals IM• AD AD C 

Events 

IMMN NNW IMMN 

AD 

NINO 

C 

•■■■■•■••■ •■■■■••■■ MIN 

AD 

NI■1,  OIONI 

INNII■■■■ •■■■ .1Mm ■ INIMPIND ■1, M11.■ .1■■•■ INWIN/•••• 

Semaphores AD AD C 
sMENNI ■■■ ■■■■•••■■ ■11=1,ND 

Shared AD AD 

■•■■ ■ •=1•1•=0 11M 

Memory 
NNI■ 

Monitors 

MEN ■■■ • =1.1011M 

AD 

N11,1■Ma 

AD 

r■• =MOND ■■ •■••■■■ 11=1.1■.= NMI 

C/D 

Message 

■IN1,  MEIN OMNI .1•■ =MI 

C/D 

MMON NANO.= 

Queues 
OMPNI IMMON ■111.N ■.■ ■••••=1 r■I.M1.■••••• 4=1N 11■•NOMI. 

Pipes D 
•No■IMI■ ■■■ NM. ■■■ 11=1■1•11N 

Ports D 
■I=IN I■ 	■1,  .11=1 ■■■ ■IMMN d■MIINNION IMMIN ■11•1=.11001= 411•IN 

Full 	Duplex 
Streams • C/D 

•■■ IMMII■ Ni■■■ filpw.•• ■■■■■ ■141INDOIM NOD 1N■ 1••• ■■■••■■••■ ••••••■•••••■ 

Virtual 
Procedure AD AD C/D 
Calls 

MIN ■•••■•■• samiNi■ ■■ •INN • ■■■■■IN 

	

AD = Addressing 	C = Control only 	C = Control 

	

Mechanism 	 0 = Data 
Dependent 
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commenia  2a Mtlhaniam 91.121i1122 

1) A 	functionally 	complete 	IPC 
mechanism requires both data and 
control capabilities 

2) All were considered to be "basic" 
mechanisms -> No embellishments to 
improve desirable programs 

3) Thus ability to recover from faults 
depends on implementation 

4) Another trade - 	Bandwidth 	vs. 
status consistency 

5) Perceived hierarchy 	(in mechanism 
list) 

6) Omissions 
- Broadcasts 
- Addressing 
- IPC mechanisms ?? 

7) 	A design exercise to try to over- 
come "-Is" in table would be 
interesting --- Also table comple-
tion 

PROBLEMS 

1) Migration 	of 	applications from 
centralized to 	distributed 	en- 
vironment 

2) Not 	enough 	known 	about these 
mechanisms: 
- Complexity of IMPL 
- Size of IMPL 
- Efficiency of IMPL 
- Useful hardware assists 

3) 	Common 	understanding 	of 	all 
mechanisms 
- Dictionary 

4) Lack of a number of implementations 
5) Cost / time / complexity 
6) Premature standardization 
7) Difficulty 	of 	modifying 	/ ex- 

perimenting with hardware support 
devices 

8) Premature vendor mechanism selec- 
tion 

9) Compatibility 
- Obstacle 
- Objective 

10) Evaluation criteria 
11) Papers don't tell 	reasons 	for 

designs 	(some designs based on few 
examples) 

12) Definitions of universes 
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Research Questions: 

1) 	Identify collections of 	primitives 
for 
- Easy programmer understanding 
- Efficiency 
- Match to application 
(Answer probably depends on en-
vironment) 

2) Fault Tolerance of IPC mechanisms 
not well understood 

3) Trade -- User or IPC mechanism? 
4) How much must user be aware of 

process creation/existence? 
5) How 	should 	responsibility 	be 

distributed? 	Visibility 	of fault 
responsibility. 

6) How to decouple bindings: 
- Modules to graph 
- Process to nodes 
- Resources to processes 

7) 	What set of IPC mechanisms is 
- Easy to use 
- Complete 
- Efficient 

8) Refine 	virtual 	procedure 	call 
mechanism. 

9) Tools for top-down design 
10) How to select architectures from 

option criteria 
11) How to decompose applications 
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5.2 AteLiFYINi MATLEIAL 

5.2.1 PLuarla kx ihl /gains fiLIM2 

An attempt was made to define "a set of primitives that al- 
lows an application software engineer to design the best 
solution for his problem." 	It 	was quickly 	realized that 
this is not an easy task. 	Some of the issues involved are: 

1) Some applications 	require highly 	reliable 
IPC, while in others, 	communicated informa- 
tion becomes useless after a certain period 
of time. 	A single set of primitives 	to 	im- 
plement 	IPC may not solve both types of 
problems. 

2) Should IPC primitives be operating system 
services or should IPC constructs be parts of 
various programming 	languages? 	A relevant 
reference to this 	latter proposal may be 
found in [HOAR 783. 

At 	this point• it was felt that it was necessary to outline 

	

the hierarchy of levels at which IPC mechanisms can be 	in- 
voked. 	For each level, we attempted to describe those ob- 
jects which may be manipulated and those 	IPC operations 
which may be performed on each object, if any. 

Hierarchy of Levels 

Command Level 
High Level Languages 
Operating System 
Instruction Level 
Microcode Level 
Hardware Levet 

The description of objects and IPC operations can be 
enumerated for three different situations: 

1) Accepted practice 	those 	commercially 
available 

2) State of the art - current practices of 
researchers in the field 

3) Wish list 

Enmmeralion of Omanliliep for Accepted Practice 

i2mmaaA Ltxtl: 
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objects - process, file, link, device• program, 
task graph, directory 

IPC operations - 

files: 	file locks (control function) 
pipes 

processes: create 
delete 
link via a pipe 
suspend 
resume 
status 

links: 	creation 
temporary files 
link management in DEMOS 

Reference: 	[BASK 77]. 

Note: 	Though not all types of objects are available on many 
systems, some of them can be used to emulate those 
capabilities which are unavailable. For example, tem-
porary files are used in UNIX to emulate pipes. 

High Leyel Langgagel: 

objects - typed objects (integers, reals, characters, etc.) 
semaphore 
monitors 
events 
ports 
shared common (typed objects) 

Except for the use of shared typed objects (via global com- 
mon areas), current languages commonly available do not use 
the other objects for IPC (e.g., PL/I). 	Almost 	invariably, 
one must drop 	into a 	runtime library routine or to the 
operating system to perform IPC functions. 
PL/I is most progressive 
Algol 68 provides some capabilities 
APL supports shared variables 

Milcellaneokl noiel: 
There was some discussion concerning the two types of com-
monly used IPC mechanisms: message-oriented vs. procedure-
oriented (monitor). A good reference to this area is CLAUE 
79]. 
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5.2.2 PtUALIg kx EtAtitl 

5.2.2.1 Introduction and Explanation 

The IPC mechanisms described here are known as upri•itive" 
for several 	reasons; 	they are primitive in the sense 	that 
they are 	low-level 	building blocks 	from 	which 	more 
sophisticated forms of IPC can be built, they are mostly 
oriented towards two-party communication, the simplest case, 
and they are mostly derived from existing uniprocessor 
systems. 

5.2.2.2 Desirable Properties 

It is fairly easy to list some desirable properties that any 
interprocess communication mechnisms should have: 

Performance -- In terms of bandwidth and also 
delay. 	We would 	like mechanisms with a 
minimum of overhead, in order to maximize 
performance. THis should not, of course, 
reduce functionality. 

Provability -- A desirable property for any IPC 
mechanism should be that it lend itself to 
the verification of systems which are built 
up using processes. 

Security -- By this we mean protection of two com-
municating parties from one another, and also 
with respect to third parties, in terms of 
leakage and interference. 

TranIkarency -- This refers back to the issues of 
naming and location. The users of an 
interprocess communication mechanism sdhould 
not have to deal with that mechnism at other 
than the advertised 	level, nor should they 
have to be aware of the details of 	its im- 
plementation. 

Separation of Data and Control -- It may or may 
not be a good property of an IPC mechanism to 
contain elements of both data and control. 
In some implementations, data and control 
(signal) transfer from sender to receiver are 
carried out in the same operation. Separate 
data and control transfer operations can, of 
course, be combined in higher-level non-
primitive interprocess communication 
operations. 

Com2letenell and Smallne21 	Interprocess com- 
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munication 	primitives 	should 	certainly 	be 
complete, in the sense that one should be 
able to do any operation which is valid in 
the given system without 	introducing new 
primitive 	operations. 	It 	is not so clear 
that they should be small, 	consistent, of 
course, with performance. 

Fault Tolerance --This leads to the concepts of 
encapsulation and recovery. In order to 
achieve fault tolerance, an operation should 
fulfill the following conditions: 

- faults should be detected. 
- faults should be handled at the 

appropriate level, and not simply 
passed back upwards towards the 
user. 

- faults generated at a lower 	level 
should not terminate a user ses-
sion. 	Instead, 	they should be 
recovered at a 	level 	close to 
that at which they occurred. 

- in interprocess communication, 	if 
data or control transfer fails, 
it may be 	sufficient 	to inform 
the sender, or, in some critical 
applications, it may be necessary 
to inform both the sender and the 
receiver that some message or 
control 	signal 	did 	not get 
through. 

The concept of encapsulation suggestes the 
enforced localization of errors, so that an 
error in the communication between two proc-
cessors can have no effect on any others. 
The concept of recovery suggests that 
whatever errors do not occur are cleaned up 
in such a way that a consistent system state 
is restored, and that unresolved error states 
are not simply passed up the line. Error 
messages of the form: 

SURNETWORK ERROR - PLEASE LOG IN AGAIN 
should never occur. 

	

,pt -- The concept of cost is very difficult 	to 
define exhaustively, but one can suggest some 
kinds of cost which can be incurred: 
- implementation 
- performance 
- application flexibility 

Note that in the evaluation of primitive mechanisms given in 

	

section 5.1 we assume a fairly standard implementation. 	The 
properties above clearly depend in part on implementation 
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and we cannot give any hard and fast rules. 

5.2.2.3 IPC Taxonomy 

One of 	the most obvious dimensions 	along 	which 	to 
differentiate IPC mechanism is whether they are message-
based or not. Mechanisms can, of course, be data-transfer 
based, without being message-based. 

Examples: 	Pipes, ports, full-duplex streams. 

5.2.2.3.1 Non-mgssan=tAsId  
These are clearly the 	IPC mechnisms favored in those 
distributed systems which are themselves not message-based. 
Instead of messages, these depend on a variety of'communica-
tion mechanisms: 

1) Signals 
Signals are process interrupts, which can 
arrive with or without accompanying type in- 
formation, and perhaps the identifier of the 
originator. 	A signal may cause a transfer of 
control 	inside the receiver process, and 
there 	may 	be enable/disable mechanisms, 
analogous to those for hardware interrupts. 

2) Events 
An eyenl is a state variable. One should be 
able to test it and set it. It should be 
possible to implement a wail on the event by 
means of a test in a loop. 

3) Semaphores 
A semaghgrt is a storage cell with an as- 
sociated queue of processes, and with two 
operations, 	wait and signal. (no relation to 
signals in section 3.2.1.1) which 	have 	side 
effects. 

4) Shared Memory 
SLargd mgagry consists of data cells which 
are accessible to sending and to receving 
processes, perhaps with an associated access 
discipline which is designed to avoid 
critical 	section problems 	in accessing the 
shared resource. 

5) Ports 
P2r11 are input/output channels belonging to 
processes. Ports in corresponding processes 
can be connected together by links  to form 
communiccation channels. 

6) Full Duplex Streams 
A full duplex stream  is effectively a bi- 
directional pipe. 	In place of a sender and 
receiver, 	the processes at either end of the 
full-duplex stream can both send and receive. 

 Naturally, in order to achieve some measure 
of synchronization, a read should suspend 
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until a corresponding write  is executed at 
the other end of the full duplex stream, and 
vice versa. 

5.2.2.3.2 Message-based IPC  
These are the IPC mechanisms which depend on messages 
between processes. They can be further subdivided along the 
following lines: 

1) Single send pl --> p2 
2) Single receive pl <-- p2 
3) Multiple send p1 --> subset of P 
4) Multiple receive pl <-- subset of P 

212.01ins ani NauzIalatkina Primitivtl  

A further way of 	subdividing interprocess communication 
primitives is on the basis of whether they are blocking or 
non-blocking in nature. A kig .c. king primitive is one which 
causes its invoking process to be suspended until the 
primitive operation is completed. Thus, after invoking a 
blocking receive, a process will suspend (sleep) until some 
message does arrive. 

Distributed 	systems have been implemented with blocking 
send/receive, with blocking send and non-blocking receive, 
and with non-blocking send/receive. 

Virtual PL2SIAULI 

Virtual procedure calls scan be viewd as a highly stylized 
form of message passing but entail a great deal more 
semantics. They are used in support of an object model -
processes access objects and objects are controlled by other 
processes. IPC consists of one process invoking a function 
on an object and another process executing that function. 

5.2.2.3.3 higherzievei MIslanilma 
There are also higher-level mechanisms which can be produced 
using the primitive operations as building blocks. 	For 
instance, one frequently encounters virtual 	circuits built 
on message passing combined with signalling. 

5.2.2.4 References 

The following 	references may be helpful in explaining the 
specific IPC concepts identified: 

1) Semaphores, Signals, Events, Monitors, Pipes: 
EHOLT 78b3 

2) Virtual Procedure Calls: 
EHAMI nd] 

3) Message Passing Operating Systems: 
[MANN 77] 
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4) 	Message Passing versus Procedure Calls: 
ELAUE 793 
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5 4,3 12211112N PAW-LI 

5.3.1 PeebL1A  

PROGRAMMING ISSUES 

by 

Richard Peebles 
Digital Equipment Corporation 

A Programmer's environment (Language, operating system ser- 
vices and model of process structure) 	tends to be a 
religious issue. 	My religion calls for the simplest pos- 
sible environment by providing a set of "orthogonal basis 
vectors" for programming. The result is a set of primitives 
that allows an application software engineer to design the 
best solution for his problem. Orthogonality of software 
tools means that one piece, or primitive, does not preempt 
design choices for the others. This is to be contrasted 
with another approach to simplicity which preempts almost 
all choices. 

In 	addition, 	my 	religion calls 	for the 	removal 	of 
representational irrelevancies to the highest degree pos-
sible. As a consequence, the underlying process structure 
is not visible at all to most programmers, nor is the 
distributed nature of the machine that implements his ap-
plication. 

Practical Issues 

The difficult part of religion is applying it to our 	daily 
lives. 	Just 	what are 	these primitives; 	what makes an 
orthogonal set; can we find a set of "basis vectors"? 
Furthermore, can we reasonably expect to hide the process 
and machine structure from programmers? In my view, most 
research in distributed systems is (should be) aimed at ans-
wering these questions. 

Constraints on  IPC Melhanilm 

The above goals for the proaramming environment impose 
several constraints on the IPC mechanism. First it should 
be location independent. The same mechanism should be used 
for both inter-host and intra-host communication. This 
means that a programming decision does not preempt a 
process-location decision and vice-versa. 	A more difficult 
question 	is whether the IPC mechanism should he visible as 
such to the programmer. 	It is possible to provide him with 
an extended machine in which IPC appears as the application 
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of an operator to an operand; this is the approach taken in 
our experimental WEB system. 	It is a simple matter to 
construct both datagram and virtual 	circuit abstractions 
with this mechanism 	if 	"communicating 	processes" 	is a 
relevant abstraction. It is considerably more difficult to 
provide the operator/operand abstraction mechanism than a 
simple send/receive mechanism; particularly if abstractions 
are to be enforced. 

Statg 2f the Art 

In vendor-implemented products neither location transparency 
nor process structure transparency is usually provided. 
Research systems have, for the most part, made IPC an ex-
plicitly separate concept among other abstract extensions of 
the operating system. The WEB operator-invocation architec-
ture is seeking to provide a single mechanism that will ser-
ve as a general basis for "operating system" and user func-
tions - they are not distinguishable. It is, however, only 
in the final stages of design - about to be implemented. 

2bstacles 

The most significant obstacle to providing an IPC mechanism 
that least perturbs the programming interface is historical 
artifact. 	Finding a 	design that is ideal and that allows 
reasonably simple migration of customer applications 	is a 
hard problem. 	We may be forced to throw up our hands and 
call on users to swallow yet 	another conversion effort. 
Will we do it again in 1988 when distributed systems go out 
of vogue? Hence my strong belief in the need for process 
and machine structure independence of IPC. Early standards 
will be a hindrance to this but may be inevitable given the 
state of the art and user impatience to build. If that is 
accepted, the next biggest obstacles are thin wires and 
different architectures. Hiding the network structure is 
hard when physical links are under 100K bps. Then too there 
is the problem of the complexity of the WEB abstraction ap-
proach - it•s hard to understand. 
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5 • 3 4. 2  lailsalial 

PROGRAMMING ISSUES IN DISTRIBUTED SYSTEMS 

by 

Virg Wallentine 
Kansas State University 

Problem 

The programmer in a distributed processing environment must 
be provided with a 	set 	of 	facilities which permit 	easy 
specification of 	the 	distributive 	properties of his/her 
program. The word program here is used to refer to either 
the output of a single compilation or the output of indepen-
dent compilations of program modules which are to be com-
municating via an IPC. These distributive properties 
include the specification of the concurrency, data flow, 
resource requirements (memory, devices, etc.), and 
intraprogram 	(intermodule) 	protocol properties inherent in 
the execution of a configuration 	(system) 	of 	cooperating 
software modules. 	Given a description of these properties, 
an operating system must he able to distribute the user's 
program across multiple machines 	in a manner which is 
transparent to the programmer. 	Traditional approaches to 
providing these facilities include the concurrency support 
in high-level languages and the resource allocation and 
concurrency support in conventional operating systems. 

C2rren1 A22roachel 

Several high-level Languages such as Concurrent Pascal EBRIN 
77] and SP/K [HOLT 78] have incorporated the monitor EBRIN 
733 [HOAR 74] concept to provide structured concurrency. 
This concept is excellent in a centralized system but relies 
on shared data 	(and therefore shared memory), and is 
therefore not an appropriate concept 	on which to base a 
distributed 	system. 	However, an effort is underway at the 
National Physical 	Laboratory 	EDOWS 	78] to distribute a 
Concurrent 	Pascal 	program 	across 	loosely 	coupled 
microprocessors. The distribution of passive system com-
ponents (such as monitors) on disjoint machines implies many 
coot' operations for parameters and also additional active 
system components (processes) which do not appear in the 
program text. 

A much more appropriate high-level 	language concept for 
distributed programs is proposed by C.A.R. 	Hoare 	in 
reference [HOAR 78]. Each function is a sequential process 
which is connected to other communicating sequential proces-
ses via input/output. This concurrency support is based on 
data flow and not shared data; therefore, it is not depen-
dent on shared memory. As a result, each function is 
distributable. 	However, 	it 	seems that buffering of data 
between processes is necessary to improve performance in 
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distributed systems with slow speed connections. Since the 
compiler for such a language presumably can generate the 
resource requirements for the proaram, since processes are 
identified by name, and since the protocol between processes 
is fixed, enough knowledge is available to distribute a set 
of processes which are compiled together. 

A second area of programmer concern for distribution occurs 
because concurrent program functions 	(modules) may 	be 
separately generated (compiled). These may well be existing 
programs or just separate functions based on programming 
style. The interconnection of these modules into a program 
is dynamic and therefore requires operating system support. 
In early conventional operating systems, the support 	for 
combining these functions 	into a configuration of com- 
municating concurrent software functions 	is 	specified at 
three 	levels. 	First, overlap of CPU and I/O are made 
available for standard I/O file functions. 	Second, added 
concurrency 	is 	achieved only with unstructured (low-level) 
facilities for process creation, naming, and communication. 
Third, complex job control languages are provided to achieve 
allocation of resources to run these functions. In a 
distributed system, these JCL steps must be synchronized 
across machines. Complex resource control in a distributed 
system should certainly not be the programmer's 
responsibility. 	This 	is alleviated by viewing distributed 
operating systems and their executable programs as cooperat- 
ing processes. 	A highly 	successful 	system 	is 	the 
Distributed Computing System of Farber CFARB 73]. In this 
system, the structure and distribution of the set of proces-
ses is transparent to the user; and a high level of 
concurrency is achieved without use of low-levet process 
control primitives. 

Process naming of cooperating processes is still burdensome 
to the programmer. 	The same problem also occurs in current 
"mailbox" schemes as epitomized by the VAX 11/780 	system 
[DEC 77]. 	The naming or numbering of mailboxes must be 
known to the programmer or a creating process. This is com-
monly referred to as the IPC-setup problem, coined by Elliot 
Oraanick in reference CORGA 72]. 	The designers of UNIX 
[THOM 74] CRITC 78] sought to alleviate this problem. 	They 
invented the "pipe." 	In UNIX a user program, running in its 
own process, may take the place of a file in a manner which 
is transparent 	to the original program. Each program may 
have its standard input and output 	files replaced by 
programs, 	thus building via the UNIX shell arbitrarily long 
linear chains (a pipeline) of programs. 	UNIX automatically 
transfers the data between processes and synchronizes the 
process as it intercepts the standard input and output file 
operations. 
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UNIX "pipes" eliminate the need for process naming and treat 
concurrency, resource allocation, and inter-process protocol 
as a data flow problem. 	Interprocess protocols are treated 
simply as simplex data streams. 	The job control 	language 
provided by the UNIX shell becomes a pseudo data flow 
language and 	resource allocation 	is transparent 	to the 
programmer. 	However, there are a considerable number of 
programmer protocols which are not served by "pipes." 	As 
acknowledged in reference ERITC 78], "pipes" cannot be used 
to construct multi-server subsystems. 

UNIX will 	support 	general 	interprocess 	communication 
protocols but these are not generated by the shell. These 
can be programmed as a set of child processes whose "pipes" 
have been setup by a parent process. 

A Research Direction 

If we are to be successful in distributing programs across 
highly distributed systems, we must provide the programmer 
of dynamically interconnected cooperating processes a job 
control language (software configuration control) as easy to 
use as Hoare's, communicating sequential processes. 	It seems 
that the most promising direction is to extend 	the concept 
of the UNIX shell to automatically generate the more complex 
protocols available to the parent processes previously 
described. 	It must 	then also be extended to generate 
(representations of) 	distributable configurations of com- 
municating processes. 

Work in this area is underway at Kansas 	State University. 
The project* 	involves development of a Network Adaptable 
Executive (NADEX)EYOUN 79]. The attempt is to permit the 
user to specify data fLow at the command level and have the 
command interpreter generate a distributable software con-
figuration of nodes connected by full duplex data transfer 
stream connections (DTS connections) to form an undirected 
graph. 	In general, a node may be thought of as a process. 
Each of the connections consists of two independent 	bi- 
directional data transfer streams. One of these streams 
uses small parameters while the other uses a standard-sized 
data buffer. The data buffers carry along with them size 
and status indicators whereas the parameter buffers contain 
only a small amount of user-supplied data. 

A user program running in a node performs serial buffered 
READ and WRITE operations in its various connections. 	The 
connections 	are 	numbered, 	and 	the proaram attaches 
particular meanings and implements particular protocols 	for 
each of 	its 	connections. 	A connection can connect a node 
either to a user program or to a system process used to ac- 
cess a 	file or an I/O device. 	The program cannot tell the 
difference between these modes of operation. 	This clearly 
provides all of the power of the UNIX pipelines while remov- 
ing the linearity constraint on the structure of the connec- 
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tion graph. 	Also, 	the 	connections are bi-directional so 
that, for example, a write-request/read-response protocol to 
access a random file can be implemented. 

For these serial buffered READ and WRITE operations, a 
priori protocol knowledge can be specified to the underlying 
data fLow implementation (buffer control) to enable it to 
maintain a check for validity of user protocol (in terms of 
data flow) during execution. This protocol checking is 
critical in "un-debugged" (user-written) nodes. 	Examples of 
such protocol violations occur many times in the facilities 
of SOLO EBRIN 76]. 	Deadlock detection is also performed 
based on data flow in a configuration which 	is distributed 
across machines connected by a network IPC. Multiserver 
subsystems, such as a data base management system, are im-
plementable as a configuration with multi-connection READ 
(multiple condition WAITs) and conditional WRITE operations 
provided on data transfer streams. Interconfiguration con- 
nections are also provided. Finally, the command 
interpreter and the node interface (PREFIX) provide all the 
mapping of logical data streams (ports) onto implementation 
data streams. 

* Supported in part by the Army Research Office under Grant 
Number P-16160-A-EL. 
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SECTION 6 

THEORETICAL WORK 

6.1 MUM 1120 2122/ 11112RI 

STRUCTURE of Discussion: 
Distributed system without central (or any) control 
Free ranging, undirected (no standards) 
Principles, not mechanisms 
Theory, not formalism 
Independent of Technology 
Outline: Target drawn around arrows 

WHAT IS A DISTRIBUTED SYSTEM? 
A distriuild syktem is one in which the communication 
of data between processes takes a significant amount of 
time compared to the time needed to execute one step of 
a process. 

Examale: PDP.10 

SPECIFICATION 

(Note: 	Numbers 	in parentheses are "pointers" to am- 
plifying material in paragraph 6.2.) 

Definition: 	A specification is 	that 	which 	lets 	one 
decide if a running system is behaving correctly. 

State-free Methods 
Applicative programming (6.2.1.1) 
Teletype paradigm (6.2.1.2) 
Observable I/O behavior (6.2.1.3) 

State-based Methods (6.2.1.4) 
State graphs (6.2.1.5) 
Critical sections (6.2.1.3) 

Problems 
Avoid explicit state description (6.2.1.6) 
How to specify complex systems (6.2.1.7) 

MO D EL S 

Definition: 	A model exhibits the properties of an im- 
plementation 

MODELS CONSIDERED (Procedures and Files) 
General test and set model (6.2.2.1) 
Bit transmission model (6.2.2.2) 
Interpretive model (6.2.2.3) 

OTHER MODELS (6.2.2.4) 
Actor- induction 
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LISP 
etc. 

RELEVANCE OF MODELS (6.2.2.5) 
PROBLEM AREAS (6.2.2.6) 

Existence of single basic model 

ANALYSIS 

Inferring a system's behavioral properties 
Formal 	proofs 	of 	correctness 	(6.2.3.1, 	6.2.3.2, 

6.2.3.3) 
Fault tolerance (6.2.3.4) 
Performance 

measurements (6.2.3.5) 
Complexity 

Space (6.2.3.6) 
Time (6.2.3.7) 

Data transfer (6.2.3.8) 
Simulation/emulation (6.2.3.9) 

Problems (6.2.3.5) 
Trade-off techniques 
Relevance of models 
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6.2 MEL/ELM !AI i91. 

" 2" 

4 

6.2.1.1 Applicative Programming 

Want to represent a system as composition of side-effect-
free functions. 

Can extend a "pure" applicative programming language with 
constructs for multiprocessing: 

- Suspended evaluation of subexpressions. 
- Multisets - unordered collection of expressions 

which becomes ordered as evaluations terminate. 

Encapsulation of expression evaluations gives alternatives 
of distribution of compution: factor problem into assigning 
"capsules" to processing nodes. 

Potential disadvantage: 	in any "real" situation, there is a 
need for some global reference; such a reference cannot be 
handled if side-effects are forbidden. 

Reference: 	CBUCK ] 

6.2.1.2 Teletype Paradigm 

All that the user knows about a system is what goes 	in and 
what 	comes out. 	What happens behind the panels is of no 
concern to him. 	This view 	is 	captured by the following 
paradigm. 	There 	are N users, each sitting at a teletype. 
The system behavior consists of the N rolls of paper. The 
correctness of this behavior must be decidable just from 
looking at those teletype rolls. 

6.2.1.3 Behavior by Interleaved Teletype Rolls 

If I/O behavior is to be described in a way suitable 	for 
reasoning about composition of systems, it is not sufficient 
to consider only the separate "teletype rolls." It is pos-
sible for two systems with the same individual port behavior 
to be incorporated as modules in a larger system, causing 
different external behavior for the larger system. A 
sufficiently inclusive behavior description to avoid this 
problem can be given by describing the interleavld teletype 
rolls. Thus far, such descriptions have been used for sim-
ple synchronization and data base behavior, and appear to be 
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quite natural and usable. 

6.2.1.4 State-based methods 

A state-based specification method was used for the al-
gorithms in [BURN 78]. There the appropriate mutual ex-
clusion behavior was expressed by grouping process states 
into "regions" comprising critical states, other program 
states, and protocol states. Desired exclusion, deadlock-
free and fairness behavior was then described in terms of 
the progress of processes through their regions. Such 
description led to clean formal reasoning about the proces-
ses. The description, however, does not appear to be very 
easily suited for reasoning about the system as a building 
block for Larger systems. 

6.2.1.5 State Graphs 

Thiagarajan has used the global state model to give a simple 
definition of Shapiro's algorithm for the maintenance of 
redundant data bases in a distributed environment. This 
permits an elegant and simple proof of correctness. 

6.2.1.6 Jellybean Example 

There are examples of simple systems in which one cannot 
talk about the state of the system at any particular point 
in time. The example involves two processes modifying the 
number of jellybeans in a factory, and one process counting 
the total number of jellybeans. The behavior of these three 
operations cannot be explained by any sequential ordering of 
their executions. How can we specify correctness of this 
system in a sufficiently general way to allow this type of 
implementation? 

Reference: 	CLAMP 76]. 

6.2.1.7 How to Specify Complex Systems 

We are faced with a dilemma. We do not want to have to men-
tion states in our specification. But it is very difficult 
to write any non-trivial specification without talking about 
states. For example, try specifying a memory cell without 
talking about states. 
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6.2.2 taglil 

6.2.2.1 The Test-and-Set Model of IPC 

The Test-and-Set primitive is a powerful indivisible opera- 
tion for accessing a shared variable for communication among 
asynchronous processes. 	The model treats 	asynchronous 
operation by considering timing sequences. 	Correct al- 
gorithms must work for all timing sequences. Fairness 
properties may require that the timing sequences be restric-
ted to those satisfying "finite delay." A sequence satis-
fies finite delay if no process has to wait forever for a 
timing message. 

The Test-and-Set primitive is in one sense the most powerful 
primitive possible. Hence, the lower bounds results for 
this model apply directly to all weaker primitives. 

To model general distributed systems, 	it is necessary to 
model processes and significant-distance communication. 	To 
model a message channel in the simplest 	and most natural 
way, we think of it as a special type of process with access 
to two variables, one at each of its ends. The process sim-
ply reads the contents of one of the variables and writes 
the result in the other variable, ad infinitum. We imagine 
this process to be asynchronous with respect to the other 
processes in the system. 	Thus communication delays are as- 
sumed to be arbitrary. 	This model seems simple and general 
enough to provide a basis for simulating and comparing 
distributed systems of practically any type. 

6.2.2.2 Bit Transmission Model 

Lamport 	favors a more Low-level IPC model: 	transmission of 
1 bit of information from one process to another. Requires 
a 1 bit storage device which can be written by process A and 
concurrently read by process B. Non-trivial to implement on 
atomic register which acts as if reads and writes are total-
ly ordered. Some results are in CLAMP 777, others are un-
published. 

6.2.2.3 SS Model 

The applicative technique uses an interpretive language to 
describe a distributed 	system. 	An 	interpreter for ap- 
plicative language may then serve to model system behavior. 
The unordered evaluation of expressions 	in a multiset 
becomes implemented as a scheduler. 	Communication may be 
modeled in terms of the elapsed simulated time associated 
with each parameter passing operation. 
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6.2.2.4 Other Models 

Certain models, although significant, failed to receive 	at- 
tention due to the lack of advocates in the group. Most 
notable were the Actor-Induction Model of Carl Hewitt and 
Petri Nets. 

6.2.2.5 Relevance of Models 

Models of distributed systems are abstractions of real or 
hypothetical systems. The relevance of any abstraction 
depends strongly on its intended application -- the abstrac-
tion should preserve the important features of the situation 
being modelled and discard the unimportant. Models reflect-
ing details of current technology are appropriate for under-
standing present-day distributed systems but they become 
quickly obsolete as the technology shifts. models attempt-
ing to capture the universal constraints on any system im-
posed by basic laws of physics are more fundamental, but 
evaluating their relevance to digital systems requires a 
considerable understaning of electronics and physics, and 
they will likely be too primitive and detailed to shed much 
light on higher-level issues such as those discussed el-
sewhere in this report. 

For example, 	most models of parallel systems include some 
sort of synchronization primitive whether it be P and V, 
monitors, 	message-passing, or whatever, and most practical 
systems have hardware which 	implements these primitives 
satisfactorially. However, the glitch problem aparently 
prevents the construction of a perfect arbiter (as oppsed to 
one which is satisfactory because its probability of failure 
is infinitesimally small), so any physical realization of an 
arbiter has a possibility of failure through infinite delay. 
The test-and-set model and the 1-bit transmission model can 
both 	describe 	perfect arbiters and so both must be 
considered only approximations to reality. 	While test-and- 
sets seem at 	first 	sight 	to be far from primitive, they 
encompass operations such as read, write, increment memory, 
etc. 	which might or might not be atomic in a given system, 
so lower bounds on complexity apply to all 	such weaker 
models. 	The fact that a fair arbiter is needed for a hard- 
ware realization of the model does not 	detract from its 
usefulness 	in describing solutions to the critical section 
problem, for building critical section solutions with strong 
fairness properties (bounded-waiting, FIFO) from arbiters 
only known to be free from lockout is a non-trivial task. 
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6.2.2.6 Problem Areas 

Although 	a number of models were proposed for interprocess 
communication, we observed that there was no "basic unit" by 
means of which all of them could be implemented. Identify-
ing such a basic unit would give a uniform scale for compar-
ing different communication mechanisms. 

6.2.3 AaA1/111 

6.2.3.1 State Graph Analysis 

See 6.2.1.5 

6.2.3.2 Critical Region Algorithm Proof 

A formal proof has been developed for one of the mutual ex- 
clusion algorithms given in [BURN 78]. 	Although the proof 
follows the general 	format of invariant-assertion proofs, 
the major ideas in the parts of the proof that deal 	with 
fairness are contained in precisely-stated 	lemmas which 
mirror natural intuitive understanding of the algorithms. 
The parts of the proof that deal with reachability of states 
have a less intuitive and more case-analytic flavor. A 
current effort is to decompose the invariants in a way that 
will allow reachability properties also to be verified in a 
way that accords intuition. 

6.2.3.3 Global Assertions 

There are well-developed techniques for proving correctness 
properties of non-distributed multiprocess programs. Lam- 
port used to feel that they were not 	good for distributed 
systems 	because (1) they used global assertions which imply 
a global system state, which is undesirable 	(see 6.2.1.6), 
and 	(2) they require that communication arcs be represented 
by processes, which means lots of processes. 	However, he 
has 	recently discovered that these techniques do work well, 
since (1) there seem to be a class of "good" global as-
sertions, and (2) you have to specify the communication arcs 
very carefully anyway. 
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6.2.3.4 Fault Tolerance 

We consider two types of failure: 	unannounced halting 
(sleeping) and announced shutdown 	(dying). 	Peterson and 
Fischer 	[PETE 77] and Rivest 	and Pratt [RIVE 76] give 
critical section algorithms in a shared-variable 	read/write 
model 	that are immune to process dying, i.e., the remaining 
processes continue correct operation. 

Performance and tolerance to failure by sleeping are closely 
related. 	If one process can be hung up forever because it 
is 	waiting 	for a failed process, then its performance will 
be degraded by a non-failed process that is 	simply running 
very slowly. 

We have algorithms for the test-and-set model solving the 
k-critical section problem which in a sense have k 	indepen- 
dent paths to the critical section. That is, even if k - 1 
processes fail, the other processes will not be waiting on 
them and will continue operating and gaining access to the 
remaining resources. 

6.2.3.5 Measurements 

The traditional measures of "time" and "space" do not form 
an adequate framework for assessing the complexity of 
distributed computations. 	In order to understand the "cost" 
of a distributed computation, we need to enlarge and 	refine 
our 	collection of 	cost measures. 	For example, "time" may 
refer to total time or time measured at an individual 	site. 
Similarly 	"space" 	could refer 	to either the size of the 
total system, or the size of individual sites. In addition 
to the "time" and "space" required to perform a computation, 
we should also consider the "amount of interprocess com-
munication," both the total traffic flow over the whole 
system, 	and 	the bandwidth requirements of individual chan- 
nels. 

In analyzing sequential processes, we are used to thinking 
in terms of time-space tradeoffs. 	Are there analogous 
tradeoffs for distributed systems? 	For example, one can 
usually get by with smaller individual processors if one is 
willing to have more processors, 	and consequently, more 
interprocessor 	communication. 	Can 	this 	tradeoff of 
interorocess communication vs. complexity of individual 
process be made precise? Again, one usually has the choice 
of either implementing shared global resources or duplicat-
ing these, resources at different sites. Are there 
guidelines for deciding which of these strategies to pursue? 
In general, we need to deal with the following sorts of 
questions: (i) What are the characteristics of those 
problems which allow one to make 	effective 	use 	of 
distributed computation? 	(ii) Conversely, can we learn to 
recognize problems whose solution would require such large 
amounts of interprocessor communication as to render these 
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problems inherently unsuited for solution in a distributed 
manner? (iii) Can we identify techniques for tailoring 
distributed architectures to the solution of particular com-
putational problems? (iv) Can we formulate a theory which 
combines concerns for time-space complexity with concerns 
for minimizing interprocess communication, thus providing an 
adequate framework for assessing the complexity of 
distributed computations. 

6.2.3.6 Space Complexity for IPC 

In measuring space complexity for IPC, the shared variable 
models provide a natural measure - simply the number of 
states necessary in the shared variables. Tight upper and 
lower bounds on the communication space required have been 
demonstrated for certain synchronization problems using the 
Test-and-Set model. Additional bounds are anticipated for 
other problems and primitives. 

Reference: 	[BURN 78] 

6.2.3.7 Time Complexity Measures for IPC 

A great deal of work has been done in the time complexity of 
sequential algorithms. Synchronous parallel computations 
commonly use a "tree depth" measuere for the time com-
plexity. These techniques do not extend easily to asynch-
ronous parallel processing because there is no direct 
measure of global time directly derivable from the steps of 
the individual processes. For example, if any process 
reaches a state where it must wait for communication from 
another process, it may take an unbounded number of steps 
before the remainder of the system changes state. Since a 
simple sum of all processor steps would often give unbounded 
lower bounds for many problems, (and hence are 
uninteresting), new measures are needed. Current work is 
proceeding examining time bounds of test-and-set algorithms 
using the following types of bounds. 

1) Count 	the total number of "transitions" 
between two events of interest. 

2) Count the number of 	transitions 	of 	a 
particular process between two events. 

3) Count the total number of transitions between 
two events divided by the number of processes 
involved. 

(A "transition" is a step of a process which causes a change 
in the shared variable) Each of these bounds appears to be 
of interest. 
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6.2.3.8 Data Transfer Performance 

Abelson LABEL 783 has 	recently developed techniques for 
proving inherent Lower bounds on the amount of interprocess 
communication required for performing computations 	in a 
distributed system. 	Using these techniques, he has analyzed 
distributed systems 	which perform matrix operations and 
solve systems of linear equations. His work shows that, 
from the point of view of minimizing communication, the ob-
vious techniques are optimal. 

6.2.3.9 Performance Results 

An alternative (perhaps a copout) to formal analysis 	is to 
use a simulation or emulation. This, however, is not an 
entirely straightforward proposition. First, a suitably ac-
curate description of the distributed system must be derived 
and second, the artificialities of the simulation/emulation 
must be factored out. 
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6 . 3  E211112h Ealll 

6.3.1 Aklinn 

Theoretical Issues in Distributed Computation 

by 

Harold Abelson 
MIT 

Current 	research 	in the area of distributed computation 
focuses almost exclusively on algorithms and systems, while 
the problem of determining the inherent complexity of 
distributed computations 	remains 	virtually 	unexplored. 
Moreover, most theoretical work in the area of parallel 
processing relies on a model of computation in which all 
processors have ready access to all memory registers --- an 
assumption which is unrealistic when dealing with 
distributed computations. For example, although the solu-
tion of n linear equations in n unknowns can be accomplished 
in order (log n)**2 steps if one ignores information trans-
fer, it can be shown that, for typical interconnection con-
figurations among n processors the interprocessor data 
transfers alone require on the order of n steps. 

We need to address directly the problem of interprocessor 
data transfer and to establish bounds on the amount of com- 
munication required for a wide variety of problems in a wide 
variety of distributed architectures. 	In general, we need 
to deal with the following sorts of questions: 	(i) What are 
the characteristics of those problems which allow one to 
make effective use of distributed computation? 	(ii) Conver- 
sely, can we 	learn to recognize problems whose solution 
would require such large amounts of interprocessor com-
munication as to render these problems inherently unsuited 
for solution in a distributed manner? (iii) Can we identify 
techniques for tailoring distributed architectures to the 
solution of particular computational problems? 	(iv) Can we 
formulate a theory which combines concerns 	for time-space 
complexity with concerns for minimizing interprocess com-
munication, thus providing an adequate framework for asses-
sing the complexity of distributed computations. 
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6.3.2 Elul= 

Time Complexity of Distributed Computations 

by 

Michael J. Fischer 
University of Washington 

A 	fundamental question in the theory of distributed comput- 
ing is how well a particular system does its job. To 
determine this, one needs a specification of the job and a 
means of comparing the efficiency of the given system with 
other candidate systems. 

Three aspects of distributed systems complicate considerably 
the 	specification of 	the desired behavior. 	First of all, 
non-terminating computations tend to be the rule rather than 
the exception, 	so infinite execution sequences must be 
described. 	Secondly, because of variablity in the relative 
speeds of the different processes, the system is inherently 
non-deterministic. 	While 	determinate 	behavior 	is 
nonetheless possible, 	it may not be required, so the 
specification must allow for variablity in the observed 
behavior. Finally, the inputs and outputs of a distributed 
system may be dispersed over a number of sites, and the com-
munication aspects of the problem need to be captured in a 
natural way. 

Finding a satisfactory time measure for distributed systems 
is much more difficult than for sequential programs. 	In the 
latter case, 	elapsed time is just the sum of the times of 
the basic instructions. 	With parallel computations, certain 
steps may execute concurrently, so the simple linear depen-
dence of elapsed time on the instruction speed is lost. For 
this reason, it becomes attractive to look instead at the 
dependencies between steps of various processes rather than 
at elapsed time. When these dependencies are represented as 
a partial order, the longest path through the order gives a 
natural measure that reflects the time necessary, assuming 
maximum concurrency. 

Once we have a satisfactory notion of the execution time for 
a particular interleaved sequence of steps, it is still not 
clear how to base a comparative analysis of systems on this 
information, for different systems solving the same problem 
will not necessarily exhibit the same interleavings. What 
is needed is a set of parameters common to all solution 
systems in terms of which the time can be expressed. 

Finally, the relative efficiency of a system may depend 
strongly on whether one is interested in some notion of 
total system throughput or in response time at a given site 
for in some other auantity). 
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6 . 3 . 3  kg222Li 

Theory and Formalism 

by 

L. Lamport 
SRI International 

Formal methods are needed to specify and prove the correct- 
ness of distributed systems. 	The primary requirement for a 
specification 	is that it be understandable by humans, since 
only a human can 	determine 	the 	correctness 	of 	a 
specification. 	Moreover, a specification involving program 
variables does not meet this criterion, since prooram 
variables are part of the solution, and are of no concern to 
the user. There has been very little progress in this area. 
It is rare to find even a precise informal statement of what 
a simple distributed algorithm is supposed to do -- let 
alone a specification of an entire system. 

A formal specification is 	useful 	only 	if 	there 	is 	some 
formal 	method 	for 	deciding 	if a 	system meets its 
specification. Currently, there exist formal methods for 
proving properties of non-distributed muttiprocess systems. 
We need to discover how these methods can be extended to 
distributed systems, or else develop new methods. There has 
been some progress in this area, but we are very far from 
being able to handle real, complex systems. 

I feel that in order to make progress in these areas, it 	is 
necessary to be able to deal formally with non-atomic 
operations -- to describe the system as a collection of 
operations which do not act as if they were executed in any 
sequential order. I have some vague, preliminary ideas on 
how this can be done. 

6.3.4 lansi 

Complexity Theory of Distributed Systems 

by 

Nancy Lynch 
Georgia Institute of Technology 

Most of the current work in theory of distributed systems 
seems to me to focus on a rather high level of programming. 
Virtual machines and networks, Hoare-style communication 
mechanisms which combine powerful synchronization and value-
passing behavior, related mechanisms which assume preserva-
tion of unbounded numbers of messages, serializers, abstract 
data types with "nonatomic" elements, etc. are all user- 
oriented abstractions which allow 	logical organization of 
complex algorithmic behavior without concern for troublesome 

Georgia Institute of Technology 	 IPC Workshop 



Section 6 
	

THEORETICAL WORK 	 Page 68 

implementation 	detail. 	Unfortunately, 	there are good 
reasons why such detail cannot entirely be suppressed. 
Efficiency of operation of a distributed system is of 
paramount concern to the user. There are so many more pos-
sible variations in implementation in a distributed en- 
vironment than in more traditional 	computing environments 
that 	knowledge of the implementation method cannot help but 
influence the user's program design; 	indeed, 	some such 
knowledge . is 	probably 	necessary for even acceptably 
efficient use of the system. 

It is important to complement 	high-level 	theoretical and 
language-design work with a firmly-based theory of lower-
level distributed programming, geared particularly to 
measurement of the efficiency of performance. Very simple 
and general primitives such as shared variables and one-way 
arbitrary-delay communication channels should be used as a 
general basis for such a theory. Various appropriate 
measures of resource use and performance (e.g., communica-
tion "bandwidth", total number of changes to variables that 
occur, total "depth" of the computation) can then be defined 
precisely. Then the costs of implementing the various high-
level mechanisms mentioned above can be assessed objectively 
and compared. While the user might not need to know precise 
implementation details, 	he would at 	least 	benefit from 
knowledge of these colts in resource use, 	for the various 
available mechanisms. 

As for sequential 	computing, the theory of distributed 
systems will not ultimately be concerned with implementation 
of different system primitives, but with efficient 	fulfill- 
ment of application requirements. 	Thus, the theory can be 
expected to focus on design and analysis of systems exhibit- 
ing certain desired behavior, in application areas 	suitable 
for 	distributed computing (e.g., load-sharing, multiple use 
of databases, mail communication, synchronization). 	A 	low- 
level model and elementary complexity measures such as those 
described 	will 	form a useful basis for such analysis, with 
higher-level constructs used along the way. 	Also important 
for such a theory will be the development of reasonably 
consistent means of specifying desirable behaviors 	for 
systems. 	Such behaviors might involve the input-output 
interface of a system or the internal state behavior of 
processes. 

A prototypical development has been carried out (jointly 
with Michael J. Fischer and graduate students J. Burns, P. 
Jackson, and G. Peterson) for simple mutual exclusion 
behavior. Further work is currently in progress. 
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6.3.5 

Theory and Formalism 

by 

Stephen W. Smoliar 

Conventional modes of programming and algorithmic specifica-
tion have many potential shortcomings in the design and im-
plementation of distributed systems. In his 1977 ACM Turing 
Award Lecture, John Backus cited seven "inherent defects at 
the most basic level" in traditional programming languages: 
"their primitive word-at-a-time style of programming in-
herited from their common ancestor--the von Neumann com-
puter, their close coupling of semantics to state 
transitions, 	their division of programming into a world of 
expressions and a world of statements, their inability to 
effectively use powerful combining forms for building new 
programs from existing ones, and their lack of useful 
mathematical properties for reasoning about programs." Un-
fortunately, a good deal of thinking about distributed 
systems has become bogged down precisely because of a 
preconceived commitment to these same inherent defects. 

A fruitful 	alternative 	is 	the functional 	style of 	ap- 
plicative 	programming. 	The 	central 	idea 	is that 	all 
programs are expressed as functions. The coupling of a 
function with its arguments constitutes an exarellion, and a 
process is that computational activity involved in the 
evalialian of an expression. The most important aspect of 
this approach is that it has eliminated the need for the as-
signment statement, since the only allowable assignments are 
parameter bindings. 	Recursive composition of functions 
eliminates the need for loops 	(and with it many of the 
concerns of structured programming). Finally, input/output 
functions may be transcended by a view of files as arguments 
and values of expressions. 

Multiprogramming concepts may be best expressed 	in ap- 
plicative terms by introducing a data structure known as a 
mall -fut. A multiset may be viewed as an unordered collec-
tion of expressions whose evaluations may proceed in paral-
lel. Retrieval of data from a multiset is contingent upon 
termination (also known as convIrgeasg) of at least one 
evaluation process; and retrieval effectively transforms a 
multiset from an unordered collection of expressions into an 
ordered sequence of values. Furthermore, multisets may be 
constructed through multiple applications of the same func-
tion to each of the elements of an already-constructed mul-
tiset. Finally, the conventional conditional expression may 
be extended to control whether or not an evaluation process 
ever converges: 	if the predicate of a zuaLded conditional 
is not 	true, then the evaluation process automatically 
diverges. 
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It 	is thus possible to formulate algorithms for distributed 
systems in terms of a rather simple applicative language. 
In fact, the applicative language provides a very powerful 
tool for the study of distributed systems; this toot is the 
Language's inierlarellr. 	Such an interpreter must know how 
to implement the evaluation of expressions; 	but, more im- 
portantly, 	its definition must include a protocol for how 
muttisets are constructed and how their elements 	are 
evaluated. This protocol may be instrumented to reflect the 
behavior of a real-time environment. The interpreter thus 
provided a basis for simulation experiments within which one 
may investigate how multiple processors may be profitably 
applied to multiset interpretation. 
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SECTION 7 

CURRENT TECHNIQUES AND EXPERIENCE 

7 • 1  A E/21L11 /AIER =EMILE. 1/1ILB 

An Informal Paper 

by 

Ed Basart 
Hewlett-Packard Company 

Processes are the basic entity in our computer system. When 
a program runs, it exists as a process, and gives a program 
the illusion that it has its own private processor. The 
system is then constructed to support processes effectively 
by making process communication and switching efficient and 
inexpensive. As a consequence, multiple processors can be 
used to increase the parallelism of the processes running in 
the system. 

The advantages of such a computer system are program 
modularity, 	increased 	performance through parallelism, 
growth by adding processors, and physical distributability 
of functions. 	Processes are used as the single "object" 
that unifies operating system services and resources. 	The 
operating system exists as a collection of processes, and 
process primitives are used as the kernel of the operating 
system. 

Processes communicate using queues and the send and receive 
primitives. 	Multiple queue writers 	are permitted, 	while 
only a single queue reader is allowed. Send and receive 
handle the details of the path between processes for any ar-
bitrary hardware configuration of processors. This includes 
providing mutual exclusion for processors sharing memory and 
invoking data communication drivers in systems not 	sharing 
memory. 	The data communications processes resolve the con- 
nection between processors, whether the connection is a high 
speed bus, through telephone lines, or an indirect path 
through more than one processor. 

In order to send a message to another process, the sending 
process must first establish a link to a 	receiving process 
queue. 	Links are made by the file system. Opening a link 
is very much like opening a disc file. Capabilities and ac- 
cess rights to queues are checked at open time by the file 
system, 	which eliminates message verification for the send 
and receive primitives, 	and also for the communicating 
processes. 
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After a link is open, the sending process sends a message to 
a receiving process by specifying a link number, along with 
the data. 	The receiving process reads its queue by specify- 
ing its queue number and issuing a receive. 	The receiving 
process 	creates a queue initially by asking the file system 
to allocate space for the queue and grant the receiver 
"queue" access. 	Linking a sending and a receiving process 
establishes half duplex communication. Full duplex com-
munication may be established by creating another queue and 
opening another link in the opposite direction between the 
two processes. 

As the file system opens a link, it determines whether the 
two processes are residing on different computers. 	If 	so, 
the address placed in the 	link is that of a surrogate 
process, a data communications driver that handles the 
details of the communication line. 	At the other end of the 
line is another surrogate data communications process. 	This 
process has a link pointing to the receiving process queue. 
This mechanism allows uniform process communication for both 
local and remote processes. 

Creating a 	single queue for multiple writers seems to be a 
mixed blessing. One advantage is that the system makes a 
single space allocation for the queue, and no new al-
locations need to be made for each writer. Another ad-
vantage is that the reader goes to only one location to read 
messages. This is particularly important when the writers 
and reader exists on different computers. 

The disadvantage of a single queue is that a "mad" writer 
can clog the queue. There are two solutions to this 
problem. The system can be made cognizant of a writer's 
"message rate," and a process can be given lower execution 
Priority if its rate becomes too high. The other solution 
is to maintain a message count for each writer. The reader 
then decrements the count as the queue is read. 

Neither of these solutions is very attractive. 	They both 
suggest high cost to protect against the mad writer. For 
the present the approach is to make queues large enough to 
absorb an 	initial outburst from the writer. 	The reader is 
given a "break link" function 	that disallows any 	further 
messages from a particular writer. This forces detection of 
the problem on the communicating processes while relieving 
the send and receive primitives of an added complication. 

Three similar computer systems have been influential in the 
design of our system. They are: 	1) the Tandem 16 computer 
system manufactured in Cupertino, California, 2) 	the Demos 
operating system for the Cray-1 computer at Los Alamos, New 
Mexico, and 3) the Thoth operating system developed at the 
University of Waterloo, Ontario. 
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Our system has two primary differences from the mentioned 
ones. 	The first 	is 	in handling all 	types of physical 
processor interconnections at 	the primitive level, rather 
than doing it in the operating system. The second is in 
making much greater use of processes and messages. All of 

the above systems break away from their message systems for 
certain types of functions that are considered to be too ex-
pensive to be done in a message system. 
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7 • 2 	IN ELIKRULNL221 2IIIRIAU112 LUEUILI !ILIUM 

HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS 
AND INTERPROCESS COMMUNICATION THEREIN 

by 

J. S. Sventek 
Lawrence Berkeley Laboratory 

7.2.1 IaL2S199112n 

The primary focus of the Advanced Systems Group in CSAM is 
the question of distributed processing in a network consist-
ing of hosts with vastly differing architectures. Our main 
goal, at this point in time, is to provide a distributed en-
vironment which is easily used by people with very diverse 
needs; for example: 

1) a research group developing a distributed 
relational database system 

2) administrative personnel maintaining current 
accounting databases 

3) graphics researchers exploring new and novel 
representations 

4) high energy physicists designing systems to 
collect and sample on-line vast quantities of 
experimental data 

In order to achieve the goal of easy use, we are somewhat 
less concerned with "efficiency" issues than with merely 
making the system functional. From empirical studies of a 
working system, we hope to discern the "inefficient" aspects 
of the system, and may devise algorithms to alleviate the 
problems. 	Efficiency, in this context, 	is only concerned 
with throughput. 

Two entities must exist before an easily used distributed 
system can be realized: 

1) a common shell 	(command 	line interpreter). 
It 	is of somewhat limited utility to provide 
virtual terminal capabilities on the hosts in 
the network if the user must 	learn 	a 
different 	language to communicate with each 
one. Much of our recent research has been in 
the development of just such a portable 
shell. 	A prototype of this shell is current- 
ly running on the following systems: 	PDP- 
11/780 	(VMS), 	PDP-11/70 	(IAS), 	CDC 	6600 
(homegrown operating system). 

2) a common file naming convention. 	Current 
research (based on a pathname structure) 	is 
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progressing in this area, and a prototypical 
system is operational on the PDP-11/70 (IAS) 
system. 

The 	rest of the discussion will asume that these two 
entities exist on all hosts in the network. 

7 • 2 • 2  Emnaananiai imaniiiial in a laaamiar Sxligs 
There are three basic quantities in a civilized computer en-
vironment which a programmer must be able to manipulate. 
They are: 

1. file - this category includes non-file struc- 
tured 	devices 	(e.g., 	ttO, mt0, etc.), data 
files, and executable image files. 

2. process - this entity describes an image file 
plus its context (standard input, output, and 
error files, default 	directory, 	priveleges. 
etc.) which is currently in a schedulable 
state or waiting upon some resource in order 
to become schedulable in a particular host. 

3. vertex 	- this 	"virtual" 	entity allows two 
processes to extablish an interprocess com-
munication Link. 

Several operating system primitives are necessary to allow a 
programmer to manipulate these quantities. 

Elie 2LitnItd 

open 
close 
create 
delete 
rename 
getc 
putc 
mark 
seek 
prompt 

open a file 
close a file 
if file exists, open it; else create it 
delete file 
rename file 
get a character from a file 
put a character into a file 
note current position in a file 
position a file 
output string with no terminating carriage 

control 

EL2LS.11 2Litalla 

spawn 	spawn process, sending specified arguments 
to it 

pstat 	query status of a process 
kill 	terminate process 
suspnd 	suspend process 
resume 	resume suspended process 

Vertex oriented 
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pipe 	create a vertex and open a link to it 

A few more words concerning vertices are in order. A vertex 
is a valid input parameter to the open and close primitives. 
In this way, subprocesses may be linked together by redirec-
ting the respective standard outputs and standard inputs to 
a vertex. The subprocess itself is oblivious to the source 
or destination of its information. A vertex is also a 
transitory quantity, in the sense that when all links to it 
have been terminated (via a close operation), it vanishes. 
All I/O through a vertex should be synchronous to avoid all 
of the problems inherent in buffering asynchronous I/O in 
dynamic system memory. 

7 . 2 . 3  hamlna lanxtallana 
Files are known globally by their pathnames: 

/hostname/default directory/filename 

Once a process has established a link to a file (via an open 
or create), the file is then known internally to the process 
by the id returned as the value of the primitive function 
invoked. 

Processes are known globally by the id returned as a 
parameter of the spawn primitive: 

/hostname/processid 

Vertices are known globally by the following pathname: 

/hostname/processid/vertexname 

One sees that as long as the first field of a file pathname 
can never assume the value of a process id field, this nam-
ing convention uniquely identifies all quantities. 

7.2.4 isailaanialian in a Iiialtikulag Inxitansta 
A skeleton of a typical primitive would look as follows 

if (local (ARGUMENTS) == YES) 

perform function 

else 

reformulate request (if necessary) 
forward request to KERNEL 
wait for result 
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The purpose of the local function is to determine if 	the 
request can be performed within the requesting process. 
(File and process oriented primitives can usually be per-
formed locally if they involve local files and processes.) 
If it cannot be performed internally, the request may have 
to be reformulated to include process context information, 
and is then forwarded to the KERNEL, which is an extension 
of the native operating system. Due to differences in the 
services provided by most native operating systems, one sees 
that the Local function will be system dependent. The KER-
NEL is a separate process, one per host, which has access to 
the physical links of all hosts in the network which are 
directly connected to the current host. The KERNEL fields 
three types of requests: 

1. local 	requests 	for 	local 	services not 
provided by the native operating system 

2. local requests for services on remote hosts 
in the network 

3. remote 	requests for local services on behalf 
of a requestor on a remote host 

For the first type of request, the KERNEL will perform 	the 
service, and return status and any other information to the 
requestor. The last two types of requests are linked in 
their function. 	For type 2, the KERNEL forwards the request 
to its counterpart, which receives a request of type 3. 
This request is performed, and return information is forwar-
ded to the original requestor through the network. 

All types of distributed activity are then supported in such 
a network environment. The following examples will serve to 
emphasize this point. 

7.2.5 LAWARill 

Virtual terminal 

User is currently interacting with the shell on host A with 
standard input, output, and error files being ttn, and 
default directory DEFAULT. User wishes to establish virtual 
terminal connection with host B. To do so, he/she issues 
the following command at his/her terminal 

B/shell 

A/shell detects that this is a request to spawn a process at 
another host, so it reformulates the command as 

B/shell <A/ttn >A/ttn >*A/ttn (DEFAULT) 
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and forwards 	request to A/KERNEL, which, in turn, forwards 
the request to B/KERNEL, which performs the service and 
returns status to the requesting process via A/KERNEL. The 
next prompt that the user sees will be that of the shell 
operating on host B, with the shell on A being suspended 
until B/shell has received an end of file on the standard 
input. 

Host IranlaALanix la Ualilt uliiilita 

User on host A wishes to copy a file from host A to host El; 
he issues the following command: 

copy file B/path/file 

The shell will spawn copy, copy will open file, and 	attempt 
to open B/path/file. The open request will be forwarded to 
A/KERNEL, which in turn forwards 	request to B/KERNEL. 
B/path/file 	will 	be opened, 	and all writes to it will be 
directed through the KERNELs and the network link. 

Intergrocess communication between proces2es on different 
hostl 

User on host A wishes to analyze a data file with a utility 
available on host B, directing the output of that utility to 
a graphic display program on host A which displays the 
results on the user's graphics terminal. 

% B/analyze <mydata 1 A/graphit 

A/shell will issue a spawn request to A/KERNEL with the fol-
lowing command line 

B/analyze <A/DEFAULT/mydata >A/shellid/pipel & 

where A/shellid/pipel 	is a vertex created by A/shell. 	The 
ampersand (&) indicates that A/shell does not wish to 	wait 
for the completion of 	the spawned process. 	A/shell will 
also 	spawn 	A/graphit, 	redirecting 	its 	input 	to 
A/shellid/pipel. A/shell can then sit back and monitor the 
progress of the two cooperating processes, regaining control 
when they complete or terminating them if errors occur dur-
ing their execution. 
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7 • 3  MIL012 EAILUAL2 Al AI 1U ELOANIII 

by 

R.L. Gordon 
PRIME Computer, Inc. 

Keywords: 	mailbox, IPC primitives, switch-board tasks, 
access lists 

7.3.1 initagullian 
It 	is 	the 	thesis 	of 	this short note that IPC facilities 
built around the notion of a protected mailbox could provide 
the basis for a robust set of primitives. 	Robustness, 	in 
this case, implies their utility in conventional mul-
tiprogrammed uniprocessor systems as well as shared memory 
multiprocessors, loosely coupled multiprocessors and local 
and long haul networks. The proposed mechanism can support 
different communication forms (N-process protocols), addres-
ses security issues, and assists users in the synchroniza-
tion of what is basically an asynchronous phenomenon 
(process communication). 

7.3.2 EL222Alg Ij Eallii11 

Mailboxes are created by a process "P" executing a primitive 
of the form: 

u = create(Access_List, T) 

which 	is 	sufficient 	to bind 	the process name "P" to the 
unique descriptor "u" of the created mailbox, and associate 
the 	list 	of 	processes appearing in the "Access_List" with 
the mailbox "u". 	In addition the create primitive specifies 
a maximum time "T" between mailbox use (I assume mailboxes 
that 	are not 	used are not useful). 	Thereafter, if the 
identifier "u" is valid, (e.g. not equal to ERROR) then any 
process "Pe" appearing on the "Access_List" and wishing to 
send mail to the process "P" would use a system call of the 
form: 

send message(buf, u) 

and continue execution. 	This primitive would have the 
effect of eventually placing the contents of "buf" in the 
mailbox "u" of process "P" along with the name of the sender 
"P 9 ". Process "P", wishing to receive messages in mailbox 
"u", would make a system call of the form: 
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receive message(buf, u) 

which would prohibit 	any 	further progress of "P" until 
either a message is received from a process on the 
"Access_List" or no message has been received during the 
time interval "T", specified in the "Create" primitive. 
Notification of this fact would would appear as a message in 
"buf" if the user had included a system process responsible 
for communication monitoring in his "Access_List". [See 
Section 7.3.6 on Fault Tolerant Aspects.) To complete the 
set of primitives a system call of the form: 

delete(u) 

would cause the mailbox "u" to be retired forever. 

7 • 3 0 3  InitljLLtion 

Initial 	dialogues are established 	by 	"receiving" 	an 
identifier "s" of the current system mailbox in a mailbox 
"r" that was originally created with only the name of a well 
known system process on the access list. The system mailbox 
identifier "s," would then be used to send messages to the 
system kernel, with replies being received in mailbox "r". 

One of the more difficult issues is with the design of the 
mechanism needed to establish communication with generic 
processes, (e.g. processes that represent a single service 
but may have multiple instantiations) and with discovery of 
newly created processes. The trouble stems from the fact 
users are incapable of establishing a dialogue with any 
process not known to them, and therefore cannot include them 
on the access list. For these reasons, it seems desirable 
to provide a "switch-board process" whose sole function is 
to provide a generic to specific name mapping. For example, 
such a service would be used to return the specific process 
name (or names) of the latest version of a fancy text 
formatter, when supplied with the generic name "format". 

7 . 3 . 4  

A unique descriptor represents a sort of capability (at 
least for communication purposes) since possession of a 
mailbox identifier provides the possesser with the potential 
for sending messages and requests to the process bound to 
the identifier. However, if the target mailbox does not 
have the sender on the access list the message may be 
discarded by the system, thus essentially controlling com-
munication through the maintainence and enforcement of the 
"Access_List." It is clear, therefore that security issues 
revolve around the ability to control changes to the 
"Access_List," an issue already explored by file system 
designers. 
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If one takes the view that a message is an attempt to access 
an object 	by a principal 	EGRAH 72], then this facility 
contains all the elements of the access matrix model ELAMP 
713 of protection. 	By having different processes act as 
monitors of objects one has a formalization of 	the access 
model since the identification of the accessor and the ob- 
ject being sought are both available to the monitor process. 

7 • 3 • 5  autuallaliga 

The availability of the senders identification coupled with 
the access control list provides the means to achieve 
solutions to synchronization of processes and to detection 
of boolean combinations of events. Creation of mailboxes 
with only one process name on the "Access_List" provide the 
facilities for a simple "pipe" (one way communication chan- 
nel) 	that can be used to construct a self 	clocking 
"pipeline" 	with 	the 	"send" and 	"receive" primitives. 
Logical "or"-ing of the input from two processes, say A and 
B, 	can be accomplished by simply including A and B on the 
"Access_List." more complicated forms of 	synchronization 
can be accomplished by creation of an intermediate process 
that performs the appropriate level of demultiplexino. 
Broadcast transmissions are simply achieved by iteration 
over a set of available mailbox identifiers. 

7 0 3,6  FAST I2iltani Al21111 

There appear to be many forms of communication errors that 
are recoverable by the technology underlying the IPC level. 
Failure of underlying mechanisms can easily be reported to a 
process if it opens a channel for that purpose by including 
the name of a system process on the "Access_List" on an al-
ready opened mailbox, or opening one for just that purpose. 
It seems to me that users who do not want to be concerned 
with error handling, should not be forced to carry along a 
lot of extra apparatus for those who do. One nagging 
concern of mine is whether the system should force error 
messages (especially for timeouts) into mailboxes that have 
not included the communication monitor on the "Access_List." 

Positive acknowledgement is purposefully not 	included in 
this scheme, but is left to the user to construct his own by 
setting up a duplex path between processes. As an aid, the 
design of the "create" primitive must have a value "T" for 
the maximum time between messages. Since the primitives are 
designed to be used over a wide range of situations most ap-
plications will have some knowledge of how long it is 
reasonable to wait for a reply or input from a 	cooperating 
process. 
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7.3.7 2amiatz 

A set of primitives for interprocess communication have been 
proposed that seem suitable for implementation in a wide 
variety of circumstances. Only briefly mentioned however, 
is the issue of process addressability when communication is 
desired between several processes. The solution of this 
problem requires the development of a name space architec-
ture that tackles the relationship between files, devices, 
processes, users and many other system objects, certainly 
beyond the scope of this short note. 
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7.4 GLEE 4L10.21121 a 2011111III 

by 

James R. Low 
University of Rochester 

The M2dgi 2f C2mgiali2a 

The model of interprocess communication that we use in DSYS-
PLITS has evolved from that used in the RIG (Rochester 
Intelligent Gateway) Operating System. Basically, we think 
of a program being composed of several independent processes 
(we call them "modules") communicating with each other only 
through messages. There is no directly shared memory. 
Processes are relatively stable and to "fork" a process 
means to create a totally new environment independent from 
that of the creator. Our basic model does not force any 
hierarchy on the processes though it is relatively easy for 
a programmer to think in terms of hierarchies if he wishes. 

2SYS (2istributed Sysiem) 

DSYS 	is basically a 	set 	of facilities added to existing 
programming languages and operating systems to support 
inter-process communication across a network of heterogenous 
machines (DEC PDP-10 running DECSYSTEM-10, Data General 
ECLIPSEs running RIG, and XEROX ALTOs running the ALTO 
operating system). DSYS consists of operating system inter-
faces and user interface procedures. 

Processes communicate via messages. The SEND primitive sup - 
ported by DSYS takes three parameters: 	the message to be 
sent; the process identifier of the destination 	(originally 
obtained through 	interactions with a name service process, 
or provided in a message from some other process); and a 
transaction key 	(analogous to a "port"). 	All connections 
between processes are implicit. If a process has obtained 
another processes name it can send that process a message 
without any explicit "open" command. Of course, the proces-
ses themselves may ignore messages which do not conform to 
higher Level (user-specified)) protocols. Transaction keys 
are used to separate various conversation streams. DSYS 
will guarantee that all messages with a specific transaction 
key sent from one particular process to another will arrive 
in the proper order. No guarantee is made about messages 
with different transaction keys. Details of the reliable 
transmission and flow-control mechanisms in the DSYS subnet 
may cause messages from one process to another with 
different keys to arrive in a different order than they were 
SENT. 
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Selective reception of messages is provided. A process may 
state that 	it wishes to receive only messages from a 
specific set of other processes or about 	specific transac- 
tion keys. Thus the general form of RECEIVE is 

RECEIVE msg FROM (sndris sndr2,... sndr3) 
ABOUT (trnil, trns2...) 

If there is more than one message that has suitable SENDER 
and TRANSACTION, an arbitrary one is selected (subject to 
the constraint of ordering within a SENDER-TRANSACTION pair 
mentioned above). If the user wishes to enforce more 
general priority mechanisms he may use the PENDING construct 
to see if there are suitable high priority messages before 
he receives lower priority ones. PENDING takes the same ar-
guments as RECEIVE and returns TRUE if there are suitable 
messages and FALSE otherwise. 	It does not actually perform 
the RECEIVE so the message queues are left intact. 	If all 
else fails and the user wants more general reception 
criteria then he can ask to receive all messages and then do 
his own local oueing. We believe this to be very rare and 
have not seen this done in the programs coded so far. 

DSYS performs all queue management, reliable transmission, 
and flow control. Application programs are notified of ex-
ceptional conditions (communication lines going down, other 
processes in the "distributed job" breaking) via emergency 
messages. 

PLITS MellAgt1 

DSYS itself considered messages as just strings of bits. We 
have found it desirable to provide higher level message sup-
port to applications programs. This higher level message 
support is called PLITS. 

Traditionally, fixed message formats have been used for ap-
plication programs. To design a new message type, a 
programmer would lay out an explicit template for his data. 
He would have to state the number of pieces of data, their 
data-types; the external representation of the data type; 
and the translation routines to use to translate between the 
external (used in messages) representation and the internal 
(used in his program variables) representation of the data. 

In PLITS, we try to remove the burden of message template 
design. 	By automating the process we also remove one class 
of possible errors. 	In PLITS, the applications programmer 
sees a message as a set of keyword value pairs. We call 
these pairs, "slots". To construct a message he specifies 
the particular set of slots he desires. The receiver can 
determine (for individual messages) which slots are present 
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and their values. 	Thus, a message to a file server might 
Look like: 

SEND (action -openfite9 mode -update, name - "MYFILE", 
directory - s<mydir>", initiatposition - 09 bytesize - 8) 
TO FileServer ABOUT OPNTransaction; 

"action", "mode", "name" and so forth are the keywords 	(or 
slotnames). 	The message would be identical as far as the 
receiver were concerned if the sender had specified a 
different order of the slots. We do not require that every 
message contain a specific set of slots, but of course it is 
an error if a process attempts to fetch the value on a non-
existent slot. Defaults may be easily implemented using the 
PRESENT 	IN primitive. 	For example, the file server above 
might wish to assume that the directory is "<SYSTEM>" 	if 
none is specified. 

RECEIVE msg FROM ANYSENDER ABOUT ANYTRANSACTION; 

IF NOT (directory PRESENT IN msg) THEN 
PUT (directory - "<SYSTEM>") IN msg; 

thedirect := msg.directory; 

When a user wants to use a slot in his program he must 
declare the keyword and the type of its value both in the 
sending and receiving process. 

STRING SLOT filename; 

MODULE SLOT continuation; 

In the existing 	implementation of PLITS (see below) the 
data-type of each slot is sent in the message and 
consistency is checked during the translation from the ex-
ternal format of messages to the internal format of messages 
during reception of the message. Implementation is underway 
to have a "loading" 	time 	(when a 	process 	joins 	a 
"distributed job") when the consistency of slot definitions 
would be checked. Small identifiers for each slot would 
also be given at this time. This would decrease the over-
head of the slot mechanism (currently in addition to the 
data, a type code and a character string are sent for each 
slot). 

Georgia Institute of Technology 	 IPC Workshop 



Section 7 
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 86 

In the current implementation the "data-type" of a slot im-
plies the external representation of the value of the slot 
within messages. Thus we have several INTEGER types. 

INTEGER16 SLOT small; 

INTEGER32 SLOT large; 

with implied external representations of sixteen and thirty-
two bits. Note: this does not imply that the internal 
representation for the value of the two slots above must 
necessarily be different. For example, in the PDP-1()• both 
values would be represented using 36-bit integers. When a 
message is sent, however, a check is made during the encod-
ing into the external format that the values are in the ap-
propriate ranges. Future implementations may have a 
"negotiation" phase during "loading" in which the various 
processes "agree" on the external precision necessary for 
each data value (one "negotiation" strategy would be to use 
enough bits for the maximal declared range). 

Current Slate of Implementation 

The DSYS has been running since last Spring on the POP-10 
and ECLIPSE computers. 	A distributed vision application was 
encoded this past Summer. 	Recently an ALTO DSYS support 
package has been used to link ALTO•s to the ECLIPSE. 	The 
PLITS message format has been running on the POP-10 for over 
a year (using a preliminary version of DSYS that ran only on 
the POP-10). A design for the support facilities necessary 
for PLITS on the ECLIPSEs and ALTOs has been completed. 

Almost all the support software has been written either in 
SAIL (on the PDP-10) or BCPL (on the ECLIPSEs or ALTOs). 
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7 . 5  alma 2E 121228BLAI 22EAUAI2AII21 92IIIIIILA 

PARAMETRIC MODELS OF CONCURRENT COMMUNICATION ACTIVITY 

by 

Bill Buckles 
General Research Corporation 

INTRODUCTION  

Using a distributed system to feign, simulate, or emulate a second 
distributed system is of interest primarily to those engaged in design. The 
principal problem in this approach is the inherent timing discrepancies between 
the existing and target systems. Lamport [1] has made invaluable contributions 
applicable to this area and this study is directed at specializing his results 
to emulation. 

MODELS AND STATES  

The goals are to determine (1) what aspects of communication behavior 
can be observed from an emulation? (2) what ancillary relationships must be 
embedded in an emulation to assure that the primary behavioral attributes can 
be extracted? and (3) if the ancillary relationships are not exact, how much 
confidence may we place in the extracted primary behavioral attributes? In 
order to achieve this, a definition of process state has been derived that 
deals only with aspects of inter-process communication. The target process 
state is distinct from the emulation process state, but the former is embedded 
within the latter. Additionally a progression of six communication models have 
been defined, each an elaboration of the previous one. 

Model 1 is a single process emulating itself. It may be schematically 
represented as 

Atodmo 	‘It2/m1 	
V:4/m2 	at5/E3 	tt8/m4 

1 	At3 	at 5 	ate 

Work sponsored by the Ballistic Missile Defense Advanced Technology Center, 
P. O. Box 1500, Huntsville, Alabama 35807 under contract number DASG60-78-C-0058. 
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where At
i 
denotes a time interval, m a message, and the even intervals denote 

active communication periods. Model 
i
2 is a single process emulating a second 

process with uniform time distortion (either rate increase or decrease). Model 3 
is a single process emulating a second process with both uniform time distortion 
and non-uniform perturbations (strictly slow-down). In this model, the emulation 
process may contain more periods than the target process. However, there must 
exist an order-preserving mapping from the target process periods to the emulation 
process periods. Model 4 advances to multiple processes with equal time distortions 
and perturbations. Model 5 relaxes the equality constraints on distortions and 
perturbations, but requires the two be balanced. That is, inequality among the 
time distortions of various processes must be offset by perturbation. Model 6 
is completely unconstrained with respect to both distortion and perturbation. 

The state of a single target process, i, at time period j is denoted by 
the pair s

ij 
= [At, n] where At is the duration of the most recently completed 

period and n is the information sent or received. The state of the target 

	

system is denoted S = [s
lj

,  s
2j2 	

n 

	

, 	s
nj

]. The state of a single emulation 
i 

 

process i after time period k is denoted by the 5-tuple a ik  = [s
ij

, Atl,p,r,p(k)] 

where s
ij 

is the state of the target process, At' is the duration of the most 

recently completed period, is the information sent or received during the last 
period, r, a constant, is the uniform time distortion, and p(k) is the 
instantaneous perturbation at the beginning of the current period. A system 
state is denoted by E = [a

lk ' 
a
2k '' 

a
nk J. A system state change occurs 

1 	2 
when exactly one a

ij 
assumes a new value. 

PRELIMINARY RESULTS  

Time models are inherently continuous while 
above is discrete. Lower and upper bounds on the 
desirable to fix the amount of error between state 
distortion) is constant, only p (the perturbation) 

F1  glb(p) = p(n) [1 - (At' / 	Ati)] 
i=1 
n-1 

lub(p) = 0(n) + [At +1  / r 	At!
1
] 

i=1 

the state model described 
time relationships are 
changes. Because r (the 
may introduce error: 

Unfortunately, lub(p) required the prediction of the period duration, At v+i , 
of a current target process. An assumed order-preserving mapping illustrating 
the lower and upper bound errors follow. 
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EMULATED 
PROCESS ) 	 (  glb Example 

/ I\ 

N1EMULATION / 	f 	t 	NJ  

DIVERGENCES 
REGION 

PROCESS 

Model 6, being the most general, is of interest. For example, determining 
what measures must be taken to preserve the state transition ordering in the 
emulation to reflect accurately the state transition ordering in the target 
process is necessary. If S a  < Sb  in time and the transition to S a  is embedded 

in E
x 

and the transition to S
b is embedded in E them we would desire that 

E
x 
< E. Let a., be the specific substate that changes value at E

x 
and a

km y x 13 	 y  
be the specific substate that changes value at E . Both S

a 
< S

b 
and E

x 
< Ey  if 

y-1 	 x-1 2= w 	] 	T
w 

	

Y 1J 	 y 13 	x km 
w=x 	 =0 

	

where 1p p qv 	p 
= a qv

(p(v)) • paqv (r) and 
T
w 

is the normalized elapsed emulation 

time in period w-1. In symbols: 

Tw  = r • aii (p(w) • au (s(60). 
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CONCLUSIONS  

These and other relationships dealing with the communication behavior 
of emulation processes have been formally proved. Some knowledge on the problem 
of what information to collect and how to analyze it has been gained. It is 
believed that future investigation will further strengthen the utility of the 
models. 
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7 . 6  EILIL aa MLLE-aka REPORT  

by 

Robert L. Gordon 
and 

Jack A. Test 

The enclosed Prime research note is partly based upon a 
couple of early 1978 internal Prime R&D meetings concerned 
with "Task Control and Communication for Multiple Processor 
Systems". It discusses the synchronization and interprocess 
communication mechanisms used in a number of important 
operating systems and explores the importance of these 
mechanisms for the development of future computer systems• 
and is offered as additional material for the current tech-
niques and experience section of the conference report, 
since it summarizes a review of mechanisms used in several 
well known systems. 

7.6.1 

Two in-house meetings concerned with "Task Control and Com-
munication for Multiple Processor Systems" were held on 
January 11, 1978, and March 22, 1978. The purpose of the 
meetings was to provide a forum for the discussion of exist-
ing operating system mechanisms for process management and 
interprocess communication as related to Prime's efforts in 
process-based computer network architectures. 

The 	two 	meetings consisted of a series of informal 
presentations by members of Primes R&D staff on other 
systems and discussions on related PRIMENET communication 
meetings. The particular topics were: (1) "Process Com-
munication In DEMOS". (2) "Process Control And Communication 
In UNIX"• (3) "TANDEM And VAX Process Structure", (4) "The 
Multics IPC Facility"• (5) "Event Counting And Sequencing In 
Distributed Systems"• and (6) "Communication Primitives For 
PRIMOS". 

The purpose of this note is to discuss the synchronization 
and interprocess communication mechanisms developed for the 
systems mentioned above and to explore future directions in 
the development of process-based computer networks. Obser-
vations concerning the IPC facilities of the operating 
systems discussed are based upon the authors' knowledge of 
the systems• available literature, and the Prime Conference 
talks. Accordingly. Section II of this note presents brief 
summaries of the IPC facilities, and Section III states some 
conclusions and future directions. The References & Selec- 
ted Readings, 	at 	the end of this note, 	lists several 
articles 	pertinent to the study of 	Interprocess Com- 
munications. 
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7.6.2 ualtunized2VIES EA11111111 

Included in 	this 	section 	are 	discussions 	of 	the 
synchronization/ipc mechanisms developed for the systems 
mentioned in the Introduction. 	For additional 	information 
regarding each system, 	refer to any of the pertinent 
references. 

7.6.2.1 Process Communication in DEMOS 

DEMOS is an operating system under development at the Los 
Alamos Scientific Laboratory for the CRAY-1 computer [BASK 
777. A task or process in DEMOS consists of a program and 
its associated state information which includes a link 
table. The primary mechanism for communicating between user 
and operating system tasks is by passing messages over 
links. Links are associated with, but maintained outside 
the address space of sender tasks and are essentially one-
way (simplex) communication paths. All operations on links 
are performed by the kernal of the operating system which 
insures their integrity. 

Appropriate siandkrd liail are provided by the system for 
user tasks requesting operating system services. These are 
provided in an automatic and transparent way, one such stan-
dard link being to a lAitchk2Azd talk. Switchboard tasks 
can arrange to get two or more mutually cooperating proces-
ses together, and since tasks may under certain conditions 
pass link identification information as a message, dynamic 
process networks may be easily constructed. 

Links resemble capabilities, so their management must take 
into account many of the well known difficulties of managing 
capabilities. Some of these, such as lack of control over 
link passing and link duplication have been partially al-
leviated by classifying links into specific types and 
restricting specific operations to these types. Other 
facilities include data Igamlni iinki and &hannlil that are 
associated with links in order to provide facilities for 
multiple event handling and windows into task address 
spaces. 

The communication mechanism of DEMOS is not pure in several 
ways. First, data segments are an escape from communication 
only by messages; and second, conditional receives and chan-
nel interrrupts provide an escape from the sychronization 
provided only by message primitives. However, with proper 
hardware support these escapes might not be necessary. 
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7.6.2.2 UNIX Process Control/Communication 

The UNIX system was developed at Bell Telephone Laboratories 
for the DEC 11/40, 45, and 70 minicomputers. The basic 
literature reference to the system CRITC 74] provides a good 
explanation of the principle ideas incorporated in the UNIX 
design. 

In UNIX, a "process" is defined to be the execution of an 
"image" where an image is a computer execution environment, 
namely: allocated core, register values, open files, etc. 
Images are small in litaX, roughly 32K words + status in-
formation, and the system is oriented around their execution 
manipulation. 

Processes are organized in a parent-child tree-structure 
within the UNIX system environment. Parent processes can 
spawn (create) child processes dynamically through a fork 
system call. Initially, the child process is a copy of the 
parent process but with a different return value from the 
fork call. The child inherits the parent's environment 
(i.e. 	open files, register values, etc.) 	but does 	possess 
its own memory 	image. 	Typically, 	a 	child process will 
initiate an erect system call which will overlay the child 
image with the startup image of a program named in the 
call. In this manner, a parent process can create any child 
process it desires. 

The main form of communication between parent and child 
processes is accomplished through pipes created by the 
parent process. Since the parent's environment is lost when 
a child process overlays itself, the pipe descriptor must be 
passed as an argument to the overlaying "exec" system call. 
Pipes serve as serial data paths with one "write end" and 
one "read end". 	Multiple processes can write or read 
single pipe but data can be intermixed if the pipe is not 
locked on writes. 	In addition to the pipe mechanism in the 
original release of UNIX, new versions of the operating 
system allow processes to communicate through messaged that 
are routed and queued for unique process identifications. 
Messages in UNIX serve as a more 	general 	form 	of 
interprocess communication than pipes since "unrelated" 
processes can communicate using them. For mutual exclusion 
and synchronization purposes, the UNIX system provides both 
wait/lianal.  and 12uaiin2 semaphores for use by user proces-
ses. 

There are a number of 	limitations 	to the current IPC 
mechanisms available in UNIX. Specifically, pipes, because 
of their serial nature, must be used carefully in order to 
avoid mixed streams on the write end or lost streams on the 
read end. In addition, the message mechanism in UNIX 
requires the process-id of sending and receiving processes. 
Unfortunately, this information is not available through any 
system administered switchboard and must be handled by the 
processes themselves in some arbitrary manner. The naming 
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of processes, therefore, is not adequately addressed in 
UNIX. 

In summary, the UNIX timesharing system provides a dynamic 
and flexible process environment with a high degree of 
modularity. Some notable shortcomings in the UNIX IPC 
facility (in addition to the problems discussed above) are: 
(1) the inability of a process to wait for multiple piped or 
message inputs, (2) the small address space available per 
process, admittedly a PDP-11 imposed limitation, and (3) the 
lack of any network process management capability. 

7.6.2.3 Interprocess Communication in TANDEM 

The Guardian Operating System [BART 77] for the Tandi , m Com-
puters model 16 computer has as its foremost goal the 
maintainance of a failure-tolerant computing environment. 
Even though the underlying Tandem hardware consists of mul-
tiple computers and multiple dual-ported I/O devices, the 
operating system is designed to give the appearance to the 
user of a unified system through the novel application of 
several software abstractions. 

The first abstraction provided is that of a 2L2s.ell• 	Each 
processor module may have one or more processes residing on 
it, however a process may not execute on any other processor 
than the one it was initially created on. Each process in 
the system has a unique identifier or process-id of the 
form: <cpu ft, process if), which allows it to be referenced 
on a system wide basis. 

Process 	synchronization 	primitives 	include 	cokniin2 
stmaghgre2 and process local tunt fun. Semaphores may be 
only used for synchronization between processes within the 
same processor and are typically used to control access to 
resources such as resident memory buffers and message 
control blocks. Event flags are predefined for up to eight 
different events and are signalled within a processor by 
either hardware events, such as device interrupts, or by the 
function AWAKI. All event signals are queued so that they 
are not Lost if the event is signaled when a process is not 
waiting on it, and a process may wait for the first of one 
or more events via the function WAIT. Processes may also 
soecify a maximum time to block which, if exceeded, results 
in the return of an error condition to the process that 
requested it. 

The message system used for communication between processes 
residing on different 	processors uses 	five 	primitive 
operations: LINK, LISTEN.  READLINK, WRITELINK,  and 
aRLAKLI16, to implement what can be best thought of as 
dialogues between requestor/server pairs. Messages are 
queued for processes and result in the setting of an event 
flag for processes wanting to "LISTEN". 
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With the implementation of processes and messages, processor 
boundaries effectively disappear. System wide access to I/O 
devices is provided by the mechanism of 2rocess  lairs. An 
I/O process-pair consists of two cooperating processes 
located in two different processors that control a 
particular I/O device. One of the processes is considered 
the "primary" one and the other the "backup" process. The 
primary process handles requests sent to it but sends in-
formation to the backup process via the message system in 
order to assure that the backup process will have all the 
information needed to take over control of the device in the 
event of an I/O channel or device error. Because of the 
distributed nature of the system, it is not possible to 
provide a "block" of driver code that could be called direc-
tly to access the device. While potentially more efficient, 
such an approach would preclude access to every device in 
the system by every process in the system. 

Processes are not grouped in classical ancestry trees. 	No 
process is considered subservient to any other process on 
the basis of parentage, and two processes, one created by 
the other will be treated as equals by the system. When a 
process "A" creates another process "B", via a call to the 
procedure NEWPROCESS, no record of B is attached to A. The 
only record kept is in process B where the creation "id" of 
A is saved and is known as B's "mom". When process B stops, 
a STOP message is sent to process A. If B wants to know 
whether A has stopped it must "adopt" its mom. 

The innovative aspects of the Guardian Operating System lie 
not in any new concepts, but 	in the synthesis of pre- 
existing ideas. 	Of particular note are the low level 
process and message abstractions. 	By using these, all 
processor boundries can be hidden from both the application 
programs and most of the operating system. These initial 
abstractions are the key to the system's ability to tolerate 
failures and provide the configuration independence neces-
sary to run over a wide range of system sizes. 

7.6.2.4 Process Communication in Vax 

The VMS operating system architecture EDEC 77] supported by 
the VAX hardware is a process structured system. Because of 
this, the designers of VMS were motivated to look for and 
evaluate the utilization of alternate process communication 
schemes in order to ease the design and implementation of 
VMS. It is significant that this study resulted in three 
different mechanisms for process comunication in order not 
to force-fit applications into using any one particular 
type. 
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The three interprocess communication facilities provided by 
VMS are all software implemented. The first facility is ap-
parently used for trusted processes (e.g. Kernal processes) 
and consists of the notion of event flags, event flag 
clusttrl,  and mtIkl that allow boolean combinations of event 
flags. Since it is well known that this form of (semaphore) 
type communication can be easily abused by naive users it 
apparently is restricted only to trusted processes. 

The second type of interprocess communication used in VMS 
(internal communication) consists of lend receive gmegts 
that have implicitly associated event flags. This mechanism 
serves as a way of passing variable quantities of data 
between trusted processes with a fairly high degree of 
efficiency. Each user process builds its own buffer (data 
packet) and sends it to a "receive" queue, which then sets 
the associated event flag for the receiving process. 

The third type of interprocess communication mechanism 
(generalized communication) consists of primitives for hand-
ling mailbgxes. Mailboxes can also be thought of and im-
plemented as queue or FIFO files, thus they can use the same 
protection mechanisms as files. Of course mailboxes, like 
files, can be classed as both temporary and permanent so 
that interprocess communication can take place while proces-
ses are "absent" or dormant, a useful feature for writing to 
logged out terminals. 	In addition, processes communicate 
with mailboxes in a fashion similar to record-oriented 	I/O 
thus providing a framework for advanced concepts such as I/O 
redirection. 

VAX/VMS supports not only processes, but also lobs that 
constitute a collection of subprocesses and grgmg2 that are 
sets of processes that share resources. Subprocesses can be 
spawned and can have the rights of the creator as well as 
the rights of the spawned image thus allowing a form of en-
hanced rights. 

It seems that the VMS operating system provides a rich set 
of interprocess communication primitives; whether it is a 
consistent set and can be managed over the life of the 
system remains to be seen. 

7.6.2.5 The Multics IPC Facility 

The interprocess communication facility supported by the 
Multics system is based upon the concept of tylai 
The primary purpose of an event channel is to provide synch-
ronization between processes. 
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Event channels (which can be thought of as a numbered slots 
in the ipc-facility tables) are either evInizAl211 or eyent-

_call channels. The event-wait channel receives events that 
have occured and awakens the process that established the 
channel if it is blocked waiting for an event on that chan-
nel. The event-calf channel responds to the occurence of an 
event by calling a specified procedure if the process which 
established the channel is blocked waiting for any event. 

For events to be noticed by explicitly cooperating proces-
ses, event channel identifier values are typically placed in 
known locations of a shared segment. Processes can block 
waiting for an event to occur or can explicitly check to see 
if the event has occured. If an event occurs before the 
target process blocks, the process is immediately awakened 
when it does block. 

In summary, the event-channel facility in Multics provides a 
flexible synchronization mechanism. Typically, processes 
establish channels and wait for events on one or more of the 
channels they have created. The utility of this approach is 
clearly demonstrated by the use of the ipc-facility 
throughout Multics for all user process coordination and 
terminal I/O handling. 

7.6.2.6 Event Counting and Sequencing 

Synchronization of concurrent processes is usually required 
for the relative ordering of events internal to each 
process. Most currently favored synchronization techniques 
such as monitors [HOAR 74] and semaphores involve mutual ex-
clusion, a technique that only indirectly notes the oc-
currence of an event. A alternate set of synchronization 
primitives have been proposed by Reed and Kanodia CREED 771 
where a process controls its synchrony with respect to other 
processes by observing and signalling the occurrence of 
events through operations on objects called eyenics2unta. An 
eventcount is an abstraction representing the number of 
events in some class of interest that have occurred. 
Operations on eventcounts are: ADVANCE(E) - Signal one 
event; READ(E) - Return the number of previous ADVANCES on 
E; and AWAIT(E,V) - Suspend a process until READ(E) >= V. 
ADVANCE purely transmits information, READ and AWAIT purely 
observe. In contrast the P operation on a semaphore is not 
a pure observation primitive since it can modify the 
semaphore. 	Pure observation or signalling primitives are 
more attractive for use in secure systems CLAMP 73]. 	If 
only one process executes ADVANCE operations on an 
eventcount, ADVANCE and READ can be concurrent. If more 
than one process does ADVANCES, a different eventcount can 
be given to each process, and the sum of those eventcounts 
gives the total number of events in the class. 
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When mutual exclusion is needed (when events must be ordered 
dynamically, such that the ordering is not known in ad-
vance), a sequencer can be used. A sequencer operates like 
the ticket machine in a bakery, and has one operation called 
TICKET, that returns the number of previous ticket 
operations on that sequencer. An eventcount and a sequencer 
can be used to implement a semaphore. Several eventounts 
and sequencers can be used to implement semaphores that al-
low a process to wait for several different events. 

There seem to be at least two attractive advantages over 
other alternate synchronization schemes that eventcounts 
have for distributed systems. The first advantage is that 
the ADVANCE operation affords a natural broadcast mechanism 
to all processes that might be waiting on an event, because 
unlike simple semaphores the signaller need not know the 
names of the intended observers. The second advantage is 
the avoidance of mutual exclusion where only the relative 
ordering of events is required, thus tending to limit the 
amount of serialized code 	in systems, 	code that often 
results in performance bottlenecks. Eventcounts and 
sequencers could be used by an operating system, instead of 
user-visible semaphores, for implementing more general 
interprocess communication mechanisms with shared files and 
this mechanism could be made available to the user to coor-
dinate the use of shared resources. 

7.6.2.7 Intertask Communication Primitives For PRIMOS 

Several intertask communication capabilities currently exist 
within the Prime operating system (PRIMOS). Both 
lock/unigck and Kounling semaphores, are implemented at the 
microcode level, and are available for system and user 
tasks. In addition to these basic synchronization 
primitives for communication between processes on the same 
processor PRIMOS supports a set of PRIMENET inter-process 
communication capabilities based on x.25 flavored "virtual 
circuits". These capabilities allow a user process to 
establish a full-duplex virtual connection to another user 
process whether local or remote. 

Virtual circuits can be managed at the user program level by 
the proper use of a collection of subroutine calls to PRIMOS 
and provide a "Level 3", X.25 Interprocess Communication 
Facility (IPCF). 

The major services provided are for forming a connection, 
breaking a connection and transmitting or receiving data. 
Generally, two different forms of a service are provided. 
The first form is an abbreviated calling sequence, with only 
a minimum amount of information needed to be supplied by a 
user in order to establish and use a virtual circuit. The 
second form is a more detailed one that allows a user full 
access to all fields of the X.25 "Level 3" defined packet 
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formats. 	The 	latter form is intended primarily for users 
wishing to form X.25 connections to non-Prime hosts on 
Public Data packet networks. 

Eleven network primitives currently compose PRIMENET and 
provide capabilities to: establish status as a network user 
(X$ASGN), establish a network connection (X$CONN), get local 
connect information (X$GCON), accept a connection (X$ACPT), 
clear a connection (X$CLR), hand off a connection (X$GVVC), 
receive via a connection (X$RCV), transmit via a connection 
(XSTRAN), wait on transmit or receive (X$WAIT), get network 
status (X$STAT), and terminate network user status (X$UASN). 
This set of PRIMENET primitives is based upon the X.25 
protocol and is due for release under REV 17 of PRIMOS. The 
chief shortcoming to the current PRIMENET set of primitives 
is the inability to support multiple readers and/or multiple 
writers per connection. 

The addressability defined in the basic X.25 specifications 
refers only to a single 14-digit address per host, although 
it is not uncommon for a host (Like PRIMOS) to handle mul-
tiple processes and users. Therefore, in order to decide 
which user or operating system service should control a con-
nection, each incoming "call request packet" in PRIMENET 
must specify a network "port." This port, coupled with the 
14-digit address of the target system, designates a target 
process. 

Each host in Ringnet has a pool of 255 available ports that 
may be assigned to any process on a first come, first served 
basis by a call on the operating system. 	However, only 
ports 1 	through 99 are available for users; the rest are 
reserved for system use. Permanent port assignments to a 
process are possible by controlling the order in which 
Processes are initiated just after system startup; 	other- 
wise, 	there is no absolute guarantee that a particular 
process is associated with a given port number. 

The short form of the initial connection protocol uses an 
ASCII host name (e.o. "ENG.15") instead of the long 14-
digit address and a port number previously acquired by the 
target process. The "connect" function is typical of the 
IPCF primitives and the request for it is shown as a partial 
example of how a circuit is formed at the program level. 

CALL X$CONN (VCID, PORT, ADR, ADRL, VC_STAT) 

The variable ADR points to a string containing the name of 
the intended host (i.e ENG.15), ADRL contains the length of 
the name (6), and VC_STAT represents the status of the 
requested service. Upon completion of a successful connec-
tion, a "virtual circuit identifier" (VCID) is returned that 
can be used for the subsequent transmission of data. Incom-
ing calls for a particular port in a host are queued on a 
first come first served basis. Information concerning a 
call request at the head of a port queue can be obtained via 
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a system call, so that connections can be accepted, refused, 
cleared, etc. 	Calls are kept pending for 90 seconds, during 
which the requestors• 	status 	is that of 	"connection in 
progress." Other X.25 services are provided to users that 
allow for waiting on the completion of a network event, ac-
cepting or clearing a call, passing off a virtual circuit to 
another process in the same host, and obtaining status in-
formation about a particular circuit. 

At a level above the PRIMENET primitives, PRIMOS supports a 
remote-login capability (RLOGIN) and a network file-access-
method (FAN). The File Access Manager (FAM) is a PRIMOS 
subsystem that extends the functions of the PRIMOS file 
system to a network of hosts. Virtualization of the file 
system is accomplished by permanently assigning a port (255) 
to the local FAM process of each host, over which virtual 
circuits to neighboring FAMS are used to accomplish remote 
file operations on behalf of a user. 

A FAM process in a host fields requests from local users for 
file operations on remote hosts, handles incoming file 
requests from remote hosts, and maintains status and update 
information concerning the current state of network connec-
tions and file system devices. When the PRIMOS supervisor 
decides that a particular user request is destined for a 
remote device, it queues the request for the local FAM 
process and suspends the user. FAM packages this request in 
a message and passes it off to the appropriate remote FAN, 
which performs the requested file operations on behalf of 
the user. The remote FAM process sends the original request 
and the requested data back to the local FAM, which copies 
the returned values into the user's address space and causes 
the user to be rescheduled. Because certain file primitives 
are guaranteed to be "atomic" operations, all file functions 
are performed to completion just as if they occurred 	local- 
ly, even 	if they require multiple messages or updating of 
Local supervisor tables. 

Since both local and remote operations on a particular file 
are handled through the file system of the host that owns 
the particular file, all of the normal file protection and 
other mechanisms, such as locking a particular record while 
writing, are automatically accomplished. Applications using 
remote data as well as local data run without any change. 

In a similar fashion, the ability of 	a 	user 	to 	"remotely 
log-in," 	as 	if 	their terminal were physically attached to 
the host of their choice, is achieved by the operating 
system multiplexing all remote terminal traffic through port 
"0." When a user "logs in," they may designate a system to 
be attached to as: 

LOGIN SMITH -ON ENG.15 

At this point the local login server establishes 	a virtual 
circuit 	to the target host and requests the initiation of, 

Georgia Institute of Technology 	 IPC Workshop 



Section 7 
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 101 

and connection to, a process in the remote host. From then 
on the local terminal buffers are effectively diverted to 
the input and output buffers of the remote process running 
on the selected node. 

A proposal for an implementation of pigel [SCHE 78] was 
discussed as an alternative to virtual circuits. The pipe 
mechanism does allow multiple readers and multiple writers 
and thus, together with the X.25 PRIMENET, would facilitate 
most applications that demand IPC facilities incorporating 
multiple readers and writers. 

In summary, the current PRIMOS interprocess communication 
capabilities allow local and remote process cooperation 
through X.25 flavored "virtual circuits", in addition to the 
semaphore primitives for local communication. These "point-
to-point" mechanisms may not suffice for distributed process 
applications demanding N-process protocols; however the set 
of applications demanding such protocols at this time seem 
small. 

7.6.3 g.ansaullana and Emil= 21r11112nx 

As this report has 	illustrated, 	the process concept 	has 
become increasingly central, in recent years, to the design 
of computer systems both at the hardware and software 
levels. 	There are many reasons for this development, two 
important ones being: 	(1) the continuing decomposition of 
systems and applications problems into sets of cooperating 
parallel programs 	for greater modularity, 	functionality, 
flexibility, and maintainability; and (2) the increasing 
cheapness of processors and memory allowing the assianment 
of processes to processors in an economical way. As proces-
ses have become "cheaper" to create, maintain, and destroy, 
the flexibility, scope, power, and economy of interprocess 
communication mechanisms has become increasingly central to 
the effectiveness of multi-process systems. 

A wide variety of mechanisms for interprocess communication 
have been surveyed in this report. Perhaps the major reason 
for such a variety comes from a desire to provide in one set 
of primitives: (1) flexible process synchronization tools, 
(2) data transfer mechanisms, and (3) communication control 
and error recovery. 	Some of the major issues involved in 
the design of 	interprocess communication mechanisms are 
briefly discussed below. 

1. 	Process Naming. : 	Many systems have inadequate 
facilities for identifying names of processes 
within the same host, let alone for processes 
residing on different hosts. Part of the 
problem stems from an inconsistent view of 
the relationship between the set of allowable 
names for files, devices, processes, users, 
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mailboxes, generic 	system 	services, 	and 
specific system services. 	Until this problem 
is 	settled 	the 	design 	of 	specific 
interprocess communication primitives 	cannot 
focus on the set of fundamental objects that 
they 	will 	be 	dealing with. 	This 	is 	a 
difficult issue, since it is here that many 
of the system security issues are also ad-
dressed. 

2. Control Of Links Between Processes: Control 
of communication paths between processes fun-
damentally depends upon the nature of process 
relationships. 	If process relationships are 
tree structured, then the status of a child's 
communication with other processes might be 
monitored and controlled by the parent. 	On 
the other hand, 	if each process wants to 
maintain the concept of sovereignty then the 
basic challenge is how to provide the ability 
for cooperating processes to establish a 
monitor process that is capable of control-
Ling the communication paths between them. 

3. LITIL21 121 2a,  a Ekui ttilittn EL2LftlIti: The 
need for a flexible set of operations to 
control data-flow between processes is of 
major importance 	in the design 	of 	IPC 
mechanisms. 	This 	issue 	involves providing 
processes with the ability to: 	control 	mul- 
tiple 	links, respond to out-of-band signals, 
receive/transmit/flush stream and 	message 
data 	types, 	and 	receive/transmit 	link 
capabilities. 	A 	number 	of 	additional 
capabilities might also be considered, such 
as allowing processes to define data-type-
links that facilitate the passing and 
manipulation of complex data structures. 

4. sxnhLanizatian 01 Er.211111: 	Clearly, a 
major function of interprocess communication 
is to provide 	either 	explicit 	or 	implicit 
synchronization between processes. Early 
forms of interprocess communication depended 
only on the correct use of explicit synch-
ronization primitives for sharing sections of 
main memory. 	In some systems, temporary 
files 	serve as synchronizing points between 
job steps (implicit), while in other 	systems 
processes synchronize and exchange data by 
signalling (explicit). Whether explicit or 
implicit synchronization primitives should be 
provided is still very much an open question. 
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With the advent of cheap communications and distributed 
systems these issues are becoming more important each day to 
both the manufacturers and users of computer systems. 	A 
workshop addressing 	IPC design is, therefore, scheduled to 
be held in Atlanta, Georgia, on the 20-22 of November, that 
will bring together a selected group of researchers in this 
subject area to address the five general topics listed 
below: 

(1) Assess the present state-of-the-art for IPC 
mechanisms in distributed data processing 
systems. 

(2) Identify 	the data 	available on the actual 
performance of various IPC policies 	and 
mechanisms. 

(3) Assess the potential value of various IPC 
mechanisms satisfying the operational and 
performance 	requirements 	for 	highly 
distributed systems. 

(4) Identify shortcomings in the present 	state- 
of-the-art and identify promising areas for 
future research and experiments on this sub-
ject. 

(5) Identify possible 	standardization levels in 
IPC design. 

Some of the issues the workshop is intending to examine in 
detail are: 	addressing issues, hardware support, transport 
mechanisms, 	flow control, 	out-of-band 	signalling, 	fault 
tolerance, 	security, 	synchronization, 	and performance and 
application programming impact. Prime Research is actively 
participating in this workshop which also has the support of 
both IEEE Computer Society and the three ACM Special 
Interest Groups, SIGOPS, SIGARCH and SIGCOMM. 

In conclusion, there are far reaching ramifications to the 
demand for, and the development of, interprocess communica-
tion facilities and cheap processes. At the user level, a 
greatly enhanced system functionality and flexibility can be 
achieved, and at the operating system and hardware levels, 
the need to efficiently support this functionality is lead-
ing to new architectures and OS designs. As the section on 
PRIMOS in this report suggests, Prime is developing new IPC 
mechanisms for the enhancement of current systems and is at-
tempting to incorporate some of the ideas developed in other 
systems. 	In addition, as new computer architectures are ex- 
plored at Prime, 	the need to include hardware support for 
critical IPC functions is an area that 	requires study and 
understanding. 
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DATA COMMUNICATION SOFTWARE 

by 

G. L. Chesson 
Bell Laboratories 

Introduction 

Distributed computing environments are based upon, and whol-
ly depend upon, data communications. Although there exists 
a sizable and growing hardware technology for data com-
munication, software has not generally kept apace in recent 
years. Better software tools and techniques are needed in 
order to experiment with the new hardware devices that are 
available in the laboratory as well as to improve the 
capabilities for cooperation between our normally monolithic 
operating systems. These notes outline the direction and 
status of communication-oriented software research with the 
context of the 7th edition of the UNIX operating system. 

Several software components are being experimented with in 
computer systems at Murray Hill, 	including a PDP-11/45, 
11/70•s, 	an Interdata 8/32, and LSI-11•s. 	Some of the 
software is part of the UNIX kernel, or 	resident operating 
system, 	and the remainder consists of programs that utilize 
the new kernel facilities. 	The software components in the 
kernel include: 

1) primitives 	for managing intermediate-sized 
contiguous areas of kernel data space, 

2) a "packet driver" which can be used to impose 
framing, 	sequencing, 	checksumming, 	and 
retransmission 	procedures on a character 
device, 

3) multiplexed and non-multiplexed interprocess 
communication channels. 

The 	salient 	characteristics 	of these components are 
described in the next three sections. The organization of 
the higher-level codes which use these components will not 
be discussed here. 

52aLa 112adall/at Primitives 

The previously existing space-management procedures in the 
UNIX kernel were used to implement the terminal character 
lists and the disk buffer cache. Since the size of an al-
location permitted by these routines is either one byte or 
512 bytes, it is not surprising that an additional mechanism 
was needed for data communications. There are but two 
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primitives needed: 	one to allocate and one to release. 	The 
new primitives manage contiguous memory segments that are 
some multiple of 32 bytes in size up to a maximum of 512 
bytes. 

It 	was 	intended that the buffer management primitives be 
fast enough to be invoked from within interrupt 	routines. 
This means that 	recombination or garbage collection must 
also be capable of being done at 	interrupt time. 	These 
considerations 	lead to a strategy which employs a few 
judiciously chosen bit-map tricks in conjunction 	with 	the 
constant allocation sizes mentioned above. 

The 	allocator may be 	called 	with a 	flag which directs 
whether it should sleep when space is not available or 
whether it should return a failure indication. This was 
built in because the allocator must not be allowed to sleep 
when called from an interrupt routine. However, it may be 
equally distressing to have it fail. Current practice in-
volves building strict space bounds into interrupt processes 
that cannot live with allocation failures. This way space 
requirements are known in advance, and the allocator is used 
to dedicate a private buffer pool where it is needed. 

Although the new space management primitives are useful for 
allocating "ordinary" I/O buffers, their real usefulness is 
in supporting the fifo queues needed for data rate balancing 
between readers and writers. Because of the address-space 
limitations of the POP-11, memory is a critical resource, 
and it is not possible to devote as much space to data 
queues as many high-bandwidth applications require. As the 
software described below matures, it will become necessary 
to extend fifo mechansims to secondary storage or to non-
kernel memory space. The _methods used in the current 
primitives can, and probably will, be applied in these other 
circumstances. 

Pa,iket 2river 

The packet driver consists of a group of routines similar in 
name and function to the parts that make up the typewriter 
control software; 	namely, 	there are open, 	close, 	read, 
write, ioctl, read interrupt, and write interrupt entries. 
A software switch, called the Line-discipline switch, placed 
at the proper locations in a character device driver selects 
whether a call should be made to the standard system control 
routines, or to the corresponding entries in the packet 
driver or other line-discipline. This switch mechanism may 
be thought of as a bidirectional filtering process which may 
be selectively inserted between a device driver and a user 
program. 
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The packet driver is designed to operate character devices 
in a packet mode with the error checking and flow controls 
that are necessary for reliable data communication. The im-
plementation is organized so that flow control functions are 
at a high level and are independent of framing and other 
details of link control. This means that device charac-
teristics are transparent at the flow control level, allow-
ing the code to be used in different contexts - e.g. with 
both bit-oriented and byte-oriented lines, or DMA and non-
DMA devices. Also, implementations exist for the UNIX ker-
nel, as a user-level subroutine package, and currently for 
one non-UNIX system. Emphasis has been placed on learning 
how to produce communication software that is operating 
system-independent as well as machine-independent. In prac-
tice this means that the packet driver implementations 
listed above consist of protocol routines which are common 
in all cases plus io and clock routines which are system 
dependent. Since protocol changes invariably affect only 
the common code, the logistics of making network-wide im-
provements or repairs simplify to updating a common file and 
reloading the appropriate system programs. 

There 	exist 	numerous 	link control and flow control 
procedures, however they were judged not suitable for our 
uses for a variety of reasons. Some typical complaints are 
that flow control procedures are not really end-to-end, pac-
ket formats are complicated and verbose requiring a fair 
amount of real-time scanning, multiplexing is usually 
defined in immutable ways, and error control, framing, mul-
tiplexing, and flow control are usually mixed together 
instead of 	being 	separated 	where 	possible. 	These 
considerations led to the following: 

1) flow control 	is based on a sliding "window" 
of sequence-numbered packets. The numbers 
are modulo-8, the maximum window size is 7, 
and the window sizes are controlled by the 
receivers. The retransmission strategy uses 
either "go-back-N" or selective single packet 
retransmission at the receiver's discretion. 

2) packet sizes and window sizes are negotiated 
between two communicating packet drivers. 
The packet and window sizes in each direction 
need not be the same. 

3) packets may range in size from 32 bytes to a 
maximum of 4096 as determined by the formula 
32 * (2 ** k) where k is an integer, 0 < k < 
7. 

4) all message headers are the same size, unlike 
x.25 and other similar protocols. 

5) it 	is possible to multiplex the link at the 
packet level, or within packets, or both. 
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The software overhead of running the packet driver on 9600 
baud 	lines 	is quite low. 	The implementation is efficient 
enough that data rates exceeding 50K baud have 	been 
demonstrated with this software using a a PDP-11/45 and non- 
DMA devices. 	As one would expect the overhead at higher 
data rates consumes the available cpu resources. 	For this 
reason the packet driver is looked upon as an algorithmic 
testbed and intermediate step toward improved computer 
peripheral hardware for communications. 

Interproce21 and Procels-deyice CommMnicalion 

Multiple independent asynchronous data streams and events 
comprise the greater part of the environment for data com-
munication software. It has been observed many times that 
"blocking" I/O as implemented in the UNIX timesharing system 
does not provide direct methods for dealing with these 
entities, and there are sound architectural reasons why it 
does not. Nevertheless, a process that must read from more 
than one source sould not have to wait on idle data sources 
since input data will be missed or delayedd on lines that 
are actively producing data while the process is blocked. 
(It is assumed that polling techniques are unacceptable.) 
Also, the flow-control scheme used throughout the system 
causes writer to block if the total amount of written data 
exceeds a threshold. Such processes sleep until the 
corresponding reader (process or device) 	consumes some or 
all of the waiting data. 	A communications process typically 
must write to several processes and/or lines at once. 	It is 
somewhat 	inefficient to force such a process to block on a 
"slow" device or process when there are other readers that 
can be written to. Thus it would apppear that an operating 
system must provide techniques for dealing with asynchronism 
and blocking or flow-control problems as well as supply a 
useful means for establishing data bpaths between the 
various data sources and sinks. The mechanism outline below 
accomplishes these immediate goals in a simple and direct 
manner. 

Two entities are defined: channels and multiplexed chan- 
nels, also called channel groups or groups due to the 
similarity with 	existing notions in telephony. 	A channel 
consists of a pair of full-duplex communication paths. One 
pair is designated as the "data" path and the other as the 
"control" or "signaling" path. This architecture explicitly 
recognizes the need for what is usually called "out-of-band" 
signalling by dedicating a 	communication path for the 
purpose. 	In the implementation, each path has some amount 
of fifo or data queuing built into the transport mechanism. 
However, the actual data transport is dealt with indirectly: 
in order to avoid unnecessary copying of data from place to 
place within the system, the data is placed somewhere using 
a buffering mechanism, tokens indicating where the data can 
be found are passed from place to place. This decoupling of 
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the fifo and buffering functions from the data transport 
mechanism increases the efficiency of data movement and 

permits insertion of or tuning of buffering mechanisms in a 
transparent manner. 

A channel 	can be thought of as a software null-modem: a 
null-modem consists of two plugs connected by some wires 
(fifo/buffering) so that data and signals transmitted at one 
plug are received at the other and vice versa. In the hard-
ware world one may connect computers, computer terminals, 
and various other digital devices to one another via null-
modems. In the software world one may attach processes, 
devices, other channels, and groups (see below) to the ends, 
or plugs, or a channel. 

The multiplexed channel construct is a bundling mechanism 
("Bundling" is a convenient term to describe a construct 
which fans-in, fans-out, or otherwise merges data. Examples 
include the PORT mechanism developed at RAND and elsewhere, 
certain aspects of the C.mmp system, and the UNIX timeshar-
ing system tee command.) which supplies both a multiplexing 
discipline for merging data from many channels and the in-
verse mechanism for sending data to the individual channels 
in a bundle, or group. A process can areange to have 
various devices and processes "plugged-in" to the ends of 
channels and bundle all the opposite endings together in a 
multiplexed channel, or group. In this way a read command 
issued on the multiplexed channel will return any and all 
data (up to the requested limit) available from all the at- 
tached channels. 	This eliminates 	the blocking 	reader 
problem mentioned above. 

It 	is possible to bundle the multiplexed stream associated 
with a group into another bundle, or super-bundle. This al-
lows tree-structured data path networks to be built up. The 
maximum tree height and fan-in at each group is fixed at 4 
and 16 respectively. By numbering the channels bundled into 
a group, a unique name for every possible tree node is 
defined as the pathname, or sequence of channel numbers 
encountered along a path from the "top," or root, of the 
tree to any particular node. The pathname or sequence num-
bering of a particular node is referred to as an index. (An 
index is represented as a 16-bit quantity interpreted as a 
sequence of 4-bit numbers.) All exchanges between the 
operating system and a process owning channels and groups 
are carried out using indices. 

Multiplexed channels are created using the following C code: 

fd = mpx ("namelmode); 

which has the same effect as crest 	("name",mode) 	in that 
"name" is placed in the file system. In addition reads and 
writes on "fd" are translated by the operating system into 
I/O operations on channels attached to the group. 
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I/O operations on a group are carried out via the standard 
UNIX timesharing system calls: 

cc = read (fd,buf,count); 

cc = write (fd,buf,count); 

The contents of "buf" are a concatenation of some number of 
variable-length structures each having the form of an index 
followed by a byte count followed by the indicated number of 
data bytes. (Control channel data is distinguished from 
data channel data by an escape convention based on the mes-
sage byte count. If the count indicates a zero-length mes-
sage, then the actual byte count follows the zero and is in 
turn followed by control channel data.) The "buf" formats 
for reading and writing are identical, and in both cases 
"cc" indicates the number of bytes actually transferred out 
of a total request of "count" bytes. (Another form of write 
is provided in which "buf" consists of indices, byte counts, 
and pointers to the actual data. This format reduces the 
buffer filling overhead on output and improves the per-
formance of certain programs.) On write operations if "cc" 
< "count" and the contents of "buf" were destined for more 
than one channel, then it is known that at least one channel 
fifo threshold was exceeded or some error condition was 
encountered. Precise information can be obtained by reading 
the group because the system immediately passes back status 
information. The index numbers of blocked channels and the 
number of data, one ,essage for each blocked data channel. 
When the previously written data is finally consumed, 
another control message is sent to the group owner indicat-
ing the readiness of a channel to accept data. These "bloc-
king" and "unblocking" messages allow a process to continue 
to serve channels even though it temporarily cannot transmit 
to all its channels. A complementary function is provided 
whereby a process can enable or disable incoming data trans-
fers on selected channels. 

If 	"d" is a character device file descriptor obtained via a 
call resembling 

d = open ("/dev/name",2); 

then a channel can be created and the character device at-
tached to the channel by executing 

ch = join (d,xfd); 

where "xfd" is the file descriptor for the multiplexed chan-
nel and "ch" is the new channel number. 
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Multiplexed channels may be joined or "bundled" to other 
channels by using the join primitive as outlined above and 
letting "d" be the file descriptor of a multiplexed channel. 
There are additional primitives for "unbundling" and 
manufacturing file descriptors that map into channels. 
Moreover the non-multiplexed file descriptors for channels 
may be used as the standard input or output for any UNIX 
program. (The multiplexed file dexcriptors provide direct 
access to the 	control 	paths of 	channels, 	but 	this not 
meaningful for the non-multiplexed case. Currently, ioctl 
commands on the non-multiplexed end of a channel are treated 
as messages on the control path of the channel.) The 
preceding discussion indicates how channels and devices can 
be attached to groups. It remains to indicate how channels 
are attached to processes. There are two techniques. One 
involves using the extract primitive, which is a converse of 
the join operation, to manufacture a file descriptor from a 
channel. Using standard techniques found, for example, in 
the UNIX shell one arranges fro an extracted file descriptor 
to be the standard input and output for a new process by 
executing UNIX close and dup calls usually followed by 
fork/exec. The second method has more interesting 
Properties - if "name" is the name of a group, then 

fd = open ("name"92); 

triggers the following sequence of events: 

1) the kernel notices that an open is being done 
on a group rather than an ordinary file. 

2) if a new channel 	cannot be joined to the 
group or if the process which created the 
group is no longerrunning, the open fails im-
mediately. 

3) otherwise, 	a message is sent on the control 
channel of the group to the owner process 
stating that an open was requested. The 
effective UID of the opening process as well 
as the index, 	x9 of 	a new 	channel are 
included in the message. 

4) the owner process may respond with either at- 
tach(x) or detach(x) which respectively com-
plete the job of hooking channel x between 
the group and returning file descriptor fd, 
or cause the open to fail. 

An open sequence as described above results in the creation 
of a channel. The file descriptor returned to thr process 
executin ght open will be "plugged-in" to one end of the 
channel, and the other end of the channel will be attached 
to the group. A read on the file descriptor will be satis-
fied by writing on the channel through the group, and con-
versely for writing on the file descriptor and reading the 
group. An immediate application of this facility is in im- 
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plementing virtual terminals, or a "telnet server" as it is 
called by the Arpanet community. A process first 
establishes a group and arranges for one channel to be a 
data path to a similar process runing on another computer. 
If the remote process sends a message asking that an 
interactive environment be established, then the local 
process forks, opens its own group, and starts up the shell 
with the file descriptor returned from the open as the stan-
dard input and output. Meanwhile the original local process 
arranges to copy data from the newly created channel to the 
remote computer and vice versa. Of course there are certain 
niceties involving access permission, process groups, and 
other details which are not explained here, but they can all 
be handled neatly within the channel/group organization. 

The method outlined above provides a form of 	"port" 
facility. 	Its 	main disadvantage is that one must know a 

port name. System or network-wide services would presumably 
have well-known names, but it is important to have a class 
of unbound names that the system can recognize. 	Interpreta- 
tion of such names might 	require searching for a remote 
machine having a certain service facility or might require a 
simple translation of some sort. In order to accomplish 
this a mechanism has been established whereby a multiplexed 
channel may be designated as the unique interpreter for all 
such unbound port names. In the operating system any open 
requests on names containing "!" 	are treated as open 
requests on the special channel. 	One use of this mechanism 
is to treat "namel!name2" as a request for a file with name 
name2 on a machine designated by namel. Since strings of 
this form may be passed in to any program on the system, one 
may write 

diff machinel!filel machine2!fi1e2 

and expect the UNIX diff command to be run with input from 
machinel and machine2. 

For some applications the bandwidth that can be achieved by 
implementing data stream switching between channels in a 
user process, implying a copy operation from the kernel to 
the switch process and back to the kernel and then a final 
copy to the destination process or device, may he quite 
adequate. The primary example is the virtual terminal 
scheme outlined above. 	However this is not true for many 
other applications especially those involving file transfer 
or file access. 	For these cases a connect primitive is sup- 
plied 	which establishes a "short-circuit" connection in the 
kernel between a channel and file descriptor. That is, at 
the place in the operating system where data buffered in a 
channel would be copied to a user process as part of a read 
operation, the data is handled as though a write on the file 
descriptor had been done. The connect primitive specifies 
whether the symmetric short-circuit path is also meant to be 
established - that is, whether writes on the file descriptor 
should induce a direct copy to the agent reading the "other" 
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end of a channel. A disconnect operation is also provided 
to break open short circuits. 

The semantics of carrying out a normal open call on a mul-
tiplexed channel name provide a useful range of interprocess 
communication capabilities. This is what one expects from a 
process communication system. However, by making slight ad-
justments to the name recognition algorithms in the system a 
wider class of file names can be "trapped" by the open 
routines 	in the kernel and passed as messages to a program 
for further interpretation. 	This comprises a very powerful 
mechanism for distributing system functions in interesting 
and useful ways: once a channel has been established via 
this name translation procedure, subsequent I/O on the chan-
nel by the process can be redirected to other computers or 
other process at will and without modification to the 
initiating program. 

p 
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7.8 oisTRItlaill 	AN2 210111.L in 

DISTRIBUTED INTERPROCESS COMMUNICATION AND SIGNALLING 

by 

G. Le Lann 
IRIA/SIRIUS 

7 . 8 . 1  Mt 2tnsLai igalta 

let us consider a system including several processors being 
linked together through an interconnection structure. We 
will distinguish between processors being accessed by exter-
nal users who wish to initiate activities and processors 
which run these activities and may return results to some 
external users. Initiation of activities, execution control 
and transmission of data are accomplished through transmis-
sion of messages. In the following, we will refer to these 
processors respectively as senders and receivers of messages 
(see figure 1). We will not make any assumption regarding 
the size of these messages. 
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> Flow of messages 

Our assumptions will be: 

- senders and receivers may be micro, mini or 
maxi processors, 

- these processors may fail, 
- the interconnection structure is any resilient 
hardware structure (using alternate routes in 
telecommunication 	networks, 	multiple 
busses/cables in multiprocessors/multicomputers, 
radio frequencies, etc.), 

- errors, duplicates and losses are possible dur-
ing the transmission of messages, 

- message transit delays are variable, 
- there is no privileged processor in charge of 
handling either communication or interprocessor 
cooperation. 

We would like first to describe some of the problems we see 
to exist in such systems and, second, to present a solution. 

Georgia Institute of Technology 	 IPC Workshop 



Section 7 
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 115 

7 . 8 . 2  

7.8.2.1 Multiple Sender/Single Receiver Systems 

Let us consider a system as depicted in figure 1 but includ-
ing only one receiver. We can identify two different 
problems: 

i) for any sender, 	it may be necessary to 
maintain a strict sequencing of messages be-
ing sent to the receiver 

ii) the various message flows converging at the 
receiver may have to be serviced by the 
receiver 	according 	to 	a 	particular 
discipline, which may be dynamically changed 
and not be known statically or guessed by the 
receiver. 

Problem (i) is a problem of end-to-end signalling or single-
path signalling (sps). Solutions to the sps problem are 
well known. The "window" technique is an example of such a 
solution. 

Problem 	(ii) 	raises 	the issue of multiple-path signalling 
(mps) that is the problem of serializing incoming messages 
issued in parallel by different asynchronous sources. A 
mechanism is needed whereby senders may enforce distantly a 
particular serialization of messages at any time. For exam-
ple, this is needed when two senders A and B wish to 
establish a particular ordering 	for 	initiating activities 
(e.g., A before B). 

7.8.2.2 Multiple Sender/Multiple Receiver Systems 

Let us now consider a system including several receivers. 
We will distinguish between two cases: 

i) 	 redmndani Ixlieml 

Major 	motivations 	for 	running 	several 
identical receivers are to make the system 
able to survive receiver failures, to provide 
for a geographically dispersed but unique ac-
tivity visible from various locations 
(receiver areas), 	or to 	relax constraints 
regarding system maintenance. 

The serialization 	of 	incoming 	messages 
(either 	fortuitous or enforced) 	must 	be 
unique for all receivers. 	This 	is an mps 
problem. 
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ii) Partially 	redundant 	systems, partitioned 
systems 

These systems include several receivers run-
ing activities which may be strictly 
identical for some of the receivers, as well 
as activities which are different for all 
receivers. 

In addition to the motivations already mentioned, other 
reasons for considering such systems are to provide for 
various activities being run in parallel and to allow for a 
modular and dynamic growth of the system. In these systems, 
an activity being initiated by a sender may span several 
receivers. This raises the need for coordinating the 
various 	individual 	serialization processes over these 
receivers. Finally, according to user requests, the mapping 
between senders and receivers, i.e. the need to set and 
reset cooperation paths between senders and receivers will 
be constantly changing with time. 

To summarize, we want to maintain a unique serialization of 
incoming messages for those receivers which act as "twins." 
In addition to this, we want to be able to achieve: 

- For every receiver, a specific 	and 	local 
serialization of messages 	in step with the 
dynamically changing subset of senders 	it 	is 
cooperating with 

- decentralized 	coordination 	between 	those 
receivers which have to serialize messages 
related to multi-receiver activities in order to 
avoid conflicts between such activities. 

This is again an mps problem. 

7 •8• 3  isalkin2 12r. A 121m1i2n: Atguirsasnil 

Potential advantages of distributed computing systems are 
numerous. However, it is not so simple to find a solution 
to a particular design problem which does not annihilate 
some of these advantages. A number of requirements which 
are considered to be of primary importance for a 
"distributed solution" to the mps problem are listed below. 
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7.8.3.1 Parallelism and Response Time 

A solution should take full advantage of the parallel nature 
of the system; parallelism in processing as well as in com-
munication may result in a good resource utilization ration. 
This has a non-negligible impact on system costs and 
response time. 

7.8.3.2 Resiliency 

A solution should survive failures. 	Actually, 	we need a 
more precise measurement of such a property which would ex- 
press the number of simultaneous 	failures a solution may 
survive. 	This is the notion of resiliency. 

7.8.3.3 Overhead 

Costs of a solution may be low, monstrous, or acceptable. 
It is necessary to evaluate overheads as regards traffic 
(number and size of additional messages), processing (handl-
ing of additional messages) and storage (for "control" in-
formation). 

7.8.3.4 Permanent Rejection 

When conflicts occur (between "simultaneous" activities, for 
example), how does a solution lend itself naturally to avoid 
infinite waiting, without resorting to any exotic or ad-hoc 
mechanism? 

7.8.3.5 Fairness 

Again, 	when conflicts 	occur, 	a solution should not favor 
systematically the same processor(s). 

7.8.3.6 Extensibility 

If a solution may keep on working under dynamic system 
reduction 	(failures), then it is necessary to show how this 
solution matches the requirement of dynamic 	system ex- 
tension. What this means is that it should he possible to 
reinsert or to add processors to the system without disrupt-
ing the functioning of the system. 
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7.8.3.7 Simplicity 

When time has come to implement a system, problems of under-
standing, specifying, debugging and maintaining the software 
corresponding to a particular solution become preponderant. 
This last requirement may well be one to look at very 
carefully when considering to build a real system. 

7.8.4 A Isamilsan 

We have seen that an mps mechanism is needed if one wishes 
communications between several senders and receivers to ex-
hibit some specific properties. Obviously, signalling in a 
distributed system will be accomplished through the exchange 
of messages, i.e. signalling will rely on communication. 

This apparently recursive problem requires some structuring. 
We will then assume that any convenient technique is used in 
the system for solving the sps problem. 

On top of this "layer," we will build our mps mechanism. 

7.8.4.1 A Virtual Ring Structure 

Sending processors are given permanent identities. 	If n is 
the predicted maximum number of these processors, identities 
will be integers belonging to the interval CO, n - 17. As a 
result, it is possible to view these processors as being 
sequencially located along a virtual ring. Each processor i 
has a well known predecessor and a well known successor, i -
1 and i + 1 in the absence of failure (the marks - and + 
stand for operations modulo n). There is no assumption made 
regarding the mapping of processor identities on physical 
addresses. In other words a virtual ring strructure does 
not assume any particular physical topology. 

As processors are located on a virtual 	ring: 	it 	is only 
needed for each of them to know the identity of their 
respective predecessor (pred) and successor (suc). 

A permanent and virtual communication path is established 
between adjacent processors. A message sent on such a path 
may travel over different physical links as provided by the 
interconnection structure. Specific techniques may keep the 
failure of a particular link transparent to processors. 
However, occurrence of one or several failures may preclude 
communication between adjacent processors. Detection of a 
communication path breakdown as well as detection of a 
processor failure can be achieved by using one of the fol-
lowing techniques. 
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7.8.4.1. 1 Mutual Suspicion  
Every processor sends regularly "life messages" to its suc-
cessor on the ring. These messages should be acknowledged. 
If the successor fails to return acknowledgements for a 
given period of time, it is declared dead and its predeces-
sor undertakes a ring reconfiguration. Actually, there is 
no difference between an abnormal behaviour of a successor 
and a breakdown of a communication path. In both cases, the 
successor should not be maintained on the ring. 

Acknowledgement of life messages is bound to some internal 
checking 	procedure which, if successful, indicates that the 
processor is safe. 	In order to achieve correctness checking 
transitivity along the ring, it is necessary to bind the 
transmission of life messages to this checking procedure as 
well. 

Consequently, a processor 	cannot 	be 	returning 	ack- 
nowledgements to its predecessor and fail in checking its 
successor. 

7.8.4.1.2 Explicit Meslage Acknowledgement  
It may be required for messages sent over a communication 
path to be acknowledged. A number of retransmissions are 
allowed before deciding that the communication path is 
broken. Numerous examples of protocols aimed at monitoring 
transmission on various transmission media can be found in 
the literature. They will not be detailed here. Also, it 
may happen that messages are not acknowledged because the 
successor has failed. As explained before, whatever the 
case, that successor should not be kept on the ring any 
longer. 

Thus, every processor on the ring must be provided with a 
reconfiguration protocol to be used every time a failure 
leads to a ring breakdown. A simple example of such a 
protocol is given below. 

7.8.4.2 Ring Reconfiguration 

Let us consider a situation where processor i and processor 
i+2 are respectively predecessor and successor of processor 
1+1 when this processor fails or when the communication path 
between i and 1+1 is broken. It is only necessary for 
processor i 	to send to i+2 a specific 	message, to be 
referred to as a reconfiguration message, meaning that from 
now on predecessor or processor 1+2 is processor i. 	This 
message must be acknowledged by 1+2. 	If an acknowledgement 
is not 	received by i after several attempts, i will send a 
reconfiguration message to 1+3, thus excluding i+2 from the 
ring. The extreme situation is that of a ring including 
only one processor. 
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The decision of initiating a reconfiguration being taken ex-
clusively by one processor for any particular failure, it is 
easy to infer that no incoherence can arise because of the 
exclusion of a processor from the ring. Because it is 
required for a reconfiguration message to be acknowledged, 
it is possible to devise some more elaborate scheme (for 
instance, utilizing passwords) to avoid the 	possibility 	of 
having a 	single faulty processor excluding all the others 
from the ring. 	An example of a protocol using passwords is 
given below. 

7.8.4.3 The Extensibility Property 

If processors are allowed either to fail or to leave, it 
should be possible to reinsert on the ring a processor which 
has been repaired or which decides that it 	is "on" again. 
Also, we want 	it possible to expand the system while the 
system is running. To this end, a three-party protocol is 
needed such that the ring is always correctly configurated. 
This protocol must survive failures itself and should entail 
as small a disturbance as possible. Let us assume that 
processor j has to be inserted on the ring. 

To this end, 	j 	must 	send a specific message, called an 
"insert" message, containing its identity j to its potential 
successor (5+1, J+2, ...). 	Let us assume that k is on 	the 
ring. 	Processor k 	knows the identity of 	its current 
predecessor. 	Let us assume that pred Ck1 is processor i. 

Upon receiving such a message, k checks that the following 
condition holds: 

pred Ck2 < identity within insert message < k 

(< is modulo n). 

If 	it 	is 	so, 	k checks for an exchange of m life messages 
with j and then sends to I a message meaning that 	i 	should 
accept j as its new successor. 	This message contains a pas- 
sword X. 	Upon reception of this request, i checks for an 
exchange of m life messages with j. 	When this is completed, 
i sends to k a "switch" message containing the password X. 
This message is intended to avoid processors i and k being 
fooled by a malicious processor j and it is also used as a 
means to perform safely message transmission switching on 
the new path (i, j, k) as explained below. 

Upon receiving the "switch" message, k acknowledges it and 
listens to j to detect the reception of a message containing 
code X. 
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Upon receiving this acknowledgement, I performs the update 
suc (i) := j; the first message to be sent to j is a message 
including code X. This message and other subsequent mes-
sages are passed on to k by j. 

When receiving a message with code X, k updates pred [k] 
with value j and then stops listening to i. 

There is no interruption of message transmission on the 
ring. 	If something goes wrong with j no disturbance is 
introduced on the existing ring. 	The message containing 
code X 	is a good vehicle to maintain a FIFO message trans- 
mission on the ring should this be required. 	There is no 
special provision made to guarantee that loss of messages 
does not occur between i and k just before or after recon-
figuration of the ring performed by k. Loss of control mes-
sages is accepted on the ring and is harmless as will be 
shown later. 

If transmission between i and j or between j and k turns out 
to be impossible, then a normal ring reconfiguration is un-
dertaken. 

7.8.4.4 The Control Token Mechanism 

Cooperation between processors located on a virtual ring can 
be achieved by providing them with some control privilege. 
The solution suggested here is to have a particular message, 
called the control token, circulating on the ring. Only 
when holding the token should a processor be allowed to 
initiate some specific activity. 	Upon completion, the token 
is sent to the successor. 	Obviously, in the case the token 
is lost, it should be possible to regenerate it. 

We begin by describing how the control token mechanism is 
made resilient. Then, we show how this mechanism can be 
used to solve the mps problem. 

7.8.4.4.1 Reliliencx 
We assume that every processor owns a timer and that timer 
values being used by the various processors on the rina are 
not necessarily identical. Processors are allowed to read 
headers of messages circulating on the ring. 

Transmission of a token between adjacent processors is 
monitored through a positive acknowledgement + retransmis-
sion protocol. The token carries with it an integer value, 
called the cycle number, which is incremented for every com-
plete revolution on the ring. This incrementation is per- 
formed by processor x such that x > suc (x). 	At 	any 	time, 
this processor is unique. Also, the numbering cycle to be 
used should be chosen so that duplicate detection can be 
performed safely. This is possible if maximum "hardware" 
transit delays are known. 
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Timer values being used by processors correspond to the ex-
pected round-trip time with the successor on the ring. A 
timer is reset when the token has been acknowledged by the 
successor. 

Each processor keeps a recording of the value (N) carried 
within the token during its last visit. 	Next real token to 
be received (not duplicates) must carry value N + 1. When 
the sender's timer awakes, transmission is tried again, up 
to a maximum number of attempts. Should this Limit be 
reached, a ring reconfiguration is undertaken. The token is 
not lost. 

If failure of a processor 	is noticed through the mutual 
suspicion protocol, 	then it may be the case that the token 
was held by this processor which failed. 	Detection of such 
a situation and regeneration of the token can be performed 
as follows. 

Let h be the identity of the predecessor of that processor 
which has failed and i 	the identity of the successor. 
Processor h undertakes a ring reconfiguration. 	The recon- 
figuration message carries 	with it value N(h), last token 
value known in h. Upon reception of this message, processor 
i runs the following algorithm: 

if 	(i 	> h 	and N(h) t N(i)) or 
(i 	< h 	and N(h) = N(i)) then 

create token N(I) := N(i) + 	1: 

With such an algorithm, it is possible 	to assert 	that 	a 
token is never lost and that, at any time, there is only one 
such token circulating on the ring (or zero for a finite and 
hopefully short period of time). 

7.8.4.4.2 Distributed Signallina  
A simple way to achieve a specific signalling sequence in a 
distributed system is to have the processors serializing 
themselves so that at any time, only one processor is "ac-
ting." This can be done very simply by using the control 
token as a vehicle to achieve mutual exclusion between these 
processors. However, the speed of this signalling technique 
is very much dependant on the time spent within the critical 
section. The problem is that very often, both the number 
and the nature of mutually exclusive actions are given 
beforehand and it may be very difficult to adjust the size 
of the critical section so that response time requirements 
are matched. Such a technique could slow down a system 
artifically. 

Instead of this, it is suggested to uncouple completely the 
sionalling mechanism and the execution of the critical sec- 
tion. 	As a 	result, 	mutually exclusive actions 	will 	be 
initiated in parallel. 	A proper sequencing can be built by 
assigning identifiers to them. 	The control 	token will 	be 

Georgia Institute of Technology 	 IPC Workshop 



Section 7 
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 123 

used for the purpose of distributing sequencial identifiers 
within the system. These sequential identifiers will be 
referred to as tickets. Every message issued by a sender 
must be ticketed. 

If we want receivers to service incoming messages according 
to a purely sequential ordering, then we need one ticket 
space per receiver category. In a fully redundant system, 
we have only one category of identical receivers. One tic-
ket space is needed. In a partitioned or partially redun- 
dant system, we need one ticket space for each partition. 
Then, according to the system under consideration, the token 
will carry either a ticket value or an array of ticket 
values. 

It has been shown how the birtual ring t  token structure can 
survive failures. But ticket allocation must also he 
resilient. To this end, one may require that a processor 
should be either selecting tickets or using them but not 
both. What this means is that those tickets which are 
selected by a processor should not be used until the token 
has been acknowledged by the successor. As a consequence, 
should a failure occur in the midst of ticket selection, the 
correct ticket value or array of ticket values can be 
regenerated with the token exactly like this is done for the 
cycle number (see 7.8.4.4.1). Another issue is that of 
failures interrupting processing at random. In particular, 
what should be done with those messages which have been is-
sued by a processor which failed later on? Another problem 
is what to do with tickets not being used because they were 
held by a processor which died. 

Actually, 	the whole issue would require a complete discus- 
sion which is out of the scope of this paper. 

7.8.4.4.2.1 Fortuitous Serialization 
i) Signalling within fully rIllungara axlitml 

The broadcasting of a ticketed message to all receivers may 
be done by the sender (parallel broadcasting). 	The usual 
problem with this technique is 	that 	the 	sender may fail 
while issuing messages. 	However, because tickets must be 
sequential, it is simple for a receiver to detect 	such an 
unsafe situation. A copy of the missing message may be ob-
tained from another receiver. 

Another approach to broadcasting consists in organizing 
receivers along a virtual ring. 	This ring is intended to be 
a resilient vehicle for message broadcasting. 	Only one copy 
of a message must be created by the sender which hands it 
over to one of the receivers. 	This 	receiver is then in 
charge of 	initiating the revolution of the message on the 
ring. 
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ii) 	Signalling within garlioned or partially redundant 
systems 

The transmission of ticketed messages is done by the sender 
which selects tickets from the ticket spaces correspodning 
to the relevant partitions. 

7.8.4.4.2.2 Enforced Serialization 
Let us assume that two senders A and B want the receivers to 
process messages issued by A first and then messages issued 
by R. This is done very simply by having A sending to B a 
"go-ahead" message after A has ticketed its last message. 
There is no need for serializing the 	related activities 
outside 	the system (for example, A waits until its activity 
is over and then sends a message to B). 

Senders A and B may also wish to initiate co-related ac-
tivities which, in a partitioned system, share at least one 
partition. These activities are such that the message from 
A should be serviced before the message from B and also the 
message from r should not be processed if the activity 
initiated by A could not be completed. 

The following protocol may be suggested. In the "go-ahead" 
message, A stores the value of the ticket used for its mes-
sage. It is then only needed to provide for a flag and a 
field in message headers to be used as follows. When a mes-
sage M is received with the flag set, the receiver should 
read the ticket value stored in the field. If the 
corresponding activity could not be completed, message M is 
discarded and the sender is told that its activity was not 
initiated. 

7.8.4.4.2.3 Performance Considerations 
We want the signalling mechanism not to put any artificial 
limitation upon the system performances. Consequently, this 
mechanism should not be dependent upon the rotating time 
period of the token on the virtual ring. Senders should be 
able to ticket and to issue messages at any time. This 
means that senders should be allowed to select tickets not 
only for pending messages but also for "future" messages, 
i.e. messages to be created and issued between two succes-
sive visits of the token. 

Let 	p be a sender. 	At token visit Si, let C.i(p) be the 
exact number of messages which are pending when the control 
token is received, f.i(p) be the predicted number of future 
messages, T.i(p) be the current value of the relevant ticket 
space upon reception of the token and Tti(p) be the new tic-
ket value when the token is sent on the ring. 

Sender p is allowed to acquire C.i(p) 	f.i(p) 	consecutive 
tickets, 	starting 	from 	T.i(p). 	Ideally, 	during token 
revolution #1+1, P needs exactly f.i(p) 	tickets. 	Clearly, 
predictions are only predictions. Furthermore, the token 
circulating speed is variable. 	Hence, it 	is necessary to 
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consider two possible situations: 

- a rune Ihsari of IiLkatl: it has to wait for 
reception of the token. 

- some tickets are not 	used when the token  is 
back: 	let u.i(p) be the number of unused tic- 
kets. 	Because of the 	mutual 	independence 
principle, 	these tickets should be used up im- 
mediately. For that purpose, we provide for the 
utilization of 	a no-operation code. 	Exactly 
u.i(p) 	"fake" messages carrying a NOP code will 
be isued by p. 

When needed, and as long as tickets are available, new mes-
sages are issued. 

Probably, 	this will achieve a good parallelism between sen- 
ders but it is not clear whether or not this will result 	in 
a good average response time. Response time for a given 
sender is dependent on how fast predecessors use up their 
tickets. 

Should such an interference be judged unacceptable, another 
solution is needed. 

What we would Like to build is a mechanism whereby current 
pending messages and future messages are distinguishable, so 
that current pending messages for any sender receive tickets 
"smaller" than those given to future messages. 

Let us make it clear that we do not attempt to build a per-
fect chronological ordering of messages. We only try to 
achieve some system-wide statistical FIFO service so that 
the average response time for every sender can be kept below 
a reasonable value. 

The way this can be done 	is 	rather simple. 	It 	is only 
needed to maintain two ticket values T and 9, in the token 
instead of one (or two arrays instead of one). T as above, 
is to be used for ticketing current pending messages and 8 
for ticketing future messages. By the time the token is 
back in p, only one of the three following conditions can 
hold: 

- u.i(p) = C.i(p) = 0 (ideal case) 
- C.i(p) messages are waiting because p is Lacking 

tickets, 	u.i(p) 	= 	0, 	C.i(p) 	> 	0 	(under- 
estimation) 

- u.i(p4 	tickets are still available, u.i(p) > 01 
C.i(p) = 0 (over-estimation). 

Georgia Institute of Technology 	 IPC Workshop 



Section 7 
	

CURRENT TECHNIQUES AND EXPERIENCE 	Page 126 

A requirement regarding the ticketing function is that the 
two sets of numbers being used to assign a value to T and 8 
should not be overlapping. 

Two numbering cycles N(T) and N(8) should be chosen so that 
tickets Lifetime is conveniend (see computations below). 

As T-ticketed messages and 8-ticketed messages will be 
received interleaved by receivers• it is necessary to 
provide for some means whereby receivers are able to decide 
when to stop processing T-ticketed messages and start 
processing 8-ticketed messages as well as the reverse. 

Such a "switching" should correspond to a complete revolu-
tion of the token on the virtual ring. We need a sender to 
flag the corresponding I and 8 ticket values. 

That 	sender could be x such that successor (x) < x. 	Due to 
the properties of the virtual ring, this processor is unique 
and always exists. 

The algorithm to be followed by sender p upon reception of 
the token is described below (+ and - operations are modulo 
N(T) or N(8)). 

BEGIN 
IF suc (p) < p and C.i(p) = 0 THEN 

2LkIN 
C.1(p) := 1; 
creat Fake message 

END; 
iE C.i(p) > 0 TEEN To.i(p) := T.i(p) + C.1(p) 

(acquisition of tickets #T.i(p), 	#1.1(p) + C.i(p) - 1) 
El SE IF u.i(p) > 0 THEN 

send u.i(p) Fake messages (ticketed with the u.i(p) 
highest 8-tickets obtained during the Last 
token visit); 

assign a value to f.1(p); 
IF suc (p) < p AND f.i(p) = 0 THEN 

BEGIN  
f.i(p) := 1; 
create Fake message 

END; 
8 9 .1(p) := 8.1(p) + f.i(p) 

(acquisition of tickets #8.1(p). 	#8.1(p) + f.i(p) - 1); 
IF suc (p) < p THEN FLag messages carrying tickets 

#T.1(p) + C.i(p) - 1 and #8.1(p) + f.i(p) - 1; 
END 
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The algorithm to be followed by a receiver is given below. 

Notations: 

X stands for either state T ("current") or 
state 8 ("future"); 

X -  = T if (x=e), 
= 8 if (X=T); 

t(X) is a local variable containing the ticket value of the 
last processed message, i.e. 	t(T) or t(8). 

WHEN IN STATE X DO 
LOOP: 	Scan for, or wait for reception of message 

X-ticketed t(X)+1; 
CASE1 (X-ticket t' > t(x)+1 is received): 

mod 
Record request; 

CASE2 (X - -ticket is received): 
Record request; 

CASE3 (X-ticket t(x)+1 is present or received): 
BEGIN  initiate processing; 

IF message t(X)+1 is flagged 
THEN 

switch to state X - 
ELa 

t(X) := t(X)+1 
END 

CASE4 (timeout): 
Marks itself out of synchronization and initiate a 

recovery procedure. 

A simple way to provide for two separate numbering schemes 
of equal length 	is to use one bit to distinguish between 
T-tickets and etickets. 	However, one should mention that, 
if predictions are not too inaccurate, 9-tickets are to be 
used up more rapidly than T-tickets. Then an equal share of 
the ticket number space may not be the best solution. 

We will discuss only briefly the 	issue of fairness 	in 
estimating 1.1(p). 	We consider two cases: 

- senders 	are 	processors 	(maxis, minis, micros) 
cooperating within a distributed computing 
system to be viewed as a unique system by users. 
Algorithms to be followed by senders are 
designed by system builders who are responsible 
for choosing convenient values for f.i(p). 

- senders are computers connected on a computer 
network. Over-estimation is costly to senders 
because 	(i) 	processing wasted in handling NOP 
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messages cannot be used to process useful mes-
sages (throughput is lower), (ii) a sender is 
billed for messages carrying NOP code and for 
the corresponding processing in the distant com-
puter. 

Because of the "pipe-line" nature of this mechanism, there 
will be no interruption of message transmission. What this 
means is that receivers may be kept as busy as desired. If 
used cleverly, the signalling mechanism using anticipation 
can achieve any desired throughput. 

Tickets Lifetime 

For 16 bit tickets, values are re-used after 65 seconds if 
ticketed messages are issued every millisecond for the whole 
system, after IR hours and 12 minutes if ticketed messages 
are issued ever second. 

For 32 bit tickets, lifetime is much longer. 	Values are re- 
used respectively after 1 hour and 12 minutes, 119 hours or 
136 years when ticketed 	messages 	are 	issued 	every 
microsecond, 100 microseconds or second in the whole system. 

7.8.5 

In this paper, a solution to the problem of multiple-path 
signallino in distributed computing systems 	has 	been 
described. This solution is based on the utilization of a 
particular control structure which can achieve a distributed 
and resilient generation of sequential identifiers. In ad-
dition to solving the mps problem, this solution can be used 
in distributed 	systems which should be resilient and where 
unique names need to be generated dynamically. 	Also, a 
side-effect 	of 	this solution is to allow for a safe detec- 
tion of duplicate messages at a high level in the system. 
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SECTION 8 

SUMMARY AND FUTURE DIRECTIONS 

8.1 GENERAL  2110AAII01 AN UNLIWOUS 

The idea of a process has not been fully absorbed by 
programming languages or by modern hardware. Consequently, 
the concept of an abstraction of a process and its support 
is left to the realm of operating systems (which sit between 
the language and the hardware), resulting in little or no 
standardiztion of a "process" (especially when compared to 
the level of standardization enjoyed by other features or 
aspects 	of 	higher 	level 	languages 	and 	hardware). 
Nevertheless, as this report has illustrated, the process 
concept is becoming central to the design of computer 
systems both at the hardware and software levels. There are 
many reasons for this development, probably the two most im-
portant ones being: (1) the decomposition of systems and 
applications problems 	into 	sets of 	cooperating parallel 
processes 	for 	greater 	modularity. 	functionality, 
flexibility, and maintainability; and (2) the increasing 
cheapness of processors and memory allowing the assignment 
of processes to processors in an economical way. 

As processes have become "cheaper" to create, maintains and 
destroy, the flexibility, scope, power, and economy of 
interprocess communication (IPC) mechanisms has become an 
important key to the effectiveness of multi-process systems 
in general, and highly distributed systems in particular. 
However• there currently exists a wide variety of mechanisms 
for interprocess communication, resulting in what one 
researcher ESALT 79) has termed the "IPC Jungle". 	Perhaps 
the major 	reason for such a variety comes from a desire to 
provide in one set of primitives all of the following 
capabilities: 

1) Flexible process and/or data synchronization 
tools, 

2) Data transfer mechanisms, and 
3) Communication control 	and error 	recovery 

mechanisms. 

Surprising to some researchers at the workshop was the lack 
of attention paid to security, fault tolerance, and error 
recovery; however, this may be taken as an indication of the 
general state of affairs of a young technology. In such 
cases, attention is usually first focused on achieving a 
certain level of functionality before much effort is devoted 
to engineering those features that make the technology 
robust enough to be put into wide-spread use. 
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Finally, dissemination of information about 	IPC techniques 
and options with respect to both implementation and per-
formance has been extremely poor in the past, and there do 
not appear to be any immediate advances being made on this 
aspect of the problem. 
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8 . 2  121312112E 1UBBAII 

Below is a summary of the major focus areas of the workshop 
and their conclusions. 

8.2.1 AstALIsling ,  NAM1D2 ,  lad 

Many systems have inadequate facilities for identifying 
names of processes within the same host, 	let alone for 
processes 	residing on different hosts. 	Many existing 
systems almost totally sidestep the naming issue. 	Part of 
the 	problem 	stems from an inconsistent view of the 
relationship between the set of allowable names for files, 
devices, processes, users, mailboxes. generic system ser-
vices, and specific system services. As Livesy pointed out 
during the workshop, the concept of the size of the naming 
universe (of which the system forms a part) is implicit in 
the system at a very deep level. One is forced to choose 
between "add-on"naming techniques such as: 

/net/A/resource 

which are not location independent on the one hand, and a 
more or less complete redesign of the naming architecture on 
the other hand. 	UNIX is an example of a system that makes 
assumptions about the size of the universe. Until. this 
problem is settled, the design of specific interprocess com-
munication primitives cannot focus on the set of fundamental 
objects that must be dealt with. This is a difficult issue, 
since 	it 	is here that many of the system security issues 
must also be addressed. 

8 0 2 . 2  inimasulil lzuhunizailln 

Clearly, a major function of interprocess communication is 
to 	provide 	either explicit 	or 	implicit 	synchronization 
between processes and/or access to shared data. Early forms 
of interprocess communication depended only on the correct 
use of explicit synchronization primitives for sharing ob-
jects (usually sections of main memory). In some systems. 
temporary files served as synchronizing pointes between job 
steps (implicit), while in other systems. processes ex- 
plicitly exchange data by signaling. Whether synchroniza-
ticn primitives should be explicit or implicit is still very 
much an open question. 

It is also becoming clear to some of the researchers in the 
field that error recovery may be integral to the question of 
synchronization. 	Visibility of the state of a computational 
process 	is at 	the heart of the synchronization and error 
recovery issues. Concern over the "atomicity" of an opera- 
tion is becoming more of a focal point for distributed 
systems as the dimensions of time and space for com-, 
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putational 	operations 	begin 	to change by orders of 
magnitude. This concern is reflected in the recent 
literature concerning synchronization in distributed systems 
(see the 1978-79 references), and in some of the recent 
theoretical work. However, their effectiveness using 
current technology is 	Largely unknown until prototype im- 
plementations appear. 

8 • 2 • 3  Laituussil h DILL 

At Least ten currently used IPC mechanisms were identified 
along with some estimate of their support of certain 
qualities deemed desirable by the workshop attendees. There 
was more agreement on the set of desirable qualities than 
there was on which mechanisms fulfilled those qualities. It 
was also obvious that none of the present mechanisms did 
everything that everybody hoped for, which should tell us 
that we have yet to obtain maturity of abstraction (in the 
sense that the abstraction of a subroutine is well under-
stood) for a general IPC mechanism. For these reasons, it 
seems reasonable to keep exploring new mechanisms while we 
also continue to build real-world systems with the best 
techniques we have heard about. 

In addition it appears important to devote some additional 
work to selection the factors to be utilized in assessing 
trade-offs between provability versus convenience of im-
plementation and use. Many of the mechanisms discussed at 
the workshop present enormous obstacles to rigorous proof. 

8.2.4 Thevtlual knk 

Distributed systems present new theoretical challenges to 
researchers, largely because the specification of a 
distributed computation involves time and space boundaries 
that are difficult to define, and may be constantly 
changing. Variability in speeds and state definition may 
even make a "system" inherently non-deterministic. Such 
difficulties throw much of the previous work in proogram 
specification and correctness into disarray when applied to 
distributed systems. There is little agreement whether to 
approach the problem using "state-free" or "state-based" 
descriptions, or whether to grapple with atomic or non-
atomic actions, or even what are relevant measures of "time" 
and "space". Once again, this seems to reflect the im-
maturity of the whole field of distributed systems. 
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8 . 3  221121.21I2h2 Ah2 IL1121E22I 

Lastly, we should be honest as to how well we achieved our 
original goals. Each goal is repeated here with a short 
comment as to our view of the Level of success we enjoyed 
and the reasons for it. 

1) Assess the present state-of-the-art for IPC 
mechanisms in distributed data processing 
systems. 

*** Successful. 	A reading of many of the 
enclosed working papers and the references 
should adequately reflect the present state-
of-the-art. 

2) Identify the data available on the actual 
performance 	of various IPC policies and 
mechanisms. 

* Unsuccessful. An attempt was made, however 
lack of agreement on appropriate measures 
(see mechanisms) has probably prevented any 
great data base being built up. 

3) Assess the potential value of various 	IPC 
mechanisms in satisfying the operational and 
Performance 	requirements 	for 	highly 
distributed systems. 

** Moderately successful. 	Many of the ad- 
vantages and disadvantages of the functional 
aspects of current mechanisms in use were 
examined, although, obviously, more thorough 
operational and performance assessments must 
await more "distributed" implementations. 

4) Identify shortcomings in the present 	state- 
of-the-art and identify promising areas for 
further research and experiments on this sub-
ject. 

*** Successful. 	A 	reading of the report 
reflects many of the shortcomings of current 
techniques. 	Promising areas 	for 	further 
research 	were not specifically addressed in 
all 	areas; 	however, they are 	indirectly 
identified by many of the authors. 

5) Identify 	possible standardization levels in 
IPC design. 

* Unsuccessful. The plethora of available 
abstractions and the notable lack of any 
single outstanding set useful for distributed 
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applications reflect the immaturity of the 
field and possible premature standardization. 
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