A Report on the Accuracy of PRIME Computers’
Floating Point Software and Hardware

- and -
The SWT Math Library User’s Guide

Technical Report GIT-ICS-83/09

Eugene H. Spafford

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April 24, 1983

Copyright (c) 1983
Georgia Tech Research Institute
225 North Avenue NW
Atlanta, Georgia 30332

Reproduction of all or part of this technical report is
prohibited without the express written consent of the Georgia
Tech Research Institute. Inquiries should be directed to the

author.

PRIME is a registered trademark of Prime Computer, Incorporated

TABLE OF CONTENTS

The Hardware

Internal Representation of Floating Point Values

Storage Formats ...ttt ittt ittt eeeteneeneeneeaneens
Normalization ...ttt ittt tieeennnnnns
Representation in the Registerscciiiiiinnann..
Access Methods ...ttt ittt ittt ittt nnnns
2 0 e £

Available Operations ...t tteeneeeneeeseseeenenenas

BrancCh ... e e et e e e
Floating Point Arithmeticiiiiiiiiiiiiiiineeeen.
Y o 1
S <
Data Movementttt ittt ittt nnennennnas
Address Manipulationeuiiiiitittnnneeeeennnnnenns
Type CONVEIrSION ittt it ittt teeennenneeeeeenenns
Instructions Grouped Alphabeticallycccieiee...

Error Handlingttt ittt ittt ittt ettt eenns

Firmware ACCUTACY e et e eeeeeesesensenenaeesssssesenenanssas

In

Problems in Multiplicationieeeeiiiiiininnneeenns
Loss of Precision in Type CONverSioNneeeeeeeeeens.
Problems in the Other Operationsiiiiiinnnn.
Floating ROUNA i v ittt ittt ittt ittt e et tteeenennnaeeens
PrecCision ..ttt i et e e e,

The SWT Math Library

(€ ¢ o
S 1 a1
Implementation ...ttt ittt ittt ttenennnnnns
B I ¢ T o
Naming and FUnNCLionttt ittt eneeeeeennnnnenns
s o o s

- 1iii -

ad w N

O O 00 00 W W ~J oy O

10

11
11
12
12
12
13

14
14
14
15
15
15

The ROULINES .o i ittt it ittt it ettt ittt eaeeeeeaneeananns 16

ACOSSM and DACSSM v vttt ittt ittt et teneenneenneenneennenn 16
ASINSM and DASNSM &ttt ittt eneeeeeeeeeeeeennaaeeeneennn 16
ATANSM and DATNSM vttt it ittt ee e et eeeeeeeeeenneeeeeennns 17
COSSM and DCOSSM v vttt ittt ettt ettt tneeenneenneennenens 17
COSHSM and DCSHSM v ittt ittt teeeeennneeeeeeeeennnnaaeens 17
COTSM a@nd DCOTSM 4ttt ittt et teeeenennneeeeeeenneennanenns 17
DB ESM ittt ittt ittt ettt et e ettt e 18
DINTSM &ttt ittt ettt eeeeeeeeeeeeennaeeeeeeeeeennnaanens 18
ERRSEM it ittt it ittt eeeeeeeeeeeeennnaeeeeeeeenananenes 19
EXPSM and DEXPSM ittt ittt ittt eneneenaeesesesesenenanesas 19
INSM and DLNSM . ittt ittt ettt eeteeeeeeneeeneaanannn 20
LOGSM and DLOGSM .ttt ttit e eeenneeeeeeeenennnaaenenenns 20
POWRSEM ittt it ittt ettt eee e et eeesesenanasesesesanenanesas 20
SEEDSM and RANDSM .. ti ittt ittt eeeteeeseeesenenenenenns 21
SINSM and DSINSM &+ttt iiiienneeeeeeeenennoaeesesennnennas 21
SINHSM and DSNHSM & it ittt ittt et i teeeneneeasesesenennnas 22
SORTSM and DSOTSM 4ttt ittt ettt et eeeeennnaeeeeeeeeennnns 22
TANSM and DTANSM ..ttt tttteeeenneeeeeeeenennnaaeneeenns 22
TANHSM and DTNHSM ..t ittt inineneeeseseeeneneoasssssenas 22
Testing
In General ...ttt ittt ittt eeeteeennnnnaneees 23
The Source of the Tests ..ttt ittt ittt eneeanenns 23
The Test ReSULES 1 ittt ittt ittt teeeeeeeeeeenanenanenns 23
A Special Note on 550 ResuUltsiiiiiiiitennnnnnnns 24
Other Points of Interestc.iiiiiiiiitneeeeeennnnns 24
Use O0f These ResULLS . iiiii ittt ittt eeeeeeeneeananns 25
The Test S & ittt ittt ittt ettt eeeeeeeeesessoseosesansnsssnss 25
Inverse Sine and COSINE ...ttt ittt ittt eeeeeeennenanns 26
Inverse TaNgeNT ..ttt i ittt eneeeeeenneneeeeennnneeses 29
Exponential ...ttt ittt ettt e 31
Logarithms oottt it ittt e ettt e ettt e 33
The POWRSM FUNCEION &t i ittt ittt ettt ittt eneneoaeesaeenns 36
Sine and CoOSiNe .. ittt ittt ettt eeeeeeeeeeeanneaaanns 38
Hyperbolic Sine and Cosinettt ittt eeeneeennnns 40
SAUATYEe ROOEL vttt ittt ittt ettt et ettt 42
Tangent and Cotangentiiiiiiiiiitiinnnneneeennn 44
Hyperbolic Tangent ...ttt ittt ettt eeeeeeeeeeeeananns 46

- iv -

Appendix T

Where is the EXpPoOnent?ttt tneeeeeeteeenenenas 50

Appendix IT

A Program to Detect Bit Loss in Multiplication 52

Appendix ITT

A Program to Calculate Prime Hexadecimal Constants 55

Appendix IV

Building The SWT Math Library Testsccciiiiiin.. 59
In General ...ttt ittt ittt ettt 59
Building the Support Routinescciiiiiiieennnn. 59
RUNNING @ TeSt v ittt ittt ittt ettt ettt eeeneeaneeananns 59

ADDENDUM

IntroduCtion ...ttt ittt ittt et e e e i et e 61

Deleted FUNCLIONS ittt ittt ittt ittt ettt ennnnnaeeens 61

Remaining Routinesi ittt iineinneennns 61

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Introduction

Users of Prime computers have been aware for some time of a
number of shortcomings in the floating point arithmetic firmware.
In addition, there have been a number of inaccuracies found in
the standard math libraries which have gone uncorrected for years
({1}, {2}) . Unlike other major computer firms, Prime has not
published any documents dealing with the algorithms or error
analysis of their math routines.

In the winter of 1982 I undertook the coding of a new math
library to support the Georgia Tech SWT Pascal compiler, and the
Georgia Tech C compiler. The results of tests on that library
and the standard Prime libraries have revealed a number of
interesting facts. Additionally, further experimentation with
the floating point mechanisms has revealed some bugs in the way
arithmetic is performed, in some cases.

First, this guide describes the architecture of the floating
point mechanism, including some error analysis and description of
quirks in the hardware. This includes a description of incom-—
patibilities between the 400/550 cpu and the 750/850 cpu floating
point register structure. Next is a description of the SWT Math
library. Last is a discussion of some preliminary error analysis
of the SWT library and the Prime standard library functions. The
appendices contain information on auxiliary programs supplied
with the library which will aid wusers in writing their own
routines, and checking existing routines and floating point firm-
ware.

Acknowledgements

I would like to thank Roy Mongiovi for his help in debugging
some of the SWT Math routines, and Peter Wan for his help in
preparing this guide. I would also like to thank Ann Vitale, Ron
Kurtzer, and especially Emory Stevens of the Atlanta Prime office
for their co-operation and aid in the testing of these routines.

Research contributing to the development of this report was
conducted while the author was receiving a National Science Foun-
dation Graduate Fellowship, support which is gratefully ack-
nowledged.

Georgia Institute of Technology Technical Report GIT-ICS-83/09

The Hardware

Internal Representation of Floating Point Values

There are two basic forms of floating point representation
on the Prime: single precision and double precision. Both forms
are stored in memory and the registers in about the same manner.
It should be noted, however, that the storage format in memory
and the storage format in the registers are different from each
other. Also, the representation of wvalues 1is different on
750/850 models than on the others.

Note that both forms of floating point values are available
in three of the four Prime addressing modes: R, V and I. For
purposes of this discussion, assume that all references are being
made to the V mode instructions and registers unless noted other-
wise. Also note that when I refer to the 400/550 machines, this
also includes the 550-II.

The reader might be interested in perusing {12} through {15}
for information about the proposed IEEE 754 standard on floating
point representation. These articles also contain information
about internal representation and accuracy of results. As a mat-
ter of interest, Prime Computer, Inc. had two voting
representatives on the committee.

Storage Formats

A floating point value consists of three parts: a sign, a
normalized mantissa, and an exponent. The mantissa 1s a two’s
complement value with an implied leading binary point (radix
point). A normalized mantissa always represents a value in the
interval [0.5, 1) unless it represents zero. The sign bit is set
to indicate a negative value, reset to indicate a positive value.
The sign bit is always in the most significant bit position (bit

one). Following the sign bit is the mantissa.
A single precision wvalue consists of the sign bit, 23
mantissa bits, and 8 exponent bits. The sign bit is bit one, the

mantissa is bits 2 to 24, and the exponent is bits 25 to 32. The
exponent 1is stored in excess-128 representation. That is, the
value stored in the 8 bits of the exponent, if viewed as a two’s
complement value, is always 128 greater than the wvalue it
represents. Thus,

000O0O0OOO represents —-128
11111111 represents 127
1 0000O0O0CO represents 0

Floating Point SWT Math Guide

1 00001O00O0 represents 4
01111100 represents -4
This implies that the largest possible exponent is +127, and
the smallest possible exponent is -128. The exponent is taken to
the base 2. (You may wish to refer to a reference such as {3} or

{4} for more information about value representations.)

A double precision value consists of the sign bit, a 47 bit

mantissa, and 16 exponent bits. The sign bit is bit one, the
mantissa is bits 2 to 48, and the exponent is bits 49 to 64. The
exponent is stored as a 128-biased value. This 1s similar to

excess—-128 except that the most significant bit of the exponent
is taken as a sign bit. Thus,

0000O0OOOO0O1TO0O0OO0OO0OO0OOGO represents 0
0000O0OOOO0O1TO0O0OO0OO0O1ITO0O 0 represents 4
0000O0O0OO0OOO0O1T1I111O00 represents -4
100000000OO0OO0O0O0OOO represents -32896
011111111111 1111 represents 32639

As you can see from the examples, the range of the exponent
is larger in the negative direction than in the positive. This
means that it is possible to have values in the register whose
multiplicative inverses cannot be represented.

Normalization

Every arithmetic operation on a floating point value causes
the mantissa to be normalized. On the Primes normalization means
that the mantissa is shifted towards the sign bit until the bit
next to the sign bit 1is different from the sign bit. The
exponent is decreased by the same amount as the number of places
shifted. Normalization does not always mean shifting until a "1"
is present in the second bit.

Let us examine an example. Suppose we have just completed a
single precision add, and the result is either 5 1/2 or -5 1/2 as
follows:

0 00010110000000000000000 10000110
1 11101010000000000000000 10000110

[616)]
[66)]

Neither of these wvalues 1s normalized. The mantissa is
shifted left until its first bit is different from the sign bit.
Note that it takes exactly 3 such shifts for each value:

Georgia Institute of Technology Technical Report GIT-ICS-83/09

0 10110000000000000000000 10000011 5.5
1 01010000000000000000000 10000011 -5.5

Both of these values are now normalized. The value of each
is unchanged. There is no assumed first bit as on some machines
(such as certain PDP machines).

Normalization helps maintain accuracy of results between
computations. Additionally, comparisons between floating point
numbers is made much easier —-- a zero can always be recognized by
examining the first word of the wvalue only, and comparison
between two floating point numbers can sometimes be done by a
simple compare of the exponents and mantissa sign. It also helps
to ensure that only one of the two values needs to be adjusted
prior to some arithmetic operations (such as add).

A special case is when the sign bit is one (a negative
value) and every bit of the mantissa is zero. This is not equal
to zero, but rather is equal to -0.5 (assuming the exponent
represents zero, of course).

It should be noted that load and store operations do not
cause the register contents to be normalized. There is also no
"normalize" instruction which will allow the user to normalize
the bit pattern in the register.

Floating skip operations (eg, FSGT, FSZE) and comparison
operations (eg, FCS and DFCS) will not work correctly unless the
values involved are normalized.

Representation in the Registers

The single precision floating point register has more range
than can be accommodated in the memory format. The single
precision floating point register overlaps the double precision
register and uses the extra bits available in the double floating
register as guard bits. The register is organized as follows on
400/550 cpus:

S MMMMMMMMMMMMMMMMMMMMMMM GGGGGGGG HHHHHHHH EEEEEEEE 0000000000000000
1 2..24 25..32 33..40 41..48 49..64
Where:
S is sign of the mantissa
is the mantissa (2’'s complement)
is mantissa extension (guard bits)
is exponent extension (guard bits)
is exponent (128-biased)
extra bits —-— must be zero

ommaXR

On 750 and 850 cpus (with hardware floating point) the
organization is:

Floating Point SWT Math Guide

S MMMMMMMMMMMMMMMMMMMMMMM GGGGGGGGGGGGGGGGGGGGGGGG HHHHHHHH EEEEEEEE
1 2..24 25..48 49..56 57..64
Where:
S is sign of the mantissa
is the mantissa (2’'s complement)
is mantissa extension (guard bits)
is exponent extension (guard bits)
is exponent (excess 128)
extra bits —-—- must be zero

oHm O

The guard bits are always zeroed whenever a floating load
operation is done (FLD). The high-order guard bit may be used to
round the least significant bit of the regular mantissa Jjust
before storage by using the FRN instruction. This increases
accuracy somewhat at the cost of increased execution time. See
the section on "Firmware Accuracy" for more details.

Double precision floating point values are similar in nature
to single precision and are organized as follows on 400/550
machines:

S MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM EEEEEEEEEEEEEEEE MMMMMMMMMMMMMMMM
1 2..32 33..48 49..64
Where:
S is sign of the mantissa
M is the mantissa (2’s complement)
E is exponent (excess 128, two’s complement)

On 750 and 850 machines, the double precision register 1is
organized as:

S MMM - EEEEEEEEEEEEEEEE
1 2..48 49..64
Where:
S is sign of the mantissa
M is the mantissa (2's complement)
E is exponent (128 biased)

Access Methods

Besides the standard load and store instructions, it is pos-
sible to access portions of the floating point registers with
integer operations. These accesses are done either through the
use of P300 address traps, or through the LDLR/STLR instructions.

If short memory references are made to locations 4, 5, and
6, the instructions actually are accessing the first two words of

the mantissa and the exponent, respectively. 1In single precision
references, the reference to the exponent fetches Dboth the
exponent and exponent guard bits. In double precision, the
reference to location 6 fetches the complete exponent. Thus, the

PMA sequence:

Georgia Institute of Technology Technical Report GIT-ICS-83/09

LDA =/40000
STA# 4

CRA

STA# 5

LDA =128
STA# 6

results in the value 0.5 being in the single precision floating
register (note that this sequence also loads all the guard bits
correctly on a 400/550).

It is also possible to access the floating point register
via the LDLR and STLR instructions. In V mode, the first two
words (bits 1 to 32) of the mantissa can be loaded into the L

register Dby loading from register file location ’12. The third
word of the mantissa and the exponent can be obtained by loading
from location ’13. The organization of the register file on

750/850 machines and 400/550 machines means that the L register
contents after a "LDLR ’13" will be different on these machines.
On 400/550 machines, the A register will contain the exponent and
the B register will contain the third word of the mantissa. On a
750/850 these will be reversed. The program in Appendix I can be
used to discover which case is present on your machine. When
dealing with the two floating accumulators in I mode addressing,
a "LDLR ’"11" will have the same problem.

Additionally, the floating accumulator shares the same
register file 1location as the second field address and length
registers (in the V mode register file). In the I mode
registers, the first floating accumulator shares the same loca-
tion as the first field address register, and the second floating
accumulator shares the same location as the second field address
register. Thus, various character manipulation instructions
including decimal (character) arithmetic instructions may change
the floating accumulators as a side effect.

Ranges

The effective range for single precision floating point
values is approximately 1.701412 * (10 ** 38) to -1.701412 * (10

**38) . The smallest, non-zero magnitude that can be represented
is approximately 1.469368 * (10 ** -39). This is the range for
single precision storage in memory. The guard bits in the

register give extended range to values held in the register.

Effective range for double precision floating point values
is approximately 2.079833 * (10 ** 9825) to -2.079833 * (10 **
9825) . The smallest, non-zero magnitude that can be represented
is approximately 1.03808 * (10 ** -9903).

Floating Point SWT Math Guide

Available Operations

The following 1lists describe the instructions available on
Prime 50 series machines to manipulate floating point wvalues in

64V mode. This material has been extracted from the paper 64V
Mode Instruction Summary and Addressing Formats, by T. Allen

Akin, Perry Flinn, and Eugene Spafford, Georgia Tech 1981. The
abbreviation FAC refers to the floating accumulator, meaning the

combination (overlapped) register. The instructions will be
presented first grouped by function, then alphabetically. In the
following instruction set summary, instruction formats are

abbreviated as follows:

branch branch
gen generic
mr memory reference

The descriptions of restricted instructions are preceded by an
asterisk (*). Note that these instructions are not restricted
unless segmented memory is turned on (bit 14 in current modals)
and only if a reference is made outside of the range ’'0 to 17
(zero to 15, decimal).

In the descriptions of effects on the C-bit, L-bit, and con-
dition codes, the following abbreviations are used:

C-bit:
- unchanged
V arithmetic overflow indication
X indeterminate

- unchanged
X indeterminate

Condition Codes (CC):
— unchanged
S properly set to reflect value of result,
may be used for condition code branches
X indeterminate

Branch

Mnemonic Format C L CC Description

BFEQ branch - - S Dbranch if FAC = 0
BFGE branch - - S branch if FAC >= 0
BFGT branch - - S Dbranch if FAC > 0
BFLE branch - - S Dbranch if FAC <= 0
BFLT branch - - S branch if FAC < 0
BFNE branch - - S branch if FAC <> 0

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Floating Point Arithmetic

Mnemonic Format
FAD mr
FCM gen
FDBL gen
FDV mr
FLTA gen
FLTL gen
FMP mr
FRN gen
FSB mr
Mnemonic Format
FCS mr

FLD mr
FLX mr

FST mr
INTA gen
INTL gen
Mnemonic Format
DFAD mr
DFCM gen
DFDV mr
DFMP mr
DFSB mr
FDBL gen
FRN gen
Mnemonic Format
DFCS mr
DFLD mr
DFLX mr
DFST mr

<< < <la

<< <

> Q

< <la <

<< <

> e

XXX

bl

b > e

XX

XXX XX | b X|8

N|O
Q

XX bed X|8 b

ke

X|O
@

Description

add memory to single precision FAC
complement single precision FAC arith-
metically

convert single precision floating to
double precision

divide memory into single precision FAC

convert 16 bit integer to single
precision float
convert 32 Dbit integer to single

precision float
multiply single precision FAC by memory
floating round double to single
subtract memory from single precision
FAC

Description

compare single precision FAC to memory
and skip

load single precision FAC from memory
load double word index

store single precision FAC into memory
convert single precision FAC to 16 bit
integer

convert single precision FAC to 32 Dbit
integer

Description
add memory to double precision FAC

complement double precision FAC arith-
metically

divide memory into double precision FAC

multiply double precision FAC by memory
subtract memory from double precision
FAC

convert single precision floating to
double precision

floating round double to single

Description

compare double precision FAC with
memory and skip

load double precision FAC

load quadruple word index

store double precision FAC

Floating Point

Logicize

Mnemonic Format C L
LFEQ gen - -
LFGE gen - -
LEGT gen - -
LFLE gen - -
LFLT gen - -
LENE gen - =
Skip

Mnemonic Format C L
FSGT gen - -
FSLE gen - -
FSMI gen - -
FSNZ gen - -
FSPL gen - -
FSZE gen - -
Mnemonic Format C L
DFCS mr X X
FCS mr X X
Data Movement
Mnemonic Format C L
DFLD mr - -
DFLX mr

DFST mr - -
FLD mr - -
FLX mr - -
FST mr vV X
LDLR mr - -
STLR mr - -

Address Manipulation

Mnemonic Format C L
DFLX mr - -
FLX mr - -

C

0

0

IIIIII’g

N|O
Q

ke

II’g

SWT Math Guide

Description

set A to 1 if FAC = 0; else reset A to
sgt A to 1 if FAC >= 0; else reset A to
sZt A to 1 if FAC > 0; else reset A to
sgt A to 1 if FAC <= 0; else reset A to
sgt A to 1 if FAC < 0; else reset A to
sZt A to 1 if FAC <> 0; else reset A to

0

Description
skip if FAC > O
skip if FAC <= 0
skip if FAC < 0
skip if FAC <> 0
skip if FAC >= 0
skip if FAC = 0

Description

compare double precision FAC with
memory and skip

compare single precision FAC to memory
and skip

Description

load double precision FAC

load quadruple word index

store double precision FAC

load single precision FAC from memory
load double word index

store single precision FAC into memory
*load L from register file

*store L into register file

Description
load quadruple word index
load double word index

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Type Conversion

Mnemonic Format

FDBL

FLTA

FLTL

FRN
INTA

INTL

gen

gen

gen

gen
gen

gen

(@]

=

cc

bed

XX

Description
convert single precision floating to

double precision

convert 16 bit integer to single
precision float
convert 32 bit integer to single

precision float

floating round double to single

convert single precision FAC to 16 bit
integer

convert single precision FAC to 32 Dbit
integer

Instructions Grouped Alphabetically

Mnemonic Format

BFEQ
BFGE
BFGT
BFLE
BFLT
BFNE
DFAD
DFCM

DFCS

DFDV
DFLD
DFLX
DFMP
DFSB

DFST
FAD
FCM
FCS
FDBL
FDV
FLD
FLTA
FLTL
FLX
FMP
FRN
FSB

FSGT

branch
branch
branch
branch
branch
branch

0

<

<< <

|

XX

Q

C

><><(DCDU)(DCDU)|

>

XX

Description

branch if FAC = 0

branch if FAC >= 0

branch if FAC > 0

branch if FAC <= 0

branch if FAC < 0

branch if FAC <> 0

add memory to double precision FAC
complement double precision FAC arith-
metically

compare double precision FAC with
memory and skip

divide memory into double precision FAC
load double precision FAC

load quadruple word index

multiply double precision FAC by memory
subtract memory from double precision
FAC

store double precision FAC

add memory to single precision FAC
complement single precision FAC arith-
metically

compare single precision FAC to memory
and skip

convert single precision floating to
double precision

divide memory into single precision FAC
load single precision FAC from memory

convert 16 bit integer to single
precision float
convert 32 Dbit integer to single

precision float
load double word index
multiply single precision FAC by memory
floating round double to single
subtract memory from single precision
FAC
skip if FAC > 0

Floating Point SWT Math Guide

FSLE gen - - - skip if FAC <=0

FSMI gen - - - skip if FAC < O

FSNZ gen - - - skip if FAC <> 0

FSPL gen - - - skip if FAC >= 0

FST mr V X - store single precision FAC into memory

FSZE gen - - - skip if FAC =0

INTA gen V X X convert single precision FAC to 16 bit
integer

INTL gen V X X convert single precision FAC to 32 bit
integer

LDLR mr - - - *load L from register file

LFEQ gen - - S set A to 1l if FAC = 0; else reset A to
0

LFGE gen - - S set A to 1 if FAC >= 0; else reset A to
0

LFGT gen - - S set A to 1l if FAC > 0; else reset A to
0

LFLE gen - - S set A to 1l if FAC <= 0; else reset A to
0

LFLT gen - - S set A to 1l if FAC < 0; else reset A to
0

LENE gen - - S set A to 1l if FAC <> 0; else reset A to
0

STLR mr - - - *store L into register file

Error Handling

There are basically four floating point errors determined by
the floating point firmware: store exception, overflow, under-—
flow, and divide by zero. The action on these errors is
determined by the state of bit 7 in the current cpu keys. If bit
7 1is set, a floating point fault simply sets the C bit and no
other action is taken. If bit 7 is reset, then an arithmetic
fault 1is signalled and the standard fault handler invoked. 1In
Primos, this usually entails signalling the ERROR condition.

A store exception is triggered when an attempt is made to
FST (single precision floating store) a value which is too big or
too small (negative) to be accomodated in the two word memory
format used by single precision values. This can happen Dbecause
the value in the floating point register may have been loaded or
generated using double precision operations. Alternatively, the
value in the register could have Dbeen generated by single
precision operations, but the value is larger than the memory
format can accomodate due to the extra capacity provided by the
guard bits. A double precision store cannot cause a store excep-—
tion.

Overflow and underflow operations are the result of arith-

metic operations (add, subtract, multiply, or divide) whose
result is too big or too small to fit (normalized) in the
register. Thus, the exponent of the result must be bigger than

32639 for overflow (base 2 exponent), or less than -32896 for

- 10 -

Georgia Institute of Technology Technical Report GIT-ICS-83/09

underflow (see the next section).

A divide Dby zero fault is exactly what the name implies --
an attempt to divide by a floating point wvalue, single or double
precision, whose value is identical to zero.

Another type of fault, not strictly a floating point fault,
is triggered when an attempt is made to convert a floating value
to an integer, and the floating value is too big or too small to
be held in the corresponding integer register.

It is possible for user programs to set bit 7 in the keys to
ignore these fault conditions, but in doing so the wuser should
realize that results could be invalid without any indication of
error. Explicit checks should be made of the C bit after any
operation which might cause an error. By default, the standard
compilers and the PMA assembler generate entry control Dblocks
(ECBs) for procedures with bit 7 reset to zero.

Firmware Accuracy

In this document, the word "firmware" refers to the
microcode or hardware which performs the floating point arith-
metic. 750 and 850 cpus have floating point operations
implemented in hardware, while the other models have these
operations implemented 1in microcode. Programs and subroutines
depend on the accuracy of these operations, so it is crucial that
these operations be implemented correctly.

Problems in Multiplication

There appears to be a bug in the double precision floating
point multiplication at a few points near the maximum value. If
a value whose base 2 exponent is 32639 (maximum possible) is mul-
tiplied by a value greater than 0.5, an overflow fault is trig-

gered. Thus, it is possible to multiply a value in the register
by something less than 1.0 and get an overflow! In some cases,
attempting to multiply smaller values to vyield a wvalue

theoretically in range also results in an overflow. We have not
attempted exhaustive testing to determine 1limits where this
occurs since the likelihood of encountering such an error is
small. However, the problem is there, and the user is advised to
be careful when writing tests which need to deal with values at
the upper limit of register capacity.

A much more serious flaw is to be found in the DFMP instruc-—
tion on 400/550 machines. The double floating multiply instruc-—

tion appears to always return a result whose two least
significant bits of the mantissa are zero. That is, every mul-
tiplication potentially loses 2 out of 47 bits of precision! It
is possible to multiply a value by 1.0 and not obtain a result
equal to the original value. Such errors can, of course, cascade

Floating Point SWT Math Guide

and result in severe accuracy problems in chains of calculations.
The hardware on 750/850 machines appears to be free of this
defect. Appendix II contains a program to test your machine and
illustrate this problem.

0ddly enough, division on the 400/550 machines does not
appear to truncate any bits of precision, and according to
published timing figures {5} the DFDV instruction is just as fast
(slow) as the DFMP instruction. Thus, it might be advisable to
recode critical calculations on these machines to be composed of
divisions rather than multiplications, whenever possible.

Loss of Precision in Type Conversion

When converting from integers to floating point there are

basically two machine instructions: FLTA and FLTL. The FLTA
instruction <converts a 16 bit integer into a single precision
floating point value (24 bit mantissa). The FLTL instruction

converts a 32 bit integer into a single precision floating point
value. Note that such a conversion potentially drops 8 Dbits of
precision. There 1s adequate storage in the double precision
floating point register to convert without a loss of precision,
but there 1s no instruction to <convert from long integer to
double precision real. Rather, the conversion must be done by a
series of instructions; see the <code for the SWT ’'dbleSm’
routine.

Problems in the Other Operations

We have not observed any loss of precision in the addition,
subtraction or division of double precision quantities. We have
also not been able to detect any precision losses in any of the
single precision operations. However, this does not indicate the
absence of errors, rather it Jjust indicates that we have not
extensively tested for such errors and none have appeared in any
of our other tests.

Floating Round

Studies performed at The Flinders University of South
Australia on a 750 have indicated that some calculations per-
formed 1in single precision floating point may benefit from the
fact that the register contains extra precision, but that the
results may be somewhat uneven depending on how the code is
organized {6}. Their studies have also indicated that use of the
FRN (floating round) instruction before each store greatly
enhances the accuracy of some calculations in single precision:

"In fact for the single precision problem a simple and
almost complete cure for the problem has been
demonstrated, and that is for the compiler to force a
round before every store (i.e. emit an FRN instruction
before each FST instruction emitted)." {6}

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Their studies also indicated that the double precision

arithmetic failed to do correct rounding. In fact, double
precision operations truncate their results rather than rounding
(see the next section). This leads to slightly skewed results

which are especially noticeable in problems requiring very
precise results:

".o.. Consequently the Prime-750 exhibits a far larger
error than the VAX-11/780 when we wuse the sum of
squares measure. This error has been detected by our
users 1in other calculations and programs and is
particularly critical when nearly unstable matrix

problems are investigated.... The consequences of such
inaccuracy 1in a research-oriented application area
could be critical." {6}

That conclusion was made for a 750 with hardware floating point
operations. It can certainly be concluded that a 400 or 550 is
not at all appropriate for double precision calculations requir-
ing any high degree of accuracy.

Precision

The various models of Prime computer perform floating point
operations to slightly different precisions. To quote from sec-—
tion 6.2.1 of {9}:

"In double and single precision add, subtract, and mul-
tiply operations, the 750 and 850 truncate results to
48 sign and magnitude bits. Single precision divide
operations on these processors produce 32 sign and
magnitude bits of rounded result....

Double precision operations on the 500-II (and 650) are
identical to those performed on the 750 and 850.
Single precision divide is also identical to 750/850
single precision divide. Single precision add, sub-
tract, and multiply operations truncate results to 32
sign and magnitude bits.

For all other 50 Series systems, double precision add
and subtract operations truncate results to 48 sign and
magnitude bits; multiply and divide operations truncate
to 47 sign and magnitude bits. All single precision
operations on these processors truncate results to 32
sign and magnitude bits."

These statements tend to raise serious doubts about the accuracy
of similar programs run on different model machines due to
precision changes. It also would indicate that some program
behavior might change when run on a different model cpu.

Floating Point SWT Math Guide

The SWT Math Library

In General

The Software Tools Subsystem (SWT) is a major software pac-—
kage developed at Georgia Tech for Prime 50-series machines. It
includes an advanced command interpreter with command pipes and
i/o re-direction, a full screen editor with advanced regular pat-
tern matching and replacement, and a large library of wutility
routines. One of the 1libraries which 1is to be included in
further releases of the Subsystem is the SWT Math Library.

The SWT Math Library contains thoroughly tested routines to
calculate various useful functions, including standard
trigonometric functions. All of the routines share a number of
common features which will be described in the next section. The
individual routines will be described in the sections following.

Source

Most of +the routines were obtained from the book Software

Manual for the Elementary Functions by William Cody, Jr. and
William Waite {7}. The random number generator was written
utilizing material from {8}, and a few routines such as ’‘dbles$m’
and ’'dint$m’ were developed by the author. Testing of the

routines is described in the next chapter.

Implementation

All of the SWT Math routines have been coded in Prime assem-—
bly language. Although this may make the code somewhat harder to
read, it helps to enhance the accuracy and efficiency of the
routines. A number of actions, such as direct manipulation of
the exponent in the register file, are not available in higher
level 1languages and this was a major factor in the decision to
use assembler.

One factor which helps to increase the accuracy of the
routines is the manner in which constants for the routines were
obtained. Almost all of the constants wused in the SWT Math
Library are given as hexadecimal data constants in the assembly
language programs. These values were derived from the constants
given in ({7} and the program in Appendix III. The program in
Appendix III was run on a Cyber 760 which has over 90 bits of
precision in the mantissa of double precision floating point
values. The program calculates the proper rounded representation
of the given input constants and returns the appropriate hex
values.

Georgia Institute of Technology Technical Report GIT-ICS-83/09

It 1is interesting to note that some of the standard Prime
library routines were also derived from {7} Dbut many of the
constants are given in the source code as decimal values. Tests
by the author indicate that the PMA assembler does not always
translate double precision decimal values into the correct bit
pattern, thus inducing error.

Timing

One factor that is of interest to users of any math package
is that of the efficiency of the code. Unfortunately, it is not
possible to make a direct comparison of the speed of routines in
the SWT Math Library to that of equivalent routines in the stan-
dard Prime libraries. The Prime native compilers are able to
generate special "shortcalls" to known library subprograms which
enhance their apparent speed. The SWT Math library routines are
all done as regular procedure calls and will thus appear much
slower if compared directly. The only statement that can be made
about the efficiency of these routines is that they were coded in
PMA by someone expert 1in that language, and they have been
optimized as much as possible without sacrificing accuracy.

Naming and Function

All of the functions in the SWT Math Library return double
precision values. Most of the functions have two entry points
for every calculation -- one for a single precision argument and
one for a double precision argument. The routines which take
single precision arguments do argument verification and will not
return a value which is out of range for a single precision
floating point wvalue. Thus, the value returned by those func-
tions can be considered to be single precision. Since the single
and double precision registers overlap, it 1is trivial to use
these functions as either single or double precision.

In general, routines whose names begin with the letter ’d’
are 1intended to take double precision arguments. Specific
considerations are given in the sections below.

Errors

In the standard Prime library routines, calling a function
with an improper value (such as trying to take the square root of
a negative value) results in a signal to the condition ERROR.
This signal cannot be returned from and thus execution of the
program is terminated. Furthermore, the nature of the error and
the routine involved is not well specified. 1In the Fortran 66
library the cause of the error is Dbetter identified but the
general result is the same.

In the SWT Math Library whenever an error condition is

encountered, the condition SWT_MATH_ERRORS$ 1is signalled. The
"ms" structure indicated by the call to SIGNLS$ is the stack frame

- 15 -

Floating Point SWT Math Guide

of the routine calling the math routine, and the "info" structure
is composed of the faulty argument (4 words), default return
value (4 words), and a pointer (2 words) to a message describing
the error. The user may specify an on-unit which can examine and
change the default return value. The signal can be returned from
and thus execution may continue.

The routine 'err$Sm’ is a default on-unit handler which can
be used to print the name of the faulting routine and the wvalue
of the faulting argument. This guide is not intended to present
the information necessary to understand the Prime on-unit
mechanism, so the interested reader is directed to the code for
"err$Sm’ and to {10}.

Each routine sets the ’'owner’ pointer at offset 18 within
the stack frame, and each routine has its ECB labelled according
to standard conventions. Thus, the Primos DMSTK command will
print the names of activations of SWT Math Library routines, as
will programs such as DBG.

To the best of my knowledge, no error can occur during the
execution of any of the SWT Math routines which does not signal
the condition SWT_MATH_ERRORS. Thus, unlike many of the Prime
routines, the wuser will not encounter errors such as ’'SIZE’ or
"OVERFLOW’ during execution of these routines (see the section on
Tests for more specific details).

The Routines

ACOSSM and DACSSM

These two functions calculate the inverse cosine of an
angle. The argument to the functions is the cosine of the angle,
and the function returns the measure of the angle, in radians.
The ’'dacs$m’ function expects a double precision argument, and
the ’'acos$m’ function expects a single precision argument.
Arguments to the functions must be in the closed interval [-1.0,
1.0] or else the condition SWT_MATH_ERRORS is signalled. In the
case of an error, the default return value is zero.

The functions are implemented as rational minimax
approximations on a modified argument value.

ASINSM and DASNSM

These two functions calculate the inverse sine of an angle.
The argument to the functions is the sine of the angle, and the
function returns the measure of the angle, in radians. The
"dasn$m’ function expects a double precision argument, and the
"asin$m’ function expects a single precision argument. Arguments
to the functions must be in the closed interval [-1.0, 1.0] or
else the condition SWT_MATH_ERRORS$ is signalled. If an error is

Georgia Institute of Technology Technical Report GIT-ICS-83/09

signalled, the default function value is zero.

The functions are implemented as rational minimax
approximations on a modified argument value.

ATANSM and DATNSM

These two functions calculate the inverse tangent of an
angle. The argument to the functions is the tangent of the
angle, and the function returns the measure of the angle, in
radians. The ’datn$m’ function expects a double precision
argument, and the ’atan$m’ function expects a single precision
argument. The functions will not signal any errors based on
input wvalues.

The functions are implemented as a rational approximation on
a modified argument value. Note that there is no equivalent to
the ATAN2 function which is available in some implementations of
Fortran; if users wish such a function, they may construct it
from this function.

COS$SM and DCOSS$SM

These two functions return the cosine of the angle whose

measure (in radians) is given by the argument. The ’dcos$m’
routine expects a double precision argument, and the ’cos$m’
routine expects a single precision argument. If the absolute

value of the angle plus one-half pi is greater than 26353588.0
then the condition SWT_MATH_ERRORS is signalled. If an error is
signalled, the default function return is zero.

The functions are implemented as minimax polynomial
approximations.

COSHSM and DCSHS$M

These two routines calculate the hyperbolic cosine of their

arguments, defined as cosh(x) = [exp(x) + exp(-x)]/2. The func-
tion ’"dcsh$m’ expects a double precision value as argument, and
the ’‘cosh$m’ function expects a single precision argument. The

condition SWT_MATH_ERRORS$ is signalled if the absolute value of
the argument is greater than 22623.630826296. In the single
precision case, arguments which produce a wvalue too large for
single precision storage will also signal the error condition.
If an error is signalled, the default function value is zero.

COTS$M and DCOTS$SM

These two functions calculate the cotangent of the angle
whose measure is given (in radians) as the argument to the func-
tions. The ’dcot$m’ function expects a double precision
argument, and the ’cot$m’ routine expects a single precision

Floating Point SWT Math Guide

argument. The arguments must have an absolute value greater than
7.064835966E-9865 and less than 13176794.0 or else the condition
SWT_MATH_ERRORS will be signalled. If an error is signalled, the
default function return is =zero.

The functions are calculated based on a minimax polynomial
approximation over a reduced argument.

DBLESM

The ’dble$m’ function implements something akin to the
Fortran 66 'dble’ function, or the Fortran 77 ’'dreal’ function.
It takes as an argument a 32 bit integer and returns a double
precision floating point number of the same value. This function
should always be used when converting 32 bit integers to double
precision real numbers because the code generated by some of the
compilers will (potentially) lose up to 8 Dbits of mantissa
precision (see the discussion in the previous chapter).

The ’dble$m’ function has no single precision counterpart in
this library. The routine, as defined, does not recognize or
signal any error conditions. It is written so as to work on both
550 and 750 style machines, despite the internal difference in
register structure.

The algorithm involved was derived from known register
structure by the author.

DINTSM

The ’dint$m’ function implements the Fortran ’‘dint’ func-—
tion. That 1is, it takes one double precision wvalue and resets
bits in the mantissa to remove any fractional part of the value.
The return value is a double precision real. This routine also
has a shortcall (JSXB) entrance labelled ’dint$p’ which is used
in some of the other math routines; users should not attempt to
use this shortcall entrance unless they are aware of its struc-
ture.

The ’'dint$m’ of 1.5 is 1.0, the ’'dint$m’ of -1.5 is -1.0,
and the ’dint$m’ of anything less than 1.0 and greater than -1.0
is equal to =zero.

The dint$m function has no single precision counterpart in
this library. The routine, as defined, does not recognize or
signal any error conditions. It is written so as to work of both
550 and 750 style machines, despite the internal difference 1in
register structure.

The algorithm involved was developed by the author based on
the known register structure.

Georgia Institute of Technology Technical Report GIT-ICS-83/09

ERRSM

The ’'err$m’ procedure is provided as a default handler for
the SWT_MATH_ERRORS$ condition. It takes a single argument, a 2
word pointer as defined by the condition mechanism, and prints
information about the routine and values which signalled the
fault. All output from the 'err$m’ routine 1is sent to SWT
ERROUT. Included 1in the output is the name of the faulting
routine, the location from which the faulting routine was called,
the value of the argument involved, and the default return value
to be used.

The following code illustrates how to set up this default

handler for use in Fortran 66 programs:

EXTERNAL ERRSM

CALL MKONSF (’SWT_MATH_ERRORS’, 15, ERRSM)
The following code illustrates how to set up this default handler
for use in Fortran 77 programs:

EXTERNAL ERRSM, MKONSP

CALL MKONSP (’/SWT_MATH_ERRORS’, 15, ERRSM)

The user may wish to copy and modify the source code for the
"err$m’ procedure so as to provide a more specific form of error
handling. If this is done, it would probably be a good idea to
rename the user’s version to something other than ’errS$m.’

EXP$M and DEXPSM

These two functions implement the inverse of the ’'1n$m’ and

"dln$m’ functions. That 1s, they raise the constant e to the
power of the argument. The ’dexp$m’ function takes a double
precision argument, and the ’exp$m’ function takes a single
precision argument. Arguments to the ’'exp$m’ routine must be in

the closed interval [-89.415985, 88.029678] and arguments to the
"dexp$m’ routine must be in the closed interval [-22802.46279888,
22623.630826296], or else the SWT_MATH_ERRORS$ condition will be
signalled. TIf an error is signalled, the default function return
value is zero.

It should be noted that the functions could simply return
zero for sufficiently small arguments rather than signalling an
error since the actual function value would be indistinguishable
from zero to the precision of the machine. However, there is no
mapping to zero in the actual function, and that is why the func-
tion signals an error in this case.

Floating Point SWT Math Guide

The routines are implemented as a functional approximation
performed on a reduction of the argument.

LNS$M and DLNS$M

These two functions implement the natural logarithm (base e)
function. The ’'1n$m’ function works for single precision
arguments, and the ’dln$m’ function works for double precision
arguments. Arguments less than or equal to zero will signal the
SWT_MATH_ERRORS condition; the default return is the log of the
absolute value of the argument, or zero in the case of a =zero
argument.

The algorithm involved uses a minimax rational approximation
on a reduction of the argument. All positive inputs will return
a valid result.

LOGSM and DLOGSM

These two functions implement the common logarithm (base 10)
function. The 'log$m’ function works for single precision
arguments, and the ’'dlog$m’ function works for double precision
arguments. Arguments less than or equal to zero will signal the
SWT_MATH_ERRORS condition; the default return is the log of the
absolute value of the argument, or zero in the case of a =zero
argument.

The algorithm involved uses a minimax rational approximation
on a reduction of the argument. All positive inputs will return
a valid result.

POWRSM

The ’'powr$m’ function raises a double precision real value
to a double precision real power. The function return is also
double precision; there is no single precision equivalent. The
algorithm is taken from {7}.

The function is coded so as to adhere to ANSI Fortran stan-—
dards which do not allow raising negative values to a floating
point power, and which do not allow zero to be raised to a zero
or negative power. Other inputs may trigger an error if the
result of the calculation would result in overflow.

The function implements the following equivalent operation
in Fortran:

Georgia Institute of Technology Technical Report GIT-ICS-83/09

DOUBLE PRECISION A, B, C
A =B ** C

as

DOUBLE PRECISION A, B, C
DOUBLE PRECISION POWRSM
EXTERNAL POWRSM

A = POWRSM (B, C)

There are four cases where this function may signal
SWT_MATH_ERRORS. If an attempt is made to raise a negative value
to a non-zero power, then the default return value will be the

absolute value of that quantity raised to the given power. If an
attempt is made to raise zero to a zero or negative power, the
default return 1is zero. If the result would overflow then the

default return value is the largest double precision quantity
that can Dbe represented. 1If the result would cause underflow,
the default return is the smallest positive value which can be
represented on the machine.

SEEDSM and RANDSM

The 'seed$m’ procedure 1is used to reset the pseudo-random
number generator to a known state. It is called with any 4 byte
value which is not equal to 32 bits of zero. The seed can
therefore be 4 characters, a long pointer, a long integer, or a
real number. If the input is identical to =zero then the
SWT_MATH_ERRORS condition is signalled. ’'Seed$m’ does not return
a value.

The ’'rand$m’ function returns a double precision floating
value in the open interval (0.0, 1.0). The argument to the func-
tion is set to a 32 bit integer in the range (0, 2**31 - 1). The
generator is a 1linear congruential generator derived from
information presented in {8}. The values returned seem to be
very well distributed, both from the standpoint of spectral tests
and lattice tests.

The ’rand$m’ routine does not detect or signal any errors.
The first time the ’'rand$m’ function is called, if the generator
has not Dbeen initialized with the ’seed$m’ procedure, a seed is
derived based on the current time of day and cpu utilization.

SINSM and DSINSM

These two functions return the sine of the angle whose
measure (in radians) 1s given Dby the argument. The ’'dsin$m’
routine expects a double precision argument, and the ’sin$m’
routine expects a single precision argument. If the absolute
value of the angle is greater than 26353588.0 then the condition
SWT_MATH_ERRORS 1is signalled. If an error is signalled, the
default return value will be zero.

Floating Point SWT Math Guide

The functions are implemented as minimax polynomial
approximations. Note that for angles sufficiently small the
value of the sine function is equal to the measure of the angle.

SINHSM and DSNHSM

These two routines calculate the hyperbolic sine of their

arguments, defined as sinh(x) = [exp(x) - exp(-x)]1/2. The func-
tion ’‘dsnh$m’ expects a double precision value as argument, and
the ’sinh$m’ function expects a single precision argument. The

condition SWT_MATH_ERRORS is signalled if the absolute value of
the argument is greater than 22623.630826296. If an error is
signalled, the default return value will be zero.

SORTS$M and DSQTS$M

These two functions calculate the square root of a floating
point wvalue. The ’sqgrt$m’ function calculates the root of a
single precision value, and the ’'dsgt$m’ routine works for double
precision arguments. Attempts to take the square root of
negative values will result in an error (signal to
SWT_MATH_ERRORS$). The default return in this case will be the
square root of the absolute value of the argument. All other
arguments are in range and return valid results.

The algorithm involved is based on Newton’s approximation
method with an initial multiplicative approximation. The
argument is scaled to within the range [0.5, 2.0) and then the
algorithm is iterated to a solution.

TANSM and DTANSM

These two functions calculate the tangent of the angle whose
measure 1s given (in radians) as the argument to the functions.
The ’'dtan$m’ function expects a double precision argument, and
the ’'tan$m’ routine expects a single precision argument. The
arguments must have an absolute value of less than 13176794.0 or
else the condition SWT_MATH_ERROR$ will Dbe signalled. If an
error is signalled, the default return value will be zero.

The functions are calculated based on a minimax polynomial
approximation over a reduced argument.

TANHSM and DTNHS$M

These two routines calculate the hyperbolic tangent of their

arguments, defined as tanh(x) = 2/[exp(2x) + 1]. The function
"dtnh$m’ expects a double precision value as argument, and the
"tanh$m’ function expects a single precision argument. The func-

tions never signal an error and return valid results for all
inputs.

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Testing

In General

It is important to test the standard mathematical functions
which may be wused in critical calculations. Not only will the
tests measure the accuracy of the routines involved for wuse in
later error estimations, but the testing helps provide informa-
tion about the allowed domain and range of the functions. Many
computer systems have quirks that require special case code for
values near the extremes of precision {11}.

The Source of the Tests

The tests were taken from ({7}. The tests were altered
somewhat to help automate a test suite and also to provide a
slightly more consistent form of output for comparison purposes.
All of the tests use a set of common routines for non-test cal-
culations and invocation. Where appropriate, the tests have been
coded in both Fortran 66 (FTN) and Fortran 77 (F77) so as to test
3 libraries: the SWT Math library, the standard FTN library used
by Fortran 66 and Ratfor programs, and the new standard library
used in Fortran 77, Pascal, and PL/I programs.

The source code for the tests and support routines is
located in the directory along with the source to the SWT Math
library. There 1s a separate set of tests for single precision
and double precision. These have been provided in case you wish
to verify vyour own software, or re-run the tests on your own
machine. Instructions on how to build and run a test are given
in Appendix IV.

The Test Results

There are a number of error measures that could be used to
describe these library routines. (For an involved discussion of
some of the issues involved, see {7}) The tests which will be
described below were taken from {7} and involve a number of
checks and comparisons. Each test involves some random accuracy
checks in various argument domains. These checks are made
against known identities or calculations; for instance, the
square root function is checked by comparing a random X against
the square root of X*X.

FEach accuracy test was performed for 5000 random arguments
in each domain. The results of each test are given below, listed
as the number of exact matches against the expected wvalue, the
number of times less than, and the number of times greater than.
Also given are the MRE (maximum relative error) and the point at
which that error occurred, and the RMS (root mean square) error

Floating Point SWT Math Guide

over all the tests in that domain. For those wunfamiliar with
these measures, the MRE can be thought of as a "worst case"
error, and the RMS can be viewed as an "average case" measure of
error.

The tests are given single precision first, then double
precision. The tests with an asterisk ("*") after the CPU model
are double precision test results.

Most of the routines have also been tested with special
arguments at the 1limits of the argument domain or machine
precision to help wvalidate the entire range of possible input
values. You will note that a few of the Prime standard library
routines fail or return incorrect values at the extreme points of
the domain. Other special tests are performed and described with
each routine, as appropriate. The results given for some of
these tests are worst-case results and not average-case; the
average case performance was often much better with special
arguments.

Finally, each routine was tested with wvalues that would
trigger an error (if appropriate). Again, some of the Prime
library routines performed badly -- some of them returned
incorrect values and never triggered an error.

A Special Note on 550 Results

Each test was run on a 550 model cpu at Georgia Tech and on
a 750 model cpu at the Atlanta office of Prime Computer, Inc.
The results for the 550 are intended for comparison purposes and
should not be taken as a strict measure of accuracy. This is due
to the problem with truncation of bits in double precision mul-
tiplies discussed in the last chapter. The vast differences in
accuracy results between the 550 and 750 may be a measure of
improvement in the library routines due to increased accuracy, or
they may be an artifact caused by a change in the values cal-
culated by the test programs themselves. The figures given
should still allow some comparison between the Prime libraries
and the SWT Math library, however.

Other Points of Interest

All of the tests invoke a special subroutine named ’'machar’
which determines machine characteristics to be used in the tests.
The double precision version of this routine cannot be run
unmodified on Prime machines due to their odd exponent structure.
The double precision routine was modified by the author to return
the results as defined by {7}. To recap the few most important
points: a single precision value has 23 bits of mantissa and 8
bits of exponent, and rounds results. A double precision value
has 47 bits of mantissa and 16 bits of exponent, and multiplica-
tion truncates results.

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Since single precision arithmetic can include extra bits of
accuracy 1if intermediate results are kept in the extended
register, the test routines have been modified in places to force
storage (and thus, truncation) of intermediate results. All of
the single precision tests were compiled with the -FRN option set
on. All of the tests were compiled with minimal optimizations
enabled and full debugging. The debug option defeats register
tracking optimizations and forces numerous stores. As an aside,
this is often why erroneous numerical results disappear when a
module 1s compiled with the debug option -- often to the
amazement and indignation of the user.

The random number generator was not extensively tested since
it was coded based on published, previous tests {8}. It should
be noted, however, that a number of distribution and spectral
tests were done locally to ensure that the implementation was not
suspect. For comparison purposes, it should be noted that the
multiplier wused in the Prime APPLIB random number generator
(16807) has been shown to be poor in performance on both spectral

and lattice tests ({8}. The Fortran intrinsic random number
generators (‘rnd’ and ’"irnd’) behave very poorly in simple spec-—
tral tests. They are implemented as 16 bit generators rather

than as 32 bit generators.

Use of These Results

It should be noted that these results are general in nature
and should not be taken as a complete measure of accuracy on
Prime computers. The author has not had extensive training in
numerical analysis. A few of the tests did not appear to work
correctly, and I found what I believe to be at least one genuine
bug in the logic of one of the published test programs. The
unusual and 1inconsistent register structure also leads to
problems in running the tests.

It should also be noted that the Primos 18.4 version of the
libraries was used in these tests. Future releases of these
libraries may demonstrate better performance.

These tests are to be used for general comparison purposes
of the Software Tools Math Library routines and the standard
Prime libraries. There appear to be a number of accuracy
problems 1in the Prime library routines and floating point firm-
ware and hopefully some of these problems have been indicated in
the following tests. Any user wishing to use the Primes or the
SWT Math library for any critical applications should make their
own tests before placing any great confidence in the results.

Floating Point

Inverse Sine and Cosine

SWT Math Guide

There are no inverse sine or cosine functions in the Fortran

66 library,

Test 1

ASIN (X) vs.

CPU
550
550
750
750

550%*
550%*
750%
750%*

Test 2

Library
F77

SWT
F77
SWT

F77
SWT
F77
SWT

ACOS (X) vs.

CPU
550
550
750
750

550%*
550%*
750%*
750%*

Library
F77

SWT
F77
SWT

F77
SWT
F77
SWT

Error
At
0.0110
-0.0808
0.0110
-0.0808

0.802E-2
-0.1247
-0.0157
-0.1247

Taylor Series in (-0.125, 0.125)
5000 Comparisons Maximum Rel.
gt eq 1t Bitloss
1031 3227 742 1.50 of 23
1 4998 1 0.63 of 23
1041 3234 725 1.50 of 23
1 4998 1 0.63 of 23
3 66 4931 3.55 of 47
0 2348 2652 2.00 of 47
309 1563 3128 2.58 of 47
0 2347 2653 2.00 of 47
Taylor Series in (-0.125, 0.125)

5000
gt

[cNeoNeNe]

o O O O

Comparisons
egq 1t
3320 1680
4904 96
3319 1681
4904 96
816 4184
1796 3204
681 4319
1795 3205

- 26 -

Maximum Rel.

Bitloss

0.47
0.47
0.47
0.47
1.29
0.47
1.27
0.47

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Error
At
.1249
.1249
.1249
.1249

[eNeoNeNe]

-0.0606
0.1250
-0.0874
0.1250

so these tests are for the other two libraries only.

Root Mean Sqg.

0
0
0.
0

2
0.
0
0

.00
.00
00
.00

.15
05
.72
.05

Bitloss

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Root Mean Sq.

o O O o

[eNeNeoNe)

.00
.00
.00
.00

.23
.01
.25
.01

Bitloss

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Test 3
ASIN(X) wvs. Taylor Series in (0.75, 1.00)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 F77 76 1313 3611 2.00 of 23 0.84175 0.58 of
550 SWT 237 4123 640 1.00 of 23 0.841l6 0.00 of
750 F77 76 1318 3606 2.00 of 23 0.84175 0.58 of
750 SWT 237 4123 640 1.00 of 23 0.8416 0.00 of
550%* F77 0 6 4994 6.95 of 47 1.0000 2.36 of
550%* SWT 0 446 4554 1.24 of 47 0.7502 0.70 of
750%* F77 125 1413 3462 4.88 of 47 1.0000 0.86 of
750% SWT 0 595 4405 1.24 of 47 0.7500 0.66 of
Test 4
ACOS (X) vs. Taylor Series in (0.75, 1.00)
5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 F77 3210 1261 529 2.95 of 23 0.9746 1.20 of
550 SWT 593 3785 622 1.00 of 23 0.8773 0.00 of
750 F77 3193 1270 537 2.92 of 23 0.9805 1.19 of
750 SWT 593 3785 622 1.00 of 23 0.8773 0.00 of
550%* F77 4955 41 4 14.43 of 47 1.0000 8.50 of
550%* SWT 2656 2344 0 2.00 of 47 0.8773 0.15 of
750% F77 2560 1267 1173 12.47 of 47 1.0000 6.52 of
750% SWT 2377 2623 0 1.99 of 47 0.8762 0.07 of
Test 5
ACOS (X) vs. Taylor Series in (-1.0,-0.75)
5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 F77 0 2287 2713 0.73 of 23 -0.7504 0.15 of
550 SWT 0 4571 429 0.73 of 23 -0.7504 0.00 of
750 F77 0 2286 2714 0.73 of 23 -0.7504 0.15 of
750 SWT 0 4572 428 0.73 of 23 -0.7504 0.00 of
550%* F77 0 12 4988 5.35 of 47 -1.0000 1.46 of
550%* SWT 0 547 4453 0.73 of 47 -0.7500 0.51 of
750% F77 15 930 4055 2.68 of 47 -1.0000 0.56 of
750%* SWT 0 608 4392 0.73 of 47 -0.7500 0.50 of

Examining the test results shows that the standard Prime
library routines are not as accurate as one might wish,
especially in test 4. According to {7}, the MRE error should not
exceed 1.5 on any of the tests, and the RMS error should be no
more than 0.75 in all tests. With the exception of the MRE 1in
the double precision test 2, the SWT Math library performs within
these limits; even the error in test 2 is acceptable when the RMS
error for the same test is noted.

- 27 -

Sqg.

23
23
23
23

47
47
47
47

Sq.

23
23
23
23

47
47
47
47

Sqg.

23
23
23
23

47
47
47
47

Floating Point SWT Math Guide

The tests of special arguments and error returns showed no
problems or unexpected results.

Georgia Institute of Technology

Inverse Tangent

Test 1

ATAN (X) vs.

CPU
550
550
550
750
750
750

550%*
550%*
550%*
750%
750%*
750%*

Test 2

Library
FTN
F77
SWT
FTN
F77
SWT

FTN
F77
SWT
FTN
F77
SWT

ATAN (X) vs.

0.2679)

CPU
550
550
550
750
750
750

550%*
550%*
550%*
750%
750%*
750%*

Library
FTN
F77
SWT
FTN
F77
SWT

FTN
F77
SWT
FTN
F77
SWT

Taylor Series in

5000
at
527
527

0
529
529

0

[eNeoNoNoNeoNe]

Comparisons
eq it
4211 262
4211 262
4999 1
4213 258
4213 258
4999 1
0 5000

47 4953
2508 2492
3 4997
697 4303
2530 2470

Technical Report GIT-ICS-83/09

Maximum Rel.

oOrRrORR

P NNDRFE WW

(-0.0625,

0.0625)

Bitloss

.00
.00
.32
.00
.00
.32

.32
.20
.59
.00
.00
.59

of
of
of
of
of
of

of
of
of
of
of
of

23
23
23
23
23
23

47
47
47
47
47
47

-0.0039
-0.0039
0.
-0.0039
-0.0039
0.

0.
-0.0043
0.
-0.0156
-0.0156
0.

Error

At

0500

0500

0314

0313

0313

ATAN(1/16)+ATAN ((X-1/16)/ (1+X/16))

5000
at
538
664
425
543
665
423

372
1774
947
63
1773
192

Comparisons
eq it
2636 1826
2482 1854
3530 1045
2626 1831
2475 1860
3530 1047
1454 3174
723 2503
3933 120
2245 2692
1656 1571
4021 787

- 29 -

Maximum Rel.
Bitloss
.34
.34
.40
.34
.34
.40

EFNDNDEDNDDN

P NRFE P WN

.99
.28
.02
.70
.64
.03

of
of
of
of
of
of

of
of
of
of
of
of

23
23
23
23
23
23

47
47
47
47
47
47

[eNeoNeoNoNoNe)

[eNeoNoNoNeoNe]

Error

At

.2007
.2007
.1917
.2007
.2007
.1917

.0631
.2081
.2523
.0773
.2033
.2503

Root Mean Sqg.
Bitloss

[ecNeoNoNoNoNo]

O OoOrOoOrN

(0.

.00
.00
.00
.00
.00
.00

.12
.95
.00
.11
.80
.00

of
of
of
of
of
of

of
of
of
of
of
of

0625,

23
23
23
23
23
23

47
47
47
47
47
47

Root Mean Sqg.

[ecNeoNoNoNoNo]

[oNeNeNoN

.21
.35
.00
.21
.35
.00

.27
.68
.00
.15
.94
.00

Bitloss

of
of
of
of
of
of

of
of
of
of
of
of

23
23
23
23
23
23

47
47
47
47
47
47

Floating Point SWT Math Guide

Test 3
ATAN (X)*2 vs. ATAN(2X/(1-X*X)) in (0.2679, 0.4142)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 1868 2729 403 1.91 of 23 0.2717 0.05 of
550 F77 1531 2931 538 1.91 of 23 0.2717 0.02 of
550 SWT 882 3678 440 0.93 of 23 0.2680 0.00 of
750 FTN 1862 2734 404 1.91 of 23 0.2717 0.05 of
750 F77 1526 2933 541 1.91 of 23 0.2717 0.01 of
750 SWT 878 3679 443 0.93 of 23 0.2680 0.00 of
550%* FTN 158 175 4667 4.81 of 47 0.2731 3.40 of
550%* F77 1597 1506 1897 2.93 of 47 0.2693 1.05 of
550%* SWT 142 567 4291 3.30 of 47 0.3155 1.83 of
750%* FTN 119 137 4744 4.77 of 47 0.2817 3.43 of
750% F77 3576 1015 409 2.76 of 47 0.3050 1.23 of
750% SWT 146 1017 3837 2.80 of 47 0.2952 1.22 of
Test 4

ATAN(X)*2 vs. ATAN(2X/(1-X*X)) in (0.4142, 1.0)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 1943 3010 47 2.00 of 23 0.5483 0.07 of
550 F77 1970 2986 44 2.00 of 23 0.5479 0.12 of
550 SWT 453 4386 161 1.00 of 23 0.5465 0.00 of
750 FTN 1941 3012 47 2.00 of 23 0.5483 0.08 of
750 F77 1968 2988 44 2.00 of 23 0.5479 0.13 of
750 SWT 452 4387 161 1.00 of 23 0.5465 0.00 of
550%* FTN 188 576 4236 4.12 of 47 0.4254 2.35 of
550%* F77 939 1521 2540 2.76 of 47 0.6689 0.99 of
550% SWT 20 906 4074 3.34 of 47 0.4166 1.94 of
750% FTN 2 48 4950 4.32 of 47 0.4246 2.78 of
750%* F77 1913 1042 2045 2.35 of 47 0.6693 0.93 of
750%* SWT 872 1859 2269 2.35 of 47 0.4145 0.64 of

Examining the test results 1leads to some interesting
conclusions. The SWT Math Library routines are definitely better
than either Prime library version, especially in test 2. The
margin of error suggested in {7} is met only by the SWT routines.

In the testing of special arguments, the Prime FTIN library
ATAN had problems with the identities ATAN(-x) = - ATAN(x) and
ATAN (x) = x for small x. Errors in both cases were about 10E-7
of the magnitude of x in both single and double precision.

- 30 -

Sqg.

23
23
23
23
23
23

47
47
47
47
47
47

Sqg.

23
23
23
23
23
23

47
47
47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Exponential

In the following tests, the double precision tests did not
run to completion when testing the FTIN library due to problems in
the EXP function. Due to incorrect coding of the function, a
floating to fixed conversion raised a SIZE error when taking the
exponential of a value which was theoretically in range. Thus,
only the results for the first test are available for the FIN
exponential function in double precision.

Test 1
EXP (X-0.0625) vs. EXP(X)/EXP(0.0625) in (-0.2841, 0.3466)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 624 3537 839 1.09 of 23 0.9069E-3 0.00 of
550 F77 1217 2173 1610 2.41 of 23 0.1815 0.39 of
550 SWT 553 3704 743 1.00 of 23 0.0629 0.00 of
750 FTN 636 3525 839 1.09 of 23 0.9069E-3 0.00 of
750 F77 1218 2172 1610 2.41 of 23 0.1815 0.39 of
750 SWT 553 3704 743 1.00 of 23 0.0629 0.00 of
550%* FTN 1555 906 2539 4.53 of 47 0.0150 2.51 of
550%* F77 1619 711 2670 3.74 of 47 0.2457 1.96 of
550%* SWT 325 1759 2916 2.48 of 47 -0.2730 0.72 of
750% FTN 479 1762 2759 4.17 of 47 0.61l6lE-2 2.23 of
750%* F77 1007 1597 2396 2.37 of 47 0.0293 0.78 of
750%* SWT 227 2056 2717 2.08 of 47 -0.2777 0.42 of
Test 2
EXP (X-2.8125) vs. EXP (X) /EXP (2.8125) in (-0.2277E+5,
-0.3466E+1)
5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 2838 23 2139 6.42 of 23 -0.4405E+2 4.94 of
550 F77 1201 2287 1512 2.01 of 23 -0.6125E+2 0.32 of
550 SWT 499 3745 756 1.02 of 23 -0.1799E+2 0.00 of
750 FTN 2838 23 2139 6.42 of 23 -0.4405E+2 4.94 of
750 F77 1201 2285 1514 2.01 of 23 -0.6125E+2 0.32 of
750 SWT 499 3745 756 1.02 of 23 -0.1799E+2 0.00 of
550%* F77 2638 426 1936 47.00 of 47 -0.2268E+5 43.85 of
550%* SWT 1034 205 3761 13.95 of 47 -0.2264E+5 11.75 of
750%* F77 2036 1426 1538 47.00 of 47 -0.2089E+2 43.85 of
750% SWT 441 424 4135 13.95 of 47 -0.2264E+5 11.75 of

- 31 -

Sq.

23
23
23
23
23
23

47
47
47
47
47
47

Sq.

23
23
23
23
23
23

47
47
47
47

Floating Point SWT Math Guide

Test 3
EXP (X-2.8125) vs. EXP(X)/EXP(2.8125) in (6.931, 87.92)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 2993 15 1992 5.69 of 23 0.8669E+2 5.05 of
550 F77 1204 2311 1485 1.93 of 23 0.5069E+2 0.30 of
550 SWT 489 3704 807 1.00 of 23 0.4371E+2 0.00 of
750 FTN 2993 15 1992 5.69 of 23 0.8669E+2 5.05 of
750 F77 1204 2311 1485 1.93 of 23 0.5069E+2 0.30 of
750 SWT 489 3704 807 1.00 of 23 0.4371E+2 0.00 of
550%* F77 2676 444 1880 6.12 of 47 0.1571E+5 4.28 of
550%* SWT 3082 899 1019 4.28 of 47 0.1592E+5 2.07 of
750%* F77 2078 1400 1522 5.08 of 47 0.1584E+5 2.65 of
750%* SWT 1065 2205 1730 3.47 of 47 0.2018E+5 1.29 of
The results of test 2 are a bit surprising. After careful
checking of the code and the test, it seems likely that there is
a problem in the test since the routines from both 1libraries
appear so bad. The MRE values appear to be close to the limit of
what the routines can compute without underflow. Performing a
check on the MRE error in each case reveals that there is no
measurable error in the exponential function at this point in
regard to the logarithm function. That is, the values of the
exponential functions at the MRE point, when used as arguments to
the SWT logarithm function (which is known to be fairly accurate;
see below), produce the exact same value as the MRE point. This
leads to the conclusion that the testing procedure 1is somehow
faulty due to the unusual register structure of the Primes. It

can be concluded that (in this domain) the functions are probably
correct, but the measure of error cannot be determined by this
test.

The results of the other tests indicate major differences in
accuracy amongst the routines. The SWT routine seems much better
in most cases.

The tests of special arguments revealed a number of
interesting items. For instance, the single precision F77 EXP
routine does not signal an error when given arguments very much
out of range. 1Instead, it returns either zero (in the case of
underflow) or a very large value (in the case of overflow).
Also, all of the functions have some amount of error in the
identity EXP(X)*EXP(-X) = 1.0, with single precision values of X
near 1.0 producing errors of approximately 10E-6, and double
precision values near 1.0 producing errors of near 10E-12.

- 32 -

Sqg.

23
23
23
23
23
23

47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Logarithms
Test 1
ALOG (X) vs. Taylor Series of ALOG(1+Y) in (1-.7813E-2,
1+.7813E-2)
5000 Comparisons Maximum Rel. Error Root Mean 3q.

CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 2246 234 2520 2.57 of 23 0.9961 1.35 of 23
550 F77 1392 2607 1001 1.89 of 23 1.0021 0.07 of 23
550 SWT 1 4996 3 0.59 of 23 0.9948 0.00 of 23
750 FTN 2251 229 2520 2.57 of 23 0.9961 1.36 of 23
750 F77 1389 2603 1008 1.89 of 23 1.0021 0.07 of 23
750 SWT 1 4996 3 0.59 of 23 0.9948 0.00 of 23
550%* FTN 2449 315 2236 25.55 of 47 1.000 19.52 of 47
550%* F77 2038 996 1966 2.98 of 47 1.000 1.42 of 47
550%* SWT 1013 2493 1494 2.13 of 47 1.0000 0.19 of 47
750%* FTN 1314 1603 2083 25.55 of 47 1.000 19.52 of 47
750% F77 1206 2507 1287 1.94 of 47 1.000 0.04 of 47
750% SWT 1206 2507 1287 1.94 of 47 1.000 0.04 of 47

Test 2

ALOG(X) vs. ALOG(17X/16)-ALOG(17/16) in (0.7071, 0.9375)

5000 Comparisons Maximum Rel. Error Root Mean Sq.

CPU Library gt eq 1t Bitloss At Bitloss

550 FTN 0 1930 3070 2.01 of 23 0.8300 0.41 of 23
550 F77 0 2753 2247 1.97 of 23 0.8253 0.07 of 23
550 SWT 0 3628 1372 1.00 of 23 0.7788 0.00 of 23
750 FTN 0 1936 3064 2.01 of 23 0.8300 0.41 of 23
750 F77 0 2760 2240 1.97 of 23 0.8253 0.07 of 23
750 SWT 0 3628 1372 1.00 of 23 0.7788 0.00 of 23
550%* FTN 0 54 4946 4.24 of 47 0.9299 2.49 of 47
550%* F77 0 132 4868 3.00 of 47 0.7323 1.28 of 47
550%* SWT 0 2053 2947 2.28 of 47 0.7347 0.51 of 47
750% FTN 0 1022 3978 4.26 of 47 0.9367 2.47 of 47
750%* F77 0 2067 2933 1.99 of 47 0.7779 0.46 of 47
750% SWT 0 2067 2933 1.99 of 47 0.7779 0.46 of 47

- 33 -

Floating Point SWT Math Guide

Test 3
ALOG10(X) vs. ALOG10(11X/10)-ALOG(11/10) in (0.3162, 0.900)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 0 1870 3130 2.58 of 23 0.8659 0.90 of
550 F77 0 1986 3014 2.72 of 23 0.7045 0.74 of
550 SWT 0 2462 2538 2.06 of 23 0.8708 0.35 of
750 FTN 0 1867 3133 2.58 of 23 0.8659 0.90 of
750 F77 0 1983 3017 2.72 of 23 0.7045 0.75 of
750 SWT 0 2462 2538 2.06 of 23 0.8708 0.35 of
550%* FTN 0 924 4076 4.44 of 47 0.8936 2.18 of
550%* F77 0 1029 3971 3.58 of 47 0.8974 1.66 of
550%* SWT 0 1244 3756 3.73 of 47 0.8974 1.71 of
750%* FTN 0 1383 3617 4.40 of 47 0.8963 2.27 of
750% F77 0 1684 3316 3.37 of 47 0.8946 1.34 of
750% SWT 0 1499 3501 3.37 of 47 0.8943 1.29 of
Test 4

ALOG (X*X) vs. 2*ALOG(X) in (16.00, 240.0)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 2490 2510 0 1.00 of 23 0.5473E+2 0.15 of
550 F77 2499 2501 0 1.00 of 23 0.5473E+2 0.15 of
550 SWT 127 4873 0 0.99 of 23 0.5575E+2 0.00 of
750 FTN 2499 2501 0 1.00 of 23 0.5473E+2 0.15 of
750 F77 2491 2509 0 1.00 of 23 0.5473E+2 0.15 of
750 SWT 127 4873 0 0.99 of 23 0.5575E+2 0.00 of
550%* FTN 2911 2089 0 2.36 of 47 0.2263E+2 0.98 of
550%* F77 1195 3805 0 3.00 of 47 0.5491E+2 1.58 of
550%* SWT 1437 3563 0 1.53 of 47 0.1604E+2 0.00 of
750% FTN 1548 3452 0 1.44 of 47 0.1909E+2 0.00 of
750%* F77 1537 3463 0 1.44 of 47 0.1909E+2 0.00 of
750%* SWT 333 4667 0 1.06 of 47 0.4591E+2 0.00 of

These tests indicate that both the SWT Math library and the
F77 library implementations of the logarithm functions are within
acceptable error bounds (as defined in {7}), with the SWT version
being somewhat better. The Fortran 66 version obviously has some
points at which it Dbehaves very poorly (see test 1). The
similarity between the results for the SWT and F77 versions as
shown in tests 1 and 2 can probably be explained by the fact that
the same algorithm was used in each.

The SWT MRE errors in the double precision part of tests 1
and 2 are a bit large, but the corresponding error in the RMS
indicates that the error is not systematic in nature. The error
is of no major significance, although it could possibly be less.

The SWT routine performed very well in tests of the identity
ALOG (X) = -ALOG(1/X), returning exactly the same values in every

- 34 -

Sqg.

23
23
23
23
23
23

47
47
47
47
47
47

Sqg.

23
23
23
23
23
23

47
47
47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

test. The FTN and F77 routines returned occasional matches, but
were often in error by amounts close to 10E-6 (single precision)
and 10E-12 (double precision).

What 1is most interesting is to note that both the F77 and
FTIN double precision routines are seriously flawed for very small
arguments. Due to a rather obvious coding error, any double
precision value whose exponent is less than -32640 will have its
logarithm calculated as a large positive number -- just as if the
sign of the exponent was reversed!! It would appear as if these
routines were never tested at any values near the limits of their
domains. The SWT routine does not suffer from this problem.

Floating Point SWT Math Guide

The POWRSM Function

The SWT ’'powr$m’ function was tested against the intrinsic
"x%" operation in these tests. That is, when testing the FTN and
F77 libraries, the operation "x ** y" was used and the compilers
were allowed to generate the calls to the appropriate library
routines.

Although there is no single precision version of the SWT
"powr$m’ function, it was tested within the range for single
precision values and compared against the Prime power operation.
Due to recurring problems in the division of very small values,
and the multiplication of very large values caused by the faults
in the hardware, tests 1 and 2 were the only double precision
tests run to completion.

Test 1
X ** 1.0 vs. X in (0.50, 1.00)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 2399 2583 18 0.99 of 23 0.5022 0.00 of
550 F77 2886 1935 179 1.50 of 23 0.7072 0.37 of
550 SWT 0 5000 0 0.00 of 23 ————- 0.00 of
750 FTN 2394 2586 20 0.99 of 23 0.5022 0.00 of
750 F77 2888 1932 180 1.50 of 23 0.7072 0.37 of
750 SWT 0 5000 0 0.00 of 23 ————- 0.00 of
550%* FTN 5000 0 0 4.76 of 47 0.8469 4.12 of
550%* F77 4996 4 0 4.19 of 47 0.6025 3.06 of
550%* SWT 4997 3 0 1.94 of 47 0.5222 0.69 of
750% FTN 4920 80 0 4.28 of 47 0.7735 3.66 of
750%* F77 4437 563 0 2.62 of 47 0.6511 1.38 of
750%* SWT 4837 163 0 1.06 of 47 0.9578 0.50 of
Test 2

(X*X)**1.5 vs. (X*X)*X in (0.50, 1.00)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 3330 1394 276 2.90 of 23 0.5118 0.98 of
550 F77 2047 2082 871 1.87 of 23 0.5147 0.35 of
550 SWT 332 4359 319 1.00 of 23 0.6300 0.00 of
750 FTN 3305 1410 285 2.94 of 23 0.5068 0.98 of
750 F77 2086 2062 852 1.98 of 23 0.9135 0.37 of
750 SWT 317 4349 334 0.99 of 23 0.7954 0.00 of
550%* FTN 4939 55 6 5.12 of 47 0.5712 4.03 of
550%* F77 4869 131 0 4.94 of 47 0.5466 3.30 of
550%* SWT 1172 2051 1777 2.57 of 47 0.5012 0.66 of
750%* FTN 4172 649 179 4.23 of 47 0.7358 3.47 of
750% F77 3782 1010 208 2.62 of 47 0.6875 1.20 of
750%* SWT 2432 2566 2 1.06 of 47 0.7833 0.07 of

- 36 -

Sq.

23
23
23
23
23
23

47
47
47
47
47
47

Sqg.

23
23
23
23
23
23

47
47
47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Test 3
(X*X)**1.5 vs. (X*X)*X in (1.00, 0.5541E+13)

5000 Comparisons Maximum Rel. Error Root Mean 3q.
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 5000 0 0 8.51 of 23 0.1129E+13 7.80 of 23
550 F77 4950 0 50 17.93 of 23 0.5487E+13 13.83 of 23
550 SWT 315 4362 323 1.00 of 23 0.6928E+12 0.00 of 23
750 FTN 5000 0 0 8.53 of 23 0.2676E+12 7.80 of 23
750 F77 4950 0 50 17.93 of 23 0.5487E+13 13.83 of 23
750 SWT 337 4313 350 0.99 of 23 0.4407E+13 0.00 of 23
In test 4, the point given at which the MRE was recorded is
the value of X. The Y value is available on request.
Test 4
X**Y vs. (X*X)**(Y/2), X in (0.01, 10.0), Y in (-19.42,
19.42)
5000 Comparisons Maximum Rel. Error Root Mean Sq.
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 1006 3052 942 6.49 of 23 9.8692 4.20 of 23
550 F77 2266 518 2216 5.46 of 23 0.0120 3.43 of 23
550 SWT 1700 1604 1696 3.25 of 23 2.0541 1.28 of 23
750 FTN 958 3104 938 6.49 of 23 7.7463 4.20 of 23
750 F77 2251 514 2235 5.46 of 23 0.0120 3.47 of 23
750 SWT 1644 1591 1765 3.20 of 23 2.8599 1.30 of 23

It seems fairly obvious from the above test results that the
Prime library routines are rather sadly lacking 1in precision.
Test 3 alone shows a RME 1loss of nearly 18 out of 23 bits.
Conclusions about tests 3 and 4 can possibly (with a cautionary

warning!) be extrapolated to the double precision cases, at
least for the SWT routine, since the routine is the same for both
precisions. The tests of special arguments indicate that the

"powr$m’ routine does behave well in the double precision case.
Running small portions of the test to avoid some of the firmware
arithmetic problems tends to support these conclusions.

- 37 -

Floating Point

Sine and Cosine

Test 1
SIN(X) vs.
CPU Library
550 FTN
550 F77
550 SWT
750 FTN
750 F77
750 SWT
550%* FTN
550%* F77
550* SWT
750%* FTN
750%* F77
750%* SWT
Test 2
SIN(X) vs.
CPU Library
550 FTN
550 F77
550 SWT
750 FTN
750 F77
750 SWT
550* FTN
550%* F77
550* SWT
750%* FTN
750%* F77
750%* SWT

3*SIN(X/3)-4*SIN(X/3)**3 in (0.

5000
at
3047
466
498
3095
466
498

31
3204
2880

130
863
494

3*SIN(X/3)—-4*SIN(X/3)**3

5000

gt
3546
431
510
3560
431
511

394
1800
1776
1852

891

699

Comparisons
eq it
32 1921
2204 2330
3979 523
0 1905
2202 2332
3979 523
233 4736
1276 520
1207 913
679 4191
1773 2364
2459 2047

Comparisons
eq it
12 1442
2267 2302
3939 551
0 1440
2267 2302
3938 551
118 4488
660 2540
491 2733
160 2988
1803 2306
2463 1838

- 38 -

Maximum Rel
Bitloss

.41 of 23
.49 of 23
.00 of 23
.41 of 23
.61 of 23
.00 of 23

PR R R R R

.50
.07
.41
.81
.30
.04

of
of
of
of
of
of

47
47
47
47
47
47

DN WD

in

Maximum Rel.

Bitloss
18.00 of 23
1.73 of 23
1.00 of 23
18.00 of 23
1.73 of 23
1.00 of 23

18.
19.
19.33 of 47
18.98 of 47
6.93 of 47
2.02 of 47

98
33

of
of

47
47

(18.

0,

. E

[eNeoNeoNoNoNe)

R O OOOoOOo

85

E

18

19.
19.
18.
19.
19.

18.
18.
18.
18.
18.
20.

SWT Math Guide

1.571)

rror
At

.8183
.7910
.5243
.8183
.3330
.5243

.7888
.3021
.1898
.1495
.6557
.3513

, 20.

rror
At
.850
001
103
850
001
103

850
850
850
850
850
242

Root Mean Sqg.

Bitloss
.00 of
.00 of
.00 of
.00 of
.00 of
.00 of

23
23
23
23
23
23

[ecNeoNoNoNoNo]

.17
.09
.51
.44
.46
.21

of
of
of
of
of
of

47
47
47
47
47
47

OO rEFENW

Root Mean Sg.

Bitloss
11.87 of 23
0.00 of 23
0.00 of 23
11.87 of 23
0.00 of 23
0.00 of 23
12.87 of 47
13.20 of 47
13.20 of 47
12.84 of 47
1.14 of 47
0.14 of 47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Test 3

COS(X) vs. 4*COS(X/3)**3-3*COS(X/3) in (21.99, 23.56)

5000 Comparisons Maximum Rel. Error Root Mean 3q.

CPU Library gt eq 1t Bitloss At Bitloss

550 FTN 1911 13 3076 11.83 of 23 23.555 7.14 of 23
550 F77 1850 24 3126 1.36 of 23 23.150 0.00 of 23
550 SWT 2470 33 2497 0.70 of 23 23.529 0.00 of 23
750 FTN 1923 0 3077 11.83 of 23 23.555 7.14 of 23
750 F77 1845 0 3155 1.37 of 23 23.150 0.00 of 23
750 SWT 2471 0 2529 0.70 of 23 23.530 0.00 of 23
550%* FTN 1470 658 2872 17.42 of 47 23.562 11.44 of 47
550%* F77 4978 20 2 17.77 of 47 23.562 11.70 of 47
550%* SWT 4657 291 52 17.77 of 47 23.562 11.70 of 47
750%* FTN 855 564 3581 15.33 of 47 23.561 9.78 of 47
750% F77 4490 464 46 2.85 of 47 23.353 1.46 of 47
750%* SWT 1334 2614 1052 1.63 of 47 22.237 0.00 of 47

This 1is another test which illustrates how the multiplica-
tion bug in the 550 firmware can affect «critical results.
Observe the differences in double precision results in test 2 and
3. It 1is also fairly obvious that the FIN library sine and
cosine functions have severe accuracy problems. The SWT library
routines perform well within error limits {7} and are much better
than the F77 routines.

When testing special arguments it is found that both the F77
and FTIN routines have difficulty with the identities SIN(-X)=-
SIN (X) and COS (—X)=CO0S (X) . The ratio of the calculated
difference to X is about 10E-8 for single precision, and 10E-12
to 10E-28 for double precision (the F77 library is more
accurate) . The SWT Library routines calculate no differences in
these identities.

When special values are tested for error checking, it is
discovered that the Prime routines trigger a SIZE error in float
to fixed conversion when presented with a large argument rather
than checking for (and reporting) the actual problem of an error
of excessive magnitude. The SWT routine properly traps the
error.

- 39 -

Floating Point

Hyperbolic Sine

There are
(cosh) routines
for the F77 and

and Cosine

no hyperbolic

sine

in the FTIN library,

SWT libraries.

Test 1
SINH (X) vs.
CPU Library
550 F77
550 SWT
750 F77
750 SWT
550* F77
550%* SWT
750%* F77
750% SWT
Test 2
COSH (X) vs.
CPU Library
550 F77
550 SWT
750 F77
750 SWT
550%* F77
550* SWT
750% F77
750%* SWT

(sinh)
so the tests below

SWT Math Guide

or hyperbolic cosine

Taylor Series in (0.00, 0.50)
5000 Comparisons Maximum Rel.
gt eg 1t Bitloss
1 2418 2581 1.38 of 23 0
8 4965 27 1.00 of 23 0
1 2430 2569 1.38 of 23 0
7 4966 27 1.00 of 23 O
87 754 4159 3.00 of 47 O
360 2597 2043 1.99 of 47 O
343 2643 2033 1.99 of 47 0
370 2643 1987 2.00 of 47 O
Taylor Series in (0.00, 0.50)
5000 Comparisons Maximum Rel.
gt eq 1t Bitloss
0 3547 1453 1.00 of 23 0
6 4905 89 0.98 of 23 O
1 3548 1451 1.00 of 23 O
6 4905 89 0.98 of 23 O
0 143 4857 4.15 of 47 O
0 1442 3558 3.41 of 47 0
0 2098 2902 3.41 of 47 O
0 2809 2191 3.15 of 47 O

- 40 -

are only

Error
At
.1908
.4827
.1908
.4827

.0156
.4855
.4833
.4822

Error
At
.0348
.1599
.3937E-2
.1599

.4906
.4997
.4955
.4919

Root Mean Sq.

o O O o

[eNeNeN g

.17
.00
.17
.00

.69
.06
.06
.06

Bitloss

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Root Mean Sg.

[eNeNeoNe)

RN

.03
.00
.03
.00

.74
.28
.30
.04

Bitloss

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Test 3
SINH (X) vs. C* (SINH (X+1)+SINH(X-1)) in (3.00, LOG (XMAX))

5000 Comparisons Maximum Rel. Error Root Mean 3q.

CPU Library gt eq 1t Bitloss At Bitloss
550 F77 2051 1879 1070 16.53 of 23 87.017 10.43 of 23
550 SWT 1618 3303 79 1.24 of 23 43.500 0.00 of 23
750 F77 2051 1881 1068 16.53 of 23 87.017 10.43 of 23
750 SWT 1618 3303 79 1.24 of 23 43.500 0.00 of 23
550%* F77 3615 388 997 5.92 of 47 0.2124E+5 4.19 of 47
550%* SWT 4579 262 159 4.45 of 47 0.2067E+5 3.17 of 47
750%* F77 3937 337 726 4.85 of 47 0.1669E+5 2.73 of 47
750% SWT 4498 303 199 3.03 of 47 O0.1304E+5 1.49 of 47

In test 4, the double precision COSH routine in the F77
library generated numerous errors for large values that should
have Dbeen in range. These errors aborted the test and therefore
there are no results for the double precision F77 COSH.

Test 4
COSH(X) vs. C*(COSH(X+1)+COSH(X-1)) in (3.00, LOG (XMAX))

5000 Comparisons Maximum Rel. Error Root Mean 3q.

CPU Library gt eq 1t Bitloss At Bitloss

550 F77 2051 1903 1046 17.75 of 23 87.000 11.74 of 23
550 SWT 1558 3341 101 1.00 of 23 49.214 0.00 of 23
750 F77 2051 1904 1045 17.75 of 23 87.000 11.74 of 23
750 SWT 1558 3341 101 1.00 of 23 49.214 0.00 of 23
550%* SWT 4566 263 171 4.53 of 47 O0.1794E+5 3.16 of 47
750%* SWT 4522 284 194 3.06 of 47 0.1281lE+5 1.49 of 47

The results of tests 3 and 4 show that the F77 routines are
rather inaccurate at the extremes of range. The RME measures for
the SWT routines are a bit large, but the corresponding RMS error
is small. According to the figures given in {7}, the SWT
routines perform within the range of acceptable error.

As with many of the other tests, fundamental identities
involving negated arguments were not calculated quite correctly
in the Prime routines. Another interesting(?) result occurred
when the F77 SINH routine was called with a very large positive
value. The SINH routine did not signal an error, but rather
returned the maximum floating point value —-- an incorrect result.

- 41 -

Floating Point SWT Math Guide

Square Root

The square root function is one of the easiest to code and
the accuracy of such a routine should be very, very good if done
correctly. Newton’s method converges quickly and requires only a
few iterations on a reduced argument to reach a solution. Due to
the nature of the square root function and its use, the random
arguments are logarithmically distributed over the sample inter-
val; all the other tests use a uniform distribution.

Test 1
SQRT (X*X) vs. X in (0.7071, 1.00)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 0 5000 0 0.00 of 23 ———- 0.00 of
550 F77 1 4999 0 0.42 of 23 0.7500 0.00 of
550 SWT 0 5000 0 0.00 of 23 ————- 0.00 of
750 FTN 0 5000 0 0.00 of 23 ———- 0.00 of
750 F77 1 4999 0 0.42 of 23 0.7500 0.00 of
750 SWT 0 5000 0 0.00 of 23 ————- 0.00 of
550%* FTN 0 0 5000 2.50 of 47 0.7095 1.33 of
550%* F77 0 1 4999 2.08 of 47 0.7074 1.13 of
550%* SWT 0 0 5000 2.49 of 47 0.7114 1.31 of
750% FTN 0 2403 2597 0.50 of 47 0.7072 0.00 of
750%* F77 0 4481 519 0.50 of 47 0.7072 0.00 of
750%* SWT 0 2493 2507 0.50 of 47 0.7072 0.00 of
Test 2

SQORT (X*X) vs. X in (1.00, 1.414)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 0 5000 0 0.00 of 23 ————- 0.00 of
550 F77 77 4923 0 1.00 of 23 1.0004 0.00 of
550 SWT 0 5000 0 0.00 of 23 —-————- 0.00 of
750 FTN 0 5000 0 0.00 of 23 ————- 0.00 of
750 F77 80 4920 0 1.00 of 23 1.0004 0.00 of
750 SWT 0 5000 0 0.00 of 23 —-————- 0.00 of
550%* FTN 0 0 5000 3.00 of 47 1.0003 2.00 of
550%* F77 0 6 4994 3.00 of 47 1.0003 1.97 of
550%* SWT 0 0 5000 3.00 of 47 1.0003 2.00 of
750%* FTN 0 3384 1616 1.00 of 47 1.0001 0.00 of
750% F77 1 3766 1233 1.00 of 47 1.0001 0.00 of
750%* SWT 0 3387 1613 1.00 of 47 1.0001 0.00 of

All of the routines perform well in these tests, and all
have results within acceptable margins of error. Test 2 readily
illustrates how results can change due to the double precision
multiply bug on 550 machines. Nothing in these tests would
particularly recommend one routine against any other, although
the SWT and FTN routines appear to be marginally more accurate

- 42 -

Sq.

23
23
23
23
23
23

47
47
47
47
47
47

Sqg.

23
23
23
23
23
23

47
47
47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

than the F77 version.

Tests of special arguments, however, reveal some difficul-
ties. The FIN and F77 double precision functions generate over-—
flow faults when presented with a large enough argument. There
is no valid mathematical reason for this to occur. Additionally,
the Prime double precision functions calculated incorrect square
roots for selected small values near the 1limits of storage
precision. The SWT library routine Dbehaved correctly for all
special arguments.

Float

Tangent and Cotangent

ing Point

the results of the tests below apply to

There
libraries.
Test 1

TAN (X) vVvs.
CPU Library
550 F77
550 SWT
750 F77
750 SWT
550* F77
550%* SWT
750%* F77
750% SWT
Test 2
TAN (X) vs.
CPU Library
550 F77
550 SWT
750 F77
750 SWT
550%* F77
550* SWT
750% F77
750%* SWT

SWT Math Guide

only the F

2*TAN (X/2) / (1-TAN (X/2) **2)

5000

gt
1978
2054
1968
2044

191
190
439
542

Comparisons
egq 1t
2361 661
2518 428
2369 663
2525 431
1085 3724
996 3814
2565 1996
2384 2074

in (0.00, O

Maximum Rel.

NN WWw

97

.99
.79

.43
.62
.79
.87

of
of
of
of

of
of
of
of

2*TAN(X/2)/ (1-TAN (X/2) **2)

5000

gt
2318
991
2340
987

3715
3827
2197
2131

Comparisons
eq it
2018 664
3178 831
2009 651
3176 837
815 470
868 305
1870 933
2213 656

- 44 -

Bitloss
1.99
1.
1
1

23
23
23
23

47
47
47
47

in

[eNeoNeNe]

O O O O

(2.

Maximum Rel.

R NREDN

NN WW

.88
.87
.79
.60

of
of
of
of

of
of
of
of

Bitloss
.21
.17
.09
.17

23
23
23
23

47
47
47
47

W N wN

W N ww

Error
At
.2458
.1273
.2458
.5237

.7483
L7734
.2815
.2678

749,

Error
At
.9813
.0306
.8026
.0306

.1342
.1116
.9978
.4601

is no tangent routine in the standard FIN library,

77 and

.7854)

so
SWT

Root Mean Sq.

o O O o

R ONBRF

3.534)

.22
.11
.21
.11

.93
.03
.99
.11

Bitloss

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Root Mean Sg.

[eNeNeoNe)

O NN

.48
.00
.49
.00

.09
.00
.07
.83

Bitloss

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Test 3

TAN(X) vs. 2*TAN(X/2)/(1-TAN(X/2)**2) in (18.85, 19.63)

5000 Comparisons Maximum Rel. Error

CPU Library gt eq 1t Bitloss At
550 F77 1933 2374 693 1.93 of 23 19.332
550 SWT 2074 2467 459 1.94 of 23 19.104
750 F77 1934 2374 692 1.96 of 23 19.102
750 SWT 2071 2470 459 1.94 of 23 19.104
550%* F77 193 1136 3671 3.55 of 47 19.448
550%* SWT 178 1076 3746 3.59 of 47 19.541
750%* F77 399 2583 2018 2.94 of 47 19.104
750% SWT 499 2403 2098 2.92 of 47 18.981
Test 4

COT (X) vs. (COT (X/2)**2-1) /(2*COT (X/2)) in (18.85,

5000 Comparisons Maximum Rel. Error

CPU Library gt eq 1t Bitloss At
550 F77 2602 16 2382 2.16 of 23 19.377
550 SWT 2311 32 2657 1.36 of 23 19.086
750 F77 2593 8 2399 2.16 of 23 19.377
750 SWT 2307 13 2680 1.35 of 23 19.086
550%* F77 261 818 3921 3.91 of 47 18.857
550%* SWT 335 772 3893 3.79 of 47 19.455
750%* F77 973 1843 2184 3.00 of 47 19.439
750% SWT 989 1794 2217 2.53 of 47 19.616

These tests show that both implementations are
within a reasonable error bound. Tests on special
revealed that the double precision F77 tangent routine
error for a large input value that should be well
range that can be dealt with.

— 45 -

Root Mean Sq.
Bitloss

.20
.14
.20
.14

o O O o

.93
.03
.99
.10

R ONBRF

19.63)

of
of
of
of

of
of
of
of

23
23
23
23

47
47
47
47

Root Mean Sg.

Bitloss

.18
.00
.18
.00

[eNeNeoNe)

.20
.95
.13
.73

o PN

correct

of
of
of
of

of
of
of
of

to

arguments

signals

an

within the

23
23
23
23

47
47
47
47

Floating Point SWT Math Guide

Hyperbolic Tangent

There does not appear to be a double precision hyperbolic
tangent routine in the FTIN library, although there is a single
precision version. The following test results reflect that fact.

Test 1
TANH (X) vs. (TANH (X-1/8) *TANH(1/8))/ (1+TANH (X-1/8) *TANH (1/8))
in (0.125, 0.5493)

5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 1396 1788 1816 2.99 of 23 0.1268 0.72 of
550 F77 1860 1253 1887 3.71 of 23 0.1347 1.41 of
550 SWT 1203 2833 964 1.77 of 23 0.1479 0.00 of
750 FTN 1401 1782 1817 2.99 of 23 0.1268 0.73 of
750 F77 1863 1248 1889 3.71 of 23 0.1347 1.41 of
750 SWT 1200 2832 968 1.77 of 23 0.1479 0.00 of
550%* F77 2731 230 2039 6.64 of 47 0.1315 4.08 of
550%* SWT 4624 348 28 3.55 of 47 0.1288 1.98 of
750%* F77 2380 605 2015 4.83 of 47 0.1328 2.58 of
750%* SWT 3966 957 77 2.99 of 47 0.1270 1.33 of
Test 2
TANH (X) vs. (TANH (X-1/8) *TANH(1/8))/ (1+TANH (X-1/8) *TANH(1/8))
in (0.6743, 17.33)
5000 Comparisons Maximum Rel. Error Root Mean
CPU Library gt eq 1t Bitloss At Bitloss
550 FTN 1103 2707 1190 1.69 of 23 0.7217 0.00 of
550 F77 1288 2316 1396 1.91 of 23 1.0990 0.00 of
550 SWT 1204 2324 1472 1.73 of 23 0.6974 0.00 of
750 FTN 1100 2704 1196 1.69 of 23 0.7217 0.00 of
750 F77 1281 2324 1395 1.91 of 23 1.0990 0.00 of
750 SWT 1198 2328 1474 1.73 of 23 0.6974 0.00 of
550%* F77 1846 2234 920 3.34 of 47 0.8543 0.86 of
550%* SWT 2676 2258 66 2.11 of 47 1.6430 0.62 of
750% F77 974 3464 562 2.26 of 47 0.7330 0.14 of
750%* SWT 1185 3442 373 1.76 of 47 1.3987 0.14 of

The above tests show that any of the three routines is
acceptable for wuse in single precision, but the error in the
double precision F77 routine in test 1 is rather large. The SWT
routine is once again the best.

Tests of special arguments indicate a definite problem in
the Prime single precision library routines when calculating
various identity operations such as TANH(-X) = -TANH(X). The
difference in calculated values is about 10E-6; the SWT routine
calculates no differences.

- 46 -

Sq.

23
23
23
23
23
23

47
47
47
47

Sqg.

23
23
23
23
23
23

47
47
47
47

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Conclusions

It appears as 1if the standard libraries under Primos have
been implemented without anything other than a cursory check of
accuracy. A number of the library routines return incorrect
results that are mathematically absurd. Other routines trigger
errors on values which should be well within range.

Although the single precision arithmetic is acceptable for
most calculations, the double precision floating point arithmetic
on Prime 400/550 machines (and possibly on the new 2250, as well)
is seriously flawed. Critical calculations should not be per-
formed on any of these machines since the error induced by
certain unstable operations can completely ruin the accuracy of
the results. Bizarre Dbehavior of programs which work on other
machines may also be noted due to some of the odd quirks in the
floating point structure. Users should run their own tests to
determine if their applications will be affected adversely by
these problems.

An increase 1in accuracy may very well be obtained in some
programs by recoding the standard functions. It has been shown
that the SWT Math Library significantly outperforms the standard
Prime libraries in virtually every instance; it is possible that
the encoding of different algorithms might also result in
increased precision.

This paper has also presented differences in the architec-
ture of the Prime 400/550 computer and the 750 which violate the
claim of strict upward compatibility of software. Programs which
directly access the register structure or make specific assump-—
tions about precision should be coded with these differences in
mind.

Floating Point SWT Math Guide

{1}

{2}

{3}

{4}

{5}

{6}

{7}

{8}

{9}

{10}

{11}

{12}

{13}

{14}

References

Dr. John Spitzer; private communication to Academic
Computing Center, State University College at Brockport,
NY, and reported to Prime Computer; 1978

Mark P. C. Legg; copies of TAR reports to Prime computer
dated 1980 to 1982 from The Flinders University of South
Australia; private communication; 1982

Harold Stone, editor; Introduction to Computer
Architecture, 2nd. Edition; Science Research Associates,
Inc; 1980

Andrew Tanenbaum; Structured Computer Organization;
Prentice-Hall; 1976

M. Sporer; Prime PE-T 4le, "P400 Instruction Times";
Prime Computer, Inc.; 1978

Mark P. C. Legg; untitled report contained in private
communication; Computer Centre of The Flinders University
of South Australia, Bedford Park; 1982

William J. Cody, Jr. and William Waite; Software Manual
for the Elementary Functions; Prentice-Hall; 1980

George S. Fishman and Louis R. Moore; A statistical
Evaluation of Multiplicative Congruential Random Number
Generators with Modulus 2 »~» 31 = 1; Journal of the
American Statistical Association, March 1982, Volume 77 #
377

Martha August; Prime PE-T 1025, "50 Series General
Architecture"; Prime Computer, Inc.; 1982

Anne P. Ladd; Subroutines Reference Guide; Doc 3621-190,
Revision 19.0; Prime Computer, Inc.; 1982

Ivars Peterson; "Can You Count on Your Computer"; Science
News, Vol. 122 #5; Jul 31, 1982

W. J. Cody; "Analysis of Proposals for the Floating-Point
Standard"; IEEE Computer, Volume 14 #3, March 1981

David Hough; "Applications of the Proposed IEEE 754
Standard for Floating-Point Arithmetic"; IEEE Computer,
Volume 14 #3, March 1981

Jerome T. Coonen; "Underflow and the Denormalized
Numbers"; IEEE Computer, Volume 14 #3, March 1981

Georgia Institute of Technology Technical Report GIT-ICS-83/09

{15} A Proposed Standard for Binary Floating-Point Arithmetic;
IEEE Computer, Volume 14 #3, March 1981

Floating Point SWT Math Guide

Appendix T

Where is the Exponent?

The following program is written in PMA (Prime Assembly
Language) and 1is intended to indicate where the exponent is
stored in the live register set of your machine. It can be
entered and run without the Software Tools Subsystem being
present on your system.

EXPTEST —--- SEE WHERE DOUBLE FLOATING EXPONENT IS LOCATED

Eugene Spafford

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

To assemble, load and run this test, copy lines 16 to 31
into a file named "exptest.cpl" and remove the "*" from
the first column of each line. Then type (in Primos):

cpl exptest

/* exptest.cpl --- assemble, load and run the exponent test
pma exptest.pma -1 yes -b yes

&data seg

vload exptest.seg
load exptest.bin
library

map 6

save

quit

&end

seg exptest.seg

% > b o o b 3k F X X o ot 3k 3k 3k X o o o ok 3k X X X X % 3 3k % X X %

&stop
SEG
SUBR MAIN
LINK
MAIN ECB START
PROC

Georgia Institute of Technology Technical Report GIT-ICS-83/09

START EQU *
DFLD =2.5D0
LDLR PB% + 713
BNE HIGH_HALF
CALL I0AS
AP LOWM, S
AP =99, SL
PRTN
HIGH_HALF EQU *
CALL I0AS
AP HIGHM, S
AP =99, SL
PRTN
LOWM BCI "Exponent is in the low half (2nd 16 bits) .%.’'
HIGHM BCI "Exponent is in the high half (1st 16 bits).%.’
END MAIN
SEG
DYNT I0AS
END

Floating Point SWT Math Guide

Appendix IT

A Program to Detect Bit Loss in Multiplication

The following program is written in Prime Fortran 66 (FTN)
and 1s intended to indicate whether multiplication on your
machine truncates or deletes bits in the mantissa of products of
double precision floating point quantities. It can be entered and
run without the Software Tools Subsystem being present on your
system.

CHECK_DFMP —--- SEE IF DOUBLE PRECISION MULTIPLY DROPS BITS

Eugene Spafford

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

To compile, load and run this test, copy lines 16 to 31
into a file named "check_dfmp.cpl" and remove the "C" from
the first column of each line. Then type (in Primos) :

cpl check_dfmp

/* check_dfmp.cpl —--- compile, load and run the test to check DFMP
ftn check_dfmp.ftn -1 yes -b yes —-64v —-dynm —-dclvar -prod

&data seg

vload check_dfmp.seg
load check_dfmp.bin
library

map 6

save

quit

&end

seg check_dfmp.seg

&stop

Qo000

INTEGER BITCNT

Q

DOUBLE PRECISION DA, DB,DC
INTEGER IDB(4),IDC(4)
EQUIVALENCE (IDB,DB), (IDC,DC)

Georgia Institute of Technology Technical Report GIT-ICS-83/09

C
C
C
C
10
20
30
C
C
40
50
60
C
C
C
C
70
80
90
100
C
C

INTEGER LOOP, COMPAR, LOSS, IX
DOUBLE PRECISION DCON (3)
DATA DCON /1.0D0,16.0D0,0.125D0/

IDB(1) = :77777
IDB(2) = :177777
IDB(4) = 128

DO 30 IX = 1,3
DA = DCON (IX)

IDB(3) = 0
DO 20 LOCP = 1,16
IDB(3) = IDB(3)*2+1

DC = DA*DB

DO 10 COMPAR = 1,3
IF (IDC(4-COMPAR) .EQ. IDB(4-COMPAR)) GO TO 10
PRINT 70, DA
PRINT 90, COMPAR, IDC (4-COMPAR), IDB (4-COMPAR)
LOSS = BITCNT (IDC (4-COMPAR) , IDB (4—COMPAR) , COMPAR)
PRINT 100, LOSS
GO TO 20

CONTINUE

CONTINUE
CONTINUE

DO 60 IX = 1,3
DA = DCON (IX)

IDB(3) = 0
DO 50 LOCP = 1,16
IDB(3) = IDB(3)*2+1

DC = DB/DA

DO 40 COMPAR = 1,3
IF (IDC(4-COMPAR) .EQ. IDB(4-COMPAR)) GO TO 40
PRINT 80, DA
PRINT 90, COMPAR, IDC (4-COMPAR), IDB (4-COMPAR)
LOSS = BITCNT (IDC (4-COMPAR) , IDB (4-COMPAR) , COMPAR)
PRINT 100, LOSS
GO TO 50

CONTINUE

CONTINUE
CONTINUE

CALL EXIT

FORMAT (’Loss of precision multiplying by ’,F10.6)
FORMAT (’'Loss of precision dividing by ’,F10.6)
FORMAT ('Word ’,I2,’” is ’,I6,’ and should be ’,16)
FORMAT (’Result is loss of ’,I3,’ bits out of 47.7//)
END

- 53 -

Floating Point SWT Math Guide

C BITCNT --- FIGURE LOSS OF BITS
C
INTEGER FUNCTION BITCNT (I, J, COMPAR)
C
INTEGER I,J,COMPAR
C
INTEGER COUNT,AND,MASK, RS
C
C
MASK = :100000
DO 20 COUNT = 1,16
IF (AND(MASK,I) .EQ. AND(MASK,J)) GO TO 10
BITCNT = (COMPAR-1)*16+17-COUNT
RETURN
10 CONTINUE
MASK = RS (MASK, 1)
20 CONTINUE
C
BITCNT = 0
RETURN
END

Georgia Institute of Technology Technical Report GIT-ICS-83

Appendix ITT

A Program to Calculate Prime Hexadecimal Constants

The following program is written in Fortran 77 and can
used to generate Prime PMA-style hexadecimal constants f
decimal inputs. The version included here was run on a Cyber

/09

be
rom
760

under NOS 2.0 to generate the constants used in the SWT Math

Library. To be used effectively, if vyou wuse this program

you

should run it on a machine with more precision than the Primes

provide.

MAKE_CONSTANT —--—- MAKE THE HEX CONSTANTS FOR THE LIBRARY

The following PROGRAM line is for FTIN5 on the Cyber 760

Qa0

PROGRAM MAKCON (INPUT,OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)

Q

DOUBLE PRECISION INP, HALF,TWO, ZERO, ONE

LOGICAL BITS(0:47)

INTEGER I, ISIGN,EXP,J

PARAMETER (ZERO=0.0D0O, TWO=2.0D0,HALF=0.5D0,ONE=1.0DO0)
EXTERNAL PUTHEX, PUTHX2

INTRINSIC DINT

DOUBLE PRECISION DINT

10 CONTINUE
READ (5,*,END=70) INP
IF (INP .NE. ZERO) THEN
ISIGN = 1
IF (INP .LT. ZERO) THEN
ISIGN = -1
INP = —INP
ENDIF

C START WITH 128 BIAS EXPONENT
EXP = 128
20 CONTINUE
IF (INP .LT. HALF) THEN
INP = INP*TWO
EXP = EXP-1
GO TO 20

ELSEIF (INP .GE. ONE) THEN
INP = INP/TWO
EXP = EXP+1
GO TO 20

ENDIF

Floating Point

ELSE
ISIGN = 1
EXP = 0
ENDIF
C
DO 30 I = 1,47
IF (DINT (INP*TWO) .GT. ZERO) THEN
BITS(I) = .TRUE.
INP = INP*TWO-ONE
C
ELSE
BITS(I) = .FALSE.
INP = INP*TWO
ENDIF
30 CONTINUE
C
IF (INP .GE. HALF) THEN
I = 47
40 CONTINUE
BITS(I) = .NOT.BITS(I)
I =1I-1
IF (.NOT. BITS(I+1l) .AND.
& I .GT. 0) THEN
GO TO 40
ELSE IF (.NOT. BITS(I+1)) THEN
BITS (1) = .TRUE.
EXP = EXP+1
ENDIF
ENDIF
C
C NOW GENERATE THE 2’S COMPLEMENT IF NEGATIVE
IF (ISIGN .LT. 0) THEN
I = 47
50 CONTINUE
I = I-1
IF (.NOT. BITS(I+1) .AND.
& I .GT. 0) GO TO 50
DO 60 J = 1,1
BITS(J) = .NOT.BITS (J)
60 CONTINUE
BITS(0) = .TRUE.
C
ELSE
BITS(0) = .FALSE.
ENDIF
C
CALL PUTHEX (BITS(0))
CALL PUTHEX (BITS(16))
CALL PUTHEX (BITS(32))
CALL PUTHX2 (EXP)
GO TO 10
C
C
70 CONTINUE
STOP
END

SWT Math Guide

Georgia Institute of Technology Technical Report GIT-ICS-83/09

C PUTHEX —--- PUT OUT A HEXADECIMAL VALUE
C
SUBROUTINE PUTHEX (BITARR)
c
LOGICAL BITARR(16)
C
INTEGER I,J,VAL
CHARACTER*16 DIGITS
CHARACTER*4 NUM
DATA DIGITS /’0123456789ABCDEF’' /
C
C
DO 20 I = 1,4
VAL = 0
DO 10 J = 1,4
VAL = VAL*2
IF (BITARR((I-1)*4+J)) THEN
VAL = VAL+1
ENDIF
10 CONTINUE
VAL = VAL+1
NUM(I:I) = DIGITS (VAL:VAL)
20 CONTINUE
C
WRITE (6,30) NUM
RETURN
C
30 FORMAT (A4)
END
C PUTHX2 —--- PUT OUT A HEXADECIMAL VALUE
c
SUBROUTINE PUTHX2 (EXP)
C
INTEGER EXP
C
INTEGER DIG, VAL, POWER2 (4),LOOP
LOGICAL ISNEG
CHARACTER*17 DIGITS
CHARACTER*4 NUM
DATA DIGITS /’0123456789ABCDEF0’ /
DATA POWER2 /4096,256,16,1/
C
c
VAL = EXP
IF (EXP .LT. 0) THEN
VAL = -EXP
ISNEG = .TRUE.
VAL = VAL-1
c
ELSE
ISNEG = .FALSE.
ENDIF
C

DO 10 LOOP = 1,4
DIG = VAL/POWER2 (LOOP)
VAL = VAL-DIG*POWER2 (LOOP)

Floating Point SWT Math Guide

IF (ISNEG) DIG

DIG = DIG+1

NUM (LOOP : LOOP) = DIGITS(DIG:DIG)
10 CONTINUE

15-DIG

WRITE (6,20) NUM
RETURN

20 FORMAT (A4/)
END

Georgia Institute of Technology Technical Report GIT-ICS-83/09

Appendix IV

Building The SWT Math Library Tests

In General

The tests provided along with the SWT Math 1library may be
recompiled and run on your machine to test your own routines or
verify the results presented in this report. The tests are
written in Fortran 77 and Fortran 66 with command files in Prime
CPL. Consult your system administrator to find where the tests
have been stored on disk; the default location is with the source
code to the SWT Math Library routines. The single precision tests
are 1n a separate directory from the double precision tests, but
the directions given below apply to both sets of tests.

You must have the Software Tools Subsystem and the F77
compiler to run the tests! You can recode the routines written in
F77 to either Ratfor or FTN, but be aware of the library that is
used when you choose this option!

Make sure that the SWT Math Library has been built and
installed in a directory where you can access it. Set a SWT
template in your account named "=mathlib=" and equal to the SWT
pathname to the library. The format to do this is:

template —a mathlib //<some path name here>/mathlib

Building the Support Routines

Attach to the directory containing the tests you wish to
build and run. Modify the "subs.f77" file, if necessary, to
change the 1library routines to be tested. The routines in the
"subs.f77" file which begin with the letter Z are the routines to
modify to invoke the correct library functions.

Next, you need to build the support routines. To do this,
simply run the SWT shell file "make_support". This will cause the
files "main.b" and "sublib" to be created in your account.

Next, edit the file "run_test.cpl" so that any necessary
local libraries get loaded along with the tests. Also include any
special commands that you might wish to execute as part of the
tests.

Running a Test
If you execute the SWT shell file "make" with the name of a

test to run (asin, atan, exp, log, power, sqgrt, sin, sinh, tan,

- 59 -

Floating Point SWT Math Guide

or tanh) the SWT shell files and associated Prime CPL files will
compile and load the appropriate test programs, execute them with
output captured to comoutput files, and then produce a file with
labelled results and a report generated by CMPF. The file created
will be named after +the test executed, with the string
".comparison" added to the end of the name. For example, if you
executed the command

make power
the file "power.comparison" would be created in your account.
If you wish to make further modifications to the test

software, examine the SWT shell files and CPL files to determine
what needs to be modified.

Georgia Institute of Technology Technical Report GIT-ICS-83/09

ADDENDUM

Arnold D. Robbins

August, 1984

Introduction

For Release 9 of the Software Tools Subsystem, in order that
there should only be one math library, the old, locally
supported, math library, "vswtml", has been merged with the new
library described in this report, "vswtmath". This addendum
describes these routines.

Deleted Functions

The functions dacos, dasin, dbexp, dbsgrt, dflot, and drand,
have all been deleted from "vswtml", since there are new routines
to take their places.

Remaining Routines

The following pages contain the Software Tools Reference
Manual entries for the remaining routines which have been added
to "vswtmath" from "vswtml".

Note that although the original "vswtmath" routines are
listed in Section 2 of the SWT Reference Manual, these routines
are listed in Section 4, even though they are all in one library.

gcd (4) —-—— determine greatest common divisor of two integers 07/20/84

Calling Information

long_int function gcd (x0, x1)
long_int x0, x1

Library: vswtmath (Subsystem mathematical library)

Function

’Gcd’ determines the greatest common divisor of the two long
integers specified as arguments. The function return is the
GCD (always positive).

Implementation
"' Ged’ is a straightforward implementation of Euclid’s
algorithm.

Bugs
Behavior with nonpositive arguments may be considered

irrational by some.

gcd (4) -1 - gcd (4)

invmod (4) —--- find inverse of an integer modulo another integer 07/20/84

Calling Information

long_int function invmod (x1, x0)
long_int x1, xO0

Library: vswtmath (Subsystem mathematical library)

Function

"Invmod’ 1is used to find the inverse of ’'x1’ in the ring of
integers modulo ’x0’. The function return is the inverse if
it could Dbe found, or ERR if ’x1’ and ’'x0’ are not
relatively prime.

Implementation

’Invmod’ uses a variant of Euclid’s greatest common divisor
algorithm.

Bugs

Rational behavior for nonpositive arguments has not been
established.

Locally supported.

invmod (4) -1 - invmod (4)

prime

Calli

(4) ——- retrieve the ’"i’th prime number 07/20/84

ng Information

long_int function prime (1)
long_int i

Library: vswtmath (Subsystem mathematical library)

ion

Funct

"Prime’ is used to retrieve a specified prime number. The
argument is the ordinal of the prime number desired. The
function return is the specified prime. For example, if ’i’
is 1, the function return is 2; if i’ is 3, the function
return is 5, etc.

"Prime’ wuses the table of prime numbers in the file
"=aux=/primes". This file contains the prime numbers up to
one million in long-integer binary format. If "=aux=/primes"
is unreadable or if i’ is less than one or greater than
78498, the function return is zero.

Implementation

The file "=aux=/primes" is opened for reading. The
read/write pointer for the file is then moved to the desired
location and the prime number read. The file is then closed.

Calls

Bugs

open, close, mapfd, Primos prwfs

Should probably raise cain if the prime numbers file is not
available, rather than meekly returning zero.

Locally supported.

prime (4) -1 - prime (4)

pwrmod (4) —-—— calculate an exponential modulo a given modulus 07/20/84

Calling Information

long_int function pwrmod (p, e, n)
long_int p, e, n

Library: vswtmath (Subsystem mathematical library)

Function

"Pwrmod’ is used to perform an integer exponentiation in the
ring of integers modulo a given modulus. The argument ’'p’ is
the base of the expression, e’ is the exponent, and 'n’ the
modulus. The function return is p**E (mod n).

Implementation

"Pwrmod’ examines the exponent a bit a time, squaring the
intermediate result accumulated so far and multiplying it by
the base whenever the selected bit is a 1. Each operation is
performed modulo 'n’, so that intermediate results don’t
become excessively large.

ee Also

invmod (4)

pwrmod (4) -1 - pwrmod (4)

set_copy (4) —--- make a copy of one set in another 07/20/84

Calling Information

subroutine set_copy (source, destination)
pointer source, destination

Library: vswtmath (Subsystem mathematical library)

Function

" Set_copy’ duplicates one set in another. For proper
operation, the source set should be larger than or
equivalent in size to the destination set. The source set is
not altered by the copy operation.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

"Set_copy’ uses the size field encoded in the first word of
each set to determine the number of words in the bit vector
to be copied. A simple loop implements the copy.

Bugs

Should handle sets of different sizes properly.

other set operations (’set_7?*’) (4)

set_copy (4) -1 - set_copy (4)

set_create (4) -—-- generate a new, initially empty set 07/20/84

Calling Information

pointer function set_create (set, size)
pointer set
integer size

Library: vswtmath (Subsystem mathematical library)

Function

"Set_create’ is used to create a Pascal-style bit vector
representation for a set of integers from 1 to ’size’. The
function return and the variable ’'set’ are set to the
address in dynamic storage of the newly-created set.

All set manipulation routines make use of dynamic storage,
which must be initialized Dbefore wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

’Set_create’ calls ’"dsget’ to obtain a contiguous array of
16-bit words that is large enough to represent a bit vector
with ’"size’ elements. The first word of this array is set to
"size’ for use by other set manipulation routines. A call to
"set_init’ then insures that the new set is empty.

Arguments Modified

set

Calls

dsget, set_init

other set routines (’set_7?*’) (4)

set_create (4) -1 - set_create (4)

set_delete (4) -—-- remove given element from a set 07/20/84

Calling Information

subroutine set_delete (element, set)
integer element
pointer set

Library: vswtmath (Subsystem mathematical library)

Function

"Set_delete’ is used to remove a given element from a set.
The first argument is the element (an integer between one
and the maximum set size, inclusive), and the second is the
set from which it is to be removed.

All set manipulation routines make use of dynamic storage,
which must be initialized Dbefore wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

The element selected is compared to the size field of the
set; if invalid, "set_delete’ prints an error message and
terminates the program. Otherwise, the position of the
element in the bit vector 1is calculated, and the bit is
reset by straightforward logical operations.

Calls

error

other set operations (’set_7?*’) (4)

set_delete (4) -1 - set_delete (4)

set_element (4) —-—— see if a given element is in a set 07/20/84

Calling Information

integer function set_element (element, set)
integer element
pointer set

Library: vswtmath (Subsystem mathematical library)

Function

’Set_element’ returns 1 if 'element’ is a member of the set
"set’, 0 otherwise. The argument ’'element’ must be an
integer from 1 to the maximum size of the set, inclusive.
The argument 'set’ must have been created beforehand with
’set_create’.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’'dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid wunique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

If 'element’ is not in the range of allowable set elements
for the given set, the program is terminated by a call to
"error’. Otherwise, the location of the element in the bit
vector is calculated, and the function returns the wvalue of
the bit at that position.

Calls

error

ee Also

other set routines (’"set_7?*’) (4)

set_element (4) -1 - set_element (4)

set_equal (4) —--- return TRUE if two sets contain the same members 07/20/84

Calling Information

logical function set_equal (setl, set2)
pointer setl, set2

Library: vswtmath (Subsystem mathematical library)

Function

’Set_equal’ determines if two sets contain the same members.
The sets need not be of equal length.

All set manipulation routines make use of dynamic storage,
which must be initialized Dbefore wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

’Set_equal’ makes two calls on 'set_subset’. The function
return is true if ’'setl’ is a subset of ’"set2’ and ’"set2’ is
a subset of ’'setl’, false otherwise.

Calls

set_subset

ee Also

other set routines (’"set_7?*’) (4)

set_equal (4) -1 - set_equal (4)

set_init (4) —-—- cause a set to be empty 07/20/84

Calling Information

subroutine set_init (set)
pointer set

Library: vswtmath (Subsystem mathematical library)

Function

’Set_init’ initializes a set <created by ’'set_create’. An
initialized set is empty, i.e. contains no members.

All set manipulation routines make use of dynamic storage,
which must Dbe initialized Dbefore wuse. See ’'dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unigque name conflicts with other routines, any Ratfor

program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

'Set_init’ simply clears all elements of the bit vector por-
tion of the data structure addressed by its first argument.

ee Also

other set routines (’"set_7?*’) (4)

set_init (4) -1 - set_init (4)

set_insert (4) —-—— place given element in a set 07/20/84

Calling Information

subroutine set_insert (element, set)
integer element
pointer set

Library: vswtmath (Subsystem mathematical library)

Function

"Set_insert’ is the primary means of placing a given element
in a set. 'Element’ must be an integer between one and the
maximum size of the set, inclusive; ’set’ must be a pointer
to a set data structure created by ’set_create’. If it is
within range, the given element is marked "present" in the
bit vector associated with the set.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

If the element is out of range, a call to ’'error’ is made to
inform the user and terminate the program. Otherwise, the
location of the element in the bit vector is determined and
a few logical operations are employed to set the selected
bit.

Calls

error

other set routines (’set_7?*’) (4)

set_insert (4) -1 - set_insert (4)

set_intersect (4) —-—— place intersection of two sets in a third

Calling Information

subroutine set_intersect (setl, set2, destination)
pointer setl, set2, destination

Library: vswtmath (Subsystem mathematical library)

Function

’Set_intersect’ determines the intersection of the sets
given as its first two arguments and places that intersec-
tion in the set specified by the third. For proper
operation, all three sets should be equal in size.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’'dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid wunique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

Does a word-by-word logical "and’ of the bit vectors for the
first two sets, placing the result in the third.

Bugs

Should be fixed to work with sets of differing lengths.

other set routines (’set_7?*’) (4)

set_intersect (4) -1 - set_intersect (4)

07/20/84

set_remove (4) —-—- remove a set that is no longer needed 07/20/84

Calling Information

subroutine set_remove (set)
pointer set

Library: vswtmath (Subsystem mathematical library)

Function

’Set_remove’ reclaims the dynamic storage space used by a

set data structure. It is the inverse of ’set_create’. To
prevent dynamic storage space from becoming irretrievably
lost, sets should always be removed by a call to

"set_remove’ when they are no longer needed.

All set manipulation routines make use of dynamic storage,
which must be initialized Dbefore wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

Calls ’"dsfree’ to throw away the storage space used by the
internal data structure.

Calls
dsfree

See Also
other set routines ("set_7?*") (4), dsinit (2), dsget (2),
dsfree (2)

set_remove (4) -1 - set_remove (4)

set_subset (4) —-—— return TRUE if setl is a subset of set2 07/20/84

Calling Information

logical function set_subset (setl, set2)
pointer setl, set2

Library: vswtmath (Subsystem mathematical library)

Function

’Set_subset’ returns the logical value ’.true.’ if and only
if its first argument points to a set that is a subset of or
equal to the set pointed to by its second argument. The sets
need not be of equal length.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor

program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

If one set is larger than the other, it is checked to make
sure that none of the higher-order elements is present. The
subset condition is then true if and only if every element
of ’setl’ 1s also an element of ’set2’, a statement which
can be checked a word at a time with the proper logical
operations.

Calls

set_element

other set routines (’"set_?*’') (4)

set_subset (4) -1 - set_subset (4)

set_subtract (4) —-—- place difference of two sets in a third 07/20/84

Calling Information

subroutine set_subtract (setl, set2, destination)
pointer setl, set2, destination

Library: vswtmath (Subsystem mathematical library)

Function

’Set_subtract’ performs the set subtraction operation, i.e.
places in the set ’destination’ those elements of ’setl’
that are not in ’set2’. For proper operation, all three sets
should be the same size.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid unique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

Since sets are represented as bit vectors, the subtraction
operation is performed by logically ’'and’ing the elements of
the first set with the negation of the elements of the
second set.

Should work with sets of differing sizes.

ee Also

other set routines (’"set_7?*’) (4)

set_subtract (4) -1 - set_subtract (4)

set_union (4) —-—-- place union of two sets in a third 07/20/84

Calling Information

subroutine set_union (setl, set2, destination)
pointer setl, set2, destination

Library: vswtmath (Subsystem mathematical library)

Function

’Set_union’ computes the union of ’'setl’ and ’'set2’, placing
the result in ’destination’. For proper operation, all three
sets should be the same size.

All set manipulation routines make use of dynamic storage,
which must be initialized before wuse. See ’'dsinit’ for
further information.

Note that all set manipulation routines have long names. To
avoid wunique name conflicts with other routines, any Ratfor
program using the set routines should include the following
statement:

include "=src=/lib/math/swtmlb_link.r.i"

Implementation

The set union is computed by logically ’or’ing the bit vec-—
tors associated with ’'setl’ and ’'set2’.

Bugs

Should work with sets of differing sizes.

ee Also

other set routines (’"set_7?*’) (4)

set_union (4) -1 - set_union (4)

	Title Page
	i
	ii
	Table of Contents
	iii
	iv
	v
	Introduction
	vi
	The Hardware
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	The SWT Math Library
	14
	15
	16
	17
	18
	19
	20
	21
	22
	Testing
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	Appendix I
	50
	51
	Appendix II
	52
	53
	54
	Appendix III
	55
	56
	57
	58
	Appendix IV
	59
	60
	Addendum
	61
	gcd(4)
	1
	invmod(4)
	1
	prime(4)
	1
	pwrmod(4)
	1
	set_copy(4)
	1
	set_create(4)
	1
	set_delete(4)
	1
	set_element(4)
	1
	set_equal(4)
	1
	set_init(4)
	1
	set_insert(4)
	1
	set_intersect(4)
	1
	set_remove(4)
	1
	set_subset(4)
	1
	set_subtract(4)
	1
	set_union(4)
	1

