Ring

The Software Tools Subsystem Network Utility
Version 1.0

Roy J. Mongiovi

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1983

TABLE OF CONTENTS

I8 % ol a0 Yo 5 ¥ ol 1o o L

Validationttt ittt ettt e ettt eeeeeeaaeeanaaaanaeanas
Ring ConNeCtionSs i ittt ittt teeeeeeeeeeeeeeeeneeananns
User ConnecCtions ...ttt ittt itineneeeeenennneeeeannnns

RiINg REQUESES vttt ittt ittt i teeeeeeeeeeeeeeeeeeanaaananss
Internal ReQUESLS .t ii ittt ittt ittt eeeneneeeeennnneenns
User RequUesStE s ittt ittt ittt ittt eneeneennennees

BROAD CAS T it ittt ittt ettt ittt
EXECUTE &ttt ittt ittt eteeeeeoneeeeeneeeneennennees
TERMINATE & ittt it ittt ittt ettt e e teeeeeeeeeeeananenas
I

Future

Requests ..ttt ittt i i it i i i e

PRIMENET ProblemsS ... iii ittt iinneeeeeeeeeeeeeeesoneeananss

Errors

Enhancement s ...ttt ittt it eeeeeeeeneeeeeansonennnss
D2 €51 €AY AV £
D €5 2
D5 2 2N 1

Bibliography ottt ittt e e e et et

Appendix

- 1iii -

a1 NN

0O JJJJJoo

10
10
10
10

11

12

Ring User’s Guide

Introduction

Ring 1is a distributed request server for the Software Tools
Subsystem which uses PRIMENET to communicate between nodes in a

distributed ring. It performs simple system functions such as
keeping the time of day synchronized on all the machines in the
ring, as well as accepting user requests for services. It

validates all requests it receives, which ensures that a devious
user cannot create his own Ring server and transmit invalid
requests to the other Ring processes.

One copy of the Ring process executes on each of the systems
in the ring. Each process establishes two wvirtual circuits (a
transmit and a receive circuit) with the next and previous
systems, where next and previous are defined by the system names
in lexically sorted order. As systems are brought up and down,
the ring dynamically reconstructs itself to maintain that

ordering. A user who wishes to make a request of the ring con-
nects to the Ring process on his own system and transmits his
request. That Ring process reformats the request and transmits

it around the ring where it is eventually seen and acted upon by
the Ring process to which it was addressed.

Ring User’s Guide

Validation

There are two distinct types of connection request valida-
tion performed by Ring. The first is the validation of virtual
circuits connecting each of the Ring processes in the ring, and
the second is the validation of a virtual circuit connection from
a user to the Ring process. These two types of wvalidation are
distinguished by the fact that ring connections are normally
between two systems, while user connections are restricted to the
same system (that is, a user is not allowed to connect to a Ring
process on another system).

Validation is made difficult by the fact that it is impos-
sible to determine the user name (or any other information) of
the process on the other end of a virtual circuit. Information
may be returned only for virtual circuits on the current system,
and even then only for known virtual circuits. As we shall see,
it is possible to find the user name of the process on the other
end of a circuit given certain restrictions. In fact, the entire
purpose of wuser validation is to determine the user name and
process id of the process on the other end of a virtual circuit.

Ring Connections

When a Ring process attempts to Dbreak into a previously
existing ring (i.e. when a system has been down and is being
brought up), and when a system that was in the ring has gone
down, the new connections must be validated before they are
accepted as coming from a Ring process. It would be very simple
if a wuser name (such as SYSTEM) could be checked, but as has
already been mentioned it is impossible to determine the user
name on the other end of a virtual circuit that is on another
system. The only piece of information that can be wused for
validation that is assured by the PRIMENET routines is the fact
that a port can be assigned by only one process. Using this
fact, together with the assumptions that the Ring process will be
started at boot time, will immediately assign its ports, and will
never relinquish those ports as long as the system is up, it is
possible to validate ring connections. Note that this assumes
that Ring will never fail on a hardware/software error, a rather
stringent requirement. Should Ring ever fail and wunassign the
validation port while the system is up, it would be possible for
another user process to assign that port and become the Ring
process for that system.

When a Ring process begins execution, the first thing it
does 1is assign three ports: a ring port, a validation port, and
a user port. These ports are never unassigned. It then
determines all system names, sorts them, and begins attempting to
connect to an already existing ring starting with the next system
(in the sorted list). Should it be the first Ring process, it
will eventually connect to itself and establish the initial
degenerate ring. Validation of that connection proceeds as fol-
lows:

Ring User’s Guide

When a Ring process detects a connection request to its ring
port, it accepts it provisionally and then attempts to validate
it.

1. The new Ring process makes a connection request.
The Ring process makes a connection request to the validation
port on the system from which the ring connection was received.

When that connection is accepted, it generates a random number
password and transmits it to the wvalidation circuit.

2. The validation password is transmitted.

If the ring connection is indeed valid, then the validation con-
nection is to the same process that issued the ring connection.
The password is then received and retransmitted to the ring cir-
cuit.

Ring User’s Guide

3. The response password is retransmitted.
The Ring process that is validating the connection receives that

password on the circuit that is being validated, compares it with
the password that was transmitted, and validates the circuit.

4. The new ring connections are established.

If the ring connection is from a pretender, then the validation
connection is to the actual Ring process on that system, the
pretender cannot receive the password, and the ring connection is
not validated.

| |<————mmm
| |
| G6r.A | > GT.B
| |
| | -———- password—-———>
| ____________
GT.B
5. The false Ring process cannot receive the password.

When the actual Ring process receives the password, it transmits
it through the already validated ring circuits, and when the

Ring User’s Guide

validating process receives it from that circuit (and not the
circuit being validated) it knows that the connection attempt is
not valid and clears the connection.

| | <-——-password--—---
| |
| o6r.a |- > GT.B
| |
| |~ >
| ____________
GT.B
6. The password is received from the existing ring.

User Connections

When a wuser connection is received, the Ring process must
determine the user name and process id of the process making the
connection request in order to ensure the wvalidity of any
requests that the process may make. It is not good enough to
have the wuser process transmit this information since that
process could easily fabricate it. The ability to identify the
user process hinges on the following ideas: it is possible to
determine the virtual circuit numbers of all allocated virtual
circuits open on a system, user connections must be from the same
system as the Ring process that they are connected to, and user
connections are accepted and identified one at a time.

To identify a user connection, the Ring process obtains a
list of all open virtual circuits on the current system. This
list is scanned to find all circuits that are to the wuser port,
which have been accepted, and which are not the process id of the

Ring process. The 1list of existing user connections is then
scanned, and the corresponding entries in the 1list of wvirtual
circuits are marked as known. Since user connections are accep-

ted one at a time, there will be exactly one virtual circuit that
was not marked as known, and that is the virtual circuit
corresponding to the newly accepted user connection. The user
name of that process is determined using a system call, and the
connection is added to the list of known virtual circuits.

Ring User’s Guide

Ring Requests

All operations performed Dby Ring are initiated by request
packets which are passed around the ring connections. Each pac-
ket has the same size and consists of two parts: a fixed
identification header, and a variable argument array. The header
consists of a flag that indicates whether the packet is a request
or a response, source and destination addresses, a count of the
number of Ring processes that have seen the packet, a process id
and unique identifier to indicate what process created the pac-—
ket, and the Ring request command/status words. The format of
the variable argument array depends of the value of the command
word in the packet header.

Ring requests are passed around the ring, from receive con-
nection to transmit connection, until they are received by the
system to which they are addressed or the number of Ring proces-
ses that have seen them is greater than the number of systems in
the ring. A packet destination with all bits set (-1) 1is
received by all Ring processes in the ring. When the request
packet 1s performed or destroyed, it is transformed into a
response packet which is transmitted to the system that created
the request.

Internal Requests

When a new ring is established, as well as when an existing
ring is changed because one or more systems have come up or gone
down, a special request packet is transmitted around the ring.
This packet, the INITIALIZE request, has two purposes. First, it
is used to count the number of Ring processes that are actually
in the ring. PRIMENET provides a status call which returns the
number of systems configured in the network, but they may not all
be running Ring. As the INITIALIZE packet goes around the ring,
each Ring process increments a counter in the packet. When the
request arrives back at the Ring process that created it, an
INITIALIZE response packet is created which contains the number

of systems that saw the original request. This response packet
is then wused by each Ring process to set the actual number of
systems in the ring. The second purpose of the INITIALIZE

request 1is to determine who 1is to set the time of day on all
systems initially. ©Normally, the time of day is set by the first

(in lexically sorted order) system that 1is running Ring.
However, should that system be the one that caused the ring to
change (i.e. it just entered the ring), it 1is assumed not to

know the correct time, and the next system which was in the ring
previously should set the time. As the INITIALIZE response 1is
transmitted around the ring, a state variable is transmitted
along with it. This wvariable starts as 0, when the system that
is supposed to set the time of day sees the packet, it sets the
state to 1 if it just entered the ring and does not know the time
of day, and 2 if it does know the time of day. If the state is
1, then the next system that does know the time of day sets the
state to 2 and then sets the time of day on all systems.

Ring User’s Guide

Each hour on the hour, the Ring process that 1is first in
lexically sorted order transmits the current time of day to all
other systems in the ring. Although this is not necessary for
orderly system operation, it does make sense for each processor
in a distributed system to have the same time of day.

User Requests

Currently, four kinds of user requests are implemented by
Ring: a BROADCAST request which allows a PRIMOS message to be
sent on all systems in the ring, an EXECUTE request which starts
up a SWT phantom on a particular system in the ring, a TERMINATE
request which allows one or all of the Ring processes to be stop-
ped and re-executed (so that a new version of the Ring process
may be brought up), and a SETTIME request that allows the time to
be reset on all systems in the ring.

To make a user request, a user process first connects to the
user port of the Ring process which is executing on its system.
When the connection has been accepted, the user transmits the
request and begins waiting for a response. When the Ring process
has received the request and checked its wvalidity, it transmits a
status code to indicate that the operation has been initiated or
that an error has been encountered back to the user process. The
user process receives this status code, and if it indicates that
the request has Dbeen initiated begins waiting for a completion
response. When the Ring request has been completed (successfully
or not), the Ring process will transmit a final status code to
the user process. The user process then examines the returned
status and clears the connection.

BROADCAST. The BROADCAST user request consists of three
parts: the BROADCAST request word, a three word user name of the
user who 1s to receive the message (zero if all users), and a
Software Tools string which is to be broadcast.

EXECUTE. The EXECUTE user request also consists of three
parts: the EXECUTE request word, a three word system name of the
system on which the phantom 1is to be executed (zero if all
systems), and a Software Tools string which is the command line
to be executed.

TERMINATE. The TERMINATE wuser request consists of two
parts: the TERMINATE request word, and a three word system name
of the system which is to be terminated (zero if all systems).
Because it is impossible to determine when a transmitted message
has been received, the TERMINATE request actually occurs in two
stages. After the user’s TERMINATE request has been processed
and the status response has been transmitted, an internal request
(SHUTDOWN) is transmitted around the ring. It is this request
which actually causes the selected Ring process(es) to terminate,
thus allowing time for the user process to receive its status.

SETTIME. The SETTIME user request consists of two parts:
the SETTIME request word, and a five word block which contains

Ring User’s Guide

the month, day, year, hour, and minute to which the current time
is to be set.

Future Requests

Ring 1is intended to handle simple requests by itself. A
simple request is defined as one which would require no more than
one request and response packet to perform. In the future, it is
envisioned that complex requests such as remote execution of com-—
mands and remote file handling will be performed by a helper
phantom which the Ring process will create and which will then be
connected directly to the requesting user. Ring can also be used
to moderate interprocess communication by allocating ports and
controlling access to those ports. This will allow two or more
user processes to communicate without requiring fixed port num-
bers which may be used by other user processes with which com-
munication is not desired.

The major drawback with this scheme of creating helper
phantoms is the relatively large amount of time required to
create a phantom. In fact, when PRIME itself decided to replace
the old FAM (the File Access Manager) with a new version which
uses SLAVES$ helper phantoms, it was necessary to special-case the
SLAVES phantoms so that they would start up more quickly.

PRIMENET Problems

During the development of Ring, only one significant error
was found, and that was in the PRIMENET documentation. However,
quite a bit of code in Ring is devoted to determining information
that should most likely be available directly from the PRIMENET
subroutines. Several enhancements to the existing routines come
easily to mind.

Errors

The only problem with PRIMENET that may be classified as an
error is in the documentation for the message transmission
subroutine XS$TRAN. The following information about the return
status codes (taken directly from the PRIMENET manual) is not
correct:

The codes that may be returned in status by a call to
X$TRAN appear below:

XSS$SCMP The transmit is complete. The message has
been copied out of the sender’s buffer and
transmission 1is initiated. (A transmit

status of complete means only that PRIMENET

Ring User’s Guide

will attempt to deliver the message.
Applications requiring assured delivery must
implement their own end to end ack-
nowledgement.)

XS$IP The transmit is in progress. status will be
further updated by the completion or failure
of the operation.

XS$BVC The calling process does not control the
virtual circuit specified in vcid.

XS$SMEM Temporary PRIMENET congestion prevents the
acceptance of the request at this time.

XSSMAX The maximum number of transmits simul-
taneously in progress over a single wvirtual
circuit has been exceeded. This request to
initiate another transmission is denied.

XSSRST The virtual circuit has Dbeen reset. The
status of this operation is unknown and no
further attempts will be made to complete it.

XSS$CLR The virtual circuit has been cleared. See
the wvirtual circuit status array for the
clearing cause.

XSS$ILL The transmit operation is illegal because a
circuit connection request or a clear request
is pending. This is the result of attempting
transmission over an "almost-open" or
"almost-closed" circuit.

The description of status codes XSCMP, XSSMEM, and XSS$SMAX
seems to indicate that once a transmit operation is in progress
it must either complete or return an error code. In fact, this
is not the case. If too many transmit requests have been issued
on a virtual circuit, the status code remains XS$IP until enough
receives have been performed to allow the transmit to take place.
In its example programs, the PRIMENET manual gives a subroutine
which is called after a transmit to wait wuntil the transmit
status is not "in progress". In ratfor, this subroutine is
essentially:

subroutine complete (status)
integer status

Ring User’s Guide

while (status == XSS$IP)
call x$wait (1)

return

end

The real difficulty with the documentation 1is with an
application 1like Ring, when only one system is in the ring. 1In
this case the ring is a loop back to that one system, and the

Ring process is talking to itself. If the wait loop given above
is used in this case, the Ring process will never receive any of
the transmissions that have Dbeen made, and space will never
become available for the new transmit. In other words, the

status will stay XS$IP forever.

Enhancements
XSGVVC. The PRIMENET subroutine call X$GVVC may be used to
pass control of a virtual circuit to another process. This would

be very useful to Ring when a complex user request requires that
a helper process Dbe phantomed, except for the fact that it can
only be used to pass a connection to another process on the same
system. To Dbe truly useful, it must be possible to pass a con-—
nection to any system.

X$STAT. The X$STAT PRIMENET subroutine can be used to
determine virtual circuit information about circuits only on the
current system. It would be extremely useful if it could return
information about circuits on any system. Then it could return
the system name and virtual circuit id of the other end of a con-
nection, and it would be possible to find the user name of the
owner of the other end of a virtual circuit easily.

XSTRAN. The X$TRAN subroutine call is documented as not
informing the transmitting process that the reception has Dbeen
completed. This 1is extremely annoying because it means that it

is impossible to transmit a response code to a user process, wait
until that process has received the code, and then clear the
virtual circuit. Saying that T"applications requiring assured
delivery must implement their own end-to-end acknowledgement" is
certainly the easy way out, but it leaves much to be desired.
More importantly, it assumes that the processes on both ends of a
circuit are intelligent enough to perform an end-to-end ack-
nowledgement. Ring cannot assume that the user process is going
to acknowledge that it has received the response since the wuser
program is not under its control. Neither can Ring allow a user
connection to remain long past the completion of the user request
if no acknowledgement takes place. Ring solves the problem by
keeping the time of day when the last activity on a circuit took
place, and clearing a circuit when it has been inactive for a
sufficiently long period of time.

Ring User’s Guide

Bibliography

PRIMENET Guide, DOC3710-190, Second Edition, by Peter
A. Neilson, Prime Computer, Incorporated, 500 O0ld Con-
necticut Path, Framingham, Massachusetts 01701.

Software Tools Subsystem User’s Guide, April 1982, by
T. Allen Akin, Terrell L. Countryman, Perry B. Flinn,
Daniel H. Forsyth, Jr., Jeanette T. Myers, and Peter N.
Wan, School of Information and Computer Science, Geor-—
gia Institute of Technology, Atlanta, Georgia 30332.

Ring User’s Guide

The following is a trace of Ring operating on
text which is boldfaced is commentary,

The
itself.

System GT.A

Ring is brought up on

Wednesday,

Attempting
Attempting
Attempting
Attempting
Attempting
Connection
Connection

April 6,

connection
connection
connection
connection
connection

1983

to
to
to
to
to

received from
received from

Appendix

GT.A

3:

GT.
GT.
GT.
GT.
GT.
GT.
GT.
Validated transmission to GT.A

53

i B @ A @ R vs)

Validated reception from GT.A
Degenerate ring initialized

The ring is initialized

GT.A receives a connection

Connection received from GT.B

New connection validated

Previous connection cleared

two

System GT.B

Ring is
Wednesday,
Attempting
Attempting

Attempting
Attempting

brought up on

April 6, 1983
connection to
connection to
connection to
connection to

systems.
not part of the trace

GT.B

3:54 PM

GT.C
GT.D
GT.E
GT.A

GT.B receives the validation
connection request

Connection received from GT.A
Validated transmission to GT.A

New connection validated

Ring User’s Guide

Validated reception from GT.B
Attempting connection to GT.B
GT.B receives a connection
Connection received from GT.A
GT.A receives a validation
connection request

Connection received from GT.B
Validated transmission to GT.B

New connection validated
New connection validated
INITIALIZE request created

Validated reception from GT.A
Transmitted INITIALIZE request

INITIALIZE request received

Created INITIALIZE response

Initial time set
Transmitted SYNCHRONIZE request at 15:55 on 04/06/83
Synchronized at 15:55 on 04/06/83

New ring is initialized

User issues a BROADCAST
Connection received from GT.B

Connection received from ROY (29)
User request made for ROY (29)

Roy is not logged on

*** Unknown addressee.
Message broadcast to user ROY

this is a test.
Message broadcast to user ROY

User issues EXECUTE on ALL

Ring User’s Guide

Phantom (58) created for user ROY

Time is set on the hour

Connection received from GT.B
Connection received from ROY (29)
User request made for ROY (29)

Phantom (63) created for user ROY

Transmitted SYNCHRONIZE request at 16:00 on 04/06/83

Phantom (59) created for user ROY

*** Unknown addressee.
Message broadcast to user ROY

*** Unknown addressee.
Message broadcast to user ROY

*** Unknown addressee.
Message broadcast to user ROY

14

Synchronized at 16:00 on 04/06/83

User issues EXECUTE on GT.A

Connection received from GT.B
Connection received from ROY (29)
User request made for ROY (29)

4 users issue BROADCASTs

Connection received from GT.B
Connection received from ROY (59)
Connection received from GT.B
Connection received from ROY (56)
Connection received from GT.B
Connection received from ROY (63)
User request made for ROY (59)

message 4
Message broadcast to user ROY
User request made for ROY (63)

message 2
Message broadcast to user ROY
User request made for ROY (56)

message 3
Message broadcast to user ROY
Connection received from GT.B

Ring User’s Guide

*** Unknown addressee.
Message broadcast to user ROY

TERMINATE request received

Ring SHUTDOWN initiated
Shutdown complete

15

Connection received from ROY (61)
User request made for ROY (61)

message 1

Message broadcast to user ROY
User issues TERMINATE

Connection received from GT.B

Connection received from ROY (29)
User request made for ROY (29)

User receives the response

TERMINATE request received
SHUTDOWN request transmitted

Ring SHUTDOWN initiated
Shutdown complete

	Title Page
	i
	ii
	Table of Contents
	iii
	Introduction
	1
	Validation
	2
	3
	4
	5
	Ring Requests
	6
	7
	PRIMENET Problems
	8
	9
	10
	Bibliography
	11
	Appendix
	12
	13
	14
	15

