A Re-Usable Code Generator
for Prime 50-Series Computers

User’s Guide

T. Allen Akin

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

March, 1983

TABLE OF CONTENTS

Forewordcceeee.

How to Use This Guide ...

Overviewccoeee..

Philosophy
Design Considerations

Implementation Approachesiiiiiiiiiiitennnnnenns

Structure

Input/Output Semantics ..
Input Structure
Output Structure

Code Generator Usage

Input Data Stream Formats

Stream 1 --- Entry Point Declarations

N

al

Stream 2 ——— Static Data Declarations/Definitions

Stream 3 —--- Procedure Definitionsc.c0 i

Primitive Data MOdEeSt iiiinnnenneeeesenenenenanesas

INT_MODE I i ittiiitti ittt iteeieeeieaeeeneeenaeenneenns
LONG_INT_MODE 2 ittt ittt i ttitttnnneneeeeeeeennnnaneens
UNS_MODE 3 it ittt ittt ittt ettt ettt eeneeenneennenns
LONG_UNS_MODE 4 ... ittt ittt ittt ieeneennennneennnnns
FLOAT _MODE 5 &ttt ittt ittt ittt tieeeennnnnneens
LONG FLOAT_MODE 6 & vttt i ittt itettenneenneenneennenns
STOWED_MODE 7 4t ittt ittt ettt eeieeeieaeeenneenaeenneenns

Operators Useful in the Static Data Stream

DECLARE_STAT_OP 11 ittt it ttininneeeeeeeennnnnaneens
DEFINE_STAT_OP 14 ..ttt ttiiinteeeeeieeeennnnnnnees

Operators Useful in the Procedure Definition Stream

PROC_DEFN_OP 50 it iiiiiiiiiitiiiitiittineeeneeennenns
PROC_DEFN_ARG_OP 49ttt iinninnnennnnnns

Operators Useful in Procedure Definitions

ADDAA_OP L ittt it ittt ittt ittt ittt
ADD_OP 2 ittt ittt ittt ettt e e e e
ANDAA OP B it ittt ittt ieeateeeeeeennnnneeeeeeeennnnns
AND _OP 4 ittt i i i i et e e i e e e
ASSIGN_OP 5 ittt ittt ittt
BREAK _OP 6 &ttt tiiiiiiiietttteeeennneaneeeeeeeennnnnneens
[)) =
CHECK_LOWER_OP 72 .. ittt ittt itnneenneenneenneennnnns
CHECK_RANGE_OP 70 ittt ittt tieenennnnnneens
CHECK_UPPER_OP 71 ..t iiiiiiittiitiiteetieennnnnnnnenns
COMPL_OP 8 ittt ittt ittt tieaeeeneenaeeeneennnnns

- 1iii -

10

10

11

11
11
11
11
11
11
12

13

13

13

15

15

16

17

CONST _OP O ittt ittt ittt ittt ittt ettt 24

CONVERT_OP 10 it iiiiiiiiii ittt tieeenneennennnnnns 24
DECLARE_STAT_OP 11 .. iiiitiiiiiitttttennennnnaneens 25
DEFAULT_OP 12 .. ittt ittt i titteiteeenneeneeenaeennenns 25
DEFINE_DYNM_OP 13 ...t iiiitiiitiniennennneennennnnnns 26
DEFINE_STAT_OP 14 ...ttt ittt tteenennnnnneens 27
DEREF_OP 15 ittt ittt ittt ittt eiteeenneennenns 27
DIVAA _OP 16 .+t iitiiiii ittt tietinneenneenneennnnns 28
N) 29
DO_LOOP_OP 18 ittt ittt ittt titeeinneeneeenaeennenns 29
0) 30
FIELD_OP 69 ittt ittt ttittttnnnneeeeeeeennnnnneens 30
FOR_LOOP_OP 20 & it itiii ittt ittt tiietineeeeaeenneennenns 31
[0) 33
GOTO_OP 22 ittt ittt ettt eaneeeeeeeennnnaneens 33
L 0) 34
IE _OP 24 it ittt et ittt ittt ittt 34
INDEX OP 20 ittt it iiitiititetettieeennnaneeeeeeeennnnas 35
INITIALIZER _OP 26 &t ittt ittt ittt ieneteneeeneeenneenns 36
LABEL_OP 27 i ittt ittt ittt teetteaeeaneenneennnnns 37
) 38
LSHIFTAA _OP 20 ittt ittt ittt ittt 38
LSHIFT_OP 30 ittt it ittt ieeneenneenneennnnns 39
I) 40
MODULE_OP 32 &ttt iii ittt ittt ttttttteeenneenneenneennnn 40
MULAA _OP 33 ittt titetieetieeneenneenseenaneenaneenaneennns 40
MUL_OP 34 i ittt ittt ittt eeeeennnaneeeeeennnnnnns 41
NEG _OP 35 ittt ittt i ettt ittt 42
NEXT_OP 36 &t ttieitneeeeneenneeneeenaseenneenaneenneennns 42
A) = R 42
NOT _OP 38 ittt ittt ittt ittt tetieneeeneeenneennennnns 43
NULL_OP 30 ittt ittt iettteteeaneeaneeneeenneennns 43
OBJECT_OP 40 &t viiiiiiititttteennnnnneeeeeeeennnnnneens 44
ORAA_OP 4l ittt it i ettt ittt ittt i 44
OR_OP 42 ittt ittt ittt ittt eennanns 45
POSTDEC_OP 43 .ttt iiiiit it ittt eeeeeennnnnneens 46
POSTINC_OP 44 ..ttt ittt it iiiitteeteeeeennnnnnnnns 46
PREDEC_OP 45 ...ttt tietennienneennennnnnns 47
PREINC_OP 46 &t viiiiiinttttteeennnneneeeeeeeennnnnnees 47
PROC_CALL_ARG_OP 47 ittt ittt ittt teeennnnnnnnanns 48
PROC_CALL_OP 48 ...ttt itiiiitttiiieienneenneennennnnnns 48
PROC_DEFN_ARG_OP 49ttt iiiiiiittttennennnnnneens 49
PROC_DEFN_OP 50 it iiiiiiiiiitiiietiitiiteeenaeennenns 50
REFTO_OP D5l ottt ittt it ittt tieeeeaaennennnenns 50
REMAA _OP 52 &ttt iiiiiiitttttteennnnaneeeeteeeennnnnneens 50
REM _OP 53 ittt ittt ittt ittt ettt eeanenns 51
RETURN_OP 54 ...ttt iitetinneenaeennennnnnns 52
RSHIFTAA _OP 55 ittt ittt ittt ettt nnnanaens 52
RSHIFT_OP 56 i iiiiiiiittiiteiteeiteeenneeneeenneennenns 53
SAND _OP 57 ittt ittt ittt ittt ittt 53
SELECT _OP 58 ittt ittt ittt eeeeennnnns 54
S 2 0) = 54
SOR_OP 60 .+ i iiiiii ittt ettt it tieeieaaeanennns 56

- iv -

SUBAA_OP 61 ittt ittt ittt ittt ittt neeienneenns 56

SUB_OP 02 ittt ittt ettt eenneneeesennnaseeesannnneeses 57
SIWITCH _OP B3 it ittt ittt et eeeeeeeeeeeeeaeeeeeaeaeaeaeas 57
UNDEFINE_DYNM OP 64 . ittt ittt teeeneeeeeeeeeneeneennees 59
WHILE _LOOP _OP 65 ittt ittt ettt eeeeeeeeoeeneenaeanas 60
XORAA_OP B0 4t e et et eeeeoeoeeeoeoeeeeaeaeaeaeaeaeaeaeans 60
KOR _OP 67 ittt ettt ittt eeeeeeeeeeeeeeoeeeeeeeeeeaeennees 61
ZERO_INITIALIZER_OP B8 ittt eteeeeeeeeoeeoeasoenanenns 61
Extended EXamPleEsS ..o vititeteeeneeeeeseneeeeesesaneeesanss 63
Basic VCG INPUL & it i ittt ittt ittt eeenaeesesesenenenanssas 63
L O T 63
IME Stream L i it ittt ittt teeeeeeeeeeeeeseeesennneenanss 63
IME STIXEaAmM 2 ittt it ittt tenneneeeseennenseeesannnsseses 64
IME SETream 3 i it ittt iteeeeeesoseeeesossasesessossaneses 64
PMA COQE t ittt ettt teeeeseeesoneeesesseaeeeseanseananas 65
Storage Allocationiiiiiiiiiiiiii i i i 67
[o Yo L 67
IME Stream LI it iiii ittt ittt eeeeeeeennaneeeeennnneeses 67
IME SETEamM 2 v it v vt i vteeeeeesaseeessossasessssossaneses 68
IME SEIrEaAm 3 ittt iii ittt teeeeseeeseeeeesesesenneneesesss 68
PMA COQE t i ittt ettt eneeseeeeeeenseseeeeanesseeseeananns 70
1S w8 a5 ¢ Y N o 3N 71
L o Yo 71
IME Stream 1 ...ttt eneeeeeeeeeesessanesessnssanases 71
IME STIXEAIM 2 4ttt ittt et e e eoeeeseeeseneneesesesennneeeasss 71
IME SEream 3 ittt ittt ittt eeneneeeseenneneeesennnneeses 71
PMA COQE 4ttt ittt et eeeeeesoseoeesessasesessassasenssss 73
Tree Print i i ittt ittt ittt ittt eeeeeeeseeeeesenenasssssenas 74
L O T 74
IME Stream LI i it iiit ittt teeeeeeeseeeeeseeeseneaananss 74
IME STIXEaAmM 2 ittt it ittt tenneneeeseennenseeesannnsseses 74
IME SETream 3 i it vt ittt eeeeeeeseeessossasessssassaneses 75
PMA COQE ittt ittt ittt teetoneeeeeeeeaseeesenseanennses 77

The 'Drift’ Compiler ...ttt ittt teeeeeeeeeeeeeeeeananns 79

The 'Drift’ LangUagettt inneneeeeeseseeenennnasssssenas 79
| @k Iy o s I o 79
Y 79
EXAMP LS ittt ittt ettt ettt eeeees ettt 81

The CompPiler ..ttt ittt ittt eeeeeeeeeeaneeeeeseeanenas 82
Global Variable Definitionsiiiiiiiiiiiiennnnn. 82
Parser SoUrCe COAE it ii ittt tneeeeeeesoneoeesansanenanss 83
Remainder of Compiler Source Codecuiieeeeeennnnns 89
Run-Time Support Routines Source Codeceueuunn.. 110

Intermediate Form Operator/Function Indexc0c0.. 112

ADDENDUM .. it ittt it ittt ettt seseoeneoeseoenenencncncnenncees 122

15 o il oY L 5 o e o o LN 122

Object Code Produced DireCtly ...t itenenenenaeesns 122

Shift Instructions ittt teeeeneeenenns 122

- vi -

Foreword

Although the School of Information and Computer Science has
operated Prime 400 and 550 computers for over four years, as yet
there has been no successful local attempt to produce a compiler
for them. The main reasons for this failure are the irregularity
of the architecture and existing system software, the complexity
of Prime’s standard object code format, and the lack of
documentation on matters of importance to compiler writers.

This paper discusses the design, implementation, and usage
of a re-usable code generator. This program can serve as a Ccom-—
mon "back-end" for a number of language translators, producing
64V-mode assembly language code suitable for execution on the
P400 and higher numbered processors in Prime’s "50" series.
Furthermore, it could be tailored to match specific front-ends,
when needs for special optimizations arise.

A preliminary version of the code generator is available for
general use.

How to Use This Guide

The first chapter of this Guide 1is the Overview. The
Overview is a brief summary of the design and construction of the
code generator. This chapter may be of general interest, but it
is not necessary to read it in order to learn to wuse the code
generator.

The Code Generator Usage chapter describes the location of
the code generator and its associated run-time support libraries,
as well as the Software Tools Subsystem commands necessary to
access them. Recommended procedure is to study this section,
then generate command language programs to do the low-level file
access operations.

Input Data Stream Formats gives a bird’s-eye view of the
formats of the three code generator input streams. This chapter
merits some study, although it is supplemented by the Extended
Examples.

The three operator definitions chapters (Operators Useful in
the Static Data Stream, Operators Useful in the Procedure
Definition Stream, Operators Useful in Procedure Definitions)
provide a detailed reference for the intermediate form operators
interpreted by the code generator. One or two readings through
this chapter are desirable; thereafter, it can be used as a
reference with the Operator/Function Index and the Table of
Contents used as entry points.

The Extended Examples are comprised of several short (but
complete) programs written in the language C. These examples
include the original C code, annotated versions of the three code
generator input streams, and an annotated 1listing of the code
generator’s assembly language output. The chapter should be
useful in learning how the various intermediate form operators
work together, and may be used as a reference when building a new
front end.

'Drift’ 1s a very small expression-based language whose
structure closely mimics the code generator’s internal world-
model. The ’Drift’” Compiler is a complete, working compiler
using the code generator as a back-end. It serves as an example
of one way to construct a front-end for the VCG.

For ease of reference, all the intermediate form operators

have been organized by subject in the Intermediate Form
Operator/Function Index. Typically, one would look up some func-—
tion (e.g., "subscripting") in the Index, find the name of the
appropriate intermediate form operator (e.g., INDEX_OP), then

look wup that operator in the table of contents to find its com-
plete description.

Overview

Philosophy

Design Considerations

The design of the code generator (hereinafter referred to as
VCG, for "V-mode Code Generator") was driven by a number of
considerations:

For experimental language translators, code generation
should be fast and straightforward. This is necessary both
for fast turnaround and ease of debugging in the development
stage, and for fast turnaround in typical educational
applications.

The VCG should insulate front-ends from details of storage
allocation and data format selection, as well as instruction
generation. This encourages inter-language compatibility at
the object code level, as well as providing a framework for
easily retargetable front-ends.

The intermediate form (IMF) that is processed by the VCG
should be simple to generate and display (for debugging
purposes) . Furthermore, it should not unduly restrict
extension for additional functionality or optimization.

The output object code should conform to Prime’s current
standards, and should include at least minimal provisions
for separate compilation and run-time debugging.

Implementation Approaches

After some time, consideration of the goals above led to the
following approaches to the implementation of the VCG:

The Dbasic IMF handled by both the front end and the VCG
should be a tree structure. A tree is easily generated from
the information available on the semantic stack during a
bottom-up parse, and can be generated directly without an
explicit stack during a top-down parse. A number of
operations like constant folding, reordering of operands of
commutative operators, and global context propagation are
readily performed on a tree structure. Furthermore, use of
a tree can eliminate the need for generation and tracking of
temporary variables in the front end.

The IMF operators should be close to the constructs used in
an algorithmic language of the level of, say, Pascal. This
permits straightforward translation of most algorithmic

languages, and provides enough additional context to sim-—
plify many optimization tasks. For example, the IMF resem-—
bles the program’s flow graph closely enough that simple
global register allocation can be performed without graph
reduction.

One of the basic functions of the VCG is the mapping of data
descriptions supplied by the front end into physical storage
layouts. The goal of complete machine data structure
independence in the front end cannot be met without com-
promising the code generator’s utility for languages that
allow storage layout specification (C and Ada are notable
examples) . Therefore, the IMF should contain descriptions
of data structures in terms of a small set of primitive data
modes that can easily be parameterized in front-end code.

Simple wvariables, structures, and arrays defined in the
front end must be converted to single or multiple instances
of the following basic machine data modes: 16-bit signed

integer, 16-bit unsigned integer, 32-bit signed integer, 32—
bit unsigned integer, 32-bit floating point, and 64-bit
floating point.

The IMF tree should be linearized and passed to the VCG as a
stream of data in prefix Polish notation. The linearized
form partly reflects the usual Software Tools methodology of
expressing even complex data transformations as "filters."
However, there are other advantages, particularly in storing
and interpreting the IMF for debugging. Prefix Polish was
chosen because it can be generated easily from the internal
representation of the tree, and because it minimizes the
amount of state information that must be explicitly
maintained by both the front end and the VCG in order to
output or input the IMF.

The final output of the VCG should be a stream of Prime
Macro Assembly Language source code. Although the time
required to assemble this source imposes a significant
penalty on code generator performance, it appears to be
unavoidable if the compiler writer is to be insulated from
Prime’s object code format. (In addition, Prime has
scheduled object code format changes, and it would not be
wise to invest heavily in the present format.)

Structure

The VCG "main loop" simply reads each module present on its
input, rebuilds the tree represented by the input, transforms the
tree to a linked list of machine instructions, performs register
tracking optimizations on that 1list, and finally converts the
list to assembly language and outputs it.

The input and output routines are straightforward and
relatively uninteresting.

The optimization routines amount to about 13 pages of Ratfor
code, and work by simulating the effect of each machine instruc-
tion on the contents of the six registers that are tracked. At
the moment, three types of optimization are performed: redundant
loads are eliminated, some memory references are eliminated in
favor of register-to-register transfers, and general instruction
sequences are replaced with special-case code.

The heart of the code generator is the set of transformation
routines that convert the tree representation to the doubly-
linked list of machine instructions. The transformation routines
exhibit a great deal of knowledge about the machine architecture,
but actually employ only very simple algorithms for code
generation.

IMF operators may appear 1in one of several "contexts,"
identified internally by the following terms:

Reach. An operator evaluated in reach context yields the
address of a word in memory containing the result of the
operation, if ©possible. At present, only the object,
constant, pointer dereferencing, array indexing, and struc-—
ture member selection operators yield addresses. All other
operators behave as if they were evaluated in "load"
context.

Load. An operator evaluated in load context yields a value
in a machine register. The particular register used depends
only on the basic machine data mode of the operation. Most
IMF operators are evaluated only in this context.

Void. An operator evaluated in void context vyields side
effects only. In a very few cases, this results in an
opportunity to exploit special-case machine instructions
that perform some calculation without making the result
available in a register (incrementing a memory location, for
example) .

Flow. An operator evaluated in flow context yields a change
in flow-of-control rather than a wvalue. For example, a
"test for equality" operator would return 1 or 0 in a load
context, but in flow context would cause a jump to a given
label depending on the outcome of the test.

AP. An operator evaluated in AP context yields an "argument
pointer" rather than a value. Argument pointers are used to
pass parameters to procedures.

Context information 1s propagated top-down by the code
generator as it scans the IMF tree. Additional information in
the form of register requirements is propagated from the bottom
up during the same scan. Together, context and register wusage
determine with fair accuracy the optimal code sequence to be
generated for a given operator.

Input/Output Semantics

Input Structure

The IMF passed to the VCG consists of a sequence of modules.
A module is a sequence of procedure definitions, static data
definitions, and entry point declarations. The static data
definitions build a data area that is shared by all procedures in
the module, while the procedure definitions build code and data
areas that are strictly local to each procedure, and the entry
point declarations make the static data area or procedures
visible to Prime’s link editor.

Prime’s Fortran compilers currently generate code that is
equivalent to one procedure per module under this scheme; Prime’s
PL/I and Pascal compilers generate code that is equivalent to a
single IMF module. The VCG module structure permits com-—
patibility with either of these alternatives, as well as com-—
promise forms that are more suitable for other languages.

Note: Separate compilation capability directly affects
module structure. At present, there 1is no way for
separately compiled procedures to share a static data
area. Furthermore, separately-compiled static objects
must be referenced by a unique 8 or fewer character
name made visible to the 1loader. A Fortran COMMON
block definition can be used to reduce the number of
such external symbols, but COMMON definitions must
match exactly in all separately-maintained modules. In
addition, note that Prime’s current loader software
requires that external objects be referenced through an
indirect address, which can cause a significant reduc-
tion in performance.

Each static data definition allocates space for an object
and may specify an initial value for the object. A static data
declaration names an object that is defined outside the current
module, but provides no other information about the object.

Each procedure definition consists of information associated
with a closed routine defined by the front end. In particular,
the procedure’s argument types and code tree are included.

The bulk of the IMF will be in subtrees defining the code
associated with procedures. Most storage allocators, arithmetic
operators, and flow controllers are straightforwardly expressed
in tree form; a description of these IMF components is available
elsewhere.

Output Structure

Each VCG input module generates a single PMA input module,
terminated by an END pseudo-op. The PMA input module may be

assembled, link-edited, and subsequently executed. The
concatenation of all static data definitions and declarations
forms a link frame that is shared by all procedures in the
module. Each procedure definition yields an entry control block
(ECB) and a chunk of machine code that implements the function of
the procedure, including the allocation of space in the
procedure’s stack frame for local variables.

Code Generator Usage

The code generator currently resides in the file =bin=/vcg.
The three input streams can be read from the three standard
inputs, or from three files (if a standard naming convention is
used). The PMA output stream is produced on standard output 1,
and should be redirected to a file for assembly.

Assume temporary files will be used for communications between
the front end and the code generator. The temporary files must
have names of the form "xxx.ctl" (for IMF stream 1), "xxx.ct2"
(for IMF stream 2), and "xxx.ct3" (for IMF stream 3), where "xxx"
is completely arbitrary but must be the same for all of the three
temporary files in a given run. When the code generator is
invoked, the string "xxx" must be passed to it as a command line
argument.

To use the code generator, first run the front end to produce the
temporary files:

front_end
Say, for example, this produces files "temp.ctl", "temp.ct2", and
"temp.ct3". Next, run the code generator and produce the assem-—
bly language output:

vcg temp >temp.s

Run the assembler to convert the PMA source to relocatable binary
code:

pmac temp.s

Finally, run the 1link editor to load the VCG main program, the
binary code for your program, and all required library routines:

1d =lib=/vcg_main temp.b =lib=/vcglib -o program

This produces an object program (in the file "program") which may
be executed simply by typing its name:

program

All run-time support routines called by the output of the
code generator are available in the library =lib=/vcglib. The
stub main program in =lib=/vcg_main calls a procedure named MAIN;
therefore, the user’s main program must be named MAIN. (This 1is
the usual case in C environments.)

One miscellaneous note: if the front end is being written
in Ratfor, the complete set of macro definitions for the
intermediate form operators can be obtained by simply including

the file "=incl=/vcg_defs.r.i". If the front end is being writ-
ten in Pascal, the complete set of constant definitions for the

intermediate form operators can be obtained by including the file
"=incl=/vcg_defs.p.i".

Input Data Stream Formats

This section describes the formats of the three code
generator input streams. Note that all three have the same basic
format:

32 MODULE_OP

59 SEQ_OP | Repeat for | Repeat for each
Item of information _| each item | module

39 NULL_OP |

39 NULL_OP Stream termination

Detailed examples of the code generator input can be found in the
"Extended Examples" section of this guide.

Stream 1 —-—— Entry Point Declarations

The first intermediate form stream consists of one or more
modules. Each module consists of a MODULE_OP, a list of entry
point declarations separated by SEQ_OPs, and a NULL_OP terminat-
ing the list of entry point declarations. The list of modules 1is
terminated by a final NULL_OP.

Each entry point declaration 1is an object identification
number followed by a character string, expressed as the length of
the string followed by the ASCII character codes for the charac-
ters in the string. Each such string is assumed to be the name
of a location defined in the current input module, and is made
available to the link editor for resolving references made by
other modules.

A template for stream 1 would look something like this:

32 MODULE_OP N
- |
59 SEQ_OP | Repeat for each | Repeat for each
Entry object id | entry point | module
Entry point name _| |
|
|

39 NULL_OP

39 NULL_OP Terminate stream

Stream 2 ——— Static Data Declarations/Definitions

In C terminology, a data "definition" reserves storage space
for an object and possibly initializes that space, whereas a data
"declaration" simply indicates that the storage space for an
object resides outside the current module. The second
intermediate form input stream defines or declares static data
(objects that are not automatically allocated on the stack when a
procedure is entered).

The input stream consists of a series of modules, terminated
by a NULL_OP. Each module contains a sequence of DEFINE STAT OPs
and DECLARE STAT OPs, terminated by a NULL_OP.

A template for the static data stream would look something
like this:
32 MODULE_OP |
59 SEQ_OP | Repeat for | Repeat for
14/11 DEFINE/DECLARE_STAT_OP | each defn/decl | each module
with associated info _| |

39 NULL_OP

39 NULL_OP Terminate stream

Stream 3 —--- Procedure Definitions

The third intermediate form input stream consists of one or
more modules, terminated by a NULL_OP. Each module contains a
list of PROC DEFN OPs, separated by SEQ_OPs and terminated with a
NULL_OP.

Each PROC_DEFN_OP causes a procedure to be defined and code
for it to be generated.

A template for stream 3 would look something like this:

32 MODULE_OP O
_ |
59 SEQ_OP | Repeat for | Repeat for
50 PROC_DEFN_OP | each procedure | each module
with associated info _| |
|
|

39 NULL_OP

39 NULL_OP Terminate stream

Primitive Data Modes

The following primitive data modes are presently handled by
the code generator:

INT_MODE 1
Integer objects are one 16-bit word in size. They have integral
values in the range (-2**15) to (2**15 - 1), inclusive.

LONG_INT_MODE 2

Long integer objects are two 16-bit words in size. They have
integral values in the range (-2**31) to (2**31 - 1), inclusive.

UNS_MODE 3

Unsigned objects are nominally one 16-bit word in size. They
have integral values in the range 0 to (2**16 - 1). Bit fields
(see FIELD_OP) can be of mode UNSIGNED, and may range from 1 bit
to 16 bits in length (with consequent change in the range of
values they can represent).

LONG_UNS_MODE 4

Long unsigned objects are nominally two 16-bit words in size.
They have integral values in the range 0 to (2**32 - 1). Machine
addresses (pointers) are represented as long unsigned quantities.
Bit fields (see FIELD_OP) can be of mode LONG UNSIGNED, and may

range from 1 bit to 32 bits in length (with consequent change in
the range of values they can represent).

FLOAT_MODE 5

Floating point objects are two 16-bit words in size.

LONG FLOAT_MODE 6

Long floating point objects are four 16-bit words in size.

STOWED_MODE 7

STOWED mode is the mode assigned to structured objects 1like
arrays and structs (Pascal "records"). STOWED objects may be any
size from 1 to 65536 16-bit words; IMF operators that need to
know the size of a STOWED object invariably have a "length" or
"size" parameter to carry that information.

Operators Useful in the Static Data Stream

DECLARE_STAT_OP 11

int 11
int object_id
string external_name

DECLARE_STAT informs the code generator that an object defined
outside the current module will be referenced by a given integer
object id. The parameter ’'external_name’ is a character string,
represented in the IMF by a length followed by a stream of ASCII
characters (one per word, right justified, zero filled). The
external name is used by the 1link editor and the 1loader to
resolve actual references to the object.

Example: extern int abc
where "abc’ is assigned the object id 6

11 DECLARE_STAT_OP

6 Object id of ’abc’

3 Length of name ’abc’
225 character 'a’

226 character ’'b’

227 character ’'c’

DEFINE_STAT OP 14

int 14

int object_id
tree init_1list
int size

This operator causes storage for the object identified by

"object_id’ to be allocated in the current 1link frame (static
data area) . "Object_id’ must be wused in all subsequent
references to the object, and the object’s definition with

DEFINE_STAT must precede all such references. The init_list is a
list of initializers whose values will be assigned to successive

portions of the newly-declared object. The size parameter
specifies the amount of storage to be reserved for the object, in
words. (Slightly fewer than 65,535 words are available for

static storage in each module.)

Example: static int abc[100]
where abc is assigned the object id 6

14 DEFINE_STAT_OP
6 Object id for ’abc’
39 NULL_OP (no initializers present)

- 13 -

100 Object is 100 words long

Operators Useful in the Procedure Definition Stream

PROC_DEFN_OP 50

int 50

int object_id

int number_of_args
string proc_name
tree argument_list
tree code

Each procedure to be generated by the code generator is defined
by a PROC_DEFN_OP. The ’object_id’ is an integer identifier that
must be used on calls to the procedure and other references to
its entry control block (for example, pointers to functions as
used in C). "Number_of_args’ should be self-explanatory.
"Proc_name’ is a string (in the IMF, a length followed by ASCII
character values) giving the internal name of the procedure.
(This information is wused to print trace information during
debugging.) Each formal parameter (argument) is described by a
PROC_DEFN_ARG_OP; ’'argument_list’ is simply a linked 1list of
those descriptions. "Code’ 1s a subtree containing the body of
the procedure: local variable definitions and expressions to be
evaluated.

Example: the following C function

main (argc, argv)
int argc;
char **argv;

{

int i;
i = 4;
}
50 PROC_DEFN_OP
1 Procedure is object number 1
2 Procedure has 2 arguments
4 Procedure name is 4 characters long
237 m
225 a
233 i
238 n
49 PROC_DEFN_ARG_OP
2 Argument is object number 2
1 INT_MODE

VAL_DISP; pass argument by value
Argument is 1 word long

9 PROC_DEFN_ARG_OP
Argument is object number 3
LONG_UNS_MODE (a pointer)
REF_DISP; pass argument by reference
Argument is 2 words long

NE & WwsRPFPO

- 15 -

39 NULL_OP; end of argument description list

59 SEQ_OP; beginning of procedure code
13 DEFINE_DYNM_OP

4 Object id is 4

39 NULL_OP; no initializers

1 Object is 1 word long

59 SEQ_OP; procedure code continues
5 ASSIGN_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

4 Object id is 4

9 CONST_OP

1 INT_MODE

1 Constant is 1 word long
4 Constant has value 4

1 Assignment transfers 1 word
39 NULL_OP; end of procedure code

PROC_DEFN_ARG_OP 49

int 49

int object_id

int mode

int disposition
int length

tree next_argument

Formal parameters to procedures are described by this operator.
The ’'object_id’ is an integer identifier that must be supplied on
subsequent references to the parameter (see OBJECT_OP). The
"mode’ is the machine data type of the parameter. ’Disposition’
indicates how the argument is to be treated on the call; the two
alternatives at the moment are 0 (VALUE_DISP) for pass-by-value
(aka copy in) and 1 (REF_DISP) for pass-by-reference. ’Length’
gives the size of the argument in 16-bit words; it is primarily
necessary for handling of STOWED arguments that are passed by
value. "Next_argument’ is simply a link to the next
PROC_DEFN_ARG_OP in a procedure’s argument descriptor list, or a
NULL_OP.

See PROC_DEFN_OP for examples of PROC_DEFN_ARG_OP.

Operators Useful in Procedure Definitions

ADDAA OP 1

int 1

int mode
tree left
tree right

The result of this operator is an rvalue, the sum of the wvalues
of the left and right operands. As a side effect, the sum is
stored back into the left operand. The left operand must be an
lvalue or a bit field (see FIELD_OP). Both operands must have
the same mode as the ADDAA operation. The operation mode may not
be STOWED.

ADDAA stands for "add and assign." This operator is normally
used to implement the addition assignment operator ("+=" in C,
"+:=" in Algol 68).
Example: 1 += 1 (where i is an integer object with object id 12)

1 ADDAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id 12

9 CONST_OP

1 INT_MODE

1 length is 1 word

1 value of first word is 1

ADD_OP 2

int 2

int mode
tree left
tree right

The result of this operator is an rvalue, the sum of the wvalues
of the left and right operands. Both operands must have the same
mode as the ADD, and STOWED mode is not allowed.

ADD is used to implement simple addition of fixed or floating
point values.

Example: 1 + 1 (where i1 is an integer object with object id 12)
2 ADD_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE

12 Object id 12
9 CONST_OP
1 INT_MODE
1 length is 1 word
1 value of first word is 1
ANDAA_OP 3
int 3
int mode
tree left

tree right

The result of this operator is an rvalue, the bitwise logical
"and" of the values of the left and right operands. As a side
effect, the conjunction is stored back into the left operand.
The left operand must be an lvalue or a bit field (see FIELD_OP).
Both operands must have the same mode as the ANDAA operation; the
only allowable modes are INT, UNSIGNED, LONG INT, and LONG
UNSIGNED.

ANDAA stands for "’and’ and assign." ANDAA_OP 1is used to
implement the logical-and assignment operator ("&=" in C).
Example: 1 &= 1 (where i is an integer object with object id 12)

3 ANDAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id 12

9 CONST_OP

1 INT_MODE

1 length is 1 word

1 value of first word is 1

AND_OP 4

int 4

int mode
tree left
tree right

The result of this operator is an rvalue, the bitwise logical-
"and" of the values of the left and right operands. Both
operands must have the same mode as the AND operation; the only
allowable modes are INT, LONG INT, UNSIGNED, and LONG UNSIGNED.

AND_OP is normally used to implement the bitwise logical conjunc-

tion of integers ("&" din C). Although AND_OP can be used to
implement conjunction in Boolean expressions, the short-circuit

- 18 -

conjunction operator (SAND_OP) is probably a better choice, since
it guarantees evaluation order and prevents undesirable side
effects.

Example: 1 & 1 (where i is an integer object with object id 12)
AND_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id 12
CONST_OP
INT_MODE
length is 1 word
value of first word is 1

o

RFR R OR RS RS
)

ASSIGN_OP 5

int 5

int mode
tree left
tree right
int length

The result of this operator is an rvalue, namely the value of the
right operand. As a side effect, the result is stored into the
left operand. The left operand must be an lvalue or a bit field
(see FIELD_OP). Both operands must have the same mode as the
ASSIGN operation. Any mode 1is allowable, but the parameter
"length’ must be set to the operand length, in 16-bit words.

ASSIGN implements the semantics of assignment statements in most
algorithmic languages. Note that STOWED mode values are allowed,
so things like Pascal record assignment can be handled.

Example: 1 = 1 (where i is an integer object with object id 12)
5 ASSIGN_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 length is 1 word
1 value of first word is 1
1 length of assigned quantity is 1 word

BREAK_OP 6

int 6
int levels

BREAK_OP vyields no result value, but causes an exit from one or
more enclosing loops or multiway-branch ("switch," in C
terminology; "case" in Pascal) statements. The operand ’levels’
is an integer giving the number of nested loops and multiway
branches to terminate. Obviously, ’levels’ must be between 1 and
the number of nested 1loops and multiway Dbranch statements
currently active, inclusive.

BREAK is mainly intended to implement premature loop exits.
Because of (inadequate) historical reasons, a BREAK is also
required to force control out of a multiway-branch alternative to
the end of the statement. Thus, in implementing a Pascal-style
case statement with the SWITCH_OP described below, each alter-
native would end with a BREAK_OP with ’levels’ equal to 1. If
the BREAK_OP was missing, control would fall through from case to
case, as it does in C.

Example: break 2 (terminate 2 enclosing loops)
6 BREAK_OP
2 Levels to break
CASE_OP 7
int 7

tree value
tree actions
tree next_case

CASE 1is wused to 1label an alternative 1in a multiway branch
statement (like ’'switch’ in C or ’'case’ in Pascal). The 'value’
parameter is the case label value for the alternative; it must be
a CONST_OP node of the same mode as the switch expression (see
SWITCH_OP) . The mode may not be STOWED. The ’'actions’ parameter
is the code to be executed for the given case label. The
"next_case’ operand 1is a DEFAULT_OP or another CASE_OP or a
NULL_OP (for the last alternative in the multiway-branch).

CASE_OP is simply a structural device; it organizes the alter-—
natives in a multiway-branch so that variable-sized SWITCH
operators are not necessary.

Example: case 10: i += 1 (i is an integer with object id 12)
CASE_OP
CONST_OP
INT_MODE
length is 1 word
value of first word is 10
ADDAA_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id 12
CONST_OP

o

o

OR P AR RERERRREO-J
)

INT_MODE
length is 1 word
value of first word is 1
or 12 or 39 CASE_OP or DEFAULT_OP or NULL_OP,
depending on next element of SWITCH

CHECK_LOWER_OP 72

int 72

int mode

tree expression

tree lower_bound

int source_line_number

The result of this operator is an rvalue, the wvalue of the

parameter ’‘expression’. The expression must have the mode given
by the parameter ’'mode’, and may not be FLOAT, LONG_FLOAT, or
STOWED. If at run time the value of the expression is less than

the value of the expression given by the parameter ’lower_bound’,
an error message 1s printed and a RANGE_ERROR exception raised.
The parameter 'source_line_number’ is printed as part of the
error message, and is identified as the number of the source code
line that caused the range check to be generated.

This operator would normally be used in a situation that permit-
ted optimized range checking, 1like assignment of one integer
subrange variable to another.

Example: wvar i: 0..100; j: 1..100; begin ...; j :=1i; ... end
(where i has object id 12 and j has object id 13,
and the code above appears on line 14)

5 ASSIGN_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

13 Object id for j

72 CHECK_LOWER_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id for i

9 CONST_OP

1 INT_MODE

1 Length is 1 word

1 Value is 1

14 Line number in source code
1 Length of assigned quantity is 1 word

CHECK_RANGE_OP 70

int 70

int mode

tree expression

tree lower_bound

tree upper_bound

int source_line_number

The result of this operator 1is an rvalue, the value of the

parameter ’‘expression’. The expression must have the mode given
by the parameter 'mode’, and may not be FLOAT, LONG_FLOAT, or
STOWED. If at run time the value of the expression is less than

the value of the expression given by the parameter 'lower_bound’
or greater than the wvalue of the expression given by the
parameter 'upper_bound’ an error message 1is printed and a
RANGE_ERROR exception raised. The parameter ’source_line_number’
is printed as part of the error message, and is identified as the
number of the source code line that caused the range check to be
generated.

This operator would normally be used where a complete range check
was necessary (an array subscripted by an unconstrained integer
variable, for example).

Example: var a: array 1..10 of integer; i: integer; ...a[i]...
where "a’ has object id 4, ’i’ has id 12,
and the subscripting operation appears on line 97
of the source code:

25 INDEX_OP

1 INT_MODE (element type of a)

40 OBJECT_OP; this is the base address of "a’
7 STOWED_MODE

4 Object id of ’a’

70 CHECK_RANGE_OP; this is the index expression
1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id of ’i’

9 CONST_OP; this is the lower bound

1 INT_MODE

1 Length of constant is 1 word

1 Value of constant is 1

9 CONST_OP; this is the upper bound

1 INT_MODE

1 Length of constant is 1 word

10 Value of constant is 10

97 Range check is on line 97

1 Array element size is 1 word

CHECK_UPPER_OP 71

int 71

int mode

tree expression

tree upper_bound

int source_line_number

The result of this operator 1is an rvalue, the value of the

parameter ’'expression’. The expression must have the mode given
by the parameter 'mode’, and may not be FLOAT, LONG_FLOAT, or
STOWED. TIf at run time the value of the expression 1is greater

than the value of the expression given by the parameter
"upper_bound’, an error message 1s printed and a RANGE_ERROR
exception raised. The parameter ’source_line_number’ is printed
as part of the error message, and is identified as the number of
the source code line that caused the range check to be generated.

Like CHECK_LOWER, this operator is normally used in situations
that permit optimized range checks.

Example: wvar i: 1..100; j: 1..10; begin ...; j :=1i; ... end
(where i has object id 12 and j has object id 13,
and the code above appears on line 14)

5 ASSIGN_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

13 Object id for Jj

71 CHECK_UPPER_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id for i

9 CONST_OP

1 INT_MODE

1 Length is 1 word

10 Value is 10

14 Line number in source code

1 Length of assigned quantity is 1 word
COMPL_OP 8

int 8
int mode
tree operand

The result of this operator is an rvalue, the bitwise complement
of the operand. The operand must have the same mode as the COMPL
operation; the only allowable modes are INT, LONG INT, UNSIGNED,
and LONG UNSIGNED.

- 23 -

This operator implements bitwise complementation in languages
that support bit operations (e.g. the """ operator in C). 1In
most cases, it should not be wused for 1logical negation; the
NOT_OP is more appropriate.

Example: “i (i is an integer object with id 12)
8 COMPL_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id is 12
CONST_OP 9
int 9
int mode
int length

int word[1l]
int word[2]

int word[length]

The result of this operator is an rvalue, equivalent to the wvalue
of the constant it defines. "Length’ is the length of the
constant in 16-bit machine words. ’'Mode’ may take on any of the
operand mode values, although STOWED constants are not of much
use outside initializers.

CONST_OP is the only operator whose IMF representation varies in
length depending on its contents. Most literals in a source
language program eventually are expressed as CONST_OPs in the
IMF.

Example: 14 (an integer constant)
9 CONST_OP
1 INT_MODE
1 length is 1 word
14 first word has value 14

CONVERT_OP 10

int 10

int source_mode

int destination_mode
tree operand

The result of this operator is an rvalue, namely the value of the

operand converted to the data mode specified by
"destination_mode’ . The operand mode must be the same as
" source_mode’ . STOWED mode is not permissible in either mode

- 24 -

parameter. Note that in most cases, no range checking is per-
formed; it is possible, for example, to convert an UNSIGNED
quantity into an negative INT quantity. Floating point to
integer conversions are performed by truncation.

CONVERT is the only means of converting data from one mode to
another; the code generator never coerces data from one mode to
another, unless the coercion is called for by a CONVERT operator.

Example: x =i (x is a FLOAT object, with id 6;
i is an INT obiject, with id 12)

5 ASSIGN_OP

5 FLOAT_MODE

40 OBJECT_OP

5 FLOAT_MODE

6 Object id is 6
10 CONVERT_OP

1 from INT_MODE
5 to FLOAT_MODE
40 OBJECT_OP

1 INT_MODE

12 Object id is 12

DECLARE_STAT_OP 11

int 11
int object_id
string external_name

See "Operators useful in the Static Data Stream".

DEFAULT_OP 12

int 12
tree actions
tree next_case

This operator is used to label the default action in a multiway-—
branch statement. (In C, the default action is labeled
"default"; in Pascal, it is labeled "otherwise".) The DEFAULT_OP
need not be the last alternative in the list of alternatives fol-
lowing a SWITCH. A DEFAULT_OP behaves much like a CASE_OP, in
that control will fall through to the next alternative unless the
actions conclude with a BREAK_OP.

Example: default: i += 1 (where i is an integer object with id 12)

12 DEFAULT_OP
1 ADDAA_OP
1 INT_MODE

- 25 -

40 OBJECT_OP

1 INT_MODE

12 Object id 12

9 CONST_OP

1 INT_MODE

1 length is 1 word

1 value of first word is 1

7 or 39 CASE_OP or NULL_OP, depending on structure
of SWITCH

DEFINE_DYNM_OP 13

int 13

int object_id
tree init_list
int size

This operator causes storage for the object identified by
"object_id’ to be allocated in the current stack frame. It is
generated for local variable declarations and for temporary
variables allocated by the front end. ’'Object_id’ must be used
in all subsequent references to the object, and the object’s
definition with DEFINE_DYNM must precede all such references.
The init_list is a list of expressions whose values will be
assigned to successive words of the newly-declared object (see

INITIALIZER_OP and ZERO_INITIALIZER _OP). The size parameter
specifies the amount of storage to be reserved for the object, in
16-bit words. (Slightly fewer than 65,535 words are available

for local storage in each procedure.)

When processing a declaration, the front-end should assign each
declared variable an integer "object id." To be safe, the object
id should be unique within an IMF module. This object id must be
used whenever the variable being declared is referenced.

Example: int blank = 160; (a local declaration; assume ’'blank’
is assigned the object id 4)
13 DEFINE_DYNM_OP
4 Object id is 4
26 INITIALIZER_OP
1 INT_MODE
9 CONST_OP
1 INT_MODE
1 Length is 1 word
160 Value of first word is 160
39 NULL_OP (end of init 1list)
1 Size is 1 word

- 26 -

DEFINE_STAT_OP 14

int 14

int object_id
tree init_list
int size

This operator causes storage for the object identified by

"object_id’ to be allocated in the current 1link frame (static
data area). It is normally generated by the front end for global
variable declarations. "Object_id’ must be wused in all sub-

sequent references to the object, and the object’s definition
with DEFINE_STAT must precede all such references. The init_1list
is a 1list of constants whose values will be assigned to succes-
sive words of the newly-declared object (see INITIALIZER OP and
ZERO_INITIALIZER_OP). The size parameter specifies the amount of
storage to be reserved for the object, in 16-bit words. (Sligh-
tly fewer than 65,535 words are available for static storage in
each module.)

Any storage reserved by a DEFINE_STAT_OP that is not filled by an
initializer will be set to zero.

When processing a declaration, the front-end should assign each
declared variable an integer "object id." To be safe, the object
id should be unique within an IMF module. This object id must be
used whenever the variable being declared is referenced.

Example: int blank = 160; (a global declaration; assume ’blank’
is assigned the object id 4)
14 DEFINE_STAT_OP
4 Object id is 4
26 INITIALIZER_OP
1 INT_MODE
9 CONST_OP
1 INT_MODE
1 Length is 1 word
160 Value of first word is 160
39 NULL_OP (end of init list)
1 Size is 1 word

DEREF_OP 15

int 15
int mode
tree operand

The result of this operator 1is an 1lvalue, the object whose
address is given by the value of the operand. The operand must
yield a 32-bit LONG INT or LONG UNSIGNED value. The operation
mode is not restricted.

DEREF 1is one of the few operators that yield an lvalue, and are

- 27 -

therefore allowed as left-operands of assignments. DEREF 1is
normally used for indirection through pointers in languages that
support them explicitly (eg """ operator in Pascal, or unary "*"
in C), although it is also useful in obtaining the value of a
variable that is passed to a procedure by reference.

Example: 1 = *p (or 1 = p” in Pascal)
(1 is an integer object with id 12;

p is a long unsigned object with id 32)

5 ASSIGN_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id is 12

15 DEREF_OP

1 INT_MODE

40 OBJECT_OP

4 LONG_UNS_MODE
32 Object id is 32

DIVAA OP 16

int 16

int mode
tree left
tree right

The result of this operator is an rvalue, the quotient of the
value of the left operand divided by the value of the right. As
a side effect, the quotient is stored back into the left operand.
The left operand must be an lvalue or a bit field (see FIELD_OP).
Both operands must have the same mode as the DIVAA operation; any
mode other than STOWED is acceptable.

DIVAA stands for "divide and assign." The operator is wusually
used to implement the division assignment operator ("/=" in C,
"/:=" or "divab" in Algol 68).

If the operation mode is UNSIGNED or LONG UNSIGNED and the right
operand is a power of 2, the division will be performed by a
right logical shift.

Example: i /= 10 (where i is an integer object with object id 12)
16 DIVAA_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 length is 1 word
10 value of first word is 1

DIV_OP 17

int 17

int mode
tree left
tree right

The result of this operator is an rvalue, the quotient of the
value of the 1left operand divided by the value of the right.
Both operands must have the same mode as the DIV operation, and
the mode STOWED is not allowed.

DIV is used to implement simple division.
If the operation mode is UNSIGNED or LONG UNSIGNED and the right

operand is a power of 2, the division will be performed by a
right logical shift.

Example: i / 10 (where i is an integer object with object id 12)
17 DIV_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 length is 1 word
10 value of first word is 1

DO_LOOP_OP 18

int 18
tree body
tree condition

This operator implements a test—at-the-bottom loop. " Body’
specifies the operations to be performed in the loop. The loop
is performed until the value of the expression specified by ’con-
dition’ is non-zero. A BREAK OP may be used to terminate execu-
tion of the loop from within the body, and a NEXT_OP may be used
to cause an immediate transfer to the condition test from within
the body.

It is not kosher to use a DO_LOOP as a value-returning construct.

Example: do i *= 2 until (i > 3j)
(where i and j are integer objects, with ids 12 and 60)

18 DO_LOOP_OP

33 MULAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id is 12

- 29 -

EQ_OP 19

int 19

int mode
tree left
tree right

The result of
left operand
Both operands
"mode’, Dbut

The operation

EQ is used to

CONST_OP
INT_MODE
Length is 1 word
Value is 2
GT_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id is 12
OBJECT_OP
INT_MODE
Object id is 60

this operator is an rvalue: 1 if the wvalue of the
equals the wvalue of the right, and 0 otherwise.
must have the mode specified by the parameter
note that the result mode of EQ is always INTEGER.
mode may not be STOWED.

implement test-for-equality for both expressions

yielding Boolean values and for control flow tests. The restric-
tion against STOWED operands will hopefully be lifted in the near

future.

Example: 1 ==

19
1

FIELD_OP 69

int 69
int mode

1 (where i is an integer object with object id 12)
EQ_OP

INT_MODE

OBJECT_OP
INT_MODE
Object id 12

CONST_OP
INT_MODE
length is 1 word
value of first word is 1

int offset_from_msb
int length_in_bits
tree base_address

FIELD is used to select a partial field of a word or double word.
It may be used on the left hand side of assignments, to cause the
right hand side value to be placed in the field, or as an rvalue,
to vyield the value stored in the field. The operation mode must

be INT, UNSIGNED, LONG INT, or LONG UNSIGNED. The parameter
"base_address’ is an lvalue which specifies the first 16-bit word
containing any portion of the bit field. The parameter

"offset_from msb’ gives the offset, in bits, of the beginning of
the field from the left-hand (most significant) bit of the first
word. The parameter ’length_in_bits’ gives the length of the bit
field. Bit fields may be 1 to 32 bits in length, and must Dbe
aligned so as not to cross more than one word boundary.

FIELDs behave 1like lvalues in most circumstances; for instance,
they can be used in left-hand-sides of assignments. However, bit
fields cannot be addressed, so they may not be passed by
reference on procedure calls or used as an operand of the REFTO
operator. FIELDs can always be used as rvalues.

Bit fields may not cross more than one word boundary, since this
would require 48 bit shifts for field extraction. Formally, this
means that 'offset_from msb’ + ’"length_in_bits’ must be less than
or equal to 32.

Example: Fetching the right-hand byte of a 16-bit word in
the integer object i, with id 12:

69 FIELD_OP

1 INT_MODE

8 Bit field begins 8 bits from the most
significant bit

8 Bit field is 8 bits long

40 OBJECT_OP; the base address of the field

1 INT_MODE

12 Object id for ’i’

FOR_LOOP_OP 20

int 20

tree init
tree cond
tree reinit
tree body

The FOR_LOOP_OP implements the general-purpose C ’for’ loop. The
parameters ’init’, ’'reinit’, and ’body’ correspond to statements;
"cond’ corresponds to a Boolean expression. The for-loop

for (init; cond; reinit) statement

is equivalent to

init; while cond do begin statement; reinit end

A typical application 1in languages other than C might be the
construction of an arithmetic loop like the Pascal ’"for’ or the
Fortran ’'do’.

Within the body of the loop, a BREAK_OP may be used to cause
early loop termination, and a NEXT_OP may be wused to cause an
immediate Jjump to the ’'reinit’ code in preparation for another
iteration.

It is not reasonable to use a FOR_LOOP as a value-returning
construct.

Example: for (i = 1; i <= n; 1 += 1)
j *=1i;
(where i, j, n are integers with object ids 12, 60, 44)

20 FOR_LOOP_OP

5 ASSIGN

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id 12
9 CONST_OP

1 INT_MODE

1 Length is 1 word
1 Value is 1

1 Assign 1 word
28 LE_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id 12
40 OBJECT_OP

1 INT_MODE

44 Object id 44
1 ADDAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id 12
9 CONST_OP

1 INT_MODE

1 Length is 1 word
1 Value is 1
33 MULAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

60 Object id 60
40 OBJECT_OP

1 INT_MODE

12 Object id 12

GE_OP 21

int 21

int mode
tree left
tree right

The result of this operator is an rvalue, 1 if the value of the
left operand is greater-than-or-equal-to the value of the right,
0 otherwise. Both operands must have the mode given in the
parameter 'mode’; note, however, that the result of GE is always
of mode INTEGER. The operation mode may not be STOWED. Note
that if the operands are unsigned, a "magnitude" comparison is
performed to insure correct results.

GE_OP implements the test for greater-or-equal in both Boolean
expressions and flow-of-control tests. The restriction against
STOWED operands may be lifted someday.

Example: 1 >= 1 (where i is an integer object with object id 12)
21 GE_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 length is 1 word
1 value of first word is 1

GOTO_OP 22

int 22
int object_id

GOTO_OP is wused to implement unrestricted ’'goto’ statements in
languages that support such nonsense. The parameter ’'object_id’
is the integer object identifier of the label which is the target
of the goto. (See LABEL_OP).

The stack 1is not adjusted if the target label is outside the
current procedure.

Example: goto label (where ’label’ has object id 99)
22 GOTO_OP
99 Object ID of target label

GT_OP 23

int mode
tree left
tree right

The result of this operator is an rvalue, 1 if the value of the
left operand is greater than the value of the right, 0 otherwise.
Both operands must have the mode given by the parameter ’'mode’;
but note that GT always returns a value of mode INTEGER. The
operation mode may not be STOWED. Note that if the operands are
of mode unsigned, a "magnitude" comparison will be performed to
insure correct results.

GT implements the test for greater-than for Boolean expressions
and expressions in flow-of-control context. The restriction
against STOWED operands might be lifted if the public demands it.

Example: 1 > 1 (where 1 is an integer object with object id 12)
23 GT_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 length is 1 word
1 value of first word is 1

IF_OP 24

int 24

int mode

tree condition
tree then_part
tree else_part

IF can be wused to implement conditional expressions or con-—
ditional evaluation of statements; it always returns an rvalue.
If the wvalue of the condition is non-zero, the ’then_part’ will
be evaluated; otherwise, the ’else_part’ will Dbe evaluated.
Either ’'then_part’ or ’'else_part’ may be omitted (ie, replaced by
a NULL_OP) . The operation mode may not be STOWED; if the
operator is used to return a value (as in a conditional expres-—
sion) then the modes of both the ’"then_part’ and the ’"else_part’
must be the same as the operation mode.

IF is most often used to implement conditional statements (eg the
"if’ statement of most algorithmic languages). Since the code
generator tends to view operators as value-returning, IF may also
be wused to implement conditional expressions (’if’-’'then’-'"else’
in the Algol family, or ’?:’ in C).

Example: 1if a < b thenm = a elsem =D
(where a, b, m are floating point objects with id’s 1, 2,
24 IF_OP
5 FLOAT_MODE
31 LT_OP
5 FLOAT_MODE
40 OBJECT_OP
5 FLOAT_MODE
Object id 1
OBJECT_OP
FLOAT_MODE
Object id 2
ASSIGN_OP
FLOAT_MODE
OBJECT_OP
FLOAT_MODE
Object id 13
OBJECT_OP
FLOAT_MODE
Object id 1
Length is 2 words
ASSIGN_OP
FLOAT_MODE
OBJECT_OP
FLOAT_MODE
Object id 13
OBJECT_OP
FLOAT_MODE
Object id 2
Length is 2 words

(G2 TSN e
o

o

o w

o

NMNNMNOSRP O OOONRFEOOSEREOGSOOODN
o w

INDEX_OP 25

int 25

int mode

tree array_base

tree index_expression
int element_size

The result of this operator is an lvalue, one member of a vector
of identical objects. The parameter ’"array_base’ is the base of
the vector; it is typically a simple OBJECT_OP, although it may
be an expression vyielding the base address of the vector (a
dereferenced pointer, for example). It must be an lvalue. The
"index_expression’ selects the particular vector element desired;
it should have a value greater than or equal to zero and less
than the number of elements in the vector. (Note that this
implies zero-origin addressing.) (Note furthermore that there is
no subscript checking.) The ’index_expression’ must be of mode
INTEGER or UNSIGNED (indexing across 64K-word segment boundaries
produces incorrect results in V mode). "Element_size’ is the
size of one element of the vector, in 16-bit words. The opera-
tion mode must be the same as the mode of the vector elements,

13)

but is otherwise unrestricted; in particular, STOWED mode 1is
allowed.

INDEX is used to implement array subscripting. The operator has
deliberately been made rather primitive, to allow the front-end
greater freedom in selecting storage layouts. For example, mul-
tidimensional arrays may be implemented by treating arrays as
vector elements, and subsuming the additional addressing cal-
culations in the ’index_expression’. This allows a compiler to
select row- or column-major addressing. Note that subscripting
is vastly more efficient if vector elements are a power of 2
words in length, and furthermore that lengths 1, 2, and 4 are
most efficient.

Example: af[i + 1] (where a is a floating point object with id 1,
and 1 is an integer object with id 12)
25 INDEX_OP
5 FLOAT_MODE
40 OBJECT_OP
7 STOWED_MODE
1 Object id 1
2 ADD_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Length is 1 word
1 Value is 1
2 Array element is 2 words long

INITIALIZER_OP 26

int 26

int mode

tree expression

tree next_initializer

Initializers are the initial-value expressions that appear in
definitions of variables in C (see DEFINE_DYNM_OP and
DEFINE_STAT_OP) . In the case of 1local variables, which are
reinitialized whenever they are allocated, these expressions are
arbitrary. In the case of static variables, these expressions
must be constants or REFTO operators whose operands are constants
or OBJECT_OPs.

Initializers are formed by linking a number of INITIALIZER_OPs
and ZERO_INITIALIZER_OPs together through their
"next_initializer’ fields. ZERO_INITIALIZER_OP 1is a compact
representation of an initializer consisting of all zeros.

Any mode is allowable 1in an INITIALIZER. INT and UNSIGNED

initializers cause one word to be filled; LONG INT, LONG
UNSIGNED, and FLOAT cause two words to be filled; LONG FLOAT
causes four words to be filled; STOWED expressions fill as many
words as the size of the expression allows (STOWED mode CONST_OPs
are particularly useful here).

Example: int ai[3] = {1, 2, 3}
(a local declaration, where ai is assigned object id 8)
13 DEFINE_DYNM_OP
8 Object has id 8
26 INITIALIZER_OP
1 INT_MODE
9 CONST_OP (the init. expression)
1 INT_MODE
1 Constant has length 1
1 Constant has value 1
26 INITIALIZER_OP
1 INT_MODE
9 CONST_OP
1 INT_MODE
1 Constant has length 1
2 Constant has value 2
26 INITIALIZER_OP
1 INT_MODE
9 CONST_OP
1 INT_MODE
1 Constant has length 1
3 Constant has wvalue 3
39 NULL_OP (end of initializers)
3 Object has size 3 words

As an alternative,

13 DEFINE_DYNM_OP
Object has id 8
INITIALIZER_OP
STOWED_MODE
CONST_OP
STOWED_MODE
Constant is 3 words long
First word is 1
Second word is 2
Third word is 3
NULL_OP (end of initializers)
Object is 3 words long

~ N ©
[&))

W wWwwdhEFr wJduo
o

LABEL_OP 27

int 27
int object_id

LABEL_OP is used to place the target label for ’"goto’ statements.
The parameter ’'object_id’ 1is the integer identifier wused by

GOTO_OPs to identify their target labels.

Example: 1label lab;.... lab:
(assume the label declaration causes ’lab’ to be assigned
the object id 6)

27 LABEL_OP
6 The object ID of the label
LE_OP 28
int 28
int mode
tree left

tree right

The result of this operator is an rvalue, 1 if the value of the
left operand is less than or equal to the value of the right, 0
otherwise. Both operands must have the mode specified by the
parameter 'mode’; STOWED mode is not allowable. Note that LE
always returns a value of mode INTEGER. Magnitude comparisons
are generated for unsigned operands, to insure correct results.

Use LE_OP to implement all tests for less-than-or-equal-to,
whether they appear 1in boolean expressions or flow-of-control
tests. The restriction against STOWED operands may be lifted if
the author feels sufficiently threatened.

Example: 1 <= 1 (where i is an integer object with id 12)
28 LE_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
1 Constant has value 1

LSHIFTAA_OP 29

int 29

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand shifted logically (zero-fill) 1left the number of bit
places specified by the value of the right operand. As a side
effect, the result is stored back into the left operand. The

left operand must be an lvalue or a bit field (see FIELD_OP).
The operation mode may be INT, LONG INT, UNSIGNED, or LONG
UNSIGNED, and the 1left operand must have the same mode. The
right operand must be of mode INT or UNSIGNED, and really should
have a wvalue between 0 and the 1length of the left operand,

inclusive. (Reasonable results outside this range are not
guaranteed.)
LSHIFTAA stands for "left-shift and assign." The operator is
used to implement "<<=" in C.
Example: 1 <<= 1 (where i is an integer object with id 12)

29 LSHIFTAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id 12

9 CONST_OP

1 INT_MODE

1 Constant has length 1

1 Constant has value 1

LSHIFT_OP 30

int 30

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand shifted left logically (zero—-fill) the number of bit

places specified by the value of the right operand. The opera-
tion mode may be INT, LONG INT, UNSIGNED, or LONG UNSIGNED, and
the left operand must have the same mode. The right operand must

be of mode INT or UNSIGNED, and really should have a value
between 0 and the length of the 1left operand, inclusive.
(Reasonable results outside this range are not guaranteed.)

LSHIFT is used to implement the "<<" operator in C.

Example: 1 << 1 (where i is an integer object with id 12)
30 LSHIFT_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
1 Constant has value 1

LT_OP 31

int 31

int mode
tree left
tree right

The result of this operator is an rvalue, 1 if the value of the
left operand 1is less than the value of the right, 0 otherwise.
Both operands must have the mode given in the parameter ’mode’.
Note that LT always returns a value of mode INTEGER, no matter
what the operation mode was. The operation mode may not be
STOWED. Magnitude comparisons are used 1if the operands are
unsigned, to insure correct results.

LT is used to implement the test for less-than, in both Boolean
expressions and flow-of-control expressions. The restriction
against STOWED operands may be removed if an angry armed mob
storms the author’s office.

Example: 1 < 1 (where i is an integer object with id 12)
31 LT_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
1 Constant has value 1

MODULE_OP 32
int 32

This operator 1is not used in procedure definitions; it is used
strictly to separate modules in input streams.

MULAA_OP 33

int 33

int mode
tree left
tree right

The result of this operation is an rvalue, the product of the

value of the left operand and the value of the right. As a side
effect, the product is stored into the left operand. The left

- 40 -

operand must be an 1lvalue or a bit field. Both operands must
have the same mode as the operation, and that mode may not be
STOWED.

MULAA stands for "multiply and assign." It is used to implement
the multiplication assignment operators ("*=" in C, "*:=" or
"mulab" in Algol 68). When either operand is known to be a power

of 2, the multiplication will Dbe replaced by a left logical
shift.

Example: 1 *= 10 (where i is an integer object with id 12)
33 MULAA_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
10 Constant has wvalue 10
MUL_OP 34
int 34
int mode
tree left

tree right

The result of this operation is an rvalue, the product of the
value of the 1left operand and the value of the right. Both
operands must have the same mode as the operation, and that mode
may not be STOWED.

MUL_OP 1is wused to implement simple multiplication. When either
operand is known to be a power of 2, the multiplication will be
replaced by a left logical shift.

Example: 1 * 2 (where i1 is an integer object with id 12)
34 MUL_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
2 Constant has value 2

NEG_OP 35

int 35
int mode
tree operand

The result of this operator is an rvalue, the additive inverse of
the wvalue of the operand. Unsigned operands are subtracted from
2**n, where n is the number of bits used to represent them (16 or
32, in this implementation). The operation mode must be the same
as the mode of the operand, and may not be STOWED.

NEG_OP implements the unary minus (negation) operator for all the
primitive arithmetic data modes.

Example: -1 (where i is an integer object with id 12)
35 NEG_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object has id 12
NEXT_OP 36
int 36

int levels

NEXT_OP yields no result value, but causes an immediate restart

of a particular enclosing loop. ’Levels’ - 1 enclosing loops are
terminated (see BREAK _OP) and then a branch is taken to the
proper restart point in the next enclosing loop. For the

FOR_LOOP, the restart point is the re-initialization statement at
the end of the body. For DO_LOOPs and WHILE_LOOPs, the restart
point is the evaluation of the iteration condition.

Example: next 2 (break 1 loop, continue the next outermost)

36 NEXT_OP
2 Levels
NE_OP 37
int 37
int mode
tree left

tree right

The result of this operator is an rvalue, 1 if the value of the
left operand does not equal the value of the right, 0 otherwise.

The modes of both operands must match the mode of the operation,
and STOWED mode is not allowed. Note that NE_OP always returns a
value of mode INTEGER, no matter what operation mode 1is
specified.

NE implements the test for inequality in all contexts. Use of
nuclear weapons might be enough to convince the author to 1lift
the restriction against STOWED operands.

Example: 1 <> 1 (where i is an integer object with id 12)
37 NE_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
1 Constant has value 1

NOT_OP 38
int 38
int mode

tree operand

The result of this operator is an rvalue, the logical negation of

the operand value. (Ie, if the operand has value =zero, the
result of the NOT_OP will be 1; if the operand is non-zero, the
result of the NOT_OP will be zero.) The mode of the operand must
be the same as the mode of the operation, and STOWED mode is not
allowed. The result of a NOT_OP is always of mode INTEGER, no

matter what the operation mode.

NOT_OP is normally used to implement Boolean negation. For
bitwise complementation, use COMPL_OP.

Example: !i (where i is an integer object with id 12)
38 NOT_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object has id 12

NULL_OP 39

int 39

The null operator is usually used to terminate lists constructed
with the sequence operator SEQ_OP, or to indicate that a subtree
has been omitted. For example, if a conditional has no
else_part, the missing subtree must be represented by a NULL_OP.
SEQ also acts as a delimiter at several places in the input
stream.

Example:
39 NULL_OP

OBJECT_OP 40
int 40
int mode

int object_id

The result of this operator is an 1lvalue, corresponding to a

variable defined by the front end. "Mode’ 1is unrestricted;
objects may have any primitive data mode, including STOWED (for
arrays and records). The ’'object_id’ parameter gives the

identification number that was supplied in the definition or
declaration of the obiject.

Normally, each occurrence of a variable in the source program
produces an OBJECT_OP in the intermediate form. OBJECTs are the
primitive lvalues from which all other 1lvalue-producing
constructs are derived.

Each object that is referenced in the intermediate form must be

identified by a simple integer known as the "object id."
Typically these 1ds are assigned at declaration time (for
variables) or at time of first reference (for locations, like
procedure names or statement labels). Object ids should be

unique within each IMF module.

Example: 1 (where i is an integer object, with object id 12)
40 OBJECT_OP
1 INT_MODE
12 Object id 12

ORAA_OP 41

int 41

int mode

tree left

tree right

The result of this operator is an rvalue, the bitwise inclusive-
or of the values of the left and right operands. As a side

effect, the result 1is stored back into the left operand. The
left operand must be an lvalue or a bit field (see FIELD_OP).
The operation mode must be INT, LONG INT, UNSIGNED, or LONG
UNSIGNED, and the modes of both operands must match the operation
mode.

ORAA stands for "logical or and assign." It is used to implement
the C assignment operator "|=".

Example: 1 |= 1 (where i is an integer object with id 12)
41 ORAA_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
1 Constant has value 1

OR_OP 42

int 42

int mode
tree left
tree right

The result of this operator is an rvalue, the bitwise inclusive-
or of the values of the left and right operands. The operation
mode must be INT, LONG INT, UNSIGNED, or LONG UNSIGNED, and the
modes of both operands must match the operation mode.

OR is used to implement bit-oriented logical operations, like the
"|" operator of C. Although OR can be used in Boolean expres-—

sions, the sequential-OR operator SOR_OP is usually more
appropriate.
Example: 1 | 1 (where i is an integer object with id 12)
42 OR_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id 12
9 CONST_OP
1 INT_MODE
1 Constant has length 1
1 Constant has value 1

POSTDEC_OP 43

int 43

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand before the operator is executed. As a side effect, the
left operand is decremented by the value of the right operand.
The left operand must be an lvalue or a bit field (see FIELD_OP),
and must have the same mode as the operation. The right operand
must be a CONST_OP, with the same mode as the operation.

The POSTDEC operator corresponds to the C postfix autodecrement
construct.

Example: p-- (where p is a long unsigned (pointer) object with
object id 15, and p is intended to point to integers)

43 POSTDEC_OP

4 LONG_UNS_MODE

40 OBJECT_OP

4 LONG_UNS_MODE

15 Object id of p

9 CONST_OP

4 LONG_UNS_MODE

2 Constant has length 2

0 Constant has value...

1 .1, expressed as a long integer

POSTINC_OP 44

int 44

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand before the operator is executed. As a side effect, the
left operand is incremented by the value of the right operand.
The left operand must be an lvalue or a bit field (see FIELD_OP),
and must have the same mode as the operation. The right operand
must be a CONST_OP, with the same mode as the operation.

The POSTINC operator corresponds to the C postfix autoincrement
construct.

Example: p++ (where p is a long unsigned (pointer) object with
object id 15, and p is intended to point to integers)

44 POSTINC_OP
4 LONG_UNS_MODE

40 OBJECT_OP

4 LONG_UNS_MODE

15 Object id of p

9 CONST_OP

4 LONG_UNS_MODE

2 Constant has length 2

0 Constant has value...

1 .1, expressed as a long integer

PREDEC_OP 45

int 45

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand decremented by the value of the right operand. As a side
effect, the result is stored back into the left operand. The
left operand must be an lvalue or a bit field (see FIELD_OP), and
must have the same mode as the operation. The right operand must
be a CONST_OP, with the same mode as the operation.

The PREDEC operator corresponds to the C prefix autodecrement
construct.

Example: --p (where p is a long unsigned (pointer) object with
object id 15, and p is intended to point to integers)

45 PREDEC_OP

4 LONG_UNS_MODE

40 OBJECT_OP

4 LONG_UNS_MODE

15 Object id of p

9 CONST_OP

4 LONG_UNS_MODE

2 Constant has length 2

0 Constant has value...

1 .1, expressed as a long integer

PREINC_OP 46

int 46

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand incremented by the value of the right operand. As a side
effect, the result 1is stored back into the left operand. The

left operand must be an lvalue or a bit field (see FIELD_OP), and
must have the same mode as the operation. The right operand must
be a CONST_OP, with the same mode as the operation.

The PREINC operator corresponds to the C prefix autoincrement
construct.

Example: ++p (where p is a long unsigned (pointer) object with
object id 15, and p is intended to point to integers)

46 PREINC_OP

4 LONG_UNS_MODE

40 OBJECT_OP

4 LONG_UNS_MODE

15 Object id of p

9 CONST_OP

4 LONG_UNS_MODE

2 Constant has length 2

0 Constant has value...

1 .1, expressed as a long integer

PROC_CALL_ARG_OP 47

int 47

int mode

tree expression
tree next_argument

Procedure call arguments are specified in a 1linked list of

PROC_CALL_ARG_OPs attached to a PROC_CALL_OP. An argument
expression 1is specified by the parameter ’'expression’; its mode
must be given by the parameter "mode’ . The parameter

"next_argument’ is simply the next procedure argument in the
list. Any mode expression is allowable as an argument, since the
Prime procedure call convention passes a fixed-size pointer to
the actual argument, rather than the argument itself.

Note that arguments (with the exception of bit fields) are always
passed by reference. If arguments are to be copied on procedure
entry or exit, the called procedure must do the copying. (See
PROC_DEFN_ARG_OP; an argument will be copied automatically if it
is given the disposition VALUE_DISP.) Bit fields are an excep-
tion; they are not addressable objects, and so are always passed
by value.

See PROC_CALL_OP for examples of PROC_CALL_ARG_OP.

PROC_CALL_OP 48

int 48
int mode

tree procedure
tree argument_list

The PROC_CALL_OP is used to generate a call to a procedure. The
parameter 'mode’ 1is the mode of the return value of the
procedure, if any. The parameter 'procedure’ 1is an 1lvalue

representing the address of the procedure to be called; the most
common case 1s simply an OBJECT_OP with an object id equal to the
id of a declared procedure (see PROC_DEFN_OP) . The parameter
"argument_list’ is a singly-linked list of expressions to be pas-
sed as arguments to the procedure; each expression in the
argument list is contained in a PROC_CALL_ARG_OP subtree, and the
entire list is terminated with a NULL_OP.

PROC_CALL implements invocation of both "procedures" and "func-
tions" (or "value-returning procedures").

Example: 1l = strlen (s)
where 1 is an integer object with id 13,
s is a STOWED object (an array of integers) with id 14,
and strlen is a procedure with id 50.

5 ASSIGN_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

13 object id for 1

48 PROC_CALL_OP

1 INT_MODE

40 OBJECT_OP; this gives the procedure address
7 STOWED_MODE

50 Object id for strlen

47 PROC_CALL_ARG_OP; description of first arg
7 STOWED_MODE

40 OBJECT_OP

7 STOWED_MODE

14 Object id for s

39 NULL_OP; ends list of arguments

1 Number of words transferred by ASSIGN

PROC_DEFN_ARG_OP 49

int 49

int object_id

int mode

int disposition
int length

tree next_argument

This operator cannot be used as part of the code of a procedure.
See "Operators Useful in the Procedure Definition Stream".

PROC_DEFN_OP 50

int 50

int object_id

int number_of_args
string proc_name
tree argument_list
tree code

This operator cannot be used as part of the code of a procedure.
See "Operators Useful in the Procedure Definition Stream".

REFTO_OP 51

int 51
int mode
tree operand

The result of this operator 1is an rvalue, the virtual memory
address of the operand. The operand must be an 1lvalue, but it
can have any mode. In particular, the operand may not be a bit
field. The operation mode must be LONG INT or LONG UNSIGNED.

REFTO implements the unary "&" operator in C.

Example: &1 (where i is an integer object with id 12)
51 REFTO_OP
4 LONG_UNS_MODE; pointers are generally of this mode
40 OBJECT_OP
1 INT_MODE
12 Object id for i

REMAA_OP 52

int 52

int mode
tree left
tree right

The result of this operation is an rvalue, the remainder result-
ing from division of the value of the left operand by the value
of the right. As a side effect, the result is stored Dback into
the left operand. The left operand must be an lvalue or a bit
field. Both operands must have the same mode as the operation,
and the operation mode may not be STOWED, FLOAT, or LONG FLOAT.
(The restriction against floating point operands may be lifted in
the near future.)

Note that this operator produces the remainder resulting from the
division; the remainder may be negative. If a true modulus is
desired, the absolute value of the left operand should be remain-
dered by the right operand, instead.

Example: 1 %= 2 (where i is an integer object with id 12)
52 REMAA_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for i
9 CONST_OP
1 INT_MODE
1 Length of constant is 1 word
2 Value of constant is 2

REM_OP 53

int 53

int mode
tree left
tree right

The result of this operation is an rvalue, the remainder result-
ing from division of the value of the left operand by the value

of the right. Both operands must have the same mode as the
operation, and the operation mode may not be STOWED, FLOAT, or
LONG FLOAT. (The restriction against floating point operands may

be lifted in the near future.)

Note that this operator produces the remainder resulting from the
division; the remainder may be negative. If a true modulus is
desired, the absolute value of the left operand should be remain-
dered by the right operand, instead.

Example: 1 % 2 (where i is an integer object with id 12)
53 REM_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for i
9 CONST_OP
1 INT_MODE
1 Length of constant is 1 word
2 Value of constant is 2

RETURN_OP 54

int 54
int mode
tree operand

The operand is evaluated and returned as the result of the
current procedure. If the operand is absent (represented by a
NULL_OP) a procedure return takes place, but no effort is made to
return a particular value. The operation mode may not be STOWED.

This operator is used to implement the "return" statement in many

algorithmic languages. All procedures should end with a
RETURN_OP.
Example: return (0)

54 RETURN_OP

9 CONST_OP

1 INT_MODE

1 Constant has length 1

0 Constant has value 0

RSHIFTAA_OP 55

int 55

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand shifted right the number of bit places specified by the

value of the right operand. As a side effect, the result is
stored back into the left operand. The left operand must be an
lvalue or a bit field (see FIELD_OP). The operation mode may be

INT, LONG INT, UNSIGNED, or LONG UNSIGNED, and the 1left operand
must have the same mode. The right operand must be of mode INT
or UNSIGNED, and really should have a value between 0 and the
length of the 1left operand, inclusive. (Reasonable results
outside this range are not guaranteed.)

RSHIFTAA stands for "right-shift and assign." The operator is
used to implement ">>=" in C. If the operation mode is UNSIGNED
or LONG UNSIGNED, the vacated bits on the 1left are zero-filled
(logical shift); if the operation mode is INT or LONG INT, the
vacated bits on the left are sign-filled (arithmetic shift).

Example: 1 >>= 1 (where i is an integer object with id 12)
55 RSHIFTAA_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE

2 Object id for i
CONST_OP
INT_MODE
Length of constant is 1 word
Value of constant is 1

PR

RSHIFT_OP 56

int 56

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand shifted right the number of bit places specified by the
value of the right operand. The operation mode may be INT, LONG
INT, UNSIGNED, or LONG UNSIGNED, and the left operand must have
the same mode. The right operand must be of mode INT or
UNSIGNED, and really should have a value between 0 and the length
of the left operand, inclusive. (Reasonable results outside this
range are not guaranteed.)

This operator 1is used to implement ">>" in C. TIf the operation
mode is UNSIGNED or LONG UNSIGNED, the vacated bits on the 1left
are zero—-filled (logical shift); if the operation mode is INT or
LONG INT, the vacated bits on the left are sign-filled (arith-
metic shift).

Example: 1 >> 1 (where i is an integer object with id 12)
56 RSHIFT_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for i
9 CONST_OP
1 INT_MODE
1 Length of constant is 1 word
1 Value of constant is 1

SAND_OP 57

int 57

int mode
tree left
tree right

The result of this operation is an rvalue. The left operand is
evaluated first. If it is zero, the result of the operation is
zero and evaluation is terminated. If it is non-zero, then the

value of the right operand is returned as the result of the
operator. The modes of Dboth operands must be the same as the
mode of the result.

SAND is used to implement sequential ("short-circuit") logical
conjunctions.
Example: 1 && j (where i, j are integer objects with ids 12 and 13)
57 SAND_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for i
40 OBJECT_OP
1 INT_MODE
13 Object id for j

SELECT_OP 58

int 58

int mode

int offset
tree structure

The result of this operator 1is an 1lvalue, one member of a
heterogeneous data structure (ala the Pascal "record" or the C
"struct"). The parameter ’'mode’ 1is the mode of the element
selected; it is unrestricted. The parameter ’'structure’ is an
lvalue expression yielding the base address of the structure.
Typically it is an OBJECT_OP with an object_id field equal to the
object id of a STOWED object defined by DEFINE_STAT or
DEFINE_DYNM.

Example: rec.field
(rec is a record with object id 4;
field is an integer field offset 3 words from the beginning
of the record)

58 SELECT_OP
1 INT_MODE
3 Offset from beginning of struct
40 OBJECT_OP
7 STOWED mode
4 Object id of ’'rec’
SEQ_OP 59
int 59
tree left

tree right

SEQ causes the left operand to Dbe evaluated, then the right
operand. The result is the result of the right operand.

SEQ_OP corresponds roughly to the "," operator in C and the
semicolon statement separator in Pascal.

Example: 1 =1; j = 2
(where i, j are integer objects with ids 12, 13)

e

SEQ_OP
ASSIGN_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id of ’i’
CONST_OP
INT_MODE
Constant length is 1 word
Constant value is 1
Assignment transfers 1 word
ASSIGN_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id of 73’
CONST_OP
INT_MODE
Constant length is 1 word
Constant value is 1
Assignment transfers 1 word

o

N

o

PR RPRPORRARUORRRRORRESROOO
w

A frequently-used alternative to the above is

e

SEQ_OP
ASSIGN_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id of ’i’
CONST_OP
INT_MODE
Constant length is 1 word
Constant value is 1
Assignment transfers 1 word
SEQ_OP
ASSIGN_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id of '3’
CONST_OP
INT_MODE
Constant length is 1 word
Constant value is 1

o

N

o]

o

PR RPORRPRAEROUORRRRORRSROOO
w

1 Assignment transfers 1 word
39 NULL_OP; end of sequence

SOR_OP 60

int 60

int mode
tree left
tree right

The result of this operator is an rvalue. The left operand is
evaluated first. If it is non-zero, it is returned as the result
of the operation. If it is zero, the value of the right operand
is returned as the result of the operation. The mode of the
operation result is always INTEGER. The operands may be of any
mode other than STOWED.

SOR 1is wused to implement sequential ("short-circuit") logical
disjunctions.

Example: 1 || jJ (where i, j are integer objects with ids 12 and 13)
60 SOR_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for i
40 OBJECT_OP
1 INT_MODE
13 Object id for Jj

SUBAA_OP 61

int 61

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand minus the value of the right operand. As a side effect,
the difference is stored back into the left operand. The left
operand must be an lvalue or a bit field (see FIELD_OP). Both
operands must have the same mode as the operation, and the mode
may not be STOWED.

SUBAA stands for "subtract and assign." It is used to implement
the "-=" operator of C and the "-:=" or "minusab" operator of
Algol 68.

Example: 1 -= 1 (where i is an integer object with id 12)

- 56 -

61 SUBAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id for ’"i’

9 CONST_OP

1 INT_MODE

1 Constant is of length 1
1 Constant has value 1

SUB_OP 62

int 62

int mode
tree left
tree right

The result of this operator is an rvalue, the value of the left
operand minus the value of the right operand. Both operands must
have the same mode as the operation, and that mode may not be
STOWED.

Example: 1 - 1 (where i is an integer object with id 12)
62 SUB_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for ’"i’
9 CONST_OP
1 INT_MODE
1 Constant is of length 1
1 Constant has value 1

SWITCH_OP 63

int 63

int mode

tree selector

tree alternative_list

SWITCH_OP is wused to generate a multiway-branch statement, like
the ’'switch’ of C or the ’case’ of Pascal. When the SWITCH is
used as a value-returning construct, the modes of all the CASESs

must match the operation mode, and must not be STOWED. The
parameter 'selector’ 1is an expression to be evaluated and com-
pared with all alternative values in CASE_OPs.

"Alternative_list’ is a singly-linked 1list of CASE_OPs and at
most one DEFAULT_OP, terminated with a NULL_OP.

Note that there is no automatic jump from the end of an alter-
native to the end of the switch; if one is desired, a BREAK_OP
should be used. This Dbehavior allows construction of alter-
natives with multiple case labels, as illustrated in the example
below.

Example: The following Pascal ’case’ statement, assuming i and j
are integer variables with object ids 12 and 13, respectively

case i of

l: j := 6;

2, 4: j := 10;

otherwise j := 9;

end;
63 SWITCH_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for ’i’
7 CASE_OP; the first alternative

CONST_OP
INT_MODE

Length of constant is 1
Value of constant is 1
SEQ_OP; actions for first CASE
ASSIGN_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id for ’3j’
CONST_OP
INT_MODE
Length of constant is 1 word
Value of constant is 6
Assignment transfers 1 word
SEQ_OP; continuing CASE actions
BREAK_OP
1 Level (the SWITCH)
NULL_OP; end of CASE actions
CASE_OP; second alternative
CONST_OP
INT_MODE
Constant has length 1
Constant has value 2

o]

o

w

e

e

9 NULL_OP; no actions, control falls through
CASE_OP; second case of second alternative
CONST_OP
INT_MODE

Constant has length 1
Constant has value 4

PRGOS PFRPOJWONMNRPRPOJIJIWROOCTORPROORFPFPORRE AR OOOORREREO

9 SEQ_OP; beginning of actions
ASSIGN_OP
INT_MODE
0 OBJECT_OP
INT_MODE

13 Object id for ’3j’

9 CONST_OP

1 INT_MODE

1 Constant has length 1

10 Constant has value 10

1 Assignment transfers 1 word
59 SEQ_OP; actions continue

6 BREAK_OP

1 1 Level

39 NULL_OP; end of actions

12 DEFAULT_OP; default actions for SWITCH
59 SEQ_OP; beginning of actions

5 ASSIGN_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

13 Object id for '3’

9 CONST_OP

1 INT_MODE

1 Length 1

9 Value 9

1 Assignment transfers 1 word
59 SEQ_OP; default actions continue
6 BREAK_OP

1 1 Level

39 NULL_OP; end of default actions
39 NULL_OP; end of alternatives for SWITCH

UNDEFINE_DYNM_OP 64

int 64
int object_id

UNDEFINE_DYNM is used to release space assigned to an object
allocated in the current local storage area. The parameter
"object_id’ is the object identifier used in the DEFINE_DYNM_OP
that assigned space to the object.

This operator 1is rarely used; it is normally unnecessary unless
the language supported by the front-end allows nested blocks or
the front-end generates and deallocates temporary variables
explicitly.

Example: If object number 44 has been allocated by the front end
as a temporary, it can be deallocated with

64 UNDEFINE_DYNM_OP
44 ID of object to be deallocated

WHILE_LOOP_OP 65

int 65

tree condition

tree body

WHILE_LOOP_OP generates a test—-at-the-top 1loop. The parameter
"condition’ must be an expression yielding a result of zero (for
loop termination) Oor non-—-zero (for loop continuation). The

parameter ’'body’ is the body of the loop (which may contain BREAK
ops for early termination or NEXT ops for explicit continuation).

Example: while (i < j) do i <<= 1;
where i, j are integer objects with ids 12 and 13

65 WHILE_LOOP_OP

31 LT_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object ID for i
40 OBJECT_OP

1 INT_MODE

13 Object ID for j
29 LSHIFTAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object ID for i
9 CONST_OP

1 INT_MODE

1 Length 1

1 Value 1

XORAA_OP 66

int 66

int mode
tree left
tree right

The result of this operator is an rvalue, the bitwise exclusive-
or of the values of the left and right operands. As a side
effect, the result 1is stored back into the left operand. The
left operand must be an lvalue or a bit field (see FIELD_OP).
Both operands must have the same mode as the operation, and only
modes INT, LONG INT, UNSIGNED, and LONG UNSIGNED are allowable.

XORAA stands for "exclusive-or and assign." It is wused to
implement the ""=" operator of C.
Example: 1 ”= 1 (where i is an integer object with id 12)

66 XORAA_OP

1 INT_MODE

40 OBJECT_OP

1 INT_MODE

12 Object id for ’i’

9 CONST_OP

1 INT_MODE

1 Constant is of length 1
1 Constant has wvalue 1

XOR_OP 67

int 67

int mode
tree left
tree right

The result of this operator is an rvalue, the bitwise exclusive-
or of the values of the left and right operands. Both operands
must have the same mode as the operation, and only modes INT,
LONG INT, UNSIGNED, and LONG UNSIGNED are allowable.

Example: 1 ~ 1 (where i is an integer object with id 12)
67 XOR_OP
1 INT_MODE
40 OBJECT_OP
1 INT_MODE
12 Object id for ’i’
9 CONST_OP
1 INT_MODE
1 Constant is of length 1
1 Constant has value 1

ZERO_INITIALIZER_OP 68

int 68
int size
tree next_initializer

Initializers are the initial-value expressions that appear in
definitions of variables in C (see DEFINE_DYNM_OP and
DEFINE_STAT_OP). Local variables are reinitialized whenever the
procedure containing them is entered; global (static) variables
are initialized only when the program containing them is loaded.

ZERO_INITIALIZER provides a compact way of specifying an all-
zeros initializer. The parameter ’'size’ is the number of 16-bit
zero words to be generated; ’next_initializer’ is simply a 1link
to the next INITIALIZER or ZERO_INITIALIZER 1in a variable’s

initial-value list.

Example:

int al[3]

= {0, 0, 0} (a global declaration where

has object id 1)

14
1
68
3
39
3

DEFINE_STAT_OP
Object id for ’'a’
ZERO_INITIALIZER_OP
Fill 3 words with zero
NULL_OP; no more initializers
Size of "a’, in 16-bit words

ra’

Extended Examples

These examples should illustrate some global aspects of
using the code generator. They include a segment of C source
code, the (annotated) intermediate form code produced by the C
front end, and the (annotated) assembly language generated by the
VCG.

Basic VCG Input

C Code

extern int el, e2; /* defined outside this module */

int vl, v2; /* defined here, visible outside */

static int sl1, s2; /* defined here, not visible outside */

procl () /* procedure defined here, visible outside */
{
}

proc2 () /* more of the same */

IMF Stream 1

32 A MODULE_OP; begins the input module

59 SEQ_OP; initiates the sequence of entry points
7 Object number 7 is an entry point...

5 whose name is 5 characters long...

240 o)

242 r

239 o

227 c

177 1

59 SEQ_OP; next member of the list of entry points
8 Object number 8 is an entry point...

5 whose name is 5 characters long...

240 o)

242 r

239 o

227 c

178 2

59 SEQ_OP; next member of the list of entry points
3 Object number 3 is an entry point...

2 whose name is 2 characters long...

246 v

177 1

59 SEQ_OP; next member of the list of entry points

4 Object number 4 is an entry point...

2 whose name is 2 characters long...

246 v

178 2

39 NULL_OP; terminates the list of entries in this module
39 NULL_OP; terminates the list of modules in the input

IMF Stream 2

32 MODULE_OP; beginning of this input module

59 SEQ_OP; beginning of static data declarations list

14 DEFINE_STAT_OP; reserve space for an object

3 Object ID is 3

39 NULL_OP; there are no initializers for this object
1 Its size is 1 word

59 SEQ_OP; next element of declarations list

14 DEFINE_STAT_OP; reserve space for an object

4 Object ID is 4

39 NULL_OP; there are no initializers for this object
1 Its size is 1 word

59 SEQ_OP; next element of declarations list

14 DEFINE_STAT_OP; reserve space for an object

5 Object ID is 5

39 NULL_OP; there are no initializers for this object
1 Its size is 1 word

59 SEQ _OP; next element of declarations list

14 DEFINE_STAT_OP; reserve space for an object

6 Object ID is 6

39 NULL_OP; there are no initializers for this object
1 Its size is 1 word

59 SEQ_OP; next element of declarations list

11 DECLARE_STAT_OP; declare object defined outside this module
1 Object ID is 1

2 Name has 2 characters...

229 e

177 1

59 SEQ_OP; next element of declarations list

11 DECLARE_STAT_OP; declare object defined outside this module
2 Object ID is 2

2 Name has 2 characters...

229 e

178 2

39 NULL_OP; end of static data definition/declaration list
39 NULL_OP; end of modules in input stream

IMF Stream 3

32 MODULE_OP; beginning of next module in input stream

59 SEQ_OP; first element of procedure definitions list
50 PROC_DEFN_OP; procedure definition follows

7 Procedure is object number 7

0 Procedure has no arguments

- 64 -

240 p
242 r
239 o
227 c
177 1
39 NULL_OP;
39 NULL_OP;
59 SEQ_OP;
50 PROC_DEFN_OP;
8
0
5
240 p
242 r
239 o
227 c
178 2
39 NULL_OP;
39 NULL_OP;
39 NULL_OP;
39 NULL_OP;
PMA Code
SEG
RLIT
SYML

ENT PROC1,L7_
ENT PROC2,L8_
ENT V1, L3_
ENT V2,L4_
LINK

L3_ EQU *
Bsz "1
PROC

LINK

L4_ EQU *
BSZ 1
PROC

LINK

L5_ EQU *
BSz 1
PROC

LINK
L6_ EQU *
Bsz "1
PROC

LINK

EXT E1
Ll1_ EQU *
IP El1

PROC

LINK

EXT E2

Procedure name is 5 characters long...

empty argument description list

no code for this procedure

Procedure is object number 8
Procedure has no arguments
Procedure name is 5 characters long...

next element of procedure definitions list
procedure definition follows

empty argument description list

no code for this procedure

end of procedure definitions list
end of modules in this input stream

Assemble in 64V mode

Place literals in procedure frame

Allow 8-character external names
PROC1 is an entry point with address L7_
Similarly for PROC2,

Vi,

and V2

Output data
Reserve one

Output data

Reserve

Reserve

Reserve

Declare

in link (static)

word for L3_,

in proc (procedure)

one word for L4_,

one

word for L5_,

one word for L6_,

frame

(and this module)

init to zero
frame

init to zero

init to zero

init to zero

symbol El1 external to this module

Generate a pointer for the loader to fill in

Declare symbol E2 external to this module

- 65 -

L2_ EQU *

IP E2 Generate a pointer for the loader

PROC

PROC
L65535_ EQU * Beginning of a procedure

EAL L7_ Set up stack frame owner pointer for debugging
STL SB%+18

LDA ='4000

STA% SB%

PRTN "Procedure Return" at end of procedure
L7_ ECB L65535_,,SB%+’0,0,’24 Entry control block for procedure
DATA '5 PL/I character varying form procedure name

DATA "170362

DATA '167743

DATA '130405

PROC
L65534_ EQU * Beginning of second procedure
EAL L8_ Set up stack frame owner pointer
STL SB%+18

LDA ='4000

STA% SB%

PRTN
L8_ ECB L65534_,,SB%+’0,0,’24 Entry control block
DATA '5 Procedure name

DATA "170362

DATA '167743

DATA "131370

END End of this module

Storage Allocation

C Code

int i, /* a static integer variable */
ii [10]; /* a static integer array */

struct

{
int f1, f£2;
}os;

main (argc, argv)
int argc;
char **argv;

{

/*
/*

a static structure with two integer fields */

a non-trivial procedure, with arguments */
/* integer argument */
/* pointer-to-pointer—-to-character argument */

int 11, /* a local integer variable */
1ii [10]; /* a local integer array */
struct

{
int ml, m2;
} o 1s;

i;

ii [0];
s.f1;
1i;

1ii [07;
ls.ml;
argv;
argc;

}

IMF Stream 1

/* a local structure with two integer fields */

/* use of various things in expressions */

32
59
1

1
233
59
3

1
243
59
4

4
237
225
233
238
59

MODULE_OP; beginning of next module in input stream

SEQ_OP; beginning of entry point declaration list
Object number 1 is an entry point...
whose name is 1 character long...
1
SEQ_OP; next member of entry point list
Object number 3 is an entry point...
whose name is 1 character long...
s
SEQ_OP; next member of entry point list
Object number 4 is an entry point...
whose name is 4 characters long...
m
a
i
n
SEQ_OP; next member of entry point list
Object number 2 is an entry point...

- 67 —

2 whose name is 2 characters long...

233 i

233 i

39 NULL_OP; end of entry point list (and this module)
39 NULL_OP; end of modules in this input stream

IMF Stream 2

32 MODULE_OP; beginning of next module

59 SEQ_OP; beginning of static data declarations/definitions
14 DEFINE_STAT_OP; reserve space for a static variable
1 Object ID is 1

39 NULL_OP; no initializers for this variable

1 Object size is 1 word

59 SEQ_OP; next member of static data list

14 DEFINE_STAT_OP; reserve space for a static variable
2 Object ID is 2

39 NULL_OP; no initializers for this variable

10 Object size is 10 words

59 SEQ_OP; next member of static data list

14 DEFINE_STAT_OP; reserve space for a static variable
3 Object ID is 3

39 NULL_OP; no initializers for this variable

2 Object size is 2 words

39 NULL_OP; end of static data list

39 NULL_OP; end of modules in this input stream

IMF Stream 3

32 MODULE_OP; beginning of next module in input stream
59 SEQ_OP; beginning of procedure definition list
50 PROC_DEFN_OP; procedure definition follows

4 Object ID of procedure is 4

2 Procedure has 2 arguments

4 Procedure name is 4 characters long...

237 m

225 a

233 i

238 n

49 PROC_DEFN_ARG_OP; description of first argument
5 Argument has object ID 5

1 Argument has mode 1 (INTEGER)

0 Argument has disposition 0 (pass-by-value)

1 Argument is 1 word long

49 PROC_DEFN_ARG_OP; description of second argument

6 Argument has object ID 6

4 Argument has mode 4 (LONG UNSIGNED, or pointer)
1 Argument has disposition 1 (pass-by-reference)

2 Argument is 2 words long

39 NULL_OP; end of argument descriptor list

59 SEQ_OP; beginning of procedure code

13 DEFINE_DYNM_OP; reserve space for local variable
7 Object ID 7

39 NULL_OP; no initializers

SO W IO, OO, ORREON
[eclNe]

RN Od -
[623ANe) [@3aNe]

~ D
o

OgOUwdIbdORrRr OO ORF R W o
[eelNe]

Size 1 word
SEQ_OP; next element of procedure code
DEFINE_DYNM_OP; reserve space for local variable
Object ID 8
NULL_OP; no initializers
Size 10 words
SEQ_OP; next element of procedure code
DEFINE_DYNM_OP; reserve space for local variable
Object ID 9
NULL_OP; no initializers
Size 2 words

SEQ_OP; next

element of procedure code

OBJECT_OP; (this is actually an expression subtree)
Mode 1 (INTEGER)
Object ID 1
SEQ_OP; next element of procedure code
INDEX_OP; again, the top of an expression subtree

Mode 1

(INTEGER)

OBJECT_OP; this one is the base address of the array
Mode 7 (STOWED)
Object ID 2
CONST_OP; this one is the index expression
Mode 1 (INTEGER)
Length is 1 word
Value of word is 0
Array element size is 1 word

SEQ_OP; next
SELECT_OP;
Mode 1

element of procedure code
again, the top of an expression subtree
(INTEGER)

Field to be selected has word offset 0 from base
OBJECT_OP; the base address of the structure
Mode 7 (STOWED)
Object ID 3

SEQ_OP; next
OBJECT_OP;
Mode 1
Object
SEQ_OP; next
INDEX_OP;
Mode 1

element of procedure code
an expression, again
(INTEGER)
ID is 7
element of procedure code
using an array element as an expression
(INTEGER)

OBJECT_OP; this is the base of the array being indexed
Mode 7 (STOWED)
Object ID is 8
CONST_OP; this is the subscript expression
MODE 1 (INTEGER)
Length of constant is 1 word
Value of constant is 0
Array element size is 1 word

SEQ_OP; next

element of procedure code

SELECT_OP; using struct field as an expression
Mode 1 (INTEGER)
Offset of selected field is 0 words from base

OBJECT_OP; this is the base address of the structure
Mode 7 (STOWED)
Object ID is 9

SEQ_OP; next

element of procedure code

- 69 -

40 OBJECT_OP; just the top of an expression tree

4 Mode 4 (LONG_UNSIGNED, or pointer)

6 Object ID is 6

59 SEQ_OP; next element of procedure code

40 OBJECT_OP; an expression, again

1 Mode 1 (INTEGER)

5 Object ID is 5

39 NULL_OP; end of procedure body code (and proc defn)
39 NULL_OP; end of procedure defn list (and this module)
39 NULL_OP; end of this input stream
PMA Code

SEG Assemble in 64V mode

RLIT Place literals in procedure frame

SYML Allow 8-character external symbols

ENT I,L1_ I is an entry point, with address L1_
ENT S,L3_ S is an entry point, with address L3_
ENT MAIN, L4_ MAIN is an entry point, with address L4_
ENT II,L2_ IT is an entry point, with address L2_
LINK Emit data in link (static data) frame
L1_ EQU *

BSZ 1 Reserve 1 word for L1_

PROC

LINK

L2_ EQU *

BSZ 12 Reserve 10 words (12 octal) for L2_
PROC

LINK

L3_ EQU *

BSZ ’2 Reserve 2 words for L3_

PROC

PROC

L65535_ EQU * Beginning of a procedure

ARGT Transfer arguments from caller

EAL L4_ Set up stack frame owner pointer for debugging
STL SB%+18

LDA ="4000

STA% SB%

LDA SB%+’24,* Make copy of pass-by-value arguments

STA SB%+’'24

LDA LB%+"400 Evaluate expression 1,

1

LDA LB%$+’401 2,
LDA LBS%+’413 3,
LDA SB%+’25 4,
LDA SB%+’ 32 5
LDA SBS$+’ 44 6
7

LDL SB%+’27

l4

4

’

LDA SB%+’24 8

PRTN Return from the procedure

L4_ ECB L65535_,,SB%+’24,2,'46 Entry control block
DATA 4 PL/I char varying procedure name

DATA ’'166741
DATA ’'164756
END End of this PMA module

String Copy

C Code
strcpy (s, t) /* copy string s to string t */
char s[], tl[];
{
int 1i; /* a local integer variable, for indexing */
i=0; /* start at first char */
while ((t[1i] = s[i]) !'= "\0") /* copy until a zero char is seen */
i +=1; /* incrementing the index each time */

IMF Stream 1

32 MODULE_OP; begins the input module

59 SEQ_OP; begins sequence of entry points
1 Object number 1 is an entry point

6 whose name is 6 characters long...
243 s

244 t

242 r

227 c

240 o)

249 y

39 NULL_OP; terminates entry point list

39 NULL_OP; terminates list of modules in the input

IMF Stream 2

32 MODULE_OP; begins the input module
39 NULL_OP; terminates the sequence of static data definitions
39 NULL_OP; terminates list of modules in the input

IMF Stream 3

32 MODULE_OP; begins next module in the input stream
59 SEQ_OP; first procedure definition follows

50 PROC_DEFN_OP; procedure definition follows
1 Procedure is object number 1

2 There are 2 arguments, described below.
6 Procedure name is 6 characters long...
243 s

244 t

242 r

227 c

240 o)

249 y

49 PROC_DEFN_ARG_OP; description of argument number 1
2 Argument 1is object number 2

4 LONG_UNS_MODE; argument is a pointer

P w s N

R OR RO RN
o

o U1
[62Ne]

= oW
~J

N D IR EPEPNERESERE DO DdDIRFRLREPDN
(@] (@] (6] (6] o o (6] 6]

REF_DISP; argument is passed-by-reference

Argument is 2 words long

PROC_DEFN_ARG_OP; description of argument number 2

Argument is object number 3

LONG_UNS_MODE; argument is a pointer
REF_DISP; argument is passed-by-reference

Argument is 2 words long

NULL_OP; end of argument descriptions
SEQ_OP; beginning of procedure code list
DEFINE_DYNM_OP; declare a local variable

Variable has object id 4
No initializers
Variable is 1 word in length
SEQ_OP; next element of code list
ASSIGN_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id is 4
CONST_OP
INT_MODE
Constant has length 1
Constant has wvalue 0
Assignment transfers 1 word
SEQ_OP; next element of code list
WHILE_OP
NE_OP
INT_MODE
ASSIGN_OP
INT_MODE

INDEX_OP; the LHS of the assignment

INT_MODE

DEREF_OP; this is the base address

STOWED_MODE

OBJECT_OP
LONG_UNS_MODE
Object id is 3

OBJECT_OP; this is the subscript

INT_MODE
Object id is 4

Array element size is 1 word
INDEX OP; the RHS of the assignment

INT_MODE

DEREF_OP; the base address expression

STOWED_MODE

OBJECT_OP
LONG_UNS_MODE
Object id is 2

OBJECT_OP; the subscript,

INT_MODE
Object id is 4

e Rl N =N =T

Array element size is 1 word
Assignment transfers 1 word
CONST_OP; the right operand of the NE_OP
INT_MODE
Constant is 1 word long

e}

PR OBMR DR R OO
o

NULL_O
NULL_OP;

PMA Code

SEG

RLIT

SYML

ENT STRCPY,L1_
PROC
L65535_ EQU *
ARGT

EAL L1_

STL SB%+18

LDA =’4000
STAS SBS%

CRA

STA SB%+’ 32
JMP L65533_
FIN

L65532_ EQU *
IRS SB%+’32
RCB

L65533_ EQU *
LDX SB%+’ 32
LDA SB%+'24, *X
STA SB%+/27,*X
BNE L65532_
L65534_ EQU *
PRTN

L1_ ECB L65535_

DATA
DATA
DATA
DATA
END

"6

7171764
7171343
7170371

Constant has wvalue 0
SEQ_OP; beginning of the body of the WHILE loop
ADDAA_OP
INT_MODE
OBJECT_OP
INT_MODE
Object id is 4
CONST_OP
INT_MODE
Length is 1 word
Value is 1
NULL_OP; end of the body of the WHILE loop
NULL_OP; end of the statements for the current procedure
P; end of the procedure definitions in this module
end of this input stream

Transfer arguments from caller
Set up stack frame owner pointer for debugging

Load A with zero
Store in i
Enter the WHILE loop at the test
(dump literals here)
Top of the WHILE loop body
Increment i
(takes two instructions on this turkey machine)
WHILE loop test starts here
Load index register with i
Load next character in string s
Store it in next position in string t
If it’s non-zero, go back for more characters
Exit label for the WHILE loop
Return from string copy procedure
, ,SB%+'24,2,"33

73 -

Tree Print

C Code
/* recursive tree-printing routine */
#define NULL 0 /* a nil pointer */

struct TNODE /* the data structure out of which the tree is built */
{
int value;
struct TNODE *left, *right;
bi

typedef struct TNODE tnode; /* create a new type, for convenience */

treeprint (t)
tnode *t;
{
if (t != NULL)
{
treeprint (t->left);
printf ("%$4d\n", t->value); /* output the ’value’ field */
treeprint (t->right);
}

IMF Stream 1

32 MODULE_OP; beginning of next module in input stream
59 SEQ_OP; beginning of list of entry point declarations
1 Object number 1 is an entry point

9 whose name is 9 characters long...

244 t

242 r

229 e

229 e

240 o)

242 r

233 i

238 n

244 t

39 NULL_OP; end of entry point list for this module
39 NULL_OP; end of modules in this input stream

IMF Stream 2

32 MODULE_OP; beginning of next module in this input stream

59 SEQ_OP; beginning of list of static data definitions

11 DECLARE_STAT_OP; declare an externally-defined object
3 Object has object id 3

6 Name of object is 6 characters long...

240 P

242
233
238
244
230
39

39

IMF

32
59
50

244
242
229
229
240
242
233
238
244

Do
o

o [eelNe]

PP bR DdMOOONDODN
~

ul

[G2BEN]
©

Hhoot 3ok R

NULL_OP; end of static data for this module
NULL_OP; end of modules in this input stream

Stream 3

MODULE_OP; beginning of next module in input stream
SEQ_OP; beginning of list of procedure definitions
PROC_DEFN_OP; procedure definition follows
Procedure has object id 1
Procedure has 1 argument
Procedure name is 9 characters long...
t

S5 H KRBT OOHR

t
PROC_DEFN_ARG_OP; description of procedure argument
Argument has object id 2
Argument has mode LONG_UNS (it’s a pointer)
Argument has REF disposition (pass-by-reference)
Argument is 2 words long
NULL_OP; no further argument descriptions
SEQ_OP; beginning of statement list
IF_OP
INT_MODE
NE_OP
LONG_UNS_MODE
OBJECT_OP
LONG_UNS_MODE
Object has id 2
CONST_OP
LONG_UNS_MODE
Constant has length 2
First word of constant is 0
Second word of constant is 0
SEQ_OP; then-part of IF statement follows
PROC_CALL_OP (for treeprint)
INT_MODE
OBJECT_OP; this is the base address
STOWED_MODE; arbitrary, for procs.
Object id of procedure is 1
PROC_CALL_ARG_OP
STOWED_MODE
DEREF_OP
STOWED_MODE
SELECT_OP

LONG_UNS_MODE
Field offset is 1 word
DEREF_OP
STOWED_MODE
OBJECT_OP
LONG_UNS_MODE
Object id is 2
NULL_OP; end of argument list
SEQ_OP; next element of IF body follows
PROC_CALL_OP (for printf)
INT_MODE
OBJECT_OP; the base address
STOWED_MODE; ignored in this case
Object id of procedure is 3
PROC_CALL_ARG_OP
INT_MODE
DEREF_OP
INT_MODE
REFTO_OP
LONG_UNS_MODE (pointer to char)
CONST_OP; this is the string
STOWED_MODE
Length is 5 words
Value 1is

ewline

o5 Qoo

PROC_CALL_ARG_OP
INT_MODE
SELECT_OP
INT_MODE
Field is at offset O
DEREF_OP; base address of struct
STOWED_MODE
OBJECT_OP
LONG_UNS_MODE
Object id is 2
NULL_OP; end of argument list
SEQ_OP; next element of body of IF follows
PROC_CALL_OP
INT_MODE (ignored)
OBJECT_OP; the procedure address
STOWED_MODE
Object id is 1
PROC_CALL_ARG_OP
STOWED_MODE
DEREF_OP
STOWED_MODE
SELECT_OP
LONG_UNS_MODE
Field has offset 3 words
DEREF_OP
STOWED_MODE
OBJECT_OP
LONG_UNS_MODE

Object id is 2

39 NULL_OP; end of treeprint args
39 NULL_OP; end of then-part of IF
39 NULL_OP; omitted else-part of the IF
39 NULL_OP; end of statements in this procedure
39 NULL_OP; end of procedure definition list (and this module)
39 NULL_OP; end of modules in this input stream
PMA Code
SEG
RLIT
SYML
ENT TREEPRINT,L1_ Make ’treeprint’ available outside this module
LINK
EXT PRINTF
L3_ EQU *
IP PRINTF Use ’'printf’, defined outside this module
PROC
PROC
L65535_ EQU * Beginning of ’'treeprint’
ARGT Transfer arguments from caller
EAL L1_ Set up stack frame owner pointer for debugging
STL SB%+18
LDA ='4000
STA% SB%

LDL SB%+’24

If the argument...

BLEQ L65534_ .1s nonzero...
IDX ='1 we first get the pointer in the ’'left’ field
EAXB SB%+’24, *X by addressing the field with XB

LDL XB%+’0
STL SB%+’27
PCL L1_

AP SB%+’27, *SL

LINK
DATA
DATA
DATA
DATA
DATA
PROC

PCL LB%+’400, *
AP LB%+’402,S

AP SB%+’24,*SL
=3

LDX

r245
r264
344
r212
"0

then loading the value of the pointer into L
then storing it in a temporary

call ’"treeprint’ recursively

using the temporary to pass the value

This is the format string for ’'printf’...
...value is "%4d\n\O"

Here’s the call to ’'printf’

passing the formatting string

and the value field of the current tnode
Now we get the pointer in the ’'right’ field

EAXB SB%+’24,*X pretty much as we did it before
LDL XB%+'0
STL SBS%+'27
PCL L1_

AP SB%+'27,*SL

L65534_ EQU *

PRTN

and call ’treeprint’,
passing it the pointer to the right subtree

return from ’'treeprint’

L1_ ECB L65535_,,SB%+'24,1,"31

DATA
DATA

11
172362

DATA
DATA
DATA
DATA
END

7162745
7170362
7164756
7172041

- 78 -

The ’'Drift’ Compiler

The ’'Drift’ Language

Description

'Drift’ 1is an extremely simplified programming language for
computers with Von Neumann-style architectures. While too
restrictive to be generally useful, it does have a few interest-
ing features. It 1s an expression-oriented language rather than
statement-oriented; non-declarative constructs generally yield a
value of some sort. The syntax is intended to Dbe conducive to
simple error recovery schemes (particularly to panic-mode symbol
skipping) while retaining a reasonable degree of cleanliness and
human engineering (for example, statements are terminated by end-
of-line, rather than some delimiter like a semicolon;
continuations across lines are represented explicitly by an "&’).
The semantics of the language closely reflect the expression-—
oriented semantics of the VCG itself.

'Drift’ programs are composed of variable declarations,
function declarations, and expressions. Variables may be global
in scope or restricted to the function in which they are

declared. Function declarations may not Dbe nested. All
variables represent floating point quantities; all functions
return floating point quantities. The return value of a function

is the return value of the last expression 1in the expression
series that comprises its body. Functions may be recursive and
need not be defined before use. The function named ’main’ is
assumed to be the main program, and will be invoked by whatever
environment supports ’‘drift’ programs.

Expressions are made of the four standard operators (+, -
*, /), assignment (=", treated wuniformly as an arithmetic
operator yielding the wvalue of its right-hand-side), two-way
selection ("if’), and a loop ('while’). Variables in expressions
yield their values (or take on new ones if used as the left
operand of an assignment operator). They must be declared before
they are used. Function calls in expressions cause parameters to
be passed by value to the named function; the value returned by
the function then takes the place of the call in the expression.
The quad ('#’) is a pseudovariable used for input/output. When
used in the right-hand-side of an assignment, it causes input of
a floating point value from standard input; when used in the
left-hand-side, it causes output of the right-hand-side to stan-
dard output.

BNF
The syntax of ’'drift’ presented below employs the extended

BNF used throughout the Software Tools Subsystem documentation.

- 79 -

Alternatives enclosed in curly braces {} may be repeated any num-
ber of times, including zero. Alternatives enclosed 1in square
brackets [] may be used once or not at all.

program —>
newlines {declaration newlines} eof

declaration —>
global_variable_declaration
| function_declaration

global_variable_declaration —->
"float’ identifier {’,’ newlines identifier}

identifier ->
letter {letter | digit | r_ry

newlines ->
{NEWLINE}

function_declaration —>
" function’ identifier ’ (’ formal_parameters ')’ newlines
{local_variable_declaration newlines}
series newlines
"end_function’

formal_ parameters —>
[identifier {’,’ newlines identifier}]

local_variable_declaration —>
"float’ identifier {’,’ newlines identifier}

series —>
expression newlines {expression newlines}

expression —>
sum {’=’ sum}

sum —>
term {("+' | r-") term}
term —>
primary {(’*’ | ’/’) primary}

primary ->
I#I
| ’nu1ll’
| number
| identifier
| identifier ’ (! actual_parameters ')’
| loop
| conditional
| ' (" series ')’

loop —>

'while’ newlines series newlines
"do’ newlines
series newlines
14 odl

conditional ->
"if’ newlines series newlines
"then’ newlines series newlines
["else’ newlines series newlines]
Ifil

actual_parameters —>
[series {’,’ newlines series}]

Examples

The following programs compute the value of a base raised to

a positive integer exponent. The first is iterative,

second is recursive.

—-— A sample program in ‘drift’
float x, y
function power (base, exponent)
float result

result = 1

while exponent -— that is,

do
result = result * base
exponent = exponent - 1
od

result
end_function

function main ()

x = #

y = #

= power (x, y)
end_function

—— The same sample, only done recursively

float x, y

function power (base, exponent)
if exponent

while the

while exponent <> 0

then base * power (base, exponent - 1)
else 1
fi

end_function

function main ()

x = #

y = #

= power (%X, V)
end_function

The Compiler

The ’'drift’ compiler was implemented in Ratfor wunder the
Software Tools Subsystem in about two man-days. Conceptually, it
generates intermediate form code for the VCG in two passes: the
first (lexical and syntactic) generates an internal form wused
only by the front end, while the second (semantic) does semantic
checking and converts the internal form to IMF.

The lexical analyzer used in the compiler is a fairly stan-
dard one employed in a number of Software Tools Subsystem
programs because of its compactness and high speed. It resides
almost entirely in the subroutine ’getsym’.

The parser code 1is input to ’stacc’, a recursive-descent
parser generator that is part of the Software Tools package. The
production for ’program’ is actually the main routine of the com-
piler. Note that very little attempt is made to recover from
syntactic errors; the purpose of the compiler is the demonstra-
tion of code generation, not parsing. The parser drives the com-
pilation process, making calls on the lexical analyzer and inter-
nal form code generation routines as necessary.

The IMF generation process is concentrated in the subroutine
"semantic_analysis’ and its descendents. This routine invokes
"void_context’, "1lvalue_context’, and "rvalue_context’ to
propagate contextual information during a traversal of the inter-
nal form tree. The bulk of the IMF generation takes place in
"rvalue_context’, since most operators vyield floating point
values. Special cases are handled in the other two contexts:
left-hand-sides of assignments by ’lvalue_context’ and constructs
that don’t vyield wvalues by ’'void_context’. Since the internal
form is tree structured, the translation to IMF 1is straightfor-
ward.

Global Variable Definitions

global variables for ‘drift’ compiler

dynamic storage used by symbol table routines:
DS_DECL (Mem, MEMSIZE)

symbol tables:

pointer Functions, Globals,
common /stcom/ Functions,

lexical stuff:

character Inbuf (INBUFSIZE),

Locals, Reserved_words
Globals, Locals, Reserved_words

Symtext (MAX_SYM_LEN)

integer Symbol, Ibp, Current_line

real Symval
common /lexcom/ Inbuf,

files for I/0:

Symtext, Symbol, Ibp, Current_line, Symval

filedes In_stream, Ent_stream, Data_stream, Code_stream

common /filcom/ In_stream,

internal form memory:

Ent_stream, Data_stream, Code_stream

integer Ifmem (INTERNAL_FORM_MEMSIZE), Next_ifmem

common /iflcom/ Ifmem

common /if2com/ Next_ifmem

semantic stack:

ifpointer Stack (SEMANTIC_STACK_SIZE)

integer Sp

common /semcom/ Sp, Stack

other junk:

integer Next_obj_id, Exin_id, ExSout_id, Error_count
common /miscom/ Next_obj_id, Exin_id, ExSSout_id, Error_count

Parser Source Code

’stacc’ parser for drift
.common "drift_com.r.i";
.symbol Symbol;

.scanner getsym;

.state state;

.terminal
256
FLOAT_SYM
ID_SYM
FUNCTION_SYM
END_FUNCTION_SYM
NULL_SYM
NUMBER_SYM
WHILE_SYM
DO_SYM
OD_SYM
IF_SYM
THEN_SYM
ELSE_SYM

file containing global variables
"current symbol" variable

name of lexical analysis routine
"parse state" variable

terminal symbols
start higher than largest character value

83 -

FI_SYM

’

NEWLINE
EOF

’

program —>
! call begin_program
nls
{
declaration
nls

}
EOF.

! call end_program

? call pmr ("EOF expected*n"p, state)
;
declaration —>
| global_variable_declaration
function_declaration
’
global_variable_declaration ->
FLOAT_SYM
ID_SYM
! call declare_global_variable (Symtext)
? call pmr ("missing identifier*n"p, state,
state)
{
l,l
nls
ID_SYM
! call declare_global_variable (Symtext)
? call pmr ("missing identifier*n"p, state)
}
’
nls —>
{
NEWLINE

}

function_declaration ->
FUNCTION_SYM
ID_SYM
! call begin_function (Symtext)
call pmr ("missing function name*n"p, state)

)

I(I

! call make_null

? call pmr ("missing parameters*n"p, state)
formal_ parameters

! call make_function_parameters

? call pmr ("missing ’)’*n"p, state)
! call make_null

local_variable_declaration
nls
}
series
! call make_function_body
? call pmr ("missing function body*n"p, state)
nls
END_FUNCTION_SYM
! call end_function
? call pmr ("missing "end_function’ *n"p,
state)

’

formal parameters —->

ID_SYM
! call declare_formal_parameter (Symtext)
{
r r
’
nls
ID_SYM
! call declare_formal_parameter (Symtext)
? call pmr ("missing identifier*n"p, state)
| }
epsilon

local_variable_declaration —>

FLOAT_SYM
ID_SYM
! call declare_local_variable (Symtext)
? call pmr ("missing identifier*n"p, state)
{
I’I
nls
ID_SYM

! call dec
? call pmr

series —>
expression
nls
{

expression

lare_local_variable
("missing identifier*n"p,

! call sequentialize

nls

}

expression —>

(Symtext)

state)

state)

sum
{
r—r
sum
! call make_dyad (ASSIGN_NODE)
? call pmr ("missing right-hand-side*n"p,
state)
}
7
sum —>
! integer node
term
{
(
I+I
! node = ADD_NODE
| r_r
! node = SUBTRACT_NODE
)
term
! call make_dyad (node)
? call pmr ("missing right operand*n"p,
}
7
term —>
! integer node
primary

{
(

r/r

)

primary

primary ->

I#I

NULL_SYM

NUMBER_SYM

ID_SYM

I(I

node = MULTIPLY_ NODE

node DIVIDE_NODE

call
call

(node)
("missing right operand*n"p,

make_dyad
pmr

character id (MAX_SYM_ LEN)

call make_gquad
call make_null
call make_constant

(Symval)

call scopy (Symtext, 1, id, 1)

actual_parameters

r)r

!

)
loop
conditional

14 (I
series
r) r

loop —>
WHILE_SYM
nls
series

state)

(id)
("missing ryrs *nnp’

call make_call

call pmr state)

call make_object (id)

call pmr ("missing ’)’*n"p, state)

call pmr ("missing loop

state)

condition*n"p,

nls

DO_SYM

nls

series

nls

OD_

condit

IF_.

nls
ser

state)
nls
THE

nls
ser

FI_

SYM

ional —>
SYM

ies

N_SYM

ies

ELSE_SYM
nls
series

nls

nls

SYM

actual_parameters

state)

series

ror
4

nls
series

call pmr ("missing ’do’*n"p, state)
call pmr ("missing loop body*n"p, state)
call make_loop
call pmr ("missing "od’*n"p, state)
call pmr ("missing ’if’ condition*n"p,
call pmr ("missing ’then’*n"p, state)
call pmr ("missing then_part*n"p, state)
call pmr ("missing else_part*n"p, state)
call make_null
call make_conditional
call pmr ("missing ’fi’*n"p, state)
call make_null
call make_actual_parameter
call make_actual_parameter
call pmr ("missing parameter after ',’*n"p,

epsilon

Remainder of Compiler Source Code
drift --- sample compiler for VCG demonstration
define (GLOBAL_VARIABLES, "drift_com.r.i")

define (MAX_SYM_LEN, MAXLINE)

define (MEMSIZE, 4096)

define (SEMANTIC_STACK_SIZE, 100)
define (INTERNAL_FORM_MEMSIZE, 20000)
define (INBUFSIZE, 300)

define (PBLIMIT, 150)

define (UNDEFINED, O0)
define (DEFINED, 1)

define (ifpointer, integer)
define (unknown, integer)

Types of internal form nodes:
define (ADD_NODE, 1)

define (ARG_NODE, 2)

define (ASSIGN_NODE, 3)

define (CALL_NODE, 4)

define (COND_NODE, 5)

define (CONSTANT_NODE, 6)

define (DECLARE_VAR_NODE, 7)
define (DIVIDE_NODE, 8)

define (FUNCTION_NODE, 9)

define (IO_NODE,10)

define (LOOP_NODE, 11)

define (MULTIPLY_NODE, 12)
define (NULL_NODE, 13)

define (PARAM_NODE, 14)

define (SEQ_NODE,15)

define (SUBTRACT_NODE, 16)
define (VAR_NODE,17)

define (LAST_NODE_TYPE, VAR_NODE)

Elements of internal form records:
define (ARG_EXPR (n), Ifmem (n + 2))
define (ARG_LIST (n), Ifmem (n + 3))
define (COND (n), Ifmem (n + 2))
define (ELSE_PART (n), Ifmem (n + 4)
define (FUNC_BODY (n), Ifmem (n + 5)
define (LEFT (n), Ifmem (n + 2))
define (LINE_NUM (n), Ifmem (n + 1))
define (LOOP_BODY (n), Ifmem (n + 3))
define (NODE_TYPE (n), Ifmem (n))
define (NPARAMS (n), Ifmem (n + 4))
define (OBJ_ID (n), Ifmem (n + 2))
define (PARAM_LIST (n), Ifmem (n + 3))

)
)

- 89 -

define (RIGHT (n), Ifmem (n + 3))
define (THEN_PART (n), Ifmem (n + 3))
define (WORD1l (n), Ifmem (n + 2))
define (WORD2 (n), Ifmem (n + 3))

include "drift.stacc.defs" # macro defns. produced by ’stacc’
include "/uc/allen/vcg/vcg_defs.r.i" # macro defns. for IMF operators

integer state

call program (state)

if (state "= ACCEPT)
call error ("syntactically incorrect program"p)
stop
end
include "drift.stacc.r" # Ratfor source code produced by ’stacc’
begin_function -—-- set up environment for compiling a function

subroutine begin_function (name)
character name (ARB)

include GLOBAL_VARIABLES
pointer mktabl

integer info2 (2)
integer lookup, gen_id

ifpointer func_node
ifpointer ialloc

Next_ifmem = 1 # initialize internal form memory
Locals = mktabl (1) # initialize local variable symbol table
Sp = 0 # initialize semantic stack pointer

Place function name in ’'Functions’ table, if it’s not already there

if (lookup (name, info2, Functions) == YES)
if (info2 (2) == DEFINED)
call warning ("function *s multiply defined*n"p, name)
else {
info2 (2) = DEFINED

call enter (name, info2, Functions)

}

else {
info2 (1) = gen_id (1)
info2 (2) = DEFINED

call enter (name, info2, Functions)

}

Output an entry point definition for the procedure:

call emit (SEQ_OP, Ent_stream)

call emit (info2 (1), Ent_stream) # object id of function
call emit_string (name, Ent_stream) # function name
Put function node on semantic stack:

func_node = ifalloc (FUNCTION_NODE)

NPARAMS (func_node) = 0

OBJ_ID (func_node) = info2 (1)

call push (func_node)

return
end

begin_program --- do pre-program initialization
subroutine begin_program
include GLOBAL_VARIABLES
pointer mktabl
filedes create, open
character infile (MAXARG)

integer getarg, gen_id

call dsinit (MEMSIZE) # init. dynamic storage

Functions = mktabl (2) # symbol table for function names
Globals = mktabl (1) # symbol table for global variables
Reserved_words = mktabl (1) # symbol table for reserved words
Next_obj_id = 1 # for object id generator
Error_count = 0

Ibp =1 # buffer pointer...

Inbuf (Ibp) = EOS # ...and input buffer used by lexer
Current_line = 0

open input file specified on command line:

if (getarg (1, infile, MAXARG) == EOF)
In_stream = STDIN

else {
In_stream = open (infile, READ)
if (In_stream == ERR)

call cant (infile)

}

create temporary files for passing the IMF to the code generator:

Ent_stream = create ("_drift_.ctl"s, READWRITE)

Data_stream = create ("_drift_.ct2"s, READWRITE)

Code_stream = create ("_drift_.ct3"s, READWRITE)

if (Ent_stream == ERR || Data_stream == ERR || Code_stream == ERR)

call error ("can’t open temporary files _drift_.ct[1-3]"p)

- 91 -

call emit (MODULE_OP, Ent_stream)
call emit (MODULE_OP, Data_stream)
call emit (MODULE_OP, Code_stream)

define object id’s for the two run-time routines we’ll need:
Ex$in_id = gen_id (1) # run-time routine for input
call emit (SEQ_OP, Data_stream)
call emit (DECLARE_STAT_OP, Data_stream)
call emit (Ex$in_id, Data_stream)
call emit_string ("EX$IN"s, Data_stream)

Ex$out_id = gen_id (1) # run-time routine for output
call emit (SEQ_OP, Data_stream)

call emit (DECLARE_STAT_OP, Data_stream)

call emit (Ex$out_id, Data_stream)

call emit_string ("EXS$OUT"s, Data_stream)

build the reserved-word table used by the lexical analyzer:
call enter ("do"s, DO_SYM, Reserved_words)

call enter ("else"s, ELSE_SYM, Reserved_words)

call enter ("end_function"s, END_FUNCTION_SYM, Reserved_words)
call enter ("fi"s, FI_SYM, Reserved_words)

call enter ("float"s, FLOAT_SYM, Reserved_words)

call enter ("function"s, FUNCTION_SYM, Reserved_words)

call enter ("if"s, IF_SYM, Reserved_words)

call enter ("null"s, NULL_SYM, Reserved_words)

call enter ("od"s, OD_SYM, Reserved_words)

call enter ("then"s, THEN_SYM, Reserved_words)

call enter ("while"s, WHILE_SYM, Reserved_words)

fire up lexical analysis:
call getsym

return
end

declare_formal_parameter —-—-- put formal param name in table, assign obj id

subroutine declare_formal_parameter (name)
character name (ARB)

include GLOBAL_VARIABLES

integer obj_id
integer lookup, gen_id

ifpointer param_node
ifpointer ifalloc

if (lookup (name, obj_id, Locals) == YES) {
call warning ("*s: multiply declared*n"p, name)
return

}

obj_id = gen_id (1)
call enter (name, obj_id, Locals)

create new parameter node and combine it with previous sequence
on the semantic stack:

param_node = ifalloc (PARAM_NODE)

OBJ_ID (param_node) = obj_id

call push (param_node)

call sequentialize

NPARAMS (Stack (Sp - 1)) +=1

return
end

declare_global_variable —--- put name in global table, assign object id

subroutine declare_global_variable (name)
character name (ARB)

include GLOBAL_VARIABLES

integer obj_id
integer lookup, gen_id

if (lookup (name, obj_id, Globals) == YES) {
call warning ("*s: multiply declared*n"p, name)
return

}

obj_id = gen_id (1)
call enter (name, obj_id, Globals)

go ahead and reserve space in the static data storage area for
the variable we just declared:

call emit (SEQ_OP, Data_stream)

call emit (DEFINE_STAT_OP, Data_stream)

call emit (obj_id, Data_stream)

call emit (NULL_OP, Data_stream) # no initializers
call emit (2, Data_stream) # 2 words for a floating object
return
end
declare_local_variable -—- enter name in local table, assign object id

subroutine declare_local_variable (name)
character name (ARB)

include GLOBAL_VARIABLES

integer obj_id

integer lookup, gen_id

ifpointer decl_var_node
ifpointer ifalloc

if (lookup (name, obj_id, Locals) == YES) {
call warning ("*s: multiply declared*n"p, name)
return

}

obj_id = gen_id (1)
call enter (name, obj_id, Locals)

make new variable declaration node and put it into a sequence

following all previously declared variables:
decl_var_node = ifalloc (DECLARE_VAR_NODE)
OBJ_ID (decl_var_node) = obj_id

call push (decl_var_node)
call sequentialize

return
end

emit --- place value on an output stream

subroutine emit (val, stream)
integer val
filedes stream

call print (stream, "*i*n"s, wval)

return
end

emit_string —--- place length of string and string on an output stream

subroutine emit_string (str, stream)
character str (ARB)
filedes stream

integer i
integer length

call emit (length (str), stream)
for (i = 1; str (i) "= EOS; i += 1)
call emit (str (i), stream)

return
end

end_function —--- clean up after parse of a function is completed
subroutine end_function
include GLOBAL_VARIABLES

call semantic_analysis (Stack (Sp))

call rmtabl (Locals) # get rid of all local variable information
return
end

end_program —--- clean up after the entire program is parsed

subroutine end_program
include GLOBAL_VARIABLES
pointer position

integer info2 (2)
integer sctabl

character sym (MAX_SYM_LEN)

logical first

call close (In_stream)

terminate IMF streams by ending sequence of definitions, then
ending sequence of modules:

call emit (NULL_OP, Ent_stream); call emit (NULL_OP, Ent_stream)
call emit (NULL_OP, Data_stream); call emit (NULL_OP, Data_stream)
call emit (NULL_OP, Code_stream); call emit (NULL_OP, Code_stream)
call close (Ent_stream)

call close (Data_stream)

call close (Code_stream)

check function table for names that were referenced but not

declared; presumably these are externally compiled
first = TRUE
position = 0
while (sctabl (Functions, sym, info2, position) 7= EOF)
if (info2 (2) == UNDEFINED) {

if (first) {
call print (STDOUT, "External symbols:*n"p)
first = FALSE
}

call print (STDOUT, "*s*n"p, sym)

}

return
end

gen_id --- generate new object identifiers

integer function gen_id (num_ids)
integer num_ids

include GLOBAL_VARIABLES

gen_id = Next_obj_id
Next_obj_id += num_ids

return
end

getsym —--- get next symbol from input stream
subroutine getsym
include GLOBAL_VARIABLES

procedure getchar forward
procedure putback (c) forward
procedure empty_buffer forward

character c

integer i
integer getlin, lookup

real ctor
logical too_long, continuation

continuation = FALSE # true if we want to ignore a line boundary
repeat { # until we find a legal symbol

repeat
getchar
until (¢ "=’ 'c)

select (c)

when (NEWLINE) {
Current_line += 1
Symbol = NEWLINE
if (“continuation)
break

}

when (’;’c) {
Symbol = NEWLINE # but no line number advance
if (“continuation)

break

}

when ('-'c) {
getchar
if (¢ == "-'¢c) {
empty_buffer
Current_line += 1
Symbol = NEWLINE
if (“continuation)
break

—— begins comments

}

else {
putback (c)
Symbol = "-'¢c
break
}

}

when (’&’c)
continuation = TRUE

when ('+'c, '"*'c, "/'c, "#'c, "('c,

"Y'e, "y'c, "='c, EOF) {
Symbol = c

break
}
when (SET_OF_LETTERS) { # a-z or A-Z; starting an identifier

too_long = FALSE
i=1
while (IS_LETTER (c) || IS_DIGIT (c) || ¢ == "_"¢c) {

Symtext (i) = c

i+4+=1

if (1 > MAX_SYM LEN) {

i =1

too_long = TRUE
}
getchar
}
putback (c)
Symtext (i) = EOS
if (too_long)

call warning ("symbol beginning *s is too long*n"p,

Symtext)
if (lookup (Symtext, Symbol, Reserved_words) == NO)
Symbol = ID_SYM
break

}

when (’.’c, SET_OF_DIGITS) {
putback (c)

Symval = ctor (Inbuf, Ibp) # advances Ibp
Symbol = NUMBER_SYM
break

}

else

call warning ("’ *c’: unrecognized character*n"p, c)
} # repeat until a valid symbol is found

return

getchar —--- get the next character from the input stream

procedure getchar {

if (Inbuf (Ibp) == EOS) # time to read a new buffer?
if (getlin (Inbuf (PBLIMIT), In_stream) == EOF)
c = EOF
else {
c = Inbuf (PBLIMIT) # pick up the first char read

Ibp = PBLIMIT + 1
}

else { # text was already available
c = Inbuf (Ibp)
Ibp += 1
}
}
putback --- push a character back onto the input stream

procedure putback (c) {
character c

if (Ibp <= 1)
call error ("too many characters pushed back"p)

else {
Ibp =1
Inbuf (Ibp) = c
}
}
empty_buffer —--- kill remainder of line in input buffer

procedure empty_buffer {

Inbuf (Ibp) = EOS # will force a read in ’getchar’

end

ifalloc -—- allocate space for a particular type node in internal form memory

ifpointer function ifalloc (node_type)

- 98 -

integer node_type
include GLOBAL_VARIABLES

These declarations assume that the internal form node types form
a dense ascending sequence of integers from 1 to LAST_NODE_TYPE:
integer sizeof (LAST_NODE_TYPE)
data sizeof / _
ADD_NODE
ARG_NODE
ASSIGN_NODE
CALL_NODE
COND_NODE
CONSTANT_NODE
DECLARE_VAR_NODE
DIVIDE_NODE
FUNCTION_NODE
IO_NODE
LOOP_NODE
MULTIPLY_NODE
NULL_NODE
PARAM_NODE
SEQ_NODE
SUBTRACT_NODE
VAR_NODE

IS
S NS S S S~ S~

~

N N N N~ 0~

~

~NwW bbb WNEEENDNOOD WSO DdDW
[
S oo e S e S S o e 3 e o o o 3 3 3

if (node_type < 1 || node_type > LAST_NODE_TYPE)
call error ("ifalloc received bad node type"p)

if (Next_ifmem + sizeof (node_type) > INTERNAL_FORM_MEMSIZE)
call error ("insufficient internal form memory"p)

ifalloc = Next_ifmem
Next_ifmem += sizeof (node_type)

NODE_TYPE (ifalloc) = node_type

LINE_NUM (ifalloc) = Current_line

return

end
lvalue_context -—-- generate VCG code for constructs used as lvalues
(assumes I/0 quads have already been eliminated from LHS’s)

subroutine lvalue_context (node)
ifpointer node

include GLOBAL_VARIABLES
select (NODE_TYPE (node))

when (VAR_NODE) {
call emit (OBJECT_OP, Code_stream)

call emit (FLOAT_MODE, Code_stream)
call emit (OBJ_ID (node), Code_stream)
}

when (SEQ_NODE) {

if (NODE_TYPE (RIGHT (node)) == NULL_NODE)
call lvalue_context (LEFT (node))
else {

call emit (SEQ_OP, Code_stream)
call void_context (LEFT (node))
call lvalue_context (RIGHT (node))
}

else
call warning ("assignment on line *i has an illegal left side*n"p,
LINE_NUM (node))

return
end

make_actual_parameter --- link actual parameter expression to list

subroutine make_actual_parameter
include GLOBAL_VARIABLES

ifpointer act_param
ifpointer ifalloc, pop

act_param = ifalloc (ARG_NODE)
ARG_EXPR (act_param) = pop (0)
call push (act_param)

call sequentialize

return
end

make_call --- generate a call to a function

subroutine make_call (name)
character name (ARB)

include GLOBAL_VARIABLES

integer info2 (2)
integer lookup, gen_id

ifpointer call_node
ifpointer ifalloc, pop

if function name is in Functions table, all is well; if not,

- 100 -

we add it provisionally (it may be defined later).

if (lookup (name, info2, Functions) == NO) {
info2 (1) = gen_id (1)
info2 (2) = UNDEFINED

call enter (name, info2, Functions)

}

call_node = ifalloc (CALL_NODE)
OBJ_ID (call_node) = info2 (1)
ARG_LIST (call_node) = pop (0)
call push (call_node)

return
end

make_conditional —--- make conditional (if-then-else—-fi) node
subroutine make_conditional
include GLOBAL_VARIABLES

ifpointer cond
ifpointer if_alloc, pop

cond = i1if_alloc (COND_NODE)
ELSE_PART (cond) = pop (0)
THEN_PART (cond) = pop (0)
COND (cond) = pop (0)

call push (cond)
return
end

make_constant —--- make constant node from given value

subroutine make_constant (val)
real val

include GLOBAL_VARIABLES

real rkluge
integer ikluge (2)
equivalence (rkluge, ikluge) # used to unpack floating point constants

ifpointer cnode
ifpointer ifalloc

cnode = ifalloc (CONSTANT_NODE)
rkluge = val

WORD1 (cnode) ikluge (1)
WORD2 (cnode) = ikluge (2)

- 101 -

call push (cnode)
return
end

make_dyad —-—- make node for a dyadic operator (=, +, -, *, /)

subroutine make_dyad (node_type)
integer node_type

include GLOBAL_VARIABLES

ifpointer node
ifpointer ifalloc, pop

node = ifalloc (node_type)
RIGHT (node) = pop (0)
LEFT (node) = pop (0)

call push (node)

return
end

make_function_body --- add function body to function definition node
subroutine make_function_body
include GLOBAL_VARIABLES

ifpointer body
ifpointer pop

call sequentialize # combine declarations and code
body = pop (0) # note deep-stack addressing makes sequencing
FUNC_BODY (Stack (Sp)) = body # necessary...
return
end
make_function_parameters —--- add params to function definition node

subroutine make_function_parameters
include GLOBAL_VARIABLES

ifpointer params
ifpointer pop

params = pop (0) # note: deep-stack addressing makes use of
PARAM_LIST (Stack (Sp)) = params # a particular sequence necessary

- 102 -

return
end

make_loop —--- pop cond and body off stack, generate a loop node
subroutine make_loop
include GLOBAL_VARIABLES

ifpointer loop
ifpointer ifalloc, pop

loop = ifalloc (LOOP_NODE)
LOOP_BODY (loop) = pop (0)
COND (loop) = pop (0)

call push (loop)

return
end

make_null --- push new "null operator" node on stack
subroutine make_null
include GLOBAL_VARIABLES
ifpointer ifalloc
call push (ifalloc (NULL_NODE))

return
end

make_object —--- push node referencing a variable on the stack

subroutine make_object (name)
character name (ARB)

include GLOBAL_VARIABLES

ifpointer node
ifpointer ifalloc

integer obj_id
integer lookup

node = ifalloc (VAR_NODE)
if (lookup (name, obj_id, Locals) == NO

&& lookup (name, obj_id, Globals) == NO) {

- 103 -

call warning ("*s: undeclared identifier*n"p, name)
obj_id = 0
}

OBJ_ID (node) = obj_id
call push (node)

return
end

make_quad —-——- generate an input/output operation node
subroutine make_quad
include GLOBAL_VARIABLES
ifpointer ifalloc
call push (ifalloc (IO_NODE))

return
end

output_arguments —--- output IMF for procedure call arguments

subroutine output_arguments (arg_node)
ifpointer arg_node

include GLOBAL_VARIABLES
select (NODE_TYPE (arg_node))

when (ARG_NODE) {
call emit (PROC_CALL_ARG_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call rvalue_context (ARG_EXPR (arg_node))
}

when (NULL_NODE)
7
when (SEQ_NODE) {
call output_arguments (LEFT (arg_node))

call output_arguments (RIGHT (arg_node))
}

else
call error ("in output_argument: shouldn’t happen"p)

return
end

- 104 -

output_params —--- output IMF for procedure formal parameter definitions

subroutine output_params (param_node)
ifpointer param_node

include GLOBAL_VARIABLES
select (NODE_TYPE (param_node))

when (PARAM_NODE) {
call emit (PROC_DEFN_ARG_OP, Code_stream)
call emit (OBJ_ID (param_node), Code_stream)
call emit (FLOAT_MODE, Code_stream)
call emit (VALUE_DISP, Code_stream)
call emit (2, Code_stream) # FLOATs are 2 words long
}

when (NULL_NODE)

’

when (SEQ_NODE) {
call output_params (LEFT (param_node))
call output_params (RIGHT (param_node))
}

else
call error ("in output_param: shouldn’t happen"p)
return
end
pmr —--- panic mode recovery for parser

subroutine pmr (message, state)
character message (ARB)
integer state

include GLOBAL_VARIABLES

call warning (message)
state = ACCEPT

while (Symbol "= EOF && Symbol "= ’)’c && Symbol "= NEWLINE
&& Symbol "= END_FUNCTION_SYM && Symbol “= THEN_SYM
&& Symbol "= ELSE_SYM && Symbol "= FI_SYM && Symbol "= DO_SYM
&& Symbol "= OD_SYM && Symbol "= ' ,’c)

call getsym

return
end

- 105 -

pop ——— pop a node pointer off the semantic stack

ifpointer function pop (dummy)
integer dummy # needed to satisfy FORTRAN syntax requirements

include GLOBAL_VARIABLES

if (Sp < 1)
call error ("semantic stack underflow"p)

pop = Stack (Sp)
Sp =1

return
end

push —-—- push a node pointer onto the semantic stack

subroutine push (node)
ifpointer node

include GLOBAL_VARIABLES

if (Sp >= SEMANTIC_STACK_SIZE)

call error ("semantic stack overflow"p)
Sp += 1
Stack (Sp) = node
return
end
rvalue_context —--—- generate VCG code for constructs used as rvalues

subroutine rvalue_context (node)
ifpointer node

include GLOBAL_VARIABLES
select (NODE_TYPE (node))

when (ADD_NODE, SUBTRACT_NODE, MULTIPLY_ NODE, DIVIDE_NODE) {
select (NODE_TYPE (node))
when (ADD_NODE)
call emit (ADD_OP, Code_stream)
when (SUBTRACT_NODE)
call emit (SUB_OP, Code_stream)
when (MULTIPLY_NODE)
call emit (MUL_OP, Code_stream)
when (DIVIDE_NODE)
call emit (DIV_OP, Code_stream)

- 106 -

call emit (FLOAT_MODE, Code_stream)
call rvalue_context (LEFT (node))
call rvalue_context (RIGHT (node))
}

when (ASSIGN_NODE) {
if (NODE_TYPE (LEFT (node)) == IO_NODE) {

fake up output by calling ’ex$out’ at run time:
call emit (PROC_CALL_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call emit (OBJECT_OP, Code_stream)
call emit (STOWED_MODE, Code_stream)
call emit (Ex$out_id, Code_stream)
call emit (PROC_CALL_ARG_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call rvalue_context (RIGHT (node))
call emit (NULL_OP, Code_stream)

}
else {
call emit (ASSIGN_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call lvalue_context (LEFT (node))
call rvalue_context (RIGHT (node))
call emit (2, Code_stream) # assign 2 words
}
}

when (CALL_NODE) {
call emit (PROC_CALL_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call emit (OBJECT_OP, Code_stream)
call emit (STOWED_MODE, Code_stream)
call emit (OBJ_ID (node), Code_stream)
call output_arguments (ARG_LIST (node))
call emit (NULL_OP, Code_stream)
}

when (COND_NODE) {
call emit (IF_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call rvalue_context (COND (node))
call rvalue_context (THEN_PART (node))
if (NODE_TYPE (ELSE_PART (node)) == NULL_NODE)
call warning ("’if’ on line *i needs an ’'else’ part*n"p,
LINE_NUM (node))
call rvalue_context (ELSE_PART (node))
}

when (CONSTANT_NODE) {
call emit (CONST_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call emit (2, Code_stream) # 2-word floats
call emit (WORD1l (node), Code_stream)
call emit (WORD2 (node), Code_stream)
}

- 107 -

when (DECLARE_VAR_NODE) {
call emit (DEFINE_DYNM_OP, Code_stream)
call emit (OBJ_ID (node), Code_stream)
call emit (NULL_OP, Code_stream) # no initializers
call emit (2, Code_stream) # size is 2 words

}

when (IO_NODE) {
fake up input by calling ’ex$in’ at run time:
call emit (PROC_CALL_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call emit (OBJECT_OP, Code_stream)
call emit (STOWED_MODE, Code_stream)
call emit (Ex$in_id, Code_stream)
call emit (NULL_OP, Code_stream) # no arguments

}
when (LOOP_NODE)
call warning ("while-loop at line *i is used as an rvalue*n"p,

LINE_NUM (node))

when (NULL_NODE)
call emit (NULL_OP, Code_stream)

when (SEQ_NODE) {

if (NODE_TYPE (RIGHT (node)) == NULL_NODE)
call rvalue_context (LEFT (node))
else {
call emit (SEQ_OP, Code_stream)
call void_context (LEFT (node)) # can never yield a value

call rvalue_context (RIGHT (node))
}
}

when (VAR_NODE) {
call emit (OBJECT_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call emit (OBJ_ID (node), Code_stream)
}

else
call error ("in rvalue_context: shouldn’t happen"p)
return
end
semantic_analysis —-- check function and output VCG code for it

subroutine semantic_analysis (func)
ifpointer func

include GLOBAL_VARIABLES

output the procedure definition node:

- 108 -

call emit (SEQ_OP, Code_stream)

call emit (PROC_DEFN_OP, Code_stream)

call emit (OBJ_ID (func), Code_stream)

call emit (NPARAMS (func), Code_stream)

call emit_string (EOS, Code_stream) # we’ll ignore this for now

take care of the formal parameter declarations:
call output_params (ARG_LIST (func))
call emit (NULL_OP, Code_stream)

finally, take care of local variables and the function code:
call rvalue_context (FUNC_BODY (func))

return
end

sequentialize —--- combine two nodes with a "sequence" node
subroutine sequentialize
include GLOBAL_VARIABLES

ifpointer seg_node
ifpointer ifalloc, pop

seq_node = ifalloc (SEQ_NODE)
RIGHT (seg_node) = pop (0)
LEFT (seg_node) = pop (0)
call push (seg_node)

return
end

void_context —--- generate VCG code for constructs that yield no value

subroutine void_context (node)
ifpointer node

include GLOBAL_VARIABLES
select (NODE_TYPE (node))

when (COND_NODE) { # an ’if’ used as a statement
call emit (IF_OP, Code_stream)
call emit (FLOAT_MODE, Code_stream)
call rvalue_context (COND (node))
call void_context (THEN_PART (node)
call void_context (ELSE_PART (node)
}

)
)

when (LOOP_NODE) {
call emit (WHILE_LOOP_OP, Code_stream)

- 109 -

call rvalue_context (COND (node))
call void_context (LOOP_BODY (node))
}

when (SEQ_NODE) {
call emit (SEQ_OP, Code_stream)
call void_context (LEFT (node))
call void_context (RIGHT (node))
}

else
call rvalue_context (node)

return
end

warning —--- print warning message
subroutine warning (format, al, a2, a3, a4, a5, a6, a7,
character format (ARB)
unknown al, a2, a3, a4, a5, a6, a7, a8, a9
include GLOBAL_VARIABLES
call print (ERROUT, "*i: "s, Current_line)
call print (ERROUT, format, al, a2, a3, a4, a5, a6, a7,
Error_count += 1
return

end

Run-Time Support Routines Source Code

as,

as,

ag)

ag)

* RUN-TIME SUPPORT FOR ’‘DRIFT’
* UNFORTUNATELY, EXS$IN MUST BE WRITTEN IN ASSEMBLER SINCE
* FORTRAN DOESN’T ALLOW FUNCTIONS WITHOUT ARGUMENTS.
* AN ALTERNATIVE WOULD BE TO HAVE THE COMPILER GENERATE
* A DUMMY ARGUMENT ON THE CALL; THEN EX$IN AND EXS$SOUT
* COULD BE WRITTEN IN RATFOR, PASCAL, OR WHAT HAVE YOU.
* EX$IN --— READ A LINE FROM STANDARD INPUT, CONVERT FROM CHARACTER
* TO REAL, AND RETURN VALUE
SEG
RLIT
SYML
SUBR EXS$IN
EXS$IN ECB EXS$INS
DYNM LINE (100),I

- 110 -

EXSINS EQU *

CALL GETLIN READ NEXT INPUT LINE
AP LINE, S
AP =-10,SL
BGT CVT_IN IF WE HIT EOF,
CALL SWT JUST QUIT
CVT_IN EQU *
LT OTHERWISE,
STA I
CALL CTOR CONVERT TO REAL
AP LINE, S
AP I,SL
PRTN AND RETURN WITH VALUE IN F
END
* EXSOUT ——— WRITE REAL VALUE TO STANDARD OUTPUT, RETURN VALUE UNCHANGED
SEG
RLIT
SYML
SUBR EX$SOUT
EX$SOUT ECB EX$0UTS, , VAL, 1
DYNM VAL (3)
EXSOUTS EQU *
ARGT
CALL PRINT JUST USE SWT I/O TO OUTPUT VALUE
AP =-11,S ON STDOUT
AP =C’*r*n.’,S
AP VAL, *SL
FLD VAL, * RETURN VALUE IN F SO THIS FUNCTION
PRTN BEHAVES LIKE A PSEUDO-VARIABLE
END

- 111 -

Intermediate Form Operator/Function Index

absolute address
REFTO_OP

actual parameter
PROC_CALL_ARG_OP

add, addition
ADD_OP, ADDAA_OP

address
REFTO_OP

alignment
FIELD_OP

allocation of storage
DEFINE_DYNM OP, DEFINE_STAT_OP, DECLARE_STAT_OP

alternative in a multiway-branch
CASE_OP, DEFAULT_OP

and
AND_OP, SAND_OP

argument
in a procedure call: PROC_CALL_ARG_OP
in a procedure definition: PROC_DEFN_ARG_OP

arithmetic operators

ADDAA_OP, ADD_OP, CONVERT_OP, DIVAA_OP, DIV_OP, MULAA_OP,

MUL_OP, NEG_OP, REMAA_OP, REM_OP, SUBAA_OP, SUB_OP

array

allocation: DEFINE_DYNM _OP, DEFINE_STAT_OP, DECLARE_STAT_OP

indexing: INDEX_OP

assignment operators
ADDAA_OP, ANDAA_OP, ASSIGN_OP, DIVAA_OP, LSHIFTAA_OP,
MULAA_OP, ORAA_OP, POSTDEC_OP, POSTINC_OP, PREDEC_OP,
PREINC_OP, REMAA_OP, RSHIFTAA_OP, SUBAA_OP, XORAA_OP

autodecrement
POSTDEC_OP, PREDEC_OP

autoincrement
POSTINC_OP, PREINC_OP

automatic variable allocation
DEFINE_DYNM_OP

- 112 -

bit fields
FIELD_OP

bitwise logical operators

ANDAA_OP, AND_OP, COMPL_OP, LSHIFTAA_OP, LSHIFT_OP,

OR_OP, RSHIFTAA_OP, RSHIFT_OP, XORAA_OP, XOR_OP

boolean operators
NOT_OP, SAND_OP, SOR_OP

bounds checking
CHECK_RANGE_OP, CHECK_LOWER_OP, CHECK_UPPER_OP

branch
GOTO_OP, LABEL_OP

break (loop termination)
BREAK_OP, NEXT_OP

byte access
FIELD_OP

call
procedures, functions, subroutines: PROC_CALL_OP,
PROC_CALL_ARG_OP

case statement
SWITCH_OP

character operations
FIELD_OP

checking
CHECK_RANGE_OP, CHECK_UPPER_OP, CHECK_LOWER_OP

choice
boolean: IF_OP
arithmetic: SWITCH_OP

coercions
CONVERT_OP

common blocks
DECLARE_STAT_OP

comparison operators
EQ_OP, GE_OP, GT_OP, LE_OP, LT_OP, NE_OP

complement
COMPL_OP, NOT_OP

conditional expressions
IF_OP

conjunction
AND_OP, ANDAA_OP

- 113 -

ORAA_OP,

constants
CONST_OP

continuation of loops
NEXT_OP

control flow

BREAK_OP, DO_LOOP_OP, FOR_LOOP_OP, GOTO_OP, IF_OP, LABEL_OP,

NEXT_OP, PROC_CALL_OP, RETURN_OP, SEQ_OP, SWITCH_OP,
WHILE_LOOP_OP

conversions
CONVERT_OP

copy
ASSIGN_OP

data
CONST_OP, INITIALIZER OP, ZERO_INITIALIZER_ OP

deallocation
UNDEFINE_DYNM_OP

declarations
DEFINE_DYNM OP, DEFINE_STAT_OP, DECLARE_STAT_OP

decrement
POSTDEC_OP, PREDEC_OP, SUBAA_OP

default case
DEFAULT_OP

define
procedures: PROC_DEFN_OP
storage: DEFINE_DYNM OP, DEFINE_STAT_OP

dereferencing
DEREF_OP

descriptor
address: REFTO_OP

difference
SUBAA_OP, SUB_OP

disjunction
ORAA_OP, OR_OP

disposition of arguments
PROC_DEFN_ARG_OP

division
DIVAA_OP, DIV_OP, RSHIFTAA_OP, RSHIFT_OP

do loop
C-style: DO_LOOP_OP

- 114 -

Fortran-style: FOR_LOOP_OP

double precision
LONG_FLOAT_MODE

dynamic variablesa
DEFINE_DYNM_ OP, UNDEFINE_DYNM_ OP

element
of an array: INDEX_OP
of a structure or record: SELECT_OP

else
IF_OP

entry points
See descriptions of Intermediate Form stream 1

equality
EQ_OP, NE_OP

exception
No exception handling, yet

exclusive-or
XORAA_OP, XOR_OP

exit
from procedures: RETURN_OP
from loops: BREAK_OP, NEXT_OP

external symbols
DECLARE_STAT_OP

false
zero
fields
of words: FIELD_OP
of structures or records: SELECT_OP

fixed-point modes
INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE

floating-point modes
FLOAT_MODE, LONG_FLOAT_MODE

flow of control
BREAK_OP, DO_LOOP_OP, FOR_LOOP_OP, GOTO_OP, IF_OP, LABEL_OP,
NEXT_OP, PROC_CALL_OP, RETURN_OP, SEQ_OP, SWITCH_OP,
WHILE_LOOP_OP

formal parameters
PROC_DEFN_ARG_OP

- 115 -

functions
declaration: PROC_DEFN_OP
call: PROC_CALL_OP

global variables
declaration: DECLARE_STAT_OP
definition: DEFINE_STAT_OP

goto
GOTO_OP

greater—-than
GT_OP

guarantees
None here.

immediate operands
CONST_OP

inclusive-or
ORAA_OP, OR_OP

incrementation
ADDAA_OP, POSTINC_OP, PREINC_OP

indexing
INDEX_ OP

indirection
DEREF_OP

inequality
EQ_OP, NE_OP

initialization
INITIALIZER_OP, ZERO_INITIALIZER_OP

integer
modes: INT_MODE, LONG_INT_MODE, UNS_MODE,
conversion: CONVERT_OP

inverse
additive: NEG_OP
bitwise: COMPL_OP
boolean: NOT_OP

invocation
of procedures: PROC_CALL_OP

iteration
DO_LOOP_OP, FOR_LOOP_OP, WHILE_LOOP_OP

Jjump
GOTO_OP

- 116 -

LONG_UNS_MODE

labels
LABEL_OP

layouts
of storage: FIELD_OP; also see data modes

less—-than
LT_OP

literals
CONST_OP

local variables
DEFINE_DYNM OP, UNDEFINE_DYNM_ OP

locations
REFTO_OP

logical operators
ANDAA_OP, AND_OP, COMPL_OP, NOT_OP, ORAA_OP, OR_OP,
SAND_OP, SOR_OP, XORAA_OP, XOR_OP

long data modes
LONG_INT_MODE, LONG_UNS_MODE, LONG_FLOAT_MODE

loops
DO_LOOP_OP, FOR_LOOP_OP, WHILE_LOOP_OP

lower bound checking
CHECK_RANGE_OP, CHECK_LOWER_OP

lvalues
DEREF_OP, INDEX_ OP, OBJECT_OP, SELECT_OP

magnitude comparisons (unsigned arithmetic)
GE_OP, GT_OP, LE_OP, LT_OP

member
of an array: INDEX_OP
of a structure or record: SELECT_OP

minus
SUBAA_OP, SUB_OP

modes
INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE, FLOAT_MODE,
LONG_FLOAT_MODE, STOWED_MODE

modulus
REMAA_OP, REM_OP

multidimensional arrays
INDEX_OP

multiplication
MULAA_OP, MUL_OP, LSHIFTAA_OP, LSHIFT_OP

- 117 -

multiway branch
SWITCH_OP

negation
NEG_OP

objects
OBJECT_OP

or (logical)
ORAA_OP, OR_OP, XORAA_OP, XOR_OP

otherwise
in Pascal case statement: DEFAULT_OP

packed data structures
arrays: no support
structures: FIELD_OP

parameters
formal: PROC_DEFN_ARG_OP
actual: PROC_CALL_ARG_OP
pass-by-value: see VALUE_DISP in PROC_DEFN_ARG_OP
pass—-by-reference: see REF_DISP in PROC_DEFN_ARG_OP

partial fields
FIELD_OP

passing parameters
PROC_CALL_ARG_OP
by value: see VALUE_DISP in PROC_DEFN_ARG_OP
by reference: see REF_DISP in PROC_DEFN_ARG_OP

pointers
obtaining them: REFTO_OP
indirection through them: DEREF_OP

portions of a machine word
FIELD_OP

postdecrement
POSTDEC_OP

postincrement
POSTINC_OP

predecrement
PREDEC_OP

preincrement
PREINC_OP

primitive data modes

INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE, FLOAT_MODE,
LONG_FLOAT_MODE, STOWED_MODE

- 118 -

procedure
calling: PROC_CALL_OP
definition: PROC_DEFN_OP

public symbols
See description of IMF stream 1
DECLARE_STAT_OP

quotient
DIVAA_OP, DIV_OP

range checking
CHECK_RANGE_OP, CHECK_LOWER_OP, CHECK_UPPER_OP

real
FLOAT_MODE, LONG_FLOAT_MODE

records
STOWED_MODE
SELECT_OP

reference (pass-by)
see REF_DISP in PROC_DEFN_ARG_OP

references
REFTO_OP

remainder
REMAA_OP, REM_OP

reserving storage
DEFINE_DYNM OP, DEFINE_STAT_OP

returning from procedures/function/subroutines
RETURN_OP

semicolon
SEQ_OP

sets
bit vector implementations: FIELD_OP

shift
left: LSHIFTAA_OP, LSHIFT_OP
right: RSHIFTAA_OP, RSHIFT_OP

short data modes
INT_MODE, UNS_MODE, FLOAT_MODE

sign change
NEG_OP

stack

allocating storage on: DEFINE_DYNM_OP
deallocating storage on: UNDEFINE_DYNM_OP

- 119 -

statements
ASSIGN_OP, BREAK_OP, DO_LOOP_OP, FOR_LOOP_OP, GOTO_OP, IF_OP,
NEXT_OP, PROC_CALL_OP, RETURN_OP, SWITCH_OP, WHILE_LOOP_OP

static variables
DEFINE_STAT_OP, DECLARE_STAT_OP

storage
allocation: DEFINE_DYNM_OP, DEFINE_STAT_OP, DECLARE_STAT_OP
deallocation: UNDEFINE_DYNM_OP

structures
STOWED_MODE
SELECT_OP

subscripting
INDEX_OP

subtraction
SUBAA_OP, SUB_OP, PREDEC_OP, POSTDEC_OP

sum
ADDAA_OP, ADD_OP, POSTINC_OP, PREINC_OP

switch
SWITCH_OP, CASE_OP, DEFAULT_OP

target label
LABEL_OP

temporary variables
DEFINE_DYNM_OP, UNDEFINE_DYNM_OP

termination
of procedures: RETURN_OP

tests
EQ_OP, GE_OP, GT_OP, LE_OP, LT_OP, NE_OP

transfers
GOTO_OP

true
non-zero

truncation
CONVERT_OP

type
primitive types: INT_MODE, LONG_INT_MODE, UNS_MODE,
LONG_UNS_MODE, FLOAT_MODE, LONG_FLOAT_MODE, STOWED_MODE

unary

minus: NEG_OP
complementation: COMPL_OP, NOT_OP

- 120 -

unsigned data modes
UNS_MODE, LONG_UNS_MODE

upper bound checking
CHECK_RANGE_OP, CHECK_UPPER_OP

use list
DECLARE_STAT_OP

value (pass-by)
see VALUE_DISP in PROC_DEFN_ARG_OP

variables
OBJECT_OP

vector element selection
INDEX_OP

zZeros
ZERO_INITIALIZER_OP

- 121 -

ADDENDUM

Arnold D. Robbins

August, 1984

Introduction

With the second release of the Georgia Tech C Compiler,
"vcg’ has been changed in two ways. This addendum describes
those changes.

Object Code Produced Directly

'Vecg’ has Dbeen changed to directly generate 64V-mode
relocatable object code, instead of symbolic assembly language.
This enormously speeds up code generation time, since the Prime
Macros Assembler, PMA, is no longer needed to turn the assembly
code into binary.

As an option, ‘'vcg’ will still produce PMA, which can be
assembled normally. This 1is occasionally wuseful, since the
object code routines still have some bugs buried deep within
them. See the help on ’'vcg’ for details on producing assembly
code.

Shift Instructions

Whenever a shift instruction is needed, 'vcg’ wused to
generate code to build an instruction and then XEC it. Now,
"vcg’ will generate a shortcall into a table of shift instruc-
tions. This table is included in the "vcglib" 1library, and in
the "ciolib" 1library for C programs. This change saves code
space for programs with a lot of shift instructions.

- 122 -

	Title Page
	i
	ii
	Table of Contents
	iii
	iv
	v
	vi
	Foreword
	vii
	How to Use This Guide
	1
	Overview
	2
	3
	4
	5
	6
	Code Generator Usage
	7
	8
	Input Data Stream Formats
	9
	10
	Primitive Data Modes
	11
	12
	Operators Useful in the Static Data Stream
	13
	14
	Operators Useful in the Procedure Definition Stream
	15
	16
	Operators Useful in Procedure Definitions
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	Extended Examples
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	The 'Drift' Compiler
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	Intermediate Form Operator/Function Index
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	Addendum
	122

