
Prime Computer

User Guide

MAN-1675

For

Disk and Virtual Memory

Operating Systems

REV 7B 35Pages,

MAY, 177 S$,
PRIME COMPUTER, INC., 145 PENNSYLVANIA AVENUE, FRAMINGHAM, MA. 01701



DBBOL E TE MAN1675

DISK AND VIRTUAL MEMORY

OPERATING SYSTEMS

USER GUIDE

Revision A

May i975

 

    PIRIMIE
COMPUTER, INC. .

[145 Pennsytvania Ave., Framingham, Mass., 01701]

 



MANI675

Copyright 1975 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
Subject to change without notice.

li



SECTION 1 INTRODUCTION

SCOPE OF DOS AND DOS/VM
DOS FEATURES
DOS/VM FEATURES

SECTION 2 FILE STRUCTURES

CONCEPTS

FILE
FILE ACCESS
FILE CREATION
SOME TYPICAL FILE CONTENT
WHY A FILE SYSTEM?
SUMMARY
USING THE FILE SYSTEM
OPENING A FILE
USING AN OPEN FILE
ACCESS
ACCESS AND FILE POINTER
POSITION
TRUNCATION
CLOSING A FILE
DELETING A FILE
CONCEPT CONCLUSIONS
PHYSICAL DISK CONSIDERATION
MORE ON FILE DIRECTORIES
SEGMENT DIRECTORY USE

FILE SYSTEM
TYPES OF FILES

SAM FILES
DAM FILES
FILE RECORDS
FILE CONTENTS

DIRECTORIES

MFD AND UFD
MASTER FILE DIRECTORY (MFD)
USER FILE DIRECTORY (UFD)
SEGMENT DIRECTORY
DISK RECORD AVAILABILITY TABLE (DSKRAT)

iii

MAN 1679

N
N

D
O
D
D
h
D
N

F
O
N
Y
B
Y
N
M
D
O

P
O
P
D
D
Y
P
O
8

t
t

‘
t

'
4

4
5

U
1

On
O
n
O
n
g
m
B
&
O
O
G

o
f
e
t
o
e
e
t

N
H
&

t
n
v

h
O
B

b
o
H
h

'
ot

~
~
N
N



CONTENTS

FILE SYSTEM OPERATIONS OVERVIEW
DISK ORGANIZATION
FILE UNITS
OPENING, CLOSING FILE UNITS
FILE HANDLING SUBROUTINES
FILE HANDLING IN USER PROGRAMS
STARTUP
ATTACHING TO A UFD
DOS/VM FILE ACCESS CONTROL
OTHER FEATURES OF FILE ACCESS
DOS FILE ACCESS CONTROL
COMMANDS
FILE ACCESS METHODS

DOS/USER INTERACTION

LOADING AND INITIALIZING DOS
COMMAND FILES
SAVING PROGRAMS
FILE MAINTENANCE (FIXRAT)

DOS MEMORY USAGE

FLOATING DOS
SIGNIFICANT LOCATIONS

SECTION 3 DOS OPERATION AND SYSTEM MAINTENANCE

BOOTSTRAPS AND DISK BUILDING
LOADING DOS FROM MASTER DISK
STARTING EQUIPMENT
BOOTING DOS

BOOT OPERATION
BUILDING BOOT
DIRECT PANEL LOAD OF DOS FROM DISK
DOS BOOT TAPE, PANEL LOAD
DOS BOOT TAPE, KEY IN LOADER

LOADING OF DOS
STARTUP OF DOS

DATA TRANSFER BETWEEN DISKS
PARTITIONING DISKS
PHYSICAL DEVICE NUMBERS USAGE

STARTUP OF DOS

iv

B
o
h

“
J

1
>

2

te
{

I
‘

N
M
N
N
N
N

h
w
H
N
P
P
h

'
'

fec
t

en
h
pd

fe
ed

en
ed

fe
ed

fre
ed

fe
n

em
t

fe
d

fa
d

pe
rl

fo
ne

O
I
I
A
M

WO
B
A
D
e
e
t

1

f
o
l

c
o

P
O
B
O
f
h
D
O

'

T
Q

be
d

pe
t

pen
t

C
>
W
O
O

o
o



CONTENTS

SECTION 3 (Cont)

INITIAL OPERATING SESSION

ATTACHING TO UFD

DISK BUILDING (COPYING MASTER DISK PACK)

FORMAT OF DOS DISK
-BUILDING A DOS DISK FROM PAPER TAPE
(CREATING ADDITIONAL DOS DISKS
ENTERING NEW UFDS

BACKUP

GENERAL
USE OF MAGSAV

SHUTDOWN

CHANGING DISK PACKS
USING FIXRAT
TURNING POWER OFF

RESTARTING DOS
EXAMPLE INITIALIZING DOS AND PROGRAM DEVELOPMENT

SECTION 4 COMMANDS

COMMAND STRUCTURE

COMMAND FORMAT
LEVELS OF COMMUNICATION
DOS COMMANDS ALLOWED IN DOS/VM
ERROR CORRECTION
DOS AND DOS/VM NAMES
DISK VS. DOS OR DOS/VM UNITS

SUMMARY AND INTRODUCTION TO COMMANDS

INTERNAL COMMANDS
HYBRID COMMANDS
EXTERNAL COMMANDS

COMMAND DESCRIPTIONS

ASRCWD
ASSIGN
ATTACH
AVAIL

MAN }675

t
o
4

>
b
&

>
h
p
p
S

a
s

t
e
f
e

— b
o

1

e
e

a
n

W
m

Ww
W
b
o



CONTENTS

SECTION 4 (Cont)

BASIC
BASINP
BINARY
CLOSE
CMPRES
CNAME
COMINPUT
CREATE
DBASIC
DELAY
DELETE
ED
EDB
EXPAND
FILBLK
FILMEM
FILVER
FIXRAT
FIN
FUTIL
HILOAD
INPUT
LBASIC
LISTE
LISTING
LFTN
LOAD
LOGIN
LOGOUT
MACHK
MAGSAV, MAGRST
MAKE
MCG
MDL,
NUMBER
OPEN
PASSWD
PROTECT
PM (POST MORTEM)
PMA
PRERR
PSD
PSD20
PTCPY
PTRED
RESTORE
RESUME
RTOSRA

vi

P
a
h
e
b
e
e
a
P
n
r
h
a
n

t

i% oO

'

et
Le

d
te

e
fd

fee
d
f
h

fe
e

‘
C
O

ow
O
a

S)

1
i) t)

t ~~
{

4-
4- Bh

o
B
O
B
Y

f
o

C
A
a
u
m
n

1
1

i]
t

i
t

W
A
N
N
G
I
A

W
W
G
A
A

G
A
G
I
G

G
I
B
O
f
h

C
O
O
N
I
O

A
D
D
N

MN
M
N
W
R

E
H
O

P
e
P
W
N

R
E
e
B
H
Y
C
O
O
O
O

~~
)

t
1

1
'

'
t

t
'

'
'

(
‘

'
U
r
b
b
P

h
a

P
h
P
p
p
P
p
p
h
b
p
p

F
P
P
h
P
h
P
H
a
H
P
A
H
L
H
A
L
H
L
A
L
P
L
H
S
P
H
P
P
P
L
A

H
h
A
A
D
H
P
A
L
H
L
A
S

'



SECTION 4 (Cont)

RT128F

SECTION 5 FILE SYSTEM AND TERMINAL I/O LIBRARY

INTRODUCTION
CALLING AND LOADING LIBRARY SUBROUTINES
CALLING SEQUENCE NOTATION
FILE SYSTEM AND TERMINAL I/O SUBROUTINES

ATTACH
BREAKS
CMREAD
CLIN
CNAME
COMINP
COMANL
D$INIT
ERRSET
EXIT
FORCEW
GETERR
GINFO
PRERR
PRWFIL
RECYCL
RESTOR
RESUME
RREC
SAVE
SEARCH
TNOUA
TOOCT
TIMDAT
T$QPC

MAW 1L75

CONTENTS

=
m
f

1

iS© om

'
t

t
4

'
D
A
O
A
A
D
A
Q
W
U
A
M
M
N
o
N
w
i
n

i
n
o
u
t

N
P
N
M
H

O
@
D
~
A
I
A
W
H
e
e
O
O
O

P
P
P
h
b
h
h
p
P
P
a
h
L
&

'
w
i
u
r
i

o
t

4
&

B
e
e
e

w
n
G
A
u
n
o
n

‘
o
e

1

BO
DD

BO
80

BO
BO

bt
et

fe
d
e
e

be
l
e
t
t
Y
t

02
2

00
0
0

1
0
0
0
0
O
e

o
O
0
0
O
O
O
W
W
N
N
N
E
F
O
O

'
t

t
'

(
t

'
i}

‘
W
A
O
A

U
I
A
N
N
N
N

n
T

o
s

t



CONTENTS

SECTION 5 (Cont)

T$LMPC
T$MT
T$SLC
UPDATE
WREC

SECTION 6 DOS/VM OVERVIEW AND STARTUP

DOS/VM SYSTEM OVERVIEW

SHARING FILES
FILE ACCESS PROTECTION
BYPASSING BAD MEMORY
INACTIVITY TIMEOUT

DOS/VM SYSTEM CONFIGURATION
DOS/VM SYSTEM INITIALIZATION
DOS/VM SYSTEM TERMINAL COMMANDS

CONFIG
DISKS
MESSAGE
SETIME
STARTUP.
SHUTDN
STATUS
USRASR

WARM RESTART FOR DOS/VM

SECTION 7 .  INPUT/OUTPUT WITH DOS/VM

T/O VIRTUALIZATION
SYSTEM CONTROLLER CONTROL WORD
INPUT//OUTPUT BUFFERS
SKIPS

PAPER TAPE READER
PAPER TAPE PUNCH
CPU CONTROL PANEL
DISK
MAGNETIC TAPE
MPC LINE PRINTER
MPC CARD READER

viii

i
—

‘
{

N
n

o
n
O
n
A

m
H

o
n

'
t

M
r

wl
W
N

K
D

ee
e
t
©

N
n

R
N
N
D
R
D
A
N
O
H

'

f
d

b
e
f
d

p
d
e
d

pe
rl

fe
t

en
d

S
E
N
I
O
O
T
N

W
w
P
b

i

pe
nd

~
]

~
J
“
I
~

'
'

W
I
B
O
h
o
R
e

a
S
S
S

j
o
t

ie
t
o
y

W
m

n
t
&



SECTION 7 (Cont)

SVC VIRTUALIZATION
OTHER VIRTUALIZATION

APPENDIX A FILE AND HEADER FORMATS

FILE RECORD HEADER FORMAT
UFD FORMAT
FORMAT OF DSKRAT

APPENDIX B BOOTSTRAPS

BOOTSTRAPS .
CONTROL PANEL BOOTS

CONTROL PANEL y-CODE
PRIME PRE-BOOT
DEVICE SPECIFIC BOOTS
PROM GENERATION

SECOND LEVEL DISK BOOTS (BOOT)

APPENDIX C CREATING SEGMENT DIRECTORIES AND FILES

INTRODUCTION
SAMPLE PROGRAM, GENFIL

APPENDIX D DATA BASE MANAGEMENT

FEATURES THAT FACILITATE DBM DEFINITION OF DATA

BASE MANAGEMENT

DATA BASE TERMINOLOGY
ACCESSING THE DATA BASE

FILE SYSTEM PERFORMANCE
DATA ACCESS TIME
FILE SECURITY

ix

MAN 1675

' N
e

o
U
y

o
w

W
i
t
A

w
a



CONTENTS

Page

APPENDIX E FIXRAT

INTRODUCTION F-]
FIXRAT DESCRIPT-ION Ii-]
RUNNING FIXRAT E-2
FIXRAT OUTPUT EXAMPLE 1-7
BROKEN FILE STRUCTURE MESSAGES [E-8
SEGMENT DIRECTORIES E-8
PITFALLS AND RESTRICTIONS E-9

BAD BOOT E-9
DIRECTORY NESTING LIMIT E-9
WRITING INTO DIRECTORIES E-9
DELETING DIRECTORIES E-9

FIXRAT ERROR MESSAGES Li-10

DESCRIPTION OF MESSAGES E-10
DISKRAT BAD E-10
BAD DISK ADDRESS 2-18
BAD RECORD ID E-10
BRA POINTER MISMATCH E-11
FATHER POINTER MISMATCH E-1]
BACK POINTER MISMATCH E-1]
BAD WORD COUNT E-1]
BAD FILE TYPE E-11
TWO FILES POINT TO SAME RECORD E-11
BAD DAM POINTER C-11
UFD LONGER THAN RECORD [E-11
BAD UFD HEADER E-ll
DIRECTORIES NESTED TOO DEEP E-12
CHECK FOR MFD INTEGRITY : E-12

FIXRAT AND 30-MILLION WORD DISK E-13

APPENDIX F FUTIL

INTRODUCTION F-]
FILE STRUCTURE F-]
DESCRIPTION OF FUTIL COMMANDS F-3



MAN 1675

APPENDIX F (Cont)

QUIT
FROM
TO
ATTACH
COPY
COPYSAM
COPYDAM
TRECPY
UFDCPY
DELETE
TREDEL
UFDDEL
LISTF

RESTRICTIONS
ERROR MESSAGES

ALREADY EXISTS
BAD NAME
BAD PASSWORD
BAD SYNTAX
CANNOT ATTACH TO SEG DIR
CANNOT DELETE MFD
DIRECTORIES NESTED TOO DEEP
DISK ERROR
DISK FULL
IN USE
IS A DIRECTORY, CANNOT COPY IT
NO RIGHT -
NO ROOM USE DOS32
NO UFD ATTACHED
NOT .A DIRECTORY
NOT FOUND
POINTER MISMATCH
PRWFIL EOF
SEG-DIR ER
UFD FULL
UNRECOVERED ERROR

APPENDIX G LIBRARIES

DOS MASTER DISK
CONTENTS OF MFD
CONTENTS OF COMMAND FILE QMDNCO

xi

Page

a
a

O
W
0
0

~
1

+
3
2
4
)
1
H
O
N

f
&
f
e

1
'

i]
'

t
1

'
fe

nd
fo
nt

b
h
t
h

T
H
T

e
h
T
T
T
d
d

r
d

r
g
r
d
r
d
r
d
r
d
r
d

or
d
1
)
7

“r
1

‘T
I

‘T
)
T
i

y
d

tr
i
r
i

i

a
e
e
e
e
e
e
e
e
e
e
e
e

W
U
O
U
W
M
U
M
O
N
M
N
N
M
N
P
a
P
A
a
P
h
P
a
h
a
A
P
W
W

1
0
1
0
)

Cl
e
e



CONTENTS

APPENDIX G (Cont)

CONTENTS OF LIB
CONTENTS OF SRCLIB
FORTRAN/MATH LIBRARY SUBROUTINES (SUMMARY)
TOCS
REAL TIME LIBRARY
MATRIX LIBRARY
VIP LIBRARY

APPENDIX H —*USE OF DOS FILE SYSTEM

INTRODUCTION
PROGRAM EXAMPLE

APPENDIX I ERRVEC CONTENTS

APPENDIX J

--

DOS

_

ERROR MESSAGES AND DISK ERRORS
AND DISK STATUS

DOS ERROR MESSAGES
DISK ERRORS

APPENDIX K DISK DRIVE OPERATION

PERTEC MOVING HEAD DRIVES

OPERATING CONTROLS
CARTRIDGE HANDLING AND STORAGE
DISK DRIVE PREPARATION
UNLOADING A CARTRIDGE
LOADING A CARTRIDGE
SELECTING WRITE PROTECTION
STARTING THE DISK DRIVE
STOPPING THE DISK DRIVE
DESTGNATING UNIT NUMBER

APPENDIX L PRIME ASCII CHARACTER SET

APPENDIX M SUMMARY OF DOS §& DOS/VM COMMANDS

APPENDIX N FIXRAT OF MASTER DISK (REV 7)

X1li

Page

Pa
s '
=

‘
t

‘

a
'

“
T
O
D
O

O
N
1

e
e

c
o ( ju
n

M-]

N-1



Table No.

2-1

3-1

3-2

3-3

4-1

4-2

4-3

4-4

4-5

4-6

4-7

6-1

6-2

A-1 .

A-2

MAN 1675

TABLES

Title
 

Memory Areas and DOS File Units

Physical Disk Assignments

Head Offset Definitions

| Number of Heads Definition

Internal Commands

External and Hybrid Commands

‘Value for Virtual Control Word and Port
Assignment

Device Names

Partitioned Disk SIZE Specification

FUTIL Commands |

RECORDS Parameters for 30 Million Word Disk

Disk Space Required for 32K Per User

Disk Space Required for 64K Per User

File Record Header format

UFD Format

Format for DSKRAT

X1i1

Page

2-22

3-9

3-14

3-14

4-5

4-6

4-12

4-13

4-22

4-29

4-40

6-8

6-9

A-1

A-2



A-1

E-1

E-2

F-]

K-1

LIST OF ILLUSTRATIONS

Title

Hypothetical DOS File. Hierarchy with SAM
and DAM File Structures

Memory Allocation in 16K System

UFD File Format and Use

Sample File Structure

Typical FIXRAT of File Structure

Sample File Structure (Directory Tree)

Typical Traverse of Directory Tree by
FUTIL During LISTF

~PERTEC D300 Operating Controls

X1V

2-23

A-3

E-3

E-4

F-2

F-11



MAN 1675

FOREWORD

This manual provides operating and programming information for the
Prime Disk Operating System (DOS) and the Prime Virtual Memory Disk
Operating System (DOS/VM). The version of these systems described
herein are each implemented on master disk as Revision 7 (Rev. 7.0).

Users must be familiar with FORTRAN or Prime macro-assembly language

programming and also familiar with operation of the Prime CPU Control
Panel as described in the operator's guide.

Information is organized as follows:

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

General information on DOS, DOS system configuration,
and DOS relationships to other operating system.

Definition of a DOS file, DOS file types, an
overview of the DOS file system and file structures.
This section includes a primer on files and is
further supported with detailed information.

Information on bootstrapping; installing and copy-
ing master disk; initializing and running DOS for
the first time; DOS backup; DOS shutdown procedures.

DOS and DOS/VM user commands. First, an overview
of the commands and their functions arranged in a
logical sequence (i.e., the widely used to the
less used). Next, detailed descriptions of commands
normally used for programming development and
productions, arranged alphabetically.

Description of subroutines available to the user
for file system and terminal. 1/0.

Introduces the Virtual Memory Disk Operating
System (DOS/VM), describes system configuration,
and gives detailed information on DOS/VM startup
and shutdown. This section also describes commands
normally issued from the DOS/VM supervisor terminal
by a system operator.

Describes how input/output is virtualized on DOS/VM.



Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

Appendix M

APPENDICES

Describes the format of DOS file record headers and
the physical organization of DOS files; also
describes UFD format and the format of the DSKRAT.

Describes the BOOTSTRAPS available for hardware
configurations.

Gives specific examples that show the user how to
create Segment Directories and DAM files.

Discusses Data Base Management (DBM) and those
features of the DOS (DOS/VM) file system that
support DBM.

Is entitled "All About FIXRAT’. It describes FIXRAT
in detail for both old and new users. It also lists
all FIXRAT messages:

Is a discussion of the File Utility FUTIL and the
file manipulation command available when operating
under control of that file utility. This appendix
also lists messages that may occur while using FUTIL.

Is a summary of the FORTRAN libraries and the Input
Output Control System (I0CS) library. Some of this
information may be obsolete and will be replaced by
the library manual.

Is a definitive example of use of the DOS file system,
particularly if the user wishes to lear how to use
the subroutines SEARCH, PRWFIL, and ATTACH.

Describes the contents of ERRVEC, the system error
vector, for both error return and normal return.

Lists the DOS (DOS/VM) error messages and value of
the disk status word.

Describes disk hardware operation for typical moving
head disk drives connected to DOS or DOS/W.

Lists the Prime ASCII character sets.

Is a summary of the DOS and DOS/VM commands and their
formats. The last page of this appendix lists
obsolete commands for old users who may be interested.



The following Prime documents should be available for reference:

 

MAN J675

Title Manual No.

Prime CPU Operator's Guide (Console and peripheral MAN1672
device operation) )

Prime CPU System Reference Manual (instruction set, MAN1671
addressing modes, input/output programming)

Macro Assembler Language Reference Manual MAN1673

Program Development Software Manual (Editor, Loader, MAN1879
TAP, etc.)

Library Subroutine Manual* ween

FORTRAN IV Language Reference Manual MAN1674

Magnetic Tape Controller User Guide MAN1940

System Option Controller User Guide MAN1944

System Terminals User Guide MANI1941

Disk Controller User Guide MAN1948

*Currently undergoing development

xvii



SYMBOLS AND ABBREVIATIONS

Symbols and abbreviations and special characters used frequently in
the rest of this handbook are defined below:

Symbol Meaning

Number
representations:

1000 1000 decimal

'1000 1000 octal

$1000 1000 hexadecimal

Teletype
functions:

CR . Carriage Return

LF Line Feed

\ Backslash (upper case L)
used as tab character (Editors only)

" Delete character (cancels last typed
character); do not use in DOS command
strings. However, this delete
character may be used in DOS/VM lines.

? Kill character (deletes all
characters in current line).

»i35t- -In the editor, ED, separates multiple
commands on a line.

t or A Signal escape (see Editor in
Program Development Systems
Manual).

XViii



Symbol

Miscellaneous:

SA

EA

[ ]

Underlining

Altrtn

Ra

CPU

DSKRAT

Filename

Funit

Ldisk

MAN 1675

Meaning

Starting address of programof memory
block.

Ending address of program or memory
block.

Brackets enclose optional parameters
in command strings.

Indicates user input in examples of
user/DOS dialogues.

Spaces (in command strings)

Blanks or space characters (in
Hollerith or ASCII strings).

Abbreviations

Alternate return program step in case
of I/O errors, missing EOF, etc.

Buffer Address (IOCS).

Central Processor Unit (the Prime
computer proper as opposed to peripheral
devices or main memory).

' Disk Record Availability Table

A DOS filename (in the current UFD,
unless otherwise specified).

DOS File unit (1-16)

Logical disk unit number as assigned
by STARTUP command.

x1x



Password

Punit

UFD

Ufd

Meaning

Logical device number, (1-15) as used in
FORTRAN READ and WRITE statements. 4Same
as IOCS logical device nunber.)

Master File Directory

A DOS password

IOCS Physical device number (1-15)

User File Directory

In FORTRAN calling sequence: pointer to
a UFD name (Hollerith expression or
3-word array) .

Filename Conventions
 

BeXXXX

L*©XXXX

C+XXXX

XXXXXX

®XXXXX

S+XXXX

UXXXX

Binary (Object) file

LISTING file

Command file

Source file

SAVED (Executable) file

Segment Directory

User File Directory (UFD)



SECTION 1

INTRODUCTION

SCOPE OF DOS AND DOS/VM

DOS is the Disk Operating System for the entire Prime family of
computers. It is a memory-resident operating system that provides
a complete working environment for the user's software development
process and for user program development and production use of the
various Prime disk options.

DOS/VM has the same capabilities as DOS; and in addition, allows a
sharing of the computer resources among a community of up to 31
Simultaneous users and a variety of peripheral devices. DOS/VM also
gives each user a virtual memory environment.

DOS may function in any of the possible Prime computer system config-
urations. DOS allows direct memory addressing of up to 64K. It
operates under control of a Prime 100, 200, or 300 central processor
with or without available options. A broad range of disks are supported
by DOS. Up to four disk units, each with a capacity of 30 million words,
can be attached to a disk controller (type 4001/4002, which handles up to
four disk pack units as weil as one fixed head disk (either 128K or
256K word capacity). Alternatively, mass storage (disk) configurations
supported by DOS include moving head cartridge disks providing
1-.5-, 3.0- and 6.0-million word capacities, and high-speed fixed-head
disks storing 128K, 256K or 512K words (using a Type 4000 Disk Controller}.
Finally, diskette drives (floppy disks) are supported by DOS and DOS/VM
via a diskette controller. All disk units are supported interchangeably
by DOS and other Prime system software. DOS configurations may also
include a high-speed paper tape reader for system generation. The DOS
system Terminal is either any Teletype (or compatible terminal) or a
CRT type terminal attached to the system option controller running at

-110 baud. Peripherals that are supported by IOCS running under DOS
control include: up to four 7- or 9-track magnetic tape transports on
one controller, card reader (one per system), character printer (one per
system, connected to the system option controller), line printer (one
-per system), and paper tape reader/punch (one per system). For further

MAN |675

details about DOS configuration, refer to Section 3.

The DOS/VM operating system requires a Prime 300 system with a minimm
of: 32K of high-speed memory, disk system terminal, and 1 to 31 user
terminals. DOS/VM fully supports virtual memory and up to 256K of real
memory. For details of the DOS/VM configurations, refer to Section 6.

The minimum configuration upon which DOS operates is a Prime computer
with a Teletype for a System Terminal, 16K of memory, and mass storage
consisting of diskettes; DOS is upward compatible and it operates on any
Prime computer system configuration that is more sophisticated than the
minimum.

1-1



DOS FEATURES

1. DOS operates in several environments. DOS, when run as the
chief operating system of the computer system, functions as a
batch operating system, providing automatic job and data stream
routing; by storing command sequences on disk. In addition,
the Prime RTOS (Real Time Operating System) and theDOS/VM ,
(Virtual Memory Operating System) are started from DOS. Users
of these systems must know at least how to start up DOS and
then start up their systems from DOS as well as how to shut down
DOS. Furthermore, once RTOS or DOS/VM is running, DOS can be
run as a background job in RTOS, or DOS can be started up from
DOS/VM. The former is a fairly common and useful practice; the
latter is a bit esoteric, but it has been done.

The fundamental unit with which most DOS commands and concepts
deal is the file. Each disk is organized into a system of
files, permitting the user to reference programs and data by
file name only. Consequently, there is no need for the user
to identify specific physical records or to have knowledge
of the format of the disk. An overview of files and the
associated file system is presented in Section 2.

DOS provides an interactive command language for summoning
programs and manipulating the file system. The command
language interfaces the user to DOS by simple commands
entered at the terminal. The same command functions may also
be performed by programs, reducing the amount of operator
involvement. Software written for stand-alone execution may
be run under DOS with no changes. Section 4 describes DOS
commands.

All standard Prime software is available under DOS and makes
use of its command structure and file-handling abilities.

DOS/VM FEATURES

DOS/VM includes all the features of DOS and in addition allows
sharing of the computer resources in a virtual memory environment.

1-2



MAN| s
SECTION 2

FILE STRUCTURES

CONCEPTS

The following paragraphs define terms used in describing a disk-based
operating system (DOS or DOS/VM).

File

A file is a named set of information organized and stored on a
magnetic disk in such a way that a computer program can use the
information.

For Prime DOS, a file consists of a list of 16-bit binary words; a
binary word is the smallest item of information that can be moved to
or from a file at one time.

File Access

The process of moving information from a file stored on disk to a
location in high-speed memory is called reading from a file. Moving
information from a location in high-speed memory to a file stored on
disk is called writing to a file.

File Creation

Files may be made through the use of a DOS system editor at a
terminal (Teletype or CRT keyboard type); they may be made by copying
information stored on paper tape, punched cards, etc.; or they may be
generated by computer programs.

Some Typical File Content

1. Lists of employee names, addresses, salaries, etc. stored as
files for payroll and bookkeeping programs to use.

2. Computer programs coded in languages that may be read by humans
and stored as files in order that other programs may be used to
translate the human-readable program into a program that is both
meaningful to a computer and can be mm on a computer.

2-1



Why a File System?
 

The purpose of having a file system is to simplify the manipulation

of large quantities of data using the computer. The major goals of the

file system are listed below:

1. File creation without manual pre-allocation of the storage
medium

2. Ability to reference a file by name

3. Clustering like files together.

The first goal is implemented by keeping a file on each disk that
lists the available space for the disk. Since the whole process
is automatic, the average user does not need to concern himself
with this process, other than to know that it works.

Referencing files by name means the desired file may be selected for
operation by giving the system an array of alphanumeric characters.
The file system does this by having a file that is used as a directory;
it contains the names of other files and their locations on the disk.
The systen can find this Master File Directory (MFD) because its name
is always the same and its location is always the same.
 

The third goal is achieved in two ways. The first is to have many
file directories; this allows like files to have their names and
locations saved in the file directory file. The second way is by

nesting file directories. This means some of the filenames saved
in a file directory can be the names ofother file |
directories. Thus, files may be classified to an arbitrary extent.

A side-effect of clustering files in a file directory (files whose
hames are stored in a file directory are often said to be "in" the
directory) is that some degree of. access protection can be built in
by associating a password with each file directory. In order to
examine the files in a directory, the user must first supply the
password for that directory.

 

Summary

A file directory is a file that contains the names of other files on
the disk and the location on the disk of these files. A file
directory may contain the names of other file directories. In order
to access files stored in a directory, the password for that directory
must be given.

2-2



MAN /675

Using the File System

To access files, the user must be attached to some file directory.

This means the file system has been supplied with the proper file

directory name and password, and it has found and saved the name and

location of the file directory. It can therefore find and operate-on

all files contained in that file directory.

The major operations on files are: initialization for access (open);

access; shutdown and resource deallocation (close); and deletion.

Opening a File

A file may be opened for reading only, for writing only, or for both

reading and writing. If a file is opened tur reading only, it may be

read; but it cannot be changed.

The operation of opening a file does the following:

1. searches the file directory to see if Ihe fiirename requested

is there; .

2. sets up tables and initializes buffers in the operating

system;

3. defines a pseudonym for the file. This pseudonym is called

the file wit number and is the only name used for transfer

of data to and from the file.
 

If a file is opened for writing only, or for reading and writing, it
may be changed; and if the filename is not found in the directory,

the filename is added to the file directory, and a new file is created.

When a newfile is created at the time of opening, no information is
contained in the file.

Using an Open File
 

Once a file has been opened, a file pointer is associated with the

file. The file pointer indicates the next binary word to be accessed.

To understand how the file pointer works, imagine that the words in a

file are serially numbered from 0. The file pointer is then the

number of the next word to be accessed in the file.

Access

On an open file, information may be read from the file starting at the
file pointer into high speed memory or information may be written to the
file starting at the file pointer.

Access and File Pointer

When a file is accessed, the file pointer is incremented once for each
binary word accessed.

2-3



Position

The file pointer may also be moved backward and forward within a
file without moving any data. This is called positioning a file.
The value of a file pointer is called the position of the file.
Positioning a file to its beginning is often called rewinding a file.

Truncation

It is possible to shorten a file by trumcating it. When a file is
truncated, the part of the file that is at or beyond the file pointer is
eliminated from the file. If the file pointer is positioned at the
beginning of the file, all of the information in the file is removed
but the filename remains in the file directory.

Closing a File

A file that has been opened may be closed. The file uit number
(pseudonym) and the corresponding table areas in the operating system
are ''cleaned up" and released for reuse.

 

Deleting a File
 

The filename of a file that is deleted is removed from the file
directory, and all of the disk memory that the file occupied is
released for use by other files.

2-4



Po
m,

& C
n

Concept Conclusions

The fundamental operations possible using the DOS file system have now
been described. The following paragraphs re-examine files and file
directories in more detail and introduce the idea of how files are put
together, and how they are related to directories.

Physical Disk Consideration
 

A disk storage medium is composed of many separate blocks of data
recording space (disk records or sectors}. How these blocks are put
together to make a file can affect the efficiency of positioning
by several orders of magnitude. Because of this, the file system has
two different ways of linking physical disk records together to form
a file. One way, SAM (Sequential Access Method), is stored more
compactly on the disk and requires less computer fast memory for
efficient operation, but is much slower for repeated random positioning
over a file. The other way, DAM (Direct Access Method), is quick for
positioning over a file, but requires more disk space and more fast
memory. SAM and DAM files are functionally equivalent in all other
respects. - ‘

More on File Directories
 

File directories were previously described as files containing the
names and locations of other files on the disk. This kind of file
directory is referred to elsewhere in the documentation as a User
File Directory (UFD). The file system supports a second kind
of file directory called a segment directory. Segment directories
differ from UFDs in one fundamental respect: they contain file
locations but not file names. As far as the file system is concerned,
the files in a segment directory have no names. This means that the
file system user is charged with all of the bookkeeping involved in
the use of a segment directory.

 

Segment Directory Use
 

Each binary word in a segment directory is assumed to hold a legitimate
file location on the disk. The segment directory file is opened for
reading/writing on a unit of the user's choice. The segment directory
file is then positioned to the word containing’ the location of the
desired file.

If the desired file is a UFD, the user may attach to it by passing
the file unit number to the file system in place of a file name.
Similarly, the desired file may be opened, closed, deleted or
truncated by giving the file unit number of the segment directory
file rather than filename.



FILE SYSTEM

The DOS (and also DOS/VM) file system consists of a hierarchy of
files and file directories. There are two types of files and
types of directories. These are described in this section.

TYPES OF FILES

The two types of files are: Sequential Access Method files (SAM
files) and Direct Access Method files (DAM files). The structural
differences between these two file types are transparent to the user.

SAM Files

A SAM file is the basic way of structuring disk records into an
ordered set; i.e., a threaded list of physical disk records. The
following example shows this structure:

BEGINNING 0 1 n
RECORD >
 

  

      

  

SAM File Structure

In DOS, a SAM file cmsists of a collection of disk records chained
together by forward and backward pointers to and from each record
(see Appendix A). Further, each record in a SAM file (or any file)
contains a pointer to the beginning record address (BRA) of the file.
The file system maintains the record headers and is responsible for
the structure of the records on the disk.

Figure 2-1 shows an example of how SAM files may be related within
a DOS file system hierarchy.

DAM Files

A DAM file is a direct access file. DAM file organization uses the
SAM file method of making an ordered set; but for purposes of rapidly
accessing the i'th data record, a special trick is used:

Physical disk record 0 of a DAM file is reserved for use by
the system. No user data is ever written in this record.

2-6



MAN 1675

The first disk record (logical record 0) to contain
user-written data is the second record of the threaded
list of disk records. The first disk record 0 contains
pointers to the second, third, ... i'th 440th disk record
of the file as shown in the following example:

 

RECORD
HEADER

1230
 

 

   

DAM File Structure
 

Figure 2-1 shows a typical relationship of DAM files within a DOS
file hierarchy.

Note that a DAM file can continue to grow beyond 440 records. In
this case, the records beyond the 440th will be threaded and referenced
as if they were records in a SAM file. For example, to access the
445th record of a DAM file, the file system would go to the 440th
record directly and seek through the remaining five records
sequentially. For an example of how to create a DAM file, refer to
Appendix H.

File Records

All files on Prime DOS disks are stored in fixed length 448-word
records, chained together by forward and backward pointers. The
first eight words of a record is the record header. Specific content
of record headers is discussed in Appendix A. After the record header,
all remaining words within the record may be used to store ASCII
character pairs or 16-bit words.

File Contents

A file is a series of records of the type described above, with
the distinction that the first record in such a chain is reached
from a pointer within a User File Directory or an entry in a
Segment Directory.

2-7



DSKRAT

  
MFD

   

DSKRAT   

B SEG (1)   
B SEG (2)

 

    
     B SEG (4) B SEG (3)    

 

 
B SEG (4)
IS ANOTHER
SEGMENT

1

2

3
DIRECTORY 4

Figure 2-1. Hypothetical DOS File Hierarchy with SAM and DAM
File Structures

2-8



MAW 1675

Every file contains a series of i6-bit words. The format depends on
the type of data in the file and how they were originally entered into
the file system. The following types of files are in general use in
DOS Systems:

Line Image

Line Image
Compressed

Object Format .
(Relocatable
Binary)

Saved Memory
Image

Directories
(UFD and
Segment)

ASCII character text, packed two characters
per word, as entered from a terminal or from
the Prime card reader, paper tape readers,
etc.

Same as above, but successive spaces are
replaced by a relative horizontal tab char-
acter followed by a space count, and lines
are terminated by a 1.INE FEED character.

Block-format object code as generated by
the Macro Assembler and FORTRAN Compiler
for processing by Linking Loader.

Header block followed by a direct transcrip-
tion of high-speed memory between limits
Starting Address (SA) and Ending Address (EA).

See Appendix A for Format details.

2-9



DIRECTORIES

Directories are specialized files that contain entries that point to
“files or, in some cases, other directories. Directories are the
nodes in the file system tree structure hierarchy, whereas files are
the branches. Figure 2-1 illustrates this concept. The types of
directory are UFD's and Segment Directory.

Segment Directories may be organized as SAM files or DAM
files, depending on the kind of file structure the user wishes
to build.

MFD and UFD

Each disk pack (or device, in the case of non-removable media) has
one User File Directory called a Master File Directory (MFD) that
contains an entry for each User File Directory (UFD) in the MFD.
In turn, each UFD contains an entry for every file or directory
file in that directory. UFD's and MFD's are accessed in the same
way as other files, :

Master File Directory (MFD)

Each disk unit contains one MFD file as an index to the first
physical record of each UFD in the MFD. The MFD has the same
format as any UFD. The first record of the MFD begins at physical
record one of the disk. Figure 2-1] shows a chain of pointers
extending from the MFD to UFD and Segment Directories, and to
a DAM or SAM file.

User File Directory (UFD)

A User File Directory is a file that links DOS filenames to the
physical record of a file.

A UFD, in the format shown in Appendix A, is associated with each

system user. The UFD header consists of a word count followed by the

password. After the header, the UFD contains an entry for every file

or directory named by the user. Each entry consists of a filename and

a word that contains the address of the first physical record of the

file (called the beginning record address or BRA). Currently, each

UFD can contain up to 72 entries. The first physical record of each

UFD is accessed from apointer (entry) in a UFD or is accessed from an
entry in a Segment Directory. Details of the contents of the UFD

Header and entries are given in Appendix A.

2-10



MAN 1675

Segment Directory

A segment directory is formatted just like a UFD except that instead
of several words per entry, there is only one: the pointer to the
beginning record of a file. For information on how to create a
segment directory, refer to Appendix C.

Disk Record Availability Table(DSKRAT)

DOS maintains a file, formerly always named DSKRAT, that stores the
status of every physical record on the disk. The name of this file
may also be the name of the disk (which is referred to as the Packname).
Each record is represented by a single binary bit; a "1" means the
record is available, and a "0" means it is in use. On a typical
DOS disk, the DSKRAT file is allocated one record. The DSKRAT file
is maintained as a file on the disk, starting at physical record 2.
The format of DSKRAT is shown in Appendix A.

Disk Organization
 

DOS supports the use of all the Prime disk options. (Refer to
Section 1.) DOS also permits the user to write a programming
package that supports blocked, random access device (ISAM).
Multiple disks are organized so that every fixed disk and every
removable disk is a self-consistent volume with its own bootstrap,
DSKRAT andMED.

Logical record zero is cylinder zero, head zero, sector zero on
all options except the dual (fixed and removable) device which has
two logical zeros -- one on a fixed disk (head 2) and one on
the removable disk (head 0).

File Units

When a disk file is made active for reading or writing, to hold one

or two disk records at a time, it must be assigned one buffer in

high-speed memory if the file is a SAM file, or two buffers if the

file is a DAM file. The buffer, plus associated pointers and status
indicators, serves as an access port for the exchange of data
between the disk file and the active program. A user generally is
concerned with file wits; he is not aware of a buffer, except
when DOS runs out of memory or overwrites a user program. One file

at a time can be assigned to each unit; therefore, a maximumof 15

files can be active (open) at any one time. However, DAM files use

two buffers, so that a maximm of 12 DAM files may be open at any one
time. The files may be open on several different logical disk
units at once. Under DOS/VM, no space is used in the user's address
space for file buffers.

2-11



Opening, Closing File Units

Refer to the discussion on file units, buffers, and opening files
in the first part of this sectimn.

Various ways are provided to associate a specific filename (Filename)
te one of the memory buffers (Funit numbers). One method is the
OPEN command, for example:

' OPEN Filename Funit Status

Filename is the name of a file listed in the UFD to which the user
is currently attached; Funit is a DOS file unit number ('1-'17),
and Status is 1 for reading, 2 for writing, etc. Note, the character '
is used to denote an octal number. (For full information, see Section
4 "OPEN''.) In response to this command, DOS selects an unassigned
buffer area, assigns one or two buffers the specified Fumit number,
and uses it as the data buffer when reading from or writing to the
named file. Whether one buffer or two buffers are assigned depends
on whether Filename specifies a SAM file or a DAM file. The file is
then said to be open. The 448-word memory buffers are’ allocated down-
ward starting from the beginning of DOS itself. DOS associates a
Funit number to the highest unassigned block when a file is opened.
From the terminal, the user can open files with the OPEN, BINARY, INPUT
and LISTING commands, and close them with the CLOSE command. The
command INPUT opens unit 1 for reading (for example, to provide a
source input file to the Assembler or Compiler). The BINARY command
opens unit 3 for writing (of the object output), and LISTING opens
unit 2 for writing (of the listing file). The OPEN.command allows a
user to assign a file to a unit of his choice and specify the activity -
reading, writing, or both. File units 1 to 15 may be specified by
the user.

Unit 16 should not be opened by the user; it is used by DOS for read-
ing and writing of system files such as DSKRAT and user file directories.
Under DOS/VM, unit 16 may be openedas it is not used by DOS/W.

When the user is commmicating with the file structure through one
of the standard Prime translator or utility programs, he refers to
files by name only. DOS, or the program itself, handles the details
of opening or closing files and assigning file units. For example,
the user can enter an external command such as ED FILE1, which loads
and starts the text editor and takes care of the details of assigning
the file FILE] to an available unit for reading or writing.

Because open files are subject to alteration (deliberate or accidental),
the user must keep files closed except when they are being accessed.
The CLOSE ALL command returns all open file units to « closed and
initialized state.

2-12



MAN (675

File-Handling Subroutines

All file handling is done by a collection of special subroutines, some
internal to DOS or DOS/VM, and others available as library routines.
These routines are used in common by DOS and all Prime system software
for simplified and uniform file handling. In addition, they can be
called from FORTRAN or assembly-language user programs. The
principal routines are:

ATTACH Attaches user to a specified UFD or device.

GETERR Moves n words from the system error vector
ERRVEC into a specified array.

GINFO Moves n words of information about DOS
(or DOS/VM) into a special array.

PRWFIL Reads 16-bit words from a specified file unit
to high speed memory and writes 16-bits words
from memory to a specified file unit. (For details,
see Section 5.)

RESTOR Restores to memory an executable program
previously filed by a SAVE operation.

RESUME Restores to memory and starts an executable
program previously filed by a SAVE command.

SAVE Saves a section of high-speed memory as a named
file. High and low address limits, the start-
execution address, and other key parameters are
saved with the program.

SEARCH Assigns a named file to a file unit and opens the
file for reading and writing.

The ATTACH, RESTORE, RESUME, and SAVE routines have exactly the
same functions as the commands of the same name. These and other
file and character handling subroutines are described in detail
in Section 5.

2-13



All of the file handling subroutines called by the user are loaded
with the user's program when the FORTRAN library is loaded. Most of
these subroutines are interlude subroutines which issue supervisor
calls to DOS or DOS/VM. The appropriate subroutine in DOS then executes
the appropriate file operation.

File Handling in User Programs

The subroutines (refer to Section 5) simplify communication between
the DOS or DOS/VM file structure and user programs. In FORTRAN
programs, for example, the symbolic device unit numbers in formatted
READ and WRITE statements can be associated with DOS file units.
The following default assignments are set up by the compiler:

FORTRAN Unit (u) File Unit (Funit)
 
 

5 1
6 2
7 3
8 4
9 5

10 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16

Example: to write a record to file unit 1 (FORTRAN unit 5), the

user could enter the command OPEN Filename 1 2. The OPEN command

associates the file Filename with the file unit 1 and opens the

file for writing (code 2). During subsequent execution of a

program containing a formatted WRITE statement such as:

WRITE (5,10) LINE

the contents of array LINE are written as one record to the FORTRAN

unit 5 (file unit 1) according to FORMAT statement 10.

At the program level, a Filename and Funit number can be associated

by the DOS subroutine SEARCH, that has the form:

CALL SEARCH (2, 6HTEXTbb, 1, $50)

to open the file named TEXT on Funit 1 for writing. Besides maintain-

ing the file directories, SEARCH also initializes the DOS data base

when a file is opened and updates it when the file is closed.

2-14



Users normally call the b
aor roitt4 CONTR 1. RRRAAN AY MPlbAe om nm

OCs subr ourcine NTRE ts Vedi Va weLVOW 2cal CO
file read or written by FORTRAN read or write statements. (See the
Library manual.) The appropriate call that replaces the call to
SEARCH is:

CALL CONTRL (2, 6HTEXTbb, 5, $50)

Startup

When DOS is loaded and started, it prints the message OK: on the
terminal as a cue that it is ready to receive commands. The first
command a DOS user enters mist be a STARTUP. This command assigns
logical unit numbers to the physical disk drives in the particular
system. The STARTUP command determines which disk surface is
accessed for MFD and the other command functions, and determines the
order that DOS searches disk surfaces for UFD's. Use of the
STARTUP command is discussed in greater detail in Section 3.

Attaching to a UFD

To access files or use DOS utility functions, the user must be
attached to a UFD. Typically, during program development, each
user attaches to a UFD reserved for program files with the ATTACH
command. For further information, refer to Section 4. Within execu-
table programs, the user can attach to other UFD's, for example, to
access data or to call subroutines. At the program level, this is
accomplished by the subroutine ATTACH, described previously.
For further information on the ATTACH subroutine, refer to Section 5.

DOS/VM File Access Control
 

DOS/VM gives a user (owner) the ability to open their file director-
ies to other users with restricted rights to the owner's files.
Specifically, the "'owner'' of a file directory can declare, on a per-
file-basis, the access rights a "nonowner"' has over each of the owners
files. These rights are separated into three categories:

. Read Access (includes execute access)

. Write Access (includes over-write and append)

. Delete/Truncate rights

The owner of a UFD can establish two passwords for access to any
file in the UFD; the owner password and the nonowner password. The
owner password is required by owner to obtain owner privileges. The
nonowner password (if any) is required to obtain nonowner privileges.

The command:

PASSWD Owner-Password Nonowner-Password

replaces the existing passwords in the UFD with a new owner-password
and a nonowner-password. This command must be given by the owner

2-15

MAN1675



while attached to the UFD. A nonowner cannot give this command.
The command:

PROTECT Filename Okey Nkey

replaces the existing protection keys on Filename in the current
UFD with the owner (Okey) and nonowner (Nkey) protection keys.
Valid numbers for these keys are: ’

No access allowed
Read access only
Write access only
Read and Write access
Delete/Truncate only
Delete/Truncate and Read
Delete/Truncate and Write
All access allowed (Read/Write/Delete/Truncate)“

I
n
N
m
W
N
H
©

The owner can restrict his own access to a file by the mechanism.
This can be very useful to prevent accidental deletion or over-
writing by an owner of an important file. A nonowner cannot give
the PROTECT command.

A user obtains owner status to a UFD by attaching to the UFD giving
its name and owner password in the ATTACH command. (Refer to
Section 4). <A user obtains nonowner status to a UFD by giving its
name and nonowner password in the ATTACH command.

A user can find out his owner status through the LISTF command.
LISTF types the name of the current UFD, its logical device,O, if
the user is an owner, or N if the user is a nonowner. LISIF then
types the names of all files in the current UFD. An owner can find
out the protection keys on all files in the current UFD through use
of the FUTIL LISTF command. (Refer to Section 4).

Other Features of File Access
 

The owner/nonowner status is updated on every ATTACH and separately
maintained for the current UFD and home-UFD.

A user's privileges to files under a segment directory are the same
as his privileges to the segment directory. Attaching to UFD under
a segment directory establishes new privileges for files under it.

The protection keys of a newly created file are:

owner has all rights

nonowner has none

2-16



MAN! 6075

The passwords of a newly created UFD are:

owner password is Blank

nonowner password is Zero (any password will
match)

A nonowner cannot create a new file in a UFD, or give the CNAME,
PASSWD or PROTECT commands.

Furthermore, a nonowner cannot open his current UFD for reading
or writing. (Refer to Section 5).

In the context of file access control, the MFD has all the features
of a UFD.

If file access is violated, the error message is:

NO RIGHT

DOS File Access Control
 

The stand alone DOS operating system does not have file access control
over individual files, but it is compatible to a degree with DOS/VM.
Under DOS, a user cannot obtain access to a UFD by Attaching using the
nonowner password. If the owner password has been given, the Attach
is successful but subsequent access to files in the directory is
not checked. Files created under DOS are generated with the same
protection keys as under DOS/VM. The passwords of a newly created
UFD are the same as under DOS/VM.

Commands

DOS commands fall into two major categories: the internal commands
(implemented by subroutines that are memory-resident as a part of
DOS) and external commands (executed by programs saved as disk
files in the command UFD, CMDNCO).

On receiving a command at the system terminal, DOS checks whether it
is an internal command, and if so, executes it immediately. Otherwise,
DOS looks in the command directory of logical disk unit 0 for a
file of that name. If the file is found, DOS RESUMEs the file
(loads it into memory and starts execution). All files in the
command directory are SAVEd memory image files, ready for execution.
Most are set up to return automatically to DOS when their function
is complete or errors occur. The command line that caused the
execution of the saved program is retained and may be referenced
by the program to obtain parameters, options, and filenames. To
add new external commands, the user simply files a memory image
program (SAVEd file) under the command directory UFD (CMDNCO).
Memory image files may also be kept in other directories and executed
by the RESUME command.

2-17



With the aid of the DOS subroutine PRWFIL, the user can bypass
formatted FORTRAN I/O and write directly from memory arrays to
disk files, as in:

CALL PRWFIL (1,1 PTEXT, 36, 0, 0)

This statement reads 36 words from the file associated with Funit 1
to memory array TEXT, where PTEXT is a pointer to the beginning of
array TEXT. PTEXT may be set up by a call to the FORTRAN function
LOC. The statement to set up PTEXT would be:

PTEXT = LOC (TEXT)

File Access Methods
 

Under DOS, the means of file access is the Sequential Access Method
(SAM) or the Direct Access Method (DAM). With both methods, the file
appears as a linear array of words indexed by a current position
pointer. The user may read or write a number of words beginning at
the pointer, which is advanced as the data is transferred. A file
I/O module service call (PRWFIL) provides the ability to position the
pointer anywhere within an open file. File data can be transferred
anywhere in the addressing range (up to the full 64K). When a file
is closed and re-opened, the pointer is automatically returned to
the beginning of the file. The pointer can be controlled by the
FORTRAN REWIND statement, also it can be controlled by PRWFIL
positioning.

With the DAM method of access, the file appears to be a linear array
of words also, but this method has faster access times in positioning
commands. DOS and DOS/VM keep an index that allows for positioning of
the first 440 disk records of a file.

DOS/USER INTERACTION

Loading and Initializing DOS
 

The DOSmonitor is a saved-memory-image file under the UFD named
DOS. It must be loaded into the high-speed memory with the aid of
a bootstrap loading program. The bootstrap is loaded on the devices
available under control of CPU microcode. A system with full disk
bootstrap microcode can load DOS directly from the master disk
through the panel LOAD function. Other configurations may require
a key-in loader and paper tape bootstrap. For information on
this and other operating procedures, see Section 3.

2-18



MAN Ie “ oO
i=

TIAG and TWCAM santarmal and ave+nwrnal rammande awn Ancerrihadl 3
AAS GI LAMY VI BEENLIG GI CALCLINGA CUHNCULINIOD GLU WULOLLivUU

Prime system programs (compiler, assembler, editor, etc.) requiring
detailed operation instructions are described in the pertinent manuals
referenced and summarized in part in the appendices in this manual.

Comnand Files

As an alternative to entering commands one at a time at the terminal,
the user can transfer control to a command file by the command:
COMINPUT. This command switches command input control from the
terminal to the specified file. All subsequent commands are read
from the file. One can assign any unit for the COMINPUT file.
This means that command files may call other command files. For
detailed information on the COMINPUT command, refer to Section 4.

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system in the
debugging stages when it is necessary to recompile and reload often.
Command files are also useful insystem building when many files
must be assembled, concatenated, loaded, etc. (for example,
configuring an RTOS system or generating library files).

Saving Programs

After compiling or assembling a program and loading the object
version along with library routines, the user can save the program
development efforts by the SAVE command:

SAVE Filename SA EA PC AB X Keys

This command string assigns a file, Filename, in the current UFD, saves
the memory image between limits SA (starting address) and EA (ending
address) and enters other parameters into the header biock:

PC Program Counter setting (address at which
to start program execution)

A A Register value

B B Register value

X X (Index) Register value

Keys Status keys (as processed by INK, OTK
instructions)

2-19



The preferred way to save newly loaded programs is to use the loader's
SAVEcommand. Refer to the Program Development Software User Guide
or detallis.

When a program is restored to operation by a RESTORE or RESUME
command, these parameters are retrieved with the file and replaced
in the registers from which they were obtained. These are the
RVEC parameters, described in more detail in Section 4.

A program saved in the command UFD (CMDNCO, for example) can be
invoked by name like any other external DOS command. All standard
Prime translator and utility programs are supplied in this form.

File Maintenance (FIXRAT)

To give the user an efficient and thorough way to check the integrity
of data on a DOS disk, DOS provides a file maintenance program,
FIXRAT, filed under the command directory, CMDNCO. When FIXRAT is
invoked as an external camand, it checks for self-consistency
in the structure of pointers in every record, file, and directory on
the disk. If there are breaks in the continuity of double-strung
pointers, discrepancies between the DSKRAT fiie and the reconstructed
record availability map, or other error conditions, FIXRAT prints
appropriate error messages. FIXRAT asks the user to specify whether

or not to take specific steps to repair a damaged file structure on
a specified logical disk unit. For details and examples, refer to

FIXRAT description in Section 4 and Appendix E.

DOS MEMORY USAGE

DOS occupies approximately nine sectors at the top of the available
memory plus a variable number of 448-word file unit buffers. Figure
2-2 shows a typical memory map for a system with 16K of high-speed
memory. DOS/VM takes no part of the user's virtual address space.

Floating DOS

Three versions of DOS are supplied in the UFD, DOS. These versions

load DOS starting at locations '27000, '47000 and '67000. The boot-

strap program selects the version of DOS that is nearest to the top of

high-speed memory. The values in Figure 2-2 may be increased

accordingly to 20,000 locations and 40,000 to give an approximation
of memory allocation tor 32K and 64K systems. If desired, a parti-
cular DOS may be selected by manually setting the sense switches
(refer to ''BOOT" in Section 3).

2-20



MAN !675

Other Locations 

Sector 0 is reserved. Locations 0 through '177 are dedicated to the
Prime CPU's register file and the vector locations for interrupt and
DMX. Locations '200 and above are used to store the cross-sector
indirect address links generated by the loader, but the user may,
with caution, use locations in this area.

For 16K configurations, locations '1000 through '17777 may be used
without restrictions unless a symbol table is present. The high end
limit is usually determined by the start of the loader, which may be
memory-resident during loading. However, FORTRAN common may set the
upper limit if it extends below '020000.

FORTRAN common overlaps part of the area that can be occupied by DOS
file unit buffers. Up to three SAM file units can be open at a time
without the risk of writing over part of common.

Default location of FORTRAN common is the top of the loader extending
down in memory. There are two implications:

1. common cannot be loaded with 'BLOCK DATA' statements,

2. only three disk units may be open at any one time.
(DOS restriction only.)

This problem can be avoided through use of the loader's COMMON
command, which permits the moving of common to a user specified
location. :

If a program is to be debugged with the aid of Trace and Patch (TAP),
only two files can be open at a time. However, TAP can relocate
itself elsewhere in memory if this is a problem. For information
on TAP, refer to the Program Development Software User Guide.

Memory areas occupied by the DOS file unit buffers are listed
in the following table.

2-21



Table 2-1

Memory Areas and DOS File Units
 

 

 

 

Number Top of
Open File Available
Units Memory

16K 24K 32K
| system System System

0 "26777 °46777 "66777
1 *26077 "46077 "66077
2 "25177 "45177 "65177
3 "24277 "44277 "64277
4 "23377 "43377 "63377
5 "22477 "42477 "62477
6 "21577 "41577 "61577
7 "20677 "40677 '60677
8 "17777 "37777 "57777
9 "17077 "37077 "57077

10 "16177 "36177 "56177
11 "15257 "135277 '552°7
12 "14377 "34377 "54377
13 "13477 "33477 "53477
14 "12577 "32577 '52577
15 "11677 "31677 "51677
16 "10777 "30777 "50777 
   

Notes: 1.. 448 words for each SAM file open.

2. 896 words for each DAM file open.

3. There is a difference of octal 700 as the number of
open file units increases. Users can estimate the
correct figures if they know how much memory is
available and the number of open file units.

4. The above figures assume only SAM files. Up to date
information may be gathered by the use of the STATUS
and GINFO commands.

2-22

 



SECTOR
 

 

 

 

 

 

 

 

USER PROGRAMS

“
2

O
P

Ot
t

f
e

A
T

B
O

R
e

 

 

 

 

 

 

 

 

17 17777 |
 

 

20000
 

TAANTD
LVAD

(IF USED)

23777

24777

&* i FORTRAN
22 DOS COMMON

FILE UNIT A

BUFFERS

 

 

 

 

 
 

L
a
fe
>

<
P
a

C
E
M
)
q
u

q
u
a
m

ou
nd

& 8 

   
 

  

 

26 Vv 26777
27 27000
 

 

 

 

 

33 DOS
 

 

 

   37 37777   
Figure 2-2. Memory Allocation in- 16K System

2-23

MANi675



SECTION 3

DOS OPERATION AND SYSTEM MAINTENANCE

This section describes how to load and start DOS, summarizes the
essential operator tasks during an operating session, and describes
procedures for data backup and system shutdown.

BOOTSTRAPS AND DISK BUILDING

The process of converting a "cold-iron'' computer to a useful tool
begins with getting that first program into memory (bootstrapping).
Then the first program can read other programs and data into memory.

A parallel step in bootstrapping DOS and DOS/VM into memory is the
preparation of the mass storage media.

LOADING DOS FROM MASTER DISK

DOS and DOS/VM are usually supplied in the form of a master disk
cartridge to be installed as the removable surface of a Pertec (or
equivalent) moving-head disk drive. The master disk includes DOS,
the command UFD, (CMDNCO), DOS/VM (filed in CMDNCO), and library files
(filed under UFD LIB). For information on the library files supplied
on the master disk, see Section 5 and the Library Manual. |

NOTE: Special instructions accompany versions of DOS supplied on a
fixed-head disk drive or other media.

STARTING EQUIPMENT

1. Turn on power to the equipment in the system in the following order:

a. CPU

b. Fixed Head Disk Drive (if present)

c. Moving Head Disk Drive |

d. ASR, high speed tape equipment, etc.

NOTE: Refer to the Prime Operator's Guide for operating
instructions for the computer panel, the terminal, and
the high-speed paper tape reader/punch. Operating
procedures for the various Prime disk drives appear in
Appendix K.

3-1

MAN /679



2. Install the DOS master disk cartridge in the moving-head disk
drive. Press RUN/STOP to start drive. Wait for READY light.

CAUTION: Place the removable surface in WRITE-PROTECT mode
to ensure that accidental operating errors cannot
write over the DOS software.

BOOTING DOS

DOS mist be transferred from the master disk to CPU memory, where
it will take control of subsequent events. In order to do this,
the CPU must be loaded ('booted') with the DOS BOOT program. DOS
BOOT may be supplied as a self- loading paper tape to be read by
the panel LOAD function or a key-in loader. However, if the CPU is
equipped with microcode for direct booting of DOS from the disk, no
paper tape is needed. The various procedures for booting DOS,
according to the types of equipment and LOAD microcode, appear in
Appendix B.

BOOT Operation

BOOT performs the following functions:

Cleans up parity, non-destructively, throughout memory.

Sizes available memory.

Requests, from the operator, which device to boot from.

Attaches to the MFD on that device.

Attaches to the UFD, DOS.

Depending upon memory size and/or sense switches, reads
*D0S16, *DOS24, or *DOS32 into memory and starts the version
of DOS read in.

There are three possible outcomes of a boot operation: (1) a success-
ful boot, in which case DOS takes control; (2) a detected error, in
which case the boot returns and again requests, from the operator,
which device to boot from; or (3) an undetected error, such as
non-existent device; in the latter case, the boot pauses. -

When started, the boot prints:

PHYSICAL DEV =

3-2



MAN| b75

The onerator resnonse must he the nhvsical wmit mmb
a 214 GS ve ehie 44s Zs 4@44aywv WwW aueurw Verypwsiww heath Lid

the DOS STARTUP command. Possible unit numbers aredefined in
Table 3-1.

Sense
Switches 1-10: See the following paragraphs

11-13: Type ='0 option 4000 MHD (moving head disk)
option 4000 FHD (fixed head disk)
option 4300 (diskette)
option 4002 9 sector MHD
option 4002 64 sector MHD
option 4002 32 sector MHD
option 4001/4002 20 surface MHD
reservedS

I
O

U
T
B
m
A
N

©

Sense
Switches 14-16: Unit = physical drive number. For option

4000 and option 4002 MHD's, EVEN units
are upper platters and ODD units are
lower platters of the drive number in
bits 14 and 15.

The version of DOS (*DO0S16, *DOS24, *DOS32) that is read in is
determined by either memory size or Sense Switches 1, 2, and 3 in
the following manner:

If all sense switches are reset, the highest memory DOS that fits
in available memory is read. For booting DOS from diskette, the
user must specify *DOS16 by setting the sense switches as described
below:

If any of these sense switches are set, they are treated as the
most significant bits of the high address of memory + 1 as shown
in the following example:

 Sense Switch Address - DOS

0 highest that will fit
20000 error
"30000 *DOS16
"40000 *DO0S16
50000 *D0S24
60000 *DOS24
"70000 *10S32
'1X0000 (X=don't care) *D0S32

Once the boot has been successfully brought into memory by the control
panel boot, it can be re-executed by pressing MASTER CLEAR and STARTing
at '1000. If a status error is detected on the device, BOOT restarts
automatically. Both the option 4000 anddiskette drivers wait for the
device to come ready, but the option 4002 driver treats device not ready
as a status error.

3-3



Building BOOT

The BOOT program is stored as a normal DOS SAVE file on a normal DOS
format record (=0). Consequently, physical record 0 contains first
an eight-word DOS record header, second an 8-word DOS SAVE file
header, and finally the BOOT program itself. The eight-word DOS
record header is eliminated by reading the record starting at '770
but starting execution at '1000; the first word of the eight-word SAVE
file header is preserved.

The SAVE file header is as follows:

start address (SA( (must = '3011)
end address (EA) (must be correct)
program counter (PC)
A-register
B-register
X-register
Keys
unavailable
unavailable

Since execution starts at '1000, the start address must be '3011 which
is also a MJP '1011 (the boot is guaranteed to be executed in 16S mode
either by MASTER CLEAR or the control panel boot). The boot executes
in sector '1000 and so must be stored there (at '1011), then later
moved (by means of PSD or TAP) to '3011 and SAVEd there (the end
address must be correct). Because BOOT can never be executed as a
user or system terminal command (it cannot execute in sector 3),
the PC, A-register, B-register, X-register, and Keys are available as
constants to be used by BOOT. They are defined as follows:

PC = '160000 mask for Sense Switches 1, 2 and 3
A = '110 master clear default control register
B = '27 SOC master clear default control register 1
X = '74000 SOC master clear default control register 2
Keys = '260 ASCII 0

Once a BOOT has been placed on a disk, it can be copied to another
disk with the following command sequence:

A MFD XXXXXX Lunit
RESTORE BOOT
A MFD XXXXXX Lunit
SAVE BOOT

Since the SAVE parameters can be specified, the A, B, and X registers
can be set to other than master clear defaults to allow other types
of system terminals. When changing these values, care must be taken
not to change any of the others.

3-4



The command file C+BOOT on UFD=FILAID produces a file named **BOOT with
SAVE parameters defined as above. The following command sequence
produces a file (which must be named } suitable for placing on a
disk (User input is underlined).

OK: RESTORE **BOOT
OK: PM

SA, EA,-P, A, B, X, K=
001011 high 031721 031723 000110 000027 75000
OK: PSD
$ C1011 high 3011
V 1011 high 3011

Q
OK: SAVE *BOOT 3011 (high + '2000) 31721 31723 11027 74000
OK:

 

 

 

NOTE: high is the EA and varies depending on the revision or the version
of BOOT read. It must be correct.

Direct Panel Load of DOS from Disk
 

Use these procedures if the CPU contains microcode for direct booting
from the disk:

i. Set Sense Switches.

To indicate what disk to boot from, set the rightmost sense switches

  

as follows:

Physical Disk Number (octal) Sense Switches (octal)

0 XX0004
1 ; XX0044

10 XX0003
20 XX0006
30 XX0014
31 XX0054
40 XX0013

XXX050 XX0014
XXX051 XX0054
XXX250 XX0034
XXX251 Xx0074

NOTES: Physical disk number is associated with disks as shown in
Table 3-1. The X's represent don't care octal digits.

3-5

MAN 1675



A particular DOS (DOS at 16K, 24K, 32K) can be selected by setting
the leftmost sense switch as follows:

DOS Sense Switches

highest DOS that will fit in memory OOXXXX
*D0S16 O4XXXX
*D0S24 O6XXXX
*D0S32 LOXXXX

2. Turn rotary switch to STOP/STEP and press MASTER CLEAR. Turn
rotary switch to LOAD and press START. The control panel boot
should read in record 0 from the disk containing the DOS BOOT,
transfer control to it, and print: PHYSICAL DEVICE = .

3. Refer to the next major topic "LOADING OF DOS".

DOS BOOT Tape, Panel LOAD

Use this procedure if the CPU contains microcode fora panel LOAD
from a paper tape device - the ASR Teletype (low-speed reader) or
the HSR (high-speed reader).

1. Mount the DOS BOOT tape on the available device (ASR or HSR).

2. Set sense switches as follows:

Device Sense Switches

ASR "000001

HSR *000002

3, Turn rotary switch to STOP/STEP, press MASTERCLEAR, turn to
RUN and press START. DOS BOOT tape loads from tape and prints:

PHYSICAL DEVICE = .

4, Refer to the next major topic, "LOADING OF DOS".

3-6



MWe BAT Tana Yavin Taal
ae

a . an
a “upw 3 ae7 242 LAU
 

1. Prepare the CPU to read self-loading paper tapes by entering
the appropriate key-in loader and second-level bootstrap
tape as described in the Prime CPU Operator's Guide.

Z. Mount the DOS BOOT paper tape on the available device (ASR or
HSR) .

3. After the second-level bootstrap is loaded, the CPU is ready to
read a self-loading tape from the available device. Turn
the CPU rotary switch to RUN and press START. The DOS BOOT
tape reads into memory and types: PHYSICAL DEVICE =

4, Refer to the next major topic, "LOADING OF DOS".

LOADING OF DOS

In all cases, once DOS has been booted into memory, -the system terminal
prints:

PHYSICAL DEVICE =

Physical Device codes are assigned as follows:

 

Device (disk types) Codes Controller

Moving head disks 0-7 ~~ 4000

Fixed head disks 10 - 11 4000

Floppy disks 20 - 27 4300

Moving head disks 30 - 37 4002

Fixed head disks 40 4002

Moving head disks 50 - 57 4002
(32 Sector/Track)

30 million word disks 5050-5056 4001/4002
(even numbers

only)

30 million word disks 5250+5256 4001/4002
(even numbers

only)

For further information refer to Table 3-1.

3-7

MAN }1675



The user types the physical device code at the terminal and presses

CARRIAGE RETURN. Then DOS/BOOT loads and starts DOS, which prints a

label line such as:

DOS REV. 5.0 5/10/74 (AT 070000)

When DOS is ready to receive commands from the user it prints:

OK:

at the system terminal. However, if an error of some kind is
discovered, BOOT retypes the message:

PHYSICAL DEVICE =

Errors that result in this message are the following:

1. disk does not exist on the system or is not turned on, spinning

and ready;

2. umrecovered disk error attempting to read *DOS16, *DOS24, or

*Dp0S32 from the disk;

3. disk does not have an MFD, the UFD DOS within the MFD or, the

files *DOS16, *DOS24, or *DOS32 in UFD DOS;

4. the MFD, DOS, *DOS16, *DOS24, or *DOS32 has a bad structure.

STARTUP OF DOS

When DOS prints the message OK:, the DOS system is loaded into memory

and ready to receive commands from the user. The first command to be

entered must be a STARTUP command that connects a physical disk to

logical disk unit (. DOS expects to find all its command files on

unit 0. For detailed information on the STARTUP command, refer to

Section 4. The usual initial STARTUP is: .

' OK: STARTUP O 1

This assigns the removable surface of the moving head disk (the master

disk pack) as logical unit 0 and the fixed surface as logical l.

3-8



Dhirvei nal Nrarrs A .amman+t

 

Physical
Disk
Drive Controller
Number Option Description Sectors/Track

0 4000 Removable surface of first MH ° 8
(moving head) disk drive (upper
surface)

1 4000 Fixed surface of first MH disk 8
drive (lower surface)

2 4000 Removable surface of second Mi disk 8
drive (upper surface)

3 4000 Fixed surface of second MH disk 8
drive (lower surface)

4 4000 Removable surface of third MH disk 8
drive (upper surface) |

5 4000 Fixed surface of third MH disk drive 8
(lower surface)

6 4000 Removable surface of fourth MH disk 8
drive (upper surface)

7 4000 Fixed surface of fourth MH disk drive 8
(lower surface)

10 4000 First fixed head disk drive 8

20 4300 First floppy disk drive 4

21 4300 Second floppy disk drive 4

22 - 4300 Third floppy disk drive 4

23 4300 Fourth floppy disk drive . 4

24 4300 Fifth floppy disk drive 4

25 4300 Sixth floppy disk drive 4

26 4300 Seventh floppy disk drive 4

27 4300 Eighth floppy disk drive 4

3-9

MAN !675



Table 3-1. Physical Device Assignments (Cont)

  

Physical
Disk
Drive Controller

Number Option Description . Sectors/Track

30 4002 ’ Removable surface of first MH 8

(moving head) disk drive (upper
surface)

31 4002 Fixed surface of first MH disk drive 8

(lower surface)

32 4002 Removable surface of second MH disk 8

drive (upper surface)

33 4002 Fixed surface of second MI disk drive 8

(lower surface)

34 4002 Removable surface of third MHI disk drive 8

(upper surface)

35 4002 Fixed surface of third MH disk drive 8

(lower surface)

36 4002 Removable surface of fourth MH disk 8

drive (upper surface)

37 4002 Fixed surface of fourth MH disk drive 8

(lower surface)

40 4002 Fixed head disk drive 64

50 4002 Removable surface of first MH (moving 32
head) disk drive (upper surface

51 4002 Fixed surface of first MH disk drive 32

(lower surface) :

52 4002 Removable surface of second MA disk drive 32

(upper surface)

53 4002 Fixed surface of second MH disk drive 32

(lower surface)

54 4002 Removable surface of third MH disk drive 32

(upper surface)

55 4002 Fixed surface of third MH disk drive 32

(lower surface)

3-10



Table 3-1. Physical Device Assignments (Cont)

  

Physical
Disk
Drive Controller
Number Option Description “ Sectors/Track

56 4002. ~+=Removable surface of fourth MH disk 32
drive (upper surface)

57 4002 Fixed surface of fourth MH disk drive 32
(lower surface)

5050 4001/4002 First 30-million word moving head 32
disk drive (controller address = 21)

5052 4001/4002 Second 30-million word moving head 32
disk drive (controller address = 21)

5054 4001/4002 Third 30-million word moving head 32
disk drive (controller address = 21)

5056 4001/4002 Fourth 30-million word moving head 32
disk drive (controller address = 21)

5250 4001/4002 First 30-million word moving head disk 32
drive (controller address = 23)

5252 4001/4002 Second 30-million word moving head disk 32
| drive (controller address = 23)

5254 4001/4002 Third 30-million word moving head disk 32
drive (controller address = 23)

5256 4001/4002 Fourth 30-million word moving head disk 32
drive (controller address = 23)

3-11

MAN 1675



NOTES TO TABLE 3-1:

The logical-to-physical assignment depends on the order in which the
physical device numbers are listed as parameters in the STARTUP command.
The physical device number specified in the Ldisk0 position is assigned
as logical disk unit 0, the physical device number specified in the
Ldiskl position is assigned as logical disk unit 1, and so on. Example:

STARTUP 2 3 5 7

The physical disks are 2, 3, 5, and 7; where:

physical 2 is logical 0, physical 3 is logical 1, physical 5
is logical 3, and physical 7 is logical 4. The number of
parameters in STARTUP indicate to DOS the number of logical
drives assigned to the system.

CAUTION: When changing disks, a SHUTDN is required. Otherwise,
DOS and DOS/VM will use parameters (such as record availability)
applicable to the previous disk and the newly replaced disk with
possible disastrous results.

The codes shown in Table 3-1 are used in the STARTUP command (refer to
Section 4) and the ASSIGN command (refer to Section 4). The codes are
also used by the utility commands FIXRAT, MAKE, and COPY (refer to
Section 4). .

The physical device codes are the same for three- or six-million word
disk drivers connected to the controller.

Data Transfer Between Disks
 

An 8 sector/track disk pack written on a drive comected to the 4000
controller cannot be read on a drive connected to the 4002 controller
and vice-versa, because the method of computing hardware checksum
written on the pack is different on the two controllers. A special
conversion program to convert packs written on one controller to read on
the other controller must be written. A 32-sector/track pack
cannot be read or written on a drive connected to the 4000 controller.
An attempt to read a 32-sector/track pack using physical device numbers

for an 8-sector/track pack will fail. Similarly, an attempt to read

an 8-sector/track pack using physical device numbers for a2 32-sector/

track pack will fail. It is important to keep straight the identifi-
cation of the disk pack. It is suggested that each pack be labeled
with the range of physical device numbers appropriate to the disk pack.

Unlike the other disks, only even numbered physical disk drive
numbers are allowed for the 30-million word disk drives. There may
be up to four drives connected to a type 4001/4002 controller that is

3-12



configured to the system. The default device address for a type
4001/4002 controller is 23, and the disk drive numbers associated
with this drive are 5250, 5252, 5254, 5256. Similarly, a 4001 or 4002
controller may have a device address of 21, and disk drive numbers
associated with this controller are 5050, 5052, 5054 and 5056. A
system configuration could have two type 4001/4002 controllers and up
to eight 30-million word disks connected.

Partitioning Disks
 

A user may partition a 30-million word disk into two or more sub-
disks, via use of the MAKE commad (refer to Section 4). Each parti-
tion of a disk (sub-disk) is treated by the system commands, DOS,
DOS/VM, FIXRAT and COPY, as if it were a physically separate disk.
Each partition contains its own MFD, DSKRAT, BOOT, CMDNCO, ETC.
A partition is defined by a starting head address, relative to head 0
of the disk, and a number of contiguous heads. The minimm partition
contains two heads (i.e., three million words). When a partition of a
30-million word disk is present, the physical disk number varies from
those shown in Table 3-1. The number of heads is reflected in the
second two digits. Tables 3-2 and 3-3 are useful in constructing
partitions. (The X's represent don't care octal digits).

The physical disk number defining a partition on a disk that is parti-
tioned is generated by merging thehead offset with the number of heads
and with the disk device number. For the purposes of forming a physical
disk number for a partitioned disk, the physical disk device numbers are
considered to be: 50, 52, 54, and 56 for disks 1 to 4 on the type
4001/4002 controller.

Example: The physical disk number for a disk partition having a head
offset of 00 and the number of heads of 50 would be calculated as
follows: (assume that the device address of the type 4001/4002
controller is 23). First look up at the appropriate numbers in
Tables 3-2 and 3-3, then

head offset + number of heads + physical disk device number

OOXXXX + =XX52XX + 56 = 005256

As another example, consider a disk split into two partitions with the
disk being the first disk on the type 4001/4002 controller with device
address 21; the first portion has head offset = 0 heads and number of

heads = 10. The physical disk for the first partition is:

OOXXXX + XX24XX + 50 = 002450

The second partition has head-offset = 10 heads and number-of-heads = 10.
The physical disk for the second partition is:

OSXXX + XX24XX + 50 = 05250

Physical Device Numbers Usage
 

The physical device codes described previously in this section are used
in the ASSIGN, CONFIG, DISKS, SHUTDN, STARTUP, STATUS, and UNASSIGN
commands. These device codes are also used by the utilities FIXRAT,
FUTIL, MAKE and COPY.

MAN 1675 3-15



Table 3-2. Head Offset Definitions

 

 

 

Offset Physical Disk Numbers

0 heads OOXXXX

1 head O1LXXXX

2 heads O2XXXX

4 heads O3XXXX

6 heads O4XXXX

8 heads OSXXXX

10 heads OOXXXX

12 heads O07XXXX

14 heads LOXXXX

' 16 heads 11XXXX   
Table 3-3. Number of Heads Definition

 

Number of Heads

Type 4001/4002 Controller
Address = 23
Physical Disk Number

Type 4001/4002 Controller
Address = 21
Physical Disk Number
 

 

2 heads (default)

2 heads (explicit)

4 heads

6 heads

8 heads

10 heads

12 heads

14 heads

16 heads

18 heads

20 heads  

XX02XX

XX06XX

XX12XX

XX16XX

XX22XX

XX26XX

XX32XX

XX36XX

XX42XX

XX46XX

XX52XX  

XXOOXX

XX04XX

XX10XX

XX14XX

XX20XX

XXZ4XX

XX30XX

XX34XX

XX40XX

XX44XX

XX5OXX
 

3-14

 



MAN 1675

DOS/VM is started from DOS, once DOS is started and rumning. For
details, refer to Section 6. Note that the response of DOS/VMto
a valid command is: OK, ("OK"' followed by comma, not a colon). This
is one indication which of the operating systems has control.

INITIAL OPERATING SESSION

Attaching to UFD
 

After a STARTUP, the user must attach to a User File Directory in

order to execute DOS commands and create or manipulate

files. Each master disk provides several blank UFD's named
SPARE1, SPARE2, etc., and the user may attach to any of these

with an ATTACH command (Section 4). To determine what spare UFD's

are available, ATTACH to the MFD and do a LISIF:

UK: A vik XXXXKAX

OK: LISTF

UFD=MFD 0

DSKRAT ilk D B300T CMvNSO LIB SRCLIB DIAG Pi4A

FORTAN Lb BASIS FLial FLIB2 FLIBS FLIBA FLTa5

FLIB6 LIB7 L1IB3 Tocs Alvs ED BINED T&M

DUS &Tos DOS Vi" ATUSVM INDEX SPAR#2 SPARES SPAREA

SPARES SPARE6 SPARET

Note that the MFD has a password, XXXXXX. This is assigned at the time
the master disk is prepared, to discourage casual or inadvertent use
of this important directory.

CAUTION: Do not attach to MFD for a program development or normal
file handling tasks. Be very careful in entering commands
while attached to this UFD. If any of the files in this
MFD are damaged, the master disk is spoiled.



DISK BUILDING (COPYING MASTER DISK PACK)

Disk building consists of three phases: format the disk; move run
files of DOS (*DOS16, *DOS24, *DOS32 as appropriate) onto the UFD DOS;
and move any desired external commands onto the UFD CMDNCO and/or
move libraries onto the UFD LIB.

 

Format of DOS Disk

If a DOS master disk (or any other DOS disk) is available, it can be
COPY'd onto the virgin disk.

If no DOS disk is available or an empty disk is desired, the MAKE
program can be run. The COPY and MAKE programs are described in
Section 4. When a disk is formatted using MAKE, any needed files are
then copied from the master disk onto the new disk. If this new disk
is to be boot loaded from, then UFD DOS must contain the files
*D0S16, *DOS24 and *DOS32. MAKE ensures that an executable and correct
BOOT is written onto record 0 of the disk.

Building a DOS Disk from Paper Tape

If no DOS formatted disks are available, one must be created from
Prime-supplied paper tapes. All tapes proviced are MDL sclf-loading
tapes and are loaded into memory using the control panel toot. The
following procedure must be followed:

1. Load BDOSV2 (DOS bootstrap tape) This loads the loader *DOS16
as well as other necessary modules. .

Start at '6765

After the header is typed and DOS prompts OK:, type the following
commands:

STARTUP (Pdev) where Pdev is a physical device number.

ATTACH DOS
SAVE ¥*DOS16 7000 17777 31000 20000 0 QO 2000

2. Boot the new *DOS16 from the disk using either:

Control panel boot (Sense Switch 2 set)

Paper tape DOSBOOT (SLT-start at '1000). Set Sense Switch 2
after the tape has been loaded.

3, Any other command can be added by loading it into memory (control

panel boot), starting at '30000 (DOS, ATTACHing to CMDNCO and
SAVEing the command). (Refer to Section 4 for a description of
these commands.)

3-16



MAN 1675

4. Use EDR to read any binary files (e.g., FINLIB)

5. Use ED to read any source files (e.g., DRATIT)

Once the drive is.READY, the user can resume DOS operation.
A new STARTUP is required; example:

OK: STARTUP 1 0

This establishes the fixed surface as logical unit 0; all DOS

automatic disk activity supporting the assembler, compiler, editor

(etc.) uses logical unit 0.

Creating Additional DOS Disks

Every DOS disk must contain a BOOT, a DSKRAT file, an MED, the command
UFD (e.g., CMDNCO), the command programs FIXRAT, COPY, and the
UFD's required by the user. The easiest way to convert a blank disk
pack to a DOS disk is to run the MAKE program. Refer to the MAKE
command description in Section 4. Another method is to copy the
active DOS disk from its present location. (For example, from the
fixed surface to the removable surface of a moving head disk drive.)
This is done as follows:

OK: A CMDNCO

OK: COPY (Copy operation begins).

Any number of DOS-compatible disk packs can be made in this way.
Of course, much of the available file space on an original master
DOS disk is occupied. To make room, the user can delete UFD's or
files as required. Only the DOS disk assigned as logical unit 0 needs to
have the full set of DOS command files, UFD's, library, etc. On
other disks to be used mainly for user's data or program files, the
surplus UFD's, and the files within them, can be deleted. To
determine which files will provide the most space, run a FIXRAT
to observe the number of disk records occupied by each UFD. To
delete UFD's, attach to the MFD and enter DELETE commands; example:

OK: A MFD XXXXXX

FUTIL

> TREDEL LIB

> TREDEL PMA

_..> TREDEL FORTRAN

> QUIT

OK:

3-17



Alternatively, if the user needs many UFD's, he could use CNAME to
change the UFD names, then attach to the UFD's and delete the files
within them using FUTIL. See Section 4.

Entering New UFD's
 

Another method to coin new UFD names is to attach to the MFD and use the

CREATE command. For example:

OK: A MFD XX0XQUXX

OK: CREATE NEWUFD

The user must attach to a UFD other than the MFD as soon as possible to

reduce the likelihood of spoiling any of the MFD files.

Program Development Using DOS

From this point, the user is free to use DOS and its supporting
software to create, assemble or compile, load, save, and execute
user programs. The internal and external DOS commands are described
in Section 4. The appropriate manuals provide detailed information
on the Editors, FORTRAN, BASIC. The Macro Assembler, Loader and other
programs are described in the Programs Software Development User Guide.

At the end of this section, is an example of the terminal printout
resulting from the development of a simple FORTRAN program. The
user may study the example and use its procedures as a guide during
initial program development efforts.

Recovering from Errors

If an equipment failure or program error causes the CPU to leave DOS
control, it is usually possible to return to DOS by starting the CPU
at location '30000, ‘50000, or ‘70000, depending on the hardware
configuration. See the Operators Guide for instructions to restart
at these locations.

Installing New External Commands
 

The user can install his own custom utility or device control programs
to be invoked by external command to DOS. One way this is done is by
restoring a program from the user's UFD, and then saving it under the
command UFD CMDNCO. Assume for example that the user wants to install
a cassette recording and playback monitor program to be invoked by the
name CASS:

3-18



When DOS prints the message, OK:, the first command to be entered must
be a STARTUP command that assigns the disk logical mit 0. DOS expects
to find all its command and utility files on unit 0. For detailed
information on the STARTUP command, refer to Section 4. The usual
initial STARTUP is: é

OK: STARTUP 0 1

This assigns the removable surface of the moving head disk (the master
disk pack) as logical unit 0, and the fixed surface as logical unit 1.

OK: A USER1
OK: REST CSETV1
OK: PM
SA,EA,P,A,B,X,K=
000100 011100 001000 000000 000000 000000 000000
OK: A CMDNCO
OK: SAVECASS 100 11100 1000 000

 

 

OK: A USER1
OK: CASS
GO

(CASS program begins running.)

In this example, the user restores file CSETV1 from his own UFD (USERI1),
and does a PM to determine the RVEC parameters (discussed in Section 4).
He then attaches to CMDNCO and saves the program under the name CASS,
with the same parameters as the original. Thereafter, when he uses the
name CASS as an external command, DOS resumes the saved CASS program.

Another way to install a new external command is:

 

OK: A NEWUFD
OK: FUT
> FROMUSER
> TOCMDNCO-
> COPYCSETV1 CASS
> QUIT
OK:

MAN 1675 3-19



BACKUP

General

Each installation can develop its own procedures to save copies of

files and disks for backup purposes. The techniques are simple.

Individual files can be saved on paper tape through the Te..t or Binary

Editors. DOS disks can be copied to removable disk packs by caréful

use of the COPY command described in Section 4.

To copy the fixed disk surface to a removable backup pack (not the

master disk); first, do a FIXRAT of the fixed surface and do not

proceed until an error-free FIXRAT pass is obtained. Then, do the

appropriate STARTUP, attach to some UFD, and use the COPY command.

CAUTION

Before entering the COPY command, make sure the
FROM surface is in WRITE PROTECT mode.

Use of MAGSAV

If magnetic tape devices are present, files are copied to them by

the MAGSAV command. This is the most convenient and simplest method

of implementing system backup. Also the tapes produced by MAGSAV can

be read back into the system configuration by use of the MAGRST

command .

SHUTDOWN

Before terminating an operating session with DOS by loading another

operating system or turning off power, enter the following commands:

OK: FIXRAT (This step is optional)

OK: SHUTDN .

See Section 4 for details. The SHUTDN command writes to disk

DOS data that is buffered in memory.

Changing Disk Packs
 

To change removable disk packs in the moving-head disk drive, shut

down DOS as above. Then power down the disk drive and replace the

pack. If DOS/VM is the system in control, SHUT DOWN the physical disk

drive with the DOS/VM SHUTDN command then power down the disk drive.

Restart the disk drive; when the unit is READY, give a STARTUP command

appropriate to the operation with the new pack ard resume typing commands.

3-20



MAN 1675

Using FIXRAT

The external command FIXRAT loads and starts the DOS maintenance
program that checks the file integrity on any disk pack. FIXRAT
fully supports nested UFD's and nested Segment Directories. Section 4
gives further information on the FIXRAT command, and Appendix E also ©
describes all features of FIXRAT.

FIXRAT must be run whenever there is reason to expect that the
file structure is damaged - for example, if a program being debugged
runs wild and writes over part of DOS. Until the user gains exper-
ience with the system, he should run FIXRAT at the close of every
operating session.

The suggested procedure is to maintain a DOS disk pack and to run
FIXRAT every morning, and if no error occurs, to copy the disk pack
onto a daily backup disk pack. If any files are truncated or deleted,
these may be copied from the daily backup disk pack, if they were
stored previously on the daily backup disk pack.

Turning Power Off

After a shutdown, the CPU can be used to run other software or

power can be turned off. The following power--down order is

recommended :

1. Moving-Head Disk

2. ASR, high- speed tape unit, and other peripheral devices

3. PRIME CPU

3-21



RESTARTING DOS

CAUTION

If you are unfamiliar with the system, do not
attempt to restart DOS. Check with someone
who knows the system's hardware status, the .
contents of all disk surfaces, and the cor-
rect STARTUP procedure for the particular
installation.

A typical procedure to restart DOS after a shutdown is:

1.

2.

Turn on power and boot DOS into control as described earlier.

Give the appropriate STARTUP command. For example, in a system
with a fixed/removable moving head disk drive, the usual
startup is STARTUP 1 0. This establishes the fixed surface
as the DOS command disk.

ATTACH to an authorized UFD and resume operation.

3 f N
O
b
o



EXAMPLE - INITIALIZING DOS §& PROGRAM DEVELOPMENT

The following printout is the actual terminal record of an operating
session in which a DOS master disk is installed and copied. DOS is
then initialized and used to demonstrate the development of a simple
FORTRAN program.

PHYSICAL DEV = © + When the master disk has been loaded, the computer has
been started, and DOS has been booted.

DOS REVe 5-0 5/10/74 CAT 070060) physical devine edenate
3

a ‘°

Sign on message from DOS. this case, the user types 0.

OK: STARTUP OQ + Starts up the top surface of the drive
OK: A_CMDNCO + Attach tc some UFD.
 

OK: COPY
60

This copies tne sk
PHYSICAL FROM-TO: 0 1 to the Fixed surface disk contents down

DONE

e

OK: STA?SHUTDN + Shutdown to show what happens

 

OR. ae . + New startup lets us workfrom fixedsurface

OK: LISTF during first operating session.
tet see what UFD names are listed in

e .
UFD=MFD O<Logical device number.

MDDVI MFD BOOT CMDNCO LiB SRCLIB Ta FLIBi

FLIB2 FLIB3 FLIB4 FLIBS FLIB6 LIB7 LIB8 10cs

AIDS BINED DOS RTOS1 RTOS2 RTOS3. RTOS4 INDEX

MATHLB U-CODE UII DBASIC DVBIN BASIC RUNDOV

OK 3

* CNAME MDDVI_?
OK: CNAME MDDV1_ DOSDEM <« CNAME to change DSKRAT name; can be used to change

name of any file or directory.
OK: CREATE GEORGE .

} + Create to create new UFD's; now do a LISTF again
OK: CREATE MIKE to note changes.

OK: LISTF

UFD=MFD 0

DOSDEM MFD BOOT CMDNCO LIB SRCLIB Tam FLIB1

FLIB2 $-FLIB3 FLIB&4 FLIBS FLIB6~ LIB7 LIB8 1ocs

AIDS BINED DOS RTOS1 RTO S2 RTOS3 RTOS4 INDEX

MATHLB U-CODE UII DBASIC DVBIN BASIC RUNDOV GEDRGE

MIKE

OK: A MIKE + Attach to UFD Mike for program development
OK: LISTF |

UFDeMIKE © } Note LISTF of "empty" UFD; now let's enter editor and
create a file(2).

MAN1675 3-23



OK ¢ EDIn response to ED, DOS loads editor and puts user in
co INPUT mode. Anything typed is stored in editor's buffer
INPUT as text.

C\DUMMT“Y FORTRAN PROGRAM EXAMPLE
 

 

 

\_DIMENSION BUFF(325 32) We enter trivial FORTRAN example.
\_ COMMON BUFF Backslash (shift L) is tab
AZ7\. As 3. character. "erases last ‘
NBs 4. character, ?kills line up to
N_€ = SQRTCA**2 + Bex that point.
 

\ WRITE (1,1000) AsB2C.
1000\ FORMATCHYPOTENUSE OF TRIANGLE WITH SIDES*F8. 4s "AND**F8.4s 'IS'F8.4
2
N\CALL EXTI

\ END
3  « Note, one way to switch from INPUT to EDIT modes is by typing semicolon.
EDIT
L = 4,P

ROTTOM _ Oops.
TsL = &sP

= «+ That's better.
C/4/4. + Have to put a decimal point after the 4.
BAD C + Forgot the closing /.
C/4/4e/sP + Change made correctly,

B= 4+ confirmed by print.
L + Remembered that a quote is missing!
P
"JO00 FORMATCHYPOTENUSE OF TRIANGLE WITH SIDES'FS8.4,"AND*'F6e 4s *IS'F804
C/HY/ *HY/P
-POCO™”
{600 FORMATC*HYPOTENUSE OF TRIANGLE WITH SIDES'F8- 4s "AND 'F8.4s *I1S°F824
T.P20 «+ To print entire program for cursory inspection.
oNULL

Cc DUMMY FORTRAN PRQGRAM EXAMPLE

DIMENSION BUFFCS2> 32)

COMMON BUFF

A = Be

B= 4-

GC = SQRTCASK2 + Be¥2
WRITE €1,21000) AeBsC

1000 FORMATC*HYPOTENUSE OF TRIANGLE WITH SIDES*F8.4,)*AND*'F8.4,'IS*F&L4

CALL EXT!
END

BOTTOM

3-24



 

 

iL 3eP <« $$‘Write line looped no continuation; let's try to fix it
DIMENSION BUFF(325 32)

L > * Located wrong expression, let's
P . keep trying.

WRITE’ €121000) AsBsC
L 3sP

?

R ,
3 ~« Use of semicolon to switch from EDIT to INPUT mode

« Typing double CARRIAGE RETURN also switches from INPUT to EDIT.

"8
ee
7
g

X> + Fixed at last.

TEST. + Looks OK. Let's file it and
try compiling it.

OK: FIN TEST |
GO

@WRITE (13,1000) AsBsC
tteaexCHekaen

@CALL EXTI
ttkekeaeHSaaae

** ERRORS (FIN-1082.006). <«<«<«+« Errors.

GK: ED TEST
a...
EDIT
L Be*2so | |

C = SQORT(Aee2 + BexQ ++ Forgot to close the paren

C/B*4*2/B*%2)/ : after the 2.
Pp

~ C = SQRT(A##2 + Bee2) < That's better.
rr * Let's switch to editors verify mode.

~ WRITE (141000) AsBsC + N command caused next line to be printed
N automatically.
1000 FORMAT(*HYPOTENUSE OF TRIANGLE WITH SIDES*F8. 4s *AND® *F8-4s "IS*FG24qr**tst, «+ Ye gads! another error
1000 FORMAT( "HYPOTENUSEOF TRIANGLE WITH SIDES*F8.4s °AND'F8. 4, *I1S*F8.4
FILE TEST <** Seems to be fixed, let's file program and recompile it.

MAN 1675 3-25



OX: EINTEST.
G

NO ERRORS (FITN- 1082-006).

OK: LOAD?FILMEM <<<ceeeeeeteeeeee That time it compiled OK. Let's

 

@ load it. FILMEM loads unoccupied
memory with zeroes; useful if you want

OK: LOAD to make an MDL tape after loading the
oO Bo TEST $ is LOAD prompt; now the program. B«TEST is binary file

¢TEST~< Load program. enerated by compiler.
$ LIB.loads library. 1 : yee
$ WA_1<« No load complete (LC) message; try a load map.

*START 0601000 *LOW 000074 *HIGH 0610545 *PBRK 010546
SCMLOW 657752 *CMHGH 663752 «SYM 057211 *UII 000005

Note, UII should be 000000; anything else means UII

$ LIB_UII < Load UII requirements not met.

$ MA 3 «Check to see if all subroutines loaded

EXTI 001106%* «Oops, specified non-existent subroutine.
$ QUIT «Let's leave loader

OKs ED TEST< Edit to specify correct subroutine

a0
EDIT

¥
L EXTI

CALL EXTI
C/EXTI/EXIT/

CALL EXIT
FILE + Note, no need to specify name if ED was invoked with a Filename argument.

OK: FILMEM~< Whoops, we have to recompile; no harm done, however

Go

OKs FIN TEST
Ge

NO ERRORS CFIN- 1082-006).

OK: FILMEM
a

OK: LOAD

6 |
$ LOAD TEST?LO BeTEST <+ To load Betest. This line shows use of ? to
s Lis cancel incorrect command,
LO <+ Note, LC Load Complete is spurious unless UII requirements are satisfied.

Let's check this time by making a full load map.

3-26



fest ek a ah i oe im ah oe he

*START 601000 +LOV 000074 SHIGH 0610545 *PERK 010546
*eCMLOW 057752 *CMHGH 063752 SYM 057216 #UII 000005

Indicates UII if not 0 ++
@BASE 900200 800352 900771 060777

LIST 00no00e! SQRT 001127 Es2i 00122) FSUN 001273
Fswwx 001302 FSIQ 001360 FSA} 001714 FSA3 001714
FSA2 001720 FSA5 001720 FSA6 001725 #SIORS 002201
FSCB oo2en2 .- FSFLEX 604155 FSER 004323 FSHT 0043230
401 004410 ace 004411 AC3 004412 AC? 004413
acs 004414 RDASC. 004415 RDBIN 004421 WRASC 004425
WRRIN 004431 CONTRL 004532 ATTDEV 004603 SETIOS 004632
RATBL 004713 RBTBL 004723 WVATBL 004733 VBTBL 004743
CNTBL 004753 LUTBL 004763 PUTBL 004774 ISDASC 005005
Ispves 005153 OSDASC 005154 OSDBIN 005346 ISDBIN 005415
OSLASC 005462 ISCASC 006247 IDCASC 006247 ISAASC 006545
ISPASC 006553 OSAASC 006714 OSPASC 006720 ISABIN 007904

ISPBIN 007025 OSABIN 007336 OSPBIN 007350 READ 007624

VBITE 007655 SEARCH 007706 EXIT 007713 OPSCHK 007716
PUTC 007747 TiIN 010005 T1i0U 010076 TONL 010112

TNOUA 010116 TNOU 010133 TOOCT 010167 PLIN 010223

P10U 010244 csP 010262 CSA 010356 P1i0B 010458
PiIB 010462 TiIB 010467 TiOB 010474 FSAT 010501

FSATI1 010503 657752

$ LIB wIlI ++ Load UII package, now we can believe LC message.

LC

$ SA T?SA *#TEST~ Use of loader SAVE command to save ®TEST
$ EX < To execute *TEST.
HYPOTENUSE OF TRIANGLE WITH SIDES 3-0000AND 4.00001S 5.0000

OK: R «TEST << Resume *TEST for the fun of it.

Program output,
Note, at this point, we
have returned to DOS

1.
command level.

nl

4

it works!

HYPOTENUSE OF TRIANGLE WITH SIDES 3-Q0000AND 4.0000IS §.0000

@&: Pm <« Let's do a few mre commands, e.g., PM
S46. EA, PsAs BeXoKe
600066 Q12252 001107 120240 006726 000000 006203
OK: STATUS

D=MIKE 0

MAN 1676 3-27



BPSLO FUNITS
667000

LDEV PDEV
Q 01
1 00

OK: AVAIL
@
©00433.+< Note, tells us 413 (octal) records still availab
OK: LISTF ( ) ill available ondisk (logical 9).

UFD=MIKE 9

 

B-TEST TEST aTEST Note that compiler generated binary
filename BeTEST; Loader generated file *TEST.

OK: SHUTDN .. .
«x: Shutdown the disk to remove the master disk pack.

3-28



SECTION 4

COMMANDS

COMMAND STRUCTURE

When properly loaded and started, DOS prompts the operator with the

message OK:, and DOS/VM prompts the operator with the message

OK,:. This response indicates that the operating system is ready to

receive and process a command string. This section defines the form

and effect of all legal DOS and DOS/VM commands, both internal

(processed by the operating system) or external (executed by system-
level programs that are called by DOS or DOS/VM).

All commands consist of a command name and an optional list of argu-

ments typed on a single line and entered by the carriage return

key (CR). The operating system analyzes and executes the command,

if possible. Blank lines are ignored. Errors in the command string,

or caused by the programs that execute external commands, result in

an error message.

A series of DOS or DOS/VM commands may be prepared by the Text Editor
and stored in a command file for automatic execution under control of

the COMINPUT command.

Command Format

The general syntax of a command is:

COMMAND . Namel — Name2 .. Argl Arg2 ... Arg9 (CR)

where COMMAND is the command name, usually each Name is a Filename

or UFD name (or is a meaningful identifier) and each Arg is an octal

argument, or parameter, of up to six octal digits. (If more than

six digits are specified, the last six are used.) Up to three names

and nine arguments are allowed. Spaces (4) must be used following the

command name and between each Filename or argument. The ellipsis

(. . .) indicates that the preceding item can be repeated. The follow-

ing examples demonstrate the notation used in this section to represent

command formats:

RESUME Filename [Pc] [A] [B] [X] [Keys]

In this example, RESUME is the command name. The letter R is underlined

as the acceptable abbreviation. The command must specify a Filename,

a legal filename existing in the UFD to which the user is currently

attached. The remaining items in the command string are the RVEC

parameters, described later. Items enclosed in brackets are optional.

Parameters that are omitted are assumed to be zero. Parameters are

identified by the operating system according to their position in the

command string.

MAN1675 4-1



An ordinal value followed by a slash and a value can be used to give an
octal parameter. For example:

R FILENAM 3/1000

sets the value of X.

Items enclosed in vertical lines are alternatives, of which one must be
chosen, as in

{
i
TTY

COMINP CONTINUE
PAUSE
Filename

Items in all capital letters (e.g., CONTINUE) must be entered literally.
Items in initial caps (e.g., Filename) are variables to be assigned
values or names by the user.

Levels of Communication
 

There are two levels of commmication between a user at a terminal and
DOS/VM (or the user at the terminal in DOS). The user either interacts
with the supervisor, or with a program currently being executed under
control of the operating system. When interacting with the supervisor,
terminal input is interpreted as system commands. This is referred to
as command level. If the user is interacting with a program that is
running under control of DOS or DOS/V¥, terminal input is interpreted
as data significant to that program, and it is passedfrom the super-
visor to the ruming program to be interpreted by that program.
(The LINE FEED character is ignored by DOS/VM). In DOS/VM, there is
one exception to the interpretation of terminal input in either mode.
When the CONTROL-P character is input, it is always interpreted by
the supervisor as a QUIT character. Whenever a user program or system
command has completed execution, the user returns to command level ready
to communicate with DOS/VM. Upon normal completion of a command or
program, DOS/VM prints the prompt:

OK,

or DOS prints the prompt:

OK:

If an error occurs, the operating system prints an error message and the
message:

ER!

4-2



ATT .. = =

DOS Commands Allowed in DOS/VM
 

All user commands used in DOS, and described in Section 4, are available
for use with DOS/VM. The following commands are not allowed for users
at user terminals under DOS/VM: STARTUP and SHUTDN. In addition, the
system terminal (operator) commands described in Section 6 are needed,

or are useful, for DOS/VM system operation.

Error Correction .
 

Errors typed into the command line may be corrected by using the kill
character (?). It deletes everything previously typed on the line;
the command must be retyrped in entirety. Do not use the editor's
erase character ('') to rub out single characters in a command line
under DOS (i.e., at DOS command level). Under DOS/VM, both ? and"
work in command lines.

DOS and DOS/VM Names
 

DOS and DOS/VM names, or UFD names, consist of one to six ASCII
characters. For compatibility with the command string interpreter
and the text editors, the first character must be non-numeric; the others
may be any printing character except the question mark (?) or quotation
mark ("). Examples:

Legal Illegal

CMDNC2 2CMDNC (Begins with numeral)

LDRS$A LDR A (Contains space) _

- TEST1 TESTER1 (First six characters
TEST2 TESTER2 not unique)

#31.) #32.) (Contains question mark)

Disk vs. DOS or DOS/VM Units
 

DOS file units (1-16) or DOS/VM file units (1-32) referenced by the
BINARY, CLOSE, INPUT, LISTING, and OPEN commands are identified by the
abbreviation Funit. These are not to be confused with the logical disk
units referenced by the abbreviation Ldisk in the ATTACH, BOOT and
CREATE commands. Physical disk drives are assigned logical disk unit
numbers by the STARTUP command (refer to Table 3-1); thereafter, only
the logical unit numbers are meaningful to DOS.

MAN 1675 4-3



SUMMARY AND INTRODUCTION TO COMMANDS

Internal Commands
 

Internal commands are executed in the space occupied by DOS or DOS/VM
itself, as opposed to the external commands which are external to the
operating system and execute in user space. Most internal commands
have to do with the file handling and with saving or restoring of
filed programs and associated register values. The internal commands
are described here in alphabetical order, and also listed in Table 4-1
in an order of most commonly used to least commonly used. This table
also indicates those commands that in addition to being useful to users
when they are functioning as programmers, are also useful to users when
they are functioning as operators. Detailed information about each
internal command is given in the last part of this section. The
descriptions include all commands, both internal and external, and they
are arranged in alphabetical order. The internal commands described are:

ATTACH LISTF RESUME
BINARY LISTING SAVE
CLOSE OPEN SHUTDN
COMINPUT PM START
DELETE PRERR STARTUP
INPUT RESTORE *

Hybrid Commands
 

DOS recognizes four external commands that are restored into low memory
on top of user space. These commands accept an internal command line
interpretation, but destroy user memory space. Furthermore, in DOS/V\M,
they function as internal commands. The file containing hybrid conmands,
is in CMDNCO and is named DOSEXT. The versions of DOS all use the same
hybrid command file. The hybrid commands are: CNAME, CREATE, PASSWD,
and STATUS. The hybrid commands CREATE, PASSWD, CNAME, and STATUS act
as internal commands in DOS/VM. (They act as external commands in DOS.)
They are listed in Table 4-2 along with the external commands.
Detailed descriptions of the hybrid commands are given in the last part
of this section, arranged alphabetically along with all the other
command descriptions.

External Commands
 

The external commands are commands to load and start system programs in
the command UFD (e.g., CMDNCO). They are external to the operating
system and execute in user space (i.e., they may reside in a UFD). In
general, these programs include the translators, utilities, and
debugging programs used in Prime application program development.
However, any type of program can be filed in CMDNCO and called for
thereafter by filename. Some of the external commands, like PUTIL, CRSER
and PRSER, control data transfers to or from peripheral devices. The
user may want to add programs to CMDNCO to perform functions peculiar to
his system.

4-4



 

Table 4-1. Internal Commands

FREQUENTLY USED
COMMAND FUNCTION BY_ OPERATOR

STARTUP Initialize disk drive configuration Yes

SHUTDN Perform tasks necessary to shut down DOS Yes

ATTACH Assign user to a UFD Yes

LISTF List names of files in current UFD Yes

RESTOR: Restore a memory image from disk to high-speed
memory

START Initialize processor keys and start or restart Yes
execution of a memory image or user program

RESUME Combines operation of RESTORE and START

PM Print contents of DOS RVEC vector

SAVE Save a memory image by writing it from memory
to disk

DELETE Delete a file

COMINP Execute a file consisting of DOS command lines

OPEN Open a file for the specified operation

CLOSE Close a file (or all files) Yes

INPUT Open ASCII source file for Reading

LISTING Open FORTRAN Listing file on Unit 2

BINARY Open file on Unit 3 for Writing

* Indicates Command Line

PRERR Print last error message stored in DOS ERRVEC

MAN 1675 4-5



Table 4-2. External and Hybrid Commands

 

USED BY

COMMAND FUNCTION OPERATOR

Editors

ED Create and Edit a File (Usually Source Programs
and Data)

EDLIN Simple line editor version of ED (no BOX edit mode)

EDB Edit binary file

Language Processors

FIN Invoke the FORTRAN Compiler to compile a program

PMA Invoke the Prime Macro Assembler to assemble a program

MCG Translates Microcode assembly results into ROM

BASIC Invoke BASIC interpretative language

DBASIC Invoke double-precision version of BASIC

LBASIC Invoke a version of BASIC with matrix and print-using

BASINP Read paper tapes containing foreign BASIC programs

NUMBER Utility to number BASIC program statements

Loader and Utilities
 

FILMEM Fills Memory with zeroes

LOAD Loads and Starts the Linking Loader (32K DOS)

LOAD20 Loader for 16K DOS

HILOAD Loader for loading programs to run in full 64K

 

Run-time Debuggers

TAP Load and start interactive debugging program

PSD Load and start Prime Symbolic Debugger (32K DOS)

PSD20 Load and start Prime Symbolic Debugger (16K DOS)

4-6



COMMAND

Table 4-2. (Cont)

USED BY:

FUNCTION OPERATOR»

File Utilities

CNAME

SPOOL

CREATE

CRMPC

CRSER

FUTIL

HELP

PRMPC

PRSER

STATUS

AVAIL

SIZE

SLIST

SORT

CMPRES

EXPAND

FILVER

MAGSAV

MAGRST

MTDLSK

MAM 1679

Change the name of a file

Queue a copy of a file for off-line printing on

systems high speed printer

Create a new UFD

Read cards from parallel interface card reader

Read cards from serial interface card reader

Invokes file utility

Print information file in ufd INFO

Print a file on parallel line printer

Print a file on serial line printer

List current UFD and boundary of DOS buffers Yes

_ Print number of available records

Print number of records used by file

Print contents of a file at the users terminal

Sort the contents of an ASCIT file

Convert ASCII file to compressed format

Convert compressed format file to ASCII

Compare two files and verify similarity or

print message if dissimilar

Save contents of magnetic tape to disk

Read contents of magnetic tape to disk

Read or write disk to magnetic tape

4-7



COMMAND

Table 4-2. (Cont)

FUNCTION

File Access Control
 

PASSWD

PROTEC

RTOS

RTOSRA

RT128F

FILBLK

Assign a password to a UFD or assign "owner"
and “other user" passwords to a UFD

Assign access attributes (read, write, delete,
execute, etc.) to a file in an owned UFD

Establish RTOS random access file

Write unstructured RTOS records

Read or write 128-word record from memory
in a previously created RTOS random access file

Paper Tape Utilities
 

PTCPY

MDL

PTBOOT

LOADAP

BPTREP

PRTED

Utility program that duplicates and verifies
paper tapes

Memory dump onto paper tape

Paper tape boot strap

Paper tape linking loader

Paper tape Editor withbox editing

Paper tape Editor

Operator Utilities
 

COPY

FIXRAT

MAKE

Copies from one disk volume to another

Loads and starts a DOS maintenance program that checks
file integrity

Creates a DOS disk with a basic DOS structure

4-8



COMMAND

Table 4-2. (Cont)

USED BY

FUNCTION OPERATOR

 

Operator Utilities

MACHK

DOSVM

Run computer in or out of machine chek mode Yes

Start DOS/VM from DOS Yes

Virtual Utility

VDOS32 Start DOS from DOS/VM Yes

DOS/VM User Commands
 

LOGIN

LOGOUT

STATUS

PASSWD

USERS

DELAY

ASRCWD

SVCSW

VRTSSW

VDOS32

Allows user to obtain access to DOS/VM (1.e.,

start user terminal session) ‘

Terminates user terminal session

Gives information aboutthe system.* Yes

Ailows assignment of owner and nonowner passwords

Defines access attributes for a file.

Prints current value stored in time accounting

registers. |

Prints number of users currently logged-in

nN ces = = = mlnanrs 4 oes

Defines a time delay function to be used to delay

the printing of a character after a CARRIAGE RETURN

Sets the virtual control word as specified

Controls handling of SVC instructions in the

virtual memory environment

Allows setting the virtual sense switches

Invokes a version of DOS that may be run under Yes

control of DOS/VM

* STATUS function in DOS/VM is very similar to its function in DOS.

However, STATUS when used in DOS/VM returns additional information.

For these reasons, STATUS is redescribed in the following paragraphs.

MAN 1675
4-9



ASSIGN

UNASSIGN

MESSAGE

Table 4-2. (Cont)

| USED BY
FUNCTION OPERATOR

Obtains control- over a disk or peripheral device

Releases control over a disk or peripheral device

Invokes system message facility Yes

4-10



An example configuration for CMDNCO is as follows:

OK: ATTACH CMDNCO
OK: ICTSTF

UFD = CMDNCO

FILBLK RTOSRA MCG NUMBER TAP RT128F BASINP SIZE LOADAP CNVT45
FILVER CMPRES EXPAND COPYB AVAIL PSD FILCPY UFDCPY PMA FIN
PTBOOT COPY MAGSAV MAGRST LFIN CRSER CRMPC PRMPC PRSER BASIC
LBASIC DBASIC SLIST MIDSK SPOOL LOAD LOAD20 MDL FILMEM PSD20
ED PRTED VDOS32 DOSEXT PTCPY FUTIL FIXRAT HILOAD DOSVM EDB
MACHK MAKE SORT

Unless otherwise specified, programs invoked by external commands return
to command level after they have completed execution.

The external commands are listed along with hybrid commands in Table 4-2
in an order that more or less reflects most common usage to least common
usage. Commands of special interest to operators as well as programmers
are so noted.

The external commands and the hybrid commands listed alphabetically
(as are descriptions of all commands) are arranged in the last part of
this section) as follows:

AVAIL FILVER NUMBER

BASIC FIXRAT PASSWD

BASINP FIN PMA
BPTRED(See ED)  FUTIL PRMPC

CMPRES HELP PRSER

CNAME HILOAD PSD

COPY LBASIC PTBOOT

CREATE LFIN PTCPY

CRMPC LOAD PTRED(See ED)

CRSER LOAD20 RTOSRA

DBASIC MACHK RT128F

DOSVM MAGRST SIZE

ED MAGSAV SLIST

EDLIN MAKE SORT

EDB MCG STATUS

EXPAND MDL. TAP *

FILCPY MIDISK VDOS32

FILMEM

*In top example.

MAN ]}67S 4-11



COMMAND DESCRIPTIONS

All command descriptions (internal, external and hybrid) are arranged
in alphabetical order in the following paragraphs. Programs that have
operating procedures or an extensive command repertoire may be
described in detail in appendices, or in the Program Development
Software User Guide (MAN 1879). In the following detailed descriptions
of commands, the elements in ail capital letters are command names.
Elements in initial capital letters are arguments. If an argument
is enclosed in square brackets, the argument is optional. The
abbreviation of a command name is underlined, and commands unique to
DOS/VM are flagged.

ASRCWD AREDOS/VMAER

The ASRCWD command allows changing the virtual control word (see I/0
virtualization). This control word is used to select one of four
devices as effective output and one of four for input. The control
word sets the devices output by the OTA 4 instruction and the device
input by the INA 4 instruction.

Syntax :

ASRCWD XXXXXX

ASR XXXXXX

where XXXXXX is an input or output number as specified in Table 4-3.

 

 

Device or Port No. Input (Bits 11, 12) (Output 13-16)

1 00 User terminal 00 or 10 User terminal

2 01 CENPR (J2) Octal 4 CENPR (J2)

3 10 CE2PR (J3) Octal 2 CE2PR (J3)

4 11 CARDR (J4) ' Octal 1 CARDR (J4)    
Table 4-3, Value for Virtual
Control Word and Port Assignment

Example:

ASR 10

4-12

 



le oh.TU
nmASSIGN DOS/ Vii

The ASSIGN command obtains complete control over a disk or a peripheral
device (e.g., printer, paper tape reader} from the user terminal.

Syntax:

ASSIGN Device

AS Device

ASSIGN Device [WAIT]

AS Device

ASSIGN DISK Number

AS DISK Number   
where Device is an available device.

All assignable devices are named as shown in Table 4-4.
 

CARDR - General Card Reader (AMLC Line No. 6)
CENPR - First Centronics printer (System Option Controller port No.2)
CE2PR - Second Centronics printer (System Option Controller port No.3)
CRI - MPC Parallel Card Reader

DISK 0 - Physical disk 0
DISK 1 - Physical disk 1
DISK Z - Physical disk 2
DISK 3 - Physical disk 3
DISK 4 - Physical disk 4

DISK 97 - Physical disk 57

DISK 5256 - Physical disk 5256
DISK 002452 - Physical disk partition

- Magnetic Tape Unit 0 Dial = 0
- Magnetic Tape Unit 1 Dial = 1
- Magnetic Tape Unit 2 Dial = 2

Magnetic Tape Unit 3 Dial = 3
- MPC Parallel Interface Line Printer

Paper Tape Reader |
- Paper Tape Punchaa
as
aa
5

   
Table 4-4. Device Names

For disk assignment details, refer to Table 3-1.

MAN 1675 4-13



A user may only ASSIGN a disk that is not already assigned and appears
in the assignable disks table. This table is initially empty, and it
is altered from the supervisor terminal using the DISKS command. This
restriction provides a degree of system integrity because it prevents
users from assigning a disk without the supervisor terminal operator's
knowledge; it prevents users from assigning nonexistent disks and
partitions; and it prevents users from assigning disks or partitions
the operator wishes to reserve for special use.

If the Device is currently assigned to another terminal, the system
replies:

ER! DEVICE IN USE

unless the optional argument WAIT was supplied. In this case, the
ASSIGN command is queued until the device is UNASSIGNED by another
user, or until the user presses the QUIT key.

If the user does not ASSIGN a device and attempts to perform 1/0
to or from the device, the error message;

DEVICE NOT ASSIGNED

ER!

is printed at the terminal.

In order for a disk to be ASSIGNed to a user, it must not be ASSIGNed
to another user, nor may it be a disk specified in a previous STARTUP
command, and it must not be the paging disk. To ASSIGN a disk that
has been started up by STARTUP, it must first be shut down by the
SHUTDN command at the supervisor terminal.

Disks, or devices, ASSIGNed by another user are released when the user
invokes the UNASSIGN command and/orwhen the user invckes the LOGOUT
command.

Examples:

ASSIGN CENPR WAIT

assigns the Centronics printer and queues the assignment if the printer
is already assigned.

AS PIR

asSigns the paper tape reader.

4-14



AS DISK 0

AS DISK 54

assigns disk drives as defined in Table 3-1.

The maximum number of disk drives that may be ASSIGNed to a]l users
at any one time is 10. If an attempt is made to ASSIGN too many disks,
the message: °

ASSIGN TABLE FULL

is printed.

ATTACH 'Jfd [Password Ldisk Key]

In order to access files, DOS must be attached to some User File
Directory. This implies DOS has been supplied with the proper file
directory and either the ower or nonowner password, and DOS has found
and saved the location of the UFD. After a successful attach, the
name, location and owner/nonowner status of the UFD is referred to as
the current UFD. As an option, this information may be copied to
another place in DOS, referred to as the home UFD. The user obtains
owner status if the owner password is specified or nonowner status
if the nonowner password is specified. The owner of a file directory
can declare on a per-file-basis what rights a nonowner has over the
owner's files. The nonowner password may be specified only under
DOS/VM. Refer to Section 2 and the commands PASSWD and PROTEC for
more information . In attaching to a directory, ATTACH specifies
a file directory in the Master File Directory (MFD) on a particular
logical disk or a file directory in the current UFD or the home UFD
as the directory to be attached. The most comnon ATTACH command is:

ATTACH Ufd Passwd

The meaning of this command line is: search for UFD in the MFD on all
Started up logical devices 0, 1, 2... n, and attach to the UFD whose
Ufd name appears in the MFD of the lowest numbered logical device.
Also, -the command line indicates attach to Ufd only if Passwd matches
the password of UFD Ufd, then set the home UFD to Ufd.

The user may specify the logical disk of the MFD to be searched as in
the command:

ATTACH Ufd Password Ldisk

Ldisk is specified as an octal integer,

Finally, the user may specify a key as in the command:

ATTACH Ufd Password Ldisk Key

If Key is 177777, the MFD of the currently attached disk is searched
for Ufd. If Key is 100000, all disks are searched in logical order.

MAN 1675 4-15



The keys are as follows:

Key Meanin

0 attach to Ufd in MFD on Ldisk; set home UFD

1 attach to Ufd in current UFD; do not set hone UFD

2 attach to Ufd in current UFD; set home UFD to current
UID

177777 attach to Ufd in MFD on Ldisk; do not set home UFD

To attach to the home UFD, use ATTACH (blanks)

Example:

ATTACH GOUDY ABCABC

Search for GOUDY in the MFD on all started up disks. ‘Attach to GOUDY
eo lowest logical disk where found. Check the password. Set home

ATTACH

Attach to home UFD (GOUDY)

ATTACH CARLSO XXXXX 7

Attach to CARLSO. Look for CARLSO with a password of XXXXX in the
MFD of logical disk 7. Set home UFD to CARLSO.

Attach is an internal command.

AVAIL
 

Gives the number of disk records available for use in the specified
logical disk (in octal). The tormat is:

AVATL
AVAIL ZERO
AVAIL ONE
AVAIL TWO

AVAIL NINE
AVAIL Packname

If no argument is specified, AVAIL types the number of available
records on the logical disk of the current UFD. If Packname is
specified instead of ZERO...NINE, the number of available records on
the logical disk with DSKRAT name Packname is ‘printed. AVAIL is an
extemal command. lxamples:

4-16



OK: AVAIL
GO

OK: AVAIL FOUR

@
001273
OK:

AVAIL TSDISK
GO
000113
OK,
AVAIL DUD.
GO
001273
OK,

BASIC

Loads the Prime BASIC Language interpreter. For further information,
refer to the BASIC manual. On the original master disk the version
of BASIC that has both the matrix functions and print using functions
is named LBASIC. Also, a version called DBASIC, that’ uses double-
precision floating point arithmetic, is available. BASIC is an
external command.

BASINP Filename
 

The BASINP command invokes a program that loads from paper tape a BASIC
program that has been written for a computer system other than a Prime

computer. Filename is the name of the file into which the contents of

the paper tape are to be read. BASINP is an extemal command.

BINARY Filename

Opens a file for writing on DOS (DOS/VM) file unit 3, usually as a
binary output file for use by the compiler or assembler. The file is
assigned the name Filename in the current UFD.. Binary is an internal
command. This command has the same effect as OPEN Filename 3 2.

PMA and FIN automatically open a file named B+ XXXX as the
binary output file (XXXX is the first four letters of the input
(source) filename.) A BINARY command is required only if the

user wants the output file to have a different name.

MAN 1675S 4-17



CLOSE

|

[Filename] [Funit] .. [Funit]

ALL

Closes the named files and specified file units. The form C ALL
closes all files and units. (In a command file, specify each item
to be closed; do not use C ALL or the command file itself will be
closed.) CLOSE is an internal command. f

The CLOSE ALL command also makes sure that buffers are retrieved
properly and resets the state of the file system. If the user is
even slightly uncertain about the state of the file system, he should
enter a CLOSE ALL. (The STATUS command prints the state of the file
system. )

If the file named cannot be found, an error message is printed and
the CLOSE command returns to command level.

CMPRES Filenamel [Filename2]

 

The input ASCII file, Filenamel, is translated into the output ASCT]

file, Filename2, using the relative copy character ('220). The byte

following the relative copy character specifies the number of characters

to copy from corresponding positions in the preceding line. If Filename2

is omitted, the output replaces Filenamel. The amount of space saved

is a function of the structure of Filenamel. CMPRES handles a line size

of up to 720 characters. CMPRES is an external command. Fxample,

contents of typical Filenamel named STEST:

C PROGRAM TO TEST DSQRT
C

DOUBLE PRECISION A
READ (0) A
CALL DSQRTCA)
WRITE (0) A
END

Command line:

CMPRES STEST CTEST

Contents of Filename2, CTEST

c PROGRAM TO TEST DSQRT
Cc

DOUBLE PRECISION A.B
t®E0t007READ (0) ALB
t@201007CALL DSQRTCA)
tR2OTOOTERITE (0) A
*82010072ND

To reverse the effect of the CMPRES command, use the EXPAND command.

4-18



CNAME Oldname Newname

Changes the name of the file named Oldname to Newname. This command
operates within the current UFD. If the user is attached to the MFD,
this command can be used to change the name of a UFD. CNAME is a
hybrid command. Under DOS/VM, CNAME requires owner status to the UFD.
Example:

OK: A MFD
OK: CNAME SPARE2 JHNDOE

assigns a new UFD name JHNDOE in the place of the old name SPARE2.

COMINPUT

The available forms of this command are:

COMINPUT TTY [Funit]
Filename
CONTINUE
PAUSE

CO Filename causes DOS or DOS/VM to read commands from Filename in the
current UFD, rather than for the terminal. The file is usually
prepared and filed by the text editor (ED). Each line of the file
mist be a legal command string, one command per line. This type of
file is referred to as a command file. Command files may be chained.
If the last line in a COMINP command file is of the forn:

CO Filenamex

the current command file is closed and DOS or DOS/VM reads commands
from the new command file Filenamex. This feature allows chaining of
command files. The last command in the last command file must be
CO TTY to return control to the terminal. Note that "TTY", "CONTINUE"
and "PAUSE" are reserved words for DOS (and DOS/VM), and they must not
be used for other purposes.

COMINP is an internal command.

DOS or DOS/VM reads commands from the command file, Filename, by opening
unit six and reading, the executing, one line at a time. When the
command CO TTY is encountered, DOS takes subsequent commands from the
terminal. The user must specify afile unit (Funit) for COMINP TTY if
not using the default unit. Any error message causes command input to
be returned to the terminal. However, the command input file is left
open allowing a user to retype the command that caused the error
message, then continue reading from the command input file by typing

QO . CONTINUE

Use of the command CLOSE ALL in a command input file closes the command
input unit and causes the message PRWFIL UNIT NOT OPEN to be printed.

MAN 1075 4-19



The form:

COMINP Filename Funit

has the additional capability of specifying the. file unit upon which

the command file is to be open. Thus, the user can set up a complex

set of interacting command files. Example:

Assume the command file PMLISTF contains the following:

PM
LISTF
COMINP PMPM 7
CLOSE 7
PM
COMINP TTY

and the command file PMPM contains the following lines:

PM
STATUS
PM
COMINP CONTINUE 6

Then typing the command line:

COMINP PMLISTF

from DOS (DOS/VM) command level causes both command files to be run.

Example: The COMINP command is useful for updating large programs

that consist of many files, use several library files, or require

special loading procedures. For example, suppose a user with the UFD

USER] has a program consisting of three FORTRAN source files MAIN,

SUB1, and SUB2.

This program requires two libraries, GRALIB and FINLIB. A user makes

up the following command input file DPROG:

FIN MAIN
FIN SUB]
ETN SUB2
FI LMEM
LOAD
LO _BeMAIN
LO B+SUBI1
LO B+SUB2
LIB GRALIB
LIB. FINLIB
MAP
QUIT

CO TTY



After the programs are corrected and ready to be compiled, the user
enters the command CO DPROG. The DPROG file then provides the commands
that cause the programs to be compiled, loaded, and a load map printed.
DPROG also documents the source files and loading procedure.

The form:

COMINPUT PAUSE

leaves the current command input unit open and returns to command
level. Thus, a user can invoke other commands or use COMINP to start
another command file on another unit before issuing a COMINP CONTINUE
line to continue the original command file.

COPY

COPY is an external command that copies and verifies a disk. COPY
copies any disk to any other disk, either under DOS or DOS/VM. Under
DOS/VM, both disks must be ASSIGNed before invoking COPY. After the
user types COPY at the terminal, the COPY command responds by
printing:

PHYSICAL FROM TO SIZE:

The user must specify the disk to be copied from (FROM), and the disk
to be copied to (TO), and the size (SIZE) of the disk to be copied.
The line of parameters specified are then terminated by the CARRIAGE
RETURN (CR). The SIZE parameter is optional and may be omitted. The
FROM and TO parameters are physical device numbers separated by a
space (ASCII space character) or a hyphen (-). FROM and TO device
numbers are listed in Table 3-1.

Possible SIZE numbers are:

Disk Type SIZE Number Abbreviation

1.5-million word disk pack 1.5M i

3-million word disk pack 3.0M 3

30-million word disk pack 30.0M 30

128 thousand word fixed head disk 128K © 128
(32 track)

136 thousand word diskette 136K 136

256 thousand word fixed head disk 256K 256
(64 track)

512 thousand word fixed head disk 512K 512
(128 track)

1024 thousand word fixed head disk 1024K 1024
(256 track)

MAN [675 4-21



If SIZE is omitted, the default size assumed is 1.5M, unless either
disk being copied is a diskette. In that case, the diskette size is
assumed to be 136K. The SIZE parameter does not need to be given if
the disk is 1.5M or a diskette.

Tf FROM and TO are equal, or if FROM or TO is not a valid physical
disk number, or if SIZE is not a valid number or abbreviation, COPY
repeats the request message and waits for input. If these parapeters
are acceptable, COPY inititates the copy operation.

If the 30-million word disk is partitioned, the user may COPY an indiv-idual partition of the disk. These other SIZE parameters are as follows;
 

 

     

Partition Disk Number SIZE Abbreviation

2 head (default)

|

XxX025X M 3
2 head (explicit)}| XX065X 3M 3
4 head XX125X 6M 6
6 head XX165X 9M 9
8 head XX225X 12M 12

10 head XX265X 15M 15
12 head XX325X 18M 18
14 head XX365X 21M 21
16 head XX425X 24M 24
18 head XX465X 27M 27
20 head XX525X 30M 30
 

Table 4-5. Partitioned Disk SIZE Specification

In Table 4-5, The X's represent octal digits that must be set appropri-
ately. The leftmost X's indicate head offset; and the rightmost X
indicates one of the four possible drives connected to the controller.
Lxample:

100252

means a 5M word size partition with a head offset of 10 on the disk that
1s connected to the second drive (drive 2) connected to the controller.

Note: COPY does not allow rewriting of the same disk. For example:

PHYSICAL FROM TO SIZE: 5-5

is an illegal specification of COPY parameters.

WARNING: A TO disk number must not be a disk connected to DOS by
the STARTUP command. It is good practice when running COPY under IS,
to place all active disks in WRITE PROTECT before initiating the COPY
command except for the disk to be written to (TO dis:.!. It is good
practice when running under DOS/VM, to place all disk: assigned to the
user terminal at which the COPY command is to be initiated in WRITE .
PROTEC, except the TO disk, before initiating the COPY.

4-22



C Method: COPY copies disk records from the FROM disk to the TO
dick and when done verifies the copy by reading each record from both
disks and performing a word-by-word comparison in memory. During this
process, COPY displays the disk record number it is processing in the
DATA lights on the processor console panel, bits 2-16. Bit 1 is off -
during the copy operation and on during the verify operation. When
done, COPY prints DONE and returns to DOS or DOS/VM, which prints OK.
If any disk read errors occur during the copy, the read is retried nine
times. Each error results in an error message of the form:

DISK RD ERROR’ device number DOS Record-number Status

See Appendix J for explanation of Status.

If the read operation is not successful after ten tries, DOS/VM (DOS)

ignores that record and prints the message:

ERROR READING DISK Device-number RECORD Record-number

ERROR IGNORED, COPY CONTINUED

Then, DOS/VM (DOS) continues the copy operation. If any disk write

errors occur, COPY retries nine times. Each error results in an

error message of the form:

DISK WI ERROR Device-nmumber DOS-Record-number Status

If the write operation is not successful after ten tries, COPY aborts,
prints the error message, UNRECOVERED ERROR, and returns to DOS (or
DOS/VM). If on either read or write a DISK-NOT-READY status is
detected, a single disk error message is printed with the status 177776.
The software then retries the read or write, waiting for the disk to
become ready. If while verifying the copy, a discrepancy is detected,
COPY prints VERIFY ERROR and returns to DOS or DOS/VWM.

 

COPY Success or Abort: If the COPY is successful, the message

DONE

is printed at the terminal (only if both the copy and verify were

successful).

Example:

OK: COPY
GO

PHYSICAL FROM-TO: 1 0

DONE

OK:

MAN 10675 4-23



CREATE Newufd

Creates a new UFD named Newufd in the current MFD.
command. The passwords of the new UFD are:
and the nonowner password is Zero (any password will match).

OKs A_MFB XXXXXX
OX: CREATE BETTY

CREATE is a hybrid
owner password is Blank,

OKs LISTF

UFD2MFD 8

TSBISK MFD BOOT CMDNC@ PODUSK JBRWNS GIBSON GREATA
FARBOU STUMPF GILES LIB SPORER BASIC DOS WEYLER
MeJOHN AROSS KROY GRUBIN DEMO JSKOL KAY CURREV
JCVB DAVIS UDIN BROWN SEV LEWIS PRNGL BUTTER
ERIGGS COHEN GOUDY DUMAS BRODIE CARLSO PLANIT WEBB
ETTA RUNBOV RUNDQ BETTY

OKs

CRMPC Filename

Reads cards from the parallel interface card reader connected to the
MPC controller and loads card image ASCII data into the file Fil: ame.
Reading continues until the end of the deck or a $E is read in
colums 1-2 of a card. The $E causes a return to DOS or DOS/VM and
closes the file. If the reader rums out of cards before a $E card is
read, the processor returns to the operating system but the file is
not ciosed. The user can load more cards and enter S (i.e., START)
to resume reading cards into the same file. At completion of reading,
if there was no SE card; enter CLOSE ALL to close the open file. CRMPC
is an external command. Under DOS/VM, CR1 must be assigned before the
CRMPC command is given.

CRSER Filename

Reads cards from the serial interface card reader. Reading continues
until the end of the deck or a $E is read in colums 1-2 of a card.

The $E causes a return to DOS or DOS/VM and closes the file. If the
reader runs out of cards before a $E card is read, the processor
returns to the operating system but the file is not closed. The user
can load more cards and enter S (i.e., START) to resume reading cards
into the same file. At completion of reading, if there was no $E card;
enter CLOSE ALL to close the open file. Under DOS/VM, CARDR must be
assigned before the CRSER command may be given. The CRSER command is
an external command.

4-24



aT

DBASIC

 

Loads the Prime BASIC interpretative language version that has double
precision arithmetic capabilities. DBASIC is an external command.

DELAY **2T0S/VM***

The DELAY command defines a time function to be used to delay the
printing of a character after a line feed (LF) has been output
to a terminal. Syntax:

DELAY [Minimum] [Maximum] ([Rmargin]

Minimum defines the number of character-times (time it takes the system
to type a character on a line) to delay when CRis output at the left
margin. Maximum defines the number of character-tjimes to delay when
CR is output at the right. Rmargin defines the number of characters
required to move to the right margin. If a CRis typed at some point
within a line, the time delay is proportional to the number of
characters typed. If Rmargin is not specified, 72 is assumed; if
Maximum is not specified, 12 is assumed. If the command, DELAY, is
given with no parameters, the default values 6, 12 and 72 are assumed;
these values are adequate for most 30 cps terminals. Example:

DELAY 0 10 100

DELETE Filename

Frees the disk storage space used by Filename and removes the name
from the current UFD. DELETE is an internal command.

WARNING: Do not delete a directory until all files within the director’have been deleted. Otherwise, available disk storage space is lostuntil the next time FIXRAT is mm. If you wish to delete a directory,use the TREDEL subcommand of the FUTIL command.

MAN 16075 4-25



ED [Filename]

Loads and starts ED, the most commonly used version of the text editor.

If a filename is specified, it is loaded into the editor's text buffer

in high-speed memory and the editor is started in EDIT mode. Otherwise,

the editor is started in high-speed INPUT mode with an empty text buffer.

Files and units are automatically opened and closed. ED is an external

command. For details of ED operation, refer to the Program Development

Software User Guide (MAN 1879). °

If the user accidentally returns control to DOS or DOS/VM, the user can

restart the ED without losing any of the text buffer by issuing the

command:

START 1000

There are exceptions to this. Refer to Section 2 of the Program
Development Software User Guide for details of Recovery Procedures.

EDB Inputfile [Outputfile]

Loads and starts EDB, the binary editor, which prints ENTER and waits

for command input. The input and output files may be on disk or paper

tape. If paper tape is used for either file, use the filename (PTR).

If an output filename is specified, a file of that name 1s created

in the current UFD. If the filename already exists, it 1s overwritten

by the output file. EDB is an external command. For details, see

Section 2 of the Program Development Software User Guide.

EXPAND Filenamel ([Filename2]

Inverts the operation of CMPRES. If Filename2 is omitted, output is

placed in Filenamel. EXPAND handles line sizes up to 720 characters.

EXPAND is an external command.

FILBLK

 

Permits reading or writing from high-speed memory to any 128-word

record in a previously created RTOS random access files. For a means

to create RTOS random access file, refer to 'RTOSRA" in this section;

and for further details, refer to the RTOS User Guide. FILBLK is an
external command.

4-26



FILMEM

 

Fills the memory locations '100 to the top of 32K if under DOS/W,
with zeroes. If running under DOS, FILMEM clears '100 to the top of
32K except for those locations occupied by DOS.

FILVER Filenamel Filename2

Causes Filenamel and Filename2 to be compared for equivalence. If any
differences exist, a message is printed indicating failure to verify.
If the file Filenamel and Filename2 are exactly the same, a message
is printed that confirms successful verification. FILVER is an
external command.

FIXRAT [OPTIONS]

Loads and starts a maintenance program that checks the file integrity
of any disk pack. Under DOS/VM, the disk to be checked must be
ASSIGNed before invoking FIXRAT. FIXRAT is an external command.
If OPTIONS is typed, FIXRAT requests printout options; otherwise,
it defaults to printing the name and octal number of records used in
the MFD and each directory file in the UFD. After the command line
1s typed, FIXRAT asks the question: FIX DISK?. If the answer is
YES followed by a CARRIAGE RETURN (CR), FIXRAT truncates or deletes
defective files and generates a corrected DSKRAT file. FIXRAT
truncates or deletes files in the MFD as well as files in other
directories, FIXRAT then asks the question: PHYSICAL DISK DRIVE = .
The user must respond by enteringthe physical disk drive number
in octal on which FIXRAT is to be run followed by a CR. A complete
discussion of FIXRAT, along with examples, is given in Appendix E.

FIN Filename [1/A]

Loads the Prime FORTRAN IV Compiler and starts compilation of an
ASCII source file, Filename in the current UFD. FIN is an external
command. A is the A register setting. If no A register value is
specified, a default value is used - typically, 1707. (List errors
on terminal, use disk for all input/output.) Other common options are:

1/1777 List errors on Teletype
(system terminal)

1/40777 Generate listing file that
includes symbolic instructions

MAN 1b675 4-27



Unless it is preceded by BINARY and LISTING commands, the compiler
will automatically open unit 3 to write a binary file named B+XXXX,
and open unit 2 to write a listing file named L«XXXX, where XXXis
the first four letters of the input filename. The compiler closes
any units that it opens. (Units opened by BINARY and LISTING commands
are not closed.) The listing file can be printed by using the text
editor or the PRMPC, PRSER, or SPOOL commands.

For more information, refer to The Program Development Software
User Guide, The Subroutine Library User Guide and the FORTRAN
Reference User Guide.

FUTIL

FUTIL invokes a file utility command that provides subsystem commands
for the user to copy, delete, and list both files and directories.
FUTIL also has an ATTACH command that allows attaching to subdirecto-
ries by giving a directory pathname from either the MFD or home UFD
to the specified subdirectory. UTIL allows operations not only with
files within UFD's but also files within segment directories. FUTIL
may be run from a command file.

For a detailed discussion of subsystem commands available under
control of FUTIL, refer to Appendix F.

A summary of FUTIL commands is listed in the following table (command
abbreviations are underscored).

4-28



MAN 1675

Table 4-6.

Command Syntax

QUIT

FROM Directory Pathname

TO Directory Pathname

ATTACH Directory Pathname

COPY File! [,File2] [,File3]
[File 4]]...

COPYSAM Filel [,File2] [,File3]
[File4]] ,...

COPYDAM Filel [,File2] [,File3]
{File4}] ,.--

TRECPY Dirl [,Dir2] [ ,Dir3]
[,Dir4] ...

UFDCPY

DELETE Filel [,File2] ...

TREDEL Dirl [,Dir2] ...
Seenaan

UFDDEL

LISTF [level] [LISTFIL] [PROTECT]
(SIZE] [TYPE]

return to DOS or DOS/VM command

level

defines FROM directory

defines TO directory

moves the Home UFD to the directory

defined by Directory-Pathname

copies a file or files in the FROM

directory to the 10 directory

same as COPY, but sets file type

of file in TO directory to SAM.

same as COPY, but sets file type

of file in TO directory to DAM.

copy directory tree specified

copies all files and directories

in the FROM directory to the TO

directory

deletes the directory tree

specified

delete the directory tree specified

delete all files and directory trees

within the FROM directory

Lists at the terminal the FROM

directory pathname; the TO directory

pathname; and all files and directo-

ries in the FROM directory

For details on the concepts of pathname and FROM and TO directories,

refer to Appendix F.

4-29



HILOAD

 

See LOAD.

INPUT Filename

Opens an ASCIT source file on unit 1 for reading by the compiler or
assembler. The file is assigned the name Filename in the current
UFD. This command has the same effect as OPEN Filename 11. (For
PMA and FTN, the source filename is usually provided with the command
that starts assembly or compilation.) INPUT is an internal command.

LBASIC

 

Invokes a version of the BASIC interpretive language that contains
both MAT functions and PRINT USING functions. For details, refer to
the BASIC manual. LBASIC is an external command.

LISTF

 

Prints the current UFD name, the logical device upon which the UFD
resides, and all filenames in the UFD at the terminal. LISTF is an
internal command. Attributes of files such as type, size, and
protection may be examined using the LISTF subcommand of the FUTIL
command.

OK: LISTF

UFD=BARBER 1

FDAT FATI PAT FLN ARG BeFDAT DFAT BeDFAT
BeFATI BeARG BeFLN SLITE N66 N22 DIV Be-DSUB
B-DADD BeMPY BeDIV BeUlLIT UII MA4 UILIT NEWMA
P221 MT COMIOC I0cS- BeCOMI BelOCS CePMA MYPITA
QLAPRN BeOLAP PMvVe2 *ULIT TRR P211 FSUII QNEWMA
MC | BeFTN2 MYFORT FIST

OK:

For DOS/VM, the LISTF command prints the letter 0 followed by the
device number upon which the UFD resides if the user is an owner or
types the letter N followed by the device number upon which the UFD
resides if the user is a nonowner. The concept of owner and nonowner
is described in Section 2 under the heading "File Access" and is
associated with the DOS/VM commands PASSWD and PROTEC.

4-30



LISTING Filename

Opens a file for writing on File Unit 2, usually as a listing
output file for the compiler or assembler. The file is assigned
the name Filename in the current UFD. LISTING is an internal
command. This command has the same effect as OPEN Filename 2 2.

NOTE

If no LISTING command has been entered, PMA and FIN
automatically open a file named L+XXXX as the listing
file (if listing is requested). (XXXX is the first
four letters of the source filename.)

LFTN
 

Invokes a version of the FORTRAN compiler that can perform Sector 0
optimization. The name LFIN is the name of this version on the
master disk; it may be changed by the user in his copy of CMDNCO.
LFIN is an external command. For further operating details, refer
to the description of the FIN command. ‘

LOAD

 

Loads and starts LOAD, Prime's Linking Loader. LOAD has a command
structure and, therefore, a singie entry point. ‘LOAD is an externai
command. For an example of the use of LOAD, refer to Section 3.
For a complete discussion of LOAD, refer to the Program Development
Software User Guide.

A number of versions of loader are available on the original master
disk. The versions of the loader are:

Name Function

LOAD (Loader 60000-63777) P-Register = 61000
Normally used with 32K DOs.

“ LOAD20 (Loader 20000-23777) P-Register = 21000
Normally used with 16K DOS.

LOADAP Paper tape loader.

HILOAD (Loader 174000-177777) P-Register = 175000
Normally used to load programs longer
than 32K.

MAN [675 31



Other than the functional and configuration differences noted above,
the internal function and user i:terface is the same. Any version of
the loaders may be used on a system configuration equal to or yreatcr
than the one specified. If the user chooses, he can rename his parti-
cular load comnand using the CNAME command after deleting the "old
LOAD. (e.g., CNAME LOAD40 LOAD). The user is cautioned that 1f his
programs make use of FORTRAN COMMON, then he must be careful to load
the correct version of LOAD to avoid a part of the loader being loaded
over part of the COMMON area.

LOGIN RRADOS/VM***

LOGIN is the command the user must type at the terminal to obtain access
to the DOS/VM system. Syntax:

LOGIN Ufdnam [passwd] [Device]

where Ufdnam must be a valid UFD name on any of the disks available

to the system, Passwd is an optional argument that specifies the

owner or nonowner password, and Device is anoptional argument that

specifies logical device numbers to be searched for Ufdnam.

If the UFD has a password, the user must supply it at LOGIN time.

When LOGIN is successful, the user is attached to the UFD spe: ified

by Ufdnam. The time-accounting registers for the user are cleared, and

some initialization is performed on the users ‘virtual machine’
(i.e., VRTSSW, ASRCWD, and SVCSW are initialized), then a login

message is printed at the terminal and at the supervisor terminal.

The LOGIN command sets the virtual control word to 0 indicating

that both input and output are to be from the user terminal. Examples:

LOGIN JHNDOE

logs in the user and the UFD, JHNDOE,-is attached.

LOGIN JHNDOE GEMINI

logs in the user and attaches the UFD, JHNDOE, if the password GEMINI

is correct.

A typical system response to this login at the terminal and at the

system supervisor terminal is:

JHNDOE (2) LOGGED IN AT 12'39 0304

The number in parenthesis is the line number of the user terminal

(e.g., in this case, (2)).

4-32



The prompt:

OK,

is printed at the terminal in addition to the login message.

The user may give the ATTACH command, as under DOS. The name given
in the argument to the LOGIN command is remembered and printed upon
LOGOUT, no matter which UFD is currently attached.

LOGOUT RERDOS/VMFR*

LOGOUT (or LO) is the last command the user issues when giving up
access to the system.

During LOGOUT, all user files are closed, all devices ASSIGNed to the
user's terminal are released, the UFD is "detached, and a logout message
is printed at the user's terminal and at the supervisor terminal.
The syntax is: ‘

LOGOUT

LC

Example:

LOGOUT

 

Typical response at the terminal and at the supervisor console:

JHNDOE(2) LOGGED OUT AT 13'16 0304
TIME USED = 00'37 03'01 00'S4

The first number after 'TIME USED ="' is the connect time in hours and
minutes; the second number is CPU time in minutes and seconds, and the
third number is paging time in minutes and seconds.

MAN 1675 4-33



MACHK
 

Causes the Prime computer that DOS is configured upon to be run in
machine check mode. MACHK is an external command. Unless the command
specifies otherwise, DOS normally operates out of machine check mode;
DOS/VM normally operates in machine check mode.

MAGSAV, MAGRST MAGNETIC TAPE - FILE UTILITIES
 

MAGSAV and MAGRST are utility programs which move disk files to
nine-track magnetic tape and vice versa. The files may be SAM, DAM,
segment directories, UFD's, or an entire disk. Whenever a directory
1s specified, the directory and all components (the subtree) are transferred.

Logical Tapes

A logical tape consists of a header record, a file mark, file records,
and two file marks. A logical tape may span multiple physical tapes
or a single physical tape may contain multiple logical tapes. The
header record contains the tape name, data, and revision number. All
tape records are 512 words long, the maximm size permitted by DOS/VM.

Tree Names

A disk file appears on tape as a record containing a tree name followed
by as many data records as are required for the file. The tree name
contains the path from the file specified by the user to the current
file. When an entire disk is saved, all tree names begin in the MED.
For example, an ordinary SAM file might have a tree name of MFD>UFD>JUNK or
MFD>UFD>SUBUFD>JUNK.

4-34



pe
l

AA COATT
*FAOOAYes

:

 

Requests information in the following order:

TAPE UNIT: The proper response is the physical unit number
of the disk or the partition.

ENTER LOGICAL The response is 1 for the first logical tape,
TAPE NUMBER: . 2 for the second, etc. MAGSAV rewinds the tape,

then positions itself correctly. Aresponse of
0 implies the tape is already positioned correctly
and MAGSAV takes no action.

TAPE NAME: Any six-character name.

DATE: The response format is MMbOObYY where b represents
a blank.

REVNO: An arbitrary number.

NAME : NAME asks the user what to save. The response
is either a file name or one of the alternate
action commands: $A, $I, $R, $Q. $A changes the
home UFD via an attach, e.g., $A USER3 PASSWDS.
$Q and $R each terminate a logical tape and return
to the operating system. $R also rewinds the tape.
$I causes an index to be printed at the terminal.
$1 followed by a blank and level number indexes
to the level indicated. Forexample, $I 3, prints
an index of the MFD, any UFD's and any Filemanes.
NAME: will be typed whenever writing has completed
so that further writing may be requested or the
current logical tape may be terminated. If the
user does not respond correctly to the query
NAME, or when the operation specified is complete;
MAGSAV again asks NAME:. The user then must give
another action command.

To save an entire disk, the user must respond to the query name with MED.
To save a UFD, the user must attach ($A) to the MFD then give the name
of the UFD that is to be saved. To save a file with the UFD, the user
must attach to the UFD (e.g., $A Ufdnam) and then give the name of the
file.

MAGRST

 

All restore operations take place in the home UFD. MAGRST asks for the
tape unit and logical tape number exactly as in MAGSAV. MAGRST then
prints the name, date, and revision on the user terminal and asks:

MAN 1675 4-38



READY TO RESTORE.

TREE NAME:

PHYSICAL END OF TAPE

The responses are YES, NO, PARTIAL (abbreviated
Y, NO, PA), or NW level. YES will cause a restore
of the entire tape. NO will cause a request for
another tape unit and logical tape combination.
PARTIAL will permit a restore of part of the tape.
NW followed by a level number gives an indexof the
magnetic tape but does not write it to disk:

This is typed when a partial restore is requested.
The response is in the form

NAME1>NAME2>.... NAMEn

Any file on the tape whose tree name begins with
the sequence entered will be restored. Example -
All tree names in a save of the entire disk begin
with MFD. The tree name to restore UFD would be
MFD>Ufdnam. The tree name to restore a file would
be MFD>Ufdnam>Filename

When this condition is encountered in either MAGSAV or MAGRST, a message
is logged on the console and a new tape unit is requested. The new unit
may be the same as the old unit.

ERRORS

Tape read or write errors are retried five times and are then considered
unrecoverable. Both recovered and unrecovered errors are logged. The
first record on a tape is not retried.

EXAMPLES OF MAGSAV

OK: MAGSAV
GO
TAPE UNIT : 1

 

ENTER LOGICALTAPE NUMBER: 0
TAPE NAME: DUD
DATE: 05 2375
NAME: MED
NAME} $R_
OK:

4-36



Another example of MAGSAV:

User input is underscored.

OK, STARTUP 0 4
OK, AMFDXXX0OX
OK, MAGSAV
GO
TAPE UNIT: 0
ENTER LOGICAL TAPE NUMBER: 0
TAPE NAME: MD7V1 7
DATE: 05 18 75

 

REV NO: 2
NAME: $1 3
NAME: MED— MAGSAV responds to each command input and again

asks for name

(During the save, MAGSAV lists directories and files saved for example)

MFD
MFD >CMDNCO
MFD >DOS
MED >CPU
MFD >CPU >OP3FLT

MFD >CPU >P221B

MED >LPRCDR
MED >LPRCDR >PCRDO3

When the listing is complete, MAGSAV again asks:

NAME: R$ The MAGSAV rewind command causes the tape to
be rewound and exit to be made to command level.

OK,

EXAMPLE OF MAGRST

OK, MAGRST
GO
TAPE UNIT: 1
ENTER LOGICAL TAPE NUMBER: 1
NAME: MCARCH
DATE: 05-06-75
REV NO: 1
REEL NO: 1
YOU ARE NOT ATTACHED TO AN MFD
READY TO RESTORE: NW3

Response to NW 3 is to list the contents of MCARCH as follows:

MAN 1675S 4-37



MFD > CMDNCO
MFD > pos
MFD > CPU

> CPU > OP3FLT

MFD > SMLC > MS374K
INDEX COMPLETE ;
OK; Tape is not restored to disk in this case.

Another example of MAGRST:

OK: MAGRST
GO
TAPE UNIT: 1
ENTER LOGICAL TAPE NUMBER: 1

  

REEL NO: 1
READY TO RESTORE: YES

OK:

4-38



MAKE

MAKE creates a disk for any disk supported by DOS or DOS/VWM.
MAKE runs under both DOS and DOS/VM. Under DOS/VM, the disk to be
created by the MAKE command must be ASSIGNed before MAKE is invoked.
MAKE creates a DOS disk that has the following:

DSKRAT
MED
BOOT
DOS
CMDNCO

The MAKE program writes the bootstrap (BOOT) into Record 0 of the disk.

To run MAKE, type the command:

MAKE

The response is:

PHYSICAL DISK

The user then must type the number of the physical disk to be
created. This disk must not be a disk connected to DOS by the
STARTUP command. Possible disk numbers are listed in Table 3-1.

It is recommended that when running MAKE under DOS, all rumning disks
be write protected except the disk to be created by MAKE. Under DOS/VM,
it is recommended that only the disk to be created by MAKE be assigned
to the terminal.

After the user specifies PHYSICAL DISK, MAKE then types:

RECORDS (OCTAL)

The user types the number of records, in octal, that are to be included
in the file structure part of the disk pack. Under most conditions,
the entire disk pack is used for the file structure. Possible
parameters for RECORDS for using the entire disk are:

Disk Octal Records

Diskette 460
1.5 million word disk 6260
3.0 million word pack 14540
30 million word disk 176700
128 thousand word fixed head disk (32 track) 400
256 thousand word fixed head disk (64 track) 1000
912 thousand word fixed head disk (128 track) 2000
1025 thousand word fixed head disk (256 track) 4000

MAN 1675 4-39



If the 30-million word disk is partitioned, other RECORDS parameters
may be:
 

 

 

Partition Disk Number Records

2 head (default) XX025X 14540
2 head (explicit XX065X 14540
4 head XX125X 31300-
6 head XX165X 46040
8 head XA225X 62600
10 head XX265X 77340
12 head XX325X 114100
14 head XX365X 130640
16 head XX425X 145400
18 head XX465X 162140
20 head XX525X 176700   

Table 4- 7. RECORDS Parameters for 30-Million Word Disk

 
In Table 4-7, the X's represent octal digits that must be set
appropriately. (Refer toTable 4-5).

For a 128 thousand word fixed head disk, a diskette or a 1.5 million
word disk pack, the user can type carriage return and MAKE defaults
to the correct number of records for that disk. MAKE echoes the user
input as follows:

DEVICE NUM RECORD COUNT where <number> is

’<number> <number> a one of the above

octal numbers

OK?

If the number is correct, type YES in response to the OK? query

followed by CARRIAGE RETURN. If not, type NO followed by CARRIAGE

RETURN and MAKE requests the input again. After the number of records

are specified, MAKE then asks the question:

VIRGIN DISK?

If the user answers YES followed by CARRIAGE RETURN, MAKE writes the
first RECORD-COUNT records of the disk with the first word of each
record set to the record address and with a record size of 448 words.
This action also writes a valid hardware checksum for each record. If
the user answers NO followed by CARRIAGE RETURN, MAke does not initial-
ize the records. The records need not be initialized if all the records
have been initialized by a previous run of MAKE. However, it is
strongly recommended that the user answers YES to the VIRGIN DISK ?
question at each invocation of MAKE.

4-40



MAKE then asks the question:

VERIFY DISK

If the user types YES, MAKE reads every record in the filof the disk to verifythat each record can be read. ne System part

During the reading and the writing of all records, MAKE displays the
record number it is processing in the DATA lights. When done, MAKE
types DISK CREATED and returns to the operating system, which types
OK,. If any disk write errors occur, MAKE retries nine times. Each
error results in an error message of the form:

DISK WY ERROR device # DOS record # status

See Appendix J for a description of status.

If the write is not successful after ten tries, MAKE aborts, prints
the message, UNRECOVERED ERROR, and returns to the operating system.
If a DISK-NOT-READY status is detected, a single disk error message
is typed with a status of 177776. The software then retries to
write, waiting for the disk to become ready. If the user runs MAKE,
the answers YES to VIRGIN DISK ? and VERIFY DISK ?, it is possible
to find out immediately if there is any problem in the file structure
part of the disk pack.

After MAKE is run, the user must use FUTIL to copy *DOS16, *DOS24,
and *DOS32 from UFD DOS on a master disk to UFD DOS on the newly
created disk. The BOOT file in the MFD that is read from the disk by
the control panel boot expects these files to be in UED DOS in order
to bootload DOS using the newly created disk pack. The user must also
use FUTIL to copy DOSEXT from UFD CMDNCO on a master disk to UED CMDNCO
on the newly created disk.

It may be desirable to use part of a disk pack for the file structure
and part for the paging device under DOS/VM. The user must follow
the directions given in Section 6.

MCG Filename

Translates results of microcode assembly into proper code for the
ROM simulator. MCG is an external command.

MDL
Punches paper tapes of specified sections of memory in a self
loading format that can be read by the panel LOAD operation (or
equivalent operation). MDL tapes load into the same memory locations
from which they are punched. MDL is an external command, refer to
Program Development Software User Guide.

MAN 1679 4-41



NUMBER

 

Invokes a utility program that numbers or re-numbers statements in a
BASIC program. NUMBER is an external command. For further information,
refer to the BASIC manual.

OPEN Filename Funit Key

Opens the specified File Unit (1-16), associates it with the specified
Filename, and assigns a Status according to the Key. OPEN is an
internal command. :

The argument, Key, for OPEN is significant. Key consists of octal
values for the type of file, and the action to be taken when the
file is opened. The format of Key is as follows;

Bits Meanin

1-5 New file (file type) key, octal values are:

000OX File is sequential threaded file (SAM)
200X File is sequential directed file (DAM)
400X File is a SAM segment directory
600X File is a DAM segment directory
1000X File is a UFD

11-16 Action Key, octal values are:

1 Open for reading
2 Open for writing
3 Open for reading and writing

PASSWD Owner-Password [Nonowner-Password]

Under DOS/VM, the PASSWD command replaces any existing passwords in the
current UFD with two new passwords. The first is the owner password;
the second is the nonowner password. The nonowner password is optional,
and if it is not specified, then the PASSWD command functions in the
Same way as it does under DOS. The PASSWD command must be given by
the owner while attached to the UFD. A nonowner cannot give this
command. Example:

OK, A JHNDOE OLDPW

OK, PASSED US THEM

If a nonowner attempted the above PASSWD command, the message:

NO RIGHT

is printed.

Under DOS, the password commar.d also replaces any existing passwords in

the current UFD. However, only one password, the owner password, may be

given. Example: OK: ATTACH JHNDOE
PASSWD _US

4-42



PROTECT
RERDOS/VMER*

A user (hereafter called the owner) has the ability to open his file
directories to other users giving restricted access rights to his files.
This declaration of access rights can be made on a per file baSgis.
Access rights to-a file are declared and specified through the
PASSWD and PROTEC commands. The syntax of this command is:

Filename

Keyl

Key2

PROTECT Filename Keyl Key2

is the name of the file to be protected.

is an integer that specifies the owners access rights
to Filename.

is an integer that specifies the nonowners access
rights to Filename.

Possible values and their associated meaning for Keyl and Key2 are:

Example:

S
O
O
M
S
O
N
H
© No access of any kind allowed

Read only
Write only
Read and write
Delete only
Delete, truncate and read
Delete, truncate and write
All

OK, PASSWD US THEM
OK, PROTEC MYPROG 7 1
OK, PROTEC OLDLIS 7 7

Gives the owner all access rights to MYPROG and gives nonowners
read-only access rights to MYPROG, and gives both owners and nonowners
all access rights to the file OLDLIS.

MAN 1675 4-43



The following brief example is intended to give a user an idea of the
use of the PASSWD and PROTEC commands:

 

LOGIN _JHNDOE
JHNDOE (2) LOGGED IN AT 10'25 02255

OK, PASSWD JHNDOE US THEM gives owner password US and
nonowner password THEM to
UFD JHNDOE ‘

OK, LISTF

UFD = JHNDOE Zz 0

TIMING FUNCT MNEMOS MYPROG OLD

OK, PROTEC TIMING 7 0 Gives JHNDOE all access
nonowners no access to TIMING

OK, PROTEC MYPROG 7 1 Gives owner access = all

nonowners access = read

OK, PROTEC OLD 77 nonowners access = all
owner access = all

LO

JHNDOE (2) LOGGED OUT AT 10'34 02255
TIME USED = 00'03 00'04 00'01

OK, LOGIN MSMYTH

MYSMYTH (2) LOGGED IN AT 11'34 02255

OK, A JHNDOE THEM

OK, LISTE

UFD = JHNDOE 2 N

TIMING FUNCT MNEMOS MYPROG OLD

OK, DELETETIMING
TIMING NO RIGHT MYSMYTH, who is a nonowner, cannot

even read timing since he has no

access.

ER! ED MYPROG

GO MYSMYTH can enter editor and

P2; read MYPROG since read access
aed

-NULL. has been granted.

C PROGRAM TO TEST DATA

C JOHN DOE 02 02 7%

4-44



INPUT
C__WITH CHANGES INSERTED BY MSMYTH

EDIT

ILE MYPROG
MYPROG NO RIGHT ©
9

a Might as well quit

ED OLD
GO

7"
INPUT

MSMYTH attempts to change
MYPROG; he seems to have
succeeded.

Cannot change file since
write access has been denied
by JHNDOE ~

C CHANGES BY MSMYTH WILL BE RECORDED HERE

1
EDIT
FILE OLD
OK,

MAN 1675 4-45

Since all access has been
granted for OLD, the changes
are made successfully.



PM (POST MORTEM)
Prints contents of the RVEC vector (described later in this
section). DOS first prints labels for the items in RVLC, then
on the next line prints the values in the same order. PM is an

internal command. Example:

OK: REST CSETV1
OK:
SA,EA,P,A,B,X,K=
000100 011100 001000 000000 000000 000000 000000

OK:

PMA Filename [1/A]

Loads the Prime Macro Assembler and starts assembly of a source file
Filename from the current UFD. A is the A register setting that
specifies listing detail and input/output devices. If A is not
specified, the default value is:

A 000777 “Normal listing detail, all input
and output files on disk

For other values, refer to the Program Development Software User
Guide and the PMA Reference Manual (MAN 1673).

Unless it is preceded by BINARY and LISTING commands, the assembler
automatically opens Unit 2 to write a binary file named BeXXXX, and
opens Unit 3 to write a listing file named L«XXXX, where XXXX is the
first four letters of the input filename. The assemblcr closes any
units that it opens. (Units opened by BINARY and LISTING commands
are not closed.) PMA is an external command.

PRERR

Prints the message stored in ERRVEC and the first six locations of

ERRVEC in octal. The PRERR command is useful in debugging a program.
On encountering an error condition, DOS or DOS/VM sets up an internal
vector called ERRVEC with several pieces of information. One of these
pieces is an error message, unless the user has called a system
subroutine with a non-zero alternate return. Refer to Appendix I] for
a description of ERRVEC.

Using the system subroutine FRRSET (Refer to Section 5), a user May
set the content of the error message and have the messave printed or
not printed depending upon the alternate return being zero or nonzero
in a user subroutine. If the user routine was the last routine to
set ERRVEC, PRERR prints the user-stored message.

4-46



PSD
TanAc a

control] and waits for a command string. For details, refer to the
Program Development Software User Guide. To return to DOS, enter the
command string R 30000, R 50000 or R 70000 (under DOS) or pressing
CTL-P under DOS/VM. PSD occupies location 60000 to 65777.

PSD20

PSD20 is a version of PSD for 16K DOS. PSD20 occupies locations
20000 - 25777.

PTCPY
 

Loads PTCPY, a utility program that duplicates and verifies paper tapes
using the high speed reader-punch. Operation is controlled by P-
register and sense switch settings. PTCPY is an external command.
For details, see The Operators Guide.

To return to DOS, restart the processor from the systems terminal at
location '30000; or '50000; or '70000, depending on system configuration.
Under DOS/VM, the command ASSIGN PTR and ASSIGN PTP must be given before
PTCPY is invoked.

PTRED

 

Edits files read from paper tape. Refer to the description of ED
and the Program Development Software User Guide.

RESTORE Filename

Restores a program Filename in the current UFD from disk to high-speed
memory using the SA and EA values SAVEd with the file. The SAVEd RVEC
parameters (refer to next side head) are also loaded into RVEC to be
ready for a START command RESTORE is an internal command. Example:

RESTORE *GENFIL
OK: PM "
SA: EA,P,A,B,X,K=
000200 011710 001000 075072 000001 177771 006001

“OK:

RVEC Parameters: The commands RESTORE, RESUME, SAVE, PM and START

process a group of optional parameters associated with the DOS RVEFC

vector. These parameters are stored on disk along with a starting

address (SA) and ending address (EA), for every program saved by the
SAVE command.

 

Initial values for these parameters are usually specified in the

SAVE command or by the loader's SAVE command that stored the program

on disk.

Each parameter is a 16-bit processor word, represented by up to six

octal digits.

MAN 1675 4-47



Processor

 

Memory
Parameter Location Definition

SA - Starting Address (first memory
word used by program)

EA - Ending Address (last memory
word used by program)

PC 7 P Register (Program Cow:ter) |

A 1 A Register (Arithmetic)

B 2 B Register (Arithmetic)

X 0 Index Register

Keys -- Status keys associated with INK,
OTK instructions

The RVEC parameters are optional in the command string. Any item that
is specified replaces the previous value in RVEC, which is saved with
the program. Thus, for any parameters that are not specified, the value
previously stored in RVEC is saved with the program.

RVEC parameters specified in RESUME or START commands replace the
previous values in RVEC. Also, when a program returns to DOS through
the EXIT subroutine, RVEC is loaded from the processor values in effect
at the timeof exit. Only the SAVE command alters the values of RVEC
stored on disk with the program.

RESTORE returns a program from disk to memory and loads the SAVE
parameters into RVEC in preparation for a START command.

START sets the processor registers to the values currently stored in
RVEC and starts execution at location PC. The START command may also
specify new parameters to override (and replace) the previous values in
RVEC

RESUME combines’ the functions of RESTORE and START.

PM lists the current values of the RVEC parameters.

4-48



External commands have RVEC parameters that can be modified at the time

the command is started. (e.g.,-.PMA Filname 1/740).

Keys: The item [Keys] among the RVEC parameters refer to the processor

Status keys handled by the INK and OTK instructions. These are

represented by a single 16-bit word in the following format:

j}~«—— Shift Count——+»|
 

clp * *] ADR *j|*

i \ j l | i l l ] i

Bit 123 45 67 8 9 16
       
 

where:

C = State of C (Carry) bit

P = Arithmetic mode; 0 - single precision,
1 double precision ‘

* = Must be zero

ADR = Addressing Mode:

Bits 5-16 Mode

OXXX 16K Sectored

2XXX 32K Sectored

6XXX 32K Relative

AXXX 64K Relative

Shift Count = Bits 9-16 of Location 6, which may

contain a normalize shift count

If [Keys] are not specified, they are unchanged.

RESUME Filename [PC] [A] [8] [X] [KEYS]

RESUME is equivalent to a RESTORE and START command, combined. The

program Filename in the current UFD is loaded from disk to high-speed

memory, using the SAVEd values of SA and FA. RVEC is loaded from the

SAVEd RVEC parameters or from any new values specified in the command

string. The processor registers and keys are then set from RVEC and

the program is started at location PC. RESUME is an internal command.

MAN 1675 | 4-49



RTOSRA
 

Establishes an RTOS mapped random access file using 128-word structure.
Usage instructions are printed when the command is invoked. RTOSRA
is an external command.

RT128F

 

RTOS off-line utility command to read and write non-DOS (128-word Segment
format) disk. See RTOS manual for details. “

CAUTION: Do not use this command under DOS or DOS except di
in the RTOS User Guide. ‘XM PE as directed

SAVE Filename SA EA [PC] [A] [B] [X] [KEYS]

Saves the content of high-speed memory from SA (starting address) to
EA (ending address) as a file named Filename in the current UFD. SAVE
is an internal command.

As discussed at the beginning of this Section, the contents of the DOS
vector RVEC are saved along with the program. RVEC may be altered
by new parameters specified in the SAVE command stringbefore the
program and parameters are stored. For any parameters that are
not specified, the previous values of RVEC remain in effect and are
stored with the program. The RVEC parameters are used to initialize
the processor registers and keys when the program is RESTOREd or
RESUMEd. Example:

SAVE PROG1 200 2600 1000 0000

This command saves the program PROG] from locations '200 to '2600.
Execution starts at '1000, the A, B and X registers are set to 0,
and all bits of the keys are set to 0 (carry bit is 0, arithmetic
mode is single precision, addressing mode is 16K Sectored, and shift
count is zero). Start this save at '200 to preserve address links
in Sector 0.

All FORTRANprograms begin with ELM, Enter Load Mode. If macro
assembler (PMA) users have ELM as the first instruction in the program,
there is no need to set the keys after loading. The preferred way to
save a memory image is to use the loader SAVE command.

SHUTDN

 

The DOS command SHUTDN performs tasks necessary to shutting down DOS
in an orderly manner. Refer to the examples in Section 3 for use of
the DOS SHUTDN command. SHUTDN has extended capabilities in DOS/VW,
refer to Section 6. SHUIDN is an internal command. SHUTDN must also
be entered before closing down a DOS system or changing disk packs.
The command does some incidental DOS housekeeping that makes sure all
the information in memory buffers is written to disk properly.

4-50



SIZE Filename

Gives the size of Filename in records. Example:

OK: SIZE PRPLOT

GO
000002 RECORDS IN FILE
OK:

SLIST Filename

Prints the content of the file Filename at the users terminal. SLIST
is often usedto obtain source listings of short program or data files.
SLIST is an external command.

SORT
 

Sorts an ASCII file and writes the sorted file in the current UFD.
The SORT program requests input and output files, mmber of columns,
and starting and ending columnsfor the sorting operation. SORT is
an external command. Its format is:

| SORT

SORT BRIEF

SORT SPACE

SORT MERGE  
The options BRIEF; SPACE; or MERGE, or a combination of these options,
may be entered following the command SORT. Only two options can be
implemented at a time. (Note, the names of the options may be abbre-
viated: _BR, SP or ME.) The meaning of these options when specified
is as follows: -

tion Meaning

BRIEF SORT program messages are not
printed at the users. terminal.

SPACE Any blank lines are deleted from
the SORT output file.

MERGE A maximm of ten unsorted files can
be merged at a time. The SORT program
asks for the names of the merged files.
The user at the terminal types the file-
names on one line, separated by spaces.

MAN1679 4-51



Reverse Sorting
 

Sorting can be specified to be in descending order by typing the
letter R separated by a space after the ending column of the desired
keys.

Comnand File

The SORT command can be run from a command file, since it does not
close Unit 6.

OKs SORT

GO
SORT PROGRAM PARAMETERS ARE?

INPUT FILE NAME -- OUTPUT FILE NAME FOLLOWED BY

NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.

INFILEOUTPUT3
INPUT PAIRS OF STARTING AND ENDING COLUMNS

ONE PAIR PER LINE*°SEPARATED BY A SPACEe

FOR REVERSE SORTING ENTER “R™ AFTER DESIRED

ENDING COLUMN--SEPARATED BY A SPACE-

i353
15 25
30 35
 

BEGINNING SORT

PASSES 3 ITEMS 266

OKs

Respond to the first inquiry with the input file name, output file

name and number of pairs of colums.

Respond to each inquiry with the appropriate starting and ending

colum numbers (character positions) .

During operation of the SORT program, the console DATA indicators

display a count of the numer of passes completed. When the sort

is completed, SORT prints the number of passes and number of items

(lines in the input file), and return to DOS.

4-52



ilename] ***DOS/VM***

Queues a copy of a file in the UFD SPOOL for off-line printing on the
DOS/VM system configuration line printer. SPOOL allows a user to get
output printed without specifically ASSIGNing the printer and then
waiting until the printing operation is complete before being able to
issue another command at the terminal. Example:

OK, FIN MYPROG

OK, SPOOL _L+MYPRO

GO

YOUR SPOOL FILE IS PRNTI10

OK, FIN NEWPRG

Using SPOOL, terminals are not tied up waiting for the printer, and
terminals and files can be used while copies of the files are being
printed.

One terminal in the DOS/VM configuration must be dedicated to running
SPOOL (i.e., SPOOL must be logged-in as if it were a user).

The SPOOL program copies the specified file Filename into the UFD

SPOOL and changes its filename to prevent naming conflicts. Each file

in the UFD SPOOL is deleted after it is printed.

There are two programs in the UFD SPOOL that control printer output.

The SPLCEN program prints files in UFD SPOOL on the Centronics line

printer, and the SPLMPC program prints files in the UFD SPOOL on the

high-speed line printer. Only entire files can be printed using SPOOL.

After a successful file copy of Filename to the UFD SPOOL, SPOOL

responds:

YOUR SPOOL FILENAME IS PRNTnn

where nn is a two-digit decimal integer that is part of the new filename

in the SPOOL directory. |

MAN /675 4-53



SPOOL Output Format
 

The SPOOL filename is printed on the header page before the file is
printed. A header page with the UFD of origin and Filename is
generated as the first page of each SPOOL job.

Errors

An INPUT FILE ERROR or LINE SIZE ERROR results in an error message at
the terminal dedicated to SPOOL. The file causing the error is deleted
and SPOOL continues, printing the next file in UFD SPOOL.

A DISK FULL error results in an error message being printed at the
user terminal, and the copy of the file, Filename, in the UFD SPOOL
is deleted without being printed.

DEFAULT

SPOOL typed with no Filename argument opens File Unit 2 for writing
in the SPOOL directory. SPOOL responds by typing the SPOOL filename.
A user program may then write directly to File Unit 2. When the
program finishes, the user may close File Unit 2 with the command:

CLOSE ALL

or may close the unit at the end of the program. The file produced
in this manner is subsequently printed by SPLCEN or SPLMPC, whichever
is appropriate.

Example 1:

OK, PMAFILE
GO
NO ERRORS

OK, SPOOL_L+FILE
GO
YOUR SPOOL FILENAME IS PRNT19

OK, DELETE L+FILE
OK,

In the above example, a user assembles the program named FILE and

generates the listing, L+FILE, and a binary file B+File. The user then

issues the command: SPOOL L<«FILE. This command causes L«FILE to be

copied to PRNT1f in the UFD SPOOL. If SPLMPC, or SPLCEN, is running 4

in UED SPOOL (logged in on another terminal); the file PRNTIP is printe

on the line printer. The user may then DELETE the file L«FILE since

what is desired is a printed copy of the listing.

4-54



OK, SPOOL

é

YOUR SPOOL FILENAME IS PRNT1¢
OK, PMA FILE
Go”.
NO ERRORS
OK, CLOSE ALL
|

In this example, the user issues the command SPOOL with no Filename

argument before invoking the assembler. SPOOL opens PRNT1# in UFD
SPOOL for writing on File Unit 2. The command: PMA FILE first checks

if Unit 2 is open. Because Unit is open, PMA does not open and write

L«FILE in the users UFD; instead, it outputs the assembly listing

to the file already open on File Unit 2, which happens to be PRNT1P

in the UFD SPOOL. When the assembly is done and PMA returns to

command level, PMA leaves File Unit 2 open. The user gives the

CLOSE ALL command which closes Unit 2. (Note, the user could have

not given this command but proceeded to invoke a series of assemblies

or compilations with the result that a listing file consisting of

a series of listings would have been created). After File Unit 2

is closed, and if SPLCEN or SPLMPC is running, the file PRNTIP is

printed on the line printer.

LOGGING IN AND STARTING UP THE SPOOL DAEMON

To start SPLMPC or SPLCEN at a terminal, proceed as follows (user
input is underlined):

LOGIN SPOOL SPLOUT
OK, ASSIGN CENPR
OK, RESUME SPLCEN
GO

 

For the High-Speed Printer:

LOGIN SPOOL SPLOUT
OK, ASSIGN PRI
OK, RESUMESPLMPC
GO " ~

 

The SPLMPC or SPLCEN program looks for files with names: PRNT1#, PRNT11,

PRNT12, etc. in the current UFD and prints them if any exist. SPLMPC
or SPLCEN always processes files first-in, first-out (FIFO). An
INPUT FILE ERROR or a LINE SIZE ERROR results in an error message at
the terminal from which SPOOL was logged in. The spool-file
(PRNTIP, 11, ... etc.) is deleted and the next file is processed.

If a user decides not to print a file that is queued for printing by

SPOOL, it is possible to ATTACH to the UFD SPOOL and DELETE the .
appropriate file (named PRNInn where nn is a number 10, 11, 12, etc.).

MAN 1675 4-55



If printing of the file to be deleted has started, the attempt to
DELETE it fails. However, the user can request the operator at the
terminal from which SPOOL was logged-in to stop the file from printing;
or the operator may stop printing a file if he perceives that the file
is incorrect. The operator or user proceeds to do this by:

CONTRUL+P (Operator presses QUIT)
QUIT, CLOSE ALL
OK, ATTACH SPOOL SPLOUT
 

OK, DELETE PRNTnn (nn = number for whatever
file is appropriate)

OK, RESUME SPLMPC (or RESUME SPLCEN)

GO

CAUTION

SPOOL reuses available names. Thus, after
PRNT19 is printed and deleted, the name PRNTI1@
is available for use by SPOOL again and may be
given to a subsequent Filename argument in a
subsequent SPOOL request. If deleting files
from the UFD SPOOL, be sure you are deleting
the right one.

START [PC] [A] [B] [X] [Keys]
Initializes the processor's registers and keys from the conmand line

(or from RVEC, for any values not specified in the command line)

and starts execution at location PC. This command assumes a pro-

gram has been loaded into memory by a previous RESTORE, RESUME, or

LOAD command. START is an internal command.

START can also restart a program that has returned control to DOS

(for example, because of an error, a FORTRAN PAUSE or CALL EXIT

statement). If START is typed vithout a value for PC, the prograr

resumes at the PC value where execution was interrupted. To restart

the program at a different point, specify an octal starting location

as the PC value.

4-56



STARTUP PdiskO [Pdiskl] [Pdisk2] [Pdisk3] ... [Pdisk8]

Initializes the configuration of disk drives by relating
physical disk drive numbers to DOS logical disk unit numbers. STARTUP
is an internal conmand. Physical device numbers for disks are those -
shown in Table 3-1.

The logical-to-physical assignment depends on the order in which the
physical device numbers are listed as parameters in the STARTUP command.
The physical device number specified in the Pdisk0 position is assigned
as logical disk unit 0, the physical device number specified in the
Pdiskl position is assigned as logical disk unit 1, and so on.

The number of parameters indicate to DOS the number of logical drives
assigned to the system. Example:

STARTUP 3 0 1

This command makes the following logical/physical disk assignments:

Logical Unit Physical Unit

0 3.

1 0

2 1

3 _ Not Assigned

STARTUP has some extended capability in DOS/VM; refer to
Section 6.

MAN 1675 4-97



STATUS

 

Lists the current UFD - the logical device upon which the UFD resides,
the low boundary of DOS plus buffers, the open file units, and the
physical-to-logical device correspondence. STATUS lists physical
device numbers as described in Table 3-1 and Section 3. Example:

OK: STATUS

UFD=GOUDY 0

DOSLO 67000 FUNITS

LDEV PDEV
0 01
1 00
2 04

In DOS/VM, the STATUS command prints the packnames of the disks also.
Rather than typing the current UFD, the login UFD is typed. Example:

OK, STATUS

UFD=GOUDY 0

FUNITS

DISK LDEV  PDEV
TSDISK 0 01
COMMAND 1 00
DUD 2 04

The disk name (Packname) is the name of the DSKRAT on that disk pack.
The DSKRAT name can be changed by the CNAME command.

The STATUS command may be used to. monitor the usage of DOS/VM. When
entered at the system terminal, the STATUS command prints status
information that consists of the information given at the user terminal
and; in addition, prints the paging device, the command dev.ce, and a
list of current logged-in users, and the devices that each user has
currently assigned. Disks assigned to a user are printed as:
DISK <octal number>. Following each user name in the list, the user
terminal number and the mumbers of the physical disks currently used
by the user are printed. Adisk is considered to be in use by a user
(1) if his home UFD or current UFD resides on the disk or (2) if the
user has opened a file on that disk. Some typical instances where
the STATUS command must be used are:

1. Prior to mounting a new disk pack to determine what
physical disk assignments are available.

2. After a request that all users release a given disk or
disks to determine that they have done so before shutting
down the given disk or disks.

4-58



3.

Example:

AS a Check that aii users have iogged out before shutting
down DOS/VM. (No harm to the system results if the users
of a particular disk are still logged-in when the disk or
the system is shut down. However, users will be disconnected
and the message: DISK d DETACHED; YOUR FILES CLOSED will
be printed at their terminal.

STATUS comamnd and response when issued at system terminal.

STAT

USER = SYSTEM 0

FUNITS

DISK LDEV PDEV
TS#1 0 250
DUD#2 1 40250
COMAND 2 4
ETCH3 3 0
TS#2 4 20250
MD6V2 5 6
TRANS 6 50250
DOSDVM 7 60250

PAGDEV = 10250 COMDEV = 250

USER LINE PDEVS
SPOOL 3 40250 PRL
PDAVIS 4 20250 MTO DK1

21PDAVIS 5 40250 DK20 Dk
GRUBIN 7 50250
GREATA 8 250
SPORER 9 20250

SVCSW ***TD0S/VM***

The SVCSW command controls the handling of SVC instructions in the

Virtual memory environment. Syntax:

 

MAN 1675

SVCSW 0

SVCSW 1

SVC 0

SVC 1  

4-59



The normal mode (SVC 0) causes all SVC instructions to be trapped and
processed by the system supervisor. If the SVC SWITCH is ON (SVC 1),
almost all SVC instructions cause a virtual trap, and SVC instructions
are handled through the users location 65. The class of SVC instructions
always processed by the DOS/VM operating system regardless of the SVCSW
command are those determined by FUNCTION code 5XX (currently the
SVC's are RREC, WREC (for reading and writing to disk), TIMDAT
(for obtaining the time and date from DOS/VM), and RECYCL.

The SVC switch is initialized to 0 by the LOGIN command. The SVCSW
command allows a special version of DOS called VDOS32 to be run under
DOS/VM.

TIME &**D0S/VM***

The TIME command prints the current value stored in the time account-
ing registers. The three values printed are the same as the three -
values in the logout message, namely:

Connect time (hours, minutes) Time sincé LOGIN

Compute time (minutes, seconds) Time accumulated
executing commands or
using programs (does
not include paging time).

Paging time (minutes, seconds) Time accumulated taking
page faults and bringing
pages into memory.

The syntax is:

TIME

T

Example:

T

Typical Response:

00'Si 01'32 00'28

4-€0



UNASSIGN —***D0S/VM*#*

The UNASSIGN command may be entered at the user terminal to which a
device is currently ASSIGNed or may be entered at the supervisor
terminal. The UNASSIGN command, entered at the system terminal,
unconditionally deassigns the peripheral assigned to any user.
Entered from a user terminal, UNASSIGN only deassigns the device
that was previously assigned to the user. On selected devices,
this command turns off the device and clears the associated I/O
buffers. Syntax:

UNASSIGN Device

U Device

where device is a previously assigned device named as shown in

Table 4-4.

From the system terminal, this command is useful to release a device

if the user who assigned it has forgotten to log out and has left

his terminal.

Example:

UNASSIGN CENPR

unassigns the Centronics printer.

U PTR

unassigns the paper tape reader.

Before a disk may be assigned to a terminal, it must not be assigned

to either DOS/VM or another user. If the disk is assigned to DOS/\M,

it must be released using the SHUTDN command at the supervisor

terminal. A disk that has been ASSIGNed by a user cannot be entered

as an argument in the STARTUP command. The supervisor terminal can

UNASSIGN a device that may be assigned. Devices ASSIGNed by another

user are released when the LOGOUT command is invoked by that user.

USERS *#*RDOS/VM***

The USERS command prints the number of users currently logged into

DOS/VM. This command is useful to estimate how fast response will

be. A user may decide on the basis of this command whether or not
to run a long program. Example:

OK, USERS

USERS = 7

OK,

MAN 1675 461



VDOS32. _***DOS/VM***

Starts a version of DOS that may be run under DOS/VWM.
Example:

SVC 1
VDOS32

VRTSSW  ***D0S/VM*#**

The VRTSSW command allows setting the virtual sense switches. The
16-bit configuration specified by the numeric parameter of the
VRTSSW command, is stored and made available. Syntax:

VRTSSW [XXX]

where XXXXXX is an octal number that specifies a 16-bit configuration;
when XXXXXX is not specified, it value is 0.

The 16-bit configuration specified by the numeric parameter of VRTSSW
is stored and made available to the user when a programwritten in
PMA executes an INA 1620 (read sense switches) instruction. For
further details, see the Assembly Language Reference Manual.
Example:

V_ 10100

The virtual sense switches are initialized to 0 by the LOGIN
command .

WARNING: The instructions, skip on sense switch, always refer to
the actual sense switches, not to the virtual sense switches.

* [Comment]

The internal command named, *, indicates the beginning of a comment
line. * must be followed by a space and have a correct command
line form (1 to 3 names followed by 0 to 9 octal parameters).
Example:

* PROGRAM.1 JULY.14.1974

This command is useful to include comment lines in COMMANDfiles.

4-62



SECTION 5

FILE SYSTEM AND TERMINAL I/O LIBRARY

INTRODUCTION

DOS and DOS/VM provide the user with a powerful and general file system.
The key definitions of SEARCH, PRWFIL, and ATTACH are complicated. To
keep things straight, the definitions of these file system subroutines
have been written with mnemonic keys (Refer to Appendix C).

CALLING AND LOADING LIBRARY SUBROUTINES

When a FORTRAN user calls a subroutine, a call to the required subroutine
is automatically inserted in the FORTRAN object program by the compiler.

After a FORTRAN or Macro Assembler main program is loaded, library

subroutines are loaded by using the loaders LIB (or LI) command.

CALLING SEQUENCE NOTATION

The following conventions apply to the FORTRAN calling sequence formats

described in the rest of this section. For assembly language calling,

refer to the PMA Manual.

Items in capital letters are to be reproduced literally. Items in

initial caps are variables to be assigned actual names or values by

the user. For example, the calling sequence:

CALL CMREAD (Array)

means that the user must enter CALL CMREAD, as specified, but may

coin his own array name. Common abbreviations such as Funit, Ldisk,

etc. are defined in the Foreword.

MAN 1675 ool



File names and UFD names used in routines such as ATTACH,
RESTOR, etc., may be specified either by a Hollerith string or
an array name. The Hollerith form allows the file or UFD name
to be expressed literally in a 6-character Hollerith string such
as 6HFILNAM. If an array name is used instead, it must designate
a 3-word integer array that contains the file or UFD name. For
example, the user could specify an array NAM that contains filename
FILNAM in the following form:

NAM(1) FI
NAM(2) LN
NAM(3) AM

In either the Hollerith or Array form, the name must be specified
as exactly six characters; if the actual name has fewer than six
characters, it must be left justified and the Hollerith string
(or array) filled with space characters (b). For example, the
filename FIL1 should be treated as follows:

6HFILIbb or NAM(1) or Fill = FI
NAM(2) = Ll
NAM(3) = bb

Numerical values such as Funit, Ldisk, etc. must be specified by
decimal integer expressions. The error return Altrtn must be set by
an ASSIGN statement to the value of a statement number within the
user's program. (The form $n, where n is the statement number, is also
acceptable.)

Example: The ATTACH subroutine has the general form:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)

The user might code an actual call to this subroutine as follows:

CALL ATTACH (6HUSER1 , 0, PWD, 000001, $50)

where:

a. 6HUSERL, literally identifies the user's UFD, 'USER1 "';

b. The USERI UFD is on logical disk unit 0 (Ldisk is an integer)

c. The user stores his current password in 3-wcrd integer array PWD

5-2



d. The variable KEY (declared as integer mode in the user's
program) controls the way that the file is referenced and
the home-UFD setup;

e. In case of uncorrectable error, control passes to statement
label 50 in the user's program.

INMAN 1675 5-3



FILE SYSTEM AND TERMINAL I/O SUBROUTINES

DOS and DOS/VM provide a collection of subroutines that simplify disk
input-output, permit user programs to commmicate with the DOS supervisor
and file structure, and provide various input-output and control
functions. The subroutines SAVE, RESTOR, RESUME and ATTACH have,the
same effect as the commands of the same name, but they are called
from, and return control to, a user program. The calling sequence
provides the parameters that are normally entered from the terminal.
Most routines, like SEARCH, SAVE and RESTOR are implemented by code
within DOS itself. A small interlude program executes a supervisor
call to DOS or DOS/VM to do the work in each case.

Subroutines from this group are loaded from the main library file
PINLIB if they are called in a user's FORTRAN program. They are
described in this section in alphabetical order:

ATTACH D$ INIT PRWFIL TLIN TNOU
BREAK$ ERRSET RECYCL T10U TNOUA
CMREAD EXIT RESTOR TIMDAT TOOCT
C1IN FORCEW RESUME T$CMPC UPDATE
CNAME GETERR RREC T$LMPC WREC
COMINP GINFO SAVE T$MT
COMANL PRERR SEARCH T$SLC

ATTACH
The ATTACH subroutine has the same effect as the ATTACH internal
command. The calling sequence is:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)

Definition of ATTACH
 

To access files, the file system must be attached to some User File
Directory. This implies that the file system has been supplied with
tne proper file directory name and either the owner or nonowner
password, and the file system has found and has saved the name and
location of the file directory. After a successful attach, the name,
location, and owner/nonowner status of the UFD is referred to as the
current UFD. As an option, this information may be copied to another
place in the system, referred to as the home UFD. The user gets owner
status if he gives the owner password or gets nonowner status if he
gives the nonowner password. The owner of a file directory can declare
on a per-file-basis what rights a nonowner has over the owner's files.
The nonowner password may be given only under DOS/VM. (Refer to the
description of the commands PASSWD and PROTECT in Section 4 for more
information.)

5-4



In attaching to a directory, the subroutine ATTACH specifies where to
look for the directory. ATTACH either specifies a file directory in the
master file directory (MFD) on a particular logical disk or a file
directory in the current UFD, or the home UFD as the directory to be
attached. ATTACH may specify a file unit number on which a segment
directory is open. In the segment directory reference, the file
directory to be attached is the one whose beginning disk address is
given by the word at the file pointer of the file uit. Syntax:

ATTACH is used as in the following call:

CALL ATTACH (NAME, LDISK, PASSWORD, KEY, ALTRTN)

KEY is composed of two subkeys that are combined additively. They are
REFERENCE and SETHOME. All calls require a REFERENCE subkey. The
REFERENCE subkeys are shown in the following table:

REFERENCE Octal Value Meaning

MFDUFD 0 attach to NAME in MFD on LDISK

CURUFD 2 _ attach to NAME in current UFD.

SEGUFD 4 attach to directory whose location on
the disk is given by the word at the
file pointer of the file unit given
by NAME(1). The file unit opened
previously by a call to SEARCH must be
an open segment directory.

The SETHOME subkeys are required on all calls; these subkeys are shown
in the following table:

SETHOME Octal Value Meaning

--- 0 do not set home UFD to current
UFD after attaching.

SETHOM ] set home UFD to current UFD after
attaching.

MAN 1)675 2-8



The meaning of the remaining parameters on a call to ATTACH is as
follows:

NAME

LDISK

PASSWORD

ALTRIN

If the key is 0 and NAME is 0, the home UFD is attached.

If the reference subkey is MFDUFD or CURUFD, NAME is
either a six-character Hollerith expression or the name
of a three word array that specifies a Ufdname to be
attached,

If the reference subkey is SEGUFD, NAME is a file unit
on which a segment directory is open.

If the reference subkey is MFDUFD, LDISK is the logical
disk on which the MFD is to be searched for UFD NAME.
LDISK must be a logical disk that has been started up by
the STARTUP command. The special LDISK octal code 100000
signifies: search all started-up logical devices in order
0, 1, 2... n and attach to the UFD whose NAME appears in
the MFD of the lowest ruibered logical device. The special
LDISK octal code 177777 signifies: search the MFD.of the
Ldisk currently attached for NAME.

If the reference subkey is CURUFD or SEGUFD, or NAME is 0,
LDISK is ignored and is usually specified as 0.

If the reference subkey is MFDUFD, CURUFD, or SEGUFD,
PASSWORD is either a six-character Hollerith expression
or the name of a three-word array that specifies one of
the passwords of UFD NAME. If the password is blank, it
is specified as three words of two blank characters.

An integer variable assigned the value of a label is the
user's FORTRAN program to be used as an alternate return
in case of error. If this argument is 0 or omitted, an
error message is printed and control returns to DOS or
DOS/VM if any error should occur while using ATTACH,

A UFD attached through a segment directory reference does not have a
name. On LISTF, such a UFD is listed with a name of six asterisks.

If an error is encountered and control goes to Altrtn; ERRVEC(1), a
DOS vector, is set to the error type as follows:

 

Code Message

AH Name NOT FOUND
AL No UFD ATTACHED
AR Not a UFD (detected by DOS/VM only)

5-6



A mene ah
fa £4008 Wa

1sFOUND" 1

2. NAME is not found in the specified directory.

3, LDISK is out of range or not started up.

4.. In a segment directory reference, NAME (1) is a closed unit or
the unit is at end of file.

If the error BAD PASSWORD is obtained, the alternate return is never
taken, and both the home UFD and current UFD are set to 0 to indicate
that no UFD is attached. This feature is a system security measure to
prevent a user from writing a program to try all possible passwords on
a UFD.

Examples of ATTACH:

CALLATTACH ('JHNDOE', -1, 'JJJ', 0, ERR)

Searches for the UFD, JHNDOE, in the MFD (as specified in the Key) on
the current logical device. If JHNDOE is found and the password, JJJ,
matches the recorded password, then UFD JHNDOE is attached. The
current UFD (now JHNDOE) is not set as the home UFD (This is specified
in the Key). The DOS vector that points to the current UFD is set to
this new directory.

BREAKS
The calling sequence is:

CALL BREAK$ |(.TRUE.) |
}(.FALSE) |

Under DOS/VM, the BREAK$ routine, called with argument . TRUE:

CALL BREAK$ (.TRUE.)

inhibits the CTL-P or BREAKS key from interrupting a running program.

CALL BREAK$ (. FALSE) |

enables the CTL-P or BREAK$ characters to interrupt a running program.
The LOGIN command initializes the user terminal so that the CTL-P or
BREAK keys cause interrupt.

Under DOS, BREAK$ has no effect. —

MAN 1675 3-7



CMREAD

 

The calling sequence is:

CALL CMREAD (Array)

CMREAD reads 18 words which represent the last command line
typed into Array as follows:

 

Array(1) Command (or spaces)
Array (2)
Array (3)

(4) Name] (or spaces)
(5)
(6) _
(7) Name2 (or spaces)

(8)
(9)
(10) Parl (or zero)
(11) Par2 (or zero)

|

Array(18) Par9 (or zero)

The command line may then be accessed directly from ARRAY. The
‘Name's are normally UFD's or filenames and the 'Par's are parameters.

C1IN

This routine gets the next character from the terminal if the command
stream comes from a terminal or from a Command (text) file if the command
stream comes from there, The calling sequence is:

CALL C1IN (Char)

The next character of a command file is read and loaded into Char .
If the character is CR or a line feed, Charis set to NL (new line).

The Command file must be specified by a preceding COMINPUT conimand.
The user's program that contains the call to C1IN is usually, started
by one»of the command lines in the command file.

5-8



CNAME {

 

The CNAME routine allows the same action at user program level as the
CNAME command allows at command level. The calling sequence is:

CALL CNAMBS (Oldnam, Newnam, Altrtn)

CNAME changes the name of Oldnam in the current UFD to Newnam. The
user must have owner status to the UFD, The arguments are:

Oldnam A filename to be changed

Newnam The new filename for Oldnam

Altrtn If not 0, control goes to Altrtn if any error
occurs. If 0, an error message is printed and
control returns to DOS/VM if any error occurs.

If an error is encountered and control goes to Altrtn, ERRVEC(1) is
set to the error type as follows:

Code Message

CA Newnam BAD NAMB
CZ Newnam DUPLICATE NAME
SH Oldnam NOT FOUND
SI Oldnam IN USE
SL NO UFD ATTACHED
SX Oldnam NO RIGHT

A user obtains ERRVEC through a call to GETERR. CNAME does not run on
DOS, only DOS/VM.

COMINP

The COMINP routine allows the user to perform the same action at
program level as the user command COMINPUT allows at command ievel.
Refer to Section 4 for details of the COMINPUT command. Briefly,
COMINP causes DOS or DOS/VM to read commands from a file rather
than a terminal. The calling sequence is:

CALL CQOMINP (Name, Funit, Altrtn)

The arguments are:

Name Either a three-word array containing a filename
of a command file or the words TTY, CONTIN, or PAUSE.

Funit A File Unit number (range 1 to 16; 1-15 under DOS)
that is to be used for reading the command file.

Altrtn tf not 0, control goes to Altrtn in the event of
an error while opening Name. If 0, an error message
is printed and control returns to the operating
system in the event of an error while opening Name.



If an error is encountered and control goes to Altrtn, ERRVEC(1) is
set to the error type as follows:

 

Code Message
SD UNIT NOT OPEN
SH Name NOT FOUND
SI Name IN USE
SI UNIT IN USE
SL NO UFD ATTACHED
SX Name NO RIGHT

A user obtains ERRVEC through a call to GETERR.

COMANI,

 

COMANL causes a command line to be read from the terminal or
from a command file, depending upon the source of the command stream.
The calling sequence is:

CALL COMANL

Example:

CALL COMANL
CALL CMREAD (ARRAY1)

Assume a user wishes to get a file name typed at the terminal via
a program. The user program calls COMANL followed by CMREAD (ARRAY1).
The filename is contained in the first three words of the array,
ARRAY1.

D$ INIT

The D$INIT routine is called to initialize a disk device. The calling
sequence is:

CALL D$INIT (Pdisk)

when Pdisk is the physical disk number to be initialized. D$INIT
initializes the disk controller and performs a seek to cylinder 0
on Pdisk. D$INIT must be called prior to any RREC or WREC calls.
Pdisk must be assigned by the DOS/VM ASSIGN command before calling
this routine. D$INIT is not normally used by users but is used by
system utilities such as FIXRAT, COPY, and MAKE

5-10



ERRSET

ERRSET sets ERRVEC, a system vdctor, then takes an alternate return
or prints the message stored in ERRVEC and returns control to the _
system. ERRSET has these forms:

CALL ERRSET (Altval, Altrtn) (Form 1)

CALL ERRSET (Altval, Altrtn, Messag, Num) (Form 2)
CALL Errset (Altval, Altrtn, Name, Messag, Num) (Form 3)

In Form 1, Altval must have value 100000 octal and Altrtn specifies
where control is to pass. If Altrtn is 0, the message stored in
ERRVEC is printed and control returns to the system. Forms 2 and 3
are similar; therefore, the arguments are described collectively as
follows:

Altval A two-word array that contains an error code that

replaces ERRVEC(1) and ERRVEC(2). Altval(1) must
be not equal to 100000 octal.

Altrtn If Altrtn is nonzero, control goes to Altrtn.
If Altrtn is zero, the message stored in ERRVEC is
printed and control returns to DOS.

Name The name of a three-word array containing a six-letter
word. This name replaces ERRVEC(3), ERRVEC(4), and
ERRVEC(5). If Name is not an argument in the call,

ERRVEC(3) is set to 0.

Message An array of characters stored two per word. A pointer
to this message is placed in ERRVEC(7).

Num The number of characters in Message. Num replaces

ERRVEC (8) .

If a message is to be printed, six characters starting at ERRVEC(3)

are printed at the terminal and ERRVEC(8) characters from a message

pointed to by ERRVEC(7) are printed at the terminal. If ERRVEC(3) is

0, only the message pointed to by ERRVEC(7) is printed. The message

stored in ERRVEC may also be printed by the PRERR command or the PRERR

subroutine. The contents of ERRVEC may be obtained by calling subroutine

GETERR.

EXIT

The EXIT subroutine provides a way to return from a user program to
DOS or DOS/VM, that prints OK; (or OK,) at the terminal and resumes
control. The calling sequence is:

CALL EXIT

The user may open or close files or switch directories, and restart

a FORTRAN program at the next statement by typing S (i.e., START) .

MAN 1675 5-11



FORCEW

Calling sequence is:

CALL FORCEW (0, Funit)

The FORCEW subroutine, under DOS/VM, immediately updates to the disk
the file that is currently open on Funit. Normally this action is not
needed since the system automatically updates all changed file system
information to the disk at least once per minute. Under DOS, the
FORCEW routine acts as a no-operation (i.e., it does nothing).

GETERR

 

A user obtains ERRVEC contents through a call to GETERR.

Calling sequence is:

CALL GETERR (Xervec, n)

GETERR moves n words from ERRVEC into Xervec.

On an alternate return:
 

error code (returned in B register);
ERRVEC (1)

alternate value (returned in A register);
ERRVEC (2)

GINFO

 

Calling sequence is;

CALL GINFO (Xervec, n)

GINFO moves n words in Xervec.

5-12

On_a normal returm:
 

PRWFIL:
ERRVEC(3) record number
ERRVEC(4) word number

Key of read/write convenient:
ERRVEC(2) no. of words

transferred

SEARCH:
ERRVEC(2) File type



The information acquired is:

 

DOS DOS/VM

1. low bound of DOS and buffers 1. 0
2- high boundof DOS 2. 0
3. count of started devices 3. max. possible device count

(from STARTUP command) 4. data word count of device 0
4. data word count of current 5. data word count of device 1

device

12) data word count of device 8

PRERR

 

Calling sequence is:

CALL PRERR

PRERR prints an error message on the users terminal.

Example of Use

A user wants to retain control on a request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the user
calls SEARCH and gets an alternate return. He then calls to GETERR and
determines if another type of error occurred other than NAME NOT POUND.
The user then wishes DOS or DOS/VM to print the error message, but to keep
control, he calls PRERR.

PRWEIL

Definition of PRWFIL
PRWFIL is used to read, write, and position a file open on a file wit.
Atypical call to PRWFIL will read into a user buffer N words from a
file open on Funit starting at the file pointer in the file. A user
may instead move the file pointer forward or backward relative to its
current position or move the file pointer to an absolute position in
the file. The two operations of reading and positioning or writing
and positioning may be combined in a Single call with position
occurring either before or after the read or write operation. Syntax:

MAN 1675 o-13



PRWFIL is used as in the following call:

CALL PRWFIL (KEY, FUNIT, PBUFFER, NWORDS, POSITION, ALTRIN)

KEY is composed of three subkeys that are combined additively. They

are RWKEY, POSKEY, and MODE. The POSKEY is only required on those
calls in which positioning is requested. Subkeys whose values are 0 may
be omitted from the call. The PRWFIL call may be represented as:

CALL PRWFIL (RWKEY+POSKEY+MODE ,FUNIT,PBUFFER, NWORDS, POSITION ,ALTRTN)

The RWKEY subkeys are shown in the following table,

RWKEY Octal Value Meaning

PREAD 1 read NWORDS from FUNIT into a buffer
whose address is in PBUFFER.

PWRITE 2 write NWORDS from a buffer whose
address is in PBUFFER to FUNIT.

The POSKEY subkeys are shown in the following table:

 

POSKEY Octal Value Meaning

PREREL 0 move the file pointer of FUNIT POSITION

words relative to the current position

before reading or writing.

POSREL 20 move the file pointer of FUNIT POSITION

words relative to the current position

after reading or writing.

PREABS 10 move the file pointer of FUNIT to an
absolute position specified by POSITION(1)

and POSITION(2) before reading or writing.

POSABS 30 move the file pointer of FUNIT to an

absolute position specified by POSITION (1)

and POSITION(2) after reading or writing.

5-14



The MODE

MODE

PCONV

subkeys are shown in the following table:

Octal Value Meaning

0 read or write NWORDS.

400 read or write a convenient number of
words. The number transferred is

NWORDS. See explanation below.

The meaning of the remaining parameters in a call to PRWFIL are as
follows:

FUNIT

PBUFFER

NWORDS

POSITION

ALTRIN

MAN 1675

a file unit number 1 to 16 (1 to 15 for DOS) on which a file
has been opened by a call to SEARCH or a command. PRWFIL
actions are performed on this file wit.

reading or writing is done beginning at the memory location
whose address is contained in PBUFFER. PBUFFER is therefore
a pointer to a user buffer or array used in reading or
writing. (Use the LOC function of FORTRAN to generate a
pointer, ) .

If the mode subkey is 0, NWORDS is the number of words

to be transferred to or from a file unit and a user buffer.

‘If NWORDS is 0, no words are transferred. ©

If the MODE subkey is PCONV, NWORDS is the maximum number of
words to be transferred. The number actually transferred is

a number between 1 and NWORDS thet is convenient and fast for

PRWFIL to transfer. If NWORDS is 0, no words are transferred.

The user can find how many words were transferred from ERRVEC (2).

For either mode, NWORDS may be between 0 and 65535.

If the POSKEY is PREREL or POSREL, POSITION is a single

signed integer word for relative positioning. Positioning
is forward and backward from the file pointer depending on

the sign of POSITION. If POSITION is 0, no positioning
is done.

If the key is PREABS or POSABS, POSITION is a two-word integer

array (record-number, word-number) for absolute positioning.

If POSITION is (0,0) (both values 0), the file pointer is
moved to the beginning of the file.

An integer variable assigned the value of a label in the user's

FORTRAN program to be used as an alternate return in case of

uncorrectable errors. If the argument is 0 or omitted, an
error message is printed and control returns to DOS or DOS/VM

if any error occurs while using PRWFIL.

5-15



If an error is encountered and control goes to ALTRTN, ERRVEC(1) is
set to the error type. This is a two-character code as follows:

 

 

Code Message Meaning

PD PRWFIL UNIT NOT OPEN bad key or file unit not open for
read/write.

PE PRWFIL EOF end of file reached on read or
position.

PG PRWFIL BOF beginning of file reached on read
or position.

DJ DISK FULL no room left on disk

A user obtains ERRVEC through a call to GETERR, which is described.
in this section. A user may wish to handle one type of error and have
the system type all other error messages and return to DOS or DOS/VWM.
The user can call PRERR to print the error message that would have been
printed without ALTRIN.

On a PRWFIL EOF or PRWFIL BOF error, ERRVEC(2) is set to the number of
words left to be transferred in the read or write requests. On all
normal returns from PRWFIL, ERRVEC(3) and ERRVEC(4) are set to the
file pointer of the file as a two-word array (recorda-number, word-nunber).
On a call with the PCONV subkey, ERRVEC(2) is set to the number of words
read,

On a DISK FULL error, the file pointer is set to the value it had at the
beginning of the call. The user may, therefore, delete another file and
restart the program by typing START. This feature only works with DOS/VM.

The positioning operation of PRWFIL is now discussed in more detail.
For every open file, the system maintains a file pointer of a file.
Because a file may contain more than 65,535 words, the largest unsigned
integer that can be represented in a 16-bit word, the file pointer
occupies two words. The method of representation chosen is two words,
the first of which is the record number and the second of which is a
word number. Each record contains 440 words of data, corresponding to
one disk record so the word number has a range of 0 to 439. The record
number has a range of 0 to 32767. When a file is opened by a call to
SEARCH, the file pointer is set so the next word read is the first
word of the file. The position pointer contains record 0, word 0, or
briefly (0,0). If the user calls PRWFIL to read 490 words and does no
positioning, at the end of the read operation the file pointer is
(record 1, word 50) or briefly (1,50). The user is cautioned that the
number of data words per record (440), although the same for all disk-
like devices in DOS, is not promised to be 440 for all times and
all devices. The user must call GINFO to determine the data record
size. The data record size is needed to convert a (record number,
word number) representation of the file pointer into one number
(possibly in floating point notation).

5-16



A call to read or write N words causes N words to be transferred to or
from the file starting at the file pointer in the file. Following a
call to transfer information, the file pointer is automatically moved
to the end of the data transferred in the file. Using a POSKEY of
PREABS or POSABS, the user may explicitly move the file pointer to
(record number, word number) before or after the data transfer operation.
Using a POSKEY of PREREL or POSREL, the user may explicitly move the file
pointer forward POSITION words from the current position, if POSITION
1s positive. Using a POSKEY of PREREL or POSREL, the user may move the
file point backward POSITION words from the current position, if
POSITION is negative. The maximum position that can be moved in the
call is therefore plus or minus 32767 words. Positioning takes place
before or after the data transfer, depending on the key. If NWORDS
is 0 in any of the calls to PRWFIL, no data transfer takes place, so
PRWFIL does only a pointer position operation. On normal returns from
PRWFIL, ERRVEC (3) and ERRVEC (4) contain the file pointer as
(record number, word number).

The MODE subkey of PRWFIL is now discussed. In most cases, the user
wants to transfer a specific number of words on a call to PRWFIL. In
these cases, the MODE is 0 and is normally omitted in PRWFIL calls. In
some cases, such as in a program to copy a file from one file directory
to another, a buffer of a certain size is set aside in memory to hold
information, and the file is transferred a buffer-full at a time. In
this case, the user doesn't care how many words are transferred at each
call to PRWFIL, as long as the number of words is less than the size
of the buffer set aside in memory.

In fact, the user would prefer to use a number of words convenient to
the system, so that his program runs as fast as possible. The PCONV
subkey is used for this purpose. In the call to PRWFIL; NWORDS, or less,
are transferred. The number of words transferred is a number convenient
to the system. The number of words actually transferred is put in
ERRVEC (2).

For an example of PRWFIL use in a program, refer to Appendix H.

MAN 1675 5-17



RECYCL

 

The RECYCL subroutine is called under DOS/VM to tell the system to
cycle to the next user. It is a ''I have nothing to do for now" call.
Under DOS, RECYCL does nothing. The calling sequence is:

CALL RECYCL

RESTOR

 

RESTOR has the same effect under program control as the RESTORE
command, The calling sequence is:

CALL RESTOR (Vect, Filename, Altrtn)

RESTOR performs the inverse of the SAVE operation. The SAVEd para-
meters for a Filename previously written to disk by SAVE are loaded
into the 9-word array VECT. The program itself is then loaded into
high-speed memory using the starting and ending address provided by
VECT (1) and VECT (2). |

If an error is encountered and control goes to Altrtn, ERRVEC(1) is
set to the error type as follows:

 

Code Message

SH Name NOT FOUND
SI UNIT IN USE
SI Name IN USE
SL NO UFD ATTACHED
SX NO RIGHT
PE PRWFIL EOF

RESUME

 

RESUME has the save effect under program control as the RESUME
command. The calling sequence is:

CALL RESUME (Filename)

RREC

Subroutine RREC reads one disk record from a disk into a buffer in
memory. RREC may optionally scatter the information recorded in the
disk record into one, two or three buffers. For instance, the first X
words of the record may be sent to buffer A, the next Y words of the
record may be sent to buffer B and the last Z words of the record may be
sent to buffer C. Before RREC is called, the disk must be assigned by
theTOS/VM ASSIGN command and D$INIT must be called to initialize the
isk.

9-18



The RREC routine is not used normally by users but is used by system
utilities such as FIXRAT, MAKE and COPY.

The calling sequence is:

_ where:

Bptrs

Blen

Ra

Pdisk

Altrtn

MAN 1675

CALL RREC (Bptrs, Blen, N, Ra, Pdisk, Altrtn)

is an array of dimension N giving a list of buffer pointers.

is an array of dimension N giving a list of buffer lengths
(number of words).

bits 9-16 contain the dimension of Bptrs and Blen (1, 2, or 3)
bit 1 set means do current record address check
bit 2 set means ignore checksum error
bit 3 set means read an entire track beginning Ra into a

buffer 3520 words long beginning at the buffer pointed to
by Bptrs (1). This feature may only be used if RREC is
running under DOS and is reading a driver connected to
the 4001/4002 controller.

is the disk record address. Legal addresses depend on the
Size of the disk.

 

Size Ra Range

Floppy disk 0-303
1.5M disk pack 0- 3247
3.0M disk pack 0-6495 -
30M disk pack 0-64959
128K fixed head disk 0-255
250K fixed head disk 0-511
512K fixed head disk 06-1623
1024K fixed head disk 0-2047

is the physical disk number of the disk to be read. Pdisk
numbers are the same numbers available for use in the
ASSIGN and STARTUP commands.

is an integer variable in the user's program to be used as
an alternate return in case of uncorrectable disk errors.
If this argument is 0 or omitted, an error message is
printed if any error occurs.



If an error is encountered and control goes to Altrtn, FRRVEC is set

 

as follows:

Code Message Mean ing

ERRVEC(1) = WB on supervisor terminal: 10 times disk hardware or
ERRVEC(2) = 0 DISK RD ERROR Pdisk Ra Status WRITE PROTECT error

on user terminal:
UNRECOVERED ERROR

ERRVEC(1) = WB on user terminal: 10 times current record
ERRVEC(2) = CR DISK RD ERROR Pdisk Ra Status address error

followed by
UNRECOVERED ERROR

See Appendix J for a description of status error codes.

Notes: The sum of the buffer lengths, Blen, must be between 0 and 448.
-If this number is not 448 and Pdisk is 20-27, (diskette) a
checksum error always is generated. This can be bypassed by
setting N bit 2 = 1 to ignore the checksum error. No check is
made for legality of Ra.

On a DISK NOT READY, RREC simply waits for the disk to become
ready under DOS/VM and prints no message. Under DOS, RREC
prints a single error message and waits for the disk to become
ready.

On any other read error, an error message is printed at the
system terminal followed by a seek to cylinder zero and a reread
of the record. If 10 errors occur, the message UNRECOVERED
ERROR is typed to the user or Altrtn is taken.

The parameters Bptrs and Blen allow scatter-gather operation for up to
three of the physical records.

5-20



SAVE

SAVE has the same effect under program control as the SAVE command.
The calling sequence is:

CALL SAVE (Vect, Filename)

The user sets up a nine-word vector VECT before calling SAVE. VECT(1)
must be set to an integer which is the first location in memory to be
saved and VECT(2) must be set to the last location to be saved. The
rest of the vector may be set up at the programmer's option.

Location
VECT(3) P Register |

VECT(4) A Register 1

VECT(5) B Register 2

VECT(6) X Register 0

VECT(7) Keys --

VECT(8) Spare --

VECT(9) Spare --

SAVE writes, to the named disk file, the nine-word vector VECT
followed by the memory image starting at VECT(1) and ending at VECT(2).

 

For some program examples that show the use of SEARCH, refer to
Appendix H.

Definitionof SEARCH
 

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit; PRWFIL and other routines may be called, either
to position the current-position pointer of a file unit (file pointer)
or to transfer information to or from the file (using the file unit te
reference the file).

On opening a file, SEARCH specifies allowable operations that may be

performed by PRWFIL, and other routines. These operations
are read only, write only or both read and write,

MAN 1675 2-21



On opening a file, SEARCH also specifies where to look for the file or
where to add the file, if the file does not already exist, and also
SEARCH specifies the file is to be opened for writing or both reading
and writing. SEARCH either specifies a filename in the currently
attached user file directory or a file unit number on which a segment
directory is open. In the segment directory reference, the file to be
opened or closed is the one whose beginning disk address is given by the
word at the current position pointer of the file unit.

On creating a new file, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to perform actions other than opening
and closing a file. SEARCH may delete a file, rewind a file unit, or
truncate a file.

Upon opening a file, SEARCH sets the file pointer to the beginning
of the file. Subroutines PRWFIL, and others cause information
be transferred to or from the file unit starting at the file pointer
of the file. After the transfer, the pointer is moved past the data
transferred. A call to SEARCH to rewind a file causes the file
pointer to be set to the beginning of the file. Subsequent calls to
PRWFIL, and other routines cause information transfer to occur as if the
file had just been opened. A call to SEARCH to truncate a file causes
all information beyond the file pointer to be removed from the file.
This call is useful if one is overwriting a file with less information
than originally contained within the file,

Syntax:

SEARCH is used as in the following call:
, Ace)

CALL SEARCH (KEY, NAME, FUNIT, ALTRIN)
KEY is composed of three subkeys that are combined additively. They
are ACTION, REFERENCE and NEWFILE. Not all subkeys are required on
every call, and subkeys whose values are zero may be omitted from the
call. The SEARCH call may therefore be represented as:

CALL SEARCH (ACTION+REFERENCE+NEWFILE, NAME,FUNIT, ALTRTN)

5-22



All calls require an ACTION subkey.
the following table:

 

The ACTION subkeys are shown in

ACTION Octal Value Meaning

OPNRED 1 open NAME for reading on FUNIT
OPNWRT 2 open NAME for writing on FUNIT
OPNBTH 3 open NAME for both reading and writing

on FUNIT
CLOSE 4 close file by NAME or by FUNIT
DELETE . § delete file NAME
REWIND 7 rewind file on FUNIT
TRNCAT 10 truncate file on FUNIT

The REFERENCE subkeys are shown in the following table:

REFERENCE Octal Value Meaning

UFDREF | 0 search for file NAME in the current
user file directory as defined by a
previous ATTACH and perform the action
in the ACTION subkey on the specified file.

SEGREF 100 perform the action specified in the ACTION
subkey on the file whose disk location .
is given by the word indicated by the file
pointer of the file unit specified by
NAME(1). This file unit must be an open
segment directory.

 

Only those calls to SEARCH that reference a file in a UFD or Segment
Directory need the reference key. Calls that reference file units
do not need this key, and it is ignored.

The following table lists the NEWFIL subkeys:

 

NEWFIL Octal Value Meaning

NTFILE 0 new threaded (SAM) file
NDFILE 2000 new directed (DAM) file
NTSEG 4000 new threaded (SAM) segment directory
NDSEG 6000 new directed (DAM) segment directory
NEWUFD 10000 new user file directory (SAM)

Only those calls to SEARCH that generate a new file require a NEWFIL
subkey. On other calls, this subkey is ignored.

MAN 1675 5-24



The name of the remaining parameters in a call to SEARCH are as
follows:

NAME If the reference subkey is UFDREF, NAME is either a six
character Hollerith expressionor the name of a three-word
array that specifies a filename (existing or not).

If the reference subkey is UFDREF and NAME(1) is -1, the
current UFD is opened. NAME = -1 must only be used in
configuration with ACTION subkeys 1, 2, or 3. Owner status

of the current UFD is required,

If the reference subkey is SEGREF, NAME is a file unit
(1-16; 1-15 under DOS) on which a segment directory is open.

On calls in which the ACTION key requires only a file unit to
specify the file to be acted-on, NAME is ignored and is usually
specified as 1. If -1-is specified, then name is the current
UFD.

FUNIT On calls that require a file unit number, FUNIT is a number
1 to 16 (1-15 under DOS). On calls that require no unit nunber,
FUNIT is ignored and usually specified as 0.

ALTRTN ALTRTN is an integer variable assigned the value of a label in
the user's FORTRAN program to be used as an alternate return
in case of uncorrectable errors (e.g., attempting to open a
file that is already open). If this argument is 0 or omitted,

an error message is printed; and control returns to DOS or
DOS/VM, if any error should occur while using SEARCH.

If an error is encountered and control goes to ALTRIN, ERRVEC (1)
is set to the error type, a two-character code as follows:

 

Code Message Meaning

SA BAD CALL TO SEARCH some parameter in call is invalid.
SD UNIT NOT OPEN attempt to truncate or rewind

a file on a closed unit.

oD Name OPEN ON DELETE self-explanatory,
SH Name NOT FOUND file Name not in UMD.
SI Name IN USE file Name is already open.
SI UNIT IN USE file unit is already open.
SK UFD FULL self-explanatory. |
SL NO UFD ATTACHED self-explanatory.
SQ SEG-DIR ERROR * SEG-DIR ERROR
SX NO RIGHT access rights violation.
DJ DISK FULL no room left on disk.

5-24



*SEG-DIR ERROR: Meaning

1. If attempting to open an existing file in the
segment directory means:

a. the segment directory unit specified in NAME
is not open for reading.

b. the file pointer of the segment directory unit
is at end of file, therefore points to no disk
address.

c. the file pointer of the segment directory unit
points to a 0 entry.

2. If attempting to open a new file in the current
segment directory means:

The segment directory wit specified in NAME is
not open for both reading and writing.

A user obtains ERRVEC through a call to GETERR, which is described in
this section. Any of the above errors cause a control to go to ALTRIN.
A user may wish to handle one type of error and have the system type
all other error messages and return to DOS or DOS/VM. The user cancall
PRERR to print the error message that would have been printed without
ATT ]
PULL AINLIN,

ERRVEC (2) is set to a file type on a normal return of a call to SEARCH
to open a file, using action keys of OPNRED, OPNWRT, or OPNBTH. The
codes are:

ERRVEC(2) File Type

0 threaded file (SAM)
1 directed file (DAM)
2 threaded segment directory (SAM)
3 directed segment directory (DAM)
4 user file directory (SAM)

MAN 1675 5-25



Access Rights and Call to SEARCH

Under DOS/VM, the access rights of files are checked when a user
attempts to open a file through a call to SEARCH. Under DOS, access
rights are not checked.

A SEARCH call that creates a new file gives that file default access
rights. Default access rights are: owner has all rights; non owner has
no rights (Refer to Section 4 for a detailed description of access).

Adding and DeletingFiles

The action of SEARCH in adding or deleting files from file directories
is now explained in more detail. For references to user file
directories, a call to SEARCH to open a file for writing or both reading
and writing causes SEARCH to look in the current User File Directory
for the file. If the file is not found in the UFD, the file name
and beginning disk address of a new file is appended to the UFD, and
the file is opened for the appropriate activity. Currently, UFDs are
restricted to 72 files. An attempt to open a new file to a full UFD
generates the message: UFD FULL. A call to delete a file from a UFD
causes the name and beginning disk address to be removed from the UFD
and causes the UFD to be shortened.

For references to segment directories, a call to SEARCH to open a file
for writing or reading and writing causes SEARCH to examine the word
at the file pointer of the referenced segment directory file unit.
If the word is not zero, SEARCH considers the word to be a beginning
record address of an already created file. SEARCH opens the file for
writing or reading and writing. If the word is zero, SEARCH writes the
beginning disk address of a new file in that word and opens the file.
If the file pointer is positioned at the end of file, the file is
lengthened one word and SEARCH writes the beginning disk address of a
new file in that word, and opens the file. A call to delete a file
from a segment directory causes the beginning disk address of a file
at the file pointer of the segment directory to be replaced by zero.
The segment directory is not shortened. An attempt to open a file for
reading in a segment directory whose file pointer points to zero or
whose file pointer is at end-of-file, generates a SEG-DIR error. In
no case is the file pointer of a segment directory moved. Generating a
segment directory and filling it with files is quite involved. Examples
are presented in Appendix H under the title ''Example'' and in Appendix C.

5-26



 

Ow oa aldo «££, ~tTAH~»%Uii @ Cail to Close a file, SEARCH attempts to close file NAME and
generates an error message or goes to the alternate return if NAME is
found. FUNIT is ignored unless NAME is 0. If NAME is 0, SEARCH
ensures that FUNIT is closed. That is, it closes FUNIT if PUNIT isaw y i

open but does not generate an error message if the file unit is
closed. Example:

CALL SEARCH (1, ‘OBJECT’, 1, ERR)

Searches for a file, OBJECT, in the current UFDand opens it for
reading.

The user is allowed to open the current UFD for reading via a call to
SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -1, Funit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; 1.e., the owner password must have
been given in the most recent call to ATTACH (or ATTACH command).
Control goes to Altrtn if there is no UFD attached, if Funit is already
in use, or the user does not have owner rights to the UFD.

TLIN

The calling sequence is:

CALL TIIN (Char)

T1IN reads a character from the terminal into Char, and echoes CARRIAGE
RETURNS for LINE FEEDS, (Also, LINE FEED is returned if CARRIAGE RETURN
is typed.)

T10U

The calling sequence is:

CALL T1OU (Char)

TLOU types out Char. If Char is LF, both CR and LF are typed.

TNOU

The calling sequence is:

CALL TNOU (Array, Nchars)

TNOU prints Nchars characters from Array and adds CARRIAGE RETURN
and LINE FEED characters at the end of Nchars.

MAN !675 5-27



TNOUA

 

The calling sequence is:

CALL TNOUA (Array, Nchars)

TNOUA prints Nchars characters from Array but does not add a
CARRIAGE RETURN and a LINE FEED.

TOOCT

 

The calling sequence is:

CALL TOOCT (Number)

TOOCT types the ASCII representation of Number converted to octal as
an unsigned six-digit number.

TIMDAT

 

The calling sequence is:

CALL TIMDAT (Array, Num)

TIMDAT may be called to pick up additional useful information, namely
the user's unique number on the system and his login UFD name. The
information is obtained by increasing the Array size and Num before
calling TIMDAT.

TIMDAT returns the date, time, CPU time, and paging time used since

LOGIN in an array as follows:

Array (1) two ASCII characters representing month.
(2) two ASCII characters representing day. Example: 30

(3) one ASCII characters representing year. Example: 4

(4) integer time minutes.

(5S) integer time seconds.
(6) integer time ticks.
(7) integer CPU time used, seconds.
(8) integer CPU time used, ticks.
(9) integer paging time used, seconds.

(10) integer paging time used, ticks.
(11) integer number of ticks per second.
(12) user number.
(13) -_ .

y (14) six-character login name, left justified. Example: MSMITH

(15)
 

Num words of Array are set. This routine only runs under DOS/VM.

5-28



T$CMPC

The calling sequence is:

CALL T$CMPC (Unit, Buffer-Address, Word-Count, Instruction, Status-Vector)

The T$CMPC routine is the raw data mover that moves a card of information
from the MPC card reader to the user's space.

T$CMPC is called by the IOCS card reader driver I$AC03. The user
normally reads cards under program control using either a FORTRAN READ
statement or a call to I$ACO03 (Refer to the Subroutine Library Manual).
However, it is possible to call T$CMPC directly. The arguments to
T$CMPC are:

MAN 1675

Unit

Buffer-Address

Word- Count

Instruction

Status-Word

Card reader number. (Currently ignored.
Generally only one card reader is connected
to a DOS (DOS/VM) configuration).

A pointer to a buffer to hold a card of
information read from the card reader.

The number of words to be read
from the current card.

The instruction required to be sent to the
card reader. Valid instructions are:

Instruction Meaning

100000 (octal)

40000 (octal)
read status
read card in ASCII
format
read card in BINARY
format

60000 (octal)

is a three-word vector that contains device
code, status of reader, and number of words
transferred. Possible status of the card
reader is as follows:

Octal Value : Condition

200 ON-LINE
- 40 Illegal ASCII
20 DAX overrun
4 Hopper Empty
2 Motion Check
1 Read Check

5-29



Example:

40 DO I = 1, 23

50 CALL T$MPC (0, CARDS, 40, 40000, STATUS)

60 CALL 0O$....

GO to 40

Reads an 80 character card of ASCII data and places the contents
in CARDS.

Card Reading Operation
 

Under DOS/VM, card reader input is buffered. The user must insert the
card deck in the card reader, then give the command:

ASSIGN CRI

About ten cards are read, enough to fill up the input buffer. The user
then starts up the program that usesthe card reader. If T$CMPC is
called and the buffer is empty, the user is placed in INPUT-WAIT
State. Later, when the buffer is no longer empty, the user is
rescheduled by the operating system and the call to T$CMPC is
retried.

The user may issue a status-request call to check if the input buffer
is empty. If the buffer is empty, the ON-LINE status is not set.
Using this feature, a user may check for input, then read a card if
one is available, or do another computation if no card is available.

Under DOS, card reader input is not buffered; and the card reader is
never OFF-LINE.

T$LMPC

The calling sequence is:

CALL T$LMPC (Unit, Buffer-Address, Word-Count, Instruction, Status-Vector)

The T$LMPC routine is the raw data mover that moves information from
the user to one line on the MPC line printer.

T$LMPC is called by the IOCS line printer driver O$AL06. The user
normally prints lines under program control using either a FORTRAN
WRITE statement or a call to O$AL06. However, it is possible to call
T$LMPC directly. The arguments are:



Buffer-Address

Word-Count

Instruction °

Status-Vector

A pointer to a buffer to hold information
to be printed on the line printer. Inforn-
ation is expected to be packed two characters
per word.

Number of words to print on the current line.

The instruction required to be sent to the
line printer. Valid instructions are:

 

Instruction (Octal) Meaning

100000 Read Status
40000 Print a line
20012 Skip a line
20014 Skip to top of page
Z200XX Skip on control tape

channel

is a three-word vector that contains device
code, status of printer, and a space.
Possible printer status is as follows:

Octal Value Condition

200 ON-LINE
100 Not Busy

Under DOS/VM, line printer output is buffered. If T$IMPC is called
and the buffer is full, the user is placed in OUTPUT-WAIT state.
Later, when the buffer is no longer full; the user is rescheduled,
and the T$LMPC call is retried. The user may issue a status request
call to check if the buffer is full.
the Not-Busy status is reset.

If the buffer is full, then
Using this feature, a user programeweeS ee uM

may check that the buffer is not full, then output a line, or do
another computation if the buffer is full.

Under DOS, output is not buffered, and control does not return to the

user until printing is complete.

T$MP

The calling sequence is:

CALL T$MI (Unit, Buffer-Address, Word-Count, Instruction, Status-Vector)

The T$MI routine is the raw data mover that moves a record of information
from one of four magnetic tape drives to the user address space, or
vice-versa. T$MT is called by the IOCS routines concerned with control-
ling, reading and writing both seven- and nine-track magnetic tapes.

MAN 1679 5-31



(For details, refer to the Subroutine Library Manual and/or the
Magnetic Tape Controller User Guide). The user normally controls,
reads, and writes magnetic tape under program control using either
FORTRAN READ, WRITE, REWIND, and END FILE statements or calls to
the appropriate IOCS driver. However, it is possible to call T$MI
directly. The arguments are:

Unit Magnetic Tape Drive (=0, 1, 2, or 3)

Buffer-Address’ A pointer to a buffer from which to read or
write a record of information.

Word- Count Number of words to transfer. This number must
be between 0 and 512 words.

Instruction The instruction request to the magnetic tape
driver.

Magnetic tape I/O is not buffered under DOS/VM. A call to T$MT
returns immediately before the operation is complete. When the
magnetic tape operation is completed, the Status Flag in the user
space is set to 0. Therefore, a user program may loop waiting for
completion and do another computation while waiting. If a user initiates
another call to T$MI before the first call has completed its magnetic
tape operation, the second call does not return to the user until the
first magnetic tape operation has completed.

Under DOS, T$MI does not return to the user until the magnetic tape
operation is completed.

T$SLC

The driver T$SLC is available on the master disk and provides user
control of a synchronous multi-line communications device.

Control

The driver is loaded in supervisor space. A user program communicates
with the driver via FORTRAN-format calls to T$SLCO0. The driver
communicates with the user address space via buff-rs in the user
address space specified by the user program. There is a data structure
provided by the user that is used by the driver. It is referred to as
the control block. The control block is created by the user program
in the user address space. It contains pointers to the user status
buffer and pointers to buffers containing a message to be transmitted
or buffers set to receive a message. The details of the data structure
are sumamrized in the subsequent paragraphs. A special control block is
required for each line.



The communications lines must be assigned to a user space before they
can be used. The proper command is:

0
1

ASSIGN SMLC 2
3

The ASSIGN command is given at the user terminal. One or more lines
may be assigned to a user space.

Timing

The user space program runs asynchronously with message transfers.
A call to T$SLCO returns immediately after executing the control
function required. The progress of the commmication must be
monitored by the user program by examination of the user space
status buffer contents. For interpretation of the status codes, see
the Prime Computer User Guide for Synchronous Multiline Controller
(UG-0001 Rev. 2). |

Hardware Requirements
 

The SMLC driver assumes the presence of a 520X synchrous multi-line
controller with a 5246 SMLC opticn The address of the controllerCOnNCTOLii€ey With a Su Wi UPLiUil. iO GUULCSS VE Fi GUILTULL

1s 56g.

Software Requirements
 

DOS/VM: File TSSLC in UFD DVBIN on Master Disk Vol. I is a DOS/VM
executable memory image file with the synchronous-line controller
option. It can be created by file C+LSLC (see UFD DVSRC on Master
Disk Vol. II). In particular, file TMAIN (UFD DVSRC) must be
assembled with the B-register set to 200049 and the modules that
comprise T$SLCO (refer to the SMLC User Guide) must be locked
in memory.

There is a memory conflict among special drivers: the same memory
and table entries are used by T$SLCO, the Gould printer/plotter code,
and the digital input/output controller code.

User Level Software Responsibilities: A user address space program is
given direct control of most of the functionality of the SMLC controller;
therefore, the prospective user is assumed to know the User Guide.
A specific limitation is that no more than four message blocks may be
chained at a time in a given direction (transmit or receive) for a
given line.

 

MAN 1675 5-33



Controller status is collected as it is produced. This status is moved
from interrupt response code buffers in the supervisor address space to
user-space buffers at the next possible DOS/VM cycle (after any
currently executing and interrupted supervisor code). However, the
user bus/program does not get a chance to execute and act on the
reported status until its turn in the round-robin cycle. If system
usage is heavy enough, there will be excessive delay in line respcnse
by the user-level program.

All details of implementation of a commmications protocol are left to
the user program with one exception: the driver program automatically
disables an active transmitter when the LAST CHARACTER OUT status is
detected for that line.

Information that is provided the user program in the user program's
status buffer consists of all status words received from the controller
plus two special codes. One is a code indicating the time at which
the LAST CHARACTER OUT (LCT) status was detected by the driver
interrupt code. This time is always inserted following a LAST
CHARACTER OUT status word in the status data stream. The time is taken
from VCLOK,. The value can be related to the (seconds, tics) time
value obtained from a call to TIMDAT as follows:

LCT time (sec) = floor [(status time - vqutm,)/clock]
LCT time (tics} = remainder [LCT time (sec) ]

where: vqutmg = -60 clock
clock = buf (11) of call to TIMDAT

The status time is given modulo ("one minute")

The other status code indicates that the stream of contrcller status
data has overflowed either an internal supervisor buffer or the user
program status buffer. If this is detected, status information has
been lost. The status buffer overflow code is the integer -1
(supervisor buffer) or -2 (user buffer).

User Calls to the SMLC
 

The form ofthe user call to the supervisor is (in FORTRAN):

CALL TSSLCO (Key, Line, Loc (Block), Nwds)

where: 1 < Key « 5;

0 < Line ¢ 3;

Loc (Block) is the memory address of a buffer
used in the call;

Nwds is the word count of Block.

5-34



E :

User control block is undefined. Status information is
no longer moved to user program space. The state of
controller is not altered. Requires two arguments
(key, line). ~

Control block is defined to be '"block''. The block is
structured as in Table 5-1. It defines an area to store
status information and, optionally, a message chain for
reception or transmission.

Buffer Block contains four or five data words to be sent
to the controller. These control words configure the
line, set line control, define the programmable sync
character and optionally set the internal programmable
character-time clock. Refer to Table 5-1 for the block
structure.

Buffer Block contains one word to be used as the next data
set control word. See "OTA 01XX" in the SMLC User Guide.

Buffer Block contains one word which is used as the next
receive/transmit enable word. See "OTA 14XX"' in the
MLC User Guide. Half-duplex looping for odd-even line

pairs is not allowed.

Table 5-1. Structure of SMLC Hardware Configuring Block

 

Meaning
 

 

Receiver line configuration word. See "OTA 00XX" in the
SMLC User Guide.

Transmitter line configuration word. See "OTA 0OXX" in the

SMLC User Guide.

Line Control Word. See "OTA 02XX'' in the SMLC User Guide.

Synchronizing characters. See "OTA 03XX" in the SMLC
User Guide.

Clock control constant. This word is optional. Note that
this word controls the clock rate for all lines on the
controller. See "OTA 17XX'' in the SMLC User Guide. 
 

MAN 1675 5-35

 



UPDATE

The calling sequence is:

CALL UPDATE (Key 1, 0)

The possible value for Key is:

Value Meaning

] Update CUFD (current UFD); DSKRAT
buffers to disk, if necessary; and
undefine RAT in memory.

WREC

Subroutine WREC writes the disk record to a disk from a buffer in
memory. The arguments and rules of the WREC call are identical to those
of RREC except for bits 1 and 2 of N which have no meaning on write.
For a call to write a record on the diskette, the buffer length Blen
must be 448 words.

The calling sequence is:

CALL WREC (Bptrs, Blen, N, Ra, Altrtn)

The meaning of the parameters is the same as described under RREC
in this section, except that the function of the command is to write
the specified records instead of to read them. Like RREC, WREC is
available only under DOS/VM. The user is cautioned that indiscriminate
use of WREC could cause destruction of the operating system.

An attempt to write on a write protected disk generates the message:

DISK WI ERROR Pdisk Ra Status
WRITE PROTECT

on the supervisor terminal and the message UNRECOVERED ERROR at the
user terminal; ERRVEC(1) will contain error code WB, unless Altrtn is
taken. Other write errors are retried ten times similar to read

errors (Refer to RREC).



SECTION 6

DOS/VM - OVERVIEW AND STARTUP

DOS/VM SYSTEM OVERVIEW

DOS/VM achieves a sharing of the computer resources among a commmity
of up to31 simultaneous users and in addition, provides each user
with a virtual memory environment.

The resources shared are the central processor, high-speed memory, the
file system, and the peripheral devices. Each user is provided with a
terminal to interact with DOS/VM. Each user is provided with a 64K
word virtual memory space. Any user can access files on disks using the
same commands and system subroutines that are available when running
under DOS. Other peripheral devices, such as the paper tape reader,
may be used in the same manner as they are used under DOS, provided they
are first assigned to the user, using the ASSIGN command. Under DOS/VM,
users are protected from interfering with each other, and user
privacy is assured. No user can peek into another ‘user's memory to
find out what the other user is doing, and no user can alter another
user's memory. Under both DOS and DOS/VM, disk files are protected
by passwords on file directories.

Sharing Files

Sharing of files is possible under DOS/VM. Two or more users
may be attached to the same UFD at the same time. Furthermore, two or
more users may have the same file open for reading, and thus may be
reading the same file at the same time. File interlocks are provided,
as under DOS, to prevent one user from reading the file while another
is writing. This interlock may be modified by the DOS/WM system
configurator.

MAN 1676 o-4



File Access Protection
 

Under DOS/VM, a user (hereafter called the owner) has the ability to
open his file directories to other users giving restricted access
rights. The owner of a file directory can declare the access rights
that nonowner users have over each file. File access protection is
not available under DOS.

The declaration of access can be made on a per-file basis, thus the
owner has a degree of flexibility in the manner that file access is
specified. Access rights are separated into three categories.

Read Access (includes execute access)

Write Access (includes overwrite access and append
access)

Delete/Truncate access

The access rights to a file are declared and specified through the
PASSWD and PROTECT commands. (Refer to Section 4).

The owner of a UFD can establish two passwords for access to any file

in the UFD. An owner password is required by the owner to obtain

owner privileges, and a nonowner password (if any) is required to

obtain nonowner priveleges.

The PROTECT command replaces the existing protection keys on a file.

It is used by an owner to specify the access rights to be given
other users of a specific file.

Bypassing Bad Memory
 

DOS/VM includes features to heip Field Service or users to detect and

bypass bad memory chips. These features are categorized as follows:

. On a START, DOS/VM performs a simple data and parity check of all

memory locations above 32K.

. If memory chips are known to be bad, DOS/VM can be modified (and
SAVEd) so as not to use these bad pages (chips).

. If the system crashes while running, a self-contained routine can

be started that tests all available memory to locate any memory

call that contains incorrect parity.



When any user of the system LOGS IN or LOGS OUT, the program LOGIN in
CMDNCO is RESUMEd if it exists. This program may be custom-written by
a given installation to perform special LOGIN/LOGOUT functions such as
accounting or restricting system access.

The program is RESUMEd with BREAK inhibited so as to prevent the user’
from exiting LOGIN via Control-P or BREAK. The LOGIN programperforms -*
a CALL BREAK$ (.FALSE.) before exiting.

The command line that called LOGIN is available via CMREAD.

Accounting information is available via TIMDAT.

The LOGIN program exits via CALL EXIT and must not encounter any
uncontrolled errors that result in EXIT being bypassed.

Inactivity Timeout
 

Users logged in at a terminal but inactive are automatically logged
out after N inactive minutes, where N is a system configuration
parameter. A user is considered inactive if the terminal is waiting
for a DOS/VM command or a user program is waiting for terminal input
or card reader input. The default is 1000 minutes, which effectively
disables this feature. )

DOS/VM SYSTEM CONFIGURATION

Upon obtaining a master disk from Prime, the system configurator (user)
must install a DOS/VM for his installation into CMDNCO. DOS/VM supports
1 to 31 users and a variety of peripheral devices except the SMLC.
DOS/VM is delivered as a run file in the UFD, DVBIN, called TSAMLC.
This version supports a system containing a System Option Controller or
Option A Controller, and one or two 8 or 16 line asynchronous multi-
line controllers. The rum file (TSAMLC) determines what controllers
are connected to the machine and configures itself accordingly. The
user may configure the followingcombinations:

 

AMLC Hardware Paging Device Required No. of Terminal Users

One 8 line AMLC 512K fixed head disk | 5
One 8 line AMLC 1.5M platter 7

One 16 line AMLC 1.5M platter 11

One 16 line AMLC 3.0M platter or partition 15

One 16 line and 3.0M platter or partition 23
one 8 line AMLC

Two 16 line AMLCs 3.0M platter and 1.5M platter 31
or two 3.0M platters

MAN 1675
6-3



All AMLC lines are set to run at 1200 baud. System configurators who
wish to set lines for other speeds should see the discussion of ‘Changing

Configuration Table.
TSAMLC.

The file, DOS/VM, in the UFD CMDNCO is a copy of

Systems without an AMLC use the serial interface to connect to user

terminals. These systems require the system configurator to copy

file TS330 from UFD DVBIN on the master disk to CMDNCO and rename it

DOS/VM. 1S330 supports 1 to 4 user terminals running at 110 baud.*

It requires a 330 cycle clock. TS300 in UFD DVBIN supports 1 to 4 user

terminals running at 300 baud for output and 75 baud for input. It

requires a 300 cycle clock. A 1.5M platter is required for paging.

TSSMLC in UFD DVBIN is the same as DOS/VM but it also supports the

SMLC controller.

The system configurator may wish to limit all users to a 32K address

space to run more users with less disk space allocated for paging.

This is especially true for those installations that use a fixed head

To configure DOS/VM for 32K address space per user,disk for paging.
do the following:

1. Run command file CMKM32 using the COMINPUT command un UFD DVBIN.

This command file generates the page maps for DOS/VM for 32K

per user as a file called PAGMAP.

2. Incorporate the custom file PAGMAP into DOS/VM by doing the

following:

User:

Response:

User:

Response:

User:

Response:

User:

Response:

User:

Response:

User:

Response:

User:

Response:

RESTOR TSAMLC

OK

RESTOR PAGMAP

OK

SAVE DOS/VM 60 64777

OK

FUTIL

TO CMDNCO

>

COPY DOS/VM

>

QUIT

OK

6-4

1000



The version of DOS/VM requires disk space for paging as follows:

 

AMLC Hardware Paging Device No. of Users

One 8 line AMLC 256K fixed head disk 5

One 8 line AMLC 512K fixed head disk ° 6 #£

One 8 line AMLC 1.5M Platter 7

One 16 line AMLC 1.5M Platter 15

One 16 line AMLC 512K fixed head disk 13

One 16 line AMLC 1.5M Platter 21
and one 8 line AMLC

Two 16 line AMLC 3.0M Platter 31

A system configurator may wish to custom-modify the DOS/VM page maps
to:

. run some users with 64K address space and other users with 32K
address space,

. run some users on the fixed head disk and others on a moving
head disk.

TT wn tach +h + + madiTo accomplish this, the system configurator must modify the squrce
programs MAKM64 or MAKM32 found in UFD DVBIN to generate the appropriate
page maps. These programs generate page maps based on a table at the
beginning of the program. The page maps are generated as file PAGMAP
by running the command files CMKM64 or CMKM32 and incorporating these
maps into DOS/VM as described above.

The system configurator may wish to use part of a disk surface for
paging and the rest for the file system.

On a normal disk, the file system uses space from 0 to NRECS, where
NRECS is the number of 448 word records that may be written on the disk.
On a split disk, NRECS must be specified as something less than the
maximum and the remainder of the disk space is used for paging. This
1s shown by the following diagram:

6496 for 3.0M
 

   

 

 

. platter

Normal disk 9 File System NRECS

6496
Split disk NRECS PAGES

0 File System Paging   

MAN 1675 6-5



The amount of paging space required is calculated as follows:

Paging space on the moving head disk is 256 records per user (64K
address space) plus 352 records for the supervisor.

Paging space on the fixed head disk is 128 records per user (64K
address space) plus 176 records for the supervisor.

For an n-user DOS/VM configuration, where n is the number of users,
the amount of paging space needed is:

PAGES = 256 X n + 352 records on MHD

PAGES = 128 X n + 176 records on FHD

Example:

For a 6 user system on a moving head disk: PAGES = 256X6+352=2488 and
NRECS = 6496-2488=2008. This assumes the disk is one platter of a
6.0M disk drive.

To make a split disk, mount a scratch pack on the drive and do the
following:

User: MAKE

Response: PHYSICAL DEVICE =

User: Type number of Physical Device

Response: RECORD SIZE

User: (Carriage Return)

Response: RECORDS

User: 3720 (=2008)9)

Response: DEVICE NUM RECORD COUNT

PARAMETERS OK?

User: YES

Response: VIRGIN DISK?

User YES

Response: VERIFY DISK

User YES

Response: DISK CREATED (after a while)

6-6



The system configurator must then copy the BOOT into the MFD, use the
UFDCPY feature of FUTIL to copy the UFD's: CMDNCO and DOS from the
master disk.

NOTE

The split disk must be used as the command
_ device under DOS/VM.

Refer to the sideheads CONFIG and STARTUP in the following paragraphs:

Many systems are shipped with just one disk - a 30M word disk. It is
suggested that the user does not run the 30Mword disk as a split disk.
When a disk is shipped, it is partitioned into two subdisks; a 3.0M
disk partition number 250 with the rest of the disk blank. The system
configurator should make a 3.0M word partition for paging if DOS/VM is
for 23 or fewer users or two 3.0M word partitions if DOS/VM is for
24 or more users. The system configurator does this using the command
MAKE, to make physical device 10250, for example. The rest of the
disk must then be made as 1 or more partitions. .If it is made as one
partition, the disk number would be 24250.

Tables 6-1 and 6-2 provide a guide to disk addresses for system
configurators. They show disk space required for the supervisor and
up to 31 users on both 32K and 64K configurations.

CHANGING CONFIGURATION TABLE

The baud rate for the AMLC configuration can be changed easily by
modifying the line configuration table for lines 0-6. The line
configuration table is identified by a conment in the DOS/VM source
program, its location is currently '55044. The values that may be
specified are: an DUP

2.033 B® 19ssss WS Sst AP

110 baud: XX0033 yoods S% Furr OUP
300 baud: —_xx0213 219 ooo

1200 baud: XX0313 43\% Ce
—n

(7  k

~
lMAN 16075 6-



User

Table 6-1.

MHD Disk Addresses
 

Supervisor

limit 1.5M platter
= 3248

0-351
352-479
480-607
608-735
736-863
814-991
992-1119
1120-1247
1248-1375
1376-1503
1504-1631
1632-1759
1760-1887
1888-2015
2016-2143
2144-2271
2272-2399
2400-2527
2528-2655
2656-2783
2784-2911
2912-3039
3040-3167

3168-3295
3296 - 3423
3424-3551
3552-3779
3780-3907
3908-4035
4036-4163
4164-4291
4292-4419
4420-4547

6-8

Disk Space Required for 32K Per User

FHD Disk Addresses
 

limit 256K disk=512

0-175
176-239
240- 303
304 - 367
368-431
432-495
496-559
560-623
624-687
688-751
752-815
816-879
880-943

limit 512K disk=1024 944-1007
1008-1072



Table 6-2. Disk Space Required for 64K Per User

 
 
 

User MHD Disk Addresses FHD Disk Addresses

Supervisor 0-351 0-175
1 352-607 176-303

608-863 limit 256K 304-431
3 864-1119 432-559
4 1120-1375 560-687
5 1376-1631 limit 512K 688-815
6 1632-1887 816-1044
7 1888-2143
8 2144-2399
9 2400-2655

10 2656-2911
11 limit 1.5M platter 2912-3167

= 3245
12 3168-3423
13 3474-3779
14 3780-4035
15 4036-4291
16 4292-4547
17 4548-4803
18 4804-5059
19 5060-5315
20 5316-5571
21 5572-5827
22 5828-6083
23 limit 3.0M platter 6084-633

= 4956 Dare 4 Lt
24 -255  pagedev 2
25 256-511 "
26 512-767 "
27 768-1023 "
28 1024-1279 "
29 1280-1535 "
30 1536-1791 "
31 . 1792-2047 "

MAN 1675 6-9



DOS/VM SYSTEM INITIALIZATION

Once the system configurator has installed and appropriately modified
DOS/VM in CMDNCO as explained in the preceding paragraphs, DOS/VM is
started from DOS by the system operator at the beginning of each day.

The steps to get DOS/VM running are:

1. Turn on machine: and disks, and bootload DOS as explained in
Section 3. :

2. STARTUP Command-Disk-Number

3. ATTACH CMDNCO

4, DOSVM

Response is:

DOSVM REV X.X

XX.X K MEMORY IN USE

PLEASE ENTER CONFIG AND DATE

At this point, DOS/VM is running. The operator must give SETIME,

CONFIG, and STARTUP commands before the system is ready for the users.

The operator may optionally give the DISKS command which de:ines the

disks that user's are allowed to access outside of the DOS/\M file

system. The STARTUP command starts the disks that users are allowed

to access through the DOS/VM file system.

If DOS/VM fails to type its introductory message and halts, it usually

means that DOS/VM has detected bad memory. Refer to Appendix for a

description of how to recover from the situation. The following «xample

shows a typical operator procedure to bring up DOS/VM for use. Atter

the example, the operator terminal commands issued at the start and

during the running of DOS/VM are explained in detail. An example

startup of DOS/VM follows:

6-10



OK: A CMDNCO
OK: DOSVM

GO

ee ee ee eeeee

64.0 K MEMORY IN USE

PLEASE ENTER CONFIG AND DATE.

OK, CONFIG 12 5 1
OK, SE -0423 -0905
OK, STARTUP _1 0 2 4
OK, UDIN (6) LOGGED IN AT 09'07 0423
JHNDOE (3) LOGGED IN AT 09'10 0423

 

DOS/VM SYSTEM-TERMINAL COMMANDS

When started, DOS/VM prints QUIT on every active user terminal and
waits for a command at the supervisor terminal. A typical sequence
of command is:

SETIME

CONFIG

STARTUP

These commands and their arguments are described in the following
paragraphs. All system commands are issued at the supervisor terminal.

After DOS/VM is started, the DOS system terminal becomes the DOS/VM
system terminal. Unless the USRASR command is given, the system
terminal can only be used for a restricted set of operator commands,
given in this section. Since the system terminal operates in the
Supervisor address space, any external commands, and in addition, the
RESTOR, RESUME, and START commands will crash DOS/VM if they are given
at the system terminal. Normally, the system terminal is used only
to STARTUP and SHUTDN disks, UNASSIGN devices, check STATUS, and to
collect a record of LOGIN and LOGOUT messages.

MAN 1675 6-11



CONFIG

The CONFIG command defines five system parameters that are specified
once per system session. The CONFIG command is disabled after its
first use during a session.

Nuser

Pagedevl

Comdev

Availn

CONFIG Nuser Pagedevl Comdev [Availm] [Pagedev2]

is an integer less than or equal to octal 40 that defines
the number of users, including the supervisor. (e.g., for
a four-user system, enter 5; for a seven-user system,

enter 10).

isa physical disk number that specifies the device to be

used for paging. See Table 3-1 and Table 4-3 for possible values.

specifies the physical device number initially assigned
as logical 0. When a user invokes an external command, the
command directory, CMDNCO, is searched on this device. If
Comdev and Pagedev are the same, the disk is considered to
be split into a file system and a paging part. The boundary
between the partitions is defined by the DSKRAT header, and
it may be set by the MAKE program, (See the paragraph on
configuration at the beginning of this section.

1S an optional argument that defines available physical
storage. It corresponds to the last sector number (octal)
to be used. If Availm is omitted, all of available memory
is used. The values for Availm and associated storage
used are as follows:

blank or 0 all of memory
(must be at least 32K)

"11? 40K
137 48K
115? 56K
177 64K

'777 256K

6-12



Pagedev2 CONFIG may specify either one or two disk devices on which

paging is to take place.

The CONFIG command uses the range of acceptable Pagedev and Comdev

codes (Physical Disk Numbers) as shown in Table 3-1

Example: A system terminal operator may wish to specify two paging

devices, for example, to run a 30-user system using 3.0-million word

disk packs. If each user's virtual space is set to be 64K, only 23.

users will fit on a 3.0-million word disk pack. Thus the use of two

paging devices is required. The command line:

CONFIG 30 0 0 0 1

would allow paging device to be physical devices 0 and 1 for a 30-user

system.

DISKS [NOT] PdiskO [Pdiskl] ... [Pdisk8]

The DISKS command may only be given from the supervisor terminal. |

The DISKS command adds the specified physical disk(s) to the assignable

disks table or, removes the specified physical disks from the assignable

disks table. Pdisk0 ... Pdisk§ are physical disk numbers. No more than

ten disks may be entered into the assignable disks table. Aphysical

disk number must be specified in this table before a user may invoke

the ASSIGN command to assign that disk.

When the optional argument NOT is specified in the DISKS conmand line,

the subsequently specified physical disks are removed from the assignable

disks table. Removing a physical disk number from the table does not

cause the disk to be unassigned; the operator must give the UNASSIGN

command in order to unassign a disk from a user.

Example:

OK, DISK 1 20250 50250 60250 70250 10020 110250 20252

adds the specified physical disks (disk 1) and partitions (20250, etc.)

to the assignable disk table. These disks and partitions may now be

ASSIGNed by the users or operators. The command sequence:

OK, DISK NOT 20250
OK, UNASSIGN 20250

removes the physical disk partition 020250 from the assignable disks

table and unassigns that partition.

MAN 1675 6-13



MESSAGE

The DOS/VM command MESSAGE provides a message facility that allows a
user, at a user terminal, to communicate with the operator, at the
supervisor terminal; allows an operator, at the system terminal, to
communicate with all users at all terminals connected to the system;
or allows an operator to communicate with a specific user at a specific
terminal. The format for user to operator messages is:

MESSAGE

text of message

where (text of message) is a one-time message. Two lines are printed
at the supervisor terminal. Their format is:

**k* uu hh'mmn

text of message

where: uu is the user number; hh'mm is the time of day in hours and
minutes.

The format of operator to user messages is:

MESSAGE ALL [NOW J

The operator can send messages to all users or to a single user. When
the parameter ALL is specified, the message is sent to all users. The
parameter -uu is a minus followed by the user number. When the para-
meter -uu is specified, a message is sent to the user specified. If the
optional argument NOW is not specified, the message is stored in a
Broadcast Buffer (ALL) or a Single User Buffer (-uu). The message is
printed at the users terminal when that user returns to DOS/VM command
level. A message that is in the Broadcast Buffer is also printed
after LOGIN.

If the argument NOW is specified, the message is printed immediately.
This is an unfriendly thing to do if the user is in the midst of a
sensitive operation. When NOW is specified, stored messages are not
affected.

Also, when NOW is specified, the format of the message at the user
terminal is:

*** BULLETIN ***

text of message



If the operator attempts to send a message to a single user before the

previous message to a single user has been received, the error line:

“MESSAGE NOT SENT

is printed at the systems terminal.

To cancel a stored message, a null line must be entered as the text of

message.

SETIME

The SETIME command sets date and time. It can be entered at any time

during system operation. Syntax:

SETIME -mmddy -hhmm

where mnddy are digits that represent the month, day and year (last

digit only), and hhmm are digits that represent the time in hours and

minutes. The two arguments to SETIME must be separated by spaces and

start with a minus sign as the first character. Example:

SETIME -09294 -1630

sets the data and time: September 29, 1974, 4:30 PM.

STARTUP

The STARTUP command defines a list of physical disk devices to be

used by DOS/VM. A disk is considered started if it has been mentioned

in a previous STARTUP command. Additional disks may be started if the
new list in a subsequent STARTUP command does not conflict with

the list in a previous STARTUP, and if no user has assigned a disk

specified in the list. Syntax:

STARTUP Comdev [Pdevl Pdev2 ... Pdevn]

where Comdev and Pdevl ... Pdevn are items in a list of physical disk

(device) numbers. The argument, Comdev, must be specified in the

initial STARTUP command; the remaining device numbers are specified

optionally. The order of the list defines the logical number sequence

of the devices (e.g., Comdev is logical 0, Pdevl is logical l, etc.).

Physical Device codes are listed in Table 3-1.

MAN )675S 6-15



Comdev must match the Comdev specified in the CONFIG command. Example:

STARTUP 2 7 3

defines that physical devices 2, 7 and 3 are to be used with DOS/VMand associates the following logical device numbers with the physicaldevice numbers specified: 2 is logical 0; 7 is logical 1; and 3 islogical 2. In DOS/VM, logical device numbers may also be specified’ asarguments to the STARTUP command. In this case, they must be followedby a slash and the associated physical device number. Examples:

STARTUP 0/2 1/7 2/3

STARTUP 4/100250

SHUTDN

The SHUTDN command performs tasks necessary to shutting down the DOS/VM
system in an orderly manner. Syntax:

SHUTDN ALL

SHUTDN PdevO [Pdevl Pdev2... Pdevn]

The command form: SHUTDN ALL performs a complete system shutdown. AII1
user files are closed, physical disks are closed, and the DOS/VM systemshuts down by inhibiting interrupts, exiting page mode, stopping the
system clock and halting.

If the SHUTDN command is issued with a list of physical devices
(PdevO ... Pdevn), the listed devices are closed by closing all filesopened on the listed devices and by detaching all users attached to thelisted devices. Refer to Section 3 and Table 3-1 for a complete dis-
cussion of physical device numbers. Then, the specified disks are not
available for DOS/VM file I/O operations until the devices are specified
on a subsequent STARTUP command. SHUTDN must be given before shutting
down or changing a disk pack on a drive if that drive is currently
Started up with the STARTUP command. The STATUS command can be used to
list the devices currently started up. Unlike the STARTUP command, the
Pdev's do not have to be given in logical drive order.

CAUTION: Do not shut down the physical device associated with logical 0.
If this is done, DOS/VM loses the command directory (from its memory,
not the disk). To recover, STARTUP the disk and ATTACH CMDNCO.

Example of Selective Shutdown
 

Assume the initial STARTUP command was:

STARTUP 1 0 6 4

6-16



The operator wishes to replace the pack on physical device 6, which is

logical device 2. The operator gives the command SHUTDN 6, stops the

drive, replaces the pack and restarts the drive. The operator then

gives the command:

STARTUP 2/6

to startup physical drive 6 as logical drive 2.

STATUS

 

The STATUS command may be used to monitor the usage of DOS/VM. When

entered at the system terminal, the STATUS command prints status

information that consists of the information given at the user terminal

and, in addition, prints a list of current logged-in users. Following

each user name in the list, the user terminal number and the numbers

of the physical disks currently used by the user are printed. Also,

devices that a user has assigned are listed after the number of the

physical disk that is currently used. A disk is considered to be in

use by a user (1) if his home UFD or current UFD resides on the disk or

(2) if the user has opened a file on that disk. Some typical instances

where the STATUS command must be used are:

Prior to mounting a new disk pack to determine what

physical disk assignments are available.

po
ut

2. After a request that all users release a given disk or
disks to determine that they have done so before shutting

down that disk or disks.

3, As a check that all users have logged out before shutting

down DOS/VM. (No harm to the system results if the users

of a particular disk are still logged-in when the disk or

the system are shut down. However, the users files are

closed and a message is printed at the terminal to that

effect.

MAM 1675 6-17



Examples:

 

1. Example of a STATUS command issued at the supervisor terminal:

OK, STATUS

USR = SYSTEM

FUNITS

DISK LDEV PDEV
TS 0 250
SPOOLD 1 250
DUD 2 20250
DSKRAT 3 0
ADMIN 4 110250
ETCH 5 40250
PMFII 6 100250
MD6V2 7 4
TRANS 10 50250

PAGEDEV = 10252 COMDEV = 250

USER LINE PDEVS
JOEL 2 110250
SPOOL 3 252 PRL
COHEN 4 0 PTR PUNCH
MERRIC 5 250
GOUDY 8 20250
PODUSK 13 250
JDOAKS 16 110250

OK,

2. Example of a STATUS command issued at a user terminal:

OK, STAT

USR = GOUDY

FUNITS

DISK LDEV PDEV
TS 0 252
SPOOLD 1 250
DUD 2 20252
ETCH 3 40252

LSTFIL 4 50250
DOSDVM 5 60252
WORKIT 7 100252
ADMIN 10 110252

6-18



MAN 1675

USRASR

The USRASR command allows the supervisor terminal to be associated with

a different address space to allow it to be used as a userterminal.

After invoking USRASR, it is still possible to invoke supervisor commands

at the supervisor terminal. Syntax:

USRASR Usrno

where Usrno is a user number. Example:

USRASR 4

Restrictions: The USRASR works only if the associated commmications

line is not enabled on the AMLC. If connected to a current loop

bit-banger line, the input leads must be shorted (or a terminal must

be connected to the line).

Return: To return to operations as a normal supervisor terminal, type:

USRASR 1

WARM RESTART FOR DOS/VM

If DOS/VM halts because of an error or because of a machine-check,

it is usually possible to restart DOS/VM. The procedure for a Warm

Restart is as follows:

1. At the control panel set the rotary switch to STOP/STEP. Press

MASTER CLEAR.

2. START at 1001 for machine check or 1002 for no machine check.

Store the starting address (e.g., 1001) in Location 17 and.

_ set rotary switch to RUN.

3. Set START.

4. At each terminal connected to DOS/VM at the time of the halt,

type:

S

followed by a CARRIAGE RETURN.

6-19



eeETeT

SECTION 7

INPUT/OUTPUT WITH DOS/VM

1/0 VIRTUALIZATION

Since all userprograms running under DOS/VM are executed in restricted

mode, all I/O instructions executed by a user program cause traps to

the supervisor.

Since user I/O instructions in virtual memory operation cause a trap,

a mechanism is provided for user programs to perform a supervised form

of 1/0. This is accomplished by defining a functional means of allowing

certain devices to operate via user 1/0 commands (1/0 virtualization).

These devices are listed in Table 7-1 along with the implemented

values of the Virtual Memory Systems Controller Board Control Word

values for input and output, and the associated port to which the devices

are connected. |

 

 

 

ort No. CONTROL WORD VALUES evice

Input (Bits 11, 12] Output (Bits 13-16)

1 00 000 (or 10 (octal) JUser Terminal

2 01 100 (4 (octal)) ICENPR (J2)

3 10 010 (2 (octal))

|

|CE2PR (J3)

4 11 001 (1 (octal))

|

CARDR (J4)      
 

Table 7-1. System Controller Board Control Word,

Device, and Port Relationships

A subset of all possible I/O functions that can be performed with a given

device are defined, and the DOS/VM system provides a mechanism for

calling the supervisor to perform these 1/0 functions.

MAN 1675 71



The Prime DOS/VM operating system provides a functional interpretation
of most I/O instructions relating to the virtual memory systems
controller. With the System Controller Option, these I/0
instructions include the following:

OCP 4, OCP 104

INA 4, INA 1004, INA 1204, INA 1304

OTA 4, OTA 104

SKS XX04

SYSTEM CONTROLLER CONTROL WORD

For every user terminal connected (logged-in) to the DOS/VM operating
system, a register is maintained that stores a virtual-memory-systems-
command. (The instructions to initialize this register are OCP 4,
OCP 104). The control word is set equal to the A-register by the
instruction OTA 104, and the control word can be read by executing
the instruction INA 1204. :

The control word may also be set by the ASRCWD command. Only the port
select fields of the control word (Bits 11-16) are used when the INA 4,
OTA 4 instruction sequence is executed.

INPUT/OUTPUT BUFFERS

I/O with Port 1 selected is performed through the user terminal buffers
maintained by the operating system supervisor. I/O is always full-
duplex. Ports 2, 3, and 4 have three associated buffers. Access to
these buffers is only allowed if the corresponding I/0 device has been
assigned to the user's process by means of the ASSIGN command.

DATA TRANSFERS

Input: Execution of the INA 4 (INA 1004) instruction causes a transfer
of a character from the buffer associated with the assigned device to
the A-register. If the buffer is empty, the user's process is placed
in INPUT-WAIT state, and the supervisor cycles to service another user's
process. The user process is rescheduled when the requested input
arrives.

7-2



Output: Execution of the OTA 4 instruction causes a transfer of a

character from the A-register to the buffer associated with the assigned

device. If the buffer fills up, the user's process is placed in the

OUTPUT-WAIT state. Users are removed from the OUTPUT-WAIT state once
per second. At that time, the user process is rescheduled to the location
following the OTA instruction; no skip occurs.

Emptying and Filling Buffers: The device interface modules interrupt
routines) empty and fill their associated buffers. The physical device
may be different than the logical I/O device. For example; when an
INA 4, OTA 4 instruction sequence is executed in the virtual memory
system, the system performs output on the serial interface in the CPU
using ISI, OSI instructions.

SKIPS

DOS/VM, on encountering an SKS instruction, always skips (with the

exception of SKS 704, skip if receiver ready, and SKS 604). The SKS

704 skips only if there is input available either in the buffer

associated with the user terminal or in the port that is specified by

the virtual control word. The virtual control word is initially

set to the user terminal, either by the ASRCWD command or the OTA

104 instruction. SKS skips only if there is room in either the

output buffer associated with the user terminal, or in the port that is

specified by the virtual control word.

A user program may SKS for terminal input and input a character if

one is available or do other computation if no character is available.

Previously, the SKS would always skip and a subsequent INA instruction

issued to an empty user terminal input buffer would put the user into

input-wait state until a character was typed. Similarly, a user

program may SKS for room in the terminal output buffer and output a

character if there is room or if not do some other computation instead.

Previously, the SKS would always .skip and an OTA issued to a full

terminal output buffer would put the user into output-wait state

until the buffer became less than full. No existing IOCS routines

or other teletype routines such as T1IN, TIOU, TNOUA etc. in the

FORTRAN library does an SKS 704 or SKS 604.

MAN 1675 7-3



Paper Tape Reader
 

To interface a paper tape reader with virtual memory, interpretation
of the following instructions is provided:

OCP XX01 (treated as NOP's)

SKS XX01_ (a.ays SKIP)

INA 1, INA 1001

Execution of the INA 1 (INA 1001) instruction causes a transfer of a
character from the paper tape reader buffer to the A-register, and
the INA instruction skips. If the buffer is empty, the INA is
handled as NOP. The reader must be ASSIGNed by the user. An interrupt
routine (PTRDIM) maintains the buffer full by reading the paper tape
as long as there is room in the buffer.

Paper Tape Punch

To interface a paper tape punch with virtual memory, interpretation
of the following instructions is provided:

OCP XX02 (treated as a NOP)

SKS XX02 (always a SKIP)

OTA XX02 (output character)

Execution of the OTA XX02 instruction causes a transfer of a character
from the A-register to the paper tape punch buffer, and the OTA instruc-
tion skips. If the buffer is full, the user process goes into OUTPUT-
WAIT state for up to one second. A restart is then made to the location
following the OTA (no SKIP). An interrupt routine (BRPDIM) punches
characters from the punch buffer until the buffer is empty. The punch
must be ASSIGNed by the user.



MAN

CPU Control Panel
 

To interface the CPU control panel with virtual memory, interpretation
ria «a

of the following instructions is provided:

INA 1620 (read sense switches)

OTA 1720 (output lights)

A virtual sense-switch-register and a lights-register are maintained
for each user that is logged-in. The sense-switch register is set by
the VRTSSW command and read by the instruction INA 1620. The lights-
register is set from the A-register by executing an OTA 1720 instruc-
tion. The lights-register is displayed on the control panel by entering
the memory address on the panel sense switches and setting the ADDRESS/
DATA switch to DATA. The memory address is computed by taking the sum
of 12377 plus the terminal number (number typed on login).

Disk
 

The disk interfaces with virtual memory through a supervisor call
(SVC) instruction to perform a READ or WRITE operation on a single
physical record of a physical disk. The disk must be assigned to the
terminal by the ASSIGN command. Refer to RREC and WREC in Section 5.
For information about the SVC instruction, refer to the Systems
Reference Manual and the PMA User Guide.

Magnetic Tape

Input/output operations for magnetic tape are effected by DOS/VM
through SVC calls. Refer to T$MI in Section 5.

MPC Line Printer
 

Output to the parallel interface line printer is accomplished through —
SVC calls. Refer to T$LMPC in Section 5.

MPC Card Reader .

Input from the parallel interface card reader is controlled through
SVC calls. Refer to T$CMPC in Section 5.

1675 7-5



SVC VIRTUALIZATION

To allow debugging or execution of other operating systems, DOS/VM
allows virtualization of all SVC calls except a class of SVC's considered
exclusive to DOS/VM. (Function codes XXX5XX). This capability is turned
off on LOGIN and can be set by the following commands:

SVCSW 1 . turn-on virtual SVC handling

SVCSW 0 turn-off virtual SVC handling

If the SVCSW is turned-on, the SVC instruction executed by a user

program that has a word following the SVC that is not of the form
XXX5XX, results in a virtual trap through location '65.

Example:

Assume that a version of DOS that performs disk I/O using the

DOS/VM RREC/WREC SVC calls is stored in the UFD CMDNCOunder the

 

name, VDOS32. Thus, a user may ASSIGN a disk to a terminal, turn

on SVC calls and run DOS. The following sequence shows a typical

operation.

User Input Effect

ASSIGN DISK 2 assigns physical disk 2 to user.

AS DISK 3 assigns physical disk 3 to user.

SVC 1 turn on SVC virtual memory interface.

VDOS32 bring DOS into virtual memory and start
GO execution. DOS types its usual message and

types OK:

STARTUP 2 3 informs DOS to use physical disks 2 and 3.

A LIB | attach to any desired UFD.

FIXRT performs VIRTUAL FIXRAT

COPY ;
GO copy physical 2 to physical 3.
FROM-TO: 2 3

SHUTDN direct DOS to perform normal clean up functions
prior to shutting down.

Press ‘QUIT' return to DOS/VM command level.

7-6



User Input Effect

UNASSIGN DISK 2 release physical disk 2.

UNASSIGN DISK 3 release physical disk 3.

SVC turn off SVC virtual memory interface.

Table 7-2 is a list of SVC codes used by DOS/VM.

OTHER VIRTUALIZATION

Unimplemented Instructions (UII), floating point exceptions (FLEX)
and Procedure Stack Underflow (PSU) are also virtualized (1.e.,
these cause interrupts that vector the trap location in the users
virtual address space. For optimal performance, the appropriate
hardware configuration is recommended.

MAN 1675 7-7



SVC Number Associated Call

100 ATTACH (ufdnam, ldev, passwd, key, altrtn)
1 SEARCH (key, name, unit, altrtn)
2 SAVE (rvec, name)
3 RESTOR (rvec, name, altrtn)
4 RESUME (name)
5 EXIT
6 ERRTIN (altrtn, al, a2, a3)
7 UPDATE (1,0)

110 GETERR (buff, nw)
1 PRERR
2 GINFO (buff, nw)
3 CNAME (oldnam, newnam, altrtn)
4 ERRSET (altval, altrtn, al,a2,a3)
5 FORCEW (key, unit)

200 READ (unit, buff, nw, altrtn)
1 WRITE (unit, buff, nw, altrtn)
2 RDLIN (unit, line, nw, altrtn)
3 WILIN (unit, line, nw, altrtn)

300 PRWFIL (key, unit, LOC(buff), nw, posv, altrtn)

500 RREC (pbav, nwv, nchn, ra, pdev, altrtn)
1 WREC (pbav, nwv, nchn, ra, pdev, altrtn)
2 TIMDAT (buff, nw) |
3 ~~ reserved
4 -- reserved
5 RECYCL
6 D$INIT (pdev)
7 BREAK$ (onoff)

510 T$MT (unit, LOC(buff), nw, inst, statv)
1 T$LMPC (uit, LOC(buff), nw, inst, statv)
2 T$CMPC (unit, LOC(buff), nw, inst, statv)

600 COMANL
1 CLIN (char)
2 CMREAD (buff)
3 COMINP (name, unit, altrtn)

700 T1IN (char)
1 T10U (char)
2 TNOU (msg, cnt)
3 TNOUA (msg, cnt)
4 TOOCT (num)

1000 T$MT See 510
1 T$SLC (key, line LOC(buff), nw)

1100 T$LMPC See 511

1200 T$CMPC See 512

Table 7-2. SVC's Numbers Used by DOCS/VM

Other SVC numbers are available for the user implemented SVC's.

7-8



APPENDIX A

Table A-1. File and Header Formats

File Record Header Format

Word
 

0

6

7

Content

"This" record address

Parent Record Address or
Beginning Record Address

(BRA)

Forward

Backward

Data Count

Spare 1

Spare 2

Remarks
ey

Consists of the DOS
address of the record.

If record is a beginning
record, this word
contains a pointer to
the parent (immediately
superior) segment
directory, or UFD.

Records forward pointer
to the next record.
(May be a null pointer
if last record).

- Records backward
pointer to the immed-
jately preceding
record. (May be a null
pointer if first record).

Records number of words

of data in this record

(excludes header) .

SAM File
DAM File
SAM Segment Directory
DAM Segment Directory
SAM User File DirectoryW

N
E
e
©

t
o
t
W
o

ot

Reserved

Reserved

All remaining words in the record may be used to store ASCII character

pairs or 16-bit words. Data is assumed to continue from the last word in

the record to the eighth word of the physical record specified in Word 1.

The forward and backward pointers make it easy for DOS to traverse a

file in either direction, and at the same time provide a large measure

of protection against snowballing disk errors. The pointer to the

beginning record address makes it possible to identify a "lost" record.

MAN 1675 A-1



Word
 

8-13

14-19

Word
 

1-3

Table A-2. UFD FORMATS

Content

UFD Header, where:

Word Count = 8 (size of header)

Owner Password

Nonowner Password

Spare

UFD Entries

UFD ENTRY FORMAT

Content

BRA

Filename

Spaces

Protection keys

Remarks

Six ASCII characters

See table below

Remarks

Word numbers are
relative to beginning
of entry

Beginning Record
Address of file

Currently six ASCII
characters

Reserved for future
use

Bits 1-8 owner protection
Bits 9-16 non-owner protection

Figure A-1 shows UFD file format and use schematically.



POINTER FROM UFDOR

SEGMENT DIRECTORY

 

RECORD
HEADER
(See Appendix A)

 

 

 

 

 

 

  

“WORD COUNT

-—eT UFD

ee ee ee HEADER

PASSWORD

_BRALee
SIX

WORD F __ia

UFD _L_ on | RECORDHEADER |

ENTRY A M ~~

tJ tw

(SPARE) ~~

UFD

ENTRIES

| RECORDHEADER _ _

Key: i» = ASCII SPACE

| RECORDHEADER _ |

Nth

RECORD

MAN 1675

  
 

 

  
 

Figure A-1. UFD File Format and Use

A-3

FWD §&
BACK PTRS
TO OTHER
RECORDS

SECOND
RECORD



Table A-3

FORMAT OF DSKRAT

The DSKRAT file has a special header block as follows:

Word
 

0

1

2

3%

4

*not currently used by DOS file system.

Contents Meaning

WRDCNT Words in header block (5).

RECSIZ Disk record size.

NRECS Number of records for
file system.

CYLS Cylinder count.

HEADS . Head count for disk or
partition

WRDCNT allows an expansion of the block size while still maintaining
a compatible disk. The header is followed by DSKRAT data, a 1 bit for
each record in the file system (NRECS).

During all file transactions, DOS and DOS/VM update the DSKRAT file to
reflect the state of records occupied or released, as files or portions
of files are added or deleted. The DSKRAT file also contains data on
the total disk record count.

In the Virtual Memory Operating System (DOS/VM), the name of DSKRAT
file(s) may be obtained by using the STATUS command. Example:

OK, STATUS

UFD=BOUDY 0

FUNITS
4

DISK LDEV .- PDEV
TSDISK 0 01
DUD 1 00
PCBRD 2 02
COMAND 3 04

OK,

A-4



APPENDIX B

BOOTSTRAPS

BOOTSTRAPS

Prime bootstraps are either control panel boots (and key-in substitutes)
or mass storage resident second-level bootstraps.

CONTROL PANEL BOOTS

Control Panel y-code
 

A control panel can have either 256 or 512 16-bit words of PROM from
which bootstrap programs can be loaded into memory. After pressing
MASTER CLEAR and dialing the selection switch to the LOAD position,
pressing the START switch causes the control panel u-code to read PROM

locations '0 to 'SO into memory locations '6 to '56 and begin execution

in 16S mode at the address loaded into Location 7. This initial program,

the pre-boot, can then read succeeding PROM locations into memory with
the following instruction sequence:

LDA (PROM address)
OTA '1720 (address setup - same as display data lights)
INA '1420 (input PROM location)
STA (memory location)

For some applications, the initial '51 words may be sufficient to code

a complete bootstrap. Caution must be exercised when coding a program
to execute in the register file (locations '0 to '37) because some
instructions alter registers.

Prime Pre-Boot

The Prime pre-boot saves the A-register in location '57 and then selects
among three classes of bootstraps and stores the appropriate code from
the PROM into memory. The three classes of bootstraps are auto-start,

paper tape, and mass storage boots. The user selects the desired boot
by setting Sense Switches 14, 15 and 16 as follows:

SS= 14 15 16 Code

=0 Auto-start
= ASR paper tape (MDL format)
= High speed paper tape (MDL format)
= Fixed head disk
= Moving head disk
= Magnetic tape
= Floppy disk (Diskette)
=7 Sparee

e
e
b
O
O
O

M
e
O
O
r
F

O
&
O

e
P
O
o
e
O
r
F
O
F
&

'

MAN 1675 B-1



Device Specific Boots
 

Auto-Start (0): Enters 64R mode and jumps to the location specified
In Sense Switches 1 to 10 ('100 to '177700). If no address is specified,
a default of '1000 is used.

Paper Tape (1 & 2): Modifies itself for either ASR or high speed paper
tape (by sense switches) and reads a second-level MDL boot into memory.
This boot requires -that the first nonzero frame on the tape be '20
and the next two frames be '004/'010 = '2010 = JMP '10. If the
initial A-register setting (saved by the pre-boot in location '57)
is to be used, it must be saved before location '57 is loaded by the
bootstrap. The first zero frame on the tape causes the JMP '10 instruc-
tion in location '20 to be skipped. When execution starts at location '21,
the following locations have been set up:

 

Location Contents Instruction (X=1 for PTR, =4 for ASR)

2 *3000X OCP x
3 "13100X INA "100X

"10 *13100X INA "100X
‘11 "002010 JMP *-]
"12 "141240 ICR
"13 *13000X INA xX
"14 "002013 JMP *-]
"15 "050000 STA 0,1
"16 "140114 IRX
"17 "100040 SZE
"20 "002010 JMP '10 (from tape)

Mass Storage (3-7): Performs further selection for fixed head disk
(FHD), moving head disk (MHD), magnetic tape, diskette and spare, all
of which are loaded by the pre-boot.

 

FHD (3): Sense Switch 13 is used to select between controller 4001
(SS 13 reset) and controller 4002 (SS 13 set). The boot reads record
0 (448 word DOS record format) of the disk starting at location '770
and begins execution a '1000 (via a JST '777). ‘This boot waits for
the drive to come ready and retries on status errors.

MHD (4): Moving head disks come in two varieties: two platter drives
(3M or 6M words) On either 4000 or 4002 controllers and 20 surface
drives on 4001/4002 controller. Sense Switches 11, 12 and 13 are used
as follows (X - don't care):

ss= ll 12
4000, upper surface
4000, lower surface
4002, lower surface
4002, upper surface
4001, (20 surface)>

<
p
t
O
e

h
I
O
©

b
e
b
e

_
m
e
e
O
o

i
e

B-2



In all cases, record 0 (448 words DOS record format) of the selected
surface of physical drive 0 is read into memory starting at location
'770 and execution begun at '1000 (via a JST '777). This boot waits
for the drive to come ready and retries on status errors.

MI (5): Sense Switch 12 is used to select between 9 track (SS 12 reset)-
and 7 track (SS 12 set) drives. The boot starts up the drive, insures
that the tape is set a loadpoint (space forward, abort, and rewind),
and reads one tape record into memory starting at location '200 and
through '7777 (4K). Execution begins at '1000 (via a JST '777).

ELOPPY (6): Reads record 0 (track 1, sector 1) into memory starting
at location '770. To maintain IBM compatibility, the boot alternately

tries to read a 448 word DOS record and a 64 word IBM record. Execution

then begins at '1000 (via a JST '777). This boot waits for the drive
to come ready and retries on status errors.

SPARE (7): Intended as a user-supplied down line loader. Currently,

halts at location '57.

PROM Generation

Generation of control panel PROM is a three-step operation: write,

assemble (PMA) and load (LOAD) the control panel boot program (CPBOOT);

generate a PROM simulator paper tape with the CPBGEN program; and

physically make the PROM.

CPBOOT: CPBOOT is the standard Prime control panel bootstrap program.

It resides on UFD=AIDS on the master disk. There are three general

rules for generating a control panel boot: :

1. It must be loaded at '1000 in 16S mode, but executable in

sector zero (all sector bits reset).

2. All unused locations in sector '1000 must be set to 0.

3. A maximum of 256 locations can be used (512 for larger

- control panels).

Rules 1 and 2 are satisfied by the use of absolute offsets to the

proper values and added to all addresses in memory reference

instructions and an initial instruction sequence of:

D16S
ABS
ORG '1000
BSZ 512
ORG ‘1000

MAN 1675 B-3



Offsets are computed and used as follows:

PBD EQU 6-% (*='1000)
"1000 PB2 DATA 7 at '1000, to be loaded at 6
"1001 LDA *-1+PBD (*='1001, '1001-1+6-'1000=6)
"1002 LDA PB2+PBD (PB2='1000, '1000+6-'1000=6)

OVER EQU "1042 for subsequent device boot offsets
actual location ='50

STD EQU—sOVER*PBD-* (#51051)
"1051 START ANA S1+STD (S1='1056, '1056+'1042+6-'1000-'1051='55)
"1052 SN
"1053 JMP* STE+STD (STE='1060, '1060+'1042+6-'1000-'1051='57)
"1054 E64R
"1055 JMP* 1
"1056 Sl DATA "177700

STE EQU *+] (next location contains '1000)
*1057 DATA "1000

The number of locations in the auto-start boot is computed by STE-START=
"1060-'1051=7. Each device boot, as well as the pre-boot, defines its own
base offset to make the code easier to read. The use of these bases as
memory reference modifiers requires that no literals be used. A FIN
pseudo-op is placed at the end of each boot to allow easy identification
of any literals so that they may be replaced with appropriately named
locations. Since the boot program must be wholly contained within
sector 1 (no LOAD generated cross sector links), instructions of the form
LDA -1, 1 cannot be used. The command file C+CPB, also on UFD=AIDS, ©
produces a SAVE file named *CPB. CPBOOT occupies 240 ('360) locations of
PROM.

CPBGEN: CPBGEN punches a PROM simulator tape of locations '1000-'1777.
Since the control panel y-code expects the PROM to contain the one's
complement of the desired locations, CPBGEN performs a preliminary
backscan and inverts all locations except the unused trailing zeroes
(a 0 is inherently more reliable than a 1 in PROM). Since PROM comes
in 8 X 512 bit chips and the PROM simulator loads two parallel 8-bit
banks, CPBGEN first punches all left bytes and then all right bytes.
A given byte is punched as two ASCII hexadecimal digits followed by an
ASCII apostrophe. For example, the bit pattern 10100110 is viewed as
1010/0110 = C6 and is punched as '303/'266/'247. A TAPE-ON ('222) turns
the reader on and a TAPE-OFF ('224) turns the reader off. The final
tape format is:

 

leader (48 inches): TAPEON: left bytes (0-'777): TAPEOFF:
blank tape (48 inches): TAPEON: right bytes (0-'777): TAPEOFF:
trailer (48 inches)

B-4



CPBGEN resides on UFD=AIDS of the master disk and the command file
C+CPBG produces a run file named *CPBG. To punch a paper tape of
CPBOOT, the following sequence of instructions must be used:

FILMEM insure sector '1000 filed with’zeroes s
RESTORE *CBP into '1000-'1777
ASSIGN PUNCH (DOS/VM only)
RESUME *CPBG at '2000
UNASSIGN PUNCH (DOS/VM only)

Physical PROM: To create the physical PROM, load the paper tape produced
by CPBGEN into the PROM simulator and verify that the load is good. Use
the PROM simulator to blow the actual PROM chips and insert them into the

control panel.

Key-In Substitues for Control Panel Boots
 

Since the auto-load control panel PROM function is optional on some
Prime computers, hand keyed-in programs are necessary. Because programs

keyed in are likely to disappear after one use, these programs can be
as long as desired, but should be as short as possible.

SECOND LEVEL DISK BOOTS (BOOT)

The control panel disk bootstraps (FHD/MHD/FLOPPY) read one 448 word

DOS record from record 0 of the selected device into memory starting

at location '770 and begin execution at '1000 in 16S mode. Regardless

of the device booted from, the second level boot is the same and can,

in turn, read DOS into memory from any DOS disk in the system. The

source is named BOOT and resides in the UFD FILAID on the master disk.

The run file on record 0 is also named BOOT and resides in the MFD.

MAN 1675 3



APPENDIX C

CREATING SEGMENT DIRECTORIES AND FILES

Ufd's may be created at command level by the CREATE command. However,
building a segment directory is a bit more involved. The following
two source program listings show a means of creating a directory and
files within the created directories. The program KEYCOM provides
mnemonic keys for PRWFIL, SEARCH, and ATTACH to make programming
easier. The second, GENFIL, creates segment directories that are both
threaded (SAM) and directed (DAM) and shows how to create SAM and DAM
files within the created directories by programming means.

MAN 1675 C-1



Cm KESYmord Jrm Se MAS ASrSs

C KEYCOM JPC 28 MAY 1974
C PROVIDES MNEMONIC KEYS FOR PRWFIL. SEARCH. ANC ATTACH

INTEGER FREAD. PHRITE. PREREL, PRESS. POSREL, POSABS, PCONY,
am OPNRED,. OPNMET. CPMETH. CLOSE, CELETE, REWIND.
a TRNCAT. UFCREF. SEGREF. NTFILE. NOF ILE. HTSEG. NOSEG, NEWUFD,
” MFOUFC. CURUFD. SEGUFD. HOMUFL, SETHUIM

DATA FREAD. PHEITE, PREREL. PREABS. POSREL POSSBS: PCONY
~ ” ci4. ee

CATA OPMRED. PNET.
i “ods ae

DATA UFDREP. SEGREF.

x 7: LA.

CATA MFOUFD, CURUFC.

x a ‘
a

OPNETH. CLOSE. DELETE, REWIND. TRNCAT
= 4. se ve 3 ?
NTFILE, HOF ILE. NTSEG, NOSEG. NEWUFE
oi [2ab8. (4008. 6a, Leese

SEGUFD. HOMUFC. SETHOM
ee iL oef

s
t
r



Cc GEMFTiL.D JFc Sa nA ASSra

C GENFIL, JPC 2a MAY 1574
C GENERATES FILE STRUCTURES FOR FIXRAT TO CHECK
c
C LOCAL VARIABLES |

INTEGER BUF C20G03. BUFAccaaa:
Cc

C KEYCOM CONTAINS MMENONIC KEYS FOR SEARCH, FPRWFIL. AND ATTACH
AC .

SINSERT KEYCOM
c

DATA Bur “Shei toseae.
DATA BURTWShdis betene

Cc

C GENERATE DRM FILE LONGER THAN 440 FRECURDS
CALL SEARCH COPNHETINOF ILETUPDREF. “DAMFIL“. 2)
PO S26 T=1. 388 .

C . ‘
C LOC IS A FUNCTION THAT RETURNS A POINTER TO ITS ARGUMENT.
Cc

. CALL FRWPILSPHRITE, 4. LOOCBRUF >, 445
2 CONT TMUE

CALL SEARCH“ CLOSE. &, 15

"

C GENERATE THRERACED SEGMENT CIRECTOR'
CALL SERRCHCOPNMETHtHTSEG+UFOREF., “TSDIR“, 13

OPEM NEW THREACE®S FILE ON UNIT 2 IM CURRENT FOSITION OF
SEG CIF OPEN ON UNIT 1

CALL SERRCH OOPMMRTSHTPILE+SEGRE. 1. 22

M
O

O

C WRITE STUFF IH THE FIiLe. THEN CLOSE
CALL PRUFILCPHRITE, 2. LOCCBUFD, 2

iy
oe? SS te Somes “e ee oe eS Tits 3i

CALL SERRCHCCLOSE. @22

C RELOCATE POINTER IM SEG DIF To EOF
CALL PRMFILCPREAD+FREREL. 1. && 1%

O
M

OPEM ANOTHER THREACEG FILE it SEG CIR. WRITE STUFF. THEN CLOSE
CALL SEARRCHCOPNWRT+NTFILE+SEGREF, 1.29 —
CALL PRWFILSPWRITE. e, LOC CBULs, cee)
CALL SEARCH CCLOSE. G, 22

CLOSE SEGMENT DIRECTORY
CALL SEARCH CLOSE, &. 15

GENERATE CIRECTED SEGMENT DIRECTOR'Y'
CALL SERECHCOPNETHINDSEG+LIFOREF. “OSOCIR “. 12

O
r
o

O
f

O
M

WRITE A THREADED FILE Ik IT
CALL SEARCH COPNUIRT+NTFILE+SEGREF. 1. 2>

MAN 175 C-3



ae

O
o

T
O
M

m
7

16

Cc

Calrire Ti_.. Ira =e PAS AS

CALL PRAPILGCPURITE, 2, LOCCRUFI 4, 2aaes
CALL SEARCHCLOSE. &2:

MLOSE SEG DIF
CALI SERROHC CLOSE. 8. io

GENERATE DIRECTEO SEG C1R LONGER THAN 1 RECORD
OPEM OIRECTED SEG OTR NAMED LONSEG ON UNIT 21 IN CURRENT UFD

CALL SERRCHCOPNMETHANMOSEG. “LOHScG", 1%

SENERATE [eG CIRECTED FILES lit SEGHENT DIF
oo te I=3,. S68

TALL SEARCH COPNNRT+NDF J LE+SEGREE, 1, 23

CALL PRWFILSPUR ITE ee LOC ELIF a. Lito

CALL SEARCHCLOSE. & 2)

TALL PRP IL OPRERD+PEREPEL. Le Bs ee bo

CONT IAUWE

CLOSE SEG CIF
MALL SEARCH CLOSE. &. 29

CALL EXIT

ERs



GENERAL INFORMATION

This appendix describes the features of DOS and DOS/VM software that
facilitate development of Data Base Management (DBM) System. The
data base structures are defined and then used in several examples
that show the speed and flexibility of Prime supporting software.

Features of DOS and DOS/VMthat facilitate DBM are:

. Sequential file access (SAM)

. Directed file access (DAM)

. Segmented structures with multiple growth points

. Relative and absolute positioning

. Pre-and post-access positioning

. Expandable file dimensions

. Security at the UFD, sub-UFD, and segment directory levels

. Multiple user access to any file (DOS/VM)

. FORTRAN callable file manager

. Associative buffering (DOS/VM)

. 2400 RPM Moving Head Disks

. 30 Megaword storage per device

DEFINITION OF DATA BASE MANAGEMENT

The objective of DBM systems is to use the processing power of the

computer to collect and organize data and to make data easily accessible

to the user. DBM systems consist of a set of programs that create and

maintain complex data structures known as data bases, and a set of

library procedures that enable users to access, modify, and report on

the content of the data bases.

Data Base Terminology
 

To make the discussions and examples that follow meaningful, it is

necessary to establish a data base structure. The data base structure

consists of three basic structures: data items, data entries, and

data sets.

MAN 1675 D-1



The data item is the smallest accessible data element. Each data item
is a value and is referenced by a data item name. Usually, many data
item values are referenced by the same data item name. For example:

  

DATA ITEM NAMES DATA ITEM VALUES

CITY DENVER, BOSTON, MIAMI
STATE COLORADO, MASS, FLOREDA
ZIP , 01767, 01752, 07353

The data item is defined as N words (or bytes) of a physical disk
record.

The data entry is an ordered collectio of related data items and is
defined by an ordered listing of the data item names. Data entries
are all the same length and are stored in physical disk records.
For example:

DATA ENTRY DATA ITEM NAMES
 

NAME CITY. STATE

DISK RECORD N SMITH DENVER COLORADO
N+1 JONES BOSTON MASS
N+2 GREEN MIAMI FLORIDA

The data set is a collection of data entries sharing a common definition.
A data set name references any or all of the data entries of a data
set. The number of data entries in a data set is limited by available
disk space.

There are two types of data sets: master data sets and detail data
sets.

Detail data sets contain "line item'' information, e.g., in the detail
data set PERSONNEL, each person's location, education, etc., is stored.

Master data sets serve as indices to detail data sets. The data
entries of a master data set contain pointers to corresponding detail
data sets.

In general, access to data within a data base is carried out at the
data entry level. Each CALL to a DBM procedure accesses some or all
of the data items within a data entry. The functions provided by DEM
procedures inc :ude adding a new data set, deleting a data entry from
a data set, reading some or all of the data items of a data entry,
and changing the values of items in a data entry.

Accessing the Data Base
 

Although access time to specific data in a data base is cependent on
the structure of the master and detail data sets, the speed and flexi-
bility of the underlying disk file manager is also significan<.

D-2



MAN

SAM files are a linear array of records threadedwith forward and
backward pointers. Therefore, to access the last record of a lengthy
SAM file (data set) of 47 records, all previous records must be read
47 access times to locate and read the last record. However, the
same data set using a DAM file structure would require only three
access times to read the same record. The DAM file consists of a
record directory maintained by the file system. To access any record
in a DAM file takes one disk accses to read the directory, and one
additional access to read the desired record if it is not the first
record in the target file. For 30M word disk, with an average
total disk access time of 47.2 ms, the difference is roughly 2-1/2
seconds vs. 1/10 of a second.

However, for applications where files are only one or two
records in length, the SAM file structure is as fast or faster.
DAM files require one disk access just to retrieve the record
directory.

Another feature of the SAM file is the way in which the file system
computes the best method for locating a record within the file. If
the pointer to a SAM file with ten records is positioned at record
#8, and the next access addresses record #3, the file system
determines whether traversing the file backwards or positioning at
the beginning record and traversing forward is faster. In this
example, the latter method is selected; thus three accesses instead

of five will be made.

Positioning in a SAM or DAM file can be done relatively with a + or

- 32767 words (+ or - 74 records) parameter or absolutely with
record number, word number parameters. The moving of the
file pointer can be pre- or post- the disk access.

For example, let a data set be defined as a SAM or DAM file in a
Segment directory. A segment directory is a named SAM or DAM file
that contains pointers (physical record addresses) to SAM or DAM

files (data sets). Thus, each data set has its own growth point.

Any number of data sets can be grouped together in a single segment

directory providing disk space is available. The segment directory

is then defined as the data base.

A tree structure for a file may be developed consisting of a single

segment directory and 440 DAM files (see Figure D-1). To access a

single word out of 85 million (three times the capacity of a 20

surface device) requires only four disk transfers. If repeated

accesses are performed over the entire tree, each additional access

requires at most three additional disk transfers. If repeated

accesses are done within a local part of the file (193,600 words),
each additional access requires, at most, one additional disk
transfer.

1675 D-3



Figure D-]

SEGMENT DAM FILE }|——(_ RECORD
DIRECTORY

4490-7 440LT ‘ao’
Pointers Records Words
(Data Sets) (Data Entries) (Data Items)

  

 

      

In Figure D-1, the segment directory is shown with only 440 pointers,
this is not a limit. The segment directory can be expanded just like
any ordinary file. However, a segment directory with 440. pointers
can directly address 7,744,000 words of data. Segment directories can
have "holes". For example, directory entries 1, 3, and 5 can contain
valid data set pointers while entries 2 and 4 are not used. This is
useful when data sets are arranged logically in a segment directory
and additional data sets need to be incorporated later.

FILE SYSTEM PERFORMANCE

No file in the system has a fixed length providing disk space is
available. However, as files become larger, an eventual decrease in
performance occurs. For the SAM file, more and more disk accesses are
necessary to traverse the file. The DAM file, however, has a boundary
where performance falls off. The DAM file directory can handle only
440 record addresses; so as the file becomes larger, the 441st, 442nd,
etc. records are not directly addressable and must be read sequentially.
This only occurs, however, when DAM files exceed 193,600 words.

DISK ACCESS TIME

30 million word disk:

 

SEEK ROTATION . ACCESS TIME

Average = 35 ms 12.5 ms 47.5 ms

Maximum = 70 ms 25. ms 95 ms

D-4



The DOS/VM file system has passwords and access attributes associated

with the user file directories (UFD's) and sub-UFD's. Both the owner

and nonowner passwords are defined with the command PASSWD. The

PROTECT command allows the association of access attribute with files

in a UFD to limit their use if desired. The UFD is always a SAM file

and contains up to 72 named files, segment directories, and syb-UFD's.

Once a user is attached to a UFD or sub-UFD, he has access privileges

to files in that UFD within limits that may be defined by the PASSWD

and PROTECT commands (Refer to Sections 2 and 4). UFD's can be

created that contain executable DBM programs for different levels

of security. The user, although attached to the UFD has no way to

dump, modify, or delete the executable programs if the command

directory (CMDNC#) was empty or protected by an owner password

unknown to him, or by a combination of passwords and protection

attributes.

Under multi-user (DOS/VM), more than one user has access to a file

simultaneously, provided it is opened for reading only. If on the

other hand, the file is opened for writing by one user, other users

are prevented through a locking algorithm from reading or writing it.

Under DOS/VM, associative buffering is implemented with 32 buffers.

Each buffer contains one disk record (440 words). A least recently

used (LRU) algorithm is used when a record not in the buffer is

accessed. Thisgreatly decreases access time for a DBM system

because the master data set directories (the indexes to all data)

tend to remain in buffers because of the high number of references

to them.

To further illustrate the capability of the file system, several

examples are given that show different data base structures, and

the access times and resources required when traversing them.

are,
Example #1:

This example uses a file structure consisting of a segment directory

with 440 SAM files and then with 440 DAM files to show the difference

in average access time. All the files are five records long,

(2200 words).

MAN 1675 D5



440 x 2200 (968,000 words)

SAM FILES

Seg. Dir. 440 (SAM) Seg. Dir.

[1] DAM Dir.
[2] SAM FILE
[3] (2200 Words)

FILES

440 (SAM)

1
HI DAM FILE
[3] (2200 Words)

DISK ACCESSES

OPEN Seg. Dir. 1

OPEN SAM file 1

AVG file access 2

TOTAL 4

Example #2:

[4]
[5]

DISK ACCESSES

OPEN Seg. Dir. 1

OPEN DAM file 1

AVG file access

J
e

TOTAL 3

This example is similar to Example #1 but with much larger files.
All files are 50 records long (22,000 words).

440 x 22,000

DISK ACCESSES

OPEN Seg. Dir. 1

OPEN SAM file 1

AVG file access 24.5

TOTAL 26.5

(9,680,000 words).

DISK ACCESSES

OPEN Seg. Dir. 1

OPEN DAM file 1

AVG file access 1.

TOTAL 3



Example #3

This example uses two levels of segment directories and the SAM/DAM

comparison. The first directory contains pointers to ten other

segment directories which each contain pointers to 440 files. The
files are five records long (2200 words).

10 x 440 x 2200 | (9,680,000 words)

SAM FILES DAM FILES

Ist Seg. Dir. 10 (SAM) Ist Seg. Dir. 10 (SAM)

2nd Seg. Dir. 440 (SAM) 2nd Seg. Dir. 440 (SAM)

[1] DAM Dir. [1]
[2] [2] DAM FILE

[3] SAM FILE [3] (2200 words)
[4] (2200 words) . [4]

[5] | [5]

DISK ACCESSES DISK ACCESSES

OPEN Seg. Dir. #1 p
—
_ OPEN Seg. Dir. #] 1

OPEN Seg. Dir. #2 1 OPEN Seg. Dir. #2 1

OPEN SAMfile 1 OPEN DAMfile 1

AVG file access 2 AVG file access 1

TOTAL 5 TOTAL 4

Example #4 shows a more complicated file structure. A segment

directory which contains one pointer to a master index file (DAM),

50 pointers to master data sets (DAM files), and 50 pointers to data

segment directories. The data segment directories contain the

pointers to the detail data sets (SAM files of 880 words).

MAN 1675 D-

“
J



 
The time and resources to read randomly into this file structure
follow.

D-8



Initialize DISK ACCESSES BUFFERS UNITS

OPEN SD 1 1 1

OPEN sd 1 1 1

OPEN M 2 2 1
a

Read master directory to select index

ACCESS M 1 0 0

Read index

OPEN m 2 2 1

ACCESS m 1 9 0

Read data

OPEN SAM i l 1

ACCESS SAM 5 0 0
5.5 7 5

The maximm number of buffers available under DOS is 16, under DOS/VM
there are 32. Example #4 shows seven buffers open which occupies 3.1K
words of memory. There are 16 units available under both DOS-DOS/VM.

MAN 1675 og



INTRODUCTION

The external command FIXRAT loads and restarts a maintenenance program

that checks the DOs file integrity on any disk pack. FIXRAT fully

supports nested UFDs and nested Segment Directories. FIXRAT handles

all current available disks. The command FIXRAT runs under either

DOS or DOS/VM

FIXRAT DESCRIPTION

The external command FIXRAT runs either under DOS or DOS/VM; it loads

and starts a maintenance program that checks the file integrity. Before

reading this document, the user should read a description of the file

structure found in Section 2. Existing DOS users should also read this

section for a description of Segment Directories, nested directories

and FIXRAT printout options.

FIXRAT reads every record in every file, UFD, and segment directory,

and checks that information in each record header is consistent with

record headers in the rest of the file and consistent with the file

directory that contains the record.

Any inconsistencies generate an error message. FIXRAT also builds a

record availability table (RAT) from the existing file structure

and compares it to the DSKRAT file for agreement. If discrepancies

are found, FIXRAT prints an error message.

If requested, FIXRAT will not only check the file structure but also

repairs pointers (if possible) or truncates or deletes defective files

and generates a corrected DSKRAT file. Up to two repetitions of FIXRAT

may be necessary to repair a damaged file structure. The recommended

procedure is to repeat FIXRAT until an error free printout is obtained.

FIXRAT must be run whenever there is reason to expect that the file

structure is damaged - for example, if a program being debugged runs

wild and writes over part of DOS. Until the user gains experience

with the syste, he should run FIXRAT at the close of every operating

session. Never attempt to run FIXRAT. after a COPY has aborted.

The suggested procedure to maintain a disk pack is to run FIXRAT

every morning and, if no errors occur, to copy the pack onto a daily

backup pack. If any files are truncated or deleted from the pack,

they are copied from the daily backup disk, if they exist there, to the

MAM I6 75 E-1



disk-pack before copying that pack onto an updated daily backup disk.
The owners of the bad files must be notified that those files have
been copied from the backup and any modifications to those files may
have been lost.

Running FIXRAT

The command is:

FIXRAT [OPTIONS]

If the word OPTIONS is included, FIXRAT requests printout options,
otherwise, FIXRAT prints the name and number of records used (in octal)in the MFD and in each directory in the MFD. When entered, FIXRAT asks
the question:

FIX DISK ?

If the answer is YES, .CR., FIXRAT truncates or deletes defective filesand generates a corrected DSKRAT file in addition to checking the file
structure and repairing all file structure errors. FIXRAT then asks
the question:

PHYSICAL DISK DRIVE =

The user types the physical Jisk drive in octal on which FIXRAT is to
be run followed by .CR., FIXRAT then prints the disk pack identifi-
cation (which is the name of the DSKRAT) and begins processing the file
structures. The DSKRAT is always the first file in the disk pack ID.
The default name given to DSKRAT is DSKRAT.

The following is a sample DOS file structure:

E-2



 

  

   
  

 
 

 
 

 

 

 
 

 
 

   
   

 

  
 

  
  
 

 

MFD | branch level

‘\ - - ~ y=~N Vv

| DSKRAT ||BOOT ] ~~ [UFD1] mode UFD2 |, level
“7 OO

v7 \
a \

a“
7 \

y= :/ SUFD11 | SUFD12 | SUFD21 level
/ J

/ \

| FILEA FILEB FILE C

\ level

\ directory tree //
\ , /
\ 7
~ a

=e —, —_ _ _~

Figure E-1. Sample File Structure

MAN 1675 E-3

@
f
o
n
e

i
]



BEGIN
SUFD 11

The file structure on any disk pack is a tree structure where the
MFD is the root or trunk of the tree, the links between directories
and files or subdirectories are branches; and the directories and
files are nodes.

A directory tree consists of all files and subdirectories that have
their root in that directory. In Figure E-1, the directory tree for
UFD1 is circled. The level of a file is the depth of that file in
the tree. For example, as shown in Figure E-1, the MFD is at level 1
in the tree, UFD1 is at level 2 in the tree, and FILEC is at level 4.

FIXRAT traverses the file structure as shown by the snaked line gener-
ating typeout at the various points below.

 
 

 
 

 

   

 

 

         

    
 

 

       
       

 

BEGIN MFD somo

MED

END BEGIN ENDDSKRAT BOOT UFD 1 UFD 1 UED 2 UFD 2

BEGIN UFD1

SUFD 1 END - BEGIN ~SUFD 11 SUFD12 SUFD 12 SUFD 21 END
BEGIN SUFD 21
SUFD 12

FILEA FILEB  
       

  

Figure E-2. Typical FIXRAT Traverse of File Structure

E-4



The terminal output appears as follows for the above file structure:

BEGIN MFD
BEGIN UFD
BEGIN FDi1
END SUFD11 10
BEGIN SUFD12
END SUFD12 10
END UFD1 21
BEGIN -UFD2
BEGIN SUFDZ21
END SUFDZ21 10
END UFD2 li
END “MED 35
RECORDS USED = 35
RECORDS LEFT = 6223
DSKRAT OK
OK,

FIXRAT prints the word BEGIN followed by the directory name when beginning

processing of a directory tree.’ On leaving a directory tree, FIXRAT

prints END Directoryname followed by the number of records (in octal)

used by all files and directories in the directory tree. In the above
example, the number following MFD ,35, is the same as the total number
of records used as the MFD directory tree and consists of all files
and directories on the disk pack. FIXRAT indents the printed output
one space for each ievei down in the tree in which the directory is
located. This format makes it easy to understand the relationship of
each directory to the other directories in the tree. To prevent
excessive output, FIXRAT as a default, only prints out directory names

at levels 1 and 2 in the tree corresponding to the MFD and all directory

names in the MFD file. Unless OPTIONS are specified, FIXRAT processing

of the tree shown in Figure E-1 generates the following default output
rather than the complete output shown above:

BEGIN MFD
BEGIN UFD1
END  UFDI 21
BEGIN UEFD2
END UFD2 ll

END MFD 35
RECORDS USED = 35
RECORDS LEFT = 6223
DSKRAT OK
OK,

If the command FIXRAT OPTIONS is given, FIXRAT asks the question
FIX DISK? and PHYSICAL DISK DRIVE =, as before, and also asks:

TYPE DIRECTORIES TO LEVEL =

MAN 1675 5-5



The user must type an octal number corresponding to the lowest level
in the tree structure that directory names are to be printed. The
following table describes the output:

LEVEL Output
blank all directories

1 MFD only (level 1 directory)

2 MFD and all directories in MFD file
(level 2 directories)

3 all output for level 2 and all directories
at level 3 (level 3 directories)

etc. etc.

FIXRAT will then ask:

TYPE FILE NAMES ?

If the answer is YES, followed by .CR., FIXRAT prints all filenames
in all directories, indented appropriately. This option is useful to
list the contents of a disk. Note that unless the user requests
suppression of directory name output by answering the TYPE DIRECTORIES
TO LEVEL = question with the parameter one, directories are printed
three times - twice as directories and once as files.

FIXRAT will then ask:

TYPE FILE CHAINS ?

If the answer is YES, followed by .CR., FIXRAT prints the disk address
of all records in all files on the disk. All files consist of one or
more records chained together by pointers. This option is useful to
see how files are scattered on a disk. FIXRAT begins processing the
disk after this point as it would if the OPTIONS parameter was not
specified.

Following the file structure analysis printout, FIXRAT prints the
number of records used on the pack and the number of records left on
the pack for file system use. Finally, FIXRAT compares a record
availability table built from the existing file structure against the
DSKRAT. If they match, FIXRAT types DSKRAT OK and exits to DOS or
DOS/VM. If they do not match, FIXRAT types DSKRAT FILE DIRECTORIES
MISMATCH.

E-6



FIXRAT Output Exampie
 

The following is sample FIXRAT output generated after all questions have

been answered:

DISK PACK ID IS DSKRAT

BEGIN MFD
BEGIN CMDNCO
END CMDNCO 000021
BEGIN DOS
END DOS 000011
END MFD 000035
RECORDS USED = 000035
RECORDS LEFT = 006223
DSKRAT OK
OK:

The first line prints the disk pack identification as the name of the

DSKRAT. The DSKRAT is always the first file in the MFD, so FIXRAT
prints the name of the first file as the disk pack name. The default

name given to the DSKRAT is DSKRAT.

The next section of output concerns FIXRAT examining the file structure

on the disk for consistency. This ample output is generated from a

disk that contains only two directories, CMDNCO and DOS, in the MFD.

if either of these directories contains subfile directories, FIXRAT

traces the nested directory structure but does not print the name of

the subfile directories. Each directory is printed twice: following

the word BEGIN when FIXRAT enters the directory and following the word

END when FIXRAT is finished processing the directory and any subfile

directories nested within it. Directories that are files in the MFD
are indented one space when typed to show the nested structure.

Following the directory name, FIXRAT prints a number that is the

number of records used in the directory and all files nested within

that directory. Since all files on a pack are nested within the MFD,

the number of records used in the MFD always matches the number of

records used on the disk pack.

Following the file structure analysis typeout, FIXRAT prints the number

of records used on the pack and the number of records left on the pack

for file system use.

Finally, FIXRAT will compare a record availability table (RAT) built

from the existing file strucrure against the DSKRAT. In the preceding

example, they match and FIXRAT prints:

DSKRAT OK

and exits to DOS or DOS/VWM.

MAN 1675 5-4



If the RAT and DSKRAT totals do not match, FIXRAT prints:

DSKRAT, FILE DIRECTORIES MISMATCH

If the user typed YES to the question FIX DISK?, FIXRAT repairs the
DSKRAT and types:

DSKRAT FIXED

then exits to DOS or DOS/VM. Otherwise, FIXRAT asks the user: FIX DISK?
If the user answers YES, .CR. the DSKRAT is repaired. This option is
useful if there are no file structure errors but there is a bad DSKRAT.

If the user typed YES to the question FIX DISK? asxed at the beginning,
FIXRAT repairs the DSKRAT and types DSKRAT FIXED, ‘:en exits to DOS
or DOS/VM. Otherwise, FIXRAT asks the user FIX [''3k?. If the user
answers YES, followed by .CR., the DSKRAT is repaired, DSKRAT FIXED is
typed, and control exits to DOS or DOS/VM. This option is useful if
there are no file structure errors but there is a bad DSKRAT.

Broken File Structure Messages
 

When FIXRAT detects a problem in the file structure, it prints an
error in the following format:

reason for error

FILE - filename BAD RECORD = octal record address.

DIRECTORY PATH = list of directories

FILE DELETED, FILE TRUNCATED or blank

The directory path is the list of nested file directories needed to
get from the MFD to the bad file. For example, if FILEC in Figure E-2
was broken, the directory path would be MFD, UFD2, SUFD21. Because all
files have the MFD as a root, 'MFD'' is not printed as part of the path.

After printing the directory path, FIXRAT prints how it disposed of the
bad files. -If the FIX DISK question was answered NO, FIXRAT does
nothing to the file, therefore prints nothing. Otherwise, FIXRAT
either truncates the file before the bad record and prints FILE
TRUNCATED, or finds no part of the file can be saved, removes the file
directory entry from a UFD, or zeroes the entry in a segment directory
and prints FILE DELETED. '

Sepment Directories
 

A segment directory may contain references to files, other segment
directories and User File Directories (UFD). The distinction between
a UFD and a segment directory is that entries in a UFD are referenced
by name and those in a segment directory by position. Recail that exch
entry in a UFD consists of a one-word disk address that is the beginning

E-8



record address of the file, followed by a six letter name and two spare
words. (Refer to Appendix A.) In a segment directory, FIXRAT prints
the absolute position of the file in the segment directory as an octal
number-pair (record number, word number). For example, the first entry
in a segment directory is printed as (0, 0), the second entry as (0, 1),
the 440th as (0, 440), and the 441st entry as (1, 0). Notice that as -
with user file directories, indentically named files in different
segment directories represent unique files.

If FIXRAT is requested to FIX DISK and detects a bad file, it either
truncates or deletes the file depending on where in the file a problem
is detected. If FIXRAT deletes a file, the action taken depends on the
type of directory the file is entered in. If the directory is a UFD,
FIXRAT removes the entry from the directory similar to the action of
the DELETE command. If the directory is a segment directory,
FIXRAT sets the entry to zero. On the next pass, FIXRAT skips the
zero entry. The convention, then, is that a zero in a segment directory
represents a null file.

PITFALLS AND RESTRICTIONS

Bad BOOT

If the BOOT file in the MFD is accidentally deleted or broken, DOS will
allocate record number 0 to the next new file. FIXRAT will complain
if any file except the BOOT in the MFD contains record 0. The message
given is:

BAD DISK ADDRESS BAD RECORD = 0

If this occurs, RESTOR from a good MFD and SAVE the BOOT into the MFD
before doing anything else.

 

Directory Nesting Limit
 

evelis only.f
aFIXRAT will trace nesting of directories to a depth of 100

Writing Into Directories 

Since directories may be nested, the possibility of accidentally
writing bad data into directories is increased. This generates a bad
file structure detected by FIXRAT. To minimize this possibility, it
is suggested that users preface all except those in the MFD by Uk and
all segment directories by &.

Deleting Directories
 

Do not delete a UFD or segment directory before deleting all files
contained in the directory. If this is not done, the records used by
files in the directory are not returned to the DSKRAT. When the next
file FIXRAT is run, the message DSKRAT, FILE DIRECTORIES MISMATCH is
given, and the records of files not deleted explicitly are not

recovered for use.

MAN 1675 E-9



FIXRAT ERROR MESSAGES

This appendix lists all error messages generated by FIXRAT and gives an
expanded explanation of them. The user should be familiar with the
details of the file structure. Error messages are of the form:

reason for error

FILE = filename BAD RECORD = octal number

DIRECTORY PATH = list of nested directories

Description of Messages
 

DSKRAT BAD

This message is obtained if the DSKRAT file contains any bad record
pointers, the DSKRAT date header word is not 5, or the number of data
words in the DSKRAT file does not match (NRECS+15)/16-+5. ‘!f the DSKRAT
is BAD, FIXRAT reconstructs it using parameters typed by c<ne user in
response to the following questions. If the user types CARRIAGE RETURN
to any of the questions, default values are used. The questions are:

INPUT OCTAL RECORD SIZE =
INPUT OCTAL FILE SPACE RECORD COUNT =
INPUT OCTAL CYLINDERS =
INPUT OCTAL HEADS =

The default values are respectively, 700, 6260, 313, 2. FIXRAT types
these values back to the user for verification then asks "OK?". If
the answer is YES, FIXRAT repairs the DSKRAT and continues, or else
it requests the parameters again.

BAD DISK ADDRESS

A pointer to a disk record is out of range. Acceptable range is between
1 and NRECS -1, where NRECS is the number of records available for file
system use. NRECS is stored in the DSKRAT data header. A record
address of 0 is acceptable only for the disk bootstrap loader file BOOT
in the MFD.

BAD RECORD ID

The first word of a record contains a number unequal to the record
address of the record. This message is preceded by 10 disk error
messagse as this problem could indicate a disk drive problem.

FIXRAT has difficulty determining whether the error is a disk drive
error or a broken file. This case occurs if a record has a bad
record identification word. The disk driver retries 10 times producing
10 disk error messages, then returns to FIXKAT, which ~rints the message
BAD RECORD II:. Be sure to allow FIXRAT 10 disk error rcssages before
assuming there is cisk drive trcuble.

E-10



A HATALITrDn D wT
BRA NIDCN SiiOMALUM

The second word of the second record (or greater) of a file does not

point to the beginning record of the file.

FATHER POINTER MISMATCH

The second word of the first record of a file does not pointsto the
beginning record address of the file directory of the file.

BACK POINTER MISMATCH

The back pointer of a record, word 4, does not point to the previous

record of the file, or if the current record is the first record of

a file, the back pointer is not 0.

BAD WORD COUNT

The data word count, word 5 of a record is not between 0 and 440.
Note that it is OK for a record to contain a word count of 0 which
indicates an empty record. ‘

BAD FILE TYPE

Word 6 of the first record of a file is not between 0 and 4, the legal

file types for Rev. 5 DOS.

TWO FILES POINT TO SAME RECORD

Two files point to the same first record. FIXRAT prints the name of

the second file only. This error may occur if the DSKRAT is changed

by a user overwriting DOS. Records already used have been erroneously
made available to new files.

BAD DAM POINTER

A DAM data file or DAM segment directory has a bad index in the first

record of the file. The nth index of the file must point to the nth

record of the file for all records of the file, or this message is

given. This error is repaired by FIXRAT.

UFD LONGER THAN RECORD

A UFD is longer than 1 record. DOS expects all UFDs to be only 1
record long.

BAD UFD HEADER

Data word 1 of a UFD file does not contain 8 (decimal), the first word

of a UFD header.

MAN |675 E-11



DIRECTORIES NESTED TOO DEEP

Directories may be nested to a depth of 100 levels. FIXRAT cannot
follow the directory tree because the user has nested directories to
more than 100 levels.

BAD STRUCTURE MESSAGES

FILE = MFD BAD RECORD = 7
DIRECTORY PATH = MFD
FIXRAT ABORTED

A MFD has been altered and damaged. The best action to take is to
copy the backup disk onto the "daily user disk" and continue from there.

DSKRAT NOT IN MFD
FIXRAT ABORTED

The DSKRAT has been accidentally deleted from the MFD. Suggested action
is same as above.

RECORD READ OK NOW CHECKS BAD
POSSIBLE DRIVE ERROR, FIXRAT ABORTED

Suggested action is to run the disk diagnostic on a scratch pack at
this point.

DIRECTORY RECORD READ OK NOW CHECKS BAD
POSSIBLE DRIVE ERROR, FIXRAT ABORTED

Suggested action is same as above.

CHECK FOR MFD INTEGRITY

FIXRAT checks that the first three entries in the MFD are DSKRAT, MFD
and BOOT. The DSKRAT may have any name and the name is used on the
disk pack ID (identification). The error messages thay may arise as
a result of one of these entries missing are:

DSKRAT NOT IN MFD, REPLACE IT?

MFD NOT IN MFD, REPLACE IT?

BOOT NOT IN MFD, REPLACE IT?

MFD HAS BAD NAME, REPLACE?

If YES (followed by CR) is responded to each of these questions, the
specified action asked in the message is performed. The user must not
delete or alter the DSKRAT, MFD, or BOOT since these are system files
used by DOS and DOS/\M.

E-12



FIXRAT and 30-Million Word Disk
 

FIXRAT supports the 30-million word disk. If the 30-million word disk
is treated as a single disk device (no partitioning), the disk numbers
0, 1, 2, 3, attached to the controller are 5252, 5253, 5254 and 5256, °*
respectively. If the disk is partitioned, disk numbers inc]ude head-
offset and number-of-heads information. If the user gives an incorrect
disk number, one of the following messages is printed at the terminal:

DEVICE, DSKRAT DIFFER IN HEAD COUNT. ABORT?

DISK READ ERROR with status of 17777

The user must restore FIXRAT (via the RESTOR command) with the correct
disk number, which is the one used normally with the large disk on
DOS, DOS/VM and COPY (Refer to Table 3-1).

7MAN 1675 -



APPENDIX F

FILE UTILITY

(FUTIL)

INTRODUCTION

FUTIL is a file utility command that provides commands for the user to
copy, delete, and list files and directories. FUTIL has an attach
command that allows attaching to subdirectories by giving a directory
pathname from either the MFD or the home-UFD to the subdirectory.
FUTIL allows operations not only with files within User-File-Directories
(UFD's) but also files within segment directories. For complex
operations, FUTIL may be run from a command file.

FILE STRUCTURE

A user should be generally familiar with the Prime file structure.
Refer to Section 2 entitled ''File Structures''. Some new terms that
are used to describe FUTIL commands are now described. Figure F-1
is a sample file structure.

The DOS/VM file structure on any disk pack is a tree structure where
the MFD is the root or trunk of the tree, the links between director-
ies and files or subdirectories are branches; and the directories and
files are nodes. A directory tree consists of all files and sub-
directories that have their root in that directory. In Figure F-1,
the directory tree for UFD1 is circled. An MFD directory pathname
consists of a list of directories and passwords necessary to move down
the tree from the MFD to any directory. For example, the MFD pathname
for SUFD11 is:

MFD MFDPASSWORD > UFD1 UFDIPASSWORD > SUFD11 UFD11PASSWORD

The character ''>" separates directories in the pathname and suggests
that one is proceeding down a tree structure.

An MFD directory pathname may optionally omit the MFD and may option-
ally include the logical disk numberof the pack or the packname.
Examples:

UFD1 UFDIPASSWORD > SUFD11 SUFD11PASSWORD
< 1 > UFD1 UFDIPASSWORD > SUFD11 SUFD11PASSWORD
< TDISK > UFD1 UFDIPASSWORD > SUFD11 SUFD11PASSWORD

MAN 1675 4



root
 

 

 
 

 

  

 

 

  
  

     
 

 

 

   

 
 

 

 

   

 

 

 

 

 

  
 

MED branch

DSKRAT BOOT UFD1 |node UFD2

SUFD11 SUFD12 SUFD22

| |
FILEA | FILEB FILEC

Directory Tree

Figure F-1. Sample File Structure.

F-2

level 1

level 2

level 3

level 4



Tha Inaqica
AIS LUBA

1a JFD as follows:

UFD1 UFDIPASSWORD 1 > SUFD11 SUFD11PASSWORD

If no pack name or disk number is given, the logical disk referred to

is the lowest numbered logical disk in the MFD in which UFD1 appears.

A user, using the ATTACH or DOS/VM LOGIN command may specify a parti-

cular user-file-directory in the file structure as the home-UEFD.

Additional FUTIL ATTACH commands may refer to either the MFD or the

home-UFD as the starting point. A home-UFD directory path name consists

of a list of directories and passwords necessary to move down the

tree from the home-UFD to any directory that has the home-UFD as the

root. For example, if the home-UFD is UFD1, the home-UFD path name

to SUFD11 is:

 

* > SUFD11 SUFD11PASSWORD

"k" represents the home-UFD. The home-UFD path-name to UFD1 is simply *.

A user-file-directory is a file that consists of a header and a number

of entries (0-72). Each entry consists of 1 to 6 character filenames,

protection attributes of the file, and a disk record address pointer

to the file. A segment directory is a file consisting of an unlimited

number of entries, each entry being a disk record address pointer to

the file. Anull pointer indicates no file at that entry. To refer

to a particular file in a segment directory, a user must specify the

file position of the entry in the segment directory. Refer to
Section 5 (PRWFIL) for details of file positioning. A user may
specify the position as an absolute position (record-number, word-

number) where record-number is between 0 and 32767 and word-number

is between 0 and 439. There are 440 data words in each disk record

so there are 440 files in each record of segment directory. The first

file can be referred to as (0,0), the second as (0,1), the 440th file

as (0,439), and the 441st file as (1,0). The construction (record-

number, word-number) is referred to as a segment directory filename.

In FUTIL, arguments to the commands are either user-file-directory

filenames or segment directory filenames depending on the directory

type the file is under. Furthermore, names specified as parameters to

the LISTF command of FUTIL are of either type depending on the directory

type.

DESCRIPTION OF FUTIL COMMANDS

 

To invoke FUTIL, type FUTIL. When loaded, FUTIL prints the prompt

character, >, and awaits a command string from the user terminal.

To terminate long operations such as LISIF, type CIRL P and restart

FUTIL at 1000. A user must type a command followed by a carriage

return and wait for the prompt character before using the next

command. The erase character '' and the kill character ? may be used

to modify the command string as in other commands such as the text

editor ED. In the following description of commands, underlined

letters represent the abbreviation of the command or argument. []

surround optional arguments. ... means the previous element may be

respected.

MAN 1679 F-3



* Indicates following information is a comment.

return to DOS/VM

FROM Directory-pathname

where Directory-pathname is of format:

<Ldisk Directory [Password] [Ldisk]> Directory [Password]

<Packname>

FROM defines the FROM directory in which files are to be
searched for the commands COPY, COPYSAM, COPYDAM, DELETE,
LISTF, TRECPY, TREDEL, UFDCPY, and UFDDEL. The directory
is defined from the directory-pathname whose format is
given above. The pathname may contain up to 10 directories
that may be segment directories as well as user-file-
directories. If segment directories are specified, the
user must have read access rights to them. If any error
is encountered, the FROM directory is set to home-UFD.
The first directory in the pathname may be *, which refers
to the home-UFD. The default FROM directory is the
home-UFD.

Examples:

FROM 0 CARLSO

Set FROM directory to CARLSO on logical disk 0. CARLSO must be
in the MFD on logical disk 0 and have a blank password.

FROM CARLSO ABC

Search the MFD on all started disks for CARLSO in logical disk
order 0 - 8. Set the FROM directory to the first directory named
CARLSO that is found. One of the passwords of CARLSO must be ABC.

FROM <TSDISK> CARLSO > SUB1 > SUB2

Set the FROM directory to SUB2. SUB2 must be a directory in SUB1;
SUB1 must be a directory in CARLSO; and CARLSO must be a directory
in the MFD on a disk with pack name TSDISK. The directories CARLSO,
SUB1, and SUB2 must have a blank password.

F-4



FROM *

Set the FROM directory to the home-UFD. The home UFD is
normally the last UFD the user has logged into, or attached
to with either the ATTACH or FUTIL ATTACH command. If one
were logged into CARLSO, the above command sets the FROM
directory effectively to CARLSO. This command does not have
to be given again if the user changes the home UFD.
Furthermore, this command does not have to be given at all
unless the FROM directory has been made something other
than the home UFD, since home UFD is the default. Example:

FROM * > SUBL

Sets the FROM directory to SUB1. SUB1 must be a directory
in the home UFD and have a blank password.

TO ~—~Directory-Pathname

TO defines the TO directory in which files are searched for
the commands COPY, COPYSAM, COPYDAM, TRECPY, and UFDCPY.
The directory is defined from the Directory-pathname. The
pathname may contain at most 10 directories that may be
segment directories as well as UFD's. If segment directories
are specified, the user must have read, write, and delete/
truncate access to them. The first directory in the pathname
may be *. The default TO directory is the home UFD. If any
error is encountered, the TO directory is set to home UFD (*).

ATTACH Directory-Pathname

ATTACH moves the home UFD to the directory defined by the
directory-pathname. The pathname may contain at most 10
directories. The first directory in the pathname may be *.
The last directory in the pathname must be a UFD. If segment
directories are specified within the pathname, the user must
have read access rights to them.

MAN 1675 ns



COPY FILEA [FILEB] [, FILEC [FILED] ].. .

Copy FILEA in the FROM directory to FILEB in the TO
directory and optionally FILEC in the FROM directory to
FILED in the TO directory. If FILEB is omitted, the new
file is given the same name as the old file. FILEA and
FILEC must be SAM or DAM files and cannot be directories.
Read access rights are required for FILEA and FILEC. If
FILEB exists prior to the copy, it must be a SAM or DAM
file and the user must have read, write, and delete/truncate
access rights to the target file (FILEB in this case). If
FILEB exists, it is deleted, then FILEA is copied to FILEB.
The file type of FILEB will be the same as FILEA.

Examples:

COPY FILEA

Copies FILEA in the FROM directory to FILEA in the TO
directory.

COPY FILEA , FILEB , FILEC.

Copies FILEA, FILEB, and FILEC in the FROM directory to
FILEA, FILEB, and FILEC in the TO directory.

COPY FILEA FILEB |

Copies FILEA in FROM directory to FILEB in TO directory.

COPY FILEAl FILEA2,FILEB1 FILEB2,FILEC1 PILEC2

Copies FILEA1, FIILEB1, and FILEC] in the FROM directory to
FILEA2, FILEB2, and FILEC2 in the TO directory.

COPY (0,0)

In this case, the FROM directory and TO directory must each
be segment directories. Copy the file at position (0,0) of
the FROM directory to position (0,0) of the TO ilirectory.
There are no access rights attached to these files, so
DOS/VM checks instead the access rights of the directory.
A user cannot set the FROM and TO directories if they are
segment directories without access rights to them. No
spaces are allowed in the name (0,0).

COPY (0,0) (0,1)

Copies the file at position (0,0) of the FROM directory to
position (0,1) of the TO directory, both of which are

segment directories.

F-6



COPYSAM FILEA [FILEB] [, FILEC [FILED] ].. .

same as COPY but also sets file type of FILEB and FILED
to SAM instread of copying the type of FILEA and FILEC.

COPYDAM FILEA [FILEB] [, FILEC FILED] .. .

same as COPYSAM but sets file type of FILEB and FILED to
DAM

TRECPY  DIRA [DIRB] [, DIRC [DIRD] ]

Copies the directory tree specified by directory DIRA
to directory DIRB, and optionally DIRC to DIRD. DIRB
and DIRD must be new directories. If DIRB is omitted,
DIRA is taken as the name of the directory to be copied
to. A directory tree consists of all files and subdirec-
tories that have their root in that directory. DIRA and
DIRC must be in the FROM directory. DIRB and DIRD are
created in the TO directory. Read access rights are
required for DIRA and DIRC but no access rights are
required of files or subdirectories within them.

DIRB and DIRD are created with the same directory type and
passwords as DIRA and DIRC and with default access rights.
The names, access rights and passwords of all files and |
subdirectories copied are also copied.

Example:

FROM MFD
TO MFD
TRECPY CARLSO CARNEW

Copies the directory tree specified by CARLSO in the MFD to
a new directory, CARNEW, in the MPD.

UFDCPY Copies all files and directory trees from the FROM directory
to the TO directory. The user must have owner rights in the
FROM directory. Furthermore, all files and directories in
the FROM directory must have read access rights. Files
already existing in the TO directory with names identical
to those in the FROM directory are replaced. The user
must have read, write, and delete access rights to files’
that are to be replaced.

 

MAM 1675S F-7



DELETE

TREDEL

Directories already existing in the TO directory with
names identical to those in the FROM directory cause the
copy operation to stop. Files and directories created in
the TO directory will have the same file type as the old
files with default access rights. The names, access rights
and passwords of all files and subdirectories within direc-
tory trees being copied are also copied. Other existing
files and directories in the TO directory are not affected.
UFDCPY is effectively a merge of two directories. Both
the FROM and the TO directory must be UFD's.

Example:

FROM CARLSO
TO CARNEW
UFDCPY

copies all files and directories from CARLSO in the MFD to
CARNEW in the MFD. Note that unlike the example for TRECPY,
the user has not specified the MFD as the FROM directory,
therefore, does not need to know the MFD password. In the

' example, CARNEW exists prior to the UFDCPY. With the
TRECPY example, CARNEW does not previously exist.

FILEA [FILEB] .. .

Deletes FILEA and optionally FILEB from the FROM directory.
FILEA and FILEB cannot be directories. The user must have
read, write and delete access rights to each file specified.
If FILEA and FILEB are in a segment directory, read, write,
and delete rights are required for the FROM directory.

Examples:

DELETE FILEA

DELETE FILEA FILEB FILEC FILED

DIRA [DIRB] .. .

Deletes the directory tree specified by directory DIRA and
optionally delete DIRB from, the FROM directory. DIRAand
DIRB must be directories. The user must have read, write,
and delete rights to the DIRA and DIRB; however read, write,
and delete rights are not required for files and subdirect-
ories nested within DIRA or DIRB. If FILEA and FILEDare
in a segment directory, read, write, and delete access rights
are required for the FROM directory. Note that the operating
system DELETE command must not be used to delete directories
because it does not free the disk space used by files within
the directory for system usage. TREDEL correctly frees disk
space to the system. |



UFDDEL

Deletes all files and directory trees (specified by
directories) within the FROM directory. User must give
the owner password in the FROM command and have read, write,
and delete access to all files and directories within the
FROM directory. These rights are not required for files
and subdirectories nested within the directories in the
FROM directory.

LISTF [Level] [LSTFIL] [PROTEC] [SIZE] [TYPE]

Lists the FROM directory pathname, the TO directory pathname
and all files and directory trees in the FROM directory at
the terminal. LISTF optionally follows each filename by its
protection attributes, size in disk records, and file type.
If the LSTFIL option is given, the list of files is sent
to a file named LSTFIL in the home UFD instead of to the
terminal. At a later time, a user may print that file on a
line printer. Level is a number specifying -the lowest level in
the FROM directory tree structure to be listed. (See Figure
F-1). The following list describes the output.

Level Output

Q the FROM directory name

1 the FROM directory and all files
and directories within it. (level
1 directories)

2 all output at level 1 and all files
and directories within level l
directories

If the level is omitted, the default is l.

The protection attribute of each file is printed as

Owner-Key Nonowner-Key

These keys are numbers with a range 0-7 that have the

following meanings:

no access allowed
read access only
write access only
read and write access
delete/truncate only
delete/truncate and read
delete/truncate and write
all access allowedN

O
W

m
S
A
N
F
©

MAN 1675 -



The possible file types are:

SAM for SAM file
DAM for DAM file
SEGSAM for SAM segment directory
SEGDAM for DAM segment directory
UFD for User File Directory

LISIF traverses the file structure as shown by the snaked line in
Figure F-2 generating printed messages in sequence as shown in the
circles adjoining the snaked line.

Using LISTF to produce a list of the sample file configuration shown
in Figure F-2, the output level is set to 3 and with the SIZE option,
the printed list appears as follows:

ft +FROM-DIR

FROM-DIR
TO-DIR

MFD

o
u

+

BEGIN MED 1

DSKRAT 1 BOOT 1

BEGIN UFDi 1
BEGIN SUFD11 1

FILEA 1

’ END SUFD11
BEGIN SUFD12 b

t
B
O

FILEB ]

END —_SUFD12 2
END UFD1
BEGIN UFD2 r

w

FILEC 1

END SUFD21
END UFD2 3

END MFD 1l

b
o

F-10



 

  
MFD
 

     
   

      

DSKRAT UFD 1

I
            

 

 

BOOT

    
   

SUFD 11 SUFD 12
          O

W

   
  

 

BEGIN
BEGIN SUFD 11

SUFD 12

~ IN
FILEA FILEB FILEC

ay, ee) FILEC

LY

        

         

Figure F-2. Typical Traverse of Directory Tree
by FUTIL during LISTF.

MAN 1675



LISTF upon encountering a directory prints the word BEGIN followed by
the name of the directory and its size in records. On leaving a
directory, LISTF prints END followed by the number of records used
by all files and directories within the directory tree headed by the
directory file. On encountering a file, LISTF simpiy prints its name
and size, squeezing as many file names as fit on each line. LISTF
skips a line whenever a directory follows a file or a file follows
a direcotry. LISTF does not count records in files lower than the
specified Level in ‘the FROM directory tree.

In the above example output, the number following MFD, 11, is the total
number of records used by the MFD directory tree and consists of all
files and directories on the disk pack. LISIF indents the printed
output one space for each level down in the tree the directory is
located. This format makes it easy to understand the relationship
of each directory to other directories in the tree.

RESTRICTIONS

In using FUTIL under DOS/VM, certain operations may intérfere with
the work of other users. For example, a UFDCPY command to copy all
files from a UFD currently used by another logged-in user may fail.
If any file in that directory is open for writing by that user, UFDCPY
encounters the error FILE ALREADY OPEN, and aborts. If the user
attempts to open one of his files for writing while UFDCPY is running,
the user may encounter that error. The FUTIL: LISTF, and TRECPY
commands cause the same interaction problems. Other FUTIL commands
such as COPY and DELETE can also interfere with the other user, but
the problem is not as serious as only one file is potentially
involved in a conflict. To prevent the conflicts, users working
together and involved in operations using each other's directories
must coordiante their activities. If two users consistently use the
same UFD at the same time, they must avoid the LISTF command of FUTIL,
and use the system LISTF command instead.

FUTIL operations when using the MFD must be done carefully. Never
give the command TREDEL MFD as the command deletes every file on the
disk except the MFD, DSKRAT and 300T. A LISTF or UFDCPY of the MFD
must be done only if no other user is using any files or directories
on that disk. A UFDCPY of the MFD to the MFD of another disk has
the effect of merging the contents of two disks onto one disk. A
user must be sure there is enough available space on the TO disk before
attempting this operation if it aborts. Also, the names of files and
directories on the two disks may conflict. To avoid the name conflict,
it may be desirable to UFDCPY the MFD of one disk into a UFD on another
disk. Each directory originally on the FROM disk becomes a subdirectory
in that UFD on the TO disk. For example, the contents of 10 diskettes
could be copied into 10 User File Directories on a 1.5M disk pack.
Note, a UFDCPY of an MFD does not copy the DSKRAT, MFD or BOOT to the
TO directory.

F-12



The effect of a UFDCPY from the MFD of a disk in use to the MFD of a
disk that was newly produced by the MAKE command is to reorganize the disk
files so that all files are compacted; that is, files have their records
close to each other on the new disk. After such a compaction, the
access time to existing files on the new disk is effectively reduced
from the access time on the old disk. Furthermore, new files tend
to be compact since all free disk records are also compacted. The
use of a compacted disk may improve the performance ofDOS/VM er DOS.

Users must not abort COPY or DELETE operations under DOS, but allow
them to run to completion. Aborting a COPY or DELETE operation may
cause a directory to contain incorrect entries. For example, this
may result in a file with a pointer mismatch or bad file structure
or a directory with a partial entry. DOS or DOS/VM will not run
correctly with a directory with a partial entry. FIXRAT must be run
immediately if these conditions are encountered. Under DOS/VM,
critical areas of code are surrounded by calls to BREAK$, a subroutine
that inhibits the CNIRL-P key. As a result, interruption of FUTIL
does not result in a bad file structure.

Error Messages

The following error messages are generated by FUTIL. In many cases,
FUTIL prints error messages generated by DOS or DOS/VM and retains
control, so users must be familiar with operating system error messages.
The list given here includes messages that may be encountered by
FUTIL. Most messages are preceded by a filename identifying the
file causing the error. Some of the error messages have the format:

reason for error

FILE = filename

DIRECTORY PATH = directory pathname

~
~

Unrecognizable command

ALREADY EXISTS

An attempt has been made to TRECPY, to a file that already exists,
or UFDCPY has attempted to copy to a directory that already exists.
If you intend to do the operation, the file in the TO directory
must first be deleted.

BAD NAME

A segment directory filename was given to a command that expected a
UFD filename or vice versa. The type of filename must match the type
of directory the file is contained in. :

MAM 1675 F-13



BAD PASSWORD

An incorrect password has been given in a FROM, TO or ATTACH command.
DOS/VM does not allow FUTIL to maintain control in case of a bad pass-
word so the FUTIL command must be given to restart FUTIL. The FROM
directory and TO directory are reset to home UFD in this case.

BAD SYNTAX

The command line processed by FUTIL is incorrect.

CANNOT ATTACH TO SEGDIR
 

The last directory in the directory pathname to an ATTACH command is
a segment directory. It must be a UFD, because ATTACH sets the home
UFD to the last directory in the path.

CANNOT DELETE MED
 

User has given the UFDDEL command while attached to the MFD. This
is not allowed.

DIRECTORIES NESTED TOO DEEP
 

Directories may be nested to a depth of 100 levels. User has attempted
to exceed this limit.

DISK ERROR

May indicate a disk error or may indicate a FUTIL attempt to process
a badly constructed segment directory. Running FIXRAT (Appendix E)
is recommended.

DISK FULL

The disk has become full before FUTIL has finished a copy operation.
For operations involving many files, some files are not copied, creating
only partially copied directories that may be of limited use. It is
suggested that the user delete such a structure immediately to prevent
confusion as to what has been copied.

IN USE
 

Indicates a FUTIL attempt to process a file in use by some other
user. It may also indicate an attempt to copy a directory to a
subdirectory within itself.

IS A DIRECTORY, CANNOT COPY TO IT
 

Same as ALREADY EXISTS.

F-14



SSee

User has attempted an operation on a file that violates the file
access rights assigned to that file. These rights may be changed by
the DOS/VM PROTEC command, if the user has given the owner password
on ATTACH.

NO ROOM USE DOS32
 

User is using FUTIL under DOS16 and has attempted an operation that
has caused FUTIL to rum out of room. This message is not likely to
occur as long as all segment directories processed are SAM segment
directories.

NO UFD ATTACHED

Self-explanatory.

NOT A DIRECTORY
 

User has given a directory-pathname which includes a file that is not
a directory. -

NOT FOUND

Self-explanatory.

POINTER MISMATCH
 

Indicates a bad file structure. Running FIXRAT is recommended.

PRWFIL EOF

User has attempted to reference a nonexistent file beyond the end of
a segment directory.

SEG-DIR ER

User has attempted to reference a file in a segment directory with an
entry of 0, which indicates file does not exist or the user has
attempted to reference a file beyond the end of the segment directory.

UFD FULL

Self-explanatory.

UNRECOVERED ERROR
 

Indicates either the user has attempted to write to a write-protected
disk, or disk error, or an attempt to process a bad file structure.
Running FIXRAT is recommended if the disk was not write-protected.

MAN 1675 F-15



DOS MASTER DISK

For systems to operate under DOS, all standard PRIME software is
supplied in the form of files stored on a master DOS disk. The user
can generate a listing of the contents of the master disk with the help
of the FIXRAT command. (For example, see Appendix T.) Of the many
files shown in the listing, those in the UFD's MFD, CMDNCO (or other
command UFD), and LIB (Library) are most important to DOS and the user.
These files contain saved command execution programs and both the source
and object forms of all standard library subroutines.

Contents of MFD

The MFD of a master disk typically contains the following entries:

MAN 1075 G-1



Each entry in the MFD is itself a UFD. On the Mster Disk only, each
entry in the MFDis an index of all UFD's in the system. Some typical
UFD's that are actively accessed by DOS itself or the user are:

DSKRAT

MFD

AIDS

BINED

DOS

DVBIN

ED

INDEX

TOCS

LIB

MATHLB

RTOS
1, 2, 3,4

U-CODE

SPARE

SRCLIB

T&M

Contains the Disk Record Availability Table.

MFD itself.

Source modules for various external utility
commands.

Source modules and command files for EDB.

Contains the bootstrap program that is ready by a
DOS BOOT paper tape program or by panel LOAD
microcode.

Run file of DOS.

DOS/VM support. Includes three different sets of
DOS/VM supervisor for three different configurations
(Refer to Section 6).

Source modules and command files for ed and FILED.

Command files, including INDEX] and INDEX2 that list
all files in Volumes I and II of the master disk.

Source modules for IOCS.

Object versions of all standard library programs.
For details of contents refer to the Subroutine
LIBRARY manual.

Source modules for the library of matrix manipulation
subroutines.

Source modules and command files for RTOS.

Microcode source.

An empty UFD.

Contains general-purpose ‘source programs to be assembled
as required by user.

Test and maintenance programs. (For information on
the use of these programs, refer to the Prime
Installation and Maintenance Manual.)

G-2



SPARE2, etc. are empty UFD's available to store the user's program and

files. The names can be changed by the CNAME command. New UFD's may

be created by the CREATE command.

UFD's such as PMA, FLIB1, etc. contain source and object versions of

Prime software for the sophisticated user who wants to generate custom
versions of PMA, the library, the loader, etc. (Prime provides source

files as a convenience only, and does not guarantee operation of versions

that are modified and assembled by the user.)

Contents of Command File CMDNCO
 

The command file UFD (typically CMDNCO) contains the names of the SAVEd

program files that execute DOS external commands.

Contents of LIB

The UFD LIB contains source and object versions of all standard Prime

FORTRAN/Math/I-O library routines. Library software is described in

the Subroutine Library manual. LIB also includes the IOCS subroutines.

FORTRAN library subroutines satisfy all the ANSI standard functions.

Also included are a collection of arithmetic and formatted I/O operations.

These are run-time operations and are invisible to the FORTRAN programmer.

These subroutines exist where it would be inefficient for the compiler

to generate in»line code because of its size, especially when the time

to execute the CALL is a small fraction of the subroutines execution

time.

MAN 1675 G-3



Contents of SRCLIB

The UFD SRCLIB is reserved for source programs or subroutines to be
assembled or compiled by the user. Among other programs, SRCLIB contains
the microcode assembler. This macro-package must be inserted before any ~
microcode instructions that are contained in the source file. For
further information, refer to the Prime Microcoders Handbook..

G-4



FORTRAN/MATH LIBRARY SUBROUTINES (SUMMARY)

The FORTRAN/Math Library is an extensive collection of. sub-
routines that perform mathematical operations and functions,
mode conversions and input/output operations. Math and
conversion routines are provided for all modes of variables:
single and double precision, fixed and floating point, complex
and integer.

Scaled Fixed Point Math and Trig Functions
 

These PMA-compatible subroutines are most useful where high
speed is critical and the programmer is willing to forego the
convenience of floating point. The user should read the
listing carefully for calling sequence and handling of results.

Single Double
Function Precision Precision

ADD -- DADD
SUBTRACT -- DSUB
MULTIPLY MPY DMPY
DIVIDE DIV DDIV
ROUND ROND RODD
TWO'S COMPLEMENT -- TWOS
ARCTANGENT ATNXI DATNX1
COSINE | COSX1 DCOSX1
SINE SINX1 DSINX1
EXPONENTIAL BASE 2 EX2X1 DEX2X1
EXPONENTIAL BASE E EXEX1 DEXEX1
LOG BASE 2 LG2X1 DLG2X1
LOG BASE E LGEX1 DLGEX1
SQUARE ROOT SQRX1 DSQRX1

To use these functions in a CPU that does not have the high-
speed arithmetic options, the user must force-load the unimple-
mented instruction package.

MAN 1675 G-5§



FORTRAN Math/Trig Functions
 

The following routines support the standard ANSI FORTRAN functions
and are also assembly language compatible.
source files.)

  

Function Source Argument Result
Name Filename* Mode Mode

SIN SINCOS - REAL REAL
DSIN DOUBLE DOUB

CSIN COMPLEX COMPLEX

Cos SINCOS REAL REAL

DCOS DOUBLE DOUBLE
CCcOoS COMPLEX COMPLEX

ATAN ATAN-2—s REAL REAL
DATAN DOUBLE DOUBLE

ATAN2Z  ATAN-2 REAL (2) REAL

DATAN2 DOUBLE (2) DOUBLE

TANH REAL REAL

SORT REAL REAL
DSQRT DOUBLE DOUBLE
CSQRT COMPLEX COMPLEX

EXP REAL REAL

DEXP DOUBLE DOUBLE

CEXP COMPLEX COMPLEX

ALOG REAL REAL

DLOG-2 DOUBLE DOUBLE

CLOG COMPLEX COMPLEX

ALOG10 ALOG REAL REAL
DLOG10 DOUBLE DOUBLE

ABS REAL REAL
TABS INTEGER INTEGER

DABS DOUBLE DOUBLE

CABS COMPLEX REAL

AMOD REAL (2) REAL
MOD INTEGER(2) INTEGER
DMOD DOUBLE (2) DOUBLE

AINT REAL REAL
INT IFIXINT REAL INTEGER

IDINT DOUBLE INTEGER

(Obtain listings from

Function Definition
 

Sine(R) (Radians)

Cosine(R) (Radians)

Arctangent (R)

Arctan(R1/R2) _

Hyperbolic Tan(R)

Square Root

E**R

Natural Log (R)

Common Log (R)

Absolute Value

SORT (R**2+1*#*2)

R1(MOD R2)

Truncate to Integer

* Same as function name unless otherwise specified.

G-6



 

  

RTRAN Math/Tria Famrtinane (Cnanttda)FORTRAN Math/Trig Functions (Cont'd)

Function Source Argument Result
Name Filename* Mode Mode Function Definition

AMAXO MAXO INTEGER (>1) REAL Choose Largest Argument
AMAX] MAX1 REAL (>1) REAL |
MAXO INTEGER (>1) INTEGER
MAX1 _REAL (>1) INTEGER
DMAX1 DOUBLE (>1) DOUBLE

AMINO MINO INTEGER (>].) REAL Choose Smallest Argument
AMIN1 MINI REAL (>1) REAL
MINO INTEGER (>1) INTEGER
MIN1 REAL (>1) INTEGER
DMIN1 DOUBLE (>1) DOUBLE

FLOAT INTEGER REAL Change Argument Mode
IFIX IFIXINT REAL INTEGER

SNGL DOUBLE REAL
C$S2 COMPLEX REAL
AIMAG COMPLEX REAL

DBLE REAL DOUBLE
CMPLX REAL (2) COMPLEX

SIGN REAL (2) REAL Value of Rl with Sign of R2
ISIGN INTEGER(2) INTEGER
DSIGN DOUBLE (2) DOUBLE
DIM REAL (2) REAL Positive Difference

IDIM INTEGER (2) INTEGER
CONJG ~ COMPLEX COMPLEX Complex Conjugate

OR | INTEGER(2) INTEGER 16-BIT Logical OR
SHFT INTEGER(2) INTEGER Shift Al by A2 Bits
SHFT INTEGER(3) INTEGER Shift Al by A2, Then A3 Bits
LT INIEGER(2) INTEGER Save Left A2 Bits of Al
RT F$SHFT INTEGER(2) INTEGER Save Right A2 Bits of Al
LS INTEGER(2) INTEGER Shift Al Left by A2 Bits
RS INTEGER(2) INTEGER Shift Al Right by A2 Bits

* Same as function name unless otherwise specified.

MAW 1675S G-7



Special FORTRAN Subroutines
 

Subroutine Source
Name Filename* Definition

OVERFL Check for Arithmetic Overflow

SLITE Set Panel Lamp
SLITET . SLITE Test and Clear Panel Lamp
SSWTCH SLITE Test Sense Switch

RND Random Number Generation
TRND Random Number Generation
DISPLAY Random Number Generation

Miscellaneous Conversion and Compiler Support Routines

These routines are invoked by the Compiler, but may also be
called by the user in assembly language programs. (See source
program listings for details.)

The names are formed according to the following conventions:

Functions Modes

A = Add 1 = Integer
C = Convert 2 = Real
D = Divide 5 = Complex
E = Exponentiation 6 = Double precision
F = FORTRAN Utility 8 = Exponent
H = Store (hold)
I = Input
L = Load
M = Multiply
N = Negate
O = Output
S = Subtract
7 = Clear (zero)

* Same as subroutine name unless otherwise specified

G-8



Ox Shawnie in Carmran

 

QuUO0T OUTANE oource

Name Filename* Definition

AC1-ACS ACCN Pseudo-accumilators 1-5
ARG$ Convert Address from Indirect to Direct

A$52 C=R+C
A$55 C=C+C
A$62 D=R+D

A$81 D=D* (2**T)

Note:
C$12 Convert I toR R=
C$16 Convert I to D C=COMPLEX
C$21 Convert R to I D=DOUBLE PRECISION
c$25 Convert R to C  I=INTEGER
C$26 Convert R to D  L=LOGICAL
C$52 Convert C to R
C$61 Convert D to I
C$62 Convert D to R
C$81 Convert D to I (the exponent)

D$52 MD$22 C=C/R
D$55 C=C/C
D$62 D=D/R

E$11 I=[**]
E$21 . R=R**]

E$22 R=R**R

E$26 D=R**D

E$51 C=C**T
E$61 D=D**T
E$62 D=D**R

E$66 D=D**D

F$AT Transfer a Variable Number of Arguments
F$BN Rewind .
F$DN Backspace
F$ER Print Error Message
F$FN End File Statements
F$HT FSER Process Pause and Halt
F$I0 Format Conversion
F$RN FORTRAN READ (Calls IOCS F$R1-8)
FSTR FORTRAN TRACE Statements
FSWN FORTRAN WRITE (Calls IOCS F$w1-8)

* Same as subroutine name unless otherwise specified.

MAN 1675 G-9



Subroutine Source
Name Filename*
 

H$55

L$55

M$52
M$55
M$62

N$SS

S$52
S$55
S$62

Z$80

Definition

Store Complex Number

Load Complex Into Pseudo Accumulators

C=C*R
C=C*C
D=D*R

-C

W
a
a

Oo
i
o
w

wC-

C-

D- A
a
”

Replace Binary Exponent with Zero

*Same as subroutine name unless otherwise specified.

G-10



10CcS
 

The Input Output Control Subsystem was developed in order to
achieve uniformity of I/0 and a degree of device independence.

The user (of FORTRAN IV, Macro Assembler, DOS, etc.) by specifying

a logical function number and a logical I/O transfer function,

can reach a physical unit through a series of tables that are

initialized by the operator.

In addition to this logical/physical mapping, the Input Output

Control Subsystem also contains all the device dependent

input/output subroutines. Also, there are some very basic

teletype and paper tape I/O routines which other subroutines

may use to communicate with these devices. There are tables

to allow for tab stops whether physically in the hardware as

in a typewriter, or simulated by using the "form" key in a

teletype.

MAN 1675 6-1



,

Input/Output Control System (I0CS) Summary:

Logical Unit (LUNIT) Standard Device Numher
Conventions (DEVNO) Assignments

1 source/binary input 0 pseudo output device
2 listing output 1 ASR
3 binary output 2 Paper tape reader/punch

4-8 others as required 3 Card reader/punch
4 Line printer
5 Mag tape
7 Disk/diskette

Initialization
 

CALL SETIOS (flag) Assign iogical units to physical units.

bit 1 = zero .
bits 2-4 = DEVNO for LUNIT = 5
bits 5-7 = DEVNO for LUNIT = 4
bits 8-10 = DEVNO for LUNIT = 1
bits 11-13 = DEVNO for LUNIT = 2
bits 14-16 = DEVNO for LUNIT = 3

CALL ATTDEV (LUNIT, DEVNO, PUNIT) Equate a logical unit (LUNIT
to a device number (DEVNO) and a physical unit
(PUNIT) i.e. which mag tape transport or, for

- disk, which DOS file unit number.

Logical Unit I/0
 

CALL CONTRL (KEY, NAME, LUNIT, ALTRTN) Perform control function
(KEY) for file name (NAME) on logical unit (LUNIT);
ALTRTN is entry point if command cannot be satis-

- fied.

KEY = 1 = open for read 5 = delete file
2 = open for write 6 = read/write by record
3 = open for read/write 7 = rewind
4 = close |

CALL RDASC (LUNIT, BUFR, N, ALTRTN) Read ASCII record of "N"
words into buffer (BUFR) from logical unit (LUNIT).

CALL WRASC (LUNIT, BUFR, N, ALTRTN) Write an "N' word ASCII

record.



CALL WRBIN (LUNIT, BUFR, N, ALTRTN) Write an "N' word binary

record.

Physical Device Formatted I/0
 

CALL C$X (KEY, NAME, PUNIT, ALTRTN) Perform control function

X = A = ASR L = Printer
P = Paper tape M = Mag tape
C = Cards D = Disk/diskette

CALL I$XASC ([PUNIT,] BUFR, N, ALTRTN) Read ASCII record.

If X = M or D, specify PUNIT; otherwize omit.

CALL O$XASC ([PUNIT,] BUER,N, ALTRTN) Write ASCII record.

CALL I$XBIN ([PUNIT,] BUFR, N, ALTRTN) Read binary record.

CALL O$XBIN ([PUNIT,] BUFR, N, ALTRTN) Write binary record.

Physical Device Unformatted I/0
 

CALL TIIN read one teletype character
CALL T10U type one teletype character
CALL TIIB basic teletype input
CALL T10B basic teletype output
CALL P1IN read one paper tape character
CALL P10U punch one character on paper tape
CALL P1IB basic paper tape input
CALL P10B basic paper tape output

MAN 1675 G-15



REAL TIME LIBRARY
 

Executive Functions
 

RQST
SCHED

- CONCLK
DISCLK
CONINT
DISINT
TERM
XWAIT
FBLCK
CFBLCK

ISA FORTRAN Extensions

Request program RTNBLK Return block
Schedule label RTNSTG Return a string
Connect clock of blocks
Disconnect Clock PBLEND Put block at end
Connect interrupt of-queue ;
Disconnect interrupt PBLTOP Put block at top
Terminate of queue
Wait PSTEND Put string at end
Fetch Block of queue
Conditional fetch PSTTOP Put string at top
block of queue

TAKBLK Take block from
top of queue

CHECKB © Check block count
ERPRNT Error print

GTBLPQ Get block, put on

 

queue

FORTRAN Interrupt Extensions
 

START
TRNON
DELAY
WAIT

INTSET Set entry point
INTACK Execute parameter
ISKED Exit interrupt code
FETPAR Fetch parameter(s)

Real Time Equivalents of FORTRAN/IOCS Subroutines
 

RTFS$HT
RTF$ER
RTFLEX
RTIOS

HALT and PAUSE statements
ERROR print out
Floating point exceptions
Basic teletype driver (I$ASC, O$ASC)

File Management Extensions
 

ABRTST

RTEXIT

RTGETA

DOSINT

Return to real time program after ABORT from file
management system.

Equivalent to CALL EXIT. Returns control to RTOS
executive.

Equivalent to GETA. Fetches alternate return value
passed by file management system.

Interface to file management systems teletype
routines

G-14



Real Time Virtual Instruction Package (VIP)

All the VIP available are written so they can be
interrupted and a single copy of VIP can serve
multiple programs.

RTOS System Components

RTOS Executive Modules

RTEXEC
FIFO
SYSLDR
DOSLDR
FM
SIM

RTOS executive
Queueing routine for parameter passing
Loader for 128 word block via MHDLNG driver
Loader for DOS SAVE files
File management system
Sample system information module

Off-Line DOS Commands
 

FILBLK

RTOSRA

RT12Z8F

Transfer data to/from random access file, 128 word
blocks, under FM.

Generate 128 word block random access file under FM.

Transfer data to/from non-DOS disk in 128 word

format.

On-Line Utilities
 

UDROOT

UDDOS

UDEXEC

UDDBUG

UMEXEC

UMDBUG

UMXD

Real Time

Base segment of overlayed on-lineutilities.

Overlay for background supervisor.

Overlay for executive function capability.

Overlay for TAP.

Non-Overlay version of executive functions.

Non-Overlay version of TAP.

Non-Overlay version of both TAP and executive functions.

Device Drivers
 

ASR
TASR
MHDSHT
MHDLNG
FHD
MTUD
PTPDRV
PTRDRV

MAN |1b75

Teletype
Terminating version of ASR
Moving head disk, DOS compatible
MHDSHT plus 128 word format
Fixed head disk
Mag tape

Paper tape punch driver
Paper tape reader driver

G-15



Real Time

AISD
AOSD
DISD
DOSD
AMLC

Real Time

Device Drivers (cont)

Analog input system
Analog output system
Digital input system
Digital output system
Asynchronous Multiline Controller

Device Exercisers
 

M9OTST
M7TST
ADTST
DATST
DiTsT
DOTST
TAMLC
DSKTST
ASRTST
PTPTST
PTRTST

9 track mag tape
7 track mag tape
Analog input system
Analog output system
Digital input system
Digital output system
Asynchronous multiline controller
Disk ,
Teletype
Paper tape punch
Paper tape reader

G-16



MATRIX LIBRARY
 

Command format: XMYYY, where X = ‘'blank'

XMIDN(A, N)

XMCON(A,N,M,K)

XMSCL(A,B,N,M,K)

XMTRN(A,B,N)

XMADD(A,B,C,N,M)

XMSUB(A,B,C,N,M)

XMMLT(A,B,C,N1, N2, N3)A(N1,N3)

XMINV(A,B,N,WORK,NP1,
(X41)

XMADJ(A,B,N,IW1,1IW2,1IW3,IW4,IERR) A(N,N)

= real
D = double precision
I = integer
C = complex

A (N,N) = I(N,N) Identity matrix .

€

A(N,M) = K(N,M); aij =k ?

A(N,M) = K*B(N,M); aij = kbij

A(N,N) = B(N,N)!; aij = bji

A(N,M) = B(N,M)+C(N,M); aij = bij + cij

A(N,M) = B(N,M)-C(N,M); aij = bij - cij

B(N1,N2)*C(N2,N3)

NPN,IERR) A(N,N) = B(N,N)~2
Scratch area WORK of size NPl X NPN
where NP1=N+1; NPN=N+N

IERR returned as 0 inversion successfully
completed
matrix was non-invertible1

Z NP1i#N+1 or NPN # N+N

adjoint of 4 B(N,N)
IW1,1W2,1W3,IW4=work area X(N)

IERR = 0 adjoint found successfully
= 1 (NC€2, no adjoint possible

aij = signed cofactor of Bij

N2,1W3,1W4,IERR)

DET = determinant of B(N,N)
IERR = 0 determinant found successfully

1 N = 0, no determinant possible

XMCOF (COF,B,N,IW1,IW2,IW3,IW4,I,J,IERR) COF=(I,J) signed

MAN 1675

cofactor of B(N,N)

IERR = 0 cofactor successfully found
= 1 no cofactor found or subscript

error

G-17



XLINEQ(X,Y,A,WORK,N,NP1,IERR) Solve for X in Y(N)=A(N,N) X(N)
(X=T)

IERR 0 solution successfully
found
1 matrix was singular
2 NP1#N+1

PERM (IPERM,N,IW1,IW2,IW3,LAST [,RESTRT]) Compute the next
permutation of N elements.

COMB(ICOMB,N,NR,IW1,IW2,1W3,LAST [,RESTRT]) Compute the next
combination of NR out of N elements.

G-18



VIP LIBRARY (Virtual Instruction Package)
 

The following subroutines are provided to execute unimplemented
instructions (UII's)

High Speed Arithmetic

DLD
DST
DAD
DSB

Double precision load PIM Position for integer
Double precision sto
Double precision add
Double precision sub

PRIME

EAA

ENTR

CREP

RTN
JEQ
JNE

300

Effective address to
A-register
Enter subroutine on
stack
Call recursive entry
procedure

re PID Position for integer
MPY Multiply

tract DVD Divide
NRM Normalize

JLE Jump if less than or
JGT Jump if greater than
JLT Jump if less than
JGE Jump if greater than
JDX Jump and decrement X
JIX Jump and increment X

Return from subroutine JSX Jump and store X
Jump if equal
Jump if not equal

Floating Point Arithmetic

Precision
Single Double
FLD DFID Load
FST DFST Store
FAD DFAD Add
FSB DBSB Subtract .
FMP DFMP Multiply
FDV DFDV Divide
FCS DFCS Compare and Skip
FCM DFCM Complement
FLX - Load floating index
FLOT - Float
INT - Fix as integer
FRAC - Fix as fraction
FRN - Round up
FSZE - Skip if zero
FSNZ - Skip if not zero
FSMI - Skip if minus
FSPL - Skip if plus
FSLE - Skip if less than or equal to zero
FSGT - Skip if greater than zero

MAN 1675 G-19

multiply
divide

equal

or equal



USE OF DOS FILE SYSTEM

INTRODUCTION

This appendix gives guidance in and examples of how to use the file
system. The expanded key definitions of SEARCH, PWRFIL, and ATTACH have
been rewritten in this appendix with mnemonic keys. The following
examples use variables defined and initialized by the insert file KEYCOM.

A user wishing to use these keys mist have the statement INSERT KEYCOM
in his FORTRAN program after the storage specifiecation statements
and before any data statements. The user will have to copy KEYCOM to
the appropriate UFD before compiling the program(s). This appendix
provides examples of use of the file system. (Refer to "Examples". )

The following example programs are:

Program Name Function

KEYCOM Provides mnemonic keys for PRWFIL,
SEARCH, and ATTACH.

SAMWRT Writes a SAMdata file.

DAMWRT Writes a DAM data file.

REDFIL Reads a SAM or DAM file or unlimited
length and prints the largest integer
in the file. This program also shows
how to use alternate return.

RDLREC Reads logical record number n from a file
of fixed-length recorded.

CRTSEG Creates a segment directory.

REDSEG Reads file on a segment directory
and prints a specified word (record)
in that file.

RDVREC Reads logical record number n from a
file on variable-length records.

GPTRFL Generates a pointer file that consists
of two-word pointers to each logical
record in another file.

MAN 1675 Hel



C KEYCOM JPC 26 MARY 1974
C FROVIDES MNEMONIC KEYS FOR PRNFIL, SEARCH. ANO ATTACH

INTEGER PREAD. PHRITE, PREREL. PREARES, POSREL. POSABS. PCONY,
* OPHRED, OPNWRT. OPNETH. CLOSE. DELETE. REWIND.
a TRNCAT, UFDREF. SEEEee” HOF ILE. NTSEG. NDSEG, NENUFD.
4 MFOUFD. CURUFD, SEGUFD. HOMUFD, SETHOM

DATA PREAD. PNRITE. PREREL. PREABS, POSREL, POSAES., PCONY
4 “ o:4. 2. :@, :14, [28 , : 38, :488/
DATA OFNRED, OPNWRT. OPNBTH, CLOSE. DELETE. REWIND. TRNCAT

x “ A, 2, Zs 4, Su Va 2 “

CRTA UFDREF. SEGREF. NTFILE. NOFILE. NTSEG. NOSEG, NENUFD
4 “7G. :186, : A, :2858, :46GG, : S000, :19066-

DATA MFDUFD. CURUFD, SEGUFD, HOMUFD, ©SETHOM

“ 7” a, 2 4. &. 4 7



SAMWRT. CARLSON JULY 18, 1974

PROGRAM SAM-HRITE TO WRITE A SAM DATA FILE

THE FILE IS 1966 WORDS WRITTEN FROM ARRAY BUFF.

RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE RUNNING THE PROGRAM.

INTEGER BUFFC1660). PBUFF, FUNITL

VARIABLE DEFINITIONS:
BUFF- ARRAY TO BE NRITTEN TO A FILE
PRUFF- POINTER TO BUFF
FUMITS— CONTAINS 1. REFERS TO FILE UNIT 1

ROUTINES CALLED
LOL, SEARCH. PRNFIL. EXIT

REYCOM CONTAINS FILE KEY DEFINITIONS

INSERT KEYCOM

DATA FUNITI/71~

O
O
O

O
O
H
O
O
A
O
O
A
O
O
K
R
A
N
O
O

A
H
A
O
A
H
a
n
a
a

INITIALIZE BUFFER CONTENTS
00 16 I=1., 1666
BUFFCIS=1

8 CONTINUEre

LOC RETURNS A POINTER TO ITS ARGUMENT

' PBUFF=LOCCBUFF>

OPER A NEN SAM DATA FILE CALLED SAMFIL IN THE CURRENT UFO
FOR WRITING ON FILE UNIT 4.
OF MOST CALLS THE UFDREF KEY IS OMITTED SINCE ITS VALUE IS &.

= neeeee ~
THE FOLLONING STATEMENT WILL BE COMPILED AS IF IT WERE wr

TEMP=GPNNRTINTF ILE+UFOREF

CALL SEARCHCTEMP., “SAMFIL’. FUNITA, @

THE USE OF MULTIPLE MNEMONIC KEYS WILL GENERATE MORE CODE THAN

THE USE OF NUMERIC KEYS.

CALL SEARCHCOPNNRT+NTFILEFUFOREF. “SAMFIL’. FUNITI, 8

WRITF 1666 WORDS FROM BUFF INTO FILE UNIT 1.

CALL PRHFILCPHRITE. FUNITL. PBUFF. 1088. 6, S>

CLOSE FILE. THIS RELEASES FILE UNIT 1 FOR REUSE AND INSURES

ALL FILE BUFFERS HAVE BEEN WRITTEN TO THE DISK.

CALL SEARCHC(CLOSE,. @, FUNIT1. &>

RETURN TO DOS

CALL EXIT

oO
o
a
o
n
n

O
o
o
0
N
O
O
n

A
N
O
A
A
N
H
A
N
N
A
M

A
A
N

END H-3

* @

MAN 1675



O
O
a
O
a
a
n

O
O
O
O

A
k
e
¥
N
O
O
A
A
O
A
O
a
a
n
a
a
o

a
n
o
n

1
Cc

Cc
Cc
Cc

C

c
Cc

c
Cc

Cc

Cc
Cc
Cc

Cc

DAMWURT, CARLSON. JULY 19,1974

PROGRAM DAM-WRITE TO WRITE A DAM DATA FILE

NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL IS THE
NEN FILE KEY SUPPLIED TO SEARCH IN CREATING THE FILE.

RESTRICTIONS: DAMFIL SHOULD MOT EXIST BEFORE RUNNING THIS PROGRAM.

INTEGER BUFFC1689). PBUFF. FUNITSL

VARIABLE DEFINTIONS
BUFF- ARRAY TO BE WRITTEN TO A FILE
PBUFF- POINTER TQ BUFF
FUNITI- CONTAINS 1. REFERS TO FILE UNIT 4

ROUTINES CALLED
Lil, SEARCH, PRMFIL, EXIT

INSERT KEYCOM

DATA FUNITI“1~/

IHITIALISATION

DO 16 I=1. 160a
BUFF CIS=1I

8 CONT INUE

PEUPFF=LOCCBUFF >

OPEN A NEW DAM DATA FILE CALLED DAMFIL IN THE CURRENT
UFD FOR WRITING GN FILE UNIT 4.

CALL SEARCH COPNNRT+NDFILE+UFDRE. “ORMFIL’. FUNITL, @2

WRITE 1664 WORDS FROM BUFF INTO FILE UNTT 4

CALL PRMFILCPWRITE, FUNITI. PEUFF. 18m6, @. &>

CLOSE FILE

CALL SEARCH(CLOSE. @FUNIT1, @>

RETURN TO DOS

CALL EXIT

END
#6



C REDFIL, CARLSGN: JULY 16.1974

Cc
C PROGRAM REAO-FILE TO READ A SAM OR DAM FILE OF UNLIMITED LENGTH
C AND: PRINT THE LARGEST INTEGER IN THE FILE.
Cc
C THIS PROGRAM SHOWS HON TO USE THE ALTERNATE RETURN FEATURE
C OF SFARCH AND PRWFIL AND HOW) TO USE GETERR AND PRERR IN
C CONJUHCTION WITH THE ALTERNATE RETURN. NOTE THAT THE PROGRAM
C DOESN“ T CHECK IF THE FILE IS SAM OF DAM TO THE USER. “SAM AND
Cc CAM FILES ARE FUNCTIONALLY EQUIVALENT.
Cc

C RESTRICTIONS: NONE
c
Cc

INTEGER BUFF C1G@>, PBUFF, UERVECC49, FUNITI. LARGEST. FHAME CS >. N

Cc
C VARIABLE DEFINITIONS
C SUFF- BUFFER TO HOLD INFORMATION READ FROM FILE
C PBUFF- POINTER TO BUFF
C UERVEC- USER ERRGE VECTOR. HOLDS ERROR VECTOR OBTAINED FROM Dos

C FPUNITI- CONTAING 2. USED TO REFER TG FILE UNIT 1
C LARGST- VARIABLE TO HOLD LARGEST INTEGER IN FILE
C FNAME- HOLDS A FILE NAME
C
C ROUTINES CALLED
C LOC. SEARCH. PRWFIL. GETERR. PRERR, EXIT
Cc

FINSERT KEYCOM
Cc

DATA FUNITLAL/

Cc

C
C INITTALIZATION

C
FISUFF=LOCCBUFF >
LARGST=-S2767

C .

C ASK USER FOR FILE NAME. FORTRAN UNIT 1 IS THE USER TERMINAL.

Cc
16 WRITECL, 1886
1966 FORMATC“TYPE FILE NAME“)
Cc
C READ FILE NAME

FEADCL, 191G 9 CPMAME CTO. T=1. 22
A616 FORMAT CSAS) .
Cc -

C OPEN FNAME IH THE CURRENT UFD FOR READING ON FILE UNIT 1.

C IF ANY ERROR. GO TO LABEL 196.
Cc

CALL SERRCHCOPNRED, FNAME. FUNITL, £186)

MAN 1675



Cc

C READ FILE 1966 WORDS AT A TIME. SET LARGST TO THE LARGEST INTEGER
C READ. WHEN END OF FILE IS REACHED, THE ALTERNATE RETURN OF
C PRWFIL SENOS CONTROL TO LABEL 56.
Cc
38 CALL PRNFILCPREAD, FUNITI. PBUFF. 196, 8. $56)
Cc
C 166 NOURDS READ INTO BUFF. SET LARGEST
Cc

DO 46 I=1, 196

IF <LARGST. LE. 9. AND. BUFFCI. GE. @>) LARGST=BUFFCI>
C
C THE ABOVE TEST IS DONE BECAUSE IF BUFFCIX-LARGST IS GREATER
C THAN G2767, THE FOLLONING COMPARISON FAILS DUE TO ARITHMETIC OVERFLON

IF <LARGST. LT. BUFFCI>> LARGST=BUFF CID
46 CONT INUE
C
C LOOP PACK TO READ MORE DATA FROM FILE
Cc

GO TO 38
Cc
C ALTERNATE RETURN TAKEN ON PRNFIL. SET ERRGR TYPE FROM ERRVEC
C THROUGH A CALL TO GETERR. :
Cc
38 CALL GETERRCUERVEC, 43>
Cc
C IF ERROR TYPE NOT END OF FILE (CODE “PE’>. PRINT THE
C ERROR MESSAGE WITH PRERR AND RETURN TO Das.
C

IF CUERVECCL>. EQ “PE’) GO To 66
CALL PRERR
CALL EXIT

C
C END OF FILE. NUMBER OF WORDS IN PRNFIL CALL LEFT To BE
C TRANSFERRED IS IN UERVECC2>
CN IS SET TO NUMBER OF WORDS TRANSFERRED ON LAST CALL.
Cc .

6 H=166-UERVECC22
IF «N. EG @) GO Ta S&

&

C
C SET LARGST
C

DO 76 I=1.N

IF CLARGST. LE. @ AND. BUFFCI>. GE. @> LARGST=8UFFCI>
IF CLARGST. LT. BUFFCID® LARGST=BUFFCIa

76 CONTINUE :
Cc
C THE FOLLONING PRMFIL CALL ACTS AS A NO-OPERATION ON THE FILE
C BUT PUTS THE FILE POINTER IN ERRVEC.

H-6



CALL PRWFILCPREAD. FUNITA. &@, & Gd
CALL GETERRCUERVEC., 4)

&®

FILF POINTER IS (RECORD-NO..WORD-NO. > IN UERVECC3) AND UERVEC<4).
IF FILE POINTER [IS ¢@.@> AT THIS POINT. IT INDICATES THE FILE
CONTAINS NO DATA. ©O

0
0

O
n

IF CUERVECCS>. EQ. @ AND. UERVEC<4>. EQ. @> GO TO 116

FILE WOT EMPTY. PRINT LARGST.

WRITE CL. 1626>0LARGST

G26 FORMATC “LARGEST INTEGER IN FILE IS “Ié)

CLOSE FILE AND RETURN TO BOS

w
W
w
O
o
g
k
F
e
O
A

4 CALL SERRCHCCLOSE, @. FUNITI, >
CALL EXIT .

OQ

C ERROF IN ATTEMPT TO OPEN FILE
C PRINT MESSAGE AND GET ERROR CODE.
c
164 CALL PRERR

CALL GETERRCUERVEC. 1>
Cc , .
C IF ERROR IS NAME NOT FOUND CCODE “SH“>. GO TO LABEL 16 TO ASK
C FOR A NEW NAME OTHERWISE GIVE UP AND RETURN TO DOS.
C ,

IF CUERVECCL). EG “SH. GO TO 14
CALL EXIT

FILE EMPTY

O
o
N
M

116 WRITE SA, 1626>
1636 FORMATC’FILE EMPTY“ >

GO TO 346
Cc

ENE:

#&

MAN 1675



T
m
e
r
r
o
r

O
O
O
O
H

A
H
N
O
G
A
K
A
H
H
H
A
A
A
N
D
A
G

P
M
O
O
O
O
E
A
I
O
O
A
N
G
O
H
O
O
A
A
I
n
N

RDLRFEC, CARLSON, JULY 18.1974

RDOLFEC- REAM LOGICAL RECORD
PROGRAM TO READ LOGICAL RECORD NUMBER N FROM A FILE CONSISTING
OF FIXED LENGTH RECORDS

IN THIS PROGRAM THE FILE ACCESSED IS CONSIDERED TO CONTAIN
AN UNLIMITED HUMBER OF LOGICAL RECORDS. EACH RECORD CONSISTING
OF M WORDS. THE PROGRAM READS AND TYPES THE CONTENTS OF RECORD
NUMBER NAS M INTEGERS. THE FIRST RECORD OF A FILE IS RECORD NUMBER &.
NOTE THAT A LOGICA. RECORD IS MEARLY A GROUPING OR WORDS IN
A FILF. IT HAS NO RELATION TO THE PHYSICAL DISK RECORD.

RESTRICTIONS: RECORD SIZE MUST BE BETWEEN 1 AND 1666
RECORD NUMBER MUST BE BETWEEN © AND S2rt7
CRECORD-SIZE>*CRECORD-NUMBER? MUST BE LESS THAN
&, 386,668 (2**23> BECAUSE FLOATING POINT NUMBERS ONLY REPRESENT
6. & DIGITS. . .
THE RECORD MUST BE IN THE FILE

INTEGER PRUFF. BUFF(1966), FUNITI. FNAMECS). RECSIZ. RECNUM, POSITN,
x ABSPOSC2)

REAL FRECSZ, FRCNUM. FPOSTN, PRECSZ

VARIABLE DEFINTIONS
BUFF- BUFFER USED TO HOLD A LOGICAL RECORD
PEUFF- POINTER TO BUFFER
FUNITI- CONTAINS 4. USED TO REFER TO FILE UNIT 1
FNAME- HOLDS A FILE NAME
RECSIZ—- LOGICAL RECORD SIZE
RECHUM- LOGICAL RECORD NUMBER
POSTIN- RELATIVE POSITION TO POSITION TO REQUESTED RECORD
RESPOS- AGSOLUTE POSITICN TO POSITON TO REQUESTED RECORD
FRCNUM- FLOATING POINT LOGICAL RECORD NUMBER
FRECSZ-— FLOATING POINT LOGICAL RECORD SIZE
FPOSTH- FLOATING POINT POSITION NEEDED TO POSITION TO REQUESTED RECORD
PRECSZ- PHYSICAL DISK RECORD DATA SIZE. USED TO FORM

TWO WORD ABSOLUTE POSITION.

ROUTINES CALLED
LOC, SEARCH, FLOAT. INT. AMOD. GINFO. PRWFIL, EXIT. GETERR, PRERR

SINSERT KEYCOM
Cc

Cc
Cc
Cc

DATA FUNITI/17

INITIALIZATION



PBUFF=LOCCBUFF >

ASK FOR FILE NAME

WRITECA,. 1666>
GGG FORMATC“TYPE FILE NAME>

READ FILE NAME

READY 1, 16499 ¢FNAMECI2, I=4. 3
@iG FORMATCSAZ>

OPEN FNAME IH THE CURRENT UFD FOR READING ON FILE UNIT 4

q
Q
a
o
0
o
F

O
N
O
F
H
O
O
N

CELL SEARCHCOPNRED FNAME. FUNITL. So

FOR RECORD SISE

N
o
o
n

2
‘t
y

f
y

m WRITECL. 1929)
14826 FORMATC“TYPE RECORD SIZE”)

READA. LBZQ.RECSIS
1636 FORMAT<CIS.

IF <RECSIZ. GE. 1. AND. RECSIZ. LE. 1666> GO TO 36

WRITECL, 18465
14640 FORMATC“BAD RECORD SIZE“3

GO TO 26

ASK FOR RECORD NUMBER. FIRST RECORD IS NUMBERED G.

8 WRITECL. 18589
65G FORMATCYTYFE RECORD NUMBER” >

READCL. 163@> RECNUM
IF <RECNUM. GE. @2 GO TO SS
WRITECL. 195123

1651 FORMAT CY BALD RECORD NUMBER>
GO TO 36

C
C CHECK IF RECORD IS MORE THAN 22767 WORDS FROM BEGINNING OF

C FILE IF SO. USE ABSOLUTE POSITIONING ELSE USE RELATIVE

C POSITIONING. .

i

oo FRECS2=FLOATCRECSIS
FRONUM=FLOATCRECNUM>
FPOSTN=FRECSZ+FRONUM
IF CFPMSTN. LT. e2eeeqe. > GO TO 46

WRITE CL. 1855.

1655 FORMAT (“RECORD-NUMBER+RECORD-SIZE IS TOO LARGE “>

GO TO 26

4&6 IF <FROSTN. GT. 22767. > GO TO 166

MAN 1675 H-9



RECORD IS LESS THAN 32767 WORDS FROM BEGINNING. USE RELATIVE
POSITIONING.
NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A RECORD
ANYWHERE IN THE FILE. NOT JUST FOR THOSE RECORDS BEYOND WORD
32767. RELATIVE IS SHOWN IN HERE ONLY FOR AN EXAMPLE.

POSTTN=RECS I2*RECNUM

POSTTION TG THE RECORD AND READ RECSIZ WORDS INTO THE BUFFER |

CALL PRWFILCPREAD+PREREL, FUNIT1I., PBUFF,. RECSIZ, POSITN, $300)

GO Tf 206 TO TYPE RECORD CONTENTS

GO TO 268

RECORD MORE THAN 32767 WORDS FROM BEGINNING OF FILE. USE
ABSOLUTE POSITIONING
GET PHYSICAL DISK DATA RECORD SIZE FROM DOS

O
O
O
O

O
f
f
A
O

A
N
n
A
A
A
N
D

186 CALL GINFOCBUFF, 4)
PRECSZ=FLOAT(BUFF¢4>> .

Cc ’

C CALCULATE ABSOLUTE POSTION CRECORD-NUMBER, WORD-NUMBER>
C THAT RECORD STARTS AT AND PUT IN ABSPOS<(1> AND ABSPOS<2>
Cc

ARSPOS(1)=1NTCFPOSTN/PRECSZ>
ABSPOS¢2>=INTCAMODCFPOSTN, PRECSZ>)>

Cc
C POSITION TO THE RECORD AND READ RECSIZ WORDS INTO THE BUFFER
c ;

CALL PRWFIL<CPREAD+PREABS. FUNITI. PBUFF. RECSIZ. ABSPOS. $298)
Cc
C RECORD READ. NOW TYPE IT.
Cc
206 WRITEC1, 1966> RECNUM, RECSIZ

1666 FORMATC’RECORD “I6.% CONTAINS “Ié.” ENTRIES AS FOLLOWS’)

WRITE CL, 19769 (BUFFCID, T=4. RECSIZ)

197G FORMATCAGI7) -
c
C RETURN TO DOS AFTER CLOSING THE FILE
c ~

CALL SEARCHCCLOSE, @FUNITL>
CALL EXIT

Cc
C ERROR WHILE ATTEMPTING TO READ THE RECORD
Cc
386 CALL GETERRCBUFF, 1>

CALL PRERR

IF (BUFFC(1>. EG. “PE’> GO TO 365
CALL EXIT

c
C END CF FILE REACHED, REWIND FILE AND TRY AGAIN.

Cc
395 CALL SEARCHCREWIND., 6, FUNITI. @>

GO TO 28
Cc

END

$2 H-10



ia,SS AE 6 ODA.

CRISFG. CARLSON. JULY 12, 1974

CRTSEG- CREATE-SEGMENT-DIRECTORY
THIS PROGRAM SHONS HON TO CREATE @ SEGMENT DIRECTORY AND WRITE
FILES INTO IT.

RESTRICTIONS: SEGDIR SHOULD NOT EXIST BEFORE RUNNING THE PROGRAM.

INTEGER PRUFF. BUFFC193. SGUNIT. FUNIT

VARTABLE DEFINITIONS
PUFF- BUFFER TQ WRITE TO SEGMENT DIRECTORY FILES
PBUFF- POINTER TO BUFF
SGUHTT- CONTAINS 41, FILE UNIT USED FOR SEGMENT DIRECTORY
FUNIT- CONTAINS 2 FILE UNIT USED FOR DATA FILES

INSERT KEYCOM

DATA SGUNIT. FUNITA4L. 27

INITIALIZATION

O
O
O
O

A
F
O
A
O
K
N
A
N
N
O

A
n
m
a
A
n
n
A
o
O
A
M

PEUFF=LOC(BUFF >
OO 16 I=1.16

BUFF CI s=1
9 CONT INUE

OPEN A NEN SAM SEGMENT DIRECTORY CALLED SAMDIR IN THE
CURRENT UFD FOR READING AND NRITING ON FILE UNIT SGUNTT-

CALL SERRCHCOPNETH+NTSEG+UFDREF, “SEGDIR-. SGUNIT. @

OPEN A NEN SAM DATA FILE FOR WRITING ON FILE UNIT FUNIT. WRITE
THE DISK LOCATION OF THIS NEN FILE AT THE FILE POINTER OF
THE SEGMENT DIRECTORY OPEN ON FILE UNIT SGUNIT.
THE FILE POINTER POINTS TO WORD NUMBER @ OF THE SEGMENT DIRECTORY.

CALL SEARCHCOPNMRT+NTFILE+SEGREF. SGUNIT. FUNIT. @

WRITE 48 WORDS FROM BUFF INTO THE DATA FILE

CALL PRMFILCPWRITE, FUNIT, PBUFF, 16, 8, @>

CLOSE THE DATA FILE

CALL SEARCHCCLOSE, @. FUNIT., @>

O
O
O
O

A
O
N

A
n
N
a
A
a
A
A
N

A
n
a
A
O
P
F

REPLACE BUFF WITH NEN DATA

H-11
MAM1675



oO
O
O
O
O

hy
oO

N
0
0

O
0
7

A
O
N

A
O
N

6

DO 26 I=1,18
BUFF CI a=J*16

CONTINUE —

OPEN A DIFFERENT NEW SAM DATA FILE ON FUNIT. PUT THE
DISK LOCATION IN NORD NUMBER 41 OF THE SEGMENT DIRECTORY.
THIS IS DONE IN TNO STEPS. FIRST BY POSITIONING THE FILE
POINTER OF THE SEGMENT CIRECTORY FORNORD ONE WORD AND THEN
BY CALLING SEARCH AS SHOWN ABOVE.

CALL PRWUFILCPREAD+PREREL, SGUNIT. @. 1. G°
CALL SERRCHCOPNNRT4+NTFILE+SEGREF. SGUNIT. FUNIT., >

WRITF 4G WORDS IN THE FILE

CALL PRNFILCPWRITE, FUNIT, PBUFF, 1, &, 8)

CLOSE THE DATA FILE

CALL SEARCHCCLOSE. @. FUNIT. @2

CLOSE THE SEGMENT DIRECTORY

CALL SEARCHCCLOSE, @. SGUNIT. @>

RETURN TO DOS

CALL. EXIT

END

H-12



REDSEG. CARLSON JULY 12. 1974

REDSEG- REAC-FILE-IN-SEGMENT-DIRECTORY
THIS PROGRAM READS FILE NUMBER N IN A SEGMENT DIRECTORY AND
TYPES WORD NUMBER M IN THAT FILE. THE FIRST FILE IN THE OTRECTORY
1S FILE NUMBER @ THE FIRST WORD IN THE FILE IS WORD NUMEER 8.

RESTRICTIONS: THE FILE NUMBER MUST BE BETWEEN & AND 32767.
THE FILE MUST BE IN THE SEGMENT DIRECTORY.
THE WORD NUMBER MUST BE BETWEEN @ AND 32767.
THE WORD MUST BE IN THE FILE.

N
|
O
N
A
A
N
A
M
H
F
A
O
N
O
O

INTEGER PRUFF. BUFF. SGUNIT. FUNIT. SEGDIRCS>, UERVECCS). FILNUM.
* WROANUM

YARIABLE DEFINITIONS
BUFF- HOLDS WRONUM NORD OF FILNUM FILE OF SEGDIR
PBUFF- POINTER TO BUFF
SGUMIT—- CONTAINS 1. FILE UNIT USED FOR SEGMENT DIRECTORY

FUNTT- CONTAING & FILE UNIT USED FOR DATA FILE
UERVEC- HOLDS. ERROR VECTOR OBTAINED FROM DGS
FILMUM- HC!OS FILE NUMBER OF SEGDIR TO READ
WROMII- HOLDS WORD NUMBER OF NTH FILE TO READ
SEGDIR- HOLDS SEGMENT DIRECTORY NAME

INSERT KEYCOM

DATA SGUNIT. FUNITA1, 27

INITIALIZATION

PEUFF=LOCCBUFF

INSURE UNITS ARE CLOSED AND
ASK FGR AND READ SEGMENT DIRECTORY NAME

E
F
O
O
O
T

O
O
O
O

O
#
O
N
A
Q
I
o
a
n
a
n
a
n
g
n

@ CALL SEARCHCCLOSE,. & SGUNIT. G2
CALL SEARCH CLOSE, @ FUNIT. @>
WRITECL. 16665 |

1666 FORMATC“TYPE SEGMENT DIRECTORY NAME“)
READCL. LB1G>(SEGDIRCI SD, Il=1, 32

1616 FORMATCSA2> .
Cc -

C OPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT
Cc

CALL SEARCH*OPNRED+UFDREF. SEGDIR, SGUNIT. @)

C GET FILE TYPE FROM ERRVEC AND MAKE SURE FILE IS A SEGMENT DIRECTORY.

C ALLOWSPLE TYPE CODES ARE SAMSEG ANDDAMSEG. VALUES 2 AND 3S.

MAN 1675 H-13



CALL GETERRCUERVEC, 2>
IF CUERVECC2). EQ. 2. OR. UERVECC2>. EQ. 3> GO TO 26

C NOT fF SEGMENT DIRECTORY. TRY AGAIN. -

O
O
M
A
N
A

A
O
G
H

O
0
a
0
N

18
38

Cc
Cc
Cc
Cc
Cc

WRITECL, 1826) _
2@ FORMATC’FILE IS NOT A SEGMENT DIRECTORY” >

GO TO 16

C ASK FOR FILE IN SEGMENT DIRECTORY

WRITECL, 16265
39 FORMAT “TYPE FILE NUMBER“ >

READCL. 16465 FILNUM
46 FORMATCI€:

ASK FOR WORD IN FILE

WRITECL, 16255
35 FORMATC“TYPE NORD NUMBER™~>

READCL. 1646) WRDONUM

TRY TO POSITION TO FILNUM FILE IN THE SEGMENT DIRECTORY.

IF ERROR GO TO 186

CALL PRNFILCPREAD+PREREL, SGUNIT. @, &. FILNUM, £166)

OPEN FILE IN SEGMENT OIRECTORY FOR READING ON FUNIT
GO TO 126 IF ANY ERROR.

CALL SEARCHCOPNRED+SEGREF, SGUNIT, FUNIT, $126)

POSITION Ta FILWRD WORD IN DATA FILE AND READ IT INTO BUFF
GO TO 266 IF ANY ERROR.

CALL PRWFILCPREAD+PREREL., FUNIT, PEUFF. 1. WRONUM, $266 >

PRINT THE WORD, CLOSE FILES AND RETURN TO DOS

WRITE CL. 1S5G °WRDNUM, FILNUM, CSEGDIRCID, I=1. 35, BUFF
38 FORMAT<“WORD’Ié.“ OF FILE“’I€.° IN “SA2,* CONTAINS’ Ié>

CALL SEARCHCLOSE, &, FUNIT, Go
CALL SEARCH<CLOSE. @. SGUNIT, @>
CALL EMIT

FILE NOT IN SEGMENT DIRECTORY
“PE” IS THE CODE FOR PRNFIL EOF
“PG” SI THE CODE FOR PRNFIL BOF

H-14



186 CALL GETERRCUERVEC. 13
IF CUERVEC(1>. EQ “PE’. OR. UERVEC(1). EQ “PG“> GO TO 118

CALL PRERR
GO TO 56

Cc

118 WRITECL. 1G6@> (SEGRIRCID, T=4. 32

4966 FORMATC “FILE NOT IN “3A2>
Go TO 18

c |
C ERROR IN ATTEMPTING TO OPEN FILE IN SEGMENT DIRECTORY

c
420 CALL GETERRCUERVEC, 42
Cc
C SEE IF SEGMENT DIRECTORY ERROR TYPE

c
IF CUERVEC(L2. EQ “Sa’> GO TO 138
CALL PRERR |
CALL EXIT

c
C YES, FILE POINTER IF SGUNIT IS AT END OF FILE OR DISK ADDRESS

C OF FILE IS @ INDICATING NO FILE AT THIS FILE POINTER.

C IN EITHER CASE. THE ERROR INDICATES THE REQUESTED FILE IS NOT

C IN THE SEGMENT DIRECTORY.
C THIS ERROR CODE IS ALSO GIVEN IF NO FILE 15 GPEN FOR READING

C ON SGUHIT IF SEARCH IS OPENING AN EXISTING FILE IN A SEGMENT

C DIRECTORY GR IF NO FILE IS OPEN FOR BOTH READING AND WRITING

C ON SGIINIT IF SEARCH IS OPENING A NEW FILE IN A SEGMENT DIRECTORY.

C THESE ERROR COMDITIONS CAN NEVER OCCUR IN THIS PROGRAM.

Cc : .

478 GO TO 1418
c
¢ WORD NOT IN FILE
c

I@G CALL GETERRCUERVEC, 1)
IF (UERVEC(1). EG “PE’. GR. UERVEC(4). EQ. “PG’) GO TO 249
CALL PRERR

CALL EXIT

218 WRITECL, 1974WRDONUM, FILNUM CSEGDIRCI>., I=1, 3)

4970 FORMATC’NORD’I6é.“ NOT IN FILE‘I€é.“ IN “SAZ)>

GO TO 16

END

$6

MAN 1675 H-15



O
H
O
O
G
A
I
A
O
K
A
O
H
O
A
G
O
A
A
A
O
H
O
H
A
N
A
A
n
A
n
N
g
a
n
a
A
n
N
N
A

#
O
O
a
O
o
O
n
N
a
n
a
n
g
a
a
n
a
a
n

O

ROVREC, CARLSON. JULY 16,4974

ROVFEEC- READ-VARTIABLE-LENGTH-RECORD .
PROGRAM TO READ LOGICAL RECORD NUMBER N FROM A FILE CONSISTING
OF A GROUP OF VARIABLE LENGTH RECORDS AND TYPE THE RECORD
ON THE TERMINAL. | | oo

THE FILE VARREC CONSISTS OF LOGICAL RECORDS. EACH LOGICAL
RECORD CONSISTS OF A HEADER WORD WHICH CONTAINS THE SIZE
OF THE RECORD FOLLOWED BY THE DATA IN THE RECORD.
THE FIRST RECORD OF THE FILE IS RECORD NUMBER 9.

THE NETHOD USED IS TO FIRST GENERATE PTRFIL. AN

ANCILLARY FILE OF 2 NORD POSITION POINTERS TO EACH RECORD
IN THF FILE VARREC. THIS IS DONE BY THE PROGRAM GFTRFL
(GENFRATE POINTER FILE> FOLLOWING THIS FROGRAM. RDVREC
USES THE NTH FILE POINTER IN PTRFIL TO ACCESS THE NTH LOGICAL
RECORI: IN VARFEC. NOTE THAT PTRFIL NEEDS TO BE GENERATED
ONLY ONCE. AFTER THAT THE USER CAN MAKE ANY NUMBER OF
REFFRENCES TO VARREC. FOR FAST ACCESS. BOTH PTRFIL

AND VARREC SHOULD BE GENERATED AS DAM FILES. HANDLING OF PRWFIL
ERRORS IS OMITTED TO SIMPLIFY THIS EXAMPLE.

RESTRICTIONS: FILE VARREC MUST EXIST IN THE CURRENT UFD.
FILE PIRFIL MUST EXIST IN THE CURRENT UFC.
RECORD SIZE MUST BE BETNEEN 1 AND 16aq0.
THE RECORD REQUESTED MUST BE BETWEEN @ AND 16282.
THE RECORD MUST BE IN THE FILE VARREC.

INTEGER FUNIT. SIZE. RE NUM, ABSPOS(2). FAESPS, BUFF C1a6a),
~ PRUFF. PEUFFS

VARTAELE DEFINITIONS
FUHTT- CONTAINS 4. USED TO REFER TO FILE UNIT 1
SISE- HOLDS SIfe OF LOGICAL RECORD
RECNIIN- HOLDS LOGICAL RECOFOD NUMBER REQUESTED
RESPOS- HOLDS FILE POINTER
PAESPS- POINTER TO AESPOS
BUFF- HOLDS RECHUM LOGICAL RECORD
PEUFF- POINTER TO BUFF
PRUFFO- POINTER TO BUFFKY2)

ROUTINES CALLED
SEARCH, PRWFIL, EXIT. L&C

JHSERT KEYCOM

DATA FUNIT/A1/

H-16



C INITIALIZATION
Cc

PABSPS=LOCCABSPOS >
PEUFFH=LOC(BUFF >
PBUFF2=LOCCBUFFC2>>

Cc -
C ASK FOR RECORD NUMBER. GST RECORD IS NUMBERED 1.
Cc , °

WRITECI, 1666 >
4966 FORMATC“TYPE RECORD NUMBER”>

. READC1,1616>9 RECNUM
1914 FORMATCI€>

c OPEN FILE OF 2-NORD FILE POINTERS CALLED PTRFIL ON FUNIT

. CALL SEARCHCOPNRED. “PTRFIL“. FUNIT, @>

c POSTTION TO REQUESTED FILE POINTER AND READ IT INTO ABSPOS

° CALL PRNFILCPREAD+PREREL, FUNIT. PRESPS. 2. RECNUM*2, @>

c CLOSE FUNIT |

. CALL SEARCHCCLOSE, @, FUNIT, @)

c OFEN VYARREC FILE

. CALL SEARCHCOPMRED. “YARREC”. FUNIT. @>

C POSITION TO THE RECORD USING THE FILE POINTER IN ABSPOD AND
C READ THE RECORD SIZE INTO BUFFCI> -

. CALL PRNFILCPREAD+PREABS., FUNIT. PEUFF. 2, RESPOS, S2
Cc

SIZE=BUFFC43
IF (SIZE. LT. 4. OR. SIZE. GT. 1666> GO To 1068

REALS THE REST OF THE BLOCK INTO BUFFC2).. BUFFCND

CALL PRNFILCPREAQ, FUNIT., PBUFF2. SIZE-1., &. @>

WRITF THE RECORD TO THE TERMINAL

N
O
O
O

C
O
M

WRITECI. 16263 RECNUM, SIZE .
1926 FORMAT< “RECORD’Ié.’ IS’1é. ” WORDS AS FOLLOWS: “2

WRITE C41,1636> (BUFF CI2, I=4. SIZE
41928 FORMATCI6I7>
Cc -

C CLOSE FILE AND RETURN TO DOS

96 CALL SEARCH<CCLOSE. 8, FUNIT. @>
CALL EXIT

Cc
C RFCORD SIZE ERROR
Cc
106 WRITECL. 1948>
1946 FORMAT* “BAD RECORD SIZE“>

GO TO 9&6
c

MAN 1675 ENO H-17



O
H
O

O
F
O
O
A
N
N
A
N
A
A
N
A
A
N
A
O
A
N

N
a
e
v
A
n
A
T
O
n
A
n
A
o
a
A
A
N
n
O

O
O
O
O

O
a
O
N
Q

A
N
N

GPTFFL, CARLSON. JULY 16, 1974

GPTFFL- GENFERATE-POINTER-FILE
PROGRAM TO GENERATE A FILE PTRFIL OF 2-WORD FILE POINTERS
TO EACH LOGICAL RECORD IN FILE VARREC. VARREC CONSISTS ,
OF LOGICAL RECORDS EACH OF WHICH CONSISTS OF A HEADER WORD
THAT CONTAINS THE “SIZE OF THE RECORD FOLLOWED BY THE DATA
IN THE RECORD.

RESTRICTIONS: RECORD SIZE MUST BE BETWEEN 41 AND 16480.
PTRFIL SHOULD NOT EXIST BEFORE RUNNING THE PROGRAM.
VARREC MUST EXIST IN THE CURRENT UFD.

INTEGER FUNIT. PTRUNT. UERVEC‘4), PUERVC, PUERV2, PSIZE. SIZE

VARIABLE DEFINITONS
FUNIT- CONTAINS 1. REFERS TO FILE UNIT 4 ON WHICH VAFREC IS OPEN
PTRUNT- CONTAINS 2. REFERS TO FILE UNIT 2 ON WHICH PTRFIL IS OPEN
UERVET- USER ERROR VECTOR. HOLDS ERRVEC OBTAINED FROM DOS
SIZE- HOLDS SIZE OF LOGICAL RECORD
PSIZE- POINTER TO SIZE
PUERYC- POINTER TO VERVEC
PUERVS—- POINTER TO VERVEC<S)

ROUTINES CALLED
LOC. SEARCH: PRNFIL. GETERR. PRERR. EXIT

INSERT KEYCOM

DATA FUNIT. PTRUNT“4L, 27

INITIALIZE

PUERVC=LOCCUERVEC C1)
PUERVS=OccuERVECCS>>
PSIZE=LOC“SIZE>

OPEN VARREC FOR READING ON FUNIT

CALL SEARCHCOPNRED, “VARREC<. FUNIT, @>

OPEN A NEN DAM FILE PTRFIL FOR WRITING ON PTRUNT

CALL SEARCHCOPNHURT+NDF ILE, “PTREIL”. PTRUNT, @>

SET SIZE FOF FIRST TIME THROUGH LOOP. SIZE IS SET so
NO POSITIONING TAKES PLACE ON 1ST CALL TO PRNFIL. ERRYECC2>
AND ERRVEC(C4) ARE SET TO FILE POINTER OF 157 RECORD.

H-18



SIZE=4

SMITIA TO MEVT LAICA SOoenon ne YOOoREe® He Lowe
BR eo eS dE sf 6 Shes ee E toeed SS" SE BNhee SeeSe Ot GFRNGee Gt 6 i he

ALREADY READ ONE WORD OF RECORD SO TO GET TO BEGINNING OF
NEXT RECORD WE MUST POSITON FORWORD SIZE-1 WORDS.

6 CALL PRHUFILCPREAD+PREREL. FUNIT. &. 8. SIZE-1, $903

GET FILE POINTER FROM ERRVEC

CALL GETERRCUERVEC. 43

FILE POINTER ISIN UERVECCZ) AND UERVEC(4>. WRITE 2 WORD
FILE POINTER INTO PTRFIL.

CALL PRNFILCPHRITE. PTRUNT. PUERYV. 2. @, @>

REAL iST WORD OF NEXT LOGICAL RECORD INTO SIZE. 1ST WORD
IS SIZE OF NEXT LOGICAL RECORD.

CALL PRNFILCPREAD, FUNIT. PSIZE. 1. 6, $196>

IF SIZE OK. LOOP TO READ NEXT RECORD.

JF (SIZE. GE. 1. OR. SIZE. LE. 1666@> GO TO 19

ERROR

0
0
0
7

O
O
O

O
O
O
O
A
A
O

A
N
A
a
A
K
O
A
A
a
A
D

WRITECL, 1660>

1696 FORMATC’A RECORD HAS A BAD HEADER WORD>
GO TO 116

Cc
C FILE ENDS IN MIDDLE OF A RECORD
Cc
28 CALL GETERRCUERVEC, 1>

IF CUERVECCL). NE. “PE“> GO TO 126
WRITE CL, 1614)

19165 FORMATC “FILE ENDS IN A PARTIAL RECORD’
GO TO 119

Cc
C PRNFIL ERROF RETURN. CHECKTY'FE.
c
186 CALL GETERRCUERVEC, 1>

TF CUERVECCL>. NE. “PE“’> GO TO 126
Cc
Cc
C FILE ENDS NORMALLY. CLOSE FILE AND RETURN TO OOS
Cc
116 CALL SEARCHCCLOSE, @, FUNIT. @>

CALL SEARCHCCLOSE, & PTRUNT. @>

CALL EMIT
Cc
12 CALL PRERR

CALL EMIT
Cc

END

MAN 1675 H-19



APPENDIX I

ERRVEC CONTENTS

ERRVEC consists of eight words whose contents are as follows:

Word

ERRVEC (1)

(2)

(3)
(4)
(S)
(6)

7
”

™
!

N
e
e
?

(8)

Content

Code

Value

P
s

PS
PO

S
PS

Pe
P
S

OS
P
S

pointer to
message

message

PRWFIL Error Codes
 

TM

ru

PE

PG

MAN 1675

LMT LNT

UNIT NOT OPEN

PRWFIL EOF (End
of File)

PRWFIL EOF
(Beginning of
File)

Remarks

Indicates origin of error and nature
of error.

On alternate return, this is the
value of the A-register. On normal
return, this may have special
meaning, (e.g., refer to PRWFIL
and SEARCH error codes).

ERRVEC (3), ERRVEC (4),
ERRVEC (5), and ERRVEC (6)
contain a six-character Filename
of the routine that caused the
error [ERRVEC (6) is available for
expansion of names]

For DOS (DOS/VM) supervisor

usage.

For DOS (DOS/VM) supervisor
usage.

Number of words left.
(Information is in ERRVEC(2))

Number of words left.
(Information is in ERRVEC(2))

I-1



PRWFIL Normal Return
 

ERRVEC (3) = Record Number

ERRVEC (4) = Word Number

PRWFIL Read-Convenient
 

ERRVEC (2) = Number of words read.

SEARCH Error Codes
 

 

ERRVEC (1) = Meaning

SA SEARCH, BAD PARAMETER

SD UNIT NOT OPEN (truncate)

SD UNIT OPEN ON DELETE

SH <Filename> NOT FOUND

SI UNIT IN USE

SK - UFD FULL

SL NO UFD ATTACHED

SQ SEG-DIR-ER

DJ DISK FULL

SEARCH Normal Return
 

ERRVEC (2) =

€

0

1

Type where Type has the following values:

Meaning

File is SAM

File is DAM

Segment Directory is SAM

Segment Directory is DAM

UFD is SAM

I-2



DOS ERROR MESSAGES AND

DISK ERRORS AND DISK STATUS WORD

DOS ERROR MESSAGES

MESSAGE REMARKS

BAD <COMMAND-NAME> EXAMPLE: BAD STARTUP
BRD CALL TO SEARCH
BAD DAM FILE
BAD PARAMETER
BAD PASSWORD
BAD RTNREC
BAD SVC BAD SUPERVISOR CALL
DEVICE IN USE : |
DISK <> NON DOS
DISK FULL | |
DK ERR SEE DISK ERROR EXPLANATION BELOW.
DUPLICATE NAME
FATAL ERROR IN DOSEXT
<FILENRME> NOT FOUND
<FILENAME> iN USE
<FILMAME> ALREADY EXISTS
ILLEGAL INSTRUCTION AT <OCTAL LOC. >
<NAME> NOT ASSIGNED
NO UFD ATTACHED
NO VECTOR . USER HAS GOTTEN A UII. PSU. OR FLEX,

| OR TRAP TO A LOCAION THAT IS @,
OR SVC SWITCH IS ON AND USER GOT AN SVC TRAP
AND LOCATION “65 WAS @.

NOT A UF
POINTER MISMATCH RUN FIXRAT
PROGRAM HALT AT <OCTAL LOC. >
PRWFIL BOF
PRWFIL EOF
PRWFIL POINTER MISMATCH
PRWFIL UNIT NOT OPEN
SEG-DIR ER
UFD FULL
UFD OVERFLOW -
UNIT <xX> CLOSED THIS LINE AND THE NEXT TWO LINES
DISK <X> CLOSED RARE PART OF THE SAME
YOUR FILES DETACHED MESSAGE.

UNIT IN USE
UNIT NOT OPEN
UNIT OPEN ON DELETE

MAN 1675 J-1



DISK ERRORS

There is no alternate return caused by a detected disk error. A message
is printed and the operation is retried forever, in DOS; in DOS/VM the
operation is tried ten times.

DK ER P# <Physical device #> <DOS record address > <disk status word>

Status Word

The status word typed as the third octal number of a disk error depends
on the type of controller as follows:

4000 Controller
 

Status Word Meaning

177777 bad record identifier
177776 device not ready
100000 data transfer complete (good if present)
040000 read/write past end of record
004000 seek complete (good if present)
002000 write protect violation
000400 command error
000200 checksum error
000100 DMX overrun
000040 stack overflow —

 

4001 Prime Controller

Status Word Meaning

177777 bad record identifier
177776 device not ready
100000 bit 1 always set
040000 DMX overrun
020000 disk is write protected
010000 checksum error
000100 disk drive seeking
000040 disk drive seeking
000020 disk drive seeking
000010 disk drive seeking
000004 illegal seek
000002 malfunction detected

J-2



Diskette Controller
 

MANI675

Status Word
 

177777
177776
100000
040000
020000
010000
002000
001000
000400

Meanin

bad record identifier
device not ready
normal end of instruction (good if present)
sector not found |
checksum error on sector ID
track error; head is mispositioned
deleted data mark read
DMX overrun
checksum error, write protect violation of file
inoperable on write or fomnat

J-3



2PMTrmrrye Ww

AFTOINVIA K

DISK DRIVE OPERATION

This appendix describes cartridge loading and operating procedures
for the various PRIME disk drive options.

PERTEC MOVING HEAD DRIVES

Operating Controls
 

Operating controls for the PERTEC D3000 are shown in Figure A-l.
Control functions are as follows:

CONTROL FUNCTION

OFF/ON Switch- Indicator Turns main power on and‘ off. Indicator
lights when power is on.

SAFE Indicator Lights when drive is not rotating and
is safe to install or remove disk packs.

RUN/STOP Switch Indicator Push switch to start or stop drive
motion. Indicator lights when drive
is running.

READY Indicator Lights when drive is up to speed
and ready to communicate with CPU.

PROT/PTOR Indicators Indicates write protection status
of upper (removable) and lower
(fixed) disk platters.

Unit Number Selector Determines physical unit number
Thumbwheel of disk drive.

WRITE PROTECT Switches Assigns or removes write protection
(LOWER, UPPER) behind for upper (removable) or lower
door (fixed) platters.

Cartridge Handling And Storage
 

The magnetic coatings on the disk surface have the ability to
retain recorded intelligence for an indefinite period. However,
the physical recording medium is susceptible to damage. The disk
cargridge must be properly handled and stored to maintain the
integrity of the recorded data. A damaged or contaminated cartridge
can impair or prevent recovery of data and can result in damage to
the disk drive.

MAN 1675 K-1



CAUTION

Do not attempt to install or use a cartridge which is suspected
of contamination or damage.

A disk drive which has been damaged or contaminated due to use of
a defective cartridge should not be operated with other cartridges
until the disk drive has been inspected and/or reconditioned by
qualified service personnel.

K-2



WRITE PROTECT SWITCHES
(BEHIND DOOR)
 

 

   
 

 

   
 
 

 

LOWER UPPER

ON
WRITE
PROTECT

OFF

DOOR HANDLE
(PULL OUT AND
DOWN TO OPEN)

L
 

 

 
 

   
    
 

 

 

 

 

 

        

 

   

\

\

RUN |!
READY

STOP ON
_I|

1 [|.
SAFE PROT OFF

A PROT  
 

UNIT CONTROL PANEL

NUMBER
SELECTOR

THUMBWHEEL

PERTEC D3000 Operating Controls

MAN 1675

Figure K-l.

K-3



The following methods will ensure maximm protection of disk cartridges.

1. The head port door on front-loading cartridges should be
kept closed when the cartridge is not inserted in a disk
drive. This keeps dirt out and secures the disk internally.

Cartridges can be stored either horizontally or vertically.
Front loading cartridges must always be positioned to avoid
objects which could damage the hub or cause the air inlet
door to be pushed open.

CAUTION

Do not stack cartridges more than five high.

Avoid exposure of the cartridge to magnetic flux in excess
of 50 gauss or loss of stored data may result. The 50 gauss
flux level is reached at a distance of approximately three
inches from a motor, generator, transformer, or similar source.

Do not store the cartridge in direct sunlight. Temperatures
outside the range of 33°F (0.6°C) to 140°F (60°C) should be
avoided for non-operational storage.

If a cartridge is dropped, it should be inspected by a qualified
service representative before it is used. Internal, as well as
external, damage to the cartridge can result.

Top loading cartridges should be labeled only in the handle
recess area. Placement of labels in areas other than these
Iay cause improper operation or contamination.

Disk Drive Preparation
 

An initial check-out procedure must be performed by a qualified
field service representative brfore the drive is operated by
regular users.

Regular users should do the following initial preparation before
attempting to insert a cartridge into the drive.

1. Position the power ON/OFF switch to the ON position and
observe that the associated indicator becomes illuminated.

Observe that the SAFE indicator located on the operator control
panel becomes illuminated within two seconds of the ON
indicator illumination. The disk drive is now conditioned to
safely insert or remove the cartridge.

K-4



 

1. Verify that the SAFE indicator is illuminated.

CAUTION

Do not attempt to force removal of a disk cartridge when the

safe indicator is extinguished. Failure to observe unSafe
condition can result in damage to the equipment.

2. Grip the door handle formed by the top of the front bezel

and move the handle out and downward, opening the door.

3. Grip the cartridge by the molded-in handle and pull the cartridge

slowly out of the receiver.

4. Unless another cartridge is to be inserted immediately into

the drive, close the disk drive door; this will exclude dirt
and contamination from the interior of the drive.

Loading a Cartridge
 

1. Verify that the SAFE indicator is illuminated.

2. Grip the handle formed by the top of the front bezel and

move the handle out and downward; this will open the disk

drive door and move the cartridge receiver into position

to accept a cartridge.

3. Grip the cartridge by the molded handle, and position the

cartridge in the receiver opening. Make sure that the fiap

portion of the cartridge top is aligned between the guide

rails at the top of the receiver. Slant the cartridge to
match the slope of the bottom of the receiver.

4. Press the cartridge slowly but firmly most of the way into

the receiver. Relax the grip on the cartridge handle and

press the cartridge fully into the receiver, seating it

completely within the receiver.

5. Close the door on the front of the disk drive by moving

the door handle (top of the front bezel) up and toward the

driver. As the door is closed, the cartridge will be po-

sitioned into the spindle.

CAUTION

If the cartridge is not properly inserted in the receiver,

the door will not close. Do not attempt to force the door

closed or damage to the cartridgeand the disk drive will

result; repeat steps 1 through 5.

MAN 1675 Ks



Selecting Write Protection
 

When the disk drive is equipped with WRITE PROTECT switches, the
operator should select the appropriate switch setting at the time
the cartridge is inserted. The switches are mounted inside the
door, behind the operator switch panel; the drive must be in a
safe condition as indicated by the SAFE indicator in order to open
the door and gain access to these switches.

To select protection for a particular platter, set the applicable
switch to the ON position. To enable writing for a particular
platter, set the applicable switch to the OFF position.

When a WRITE PROTECT switch is set to the ON position, the particular
disk is protected from write operations regardless of any write com-
mands which may be received. When a WRITE PROTECT switch is set
to the OFF position, write operations may then be executed.

Starting The Disk Drive
 

After a cartridge is loaded, the disk drive may be started as
follows:

1. Depress and release the RUN/STOP switch/indicator located
on the operator control panel. Illumination of RUN/STOP
indicates that there are no inhibiting conditions and that
the drive mechanism is rotating the disk(s).

2. Observe that the READY indicator becomes illuminated within
60 seconds after actuating the RUN/STOP switch/indicator.
The READY indicator indicates that the disk drive is ready
to accept interface commands. .

Stopping The Disk Drive
 

When it is desired to stop the disk drive while the RUN/STOP
indicator is illuminated, perform the following procedure.

1. Depress and release the RUN/STOP switch/indicator.

2. Observe that the SAFE indicator becomes illuminated within
25 seconds. This indicates that the disk(s) has come to
a stop and the cartridge may be removed or changed.

K-6



Designating Unit Number
 

When the disk drive is equipped with a Unit Number Selector Switch,
the setting of this switch establishes the device (unit) number
used during BOOT loading of DOS, etc. The operator should set ,
the switch to the position required by the system and software *
operating procedures for the particular installation.

The switch is set by moving the thumbwheel up or down until the
desired number appears in the window adjacent to the thumbwheel.

MAM 1675 Ra



PRIME ASCII CHARACTER SET

The standard character set used by PRIME is the ANSI, ASCII
7-bit set shown in Figure C-1. Control characters are described
in Table C-1. .

The defined code set is basically a communications set complete
with header and acknowledge procedures. The code is designed to
allow a collating sequence, a 64 character subset, and subset-
ting of graphic and display motion primitives. Extensions to
the communication aspects of ASCII regarding parity, control,
are code extensions all contained in references 2, 3, and 4. An
excellent survey of Data Communication Control Procedures is in

reference 5.

PRIME USAGE

PRIME hardware and software uses standard ASCII for communications
with devices. The following points are particularly important to
PRIME usage.

1. Output Parity is normally transmitted as a zero (space)
unless the device requires otherwise, in which case soft-
ware will compute transmitted parity. Some controllers
(e.g., MLC) may have hardware to assist in parity generations.

2. Input Parity is ignored by hardware and by standard soft-
ware. Input drivers are responsible for making the parity
bit suit the host software requirements. Some controllers
(e.g., MLC) may assist in parity error detection.

3. The PRIME internal standard for the parity bit is zero.
However, much existing software expects a one for the
eighth bit. As a consequence, new software should be
written so as to ignore the parity bit on internal
characters.

INTERNAL STANDARDS

The following standards apply to internal usage. of character
codes, excluding communications and control functions.
Internal Standards are composed of Storage Definitions and
Table C-2 explains the internally redefined codes for the

characters shown in Figure C-2.

MAN 1675S Let



00
01

03
04

0S
06
07

10
i!
le
13
14
5
16
17

NUL
BS
DLE
CAN

“
U
C
I
@
m
M
O
R

a
o

D
f

NUL
BS
kCP

SP

+1)

o
x
T
T
O
N

“
S
o

1 2 3 4

SOH STX ETX EOT
HT LF VT FF

DCI bce DC3 DC4
EM SUB ESC FS
g . ee # $

> %* + ’

1 2 3 4
9 3 3 <
A B C D
I J K L
Q R S T
Y Z C \

a b Cc d
i j k 1

q r Ss t
y Z { |

Figure L-1. ASCII Communications Codes

Zire ve

1 2 3 4

HT NL VI FF
RHI HLF KVI HL

! ” # S

) * + s

1 2 3 4
9 $ ; <

A RB C D
I J K L

Q R S T

Y zZ C ‘\

a b \ c d
i j k 1
q Yr S t
y Z { i

Figure L-2. Internal ASCII Codes

L-2

ENQ
Ck
NAK

w
o
s
o
u
w
c
k
m
t
w
n
r
a
o

Ck

w
i
t
o
w
c
m
h
t

«

ACK
sO
SYN

e
f
<
a
m
r
c
F
t
A
v
N
m
e
m
e

FERS
BEL
EkS

<
O
Q
a
n
v
n
v
a
n

©
0
9



Basically, an internal message (''file'') is composed of a number

of ASCII lines terminated by a New Line character .NL. (012).

The .NL. character is printed as a .CR. (Carriage Return) followed

by a .LF. (Line Feed) followed (possibly) by a number of .NUL.

(Nu11) characters for timing.

Within each ASCII line, carriage motion is defined by the follow-

ing characters: |

NAME CODE MEANING

SP, (240) Space Forward One Position

~BS. (210) Space Backward One Position

HT. (211) Physical Horizontal Tab

VT. (213) Physical Vertical Tab

FF. (214) Form Feed (Top of Form)

CR. (215) Carriage Return

.RHT. (221) Relative Horizontal Tab, following byte
Defines a number of .SP. to insert

HLF, (222) Half Line Feed Forward

LRVT. (223) Relative Vertical Tab, following byte
NALS amARK +Defines a number of .LF. to insert

HLR. (224) Half Line Feed Reverse

In addition, the following characters are used internally for

specific device action.

~BEL. (207) Audible Alarm

.RRS. (216) Red Ribbon Shift

.BRS. (217) Black Ribbon Shift

MAN 1675 L-3



The following characters are used for packing and compression:

NAME CODE MEANING

 

-NUL. (200) Allowed and ignored in any position

~RCP. 220) Relative Copy - following byte specifies
number of characters to copy from corres-
ponding positions of preceding line

VISIBLE STANDARDS

Several standards have been adopted for keyboard interfaces
with standard software. Specifically:

" (242) [rase, i.e., ignore last character typed on
the current line

? (277). Kill, i.e. restart current line

‘“ (234) Logical Tab, i.e. space to logical tab of IOCS
(shift L)

t (236) Logical Escape, visual escape for limited
graphic devices

.CR, (215) Interpreted as .NL. on Keyboard
~LF. (212) Input

The logical escape conventions at present include:

t ddd Three octal digit representation of unprintable
character such as +007 (BEL)

t Backspace

TU All subsequent letters are upper case

tL All subsequent letters are lower case until end of line

Standard convention for PRIME Systems software is to formulate
names for ASCII constants by the standardized names in Figure C-1
preceded by an "A", e.g.,

ANL for New Line

ASP for Space

L-4



REFERENCES —

1. CACM, Vol 8, No. 4, April 1965, pg. 207

2. CACM, Vol 9, No. 9, Sept. 1966, pg. 695

3. CACM, Vol 9, No. 2, Feb. 1966, pg. 101

4, CACM, Vol 9, No. 10, Oct. 1966, pg. 759

5. SACM, Vol 4, No. 4, Dec. 1972, pg. 197

MAN 1675 L-5



Table R-1. Control Characters

CONTROL CHARACTERS FOR COMMUNICATIONS

Code
201

203

204

205

206

220

229

226

227

Name

 

SOH

STX

ENQ

ACK

DLE

SYN

ETB

Use
Used at the beginning of a sequence of char-
acters (a heading) containing address, routing,
and possibly other information.

Precedes a sequence of characters which is
to be treated as an entity (a message or a
message block) and passed to the destination
station. STX terminates the heading, if any is
present.

_ Terminates a sequence of characters (a message)
begun with STX.

Terminates transmission.

A request for a response from a remote station.
It may be used to request station identification
or status.

An affirmative acknowledgement returned to
the sender from the receiver.

An “escape” character which changes the meaning
of an immediately following string of characters.
DLE was provided so that new control functions
could be added using this extension character.
Several two-character extension sequences have
already. been added.

A negative response returned to the sender by
the receiver.

Used in synchronous transmission systems to
provide a signal pattern from which synchronism
may be attained or maintained. It is placed at
the beginning of all transmitted character
sequences and inserted in a sequence of charac-
ters in the absence of a data character to be
transmitted,

Terminates a transmission block (heading or
text) which is not the last block of message.

L-6



 

MAN 1675

TIVALENTS

Base Graphic

$

Alternate

L-7

National Currency

Underbar f

Conflict with 137

Logical Not



Code
 

200

201

207

212

216

217

220

221

222

223

224

Table R-2. Notes On Internal ASCIT

 

Name Use

NUL Filler

SOH Print Header Line

BEL Audible Response

NL New Line, .CR. + .LF. on ASR

RRS Red Ribbon Shift

BRS Black Ribbon Shift

CRP Relative Copy

RHT Relative Horizontal Tab

HLF Half Line Forward

RVT Relative Vertical Tab

HLR Half Line Reverse

L-8



Command Syntax

ASRCWD

ASSIGN
ASSIGN
ASSIGN

ATTACH
ATTACH
ATTACH
ATTACH

AVAIL

Number

Device
Device WAIT

DISK Number

Ufd
Ufd [Password]
Ufd [Password Ldisk]
Ufd [Password Ldisk

Key ]

, AVAIL ZERO
~ AVAIL ONE
AVAIL TWO

AVAIL NINE
AVAIL Packname ~-

BASIC

BASINP

BINARY Filename

CLOSE Filename
CLOSE Filename [Funit... ]
CLOSE ALL

CMPRES Filename [Filename2]

MAN 1675

Function

Change the virtual control word
to select one of four devices
for effective I/O.

Obtain complete control over
a disk or peripheral device from
the user terminal (Refer to
Table 4-2 for device names and
Table 3-1 for disk numbers).
WAIT queues the assignment
until the device is ready.

Attach DOS (or DOS/VM user
space) to the specified UFD.

Print the number of disk
records available for use on
(1) the current logical disk;
(2) the specified logical disk;
(3) the logical disk specified
by Packname.

Invoke the BASIC language
interpreter, in order to write
and execute programs in BASIC.

Load a paper tape containing
programs written in BASIC
language on a computer other
than a Prime computer.

Opens file specified by
Filename for writing on File
Unit 3, usually as a binary
output file.

Closes the named files and
specified file units; or if
ALL is specified, closes all
filesand units. a

Translate an input file into an
output ASCII file using the
relative copy character ('220)

M-1

Remarks

* DOS/VMfonly

DOS/VM only. The
disk assigned must
be an assigned disk.

For DOS/VM. Password
‘may be owner or nonowner
password.

Under DOS/VM, only
AVAIL Packname is
correct.

EXPAND is the opposite
of CMPRES.



Command Syntax

CNAME Oldname Newname

COMINPUT Filename

COMINPUT Filename Funit

COMINPUT CONTINUE

COMINPUT PAUSE

COMINPUT TTY

COPY

CREATE Newufd

CRMPC Filename

CRSER Filename

DBASIC

DELAY
DELAY [fiinimum]
DELAY [Minimum Maximum]
DELAY [Minimum Maximum

Rmargin]

APPENDIX M (Cont)

Function

Change name of a file named
Oldname to Newname.

Read commands from the file
specified by Filename in the
current UFD, rather than from
the terminal.

Read commands from the file
specified by Filename or the
logical unit specified by
Funit.

Continue reading commands from
a command file after a pause or
interruption.

Leave the current command
input unit open and return to
operating system command level.

Read subsequent commands from
the terminal.

Copies and verifies a disk.

Create a new UFD, Newufd, in
the current UFD.

Read cards from the parallel
interface card reader and place
their image in the file speci-
fied by Filename.

Read cards from the serial
interface card reader and
place their image in the file
specified by Filename.

Invoke a version of BASIC that
provides double precision
arithmetic capabilities.

Define a time function to be
used to delay the printing of
a character after a LINE FEED
has been output to the terminal.

M-2

Remarks

Should be last line of
command file or the
last command file in
a chain.

Use this command with
acumen (i.e. know what
you are doing).

First card in deck
should be #E.

First card in deck
should be #E.

DOS/VM only.



ED
ED Filename

MAN 1675

APPENDIX M (Cont)

2 Whe]ws

Load and start the system text
editor (in INPUT mode if no
Filename is specified; in EDIT
mode if Filename is specified).
Editor commands are:

LINE Mode
Editor Commands:

APPEND String
BOTTOM
BRIEF
CHANGE/String1/String2/ [nG]
DELETE [n]
DELETE To String
DUNLOAD Filename [n]
DUNLOAD Filename To String
ERASE Char
FILE .
FILE Filename
FIND String
INPUT Device
INSERT String
LOAD Filename
LOCATE String
MODE PRUPPER
MODE PRALL
MODE PROMPT
MODE NPROMPT
MODE LINE
MODE BOX
MODIFY/String1/String2/ [nG]
MOVE Bufferl Buffer2
NEXT [n]
OUTPUT TTY
OUTPUT
OVERLAY String
PAUSE
PRINT [n]
PTABSET Tab...
PUNCH (ASR) n
PUNCH (PTP) n
QUIT
RETYPE String
SYMBOL Name Char
TABSET Tab...
TOP
UNLOAD Filename [n]
UNLOAD Filename To String
VERIFY
WHERE
XEQ Buffer

* [n]

 

M- 3

Remarks

Editor Commands are
described in the
Program Development
Software User Guide
in detail.

z
2



Command Syntax

APPENDIX M (Cont)

Function Remarks

BOX Mode
Editor Commands:

BOX v h +D# +D#
BOXIN Filename (MODIFY)
BOXIN Filename (OVERLAY)
BOXOUT
BRIEF
DISPLAY
ERASE Char
FILE Filename
FIND String
KILL Char
MODE PRUPPER
MODE PRALL
MODE PROMPT
MODE NPROMPT
MODE LINE
MODE BOX vh
MODIFY/String1/String2/ [G]
MOVE Bufferl Buffer2
OUTPUT
OVERLAY String
POINT vh +tD# +D#
PRINT
PTABSET
QUIT
RFIND String
RLOCATE String
PPOINT v h tD# +D#
SYMBOL Name Char
VERIFY
WHERE

XEQ
*[n]

 



Command Syntax

‘EDB Inputfile [Outputfile]

EDB (PTR) [(PTP)]

EXPAND Filenamel [Filename2]

FILBLK

FILMEM

FILVER Filenamel Filename2

FIXRAT
FIXRAT OPTIONS

MAN 1675

APPENDIX M_ (Cont)

Function

Loads and starts the binary
editor; EDB Commands are:

BRIEF
COPY Name
COPY ALL
ET
FIND Name
FIND ALL
GENET [G]
INSERT Name
NEWINF [Name]
OMITET [G]
OPEN [Name]
QUIT
RFL
SFL
TERSE
TOP
VERIFY

Inverts the operation of
CMPRES

Reads or writes from high speed
memory to any 128-word record
in a previously created RTO
random access file.

Fills memory locations with
zeroes from '100 to the top
of 32K, except for those
locations occupied by DOS.

Compares contents of file
specified by Filenamel with
contents of file specified by
Filename2 for equivalence
and prints message that
verification is either confirmed
or is not confirmed.

Loads and starts a maintenance
program that checks file
integrity of any disk pack.

Remarks

For details ofEDB
commands, refer to
the Brogram Develop-
ment Software User
Guide.

Refer to RTOS User

Guide.

Under DOS/VM, all
locations from '100
to top of 32K are
filled with zeroes.

For DOS/VM, the disk
being checked must
be ASSIGNED.

Refer to Appendix E
for complete details
about FIXRAT.



Command Syntax

FIN Filename [1/A]

FUTIL

HILOAD

INPUT Filename

LBASIC

LISTF

LISTING Filename

LFIN

APPENDIX M (Cont)

Function Remarks

Loads Prime FORTRAN IV and
Starts compilation of a program

Invokes a file utility that Refer to Appendix F
provides subsystem commands to for a detailed
copy, delete and list both description of FUTIL.
files and directories. FUTIL
commands are:

ATTACH Directory Pathname
COPY Filel [,File2...]
COPYDAM Filel [,File2...]
COPYSAM Filel [,File2...]
DELETE Filel [,File2...]
FROM Directory Pathname
LISTF [level] [LISTFIL]
[PROTECT] [SIZE] [TYPE]

QUIT
TO Directory Pathname
TRECPY Dirl [,Dir2...]
TREDEL Dirl [,Dir2...]
UFDCPY
UFDDEL

See LOAD

Opens an ASCII source file
on Unit 1 for reading by
a compiler or assembler.

Invoke a version of BASIC
with MAT and PRINT USING.

Print the current UFD name, For DOS/VM, LISTF
the logical device, and all also prints O or N
Filenames in the UFD at the for owner or nonowner
terminal. status.

Opens the file specified by
Filename for writing on
File Unit 2, usually as a
listing output file.

Invokes a version of FORTRAN
that can perform Sector 0
optimization.



Command Syntax

LOAD

LOAD20

LOGIN

LOGOUT

MACHK

MAGSAV

MAGRST

MAN 1675

APPENDIX M (Cont)

Function

Loads and starts Prime's
Linking Loader. LOAD provides
the following commands:

ATtach [Ufd] [Password] [Ldisk]

[Key]
COmmon Address
EXecute [AReg] [BReg] [XReg]
FOrce Filename [Loadpoint]
[Linkstart ] [Linkrange]

HArdware Definition
INitialize [Filename] [Loadpoint ]
[Linkstart] [Linkrange]

LOad Filename [Loadpoint]
[Linkstart ] [Linkrange]

Library [Filename]

MAp [Option]
MOde Mode
QUit
REcover
SAve Filename [AReg] [BReg] [XReg]
SErbase Linkstart Linkrange
Virtualbase Startlinks To sector

See LOAD

Connect to the DOS/VM system
for a terminal session.

Give up user-access to the
DOS/VM system. (Exit from a
terminal-session).

For DOS, causes computer to
operate in machine check mode.

Write all or part of the
contents of a disk to magnetic
tape.

Read the contents of a
magnetic tape, to a disk or
portion of a disk.

Remarks

Loader 60000-63777.
P-register=61060.

LOAD will now send
maps to Disk Unit 2.
Unit 2 must be open
for writing.

Loader 20000-23777.
P-register=21000

DOS/VM only.

DOS/VM only.

DOS/VM default is
machine check mode.



Command Syntax

MCG Filename

MDL

NUMBER

OPEN Filename Funit Key

PASSWD Owner Password

PASSWD Owner-Password Non-
owner Password

PASSWD

PROTECT Filename Keyl Key2

APPENDIX M_ (Cont)

Function Remarks

Creates a disk supported by DOS
or DOS/VM that contains the
following:

DSKRAT
MFD
BOOT
DOS
CMDNCO

Translates results of microcode
assembly into proper code for
the ROM simulator.

Punches paper tapes of specified
sections of memory in a self-
loading format.

Utility to number or renumber
a BASIC program.

Opens the file specified by
Filename on the File Unit;
Funit; Key specifies type of
file and action to be taken.

Replace any existing Password DOS version of
in the current UFD with a new Password.
password.

Same as above, except assigns For DOS/M. See
both owner andnonowner Section 2 for a
passwords. discussion of file

access protection.

Replace existing passwords
with null (no) password. - Both DOS and DOS/VM.

Open file directory giving DOS/VM only.
restricted access rights to Keyl or Key2=:
Filename as specified by 0 = No access
Keyl and Key2. 1 = Read only

2 = Read and write
3 = Delete only
4 = Delete, truncate,

and read
5 = Delete, truncate,

and write
6 = All access

M-8



Command Syntax

PM

PMA Filename [1/A]

PRERR

PSD

PSD20

PTCPY

PTRED

RESTORE Filename

RTOSRA

RT128F

SAVE Filename

SHUTDN
a

SHUTDN [Pdisk...]
SHUTDN ALL

MAN 1675

APPENDIX M (Cont)2ee a

Function

Prints contents of the RVEC
vector.

Load the macro assembler and
Start assembly of Filename in
the current UFD.

Prints message stored in
ERRVEC.

Load and Start the interactive
debugging program.

Invoke version of PSD for
16K DOS.

Loads a utility program that
duplicates and verifies paper
tapes.

Edit files read from paper tape.

Restore Filemane in the current
UFD to high speed memory, using
the SA and EA values SAVEd with
Filename.

Establish RTOS mapped random
access file.

RTOS off-line utility to read
and write 128-word segment
formatted files.

Save the content of high-speed
memory using SA (starting
address) to EA (ending address)
on a file named Filename in
the current UFD.

For DOS, shutdown the system
(no parameters).

For DOS/VM, shutdown the
specified physical disk (Pdisk)
or shutdown the entire system

(ALL)

Remarks

<

Default value of A
is 000777 which
Signifies: normal
listing detail, all
input and output files
on disk.

Refer to the descrip-
tion of RVEC in
Section 4.

Use only as directed
in the RTOS User
Guide.



Command Syntax

SIZE Filename

SLIST Filename

SORT
SORT BRIEF
SORT SPACE
SORT MERGE

SPOOL [Filename]

START [PC] [A] [B] [X] [Keys]

STARTUP Pdisk [Pdiskl...]

STATUS

SVCSW

TIME

APPENDIX M_ (Cont)

Function

Prints the size of Filename in
records, at the terminal.

Prints the content of Filename
at the terminal.

Sort an ASCII file and write
the sorted file in the current
UFD.

BRIEF =: no messages
SPACE =: delete blank lines

from output
MERGE =: merge (up to 10)

unsorted files.

Queues a copy of Filename in
the UFD SPOOL for off-line
printing. SPOOL typed with
no Filename opens File Unit 2
for writing in the UFD SPOOL
and prints them after they are
closed( either by the user or
the end of the program).
SPOOL with no Filename argument
is a convenient way to get
listings and LOAD maps printed.

Initializes the registers and
keys from the command line
(or from RVEC) and starts
execution at the location PC.

Initialize the configuration
of disk drives by relating
physical disks to logical dis
unit number.

Print status information
at the terminal. -

Controls the handling of SVC
instructions in the virtual
memory environment.

Prints the current value of
the time accounting registers.

M-10

Using.

Remarks

SORT command
gives instructions
(messages) as it is
executing.

SORT asks for names
of files to be merged.

DOS/VM only.

START can also
restart a program
(refer to Section 4).

STARTUP has extended
capabilities for
DOS/VM (refer to
Section 6).

STATIS information
varies for DOS and
DOS/VM; for details,
refer to Section 4.

DOS/VM only.

DOS/VM only.



Command Syntax

UNASSIGN

VDOS32

VRTSSW

MAN 1673

Function

Deassigns peripheral devices
or disks.

Starts a version of DOS that
may be run under DOS/VM.

Allows setting of the virtual
sense switches.

Indicates comment line.

M-11

Remarks

DOS/VM only. .
UNASSIGN may be entered
from dither a user
terminal or the system
terminal (refer to
Section 4).

DOS/VM only.

DOS/VM only.

* must be followed
by a space and have
the correct command
line form (1 to 3
names followed by
0 to 9 parameters).



APPENDIX M (Cont)

OBSOLETE COMMANDS

 

Names of Obsolete Commands Replaced By

CARDIN CRSER
LOAD74, LOAD40, LOAD70 HILOAD
PRINT PRSER
FILCPY FUTIL
BOOT deleted
COPYVM COPY
VFIXRT FIXRAT
CNVT45 deleted .
VMAKE MAKE

M-12



MAN1675

BEGIN UFsCcPY
BEGIN SLIST
BESIN C.CPB
BEGIN CPBGEN
BEGIN C.CPBG
BEGIN CMPRES
BEGIN EXPAND
BEGIN PTCPY
BEGIN LCHR
BEGIN C.PTCP
BD aAlBSe
BEGIN SPARE
BEGIN SPARE
IND SPARE
BEGIN BOSSARC
BEGIN BOSSRC
BEGIN CLIN
BEGIN GETBUF
BEGIN RINBUF
BEGIN COMANL
BEGIN CMREAD
BEGIN ERRRIN
BEGIN ERR
BEGIN RESUME
BEGIN RESTOR
BEGIN SAVE
BEGIN READ
BEGIN BOSEXT
BEGIN ERRS
BEGIN COMINP
BEGIN RINREC
BEGIN BOSCOM
BEGIN GETREC
BEGIN GINFO
BEGIN PRWFIL
BEGIN SSBISK
BEGIN K2MAC
Steln BOSVC
BEGIN FSAT
BEGIN CNEeV
BEGIN SCHAR
BEGIN GCHAR
SECIN MOVE
BEGIN FILL
BEGIN TEXTOK
BEGIN TYPERS
BEGIN DBOSEX
BEGIN FSCG
BEGIN SOSLOU
BEGIN DBCBEF
BEGIN INTRO
BEGIN C.FIN
BEGIN C_PMA
BEGIN GETERR
BEGIN PRERR
BEGIN WRITE
BEGIN GRINSB
BEGIN C.BOSE
BEGIN C.LDBSS
BEGIN *LBUT
BEGIN LOADUT
BEGIN ATTACH
BEGIN PMAIN
BEGIN SEARCH
BEGIN BOSSUB
BEGIN UPDATE
BEGIN VBIO
END OBOSSRCE
BEGIN FLIB!
BEGIN FLIBi
BEGIN BATAN2
BEGIN ZS86
BEGIN CS#é1
BEGIN CS16
SEGIN DBMOS

BEGIN BABS
BEGIN BALE
BEGIN BMAX!
BEGIN BMINI
BEGIN BINT
BEGIN ES62
BEGIN E36i

APPENDIX N

BEGIN ES&6
BEGIN ES66
BEGIN AS62
BECIN SSé2
BEGIN M362
BEGIN 5S62
BEGIN AS6I
BEGIN S361
BEGIN MS61
BEGIN BSG6i
BEGIN CS$26
BEGIN CS62
BEGIN C361
BEGIN ASS!

BEGIN BS@RT
BEGIN BLOG-2
BEGIN BLOGIO
BEGIN C_FLBI
BEGIN L.FLBI
BEGIN BFLIBI
BEGIN BATAN
BEGIN BSNCS
mp 0OFLIBI
BEGIN FLIB2
BEGIN FLIB2
BEGIN CSQRT
BEGIN CCOS
BEGIN CSIN
BEGIN CLOG
BEGIN CEXP
BEGIN CABS
BEGIN ESS1
BEGIN ASS2
BEGIN S$S2
BEGIN MSS2
BEGIN BS52
BEGIN ASSS
BEGIN S$55
BEGIN MSS5
BEGIN BSSS
BEGIN CONJG
BEGIN C325
BEGIN CMPLX
BEGIN NSS5
BEGIN LSSS
BEGIN HSS5
BEGIN AIMAG
BEGIN ASS1
BEGIN SSS!
BEGIN 335:
BEGIN C.FLB2
BEGIN LFLB2
BEGIN MS51
BEGIN BFLIB2
BEGIN REAL
BEGIN C$S2
END sOFLIB2
BEGIN FLIB3
BEGIN FLIB3
BEGIN ABS
BEGIN AMOD
BEGIN DIM
BEGIN SIGN
BEGIN AND
BEGIN ATAN
BEGIN ATANS
BEGIN ES22
BEGIN S@RT
BEGIN ALOG
BEGIN C5216
BEGIN C_FLB3
BEGIN L_FLB3
BEGIN TANH
BESIN ES21
BEGIN. EXP.
BEGIN AINT
BEGIN BFLIB3
BEsin SINCOS
IND OFL183
BEGIN FLIBa
BEGIN FLIBA
BEGIN MAX®
BEGIN MAX!

FIXRAT OF MASTER DISK (REV 7)

54

37

3s

Breln
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEG133
SEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

MING
FLOAT
LFXINT ,
csig =
csai
MIN
1RND
ES11
ISI@N
IDIK
asei
$$21
ms2l
BS2i
C.FLBA
L.FLB4
BFLIBA

Bip =FLIB4 31
BEGIN FLIBS
BEGIN FLIBS
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

C.FLBS
LFLBS
LOEX!
EXEX1
EXeX1
BS@RX1
DEXEX!
DEXEX!
BATNXI
cosxl
BCOSX1
BLGEX1
ATNX)
BLGEX!

END =FLIBS 92
BEGIN FLIBG
BEGIN FLIBG
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BESIN
BEGIN
BEGIN
mip
BEGIN
BEGIN
BEGIN
peein
BEGIN
up

FSUt
ACCN
OVERFL
FSBN
FSaN
FSFN
SLITE
Fsca
FSSH
FSFLEX
FaTI
C.FLBS6
LiFLBSé
BSFLIBS6
FSRN
FSDE
FSEN
FSTR
FSER
FS$10
FSwt

FLIBG 166
Alss
ATBS
TaP
NBL
PSB

aAlss it
mND MF 3147
RECORDS USED( BECINAL)=
RECORDS LEFT= 1801
BSKRAT OK

3147



OK» aS BI
OKs FIXRAT OPTION
©
REV. 7.8
FIX BISK? MO
PHYSICAL DISK =
TYPE DIRECTORIES40 LeveL (CR)
TYPE FILE NAMES?
TYPE FILE CHAINS? "NO

8

YES

BISK PACK IB 1S MB7Ve2
BEGIN MFD
BEGIN MFD
BEGIN MD7V2
BEGIN BOOT
BEGIN CMBNCS
BEGIN CMBNCS
BEGIN COPYB
BEGIN BOSEXT
BEGIN COPY
BEGIN FIXRAT
IND CMBNCE
BEGIN BOS
BEGIN 30S
BEGIN *20S32
BEGIN *©s0S24
BEGIN *BOS16
END BOS
BEGIN PMA
BEGIN PMA
BEGIN PMAIOI
BEGIN PMAIO2
BEGIN: C.PMA1
BEGIN C.PMA2
BEGIN PMA
END «PMA
BEGIN FORTRN
BEGIN FORTRAN
BEGIN FINIO!
BEGIN FT™102
BEGIN C_FTNI
BEGIN C.FIN@
BEGIN FIN
END FORTRAN
BEGIN LPR
BEGIN LBR
BEGIN LOABAP
BEGIN LOAD
BEGIN C.LOAD
END =LLLBR
BEGIN BASICi
BEGIN BASIC]
ENB BASIC!
BEGIN T&MSRC
BEGIN T&MSRC
BEGin CPUT2
BEGIN CPUTS
BEGIN TTYTI
BEGIN RTCT1
BEGIN WBTT!
BEGIN AMLCTI
BEGIN MTUTI
BEGIN FLT!
BEGIN FLTPTi
BEGIN C..FLTP
BEGIN BFLT
BEGIN DFT2
BEGIN C.BFLT
BEGIN GPIB
BEGIN CPUT!
BEGIN RAMP
BESIN BIGINP
BEGIN LPTSTI
BEGIN PAGTI
BEGIN FLTPé@
BEGIN MACITI
BEGIN IPCT!
BEGIN BPCARD
BEGIN BSCTST
BEGIN TTYTe
BEGIN RTCT2
BEGIN HSMT)
BEGIN K3MAC
BEGIN MSLCB}I

26

34

163

112

BEGIN MSLCS1
BEGIN MSLCS2
BEGIN MSLCS3
BEGIN MSLCS4
BEGIN MSLCT1
BEGIN A/DST!
BEGIN BISCTI
BESIN HSRPT2
BEGIN HSRTT2
BEGIN BPIOTI
BEGIN HSAPT1
BEGIN DSTI
BEGIN BSKTT1
BEGIN WCSP
BEGIN BRATIT
BEGIN P300TI
BEGIN HSHT2
BEGIN SBOT
BEGIN C.BSKT
END =TEMSRC
BEGIN BVSAC
BEGIN BUSRC
BEGIN DIGDIM
BEGIN TFWBF
BEGIN DIGIN
BEGIN DILIB
BEGIN TUTILS
BEGIN BBDIM
BEGIN ASCCOM
BEGIN FSCG
BEGIN FSAT
BEGIN CNEGV
BEGIN AMLBUF
BEGIN C.FTH
BEGIN CRBBIM
BEGIN BVC DEF
BEGIN LOCATE
BEGIN TEXTOK
BEGIN GCHAR
BEGIN TFLIOB
BEGIN BELAY
BEGiN SCHAR
BESIW C_DELE
BEGIN BFGETR
BEGIN K3MAC
BEGIN CPMAML
BEGIN MPCINT
BEGIN MPCBIN
BEGIN PEPIOS
BEGIN FORCEW
BEGIN BVDISK
BEGIN USRCOM
BEGIN INIT
BEGIN FATI
BEGIN TTYPER
BEGIN ASRDIM
BESIN BVFC
BEGIN FSOR
BEGIN MTINT
BEGIN MTBIM
BEGIN BVMCOM
SESIN NLKCOM
BEGIN AMLDIM
BEGIN BYFA
BEGIN TMAIN
BEGIN CPM338
BEGIN CPM306
BESIN TSLCI@
BEGIN SLCCOM
BEGIN SLCBIM
BEGIN TSSLCO
BEGIN C.SLC
BEGIN CPMSLC
BEGIN DVFB
BID =WSRC
BEGIN FILAID
BEGIN FILAID
SIGIN RBOD
BEGIN HCONVT
BEGIN C.CNVT
BEGIN CON URT
BEGIN AYEWAY
BEGIN BABPSK
BEGIN RBGOOT

APPENDIX N (Cont)

125!

BEGIN C.BCOP
BECIN RSODEC
BEGIN COPYB
BEGIN C.COPY
BEGIN RWREC
BEGIN C_FIXR
BEGIN FXOPMA
BEGIN MOVE
BESIN FILL
BEGIN FIXRAT
BESIN K3MAC
BEGIN FIXCOM
BEGIN KAKA
BEGIN C.MAKE
BEGIN B00T
BEGIN C.BOOT
BEGIN COPY
BEGIN MTBSK
BEGIN MTBIOC
BEGIN C_MTBS
BEGIN MAKE
BEGIN MAGRST
BEGIN MASSAV
BEGIN MAGCOM
BEGIN C.MSAV
BEGIN C.MRST
BEGIN SVRSTR
BEGIN C.TRSM
BEGIN. C.FUTI
BEGIN FUTCOM
BEGIN FUTIL
BEGIN FOBEC
BEGIN *BOOT
END FILAID
BEGIN ED
BEGIN ED
BEGIN EDFLAG
BEGIN EBCOM
BESIN EBMAIN
BEGIN EDBOX
BEGIN EDFSUB
BEGIN PTREFS
BEGIN EDIO
BEGIN EDPSUB
BEGIN CED
BEGIN C.EBLI
BEGIN C.PTED
BEGIN C.BPTE
BEGIN EFS
BEGIN EB
BEGIN *ED
BEGIN *EDLI
END OED
BEGIN BINED
BEGIN BINED
BEGIN EBBCOK
BESIN C.EDB
BEGIN EBS
IND BINED
BEGIN AlBS#
BEGIN AIDS2
BEGIN PRSER
BESIN PRMPC
BEGIN CRSER
BEGIN CRMPC
BEGIN SPOOL
BEGIN SPLMPC
BEGIN SPLCEN
BEGIN AVAIL
BEGIN CPBOOT
BEGIN BOOTGN
BEGIN C.BTGN
BEGIN ASHKBOT
BEGIN PTRBOT
BEGIN SIZE
BEGIN NUMCOM
BEGIN NUMBER
BEGIN C.NUMB
BEGIN FILVER
BEGIN MCG
BEGIN FILMEM
BEGIN ALBRAXK
BEGIN Pas
BEGIN FILCPY

267

156

ia



INDEX

1.5 MILLION WORD DISK 4-39- 4-59-5-1247-2

4-49 A REGISTER SETTING Q-2 724-4

16-B81T CONFIGURATION 4-62 ABRREVIATION 4-1

Té“H1T WORD Cur ea na? ABSCULUTE POSTTION 5713-57-14

3 MILLION «GRD DISK 3-12 ACCESS Ome 2 rb 27-41%

3.9 MILLION WARD PACK 4-39 ACCESS FILES 5-4

6 MILLION WORD DISK 3-12 ACCESS KEYS 4-43,64-2

8 LINE AMLE 6-3 ACCESS PORT e~10

16 LINE AMLC 6-3 ACCESS PROTECTION 2-~276-2

16K CONFIGURATIONS 2-21 ACCESS RIGHTS 4-43-45-26 6-2

176K DOS 4-3144-47 ACTION KEY &~-4275-22 ~- 5-24

JéK SECTORED 4-49 ACTION OF SEARCH 5-24

16S MODE 3-4,8-1 ADD A FILE 5-22

2€C SURFACE “HD ADDING FILES 5-264

30) MILLION wORD DISK 3-7 - ADDRESS 5-15

31424-2204 - 596 be? ADDRESS SPACE 5-32

32 TRACK 4-39 ADDRESSING MODES 4-49

32K DOS 4-31 AH 5-6
3eK RELATIVE 4-49 AL 5-6

32k SECTORED 4-49 ALL ACCESS 4-43

64 TRACK 4-359 ALLGWABLE OPERATIONS 5-21

64K RELATIVE 4-49 ALREADY EXISTS F-13

64R MODE Be ALTERNATE RETURN 4-4645~6-

12% THOUSAND WORD FHD 4-396 5-11-5-174

4-4)) ALTERNATE VALUE S-12

128 TRACK 4-39 ALTRTN $9276 697G 0571105 °14 45-156

428 WORD SEGMENT FORMAT 4-59 5-1625°19 45-24

12& WORD RECORD 4-26 ALTVAL 5-11

256 THOUSAND WORD FHD 4-59 AMLC 6-3 - 6-7

256 TRACK 4-39 AMLC HARDWARE 6-3

440 #0OROS OF DATA 5-16 AMLC LINES 4-4

448 wORD RECORDS e~? APPEND ACCESS 6~2

S512 THOUSAND WORD FHD 4-39 AR 5-6

1625 THOUSAND WORD FHD 4~39 ARGUMENTS 4-1
4000 CONTROLLER STATUS WORD . ARITHMETIC MCDF 4-49

inv? ARRAY $7625 7-8 25-1028 1525-2

40°01 CONTROLLER STATUS wORD AS 4-13

Jn2 ASCI1 4-304-2145-27

OCO?777 4-46 ASCII 0 3-4
177777 4-15 ASCII CHARACTER PAIR 2-7

$E 4-24. ASCI] CHARACTER PAIRS An~1

"220 4-18 ASCII CHARACTER SET L-1 ~ L-&

* 4-474-62 ASCII FILE 4-18 -4-51

eeBOOT 3-5 ASCII SOURCE FILE 4-27 24-39)

*D0S16 5-27 37-350 3-66e b-b se 3 -16- ASR 3-1-3576 43-773-21

4-41 ASR PAPER TAPE 3-1,F-1

*DOUS24 3-273-343-6435 -8 6 3-16 ASP TELETYPE 5-6

4-41 ASRCWD 4-12? 44-3257-2

*DO0S32 3-20 3-373-643-863516e ASSEMBLER 4-17 24-3044-31

4-41 ASSEMBLER CLOSFS 4-46

- oe ASSFMBALY 44h.-

A 271944748 74-56 ASSEMBLY-LANGUAGFEF 2-12

A CATTACH) 3-4 ASSIGN 3-12-3-1374-135 44-21,

A FILE UNIT NUMBER 5-9 bn 2 09 bn 39 eh 39 64-5504 6105-17465 -3

A REGISTER 2-19 73-4 -B- 174-48, 57-3025 -330l-2

MAN1075 an



ASSIGN A DISK
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

ASSIGN
ASSIGN
ASSIGN

4-14
CENPR 4-56
DEVICE 4-13
DEVICE WAIT
DISK NUMBER
PR1 4-56

PTP 4~47
PTR 4-47
SMLC 95-33

ASSIGN STATEMENT
ASSIGN TABLE FULL
ASSIGNABLE DEVICES

4-13
4-13

5-2
4-15
4-13

ASSIGNABLE DISKS TABLE 4-V4hs

6-13
ASSIGNED 4-58

ASSOCIATED POINTERS 2-11

ASTERISKS 5-6

ASYCHRONOUS 5-33

ATTACH 2750071202715 4635-15-

522 0 nm 38 hnhn18 4 nb Srl nmhe

5-5 79-25-5727 26711

ATTACH (BLANKS) 4-16
ATTACH SUBROUTINE 5-2
ATTACHse DEFINITION OF 5-4

ATTACH: CONCEPT e735

ATTACH: FUTIL COMMAND 4-29
ATTACHED TO A UFD 4-42
ATTACHING TO A UFD 27-15 ,3-15
AUTO START B<-2
AUTO=START RQOTSTRAP R-125-2
AVAIL 4-16

AVAILABLE MEMORY 2-2203-2
AVAILABLE SPACE em?

AVAIL™ 6-12

8

B 2719 74-46 64-5074 -~56

B® REGISTER 27197 3-4 hnh be S-12-

5-33
BACK POINTER

BACKGROUND

HACKUP $720

BACKWARD ens
BACKWARD PCINTER

BAD BOOT —-?

BAD CALL TO SEARCH

MISMATCH E-11
1-2

P~-bee~lo Ant

5-23-71

BAD COMMAND NAME J-1

BAD DAM FILE J-1

BAD DAM PCINTER E~11

BAG DISK ADDRESS F-10

BAD FILE TYPE b-11

RAD KEY 5-?e5-16

BAD MEMORY 6-2 26-115)

BAD NAME F-13

FAD PARAMETER Jt

BAD FASSWORD 5-7rF-144J)-71

INDEX

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BASIC

ST
SV

BASIC LANGUAGE
4-17

BASIC PROGRAM
BASINP
BASINP
BATCH OPERATING

BAUD
BDOS32
BEGINNING
BEGINNING OF FILE
BEGINN
BEGIAN

RECORD ID

RINREC

STRUCTURE MESSAGES

SYNTAX

UFD HEADER
WORD COUNT

E-10
J-1

E-12
RUCTURE ON DISK 3-8
Cc Js-1

F-14
E-11
E-11

4-17
INTERPRETER

4-42
4-17

FILENAME 4-17
SYSTEF 1-2

6-4
3-16
DISK ADDRESS 5-26

5$-16-5-22
ING RECORD A-1
ING RECORD ADDRESS 2~be

2~-106A-1
BINARY
BINARY
BINARY
BINARY
BINARY
BINARY
BLANK LINES
RBLANK PASSWORD
SLEN
BLOCK
BLOCK
BLOCK
BLOCK
BLOCKS
RCOT
BOOT F
BOOT OPERATION

BOOT:

BOOT:

BOOT:

BONT:

BOOT:

300Ts

Boot:

BOOT:

BOOTING DOS

ROOTING FROM

Anghnhn? h-hh

COMMAND 4-2?

EDITOR 4-26

FILE 4-25 04~-hb

OUTPUTFILE 4-17

WORD 2-12-35 0e75

4-1

5-6

5-19

en

DATA STATEMENT 2-21

FORMAT ORJECT CODE

SIZE EXPANSION A-&

e-5

F-1 se bo 17 ebm hn 39 -BH 1

ILE 4-41

2-9

3-2 43-3

CONTROL PANEL 8-1
DEVICE SPECTFIC Be?
KEY-InN H-1

MASS STFORAGF RESIDENT B-1

OPERATION 3-2
PROGRAM 3-203 -4

RESTART 3-3

SECOND LEVEL B-1

3-2
DISK 3-5

BCOTSTRAP CLASSES 8-1

BOUTSTRAP PROGRAMS R-1

BOOTSTRAP:

BOOTSTRAP:

ROOTSTRAP:

BOOTSTRAPPING

AUTO-START B-1/8-2

MASS STORAGE R-1

PAPER TAPE E~1

3-1



POOTSTRAPS
enor. Tm eS
Brine

PR

RRA

4c
a7 TY

4-51
C~bren

BRA POINTER MISMATCH

BRACKETS

PRANCHES

BREAK 6-3

2-11-3-1,-B-1

To, An

4-4
2-10

BREAK INHIBITED

GREAKS

BRIEF

5-72 S-3

4-51

BROADCAST PUFFER

6-5

6-14

B-5

INDEX

CALL TSC™MPC 5729

CALL TEL RPC 5

CALL TSMT 5-41

CALL TIIW 5-77

CALL TIMDAT 5-29

CALL TIOV 5-27

CALL TNOU 5-27

CALL TNOUA 572d,

CALL TO SEARCH

CALL TOOCT 5-2&

CALL UPDATE 5~34

CALL WREC 9-36

§-2475-286

RBFGKEN FILE STRUCTURE MESSAGES

E-?
BROKEN FILE STRUCTURE E-?

BUFFER 4-36 45-14 45-17 45718 2

S*3 2? -2

RUFFER ADDRESS 5-146 75-2945-31,

5-32

RUFFER LENGTHS 5-20

BUFFERS Onm 5 rem 212 eh 18.

4-58

RUILOING A DOS DISK FROM PAPER

TAPE 3-16

BUILDING ROOT 3-4

BULLETIN 5-14

BYPASSING RAD MEMORY 6-2

RAYTE 4-18

B_XMXXX 4-17747-46

C

C ALL 4-18

C BIT 6-49

C1IN 5-h

CA 5-9

CALL 5-16

CALL ATTACH 5-445-5

CALL BREAKS S-7 7673
CALL CIN 5-8

CALL CMREAD 5-8

CALL CNAME 979

CALL COMAAL 5-10

CALL COMINP 5-9

CALL DSINIT $710

CALL FRRSET 5-11

CALL EXIT 9-1146-3

CALL FORCEW 5-12

CALL GETERR 5-12

CALL GINFO 9-12

CALL PRERR 5-13

CALL PRWF It 5-14

CALL RECYCLE 5-14

CALL RESTOR 9-18

CALL RESUME 5-78

CALL RREC 5-19

CALL SAVE S-2?f

CALL SFARCK 5-22

MAN 1675

CALLING LIFRARY SUBROUTINES
5-1

CALLING SEGUENCE NOTATION 5-4
CANCEL MESSAGE 6-15
CANNOT ATTACH TO SEGDIR F-14

CANNOT DELETF MED F-14 .

CAPITAL LETTERS 4-2
CARD 5-29
CARD OF INFORMATION 5-29

CARD READER TT 2-5 ph 13,5-29/

CARC READER DRIVER 5-36
C4RO RFADER INSTRUCTIONS 5-29

CARD READER NUPRBER 5729

CARD READING OPERATION 5-35

CAROR 4- 1274-13 74-24
CARDS 2~-1,4-24

CAPRIAGE RETURN
5-27>
5-228

CAPRY BIT 4-49

CE2PR 4-1224-13 o
CERPR 4-1274-13 — -
CENTRAL PROCESSOR 1-126~1

CENTROXICS LINE PRINTER 4-54

CHAINED MESSAGE BLOCKS §~33

CHAINING OF COMMAND FILES 4-19

CHANGING A FILE 2~3

CHANGING DISK PACKS

CHANGING DISKS 5-12
CHARACTER PRINTER 1-1

CHECK FOR MFD INTEGRITY

F-13
CHECKSUM ERRCR 5-26

CHIPS 6-2

CLOCK 6-4

3-Pe4-124-21¢4

4-2093-e 1

E-12,

CLOSE 0-342-444-3546 -6 04-1

CLOSF ALL 0-16 44-24

CLOSE FILE BY NAMF 5-23

CLOSE FILES 5-11

CLOSE KEY 5-23
CtrOSED URIT 5-7?

CLOSING A FILE

§-21-5-2?

CLUSTERING LIKE FILES e-2

Cn~3remh rh se,

-



CMONCU 2720 03-1-35713 05-1 lo

4-117-746-3144 -359 ¢0-1026-1146-12

CMPRES 4-18 44-26

CMREAD 5782 6-3

CNAME 5-18 7 4mke hn 19 hngee HD

CNAME COMMAND 4-58

CO CONTINUE 4-18

cc TTY 4-19

COLD- IRON 3-1

COLON 5-15

COMANL 5-10

COMDEV 6-12

COMING 5-8

COMINSUT

COMINPUT COMMAND 27-1945-8

COMINPUT PAUSE 4-21

COMMA 3-15

COMMAND 1-2

COMMAND DESCRIPTIONS 4-12 -

4-62 .

COMMAND DEVICF 4-52

COMMAND FILE 27194 3-5 73578 4-12

4-14 646°1924-10-5-%

COMMAND FILE = C_AOOT 3-5

COMMAND FILE: QPEN 4-20

COMMAND FILES: INTERACTING

4-29

COMMAND FORMAT 4-1

COMMAND INPUT 4-26

CCMMA'D LANGUAGE 1-2

COMMAND LEVEL 4-374-11

CUMMAND LINE

COMMAND NAME 4-1

COMMAND PFR LINE 4-19

COMMAND SFQUENCES 1-2

COMMAND STRING 4~-144-344°19,
4-4?

COMMAND STRUCTURE 4-1

COMMAND UFD 3-143-1?

COMMAND: ASRCD 4-12

COMMAND: ASSISN 4-13 =- 4-15

COMMASD: ATTACH 4-1524-16

COMMAND: AVAIL AnmViewrh-17

COMMAND: BASIC 4-1/

COMMAND: BAST UP 4-17?

COMMAND: RINARY 4-5 44-4 44-17?
COMMAND: CLOSE 4-1t

COMMAND: CMPRES 4-128

COMMAND: CNAYWE 4-19

CUMMAND: COMINPUT 4-19 - 4-21

COMMAND: COCNFIS 4-12

COMMAND: CCPY 4-21 ~ 4-23

COMMAND: CPEATE 4-24

COMMAND: CRMPC 4-24

COMMAND: CRSER 4-24

O19e412 nh bh -1945-9

46-3544 -56-5-38,5-10

INDEX

COMMAND: DRASTIC 4-25

COMMAND: DELAY 4-25

COMMAND: DELETE 4-44-25

COMMAND: DISKS 3-13-6-13

COMMAND: DOS 3~13

COMMAND: DOSVM 3-13-6-1076-11
COMMANND: ED 4-26

COMMAND: EDS 4-26

COMMAND: EXPAND 4-26

COMMAND: FILBLK 4-26

COMMAND: FILMEM 4-27

COMMAND: FILVER 4-27

COMMAND: FIXRAT 4-27-E=-1

COMMAND: FIN 4-27 -4-28

COMMAND: FUTIL 4-2%,F-1

COMMAND: HILOAD 4-29

COMMAND; INPUT 4-30

COMMAND: LBASIC 4-3C

COMMAND: LFTN 4-31

COMMAND: LISTF 4-30

COMMAND: LISTING 4-31

COMMAND: LOAD 4-31

COMMAND: LOAD2D 4-31

COMMAND: LOADAP 4-31

COMMAND: LOGIN 4-3274-33

COMMAND: LOGOUT 4-33

COMMAND: MACHK 4-34

COMMAND: MAKE 4-39 - 4-41

COMMAND: MCG 4-41

COMMAND: MDL 4-41

COMMAND: MESSAGE 6-14

COMMAND: NUMBER 4-42

COMMAND: OPEN 4-42

COMMAND: PASSWD 4-42

COMMAND: PM 4-46

COMMAND: PROTECT 4-43

COMMAND: PSD 4-47

COMMAND: PSD2uU 4-47

COMMAND: PTCPY 4-47

CUMMAND:s PTRED 4-47

COMMAND: RESTORE 4-47

COMMAND: RESUME 4-49

COMMAND: RTF 4-50

COMMAND: SAVE 4-5C

COMMAND: SETIME 6-15

COMMAND: SHUTDN 4-50

COMMAND: SIZE 4-51

COMMAND: SLIST 4-51

COMMAND: SORT 4-51

COMMAND: SPOOL 4-53

COMMANDS 2-17? ae 3-8rhn-1 - 4-52>-

3-96-12 M-1 - MH-13

COMMENT 4-62

COMMON 2-21 44-32

COMMON COMMAND 2-21



INDEX

COMMUNICATION 2-14-5-33 CRI 4-13,4-244,5-30

COMMUNICATIONS LINFS 5-33 CRASH 6-11 .

COMMUNICATIONS PROTOCAL 5-34 CREATING FILES c-1

COMPARING FILES 4-27 CREATE 2-11 63-18 04-350 h 4h - 2h

COMPARISON IN MEMIRY 4-23 CREATE A NEW FILE 5-26

CCMPATIBILITY 1-1 CREATING SEGMENT DIRECTORIES

COMPATIBLE DISK A-4& c-1

COMPTLER bam1W7 6 622 bn3 4-31 CRMPC FILENAME 4-24

57-1
CRSER FILENAME 4-24

COMPLETE SYSTEM SHUTDOWN A-16 CRT 1-1

COMPUTE TIME 4-46) CRT TYPE TERMINAL 1-1

CONFIS 3-15 46-6 Or 1a An Vd CTL-P 4-47

4=42e671554-16
CTRL-P 4n-e

CONFIGURATION 1-16771823-18- CUFOD 5-36

4-32
CURRENT DEVICE 5-13

CONFIGURING YoS/VM ECR 32K CURRENT LINE 5-31

4-476-9 CURRENT LOGGED-1IN USERS 4~5%

CONNECT A FILE 5-21 CURRENT MFD 4-24

CONNECT TIME 4-33,4-6% CURRENT POSITION 5-14

COATI: 5-9 CFURRENT POSITION POINTER 5-21

CONTI WUE 4-19 CURRENT RECORD ANMRESS ERROR

CONTRL e715 S72

CONTROL 5-342 CURRENT UFD 4-15 424-174-119,

CCNTROL SLOCK 5~32 bn 25 pn26 ob nm BO bn3 hn he hm 4h br bmhles

CONTRCLE FUNCTION 5-425°%33 b- 5B 5G Sameteneee mesh

CONTROL PANFL 7-5 S-2745-3646-17

CONTROL PANEL FOOT the 5-15¢ CURUEFD 5752 WG

4-4448-1
CYCLE TO MEXT USER 5-18

CONTROL PANEL “ICROCINE 8-1 CYLINDER ZERO 2-11,5-16

CONTROL<-P 4-26-47 -6-3 C¥LS A-4

CONTROLLER ADDRESS = 21 3-14 ci 5-9

CONTRULLER ADDRESS = 23 3-14 C_LSLE $~33

CONTROLLER ANDRESS = 50 5-33 i)

CONTROLLER OPTION $-9 ~ 3-12 OFINIT §-1°,5-718

CONVERSION PROGRAM 3-12 DAM 225 = 2m 7 ee 10-2194 - 34

CONVERT 5-14 DAM FILE O-5 eer IWNe2reea hn)

CuUeY 35-1245 -13 05-16 03-1% 23-20, DAM FILE STRUCTURE eo?

he-21 -— 4-23457194595-1919 DAM FILES er~bse 77

COPY A FILE 5-17 DAM SEGMENT DIRECTORY 4-427A~1

CCPY AHORT 4-23 DAMAGED FILE STRUCTURE 3-21

Cory PISK 4-21 DATA 2-11

CEPY YETHCD 4-23 DATA BASE MANAGEMENT D-1 - 0-9

cCCPY SUCCESS 4-23 DATA CHECK one?

COPY: FUTIL COMMAND 4-2G DATA COUNT A-1

COPYDAM: FUTEL COMMAND 4-29 DATA LIGHTS 4-24,4-61

CUPYING MASTER DISK + ACK $-16 DATA KECGRD SIZE 5-16

- 3-18 DATA STREAM 1-2

COPYSw: FUTIL COMMAND 4-29 DATA STRUCTUPE 5-22

CORRECTED OSKRAT &4-¢7 DATA FRANXSFER PETWEEN DISKS

CPU V1 1-2 0b  bnr Pe bn h dnl e 3-12-35-13

5-21
DATA TRANSFER OPERATION 5-1?

CEU MICROCLDE. 2-18 DATA TRARSFERS fre

CPU ROTARY S¥YiTCH 5-7 DATA 4CRD COUNT 5-18

cPu TIME 4-453575-28 DATA WORDS PCR RECORD 5-15

Ck 5-8 e5-20
DATE 5-26

MAWN 1675 y- 5



INDE X

DATE AND TIME 6-15 DIRECT PANEL LOAD 3-5
DAX GVERRUN 5-24 DIRECTED FILE (DAM) 5-25
DEASTC 6-17 74-25 DIRECTED SEGMENT OIRFCTORY
DEM D-1 (DA™) 5-25
DERUGGING 4-4674-47 DIRECTORIES CmD ce 2-1hsb
DF RUGGING FROGRAMS 4-4 4~-43,5-11
DECLARATION OF ACCESS RIGHTS DIRECTORIES NESTED TOO DEFP

4-4 3,8-2 Fr-12eF-14

DEFAULT 4-54 DIRECTORY 5-5
PEFFAULT ACCESS 5-26 DIRECTORY FILE 2-10
CEFAULT COMIRGL ReGISITEF 3-4 DIRECTORY NAME F-1
DFFAULT DEVICE ADDRESS 3-13 DIRECTORY NESTING LIMIT E-£
DEFAULT LUCATION GF FORTRAN DIRFCTORY PATH = LIST OF DIRS

COMMON 2-71 £~7
DEFAULT MACHINE CHECK MODF DIRECTORY TREE F-4

CONDITION 4-34 DISCONNECT A FILE 5-21
DEFAULT SIZE PARAYETER 4L-?e DISK Ve Telnet ents erie 3-56

DEFEC FIVE FILES 4-? feb? 3-6 23716 463~ 2004-26 4-472 510 PH 5

DEFIWETFION OF SEARCH 5-21 7-5
DFLAY 4-25 . DISK NON DUS J-1
DELAY IN LINE RESPONSE 5-34 DISK .N. CLUSED .~.. YOUR FILES

CFLAY PRINTING CR A CHARACTER DETACHED J-1
KFTER LINE FEED 4-25 DISK 1 4-13

DELETE 4-4 24-2545-16 DISK HN2452 4-13

CELETE KEY 5-23 NISK 1 4-13
DFLETE A PIRECTCRY 4-25 ISK e 4-13
DELETE A FILE 5-22 DISK 3 4-13
DELETE FILE RY KAME 5-23 DISK 4 4-13
DFLETE OLY h-4 3 OI1SK 5§ 4-13
DFLETE TRUWCATF AND READ 4-43 DISK 5256 4-13

DFLETE TRUNCATE AND WRITE 4-43 DISK 57 4-13
DELETE/TRUNCATE 2-15 62@-16 DISK 4 4-13
DELETE/TRUNCATE ACCESS RIGHTS DISK ? 4-13

6-2 DISK <OCTAL NUMBER> 4-58
DFLETF: FUTIL COMMAND 4-29 DISK ASSIGNMENT 4-13

DELETING A FILE em seek DISK BASED OPERATING SYSTEM

DFLETING DIRECTORIES E- 2-1
DFLETING FILES 5-24 DISK BUILDING 3-1-35-16
DELETION 2-3 DISK CARTRIDGE 3-2
DESIGVATING DISK UNIT NUMPER DISK CONTENTS 3-1?

K~? PISK CONTROLLER 1-1-3-7 -

DFVICE O7VO er 2-11 smd bn se 3m be 3-1445-10

37 hn t4 rh 32-57-13 DISK CONTROLLER TYPF 4300 1-1,
DEVICE CODE 5-31 3-?e ~ 3-14
DEVICE IN USE J-1 DISK CONTROLLER TYPE 4°00 1-1,

DEVICE NAMES 4-13 3-7 ~ 3-14
DFVICE NOT ASSIGNED 4-14 DISK CONTROLLER TYPE 4701/4002
DEVICE NOT READY 3-3 1-1-3-7 - 3-14
DEVICE NUMBER 4-12-4-30 DISK CREATED 4-41

DEVICE SPFCIFIC 8OCT f=? DISK DETACHED 4-59

DEVICES 4-58 DISK DCES NOT EXIST 3-8
DIGITAL 1/0 CONTROLLER 5-33 DISK DOES NOT RAVE AN MFD 3-8
DIRECT ACCESS METHOD e775 > DISK DRIVE OPERATION K-1 = K-?

2-7 e2-18 DISK DRIVE PREPARATION K=-4
DIRECT BOOTING 3-5 DISK DRIVES 3-1-3-7 - 3-14



F-14,5-2

cot

3-16
6-564 57 1005-24 Fm 14s

PISK LRFROR

DISK FILE
DISK FURMAT

DISK FULL

J-J

DISK

DISK

PISK

DISK

FULL ERR JP 5-16
HARDY ARE © +270
PNPUT-QUTePUT 5-4
LOCATION 5-23

DISK NAME 4-538
PI1SK MOT PEADY STATUS

4-41445-20
DISK SOT TURRED ON 2-§

NISK \UMSER 4-~40-5-10

PISK “CPERATING CeclTROELS K-14

DISK OPERATING SYSTE* 1-1
DISK X%RGANTZATIOFL e711
DISK PACK P-1,2-10,4-27 247-398

4-4124-°58

PISK PACK IDENTIFICATION
DISK POSITIONING 2-5
DISK #D ERROR 4-2345-29
ONTSK RFAD ERR ORS 4-21

DISK READY a-5

DISK RECORD ADDRESS 5-19

CISK RECORD AVAILARILITY TABLE

e744

DISK RECORD

DISK RECIRDS
5-1%75- 36

DISK SECTORS 275

DISK SPACE Pm-2 rend

DISK SPACE REQUIREMENTS 6°846~-9

NISK SPINNING ANT READY 3-8

DISK STATUS 40RD J-2ed73

DISK STORAGE e-5

DISK STORACF SPACE 4-25

DISK STORAGE TRUNCATE AND WRITE

4-13
N1SK TO BE COVIED TO 4-21

DISK TO 3E CIPIED 4-21
DISK TO MEMORY 4-4?

DISK [TYPFS 3-7 - 3-174

DISK UNETT NUMBER K-7

DLSK UalTtS £72174-3 45-23
DISK WRITF ERRORS 4-23

DISK WT ERROR 4-2424-4145~36

DISK: 39 *® WOPD I-Ves 3-7 -

3-14

DISK:
S-14

DISK:
OSs:

R14
DISKETTE

4-23,

3-12

NUMGER 4-235
Cm ae e@r-bsenmleheeses

FIXED 4FAD 1-143-7 -

3-14

V-143-7? -
$-f -

“CAD

FLOPEFRY

MOVIERG

1-1,%3-%,43-7 ~ 3-14,

MAN 1675

IADE x

4-22 946-3944 -40e 5-2 0sBT

NISKETTE CONTROL

DISKFITE pa TyERS

DISKEFTE SIZe

DISKS &-13

DISKS ASSIGNED

NMISKS AVAILABLE

DISKS COMMAND

6-153

DJ S-16-1-2

DK ERR J-1

DORE 4-23

HOS V-Telresre-

B-1 03 -be 57K Se

4-1926-2124-27

b~ 4704-50 44-58
DOS * 6-10

Y99§ BOOT PAPER T

DOS

DOS BOAT TAPE

DIS COMMAND 3-

DOS COMMAND LEVE

OGS COMMANDS ALL
4-3

BOOT PROGRAM

LFR 1-1
-3

m
J

La
l

“~
=¢

4-58

4-32
3-1344-1446-10C 4

Veer Seer V43aee- lke

Phebebsh-150 4 1B

71hhn39h mh br hn?

04-62 45710574& es

3-7?

3-223 -b607-8
3-643-7

13
L 4-3

OWED TH

APE

DOS /VM

DCS CONFIGURATION REQUIREMENTS

1-1
nas

DOS
ns

C$

DOs

DES

HOS

PGs

DUS

HOS

DOS

DOS

DOS

FEATURES

FILE UNIT 3
FILE UNITS

OPERATION

RESTRICTION

SAVE FILE

SURRCUTINES

UNITS 4-3

VECTOR RVEC

DUS<FORMAT RECORD

DCS/USER INTERACTION
T-Velorererlsee-bee-leeDOS/VM

e~V3 ee ~20e 5-16

ERROR MESSAGES
1-?

FILF STRUCTURE

MEMORY USAGE

STARTUP COMMAND

in

4-

-2e
Z-e

3-1 -
2-24

5-4

27-14

4-50
3-54

e718

B15 sh -SO1 ebm 5h nme

b= 15 GWGeh ee hnm te ehn 25h tte h-

6-30 04-32 04-3404 - 5924 -G1

6-979 67-58 64-8944 ~AN,

bn 62651054nHKDSNeThs oT

5140571825 - 2605731057 srhn -

P-7,A-4

COMMANDS 5-1°
O-TKe ll -

p9S/v™" ASSTG™

NuS/VM

DAS/V™

Nos/ve

gos/w

Nhos/v™

COMMAND:

COMMAND:

COMMAND:

CUMMAND LEVFL

COMMAND LEVEL 4-16

An~1Vh

4-3

CONFIG A-12

DISKS 6-13

MESSACE 6-14



PESAVE ClOAMAND: SETIAE 6-15

DOS/VA CIVMAND: SHUTDN 4~176

DOS/VM COMMAND: STARTUP 6-15
BOS/VM CO*MAND: STATUS 4~1?

OCS/V'A COMMAND: USRASR &~-14

OGS/V™M CONFIGURATION

DOS/VM CYCLE 5-34

DCS/VM FEATURES 1-2

DOS/V4 FILE ACCESS CONTROL

271546-2?

DUSAVM FILE UNIT §$ 4-17

DOUS/VM FILE UNTTS 4-344-17

DOS/¥a 1/9 f=

DAS/V™ ONLY 4-1274-13

DOS/VM OVERVIEW 4-1 ~ 6-9

DOS/VM SYSTE™ CONFIGURATION

673 + 6-9

DUES/VM SYSTE4 INITIALIZATION

A-T~ £42 |

DOS/VM SYSTEM TERAINAL COMMANDS

6-11
DOS/¥M UNITS 4-3

DUSEXT 674s41

DOSVM 3-1346°1626-11

DCSVM COM*AND 3-13

DOUBLE PRECISIO™ 4-49

DOUBLE PRECISION ARITHMETIC

4-25
NOUBLE PRECISION FLOATING POINT

ARITHMETIC 4-17

DOUBLE GUT TE CHARACTER 4-3

DRATIT t+47

DRIVE NUMFER %-3

DRIVERS 3-3

DRIVES 4-22

OSKRAT 2-11-43-1375-16-4-35,

4-5%

DSKRAT BAD E=-10

DSKRAT FILE 2-11

DSKRAT FORMAT A-4

DSKRAT HEADER é-12

DSKRAT: CORRECTED BY FIXRAT

4-27
DEAL 2-11
DUPLICATE NAME J-1

DUPLICATING PAPER TAFES 4-47

E

EA 229022719 73-4 4-4 74-4874 -50

ECHOES 4-40

ED B17 nm 25 rhea?

EDB 37-17 44-26
EDIT MODE 4-76

EDITOR O71 4-144 -27

EHITOR'S TEXT BUFFER 4-26

INDEX

EDEITECRS B= eu

ELLIPSIS 4-1

ELM 4-Su

END OF DECK 4-24

END OF FILE 5-7

END OF FILE REACHED §-16

ENDING ADORESS (EA) 2-97 2-19,

BH hmOR Qn SF

ENTER 4-26

ENTFR CONFIG AND DATE 6-12

ENTER LOAD MODE 4-50

ENTRIES e710

ER! 4-7?

ERASE CHARACTE® 4-3

ERROR CODE 9-12

ERROR CONDITION &~&6,

ERROR CORRECTION 4-3

ERROR IGNURED, COFY CONTINUES

4-23
ERROR MESSAGE 4-144-14-4°19.4

AP 35pmhh 6605-96 HI HTS

ERROR READING DISK 4-23

ERKOR RECOVERY 3-16

ERRORS 3b 6 S18he hn 5456,

5-24
ERRORS IN COMMAND STRING 4-1

ESRSET 4-445,5-171

ERRVEC 271324~-46645-725-10%

5-1145-1245-20-5-25

ERRVEC CONTENTS I-1,1-2

EFRVEC ITN OCTAL 4-46

EPRVEC(T) 534759796 5 -10,5 "11-4

§-1245-1625-20-5-34-1-1

ERRVEC C2) 5 =-1712-5-1265-1645-17,
5-19,1-1

FRRVEC(3) 5-11-5712 05°16-5-17% 6

I-1

ERRVEC(4) 5-11-5-1245-164¢5-17-

I-1

ERRVEC(S) 5-11-1-1

ERRVECCA) 1-1

ERRVECC?) S$-11,1~1

ERRVEC (8) 5-11.2I1-1

EVFN NUMBERED PHYSICAL DISK

3-12

EVFN UNITS 5-3

EXAMPLE QF FILF SYSTEM USE H-1

EXECUTE ACCESS 4-2

ExT 5-11
EXIT SUBROUTIAE 4-48

EXPAND COMMAND 4-12 44-26

EXTERNAL 4-144-11
EXTERNAL COMMAND 4n~h rh -674- 102

b-17 04-18 e4-2104-24 - 4-27,4-31,

6-340 h nh 1h46 4 nh? 24-4976 - 11, 6-



6-12

ZXTERNAL COMMANDS

F
FATAL ERROR IN DOSEXT in

FHD 3-3
FHD DISK ADDRESSES

FILALK 4-246

FILE Inmeeerl - 2-235 9A13

§=-1545-1675-17

FILE ACCESS 2-102-644-3530

FiLE ACCESS CONTROL e717 26-2

FILE ACCESS WtTHODS 2-18

FILE ACCESS PROTECTION 6-2

FILE CLOSING 4-26

FILE CLUSTERING ene

FILE CONTENT 2-142e-7

FILE CREATION 2-1rerere 3

FILE DELETED- FILE TRUNCATED OR

BLANK E~7

FILE DFLETION e74

FILE OFTRECTORIES

4-49,4-50

O- 8s 679

Om~ even seen te

5-5 75726

FILE DIRECTORY 2-3 e 274 G15

S74 4671

FILE DOES NOT ALREADY EXIST

5-22
FILE FILENAME BAD RECORD = E-?

FILE FORMAT An-1

FILE HANDLING 1-23-15

FILE HANDLING IN JSER FROGRAMS

2-14
FILE HANDLING SUBROUTINES 27-713

FILE INTEGRITY 3-21 24-27

FILE INTERLOCKS &-1

FILE TS CLOSED 4-15

FILE LOCATIONS 2-5

FILE MAINTENANCE 27-20

FILE MARK 4-434

FILE NAMES 5-2

FILE GEL »-15

FILF QPENED 5-16

FILE OPENING 4-24

FILE OPERATIONS aa 4

FILE FUIRTER 2-3 72746057545 -15-2

5-14 05-16059-1% 65-2152 §

FILE POSITIONING en4

FILE RECORDS 2-7?

FILE RECURDS ON MAGNETIC TAPE

4-34

FILE SHARING 6-1

FILE STRUCTURE P-1 - e-23-

b-39,4-4145-4eE- 30 F he FoI

FILE SYSTEM e-1 - en~e5er4-l,

Mh SmeeAmt h- 10

FILE SYSTEM ADVANTAGFS e-2

MAN 1675

IK DEX

FILE SYSTEM HIFRARCHY P~br 0 ~®

FILE SYSTEM LIBRARY 4-62

FILE SYSTEM USE 2-3

FILE TYPE &~-4205-12s5-22

FILE TYPES OCn~fe PwF ot xT

FILE UNIT Cum Salles er V362-lhs

Orme erm 20 ebm 2b nS Fed 25-2108 73

5-2345-24
FILE UNIT e@ 4-31,44-54

FILE UNIT RUFFERS e7e

FILE UNIT CLOSING 4-dé

FILE UdIT NUMBER Cm see heen 5

5-5-5715 45°22

FILE UNIT OPENING 4-26

FILE UNITS 4-3,4-15

FILE UTILITY 4h~2keF-1 - FH15

FILE: CLOSING e~302-4

FILE: REWINDING 2-4

FILE: TRUNCATION 2-4

FILENAME P-te2rmset rhe et -Sal- le

DeVoe hn VeenVn19 hn2h h- 254-3

6-314 44605-9452 e er An?

FILENAME ALRFADY EXISTS J-1

FILENAME NOT FOUND J-1

FILES BaPane hae ke bn fhe

4-43-45 -26

FILES: COMPARED FOR FGUIVALE*CE

4-27

FILME™M 4-27

FILVER u~2é

FIRST 440 DISK RECORDS e-1°*

FIRST & LOCATIONS OF ERRVEE IN

OCTAL 4-46

FIRST COMMAND TG AF ENTERED

3-8

FIRST DISK RFCORD en?

FIRST PHYSICAL RECORD 2-10
FIRST FROGRA® INTO MEMORY z-1

FIRST RECORD OF Tre MFD 2-10

FIRST wORD 5-16 |
FIX PISK? 4-27ert-e

FIXED AND REMOVABLE 2-17

FIXED DISK 2-11

FIXED HEAD DISK

3-1448-1

FIXED HEAD DISK DRIVE 3-1

FIXED LENGTH RFCOPRD e-?

FIXED SURFACE 3-42 ~ 3-11

FIXKAT Ome arosre tr»

1-1,3-1,35-7 ”

Be 2b Brehm 25 rane le DWVSHE ET -

~ —-13

FIYRAT

£~-13
FIXR4T DESCRIPTION F-1

FIXRAT EKRKOR MESSAGES

30 MILLION WORD DTSK

—e-10 7



E-13

FIXRAT VFTLIONS 3-2 Ne heme Fe EH-2

FIXRAT OUTFUT f-7

FIXRAT PITFALLS AND

RESTRICTIONS F-é

FIXRAT TERPINAL OUTPUT E-5

FIXRAT FRAVERSE F-4

FIXRAT: RUNNING E-?2

FLEX 7-7

FLOATING pas e-eec1

FLOATING POINT 5-16

FLUATING POINT EXCEPTION t~7

FLOPFY DISK T-143-7 - 3-14-8-1

FORMAT OF DISK 5-14

FORMATTED FORTRAN I/C on-?

FORMATTED RFAD AND WRITE

STATEMENTS e714

FURTRAN PROGRAM 5-11-5-24

FORTRAN 071540 7-1404~-351 0 SH Te

5-15
FORTRAN CALLI"G SEQUENCE

FORMATS 5-1

FORTRAN COMMON 2-2 104-32

FORTRAN COMMON: DEFAULT

LOCATION e721

FORTRAN FUNCTION LOC 2-18

FCRTRAN IV 4-27

FORTRAN LIBRARY ents

FORTRAN ORJECT PROGRAM 5-1

FORTRAN PROGRAM'S 4-50

FORTRAN READ STATEMENT 5-29?

FORTRAN REWIND ene

FCRTRAN UNIT e714

FORTRAN WRITE STATEMENT 5-31

FURWARD en4

FORWARD POINTER omN eg Om~7 hm

FROM AND TO PARAMETERS 4-21

FROM DISK 4n-2174723

FROMs FUTTL COMMAND 4-29

FTN heeeh ele 4-28 7 4-51

FINLI® 3-17

FULL UFD 5-24

FUNDEMENTAL FILE SYSTEM

CPERATICNS 2~5

FUNIT 27 1464-1975-2057-1205-15 64

9-14,5-1545-24

FUNIT NUMEFRS e712

FUNIT POSITION 5-14

FUTIL 5-186 8-1 ean ee 4 ets

4-G1eF<1 - F-15

FUTIL COMMANDS F=-3

FUTIL FRROR MESSAGES F-13

FUTIL RESTRICTIONS F-12

FUTIL: « F-4

FUTIL: ATTACH COMMAND F-5

INDEX

FUTIL: COPY COMMAND F~6

FUTIL: COPYDAM COMMAND F

FUTIL: COPYSAM COMMAND F

FUTEL: DELFTE COMMAND F

FUTIL: FROM COMMAND F-4

FUTFIL: LISTF COMMAND F-9

FUTIL: QUIT COMMAND FG

FUTIL: TO COMMAND F-5S

FUTIL: TRECPY COMMAND F-?7

FUTIL: TREDEL COMMAND F-8

FUTIL: UFDCPY COMMAND F-?7

FUTIL: UFDDEL COMMAND F-9
G

GENERAL CARD READER 4-13

GFMFRATE LISTING 4-27

SETFRR 271375477 8925-10-25 -11,

$-12-5~-16465725
GINFS 271545°12,5-16

GINFO COMMAND 2-2e

GOULD PRINTER/PLOTTER 5~34

H

HAPDWARE CHECKSUM 3-12

HAROWARE CONFIGURATION 3~18

HARDWARE REQUTREMENTS 5-33

HEAD © 3-13

HEAD OFFSFT 54-1343 -1444-22

HFAD OFFSET DEFINITIONS 3-14

HEAD ZFRC e~-tj

HEADER BLOCK 2-9A-1

HEARER FORMAT A~1¢A-2

HE ADFR PAGE 4-54

HEADER RECORD

HEADS 3~135-A-4

HEADS: NUMBER CF

HIGH ADDRESS 3-3
HIGH ADDRESS OF MEMOCKY 4-3

HIGH BCUND OF DOS 5-13

HIGH SFEED LINE PRINTER 4-54

HIGH SPEED MEMCRY 4-47,4-50-

6-1

HIGH SPEED PAPFR TAPE 3-1,

3-21,8-1

HIGH SPEED PAPER TAPE READER

1-1
HIGH SPEED READER PUNCH 4-47

HIGH SPEED READER 3-6

HIGHEST MEMORY An

HILOAD 4-29,4-31

HOLLER ITH 57275-6205 -24

HOLLERITH EXPRESSION 5-625-24

HOME UFD 4-1544-16746~-28 64-58,

5-5 = 5-7? e67-172 F m3

HOPPER EMPTY 5-09

HSR 3-6,3-7

HYPRID COMMANDS

4-34,A-1

3-14, 3-14

b-beh-60h-V0,

V0



5-79
4-14

BUFFERS &=41
FUNCTIONS
INSTRUCTIONS
LIGRARY 5-1

1/2 “ODULE SERVICE
I/O VIFTUALIZATION
IDENTIFIER 4-1
ILLEGAL ASCII 5-29
ILLEGAL INSTRUCTION AT
d=

IN USE 5=24-F-14
INA 1420 4-62
INACTIVITY TINEOUT 5-3
INCREMENTING FILE POINTER
INDEX REGISTER 2-1944-45
INFORMATION TRANSFER 3-17
INITIAL CAPITOL LETTERS 4-2
INITISL QFERATING SESSION

Z=15 = 3-23
INITIAL STARTUP 3-28
INITIAL STARTUP COMMAND
INITIALIZATION FOR ACCESS
INITIALIZE DUSK =P
INITIALIZING DOS 3-22 -
INPUT 4-546-464-1242 7-2
IkPUT BUFFER 5-3)
INPUT COMMAND 4-30
INPUT FILE ERROR 4-54
INPUT FILENAME 4-46
INPUT FILFS ON DISK
INPUT FODE 4-26
INPUT WALT 5-30? <2
INPUT/OUTPUT SUFFERS  7-2,-7-3
ISPUT/OUTEUT DEVICES 4-446
INPUT /OUTFEUT FUNCTIONS 5-4
INPUT/OUTPUT “ITH DUS/VM 7-1
INSTALLING NE#® COMMANDS 3-18
INSTRUCTION 5-23,5~-31

Ti AC” §

T/t

T/e

1/0

1/6

ae

7-1
7-1

2-18
P-1 - 2-5

LCC,

e-3

6-15
2-3

5-2

4-46

INTEGER VARTASLE 5-15

INTERACTING COMMAND FILES 4-29

IWTERACTION 4-e

INTERACTIVE DEBUGGING PROGRA™

4-47

INTER SAL 4-1

INTERNAL COMMAND 4-4,4-5,4-16,
8-17 24-18 04-19 44-275 4-20, 4-316
6-906 4-5174-55

INTERAL VECTOR 4-45
INTERRUPT RESPONSE CODE

5-34
SUFFER

MAN 1675

46-53% 447020 25-4

x

IKRDEX

Tare
bre. GS

FOCS
IS A DIRECTOIPY,

f=

{SA

yup
JOR

KEY

KF Y

KEY

KEYS

KILL CHARACTER

L

LAST

LAST

LEASIC

LCT

LBISK

LOISK NOT STA®TES-uP

LOISK QUT OF RAKSGE

LEFTMOST SENSE SNITCH

LETTER N

LFTTER C

LEVEL OF TREF

LEVELS OF

LF

LI

LIe

LIPRARTIES

LIERARY

LISRARY FILE

LIFRARY SUBROUTINES
LINE

LIWE

CSMLC)

BAD

KEY-IN BOOT

KEY-IN

eeYCOP

RECORD

PeVO OLD. CLIO £ Lz,
a §' AF € F# J c 7 ARO . 4

CARD READER DRIVER

CALMNOT COPY LT

970%

14

e711

3-4

t-2

K

4-14,.5-5,5-14

9735

5-7?

Fem

LOADFR

C-1,C-¢

07194344 44k M-

4-3

L.

C~18 4 3-273-7

4-50 44-56

4-2
LAPEL

LABFL LINE

LABELS

LARGEST

§-625~-15-45-24

3-6
4-44

UNSIGNED

CHASACTER

INTFGER
OWT 5-34

A~1
4-17 44-35)

5-34
4-15 44-1645-6

S14

5-7

5-7
2-6

4- $i
4-3

STRUCTURE
COMAUPTCATION o

e
i
T

{ W
o
m
b

4-25
a-1
5-1

F-1h,5>1

ée-13
4-20

5-1
4-1

FEED 0-946 2958 S27,

5-4
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINKING LOADER

LIST

LISTF

- 11

IMAGE en-G

IMAGE COAPREFSSFED 2-9

PRINTER 1-1,4-13,5-31

PRIPTER DRIVER 5-31

SIZE 4-1674-26

SIZE FRROR 4-54
SPEEDS 6-4 - E&-7

279,6-31

ERRORS 4-¢c7

571594 46-4644-3045-5



INDEX

LISTF: FUTFIL COMMAND 4-29 ,4-30 3-12-4-57
LISTING 6-5 44-4 ,6-27,46-31546-66 LOGICAL UNIT . 3-R 5-12
LISTING COPRMA‘D 4-2h LOGICAL UNIT 1 3-4, 3-12

LISTING DETALL 4-44 LOGICAL UNIT 4-57

LISTING SUTPUT FILE 4-31 LOGICAL UNIT NUMBERS 4-3

LITERAL 4-2 LOGICAL/PHYSICAL DISK

LOAD COMMAND 4-31446-56 ASSIGNMENTS 4-57
LOAD SWITCH 3-1 LUGIN 4-32 747°353574°567,4-00-6~2

LOAD2: 4-31 LUGIN LOGOUT MESSAGES 6711

LOAD: (SWITCH POSITION) 5-4 LOGIN COMMAND 4-66

LCADAP 4-31 LOGIN MESSAGE 4-32

LOADER e721 LOGIN NAME 5-23

LeLADER 10000-14777 4-314-32 LUGIN UFD NAME S724
LCADER 240 GO-23777 4-31 LIGOUT 4-33
LOADER S0cC00-4357 77 4-41 LOGOUT COMMAND 4-14
LOADER: START OF LOUGOUT MESSAGE 4-33

LOADERS 5-1 LOOK FOR A FILE 5-2?

LGADERS COMMON COMMAND e721 LOw BOUND OF bOS 5-13

LOADERS SAVE CUMMAND C~2074-47 LGW SPEED READER 3-6

LOADING AND INTTIALIZING DOS LOWER PLATTERS 3-35, 5-9

ent , LOWER SURFACE $-9 - 3-11

LOADING BOCTS TRAP PRODRAMS B-1 LOWEST NUMBERFD LOGICAL DEVICE
LOADING DISK CARTRIDGE K~-5 4-1525-6

LvADIUG O25 3-143-60 ~3-14 L_XXXxXY 4-28 6h-3144-466
LEADING 20S FRIM MASTER DISK “

3-1 MACHINE CHECK ™MONDE 4-34
LOADING LIBRARY SUARTUTINES MACHK 4-34

5-1 WACRO ASSEMBLER 02-9 24-5(\¢5—1
LOADS CARD IMAGE ASCII DATA MAGNETIC TAPE 1-123-704-1464,

4~-?4 4-54 65-3707 $5798]

LOC FtiNcTION 5-15 MAGNETIC TAPE FILE UTILITIES

LOCATION en-25 4-34
LOCATION "100 TO 7177700 427 WAGRST 33-2 4-34 - 4-38
LOCATION °100 3-4 MAGS AV BPC 4-84 - 43H
LECATION 'S? A= MAKE $-126571545-1G 9 3217, b- 389
LOCATION '? a- ~ 6-6149719,5-196-12
LOCATLON '?7?) 3-4 MAKE ACHORT 4-41
LOCATION 4 4~49 MAKE PFFAULTS 4-40

LOCATION FC 4-4" MASK 3-4
LOCATIONS OCCUPTED BY DIS 4-27 MASS STORASEF BYOTSTRAP R-1

LOCATIONS OF JFD 4-15 MASS-STORAGE RFSIDENT S00T 3-1
LEEGED-IN 7-2 MASTER CLEAR 3-303 -4e BHHe8H 1
LOGICAL % 6-12 MASTER DISK Bap seer beter s-lt,

LOGICAL DFVICFE Nuwte? 4-32, 4-724 31746~-41
6-16 MASTER DISK VOL 1 5-33

LOGICAL DEVICFS 4-1574-35, MASTER FILE OTRECTORY P-2e2-8,
4-5 45-6 2710-4-45275-5

LOCICAL CISK 5-8 bh - 34-15, 4hT STATEMENTS 4-30

6-1425-5,5~-4 ARTKIK FUNCTIONS 4-17
LuGICAL DISK UNIT NU SERS 4-57 AAX)MUM 4-25
LOGICAL DISK UNIT '  2-1743-8, MAXIMJ” NUMBER CF AORDS

F~ 3 “TRANSFERRED §-15

LOGICAL RECORD © o~lee-11 MAXIMUM NUMBER OF CISK DRIVES
LOCICAL TAPES 4-%4 4-15
LIGICAL TO PHYSTCAL ASSIGNMENT MAXT¥U OF TS FILES CAS SE

x - 12



ACTIV

BCG 4

MDL 4

MOL FOR

MOL SEE

MNL TA

ME 4

MFDI]4

MEMOIR Y

4-262
MEMORY

MEMORY

MPFMORY

MEMORY

MEMORY

MEMORY

MEMORY

MEMORY

SYSTE

MERGE

MESSAGE

MESSAGE

MESSAGF

MESSAGE
MESSAGE

MESSASE

MED 2

3-135

4~-ele

MFD FOL

MFODUFOSO

MHD 3

MPD BIS

MICROCY

MICROCO

MICROCO

MINIMUM

MINIMUM

MINIMUM

MINUS §

MODE

MODIFYING DOS/VM PAGE MAPS
MOTION

MOUNTING NEW DISK PACK
HEAD DISKMOVING

FE 2-11
-41
-41
MAT u-1

= ZAt4k~LUADING TAP srs

ES 4-41

3-1
Onm5 ee Ome tm ele emcee ane

4-41+4-4¢

ADOQRESSING 1-14

ALLCCATION 27-e¢3

APEAS e-2e

CONFLICT 5-44

IMAGE 5-21

LOCATION 5-15

LOCATIONS "0 TO '5G
RESIDENT CPERATING
M4 }-1.

4-51
5-8 44-15-5-11

ALCCKS 5733

CuRMAAND 6-14
FACILITY 6714

NOT SENT 6-145

T&G BE TRANSMITTED

lr enV ise -1140372 03-8

334142 3816 24 -15944-1654~-79,

~22594 b—-b195-5, 5-6

E e718

5754574

3

K ADDRESSES 6~-826~-9

DE 3-24 35-5¢5~1

DE ASSE*M#LY &-41

DE FOR PANEL LOAD
4-25

CONFIGURATION

PARTITION $-13

I6h 5*14746-15

9-1465-1525-17

B= 1

5-32

3-6

1~1

&-5
CHECK 5-29

o-17

1-1,3-1,-3-7

~ 3-1463-21-H~-1
MOVING
MOVIAS

PRINT
MTO 4
M11 4
MT2 4

HEAD DISK DRIVE

HEAD DRIVES
MFC CARD RFADER

MPC CONTROLLER

MPC PARALLEL

3-1
K~1

5-29,7-5
4-24

INTERFACE LINE

ER 4~13,7-5
-13
-13
-13

MAM 1675

IADEX

MTZ 4-18
MULTIPLE DISKS 2-11
MULTIPLE LOGICAL TAFFS
MULTIPLE PHYSICAL TAPES
MUST BE ZERO 4-49

N

4-54

4-44

N 5-19

YAME 5 -675-9,5-11-59-24

NAME NOT ASSIGNED I-14

NAME IN USE S-1ii

NAME NOG RIGHT §-16

NAME NOT FOUND 5Am2 SH TCD

5-24
NAME (1) 9-7 65-2 345-24

VAMFD FILES 4-7°%

NAMES 4~-344-56

NOFILE 5-23

ADSFG 5-23
NESTING o~e

NESTING FILE

NP COMMANDS

NFU DIRECTED
Nea OLTRECTED

DIRECTORY 5-2 5

NEW FILE 0-3 44~-b2,5-22

NEW PARAMETER 4-50
NEW THREADED (SAM) SEGMENT
DIRECTORY 5~23

NEW THREADED (CSA) FILE

NER UFDES 3-18

NEw USER FILE DIRECTORY (SAM)
9-23

NE“MFILE

DIRECTORIES

4-12

CDAM) FILE

CDAM) SFGMENT

en~e

5-23

5-24

572?
NEWLY CREATED DISK 4-41
NFWLY CREATED UFO 2-17
NEYVNA™ BAD NAME 5-9
VEWNAM DUPLICATE NAME 5~=9
NEWUFD  §=23
NEXT WORD READ 5-16
NINE 6-16 |
NINE-TRACK MAGNETIC TAPE 4-34,

3-31
NINE-WORD VECTOR 5-21
NO ACCESS 2-16,4-43
NO FILENAMF ARGUMENT 4-54

NO RIGHT 4-44 5 -20h oe F-15

NO KOOM ON OTSK 5-16
NO POOM USF DOS3?2 F-15
NO UFD ATTACHED SHS 9-75-24,

F~15-J3-1
NG UFD DOS IN THF MFD 3-H
NO VECTOR. J-1

ND. OF WORDS TRANSFERRED 5-1?

NONES 2-10 .
NONDOS 4-S$G

- 13



NONEXISTENT DISKS 4-14

NONNUMERIC CHARACTER 4-3

NONOWNER 0-15 42-10% 74 5G rs 4-32,

h-4245~-2645-2

NONOWNER FASSWORD

4-2 474-42 06-27h-2

NUNUWHER STATUS 4-15

NONOWNERS ACCESS RIGHTS 4-43,

4-2
NONZERD ALTEPNATE RETURN 4-46

NORMAL DISK 4-5

NORMAL LISTING DETAIL 4-46

NORMAL MODE (SVC 9) 4-66

NORMAL RETURNS 515

NOT 6-13

NOT A DIRECTORY F-15

NOT A UFO S-6s571

NCT 8USY 5~31
NOT BUSY STATUS 5-21

NOT FOUND F-15

NOTATION 4-1

NOW 6-14
NRECS An-4

NTFILE 5-23

NTSEG 5-73

NULL POINTER A-1
NUM 5-11

NUMBER 4-42

NUMBER COMMAND 4-42

NUMBER OF CONTIGUOUS HEADS

3-13,-35-14
NUMBFR OF HEADS DEFINITION

5-14
NUMBER OF LOGICAL UNITS 3-12

NUMBER OF PARAMETERS IN STARTUP

COMMAND 3-12
NUMBER OF RECORDS ALLOWED 2-7

NUMBER OF USERS 6-3-6-12

NUMBER OF WORDS 5-31

NUMBER OF WORDS LEFT 5-16

NUMBER OF WORDS READ 5-16

NUMBER CF WORDS TO BE

TRANSFERRED 5-15

NUMERICAL VALIUIES 5-2

NUSER 6-12

NWORDS 5-14-5-15

0

e-1776-15,

O+rALC4 5-317
ORJECT CODE ?-9

OHJECT FORMAT eng

ORSELETE COMMANDS 4-43

OCTAL An- 2744-47 457-28

QCTAL CONE 1090000 5-4

OCTAL CODE 177777 5-6

INDEX

OCTAL PARAMETER 4-2

JDD UNITS 3-3

OFF LINE PRINTING 4-53

OFF LINE UTILITY COMMAND 4-55

OK» 3-1524-124-2
NK; 271590358 cho 1sehn?

JK? 4~40

OLDPNAM IN USE 5-9

OLDNAM NO RIGHT 5-9

OLDONAM NOT FOUND 5-9

OMITTED PARAMETERS &-1

ON LINE 5-29 75-31

OPEN O75 e211 815bn hank

5-16

OPFN A FILE §-2125—-2245-25

OPFN AN EXISTING FILE 5-25

OPFN COMMAND 2-1274-42

OPEN COMMAND FILE 4-20

OPEN CURRENT UFD FOR READING

5-27

OPEN DAM FILE e-22

OPEN DISK UNITS e721

OPEN FILE 2-345-11

OPFN FILE UNITS 4-58

OPEN FILENAME 7 1 4-30

OPEN FILENAME 2 2 4-31

OPEN FILENAME 3 4-17

OPEN FOR READING 4-42

OPEN FOR READING AND WRITING

4-42

JPEN FOR WRITING 4-42

OPEN NAME FOR ROTH READ WRITE

ON FUNIT 5-23

OPEN NAME FOR READING ON FUNIT

5-23

OPFN NAME FOR WRITING ON FUNIT

5-23
OPEN ON DELETE 57-24

OPFN SAM FILE 2-2e

OPEN SEGMENT DIRECTCRY 5-23

OPENING A FILE 2-5 Swe Tee e ee

5-2?
QNPENING FILES eé-i1e

OPENINGsCLOSING FILE UNITS

e-12

OPENS 4-46

OPERATING ERRORS 3-2

QPERATING SYSTEM 1-223-15-4-2

OPERATING SYSTEM TARLE AREAS

awk

OPFRATION 3-1 - 3-27
OPERATIONS ON FILES 2-3
OPFRATOR COMMANDS 6-11

QOPFRATCR'S PARTITION 4-14

QPERATORS 4-4,6-10-6-14

- 14



INDEX

GPATH 9-2345765 PARENT RECCRS FROKESS im
OPNREDG »723,-5-25 PEKITY 5-2r ore

OPNWRT 5~23-5-25 PAPITY CHECK b-e
CPTIAIZATICN 4-51 PARTITION 3-13 ebm e h-hh

OPTION 4-1 PARTITION DEFINITION 3-14

OPTION 4900 4-3 PARTITION: MINIMUM z= 5

UF TION 4001/4 :10¢ 5-3 PARTITIONING DISKS 2-15 - £416

GPTTON 46utLe 3-3 PASSWO Cm phn hehe fe

OFTTONAL ARGUMENT WAIT 4-14 £-h2 eb?
CRTIGQNAL FARAMETERS 4-1 PASSWORD Omer enm sed Wa ents

OPTIONS j-1 5-625-7% 2 6-1

QETLONS CVHARAMETER) 4-27 PASS#wQORD ARGUMENT 4-32

ORDERED SET out PASS w#uURDS JF wh TF &-7&

ORDINAL VALUE &~-2 PAUSE 9-9

QTHER VIRTUAL LZATION 7-7 PoOUFFER $-14,5-15.

OUTPUT &-12,7-3 PC 2-15 9 8G bnAhn5GH 5S

OUTPUT FILES O*8 DISK 4-46 PCONYV 5-15 - 5-1?

CUTPUTA~adAIT STATE 5-31-4773 PPR 5-16-1-1

OVERWRITE ACCESS &-2 PDISK §-10,5-19

OVERWRITING A FILE s-2e OF 5-18s/1-1
OWNER 074924636 448 SH 2b, 6-2? PFR FILE BASTS 4-43

CWNER PASS'OR)D C~- 1724-15 04-24 PFRIPHFEFRAL 4-461

bese phn be rb-erhnr? PFREPHERAL DEVICES 1-1-3721,

OeNER PASS#ORD 4-32 26-72 o-J

OwNER STATUS 4-15424-1965-9- PF 5-14

5-24 PG 5-14-11

OWNERS ACCESS RIGHTS 4-43,6-2 PHYSICAL DEVICE = Ser (ery And

w PHYSICAL DEVICE ASSIGNMENT

P REGISTER 67-3144 -4 0 he 43 3-9 = $-113

PACKED 2-9 PHYSICAL DEVICE CiUDE Zeta inces

PACKNAME 4-145-4<55 3-12

PACKNAME OF THE DISKS 4-58 PHYSICAL DEVICE NuFRERS an +

PAGDE wv 6~-1226-13 815 hn21hn4B

PAGDE V1 6-12 PHYSICAL OEVICE NUMBEP LESAGE

PAGE MAPS 4-5 3-13

PAGINS DEVICE 4-6124-55 46-37 PHYSICAL DISK 0-52 3a a 37, SHR

6-1c — 3917 3-14 94 n- 3N1n359 ANS7S

PAGING DISK 4-1474-41 5-10

PAGING SPACE 6-5 26-6 PHYSTC4L DISK DRIVE = F-?

FAGING FIME 4-35,5-2° PHYSICAL DISK NuMfeR 5-54 2-5

PANEL LOAD 2-6 — 311 S215 BT hn eer hn e724 51)

PANEL LOAG FUNCTION P-1823-e PHYSICAL DISK PARTITION 4-13

PAPER TAPE 27143-16437 20e4-1?%, PHYSICAL DISK RECORDS 2-6

4-2 604-461-4-47 47-4 PHYSICAL BISK RECURD OG ook

PAPER TAPE G0 OTSFRAP 2-18-HK-1 PRYSICAL DRIVE NUMBER 3-3,43-13

PAPER TAPE DEVICE 376 PHYSICAL FROM Tc SIZE: 4-21

PAPER TAPF LOADER 4-31 PHYSTC@L RECORD 2-100271123-4

PAPER TAPE P'NUCH 4-13,7-4 PHYSICAL RECORD 0 4-4

PAPER TAPE READER 0-94-13, PHYSICAL RFCORDP ONE ent

b-1-7-4 PHYSICAL RECORD F440 i

PAPER TAPE READER-PUNCH 1-1 PHYSTCAL RECORD TER: 3-4

PARALLEL INTFRFACE E€ARD READER PHYSICAL TAPE 4~34

4-24 PHYSICAL TO LOGICAL OFVICE

PARAMETERS 4-1 CORRESPOADE NCE 4-5

PARENT RECORD A-1 PHYSICAL UNIT 4-5?

MAN 1675
x - 15



INDEX

pM 6—-4 64-46 74-6774 -4& PROGRAM HALT AT .LOC. i-1

PIA 47-3144 -4604-5) PROGRAMMERS 4-4
POINTER 2-6-5715 PROGRA"S LARGER THAN 32K 4-31
POINTER “WISMATCH F~1S-5-1 PROM B-1
POINTFR MISMATCH RUN FIXRAT PKOVPT 4-2

Jo-1 PROTECT 2-16627-1744-15 74-30,

FORT ASSIGNME WT 4-12 4~-43,6-2

PORT NIUMSER 4-12 PROTECTION KEYS b6~24A~?

PORT SELECT FIELDS P-2 PRSER 4-232

POSABS §7-1445-15-5-17 PRYWFIL 27-13-2-1825-1-5-12,
PISITION 27475713 4571465-15e 5~13-5-1565~16059°1765-2125-22

5-14 PRYFIL ACTIONS 5-15

POSITION A FILE OPEN 5-13 PRWFIL BOF 5-14 -J5-1
POSITION IN COMMAND STRING 4-1 PRYUFIL EOF S-16-F<-15sJd~1
POSITION POINTER 5-16 PRWFIL ERROR CODES I-1

PGSITION(1) 5-14 | PRHFIL NORMAL RETURN I-e
POSITION(C2) 5-14 PRUFIL POINTER MISMATCH J-7
POSITIONING $-1413,5-14-5-17 PRWFIL READ-CONVENIENT I-2

POSITIONING A FILE 2-4 PRWFIL UNIT NOT OPEN 4~-19,5-1
POSITIONING OF THE FIRST 440 PSD 5~h ehh?

DISK RECLRDS e711: PSp20 honk?
POSITIONING: DISK 2-5 PSFUDONYM 2-4
POSKEY §-1425-15-5-17 PSU 7-7
POSREL $-14-5-15 PTCPY 4~47?

POST “ORTEM 4-46 PITFALLS AND RESTRICTIONS —E-8

POWER DOWN ORDERING 3-21 PTR 4-1324-26
POWER OFF 3721 PTRPED 4-47

POWER ON 3-165$-22 PUNCH 4-13
PRI 4-13 PWRITE 5-14
PRE-BOOT R~1 a

PREAAS $-14-5-15,5-17 gut bm 24-1404 -29
PREAD §$-14 AUTT: FUTIL COMMAND 4-29
PREGOOT R-1 R

PREREL 5-14-5-15 R 4-52
PRERR 4nmh gh ~-h645-1325-16 WR 33000 4-47

PRFRR COMMAND 5-11 Rg §5c000 4-47
PREVIOUS VALUE IN RVEC 4-48 Rk 70000 4-47
PRIME 100 1-1 RA 5-19
PRIME 203; 1-1 RANDOM ACCESS 2-711

PRIME 3u4 1-1 RANGE OF DEVICE NUMBERS 3-12
PRIME ¥ACR® ASSEMBLES 4-44 RAW DATA MOVER 5-29
PRINT & FILF 5-31 READ 5-15 - 5-17
PRINT USING 4-39 READ A&A FILE 5-13
PRINT USI&SG FUNCTIONS 4~17 READ ACCESS 2-1542-1676-2
PRINTING CHARACTER 4-3 READ AND WRITE 4-4475-1645-?1,
PFINTS 2-15 S-22
PRMPEC 4-2% READ AND WRITE ACCESS 0-15+b6-2
PROCEDURE STACK UMDE® FLOW 7-7 READ CARD IN ASCII FGORFAT 5-29
PROCESSOR CONTROL PANEL 4-¢3 READ CARD IN INARY FORMAT
PRUCESSOP REGISTERS 4757747546 5-29

PROCESSOR STATUS KEYS 4-49 RFAD CHECK 5-29
PRUGRKA Tede2-1ed-11ee- 13 READ FRROR 5-24
PROGR IE! CUENTER P~19,4-4 READ ONLY 4-46325-21-5-2¢ —

PROGRAM DEVELOPMENT 3-15-3-1t- READ OPERATION 4-23,5-13
$-26 - Serr 4n-4 RFAD STATUS §-2945-41

x - 16



READER PUNCH 4-47
READING Cn~1ee2-3ee- Ws bo 13s

5-1475-15

RFADING AND wRITING e738

RFADING ONLY e-3

RFADY LIGHT $-2

REAL TIMF OPERATING SYSTE® 1-2
RECEIVE A MESSAGE 5-32

RECORC 5-14

RECORD O 3-62 45-1624-39 45-16

RECORD ADDRESS A-1

RECORD AVAILABILITY 3-1Té

RECORD HEADER C~B el rr aed n-&

RECORD HEADER CONTENT errr Ant

- A~&S

RECCRD NUMBER 47-4145-12-5-158,-

5-1645-17

RECORD NUMRER RANGE 5-16

RECORD NUMBER-WCRD NUMBER

5-17
RECORD OF INFORMATION

RECORD-COUNT 4-4)

RECORDS oS eee br 4-39

RFCORDS COCTAL) 4-39

RECORDS In FILF 4-51

RECORDS PARAMETER

5-31

4-359 24-4%

RECOVERING FROM ERRORS 5-1?

RECSI2 A-&

RECYCL S~T5

REFERENCE 5-5
RFFERFACE SUSKEY 5-657 2205-4

REFERENCIWC A FILE e~2

RFGISTER FILE Eo-1

RELATIVE. 5-13.25-14

RELATIVE COPY CHARACTER 4-1°%

RELATIVE HORIZONTAL TAB 7G

RELOCATASLE BINARY é-?

REMOVABLE FACKUP PACK 3-29

REMOVAGLE DISK 2-11-3-2

REMOVAPLE SURFACE 3~-R = 3-11

REPRESENTATION OF FILE POINTER

$-16
REQUIRED PAGING DEVICE

RESOURCE DEALLOCATION

6-3
2-3

RESTART A FROGKAM 4-56

RFSTARTIN’. DOS s-22

RFSTCR C713 027-203-404 -4 4-47

4-48,5-18 26-11
RESTCRE 4-47 04-5 605-11

RESTRICTED ACCESS RPOHTS 4-43,

i-e

RESIJME 0-13 4072024hh - 4?

Bm 2h -4G oh Su 5714667346711
RESUMF READING CARDS 4-24
RESUME SPLOFN 4-50

MAN 1675 x

IKRDEX

RESUME SPLMPC 4-56

RFTRY READ 4-23
RETRY WRITE 4-23
RETURN TO DOS 4-47
RETYPE 3-3
REVERSE SORTING 4-52

REWIND A FILE UNIT 5-22

REWIND FILE ON FUNIT 5-23

RFWIND KEY 5723

REWINDING on’

REWINDING A FILE e-4

RIGHTS A NONCWHER HAS 4-15

RMARGIN &~-?5

ROM SIMULATOR 4-41

ROTARY SWITCH 3-6,3-7

RREC 5-10-5718 - 5-20
RT128F 4-50)

RTOS 17-2 24-2674-50

RTOS MAPPED RANDOM ACCESS FILE

4-50

RTOS RANDOM ACCESS FILE 4-26

RTOSRA 4-26 24-50

RUN/STOP 3-2

RUN: CSWITCH POSITION) 3A, i=?

RUNNING FIKRAT E~e

R¥EC 4756

RVEC PARAMETERS On 20e 3-19 44-1,

heh? =~ 4-5025-21

RVFC VECTOR 4-64

RAWKEY 5-14

S

S 4-24-5-11

SA 279 4 2719 0 3h hn heh - 58,

4-50,1-2
SA ERROR MESSAGE 5-24

SAM On 5 enh Om1Dee Tb 4-54

SAM FILE o-beer Ws emee er Ant

SAM FILE UNITS 2-21

SAM FILES en~bre-?
SAM SEGMENT DIRECTORY &b-42,A-1

SAM USER FILE DIRECTORY A-1

SAVE 2-1322-1G94 3-4 44-44-47

4-5026-2

SAVE COMMAND 4-4" -

SAVE FILE 3-4

SAVF OPERATIOW

SAVE PARAMETERS

SAVE SUBROUTINE © 5-21
SAVED MEMORY IMAGE 2-Gare~lP

SAVING PROGRAMS 2-19

4-56

5-18

2-4

SCATTER - GATHER OPERATION

5-20

SCCUF OF DOS pOsS/VM 1-1,1-?

Sh 5-10-5-24-1-2

SEARCH 2-157 59-7 558 M121S

17



§-15-5-164,5-21 - 5-27

SEARCH ERROR CODES I~2

SFARCH NORMAL RETURN I-?
SECOND LEVFL OOT 3-745-1

SECOND LEVEL SOCTSTRAP TAPE

3-7
SFCTOR O CPTIMIZATION 4-31

SECTOR ZERO 2-1142-21

SFCTORS 275 43-9

SECTORS/TRACK 3-9 ~- 3-11

SEEK 2-02 Se 1hite 5-20
SEG-CDIR ERROR 5-2467,5-25 65-2 be

Fe15-5~1

SEGMENT DIRECTORY C5 re ~9e

CmTO re 2r 11h ret HSbs Smee
S-24eEr1 - £7

SEGMENT DIRECTORY USE Cn-5 een?

SFGME'T DIRECTORY REFERENCE

5-7 65-22 25- 2345-26
SFGRE F 5-2375-24

SEGUFD 5-5

SFLECTING WRITE PROTECT K-é

SELECTIVE SHUTDOWN 6-16

SELF-CONSISTENT VOLUME e711

SELF-LOADING PAPER TAPE 3-e-

3-7 75-16446-41

SENSE SWITCH SETTINGS 4-4?

SENSE SWITCHES 3-3-1682

SENSE SWITCHES 1 TO 16 B-2

SENSE SWITCHES Ve2- 3 3-3,

3-4 435~5-3-6
SFNSE SWITCHES 14-15-16 &-1

SFQUENTIAL ACCESS METHOD 2-5,

2~672°18
SEQUENTIAL DIRECTED FILE 4-42

SEQUENTIAL THREADED FILE 4-42

SERTAL INTERFACE 6-4

SERIAL INTERFACE CARD READER
4-24

SETHOME 5<5

SETIME 67-10257-11-6-15

SEVEN-TRACK MAGNETIC TAPE

4-3475-31

SH 5-9,5-1025-18-5-24¢1-2

SHARING 1-276-1

SHIFT COUNT 4-49

SHUTDN 3-12735-13543-2074-4,

4-1444-56+6-11-6-16

SHUTDN ALL 4-16

SHUTDOWN T-er2-5e3-20 ~ 3-22,
4-14

SHUTDOWN OF DISK 6-16

3] 5°96 5-107-5-18-5-24

SIGNED INTEGER 5-15

SIGNIFICANT LOCATIONS 2-21

TADEX

SINGLE LINE 4-1

SINGLE PRECISION 4-4°¢

SINGLE USFR BUFFER 6-14

SIX MILLION WORD DISK 3-12

SIZE 4-2124-51

S1Z7E COMMAND 4-514

SIZE PARAMETER 4-21

SK I-2

SKIP A LINE §-31

SKIP ON CONTROL TAPE CKANNEL

9-31

SKIP ON SENSE SWITCH 4-2

SKIP TO TOP OF PAGF 5-31

SKIPS 7-3

SKS @-3
StL 5-945-1075-18. 1-2
SLASH 4-2

SLIST 4-51

SMLC CONTROLLER A-4&

SOC 3-4

SOFTWARE 1-141-2

SOFTWARE DEVELOPMENT 1-1

SOFTWARE REQUIREMENTS 5-33

SORT 4-51
SORT BRIEF 4-51

SORT COMMAND 4-51

SORT MERGE 4-51

SORT SPACE 4-51

SORTED FILE 4-51

SOURCE 4-17 44-31

SOURCE FILE FILENAME 4-46

SOURCE FILENAME 4-31
SP 4-51

SPACE 2-9 74-2144-62
SPACE (PARAMETER) 4-51
SPACES A-2

SPLCEN 4-56

SPLIT DISK

SPLMPE 4-54
SPLOUT 4-56

SPGOL 4-28.44 7-53 44-5474 -56
SPOOL OUTPUT FORMAT 4-54

$Q 572471 -2
STAND-ALONE EXECUTION 1-2

START 33bnbr hmeh ehh he Ga,

§6-5605-1145-16-6-11
START 10C9 4-26

START COMPAND 3-3

START OF EXECUTION 3-4

START OF LOADER e721

START SWITCH 8-1

START: (SWITCH POSITION) 3-6>
3-7

STARTED DEVICES 5-13

STARTING ADDRESS (SA) 079s

67-5 28-12

- 18



IKDE X

2-1923-4-4-49;4-50

STARTING AT * 1°00 3-3

STARTING AT LOCATION '3500C

3-15

STARTING AT LOCATION ‘'7UGb9

3-1

STARTING AT LeCATION "5009

3-1%
STARTING HEAD ADDRESS 3-13

STARTING OF EXUIPMENT 3-1

STARTING THF CPU 5-18

STARTUP V2 62-15 435-365-880 3-13-

5912p 5-200 hnngHG 7135-6 TV)

6-451,67-11-6-15

STARTUP o-?

STARTUP * 4 ae8

STARTUP TO 2-17

STARTUP COMMAND

57645-1353
3-124-144-2202,

STARTUP OF DES/VM 3-15
STARTUP: INITIAL 3-5

STARTUP: PARAMETERS 3-12

STATE OF CARRY PIF 4-49

STATE“ENTS IN BASIC 4~42

STATUS 177776 4-23,4-41

STATUS COMMAND Cm2 2051384 lie

6-1?

STATUS ERROR 3-3

STATUS INDICATORS e711

STATUS KEYS 2-1974-48

STATtHIS MFSSAGES o- 11

STATUS REGUEST 9-37

STATUS VECTOR 5-29 - 5-31

STATES WORD 5-294d-1

STuP/STEF 3-6

STOPPING FISK ORIVE K~-6

SURDITRECTORY 4-28 94-354

SUBDI SKS 3-14

SURKE YS 5-1594¢5-1? 45-22

SUPROUTINE 474625-1
SUPRGUTIWE: ATTACH 54

SUBROUTINE : BREAKS 57?

SUBROUTINE =: C1TIN 5-%

SUSRQVUTING : C AREAD 5h

SUBROUTINE : CNAME 5-9

SUPROUTEINE : CoOMINP 5-9

SUBROUTINE : COMMANL 5-10

SUPRTUITLAE: OSINIT 5-10

SURRODIJTING s FERSET 5-11

SUEROUTITUF: EXIT 5-11

SUBROUTINE: FORCES  §-142

SUPROUTINE : GETERR 5-12

SURROUTING s GINFC 5-1?

SURROUTINE s FRERR 5-15

SUARGJTINE: FeEWFIL 5-15

MAN 1675

SURQOUTINE : RECYEL 5-12
SUBROUTINE: RESTOR 5-12
SUBROUTINE: RESUME 5-18

SUBROUTINE: RREC 5-18
SUBROUTINE: SAVE 5-21

SUCROUTINE: SFARCH 5-21
SUBROUTINE: TICMPC 5-29
SUBROUTINE: T¥LAPC 5-30
SUPROUTINE: TEFT 5-31
SUBROUTINE: TSSLC 5-32

SUBROUTINE: TIMDAT 5-2%
SURMROUTINE : TNOUA 5-2?

SUBROUTINE: TOOCT 5-28
SUBROUTINE: UPDATE 5~34
SUFRPOUTINEs “REC 5-36

SUBROUTINES A~-14

SUCCESSFUL ATTACH 4-1 5
SUMMARY OF COMMANDS Me q

- M-12 .
SUPERVISOR 4-2e6-1207?-1

SUPFRVISOR TERMINAL 4-14,4-32%

bnmb 1-75 — 2065-360 62911 - Hes timihes

6-17
SVC INSTRUCTIONS 4-5¢

SVC VIRTUALIZATION 7-6

SVCSw b-3se2e4- 5947-5

SVCS*4 COM#AND 4- 59

S¥ 5-9 ,5-1F7 45-1875 —26

SY¥¥aACL TABLE e~2 1

SYMBOLIC 4-27

SYNTAX OF CO™MMARD 4-
=.
€SYSTEM COMMANDS 4-246-11

SYSTEM CONFIGURATION 1-1,4-13,

4-3224747

SYSTEM CONFIGURATOR t-~3 ~ A-?,

6-10
SYSTEM CCNTROLLER GOARD CONTROL

wORD 7—4

SYSTEM CONTROLLER CONTROL WOPD

7-2

SYSTEM CRASH 6-¢

SYSTEM EDITOR e771

SYSTEM GFNERATTION 1-1

SYSTEM INTEGRITY 4-14

SYSTEM GPERAT ik 6-190

SYSTEM OF TION CONTROLLER 1-1-7

4-13

SYSTF™ PARAMETERS A-12

SYSTFM SECURTTY 5-7

SYSTEM SESS 10WN b-712

SYSTEM TERMINAL T1e3- 4 SEs

B65- 27.

SYSTE® TERMINAL COMMARD 3~4

SYSTEM USER 7-10

SYSTEM UPILITIES 5-10,5-19

T

- VY



§$-2975-30

TELAPC $-39-5-41

TVIN S-c7

TAB CHARACTER

TAP en- 2s 54

TAPE DATE 4-34

TAFE NAME 4-34

TAPE RECORD: “AXIMOM SIZE 4-34

TAPE REVISTON NUMEER 4-34 -

4-36

TELETYPE 1-1

TERMINAL 19-165 -443- 504-204-535,

4-5 9057°11-66710674

TERMINAL 3-4

TECMPC

2-9

TERMINAL DEDICATED Te SPOOL 4-54

TFRMIWAL IT/0 LISRARY 5-1

TEXT en

TEXT JUFFESR 4-29

TEXT EDITCR bm 1h19 2 4m 2s heh

THREADED FILE CSA) 5-25
THREADED LIST e-?

THREADED SFGMENT DIRECTORY

(SAM) 5-25

THRFE MILLION

THREE MILLION LORDS
TIMDAT 5-28, b-2

TIME 4-6U045-25%

TIME ACCOUNTING

4-352 0h 68)

JIME FUNCTION

TIMING 5-33

TIoOU 5-¢7

TANGU 5-27

TNONA 5-28

Te BISK 4-2174-23

TO DISK NUMRER 4-2?

TO: FuTTlL COMMAND 4-29

TOSCT S-2F

TOP OF 32K

TOP OF MEMORY

TRACE AND PATCH

TRANSFER OF DATA

TRANSLATORS 4-&

TRAPS 7-1

TRAVERSING FILE A-1

TRECPY: FUTIL COMMANC

TREDEL SUPCOM*AND 4-25

TREDEL: FUTIL COMMAND

TREE wAMES 4-34

TREE STRUCTURE

TRNCAT 5-23
TRUNCATE FILE ON FUNIT

TRUNCATING A FILE en4

TRUNCATION AND DELETION BY

FIXYRAT 4-27

WORD DISK

3-13
3-Te

REGISTERS

4-25

4-27
2722

e-2)

2-3

4-29

4-29

CmVUFEW4 oF A-1

5-23

x

INDEX

TRUNCATION

TS3L0 6-4

TS33C 6-4

TSAMLC 67-4

TTY 4-19,5-9

TURNING POWER OFF 3-21

TWO FILES FOINT TD SAME RECORD

—E-11

TWO PASSWORDS

en

h-2
TKO-WORD INTEGFR ARRAY 5-15

TYPES OF FILFS e~As 2-7?

U

W-CODE S-1

UFD 2750 292 2-1002-15 235-124

517 5-18hn1nth 8H Snb Smet hn

6-1
WFD

FO

UFD
WFD

UF?

UFO

FD

UFDP

UFD

WFD

UFD

UFD

UFD

UFD

CMDNCO

HOS

DVBIN

FILAIO

LIB

371624-41

3$~27378235-16 44-41

6-4

3-5

3-16

SPOOL 4-5 374-54

ENTRIES A-2

ENTRY FORMAT

FORMATS

FULL §-2465 7-260 F~-15e¢3-1

HEADFR 2-10-A-2

LONGER THAN RECORD

NAMED DOS 271k

NAMFS 3-184-174-3465 -2

UFD OVERFLOW J-1

UFD USE A-3

UFDCPY:s FUTFIL COMMAND

UFDDEL: FUTIL COMMAND

JFONAME 5-6

UFOKEF 9-2 345-24
UT! 7-7
UNASS IGN 3-13 04-14464-6176-13

UNASSIGN BEVICES 67-11

UNASSIGNED 4-14

UNCORRECTABLE ERRORS §$~-1545-24

UNIMPLEMENTED INSTRUCTIONS 7-7

UNIT 5-2945-3145-32

UNIT .N%. CLOSED J-1

UNIT ¢: 3-8

UNIT 1 4-36

UNIT 16 27-1?

UNIT 2 4~3144-46

UNIT 3 4-24 »4~-46

UNIT IN USE 5-24

UNIT NOT OPEN 5-24,J5-1

UNIT OPEN ON DELETE J-1
UNLOADING DISK CARTRIOGE

UNRECOGNIZABLE COMMAND

UNRECOVERED DISK FRROR

“
o
H

RH
Ho

A
O
H

A-2
A-2,-A-3

F-11

4-29

4-29

K=5°
F-13
3-8,

- 20



O
o
*UNRECOVERED DISK ERRUR 3-

4-235 44-4145-20

UNRECOVERED ERROR F-15

UPDATE 5-34

UPDATING LARGE PROGRAM 4-20

UPPER PLATTERS 3~3,3-9

UPPER SURFACE 3-9 = 3-11

US4GE OF DOS/VM f-17

USE OF FILF SYSTEM H=-1

USE OF MACGSAV 3-20

USF OF PHYSICAL DEVICE NUMBER

3-14
USER 4-2 74-~-5

USER ADDRESS SPACE 5-31

USER BUFFER §-135,5-15

USER FILF DIRECTORY On~S rents

271004-15

USER FILE DIRECTORY (SAM) 5-25

USER PRIVACY £-1

USER PROGRAM 271445°~324 7 = 1

USER SPACE 4-4 65-254 45-33

USER STATUS 5-32

USER TERMINAL 1-1,3°4,4-3,

B-Terhn-~ eee 5e re hnS 4 ebb sr h-ble

b-T4e%-e

USER TER™INAL COMYAND 3-4

USER'S ADDRESS SPACE e711

USER-~STORED MESSAGE 4-46

USERS 1-1-4 -4176-1767-16 26-12

USERS LOCATION 65 4-40

USFRS TERMINAL 5-13

USING AN GUPFN FILE 275

USING FIXFAT 3-21

USRASR t:-471

UTILITIES 4-4

UTILITY PROERAM 4-47

Vv

VALID CARD READER INSTRUCTIONS

5-29

VALID HARB OWARE CHECKSUM 4~-4y

VALIOG INSTRUCTIONS 5-51

VALID UFD NAME 4-32

VDOSS2 4-62

VECT 5-21

VECTC1) 5-21

VECT C2) 5-21

VECTOR 5-31
VFRIF IFICATION 4-2f 04-4?

VERTFY DISK 4-21,74-41

VFRSIONS oF DuS 2-e&
VIRGIN DISK. 5-15

VIRGIN DISK? 4-4

VIRTUAL ADDRESS SPACE 27257471

VIRTUAL CONTROL WORD 4-13

VIRTUAL *ACHI‘VE 4-3

MAN 1675

INDEX

01-2 24-55,o
n
dVIRTUAL MEMURY i-

h-17-1
VIRFUAL MEMORY OPERATING SYSTEM

1-2 2A-4&

VIRTUAL TRAP 4-69

VRTSSW 4~52 rh4-62s7n-k

VRTSSW COMMAND 7-5
a4

WAIT 4-1374-14

WH 5-20-5-36

WITHOUT A VALUF FOR PC 4-56

aURD 2-9

WORD COUNT

NORD NUMBER

5-17

WORD NUMBER RANGE 5~16

WORDS PER ENTRY @~-11

FROCNT An-4&

WREE 5-36

AR ITE §-15,5-17

WRITE A FILE 5-13

WRITE ACCESS 27-15 42-16 46-2

WRITE ERRORS 5-356

WRITE NOT SUCCESSFUL 4-41

WRITF ONLY 4-4345-2105-22

WRITE OPERATION 5-13

WRITE PROTECT Bn e 2 S20 he? es

64-3945 ~-20 45-362 K~-6

ARITFING Onm1e 2-5 22-11465-13,

5-1445-15

WRITING INTO DIRECTORIES E-8

JRITING ONLY 273

x

x 2719 44-68 4-5 (04-56

X¥ REGISTER S-4

XERVEC 5S-1e

$-1345-29-5-317A-2

§$-1225-1545-16-

¥

YOUR FILES CLOSED 4-5%

YUUR SFOOL FILFRAME IS FRATUN

4-54

Z

ZERC 4-16,4-24


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	I-01
	I-02
	J-01
	J-02
	J-03
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	L-01
	L-02
	L-03
	L-04
	L-05
	L-06
	L-07
	L-08
	M-01
	M-02
	M-03
	M-04
	M-05
	M-06
	M-07
	M-08
	M-09
	M-10
	M-11
	M-12
	N-01
	N-02
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21

