
Ee

Prime Computer,Inc.

DOC3710-193L

PRIMENET Guide

Revision 19.3

PRIMENET Guide

DOC3710-193

Third Edition

by

Ann Venne and Philip Fulchino

This guide documents the software operation of the Prime Computer and

its supporting systems and utilities as implemented at Master Disk

Revision Level 19.3 (Rev. 19.3).

Prime Computer, Inc.

500 Old Connecticut Path

Framingham, Massachusetts O1701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1984 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

2250, 50 Series, EDMS, Electronic Design Management System, INFO/BASIC,
MIDASPLUS, PDMS, PRIMACS, Prime INFORMATION, Prime Producer 100,

PRIMENET, PRIMEWAY, Programmer's Companion, PST 100, RINGNET, and
THEMIS are trademarks of Prime Computer, Inc.

DATAPAC is a registered trademark of Bell Canada. TELENET is a
registered trademark of GTE Telenet Communications Corp. TYMNET is a
registered trademark of Tymshare, Inc. PSS is a registered trademark
of British TELECOM.

CREDITS

We are indebted to Bertil Lindblad of Prime, Sweden, and to James Craig
Burley and Dave Roberts of Prime, Technical Publications, for their
contributions to this book.

ii

PRINTING HISTORY — PRIMENET Guide

Edition Date Number Software Release

First Edition June 1979 IDR3710 16.3

Update 1 January 1980 PTU2600-065 17.2

Update 2 December 1980 PTU2600-069 18.1

Second Edition July 1982 DOC3710-190 19.0

Third Edition February 1984 DOC3710-193 19.3

HOW TO ORDER TECHNICAL DOCUMENTS

 U.S. Customers Prime Employees

— Software Distribution Communications Services

Prime Computer, Inc. MS 15-13, Prime Park

1 New York Ave. Natick, MA 01760

Framingham, MA 01701 (617) 655-8000 X4837

(617) 879-2960 X2053

Customers Outside U.S.

Contact your local Prime
subsidiary or distributor.

iii

ABOUT THIS BOOK

PART I -- AN OVERVIEW OF PRIMENET

1 WHAT IS PRIMENET?

Introduction
Basic PRIMENET Features

Remote File Access

Remote Login

The File Transfer Service (FIS)

The NETLINK Utility
Advanced PRIMENET Features

PRIMENET Architecture

Public Data Networks (PDNs)

Programmer Features
Ports and Virtual Circuits

IPCF Subroutines

FTS Programming
Operator Features

Starting and Stopping the Network

Monitoring Network Servers

Monitoring Network Events

Monitoring FIS
Monitoring RINGNET

PART II —- ELEMENTARY PRIMENET

2 ACCESSING REMOTE FILES

Introduction
Remote File Access

Using Remote IDs
When to Use Remote IDs
Establishing Remote IDs

Examining Your Remote IDs

Removing Remote IDs

3 LOGGING INTO REMOTE SYSTEMS

Remote Login
Error Messages

Contents

xiii

1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6

1-6
1-6
1-7
1-7

2-1
2-1
2-2
2-3
2-4
2-5
2-5

3-1

PART III -- THE FILE TRANSFER SERVICE (FTS)

4 INTRODUCTION TO FTS AND FIR

Introduction to FTS 4-]
Introduction to FIR 4-4
source and Destination Sites 4-4
File Types 4-5
File Transfer Request Names and

Numbers 4-5
FITS and the COPY Command 4-6
Access Rights 4-6
Access Rights for the

Requesting User _ 4-6
Access Rights for FTS 4-7

5 ‘TRANSFERRING FILES WITH FIR

Introduction 5-1
FTR's Help Facility 5-2
Sending a File 5-2
Fetching a File 5-3
Printing a File at a Remote Site 5-3
Checking the Status of Requests 5-4

Using the -STATUS Option 5-5
Using the ~DISPLAY Option 5-5

Logging Request Events 5-7

Requesting Notification of
Transfers 5-8

Canceling Requests 5-9
If a Transfer Fails 5-10

If the Error Does Not Preclude
Trying Again 5-10

If The Error Precludes
Trying Again 5-10

Other Options 5-10

6 AN FIR REFERENCE

Introduction 6-1
Options for Submitting Requests 6-1

Summary of Submittal Options 6-2

Full Descriptions of Submittal
Options 6-4

Options for Managing Requests 6-13
Summary of Management Options 6-14
Full Descriptions of Management
Options 6-14

vi

PART IV —- NETLINK

7 INTRODUCTION TO NETLINK

Introduction
What is NETLINK?

NETLINK's Modes of Operation
Command Mode
Data Transmission Mode

Network Addresses
NETLINK File Transfers

8 USING NETLINK

Introduction
Invoking NETLINK
Making a Connection
Addressing Another System

PRIMENET-configured Name
Addressing

Public Data Network (PDN)

Addressing
International Addressing
Literal Addressing
Connect Packet Options

Direct Remote Login
Multiple Connections

Example of the PROMPT Command

Examples of the FILE and
OUTFILE Commands

File Transfer Capabilities
Precautions

Local-to-remote File Transfers

Remote-to-local File Transfers

Running NETLINK from a Command

Input File

Example of the PROFILE Command

Example of the PAR Command
Debugging Using NETLINK

NETLINK REFERENCE

Introduction
Command Summary

Basic Commands
Address Formats

Profile Commands
Other Commands

Command Reference
Error Messages

Error Messages Generated from

PDNS

PRIMENET Error Messages

vii

7-1
7-1
7-3
7-3
7-4
7-4
7-4

8-1
8-2
8-2
8-2

8-11
8-13
8-15

9-1
9-1
9-2
9-2
9-3
9-5
9-5
9-17

9-17
9-19

PART V -——- ADVANCED PRIMENET

10 PRIMENET ARCHITECTURE

Introduction
PRIMENET's Layers
Advantages of Layered Architecture
Network Types

Prime's Local Area Network:
RINGNET

Point-to-point Connections
Public Data Network (PDN)
Connections

Route-Through Connections

11 PORTS AND VIRTUAL CIRCUITS

Introduction
Ports

Ports, Programs, and User
Processes

Port Assignments
Virtual Circuits

Intra-node Calls
Passing Off Virtual Circuits to
Other User Processes

Virtual Circuit Status Array

Clearing Codes

12 PRIMENET AND PDNs

Introduction
PDNs and NETLINK

Ease of Access
Multiple PDN Support
Route-through

PART VI —- PRIMENET PROGRAMMING

13 INTRODUCTION TO NETWORK PROGRAMMING

Introduction
IPCF Subroutines

IPCF Programming Examples
IPCF Programming Strategy

FITS Programming with the FISSUB
Subroutine

viii

10-1
10-1
10-3
10-4

10-6
10-8

10-9
10-9

11-1
11-2

11-2
11-2
11-4
11-4

11-5
11-5
11-6

12-1
12-1
12-2
12-2
12-2

13-1
13-1
13-2
13-2

13-2

14 IPCF SUBROUTINES

15

16

Introduction
IPCF Overview
Naming Conventions

Summary of IPCF Subroutines
Subroutine Descriptions
Assigning PRIMENET Port to
Receive Incoming Call(s)

Call Requesting
Find Information on Incoming

Call
Call Acceptance
Transmit Data
Receive Data
Clear
Release a PRIMENET Port
General Network Cleanup

Wait for Completed PRIMENET

Action
Virtual Call Transfers

Network Status Interrogations

IPCF PROGRAMMING EXAMPLES

Introduction

Establishing a Virtual Circuit

General Layout of Programs Using
IPCF Routines

The Calling Application
The Called Application

IPCF Examples

PRIMENET File-transmission
System

The Transmitting Side
The Receiving Side
Routine to Wait for

Next Network Event
Fast Select Calls

Capacity and Service Busy
Timing Aspects
Virtual Circuit Timeout

Handling
The Code

IPCF PROGRAMMING STRATEGY

Introduction
Front-end Principles
Server Principles
Performance Aspects
Windows and Packet Sizes in

Virtual Circuits (Throughput)
Network Event Waiting

ix

14-1
14-2
14-2
14-3
14-4

14-4
14-6

14-11
14-14
14-16
14-18
14-20
14-23
14-23

14-24
14-25
14-29

15-1
15-1

15-2
15-2
15-2
15-3

15-3
15-4
15-6

15-8
15-9
15-10
15-10

15-11
15-11

16-1
16-2
16-2
16-3

16-4
16-5

Checking Return Codes
Virtual Circuit Clearing
Program Closedown
The Effect of START_NET and

STOP_NET on IPCF Programs

17 FTS PROGRAMMING

Introduction
Program Setup for FITSSUB
Declaring FTSSUB
Defining Keys and

Error Codes

Loading the FIS
Subroutine Library

Invoking the FISSUB Subroutine
Function Categories
Transfer Request Submission

Submission Error Codes
Transfer Request Modification
Changing the Status of a

Transfer Request
Status Retrieval of a

Transfer Request
Internal vs. External Names
Error Codes
The Request Data Structure
The Error Data Structure

Example

16-6
16-7
16-7

16-8

17-1
17-2
17-2

17-3

17-3
17-4
17-5
17-5
17-8
17-10

17-14

17-19
17-22
17-27
17-28
17-31
17-34

PART VII — OPERATOR'S GUIDE TO PRIMENET

18 MONITORING PRIMENET AND FITS

Introduction
Monitoring the PRIMENET* Directory

PRIMENET* Directory Files
Access Rights

Adding Remote Disks

Network Configuration File
Starting and Stopping PRIMENET
Monitoring Network Servers
Monitoring Network Events
Monitoring FTS
Monitoring RINGNET

19 STARTING AND STOPPING PRIMENET

Introduction
NET ON Versus START_NET

The START_NET Command

Invoking START_NET

18-1
18-2
18-2
18-3
18-3
18-3
18-4
18-4
18-4
18-5
18-5

19-1
19-2
19-2
19-2

The STOP_NET Command 19-3

Invoking STOP_NET 19-4

20 MONITORING NETWORK SERVERS

Introduction 20-1

Monitoring the Network Server

Process (NETMAN) 20-1

Monitoring the Route-through

Server (RI_SERVER) 20-2

Using Status Users 20-2

Using Status Network 20-3

21 MONITORING NETWORK EVENIS

Introduction 21-1

The PRINT_NETLOG Command 21-2

Network Event Types 21-6

Controlling the Size of the Network

Event Log File 21-7

Network Event Messages 21-8

Print NETLOG Error Messages 21-14

22 MONITORING FIS

Introduction 22-1

The FIOP Command 22-2

Summary of FTOP Options 22-2

FIOP Options 22-3

Starting, Stopping, and Monitoring

YTSMAN 22-7

Starting, Stopping, and Monitoring

File Transfer Servers 22-7

Managing and Monitoring User

Requests 22-9

Rush Requests 22-9

Monitoring the FISQ* Directory 22-10

Monitoring and Archiving FITS
Log Files 22-10

Stopping FITS 22-11

23 MONITORING RINGNET

Ring Diagnostic Programs 23-1

RINGNET Overview 23-1

RINGNET Hardware 23-2

RINGNET Terminology 23-2

How RINGNET Works 23-5

The MONITOR_RING Program 23-6
Invoking the MONITOR_RING Program 23-7

Selecting MONITOR_RING Displays 23-8

Interpreting Ring Statistics 23-9

Basic Display 23-10

Error Screen 23-15

xi

Status Line
Error Display Fields
Trace Display
Report File Format

The FIND_RING_BREAK Program
How FIND_RINGBREAK Works

Invoking FIND_RING_BREAK
The FIND_RING_BREAK Input File
Creating the FIND_RING_BREAK

Input File
Locating a Break in the Ring

FIND_RING_BREAK With an Input File
FIND_RING_BREAK Without an Input

File
FIND_RING_BREAK Error Messages

APPENDIXES

X.25 PROGRAMMING GUIDELINES

Introduction
Call User Data Field Terminolgy
X.25 Window and Packet Size
Data Flow Checkpoints

NETLINK PARAMETERS

International Parameters

TELENET Parameters

Interpreting PAR Command Output

FTS ERROR MESSAGES

Introduction
General Error Messages
FIGEN Error Messages
FTR Error Messages
FTOP Error Messages

STARTNET AND STOP_NET ERROR MESSAGES

Introduction
START_NET Error Messages
STOP_NET Error Messages

INDEX

xii

23-17
23-17
23-22
23-23
23-24
23-24
23-26
23-26

23-7
23-28
23-29

23-30
23-30

A-1
A-1
A-2
A-3

B-l
B-2
B-3

C-l
C-l
C-2
C-4
C-12

D-1
D-1
D-4

X-1

About

This Book

The PRIMENET Guide provides tutorial and reference information on:

e@ Remote file access

@ Remote Login

e File Transfer Service (FTS) and the File Transfer Request

utility (FIR)

e NETLINK (Prime's Packet Assembler/Disassembler (PAD) emulator)

e Ports and virtual circuits

— e Inter-Process Commmications Facility (IPCF) subroutines

This book is intended for three groups of people:

e@ Network users who are familiar with PRIMOS commands. Utilities

like NETLINK and FYTS permit network users to talk to users on

other systems and to transfer files required by those users.

@ Programmers writing networking programs with Inter-Process

Communications Facility (IPCF) subroutines or with the File

Transfer Service (FTSSUB) subroutine.

@ Operators who monitor and control nodes ina network.

System Administrators who are designing a network, or want their system

— . to become part of a network, should use the Network Planning and

Administration Guide (DOC7532-193).

Xiii

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document.

Convention

UPPERCASE

Abbreviations

lowercase

Underlining

in
Examples

Brackets

[]

Braces

{ }

Ellipsis

Explanation

In command formats, words in

uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase
or lowercase,

If a command or statement
format has an abbreviation,
it is indicated by an

underlining. However, where
this cannot be done clearly,
the abbreviation either appears
below the command with both
enclosed in braces, or ona

line beneath the format and
introduced by the word:
"Abbreviation".

In command formats, words
in lowercase indicate variables,
items for which the user must
substitute a suitable value.

In examples, user input is

underlined, but system prompts
and output are not.

Brackets enclose a list of
one or more optional items.

Choose none, one, or more of
these items (0-n).

Braces enclose a vertical

list of items. Choose one

and only one of these items.

An ellipsis indicates that

the preceding item may be
repeated.

XiV

Example

NETLINK

QUIT

—DSTN_NTFY
—DN

~SRC_NIFY

Abbreviation: -SN

NETLINK ~TO nodename

OK, DATE —MONTH
September
OK,

FTIR —HELP | subject |
USAGE

MODE REMOTEECHO
NO_REMOTEECHO

item-x[,item-y]...

Parentheses

()

Hyphen

(CR)

In command or statement DIM array (row,col)

formats, parentheses must be
entered exactly as shown.

Wherever a hyphen appears in FIR -HELP

a command line option, it is

a required part of that
option.

The (CR) symbol indicates a
single carriage return which

is generated on most terminals

by hitting the RETURN key.

PARTI

An Overview ofPRIMENET

Whatis

PRIMENET?

INTRODUCTION

This chapter provides an overview of PRIMENET, Prime's networking

software. PRIMENET is supported on all Prime 50 Series systems, and

provides a reliable, standardized medium through which remote user and

file accesses can be made. PRIMENET supports communications between

linked systems with a variety of services and transmission methods.

PRIMENET makes referencing remote information identical to referencing

local information. PRIMENET does not require you to learn new commands

to access disks or files on remote systems in a network. Because of

this transparency, you do not need to learn new commands or details

about system links and locations.

Besides being easy to use, PRIMENET software meets the Consultative

Committee for International Telephone and Telegraph (CCITT) 1980

extensions to the X.25 communications standard for packet-switching

networks. This allows Prime software to commmicate over international

public data networks (PDNs) that support X.25. Prime ring

=

and

point-to-point synchronous networks are also supported; the

combination of network types gives you many options that you can

exercise, based on need and application. See Chapter 10 for more

information on RINGNET and networks.

To bring up PRIMENET, the System Administrator uses the global network

configurator called COONFIG_NET. See the Network Planning and

Administration Guide for information on setting up a network.

1-1 Third Edition

DOC3710-193

This chapter briefly describes the following subjects, which are fully
described later in this book.

@ Basic network user features

@ More advanced network user features

@ Network programming

BASIC PRIMENET FEATURES

PRIMENET's communications facilities are easy-to-use. The PRIMOS
commands you already know can be used across networks. The following
sections describe these elementary facilities. Turn directly to later
chapters for specific instructions on the use of

@ Remote file access

@ Remote login

@e File Transfer Service (FTS)

@ The NETLINK utility

These facilities allow you to login or access files on other systems in

a PRIMENET network.

Remote File Access

PRIMENET provides immediate access to any remote file within the
network, even if you do not know on which system within the network the
file resides. This means that you do not have to learn any new
commands to specify a remote file, since PRIMENET works with the file
System to access the file in a transparent fashion. In fact, you may
not even know that the file is not contained within the local system.
In addition, programs accessing remote information do not have to be
changed or recompiled if the remote information is moved. Chapter 2
contains additional information on remote file access.

Third Edition 1-2

WHAT IS PRIMENET?

Remote in

You can log into any remote system connected to the local system

through any of the following network types supported by PRIMENET.

e@ RINGNET

e@ Point-to-point

@ Public Data Network (PDN)

e Route—-through connection

Once you are logged into a remote system, you Can type commands as if

you were logged into the system locally. Chapter 3 has additional

information on remote login. Refer to Chapter 10 for a description of

the four network types supported by PRIMENET.

The File Transfer Service (FIS)

The File Transfer Service (FTS) allows you to transfer files between

Prime systems in a communications network. You can send or fetch any

file (given the proper access rights) in the system; if a node is

currently disconnected, FIS automatically retries a transfer later.

FTS has separate facilities for users, operators, and System

Administrators. For users, the FIR command transfers files. The FIGEN

utility is used by the Network Administrator to install FIS ona

network. See the Network Planning and Administration Guide for more

information on this utility. The FIR utility and the FIOP utility are

used by system operators to monitor and expedite user requests

submitted with FIR. FTS also includes a subroutine, FTSSUB, that can

be used in programs to perform FIR options. Chapters 4 through 6, 17,

and 22 contain additional information on FIS.

The NETLINK Utility

NETLINK lets you communicate over any X.25 network to which your local

system is linked. NETLINK emulates a PDN Packet Assembler/Disassembler

(PAD). It converts the asynchronous terminal output into

X.25-formatted packets of information that can be transmitted over an

X.25 network.

If your system has a PDN link, NETLINK allows access to any system in

that network, both Prime and non-Prime. You do not have to log out of

the local system to invoke NETLINK; in fact, NETLINK'- supports

simultaneous links of up to six remote systems and allows you to move

between them and the local system at will. ‘his capability puts a

variety of PDN facilities in quick reach of any Prime user. Chapters 7

through 9 contain additional information about NETLINK.

1-3 Third Edition

DOC3710-193

NETLINK can be used not only to connect to Public Data Networks and
other Prime systems, but for file transfer as well. This is described
in Chapter 8.

ADVANCED PRIMENET FEATURES

Advanced PRIMENET features may require an understanding of

@ PRIMENET architecture

@ Ports and virtual circuits

e@ Public Data Networks (PDNs)

PRIMENET supports the X.25 standard, and can commmicate with other
systems and PDNs that support this communications protocol.

PRIMENET Architecture

PRIMENET architecture consists of various software and hardware layers
that handle network links between applications, control the flow of
data between systems, and provide user facilities. Chapter 10
describes PRIMENET's layered architecture.

Public Data Networks (PDNs)

The 50 Series systems can subscribe to all Public Data Networks (PDNs)
that support the CCITT X.25 protocol standard. All of these networks
transfer and process information in packets. Packet-switching networks
can share the same equipment among several users simultaneously. These
networks can often provide service at substantial savings over methods
that require dedicated transmission lines or dialup circuits.

The user of a Prime 50 Series system that is linked to a PDN has access
to all other members of the PDN. This means that any Prime terminal
user can access all other member systems, both Prime and non-Prime, and
that all PDN terminal users can access the 50 Series system. Both
Prime systems and PDNs administer access controls, of course, for users
who desire greater security.

Third Edition 1-4

WHAT IS PRIMENET'?

PROGRAMMER FEATURES

The following programming features are provided by PRIMENET:

e Ports and virtual circuits

@ Interprocess Communications Facility (IPCF) subroutines

@ The FITS FTSSUB subroutine

Applications can make virtual circuit connections to other systems, and

accept incoming connections. Programmers can also write file transfer

applications with the FTSSUB routine, which invokes FIR options.

Ports and Virtual Circuits

An application that communicates with a remote system must have some

way of identifying the remote node and the destination application.

The node can be identified through its address in the network

configuration. The destination applicationmust be identified through

a port. Each node has a list of ports that act as subaddresses within

each node. ‘The application making the connection must assign one of

these ports to contact the destination application.

When one application specifies the node and port of another

application, PRIMENET establishes a connection between the two through

a virtual circuit. This is a logical path or channel that traverses

the network from One application to another through any of several

physical, point-to-point links. For information on ports and virtual

circuits, see Chapter ll.

IPCF Subroutines

Interprocess Communication Facility (IPCF) subroutines allow an

application to set up communication links with target applications

within the network. Through these links, the application can exchange

data with any of its target applications.

Procedures written in any high-level language can call any of the IPCF

subroutines. This capability is especially useful when you are

developing distributed applications. Chapters 13 through 16 contain

detailed information on IPCF subroutines.

1-5 Third Edition

DOC3710-193

FITS Programming

Programmers can write applications to call FTS through the FTSSUB
subroutine. FISSUB invokes FIR options that submit, modify, cancel,
abort, hold, and release file transfer requests. This subroutine is
described in Chapter 17.

OPERATOR FEATURES

Operators monitor and control network operations with the following
tools.

@ START_NET and STOP_NET

e STATUS USERS and STATUS NETWORK

@ PRINT_NETLOG

e FIR and FIOP

@ MONITOR_RING and FIND_RING_BREAK

These tools help the operator to monitor and control the various user
facilities that run in a network environment.

One of the responsibilities of an operator is to monitor certain system

directories (for example, the PRIMENET* directory) that are used and
created by network facilities. This information is described in
Chapter 18.

Starting and Stopping the Network

Two new commands, START_NET and STOP_NET, allow you to add or remove a
system from your network without interrupting local system activity.
See Chapter 19 for more information.

Monitoring Network Servers

Network servers can be monitored with the STATUS USERS and STATUS
NETWORK commands. Chapter 20 describes how servers are monitored.

Monitoring Network Events

PRIMENET logs network events in a log file when network event logging

. has been turned on (with the system configuration directive NETREC or
with the EVENT_LOG -NET ON command).

Third Edition 1-6

WHAT IS PRIMENET?

The PRINTNETLOG command collects these events in a file called NETLST,

or lists the file on the terminal. This command is described in

Chapter 21 on monitoring network events.

Monitoring FIS

The File Transfer Request utility (FIR) has a set of management options

that let an operator manage and control user-submitted file transfer

requests.

The FTS Operator utility (FIOP) lets operators who are logged in under

the user-id SYSTEM start and stop the file transfer manager and the

file transfer servers. Chapter 22 describes FIR and FIOP as they

pertain to operator responsibilities.

Monitoring RINGNET

You can monitor RINGNET with two programs:

@ MONITOR_RING

e@ FIND_RING_BREAK

MONITORRING displays throughput and error statistics of ring traffic

on the node that it is run on.

FINDRING_BREAK shows you the location of breaks in the ring. This

program works only for hardware failures that cause complete signal

interruption on the ring. FIND_RING_BREAK can be useful in conjunction

with MONITORRING to determine a failure. These programs are described

in Chapter 23.

1-7 Third Edition

PART Il

Elementary PRIMENET

Accessing

Remote Files

INTRODUCTION

This chapter explains how to use PRIMENET to access files that are

physically located on a disk on a remote computer.

Explanations of how the System Administrator sets up remote file access

are in the Network Planning and Administration Guide. Daily network

maintenance is described in Part VII of this book. Daily system

maintenance is described in the System Operator's Guide, Volumes I and

Il.

REMOTE FILE ACCESS

Accessing files on a Prime computer that is networked to another

computer is normally the same as accessing files locally. The STATUS

DISKS command shows which disks are available, and commands such as

ATTACH, COPY, DELETE, ED, and LD work on remote files in exactly the

same way they do on local files.

Here is an example of editing a file LOANS>UNOOLLECTED, on the disk

SHARK, on the system SYSD. Except that STATUS DISKS shows the disk

SHARK to be on system SYSD, there is no indication that remote file

access waS involved. No special remote file access commands were

required.

2-1 Third Edition

DOC3710-193

OK, STATUS DISKS

Disk Ldev Pdev System
STATS 0 3462
FIELDS 1 460
MISCEL 2 71063
FOREST 3 71061
REEFS 4 460 SYSC
LAGOON 5 460 SYSD
SHARK 6 12060 SYSD
SHARK2 7 52061 SYSD
CLOUDS 12 460 SYSE
CLIFF1 13 12460 SYSE
CLIFF2 14 61461 SYSE
AFRIE 15 462 SYSE
ROCK 23 21460 SYSA
FALOON 24 71061 SYSA
NESTl 25 660 SYSA
NEST2 26 10660 SYSA

OK, ED <SHARK>LOANS>UNCOLLECTED
EDIT

L_ HARRY

Harry W. Sloth $38.14
C/38/18/
Harry W. Sloth $18.14
FILE

<SHARK>LOANS>UNCOLLECTED
OK,

In the following instances, however, special remote file access
commands or actions may be required,

@ For security reasons, the remote system does not recognize your
user-id as valid for file access. In this case, you need to use
a remote-id, as described in the section on USING REMOTE IDs,
below.

@ The remote disk you wish to access may not be available on your
system. In this case, you must either ask an operator or your
System Administrator to add the disk, or use the File Transfer
Service (FITS) to transfer the file in question to your system.

USING REMOTE IDS

Prime systems linked through PRIMENET usually recognize the user-ids
found on any remote system in the network. ‘This means that you can
work on a remote system by giving the same commands you would use on
the local system. What actually happens is that a special kind of
Phantom called a slave uses your user-id and does the work on the

_ Yemote system for you. This process is invisible to you.

Third Edition 2-2

ACCESSING REMOTE FILES

The Network Administrator of a Prime computer may configure the system

to "force user validation" with respect to other Prime systems. A

system that forces user validation does not automatically recognize

your usual user-id. The slave cannot do your work on that system. You

must establish a remote-id for the remote system. ‘The slave then uses

this remote-id. You must create a remote-id to access any remote

system that forces user validation.

Using a remote-id involves performing the following steps:

1. Have the System Administrator on the remote system create a

user-id for you on that system. This needs to be done only

once.

2. Add the remote-id by using the ADD_REMOTE_ID (ARID) command.

You need to do this every time you log on and intend to access

the remote disk.

Note

You might also wish to establish remote-ids even on systems on

which your user-id is recognized. For example, a remote-id may

allow you certain ACL rights that your own user-id does not

allow.

When to Use Remote IDs

The following is an example of a circumstance requiring the

ADD_REMOTE_ID (ARID) command. Two Prime systems, SYSA and SYSB, are

connected together by PRIMENET. Each system already has a number of

established user-ids. Unfortunately, several user-ids on SYSB are

identical to user-ids on SYSA, but belong to different people. For

example:

System User-id Person

SYSA RUTH Ruth J. Morton, Payroll Dept.

SYSB RUTH Frank W. Ruth, Sports Director

Company management intends that Ruth Morton be able to access files on

SYSA and SYSB; among others, the directory <BURSAR>PAYROLL on SYSA.

They also intend that Frank Ruth, who logs in on SYSB, be able to

access <BURSAR>BUDGETS>SPORTS on SYSA, but not the payroll.

If management did not set up any special protection, Frank Ruth, logged

in as RUTH on SYSB, would be able to access any files on SYSA to which

RUTH (Ruth Morton) had access. To avoid this problem, the Network

. Administrator requires that SYSA "force user validation." This means

that RUTH from SYSB is not allowed access as RUTH on SYSA. In order to

2-3 Third Edition

DOC3710-193

access files on SYSA, the SYSB user must supply an additional user-id
and password, by which he is recognized on SYSA. For example, suppose
Frank Ruth is given the user-id FRANK on SYSA, and the ACL for
<BURSAR>BUDGETS>SPORTS provides appropriate access rights to FRANK. In
that case, RUTH (Ruth Morton) does not have access to
<BURSAR>BUDGETS>SPORTS. And FRANK does not have rights to access
<BURSAR>PAYROLL.

To log in on SYSB and access the sports budget (on SYSA), Frank Ruth
would use commands such as these:

OK, LOGIN ROUTH

RUTH (user 50) logged in Tuesday, 7 Feb 84 9:32:02.
Welcome to PRIMOS version 19.3
Last login Monday, 6 Feb 84 13:21:16.

OK, ARID FRANK SECRET -ON SYSA
OK, A _<BURSAR>BUDGETS>SPORTS
OK, ED FIRST.QUARTER

etc.

Establishing Remote Ids

You can establish a remote—-id with the ADDREMOTE_ID command, which has

the following format.

ADD_REMOTE_ID remote-id [password] -ON system [-PROJECT project—id]

Abbreviation: ARID

The arguments and options for this command are the same as those for
the LOGIN command.

The remote-id is the user-id that the slave uses for you on the remote
system, Specified by system. In order to be useful, remote—id must
already have been defined as a valid user-id by the System
Administrator on the remote system.

You must also supply any password or project-id required for access to
the remote system. If the remote-id does not exist on the remote
system, or if any required password or project id is missing or
incorrect, any attempts to access the remote system fail.

You can have up to 16 remote-ids, but only one for any given remote
system. For example, if you add the remote-id JINKS on SYSA and then
add the remote-id LYNX on SYSA, LYNX replaces JINKS. All remote—ids
are removed when you log out.

Third Edition 2-4

ACCESSING REMOTE FILES

Examining Your Remote IDs

With the LISTREMOTE_ID command, you can examine the existing remote

ids you have established. The format is:

LISTREMOTE_ID [-ON system]

Abbreviation: LRID

If you use the —-ON option, only the remote-id for system is listed. If

you omit the -ON option, all of your remote-ids are displayed.

Passwords are never displayed. For example:

OK, LIST_REMOTE_ID

System User id Project id

SYSB JIM
SYSK JAKE SALES

SYSM JODY
OK,

Removing Remote IDs

You can also remove remote-ids from your list, if the list gets too

large. The PRIMOS command is REMOVE_REMOTE_ID.

REMOVE_REMOTE_ID [-ON nodename]

Abbreviation: RRID

The REMOVE_REMOTE_ID command allows you to remove your remote-id for a

given system from your remote-id list. You may have to remove a

seldom-used or obsolete remote-id to add a new remote-id to your list.

If you do not have a remote-id for the system named in "nodename", the

message "Not found" appears.

2-5 Third Edition

Logging Into

Remote Systems

REMOTE LOGIN

Logging in through PRIMENET is called remote login because you log into

a computer that is remote from the local system to which your terminal

is directly connected. PRIMENET provides two methods of remote login.

The first method of remote login uses the familiar LOGIN command, which

is described in this chapter. You can use it to log on to a Prime

system that is connected in a network and to which you have access

rights.

The second method of remote login uses NETLINK, a Packet

Assembler/Disassembler (PAD) emulator that lets you connect’ to

networked Prime systems or to non-Prime computers over a Public Data

Network (PDN). NETLINK is described in Chapters 7, 8, and 9.

To log in to the remote computer named system, use the following LOGIN

command format:

LOGIN user-id [password] [-PROJ project_id}] -ON system

Except for the -ON option, logging in remotely is identical to logging

in locally. When you use NETLINK to log into a remote system, however,

you must first be logged into the local system.

3-1 Third Edition

DOC3710-193

Here is an example of a successful remote login:

LOGIN HANSEN -ON SYSB
PRIMENET 19.3 SYSB

HANSEN (user 50) logged in Saturday, 29 Oct 83 10:12:12.
Welcome to PRIMOS version 19.3
Last login Monday, 24 Oct 83 7:41:16.

OK,

You must have a valid user-id on a remote system in order to log in.
If your terminal is already logged in, you might get an error message
requesting that you log out first. To learn which remote systems are
accessible from your terminal, ask’ your System Administrator or log
into your local system and type STATUS NETWORK. (You are not
necessarily allowed to log into all the systems displayed by this
command, however, since remote login is configured by your System

Adminstrator.)

ERROR MESSAGES

The following error messages might occur when you attempt to log into a
remote system.

@ Please log out first. (RLOGIN)

Log out of your current system before trying to log into another
system.

e Invalid system name. (RLOGIN)

You have attempted to log into a disallowed or nonexistent system, or
you have spelled the system name incorrectly.

@ Remote login to that system not enabled. (RLOGIN)

Users do not have permission to attempt remote login to that system.

@ No more remote lines available. (RLOGIN)

All of the available slots for users logging through to a remote system
are in use. Only 64 users can log through to remote systems
Simultaneously.

Third Edition 3-2

LOGGING INTO REMOTE SYSTEMS

e Can't connect to remote system, (RLOGIN)

For some unknown reason, calls to the remote system are unsuccessful.

e Line to remote system down. (RLOGIN)

All available links to the remote system are down.

@ Too many network calls for link. (RLOGIN)

A network link is currently handling the maximum number of calls

allowed. You must wait until someone finishes using the network.

@ Too many network calls. (RLOGIN)

Your system is currently handling the maximum number of calls it can

support. You must wait until someone finishes a call.

e Invalid facilities. (RLOGIN)

Your system has attempted to send an illegal connect packet for the

network to which it is connected. This error message indicates that an

improper set of facilities is configured. Inform your System

Administrator.

e Can't send login line. dddddd< ROODE dddddd< ERR

Remote login could not send the login line to the remote host because

of an internal error. dddddd are decimal numbers for the internal

state variables RCODE and ERR. Please refer this information to your

support staff.

@ Remote system busy.

The remote system has all available circuits in use. Wait for one of

the circuits to be freed.

e@ Remote system down.

The remote system is not responding to messages from the network. It

is presumed not to be operating.

3-3 Third Edition

DOC3710-193

@ Remote system not up yet.

The system has just been started but is not yet ready to accept calls.
This may be because the date and time have not been set yet. Wait a
reasonable period for the operator to set the date and time, and try
again.

@ Remote system has too many calls in progress.

The remote system is not accepting any more remote logins since all
available resources are in use. You must wait until resources are
freed up.

@ No more remote lines on remote system.

The maximum number of allowed remote login users are already logged
into the remote system. You must wait for one of these users to log
out. If this occurs frequently, you should see if the System
Administrator of the remote system can configure more remote login
users.

e@ CALL CLEARED

CLEARING CODE =:cccccc

DIAGNOSTIC CODE =:dddddd

Remote login has received an unexpected clearing cause or diagnostic
from the network. cccccc is the clearing cause in octal, and dddddd is
the diagnostic code in octal. If this problem recurs, you should
contact your support staff.

Third Edition 3-4

PARTIII

The File Transfer Service (FTS)

Introduction to

FTS and FTR

INTRODUCTION TO FIS

This chapter describes the File Transfer Service (FITS), which lets you

transfer files between Prime computers. FITS functions over any

PRIMENET link, including RINGNET, synchronous links, and also over

Public Data Network (PDN) links, such as TELENET or DATAPAC. FITS is

made up of the following utilities:

e File Transfer GENeration (FIGEN)

e File Transfer Request (FTR)

e File Transfer OPerator (FTOP)

FICGEN is described in the Network Planning and Administration Guide.

FTR is introduced in this chapter. An FIR tutorial is provided in

Chapter 5, anda full reference for FIR options is provided in Chapter

6. FOP is described in Chapter 22. Appendix C describes each FIS

error message that might occur in any of the above utilities.

FTS can also be called from application programs through the FTSSUB

subroutine. A program can submit, modify, cancel, or otherwise control

a request just as a user can with FIR. Chapter 17 describes this

subroutine.

4-1] Third Edition

DOC3710-193

In order to use FITS on your system, your System Administrator must
install and configure it. PRIMENET must be configured on the system in
order for FITS to run. Your System Administrator uses FIGEN to
configure one or more file transfer servers, which are phantom
processes started from the supervisor terminal at system startup. Each
file transfer server has a unique name that helps the operator identify
it.

FITS requires a minimum of two phantom processes. One phantom is for
YTSMAN, the File Transfer Manager, and one is for a file transfer
Server. Each server process is responsible for one file transfer
queue. A file transfer queue holds file transfer requests made by you
and other FITS users. A server process can be stopped and restarted by
an operator using FIOP, if necessary. See Chapter 22 for more
information on FIOP.

A file transfer server can have password associated with it asa
security measure. The System Administrator should set passwords at FITS
configuration with FIGEN. Remote FITS sites need to include server
passwords in their FTS configurations,

Using FIR, you can request that files be transferred from a local or
remote site, or between different directories on a local site. The
local site is the node you issue the FIR command on, and the remote
Site is the other site. Transfers can occur from a local to a remote
Site or from a remote site to a local site. Local and remote sites are
described more fully later in this chapter.

Third Edition 4-2

INTRODUCTION TO FITS AND FIR

File File Local
Transfer > Transfer Request
Manager Server Queue

A

Incoming A A A
Remote
Requests Transfers

v vv sy

Transport
Service

— Level 4

IPCF Interface

Level 3 X.25

Level 2 X.25 RINGNET

_ Level 1 MDLCor ICS1 PNC

Ring

The File Transfer Service (FITS)
Figure 4-1

4-3 Third Edition

DOC3710-193

INTRODUCTION TO FIR

The File Transfer Request (FIR) utility provides a method of
transferring files between networked Prime computers and between Prime
computers connected to each other through Public Data Networks (PDNs).
FTR is one of the FITS utilities.

To transfer a file, use the FIR command to submit a file transfer
request. A file transfer request provides FITS with the information
that is needed to make a file transfer. That information includes a
source-pathname, a destination-pathname, a destination-site, and a
destination-user.

You can submit a file transfer request (interactively or by using a CPL
file) even when the communications link between two Prime computers is
not operational or when the remote computer is down. File transfer

requests are queued on the local (requesting) computer,

Once you have submitted a file transfer request, you can display,
modify, or cancel it. See Chapter 5 for examples on how to do this.

FTR uses the name of the file being transferred as the name of the
request. FIR also gives each request a unique number. These numbers
are sequentially assigned to transfer requests to allow unique
identification of each request. Request names and numbers” are
described later in this chapter.

Before you can use FIR, you need to know the following information,
which is described in this chapter.

@ How to define source and destination sites

@ What file types you can transfer

e How to use file transfer request names and numbers

Source and Destination Sites

File transfers take place between sites. A site is a single Prime
computer, identified by a wumique site name and a server name. Prime
sites normally use their PRIMENET system names as site names. Files
are transferred from a source site to a destination site. One of these
must be your local site; the other is usually a remote site. (FIR
cannot be used to transfer files between two remote sites.)

Chapter 5 assumes that you are using FIR between Prime machines that
have been configured by the System Administrator with the FIGEN
command. To transfer files to or from sites that are not configured,
see the descriptions of the -DSTN_SITE and -SRC_SITE options under
OPTIONS FOR SUBMITTING REQUESTS in Chapter 6.

Third Edition 4-4

, INTRODUCTION TO FITS AND FIR

File Types

FTS Rev 2 supports transfers of sequentially-accessed (SAM) and

directly-accessed (DAM) files and now also allows you to transfer

standard SEGSAM and SEGDAM segment directories.

FTS Rev 1 can only transfer SAM and DAM files. FIS Rev 1 also makes

transferred SAM files into DAM destination files if the files do not

exist at the remote site.

The following table shows FITS dependencies and PRIMOS Revs:

FITS Rev. PRIMOS Rev. Released On Will Run On

1.0 18.4 18.2 and above

1.0 19.0 18.2 and above

1.1 19.1, 19.2 19.0 and above

2.0 19.3 19.0 and above

Note

FTS does support transfers of MIDASPLUS and SHG run files, but

it does not support transfers of segment directory—based file

structures like ROAM, DBMS, or RBF files.

File Transfer Request Names and Numbers

Fach file transfer request has associated with it a mame and number.

The name is usually the file name being transferred, but it can be a

name you specify with the —NAME option. ‘he length of a request name

is limited to 32 characters.

The number is a sequential number that is assigned by FIS to the

request in the order of transfer submission. Leading zeros are

suppressed.

You can refer to either the name or the number in FIR command lines.

The request number is handy if you have two requests with the same

name. Thus, you can use a name when you have only a Single request

pending, or when you want information on all requests with that name.

You can use a number when you want to be sure you're specifying only

one request.

4-5 Third Edition

DOC3710-193 ‘

FTR AND THE COPY COMMAND

The FIR command or the COPY command can be used to transfer files
between networked Prime computers. (The NETLINK utility can be used to
transfer files as well. See Chapter 8 for more information.) The two
commands give the following alternative approaches (one command or the
other can be more appropriate in a given situation).

@ OOPY provides immediate, direct access to a remote file system.
FIR provides a queued file transfer.

e@ QOPY ties up your terminal when the file is being copied. FIR
leaves your terminal free during a file transfer.

@ COPY requires the remote site to be up and the commmications
link to be working at the time you request a remote file copy.
Otherwise, you receive an error and you must try again later.
FTIR accepts requests for file transfers at any time, regardless
of the state of the remote site or the commmications link. FIR
queues the requests and transfers files at a time when the
remote site and the communications are functioning.

@ You can use COPY and other PRIMOS commands for remote file
access only when the System Administrator has enabled remote
file access communications between the systems. If the
communications link iS expensive or scarce, FIR may be a good
alternative. FIR needs to be connected only long enough to
handle queued file transfer requests,

ACCESS RIGHTS

In order for FIS to work correctly, both you and FTS need certain file
access rights, since FTS is subject to ACL security mechanisms in the
same way as other PRIMOS users and phantoms.

Access rights are any combination of the following rights: Protect
(P), Delete (D), Add (A), List (L), Use (U), Read (R), and Write (W).
The Prime User's Guide has information on setting ACLs in general.

Access Rights for the RequestingUser

To send files, you need LURW access to the source directory. To fetch
files, you need ALURW access to the destination directory.

Third Edition 4-6

INTRODUCTION TO FIS AND FIR

Access Rights for FIS

File transfer servers need access rights as well. ‘They need DALURW to

the directory containing the source file and to the directory receiving

the file. |

You may wish to restrict access rights that you give to FIS servers by

creating a subdirectory with full access rights for use by a remote

site in transferring files.

Ask your System Administrator for the user-id o£ the file transfer

server(s), so that you can give it appropriate access rights.

You should realize that:

e Normally, FIR takes a copy of the file using your ACL rights.

If you use -NO_COPY (-NO_COPY is described in Chapter 6), the

FTS server will read the file later. It must have the correct

ACL rights. If you specify -DELETE (DELETE is described in

Chapter 6), the server should also have delete rights to the

file. If the transfer should fail for any reason, including the

lack of appropriate rights, the file will not be deleted.

e When a file transfer server writes or reads a file froma remote

Site, the remote server must have the appropriate access rights

to that file. If the file is being created, the server must

have create rights for the appropriate directory. Again, the

transfer fails if the FITS does not have the appropriate rights

needed to copy a file.

4-7 Third Edition

Transferring Files

With FTR

INTRODUCTION

This chapter tells you how to use the File Transfer Request utility

(FTR) to transfer files between Prime computers. You learn how to

Submit a file transfer request

Send a file

Fetch a file

Print a file

Check the status of a request

Cancel a request

You should read Chapter 4, Introduction to FIS and FTR, before using

the FTR command. Chapter 6, An FIR Reference, fully describes each FIR

option.

5-1 Third Edition

DOC3710-193

FTR'S HELP FACILITY

To obtain a list of FIR HELP subjects, when you are at PRIMOS command

level, type either

FIR —HELP SUBJECIS

or simply,

FTR —HELP

SENDING A FILE

To send a file to another Prime computer, use the FIR command with the
following format:

FTR source-pathname destination-pathname —DSTN_SITE sitename

Abbreviation for -DSTN_SITE: -DS

The source-pathname is the pathname of the file being sent. You may

give a filename if it is in your current directory.

The destination-pathname specifies the name and location of the
transferred file at the destination site.

Note

If the pathname for a source file or destination file contains
a passworded directory, the password must be included. the
pathname must also be surrounded in single-quote marks, for
example, 'MARPLE CLUE>EVIDENCE'. You can type the password in
either upper- or lowercase.

The -DSTN_SITE sitename option specifies the name of the destination
site. FIR provides a response to your request in the following format:

Request request-name (request-number) submitted.

The request-name usually is the name of the file you transfer. You can
specife a different name with the -NAME option. The request-number is
the unique identification number assigned by FIR. For example, assume
your local site is named SYS2. The following command line illustrates
a file transfer request:

OK, FIR CENTER>REPORT EXPOST>GROUP2>TEXT -DSTN_SITE SYS4

[FTIR rev 2.0]
Request REPORT (21) submitted.
OK,

Third Edition 5-2

TRANSFERRING FILES WITH FIR

In this example, FIR queues a copy of the file REPORT from the UFD

CENTER to send to system SYS4 for deposit in the directory

EXPOST>GROUP2 under the name TEXT. The request name is the source

filename, REPORT. ‘The unique request number is 21.

FETCHING A FILE

To fetch a file from another Prime computer, use the following command

format:

FIR source-pathname destination-pathname -SRC_SITE sitename

Abbreviation for -SRC_SITE: —-SS

The source-pathname and destination-pathname are used as defined above

for sending a file.

The —SRC_SITE sitename option specifies the name of the site where the

file you want is stored.

For example, assume you are on SYS2, and you type the following

command :

FTIR PEOPLE>LIST MYUFD>MYLIST -SRC_SITE SYS6

This copies the file LIST in the UFD PEOPLE on SYS6 into the UFD MYUFD

on SYS2. under the name MYLIST. The request name is the source

filename, LIST.

Note

Keep in mind that the destination file will actually arrive

some time after you type in the FIR command. If you attempt to

use the file immediately after using FIR, the file will not be

found or will contain old data. Use the FIR -STATUS command,

described below, to determine when the transfer has completed.

PRINTING A FILE AT A REMOTE SITE

The -DEVICE LP option prints the specified file on the default line

printer at the remote site, which is specified by -DSTN_SITE sitename.

This option uses the PRIMOS spooler. ‘To print a file at a remote site,

use the following command format:

FTIR source-pathname -DSTN_SITE sitename -DEVICE LP -DSTN_USER name

5-3 Third Edition

DOC3710-193

The —DSTN_USER name option specifies the name of the person who should
receive the printout at the remote site. The file is printed with the
name of the file transfer server (set by your System Administrator) on
the first line of the banner instead of a user id. The name specified
after -DSTN_USER appears on the second line of the banner of the
printed file. The user's name doesn't have to be a user id.

For example, assume you are on a system named SYSA. ‘The following
command causes the file LETTER to be printed at the default line
printer on the remote system SYSF. You cannot set any SPOOL options.
FITS uses the following defaults: the first line of the banner is the
user-id of the FITS server, for example, "FTP". The second line has the
name of the destination user, which is, in this case, JUDY_JONES.

FIR STUART>LETTER —DSTN_SITE SYSF -DEVICE LP -DSTN_USER JUDY_JONES

CHECKING THE STATUS OF REQUESTS

Once you have submitted a request, you can check its status with either
the -STATUS or —DISPLAY options. Their formats are as follows:

FIR -STATUS | request—-name
request—number

FTR —-DISPLAY request~—name

request~—number

These options return information on each of your file transfer requests
identified by request-name or request-number. If you omit the request
name, you receive a report on all of your current requests.

The -STATUS option produces a one-line summary for each request. The
-DISPLAY option reports complete information on each request. Both
options report the status of a request. This tells you whether the
request is being processed, is still awaiting processing, or on hold.
The status category is one of the following:

Status What It Means

Waiting The request is in the transfer queue.

Transferring The transfer is in progress,

Aborting An active transfer request is
aborting.

Put on hold by user The request is being held in the
transfer queue.

Third Edition 5-4

TRANSFERRING FILES WITH FIR

Put on hold by operator The request is being held in the

transfer queue.

Put on hold by FIS— The request is being held in the

transfer queue.

Using the -STATUS Option

This option produces a one-line summary on each request containing the

following information.

The date and time the transfer request was first submitted.

user-id of the submitting user — normally, your user-id.

request name.

request number.

transfer queue name.

status of the request.

The following shows an example of the STATUS option.

OK, FIR -STATUS
[FIR rev 2.0]
83-03-30.10:52:12 ELLEN CHAPTER (36) (FIS$1) Status - waiting

OK,

In this example, ELLEN has a_ request named CHAPTER waiting to be

transferred.

Using the -DISPLAY Option

This option produces a full report on the status of your requests. The

display takes the following form.

 Category Information on the Request

Request Request-name (request—number).

User Submitter's user-id.

Queue Queue name where the request is queued.

Queued Date and time the request was submitted

and the request status.

5-5 Third Edition

DOC3710-193

Last attempt

Current time

Source file

Source file

Destination

Source site

Destination

Request log

Iog message

Source user

Destination

Source file

Destination

Options

size

file

site

file

level

user

type

file type

Date and time of the most recent transfer

attempt and the number of transfer
attempts.

Current date and time.

Source pathname.

Number of bytes. Displayed only if
source file is on the local site.

Destination pathname.

Source sitename.

Destination sitename.

Pathname of not

displayed.
log file; always

Level of detail entered in the request log
file.

A user-id (or another name) at the source
site to be associated with the transferred
file. Not always displayed; useful when
notifying a user at a remote site about a
transfer.

A user-id (or another name) at the
destination site to be associated with the
transferred file. Not always displayed;
useful when printing files at remote sites
or when notifying a user at a remote site
about a transfer.

The type of file being sent or fetched
from the source site. ‘The file type is
not always displayed.

The type of file being specified for the
destination file on the destination site.
The file type is not alays displayed.

List of request options.

For example, say your user-id is SMITH on the system OAK, and you want
to transfer a file to JONES on the system LINDEN. The following
example shows a request being submitted and then displayed.

Third Edition

TRANSFERRING FILES WITH FIR

OK, FIR LECTURE <LEAF>JONES>LIST -DSTN_SITE LINDEN —DSTN_USER JONES

[FIR rev 2.0]
Request LECTURE (1) Submitted.

OK, FIR —DISPLAY

[FIR rev 2.0]
Request ~ LECTURE (1)

User -~ SMITH

Queue - FTSsl
Queued ~ 83-11-01.09:55:39 Status - transferring

Last attempt - 83-11-01.09:56:00 Attempts - 1

Current time — 83-11-01.09:56:07

Source file — <BRANCH>SMITH>LECTURE

Source file size - 5162 bytes.

Destination file - <LEAF>JONES>LIST
Source site - OAK
Destination site - LINDEN
Source user - SMITH
Destination user —- JONES

Source file type - SAM

Destination file type - SAM
Options :-
BINARY, COPY, NO DELETE, NO SOURCE NOTIFY, NO DESTINATION NOTIFY.

OK,

LOGGING REQUEST EVENTS

You can create an automatic log of your file transfer request events by

specifying the -LOG option, in the form -LOG pathname, when you submit

a request. FIR records logging information in a file named pathname on

the system originating the request. If the file named pathname already

exists, the logging information is appended to the end of that file.

For example, you might give the following command.

FTR REMIND <LEAF>JONES>NOTE -DSTN_SITE OAK -DSTN_USER JONES -LOG

LOGFILE

If the file transfer of was successful, the entries in the log file,

with a normal message level, would look like this:

11.29.14: [1.1] Request REMIND (1) started Tuesday, November 1, 1983

11.29.14: [1.1] Submitting user is SMITH

11.29.14: [1.1] Local file is <BRANCH>SMITH>REMIND

11.29.20: [1.1] RESULT: Transfer terminated: Satisfactory and Complete.

11.29.21: [1.1] Request REMIND (1) finished.

Note

If the pathname for a log file contains directory passwords,

the passwords must be included in the pathname, and the whole

pathname must be included in single-quote marks. For example,

"SMITH STARRYEYED>LOGFILE'.

5-7 Third Edition

DOC3710-193

You can increase the detail entered in your log file if you wish by
specifying -MESSAGE_LEVEL on the FIR command line with one of the
following arguments: DETAILED, STATISTICS, or TRACE. NORMAL (1) is
the default message level. The number in brackets represents the file
server number (1) and the message level (1). You must also specify the
-LOG option. More information on the -MESSAGE_LEVEL option appears in
Chapter 6.

REQUESTING NOTIFICATION OF TRANSFERS

You can receive notification of the progress of a submitted request in
two ways: through the PRIMOS MESSAGE facility, or through the FIR -LOG
option. The -LOG option is a surer way to get notification, since the
results are sent to the file you specify. You may not always see all
of the MESSAGE notifications if you are logged off, or away from your
terminal. However, if you want to avoid creating a log file, you can

depend on the MESSAGE facility. To do so, specify, on the FIR command
line, one of the following options:

ion Description

-SRC_NTFY Notifies the source users when the file transfer
-SN starts and ends. You use source notify when you

transfer a file.

—DSTN_NIFY Notifies the destination user when the file transfer
—DN starts and ends. You use destination notify when

you transfer a file.

You will receive the following messages at your terminal:

OK, FIR NEWS IDEAS>PROJECT -DSTN_SITE SYSC -SRC_NIFY

[FTR rev 2.0]
Request NEWS (35) submitted.

OK,

***ETSERV (user 109 on SYSB) at 16:41
Request NEWS (35) transfer started.

OK,

***ETSERV (user 109 on SYSB) at 16:43
Request NEWS (35) transfer ok.

OK,

Third Edition 5-8

TRANSFERRING FILES WITH FIR

In this example, the first message from FISERV indicates that the file

transfer has begun. ‘The second message indicates that the transfer was

completed successfully. FISERV is the name for the FITS server. This

name is set by the System Administrator and may be different on your

system.

Note

You will only receive these messages when PRIMOS displays the

OK, prompt. These are deferred messages.

You can specify both the -SRC_NIFY and -DSTN_NIFY options together on

the same command line if you wish to inform a remote source user Or

remote recipient, as well as yourself, of the progress of the transfer.

In this case, you must also identify the remote user to FIR by

specifying at least one of the following options on the command line.

ion Description

-DSTN_USER user-id Required with -DSTN_NIFY when you are

—-DU sending a file so that FIR knows wham to

notify.

-SOURCE_USER user-id Required with -SRC_NIFY when you are getting

~SU a file so that FIR knows whom to notify.

For example, if the previous example had included the source

notification option -SRC_NIFY, the messages listed above are sent to

both you and JOHN on SYSC.

OK, FTR NEWS IDEAS>PROJECT -DSTN_SITE SYSC -DSTN_USER JOHN

-DSTN_NIFY -—SRC_NIFY

CANCELING REQUESTS

If you have submitted a request that is currently waiting in a file

transfer queue, you can cancel the request with the following command:

FTR -CANCEL [request-name
request—number

For example, if the request you wished to cancel was named NEWS (12),

either of the following commands would cancel the request.

FTR —-CANCEL NEWS

FTR ~CANCEL 12

5-9 Third Edition

DOC3710-193

You will receive the following message after you type the above
command :

Request NEWS (12) cancelled.

You cannot cancel requests that are in the process of being
transferred.

IF A TRANSFER FAILS

If FITS is unable to complete your transfer request, it takes one of two
actions, depending upon the reason for transfer failure.

If the Error Does Not Preclude Trying Again

FITS tries to transfer again. For example, the remote computer may be
down, but will likely be up later. The FIS- server attempts
retransmission every 30 minutes for 72 hours, for a total of 144 tries.
If transmission still fails, the request is put on hold with a retry
count of 143, so that one more retry is performed after an FIR —RELEASE
command. (If the file is on hold because of an error that has not been
corrected, the transfer fails again.)

If the Error Precludes Trying Again

If a user name or password is quoted incorrectly, the request is
suspended by being put on hold. Either you or the system operator may:

@ Delete the request on hold (using FIR —CANCEL) and then resubmit
the request

@e Correct it (using FIR ~MODIFY) so that following a_ subsequent
FIR —RELEASE command, the transfer succeeds

e@ Release it for another transfer attempt (using FIR —RELEASE)

OTHER OPTIONS

The FIR command permits other options that allow you to modify, abort,
and otherwise control your requests. Full information on these options
(as well as on the -HOLD and -RELEASE options) appears in Chapter 6,
which describes each FIR command option.

Third Edition 5-10

An FTRReference

INTRODUCTION

This chapter describes in two sections all of the options to the FIR

command. Chapter 4 contains overview information on FIR. To learn

which of these options you need in order to transfer files, see Chapter

5.

You request file transfers with submittal options. Those options are

described in the first section of this chapter, OPTIONS FOR SUBMITTING

REQUESTS. You manage, monitor, and cancel file transfer requests with

Management options. Management options are described in the second

section, OPTIONS FOR MANAGING REQUESTS.

OPTIONS FOR SUBMITTING REQUESTS

FTR transfers files between local and remote sites. You can transfer

files between users on a local site, but you cannot transfer files

between two remote sites. FIR considers the Prime system you are

logged into, and any remote disks that are added to that system, to be

the local site. FIS requires that at least one of the sites be the

local site. The following example shows the format of an FIR request.

FTR source-pathname [destination-pathname] [options]

Either source-pathname or destination-pathname may be a filename, if

the file is in the current directory on the local site. If the file is

in another directory, or if the directory is passworded, the complete

6-1 Third Edition

DOC3710-193

pathname (including the password, if needed), must be enclosed in
Single quotes. If a password is omitted or incorrectly specified, you
receive this error message:

Passworded pathname must be fully qualified. (FIR)

Summary of Submittal Options

Here is a brief description of each file transfer request submittal
option. Full descriptions follow.

ion Abbreviation Purpose

~COPY ~—CPY Transfers a copy of a file, not
the original. (This is the
default.)

—DELETE -DL Deletes the local source file
after it has been transferred
successfully. (The default is
-NO_DELETE only if -NO_OOPY is
used; otherwise, the copy. is
deleted.)

-—DEVICE —DEV Transfers a file to the default

line printer (-DEVICE LP). (The
default is null.)

-DSTN_FILE_TYPE ~-DFT Specifies either a SAM, DAM,
SEGSAM, or SEGDAM destination file
type. (The default is the source
file type when sending, and null
when fetching.)

—DSTN_NIFY -DN Sends messages to the destination
user when a file transfer starts
and ends. (The default is

~NO_DSTN_NTFY.)

—-DSTN_SITE -DS Specifies the site to which the
file is to be transferred. (The
default is the local site.)

—-DSTN_USER —DU Specifies the file owner, or any
user, at the destination site.
(The default is null for’ the
remote destination, login user-id
for local destination.)

Third Edition 6-2

—NO_OCOPY

—NO_DELETE

—-NO_DSTN_NTFY

—NO_SRC_NIFY

—NO_QUERY

—QUERY

—QUEUE

none

none

—-MSGL

none

none

AN FIR REFERENCE

Holds the file transfer request in

queue so that it is not initiated.

(The default is to initiate a

request.)

Specifies the pathname of a log

file. (The default is no log

file.)

Specifies the level of detail

entered in a log file. (The

default is NORMAL, the minimum.)

Specifies the name of the file

transfer request. (The default is

the source file name.)

source
(Sending

Transfers the original
file, not a copy of it.

a copy is the default).

Does not delete the local source

file after it has been transferred

successfully. (This is the

default.)

Does not send messages to the

destination user when a

_

file

transfer starts and ends. (This

is the default.)

Does not send messages to the

source user when a file transfer

starts and ends. (This is the

default.)

Does not ask you questions when

you submit or modify a request.

(The default is to query you.)

Asks you questions when you submit

or modify a request. (This is the

default.)

Specifies the name of the file

transfer queue in which a request

is to be placed. (The default is

the configured remote site queue,

or OPEN_SYSTEM, if that has been

configured.)

Third Edition

DOC3710-193

~SRC_FILE_TYPE -SFT Specifies the source file type.
Valid file types are SAM, DAM,
SEGSAM, and SHGDAM. ‘The default

is the type of the local source
file. Otherwise, the default is
null.

~-SRC_NIFY -SN Sends messages to the source user
when a file transfer starts and
ends. (The default is
~NO_SRC_NTFY.)

~SRC_SITE -SS Specifies the site from which a
file is to be transferred. (The
default is the local site.)

-SRC_USER —-SU Specifies the file owner, or other
user, at the source site. (The

default is null for the remote

source; login user-id for the
local source.)

Full Descriptions of Submittal Options

This section describes in detail each option that you might use when
submitting a file transfer request. The section following this one
describes how you manage those requests.

p -OOPY

Abbreviation: -CPY

The —COPY option makes a copy of the file before transferring it.
(This option has no effect on files requested from a remote source.)
The copy that FITS makes and that is sent is deleted by the FITS server
only after a successful transfer.

You can modify, rename, or delete the file after the request has been

made. Changes do not affect the copy involved in the transfer. The
-NO_COPY option causes the original file to be sent in whatever way it
has been modified.

You should be aware that having FITS make a copy of the file will use up
disk space. If the size of the local file being transferred is over
250K bytes, the following question appears.

Size of source file is xxxxxx bytes. Ok to make a copy ?

Third Edition 6-4

AN FIR REFERENCE

Type Y, YES, or OK, to cause FIR to attempt to Copy the file. Type N,

NO, QUIT, Q, or press (CR) to transfer the original source file. Any

other response causes the original source file to be transferred. If

you specified -NO_COPY on the command line, the above question does not

appear. You can use the —NO_QUERY option to suppress questions of this

kind.

The specification of both -COPY and ~-NO_COPY options on the same

command line causes an error. The -COPY option is the default.

— -DELETE

Abbreviation: -DL

The -DELETE option specifies that the original file, which you queued

for transfer from the local site to a remote site, be deleted after it

has been successfully transferred. This option applies to both

-NO_COPY and to -COPY on local source files. This option does not

affect files being transferred from a remote site to the local site.

The specification of both -DELETE and —NO_DELETE options on the same

command line causes an error. The default is —-NO_DELETE.

> -DEVICE LP

Abbreviation: -DEV

The -DEVICE option spools a file at the remote site's default line

printer using the PRIMOS SPOOL command. You cannot specify any other

line printer commands or SPOOL options with —DEVICE.

The following command line transfers the file MEMO from the local site

to a remote site called MINOS and prints it on that system's line

printer.

FTR MEMO -DEVICE LP -DS MINOS —-DU CLARKE

The user banner is the name of the FITS server, and the file banner is

either the name FITS_SPOOL_FILE or the name of the destination user,

which is CLARKE in the above example.

Only sequential and direct access method (SAM and DAM) files can be

transferred with this option. The default is null.

6-5 Third Edition

DOC3710~-193

SAM
> -DSTN_FILETYPE DAM

SEGSAM
SEGDAM

Abbreviation: -DFT

The —DSTN_FILE_TYPE option specifies the file type of the destination
file. Using this option, you can perform the conversions that you
Specify in the command line. You can convert SAM files to DAM files,
and SEGSAM files to SHGDAM files (and vice versa for both pairs)
between FIS Version 1 and FITS Version 2 systems. The default
destination file type is the source file type when you send a file, and
null when you fetch a file from another directory or remote site.

> -DSTX_NIFY

Abbreviation: -DN

The —-DSIN_NIFY option causes the FITS server to send messages concerning
the start and end of a file transfer to the logged-in destination user.
Since FITS uses the PRIMOS MESSAGE facility to send these messages, this
option cannot notify a user who is not logged in.

If you are fetching a file, the -LOG option is generally preferable to

-DSTN_NIFY for learning the progress and results of a file transfer,
Since -LOG places transfer results in a file.

To send the -DSIN_NIFY message, FITS requires the name of the
destination user. Use the -DSTN_LUSER option to supply this name.
Omitting the destination user name causes an error, except when the
destination site is the local site, in which case the submitting
user-id is used.

The specification of both —DSTN_NIFY and -NO_DSTN_NTFY options on the
same command line causes an error. The default for this option is
~-NO_DSTN_NTFY.

> -DSTN_SITE destination-site-name

Abbreviation: -DS

The -DSTN_SITE option specifies the destination-site-name to which the
file is to be transferred. The length of the configured node name is
limited to 32 characters, Because your System Administrator supplies
the site address when configuring FITS, you only need to specify the
Site name in a file transfer request.

Third Edition 6-6

AN FIR REFERENCE

File transfers can take place between the local site anda remote site

or between users at the local site, but not between two remote sites.

Fither the source site or destination site must be the local site. If

no destination site is provided, the default is the local site. On

occasion, you may want to transfer a file to a site that is not

accessed frequently enough to be configured with FIGEN. In this case,

must quote the open network address of the site in the destination site

name. If you are using open network addressing and have to specify the

numeric address along with the server name, the addressing may be up to

128 characters. The destination-site-name consists of three parts in

the following format:

'addresstserver (password)'

The address may be either a site name (configured by CONFIG_NET, not by

FIGEN), or a numeric address. The server is the name of the remote

file transfer server process, which name is not necessarily the same as

that of your local site's server. The password is the remote server's

password. Single quotes must surround the entire destination site

name. ‘Two examples of open network addresses are as follows.

'SYS4+FTPS (THURSDAY)'

*311081800602+FTSRV (SECRET)'

In addition, you must specify the file transfer queue using the —QUBUE

option, and the queue must be previously configured with FIGEN.

If you don't specify a queue, the default places the file transfer

request on the OPEN_SYSTEM queue, if it has been configured at the

submitting user's site. There is no default queue; one must be

specified, such as OPEN_SYSTEM.

p> -DSTN_USER destination-user—name

Abbreviation: -DU

The -DSTN_USER option specifies the destination—-user-name. This

identifies the user name or owner at the destination site of the file

involved in the file transfer. The destination-user—name must conform

to Prime user naming conventions and is limited to 32 characters. See

Chapter 5 for examples of this option.

The default destination-user-name is your user-id, if the destination

site for the file is the local site. For a destination site that is a

remote site, the default is null.

6-7 Third Edition

DOC3710-193

 -HOLD

The -HOLD submittal option (HOLD is also a management option) causes
the file transfer request you submit to be held on a file transfer
queue. It insures that the request is not initiated until you say so.
You free a held request for transfer with the -RELEASE management
Option, described in the section on OPTIONS FOR MANAGING REQUESTS.

Held requests can be modified before you release them. Requests that
you hold can be released only by you or an operator.

This —HOLD option on submission serves the same purpose as the -HOLD
options described under OPTIONS FOR MANAGING REQUESTS. The advantage of
this ~HOLD option over the other is that holding on submission ensures
that the request is not initiated immediately, as it might be if there
were no requests already outstanding on the request queue. ‘The default
is to initiate a request immediately.

> -LOGpathname

This option controls the automatic logging of file transfer request
events, such as the start of a request submission, the name of the

submitting user, the name of the file being transferred, the result of
the transfer, and its termination. The -LOG option is recommended as
preferable to the -SRC_NIFY and -DSTN_NIFY options for tracking the
progress and results of a file transfer, since you must specify a file
that you can refer to later.

The log file specified in the pathname is a text file, and is similar
to a command output file. Chapter 4 has an example of log file
entries. Whenever an event occurs to a file transfer request, FTS
records it in this file. You can use the -MESSAGE_LEVEL option to
Specify the level of detail in the log file (NORMAL is the usual detail
level).

If the specified log file already exists, new log entries are appended
to it. You may want to periodically remove the old entries that build
up in a log file that is in continual use.

If the log file specified does not exist, it is created. Alog file
created by the FIS will have its read/write lock set to UPDIT (see the
RWLOCK command in the Prime User's Guide), to allow updating by FIS
while you are reading the file. ‘The File Transfer Manager must have
DALURWX rights to your directory in order to write the results of a
file transfer request to the log file.

The length of pathname is limited to 128 characters. If pathname
includes a password, it must be a full pathname enclosed in Single
quotes. The default is to not generate a log file.

Third Edition 6-8

AN FTIR REFERENCE

NORMAL
> -MESSAGE_LEVEL |DETAILED

STATISTICS
TRACE

Abbreviation: -MSGL

The -MESSAGE_LEVEL option specifies the amount of information that is

entered in the log file, which you specify with the -LOG option. In

order to use -MESSAGE_LEVEL, you must also use -LOG, or an error

occurs.

The following message levels can be specified.

Message Level Abbreviation Function

1 NORMAL NRM Enters minimm of detail in
the log. This is the default.

2 DETAILED DET Logs all events.

3 STATISTICS STAT DETAILED information is

logged, with statistics.

4 ‘TRACE TRC DETAILED, STATISTICS, and

TRACE information is logged.

For example,

FIR MEMO <MEMDSK>RANDUM -DSTN_SITE BIRCH -DSTN_USER CLARKE

-LOG RECORD —-MESSAGE_LEVEL DETAILED

specifies a detailed log of the transfer called MEMO to a file called

RANDUM on the remote system BIRCH, in the log file RECORD at the local

site.

Each log message includes the number of the server link to which the

message relates and the numerical value of the message level at which

the message is logged. For example,

10.17.24: [1.2] Remote file is <TSTDSK>RECEIVE>FILEL

refers to the request that was active on server link 1, and has been

logged at the DETAILED log level. If you do not specify —MESSAGE_LEVEL

when you submit a request, the default message level is NORMAL.

6-9 Third Edition

DOC3710-193

> -NAME request-name

Abbreviation: -—-NA

You can specify the name of the request in request-name. This name
uniquely identifies the request, providing you do not have other
requests with the same name.

The default name for a request is the name of the file being
transferred. For example, the default name for a source pathname of

"FOO>BAR>XYZ" would be "XYZ". Any name you use should conform to Prime
file naming standards and is limited to 32 characters.

P -NO_COPY

Abbreviation: —-NCPY

The —NO_COPY option causes the current copy of a file, rather than the
latest copy of it, to be transferred.

You should be aware that any changes you make to this file between the
time you make the file transfer request and the time when the file is
transferred are included in the transfer.

The —COPY option results in a copy of the original file being taken and
the copy being used in the file transfer. The specification of both
-NO_COPY and -COPY options on the same command line is not allowed and
Causes an error. The default is to transfer a copy of the file
(—COPY).

> -NO_DELETE

Abbreviation: -NDL

The -NO_DELETE option specifies that the local source file, which is to
be transferred from the local site to a remote site, not be deleted
after it has been successfully transferred. This default applies to
both -OOPY and to -NO_OOPY transfers. The specification of both
-NO_DELETE and -DELETE on the same command line causes an error.

> -NO_DSTY_NIFy

Abbreviation: -NDN

The —-NO_DSTN_NIFY option does not notify the destination user of the
Start and end of a file transfer. The specification of both —DSTN_NIFY

. and —NO_DSTN_NTFY on the same command line is not allowed and causes an
error. This option is the default.

Third Edition 6-10

AN FIR REFERENCE

p> -NO_QUERY

Abbreviation: -NQ

The -NO_QUERY option ensures that you are not queried when submitting

or modifying a file transfer request. This option is particularly

useful for running FIS froma CPL file. See the -COPY option for an

example of a user query.

The specification of both —-NO_QUERY and -QUERY options on the same

command line is not allowed and causes an error. ‘The default is that

FTS queries you, when necessary.

p> -NO_SRC_NIFY

Abbreviation: -NSN

The -NO_SRC_NIFY option ensures that no messages are sent by the file

transfer server to the source user to indicate the start and end of a

file transfer.

The specification of both —SRC

‘

NIFY and NO_SRC_NIFY on the same command

line causes an error. This option is the default.

p —QUERY

The -QUERY option (there is no abbreviation for -—QUERY) ensures that

you are asked to confirm a submitted or modified request. (See the

description of the -COPY option for an example of a user query.)

The -NO_QUERY option suppresses such user queries for that request

only. The specification of both -QUERY and -NO_QUERY options on the

same command line is not allowed, and causes an error. This option is

the default.

Bp -QUEUE queve-name

The -QUEUE option specifies the queue-name in which the file transfer

request is to be placed. ‘The Length of the queue name is limited to 32

characters.

Normally, this option is used only when sending files to a remote site

that has not been configured by FIGEN. In this case, the option must

be used and must specify a queue that has been configured with FIGEN.

The default queue is OPEN_SYSTEM, if that has been configured. (See

your System Administrator for a list of file transfer queues within

your network.)

6-11 Third Edition

DOC3710-193

The -QUEUE option is seldom used for transfers to configured sites.
These requests are automatically placed on the queue configured for the
remote site by the System Administrator. If the -QUEUE option is used
in this situation, it overrides the default setting.

SAM
Bp -SRC_FILE_TYPE DAM

SEGSAM
SEGDAM

Abbreviation: -SFT

The -SRC_FILE_TYPE option specifies the source-file-type. For fetching
files, you can use this option to specify the type of a remote source
file. Before transfer commences, the FITS server determines whether or
not the remote source file type equals the one specified. The transfer
is rejected if they do not match. The default for local source files
is the type of the source file; otherwise, it is null.

p -SRC_NIFY

Abbreviation: -SN

The -SRC_NIFY option causes the FIS server to send messages to you
concerning the start and end of a file transfer. Since FITS uses the
PRIMOS MESSAGE facility to send these messages, this option cannot
notify you when you are not logged in.

If you are fetching a file, the -LOG option is generally preferable to
~SRC_NIFY for learning the progress and results of a file transfer,
Since -LOG places transfer results ina file.

To send the -SRC_NIFY message, include the -SRC_USER option on the
command line. You don't have to specify your name, since FTS uses the
logged-in user-id as the default.

The specification of both -SRC_NIFY and —NO_SRC_NIFY options on the
same command line causes an error. The default for this option is
~NO_SRC_NITFY.

Third Edition 6-12

AN FIR REFERENCE

PB -SRC_SITE source-site—name

Abbreviation: -SS

The -SRC_SITE option specifies the source-site-name from which the file

is being transferred. The length of the configured node name is

limited to 32 characters. When your System Administrator has

configured FIS, you need only to specify the site name ina file

transfer request. FITS refers to its configuration for all site

addresses.

File transfers can take place between the local site and a remote site

or between users at the local site, but not between two remote sites.

Either the source site or destination site must be the local site. You

don't have to specify the local site, since FITS uses this as the

default. FITS gets the required information on sites from its

configuration.

On occasion, you may want to do a file transfer from a site which is

not accessed frequently enough to have been configured. In this case,

you must quote the open network address of the site as the source site

name. Open network addressing for -SRC_SITE is identical to that for

-DSTN_SITE. See the description of -DSTN_SITE for details on the

format of open network addressing.

B -SRC_USER source-user—name

Abbreviation: -SU

This option identifies the username or owner at the source site of the

file involved in the file transfer. ‘The source—user—name must conform

to Prime user naming conventions and is limited to 32 characters.

The default is your user-id if the source site for the file is the

local site. The default is null when the source site is a remote site.

OPTIONS FOR MANAGING REQUESTS

Use the following options to manage your own submitted file transfer

requests. If you are logged in as SYSTEM, you gain FIS operator

privileges that allow you to manage file transfer requests submitted by

any user on the system.

Note

FTR commands that you use while logged in as SYSTEM affect all

FIR user-submitted requests.

6-13 Third Edition

DOC3710-193

The options are used in the following format.

FIR option [request—name |
request~number

Summary of Management Options

FIR management options do not use abbreviations. The following table
shows a brief description of each FIR management option.

ion Meaning

—-ABORT Aborts one or more file transfer requests.

—CANCEL Cancels one or more file transfer requests.

—DISPLAY Prints the details of one or more requests.

~HELP Displays help information on FIR.

-HOLD Delays one or more file transfers until a user
Or operator releases the request using the
~-RELEASE option.

—-MODIFY Modifies the characteristics of one or more
requests.

—RELEASE Releases one or more held requests.

—STATUS Displays the status of one or more requests,

—-STATUS_ALL Prints the status of all file transfer
requests.

Full Descriptions of Management Options

Fach FITS site has a default file transfer server and file transfer
queue. Requests are placed on that queue until the server associated
with the queue transfers the queued requests.

Usually, all sites have the same queue associated with them. However,
depending on your local FTS configuration, different sites (or groups
of sites) may have different queues associated with them. In such
cases, the -QUEUE option allows you to specify which queue you want a
request to go to. See you System Administrator for a list of file
transfer sites and their associated transfer queues.

Third Edition 6-14

~~

AN FIR REFERENCE

—QUERY

p> -ABORT

[

request—name [-QUEUE queue-name] —NO_QUERY |
request—number

The -ABORT management option aborts one or more requests, even if the

transfers are already in progress, and puts them on hold. See the

-HOLD option below for more information.

Requests that are not in an eligible state to be aborted (for example,

those already aborting), do not cause an error. Instead, FTR finds and

aborts all eligible requests.

The -QUEUE option can be used to restrict the requests that are aborted

to those found in queue—name.

If you specify a request, the aborted request names and numbers are

displayed.

If you don't specify a particular request, you see the following

question.

O.K. to abort all requests?

You can suppress the question with the "NOQUERY' option (abbreviated

-NQ). If you don't want to abort all of your requests, type 'N', 'NO',

'ourt', 'Q', or press (CR). To abort all requests, type 'Y', 'YES', or

'OK', Any other response indicates a negative response.

Aborted request names and numbers are not displayed. Instead, the

following statement appears.

All eligible requests aborted.

—QUERY

B -CANCEL

[

request-name | [-QUEUE queue-name]

|

-NO_QUERY
request—number

The -CANCEL management option deletes one or more requests from a file

transfer request queue. If the transfer is already in progress, Or

aborting, then the request is not deleted.

Requests that are not in an eligible state to be canceled (for example,

those already in progress or aborting), do not cause an error.

Instead, FTR finds and cancels all eligible requests. Canceled request

names are not displayed. Instead, the following statement appears.

All eligible requests cancelled.

6-15 Third Edition

DOC3710-193

If you Specify a request-name or a request—number, then that specific
request is canceled on any configured file transfer queue. The request
name and number are displayed.

If you don't specify a request name or number, then all requests you
submitted, on any configured queue, are canceled, and the message above
is displayed.

You can use the -QUEUE option to restrict the requests that are

canceled to only those requests found in queue-name. If you specify a
request, the canceled request names and numbers are displayed.

If you don't specify a particular request, you see the following
question.

O.K. to cancel all requests ?

You can suppress the question with the '-NO_QUERY' option (abbreviated

NQ). I£ you don't want to cancel all of your requests, type 'N', 'NO',

"QUIT', 'Q', or press (CR). To cancel all requests, type 'Y', 'YES',
or 'OK'. Any other response indicates a negative response.

—QUERY
> -DISPLAY request—name [-QUEUE queue-name] ~NO_QUERY

| request—number -NQ

The -DISPLAY management option shows detailed information about
requests. Information includes all that is given by the -STATUS option
and all that is included in the request.

For all formats of the FIR -DISPLAY command, passwords contained in the
source file pathname, destination file pathname, or log file pathname
are only displayed for requests that you own. For other requests,
passwords are removed from these pathnames. The following information
is included in the display output.

@ Source and destination sites

@ Whether the file is to be deleted after the transfer

@ Request log file name

@ Source and destination pathnames

e@ The queue on which the request is residing

If you specify a request-name or a request-number, then that specific
request, on any configuredETile transfer queue, is displayed.

if you don't specify a request name or number, all requests that you
submitted, on any configured queue, are displayed.

Third Edition 6-16

AN FIR REFERENCE

The -QUEUE option can be used to restrict the requests that are

displayed to only those requests in queue—name.

If more than one request is output, you are asked between requests if

you want to continue output. To Suppress the display of this prompt,

use the -NO_QUERY option (abbreviated —-NQ).

p -HELP [subject]

The -HELP management option displays help information. To obtain a

list of subjects on which help is available, type either

FIR —-HELP SUBJECTS

or simply,

FIR —HELP

To get help on using FIR command options, type either

FTR ~HELP USAGE

or simply,

FIR
——

—QUERY

B -HOLD

[

request~name [-QUEUE queue—name] —NO_QUERY

| request—number | -NQ

The -HOLD management option holds one or more specified requests. The

requests are not initiated until they are released. (See the —RELEASE

option.) If the requests are in a_ state other than waiting, the

command has no effect.

Requests that are not in an eligible state to be held (such as those in

progress, already held, or aborting) won't cause an error message to

appear. Held request names are not displayed. Instead, the following

statement appears.

All eligible requests held.

If you specify a request-name or a request-number, that specific

request is held on any configured file transfer queue. The request

name and number are displayed.

6-17 Third Edition

DOC3710-193

If you don't specify a request name or number, all requests you
submitted, on any configured queue, are held, and the message shown
above is displayed.

The -QUEUE option can be used to hold only those requests in
queue—name.

When it displays the requests that have been held, FIR includes a
prompt for the display to be continued (—More—) after every 23 lines.
Use the -QUERY option to suppress this prompt.

> -MODIFY request—name [legal—options]
request~—number

The -MODIFY management option modifies the characteristics of a
submitted file transfer request prior to initiation.

Requests that are not in an eligible state to be modified (for example,
those in progress or aborting) do not cause an error message to appear.
Instead, FIR modifies all eligible requests that are found. Held
requests are not retried until they have been released. Once the
requests have been modified, the following message appears.

All eligible requests modified.

If you do specify a request-name or a request-number, all requests
having that name or number, on any configured queue that belongs to
you, are modified. The modified request names and numbers’ are
displayed.

If you don't specify a request name or number, all requests belonging
to you are modified in all configured queues. The message shown above
is displayed.

You can modify any transfer option, with the following exceptions:

—QUEUE —NO_OOPY —COPY
-DSTN_SITE -SRC_SITE —-HOLD
~DSTN_FILE_TYPE —-SRC_FILE_TYPE

For details of the available options and their syntax, refer to the
Request Submittal section earlier in this chapter.

Modifying the characteristics of a request is similar to canceling a
request and resubmitting it. The -MODIFY option is different in that
the request remains in the same position in the queue. ‘Therefore,
modifying a request generally does not affect the time when the request
is initiated. However, canceling and resubmitting a request would
probably delay the initiation time of the transfer.

Third Edition 6-18

AN FIR REFERENCE

If you don't specify any legal options, the requests will have the

following items modified.

e Date and time of last retry is set to zero

e Number of retries is set to zero

If the requests are waiting, this makes them eligible for immediate

retry by the file transfer server without waiting until the next

30-minute retry period has expired. This can be useful when a

previously inoperative site becomes operational and the you would like

your pending request to be retried as soon as possible.

~QUERY

p> -RELFASE

[

request~name [-QUEUE queue-name]

|

-NO_QUERY
request—number -NQ

The -RELEASE management option initiates a file transfer request that

was previously held by the -HOLD Request Management option, the -~HOLD

Request Submittal option, or by FIs.

Requests that are not in an eligible state to be released, such as

those waiting, transferring, Or aborting, do not cause an error. FIR

finds and releases all eligible requests. Released request names are

not displayed. Instead, the following statement appears.

All eligible requests released.

If you specify a request-name or a request—number, that specific

request is released on any configured file transfer queue. The name

and number is displayed.

If you don't specify a request name or number, then all the requests

that you submitted, on any configured queue, are released. The message

shown above is displayed.

You can use the -QUHUE option to release only those requests in

queue-name. If you specified a request, the released request names and

numbers are displayed. If you didn't specify a particular request, all

requests are released.

When it displays the requests that have been released, FIR includes a

prompt for the display to be continued (—More—) after every 23 lines.

Use the -QUERY option to suppress this prompt.

6-19 Third Edition

DOC3710-193

—QUERY
PB -STATUS request-name | [-QUEUE queue-name] -—NO_QUERY

request~number

The -STATUS management option displays information about the current
status of the request. For operators logged in under the user-id
SYSTEM, it displays information on all users. The following
information is returned by -STATUS for each request.

@ Date and time the request was queued

e@ User name of the submitting user

@ Name and number of the request |

e@ The queue on which the request resides

@ The current status of the request

If you specify a request-name or a request-number, that specific

request, on any configured file transfer queues, is shown.

If you don't specify a request name or number, then all requests you
submitted, on any configured queue, are shown.

You can use the -QUBUE option to show only those requests’ in
queue-name, If more than a page (22 lines) is output, you are asked at

the end of each page whether you want to continue or not. To suppress
this prompt, use the —NO_QUERY option (abbreviated -NQ).

—QUERY
B -STATUS_ALL [-QUBUE queue—name] |cones

-NQ

The —STATUS_ALL management option returns information about all the
Currently queued file transfer requests on all the configured transfer
queues, You can also see where your requests are in the queue.

Note

This command provides the same information as the STATUS
option, with the exception that it provides information on all
user requests, not just your own.

Third Edition 6-20

The information that is returned by -STATUS_ALL for

identical to that in -STATUS.

Date and time the request was queued

User name of the submitting user

Name and number of the request

The queue on which the request resides

The current status of the request

AN FIR REFERENCE

each request is

You can use the -QUEUE option to restrict output to only those requests

in queue—name.

all configured queues, is printed.
If —QUEUE is not used, the status of all requests, on

If more than a page (22 lines) is to be output, you are prompted at the

end of each page for output to continue or not.

prompt, use the —-NO_QUERY option (abbreviated —-NQ).

6-21

To suppress this

Third Edition

PART IV

NETLINK

Introduction to

NETLINK

INTRODUCTION

The NETLINK utility provides you with alternative methods of remote

login and file transfer for use in certain circumstances, particularly

between systems linked through PDNs. This chapter introduces

e NETLINK's modes of operation

@ Network addresses

e NETLINK file transfers

Chapter 8 describes NETLINK commands that let you connect, transfer and

receive files, disconnect, call, quit, pause, and continue from a

remote network node. Chapter 9 provides a full description of all

NETLINK commands, options, parameters, and error messages.

WHAT IS NETLINK?

NETLINK is an interactive utility for making up to six remote login

connections in any PRIMENET environment and in non—Prime environments,

such as Public Data Networks (PDN). For example, if your Prime system

is connected to TELENET, you can use NETLINK to connect to any other

TELENET system, whether or not that remote system is known to PRIMENET,

Figure 7-1 shows a diagram of NETLINK.

7-1 Third Edition

DOC3710-193

PRIMENET
(X.25)

Public Data Network

Non-
Prime
Host

OK, NETLINK
[NETLINKRev.19.3]

@ C BIRCH

699 123 Connected
*Welcometo Treetop Database *
Login please:

Third Edition

NETLINK
Figure 7-1

oaMo

nats

INTRODUCTION TO NETLINK

In addition, NETLINK supports the CCITT 1980 Recommendations X.3 and

X.29, allowing you to configure certain parameters (such as what

happens if the BREAK key is pressed) and tailor NETLINK to the needs of

the remote system. For example, you can slow down the

=

data

transmission rate to allow a linked remote sytem to keep up with your

local Prime computer.

The only requirements for using NETLINK are:

@ Knowledge of the remote node's id or X.25 address

e A user-id on the remote node

@ Knowledge of any other user-entry validations

NETLINK'S MODES OF OPERATION

NETLINK is always in one of two modes, command mode or data

transmission mode. Command mode allows you to interact with NETLINK,

giving it commands to

e Establish or clear connections

@ Modify NETLINK or PDN parameters associated with a particular

connection

@ Change the operation of NETLINK

@ Switch between open connections

Data transmission mode allows you to interact with a remote host to

which you have established a NETLINK connection. All characters that

you type on your keyboard, except for certain escape sequences, are

passed directly to the remote host. This allows you to login normally

and to perform other operations.

Command Mode

NETLINK indicates that it is in command mode by displaying a prompt

character. Normally it displays @, but you can change this character

with the PROMPT command. (Chapter 8 shows an example of the PROMPT

command.) A different prompt would be helpful if you are connecting to

several remote hosts or using a subsystem on the remote host that uses

the @ prompt.

7-3 Third Edition

DOC3710-193

Data Transmission Mode

NETLINK enters data transmission mode when a new connection is
initiated, or when a suspended connection is reactivated. In this
mode, all characters you type on your keyboard (with two exceptions)
are transmitted to the remote host of your active circuit.

The exceptions are:

@ The NETLINK escape character (normally @)

@ ‘The BREAK key

Pressing RETURN, typing the escape character (@), and pressing RETURN
again returns you to NETLINK command mode. To return to data
transmission mode, use the CONTINUE command.

To send a single escape character as data at the beginning of a line to
the remote host, you must double it. That is, to send @ alone you must

type @@.

The action of the BREAK key depends upon the value of X.3 parameter
number 7. See the descriptions of the SET and PAR commands in Chapter
9 and in Appendix B. The default is to send a break signal to the
remote host; this leaves NETLINK in data transmission mode.

NETWORK ADDRESSES

To connect to a remote host computer, you must know its name or its
numeric address, Machines can have many addresses, but only one name.
The address is either a name (such as BEECH) or a set of numbers (such
as 413 788). To learn the addresses (name or number) of computers you
Can access, ask your System Administrator. The PRIMOS command STATUS
NETWORK lists the configured systems in your network. For specifying
an address, see Chapter 8.

Because NETLINK can operate over any PRIMENET connection, not just
through PDNs, you can use it to access any Prime system in a network as
well as using Remote Login.

NETLINK FILE TRANSFERS

You can use NETLINK's FILE and OUTFILE commands to copy textual data
either from a local to a remote host or from a remote to a local host.
Examples of these commands can be found in Chapter 8; the commands are
described in Chapter 9.

Third Edition 7-4

INTRODUCTION TO NETLINK

If the remote system is not a Prime system, NETLINK can be used to

transfer text files. Prime's File Transfer Service (FTS) provides an

efficient way of transmitting data from one Prime system to another.

FTS or the PRIMOS COPY command, however, are preferred methods for

transferring data to and from other Prime hosts. (See Chapter 4 for a

comparison of FITS and OOPY.)

NETLINK may be the only way to exchange data over an X.25 network

between Prime and non-Prime systems. Since NETLINK may be talking to a

non—-Prime host, no protocol can be used, so data transparency cannot be

provided. Therefore, only text can be transferred.

7-5 Third Edition

Using NETLINK

INTRODUCTION

This chapter shows you examples of the following commonly-used NETLINK

command procedures.

@ Connecting to a remote system

e@ Logging into a remote system

e@ Making multiple connections

e Changing the NETLINK prompt

e Transferring a file with FILE and OUTFILE

e@ Running NETLINK from a command input file

e@ Showing the profile of a circuit

e Displaying X.3 parameters

e@ Debugging with NETLINK

To use NETLINK's capabilities fully, you should have some general

knowledge of X.3, X.29, and Public Data Network (PDN) operation. (This

knowledge is not necessary for most common uses of NETLINK.) For

special applications, you may need to refer to documentation from the

CCITT or from your PDN. Chapter 9 has a complete description of all

NETLINK commands.

8-1 Third Edition

DOC3710-193

INVOKING NETLINK

After you type the NETLINK command, you will see the command mode
prompt (@), indicating. that you can issue NETLINK commands. The
following is an example of invoking NETLINK.

OK, NETLINK

[NETLINK Rev. 19.3]

@

NETLINK ordinarily starts up in command mode. While in command mode,
you can type HELP for a brief description of the NETLINK commands.
Once you have connected to another system, you can type STATUS to
request information about active circuits.

You can temporarily escape from command mode and return to PRIMOS by
typing the PAUSE command. You can then use any PRIMOS internal
command. Typing an S_ returns you to command mode. The QUIT command
ends a NETLINK session and returns you to PRIMOS,

MAKING A CONNECTION

Use the C or NC command to connect to a remote host. The commands have

the following format.

C address [options]

NC address [options]

Use the C command for most connections. For a reverse charges or
collect call (C), any network communications charges will be billed to
the remote host, which presumably passes those charges on to the
logged-in user.

Many hosts, especially hosts in PDNs, do not allow collect calls. Use
the NC command to hosts that do not permit collect calls. Use NC also
for intra-network or trans-network connections. For an NC call, any
charges are billed to the originating site.

ADDRESSING ANOTHER SYSTEM

The examples below show how to address another system through NETLINK.
The first method uses PRIMENET-configured names. In this method, an

address is a nodename up to six characters long. Your System
Administrator can tell you the addresses and names that are configured
in your system's network. In configuring PRIMENET, the System
Administrator assigns names to the addresses of remote systems. The
‘second method, used for systems that do not have a name associated with
it, uses the systems' PDN addresses.

Third Edition 8-2

USING NETLINK

PRIMENET-configured Name Addressing

This method of addressing uses the configured name of a remote system.

NETLINK automatically looks up and uses the correct address. For

example,

@ C MKIG.5

establishes a connection to the remote computer MKIG.5. Configured

systems do not have to be Prime systems. Your System Administrator

could configure other machines as PDN hosts. In this case, users would

only need to specify C OTHER, for example, to connect to a remote

non-Prime system.

Public Data Network (PDN) Addressing

Open or PDN addressing can be used for connections over TELENET and

other PDNs. It uses the following format.

adnic:area number.ss

dnic is an optional four-digit Data Network Identification

Code. The default is TELENET's code, 3110. See the DNIC

command in Chapter 9.

area is the three-digit code.

number is the address of one to five digits. Leading zeros are

not required. This is an arbitrary number assigned by

the PDN to represent your computer. For example, 117 74

could be the 74th computer in a network of 117 computers.

ss is the optional two-digit subaddress.

Below are two examples of TELENET addresses. ‘The second example shows

explicit use of the dnic, which is ususally required by other

connections. Neither example uses the 2-digit subaddress.

@C 619 73

@ C 4556:706 189

International Addressing

International connections require their own particular format, starting

with the appropriate national address code for dnic.

8-3 Third Edition

DOC3710-193

Literal Addressing

NETLINK supports the full X.121 14-digit standard address format. ‘The
address can be specified as a string of 12 to 14 digits, preceded by a
colon. The two rightmost digits, 13 and 14, are the optional
subaddress. An example (without a subaddress) could be expressed as
follows.

@ C :455660500073

Connect Packet Options

You can use NETLINK to connect your Prime computer to any
X.25-compatible host computer. For connections to non-Prime hosts or
through international gateways, you might need to specify connect
packet options, which are shown in the description of the C command in
Chapter 9.

DIRECT REMOTE LOGIN

The simplest use of NETLINK is for remote login. NETLINK allows you to
maintain up to six simultaneous remote login connections and to switch
your terminal between these connections as you desire. You can connect
directly to a remote system, and skip the NETLINK command mode by using
the -TO option, as follows.

OK, NETLINK ~IO BIRCH
BIRCH Connected

Save the Trees, Inc. /* This example shows a PRIMOS login
Central Computer /* command line, which is valid only

/* between Prime systems.

Fnter access code please:

Note

The -TO option is especially useful in abbreviations, made by
using the ABBREV command of PRIMOS. For an example, refer to

the entry for the TO command in Chapter 9. (All NETLINK
command line options are also NETLINK commands.)

Third Edition 8-4

USING NETLINK

MULTIPLE CONNECTIONS

You can have up to six separate NETLINK connections active at once.

After you have made your first connection as described above, you make

your subsequent connections differently. First, you must return to

command mode by typing an @ alone on a line (that is, at the beginning

of a line, type @ and press (CR)). Then issue another C or NC command.

You can switch between active circuits with the OONTINUE command

(abbreviated 00), or with the SWITCH command (abbreviated SW). Use the

D (disconnect) command to disconnect circuits. You remain in NETLINK

command mode and the other active circuits are intact. The following

example shows a system-to-system connection, and the SWITCH command.

OK, NETLINK
[NETLINK Rev. 19.3]

@C ELM

ELM Connected
PRIMENET 19.3 ELM
LOGIN SMITH
Password? ANTARES

OK, STATUS NETWORK

Node State
ELM akKK

PINE Up
BEECH Up
CHERRY Up
BIRCH Down
MAPLE Up
LINDEN Down
ASH Up
LAUREL Up
CACTUS Up
FIR Up
TREE Up

8-5 Third Edition

DOC3710-193

OK, @

@ C ASH

ASH Connected .
PRIMENET 19.3 ASH
LOGIN SMITH

Password? SIRIUS

OK, @ /* You have to escape to NETLINK command */
/* mode on the originating site */

@ STATUS

Circuit # Address Time Pkt in Pkt out

1 ELM 0:00 2 1
—> 2 ASH 0:00 4 3

@ STATUS

Circuit # Address Time Pkt in Pkt out

—> 4d ELM 0:00 2 1
2 ASH 0:00 4 3

@ QUIT

ELM Disconnected

ASH Disconnected

OK, Lo

EXAMPLE OF THE PROMPT COMMAND

This command changes the NETLINK command prompt (@) to whatever text
string you want. You may want to change the prompt if you are making
multiple connections to systems through NETLINK. ‘The following example
makes a connection from system LINDEN to ELM, then returns to LINDEN.

OK, NETLINK

[NETLINK Rev. 19.3]

@ PROMPT LINDEN>

LINDEN> C ELM

ELM Connected

PRIMENET 19.3 ELM
LOGIN SMITH

Password? TAXES

Third Edition 8-6

USING NETLINK

SMITH (user 56) logged in Wednesday, 03 Aug 83 00:41:32.

Welcome to PRIMOS version 19.3.

Last login Wednesday, 03 Aug 83 00:40:24.

Enter validation code: LAYER

OK, NETLINK

[NETLINK Rev. 19.3]

@ PROMPT ELM>

ELM> @

@ Quir

ELM Disconnected

OK,

EXAMPLES OF THE FILE AND OUTFILE COMMANDS

The following examples show how you would use the FILE and OUTFILE

commands to transfer a file to ED or to an equivalent editor ona

remote system. The file you specify is used and forwarded only after

you type CO to transfer data to the remote system.

File Transfer Capabilities

You can successfully transfer files consisting of printing characters

(including end-of-line CR or LF characters). Files can be transferred

from any site that can display a file as does the PRIMOS command SLIST,

and to any site that can accept typed input into a file as does the

PRIMOS command ED.

Precautions

The local or remote site that receives the transmitted file will most

likely have an erase character and a kill character. The default erase

and kill are the double quote (") and the question mark (?). (These

are configurable at PRIMOS cold start.) The file in NETLINK's FILE
command must not contain these characters. NETLINK's OUTFILE command,

used to receive files, does not process erase and kill characters.

If the site transmitting the file inserts padding characters, such as

NULS or DELS after CR, the characters appear in the received file.

8-7 Third Edition

DOC3710-193

Local-to-remote File Transfers

The FILE command sends text files to a connected remote host. This is

performed in the following manner.

1.

8.

Make a connection to the remote host and log in.

Start ED (or an equivalent) and go into INPUT (or an
equivalent) mode.

Escape from the remote host by typing an "@ (CR)" sequence
(that is, @ alone ona line). NETLINK will return to command

mode and respond with an @ prompt.

Enter the FILE command, the file pathname, and any options.
(Refer to the FILE command in Chapter 9.)

Return to data transfer mode with a CONTINUE command.

When the transfer is complete, the message "End of file.
filename" appears on your terminal. In ED, save the file on
the remote system.

Exit from ED (or equivalent) on remote host.

Return to NETLINK Command Mode and enter a CLOSE FILE command.

The following example illustrates a local-to-remote file transfer
between Prime systems. This example begins after you already have
logged into the remote host.

OK, ED
INPUT

@

@ FILE PINE.TRL —PAD

@ CONTINUE

This is a test of the NETLINK file transfer facility.

/* The above is text in PINE. TRL
/* that is displayed. */

End of File. PINE. TRL /* Press (CR) here. */

EDIT

FILE PINE. TRL

@ CLOSE FILE

Third Edition 8-8

USING NETLINK

Remote—to-local File Transfers

The OUTFILE command copies output froma connected remote host to a

disk on your local host. Use it in the following manner to transfer

files.

1. Make a connection and log in to the remote host.

2. Escape to the local host with an "@ (CR)" sequence. NETLINK

returns to command mode and displays an @ prompt.

3. Enter an OUTFILE command with the pathname and any options.

Note

If a file of that name already exists, that file is

overwritten, so make sure that the filename you type in

with the OUTFILE command is unique.

4. Return to the remote host with a CONTINUE command.

5. Issue an SLIST (or equivalent) command on the remote host to

list the file.

6. Escape to the local host and do a CLOSE OUTFILE command.

The following example illustrates a remote-to-local file transfer

between Prime systems. In this example, we are logged into the remote

host, and have entered a (CR) to return to command mode.

@ OUTFILE PINE. TRL

@ CONTINUE

. OK, SLIST PINE. TRL /* Text of PINE.TRL appears */

/* on your terminal. */

OK, @
@ CLOSE OUTFILE

RUNNING NETLINK FROM A COMMAND INPUT FILE

If you want to use NETLINK from a command input (COMI) file to log in

to a remote system, you need to create two files. One file should

contain login information such as user-id, password, and any additional

validation information. The other file is a command input file

containing NETLINK commands that make the connection, open the file

containing login information, and quit from the connection at the end

‘ of a session. Examples of the two files appear below.

8-9 Third Edition

DOC3710-193

FILE CONTAINING LOGIN INFORMATION

OK, SLIST BIRCH. LOGIN

LOGIN SMITH
DANDELION
FLOWER

OK, SLIST BIRCH. COMI

NETLINK
CALL BIRCH

/* Your user id */
/* Your password */
/* Validation information */

COMI FILE

/* Invoke NETLINK. */
/* Connectto system BIRCH. */
/* Treat input from terminal or file */
/* as NETLINK commands. */

FILE BIRCH.LOGIN -LINE —NTTY

CONTINUE

QUIT

© -E

/* Read login information from file */
/* BIRCH.LOGIN; option -NITY suppresses */
/* output of file to the screen. */
/* Complete connection to BIRCH; */
/* leave NETLINK command mode. */
/* Disconnect from BIRCH when user */

/* types @, */
/* End COMI file. */

Note

You should place an ACL on your login file so that your
password remains secure.

The following example shows the execution of the COMI file, BIRCH.COMI.
You type in only the first command line; the COMI file does the rest
of the work.

OK, COMI BIRCH. COMI
[NETLINK Rev. 19.3]

@ CALL BIRCH

@ FILE BIRCH. LOGIN -LINE -NTTY

@ CONTINUE

BIRCH Connected
PRIMENET 19.3

Third Edition 8-10

End of file. ENB. LOGIN

Password?

SMITH (user 64) logged in Tuesday, 07 Feb 84 13:33:12.

Welcome to PRIMOS version 19.3

Last login Monday, 06 Feb 84 08:45:20.

Enter validation code:

OK, ED

etc,
OK, @

@ QUIT

BIRCH Disconnected
OK, CO —-E

EXAMPLE OF THE PROFILE COMMAND

USING NETLINK

This command shows the profile of the current circuit. The parameters

shown include debug mode, terminal speed, and node addresses. You can

set a PROFILE for all or just one connection.

OK, NETLINK
[NETLINK Rev. 19.3]

@ C ELM

ELM Connected
PRIMENET 19.3 ELM

@

@ PROFILE

Operational Parameters

Debug: Off
Polling time: 0.5 Secs.
Escape character: '@'
Terminal type: UNKNOWN
Terminal speed: 1200 bps

Connect parameters

Dnic: 4556

Address: ELM

Ports: None

8-11 Third Edition

DOC3710-193

Facilities: Reverse Charging
Protocol ID: (in decimal) 1 0 3 0O
User Data: USERNAME

@ PROFILE DEFAULTS

Operational Parameters

Debug: Off
Polling time: 0.5 Secs.
Escape character: '@'
Terminal type: UNKNOWN
Terminal speed: 1200 bps

Connect parameters

Dnic: 4556
Address: None

Port: None

Facilities: Reverse Charging
Protocol ID: (in decimal) 1 0 3 O
User Data: USERNAME

@ C ASH

ASH Connected
PRIMENET 19.3. ASH

@

@ PROFILE

Operational Parameters

Debug: Off
Polling time: 0.5 Secs.
Escape character: '@'
Terminal type: UNKNOWN
Terminal speed: 1200 bps

Connect parameters

Dnic: 4556
Address: ASH
Port: None
Facilities: Reverse Charging
Protocol ID: (in decimal) 1 0 3 0
User Data: USERNAME

@ DATA PASSWORD /* Changes the User Data field
in the next connect. */

@ C PINE

PINE Connected
PRIMENET 19.3 PINE

Third Edition 8-12

USING NETLINK

@

@ PROFILE

Operational Parameters

Debug: Off
Polling time: 0.5 Secs.
Escape character: '@'
Terminal type: |UNKNOWN
Terminal speed: 1200 bps

Connect parameters

Dnic: 4556
Address: PINE
Port: None

Facilities: Reverse Charging

Protocol ID: (in decimal) 1 0 3 0

User Data:

|

PASSWORD /* User Data is now
"PASSWORD". */

@ QUIT

ELM Disconnected

ASH Disconnected

PINE Disconnected

OK,

EXAMPLE OF THE PAR COMMAND

The PAR command displays current X.3 parameters, as shown in the

following example. Appendix B has more information on X.3 parameters.

OK, NETLINK
[NETLINK Rev. 19.3]

@C ELM

ELM Connected
PRIMENET 19.3 ELM

@

@ PAR
FULL DUPLEX

FORWARD DATA ON: CR ESC Editing Terminators Form Other Cntrl

IDLE TIMER = 1.0 Secs.
ON BREAK: Interrupt Send indication of break Discard output

X-OFF/X-ON ENABLED
NVT Process Control Enabled

8-13 Third Edition

DOC3710-193

@ SET 2:0 /* This sets half duplex. */

@ PAR
HALF DUPLEX

FORWARD DATA ON: CR ESC Editing Terminators Form Other Cntrl
IDLE TIMER = 1.0 Secs.

ON BREAK: Interrupt Send indication of break Discard output
X-OFF/X-ON ENABLED

NVT Process Control Enabled

@ co
LOGIN SMITH

Password? TAXES

SMITH (user 64) logged in Wednesday, 03 Aug 83 00:49:28.
Welcome to PRIMOS version 19.3.
Last login Wednesday, 03 Aug 83 00:38:20.

Enter validation code: @

@ PAR
HALF DUPLEX
FORWARD DATA ON: CR ESC Editing Terminators Form Other Cntrl
IDLE TIMER = 1.0 Secs.
ON BREAK: Interrupt Send indication of break Discard output
NVT Process Control Enabled

@ SET 2:1 /* This sets Full Duplex. */

@ PAR
FULL DUPLEX

FORWARD DATA ON: CR ESC Editing Terminators Form Other Cntrl
IDLE TIMER = 1.0 Secs.

ON BREAK: Interrupt Send indication of break Discard output
NVI Process Control Enabled

@ QUIT

ELM Disconnected

OK,

Third Edition 8-14

USING NETLINK

DEBUGGING USING NETLINK

NETLINK's debugging facilities allow you to debug all kinds of X.25

circuit connection problems without the need for other diagnostic line

monitors. They allow you to see exactly what X.3 parameters are sent

to you from any remote host, Prime or non-Prime. You can resolve many

of the common X.25 network problems with this option. For more

information, see the DEBUG command in Chapter 9.

8-15 Third Edition

ANETLINK
Reference

INTRODUCTION

This chapter contains information on NETLINK commands and error

messages. It includes the following sections.

e A brief summary of NETLINK commands, organized by function

@ An alphabetical list of NETLINK commands

e A list of error messages generated from NETLINK

To understand some NETLINK command descriptions you should have some

knowledge of the X.3 and X.25 standards recommended by the CCITT, as

well as some knowledge of Public Data Networks (PDNs). For special

networking applications, you may need to refer to other CCITT standards

and to PDN literature. Parameters to NETLINK commands are described in

Appendix B. For an introduction to NETLINK, refer to Chapter 7.

COMMAND SUMMARY

This section contains brief descriptions of NETLINK commands, grouped

by function. For full descriptions, see the alphabetical list in the

following section, Command Reference.

Some NETLINK commands, such as the profile commands listed below, can

be used as command options to either the PRIMOS-level NETLINK command

or to the C, NC, or CALL commands in NETLINK.

9-1 Third Edition

DOC3710-193

The following basic commands, address formats, profile commands, and
other commands appear on the screen when you type HELP at the NETLINK
command prompt (@). (The NETLINK prompt is an at sign (@) normally,
but can be changed. See Chapter 8 for an example of the PROMPT

command.)

Basic Commands

Use the following basic commands to make connections to remote hosts,
to switch between active connections, to return to NETLINK command

mode, and to return to PRIMOS.

NETLINK Command What It Does

C address Connect to specified address
NC address Connect without reverse charging
CALL address Connect but remain in command mode
QUIT Exit to PRIMOS
PAUSE Exit to PRIMOS, allow 'S' to continue
CONTINUE Continue a currently active circuit
D~ Disconnect a currently active circuit

Address Formats

Address formats can be any of the following:

e systemname

e 4-10 digits

@ dnic:4-10 digits

@ :12-15 digit address

system-name is a PRIMENET system name.

4-10 digits is the numeric address of a network node.

anic is the Data Network Identification Code.

12-15 digit address is the Public Data Network address.

There are two escape sequences:

(CR) @ (CR) Escape to command mode

@ “Pp Send a “P in the data stream

Third Edition 9-2

A NETLINK REFERENCE

Profile Commands

These commands can be used in any of the following ways:

@ As options to the NETLINK command at PRIMOS level, where they

establish a default profile for all connections of the NETLINK

session. For example:

OK, NETLINK -DNIC 2342

e As NETLINK commands, where they modify both the operational

profile of the current circuit and the default profile for all

subsequent connections. (They do not affect connections already

established in this NETLINK session.) For example:

OK, NETLINK

[NETLINK Rev. 19.3]

@ FCTy 11
@ POLL 1

e As options to the C, NC, or CALL commands in NETLINK, where they

modify only the profile of the connection about to be made. For

example:

OK, NETLINK
[NETLINK Rev. 19.3]

@ Cc 405 99 -FCTY 1 1 -POLL 1

To be used as an option, a profile command must be preceded by a

hyphen.

Operational Profile Commands: The following commands are operational

profile commands. They affect NETLINK's basic operational environment.

Command Purpose

ON
DEbug

}

OFF Controls the debugging information

DUMP display

ESCape char Changes NETLINK escape (to a

character other than @)

MODE REMOTE_ECHO Selects remote echoing or no
NO_REMOTE_ECHO remote echoing

POLL n Selects user terminal poll time

interval (tenths of a second)

9-3 Third Edition

DOC3710-193

SPEED bps Supplies a baud rate for hosts
requiring one

TO address | Selects a destination address

TTP id-number Selects the terminal type for
name certain TELENET hosts

Connect Profile Commands: The following commands are connect profile
commands. They create or modify a connect profile, which NETLINK uses
only while establishing a connection:

Command Purpose

DATA text Sets the user-data field, Zero
parity

DNIC dnic Selects the 4—digit data
network-id code

CHARGE
FCTY NO_CHARGE Specifies up to 64 bytes for the

bytes facilities field

LDATA text Overlays user data with zero
parity in the PRID

LMDATA text Overlays user data with marked
parity in the PRID

MDATA text Sets the user-data field marked
parity

PORT n Specifies a two-digit remote port
number

PRID bytes Specifies the 4-byte protocol-id
field

Third Edition 9-4

A NETLINK REFERENCE

Other Commands

The following are miscellaneous NETLINK commands :

Command Purpose

STATUS Shows active circuits

RESET Sends an X.25 level-3 RESET

PROMPT text Selects NETLINK's command prompt

(other than @)

PROFILE [DEFAULTS n] Displays current or default

profile

7 SET parameter :value... Sets X.3 terminal parameters

PAR [parameter...] Displays X.3 terminal parameters

-NITY

FILE pathname

|

—LINE Prepares a local file transfer to

-PAD a remote system

—-CPS n

-NITY

OUTFILE patiane| —CONTIN | Copies remote host output toa

~TIMEOUT n local file

CLOSE | FILE Ends a file transfer

OUTFILE

COMMAND REFERENCE

This section describes NETLINK commands in alphabetical order.

B BPS bits-per-second

This command is a synonym for the SPEED command.

9-5 Third Edition

DOC3710-193

B C address [options]

The C command connects to the remote system that you specify in
address. You can append an option list to this or the other connection
commands, CALL and NC. ‘The options can be any of the profile commands
(listed above under Command Summary), although only the connect profile
options are described here. Connect profile options and_ their

arguments are listed below:

ion

~DATA text
—-MDATA text

-FCTY bytes

—PORT n

-PRID | bytes
text

Third Edition

Description

The -DATA text and -MDATA text options allow up to

12 characters of text for the User-data Field.
-DATA inserts the characters with parity bits
stripped while -MDATA inserts the characters with
parity bits marked as received from PRIMOS.

The -FCTY option specifies a non-default facilities
field. The bytes can be up to 64 decimal numbers
between 0 an 5 which are entered into the
facilities field. If the option is specified
without arguments, a zero-length facilities field
results.

The —PORT option specifies a PRIMENET style port,
n, between 0 and 99. It is required when the

destination of the connection iS a program on
PRIMOS, rather than the remote login server within
PRIMOS (port 0 is the default).

The -PRID option specifies either the 4 decimal
bytes of the PRotocol ID field or a quoted string
of 4 characters. The bytes must be between 0 and
255; the string must be enclosed in single quotes
('). Characters are inserted into the PRotocol ID
field with stripped parity. This option is used
when the PRotocol ID field and User-data field must
be combined into a 16 byte User-data field. The
data replaces the default PRotocol ID field of 001
000 000 000. #£=‘This option cannot be used when the
-PORT option is given because the -PORT option uses

this field to pass the port number. If no
arguments are given, the PRotocol ID field is reset
and made available for PRIMENET.

9-6

A NETLINK REFERENCE

p CALL address [options]

This command functions exactly as does the C command, except that after

the connection has been made, NETLINK command mode continues. Input is

taken from NETLINK rather than from the remote host. The CONTINUE

command is required to complete the connection. The address and

Options are exactly as described for the C command.

Pm CLEAR | nu |ALL

This command is a synonym for the D command.

p CLOSE |FILE| ComFLLe |

This command ends the transfer of a file through NETLINK. It closes a

local file or a remote file. Only one of each can be active at any one

time.

B CONTINUE n

Abbreviation: OO

This command returns you to a previously connected circuit. It is used

when switching between multiple connections and when returning to a

connection after having given a NETLINK command. The connection

number, n (value 1-6), is not needed for single connections. If n is

not specified in multiple connections, the most recently active circuit

is reconnected.

FP Din
ALL |

This command disconnects a circuit. A specific circuit (given as n) or

all circuits (given as ALL) can be disconnected. If n is not

specified, the most recently active circuit is disconnected.

9-7 Third Edition

DOC3710-193

p> DATA text

p> MDATA text

These commands correspond to the -DATA and -MDATA options of the C
command. Whereas those options affect only a single connection, the
DATA and MDATA commands establish an environment affecting any future
connections.

The DATA and MDATA commands allow up to 12 characters of text for the
User-data Field. DATA inserts the characters with parity bits stripped
while MDATA inserts the characters with parity bits marked as received
from PRIMOS.

ON
> pec | ‘Ore |

DUMP

Abbreviation: DE

This option displays X.3 parameter interchanges and data interchanges.
DEBUG ON displays transmission or reception messages and other events
for the identification of bugs or network problems. DEBUG DUMP
displays additionally the contents (in octal notation) of every packet
moved over the virtual circuit being debugged. The default condition
is DEBUG OFF, which does not display debugging data.

> DNIC number

This command specifies the default Data Network Identification Code for
address parsing. NETLINK supports 5 and 8 digit shorthand formats for
Specifying the last 8 digits of a 12-digit network address. This
command controls the first 4 of the 12 digits. The text must be either
null or 4 digits. A null text indicates that no DNIC is to be inserted
at the beginning of the address. Otherwise the specified 4 digits are
inserted as the DNIC of the address.

You can use the DNIC option in an abbreviation to set a local DNIC for
non-TELENET numbers (NETLINK allows any DNIC). NETLINK's default DNIC
is 3110 (TELENET).

Third Edition 9-8

A NETLINK REFERENCE

p> ESCAPE escape-character

Abbreviation: ESC

This command allows a user to change the escape sequence from "RETURN @

RETURN" (that is, @ at the start of a line, followed by RETURN) to

"RETURN escape-character RETURN". The escape-character must be a

single character. This command is useful when running NETLINK from a

TELENET Packet Assembler/Disassembler (PAD) because the PAD would trap

the "RETURN @ RETURN" before NETLINK has an opportunity to interpret

it. For example, you can be linked to ASH through ELM and BEECH, and

use the escape character to return to ELM, not BEECH.

PB CTY bytes

This command specifies a non-default facilities field and corresponds

to the -FCTY option of the C command. Whereas that option affects only

a single connection, the FCIY command establishes an environment

affecting any future connections.

The bytes parameter can be up to 64 decimal numbers between 0 and 255,

which are entered into the facilities field. They replace the default

facilities of 001 001 002 007. The bytes are in pairs, which conforms

to CCITT standards X.3 and X.29 (see Appendix B). If the option is

specified without arguments, a zero-length facilities field results.

Note

In earlier versions of NETLINK, FCTY bytes were specified in

octal. Now, all of NETLINK's numeric parameters are specified

in decimal.

In addition, the FCIY command can have ASCII mnemonics for specific

facility parameter/value byte pairs. The following mnemonics are

available.

CHARGE Sets reverse charging

NO_CHARGE Sets no reverse charging

An "NC" command to NETLINK is the same as specifying "C address -FCTY

NO_CHARGE",

9-9 Third Edition

DOC3710-193

> FILE pathname [options]

This command transfers a text file to a remote system. The text must
be input to a program such as an editor or a command line on the remote
host.

Input is taken from the specified file. Forwarding begins only after
the CONTINUE command is issued to continue the connection with the
remote system.

The following options are available:

ion

—-CPS n

—LINE

—NO_SIGNAL

Third Edition

Description

Delays the next packet so that the average data
rate does not exceed n characters per second. This
option can be usedwith the -LINE option to
overcome problems with X.25 equipment that does not
properly flow control the Packet
Assembler/Disassembler (PAD). Too high a data rate
can be a cause of remote system character loss.
The problem can be caused by remote’ system
parameters or the X.25 equipment.

Sends to the remote host data packets consisting of
only one line of text per packet. Some non-Prime
hosts accept only one line of text per packet.
(Prime normally fills each packet with as many
lines of text as it will hold.) Such a remote host
will not properly reassemble a file transmitted
with filled packets. This option forwards data a
line at a time in accordance with the remote host's
protocol.

Inhibits the "End of file" message that usually
appears in NETLINK.

Inhibits displaying a file that is being
transferred on the terminal. Information typed at

the keyboard is still printed.

Inserts, or "pads," a space at the beginning of
each null line. This option prevents an editor on
the remote system from switching from INPUT to EDIT
mode when a null line is encountered. (This option
is necessary when using ED, and other similar
editors.)

9-10

A NETLINK REFERENCE

> HELP

This command displays NETLINK commands and a brief description of each

one.

p> LDATA text

This command is the same as the DATA command, except that the user data

starts at and overlays the PRotocol IDentification field (PRID).

p> LMDATA text

This command is the same as the MDATA command, except that the user

data starts at and overlays the PRotocol IDentification field (PRID).

p> MDATA text

This command is the marked-parity version of the DATA command. See the

DATA command for a description of this command.

BP MODE REMOTEECHO
NO_REMOTE_ECHO

REMOTEECHO turns on echoing and sets your terminal to half duplex.

Each character that you type is echoed remotely, thus improving

dramatically the performance of services such as the Office Automation

System (OAS) or EMACS across a Ring.

Echoing can also be determined by an application program. With these

options, NETLINK uses different packet-forwarding criteria to improve

performance.

Caution

Remote echo mode can drastically increase costs over public

data networks.

NO_REMOTE_ECHO turns remote echoing off and sets your terminal to full

duplex. NETLINK observes normal forwarding characteristics. This is

the default mode.

9-11 Third Edition

DOC3710-193

> NC address [options]

This command connects to address. It is used when collect calis
(reverse charge) are not permitted, such as on international or on
intranetwork connections. The address and options are the same as for

the C command.

> OUTFILE pathname [options]

This command writes output from a remote host into a file (specified by
pathname) located on the local host. This command can be used with ED
to transfer files. Do an SLIST (or equivalent) command on the remote
host. The following options are available:

ion Description

—CONTIN Appends the data to the end of the specified file
without overwriting it.

~NO_SIGNAL Inhibits the "End of outfile" message that normally
appears on a timeout.

—-NTITY Inhibits the printing of output information on the
terminal. Input information is still printed.

-TIMEOUT n Causes NETLINK to close the outfile automatically
if data have not been received for an elapsed n
seconds. Timeout counting does not start until
after NETLINK has received some data so that
Operator delay in giving the SLIST (or equivalent)
command does not cause timeout.

Because NETLINK may be talking to a non-Prime host,
no protocol can be_ used. Therefore, data
transparency cannot be provided; textual files
only can be transferred.

B® PAR [parameters]

This command displays current X.3 parameters. If no parameters are
supplied, the PAR command displays text giving the meaning of the
current values of the X.3 parameters (also known as the level-l
parameters).

Third Edition 9-12

A NETLINK REFERENCE

If parameters are specified (in decimal), the PAR command displays the

decimal value of those parameters. A list of X.3 parameters, called

NETLINK PARAMETERS appears in Appendix B. The values of the parameters

appear in the following format.

parameter :value parameter :value

Both parameters and values are printed in decimal. An unsupported

parameter will have UNK or INV in the value field.

A request to read National parameters (such as TELENET's) must have the

National Options Marker (NOM) preceding the parameters. Since the NOM

specifying TELENET is 0:33, a PAR command to read international

parameters 3 and 4 and TELENET parameter 18 would be:

PAR 3 4 0:33 18

The message:

Too many parameters

is issued if you request more data than will fit into NETLINK's

internal buffer. Break up the request into two PAR commands to remedy

the problem. Disabled parameters are not. printed.

p> PAUSE

Abbreviation: PA

This command returns your terminal to PRIMOS without altering the

circuit state. This is useful when you want to use a PRIMOS internal

command while remaining connected to a remote system. (Internal and

external commands are described in the Primos Commands Reference

Guide.) Use the START command to reenter NETLINK command mode after a

pause and NETLINK's CONTINUE command to resume the connection.

Note

Be sure not to issue any external PRIMOS command, or your

NETLINK session (and your remote connection) will be destroyed.

There is a list of commands in the PRIMOS Commands Reference

Guide that identifies each command as external or internal.

9-13 Third Edition

DOC3710-193

P PolLn

This command sets the polling time interval. The value n specifies the
tenths of a second between polls of the terminal. NETLINK checks your
input buffer for new characters every 0.n seconds. The default value
for n is 5, or a polling rate of twice a second. Frequent polling (a
low value of n) speeds up terminal response, but requires more packets.
Infrequent polling (a high value of n) reduces the number of packets
transmitted; this lowers the cost of the connection, but makes

terminal response more sluggish.

BP PORTn

This command specifies a PRIMENET port, setting the profile so that
subsequent connections are addressed to an application program waiting
on the specified port, rather than to the remote login server, which
uses port 0 as the default. The value of n must be from 0 to 99.

P Dt !
text

This command establishes the PRotocol IDentification (PRID) field data
for future connections. It specifies either the 4 decimal bytes of the

protocol identification field, or a single-quoted string of 4 ASCII
Characters. The bytes must be between 0 and 255; the text string must
be enclosed in single quotes ('). ‘Text characters are inserted into
the PRID field with stripped parity.

This command can be used when the PRID field and User-data field must
be combined into a 16 byte User-data field. The data replaces the
default PRID field of 001 000 000 000.

This command cannot be used when the —PORT option or command is given
because —PORT uses the PRID to pass the port number. If no arguments
are given, the PRID field is reset and is made available to PRIMENET.

Note

In earlier versions of NETLINK, PRID bytes were specified in
octal, All of NETLINK's numeric parameters are now decimal.

Third Edition 9-14

A NETLINK REFERENCE

P PROFILE

Abbreviation: PRO

This command displays ‘the profile of the current circuit. If you are

not connected to another system, the message "Not Connected" appears.

> PROFILE DEFAULTS

Abbreviation: PRO DEF

This command displays the default profile to be used for all new

connections.

p> PROMPT text

This command changes the NETLINK command mode prompt. The text can be

up to 32 characters in length, and is displayed with a trailing space.

The text replaces the current prompt. This is useful when you have

logged into a remote host that displays the same prompt as NETLINK (@).

Changing NETLINK's prompt reduces the confusion when you exit from

NETLINK command mode.

Pe it

Abbreviation: Q

This command returns you to PRIMOS from NETLINK. Any active

connections are disconnected.

> SET parameter:value parameter :value

This command sets the X.3 parameters (also known as_ the level-l

parameters) that control terminal characteristics. Parameters and

their values are specified in decimal. NETLINK supports X.3 parameters

for international and PDN connections. A complete description of X.3

parameters can be found in documentation supplied by your PDN

administration (such as TELENET or DATAPAC).

9-15 Third Edition

DOC3710-193

PB SPEED bits-—per-second

This command (for which BPS is a synonym) tells NETLINK how to respond
to terminal speed requests from the remote host. Some hosts hang
unless you provide a valid terminal speed. Most hosts do not expect a
value greater than 1200. This command sets up X.3 parameter 11.

~& sTATUS

Abbreviation: STAT

This command displays the status of all active circuits or the message
"No Active Circuits." The displayed information includes NETLINK
Circuit number, address, time (in hours and minutes) that the circuit
has been open, and traffic information (number of packets sent and
received). The arrow indicates the currently active circuit in
multiple connections. For example:

@ STATUS

Circuit # Address Time Pkt in Pkt out

1 BIRCH 6:11 425 233
-> 2 ASH 3:32 13 6

3 LINDEN 2:01 337 158

4 311061700702 1:20 18 6

wn

This command is used in multi-connection operations. It allows you to
Switch the current circuit to circuit n. Your terminal remains in
command mode and you must issue a CONTINUE command to connect to the
Specified circuit. The command "CONTINUE n" is identical in results to
"SW n" followed by "CONTINUE".

 -10 address

This command establishes a destination address. As an example, "C
address" and "C -TO address" are the same command. If either is
entered as a command to NETLINK, then a subsequent C command, without
an address, connects to the default address.

TO is most useful as -TO on the PRIMOS command line invoking NETLINK,
because it avoids command mode entirely. This allows construction of
abbreviations (using the PRIMOS ABBREV command), such as:

OK, ABBREV -ADDCOMMAND DENVER NETLINK ~IO DENVER

Third Edition 9-16

A NETLINK REFERENCE

When -TO is used this way, NETLINK will perform an automatic "QUIT" if

the connection is broken. This allows you to connect to remote systems

without ever entering NETLINK's command mode. For example:

OK, DENVER
[NETLINK Rev. 19.3]

DENVER Connected

/* user session with remote system
/* user logs out

DENVER Disconnected

OK, /* you are now on your local system

Additional options can be used with -TO as required. The following

example is the equivalent of using the NC command and creates an

abbreviation for an otherwise lengthy command:

OK, ABBREV -ADD_COMMAND FARGO NETLINK ~TO 701884 —-FCTY NO_CHARGE

> Tr| id-number
name

This command tells NETLINK the terminal type. This command affects

only TELENET and a few types of hosts. Those hosts "read the terminal

type" and perform their own echoing and carriage control. Allowed

terminal names are: UNKNOWN, BEEHIVE, FOX, OWL, PRINT, PI45, and vt5o.

Names are translated into the appropriate value for TELENET parameter

23. If a number is specified, then this is used as the value for

TELENET parameter 23.

ERROR MESSAGES

Any of several error conditions can occur while you are making or using

a NETLINK connection. For example, the remote host or the data

connection can fail. Error messages displayed by PDNs and by PRIMENET

through NETLINK are listed below.

Error Messages Generated From PDNs

These error messages may appear when you try to connect to a system on

a PDN.

9-17 Third Edition

DOC3710-193

@e address Access Barred

Access is not allowed from your address.

@® address Busy

All available circuits to the remote host named address are busy. MTry
again later.

e address Invalid Call

There is an error in the call request packet, or the host PDN does not
accept calls of this type.

e address Local Procedure Error

A network protocol error has been encountered. Try again later. If

the problem persists, inform your computer center staff.

@ address Network Congestion

Temporary network problems exist. Try again later. If the problem

persists, inform the computer center staff. This message indicates

problems with the local network or with a Public Data Network.

@e address Not Obtainable

There is no path available to the remote host. It may indicate an

incorrect host address.

@e address Out of Order

The remote host is currently not available to network users.

@e address Refusing Collect Call

You cannot make collect calls to address. Use the NC command.

@ address Remote Procedure Error

A network protocol error has been encountered. Try again later. If
the problem persists, inform your computer center staff.

Third Edition 9-18

A NETLINK REFERENCE

PRIMENET Error Messages

These messages may appear when you are connecting to a PRIMENET node,

or during the life of a connection.

® address Disconnected number (Network Server logged out)

The networks have been shut down on your local system with the STOP_NET

command. NETLINK logs you off of the remote system that you are on.

e Host down

The line to the remote host is down.

e Illegal address

The address that you specified is not a legal network address. Type

"CTTATUS NETWORK" at PRIMOS level to see a list of correct network names

and/or addresses.

@ Network Server logged out

NEIMAN, the network server, stopped. It logs out, shutting off network

services and loopback services. This message also appears if the

Operator stops NETMAN.

@ No remote users

Remote users are not allowed to log in to the system that you specified

in your address. Usually this means that the maximum number have

already logged in and there is no room for another user.

e Port not assigned

The port that you specified has no process waiting to receive calls.

e Rejecting

For PRIMENET nodes, this means that the remote node is not in your

system's address tables. See your System Administrator to find out if

that node has been configured.

For non-PRIMENET hosts or user ports (port-ids between 1 and 99), this

indicates that the receiving process or machine rejected the user's

request. For example, a non-Prime host might look at your remote login

call request and reject it because of unacceptable facilities.

9-19 Third Edition

DOC3710-193

e System busy

Usually, this message indicates a lack of resources that are required
for the establishment of the virtual circuit. Try again later.

e System not up

The remote system is down.

@e Timeout on call request

Your call request to the remote node was timed out. This indicates
that the other node or the network (especially if it is a PDN) is

congested or down. Try again later.

@ Timeout on clear request

Your call request to the remote node was timed out when you tried to
clear the circuit. Generally, this isn't something you should worry

about. You may leave a virtual circuit established, but when you log
out your end of the virtual circuit is guaranteed to disappear.

@ Timeout on reset request

This message appears if PRIMENET tried to resend a series of data
packets that were sent out of sequence. The Remote File Access manager
automatically retries data transmission. This results in the "CIRCUIT
RESET" message in NETLINK. Further data transmission may be possible.
Data may have been lost, unless you placed some higher level protocol
around it. I£ not, you may have to clear the circuit and try again.

Route-through Error Messages

The following section describes each message that may occur from
Route-through errors.

@ Routed-Thru call request looping

A Route-through call request is looping because of a mismatch in
network configurations over a network. Route-through operates by
establishing a series of virtual circuits between intermediate nodes
along its path, and partially because these paths are staticall
determined at PRIMENET configuration, it is possible that a fa
between two nodes could contain a loop. This loop can be detected, but

. not avoided or removed. Ask your System Administrator to resolve the
problen.

Third Edition 9-20

A NETLINK REFERENCE

e Routed-Thru circuit timeout

This indicates that an acknowledgment to a call request (circuit

establishment) over a Route-through path (involving one or more gateway

nodes) has not been received in a short enough period of time. This

indicates that one or more of the intermediate gateway nodes or

networks is badly congested or has suffered a crash. It can also

indicate that the Route-through path is extremely long. Try again. If

this persists, call your System Administrator.

e Route-Thru: Not enough memory

The buffer area allocated by the Route-through server to perform the

exchange of messages over the pair of virtual circuits that make up

each Route-through virtual circuit was exhausted, or the Route—-through

server was congested. Try later.

@ Route-Thru protocol error

Some intermediate gateway is down, or has violated the intergateway

protocol during the establishment of the end-to-end virtual circuit,

which is cleared. Try again.

e Route-Thru server down

In the circuit establishment or traffic phases, this indicates that

every path to the remote node is down. Specifically, at some

intermediate node, the Route-through server (distinct from the Network

Server) has logged out. This can also happen in the middle of the

virtual circuit traffic. In either case, the Route-through server may

have been logged out by the operator. Try again later, or contact the

local or remote System Administrators to resolve the problem.

9-21 Third Edition

PART V

Advanced PRIMENET

PRIMENET

Architecture

INTRODUCTION

PRIMENET is made up of several layers, as shown in Figure 10-1. This

layered structure is based on the International Standards Organization

Open Systems Interconnection (ISO OSI) model, to make the 50 Series

systems able to communicate with all other systems that support X.25

protocols. Each layer is described in the next section.

PRIMENET'S LAYERS

Fach of the functional layers of PRIMENET has its individual functions

and each interfaces with the adjacent layer or layers.

10-1 Third Edition

DOC3710-193

Upper
Levels

Level 3

Level 2

Third Edition

Terminal Users & User Programs

 Y

L

 \ /

A

 v

A

 v

Remote NETLINK NPX/ File
Login PAD Remote File Transfer
Service Emulator Access Service

(X.3, X.28, X.29) I i

V Vv

IPCF Subroutine Interface

v

PRIMENET X.25

A A

v v

RINGNETX.25 Full Duplex Link Level

A h

v v

MDLC Controller PNC

Full
Packet Duplex Ring

Data Sync
Networks Leased

Lines

Layers of PRIMENET Architecture
Figure 10-1

10-2

PRIMENET ARCHITECTURE

Level 3, the packet interface, creates and controls virtual circuits

across the network, handles error recovery, and controls the flow of

information. It also keeps track of the process to which each packet

is being transferred. You can write network-based programs using the

Interprocess Communications Facility (IPCF subroutines), which are

described in Chapters 13 through 16. ‘These routines interface directly

to level 3. Level 3's X.25 support provides a standard interface to

upper-level software no matter what kinds of links make up Levels 1 and

2.

Level 2, the link protocol level, corresponds to the ISO OSI's data

link layer. It describes a protocol to which two linked nodes must

adhere when they transfer information from one to the other. This

protocol dictates the format of the data; how the nodes should

request, transfer, receive, and acknowledge the data; and how to

signal faulty transmissions, should any occur.

level 1 is the hardware interface. It is the equivalent of the ISO

OSI's physical layer. This layer acts as an intermediary between the

physical transmission medium (twin-axial cable or transmission line)

and the rest of PRIMENET and the system. Depending on the type of

network, one of three controllers governs action at this level. ‘These

controllers are the PRIMENET Node Controller (PNC), the Multiple Data

Link Controller (MDLC), and the Intelligent Conmunications Subsystem

Model 1 (ICS1), described later in this chapter. These controllers are

intelligent (have memory) and implement some of the level 1 and 2

protocols.

PRIMENET's upper layers provide user services. These internal

functions operate on the lower layers to perform actions directly

specified by you or actions that facilitate completion of user tasks.

These services use the same IPCF subroutines that are mentioned above.

ADVANTAGES OF LAYERED ARCHITECTURE

The layered approach described above has_ several benefits. The

simplicity and structured design is the same no matter how many systems

are linked in a network. In addition, since PRIMENET supports

internationally recognized standards such as X.25, X.3, X.28, and X.29,

you can easily link to any other network, Prime or PDN, that supports

the same standards. Thus, Prime systems can be integrated easily with

existing equipment.

You interact with only the top layers of PRIMENET. Since these top

layers interact with the lower levels, you do not have to know anything

about the physical connections between linked systems, or how data are

formatted and checked during transfer.

In many cases, you need not even know that network connections are

being used. For example, remote files can be accessed in exactly the

same way aS local files (see Chapters 2 and 3 in this book).

10-3 Third Edition

DOC3710-193

Another advantage of the layered architecture of PRIMENET is that any
Changes made to the lower levels are transparent to you. ‘Thus,
enhancements of the lower levels need not change how you invoke or use

PRIMENET.

NETWORK TYPES

PRIMENET supports the following types of network links:

@ Local Area Networks in a Ring (RINGNET)

@ Point-to-point Connections .

e@ Public Data Network (PDN) Connections

e@ Route—-through Connections

These links allow you to log in to remote systems or access remote
files from their local systems. Figure 10-2 shows typical examples of
the three types of network links.

For the rest of this chapter, the word node represents any system that
is linked to others in a network.

Third Edition 10-4

PRIMENET ARCHITECTURE

QP mu

Point-
To-Point

go} |= Pt

RINGNET

AA

cS \

Public Point-

Data To-Point
Network Network

Point-
To-Point

Node Network —H

4 Disk File Ss
Storage

Symbols

 ©. Terminal

— . Examples of Networks
Figure 10-2

10-5 Third Edition

DOC3710-193

Prime's Local Area Network: RINGNET

RINGNET is Prime's Local Area Network (LAN). Many nodes can be
connected through a high-speed, one-way, serial-synchronous twin-axial
cable. (See Figure 10-3.)

Each node in a ring network is equipped with:

@ A junction box, which connects the twin-axial cable to the

computer. The junction box has a passive relay that switches to
"pass-through" if it detects a power failure on the PNC. This
preserves a ring's integrity.

@ A PRIMENET Node Controller (PNC) board, which controls the ring
protocol and the flow of data between ring nodes.

RINGNET uses a token ring protocol. A special bit pattern called a
token circulates continuousty around the ring. A node cannot transmit
data until it detects the token. When it can transmit, a node issues a
packet containing a 4-byte header and from 4 to 2044 bytes of data
through its PNC.

The packet circulates around the ring, at a data rate of eight megabits
per second, to the destination node. There, the destination PNC
receives the packet and sets a flag in the packet to acknowledge the
receipt. The packet travels around the rest of the ring back to the

source PNC, which does the following:

@ Removes the packet from the ring

@ Passes on the token

e@ Checks the acknowledgement flag

e@ Interrupts the source operating system to signal successful
transmission

Third Edition 10-6

PRIMENET ARCHITECTURE

Transmission

 Host Node Host Node

Junction
Boxes

PRIMENET
Node <

Controller

(PNC) v

 v CPU

Host Node Memory

RINGNET Configuration
Figure 10-3

Fach PNC acts as an active data repeater for packets between other ring

nodes (see Figure 10-3). Node B's PNC handles data transmitted between

Node A and Node C. This repetition requires no software intervention

on the part of Node B; its PNC firmware handles the data transmission.

The PNC uses Direct Memory Access (DMA) I/O to transfer up to two

Kbytes per packet, It needs only one interrupt per data packet to

indicate a node's success or failure in receiving or transmitting a

packet.

RINGNET serves all nodes in the ring equally, so that one system cannot

monopolize the network. It automatically checks all packets for

integrity, and does not require user intervention or separate

acknowledgement messages. In addition, RINGNET offers you the ability

to expand into larger networks without suffering any degradation of

performance.

10-7 Third Edition

DOC3710-193

If any of the nodes in a ring network are powered down or broken, the
rest of the nodes are still able to send data around the ring. The
junction box in a disconnected node allows messages to pass through
without interruption to the next node in the ring, as long as the cable
distance between adjacent active nodes does not exceed 750 feet (230
meters).

Point-to-point Connections

Nodes in a point-to-point network commmicate through dial-up or leased
telephone transmission lines. Each node can contain one or two MDLCs;
each MDLC can support two or four lines at standard modem speeds.

Alternatively, each node can support an Intelligent Commmications
Subsystem ICS1 controller. The ICSI1 acts effectively as a front-end
computer that supports both synchronous and asynchronous serial
communication lines. It has an onboard microprocessor, 65Kb of
downline-loaded RAM, PROM-resident diagnostics, and its own operating
system.

Information travels from the processor of one node, through the MDLC or
ICS1 and a modem, across the transmission lines to the modem and MDLC

or ICS1 of another node.

PRIMENET uses the X.25 High-level Data Link Control (HDLC) protocol on
all synchronous lines and controllers. For leased-line commmications,
the MDLC supports bisynchronous (BSC) or HDLC framing. The Intelligent
Communications Subsystem, Model 1 (ICS1) supports HDLC framing only.

Note

At PRIMOS revisions previous to Rev. 19.3, the MDLC also
Supports HDX, a modified HDLC protocol, to allow half duplex

communications across dial-up lines. For more information on
half duplex communications, refer to the Rev. 19.0 System
Administrator's Guide.

It is recommended that all synchronous PRIMENET lines (either
point-to-point or to a Public Data Network) use High-level Data Link
Controller (HDLC) framing and Link Access Protocol Balanced (LAPB)
protocol, if possible.

The Multiple Data Link Controller (MDLC) and the Intelligent
Communications Subsystem Model 1 (ICS1) can be used simultaneously by
Several processes (PRIMENET-related or other system processes).

Third Edition 10-8

PRIMENET ARCHITECTURE

Like the PRIMENET Node Controller (PNC), the MDLC uses DMA I/O to

transfer data to and from main memory, and issues an interrupt to the

operating system only after an entire packet of data has been received

or transmitted. It handles all error checking and frame formation in

firmware.

The ICS] acts as a front-end processor that allows the main processor

to off-load communications functions. This provides greater

performance and lower overhead.

Public Data Network (PDN) Connections

Prime systems can subscribe to all Public Data Networks (PDNs) that

support the CCITT xX.25 protocol standard. Supported PDNs include

TELENET and TYMNET in the United States, DATAPAC in Canada, IPSS in

Great Britain, TRANSPAC in France, and DATEX-P in Germany.

All of these networks transfer and process information in packets.

PDNs often provide service at substantial savings over methods

requiring dedicated transmission lines or dial-up circuits.

With PRIMOS Revision 19.3, you can subscribe to more than one Public

Data Network. This is a new feature with 19.3. For more information

on PDNs, refer to Chapter 12.

Route-Through Connections

Route-through is a facility that permits Prime-to-Prime nodes, not

directly connected, to commmicate with each other through gateway

nodes. Route-through is transparent to the user. This process is

handled by the Route-through server, which handles the call requests,

allocates the necessary virtual circuits, and routes the message to the

destination node.

10-9 Third Edition

lI
Ports and

Virtual Circuits

INTRODUCTION

If you want to write network programs that use Interprocess

Communication Facility (IPCF) subroutines, you need to know about

e Ports

e Virtual circuits

In most cases, you don't need to be concerned with ports when you use

PRIMENET facilities such as Remote Login and NETLINK. Ports and

virtual circuits are handled automatically and therefore are

transparent to you. This chapter describes the concepts of ports and

virtual circuits with which you'll need to be familiar if you do want

to write network programs.

Some of the information in this chapter regarding virtual circuits (in

particular, the sections Virtual Circuit Status Array and Clearing

Codes) assumes a knowledge of Inter-Process Communications Facility
(IPCF) subroutines and their arguments. ‘These are described in Chapter

14. Refer to Chapter 15 for a step-by-step description of how to

establish a virtual circuit. Chapter 16 describes IPCF programming

strategy.

11-1 Third Edition

DOC3710-193

PORTS

A user process or program that uses IPCF subroutines to communicate

with a remote system must have some way of identifying both the remote
node and the destination process on the remote node. A standard X.25
node address can identify the remote node, but it cannot identify to
which of the 255 possible destination user processes to attach.
Processes are identified by means of ports within a node, which are
specified by using network subaddresses.

Ports, Programs, and User Processes

Each node in a PRIMENET network has a pool of available ports that may
be assigned by programs running under PRIMOS (see Figure 11-1). Each
port represents a target to which incoming network connection requests
may be routed.

The assignment of a particular port (see XSASGN in Chapter 14) declares

a program's interest in receiving the connection requests addressed to

that port. Once a program has been notified that such a

_

request is

pending on a port it has assigned, it may use other network subroutines

to get information about the originator of that request and to complete

establishment of the connection.

A process may asSign a port permanently, or it may assign it with the

provision that it be automatically unassigned after a certain number of

connection requests have been handled. A process assigning an

already-assigned port is placed on a queue for that port, behind the

processes that have already assigned the port. An asSigning process

passes a numeric parameter to indicate whether it wants to handle all

calls to that port or a specific number of calls. For example,

PROCESS Y in Figure 11-1 will be able to handle eight calls, while
PROCESS C will be able to handle only one call. Anegative value tells
the port to keep that process at the back of the queue.

Port Assignments

The ports available to PRIMENET user processes are 1 to 99 inclusive.

Port 0 is permanently reserved for PRIMENET's remote login. Ports 100
to 255 are reserved for PRIMENET's internal use. For example, port 253
is permanently reserved for the Route-through Server. (You should also
note that FITS servers have configurable ports, which occur in the 1-99
range.)

Ports are a system-wide resource that must be administered on a
system-wide basis, to avoid undesired interference between user
applications.

Third Edition 11-2

PORTS AND VIRTUAL CIRCUITS

User
Ports
1-99

‘Yellow Book” Transport Manager —p| 256

|
i
{
l

NPX Slave Processes —3| 255

qT

1
I

<_<
FTP Server Process —B| 156

\
1
|
l

eeJj—
r~, ! R

Process Process Process 63 i
C B A |

| 1 | M Incoming
l Call
{ E Requests

52
N

I <—_——
Process | E

X |

° 31 T
i

!
'
i

Process 7 ‘

co !
1
|
l

a
{
i

Remote Login 0

The Port Mechanism
Figure 11-1

11-3 Third Edition

DOC3710-193

Using the PRIMENET IPCF subroutine named XSASGN, you can asSign a port.
You must specify a port number for the call to go through to the
correct destination process. If you do not specify a port number, the
call is sent to the default port, which is the remote login port (Port
0). :

When several processes wait in a port queue, the automatic unassignment
of one process allows the next process in the queue to handle
subsequent requests.

To manage the bottom of the queue, and to ensure that every request
gets handled, it is possible for a process to permanently assign itself
at the end of the queue. The process remains watching the port forever
(until it wumassigns itself from the port, or logs out), and handles
requests only when other processes are unavailable.

Note

A process that only makes calls, and does not receive them,
need not assign a port.

VIRTUAL CIRCUITS

When one process specifies the node and port of another process,

PRIMENET establishes a bidirectional link between the two through a
virtual circuit (VC). A virtual circuit is a logical path from one
process to another across the network.

Virtual circuits do not necessarily correspond exactly to physical
communication lines. For example, one physical line may carry many
virtual circuits, just as one telephone trunk line may carry many
voices at the same time. Moreover, a virtual circuit between two given
systems might use a different physical path each time it is established
(if different physical paths exist).

Fach virtual circuit has an identifying number to distinguish it from
all others. PRIMENET currently allows up to 63 virtual circuits at a
time on each node. One VC across a PDN may traverse many physical
links and nodes.

Intra-node Calls

In addition to being able to create virtual circuits to ports on remote
nodes, you can create a virtual circuit to ports on the local node.
You do this by specifying the local node as the destination node in the
call connect subroutine. A virtual circuit created this way behaves
exactly the same as one that is created to a remote node.

Third Edition 11-4

PORTS AND VIRTUAL CIRCUITS

This feature is useful for developing and testing network applications

because it permits the testing of several different pieces of a

distributed application on the same node. It is also useful because it

permits local users to access a system the same way that remote users

do.

Passing Off Virtual Circuits to Other User Processes

PRIMENET permits an application to switch a virtual circuit over to

another application. Detailed information is found in the description

of XSGVVC/XLGVVC in Chapter 14.

Virtual Circuit Status Array

Each process holding virtual circuit connections must specify a

two-word (two full words) array for each virtual circuit's status.

When needed, PRIMENET reports status changes for the virtual circuit

into that array.

The caller specifies this virtual circuit status array in the call to

the connect routine (XSCONN, XSFCON, XLOONN). ‘The call receiver

specifies the array in a call to the accept routine (XSACPI, XSFACP,

XLACPT). The virtual circuit status array may be written into by

PRIMENET until the virtual circuit is cleared. (The clear confirmation

is written into the array as well.)

The first of two array words is continually updated by PRIMENET to

reflect the latest status of the circuit. When a data transmit or data

receive completes, this virtual circuit status word is updated to the

value XSSCMP. In addition, the status argument of the XSTRAN/XSRCV

call that initiated the now-completed action is also set to XSSCMP.

Should the circuit ever be reset because of errors in the

communications media or through network congestion, the virtual circuit

status word is updated to the value XSSRST. In addition, the status

arguments of any pending data transmits or data receives are also set

to the same value.

When a user-held network connection is disconnected (cleared), the

first word of the virtual circuit status array is set to the "circuit

Cleared" status code (XSSCLR). At this time, the second word of the

array is also valid, and indicates the reason for the Clearing. (See

the following section, Clearing Codes.)

11-5 Third Edition

DOC3710-193

The purpose of the virtual circuit status array is to provide processes
an easy way to poll the state of their (multiple) virtual circuits. A
process that is managing many virtual circuits, each with several
data-moving operations in progress, need only poll the virtual circuit
status arrays for the completed status (XSSCMP) to see which circuit(s)
are ready for more traffic. The user process should change the virtual
circuit status to XSSIDL or XSSIP from XSSCMP to wait for more data
transfers.

Note

PRIMENET data communication is handled by a special user
process, NETMAN, that is classified as user type 'NSP'. This
process runs at high priority, and thus its activity might
interrupt a program during its execution. An interruption
affects the program's handling of the virtual circuit status
array and other returned status variables. You should never do
a repeated test against any of these returned statuses, but
first obtain your local copy, to ensure it remains unchanged
during the test.

Clearing Codes

A virtual circuit may be cleared by a Public Data Network (PDN), by
PRIMENET, or by either of the two processes controlling it. The reason
for clearing appears in the second word of the virtual circuit's status
array. The high-order byte of this word is the clearing cause and the
low-order byte is the diagnostic code byte.

Clearing causes can be network-generated, or requested by you ("DTE
originated" in X.25 terminology), and assigned a specific clearing
cause, There are several network-generated causes defined in the X.25
standard. They are sometimes referred to as call progress signals,

since they give information about "how far a call has progressed when
cleared."

The clearing cause is most likely one of the CCSxxx codes listed below,
but it can also be another cause defined by a national network. If the
clearing cause is CCSCLR, the circuit was cleared by either PRIMENET or
a user process ("DTE-originated"). In any case, the diagnostic code
may contain useful information. The X.25 standard defines several
diagnostic codes in its Appendix 5. Individual public data networks
may have defined further codes. You can use clearing codes with the

XSKEYS insert file that PRIMENET provides.

Third Edition 11-6

PORTS AND VIRTUAL CIRCUITS

When a call is cleared explicitly with XSCLR/XSFCLR, the clearing user

process may specify the value of the diagnostic code in the why

argument (see XSCLR/XLCLR in Chapter 14). Communicating processes may

use this facility to describe fatal error conditions or supply final

status information. Although the entire range 0 to 255 may be sent,

you should limit codes to the range 0 to 127. When PRIMENET clears a

circuit, the diagnostic code is one of the CD$xxx codes listed below.

The values 128 to 255 are reserved for future use by PRIMENET.

The list of status codes that may be written into the first word of the

virtual circuit status array appears in_ the sections on

XSCONN/XSFCON/XLCONN and XSACPT/XSFACP/XLACPr in Chapter 14. The

following table lists predefined clearing causes (CC$xxx) and

diagnostic codes (CD$xxx) for the second word of the array:

Clearing Cause Meaning

CCSCLR This circuit was explicitly cleared. There might

be a diagnostic code from you or PRIMENET.

CCSBAD The call request packet is invalid.

CCSBAR Access to the requested system has been barred.

CCSBSY The called system is not accepting connections

right now.

CCSDWN The system to which this circuit is connected is

not currently operating.

CCSLPE Local procedure error. (See CCSRPE.)

CCSNET Temporary packet network congestion.

CCSNOB The requested system is not obtainable through the

packet network.

CCSRPE Remote procedure error. Violation of X.25 protocol

through a packet network.

CCSRRC The requested system refuses a collect call.

Diagnostic Code Meaning

CDSBSY The target system cannot accept any more

connections at this time.

CDSDWN The system to which this circuit is directed is not

currently operating.

CDSIAD A connection request specified an unknown” or

illegal address.

11-7 Third Edition

DOC3710-193

CDSLOP A Route-through call request is looping.

CDSLPE A violation of the X.25 protocol has been detected.

CDSMEM The Route-through server does not have enough
memory for a call to be routed.

CDSNRU The target system has no more remote processes
available at this time. (Used with remote login.)

CDSNSV The PRIMENET server process is not running.

CDSPNA The port to which this call is directed is not

assigned in the target system.

CDSRTD The Route-through server is down or inconsistencies
exist between different network configuration
files.

CDSRTE A Route-through protocol error was detected.

CDSSNU The target system is not yet available for login.
(Used with remote login.)

CDSTCA A call request has not been answered by the target
node, so the circuit was cleared.

CDSTCR A clear request has not been duly confirmed by the
target node, so the circuit has been cleared and
dropped.

CDSTMO The Route-through server experienced a virtual
circuit timeout.

CDSTRS A reset request has not been duly confirmed by the
target node, so the circuit has been cleared.

The clearing causes shown match the masked (not shifted) high-order
byte of the second word of the virtual circuit status. A FORTRAN test
would be:

IF (AND(VCSTAT(2) ,:177400) .BQ. CCSCLR) ...

Other essential features relating to IPCF subroutines are described in
Chapter 14,

Third Edition 11-8

PRIMENET

and PDNs

INTRODUCTION

Prime 50 Series systems can connect to all Public Data Networks (PDNs)

that support the CCITT X.25 protocol standard. Supported PDNs include

TELENET and TYMNET in the United States, DATAPAC in Canada, validated

for PSS in Great Britain, TRANSPAC in France, and many others. PDNs

transfer and process information in packets. Packet-switching networks

make it possible for several users to share the same equipment

simultaneously. These networks can often provide service at

substantial savings over methods requiring dedicated transmission lines

or dialup circuits.

The following sections describe how PRIMENET allows you to conveniently

and easily communicate to PDNS.

PDNs and NETLINK

Prime systems can talk to non-Prime systems on PDNs with NETLINK, which

is described in Chapters 7, 8, and 9. All you need to know is the

address and the login sequence codes of the host in order to access it

with NETLINK over the PDN. NETLINK allows you to communicate over any

X.25 network to which the local system is linked. NETLINK emulates a

PDN packet assembler/disassembler (PAD). It converts the asynchronous

terminal output into X.25-formatted packets of information that can be

transmitted over the network.

12-1 Third Edition

DOC3710-193

If your system has a PDN link, NETLINK allows access to any system in
the network, both Prime and non-Prime. You don't have to log out of
the local system to invoke NETLINK; in fact, NETLINK supports
Simultaneous links with up to six remote systems and lets you move
between them and your local system at will. ‘This capability puts the
wide variety of PDN facilities within quick reach of any Prime user in
a network.

EASE OF ACCESS

Because PRIMENET uses the X.25 protocol, a connection across a PDN
functions similarly to a normal PRIMENET connection. No special
protocol conversion or other processing is required.

The user of a Prime 50 Series system linked in a PDN has access to all
other members of the PDN. ‘This means that any Prime terminal user can
access all other member systems, both Prime and non-Prime, and that all

PDN terminal users can access the 50 Series system. It is very
important to implement security controls in this environment. The
Network Planning and Administration Guide describes how a Network
Administrator can configure the proper security controls for a network.

MULTIPLE PDN SUPPORT

A Prime node can support multiple PDNs. For example, PRIMENET can
connect to a different PDN on each synchronous line; your system could
connect to both TELENET and TYMNET. However, PRIMENET cannot support
more than one line to the same PDN.

ROUTE-THROUGH

Route-through is a facility that permits Prime-to-Prime nodes, not
directly connected, to commmicate with each other through gateway
nodes. Route-through is transparent to the user. This process is
implemented by the Route-through server, which handles the call
requests, allocates the necessary virtual circuits, and routes the
message to the destination node.

A gateway node can serve as a link between two areas in a network, for
example, between RINGNET and a PDN. Thus, users on any system in that
RINGNET could communicate with the PDN directly. Because the Network
Administrator can configure alternate paths to a system through the
Route-through facility, data can be sent between networks that are
connected through a gateway system across a PDN.

Third Edition 12-2

PART VI

PRIMENETProgramming

Introduction to

Network

Programming

INTRODUCTION

PART VI of the PRIMENET Guide deals with network programming. The

following subroutines are described.

e Inter-—Process Communications Facility (IPCF) subroutines

e The File Transfer Service (FITS) FTSSUB subroutine

Refer to Appendix A for X.25 programming guidelines. The following

sections briefly describe the chapters contained in this part.

IPCF SUBROUTINES

Chapter 14 contains an overview of the IPCF subroutines, an explanation

of the IPCF naming conventions, a functional summary of the

subroutines, and a detailed description of the subroutines and their

arguments.

13-1 Third Edition

DOC3710-193

IPCF Programming Examples

Chapter 15 provides examples of applications that use IPCF subroutines.
The examples show

@ How to establish a virtual circuit link

@ ‘The general layout of an IPCF application

e@ Asample network file-transmission application

@ An example of the use of Fast Select in an application

IPCF Programming Strategy

Chapter 16 describes the basic principles of network programming, using
IPCF. The following concepts are described.

@ Front-end processes

@e Servers

@ Performance

@ Window and packet sizes in virtual circuits

@ Return codes

@ Network event waiting

@® Ending a network program

e The effects of network shutdown and startup on applications that
use IPCF subroutines

FTS PROGRAMMING WITH THE FTSSUB SUBROUTINE

Chapter 17 describes the FTSSUB- subroutine, which provides a
programming interface to the FITS utility FTIR. Network users can use
FIR to transfer files between machines that are connected in a network.
Programmers can use FTSSUB to create programs that perform repetitious
procedures, such as daily file transfers. FTSSUB performs the same
group of tasks as the FIR utility, which includes submitting,
monitoring, and canceling user file transfer requests.

Third Edition 13-2

IPCF Subroutines

INTRODUCTION

This chapter describes the set of subroutines that make up the PRIMENET

Interprocess Communications Facility (IPCF).

This chapter has four parts:

@ IPCF Overview

@ Naming conventions

e@ Summary of subroutines

@ Detailed descriptions of subroutines

To use IPCF subroutines, you need a knowledge of ports, virtual

circuits, and a basic understanding of IPCF concepts. Chapter ll

describes ports and virtual circuits, and clearing codes. Chapter 15

shows you how to establish a virtual circuit, describes the general

layout of an IPCF program, and contains two longer programming

examples. Chapter 16 discusses programming strategy.

14-1 Third Edition

DOC3710-193

IPCF OVERVIEW

IPCF subroutines are designed for use by programs running in V-mode or
I-mode on Prime 50 Series computers. These subroutines can be called
from any high level language. With IPCF subroutines, you can develop
modular applications. Each module can run as a_ separate application
from others on the same PRIMENET system. The different modules use the
IPCF subroutines to establish a connection between each other. This
connection is called a virtual circuit.

IPCF subroutines enable applications to send or receive messages to
systems within a PRIMENET network or between processes on the same
system (intra-node communication is discussed in Chapter 10). ‘Two
forms of each IPCF subroutine are available: a simple version with a
short parameter list (short form) anda full version with a larger
number of parameters (long form). The short forms can be used without

a detailed knowledge of X.25 protocol. Because most of the X.25
protocol is automatically handled by PRIMENET, you can use the short

forms for Prime-to-Prime connections. All the information you need in

order to use the short forms is contained in this manual.

The long forms complement the short forms. With the long forms, you

can use X.25 functionality fully. The long forms are most useful in

handling Prime-to-non-Prime connections. In addition to understanding

the basic concepts of IPCF subroutines, you must know the 1980 X.25

protocol to use the long forms. Appendix A contains information about

X.25.

NAMING CONVENTIONS

Generally, the names of IPCF subroutines begin with three types of
prefixes: XS, XSF, and XL. The X$ prefix indicates one of two things.
It prefixes a subroutine that has only one form or is the short form of
a particular subroutine. The short form subroutines use a minimum
argument list. For example, there is only one wait subroutine, XSWAIT.
While, on the other hand, XSCONN is the short form of the call request
subroutine.

The XSF prefix indicates short-form subroutines tailored for the fast
select facility as defined in the X.25 standard. XSFCON is the fast
select version of the connect subroutine. Finally, the XL prefix
indicates a long form subroutine. For example, XLOONN is the long form
of the call request subroutine.

Third Edition 14-2

IPCF SUBROUTINES

SUMMARY OF IPCF SUBROUTINES

The PRIMENET subroutines described below can be called by any

application that runs as a V- or I-mode program. The library VNETLB

contains references to these subroutines. The file

SYSCOM>XSKEYS.INS.FIN contains the definitions of key and error codes

for FORTRAN. The file SYSCOM>XSKEYS.INS.PL1 contains those for PL/1

Subset G.

Note

The integer default in FIN is INTEGER*2; in F77, it is

INTEGER*4. To avoid confusion andincorrect results, type all

integers explicitly.

The SYSCOM>XSKEYS insert file is kept for compatibility with old

program source files. It is a copy of the SYSCOM>XSKEYS.INS.FIN file.

The subroutines are listed below by function; the short forms for each

functional group are noted.

Subroutine Name Function

XSASGN Declares an application's interest to receive a

specific class of incoming calls (assigns a

port).

XSCONN Requests a virtual circuit connection.
XSFCON
XLCONN

XSGCON Provides information about incoming calls.

XSFGCN
XLGCON

XSACPT Accepts a connection request to complete a

XSFACP connection.

XLACPT

XSTRAN Transmits a message.

XSRCV Receives a message.

XSCLR Clears a virtual circuit connection.
XSFCLR

XSUASN Unassigns a port.

XSWAIT Does a timed wait for the next network event

completion.

14-3 Third Edition

DOC3710-193

XSCLRA Clears all active virtual circuits and unassigns
all ports.

XSGVVC Passes control of a virtual circuit to another

XLGVVC application process.

XSSTAT Returns various status information related to

PRIMENET.

Note

In this and all succeeding syntax descriptions, each argument
is defined as a two-byte integer or array of two-byte integers.
The FIN definition of a 4-byte integer is INTEGER*2; the PL/I
equivalent is FIXED BIN (15). ‘The F77 definition of a 4-byte
integer is INTEGER*4; the PL/I equivalent is FIXED BIN (31).

SUBROUTINE DESCRIPTIONS

The subroutines used to make a virtual call are grouped functionally in
order of appearance. The remaining routines follow in alphabetical

order.

Assigning a PRIMENET Port to Receive Incoming Call(s)

BP XSASGN

XSASGN assigns a port. To receive incoming network connection
requests, an application must assign one or more of the available
network ports, The call to XSASGN instructs PRIMENET to direct each
connection request that specifies a port to the connection request

queue of the assigning process. The process may read this queue by
calls to the XSGCON or XLGOON subroutines.

The only time PRIMENET does not assign a legal port to a process is
when there is not enough buffer space. PRIMENET puts multiple requests
for the same port in a first-in-first-out queue. When the process at

the head of the queue unassigns that port (see XSUASN), the next
process waiting in queue for that port begins receiving incoming
connection requests.

The assigning process may request automatic deassignment of a
particular port after a specified number of connection requests are

directed to it. The count field in the XSASGN call is used to specify
this. If count is a positive integer, PRIMENET will remove the
assigning process from the port after processing count connection

requests for that port. The assigning process must assign the port
. again to reenter the queue. A count of O prevents automatic
deassignment.

Third Edition 14-4

IPCF SUBROUTINES

A count of -l causes the assignment request to be placed and kept at

the back of the assignment queue for the specified port. PRIMENET

places ahead of this request in the queue any process with a

non-negative count that calls XSASGN. A process with a negative count

will handle a request only when no other processes are available. It

returns to the bottom of the queue when a process with a non-negative

count assigns the specified port.

If there is more than one process with a count of -l assigning the same

port, only the first will handle bottom-of-queue requests, until it

unassigns itself or logs out. Then, the next negative count process

will assume the bottom-of-queue position.

For example, several server processes, each with a count of 1, assign

one port. Each process handles a single request for service, and is

immediately deassigned, allowing the next incoming request to be taken

by the next server in the queue. An error-handling process is given a

count of -1 and sits at the bottom of the queue. When no server

process is available, the error handler takes the incoming requests.

If one process makes two successive calls to XSASGN with the same port,

the count of the queued first assignment request call is replaced by

the count of the second. The position of the request in the assignment

queue remains unchanged.

Call syntax:

CALL XSASGN(port, count, status)

Arguments:

port INTEGER*2. The port to be assigned, 1 to 99 inclusive.

count Integer*2. The number of incoming requests to be

directed to the assigning process before automatic

deassignment. (See text above.)

‘count! > 0: Automatic unassignment after ‘count'
calls.

"‘count' = 0: Infinite assignment.

'count' < 0: Remain at end of assignment queue.

status INTEGER*2. Returned. The returned status of the call.

The following is a list of the status codes that may be returned by a

call to XSASGN.

XSSBPM The port specified in the call is not in the legal range

of 1 to 99.

14-5 Third Edition

DOC3710-193

XSSCMP The assign request has been successfully placed at the
front of the assign queue for the specified port.

XSSMEM No system resources are currently available for more
assign requests.

XSSNET Networks are not configured for this system.

XSSQUE The assign request is behind at least one other request

for this port.

Call Requesting

> XSCONN — XSFCON —— XLOONN

Any of the call requesting subroutines initiates the establishment of a
virtual circuit. The application supplies a virtual circuit status
array (as the vcstat argument). The result of the call request will be
returned into this virtual circuit status array. Normally, this call
request status will change with time, as the call progresses, The call
request subroutine will also return a VCID, to be used with all
subsequent IPCF subroutine calls related to this virtual circuit.

The caller must specify the target node and a port there to make a call
request. For short form routines, only configured node names can be

used. The long form routine (XLOONN), however, permits numeric

addresses as well as node names.

XSCONN is the short form routine, intended to initiate a connection to
another PRIMENET application that is executing on any other Prime node

in the network.

XSFCON is the short form for fast select. It adds the capability of
sending the call user data field, and retrieving called user or clear

user data returned by the callee.

XLOONN allows you to specify in detail each of the fields in a call
request packet. In addition, you can put some constraints on which

network path to use, and retrieve returned user data fields.

Note

When PRIMENET is connected to a public data network, the agency
controlling that network may impose restrictions on the use of
the fields in the call request packet.

Refer to Appendix A for more information on X.25 facility fields.

Third Edition 14-6

IPCF SUBROUTINES

Call syntax:

CALL XSCONN(vcid, port, tadr, tadrn, vcstat)

CALL XSFCON(key, anskey, vcid, port, tadr, tadrn, udata, udatan,

vestat, rudat, rudatn, rudabc)

CALL XLCONN(key, vcid, port, tadr, tadrn, fcty, fctyn, prid, pridn,

udata, udatan, vcestat, [rudat, rudatn, rudabc])

Arguments:

key INTHGER*2. Describes the form of the call and the

physical paths to be allowed for the connection. The

key has three additive parts. They are selected from:

Address format,

either:

XKSNAM tadr contains an ASCII PRIMENET

node name (default, so XKSNAM may
be omitted)

Or:

XKSADR tadr contains the ASCII subscriber

address

Path specification,

XKSANY Any available network path OK

XKSPDN Path through packet network OK

XKSRNG

=

RINGNET (PNC) path OK

XKSRTE Route-through path OK

XKSSYN Synchronous link path OK

Note

At least one path specifier must be present
in the call.

14-7 Third Edition

DOC3710-193

anskey

veid

port

tadr

tadrn

fcty

fctyn

prid

pridn

Third Edition

Facility option request (used with XLCONN only),

XKSFCT A default facilities field will be
provided by PRIMENET, appropriate for
the connection type (RING or specific
PDN), specified separately by the
application, or not used. (It might

be added by your PDN.)

Returned data option (used with XLCONN only),

XKSRTD This key indicates that the optional
return data arguments for the fast
select facility have been supplied.

INTEGER*2. For XSFCON, selects restricted response or
not for fast select calls.

XKSACC The callee may accept or clear the call;

XKSCLR The callee must clear the call.

INTEGER*2. Returned. The VCID to be used for this
connection. Of no interest, with XSFCON, when the

XKSCLR anskey is used.

INTEGER*2. The port assigned by the process that is the
target for this connection request. (Ignored if the
prid argument is used.)

Array. It holds a string of bytes (char nonvarying in
PL/I). This array contains the PRIMENET node name of
the target node (with a maximum of 6 characters). For
XLCONN, combined with XKSADR, it holds the target node's
address. If you are calling by address, the maximum
length is 15 characters.

INTEGER*2. The number of characters in tadr.

Array. Contains the bytes to go into the call request

packet facilities field. (Ignored if fctyn is 0.)

INTEGER*2. The number of bytes to be taken from fcty.

Legal range is 0 to 63. (Must be 0 if XKSFCT is used.)

Array. A buffer that contains the four bytes to go into
the protocol id field call request packet. (Ignored if
pridn is 0.)

INTEGER*2. The number of bytes to be taken from prid.
Legal values are 0 and 4.

14-8

udatan

vcestat

IPCF SUBROUTINES

Note

If pridn is 0, PRIMENET uses the protocol id

field to pass the port specified in port. In

this case, this field is used for a host-to-host

protocol format defined for PRIMENET.

If pridn is 4, the application supplied bytes

are used. In this case, the value specified in

port is not used.

Array. A buffer that holds the bytes to go into the

user data field call request packet. (Ignored if udatan

is 0.)

INTEGER*2. ‘The number of bytes to be taken from udata.

Legal values are 0 to 12, except for fast select calls,

for which the range is 0 to 124.

Two INTEGER*2 word array. Returned. Used for the

virtual circuit status array. The list of returned

virtual circuit status codes follows separately after

the argument descriptions.

The vcstat may be written into during the whole life of

the virtual circuit. Ensure it is the appropriate type.

For XSFCON (Optional), the following three arguments are mandatory for

XSFCON and optional for XLOONN:

rudat

rudatn

rudabc

Array. To holda string of bytes. Returned, ‘This

array will receive returned user data fields from call

accept and clear packets, if present. It is intended

for use with fast select calls. Note that the entire

X.25 user data field will be returned here (refer to

Appendix A).

INTEGER*2. The maximum number of characters to be put

into rudat.

INTEGER*2. Returned. The actual number of characters

returned into rudat.

Note

rudat and rudabc are only valid when the call

request has completed, that is when vestat (1)

equals either XSSCMP or XSSCLR.

14-9 Third Edition

DOC3710-193

The following list of codes can be returned into the first word of the
virtual circuit status array vcstat. These codes could be expected
immediately on return from the call request subroutine.

XSSBPM

XSSDWN

XSSFCT

XSS$IP

XSSMAX

XSSMEM

XSSNET

XSSUNK

One of the arguments to the call is missing, out of
range, or in conflict with other arguments,

The target node specified in tadr is currently
unavailable through PRIMENET.

Bad facility field supplied (XLCONN only).

The connection request (or data transfer) has been
successfully initiated. See XSSCMP.

This request exceeds the maximum number of virtual
circuits allowed for the physical node-to-node link.
With normal PRIMENET configurations, this will occur
only if the link includes a PDN, which may only allow
relatively few simultaneous virtual circuits.

There is temporary buffer congestion in the local
network. The system currently does not have the
resources required to process the request. Retry the
request later on. (XSFCLR only. XSCLR automatically
retries the clear request later.)

PRIMENET is not configured on this Prime system.

The target node specified in tadr is unknown in the
network (not configured).

As a result of data transfers (network and remote user actions), the
following codes might be returned later.

XSSCLR

XSSCMP

XSSMAX

Third Edition

The connection has been cleared and is no longer usable.
If the connection was cleared by the network or the
remote process (not the local process), the second word
of the virtual circuit status array will hold the
Clearing cause and diagnostic code. (Refer to Chapter
11.)

The connection attempt or a data transfer has
successfully completed.

This request exceeds the maximum number of virtual
circuits allowed for the physical node-to-node link.
With normal PRIMENET configurations, this will only
occur if the link includes a PDN, which may only allow

relatively few simultaneous virtual circuits.

14-10

IPCF SUBROUTINES

XSSRST The virtual circuit has been reset. All operations in

progress have been aborted.

Find Information on Incoming Call

> XSGOON — XSFGCN -- XLGOON

These subroutines return information about incoming call requests.
Once an application has assigned a port, PRIMENET places all incoming

call requests that specify that port on a call request queue for that

process. Because each PRIMENET application has only one such queue,

when a process has several ports assigned, the connection requests for

each of them are placed on this same queue in a first-in-first-out

fashion.

A call to a ‘get information on call request' subroutine copies

information about the first call request on the process's queue without

dropping the request from the queue. The process should then dispose

of the pending connection by either accepting it or clearing the call.

Either action drops the pending request from the call request queue.

Requests not handled by the process in a timely fashion are

automatically cleared by PRIMENET. This timeout is 100 seconds.

XSGCON is the short form subroutine, primarily for use between Prime

nodes.

XSFGCN is the short form subroutine for retrieving information for fast

select calls. It gives the name of of the caller's node, and the call

user data field. It also tells if the caller required restricted

response or not. (Fast select calls with restricted response required

must be cleared.)

XLGCON allows the caller to extract almost all of the fields in an X.25

call request packet.

Call syntax:

CALL XSGCON(vcid, port, status)

CALL XSFGCN(key, anskey, vcid, port, fadr, fadrn, fadrbc,
udata, udatan, udatbc, status)

CALL XLGOON(key, vcid, port, fadr, fadrn, fadrbc, fcty, fctyn,
fctybe, prid, pridn, pridbc, udata, udatan,

udatbc, status)

14-11 Third Edition

DOC3710-193

Arguments:

key

anskey

vcid

port

fadr

fadrn

fadrbec

fcty

fctyn

f£ctybe

prid

Third Edition

INTHGER*2. XSFGCN and XLGOON: Describes the format of
the calling node name to be placed into fadr.

XKSNAM fadr will receive the ASCII PRIMENET node
name,

XKSADR fadr will receive the ASCII subscriber
address.

INTHGER*2. Returned. For XSFGCN, Indicates restricted
response or not for fast select calls.

XSSACC The callee may accept or clear the call.

XSSCLR The callee must clear the call.

XSSNOT This is not a fast select call.

INTEGER*2, Returned. This vcid is to be used for all
subsequent IPCF calls, relating to this virtual circuit.

INTHGER*2,. Returned. The port to which this call
request is directed.

Array. It holds a string of bytes — char nonvarying.
Returned. This buffer will contain either the PRIMENET
node name or the system address for the node at which
this call originated.

INTEGER*2, The maximum number of bytes fadr may
receive.

INTEGER*2. Returned. The number of bytes returned into
fadr.

Array. Returned. It holds a string of bytes — nchar
nonvarying. The buffer that will receive a copy of the
call request packet facilities field. (Ignored if fctyn
is 0.)

INTEGER*2. The maximum number of bytes the buffer named
by fcty may receive.

INTEGER*2. Returned. The number of bytes returned into
fcty by call.

Array. Returned. It holds a string of bytes — char
nonvarying. The buffer that will receive the bytes from
the call request packet protocol id field. (Ignored if
pridn is 0.)

14-12

pridn

pridbc

udatan

udatbc

status

IPCF SUBROUTINES

INTHGER*2. The maximum number of bytes prid may

receive.

INTHGER*2. Returned. The number of bytes returned into

prid by call.

Array. Returned. It holds a string of bytes — char

nonvarying. The buffer that will receive the bytes from

the user data field of the call request packet.

(Ignored if udatan is 0.)

INTEGER*2. The maximum number of bytes udata may

receive.

INTEGER*2. Returned. ‘The number of bytes returned into

udata by call.

Mwo-word array, INTHGER*2. Returned. Contains the

returned status of the call.

The following is a list of status codes that may be returned in the

first status word.

XSSNOP

XSSCMP

XSSBPM

XSSNET

No call requests pending.

Pending call request: return arguments are valid.

Invalid key argument in the call.

Networks not configured.

The second status word is valid only when the first word has the value

XSSCMP. The second word may have a value of either 1 or 2. These

codes are defined below.

1 A new incoming call request

2 A "passed off" virtual circuit; see X$GVVC/XLGVVC

14-13 Third Edition

DOC3710-193

Call Acceptance

p> xXSACPT — XSFACP — XLACPT

Any of the call accept subroutines can be used to accept a connection
request and complete the connection. The application that has first
identified a caller through any of the 'get connection. data'
Subroutines (XSGCON — XSFGCN —- XLGOON — XIGCS) accepts the
connection or clears it. The status of the call is returned in the
vestat array, given as argument. Furthermore, this virtual circuit
status array is used throughout the life of the virtual circuit.

XSACPT is the short form subroutine, primarily for use between Prime
nodes.

XSFACP is the short form subroutine for fast select call accept, for
transfer of returned user data within the call accept packet.

XLACPT allows you to specify in detail the X.25 packet-level protocol
call accept packet. This long form may contain any (or all) of
facilities, protocol id, and user data field.

Note

When PRIMENET is connected to a public data network, the agency
controlling that network may impose restrictions on the use of
the fields in the call accept packet.

The X.25 standard only permits called user data on accepts of
fast select calls.

Call syntax:

CALL XSACPT (vcid, vcstat)

CALL XSFACP(vcid, udata, udatan, vcstat)

CALL XLACP(key, vcid, fcty, fctyn, prid, pridn,
udata, udatan, vcstat)

Arguments:

key INTHGER*2. Either 0, for a user-specified facilities
field, or XKSFCT for a PRIMENET+supplied facility field
appropriate to the particular circuit (RING or specific
PDN) .

vcid INTHGER*2. The virtual circuit id for this circuit.

This value was obtained by a preceding call to XSGOON,
XSFGCN, or XLGOON.

Third Edition 14-14

fcty

fctyn

prid

pridn

udata

udatan

vestat

IPCF SUBROUTINES

Array. Contains the bytes to go into the call accept

packet facilities field. (Ignored if fctyn is 0.) Must

not be used when key is set to XKSFCT.

INTEGER*2. The number of bytes to be taken from fcty.
Legal range is 0 to 63. (Must be 0 if XKSFCT is used.)

Array. A buffer that contains the four bytes to go into

the call accept packet protocol id field. (Ignored if

pridn is 0.) If udata follows and is not supplied by

the application, PRIMENET will set its default format.

INTEGER*2. The number of bytes to be taken from prid.

Legal values are 0 and 4. (The value should be 0 for

non-fast-select accepts through a PDN.)

Array. A buffer that holds the bytes to go into the

user data field of the call accept packet. (Ignored if

udatan is 0.)

INTEGER*2. The number of bytes to be taken from udata.

Legal values are 0 to 12, except for accepts on fast

select calls, when the range is 0 to 124. (The value

should be 0 for non-fast-select accepts through a PDN.)

Two word array. INTHGER*2. Returned. Used for the

virtual circuit status array.

Note that vcstat may be written into during the whole

life of the virtual circuit. Ensure it is of

appropriate type for this.

The following is a list of status codes that may be returned in the

first word of vcstat.

XSSBPM

XSSBVC

XSSFCT

XSSIDL

XSSILL

XSSMEM

Invalid arguments in the call (not for XS$ACPT).

The calling process does not control the virtual circuit

specified by vcid.

Bad facility field supplied (XLACPT only).

The operation was successful and the virtual circuit is

now idle, awaiting data traffic.

The process tried to ACCEPT a virtual circuit that was

not in the call request pending state, or tried to

accept a call set up for fast select — restricted

response.

There is temporary buffer congestion in the local

PRIMENET node. Retry the accept several seconds later.

14-15 Third Edition

DOC3710-193

As a result of data transfers, actions in the network, or remote user
actions, the following codes might be returned.

XSSCLR The connection has been cleared. The second word of the
virtual circuit is now the valid clearing cause.

XSSCMP A data transfer operation has completed successfully.

XSSRST The virtual circuit has been reset. All operations in
progress have been aborted.

Transmit Data

> xXSTRAN

XSTRAN is the PRIMENET transmit-message subroutine. An application
calls it to send the contents of a buffer through the network to the
process on the opposite end of a virtual circuit. PRIMENET
automatically splits the message into X.25 packets of appropriate size
for transmission, and then recombines them at the receiving side.

PRIMENET supports X.25's two data levels and interrupt procedure. When
applications call XSTRAN, they supply an argument level with one of
three values (the SYSCOM>XSKEYS. INS.XXX files have defined mnemonics
for each value) to indicate one of the following:

e A message (data packet sequence): Q-bit set to 0 (XTSLVO0)

e A message (data packet sequence): Q-bit set to 1 (XTSLV1)

e An interrupt packet (XTSINT)

Both XTSLVO and XTSLV1 are requests to move up to 32,767 (32K) bytes of
data. The only difference between them is their data level. PRIMENET
passes the data level transparently through the circuit to the receiver
so that an application may distinguish between data messages with the
Q-bit values set differently. PRIMENET treats XTSLVO and XTSLV1 data
packets the same, handling data transmission requests of both types in
a Single queue in first-in-first-out fashion.

Interrupt packets (XTSLV2) are handled separately, corresponding to the
X.25 packet-level protocol. Each can carry only a single byte of data,
which is placed at the top of the queue ahead of all ordinary data
packets, As a result, an interrupt packet may arrive at its
destination earlier than normal data sent before it. For the effect of
interrupts on the receiving side, see XSRCV.

Call syntax:

CALL XSTRAN(vcid, level, buffer, bufbc, status)

Third Edition 14-16

IPCF SUBROUTINES

_ Arguments:

vcid INTHGER*2. The VCID for this circuit.

level INTEGER*2. The data level of this message is:

XTSLVO (0) for normal data packets with the X.25 Q-bit

set to 0.

XTSLV1 (1) for normal data packets with the X.25 Q-bit

set to l.

XTSINT (2) for an interrupt packet.

buffer Any array. The data buffer to be moved through the

SS virtual circuit. buffer must not cross a segment

boundary.

bufbe INTHGER*2. The number of bytes to copy from buffer.

bufbc is 0 to 32767 except for interrupt packets. For

interrupt packets, bufbc is 0 or l.

status INTHGER*2. Returned. The status of this transmit.

— Codes that occur immediately on return from XSTRAN appear below.

XSSBPM There are invalid arguments in the call.

XSSBVC The calling process does not control the virtual circuit

specified in vcid.

XSSILL The transmit operation is illegal because a circuit

connection request or a clear request is pending. This

a is the result of attempting transmission over

=

an

"almost-open" or "almost-closed" circuit.

XSSIP The transmit is in progress. status will be further

updated by the completion or failure of the operation.

(This is the normal immediate return code from XSTRAN.)

XSSMAX This request exceeds the maximum number of transmits
that can be in progress simultaneously over a single

virtual circuit. This request to initiate another

transmission is denied.

XSSMEM There is temporary PRIMENET buffer congestion on your

local node that prevents the acceptance of the transmit

request at this time.

14-17 Third Edition

DOC3710-193

The codes that may be returned in status later appear below.

XSSCLR The virtual circuit has been cleared. See the virtual
Circuit status array for the clearing cause and
diagnostic code.

XSSCMP The transmit is complete. The message has been copied
out of the sender's buffer and transmission is
initiated. (A transmit status of complete means only
that PRIMENET will attempt to deliver the message.
Applications requiring assured delivery must implement
their own end-to-end acknowledgement in a higher level

protocol of their own.) |

XSSRST The virtual circuit has been reset. The status of this
transmit request is unknown and no further attempts will
be made to complete it.

Receive Data

PB xXsRcv

XSRCV is the PRIMENET receive-message subroutine. An application
offers a buffer into which PRIMENET places received messages from the
specified virtual circuit. The application receiving a message should
establish its receive buffer before the other application attempts to
transmit data.

In all cases, data messages transmitted through the XSTRAN subroutine
are reproduced identically in the receive buffer. However, several
cases of mismatched buffer sizes and interrupt handling are worthy of
note.

The simplest case is a receive buffer that is at least big enough (the
same size or bigger) to contain an incoming data message. In such a
case, the receive status is set to indicate a completed receive as soon
as the entire message is copied into the receive buffer.

When the receive buffer is too small to contain an incoming message,
the specified buffer is filled, the receive status is set to indicate a
completed operation, and the remainder of the message is held until
another buffer, presented by a call to XSRCV, is available. PRIMENET
attempts to complete the delivery of the message; if necessary, it
fills the second buffer and again holds the remainder. This will
continue until the complete message is copied into the receiver's
buffers.

A process is allowed to send an interrupt across a virtual circuit even

when regular data transmissions are in progress. (See XSTRAN.)
-Because an interrupt may pasS normal data moving in the network, a
partially completed receive may be interrupted by such an interrupt

Third Edition 14-18

IPCF SUBROUTINES

message. An application receives interrupts in the same way it

receives regular data with XSRCV.

However, if a receive buffer offered in a call to XSRCV is partially

filled with level 0 or level 1 data when an interrupt message is

received, the following actions take place. The status word of the

XSRCV request that is currently being filled is marked as completed,

without waiting for the receive buffer to be completely filled. The

next pending call to xXSRCV serves to receive the interrupt, and the

Call to XSRCV after that receives the remainder of the original

message. No data loss results in this exchange, but the original data

message is broken into two pieces. The caller should check the

returned status word to see what it is.

Call syntax:

CALL XSRCV(vcid, buffer , bufn, status)

Arguments:

vcid INTHGER*2. The VCID for this circuit.

buffer Any array. Returned, The data buffer into which

incoming data should be moved. buffer must not cross a

segment boundary.

bufn INTHGER*2. The maximum number of bytes that may be

moved into buffer.

status Three-word array, Integer. Returned.

The first word is the receive request status word.

The second word is set to the level of the incoming

data.

The third word is set to the number of bytes moved into

buffer.

The codes that may be returned immediately in the first word of status
on return from XSRCV appear below.

XSSBPM Invalid arguments in the call.

XSSBVC The calling process does not control the virtual circuit
specified in vcid.

14-19 Third Edition

DOC3710-193

XSSILL The receive operation is illegal because a circuit
connection request or a clear request is pending. This
is the result of putting up a= receive on an
"almost-open" or "almost-closed" circuit.

XSSIP The receive is in progress. status will be further
updated by the completion or failure of the operation.
(This is the normal immediate return code from XSRCV.)

XSSMAX This request exceeds the maximum number of receives that
can be in progress simultaneously over a single virtual
circuit. This request to initiate another receive is
denied.

XSSMEM There is temporary PRIMENET buffer congestion on your
local node that prevents the acceptance of the receive

request at this time.

Codes that may be returned later appear below.

XSSCLR The virtual circuit has been cleared. See the virtual

circuit status array for the clearing cause.

XSSCMP The receive is complete. The incoming data have been
moved to buffer, and the second and third words of

status are updated.

XSSRST The virtual circuit has been reset. The status of this
operation is unknown and no further attempts will be
made to complete it.

Clear

p> xXSCLR — XSFCLR

These subroutines disconnect a virtual circuit by initiating

transmission of a clear request. At any time during the life of a
virtual circuit, an application may clear (break) the circuit. First,
the VCID must be passed to the application by a connect call or a
request for information concerning pending incoming calls. Then, a
call to XSCLR/XSFCLR for that VCID cancels all activities in progress,
releases any resources, and notifies the process on the other end of
the circuit that a clear has been requested. Fast select call requests
may be cleared, including return of a clear user data field,

immediately after the call request has been received.

Third Edition 14-20

IPCF SUBROUTINES

The actual clearing process happens in two stages. First, the call to

the 'clear' subroutine initiates transmission of a clear request

through PRIMENET to the other end of the virtual circuit. To indicate

this, the clear subroutine call returns a status code immediately. If

the call is successful, all transmit and receive requests in progress

are immediately aborted, which is indicated by their status being

changed to XSSCLR. Secondly, when the remote system receives the clear

request, it answers by transmitting back a clear confirmation message.

The clear subroutine call returns a status code immediately. If the

call is successful, all transmit and receive requests in progress are

immediately aborted. Thus, only when the clear confirmation has been

returned successfully does the clear requesting caller see the circuit

as cleared in the first word of his virtual circuit status array

(vestat). The second word of the virtual circuit status array is

invalid in this case. (If the clear is requested before the virtual

circuit was accepted, there is no virtual circuit array defined;

therefore, the application cannot detect the confirmation.)

When the remote process initiates the clear request, the local PRIMENET

process (NETMAN) automatically sends the clear confirmation, aborts all

data transfer operations in progress, and sets the first word of the

virtual circuit status array to the 'circuit cleared' value (XSSCLR).

(Chapter 11 describes the clearing codes.) The second word is set to

the valid clearing cause and diagnostic code.

Note

The delay for the clear confirm might be noticeable, especially

over long-distance PDN links. Suppose the application that

requests a clear returns to PRIMOS (by a ‘CALL EXIT') before

the XSSCLR status has been returned into the virtual circuit

status array, and the application then executes another

process. In such a case, there is a risk that the latter

program will be overwritten by PRIMENET when the clear confirm

arrives. To avoid this, the application should call XSCLRA to

immediately drop all its virtual circuit references before

returning to PRIMOS command level.

XSCLR is the short form routine, primarily intended for use between

Prime nodes. XSFCLR is specifically intended for the clearing of fast

select calls, when the application wants to return clear user data

(XTSLVO, XTSLTL, or XTSINT). (X.25 permits this only as an immediate

response to a fast select call request.)

Note

The clear user data field's value is given by a single

argument, clrudat, that corresponds to the concatenated

arguments prid and udata of the XSFACP/XLACPI routines. (See

Appendix A.)

14-21 Third Edition

DOC3710~-193

Call syntax:

CALL XSCLR(vcid, why, status)

CALL XSFCLR(vcid, why, clrudat, clrudatn, status)

Arguments:

vcid

why

clrudat

clrudatn

status

INTHGER*2, The VCID of the circuit to be cleared.

INTHGER*2. The low-order byte of why is taken as_ the
diagnostic code. (Refer to Chapter 11 for information
on diagnostic codes.) ©

Array. A buffer that holds the bytes to go into the
user data field of the clear request packet. (Ignored
if clrudatn is 0.)

INTHGER*2. The number of bytes to be taken from
Clrudat. The legal value is 0, except following fast
select calls, when the range is 0 to 128.

INTHGER*2,. Returned. It contains the immediate return

Status of the call.

The following is a list of the status codes that may be returned.

XSSBPM

XSSBVC

XSSCMP

XSSILL

XSSMEM

Third Edition

One of the arguments to the call has an illegal value.

The calling process does not control the virtual circuit
specified by the vcid.

The operation is successful. All pending transmits and
receives are aborted with a status of XSSCLR.

A clear with user data has been requested for a
fast-select virtual circuit, but it does not immediately
follow the call request.

There is temporary buffer congestion in the local
network. The system currently does not have the
resources required to process the request. Retry the

request later on. (Necessary with XSFCLR only, because
XSCLR uses a built-in memory mechanism to initiate the
clear request later. Refer to XSSTAT, virtual circuit
status list.)

14-22

IPCF SUBROUTINES

Release a PRIMENET Port

> xXSUASN

XSUASN unassigns a port. At any time, an application may ask to be

removed from the assignment queues for one or all of the ports

currently assigned by it. The application's assign request for the

port specified in the call is immediately deleted from the assignment

queue regardless of its position in the queue.

If the value of the specified port is <0, all of the application's

port assignment requests are dropped from the assignment queues.

This operation always completes successfully. If the port passed in

the call is not assiqned at the time of the XSUASN call, no action is

taken.

Call syntax:

CALL XSUASN(port)

Argument:

port INTEGER*2. The port to be unassigned.

(< 0 means allports.)

General Network Cleanup

p> XSCLRA

XSCLRA clears all active virtual circuits, reinitializing an

application's network environment. Any pending network operations are

aborted and all of the virtual circuits held by the application are

cleared.

Note

Unlike XSCLR, XSCLRA does not wait for confirmation from the

application on the other side of the circuit before marking it

cleared. Therefore, the virtual circuit status word of a

circuit cleared by a call to XSCLRA is never updated to show

that the circuit is cleared.

In addition to clearing all open virtual circuits, XSCLRA unassigns a

process's interest in all ports. In this regard, it is equivalent to

the call: XSUASN (-l).

14-23 Third Edition

DOC3710-193

This subroutine also drains the application's network (XSWAIT)
semaphore, reducing the chances for spurious network event signals.
See the Subroutines Reference Guide for complete information on

semaphores.

Call syntax:

CALL XSCLRA

The operation always completes successfully. If no virtual circuits
are open, or no ports are assigned, then no action is_ taken. It is
good programming practice to use XSCLRA to clear each circuit and wait
for clear confirmation before exiting any process or subsystem within
an application.

Wait for Completed PRIMENET Action

— XWAIT

XSWAIT does a semaphore wait for a network activity to complete.
Optionally, this wait can be combined with a finite time-out period.
Most of the IPCF subroutines initiate an activity and then immediately
return, to allow the application to continue processing while the

requested network action completes. The XSWAIT call provides a
mechanism by which applications can ask to have processing suspended
until any of their network actions completes.

When treated as an INTHGER*2 FUNCTION, XSWAIT returns a code value that
indicates if the cause of the resumption of execution was a completed
PRIMENET action or time-out.

A network activity is considered complete whenever the status of the
corresponding request indicates that PRIMENET will take no further
action on that request. In general, this includes any return status
except the operation-in-progress code (XSSIP). (A code of XSSIP is
always updated by PRIMENET as soon as the relevant activity completes.)
A suspended process is also awakened when PRIMENET receives a
connection request for that process.

Note

XSWAIT is implemented as a PRIMOS-quittable semaphore. As
such, a suspended process may be awakened even though the

action has not completed. Code using XSWAIT should make
provision for this.

Third Edition 14-24

IPCF SUBROUTINES

The network semaphore collects network events into a combined single

notification when the application is not waiting on its network

semaphore, to prevent event count rollover. An application should be

aware that when it is awakened by XSWAIT, it can have multiple network

activities completed. In that case, a new XSWAIT call that anticipates

one of those activities to complete will not cause a wake up until yet

another request completes, and an infinite hang could occur.

Accordingly, applications should test all outstanding requests when

executing. (For further details, refer to Chapter 15, IPCF Programming

Examples, and Chapter 16, IPCF Programming Strategy.)

Call syntax:

CALL XSWAIT (time)

code = XSWAIT (time)

Arguments:

time INTHGER*2. The number of tenths of seconds to remain

suspended if no network action completes. (If time is

0, wait indefinitely.)

code INTEGER*2. Returned function value. May be 0 or 1, as

shown below.

0 Some network action (not necessarily the awaited

one) completed before the timer expired.

1 The timer may have expired before any network

action completed.

Virtual Call Transfers

B xXSGVVC — XIGVVC

XSGVVC/XLGVVC passes control of a virtual circuit to another process on

the same PRIMENET node. The process issuing the call relinquishes the

right to clear and to send or receive data through the specified

circuit. The circuit is placed in the connection request pending queue

for the target process, and is treated thereafter in the Same manner as

an incoming connection request.

Calls can be passed to a specific application by its user number, or to

the owner of a PRIMENET port.

14-25 Third Edition

DOC3710-193

If the original call request/call accept packet has been released, the
application can generate a simulated call request packet to handle
passing control of the virtual circuit. This feature could be used for
information transfer to the target application, conveyed in the user
data field. (Call request packets are released when the virtual
Circuit is accepted; call accept packets are released by the first
transmit/receive request on the circuit.)

An application can pass control of a circuit in the incoming request
queue without accepting it. That leaves the initial choice of
accepting or clearing the circuit to another application. In that
case, the process to which the circuit is being passed sees the circuit
connection request as a new request, not as one being passed.

Control of a circuit cannot be passed under the following conditions.

1. The application issued the call to XSCONN, XSFCON, or XLOONN to
create this circuit and the circuit establishment has not yet
been completed (that is, the virtual circuit status has not yet

been set to XSSCMP).

2. The application wishing to pass control of the circuit has an

in-progress call to XSRCV or XSTRAN.

3. The virtual circuit is in the process of being passed off.

4. The virtual circuit is a remote login circuit.

5. There are conflicts between the contents of the existing
call request/accept packet and the user-requested call request
packet.

Note

While being passed off, a virtual circuit has no owner, and
thus no real virtual circuit status array. Ascratch array
within PRIMENET is temporarily used. The implication is that
any virtual circuit status changes during this time are not
transferred to an application's virtual circuit status array.

The target application requests and receives information about
passed-off virtual circuits by a call to any of the
‘get connection data' subroutines (XSGOCON and others). Either of these
will return the VCID, by which the target application references the
connection being passed. Just as with new incoming’ connection
requests, pass-off connection requests must be cleared or "accepted"
(XSACPTI, XLACPL) before being used for data transfer. As with new
incoming connection requests, a passed connection that has not been
accepted or explicitly cleared within 90 seconds after it enters the
incoming request queue is automatically cleared by PRIMENET.

Third Edition 14-26

IPCF SUBROUTINES

XSGVVC is the short form routine, limited to pass off a call by target

process user number. XLGVVC is the long form, which also permits

passoff by the port and possibly supplies call request data for the

passoff.

Call syntax:

CALL XSGVVC(vcid, userno, status)

CALL XLGVVC(key, vcid, userno,

Arguments:

key

vcid

userno

port

fadr

fadrn

tadr

tadrn

fcty

port, fadr, fadrn, tadr,
tadrn, fcty, fctyn, prid, pridn,

udata, udatan, status) |

INTHGER*2. Specifies selection of target process.

XKSUSR pass off to user number userno

XKSPRT pass off by PRIMENET port port

INTHGER*2. The VCID for the circuit being passed.

INTEGER*2. The user process number of the process to

which this circuit is being passed. Used only when

key = XKSUSR. The legal range is 2, up to and including

the sum of the CONFIG directives NTUSR + NPUSR + NRUSR +

NSLUSR.

INTEGER*2. The port number to be used to pass the

virtual circuit. Used only when key = XKSPRT. Range is

1 ” 99.

Array. It holds a string of bytes - char nonvarying.

This array contains the address of the simulated call

originating network node.

INTHGER*2. The number of characters in fadr.

Array. It holds a string of bytes - char nonvarying.

This array contains the node address of the target node.

For PRIMENET nodes, the maximum length is 6. If you are

using an address, the maximum is 15.

INTRGER*2. The number of characters in tadr.

Array, holding a string of bytes. Contains the bytes to

go into the simulated call request packet facilities

field. (Ignored if fctyn is 0.)

14-27 Third Edition

DOC3710-193

fctyn

prid

pridn

udatan

status

Third Edition

INTHGER*2. The number of bytes to be taken from fcty.
Legal range is 0 to 63.

Note

In contrast to initial call requesting and
acceptance, there is no check done for legality
of the supplied facility field. Also, the
facilities requested by this facility field are
completely ignored. The virtual circuit's
‘parameters' remain unchanged. It is suggested
that the facility field from the virtual
Circuit's creation be copied, if the application
wants to transmit a facility field.

Array. A buffer that contains the four bytes to go into
the simulated call request packet protocol id field.
(Ignored if pridn is 0.)

INTHGER*2. The number of bytes to be taken from prid.
Legal values are 0 and 4.

Note

If pridn is 0, PRIMENET uses the protocol id
field to pass the port specified in port. In
this case, this field is used for a host-to-host
protocol format defined for PRIMENET,

If pridn is 4, the application supplied bytes
are used. In this case, the value specified in
port will still control the virtual circuit.

Array. A buffer that holds the bytes to go into the
user data field of the call request packet. (Ignored if
udatan is 0.)

INTHGER*2. The number of bytes to be taken from udata.
Legal values are 0 to 124. It should be 0 for all
non-fast-select accepts.

INTHGER*2. Returned. Contains the return status of the
call.

14-28

IPCF SUBROUTINES

The following is a list of the status codes that may be returned by a

call to XSGVVC.

XSSBVC The calling process does not control the virtual circuit

specified by vcid.

XSSBPM One of the arguments to the call is missing, out of

range, or in conflict with other arguments.

XSSCMP The operation was successful. This virtual circuit is

now pending on the target process's connection request

queue.

XSSILL This virtual circuit is in one of the states described

above during which pass-off is prohibited.

XSSMEM There is temporary buffer congestion in the local

PRIMENET. The system currently does not have the

resources required to process the request. Retry the

request later on.

XSSUNK The target application is not logged in or the call

cannot be passed by use of the specified port.

Network Status Interrogations

p> xXSSTAT

XSSTAT may be called at any time to determine the state of the network.

The value given in key specifies the type of status information to be

returned. XSSTAT returns information about the local system's PRIMENET

configuration, the currently open virtual circuits, and the mapping of

ASCII PRIMENET names to their X.25 addressing form equivalents. The

parameters num, arrayl, alenl, array2, and alen2 are input arguments,

returned values, or unused, depending on the value of key.

Call syntax:

CALL XSSTAT (key ,num, arrayl,alenl ,array2,alen2,code, time)

Arguments:

key INTEGER*2. Specifies information to be returned.

XISADR Returns all X.25 addresses in network.

XI SAVC Returns VCIDs of all circuits that are

open to or froma specific X.25 address.

14-29 Third Edition

DOC3710-193

num

arrayl

alenl

array2

Third Edition

XISVCD Returns information about a specific
virtual circuit.

XISXTP Returns the PRIMENET name of ane X.25
address.

XISPIX Returns the X.25 address of a PRIMENET
name.

XI SMYN Returns the X.25 address and PRIMENET name
of the application's system.

XISPDN Returns names of all accessible public
data networks.

XISPVC Returns VCIDs of all circuits that are
Open to or from a specific public data
network.

XISRLG Returns the VCID and remote address of a
process's remote login circuit.

INTHGER*2. Conditionally returned. The number of
network addresses, number of virtua] circuits, number of
accessible public data networks or no meaning (depending
on key).

Array. Conditionally returned. If defined by INTHGER*2
words, it should be dimensioned to the size of the
configuration loaded on the node. A buffer containing
X.25 addresses, public data network names, or PRIMENET
names (in ASCII, with two characters per array entry).

INTHGER*2. Conditionally returned. It indicates the
"actually used" length of arrayl.

Array. Conditionally returned. If defined by INTHGER*2
words, it should be dimensioned to at least 256 words.
A buffer containing VC identifiers, VC status
information, the number of characters in each xX.25

address, the number of characters in the PRIMENET system
name, or the number of characters in the PDN name.

WARNING

At PRIMENET Rev. 19.3, it may be necessary to
increase the lengths of the two return arrays

arrayl and array2 to cope with large network
configurations. As a result, old programs risk
being overwritten when PRIMENET needs to use
more of these arrays than previously
dimensioned, Users should review their
applications that use XSSTAT,

14-30

alen2

time

IPCF SUBROUTINES

INTHGER*2. Conditionally returned. It indicates the

"actually used" length of array2.

INTEGER*2. Returned. It indicates outcome of call.

XSSCMP The operation was performed successfully.

XSSBPM Invalid arguments in the call.

XSSNET No network is configured.

XSSUNK The X.25 address, virtual circuit,
PRIMENET name, or PDN name is unknown.

Returned. INTEGER*2. ‘The current time; retrieved in

minutes since midnight.

Each type of status call is described below. The meanings of code and

time are the same for each value of key. (Starred arguments (*) are

input arguments, and the other arguments are returned by the call.)

XISADR

XISAVC

num will contain the number of addresses in the network.

arrayl will contain the addresses, two characters per

entry, one name right after the other. alenl will contain

the used length of arrayl. Each entry in array2 specifies

the number of ASCII digits in the network addresses given

in arrayl. alen2 will contain the number of used words in
array2, whichwill equal the value of nun.

To find the offset into arrayl for a specific address, add

the lengths of the previous addresses, converted into

needed array words per address. Each address will use an

integer number of array words, even if it has an odd

number of digits.

All PRIMENET nodes have addresses, even if they are not

connected to a PDN. In the latter case, PRIMENET provides

a fictitious number calculated from the node name,

starting with 9999. ‘To find the node name corresponding

to an address, call XSSTAT using key XISXTP.

num will contain the number of virtual circuits open to or

from a specific network address. arrayl* specifies the

address of interest. alenl* is the number of ASCII digits

in the address of interest. The entries in array2 will
contain the VCID's. alen2 will be set to the actual used

length of array2, which will equal the value of nun.

14-31 Third Edition

DOC3710-193

XI SMYN

XISPDN

XISPTX

XISPVC

XI SRLG

XI SVCD

num has no meaning for this key and will not be modified.
arrayl will be set to the PRIMENET system name for this
system. alenl will contain the number of characters in
this system's name. array2 will contain the X.25 address
for "this" node. alen2 will contain the number of ASCII
digits in the X.25 address.

num will contain the number of accessible packet data
networks, arrayl will contain these network names. alenl
will contain the used length of arrayl. Each entry in
array2 will contain the number of ASCII characters per
Corresponding data network name. alen2 will contain the
number of used words in array2, which will equal the value
of num.

num has no meaning and will not be modified. arrayl*
Specifies the PRIMENET system name of interest. alenl*
Specifies the number of characters in arrayl. array2 Will
contain the X.25 address, alen2 will contain the number
of ASCII digits in array2.

num will contain the number of virtual circuits open to
the specified packet network. arrayl* will specify the
packet data network (PDN) of interest. alenl* specifies
the number of characters in the name of the PDN. The
entries in array2 will be the circuit numbers. alen2 will
be set to the actual used length of array2, which will
equal the value of nun.

num will be set to the VCID of the process's remote login
circuit. arrayl will contain the remote address, two
Characters per word. alenl will be set to the length of
arrayl, in characters. array2 and alen2 are not used.

num* specifies the VCID of interest. Each entry in array2
isdescribed below. ‘The length of array2 (alen2) is 13
words, arrayl and alenl are not used.

array2(1) Circuit status. See notes below.

array2 (2) User process number.

array2 (3) The maximum packet size in bytes.

array2 (4) Packet window, maximum number of
outstanding packets,

Note that the packet size and window size
returned are the input direction sizes.
Usually, the output direction sizes are
the same, -29 permits facility
negotiations that make them unequal. (If
desired, the output sizes could be found
by retrieving the input sizes at the

Third Edition 14-32

IPCF SUBROUTINES

other end of the virtual circuit. If a

PDN is part of the virtual circuit, the

packet and window sizes might be changed

when they pass through the PDN.)

array2(5) Port number of call.

array2 (6) The number of resets since call began.

array2(7) Minutes open.

array2 (8) First word of the number of packets

received.

array2 (9) Second word of the number of packets

received.

| (array2(8) concatenated with array2(9)
thus forms an INTHGER*4 variable.)

array2(10) First word of the number of packets sent.

array2(11) Second word of the number of packets

sent.

(array2(10) concatenated with array2(11)

— thus forms an INTHGER*4 variable.)

array2(12) Controller type. See notes below.

array2(13)

|

PNC address or logical SMLC line number.

Values for circuit state and controller type are described

below.

a Circuit State Meaning

1 Remote login (on this system)

2 Unused

3 Unused

4 Circuit being passed off

5 User data transfer

6 User local call request pending

7 User remote call request pending

8 User local clear request pending

9 Unused
10 Unused
ll Unused .
12 Clear desired but no memory available.

PRIMENET will automatically retry

clear request

- 13 Unused

14-33 Third Edition

DOC3710-193

14 Remote log-through (placing a login to
another node)

15 Has sent clear request; waiting for
clear confirm

Controller Type Meaning

1 IPC (Reserved)
2 SMLC

3 Ring (PNC)
4 Local connection within same machine

XISXTP num has no meaning for this value of key and is not
modified. arrayl* specifies the X.25 address of interest.
alenl* specifies the number of ASCII digits in arrayl.
array2 will contain the PRIMENET system name. en2 ATi
contain the number of ASCII characters in array2.

Third Edition 14-34

IPCF Programming

Examples

INTRODUCTION

This chapter contains a general description of programming with IPCF

subroutines, and examples, as follows.

e How to establish a virtual circuit

@ The general layout of an IPCF application

@ ‘Two programming examples

ESTABLISHING AVIRTUAL CIRCUIT

With IPCF subroutines, you can develop applications that consist of

modules, with each module running as a separate application on any

other or the same PRIMENET system. The different modules use the IPCF

subroutines to establish a connection between them, This connection is

called a virtual circuit. ‘The major steps in using IPCF subroutines to

establish a virtual circuit are listed below.

15-1 Third Edition

DOC3710-193

Caller Call Receiver

Issue a CALL REQUEST Receive as INCOMING CALL; respond
with CALL ACCEPT

Get CALL CONFIRMATION

Send and receive data Send and receive data

Send CLEAR REQUEST Receive CLEAR INDICATION; send
back CLEAR CONFIRMATION

Receive CLEAR CONFIRMATION

Either of the two applications can initiate a CLEAR REQUEST. Also, the
X.25 packet formats of CALL ACCEPf and CALL OONFIRMATION and CLEAR
REQUEST and CLEAR INDICATION are identical.

GENERAL LAYOUT OF APPLICATIONS USING IPCF ROUTINES

The IPCF subroutines enable an application to send or receive messages
through PRIMENET on an established a virtual circuit. The calling
application initiates a call request. The application that is being
called assigns a PRIMENET port and waits for incoming calls. Once the
virtual circuit is established, either application can transmit data
messages. The following example shows the major steps between two IPCF
applications attempting to exchange data.

The Calling Application

@ Check virtual circuit status array to see if connection is
completed.

e Transmit data: XSTRAN.

@ Receive data: XSRCV.

@ Clear the circuit: XSCLR/XSFCLR.

The Called Application

e@ Assign the proper PRIMENET port: XSASGN.

@ Wait in an event-driven loop with XSWAIT. On network events,
find data on incoming call with XSACPT, XSFACP, or XLACPT.

@ Accept the connection with XSACPI, XSFACP, or XLACPI.

Third Edition 15-2

IPCF PROGRAMMING EXAMPLES

e Transmit data: XSTRAN.

e Receive data: XSRCV.

e Clear the circuit: XSCLR/XSFCLR.

Note

Calls to XSTRAN and XSRCV are made when needed (and in the

sequence dictated by the application). An application

expecting a message should offer appropriate receive buffers by

calling XSRCV.

The calling or called application can terminate the connection

by clearing the virtual circuit. It is recommended that the

application to receive a message last issue the Clear request.

IPCF EXAMPLES

This section contains examples of:

@ A simple PRIMENET file-transmission system

e A query and update service on a database using fast-select calls

The purpose of these sample programs is to illustrate typical code for

basic IPCF data transfer. The first example contains only the basic

code path needed for error-free function. In contrast, the second

example has full error handling, following the guidelines set forth in

Chapter 16. Also, the general design rules discussed in Chapter 16 are

used in the second example. Each example is preceded by a brief

description.

PRIMENET FILE-TRANSMISSION SYSTEM

This example consists of two programs, NETSND and NETRCV. Together,

they form a rudimentary PRIMENET file-transmission system. They use a

common subroutine WAITIL to check for completed network requests. The

code of WAITIL follows NETRCV. Notice that the receiver program NETRCV

uses double receive buffers to offload PRIMENET.

For simplicity, filenames of only eight characters or less are allowed;

access to other directories is not provided for. This example's error

handling consists only of STOP statements, which would not be

sufficient for a real-life application.

15-3 Third Edition

DOC3710-193

The Transmitting Side

The following program shows an example of the send side of a network

copy program.

C NETSND.FIN - A SIMPLE, FAST NETWORK FILE COPY PROGRAM

Cc
C This is the transmitting side of the program; see also NETRCV.
C
SINSERT SYSCOM>XSKEYS.INS. FIN
SINSERT SYSCOM>ERRD.INS. FIN
SINSERT SYSCOM>KEYS.INS. FIN
C

INTHGER*2 J, FUNIT, CODE, NWR, LEVEL,RSTATE(3) ,XSTATE,VCID,
* VCSTAT (2) ,FILNAM(4) ,SYSTEM(3) ,BUF (1024)

Open the requested file in the current ufd.
Establish a circuit with a server on another system.
Send over the filename to the server so it can open
a file of the same name for writing.

* Send over 1K blocks of the file until we read to the
end of the file.

* Signal EOF to the server by sending a different
user data level.

* The server will acknowledge our end of file signal by

sending us the code from its close of the target file.

The basic idea is to:
*

*

*

STOPS are used to Signal error conditions:
220 error in circuit establishment
:24 error in transmit of filename
225 bad state from transmit of data
:30 bad state in acknowledgement receipt
:32 bad level in acknowledgement receipt
:34 bad length in acknowledgement receipt
250 bad status on clear of virtual circuit

A
A
N
A
Q
A
A
A
A
A
N
Q
A
N
A
A
N
A
A
N
A
A
N
A
N
A
N
A
N
A
A
N
A
A
A
A

FUNIT=1

WRITE (1,11)
FORMAT(' INPUT FILE NAME, 8 CHARS OR LESS')

READ (1,12) FILNAM /* Ask for a file to open

12 FORMAT (4A2)
WRITE (1,13)

13 FORMAT(' INPUT REMOTE SYSTEM NAME")

READ (1,14) SYSTEM

14 FORMAT (3A2)

_ _

C
C Clear everything
C

CALL XSCLRA

C
C Open the file

Third Edition 15-4

Qa
a
a
A
a
A
A
R
A
N

A
N
R
A
N
Q
A
A
N
A
A
Q

A
N
A

NO
A
W
A

A
|
N
A
A
N

35

Q
A
A
A
A
N
A
N

IPCF PROGRAMMING EXAMPLES

CALL SRCHSS$(KSREAD, FILNAM,8 ,FUNIT, J, CODE)

and make sure the file was found.

CALL ERRPRS(KSSRIN, CODE, 'ON OPEN',7,0,0)

Now we set up the virtual circuit.
We assume that the receiving half of this program
is running on the
remote machine and that it has assigned PRIMENET port 10.
Connect to remote node. Await non-XSSIP status.

CALL XSCONN(VCID,10,SYSTEM, 6 ,VCSTAT)
CALL WAITIL (VCSTAT)
IF (VCSTAT(1).NE.XSSCMP) STOP :20

Send over the filename. Level 1 for control info, level 0 for

file data.

CALL XSTRAN(VCID,XTSLV1 , FILNAM,8 ,XSTATE)

CALL WAITIL (XSTATE)

IF (XSTATE.NE.XSSCMP) STOP :24 /* Could not xmit filename.

Now just keep sending till BOF

LEVEL=XTSLVO /* Use data level 0 ‘til EOF.

CALL PRWESS (KSREAD, FUNIT, LOC (BUF) ,1024 ,000000 ,NWR, CODE)

IF (CODE.§Q.0) GOTO 35 /* Read OK.

IF (CODE. NE. ESEOF) /* T£ not BOF, it's an error.
* CALL ERRPRS(KSSRIN, CODE, 'READ' ,4,0,0)

LEVEL=XTSLV1 /* Switch LEVEL for EOF.
CALL XSTRAN(VCID, LEVEL, BUF,NWR*2 ,XSTATE)
CALL WAITIL (XSTATE)
J=XSTATE
IF (J.NE.XSSCMP) STOP :25
IF (LEVEL.EQ.0) GOTO 30 /* Keep sending 'til EOF.

Now wait for acknowledgement from
the remote node in the form of a
1 word (2 bytes) standard file system error code.

CALL XSRCV(VCID, CODE, 2,RSTATE)
CALL WAITIL (RSTATE)

IF (RSTATE(1).NE.XSSCMP) STOP :30 /* Bad status

IF (RSTATE(2).NE.XTSLV1) STOP :32 /* Bad data level for
control msg

15-5 Third Edition

DOC3710-193

IF (RSTATE(3).NE.2) STOP :34 /* Bad length
C
C Always RETURN to clear the virtual circuit.
Cc

CALL ERRPRS (KSIRTN, CODE, 'REMOTE CLOSE‘ ,13,0,0)
CALL SRCHSS$(KSCLOS,0,0,FUNIT,J, CODE)
CALL XSCLR(VCID,0,J) /* Clear virtual circuit.
IF (J.NE.XSSCMP) STOP :50 /* Check status.
CALL EXIT

END

The Receiving Side

The following program shows an example of the receiving end of a
network copy program.

C NETRCV.FIN -— A SIMPLE, FAST NEIWORK FILE COPY UTILITY

Cc
C This is the passive receiving part of a pair of programs.
C The active part, NETSND, runs on another system in this

C network. See NETSND for more information.

The basic idea is to:

* Clear all ports.
* Assign port 10.
* Wait for connection requests.
* Accept the call.
* Get an 8-byte message with the filename to be opened.
* Open the file for writing.
* Receive data messages and write them to the file,

while received
data messages are not 'USER LEVEL 1‘.

* Write a 'LEVEL 1' message to the file.
* (Close the file.
* Send an acknowledgement to the sender.
* Wait for the sender to clear the circuit.
* Wait for the next connection request.

STOPS are used to signal error conditions.
:10 error on assign of port
:14 error in XSGOON call
:20 error in XSACPT call
:30 bad receive of filename

:32 bad level on receive of filename
:34 bad length on receive of filename
:40 error while receiving data for the file
:50 error transmitting status to sender

NETRCV is designed to be run as a phantom. The phantom command
file would have the following format.

A
N
A
A
N
A
N
A
N
Q
I
A
N
A
A
N
A
I
A
N
A
A
N
A
A
N
A
N
A
A
A
N
A
A
N
A
N
A
A
N
A
N
A
N
A
A
A
A
N
A
A
N
A

Third Edition 15-6

A
Q
A
Q
A
A
N
A
Q
A
A
A
A
a
A
N

IPCF PROGRAMMING EXAMPLES

Como output file
A ufd This is the directory files will

be copied to.

EXECUTE NETRCV_runfile
LO | Make sure we log out on error.

CO TIY

SINSERT SYSCOM>XSKEYS.INS. FIN
SINSERT SYSCOM>KEYS. INS. FIN
SINSERT SYSOOM>ERRD.INS. FIN

C

Q
A
Q
A
A
N

5
Qa

A
N
R
N
A
A
A
N
N

Q
A
R
N
Q
A
N

INTEGER BUF (1024,2) ,CODE, FUNIT,J,Q,RSTATE (3 ,2) -VCSTAT (2) ,

+ STAT (2) ,VCID,I,L

It is a very good programming practice to always have a RECEIVE

pending, to relieve the operating system of buffering problems.

The buffer and receive status vector will be able to handle two

messages at once.

CALL XSCLRA /* Clear-up, in case port 10
previously in use.

CALL XSASGN(10,0,J) /* Assign port 10 forever.

IF (J.NE.XSSCMP) STOP :10 /* Bad assign.

CALL XSWAIT (0) /* Wait for connection request.

CALL XSGCON(VCID,J, STAT)

L=STAT (1) /* Temporary copy.

IF (L.BQ.XSSNOP) GOTO 10 /* Not really a connect yet.

IF (L.NE.XSSCMP) STOP :14 /* Bad call to XSGOON.

Here, if we have gotten a connect request.

CALL XSACPTI (VCID,VCSTAT) /* Accept the connection.

CALL WAITIL (VCSTAT) /* Wait ‘til not XSSIP.

L=VCSTAT (1)
IF (L.NE.XSSIDL .AND. L.NE.XSSCMP)

* STOP :20 /* Some error on ACCEPT.

Now get the file name and open the file.

CALL XSRCV(VCID, BUF (1,1) ,8,RSTATE(1,1))
CALL WAITIL(RSTATE(1,1)) /* Wait for not XSSIP.

IF (RSTATE(1,1).NE.XSSCMP) STOP :30 /* Bad receive.
IF (RSTATE(2,1).NE.1) STOP :32 /* Wrong level.
IF (RSTATE(3,1).NE.8) STOP :34 /* Bad length.

FUNIT=3

CALL SRCHS$(KSWRIT, BUF (1,1) ,8,FUNIT,J,CODE) /* Open new file.

CALL ERRPRS (KSSRIN, CODE, 'OPEN' ,4,0,0)

15-7 Third Edition

DOC3710-193

C
C Virtual circuit and file are both ready.
C Let's get into the main copy loop.
C This loop uses double buffering of receives.C }

C Start first receive.
C

CALL XSRCV(VCID, BUF (1,1) ,-2048,RSTATE(1,1))
C
C Start second receive.
Cc

CALL XSRCV(VCID, BUF (1,2) ,2048,RSTATE (1,2))
I=2 /* Init double buffer pointer.

C
20 I=I+l _ /* Indexes the buffer number.

IF (I.M.3) I=l /* Flip flops 1,2,1,2,1,2....
CALL WAITIL(RSTATE(1,I))

J=RSTATE (1,1)
IF (J.NE.XSSCMP) STOP :40 /* Error on RCV.
L=RSTATE (3,1) /2 /* Convert bytes to words.
CALL PRWFSS (KSWRIT, FUNIT, LOC (BUF (1,I)) ,L,000000,J, CODE)
CALL ERRPRS (KSSRIN, CODE, 'WRITE' ,5,0,0)
IF (RSTATE(2,1).BQ.XTSLV1) GOTO 30 /* Level 1 <=> EOF.
CALL XSRCV(VCID, BUF (1,1) ,2048,RSTATE(1,I)) /* Issue receive.
GOTO 20

C
Cc
30 CALL SRCHSS(KSCLOS,0,0,FUNIT,J,QODE) /* Close the file.

CALL XSTRAN(VCID,XTSLV1,CODE,2,J) /* Return close code
Cc to sender.

CALL WAITIL (J) /* Wait for transmit complete.
IF (J.NE.XSSCMP) STOP :50 /* Error on transmit.

50 CALL XSWAIT (0) /* Wait for CLEAR from sender.
J=VCSTAT (1) /* Copy over circuit status.
IF (J.—Q.XSSCLR) GOTO 10 /* OK to accept next call.
IF (J.—Q.XSSCMP) GOTO 50 /* Wait for CLEAR,

STOP :54 /* else some circuit error.
END

Routine to Wait for Next Network Event

The following subroutine is part of the fast select networking program.

C WAITIL. FIN
C
C This subroutine returns when its argument
C (an asynchronously updated
C network status word) is anything other than 'XSSIP'.
C

SUBROUTINE WAITIL (SIWORD)
C
SINSERT SYSCOM>XSKEYS. INS. FIN

Third Edition 15-8

IPCF PROGRAMMING EXAMPLES

INTHGER SIWORD
IF (STWORD.NE.XSSIP) RETURN /* Nothing to wait for? Don't,

C unless process gets hung on

| the semaphore.

10 CALL XSWAIT (0)
IF (SIWORD.EQ.XSSIP) GOTO 10
RETURN
END

FAST SELECT CALLS

The purpose of this example is to illustrate the use of fast select

calls and the corresponding short form IPCF subroutines. In addition,

a call passoff to a second server type illustrates the use of XIGVVC.

The protocol at the user level is designed to minimize network overhead

and connection time. The intention of this scenario is to offer a set

of example programs that provide a query and update service on a

database, with the users spread over a network but the database

centralized to one node. The majority of the transactions are supposed

to be status questions, which have brief answers. However, there are

also updates and queries that have long answers.

The implementation contains

e A user program

e A query server (single-threaded, running. in multiple

invocations)

@ One update server (multi-task design)

The user program handles screen layouts and data compression/expansion.

The user program connects to a query server to obtain the answer or

perform the update. The transaction input data always fits into a

record of 80 bytes. The brief answers occupy a record of size 100

bytes. Other (long) answers are of various lengths. Updates also

require answers of varying lengths. These long answers are at most

2000 bytes long. ‘They are transferred as single IPCF messages, and the

"receive complete" status indicates the end of transfer.

The majority of exchanged data records will be either 80 or 100 bytes,

both of which fit into the user data fields of fast select calls. Thus

questions with brief answers are handled as fast select calls, given a

fast clear by the query server. Long answers and updates are also

initiated as fast select calls, but these are accepted, and the answer

message from the server is cleared by the user on receipt.

Unknown to the users, the system designer has decided to run all

updates by a separate single update server, having the multiple 'query'

servers to detect update calls and pass these off to the update server.

15-9 Third Edition

DOC3710-193

Capacity and Service Busy

Several query servers run to handle the stream of queries. The number
of servers is expected to be so large that the probability of no
available server is acceptably low. Consequently, there is no special
server to indicate "service busy". The application will deduce from
the clearing diagnostic CDSPNA (port not assigned) that all query
servers are currently busy.

There will be only one update server. However, this server can have
multiple active requests going. Again, the number of query servers is
expected to be sufficiently large; and, if it is exceeded, the update
server will clear the new call with an application-specific diagnostic
(CDSNVC). If the update server is not running, any query server that
fails to pass an update off will clear the call with the same
diagnostic.

Timing Aspects

The protocol attempts to keep turnaround times small. In fact, the
majority of transactions, queries with brief answers, are handled with
only two information-carrying packets, the call request and the clear
request. Notice that long answers are submitted to PRIMENET as_ single
messages, and that the final user side acknowledgement of a long answer
is combined with the clear request, generated by the user program.

The query server extracts the answer to a question by a subroutine
call, before either clearing or accepting the virtual circuit. This
means that this database routine must return within the timeframe set
by PRIMENET for a user process to act ona call request. Otherwise,
PRIMENET does a ‘'‘'safety' clear, and the user will get no answer.
Similarly, the update server is busy when calling the update routine.
This means that passed-off call requests will temporarily hang, and the
same maximum timeframe for delays exists here.

If the update times tend to be considerable, you might consider
splitting the update server into two processes, one dealing with
PRIMENET and the other with the data base. The network process would
Simply queue updates for its mate, and sort responses on appropriate
virtual circuits for transmission. The link between these two update
mates could either be a virtual circuit, the file system, or shared
memory with write access. The program structure of the network handler
would remain much the same, with additional code in the "per active
virtual circuit" loop, to find completed answers and transmit them.

Third Edition 15-10

IPCF PROGRAMMING EXAMPLES

Virtual Circuit Timeout Handling

Notice also the difference in handling aging virtual circuits. The

query server is a 'single-path' program, and the final timeout before

safety clearing is simply implemented as a long wait on the network

semaphore, combined with a safety call to XSCLRA before restarting.

In contrast, the update server must run frequently to ensure that every

virtual circuit moves along. If awakened, it may well be on behalf of

another virtual circuit, so it is difficult to implement long timeouts

by using the network semaphore, The solution chosen is to runa

watchdog timer for each circuit, and to force the clear when this

expires. Furthermore, this server must not call X$CLRA, as this would

obviously kill all active circuits.

The Code

The routines for handling the user terminal and the data base are

omitted. The names of the tasks are noted. The programs are coded in

F77. Extensive use of INTS has been made, to remind the reader that

F77's default integer mode of INTHGER*4 causes a risk for wrong

argument values when called routines expect INTHGER*2 arguments, as the

IPCF routines do.

Common Insert Files:

C FSX_DATA, INS.F77, Common declaration of action keys and

C query message structures for a fast select program example.

C
NOLIST

C
C PRIMENET node and port data. Values to be

C tailored by installation.
C

INTHGER*2 query_port, update_port
PARAMETER (query_port = $$, update_port = &&)

C
CHARACTER*6 server_node /'XXXXXX'/

C
C Action keys, contained in request message and initial response.

C
INTRGER*2 query, update, brief_response, long_response,

+ update_started, exit
PARAMETER (query = 1, update = 2, brief_response = 3,

+ long_response = 4, update_started = 5, exit = 6)

C
C Clearing diagnostics, used for various return status messages.

C
INTHGER*2 CDSSHR, CDSLNG, CDSEOU, CDSTMO, CDSRST, CDSNVC

PARAMETER (CDSSHR = 1, /* Fast clear, proper short reply

15-11 Third Edition

DOC3710-193

= 2, /* Clear, ack of long reply
CDSEOU = 3, /* Clear, ack of update response

4, /* Clear by impatient server
’ /* Clear after reset

CDSNVC = 6) /* Update server has no VC
/* (or is not running)

t
e
t
t
t

g E

User to Server request message (80 bytes, the first two to
hold the action_key).

A
A
A
A
N
Q

INTHGER*2 msg_size, data_size
PARAMETER (msq_size = 80, data_size = msg_size—2)

INTHGER*2 message (msgq_size/2), action_key,
+ data_string (data_size/2)

EQUIVALENCE (action_key, message(l)),
+ (data_string(1l), message (2))

C
C Server to user response:
C [brief_response]:
C Brief response is 100 bytes, first two to hold response key.
C [long_response]:
C Long response is up to 2000 bytes, -"-
C and the first 100 come in the fast accept, the rest by XSRCV.
C [update_started]:
C Two bytes only, the rest by later XSRCV.
Cc

INTHGER*2 resp_size, answer_size, total_size, remndr_size
PARAMETER (resp_size = 100, answer_size = respsize-2,

+ total_size = 2000, remndr_size = total_size — resp_size)
C

INTHGER*2 response (total_size/2), response_key,
+ answer (answer_size/2), remainder (remndr_size/2)

C
EQUIVALENCE (response_key, response (l)),
+ (answer (1), response (2)),
+ (remainder (1), response (resp_size/2+1))

C RETURNED is the array to catch the retrieved
C user data field (rudat).
C By equivalencing, the interesting response
C is extracted from behind the four protocol id bytes.
C

INTHGER*2 return_size
PARAMETER (return_size = resp_size + 4)

INTHGER*2 returned(return_size/2)

EQUIVALENCE (response(1), returned(3))

LIST

Third Edition 15-12

IPCF PROGRAMMING EXAMPLES

C MULTI_VC.INS.F77, multiple VC database for update server

Cc
NOLIST

C |
INTHGER*2 pool_size
PARAMETER (pool_size = 10)

COMMON /ADMNVC/ next_free, total_used

COMMON /MANYVC/ in_use (pool_size) ,

vc_id(pool_size),
ve_status(2, pool_size),
xmit_status (pool_size) ,
zero_time (pool_size)+

+
e
+

LOGICAL*2 in_use
INTHGER*2 next_free, total_used, vc_id, vc_status,

+ xmit_status, zero_time

LOGICAL*2 GETVC
INTHGER*2 AGE
EXTERNAL INITVC, FREEVC, ORGSTAMP

LIST

C UPDATEDATA. INS.F77, Per virtual circuit update message buffers

C Requires the previous insert of (multi_vc fsx_data).INS.F77.

Cc
NOLIST

Cc
COMMON /UPDIN/ in_msg(msg_size, pool_size)

INTHGER*2 in_msg
Cc

COMMON /UPDOUT/ out_msg(total_size, pool_size)

INTRGER*2 out_msg
Cc

LIST

User Program:

C FS_USER.F77, Sample program for fast-select PRIMENET connections.

C
C This is the interactive user program, to be run interactively

C at need. Any user action initiates a fast select call to one of

C the query_servers, which will either respond or pass over to the

C one and only update_server.
C
C Short replies arrive back with a fast clear. Updates and long

C answers are both accepted and yield further data transfer,

C in the form of long messages.

C On receiving the message, the user acknowledges

15-13 Third Edition

DOC3710-193

C by a normal clear with the appropriate diagnostic.
Cc

PROGRAM main
C
SINSERT syscom>xSkeys. ins. ftn
SINSERT *>fsx_data. ins.£77
C

INTHGER*2 user_vc, vc_status(2), rcv_stat(3), statword,
+ timeout, actual_ret_size, temp, clr_cause, clr_diag

INTHGER*2 XSWAIT

INTRINSIC INTIS, INTL, LT, RT
EXTERNAL XSWAIT, XSFCON, XSRCV, XSCLR, XSCLRA, SLEEPS, TNOU
EXTERNAL getinput, dispdata, dispansw, noserver, nepr

Keep executing this until the user says 'exit'.

CONTINUE

Get the user input - this will include screen formatting.

CALL getinput (message)

IF (action_key .—Q. exit) RETURN

Whether the user asks for a query or update, we call the

query server, which will sort things out by itself.

CALL XSFCON (XKSNAM+XKSANY, XKSACC, user_vc,
+ query_port, server_node, INTS(6), message, msgq_size,
+ vc_status,
+ returned, return_Size, actual_ret_size)

A
N
A
A
Q
A

A
A
A
R
A
A
K
R
F
A
|
R
A
A
a
A
N
A

Cc
C Status test:
C XSSCMP and XSSCLR imply completed connection;
C XSSIP: wait for PRIMENET to complete the connection,
C then get a new copy of the VC status;
C All others: crash. Clear everything and return to command level.
C
100 temp = vc_status(1) /* Get local copy.
Cc

IF (temp .8Q. XSSIP) THEN
timeout = XSWAIT(INTIS(100)) /* Arbitrary 10 seconds.
GO TO 100

ELSE IF (temp .Q. XSSCLR) THEN
GO TO 150

ELSE IF (temp .BQ. XSSCMP) THEN
GO TO 200

ELSE

CALL nepr(vc_status, INTS(2))
GO TO 9000

ENDIF

Third Edition 15-14

IPCF PROGRAMMING EXAMPLES

Some sort of connection success has occurred (XSSCLR or XSSCMP).

If the connect was completed, this means that the server accepted

the call, to do further data transfer.
If the connect was cleared, this could either be by a failure,

or by a fast select clear.
In the latter case, there are data to display.

A
N
Q
A
Q
A
Q
A
A
|
N
R
A
A
A
A
N

C Cleared connection:
C IF the cause and diagnostic are correct, display results and

C restart, else restart.
c ,
150 clrcause = LT(vc_status(2), 8)

clr_diag = RI(vc_status(2), 8)

C
IF (clr_cause .BQ. CCSCLR .AND. clr_diag .HQ. CDSSHR) THEN

CALL dispansw (response)
GO TO 1

ELSE IF (clr_cause .EQ. CCSCLR .AND. clr_diag .—Q. CDSPNA) THEN

CALL noserver
GO TO l

ELSE
CALL nepr(vc_status, INTS(2))
GO TO 400

ENDIF
C
Cc ——e

C Accepted connection:
C Issue receive call for returned data, then display the result.

C The invented protocol controls the choice of array to supply to

C XSRCV.
C EITHER it is a long answer, in which case the beginning is

C already here, OR it is just the key "update_started" and the

C whole answer, except the action key, will come later.

C
200 IF (actual_ret_size .LT. INTS(6)) GO TO 400 /* Key missing!

C
210 IF (response_key .BQ. update_started) THEN

CALL XSRCV(user_vc, answer, answer_size + remndr_size,
+ rcv_stat)

ELSE
CALL XSRCV(user_vc, remainder, remndr_size, rcv_stat)

ENDIF

Status test:
XSSIP means still coming in, wait a bit(on network semaphore).

XSSCMP is OK — all done, now ack by a clear and then restart.
XSSRST means Reset occurred: clear the circuit.
XSSCLR is not anticipated - restart.
XSSMEM means attempt failed, retry the receive shortly.
All others, fatal crash!

A
A
N
A
A
R
A
A
A
N
A
N
A

15-15 Third Edition

DOC3710-193

220 temp = rcv_stat(1)
IF (temp .HQ. XSSIP) THEN

timeout = XSWAIT INTS (20) /* Arbitrary 2 sec.
GO TO 220 —

ELSE IF (temp .8Q. XSSCMP) THEN
GO TO 230

ELSE IF (temp .—Q. XSSCLR) THEN
CALL nepr(vc_status, INTS(2))
GO TO 400

ELSE IF (temp .—Q. XSSMEM) THEN
CALL SLEEPS (INTL (1000)) /* Wait a sec...

GO TO 210
ELSE IF (temp .—Q. XSSRST) THEN /* Reset occurred, clear.

CALL XSCLR(user_vc, CDSRST, statword)
IF (statword .NE. XSSCMP) THEN

CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

GO TO 240 /* Await confirmation.
ELSE

CALL nepr(rcv_stat, INTIS (3))
CALL nepr(vc_status, INTIS (2))

GO TO 9000
ENDIF

C
C Receive complete; now send acknowledging clear, and display data.
C Tell the display routine the entire response length.
C
23 0 IF (response_key .BQ. update_started) THEN

CALL XSCLR(user_vc, CDSEOU, statword)
CALL dispdata (answer, resp_size + rcv_stat (3))

ELSE
CALL XSCLR(user_vc, CDSLNG, statword)

CALL dispdata (answer, rcv_stat (3))
ENDIF

Verify the correct status for the clear request.
The only reasonable return code here is XSSCMP.

Q
A
A
A
N
M

IF (statword .5Q. XSSCMP) THEN

GO TO 240 /* Await confirmation.
FLSE

CALL nepr (statword, INTS(1))
GO TO 9000 /* Fatal error.

ENDIF
C

C Tidy up for restart; await confirmation of requested clear.
C If not arrived in 30 seconds (will the user stand more?),

C forget the circuit and restart.

240 IF (vc_status(1) .NE. XSSCLR) THEN

PRINT 2000
timeout = XSWAIT(INTS (300))

ENDIF

Third Edition 15-16

IPCF PROGRAMMING EXAMPLES

2000 FORMAT ('Disconnecting...')
C

IF (vc_status(1) .NE. XSSCLR)
+ PRINT 2010

2010 FORMAT ('Clear request unconfirmed - restarting’)
CALL XSCLRA
GO 10 1 /* Restart

C
C
Cc se we ee

C Protocol problems or network transmission problems.

C
400 CALL TNOU('Transfer failure’, INTIS(16))

CALL XSCLRA
GO TO l /* Restart

C
C
Czee2z2e2222=

C Fatal errors: crash exit to command level

C after global network cleanup.
C
9000 CALL TNOU('Network failure’, INTS(15))

CALL XSCLRA
RETURN

C
END

Query Server:

C QUERY_SERVER.F77, sample server program for

C fast-select PRIMENET connections.

C
C The query_server program is expected to run as several

C parallel processes. Therefore, it assigns its port for

C one call only, and always reassigns on completed service.

C Enough servers are expected to be running to ensure

C 100 percent availability. If, however, the application

C runs out of servers, the PRIMENET clearing with CDSPNA

C (port not assigned) will indicate no servers.

C The first action is to detect updates, and to pass these

C to the update server. If the passoff fails, the circuit
C is cleared with a special diagnostic.
C
C Depending on the query, it will either send a short answer

C by a fast select clear or accept the call with part of the

C answer, and then send the rest separately. To ensure that

C the full answer gets through, the user clears in this case,

C thereby acknowledging. The server has a safety timeout, as well.

C
PROGRAM main

C

15-17 Third Edition

DOC3710-193

SINSERT syscom>xSkeys. ins. ftn
SINSERT *>fsx_data. ins. f77 ~
C

INTHGER*2 statword, status(2), vc_status(2), xmt_status,
+ answer_key, server_vc, dummy_port, rn_len, msg_bytes,
+ rem_length, clr_cause, clr_diag, timeout,
+ not_used, must_be_0, temp, junk
CHARACTER*6 remote_node
LOGICAL*2 long_flag

PARAMETER (must_be_0 = 0)

INIRINSIC INIL, INIS, LT, RI

INTHGER*2 XSWAIT

EXTERNAL XSASGN, XSWAIT, XSFGCN, XS$, XSFACP, XLGVVC,

+ XSTRAN, XSCLR, XSCLRA, SLEEPS
EXTERNAL dbanswer, nepr

Restart point - assign the query server port to take ONE call.

CALL XSASGN(query_port, INTS(1), statword)

Error test: XSSCMP or XSSQUE are satisfactory. For all others,

fatal crash.

A
N
A
Q
K
F
A
N
A
N
A
N

IF (statword .NE. XSSCMP .AND. statword .NE. XSSQUE) THEN
CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

C
C Wait for somebody to call. When awakened from the
C network semaphore, find out about the call.
C (For safety, make routine wake-up once every minute.)
C
10 timeout = XSWAIT(INTS (600))

CALL XSFGCN(XKSNAM, answer_key, server_vc, dummy_port,
+ remote_node, INTS(6), rn_len, —
+ message, msgq_Size, msg_bytes,
+ status)

C
C Status test: XSSNOP means spurious wake up -> wait more.
C _ XSSCMP means call to handle.
C For all others, fatal crash.
C

temp = status (1)

IF (temp .—Q. XSSNOP) THEN
GO TO 10 .

ELSE IF (temp .8Q. XSSCMP) THEN
GO TO 100

ELSE

CALL nepr (status, INTS (2))

GO To 9000 ~
ENDIF

Third Edition 15-18

IPCF PROGRAMMING EXAMPLES

C
C o_o

C Handle the call. Sort out updates, pass them off

C to the query server. Otherwise send the message to

C the data base, retrieve the answer, and analyze its length.

C Long answers force call accepted, with later transmission

C of the actual answer, short ones are 'fast_cleared'

C carrying the answer.
Cc

100 IF (message(1) .BQ. update) GO TO 300

C
CALL dbanswer (message, response, long_flag, rem_length)

IF (long_flag) GO TO 200

C
Cc meee

C Short answer <-> fast clear

C Here we use the "returned" aggregate array,

C not to place data overlapping PRID field.

C Also, the diagnostic code should be CDSSHR,

C for the user's validity test.
C
110 CALL. XSFCLR(server_vc, CDSSHR, returned, return_size, statword)

Cc
C Status test:

C XSSCMP is OK - all done, restart

C NOTE: There is no vc_status array set up yet, SO we cannot

C check for clear confirmation!
C XSSMEM means attempt failed, retry soon.
C For all others, fatal crash.
C

temp = statword
IF (temp .BQ. XSSCMP) THEN

GO To 8000
ELSE IF (temp .—Q. XSSMEM) THEN

CALL SLEEPS (INTL(1000)) /* Wait a sec...

GO TO 110
ELSE

CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

C
C acres

C Long answer :

C Accept the call, and then transmit the rest of the long answer.

C
200 CALL XSFACP(server_vc, response, resp_size, vc_status)

C
C Status test:
C XSSIDL/XSSCMP is OK - ready to transmit data.

C XSSMEM means attempt failed, retry shortly.
C XSSCLR is not expected, but let the server live

C to do further work.
C For all others, fatal crash.
C

15-19 Third Edition

DOC3710-193

temp = vc_status (1) /* Get local copy.
IF (temp .—Q. XSSIDL .OR. temp .5Q. XSSCMP) THEN

GO TO 210
ELSE IF (temp .—Q. XSSMEM) THEN

CALL SLEEPS (INTL (1000)) /* Wait a sec...
GO TO 200

FLSE IF (temp .BQ. XSSCLR) THEN
CALL nepr(vc_status, INTS(2))
GO TO 8000 /* To restart.

ELSE
CALL nepr(vc_status, INTS(2))
GO To 9000 /* Fatal, death.

ENDIF
C
210 CALL XSTRAN(server_vc, XTSLVO,

+ remainder, rem_length - resp_size, xmt_status)

C
C Status test:

C XSSIP means still pushing it off, wait on network semaphore.
C XSSCMP is OK - all done, now await confirming clear and restart.
C XSSCLR - check if it was the "ack", then restart the server.
C XSSRST - reset occurred, clear the circuit.
C XSSMEM means attempt failed, retry shortly.
C For all others, fatal crash.

Cc

220 temp = xmt_status
IF (temp .—Q. XSSIP) THEN

timeout = XSWAIT(20) /* Arbitrary 2 seconds.
GO TO 220

ELSE IF (temp .5Q. XSSCMP) THEN
GO TO 230

ELSE IF (temp .BQ. XSSCLR) THEN
GO TO 240

ELSE IF (temp .BQ. XSSMEM) THEN
CALL SLEEPS (INTL (1000)) /* Wait a sec...
GO TO 210

FLSE IF (temp .—Q. XSSRST) THEN /* On reset, clear.
CALL XSCLR(Server_vc, CDSRST, statword)
IF (statword .NE. XSSCMP) THEN

CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

GO TO 7000 /* Await confirmation.
ELSE

CALL nepr(vc_status, INTS(2))
GO TO 9000 /* Fatal, death.

ENDIF
Cc

C Transmit complete. Now wait for the acknowledging clear
C using the CDSLNG diagnostic. If too long a time passes,
C then clear from this end, and restart.
C (Ensure the network semaphore is drained before starting timeout
C waiting of 2 minutes.)
Cc

Third Edition 15-20

IPCF PROGRAMMING EXAMPLES

230 timeout = XSWAIT(INTS (1))
IF (vc_status(1) .BQ. XSSCLR) THEN

GO TO 240 /* Verify the diagnostic.

Cc
ELSE

timeout = XSWAIT(INTS(1200)) /* Give the user 2 minutes.

IF (vc_status(1) .BQ. XSSCLR) THEN

GO TO 240 /* Verify the diagnostic.

ELSE
PRINT 2300
CALL XSCLR(server_vc, CDSIMO, statword)

Cc
C The only reasonable return code here is XSSCMP.

Cc
IF (statword .8Q. XSSCMP) THEN

GO TO 7000 /* Await confirmation.

ELSE
CALL nepr(statword, INTS(1))
GO TO 9000 /* Fatal error.

ENDIF

ENDIF

ENDIF

2300 FORMAT ('Forced server clear...')

Cc
C Verify cleared by user with correct diagnostic.

C If it is not normal, print the message,

C then restart in any case.
C
240 clr_cause = LT(vc_status(2), 8)

clr_diag = RI(vc_status(2), 8)
C

IF (clr_cause .NE. CCSCLR .OR. clr_diag .NE. CDSLNG)
+ CALL nepr(vc_status, INTS(2))

GO TO 8000
Cc
Cc ome ome —aa

C Pass over an update. This is done before call acceptance, and

C by port number. It requires XLGVVC, and since the original call

C request packet is still around, we are not allowed to try

C providing a new one.
C
300 CALL XLGVVC(XKSPRT, server_vc, not_used, must_be_0, must_be_0,

+ update_port,
+ junk, INTS(0), junk, INTS(0), /* Unsupplied
+ junk, INTS(0), junk, INTS(0), /* packet
+ junk, INTS(0), /* fields.
+ statword)

Status test:
C
C
C XSSCMP is OK - all done, restart from the beginning.
C XSSUNK implies that an update server is not running,

C
C
C

clears with CDSNVC.
XSSMEM means attempt failed, retry shortly.
For all others, fatal crash.

15-21 Third Edition

DOC3710-193

temp = statword
IF (temp .EQ. XSSCMP) THEN

GO To 8000
ELSE IF (temp .§Q. XSSMEM) THEN

CALL SLEEPS (INTL (1000)) /* Wait a sec...
GO TO 300

ELSE IF (temp .HQ. XSSUNK) THEN
CALL XSCLR(server_vc, CDSNVC, statword)

C
C The only reasonable return code here is XSSCMP.
C There is no vc_status array set up yet, so we cannot check
C for clear confirmation!
C

IF (statword .HQ. XSSCMP) THEN
GO TO 8000 /* Restart immediately.

ELSE

CALL nepr(statword, INTIS(1))
GO TO 9000 /* Fatal error.

ENDIF

Cc
ELSE

CALL nepr (statword, INTIS (1))
GO TO 9000 /* Fatal error.

ENDIF

C
Cc
Css =>

C Tidy up for restart. Await confirmation of requested clear.
C If it has not arrived in 2 minutes, forget the circuit and
C restart. (First wait a very short time,
C to ensure the network semaphore

C gets drained from the previous notifications.)
Cc
7000 timeout = XSWAIT(INTS (1))

IF (vc_status(1) .Q. XSSCLR) THEN
GO TO 8000 /* That's it!

ELSE
timeout = XSWAIT (INTS (1200))
IF (vc_status(1) .BQ. XSSCLR) THEN

GO TO 8000
ELSE

IF (timeout .NE. 0) PRINT 7010
CALL nepr(vc_status, INTS(2))

PRINT 7020
GO TO 8000

ENDIF
ENDIF

7010 FORMAT ('TIwo minutes time—out...')
7020 FORMAT ('Clear request unconfirmed - restarting‘)

Third Edition 15-22

IPCF PROGRAMMING EXAMPLES

C-—_—

C General restart code. Ensure we start in fresh environment by

C calling XSCLRA.
Cc
8000 CALL XSCLRA

GO TO l
Cc
Cc
Cc k* KKK SK

C Fatal error — print message and die...

C
9000 PRINT 9010
9010 FORMAT ('Fatal error')

CALL XSCLRA
RETURN

END

Update Server :

C UPDATE_SERVER.F77, Example server program for fast-select

C PRIMENET connections.

C
C There is only one update server function, which thus must be

C able to handle multiple virtual circuits.

C
C The life of each individual virtual circuit is:

C XSFGCN -> XSFACP -> do update —> XSTRAN, wait for XSSCMP ->

C -> wait for clear request -—> back to free pool...

C In case of the user failing to clear, there must also be a

C timeout mechanism for the virtual circuit to be released.

Cc
C A mechanism for allocating and releasing sets of status

C arrays per VC is used, making use of the variable 'next_free'.

C Since only a finite pool of VCs can be run, calls

C arriving when the pool is fully used are cleared,

C with the diagnostic CDSNVC.
Cc |

C The main structure of this server is to run a service

C loop, paced by the network semaphore.

C On wake_up it will look for new connections

C and then check on all active virtual circuits.

C
PROGRAM main

C
SINSERT syscom>xSkeys. ins. ftn
SINSERT *>fsx_data.ins.f77
SINSERT *>multi_vc.ins.£77
SINSERT *>update_data. ins. £77
C

INTHGER*2 statword, status(2),

+ server_vc, answer_key, dummy_port, rn_len, msg_bytes,

15-23 Third Edition

DOC3710-193

+ clr_cause, clr_diag, junk, index, update_length, temp, i
C

CHARACTER*6 remote_node
C

INTRINSIC INIS, INIL, LT, RT
EXTERNAL XSASGN, XSWAIT, XSFCLR, XSFACP, XSIRAN, XSCLR,

+ XSCLRA, XSFGCN, SLEEPS
EXTERNAL do_updat, nepr, getvc, age

C
C Initialize the virtual circuit pool!

C
CALL initvc

C
C Assign the update server port to take ALL calls.
Cc

CALL XSASGN(update_port, INTS(0), statword)
Cc
C Error test: XSSCMP is satisfactory, for all others, fatal crash.

C XSSQUE is not legal, since there can be only one update server.
Cc

IF (statword .NE. XSSCMP) THEN
CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

C

C
C START OF MAIN SERVICE LOOP, == == 2. =2 2272225273557 75725

C Wait on network event, five_second safety time-out. (NOTE: This
C timeout MUST be short, since it controls the speed of servicing
C running virtual circuits.)
C

10 CALL XSWAIT (INTS (50))
C
Cc —enee ene emo

C Look for new incoming calls. If VC available, accept or clear it.
C Carry on until calls are exhausted or when VCs are unavailable.
Cc

50 CALL XSFGCN(XKSNAM, answer_key, server_vc, dummy_port,
+ remote_node, INTIS(6), rn_len, /* Collect call origin.
+ message, msg_size, msg_bytes,
+ status)

Status test.
XSSCMP means call to handle.
XSSNOP means spurious wake up or calls exhausted.
Do the service loop for active VCs.
For all others, fatal crash.

A
N
Q
A
A
A
N
A
A
N

IF (status(1) .B8Q. XSSNOP) THEN
GO TO 200

ELSE IF (status(1) .BQ. XSSCMP) THEN

GO TO 100
ELSE

Third Edition 15-24

IPCF PROGRAMMING EXAMPLES

CALL nepr (status, INTS(2))
GO To 9000

ENDIF

Cc
Cc wmemene

C Handle the call. If VC available, accept it, else clear.

C
100 IF (.NOT. getvc(server_vc, index)) THEN

C
CALL XSCLR(server_vc, CDSNVC, statword)

C

C The only reasonable return code here is XSSCMP.

C There is no vc_status array set up yet, so we cannot check

C for clear confirmation!C

IF (statword .—Q. XSSCMP) THEN

GO TO 50 /* Look for further calls.
ELSE

CALL nepr (statword, INTS(1))

GO TO 9000 /* Fatal, death.
ENDIF

ELSE
out_msg(1,index) = update_started

105 CALL XSFACP(server_vc, out_msg(l,index), INTIS(2),

+ vc_status (1, index))

Status test:

XSSIDL/XSSCMP is OK - all done, restart from the beginning.
XSSMEM means attempt failed, retry.
XSSCLR is not expected, but let uS carry on.
For all others, fatal crash.

temp = vc_status (1, index) /* Get local copy.

Qa
A
A
A
Q
A
A
A
A
A

IF (temp .§Q. XSSIDL .OR. temp .HQ. XSSCMP) THEN
GO TO 110

ELSE IF (temp .HQ. XSSMEM) THEN
CALL SLEEPS (INTL (1000)) /* Wait a sec...
GO TO 105

ELSE IF (temp .BQ. XSSCLR) THEN
C
C Unexpected. Look for more calls. The virtual circuit will be

C released in the "test if cleared" loop further belo.

Cc
GO TO 50

ELSE
CALL nepr (vc_status(1, index), INTS(2))

GO To 9000 /* Fatal, death.

ENDIF

Cc
Cc

C Circuit set up. Get the update done, transmit the update message,

C and start the clock for "time since transmit".

15-25 Third Edition

DOC3710-193

C
C (Note that the following do_updat call implies that "message" is
C copied to "in_msg(.,index)" BEFORE do_updat returns, so that
C "message" then can be reused.)
Cc :

110 CALL do_updat (message, msg_bytes, index, update_length)
C

CALL XSTRAN(Server_vc, XTSLVO,
+ out_msg(2,index), update_length, xmit_status (index))

CALL orgstamp (index)
C
C To keep service speed up, we should NOT wait for XSSCMP here, but
C only sort out fatal errors. 'Expected' statuses will be handled
C later in the general all-VC loop.C

temp = xmit_status (index)

IF (temp .BQ. XSSIP .OR. temp .BQ. XSSCMP .OR.
+ temp .HQ. XSSCLR .OR. temp .HQ. XSSBVC .OR.
+ temp .eq. XSSRST) THEN

GO TO 50 /* Look for more calls.
ELSE

CALL nepr (xmit_status (index), INTS(1))

GO To 9000 /* Fatal, death....

ENDIF /* xmit-status.

ENDIF /* clear/accept.

C Loop for running VCs:
C This loop MUST ensure that all VCs terminate properly and are
C released.
C - If the transmit completes and the user does not clear,
C the server should clear;
C - if the transmit does not complete, the server should clear;

C - if resets occur, the server should clear.
C In this way the circuit will always have a clear request;
C the timer mechanism of PRIMENET (19.3 onwards) will then
C ensure that the confirming state XSSCLR is reached
C (with appropriate diagnostic), and the VC will be released.
C

Q
a
A
a
Q
A
A

a
2a

200 DO 250 i=1, pool_size
IF (in_use(i)) THEN /* Skip inactive circuits.

C
C Meck that the VC is cleared. Print error message

C if there is a wrong cause or diagnostic. Free it in any case.
C

temp = vc_status(1l, i)
IF (temp .HQ. XSSCLR) THEN

Clr_cause = LT(vc_status(2, i), 8)
clr_diag = RI(vc_status(2, i), 8)
IF (clr_cause .NE, CCSCLR .OR. clr_diag .NE. CDSEOU)

Third Edition 15-26

IPCF PROGRAMMING EXAMPLES

+ CALL nepr (vc_status, INTS(2))

CALL freevc(i)

Cc
C Clear a virtual circuit that was reset. The circuit will then be

C released in a subsequent test loop.
Cc

ELSE IF (temp .—Q. XSSRST) THEN
CALL XSCLR(vc_id(i), CDSRST, statword)

IF (statword .NE. XSSCMP) THEN
CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

Cc

C Now look at the transmit status.C

ELSE
junk = xmit_status (1)

C
C We can neglect XSSRST and XSSCLR, since they were already trapped

C in the previous vc_status test.
Cc
C If this transmit has XSSBVC, the cause is likely to be a clear

C before the transmit was attempted. This should already have

C been detected in the previous vc_status test, but "just in case"

C ensure the circuit becomes free.

Cc
IF (junk .—Q. XSSBVC) THEN

CALL freevc(i)

Cc
C If the transmit does not complete in decent time, we suspect a

C "hang". Clear the circuit, and to prevent repeats, CHANGE the

C TRANSMIT status to XSSCLR. The time limit is set to 5 minutes

C (arbitrary choice).
C

ELSE IF (junk .—Q. XSSIP .AND. age(i) .GE. INTS(5)) THEN
CALL XSCLR(vc_id(i), CDSIMO, statword)

IF (statword .NE. XSSCMP) THEN
CALL nepr (statword, INTS(1))
GO TO 9000

ENDIF

xmit_status(i) = XSSCLR
Cc
C Similarly, if the transmit completed but no clear arrives, again

C we clear a suspected "hang". To prevent repeats, CHANGE the

C TRANSMIT status to XSSCLR. The time limit is set to the same

C 5 minutes (arbitrary choice).

Cc
ELSE IF (junk .HQ. XSSCMP .AND. age(i) .GE. INTS(5)) THEN

CALL XSCLR(vc_id(i), CDSIMO, statword)

IF (statword .NE. XSSCMP) THEN
CALL nepr (statword, INTIS(1))
GO TO 9000

ENDIF
xmit_status(i) = XSSCLR

15-27 Third Edition

DOC3710-193

ENDIF /* Transmit status testing.

ENDIF /* VC status testing.

ENDIF /* VC active.

CONTINUE

All done. Go back to sleep.

GO TO 10

QD
Q
A
A
Q
A
A
N
A

Q
a

A

©

Cee eke

C Fatal error, death....
Cc
9000 PRINT 9010
9010 FORMAT ('Fatal error!')

CALL XSCLRA
RETURN

END

VC Pool Handling:

C HANDLE_VC.F77, subroutines to allocate update server VCs
Cc
C INITVC - initialize the VC flag and status database

SUBROUTINE INITVC
Cc

SINSERT *>MULTI_VC. INS. F77

C

INTHGER*2 i

Cc

total_used = 0 /* No active.
next_free = 1] /* Try this one first.

Cc

DO 10 i=1, pool_size /* For all of then:
in_use(i) = .FALSE. /* Not in use,

10 vc_id(i) = 0 /* so no known number.
RETURN

END

C GETVC - returns whether the VC block is available or not.
C

LOGICAL*2 FUNCTION GETVC(net_vc, this_index)

Cc

SINSERT *>MULTI_VC. INS. F77
Cc

INTHGER*2 net_vc, this_index, i
C

IF (total_used .LT. pool_size) THEN

Third Edition 15-28

IPCF PROGRAMMING EXAMPLES

Cc
getvc = .TRUE. /* Indicate success.
thisindex = next_free /* Tell caller allocated slot.

in_use (next_free) = .TRUE.
vc_id(next_free) = net_vc
CALL orgstamp(next_free) /* Set start of life.

C
C Now prepare for the next allocation call.
Cc

total_used = total_used + 1
IF (total_used ~LT. pool_size) THEN

DO 10 i= 1, pool_size
IF (in_use (1)) GO TO 10
next_free = i
RETURN

10 CONTINUE

ELSE
next_free = 0
RETURN

ENDIF

C
ELSE

getvc = .false. /* Indicate that the pool is fully used.

RETURN
ENDIF

END

C FREEVC - return a VC block to the unused state.

C
SUBROUTINE FREEVC (index)

C
SINSERT *>MULTI_VC. INS. F77
C

INTHGER*2 index

C
in_use (index) = .FALSE. /* Free it.

C
C If pool WAS fully used, this must become next to use.

Cc
IF (total_used .§Q. pool_size) next_free = index

Cc
total_used = total_used - 1 /* Out of used count.
RETURN

END

C ORGSTAMP - set origin time for a VC (next full minute).

C
SUBROUTINE ORGSTAMP (index)

Cc

SINSERT *>MULTI_VC. INS. F77

C
INTHGER*2 index, arr(4)
INTRINSIC INTIS

EXTERNAL TIMDAT

C
CALL TIMDAT(arr, INTS(4))

15-29 Third Edition

DOC3710-193

zero_time(index) = arr(4) +1
RETURN

END
C AGE - return lifelength since origin time for a VC.
Cc

INTHGER*2 FUNCTION AGE (index)
C
SINSERT *>MULTI_VC. INS. F77
Cc

INTHGER*2 index, arr(4)

INTRINSIC INTIS
EXTERNAL TIMDAT

C
CALL TIMDAT(arr, INTS(4)) .
age = arr(4) — zero_time (index)
RETURN

END

A Common Network Error Message Routine:

C NEPR.F77, routine to print network status arrays.
C
C This routine gives a formatted output for various
C network status arrays. Its action depends on the number
C of words in the array.
C
C Word 1 translated to XS$xxx
C Word 2 given in decimal and split on CCSXXX/CDSXxXX.
C Word 3 given in decimal
C

SUBROUTINE NEPR(array, no_words)
C

INTHGER*2 array(1), no_words
C
SINSERT *>f£sx_data.ins.£77
C

INTRINSIC INTIS, LT, RT
EXTERNAL TNOUA, TODEC, TOOCT, TONL

INTHGER*2 cdvalue(6), i
CHARACTER*6 xsname(-1:14), cdname (6)
DATA xsname/'XSSNET' , 'XSSCMP', 'XSSIP','XSSBVC','XSSBPM',

"XSSCLR', 'XSSRST', 'XSSIDL' , 'XSSUNK' , "XSSMEM',
"XSSNOP' , 'XSSILL', 'XSSDWN' , 'XSSMAX', "XSSQUE', 'XSSFCT'/

DATA cdvalue/CDSSHR, CDSLNG, CDSEOU, CDSTMO, CDSRST, CDSNVC/
DATA cdname/'CDSSHR' , 'CDSLNG', 'CDSEOU', 'CDSTMO', 'CDSRST',
+ "CDSNVC'/

IF (no_words .LT. 1 .OR. no_words .GT. 3) RETURN

+
+

C

C
PRINT 9000, xsname (array (1))

9000 FORMAT (‘Returned status code: ',A6)

Third Edition 15-30

IPCF PROGRAMMING EXAMPLES

IF (no_words .HQ. 1) RETURN

CALL TNOUA('Second word (dec): ', INTS(19))

CALL TODEC (array (2))
CALL TONL

CALL TNOUA(' (as CCS/CDS): ', INTS(26))

CALL TOOCT(LT(array(2), 8))
CALL TNOUA('- ', INTS(1))
CALL TOOCT (RI (array(2), 8))
DO 10 i=1,6
IF (RI(array(2),8) «BQ. cdvalue(i)) THEN

CALL TNOUA(' (', INTS(2))

CALL TNOUA(cdname (i), INTS (6))
CALL TNOUA(') ', INTS(1))

ENDIF

10 CONTINUE
CALL TONL
IF (no_words .—Q. 2) RETURN

PRINT 9010, array (3)
9010 FORMAT ('Third word (dec): ',1I5)

RETURN
END

15-31 Third Edition

IPCF Programming

Strategy

INTRODUCTION

Different applications have different requirements for data transfer.

For each application, the designer will define a sequence of messages

between the two communicating programs that ensures both programs'

proper operation, for error-free commmication as well as for various

kinds of malfunctions. ‘To achieve this, the designer can, for example,

set the X.25 Q-bit on data packets (refer to the description of XSTRAN

in Chapter 14), send interrupts, and clear the virtual circuit with

appropriate diagnostics. Messages can also be transferred during call

setup, by use of the fast select call option. (Refer to the XSF

routine descriptions in Chapter 14.)

Usually, a user's IPCF application functions as a front-end program:

it acts aS a commmications link, performing line control, message

handling, code conversion, and error control. The front end program

tries to establish a virtual call to a program already running on a

remote system. That remote program is a server, and is likely to run

as a phantom user process.

This chapter discusses some of the techniques and principles of IPCF

programming. See Appendix A on X.25 programming guidelines for

additional information, ‘The following topics are presented in this

chapter.

@ Front-end principles

e Server principles

16-1 Third Edition

DOC3710-193

e@ Performance aspects

@ Window and packet sizes in virtual circuits

@e Checking return codes

@ Network event waiting

@ Virtual circuit clearing

@ Program closedown

e The effect of START_NET and STOP_NET on IPCF programs

FRONT-END PRINCIPLES

A good front-end design should

e Always keep the user updated on communication progress

e Ensure that user actions cannot cause malfunction of the server

This means that the user program should recognize situations like no
server available, the remote system down, and unexpected clear requests
in the middle of message exchanges. Also, it should prevent the user
from leaving an unterminated virtual circuit alive by just breaking out
of the front-end program.

SERVER PRINCIPLES

You can use two main design principles for server design. You might
want one server to handle several requests actively in parallel. his
design is called a multi-task single server. You must ensure that all
active tasks are handled without hanging other tasks and locking up the
server. Alternatively, you may want to design a single-threaded server
that performs only one request at a time, but usually runs in multiple
invocations.

A single-threaded server assigns its port for one call request each
time, and reassigns it after completion of a transaction. Obviously,
if multiple servers rim, they all assign the same port, and they deal
with incoming call requests through the scheduling mechanism of the
assignment queue. In contrast, a multi-task server asSigns one or
several ports for an infinite number of calls, and regularly scans for

new incoming call requests.

Third Edition 16-2

IPCF PROGRAMMING STRATHGY

Whichever principle you choose, there isa Maximum value for active

requests, limited by either the 'parallel' capacity of the multi-task

server or by the number of running single-threaded servers. Your

design has to cope with how front-end programs are handled when there

is no server-handling available.

A convenient solution to the "no available server" problem for multiple

single-threaded servers is to run a special server, that assigns the

common server port for an infinite number of calls at the end of the

assign queue (see the description of XSASGN). This special server will

be called only if no other server is available. Its sole action is to

transmit the message "No server available," and clear the call.

The single-threaded server will have a code path corresponding to the

designed sequence of messages. A multi-task server will need

status-checking loops for all active tasks, including time-out actions

to prevent virtual circuits from hanging. Therefore, in general, the

single-threaded server should be easier to design and maintain.

A well-designed server should be stable if it encounters errors.

Preferably it should not crash but rather reinitialize itself, and

reenter service. The condition handling mechanism of PRIMOS should be

used to catch and properly handle forced logouts and similar events.

The server should also run some sort of log file, so that abnormal

behavior can be traced back later.

An application based on multiple servers must be designed to not depend

on any user-specific property such as the local user number of the

server. The reason for this is that you can never know which server is

used for a specific transaction.

PERFORMANCE ASPECTS

Although the IPCF interface to PRIMENET functions independently of

transmission media such as RINGNET or a PDN synchronous link, the

throughput varies greatly between these. An application that runs well

over RINGNET, due to the very high throughput over the ring, may turn

out to be very slow over a synchronous line. In general, application

designs should

e Minimize the amount of data transferred over the network

@ Keep the number of messages at the user level as low as possible

@ Keep the number of protocol turnarounds (when one of the

programs has to wait for the other to send a message back before

it can proceed) as small as possible

16-3 Third Edition

DOC3710-193

The message transfer structure of XSTRAN and XSRCV- makes’ the
partitioning of messages into proper X.25 protocol data packets
invisible for the application programmer. However, each message that
is handed to XSTRAN will be packetized inside PRIMENET. Thus, message
Sizes should be made to match the used packet size, or integer
multiples thereof.

WINDOWS AND PACKET SIZES IN VIRTUAL CIRCUITS (THROUGHPUT)

Your application should always ensure that PRIMENET sees sufficient
user—provided buffer space to handle incoming data.

Further, you can optimize program performance by specifying a large
window and packet size for the virtual circuit. This reduces overhead,
Since fewer packets have to be analyzed and handled, and PRIMENET can
have more packets outstanding.

You can enlarge the window and packet size in two ways. One way is to
use the XKSFCT key for the XLOONN call that establishes the virtual
call. Using XKSFCT is straightforward, and means that PRIMENET adds a
predefined facility field to the call. This field has one value for
direct Prime-to-Prime links, and other values for links through PDNs.

The actual value will vary with the PDN, and in some cases it will be
the X.25 default value. The only risk with this strategy is running an
international link over multiple PDNs. If your local PDN link

increases either window or packet size, the international gateway to
the next PDN might reject the packet facility request, and clear your
call attempt.

The other way to increase the window and packet size is to provide a
facility field. You have to check on any restrictions on the flow
control negotiation facilities that are implied by your PDN
subscription. If you require maximum window and packet sizes as
defined within X.25, your parameter value for a direct Prime-to-Prime
link will be reduced to the maximms actually supported over the
medium,

The receiving server should not take any specific steps, since a call
accept without facility field grants the caller's required window and
packet size. If the accept packet explicitly requires something else,
it is only permitted to negotiate values closer to the X.25 default.

Packet size increases will prove useful only if the message buffers
given to XSTRAN are sufficiently large; preferably, the message length
should be an integer multiple of the packet size used.

Third Edition 16-4

IPCF PROGRAMMING STRATEGY

NEIWORK EVENT WAITING

One essential feature of IPCF applications is their asynchronous

nature. Your user program initiates data transfers and other network

activities, but returns from many of IPCF subroutines immediately after

the request is launched, rather than after it completes. This is to

your advantage. Your program can perform other functions while

PRIMENET is working for you.

Some return codes indicate serious errors or an inability to initiate

the requested actions. For example, XSSBPM means that your call

arguments contain illegal values. Similarly, the return code XSSMEM

indicates work contention inside your local PRIMENET, meaning that

PRIMENET has temporarily run out of buffers. These kinds of codes are

returned immediately. .

In contrast, IPCF routines in due course return the result of network

actions in status arrays, and at the same time notify your network

semaphore. This enables your program to wait on the network semaphore

as soon aS it is idle, and to find out what has happened by checking

the status arrays, once it wakes up from the network semaphore. ‘The

XSWAIT function waits on the network semaphore. It allows you to

require either an infinite wait, or a combined timeout/network-event

wait. In the latter case, the returned function value will indicate if

you woke up on timeout or on an actual event.

Semaphores usually include event counters that monitor the number of

waiting processes or events to be handled. The PRIMENET semaphore

differs from that principle. It generates only one collective

notification for all your network events, until you wait on the

semaphore again by invoking X$WAIT (and thus immediately awake). ‘This

is to avoid the problems of overnotification in case the IPCF user

program does not wait on the semaphore. Therefore, if your application

has several outstanding network requests, such as multiple supplied

receive buffers, you should check the status for all of them, not only

the first one, before waiting again on the network semaphore, or your

program might hang.

An infinite waiting time is probably convenient when you have assigned

a port and are waiting for the next call to come in. As a caller, you

could also wait infinitely, since PRIMENET times-out the call if it is

not accepted properly, and wakes you up.

Once a virtual circuit has passed into data transfer phase, there are

no time-out mechanisms inside PRIMENET for an idle circuit with no data

to transfer. If one side does an XS$RCV, followed by an infinite wait

for the other end to respond, and the other end 'crashes' without

clearing the virtual circuit before transmitting, the receiving side

actually hangs forever. It would be better to have a (long) time-out

and give the user terminal a message about possible problems.

16-5 Third Edition

DOC3710-193

CHECKING RETURN CODES

Calls to XSCLRA and XSUASN always return without error; all other
calls return with (or affect the value of) a status word or array. ‘The
"immediate-return' design of the IPCF routines implies that several
return status values are 'reasonable', so normally an IPCF application
program will have several 'reasonable' code paths following each IPCF
call.

For example, when an application has reached the data transfer phase,
and is manipulating a number of calls to XSTRAN and XSRCV, the return
Statuses XSSIP, XSSCMP, possibly XSSRST, and XSSCLR are all 'normal',
and must be handled. This means that there might be a sequence of
statements like

IF (returned_status .—Q. XS$xxx) GO TO yyy

In the above case, it is essential that a local copy of returned status
be taken and used in the sequence of IF statements, to guarantee that
the branching is correct, and not upset by a sudden change of the
returned status value, done by PRIMENET, in the middle of the testing.
The most usual change would obviously be the transition from XSSIP to
some other status, indicating that the operation terminated.

Some sample code showing this follows.

50 CALL XSWAIT (10) /* Idle a while...
J = VCSTAT(1) /* Copy circuit status value.
IF (J .—Q. XSSIP) GOIO 50 /* Keep idling...
IF (J .—Q. XSSCLR) GOTO 10 /* OK to accept next call.
IF (J .—Q. XSSCMP) GOTO 50 /* Wait for clear.

VCSTAT(1) is copied into J, and the three comparisons are made against
J, rather than VCSTAT(1), ensuring that the value does not change
between the tests.

The return code XSSBVC occurs when you order actions on a virtual
circuit that you do not control. It is basically a fatal error code,
implying that your program is in error. However, it can sometimes also
be a 'normal' (non-fatal) return code for calls to XSTRAN, XSRCV,
XSRSET, and X$CLR. This occurs if the virtual circuit has been cleared
by the other side or by the network, after your last status test (which
did not return XSS$CLR), but before your call to any of these routines.

IPCF applications should always check the status array returned or
affected by any IPCF subroutine call. Failure to check errors could
lead to difficulties, such as are shown in this example.

NPORT = 3279
CALL XSASGN(NFORT, 1, NSTAT)
CALL XSWAIT (0)

Third Edition 16-6

IPCF PROGRAMMING STRATEGY

Because the port number 3279 is invalid, XSASGN returns with the error

XSSBPM in NSTAT, The example fails to discover the error, and waits

for a network event on an unassigned port. It will wait forever.

VIRTUAL CIRCUIT CLEARING

The X.25 standard states explicitly that the fate of packets in

transmission when either side requests a circuit CLEAR is undefined.

They can either be delivered properly or dropped. The consequence of

this for application programs is that the clear should normally be done

by the side that receives the last message. It is not sufficient to

wait for XSTRAN to yield XSSCMP before you call XSCLR; the transmitted

message can still get dropped by the other side if the clear is

detected before the corresponding XSRCV call has had time to reach

XSSCMP state.

PROGRAM CLOSEDOWN

When you terminate an IPCF application, you should’ ensure the

following.

@ When you have assigned ports for receiving incoming calls, make

sure that you call either XSUASN or XSCLRA to release these

ports. Otherwise, these ports will remain assigned for you,

routing incoming calls to you and preventing other applications

from using them to receive calls.

e As long as you have a running virtual circuit, on which you have

sent a clear request (by calling XSCLR or any corresponding

routine), PRIMENET will suddenly write into your virtual circuit

status array, to indicate that the remote end has confirmed the
clear request. To prevent overwriting of other programs that

may be executed later, you should not 'CALL EXIT’ or return to

command level until you do one of the following.

- All virtual circuit status arrays' first words have
changed to XSSCLR, indicating that the clear request is
confirmed.

- You have called XSCLRA, which forces an immediate drop of

all your virtual circuit references, (PRIMENET will

still handle the clear confirmation properly.) The call
to XSCLRA will generate a clear request with diagnostic
byte 0, if the circuit has not already been cleared.

16-7 Third Edition

DOC3710-193

Note

If you request a clear immediately for an
incoming call, without first accepting it, no
virtual circuit status array is created, so you
cannot detect the confirmation.

THE EFFECT OF START_NET AND STOP_NET ON IPCF PROGRAMS

At PRIMENET rev 19.3 it becomes possible to start and stop the NETMAN
process, without coldstarting PRIMOS, through the START_NET and

STOP_NET commands. Therefore, if your applications run under PRIMENET
19.3, locally or remotely, they should have logic to deal with what
happens when the network is stopped or started. This is especially
important for servers running as phantoms on nodes that execute
STOP_NET.

When NEIMAN is stopped, active virtual circuits are cleared. A new
Prime-defined clearing diagnostic, CDSNSV, indicates this event. Any
IPCF application that receives this clearing diagnostic will know that
either its local NETMAN or the remote node's NEIMAN has been closed
down.

When STARTNET is invoked, the whole local network configuration
database is reinitialized. Among other things, this means that all

previous port assignments are wiped out. Any server waiting infinitely
on an 'old' port assignment is left hanging, and never awakens.

One strategy here would be to not wait infinitely after assigning a
port, but to wake up periodically. Any inquiry by XSGCON/XSFGCN/XLGOON
would then indicate network down by returning XSSNET, and the server
could take appropriate action. Alternatively, the System Administrator
should have all servers log out before issuing STOP_NET.

The "Network not running” status, XSSNET, is returned only by IPCF
routines that initiate network connections, such as XSASGN; XSCONN,
XSFCON, XLOCONN; XSGOON, XSFGCN, XLGOON; and by the status routine
XSSTAT. Other routines combine this status with XSSBVC, which is also
returned if you require an action for a virtual circuit that does not
belong to you.

Third Edition 16-8

FTS Programming

INTRODUCTION

The File Transfer Service includes three commands, FIR, FTOP and FIGEN.

These commands comprise the user, operator, and System Administrator

interfaces to FITS, respectively. In addition, the File Transfer

Service provides a program interface. As of Revision 19.3, this

interface is implemented in the form of one subroutine, named FTSSUB.

The FTSSUB subroutine allows an application program to perform any

function that a user can perform by using the FIR command. A program

can use FTSSUB to submit, modify, cancel, abort, hold, release, and

check the status of file transfer requests.

This chapter describes:

@ How to set up your FORTRAN (FIN), FORTRAN 77 (F77), or PL/I

Subset G (PLIG) program and its load sequence to allow the use

of FTSSUB.

e How to use the FTSSUB subroutine to submit, control, and

determine the status of transfer requests.

e Several sample programs using FTSSUB.

17-1 Third Edition

DOC3710-193

PROGRAM SETUP FOR FTSSUB

The FTSSUB subroutine is designed to be called from FORTRAN (FIN),
FORTRAN 77 (F77), and PL/I Subset G (PLIG) programs. FTSSUB cannot be
Called from R-mode or S-mode programs.

The FTSSUB subroutine makes use of FIS-specific keys and error codes,
all of which have names beginning with FS or QS. ‘These keys and codes
are defined in an insert file in SYSCOM. In addition, the FYTSSUB

subroutine is installed as a shared subroutine library. A library file
is used to satisfy the references to this subroutine during your
program load sequence.

To use the FTSSUB subroutine, you must

e@ Declare the FISSUB subroutine in your program, if it is a PL/I
Subset G program

e@ Use an INCLUDE or SINSERT statement in your program to define
the keys and error codes related to FTSSUB

e@ Use the LIBRARY VFISLB command in your program load sequence to

load the FITS library

When the above steps are performed, you can invoke FTSSUB in your
program, as described in the section entitled INVOKING THE FTSSUB

SUBROUTINE.

DeclaringFTSSUB

You must use the following declaration for FTSSUB in PL/I Subset G
programs.

dcl ft$sub entry(fixed bin(15) ,char(32) var,char(32) var,
char (*) var,char(*) var,char(255) var,char(32) var,
fixed bin(15) ,ptr,fixed bin(15) ,ptr,fixed bin(15),
fixed bin(15));

The full calling sequence, rarely needed, is as follows.

call ft$sub (key, request_name, internal_name, user_cmdl , prog_cmdl,
' ,queue, user_query , addr (request_data) ,l,

addr (error_data) ,1,code) ;

Specific calling sequences needed for particular uses of FYTSSUB are
described in the section that discusses each such use.

Third Edition 17-2

FIS PROGRAMMING

Defining Keys and Error Codes

To allow your program to represent FIS-specific numeric values for keys

and error codes, you must include in your program a statement that

defines the appropriate FITS user's file. The statement to be used

depends on the language in which you are writing the program.

For a PL/I Subset G (PLIG) program, use the following statement.

%INCLUDE ' SYSCOM>FTSSUB, INS. PLL";

For a FORTRAN 77 (F77) program, use the following statement.

SINCLUDE 'SYSCOM>FTSSUB. INS. FIN'

For a FORTRAN (FIN) program, use the following statement.

SINSERT SYSCOM>FTSSUB.INS. FIN

Fach statement will cause the specified file to be logically included

in your program. Each file contains a list of statements that define

constants, or keys, that you will use when calling FTSSUB.

Loading the FTS Subroutine Library

Place the following command immediately prior to the final LIBRARY

command in your program load sequence.

LIBRARY VFISLB

For example, the load sequence for a PLIG program named SEND_FILE might

be as follows.

SEG —-LOAD
LOAD SEND_FILE
LIBRARY PLIGLB
LIBRARY VFISLB
LIBRARY
MAP 3
MAP SEND_FILE.MAP
SAVE
QUIT

See the SEG and LOAD Reference Guide for more information on program

load sequences.

17-3 Third Edition

DOC3710-193

INVOKING THE FTSSUB SUBROUTINE

The FTSSUB subroutine allows eight different functions to be performed
for any given invocation. These transfer request functions are as
follows.

e@ Submittal

@ Parameter modification

@ Canceling

e@ Aborting

@ Holding

@ Releasing

@e Status retrieval of a user's requests

e Status retrieval of all requests on the system

These functions are distinguished by the first parameter of the FTSSUB
subroutine. That parameter is a fixed bin(15) value. There are eight
legal values for the argument, corresponding to the eight functions.

This section describes the categorization of these functions, and fully
describes the functions themselves. It then describes the use of
internal vs. external names. Finally, this section describes the
following information returned by FTSSUB.

@ The error code

e The request data structure

e The error data structure

Note

In general, user processes can operate only on their own
submitted requests. There are two exceptions, however. First,
a user process with the login ID SYSTEM can operate on any
request. Second, any process can request status and parameter
information for any request on the system, and receive limited
information about that request.

. Third Edition 17-4

FTS PROGRAMMING

Function Categories

The eight functions of FTSSUB may be logically grouped into four

categories. The first and second functions, submission and parameter

modification, belong to their own categories — submission and

modification. The next four functions belong to a category called

Status change operations, because they change only the status of a

request. The final two functions belong to a category called status

retrieval operations, because their purpose is to retrieve information

about an existing transfer request, without changing the request

itself.

Submission: The first function is transfer request submission. This

is the only function that adds a new transfer request; the other

functions operate on existing requests. The FIR command uses this

function when it is submitting a new request. ‘The parameters for the

request are specified through two character strings that contain

command line options.

Modification: The second function is transfer request modification.

It is used by the FIR command when the ~-MODIFY option is specified.

The parameters to be changed are specified through two character

strings that contain command line options.

Status Change Operations: The next four functions, which are the

cancel, abort, hold, and release functions, involve the modification of

the status of a transfer request. ‘The FIR command uses these functions

when the -CANCEL, -ABORT, -HOLD, or -RELEASE options are specified.

Status Retrieval Operations: The final two functions obtain the status

and parameter information for a request. The FIR command uses these

finctions when the -STATUS or -STATUS_ALL options are specified. One

fimction obtains full information for a transfer request from the user

who calls FISSUB, and the other function obtains partial information

for any transfer request on the system.

Transfer Request Submission

This function performs the initial submission of a transfer request.

It is similar in effect to the command, "FIR pathname". To submit a

transfer request, use the following calling sequence.

call £t$sub(f£S$subm, '',internal_name, user_cmdl, prog_cndl, cere

0 ,addr (request_data) ,1,addr (error_data) ,1,code);

17-5 Third Edition

DOC3710-193

The following table consists of arguments that are passed to the FISSUB
subroutine as input parameters.

Input Arguments

FSSUBM

ee ee
v v 70

internal_name,

user_candl,

prog_cmdl.

addr (request_data) ,1

addr (error_data),l

Third Edition

Meaning

This key specifies that a_ submission
Operation is to be performed.

Three null strings and a 0 stand for
arguments that are not used by FTSSUB during
a submission operation. You must pass these
arguments exactly as shown, or FTSSUB will

return an error code of ESBPAR.

Set to null on the initial call. Output
after submission.

These strings specify the command lines for
the user and program. These command lines
provide the details of the submission
operation to FISSUB.

These arguments are a pointer to a request
information structure (addr (request_data))
followed by the version number of that
structure (1). Although the pointer itself

is an input argument to FTSSUB,~ the
structure it points to is modified by FISSUB
to reflect the results of the submission.
This structure is described fully in the
section The Request Data Structure, below.

If you do not want to provide a request data
structure, specify the address and_ the
version number of the structure as null(),0.

Any other combination of settings for these
parameters will result in the error code
ESBPAR being returned.

These arguments are a pointer to an error
information structure (addr (error_data))
followed by the version number of that
structure (1). Although the pointer itself
is an input argument to FTSSUB,- the
structure it points to is modified by FISSUB
to provide extra information in case an
error occurs during the submission. This
Structure is described fully in the section
Error Data Structure, below.

17-6

FITS PROGRAMMING

If you do not want to provide an error data

structure, specify the address and

_

the

version number of the structure as null(),0.

Any other combination of settings for these

parameters will result in the error code

ESBPAR being returned.

There are two output arguments whose values are modified by FT$SUB for

use by the calling program.

Output Arguments Meaning

internal_name The internal name of the submitted request.

This value is returned only if the returned
error code is 0. You should output this

field to the user after the submission

operation, as does the FIR command.

code The error code that represents the success

or failure of the operation. This error

code may be a standard PRIMOS file system

error code, or may be an FIS-specific error

code.

Setting Up for Submission: Before calling FTSSUB, initialize user_cmdl

and prog_cmdl to contain the user and program command lines, or pass

constant strings, aS appropriate.

The contents of user_cmdl are expected to be one or two pathnames

followed by a list of options. Although the intent of user_cmdl is to

contain a command line with options as specified by a user, this is not

a requirement. For example, the program may construct user_cmdl by

allowing the user to select choices on a menu, with the program adding

options for each choice.

The intent of prog.amdl is to allow the program to provide

recommendations for options should the user not specify them. Typical

examples include the specification of —NO_QUERY, the setting of the

—~COPY and -NO_COPY switches, and the destination site (-DSTLSITE).

Whereas user_cmdl contains the source and destination pathnames,

cmdl” can contain only options. ‘The options specified in user_andl

will override corresponding specifications in prog_andl.

17-7 Third Edition

DOC3710-193

For example, suppose user_cmdl and prog_amdl are set to the following
values,

user_cmdl: 'IMPORTANT.MEMO JONES>IN_TRAY>MEM.AKB/001 —SRC_NTFY
-LOG MY.LOG'

prog_cmdl: '-DSTN_SITE BIRCH -NO_COPY —NO_QUERY
-LOG USER_REQUESTS>REQUEST. LOG'

This will result ina transfer request for the file IMPORTANT.MEMO to
be copied into JONES>IN_TRAY>MEM.AKB/001 on the system named BIRCH
(-DSTN_SITE). No temporary copy of the file will be made on the local
node (-NO_LCOPY). The requesting user will be notified of the start and
end of the transfer (-SRC_NIFY). A request log file called MY.LOG is
also created.

Notice how -LOG MY.LOG in the user_cmdl overrides. the -LOG
USER_REQUESTS>REQUEST. LOG in prog_cmdI. Therequest is submitted with
another non-default option in force, which is the —NO_OOPY option.
This is becuase the option was present in cmdl. If user_cmdl is
specified by a user, and prog_amdl is always provides by the program as
shown, then the user need not specify -NO_LOOPY. It is esentially the
default specification for this progran.

Note

You should always include the —-NO_QUERY option in prog.cmdl to
Suppress user queries during request submission. See the
description of the FIR -COPY option in Chapter 6 for an example
of such a query. The default is to query the user.

Error Recovery: The following table shows the FITS error codes that can
be returned with submission. See also the section below on Error Codes
for a description of general error codes.

Submission Error Codes

FSBDCL Bad command line format.

FSBDDN Bad device name.

FSBDKW Unknown keyword.

FSBDSN Bad site name format.

FSCNOP Conflicting option.

FSCPLS Copy option applies only to local source file.

FSDENS Destination file has not been specified.

Third Edition 17-8

FSDLLS

FSDRNA

FSDSNC

FSDUIN

FSDUNS

FSDUOP

FSFPIL

FSIDFT

FSIFDC

FSINMS

FSISFT

FSMCLP

FSMBNL

FSNCLS

FSNDLS

FSNICF

FSPINS

FSPSFQ

FSRLST

FSRTIS

FSSDSL

FSSFNE

FSSFNS

FSSFTD

FSSSNC

FSSUIN

FITS PROGRAMMING

Delete option applies only to local source file.

Device transfer from remote site is not allowed.

Destination site is not configured.

Destination user name invalid.

Destination user is not specified when destination notify

requested.

Duplicate option.

Full pathname too long.

Invalid destination file type.

Illegal file or directory conversion.

Invalid message level.

Invalid source file type.

Missing command line parameter.

Message level specified but request log treename has been

omitted.

No copy option applies only to local source file.

No delete option applies only to local source file.

Not configured.

Segment directory transfer to and from a Rev 1 site is

not supported.

Passworded pathname must be fully qualified.

Request log treename same as source Or target treename !!

Remote treename incorrectly specified.

Source or destination site must be local.

Source file does not exist.

Source file has not been specified.

Specified and actual source file types differ.

Source site is not configured.

Source user name invalid.

17-9 Third Edition

DOC3710-193

FSSUNS Source user not specified when source notify was
requested,

FSTDFN Transfer to a device as well as a file is not allowed.

FSTDNS Transferring a SHG directory to a device is not
supported,

FSTENP Transferring a file to itself is not possible.

FSUNOP Unknown option.

QSFULL Queue full.

QSQBLK Queue blocked.

QSQNEX Queue does not exist.

QSUCTF Unable to create temporary file.

Example: The following example shows a simple use of FTSSUB for
request submission. No declarations are provided, since they are
described above and in the Subroutines Reference Guide.

Call tnoua('Enter command line: ',20);
call cl$get (command_line,160,code);
if code*=0 then return;

call ft$sub(fSsubm, '',internal_name, command_line,
"—SRC_NIFY —NO_COPY' , re v ad ,0O,;null() 7,0 ;null () 70,

code) ;
if code*=0 then return;

call tnoua('Your request is #',17):;
call tnou(internal_name, length (internal_name)) ;
return;

Transfer Request Modification

This function is used to change one or more parameters of a transfer
request. The request must have already been submitted. This is
Similar in function to the "FIR -MODIFY name" command. To modify a
transfer request, use the following calling sequence.

call ft$sub(f£Sndfy, request_name, internal_name, user_cmdl,prog_cmdl,

'' ,queue0 ,addr (request_data) ,1,addr (error_data),l,
code) ;

Third Edition 17-10

FITS PROGRAMMING

The following table shows arguments that are passed to the FTSSUB

subroutine as input parameters.

Input Arguments

FSMDFY

request_name

internal_name

user_andl,

prog_andl

0

queue

addr (request_data) ,1

Meaning

This key specifies that a modification

operation is to be performed.

This argument contains the internal or

external name of the request to be modified.

This argument contains a null string during

the initial call. During subsequent calls,

this argument contains either a null string

or the internal name of a request from which

point in the queue scanning is to start.

See the section entitled Internal

vs. External Names, below, for more

information.

These strings specify the options that are

to modify the request.

A null string anda 0 stand for arguments

that are not used by FTSSUB during a

modification operation. You must pass these

arguments exactly as shown, or FTSSUB will

return an error code of ESBPAR.

This string specifies the name of the FITS

queue to search for the request. If all

queues are to be searched, pass the null

string in queue.

These arguments are a pointer to a request

information structure (addr (request_data))

followed by the version number of that

structure (1). Although the pointer itself

is an input argument to

_

FTSSUB,

_

the

structure it points to is modified by FISSUB

to reflect the results of the operation.

This structure is described fully in the

section The Request Data Structure, below.

If you do not want to provide a request data

structure, specify the address and_ the

version number of the structure as null() ,0.

Any other combination of settings for these

parameters will result in the error code

ESBPAR being returned.

17-11 Third Edition

DOC3710-193

addr (error_data) ,1 These arguments are a pointer to an error
information structure (addr (error_data))
followed by the version number of that
structure (1). Although the pointer itself
is an input argument to FTSSUB, the
structure it points to is modified by FITSSUB
to provide extra information in case an
error occurs during the operation. This
structure is described fully in the section
The Error Data Structure, below.

If you do not want to provide anerror data
structure, specify the address and the
version number of the structure as null(),0.

Any other combination of settings for these
parameters will result in the error code
ESBPAR being returned.

The following are arguments whose values are modified by FTSSUB for use

by the calling program.

Input Arguments Meaning

internal_name The internal name of the modified request.
This value is returned only if the returned
error code is 0 or FSIRPR (Transfer in
progress). You should output this field to
the user after the operation, as does the
FTIR command.

code The error code representing the success or
failure of the operation. This error code
Inmay be a standard PRIMOS file system error
code, Or may be an FIS-specific error code,

Setting Up for Modification: Before you call FTSSUB, initialize
user_cmdl and prog_cmdl to contain the user and program command lines,
Or pass Gonstant strings, as appropriate. These strings must contain
only options, as the source and destination pathnames cannot be
changed.

In addition, most applications will set prog_andl to the null string,
Since "background" option specifications are not normally needed during
a modify operation. Any options that are specified in prog_amdl will
be overridden by any identical options in user_andl.

Third Edition 17-12

FITS PROGRAMMING

The following options (and their abbreviations) cannot be specified in

either user_amdl or prog_andl, because their corresponding parameters

are not changeable.

—OCOPY _ =NO_COPY
—DSTN_SITE ~-QUEUE

—DSTN_FILE_TYPE —SRC_FILE_TYPE

—-HOLD ~SRC_SITE

If any of these options are present in user_andl or prog_andl during a

modify operation, an error code will be returned.

Error Recovery: If any problems occur during the modification

Operation, a non-zero value will be returned in code, and the operation

will not take place. Errors fall into one of the following several

categories. See also the section on Error Codes below for a

description of general error codes and those listed in the section on

Error Data Structure.

@ Illegal calling sequence. The arguments passed to- the

subroutine by the calling program are illegal. This can result

in the ESBPAR (Bad PARameter) error code being returned if

incorrect version numbers are supplied for the request or error

data structures, or if other arguments are not supplied as

specified in the above description.

e@ Unrecognized option (error code FSUNOP) or keyword (error code

FSBDKW) .

e@ Unable to modify specified parameters. The modify function

cannot be used to change certain parameters, described above in

the list of illegal options. The following error codes are

returned.

Code Meanin

FSQNMD Queue name may not be modified.

FSNCMD NO_COPY flag may not be modified.

FSCPMD COPY flag may not be modified.

FSSSMD Source site may not be modified.

FSDSMD Destination site may not be modified.

FSHDMD Hold flag may not be modified.

FSSFMD Source file type may not be modified.

FSDFMD Destination file type may not be modified.

17-13 Third Edition

DOC3710-193

If FITSSUB cannot locate the request with the request_name and
internal_name fields that were passed to it by the calling
program, it will return an error code of ESEOF (End of file).
Your program should not generate the "End of file" error message
after receiving the ESEOF error code from FTSSUB. Instead, it
should generate a message such as "Request not found". See the
section entitled Internal vs. External Names, below, for more
information.

e Insufficient access. If the request belongs to another user,
and the user calling FTSSUB is not logged in as user SYSTEM, the
error code FSNERF (No eligible request of this name found) is
returned,

@ Unable to modify the request. Two error codes may be returned
if the request is in a state that prevents it from being
modified. If the request is being processed, the error code
FSTRPR (Transfer in progress) will be returned. If the request
has been aborted, the error code FSRQAB (Request already

aborting) will be returned.

Example: The following example shows a simple use of FYSSUB for
request modification. No declarations are provided, as they are
described above and in the Subroutines Reference Guide.

call tnoua('Enter request name: ',20);
call cl$get (request_name,32,code);
if code“=0 then return;

call tnoua('Enter command line: ',20);
call cl$get (command_line,160,code);
if code*=0 then return;

internal_name='';
call ftSsub (f£Smdfy, request_name, internal_name, command_line,

met! "',0,nul1() ,0,null() ,0,code);
if code*=0 then return;

call tnoua('The modified request is #',25);
call tnou(internal_name, length (internal_name)) ;
return;

Changing the Status of a Transfer Request

To change the status of a transfer request, use the following calling
sequence,

call ftSsub (key, request_name, internal_name,'','','',queue,
user_query , addr (request_data) ,1,addr (error_data) ,l,
code) ;

Third Edition 17-14

FITS PROGRAMMING

The table below shows arguments passed to the FTS$SUB subroutine as

input parameters.

Input Arguments

key

request_name

internal_name

ur ep 8
v v

queue

user_query

addr (request_data) ,1

Meaning

This argument specifies one of four
operations to be performed on the request:
FSCANC to cancel; FSABRI to abort; FSHOLD
to hold; and FSRLSE to release.

This string contains the internal or

external name of the request to be operated

upon.

This argument contains a null string during

the initial call. During subsequent calls,
this argument contains either a null string

or the internal name of a request from which

point in the queue scanning is to start.
See the section entitled Internal

vs. External Names, below, for more

information.

Three null strings, for arguments that are

not used by FISSUB during a status change

operation. You must pass these arguments

exactly as shown, or FI$SUB will return an

error code of FSCLMN.

This string contains the name of the FIS

queue to search for the request. If all

queues are to be searched, pass the null

string in queue.

This argument specifies whether the
submitting user is to be queried or not.
Set this argument to FSUQRY (value 1) if the
user query through terminal I/O is to be
performed. Set this argument to FSNOQRY
(value 0) if no user query is to ke
performed. Currently, the setting of this

argument has no effect.

These arguments are a pointer to a

_

request

information structure (addr (request_data))

followed by the version number of that
structure (1). Although the pointer itself

is an input argument to FTSSUB, the
structure it points to is modified by FTSSUB
to reflect the results of the operation.

This structure is described fully in the
section The Request Data Structure, below.

17-15 Third Edition

DOC3710-193

addr (error_data) ,1

If you do not want to provide a request data
structure, specify the address and the
version number of the structure as null(),0.

Any other combination of settings for these
parameters will result in the error code
ESBPAR being returned.

These arguments are a pointer to an error
information structure (addr (error_data))

followed by the version number of that
structure (1). Although the pointer itself
is an input argument to FTISSUB, the
structure it points to is modified by FTSSUB
to provide extra information in case an
error occurs during the operation. ‘This
structure is described fully in the section
The Error Data Structure, below.

If you do not want to provide an error data
structure, specify the address and the
version number of the structure as null(),0.

Any other combination of settings for these
parameters will result in the error code
ESBPAR being returned.

The following are arguments whose values are modified by FTSSUB for use
by the calling program.

Output Arguments

internal_name

code

Third Edition

Meaning

The internal name of the affected request.
This value is returned only if the returned
error code is 0 or one of several possible
error codes described below. You’ should
Output this field to the user after the
Operation, as does the FIR command.

The error code representing the success or
failure of the operation. This error code
may be a standard PRIMOS file system error
code, or may be an FIS-specific error code.

17-16

FITS PROGRAMMING

Error Recovery: If any problems occur during the operation, a non-zero

Value WiLl be returned in code, and the operation will not take place.

These errors fall into one of several categories. See also the section

on Error Codes below for a description of general error codes.

Illegal calling sequence. The arguments passed to the

subroutine by the calling program are illegal. This can result

in the ESBPAR (Bad PARameter) error code being returned if

incorrect version numbers are supplied for the request or error

data structures, or if other arguments are not supplied as

specified in the above description.

Command lines not null. If your program does not pass null

strings as the fourth and fifth arguments to FISSUB, the error

code FSCLMN (Command Lines Must be Null) will be returned.

Unable to find specified request in data base. If FISSUB cannot

locate the request with the request_name and internal_name

fields that were passed to it by the calling program, it will

return an error code of ESEOF (End of file). Your program

should not generate the "End of file" error message after

receiving the ESEOF error code from FTSSUB. Instead, a message

such as "Request not found" should be generated. See the

section entitled Internal vs. External Names, below, for more

information.

Insufficient access. If the request belongs to another user,

and the user calling FTSSUB is not logged in as user SYSTEM, the

error code FSNERF (No eligible request of this name found) is

returned.

Unable to change the status of the request. Several error codes

may be returned if the request is in a state that prevents its

status from being changed. ‘These error codes are:

Code Meaning

FSTRPR Transfer in progress

FSRQHU Request already put on hold by user

FSRQHO Request already put on hold by operator

FSROQHF Request already put on hold by FIS

FSROAB Request already aborted

FSROQWT Request waiting

FSRHPR Request held by operator

17-17 Third Edition

DOC3710-193

The first five codes are self-explanatory. ‘The sixth code, FSROQWT, is
produced when an attempt is made to release a request that has not been
placed on hold. The last code, FSRHPR, is produced when an attempt is
made by a user not logged in as SYSTEM to release a request placed on
hold by an operator (user SYSTEM).

Example: The following example shows a simple use of FTSSUB for
Changing the status of a request. No declarations are provided, since
they are described above or in the Subroutines Reference Guide.

call tnoua('Enter request name: ',20);
call cl$get (request_name,32,code);
if code*=0 then return;

call tnou('Choose one of the following options:',36);
call tnou('',0);
call tnou(' 1. Cancel the request',24);
call tnou(' 2. Abort the request',23);
call tnou(' 3. Hold the request',22);
call tnou(' 4. Release the request',25);
call tnou(' 5. Exit this program',23);
call tnou('',0);
Call tnoua('Enter your choice: ',19);
call cl$get (command_line,160,code);
if code*=0 then return;

if command_line='1' then key=fScanc;
else if command_line='2' then key=fSabrt;
else if command_line='3' then key=fShold;
else if command_line='4' then key=fSrlse;
else if command_line='5' then return;
else do;

call tnou('Illegal response.',17);
code=eSiven; /* Invalid command. */
return;
end;

internal_name='';
call ft$sub(key, request_name, internal_name,'','','','',0,

null() ,0,null() ,0,code) ;
if code“=0 then return;

call tnoua('The affected request is #',25);
call tnou(internal_name, length (internal_name)) ;
return;

Third Edition 17-18

FITS PROGRAMMING

Status Retrieval of a Transfer Request

To retrieve the status of a particular transfer request, use the

following calling sequence.

call ftSsub (key , request_name, internal_name,'','','',queue,0,

addr (request_data) ,1,addr (error_data) ,1,code);

The information on the request will be returned in the request_data

structure, described below. The arguments below are passed to the

FTSSUB subroutine as input parameters.

Input Arguments

key

request_name

internal_name

et su ee
v r 70

queue

addr (request_data) ,1

Meaning

This argument specifies one of two forms of

status retrieval: FSSTAT to retrieve

complete status and parameter information on

a transfer request that belongs to the user

calling FTSSUB; and FSSTAL to retrieve

partial status and parameter information on

any transfer request on the system.

This string contains the internal or

external name of the target request.

This argument contains a null string during

the initial call. During subsequent calls,

this argument contains either a null string

or the internal name of a request from which

point in the queue scanning is to start.

See the section entitled Internal

vs. External Names, below, for more

information.

Three null strings and a 0 stand for

arguments that are not used by FISSUB during

a status retrieval operation. You must pass

these arguments exactly as shown, or FTSSUB
will return an error code of FSCLMN.

This string contains the name of the FIS

queue to search for the request. If all

queues are to be searched, pass the null

string in queue.

These arguments are a pointer to a_ request
information structure (addr (request_data))

followed by the version number of that

structure (1). Although the pointer itself

is an input argument to FTSSUB, the
structure it points to is modified by FTSSUB

to return the status information of the

request. This structure is described fully

17-19 Third Edition

DOC3710-193

addr (error_data) ,l

FTSSUB modifies the values
calling program.

Output Arguments

internal_name

code

Third Edition

in the section The Request Data Structure,
below.

Any other combination of settings for these
parameters will result in the error code
ESBPAR being returned.

These arguments are a pointer to an error
information structure (addr (error_data))

followed by the version number of that
structure (1). Although the pointer itself
is an input argument to FTSSUB, the
structure it points to is modified by FTSSUB
to provide extra information in case an
error occurs during the operation. This
structure is described fully in the section
The Error Data Structure, below.

If you do not want to provide an error data
Structure, specify the address and the
version number of the structure as null(),0.

Any other combination of settings for these
parameters will result in the error code

ESBPAR being returned.

of the arguments below for use by the

Meaning

The internal name of the target request.
This value is returned only if the returned
error code is 0. If your program is

retrieving status information for display
purposes, you should output this field to
the user along with other status and
parameter information, as does the FIR
command.

The error code representing the success or
failure of the operation. This error code
may be a standard PRIMOS file system error
code, or may be an FIS-specific error code.

17-20

ee

FTS PROGRAMMING

Error Recovery: If any problems occur during the status retrieval

Operation, a non-zero value will be returned in code, and the operation

will not take place. These errors fall into one of several categories.

See also the section on Error Codes below for a description of general

error codes.

Illegal calling sequence. The arguments passed to- the

subroutine by the calling program are illegal. This can result

in the ESBPAR (Bad PARameter) error code being returned if

incorrect version numbers are supplied for the request or error

data structures, or if other arguments are not supplied as

specified in the above description.

Command lines not null. If your program does not pass null

strings as the fourth and fifth arguments to FTSSUB, the error

code FSCLMN (Command Lines Must be Null) will be returned.

Unable to find specified request in data base. If FISSUB cannot

locate the request with the request_name and internal_name

fields passed to it by the calling program, it will return an

error code of ESEOF (End of file). Your program should not

generate the "End of file" error message after receiving the

ESEOF error code from FTSSUB. Instead, it should generate a

message such as "Request not found". See the section entitled

Internal vs. External Names, below, for more information.

Insufficient access. If the request belongs to another user,

and the user calling FI$SUB is not logged in as user SYSTEM, the

error code FSNERF (No eligible request of this name found) is

returned. This error code is returned only if key is FSSTAT.

Example: The following example shows a simple use of FTSSUB for

retrieving the status of a request. No declarations are provided, as

they are described above or in the Subroutines Reference Guide.

call tnoua('Enter request name: ',20);

call cl$get (request_name, 32 ,code);
if code*=0 then return;

internal_name='';
call ftSsub(f£$stat, request_name, internal_name,'','','','',0,

addr (request_data) ,1,nul1() ,0,code);

if code*=0 then return;

call tnoua('The request is #',25);
call tnou(internal_name, length (internal_name)) ;

call tnoua('Last attempt was '||request.last_date||' at ',29);

call tovfd$ (divide (request. last_time,60,15));

call tnoua(':',1);

if mod(request.last_time,60)<10 then call tnoua('0',1);

call tov£d$ (mod (request. last_time, 60));
call tnoua(', ',2);

17-21 Third Edition

DOC3710-193

if request.ntry=] then call tnou('one connection attempt.',23);
else do; /* if request.ntry“=l */

Call tovfdS(request.ntry);
call tnou(' connection attempts.',21);
end; /* if request.ntry“=] */

return;

Internal vs. External Names

For operations other than request submission, the FTSSUB subroutine is
designed to allow one operation on one file transfer request per
invocation. In some cases, you may want a calling program to perform
Operations over a set of transfer requests. Quite often, this set of
requests constitutes one of the following.

e@ All of the requests in the system

@ All of the requests that belong to the calling user

@ All of the requests that have a certain external name that
belong to the calling user

In each of these cases, FTSSUB provides a simple way of calling
programs to invoke it iteratively for all of the transfer requests in
the set. You do this by providing certain information to the calling
program upon the completion of an FTSSUB function that can then be
recycled by the program into another call to FTSSUB.

In addition, the calling program may further limit the set to only
those requests in a specific FITS queue, by providing a non-null queue
argument.

Calling Sequence Support for Iteration: In each of the calling
Sequences described for FTSSUB except for the submission calling
sequence, there are two arguments, request_name and internal_name.
These are the second and third arguments of the FTSSUB calling
sequence,

A request name can be the name of the file being transferred, which is
the request_name, or the number of the request that is provided by FTS.
The request number is the internal name of a request.

The request_name argument is an input-only argument. The calling
program must fill this field with an identifier of the transfer request
it is referencing. It can do this in one of three ways.

e@ By specifying the internal name of the transfer request. This
limits the search by FISSUB to a single request.

Third Edition 17-22

FITS PROGRAMMING

@ By specifying the external name of the transfer request. This

limits the search by FISSUB to requests with that external name.

e By specifying the null string. This places no limits on the

search by FTSSUB.

The internal_name argument is an input/output argument. It controls

the way the search for the transfer request specified in request_name

is conducted. Before calling FTSSUB, the calling program sets

internal_name to one of the following two character strings.

e ‘The null string. In this case, FISSUB will begin searching its

data base from the beginning of the queue. Before the initial

call to FTSSUB, internal_name must be the null string.

e The internal name of a transfer request. This is used only

after an initial call to FYTSSUB has taken place. This will

cause FTSSUB to begin searching its data base with the request

following the request having the specified internal name.

As an output argument, internal_name contains the internal name of the

first transfer request meeting the requirements imposed by

request_name, internal_name, and queue. However, if FTSSUB was unable

to find such a request, the error code ESEOF will be returned in code,

and the contents of internal_name will be null.

Therefore, the calling program can iteratively call FISSUB over a set

of file transfer requests, optionally limiting the set to include only

requests with a specified external name. It does this by:

e@ Using the external name or the null string for request_name.

@ Setting internal_name to the null string for the first call to

FTSSUB, and using the returned internal_name argument on

subsequent calls, until no more transfer requests are found.

The following table is an example of how this procedure might work ina

typical environment. Each line of the table shows the values of code,

internal_name, and request_name before a call to FTS$SUB. An imaginary

call to FTSSUB occurs between each line. Indeterminate or unimportant

values are indicated by —.

Code Internal Name Request Name

— ot "MEMO1!

0 "12' "MEMO_1'

0 "16" "MEMO_1'

ESEOF " _

17-23 Third Edition

DOC3710-193

In the above example, two requests with the external name MEMO_] were
returned to the calling program. The first request had the internal
name 12, and the second request had 16.

There are two further limitations that can be imposed on the set of
transfer requests returned by FTSSUB. First, the requests can be
limited to only those that belong to the calling user. This is
normally the case. However, the restriction is lifted if the key
parameter in the FTSSUB call is set to FSSTAL, or if the calling user
is SYSTEM.

Second, the set can be limited to only those requests in a certain FTS
queue, by specifying a non-null queue argument.

Details follow on how to write a program that loops over the sets
mentioned above.

Operating on All Requests on the System: To operate on all requests on
the system, uSing the FSSTAL key, for example, the calling program
follows this basic form:

/* Initialize the request_data.valid bit to start up the do-loop,
the found_request bit to indicate that no requests have been
found, and initialize the internal name to null. */

request_data.valid='1'b;
found_request='0'b;
internal_name='';

/* Loop over the set of all FITS requests on the system. */

do while (request_data.valid); /* While there are requests. */
call ftSsub(f$stal,'',internal_name,'','','','',0,

addr (request_data) ,1,null1() ,0,code) ;
if code=0

then do; /* If success, display the data. */
call display_request_data (request_data);
found_request='1'b; /* Remember we found a request. */
end; /* if code=0 */

end; /* do while (request_data.valid) */

if code=eSeof
then if “found_request then call tnou('No requests in system.',

22);
else if code=0 then call tnou('Program error, code=0.',22);

else call fts_error(code); /* Display error message. */

Notice that the second argument, regquest_name, is a null string. This
lifts the restriction that the returned requests all have a particular
external name. When FTSSUB returns a request, the calling program can
determine the external name of the request’ by examining
request_data.extnam, as described below.

Third Edition 17-24

FTS PROGRAMMING

Notice also that the program flow ignores errors returned from FTSSUB

as long as FTSSUB manages to return a validr est_data structure (as

indicated by request_data.valid being set to Ti'b). This is because

the program is simply outputting the status of all the requests on the

system, and is willing to ignore error conditions that do not interrupt

its scan for requests. (See the sections entitled Error Codes and The

Request Data Structure, below, for more information on the returned

error code and its relationship to the request_data structure.)

Operating on All Requests for the Calling User: To perform an

Operation on all requests that belong to the user calling FTSSUB, and

using the FSABRT key, for example, the calling program should have the

following form.

/* Initialize the request_data.valid bit to start up the do-loop,

the found_request bit to indicate that no requests have been

found, and initialize the internal name to null. */

request_data. valid='1'b;
found_request='0'b;
internal_name='';

/* Loop over the set of all FIS requests for this user. */

do while (request_data.valid); /* While there are requests. */

call ftSsub (fSabrt,'',internal_name,'','','','',0,

addr (request_data) ,1,nul1() ,0,code) ;

if code=0
then do; /* I£ success, display a message. */

call display_abort_message (request_data);

found_request='1'b; /* Remember we found a request. */

end; /* if code=0 */

else if code”=eSeof
then do; /* Error, print the error code. */

call fts_error(code); /* Do error message. */

if request_data.valid /* If the request data is
present, */

then call display_request_info(request_data);

/* Display summary information on request. */
end; /* if code“=eSeof */

end; /* if code”=0 */

end; /* do while (request_data. valid) */

if code=eSeof
then if *found_request then call tnou('No requests found. ',18);

else if code=0 then call tnou('Program error, code=0.',22);

Notice that the second argument, internal_name, is a null string. This

lifts the restriction that the returned requests all have a particular

external name. When FISSUB returns a request, the calling program can

determine the external name of the request’ by examining

request_data.extnam, aS described below.

17-25 Third Edition

DOC3710~-193

Also notice how the error code returned from FTSSUB is handled.
Information on the error code is always printed, but more descriptive
information on the offending request is displayed only if the request
information is present. In addition, the main do-loop continues as
long as a valid request was found, even if the abort operation itself
failed. This way, the entire FTS data base is scanned.

See the sections entitled Error Codes and The Request Data Structure,
below, for more information on the returned error code and its
relationship to the request_data structure.

Operating on All Requests With a Specific External Name: You can
perform an operation on all requests with a particular external name
that belong to the user calling FTSSUB. If you use the FSHOLD key, for
example, the calling program should have the following form.

/* Initialize the request_data.valid bit to start up the do-loop,
the found_request bit to indicate that no requests have been
found, and initialize the internal name to null. */

request_data.valid='1'b;
found_request='0'b;
internal_name='';
request_name='MEMO_TO_MARK' ;

/* Loop over the set of all FITS requests for this user. */

do while (request_data.valid); /* While there are requests. */
call ft$sub(fShold, request_name, internal_name,'','','','','1l'b,

addr (request_data) ,1,nul1() ,0,code);
if code=0

then do; /* If success, display a message. */
call display_hold_message (request_data);
found_request='1'b; /* Remember we found a request. */
end; /* if code=0 */

else if code”=eSeof
then do; /* Error, print the error code. */

call fts_error(code); /* Do error message. */
if request_data.valid /* If the request data is

present, */
then call display_request_info(request_data);
/* Display summary information on request. */

end; /* if code”=eSeof */
end; /* if code*=0 */

end; /* do while (request_data. valid) */

if code=eSeof
then if “found_request then call tnou('No requests found. ',18);
else if code=0 then call tnou('Program error, code=0.',22);

The second argument, request_name, contains the external name specified
- by the user. ‘This imposes the restriction that the returned requests
all have the external name request_name.

Third Edition 17-26

FTS PROGRAMMING

Also notice how the error code returned from FTS$SUB is handled.

Information on the error code is always printed, but more descriptive

information on the offending request is displayed only if the requested

information is present. In addition, the main do-loop continues as

long aS a valid request was found, even if the hold operation itself

failed. This way, the entire FTS data base is scanned.

See the sections entitled Error Codes and The Request Data Structure,

below, for more information on the returned error code and its

relationship to the request_data structure.

Error Codes

After a call to FTSSUB, the status of the call is returned in code. If

the returned value is nonzero, the requested operation was not

performed. However, some of the side effects of the call may have been

performed, depending on the actual value set in code.

For example, suppose a call is made to put a transfer request on hold,

and the specified request is already on hold. The returned

internal_name argument and the request_data structures will contain the

appropriate data for the specified transfer request, even though the

status of the request is not changed. This allows the calling program

to determine the present status of the specified request, and to

continue scanning for other requests.

In all cases, a non-zero error code is accompanied by valid information

in error_data. See the section below, entitled The Error Data

Structure for more information.

The list below contains error codes that may be returned by FTSSUB

during normal operation. Other error codes may be returned, but these

usually indicate an unusual circumstance, such as a disk error, Or

insufficient disk storage to submit a request. Error codes marked with

* indicate operations that failed but still return valid internal_name

and request_data values.

Code Meaning

ESBKEY Bad key in call.

ESEOF End of file.

ESBPAR Bad parameter.

FSARTL Argument too long.

FSINEX Invalid external name.

FSNERF No eligible request of this name found.

17-27 Third Edition

DOC3710-193

FSNRFD No request of this name found.

FSOMOP Only one management option allowed.

* FSTRPR Transfer in progress.

* FSRQHU Request already put on hold by user.

* FSROHO Request already put on hold by operator.

* FSROHF Request already put on hold by FITS.

* FSROAB Request already aborted.

* FSROWT Request waiting.

* FSRHPR Request held by operator.

FSQNMD Queue name may not be modified.

FSNCMD NO_OOPY flag may not be modified.

FSCPMD COPY flag may not be modified.

FSSSMD Source site may not be modified.

FSDSMD Destination site may not be modified.

FSHDMD HOLD flag may not be modified.

FSSFMD Source file type may not be modified.

FSDFMD Destination file type may not be modified.

FSCLMN Command lines must be null.

FSNWNA Networks unavailable.

QSNVDB ‘The FIS data base is invalid.

QSQNRD FTS not ready to use.

The Request Data Structure

When the regquest_data structure is provided during a call to FISSUB, it
is filled ih by FTSSUB to indicate the status and parameters of the
specified request. However, it is filled in only if the returned error
code is non-zero, or if it is one of the values described in the
section above.

. To simplify the process of determining the validity of request.data, a
valid bit is provided in the substructure request_data.flags. If this

Third Edition 17-28

FITS PROGRAMMING

bit is 'l'b, the entire request_data structure contains valid

information. Otherwise, the contents of request_data are not valid.

Note, however, that if the request_data structure was returned from

FTSSUB as a result of a call using the FSSTAL key (Status of all

requests), certain fields in request_data are set to null or zero

values by FISSUB before returning to the caller to prevent the FISSUB

caller getting access to other user's confidential information. These

i are:

log_file
site (Source_ptr)
site (destination_ptr)
user_pswd (source_ptr)
user_pswd (destination_ptr)
tree (source_ptr)
tree (destination_ptr)
file_pswd(source_ptr)
file_pswd(destination_ptr)
account_pswd (source_ptr)
account_pswd (destination_ptr)

device

The source ptr and destinationptr indexes are constant expressions

that you might find useful in your program. They are used to access

one of the two elements in several different arrays in request, data in

a mmemonic fashion. Use the following statement in your PLIG program

to set up source ptr and destination_ptr correctly.

replace source_ptr by l,
destination_ptr by 2;

The request_data structure and its corresponding version number are

designed to allow future changes to the structure contents, while

supporting programs that call FTS$SUB by using an earlier version of the

structure. This structure has the following declaration, known as

version l.

dcl 1 request_data based, /* Beginning of item entry. */

2 inumber bin, /* Internal use only. */

2 iorig bin, /* Internal use only. */

2 istatus bin, /* Status of item, see below. */

2 reserved bin(31), /* Reserved. */
2 userid char (32) var, /* User name. */

2 frnode char(32) var, /* Reserved. */

2 extnam char(32) var, /* External name for this request. */

2 tempfile char(32) var, /* Temporary file and internal name
for this request. */

2 idate char(8), /* Date this request queued (YYYYMMDD).*/

2 itime bin(31), /* Time this request queued (seconds after

midnight). */
netctl bin, /* Internal use only. */

N
O
N
O

version bin, /* Version number of request block (1). */

17-29 Third Edition

DOC3710-193

D
O
D
D
N
N

N
n

N
O

N
O
N
N
D

b
h
N
N
N
N
N
N

N
D

D
N

N
O
B
O
D
N
D

N
O
D
N
D

D
N
N
D

2
2

block_type bin, /* Type of request block.
0 = transfer request block. */

flags, /* General flag halfword. */
3 valid bit(l), /* True, '1l'b, if request block

. contains valid info, otherwise
set to false, '0'b. */

3 mbz bit(15), /* Pad flags to one halfword. */
last_date char(8), /* Date of last connect (YYYYMMDD).

Valid only if ntry>0.

last_time bin(31), /* Time of last connect (minutes). */
Valid only if ntry>0. */

ntry bin, /* Number of connection attempts. */
action bin, /* Transfer action code, see below. */
priority bin, /* Reserved. */
file_size bin(3l1), /* File size (bytes). */
defer, /* Reserved. */
3 time bin,
3 date char(8),
runby, /* Reserved. */
3 time bin,
3 date char(8),
runevery bin(3l1), /* Reserved. */
pad bit(5), /* Pad up to 16 bits. */
append bit(1), /* Reserved. */
file_exist bit(2), /* Required existence of output file. */
filetype bit(1), /* Binary = 'l'b, text = 'O'b. */
copy bit(1), /* Make copy of file = 'l'b. */
delete bit(1), /* Delete local source file after */

* transfer = 'l'b, */
defer_set bit(1), /* Reserved. */
runby_set bit(1), /* Reserved. */
runevery_set bit(1),/* Reserved. */
notify(2) bit(1), /* Source/dest user notify on = 'l'b, */
log_file char(128) var, /* User requested log file. */

Null if no file specified. */
msg_level bin, /* Message level for logging (1-4). */
site(2) char(128) var, /* Source/dest site addresses. */
site_type(2) bin, /* Site is Prime = 1, Other = 0. #*/
stream char (32) var, /* Name of request queue. */
user (2) char(32) var, /* Source/dest users. */
user_pswd(2) char(32) var, /* Reserved. */
tree(2) char(128) var, /* Source/dest file names. */
file_pswd(2) char(32) var, /* Source/dest file passwords. */
kinship(2) char(32) var, /* Source/dest file types.

SAM, DAM, SEGSAM, SBGDAM, */

mode (2) bin, /* Reserved, */
account (2) char (32) var, /* Reserved. */
account_pswd(2) char(32) var, /* Reserved. */
device char(32) var, /* Destination device, or null. */
tid bin, /* Reserved, */
response_gqueue char(32) var, /* Reserved. */
option char(255) var; /* Reserved. */

replace request_size by 825; /* Request_data size in halfwords */

Third Edition 17-30

FTS PROGRAMMING

Status of Item: ‘The value of istatus is set according to the following

table.

/* Request status values, - permitted values of request.istatus. */

greplace wait_rqstatus by 1; /* Waiting. */

replace busy_rqstatus by 2; /* In progress (transferring). */

treplace user_hold_rqstatus by 3; /* Held by user. */

replace operator_hold_rqstatus by 4; /* Held by FIS operator
(user SYSTEM). */

treplace user_abort_rqstatus by 5; /* Aborted by user. */

$replace fts_hold_rqstatus by 6; /* Held by FIS server. */

¢replace operator_abort_rqstatus by 7; /* Aborted by FIS operator
(user SYSTEM). */

File Transfer Action Code: The value of action is set according to the

following table.

/* Definition of the possible values for request.action */

replace null_action by 0; /* Initial value. */

treplace take_file_action by 1; /* File is being sent. */

¢replace give_file_action by 2; /* File is being fetched. */

$replace take_jobin_action by 3; /* Not used, */
$replace give_jobin_action by 4; /* Not used. */

greplace take_jobout_action by 5; /* File is being sent to a
device. */

treplace give_jobout_action by 6; /* Not used. */

The Error Data Structure

If a call to FTSSUB results in code being set to a non-zero value, then

you can peruse the error_data structure, if it is passed to FTSSUB, to

pinpoint the offending input. This is useful if the error code

indicates an error in one of the two command lines passed to FTSSUB,

user_amdl and prog.cmdl. Therefore, this structure is useful only when

FTSSUB is being used to submit or modify file transfer requests.

The following table shows error codes that indicate an error in

user_cmdl or prog_cmdl.

Code Meanin

FSARTL Argument too long.

FSBDCL Bad command line format.

FSBDDN Bad device name.

FSBDKW Unknown keyword.

17-31 Third Edition

DOC3710-193

FSBDSN

FSCNOP

FSCPLS

FSCPMD

FSDFMD

FSDFNS

FSDLLS

FSDRNA

FSDSMD

FSDSNC

FSDUIN

FSDUNS

FSDUOP

FSFPTL

FSHDMD

FSIDFT

FSIFDC

FSINMS

FSISFT

FSMCLP

FSMBNL

FSNCLS

FSNCMD

FSNDLS

FSNICF

FSOMOP

Third Edition

Bad site name format.

Conflicting option.

Copy option only applies to local source file.

Copy flag may not be modified.

Destination file may not be modified.

Destination file has not been specified.

Delete option only applies to local source file.

Device transfer from remote site not allowed.

Destination site may not be modified.

Destination site is not configured.

Destination user name invalid.

Destination user not specified when destination
requested.

Duplicate option.

Full pathname too long.

Hold flag may not be modified.

Invalid destination file type.

Illegal file or directory conversion.

Invalid message level.

Invalid source file type.

Missing command line parameter.

notify

Message level specified but request log treename omitted.

No copy option only applies to local source file.

No Copy flag may not be modified.

No delete option applies only to local source file.

Not configured.

Only one management option allowed.

17-32

FITS PROGRAMMING

FSPINS Segment dir. transfer to/from a Rev 1 site is not

supported.

FSPSFQ Passworded pathname must be fully qualified.

FSRTIS Remote treename incorrectly specified.

FSQNMD Queue name may not be modified.

FSRLST Request log treename same as source or target treename i!

FSSDSL Source or destination site must be local.

FSSFMD Source file type may not be modified.

FSSFNE Source file does not exist.

FSSFNS Source file nas not been specified.

FSSFTD Specified and actual source file types differ.

FSSSMD Source site may not be modified.

FSSSNC Source site is not configured.

FSSUIN Source user name invalid.

FSSUNS Source user not specified when source notify requested.

FSTDFN Transfer to a device as well as a file is not allowed.

FSTDNS Transferring a SEG directory to a DEVICE is not

supported.

FSTFNP Transferring a file to itself is not possible.

FSUNOP Unknown option.

However, to simplify programming, the error_data structure itself has a

bit that indicates the validity of its data. This is the valid bit.

It is set to '0'b by FISSUB whenever FISSUB is unable to fill the rest

of the structure with valid data. Otherwise, valid is set to 'l'b, and

the rest of the structure contains valid data.

Before calling FISSUB, your program should initialize start_ptr and

endptr to 0. FISSUB_ adds to these values the starting and ending

ocations in the command line of the offending option or keyword.

After FTSSUB returns a non-zero error code, if commline in the

error_data structure is non-zero, display the specified command line to

the user, and use the start_ptr and end_ptr values to indicate which

part of the command line was in error. If these values were

_ initialized to 0, then they will contain values between 1 and the

length of the offending command line, inclusive.

17-33 Third Edition

DOC3710-193

The error_data structure and its corresponding version number are
designed to allow future changes to the structure contents, while
Supporting programs that call FTSSUB by using an earlier version of the
Structure. This structure has the following declaration, known as
version l. |

dcl 1 error_data based,
2 valid bit(1), /* '1l'b if structure info valid, else '0'b. */
2 moz bit(15), /* Bit padding. */
2 version bin, /* Version number of buffer, must be l. */
2 errcode bin, /* Copy of FISSUB return code. kf
2 comm_line bin, /* 1 = Display program command line with ptrs.

2 = Display user command line with ptrs.
0 = Don't display any command lire. */

2 start_ptr bin, /* If comm_line “= 0, points to start of
area on command line causing the error. */

2 endptr bin, /* If comm_line “= 0, points to end of
area on command line causing the error.
FTSSUB adds to the value supplied to
it in start_ptr and end_ptr. */

2 text char(160) var, /* Optional explanatory text. */
2 proc char(32) var; /* Name of procedure detecting

the error. */

replace error_size by 104; /* Size of error_data in
16-bit halfwords. */

You can use the text and proc strings during a call to the system error
printing subroutine ERRPRS. They provide additional visual feedback on
the error, even if the problem was not in one of the command lines.

EXAMPLE

Here is a sample program using FTSSUB.

C ft$sub_test.£77. Submit a local file to FITS.
C

C This program reads the source filename, destination filename, and

C destination site from the user terminal, and then submits this
C request by calling FISSUB.
C

PROGRAM main
C
SINSERT SYSCOM>FTSSUB.INS. FIN
C

INTHGER*2 empty_string(17), /* for char*32 var
+ empty_stringl (129), /* for char*255 var
+ options (21) /* for char*40 var

Third Edition 17-34

FTS PROGRAMMING

INTHGER*2 int_name(17), int_length /* for char*32 var

CHARACTER*32 int_string
EQUIVALENCE (int_length, int_name(1)), (int_string, int_name(2))

INTHGER*2 cmd_line (41), cmd_length /* for char*80 var

CHARACTER*80 cmd_string

EQUIVALENCE (cmd_length,cmd_line(1)), (cmd_string, cmd_line (2))

C
C Define request block storage.
C

INTHGER*2 request_block(900)
C
C Define error block storage and structure.

C
INTHGER*2 error_data(104), /*Total size

+ e_valid,

+ e_text_len,
+ e_proc_len

CHARACTER*160 e_text
CHARACTER*32 e_proc
EQUIVALENCE (e_valid, error_data(1)),

(e_text_len, error_data(7)),

(e_text, error_data(8)),

(e_proc_len, error_data(88)),

(e_proc, error_data (89))+
+
+

INTHGER*2 return_code

COMMON /ALAN/empty_string,
empty_stringl,
options,
int_name,
cmd_line,
request_block,
error_datat

+
+
t
t
e
t

Initialize several FISSUB parameter strings.

CALL init_str(empty_string, empty_stringl, int_name, options)

Now get the user command line

CALL get_line (cmd_string, cmd_length)

Dispatch the request!

Q
a
A
a
A
N

Q
A
A
A
R
A
A
N
N

CALL FTSSUB(FSSUBM,
empty_string,
int_name,
cnd_line,
options,
empty_stringl,
empty_string,
FSNORY,t

+
+
e
e
t
e
t
+
+

17-35 Third Edition

DOC3710-193

+ LOC (request_block), 1,
+ LOC(error_data), l,
+ return_code)

If the submission wasOK, type out the internal name, otherwise
dump error message.

A
2
N
0
Q
N
Q

CALL TNOUA('Submitted as ', INIS(13))
CALL TNOU(int_string, int_length)

CALL TNOUA('Submission error code: ', INTS(23))
CALL TODEC (return_code)
CALL TONL

IF (AND(e_valid,:100000) .NE. 0) THEN
CALL TNOUA(e_text, e_text_len)
CALL TNOUA(' (', INTS(2))
CALL TNOUA(e_proc, e_proc_len)
CALL TNOU(') ', INTS(1))

ENDIF

CALL EXIT

END

C GET_LINE

C
SUBROUTINE get_line (string, length)

Cc

CHARACTER*80 string
INTHGER*2 length

C
C Get the source file, the destination file, and the destination site
C

PRINT 9000
READ (1,'(A80)') string
length = 80

Cc

9000 FORMAT ('Give srcfile, destfile, -ds destsite')
RETURN

END
C INIT_STR
C

C This routine initializes several FTSSUB parameter strings.
Cc

SUBROUTINE init_str(e, el, int, 0)
Cc

INTHGER*2 e(1), el(1), int(1), 0(1)
INTHGER*2 defopt (20) /* Max 40 chars

Cc
DATA defopt/'~log demo. log /

Cc
e(1) =0 /* Set null length
el(1) = 0
int(1) = 0

o(1) = 13 /* Actually used

Third Edition 17-36

= 1, 20
) = defopt (i)

17-37

FTS PROGRAMMING

Third Edition

PART VII

Operator’s Guide to PRIMENET

Monitoring

PRIMENET

and FETS

INTRODUCTION

PART VII of the PRIMENET Guide describes the system operator's

responsibilities to networking software. The following duties are

described briefly in this chapter and fully in the chapters listed

below.

@ Monitoring the PRIMENET* directory — in this chapter

e Adding remote disks -- in this chapter

e Starting and stopping PRIMENET — Chapter 19

@ Monitoring network servers — Chapter 20

@ Monitoring network events — Chapter 21

@ Monitoring FIS —- Chapter 22

@ Monitoring RINGNET —~- Chapter 23

This chapter contains information on files that are used in network

processing, as well as access rights those processes must have to use

those files in the PRIMENET* directory.

18-1 Third Edition

DOC3710-193

MONITORING THE PRIMENET* DIRECTORY

PRIMENET* is a top-level directory that must exist on the system disk
(defined by the OOMDEV directive in the system configuration file) at
system startup. This directory contains all files needed to run
PRIMENET, including network event-logging files and Remote File Access,
whose slaves use this directory.

As an operator, you are responsible for checking the PRIMENET*
directory periodically. To do so, use the ATTACH and LD commands to
list the directories on the supervisor terminal, or use the COMOUTPUT
command to write the directory listings to a file.

The following two sections describe what files exist in the PRIMENET*
directory, and what access rights should be provided for the various
network processes that use those files.

PRIMENET* Directory Files

The PRIMENET* directory must contain the following files and be
accessible to network servers in order for them to run properly.

e The network log file called NET_LOG.mj/dd/yy. This file is
generated by PRIMOS when network logging is turned on. The
PRINT_NETLOG and LOGPRT —-NET commands use this file to generate
an output log file in the current directory called NETLST. The
PRIMENET* directory must be present for logging to take place.

e@ A command file called SLAVE.COMI that initiates the startup of
slaves on the system.

@ The Route—-through run-time command file.

@ The NETWORK_SERVER.COMI and NETMAN. SAVE files, which are run at
system startup as part of the initialization of NEIMAN, the
network server process.

The following is a sample of the contents of a typical PRIMENET*
directory.

OK, LD

<BRANCH>PRIMENET* (DALURW access)

23 records in this directory, 23 total records out of quota of 10000.

4 Files,

NETMAN. SAVE NETWORK_SERVER. COMI NET_LOG. 01/17/84
SLAVE. COMI

-OK,

Third Edition 18-2

MONITORING PRIMENET AND FIS

Access Rights

NETMAN must have ALL access to the PRIMENET* directory, or the network

is not set up. In this case, NETMAN logs out, and the message "Network

Server logged out during network startup" is displayed at the

supervisor terminal. NETMAN also needs at least ALURW rights to the

PRIMENET* directory to write network events to the NETLOG log file.

RT_SERVER must have LUR rights to the PRIMENET* directory to access

files that control its activity.

The user-id SYSTEM should have ALL rights to the PRIMENET* directory,

since it is from this user-id that you control the network server

process. See the System Operator's Guide for more information on using

ACLs to assign access rights.

System Administrators and operators need LURWD rights in order to purge

or write to the network log file as well. All other users (SREST)

should have LUR rights to this directory.

ADDING REMOTE DISKS

The ADDISK command allows users to access

e Disks on the current system

@ Disks on remote systems (using the -ON option)

Usually, the ADDISK command is part of the system startup file. Any

ADDISK commands must follow the START_NET command because ADDISK

verifies that the remote node is configured before allowing you to add

disks for that remote system. The System Operator's Guide, Part Il

describes the ADDISK command.

NETWORK CONFIGURATION FILE

The network configuration file, which is generated by the global
configurator (CONFIG_NET), is generally kept in the PRIMENET*

directory. The name of the configuration file is PRIMENET.OONFIG.

The System Administrator should have read and write access rights to

the configuration file, since it is the Administrator that will be

updating the file when the network changes.

18-3 Third Edition

DOC3710-193

STARTING AND STOPPING PRIMENET

The following commands start and stop PRIMENET on a node without
disrupting local PRIMOS operation.

@ START_NET

@ STOP_NET

START_NET also starts the Route-through server.

MONITORING NETWORK SERVERS

Network servers are processes that ensure that PRIMENET is up and
running, allowing systems in a network to interact with one another.
The operator must monitor the following commmications servers with the
STATUS NETWORK and STATUS USERS commands.

e NETMAN

@ RT_SERVER

NETMAN is the PRIMENET server process that allows systems in a network
to communicate with one another. RI_SERVER is the Route-through server
that controls the virtual circuit gateways between indirectly connected
nodes in a network. (These indirect or next-hop nodes are configurable
with CONFIG_NET.)

MONITORING NETWORK EVENTS

Network events are listed in a file that lists various occurrences
between systems on a network. The following commands can be used to
monitor network events.

@ PRINT_NETLOG

@ LOGPRT -NET

They both generate the same output file, called NETLST. In order for
them to create this file, which lists network events over a period of
time, network event logging must be turned on through the NETREC CONFIG
directive,

Third Edition 18-4

MONITORING PRIMENET AND FIS

MONITORING FIS

FITS is the File Transfer Service, which includes a file transfer

utility (FIR) that can be used between Prime systems. This service

must be configured on each system on which it is being used. Operators

must control and monitor FITS through the following actions.

e Start the FITS Manager (YTSMAN).

e Start the FIS server.

e@ Make sure user requests are sent as swiftly as possible.

e@ Archive FTS log files from the FISQ* directory.

MONITORING RINGNET

RINCGNET is Prime's Local Area Network that connects Prime computers

through a PRIMENET Node Controller (PNC) and controls data throughput.

The following ring monitor programs gauge the system's accessibility

and activity on a ring network.

@ MONITORRING

e@ FINDRINGBREAK

MONITOR_RING displays network throughput and error statistics. It does

not monitor the signals on the ring itself; it monitors ring traffic

on the node that it is run on.

FIND_RING_BREAK shows you the location of breaks in the ring. ‘This

program works only for hardware breaks that cause complete signal

interruption on the ring. FIND_RING_BREAK can be useful when you use

it in conjunction with MONITOR_RING to determine a break.

18-5 Third Edition

Starting and

Stopping

PRIMENET

INTRODUCTION

The following commands allow an operator to add or remove a system from

a PRIMENET network without interrupting local PRIMOS system activity.

e@ START_NET

@ STOP_NET

Both of these commands are external PRIMOS commands; you invoke

STARTNET to bring up PRIMENET on a system and STOP_NET to shut down

PRIMENET on a system. You can only use these commands when you are

logged in as the user-id SYSTEM or from the supervisor's terminal.

Furthermore, START_NET must have READ access to the network

configuration file.

This chapter describes

e@ NET ON versus START_NET

@ What each command does

@ Command line format for each command

Error messages for START_NET and STOP_NET are described in Appendix D.

19-1 Third Edition

DOC3710-193

NET ON VERSUS START_NET

Prior to Rev. 19.3, the NET ON directive was used to start PRIMENET.
The START_NET command replaces this directive. The NET ON directive
can remain in the system configuration file, since it does not affect
network operation.

THE STARTNET COMMAND

Use START_NET to start PRIMENET on the system. START_NET determines
from the information in the global network configuration file where the
system is located in the network. The Route-through server is also
activated if the system has been configured as a gateway node to
indirectly-connected systems.

You can issue START_NET at any time. Normally, it is part of system
startup. You should place STARTNET at the beginning of the system

configuration file to allow the network enough time to initialize.
START_NET must precede any ADDISK commands because ADDISK checks to see
if a remote node is configured before letting you add disks for that
system. However, you can place the START_NET command either before or

after shared libraries.

INVOKING START_NET

The syntax of START_NET is:

START_NET -NODE nodename [config_pathname] —TRACING_NODE
—HELP

-NODE Specifies the name of the local node. An
incorrect node name causes conflicts to occur
when START_NET reads the network configuration
file.

config_pathname The pathname of the network configuration file.
If no pathname is given, the default pathname,
PRIMENET*>PRIMENET.CONFIG, is used.

~HELP Describes the complete syntax and options of the
START_NET command.

~TRACING_NODE Enables the trace option when the MONITOR_RING
program is used. See Chapter 23 for more
information on this program.

Third Edition 19-2

STARTING AND STOPPING PRIMENET

When STARTNET is invoked, an acknowledgement that the network

initialization is beginning and any indirect connections are displayed.

In the example below, pathname is the pathname of the configuration

file (usually PRIMENET*>PRIMENET.CONFIG), n is the revision number of

the file noted in pathname (n is incremented each time the file is

saved), nodename is the system on which START.NET is being run, and

indirect connection is the path between nodename and destination node.

Beginning Network Initialization
File: pathname Rev n
(Config_Net rev. 19.3)

*** Node: nodename ***
Indirect connection: <nodename>next-hop node>destination node

THE STOP_NET COMMAND

Use the STOP_NET command to shut down PRIMENET on the system and remove

it from the network. Invoking STOP_NET does not affect local activity.

STOP_NET does, however, disable network processes on the system. If

FTS is running, the System Administrator must perform the following

tasks before shutting down the network.

e@ Stop the file servers with the FIOP -STOP_SRVR command.

@ Stop the file manager (YTSMAN) with the FIOP -STOP_MNGR command.

e Issue the STOP_NET command.

Note

Before restarting the network, use the FIOP START_SRVR and FIOP

STARTMNGR commands to restart the FITS servers and manager.

The list below describes what happens on a node on which the STOP_NET

command is issued.

e@ Remote disks are shut down.

@ Open virtual circuits are cleared.

e@ NPX slaves go to sleep.

e The Route-through server logs out.

@ NETMAN logs out.

19-3 Third Edition

DOC3710-193

When a system is disconnecting from the network, remote users or
applications attempting to access it are notified. Messages that
appear for each type of remote access are listed below.

Remote file access users see the following message.

DISK HAS BEEN SHUT DOWN.

Remote users (logged in with the LOGIN -ON command) see the following
message.

HOST DOWN.

NETLINK users see the following message.

nodename DISCONNECTED (NETWORK SERVER LOGGED OUT).

The following events occur with IPCF users (applications). An
application with a virtual circuit established to the node on which
STOP_NET is invoked sees the circuit cleared, and the diagnostic code
CDSNSV returned. If the application has not established a virtual
circuit and is waiting for an incoming call, the diagnostic code XSSNET
is returned.

INVOKING STOP_NET

The syntax for STOP_NET is:

STOP_NET [-HELP]

The —HELP option describes the complete syntax of the STOP_NET command.

Third Edition 19-4

Monitoring

Network Servers

INTRODUCTION

As an operator, you monitor PRIMOS in various ways. Some of these

methods are described in the System Operator's Guide. This chapter

describes how to monitor network servers. It contains information

about.

@e The PRIMENET server, NETMAN.

e The Route-through server, RI_SERVER.

e The STATUS USERS command.

@ The STATUS NETWORK command.

NETMAN and RT_SERVER are phantom processes that are activated to handle

their corresponding functions, PRIMENET and Route-through. These

flmctions run from the PRIMENET* directory, which is described in

Chapter 18.

MONITORING THE NETWORK SERVER PROCESS (NETMAN)

The network server process is called NETMAN. NEIMAN appears on the

STATUS USERS list. An example of STATUS USERS is provided later in

this chapter.

20-1 Third Edition

DOC3710-193

NETMAN does not have to be registered in the user validation file.
However, NETMAN comes from the system pool of phantomprocesses, so
your system must have at least one phantom configured exclusively for
NETMAN's use. (Refer to the Network Planning and Administration Guide
for information on CONFIG directives related to networking.)

MONITORING THE ROUTE-THROUGH SERVER (RI_SERVER)

The Route-through server is a process that allows a system to act as a
"gateway" for communication between nodes that are not directly
connected or not on a ring. The Route-through server may be monitored
with the STATUS NEIWORK command.

You should assign the Route-through server, RI_SERVER, LURaccess
rights to the PRIMENET* directory.

Usually, the START_NET command starts the Route-through server, but in
Some instances, the command line must be typed by the system operator
at the supervisor terminal.

USING STATUS USERS

The STATUS USERS command lists all active processes, including the
network server processes, NETMAN and RT_SERVER. The following example
shows a STATUS USERS command. ‘The network servers have a line-id of
"nsp" (network server process) and "rts" (route-through server),
respectively.

OK, STATUS USERS

User No Line Devices
SYSTEM 1 asr <SYSDSK> AL077

STANDISH 2 0 <BRANCH>

ANTHONY 3 1 <BRANCH>

JONATHAN 4 2 <BRANCH> <LEAF>

MARY 6 4 <BRANCH> <LEAF>

NETMAN 85 nsp <BRANCH> <—
RT_SERVER 92 rts <BRANCH> <—

BATCHSERVICE 94 phant <BRANCH> (2)
BACKUP_SERVICE 95 phant <BRANCH> <LEAF> (0)
YTSMAN 98 phant <BRANCH>
FTP 99 phant <BRANCH>

OK,

Third Edition 20-2

USING STATUS NETWORK

MONITORING NETWORK SERVERS

The STATUS NETWORK command lists any system on which NETMAN and the

Route-through server are running. The following example shows a STATUS

NEIWORK command on the system OAK. This command also shows the

Route—through nodes, which PRIMENET uses to connect indirect nodes.

OK, STATUS NETWORK

OAK stat net

Full duplex network

Node State
OAK KKKK

—_ TELENET Up

Ring network

Node State
OAK kaKK

LINDEN Up
ASH Up
PINE Up

— MAPLE Up
FIR Down

Public data network

Node
EUROPA

Route-through network

—_ Node
VINE
BRANCH
LIMB

LADDER

/* A local RING network */

/* A PDN connected to the local network */

/* These are the gateway nodes */

20-3 Third Edition

21
Monitoring

Network Events

INTRODUCTION

PRIMOS provides you with an event logging mechanism that records

information about significant network events. The NETREC OONFIG

directive or the EVENT_LOG -NET command turn on the mechanism. Refer

to the Network Planning and Administration Guide for more information

on network-related configuration directives. The EVENT_LOG command is

described in the System Operator's Guide.

This chapter describes the following.

e@ The PRINT_NETLOG command

@e Network event types

@ Controlling the size of the NETLOG file

@ Network event messages

@ PRINT_NETLOG error messages

You can also specify new network event types with PRINT_NETLOG. See

the System Operator's Guide for more information on this.

21-1 Third Edition

DOC3710-193

THE PRINT_NETLOG COMMAND

The PRINT_NETLOG command is a newer version of LOGPRI, but only LOGPRT
can run under PRIMOS II. LOGPRT is described in the System Operator's
Guide. Both the PRINT_NETLOG and the LOGPRT commands generate output
from the NET_LOG file in a NETLST file. The following shows the
command format of the PRINT_NETLOG command.

PRINTNETLOG | foutput-fie! [options]
TTY

The default output file is NETLST. You can specify another filename.
If you specify TTY, output will be displayed on your terminal.

Note

A file unit is opened whenever event logging is turned on.

This file unit can be closed only if you turn event—logging
off. (The CLOSE command doesn't close it.)

You can specify any NETLOG file with the -INPUT option, which is
described below. If you do not include the -INPUT option on the
PRINT_NETLOG command line, PRINT_NETLOG uses the most recently created
NETLOG file in the PRIMENET* directory. If PRINT_NETLOG is unable to
find a network event log file, it prompts for an input file name. The
following options are available.

ion Description

~HELP Print a list of PRINT_NETLOG options. The
PRINT_NETLOG command must be retyped after
the options are printed.

~INPUT pathname Specifies the pathname of the input log

file to be processed. If this option is
not present on_ the command line,

PRINT_NETLOG will attempt to use the most

recently created network event log file, as
described above.

-FROM mmddyy [hhmm] Only entries from the specified date
TODAY to the latest entry are processed. Specify

TODAY instead of mmddyy to refer to today's
date. Following the date specification, an
optional time Specification of the form
hhmm (hours, minutes) may be entered. A
time entry may be between 0000 and 2359.
Omitting the time specification is
equivalent to specifying ‘0000'.

PRINT_NETLOG checks each entry individually
to see if its date/time stamp indicates

Third Edition 21-2

“TYPE type type ...

-SPOOL

—DELETE

—PURGE

—CENSUS

—CONTINUE

—DEBUG

MONITORING NETWORK EVENTS

that it should be formatted. An

out-of-sequence entry (for example, the

wrong date entered by the operator) will

not turn on entry formatting prematurely.

Process entries only of the indicated
types. Network types are described in the
next section.

The time and date stamps associated with

the selected entries will not be processed

unless TIMDAT is explicitly selected, for

example, if you type -TYPE diskname TIMDAT,
all disk errors and their associated time

and date stamps will be processed. If
TIMDAT alone is specified, all time/date

stamps will be processed. If TIMDAT is
specified in conjunction with one or more

other types, only the time/dates of the

selected types will be processed. If the

=TYPE option is not specified, all entries

will be processed.

Spool the output file when done.

PRINTNETLOG will print the name of the

output spool file.

Delete the output file when done. This

option should be specified only when the
-SPOOL option is also specified.

Empty, but do not delete, the event log

input file when event log processing is

complete. Write access is required on the

input file.

PRINTNETLOG totals the entries for each

event in the input file and writes the
totals to the output file or terminal.
Only non-zero totals are displayed.

Continue after a bad entry is found.
PRINTNETLOG will normally halt if an
invalid entry is encountered. If this
option is specified, PRINI_LNETLOG will

continue processing in an attempt to find

the next valid entry.

This option causes PRINT_NETLOG to read
entries from the terminal and can be used
for testing PRINT_NETLOG's formatting for

entry types. Each entry should be entered

asa series of tokens (using RDIKS$'s
rules). Octal tokens are converted to

21-3 Third Edition

DOC3710-193

binary; all others are taken as ASCII
strings. PRINT_NETLOG leaves this mode of
operation whenever a 'Q', 'g', or null line
is entered,

REMARK text Enter an event of type REMARK directly into
the input file. This can be used by an
Operator who wishes to record an
observation on some event that might affect

the subsequent operation of the network.
All text after the —REMARK option is taken
as the text to be entered into the input
file. Consequently, the -REMARK option
must be the last option specified on the
command line. The message can be up to 80
characters in length and need not. be
surrounded by apostrophes. Write access is
required on the input file.

—DUMP In addition to its normal formatting,
PRINT_NETLOG will dump each entry processed
in octal. This option is provided as an
additional aid to those who define their
own event types. Only those entries that
have been selected for processing are
dumped.

To display the contents of NET_LOG.mn/dd/yy, issue the PRINT_NETLOG
command. The following example shows how a sample NETLST log might
appear;

OK, PRINT_NETLOG TIY

PRINT_NETLOG REV 19.3

PRINT_NETLOG EVENT LOG FOR INPUT FILE <0>PRIMENET*>NET_LOG.11/10/83
14:31:32 THURSDAY NOVEMBER 10, 1983

00:00:08 THURSDAY NOVEMBER 10, 1983

COLD START - PRIMOS REV REV.19.3

RING NODE: 137 NOT ACCEPTING XMITS.
NODE NOT IN RING

LEVEL III PROTOCOL DOWN - RING NODE: 137

RING NODE: 34 NOT ACCEPTING XMITS.
NODE NOT IN RING

LEVEL III PROTOCOL DOWN - RING NODE: 34

Third Edition 21-4

MONITORING NETWORK EVENTS

00:00:40 THURSDAY NOVEMBER 10, 1983

RING NODE: 39 NOT ACCEPTING XMITIS.
NODE NOT IN RING ©

LEVEL III PROTOCOL DOWN - RING NODE: 39

00:10:40 THURSDAY NOVEMBER 10, 1983

NPX>TRNRCV MASTER'S CIRCUIT WAS CLEARED - NODE: 001003 (OCT)

VIRTUAL CIRCUIT STATE (1): 000004 (OCT), VIRTUAL CIRQUIT STATE (2)

000372 (OCT) (EVENT OCQURRED 4 TIMES)

TYPE NUMBER

COLD 2
TIMDAT 43
RESET 2
BADESQ 1
RING3 39
HOSTDN 42
NPXCLR 27
NPXCON 1

OK,

If you want to send the output to a printer instead of displaying it on

your terminal, issue the following command :

PRINT_NETLOG -SPOOL —DELETE

The output file will be created, spooled, and then deleted. To choose

an input file other than the most recent event log file, include the

-INPUT option followed by the pathname of the input file on the command

line, as follows:

PRINTNETLOG TTY -INPUT PRIMENET*>NET_LOG.11/20/83

Network event log files are located in the directory PRIMENET*.

21-5 Third Edition

DOC3710-193

NEIWORK EVENT TYPES

Third Edition

The following network types can be specified in the PRINT_NETLOG —TYPE
command.

BADENT Bad entry — not an entry

BADSEQ Packets out of sequence

COLD Cold starts

DIAPKT A diagnostic packet was received from a PDN

HOSTDN Level III protocols down

ICS1.0 (X.25) Line not defined

ICS1.1 (X.25) Deconfig code word not queued

ICS1.2 (X.25) Logical connection deleted

ICS1.3 (X.25) Could not delete logical connect

ICS1.4 (X.25) LCAD] not found in LGB

ICS1.5 (X.25) Logical connection lost

ICS1.6 (X.25) Flush timeout occurred

ICS1.7 (X.25) Illegal flush complete

ICS1.8 (X.25) Line not assigned

ICS1.9 (X.25) Unspecified error

INCREQ Incoming call request

LPE Local procedure errors

NETDMP NETDMP calls

NPXTHR NPX throttled on transmit/ receive

NPXRCV NPX unexpected receiver status

NPXCLR NPX master circuit was cleared

NPXSEQ NPX message out of sequence

NPXCON NPX unknown circuit status

NPXRLS NPX bad virtual circuit clearing

OUCREQ Outgoing call request

21-6

PWEAIL

RESET

RING]

RING2

RING3

RNGRCV

RNGHRD

RNGRES

RNGITMT

SHUTDN

SMLC1

SMLC2

SMLC3

SMLCA4

SMLC

TIMDAT

MONITORING NETWORK EVENTS

NETBUF overflow entries

Power fail checks

Operator remark

Circuit resets

Tokens inserted into the ring

Ring dims out of receive blocks

Ring nodes not accepting transmits

Spurious receive interrupt

PNC hardware failure

Resource failure on communication queues

Ring receive timeout

Operator shutdowns

SMLC/MDLC status errors

SMLC/MDLC -- no STX preceding ETX

No system blocks for SMLC/MDLC protocol messages

SMLC/MDLC resets and CMDR data is printed

A CMDR has been sent

Internal level 2 error

Time and date entries

Warm starts

CONTROLLING THE SIZE OF THE NETWORK EVENT LOG FILE

If the network event log is allowed to grow indefinitely, it can

consume large amounts of disk space. You can save space by doing the

the following.

e Put a quota on the PRIMENET*~ directory. (The System
Administrator's Guide tells you how to do this.)

@ Print out, then delete old log files at regular intervals.

21-7 Third Edition

DOC3710-193

NETWORK EVENT MESSAGES

This section describes each network event that is displayed in the
NETLST file, which is generated by both PRINT_NETLO and LOGPRT -NET.

@ BAD ENTRY: xxxxxx ... (OCT).

The program encountered an entry of unrecognized type or illegal

length. An octal dump of the entry is provided for the number of words
contained in the length field.

@ CMDR SENT FOR LOGICAL LINE

An X.25 command reject was sent. The three-octet data field showing
the cause is also displayed.

@ CIRCUIT RESET - a ORIGINATED - controller: xx

[CIRCUIT STATE: c (OCT) CAUSE: S DIAGNOSTIC: dddddd (OCT)]

A virtual circuit was reset. a indicates whether the origin of the
reset was local or remote. xx indicates physical line or node.
CIRCUIT STATE, CAUSE, and DIAGNOSTIC are only printed if a is REMOTE,
s may be: DTE RESET, OUT OF ORDER, REMOTE PROCEDURE ERROR, NETWORK
CONGESTION, or a word of octal data.

@ COLD START [- PRIMOS REV rr... |]

A cold start of PRIMOS was performed. The PRIMOS revision number is
indicated as well.

@ *** END OF filename ——- nnnnn ENTRIES, ppppp PROCESSED ***

This message is displayed when NETLOG reaches the end of the input
file. nnnnn displays the decimal number of entries in the input file
not including date and time and NETBUF overflow entries. ppppp
displays the number of entries processed.

@ ICS1.0 (X.25) LINE NOT DEFINED

@ ICSl.1 (X.25) DECONFIGURE CODE WORD NOT QUBUED FOR LOGICAL LINE

@ ICS1.2 (X.25) LOGICAL CONNECTION DELETED ON LOGICAL LINE

@ ICSl1.3 (X.25) LOGICAL OONNECTION NOT BROKEN, LOGICAL LINE

@e ICSl1.4 (X.25) LCAD]__ NOT FOUND IN LCB FOR LOGICAL LINE

‘@ ICS1.5 (X.25) LOGICAL CONNECTION LOST FOR LOGICAL LINE

Third Edition 21-8

MONITORING NETWORK EVENTS

@ ICS1.6 (X.25)

-

FLUSH TIMEOUT OCCURRED ON LOGICAL LINE

ILLEGAL FLUSH COMPLETE ON LOGICAL LINE@e ICS1.7 (X.25)

e ICS1.8 (X.25) SYNCHRONOUS LINE NOT ASSIGNED, LOGICAL LINE

e ICS1.9 (X.25) - UNIDENTIFIABLE ERROR ON LOGICAL LINE

These messages are displayed if you are having problems with your

Intelligent Communications Subsystem, Model I (ICSI). The X.25

notation is displayed only if you used the PRINT_NETLOG command.

@ INCOMING CALL REQUEST

An incoming call request was received.

e INTERNAL LEVEL 2 ERROR FOR LOGICAL LINE

A fatal, internal error occurred to level 2. ‘Two additional pieces of

information are "ERROR CODE = xxx " and "LINE OONTROL BLOCK

ADR = Xxxx ".

e Level 3 network received a diagnostic packet

The following information is always displayed. One of the first

two will be displayed depending on whether the second element in the

network event buffer is equal to or greater than zero.

- Data Network Identification Code (DNIC) of the PDN is:

~ This packet was sent by a DIE

- The controller number is: nnn

- The line number is: n

One of the following may also be displayed.

- No additional info, dcode is:

- Packet not allowed, dcode is:

- Packet on an unassigned Lchannel

- Packet too short, dcode is:

~ Invalid GFI, dcode is:

- Timer expired, dcode is:

- Timer expired for CLEAR INDICATION

21-9 Third Edition

DOC3710-193

- Timer expired for RESET INDICATION

- Timer expired for RESTART INDICATION

- The diagnostic code is:

After one of these is displayed, the phrase "Diagnostic explanation"
appears along with an octal string that represents an event in the
network event buffer.

e LEVEL III PROTOOOL DOWN controller: xx

The Level III protocol for X.25 is down for this host. xx indicates
physical line or node.

e LOCAL PROCEDURAL ERROR CAUSING CLEAR

- controller: xx

A local procedural error caused the clearing of a circuit in this host.
xx indicates physical line or node.

@ NETBUF OVERFLOW -—- nnnnn ENTRIES LOST

This indicates that nnnnn (decimal) event entries were lost due to

overflow of the network event logging buffer (NETBUF).

@ NETDMP CALLED AT: xxxxxx xxxxxx (OCT).

[DATA: yyyyyy yyyyyy yyyyyy (OCT)]

A network software problem has occurred at this address. The routine
NETDMP was called and asked to dump the three octal DATA words.

@ NPX>RSCALL>RSCONN UNKNOWN CIRCUIT STATUS - NODE: xxxxxx (OCT).
VIRTUAL CIRCUIT STATE (1): xxxxxx (OCT).
VIRTUAL CIRCUIT STATE (2): xxxxxx (OCT).

PRIMENET has returned an unexpected status (error) code to NPX. ‘This

may be caused by the failure of a node in a controlled or wncontrolled
way. A software failure was perhaps caused by a hardware failure.

@ NPX>RSRLS ERROR IN VIRTUAL CIRCUIT CLEARING - NODE: xxxxxx (OCT).
VIRTUAL CIRCUIT STATE (1): xxxxxx (OCT).
VIRTUAL CIRCUIT STATE (2): xxxxxx (OCT).

There waS a problem in clearing the virtual circuit (RSRLS). The
returned VC status word 2 is not one of the existing XSS$ status words.

Third Edition 21-10

MONITORING NETWORK EVENTS

@ NPXDTRNRCV MASTER'S CIRCUIT WAS CLEARED — NODE: xxxxxx (OCT).

VC STATE(1): xxxxxx (OCT). VC STATE(2): xxxxxx (OCT).

The connection between the master and the slave has been unexpectedly

broken. |

@ NPX>TRNRCV MESSAGE OUT OF SEQUENCE IN BOUNCE DETECT.
NODE: xxxxxx (OCT). MESSAGE SEQ#: xxxxxxx (OCT), NS: XXXXXxx

(OCT).

NPX break detection and correction logic found a message out of

sequence. NPX has failed, or data have been lost in the network,

@ NPX>TRNRCV THROTTLED ON TRANSMIT OR RECEIVE —-
NODE: xxxxxx (OCT), MASTER/SLAVE FLAG: xxxxxx (OCT).

Network buffers are too full to send or receive an NPX message.

e@ NPX>TRNRCV UNKNOWN RECEIVE STATUS - NODE: xxxxxx (OCT).

MASTER/SLAVE FLAG: xXxXxxxx (OCT). RECEIVE STATE: XXxXXxXx (OCT).

PRIMENET has returned an unanticipated status (error) code to NPX.

@ OUTGOING CALL REQUEST

An outgoing call request was transmitted.

@ PACKET OUT OF SEQUENCE - controller: xx CIRCUIT STATE: c

SEQ # EXPECTED: d SEQ # FOUND: e

A packet was received with an unexpected sequence number.

e@ PNC HARDWARE FAILURE

The following messages appear when you encounter a PRIMENET Node
Controller (PNC) hardware malfunction:

DMA FAILURE

NO SKIP ON INA

NO SKIP ON RECEIVE OTA

NO SKIP ON TRANSMIT OTA

21-11 Third Edition

DOC3710-193

There has been an apparent failure of the Prime Node Controller (PNC)
hardware that controls the ring. The device has been shut down, and
this node has removed itself from the ring. Hardware diagnostic tests
should be run on the PNC,

@ POWER FAIL CHECK

A power failure check has occurred.

@ RESOURCE FAILURE RING QUEUE OVERFLOW

The following messages occur when you encounter an overflow on the
ring.

DIM TO LEVEL II — RECEIVE PACKET LOST

LEVEL II to DIM - TRANSMIT PACKET LOST

LEVEL II TO DIM -— TIMER PACKET LOST

@ RING DIM OUT OF RECEIVE BLOCKS

The software controlling the Prime Node Controller (PNC) has been
handling enough traffic to temporarily exhaust the available supply of
buffers. If this event happens often, the system should be rebuilt
with more buffers to handle this network's message load.

@ RING NODE: node-number NOT ACCEPTING XMITS.

This event message means that one or more of the following occurred:

PACKET LOST, RING DOWN — A transmit cannot get to the specified
node.

PACKET WACKED, NODE HALTED OR CONGESTED — The specified node is in
the ring but it is unable to receive from the rest of the ring.

NODE NOT IN RING — The specified node has left the ring (the
network was taken down).

If the reason is not one of those above, the error message will print
out: TRANSMIT STATUS IS: xxxxxx (OCT). The octal content of the

transmit status word from the PNC is xxxxxx.

@ Ring node node-number Receive TIMEOUT - node down

This node has not received a packet from the specified node within the
, timeout period. The node is marked as DOWN in the STATUS USERS
command,

Third Edition 21-12

MONITORING NETWORK EVENTS

e RING QUEUE OVERFLOW: DIM TO LEVEL II — RECEIVE PACKET LOST

Or
LEVEL II TO DIM — TIMER PACKET LOST

Or
LEVEL II TO DIM — TRANSMIT PACKET LOST

One of the queues used to move packets to and from the Prime Node

Controller Device Interface Module (PNCDIM) has overflowed. Since the

queues are designed to be large enough to handle peak traffic numbers,

this message indicates a possible configuration problem. The packet

being queued is returned to the free pool and ignored.

e@ SHUTDOWN BY OPERATOR

The operator issued a SHUTDN ALL command. This causes the network

event log buffer to be automatically dumped.

@ SMLC —- NO STX PRECEEDING ETX. PHYSICAL LINE NUMBER = xXXxxxx (OCT) ,

DEVICE ADDRESS IS yyyyyy (OCT)

Packets sent on synchronous lines using BSC framing must begin with

DLE/STX and end with DLE/ETX.

@ SMLC RESET FOR LOGICAL LINE xxxxxx (OCT)

If the cause of this error was due to a command rejection, the CMDR

data fields are displayed. Resets can be caused in six ways:

INVALID ADDRESS

COMMAND REJECT

INVALID NR

INVALID RESPONSE

INVALID NR ON REJECT

MAXIMUM NUMBER OF RETRIES EXCEEDED

e SMLC STATUS ERROR STATUS WORD IS xxxxxx (OCT)

[PHYSICAL LINE # IS n]

DEVICE ADDRESS IS yyyyyy (OCT), [NUMBER OF OCCURRENCES IS nnn]

An invalid status, xxxxxx, has been reported by the SMLC/MDLC. nnn is

printed only on parity errors.

21-13 Third Edition

DOC3710-193

@ SPURIOUS RECEIVE INTERRUPT ON PNC

A receive interrupt was issued by the Prime Node Controller (PNC) when
no receive was pending. This indicates a hardware malfunction which
disconnects the PNC from the ring. Hardware diagnostic tests should be
run on the PNC,

e SYSTEM BLOCKS UNAVAILABLE FOR SMLC PROTOOOL MESSAGE
MESSAGE IS xxxxxx (OCT), LOGICAL LINE NUMBER IS yyyyyy (OCT)

The level II synchronous protocol had no buffers in which to send the
indicated type of protocol-generated message.

e "Text of operator remark"

Contents of the REMARK event, generated by use of the —REMARK option of
PRINT_NETLOG.

@ TOKEN INSERTED INTO THE RING NETWORK

The software controlling the PNC hardware issued a ring network control
token.

@ WARM START

A warm start of PRIMOS was performed.

PRINT_NETLOG ERROR MESSAGES

The following error messages may be displayed by PRINTNETLOG:

@ UNKNOWN CPU MODEL xx

A CPU model number was encountered with which PRINT_NETLOG is not
familiar. PRINT_NETLOG generates a warning message and continues

processing, treating the CPU model number as 0.

@ BAD ENTRY ENCOUNTERED IN FILE 'logfile'

The event log file logfile contains an entry that is not defined by
PRINT_NETLOG.

Third Edition 21-14

MONITORING NETWORK EVENTS

e DEFAULT INPUT FILE NAME NOT CONSTRUCTED

A file of the type NET_LOG.mm/dd/yy could not be found in PRIMENET* or

the top level directories did not exist or the user had insufficient

access.

@ INPUT LOGGING FILE filename NOT FOUND.
UFD <0>PRIMENET* CONTAINS LOGGING FILE FOR THE LATEST COLD START.

ENTER INPUT FILE NAME (ENTER CR TO QUIT):

You did not specify an input event file and PRINT_NETLOG cannot find a

file with a name of the format NET_LOG.mm/dd/yy. PRINT_NETLOG prompts

you for the input filename.

OK TO DELETE FILE filename? ANSWER: '‘'Y' OR 'N'!

The output from PRINT_NETLOG may be directed to a file or to the

terminal. If file output is desired, and PRINT_NETLOG finds that the

output file already exists, this message is printed. ‘The reply should

be 'y' to delete the file or 'N' to enter a new destination. If 'N' is

entered, the message below is displayed.

NEW OUTPUT FILE NAME:

Enter a pathname. If you don't, PRINT_NETLOG will continue to query

you with the preceding message sequence, asking if the existing output

file is to be deleted or what will be the name of the new output file.

Typing TTY sends output to the terminal.

e OUTPUT HAS BEEN PLACED IN FILE 'filename'

PRINTNETLOG has completed the processing of the event entries and all

other file manipulation that you requested. This message is generated

if output was directed to a file.

21-15 Third Edition

22
Monitoring FTS

INTRODUCTION

This chapter explains how to monitor and maintain FTS. It assumes that

FITS has been built, installed on the system, and then configured using

the FIGEN utility. (Your System Administrator should refer to the

Network Planning and Administration Guide for information on FIGEN.)

This chapter describes the following operator responsibilities.

Using the FIOP utility to start and stop FIS

Starting the File Transfer Manager (YTSMAN) with FIOP

Starting the file transfer servers with FIOP

Managing user requests with the FIR utility

Dealing with rush requests using FIGEN, FIR and FIOP

Monitoring the FISQ* directory

Monitoring and archiving FTS system log files

22-1 Third Edition

DOC3710-193

THE FTOP COMMAND

The FIOP command is the FTS utility that allows you, as an operator, to
start, stop, and monitor the operation of the file transfer Servers.
The FIOP command is available only if you are logged in as SYSTEM.

A server is a phantom process that handles file transfer requests for a
Single queue. Server processes must be started from the supervisor
terminal. Each server can simultaneously handle as many as eight
requests from a file request queue, of which there may be up to 9999.

The FTS manager phantom (YTSMAN) receives file transfer requests from

remote sites, and passes them to appropriate local servers.

The format of the FIOP command is:

FIOP [option]

If option is omitted, FIOP displays a summary of the available options.
Two options, -START_MNGR and —-STOP_MNGR, apply to the FIS manager
process, YISMAN. All other FIOP options apply to file transfer server

processes.

Summary of FIOP Options

The following list is a summary of FIOP options, which are fully
described in the following section.

ion Abbreviation Purpose

—-ABND_SRVR ~ASV Abandon an FIS server process

~ABRI_SRVR_LINK ~ASVL Abort an FTS server link

—HELP Displays information on FIOP

~LIST_SRVR_STS -LSVS List server status

~—START_MNGR —STRMG Start the FITS manager phantom
process (YTSMAN)

-START_SRVR -STRSV Start an FTS server jphantom
process

-STOP_MNGR —-STPMG Stop the FITS manager process

-STOP_SRVR —STPSV Stop an FITS server process

Third Edition 22-2

MONITORING FIS

FTOP Options

All the options to the FIOP command are presented below in alphabetical

order.

> -ABND_SRVR server-name

Abbreviation: -ASV

This option causes the specified file transfer server to immediately

abort all current file transfers, placing the requests on hold, and to

log out.

If the specified file server is not running, an error message results.

Note

The recommended way to stop a server is the -STOP_SRVR option.

We do not recommend forced log out of a server.

p> -ABRI_SRVR_LINK server-name]ink-number

Abbreviation: -ASVL

This option causes the specified file transfer server to abort the

current file transfer on the specified link, placing the request on

hold. ‘The server continues running; it does not log out.

Each file transfer server may handle up to eight concurrent file

transfers. To find the link number of an ongoing transfer, use the

following command.

FIOP —-LIST_SRVR_STS server-name

This command lists transfers, identifying each by its link number, in
the range 1 to 8. If the file transfer server you specified is not
running, or if the specified link is not active, an error message is

displayed.

Note

You can accomplish the same effect by using the FIR -ABORT
option. Use FIR -ABORT if you do not know the server name or
link number, but you do know the request name or number.

22-3 Third Edition

DOC3710-193

PB -HELP [subject]

This option displays information on the requested FIOP subject. To
obtain a list of subjects on which help is available, type either

OK, FIOP —HELP SUBJECTS

or simply,

OK, FIOP -HELP

To obtain an FIOP command usage display, type either

OK, FTOP —HELP USAGE

or simply,

OK, FTOP

p> -LIST_SRVR_STS [server—name]

Abbreviation: -LSVS

This option lists the status of the server you specified. It indicates
the state of the actual server, that is, whether it is running or not,

and lists the state of each of the eight possible file transfers that
the server may be running. Each transfer is identified by a link
number, in the range of 1 to 8. If no server name is specified, the
status of all the configured servers is listed.

For active server links, the pathname of the local file will ke
displayed, stripped of any passwords.

If local requests do a send operation, the pathname is the source file
pathname, and if the request is a get or fetch operation, the pathname
is the destination file pathname.

For requests initiated remotely, the display will be either the
pathname of the local file being fetched/sent or the device type (LP)
to which the remote file is being sent.

In addition, for both local and remote requests, the -LIST_SRVR_STS
command displays the following information.

@ Whether the file is being sent (S) or (fetched) (F).

e@ The remote site. This information is not always available to
the local server. In that case, 'REMOTE' is displayed.

e The start time of the file transfer, expressed in 'hh:mm'.

Third Edition 22-4

MONITORING FIS

Below is an example of the new display for local and remote requests:

Link. Request. Start time. Status. Remote site.

1 2 S 17:02 Active. BIRCH
Local file -— <TSTDSK>TEST>SEND_FILE1

2 3 S 17:04 Active. ELM
Local file -—- <TSTDSK>TEST>SEND_FILE2

3 4 F 17:05 Active. LINDEN

Local file —- <TSTDSK>TEST>FETCH_FILEL
4 5 S 17:01 Active. FIR

Local file -— <TSTDSK>TEST>SEND_FILE3
5 REMOTE S 16:55 Active. ASH

Local device - LP
6 REMOTE F 17:02 Active.- OAK

Local file —-— <TSTDSK>TEST>REMOTE_FETCH1

7 REMOTE §S 16:59 Active. PINE

Local file -— <TSTDSK>TEST>REMOTE_SEND1

8 REMOTE S 17:02 Active. WILLOW

Local file —- <TSTDSK>TEST>REMOTE_SEND2

> -START_MNGR [manager-name]

Abbreviation: -STRMNG

This option starts up the FITS manager phantom. The default manager

name is YTSMAN.

Note

The command FTOP -START_MNGR should be invoked only from the

supervisor terminal. Attempting to use this command from any

other terminal results in an error message.

You can add the command to start up the manager to the PRIMOS cold

start PRIMOS.COMI file. See the System Administrator's Guide for more

information.

BP -START_SRVR server-—name

Abbreviation: -STIRSV

This option starts up the specified file transfer server as a phantom.

If that server is already running, an error message is displayed.

22-5 Third Edition

DOC3710-193

The command FIOP -START_SRVR should be given only from the supervisor
terminal. Doing so insures that the server phantom will be created
with a username of the server and that the process priority and
timeslice will be automatically set in accordance with the
configuration of the server.

Invoking this option from a terminal other than the supervisor terminal
would result in the specified server not running under its proper
username and the server's configured priority and timeslice not being
set. The system defaults for these values would be assigned instead.

It is particularly important in an ACL environment that the server
phantom run with the configured server name, since users will have to
grant that particular server name appropriate access rights to their
directories to and from which files are to be transferred.

The invocation of this option from a terminal other than the supervisor
terminal would result in the specified server not running under its
proper user name and the server's configured priority and timeslice not
being set. The system defaults for these values would be assigned
instead,

You can add the commands to start up the required file transfer servers
to the PRIMOS cold start PRIMOS.COMI file. See the System
Administrator's Guide for more information.

BP -STOP_MNGR

Abbreviation: -STPMG

This command causes the FIS manager to complete its current work and
log out. If the manager is not running, an error message is printed.

Stopping the FITS manager prevents remote requests from being received
and serviced. If one or more transfer server phantoms are running,
then local requests are processed as usual. However ,
remotely~initiated transfers of files to and from the local site will
not succeed, since the FTS manager phantom will not be present to

receive these incoming calls from PRIMENET and pass them on to the
appropriate file transfer server. Such requests will be retried by the
remote file transfer server at 30-minute intervals.

B -STOP_SRVR server—name

Abbreviation: -STPSV

This option causes the specified file transfer server to complete the
file transfers that are currently in progress, and then log out. If
,the server is not running, an error message is displayed.

Third Edition 22-6

MONITORING FIS

This is the recommended way to close down an FIS server.

Even if a server is not running, users can still submit requests, which

are queued,

STARTING, STOPPING, AND MONITORING YISMAN

YTSMAN is the FITS default name for the FITS file manager phantom

process. You can provide another name with the START_MNGR command,

described below. You can monitor the FITS manager phantom process with

the STATUS USERS command.

YTSMAN receives file transfer requests from remote nodes and passes

them to the appropriate local file transfer servers. When running, it

maintains a command output file with the following pathname.

FTSQ*>YTSMAN. COMO

Both the FS manager and the FTS file server must be started from the

supervisor terminal. You can incorporate the following command into

the PRIMOS.COMI file so that the file transfer manager starts

automatically at each cold start.

FTOP -—START_MNGR [manager-name]

The FITS manager phantom maintains a command output file when it is

running. The command output file, FISQ*>YTSMAN. COMO, is generated by

the manager.

To stop the manager, type the following command at the supervisor

terminal.

FIOP —-STOP_MNGR

See the FIOP section earlier in the chapter for more information on

these FIOP manager commands.

STARTING, STOPPING, AND MONITORING FILE TRANSFER SERVERS

File transfer servers are the phantom processes that handle file

transfer requests. The System Administrator configures file transfer

servers and assigns server names.

File transfer servers are phantom processes. FITS server phantoms

maintain log files in the FISQ* directory while they are running. ‘The

names of these log files are configured using FIGEN, so list the

appropriate server configuration using FIGEN's LIST_SERVER command to

discover the log filename. Operators can monitor a command output file

. called FTSQ*>COMO.FTS>server-name, which is maintained by active FIs

server phantoms.

22-7 Third Edition

DOC3710-193

The operator uses the FIOP command to start, stop, and monitor the
Operation of the file transfer servers. FIOP is available only to the
Operator logged in as the user-id SYSTEM. FIOP command options are

fully described earlier in this chapter.

To start up an FITS server process, enter the following command.

FIOP -START_SRVR server_name

The above command is normally included in the PRIMOS.COMI file on your
system.

To obtain a list of all configured servers, including the status and
user number of each server, enter the following command.

FIOP —LIST_SRVR_STS

A few minutes before shutting down the system, the FITS. servers’ should
be told to shut down as soon as they complete any transfers in

progress. To do this, enter the following command for each running FITS
server. (You must be logged in as SYSTEM.)

FTOP -STOP_SRVR server_name

Stopping the servers in this manner ensures that all transfers
currently in progress will be successfully completed before the log
out.

As each server shuts down, it sends a message to the supervisor
terminal.

Sometimes, it may be necessary to immediately shut down the FIS
servers, even if they are currently transferring files. This is known
as "abandoning" the FITS servers. When an FITS server is abandoned, it
places any file transfers it is currently processing on hold in the
queue, so that they can be started up again later. It then logs itself
out. To abandon an FITS server, enter the following command while you
are logged in as SYSTEM,

FTOP —ABND_SRVR server_name

Note

When the local FITS server and YTSMAN are not running, local
users may still queue requests with FIR.

Third Edition 22-8

MONITORING FIS

MANAGING AND MONITORING USER REQUESTS

While it is the responsibility of users to track their own requests,

you should check the general status of requests with the FIR

-STATUS_ALL option. You should watch for requests that have been

repeated many times or that have been put on HOLD for a long period of

time with either the above command or with the FIR -DISPLAY command

option.

Typical causes for problems with file transfer requests are:

@ Network congestion.

e The remote site is down.

e The remote server or manager has not been started.

One example of an FIR management option is to abort a request that is

already in progress. To do this, enter the following FIR management

command.

FIR -ABORT request—name

The specified request will be put on hold. Later, when you are ready

to release the request and allow the transfer to take place, enter this

command.

FIR ~RELEASE request—name

Other FTR management options that you can use to control user requests

are described in Chapter 6.

RUSH REQUESTS

If you want to rush the transfer of a particular request, you need to

use a combination of the FIGEN, FIOP, and FIR commands. See the

Network Planning and Administration Guide for more information on the

FIGEN command. New requests queued during this procedure are not held.
If this causes all free server links to be used up, use the following
procedure.

1. Block the file transfer queue on which the rush request(s) are
queued. Use the FIGEN BLOCK_QUEUE command to prevent other

requests from being added to the queue.

2. Use the FIR -HOLD command to suspend all waiting requests.

3. Use the FIOP -LIST_SRVR_STS command to discover if there are
sufficient free server links available, out of the maximum of

eight, to process the request(s) you want to rush.

22-9 Third Edition

DOC3710-193

4, If necessary, use the FIOP -ABRI_SRVR_LINK command to put
requests on hold. This frees the server links of currently
transferring files.

5. Use the FIR -RELEASE command to release the rush request(s).

6. When all rush requests have been completed, use the FIR
-RELEASE command to release all requests you had put on hold.

7. Finally, use the FIGEN UNBLOCK_QUEUE command to allow new
submissions of file transfer requests to previously blocked
queues.

Note

Normally, you might need only the -—HOLD and -RELEASE commands.
The steps required depend on the activity of the FIS server
when you want to rush one or more requests,

MONITORING THE FTSQ* DIRECTORY

The FTSQ* directory holds copies of user files that are to he
transferred as well as FYTS log files. You should make sure there is
adequate disk space available to accommodate these copies. Use the

LISTQUOTA and AVAIL commands, described in the System Operator's
Guide, Volume II, for information on monitoring disk space utilization.

MONTTORING AND ARCHIVING FIS LOG FILES

FTS log files are maintained in the FISQ* directory. The file names
are specified by the System Administrator as part of the FIs
configuration. Server log files record all events for incoming and
outgoing file transfers, and can be useful in providing a record of FITS
usage when you are tracking the progress of a particular request. You
should examine the server log daily to check the status of FITS. this
can be done simply by using an editor like ED to locate the current
date in the file, and then locating RESULT. The operator can use ED's
X command to repeat the LOCATE RESULT command line.

Third Edition 22-10

MONTTORING FITS

For example:

OK, ED FISQ*>FTP. LOG

EDIT
L DECEMBER 1

00.00.18: [1.1] Request MEMO (53) started Thursday December 1, 1983
L RESULT

00.00.19: [1.1] RESULT: Transfer Aborted : Out of order.
X

9.31.59: [2.1] RESULT: Transfer Rejected: File not available.
X

9.32.50: [2.1] RESULT: Transfer Rejected: Problem with remote file.

»

9.38.08: [4.1] RESULT: Transfer Terminated: Satisfactory and Complete.

Log files are not limited in size, and should thus be regularly

archived so that the FISQ* directory does not become full.

STOPPING FIS

Before a STOP_NET command is given, you must stop FITS by using the FTOP

-STOP_SRVR and the FIOP -STOP_MNGR commands to shut down the file

servers and the file manager (YTSMAN). Once the servers and the

manager have stopped, then the STOP_NET command can be used.

Once the network has been started again with the START_NET command, you

can restart the servers and the manager with the FTOP START_SRVR and

FTOP START_MNGR commands.

22-11 Third Edition

Monitoring

RINGNET

RING DIAGNOSTIC PROGRAMS

Two programs let you see what is happening in RINGNET. The first

program, MONITOR_RING, gathers and displays error statistics

throughput. The second program, FIND_RING_BREAK, shows you the

location of a break in the ring.

The first part of this chapter describes how RINGNET operates. The

second part of the chapter explains the MONITORRING program, how to

use it, and how to interpret its statistics. The remainder of the

chapter similarly describes the FIND_RING_BREAK program.

RINGNET OVERVIEW

This section describes the following subjects.

@ RINGNET hardware

e@ RINGNET terminology

e@ How RINGNET works

You should also read Chapter 10, which describes PRIMENET architecture,

before you use the ring diagnostic programs.

23-1 Third Edition

DOC3710-193

RINGNET Hardware

RINGNET is Prime's Local Area Network (LAN), which consists of nodes
connected through a high-speed, one-way, serial-synchronous twin-axial
cable. |

Fach node in a ring network is equipped with

e@ A PRIMENET Node Controller (PNC) board, which controls the ring

protocol and the flow of data between ring nodes,

e A junction box, which connects the twin-axial cable to the
computer. The junction box has a passive relay that switches to
"pass-through" if it detects a power failure on the PNC. This
preserves a ring's integrity. _

Each PNC acts as an active data repeater for packets between other ring
nodes. In other words, a PNC transceives all packets passing through
it.

RINGNET Terminology

The following glossary presents some RINGNET software and hardware
terminology that is used in this chapter.

ACK byte This byte is in the trailer portion of the
data packet and is set by the PNC of the
receiving node to indicate that the message
was successfully received. It can also be
set to indicate invalid data by any active
PNC (refer to the definition of parity check
below).

active data repeater A device that amplifies a signal; the PNC is
an active data repeater because it
transceives packets automatically.

bit An acronym for binary digit: There are eight
bits to a byte.

byte Eight bits of data.

data field The portion of the data package that contains
the actual data in protocol format.

CRC Circular Redundancy Check. Acheck performed
by a PNC on every data packet it transceives.
If a packet fails this test, the PNC sets the
ACK byte accordingly.

Third Edition 23-2

event

header

LAN

leading frame

Level 1

Level 2

Level 3

node

packet, broadcast

packet, data

parity bit

MONITORING RINGNET

A significant system or network occurrence

such as a cold start, machine check, disk

error, and network link problems.

The portion of a data packet that contains

information such as the ids of the target and

sending node or packet type.

Local Area Network. A method of linking a

group of independent computer systems.

A bit pattern that tells the PNC that a data

packet follows.

PRIMENET's hardware interface. This level

(or layer) acts as an intermediary between

the physical transmission medium (twin-axial

cable or transmission line) and Level 2.

PRIMENET's link protocol level. It describes

a protocol for linked systems to adhere to

when transferring data between themselves.

PRIMENET's packet interface. It creates and

controls connections across the network,

handles error recovery, and controls the flow

of information.

A log file that records network events. The

PRINTNETLOG command produces a copy of this

file.

An independent computer system that is part

of a network.

A 10-byte packet periodically sent by a node

that contains the node's ring id; this

packet is received by all active PNCs.

A package that contains packet protocol and

data. It consists of a leading frame,
header, a data field, anda trailing frame.

The size of the data packet can be set by the

System Configurator through OCONFIG_NET.

A bit whose value indicates whether an ACK is

good or corrupt. On the ring, this bit is

contained in the ACK byte and is set by the

PNC.

23-3 Third Edition

DOC3710-193

parity check

PNC

PNCDIM

RINGNET

ring node id

trailer

trailing frame

transceive

A check performed by the PNC to determine if
the ACK byte for a data packet is good or
corrupt. The PNC sets the parity bit in the
ACK byte accordingly.

The PRIMENET Node Controller. PRIMENET
hardware that controls ring protocol and the
flow of data between nodes on a ring.

The PNC Interface (software) Module.

Prime's Local Area Network.

A number from 1 to 247 that identifies, and
is unique to, a particular node.

The portion of the ring packet that contains
information such as the ACK byte and the
trailing frame.

A special bit pattern that tells the PNC that
the end of the data packet has been reached.

To receive and transmit data simultaneously.
The PNC is a transceiver that uses a 4-bit
time delay between reception and transmission
of data.

The following terms are used to described conditions on a ring.

inserted token

lost token

multiply accepted

node is down

Third Edition

If a token is lost, an active node inserts a
token into the ring to allow commmication
between nodes to continue uninterrupted.

Infrequently, a token is lost because of
interference or noise on the ring, usually
from a node entering or leaving the ring.

A node has transmitted a packet and has had
more than one node accept it. Because node
ids are unique, this should not occur.

Negative Acknowledgement. Indicates that a
data packet failed CRC, or an ACK byte did
not pass parity checking. When the node that
sent the packet receives the NAK,_ it

retransmits the data.

When node A has never heard from or cannot

transmit to node B, node B_ is considered

down.

23-4

node is up

NON ACKNOWLEDGED

NOT RETURNED

time out

token recovery

WACK

WACK linked list

How RINGNET Works

MONTTORING RINGNET

- When node A can receive from node B, node B

is up.

A packet sent by the transmitting node
returns with the ACK byte unchanged. This
indicates that the target node is not
Physically in the ring. No attempt is made
to retransmit.

The transmitting node sees a token before it
sees the packet it sent; this is an
indication of corrupt data. The node
retransmits the data when this occurs.

The transmitting node saw neither a token nor
the packet within a certain time period. ‘The
ring may be broken or going through token
recovery. The node waits for a token and
retransmits the packet. If a second time out
occurs for the same packet, no_- further
attempt to retransmit is made.

The mechanism PRIMENET uses to replace a lost
token.

Wait Acknowledge. The receiving node
"acknowledges" the packet, but does not have
a buffer free to receive it. The
transmitting node retransmits the packet.

A linked list of WACKed packets in node
number sequence (in time sequence within a
node number). The PNCDIM maintains this list
and attempts to deliver these packets a set
number of times before marking the receiving
node as down and aborting the packets.

RINGNET uses a token ring protocol. A special bit pattern called a
token circulates counterclockwise continuously around the ring. A node
cannot transmit data until it detects the token. When a node is
prepared to transmit data and detects the token, the PNC

e Strips the token from the ring

@ Issues a packet containing a 4-byte header and from 4 to 2044
bytes of data

@ Immediately returns the token to the ring behind the packet

23-5 Third Edition

DOC3710-193

The packet circulates around the ring, at a data rate of eight megabits
per second, to the destination node. As it passes through the PNCs of
other nodes, each PNC performs a CRC and parity check to verify the
integrity of the data. The PNC sets the ACK byte accordingly if there
has been an error.

The packet arrives at the destination PNC, which does the following:

@ It checks the header to find out if it is the destination node.

@ It performs a CRC and parity check.

e It sets the ACK byte to indicate whether the data packet is good

or corrupt. (If the data packet is corrupt, the ACK byte is set
accordingly, and the packet is not accepted; it is returned to
the transmitting node.)

e@ It accepts the packet (if the data packet is good) into a
receive buffer while it is transmitting it in the ring.

e It notifies upper level software that a packet has been
received.

The packet travels around the rest of the ring back to the source PNC,
which

@ Removes the packet from the ring

@e Passes on the token

e@e Checks the acknowledgement flag

e Interrupts the source operating system to signal transmission
completion

THE MONITOR_RING PROGRAM

The MONITOR_RING program gathers and displays statistics about
communication on the ring. It does not monitor the signals on the ring
itself; it monitors ring traffic on the node from which you run it.

You examine this information through the use of three screens: the
Basic Display, Error Display, and Trace Display. The Basic Display
monitors the normal functioning of the node; it monitors packets,
bytes, and broadcast packets received and transmitted. It offers an
updated display at configurable intervals. The Error and Trace
Displays are detailed snapshots; they elaborate on the data in the
Basic Display. The Basic Display monitors the normal functioning of
the node.

Third Edition 23-6

MONITORING RINGNET

By using the monitor, you can determine if the ring is working

properly, if a situation exists that requires further analysis, or if

the ring is malfunctioning. The monitor also gathers statistics on

transient errors.

This section explains how to invoke MONITOR_RING and how to select the

different displays. The section INTERPRETING RING STATISTICS describes

the displays in detail and offers advice and guidance on interpreting

the information.

Invoking the MONITORRING Program

The options with MONITOR_RING are listed and described briefly below.

MONITOR_RING [options]

—HELP This option displays the syntax and a

-H summary of options.

-TTP type Use this option to specify the terminal

type. Choices are NO (no terminal output),

FOX, OWL, TTY (any scroll mode terminal) ,

pT45, PSTLOO. ‘The default is PST100.

~FREQ f Choose the number of seconds’ between

updates of the Basic Display counters. The

number must be an integer. The default is

two seconds.

-TIMES n If you wish to update the Basic Display

-TI counters only a specific number of times,

use this option. Otherwise, MONITOR_RING

obtains data samples every £ seconds for as
long as you run the program.

—RESET_DAY This option resets all counts at midnight.

-RD The default is no reset. All counts are

carried forward.

—~RESET_HOUR This option resets peak and cumulative

—RH counts on the hour. ‘The default is no

—-REPORT m filename
~-RPT

reset. All counts are carried forward

throughout the duration of the program.

Use this option to write the dynamic data

to file "filename" each minutes. The

default is that no file is written. You

must specify a value for m. An example of

this file appears later in this chapter.

23-7 Third Edition

DOC3710-193

-INPUT filename This option instructs the program to take
-I input from file filename instead of using

dynamic data. The default is the program
taking the data dynamically.

-TRACE This option includes inter-node data in the

Selecting MONITOR_RING Displays

Once in MONITOR_RING, you can move easily among the three displays by
using the seven single-key commands listed below.

Command Result

B Displays the dynamic Basic Display

E Displays the static Error Display

F Freezes the display

H Displays an explanation of the single’ key
commands

Q Exits from the program and returns you to

PRIMOS

RETURN Advances to the next Trace Display

T Displays the first Trace Display

If the F key is pressed, the display is frozen indefinitely. You can
re-invoke the B command to refresh the display.

Third Edition 23-8

MONITORING RINGNET

INTERPRETING RING STATISTICS

MONITOR_RING offers you three different ways to examine RINGNET

information. The Basic Display is shown in Figure 23-1.

The remaining two displays, the Error Display and the Trace Display,

provide greater detail about a particular event or aspect of ring

activity. This section describes each of the displays, the type of

data shown, and how to interpret the data.

MONITOR_RING Version 1.0
Node: (nnn) MMM DD YYYY HH:MM:SS Freq (f) Start HH:MM:SS

Period Peak Period Cumulative Total

Packets Transmitted XXXXXXXXXX XKXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Packets Received XXXXXXXXKXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Bytes Transmitted XXXXXXXXKX XXXXXKXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Bytes Received XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXKXX XXXXXXXXXX

Inserted Tokens XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXKXKXXXXXX

Receive Errors XXXXKXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXKX

Transmit Errors XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Multiply Accepted XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Multiple Tokens XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Wacked Transmits XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXKXXXXX
Aborted Transmits XXXXXXXXXX XXXXXXXXXX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Non Returned PacketS xXXXxXXXXXX XXXXXXxXxXxXX HH:MM:SS xXXXXXXKXXXX XXXXXXXXXX
Non Acknowledged XXXXXXXXXX XXXXXXXXxX HH:MM:SS XXXXXXXXXX XXXXXXXXXX

Broadcast Transmitted xxxxxxxxxX XXXXXXxxXXxX HH:MM:SS XXXXXXXXKX XXXXXXXXXX
Broadcast Received XXXXXXXXXX XXXXXXXXXX HH:MM:SS #$XXXXXXXXXX XXXXXXXXXX

nnn The node name of the local node
MMM DD YYYY Month, day, and year of the data displayed

HH:MM:SS
£ The frequency of update in seconds
XXXXXXXXXX An mdigit counter

Basic Screen

Figure 23-1

The time of day in hours, minutes, and seconds

Third Edition

DOC3710-193

Basic Display

The Basic Display shows statistics for every data and control packet
sent or received, shows the amount of activity on the node, and
indicates the status of the ring and node. The first line of the
display identifies the program and the version. The second line
displays the following information.

Freq f

Start HH:MM:SS

Meaning

The node on which the program is (or was)
running.

The date and time of the most recent sample. If
the data are being read from a file by use of the
~REPORT option, the display shows the time at
which the data were collected.

The frequency at which the data are collected
(set by the -FREQ option). If the data are being
read from a file, this tells what f was set at.

The time RING_MONITOR was started.

The third line describes the contents of the four vertical columns.

Heading

Period

Peak Period

Cumulative

Total

Third Edition

Meaning

The count for the last period of length f. If
dynamic data are being collected, then this
column will be refreshed every f£ seconds.

The maximum count that has occurred within any
period since monitoring began. The period is
defined by the value of Freq f. For example, if
Freq £ is 2, then the value shown for each field
represents the highest count that occurred during
a two second period while the program was
running. The time stamp to the right of the
count indicates when this peak count occurred.

The total of the counts since the start of the
program. If the option -—RESET_HOUR is
functioning, then this column shows the totals
accumulated since the beginning of the hour.

The grand totals since the network was. started
Since the last START_NET command. If the option
—-RESET_DAY is specified, then the grand totals

from midnight are shown.

23-10

MONITORING RINGNET

The leftmost column of the Basic Display tells what fields are being

sampled. Table 23-1 summarizes the function of each of these fields,

and detailed descriptions follow.

Table 23-1
Fields in the Basic Display

Packets Transmitted
Packets Received

Bytes Transmitted
Bytes Received

Inserted Tokens
Receive Errors
Transmit Errors

Multiply Accepted
Multiple Tokens

Wacked Transmits

Aborted Transmits

Non Returned Packets

Non Acknowledged

Broadcast Transmitted

Broadcast Received

A count of all successful transmitted
and received packets.

A count in data bytes.

These fields show a count of various

errors on the ring. Normally, the

count is low or zero. Non-zero values

do not always indicate a problem. |

This field displays a count of packets

not returned and assumed lost.

This field displays a count of packets
that were not received at the

destination.

These fields show a count of broadcast
control packets. Fach node
periodically sends out status
information to every other node in a
broadcast packet.

23-11

Third Edition

DOC3710-193

Packets Transmitted: This field shows the number of packets
successfully transmitted by the local node. This count does not
include any transmitted packets that are being counted as errors,
for example, Transmit Errors. This figure does, however, include
transmitted broadcast packets, since these are successful

transmits.

All the traffic transmitted from the local node, regardless of
errors, would be a total of the following counts.

Packets Transmitted
Transmit Errors
Multiply Accepted
Multiple Tokens
WACKed Transmits
Non Returned Packets
Non Acknowledged

Packets Received: This field shows the number of packets
successfully received by the local node, including the count of
received broadcast packets (since they were successfully received).
As with Packets Transmitted, the count does not include Receive

Errors.

The count of Packets Received (and Broadcasts Received, see below)
will include any broadcast message transmitted by the node itself.
The PNC will see that the packet is a broadcast message and will
receive it. The Transmitted Broadcast packets are therefore
counted as both transmitted and received.

Bytes Transmitted: This field displays the count of the bytes
contained in the Packets Transmitted.

Bytes Received: This field shows the count of the bytes contained
in the Packets Received.

Inserted Tokens: This field shows the number of tokens inserted
into the ring by the node. If the local node has a transmit
pending and does not see a token within a reasonable amount of
time, it will assume that the token is lost and insert a new token
into the ring.

Extra tokens will be inserted when traffic cannot circle the ring.
This may indicate that there is a break on the ring. Run
FIND_RING_BREAK to determine if and where the ring is broken.

Third Edition 23-12

MONITORING RINGNET

Occasionally, an extra token is inserted into a

_

properly

functioning ring. For example, the operation of the ring is

disrupted for about 10 milliseconds when a node enters or leaves

it. This amount of time is long enough to cause the token to be

stripped off of the ring. The RINGNET hardware and software

recognize that the token has been removed and act immediately to

maintain uninterrupted operation. One of the nodes reinserts the

token. In this case, an occasional inserted token is acceptable

and indicates that the ring is functioning normally.

A high count may indicate that there is a problem with the PNC,
The PNC may not recognize a token, or the PNC of another node may

be malfunctioning and inappropriately removing the token from the

ring. Run FIND_RING_BREAK and check to see if other nodes are

having the same problem to determine if there is a problem with a

PNC.

Receive Errors: This field shows the number of packets received in

error by the node. Normally, the count is zero. Use the Receive
Errors status codes shown in the Error Display to determine the

cause.

Transmit Errors: This field indicates corrupt data. This can be

caused by a CRC validation failure. Also, a packet that did not

return before the next token was seen can cause this error. These

are explained in more detail in the Error Display.

Receive Errors and Transmit Errors: These fields show errors that

are caused by the degradation of the data as they are sent along

the ring. Because the ring is an extremely reliable medium, these

errors are rare. The four factors that can cause this type of

error are

1. A cable that is longer than 750 feet between active nodes

2. A loose connection on the ring

3. Noise generated by a node entering or leaving the ring
corrupting the data portion of the packet and/or destroying

the token

4. Faulty PNC hardware

Normally, a single count per incident indicates that a node is

entering or leaving the ring. A multiple count per incident

usually points to a hardware problem. These counts usually are

very low in proportion to the traffic on the ring.

23-13 Third Edition

DOC3710-193

Multiply Accepted: This field indicates the number of times the
node transmitted a packet and had more than one node accept it.
Because node ids are unique, this should not occur. Anode will
automatically disconnect from the ring if at start-up it finds that
another node has the same ring id.

Note

Broadcast packets are not part of the count. They are

expected to be accepted by all nodes.

Multiple Tokens: This field indicates that there have been multiple
tokens on the ring. There is supposed to be only one. If the count is
not zero, then the following has happened.

A node that is preparing to transmit has seen the token and taken it
off the ring. Before the node has completed transmitting, another
token is received by the node. This node's PNC strips this extra token
off the ring. ‘Thus, the PNC removes the extra token before it can
interfere with the node's transmit operation.

WACKed Transmits: This field shows the number of times that the
receiving node was unable to accept a packet sent by the local node
because its receive buffer was already full. The PNC retransmits the
packet up to 20 times. If the packet still is not accepted, it is
placed on the WACK list. The PNC then tries to deliver the packet up
to five more times. Each attempt is one second apart and consists of
up to 20 retransmissions. If this fails, the packet will be aborted
and the receiving node is marked as down.

Usually, this is a transient failure. It may be, however, that the
target node has halted without master clearing the PNC. Master
clearing the PNC restores proper ring operation.

Aborted Transmits: This field shows the number of aborted packets. An
aborted packet is one that could not be delivered successfully.
Usually, the packet is aborted because the number of retries in the
WACK procedure has been exhausted. However, it is possible that a
packet will be negative acknowledged (NAKed) or multiply accepted 20

times and then aborted.

Non Returned Packets: This field shows the number of times the node
sent out a packet and saw neither it nor the token return within a
timeout period. The timeout period is long enough so that on an
unbroken ring this behavior should not occur.

Third Edition 23-14

MONITORING RINGNET

If the node sees neither the packet nor a token within the timeout

period twice in a row, the packet is aborted and the node is marked

down. If this happens to three packets in a row, the supervisor

terminal displays the message:

kkkKKK RING MAY BE DOWN ******

The message is followed by a date and time stamp. Usually, this error

occurs if there is a break in the ring. Use FIND_RING_BREAK to

determine if there is a break and what its location is.

Non Acknowledged: This field displays the number of times the node has

transmitted a packet and had it returned without any indication that

the target node is on the ring. This is the result of configured nodes

not being physically in the ring.

Broadcast Transmitted: This field counts how many Broadcast Packets

were sent by the node. ABroadcast Packet has a special node-id and is

accepted by all nodes ready to receive. ABroadcast Packet is used to

send the node status message from one node to all other active nodes on

the ring. This message identifies the node and indicates that it is on

the ring and able to communicate.

Broadcast Received: This field shows the number of broadcast packets

received, including any sent by the node being monitored.

Note

The Packets Transmitted and Packets Received fields include

Broadcast Transmitted and Received packets.

Error Screen

The Error Display (Figure 23-2) elaborates on error-related data that

are shown in the Receive and Transmit fields of the Basic Display. It

indicates possible problems along the ring. The Error Display heading

includes an identifier, "Error Display", and a reminder of some of the

single-key commands: H, for the Help menu; B, to invoke the Basic

Display; and T, to invoke the Trace Display.

23-15 Third Edition

DOC3710-193

RING IS {UP, DOWN, DISABLED, NOT CONFIGURED} Error Display

Receive Errors x ((commands: H for help, B, T))
Receive Error Status oooeee [description of errors]

Receive Error Node (node id) (node name)
Receive Bad Protocol x

Transmit Errors x
Transmit Error Status oooeee §=6[description of errors]

Spurious Transmit Interrupt x

Transmit WACK Node (node id) (node name)
Duplicate Node (node id) (node name)

No Receive Buffer
Receive Queue Full
WACKed Packets

Aborted Packets

Receive Queue Count
Transmit Queue Count

WACK List Entry Count
WACK List Max Entrym

m
m
M

am
mK
m
M

Fatal Errors: PNC INA Failed

PNC OTA Received Failed
PNC OTA Transmit Failed
PNC DMA Failed
Spurious Receive Interrupt m

M
M
O
M

eoo00ee The octal value of the status word

x The appropriate count

Error Screen

Figure 23-2

Third Edition 23-16

Status Line

MONITORING RINGNET

The Error Display status line defines the status of the ring as seen

from the local node.

RING IS {UP, DOWN, DISABLED, NOT CONFIGURED}

UP

DOWN

DISABLED

NOT CONFIGURED

Error Display Fields

The ring is up if the local node is successfully
communicating on the ring.

The ring is down if the local node is in cold start
state and has not yet been brought up.

This status can mean one of two things. First, the
START_NET command is unable to start the network.
This failure is caused by a configuration or

hardware error.

Secondly, the RINGNET is considered disabled if,

during normal operation, a fatal error occurred.

The Fatal Error field in the Error Display

indicates which situation has occurred. A record

of fatal network errors appears in the network

event file, which is described in Chapter 2l.

The ring is not configured when the ring or node
number is not included in the configuration file.

The fields in the Error Display are explained in detail below.

Receive Errors: This is the same counter that was shown in the Basic

Display.

Receive Error Status: The octal value of the status word is displayed.

Bits are numbered 1-16 from the left, and have the following

Significance when set to l.

23-17 Third Edition

DOC3710-193

Bit

12 to 16

jl

10

8, 7

6 to 5

Description

Not used.

DMA: End of Range before End of Buffer. This is a DMA
transfer error; the CPU memory buffer became full
while there was still data coming in. One possible
cause is a bad PNC board. Alternatively, the buffer
size of a system may have been changed through the
configurator. If the node with the larger buffer
transmits to the node with the smaller buffer, this
error occurs.

NONE: Receive Busy; not displayed.

BUF_PAR: PNC Receive Buffer Parity Error.

ACK_PAR: Indicate parity errors in a received ACK
Byte.

Not used.

CRC: Bad CRC. This bit can be set by any node in the
ring while the packet is being transceived.

WACK: Wait Acknowledge. An earlier node recognized
this packet as addressed to it, and verified the CRC as
good. However, it wasS not able to accept the packet

due to the lack of a receive buffer available in the
PNC.

MULT_ACK: Multiple Acknowledge. An earlier node
recognized this packet as addressed to it; however,
bit 1 of the ACK Byte had already been set by another
node.

PREV_ACK: Previous Acknowledge. An earlier node
recognized this packet as addressed to it.

Note

If the bits 3, 2 or 1 are set ina packet that is nota
broadcast packet, there may be a configuration error in the
ring. Possibly, two or more nodes have the same node-id.

Receive Error Node: This field identifies which node transmitted the

packet that was received in error. The node-id and node name are
shown.

Third Edition 23-18

MONITORING RINGNET

Receive Bad Protocol: This field displays the number of packets

received that have unrecognizable protocol bytes. Two protocol bytes

are allowed. ‘The first is for the broadcast node-id packet, which has

a protocol field of 0. The second is X.25 level III, which has a

protocol field of :1000.

Any packet with a different protocol field is discarded.

Transmit Errors: This is the same counter that was shown on the Basic

Display.

Transmit Error Status: This field shows the octal value of the status

word, and a brief description code.

Bit Description

13 to 16 Not used.

12 ACKBorCRC: This code indicates that a packet was

returned with an ACK byte check or a bad CRC

indication.

11 PKTDNR: Packet did not return. A token was received

after completion of the transmit and before the return

of the packet header. These packets are counted in the

Transmit Error field.

Note

The Non Returned Packet field shows a different

error, where neither a packet nor token is

received, and the transmit time out expires. A

value greater than 0 in the Multiple Token

Field is an indication that a second token has

arrived before the completion of a transmit.

10 Not Printed: This code indicates Transmit Busy

condition (not an error).

9 BUF_PAR: Transmit Buffer Parity Error.

8,7 ACK_PAR: These codes indicate parity errors in a

returned ACK Byte.

6 Not Displayed.

5 Unused.

23-19 Third Edition

DOC3710-193

4 CRC: Bad CRC. This bit can be set by any node in the
ring. The CRC validation is done automatically during
transceive.

3 WACK: Wait Acknowledge. The target node was not able
to accept the packet because of receive congestion;
however, the data were valid (no CRC error).

2 MULT_ACK: Multiple Acknowledge. More than one node
saw this packet as addressed to them. Unless this
packet is a broadcast packet, a configuration error
exists.

1 ACK: This is not an error code. It indicates that
this packet was accepted by the target node. ‘This code
is used in conjunction with the Multiple ACK or WACK
fields to detect duplicate nodes.

Note

If bit 2 is set, or if bit 1 and bit 3 are set, then the packet

was accepted by more than one node. This is only acceptable
for a broadcast packet. If the packet is a broadcast packet,
it is not marked as an error. However, the transmit status
bits will be shown, and the Multiple ACK, or Previous WACK,
comments may show without any errors being indicated.

Transmit Wack Node: This field identifies the node to which the most
recent aborted packet was addressed. The node~id and node name are
shown.

Often, the identified node may have halted without doing a master clear
and is therefore WACKing all packets addressed to it. Once a master
clear is performed, that node can successfully transmit and receive
packets.

Spurious Transmit Interrupt: This field shows the number of times that
the local node has received a transmit interrupt from the PNC without a
previous transmit packet command. However, this can occur when the
node tells the PNC to issue a_ token, and is not indicative of any
problem on the ring.

No Receive Buffer: This counts the number of times that the RINGNET
software attempts to allocate a buffer for receive, but one is not

available.

Third Edition 23-20

MONITORING RINGNET

Receive Queue Count: The receive queue is the data queue from the

PNCDIM (lowest level software) to the Level 2 protocol module, RNGRCV.

This holds buffers of data that have been received by the PNC (or

transmit buffers that have been aborted by the PNCDIM). If the

cumulative count in this counter indicates that most of the receive

buffers are sitting in this queue, it implies that the higher level

module is not able to process the packets as quickly as they are being

received.

Transmit Queue Count: The transmit queue is the queue from the level 2
module, RNGSND, to the PNCDIM. This queue holds buffers of data that

are to be transmitted by the PNC. If this count indicates that most of

the buffers are being held in this queue, then there is congestion on

the ring and the buffers are not being transmitted quickly enough.
This could happen when there were several nodes WACKing heavily.

Receive Queue Full: This queue is allocated to be large enough to hold

all the buffers simultaneously. It is, therefore, an error for this

queue to run out of room. If this Situation does occur, the buffer

being queued is discarded and an event logged.

WACKed Packets: This is the same counter that was shown on the Basic

Display.

WACK List Entry Count: If a packet is WACKed 20 times ina row, it is

placed on the WACK Linked List. If another packet for the same node is

encountered, it is placed on this list behind the first. The list is

held in node number sequence. This is a cumulative counter that shows

how many packets were placed on the list since the system was cold

started or the counters were zeroed. It is not an indication of the

current length of the list.

WACK List Max Entry: This counter will tell the maximum number of

packets on the list at one time since cold start.

The WACK List fields depict the pattern of WACKing on the ring. If a
single node is sending out WACKS frequently, usually only one or two
packets will be on the list at one time. If there are bursts of WACKS

on the ring, then this count will be much higher.

Fatal Errors: These errors concern hardware I/O operations, and rarely

occur. If a fatal error occurs, RINGNET removes the node from the

ring. ‘The ring will be marked as disabled, the PNC will be told to

disconnect (if possible), and all transmit packets will be aborted.

The PNC diagnostics should be run before any attempt is made to restart

the node on the ring. Fatal errors are logged as events in NETLO.

23-21 Third Edition

DOC3710-193

Trace Display

The Trace Display shows details of the traffic between the local node
and all other nodes on the ring. It assists you in monitoring traffic
flows and in investigating problems between nodes. The Trace Display,
shown in Figure 23-3, contains data only if the -TRACE_NODE option was
specified in the START_NET command (refer to Chapter 17 STARTING UP

PRIMENET). Only nodes that have had activity appear on this display.
The Trace Display is intended to isolate individual node activity on
the ring. It only tracks data sent by or received by the node on which
MONITOR_RING is being run. The data are a subset of those that appear
in the Basic Display.

Trace Display ((commands: H for help, T restarts trace))
((RETURN for next trace section))

Node Name Node ID Transmitted Received WACKed
cccccc nnn XXXXX XXXXX XXXXX
cccccc nnn XXXXX XXXXX XXXXX
ccccce nnn XXXXX XXXXX XXXXX
cecccc nnn XXXXX XXXXX XXXXX
ccecccc nnn XXXXX XXXXX XXXXX
cececcce nnn XXXXX XXXXX XXXXX

Trace Display
Figure 23-3

The Trace display heading includes an identifier and a reminder of some
Single-key commands. You use T to start the initial Trace display;
you press the RETURN key to advance the display. The five colums
making up the Trace display are described below.

Node Name, Node ID: This column shows the name and the identification
number of the node to which the local node was communicating.

Transmitted: This column shows the number of packets’ correctly
transmitted to that node. This total does not include any broadcast
messages.

Received: This column shows the number of packets correctly received

from that node, including any broadcast messages sent by that node.

WACKed: This column shows the number of packets the local node
‘attempted to send that were Wait Acknowledged by the other node.

Third Edition 23-22

Report File Format

MONITOR_RING archives data to a file in a fixed format.
declaration allows analysis by user-written software.
the right to modify the contents and layout of this file.
compatibility is not guaranteed. This declaration
MONITORRING source code.

MONITORING RINGNET

This
PRIME reserves

Forward
appears in the

The following is a Pl/1 description of the format of data contained in

a REPORT file. If you do not select the TRACE option, then the trace

section at the end of the data block will not be included in the file

specified with the REPORT option.

dcl iobuf,
record_idfr,
size fixed bin,

version fixed bin,
sample_time char (8),

sample_date char (16),
sample,

reverrcnt fixed bin(15),

reverr fixed bin(15),
reverrnode fixed bin(15),

words_xmited fixed bin(31),

wacks fixed bin(3l),

wacknode fixed bin(15), /*
dupnode fixed bin(15), /*
nobuf_count fixed bin(15) ,/*

flto2_count fixed bin(15) ,/*
f2tol_count fixed bin(15) ,/*
xmit_bdcast fixed bin(31) ,/*
rev_bdcast fixed bin(31), /*
cntr_ina fixed bin(15), /*
cntr_rev fixed bin(15), /*
cntr_xmt fixed bin(15), /*
cntr_dma fixed bin(15), /*
int_rev fixed bin(15), /*

resfail fixed bin(15), /*
wack_cnt fixed bin(15), /*
wack_max fixed bin(15), /*
badprot fixed bin(15),
my_node fixed bin(15),

my_node_name char (6),
rcv_node_name char (6),

xmt_node_name char (6) ,
dupnode_name char (6),

tracebuf (248),
node_id fixed bin,

node_name char (6),
revpkt fixed bin,

xmtpkt fixed bin,

1
2
3
3
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
3
3
3
3
3 wakpkt fixed bin;

packets_received fixed bin(31), /*

wordsreceived fixed bin(31),

packets_xmited fixed bin(3l),

Size, in words, of this data block */

Version of MONITOR_RING */
Time of sample: 'hr:mn:sc' */
Date: 'Tues, Jun 24, 1983' */

Number of packets received */
Number of WORDs received */
Number of receive errors */

/* Receive error status */
/* Node originating erring packet */
/* Number of packets transmitted */
* Number of WORDs transmitted */

/* Number of Wait ACKnowledgments */

/*

/*

ymtnoackent fixed bin(31), /* Number of non acknowledged packets */

Multt fixed bin(15), /* Number of times multiple tokens seen */

multa fixed bin(15), /* Number of multiply acceptance pkts */

xmtstuck fixed bin(15), /* Number of non-returned transmits */
xtra_xint fixed bin(15), /* Number of spurious transmit interrupts */
xmterrent fixed bin(15), /* Number of transmit errors */
error_status fixed bin(15),/* Status of transmit error */
xmtfailcnt fixed bin(15), /* Number of aborted transmits */
tokens fixed bin(15), /* Number of tokens inserted into the ring */

Node number of node that WACKed out */
Duplicate node id */
Number of times no rcv buffer available */
Number of buffers q'd to protocol layer */
Number of buffers queued to DIM */
Number of broadcast messages sent */
Number of broadcast messages received */
Controller blew up on INA */
Controller not acptng receive OTA */
Controller not acptng transmit OTA */
Controller DMA failure */
Spurious receive interrupt */
flto2 q full */
Number of packets put on Wack List */
Maximum on list at one time */
Received packets with bad protocol field */
Node id of this node */
Name of this node */
Name of node causing receive error */
Name of node causing transmit error */
Name of duplicate node */
Buffer for tracing traffic info */
Node-id re: this traffic info */
Node name re: this traffic info */
Number of pkts received fram other node */
Number of pkts transmitted to other node */
Number of pkts WACKed by other node */

23-23 Third Edition

DOC3710-193

Note

All character data are Prime ASCII. All numeric fields are
full 16/32 bit UNSIGNED integers, not 15/31 bit signed
integers. :

THE FIND_RING_BREAK PROGRAM

You use the FIND_RING_BREAK program to locate a break in the ring.
This program works only for 'hard' breaks, which cause complete
interruption of the signals on the ring. The operator runs
FIND_RING_BREAK when the following happens.

e@ The MONITOR_RING program indicates a break

@ The "RING MAY BE DOWN" error message appears on the supervisor
terminal

@ The STAT NET command indicates "down" nodes

The following sections describe:

e@ How to invoke FIND_RING_BREAK

e@ How FIND_RING_BREAK works

@ What the input file is and how to create it

@ How to locate a break in the ring

@e FIND_RING_BREAK error messages

How FIND_RING_BREAK Works

To determine the location of a break in the ring, FIND_RING_BREAK
analyzes the local node's ability to commmicate with the other nodes
in the ring. Specifically, the local node will be able to hear from
most active nodes downstream of any break, yet upstream from the local
node. An example is shown in Figure 23-4: there are six nodes along a
ring, configured to commmicate with each other. Node A is the node on
which FIND_RING_BREAK is being run. There is a break somewhere between
Node E and Node D.

Third Edition 23-24

MONITORING RINGNET

Node C

Node B Node D

Direction of Token

BREAK

Node A Node E

Node F

Locating a Break in a Ring
Figure 23-4

When FINDRINGBREAK is run on Node A, the following occurs. Node A

recognizes that it is hearing from, but can not send to, Nodes B and C.

The reason that Node A can determine that Nodes B and C are active is

because Node D is still transmitting a token. Node B and Node C are

using this token to transmit. Node C, the first node downstream of the

first active node after the break (Node D) can use that token to

transmit data. Node D cannot transmit data because no node upstream of

Node D is sending out a token; it can only issue a token onto the

ring.

Once FINDRINGBREAK determines the node farthest upstream from which

it is receiving data (Node C), it then looks upstream for the next

configured node (Node D). It knows that Node D must be active for Node

C to transmit data. The program then identifies the break as being

somewhere between Node D and the next active node. In this case, the

break in the ring is at or after Node E.

23-25 Third Edition

DOC3710-193

Note

The node issuing a token may not be seen as active if it is
running a version of the software earlier than Rev. 19.3 and
is not configured to talk to the node on which FIND_RING_BREAK
is being run. Therefore, the inactive nodes will have to be
taken into consideration.

Normally, a problem with a connector in the ring is to blame. But,
occasionally, a defective PNC board or ring cable may be the cause.

Invoking FINDRINGBREAK

The syntax for FIND_RING_BREAK and an explanation of the options are
shown below.

FIND_RING_BREAK —HELP
~INPUT filename

—HELP Displays the syntax and describes. the
-H options of this command.

-INPUT filename The name of a file that contains the
-I physical configuration of the ring. The

default is no file.

Before invoking FIND_RING_BREAK, you may want to create an input file
that describes the physical configuration of the ring.

The FIND_RING_BREAK Input File

Because ring nodes are not necessarily located in node id sequence or
in the sequence in which they are entered into the configurator, it is
useful to tel] FIND_RING_BREAK what the actual physical configuration
of the ring is. You put this information into a file that
FIND_RING_BREAK uses to specify the location of a break.

When you run FIND_RING_BREAK using an input file, FIND_RING_BREAK
displays all the nodes specified in the file in the configuration
sequence, beginning with the local node and going downstream. Down
nodes, active nodes and inactive nodes are listed. After this list,
FIND_RING_BREAK prints the names of three nodes and an interpretation
of where the break is.

. FIND_RING_BREAK assumes that the node names in the input file are
correct; it does not check them.

Third Edition 23-26

MONTTORING RINGNET

When run without an input file, FIND_RING_BREAK does not attempt to

interpret the location of the break. It only prints the names of those

nodes in the network configuration file, and its display shows only

active nodes. The chart below compares using FIND_RING_BREAK with and

without an input file.

Feature File No File

Shows actual configuration yes no

Shows all configured nodes yes yes
(if in file)

Lists inactive nodes yes no

Displays node names yes configured
nodes only

Displays node ids yes yes

Interprets location of break yes no

Lists active nodes yes yes

Lists down nodes yes yes

Creating the FIND_RING_BREAK Input File

The FINDRINGBREAK input file describes the physical arrangement of

the nodes on the ring. You create this file with any editor. ‘The file

may begin with any node. From that point on, you list the remaining

nodes in the order in which the token travels around around the ring
from that first node (counterclockwise).

There should be only one entry or line per node. On each line put the

node-id and the node name. For example, let us use the ring shown in

Figure 23-5 to construct a sample file.

23-27 Third Edition

DOC3710-193

Node C

Node B Node D

Direction of Token

Node A
Node E

 J
Node F

Sample Ring
Figure 23-5

We begin the file with the node id and node name of Node A. We then
enter the remaining nodes in the order in which data travel around the
ring: Node F, Node E, Node D, Node C, and Node B. The example below
shows how the file would look.

O01 A
006 F
005 E
002 D
004 C
003 B

Node ids must be three digits. Leading zeroes are required. Node
names can be up to six characters. There must be a space between the

node number and name.

LOCATING A BREAK IN THE RING

_ The next two sections describe how to locate a break in the ring by
using FIND_RING_BREAK with an input file and without one.

Third Edition 23-28

MONITORING RINGNET

FIND_RINGBREAK With an Input File

If you invoke FIND_RING_BREAK with the -INPUT option, the program

attempts to locate and read the specified input file. If

FINDRINGBREAK is unable to read the specified input file, you will be

asked:

Shall we continue without a file? [YES/NO] NO

If you answer NO, the program ends. If you answer YES, FIND_RING_BREAK

uses the information in the network configuration and proceeds as if no

file was specified. Refer to the next section, FIND_RING_BREAK Without

an Input File.

If FIND_RINGBREAK can read the input file, it asks you:

Do You Want To Reset the Information? [YES/NO]

Normally, you answer NO to this prompt. If you suspect a break exists

and FIND_RINGBREAK does not indicate it, you should wait several

minutes before you re-invoke the program, Reset the database only if

repeated running of FIND_RING_BREAK shows that the network is up when

MONITOR_RING or ring operation indicates that the ring is down. If you

answer YES, FIND_RING_BREAK displays the current information, and then

resets the database.

If you answer NO or press the RETURN key, FIND_RING_BREAK accesses the

database, which contains the data on the current condition of the ring.

Note

Tf FIND_RINGBREAK successfully locates your node-id, it then
prints out the following display. (nnn) indicates a 3-digit
node-id. XXXXXX represents a 6-digit node name.

OK, FIND_RING_BREAK
Do You Want To Reset the Information? [YES/NO] NO
LIST OF NODES IN CONFIGURATION SEQUENCE _
(nnn) XXXXXX — DOWN
(nnn) XXXXXX — INACTIVE

(nnn) XXXXXX -— DOWN

(nnn) XXXXXX -— DOWN

(nnn) XXXXXX - UP
KREKKEKEKEKEEREKKKEE

(nnn) XXXXXX

(nnn) XXXXXX
kkKKEKKK BREAK *kekKK

(nnn) XXXXXX

Retry? [Y/N] N

23-29 Third Edition

DOC3710-193

Each time the program has printed 20 lines, it will stop and print.

More - hit cr

FIND_RINGBREAK Without an Input File

If you have not specified an input file with the -INPUT option,
FIND_RING_BREAK uses the information in the network configuration.

OK, FIND_RING_BREAK

Do You Want to Reset the Information? [YES/NO] YES
List of Active Nodes in Node Id Sequence

(nnn) — UP
(nnn) - UP
(nnn) ~— DOWN
(nnn) — UP
Retry? [Y/N] N

When you do not use an input file, FIND_RING_BREAK cannot attempt
to specify the location of the break.

FIND_RING_BREAK ERROR MESSAGES

There are two error messages that can occur when FIND_RING_BREAK
attempts to read the database. These errors cause FIND_RING_BREAK
to discontinue the program and return to PRIMOS level.

Ring Not Configured

The local node is not aware of the RINGNET.

Node Not In Ring

The local node is disconnected from the ring.

Third Edition 23-30

APPENDIXES

X.25 Programming

Guidelines

INTRODUCTION

This appendix contains information about X.25 protocol as it relates to

programming with IPCF subroutines. The following topics are described.

e Call user data field terminology

e@ X.25 window and packet size

@ Data flow checkpoints

CALL USER DATA FIELD TERMINOLOGY

X.25 permits an application to place a call user data field in its call

request packet. The maximum size of the user data field is 16 bytes,

except for fast select call requests, which may be up to 128 bytes

long. Also, a call accept packet responding to a fast select call can

contain a called user data field, and similarly, a clear request packet

responding to a fast select call can contain a clear user data field.

The CCITT standards X.3, X.28, and X.29 regulate PDN protocol. These

standards use the first four bytes of the call user data field asa

protocol identifier field. The remainder of the call user data can be

used for call data.

A-l Third Edition

DOC3710-193

X.25 acknowledges the existence of X.3 and other protocols by setting
rules for the two most significant bits of the first byte of the call
user data and the called user data. For applications, these two bits
Should both be set to 1. However, there is no restriction on these
bits in clear user data,

The IPCF routine arguments recognize the protocol identifier field by
handling it as a separate argument for connect and accept 'long-form'
routines. PRIMENET uses the full 4-byte protocol identifier field to
convey the port number information in call requests. Thus, this 4-byte
field for Prime-to-Prime virtual circuits cannot be used in
applications. In contrast, the protocol identifier argument is not
used as part of clear user data for the fast-select form XSFCLR.

When initiating a call request, an application can provide an array to
retrieve any returned user data. This array corresponds to the xX.25
user data field, and thus includes the protocol identifier field. The
picture below shows how the call/called/clear user data, as defined by
X.25, are split on IPCF arguments. It also shows the retrieve-data
array, Optionally provided by the connect call.

Byte X.25 user data Connect Accept Clear Retrieve

, 4
2

prid prid
3

4
clrudat rudat

° t =f
eee udata udata

X.25 WINDOW AND PACKET SIZE

The following table defines X.25 international facility formats for
determining window and packet sizes. The default values, provided by
PDNs, are a window size of 2 anda packet size of 128 bytes. The
window and packet size facility elements consist of 3 bytes each. You
can include either or both in the facility field, and combine them with
other facility elements.

Third Edition A-2

X.25 PROGRAMMING GUIDELINES

Facility
element First Byte Second Byte Third Byte

Window size 01000011 00000xxx 0d000yyy

Packet size 01000010 0000zzzz 0000vvvvV

Parameter Meaning

XXX Window size, binary coded, (000 not allowed) for
transmission called node to calling node

VYY Window size, binary coded, (000 not allowed) for
transmission calling node to called node

ZZZZ Packet size code (see below) for transmission called
node to calling node

VVVV Packet size code (see below) for transmission calling
node to called node

The packet size code is the binary coded logarithm base 2 of the packet

size, expressed in bytes.

Z222/VVVV 0100 0101 0110 0111 1000 1001 1010
Size (bytes) 16 32 64 128 256 512 1024

The maximum supported packet size is configurable to 512, 1024, or 2048

for RINGNET (see the Network Planning and Administration Guide), and is

256 bytes for synchronous lines.

The description above limits the window size to less than or equal to

7, which is the maximum permitted for normal X.25 sequence numbering,

and also the maximum value currently supported by PRIMENET. (X.25 as

such also defines extended sequence numbering which will permit larger

window sizes.) For example, suppose you wanted for the calling node's

transmissions a window size of 7 and a packet size of 256, and for the
called node's transmissions the normal default values of 2 and 128.
The facility field required would be the following six bytes:

01000011 00000010 00000110 01000010 00000111 00001000

DATA FLOW CHECKPOINTS

The aim of X.25 levels 2 and 3 is to provide error-free data
transmission with ordered flow. That is, data delivery at the receiver
takes place transparently and in the order in which it was delivered by

the sender. However, there is always a slight possibility that the

error handling routines of levels 2 and 3 might fail; your virtual

circuit is reset. The reset means that some packets may have been

A-3 Third Edition

DOC3710-193

lost, although you do not know how many packets or in what transmission
direction.

If a reset occurs, any buffer given to X$RCV, but which has not yet
been given back with XSSCMP, must be regarded as an error. Also,
XSTRAN calls interpret XSSCMP to mean that the buffer has’ been
successfully enqueued locally for transmission. However, the buffer
may still have been lost in transmission. You might consider using a
checkpoint system to check for resets and other errors. That is, at
Certain intervals in the data stream, you should define and
transmit/acknowledge checkpoint messages. If a reset or other error
occurs, you can then require retransmission from the most recent
checkpoint. Breaking a large file down into smaller components outside
of the IPCF application is also a checkpoint system.

The error rate for RINGNET is considerably lower than the usual rate

for synchronous (long distance) lines, It is not practical to use
Checkpoints for a RINGNET-only application. However, the time loss
from repeated retransmission of a large file over a synchronous line
could justify the use of checkpoints.

Third Edition A-4

NETLINK

Parameters

This appendix presents the X.3 (level 1) terminal characteristics

parameters supported by NETLINK. These parameters are decimal values

that are set with NETLINK's SET command and displayed with NETLINK's
PAR command.

NETLINK supports only the TELENET and DATAPAC national options.
Supported TELENET parameters are shown here. See appropriate TELENET
literature for additional information about use of these parameters.
See DATAPAC literature for information on the DATAPAC parameters. See
Consultative Committee for International Telephone and_ Telegraph

(CCITT) literature for more information.

INTERNATIONAL PARAMETERS

0 - National options marker

(Only the values 0 for DATAPAC Canada, and 33 for TELENET USA,
are currently supported.)

2 - Echo (0 for no echo, 1 for echo)

B-l Third Edition

DOC3710-193

3 - Data forwarding

0 —- No data forwarding character
1 -— Alphanumeric characters (A-Z, a-z, 0-9)
2 - Carriage return
4 - ESC, BEL, ENQ, ACK
8 - DEL, CAN, DC2

16 -— ETX, EOT
32 - HT, LF, VI, FF
64 — All other control characters

The only valid combinations are
O, 2, 6 (2+4), 18 (2416), 126 (2+4+8+16+32+64)

Idle timer Delay (number of 50 ms increments, any number from
0 to 255; 0 for none)

Break handling

0 - Nothing
1 - Interrupt
2 - Reset
4 - Send indication of break
8 - Escape to command mode

16 - Discard output

The only valid combinations are 0, 1, 2, 8, 21 (1+4+16)

Discard output

Used when parameter 7 is 21. 0 indicates normal data
transmission, 1 indicates output is to be flushed. Not to be
set by you.

12 - DTE to DCE Flow Control (1 = use XOFF and XON, 0 = do not)

TELENET PARAMETERS

NETLINK supports the CCITT parameters 1 through 18. It also supports
DATAPAC (national options 0) parameter 126, which is Linefeed

Insertion, and the following TELENET (national options 33) parameters:

1 Linefeed Insertion
2 Network Message Delay

3 Enable Local (network) Echo
5 Data Forwarding Characters
9 CR padding

10 LF padding
12 Line Width
13 Page length
16 Interrupt on Break (TELENET discontinued)
17 Break Code (TELENET discontinued)

Third Edition B-2

18
27
28
29
30
34
35
36
40
45
54
58
59

NVT options
Delete character
Cancel character
(Line Re-)Display character
Abort output character (TELENET discontinued)
Transmit on Timers
Idle Timer
Interval Timer
Insert code on BREAK (TELENET discontinued)

Send APP on BREAK (TELENET discontinued)
DTE-to-DCE flow control (TELENET discontinued)
Connection Escape Enable
Flush on BREAK (TELENET discontinued)

The default parameters for X.25 are

Reverse charging

X.29 PAD

Unknown terminal type

Escape character @

Inhibit remote echo

Polling rate of 1/20 second

Terminal speed of 1200 baud

INTERPRETING PAR COMMAND OUTPUT

NETLINK PARAMETERS

The following list shows the relationship between the messages
displayed by the PAR command with no options, and the X.3 parameter

values:

PAR Output Param. Value

FULL DUPLEX 2 1

FORWARD DATA ON 3
Alphanumerics 1
CR 2
ESC 4
Editing 8
Terminators 16
Form 32
Other Cntrl 64
Other Printing 128

IDLE TIMER = x.x Secs. 4 Units of 50

B-3

ms

Third Edition

DOC3710-193

ON BREAK 7 (Legal values: 0, 1, 2, 8, 21)
Interrupt 1
Reset 2
Send indication of break 4
Escape to command mode 8
Discard output 16

Send APP TELENET break handling
Insert TELENET break handling

OUTPUT BEING DISCARDED 8 1

X-OFF/X-ON ENABLED 12 1

Local Editing Enabled 15 1

NVI Process Control Enabled (TELENET Network Virtual Terminal)

Third Edition B-4

FTS Error Messages

INTRODUCTION

This appendix lists and explains each FITS error that occurs in the

FIGEN, FTR, and FIOP utilities, and in applications that use the FTSSUB

subroutine. The FIGEN utility, which initializes servers, queues, and

sites, is described in the Network Planning and Administration Guide.

FTIR, FTOP, and the FISSUB subroutine are described in this book.

GENERAL ERROR MESSAGES

The following errors can occur in any of the FITS utilities.

e Argument too long. (FSARTL)

You specified an argument that was longer than the maximum allowed

argument length.

e TS not ready for use. (QSQNRD)

The FTS data base has not been initialized with the FIGEN

INITIALIZEFTS command.

C-1 Third Edition

DOC3710-193

@ The FITS data base is invalid. (QSNVDB)

The FITS data base has been corrupted, or an FIGEN INITIALIZE_FTS
command has not been performed after FIS installation.

FIGEN ERROR MESSAGES

The following error messages may occur when you are using FIGEN.

@ Address of site invalid. (FSADIN)

The site address you specified is invalid. The address must be less
than 128 characters long and contain a plus sign (+) character that

delimits the address,

e Argument is not numeric. (FSARNN)

You specified a nonnumeric argument. You must specify a number in the

argument.

@ Bad site name format. (FSBDSN)

This message occurs in FIGEN as well as FIR. The site name must adhere
to the Prime filename standard. See the Prime User's Guide for more
information on naming standards.

@ Cannot modify this parameter. (FSCMDP)

You tried to modify the maximum number of file transfer requests for a
particular queue, which is not allowed. The maximum number of requests
can only be specified when adding the queue, not modifying it.

@ Invalid message level. (FSINMS)

You specified an FTS log file message level other than the following

valid ones: NORMAL (1), DETAILED (2), STATISTICS (3), and TRACE (4).
This message occurs in FIR as well as in FIGEN.

@ Invalid range. (FSIRNG)

The range you specified is numerically invalid for the particular
option. For example, if you add a server and set PORT to -3, an
invalid number, this error is displayed. Valid numbers are between 1
and 99 for a port.

Third Edition C-2

FITS ERROR MESSAGES

@ No queues configured. (QSNOQC)

You attempted to list all the queues, but none were configured. Ask

your System Administrator about your system's current FITS

configuration.

@ Queue does not exist. (QSQNEX)

The specified queue has not been configured with FIGEN. This error

occurs in FIR as well as in FIGEN.

@ Queue is already associated with another server. (FSQAAS)

The queue you specified is already in use, so you must specify another

queue name in the command.

@ Queue name invalid. (FSQNIN)

The queue name you specified is invalid. The queue name must conform

to Prime filename syntax and cannot contain any full stop characters.

See the Prime User's Guide for information on standard naming syntax.

@ Queue in use. (FSQUIU)

You attempted to delete an empty queue, but the server associated with

the queue still exists.

@ Queue not empty. (FSQUNE)

You attempted to delete a queue that has requests in it. Wait until

the queue is empty to delete it.

e Text follows last argument. (FSTLFA)

This error occurs in FTOP as well as in FIGEN. ‘The argument to a

particular command contains extra text. For example, if you specify a

server port with the following command, the number 14 is acceptable,

but FRED is an incorrect argument:

PORT 14 FRED

@ Too many servers. (FSIMSV)

You tried to configure a server and exceeded the maximum number of

servers. (Eight is the maximun.)

C-3 Third Edition

DOC3710-193

@ Too many queues. (FSTOMQ)

You tried to configure a queue and exceeded the maximum number of
queues, (Eight is themaximum.)

e@ Unknown command. (FSUNCD)

You did not type an FIGEN command. See the Network Planning and

Administration Guide for a list of FIGEN commands.

@ You cannot delete a server while it is running. (FSCDLS)

You tried to delete a server while it was still running. Use the FIOP
-STOP_SRVR command to stop the server.

e You cannot modify a queue while its server is running. (FSCMDQ)

You tried to modify the queue while its associated server is running.
You can only modify a queue when its associated server is not running.
Use the FIOP -STOP_SRVR command to stop the server.

e You cannot modify a server while it is running. (FSCMDS)

You tried to modify an active server. You can only modify a server
when it is not running. Use the FIOP -STOP_SRVR command to stop the
server.

@ You do not have operator privileges. (FSNOPP)

You attempted to invoke the FIGEN command without being logged in as
SYSTEM. You must log in as SYSTEM to use the FIGEN command.

FIR ERROR MESSAGES

The following messages occur in the FIR utility, which allows users to
submit and manage file transfer requests.

@ Bad command line format. (FSBDCL)

The format of the command line is incorrect. For example, you should

type FIR LETTER —CANCEL instead of FIR ~—CANCEL LETTER.

@e Bad device name. (FSBDDN)

" You typed an invalid -DEVICE name. LP is the only correct device name.

Third Edition C-4

FTS ERROR MESSAGES

e Bad site name format. (FSBDSN)

This message occurs in FIGEN as well as in FIR. The site name must be

a valid one and adhere to the Prime filename standard. See the Prime

User's Guide for more information on naming standards.

@ Conflicting options. (FSCNOP)

The options you specified conflict. For example, you specified a

request with both -COPY and -NO_COPY when it must be either one or the

other option.

@ Copy option only applies to local source file. (FSCPLS)

You specified this option when you were fetching a file from a_ remote

site, which is not allowed. This option is relevant only when you are

sending local files.

@ Copy flag may not be modified. (FSCPMD)

You tried to modify the copy flag, which is not allowed. For example,

the following command would get this error:

FTIR -MODIFY 2 -COPY

e Destination file may not be modified. (FSDFMD)

You tried to modify the destination file option, which is not allowed.

e Destination file has not been specified. (FSDFNS)

You did not specify a destination pathname. See Chapter 5 for the

format of an FIR command line.

@ Delete option only applies to local source file. (FSDLLS)

You specified this option when you were fetching a file from a remote

site, which is not allowed. This option is relevant only when sending

local files.

e Device transfer from remote site not allowed. (FSDRNA)

You attempted to fetch a file from a remote site and send it a local

device, which is not allowed.

C-5 Third Edition

DOC3710-193

@ Destination site may not be modified. (FSDSMD)

You tried to modify the destination site name, which is not allowed.

@ Destination site is not configured. (FSDSNC)

The destination site has not been configured in the FTS configuration
for your site,

@ Destination user name invalid. (FSDUIN)

You used an invalid destination user-id. The user-id must conform to
Prime's standard for user-ids. See the Prime User's Guide for more
information.

@ Destination user not specified when destination notify requested.
(FSDUNS)

You did not specify a destination user (with -DSTN_USER). You must

specify a destination user if you use the FIR —DSTN_NIFYoption.

@ Duplicate option. (FSDUOP)

You duplicated one or more options. For example:

FTR <ASH>TREE <ELM>BRANCH —-SRC_NTFY -DSTN_USER CLARKE -—SRC_NIFY

duplicates the -SRC_NIFY option, which is not allowed.

e Full pathname too long. (FSFPTIL)

You exceeded the maximum pathname length of 128 characters.

@ Hold flag may not be modified. (FSHDMD)

You tried to modify the hold flag, which is not allowed. For example,
the following command would produce this error:

FTIR ~-MODIFY 3 —HOLD

@ Invalid destination file type. (FSIDFT)

You did not specify a correct destination file type. See the
~DSTN_FILE_TYPE option description in Chapter 6 for more information.

Third Edition C-6

FTS ERROR MESSAGES

e Invalid external name. (FSINEX)

The name you specified for the request name is not a valid Prime file
name. See the Prime User's Guide for the correct filename syntax.

@ Illegal file or directory conversion. (FSIFDC)

You used the -SRC_FILE_TYPE or -DSTN_FILE_TYPE options in an invalid
combination. See Chapter 6 for more information on these options.

@e Invalid message level. (FSINMS)

You specified an FITS log file message level other than the following
valid ones: NORMAL (1), DETAILED (2), STATISTICS (3), and TRACE (4).

This message occurs in FIGEN as well as in FIR.

@ Invalid source file type. (FSISFT)

You specified an incorrect source file type. See Chapter 6 for more

information on the -SRC_FILE_TYPE option.

@ Message level specified but request log treename omitted. (FSMBNL)

You specified the -MSGL_LEVEL option with a specific level, for

example, DETAILED, but you did not specify a log filename.

e Missing command line parameter, (FSMCLP)

The command line has a required parameter missing. For example:

FTR <ELM>TREE <ASH>BURN —-SRC_NTIFY -—DSTN_USER

did not specify a destination user-id with the —DSTN_USER option.

@ Networks unavailable.

You tried to use FIR to submit a request, but the network has been shut
down or not configured.

@ No copy option only applies to local source file. (FSNCLS)

You specified this option when you were fetching a file from a_ remote
site, which is not allowed. This option is relevant only when you send
local files.

C-7 Third Edition

DOC3710-193

@ No Copy flag may not be modified. (FSNCMD)

You tried to modify the NO_COPY flag, which is not allowed. For
example, the following command would cause this error:

FIR -MODIFY 2 -—NO_COPY

@ No delete option only applies to local source file. (FSNDLS)

You specified this option when you were fetching a file from a remote
Site, which is not allowed. This option is relevant only when you are
sending local files.

@ No eligible request of this name found. (FSNERF)

You attempted to modify, abort, release, hold or cancel requests with
the specified name without success because either they do not exist or

they are in an ineligible state. For example, you would receive this
error if you tried to hold a request that was already HELD.

@ No request of this name found. (FSNRFD)

You specified a nonexistent request name when you performed a —DISPLAY
or -STATUS of a particular request. Check that you specified the right

name, or use the request number in the command.

@ No requests queued. (FSNRQD)

You tried to list the contents of a queue that is empty.

@ Not configured. (FSNTCF)

You specified a site, server, or queue that had not been configured
with FIGEN.

@ Only one management option allowed. (FSOMOP)

You specified more than one management option, which is not allowed.
For example, FIR -ABORT LETTER -CANCEL is not allowed.

@ Passworded pathname must be fully qualified. (FSPSKQ)

You did not specify a passworded pathname from the UFD down to the
filename, and you did not enclose the complete pathname, including the
password, in single quotes.

Third Edition C-8

FTS ERROR MESSAGES

@ Queue blocked. (QSQBLK)

You tried to submit a request to a queue that has been blocked with the

FIGEN BLOCK_QUEUE command. The queue must be unblocked with the FIGEN

UNBLOCK_QUEUE command so that requests can be accepted.

@ Queue does not exist. (QSQNEX)

You tried to submit a request to a request queue that has not been

configured with FIGEN.

@ Queue full. (QSFULL)

The request queue is full.

@ Queue name may not be modified. (FSQNMD)

You tried to modify the —QUEUE option, which is not allowed.

e@ Request held by operator. (FSRHPR)

You tried to release an operator-held request.

e Request log treename same as source or target treename !! (FSRLST)

You specified a log filename that is not different from the source or

destination pathname.

@ Request already aborting. (FSRQAB)

You tried to use an FIR management option (except -STATUS or —DISPLAY)

on an aborting request, which is not allowed.

@ Request already put on hold by FIS. (FSRQHF)

You tried to hold or abort a request that has already been held by FIS,

which is not allowed.

e@e Request already put on hold by operator. (FSRQHO)

You tried to hold or abort a request that has already been held by an
operator, which is not allowed.

Cc-9 Third Edition

DOC3710-193

@ Request already put on hold by user. (FSRQHU)

You tried to hold or abort a request that has been put on hold already.

@ Request waiting. (FSROWT)

You tried to release or abort a waiting request, which is not allowed.

@ Remote treename incorrectly specified. (FSRTIS)

You specified a pathname for the destination site that did not include
disk and directory names. You must specify the entire pathname in the
command line.

@ Segment dir. transfer to/from a Rev 1 site is not supported.
(FSPINS)

You tried to transfer a SHG file to or from a REV 1 FITS site, which is
not allowed.

@ Source or destination site must be local. (FSSDSL)

You cannot make file transfers between two remote sites. You can

transfer requests in loopback on a local site, or between local and
remote sites only.

@ Source file type may not be modified. (FSSFMD)

You tried to modify the source file type, which is not allowed.

@ Source file does not exist. (FSSFNE)

You tried to transfer a nonexistent file. Check to see that you
specified an existing file for the transfer request.

e@ Source file has not been specified. (FSSFNS)

You did not specify a file to be sent or fetched in the transfer
request.

@ Specified and actual source file types differ. (FSSFTD)

You used the -SRC_FILE_TYPE option, but the file type that you
specified differs from the actual source file type.

Third Edition C-10

FITS ERROR MESSAGES

e Source site may not be modified. (FSSSMD)

You tried to modify the source site, which is not allowed.

e Source site is not configured. (FSSSNC)

You specified a source site that has not been configured with FIGEN.

e Source user name invalid. (FSSUIN)

You specified an incorrect source user-id. User-ids must conform to

Prime's naming standard. See the Prime User's Guide for more

information.

e Source user not specified when source notify requested. (FSSUNS)

You did not specify the source user (with -SRC_USER). You must specify

a source user if you use the -SRC_NIFY option in the command line.

e ‘Transfer to a device as well as a file is not allowed. (FSTDFN)

You cannot specify both a destination file and a destination device

(—DEVICE LP) in one transfer request.

e Transferring a SEG directory to a DEVICE is not supported.

(FSTDNS)

You cannot print a SBG file type ona remote line printer.

e Transferring a file to itself is not possible. (FSTFNP)

You used only one filename for two files in a transfer request. The

source and destination file cannot be the same.

e Transfer in progress. (FSTRPR)

You tried to release, cancel, modify, or hold a transferring request,

which is not allowed.

e Unable to create temporary file. (QSUCTF)

The number of temporary files in the FISQ* directory has reached the

maximum number as a result of queued requests. The operator should

investigate the possibility of any old requests being canceled.

C-ll Third Edition

DOC3710-193

@ Unknown keyword. (FSBDKW)

An argument on the command line is unknown. For example:

FTR <ASH>TREE <ELM>BRANCH —FRED

shows an unknown keyword, -FRED. ‘The command line should also include

-DSTN_USER (abbreviation is -DS) for the user-id FRED.

@ Unknown option. (FSUNOP)

You specified an unknown option in the command line. This error occurs
in FIOP as well as in FIR if an extra option is specified. For
exampLe :

FIR <ELM>TEST <ASH>ANSWERS —DSTN_USER JONES -SRC_NIFY EXTRA

specifies an extra option, -EXTRA, that is not known to FTS.

FTOP ERROR MESSAGES

The following section describes the errors that occur in the FTOP
utility, which is the FITS operator utility for starting and stopping
FTS servers and the FIS manager (YTSMAN).

@ FITS manager already notified to close down. (FSMNAC)

You tried to stop the FITS manager (YTSMAN) with the —STOP_MNGR command,
but it has already been notified to stop with a previous FIOP
—-STOP_MNGR command.

@e Server link is not active. (FSSLNA)

You tried to abort a server link that is not active. Use the FTOP
-~LIST_SRVR_STS command to see which links are active.

@ The FITS manager is not running. (FSMNOR)

You tried to stop the manager, but it is already inactive. To start
the manager, use the FIOP -START_MNGR command.

e@ The server is not running. (FSSNOR)

You tried an FIOP -STOP_SRVR, -ABND_SRVR, or -ABRI_SRVR_LINK command

when the server was not running.

Third Edition C-12

FTS ERROR MESSAGES

e Server already running. (FSSRDL)

You tried to start a server that has already been started.

@ Command must be invoked from system console. (FSSUSC)

You tried to start the manager from a terminal other than the system

console.

e Text follows last argument. (FSTFLA)

This error occurs in FIGEN as well as in FYOP. ‘The argument to a

particular command contains extra text. For example, if you invoke the

following command:

FTOP —STOP_MNGR FRED

the FIOP -STOP_MNGR command is acceptable, but FRED shouldn't be there

as -STOP_MNGR does not require an argument.

@ Unknown option. (FSUNOP)

You specified an unknown option in the command line. For example, the

following is an invalid FIOP option:

FTOP UNICORN

This error occurs in FIR as well as in FIOP.

@ Unexpected named semaphore value. (FSUNSV)

This error, although extremely unlikely, shows up after an FTOP

-—STOP_MNGR command. If it does happen, the FITS manager (YTSMAN) fails

to close down. Your System Administrator should be informed, since the
FITS manager can be shut down by logging out the YTSMAN phantom.

@ You do not have operator privileges. (FSNOPP)

You attempted to invoke the FIOP command while not logged in as SYSTEM,
You must log in as SYSTEM to use the FIOP command.

C-13 Third Edition

START_NET and

STOP_NET

Error Messages

INTRODUCTION

This appendix contains the error messages that may occur while you are

using the START_NET and STOP_NET commands.

START_NET ERROR MESSAGES

The START_NET error messages are listed below.

e [nnnn Errors (Net_Init) J

This message prints out the total number of errors encountered while

STARTNET was processing. If nnnn equals 0, then the network will be

started.

e Already Exists. The Network Was Already Started.
You Must Use Stop_net Before Re-Starting The Network.

The network is already in operation. You must stop (STOP_NET) the

network with the STOP_NET command before restarting it on the local

node.

D-1 Third Edition

DOC3710-193

e@ A Nodename Must Be Specified With The —Node Option.

The START_NET command was given without specifying the name of the
local node.

e@ A Nodename cannot be more than 6 characters long.

A node name longer than 6 characters was specified.

@ Error: No path to node <name> in <nn> steps. Either recompile the
INDIRECT_CONNECT subroutine with a larger MAX_STEPS parameter, or
Change the data file. Connection ignored (Net_Init).

This message states that there is no physical path between this node
and the intended destination node. This indicates either that the node
can't be seen at all, that there are more than 5 steps between end
nodes, or that a longer path is needed.

@ Error: PDN's not available with this version.

The PRINET product does not support PDNs.

@ Error: PNC line spec has an invalid name <net> -> <Node>/<Line>

Ring configuration was not completely specified.

@ Error: SMLC line spec has an invalid name "name"

SMLC line number was not configured, or was configured as unknown.

e Insufficient Access Rights.

Only System User May Invoke This Command.

START_NET was given from a terminal other than the supervisor terminal.

e Insufficient Access Rights. Can't Attach to PRIMENET*

The ACLS for PRIMENET* are incorrectly set.

e Insufficient Access Rights. PRIMENET*>NEIWORK_SERVER. COMI

The ACLs for the server file are incorrectly set.

Third Edition D-2

START_NET and STOP_NET

e Max addrs exceeded

The maximum number of addresses in the address table was exceeded.

e Max HCB's exceeded

The maximum number of HCBs was exceeded.

@ Max names exceeded

The maximum number of names in the naming table was exceeded.

e@ Missing Argument to Command. -NODE nodename

The STARTNET command was invoked without supplying the —NODE option.

e@ No room in alloc database

The network configuration is too big to fit into available memory. Try

making the data base smaller and contact your support staff. You may

get several of these messages.

@ Not Found. Can't Attach to PRIMENET*

STARTNET could not find the PRIMENET* directory.

@ No Phantoms Available. Can't Start Network Server.

No phantoms were available when the START_NET command was given.

Ensure that sufficient phantoms are configured before re-invoking

START_NET.

@ No Phantoms Available. Can't Start R-T Server

No phantoms were available when the START_NET command was given. The

route-through server could not be started. Refer to the chapter on

START_NET for a description of how to manually start R-T Server.

@ Not Found. PRIMENET*>RT. COMI

STARTNET could not find the file RT.OOMI.

@ Not Found. PRIMENET*>NEIWORK_SERVER. COMI

START_NET could not find the file NEIWORK_SERVER. COMI.

D-3 Third Edition

DOC3710-193

@ Operation Illegal on Directory. PRIMENET*>NETIWORK_SERVER. COMI

NETWORK_SERVER. COMI was created as a directory, instead of a file.

@ Operation Illegal on Directory. PRIMENET*>RT.OOMI

RT.COMI was created as a directory instead of a file.

@ Too many paths specified

The maximum number of paths in the path table exceeded RING 0 limits.

@ Warning: HDX not supported at this rev.

Half duplex is not supported at PRIMOS Revision 19.3.

@ Warning: Node <name> does not have a specified <type> password.
It will become a default value.

The specified type is NPX. Since passwords were not specified in the

configuration file, default values are supplied.

STOP_NET ERROR MESSAGES

STOP_NET error messages are listed below:

@ The Network Is Not Started Up

The STOP_NET command was given on a node that was not running on the
network.

@ No Right To Shutdown The Network

The STOP_NET command was given from a terminal other than the
Supervisor terminal.

Third Edition D-4

INDEX

A

Accepting connection requests,

14-14

Access rights for PRIMENET*,
18-3

Accessing remote files, 2-l

ADD_REMOTE_ID command, 2-4

Adding remote disks, 18-3

Architecture of PRIMENET, 10-1

Archiving FITS log files, 22-10

ARID command, 2-4

Assigning ports, 11-2, 14-4

B

Break in a ring,
Locating, 23-28

X-1

Index

c

Call Acceptance (IPCF), 14-14

Call Requesting (IPCF), 14-6

Canceling file transfer requests

Clearing calls (IPCF), 14-20

Clearing codes, 11-6

Clearing virtual circuits, 11-6

Command mode of NETLINK, 7-3

Command summary of NETLINK, 9-1

Commands ,
ADD_REMOTE_ID, 2-4
FIOP, 22-2
FIR, 5-1
LIST_REMOTE_ID,
LOGINv 3-l

PRINT_NETLOG, 21-2
REMOVE_REMOTE_ID,
START_NET, 19-2
STATUS NEIWORK,

2-5

2-5

20-3

Third Edition

DOC3710-193

Commands (continued)
STATUS USERS, 20-2

STOP_NET, 19-4

Connection request,
Accepting, 14-14

D

Data network identification code,
9-8

Data transmission mode of
NETLINK, 7-4

Destination site (FITS), 4-4, 6-6

E

Error messages,
FIGEN, C-2

FIR, C-4

FITS ’ Cl

NETLINK,
PRINT_NETLOG,
Remote login,
START_NET, D-l
STOP_NET, D-4

9-17 to 9-21
21-14
3-2 to 3-4

Establishing remote ids, 2-4

Examining your remote ids, 2-5

F

Fast select calls, 15-9

File transfer requests (FIR),
Canceling, 5-9
Fetching, 5-3
Holding, 6-8
Notifying, 5-8
Printing, 5-3
Sending, 5-2
Status, 5-4

Third Edition X-2

File transfer servers,
Listing, 22-8
Monitoring, 22-7
Starting, 22-8
Stopping, 22-8

File Transfer Service (FITS), 4-l

FIND_RING_BREAK,

Error messages,

How it works,
Input file,
Invoking,

23-30
23-24

23-26
23-26

Finding information on an
incoming call (IPCF),

FTSSUB,
Defining keys,

Error codes,
Error data structure,

17-33
Error recovery,

17-17, 17-21
Invoking, 17-4
Loading the library,
Program setup, 17-2

Programming example,
17-37

14-11

17-3
17-3, 17-27

17-31 to

17-8, 17-13,

17-3

17-34 to

FTSSUB subroutine, 17-1

FIGEN, 4-1

FIOP command, 22-2 to 22-6
-ABND_SRVR option, 22-3
-ABRI_SRVR_LINK option,
-HELP option, 22-4
-LIST_SRVR_STS option,

22-5
Listing file transfer servers,

22-8
Monitoring file transfer

servers, 22-7
Monitoring YTSMAN,
-START_MNGR option, 22-5

-START_SRVR option, 22-5, 22-6
Starting file transfer servers,

22-7
-STOP_MNGR option, 22-6
-STOP_SRVR option, 22-6, 22-7
Stopping file transfer servers,

22-8

22-3

22-4,

22-7

FIR,
Access rights, 4-6, 4-7
Canceling requests, 5-9
Destination pathname, 4-4
Destination site, 4-4
Destination user, 4-4
Failed transfers, 5-10

Fetching a file, 5-3
File transfer queues, 4-2
File transfer servers, 4-2
File types, 4-5
Full descriptions of management

options, 6-14
Full descriptions of submittal

options, 6-4
Help, 5-2
Introduction, 4-4
Logging Requests, 5-7
Management options, 6-14

Options for managing requests,
6-13 to 6-21

Options for submitting
requests, 6-2 to 6-13

Printing a file, 5-3
Request name, 5-2
Request number, 5-2
Requesting transfer

notification, 5-8
Sending a file, 5-2
Sitename, 5-2
Source pathname, 4-4
Source site, 4-4
Summary of management options,

6-14
Summary of submittal options,

6-2 to 6-4

FIR management options,
-ABORT, 6-15, 6-16
—CANCEL, 6-16
-DISPLAY, 5-5, 6-16, 6-17
~HELP, 6-17
-HOLD, 6-17, 6-18
-MODIFY, 6-18, 6-19
-RELEASE, 6-19
-STATUS, 6-20
-STATUS_ALL, 6-20, 6-21

FIR submittal options,
—COPY, 6-4, 6-5
-DELETE, 6-5
-DEVICE LP, 6-5

-DSTN_FILE_TYPE, 6-6
-DSTN_NTFY, 6-6

X-3

INDEX

FTIR submittal options (continued)
-DSTN_SITE, 6-6, 6-7

-DSTN_USER, 6-7

—-HOLD, 6-8

-LOG, 6-8

—-MESSAGE_LEVEL, 6-9
—-NAME, 6-10
-NO_OCOPY, 6-10
~-NO_DELETE, 6-10
—-NO_DSTN_NTFY, 6-10
~NO_QUERY, 6-11
~NO_SRC_NIFY, 6-11
~QUERY, 6-11
—QUEUE, 6-11, 6-12
~SRC_FILE_TYPE, 6-12
—SRC_NIFY, 6-12
-SRC_SITE, 6-13
~SRC_USER, 6-13

FIS,
Error messages, C-l to C-13
FIGEN error messages, C-2 to

Cc-4
FTOP command, 22-2 to 22-7
FTOP error messages, C-12,

C-13
FTR error messages, C-4 to

C-12
Introduction, 4-l
Log files, 22-10
Monitoring, 22-10
Programming with, 17-1 to

17-37
Stopping, 22-11

FISQ* directory, 22-10

G

General network cleanup (IPCF),

14-23

i

Interpreting ring statistics,
23-9

Intra~node calls (IPCF), 11-4

Third Edition

DOC3710-193

IPCF,

Checking return codes, 16-6
Descriptions, 14-4 to 14-34
Effect of START_NET and
STOP_NET on, 16-8

Fast select calls, 15-9
Fast select example, 15-9 to

15-31
File-transmission system

example, 15-3, 15-6 to 15-1
Front-end principles, 16-2
General layout, 15-2
Naming conventions, 14-2
Network event waiting, 16-5
Performance aspects, 16-3
Program closedown, 16-7
Programming examples, 15-1 to

15-31
Programming strategy, 16-1
Server principles, 16-2
Summary, 14-3
Timing aspects, 15-10
Virtual circuit clearing,
Window and packet sizes, 16-4

IPCF subroutines

Subroutines)
(See

L

LIST_REMOTE_ID command, 2-5

Locating a break in a ring,
23-28

Logging into remote systems,

LOGIN command, 3-1

M

Managing and monitoring user
requests (FITS), 22-9

MONITOR_RING program,
Basic screen, 23-9

Invoking, 23-7

Third Edition

0

16-7

X-4

MONITOR_RING program (continued)
Report file format, 23-23
Selecting displays, 23-9

Monitoring,
FITS v 22-1

FIS log files, 22-10
FTISQ* directory, 22-10
NEIMAN, 20-1

Network events, 21-1
Network servers, 20-1
RINGNET, 23-1
Route-through server, 20-2

YTSMAN, 22-7

N

NETLINK,
Address formats, 9-2
Addressing another system, 8-2
Basic commands, 9-2
Changing the prompt,
Command mode, 7-3
Command reference,

Command summary,
Connect packet options,
Data Transmission mode,
Debugging, 8-15
Direct remote login, 8-4
Displaying X.3 parameters (PAR

command), 8-13
Error messages, 9-17 to 9-21
File transfers, 7-4, 8-7
International addressing,
Introduction to, 7-1
Invoking, 8-2
Literal addressing, 8-4
Local-to-remote file transfers,

8-8
Logging into a remote system,

8-4
Making a connection, 8-2
Multiple NETLINK connections,

8-5
PDN addressing,
PDNs and, 12-1
PRIMENET-configured name
addressing, 8-3

Profile commands, 9-3
Remote-to-local file transfers,

8-9

8-6

9-5 to 9-17
9-1 to 9-5

8-4
7-4

8-3

8-3

Network event file,

Network event messages,

Network programming,

NETLINK (continued)

Running it from a command input
file, 8-9

NETLINK commands,

BPS v 9-5

C, 9-6
CALL, 9-7
CLEAR’ 9-7

CLOSE, 9-7
CONTINUE, 9-7
D, 9-7
DATA,

DEBUG ,
DNIC,
ESCAPE,
FCTY,
FILE,
HELP,

LDATA,
LMDATA,
MDATA, 9-8, 9-11
MODE, 9-11
NC, 9-12

PAR, 8-13, 9-12, 9-13
PAUSE, 9-13

PORT, 9-14
PRID, 9-14
PROFILE, 8-11, 9-15
PROFILE DEFAULTS, 9-15
PROMPT, 8-6, 9-15
QUIT, 9-15
SET, 9-15
SPEED, 9-16
STATUS, 9-16
SW, 9-16
TOv 9-16 v 9-17

TIP, 9-17

9-8
9-8

9-8
9-9

9-9
8-7, 9-10
9-11
9-11
9-11

Network cleanup,

General (IPCF), 14-23

21-7

21-8 to
21-15

13-1

Network servers,

Monitoring, 20-1

X-5

INDEX

Network status interrogation
(IPCF), 14-29

Network types, 10-4

Q

Operator tasks,
Adding remote disks, 18-3
Controlling the network event

file, 21-7
Interpreting ring statistics,

23-9
Invoking the FIND_RING_BREAK
program, 23-26

Invoking the MONITOR_RING
program, 23-7

Locating a break in a ring,
23-28

Managing user requests, 22-9
Monitoring FITS, 22-1
Monitoring NETMAN, 20-1
Monitoring network events,

21-1
Monitoring network servers,

20-1
Monitoring RINGNET, 23-1
Monitoring the FTSQ* directory,

22-10
Monitoring the Route-through

server, 20-2
Monitoring user requests (FIR),

22-9
Rush requests, 22-9

Starting and monitoring file
transfer servers, 22-7

Starting and monitoring YISMAN
(the FITS manager), 22-7

Starting PRIMENET, 19-1
Stopping FITS, 22-11

Stopping PRIMENET, 19-3

P

PDNs,

Connections, 10-9
Ease of access, 12-2

Multiple PDN support,

Route-through, 12-2
12-2

Third Edition

DOC3710-193

Point-to-point connections, 10-8

Ports, 11-1

PRIMENET,

Adding remote disks, 18-3
Architecture, 10-1
Examples of networks, 10-5
Invoking START_NET, 19-2

Invoking STOP_NET, 19-4
Level 1, 10-3

Level 3, 10-3
Monitoring NETMAN, 20-1
Monitoring network events,

21-1
Monitoring network servers,

20-1
Monitoring the Route—through

server, 20-2
Network configuration file,

18-3
Network event file, 21-7
Network programming, 13-1
Network types, 10-4
Operator features, 18-1
PDNs, 10-9, 12-1
Point-to-point connections,

10-8
PRIMENET* directory, 18-2
Programmer features, 13-l
Remote file access, 2-1
Remote login, 3-l
RINGNET, 10-6
Route~through connections,

10-9
Sample ring, 23-25
Starting and stopping, 19-1

PRINT_NETLOG command, 21-2 to
21-7

Error messages, 21-14, 21-15

Printing files remotely (FTIR),
5-3

Programming,
FTSSUB example, 17-34 to 17-37
IPCF examples, 15-1
IPCF strategy, 16-1
X.25 guidelines, A-1l

Third Edition X-6

R

Receiving Data (IPCF), 14-18

Releasing a port (IPCF), 14-23

Remote file access, 2-l

Remote ids,
Establishing, 2-4
Examining, 2-5

Remote login, 3-l

REMOVE_REMOTE_ID command, 2-5

Ring diagnostic programs, 23-1

RINGNET, 10-6, 23-1

Configuration, 10-7
Hardware, 10-6
How it works, 23-5
Invoking the FIND_RING_BREAK
program, 23-26

Invoking the MONITOR_RING
program, 23-7

Locating a break in a ring,

23-28
Terminology, 23-2 to 23-5

Route-through connections, 10-9

Route-through server,
Monitoring, 20-2

Rushing file transfer requests,
22-9

8

Sample ring, 23-25

Sending files with FIR, 5-2

Server processes (FITS), 4-2

Site (FTS),
Defined, 4-4
Destination, 4-4

Source t 4-4

START_NET command,
Effect on IPCF programs, 16-8
Error messages, D-l to D-4
Invoking, 19-2

NET ON versus, 19-2

Starting a network, 19-1

Starting and monitoring file
transfer servers, 22-7

Starting and monitoring YTSMAN,
22-7

STATUS NETWORK command, 20-3

Status of FIR requests, 5-4

STATUS USERS command, 20-2

STOP_NET command, 19-3
Effect on IPCF programs,
Error messages, D-4
Invoking, 19-4

16-8

Stopping a network, 19-1

Stopping FITS, 22-11

Subroutines,
FTSSUB, 17-1 to 17-37
IPCF, 14-1 to 14-34
XSACPT, 14-14
XSASGN, 14-4
XSCLR, 14-20
XSCLRA, 14-23
XSCONN, 14-6
XSFACP, 14-14
XSFCLR, 14-20
XSFCON, 14-6
XSFGCN, 14-11
XSGOON, 14-11

XSGVVC, 14-25

XSRCV, 14-18
XSSTAT, 14-29
XSTRAN, 14-16
XSUASN, 14-23

XSWAIT, 14-24

XLACPT, 14-14
XLCONN, 14-6
XLGCON, 14-11
XLGVVC, 14-25

X-7

INDEX

Summary of IPCF subroutines,

14-3

System operator tasks, 18-1

z

Timed wait for call completion,
14-24

Transferring files,

With NETLINK, 8-8

Transmitting data (IPCF), 14-16

U

Unassigning a port, 14-23

Using Remote ids, 2-2

V

Virtual circuits, 1li-l
Clearing, 16-7
Clearing codes, 11-6 to 11-8

Establishing, 15-1
Passing off to other processes,

11-5
Status array, 11-5
Throughput, 16-4
Timing aspects, 15-10

W

Wait for completed network
activity, 14-24

Third Edition

DOC3710-193

x

X.

¥

25,
Call user data field .

terminology, A-1l
Data flow checkpoints, A-3
Facility table, A-2

Programming guidelines, A-l
Window and packet size, A-2

YTSMAN,
Monitoring, 22-7

Third Edition

SURVEY

READER RESPONSE FORM

DOC3710-193 PRIMENET Guide

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent __very good _good

J_

fair

J

poor

2. Please rate the document in the following areas:

Readability: __hard to understand’ _average _very clear

Technical level: __too simple about right

_

too technical

Technical accuracy: __poor average _very good

Examples: ___too many

_

about right ___too few

Illustrations: __too many -__about right ___too few

3. What features did you find most useful?

 4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? yes no

Name : Position:

Company :

Address:

Zip:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bldg 10B

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

D0C3710-193 PRIMENET Guide

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent __very good

-_

good fair

_

pooree

2. Please rate the document in the following areas:

Readability: __hard to understand’ _average very clear

Technical level: __too simple about right __too technical

Technical accuracy: __poor average ___very good

Examples: ___too many

_

about right _too few

Illustrations: __too many __about right __too few

3. What features did you find most useful?

 4, What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? yes no

Name : Position:

Company :

Address:

Zip:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC3710-193 PRIMENET Guide

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent very good good

-_

fair poor

2. Please rate the document in the following areas:

Readability:

__

hard to understand ___average very clear

Technical level: __too simple about right ___too technical

Technical accuracy: ___poor ___average

_

very good

Examples: __too many about right

_

_too few

Illustrations: ___too many

-_

about right too few

3. What features did you find most useful?

4, What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's current

documentation catalog and ordering information? yes no

Name : Position:

Company:

Address:

Zip:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

	Front cover
	Title page
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	xv
	xvi
	I-1
	I-2
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	II-1
	II-2
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	3-1
	3-2
	3-3
	3-4
	III-1
	III-2
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	IV-1
	IV-2
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	V-1
	V-2
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	12-1
	12-2
	VI-1
	VI-2
	13-1
	13-2
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	17-1
	17-2
	17-3
	17-4
	17-5
	17-6
	17-7
	17-8
	17-9
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	VII-1
	VII-2
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	19-1
	19-2
	19-3
	19-4
	20-1
	20-2
	20-3
	20-4
	21-1
	21-2
	21-3
	21-4
	21-5
	21-6
	21-7
	21-8
	21-9
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	22-1
	22-2
	22-3
	22-4
	22-5
	22-6
	22-7
	22-8
	22-9
	22-10
	22-11
	22-12
	23-1
	23-2
	23-3
	23-4
	23-5
	23-6
	23-7
	23-8
	23-9
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	Appendixes-1
	Appendixes-2
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	C-14
	D-1
	D-2
	D-3
	D-4
	Index-1
	Index-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	Survey-1
	Survey-2
	Survey-3
	Survey-4
	Survey-5
	Survey-6
	Survey-7
	Survey-8

