

DATE: June 20, 1984

TO: LIST and R & D Personnel

FROM: Jerry Kazin, Joel Ball

SUBJECT: Inter-Process Communication Functional Specification

REFERENCE: PRIMOS Support For Premier Systems Proposal
PE-TI-1064

The New Print ServiceDesign
PE-TI-XXXX

Software Interrupt Control Module Functional Specification
PE-TI-1005

Specifications For The PRIMOS Condition Mechanism
PE-T-468, Rev. 2

Dynamic Storage Allocator Functional Specification
PE-TI-1062

KEYWORDS: IPC, Mailbox

Abstract

The need for an Inter-Process Communication (IPC) mechanism at the user
level has long existed here at PRIME, but we have not yet provided such
a facility. Most other commercially available operating systems
provide their users with this functionality. This paper describes a
prototype IPC which will be built into PRIMOS for internal use only.

This document has now been updated to reflect changes made at Primos
release 20.0. Functionally, the IPC has not changed radically for
20.0. It has, however, changed drastically internally. Please refer
to the IPC Design Specification for detailed information on the
internal changes. The major addition at this release is the capability
for remote IPC communications. There are some fine points about the
use of IPC under remote conditions, but they will be indicated by a
revision bar.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

Table of Contents

CTIONALITY.. 2. cc ccc ccc re reve vcccsescces ere eee r cece secre cess eccceodl
TELMINOLOGY.. ccc cece cece vec cccsnccnsecsesssesseresesccccsssessceed
Goals and NON-GoalsS... ecw ccc ccc nccccccnnssssssccccccesevessesseed
The User'S MOdel... ccc ccc cc ec csvcvasccaasscscscvvccscessesccesceeccd
PrOduct FUNCCIONS... cc cwcccr css cccccreereccccccsecsccescccesseeseedD
1.4.1 Syntax/FOrM....ccccsscccsescevvece cme emcee cence cere asec edD

1.4.1.1 Control Mechanism... ...cccccccccccsccccvcccscsscseesd
1.4.1.1.1 Semaphore Notification Mechanism..........22..5
1.4.1.1.2 Inter-Process Software Interrupt

Mechanism......... Cece e rc e errr errr vere eres eseseseeedD
1.1.3 AcceSS CONCTOL.... ccc cree cree ence rsccvecccecedD
~1.1.4 ON/OFF Switch... ccc ccc ence ccc ccccccesesecccesl
2 MESSAGE PASSING... .cccernseesesccscccvesecsecevcece .7
3 Mailbox and User IDs for IPC....c cece eee eee cece ee eB
ics/Meaning........... cece ee cee ee ee eee ec cece cece eee 8
L IPC Commands... ccc ccccccrvcnsnnccccssceceseseesd
22.1.1 MAKEMBX... . cc ccc cee ccc cece cece eee e ese e ee ed

«2 DELETEMBX... ccc cece cece cece eee e cece cece eee ed
»3 CLOSEMBX... . ccc ccc cece ecw cee cece cece cee Dd
Program Interfaces... ccccccccccnvccesccseeee sll

L IPCSO. . . cw eww c cree errr ween rence seeeccsseveela
2 TPCSC. ccc ec ec cc cece cr errr reserves escesecrceld
3 IPCSCA.. .. ec ccc cc cc ccc eee reer rece essere eseselS
A IPCSSS... cee cee cece ec ee ewe cen nec cesevccceee eel
5 IPCSSA. ... ec ccc cc ccc cere e nner erence esvesccvell
6 IPCSSSA.... cc ere ccc cc een cnn nnsvcsesevcccseeelS
7
8
9
1
1

U

m
W
N
H
O
H

«
M
e
e
e
e

1.4
1.4

1.4.2 Sem

1.4
2.

o2e

2.

IPCSSB. wc cece crc cc cence recs ers cneevccce eee -l9
IPCSSSB. we ccc ccc cece r ccc c rn nsscccccsecss sell

. IPCSR. wc cer c ccc cece cnr cccerccesesesscseseccceal

. O TPCSRA. .. ee ec cc cc ccc ccc ccc ene e ence ese seeee dd

. Ll IPCSCN. 1... ccc ccc creer cece cece cece cee vee nee eo 2D

. o12 IPCSST.. ccc ccc ccc nvccccsrcvvcccccccssesesee lO
-2.2.13 IPCSGU...... cece wren erseccns cece were cece eee a 2
Commer rere ere c rece e cece rere n cece eseeesecesessses e 30
Ll Brror D@teECtion....ccccerccccccccccvcccscceseseee 30
~-3.1.1 Memory Requirement ErrorS...ccccccees eee eee 30

1.4.3.1.2 Recoverability Errors.ccscececccccccseee dO
1.4.3.2 Error Handling... .cccccccccveccvecs cee cece rene oee3l

1.4.4 REStrictions......cccececees cece ee reece re eee cece cece eee e edd
1.5 Testability... ccccccccccncccsccces Cem ec weer ccc r cere es eecns oe 232

2 DESIGN NOTES... cc ccc ccc cer c www ccc ccc c creer ees nesscecscecccece eeeee 33
2.1 A Subset IPC... ccc cc wwe c cece r nc vccccces ecm er cc erence ces cesee dd
2.2 Process Synchronization.......cceccccees weer cere sce ccee eseeeed3
2.3 Networking Capability... ccc ccecceccccccccrccscccseceece ee eeceee 33

Inter-Process Communication Functional Specification

3 RELIABILITY. eeoeseeteee#s#seeee+eeteees#es88# ee 6¢ @ @

4 PERFORMANCE @eee#ee#ee#8rtee#ssteeeneeee##see#ertee?ee#e8 e0

5 CONFIGURATION eseeoeee2euse342837eseeeses8s8ts eet ee eeee @e

6 INSTALLATION... . cc ccccccvcvcvecccsccce

Snecification

eeeonees#288 8686 @

7 EASE OF USE... cw cc ccc ccc ccc ccc reece rece c eer e ccc ccccce
7.1 Example Of The IPC In US€...... ccc n wer n cece vccee

7.1.1 Using Semaphore Synchronization.........e0.
7.1.2 Using Software Interrupt Synchronization...

7.2 Analysis Of Semaphore Vs. Interrupt Notification.

8 MAINTAINABILITY.... cc ccccvcccccsscces

9 COMPATIBILITY... .. cc ccvncvvvcccvvccecce

10 STANDARDS... ccccccccccccccccrccsceces

ll REFERENCES... 2... ccc cecccccccce ccc ene

022 0 34

222-34

022 2 35D

002 0 36
0002 36
006 2 36
222 2 38
022 41

020 042

222 - 42

20 2 42

22 2 0 42

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

1 FUNCTIONALITY

Inter-Process communication is a very important piece of functionality
that any good operating system should provide its users. It covers a
broad range of capabilities and functionality. Around PRIME its
creation would permit certain operating system functions ease of
implementation as well as allowing subsystems needed and desired
flexibility. In addition, making IPC an available feature of our
operating system would give many potential buyers of the system more
reason to consider purchasing PRIMOS. Unfortunately, due to the lack
of specifications relating to a distributed environment and a lack of
time and manpower, the IPC mechanism described by this paper will not
be released to our customers at this time.

This IPC will be usable across the network. This will be achieved
through the use of NPX in conjunction with the use of remote pathnames.
[These pathnames will act as name space managers. Remote IPC is not
available to pre-Rev 20.0 users, however, it will provide
|communications for processes local to each other on pre-Rev 20.0
lsystems.

The basic design criterion used in this proposal is simplicity: in
use, in design, in interface, and in program operation.

It is important to remember that any IPC will not fill all the needs of
all of its potential customers. In particular it should be again noted
that this IPC is a prototype which will be replaced in the future by a
[fully specified distributed version, one that is capable of supporting
[the SROS environment. All users of this IPC will, at that time, have
[to change to the new ISC. We will try to implement the user interfaces
as simply as possible to facilitate an easy conversion.

1.1 Terminology

The following defines all special terminology used in this
specification. It is assumed that readers of this document are
somewhat familiar with PRIMOS.

mailbox - The object through which the IPC passes data. It isa
virtual object named by the user and dynamically built by the IPC
mechanism.

software interrupt - Asynchronous interrupt generated by software
which may be seen by a user's software. Terminal Quits are an
example of a software interrupt.

condition - Name associated with a given software interrupt. The
condition associated with terminal breaks is "QUITS".

Signal - Action performed when raising a condition. Signals are
used as the agent to tell a user that a software interrupt has
occurred.

on-unit - Software structure to which control is passed when
Signalling occurs.

1.2 Goals and Non-Goals

This IPC intends to provide certain internal PRIME users with enough
of a cross process data passing and synchronization mechanism so as
to enable limited communications. (Data passing and synchronization
are the two most important features of any IPC.)

This project will make use of the prior work of the Network group,
Lee Scheffler, and Jerry Kazin when designing both user and internal
functions.

This IPC will not be directed towards solving the general system
problem of IPC usage. We do not have enough knowledge nor time to
provide that kind of solution.

This IPC will not solve the general problem of name space
Management. We will not build a name server.

This IPC will not provide any recoverability for messages lost when
there is a system crash.

The design of this product, even with its limited capabilities, will
be directed towards ease of use. The system should not require a
thorough knowledge of IPCs before being available for programmer's
use. It must be simple.

The IPC should make it easy for users to dynamically create the
pathways through which the data will pass.

This IPC will provide the same security as the file system by
utilizing existing PRIMOS functionality, (this is much the same
concept as Named Semaphores).

The IPC should be well integrated into PRIMOS without interfering
with any present resource. In other words, it should present itself
to PRIMOS as a piece of functionality (black box) that can simply be
added to the load. It will make use of known internal base level
functions. It will cause minimal changes in the present product.

Finally, the IPC will be built and will accomplish its stated task
in an acceptable and intelligent manner as regards both its user
interface and its internal design.

I n ter-Process Communication Functional Specification PE-TI-1066 Rev. 1

1.3 The User's Model

The users of this IPC will be restricted to PRIME internal
customers. These users must understand that this product may be
replaced at any time by another version. They must be willing to
take the responsibility to convert to the new ISC before choosing to

use this IPC. We cannot guarantee that the program interfaces will
stay the same.

The users of this IPC will initially be of the systems programmer
category. Therefore, even though the product is being designed in
as simple a manner to use as possible, some basic knowledge of the
programmer's resourcefulness is assumed.

Three users of this IPC are presently known and are driving this
project towards a timely completion. They are the New Print Service
project, Premier Systems and HCR's Unix. All will be using the IPC
to communicate between user and server or other user processes.

1.4 Product Functions

The following sections briefly discuss’ the functionality and
limitations of this IPC.

1.4.1 Syntax/Form

The new IPC will be broken into two areas, a control mechanism

and a data passing mechanism.

1.4.1.1 Control Mechanism

The control mechanism is the portion of the IPC used to allow
access to and from the data passing mechanism and between
processes. It will consist of four parts; a semaphore
notification mechanism, an inter-process software interrupt
mechanism, an access control method, and a programmable on/off
switch for the interrupt mechanism.

1.4.1.1.1 Semaphore Notification Mechanism

Presently, PRIMOS contains a semaphore notification
mechanism which allows the system to put users into a wait
state. This is done for certain activites such as waiting
for a character to be entered at a terminal or for waiting
on a SLEEPS timer. While in the wait state, a user process
does not take any cpu time. Additionally, the semaphores
used by this mechanism have been made software
interruptable, i.e., the semaphore may be notified by an
event other than the event for which the user is waiting.
For example, in the case of waiting for the SLEEPS timer to
expire, the user may enter a break (terminal quit). This
will cause the user to be awakened even though the timer
did not expire.

This method of controlling when a user is waiting and when
to awaken the user is said to be synchronous.

The IPC will use this semaphore notification mechanism to
allow users to wait for messages to be sent to them.

1.4.1.1.2 Inter-Process Software Interrupt Mechanism

Software interrupts within PRIMOS are presented to a
process via the CRAWLOUT mechanism. This mechanism follows
the PL/1 Condition Mechanism standard. Conditions are
generated by signals which may be intercepted by the
programs with on-units. For the IPC, whenever a process is
to be signalled that a message is waiting, the
"IPCMSGWAITINGS" condition will be generated for the

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

process. The process will then be able to intercept this
condition with an appropriate on-unit. This on-unit then
has the responsibility of retrieving the message from the
IPC.

PRIMOS currently allows software interrupts to be generated
in another processes' execution environment. This is done
for forced logout, phantom logout notification, and other
conditions. This mechanism will be used by the new IPC to
tell the CRAWLOUT mechanism to notify the receiver of a
message that a message is waiting. This means that a
server will not need to poll to determine if data is
waiting.

In addition, the server must always attempt to read all
possible messages when a software interrupt (or semaphore
notify for that matter) happens. It is possible for
message notification to be lost or over notified.
Therefore, it is the responsibility of the programmer’ to
for see these events and program for them.

These interrupts may only be initiated from ring 0 for the
obvious reason of security. Therefore, the new IPC must
exist in the ring 0 environment.

This method of informing a user that a message is waiting
is said to be asynchronous.

1.4.1.1.3 Access Control

Access control will be accomplished in a manner similar to
Named Semaphores. An access category whose access rights
have been set-up prior to the invocation of the servers
will serve as the access control for the mailbox in
question. That is, only users with correct rights as
specified in the access category associated with the
mailbox in question will be able to access the mailbox
and/or the data in the mailbox.

Another way of stating that access catagories are used for
access control is to state that the file system is being
used for name space management. This means that the access
category name will be used as the mailbox name. If the
access category being used for name space management is
moved, the program which uses this name must be updated
accordingly, a drawback.

Additionally, the configuration of the network must be
known to the programmers using the IPC as access catagories
may be found on different nodes of the system and these
nodes must be able to communicate. This means that the
network disk configuration available to the local
programmer is his local name space. He cannot communicate

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

with any user who cannot also see the same exact disk.
This also implies that a mailbox is local to the system
that owns the disk.

The only kinds of rights to place on an access category
that make sense are read and write. The directory
containing the access category may have add and delete
rights. If these rights are present, a user will be
allowed to dynamically create and/or delete an access
category (mailbox) with its associated access rights.
Without these rights, the mailbox may be thought of as
being permanent.

Most often, systems using this IPC mechanism will set up
the access catagories prior to the execution of the system.
This means that the need to dynamically create and/or
delete a mailbox as mentioned above will most often not be
needed.

The rights assigned to a mailbox via its associated access
category are only used during the mailbox open operation.

It will be possible for a user to have both read and write
access to a mailbox. This means that mailboxes are two way
objects. It also implies that a user may communicate with
himself.

The on/off switch interface will make it possible for a
server to turn on/off the asynchronous IPC message
notification noted in the section on the Inter-Process
Software Interrupt noted above. Any notification that
might have happened while a process was in the off state
will be remembered as pending. Please refer to section 7
for further details on the use of the on/off switch.

1.4.1.2 Message Passing

Data will be passed as message packets making this IPC a
message based IPC. These packets will be automatically queued
for the IPC users. Each packet will contain both IPC
mechanism control information such as who is to receive this
packet and the sender's data. Senders will not be told when a
user receives a message. Fach data queue defines a data
pathway that only users with the proper access rights may see.
Associated with the data pathway is a control block used to
control quick access to the mailbox associated with the data
pathway.

Mailboxes will have the capability to store the data sent toa
Specific user, many users, or allousers. Data sent to any

ae BE Ne ee me

user will be retrieved by the first user asking for data.
Data sent to all users will be kept until all users have read
the data. This may be referred to as a broadcast message.

No recoverability will be built into the mechanism. If the
machine were to go down while messages were in the mailboxes,
all data will be lost. In fact, if the system goes down, the
IPC loses knowledge of the currently active mailboxes as well
as the data. A machine is said to go down when only a full
cold start will enable normal operation. If the mailbox is
remote, then all communications through that mailbox are no
longer possible. This will be indicated by a specific error
code (see below).

1.4.1.3 Mailbox and User IDs for IPC

Mailbox IDs are unique to each system. This means that if two
users have the same mailbox open, one user locally, one user
remotely, then the mailbox IDs returned to each may not be the
same. Never assume a mailbox id is anything other than the
one returned by IPCSO (see below) for a specific mailbox.

A user's ID is unique to a system, then a mailbox. This means
that the same user having two mailboxes open, one locally, one
remotely, may have different user IDs for each mailbox opened.
Anyone asking what this user's ID is will get different user
IDs for the same user for different mailboxes. It would be
safe to always get the user ID for required users on a per
mailbox basis, and never assume a particular user has the same
user ID for two different mailboxes.

A user ID is now unique while a system is up. There were
previous prolems with this which are now corrected. These
problems required drastic changes to the design and have
imposed the previous mention ID restrictions. Please refer to
the IPC Design Specification for the details of the changes.

1.4.2 Semantics/Meaning

The following sections discuss the commands’ and the callable
program interfaces which help the user use the IPC mechanism.

1.4.2.1 IPC Commands

Three commands have been created to help the user create,
delete, and close mailboxes.

Inter-Process Communication Functional Specification

1.4.2.1.1 MAKE MBX

MAKEMBX allowS a user to create a mailbox. Specifically,
it creates an access category with the rights specified by
the user. A "“.MBX" suffix is used when creating the
mailbox name. This suffix will appear when the LD command
is used. This makes it easier to determine when a mailbox
has been defined.

The syntax for this command is

MAKEMBX pathname accesscontrollist

pathname - standard file system pathname to which
".MBX" will be appended

accesscontrollist - standard ACL mechanism access
control list

1.4.2.1.2 DELETE MBX

DELETEMBX allows a user to delete a mailbox.
Specifically, it deletes an access category which had
previously been set up to be a mailbox name, i.e., it
deletes a mailbox name. This means that if a mailbox is in
use at the time of the DELETEMBX operation, only the name
is deleted. The contents of the mailbox are not affected.

The syntax for this command is

DELETEMBX pathname

pathname - standard file system pathname which points
to an access category and ends in ".MBX"

1.4.2.1.3 CLOSE MBX

CLOSEMBX allows a user to either close a specific mailbox
or close all of their mailboxes. Closing a mailbox gets
rid of all pending messages for the user waiting to be
read. Closing a mailbox does not get rid of the mailbox's
associated access category, the mailbox name.

The syntax for this command is

CLOSEMBX {mailboxid}

mailbox_id - IPC mechanism's unique id for the
mailbox to be closed

NOTE]: The mailbox_id argument is optional. If not

provided, all of a user's mailboxes will be closed.

NOTE2: The mailbox_id can only be obtained from the IPC
mechanism via a program call. Therefore, to use this
option, the user must obtain the mailbox_id from a program
which calls IPCSO. Please refer to section 1.4.2.2 for
further information.

1.4.2.2 IPC Program Interfaces

These modules will handle such areas as opening and closing a
user's mailbox (Similar to opening and closing a file),
sending messages, receiving messages, controlling the ability
to be software interrupted, and getting status about the IPC
and its users.

The following interfaces have been defined to perform the
above activities:

1) OPEN - Opens a mailbox after checking for the proper
access rights and sets the mailbox either to be software
interrupted or to use semaphore notification. Returns a
mailbox id to be used as a shorthand means of telling the
IPC which mailbox to use.

2) CLOSE - Closes a specific mailbox.

3) CLOSEALL - Closes all of a user's mailboxes.

4) SEND - Sends a message through the specified mailbox to
a specific user.

5) SENDANYUSER - Sends a message through the specified
mailboxto any user attached to the mailbox. Only one user
gets the message.

6) SEND ALL USERS - Sends a message to all users attached
to the specified mailbox.

7) RECEIVE - Receives a message from the specified mailbox.
The message may have been addressed specifically by one of
the send routines to the calling user or to any user.

8) RECEIVEANYMAILBOX - Receives any message that may have
been sent to this user. The message may come from any of
the mailboxes to which the user is attached.

9) CONTROL - Turns on/off the notification that a message
is waiting.

10) STATUS - Returns status about various parameters of the
IPC mechanism or of a specific mailbox.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

11) GETUSERS - Gets a list of all readers or writers or
readers and writers attached to a specified mailbox.

The following sections fully describe these program
interfaces.

ae ewe ee

Opens An IPC Mailbox

Subroutine TUE, 11 JAN 1983

Name: IPCS$O

Purpose:

Opens a mailbox after checking for the proper access rights
and sets the mailbox either to be software interrupted or
to use semaphore notification. Returns a mailbox id to be
used as a shorthand means of telling the IPC which mailbox
to use.

Usage:

dcl ipcSo(fixed bin, fixed bin, char(128) var,
fixed bin, fixed bin);

call ipc$o(accesskey, notification_key, pathname,
mailboxid, ercode);

accesskey - Access key. Examples are:

KSREAD - Open mailbox for reading

KSWRIT - Open mailbox for writing

KSRDWR - Open mailbox for reading and writing

notificationkey - Notification type key.
Ignored for KSWRIT.
Examples are:

KSNFSM - Use semaphores for notification

KSNFIN - Use software interrupts for notification

pathname - Pathname to access category which will be used
as the mailbox name. It is also the object upon
which the access rights to the mailbox are set
and verified.

mailboxid - Shorthand identifier to be used by the prog-
grammer when addressing this mailbox in all
future IPC calls. (returned)

ercode - Standard PRIMOS error code. Examples are:

ESKEY - Bad access or notification key

ESNRIT - Insufficient rights to mailbox

ESFNTF - Mailbox (name) not found

ESFIUS Mailbox already opened

ESROOM Not enough room to create mailbox

Other network errors.

L
f

3 ~ D “~ (rd ry oO Q om ta ta o
O 3 { oo
}
~ Q my c
t
i Oo 3 i io
]

po
}
Q c
r [
+

oO bo
]

fy r
H

i
n

'
d D 9} p
a
n
.

m
h

j
a
m
.

Q my c
t
|

.

O om
)

ae
]

F
y

t
H l
{
4
© oO
’
n a (D <q e
e

1.4.2.2.2 IPCSC

Closes An IPC Mailbox

Subroutine TUE, 10 AUG 1982

Name: IPCSC

Purpose:

Closes a mailbox.

Usage:

dcl ipc$c(fixed bin, fixed bin);

call ipc$c(mailboxid, ercode);

mailbox_id ~- Shorthand identifier which tells the IPC which
mailbox to address.

ercode - Standard PRIMOS error code. Examples are:

ESNACC - Mailbox not accessable

Network errors will not be reported. Instead, the system
will keep attempting to close the mailbox until the network
comes back up or the remote system is cold started.
Reopening the mailbox while it is in this state will not
re-establish the mailbox remotely. It will merely flag the
mailbox as being reopened.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

1.4.2.2.3 IPCSCA

Closes All Of A User's Mailboxes

Subroutine TUE, 11 JAN 1983

Name: IPCSCA

Purpose:

Closes all the mailboxes that a user currently owns.

Usage:

dcl ipc$ca entry();

call ipcSca();

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

1.4.2.2.4 IPCSSS

Send A Message To A Specific User

Subroutine TUE, 10 AUG 1982

Name: IPCSSS

Purpose:

Sends a message through the specified mailbox toa
specific user.

Usage:

dcl ipc$ss(fixed bin, fixed bin, ptr, fixed bin,
fixed bin);

call ipc$ss(mailbox_id, ipc_user_id, msgptr,
msgsize, ercode);

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

ipc_user_id - IPC user id of message's receiver. The
IPC gives each user a unique id for each
mailbox. This id may also be the
caller's (see the IPCSGU subroutine).

msgptr - Pointer to the message to be sent.

msg_size - Size of the message in words.

ercode - Standard PRIMOS error code. Examples are:

ESNRIT - Wrong access rights (mailbox is read only)

ESNACC - Mailbox not accessable

ESBPAR - Message size exceeds maximum message size

ESROOM - Not enough room in IPC to send message

ESUADR - Unknown addressee

ESRSIN - Remote system has initialized ~ the node
the mailbox resides on has cold started.

Other network errors.

1.4.2.2.5 IPCSSA

Sends A Message To Any User

Subroutine TUE, 10 AUG 1982

Name: IPCSSA

Purpose :

Sends a message through the specified mailbox to any
user attached to the mailbox. Only one user will get
the message, the first receiver who reads it.

Usage:

dcl ipcS$sa(fixed bin, ptr, fixed bin, fixed bin);

call ipc$sa(mailboxid, msg_ptr, msgsize,
ercode);

mailboxid - Shorthand identifier which tells the IPC
which mailbox to address.

msgptr - Pointer to the message to be sent.

msgsize —- Actual size of the message in words.

ercode - Standard PRIMOS error code. Examples are:

ESNRIT - Wrong access rights (mailbox is read only)

ESNACC - Mailbox not accessable

ESBPAR - Message size exceeds maximum message size

ESROOM - Not enough room in IPC to send message

ESUADR - No users attached to mailbox

ESRSIN - Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

1.4.2.2.6 IPCSSSA

Sends A Message To Any User and Self

Subroutine TUE, 10 AUG 1982

Name: IPCSSA

Purpose:

Sends a message through the specified mailbox to any
user attached to the mailbox. Only one user will get
the message, the first receiver who reads it. This
routine is essentially the same as IPCS$SA except the
calling user is also allowed to read the message if he
has the mailbox open for reading.

Usage:

dcl ipcSssa(fixed bin, ptr, fixed bin, fixed bin)
’

call ipc$ssa(mailbox_id, msgptr, msgsize,
ercode);

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

msgptr - Pointer to the message to be sent.

msgsize - Actual size of the message in words.

ercode - Standard PRIMOS error code. Examples are:

ESNRIT - Wrong access rights (mailbox is read only)

ESNACC - Mailbox not accessable

ESBPAR - Message size exceeds maximum message size

ESROOM - Not enough room in IPC to send message

ESUADR -—- No users attached to mailbox

ESRSIN - Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

1.4.2.2.7 IPCSSB

Send A Message To All Users (Broadcast)

Subroutine TUE, 11 JAN 1983

Name: IPCSSB

Purpose :

Sends a message to all users attached to the specified
mailbox. This kind of message is also known as
broadcast message.

Usage:

dcl ipc$sb(fixed bin, ptr, fixed bin, fixed bin);

call ipc$sb(mailbox_id, msgptr, msgsize,
ercode);

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

msgptr - Pointer to the message to be sent.

msgsize —- Actual size of the message in words.

ercode - Standard PRIMOS error code. Examples are:

ESNRIT - Wrong access rights (mailbox is read only)

ESNACC - Mailbox not accessable

ESBPAR - Message size exceeds maximum message size

ESROOM - Not enough room in IPC to send message

ESUADR - No users attached to mailbox

ESRSIN - Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

1.4.2.2.8 IPCSSSB

Send A Message To All Users (Broadcast) and Self

Subroutine TUE, 11 JAN 1983

Name: IPCSSSB

Purpose °

Sends a message to all users attached to the specified
mailbox. This kind of message is also known as
broadcast message. If the caller has the mailbox open
for reading, then the caller may also read the
message.

Usage:

dcl ipc$ssb(fixed bin, ptr, fixed bin, fixed bin)
a

call ipc$ssb(mailbox_id, msgptr, msgsize,
ercode);

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

msgptr - Pointer to the message to be sent.

msgsize - Actual size of the message in words.

ercode - Standard PRIMOS error code. Examples are:

ESNRIT - Wrong access rights (mailbox is read only)

ESNACC - Mailbox not accessable

ESBPAR Message size exceeds maximum message size

ESROOM - Not enough room in IPC to send message

ESUADR - No users attached to mailbox

ESRSIN Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1mw Sie eS S&S SS eeee — eilstt ss < = = we SeeeSS

1.4.2.2.9 IPCSR

Receive A Message From A Specific Mailbox

Subroutine TUE, 11 JAN 1983

Name: IPCSR

Purpose:

Receives a message from the specified mailbox. The
message may have been addressed specifically to the
calling user or to any user.

Usage:

dcl ipc$r(fixed bin, fixed bin, ptr, fixed bin,
fixed bin, fixed bin, fixed bin);

call ipc$r(read_key, mailbox_id, bufferptr,
buffersize, msgsize, ipc_user_id,
ercode);

readkey - Read key. Examples are:

KSRDWT - Read a message and wait if a message is
not present

KSREAD - Read a message but don't wait if a message
is not present (ESNDAT will be returned if
no data is present)

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

bufferptr - Pointer to the buffer into which the IPC
should write the message.

buffersize - Size of the buffer in words.

msgsize - Number of words in message. (returned)

ipc_user_id - IPC user id of message's sender. The IPC
gives each user a unique id. (returned)

ercode - Standard PRIMOS error code. Examples are:

ESBKEY - Bad read key

Inter-Process Communication Functional Specification PE~TI-1066 Rev. 1

ESNRIT - No access rights

ESNACC - Mailbox not accessable

ESBFTS - Buffer too small to write message to
(message still pending)

ESNDAT - No data found - another reader has gotten
the message first or no messages are
pending

ESRSIN - Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

1.4.2.2.10 IPCSRA

Receive Message From Any Mailbox

Subroutine TUE, 11 JAN 1983

Name: IPCSRA

Purpose:

Receives any message that may have been sent to this
user. The message may come from any of the mailboxes
to which the user is attached.

Usage:

dcl ipcSra(fixed bin, ptr, fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin);

call ipc$ra(read_key, bufferptr, buffersize,
mailbox_id, msg_size, ipc_user_id,
ercode);

read_key - Read key. Examples are:

KSRDWT - Read a message and wait if a message is
not present

KSREAD - Read a message but don't wait if a message
is not present (ESNDAT will be returned if
no data is present)

bufferptr - Pointer to the buffer into which the IPC
should write the message.

buffersize - Size of the buffer in words.

mailboxid - Identifier which tells the user from
which mailbox the message has come.

msgsize - Number of words in message. (returned)

ipc_user_id - IPC user id of message's sender. The IPC
gives each user a unique id. (returned)

ercode - Standard PRIMOS error code. Examples are:

ESBKEY - Bad read key

Inter-Process Communication Functional Specification PE-TI-1066 Rev. l

ESNACC - Mailbox not accessable

ESFNTF - Mailbox not found (user has no mailboxes
open)

ESBFTS - Buffer too small to write message to
(message is still pending)

ESNDAT - No message found

ESRSIN - Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

Note: Any network errors that are encountered by the
IPC will be considered the same as no messages pending
and will not be reported. Only IPCS$R is capable of
determining if a network error is existant on a remote
mailbox for receiving.

1.4.2.2.11 IPCSCN

The IPC mechanism will not have a specific module
created to enable/disable the signal that is generated
when a message is sent. This option will be provided
for the IPC by the existing SWSINT routine. A
selection bit (bit 7) has been defined within SWSINT
for IPC. For further information on how to use SWSINT
see Software Interrupt Control Module Functional
Specification PE-TI-1005.

1.4.2.2.12 IPCSST

Provides IPC Status

Subroutine TUE, 11 JAN 1983

Name: IPCSST

Purpose:

Returns status about various parameters of a specific
mailbox.

Usage:

dcl ipcS$st(fixed bin, fixed bin, fixed bin,
fixed bin);

call ipc$st(key, mailbox_id, value, ercode);

key - Action key. Examples are:

KSNMSG - Get number of messages in this mailbox for
this user

KSMROM - Get maximum amount of space allowed ina
mailbox (mailbox_id not checked)

KSROOM - Get amount of space left in this mailbox

KSNUSR - Get number of users attached to this
mailbox

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

value - Item queried for. (returned)

ercode - Standard PRIMOS error code. Examples are:

ESNACC - Mailbox not accessable

ESBKEY - Bad key
ESRSIN - Remote system has initialized - the node

the mailbox resides on has cold started.

Other network errors.

Note: KSMROM is the maximum space allowed to be used

Inter-Process Communication Functional Specification PE-TI-1066 Rev. l

by this mailbox. It is not neccessarily the maximum
message size. The maximum message size is 3072 for
networked and local mailboxes. This is a NPX
restriction and is enforced at Rev 20.0.

1.4.2.2.13 IPCSGU

Gets A List Of Users Attached To A Specified Mailbox

Subroutine TUE, 11 JAN 1983

Name: IPCS$GU

Purpose:

Gets a list of all readers or writers or
reader/writers attached to a specified mailbox. The
calling user's id is never returned.

Usage:

dcl ipc$gu entry(fixed bin, fixed bin, ptr,
fixed bin, fixed bin,
fixed bin);

call ipc$gu(read_key, mailbox_id, bufferptr,
buffersize, returnedsize, ercode) ;

readkey - Read key. Examples are:

KSREAD - Get user IDs capable of reading from this
mailbox

KSWRIT - Get user IDs capable of writing to this
mailbox

KSRDWR - Get user IDs capable of reading and
writing to this mailbox

KSMINE - Get my user ID if mailbox is open for
reading

mailbox_id - Shorthand identifier which tells the IPC
which mailbox to address.

bufferptr - Pointer to the buffer into which the IPC
should write the list of users.

buffersize - Size of the buffer in words.

returnedsize - Size of the list written into the
buffer. (returned)

ercode - Standard PRIMOS error code. Examples are:

ESBKEY

ESNACC

ESBFTS

ESRSIN

Bad read key

Mailbox not accessable

Buffer too small

Remote system has initialized - the node
the mailbox resides on has cold started.

Other network errors.

Inter-Process Communication Functional Specification PE~TI-1066 Rev. 1

1.4.3 Errors

The subject of errors may be broken into two parts, error
detection and error handling.

1.4.3.1 Error Detection

This IPC mechanism may detect two different kinds of
errors, memory requirement errors and recoverability
errors.

1.4.3.1.1 Memory Requirement Errors

Memory requirement errors may occur whenever the IPC
system's use of main memory exceeds its allotted
space, i.e. the IPC will only be given a fixed amount
of memory in which to store its needed control
information and the user's messages. These errors are
soft errors. The IPC will be able to recover from
them. They may go away the next time a message is
taken out of the system or the next time a dynamic
system segment is freed. (The IPC will use
dynamically allocated system segments for its
databases. It is not valid for the IPC to
automatically delete messages to recover space. It
does not have any means of determining which messages
may even be deleted. Therefore, the user’ should
attempt to receive messages if any are anticipated to
be pending.) The key point is that once space is
freed for use by the IPC, the IPC can again function
normally. The recommended recovery for ESROOM on
sends is to retry the operation.

1.4.3.1.2 Recoverability Errors

Recoverability errors occur when the system halts and
requires a cold start. The IPC will not be able to
reconstruct the databases contained within before the
halt occurred. Therefore, any data that was in the
system will be lost. Users should not be dependent
upon messages always getting to their receivers.

Another type of error is network error which is also a
recoverabilty error. Transient network failures may
be "ridden through". This means the server may retry
the operation and may be successful if the network has
temporarily failed. If, however, the remote node has
gone down, then this cannot be distinguished from a
temporary network failure. Only when the node has
come back up can the IPC report a problem. When this
occurs, the error code ESRSIN will be returned. If

this error is encountered, then the mailbox should be
re-established. This is achieved by closing and
reopening the mailbox.

Because of possible temporary network failures,
notifies for networked mailboxes cannot be gaurenteed.
A network failure may occur between the time the
message is sent and the time the notify is delivered.
This implies that a user may not receive a notify even
though a message is pending, or conversely, a notify
may occur but the message is inaccessable (due to
network failure).

NOTE: Sending messages to a remote mailbox rapidly
May cause the remote node to run out of slaves because
the IPC allocates slaves on a per-call basis and does
not maintain a slave for the duration of the mailbox's
existance. This allows the programmer to recover from
transient network failures. You may defeat this (or
prevent this error) by establishing a slave on the
remote system by using the file system (attaching or
opening a file on the remote system) or using NPX
directly. This also enhances remote mailbox
performance.

1.4.3.2 Error Handling

Error handling must also be made an easy operation for
the programmer. The system has a choice as to what to do
when an error is detected:

a) It could do nothing and abort. This is not very
reasonable when dealing with users.

b) It could hide the errors from the users.

c) It could try to correct the errors.

d) It could simply tell the users of the errors.

Which of these actions should be taken iS a matter of
debate. In any case, whichever solution is taken should
allow the user to understand what is going on from within
a program. The error actions should not assume that a
user will be sophisticated enough to correct any mistake
that might occur. The IPC should gracefully try to
handle the situation as well as it can. If it must
inform the user of an error, the error messages should be
very clear. Enough for the user to take logical actions
based upon the error messages (codes).

1.4.4 Restrictions

The proposed IPC mechanism is a prototype. It may change at
any particular revision of PRIMOS. Therefore, any user of
this IPC should be aware that they may have to recode their
application whenever these changes occur.

The IPC does not guarantee any recoverability. Users should
be aware that once a message is sent, there is no concrete
statement made that the message will get to the receiver.
No guarantees are made about the order in which the messages
wiil be received. Guaranteed reception is the
responsibility of the programmer and ordering may need to be
checked.

The IPC will only be given a limited amount of memory space.
Therefore, any users of the mechanism should realize that
too many messages/mailboxes may cause the mechanism to run
out of space. Along these lines, users should realize that
other subsystems/application programs/system users may also
be utilizing the functionality of the IPC. It may even be
easier to run out of space than an isolated application may
believe.

1.5 Testability

The IPC will be put together in an intelligent manner using the
following in its design to aid debugging:

1) doubly linked lists

2) isolated network code

3) fully modular functionality

4) as much existing functionality as possible

The IPC will be tested thoroughly by creating a package of
programs which will run as_ phantoms. Where networks are
concerned, phantoms will also be used. It will be their task
to exercise all of the various functions within the mechanism,
therefore providing a full functional test.

ommunication Functional Specification PE-TI-1066 Rev. 1— =) e
a
t

D rr I ig ry Oo Q o t
a tn O
Q

2 DESIGN NOTES

It has been observed that the current version of PRIMOS (Revision

19) contains four features that can be extended or simply used by

the proposed IPC: the Phantom Logout Notification Code, the

semaphore mechanism, the condition mechanism, and NPX. The
Phantom Logout Notification code would be used as an example of a
Subset IPC, the semaphore mechanism and the condition mechanism
would be used for process synchronization, and NPX would be used
to create the networking capability.

2.1 A Subset IPC

Presently a subset of an IPC has been implemented for Phantom
Logout Notification. This subset is a kind of static mailbox
system applicable to PRIMOS use. It does not contain any
features that would allow for the notion of dynamically created
mailboxes which reader's and writer's open and close nor does
it allow the "all" and "any" functionality described above. It
also does not provide any networking capability.

2.2 Process Synchronization

As far as the idea of synchronization is to be developed,
semaphore operations, polling, and notification techniques will
be implemented. Waits and notifies (synchronous
synchronization) will be accomplished using the Prime 50
Series/PRIMOS semaphore operations. Signalling (asynchronous
synchronization) will be accomplished using the PR1MOS
implemented PL/1 signalling technique. Polling (synchronous
synchronization) will be accomplished by the user calling the
receive routines in some form of loop while notification has
been turned off utilizing the KSREAD key in the receive
routines.

2.3 Networking Capability

NPX will allow the IPC to be designed to work across’ the
network. The internal databases of the IPC will contain
information about a mailbox. One of these pieces will indicate
that a mailbox or user is remote.

In addition to the facilities currently in PRIMOS, the IPC will
use a dynamic storage allocation mechanism which is currently
built into PRIMOS. The Dynamic Storage Allocator Functional
Specification PE-TI-1062 documents this mechanism.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

3 RELIABILITY

The following are those items for which reliability can be stated
at present:

1) The IPC should be as reliable as possible within the
confines of a local node and within cold start to halt time.

2) It should not be guilty of allowing either deadlock or
critical embrace to occur when access is made to its databases.

3) The IPC should not have to worry about creating faults when
traversing its mailboxes.

4) All messages that are accepted into the system shall be
protected from users who do not have correct access rights.

5) The IPC will not retry network failures, however, it will
allow temporary network failures to be "ridden" through. For
example, if a network error is returned from a read operation,
then the read may be tried again at a later time, (ie, when the
networks come back up).

4 PERFORMANCE

We will attempt to:

1) Speed up data transfer.

2) Speed up the open operation which has the highest cost.
This is justified as in general not many opens will be done per
mailbox.

3) Minimize the cost in both CPU time and paging from reads and
writes. The operations of read and write should not be
expensive as the data is to be stored ina shared system
segment. With enough use of the IPC, its pages are likely to
be found in main memory, and paging will not result.

We have no basis upon which to set limits for the operational
speed of the IPC as it is a prototype. The hope is to be able to
use it as a base for future IPC performances. Therefore attempts
will be made to identify the IPC's bottlenecks and to measure how
long it takes to perform an IPC data transfer.

5 CONFIGURATION

The IPC will come as a product within PRIMOS. It will not have
any parameters that need to be configured at first release. Its
memory requirements will be set at compile time. No operator
actions will need to be performed.

Perhaps at a future release we may add certain configuration

parameters that will effect such items as number of mailboxes,
total space used by the IPC, etc.

6 INSTALLATION

No extra installation procedures are required since this IPC comes

as part of PRIMOS.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

7 EASE OF USE

Perhaps the most important requirement not yet mentioned about
this IPC is that it must be easy to use. It should be easy to use
for both application programmers and systems programmers. The
program interfaces should be as simple as possible. Each type of
call should not involve many different arguments, and the
arguments should be simple in nature, such as the name of the
pathway, what to write, where to write, and error status. There
should not be many types of interface routines to call. The set
should consist of operations that read information, write
information, provide status information, and provide the means for
opening and closing a pathway. These interfaces have already been
defined in the section on Operational Procedures.

7.1 Example Of The IPC In Use

The following is an example of how server processes and their
users would communicate via this IPC.

The basic premises are:

1) Servers control access to a secured data base.

2) Users need to get information to and from this data
base.

3) Users act through a transaction program which is’ the
agent that sends messages to the server.

During the design of the service the programmers must agree
upon the name of the mailboxes (access catagories) needed and
who is to have what kind of access to the mailboxes (access
catagories). Before anyone is allowed to use the service these
mailboxes (access catagories) must be set up.

The following two sections demonstrate how to use the IPC using
both the semaphore or software interrupt synchronization
techniques.

7.1.1 Using Semaphore Synchronization

When the servers are initially executed, they must perform
two actions with respect to the IPC; open a mailbox from
which they will read user's messages and open a mailbox for
writing through which they will send responses back to the
users. The following code performs these actions:

call ipcS$o(k$read, k$nfsm, ordersmailboxname,
ordersmailboxid, ercode);

rocess Communication Functional Specification PE-TI-1066 Rev. 1

call ipcS$o(k$writ, k$nfsm, responsemailboxname,
response_mailbox_id, ercode);

After opening these mailboxes, the servers can then wait for
an order. After an order is received, the servers must act
upon it and send a response back to the requestor. Usually,
one of the orders will be a shut down order. The following
code performs these actions:

do while(<not shut down order>);
call ipe$r(k$rdwt, ordersmailboxid, buffer,

buffersize, msg_size, ipc_user_id,
ercode);

<process the order found in buffer>

call ipc$ss(responsemailbox_id, ipc_user_id, msgptr,
msgsize, ercode);

end;

When the transaction program is initially executed it also
must perform two actions with respect to the IPC; open a
mailbox for writing through which it will send orders to any
server and open a mailbox from which it will read the
servers’ responses. The following code performs these
actions:

call ipc$o(k$writ, k$nfsm, ordersmailbox_name,
ordersmailbox_id, ercode);

call ipc$o(k$read, k$nfsm, responsemailboxname,
responsemailbox_id, ercode);

When a user tells the transaction program to do something,
the transaction program must translate the request into an
order and send the order to any server. The following code
demonstrates this:

<translate the request>

call ipc$sa(ordersmailbox_id, order, order_size,
ercode);

After sending the order the transaction program must wait
for a response and then inform the user of the server's
response. The following code demonstrates this:

call ipc$r(k$rdwt, responsemailbox_id, buffer,
buffer_size,msgsize, ipc_user_id, ercode);

<inform user of server's response>

At this point the transaction program can ask for another
order.

Note that the order is sent to any reader of the orders
mailbox. This allows for more than one server to be
attached to the orders mailbox.

7.1.2 Using Software Interrupt Synchronization

When the servers are initially executed they must perform
three actions with respect to the IPC; set up an on-unit
which will see any messages which are sent to a server, open
a mailbox from which they will read user's messages, and
open a mailbox for writing through which they will send
responses back to the users. The following code performs
these actions:

call mkonu$('IPC_MSGWAITINGS', ordersonunit);
call ipc$o(k$writ, k$nfin, orders mailbox_name,

ordersmailboxid, ercode);
call ipc$o(k$read, k$nfin, responsemailboxname,

response_mailbox_id, ercode);

After performing the above operations, the servers must wait
for orders to be sent or until a shut down order is received
by the “orderonunit". While waiting the servers are free
to perform any interruptable actions. The following code
demonstrates this:

do while(<shut down order not seen>);
call sleeps(1000000); /* do interruptable work here */

end;

Note: Instead of "Sleeping" the server could perform any
interruptable activity.

The “ordersonunit" is responsible for reading the user's
messages, acting on the orders in the messages, and sending
back the server's response. The on-unit is also responsible
for turning notification off before receiving the message
and on after it finishes processing the order. This should
be done to prevent multiple notifications from interfering
with each other. The form of the on-unit is as follows:

ie OO We ew

ordersonunit: proc(cfp);

dcl cfp ptr; /* condition frame pointer */

call swSint(...); /* turn off ipe interrupt */

do while(<more orders to receive>);
call ipc$r(k$read, ordersmailbox_id, buffer,

buffersize, msgsize, ipc_userid,
ercode);

<process the order found in buffer - if a shut down
order communicate this to the main server program>

call ipc$ss(responsemailboxid, ipc_user_id,
msgptr, msgsize, ercode);

end;

call swSint(...); /* turn on ipe interrupt */

end; /* ordersonunit */

Note that the on-unit will handle as many messages as are in
the IPC for it once invoked. Messages may be placed into
the IPC while the on-unit is executing. Remember, the
on-unit may lose control getting a lock or by being time
slice ended.

Also note that the on-unit may get invoked again because of
a pending IPC interrupt that was set while the on-unit was
executing. The on-unit may then find no data in the IPC.
(It just handled the data while it was last running.)

When the transaction program is initially executed it also
must perform three actions with respect to the IPC; open a
Mailbox for writing through which it will send orders to any
server, open a mailbox from which it will read the server's
responses, and set-up an on-unit which will see the
responses and present them to the user. The following code
performs these actions:

call mkonu$('IPC_MSGWAITINGS', response_onunit);
call ipc$o(k$writ, k$nfin, ordersmailboxname,

ordersmailboxid, ercode);
call ipc$o(k$read, k$nfin, response_mailbox_name,

responsemailboxid, ercode);

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

When a user tells the transaction program to do something,
the transaction program must translate the request into an
order and send the order to any server. The following code
demonstrates this:

<translate the request>

call ipc$sa(ordersmailbox_id, order, ordersize,
ercode);

After performing the above operations, the transaction
program must wait for the server to send back its response.
The following code demonstrates this:

do until(<response seen>) ;

call sleeps$(1000000);
end;

Note: Instead of "sleeping" the transaction program
could perform any interruptable activity.

Note that the order is sent to any reader of the orders
mailbox. This allows for more than one server to be
attached to the orders mailbox.

The responseonunit is responsible for getting the response
message from the server, setting it up for the user, and
presenting it to the user: Its format is as follows:

responseonunit: proc(cfp);

dcl cfp ptr; /* condition frame pointer */

call ipc$r(k$read, response_mailbox_id, buffer,
buffersize, msgsize, ipc_userid, ercode);

<process the response found in buffer and tell
transaction program that a response has been seen>

<present the response to the user>

end; /* responseonunit */

Note that no enabling/disabling of the IPC notification is
needed. In this example, only one response will be seen by
one user at a time as only one order is sent at a time.

7.2 Analysis Of Semaphore Vs. Interrupt Notification

An analysis of this example shows that it is much easier’ to
code using the semaphore synchronization technique rather than
the interrupt technique. All the code appears in the normal
path of the programs rather than in an on-unit. Additionally,
when using on-units, the program and the on-unit must
communicate via global variables such as <response seen>.

Inter-Process Communication Functional Specification PE-TI-1066 Rev. 1

8 MAINTAINABILITY

This IPC will be built as a completely self-contained mechanism to
be added to PRIMOS. All maintenance for the product will be
performed by the PRIMOS group. The code will be well structured
and well documented. A Design Specification will be written to
aid future PRIMOS group members whenever they are studying,
debugging, enhancing, or just simply curious about the IPC. This
specification may also be used by future developers of a fully
complete IPC as ae reference. A stand alone data base tracing
program will be written to aid in debugging. Its functionality
will be added to AUTOPSY.

9 COMPATIBILITY

As this IPC is a brand new product, one that has never before been
introduced to PRIMOS, compatibility is not an issue.

It should be mentioned that future IPC mechanisms may wish to
utilize some of the same interface definitions and/or control data
structures.

Finally, it must be stated that future IPCs guarantee NO
compatability with this prototype nor does this prototype
guarantee any compatability with any future IPCs.

10 STANDARDS

The only standard that must be addressed by this IPC is the entry
name standard. Each entrypoint IPC module has no more than six
characters in its name. Therefore, they may be called via PRIMOS'
dynamic linking mechanism. Each IPC interface module will begin
with "IPC".

All internal OSSD coding standards will be followed except as
pointed out in the IPC Design Sepcification PE-TI-XxXxXx.

ll REFERENCES

No specific outside literature was referenced when defining the
interfaces to be included within the IPC. The literature
mentioned in sections 1.2 and 1.4.2.2.9 was used when defining
Functionality.

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

